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ABSTRACT 

A series of nickel(II) complexes chelated by N^N benzimidazolylmethylamine and N^O 2-

[(ethylimino)ethyl]phenol ligands have been synthesized, characterized and applied as 

catalysts for ethylene oligomerization reactions. A total of twelve ligands and thirteen nickel(II) 

complexes was synthesized. The formation of ligands and complexes was confirmed using 1H 

NMR and 13C{1H} NMR, IR spectroscopy, mass spectrometry, magnetic moment 

measurements, elemental analyses and single crystal X-ray crystallography. The N^N 

benzimidazolylmethylamine ligand L3 gave a mononuclear complex 3a whilst the N^O 2-

[(ethylimino)ethyl]phenol ligand L7 gave a binuclear nickel(II) complex 9a and both ligand 

systems resulted in formation of complexes possessing a distorted octahedral geometries. The 

nickel(II) complexes were then tested for the oligomerization reactions of ethylene and the 

oligomeric products were characterized using GC and a combination of GC-MS. 

Upon activation with EtAlCl2 and MAO all the nickel (II) complexes showed high catalytic 

activities in the range of 337 kg mol-1 h-1 to 3 330 kg mol-1 h-1 to produce C4 and C6 and toluene 

alkylated products depending on the solvent system and co-catalyst utilized. The catalytic 

activities of the complexes and the products formed were largely governed by the nature of the 

nickel(II) complex structure. The most catalytically active catalyst 10 gave activity of 3 330 kg 

mol-1 h-1 and selectivity of 25% and 75% for butene and hexene respectively. The use of toluene 

resulted in formation of Friedel-Craft alkylated products whilst chlorobenzene predominantly 

gave C4 and C6 oligomers.  Activation with MAO co-catalyst also gave C4 and C6 oligomers 

as major products irrespective of the solvent system used. In addition, the reaction parameters 

such as pressure, time and Al/Ni ratio had a significant effect on catalytic activity and 

selectivity of the nickel(II) complexes and therefore were also optimized.  
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Chapter One 

Introduction and literature review of ethylene oligomerization reactions by late 

transition metal catalysts. 

 

1.1. Background information 

Catalysis remains the backbone of the chemical transformation in industrial processes with over 

85% of both domestic and industrial products being produced using catalysts.1 The importance of 

catalysis is witnessed in energy processing, bulk chemicals, fine chemicals and food processing.1 

One of the major areas where catalysis has played a significant role is in the conversion of olefins 

to useful products. There exist two different types of catalysis, that is, heterogeneous catalysis and 

homogeneous catalysis. The latter catalysis is a subset of catalysis and utilizes soluble 

organometallic compounds as catalysts for various organic transformations.2 For example, the 

well-known Shell-Higher Olefin Process using nickel-based catalyst, Albermarle and Chevron 

Processes with aluminium catalyst, and the Idemitsu Process, which also employs 

aluminium/zirconium catalysts are counted amongst the most important processes for ethylene 

oligomerization reactions.3  

 

Designing a suitable homogeneous catalysts for a given reaction is a crucial step since catalyst 

stability, selectivity and activity need to be taken into account and consequently be well balanced.4 

In the field of linear olefin transformation, the synthesis of C4-C20 linear α-olefins in a selective 
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manner has become an area of immense interest in both the industrial and academic sector owing 

to their rapidly growing demand in the market.5 As a result, Brookhart and his co-workers6 

initiation resulted in an increased interest in the development of new late transition metal based 

complexes for the transformation of α-olefins both in academia and industries.7 The tolerance of 

polar monomers displayed by late transition metal catalysts is one of the most vital characteristic 

which have made them more attractive over early transition metal catalysts and therefore their 

relevance is also noticed in copolymerization reactions of polar monomers.8 In addition, they are 

less oxophillic hence more stable and easier to handle. In contrast, early transition metal catalysts 

limitations include their sensitivity to impurities in the monomer feed and their oxophillic nature.8  

 

The late transition metal catalysts are also suitable candidates for the oligomerization of ethylene 

reaction. This is because the β-elimination step (Scheme 1.1) is facile for the late transition metals 

such as Co, Ni, Rh and Pd, as a result these metals preferentially lead to the formation of 

oligomerization products such as butenes and hexenes.7 In contrast, chain propagation is favoured 

for early transition metals (Ti or Cr) and therefore are suitable for the production of polymers.9  

Ln M

H

R

Ln M

R

CH2H



 

Scheme 1.1 The β-hydride elimination step that leads to chain termination of oligomer or polymer 

product. 
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1.2. Mechanism for ethylene oligomerization and polymerization reactions.7 

The mechanism for ethylene oligomerization and polymerization reactions proceeds via three 

consecutive steps i.e. initiation, propagation and termination steps. During the initiation step, the 

co-catalyst knock out the halide directly bonded to the metal pre-catalyst (Scheme 1.2, (A)) and 

introduces an alkyl group which results in the formation of a metal to carbon bond which is 

required for the propagation step. The substrate binding site is then created through the dissociation 

of the second halide which subsequently forms an active metal complex (B). The nucleophilic 

olefin which is the substrate is then attached to the metal vacant site leading to olefin/alkyl complex 

(C). The subsequent step is propagation and proceeds via migratory insertion. The olefin is inserted 

to the metal-alkyl bond thereby forming an unsaturated metal/alkyl complex with another vacant 

site where another olefin is introduced and propagated (D) until termination step takes place (E). 

This step occurs through a reversible process whereby a β-hydrogen is abstracted as the hydride 

leading to a formation of an olefin/hydride complex and olefinic product (F). Depending on the 

reaction conditions, the olefinic product can be a polymer or an oligomer. Polymers are formed if 

the olefin/hydride complex undergoes hydride re-insertion under the condition that the rate of 

chain re-insertion is greater than the rate of chain termination. On the other hand, the oligomers 

are produced when the olefin-terminated chain is removed by another olefin and the catalytic cycle 

repeated again (G). 
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Scheme 1.2 The activation, propagation and termination steps for ethylene oligomerization 

reaction using late transition based metal catalysts. 
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1.3. The role of the co-catalyst 

The mechanism in Scheme 1.3 shows that organometallic complexes require a co-catalyst which 

is usually a strong Lewis acid to form a cationic metal centre which is active in ethylene 

oligomerization reactions (Scheme 1.3).2 

N
H2

N
H2

Ni

Cl

Cl
N
H2

N
H2

Ni
+

CH3

Coordination site

AlR3
[AlR3]-+

 

Scheme 1.3 The activation of the nickel(II) complex with the aluminium based co-catalyst. 

 

The activation with aluminium based co-catalyst is a two steps process whereby the complex is 

first alkylated by the co-catalyst which is then followed by the activation of the neutral metal 

complex via the formation of a coordination site leading to a cationic metallic centre (Scheme 1.3). 

The commonly employed Lewis acids in olefin oligomerization activation includes Et3Al, MAO, 

MMAO, Et2AlCl and EtAlCl2.
10-11 It is also noteworthy to mention that for effective activation, 

favourable co-catalyst to catalyst precursor interactions are vital and also kinetic and 

thermodynamic need to be taken into considerations. The co-catalyst also forms weakly 

coordinated anion after activation and forms a vital part of a catalytically active cation-anion pair 

which may greatly influence the catalytic activity of the metal catalyst and the nature of the 

products produced.11 The acidity of the co-catalyst also plays a crucial role in the activation of the 

pre-catalysts and the effect of the co-catalyst is also witnessed in the resultant catalytic activity 

and selectivity of the catalysts.12 For example, the O^N^O system reported by Zhang et al.13 show 
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moderate catalytic activity when activated with MAO while activation with EtAlCl2 or Et2AlCl 

resulted in enhanced catalytic activity of the nickel(II) complexes. 

 

1.4. Properties and applications of linear α-olefins (LAOs) 

The ethylene oligomerization process was discovered in 1933.2 The ethylene oligomers are 

characterized by their flexibility, durability, chemically resistance and recyclability. The transition 

metal catalyzed olefin transformation reactions are currently adding value and plays a vital role in 

the petrochemical fine chemical and pharmaceutical manufacturing.2 For example, the 

oligomerization of lighter α-olefins (C2-C8) to higher α-olefins (C10-C20) provides feedstocks for 

the manufacture of fine and bulk chemicals, plastics, adhesives, detergents, plasticisers and 

pharmaceutical products.12, 14-18 Figure 1.1, shows the uses of LAOs in bulk chemical production 

with respect to their market volume.19 

 

Figure 1.1. Market volume of the products from LAOs in 2004.19 
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LAO’s also serve as co-monomers in the production of linear low density polyethylene (LLDPE). 

It was also estimated in 2004 that a total of 35 million tons of LLDPE/LDPE and 25 million tons 

of HDPE were consumed world-wide and this consumption was predicted to increase annually by 

5% until 2010,20 signifying the need for large supplies of LAO’s. Due to the great demand of 

LAO’s such as 1-hexene and 1-octene, the industrial demand of LAO’s have become particularly 

more attractive and worth time investment and researching.1 

 

1.5. Literature reviews of nickel(II) complexes as ethylene oligomerization catalyst. 

Nickel(II) based metal catalysts have displayed vital properties in ethylene oligomerization 

reactions which includes high catalytic activity and thermal stability. Consequently, nickel has 

receive huge interest in the design and synthesis of new catalysts for the oligomerization reactions 

of ethylene. This is because nickel favours β-hydride elimination step over chain propagation step 

which mainly results in oligomerization products.7 In addition, the phenomenon called “nickel 

effect” also highlights the oligomerizing character of the nickel catalysts which favours the chain 

transfer over chain growth.21 The role of nickel complexes as catalysts has been emphasized by 

the high industrial demand for linear α-olefin (LAO), particularly in the range C4-C20+.   

 

The electron-donating abilities of oxygen, nitrogen, and phosphorus in hetero-organic compounds 

make these compounds good ligands for transition metals. Nevertheless, bidentate and tridentate 

ligands of the type N^N, N^O, N^P, O^P, P^P, N^N^N, N^N^O, P^N^N or P^O^P have been 

widely studied.22 The results obtained from these complexes show that the ligand architecture 

plays a crucial role in regulating the catalytic activity and selectivity of the respective complexes. 
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In the following sections we discuss different ligand systems that have been chelated to nickel late 

transition metal. This subsequent discussion is particularly based on the bidentate (N^O and N^N) 

and tridentate (N^N^N, N^N^O and O^N^O) donor ligands chelated to nickel(II) late transition 

metal and then further explores Friedel-Craft alkylation in ethylene oligomerization reactions in 

broader details.  

 

1.5.1. Nickel(II) complexes chelated by N^O bidentate ligands 

The N, O donor ligands are considered as unsymmetrical bidentate ligands and are often called 

mixed or hybrid ligands.23 These hetero-functional ligands usually display distinct dynamic 

features including hemilability,24 which provides efficient molecular activation procedure under 

mild conditions. The term “hemilabile” ligand was first introduced by Jeffrey and Rauchfuss25 and 

refers to the multi-dentate ligand which contains at least one substitutionally labile donor group. 

Hemilabile group also plays a crucial role in stabilizing the active cationic species and 

subsequently the catalyst. Figure 1.2 shows the interesting behaviour in the coordination chemistry 

of the hemilabile ligand which is initiated by the co-catalyst or the solvent molecule.26   

M

N N

ClCl

X

X = Hemilabile donor atom

Co-catalyst M

N N

Me
X

M

N N

Me

X

Vacant

 

Figure 1.2. The coordination chemistry of the hemilabile catalytic system.26 
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Even though the nickel(II) P^O chelates have been successfully applied in the SHOP, there are 

reported major drawbacks including low catalytic activity and poor selectivity.27 The discovery of 

the N^O chelated complexes was aimed to circumvent major drawbacks associated with P^O 

chelated systems. In a recent review by Gao et al,28 it was reported that N^O ligated nickel(II) pre-

catalysts, such as the salicylaldimito nickel(II) complex have high activity in catalyzing ethylene 

oligomerization reactions.  

 

The neutral nickel(II) catalysts with N^O-type ligands have  been proven to be highly active for 

the polymerization of ethylene.21 These includes the nickel(II) complexes explored by the research 

groups of Grubbs (1-I), Mecking (1-II) and others with salicylaldimine ligands and Brookhart and 

co-workers with anilinotropone ligands (1-III) and also anilinoperinaphthenone ligands (1-IV) 

shown in Figure 1.3. 
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Figure 1.3. The previously studied neutral nickel catalysts with N^O-type ligands by Kermagoret 

et al.21 

 

Another series of N^O-type ligands was reported by Zhou and his co-workers in 2012.4 Their 

ligand systems were based on 4,6-dibenzhydryl-2-[(arylimino)methyl]phenol derivatives (Figure 

1.4, 1-V). Activated with ethylaluminium sesquichloride (EASC), the nickel(II) complexes display 

good catalytic activities of up to 2.89 x 106 g mol-1 (Ni) h-1 for the dimerization of ethylene. Ligand 
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back-bone has a profound effect on the resultant catalytic activities of the nickel(II) complexes. 

As an illustration, the catalytic activities of the nickel(II) complexes were observed to increase on 

increasing the bulkiness of the ortho substituents at the arylimino group which alluded to increased 

solubility of the nickel(II) complexes.4  The reaction conditions also have significant effect on the 

chemo- and regioselectivity toward target olefin products as witnessed by Carlini et al.29 on their 

bis-(salicylaldiminate) nickel(II) complexes. 
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Figure 1.4. The bis-(4,6-dibenzhydryl-2-[(arylimino)methyl]phenoxylate) nickel(II) complex.4 

 

1.5.2. N^N bidentate nickel(II) complexes 

This class of bidentate nickel(II) complexes have also been extensively studied and have displayed 

vital properties for ethylene oligomerization reactions such as better catalytic activity, selectivity 

and thermal stability. The nickel(II) based catalyst developed by Brookhart produces highly 

branched short-chain polyethylene in the absence of comonomers.2 These highly active catalysts 

are supported on N^N α-diimine ligands (Figure 1.5, 1-VI). Grubbs and co-workers introduced  

another highly active nickel(II) catalyst anchored by salicylaldehyde ligands.30 This neutral nickel 
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catalyst is the modification of the one used in the Shell Higher Olefin Process and polymerizes 

ethylene to polyethylene. The SHOP utilizes P^O chelates of neutral nickel catalysts.31 Evidently, 

these chelating P^O ligands for neutral nickel(II) complexes have been successfully used in the 

SHOP to produce linear α-olefins but with major drawbacks.32 

R1 R1

N

Ni

N

R

R

R1 R1
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R
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Y
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-
, SbF6
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1-VI 

Figure 1.5. The α-di-imine nickel(II) catalyst precursors, developed by Brookhart and co-

workers.2 

 

In a recent work by Song and his co-workers,33 they discovered that nickel(II) complexes 

supported by 8-(1-aryliminoethylidene)quinaldinyl ligands (Figure 1.6. 1-VII) form active species 

for ethylene oligomerization upon activation with Et2AlCl. These nickel(II) complexes display 

good catalytic activities in the range of 1.24 x 106 g mol-1 (Ni) h-1 - 1.83 x 106 g mol-1 (Ni) h-1 in 

ethylene oligomerization reactions with high selectivity for C4 oligomer. The better thermal 

stability and solubility was an attribute to the more electron-donating group present in the ligand 

architecture. These properties are advantageous for industrial purposes.  
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Figure 1.6. Nickel(II) complexes of 8-(1-aryliminoethylidene)quinaldinyl ligands (1-VII) and N-

(2-substituted-5,6,7-trihydroquinolin-8-ylidene)arylamino nickel dichlorides (1-VIII). 

 

In a subsequent study by Yu et al.34 using N-(2-substituted-5,6,7-trihydroquinolin-8-

ylidene)arylamino nickel dichlorides (Figure 1.6. 1-VIII), they were able to show that N^N 

bidentate nickel(II) complexes form active catalysts for ethylene dimerization and trimerization 

reactions. Activities as high as 9.5 x 106 g mol-1 h-1 were achieved upon the activation of the  

complexes with ethylaluminium sesquichloride (Et3Al2Cl3).  

 

Generally, N^N bidentate type nickel(II) complexes have been studied extensively,35-41 and display 

advantageous properties including ease in preparation, improved catalytic performances and better 

thermal stability when used in the synthesis of branched polyethylene of narrow polydispersity.28 

Nevertheless, the majority of ligands reported in literature are α-diimino derivatives and the 

examples of benzimidazolyl and imino pyridyl nickel(II) complexes are still rare.42  
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The catalytic properties of the resulting complexes are greatly dependent on the back bone and 

substituents of the ligand, which provides various coordination environments for the metal. To 

give a supporting example, 2-iminopyridyl nickel(II) complexes (Figure 1.7, 1-IX) activated with 

EtAlCl2 forms catalytic active catalysts for the oligomerization and polymerization of ethylene.43 

Higher catalytic activities of 107 g mol-1 (Ni) h-1 magnitude were observed with increased steric 

hindrance of the substituent, such as having a dibenzhydryl group on the ortho position of the 

phenyl or a dibenzhydryl naphthyl group on the imino nitrogen atom. 

N
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Figure 1.7. Nickel(II) complex of 2-iminopyridyl ligands. 

 

Most recently, Nyamato et al.44 reported potential hemilabile N^N-bidentate nickel(II) complexes 

chelated by (amino) pyridine ligands as nickel(II) catalysts in ethylene oligomerization reactions 

with intriguing results (Figure 1.8, 1-X). Activation of the complexes with EtAlCl2 co-catalyst 

results in more active species than when MAO was used as an activator. This fundamental effect 

of MAO to form highly active species than EtAlCl2 takes into account the acidity of the co-catalyst 

and the type of active species formed upon activation.2 The catalytic activities of the complexes 

are also affected by the nature of the pendant donor group. For example, replacement of the OCH3 
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pendant group (2) with NH2 pendant group (4) results in increased catalytic activity from 2 380 kg 

oligomer mol-1(Ni) h-1 to 2 740 kg oligomer mol-1(Ni) h-1. The explanation behind these high and 

low activities of the complexes relied on the Hard-Soft Acid Base theory. Lower activity was due 

to the to the incoming ethylene oligomer competing for the vacant site with the oxygen since there 

is a strong interaction between O and Ni atoms, and this is the rate determining step. 

N

N

Y

H

N

N

Y

H

Ni

Y = OMe, NEt 2, OH
 

1-X 

Figure 1.8. The nickel(II) complexes supported by (amino)pyridine ligands.44 

 

1.5.3. N^N^N tridentate nickel(II) complexes 

There exists nickel(II) complexes of tridentate ligands for the oligomerization of ethylene. 

Incorporation of nickel late transition metal to tridentate ligands have brought about another 

intriguing results and have developed a great interest in ethylene oligomerization reactions. 

Brookhart and Gibson independently reported nickel(II) complexes coordinated to 2,6-

(bis(arylimino)pyridyl, N^N^N tridentate ligands.45 These complexes are based on Fe(II) and 
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Co(II) metal centres. They form active species for the oligomerization and polymerization of 

ethylene and higher α-olefins upon activation with MAO. In addition, they are highly active than 

metallocene catalysts and more stable. For example the nickel(II) complexes bearing N-(2-(1H-

benzo[d]imidazole-2-yl)quinolone-8-yl)benzamine ligands reported by Wang et al.46 (Figure 1.9, 

1-XI).  
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Figure 1.9. Nickel(II) catalysts bearing N-(2-(1H-benzo[d]imidazol-2-yl)quinolin-8-

yl)benzamine derivatives.46 

 

These complexes displayed high activities in the oligomerization of ethylene to give C4 oligomers 

as major products. In this work, changing the alkyl substituent of the ligand influences the catalytic 

activity of the catalyst. For example replacing methyl group with a propyl group increases the 

catalytic activity of the catalyst from 2.0 x 106 g mol-1 (Ni) h-1 to 5.5 x 106 g mol-1(Ni) h-1.  In 
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addition, the complexes bearing R1 and R2 as bromide or chloride were observed to have much 

lower activity.  

 

The ligand framework plays an important role in the resultant catalytic activity, stability and 

selectivity of the catalyst as also observed by Lee et al.47 in their research work on nickel(II) 

dibromides complexes supported by tridentate ligands of bis-(benzimidazolyl)amine and bis-

(benzimidazolyl)pyridine ligands.47 Their findings show that bis-(benzimidazolyl)pyridine 

nickel(II) complexes (Figure 1.10 1-XII) have higher catalytic activities and selectivity towards 

ethylene dimerization than bis-(benzimidazolyl)amine nickel(II) complexes (Figure 1.10 1-XIII). 

In addition, the catalytic activity of the complexes derived from pyridine ranged from 1.662 to 

2.803 X 106 (oligomer) (mol-Ni)-1 h-1 bar-1 whilst the catalytic activity of the complexes derived 

from methylamine were found within the range of 1.086 to 1.622 X 106 (oligomer) (mol-Ni)-1 h-1 

bar-1. The catalytic activity differences are assigned to the variation of the electronic effect as a 

result of the differences in the structures of these two sets of complexes. For instance, bis-

(benzimidazolyl)pyridine ligands results in a more electropositive metal centre as they are electron 

deficient and favour rapid substrate attachment leading to higher catalytic activities whilst bis-

(benzimidazolyl)amine ligands are more electron rich and results in a less electropositive metal 

centre which subsequently reduces the catalytic activity of the nickel(II) catalyst.   
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Figure 1.10. Nickel(II) dibromide complexes bearing bis-(benzimidazolyl)amine (1-XII) and bis-

(benzimidazolyl)pyridine (1-XIII) ligands. 

 

The catalytic performance of the complex is also influenced by the nature of the co-catalyst 

employed. Shi et al.48 used Et2AlCl, MAO and MMAO to activate nickel complexes bearing 2-

(1H-benzimidazol-2-yl)phenoxy ligands. In their studies they found that activation of the 

complexes by Et2AlCl with Al/Ni ratio of 100 exhibit substantially high catalytic activities (2.19 

x 105 g mol-1 h-1) for ethylene oligomerization producing C4-C6 oligomers as the major products. 

On the other hand, MAO and MMAO show low catalytic activities toward ethylene 

oligomerization of 0.20 x 105 and 1.19 x 105 g mol-1 h-1 respectively also giving C4-C6 olefins as 

the major products. Further studies by Zhang et al.49 show that higher catalytic activity can be 

attained by using an auxiliary ligand such as PPh3. For example, the catalytic activity of 2-

(benzimidazole-2-yl)-1,10-phenathrolines nickel(II) complex (Figure 1.11, 1-XIV) increase from 

2.77 x 106 g mol-1(Ni) h-1 to 3.95 x 107 g mol-1(Ni) h-1 upon addition of 20 equivalents of PPh3. 
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   Figure 1.11. Nickel(II) complex bearing 2-(benzimidazole-2-yl)-1,10-phenathroline ligands. 

 

1.5.4. Mixed oxygen^nitrogen tridentate nickel(II) complexes 

This class of ligands is composed of oxygen and nitrogen as donor atoms and can either be N^N^O, 

N^O^O, N^O^N and O^N^O forms. Apart from their differences in the donor atoms arrangements, 

these ligands share common characteristics since they all form tridentate metal complexes which 

are characteristically catalytic active and stable. Tridentate nickel(II) complexes bearing mixed 

oxygen and nitrogen donor atoms have been intensively studied and are of particular interest, but 

herein we focus on the N^N^O and O^N^O tridentate systems. These nickel(II) complexes usually 

exhibit distorted octahedral geometry with the nickel(II) metal coordination sphere having  two 

ligand motifs.50 The nickel(II) metal high electropositivity and coordination number plays a crucial 

part in the resultant catalytic activities and also geometries of these complexes as not all late 

transition metals allow octahedral geometry.50  
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Liu et al.15 has reported the oligomerization of ethylene using nickel dihalides bearing 2-

benzimidazol-8-ethoxyquinolines ligands (Figure 1.12, 1-XV). All the nickel(II) complexes show 

high catalytic activities for the oligomerization of ethylene reactions after they have been activated 

with Et2AlCl. The catalytic activities of the nickel(II) bromide pre-catalysts increased with more 

electron donating capabilities of the alkyl substituent on the N-atom of the imidazole. In contrasts, 

this property decreased the catalytic activities of the nickel(II) chloride pre-catalysts. In addition, 

the effect of halides in the catalyst structure is also noted in the product distribution. Nickel(II) 

chloride catalysts predominantly produce oligomers in the rage C1-C6 whilst nickel(II) bromide 

catalysts solely form oligomers in the rage of C7-C12. In 2006, Yang and his co-workers also 

reported another ligand system of the N^N^O tridentate form which successfully oligomerize 

ethylene to predominantly C4 and C6 with also high catalytic activities.51  
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Figure 1.12. Nickel(II) dihalides bearing 2-benzimidazol-8-ethoxyquinolines. 
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The mixed oxygen and nitrogen tridentate nickel(II) complexes have been well-researched and  

Figure 1.13, gives a summary of other previously synthesized nickel(II) complexes that have been 

applied in the oligomerization reactions of ethylene. 
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Figure 1.13. Nickel(II) complexes bearing tridentate ligands used in ethylene oligomerization 

reactions.  
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Inspired by pioneering research and remarkable catalytic activities displayed by the tridentate 

systems of the mixed donor ligands, Zhang et al.13 recently reported nickel(II) complexes chelated 

by tridentate 2,6-pyridinedicarboxamine ligands (Figure 1.14, 1-XXI). These nickel(II) complexes 

show high catalytic activities of up to 7.55 x 105 g mol-1 (Ni) h-1 atm-1 upon activation with Et2AlCl 

with high selectivity towards the formation of C4. The substituents in the ligand motif play a crucial 

role on the resultant catalytic activity and selectivity of the nickel(II) complexes. For instance the 

complexes bearing chloride and fluoride as alkyl groups show very low catalytic activities with 

high selectivity for α-C4 (76 % – 84 %) while complexes bearing H, Me, Et, iPr alkyl substituent 

show high catalytic activities but with somewhat lower selectivity for α-C4 (67 % – 77 %).  
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Figure 1.14. Nickel(II) complexes chelated by 2,6-pyridinedicarboxamide. 

 

1.5.5. Friedel-Craft alkylation in the oligomerization reactions of ethylene 

This phenomenon whereby an aromatic solvent is alkylated with the oligomer product or monomer 

has become common in oligomerization reactions of ethylene.55  Likewise, Friedel-Craft alkylation 

depends on the ligand structure, aromatic solvent and co-catalyst employed. For example Dyer et 
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al.56 using nickel(II) complexes anchored on N-phosphinoguanidine ligands showed that activation 

with EtAlCl2 promotes in situ Friedel-Crafts alkylation of toluene solvent by the previously formed 

oligomers.   

     

In a subsequent work by Ojwach et al.57 they demonstrated that nickel(II) complexes supported on 

(pyrazo-1-ylmethyl) pyridine ligands (Scheme 1.4) when activated with EtAlCl2 oligomerize 

ethylene to C4, C6 and C8 which subsequently undergo Friedel-Craft alkylation of the toluene 

solvent by the pre-formed oligomers. The active species predominantly produce toluene alkylated 

butenes, hexenes and octenes as major products and no alkylation of ethylene detected.  Likewise, 

the solvent used has a major influence on the oligomeric products and as result when hexane 

solvent is used, the catalysts produce butenes, hexenes and octenes as major products and only 

traces of alkylated hexane products are observed but with extremely low catalytic activity. Dyer 

et al.56 also postulated that Friedel-Crafts alkylation of the aromatic solvent by the olefinic 

products is a two-steps process whereby the first step involves ethylene oligomerization catalyzed 

by Ni/EtAlCl2 to give higher olefins. The second step is the alkylation of the aromatic solvent 

toluene by the olefins obtained in the first step.      
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Scheme 1.4. Ethylene oligomerization by (Pyrazo-1-ylmethyl)pyridine nickel(II) complexes and 

unusual Friedel Crafts alkylation. 

 

 

Following Ojwach work, Ainooson et al.58 reported late transition metal catalysts anchored on [2-

(3,5-dimethyl-pyrazol-1-yl)-ethanol] and [1-(2-chloro-ethyl)-3,5-dimethyl-1H-pyrazole] (Figure 

1.15, 1-XXII and 1-XXIII respectively). Catalytic activity as high as 4 329 kg mol-1(Ni) h-1 were 

observed upon activation with EtAlCl2. It is noteworthy to mention that nickel(II) catalysts 3 and 

7 produced mainly butenes (57 % and 90 % respectively) and hexenes (43 % and 10 % 

respectively) of which 20 % of the olefinic products produced by catalyst 3 combined undergo 

Friedel-Crafts alkylation while the oligomers produced by catalyst 7, all were converted to Friedel-

Crafts alkylated-toluene products. The hydroxyl pendant group present in catalyst 3 played a major 
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role in the observed difference in product distribution. It is believed that catalyst 3 resembles the 

catalytic performance of N^O type chelates due to the presence of N^OH chelate59 and the role of 

the OH pendant functional group in catalyst 3 is to bind to the EtAlCl2 co-catalyst and reduce 

Friedel-Crafts alkylation of the toluene solvent by the oligomers. In contrast, no such binding of 

Cl to EtAlCl2 in catalyst 7 can be attained and consequently, higher alkylation of toluene observed.    
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Figure 1.15. The nickel(II) complexes anchored by [2-(3,5-dimethyl-pyrazol-1-yl)-ethanol] (3) 

and [1-(2-chloro-ethyl)-3,5-dimethyl-1H-pyrazole] ligands (7). 

 

It is apparent that pyrazole based nickel(II) complexes activated with EtAlCl2 co-catalyst in 

toluene solvent results in the formation of oligomers which then undergo subsequent Friedel-Crafts 

alkylation of the solvent toluene by the preformed oligomers as also reported by Nyamato et al.60 

in their (pyrazolylmethyl)pyridine nickel(II) complexes. In this work, the activation of the 

complexes with EtAlCl2, in toluene solvent produces Friedel-Crafts toluene-alkylated products 

while the use of hexane and chlorobenzene solvents produces predominantly C4 and C6 oligomers. 
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Furthermore, activation with MAO in toluene also lead to the production of predominantly C4, C6 

and C8 oligomers and no Friedel-Craft alkylation is observed.     

 

1.6. Statement of the problem 

Nickel(II) complexes have been widely applied in the transformation of lower olefins to higher 

olefins. However, most industrial processes still lack selective catalyst systems that can selectively 

produce the exact desired oligomer or polymer products in ethylene oligomerization reactions. 

This lack of selectivity in ethylene oligomerization reactions is one of the major problems since 

separating mixtures of olefins involves high costs and also comes with the inevitable limitations 

in the atom economy and purity. Consequently, due to the major challenges encountered during 

catalyst design which includes identification and modification of the factors that influence the 

catalytic activity and selectivity of the transition metal complexes more research is required to 

acquire complexes with balanced catalytic activity and selectivity. In addition, striking a balance 

between the catalyst activity and stability still remains a mystery in ligand design and catalyst 

development for any given catalytic transformation. 

 

1.7. Justification of the research project 

Single-sited catalysts applied in homogeneous catalysis provides routes by which a desired product 

can be selectively produced and considerably high rates through the modification of the ligand and 

pre-catalyst structure. Therefore, based on the knowledge that the structure of the catalyst controls 

the product distribution and properties, these projects seek to investigate the catalytic behaviour of 

N^N and N^O nickel(II) chelated complexes based on benzimidazolylmethylamine and 2-
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(aminomethyl)phenol ligands respectively with respect to their catalytic activity, selectivity and 

stability. These projects are also aimed to discover a balance between catalysts stability, activity 

and selectivity through the modification of the electronic and steric properties of the ligands 

framework and therefore the resultant catalysts. 

 

1.8. Aim of the research project 

The overall aim of these projects was to attempt and discover catalytically active and selective 

catalysts for the oligomerization reactions of ethylene using nickel(II) based complexes anchored 

by N^N bidentate ligands of benzimidazolylmethylamine and N^O bidentate ligands of 2-

(aminomethyl)phenol moieties.  

 

1.9. Objectives of the study  

Thus the specific objectives can be formulated as follows: 

1. To synthesize and structurally characterize the N^N benzimidazolylmethylamine and N^O 

2-[(ethylimino)ethyl]phenol chelating ligands. 

2. To synthesize and structurally characterize the nickel(II) complexes of the respective 

ligands. 

3. To examine the behaviour of the nickel(II) complexes in the oligomerization reactions of 

ethylene. 
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4. To study the influence of the reaction parameters which includes pressure, temperature, 

time, co-catalyst/complex ratio, nature of the co-catalyst and solvent on the catalytic 

performance of the nickel(II) complexes. 
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Chapter Two 

Nickel(II) complexes chelated by N^N benzimidazolylmethylamine ligands: 

Synthesis, structural characterization and catalytic behavior in ethylene 

oligomerization reactions. 

 

2.1. Introduction 

Nickel(II) based complexes have become a subject of diverse study in the design and development 

of late transition based homogeneous catalysts for various organic transformations.1 These 

catalysts play a very important role in converting olefins to useful industrial and domestic products 

such as lubricants, surfactants, detergents and polymers. Like other late transition metals, nickel(II) 

metal displays various vital properties such as less oxophilicity, tolerance of heteroatoms and high 

co-ordination number. Nickel(II) complexes are applied and used in the Shell Higher Olefin 

Process (SHOP processes).2 For example, a highly active nickel(II) catalyst supported by 

salicylaldimine ligands discovered by R. H. Grubbs was capable of polymerizing ethylene to 

polyethylene without any use of a co-catalyst.  Nickel(II) complexes have been reported to possess 

good catalytic activity and better thermal stability.3  

 

Regardless of the metal used, ligand architecture still plays a very crucial role in controlling the 

stability, activity and selectivity of the resulting catalysts.4 On that note, nickel have been 

incorporated with different N^N, P^O, N^O, P^N and N^N^N ligand designs to attain balanced 
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nickel(II) complexes in terms of activity, selectivity and stability for ethylene oligomerization 

reactions. The diversified number of studies have focussed on the N^N bidentate ligands due to 

their distinctive advantages which includes ease in synthesis and handling, good catalytic activity 

for ethylene oligomerization reactions and also high thermal stability.5-7 The N^N ligands based 

on the benzimidazole moiety have been studied extensively over the past years and have showed 

a good abilities in converting substrates like ethylene to oligomers and polymers. Nevertheless 

creating a balance between activity, selectivity and stability of these ligands is still considered a 

major problem to date. This chapter details the synthesis and characterization of nickel(II) 

complexes anchored by N^N benzimidazolylmethylamine ligands. Their catalytic performance 

towards ethylene oligomerization reactions has been also investigated.  

 

2.2. Experimental section 

2.2.1. Materials and instrumentation 

All the synthetic manipulations were performed using standard Schlenk-line techniques under a 

nitrogen atmosphere. The solvents obtained from Merck were dried by distillation using 

appropriate drying agent prior to use. The reagents; 2-chloromethylbenzimidazole (96%), aniline 

(99.5%) 2-bromoaniline (98%), 2-methoxyaniline (99%), 2-aminophenol (99%), nickel(II) 

bromide (98%), nickel(II) bromide-1,2-dimethoxyethane complex [NiBr2(DME)] (97%), 

nickel(II) chloride (98%) and nickel(II) chloride hexahydrates (98%) were obtained from Sigma 

Aldrich and used as received. The Infrared spectra were recorded from the Perkin Elmer, Spectrum 

100 FT-IR spectrometer at the University of KwaZulu-Natal.  1H NMR and 13C{1H} NMR (100 

MHz) spectra were obtained from a 400 MHz proton NMR on a Bruker Ultra shield in CDCl3 and 

DMSO-d6 solvent at room temperature using tetramethylsilane (TMS) as a reference compound. 
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LC Premier micro-mass Spectrometer was used for the mass spectral analyses. The magnetic 

susceptibilities and magnetic moments of the nickel(II) complexes were determined using Evans 

balance (Sherwood MK-1). GC analyses were performed on a Varian CP-3800 gas chromatograph 

fitted with a flame ionisation detector and a 30 m (0.2 mm i.d., 0.25 µm film thickness) CP-Sil 5 

CB capillary column while Shimadzu GC-MS QP2010 equipped with a quadrupole mass detector 

was used for GC-MS analyses. 

 

2.2.2. Synthesis of ligands and nickel(II) complexes 

2.2.2.1. N-(1H-benzimidazol-2-ylmethyl)-2-analine (L1) 

 

 

 2-(chloromethyl) benzimidazole (1.67 g, 10.00 mmol) was dissolved in absolute ethanol (20 ml) 

followed by the addition of aniline (0.94 ml, 10.00 mmol) and KI (1.67 g, 10.00 mmol). The 

reaction mixture was allowed reflux for 6 h with temperature maintained at 80 °C. KOH (0.56 g, 

10.00 mmol) was dissolved in water and ethanol mixture (10.00 ml) in a 1:1 ratio and poured to 

the reaction mixture and the reaction was further refluxed for 2 h. The hot brown solution was then 

cooled to room temperature, poured into ice/water (30 ml) to form a dark brown precipitate. The 

precipitate was filtered and re-dissolved in methanol (20 ml) insoluble impurities filtered off and 

the solvent removed under vacuum. The product was finally allowed to dry at the bench top to 

afford ligand L1 as a brown solid. Yield: 0.93g (42%). 1H NMR (400 MHz, CDCl3): δH/ppm: 4.65 
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(s, 2H, Ha); 6.74 (t, 1H, 3JHH = 8.0 Hz, Hb); 6.62 (d, 2H, 3JHH = 8.0 Hz, Hc); 7.15 (t, 2H, 3JHH = 8.0 

Hz, Hd); 7.27 (dd, 2H, 3JHH = 8.0 Hz, He); 7.55 (dd, 2H, 3JHH = 8.0 Hz, Hf). 
13C{1H} NMR (CDCl3): 

δ/ppm: 42.51 (Ca), 113.16 (Cb), 115.18 (2Cf), 118.94 (Cc), 123.37 (2Ce), 129.46 (Cd), 136.69 (2Cg), 

146.90 (N=C, Ch), 153.35 (NH-C, Ci).  FT-IR (cm-1): ν(N-H): 3054; ν(C=N):1675; ν(Ph): 1602. ESI-

MS: m/z (%) 224.1185 ([M + H]+, 100%). HRMS (ESI) Calcd for C14H15N3, [M + H]+: 224.1188, 

found: 224.1185. 

 

2.2.2.2. N-(1H-benzimidazol-2-ylmethyl)-2-bromoanaline (L2) 

 

Following the same procedure for L1 using 2-(chloromethyl) benzimidazole (1.08 g, 6.55 mmol), 

2-bromoaniline (1.10 ml. 6.45 mmol) and KI (0.73 ml, 6.45 mmol) in absolute ethanol (50 ml) and 

KOH (0.37 g, 6.45 mmol) solution. The product was purified by column chromatography using 

5:1 ether: hexane solvent system to yield a pale yellow solid. Yield: 1.53 g (79 %). 1H NMR (400 

MHz, DMSO-d6): δH/ppm: 4.77 (s, 2H, Ha); 5.94 (t, 1H, 3JHH = 8.0 Hz, Hb); 6.63 (t, 1H, 3JHH = 8.0 

Hz, Hc); 6.67 (d, 1H, 3JHH = 8.0 Hz, Hd); 7.12 (d, 1H, He); 7.14 (d, 2H, 3JHH = 8.0 Hz, Hf); 7.49 (d, 

2H, 3JHH = 4.0 Hz, Hg). 
13C{1H} NMR (DMSO-d6): δ/ppm: 42.23 (Ca), 109.26 (Ck), 112.08 (2Cg), 

118.31 (Cb), 121.92 (2Cf), 129.09 (Cc), 132.74 (Ce), 141.60 (2Ch); 145.23 (Ci), 153.34 (Cj)  FT-IR 

(cm-1): ν(N-H): 3060; ν(C=N): 1599. ESI-MS: m/z (%) 324.0120 ([M + Na]+, 100%). 
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2.2.2.3. N-(1H-benzimidazol-2-ylmethyl)-2-methoxyanaline (L3) 

 

2-(chloromethyl) benzimidazole (3.36 g, 20.00 mmol), 2-methoxyanaline (1.72 ml, 15.00 mmol) 

and KI (3.34 g, 20.00 mmol) were dissolved in absolute ethanol (50 ml) and refluxed for 6 h at 80 

°C. KOH (0.90 g, 16.00 mmol) was dissolved in water and ethanol mixture (1:1) and it was added 

to the reaction mixture and the reaction was allowed to reflux for further 2 h at the same 

temperature. The mixture was then cooled to room temperature and transferred into ice/water and 

filtered off. The dark brown precipitate was then re-dissolved in methanol (50 ml) and filtered off 

to remove impurities and the solvent removed under vacuum. The dark brown product dried in 

vacuo was obtained at a mass of 4.13 g (97%). 1H NMR (400 MHz, CDCl3): δH/ppm: 3.80 (s, 3H, 

Ha); 4.65 (s, 2H, Hb); 6.53 (d, 1H, 3JHH = 8.0 Hz, Hc); 6.76 (dd, 3H, 3JHH = 8.0 Hz, Hd, He and Hf); 

7.25 (dd, 2H, 3JHH = 8.0 Hz, Hg); 7.53-7.55 (dd, 2H, 3JHH = 8.0 Hz, Hh). 
13C{1H} NMR (CDCl3): 

δ/ppm: 42.21 (Cb), 55.78 (Ca), 110.00 (Cc), 116.88 (4Cdeh), 121.44 (3Cfg), 138.08 (3Cki), 147.07 

(N=C, Cj), 154.06 (C-O, Cl)  FT-IR (cm-1): ν(N-H): 3149; ν(C=N): 1600. ESI-MS: m/z (%) 276.1121 

([M + Na]+, 100 %); 277.1160 ([M + Na]+, 20 %). 
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2.2.2.4. N-(1H-benzimidazol-2-ylmethyl)-2-phenolanaline (L4) 

 

2-chloromethyl benzimidazole (1.69 g, 10.00 mmol) was first dissolved in absolute ethanol (20 

ml) followed by the addition of potassium iodide (1.66 g, 10.00 mmol) which resulted in a light 

yellow to orange solution. 2-aminophenol (1.10 g, 10.00 mmol) was then added to the mixture and 

a brown to red solution resulted. The mixture was then allowed to reflux for 6 h at 80 °C. KI (0.56 

g, 10.00 mmol) was then added which resulted in a dark brown to red solution which was allowed 

to further reflux for 2 hours. The resultant solution with a precipitate at the bottom was cooled, 

poured in ice/water. The product was observed sticking at the walls of the beaker. It was then 

dissolved in methanol, rotary evaporated to remove solvent and dried under vacuum. The product 

was obtained at a mass of 0.72 g (33%). 1H NMR (400 MHz, DMSO-d6): δH/ppm: 4.45 (d, 2H, 

Ha); 5.41 (t, 1H, Hb); 6.44 (m, 1H, Hc); 6.60 (t, 1H, Hd); 6.70 (d, 1H, He); 7.14 (q, 2H, Hf); 7.51 (s, 

2H, Hg). FT-IR (cm-1): ν(O-H): 3162cm-1; ν(N-H): 3349 cm-1; ν(C=N): 1611 cm-1.  ESI-MS: m/z (%) 

240.1133 ([M + H]+, 100 %). HRMS (ESI) for C14H14N3O, [M + H]+: 240.1137, found: 240.1133. 
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2.2.2.5. [{N-(1H-benzoimidazol-2-ylmethyl)-2-analine} NiBr2] (1) 

N
H

N NH

H

Ni

Br Br  

 

Complex 1 was prepared by adding a solution of NiBr2 (0.10 g, 0.47 mmol) in dichloromethane (5 

ml) to a solution of L1 (0.11 g, 0.47 mmol) in dichloromethane (5 ml). The light brown mixture 

was then stirred for 24 h at room temperature to give a green precipitate which was filtered off, 

washed with dichloromethane to afford complex 1 as a green solid. Yield: 0.21 g (89%). FT-IR 

(cm-1): ν(N-H): 3328; ν(C=N): 1622. TOF MS ESI: m/z (%), 222.0842 ([M-NiBr2]
+ 100%), 360.1100 

([M-Br]+, 18%), 441.8250 ([M]+, 14%). µobs = 2.67 BM. Anal. Calcd for C14H14N3NiBr2
.3CH2Cl2: 

C 29.27, H 2.89, N 6.04. Found: C 29.53, H 2.70, N 7.59. 

 

Complexes 2-6 were prepared following the same procedure adopted for complex 1. 

 

2.2.2.6. [{N-(1H-benzoimidazol-2-ylmethyl)-2-bromoanaline} NiBr2] (2) 

N
H

N NH

Br

Ni

Br Br  
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NiBr2 (DME) (0.08 g, 0.26 mmol) was mixed with L2 (0.08 g, 0.26 mmol) to give a lime solid 

obtained of complex 2.  Yield: 0.06g (66%). FT-IR (cm-1): ν(N-H): 3344; ν(C=N): 1623. TOF MS ESI: 

m/z (%), 520.3353 [M+, 10%], 302.0250 ([M-NiBr2]
+, 100%). µobs = 3.33 BM. Anal. Calcd for 

C14H12N3NiBr3
.10H2O: C 24.00, H 4.46, N 6.00. Found: C 24.10, H 2.61, N 6.20.   

 

2.2.2.7. [{N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyanaline} NiBr2] (3) 

N
H

N NH

O

Ni

Br Br

CH3  

 

NiBr2 (0.10 g, 0.46 mmol) and L3 (0.11 g, 0.56 mmol). Light green solid obtained. Yield: 0.15 g 

(73%). Upon recrystallization from methanol/diethyl-ether solution mixture, 3 rearranged to afford 

lime crystals suitable for single-crystal X-ray analysis of nickel(II) complex 3a. FT-IR (cm-1): ν(N-

H): 3348, ν(C=N): 1622. TOF MS ESI: m/z (%), 391.9781 ([M-Br]+, 50%), 254.1197 ([M-NiBr2]
+

 

100%). µobs = 2.60 BM. Anal. Calcd for C15H15N3ONiBr2
.6H2O: C 31.12, H 4.53, N 7.26. Found: 

C 31.19, H 2.51, N 7.61. 
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2.2.2.8. [{N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyanaline} NiCl2] (4) 

N
H

N NH

O

Ni

Cl Cl

CH3  

 

NiCl2.6H2O (0.24 g, 1.00 mmol) and L3 (0.25 g, 1.00 mmol). Yield: 0.11 g (25%). FT-IR (cm-1): 

ν(N-H): 3422, ν(C=N): 1621. TOF MS ESI: m/z (%), 434.1031 ([M + H]+, 14%). µobs = 4.08 BM. Anal. 

Calcd for C15H15N3ONiCl2: C 47.00, H 3.90, N 10.97. Found: C 46.74, H 3.50, N 11.15. 

 

2.2.2.9. [{N-(1H-benzoimidazol-2-ylmethyl)-2-phenolanaline} NiBr2] (5) 

N
H

N NH

OH

Ni

Br Br  

 

NiBr2 (0.10 g, 0.44 mmol) and L4 (0.10 g, 0.44 mmol). Yield: 0.15 g (75%). FT-IR (cm-1): ν(N-H): 

3434, ν(C=N): 1629. TOF MS ESI: m/z (%), 376.0251 ([M - Br]+, 9%), 296.0190 ([M - 2Br]2+ 100%), 

240.1024 ([M - NiBr2], 12%). µobs = 3.33 BM. Anal. Calcd for C14H13N3ONiBr2
.1.5CH2Cl2: C 

31.81, H 2.76, N 7.18. Found: C 32.26, H 2.71, N 8.10. 
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2.2.2.10. [{N-(1H-benzimidazol-2-ylmethyl)-2-phenolanaline} NiCl2] (6) 

N
H

N NH

OH

Ni

Cl Cl  

 

NiCl2 (0.06 g, 0.46 mmol) and L4 (0.11 g, 0.46 mmol). Light brown product obtained. Yield: 0.11 

g (67%). FT-IR (cm-1): ν(N-H): 3435; ν(O-H): 3172; ν(C=N): 1592. TOF MS ESI: m/z (%), 296.0204 

([M - 2Cl]2+, 100%), 240.1035 ([M - NiCl2], 13%). µobs = 3.16 BM. Anal. Calcd for C-

14H13N3ONiCl2
.5CH2Cl2: C 28.70, H 3.00, N 7.28. Found: C 29.10, H 4.00, N 7.30. 

 

2.2.3. X-ray crystallography 

X-ray crystallographic data collection for compound 3a was recorded on a Bruker Apex Duo 

diffractometer equipped with an Oxford Instrument Cryojet operating at 100(2) K and an Incoatec 

microsource operating at 30 W power. The molecular crystal structure of nickel(II) complex 3 is 

given in Figure 2.7 but structure refinements data provided since the solution to the crystal 

structure was not obtained. The data was collected with Mo Kα (λ = 0.71073 Å) radiation at a 

crystal-to-detector distance of 50 mm. The data collections were performed using omega and phi 

scans with exposures taken at 30 W X-ray power and 0.50˚ frame width using APEX2.8 The data 

was reduced with the program SAINT8 using outlier rejection, scan speed scaling, as well as 

standard Lorentz and polarisation correction factors. A SADABS semi-empirical multi-scan 

absorption correction was also applied to the data. Direct methods, SHELXS-20149 and WinGX10 
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were used to solve the structure. All non-hydrogen were located in the difference map and refined 

anisotropically with SHELXZ-2014.9 All the hydrogen atoms were included as idealized 

contributors in the least squares process. Their positions were calculated using a standard riding 

model with C-Haromatic distances of 0.93 Å and Uiso = 1.2 Ueq and C-Hmethylene distances of 0.99 Å 

and Uiso = 1.2 Ueq and C-Hmethyl distances of 0.98 Å and Uiso = 1.5 Ueq. The amine N-H and 

hydroxyl O-H hydrogen atoms were located in the difference density map and refined 

isotropically. 

 

2.2.4. General procedure for ethylene oligomerization reactions  

Ethylene oligomerization reactions were performed in a 400 ml stainless steel Parr reactor 

equipped with a mechanical stirrer, temperature controller and an internal cooling system. The 

reactor was pre-heated to 100 °C in vacuo and then cooled to room temperature. The appropriate 

amount of the synthesized catalyst precursor (10.0 µmol) was weighed out and transferred into a 

dry Schlenk tube under nitrogen and toluene (20 ml) was added utilizing a syringe. The required 

amount of a co-catalyst (EtAlCl2, 1.40 ml, 2.52 mmol) was then injected into the Schlenk tube 

containing the pre-catalyst to form an active catalyst system. The solution mixture in the Schlenk 

tube was then transferred through the cannula into the reactor. An additional 60 ml of toluene 

solvent was also transferred through the cannula into the reactor to give a total of 80 ml. Before 

the reaction was started, the reactor was flashed three times with ethylene and the appropriate 

temperature and pressure was set and the reaction (stirring) started. After the reaction time was 

over, the reactor was cooled to approximately -10 °C using ice and liquid nitrogen and the excess 

ethylene vented off to facilitate fast cooling through the reduction of pressure. The reaction was 

then quenched by the addition of 10 % hydrochloric acid (5 ml). A portion of the reaction mixture 
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was sampled in a GC-vial for GC and GC-MS analyses to determine the product distribution. The 

mass of the product formed was initially determined using the mass difference of 80 ml toluene 

solvent (69.90 g) or 80 ml chlorobenzene solvent (88.80 g) and the mass of the final solution after 

the reaction. In subsequent reactions, the mass of the product formed was determined using the 

calibration curve of the R-factors for the standards versus number of carbons of the standards 

(Equations 1 and 2).11 Hexene (0.849), octene (0.744), decene (0.496), dodecene (0.389) and tetra-

decene (0.327) standards were used to obtain calibration curve and n-heptane was used as an 

internal standard. The R-factor for butene was extrapolated as 0.981 from the calibration curve. 

𝑅𝐹𝐴 =
𝑃𝐴

[𝐴]
÷

𝑃𝐼𝑆

[𝐼𝑆]
   Equation (1) 

Rearranging to solve for the concentration of the analyte, 

[𝐴] =
𝑃𝐴

𝑃𝐼𝑆
×

[𝐼𝑆]

𝑅𝐹𝐴
   Equation (2) 

 

RF – Response factor, 

PA – Peak area of the analyte, 

PIS – Peak area of the internal standard, 

[A] – Concentration of the analyte, 

[IS] – Concentration of the internal standard, 
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2.3. Results and discussion 

2.3.1. Syntheses of benzimidazolylmethylamine ligands and their respective nickel(II) 

complexes 

The synthesis of the benzimidazolylmethylamine ligands was carried out by employing the 

previously described method12 through the reaction of the 2-chloromethylbenzimidazole and 

potassium  iodide in a 1:1 ratio in absolute ethanol at 80 °C. This was followed by the addition of 

the appropriate aniline as illustrated in Scheme 2.1. Potassium hydroxide was added to deprotonate 

the acidic proton which resulted in the formation of a salt. The first step is the nucleophilic 

substitution whereby the chlorine is replaced with iodine which is a better leaving group and 

promotes the bond formation between the aniline precursor and 2-iodomethylbenzimidazole after 

the proton has been removed. All the ligands (L1–L4) were obtained in moderate to high yields 

(42% - 87%).  

N
H

N Cl

NH2

R

N
H

N NH

R

 °C80,EtOH

KI
N
H

N I

 KOH 2.

°C80,EtOH

R=H(L1)

R=Br(L2)

R=OCH3(L3)

R=OH(L4)  

Scheme 2.1: The two-step synthetic protocol of the benzimidazolylmethylamine ligands. 

 

The structural elucidation of ligands L1-L4 was achieved using 1H NMR, 13C{1H} NMR, IR 

spectroscopies and mass spectrometry. In Figure 2.1 is the 1H NMR spectrum of ligand L1 which 

shows a signature peak of the two methylene protons of the linker carbon, N-CH2, which were 
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observed as singlet at a chemical shift of 4.71 ppm as previously observed by Attandoh et al.12 

The 13C{1H} NMR spectrum of ligand L1 was found to be consistent with 1H NMR spectrum. For 

example, the signal at 42.51 ppm which corresponds to the methylene linker carbon was observed 

downfield as opposed to aromatic carbons which were found up field between 113 ppm – 154 ppm 

(Figure 2.2). The peak at 78 ppm is due to the solvent, deuterated chloroform. 

Figure 2.1: 1H NMR spectrum of N-(1H-benzoimidazol-2-ylmethyl)-2-aniline (L1) in CDCl3. 
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Figure 2.2: 13C{1H} NMR spectrum of N-(1H-benzoimidazol-2-ylmethyl)-2-aniline (L1) in 

CDCl3. 

 

FT-IR spectroscopy also aided in the determination of the formation of the 

benzimidazolylmethylamine ligands L1, L2, L3 and L4. The IR spectra of ligands showed 

absorption bands in the region 3054 - 3358 cm-1 (N-H stretching), an attribute to the conversion of 

the primary amines into secondary amines. The FT-IR spectrum of ligand L3 (Figure 2.3) shows 

the broad peak at 3149.45 cm-1 which was assigned to the N-H stretching mode. The 

benzimidazolylmethylamine ligands were further characterized using mass spectrometry as shown 

in Figure 2.4. The low resolution mass spectrum of L3 showing [M + Na]+ peak at 276.1021 

confirmed the formation of the respective ligand. Similar mass spectra were also achieved for other 

ligands (L1, L2 and L4) revealing a successful synthesis of the benzimidazolylmethylamine 

ligands. 
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Figure 2.3: FT-IR spectrum of compound L3 displaying N-H (broad) and C=N (sharp) peaks at 

3149.45 cm-1 and 1600.93 cm-1 respectively.  

 

 

Figure 2.4: The mass spectrum of ligand L3 showing a molecular ion peak at m/z of 276.1121 

amu. 
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The reactions of the compounds L1–L4 with the equimolar amounts of nickel(II) halides produced 

the corresponding nickel(II) complexes 1–6 in good to high yields (25% - 89%). (Scheme 2.2). 

Due to the paramagnetic nature of the nickel(II) complexes, the use of NMR spectroscopy was not 

helpful in their structural determination. The complexes were therefore characterized by mass 

spectrometry, infrared spectroscopy, magnetic moment measurements and single crystal X-ray 

crystallography. 

N
H

N NH

R

NiX2

CH2Cl2

24 h

N
H

N NH

R
Ni

X X

R=H, X=Br, 1 R=Br, X=Br, 2 R=OMe, X=Br, 3

R=OMe, X=Cl, 4 R=OH, X=Br, 5 R=OH, X=Cl, 6  

Scheme 2.2: The syntheses of benzimidazolylmethylamine N^N chelated nickel(II) complexes. 

 

Mass spectrometry proved to be useful in confirming the formation and determining the identity 

of the nickel(II) complexes. In Figure 2.5 is the mass spectrum of complex 1 showing the complex 

peak at m/z of 441.8240 amu and the loss of the bromide ion to give m/z peak at 359.9186 amu. 

Another m/z peak at 293.0150 amu corresponds to the loss of the second bromide ion. The peak 

at m/z of 222.0842 amu corresponds to the ligand molecular ion. Similar fragmentation patterns 

were also observed for the other nickel(II) complexes 2-6. The molecular ion peaks corresponding 

to the molecular weights of the nickel(II) complexes were also observed for complexes 2 ([M]+ =  

520.3353 amu) and 4 ([M]+ =  434.1031 amu) in relatively low percentages of 10% and 14% 

respectively. 
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Figure 2.5: The mass spectrum of 1 showing the complex peak at 441.8250 amu and fragmentation 

of a bromide ion at m/z of 359.9186 amu. 

 

The structural elucidation of the nickel(II) complexes was also accomplished using FT-IR 

spectroscopy. The peak corresponding to the N-H stretching frequency was observed broad signals 

in the range 3054 cm-1 - 3349 cm-1 for the ligands. These peaks were observed to be shifted to a 

slightly higher frequencies the respective nickel(II) complexes which confirmed the formation of 

the nickel(II) complexes. The IR spectra of complexes 1-6 showed N-H stretching absorption 

bands in the region of 3328 cm-1 - 3515 cm-1 (Table 2.1). An increase in frequency for the N-H 

band confirmed the coordination of the metal to the ligand. The IR spectra of ligand L2 and its 

corresponding complex 2 shown in Figure 2.6 are consistent with this argument.  
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Figure 2.6: The IR spectra of ligand L2 and its corresponding complex 2 showing N-H peaks at 

3060.84 cm-1 (broad peak) and 3151.64 cm-1 respectively. 

 

The magnetic moments of the complexes 1-6 were found to be within the expected range for high 

spin nickel(II) complexes which is 2.9 - 4.2 BM13 even though complexes 1 and 3 showed slightly 

lower values 2.67 and 2.60 respectively. The magnetic moments for complexes 2 and 4 were found 

to be 3.33 and 4.08 BM respectively confirming the paramagnetic nature of the nickel(II) 

complexes and high spin configuration of the nickel(II) metal centre. Table 2.1 gives a summary 

of the spectroscopic, mass spectral and magnetic measurement data obtained for the nickel(II) 

complexes 1–6.  

 

2 

L2 



52 
 

Table 2.1. The spectroscopic and physical data obtained for nickel(II) complexes 1-6. 

Complex FT-IR: ν(N-H) / CM
-1 

(Ligands) 

FT-IR: ν(N-H) / 

CM
-1

 

M/Z (%) µ
obs

 (BM) 

1 3054 (L1) 3328 M
+
 (14%) 2.67 

2 3060 (L2) 3344 M
+ 

(10%) 3.33 

3 3149 (L3) 3348 M
+
-Br

-
 (50%) 2.60 

4 3149 (L3) 3422 M
+
+H

+
 (12%) 4.08 

5 3049 (L4) 3334 M
+
-2Br- (100%) 3.33 

6 3049 (L4) 3434 M
+
-2Cl-

 
(100%) 3.16 

 

The benzimidazolylmethylamine nickel(II) complexes 1–6 were further characterized using 

elemental analyses to establish the purity and the molecular weight of the complexes. There was a 

good correlation between the experimentally obtained and calculated elemental analyses data of 

the proposed structures of 1–6 in which the nickel(II) complexes have one ligand unit as shown in 

Scheme 2.2. However, the nickel(II) complexes obtained were however hygroscopic in nature 

which affected purity and as a result, correction for solvent was made in order to balance the 

molecular composition.  

 

In contrast to the elemental analyses data obtained for complex 3, the crystal structure of complex 

3a, which is a derivative of complex 3, contains two benzimidazolylmethylamine ligand units of 

ligand L3 coordinated to one nickel(II) metal centre (Figure 2.7). This revealed an interesting 

aspect about the interaction between the benzimidazolylmethylamine ligand L3 and the nickel(II) 
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metal centre. Therefore, it could be inferred that a mononuclear complex 3 with one ligand motif 

upon recrystallization transformed to give a monometallic octahedral complex 3a with two ligand 

units of L3 coordinated to the nickel(II) metal centre. Despite, the unambiguous deduction of the 

coordination chemistry of complex 3a (Figure 2.7), the crystal data collected was of low quality 

for complete refinement. Thus, the bond lengths, bond angles and the geometry could not be fully 

determined.  

 

Figure 2.7: Molecular structure of complex 3a showing the presence of two ligands units in the 

nickel(II) coordination sphere. Orthorhombic crystal lattice with Z=4, Space Group: Pca21. 
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2.3.2. Evaluation of the nickel(II) complexes 1-6 as catalysts for the ethylene oligomerization 

reactions 

The catalytic abilities of complexes 1-6 on ethylene oligomerization reactions were evaluated by 

first activating the complexes with ethylene aluminium dichloride (EtAlCl2) co-catalyst in toluene 

and chlorobenzene solvents. The complexes displayed considerably high catalytic activities in all 

performed reactions to a maximum of 1 254 kg mol-1 h-1 resulting in the formation of butene and 

hexene oligomers and alkyl-alkylated toluenes as the main products. In chlorobenzene solvent 

there was no Friedel-craft alkylated products observed, only oligomers i.e. butenes, hexenes and 

octenes were produced. The sections that follow gives a detailed analyses of the products identities 

and provides a discussion regarding the catalysis data obtained. 

 

The nickel(II) complexes 1–6 were investigated for their abilities to catalyze ethylene 

oligomerization reactions using EtAlCl2 as co-catalyst in toluene solvent. All the pre-catalysts 1–

6 showed significant catalytic activities toward ethylene oligomerization producing butene (C4), 

hexene (C6) and alkylated toluenes (Scheme 2.3). The identities of these products were established 

by a combination of GC (Figure 2.8) and GC–MS (Figure 2.9). Table 2.2 shows a summary of the 

data obtained for all the pre-catalysts.  

1-6/EtAlCl21-6/EtAlCl2 1-6/EtAlCl2

TolueneToluene Toluene

C2H5

R=C2H5 (A)

C4H9

R=C4H9 (B), C6H13(C)

C4 and C6

 

Scheme 2.3: Ethylene oligomerization reactions and unusual Friedel alkylation catalysts.  
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The results obtained revealed the fact that the pre-formed oligomers underwent in situ Friedel-

Crafts alkylation of the toluene solvent used. Therefore, the formation of hexyl-alkylated toluene 

evidently denotes that minimal amounts of hexene oligomers were produced before forming 

Friedel-crafts alkylated toluene product denoted as C in Figure 2.8. Moreover, it is with evident 

that the complexes selectively oligomerized ethylene to predominantly butene compared to 

hexene. Since the toluene solvent can be alkylated in the ortho-, para- and meta- position besides 

the branched products, multiple peaks which are possibly due to isomerism of the ortho-, para- 

and meta- alkyl toluene products are observed in the GC spectra of the complexes. The presence 

Friedel-Craft alkylated toluene products has been previously reported by our research group and 

other researchers.14-18  

Figure 2.8: A typical gas chromatogram obtained for ethylene oligomerization reaction by 

complex 3 using EtAlCl2 as co-catalyst in toluene solvent showing the alkylation of the pre-formed 

oligomers to form alkyl-toluenes. 
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Figure 2.9: The GC-MS of the product obtained when using complex 3, showing the butyl-

alkylated toluene product. 

 

 

The subsequent Friedel–Crafts alkylation of the toluene solvent by the preformed ethylene 

oligomers during the oligomerization reactions could be attributed to the pre-catalyst structure and 

the decrease in the catalytic activities exhibited by catalysts 1-6. This is in comparison to the 

previously reported 2-(benzimidazol-2-yl)-1,10-phenanthrolines catalysts which exhibited higher 

catalytic activities of  2 770 kg mol-1(Ni) h-1 without Friedel-Craft alkylation reaction being 

reported.19 However, it is noteworthy to point out that while in previous reports all the pre-formed 

oligomers underwent subsequent Friedel-Crafts alkylation, the present catalysts (1–6) catalyzed 

partial alkylation of the toluene solvent in addition to significant amounts of C4 and C6 oligomers. 

Hence, it is apparent that the ligand structure confers some influence on product distribution. It is 

also apparent that the nature of the co-catalyst, the solvent used and the identity of the catalyst 

precursor plays a crucial role in the formation of Friedel-Craft alkylated products or oligomers. 

The formation of C4 oligomers as the major products when EtAlCl2 in toluene solvent is used to 

activate the nickel(II) complexes has been widely reported.20-25 

C4H9
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Table 2.2: The Effect of the catalyst structure on ethylene oligomerization reactions using 

complexes 1-6 and EtAlCl2 as a co-catalyst in toluene a 

Entry Catalyst Tmin/Tmin (°C )b Yieldc (g) TON 

(kg mol-1 h-1)d 

Product Distribution (%)e 

C4 A B C 

1 1 30/34 6.92 692 36 64 - - 

2 2 30/32 6.45 645 30 66 4 - 

3 3 30/36 5.25 525 33 9 24 34 

4 4 30/40 3.95 395 48 52 - - 

5 5 30/38 3.37 337 28 72 - - 

6 6 30/41 5.30 530 70 30 - - 

a Reaction conditions: [Catalyst]= 10µmol; solvent, toluene, 80 ml; Pressure, 10 Bar; Time, 

1h; Al/Ni: 250; Temperature, 30 °C. 
b Initially the temperature was 30 °C, Tmin and Tmax=lowest and highest temperature achieved 

during the course of the reaction. 
c Yield as determined by mass difference of 80ml toluene (69.90 g) and the mass of the final 

solution. 
d TON, kg oligomer produced per mol. Catalyst per hour. 
e Determined by Gas Chromatography. 

 

2.3.2.1. The influence of the catalyst structure on ethylene oligomerization reactions 

The catalytic reactions investigated revealed a significant effect of complex structure on both 

the catalytic activities and product distributions observed. The ligand framework had a 

remarkable effect on the catalytic activities of the nickel(II) complexes. To give an illustration, 

the substitution of a hydrogen in complex 1 with the hydroxyl (complex 5) in the phenyl ring 

was followed by a decrease in catalytic activity from 692 kg mol-1 h-1 to 337 kg mol-1 h-1 

respectively (Table  2.2, entries 1 and 5). The lower catalytic activity in complex 5 could be 

assigned to the electron withdrawing destabilization on the phenyl ring due to the hydroxyl 

group in comparison to the unsubstituted phenyl ring in 1.26 This behavior was also reported 

by Wang et al.27 in their tri-dentate N^N^N catalytic systems where replacing a hydrogen with 
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the chlorine in the phenyl ring resulted in a decrease in the catalytic activity of the nickel 

complexes from 6.4 x 106 g mol-1(Ni) h-1 to 2.7 x 106 g mol-1(Ni) h1.27 Since oxygen also forms 

hydrogen bonding, this decrease in catalytic activity might also be due to the coordination 

behavior of oxygen in forming a hydrogen bond with the nearest halogen which results in the 

formation of a more stable and less active intermediate. The observed trend of catalytic activity 

decrease in the order 1> 2> 3> 6> 4>5. On the other hand, the nickel(II) complexes showed 

comparable selectivity towards the formation of C4 and ethylene-alkylated toluene with the 

exception of 3 which also produced butyl-alkylated and hexyl-alkylated products. Thus, the 

nature of the ligand motif did have a major influence in product distribution.  

 

The identity of the halides also had noticeable effect on the catalytic behavior of the resultant 

catalysts. For example, the chloride complex 6 (530 kg mol-1 h-1) was found to be more active 

than its bromide analogue complex 5 (337 kg mol-1 h-1), (Table 2.2, entries 6 and 5). This is 

consistent with observations in literature15 and has been assigned to electronic and steric factors 

and also could possibly be due to favorable activation processes by the activator. There was an 

observed trend in the competition between C4 and C2-toluene formation in the product 

distribution of the complexes. The nickel(II) bromide pre-catalysts preferentially produced C2-

toluene in a higher proportion with the exception of 3. In contrast, the nickel(II) chloride 

complexes selectively produced C4 in higher yields than C2-toluene alkylated products. 
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2.3.2.2. Effect of reaction conditions on ethylene oligomerization reactions. 

The influence of reaction parameters such as Al/M ratio, time of the reaction, pressure of 

ethylene and the type of co-catalyst employed on the catalytic abilities of these complexes was 

accomplished using complex 3 due to its high yield and ease in preparation and the data 

obtained is given in Table 2.3.  

 

2.3.2.2.1. Effect of Al/Ni ratio on the catalytic behavior of complex 3.  

The influence of Al/Ni ratio was investigated by varying the ratio from 200 to 300 using 

complex 3 (Table 2.3, entries 1, 6 and 7). We observed that variation of Al/Ni ratio greatly 

influenced the catalytic activity and selectivity of complex 3. For example, increasing Al/Ni 

ratio from 200 to 300 was accompanied by a increment in catalytic activity from 387 kg mol-1 

h-1 - 525 kg mol-1 h-1 and then decreased to 469 kg mol-1 h-1 with an optimum activity reported 

at Al/Ni ratio of 250 (Table 2.3, entry 1). This is in accordance with the reports by Shi et al.28 

and can be rationalized by stating that as the Al/Ni ratio increases, a maximum catalytic activity 

is reached beyond which a decline in catalytic activity is observed. Lower catalytic activities 

at high Al/Ni ratio could be assigned to trialkylaluminium impurities which leads to catalyst 

deactivation or poisoning.29 Increasing Al/Ni ratio was also found to affect product distribution 

of the complexes. For instance, the production of butene was found to decrease from 38% - 

21% (Table 2.3, entries 6 and 7) with increased Al/Ni ratio from 200 - 300 whilst the amount 

of C6-alkylated toluene increased from 23% - 46%. The proportion of C2 and C4 alkylated to 

toluene remained unchanged.  
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Table 2.3: The effect of reaction conditions on ethylene oligomerization reactions of nickel(II) 

complex 3 and EtAlCl2 as a co-catalyst in toluenea. 

Entry Catalyst Time

(h) 

Pressur

e (Bar) 

Tmin/Tmin 

(°C )b 

Al/Ni Yield

c (g) 

TON 

(kg mol-1 h-

1)d 

 Product 

Distribution (%)e 

C4 C6 A B C 

1 3 1 10 30/36 250 5.25 525 33 - 9 24 34 

2 3 1 20 30/40 250 8.11 811 54 - 16 11 19 

3 3 1 30 30/45 250 12.54 1 254 70 - 5 7 18 

4 3 0.5 10 30/35 250 1.59 318 38 - 8 36 18 

5 3 2 10 30/41 250 9.04 452 29 - 5 18 48 

6 3 1 10 30/39 200 3.87 387 38 - 4 25 23 

7 3 1 10 30/42 300 4.69 469 21 - 4 29 46 

8f 3 1 10 30/38 250 2.32 232 95 5 - - - 

9f 2 1 10 30/40 250 3.20 320 92 8 - - - 

a Reaction conditions: [Catalyst]= 10 µmol; solvent, toluene, 80 ml; Co-catalyst: EtAlCl2; 

Temperature, 30 °C. 
b Initially the temperature was 30 °C, Tmin and Tmax=lowest and highest temperature achieved 

during the course of the reaction. 
c Determined using the calibration curve of the R-factors versus the number of carbons 

(Equation 1). 
d TON, kg oligomer produced per mol catalyst per hour. 
e Determined by Gas Chromatography. 
f Using MAO as a co-catalyst. 

 

 

2.3.2.2.2. Effect of time on the catalytic behavior of the nickel(II) complex 3. 

The reaction time was varied from 0.5 h to 2 h in order to investigate the stability of the 

activated species using complex 3 (Table 2.3, entries 1, 4 and 5). We noted that increasing 

reaction time from 0.5 h to 1 h was accompanied by an increased in the catalytic activity of 3 

from 318 kg mol-1 h-1 to 525 kg mol-1 h-1 respectively (Table 2.3, entries 1 and 4), consistent 

with an induction period between 0.5 to 1 h. The decrease in catalytic activity from 525 kg mol-

1 h-1 to 452 kg mol-1 h-1 after 2 h (Table 2.3, entry 5) demonstrated catalyst deactivation with 
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longer reaction times. Nevertheless, the observed increase in product yields with time is an 

indication of considerable stability of the active species. 

 

The variation of reaction time also had a significant influence on product distribution. It is 

evident from Table 2.3 that shorter reaction times favor the formation of higher amounts of 

butyl-toluenes, and in contrast, prolonged reaction times produce more of hexyl-toluenes 

revealing that the percentage distribution of butene is decreasing with time. To give a 

supporting example, increasing reaction time from 0.5 h to 2 h led to a decrease of selectivity 

of butene from 38% - 29% and an increase in hexyl-toluene content from 38% - 48%. In 

addition, butyl-toluene decreased from 36% - 18% (Table 2.3, entries 4 and 5). The results 

showed that there is a slight decrease in the production of butenes with time. Yang et al.30 also 

observed a similar trend. Prolonged time favors chain termination than chain propagation hence 

more oligomers were produced. In addition, hexyl-toluene proportion also increased with time 

which implies that reinsertion of butene to produce more C6 was also favored. 

 

2.3.2.2.3. Effect of ethylene pressure on the catalytic behavior of complex 3 

The effect of ethylene pressure was also probed using 3/EtAlCl2 and the results showed that 

there is a significant increase in the catalytic activity of 3 with increasing pressure. For 

example, increasing the ethylene pressure from 10 bar to 20 bar was followed by an increase 

in the catalytic activity of 3 from 525 kg mol-1 h-1 to 811 kg mol-1 h-1 respectively (Table 2.3, 

entries 1 and 2). This is not a new concept but also have been reported in literature by several 

workers including Ojwach et al.17 This could be assigned to increased concentration of the 

ethylene monomer. In addition, ethylene concentration had a significant effect on the 
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selectivity of the complex. For example, varying ethylene pressure from 10 bar to 30 bar was 

followed by an increase in the product distribution of butene as shown by increased amounts 

of C4 from 33% - 70%. This is consistent with enhanced chain termination due to rapid chain 

transfer at high ethylene concentration.17 & 31 The alkylated-toluene oligomers C6 and C4 were 

observed to decrease with increasing pressure.  

 

2.3.2.2.4. Effect of the nature of the co-catalyst on the catalytic behavior of complexes 2 and 

3. 

The effect of employing different co-catalyst was also investigated using 3/EtAlCl2 and 

3/MAO systems. Higher and lower catalytic activities of 525 kg mol-1 h-1 and 232 kg mol-1 h-1 

were observed for 3/EtAlCl2 and 3/MAO respectively (Table 2.3, entries 1 and 8). This implies 

that activation using MAO results in the formation of a less active species compared to EtAlCl2 

co-catalyst. In most cases, activation with MAO results in a high catalytically active species 

for ethylene polymerization.1 Therefore, the decrease in the catalytic activity observed for 

complex 3 when activated with MAO could be due to its structure, as it also forms oligomer 

products and not polymers. In addition, the acidity of the co-catalyst plays a crucial role in the 

type and formation of the active species.28 Despite the lower catalytic activities observed, MAO 

co-catalyst was more selective since it predominantly gave C4 (95%) and C6 (5%) oligomers 

without the formation of Friedel-craft alkylated products. Similar results were observed for 

complex 2 (Table 2.3, entry 9) which is in accord with the results reported in literature.28, 30 
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2.3.2.3. The effect of the solvent on the catalytic activity and selectivity of complexes 1, 3 and 

4. 

The effect of solvent on the oligomerization of ethylene was probed using complexes 1, 3 and 

4 in chlorobenzene and toluene solvents using EtAlCl2 co-catalyst (Table 2.4). The solvent 

played a very important role in the determination of the catalytic activity of the nickel(II) 

complexes and in the oligomer distribution. The results obtained revealed that the solvent used 

greatly affects the catalytic activity and selectivity of the catalyst which also have been reported 

in literature.17, 32-33 

 

Table 2.4: The effect of the solvents chlorobenzene and toluene on the catalytic activity and 

selectivity of the nickel(II) complexes 1, 3 and 4 a 

Entry Catalyst Yield d (g) Activity (kg 

mol-1 h-1) 

Product distribution (%) e 

C4 C6 FCf 

1 1 b 6.92 692 36 64 - 

2 1 c 4.07 407 87 13 - 

3 3 b 5.25 525 33 9 58 

4 3 c 5.10 510 66 34 - 

5 4 b 3.95 395 48 52 - 

6 4 c 5.42 542 25 75 - 

a Reaction conditions: [M]=10 µmol; Co-catalyst, EtAlCl2; Temperature, 30 °C; Time, 1h; 

Pressure, 10 bar; Al:M = 250. 
b Solvent, toluene, 80 ml. 
c Solvent, chlorobenzene, 80 ml. 
d Determined using the calibration curve of the r-factors versus the number of carbons. 
e Determined by GC.  
f Friedel-Craft alkylated products.  
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The catalytic activity of 1 drastically decreased from 692 kg mol-1 h-1 when toluene solvent 

was used compared to 407 kg mol-1 h-1 reported in chlorobenzene solvent (Table 2.4 entries 1 

and 2). Similar trend was also observed for the other complex 3 with an exception of complex 

4 bearing the methoxy phenyl substituent and the chloride halides (Table 2.4, entries 5 and 6). 

This could be attributed to the slightly poor solubility of the nickel(II) catalysts in 

chlorobenzene. Most nickel(II) complexes bearing benzimidazole moiety have high solubility 

in toluene than in chlorobenzene and hexane.31  

 

The effect of the solvent on the product distribution is also demonstrated in Tables 2.4. In 

chlorobenzene solvent, only C4 and C6 oligomers were produced and no Friedel-Craft alkylated 

products were observed. Figure 2.10 shows gas chromatogram of the products obtained using 

nickel(II) complex 3 revealing the absence of Friedel-Craft alkylated products when ethylene 

oligomerization reactions were performed in chlorobenzene solvent using EtAlCl2 co-catalyst 

as opposed to Figure 2.8.   High proportions of C4 were observed for nickel(II) complexes 1 

(87%) and 3 (66%) in chlorobenzene (Table 2.4, entries 2 and 4) whilst catalyst 4 produced C6 

in a higher proportion of 75% than C4 (25%), Table 2.4 entry 6. This could be assigned to the 

improved solubility of the chloride based complex 4 in chlorobenzene as can be witnessed in 

its observed high catalytic activity as opposed to bromide based complexes 1 and 3 which 

showed lower catalytic activities. It can also be inferred that 4 favours chain propagation over 

chain termination due to the active species formed upon activation. The absence of Friedel-

Craft alkylation in chlorobenzene have also been reported by Ojwach et al.18 and Nyamato et 

al.17  
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Figure 2.10: Gas chromatogram showing C4 and C6 oligomers obtained when complex 3 is 

activated with EtAlCl2 co-catalyst in chlorobenzene solvent.  

 

2.4. Conclusions 

The N^N bidentate ligands based on benzimidazolylmethylamine moiety were successfully 

prepared and used to synthesize their nickel(II) complexes. The nickel(II) complexes were 

characterized using mass spectrometry, IR spectroscopy, magnetic moments measurements, 

elemental analyses and X-ray crystallographic analyses. The nickel complexes were found to 

be catalytic active toward the oligomerization reaction of ethylene to predominantly butene, 

hexene and alkylated toluenes as the major products depending on the solvent and co-catalyst 

used. The catalytic activity and selectivity of the nickel(II) complexes relied extensively on the 

nature of the ligand backbone and catalytic reaction parameters. The solvent used greatly 

influenced the catalytic activities and selectivities of the nickel(II) complexes.  
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Chapter Three 

Chelated N^O donor nickel(II) complexes of 2-[(ethylimino)ethyl]phenol 

ligands: Coordination chemistry and catalytic behavior on ethylene 

oligomerization reactions. 

 

3.1. Introduction 

Ethylene oligomerization reactions have become a process of high interest due to the high 

demand of oligomers.1 Approximately 108 tons of oligomers are consumed each year in South 

Africa alone. In varying densities, oligomers are commonly used in the production of 

lubricants, surfactants, detergents and in pharmaceuticals.2 The shell higher olefin process 

(SHOP) which employs N^O donor ligands and a nickel metal centre as catalyst is one of the 

most important industrial process and have paved its way towards the future of ethylene 

oligomerization reactions.3, 4-5  

 

The discovery of highly active nickel(II) catalysts by M. Brookhart and R. H. Grubbs in 1970 

have stimulated great interest in the development of highly active and stable catalysts based on 

nickel(II) late transition metal catalysts for ethylene oligomerization reactions.6-7 Recent 

reports have shown that nickel complexes are promising catalysts due to their high catalytic 

activity and selectivity towards oligomerization of ethylene.8, 9, 10-11 The major challenges to 

date in using nickel(II) complexes as catalysts of ethylene oligomerization is in improving and 

balancing their catalytic activity, stability and selectivity for the formation of α-olefins and 

controlling the properties of the resulting polymer.3  
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Previous studies have revealed that the ligand framework plays a crucial role in controlling 

both the electronic and steric properties of the resulting complex.12-17 Ligands of the type N^N, 

N^O, N^P, O^P, P^P, N^N^N donor atoms have been intensely studied and the outputs showed 

that the ligand structure plays a vital role in the resulting activity of the complex.19 Thus 

internalization of the bulky groups, variation in the donor atom as well as the addition of the 

electron donating and withdrawing groups can assist in optimizing the catalytic performances 

of the complexes. The O^N^N and N^N^N systems have been reported to produce mostly 

polymers and oligomers that undergo in-situ Friedel-Crafts alkylation reaction respectively 

depending on the co-catalyst and solvent utilized.18  

 

Based on the knowledge that the ligand architecture plays a crucial role in the catalytic 

performance of the resulting pre-catalyst, we therefore aim to use mixed donor atoms in order 

to achieve a balanced systems i.e. in terms of stability, activity and selectivity; for the ethylene 

oligomerization reactions. Ligands incorporating mixed donor atoms have been used by 

various researchers and have shown promising future. For example, the well-known SHOP 

process utilizes the chelating P^O ligands for neutral nickel(II) catalysts to produce linear α-

olefins.  

 

In this chapter the design of O^N mixed donor system is based on 2-[(ethylimino)ethyl]phenol 

moiety and is expected to give active and stable nickel(II) catalysts since hybrid ligands show 

distinct dynamic features such as hemilability which provides molecular activation procedure 

under mild condition and adds extensively in the stability of the resulting complex.20 This 

chapter explores the synthesis and characterization of the O^N based nickel(II) complexes. The 

catalytic behavior of the nickel(II) complexes towards ethylene oligomerization is also 

discussed in details.  In addition to fine-tuning the ligand electronic and steric properties, the 
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reaction conditions and the co-catalyst employed can also be altered to enhance catalytic 

selectivity and the activity of the nickel(II) catalysts.11 

  

3.2. Experimental section 

3.2.1. Materials and methods 

All synthetic manipulations were performed using standard Schlenk-line techniques under 

a nitrogen atmosphere. The solvents obtainable from Merck were dried by distillation using 

appropriate drying agent prior to use. The reagents; 2’-hydroxy acetophenone (98%), 2-

methoxy amine (99%), ethanolamine (99%), N,N-(diethyl)ethylenediamine (99%), sodium 

borohydride (98%), nickel(II) bromide (98%), nickel(II) bromide-1,2-dimethoxyethane 

complex [NiBr2(DME)] (97 %) and nickel(II) chloride (98%) were obtained from Sigma 

Aldrich and used as received. 1H NMR and 13C{1H} NMR (100 MHz) spectra were 

obtained from a 400 MHz proton NMR on a Bruker Ultra shield in CDCl3 and DMSO-d6 

solvent at room temperature using tetramethylsilane (TMS) as a reference compound. The 

infrared spectra were recorded from the Perkin Elmer, Spectrum 100 in the range of 4000 

- 650 cm-1. LC Premier micro-mass Spectrometer model LCMS-2020, was used for the 

mass spectral analyses. Elemental analyses were performed on a Thermal Scientific Flash 

2000. The magnetic moments of the complexes were determined using Evans balance 

(Sherwood MK-1). Varian CP-3800 gas chromatograph equipped with a CP-Sil 5 CB (30 

m x 0.2 mm x 0.25 µm) carpillary column was used for GC analyses while GC-MS analyses 

were performed on a Shimadzu GCMS-QP2010SE. 
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3.2.2.  Preparation of ligands and their respective nickel (II) complexes   

3.2.2.1. Phenol, 2-[1-[(2-methxyethyl) imino] ethyl] (L5)  

 

A solution of 2’-hydroxy acetophenone (1.50 g, 11.00 mmol) in ethanol (30 ml) was added 2-

methoxyethyl amine (0.83 g, 11.00 mmol). Then a catalytic amount of Para toluene sulfonic 

acid (5.00 mg) was added resulting in a light green solution which was refluxed for 24 h at 60 

°C. After the reaction period, the solvent was removed under vacuum to give L5 as brown 

liquid oil. Yield: 2.12 g (87%). 1H NMR (400 MHz, CDCl3): δH/ppm: 2.35 (s, 3H, Ha); 3.45 (s, 

3H, Hb); 3.74 (t, 4H, 3JHH = 4.0 Hz, Hc); 6.80 (d, 1H, 
3JHH = 8.0 Hz, Hd); 6.94 (dd, 1H, 3JHH = 

8.0 Hz, He); 7.34 (dd, 1H, 3JHH = 8.0 Hz, Hf), 7.54 (d, 1H, 3JHH = 8.0 Hz, Hg). 
13C{1H} NMR 

(CDCl3): δ/ppm: 14.61 (Ca), 49.18 (Cb), 50.18 (Cca), 72.09 (Ccb), 116.98 (Cd), 128.05 (Ce), 

132.52 (Cf&g), 164.05 (Ch), 172.53 (Ci).  FT-IR (cm-1): ν(O-H): 3059; ν(C=N):1615. TOF MS ESI: 

m/z (%), 216.0995 ([M + Na]+, 100%). HRMS (ESI) for C11H15NO2, [M
+]: 194.1181, found: 

194.1187. 
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3.2.2.2. Phenol, 2-[1-[(2-hydroxyethyl) imino] ethyl] (L6)  

 

 

Following the same procedure for L5, equimolar amounts of 2’-hydroxy acetophenone (1.50 

g, 11.00 mmol) and ethanolamine (0.67 g, 11.00 mmol) were mixed and refluxed in ethanol 

(30 ml) at 60 °C for 24 h using a catalytic amount of p-TsOH (5.00 mg). The product was 

obtained as a light brown oil. Yield: 2.58 g (80%). 1H NMR (400 MHz, CDCl3): δH/ppm: 2.37 

(s, 3H, Ha); 3.75 (t, 2H, 3JHH = 8.0 Hz, Hb); 3.99 (t, 2H, 3JHH = 8.0 Hz, Hc); 6.75 (d, 1H, 3JHH = 

8.0 Hz, Hd); 6.92 (d, 1H,  3JHH = 8.0 Hz He); 7.28 (dd, 1H, 3JHH = 8.0 Hz, Hf), 7.48 (d, 1H, 3JHH 

= 8.0 Hz, Hg).
 13C{1H} NMR (CDCl3): δ/ppm: 42.62 (Ca), 58.25 (Cb), 63.70 (Cc), 116.59 (Cd), 

128.25 (Ce), 130.72 (Cf), 133.08 (Cg), 136.47 (Ch), 162.37 (Ci), 173.40 (Cj). FT-IR (cm-1): ν(O-

H): 3164; ν(C=N):1604. TOF MS (ESI): m/z (%), 180.1028 ([M + H]+, 100%). HRMS (ESI) Calcd 

for C10H13NO2, [M + H]+: 180.1025, found: 180.1028. 
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3.2.2.3. Phenol, 2-[(E)-[(2-hydroxyethyl) imino] methyl] (L7)  

 

L7 synthesis was carried out by reacting salicyladehyde (1.50 g, 0.01 mol) and ethanolamine 

(0.73 g, 0.01 mol) in ethanol (30 ml). A catalytic amount (5 mg) of p-TsOH was also added 

and the resultant solution was refluxed for 24 h at 60 °C. A brown oily product was obtained 

after removing the solvent through rotary evaporator. Yield: 1.87 g (84 %). 1H NMR (400 

MHz, CDCl3): δH/ppm: 3.79 (t, 2H, 3JHH = 4.0 Hz, Ha); 3.96 (t, 2H, 3JHH = 4.0 Hz, Hb); 6.89 (t, 

1H, 3JHH = 8.0 Hz, Hc); 6.98 (d, 1H, 3JHH = 8.0 Hz, Hd); 7.28 (d, 1H, 3JHH = 8.0 Hz, He); 7.36 

(d, 1H, 3JHH = 8.0 Hz, Hf), 8.42 (s, 1H, Hg). 
13C{1H} NMR (CDCl3): δ/ppm: 61.73 (Cb), 62.12 

(Ca), 117.08 (Cc), 118.68 (Cd), 131.46 (Cf), 132.47 (Ce), 161.20 (Ci), 166.94 (Ch&j). FT-IR (cm-

1): ν(O-H): 3353; ν(C=N):1631. TOF MS (ESI): m/z (%), 166.0866 ([M + H]+, 100%). HRMS 

(ESI) Calcd for C9H11NO2. 166.0868, found: 166.0866. 

 

3.2.2.4. Phenol, 2-[(E)-{[2-(diethylamino) ethyl] imino} methyl] (L8) 
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 Ligand L8 was synthesized by following the same method adopted for ligand L5-L7. 

Salicyladehyde (1.50 g, 0.01 mol) and N,N-diethylethane-1,2 diamine (1.43 g, 0.01 mol) in 

ethanol (30 ml). Liquid brown oil, Yield: 2.60 g (87%). 1H NMR (400 MHz, CDCl3): δH/ppm: 

1.11 (t, 6H, 3JHH = 8.0 Hz, Ha); 2.68 (q, 4H, 3JHH = 8.0 Hz, Hb); 2.83 (t, 2H, 3JHH = 8.0 Hz, Hc); 

3.72 (d, 2H, 3JHH = 4.0 Hz, Hd); 6.88 (d, 1H, 3JHH = 8.0 Hz, He); 6.98 (d, 1H, 3JHH = 8.0 Hz, Hf), 

7.33 (qd, 2H, 3JHH = 8.0 Hz, Hg), 8.38 (s, 1H, Hh). FT-IR (cm-1): ν(H-O): 3061; ν(C=N):1631. TOF 

MS (ESI): m/z (%), 219.1499 ([M – H]+, 100%), 220.1502 ([M+], 40%). HRMS (ESI) Calcd 

for C13H20ON2. 219.1497, found: 219.1499. 

 

3.2.2.5. Phenol, 2-[1-[(2-methxyethyl) amino] ethyl] (L9)  

 

L5 (0.50 g, 2.59 mmol) was dissolved in methanol (30 ml) and five equivalent of NaBH4 (0.49 

g, 12.09 mmol) were then added in small portions to give a clear solution which was stirred 

under reflux for 4 h at 50 °C. The solvent was reduced under vacuum and the residue dissolved 

in chloroform (30 ml) and washed with distilled water (3 x 20 ml) to remove excess NaBH4. 

The organic layer was then separated and dried over MgSO4, filtered and solvent was removed 

under reduced pressure to afford L9 as a light yellow oil. Yield: 0.28 g (51%). 1H NMR (400 

MHz, CDCl3): δH/ppm: 1.46 (d, 3H, 3JHH = 8.0 Hz, Ha); 2.75 (d, 2H, 3JHH = 8.0 Hz, Hb); 3.39 

(s, 3H, 3JHH = 8.0 Hz, Hc); 3.52  (d, 2H, 3JHH = 8.0 Hz, Hd); 3.95 (q, 1H, 3JHH = 8.0 Hz, He); 
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6.78 (m, 2H, 3JHH = 8.0 Hz, Hf), 6.98 (d, 1H, 3JHH = 8.0 Hz, Hg); 7.15 (d, 1H, 3JHH = 8.0 Hz, 

Hh).
 13C {1H} NMR (CDCl3): δ/ppm: 22.37 (Ca), 30.91 (Cb), 49.13 (Ce), 58.91 (Cc), 61.33 (Cd), 

116.78 (Cg), 119.17 (Cfb), 126.44 (Cj), 128.45 (Cfa), 128.12 (Ch), 157.14 (Ci). FT-IR (cm-1): 

ν(N-H): 3310; ν(H-O):2870. TOF MS (ESI): m/z (%), 194.1189 ([M – H]+, 100%), 195.1350 ([M+], 

40%). HRMS (ESI) Calcd for C11H17NO2, 194.1181, found: 194.1189. 

 

3.2.2.6. Phenol, 2-[1-[(2-hydroxyethyl) amino] ethyl] (L10)  

 

 

L10 was synthesized in a similar manner to L9, using NaBH4 (0.54 g, 13.90 mmol) and L6 

(0.50 g, 2.79 mmol). Yield of a yellow oil: 0.16 g (32%). 1H NMR (400 MHz, CDCl3): δH/ppm: 

1.51 (d, 3H, 3JHH = 4.0 Hz, Ha); 2.74 (t, 2H, 3JHH = 4.0 Hz, Hb); 3.79 (t, 2H, 3JHH = 4.0 Hz, Hc); 

4.00 (q, 1H, 3JHH = 4.0 Hz, Hd); 6.80 (d, 1H, 3JHH = 8.0 Hz, He); 6.98 (dd, 1H, 3JHH = 8.0 Hz, 

Hf), 7.15 (d, 1H, 3JHH = 8.0 Hz, Hg); 7.20 (d, 1H, 3JHH = 8.0 Hz, Hh). 
13C {1H} NMR (CDCl3): 

δ/ppm: 22.37 (Ca), 49.13 (Cd), 58.91 (Cb), 61.33 (Cc), 116.78 (Ce), 119.17 (Cf), 126.44 (Ci), 

128.12 (Cg), 128.45 (Ch), 157.14 (Cj). FT-IR (cm-1): ν(O-H): 3363; ν(C=N):1594. TOF MS (ESI): 

m/z (%), 180.1023 ([M – H]+, 100%), 181.1078 ([M]+, 14%). HRMS (ESI) Calcd for 

C10H15NO2, 180.1025, found: 180.1023. 
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3.2.2.7. Phenol, 2-{[(2-hydroxyethyl) amino] methyl} (L11)  

 

L11 was synthesized in a similar manner as L9 and L10, using NaBH4 (0.62 g, 16.25 mmol) 

and L7 (0.54 g, 3.25 mmol). Yield of a light yellow oil: 0.058 g (11%). 1H NMR (400 MHz, 

CDCl3): δH/ppm: 2.89 (t, 2H, 3JHH = 4.0 Hz, Ha); 3.83 (t, 2H, 3JHH = 4.0 Hz, Hb); 4.06 (s, 2H, 

Hc); 6.85 (p, 2H, 3JHH = 8.0 Hz, Hd); 7.02 (d, 1H, 3JHH = 8.0 Hz, He); 7.21 (dd, 1H, 3JHH = 8.0 

Hz, Hf). TOF MS (ESI): m/z (%), 166.0864 ([M – H]+, 100%). HRMS (ESI) Calcd for 

C11H17NO2, 166.0868, found: 166.0864. 

 

3.2.2.8. Phenol, 2-({[2-(diethylamino)ethyl]amino}methyl) (L12) 

 

Using the same procedure for L9, compound L12 was synthesized by dissolving L8 (1.01 g, 

4.54 mmol) in methanol (30 ml) and NaBH4 (0.89 g, 22.60 mmol). A clear yellow oil of L12 

was obtained. Yield: 0.66 g (65%). 1H NMR (400 MHz, CDCl3): δH/ppm: 1.09 (t, 6H, 3JHH = 

8.0 Hz, Ha); 2.60 (m, 6H, 3JHH = 8.0 Hz, Hb); 2.73 (t, 2H, 3JHH = 8.0 Hz, Hc); 4.04 (d, 2H, 3JHH 
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= 8.0 Hz, Hd); 6.78 (d, 1H, 3JHH = 8.0 Hz, He); 6.85 (d, 1H, 3JHH = 8.0 Hz, Hf), 7.07 (d, 1H, 3JHH 

= 8.0 Hz, Hg); 7.20 (d, 1H, 3JHH = 8.0 Hz, Hh). 
13C {1H} NMR (CDCl3): δ/ppm: 11.75(Ca), 

45.95 (Cd), 47.07 (Cc), 51.91 (Cb), 52.49 (Cb2), 116.36 (Ce), 118.83 (Cf), 122.76 (Ci), 128.24 

(Ch), 128.57 (Cg), 158.46 (Cj). FT-IR (cm-1): ν(O-H): 3634. TOF MS (ESI): m/z (%), 221.1650 

([M- H]+, 100%), 222.1701 ([M+], 14%). HRMS (ESI) Calcd for C13H22ON2, 221.1654, found: 

221.1650. 

 

3.2.2.9. Phenol, 2-[1-[(2-hydroxyethyl) imino] ethyl] NiBr2 (7) 

OH

CH3

N

O
H

Ni
Br

Br
 

Complex C7 was synthesized by adding a solution of NiBr2 (DME) (0.10 g, 0.33 mmol) in 

dichloromethane (5 ml) to a solution of L6 (0.12 g, 0.66 mmol) in dichloromethane (5 ml). 

Then the solution was allowed to stir for 24 h at room temperature to give a yellow precipitate 

which was filtered and washed with dichloromethane (10 ml). Yield: 0.04 g (28%). TOF MS 

ESI: m/z (%), 397.0925 ([M]+, 18%). FT-IR (cm-1): ν(O-H): 3292; ν(C=N):1626. µobs = 3.10 BM. 

Anal. Calcd for C11H17NO2NiBr2
.3H2O: C 26.59, H 4.24, N 3.10. Found: C 26.58, H 4.37, N 

3.26. 

Complexes 8-13 were synthesized following procedure described for complex 7, using 

appropriate ligand and nickel(II) salt. 
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3.2.2.10. Phenol, 2-[1-[(2-hydroxyethyl) imino] ethyl] NiCl2 (8) 

OH

CH3

N

O
H

Ni
Cl

Cl
 

NiCl2 (0.10 g, 0.80 mmol) and L6 (0.15 g, 0.80 mmol). Green solid. Yield: 0.07 g (30%). TOF 

MS ESI: m/z (%), 236.0220 ([M+ - 2Cl]2+, 100%). FT-IR (cm-1): ν(O-H): 3307; ν(C=N):1630. µobs 

= 3.14 BM. Anal. Calc. for C10H13NO2NiCl2
.CH2Cl2

.2H2O: C 30.74, H 4.46, N 3.26. Found: C 

31.53, H 4.93, N 3.81. 

 

3.2.2.11. Phenol, 2-[1-[(hydroxyethyl) imino] methyl NiCl2 (9) 

 

 

 

L7 (0.22 g, 1.32 mmol) and NiCl2 (0.17 g, 1.32 mmol). Rearrangement of complex 9 during 

recrystallization from methanol/diethyl-ether solution mixture, afforded a derivative of 9, that 

is, nickel(II) complex 9a as blue crystals which were suitable for single-crystal X-ray analysis. 

H

OH N

O
H

Ni

Cl

Cl
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Yield: 0.22g (59%). TOF MS (ESI): m/z (%), 222.0021 ([M - 2Cl]2+, 100%); 443.0172 

([(L7)2Ni]+, 40 %). FT-IR (cm-1): ν(O-H): 3426; ν(C=N):1644. µobs = 3.55 BM. Anal. Calc. for 

C9H11NO2NiCl2
.H2O: C 34.56, H 4.19, N 4.48. Found: C 34.92, H 4.39, N 6.02. 

 

3.2.2.12. Phenol, 2-[1-[(2-methxyethyl) amino] ethyl] NiBr2 (10) 

OH

H

N

O

Ni
Cl

Cl

CH3

H

CH3

 

L9 (0.60 mmol, 0.12 g) and NiCl2 (0.08 g, 0.60 mmol). Yield: 0.05 g (23%). TOF MS-ESI: 

m/z (%), 326.9065[M+, 67%], 250.90 ([M - 2Cl]2+, 40 %). FT-IR (cm-1): ν(N-H): 3314. µobs = 

3.76 BM. 

 

3.2.2.13. Phenol, 2-[1-[(2-hydroxyethyl) amino] ethyl] NiBr2 (11) 

OH

CH3

NH

OH

H

OH

CH3

NH

OH

H

Ni BrOH2

 

Ligand L10 (0.10 g, 0.56 mmol and NiBr2 (DME) (0.15 g, 0.55 mmol). Blue solid. Yield: 0.20 

g (90%). TOF MS ESI: m/z (%), 239.9875 ([M- 2Br]2+, 50%). FT-IR (cm-1): ν(N-H): 3237; ν(O-
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H):3058. µobs = 3.75 BM. Anal. Calc. for C20H30N2O4NiBr.H2O: C 46.28, H 6.21, N 5.40 Found: 

C 46.24, H 5.95, N 5.28. 

 

3.2.2.14. Phenol, 2-[1-(2-Hydroxyethyl) amino] methyl] NiCl2 (12) 

H

OH
N

O
H

Ni

Cl

Cl

H

 

NiCl2
.6H2O (0.12 g, 0.48 mmol) and L11 (0.08 g, 0.48 mmol). Green solid. Yield: 0.03 g 

(21%). TOF MS (ESI): m/z (%), 224.0218 ([M - 2Cl]2+, 100%). FT-IR (cm-1): ν(O-H): 3179. µobs 

= 3.58 BM. Anal. Calc. for C9H13NO2NiCl2: C 36.42, H 4.41, N 4.72. Found: C 36.39, H 4.38, 

N 4.65. 

 

3.2.2.15. Phenol, 2-(1-{[2-(diethylamino) ethyl] amino} methyl) NiCl2 (13) 

H

OH N

N

Ni

Cl

Cl

H

CH3

CH3
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NiCl2 (0.13 g, 0.96 mmol) and L12 (0.21 g, 0.96 mmol). Green solid. Yield: 0.03 g (21%). 

TOF MS (ESI): m/z (%), 281.1196 ([M - 2Cl]2+, 62%). FT-IR (cm-1): ν(O-H): 3250. µobs = 3.54 

BM. 

 

3.2.3. X-ray crystallography data collection 

X-ray crystallographic data collection for compound 9a was recorded on a Bruker Apex Duo 

diffractometer equipped with an Oxford Instrument Cryojet operating at 100(2) K and an 

Incoatec microsource operating at 30 W power. Crystal and structure refinements data of 9 is 

provided in Table 3.3. The data was collected with Mo Kα (λ = 0.71073 Å) radiation at a 

crystal-to-detector distance of 50 mm. The data collections were performed using omega and 

phi scans with exposures taken at 30 W X-ray power and 0.50˚ frame width using APEX2.21 

The data was reduced with the program SAINT21 using outlier rejection, scan speed scaling, as 

well as standard Lorentz and polarisation correction factors. A SADABS semi-empirical multi-

scan absorption correction was also applied to the data. Direct methods, SHELXS-201422 and 

WinGX23 were used to solve the structure. All non-hydrogen were located in the difference 

map and refined anisotropically with SHELXZ-2014.22 All the hydrogen atoms were included 

as idealized contributors in the least squares process. Their positions were calculated using a 

standard riding model with C-Haromatic distances of 0.93 Å and Uiso = 1.2 Ueq and C-Hmethylene 

distances of 0.99 Å and Uiso = 1.2 Ueq and C-Hmethyl distances of 0.98 Å and Uiso = 1.5 Ueq. The 

amine N-H and hydroxyl O-H hydrogen atoms were located in the difference density map and 

refined isotropically. 

 

3.2.4. General procedure for ethylene oligomerization reactions 

Ethylene oligomerization reactions were performed in a 400 ml stainless steel Parr reactor 

equipped with a mechanical stirrer, temperature controller and an internal cooling system. The 
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reactor was pre-heated to 100 °C in vacuo and then cooled to room temperature. The 

appropriate amount of the synthesized catalyst precursor (10.0 µmol) was weighed out and 

transferred into a dry Schlenk tube under nitrogen and toluene (20 ml) was added utilizing a 

syringe. The required amount of a co-catalyst (EtAlCl2, 1.40 ml, 2.52 mmol) was then injected 

into the Schlenk tube containing the pre-catalyst to form an active catalyst system. The solution 

mixture in the Schlenk tube was then transferred through the cannula into the reactor. An 

additional 60 ml of toluene solvent was also transferred through the cannula into the reactor to 

give a total of 80 ml. Before the reaction was started, the reactor was flashed three times with 

ethylene and the appropriate temperature and pressure was set and the reaction (stirring) 

started. After the reaction time was over, the reactor was cooled to approximately -10 °C using 

ice and liquid nitrogen and the excess ethylene vented off to facilitate fast cooling through the 

reduction of pressure. The reaction was then quenched by the addition of 10 % hydrochloric 

acid (5 ml). A portion of the reaction mixture was sampled in a GC-vial for GC and GC-MS 

analyses to determine the product distribution. The mass of the product formed was determined 

using the calibration curve of the R-factors for the standards versus number of carbons 

(Equations 1 and 2).24 Hexene (0.849), octene (0.744), decene (0.496), dodecene (0.389) and 

tetra-decene (0.327) standards were used to obtain calibration curve and n-heptane was used as 

an internal standard. The R-factor for butene was extrapolated as 0.981 from the calibration 

curve. 

𝑅𝐹𝐴 =
𝑃𝐴

[𝐴]
÷

𝑃𝐼𝑆

[𝐼𝑆]
   Equation (1) 

Rearranging to solve for the concentration of the analyte, 

[𝐴] =
𝑃𝐴

𝑃𝐼𝑆
×

[𝐼𝑆]

𝑅𝐹𝐴
   Equation (2) 

RF – Response factor, 

PA and PIS – Peak area of the analyte and internal standard respectively, 
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[A] and [IS] – Concentration of the analyte and internal standard respectively, 

 

3.3. Results and discussion 

3.3.1. Syntheses of ligands and their respective nickel (II) complexes  

The phenol,2-[1-[(2-methoxyethyl)imino]ethyl], phenol,2-[1-[(2-hydroxyethyl)imino]ethyl], 

phenol,2-[1-[(2-hydroxyethyl)imino]methyl] and phenol,2-[(E)-{[2-(diethylamino)ethyl] 

imino}methyl] ligands L5-L8 were synthesized by reacting equimolar amounts of 2’-hydroxy 

acetophenone and salicylaldehyde with appropriate amine precursor in ethanol solvent with 

para toluene sulphonic acid as a catalyst (Scheme 3.1). The imino and amino ligands were 

obtained in high yields 80% – 99%. The characterization of the imine ligands was 

accomplished using 1H and 13C NMR spectroscopy, mass spectrometry and IR spectroscopy.  

OH

R

O

NH2

Y

p -TsOH

OH

R

N

Y

R=CH3, Y=OCH3, L5 R=CH3, Y= OH, L6 

EtOH, 50-60 °C

R=H, Y= N(CH2CH3)2, L8R=H, Y= OH, L7  

Scheme 3.1: Syntheses of 2-[(ethylimino)ethyl]phenol, N^O donor ligands. 

 

The 1H NMR spectrum of L5 (Figure 3.1) shows the expected number of protons in their 

respective chemical shifts. For instance, a singlet peak around 2.35 ppm which was due to the 

imine methyl while the singlet peak at 3.50 ppm corresponds to the methoxy protons. The four 

ethylene hydrogen appeared as a single triplet peak at 3.80 ppm. The 13C{1H} NMR spectrum 

of ligand L5 (Figure 3.2) was found to be in good agreement with the 1H NMR of the molecule. 
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For example, the carbon double bonded to the nitrogen appeared at 164.05 ppm and the methyl 

at 14.61 ppm (a). The number of fragment peaks observed was also consistent with the number 

of carbons in the molecule.  

 

 

Figure 3.1: 1H NMR spectrum of ligand L5 in CDCl3. 



86 
 

 

Figure 3.2: 13C{1H} NMR of spectrum of ligand L5 in CDCl3. 

 

The mass spectrum of ligand L5 shown in Figure 3.3 also confirmed the formation of the imine 

ligand. The base peak at m/z = 216.0995 amu corresponds to [M + Na]+ fragment. 

 

Figure 3.3: The mass spectrum of L5 showing [M + Na]+ fragment at m/z = 216.0995 amu. 

 

The amine ligands L9-L12 were synthesized via the reduction of the imine ligands L5-L8 

respectively using sodium borohydride (NaBH4) in methanol solvent according to Scheme 3.2. 
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All the ligands were obtained in low to moderate yields (11% - 65%). The structural 

characterization of L9-L12 was achieved using 1H and 13C{1H} NMR spectroscopy, mass 

spectrometry and IR spectroscopy. 

OH

R

N

Y

OH

R

NH

Y

NaBH 4

50 °C, CH 3OH

R=CH3, Y=OCH3, L9 

R=CH3, Y= OH, L10 

R=H, Y= N(CH2CH3)2, L12

R=H, Y= OH, L11 

R=CH3, Y=OCH3, L5 

R=CH3, Y= OH, L6 

R=H, Y= N(CH2CH3)2, L8

R=H, Y= OH, L7 

 

Scheme 3.2: Reduction of imine ligands (L5–L8) to form 2-[(ethylamino)ethyl]phenol donor 

ligands (L9–L12) respectively. 

 

The 1H NMR spectrum of amine ligand L9 in Figure 3.4 shows the methylene proton peak at 

1.50 ppm as a doublet. This is in contrast to a singlet peak at 2.40 ppm reported for the 

corresponding imine ligand L5. In addition, the appearance of a signal as a quartet at around 

2.75 ppm confirmed the reduction of L5-L9. Similarly, the 13C{1H} NMR spectrum of L9 

showed the methylene carbon peak shifted down field from 14.41 ppm (L5) to 22.44 ppm (L9) 

as given in Figure 3.5.  
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Figure 3.4: 1H NMR spectrum of ligand L9 showing the reduction of L5 as shown by the 

appearance of a doublet methylene peak (a) at 1.50 ppm (in CDCl3). 

Figure 3.5: 13C{1H} NMR spectrum of compound L9 in CDCl3. 
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The mass spectrum was also used to confirm the formation of the amine ligands, for example 

Figure 3.6 shows the mass spectrum of L9. A molecular ion peak with m/z of 194.1184 amu 

corresponds to [M – H]+ and the peak with m/z value of 195.1350 amu was due to the ligand 

ion peak. Similar mass spectra were observed for ligands L8–L12. 

 

Figure 3.6: Mass Spectrum of L9 showing a peak at 195.1189 amu corresponding to a 

molecular ion peak. 

 

Infrared spectroscopy was also helpful in structural elucidation of ligands L6-L12. It is evident 

from Figure 3.7 that imine and amine ligands were successfully synthesized. The C=N 

stretching frequency for ligand L8 was observed at 1631 cm-1, but upon reduction to form 

ligand L12, this peak disappeared while other peaks remained as it is depicted in Figure 3.7. 
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Figure 3.7: The IR spectra of the imine ligand L8 characterized by a sharp C=N signal around 

1631 cm-1 and the amine ligand L12 characterized by the absence of the C=N1631/cm peak. 

 

Complexes 7-13 were synthesized by reacting same number of moles of the 2-

[(ethylimino)ethyl]phenol (L5-L8) and 2-[(ethylamino)ethyl]phenol (L9-L12) ligands with the 

nickel(II) bromide or nickel(II) chloride salts in dichloromethane solvent as illustrated in 

Scheme 3.3. The complexes synthesized from the imine ligands L5 and L8 were relatively 

unstable and hydrolyzed upon filtration. Nevertheless, the imine complexes 7, 8 and 9 

synthesized from ligands L6 and L7 were obtained in reasonable amounts. Thus all the 

nickel(II) complexes were kept in the desiccator. The amine complexes 10–13 were relatively 

stable and were obtained in good yields. In summary, the nickel(II) complexes derived from 

the imine and amine N^O ligands were obtained in very low to good yields  ranging from 21% 

- 90%.  

C=N stretch for L8 
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OH

R

N

Y

NaBH4

CH3OH

CH2Cl 2 NiX2
CH2Cl2 NiX2

OH

R

NH

Y

H

OH

R

N

Y

NiX

X

OH

R

N

Y

H

NiX

X

H

40 -50 °C 

R=CH3, Y=OH, X=Br, 7 

R=CH3, Y= OH, X=Cl, 8 

R=H, Y= OH, X=Cl, 9

R=CH3, Y=OCH3, X=Cl, 10 

R=H, Y= N(CH2CH3)2, X=Cl, 13

R=H, Y= OH, X=Cl, 12 

OH

R

NH

Y

H

OH

R

NH

Y

H

Ni BrOH2

CH2Cl2

NiX2

R=CH3, Y= OH, X=Br, 11 

 

Scheme 3.3: Syntheses of imine and amine N^O chelated nickel(II) complexes 7–13. 

 

The paramagnetic nature of the nickel(II) complexes resulted in the use of NMR spectroscopy 

for characterization being unhelpful and thus the complexes were characterized using mass 

spectrometry, infrared spectroscopy, magnetic moments measurements, elemental analyses 

and single crystal x-ray crystallography. Figure 3.8 shows the mass spectrum obtained for 

complex 9. The base peak with m/z value of 222.0113 amu was due to the fragmentation of 

two chloride ions leaving the ligand and the metal. The peak with m/z value of 443.0172 amu 

corresponds to the [(L7)2Ni]+ molecular ion.    
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Figure 3.8: The mass spectrum of complex 9 showing a peak at 222.0113 m/z when two 

chloride ions are lost [M – 2Cl]2+ and a peak at 443.0172 corresponding to [(L7)2Ni]+ molecular 

ion.  

 

 The mass spectrum in Figure 3.9 confirmed the formation of complex 10.  For example the 

signature peak with m/z value of 326.9055 amu corresponded to the molecular ion peak [M-

2H]2+ of the complex. The base peak at 245.9233 amu was due to the fragmentation of two 

chloride ions. These fragmentations were also observed for the other nickel(II) complexes, 7, 

8, 11-13. 
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Figure 3.9: The mass spectrum of 10 showing a molecular ion peak at 326.91 ([M + 2H]+ ion 

peak, 60%). 

 

Infrared spectroscopy also aided in the characterization of the nickel(II) complexes shown in 

Figure 3.10. The notable difference between the two spectra was the broadening of the strong 

O-H peak upon the formation the nickel(II) complexes. In the ligands spectra, the O-H peaks 

were weak and sharp within the range of 2870 cm-1 – 3634 cm-1. In contrast, the O-H stretching 

frequencies for the complexes were found within the range of 3058 cm-1 – 3426 cm-1 and this 

was indicative of successful complex formation. The N-H peaks were also observed for amine 

complexes 10 (3314 cm-1) and 11 (3237 cm-1). Table 3.1 gives a summary of the spectroscopic 

and physical data obtained for ligands L9–L12 and their respective nickel(II) complexes 7–13. 
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Figure 3.10: The infrared spectra of ligand L12 and its nickel (II) complex 13 showing strong 

and broad O-H signal in the complex. 

 

The nickel(II) complexes 7–13 were further characterized using magnetic moment 

measurements and were found to be paramagnetic in nature implying a high spin configuration 

of the nickel(II) complexes. The magnetic moments of nickel(II) complexes 7–13 were found 

between the ranges of 3.10 – 3.76 BM. The values obtained for complexes 7–13 were found to 

be slightly higher than the literature reported spin only value of 2.83 BM for nickel(II) 

complexes.12 The magnetic moment measurement obtained for nickel(II) complexes 7-13 

nevertheless fell within the anticipated range for high spin nickel(II) complexes of 2.9 – 4.2 

BM.12     
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Table 3.1: The IR, mass spectral and magnetic moments data of the ligands L5–L12 and their 

nickel(II) complexes 7–13. 

Imine and amine N^O donor ligands Nickel(II) complexes 

 FT-IR (cm-1) m/z (%) complex FT-IR (cm-1) m/z (%) µobs (BM) 

ν(O-H) ν(C=N) ν(O-H) ν(C=N) 

L5 3059 1615 M+ (100%) 7 3292 1626 M+ (18%) 3.10 

L6 3164 1604 M++H+ (100%) 8 3307 1630 M+-2Cl- (100%) 3.14 

L7 3353 1631 M++H+ (100%) 9 3426 1644 M+-2Cl- (100%) 3.55 

L8 3061 1631 M+ (100%) 10 - 3314 (ν(N-H)) M+ (67%) 3.76 

L9 2870 3310 

(ν(N-H)) 

M+ (100%) 11 3058 3237 (ν(N-H)) M+-Br- (50%) 3.75 

L10 3363 1594 M++H+ (100%) 12 3179 - M+-2Cl- (100%) 3.58 

L12 3634 - M+ (100%) 13 3250 - M+-2Cl- (62%) 3.54 

 

The elemental analyses data of the nickel(II) complexes 7, 8 and 9  were found to be consistent 

with one ligand motif per  metal centre as proposed in Scheme 3.3.  Interestingly, the elemental 

analysis data of complex 11 corresponded to two ligand units per nickel(II) metal atom, one 

bromide atom and one water molecule which was least expected. This showed the effect of the 

metal used and ligand structure on the resultant interaction between the ligand and metal centre. 

Nevertheless, the elemental analyses data obtained for the complexes showed that the nickel(II) 

complexes were obtained with better purity regardless of their air sensitivity. To account for 

the hygroscopic nature of the nickel(II) complexes, few molecules of water solvent were added 

to balance the atomic mass fractions. Furthermore, infinitesimal deviations from the calculated 

C, H and N contents could be an attribute to the presence of smaller amount impurities in the 

nickel(II) complexes which shows somewhat the necessity of further purification. 
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3.3.2. Molecular structure determination of the nickel(II) complex 9a by single 

crystal X-ray crystallography. 

Single crystals suitable for X-ray analysis of complex 9a were grown by slow diffusion of 

complex 9 in diethyl-ether into methanol solution at room temperature and used for its solid 

state structure determination. Tables 3.2 and 3.3 give summary of the crystallographic data, 

structure refinement parameters and the selected bond length and angles respectively. The 

nickel(II) complex 9a crystallized in the monoclinic system with space group P21/n. 

 

Table 3.2: The selected bond lengths [Å] and angles [°] for nickel(II) complex 9a 

Bond lengths [Å] Bond angles [°] 

Ni(1)-N(1) 2.0012(10) N(1)-Ni(1)-O(1) 91.45(4) 

Ni(1)-O(1) 2.0619(8) O(1)-Ni(1)-O(1) 80.40(4) 

Ni(1)-O(2) 2.1400(9) N(1)-Ni(1)-O(2) 80.65(4) 

Ni(1)-O(3) 2.1303(9) O(1)-Ni(1)-O(2) 107.15(3) 

Ni(1)-Cl(1) 2.4083(4) O(3)-Ni(1)-Cl(1) 173.20(3) 

  O(2)-Ni(1)-Cl(1) 90.85(3) 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

Table 3.3: Crystal data and structure refinement for 9a. 

  

Parameter 9a 

Empirical formula C20 H28 Cl2 N2 Ni2 O6 

Formula weight 580.72 g/mol 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P 21/n 

a 8.3440(7) Å 

b 8.9628(7) Å 

c 16.4951(13) Å 

α 90° 

β 101.127(2)° 

γ 90° 

Volume 1210.41(17) Å3 

Z 2 

Density (calculated) 1.593 Mg/m3 

Absorption coefficient 1.814 mm-1 

F(000) 600 

Crystal size 0.520 x 0.240 x 0.150 mm3 

Theta range for data collection 2.517 to 28.299°. 

Reflections collected 10761 

Completeness to theta = 25.242° 100.0 % 

Max. and min. transmission 0.789 and 0.446 

Data / restraints / parameters 2994 / 2 / 154 

Goodness-of-fit on F2 1.044 

Final R indices [I>2sigma(I)] R1 = 0.0197, wR2 = 0.0472 

R indices (all data) R1 = 0.0206, wR2 = 0.0476 

Largest diff. peak and hole 0.450 and -0.281 e.Å-3 

 

 

The molecular structure diagram of complex 9a shown in Figure 3.11 revealed that the two 

nickel metal centres adopt distorted octahedral geometry in which the coordination sphere 
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around the metal centres consists of two bidentate ligands L7 and one chloride atom. In 

addition, the oxygen of the pendant group is also coordinated to the nickel metal centre to give 

a six coordinate octahedral geometry. This is an interesting observation since the elemental 

analysis of 9 corresponded to one ligand motif around the metal centre which is different from 

what is observed from the X-ray structure of complex 9a. Therefore, it could be speculated that 

a mononuclear complex 9 with one ligand motif upon recrystallization transformed to give a 

binuclear octahedral complex 9a with two ligand units of L7 coordinated to each nickel(II) 

metal centre. Nevertheless, the presence of two ligand units around the nickel(II) metal in 

complex 9a is also somewhat supported by the mass spectrum of 9 (Figure 3.8), which showed 

a peak with m/z value of 443.0172  amu corresponding to the [(L7)2Ni]+  molecular ion.  

 

Figure 3.11. Molecular structure diagram of 9a, the carbons and hydrogens are not labelled for 

clarity. 
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The crystal structure of 9a compares favorably to the one reported by Dey et al.25 for bis(µ2-2-

((2-Hydroxyethyl)iminomethyl)phenolato-N,O,O,O’)-bis(acetate-O)-diaqua-di-nickel(II) 

complex obtained from the Cambridge Structural Database (CSD). The Ni-O average bond 

length of complex 9a of 2.0619(8) Å was found to be longer than the one obtained in literature 

of 2.052 Å. In contrast, Ni-N bond length of 2.0012(10) Å was found to be shorter than the one 

reported in literature of 2.003 Å. The selected bond angles of 9a revealed a severe distorted 

octahedral crystal structure.  For example, the bond angles of O(1)-Ni(1)-O(1), N(1)-Ni(1)-

O(2) and O(3)-Ni(1)-Cl(1) were  80.40(4)˚, 80.65(4)˚ and 173.20(3)˚ respectively (Table 3.2).26  

 

3.3.3. The catalytic behavior of complexes 7–13 in the oligomerization of ethylene 

when activated with EtAlCl2 co-catalyst 

The catalytic abilities of the nickel(II) complexes 7-13 in ethylene oligomerization reactions 

were investigated using EtAlCl2 as an activator in chlorobenzene solvent. Table 3.4 gives a 

summary of the catalytic results obtained for the pre-catalysts. The ethylene oligomerization 

reactions predominantly produced C4 and C6 oligomers as main products without Friedel-Craft 

alkylated products as was reported in Chapter Two for the benzimidazolylmethylamine 

nickel(II) complexes 1–6. 

 

3.3.3.1.The effect of the catalyst structure on the catalytic activities and product 

distribution. 

The imine and amine nickel(II) complexes 7-13 formed active catalysts after the activation 

with EtAlCl2. The catalytic results obtained show that the ligand architecture and the identity 

of the halides had a major effect on the catalytic activities of the nickel(II) complexes (7-13). 

For example, comparing complexes 7 (Table 3.4, entry 1) and 8 (Table 3.4, entry 2), it is clear 

that the chloride complex was more active than the analogous bromide complex 8. This is in 
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good agreement with the report of Zhang et al.27 using nickel(II) complexes ligated by 2, 6-

pyridicarboxamide, and could be due to the bromide atom being less electronegative than 

chloride atom which subsequently results in the less electropositive nickel(II) metal centre. 

 

Table 3.4: Ethylene oligomerization data obtained for nickel(II) complexes 7-13 using EtAlCl2 

as a co-catalyst in chlorobenzene.a 

Entry Catalyst Tmin/Tmax 

(°C)b 

Yield c (kg) Activity (kg 

mol-1 h-1) 

Product distribution (%) d 

C4 C6 

1 7 25/30 0.0250 2 500 27 73 

2 8 25/27 0.0264 2 640 29 71 

3 9 25/29 0.0191 1 910 31 69 

4 10 25/35 0.0333 3 330 25 75 

5 11 25/26 0.0202 2 020 20 80 

6 12 25/33 0.0153 1 530 22 78 

7 13 25/31 0.0255 2 550 30 70 

aReaction conditions: [M] = 10 µmol; solvent, chlorobenzene, 80 ml (88.8 g); Temperature, 25 

°C; Time, 1h; Pressure, 10 bar; Al:M = 250. 
bInitial temperature was 25 °C, Tmin and Tmax = lowest and highest temperatures obtained during 

the reaction period. 
cDetermined using the calibration curve of the R-factors versus the number of carbons. 
dDetermined by GC.  

 

 

 

There was also an observed decrease in the catalytic activity from 2 640 kg mol-1 h-1 to 1 910 

kg mol-1 h-1 when the methyl group was substituted with a hydrogen atom in complexes 8 and 

9 (Table 3.4, entries 2 and 3). This can be attributed to improved solubility of the complex 

bearing the methyl group as the alkyl substituent.18 The imine complexes resulted in the 
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formation of highly active nickel(II) based catalysts than the corresponding amine complexes. 

As an illustration, the imine complexes 7 and 9 exhibited high catalytic activities of 2 500 kg 

mol-1 h-1 and 1 910 kg mol-1 h-1 respectively compared to lower catalytic activities of 2 020 kg 

mol-1
 h

-1 and 1 530 kg mol-1 h-1 for 11 and 12 respectively. This could be due to the electron 

deficient imine nitrogen withdrawing electrons to itself resulting in a more electropositive 

nickel(II) metal which subsequently increase the rate of substrate attachment and thereby 

increasing the catalytic activities of the imine complexes. The opposite is true for the 

interaction of the amine nitrogen and the nickel(II) metal centre.  

 

The catalytic activities of the nickel(II) complexes were also greatly influenced by the pendant 

donor group in the ligand structure. In general, the electron donating pendant group gave higher 

catalytic activity than the electron withdrawing pendant group. For example, complex 13 

bearing the N(CH2CH3)2 pendant group exhibited high catalytic activity of 2 500 kg mol-1
 h

-1 

whilst complex 12 bearing an OH pendant group showed a lower catalytic activity of  1 530 kg 

mol-1 h-1 (Table 3.4 entries 6 and 7). It is believed that lower catalytic activity by was due to 

the stronger bond between the hard O-atom and hard Ni-metal (HSAB Theory) which may 

have created a competition of the vacant coordination site with the incoming ethylene 

monomer.28 The selectivity towards the formation of C4 (20% – 31%) and C6 (69% - 80%) as 

the major products was not greatly affected by the variation of the alkyl substituent, pendant 

group and the identity of the halide. 
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3.3.3.2. The effect of the reaction parameters on the catalytic behavior of the 

nickel(II) complexes. 

The effect of varying the reaction parameters was investigated using 9/EtAlCl2 system and the 

results are summarized in Table 3.5. Both the catalytic activity and the product distribution 

were significantly affected by the variation of pressure, Al/Ni ratio, time and solvent medium.  

 

Table 3.5. Ethylene oligomerization reactions of the 9/EtAlCl2 systema 

Entry Time(h) Pressure 

(Bar) 

Al/Ni Yieldb 

(kg) 

TON 

(kg mol-1 h-1)c 

Product Distribution (%)d 

C4 C6 

1 1 10 150 0.0288 2 887 32 68 

2 1 10 200 0.0386 3 865 45 55 

3 1 10 250 0.0191 1 910 31 69 

4 1 10 300 0.0174 1 738 73 27 

5 0.5 10 200 0.0154 3 080 62 38 

6 2 10 200 0.0568 2 840 33 77 

7 1 20 200 0.0622 6 217 66 34 

8 1 30 200 0.118 11 850 78 22 

9e 1 10 200 0.0209 2 094 100 - 

a Reaction conditions: [9] = 10 µmol; solvent, chlorobenzene, 80 ml; Temperature, 25 °C. 
b Determined using the calibration curve of the R-factors versus the number of carbons. 
c TON, kg oligomer produced per mol catalyst per hour. 
d Determined by Gas Chromatography. 
e In toluene solvent; 
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3.3.3.2.1.  The effect of Al/Ni ratio on ethylene oligomerization reaction using 

complex 9. 

Using 9/EtAlCl2 system, the Al/Ni ratio was first varied from 150 to 300 (Table 3.5, entries 1 

- 4 respectively). An optimum catalytic activity of 3 865 kg mol-1 h-1 was obtained at Al/Ni 

ratio of 200.  A decrease in the catalytic activity was observed at higher Al/Ni ratios of 250 and 

300, which was attributed from an increase in alkylaluminium impurities which might results 

in the deactivation of the catalyst.27 As the Al/Ni ratio was increased from 150 to 300, the 

selectivity of C4 oligomer was observed to increase from 32% - 73% possibly due to increased 

chain transfer to the co-catalysts or increased chain termination due to enhanced catalytic 

activity.29 

 

3.3.3.2.2. The effect of time on the catalytic behavior of complex 9. 

The reaction times were varied from 0.5 h to 2 h to study the stability of the active species 

using complex 9 (Table 3.5, entries 2, 5 and 6 respectively). There is an observed increased in 

the catalytic activity of 9 from 3 038 kg mol-1 h-1 to 3 865 kg mol-1 h-1 within 1 h which is 

consistent with the induction period during the initial stages between 0.5 h and 1 h.30 This is 

also marked by the higher amount of C4 oligomer of 62%, which was observed to decrease to 

45% after 1 h. In contrast, further increase to 2 h resulted in a drastic drop in the catalytic 

activity of 9 to 2 840 kg mol-1 h-1 due to catalyst degradation after 2 h.31 The amount of C6 

oligomer was observed to increase after 2 h, and this is due to the fact that longer reaction 

periods favor chain reinsertion which subsequently results in the formation of higher 

oligomericproducts.4
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3.3.3.2.3. The effect of ethylene pressure using complex 9. 

The pressure of ethylene was varied from 10 bar to 30 bar to examine the effect of ethylene 

concentration on the catalytic activity and selectivity of the nickel(II) catalysts. Nevertheless, 

the catalytic activity of 9 was observed to double from 3 865 kg mol-1 h-1 to 6 217 kg mol-1 h-1 

(Table 3.5, entries 2 and 7 respectively). Further increase in ethylene pressure resulted in an 

increase in the catalytic activity of 9/EtAlCl2 system to 11 850 kg mol-1 h-1, Table 3.5, entry 8. 

This trend is due to an increased in ethylene concentration which also has a profound effect on 

the product distribution. For example, the selectivity of C4 oligomer increased from 45% to 

78% as the ethylene pressure was increased from 10 bar to 30 bar whilst the opposite was 

observed for the selectivity of C6 oligomer. The observed trend in selectivity of C4 over C6 is 

consistent with an increase in the catalytic activity of 9 which subsequently results in rapid 

chain termination and consequently more C4 is formed.32   

 

3.3.3.2.4. The effect of solvent on the catalytic activity and selectivity of complex 9 

The effect of solvent on ethylene oligomerization reactions was investigated using 9/EtAlCl2 

system in chlorobenzene and toluene. The solvent used significantly affected both the catalytic 

activity and selectivity, for example, the catalytic activities of 2 094 kg mol-1 h-1 and 3 865 kg 

mol-1 h-1
 were obtained in toluene and chlorobenzene respectively. Higher catalytic activities 

observed in chlorobenzene could be attributed to better solubility of the complex in 

chlorobenzene. Despite lower catalytic activity observed in toluene, the use of toluene solvent 

resulted in a high selectivity for C4 oligomer (100%). In contrast, chlorobenzene solvent gave 

45% and 55% selectivity for C4 and C6 oligomers respectively. These results implied that there 

is competition between activity and selectivity and therefore it was deducted that high 

catalytically active conditions results in low catalytic selectivities. 
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3.4. Conclusion 

The imine and amine O^N donor ligands together with their respective nickel(II) complexes 

were successfully synthesized and characterized using 1H NMR, 13C{1H} NMR, IR 

spectroscopy, mass spectrometry, magnetic moment measurements, CHN elemental analyses 

and single crystal X-ray analysis. The N^O 2-[(ethylimino)ethyl]phenol ligand L7 gave a 

binuclear nickel(II) complex 9a possessing a distorted octahedral geometry. The nickel(II) 

complexes formed active catalysts for ethylene oligomerization reactions upon activation with 

EtAlCl2 co-catalyst and afforded butenes and hexenes as the major product. The catalytic 

activities of the nickel(II) complexes were greatly influenced by the nature of the alkyl 

substituent, pendant donor group and halide atom.  
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Chapter Four 

General concluding remarks and future prospects 

 

4.1. General conclusions 

The essence of the research project was to invent catalytically active and stable catalysts for 

ethylene oligomerization reactions. As a result, nickel(II) complexes based on N^N 

benzimidazolylmethylamine and N^O 2-[(ethylimino)ethyl]phenol ligands were synthesized, 

structurally characterized and investigated for ethylene oligomerization reactions. The 

bidentate benzimidazolylmethylamine ligand L3 formed a mononuclear nickel(II) complex 3a 

in which the oxygen of the methoxy alkyl substituent of the first ligand is bonded to the 

nickel(II) metal centre. On the other hand, the 2-[(ethylimino)ethyl]phenol ligand L7 resulted 

in a formation of a binuclear tridentate (O^N^O donor) nickel(II) complex 9a. In both complex 

derivatives, the nickel(II) coordination sphere constituted of two ligand systems coordinated to 

the metal centre and a chloride or a bromide and also a solvent molecule resulting in a severe 

distorted octahedral crystal structure.    

 

The nickel(II) complexes upon activation with EtAlCl2 or MAO co-catalysts resulted in active 

catalysts for ethylene oligomerization reactions and produced butenes, hexenes and Friedel-

Craft alkylated toluenes as major products. The selectivity of the catalysts was governed by the 

catalyst system, nature of the co-catalyst and solvent used. Our findings revealed that the 

nickel(II) complexes derived from N^O donor ligands of 2-[(ethylimino)ethyl]phenol were 

highly active than the benzimidazolylmethylamine nickel(II) complexes. Nevertheless, there 

was a high dependence of the catalytic activity, selectivity and stability on the reaction 
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parameters such as the nature of the co-catalyst, Al/Ni ratio, ethylene pressure, time and 

temperature. 

 

The solvent utilized greatly enhanced or diminished the catalytic activities of the nickel(II) 

complexes and also influenced the product distribution. High catalytic activities were obtained 

in toluene than in chlorobenzene for the N^N benzimidazolylmethylamine nickel(II) 

complexes but with low selectivity. In contrast, with the N^O 2-[(ethylimino)ethyl]phenol 

nickel(II) complexes high catalytic activities were achieved in chlorobenzene with high 

selectivities. The influence of the solvent is also highlighted in Chapter Two, where the use of 

toluene solvent and EtAlCl2 co-catalyst resulted in the formation of the Friedel-Craft alkylated 

products.  

 

The nature of the co-catalyst employed had a great influence on the catalytic activities and 

selectivities of the catalysts. In Chapter Two, activation of the benzimidazolylmethylamine 

nickel(II) complexes with MAO co-catalyst resulted in low activities as opposed to the usage 

of EtAlCl2 co-catalyst but with high selectivity. Activation with EtAlCl2 co-catalyst resulted in 

the formation of C4 and C6 oligomers and Friedel-Craft alkylated products. On the other hand, 

activation with MAO predominantly produced C4 and C6 oligomers as major products.   

 

In Chapter Three, activation of N^O 2-[(ethylimino)ethyl]phenol based nickel(II) complexes 

with EtAlCl2 in toluene predominantly gave butene as major product. This shows that the 

formation of the Friedel-Craft alkylated toluene products is a complex concept and cannot be 

explained using the solvent medium and the nature of the co-catalyst alone, but rather, the 

catalyst structure also need to be carefully examined.  
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The single-sited nickel(II) pre-catalysts have been successfully used in the oligomerization 

reactions of ethylene and this research project has contributed to the ongoing research in the 

field of homogeneous late transition based metal catalysts. Therefore, it can be concluded that 

our research project has put forward a great improvements towards the design and synthesis of 

the new catalysts that would add value to the transformation of α-olefins to higher α-olefins 

used in the production lubricants, surfactants and plasticizers.  

 

4.2. Future prospects 

In addition, to the ongoing research, this project has added value and contributed in the 

synthesis of new nickel(II) catalysts for ethylene oligomerization reactions in terms of catalytic 

activity, selectivity and stability. In creating a balance in the stability and activity of the 

resultant catalysts, the nickel(II) complexes have been incorporated with both electron donating 

and electron withdrawing substituents and also hemilabile pendant groups. The selectivity of 

the nickel(II) complexes still remains a challenging aspect.In future we intend to improve the 

oligomeric product separation by applying heterogeneous systems in our homogeneous 

nickel(II) catalysts systems. The immobilized system would be based on silica support and are 

provided in Scheme 4.1.  
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Scheme 4.1. The proposed synthesis for the heterogenized nickel(II) complexes of N^N 

benzimidazolylmethylamine ligands. 

 


