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ABSTRACT 

Maize is the major staple food crop in the majority of Sub-Saharan African (SSA) countries. 

However, production statistics (croplands and yields) are rarely measured, and where they are 

recorded, accuracy is poor because the statistics are updated through the farm survey method, 

which is error-prone and is time-consuming, and expensive. There is an urgent need to use 

affordable, accurate, timely, and readily accessible data collection and spatial analysis tools, 

including robust data extraction and processing techniques for precise yield forecasting for 

decision support and early warning systems. Meeting Africa’s rising food demand, which is 

driven by population growth and low productivity requires doubling the current production of 

major grain crops like maize by 2050. This requires innovative approaches and mechanisms that 

support accurate yield forecasting for early warning systems coupled with accelerated crop 

genetic improvement. 

Recent advances in remote sensing and geographical information system (GIS) have enabled 

detailed cropland mapping, spatial analysis of land suitability, crop type, and varietal 

discrimination, and ultimately grain yield forecasting in the developed world. However, 

although remote sensing and spatial analysis afforded us unprecedented opportunities for 

detailed data collection, their application in maize in Africa is still limited. In Africa, the challenge 

of crop yield forecasting using remote sensing is a daunting task because agriculture is highly 

fragmented, cropland is spatially heterogeneous, and cropping systems are highly diverse and 

mosaic. The dearth of data on the application of remote sensing and GIS in crop yield forecasting 

and land suitability analysis is not only worrying but catastrophic to food security monitoring 

and early warning systems in a continent burdened with chronic food shortages. Furthermore, 

accelerated crop genetic improvement to increase yield and achieve better adaptation to climate 

change is an issue of increasing urgency in order to satisfy the ever-increasing food demand. 

Recently, crop improvement programs are exploring the use of remotely sensed data that can be 

used cost-effectively for varietal evaluation and analysis in crop phenotyping, which currently 

remains a major bottleneck in crop genetic improvement. Yet studies on evaluation of maize 
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varietal response to abiotic and biotic stresses found in the target production environments are 

limited. 

Therefore, the aim of this study was to model spatial land suitability for maize production using 

GIS and explore the potential use of field spectrometer and unmanned aerial vehicles (UAV) 

based remotely sensed data in maize varietal discrimination, high-throughput phenotyping, and 

yield prediction. Firstly, an overview of major remote-sensing platforms and their applicability 

to estimating maize grain yield in the African agricultural context, including research challenges 

was provided. Secondly, maize land suitability analysis using GIS and analytical hierarchical 

process (AHP) was performed in Zimbabwe. Finally, the utility of proximal and UAV-based 

remotely sensed data for maize phenotyping, varietal discrimination, and yield forecasting were 

explored.  

The results showed that the use of remote sensing data in estimating maize yield in the African 

agricultural systems is still limited and obtaining accurate and reliable maize yield estimates 

using remotely sensed data remains a challenge due to the highly fragmented and spatially 

heterogeneous nature of the cropping systems. Our results underscored the urgent need to use 

sensors with high spatial, temporal and spectral resolution, coupled with appropriate 

classification techniques and accurate ground truth data in estimating maize yield and its spatio-

temporal dynamics in heterogeneous African agricultural landscapes for designing appropriate 

food security interventions. In addition, using modern spatial analysis tools is effective in 

assessing land suitability for targeting location-specific interventions and can serve as a decision 

support tool for policymakers and land-use planners regarding maize production and varietal 

placement.  

Discriminating maize varieties using remotely sensed data is crucial for crop monitoring, high-

throughput phenotyping, and yield forecasting. Using proximal sensing, our study showed that 

maize varietal discrimination is possible at certain phenological growth stages at the field level, 

which is crucial for yield forecasting and varietal phenotyping in crop improvement. In addition, 

the use of proximal remote sensing data with appropriate pre-processing algorithms such as auto-
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scaling and generalized least squares weighting significantly improved the discrimination ability 

of partial least square discriminant analysis, and identify optimal spectral bands for maize 

varietal discrimination. Using proximal sensing was not only able to discriminate maize varieties 

but also identified the ideal phenological stage for varietal discrimination. Flowering and onset 

of senescence appeared to be the most ideal stages for accurate varietal discrimination using our 

data. 

In this study, we also demonstrated the potential use of UAV-based remotely sensed data in 

maize varietal phenotyping in crop improvement. Using multi-temporal UAV-derived 

multispectral data and Random Forest (RF) algorithm, our study identified not only the optimal 

bands and indices but also the ideal growth stage for accurate varietal phenotyping under maize 

streak virus (MSV) infection. The RF classifier selected green normalized difference vegetation 

index (GNDVI), green Chlorophyll Index (CIgreen), Red-edge Chlorophyll Index (CIred-edge), 

and the Red band as the most important variables for classification. The results demonstrated 

that spectral bands and vegetation indices measured at the vegetative stage are the most 

important for the classification of maize varietal response to MSV. Further analysis to predict 

MSV disease and grain yield using UAV-derived multispectral imaging data using multiple 

models showed that Red and NIR bands were frequently selected in most of the models that gave 

the highest prediction precision for grain yield. Combining the NIR band with Red band 

improved the explanatory power of the prediction models. This was also true with the selected 

indices. Thus, not all indices or bands measure the same aspect of biophysical parameters or crop 

productivity, and combining them increased the joint predictive power, consequently increased 

complementarity. 

Overall, the study has demonstrated the potential use of spatial analysis tools in land suitability 

analysis for maize production and the utility of remotely sensed data in maize varietal 

discrimination, phenotyping, and yield prediction. These results are useful for targeting location-

specific interventions for varietal placement and integrating UAV-based high-throughput 

phenotyping systems in crop genetic improvement to address continental food security, 

especially as climate change accelerates. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Maize and food security 

Maize (Zea mays L.) is the second most commonly grown crop worldwide and the number 

one staple food in Africa where it accounts for more than 50% of the energy requirements and 

grown on more than 27 million ha in Sub-Saharan Africa (SSA). Planted area and yield 

information are critical for food security planning. Globally, food requirement is expected to 

double current demand by 2050 due to population and socio-economic growth (Ray et al., 

2012). Meeting food requirements by 2050 in Africa requires doubling the current grain 

production of major grain crops like maize, wheat, and rice by 2050 (Tilman et al., 2011; 

Tubiello, 2012; Valin et al., 2013). The human population in Africa is forecasted to double by 

2050 (Ezeh et al., 2012). Ironically, Africa is one of the hardest hit by food shortages, yet 75 % 

of its population depends on agriculture for subsistence and work. Furthermore, agricultural 

statistics (croplands and yields) in Africa are rarely measured, and where they are recorded, 

accuracy is poor (Carletto et al., 2015). 

The pressure for increased food production is also compounded by the impending threats of 

climate change that alters water availability due to droughts, floods, poor soil fertility due to 

floods-induced soil erosion, and outbreaks of pests and diseases. These challenges are 

reducing crop productivity. In order to meet food requirements, farmers end up expanding 

crop fields by converting environmentally-sensitivity areas into croplands. Mitigating these 

challenges and be able to meet food security by 2050 will require innovative approaches and 

mechanisms that support accurate yield forecasting for early warning systems, land suitability 

analysis, good agronomic practices, and accelerated crop genetic improvement. 

Recent advances in remote sensing and geographical information system (GIS) have enabled 

detailed cropland mapping, spatial analysis of land suitability, crop type, and varietal 

discrimination, and ultimately grain yield forecasting. However, the challenge of crop yield 

forecasting using remote sensing in Africa is a daunting task because agriculture is highly 

fragmented, cropland is spatially heterogeneous, and cropping systems are highly diverse 

and mosaic (Delrue et al., 2013; Vancutsem et al., 2013). Yet improving the continent’s food 

security requires strong early warning systems that depend on precise and current data on 
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the maize spatial distribution, land suitability analysis, and yield estimates. In addition, due 

to climate change, there is an urgent need to accelerate crop genetic improvement as a 

mitigation measure, which can be achieved by combining genomics, rapid cycling, and 

phenomics (systematic study of phenotypes). 

1.2 Spatial analysis of land suitability for maize production 

Geospatial technology (remote sensing, GIS, and global positioning system) has found many 

applications in agriculture, particularly cropland mapping, land suitability analysis, above-

ground biomass, and grain yield estimation, precision farming, and recently high throughput 

crop phenotyping in plant breeding. The advantages of geospatial technology over 

conventional ground-based methods include timely, cost-effective, precise, and multi-

temporal measurements over large areas, among others. For example, GIS offers the power of 

storing, manipulation, analysis, and visualizing different spatial and non-spatial data, 

including land-use/land-cover. Thus geospatial technology provides cost-effective methods 

for cropland analysis (condition, productivity, and spatial extent). Although the importance 

of geospatial technology in agriculture is becoming widely recognized, their application in 

highly fragmented African agriculture is limited, especially land suitability analysis and 

remote sensing of maize. Yet maize productivity is decreasing due to climate change causing 

some land to be unsuitable for maize production without interventions like irrigation 

development. GIS can be effective in spatial analysis of land suitability for targeting location-

specific interventions and can serve as a decision support tool. 

1.3 Remote sensing for maize phenotyping, varietal discrimination and yield prediction 

To satisfy the ever-increasing food demand, a better mechanism that supports the monitoring 

and forecasting of crop productivity is urgently needed. However, the mechanisms depend 

on precise and accurate information on the spatial distribution of maize and yield estimates. 

At the local scale, crop yield is variety-dependent. Therefore, techniques to discriminate maize 

varieties and estimate their productivity are needed. This is critical for a variety of reasons, 

including disease and pest assessments and yield forecasting. In addition, our ability to adapt 

maize production to future climates will not only depend on accurate prediction of future 

climate scenarios, but also on the development of robust adaptation strategies that address 
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the challenges associated with climate change. Such adaptation strategies include improved 

crop varieties that are resilient to biotic and abiotic stresses. Fortunately, breeders can now 

generate large numbers of new varieties due to advances in technologies (Phillips et al., 2010; 

Poland et al., 2015). However, plant phenotyping remains a major bottleneck for improving 

the selection efficiency in breeding (Furbank and Tester, 2011; Araus and Cairns, 2014). 

Phenotyping is the measurement of individual plant traits and physiology at the plant- or 

canopy-scale (Hickey et al., 2019). Recent advances in remote sensing tools are promising to 

accelerate screening, selection, and advancement of varieties in plant breeding. Remote 

sensing is the measurement of the physical properties of distant objects and their 

environments using reflected and emitted energy (Moore, 1979). In plant sciences, remote 

sensing is used to record plants or crop parameters in a non-invasive manipulation or without 

direct contact. Recently, the concept has encompassed proximal (close-range) sensing of 

plants (Mahlein et al., 2012; Oerke et al., 2014). 

1.4 Remote sensing platforms 

Remote sensing-based methods can be classified into three platforms: proximal, aerial, and 

space-borne satellites (Wójtowicz et al., 2016). Each platform has its own advantages and 

disadvantages depending on the task at hand. Therefore, the selection of which platform to 

use depends on the intended use and desired outputs. For example, satellite sensors are 

suitable for large-scale yield estimation and cropland mapping but they lack plot-level 

precision required in data collection in plant breeding for variety analysis due to their low 

spectral and temporal resolution. On the other hand, proximal sensing is labor-intensive, of 

limited scalability, and unsuitable when fields are too wet to allow traffic movement (Tattaris 

et al., 2016). Options from manned aerial, high spectral resolution remote sensing platforms 

are costly and are limited by operational complexity for application in small breeding plots 

(Hoffer et al., 2014; Jimenez-Berni et al., 2009). Consequently, there is a need to evaluate 

affordable alternative platforms with acceptable accuracy like unmanned aerial vehicles 

(UAVs) that are applicable at plot-level.    

Therefore, there is an urgent need to: (1) apply spatial analytical tools based on GIS to model 

land suitability for maize production and varietal placement; (2) test the potential of field 

spectrometer for proximal sensing of maize in varietal discrimination and field-based 
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phenotyping; and (3) explore aerial remote sensing using UAVs for high-throughput 

phenotyping in maize and yield prediction under different biotic stresses like maize streak 

virus disease. These are the focuses of this thesis.  

 1.5 Aim and objectives  

1.5.1 Aim 

The aim was to model spatial suitability for maize production using GIS and explore the utility 

of remotely sensed data in maize varietal discrimination, high-throughput phenotyping, and 

yield prediction.  

1.5.2 Objectives 

The specific objectives were: 

1. To review and synthesize different yield forecasting methods in maize using conventional 

approaches and remote sensing and highlight the inherent challenges when applied in 

heterogeneous agricultural landscapes; 

2. To evaluate the potential use of GIS in modeling land suitability for maize production 

using physical environmental and climatic factors for spatial decision-making support in 

maize crop placement in Zimbabwe; 

3. To explore in situ maize varietal discrimination using field spectrometer based proximal 

sensing and multivariate techniques in order to identify the ideal phenological stage(s) for 

varietal discrimination; 

4. To assess the utility of UAV-derived remotely sensed data for image-based high-

throughput plant phenotyping in maize varieties under artificial maize streak virus (MSV) 

inoculation; 

5. To develop prediction models based on multi-temporal UAV-based remote sensing data 

in maize under artificial MSV inoculation and identify the most ideal phenological stage(s) 

for yield prediction to increase selection accuracy in maize breeding. 





7 

 

sensing in fragmented and highly heterogeneous agricultural landscapes. Section II details 

the spatial analysis and proximal sensing of maize. Section III explores innovative aerial 

remote sensing of maize and yield prediction using UAV-based multispectral data under one 

of the major biotic stresses found in the major maize growing regions of sub-Saharan Africa 

(SSA). Section IV presents the synthesis. Chapter two to six are made up of manuscripts 

published or under consideration in peer-review international scientific journals. The contents 

and structures of these manuscripts have been maintained and therefore individual chapters 

have distinct abstract, introduction, materials and methods, results, discussion, and 

conclusion sub-sections. As such, some overlaps and repetitions may be found in some 

instances, especially in the introduction and methodology sections of these chapters. 

However, the overlaps are presumed to be of very limited consequence because the chapters 

are meant to be standalone yet interrelated peer-reviewed journal articles, which can be read 

separately, without losing the overall context of the study.  Thus, the thesis is made up of 

seven chapters, split into four sections: general introduction and theoretical perspective 

(Section I); spatial analysis and proximal sensing of maize (Section II); UAV-based aerial 

remote sensing and yield prediction of maize (Section III); and synthesis (Section IV). 

1.7.1 Section I: General introduction and theoretical perspective 

1.7.1.1 Chapter One: General introduction 

Chapter one is a brief introduction that gives an outline and general statement of the problem, 

ideas, motives, and justification for the study. It gives a brief overview of the importance of 

maize production, its role in fulfilling food security, challenges associated with maize 

production as climates change accelerates, and how this can be mitigated using combined 

innovative approaches like geospatial analysis, remote sensing, and crop genetic 

improvement. The chapter further highlights the scarcity of information on maize yield 

estimates in highly fragmented and heterogeneous African agricultural landscapes and 

limited studies using remote sensing in maize. The study's aim and objectives are provided. 
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1.7.1.2 Chapter Two: Theoretical perspective 

This chapter gives a state-of-the-art review of the use of remotely sensed data in estimating 

maize grain yield in highly fragmented African agricultural landscapes. The chapter 

highlights the challenges faced by researchers and policymakers when forecasting maize 

yields using conventional ground-based survey methods and remote sensing in highly 

fragmented and heterogeneous agricultural landscapes. This review represents the first step 

to identify information gaps that require further investigation in estimating maize yield in 

heterogeneous agricultural systems in order to increase our understanding of African 

agriculture and improve food security through early warning systems, spatial analysis, and 

accelerated crop improvement. 

1.7.2 Section II: Spatial analysis and proximal sensing of maize  

1.7.2.1 Chapter Three: Spatial analysis of land suitability using GIS and AHP 

This chapter evaluates land suitability for maize production using geographic information 

system (GIS) and analytic hierarchy process (AHP) using a multi-criteria evaluation (MCE) 

process. It integrates four thematic maps (rainfall, temperate, soil type, and slope) through an 

overlay technique to produce a maize production suitability map. The final maize suitability 

map was divided into highly suitable, suitable, moderately suitable, marginally suitable, and 

not suitable land for maize production. The maize suitability classes were validated using 

long-term maize grain yield. This land suitability analysis is crucial in understanding the land 

suitability shifts due to climate change and for targeting location-specific interventions for 

maize production. The resultant suitability map is an important decision support tool in land 

use planning and policymaking.    

1.7.2.2 Chapter Four: Discriminating maize varieties using proximal remote sensing 

In this chapter, we used proximal (close-range) sensing to explore in situ maize varietal 

discrimination using a field spectrometer and multivariate techniques in order to identify the 

ideal phenological stage(s) for varietal classification. A growing body of literature shows how 

the proximal sensing approach enhances the automation of high-throughput field-based 

phenotyping methods with improved precision and accuracy (Berger et al., 2010; Munns et al., 
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2010; Araus and Cairns, 2014). Proximal sensing provides higher resolution data for varietal 

discrimination in phenotyping studies and it allows data collection at multiple view-angles, 

easy to control illumination and distance from the sensors to plants (White et al., 2012).  

1.7.3 Section III: Aerial remote sensing and yield prediction of maize 

1.7.3.1 Chapter Five: UAV-based multispectral imaging of maize  

One of the emerging platforms in aerial remote sensing is the UAVs, developed recently and 

are proving to be effective sensor bearing platforms in plant phenotyping (Haghighattalab et 

al., 2016; Hu et al., 2020). Chapter five explores the utility of a cost-effective multi-temporal 

UAV-based multispectral data for phenotyping maize varieties in plant breeding. This chapter 

was premised on the hypothesis that multi-temporal UAV-derived multispectral imaging 

data is sensitive to MSV disease symptoms that cause distinct discoloration of the aerial parts 

of maize varieties, and are able to discriminate varieties on the basis of their response to 

disease infection. MSV is one of the major diseases of maize in sub-Saharan Africa. In this 

chapter, maize varieties were evaluated for their response to one of the major biotic stresses 

(MSV) using UAV-derived multispectral band settings and derived vegetation indices using 

the Random Forest algorithm. 

1.7.3.2 Chapter Six: UAV-based yield estimation in maize 

The growth in population that is projected to reach 10 billion by 2050 coupled with the effects 

of climate change on crop diseases poses some of the greatest challenges to achieving global 

food security. There is an urgent need to accelerate crop genetic improvement as a mitigation 

measure. This can be achieved by combining genomics, rapid cycling, and field-based high-

throughput plant phenotyping. This chapter presents results of an evaluation of the utility of 

multi-temporal UAV-derived multispectral data in predicting maize streak virus (MSV) 

disease and grain yield. Modeling grain yield using UAV-derived multispectral data is 

presented as a useful and reliable phenotyping and selection tool in maize breeding and 

varietal evaluation. 
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1.7.4 Section IV: Synthesis 

1.7.4.1 Chapter 7: UAV and field spectrometer based remote sensing of maize: a synthesis  

Chapter seven summarizes the results, conclusions, and the contribution of this research work 

in field spectrometer and UAV-based remote sensing for maize phenotyping, varietal 

discrimination, and yield forecasting. It gives a synthesis of the major highlights of the study 

and their significance for the spatial analysis and remote sensing of maize at both large-scale 

and as emerging decision support tools for crop varietal targeting and plant phenotyping in 

crop genetic improvement. Conclusions are also drawn about the current status, limitations, 

and future prospects of spatial analysis and remote sensing in modern agriculture. All 

references cited in this work are provided as a single list at the end of the thesis.   
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CHAPTER 2: CROP YIELD ESTIMATION: A THEORETICAL PERSPECTIVE 

 

This Chapter is based on:  

Chivasa, W., Mutanga, O., Biradar, C. M. 2017. Application of remote sensing in estimating 

maize (Zea mays L.) grain yield in heterogeneous African agricultural landscapes: A review. 

International Journal of Remote Sensing 38(23), 6816-6845. 

 https://doi.org/10.1080/01431161.2017.1365390 

 

  



12 

 

Abstract 

Maize (Zea mays L.) is the second most commonly grown crop world-wide and number one 

staple food in Africa where it accounts for more than 50% of the energy requirements. 

However, despite its widespread cultivation and the significance of maize information in 

Africa, maize crop maps and yield forecasts are hardly available. Yet systematic area, spatial 

distribution and maize yield estimates are important in understanding and addressing food 

security in Africa. Objective monitoring of maize yield statistics in a systematic way is possible 

with remotely-sensed data. However, absence of maize yield forecasts using remote sensing 

in Africa has been attributed to the cost of acquiring satellite imagery and the heterogeneity 

of agricultural landscapes. The recent advances in sensors technology and availability of free 

high resolution (spatial and temporal) multispectral satellite images affords an opportunity to 

forecast maize yield as well as mapping its spatial distribution in near real time basis. This 

review gives an overview of maize yield estimation using remotely-sensed information and 

its potential application in a fragmented and highly granular agricultural landscapes in Africa, 

including inherent challenges and research needs. The review was motivated by challenges 

faced by researchers and national agricultural statistical services agents when forecasting 

maize yield using conventional ground-based survey methods. These problems include, but 

are not limited to, restricted accuracy, and cost and time spent resulting in missed 

opportunities in food security early-warning systems and proper developmental 

interventions. We conclude that by picking multispectral sensors with high spatial, temporal 

and spectral resolution, as well as appropriate classification techniques and accurate ground-

truthing data, remote sensing can be a practical option for estimating maize grain yield and 

its spatio-temporal dynamics in heterogeneous African agricultural landscapes for designing 

appropriate developmental interventions and technological out scaling. 

Keywords: remote sensing; heterogeneous agricultural landscapes; maize grain yield 

forecasting; Africa. 

2.1 Introduction 

Maize planting area and yield information is crucial in Africa. Maize plays a central role in 

fulfilling the staple food requirements, because it accounts for more than 50% of the energy 
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requirements in the continent. Agricultural activities constitute the major part of the African 

economies, absorbing 70% of workforce and account for 30% of gross domestic product (GDP) 

(Livingstone et al., 2011; World Bank, 2010). To satisfy the ever increasing food demand due 

to the forecasted doubling of Africa’s population by 2050 (Ezeh et al., 2012), better mechanism 

that supports the monitoring and forecasting of food security are urgently needed. National 

trade, agricultural policies and timely response to food shortages, rely on accurate and timely 

maize production data. Crop yield information is needed by many users, such as 

governments, national and international organizations, insurance companies, input 

manufacturers, commodity brokers, humanitarian organizations, and farmers (Rembold et al., 

2013). However, despite the importance of maize to food security, its productivity is rarely 

measured and where production statistics are available, they are often unreliable or not 

readily available (Biradar and Xiao, 2011; Carletto et al., 2015). Preparedness to deal with food 

security at national and continental level is a function of accurate, accessible and timely crop 

monitoring information. The role played by accurate and easily accessible maize yield 

forecasts cannot be over-emphasized. Understanding and responding to food shortages 

require knowledge of how much grain is available and where. Timely production estimates 

also depends on accurate mapping of crop area, because total production is a function of total 

crop area and yield per unit area. Systematic monitoring of maize yield statistics can be 

achieved using remotely sensed based big-data analytics. 

Significant progress has been made in maize yield forecasting using remotely sensed data 

(Battude et al., 2016; Johnson, 2014; Lobell et al., 2003; Prasad et al., 2006; Shanahan et al., 2001). 

The power of remote sensing in maize yield prediction has been exploited fully by developed 

nations in agricultural production statistics management. In Africa, the use of satellite 

imagery in forecasting maize yield is very limited. The recent review by Mutanga et al. (2016) 

noted significant growth in the use of remotely-sensed data in South Africa. However, there 

is limited application in agriculture, especially on staple food crops. Significant applications 

in South Africa have been carried on grass (Adjorlolo et al., 2012; Adjorlolo et al., 2014; 

Mutanga and Skidmore, 2004; Mutanga et al., 2015), plantation forest (Abdel-Rahman et al., 

2014; Adelabu et al. 2014; Dube et al., 2014; Dube et al., 2015), wetlands (Adam and Mutanga 

2009), indigenous forest mapping (Malahlela et al., 2014) as well as pests and disease 

monitoring in plantation forests (Ismail and Mutanga, 2010; Oumar and Mutanga, 2013; 2014). 
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The dearth of information on application of remote sensing in maize yield estimates in Africa 

is not only worrying but catastrophic to food security monitoring and early warning systems 

in a continent burdened with chronic food shortages. Satellite remote sensing monitoring can 

play a pivotal role in providing the much needed information on maize yield at field, country 

and continental level (Lobell, 2013). 

Recent enhancements in the spatial, temporal and spectral resolution of satellite sensors are 

making their application a practical option in crop yield monitoring in heterogeneous 

agricultural systems (Manatsa et al., 2011; Kuri et al., 2014; Wahab et al., 2018) including crop 

type discrimination (Sibanda and Murwira, 2012). Remotely-sensed yield prediction offers a 

practical possibility because of quick and large area measurements at relatively low cost 

(Aronoff, 2005; Lillesand et al., 2014) and its recurrent nature in coverage (Becker-Reshef et al., 

2010). Yield prediction in maize using remote sensing has been adequately demonstrated 

(Battude et al., 2016; Johnson, 2014; Lobell et al., 2003; Prasad et al., 2006; Shanahan et al., 2001). 

However, this demonstration has largely been in homogeneous agricultural systems (Lobell, 

2013), and research has rarely been conducted in heterogeneous agricultural landscapes. 

Africa is characterized by highly fragmented agricultural systems (Pender et al., 2006; You et 

al., 2007) that  limit the application of low to medium resolution remotely-sensed data in crop 

yield prediction. Small-scale farming systems dominate African agriculture, yet form the 

bedrock of the continent’s food security (Sweeney et al., 2015). Critical to the improvement of 

food security in Africa and understanding the system depends on accurate information of 

crop area and yield thereof. Remotely-sensed data can provide robust information on crop 

area as well as yield estimates. However, the challenge of discriminating crops in such 

heterogeneous agricultural landscapes remains to be resolved (Sweeney et al., 2015). 

Challenges in estimating yield in such systems are caused by small cultivated fields, 

smallholder farmers’ desire to preserve large fruit trees within their fields and crop diversity 

within one field (intercropping) magnifying the within-class variability of crop field (Sweeney 

et al., 2015). Furthermore, distinguishing cropland from savanna using remote sensing in 

African agriculture is a major challenge (Hannerz and Lotsch, 2008; Leroux et al., 2014). 

However, the presence of such challenges makes the use of remote sensing in fragmented 

African agriculture topical.  
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Therefore, Africa offers a new frontier for testing new generations of high resolution 

multispectral sensors in crop yield prediction. Limited use of remotely-sensed data in African 

agriculture is also attributed to cost of imagery acquisition. Consequently, maize crop yield 

forecasting in highly heterogeneous African agricultural landscapes has been neglected by 

past scholars. Previously, the United States Geological Survey (USGS) has been providing 

remote-sensed data at a cost, until recently data from Landsat series have become free (Wulder 

et al., 2012). Also recent availability of free high spatial, temporal and spectral resolution data 

from Sentinel 2 and 3 series will support the use of remote sensing in investigating 

heterogeneous agricultural landscapes (Belward and Skøien, 2015). 

The application of remotely-sensed data in crop yield estimation involves the use of various 

vegetation indices (VIs) related to crop yield (Petropoulos and Kalaitzidisz, 2012). Early 

studies by (Tucker 1979, 1980) confirmed that crop canopy spectral reflectance properties, 

especially  computed VIs, are suitable for predicting their yield. The most preferred index – 

the Normalized Difference Vegetation Index (NDVI) proposed by Rouse Jr et al. (1974) first as 

Band Ratio Parameter (BRP) and later adopted by other researchers like Tucker (1979), Jackson 

et al. (1983) and Sellers (1985) has revolutionized our understanding of the VIs/crop yield 

relationship. The gradual refinement in the use of VIs to predict crop yield continues in 

modern studies (Basnyat and McConkey, 2001; Shanahan et al., 2001; Johnson, 2014; Gitelson, 

2011). NDVI is an indirect measure of above ground biomass because of its quasi-linear 

relation to fraction of absorbed photosynthetically active radiation (Prince, 1990; Los, 1998).  

The benefits of remote sensing can be replicated in Africa’s heterogeneous agricultural 

landscapes without compromising the quality of the output, if the appropriate remote sensors 

with high spatial, temporal and spectral resolution are chosen.  Previous review of low to 

medium resolution sensors by Rembold et al. (2013) concluded that spatial patterns in 

agriculture, like field size, are crucial in determining the resolution to use. The new generation 

of high resolution sensors, such as the recently launched Sentinel 2 with pixel size smaller 

than most fields common to farmers in Africa, will resolve the challenge of pixel 

contamination. Consequently, yield monitoring in highly fragmented agricultural systems 

like Africa is now possible, when such high spatial resolution sensors are adopted. This review 

focuses on Africa’s heterogeneous agricultural systems and will attempt to answer the 
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questions: what previous studies have been done; what challenges are there; and what are the 

outstanding research issues in estimating maize yield using remote sensing in Africa’s 

heterogeneous agricultural systems? The authors of this review are convinced that the 

information contained in this manuscript is critical and timely to both the African and global 

scientific community, given that the use of remote sensing technology in Africa is still at its 

infancy (Mutanga et al., 2016). 

The review will assess some major remote sensing applications and their applicability to 

estimating maize grain yield in the African agricultural context, including research challenges. 

Previous studies applying remote sensing in forecasting maize yield in Africa and elsewhere 

will be reviewed. The primary focus of this review is three-fold: first, to review and synthesize 

different maize yield estimation methods, using conventional and remotely-sensed data, and 

highlight the inherent challenges when applied in heterogeneous agricultural landscapes; 

second, to compare, using evidence from literature, the capability of available sensors to 

predict crop yield in highly fragmented agricultural systems; and third, to identify and 

recommend areas for further research relevant to African agricultural context. In order to 

address these aims, firstly an overview is presented of different conventional methods for 

estimating maize yield vis-à-vis advanced remote sensing yield estimation methods. 

Examples will be drawn from both homogeneous and heterogeneous agricultural systems. 

Challenges to the use of remote sensing-based methods and sensor suitability are highlighted 

and implications for research given. 

2.2 Conventional yield estimation methods 

Several methods for yield forecasting exist, ranging from the traditional ground-based 

surveys to more advanced remote sensing-based techniques (Rembold et al., 2013). However, 

in Africa, yield data on staple crops like maize have rarely been collected using more 

advanced remote sensing-based methods. Quite often, wherever the data is collected, old 

traditional conventional ground-based survey methods are used based on minimum 

sampling techniques. Accuracy and precision of such methods are affected by many factors: 

expert opinion, quality of sampling kit used, sampling methods, sampled locations, road 

access, data analysis methods used and self-reported data where farmers tend to over-report 

yield and crop area, among others. Furthermore, results from field-based surveys are difficult 
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to scale to large areas (Burke and Lobell, 2017). Ground-based survey methods take a lot of 

manpower and are costly, contain errors and involve inconsistent methods. The time required 

to complete ground-based surveys is generally long. Survey coverage of certain sites is 

practically impossible due to inaccessibility. Since ground-based surveys are based on 

sampling methods, some areas of significant production may be overlooked. Furthermore, the 

generally long time taken to complete ground-based surveys affects specific and timely 

information needs by, for example, food security early warning systems.  

The commonly used ground-based survey methods have quality- and quantity-related 

problems in the crop yield information generated (World Bank, 2010; See et al., 2015). For 

example, during the 2008/09 season in Malawi, cropland area was overestimated by 30% using 

conventional ground-based survey methods (Dorward et al., 2010; Jayne and Rashid, 2010; 

Dorward and Chirwa, 2011). In Ethiopia, ground-based surveys overestimated different crop 

production by between 29% and 44% (Alemu et al., 2008). In Uganda, official yield estimates 

and FAO figures in 2006 varied by 15% in maize and 75% in soybeans (Uganda Bureau of 

Statistics, 2007; FAO, 2012). Under- and over-estimation of crop yield at country and regional 

level cause price fluctuations, wrong national policy decisions and food insecurity among 

others. For example, Jayne and Rashid (2010) reported how surplus estimates in maize by 

Malawi government caused maize prizes to reach record levels, when the estimated surplus 

was not achieved. In Zimbabwe, late importation of maize by the government after the 1991/92 

drought was caused in part by inaccurate and delayed yield estimates provided by the 

national early warning unit. Consequently, this costed the country close to US$ 340 million, 

about 10% of the then GDP when the government resorted to crisis grain imports (Rukuni et 

al., 2006). The costs could have been kept to a minimum had the grain been acquired early 

using accurate and timely yield estimates and early warning systems. Walker (1989) indicated 

that for any information system to be authentic, it should be clear, accurate, significant, timely, 

adequate and valid. Thus, the information provided to decision makers in Zimbabwe’s 

situation failed to meet Walker’s attributes and affected the decisions made leading to food 

insecurity in the country in 1992. 

Apart from ground-based methods, traditional crop yield assessment approaches include 

models that integrate the effect of weather, soil, temperature and other environmental 
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variables on crop growth, photosynthesis and evapotranspiration (Wiegand and Richardson, 

1990). These models are based on crop physiological concepts, but are complicated in design 

and hence are imprecise in yield prediction at large spatial scales as they are affected by spatial 

variability in both soil management and soil-crop-atmospheric interactions (Wiegand and 

Richardson, 1990). Regression models have been used extensively by several researchers 

(Lynch et al., 2007; Roberts et al., 2012; Schlenker and Roberts, 2006; Tannura et al., 2008; 

Thompson, 1969, 1970, 1988). Of note is work by Thompson (1969, 1970, 1988) using multiple 

regression models to measure the relationship between technology, monthly rainfall and 

temperature, to estimate maize yield in the USA. Using such models, maize yields were found 

to be greatly influenced by adequate rainfall.  

However, while these regression models have been used in forecasting crop yields by other 

researchers (Dixon et al., 1994; Tannura et al., 2008), limitations are apparent. For example, 

using average monthly temperature or rainfall does not take their distribution into account. 

Furthermore, when weather data is aggregated over large geographical area, it becomes 

inaccurate when used to represent local conditions. What also complicates the use of weather 

data in the models is the sparse distribution of weather stations, especially in developing 

countries like Africa (Unganai and Kogan, 1998). This inadequate geographical coverage 

limits wider application of weather-based regression models in crop yield forecasting. Crop 

simulation models only approximate the reality on the ground and majority of the models do 

not take weeds, diseases, insects, tillage and minor nutrients into account (Jones et al., 2001). 

Furthermore, the choice of the model to use is determined by data availability. In majority of 

the cases, simple rather than complex models are used for crop yield estimation. Simple 

models estimate crop yield across large geographical area based on climatic and historical 

yield records and rarely take into account soil-plant-atmospheric interactions. Complex 

mechanistic models offer detailed explanation of the soil-plant-atmospheric interaction, but 

require large amounts of input data, which is rarely available ( Báez‐González et al., 2005).  

Two types of models exist – deterministic models (those that give specific outcome assuming 

uniformity of plant and soil within the simulation space) and stochastic models (those that 

model outcomes under uncertainty). Uncertainties in crop production are caused by spatial 

variation of production factors (soil, weather, biotic and abiotic) unaccounted for by 
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deterministic models. Crop growth systems are more dynamic due to the heterogeneity of the 

agro-ecosystems. Crop simulation models that incorporate crop growth dynamics have not 

been developed yet to be applicable in crop yield estimation. Furthermore, data fidelity and 

availability for model calibration is an issue in African agricultural systems (Gommes, 1998). 

Although the literature states that models can be run using minimum data sets, models are 

still limited by being point-based, and are inadequate to run at regional or national scales, 

despite attempts by Bondeau et al. (2007) and Challinor et al. (2004) to develop simple crop 

simulation models that handle regional or national level crop yield simulation with minimum 

data inputs.  Alternative approaches to crop yield estimation methods like remote sensing can 

offer plausible option compared to crop simulation models. Furthermore, a combination of 

satellite remote sensed data and crop production models recommended by Wiegand et al. 

(1986) is possible with the necessary modifications. 

In the developed world, research in yield forecasting using remotely sensed-data as a 

substitute or complement to models has been successful (Benedetti and Rossini, 1993; Hayes 

and Decker, 1996; Quarmby et al., 1993). Such studies have demonstrated that crop yield 

potentials can be expressed in the spectral reflectance of their canopies and that crop’s 

growing conditions can thus be quantified (Tucker, 1979; Wiegand et al., 1990). However, in 

Africa, limited use is being made of remote sensing to support research and for crop yield 

forecasting (Burke and Lobell, 2017). Remote sensing involves measurement of distinctive 

attributes or aspects of the earth by satellite sensors on-board aircraft, space-craft, or ground-

based handheld sensors. The sensors’ ability to detect objects on the earth’s surface is a 

function of their spatial, radiometric, spectral and temporal resolutions. Sensors are designed 

to attain certain degree of accuracy and therefore they also need accurate ground truthing 

data. The interaction of sensors with crop canopy forms the basis for yield estimation and 

quantification of other crop biophysical parameters like leaf area index (LAI) and above 

ground biomass. 

2.3 The basis of yield estimation using remote sensing 

All photosynthesizing plants, including maize canopies, absorb light in the blue and red 

wavelengths for photosynthesis. Plant health and productivity are a function of various 

biophysical and biochemical factors interacting with spatial variations of nature (topography, 
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climatic, soil biophysical properties and conditions) and management. The spectral properties 

of maize, like any other vegetation, are determined by its biophysical and biochemical 

properties, like LAI, biomass, chlorophyll, water content and canopy structure (Asner, 1998). 

The main surface of maize canopy is made up of leaves where energy and gas exchange 

occurs. The influence of biophysical and biochemical properties on the reflectance properties 

of plants help to define the three distinguishable spectral domains (visible, near-infrared and 

middle-infrared) shown in Figure 2.1. 

 

Figure 2.1. Classical reflectance profile of crop leaves (source: Jensen, 2009). 

The interaction of solar radiation and plant leaves is shown in Figure 2.2. When light reaches 

the maize canopy, some is reflected, absorbed, or transmitted, and the pattern is influenced 

by the maize crop canopy and external factors such as background soil (Baret and Guyot, 1991; 

Major et al., 1990). Factors that affect spectral response of the maize plant are canopy structure, 

biophysical and bio-chemical properties, agronomic factors, the geometry of data acquisition 

and the state of the atmosphere. Canopy geometrical structure is the major determinant of 
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optical properties of maize, with higher reflectance in planophile than erectophile leaf 

structure. 

  

Figure 2.2. Cross-section of a leaf showing interactions between leaf structure and solar 

radiation (adapted from Campbell and Wynne, 2011 and modified by the authors). 

Leaf pigments also affect the reflectance response of maize. Green leaves’ chlorophyll strongly 

absorbs red light (low reflectance) and highly reflect and transmit (low absorption) in the near-

infrared (NIR) range (Avery and Berlin, 1992). In the visible domain (400 – 700nm), leaf 

pigments are the main light-absorbing pigments with overlapping absorption features. In 

higher plants like maize, Chlorophyll a is the dominant pigment and together with b 

constitutes two thirds of the pigments. Chlorophyll a peak light-absorption is between 0.41 – 

430nm and 600 – 690nm, while the range for b is 450 – 470nm and together they peak at about 

650nm (visible red). Carotenoids absorption is in the range 440 – 480nm and polyphenols’ 

(brown pigments) absorption intensity decrease from the blue to red (dead leaf) (Jensen, 2009). 

NIR and red (R) have been used to compute different VIs including the popular NDVI. 
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Reflectance is also higher between 700 and 1000nm (NIR) in the spongy mesophyll cells. The 

strength of reflectance from green leaves is usually higher compared to inorganic materials, 

and hence vegetation looks bright in the NIR wavelengths. These characteristics account for a 

vegetation’s tonal signature on spectral images and form the basis for discrimination of 

vegetation from inorganic materials using remote sensing. 

Other factors include foliar nutrient status, which affects spectral response either directly by 

absorption or indirectly through their effects on crop physiological processes that define plant 

health. For example, the Nitrogen (N) amount can affect the spectral reflectance depending 

on whether it is deficient or adequate (Burke and Lobell, 2017). The water status of the plants 

also affects the spectral response of the maize crop. Furthermore, leaf diseases and pests attack 

can alter the reflectance response of maize plants. A healthy plant reflects much more than 

diseased or pest damaged foliage. When plants are attacked by diseases or pests, LAI is 

reduced. The radiometric data obtained from such reflectance patterns are used to compute 

different VIs, which form the basis for estimating grain yield. 

The relationship between VIs and biomass enables estimation of yield, since yield of maize is 

a function of the photosynthetic activity of the plant during its growth (Benedetti and Rossini, 

1993). Generally, VIs are used as independent variables and the relationship appears to be 

strong in grasses or crops, whose dry matter is the final harvestable yield (Rembold et al., 

2013). If the above ground biomass is not the final yield, the spectra/yield relationship is only 

indirect (Rudorff and Batista, 1990). Studies have also established that the correlation between 

crop yield and VIs fluctuates with crop phenology (Hayes and Decker, 1996). Furthermore, 

several studies have suggested that accumulated VIs rather than instantaneous measurements 

are more closely related to the final yield (Meroni et al., 2013; Pinter Jr et al., 1981). Pinter Jr et 

al. (1981) further suggested that integration of VIs like NDVI, performs better when taken at 

specific growth stages (e.g. at flowering stage). These VIs are measured by remote sensors 

ranging from hand-held to satellite-based with diverse spatial, temporal and spectral 

resolution, which affects the final output. The section below gives details of different available 

sensors and their capabilities in estimating maize grain yield. 
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2.4 Remote-sensing platforms for yield estimation 

Remote-sensing-based methods are classified into three platforms: ground-based, airborne 

and space-borne satellites (Wójtowicz et al., 2016). Accordingly, each category has its own 

merits and demerits. The choice depends on the desired output and intended use. Here, we 

review the three platforms and sensor combinations.  

The ground-based remote sensing method uses handheld remote sensors which are applicable 

at field-scale for monitoring  crop status, including biotic and abiotic stresses (Wójtowicz et 

al., 2016). The advantages include better spectral, temporal and spatial resolution as compared 

to airborne and satellite-based remotely sensed data. Ground-based remote sensing 

instruments have been used successfully in yield forecasting in other crops. For example, 

Walsh et al. (2013), used ground-based remote sensing successfully to forecast winter wheat 

grain yield. However, the major limiting factors are that of scale, efficiency and labor involved, 

when compared to airborne and satellite remote sensing, which are suitable for larger 

geographical areas.  

Airborne remote sensing involves the use of manned aircrafts and unmanned aerial vehicles 

(UAVs, often called “drones”), and provides an instant visual crop inventory. The choice of 

which one to use is governed by cost implications with UAVs being low cost, light weight and 

low speed instruments. In modern times, manned aircrafts are being replaced by UAVs. Two 

platforms of UAVs exist: the ‘fixed wing’ and the ‘rotary wing’ types (Wójtowicz et al. 2016). 

Fixed wings can fly at high speed and do not require a runway or a launcher.  The rotary wing 

can hover over a target, but generally have a shorter flight time due to high battery power 

consumption. UAVs can be quick and can take repeated measurements at different heights 

and times, producing high resolution imagery. They can observe individual plant, patches, 

gaps and patterns (Franklin et al., 2006; Laliberte et al., 2006), allowing studies of within-field 

variation. Chang et al. (2003) used airborne remote sensing to estimate maize yield and found 

that they can substantially improve crop yield estimates. In rice, Swain and Zaman (2012)  

found a high correlation with a coefficient of determination (R2) of 0.76 between yield and VIs.  

The third platform is space-borne based remote sensing. Satellite remotely-sensed data are 

applicable over larger areas (Lamb and Brown, 2001), and hence can monitor crops globally, 
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Huete et al., 2002), especially in terms of spectral and spatial resolutions because MODIS was 

specifically targeted for land related observations (Justice et al., 2002).  Yield estimates using 

MODIS data have been more precise than AVHRR data in fairly homogeneous fields (Johnson 

2014). MODIS has an improved spectral resolution (36 spectral bands), nevertheless, the 250m 

spatial resolution is still coarser for fragmented agricultural systems. Because of such 

limitations, sensors with enhanced spatial, temporal and spectral resolutions like Landsat 

series were developed. 

When Landsat sensors were used, they offered a suitable alternative to MODIS and AVHRR 

in predicting crop yield, in particular the Landsat 8 OLI with a ground sample resolution of 

30m. Although the swath width of Landsat 8 OLI (185  185km) is considered relatively 

narrow, it offers a plausible option to AVHRR and MODIS. The major drawback of Landsat 8 

OLI is its somewhat long revisit period (16 days) which severely limits the number of 

observations within a typical growing season, especially when factoring in the likelihood of 

clouds, which would limit successful sensing (Johnson, 2014). Nevertheless, despite this 

limitation, yield estimates from other Landsat series ( e.g. TM and ETM+) with similar 

temporal resolution to Landsat 8 OLI, have been reported to be fairly accurate in 

homogeneous cropping systems (Doraiswamy et al., 2003; Gitelson et al., 2012; Liu et al., 2010; 

Lobell et al., 2005). Furthermore, maize phenological stages can easily be captured by the 16 

days revisit, making sensors like Landsat 8 OLI appropriate for highly fragmented African 

agricultural landscapes. Continuous improvements of multispectral remote sensors have led 

to the launch of new generation of free sensors like Sentinel 2 with high temporal (5 days), 

spectral (13 bands) and spatial (10m) resolution (Drusch et al., 2010), which can be applicable 

in highly fragmented agricultural landscapes. 

The resolution of Sentinel 2 is much better than its predecessors, making it well suited for 

complex, spatially variable, diverse and dynamic African agricultural systems. Its high 

spectral resolution may allow discrimination of maize from other crop types, while its high 

spatial resolution captures “pure” pixels (= 0.04 ha). This advanced multispectral sensor also 

has a much improved signal-noise-ratio (SNR). The availability of free data from Sentinel 2 

and 3 provides a unique opportunity to apply remote sensing in heterogeneous agricultural 

landscapes (Belward and Skøien, 2015). Other sensors with high spatial and temporal 
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resolutions in the range of Sentinel and Landsat series exist and include sensors like ASTER 

and ALI, which offer resolutions similar to Landsat series (Nikolakopoulos and Tsombos, 

2009). ASTER has higher spatial (15m) and spectral resolution (14 bands) than Landsat. ALI 

has high spatial resolution, but is limited by a narrow scanning area (35 x 35km). The Indian 

Remote Sensing (IRS - Series) system scans with high spatial resolution (5.8m) with a width 

of 141km. SPOT offers a combination of high spatial resolution for large areas (60 x 60 or 60 x 

120 km) and high revisit frequency (1 day). Some optical sensors like KOMOS, EROS, 

CARTOSAT-1, WorldView-1 and GeoEye-1 with high spatial resolution (1m) record data only 

in panchromatic mode while sensors like FORMOSAT-2, IKONOS, OrbView-3, QuickBird, 

and KOMPSAT-2 record a combination of panchromatic and multispectral regimes. There are 

several other high resolution sensors like WV 2 and 3, Space station cameras, URTHECAST 

DEIMOS IMAGING, and the recently launched 88 Doves, among others. However, data from 

most of these sensors can only be used for local-scale applications and most of these sensors 

are available on a commercial basis, and their use is restricted by the costs involved.  

Therefore, for estimating maize yield using remotely sensed data in spatially heterogeneous 

agricultural landscapes, sensors with high spatial, temporal and spectral resolution are 

needed that are capable of accounting for such spatial heterogeneity. As mentioned earlier, 

multispectral sensors like Sentinel and Landsat series offer a plausible option. In future, where 

higher spectral resolution is needed, we envisage that hyperspectral remote sensors might 

become convenient once hyperspectral data becomes readily available. Hyperspectral sensors 

have higher spectral resolution than multispectral sensors (Erives and Fitzgerald, 2005; 

Lawrence et al., 2006; Turner et al., 2003). Hyperspectral, variously  termed imaging 

spectroscopy, imaging spectrometry or ultra-spectral imaging in remote sensing (Clark 1999; 

Lillesand et al., 2014), allows detailed analysis of crops, which cannot be achieved with 

broadband multi-spectral sensors (Cochrane, 2000; Govender et al., 2007; Mutanga et al., 2003). 

Hyperspectral remote sensors have more narrow contiguous spectral bands between 400 – 

2500nm (Govender et al., 2007; Vaiphasa et al., 2005). However, hyperspectral sensors generate 

high volumes of data that complicate data collection, transmission, storage, processing and 

may be costly, thus prohibiting their application to larger geographical areas (Lillesand et al., 

2014). Currently hyperspectral data from sensors like Hyperion is not readily available and is 

still unreliable for large-scale application. Furthermore, the development of hyperspectral 
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satellite systems has been very slow compared to the rapid development of multispectral 

satellite systems and very few hyperspectral sensors are available (Lillesand et al., 2014). 

Several early attempts to develop or launch satellites with hyperspectral sensors ended in 

failure or cancellation, leading to missed opportunities for hyperspectral remote sensing from 

space (Lillesand et al., 2014). Due to this sluggish development, very few space-borne 

hyperspectral sensors like Hyperion, LEISA AC, CHRIS, HyspIRI and EnMAP are available. 

However, LEISA AC imagery was coarser with a spatial resolution of 250m and was meant to 

correct imagery from other sensors for atmospheric noise and was abandoned after first year. 

The EO-1 Hyperion imaging spectrometer is one of the earliest and successfully launched 

hyperspectral satellite sensors, providing 242 spectral bands of data over the 360 – 2600nm 

range (Lillesand et al., 2014). However, only 198 of the 242 bands are usable because the rest, 

especially those at the lower and upper ends have a poor SNR. Hyperion has high spatial 

resolution (30m) with a swath width of 7.5km. Previous studies have shown the utility of 

Hyperion data over multispectral remotely-sensed data (Datt et al., 2003; Wu et al., 2010). 

Thenkabail et al. (2011) also demonstrated the ability of hyperspectral remotely sensed data to 

significantly characterize, discriminate, map and predict crop yields compared to broadband 

multispectral remotely-sensed data. This development might enable future studies to 

investigate remote sensing applications in crop yield estimation in spatially heterogeneous 

agricultural systems. Nevertheless, significant knowledge gaps still exist that require further 

investigation. For example, hyperspectral narrowband VIs suitable for predicting maize yield 

are not known. Furthermore, data dimensionality (commonly termed Hughes phenomenon 

or ‘the curse of dimensionality’) and data redundancy associated with hyperspectral sensors 

remain a challenge. Studies by Thenkabail et al. (2004) and Thenkabail et al. (2014) using 

hyperspectral field spectrometer data have identified 15 optimal bands for use in maize. 

However, further studies are needed to identify band ratios or combinations that best predict 

maize yield from these 15 bands in order to reduce data redundancy.  

Other hyperspectral remote sensors like CHRIS and the upcoming EnMAP and HyspIRI also 

promise high spatial (30m) and temporal resolution hyperspectral imagery with a 30km swath 

width and different angle hyperspectral measurements of the same target, which assist in crop 

characterization (Thenkabail et al., 2011). CHRIS is a small light weight sensor with 62 narrow 
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spectral bands and a spatial resolution of 34m. CHRIS can also be operated at a spatial 

resolution of 17m with a swath width of 13 x 13km and capture data from 18 bands at this 

high resolution (Lillesand et al., 2014). The sensor operates in the visible/NIR range of 400 – 

1050nm. EnMAP is a satellite-based hyperspectral sensor with a total of 244 spectral bands 

over the range of 240 – 2450nm (Lillesand et al., 2014). The spatial resolution is 30m and a 

swath width of 30km at nadir with a temporal resolution of 23 days for nadir pointing images 

and as short as 4 days, when 30° pointing is employed (Guanter et al., 2015). 

The aforementioned hyperspectral sensors afford relatively high spatial, spectral and 

temporal resolution capabilities hitherto missing in the conventional multispectral sensors. It 

is likely that data from these sensors will have application in crop yield estimation in highly 

fragmented agro-ecosystems. Literature shows considerable application of conventional 

multispectral sensors in yield prediction in homogeneous agricultural systems (Báez-

González et al., 2005; Guindin-Garcia, 2010; Sakamoto et al., 2013; Johnson, 2014; Battude et al., 

2016). Studies using satellite-based high resolution hyperspectral sensors to estimate maize 

yield in heterogeneous agriculture are scant. Research needs to be conducted to test their 

capabilities in estimating yield in fragmented agricultural systems. Some examples of maize 

yield estimation using multispectral and hyperspectral remote sensors are given below.  

Examples of large-scale application of remotely sensed data to estimate maize yield are drawn 

from homogeneous and heterogeneous cropping systems. To guide the readers, examples will 

be discussed under two sub-divisions: homogeneous and heterogeneous agricultural systems. 

The two subdivisions are convenient and relevant as the two systems are different. What 

works in one system may not necessarily work in the other. Case studies from homogeneous 

agricultural systems are given to demonstrate the utility of remote sensing in maize yield 

estimation. Furthermore, the scarcity of studies on maize yield estimation in heterogeneous 

agricultural systems has also necessitated drawing examples from where comprehensive 

studies have been conducted. 

2.5 Yield estimation in homogeneous agricultural systems 

The literature shows that studies using satellite imagery to estimate maize yield continue to 

be mostly conducted in more advanced agricultural systems (Battude et al., 2016; Johnson, 
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2014; Lobell et al., 2003; Prasad et al., 2006; Shanahan et al., 2001). The availability of this body 

of information makes it necessary to review what worked in these systems and can be 

replicated or improved upon in fragmented agricultural systems, and also to identify gaps 

that need further research and inherent challenges. Previous reviews on crop yield estimation 

using remote sensing include those by Rembold et al. (2013), who discussed the use of low 

resolution sensors in combination with crop yield models in homogeneous agricultural 

systems. Atzberger (2013) gave a broad summary of the application of satellite imagery in 

crop yield estimation. However, these reviews did not give an in-depth analysis of sensors 

that are applicable in fragmented agricultural systems. This section will review case studies 

in homogeneous agricultural systems and highlight their relevance to heterogeneous systems. 

Homogeneous agricultural systems are mainly those found in advanced agricultural systems 

like the USA, Brazil, Mexico, Australia and some parts of Europe and Asia. In these systems, 

low to medium resolution sensors are applicable due to the size of the fields versus pixel sizes 

of low to medium resolution sensors and reliable ground data are often available to validate 

satellite-derived yield estimates (Farmaha et al., 2016; Lobell, 2013). Several of these examples 

are briefly discussed below. 

Maize yield estimation studies using remotely sensed data continue to be undertaken at 

different spatial scales, contingent to the objective and data availability. At large area, Báez-

González et al. (2002) used NDVI from NOAA’s AVHRR images in Mexico to develop and 

validate a maize yield estimating method with relatively high accuracy under irrigated (R2 = 

0.89) and non-irrigated (R2 = 0.76) regimes. The methodology was robust in estimating maize 

yield in large-scale systems. Prasad et al. (2006) combined NDVI, VCI and TCI from NOAA-

AVHRR as input variables into their maize yield prediction model to estimate maize yield 

using piecewise linear regression method. They used a non-linear Quasi-Newton multi-

variate optimization method to reduce variation and inaccuracies in estimated yield, and 

found a good positive correlation (R2 = 0.78) between maize yield and VIs in Iowa, USA. They 

concluded that their methodology can be replicated in other geographical areas to predict 

maize production under rainfed conditions. However, we emphasize here that these results 

are more applicable in homogeneous than heterogeneous agricultural systems due to the 

coarse resolution sensors used. 
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Guindin-Garcia (2010) compared green LAI recorded at peak grain filling period with maize 

final grain yield and found a high positive correlation (R2 = 0.75). The author further 

demonstrated the utility of the MODIS’s Wide Dynamic Range Vegetation Index (WDRVI), 

recorded at peak grain formation in Nebraska, Iowa, and Illinois, to accurately predict large-

scale maize grain yield. Johnson (2014) used NDVI, land surface temperature (LST) from 

MODIS and precipitation to predict maize yield in the corn belt of USA. Using NDVI and 

daytime temperature, Johnson (2014) obtained a high correlation (R2 = 0.93) with maize yield. 

Sakamoto et al. (2013) used time-series MODIS WDRVI, incorporating the crop phenological 

detection ‘Shape-Model Fitting Method’, and found that WDRVI taken a week before maize 

flowering correlated strongly with grain yield locally and regionally, with a coefficient of 

variation less than 10% for 18 major maize producing states in USA. However, these results 

again were obtained using coarse resolutions applicable in homogeneous cropping systems, 

and therefore, are not applicable in spatially heterogeneous agricultural systems. 

 Báez‐González et al. (2005) used both ground- and satellite-measured LAI derived from 

Landsat ETM+ and AVHRR data, and predicted maize grain yield with very low mean errors 

in Sinaloa, Mexico. Their study concluded that AVHRR and Landsat ETM+ sensors can be 

used to forecast large-scale maize yields. Li et al. (2014) combined Landsat ETM+ data with a 

WOFOST-HYDROUS coupled-model and found good estimates of regional maize yield in 

Northwest China. However, as mentioned above, these sensors in their current form are not 

applicable to fragmented systems that require high spatial, temporal and spectral resolution. 

Therefore, the potential of high spatial, temporal and spectral resolution sensors like Sentinel 

2 to estimate yield in fragmented systems need to be tested. Their potential to account for high 

spatio-temporal variability in crops has already been demonstrated in homogeneous 

agricultural systems. For example, Battude et al. (2016) tested the capabilities of Sentinel 2 in 

combination with a Simple Algorithm For Yield (SAFY) estimates model with remotely sensed 

data from SPOT 4, FORMOSAT 2, Landsat 8 and Deimos 1 resampled to Sentinel 2 sensor in 

temperate France. The study found good correlations for maize yields at both local scale (R2 = 

0.86) and regional scale (R2 = 0.96). The study confirmed the potential of Sentinel 2 remotely-

sensed data as a plausible option over medium resolution sensors, which can be replicated in 

fragmented agricultural systems.  



31 

 

A comparison of actual measured maize yield or government yield estimates with remotely 

sensing-based yield estimates is given in Table 2.1 using yield data extracted from studies by 

Prasad et al. (2006), Fang et al. (2008) and Guindin-Garcia (2010) in the USA, Ferencz et al. 

(2004) in Hungary and Battude et al. (2016) in France. The original data was used to calculate 

the deviations of predicted yield from the actual measured yield or government estimates and 

relative deviations were determined by dividing the difference by measured yield or 

government estimates and converted to percentages. On average the study by Prasad et al. 

(2006) using NOAA-AVHRR achieved accuracies above 90% in maize. Despite an 

overestimation in 1993, their results demonstrate that remotely sensed data can be used to 

forecast crop yield with acceptable accuracy before harvesting (Table 2.1). Ferencz et al. (2004) 

in Hungary used NOAA-AVHRR data and estimated maize yield from 1991 to 2000 with high 

reliability of above 95%. Fang et al. (2008) on the other hand combined CERES maize crop 

model and MODIS data to estimate maize yield and also achieved high accuracy in the USA’s 

110 counties in 2000 (Table 2.1). Guindin-Garcia (2010) using MODIS data also estimated 

maize yield with high accuracies except for 2006 where there was a slight overestimations 

with both MODIS 8 and 16 day revisit data. The low deviations from the results in Table 2.1 

reinforced the conclusion that remote sensing can be a robust method to estimate maize grain 

yield before harvesting.  

Furthermore, the results also show high accuracies in maize yield estimates in France when 

Sentinel 2-like data was used (Battude et al., 2016). Although an overestimation of rainfed 

maize yield occurred at Gers in 2013, their results showed high accurate predictions in both 

rainfed and irrigated maize. Results by Battude et al. (2016) demonstrate the capability of high 

spatio-temporal resolution remotely-sensed data in forecasting maize yield prior to 

harvesting. Such accuracies are encouraging and open the avenues for future yield forecasting 

in fragmented and highly granular agricultural landscapes like Africa. However, though 

results from these studies are encouraging, application and demonstration studies should be 

carried in Africa’s heterogeneous agriculture to refine and test capabilities of remotely sensed 

data in forecasting maize yield. These studies need to be conducted in collaboration with end-

users to demonstrate the possibilities of estimating crop yield from space, to permit remote 

sensing technology to graduate from a research tool for specialists to become an important 
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decision support tool to end users like farmers, governments and agricultural commodity 

traders. 

Table 2.1. Maize yield forecasting using remote sensing-based (RS-based) methods versus 

actual yield measurements or government yield estimates 

 

* Yields from Prasad et al. (2006) were converted from bushel per acre to t ha-1 

Actual RS-based Relative 

Period Crop yield* estimates* Deviation deviation Reference

(t ha
-1

) (t ha
-1

) (t ha
-1

) (%)

1982 Maize 7 53 6 69 0 84 11 22% Prasad et al  (2006)

1983 Maize 5 46 5 26 0 20 3 73% Prasad et al  (2006)

1984 Maize 7 03 6 44 0 59 8 35% Prasad et al  (2006)

1985 Maize 7 91 8 69 -0 78 -9 90% Prasad et al  (2006)

1986 Maize 8 47 8 17 0 30 3 57% Prasad et al  (2006)

1987 Maize 8 16 8 27 -0 11 -1 32% Prasad et al  (2006)

1988 Maize 5 27 6 19 -0 92 -17 36% Prasad et al  (2006)

1989 Maize 7 41 7 77 -0 37 -4 94% Prasad et al  (2006)

1990 Maize 7 91 8 57 -0 66 -8 38% Prasad et al  (2006)

1991 Maize 7 34 6 95 0 40 5 41% Prasad et al  (2006)

1992 Maize 9 23 8 73 0 49 5 33% Prasad et al  (2006)

1993 Maize 5 02 6 62 -1 60 -31 77% Prasad et al  (2006)

1995 Maize 7 72 6 88 0 84 10 93% Prasad et al  (2006)

1996 Maize 8 66 8 76 -0 10 -1 19% Prasad et al  (2006)

1997 Maize 8 66 8 60 0 06 0 68% Prasad et al  (2006)

1998 Maize 9 10 8 75 0 35 3 81% Prasad et al  (2006)

1999 Maize 9 35 9 33 0 02 0 23% Prasad et al  (2006)

2000 Maize 9 04 9 07 -0 04 -0 39% Prasad et al  (2006)

2001 Maize 9 16 8 69 0 47 5 13% Prasad et al  (2006)

Measured 

yield 

RS-Based   

MODIS 8 day 

(t ha
-1

) (t ha
-1

) (t ha
-1

)

2006 Maize 10 36 11 92 -1 55 -14 99% Guindin-Garcia (2010)

2007 Maize 12 92 12 25 0 67 5 18% Guindin-Garcia (2010)

2008 Maize 12 67 13 21 -0 54 -4 26% Guindin-Garcia (2010)

2009 Maize 12 43 12 91 -0 48 -3 82% Guindin-Garcia (2010)

Measured 

yield

RS-Based   

MODIS 16 day 

(t ha
-1

) (t ha
-1

) (t ha
-1

)

2006 Maize 10 36 11 75 -1 39 -13 39% Guindin-Garcia (2010)

2007 Maize 12 92 11 94 0 98 7 59% Guindin-Garcia (2010)

2008 Maize 12 67 12 98 -0 31 -2 47% Guindin-Garcia (2010)

2009 Maize 12 43 12 75 -0 32 -2 57% Guindin-Garcia (2010)

Hungary  

CSO  

RS-Based  

estimates

(t ha
-1

) (t ha
-1

) (t ha
-1

)

1991 Maize 6 48 6 71 -0 23 -3 55% Ferencz et al  (2004)

1992 Maize 3 60 3 65 -0 05 -1 39% Ferencz et al  (2004)

1993 Maize 3 37 3 50 -0 13 -3 86% Ferencz et al  (2004)

1996 Maize 5 81 5 61 0 20 3 44% Ferencz et al  (2004)

1997 Maize 6 42 6 41 0 01 0 16% Ferencz et al  (2004)

1998 Maize 6 17 5 95 0 22 3 57% Ferencz et al  (2004)

1999 Maize 6 18 6 38 -0 20 -3 24% Ferencz et al  (2004)

2000 Maize 4 20 4 15 0 05 1 19% Ferencz et al  (2004)

USA      

NASS 

RS-Based 

estimates

(t ha
-1

) (t ha
-1

) (t ha
-1

)

2000 in 43 counties Maize 9 08 9 77 -0 69 -7 54% Fang et al  (2008)

2000 in 67 counties Maize 9 19 9 48 -0 29 -3 16% Fang et al  (2008)

Government 

estimates

RS-based 

estimates

(t ha
-1

) (t ha
-1

) (t ha
-1

)

2013 in Gers Irrigated maize 7 10 7 40 -0 30 -4 23% Battude et al  (2016)

2013 in Gers Rainfed maize 3 70 5 10 -1 40 -37 84% Battude et al  (2016)

2013 in Gers All maize 6 50 6 60 -0 10 -1 54% Battude et al  (2016)

2013 in Haute Garonne Irrigated maize 8 80 9 10 -0 30 -3 41% Battude et al  (2016)

2013 in Haute Garonne Rainfed maize 6 00 5 70 0 30 5 00% Battude et al  (2016)

2013 in Haute Garonne All maize 8 30 7 80 0 50 6 02% Battude et al  (2016)

2014 in Gers Irrigated maize 9 50 8 80 0 70 7 37% Battude et al  (2016)

2014 in Gers Rainfed maize 8 60 8 80 -0 20 -2 33% Battude et al  (2016)

2014 in Gers All maize 9 30 8 80 0 50 5 38% Battude et al  (2016)

2014 in Haute Garonne Irrigated maize 9 60 9 50 0 10 1 04% Battude et al  (2016)

2014 in Haute Garonne Rainfed maize 7 70 7 70 0 00 0 00% Battude et al  (2016)

2014 in Haute Garonne All maize 9 30 8 90 0 40 4 30% Battude et al  (2016)



33 

 

The existing substantial body of studies using satellite imagery to estimate maize yield in 

homogeneous cropping systems has led to significant insights into these production systems. 

On the contrary, studies in Africa using remote sensing in agriculture are limited and this has 

led not only to poor insights into the productivity and yield gaps of these systems, but also 

missed opportunities to improve food security through early warning systems (Burke and 

Lobell, 2017). Limited effort has been made in estimating grain yield in staple food crops like 

maize.  The absence of studies linking VIs to maize yield in Africa was the motivation for this 

review. Due to limited studies on forecasting maize yield using remote sensing in Africa, 

examples given in the section below also include those conducted on different crops other 

than maize. These are elaborated below.  

2.6 Yield estimation in fragmented agricultural systems  

In east Africa, Lewis et al. (1998) used a correlation model using NDVI derived from NOAA’s 

AVHRR as the independent variable to estimate maize production. They applied a simple 

regression model approach using median NDVI to estimate maize production in Kenya and 

obtained a significant correlation (R2 = 0.75) between NDVI and maize production. Recently, 

Rojas (2007) used the land cover weighted NDVI (CNDVI) derived from SPOT-VEGETATION 

in Kenya to estimate maize grain production and obtained better correlations between CNDVI 

and yield (R2 = 0.83; root mean square error [RMSE] = 0.33 t ha-1) than previously obtained by 

Lewis et al. (1998). However, both studies used production estimates obtained from 

government statistics and no ground truth data was used. Therefore, their results need to be 

interpreted with care.  

In southern Africa, Unganai and Kogan (1998) used the NOAA-AVHRR-based Vegetation 

Condition Index (VCI) and temperature condition index (TCI) to estimate maize production 

approximately six weeks prior to harvesting time in Zimbabwe. The study established that 

VCI and TCI were strongly correlated with maize production (R2 = 0.70 – 0.95) in all the 41 

districts of Zimbabwe included in their study. They identified two peak periods where maize 

yield had a strong correlation with the VCI as well as TCI, one sensitive to thermal conditions 

(at maximum biomass accumulation) and a second sensitive to water stress (during grain 

filling). They concluded that NOAA-AVHRR derived indices can be used for maize 

production forecasting. In Swaziland, Mkhabela et al. (2005) used NDVI from NOAA-AVHRR 
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to forecast maize yield in four agro-ecologies of the country and found good correlation in 

three agro-ecologies (R2 = 0.51 – 0.68). Svotwa et al. (2013), used a hand-held sensor (MR-5, 450 

– 1750nm) in Zimbabwe and obtained a high correlation (R2 = 0.79) between tobacco yield and 

NDVI. Vergara-Díaz et al. (2016), using VIs obtained using UAVs and red-green-blue (RGB) 

imagery, found maize grain yield to be strongly predicted by RGB indices (with R2 = 0.70). 

However, studies by Svotwa et al. (2013) and Vergara-Díaz et al. (2016) did not compare the 

relationship of ground-based and airborne NDVIs with those from satellite platforms for 

validation purposes, and their results are thus of limited use when wider area application of 

these indices are sought. Studies by Unganai and Kogan (1998) and Mkhabela et al. (2005) did 

not use ground truth data either, and hence their results should be interpreted with care as 

well. 

In west Africa, Maselli et al. (1992), using NDVI from NOAA-AVHRR, obtained a high 

positive correlation (R2 = 0.85) between NDVI and grain yield in millet and sorghum in Niger. 

Before standardizing NDVI, a low correlation (R2 = 0.57) was found, but after standardizing 

NDVI to VCI, as proposed by Kogan (1990), the correlation (R2 = 0.85) improved 

tremendously. They concluded that the use of remotely sensed NDVI allows monitoring and 

yield forecasting in millet. Rasmussen (1992), in Burkina Faso, used integrated NDVI (iNDVI) 

from NOAA-AVHRR data to estimated millet yield, and found NDVI recorded during the 

reproductive phase to be critical for estimating millet yield.  Rasmussen (1992) further used 

iNDVI to estimate area planted in addition to crop yield. Maselli et al. (2000) used Global Area 

Coverage (GAC) NDVI maximum value composites to forecast millet and sorghum yield in 

Niger. After geo-standardizing NDVI, they also found a strong correlation (R2 = 0.85) between 

measured and estimated grain yield with a RMSE of less than 72kg ha-1. They further 

demonstrated that the best time to obtain NDVI is during millet’s and sorghum’s grain filling 

period. The accuracy of their estimation results were comparable to results by Hayes and 

Decker (1996) in the USA, and showed improvement in predictive power from a previous 

study in Africa by Groten (1993). Maselli et al. (2000) concluded that such results permit the 

use of satellite remotely sensed data in yield estimation and early warning systems. However, 

Groten (1993) in Burkina Faso found a high correlation (R2 = 0.87) between crop yield and 

NDVI recorded at the end of growing season. Such conflicting findings need further 



35 

 

investigations to determine the best phenological stage to record NDVI for purposes of yield 

estimation. 

The major ambiguity in most of the studies conducted in heterogeneous environments is on 

the methodologies used. Most of these studies predicted maize production using national 

governments production statistics. In most cases, no field training data was used to validate 

the estimates. It was reported earlier in this review that maize production statistics from 

national governments can be very unreliable (Carletto et al., 2015; Dorward et al., 2010; 

Dorward and Chirwa, 2011). Therefore, these results need to be interpreted with caution. 

Future yield predictions in Africa need ground truthing through precise determination of 

field training data, as this affects the accuracy and efficacy of satellite-based estimates.  For 

example, a recent study by Burke and Lobell (2017) using a commercial high spatial resolution 

satellite Terra Bella (formerly Skybox, a Google subsidiary) estimated maize yield in 

smallholder farmers’ fields in western Kenya using extensive training data. They found good 

agreement between measured yield and satellite-based yield estimates. Furthermore, their 

predictions were scalable to large geographical areas. They concluded that high spatial 

sensors can be used in heterogeneous cropping systems to estimate maize yield.  

2.7 Challenges of yield estimation using remote sensing and research needs 

One crucial restriction on the use of yield/VIs regression is that most of the studies above were 

carried out in specific environments governed by local climatic conditions. Therefore, they 

may not be widely applicable in other geographical areas, where the climate is different. In 

most cases the studies were also limited by the available data from low resolution sensors 

obtained from fairly homogeneous cropping systems. Furthermore, locally calibrated models 

cannot be extended to other geographical areas or other scales (Rembold et al., 2013). 

Addressing the accuracy of predicted yield is critical and it is a matter of choice between 

accuracy and cost. From the above examples, accuracy varies from one study to another. At 

the small area level, robust statistical measures are available and are generally known. 

However, gaps remain in predicting yield accurately at regional and national levels.  

Furthermore, when crop acreage is unknown, the yield/NDVI relationship will not give 

insight into the final production, yet total production is critical for many users. Another 

challenge with satellite remote sensing systems in crop yield estimation is the availability of 



36 

 

usable imagery recorded frequently at consistent intervals during the crop growing season. 

Most available high spatial resolution sensors have temporal resolutions that are not adequate 

enough to record important maize phenological changes and this is compounded by frequent 

cloud cover, leading to missing data.  

Crop yield estimation accuracy is also affected by non-crop vegetation signals. Sensors with 

high spectral resolution are needed to discriminate such non-crop vegetation signal or signals 

from non-target crop. Maselli et al. (2000) suggested the use of crop masking to discard 

irrelevant signals. Freund (2005) found crop masking to improve accuracy of crop yield 

estimation. However, Atzberger (2013) argued that during image masking, some important 

pixels might be discarded and this compromises the precision of crop yield forecasting. 

Furthermore, reflectance from different crops or vegetation can be highly correlated (causing 

spectral confusion) with the target crop due to similarities in their biochemical and 

biophysical properties. In addition, yield estimation in intercropped fields is nearly 

impossible, yet a substantial number of small-scale African farmers intercrop maize with 

legumes. Pixels from intercropped fields will be classified as contaminated. Therefore, the 

production from these fields in most cases is not accounted for when using remotely sensed 

data, leading to under estimation of total production.  

Crop reflectance properties are directly affected by environmental and management factors 

thereby altering the known unique spectral signatures (Price, 1994). Different stresses like N 

deficiencies (Burke and Lobell, 2017), drought, and pest and disease infestation also affect the 

spectral properties of maize. Other factors that affect maize reflectance properties include age 

of the crop due to different planting dates, local weather, edaphic factors, water, rainfall and 

landscape (Adam et al., 2010). Different maize varieties produce different spectral reflectance 

signatures due to different canopy structures and biochemical properties. Furthermore, VIs 

from broadband sensors are known to be unstable, as they tend to saturate reducing accuracy 

of measurements (Gao et al., 2000; Mutanga and Skidmore, 2004; Thenkabail et al., 2000). 

However, despite these limitations, remotely-sensed data can still play a crucial role in 

estimating maize yield accurately in fragmented agricultural systems. This can be achieved 

by choosing sensors with high spatial, temporal and spectral resolution coupled with 

appropriate analysis techniques, backed up by model training using ground truthing data. 
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This review, however, identified several areas that still remain unresolved from a research 

point of view.  

Firstly, most of the studies on maize yield estimation have been undertaken in developed 

countries with highly homogeneous agricultural systems, often with large fields of 

monoculture crops. These studies used broad band sensors like AVHRR, MODIS, Landsat 

series, SPOT, among others, which are of limited use in heterogeneous agricultural systems 

with small farm fields.  Conclusions derived from such studies cannot be replicated in highly 

fragmented cropping systems common in Africa. Therefore, research applying remotely 

sensed data to estimate maize yield is urgently needed in Africa. The heterogeneity nature of 

Africa agricultural systems require detailed testing of available high resolution multispectral 

and hyperspectral sensors with capabilities to discriminate maize from other crops to improve 

accuracy of yield estimates.  

Secondly, literature on studies applying remote sensing in Africa lacked information on 

mapping of maize area and distribution. This affects area calculation, a crucial input in 

estimating final production figures. There is a need to test available high resolution 

multispectral sensors’ capabilities in mapping maize distribution with the ultimate objective 

of calculating maize area as an input in the final production estimates. Recent work by Fritz 

et al. (2015) mapping cropland at global, continental and national levels, including African 

countries, achieved encouraging accuracies using innovative approaches like crowdsourced 

data at national level. Furthermore, advances in global high resolution land cover mapping 

studies by Gong et al. (2013) and Zhao et al. (2014) have achieved high accuracies at 30m level. 

However, crop type discrimination still remains a challenge and the human and computing 

resources required are massive.      

Thirdly, this review also shows a glaring gap in comparative studies between multispectral 

broadband (MBB) and hyperspectral narrow band (HNB) reflectance data in modelling maize 

yield and discriminating crop type, in order to improve final estimates. Furthermore, studies 

show that the quantification of maize biophysical parameters using hyperspectral data can be 

achieved using as few as 15 bands (Chan and Paelinckx, 2008; Thenkabail et al., 2004). 

However, to the best of our knowledge no studies have been conducted to explore 
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hyperspectral vegetation indices’ (HVIs) capabilities to model maize yield in Africa. 

Comprehensive analysis of the HVIs from the 15 narrow bands is required to conclusively 

confirm the ideal wavebands, in order to understand their contribution to maize 

characterization. Fewer bands will also help to reduce data dimensionality. 

Fourthly, there is lack of studies and information in Africa on how different maize biophysical 

parameters like LAI correlate with grain yield. Previous studies elsewhere (Báez‐González et 

al., 2005) showed that LAI measured either on the ground or satellite-derived can be used to 

predict maize yield. Therefore, there is a need to undertake detailed studies to demonstrate 

the utility of remotely derived LAI to estimate yield over large areas.  

Fifthly, as alluded to, different varieties within the same crop, in this case maize, may have 

different morphologies and even physiologies. Experienced crop experts can tell them apart 

visually. This means that it would appear feasible that a combination of morphological and 

reflectance parameters could uniquely describe individual varieties remotely through distinct 

signatures. Future studies with hyperspectral sensors should test their ability to distinguish 

individual varieties within a crop (intra-species). This would create invaluable opportunities 

for rapid phenotyping at low costs and accelerate maize genetic improvement as well as yield 

estimation.  

Finally, in addition to the evolutionary development of methods to estimate yield in 

fragmented agricultural systems through use of freely available high resolution imagery from 

different satellite sensors, integrating remotely sensed data with crop growth models may 

improve yield estimates. Maas (1988) indicated that integrating remotely sensed data with 

crop growth models can be a good alternative given the ability of remote sensing to quantify 

crop status synoptically, while crop growth models are capable of describing crop growth 

daily throughout the season.  

2.8 Conclusion 

Our review shows that the use of satellite imagery to estimate maize yield offers possible and 

cost-effective options vis-a-vis conventional ground-based surveys, which are laborious, 

error-prone, expensive, inefficient and often unsuitable due to terrain inaccessibility. Yet the 

utilization of remotely sensed data in predicting maize yield in Africa is scant. The review 
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further established that in applying remote sensing in maize yield estimation, we should not 

overlook the intrinsic limitations caused by low and medium resolutions sensors in 

transferring these methodologies to fragmented agricultural systems. Spatial patterns in these 

heterogeneous agricultural systems like field size and shape define the appropriate spatial, 

temporal and spectral resolution to use. Mixed pixel problems will remain a challenge with 

low to medium resolution sensors in fragmented agricultural systems. However, significant 

improvements in yield estimation are expected with multispectral sensors like Sentinel 2, 

Landsat 8 OLI and other commercial high resolution sensors like WV, Dove, among others, 

whose pixel sizes are several times smaller than the field sizes prevalent in heterogeneous 

cropping systems. Likewise, one day distinguishing individual varieties within crops 

remotely through unique signatures seems at least in theory feasible. We, therefore, conclude 

that further studies are necessary to investigate the use of high resolution multispectral remote 

sensing in estimating maize yield in heterogeneous agricultural systems in order to increase 

our understanding of African agriculture and improve food security through early warning 

systems.  
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SECTION II: SPATIAL ANALYSIS AND PROXIMAL SENSING 
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CHAPTER 3: SPATIAL ANALYSIS OF LAND SUITABILITY FOR MAIZE PRODUCTION 

 

This Chapter is based on:  

Chivasa W, Mutanga, O., Biradar, C.M. 2019. Mapping land suitability for maize production 

using GIS and AHP technique in Zimbabwe. South African Journal of Geomatics 8 (2), 265-281. 

http://dx.doi.org/10.4314/sajg.v8i2.11. 
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Abstract 

Maize (Zea mays L.) is the major staple food crop in Zimbabwe, grown by 80% of the farmers 

and provides more than 50% of the population’s dietary requirements. Understanding land 

suitability for maize production is critical in detecting environmental limits to sustainable 

maize production systems and variety deployment. The objective of this study was to 

integrate geographic information system (GIS) and analytic hierarchy process (AHP) to 

evaluate land suitability for maize production in Zimbabwe using multi-criteria evaluation 

(MCE) process. The assessment used four criteria (rainfall, temperature, soil type and slope 

gradient), each with six sub-criteria, to make a total of 24 factors. Four thematic maps were 

georeferenced, digitized and integrated through the overlay technique in a GIS environment 

to produce maize production suitability map. Finally, we overlaid the map of constraints 

(forestry and national parks, obtained from Surveyor General’s office) with the maize 

suitability map to ‘mask out’ all protected areas and non-agricultural land (water bodies and 

built-up areas). The final maize suitability map shows that 3.20% of the total land is highly 

suitable, 16.56% is suitable, 25.34% is moderately suitable, 32.33% is marginally suitable and 

9.57% is not suitable for maize production in its current form. The maize suitability 

classification was validated by regression analyses using measured maize grain yield of 5 key 

maize varieties representing 5 different maturity groups. Grain yield was regressed against 

suitability index (SI) of each land suitability class. There were significant positive correlations 

between maize grain yield and land suitability classes (R2 = 0.63 – 0.85). This shows that land 

suitability is closely correlated to maize yield in Zimbabwe. Integrating GIS and AHP with 

MCE was effective in assessing land suitability for targeting location specific interventions for 

maize production and the result is the first comprehensive suitability map for Zimbabwe, 

incorporating several critical environmental factors affecting maize adaptation. We 

recommend the use of this suitability map as a decision support tool in land use planning and 

policy making regarding maize varietal placement.  

Keywords: Mapping maize land suitability; Geographical Information System; Multi-criteria 

evaluation; Analytic hierarchic process; Zimbabwe. 
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3.1 Introduction 

Maize (Zea mays L.) is the most preferred staple food crop in Zimbabwe and is currently 

cultivated by more than 80% of the farmers and provides more than 50% of the calorie 

requirements of the people (Rukuni et al., 2006). Understanding land suitability for maize 

production is the basis for sustainable land utilization and increased productivity. Land 

suitability evaluation involves the determination of the level of suitability of a given piece of 

land for a certain type of use (Akinci et al., 2013). Steiner et al. (2000) defined land suitability 

in terms of how close the properties of the land unit satisfy the requirements for a specified 

purpose when all the relevant critical factors are considered. FAO (1976), Beek et al. (1987) and 

Al-Shalabi et al. (2006), described land suitability analysis as a specific-purpose system for 

appraising and mapping specific land areas into distinct classes according to defined uses 

when limiting factors are considered simultaneously. Currently, Zimbabwe is classified into 

five agro-ecological zones based on mean annual rainfall as the main determinant. The 

demarcation of the country into agro-ecological regions was conducted in the 1960s by 

Vincent and Thomas (1960) and is still being used for decision making in terms of maize 

placement.  

As yet, no land suitability assessment integrating most of the critical factors has been done (to 

the best of our knowledge) in Zimbabwe that informs the farmers, crop breeders, researchers 

and policy makers as to which area offers the most ideal conditions for maize production. 

Complete land suitability analysis takes into account all relevant physical environmental, 

climatic and socio-economic factors. However, socio-economic conditions can readily be 

manipulated and modified by human interventions and therefore are more time dependent. 

The physical environmental and climatic factors are known to be more stable over time (Dent 

and Young, 1981; Van Lanen, 1991; Triantafilis et al., 2001; Zhang et al., 2015). Accordingly, 

land suitability analysis for producing maize is largely based on environmental and climatic 

factors (Van Ranst et al., 1996). Comprehensive land suitability evaluation integrates three 

factors of an area (location, environmental constraints and uses) and provides a more 

integrated view of their interactions (Al-Shalabi et al., 2006). In such land suitability 

assessment, all factors affecting suitability are considered simultaneously (Keshavarzi et al., 

2010), although they may influence crop growth and ultimately land suitability unequally, 
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and are themselves interactive with confounding feedback loops. This more inclusive but also 

compound approach presents some challenges since the level of significance of factors 

affecting land suitability are not equal (Elsheikh et al., 2013). The need to consider different 

factors of varying importance simultaneously makes land suitability assessment a more 

complex exercise (Duc, 2006; Bandyopadhyay et al., 2009; Akıncı et al., 2013).  

In practice on-the-ground, the relative importance of factors affecting land suitability is 

determined based on expert knowledge (Saaty, 1977, Eastman, 2012). GIS-based land 

suitability evaluation has been proven to be a powerful tool in integrating physical 

environmental factors of varying level of importance with expert knowledge into land 

suitability mapping (Carver, 1991; Malczewski, 2004). The process of combining physical 

environmental factors and expert knowledge to produce crop suitability maps with high 

explanatory power, and how assessments are compared and used, is known as the decision 

rule, which can either be simple or complex depending on the number of factors involved and 

included in the model (Eastman et al., 1995). Because several factors and various criteria are 

involved, land suitability analysis is best described as a multi-criteria evaluation (MCE) 

problem (Reshmidevi et al., 2009). Decision rules involve processes that combine factors into 

a single composite index using MCE processes. The most commonly used procedures in MCE 

are weighted linear combination (WLC) (Eastman et al., 1995), concordance-discordance 

analysis (Voogd, 1983; Carver, 1991) and Boolean overlay technique (Malczewski, 2004). 

However, concordance-discordance analysis is computationally impractical when many 

factors are involved. On the other hand, Boolean land suitability classification procedures 

have many challenges (Banai, 1993). For example, Boolean overlay only classifies land units 

based on a precise, often binary definition (suitable or not suitable). Land units that do not 

satisfy a given definition will be excluded in the classification. In Boolean logic, an element is 

either in or out and does not allow part-membership. Membership is limited to two 

definitions, 0 (if element is not in set) and 1 (if element is in the set) (Banai,1993). WLC is now 

the most widely used procedure in MCE, where factors are assigned weights and combined 

through summation to yield a balanced suitability map in a GIS environment.  

Several methods to determine the relative weights of factors exist. However, pairwise 

comparison known as the analytic hierarchy process (AHP) suggested by Saaty (1977) and 
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applied in several studies (Akinci et al., 2013; Zhang et al., 2015; Mu and Pereyra-Rojas, 2017), 

has been found to be the most suitable for handling multi-criteria data, which are 

heterogeneous in nature. Saaty (1977) indicated that AHP is a decision-making theory 

concerned with measurement of intangibles utilizing pairwise comparisons. The theory 

requires expert knowledge to derive priority measurements of complete judgements that 

show exactly by how much one factor dominates the other with respect to a given attribute 

(Saaty, 1977; Saaty, 2008). However, the judgements might be inconsistent. Measuring 

inconsistency in order to improve the judgements is the strength of the AHP approach. AHP 

enables us to understand complex problems through decomposing them into hierarchical 

structures depicting the connection of the goal, criteria and sub-criteria. The criteria and sub-

criteria are pairwise compared to obtain a measure of relative importance and comparative 

scales. Pairwise comparison creates a ratio matrix, which simplifies an otherwise complex 

process and calculates reliability or discrepancy of the comparisons through a consistency 

ratio (CR). The CR measures consistency (CR < 10%) or inconsistency (CR > 10%) (Saaty 2002). 

If CR is greater than 10%, then the data used to construct the scale might need to be re-

examined and additional information added to improve consistency. Once the factors are 

rated and weighted using AHP, they are analyzed in a GIS environment using the overlay 

technique (Malczewski, 2004).  

In this study we integrated GIS and AHP in a MCE process to map land suitability for maize 

production in Zimbabwe using 24 factors. Rainfall, temperature, soil type and slope gradient 

were considered as sub-criteria, each with six classes for the suitability evaluation. The study 

seeks to address the question: which land areas are suitable for maize production in 

Zimbabwe? To be grown by farmers, the maize crop, at a minimum, have to be adapted to the 

farmers’ area. The result of this study will enable farmers, crop breeders and policy makers to 

make informed decisions about maize crop placement, seed deployment and sustainable land 

utilization using spatially detailed information based on the land suitability map. 
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3.2 Materials and Methods 

3.2.1 Study area 

The study was conducted in Zimbabwe (Figure 3.1). Zimbabwe lies between latitudes 15037ʹS 

to 22024ʹS and longitudes 25014ʹE to 330 04ʹE. The country is classified into five agro-ecological 

zones termed Natural Regions (NR). NR I is the wettest (>1050 mm per annum (p.a.)) and 

covers just 1% of the country. NR II receives 750 – 1000mm p.a. and covers 15% of Zimbabwe. 

NR III averages 650 – 800mm p.a., covering 19% of the total area. NR IV has an annual rainfall 

of 450 – 650mm p.a., covering about 38%. NR V’s poorly distributed rainfall is usually less 

than 450mm p.a. and covers about 27% of the country’s land area. Mashonaland West 

Province is the largest maize producer (23.40% in 2014) among the eight maize growing 

Provinces, and has four maize producing agro-ecological zones (II, III, IV and V). Manicaland 

Province has five agro-ecological zones but ranks only 4th in maize production (12.10%) after 

Mashonaland West (23.40%), Mashonaland Central (16.90%) and Midlands (16.40%). 

Zimbabwe has two clearly defined seasons: a rainy season (November – April) and a dry 

season (May – October). The steps followed in this study to generate a land suitability map 

are summarized in Figure 3.2 and briefly described below: 

 

 

Figure 3.1. The location of study area (Zimbabwe) showing agro-ecological regions (natural 

farming regions) and Provinces. Insert shows the location of study area in Africa. 
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Accurate pH data is not readily available. Aspect and day length are not major limiting factors 

to land suitability for maize production in Zimbabwe because most parts of the country 

receive sun exposure for almost equal hours because of the sun position during crop growing 

period. Equally, elevation was omitted because areas classified as highlands in Zimbabwe are 

insignificant. Relief plays a significant role in rugged terrains or in areas characterized by 

rapid changes in elevation.  However, most of Zimbabwe is plateau with three distinct areas: 

the Highveld with altitudes ranging from 1 200 to 1 675m, the Middleveld with altitudes 

ranging from 600 to 1 200m, and the Lowveld with altitudes below 600m. Research has shown 

that, when rainfall, soil and temperature are not limiting, all the three areas are suitable for 

maize production. Therefore, relief was considered insignificant factor in the analysis. 

Selected factors are briefly explained below.  

Rainfall amount is critical in maize growth, adaptation and variety placement. Higher values 

in rainfall indicate increasing suitability. Highly suitable areas for maize production in 

Zimbabwe are those receiving above 900mm per season (November to April) with above 18 

rain pentads. Rainfall suitability classes were done according to Vincent and Thomas (1960). 

Very suitable areas were classified as those receiving rainfall in the 800 – 900mm range with 

16 – 18 rain pentads. Suitable areas will be those receiving 700 – 800mm with 14 – 16 pentads, 

while moderately suitable are areas receiving 600 – 700mm with probability of mid-season 

dry spells. Areas receiving 500 – 600mm per season are prone to mid-season droughts and are 

thus classified as marginally suitable. Finally, areas receiving less than 500mm per season are 

classified as not suitable in their current form for maize production without supplementary 

irrigation. These rainfall classes are given in Table 3.1. 

Temperature affects maize growth and evapotranspiration. Higher temperatures above the 

optimum upper limit indicate decreasing suitability. Maize growth is highly sensitive to high 

temperature at the pollination stage (Hatfield and Prueger, 2015). Maize pollen viability 

declines at temperatures above 350C (Herrero and Johnson, 1980; Schoper et al., 1987; Dupuis 

and Dumas, 1990). Furthermore, during grain filling, temperatures above 350C reduce grain 

formation and kernel sizes are reduced (Jones et al., 1984). Muchow et al. (1990) reported the 

highest grain yields at mean temperatures between 26 – 290C in warm tropical environments 
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and a decrease of 5 to 8% per every 20C temperature increase above 290C. The temperature 

suitability ranges used in this study are given in Table 3.1. 

Soil types are important as they determine crop productivity in general and maize crop 

suitability, in particular. In crop suitability analysis, it is critical to know the dominant soil 

types and their characteristics. The soil type map was obtained from the Surveyor General of 

Zimbabwe’s office. Soil types were placed into six groups (Table 3.1) according to suitability 

classification by Thompson (1965) and Nyamapfene (1992), where class I was designated 

highly suitable, Class II was designated very suitable, class 3 was designated suitable, class IV 

was moderately suitable, class V was marginal suitable, and class VI was not suitable. 

Suitability classes for soil type were determined based on soil types.  

Slope is an important determinant of land suitability for maize production (Bandyopadhyay, 

Jaiswal et al. 2009, Bagherzadeh and Mansouri Daneshvar, 2011). Soil depth decreases with an 

increase in slope. Steep slopes are prone to erosion and are associated with soils that are 

relatively shallow and low in fertility thus affecting crop productivity indirectly through 

affecting soil properties. Furthermore, steep slopes affect crop production directly by 

restricting machine use in soil tillage and management operations such as irrigation and 

drainage. Therefore, higher values in slope indicate continuously decreasing suitability. In 

this study, slope was divided into six classes based on slope percentage. Slope suitability was 

classified (Bandyopadhyay et al., 2009; Bagherzadeh and Mansouri Daneshvar, 2011) as 

follows: I = highly suitable, II = very suitable, III = suitable, IV = moderately suitable, V = 

marginally suitable and VI = not suitable (Table 3.1). Current protected areas and non-

agricultural lands (water bodies and built-up areas) were identified as “constraints” to maize 

suitability classification. The land suitability for maize production was obtained using overlay 

thematic maps of the four parameters (rainfall, temperature, soil type and slope).  

3.2.3 AHP approach 

The AHP model was made up of goal, criteria and sub-criteria (Figure 3.3), where the overall 

objective is the suitability map. In MCE process, the weight of each factor needs to be defined. 

Different approaches to assign weights to factors can be used, such as principal component 

analysis, regressions and AHP. A review of literature shows that AHP is quite robust in 
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determining the weights of the assessment factors in comparison with other methods (Saaty, 

1977; Malczewski, 2004; Akinci et al., 2013; Zhang et al., 2015; Mu and Pereyra-Rojas, 2017). 

Relative importance of criteria were assigned using Saaty’s scale (Table 3.2) (Saaty, 1977). 

Table 3.1. Criteria used in suitability mapping and their brief descriptions  

 

 

 

 

 

 

 

 

 

 

 

 

 

               I = highly suitable, II = very suitable, III = suitable, IV = moderately suitable, V = marginally 

suitable and VI = not suitable. 
 

  

Figure 3.3. Decision tree model for land suitability analysis using AHP 

Goal

Criteria

Sub-criteria

R

a

i

n

1

R

a

i

n

2

R

a

i

n

3

R

a

i

n

4

R

a

i

n

5

S

o

i

l

3

S

o

i

l

4

R

a

i

n

6

Rainfall

T

e

m

p

1

T

e

m

p

2

T

e

m

p

3

T

e

m

p

4

S

l

o

p

e

5

S

l

o

p

e

6

Suitability Map

temperature Slope gradient

S

o

i

l

5

S

o

i

l

6

S

l

o

p

e

1

S

l

o

p

e

2

S

l

o

p

e

3

S

l

o

p

e

4

T

e

m

p

5

T

e

m

p

6

Soil type

S

o

i

l

1

S

o

i

l

2

Criteria Sub-criteria Class Suitability range Description Reference

Rainfall Rain1 I > 901 mm

High rainfall ranging from 900 mm and above. Rainfall 

in this area is well distributed during maize growth 

period (Nov - April). Receives above 18 rain pentads 

per season and is very reliable

Vincent & Thomas 1960

Rain2 II 801 - 900 mm

Recives rainfall in the range of 801 - 900 mm. 

Receives on average 16-18 rain pentads per season 

and reliable

Vincent & Thomas 1960

Rain3 III 701 - 800 mm
Rainfall ranges from 701- 800 mm per annum. 

Receives 14 - 16 rain pentads per season.
Vincent & Thomas 1960

Rain4 IV 601 - 700 mm
Receives moderate in total amount. The area is also 

subject to mid season dry spells
Vincent & Thomas 1960

Rain5 V 501 - 600 mm
Receives low rainfall, prone to periodic droughts and 

severe dry spells during the season
Vincent & Thomas 1960

Rain6 VI 400 - 500 mm
Rainfall in this area is too low and erratic for reliable 

production of even drought-resistant grain crops
Vincent & Thomas 1960

Soil type Soil1 I Fersiallitic group
Moderate - very deep reddish, brown granular clays 

formed on mafic rocks.
 Thompson 1965; Nyamapfene 1992

Soil2 II Fersiallitic group
Moderate shallow, geryish brown, relatively silty 

sandy loams
 Thompson 1965; Nyamapfene 1992

Soil3 III Paraferrallitic group Sandy soils with substential ferralitic characteristics  Thompson 1965; Nyamapfene 1992

Soil4 IV Siallitic group

Prodominantly illite or illite-montmorillonoid clay 

soil, with or without calcareous in the underlying 

material.

 Thompson 1965; Nyamapfene 1992

Soil5 V Rigosol/Lithosol groups

Sand soils with less than 10% silt + clay above 2 m. 

Very low silt/clay ratios (so called Kalahari sands).  Thompson 1965; Nyamapfene 1992

Soil6 VI Sodic group
Soils containing significant amounts of exchangeable 

sodium within 80 cm of the surface horizons
 Thompson 1965; Nyamapfene 1992

Temperature Temp1 I 24 - 28oC Optimal temperature = highly suitable Muchow et al . 1990; Hatfield and Prueger 2015

Temp2 II 28 - 30oC Sub-optimal - very suitable Muchow et al . 1990; Hatfield and Prueger 2015

Temp3 III 31 - 32oC Beyond this growth is affected - still suitable Muchow et al . 1990; Hatfield and Prueger 2015

Temp4 IV 33 - 34oC Five consecutive days at this results in > 2% yield loss Muchow et al . 1990; Hatfield and Prueger 2015

Temp5 V 35 - 36oC Leaf firing & pollen death result in large yield losses Muchow et al . 1990; Hatfield and Prueger 2015

Temp6 VI      > 36oC More than 5 days at this = permanent wilting & death Muchow et al . 1990; Hatfield and Prueger 2015

Slope gradient Slope1 I 0.0 - 5.0 % Highly suitable Bandyopadhyay et al. 2009

Slope2 II 5.1 - 10.0 % Very suitable Bandyopadhyay et al. 2009

Slope3 III 10.1 - 15.0 % Suitable Bandyopadhyay et al. 2009

Slope4 IV 15.1 - 20.0 % Moderately Bandyopadhyay et al. 2009

Slope5 V 20.1 - 25.0 % Marginally suitable Bandyopadhyay et al. 2009

Slope6 VI > 25.1 % Not suitable Bandyopadhyay et al. 2009

Level 1 Level 2
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The pairwise comparison matrix for criteria and sub-criteria were constructed. Saaty (1977) 

recommended a scale for evaluation comprising of values from 1 to 9, describing the relative 

importance of factors over one another. To arrive at relative importance of each factor, 28 

scientists were requested to give the importance of the factors through consensus. These 

scientists included crop breeders, agronomists, soil scientists and climatologists following a 

similar methodology used in other land suitability studies (Eastman, 2012; Zhang et al., 2015) 

A pair-wise comparison matrix for the sub-criteria was constructed, which was normalized to 

obtain the suitable weights and the consistency ratio (CR) was determined (Table 3.3). The 4 

× 4 matrix comprises all the pair-wise comparisons for the four criteria. Different methods of 

calculating weights and eigenvalues in AHP exist (Saaty, 1983). This study used the geometric 

mean suggested by Saaty (1983) to calculate the factor weights. Using the geometric mean, the 

nth root of the product of the pair-wise comparison values in each row of the matrices was 

determined. The nth root was then normalized by dividing each nth root value by their sum to 

obtain the corresponding weights. If a matrix is of the order n (total elements in comparison), 

then the total number of judgements needed is given by (n2 – n)/2 with  diagonal elements 

being equal to unity since it is a reciprocal (Saaty, 1987). When comparing a pair of factors (i,j) 

in a matrix, with i on the left side of the matrix and j on top of the matrix, the objective is to 

see which factor is more important and by how much, using  the scale developed by Saaty 

(1977) (Table 3.2). This gives aij (or aji), while the reciprocal value is entered for the transpose, 

where aij is relative importance value of factor i relative to factor j in the matrix. 

Table 3.2. The scale for pair-wise comparison 

 

 

 

 

 

                               

Source: Saaty and Vargas (1991) 

  

Intensity of importance Description

1 Equally important

2 Equally to moderately important

3 Moderately important

4 Moderately to strongly important

5 Strongly important

6 Strongly to very strongly important

7 Very strongly important

8 Very strongly to extremely important

9 Extremely important
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Lambda-max (max) was determined by adding the columns of the matrix of judgements and 

multiply the resulting vectors by the priority vector (weight) then sum the products (Table 

3.3) following Saaty’s method  (Saaty, 2002). The sum yielded the eigenvalue denoted by max. 

The consistency index (CI) was determined using Saaty's (1977; 2012) equation [3.1]: 

CI =
(max –  n)

n –  1
 

[3.1] 

Where max is the largest or principal eigenvalue of the matrix, and n is the number of criteria 

or factors being compared. The CI equation has been applied in similar work by Akinci et al. 

(2013), Zhang et al. (2015) and Mu and Pereyra-Rojas (2017), among others. The consistency 

ratio (CR) was calculated using Saaty (1996)’s equation [3.2]: 

CR =
CI

RI
 

[3.2] 

Where RI is the Random Index (Table 3.4), determined by Saaty and Tran (2007). CR is a 

measure of the decision maker’s consistency when rating the factors used in the pair-wise 

comparisons. It is the measure of departure of max from n. It shows the likelihood that the 

ratings were developed by chance. The ideal CR is zero (0). However, in practice achieving 

zero is difficult. To be accepted the CR must be < 10%, and if CR > 10% then the decision maker 

should re-evaluate the pair-wise comparison to identify the source of inconsistency and 

resolve it and repeat the analysis until CR reaches an acceptable level (Saaty, 1996). 

Table 3.3. Pair-wise comparison of relative importance of sub-criteria  

 

Max. Eigenvalue (max) = 4.1772; n = 4; Consistency Index (CI) = (max – n)/(n-1) = 0.0591; RI = 

0.89; Consistency Ratio (CR) = CI/RI = 0.07 

Rainfall Soil type Temperature Slope gradient Weight

Rainfall 1 5 7 9 0.652

Temperature 0.143 1 5 7 0.231

Soil type 0.125 0.143 1 5 0.085

Slope gradient 0.111 0.125 0.143 1 0.033
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Table 3.4. The Random Indices 

Source: Saaty and Tran (2007) 

The second step of AHP involved determination of relative ratings of each class for each 

criterion. As indicated earlier, each criterion had six classes (Figure 3.2). Therefore each matrix 

of the classes was of the order of 6 × 6. Pair-wise comparison for each class was constructed 

(Table 3.5) and max determined. The CI and CR were determined using equations [3.1] and 

[3.2], respectively. Finally, the land suitability index (SI) was obtained by combining each 

factor weight (Wi) with factor score (Xi) to get a suitability value for each land unit following 

a similar approach used by Bagheri et al. (2013), Malczewski (2004) and Feizizadeh and 

Blaschke (2013) using equation [3.3]: 

SI        =         (∑ W𝑖 × X𝑖)
n

𝑖=1
× ΠC𝑖 [3.3] 

Where SI is the suitability value, Wi is the weight of factor i, Xi is the criterion score of factor 

i, Ci is the constraints (Boolean value), and Σ is the sum and Π is the product. SI lies between 

0 and 1 because values of both Wi and Xi are between 0 and 1. In this case values near zero 

represent unsuitable areas, while those near one indicate highly suitable areas. Since Ci is the 

land use constraint, it only takes a value of either 0 or 1 (Boolean logic), where zero was 

assigned to protected land (national parks and forests) and non-agricultural land (built-up 

areas and water bodies) and 1 represents current and potential croplands. 

3.2.4 Digitizing and overlay of thematic maps  

Thematic maps for rainfall, temperature, soil type and slope gradient were obtained from the 

Surveyor General’s office of Zimbabwe. Spatial databases were created by geo-referencing, 

digitization, vectorization and rasterization of thematic maps of rainfall, soil type, 

temperature and slope gradient. The thematic maps were digitized using ArcGIS (ArcGIS 

10.3) and each reclassified into six different land suitability classes (Figure 3.4).   

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.52 1.54 1.56 1.58 1.59
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Table 3.5. Pair-wise comparison of relative importance of classes  

 

(a) Max. Eigenvalue (max) = 6.5068; n = 6; Consistency Index (CI) = 0.1014; Consistency Ratio 

(CR) = 0.08; 

(b) Max. Eigenvalue (max) = 6.1934; n = 6; Consistency Index (CI) = 0.0387; Consistency Ratio 

(CR) = 0.03; 

(c) Max. Eigenvalue (max) = 6.0217; n = 6; Consistency Index (CI) = 0.0043; Consistency Ratio 

(CR) = 0.04; 

(d) Max. Eigenvalue (max) = 6.1075; n = 6; Consistency Index (CI) = 0.0215; Consistency Ratio 

(CR) = 0.02; Random Index (RI) = 1.24. 

The Digital Elevation Model (DEM) (20m contour interval) was used to generate a slope 

gradient layer (Figure 3.4d). The thematic maps were aggregated to produce a maize 

suitability map using the overlay technique in a GIS environment (Eastman et al., 1995). For 

further details on overlay techniques, readers are referred to Collins et al. (2001) who gave a 

more detailed review of the historical development of overlay technique in land suitability 

analysis.  

The maize suitability map produced by overlaying different thematic maps was integrated 

with the constraints map to “mask out” all protected areas (national parks and forests) and 

(a) Rainfall

Rain1 Rain2 Rain3 Rain4 Rain5 Rain6 Weight

Rain1 1 3 5 7 8 9 0.4559

Rain2 0.333 1 3 5 7 8 0.2632

Rain3 0.200 0.333 1 3 5 7 0.1423

Rain4 0.143 0.200 0.333 1 3 5 0.0744

Rain5 0.125 0.143 0.200 0.333 1 3 0.0410

Rain6 0.111 0.125 0.143 0.200 0.333 1 0.0232

(b) Temperature

Temp1 Temp2 Temp3 Temp4 Temp5 Temp6 Weight

Temp1 1 2 3 4 5 6 0.4014

Temp2 0.500 1 2 3 4 5 0.2364

Temp3 0.333 0.500 1 2 3 4 0.1689

Temp4 0.250 0.333 0.500 1 2 3 0.0886

Temp5 0.200 0.250 0.333 0.500 1 2 0.0600

Temp6 0.167 0.200 0.250 0.333 0.500 1 0.0448

(c) Soil type

Soil1 Soil2 Soil3 Soil4 Soil5 Soil6 Weight

Soil1 1 2 3 4 5 7 0.3870

Soil2 0.500 1 2 3 4 5 0.2493

Soil3 0.333 0.500 1 2 3 4 0.1587

Soil4 0.250 0.333 0.500 1 2 3 0.1000

Soil5 0.200 0.250 0.333 0.500 1 2 0.0639

Soil6 0.143 0.200 0.250 0.333 0.500 1 0.0410

(d) Slope gradient

Slope1 Slope2 Slope3 Slope4 Slope5 Slope6 Weight

Slope1 1 1 3 4 5 6 0.3518

Slope2 1 1 1 3 4 5 0.2610

Slope3 0.333 1 1 1 3 4 0.1662

Slope4 0.250 0.333 1 1 1 3 0.1047

Slope5 0.200 0.250 0.333 1 1 1 0.0669

Slope6 0.167 0.200 0.250 0.333 1 1 0.0495
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non-agricultural land (water bodies and built-up areas). After “masking out” constraints, the 

size of each land suitability class was determined including the size of protected areas and 

non-agricultural land. 

3.2.5 Validation using maize yield responses 

Finally, linear regression analyses were carried out to validate the final maize suitability 

classification. Saaty (1977), Bagheri et al. (2013) and Zhang et al. (2015) suggested that the 

actual validation of derived suitability classes rests with statistical measures. Long-term maize 

yield for key varieties were obtained from Seed Co’s multi-environment trials (METs) 

conducted over a period of 10 years. Measured long-term yields of five key and popularly 

grown maize varieties representing five different maturity groups (ultraearly <100 days, very 

early = 101 – 120 days, early = 121 – 130 days, medium = 131 – 140 days and late = 141 – 150 

days) were regressed against the SI value of each land suitability class to validate the 

classification. The Kolmogorov-Smirnov test was conducted to test for normal distribution of 

the land classes (Zhang et al., 2015). 

 

Figure 3.4. Maps for the significant layers used to generate the maize land suitability map: (a) 

rainfall, (b) soil type, (c) temperature, (d) slope gradient and (e) Parks, water bodies and built-

up areas. 

 

 

 
(a) Rainfall suitability layer  

 

 
(b) Soil suitability layer 

 
(c) Temperature suitability layer 

 
(d) Slope suitability layer 

 
(e) National Parks, water bodies & Built-up areas 
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3.3 Results 

The pairwise comparison matrix produced weights shown in Table 3.3 for annual rainfall, 

temperature, soil type and slope gradient. The consistency ratio was 0.07, which is less than 

10% and therefore acceptable (Saaty, 1977; Saaty, 2002). Furthermore, the pairwise comparison 

of classes (Table 3.4) yielded normalized weights shown in Table 3.5 giving CRs of 0.08, 0.03, 

0.04 and 0.02 for rainfall, temperature, soil type and slope gradient, respectively, which are 

below the acceptable limit of 10% (Saaty, 1977; Saaty, 2008).  

3.3.1 Rainfall Suitability 

The size of land area and distribution in terms of rainfall suitability is shown in Figure 3.4a 

and Table 3.6. The results showed that only 5.28% of the total land is highly suitable, 12.11% 

is very suitable and 25.28% is suitable for maize production. About 10.49 % in its current form 

is not suitable without further human intervention. The remainder comprise 26.13% and 

20.70% classified as moderately and marginally suitable, respectively. 

3.3.2 Temperature Suitability 

Temperature suitability map is shown in Figure 3.4b, while Table 3.6 shows the calculated 

area for each suitability class. For a total area of 386 850km2, only 5.08% is highly suitable, 

18.80% is classified as very suitable and 30.03% as suitable. Moderately suitable and 

marginally suitable are made of 29.94% and 12.05% of the total area, respectively. About 4.10% 

is not suitable for maize production in its current form. 

3.3.3 Soil type suitability 

A land suitability map in terms of soil type is shown in Figure 3.4c and suitability area 

distribution is shown in Table 3.6. The results showed that 11.73% is highly suitable, 38.05% 

is very suitable, 4.01% is suitable and only 2.91% is not suitable for maize production. About 

18.88% and 24.43% of the total land were classified as moderately and marginally suitable, 

respectively.  
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3.3.4 Slope gradient suitability 

Land suitability for maize production can be influenced by topographical factors such as 

relief, aspect, elevation and slope. However, in this study only slope was considered while the 

other factors are not considered for the reasons given earlier. A land suitability map in terms 

of slope is shown in Figure 3.4d and area distribution is shown in Table 3.6. The results 

showed that 63.69% of the total area was highly suitable while 23.58% is very suitable together 

constituting more than 87.27% of the total area. Insignificant amounts were classified as 

moderately suitable (3.24%), marginally suitable (1.24%) and not suitable (0.35%).  

3.3.5 Overall suitability 

Criteria modelling produced different thematic maps, one for each criterion. Figure 3.4 shows 

different thematic maps reclassified into six land suitability classes. Integration of all the 

thematic layers (Figure 3.4a-d) and masking out the constraints in Figure 3.4e produced a 

detailed and complete maize suitability map (Figure 3.5). The map was classified into five 

suitability classes: highly suitable, suitable, moderately suitable, marginally suitable and not suitable. 

The highly suitable class represents land with negligible limitations that are insignificant to 

affect maize growth. Thus, maize productivity is expected to decrease continuously from 

highly suitable to marginally suitable land until it is no longer feasible to grow maize (not 

suitable area) under purely rain-fed conditions. The unsuitable land is that which cannot 

support maize growth in its current state.  

The size of the final suitability land classes are given in Table 3.6. The result shows that only 

12,383.50km2, representing about 3.20% of the total land is highly suitable. Suitable areas 

occupy 64,065.03km2, which represents 16.56% of the total area. Together, highly suitable and 

suitable areas take about 19.76% of the total area. The areas are mainly situated in the north-

eastern parts of the country. The mean annual temperatures of these highly suitable and 

suitable areas range from 24 to 300C, while their average rainfall per year is between 801 and 

900mm and receives an average of 14 – 16 rain pentads per crop growing season. These are 

areas characterized by fersiallitic soils with moderate to very deep reddish, brown granular 

clays soils (Thompson, 1965; Nyamapfene, 1992) and slopes of 0 – 15%, with excellent 

drainage. 
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Figure 3.5. Final land suitability map for maize production in Zimbabwe 

Land areas classified as moderately suitable are those with slope from 15.1 – 20.0%. The areas 

covered an area of 98,032.32km2 and accounted for 25.34% of the total area. These areas are 

scattered around the periphery of suitable areas and receive 701 – 800mm annual rainfall, with 

mean temperatures of 30 – 320C, and are characterized mainly by loamy and clay loamy soils. 

Marginally suitable areas constitute 125,051.38km2, which represent 32.33% of the total area. 

These are areas, which receive 501 – 600mm rainfall per annum and experience frequent 

droughts and prolonged dry spells during the crop growing season. The soils of the areas are 

deep sands with extremely low silt/clay ratios. These are mainly distributed in the south and 

south-west of the country. Non-suitable areas cover an area of 37,027.27km2 and represent 

9.57% of the total area. The areas are mainly found in the south and west of the country. Most 

of the soils in these areas are sodic, containing significant amount of exchangeable sodium 

within 80cm of the surface horizon. Average temperatures are above 350C and rainfall is below 

500mm per annum. The areas experience very erratic rainfall for reliable crop production of 

even drought resistant varieties.  
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Protected land, built-up areas and water bodies defined as constraints in this study 

constituted about 13.00% of the total land area. The overall suitability distribution is shown 

in Figure 3.6. The Kolmogorov-Smirnov test shows that it is not a normal distribution but 

exhibits a slight left skewness. Land suitability for maize production generally decreases from 

north-east to south-west of the country. Suitability is high in the north-eastern parts of the 

country due to high rainfall, deep fertile soils, favorable temperatures and gentle slopes. The 

bulk of the study area is made up of moderately and marginally suitable areas, together 

constituting 57.67% of the total potential area available for maize production.  

Table 3.6. Suitability areas and their distribution for each thematic layer.  

  

Suitability Area (Km
2
) Area (%)

Rainfall

Highly suitable 20441.19 5.28%

Very suitable 46856.21 12.11%

Suitable 97794.18 25.28%

Moderately suitable 101098.01 26.13%

Marginally suitable 80081.42 20.70%

Not suitable 40578.99 10.49%

Total 386850.00 100.00%

Temperature

Highly suitable 19667.45 5.08%

Very suitable 72746.75 18.80%

Suitable 116154.08 30.03%

Moderately suitable 115817.86 29.94%

Marginally suitable 46616.99 12.05%

Not suitable 15846.88 4.10%

Total 386850.00 100.00%

Soil type

Highly suitable 45362.15 11.73%

Very suitable 147200.06 38.05%

Suitable 15509.40 4.01%

Moderately suitable 73034.95 18.88%

Marginally suitable 94492.48 24.43%

Not suitable 11250.95 2.91%

Total 386850.00 100.00%

Slope gradient

Highly suitable 246369.08 63.69%

Very suitable 91226.21 23.58%

Suitable 30565.93 7.90%

Moderately suitable 12538.11 3.24%

Marginally suitable 4814.29 1.24%

Not suitable 1336.38 0.35%

Total 386850 100.00%

Overall Suitability

Very suitable 12383.50 3.20%

Suitable 64065.03 16.56%

Moderately suitable 98032.32 25.34%

Marginally suitable 125051.38 32.33%

Not suitable 37027.27 9.57%

Others (Parks, etc.) 50290.50 13.00%

Total 386850.00 100.00%
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Figure 3.6. Overall distribution of the land suitability classes (from not suitable to highly 

suitable). The line graph shows the expected normal distribution. 

3.3.6 Validation of classification results 

The validity of the results of the classification was verified using regression analysis of 

measured maize grain yield and land suitable indices (Figure 3.7). All regressions coefficients 

were statistically significant, indicating that land suitability is directly linked to maize yield 

in Zimbabwe. The coefficients of determination (R2) ranged from 63 to 85%. The correlations 

between grain yields (Figure 3.7) and suitability classes (Figure 3.5) is critical in placement of 

varieties of different maturity groups. Obtaining high yield in maize is largely a matter of 

matching land capability with varieties of suitable maturities. In most parts of Zimbabwe, 

rainfall, temperature, soil type and slope gradient are the major determinant factors. The 

correlation analyses confirmed the accuracy of classification and showed good agreement 

between ranked land suitability classes and maize yield, which is a measure of genotypic 

adaptation. Braimoh et al. (2004) used maize grain yield to validate a suitability map in Ghana 

and found a high positive correlation (R2 = 0.87) between ranked land suitability classes and 

maize yield. They concluded that land suitability classes were closely associated with maize 

yield in Ghana. Huajun and Van Ranst (1992) also used maize grain yield to validate land 

suitability mapping in Aitai County, China and found maize grain yield to be highly 

correlated with ranked land suitability classes. 
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information is needed to validate the classification against reality (Van Lanen and Bouma, 

1989; Rossiter, 1990). For example, empirical data of crop performance from each land 

suitability class is needed to validate the classification. The land suitability map should only 

be considered valid if suitability indices correlate well with empirically derived crop yield 

response (Huajun and Van Ranst, 1992). 

In the present study, validation of land suitability classification was performed using 10 years 

data from multi-environmental trials conducted in each land suitability class. The high 

correlation (with R2 ranging from 0.63 to 0.85) observed between maize yield and suitability 

indices reflect the accuracy of the classification. The results show that combining GIS and AHP 

in assessing land suitability was effective in producing a land suitability map for maize 

production in Zimbabwe. Utilizing actual yield response of the intended crop in validation of 

land suitability classification provides a more detailed assessment of potentials of each land 

class. Previous studies recommended the use of actual crop yield in validating the suitability 

classification to confirm whether indeed lands deemed highly suitable from the classification 

analysis produce high yields (Zhang et al., 2015). Researchers elsewhere also found good 

correlation between land suitability and crop yield. For example, Braimoh et al. (2004) in maize 

(R2 = 0.87) and Keshavarzi et al. (2010) in wheat (R2 = 0.91). In the current study, the validation 

results fully confirmed the suitability classification, with low yields being highly correlated 

with less suitable land classes and highly suitable land classes associated with high yields.  

The AHP procedure used in this study served as a useful tool in decomposing an otherwise 

complex land suitability problem, where factors were arranged in a descending hierarchical 

from the overall goal, criteria and classes in successive levels. This reduced a 

multidimensional problem into a unidimensional one. Once the decision structure was 

decomposed into its finer distinguishable details, pairwise comparison judgements were used 

to capture the reality on the ground for our understanding in order to aid decision making 

process. The strength of AHP in measuring consistency or lack thereof, improved the 

authenticity of the results of this study. For each hierarchical level of criteria and classes, the 

consistency ratios were acceptable (< 10%) as proposed by Saaty (1977; 2012). 
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Our results agree with findings by other land suitability analysis studies integrating GIS and 

AHP in a MCE process to map land suitability for agricultural use (Akıncı et al., 2013), 

irrigated and rainfed agriculture (Feizizadeh and Blaschke, 2013), tobacco (Zhang et al., 2015), 

wheat (Mendas and Delali, 2012), and maize (Braimoh et al., 2004). The land suitability classes 

in this study are given in relative importance, which are decreasing in suitability from highly 

suitable to non-suitable. Van Lanen (1991) indicated that there is a priority of sequence of land 

use built into a suitability system, with a downward sequence of suitability. This agrees with 

Wang (1994) who discussed relative suitability. This study mapped land into relative 

suitability for maize production, and therefore, land with the highest suitability class, would 

be expected to produce relatively high maize grain yield and naturally be best suited for high 

yield-potential maize varieties under intensive culture (optimum inputs and management). 

The less suitable areas will be best suited for decreasing maturity varieties. Land classified as 

marginally suitable will likely still be suited for short-season varieties, capable of escaping 

major environmental stresses, or put to other land use types such as drought tolerant crops, 

livestock, national parks or recreational purposes. Thus, this land suitability mapping 

explored the potential land use options in an integrated approach incorporating the major 

limiting factors.  

The final maize suitability map is a result of GIS-based land suitability analysis converting 

data into information that transform and adds value to the original data, which in its original 

form may not be useful to the end users (farmers, crop breeders and policy makers). This 

study has shown that GIS-based land suitability analysis is a powerful tool with the ability to 

incorporate both hard (physical environmental factors) and soft (expert knowledge) data into 

new information in the form of single suitability map (Carver, 1991; Malczewski, 2004). Hence, 

when integrated with AHP in a MCE process, GIS transforms and combines geographical data 

and value judgements into decision making information (Malczewski, 2006a; 2006b). 

However, while the regression analyses of measured maize grain yield against land suitability 

classes showed significant positive correlations (R2 = 0.63 - 0.85), the analysis does not 

incorporate different crop management practices. Therefore, the analysis only shows the 

probable suitable areas for producing maize in different land areas. The fact that an area is 

highly suitable does not entail that high yields would be obtained without employing proper 
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farming practices, which include time of planting, fertilizer application, weed control and 

appropriate variety choice. Successful maize production systems largely depend on precise 

matching the target crop and variety with land suitability and good agronomic practices. 

Consequently, future studies need to quantify genetic correlations of different varietal 

maturity and land suitability classifications obtained in this study in order to support varietal 

placement decisions. 

A challenge in using MCE analysis lies in the definition of weights for a given set of criteria. 

One approach to resolving this is to use AHP (Saaty, 1977), which was used in this study. In 

addition, another challenge is how to specify the criteria performance scores, which often 

becomes subjective in their determination (Lamelas et al., 2012). Data that have been recorded 

directly will certainly be more reliable than estimates, interpolations, extracted from a map, 

or simply interpreted. Therefore, the criteria data collection approach is important (Marinoni, 

2005). A stochastic approach, which uses probability distributions for the input variables as 

compared to the use of single values takes into account the uncertainty of input values is one 

way to solve this dilemma (Lamelas et al., 2012).  

Nevertheless, the integrated land suitability map and the individual criterion thematic maps 

obtained in this study are crucial in supporting government land use planning and farmers’ 

decision making process in maize production. All the maps from the primary thematic maps 

showing partial suitability to synthesized (integrated) overall suitability map can be used as 

decision making tools. For example, the primary factor(s) responsible for low suitability index 

can be readily identified and managed to raise suitability index. Therefore, the final maize 

land suitability map and each thematic layer are valuable decision making tools, which can 

be used to evaluate and understand local, regional and national land dynamics and structure.    

3.5 Conclusion 

In this study, we set to integrate GIS and AHP to assess land suitability for maize production 

in Zimbabwe using multi-criteria evaluation (MCE) process. The spatial data of the land 

evaluation criteria and their weights were derived using GIS and AHP. From the results, it 

was concluded that: 
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 Integrating GIS and AHP with computer-captured expert knowledge was useful as a 

decision support tool in land suitability classification and mapping for maize 

production; 

 The integration allowed us to manage the factors, create thematic layers, compute 

criterion weights, combine decision criteria through modelling, perform validation 

analyses and the production of maize suitability map needed for spatial decision-

making support in maize crop placement; 

 Significant positive correlation between maize yield and suitability indices is an 

indication that land suitability is directly linked to maize yield in the study area; 

 AHP is a powerful method that is able to deal with inconsistent judgements and 

provides a measure of the inconsistency.  

The results of the study can serve as a basis for decision support management tool for policy 

makers and land-use planners regarding maize production in Zimbabwe. However, this land 

suitability analysis does not incorporate management decisions. Therefore, good farming 

practices, such as time of planting, fertilizer application, weeding and variety choice need to 

be employed in order to get maximum yields. The success of maize production systems 

largely depend on precise matching of the target crop and variety with land suitability. 

Consequently, future studies need to quantify genetic correlations of different varietal 

maturity and these land suitability classes.  
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CHAPTER 4: FIELD SPECTROMETER BASED REMOTE SENSING OF MAIZE 

 

This Chapter is based on:  

Chivasa W, Mutanga, O., Biradar, C.M. 2019. Phenology-based discrimination of maize (Zea 

mays L.) varieties using multi-temporal hyperspectral data. Journal of Applied Remote 

Sensing 13(1), 017504 (2019), http://dx.doi.org/10.1117/1.JRS.13.017504. 

 

Photo: Testing the Apogee spectrometer, 2017 
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Abstract 

Discriminating maize varieties is crucial for crop monitoring, high-throughput phenotyping, 

and yield forecasting. Crop experts discriminate maize varieties using morphological and 

biophysical characteristics. However, visual classification suffers from inconsistency, low 

throughput, and is only applicable in small-scale. A cost-effective and accurate in situ varietal 

discrimination using multi-temporal hyperspectral data and multivariate techniques is 

explored with threefold objectives, namely, to (1) discriminate maize varieties, (2) define 

suitable spectral bands, and (3) determine the optimum phenological stage(s) for varietal 

discrimination. Spectral data in 0.5nm discrete narrow bands between 400 and 900nm range 

are taken from 25 varieties measured using Apogee spectrometer at five phenological stages. 

Prior to discrimination analysis using partial least squares-discriminant analysis (PLS-DA), 

three preprocessing transformations are performed: autoscaling, Savitzky–Golay smoothing, 

and generalized least squares weighting. Ten optimal bands are identified for maize varietal 

discrimination across the visible and near-infrared section of the wavelength. The significant 

bands are located in the Blue (400 and 455nm), Green (545nm), Red and Red-edge (625, 680, 

705, and 720nm), and near-infrared (765, 840, and 895nm) ranges of the spectrum. Flowering 

and onset of senescence are identified to be the most ideal phenological stages for accurate 

maize varietal discrimination. The overall discrimination accuracy improves by 52% and 63% 

with autoscaling at flowering and senescence, and by 55% and 62% with generalized least 

squares weighting at flowering and onset of senescence, respectively, compared to no 

preprocessing transformation. Of the three preprocessing transformations used, autoscaling 

and generalized least squares weighting are the most effective. Therefore, with appropriate 

preprocessing transformation, hyperspectral data and PLS-DA are effective in discriminating 

maize varieties. 

 Keywords: Maize variety discrimination, partial least squares discriminant analysis, multi-

temporal hyperspectral data, pre-processing transformation, remote sensing. 

4.1 Introduction 

More than 75% of the human population in Africa relies on agriculture both in terms of 

subsistence and work (World Bank, 2010; Livingston et al., 2011; Carletto et al., 2015). Maize 
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remains the major staple food crop for the continent, occupying 30% of total land under cereal 

production and contributes more than 50% of the daily calorie requirements (FAO, 2010; 

Masuka et al., 2012). Improving the continent’s food security therefore requires strong early 

warning systems that depend on precise and current data on the spatial distribution of maize 

and yield estimates. At local scale, crop yield is variety-dependent (Pfeiffer, 1996). Therefore, 

techniques to discriminate different maize varieties and estimate their productivity are 

crucial. Variety-level discrimination is critical for a number of reasons: firstly, for assessing 

disease and pest spreads as influenced by susceptible varieties; secondly, to confirm correct 

variety placement in their area of adaptation domains to improve productivity; thirdly, to 

map actual varietal acreage and quantify their yields; fourthly, for precision crop management 

and yield forecasting; and finally, to map crop variety in real-time as they are actually being 

grown using their distinctive spectral signatures. The latter is immensely important for 

monitoring and evaluation of varietal adoption by farmers as this will provide insights on 

varietal adaptation that will inform breeding programs on how to improve their breeding and 

testing methodologies. The ability to discriminate maize varieties in situ also facilitates high-

throughput phenotyping in plant breeding for comprehensive data-driven variety selection 

and release (Sankaran et al., 2015). 

Crop experts discriminate crop varieties based on their different morphological and 

biophysical characteristics. However, such techniques are costly and time consuming (Van 

Niel and McVicar, 2004; Wilson et al., 2014; Sobhan, 2017) and only applicable at small-scale. 

Cost-effective and accurate in-situ varietal discrimination can be achieved using remotely 

sensed data (Galvão et al., 2005; 2006; Galvão et al., 2009; Rajah et al., 2015). However, remotely 

sensed data from multi-spectral satellite-based sensors such as Landsat series, Spot, MODIS, 

etc., cannot give precise estimates of biophysical features of agricultural crops (Wiegand and 

Richardson, 1990; Wiegand et al., 1991; Thenkabail et al., 1994; Fassnacht et al., 1997), nor 

quantify intra-species variation in order to discriminate varieties. Hyperspectral sensors offer 

high spectral resolution capable of inter- and intra-species discrimination (Galvão et al., 2005; 

Zhang et al., 2012; Mariotto et al., 2013; Rajah et al., 2015; Li et al., 2016) . Hyperspectral data 

provides crucial information available in specific narrow bands required to accurately 

discriminate crops and quantify subtle differences within species (Blackburn, 1998; 

Thenkabail et al., 2000). Reflectance spectroscopy in the VIS (400 – 700nm) and NIR (700 – 
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1100nm) provide rich data regarding the composition of vegetation in general, and 

agricultural crops, in particular (Thenkabail et al., 2000; Mariotto et al., 2013; Rajah et al., 2015; 

Li et al., 2016; Chemura et al., 2016). However, hyperspectral sensors record large amount of 

information within a short space of time leading to problems of data dimensionality and 

redundancy (Thenkabail et al., 2004).  

Different discriminant techniques have been used by different authors to reduce data 

dimensionality and multi-collinearity through band selection. Such techniques include, but 

are not limited to, principal component analysis (PCA) (Cheriyadat and Bruce, 2003; Hobro et 

al., 2010), artificial neural network (Hinton and Salakhutdinov, 2006) partial least squares 

discriminant analysis (PLS-DA) (Cochrane, 2000; Schmidt and Skidmore, 2001; Schmidt and 

Skidmore, 2003; Thenkabail et al., 2004; Vaiphasa et al., 2007; Rajah et al., 2015), and 

discriminant analysis (Zhang et al., 2012; Sibanda et al., 2015). However, PCA is weak in 

reducing data dimensionality using remotely sensed data and merely show group structure 

when difference within-species is less than between group variation (Cheriyadat and Bruce, 

2003; Hobro et al., 2010; Worley and Powers, 2013; Rozenstein et al., 2014). Wold et al. (2001) 

and Dorigo et al. (2007) note that PLS is an effective multivariate statistical technique capable 

of addressing the problems related to high data dimensionality and is capable of reducing 

data redundancy in classification process. PLS achieves a dual purpose of reducing overfitting 

as well as eliminating non-sensitive wavebands (Dorigo et al., 2007; Cho et al., 2007; Abdel-

Rahman et al., 2014). Classification with PLS is called PLS-DA, wherein DA means 

discriminant analysis.  

PLS-DA have shown potential in reducing spectral dimension and have proved to be 

invaluable in defining useful wavebands in hyperspectral data (Peerbhay et al., 2014; Rajah et 

al., 2015). For example, Rajah et al. (2015) used PLS-DA to discriminate bean (Phaseolus vulgaris 

L.) varieties using hyperspectral data. In forestry studies, Peerbay et al. (2013) managed to 

demonstrate the potential use of PLS-DA in reducing hyperspectral data dimensionality and 

determination of optimal subset wavebands for accurate species discrimination. However, 

while PLS-DA can reduce overfitting and remove insensitive wavebands (Huang et al., 2004; 

Cho et al., 2007; Dorigo et al., 2007), on its own cannot give insight on the best wavebands ideal 

for accurate variety discrimination (Menze et al., 2009; Peerbay et al., 2013). For example, 
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Peerbay et al. (2013) have shown that PLS-DA alone cannot clearly identify redundant 

wavebands nor select the ideal number of wavebands. In fact, when PLS-DA was used in 

combination with variable importance in the projection (VIP) method, Peerbay et al. (2013) 

could determine the optimal wavebands and accurately discriminate and classify forestry 

species. Chemura et al. (2016) applied PLS-DA and VIP and identified optimal wavebands to 

discriminate diseased coffee (Coffea Arabica L.) plants. Preprocessing transformations (PPTs) 

have also been used to improve discrimination power of PLS-DA using spectroscopy 

(Kinoshita et al., 2012; Gholizadeh et al., 2013; Herrmann et al., 2013). Spectral PPTs are used 

to eliminate somewhat inconsistent information, which might not be properly analyzed by 

the model. PPTs aim to linearize variable response and eliminate unnecessary causes of 

variance, which are not of importance in the analysis. PPTs serve to increase the variation 

within class, permitting better discrimination. Subjecting spectra data to various PPTs prior 

to classification has become quite common in recent studies using spectroscopy (Kinoshita et 

al., 2012; Herrmann et al., 2013; Rotbart et al., 2013; Schwartz et al., 2013).  

As yet, no studies known to the authors have been conducted to discriminate different maize 

varieties using hyperspectral data. Most remote sensing studies in maize are related to crop-

type discrimination and mapping (Mingwei et al., 2008; Wardlow and Egbert, 2008; Zhang et 

al., 2012; Mariotto et al., 2013; Wilson et al., 2014; Waldner et al., 2015;), crop management 

(Bausch and Duke, 1996; Bausch and Diker, 2001; Pinter et al., 2003) and yield estimation 

(Ferencz et al., 2004; Prasad et al., 2006; Fang et al., 2008; Guindin-Garcia, 2010; Battude et al., 

2016; Burke and Lobell, 2017;). Studies to discriminate crop varieties using remote sensing 

refer to other crops such as sugar cane (Galvão et al., 2005; 2006; Fortes and Demattê, 2006), 

common dry bean (Rajah et al., 2015), soya bean (Galvão et al., 2005), wheat (Pinter et al., 1985; 

Hansen and Schjoerring, 2003), rice, cotton, sugarcane and chillies (Rao, 2008), apple (Luo et 

al., 2011) and pumelo (Li et al., 2016). Furthermore, studies on crop varietal discrimination 

have been based on ‘snapshot’ (single phenological stage) datasets (Lin et al., 2012). Yet, Rajah 

et al. (2015) showed that accurate crop varietal discrimination can be achieved using data 

measured at different crop phenological stages. Maize varietal discrimination is complicated 

by the inherent spectral similarities. As such, the overall goal in varietal discrimination is to 

identify the few features that uniquely define each variety. However, maize varieties are easily 

perturbed by experimental or environmental factors, for example, nutrient, phenological 
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stage, pH, temperature, pests and diseases, thereby altering their spectral signatures. 

Therefore, for accurate varietal discrimination, experiments should be grown under ideal 

conditions and spectral data collected at different phenological stages because varietal 

differences may be more apparent at certain stages of crop growth. Similarly, spectral 

collection methodology and sensors used can also introduce undesirable variations. Thus, 

varietal discrimination analysis requires a robust methodology to uncover the underlying 

subtle differences between the varieties.   

In this study, we set to evaluate the potential of multi-temporal hyperspectral data in studying 

maize crop characteristics with threefold objectives: to (1) discriminate maize varieties; (2) 

define the spectral bands suitable for discriminating maize varieties; and (3) determine the 

ideal phenological stage for varietal discrimination. We explored different pre-processing 

algorithms to smooth (reduce noise) spectra data in order to extract subtle spectral features. 

The questions to be answered were:  (1) can a cost-effective and accurate in-situ maize varietal 

discrimination be achieved using hyperspectral data?; (2) are there any statistically significant 

differences between spectral reflectance values of maize varieties that can be used for varietal 

discrimination; and (3) are there any optimal phenological stages at which varietal 

discrimination is most ideal? The hypothesis associated with this study is that maize varieties 

have different inherent canopy architecture because of genetic background that gives 

particular morphophysical characteristics, and therefore can be feasible to discriminate using 

multi-temporal hyperspectral data.  

4.2 Materials and Methods 

4.2.1 Study area 

The study was conducted at Rattray Arnold Research Station (RARS) in Zimbabwe as 

explained in Chapter 1 section 1.6 of this thesis.  

4.2.2 Crop varieties and experimental set-up 

A set of five representative varieties from each of the five maturity groups (ultraearly = 100 – 

120, very early = 121 – 130, early = 131 – 140, medium = 140 – 150 and late >150 days) were 

grown at RARS. Widely grown maize varieties were selected in each maturity group to assess 
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their spectral reflectance properties (Table 4.1). The experimental design was a 5 × 5 partially 

balanced alpha lattice laid out as a split-plot to minimize maturity effect, with maturity as the 

main plot and varieties as subplot. Four-row plots replicated three times were used. A total of 

75 plots constituted the experimental area (five maturity groups × five varieties × five 

replications). Gross sub-plot area was 3m × 7m × 4rows. Maize seeds were sown at a spacing 

of 0.5m in-rows and 0.75m between rows. Sowing was done at a seeding rate of four seeds per 

station and thinned to final two plants per station after three weeks to achieve a target plant 

population of 53,000 plants ha-1. The crop was fertilised at a rate of 450kg ha-1 of basal fertilizer 

containing nitrogen (13%), P2O5 (26%), K2O (13%) at planting. Ammonium Nitrate (34.5% N) 

was applied as top dressing at a rate of 450kg ha-1. The top dressing fertilizer was split into 

two equal applications – first at early vegetative after thinning and second at booting 

(preflowering) stage. Experimental plots were kept weed free through a combination of 

herbicides and hand weeding.  

4.2.3 Spectral measurements  

Hyperspectral data were measured by a 0.5nm wide narrowband field spectrometer Apogee 

VIS-NIR (Apogee Instruments, Inc., Logan, UT, USA) with a spectral range of 350.0 – 999.5nm. 

Spectral gathering involved integration time optimization, providing foreoptic data, 

recording dark current, collecting white reflectance, and then record the target reflectance. 

Readings were taken at canopy level. Three spectral scans were taken and averaged at nadir 

(30°) 30 cm above canopy of the target variety. Data was collected between 1000 and 1400 

hours – the critical time of the day for maximum net sun radiation that is important for 

defining spectral signatures of plants. The spectrometer was connected to a personal 

computer for spectral data storage. Spectral data were measured and calculated as the fraction 

of energy reflected off the target genotype to energy incident on the target (Thenkabail et al., 

2000). Thus: 

Reflectance (%)  = 
target − dark current

reference − dark current
 × 100                                                     [4.1] 

Records of spectral data were taken at different crop phenological stages: early vegetative, 

midvegetative, flowering/tasseling, midgrain filling and onset of senescence resulting in 

several thousand hyperspectral data samples for 25 varieties. Spectra data were measured in 
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0.5nm discrete narrow bands between 350.0 and 999.5nm, yielding a total of 1300 bands. Data 

in 350 to 399 range and 900.5 to 999.5nm of the electromagnetic spectrum were not used due 

to low signal-to-noise ratio. Thus, spectral data in 400 to 900nm range was utilized, yielding a 

total of 1001 bands, which were averaged to 5nm to reduce dimensionality and finally giving 

101 bands within the visible (VIS) and the NIR portions of the spectrum. However, one of the 

limitation of using 400 to 900nm range in this study was that variety discrimination was based 

on spectral reflectance from leaf pigments (visible range) and cell structure (NIR). This 

excluded reflectance as influenced by leaf water content and leaf biochemicals (protein, lignin 

and cellulose), which is measured when midinfrared section of the spectrum is used. This can 

be achieved when full spectral range of 350 to 2200nm is used. 

Table 4.1. Maize varieties considered for PLS-DA and some of their distinguishing 

characteristics relevant to spectral reflectance [maturity duration and leaf angle distribution 

(LAD)].  

 

VARIETY NAME LAD

SC 301 - Medium erectophile 

SC 303 - Planophile 

11C11501 - Planophile 

13C0949 - Medium erectophile 

PAN3M01 - Medium erectophile 

SC 403 - Planophile 

SC 417 - Planophile 

SC 419 - Planophile 

SC 423 - Medium planophile

PAN413 - Planophile 

SC 513 - Medium planophile 

SC 529 - Planophile 

SC 533 - Medium planophile 

SC 537 - Medium planophile 

PAN4M21 - Planophile 

SC 627 - Planophile 

SC 637 - Planophile 

SC 643 - Medium planophile 

SC 649 - Planophile 

PAN53 - Medium planophile 

SC 709 - Planophile 

SC 719 - Medium planophile  

SC 608 - Highly erectophile 

SC 727 - Medium erectophile 

PAN7M89 - Planophile 

Ultra-early maturity (100 to 120 days) white grained hybrids  

Very early maurity (121 to 130 days) white grained hybrids 

Medium maturity (141 to 150 days) white grained hybrids 

Late maturity (> 150 days) hybrids 

Early maturity (131 to 140 days) white grained hybrids 
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4.2.4 Statistical Data Analysis 

A three-stage data analysis was adopted to discriminate maize varieties; PPTs using Microsoft 

Excel 2013, ANOVA using breeding View (BV) of BMS version 10 (IBP, 2018) and PLS-DA 

using XLSTAT for Microsoft Excel 2013 platform (EXLSTAT, 2013). The three-stage analysis 

was adopted to reduce high dimensionality associated with hyperspectral data and improve 

discrimination ability (Adam and Mutanga, 2009; Carvalho et al., 2013; Prospere et al., 2014; 

Rozenstein et al., 2014; Sibanda et al., 2015). Rozenstein et al. (2014) showed that PPTs increase 

the discrimination precision in spectroscopy data. Spectral PPTs were used to eliminate any 

unsuitable information, which the model cannot correctly handle. PPTs aim to linearize the 

response of the variables and to eliminate unnecessary sources of variance that affect the 

analysis. Adelabu et al. (2014) demonstrated the effectiveness of ANOVA in the classification 

process as a first step in selecting crucial variables for classification. Sibanda et al. (2015) used 

ANOVA to remove redundant wavelengths. Rozenstein et al. (2014) used different PPTs to 

improve the discrimination accuracy of spectroscopy data using PLS-DA. In this study, PPTs 

and ANOVA analyses were used as preliminary analysis before the data were subjected to 

PLS-DA during classification. The discriminatory power (or separability) between maize 

varieties was measured by Wilks’ lambda (λ) and Pillai's trace (Wilks, 1935; Pillai, 1955). 

4.2.4.1 Pre-processing Transformations (PPTs) 

The three different PPTs used in this study to improve varietal discrimination are auto-

scaling, modified Savitzky-Golay Smoothing (SGS) and generalized least squares weighting 

(GLSW). The selected PPTs are the most frequently used in spectroscopy (Madden, 1978; Tsai 

and Philpot, 1998; Wise et al., 2006).   

Auto-scaling. Auto-scaling was applied by subtracting spectral signature of each sample from 

the mean spectral signature (mean-centering) followed by dividing each variable by their 

standard deviation. This process ensures that each variable is scaled so that the variable’s 

useful signal has an equal footing with the other variables’ signals (Wise et al., 2006). 

Savitzky-Golay Smoothing. The modified Savitzky and Golay (Savitzky and Golay, 1864) 

equation was used for smoothing spectra data (Madden, 1978). Direct use of Savitzky and 

Golay (Savitzky and Golay, 1864) equation was avoided due to the limitations pointed by Tsai 
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and Philpot (1998). First, the Savitzky and Golay (1964) equation is only applicable to few 

combinations of derivatives and polynomial orders, and second, the look up tables provided 

by Savitzky and Golay, were limited to 25 points for a smoothing array (m = 12) (Madden, 

1978). The smoothing in this study was based on computations based on a modified Savitzky-

Golay equations given by Madden (1978) to overcome the limitations above. The equation can 

be rewritten as: 

                                                           [4.2] 

 

Where  is the coefficient for the ith point of the filter in the zeroth order of derivative 

computation. Yj is the midpoint of the smoothing array (window).  

Generalized least squares weighting. GLSW produced a filter matrix based on the differences 

between pairs or groups of samples that should otherwise be similar (Wise et al., 2006). The 

single adjustable parameter α that defines how strongly GLSW lowers weight interferences 

was set to 0.02 because larger values > 0.02 decreases filtering effects and smaller values apply 

more filtering. 

4.2.4.2 ANOVA 

After PPTs, spectra data was subjected to ANOVA in breeding View (BV) of BMS version 10 

(IBP, 2018) to compare the 25 varieties. A test for significant differences in mean reflectance of 

the five groups of maturity used in this study was done. The wavebands that were significant 

(p < 0.05) were chosen and used as input variables for discrimination analysis using PLS-DA. 

The 25 varieties used for discrimination analysis are shown in Table 4.1. 

4.2.4.3 Partial Least Squares Discriminant Analysis 

PCA is applied prior to PLS-DA. Worley et al. (2013) suggested that for data exploration, 

subjecting the data to PCA provides an informative first look at the data structure and 

relationships between groups. Furthermore, separation between groups is observed in PCA 

scores when within-groups difference is not significantly less than between-groups variation. 

PLS-DA classification guided by well-separated PCA scores has a greater likelihood of 

producing relevant results. PLS-DA is an effective multivariate supervised pattern 
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recognition technique, which utilizes a training routine to allocate class membership to 

variables based on their known statistical parameters projected into latent variables (Wang et 

al., 2011). The PLS-DA model can be represented as: 

                                                         [4.3] 

                                                           [4.4] 

where X is the matrix of spectral data, T is a factor score matrix, P is the X loadings, E is the 

residual or a noise term, Y is a matrix of the categorical variable, U is the scores for Y, Q is the 

Y loadings, and F is the residuals (Wang et al., 2011).  

To ensure model reliability, validation was critical because PLS tends to overfit the models to 

data (Westerhuis et al., 2008; Worley and Powers, 2013). Model validation entails partitioning 

data into training and validation set (Anderssen et al., 2006; Broadhurst and Kell, 2006). The 

data was split into one-third test and two-thrid training sets. As indicated above, the 

separability between maize varieties was measured using Wilks' λ and Pillai's trace (Wilks, 

1935; Pillai, 1955). The classification ability of PLS-DA improves as latent variables increase, 

because a combination of these various independent variables offered much more data as 

compared to less-latent variables. Nevertheless, to avoid model over fitting, the optimum 

quantity of latent variables was established that resulted in a lower misclassification error. 

The training datasets related to the model were used to assess its accuracies in discrimination 

based on a PLS-DA with a 10-fold cross validation. Cross validation has been long recognized 

as an accurate way of testing the model’s significance whenever PLS was used (Wold et al., 

2001). In this study, PLS-DA model parameters were optimised by a 10-fold cross validation 

using training data set within 400 to 900nm range. The optimization process was done by 

adding each component to the PLSA-DA model in repetitive fashion and the model with the 

lowest cross-validation error was then used in the discrimination of the test data set.   

4.2.5 Accuracy Assessment 

For accuracy assessment, we used quantity disagreement and allocation disagreement 

according to Pontius and Millones (2011). Pontius and Millones (2011) demonstrated some 

shortcomings of kappa statistic in accuracy assessment because it gives misleading 
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information. Moreover, kappa was difficult to determine, comprehend, and interpret (Pontius 

and Millones, 2011). They recommended summarizing cross-tabulation matrix based on 

quantity disagreement and allocation disagreement. For calculating the agreement between 

the testing and training data, the two disagreements were subtracted from 100% and then the 

overall accuracy, user accuracy, and producer accuracy were calculated using confusion 

matrix, as suggested by Pontius and Millones (2011).  

4.3 Results 

4.3.1. Pre-processing Transformations and their effect on varietal discrimination  

4.3.1.1 Early vegetative growth stage  

Seasonal mean vegetation spectra (untransformed) of 25 maize varieties measured at different 

phenological stages and some photographs of the corresponding biomass growth are shown 

in Figure 4.1. Spectral measurements taken during early crop growth were largely influenced 

by soil characteristics. As the crop canopy developed, spectral reflectance characteristics were 

increasingly influenced by plant factors. For a better discrimination analysis of maize 

varieties, “true” spectra values attributed only to the varietal signal and free of any soil 

contamination were needed. Spectral data were transformed using different PPTs and were 

subjected to different analyses, including ANOVA, PLS-DA, Wilks’ λ test (Rao’s 

approximation), and Pillai’s trace. However, no band was significant (p>0.05) in 

discriminating maize varieties at this stage.  
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Onset of senescence  

 

Figure 4.1. Seasonal mean vegetation spectra (untransformed) of 25 maize varieties measured 

at different phenological stages and some photographs of the corresponding biomass growth. 

4.3.1.2 Midvegetative growth stage  

Discrimination analysis at midvegetative stage after spectra data transformation showed no 

significant (p > 0.05) differences among wavebands. Only two bands (400 and 405nm) were 

found to be significant (p < 0.05) in discriminating maize varieties with no PPTs and when AS 

(710 and 715nm) was applied in the red-edge spectrum. Using GLSW did not yield any 

significant band and only one band (710nm) with SGS was significant (p < 0.05). There were 

no spectral differences among the varieties at midvegetative stage using ANOVA and Wilks’ 

λ test. Wilks’ λ values with and without PPTs were high (>0.5) showing no significant 

difference between wavebands in discriminating maize varieties at this phenological stage.  

4.3.1.3 Flowering (tasseling) stage  

After subjecting the data to PLS-DA, Wilk’s λ test and Pillai’s trace, different bands were 

found to be significantly (p < 0.05) different using each PPTs algorithm. Twelve bands (405, 

440, 445, 490, 495, 595, 650, 705, 720, 765, 835 and 895nm) were found to be significant (p < 

0.05) in discriminating maize varieties without PPT. However, significant improvements in 
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discrimination ability were obtained after subjecting spectral data to different PPTs. For 

example, 22 bands (400, 425, 455, 505, 520, 545, 590, 595, 605, 615, 660, 690, 700, 705, 725, 760, 

765, 790, 830, 870, 895 and 900nm) were found to be significant (p < 0.05) after AS 

transformation, and 23 bands (400, 405, 425, 430, 445, 455, 500, 510, 545, 620, 655, 675, 680, 690, 

715, 720, 740, 745, 765, 865, 880, 895 and 900nm) after GLSW, whereas 12 bands were 

significant with SGS (400, 480, 500, 565, 625, 670, 680, 690, 700, 720, 765 and 895nm) using 

Wilks’ λ test. The Wilks’ λ values were ranked in ascending order to determine which bands 

were contributing more to the discrimination function (the closer Wilks' λ is to 0, the more the 

variable contributes to the discriminant function). The spectral bands with significantly (p < 

0.05) smaller Wilks’ λ values were identified as the most ideal bands.  

4.3.1.4 Midgrain filling stage  

At midgrain filling stage, only two bands (400 and 405nm) in the blue range were significant 

(p < 0.05) in discriminating the varieties with no PPT. However, using GLSW, a total of 18 

bands (415, 730, 735, 745, 750, 760, 770, 775, 780, 785, 790, 795, 800, 805, 820, 840, 850 and 

845nm) were significant (p < 0.05) in discriminating maize varieties. These differences can be 

attributed to different morphological and biophysical attributes of these varieties and the 

power of GLSW PPT. Thus, with GLSW, the subtle differences among the spectral signatures 

were amplified. Smoothing alone using SGS did not allow better discrimination; only one 

band (710nm) was significant (p < 0.05), whereas only two bands (575 and 710nm) were 

significant (p<0.05) with AS. 

4.3.1.5 Onset of senescence  

The best discrimination was obtained at onset of senescence with all transformations yielding 

more significant bands in discriminating maize varieties. A total of 10 bands were significant 

without PPTs (400, 405, 475, 530, 580, 625, 680, 765, 870 and 900), 22 bands (400, 405, 440, 455, 

515, 535, 545, 560, 665, 700, 705, 735, 760, 770, 815, 820, 840, 855, 885, 890, 895 and 900nm) with 

AS, 24 bands (400, 410, 430, 485, 525, 540, 570, 585, 600, 630, 650, 695, 715, 720, 740, 755, 760, 

765, 770, 815, 860, 885, 895 and 900nm) with GLSW and 10 bands (400, 430, 480, 625, 680, 695, 

720, 770, 895 and 900nm) were significant with SGS. The results suggest that AS and GLSW 
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PPTS were the most suitable for increasing the variance between varieties prior to 

discrimination.  

4.3.2 Ideal number of hyperspectral bands, band centers and bandwidths 

The frequency of occurrence of significant narrow bands is shown in Figure 4.2. Majority of 

the variety discrimination information is found in a few hyperspectral narrow bands, out of 

the 101 bands used. These are found in the blue portion (400 and 455nm), the green portion 

(545nm), the red portion (625nm), the red-edge portion (680, 705 and 720nm) and the NIR 

portion (765, 840 and 895nm) (Table 4.2). This makes up 10 optimal bands, made up of four 

(545, 680, 705 and 720nm) very narrowbands (< 15nm bandwidth), three (625, 765 and 895nm) 

narrowbands (> 15 to < 30nm bandwidth), and three (400, 455 and 840nm) broadbands (> 30nm 

bandwidth) (Table 4.2). The band centers are rounded off to the nearest 5nm, and bandwidths 

shown in Table 4.2 are derived from the results in Figure 4.2. The results show that the ideal 

bands for discriminating maize varieties are spread across the VIS and NIR spectrum and are 

not just located in the red and NIR wavelengths. Thus, the ideal bands for discriminating 

maize varieties are located in the blue (20%), green (10%), red and red-edge (40%), and NIR 

(30%) range of the spectrum. The flowering and the onset of senescence are the most ideal 

phenological stages for accurate maize varietal discrimination using the data in this study. 

 

Figure 4.2. Frequency of Significant (p < 0.05) bands for discriminating maize varieties at 

different phenological stages based on Wilks’ λ tests. Arrows and text box highlight the 

selected band centers. 
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4.3.3 Accuracy assessment 

Components of quantity disagreement between the reference training data and the test data 

at different phenological stages using different PPTs were analyzed for the five phenological 

stages. The results of disagreements, agreements and discrimination accuracies are shown in 

Figures 4.3 – 4.5. The components of quantity disagreement between the reference training 

data and the test data were higher at early vegetative, midvegetative and midgrain filling 

phenological stages than at flowering and onset of senescence stages (Figure 4.3). Generally, 

spectral data subjected to no preprocessing transformations (NPPTs) and SGS produced 

higher disagreements (Figure 4.3) and low accuracies (Figure 4.5), as compared to AS and 

GLSW. 

The classification agreements at each stage are shown in Figure 4.4. Comparing the three PPT 

algorithms used, AS and GLSW consistently produced higher agreements (Figure 4.4) and 

accuracies (Figure 4.5). On the other hand, low agreements (Figure 4.4) and low accuracies 

(Figure 4.5) were obtained with NPPT and SGS. Across all phenological stages, high 

discrimination agreements (Figure 4.4) and accuracies (Figure 4.5) were obtained after AS and 

GLSW using PLS-DA. However, the highest discrimination accuracies were obtained at 

flowering and onset of senescence stages. AS improved overall discrimination accuracy by 

52% at flowering and 63% at onset of Senescence. With GLSW, the overall discrimination 

accuracy improved by 55% at flowering and 62% at onset of senescence compared to NPPT. 

Of the three PPTs used, AS and GLSW were the most effective. 
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Table 4.2. Ten optimal bands for discriminating maize varieties based on frequency of 

significant (p < 0.05) bands at different phenological stages 

Waveband 

number 

Waveband 

portion 

name 

Waveband 

center: 

λ (nm) 

Waveband 

width: 

Δλ (nm) 

Waveband explanation 

1 Blue 1 400  30 

 

Sensitive to chlorophyll loss, 

senescence, maturity, and soil 

background effects (Schepers et al., 

1996; Thenkabail et al., 2000). 

Very good estimator of grain yield  

 

 

2 

 

 

Blue 2 

 

 

455 

  

 

45 

 

3 

 

Green 

 

545 

 

 10 

 

Part of maximal reflectance in the 

visible spectrum and is directly related 

to chlorophyll (Schepers et al., 1996). 

 

4 

 

Red 

 

625 

 

25 

 

Chlorophyll absorption pre-maxima 

(reflectance minima (Schepers et al., 

1996; Blackburn, 1998). 

 

5 Red-edge 1  680 15 Highest crop-soil contrast found at the 

start of Red-edge for most crops 

(Schepers et al., 1996; Blackburn, 1998; 

Thenkabail et al., 2000). 

 

6 Red-edge 2 705 10 Chlorophyll absorption post-maxima 

sensitive to stress (Schepers et al., 1996). 

 

7 Red-edge 3 720 10 Sensitive to stress and good indicator of 

chlorophyll and nitrogen status of crop 

(Carter, 1994. Shaw et al., 1998; Clevers, 

1999).  

 

8 NIR 1 

 

765  25 Beginning of the NIR shoulder and 

Sensitive to water stress in crops. 

  

9 NIR 2 840 105 Center of ‘NIR shoulder.’ Correlates 

well with total chlorophyll (Schepers et 

al., 1996).  

 

10 NIR peak 895  20 Highest reflectance for certain crop 

varieties and/or phenological stages. 

Sensitive to stress in maize (Thankbail 

et al., 2000). 

  







86 

 

4.4 Discussion 

The absence of significant spectral difference at early vegetative stages could be attributed to 

spectral mixing as influenced by soil background. “Pure” maize varietal spectra are expected 

at closed canopies stages, which begin at full canopy closure because canopy scattering is 

insignificant when the crop is young and, conversely, the soil signal is negligent with full 

canopy cover. The results show low discriminating power of spectral data when PLS-DA is 

performed without PPTs. However, with some PPTs, particularly AS and GLSW, better 

varietal discrimination is achieved. This shows that PPTs can increase the variance within 

species and can lead to better discrimination precision. The analysis showed that 

hyperspectral data can be useful in maize varietal discrimination. The inherent spectral 

similarities among maize varieties did not pose a challenge for PLS-DA with appropriate 

PPTs. However, it is crucial to take care when applying PPTs to spectral data so that the PPTs 

will not affect the input to the classifier in such a way that can significantly alter the product 

of the discrimination (Worley and Powers, 2013). Therefore, caution must be exercised as 

significant discrimination might not be because of meaningful spectral variations but due to 

noise. Our results show that AS and GLSW are suitable PPTs because they increased the 

variance between varieties.  

Evidence exists that shows that it may be difficult to know a priori the most suitable PPT 

method (Rozenstein et al., 2014). Different PPTs may be more suitable for different data sets. 

The challenge is in finding the suitable PPT method to achieve accurate discrimination. 

Discrimination accuracy of maize varieties is affected by many factors, including the inherent 

spectral similarities, experimental or environmental factors, crop age, nutrient, growth phase, 

pH, temperature, pests, diseases, spectral collection methodology, and sensors used. These 

factors easily alter spectral signatures of varieties. Thus, when subtle differences between 

maize varieties are less obvious due to close spectral signatures, PPTs prior to classification 

may improve discrimination accuracy. The PPTs used in this study, such as AS and GLSW, 

have worked well with maize data at flowering and onset of senescence growth stages. 

Flowering stage of plants is one of the important phenological stage for crop-type mapping 

and also for varietal discrimination, as each variety flowers at a different time and so have a 

time-step variable in flowering, which triggers a good signal for large-scale discrimination 
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using remote sensing. However, the PPTs were applied at microscales. Their applicability in 

imaging spectroscopy using aerial and satellite sensors (macroscales) needs to be validated, 

under low signal-to-noise ratio, atmospheric interference, large data sets, among other 

challenges.  

Ten bands (400, 455, 545, 625, 680, 705, 720, 765, 840 and 895nm) are found to be ideal for 

discriminating maize varieties using data in this study. The bandwidths of the seven ideal 

bands centers (545, 625, 680, 705, 720, 765 and 895nm) are very narrow (< 15nm) to narrow (< 

30nm) except for bands 400, 455 and 840nm with bandwidths of 30, 45 and 105nm, 

respectively, and are classified as broadband. The study shows that, of the 101 bands within 

400 to 900nm range, spaced at 5nm, 91 bands are redundant in discriminating maize varieties. 

The results show that the optimal information on maize varieties is found in blue, green, red, 

red-edge and the moisture-sensitive NIR. These results clearly show the important 

wavebands as well as redundant wavebands. This is important for future generations of 

hyperspectral satellites and in overcoming the Hughes’s phenomenon. Previous studies have 

showed that wavebands in the visible and NIR range of the spectrum show great potential in 

discriminating plant species (Vrindts and Baerdemaeker, 1997; Vrindts et al., 2002). For 

example, Smith and Blackshaw (2003) and Cochrane (2000) suggested that irrespective of crop 

species, the red-edge wavelengths (680 to 730nm) are always significant for vegetation 

discrimination. Our findings have confirmed the red-edge importance in discriminating 

maize varieties at different phenological stages as three (680, 705 and 720nm) out of the ten 

bands are in the red-edge. Three bands in the NIR (765, 840 and 895nm) reflectance are 

significant in discriminating maize varieties. This can be attributed to leaf morphology and 

leaf structure as influenced by genotypic variations due to maturity differences among the 

varieties used in this study.  

The performance of reflectance spectroscopy data in discriminating maize varieties varied 

across phenological stages of the varieties. For example, spectral data were able to 

discriminate maize varieties accurately at flowering, midgrain filling and onset of senescence 

than early and midvegetative growth stages. At early growth stages, soil background always 

affects the reflectance measured by the spectrometer. Variety discrimination is high at 

flowering and onset of senescence stages. Such results obviously show the importance of the 
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timing of remote sensing data acquisition for effective variety discrimination in maize. This is 

crucial as accurate prognosis of variety phenology is critical for prediction and calculating 

crop yield, using time series of normalized vegetation indices. The VIS spectrum is known to 

be sensitive to chlorophyll loss, senescence, and maturity (Smith and Blackshaw, 2003). This 

is confirmed by our results wherein during the flowering and onset of senescence, different 

varieties undergo different physiological process as a function of their maturity duration and 

genotypic differences. Such physiological processes affect the pigment content and 

chloroplast for these different maize varieties and cause subtle reflectance differences at 

certain bands that are sensitive to such changes (Nichol et al., 2000). The dramatic changes in 

spectral behavior form the basis for significant discrimination ability witnessed at flowering 

and onset of senescence. For example, as biomass increases, taking up most of the moisture in 

the plant, absorption in the moisture sensitive NIR portion also increases. Of the 101 bands 

used, four very narrowbands (545, 680, 705 and 720), three narrowbands (625, 765 and 895) 

and three broadbands (400, 455 and 840) are found to be ideal for maize variety discrimination 

at flowering, midgrain filling and onset of senescence stages. The significance of each of these 

wavelengths in crop research is explained as noted by other researchers (Table 4.2). 

The results of this study are consistent with Rajah et al. (2015) who found higher 

discrimination accuracies at flowering and pod formation in common bean (Phaseolus vulgaris 

L.). Zwiggelaar (1998) indicated that spectral characteristics of plant canopies are a result of 

their physical condition and chemical attributes, which are influenced by the variety’s 

phenological stages. In agreement with Misra (2012), a crop variety’s phenological stage and 

vigor is critical in varietal discrimination. Using six herbaceous species, Sobhan (2007) found 

maximum species discrimination at flowering. Therefore, maize varieties’ temporal dynamics 

(phenology) are crucial for individual variety characterization and discrimination (Turner et 

al., 2003; Underwood et al., 2003), which are both crucial for high-throughput phenotyping 

using remote-sensing technique.  In our study, only 10 bands (400, 450, 545, 625, 680, 705, 720, 

765, 840 and 895nm) provided optimal information to discriminate maize varieties at different 

phenological stages in the 400 to 900nm spectrum. Identification of these optimal bands is 

important in the selection of wavelengths for use and reduction of data redundancy in 

hyperspectral datasets for agricultural purposes at field, aerial and space-borne levels.  
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4.5 Conclusion  

Our results have shown that PLS-DA was capable of accurately discriminating maize varieties 

using hyperspectral data at certain phenological stages. Our analysis further shows that, by 

using appropriate PPTs, the accuracy of discriminating maize varieties using hyperspectral 

data is significantly improves. The accuracy improved after the ideal PPT was applied, 

compared to data without PPT. Therefore, we conclude as follows: 

1. The study identified the flowering and onset of senescence to be the most ideal 

phenological stages for accurate maize varietal discrimination.  

2. This study also showed that, of the three PPTs algorithm used, AS and GLSW were 

the most suitable for improving the discriminating power of PLS-DA using our data 

set. 

3. The study established that maize varieties can be discriminated using 10 optimal 

hyperspectral bands (400, 455, 545, 625, 680, 705, 720, 765, 840 and 895nm) out of the 

101 hyperspectral bands each with 5nm width in the VIS and NIR spectral range of 400 

to 900nm.  

The study provided useful insights into the optimum growth stages and ideal bands to 

discriminate maize varieties using spectroscopy for agricultural applications at field level. 

However, there is a need for scaling-up the results to large area crop discrimination using 

aerial and space-borne remote sensing platforms. Discriminating maize varieties is crucial in 

plant breeding for high-throughput phenotyping using unmanned aerial vehicles (UAVs) 

mounted with hyperspectral sensors. Further studies should look into the potential use of 

UAVs mounted with hyperspectral sensors, not only for aerial crop variety discrimination but 

also for biotic and abiotic stress detection for improved high-throughput phenotyping. Thus, 

the applicability of our results in imaging spectroscopy using aerial and satellite sensors 

(macroscales) needs to be validated, under low signal-to-noise ratio, atmospheric interference, 

large data sets, among other challenges. 
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CHAPTER 5: UAV-BASED AERIAL REMOTE SENSING OF MAIZE 

 

This Chapter is based on: 

Chivasa W., Mutanga, O., Biradar, C. M. 2020. UAV-based multispectral phenotyping for 

disease resistance to accelerate crop improvement under changing climate conditions. Remote 

Sensing 2020, 12, 2445. http://dx.doi.org/10.3390/rs12152445 
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Abstract 

Accelerating crop improvement for increased yield and better adaptation to changing climatic 

conditions is an issue of increasing urgency in order to satisfy the ever-increasing global food 

demand. However, the major bottleneck is the absence of high-throughput plant phenotyping 

methods for rapid and cost-effective data-driven variety selection and release in plant 

breeding. Traditional phenotyping methods that rely on trained experts are slow, costly, 

labor-intensive, subjective, and often require destructive sampling. We explore ways to 

improve the efficiency of crop phenotyping through the use of unmanned aerial vehicles 

(UAVs)-based multispectral remotely sensed data in maize (Zea mays L.) varietal response to 

maize streak virus (MSV) disease. Twenty-five maize varieties grown in a trial with three 

replications were evaluated under artificial MSV inoculation. Ground scoring for MSV 

infection were carried out at midvegetative, flowering and midgrain filling on a scale of 1 

(resistant) to 9 (susceptible). UAV-derived spectral data were acquired at these three different 

phenological stages in multispectral bands corresponding to Green (0.53 – 0.57μm), Red (0.64 

– 0.68μm), Red-edge (0.73 – 0.74μm) and Near-infrared (0.77 – 0.81μm). The imagery captured 

was stitched together in Pix4Dmapper, which generates two types of multispectral 

orthomosaics: the NoAlpha and the transparent mosaics for each band. The NoAlpha imagery 

was used as input into QGIS to extract reflectance data. Six vegetation indices were derived 

for each variety: normalized difference vegetation index (NDVI), green normalized difference 

vegetation index (GNDVI), Red-edge NDVI (NDVIred-edge), Simple Ratio (SR), green 

Chlorophyll Index (CIgreen) and Red-edge Chlorophyll Index (CIred-edge). The Random Forest 

(RF) classifier was used to evaluate UAV-derived spectral and VIs with and without variable 

optimization. Correlations between the UAV-derived data and manual MSV scores were 

significant (R = 0.74 – 0.84). Varieties were classified into resistant, moderately resistant and 

susceptible with overall classification accuracies of 77.3% (Kappa = 0.64) with optimized and 

68.2% (Kappa = 0.51) without optimized variables, representing an improvement of  13.3% 

due to variable optimization. The RF model selected GNDVI, CIgreen, CIred-edge and the Red band 

as the most important variables for classification. Midvegetative was the most ideal 

phenological stage for accurate varietal phenotyping and discrimination using UAV-derived 

multispectral data with RF under artificial MSV inoculation. The results provide a rapid UAV-

based remote sensing solution that offer a step-change towards data availability at high spatial 
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(submeter) and temporal (daily/weekly) resolution in varietal analysis for quick and robust 

high-throughput plant phenotyping, important for timely and unbiased data-driven variety 

selection and release in plant breeding programs, especially as climate change accelerates.  

Keywords: Maize; unmanned aerial vehicles; high-throughput phenotyping; multispectral 

data; remote sensing; maize streak virus; Random Forest; climate change 

5.1 Introduction 

Maize (Zea mays L.) breeding success depends on developing adapted high-yielding varieties 

that are resistant or tolerant to both biotic and abiotic stresses found in the target production 

environments. Accelerated crop improvement to increase yield and better adaptation to 

changing climate conditions is an issue of increasing urgency to satisfy the ever-increasing 

global food demand (Alston et al., 2009; Godfray et al., 2010). Global warming is predicted to 

continue due to the increase in greenhouse gases, which affects the rainfall patterns in the 21st 

century (IPCC, 2014) increasing the threats of abiotic and biotic stresses. For example, the 

rising temperatures and altered rainfall patterns will affect the spatial distribution and 

development of crop diseases, as different diseases may respond differently to the changing 

climate conditions (Velásquez et al., 2018).  

The impact of climate change on crop diseases is well documented (Luo et al., 1998; Coakley 

et al., 1999; Garrett et al., 2006). Certainly, climate change will directly influence plant disease 

epidemics (Garrett et al., 2011). For instance, with particular reference to maize streak virus 

(MSV), changes that result in environmental factors, which cause the leafhopper vectors 

(Cicadulina species) that transmit MSV, to move long distances will spread virus populations 

and epidemics to non-endemic areas (Rose, 1978). Climate change prediction models have 

shown a general trend of increased rainfall in East Africa (EA), with a concurrent decrease in 

Southern Africa (SA) (IPCC, 2007). The increase in precipitation in EA will produce a 

conducive temporal overlap of seasons, which will provide a ‘greenbridge’ (Stanley et al., 

1999; Kloppers, 2005). The ‘greenbridge’ allows the leafhopper vectors that subsequently 

spread the virus to survive throughout the year. On the other hand, decreasing precipitation 

in SA will bring droughts, and MSV disease epidemics are frequently associated with 

droughts followed by erratic rainfall at the start of the season (Efron et al., 1989), as occurred 
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in the savanna region of West Africa in the 1983 and 1984 seasons (Rossel and Thottappilly, 

1985), and in Kenya in 1988-89 (Njuguna et al., 1990). Furthermore, the prevalence of Cicadulina 

species that spreads the virus in the major crop growing regions of sub-Saharan Africa (SSA) 

is influenced by altitude, temperature, and rainfall (Dabrowski et al., 1987). The tripartite biotic 

interaction involving plant × pathogen × environment due to climate change, strongly 

influences disease prevalence and/or severity, with the disease expected to have devastating 

effects in some years and being insignificant in others (Efron et al., 1989). The tripartite 

interaction functions within a continuum – it can create conditions highly conducive to 

diseases (disease optima) or it may create those that totally discourage disease development. 

The resultant environments may make the same variety appear completely resistant in some 

situations and prove fully susceptible in others. Conversely, the pathogen itself might change 

from being virulent to being merely weakly pathogenic as it continues to evolve to local 

conditions. To address these various scenarios, there is a need to develop new phenotyping 

tools for the rapid evaluation of new varieties adapted to futures climates. 

An increase in plant disease prevalence coupled with the growing human population poses 

one of the greatest challenges to achieving global food security in the face of climate change. 

Maize is one of the main staple food crops in SSA, grown on a total of about 27 million ha 

according to FAO data. Adapting maize production to future climates depends not only on 

our ability to precisely predict future climate scenarios, but also on the development of robust 

adaptation strategies that address the challenges associated with climate change. These 

adaptation strategies include, but are not limited to, improved germplasm with resistance to 

diseases, and tolerance to heat and drought. For plant breeders, the challenge is how to 

develop varieties resistant or tolerant to the major plant diseases affecting modern agriculture 

today and in the future. Fortunately, plant breeders have access to a plethora of cutting edge 

technologies to use to generate large numbers of superior new varieties for selection due to 

advances in genomics, doubled haploid technology, rapid cycling and molecular breeding 

(Phillips et al., 2010; Poland et al., 2015). Crop breeding programs around the world generate 

a larger number of new varieties each year for selection to meet the demand for new varieties 

to address multiple traditional stresses but also increasingly able to adapt to climate change. 

However, as these demands increase, the major bottleneck is rapid variety selection and the 

absence of high-throughput plant phenotyping tools for precise, cost-effective and quick 
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assessment of phenotypic expressions in the field (Bilder et al., 2009; Araus and Cairns, 2014; 

Sankaran et al., 2015; Ghanem et al., 2015; Tardieu et al., 2017).  

Plant phenotyping is the measurement of individual traits and physiology at single plant-

level or canopy-scale (Hickey et al., 2019). High-throughput refers to the relative effort that is 

associated with the measurements. Image-based phenotyping tools are capable of imaging 

thousands of plants or plots within a few hours, and doing so at a very high level of accuracy 

(Fahlgren et al., 2015).  Phenotypes are a set of visible characteristics of the variety as a result 

of genotype × environment interaction, including light emission (fluorescence) properties of 

the photosynthetic machinery, growth rates, morphology, tolerance to abiotic and biotic 

stresses, yield, and yield components (Hickey et al., 2019). Variety selection efficiency relies 

on accurate field-based phenotyping, which measures the relative genetic potential as 

influenced by the target production environment and expressed in terms of grain yield, 

biomass, and tolerance to abiotic and biotic stresses (White et al., 2012; Araus and Cairns, 

2014). Rapid and robust field phenotyping, which establishes superior trait performance by 

phenotypes at set levels of statistical significance, is key to plant breeding success and forms 

the basis for successfully discriminating field selection. Such improved rapid phenotyping 

methods must balance speed, cost, and accuracy (Hickey et al., 2019). 

The traditional phenotyping methods rely on trained experts to take crop records using visual 

assessment of crop vigor and other abiotic stresses (Zaman-Allah et al., 2015). However, 

traditional crop phenotyping methods are comparatively slow, costly, laborious, not easily 

applicable over large areas and numbers of varieties, and frequently require destructive 

sampling (Furbank and Tester, 2011; Walter et al., 2012; White et al., 2012; Dhondt et al., 2013; 

Cobb et al., 2013; Fiorani and Schurr, 2013; Araus and Cairns, 2014). Furthermore, field data 

collection requires repeated measurements with a high risk of damaging the plants as 

researchers walk through fully developed canopies (Anthony et al., 2017). The improvement 

in high-throughput plant phenotyping methods capable of accounting for environmental 

factors like rainfall, temperature, humidity, solar irradiation, soil nutrient levels, and biotic 

and abiotic stresses will increase selection efficiency in plant breeding (Sankaran et al., 2015). 

Recently, advances have been made in high-throughput crop phenotyping to accelerate 

variety selection and advancement in plant breeding using sensing and imaging systems 
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(Deery et al., 2014; Prashar and Jones, 2014; Araus and Cairns, 2014; Zaman-Allah et al., 2015; 

Mahlein, 2016; Anthony et al., 2017). Satellite remote sensing technology has shown to delivers 

accurate, timely, and cost-effective measurements at large-scale, especially in grain crops like 

wheat (Casadesús et al., 2007; Hosoi and Omasa, 2009; Römer et al., 2011), maize (Trachsel et 

al., 2011; Weber et al., 2012; Yang et al., 2014), and rice (Tanabata et al., 2012; Hairmansis et al., 

2014). However, current generations of satellite sensors are limited by their spectral and 

temporal resolution for plot level variety analysis and data collection in plant breeding. High 

spectral resolution remote sensing options from manned aerial platforms are costly and are 

limited by operational complexity for application in small breeding plots (Jimenez-Berni et al., 

2009). Despite progress made so far in sensing systems, there are limited studies on disease 

phenotyping in maize varieties.  

Recently, field-based high-throughput plant phenotyping studies are exploring UAV-derived 

data at submeter resolution and accurate products that can be used effectively at low cost for 

agriculture and environmental analysis (Lelong et al., 2008; Zhou et al., 2017; Maimaitijiang et 

al., 2017; Jin et al., 2017; Yue et al., 2018). Using proximal sensing we have shown in Chapter 4 

that it is possible to discriminate maize varieties using multi-temporal hyperspectral data. The 

ability to discriminate crop varieties using their spectral reflectance showed the potential of 

proximal remote sensing in crop phenotyping. A lot of studies to estimate crop parameters 

used the characteristic spectra in the visible and Near-infrared (NIR) range (Rouse Jr et al., 

1974; Rondeaux et al., 1996; Jiang et al., 2008). Nevertheless, while proximal sensing eliminates 

bias that can be introduced by visual scoring, it still remains labor-intensive to collect data 

from each breeding plot (Tattaris et al., 2016). While phenotyping using satellite-derived data 

can cover large areas instantaneously, it does not match the spatial (submeter) and temporal 

(daily/weekly) resolution that can be achieved with UAV-based phenotyping. Such a higher 

degree of resolution is required for distinguishing small changes in plant response, such as 

for example, due to disease infection, heat and drought stress, or mineral deficiencies. The 

resolution of UAV-based phenotyping is at plot level and provides the possibility of 

instantaneous records of single or multiple plots and is therefore applicable to plant breeding 

(Chapman et al., 2014; Araus and Cairns, 2014). Therefore, the potential application of UAVs 

mounted with hyperspectral and multispectral sensors needs to be investigated, not only for 
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aerial crop variety classification but also for biotic and abiotic stress detection and varietal 

classification on disease reaction for improved selection accuracy in plant breeding.      

UAVs are relatively small and cheap to operate for the crop remote sensing community (Yue 

et al., 2018). The usage of UAVs mounted with high spectral sensors is an emergent and 

affordable tool for high-throughput crop phenotyping community (Frank et al., 2015). UAVs 

are flexible and have the ability to fly and hover over the area of interest making them a 

desirable tool for plot-level data collection (Anthony et al., 2017). Nevertheless, the ability of 

the UAV sensors to discriminate crop varieties based on their response to target production 

environmental constraints for adequate field phenotyping remains to be tested. Grenzdörffer 

et al. (2008) indicated that remotely sensed data for agricultural analysis needs to come from 

high temporal resolution imagery. Obtaining high temporal and spatial resolution images in 

small varietal plots commonly used in plant breeding is even more difficult and expensive 

using traditional remote sensing platforms, and therefore UAVs seem a very attractive 

alternative (Hunt et al., 2008; Nebiker et al., 2008; Perry et al., 2012; Zhang and Kovacs, 2012).  

Several studies using UAV-based remote sensing have been conducted to evaluate morpho-

physical characteristics of crops including crop growth, height, and vigor in plant breeding as 

indicators of crop performance (Wei et al., 2010; Ilker et al., 2013; Alheit et al., 2014; Njogu et 

al., 2014). The potential of UAVs based remote sensing of crops has been demonstrated in 

yield estimation (Swain and Zaman, 2012), pest damage detection (Nebiker et al., 2008), 

physiological condition assessment (Zarco-Tejada et al., 2012; Zarco-Tejada et al., 2013), and 

stress detection (Jimenez-Berni et al., 2009), including low-nitrogen stress (Zaman-Allah et al., 

2015). Therefore, plant phenotypic responses to biotic and abiotic stress, growth, and yield 

prediction can be evaluated using remotely sensed data (Zhang and Kovacs, 2012). For 

example, in a study of low nitrogen response in maize, Zaman-Allah et al. (2015), using UAV-

derived multispectral data, found significant correlation between maize yield and nitrogen 

stress index (R = 0.40 – 0.79) and between crop senescence index and NDVI values (R = 0.84). 

Their findings confirmed the utility of using UAV-derived remotely sensed data in field-based 

crop phenotyping. Hairmansis et al. (2014) used UAVs to evaluate rice varieties for tolerance 

to salinity. Calderón et al. (2013) and Garcia-Ruiz et al. (2013) used UAV-based remote sensing 

to monitor citrus disease with up to 85% accuracy. UAVs have also been used to monitor crop 
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germination (Sankaran et al., 2014), vigor, and leaf area index (Hunt et al., 2008; Sugiura et al., 

2005). Recently, Sankaran et al. (2014) used UAV in assessing emergence of spring wheat and 

found a high correlation (R = 0.86) with ground-based measurements. UAV-based remote 

sensing can also be effective in detecting crop maturity (Khot et al., 2014), a key trait in variety 

selection. Similarly, UAV-derived data can be used for such traits like plant height, canopy 

development, chemical damage, nutrient deficiency or toxicity, insect damage, disease 

damage, and presence of weeds (Sankaran et al., 2015).  

Evidence from previous studies has stimulated research interests to further refine the utility 

of UAV-derived remotely sensed data in crop phenotyping. For UAV-derived remotely 

sensed data to be useful in plant breeding and varietal selection, the ability to discriminate 

different varieties using their spectral reflectance as they respond to disease infection is 

critical. Using proximal sensing, Dhau et al. (2018) demonstrated the potential of hyperspectral 

data to detect MSV infection in maize. MSV (Genus Mastrevirus, Family Geminiviridae) is found 

throughout SSA, causing the most severe viral crop disease on the continent (Shepherd et al., 

2010; Jourdan-Ruf et al., 1995). MSV is obligately transmitted by leafhoppers in the Genus 

Cicadulina, mainly by C. mbila Naudé and C. storeyi. MSV causes extensive damage to maize 

in the tropics (Africa and South America). This is exacerbated by the rising temperatures, 

which promote development of vector populations (Jourdan-Ruf et al., 1995). Breeding for 

resistant or tolerant varieties is the most economic way to combat the disease due to lack of 

effective agronomic and chemical control techniques. MSV stressed plants are less able to 

effectively use light, leading to reduced grain yield. Therefore, crop stresses may be sensed 

remotely due to temporal or spatial variation in reflectance (Barton, 2012). The spectral 

reflectance is controlled by the absorption properties of leaf pigments (Chlorophyll a, b and 

carotenoids). Therefore, any change in pigment concentrations relates strongly to the 

physiological status of the plant’s health status and productivity. In MSV-infected plants, the 

leaves become streaked with narrow, broken, white, or yellow chlorotic stripes reducing the 

photosynthetic area of the leaves. As the disease level increases, complete foliar chlorotic can 

occur in susceptible varieties because of chloroplast destruction (Engelbrecht, 1982). 

Therefore, individual variety pigments at canopy-level holds tremendous potential for 

facilitating detection of MSV stress for varietal classification and estimating productivity by 

measuring and interpreting their reflectance properties. Potential use of remotely sensed data 
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to detect plant diseases have been shown through comprehensive reviews (e.g., Barton, 2012; 

Sankaran et al., 2010) and empirical evidence using multispectral and hyperspectral remote 

sensing.  Examples of diseases detection include head blight in wheat caused by fusarium 

(Bauriegel et al., 201; Dammer et al., 2011) and soyabean root rot (Wang et al., 2004. Yet, studies 

on the classification of maize varietal response to disease (e.g. MSV) using UAV-derived 

remotely sensed data are limited (to the best of our knowledge).  

This study sets out to assess the utility of UAV-derived remotely sensed data for phenotyping 

maize varietal response to maize streak virus (MSV) disease. We hypothesized that UAV-

derived multispectral imaging data is sensitive to MSV disease symptoms that cause distinct 

discoloration of the aerial parts of maize varieties, and are able to discriminate varieties on the 

basis of their response to disease infection.  

5.2 Materials and Methods 

5.2.1 Study area 

The study was conducted at Rattray Arnold Research Station (RARS) in Zimbabwe as 

indicated in section 1.6 of this thesis. The trial was planted on 23 November 2018. The 

vegetative stage of the crop was in December 2018 and January 2019. Figure 5.1 shows the 

monthly rainfall, heat units, maximum, minimum and mean temperatures during the crop 

growing period. The weather data was recorded using an advanced automatic weather station 

Pro (supplied by Dacom Farm Intelligence, Netherlands). The weather station Pro was 

installed outside the experimental plots in the study area to record temperature, relative 

humidity, rainfall, wind speed, wind direction and radiation. Plant and insect growth and 

development depend on temperature, often described as heat units (HU). HU were calculated 

using equation [5.1]: 

HU = ((Maxi. Temp. + Min. Temp.)/2) – Threshold/Base Temp. [5.1] 

Were HU = heat units; base temperature = 100C. 
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5.2.3 UAV platform, imagery acquisition and processing  

5.2.3.1 The UAV platform  

The imagery was acquired using a Parrot Sequoia Multispectral camera mounted on eBee SQ 

UAV (manufactured by Swiss Geo Consortium Sensefly, Cheseaux-Lausanne, Switzerland) 

(Figure 5.3). The UAV is a Delta Fixed Wing craft with greater speed and superior 

aerodynamics compared to multi-rotor craft. It is designed strictly for agricultural purposes. 

The Parrot sequoia sensor is made up of 5 cameras, with 4 discreet bands: Green (530 – 570nm), 

Red (640 – 680nm), Red-edge (730 – 740nm) and NIR (770 – 810nm). The fifth camera functions 

as a composite color capture sensor (red, green, and blue (RGB)). The sensor unit has a 

sunshine sensor with GPS, sunshine detection unit and the Inertial Measuring Unit (IMU). 

The GPS unit receives positional information so that the imagery produced is subsequently 

georeferenced. The IMU captures the attitudes of the sensor at the times of image capture 

(through rotations about the X, Y and Z axes). The sunshine unit captures and records the 

sunshine radiance value to allow for radiometric correction of the imagery. The imagery was 

captured using a single grid mapping pattern, with flight plan designed to map an area in 

excess of the area of interest to minimize the effects of radial distortion around the periphery 

of the area of interest. The flight plan had the following parameters: 42.5m altitude, with a 

ground sampling distance of 8cm in the RGB and 11.5cm in the multispectral; 75% forward 

overlap and 75% side overlap as per Sensefly’s recommendation. Table 5.1 shows some of the 

sensor parameters and spectral ranges for the Red (R), Green (G), Red-edge (RE), and Near-

infrared (NIR) bands of the camera used in this study. 

 

Figure 5.3. The Unmanned Aerial Vehicle (UAV) used in this study 
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Table 5.1. UAV sensor parameters and spectral ranges for the Red (R), Green (G), Red-edge 

(RE), and Near-infrared (NIR) bands of the camera used in this study.  

   

Sensor specifications Spectral features 

Sensor type Multispectral sensor + RGB camera 

Multispectral sensor 4-band 

RGB resolution 16 mega-pixel (MP), 4,608 x 3,456 px 

Single-band resolution 1.2 MP, 1,280 x 960 px 

Multispectral bands 
Green (550nm ± 40nm); Red (660nm ± 40nm); Red-edge 

(735nm ± 10nm); Near-infrared (790nm ± 40nm) 

Field of view 64° 

Data spectral resolution Green, Red, Red-edge, NIR 

Image spatial resolution 8cm at 42.5m altitude 

  

5.2.3.2 Image acquisition and processing 

Aerial imagery was collected at three different phenological stages (midvegetative, flowering 

and midgrain filling) using a UAV-mounted multispectral camera (Figure 5.3). The imagery 

was processed using Sensefly’s Pix4D Structure from Motion (SfM) software (Cheseaux-

Lausanne, Switzerland in collaboration with Pix4D SA, Lausanne, Switzerland). SfM works 

by finding correspondence between images, features and coordinates by tracking one imagery 

to the next using the scale-invariant feature transform (SIFT). The SIFT uses the maxima from 

a difference-of-Gaussians (DOG) pyramid as features. The precise mechanics of Pix4d’s 

structure from motion are proprietary and therefore cannot be described further. These steps 

were followed during image processing:  

a) Initial processing involved key points identification, extraction and matching; camera 

model optimization – calibration of the internal (focal length) and external parameters 

(orientation) of the camera; and geolocation GPS/GCP (Ground Control Points). 

b) Point cloud and mesh: this step builds on the automatic tie points, which entail point 

densification and creation of 3D textured mesh. 

c) Digital Surface Model (DSM) creation to determine orthomosaics and vegetation indices 

maps. Orthomosaics creation was based on orthorectification to remove perspective 

distortions from the images to produce vegetation index maps with the value of each pixel 

with true-to-type reflectance from the area of interest.  
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Comprehensible mosaics at high spatial resolution (11.5cm × 11.cm) were produced using four 

multispectral bands: Green (530 – 570nm), Red (640 – 680nm), Red-edge (730 – 740nm) and 

NIR (770 – 810nm). Spectral reflectance values were extracted and vegetation index (VI) values 

were calculated per each variety. Maps of VIs were produced at all UAV flight/data 

acquisition dates (phenological plant stages), showing the evolution of the maize varieties 

throughout the different phenological stages (Figure 5.4). The maps are crucial in analyzing 

the differences between varietal responses to environmental conditions. They provide rich 

information about the biotic stress that was affecting the varieties. The prevalent biotic stress 

that was recorded was MSV. The maps generated at the pixel scale allow obtaining precise 

data to examine the varietal variation for rapid assessment of maize varieties in breeding 

programs to improve the selection process. Comparison of VIs maps provide excellent visual 

analysis at different phenological stages (Figure 5.4).  

5.2.3.3 Reflectance data extraction  

The imagery captured over the study site was stitched together in Pix4D mapper, which 

generates two types of multispectral Orthomosaics: the NoAlpha and the transparent mosaics. 

These were generated for each band of the imagery (Green, Red, Red-edge, and NIR). The 

NoAlpha imagery was used as input into QGIS for reflectance data extraction. A shape file 

was created by converting a Google earth Key Markup Language (KML) file of the mapped 

area. The shape file was then used to clip the imagery of the mosaic to the extent of the study 

area. Shape files were then drawn for each of the compartments (individual plots) according 

to the experimental layout shown in Figure 5.3. The “Clip Multiple Layers” plugin was used 

to simultaneously clip each of the band images using the shapefile for each plot. Once the 

shapefile compartments were extracted for each shapefile, the maximum, weighted mean, 

minimum reflectance, and their standard deviations were generated for each plot in each 

layer. The average reflectance for each plot was determined by considering a buffer of 25cm 

on each of the four plots sides to restrict the analysis to the center of the plot, making the net 

plot area 7.0m x 4.0m. Ground-truth biophysical measurements for each micro-plot were 

taken from the center of the plot, consistent with UAV data. Extracted reflectance data were 

exported into excel spreadsheet format for each of the phenological stages. Vegetation indices 

were calculated from the plots’ mean reflectance values. 
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Figure 5.4. UAV-based multispectral images at different phenological plant stages. VIs = 

Vegetation Indices; NDVI = Normalized Difference Vegetation Index; GNDVI = Green 

Normalized Difference Vegetation Index; NDVIred-edge = Red-edge Normalized Difference 

Vegetation Index; SR = Simple Ratio, CIgreen = Green Chlorophyll Index; CIred-edge = Red-

edge Chlorophyll Index 

5.2.3.4 Vegetation indices 

For complete phenotyping, this study used reflectance values in multispectral bands 

corresponding to Green (530 – 570nm), Red (640 – 680nm), Red-edge (730 – 740nm) and NIR 

(770 – 810nm) taken at midvegetative, flowering and grain filling stages. The reflectance 

values were used to derive the normalized difference vegetation index (NDVI), green 

normalized difference vegetation index (GNDVI), Red-edge NDVI (NDVIred-edge), Simple Ratio 
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(SR), green Chlorophyll Index (CIgreen) and Red-edge Chlorophyll Index (CIred-edge). Table 5.2 

shows the VIs used in this study. 

Table 5.2. List of VIs and their formulas used in this study 

Indices Equation Reference 

NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Rouse Jr et al. (1974) 

GNDVI 𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 Gitelson et al. (1996) 

NDVIred-edge 𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 

Gitelson and Merzlyak (1994) 

SR 𝑁𝐼𝑅

𝑅𝑒𝑑
 Baret nad Guyot (1991) 

CIgreen 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
− 1 Gitelson et al. (2005) 

CIred-edge 𝑁𝐼𝑅

𝑅𝑒𝑑𝐸𝑑𝑔𝑒
− 1 

 

Gitelson et al. (2005) 

5.2.4 Varietal classification  

Prior to varietal classification, we ran descriptive and correlation analyses of ground truth and 

spectral data. For determining classes, we used the Jenks natural breaks algorithm, which 

divides a dataset into homogenous classes (Jenks, 1977). One of the requirements of the Jenks 

method is that the number of desired classes be specified prior to applying the algorithm to 

the dataset. In this study, the mechanism for determining the classes was based on the fact 

that for disease evaluation in plant breeding, the main objective is to classify varieties into 

either resistant or susceptible. However, there are certain varieties that fall in between the two 

classes. Thus, a third class (moderately resistant) was included and the visual MSV scores 

were divided into three categories: resistant (1 – 3.4), moderately resistant (3.5 – 5.4), and 

susceptible (5.5 – 9) for analysis.  

The Random Forest model was used to classify varietal response to MSV under artificial 

inoculation. RF was chosen for this classification task due to its proven robustness and 

effectiveness found in other studies for vegetation condition classification in comparison to 

other supervised parametric and machine learning (ML) classifiers (Rogan et al., 2008; Nitze 

et al., 2012; de Almeida et al., 2013; Lebedev et al., 2014; Chemura et al., 2016). The RF algorithm 

also has in-built functionalities for optimizing variables, making it more suitable for 

classifications that require selection and ranking important variables (Pal, 2005; Chemura et 
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al., 2016). Furthermore, this study required a robust method suitable for sample sizes that are 

relatively small and well suited for cross-validation in accuracy assessment (Chemura et al., 

2016). The data were split randomly into training (70%) and validation (30%) sets (Duro, et al., 

2012). The general rule that applies to remote sensing is also important for ML, that one should 

assess classification accuracy using data not used in training the classifier (Maxwell et al., 

2018). Raw data was used for analysis without any correction for experimental design or 

spatial variability. This was done to increase variability in the data and make it easier to fit 

the models. In addition, it is important to predict each plot and then run the classical analysis 

using predicted values. While it is possible to predict the mean of each variety directly, this 

might affect the precision of the model. RF utilizes a specified number of variables (mtry) 

drawn at each individual node from a random subset of the variables and compute the best 

split where a subset of variables are used without pruning (Breiman, 2001; Lin et al., 2010; 

Genuer et al., 2010). Classification accuracy is improved through RF parameter optimization 

(mtry and ntree) (Breiman, 2001; Mutanga et al., 2012). The RF classification model was 

developed using the “caret” package within R version 3.6.1 (R Development Core Team, 2019).  

5.2.4.1 Variable optimization 

The selection of bands and VIs to use in varietal classification was done using the RF variable 

importance measure. The most important variables were determined and those found 

important for varietal classification were then used in the model. RF classifier estimates the 

importance of each input variable to the classification by comparing the magnitude of out-of-

bag (OOB) error when a variable is excluded, while retaining others (Breiman and Cutler, 

2007; Gislason et al., 2004). Thus, RF ranks the variables according to the average error 

reduction as a result of inclusion of that variable in the classification. Variables with high mean 

decrease in errors are deemed important for classification and are therefore selected.  The 

tuning of the parameters (ntree and mtry) of RF guarantees high classification accuracy. The 

default ntree (n = 500) was used. The mtry was optimized by trying all possible values 

(Breiman, 2001; Lin et al., 2010; Genuer et al., 2010).  
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5.2.4.2 Accuracy assessment 

Confusion matrices were used to assess classification accuracies (Story and Congalton, 1986; 

Congalton and Green, 2009). The overall accuracy (OA) denotes the likelihood that a 

randomly selected variety is correctly classified according to its reaction to the MSV disease. 

On the other hand, producer’s accuracy (PA) shows the probability that the algorithm has 

correctly categorized the variety’s response to MSV. Ground-truth MSV scores were used to 

assess classification accuracy. The term resistant here was defined as varieties showing no 

symptoms to very slight symptoms with no effect on final yield; moderately resistant refers 

to a variety that exhibits symptoms of a partially suppressed virus multiplication and with 

fewer symptoms than the susceptible. The OA, user accuracy (UA), and PA were determined 

using the following equations, 

 

OA =
1

𝑁
∑ 𝑛𝑖𝑖  ×  100%

𝑟

𝑖=1

 
 

(5.2) 

 

where, N is the total number in a confusion matrix, r is the number of rows and nii is the 

number of varieties correctly classified in a category. 

 

PA =
𝑛𝑖𝑖

𝑛𝑖𝑐𝑜𝑙
 ×  100% (5.3) 

 

UA =
𝑛𝑖𝑖

𝑛𝑖𝑟𝑜𝑤
 ×  100% (5.4) 

 

The Kappa coefficient (Kc), which is also a measure classification accuracy was computed as 

follows (Congalton, 1991; Jensen, 1996): 

 

Kc = 𝑁 ∑
𝑛𝑖𝑟𝑜𝑤𝑛𝑖𝑐𝑜𝑙

𝑁2
− ∑ 𝑛𝑖𝑟𝑜𝑤𝑛𝑖𝑐𝑜𝑙

𝑟

𝑖=1

𝑟

𝑛=1

 

 

    (5.5) 

 

where nii is element at position ith row and ith column, nicol is column sums and nirow is row sums.  
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5.3 Results 

5.3.1 Varietal response to MSV   

Significant levels of MSV developed on susceptible varieties by midvegetative stages. MSV 

measurements at the different stages were highly correlated (R = 0.88 – 0.95), thus subsequent 

models were developed using average MSV severity. Figure 5.5 represents the mean disease 

severity scores. Response among varieties differed significantly (p < 0.001) with maximum 

severity mean score of up to 7.3 for most susceptible variety on a scale of 1 – 9. Conversely, 

the most resistant variety had a mean score of 1.8. Using ground-truth data, of the 25 maize 

varieties tested, six varieties were classified, in order of increasing mean MSV score, as 

resistant (V15, V9, V16, V13 V19, and V17), twelve as moderately resistant (V20, V12, V8, V18, 

V6, V24, V7, V21, V23, V25, V10, and V14) and seven varieties as susceptible (V22, V4, V3, V5, 

V11, V2, and V1) (Figure 5.5). The most resistant varieties (top six) had mean MSV scores 

ranging between 1.8 and 3.4. 

 

Figure 5.5. Mean disease response of the 25 varieties evaluated. The disease was rated 

on a score of 1 – 9, where a mean score of 1 – 3.4 (resistant), 3.5 – 5.4 (moderately 

resistant) and 5.5 – 9 (susceptible). (V1 to V25 = Varieties 1 to 25). 
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5.3.2 Comparison of UAV-derived and ground truth data 

A descriptive analysis, including descriptive statistics and correlation of ground truth 

measurements and UAV-derived data, follows. The analysis shows that there are no outliers 

in any variable. Figure 5.6 shows phenotypic correlations between ground truth (manual) 

scoring and UAV-derived data at each phenological stage. Correlations between the UAV-

derived data and manual MSV scores are significant for the shown variables. In absolute 

terms, the highest correlations between UAV-derived and manual scoring were Red band (R 

= 0.78), NDVI (R 0.75), SR (R = 0.74), CIgreen (R = 0.83), CIred-edge (R = 0.78) and GNDVI (R = 0.84). 

These significant agreements between UAV-derived and ground truth data suggest that UAV-

based phenotyping of MSV in maize is feasible. This is critical because, to be effective, image-

based phenotyping methods need to achieve a level higher or equivalent to the accuracy 

achieved using traditional phenotyping methods, and in a shorter time and at lower costs.  

 

Figure 5.6. Box plots of correlations for ground truth average MSV measurements and 

UAV-derived multispectral data. CIg = Green Chlorophyll index; CIre = Red-edge 

Chlorophyll index; NDVIre = Red-edge Normalized Difference Vegetation Index; G = 

Green; R = Red; NIR = Near-infrared; RE = Red-edge; SR = Simple Ration 
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analysis of the four bands at different phenological stages indicates that only Red (vegetative 

and flowering) and Green (vegetative) bands were ranked in the top ten important variables 

as significant for classification process using our data. On the other hand, examination of the 

six VIs shows that five VIs (CIgreen, GNDVI, CIred-edge, NDVI, and SR) measured at vegetative 

stage were ranked as important variables in the classification of the varieties by the RF model 

(Figure 5.8). The overall accuracy of 68.2% (Kc = 0.51) was achieved using all variables. 

However, to improve the classification accuracy, variable optimization was implemented 

using RF. 

 

Figure 5.8. Variable importance at different phenological stages used in the classification 

process without optimization. NDVI = Normalized Difference Vegetation Index; GNDVI 

= Green Normalized Difference Vegetation Index; NDVIred-edge = Red-edge Normalized 

Difference Vegetation Index; SR = Simple Ratio, CIgreen = Green Chlorophyll Index; 

CIred-edge = Red-edge Chlorophyll Index 
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5.3.3.3 Variable optimization 

Variable optimizing was implemented on all the thirty variables, and only seven variables (i.e. 

two bands and five VIs) were selected as important using the RF OOB error (Figure 5.9). 

During optimization the RF model dropped less important variables. Dropping less important 

variable has been confirmed in others studies to improve the performance of RF in 

classification (Adam et al., 2014; Chemura et al., 2016). When variable importance is very low, 

it either means the variable is not important or it is highly collinear with one or more other 

variables.  The two spectral bands (Red and Green) at vegetative stage were retained as 

important. A total of five VIs (CIgreen, GNDVI, CIred-edge, SR and NDVI) at vegetative stage were 

selected. All the selected variables by the RF model for classifying different varieties were 

spectral bands or derived VIs measured at midvegetative stage (Figure 5.9). Therefore, 

midvegetative appeared to be the most ideal phenological stage for accurate classification of 

maize varietal response to MSV using UAV-derived multispectral data with RF under 

artificial MSV inoculation. This might be because after flowering, tassels could mask the 

detection of MSV by the multispectral cameras.  

The variable importance approach used in this chapter considers each variable individually, 

assuming all variables are totally independent and not correlated in any way. However, two 

or more variables may be collinear. One important advantage of RF is that it has 

functionalities for dealing with collinear variables. To identify if variables are correlated, a 

correlation matrix was constructed in R at different phenological stages. Highly correlated 

variables indicates that the variable is completely predictable using the other variables, 

which means it could be dropped without affecting model accuracy. For example, the CIgreen 

and GNDVI at vegetative stage were highly correlated (R = 0.991). Thus, similar 

classification results can be achieved using either one of the two. Similarly, SR and NDVI at 

vegetative stage (R = 0.966), CIred-edge and NDVIred-edge (R = 0.997) at flowering, CIgreen and 

GNDVI (R = 0.997), and SR and NDVI (R = 0.988) at grain filling are highly correlated. The 

discussion of multicollinearity of these variable is beyond the scope of the thesis, therefore, 

the detailed matrix results of multicollinearity are not shown.  
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5.3.3.4 Classification using optimized variables 

Table 5.3 shows the results of varietal classification after variable optimization. Use of 

optimized UAV-derived VIs resulted in increased varietal classification accuracies into 

different classes (resistant, moderately resistant, and susceptible) compared to variables 

without optimization. The results indicate a notable improvement in accuracy of varietal 

classification using optimized variables. The performance of the RF model in classifying the 

varieties was improved through variable optimization, with the RF model achieving overall 

varietal classification accuracies of 77.3% (Kc = 0.64) with optimized variables compared to 

68.2% (Kc = 0.51) without variable optimization, representing an improvement of  13.3%. 

Furthermore, optimization reduced the number of variables from thirty to seven, which were 

then used by the RF model (Figure 5.9). Improvement in classification accuracies obtained in 

this study agrees with previous work by Adam et al. (2014) and Chemura et al. (2016), who 

found improvements in classification accuracies when variables are optimized. Moreover, our 

results are comparable to the accuracies found by Sankaran et al. (2013) using ground-based 

sensors.  

 

Figure 5.9. Optimization of variables for varietal classification using RF-OOB for different 

spectral bands and vegetation indices. The vertical dotted line indicates the cut-off point for 

0 20 40 60 80 100 120

GNDVI

CIgreen

Green

Green

CIgreen

CIrededge

NDVIrededge

Red

NDVIrededge

NDVI

SR

Green

Red

CIrededge

GNDVI

CIgreen

G
ra

in
 f

ill
in

g
Fl

o
w

er
in

g
V

eg
e

ta
ti

ve

Variable Importance



115 

 

selected variables. NDVI = Normalized Difference Vegetation Index; GNDVI = Green 

Normalized Difference Vegetation Index; NDVIred-edge = Red-edge Normalized Difference 

Vegetation Index; SR = Simple Ratio, CIgreen = Green Chlorophyll Index; CIred-edge = Red-

edge Chlorophyll Index 

Table 5.3. Classification accuracies using optimized variables (all seven selected variables 

were at vegetative stage). PA and UA are Producer’s and user’s accuracy, respectively. 

 Resistant Moderate Susceptible Total UA (%) 

Resistant  

Moderate   

Susceptible 

Total 

PA (%)   

Overall accuracy (%) 

Kappa coefficient  

4 

1 

0 

5 

80 

77.3 

0.64 

1 

7 

2 

10 

70 

 

0 

1 

6 

7 

85.7 

5 

9 

8 

22 

80 

77.8 

75 

 

5.4 Discussion 

The recent progress in the use of sensing and imaging systems, including UAV-derived data 

with high spatial (submeter) and temporal (daily/weekly) resolution, present a step-change 

towards data availability and turnaround time in varietal analysis for quick and robust high-

throughput plant phenotyping in plant breeding programs. This study set out to assess the 

utility of UAV-derived multispectral data for improved phenotyping of maize varietal 

response to MSV disease under field conditions. The UAV-derived VIs maps produced using 

UAV-derived data show comprehensive temporal and spatial variations at varietal level 

(Figure 5.4), providing significant information about the variability in varietal response that 

can be explained by varietal interaction with the MSV disease. Although UAV-derived 

multispectral imageries have limited spectral range and resolution, they offer robust spatial 

and temporal resolutions that allow variation associated with different varieties to be 

quantified. Maize varieties are evaluated for disease resistance to select appropriate varieties 

for the target production environment, to address global food demand and responding to 

changing climate conditions. Undoubtedly, the continuing climate changes are threatening 

the currently vulnerable global food security in a number of ways, as well as exacerbating 

major crop diseases and creating weather conditions conducive for the emergence of new 
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devastating diseases in major food-producing regions. Therefore, the call for intensified crop 

breeding efforts and the need to bring phenotyping up to speed with genomics by harnessing 

the power of computing, robotics, machine learning (ML), artificial intelligence, and image 

analysis is urgent, if we hope to meet the global food demand to feed 10 billion people by 

2050.   

5.4.1 Comparison of UAV-derived data and ground truth measurements 

There was generally strong correlations between UAV-derived imagery and ground-based 

MSV measurements in this study, suggesting the value of UAV-derived data in plant 

phenotyping. These are encouraging results given the bottlenecks experienced in manual 

phenotyping, especially in plant breeding where screening of a large number varieties is 

needed before suitable ones are selected for advancement, release, and commercialization. 

Our results agree with Garcia-Ruiz et al. (2016) who found significant correlation between 

UAV-based data and the ground-truth measurements for detection of Huanglongbing (Citrus 

Greening) disease in citrus trees. Jarolmasjed et al. (2019) compared UAV-derived 

multispectral imaging data and found significant correlation with ground-truth disease rating 

of fire blight disease (Erwinia amylovora) in apples. Similarly, Mahlein et al. (2013) also reported 

a significant agreement (R2 = 0.89) between NDVI and ground-truth leaf disease severity with 

a classification accuracy of 80% in sugarbeet Cercospora leaf spot. Jansen et al. (2014), using 

noninvasive spectral phenotyping to screen Cercospora disease resistance in sugar beet, 

similarly established significant correlations between spectral data and ground-truth scores 

confirming the potential use of remotely sensed data in disease resistance phenotyping.  

However, most of these studies were based on snapshot (single phenological stage) spectral 

data collection. Our approach in this study was based on multi-temporal spectral data. For 

example, Garcia-Ruiz et al. (2012) recommended that future work should study temporal 

effects in aerial remote sensing of plant diseases. Thus, using multi-temporal data, we 

identified not only the optimal bands and indices, but also the ideal growth stage for accurate 

varietal phenotyping. The results demonstrated that VIs measured at vegetative stage are the 

most important for classification of maize varietal response to MSV. The MSV disease 

symptoms on a susceptible variety result in changes in color, size and shape. Our results show 
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that these morpho-physical changes can be measured accurately using spectral data at the 

vegetative stage. Furthermore, measurements after flowering could suffer from masking 

effects by the flowers (tassels) and old senescing leaves at midgrain filling.  

5.4.2 RF classification performance using spectral bands and VIs 

The results of this study show that UAV-derived VIs produced plausible varietal classification 

and majority of selected important variables were VIs compared to spectral bands (Figure 5.9). 

This agrees with previous studies, for example, Chemura et al. (2016) who found vegetation 

indices to perform better than spectral bands in discriminating coffee (Coffea arabica) leaf rust 

(Hemileia vastarix) using RF. Furthermore, the overall classification accuracy results obtained 

in this study using UAV-derived multispectral VIs are comparable to similar studies. For 

example, Garcia-Ruiz et al. (2013), using UAV-based multispectral data from six bands and 

seven indices for classification and identification of citrus greening disease, obtained 

accuracies ranging from 62 – 82% using linear discriminant analysis and between 63 and 85% 

using support vector machines. As indicated above, our study further demonstrates that crop 

phenological stage is critical when assessing varietal variation in crop phenotyping using 

UAV remotely sensed data. Most of the selected variables were measured at vegetative stage 

(Figure 5.9). This is important in field-based high-throughput plant phenotyping for 

characterizing maize varieties at multiple scales, and at different levels of resolution and 

dimensionality using remote sensing. Thus, aerial imaging using UAVs can offer the plant 

breeding, research and remote sensing community the ability to quickly record high-temporal 

and spatial-resolution data for maize varietal analysis and allow rapid, cost-effective and 

comprehensive data-driven variety selection and release in plant breeding programs. Robust 

phenotyping is critical to plant breeding because it forms the basis for selection of new 

varieties. However, UAV do not provide a substitute for the breeder’s eye, but augment the 

effort and inform better phenotype-based selections (Hickey et al., 2019).  The advantage of 

the UAV-based imaging data is the high-throughput capability and ability to measure 

multiple traits instantaneously (Andrade-Sanchez et al., 2014; Crain et al., 2016). Furthermore, 

UAV-based phenotyping does not suffer from low repeatability associated with manual 

records (Condorelli et al., 2018). Thus, UAVs eliminate subjectivity and reduce labor costs, 

spatial singularity, and fatigue associated with manual methods (Chemura et al., 2016; Bock 
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et al., 2010). Additionally, the naked eye may not be able to identify physiological/metabolic 

differences caused by different stresses (Masuka et al., 2016), which can be possible with 

imaging tools (Barbagallo et al., 2010). For example, Nutter et al. (1993) found improved 

precision in characterizing bent grass dollar spot (Agrostis palustris Huds.) using spectral data 

compared to a visual scoring method. Condorelli et al. (2018) reported higher repeatability 

when screening drought-adaptive traits in wheat using UAV phenotyping methods compared 

to ground-based methods. 

5.4.3 Variable optimization effect on RF algorithm classification 

In this study, RF successfully ranked each variable importance both UAV bands and VIs on 

the classification output (Figures 5.8 and 5.9), providing an insight into which UAV-derived 

bands and VIs are critical in the classification process using our data. The classification 

improved by 13.3%, when optimized variables were used indicating that variable importance 

is efficient and improves RF modelling. There are various reasons why variable optimization 

achieves better classification results in comparison to using all available variables. For 

example, Chemura et al. (2016) reasoned that multispectral sensors are meant for multiple 

purposes that range from water, agricultural, forestry and urban applications, hence just a 

limited number of parameters may be useful for the intended purpose. Furthermore, several 

variables maybe correlated or may not provide useful information, and these are dropped in 

the classification and modeling process.  The removal of these redundant variables enables 

the model to achieve better results, agreeing with studies by Pal and Foody (2010); Saeys et al. 

(2007) and Chemura et al. (2016).  

Machine learning algorithms classification accuracy is affected by training data quality, 

sample size, user-specified parameters (Huang et al., 2002). In this study, the sample size was 

relatively small (n = 75), split randomly into training (70%) and validation (30%), and a robust 

RF model suitable for such scenarios was used, consistent with recommendation by Maxwell 

et al. (2018). In parametric maximum likelihood classifiers, the rule of thumb requires that the 

number of training samples be at least 10 times the number of variables (Swain, 1978). 

However, for ML classifiers, literature is silent on the size of the training sample (Maxwell et 

al., 2018). Huang et al. (2002) posit that in ML, the size of the training sample may depend on 
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the algorithm used and number of input variables. On the other hand Lu and Weng (2007) 

and Li et al. (2014) recommended a large training data set regardless of algorithm used. 

Indeed, Huang et al. (2002) showed that increased training sample size gave higher accuracy. 

However, in practice, there is a need to balance the size, quality, cost, and the limited time 

available. RF has been found to be less sensitive to training sample size compared to single 

decision trees methods (Ghimire et al., 2012; Rodríguez-Galiano et al., 2012), and has proved 

to be appropriate for small samples in disease classification in coffee leaf rust (Chemura et al., 

2016), in Sirex noctilio infestation in pine trees (Ismail and Mutanga, 2010), and classification 

of alfalfa (14 training samples) and oats (with only 5 training samples) (Maxwell et al., 2018). 

5.4.4 The utility of UAV-based multispectral data in high-throughput phenotyping 

Most of the recent studies that systematically attempt to validate spectral indices in plant 

phenotyping at field scale are based on proximal measurements (Chemura et al., 2016; Tattaris 

et al., 2016). However, proximal sensing is associated with the challenges eluded to above. It 

is difficult to use when fields are under irrigation or pesticides applications, and not practical 

for rapid evaluation of multiple varieties at scale and high temporal resolution in breeding 

programs (Chapman et al., 2014; Araus and Cairns, 2014). Furthermore, proximal remotely 

sensed data can fail precision test for high-throughput because of fluctuations in weather 

conditions in between measurements (i.e. from start to finish), which may take one to several 

hours where large numbers of breeding plots are involved (Tataris et al., 2016). Extended time 

taken in manual scoring introduces variation due to phenological changes, environmental 

conditions, and recorder fatigue thereby affecting repeatability and leading to inaccurate data 

and even unjustified conclusions (Condorelli et al., 2018; Naik et al., 2017). Speed is therefore 

essential in achieving high precision in high-throughput phenotyping. Although this study 

did not compare the time difference between manual scoring and UAV-based phenotyping, 

researchers have found UAV-based phenotyping to be 10 times faster than manual scoring 

(Duddu et al., 2019). Similarly, Guan and Nutter (2003) found remote sensing to be 15 times 

faster in estimating alfalfa leaf disease. Therefore, UAV offers real-time and fast crop 

phenotyping and will reduce dependence on time consuming and resource-intensive manual 

phenotyping in plant breeding and varietal selection, leading to speeding up breeding and 

selection processes.  
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The opportunities presented by UAV-derived data have to take into account the practical 

limitations imposed by field conditions to the applications of the technology where a complex 

of different diseases are present in the same field or area of interest. The UAV-derived spectral 

bands and indices applied in this study are not disease-specific (to the best of knowledge), 

and therefore can only be useful in quantifying different levels of infestation or damage when 

a single disease affects the crop with no ability to distinguish between different types of 

diseases. This makes the current UAV-derived spectral data relevant in phenotyping of 

disease with a prior knowledge of the type of disease that exists in the target area of interest. 

Studies into development of disease-specific VIs have been reported (Mahlein et al., 2013; 

Rumpf et al., 2010; Mahlein et al., 2010). However, this is an area that needs further exploration. 

In addition, although VIs derived from multispectral data are informative, they utilize less 

than 1% of available spectra (Pauli et al., 2016), and as such may lack detail compared to, for 

example, hyperspectral data. Therefore, further investigations are necessary to refine the use 

of UAV-derived data in high-throughput crop phenotyping. It is also noteworthy to mention 

that the study only used one ML algorithm (RF), yet there several other classifiers, which can 

be used.  

5.4.5 Leveraging high-throughput phenotyping to fast-track crop improvement under 

changing climate conditions 

MSV disease can be controlled using systemic insecticides that control the vector through 

spraying or treatment of seed. However, spraying and use of seed treatments against MSV are 

expensive and beyond the reach of most of the resource-poor farmers. Furthermore, spraying 

and seed treatment options offer only temporary protection when disease pressure is severe. 

The development and cultivation of varieties tolerant or resistant to MSV is arguably the most 

cost-effective and climate-smart way of preventing MSV epidemics and protecting farmers’ 

livelihoods. To breed for resistance, breeders evaluate large numbers of lines or varieties to 

select suitable ones for commercialization. However, as previously alluded to, rapid and 

accurate phenotyping of traits associated with grain yield is presently creating serious 

bottlenecks (Araus and Cairns, 2014; Furbank and Tester, 2011). Robust phenotyping is critical 

in plant breeding programs because it forms the basis for new variety selection. In this study, 

our method has demonstrated the utility of image-based high-throughput phenotyping to 
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relieve the breeding community of phenotyping bottlenecks. Image-based high-throughput 

phenotyping technology will help accelerate crop breeding in the face of changing climate 

conditions and associated new challenges. This will be achieved by screening large numbers 

of varieties for multiple traits with higher accuracy and at reduced costs (Mahlein, 2016). In 

addition, high-throughput image-based phenotyping will enable the evaluation of 

physiological/metabolic differences caused by different stresses (Masuka et al., 2016), which 

may not be possible with the naked eye but possible with imaging tools (Barbagallo et al., 2003; 

Rutkoski et al., 2016). This will help broaden the genetic variation in the germplasm pool if 

such traits are accumulated in the breeding pipeline. Furthermore, high-throughput 

phenotyping data can be combined with genomic data to further improve genetic gain 

(Rutkoski et al., 2016; Crain et al., 2018; Juliana et al., 2018). The key to the successful application 

of image-based high-throughput plant phenotyping for diseases and other stresses lies in our 

ability to develop reproducible protocols that are user-friendly, including image-based data 

retrieval, analysis, and interpretation. This will increase crop genetic improvement efficiency 

and our ability to satisfy future food requirements, especially as climate change accelerates.   

5.5 Conclusion 

This study assessed the utility of UAV-derived multispectral data with RF algorithm to 

classify different maize varieties under artificial MSV inoculation. The results showed that 

UAV-based multispectral data combined with advanced classifier RF analysis can be useful 

in field-based high-throughput maize phenotyping. Therefore, we conclude the following.  

1. UAV-based remotely sensed data provides plausible accuracy, thereby offering a step-

change towards data availability and turn-around time in varietal analysis for quick and 

robust high-throughput plant phenotyping in maize breeding and variety evaluation 

programs. To address the vagaries brought by climate change and meet global food 

security. Specifically, the study has demonstrated that VIs measured at vegetative stage 

are the most important for classification of maize varieties under artificial MSV 

inoculation using UAVs. 

2. UAV-derived remotely sensed data correlate well with ground-truth measurements, 

confirming the utility of UAV approach in field-based high-throughput phenotyping in 
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breeding programs, where final varietal selection must be based on extensive screening of 

multiple genotypes. This will reduce selection bottlenecks caused by manual phenotyping 

and offers decision support tools for large-scale varietal screening. 

3. Variable optimization improves classification accuracy when compared to the use of 

variables without optimization. Thus, RF classifier is a robust algorithm capable of 

determining the depth of variable importance and their rankings using our data.   

4. Image-based high-throughput phenotyping can relieve the breeding community of 

phenotyping bottlenecks usually experienced when evaluating large populations of 

genotypes in order to accelerate crop breeding and selection addressing multiple stresses 

associated with climate change. 

The study shows that cost-effective UAV-derived multispectral data is capable of classifying 

maize varieties affected by MSV with good accuracy, and therefore can complement and 

eventually replace visual ratings, especially for large-scale canopy-level measurements when 

multiple genotypes are evaluated in plant breeding. However, current VIs are not disease-

specific and therefore can only be useful in different levels of infestation or damage due to a 

singly present disease with no ability to distinguish between complex types of diseases. This 

makes the current UAV-derived spectral data relevant in phenotyping of disease with a prior 

knowledge of the type of disease that exists in the target area of interest. Three research gaps 

have been identified for further inquiry: (i) comparison of multiple ML algorithms to identify 

the best performing classier(s); (ii) evaluation of whether UAVs mounted with hyperspectral 

high-resolution cameras improves detection and classification accuracies; and (iii) 

development of disease-specific VIs.  
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CHAPTER 6: GRAIN YIELD MODELLING USING UAV-DERIVED DATA 

 

This Chapter is based on: 

Chivasa W, Mutanga, O., Biradar C.M. 2020. UAV-based high throughput phenotyping to 

increase prediction and selection accuracy in maize varieties under artificial MSV inoculation. 

Computers and Electronics in Agriculture (in review).  

 Early grain filling stage 

Midgrain filling stage  
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Abstract 

The increased usage of unmanned aerial vehicles’ (UAV) remotely sensed data in crop 

evaluation is revolutionizing the field of plant phenotyping. This study was conducted to (1) 

develop protocol to predict maize streak virus (MSV) and grain yield using UAV-derived 

multispectral data; and (2) identify the suitable predictor variables (reflectance or indices) and 

ideal phenological stages for MSV and grain yield prediction. The study evaluated 25 maize 

varieties grown under artificial MSV inoculation. Manual scoring and multispectral imaging 

measurements were performed at midvegetative, flowering and midgrain filling stages. UAV-

derived data were acquired in the multispectral bands of Green (0.53 – 0.57μm), Red (0.64 – 

0.68μm), Red-edge (0.73 – 0.74μm) and Near-infrared (0.77 – 0.81μm). Ground-truth scoring 

of MSV infection was done using a 1 (resistant) to 9 (susceptible) scale. We performed accurate 

corrections of UAV-derived imagery and extracted multispectral data. Eight vegetation 

indices (VIs) were determined for each variety: NDVI (normalized difference vegetation 

index), NDVIred-edge (red-edge NDVI), GNDVI (green normalized difference vegetation index), 

SR (simple ratio), CIgreen (green chlorophyll index), CIred-edge (red-edge chlorophyll index), SAVI 

(soil-adjusted vegetation index) and OSAVI (optimized SAVI). Finally, predictions of MSV 

and grain yield were performed with 36 models using multiple regression, decision trees and 

linear regression. The relevant statistics considered in MSV prediction were the Akaike 

Criterion corrected by small sample (AICC), the average square error in the validation set 

(ASE-Test) and the predicted residual sum of squares in the validation data set (CVEXPRESS). 

There were no significant differences (p > 0.05) between spectral data or indices in predicting 

MSV. However, for indices, the variability between models was larger than for spectral data, 

especially for the ASE-Test statistic. Frequently selected variables for MSV prediction were 

Green band at vegetative (61.5%), Red band at vegetative (68.4%) and flowering (80.4%), and 

GNDVI at midvegetative (88.7%). However, the best MSV predictors were GNDVI (r = 0.84; 

RMSE = 0.85,), CIgreen (r = 0.83; RMSE = 0.86) and Red band (r = 0.77; RMSE = 0.99) measured at 

midvegetative stage. For grain yield prediction, six out of 36 models were selected as ideal for 

predicting maize grain yield: RF-REF-NIRF (r = 0.69; RMSE = 0.65); NDVIREG-GNDVIG (r = 

0.74; RMSE = 0.56); RV-NIRV (r = 0.84; RMSE = 0.37); and the tree with the largest correlations 

are RV-NIRV-RF (r = 0.86; RMSE = 0.32); GNDVIV-OSAVIV (r = 0.84; RMSE = 0.36); GV-RV-

NIRV (r = 0.84; RMSE = 0.35); the last two of which were at midvegetative stage. From these 
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results we conclude that UAV-based multispectral remote sensing is a reliable tool for 

phenotyping MSV disease and grain yield prediction, and midvegetative appear to be the 

most ideal phenological stage for MSV and grain yield prediction. 

Keywords: maize; UAV multispectral data; remote sensing; maize streak virus; high-

throughput phenotyping; yield prediction. 

6.1 Introduction 

Global food requirement is projected to double current demand by 2050 due to population 

and socio-economic growth (Ray et al., 2012). Meeting this demand, particularly in developing 

countries requires doubling current grain production of major food crops like maize, wheat 

and rice by 2050 (Tilman et al., 2011; Tubiello, 2012; Valin et al., 2013). This requires genetic 

gain on grain yield of up to a 2.4% per year on non-compounding basis to meet global demand 

by 2050 (Ray et al., 2013). However, the growth in human population that is projected to be 10 

billion by 2050 (Ray et al., 2012; Ray et al., 2013) coupled with the effects of climate change on 

crop diseases (Luo et al., 1998; Coakley et al., 1999; Garrett et al., 2006) poses some of the 

greatest challenges to achieving global food security. Because of a changing climate and its 

effects on pathogen and vector appearance and distribution, we urgently need to accelerate 

crop genetic improvement as a mitigation measure. This can be achieved by combining 

genomics, rapid cycling and field-based high-throughput plant phenotyping. Fortunately, 

plant breeders are now able to generate large numbers of new varieties for selection due to 

access to a plethora of cutting-edge technologies because of advances in genomics, doubled 

haploid technology, rapid cycling and molecular breeding (Phillips et al., 2010; Poland, 2015). 

However, phenotyping of traits associated with grain yield is presently creating a serious 

bottleneck (Furbank and Tester, 2011; Araus and Cairns, 2014). Robust phenotyping is critical 

in crop improvement programs because it forms the basis for selecting new variety with high 

yield and improved resistance to multiple stresses.  

The previous two decades have seen tremendous innovations in genomics, with significant 

reduction in costs while throughput and accuracy continued to improve (Tung et al., 2010; 

Elshire et al., 2011). Associated with the reduction in sequencing cost is the increasing usage 

of high-resolution genotyping in crop breeding, previously overlooked by the genomics 
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community (Bachlava et al., 2012; Ferguson et al., 2011; Hyten et al., 2010). With the increase in 

low cost genomic data for major food crops, a major focus in variety evaluation is shifting 

towards addressing the scarcity of high-quality phenotypic data (Cobb et al., 2013). Currently, 

phenotyping has become the major operational bottleneck in plant breeding. Compared to 

genotyping that is now highly automated and fundamentally uniform across crops, high-

throughput phenotyping remains a cottage industry, crop-specific, laborious, and certainly 

environmentally-sensitive (Cobb et al., 2013). Furthermore, whereas variation in sequence is 

finite in theory, and consequently all sequence variants can possibly be found for a specified 

crop, there is no prospect that the phenomes will ever be completely characterized (Houle et 

al., 2010). The phenomes of crops are dynamic and respond to a multi-dimensional set of 

internal and external signals. Thus, phenotypic data can be seen as a dynamic set of 

information that changes throughout the crop growing season as a result of prevailing 

environmental conditions. As the phenotyping science evolves, attention is increasingly 

directed towards generating accurate and precise information at reasonable costs. Reduction 

in phenotyping costs even with slight precision decrease will maximize genetic gains through 

efficient utilization of financial resources that can be used to increase the number of varieties 

under evaluation, investment in doubled haploid technologies, among others. In this study 

we explore the use of UAV-based multispectral image-based high-throughput phenotyping 

to interrogate the complex tripartite interaction involving genotype × phenotype × pathogen 

(environment), as well as to develop prediction models based on spectral data in maize under 

artificial MSV inoculation. Image-based high-throughput phenotyping allows imaging of 

thousands of plots within a few hours and doing so at a very high level of accuracy and lower 

costs (Fahlgren et al., 2015).  

Maize is the preferred staple food crop in Africa, which contributes more than 50% of the daily 

calorie requirements and occupies over 27 million hectares in Sub-Saharan Africa (SSA) (FAO, 

2010). However, maize production is being affected by many biotic and abiotic stresses. These 

multiple stresses impact on agriculture by reducing quality and quantity of products, posing 

a serious threat to food security and safety (Savary et al., 2012; 2017). For example, maize streak 

virus (MSV) continues to be one of the major maize diseases (Bock et al., 1974; Fajemisin et al., 

1984) found throughout SSA that threatens food security (Bosque-Pérez, 2000; Martin and 

Shepherd, 2009). The disease is caused by maize streak virus (Bock et al., 1974), a geminivirus 
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(Bock et al., 1977). MSV is obligately transmitted by leafhoppers (Cicadulina mbila Naudé and 

C. Storeyi) (Storey, 1924; 1928; Webb, 1987) causing extensive damage to susceptible maize 

varieties in SSA (Shepherd et al., 2010). This is exacerbated by climate change, for example, 

rising temperatures promote the development of leafhopper populations (Jourdan-Ruf et al., 

1995). Climate change predictions have indicated an overall trend of increased precipitation 

in East Africa (EA), with a concurrent decrease in Southern Africa (SA) (IPCC, 2007). Such 

increase in precipitation produces a conducive temporal overlap of seasons, providing a 

‘greenbridge’ that allows leafhoppers to survive throughout the year (Stanley et al., 1999; 

Kloppers, 2005). On the other hand, less precipitation will cause droughts, and MSV disease 

epidemics have been shown to be associated with droughts followed by erratic precipitation 

at the beginning of the season (Efron et al., 1989), as occurred in West Africa in the 1983 and 

1984 seasons (Rossel and Thottappilly, 1985), as well as in Kenya in 1988-89 (Njuguna et al., 

1990). To offset future yield losses due climate change induced diseases, maize breeding for 

disease resistance is a priority.  

MSV infected maize leaves show chlorotic streaks because of chloroplast destruction (Storey, 

1925; Engelbrecht, 1982). In severe infections, susceptible varieties become totally chlorotic, 

leading to necrosis causing pre-flowering death and complete yield losses (Guthrie, 1978). In 

addition, MSV infections also result in stunted growth as a result of reduced carbohydrate 

production because of impairment of photosynthesis (Shepherd et al., 2010). Reduction in 

chlorophyll (photosynthetic capacity) and water (stomatal conductance) content have been 

linked to grain yield reduction in crops (Araus et al., 2002; Fischer et al., 1998). Systemic 

insecticides can be used to control leafhoppers, either through spraying or seed treatment. 

However, the probability of pesticide resistance and the possible negative impacts on the 

environment of these interventions underscore the urgent need to breed resistant varieties. 

Furthermore, pesticides options are expensive and beyond the reach of many resource poor 

farmers, who are the majority of maize producers in SSA. The severity of MSV disease, defined 

as the proportion of the maize leaves showing symptoms (Madden et al., 2007), is an important 

quantitative variable for evaluating new varieties in plant breeding. The disease can be 

quantified visually by giving a severity value/score to the symptoms as seen by the naked 

human eye. Recently, sensors are being deployed to quantify disease or stress signals based 

on remote sensing (Mahlein, 2016; Bock et al., 2010). However, most of the spectral sensor-
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based disease phenotyping studies in field crops have been conducted in wheat head blight 

(Fusarium graminearum) and yellow rust (Puccinia striiformis f. sp. tritici) (Bravo et al., 2003; 

Huang et al., 2007), net blotch (Pyrenophora teres), brown rust (Puccinia hordei) and powdery 

mildew (Blumeria graminis hordei) in barley (Kuska et al., 2015; Wahabzada et al., 2015), and 

orange rust (Puccinia kuehnii) in sugar cane (Apan et al., 2004).    

MSV disease symptoms on a susceptible variety result in changes in color, size and shape, 

therefore, these morpho-physical changes can be measured using multispectral imaging 

sensors (Bock et al., 2010; Bock and Nutter Jr, 2011; Barbedo, 2013; 2016). Image-based high-

throughput plant phenotyping has advantages over visual phenotyping (Mahlein, 2016), 

because it is repeatable, reproducible, very accurate and scalable (Martin and Rybicki, 1998; 

Bock et al., 2008; Barbedo, 2014; Clément et al., 2015; Bock et al., 2020). Visual scoring by trained 

experts can provide accurate estimates but this is often very slow and expensive, and 

throughput is very low. Scalability using manual scoring is limited to plot level. On the other 

hand, UAV-based multispectral imaging offers high-throughput at much lower cost and 

fulfils the needs of high-throughput phenotyping at field scale, hitherto a major bottleneck in 

plant breeding (Cobb et al., 2013; Mutka and Bart, 2015; Simko et al., 2017). Recent advances in 

remote sensing tools, especially unmanned aerial vehicles (UAVs) is promising to bring 

phenotyping up to speed with genomics by harnessing the power of computing, robotics, 

machine learning, artificial intelligence and image analysis (Furbank and Tester, 2011). The 

advances in the use of automated image-based plant phenotyping systems afford the plant 

breeding community rapid and efficient screening of large numbers of varieties with 

significant accuracy (Araus et al., 2018; Hickey et al., 2019). UAV-derived data provide 

measurements that are close to reality or actual, commonly referred to as ground truth in 

remote sensing (Bock et al., 2020). Accurate phenotyping is crucial to understand yield loss 

relationships, and germplasm phenotypes are rated appropriately. UAVs are easy to operate 

and offer high spatio-temporal resolution and quick coverage (Geipel et al., 2016; 

Haghighattalab et al., 2017). Potentially, the throughput of UAVs is intrinsically higher 

compared to ground-based approaches due to the wider viewing angle, greater speed, non-

invasive and are suitable in all soil conditions that may prevent ground traffic (Liebisch et al., 

2012).  
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Remotely sensed data can be useful as selection decision tools due to their highly significant 

correlations with grain yield (Weber et al., 2012). For instance, Weber et al. (2012) assessed 300 

maize varieties using hyperspectral data and reported a selection efficiency of 88 and 68%, 

using spectral reflectance measured at leaf- and canopy-level, respectively. Osborne et al. 

(2002) combined stepwise regressions and six wavelengths and managed to explain over 95% 

of grain yield variation in maize grown under optimum conditions. Most of the studies on 

maize yield prediction have been done at large-scale using satellite sensors (Báez‐González et 

al., 2002; Battude et al., 2016) and using proximal sensing (Osborne et al., 2002; Weber et al., 

2012). However, satellite sensors lack the plot-level precision required in data collection in 

plant breeding for variety analysis due to their low spectral and temporal resolution. On the 

other hand, proximal sensing is labor-intensive, of limited scalability and unsuitable when 

fields are too wet to allow traffic movement (Tattaris et al., 2016). Options from manned aerial, 

high spectral resolution remote sensing platforms are costly and are limited by operational 

complexity for application in small breeding plots (Hoffer et al., 2014; Jimenez-Berni et al., 

2009). The ability to predict maize grain yield under MSV disease stress can be useful for 

selecting superior lines for crossing at flowering. This will increase selection gain and reduce 

the costs of phenotyping in plant breeding.  

Despite recent advances in sensing systems, no significant advances have been made, to the 

best of our knowledge, in spectral-based MSV high-throughput phenotyping and yield 

prediction at plot level in maize using UAV-based imaging data. Yet the use of UAVs is 

becoming very important in supporting and accelerating breeding progress for generating 

data from increasingly large numbers of breeding plots. Enabling near real-time field-based 

yield predictions using UAV-derived imaging data is crucial for rapid cycling. This study 

explores the potential of UAV-derived multispectral data in image-based high-throughput 

phenotyping. The specific objectives were two-fold: to (1) develop protocol to predict MSV 

and grain yield using UAV-derived multispectral data; and (2) identify the suitable predictor 

variables (reflectance or indices) and ideal phenological stages for MSV and grain yield 

prediction. The additional objectives of chapter 6 are beyond what has already been 

established and reported in chapter 5 on MSV but reports on MSV and yield prediction using 

multi-temporal UAV-derived multispectral data 
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6.2 Material and methods 

6.2.1 Study area 

The research work was carried out at the Rattray Arnold Research Station (RARS) in 

Zimbabwe as explained in Chapter 1, section 1.6 of this thesis. RARS has also suitable facilities 

to run MSV inoculation experiment and offers ideal disease development conditions as shown 

in Chapter 5 Figure 5.1 of this thesis. 

6.2.2 Field Trial Design and Management 

A set of 25 varieties were grown in a 5 × 5 partially balanced alpha lattice design (as shown in 

Figure 5.2 in Chapter 5 of this thesis). Each plot was six rows replicated three times. The 

experimental area was made up of a total of 75 plots (25 varieties × 3 replications). Gross plot 

area was 7.5m × 4.5m (6 rows). Maize seeds were planted on the flat with a spacing of 0.5m 

in-row × 0.75m between rows. Four seeds were planted per station and later thinned to a final 

two plants per station at 21 days after sowing to attain a desired 53,333 plants ha-1. Uniform 

management was applied to all varieties. Fertilizer was applied at a rate of 450kg ha-1 basal 

(13:26:13 – N:P:K) at planting and 450kg ha-1 Ammonium Nitrate (34.5% N) top dressing 

divided into two equal amounts of 225kg ha-1, with the first half applied at early vegetative 

and the second at booting (pre-flowering) stage. Hand weeding and herbicides were used to 

keep the experimental area free of weeds.  

The trial was planted on 23 November 2018. The vegetative stage of the crop was between 

December 2018 and January 2019. Figure 5.1 shows the monthly rainfall, heat units, 

maximum, minimum and mean temperatures during the crop growing period. The weather 

data was recorded using an advanced automatic weather station Pro (supplied by Dacom 

Farm Intelligence, Netherlands) that record wind direction, solar radiation, relative humidity, 

wind speed, temperature and rainfall,. Plant and insect growth and development depend on 

temperature often described as heat units (HU). HU were calculated using equation [5.1].  



131 

 

6.2.3 Ground truth data collection   

To evaluate resistance to MSV, every plant was artificially inoculated when four leaves had 

fully expanded with mass reared viruliferous leafhoppers (Cicadulina mbila Naudé) (Rodier et 

al., 1995) previously fed with MSV infected maize plants. The ground truth MSV scores were 

taken on all 25 maize varieties in all replications. Each plot was rated using visual scoring 

(Figure 6.1a) for MSV at midvegetative, flowering and midgrain filling growth stages on a 

scale of 1 to 9. The ground truth MSV scores were taken on all 25 maize varieties in all 

replications. Each plot was rated for MSV using visual scoring at midvegetative, flowering 

and midgrain filling growth stages on a scale of 1 to 9. Grain moisture (%) and grain yield (t 

ha-1) were measured after physiological maturity. Physiological maturity was defined as the 

time when 95% of the base tip of seeds on the cob turned black (commonly referred to as black 

layer). Grain yield (t ha-1) was determined from the net plot area which comprised the 4 central 

rows of each plot, excluding one plant station from either end of the rows. Grain moisture 

content was taken using a Dickey-John high quality, instant reading moisture meter with a 

moisture range of 5 – 45% accurate to two decimal places. Grain yield was converted to t ha-1 

and adjusted to an equivalent at 12.5% moisture content.  

6.2.4 The UAV platform, image acquisition and processing 

The imagery was acquired using a Parrot Sequoia Multispectral camera mounted on an eBee 

SQ UAV (manufactured by Swiss Geo Consortium Sensefly, Cheseaux-Lausanne, 

Switzerland) (Figure 6.1b). The UAV is a Delta Fixed Wing craft with greater speed and 

superior aerodynamics compared to multi-rotor crafts. It is designed strictly for agricultural 

purposes. The Parrot sequoia sensor is made up of 5 cameras with 4 discreet bands: Green 

(0.53 – 0.57μm), Red (0.64 – 0.68μm), Red-edge (0.73 – 0.74μm) and Near-infrared (0.77 – 

0.81μm). The fifth sensor is a composite color capture camera (RGB). The sensor unit has a 

sunshine sensor with GPS, sunshine detection unit and the Inertial Measuring Unit (IMU). 

The GPS unit receives positional information so that the imagery produced is subsequently 

georeferenced. The IMU captures the attitudes of the sensor at the times of image capture (the 

rotations about the X, Y and Z axes). The sunshine unit captures and records the sunshine 

radiance value to allow for radiometric correction of the imagery. The imagery were acquired 
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between 10:00 to 14:00 GMT/UTC + 02:00. Figure 6.1 outlines the two methods used in data 

gathering, including a contrast of some aspects of each method. 

 

Figure 6.1. The major characteristics of (a) visual scoring (ground truth) and (b) multispectral 

UAV-based imaging system used in this study. *A comparison of visual scoring and 

multispectral imaging methods as used in this study in maize varieties disease severity 

phenotyping.  

The imagery was captured using a single grid mapping pattern, with the flight plan designed 

to map an area in excess of the area of interest to minimize the effects of radial distortion 

around the periphery of the area of interest. The flight plan had the following parameters: 42.5 

m altitude, with a ground sampling distance of 8 cm in the RGB and 11.5 cm in the 

multispectral; 75% forward overlap and 75% side overlap as per Sensefly’s recommendation. 

The sensor parameters and spectral ranges for the Red (R), Green (G), Red-edge (RE), and 

Near-infrared (NIR) bands of the camera used are shown in Chapter 5 Table 5.1. 

Data was collected at three phenological stages: midvegetative (pre-booting) stage; mid-

flowering (when 50% of the plants had flowered); and midgrain filling. The imagery captured 

over the study site were stitched together in Pix4D mapper, which generates two types of 
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multispectral Orthomosaics: the NoAlpha and the transparent mosaics. These were generated 

for each band of the imagery (G, R, RE, NIR). The NoAlpha imagery was used as input into 

QGIS for reflectance data extraction. A shape file was created by converting a Google earth 

KML (Key Markup Language) file of the mapped area. The shape file was then used to clip 

the imagery of the mosaic to the extent of the study area. Shape files were then drawn for each 

of the compartments (individual plots) according to the experimental layout shown in Figure 

5.2. The “Clip Multiple Layers” plugin was used to simultaneously clip each of the band 

images using the shapefile for each plot. Once the shapefile compartments were extracted for 

each shapefile, the maximum, weighted mean, minimum reflectance and their standard 

deviations were generated for each plot in each layer. The average reflectance for each plot 

was determined by considering a buffer of 50cm on all four sides of the plot to restrict the 

analysis to the center of the plot. Extracted reflectance data were exported into excel 

spreadsheet format for each of the three phenological stages. Vegetation indices were 

calculated from the plots’ mean reflectance values. 

6.2.5 Vegetation indices 

For complete phenotyping, this study used reflectance values in multispectral bands 

corresponding to Green (0.53 – 0.57μm), Red (0.64 – 0.68μm), Red-edge (0.73 – 0.74μm) and 

Near-infrared (0.77 – 0.81μm) taken at the same three different phenological stages. The 

reflectance values were used to derive the normalized difference vegetation index (NDVI), 

Red-edge NDVI (NDVIred-edge), green normalized difference vegetation index (GNDVI), Simple 

Ratio (SR), green Chlorophyll Index (CIgreen) and Red-edge Chlorophyll Index (CIred-edge) as 

shown in Chapter 5 Table 5.2. In addition, the soil-adjusted vegetation index (SAVI) and 

optimized SAVI (OSAVI) were calculated using equations [6.1] and [6.2] according to Huete 

(1988) and Rondeaux et al. (1996), respectively. 

 

SAVI =
NIR − R

NIR + R + 0.5)(1 + 0.5)
× (1.0.5) 

[6.1] 

 

SAVI =
NIR − R

NIR + R + 0.16)
 

[6.2] 
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6.2.6 Statistical Analysis 

Data was initially analyzed with a standard linear mixed model for a block design including 

variety as a random effect to estimate variance components and heritability of the different 

traits: 

    [6.3] 

Where, y i is the response in the ith block with the jth variety, µ is the overall mean, βi is the 

effect of the ith block, g j is the effect of the jth variety, g j  N(0, σg 2), εij is the experimental error 

in the ith block with the jth variety, εij  N(0, σa 2) 

Broad sense heritability (H2), a measure of repeatability and precision, which is linked to 

higher predictive ability for secondary traits associated with grain yield (Crain et al., 2017), 

was computed as follows: 

      [6.4] 

 

Where the variances are defined in equation [6.3] and r is the number of replicates. 

Residual of the model were analyzed to identify outliers and normality. Good predictors 

should have stability across experiments, low coefficient of variation and high heritability, 

and preferably be genetically correlated with the trait of interest to perform indirect selection, 

therefore phenotypic and genotypic correlation between predictors and response variables 

(MSV and grain yield) were calculated.  

A correlation matrix was constructed at different phenological stages to identify variables that 

are correlated. Highly correlated variables indicate that the variable is completely predictable 

using the other variables, which means it could be dropped without affecting model accuracy. 

Variable redundancy and multicollinearity increase modelling complexity and affects 

regression performance. Finding optimal subset of variables from the input reduces noise or 

select uncorrelated variables thereby improving performance of the prediction model and 

reduce runtime. Principal component analysis (PCA) based on phenotypic correlation were 

used to understand and describe data structure and general relationships.  
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Predictive models 

Raw data was used to build predictive models. In plant breeding, breeders are most interested 

to classify genotypes into resistant or susceptible than considering MSV score directly. 

However, certain varieties may fall in between the two classes. Therefore, the visual MSV 

scale was divided into three categories: resistant (1 – 3.5), moderately tolerant (3.5 – 5.5), and 

susceptible (5.5 – 9) for analysis. Predictive variables were grouped in two groups: reflectance 

and indices data measured or derived at midvegetative (V), flowering (F), and grain filling 

(GF). Because MSV was measured at the same time that images were taken, predictive models 

considered as predictive variables those that were measured before or at the same time in 

which MSV was measured. For MSV at vegetative stage, only predictive variables measured 

at vegetative stage were considered, for MSV at flowering, vegetative and flowering 

predictive variables were used, and for MSV at grain filling, all predictive variables were 

considered. Because MSV measurements at the different stages were highly correlated (R = 

0.88 – 0.95), we also considered average MSV in prediction. This measure is equivalent to the 

area under the disease progress curve (AUDPC) if days between measurements are equal. 

Three methods were used to predict MSV and grain yield using UAV-derived imaging data: 

multiple regression, decision tree, and linear regression with field calibration. Multiple 

regression method was selected because it is simple and allows predictor selection. However, 

inclusion of interaction effects is not easy, therefore decision tree was used as a second method 

that even when it does not include direct interactions between predictors, it uses predictors 

one after the other in data subsets. Finally, a third linear regression method with field 

calibration was considered because it can be applied in any situation and it is not necessary to 

define an a priori model since the model is calibrated for each trial. 

Multiple regression model 

Considering different combinations of the four response variables, that is, MSV at three 

vegetative stages and the average of them, the two sets of predictive variables (spectral data 

and indices), and the three vegetative stages at which these were taken, thirty-six different 

models were used. For example, for MSV at vegetative stage, only spectral data and indices 

measured at the same stage were considered as predictive variables, while for MSV average 
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we considered as predictors, different combinations of measures at the three stages. Three 

models used predictors variables measured at only one vegetative stage. The other models 

used combination of two vegetative stages data. Finally, one model combined predictors from 

the three vegetative stages. Half of the models use spectral data to do the prediction and the 

other half used indices. PROC GLMSELECT in SAS V9.4 was used to estimate and to select 

predictive variables, and the best predictive models. Selection of predictive variables was 

performed based on the LASSO (least absolute shrinkage and select operator) method and for 

the selection model we used the predicted residual sum of squares with external cross 

validation (CVEX). To measure the model precision, corrected Akaike’s information criterion 

for small sample (Hurvich and Tsai, 1989), the average square error in the validation set 

(ASETest), and the predicted residual sum of squares in the validation data set (CVEXPRESS) 

were used. The importance of each variable was based on the frequency with which that 

predictive variable was included in the model for the 50 cross-validation (CV) sets. Because 

the main interest is to classify varieties in the three categories, for the best models identified 

in previous analyses, predicted values in the 1 – 9 scale were transformed into the three 

categories scale (resistant (1-3.5), moderately resistant (3.5-5.5) and susceptible (5.5-9) as 

explained in data collection section. Models were evaluated using the polychoric correlation 

and percentage of matching between the predicted and observed values in this scale.  

The LASSO method obtains parameter estimations minimizing the residual sum of square 

penalized by the absolute size of the parameters, 
2

min i iy X β  with the restriction that

1

m

j

j

t


 . The formulas used for the evaluation statistics are: 

log 2 2 2
SSE

AICC n p n
n

 
    

 
    [6.5] 

Where n is the number of observations, p the number of parameters and SSE is the error sum 

of squares. The average square error (ASE) in the validation was computed using equation 

[6.6]: 

SSE
ASE

n
        [6.6] 
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For cross validation, the predicted residual sum of squares (PRESS) statistics was 

calculated as follows:  

 

2

2
1 1

n
i

i i

r
PRESS

h




       [6.7] 

Where ri is the residual at observation i and hi the leverage of observation i,  ' '

i i ih


 x X X x  .  

The PRESS statistics considered the residual at each observation, weighted by the position of 

the point in the space of the predictor variables because it is known that predictions in the 

edge of the space are less precise.  

Decision Tree  

Decision Tree regression was fitted using PROC HPSPLIT of SAS V 9.4. Because the method 

is intrinsically a variable selection method, only one model for each response variables was 

used, i.e., one per stage in which MSV was measured, the average across stages, and grain 

yield. All predictive variables were included simultaneously. To fit the models, the maximum 

depth of the trees was fixed at 8 and the minimum leaf size at 3. Tree pruning was performed 

considering the cost complexity algorithm. Variable importance was calculated to identify 

best predictors. 

Linear regression with field data calibration 

In this approach to predict MSV, besides the indirect measurements (image data), nine plots 

were used for calibration, that is, one plot for each one of the three levels of response to 

infection (resistant, moderately resistant, and susceptible) per replicate. Image data or indices 

are obtained or calculated as usual for all the plots. The nine calibration plots are used to 

obtain a linear regression model that is used to predict the other plots. We mimic this 

procedure by simulation, considering each combination response to infection-replicate as 

strata, one plot for each stratum was selected by random to have the nine calibration plots. 

This procedure was replicated two hundred times and a linear regression model was 

estimated for each predictive variable to predict MSV at different stages and the average 

across stages. The remaining 66 of the 75 plots were predicted following this procedure and 
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the square root of the mean square error (RMSE) and the Pearson correlation were used to 

measure predictive accuracy.   

The 
SSE

RMSE
n p




is comparable with the ASE except for the denominator in the RMSE 

considers the number of parameter p. Pearson correlation was calculated using equation [6.8] 

as shown in cross validation section below. 

6.2.6.1 Cross Validation 

To test the accuracy in prediction, we followed a random cross validation (CV) procedure. 

The data set was divided into a training and validation subset with 12 varieties in the training 

and 13 varieties in the validation set. We used a stratified selection procedure as described in 

Table 6.1, and the procedure was repeated 50 times. Varieties were assigned to strata 

according to the average of the scale level of MSV. The same 50 cross validation sets were used 

in all the models.  

 Table 6.1. Number of varieties by MSV susceptibility and in CV subsets 

Strata 

Total 

number of 

varieties 

Training Set 

Validation Set 

 

n % 

Susceptible 

Moderately resistant 

Resistant 

 

7 

12 

6 

 

3 

7 

2 

4 

5 

4 

 

30.8 

38.5 

30.8 

 

 

The correlation coefficient (r) and RMSE of cross validation were used as metrics to evaluate 

the model suitability and how well the models predict new data. Equations [6.7] and [6.8] 

were used to calculate r and RMSE, respectively: 

  

 𝑟xy =
𝐶𝑜𝑣 (𝑥,𝑦)

σ𝑥σ𝑦
 [6.8] 

 

Where: 𝑟𝑥𝑦 = correlation coefficient; Cov (x,y) = covariance of variables x and y; σx = 

standard deviation of x; σy = standard deviation of y.  
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦

𝑖
− 𝑦̂)

2

𝑁

𝑖=1

 

 

[6.9] 

Where N = sample size, yi = observed values, 𝑦̂𝑖  = predicted values. 

 

6.3 Results  

6.3.1 Data structure 

The heritability as well as phenotypic and genotypic correlations for MSV and grain yield are 

high. The grain yield is negatively affected by the presence of MSV. Negative correlations are 

at least R = -0.82 for phenotypic correlation and R = -0.92 for genotypic correlation. Thus, most 

of the potential predictors showed high phenotypic and genotypic correlations with MSV and 

GY. However, there are five predictors that showed low phenotypic correlations below 0.6 in 

absolute terms with both response variables (MSV and grain yield). These are NDVIRE (R = 

0.01 – 0.15) at vegetative and flowering stages, CIRE (R = 0.01 – 0.20) at vegetative and 

flowering stages, Green band (R = 0.34 – 0.45) at flowering, Red-edge (R = 0.18 – 0.46) at all 

three phenological stages and NIR (R = 0.52 – 0.58) at flowering and grain filling stages. 

However, three of these predictors had high genotypic correlations in absolute terms, for 

example, CIRE (R = 0.75 to 0.86) and NIR (R = 0.83 to 0.89) at flowering and NIR (R = 0.79 to 

0.90) at grain filling stage. The five predictors also showed low heritability and large 

coefficient of variation, except Green at flowering time (H2 = 71.5%, CV = 5.9%).  

Figure 6.2 shows the relationship between grain yield and mean disease severity on different 

varieties under artificial maize streak virus (MSV) inoculation. Grain yield showed significant 

(p < 0.001) difference between susceptible and resistant varieties. Grain yield ranged from 1.1 

(most susceptible) to 4.5 t ha-1 (resistant). Comparison of disease severity and associated grain 

yield shows a significant (R2 = 0.74) decline in yield as the disease severity increases on 

susceptible varieties. The comparatively large differences observed in these varieties is largely 

attributed to differences in MSV resistance and susceptibility of the different varieties. The 

best variety (V16) produced 10% significantly (p < 0.01) higher grain yield than the most 

resistant commercial check (V9) and a mean MSV score of 2.7 out of 9. The commercial 

resistant check, V17 had slightly lower MSV score (2.3) than the highest yielding variety, V16 

(2.7), but not significantly (p > 0.05) different. Relative yield difference between the highest 
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yielding resistant variety (V9) and the most susceptible (V1) was highly significant (p < 0.001) 

and was almost three-fold. 

 

Figure 6.2. Relationship between grain yield and disease severity on mean varieties under 

artificial maize streak virus (MSV) inoculation. The vertical red lines demarcate the three 

classes (resistant, moderately resistant and susceptible). Blue cross represents the confidence 

interval (95%) for MSV (horizontal line) and GY (vertical line). Blue shadow is the 95% 

confidence interval for the mean model. V1 to V25 = Varieties 1 to 25 

6.3.2 PCA Analysis 

Correlation between predictive variables and PCA analysis was performed to describe their 

relationships and to establish which variables can be retained or removed to train the models. 

The strongest structure in the data is reflected in the largest proportions of variance explained 

by the first components. The first two components explain 69.1% of the variation in the data 

(Table 6.2). The first 10 cumulative components explain 96% of the variance (Table 6.2). Thus, 
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the most important components were PC1 and PC2, explaining 69.1% of total variance. 

Neither pair of variables showed a correlation of 1.  The largest correlations, above 0.95 were 

found between pair of variables for which we can expect this large correlation because of their 

definition. Considering this result, no one variable was removed “a priori” from the training 

model especially because we then used variable selection procedures. 

Table 6.2. The eigenvalues and total variance explained by components of PCA analysis 

considering all the variables 

Component Eigenvalue Proportion Cumulative 

1 20.94 0.499 0.499 

2 8.07 0.192 0.691 

3 3.70 0.088 0.779 

4 2.16 0.051 0.830 

5 1.72 0.041 0.871 

6 1.18 0.028 0.899 

7 1.06 0.025 0.924 

8 0.69 0.016 0.941 

9 0.51 0.012 0.953 

10 0.40 0.010 0.962 

 

Multiple Regression 

Thirty-six different models were considered as a result of the combination of the four response 

variables, MSV at different stages and the average MSV, and independent variables. Half of 

the models used multispectral data to predict and the other half used indices. Finally, the 

individual bands and indices were pooled together for predicting the response variables. The 

most relevant statistics are the AICC, the ASE-Test and CVEXPRESS (Figure 6.3). In all cases, 

the lowest values are indicative of higher accuracy. The AICC is related with the predictive 

accuracy of the models. 

Considering the three fit statistics, data taken during the vegetative stage are better predictors 

than data from flowering and grain filling. There are no big differences in using spectral data 

or indices. However, the indices have more outliers than the spectral data, especially for the 

ASE-Test statistic. Prediction of MSV scale during grain filling shows poor results compared 
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to prediction at other stages or the average prediction across stages. Because these models 

include all the predictive variables, a selection procedure was run in order to select predictive 

variables and to reduce the complexity of the model. Based on this analysis, we identify those 

predictive variables that were more frequently included in the models (50 Cross Validation). 

We also compared the fit statistics of the selected model with the full model. For these 

analyses, we considered only models which fit. Thirty percent of the models using spectral 

data did not fit, while for indices it was 18%. For indices, the variability between models was 

larger than for spectral data. In the latter case, they ranged from 20% to 38% and for indices 

from 2% to 44%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Boxplot for three fit statistics, arranged by set of variables (multispectral or indices), 

response variables (MSV at different stages and the average MSV) and inside each cell, the 

different sets (stages) of independent variables considered for prediction. V = vegetative, F = 

flowering, VF = combine vegetative and flowering, G = green filling, VG = vegetative-grain 

filling, FG = flowering-grain filling, VFG = vegetative-flowering-grain filling combined 
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Four variables were present in the models with percentages between 61.5 and 88.7. These 

variables are GV, RV, RF, and GNDVIV (Figure 6.4). Five variables (NIRV, CIGV DNVIREV, 

CIGF, and SRF) have percentages between 31.8 and 47.8; remaining variables have 

percentages lower than 20%. In general, phenotypic traits measured at vegetative are better 

predictors than those at flowering or grain filling. This might be because after flowering, 

tassels and old senescing leaves could mask the detection of MSV by the multispectral 

cameras.  

 

Figure 6.4. Variable importance. The bands or indices were measured at vegetative, flowering 

and grain filling. GNDVI = Green Normalized Difference Vegetation Index; NDVIred-edge = 

Red-edge Normalized Difference Vegetation Index; SR = Simple Ratio, CIG = Green 

Chlorophyll Index. 

6.3.3 Decision Tree 

Because the method is intrinsically a variable selection method, only one model for each 

response variables was used, that is, one per stage in which MSV was measured and the 
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average cross stages. All predictive variables were included simultaneously. Using variable 

importance (Figure 6.4), GNDVI at vegetative is the only variable with high importance to 

predict responses for all three vegetative stages and their mean. CIG at vegetative is important 

to predict the average MSV, and CIG at flowering is the most important to predict both, MSV 

at grain-filling and average MSV. Other variables that show importance are Red at vegetative 

and GNDVI at flowering to predict MSV at grain-filling. All the above predictive variables 

have large importance in both, training and validation sets. The variability in variable 

importance across cross-validation sets are shown in Figures 6.5a - c.  

 
(a) 

 
(b) 

 

 
(c) 

 

  

Figure 6.5. Boxplots of (a) relative importance of predictive variables in training set by 

response variable, (b) relative importance of predictive variables in validation set by response 

variable and (c) ratio of relative importance of predictive variables, validation/training by 

response variable. All the bands or indices were measured at V, F and G = vegetative, 
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flowering and grain filling. R = Red; G = Green; RE = Red-edge; NIR = Near-infrared; GNDVI 

= Green Normalized Difference Vegetation Index; NDVIRE = Red-edge Normalized 

Difference Vegetation Index; SR = Simple Ratio, CIG = Green Chlorophyll Index; SAVI = soil-

adjusted vegetation index; OSAVI = optimized SAVI. Spectral bands or vegetation indices 

ending with V, F or G means it was measured at vegetative, flowering or grain filling stage, 

respectively. 

Figure 6.6 shows (a) number of leaves in the tree per response variable and (b) Average Square 

Error (ASE) by response variable. The number of leaves per tree represents the complexity of 

the model (Figure 6.6a). Complexity is associated with the complexity of the problem and not 

with the accuracy in prediction. Figure 6.6b shows the average square error. As usual, the 

validation set has a lower predictability than the training set. Predictions at flowering stage 

and the average are similar while predictions at vegetative or grain-filling present the largest 

ASE. An average square error of 1.5 means a 1.2 average error in MSV scale. 

 

(a) Boxplot of number of leaves in the tree per 

response variable. 

 

(b) Boxplot of average square error by 

response variable. 

Figure 6.6. Boxplots of (a) number of leaves in the tree per response variable and (b) Average 

Square Error (ASE) by response variable. MSVV: MSV scale at vegetative stage, MSVF: MSV 

scale at flowering, MSVG: MSV scale at grain filling stage, MSV: Mean MSV 
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6.3.4 Linear regression with field data calibration 

The best three models for MSV prediction (at any stage or the average) are those with GNDVI, 

CIG and Red band, all of them measured at vegetative stage, as predictive variables. 

Correlation goes from 0.713 (Red band at vegetative) to 0.84 (GNDVI at vegetative) (Figures 

6.7a - d). In absolute terms, the highest correlations between UAV-derived and manual scoring 

(Figure 6.7d - average MSV as also reported in chapter 5) were Red band (R = 0.78), NDVI (r 

= 0.75), SR (r = 0.74), CIG (r = 0.83), CIRE (r = 0.78) and GNDVI (r = 0.84). These significant 

agreements between UAV-derived and ground truth data suggest that UAV-based 

phenotyping of MSV in maize is feasible. This is critical because to be effective, image-based 

phenotyping methods need to achieve a level higher or equivalent the accuracy achieved 

using manual phenotyping methods quickly at low costs.  

 
a)  Vegetative 

 
b) Flowering 

 
c) Grain filling 

 
d) Average across three stages 

Figure 6.7. Boxplots of Correlation for MSV at (a) vegetative, (b) flowering, (c) grain filling (d) average 

MSV at three phenological stages by predictive variables for calibration by simple linear regression. R 

= Red; G = Green; RE = Red-edge; NIR = Near-infrared; GNDVI = Green Normalized Difference 
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Vegetation Index; NDVIRE = Red-edge Normalized Difference Vegetation Index; SR = Simple Ratio, 

CIG = Green Chlorophyll Index; SAVI = soil-adjusted vegetation index; OSAVI = optimized SAVI. 

The best MSV predictors were GNDVI (r = 0.84; RMSE = 0.85, CIG (r = 0.83; RMSE = 0.86) and 

Red band (r = 0.77; RMSE = 0.99) at vegetative stage. The model that used GNDVI at vegetative 

to predict MSV at flowering was also the model with the lowest RMSE (0.847). The largest 

RMSE corresponds to the model that used Red band at vegetative (RMSE = 1.275) to predict 

MSV at grain filling. The better predictive variables were the same that showed largest 

correlation across all the data (Figure 6.8). 

 

Figure 6.8. Boxplots of RMSE by response and predictive variables for calibration by simple 

linear regression. R = Red; G = Green; RE = Red-edge; NIR = Near-infrared; GNDVI = Green 

Normalized Difference Vegetation Index; NDVIRE = Red-edge Normalized Difference 

Vegetation Index; SR = Simple Ratio, CIG = Green Chlorophyll Index; SAVI = soil-

adjusted vegetation index; OSAVI = optimized SAVI. 
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6.3.5 Grain yield prediction using selected best models  

The models for maize grain yield predictions were based on UAV-derived multispectral data measured 

at three phenological stages. Out of 36 different model combinations of spectral bands and derived 

vegetation indices, six models were selected for prediction of grain yield (Figure 9). Of the selected 

models, grain yield was significantly correlated with UAV-derived data. The yield variability explained 

by models based on phenological stages of multispectral data ranged from r = 0.69 to 0.86 for the test 

data. Best regression for grain yield (r = 0.86; RMSE = 0.323) was obtained with a model combination 

of three spectral bands (RV-NIRV-RF) at vegetative and flowering stages. The most frequently selected 

bands by the model were Near-infrared (0.77 – 0.81μm), Red (0.64 – 0.68μm) and Red-edge (0.73 – 

0.74μm). This indicates the importance of the use of spectral band combinations for maize grain yield 

under MSV disease. In this study, the spectral bands provided an overall better prediction or more 

models comprised of band combination compared to VIs. Using VIs, only two models GNDVI-OSAVI 

(r = 0.84; RMSE = 0.355) at vegetative and NDVIred-edge-GNDVI (r = 0.74; RMSE = 0.555) at green 

filling stages were selected for grain yield prediction. The four out of six selected models were those 

based on Red and NIR bands.  

Evidently, our results show that most of the models selected use UAV-data measured at the 

vegetative stage, indicating this to be the critical phenological stage for predicting MSV and 

grain yield using our data. Combining spectral bands at the same phenological stage or across 

stages significantly improved the model predictions (Figure 6.9). These results demonstrate 

the capability of UAV-derived multispectral imaging data to predict MSV and estimate maize 

grain yield with reasonable accuracy. In addition, there was no model selected using single 

band or index, suggesting that predictions were improved when using models that use a 

combination of bands or VIs. 
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Figure 6.9. Grain yield prediction using the selected models at different phenological stages.  

GV = Green at vegetative; RV = Red at vegetative; NIRV = Near-infrared at vegetative; RF =  

Red at flowering; REF = Red-edge at flowering; NIRF = Near-infrared at flowering; NDVIREG  

= NDVI red-edge at grain filling; GNDVIG = green NDVI at grain filling; GNDVIV = green  

NDVI at vegetative; OSAVIV = OSAVI at vegetative.    

6.4. Discussion  

This study set to predict MSV and grain yield using multi-temporal UAV-derived 

multispectral data measured at different phenological stages. High heritability (H2) values 

were obtained for both the spectral and VIs, indicating high level of precision of the UAV-

based measurements. In addition, high phenotypic and genotypic correlations were found 

between indirect traits (spectral and VIs) and MSV and grain yield. This is desirable when 

using indirect traits for selection. For example, Falconer and Mackay (1996) suggested that the 

use of indirect selection traits for grain yield is only possible if the H2 of the indirect traits are 

higher than that of grain yield itself. In this study most of the potential predictors had higher 
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H2 than that of grain yield (H2 = 89%), especially at vegetative stage. This confirms that UAV-

based remotely sensed data can provide high precision for field-based maize phenotyping.  

Variation among varieties for MSV and grain yield was observed. MSV disease infection in 

susceptible varieties resulted in significant reduction in grain yield (Figure 6.2). This varietal 

variation was also detected using spectral reflectance data because MSV disease symptoms 

on a susceptible variety resulted in changes in color, size and shape. These morpho-physical 

changes were detected by UAV-based multispectral imaging sensors. This is crucial because 

in breeding for disease resistance, subtle differences between resistance and susceptibility 

varieties due to pathogen × genotype interactions need to be efficiently evaluated (Mahlein, 

2016). Using UAV-based methods, the disease needs to be quantified with level that is higher 

or equivalent to the precision and accuracy achieved by visual scoring method – the ground 

truth data. The use of UAV-based remote sensing in crop evaluation promises to bring 

phenotyping up to speed with genomics. With easier access to UAVs with reasonable 

payloads, cheaper, field-based high-throughput plant phenotyping platforms are increasingly 

becoming useful tools in varietal evaluation in plant breeding to unlock the power of genetic 

analysis.    

6.4.1 Relationship between ground truth and UAV-derived data 

The development of maize varieties resistant to MSV is important to adapt to changing climate 

conditions and to protect the farmers from the effects of the MSV disease on maize. Robust 

phenotyping is critical in plant breeding and evaluation programs. Our results show 

significant positive correlations between UAV-derived data and manual scoring (Figure 6.7). 

Comparison of image-based data with ground truth measurements helped to evaluate the 

accuracy of UAV-based method used in this study. This agreement between UAV-derived 

data and ground truth measurements is encouraging and will solve the phenotyping 

bottleneck currently experienced with manual methods. Our results agree with results 

reported by other researchers in other crops. For example, good agreements were found 

between UAV-based and ground truth data in bacterial Huanglongbing (Citrus Greening) 

disease in citrus trees (Garcia-Ruiz et al., 2013)) and in fire blight disease (Erwinia amylovora) 

in apples (Jarolmasjed et al., 2019). Similarly, Mahlein et al. (2013) and Jansen et al. (2014) also 
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reported significant agreements between spectral data and ground truth data in sugarbeet 

Cercospora leaf spot. Our results will form the basis for future refinement of UAV-based remote 

sensing data in field-based high-throughput phenotyping in maize.  

6.4.2 Predicting MSV and grain yield using UAV-derived data 

This study predicted maize grain yield using multispectral and derived vegetation indices 

obtained at three phenological stages (Vegetative, Flowering and Grain filling). Higher MSV 

and grain yield prediction accuracies were obtained using spectral bands or indices measured 

at vegetative stage. The modelling results using imaging data from the later phenological 

stages (Flowering and Grain filling) of maize varieties were less accurate in predicting MSV 

and grain yield. This is expected given that the study evaluated the utility of phenotyping 

varietal response to MSV and predicting their final yield. MSV disease symptoms on a 

susceptible variety result in changes in color, size and shape. Therefore, these morpho-

physical changes can be measured accurately using multispectral imaging sensors at the 

vegetative stage. A further possible explanation could be that measurements after flowering 

could suffer from masking effects by the flowers (tassels) and old senescing leaves at midgrain 

filling. Thus, remote sensing at midvegetative stage can improve the accuracy of MSV and 

yield predictive models. The predictive power of the model increased by addition of one or 

more predictor variables to the models.  

Predictor variables that had low heritability and low phenotypic and genotypic correlations 

with MSV and grain yield performed poorly in predictions compared to those with high 

heritability and high phenotypic and genotypic correlations with MSV and grain yield. Using 

variable importance selection method allowed the model to select a few important predictor 

variables and to drop non-important variables while improving model performance. Variable 

importance method is also important in reducing multicollinearity between predictors. The 

selected variables (Figure 6.4) were combined in the model and addition of highly predictive 

variables increased the final prediction accuracy. This is evident in our results (Figure 6.9), 

where all selected models used more than one index or spectral bands. In addition, the effects 

of individual predictor traits (spectral bands or indices) on the model performance were 

examined. This is important in assessing which predictor traits may be suitable for future 
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high-throughput studies and data collection. However, no model using individual predictor 

trait resulted in significant improvement in the prediction accuracy compared to pooled 

predictors, suggesting that these predictor traits could work in an additive fashion. These 

findings provide evidence for measuring multiple phenotypic traits for variety evaluation 

purposes because accurate prediction results were obtained using multi-trait models. This 

agrees with Crain et al. (2018) who found similar results in wheat.      

Examining the spectral data in the models provides an opportunity to see which bands were 

frequently selected in predicting MSV and grain yield. Of the six models selected (Figure 6.9), 

four included the NIR and Red bands. In addition, combining NIR band with Red band gave 

significantly higher prediction or improved the explanatory power of the models. This was 

also true with the selected indices. Thus, not all indices or bands measure the same aspect of 

biophysical parameters or crop productivity. Combining them increased the joint predictive 

power, thus increased complementarity. For example, the NIR band is known to be sensitivity 

to chlorophyll content and therefore useful for detection of crop health and productivity 

modelling. NIR senses photosynthesis better than the Red or Green bands (Ollinger, 2011; 

Mariotto et al., 2013). The Red and Green bands saturate at the first leaf layer because 95% of 

signal tends to be absorbed at this stage, yet in maize more leaf layers with considerable 

amount of chlorophyll are below the canopy (Gitelson, 2011). The NIR and far-near-infrared 

(FNIR) are the only remote sensing bands that can sense the middle layer of the canopy due 

to multiple scattering effects in the NIR (Gitelson, 2011). Thus NIR can sense much more 

valuable information for crop productivity modelling.    

The ability to predict maize grain yield before harvesting will assist breeders and agronomists 

in the efficient selection and advancement of high yielding varieties resistant to biotic stresses. 

Furthermore, yield prediction using UAV-derived data can assist in plant breeding by 

speeding up selections that can be crossed at flowering, instead of waiting until the crop 

reaches physiological maturity and yield is processed. Early grain yield prediction models 

based on UAV-derived data could assist in early decision making, time saving and reduce 

costs in breeding and varietal phenotyping programs. Continuous improvements in yield 

prediction models and increased data generation capabilities will reduce selection bottlenecks 

and increase genetic gain. 
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6.4.3 Field-based high-throughput imaging of maize and the big data challenge 

UAV-based phenotyping is becoming an attractive alternative to labor-intensive manual 

phenotyping. It offers convenient operation, high spatio-temporal and reasonable spectral 

resolution data (Sankaran et al., 2015), and is able to quantify within-plot variability in field-

based crop phenotyping (Araus et al., 2014; Zaman-Allah et al., 2015; Han et al., 2019). This has 

the potential to revolutionize varietal evaluation in plant breeding programs. However, while 

UAVs are becoming smart alternatives to labor-intensive manual phenotyping in plant 

breeding, the massive volume, variety, and velocity of data produced by these platforms 

result in a ‘big data problem’ (Mahlein, 2016; Singh et al., 2016; Hickey et al., 2019). To improve 

our phenotyping ability, the voluminous data produced by real-time UAV-based remote 

sensing need to be efficiently achieved and retrieved for analysis. Retrieving, analyzing and 

interpreting image-based data is still a challenge within the plant breeding and phenotyping 

community (Minervini et al., 2017). Extraction of patterns and features from such a huge 

corpus of data derived from UAV and other sensor platforms requires powerful analytical 

tools including machine learning algorithms to derive meaningful phenotypic information. 

However, the ensuing advantages brought by image-based data makes it a promising 

approach for addressing phenotyping bottleneck in planting breeding. Therefore, to be able 

to effectively use UAV-based remotely sensed data for disease phenotyping, advanced 

statistical and data analysis methods are important (Mahlein, 2016). In this study, we 

evaluated different methods to analyze UAV-derived multispectral data, in line with future 

vision that high-throughput phenotyping will become routine in varietal evaluation. Our 

results show that UAV-derived multispectral remotely sensed data can be used in high-

throughput phenotyping of MSV disease with high accuracy.    

6.5. Conclusion 

Accelerating crop genetic improvement to sustain food production to meet the expected 

population growth requires significant improvement in phenotyping ability to achieve the 

needed genetic gain in major food crops like maize. UAVs are becoming a new platform for 

getting high spatio-temporal resolution data for high-throughput phenotyping in plant 

breeding and varietal evaluation. This study evaluated the utility of UAV-derived 
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multispectral data in predicting maize streak virus (MSV) disease and grain yield using UAV-

derived multispectral imaging data and identify the most ideal phenological stage for MSV 

and grain yield prediction. The results show that UAV-based method is a useful and reliable 

tool for phenotyping and predicting maize yield under artificial MSV inoculation. We 

conclude that: 

1. The vegetative stage appears to be the ideal phenological stage for quantifying MSV 

and grain yield prediction using UAV-derived multispectral data; 

2. The results showed the importance of Red and NIR bands as these were frequently 

selected in most of the models that gave the highest precision values for grain yield 

prediction;  

3. High spacio-temporal resolution UAV-derived imagery at key phenological stages can 

be used to predict MSV and grain yield with reasonable accuracy, and therefore, have 

great potential for use as a selection tool in maize breeding and varietal evaluation; 

4. Combining spectral bands and vegetation indices significantly improve model 

predictions, and the methodology used in this study has demonstrated the utility of 

image-based high-throughput phenotyping to relieve the breeding community of 

phenotyping bottlenecks; 

5. The methodology used in the study could be applicable to other disease stresses that 

affect maize, and possibly to other crops to accelerate crop genetic improvement and 

varietal selection, thereby addressing the current phenotyping bottleneck. 

The results obtained in this study represent the successful use of UAV-derived multispectral 

data for effective and efficient evaluation of maize varieties for MSV resistance. Consequently, 

UAV-based remote sensing data can be useful for high-throughput phenotyping of maize to 

identify resistant varieties and to discriminate them under field conditions. However, the 

prediction models and methodology used in this study need to be further examined in other 

diseases and abiotic stresses. In addition, yield related variables like leaf area index can be 

incorporated into the models to see if this can improve maize grain yield prediction accuracy. 

In this study, we used multispectral data. However, detection of subtle plant disease 

symptoms may be lost at coarser spectral resolution. Future investigations should look into 

inter-comparison of hyperspectral versus multispectral sensors. 
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SECTION IV: SYNTHESIS  
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CHAPTER 7: UAV AND FIELD SPECTROMETER BASED REMOTE SENSING OF 

MAIZE: A SYNTHESIS 

7.1 Introduction 

The challenges associated with maize production to meet food security in Africa keep 

evolving. Improving food security in Africa requires robust early warning systems informed 

by accurate and up-to-date information, especially croplands and yield estimates of the staple 

food crops. In addition, to address the ever-evolving diseases due to climate change, there is 

an urgent need to develop and deploy improved and disease-resistant maize varieties using 

modern tools by combining genomics, high-throughput phenotyping, and GIS-based decision 

support tools in order to build resilience and adaptive capacity of the resource-poor farmers 

in tropical Africa. In Africa, crop yield information is updated through farmer communication 

or farm surveys of selected fields by government agricultural extension officers. However, 

these conventional methods are error-prone due to discrepancies in declarations (farmer self-

reported data) and are time-consuming and expensive. Furthermore, extension agents lack 

modern instruments to accurately estimate yield. Options to use remotely sensed data are 

available but are rarely being used despite being proven to be reliable and cost-effective for 

estimating yields across large areas, providing accurate and timely information required for 

early warning systems. The use of remotely sensed data for high-throughput phenotyping has 

been an area of active research because phenotyping of phenomes associated with grain yield 

is presently a major bottleneck to crop improvement. Few studies have been conducted on 

phenotyping maize diseases, and no studies have been conducted on maize streak disease 

phenotyping and yield prediction using remotely sensed data. The need for spatial analysis, 

estimating yields, and phenotyping maize varieties in crop improvement to address the food 

security challenges formed the basis of this study. 

The aim of this study was to model spatial suitability for maize production and explore the 

utility of remotely sensed data in maize varietal discrimination, high-throughput 

phenotyping, and yield prediction.  
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7.2 Challenges 

Large-scale yield estimation of crops is a problem to which the use of remotely sensed data 

has been able to contribute considerably in certain places. However, while remote sensing can 

be very useful for crops grown in countries where field sizes are large compared with the 

available satellite sensors’ footprint (instantaneous field of view), there are problems for 

countries where field sizes are small and cropping systems are diverse and sometimes 

different crops are mixed in the same field. In addition, the use of remotely sensed data in 

discriminating different varieties within crop species can be a challenge due to many factors 

that easily alter the signatures of the target varieties. These factors include the inherent 

spectral similarities, intercropping culture, experimental or environmental factors, crop 

growth stage, bio-stressors, spectral collection methodology, and resolutions of sensors used. 

Furthermore, the options of using remote sensing in disease phenotyping have to take into 

consideration the practical limitations due to the presence of a complex of different diseases 

on the same leaf or canopy. The available vegetation indices are not disease-specific, and 

therefore can only quantify levels of infestation or damage with no ability to distinguish the 

different types of diseases present in the area of interest. 

7.3 The main findings 

The use of remotely sensed data in estimating maize yields compared to conventional ground-

based survey methods was reviewed. The results showed that the use of remotely sensed data 

in estimating maize grain yield in Africa is very limited and fraught with challenges. Yet 

evidence from advanced agricultural systems shows increasing use of satellite-based remote 

sensing methods in estimating maize yields as a cost-effective option capable of generating 

accurate data for early warning systems. The results established that when applying satellite-

based remote sensing in the African agricultural context, researchers should take into account 

the intrinsic low-resolution limitations of current sensors in replicating these methodologies 

in fragmented and highly heterogeneous African agricultural systems. Significant 

improvements in the accuracy of yield estimates in these fragmented and highly 

heterogeneous environments are expected from new sensors (e.g. Sentinel 2, Landsat 8 OLI, 

WV, Dove, etc.), whose pixel sizes are several times smaller than the field sizes prevalent in 
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these heterogeneous cropping systems. Nonetheless, mixed pixels (pixels with digital 

numbers representing the mean reflectance from dissimilar surfaces found in the area 

represented by these pixels) remain a major challenge where maize is intercropped with other 

crop types, a common practice with African maize farmers.        

The results of land suitability modeling using GIS, AHP, and multi-criteria evaluation have 

shown the feasibility of using modern spatial analysis tools in assessing land suitability for 

targeting location-specific interventions. These can serve as decision support tools for 

policymakers and land-use planners regarding maize production and varietal placement. 

Assessing land suitability for maize production in a developing country like Zimbabwe is 

important for food security planning, decision making, and land use planning at the national 

level. This study integrates GIS, AHP, and a multi-criterion evaluation to derive a land 

suitability map for maize production in Zimbabwe using the methodology that builds on 

sound concepts and earlier studies by Saaty (1977) and subsequently used recently by other 

scholars (Akinci et al., 2013; Zhang et al., 2015; Mu and Pereyra-Rojas, 2017). The relative 

importance of the factors was validated using expert knowledge and results of modeling 

maize suitability classification were validated using long-term maize grain yield. The study 

demonstrates satisfactorily the strength of using GIS and AHP for land suitability mapping, 

critical for decision support in crop placement. Combining GIS and remote sensing in land 

suitability analysis and yield forecasting provides powerful analytical tools for decision 

support systems. In addition, the ability to discriminate individual varieties within crops 

remotely through unique spectral signatures will increase our understanding of African 

agriculture and improve food security through early warning systems and crop improvement 

through breeding. 

The ability to discriminate maize varieties using remotely sensed data represents a 

breakthrough that has many and huge implications in breeding new varieties, monitoring 

their spread, understanding adaptation, and preparing for a changing world. The results of 

this study have demonstrated the capability of hyperspectral data in accurately discriminating 

maize varieties at certain phenological stages. The analysis further shows that, by using 

appropriate pre-processing transformations like auto-scaling and generalized least squares 

weighting, the accuracy of discriminating maize varieties using hyperspectral data can be 
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improved significantly. In addition, using multi-temporal hyperspectral data, our results 

showed that flowering and onset of senescence are the most ideal phenological stages for 

discriminating maize varieties at field level. The analysis further identified 10 optimal 

hyperspectral bands out of the 101 hyperspectral bands in the VIS and NIR spectral range of 

400 to 900nm as the most ideal for maize varietal discrimination. It is important that this 

varietal discrimination ability moves from proximal to distant-discrimination levels using 

satellite- or aerial-based sensors for commercial purposes in precision agriculture and plant 

phenotyping and yield prediction in crop genetic improvement. 

Plant phenotyping using platforms with high-throughput capabilities remains a major 

bottleneck in plant breeding. This study evaluated the utility of aerial-based sensors using 

UAV-derived multispectral data for field-based plant phenotyping.  Combining UAV-derived 

multispectral data and the random forest algorithm, the analysis achieved an accurate 

classification of 25 different maize varieties into susceptible, moderately resistant, and highly 

resistant types. The results showed that UAV-based multispectral data combined with the RF 

classifier is useful in field-based high-throughput maize phenotyping. In this study, not only 

were the optimal bands and indices identified but also the vegetative stage was identified as 

the ideal phenological growth stage for accurate MSV disease phenotyping. 

Further analysis was performed using multi-temporal UAV-derived multispectral data to 

predict MSV and grain yield at different phenological stages. Most of the potential predictors 

(spectral bands and VIs) had higher H2 than that of grain yield (H2 = 89%), which is desirable 

when indirect selection traits for grain yield are being used for selection in plant breeding (see 

Falconer and Mackay, 1996). Higher MSV (r = 0.77 – 0.84) and grain yield (r = 0.69 – 0.86) 

prediction accuracies were obtained using spectral bands or indices measured at vegetative 

stage. In addition, no model using individual predictor traits resulted in significant 

improvement in the prediction accuracy compared to pooled predictors, suggesting that these 

predictor traits could work in an additive fashion. Spectral bands measured at the vegetative 

growth stage were the most ideal for predicting MSV. For grain yield prediction, six models 

comprising a combination of either bands or indices measured at vegetative were selected as 

ideal for prediction. This further confirms the utility of UAV-based multispectral remotely 



160 

 

sensed data reliability in phenotyping MSV disease and grain yield prediction, an important 

development in addressing phenotyping bottlenecks in crop improvement. 

7.4 Overall conclusions 

The key focus of this study was to model spatial land suitability for maize production using 

GIS and explore the utility of remotely sensed data in maize varietal discrimination, high-

throughput phenotyping, and yield prediction. The results have demonstrated that spatial 

analysis can accomplish land suitability mapping using several environmental factors. In 

addition, the results of this thesis have demonstrated that remote sensing can be useful in 

maize varietal discrimination and field-based high-throughput phenotyping. Therefore, we 

concluded the following.  

1. It is possible to forecast maize yield in highly fragmented and heterogeneous African 

agricultural landscapes if data from high spatial, temporal and spectral resolution 

multispectral sensors is used together with appropriate classification algorithms and 

accurate ground truth data. 

2. Integrating GIS and AHP in a MCE in land suitability analysis can convert data layers 

into information that transform and add value to the original data, which in its original 

form may not be useful for decision support systems. 

3. Using proximal sensing (field spectrometer-based) combined with appropriate pre-

processing algorithms, maize varieties can be accurately discriminated using 

hyperspectral data at certain phenological stages. 

4. UAV-based remotely sensed data provides a step-change towards data availability 

and turn-around time in varietal high-throughput plant phenotyping in maize 

breeding.  Spectral data, measured at the vegetative stage appear to be the most 

important information for the classification of maize varieties and yield prediction 

under artificial MSV inoculation.  

5. The agreement between UAV-derived remotely sensed data and ground truth 

measurements confirm the utility of a UAV-based approach in field-based high-
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throughput phenotyping in breeding programs. This will reduce selection bottlenecks 

associated with manual phenotyping and offers decision support tools for large-scale 

varietal screening.  

6. UAV-based MSV and yield prediction methodology used in the study could be 

applicable to other disease stresses that affect maize, and possibly to other crops to 

accelerate crop genetic improvement and varietal selection, thereby addressing the 

current phenotyping bottleneck.  

7.5 Implications for future research  

The results reported in this thesis show the capability of geospatial technology (GIS and 

remote sensing) in modeling land suitability for maize production and the utility of remotely 

sensed data in discriminating and phenotyping maize varieties. However, further research 

gaps have been identified. 

1. The GIS-based spatial analysis of land suitability facilitates our ability to match the 

target crop and variety with land suitability. The future focus should extend the 

method used in this study to quantify genetic correlations of different varietal maturity 

in terms of growing degree days (GDD) and the land suitability classes.  The ultimate 

objective is to add more GIS data layers for complete land suitability modeling. Such 

data layers include socio-economic factors, aspect, relief, elevation, day length, soil 

nutrients, pH, growing degree days, among others.  

 

2. In addition, the results of chapter three may be analyzed using actual historical rainfall 

and temperature data to assess if the classification accuracy can be improved, higher 

percentages of variability explained, and separate growing regions in more detail. 

 

3. The results of chapter four explored the use of multi-temporal hyperspectral data and 

multivariate techniques in discriminating maize varieties as well as identifying 

optimal spectral bands and phenological stages for varietal discrimination. Future 

studies should include in the analysis morphological and developmental 

quantification and qualification determinations to increase discrimination accuracy.  

 

4. The study demonstrated the utility of UAV-derived multispectral data in phenotyping 

maize varieties under artificial MSV inoculation with good accuracy and therefore can 

be deployed for multiple varieties evaluation in plant breeding. However, future 

research should focus on developing and testing disease-specific vegetation indices. 
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Research should focus on developing ways that will permit image analysis to 

differentiate diseases on the same leaf or canopy using remotely sensed data and 

machine learning algorithms.  

 

5. In this study, we used a multispectral sensor mounted on a UAV. However, the 

detection of subtle plant disease symptoms may be lost at coarser multispectral 

resolution. Therefore, as phenotyping science evolves, future work should investigate 

the comparison of hyperspectral versus multispectral imaging for quantifying disease 

severity in crop improvement and precision agriculture.  

 

6. Many other parts of the electromagnetic spectrum (ultra-violet, mid- and far-infrared), 

including the thermal bands needs further exploration, and may offer better 

discrimination in differentiating and quantification of diseases in pant phenotyping 

using hyperspectral imaging.  
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