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Abstract

A locally conformal (l.c.) almost cosymplectic manifold is a class of almost contact
manifolds in Riemannian geometry, which is derived from a special class of confor-
mal transformation such that the manifold has an open covering {U, },c; and to any
U, there exists a function o, : U, — R such that the metric g restricted to each
U, is conformally related to an almost cosymplectic manifold. It has been proved
that an almost cosymplectic and almost a-Kenmotsu manifolds belong to some sub-
classes of the class of locally conformal almost cosymplectic. In this thesis, we study
a class of almost contact manifolds, namely, locally conformal almost cosymplectic
manifolds. We investigate subclasses of such manifolds and prove that some of them
contain the class of bundle-like metric structures. Under some conditions, we show
that the class of conformal changes of almost cosymplectic structures is a subclass of
(almost)-cosymplectic structure. Considering the indefinite l.c. almost cosymplectic,
we prove that there exist foliations arising from Pfaffian equation w = 0 whose leaves
are the maximal integral null manifolds immersed as submanifolds of indefinite lo-
cally conformal cosymplectic manifolds. Necessary and sufficient conditions for such
leaves to be screen conformal, as well as possessing integrable distributions are given.
Using Newton transformations, we show that any compact ascreen null leaf with a
symmetric Ricci tensor admits a totally geodesic screen distribution.

Finally, we adapt the conformal transformation on 2-osculator bundle endowed
with a Lagrangian function L. We investigate the behavior of the nonlinear connec-
tion under the conformal change of the fundamental tensor and study the confor-
mal deformation of related geometrics objects like the canonical N-linear connection
and associated curvatures. We also define a locally conformal almost cosymplectic
structure on the 2-osculator bundle Osc?(M), where M is an n-dimensional smooth
manifold. For a given almost contact structure on M, we obtain an almost n-contact
structure depending only on the structure on M, by using the complete lift.

Key words and phrases: Locally conformal almost cosymplectic manifold; Newton
transformation; 2-semispray vector field, 2-Lagrange space.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

Contact and almost contact structures are two of the most interesting examples of
differential geometric structures. Indeed, their theory is a natural generalization of so-
called contact geometry, which has important applications in classical and quantum
mechanics. In addition, they were used in the classical description of time-dependent
systems in mechanics such as regular Lagrangian systems and Hamiltonian systems
(see [15, 28] and references therein for more details). Their study as differential geo-
metric structures dates from works of the Gray [23| and Sasaki [45]. Almost contact
structures provide a counterpart of almost complex structures in odd dimension and
include several classes of special importance as contact, Sasakian and cosymplectic
ones (see [6] and [8] and references therein).

The notion of almost cosymplectic manifolds was introduced by Goldberg and
Yano in [22|. In fact, they extended earlier results on almost Kéhler manifolds which
says that if the curvature transformation of the almost Kéahler metric commutes with
the almost complex, then the latter is integrable. The simplest examples of such
manifolds are those locally formed by the products of almost Kéhlerian manifolds
and the real line R (or the circle S'). In [24], the authors investigated a class of
almost a-cosymplectic manifolds, with a constant. They studied canonical foliations
of the same class of cosymplectic and proved that the foliation defined by the contact
distribution is Riemannian and tangentially almost Kéahler of codimension 1, and
is tangentially Kéahlerian if the underlying manifold is normal. The indefinite case
locally conformal almost cosymplectic secures the existence of a special subspace,
namely, null (lightlike) space.

Null geometry of submanifolds of semi-Riemannian manifolds is remarkably dif-
ferent from the geometry of submanifolds immersed in a Riemannian manifold by the
fact that the normal vector bundle of a null submanifold intersects with its tangent
bundle. This aspect makes null geometry difficult to study despite having numerous
applications in other fields like mathematical physics. The study of null submanifolds
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Introduction 5

of a semi Riemannian manifold was initiated by Duggal-Bejancu [18] and Kupeli [26]
and later by many authors [27], [36], [16] and references therein. Geometry of subman-
ifolds in locally conformal cosymplectic manifolds as well as cosymplectic manifolds
has also been studied by many authors, for instance [12], [22], [34], [43] and [44]. For
the almost contact null geometry, see, for instance, the papers [30]- [32] and references
therein.

The notion of Lagrange space of order k is introduced by means of regular non-
degenerate Lagrangian defined on the total space of the k-accelerations bundle T%M.
In this case the Craig-Synge equations determine a k-semispray, which depend only
on the considered Lagrangian. The importance of Lagrange geometry consists of the
fact that variational problems for important Lagrangians have numerous applications
in various fields, such as mathematics, the theory of dynamical systems, optimal con-
trol, biology, and economy (see [39, 40| for more details). In this respect, Antonelli
remarked the following [4]: “There is now strong evidence that the symplectic geom-
etry of Hamiltonian dynamical systems is deeply connected to Cartan geometry, the
dual of Finsler geometry”.

This thesis has two distinct parts. In the first part, we consider a class of almost
contact metric manifolds which is called locally conformal (l.c.) almost cosymplectic
manifolds. This part builds on the paper of Olszak [43] in which the author in-
vestigated properties of the curvature and of the pointwise constant p-holomorphic
sectional curvature condition in a certain class of locally conformal almost cosym-
plectic manifolds. This class was later studied by Chinea and Marrero [12] under the
name of “conformal changes of almost cosymplectic manifolds”. They characterized
the structures in terms of its Lee form and obtained that the leaves of the contact
foliation inherit a locally conformal (almost) Kéhler structure. This part of the the-
sis also focuses on one of the classes in which the differentiable 1-form w derived
from the l.c. structure is proportional to the contact form structure 7 of the mani-
fold under consideration. We also investigates the geometric conditions for which the
class under study falls into the class of (almost) cosymplectic manifolds. Under some
special conformal deformation, Olszak in [43| proved that such manifolds are almost
a-Kemnotsu. In [34], the authors proved that the class of this deformations contain
the one of bundle-like metric structures, in the Riemannian case.

We are also interested in indefinite locally conformal deformations of almost
cosymplectic manifolds. We study the leaves (as submanifolds) of the foliations which
are coming from the distributions generated by the Pfaffian equation w = 0, w be-
ing the characteristic 1-form of the ambient manifold under consideration, P : x €
M(c) — RV, & RB,, where ¢ = ¢g(B,, B;) and RV, and RB, denotes line bundles
locally spanned by V, and B,, respectively. In this case the Lee form w is not required
to be parallel as it is the case with locally conformal Kéhler. But according to dif-
ferent positions of the Lee vector field B with respect to the structure vector £ and
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Main results on locally conformal geometry 6

due to the causal character of the Lee vector field, we obtain some rich information
about the geometry of leaves in M.

The second part of the thesis deals with the Lagrange spaces of order 2. Given two
Lagrange spaces of order 2, (M, L) and (M, Z), we establish a conformal transforma-
tion between their corresponding fundamental tensors when their fundamental tensors
are conformally deformed. In this case, we will say that L and L are conformal-type.
The Lagrange spaces of order 1 are the smooth manifolds endowed with a regular
Lagrangian L of order 1. These spaces were introduced twenty years ago by Miron
[40] and were studied due to their applications in Mechanics, Physics, Control theory
etc. They lead to geometric models more general than those provided by Rieman-
nian or Finslerian structures (see [40] and references therein). Such spaces can be
extended to the higher order, in particular to order 2. In this case, the base manifold
is called 2-osculator bundle and is denoted by Osc?(M). This is a natural extension
of the notion of 1-osculator bundle. So, it is necessary to study the total space of the
2-osculator bundle (Osc?(M), %, M), where M is a smooth manifold (see [40]). The
2-osculator bundle has a profound geometrical meaning and is more suitable for the
applications of Lagrange geometry in mechanics ([29], [46]), theoretical physics and
biology [41].

The main results of this thesis are summarized in Section 1.2 and 1.3.

1.2 Main results on locally conformal geometry

Let (M, ¢,&,m,g) be a locally conformal (l.c.) almost cosymplectic manifold. Then,
there exists a 1-form w on M such that

dd =2w AP, dp=wAn and dw = 0. (1.1)
Let h be the (1, 1)-tensor field on M defined by
hX = Vxé —w(€)X +7(X)B, (1.2)

for any vector fields X and Y on M, where B is the dual vector field of w. Then,
we have one of the following results showing that, under some conditions, the class
of conformal changes of almost cosymplectic structures is a subclass of (almost)-
cosymplectic structures. Let r and r* be the scalar curvature and scalar x-curvature

2m 2m
defined, respectively, by r = Z S(E;, E;) and r* = Z S*(E;, E;), where {E; }o<i<om
i=0 i=0
being an orthonormal frame with respect to g. Our main results are as follows:
(1) If Let (M*™*1 ¢ €, g) is compact with m > 1 for which the function w(§) is
constant in the direction of & and the Chern-Hamilton 7 is parallel and if r* = r,
then M s cosymplectic.
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Main results on locally conformal geometry 7

Let h be another (1,1)-type tensor field associated to the structure (¢,&,7,9) as
defined in [8, page 84] by

~ 1
We have the following result giving rise to a class of l.c. alomst cosymplectic manifolds
admitting a Lee form proportional to the characteristic 1-form 7.

(2) The (1,1)-tensor field ¢ anticommutes with h and h is a symmetric operator
if and only if there exists a smooth function f on M such that

w=fn with df A\n=0 and h = ¢h.

Let D := kern be the contact distribution and D+ be the distribution spanned by
the structure vector field £&. Then, we have the following decomposition

TM =D & D*. (1.4)
Here we have the following results:

(3) The integral manifolds of the distribution D in (8.41) are l.c. almost Kdhler
manifolds with mean curvature vector field H' = —w(&)&. They are totally um-
bilical submanifolds of M if and only if the operator h vanishes.

(4) Let F be a foliation on M of codimension 1. If the metric g on M is bundle-like
for the foliation F, then the leaves of F are almost Kdhler. Moreover, if M is
normal, then the leaves of F are Kdhler and totally umbilical.

Let M be a (2n+1)-dimensional indefinite 1. c. almost cosymplectic manifold of index
q,0<qg<2n+1.Set ¢ =g(B,B) € €°(M) and Sign(B) = {x € M : B, = 0}. Let
J be the canonical foliation of codimension r whose leaves are the maximal connected
integral manifolds of the Pfaffian equation w = 0 [10]. Then, we have the following
fundamental theorem.

(5) Assume that 0 < g < 2n+1 and Sign(B) = 0. Then

(i) If ¢ # 0, then the index of each leaf L of F is given by ind(L) = q — s,
where s = ind((TF)¢) with 0 < s < r. Moreover, L is totally geodesic r
codimensional semi-Riemannian submanifold of (M, g) if and only if the
Lee form w s parallel.

(i) If ¢ = 0, then each leaf of F is either a null hypersurface or a quasi
generalized CR-null submanifold of (M, g).
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Main results on locally conformal geometry 8

If the characteristic vector field & is decomposed as follows.
§ =& +aB+0bN,

where &g denotes the component of £ on S(T'L) while a and b are non-zero smooth
functions on M, then the leaf L is ascreen null hypersurface |27] if £ = 0. One of
the cases of this theorem generates the followings.

(6) Let L be a leaf of a foliation F in an l.c. almost cosymplectic manifold M such
that ¢ = 0 and w(&) # 0. Then L is an ascreen null hypersurface of F if and
only if pRad(TF) = ¢ltr(TTF).

For the higher order geodesibility of leaves of F, we fix the pair of non-zero vector field
on leaves of JF as follows: Let (L, g,c = 0) be an ascreen null hypersurface immersed
in an Lc. almost cosymplectic manifold, with Sign(B) = (), w(£) # 0 and a conformal
vector field Q = e®¢. We prove that:

(7) If the Ricci tensor of the induced connection V7 is symmetric, then there exists
a pair {B, N} on U C L such that the corresponding 1-form T vanishes on any
UN L. Moreover, g(Q, B) # 0 and g(Q, N) # 0.

Let dVj; be the volume element of M with respect to g and a given orientation. Then,
we denote the volume form on F by

dV =indVy,

where 7y is the contraction with respect to the vector field N. Using the New trans-
formations, we prove the following:

(8) If L is a compact ascreen null hypersurface of F in an l.c. almost cosymeplectic
of constant sectional curvature and the Ricci tensor of the induced connection
V7 is symmetric, then

/ (B-g(T,Q,N) + " Vtx(T; 0 h) + (=1) e;w(Q){H, + Hy 1 })dV =0,

where T, are the Newton transformations with respect to the shape operator Ay

1 —1
defined by T, = (=1)"S, 1+ Ay o T,—y, 0<r <m and H, = <m . ) S, is
T

the normalized mean curvature with respect to the shape operator Ay .
This leads to the following result:

(9) Let a, b and o be constants such that h is tangent to F. If L is a compact as-
creen null hypersurface of I in an l.c. almost cosymeplectic of constant sectional
curvature and the Ricci tensor of the induced connection V7 is symmetric and
H, is constant, then the screen distribution S(T'L) of L is totally geodesic.
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Main results on 2-order Lagrange spaces 9

1.3 Main results on 2-order Lagrange spaces

Let M be a real n-dimensional smooth manifold and L and L be two 2-Lagrangian
on M with the fundamental tensors g and g of L and L, respectively. One of the main
results in this part of the thesis is stated as follows:

(10) Assume that the fundamental tensors g and g of L and Z respectively, are
conformally deformed. If g is 0-homogeneous with respect to y®, then L and L
are related as

L =L+ A,y D)y + Uz, y ™M), (1.5)
where A; an arbitrary covector and U an arbitrary function on Osc'(M). More-
over, the coefficients of the d-tensor of the curvatures associated to D and D
are given by

Rzgk Rz]k + ngk’ ‘Pzgk P]k + pz]k’ (16)
1) 1) 1
P’L};k‘ = P]k +pz]k> Sz]k = S]k‘ + Szgk? (17>
(2 (2) (2 (@ (21 (2
Szgk Sz]k + S?jk? (18)
(11) (11) (11)
where
vl = 8l + O, L — 8,18 — ;L1 + Lskzh U5 LE — Lyl
— U5 Lt — Ryl — v Ch — Rl — C (1.9)
(o1) (1) (o1) (1) (02) 01 (02)
(1) (1) (1) 1)
_Ck,Lh +B]’L sk+BSC Z Sk‘+ bS Cskﬂ (110)
(1) an @ an @) (12) (1) (12) (1)
2) (2) ©) (2) 2 1)
— L+ Bl + b3, Of - B+ 03, O (1.11)
(1) (21) (1) (21) (1) (22) (2) (22) (2)
st = Onicl + 00,1l — Syjclh — 01,Ch + Ol + 5,08 — O3l
(21) (1) (1) (2) (2) (1) (2) (1) (2) () (1)
- Czkch + Bj;c Ji sk + bS Csk’ (112)
(2) @) (21) (2) (21) (2)
S,Z'k — 517:0?]6 + élz’cv’]hk - 61jclk aljc + CS]CC’LS + Cjkch R” sk
(11) (1) (1) 1) 1) maO OO q2@
rs Ch. (1.13)
(12) (2)
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Organization of the Thesis 10

Let {U,}sc; be a family of an open covering Osc?(M). Assume that at each U; there
exists a map p; : Uy — R. Then we have the following.

(11) The structure

F, {=ep(D)6 =exp(—9) 0, G=exp(-p)G,  (1.14)

is almost cosymplectic in U, if and only if the following equations are satisfied

d® =w A ® + (g;;Hiw — Hjdgs; + gi;dHL) A da? A da”, (1.15)
(1) 1) (1)
dnN= NN — -HwANdy'""" — —K,wANdx" — dH;, N dy
2 2 (1) 2 (1)
— dKj} A da®, (1.16)

where w = dp obtained by gluing up dp; on Osc*(M).

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is devoted to some useful background
concepts and definitions on almost contact metric manifolds, almost Kéhler manifolds,
and almost cosymplectic manifolds. We also provide the definition on 2-osculator
bundle Osc?(M) and introduce necessary tools such as Liouville vector fields, 2-
semispray vector fields and Homogeneity of functions of tangent bundle T'M (see [40]
and references therein for more details).

In Chapter 3, we give the definition of l.c. almost cosymplectic manifolds. We
investigate the Chern-Hamilton tensor field 7 which was introduced in the paper [11].
We prove that the geometric properties of the characteristic structure vector field ¢ is
closely related to the parallelism of the Chern-Hamilton tensor field 7. Theorem 3.1.1
gives another class of l.c. almost cosymplectic structures which are almost cosymplec-
tic. This class contains the one given by Olszak in [43, Theorem 4.1]. A class of l.c.
almost cosymplectic structures which are cosymplectic is also obtained. Examples are
also given to support the results. We also discuss the proportionality of the locally
conformal structure and prove that there are many classes that contain such a pro-
portionality condition. Examples are also given. We also find some characterization
theorems for a foliation to be Riemannian. Under some conditions, we prove that the
foliation of the contact distribution has (almost) Kéhlerian leaves. Finally we end the
section with characteristic remark.

In Chapter 4, we consider a locally conformal cosymplectic manifold endowed with
an indefinite metric, and we study the leaves (as submanifolds) of the canonical foli-
ations generated by the Pfaffian equation w = 0. We give the necessary and sufficient
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Organization of the Thesis 11

conditions for leaves to be screen conformal as well as some distributions on them
to be integrable. Also, we give the necessary condition for the induced connection on
the leaves to be a metric connection. By considering a suitable conformal vector field
on M, we show that any ascreen null leaf, with a symmetric Ricci tensor, admits a
totally geodesic screen distribution, using the concept of Newton transformations 2],
[3] and [16].

In Chapter 5, we study the geometry of the conformal transformation on the bun-
dle (T*M, 7% M) of accelerations of order 2. We establish the relationships between
the geometric objects corresponding to L and E, respectively, namely, Lie brack-
ets, d-tensor of curvature tensors, and d-tensor of Ricci tensors. Some examples of
Riemannian and Finsler manifolds are also given.

In Chapter 6, we are concerned with the study of structures on Osc*(M). We
introduce the almost n-contact structure on Osc?(M). A similar characterization used
by Vaisman on M, for l.c. almost cosymplectic manifolds is considered on Osc?(M).
Making use of the complete lift of almost contact structures on M, we obtain (1,1)-
tensors on Osc?(M), namely 1y and A, defined by 15 = L o ¢ o dr? and A(dy) =
ald;, A(6;) = —aldy;, A(61;) = 0, where al = ¢lom?. Therefore, the pair (Osc?(M), A)
is an almost n-contact manifold and for a given l.c. almost cosymplectic structure on
M subject to some conditions, we obtain an l.c. almost cosymplectic on Osc?(M).
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CHAPTER TwoO

PRELIMINARIES

This chapter gives a brief exposition on almost complex, (almost) Kélher manifolds,
almost contact manifolds with particular attention to almost cosymplectic manifolds.
Furthermore, we give some definitions on 2-osculator bundles needed in the sequel.

We assume (unless otherwise stated) that all manifolds in this thesis are smooth
and paracompact.

2.1 Almost contact structures

In [8], Blair defined an almost contact manifold as a (2n+ 1)-dimensional manifold M
such that the structural group of its tangent bundle is reducible to U(n) x 1. Several
tensor fields are thereby distinguished, there are the linear transformation field ¢
which acting in each tangent space T,M of M, p € M, called fundamental singular
collineation, the vector field £ in M called the fundamental (or structure) vector field
and the contact form 7 related by

¢ =-I+n®¢ nE)=1, ¢=0, nop=0. (2.1)

A smooth manifold M is called almost contact metric manifold if it admits a Rie-
mannian metric g satisfying the compatible relation given by

9(6X, 9Y) = g(X,Y) = n(X)n(Y). (2.2)
Replacing respectively in (2.2) Y = ¢Y and Y = £ and using (2.1), one gets
9(¢X,Y) = —g(X,¢Y) and n(X)=g(X,9). (2.3)

A fundamental 2-form ® of (M, ¢, &, n, g) is given by
O(X,Y) = g(¢X,Y).

A Nijenhius tensor field with respect to ¢ is a (1, 2)-tensor N; defined by

Ny = [0, 0] +dn® ¢ (2.4)
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Almost cosymplectic manifolds 13

where [¢, ¢] is the Nijenhuis torsion of the tensor field ¢ given by

[0, (X, Y) = [6X, Y] — 0[¢X, Y] — ¢[X, ¢Y] + ¢*[X, V].

An almost contact manifold with a vanishing Nijenhius tensor field is a Normal almost
contact manifold.
There are three other useful tensors in almost contact structure (¢, &, n) given by

No(X,Y) = (Loxn)Y = (Loyn) X, (2.5)
N3 = (L) X, (2.6)
Ny = (Len) X, (2.7)

where £ is the Lie derivative. It is known that the vanishing of N; implies the vanish-
ing of Ny, N3, Ny. (See [8, page 81| for more details). Therefore, for a normal almost
contact metric manifold the following equation holds

Vex§ = ¢oVx&. (2.8)

For more details see [8, Lemma 6.2].

2.2 Almost cosymplectic manifolds

An almost contact metric manifold M is called almost cosymplectic if its fundamental
form and contact form are closed, that is

d® =0 and dn=0. (2.9)

A cosymplectic manifold is a normal almost cosymplectic manifold. For a cosymplectic
manifold we have V¢ = 0 (see [34] and references therein for more details).

Almost cosymplectic manifolds are viewed as odd-dimesional version of Almost
Kalher manifolds.

Proposition 2.2.1. Let (M,&,¢,n,9) be an almost cosymplectic manifold. The fol-
lowing relation holds

Proof. The details of the proof can be found in [44]. O

From (2.10), one gets

Vg(ﬁ = O, V¢X5 = —925va and ng = 0, (211)

which also imply
(Voxn)(Y) = (Vxn)(¢Y), (2.12)
(Voxn)(@Y) = =(Vxn)(Y). (2.13)
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Almost Kahler manifolds 14

Proposition 2.2.2. Let (M, &, ¢,n,9) be an almost cosymplectic manifold. The di-
vergence and Ricci curvature satisfy

div(¢) =0, (2.14)
S(&,€) +|VE* =o0. (2.15)

Proof. Since, div(¢€) = 37" g(Vg,€, Ei), then for a chosen ¢-basis and by taking
into account (2.11), one obtains

then div({) = 0. The equation (2.15) derives from a straightforward calculation.
Indeed, we have S(X,Y) = 322" R(E;, X, Y, E;), then

2n+1 2n+1
=Y R(E,&§EE) =Y g(Ve Vel — VeVl — Vig g6, Ei)

2n+;:O 271-1—21:0

N gV VE E)+ Y (—9(VeVEE E) — 9(Vip,. g6, Er)

- (;n—i-l = 2n+1

= 9(VE Vel E;) — &div(é Z (V& VeE) = (Ven)|Es,¢)
27:-{-1 2n+1

= Z 9(VE Ve, EB) — &div(€) + Z (29(VEE, VeEi) — 9(VEE, VL))
i=0 1=0

(2.16)

By using (2.11), we have ¢(Vg,§, VeE;) + 9(Ver&, VepE;) = 0. Therefore, (2.16)
gives

2n+1
S == 9Vt Ve = —|VEP,
i=0
which proves the assertion. Il

2.3 Almost Kahler manifolds

An almost complex manifold is an even-dimensional manifold M endowed with a
(1,1)-tensor field J such that J? = —I, where I is the identity matrix. Such a manifold
is orientable.

Denoting by Ny, or simply by N, the Nijennhuis tensor of J, one has

N(X,Y)=[JX,JY] = JJX,Y] - JIX,JY] - [X,Y].

If N =0 then the almost complex manifold (M, J) is called complex manifold.
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The 2-Osculator bundles 15

An almost hermitian manifold (M, J, g) is an almost complex manifold in which
J is skew-symmetric with respect to the metric g.
Denote by €2 the fundamental 2-form that is

QX,Y) =g(X,JY), for any X, Y € I'(TM).

The manifold M is said to be almost Kéhler if € is closed i.e., we have d{) = 0. It
is easy to prove that a Hermitian manifold is a Ké&hler manifold if and only if the
almost complex structure J is parallel with respect to V, i.e., we have VxJ = 0 for
any X € I'(T'M) (see [8] for more details).

2.4 The 2-Osculator bundles

Let M be a real n-dimensional smooth manifolds and (Osc?(M), 72, M) its bundle of
accelerations of order 2. For a local chart (U, (2%)) in p € M, its lifted local chart in
u € (%)~ (p) is
()7 ©), @y ).
For each point u = (z, 3", y?) € Osc?(M), the natural basis of the tangent space
T,Osc*(M) is

0 0 0
{%\u, W’u’ Wh}-

In analytical mechanics, the manifold M is called the space of configuration, a
mapping ¢ : t — (2(t)) € U C M is called law of moving (evolution) or a time-

d ) 1d2 )
parametrized curve, a couple (t,z) is an event and the pair ( CZ ’§d_z£) are the
velocity and acceleration (see [40] for more details).

We have 2-canonical surjective submersions
2 =2 (x,yY,y?) € Osc3(M) = (x) € M, (2.17)
72 (z,yM, y?) € OsA (M) — (z,yY) € Osct(M). (2.18)

Thus 7 and 7% determine the vertical distributions

0 0
_ 2 _
Vi1 = ker dr” = Spaﬂ{wha Wlu}izlmn?

0 0
Vyo = ker drn? = Span{=——=—|u, -+, ==—|u}. 2.19
u,2 1 p {8y(2>1 ’u’ ) ay(g)n ‘u} ( )
Then we have the decomposition sum,
T,0sc*(M) = N, @ V,, 1. (2.20)
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The 2-Osculator bundles 16

The paracompacteness of M guarantees the existence of the integrable distribution
Vi1 = ker dr? (see |40, theorem.3.3.3| for more details).

An extremely important structure on Osc?(M) is the so-called 2-tangent structure
J introduced by Eliopoulous in [20] locally given by

=2 ® da’ + ® dy, (2.21)

ay(l)Z

Oy
and satisfies the following properties
Im J =V, ker J =V, J(V1) = Vs, rank|J|| = 2n.

There are two important vectors fields, called Liouville vector fields in the study of
geometry of Osc*(M):

1 . 2 0 .0
_ (1) _ (1) (2)i
B WOT and I'=y Oy +2y Dy @i’ (2.22)
We will also use the operator:
9 9
[=yWi— 4 2y@i—— 2.23
y e T2y 5,0 (2.23)
A vector field S of Osc?(M) is called a 2-semispray on Osc?(M) if
2
JS =T
locally given by
0 0 0
— 1 2_ - i
S = Yy ot +2y 3y(1)z‘ 3 3y(2)z‘
The curve ¢: t — ¢(t) € (7?)~1(U) C Osc*(M) extension of ¢ is given by
dat 1d%at
c:tel ), —, =—=). 2.2

A 2-path on M is the curve ¢ : I — M such that its extension on Osc*(M) is an
integral curve of S. It is well known that the paths of the 2-semispray S are given by
the differential equations

7
dt dt " 2dx
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The 2-Osculator bundles 17
The coefficients G?(x, y*, y?) allow us to obtain the system of functions
. O0G"
N = - (2.27)
o oy
which are the coefficients of the nonlinear connection N in (2.20).
Using the 2-almost tangent structure (2.21) the decomposition (2.20) becomes
TOSC2(M) == N(] @D N1 D ‘/2, (228)
where Ny = N.
According to (2.28), there exists an adapted basis on TOsc?(M) denoted by
o 4] o
(o 7 ) 2
given by
ot Ozt 1y Oy gy Oy’
0 .:—a .—Nij—a .
(Sy(l)l ay(l)z (1) 8y(2)3’
4] 0
- = ‘ 2.30
Sy@i 9y’ (2.30)
with
) 1 ) )
(2 (1) n @
Its duals basis is given by:
dz' = da', 2.32)
Syt = dyM' + M, Pda™, (2.33)
1)
oy = dy@i + M, dy D™ + M, da™, (2.34)
1) (2
where
M," = N," and M," = N,,' + N,'N,,*. (2.35)
(1) 1) 2 2) 1 @
As result, we have the following equations
0 o .0 .0 0 4] )
- = — + M) —— + M/ - - = - + M ——,
sz (SZL’Z + (1) 5y(1)3 T (2) 5y(2)] ay(l)Z 5y(1)1 + (1) 5y(2)]
0 4]
Oy by (239

dz' = 0z, dy(l)z‘ — 5y(1)i _ Nmi&vm, dy(z)z' _

1)

5y(2)i . Nmiéy(l)m — Nmi5xm. (2.37)
1) (2)
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The 2-Osculator bundles 18

Therefore, by using (2.36) we obtain the Liouville vector fields in adapted basis (2.29)
as follows

1 0 2 — .0
— (i~ — i (2)i
==z 5 =z O + 2z 5y (2.38)
. ) ) o1 :
where 2(MF = ¢ Mi - 2@ — @i 3 ;y(l)], (2.39)

1)
are the Liouville d-vectors.
Definition 2.4.1. [40] A distinguished tensor field (briefly: d-tensor field) on Osc?(M)
of type (r, s) is a tensor field T of type (r,s) on Osc?(M) with the property:
1 r 1 H rV2of Vi
T(w’ 7w7)1(’... ’X) :T(w Sy W ’)1( AR ,X 2) (240)

rVa

H

for any (clu o, w ) € X*(0sc*(M)) and ()1(H, o, XYY € X(Osc*(M)). The tensor
field T is locally defined by

) 0

— e 1) 42 e P R eIL
T=T,5% =y y7)5 o ® 5y © dz” @ - - 6y, (2.41)
where the coefficients are given by
T ( (1) (2)) = T(dz™,---,§ (2)ar 0 .. 0 ) (2.42)
by---bs r,y Yy - €T, , 0Y ) bel’ ) ay(2)b3 . .

The dual basis {1, 6z, sy, y?} generates the algebra of the d-tensor fields over the
ring of functions F(Osc?(M)).

Definition 2.4.2. [9] A function f : TM — R that is differentiable on TM and
continuous only on the null section 0 : M — T'M is called homogeneous of order
r (r € Z) on the fibres of TM or r-homogeneous with respect to y' if:

foh,=a"f VYacRT,
where hy : TM — TM 1is given by hy(z,y) = (x, \y).
The following Euler theorem holds:

Theorem 2.4.1. [9] A function f € C(M) on TM and continuous only on the
null section is homogeneous of order r if and only if

Lof =y'oif =rf. (2.43)

Proof. Assume that the function is r-homogeneous then f(z',ry") = 3 f(x', y"),
. .. . . af _  af o) _ i 8f

differentiating both side with respect to A one gets 75 = o0 o = g 3097 and

% = A"~ f by putting A = 1 one gets (2.43). Then the proof. ]
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The 2-Osculator bundles 19

The following properties hold:

(1) If fi1, fo are r-homogeneous functions, then the function A; fi + Ao fo, A;, Aa € R

is r-homogeneous too.

(2) If f; is r-homogeneous and f, is s-homogeneous, then the function fi.fs is

(r + s)-homogeneous.
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CHAPTER THREE

LOCALLY CONFORMAL ALMOST
COSYMPLECTIC MANIFOLDS

In this chapter, we establish the equation which characterizes a locally conformal
(L.c.) almost cosymplectic manifold. We also investigate the tensor field h and the
Chern-Hamilton tensor field 7. By using some facts on foliations in |7], we study some
subclasses of the class of l.c. almost cosymplectic manifolds in particular the subclass
of bundle-like metric structures. We support this chapter with some examples.

3.1 L.c. almost cosymplectic manifolds

Let M be a (2m + 1)-dimensional almost contact manifold endowed with an almost
contact metric structure (¢,&,n,¢g), where ¢ is tensor field of type (1,1) on M, a
vector field ¢ and a 1-form 7 satisfying the following relations

¢’ =-T+n®& nE) =1 ¢£=0, np=0, (3.1)

and g(¢X, ¢Y) = g(X,Y) — n(X)n(Y). (3.2)

The fundamental 2-form of M is defined by ®(X,Y") = g(X, ¢Y), for any vector fields
X and Y on M.

M is said to be almost cosymplectic if the forms 1 and ® are closed, that is, dn = 0
and d® = 0, d being the operator of the exterior differentiation (see [22]). If M is
almost cosymplectic and its almost contact structure (¢,&,n) is normal, then M is
called cosymplectic. The normality condition says that the torsion tensor field

[, 0] + 2dn ® £ =0, (3.3)
where [¢, ¢] is the Nijenhuis torsion of ¢ defined by
[6,9](X,Y) = ¢*[X, Y] + [¢X, 0Y] = ¢[¢X, Y] — ¢[X, ¢Y].

It is well-known that a necessary and sufficient condition for the almost contact metric
manifold M to be cosymplectic is V¢ = 0, where V is the Levi-Civita connection of
M.
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L.c. almost cosymplectic manifolds 21

Now, let (M, ¢,&,n, g) be an almost contact metric manifold. Such a manifold is
said to be locally conformal (l.c.) almost cosymplectic [43] if M has an open covering
{U; }1er endowed with smooth functions o, : Uy — R such that over each U, the
almost contact metric structure (¢, &, m¢, g;) defined by

Or =09, &= exp(at)f, N = exp(—at)n, gt = eXp<_20t>ga (3-4)

is almost cosymplectic. If the structures (¢y, &, m4, g¢) defined in (3.4) are cosymplectic,
then M is called I.c. cosymplectic. L.c. conformal almost cosymplectic manifolds were
characterized by Vaisman in [48]. This is stated as follows: An almost contact metric
manifold M is an l.c. almost cosymplectic manifold if and only if there exists a 1-form
w on M such that

dd =2wA P, dyp=wAn and dw = 0. (3.5)

Moreover, an l.c. almost cosymplectic (respectively, an l.c. cosymplectic) manifold
M is almost cosymplectic (respectively, cosymplectic) if and only if w = 0. If w has
no singular points, M was termed, by Capursi and Dragomir in [10], strongly non-
cosymplectic.

Assume that (M, ¢,£,n,g) is an l.c. almost cosymplectic manifold. Then the re-
lations in (3.5) are satisfied for a certain 1-form w. For any ¢, over open set Uy, the
structure (¢, &, mr, g¢) given by (3.4) is almost cosymplectic and doy, = w.

Now, we give a proof to the formula (3.3) in [43]. Let V and V' be the Levi-Civita
connections associated with the metrics g and g;, respectively. Setting

O'Xy = VXy — thY
Then, it is easy to see that ¢ is symmetric, that is, oxY = oy X.

Lemma 3.1.1. Let (M, $,&,1n,9) be an l.c. almost cosymplectic manifold. Let NV and
V! be the Levi-Civita connections associated with the metrics g and g;, respectively.
Then, for any vector fields X andY on M,

ViY = VY — w(X)Y —w(Y)X + ¢(X,Y)B, (3.6)
where B is the vector field defined by g(B, X ) = w(X).
Proof. Using (3.5), by direct calculation, we get, for any X, Y, Z € T'(TM),

0= (Vtxgt)(ya Z)=X(q(Y,Z)) — gt(thYa Z) = g(Y, VE(Z)
= exp(—20,){—2X(00)g(Y, Z) + g(oxY, Z) + g(Y,0x Z)}. (3.7)

The relation (3.7) becomes

9(oxY, Z) + g(Y,0xZ) = 2w(X)g(Y, Z). (3.8)
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L.c. almost cosymplectic manifolds 22

A circular permutation in (3.8) gives

glovZ, X))+ g(Z,0vX) =2w(Y)g(Z, X), (3.9)
90z X,Y)+ g(X,02Y) =2w(Z2)g(X,Y). (3.10)

Putting the pieces above using the operation (3.8) — (3.10) + (3.9), we have
9(oxY, Z) = w(X)g(Y, Z) + w(Y)g(Z, X) = w(Z)g(X,Y),

which implies that oxY = w(X)Y +w(Y)X — ¢(X,Y)B, where B is the vector field
defined by ¢g(B, X) = w(X). This completes the proof. O

Note that the vector field B defined in Lemma 3.1.1 is explicitly given by B =
grad o, over any U,.
Let us consider the following tensors N; and N, given in [8] by

Ni(X,Y) = [¢,9)(X,Y) + 2dn(X, V), (3.11)
No(X,Y) = (Lyxn)Y — (Lgyn) X, (3.12)

where [¢, ¢] is the Nijenhuis torsion of the tensor field ¢ and £ the Lie derivative.
For a general almost contact metric structure (¢, &, 7, g), the covariant derivative
of ¢ is given by

29((Vx9)Y, Z) = =X(2(Y, 2)) + oY (®(¢Z, X) + n(X)n(Z)) — Z(2(X,Y))

— O([X, oY), 02) +1([X, oY ])n(2) + @([Z, X].Y)

= 9(¢[oY; Z], 0 X) + n(X)n(Z, ¢Y])

+X(2(Y, 2)) + Y(2(X, Z)) — ¢Z(2(0Y, X) + n(X)n(Y))
+O([X, Y], Z) + g(¢[0Z, X], oY) + n(Y)n([¢Z, X])
)-

—g(¢lY, 0Z], 0X) + n(X)n(oZ,Y (3.13)
Since
2dn (oY, X) = ¢V (n(X)) — n([¢Y, X]),
g(N(Y, Z),¢X) = ‘P([ 7], X) + @([¢Y, 9Z], X)

—9(¢[8Y, Z],0X) — g(8Y, ¢Z], 9X),
No(Y, Z) = oY (0(2)) — 0Z(n(Y')) — n([8Y, Z]) + n([¢Z, Y)),
3dP(X,Y, Z) = X(®(Y, ))+Y(<I>(Z,X))+Z(<I>(X,Y)) — ®([X,Y],2)
- o([2,X],Y) — ©([Y, Z], X),
3dO(X, Y, 9Z) = X (®(¢Y, 0Z)) + ¢V (P(0Z, X)) + ¢Z(P(X, ¢Y))
—O([X,9Y],02) — ®([0Z, X], 9Y) — O([0Y, 0], X),
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L.c. almost cosymplectic manifolds 23

the relation (3.13) becomes

29((Vx @)Y, Z) = 3d0(X, ¢Y, ¢Z) — 3d®(X,Y, Z) + g(N1(Y, Z), $X)
+ No(Y, Z)n(X) + 2dn (oY, X)n(Z) — 2dn(¢Z, X)n(Y). (3.14)

Note that in view of (3.6), the covariant derivatives V'¢; and V¢ are related by

(Vi)Y = (Vx@)Y —w(oY)X +w(Y)oX + g(X,¢Y)B
— 4(X,Y)éB. (3.15)
Lemma 3.1.2. [35] For the structure (¢, &, ¢, gi), we have on each Uy,

Nu(X,Y) = N(X,Y) - 2dn(X,Y)E, (3.16)
Nyy(X,Y) = exp(—o){w(Y)n(X) — w(@X)n(Y) + Nao(X,Y)}. (3.17)

If (M,¢,£,7m,9) is an l.c. almost cosymplectic manifold, then (¢, &, m4, g;) is an
almost cosymplectic. That is, d®; = 0 and dn; = 0. These lead to

20:((Vx @)Y, Z) = exp(—20,){g(N(Y, Z), 6X) — w(oY )n(X)n(Z)
+w(@Z)n(X)n(Y) + Nao(Y, Z)n(X)}, (3.18)

which is equivalent to

29((V )Y, Z) = g(N1 (Y, Z), X)) + No(Y, Z)n(X) — w(oY )n(X)n(Z)
+w(@Z)n(X)n(Y). (3.19)

Using dn = w A n in (3.5), Ny becomes No(Y, Z) = w(oY )n(Z) — w(¢pZ)n(Y), and
(3.19) reduces to 2¢((Vi )Y, Z) = g(N1(Y, Z), »X ). Therefore, we have the follow-
ing lemma.

Lemma 3.1.3. An almost contact metric manifold M is l.c. almost cosymplectic if
and only if there exists a 1-form w on M such that dw = 0 and

29((Vx9)Y, Z) = g(N1(Y, Z), 9X) + 2w(9¢Y)g(X, Z) — 2w(9Z)g(X,Y)
—2w(Y)g(¢X, Z) — 2w(Z)g(X, ¢Y), (3.20)

for any vector fields X, Y and Z on M.
For the covariant derivative V¢ and using (3.20), we have
(Ve@)§ = 0B and (Ved)X = w(oX)E +n(X)¢B. (3.21)
Let us consider a (1, 1)-tensor field h on M by [43]

hX = Vxé& — w(€)X +n(X)B, (3.22)
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L.c. almost cosymplectic manifolds 24

for any X € I'(T'M). This leads to
Ve = —B+w(§)E. (3.23)

Using (3.4) and (3.1.1), we obtain on each Uy, exp(—o;)V5& = hX. Note that the
linear operator h is symmetric and satisfies (see [43] for details)

h¢ + ¢h =0, hé =0 and trace(h) = 0. (3.24)
The divergence of £ is given by
div(€) = 2mw(§). (3.25)
As an example of an l.c. almost cosymplectic manifold, we have the following.

Example 3.1.1. We consider the 5-dimensional manifold M® = {p € R®|z; # 0, z >
0}, where p = (21, T2, y1, ¥2, z) are the standard coordinates in R°. The vector fields,

0 1 0 1 0
Xi = ) Y; = ; = ) fi ) = 17 27
Z@xi 23 Qy; ¢ r1 02 ot

are linearly independent at each point of M. Let g be the Riemannian metric on M
defined by ¢(X;, X;) = g(Y;,Y;) = d;j, where §;; is the Kronecker symbol, g(X;,Y;) =

iy L Rl ]
0 and g(&,€&) = 1. That is, the form of the metric becomes

1
g= ;(dx% + dx3) + 2%(dy? + dy3) + 22d2>.

Let 1 be the 1-form on M defined by n = x1dz. Let ¢ be the (1, 1)-tensor field defined
by, 6 X1 = Y1, ¢ Xo = =Ys, oYs = X5, 0Y) = — X4, ¢§ = 0. By linearity of ¢ and g,
the relations (4.1) and (4.2) are satisfied on M®. Thus, (¢,&,n, g) defines an almost
contact metric structure on M®. We note that dn = dz; A dz = xl( dxl + 1al,z)
dz. The non-zero component of the fundamental 2-form & is CID( Bap 821) = —22
and we have ® = —z2%dx; A dy,. Its differential gives d® = —2zdxy A dy; AN dz =

(xldazl + idz) A dxzy A dy,. By letting w = xll dr, + idz, we have, dn = w An and
d® = 2w A ®. It is easy to see that dw = 0 and the dual vector field B is given by
B==Xi1+; { Let us consider the open neighborhood U of M given by U = {p €
M 5|x1 > 0}, and there exists a differentiable function ¢ on U such that w = do, where
o = In(z,2). By Vaisman’s characterization above-mentioned, (M®, ¢, £, 1, g) is an l.c.
almost cosymplectic manifold. Let V be the Levi-Civita connection with respect to
the metric g. Then, the non-zero Lie brackets are [X;,&] = —ILIZXZ- —(2-19)Z¢
and [Yi,«S] = ‘:’ZYZ», for i = 1,2. These lead to V¢§ = —2X1, Vy,§ = xizX“
Vy. & = v Y;, for i = 1,2. The components of the tensor h defined in (3.22) are given
by hé =0, hX; =0, hY; = %Yi, for i = 1,2. Using the fact that g(V(1§, &) =0, it
is easy to check that its trace vanishes, that is, trace(h) = 0.
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Next, we investigate the torsion tensor T for an l.c. almost cosymplectic manifold.
This tensor was introduced by Chern and Hamilton [11] and is defined by

g(TX7 Y) = (ng)(X, Y)7

for vector fields X, Y on a contact metric manifold (see [21] for details).
The Lie derivative £¢ of g with respect to the vector field £ is given by

(Leg)(X,Y) = 29(hX,Y) + 20(§)g(X, Y) —w(X)n(Y) —w(Y)n(X),  (3.26)

where h is given by (3.22). Thus, an l.c. almost cosymplectic manifold M has a tensor
7 such that g(7X,Y) = (Leg)(X,Y), VX, Y € I'(T'M). By (3.26), have

7X =2hX +2w(6) X —w(X){ —n(X)B. (3.27)

Lemma 3.1.4. Let (M, $,£,n,9) be an l.c. almost cosymplectic manifold. Then, the
following assertions are equivalent:

(a) The structure vector field £ is Killing.
(b) The differential 1-form w and the operator h vanish.

Proof. Suppose the structure vector field ¢ is Killing. Then, the Lie derivative
(Leg)(X,Y) =0,

for any vector fields X and Y on M. The latter implies that the Chern-Hamilton
tensor 7 vanishes identically on M. Its trace, with respect to an adapted frame
{Ei}1<icomy1 in TM, gives

2trace(h) + 4mw(&) = 0.

Since trace(h) = 0 and m > 1. Also, for X = ¢ in (3.27), we have B = 0. Hence
w = 0 and h = 0. This means that (a) implies (b), and the conserve is obvious, using
the equation (3.26). O

Using Example 3.1.1, the components of the Chern-Hamilton tensor on M?® are
given by 7X| = -2 X, —if, T7Xy = %Xz, Y] = IQ?YD 7Y, = %}/2 and 7§ = — %

12 1"
This means that the vector field structure £ = %% of the l.c. almost cosymplectic
manifold M? in Example 3.1.1 is Killing.

As a consequence to Lemma 3.1.4, we have the following.

Theorem 3.1.1. Let (M, ¢,£,n,g) be an l.c. almost cosymplectic manifold for which
the structure vector field € is Killing. Then M is almost cosymplectic and h vanishes.
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Contrary to Theorem 4.1 in [43] in which compactness and other conditions were
added to derive the result, the Theorem 3.1.1 leads to the same conclusion with
only one condition. The condition, in fact, contains the ones on the Ricci tensor,
the scalar curvatures and the function w(¢). This can be seen as follows. Let S and

r be the Ricci curvature tensor and the scalar curvature defined, respectively, by
2m

Zg (E;, X)Y,E;), r = ZS (E;, E;), respectively, {E;}o<i<om being

=0
an orthonormal frame with respect to g. In addition, the Ricci *-curvature tensor

S* and scalar x-curvature r*, are given by S*(X,Y) Z 9(R(E;, X)oY, 0FE;), r

2m

Z S*(E;, E;). The Ricci curvature tensor S and the scalar curvatures r and r* of an
i=0
l.c. almost cosymplectic manifold satisfies the identities [43, Proposition 4.1]:

S(€,€) +VER +div(B) + (2m — DE(E) — B — (2m — D(w(@)? =0, (3.28)
r vt VP + IV + (dm — 2)div(B) + 26(w(€)) — (4m” — 2| B
—2(w())* =0. (3.29)

If ¢ is Killing, by Lemma 3.1.4, B = 0. Hence w = 0 and this implies S(&, £)+|V¢[2 = 0
and r —r* + [VE[2 + 1|V|2 = 0 (see [43] for details).
Now, we explore the parallelism of the Chern-Hamilton tensor 7. The covariant

derivative of 7 is given by (Vx7)Y = Vx7Y — 7V xY. We have the following.
Lemma 3.1.5. Let (M, $,&,n,9) be an l.c. almost cosymplectic manifold. If the ten-

sor T 1s parallel, then the identity
(2m — 1)(w(€))? + 2trace(h?) + B2 = £(w(€)) — div(B), (3.30)

where |B|? = g(B, B), holds.
Proof. Let T be the parallel tensor field. Then, for any X, Y € I'(T'M), (Vx7)Y = 0.
That is, Vx7Y = 7VxY. Putting Y = £, one obtains, Vx7& = 7V x¢&, together with
the following pieces,

Vx7€ = Vx(w(§)§ — B) = X (w(§))§ +w(§)Vx§ — VB,

TVx{ =2hVx{+ 2w(§)VxE — w(VxE —n(VxE)B

= 22X + 2w(&)hX — 2n(X)hB + 2w (€)V x & — w(Vx)E,

one gets
X(w(€))¢ —w(€)Vx& — VxB =2h*X + 2w(§)hX — 2n(X)hB
—w(Vx§)§. (3.31)
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L.c. almost cosymplectic manifolds 27

Using (3.23), one of the properties of the tensor h in (3.24), the relation (3.25) and an
adapted frame in TM, {E;}; with i = 1,2,--- ,(2m + 1) and contracting the above
equation with respect to X, we have,

2m+1 2m+1 2m—+1
ZQ_TrlLJrl 2m+11:1 2m+21:1

2 g(hE, E) —2w(€) Y g(hE;, E) +2 ) n(E)g(hB, E;)
=1 =1 =1
2m—+1

+ Z (VE&9(&, Ei)
= £(w(§)) — (2m —1)(w(€))* — div(B) — 2 trace(h®) — | B},

where | B|? = g(B, B). That is, (2m—1)(w(&))*+2 trace(h®)+| B2 = {(w(€)) —div(B),
which completes the proof. Il

Suppose 7 is parallel. Then, putting X = ¢ into (3.31), we have

§(w(§))€ —w(§)Ve§ — VeB = —2hB — w(V£)E.

g-doting this equation with § gives w(V¢£) = 0. This implies that B = w(&)¢E.
Its divergence is div(B) = &(w(€)) — 2m(w(€))? and the relation (3.30) reduces to
trace(h?) = 0. That is h = 0. Therefore, we have the following.

Lemma 3.1.6. Let (M,¢,£,n,9) be an l.c. almost cosymplectic manifold. If the
Chern-Hamilton tensor T is parallel. Then, the dual vector field B of w is propor-
tional to & and h = 0.

Theorem 3.1.2. Let (M?™ ¢,.€,1n,9) be a compact l.c. almost cosymplectic man-
ifold with m > 1 for which the function w(§) is constant in the direction of &. If the
tensor T is parallel, then, the structure vector field is Killing.

Proof. Let [ be the integral over M with respect to the natural volume element
arising from the metric g. Integrating the relation (3.30), using Green’s Theorem and
£(w()) = 0, we have [, {(2m — 1)w(§)* + 2trace(h®) + |B[2} = 0, which implies
B =0 and h? = 0. Hence w = 0 and h = 0. Putting these into (3.26), we complete
the proof. n

Theorem 3.1.3. Let (M*™ 1 ¢,£,m,9) be a compact l.c. almost cosymplectic mani-
fold with m > 1 for which the function w(§) is constant in the direction of & and the
Chern-Hamilton tensor T s parallel. If r* = r, then M 1is cosymplectic.
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Proof. By Theorem 3.1.2, w = 0 and h = 0. Taking into account this, integrating the
relation (3.29) and using Green’s Theorem, we have [, {r*—r} = [, {|VE*+3|V¢[*}.
Hence, under our assumption, we obtain V¢ = 0 and V& = 0. By Lemma 3.1.3, M
is normal and therefore M is cosymplectic. O

The natural example of compact cosymplectic manifold is given by the product of
a compact Kéhler manifold (V, J, gy) with the circle S*. The cosymplectic structure
(¢,€,m, g) on the product manifold M =V x S is defined ¢ = Jo (pry),, £ = £, n=
c(pry)*(0), g = (pry)*(h) + A(pry)*(0 ® 0), where pr; : M — V and pry : M — S?
are projections of V' x S! onto the first and the second factor respectively, 6 is the
length element of S', F is its dual vector field and c is a real number, ¢ # 0 (see [14]
for more details).

3.2 Classes of l.c. almost cosymplectic Manifolds

This section deals with some subclasses of the class of l.c. almost cosymplectic man-
ifolds by particularly paying attention to those in which the smooth 1-form w is
proportional to the contact structure 7.

Let (M,¢,&,m,9) be an lc. almost cosymplectic manifold. Then, by identities
(2.7) and (2.11) from [43], on each Uy, we have,

(sttxﬁbt)ﬁbty + (V)Y = = (V) Vg (3.32)
In [43], Olszak observed the following:

Theorem 3.2.1 (Olszak [43]). For an almost contact metric manifold M, the fol-
lowing conditions are mutually equivalent:

(a) the manifold is normal l.c. almost cosymplectic,

(b) the manifold is l.c. cosymplectic with w = fn,

(c) (Vx@)Y = f{g(¢X,Y)§ —n(Y)pX},
where f s function such df An = 0.

Now, let us comment on the Theorem 3.2.1. If M is normal, then the structure
(d1, &, me, 9¢) given in (3.4) is normal for each ¢. In this theorem, the condition “w is
proportional to the contact form n ( i.e. w = fn)” plays an important role. This has
permitted Olszak to observe that the tensors Ny; and Nj of structures (¢, &, 1, g¢)
and (¢, &, 1, g), respectively, in (3.16), are equal. If M is normal l.c. almost cosym-
plectic, then h = 0 and B = f¢. In fact, he made use of the identity

Voxé = ¢VxE, VX € T(TM), (3.33)
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which is satisfied by a normal almost contact metric manifold. The function f can
specifically be found as follows. From the equation (3.33), we have

w()oX = w(§)oX +n(X)pB.

This implies that B = n(B)¢, i.e., f =n(B) = w(§).
Now, suppose w # fn. If M is normal l.c. almost cosymplectic, then Ny; = 0 and
using (3.11), the relation (3.16) reduces to [¢, ¢] = 0. This leads to

0= [¢,¢](X.€) = ¢*[X, €] - ¢[6X, €] = =Vx& — &(Vyx&) + d(Veh) X, (3.34)

That is
P(Vx§) = —Vx§+ ¢(Veo) X.

Applying ¢ to this and using the second equation in (3.21), one obtains Vyx& =
oV x& + n(X)pB. This generalizes the relations given in (3.33), and together with
(3.22), we obtain hX = 0. The latter confirms what Olszak said in [43, p. 76|, that
is, h =0 if M is l.c. cosymplectic, that is if M is normal l.c. almost cosymplectic.

Can an l.c. almost cosymplectic admit a 1-form w that is proportional to n?
The answer is affirmative. Next we list some cases where this occurs.

First of all we start with a remark. Let [X, Y], = V&Y — V4 X on each U;. Using
(3.6), one obtains

[X,Y], = VLY —VLX = VY - Vy X = [X,Y].

This means that, on each U, [, |: =, |.
Let h be the tensor field associated to the structure (¢,&, 7, g) and defined in [8,
page 84| by

~ 1
h = §L£¢. (3.35)
Its (¢4, &, My, g )-structure associated tensor field is denoted by ht and given, on each
Uta by
~ 1
HX = 5(866)X.
Then, we have
2h'X = (Led) X = [&, 9 X1 — 9l&, X]e. (3.36)
A direct calculation of the right-hand side of (3.36) gives

&, 0 X — 0[&r, Xy = Ve, 0X — Vf;sxft - ¢V2tX + oVi&

= (Ve,¢)X + 2exp(oy)phX. (3.37)
From (3.36) and (3.37), we obtain
~ 1
h'X = 5(Vttgb)X + exp(oy)phX. (3.38)
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By the definition of l.c. almost cosymplectic, the structure (¢y, &, m:, g;) satisfies the
relations (2.10) and (2.11) given in [44]. That is,

Vttgzﬁ:O and VI;)th va é-t

The relation (3.38) becomes h'X = exp(o,)¢hX. It is casy to check that A' inherits
the properties of h, that is, it is a symmetric operator and satisfies

h'¢+ ¢ht =0, h'&, =0 and trace(ﬁt) = 0.
A direct calculation of (3.36) gives
20X = &(6X) — 90X (&) — 9(&(X) — X(&)
= —w(¢pX)& +2 exp(at)zX. (3.39)

From (3.38) and (3.39), one obtains hX = Tw(¢X)E + phX. It is easy to see that
trace(h) = 0, h¢ = 0 and

ROX 4+ 6hX = {wl(@n(X) - w(X)}¢, (3.40)
9(AX,Y) = (X, T¥) = L {w(6X)n(¥) ~ w(6V (X))

Lemma 3.2.1. On an almost contact metric manifold M, h is not a symmetric
operator,
Vx§ =w(§)X —n(X)B + ¢hX,
for any vector field X on M, I does not anticommute with @, and trace(%) = 0.
We have the following.

Lemma 3.2.2. Let (M, ¢,&,m,g) be an l.c. almost cosymplectic manifold. Then hgb+
¢h =0andh is a symmetric operator if and only if there exists a smooth function f
on M such that w = fn with df Am=0 and h= oh.

Another condition in which an l.c. almost cosymplectic manifold admits a 1-form
w that is proportional to 7 is as follows.

Let D := kern be the contact distribution and D+ be the distribution spanned
the structure vector field £&. Then, we have the following decomposition

TM = D & D*, (3.41)

where @ denotes the orthogonal direct sum. By the decomposition (3.41), any X €
['(TM) is written as
X =0QX +Q*X, (3.42)

where Q and Q* are the projection morphisms of TM into D and D+, respectively.
Here, it is easy to see that Q+X = n(X)¢ and X = QX + n(X)E.
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Lemma 3.2.3. Let (M, ¢,£,n,g) be an Lc. almost cosymplectic manifold. Then the
contact distribution D defines on M a foliation F of codimension 1.

Proof. Let X, Y € I'(D). Then, n(X) =n(Y) =0 and
n([X,Y]) = =2(wAn)(X,Y) = w(Y)n(X) —w(X)n(Y) = 0.
This means that [X,Y] € I'(D), i.e, the contact distribution D is integrable. O

Let F be a foliation on an l.c. almost cosymplectic manifold (M, ¢,&,n, g) of codi-
mension 1. The metric ¢ is said to be bundle-like for the foliation F if the induced
metric on the transversal distribution D+ is parallel with respect to the intrinsic con-
nection on D+. This is true if and only if the Levi-Civita connection V of (M, ¢, &, 1, g)
satisfies (see [7] and [47] for more details):

I(VoryQX,Q2) + g(Vi2QX, Q1Y) =0, (3.43)

for any X, Y, Z € I'(T'M). If for a given foliation F, the Riemannian metric g on M
is bundle-like for F, then we say that F is a Riemannian foliation on (M, $,£,n,9).

Let 3+ be the orthogonal complementary foliation generated by &. Now we pro-
vide necessary and sufficient conditions for the metric on an l.c. almost cosymplectic
manifold to be bundle-like for foliations F and F+.

Theorem 3.2.2. Let (M, $,£,n,9) be an l.c. almost cosymplectic manifold and let F
be a foliation on M of codimension 1. Then the following assertions are equivalent:

(i) The metric g on M is bundle-like for the foliation F.
(i) The dual vector field B of w has a no components along D.

Proof. Using (3.23), forany X, Y, Z € I'(TM), we have Q1Y = n(Y)¢, Q7 = n(Z)¢
and the left-hand side of (3.43) gives

9(VoryQX,QZ) 4+ g(Vqr 2QX, Q1Y) = 29(Y)n(Z)w(QX),
for which the equivalence follows. ]
As an example, we have the following.

Example 3.2.1. We consider the 5-dimensional manifold M® = {p € R®|z # 0},
where p = (x1, T2, Y1, 2, 2) are the standard coordinates in R®. The vector fields,

€ =z 7€i:_3 ,52—, fOI'Z:1,2,
ox; 23 Qy; 0z
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are linearly independent at each point of M?5. Let g be the Riemannian metric on M5
defined by g(e;, e;) = g(ei,€j) = 0ij, where 0;; is the Kronecker symbol, g(e;, ;) =0
and ¢g(&,&) = 1. That is, the form of the metric becomes

1
g= ;(daz% +dw3) + 2% (dy? + dy3) + d2°.

Let n be the 1-form on M?® defined by n = dz. Then, dn = 0. Let ¢ be the (1, 1)-tensor
field defined by, gpe; = €1, pey = —¢9, Peo = €9, Ppc1 = —ey, P& = 0. By linearity of ¢
and g, (4.1) and (4.2) are satisfied on M?. Thus, (¢,&,n, g) defines an almost contact

I~

metric structure on M?®. The non-zero component of the 2-form ® is
o 0
<_7 _> = _227
Oy 3y1

and we have ® = —22dx; A dy,. Its differential gives
1

dd = —2zdxy Ndyy Adz = —22°(=dz) Adxy A dy.
z

Letting w = %dz = %77, we have, dw = 0 and d® = 2w A ®. It is easy to see
that dw = 0 and the dual vector field B is given by B = L& That is, w(§) = 1.
Let us consider the open neighborhood U of M® given by U = {p € M5z > 0},
and there exists a differentiable function ¢ on U such that w = do, where ¢ =
In(z). Again, by Vaisman’s characterization above-mentioned, (M5,¢,§,n,g) is an
l.c. almost cosymplectic manifold with w = %77. Let V be the Levi-Civita connection
with respect to the metric g. Then, the non-zero Lie brackets are [e;,&] = —%ei and
e, €] = %51, for i = 1,2, and the action of V on {e;, &,£} is given by V& = 0,
Ve, & = —%ei and V. ¢ = %»si, for + = 1,2. The components of the tensor h defined
in (3.22) are given by hf = 0, he; = —%ei, he; = %51», for i = 1,2. Let D be the
contact distribution of M®. Then D = ker 1. Since we need vector fields which are
orthogonal to &, and g(e;, &) = g(e;,&) = 0, for i = 1,2, we have D = Span{e;, &; }i—1 0.
Let X and Y be two vector fields of D. Then X = aje; + ases + ajer + ajes and
Y = Bier+ Baea+ Bie1+ Biea. We have g(Vx&,Y) = g(Vy&, X) = =L (o fi+ou 1)+
3(ajBi+a3Bs). Since n([X,Y]) = g(Vx&,Y)—g(Vy&, X) = 0, that is, [X,Y] € ['(D).
This means that the distribution D is integrable and therefore admits a foliation JF.
Since g(VeX, &) = —g(X, V) = 0, then the metric g on M?5 is bundle-like for the
foliation .

For any X, Y, Z € I'(TM), using (3.26) and the fact that h is symmetric and

9(VorQ'X,QZ) = n(X){9(hQY, QZ) +w(£)g(QY,QZ)}, (3.44)

we have
T 2(€)g(QY. QZ). (3.45)
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Using the Lie derivative in (3.26), one obtains

9(VoyQX,Q2Z) + g(VozQ X, QY) = 2n(X)(Leg)(QY, QZ). (3.46)
We have therefore the following.

Theorem 3.2.3. Let (M, $,&,n,9) be an l.c. almost cosymplectic manifold and let F
be a foliation on M of codimension 1. Then the following assertions are equivalent:

(a) The metric g on M is bundle-like for the canonical totally real foliation F*.
(b) The structure vector field & is D-Killing (i.e. D+ is D-Killing distribution).

Let M’ be a leaf of the distribution D. Since M’ is a submanifold of M and for
any X, Y € I'(T'M'), we have

VyY = ViY +a(X,Y), (3.47)
VxE = —A:X 4+ V'y¢, (3.48)

where V' and « are the Levi-Civita connection and the second fundamental form of
M’ respectively. On the other hand, since £ is a unit normal vector field, we have
g(Vx&,€) = 0, hence V'5¢ = 0, for any X € T'(T'M'). Therefore, the Weingartem
formula (3.48) becomes

Vxé = —AX.

Proposition 3.2.1. Let (M, ¢,£,n,9) be an l.c. almost cosymplectic manifold. Then,
integral manifolds of the distribution D in (3.41) are l.c. almost Kdhler manifolds with
mean curvature vector field H = —w(£)&. They are totally umbilical submanifolds of
M if and only if the operator h vanishes.

Proof. Let M’ be an integral manifold of D. The tensor fields ¢; and g; induce an
almost complex structure J; = J and a Hermitian metric g; on M’. Then, for any X,
Y € T(TM'), we have ®,(X|Y) = ¢g,(X, J,Y) = ¢:(X,0,Y) = &,(X,Y) and dP| =
(d®y)jpr = 0, so M' is an l.c. almost Kéhler. Using (3.47), the second fundamental
form of M’ gives

a(X,Y) = g(AX,Y)E = —g(hX,Y)§ — w(§)g(X, Y)E. (3.49)

Fixing a local orthonormal frame {e;,--- ,e,, ¢e1, -, pe,} in TM' and applying the
properties on h, one has,

H= ranli(D) {Z.Zla(ei’ ¢i) + izla(gzﬁei, gei)} = —w(§)E.

The last assertion follows and this completes the proof. Il
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This result can be extended to the foliation F*. That is, if h = w(§) = 0,
g(VxY,€) = 0. This means that the foliation F* is Riemannian. Therefore, h = 0, the
leaves of J are totally geodesic if and only if the orthogonal complementary foliation
F+ generated by ¢ is Riemannian.

On each U, N M’, the Gauss and Weingartem formulas are given by

VLY = VLY 4+ al(X,Y), (3.50)
Vi& = —Ag, X, (3.51)

where g:(a'(X,Y), &) = g:(Ae, X, Y), that is, o/ (X,Y) = g:(Ae, X, Y)&. However,
01X, Y) = (A6 X, V)6 = (AKX, Y)E = alX,Y). (3:52)
For any X, Y € I'(T'M’), and using (3.6) and (3.47), we have

(VDY = V5 JIY — J(VEY) = VoY — a(X,8Y) — ¢(VyY)
= (Vx9)Y —w(e¢Y)X +w(Y)oX + g(X,¢Y)B
—9(X,Y)¢B — g(A: X, pY)E. (3.53)

If the integral manifold M’ is l.c. Kéhler, then, (V'%J)Y = 0 and we have
(Vx9)Y =w(@Y)X —w(Y)oX — g(X,¢Y)B + g(X,Y)éB
+ g(AeX, oY), (3.54)

for any X, Y € I'(TM’). Therefore, if the foliation F has locally conformal Kéahler
leaves, then for any X, Y € I'(T'M), the vector fields X — n(X)¢&, Y — n(Y)E and
B — n(B)¢ belong to D and using (3.21) and (3.23), we have

(Vx—nx)ed)(Y —=n(Y)§) = (Vx@)Y —n(Y)pAX — n(X)w(dY)E,
9(Ae(X = n(X)E), 9Y) = g(AcX, 9Y) — n(X)w(dY).
Putting these pieces into (3.54) and taking into account the following relations
w(@(Y —n(Y)))(X —n(X)E) =
w(Y = n(Y)E)o(X —

)

)

9(X = n(X)& oY —n(Y)E)) = g(
g(X =n(X)E,Y —n(Y)E)

one obtains,

(Vx0)Y = =g(¢Ae X, Y)E+n(Y)9AX + w(dY) X + {n(Y)w(E) —w(Y)}oX
— (X, 9Y {B —w(§)¢} — n(X)w(¢Y)E.
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Proposition 3.2.2. Let (M, $,£,n,9) be an l.c. almost cosymplectic manifold. Then
the distribution D in (3.41) has locally conformal Kdahler leaves if and only if

(Vx0)Y = =g(¢AeX, Y)E+n(Y)9AX + w(dY)X + {n(Y)w(E) —w(Y)}oX
— 9(X, 0Y {B —w(§)§} — n(X)w(¢Y)E, (3.55)

forany X, Y e I'(TM).

When the differential 1-form w is reduced to w = fn, where f is a function such
that df A n = 0, then M becomes an almost f-cosymplectic manifold [1] and the
relation (3.55) for any leaves of M to be Kéhlerian becomes

(Vx9)Y = —g(@Ac X, Y)E +n(Y)pAc X,

for any X, Y € T'(TM). The latter relation is exactly the one find by Aktan et al in
[1, Proposition 6]. We have the following.

Theorem 3.2.4. Let (M, ¢,£,n,g) be an l.c. almost cosymplectic manifold and let
F be a foliation on M of codimension 1. If the metric g on M is bundle-like for the
foliation T, then the leaves of F are almost Kdhler.

Moreover, if M is normal, then the leaves of F are Kdhler and totally umbilical.

Proof. Let J be a foliation on an l.c. almost cosymplectic manifold M of codimension
1. If the metric ¢ on M is bundle-like for the foliation &, then, by Theorem 3.2.2, the
dual vector field B of w is proportional to £, that is, B = w(&)¢. This means that M
becomes an almost f-cosymplectic manifold with f = w(&) and the leaves of F are
almost Kéhler.

If the structure is normal, then A = 0 and the tensor N; in (3.11) vanishes. By
the equality

Ni(X,Y) = [0, l(X,Y) = ¢°[X, Y] + [¢X, ¢Y] — 00X, Y] — ¢[X, 6V
= [/ J](X,Y),

and by Proposition 3.2.1, we complete the proof. Il
We finally have the following result.

Theorem 3.2.5. Let (M, ¢,£,n,g) be an l.c. almost cosymplectic manifold and let
F be a foliation on M of codimension 1. If the Chern-Hamilton tensor T is parallel.
Then,

(1) (M,0,&,m,9) is an almost w(&)- cosymplectic manifold.

(i) (M, ¢,&,m,9) is a w()- cosymplectic manifold if and only if leaves of F are

Kahler.
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(i11) The foliation F is Riemannian and totally geodesic.
(iv) The foliation F* is Riemannian
As an example, we have the following.

Example 3.2.2. Let M5 be the 5-dimensional manifold defined in Example 3.2.1.
That is M® = {p € R?|z # 0}, where p = (21,72, y1,¥s, 2) are the standard coordi-
nates in R°. The vector fields,

0 0 0

a_xi7 191':2_7 62%7

a0, for i =1,2,

€ =z
are linearly independent at each point of M5, Let g be the Riemannian metric on M
defined by g(e;, e;) = g(v;,7;) = d;j, where §;; is the Kronecker symbol, g(e;, ¥;) =0
and ¢(&,&) = 1. That is, the form of the metric becomes

1
g= ;(dﬁ + dxs + dy? + dy3) + dz*.

Let n be the 1-form on M® defined by n = dz. Obviously, dn = 0. Let ¢ be the
(1,1)-tensor field defined by, ge; = 11, pey = —3, ¢y = ea, ¢ = —eq, ¢§ = 0. By
linearity of ¢ and g, the relations (4.1) and (4.2) are satisfied on M?5. Thus, (¢,€,1m,9)
defines an almost contact metric structure on M®. The non-zero component of the

fundamental 2-form & is q)<8%1’8%1) = —%, and we have ® = —%dx; A dy;. Its
differential gives
1 1 1
d® = 2—dry Ndy) Ndz = —2—dxy Ndy, A (—=dz). (3.56)
z z 2

Letting w = —%dz = —%77, we have, dw = 0 and d® = 2w A ®. It is easy to see that
dw = 0 and the dual vector field B is given by B = —ig. That is, w(§) = —i. Let
us consider the open neighborhood U of M5 given by U = {p € M5z > 0}, and
there exists a differentiable function o on U such that w = do, where 0 = —In(z). By
Vaisman’s characterization above-mentioned, (]Tj > ,€,1m,9) is an l.c. almost cosym-
plectic manifold with w = —%n. Let V be the Levi-Civita connection with respect to
the metric g. Then, the non-zero Lie brackets are [e;, ] = —%ei and [¥;,&] = —éei,
for i = 1,2, and the action of V on the elements of the basic {e;, &;,&} is given by

1 1 1 1
veiei = __ga Vﬁlﬁz = __57 ng = 07 veig = ——€¢ and sz& = ——¢&
z z V4 V4

for i = 1,2. The components of the (1,1)-tensor h defined in (3.22) are given by
hé =0, he; = h; = 0, for ¢ = 1,2. It can be noted that Nijenhuis torsion tensor of
¢ defined in (3.56) is zero. By Theorem 3.2.1, (M?,$,£,m,g) is an l.c. cosymplectic
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manifold with w = —in. Let D be the contact distribution of M°. Then D = ker n.
Since we need vector fields which are orthogonal to £, and g(e;, &) = g(¢;,&) = 0,
for i = 1,2, we have D = Span{e;, ¥; }i—12. It is easy to see that D is integrable and
(Ve,0)e; = (Vy,0)0; = (Ve,0)9; = 0. This means that the leaves of D are Kéahler
and totally umbilical with mean curvature vector field H = %f . Since g(VeX,§) =
—g(X, V&) = 0, then the metric g on M? is bundle-like for the foliation F. Therefore
F is Riemannian and totally geodesic, and F* is Riemannian.
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CHAPTER FOUR

INDEFINITE LOCALLY CONFORMAL
ALMOST COSYMPLECTIC MANIFOLDS

This chapter is focused on foliations of indefinite l.c. almost cosymplectic manifolds.
In the first section we define the canonical foliations F which generally derived from
the Pfaffian equation w = 0. The rest of the chapter is, respectively devoted to the
geometry of non-tangential leaves of foliation F and the higher order geodesibility of
leaves of F via the Newton transformations.

4.1 Indefinite l.c. almost Cosymplectic manifolds

Let M be a (2m + 1)-dimensional almost contact manifold endowed with an almost
contact metric structure (¢, &, n), where ¢ is tensor field of type (1,1) on M, a vector
field £ and a 1-form 7 satisfying the following relations

o' =-I+n®E& nE) =1, ¢£=0, no=0. (4.1)

Then the structure (¢,&,7, g) is called an indefinite almost contact metric structure
on M if (5,5,77) is an almost contact structure on M and g is a semi-Riemannian
metric on M such that

9(X,0Y) = g(X,Y) = n(X)n(Y), (4.2)

for any vector fields X and Y on M. In this case, we call M an indefinite almost
contact manifold.

As an example of an indefinite 1. c. almost cosymplectic manifold, we have the
following.

Example 4.1.1. Consider M? a 9-dimensional semi-Riemannian manifold

M9: {p€R9|ZE1 > 1791 > 1}7
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where p = (21, T2, T3, T4, Y1, Y2, Y3, Ya, 2) are the standard coordinates in R®. The vec-
tors fields

Xl — e—z—myl{axl + 8y1}7 )(2 — e—z—x1y1{8m2 + 8y2}7 X3 — 6—z—x1y1a$3’
Xy =e 77" 0xy, Y1 =e 7" 0r — Oy1}, Yo =e T 0xy — Oya},
Ys=—e T Tdys, Yy=—e Ty, Z=e IOz,

are linearly independent at each point of M?®. Let g be the indefinite metric on M?
defined by ¢(X;, X;) = ¢g(V;,Y:) = —1, for i = 1,2 and ¢(X;, X;) = g(V;,Y;) = 1,
for i = 3,4, g(X;,Y;) = 0 and ¢(£,€) = 1. Let n be the 1-form on M? defined
by n = e*¥dz, then the structure vector field is ¢ = e *7*1%19z. Let ¢ be the
(1,1)-tensor field defined by,

PX1 ==Y, oY1 =Xy, 9Xo =Yy, oY= X5, ¢0X3=1Y5,
(b}/?» = _X37 ¢X4 = }/217 (b}/;l = _X47 (bg = 0.

By linearity of ¢ and g, the relations (4.2) are satisfied thus, (¢,&,7,g) defines an
almost contact metric structure on M?. We have also

dn = "Wy day A dz + xdy; A dz}

By straightforward calculations we obtain
1 1
b = 62(Z+x1y1){§d371 VAN dy1 + §dx2 A dyg + d:1:3 A dy3 + d$4 N dy4}

By letting w = y1dxy + x1dy; + dz, we have dn = w A n and d® = 2w AP and dw = 0,
which show that (M?, ¢, €&, 7, g) is an l.c. almost cosymplectic manifold with the dual
vector field B of w given by B = e’z(zﬂlyl){%axl + 210y; + 0z}.

Let M be a (2n + 1)-dimensional indefinite 1. c¢. almost cosymplectic manifold of
index ¢, 0 < ¢ < 2n+ 1. Let us set ¢ = g(B, B) € (M) and Sign(B) = {z € M :
B, = 0}. Note that ¢ and Sing(B) determine the causal character of B, so it may be
¢ =0 and Sing(B) = () when B is null.

From now on, the characteristic 1-form w given in (3.5) does not vanish, unless
otherwise started.

Since M is an l.c. almost cosymplectic, it admits a canonical foliation F of codi-
mension r whose leaves are the maximal connected integral manifolds of the Pfaffian
equation w = 0 (see [10] for details and references therein).

Let (TF)¢ be the complementary distribution to 7'F in T'M. Then, its dimension
is 7.

First, assume that ¢ = g(B, B) # 0. Then, it is easy to see that the index of each
leaf L of & is given by

ind(L) = ¢ — s,
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where s = ind((TF)¢) with 0 < s <.
Now we assume that ¢ = 0. Then B € TF. Set

Rad(TT), = (TF),. N (TF4),, =€ M.
It is easy to see that B € Rad(TF). Let S(TF) be a distribution on M? such that
TF = S(T'F) L Rad(TF). (4.3)

The screen distribution S(7'F) is seen as the complementary bundle of Rad(7'F) in
TF. It is then a rank (n — p — dimg Rad(T'F)) non-degenerate distribution over F. In
fact, there are infinitely many possibilities of choices for such a distribution provided
the foliation JF is paracompact, but each of them is canonically isomorphic to the
factor vector bundle 7F /Rad(T'F).

Case 1: lf w(§) =0, ie., £ € TF and using (4.2), one has g(¢pB, ¢B) = g(B, B) —
w(€)? =0, and since g(¢B, B) = 0, the vector field ¢ B belongs to T'F and is also null
and it may be in the radical distribution or not.

As the structure vector field £ belongs to T'F, we assume that £ € S(TF).

If » = 1, then by Proposition 2.2 in [18] dimg(Rad(T'F)), = 1, for any = € M. Let
RB be the line bundle spanned by the vector field B. Since Sign(B) = (), we have
Rad(TF) = RB. Also ¢B ¢ Rad(T'F) which means that ¢B € S(T'F). Therefore L is
a null hypersurface immersed in (M, g). Let S(TF)* be an orthogonal complementary
vector bundle to S(T'F) in T'M|5. Consider a complementary vector bundle F' of RB
in S(TF)* and take V € I'(F|y) a locally non-zero section defined on the open subset
U C M. Then w(V) # 0, otherwise S(TF)* would be degenerate at a point of U (see
[18, p. 79| for more details). We define on U a vector field

1 g(V,V)
Ny = —— — B;. 4.4
=Y S o
It is easy to see that
w(Ny) =1 and g(Nv, Ny) = g(Nv, W) =0, (4.5)

for any W € I'(S(TF)u). If we consider another coordinate neighborhood U* C M
such that U N U* # (. As both RB and F are vector bundles over F of rank 1,
we have B* = B and V* = ~V, where 8 and v are non-zero smooth functions
on UNU* It follows that Ny. is related with Ny on U N U* by N{. = (1/8)Ny.
Therefore, the vector bundle F' induces a vector bundle tr(7F) of rank 1 over F
such that, locally, the equations in (4.5) are satisfied. Finally, we consider another
complementary vector bundle £ to RB in S(T'F)* and by using (4.4), for both F
and E, we obtain the same tr(7T%F). As g(¢Ny, Ny) = 0, we have ¢Ny € S(TTF).
From (4.2), we have g(¢Ny, pB) = 1. Therefore, {pRB @& RNy } (direct sum but not

On the geometry of locally conformal almost cosymplectic Ange Maloko Mavambou ©QUKZN 2017
manifolds and 2-order Lagrange spaces angemaloko@gmail.com
Scholarship from SIMONS FOUNDATION through

the RGSMA-Project (BIUST, Botswana)



Indefinite I.c. almost Cosymplectic manifolds 41

orthogonal) is a non-degenerate vector subbundle of S(T'F) of rank 2. Since § € S(T'F)
and g(¢Ny, &) = g(¢B,&) = 0, there exists a non-degenerate invariant distribution
Dy of rank 2n — 4 such that

S(TF) = {pRB & ¢RNy} L Dy L RE, (4.6)
and the tangent space of F is decomposed as follows:
TF = {pRB @ ¢RNy} L Dy L RE L RB. (4.7)

If r > 1, then the radical Rad(TF) is of rank p with 1 < p < min{2n+ 1 — r,r} and
L is a p-null submanifold.

Case 2: If w(§) # 0, i.e., & ¢ TF. Therefore, L is a null submanifold immersed in
M. This holds even when ¢B ¢ Rad(T'F). In this case, £ takes the form

§ = &g + &),

where {75 and (1) are the tangential and transversal components of £ in M, re-
spectively. But if ¢B € Rad(T'F), then r > 2 and there exists a distribution Dy of k
with 0 < k < min{2n + 1 —r,7} in TF such that

Rad(TF) = D, & Ds, (4.8)

where D; = {B,¢»B}. This means D; is invariant under ¢. By Lemma 1.2 given
in [18, p. 142], we have the following. Choose a screen transversal bundle S(TF%),
which is semi-Riemannian and complementary to Rad(F) in TF*. Since, for any
local basis {Ey = B,E; = ¢B, Ex} of Rad(TF), there exists a local null frame
{No, N1 = ¢ Ny, N, } of sections with values in the orthogonal complement of S(T' M)
in S(TM)* such that g(E;, N;) = d;;, it follows that there exists a null transversal
vector bundle Itr(T'F) locally spanned by { Ny, N1 = ¢ Ny, Ni.} [18]. Then,

tr(TF) = ltr(TF) L S(TFH), (4.9)
TM = S(TF) L S(TF") L {Rad(TTF) @ ltr(TF)}. (4.10)

It is easy to check that ¢ Dy C S(T'F). The latter means there exists a subbundle Ly of
rank k in [tr(T'F) such that ¢Ly C S(TF). Also there exists a subbundle 8 in S(TF*)
such that ¢8 C S(TF). The bundle {¢pDy & ¢Ly & ¢8} is a subbundle of S(TF) of
rank at least 2. Therefore there exists a non-degenerate invariant distribution Dy of
even rank such that

S(TF) = {¢Ds ® Ly ® ¢8} L D, (4.11)

Thus, in this case, L is a quasi generalized CR-null submanifold immersed in M
(see [36] for more details of quasi generalized CR concept). Therefore, we have the
following theorem.
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Theorem 4.1.1. Let M be a (2n+ 1)-dimensional indefinite l.c. almost cosymplectic
manifold of index q, where 0 < g < 2n + 1 with Sign(B) = 0. Then

(i) If ¢ # 0, then the index of each leaf L of F is given by ind(L) = q — s, where
s = ind((TF)¢) with 0 < s < r. Moreover, L is totally geodesic r codimensional
semi-Riemannian submanifold of (M, g) if and only if the Lee form w is parallel.

(i1) If c =0, then each leaf of F is either a null hypersurface or a quasi generalized

CR-null submanifold of (M, g).

The Example 4.1.1 shows that ¢ = ¢g(B, B) = L 2tnw) {942 — y? + 2}, which
is always different from zero, since —2z% — y? + 2 # 0, for x1 > 0 and y; > 0. The
item (ii) in Theorem 4.1.1 is supported by the following example.

Example 4.1.2. Consider M7 a 7-dimensional semi-Riemannian manifold
= {p S R7|.T1 > 0793 > 0}7

where p = (1,22, %3, Y1, Y2, V3, 2) are the standard coordinates in R”7. The vectors

fields

1 1 1 1
X1 = 8951, }/1 = 8y1, X2 = 8x2, }/2 = 3y2,
r1+ Y3 1+ Ys 1+ Ys 1+ Ys
1 1 1
X3 = ax?ﬂ YE’) = - ay37 Z = 827
T1+ Y3 1+ Y3 1+ Y3

are linearly independent at each point of M7. Let ¢ be the indefinite metric on M7
defined by g(X;, X;) = g(¥i,Y;) = —0,; for any i, j = 1,2, g(Xs, X3) = g(¥3,Y3) = 1,
9(&,¢) =1, g(X;, Xx) = g(V,Yy) = 0, for all [ # k, I,k = 1,2,---,7. Let n be
the 1- form on M7 defined by n = (z; + y3)dz and the structure vector field given by
§= +y 0z. Let ¢ be the (1, 1)-tensor field defined by, p.X; = —Y7, ¢Y; = X3, ¢Xo =
=Y, ¢Yo = X5, 0 X3 = Y3, Y5 = — X5, 90Xy =Y, 9Yy = — Xy, ¢§ = 0. By linearity
of ¢ and g the quadruplet (¢, £, n,g) defines an almost contact metric structure on
M. Take 0 = In(x; + y3). It follows that w = xli
dn = w A n. The 2-form fundamental is given by

" (dzy + dys), then clearly we have

(I) = (ZL’l + y3)2{—dx1 N dyl — dCL’Q N dy2 + dl’g A\ dyg},

which satisfies d@ = 2w A ®. The Lee vector field (i.e. the dual vector field of w) is
given by B = (e +y 2 5(X1 4+ Y3). It follows that ¢ = g(B, B) = 0 and thus B is a null
vector field. It is easy to see that w(§) = 0 and for p € M7, the distribution D, =
{X € T,M" : w(X) = 0} is spanned by {Xg,Xg,Yl,YQ,B ¢}. The non- Vanishing
components of the Lie brackets are [ Xy 3, B] = ($1+y3) —=——Xs3and [, B] = ($1+y3) ——Y7 9,
which prove that the distribution D is integrable and therefore admits a foliation &F
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whose leaves are null hypersurfaces immersed in M7. In this case the anti-Lee vector

field V = —¢B = W{Xg, — Y1} € TF. The transversal vector field is given by

N = %(Z‘l + y3)2{—X1 + }/33}

Note that if the ambient space M is an indefinite l.c. cosymplectic manifold, then
h =0 and B = w(§)¢ (see [34] and [43]). In this case the condition ¢ = 0 implies
w(§) = 0. Therefore, we have the following.

Lemma 4.1.1. There exist no null hypersurfaces immersed in an indefinite l.c.
cosymplectic manifold with Sign(B) = 0 such that ¢ =0 and w(§) # 0.

From now on, we consider the leaf L of the foliation F to be a null hypersurface
immersed in M with Sign(B) = 0 such that ¢ =0 and w(§) # 0 (Theorem 4.1.1).

According to the terminology in [18, p. 79|, the portion of tr(T'F) over a leaf L
of F is the null transversal vector bundle of L with respect to the screen distribution
S(TF)|r, (see [17] for more details). By definition of null hypersurface, (4.9) and
(4.10), we obtain the decomposition

TM = S(TF) L {TF" & tx(TF)} = TF @ tr(TF). (4.12)

Let tan : TM — TF and tra : TM — tr(T'F) be the projections associated with
(4.12). We set

VY =tan(VxY), H(X,Y) = tra(VxY)
Ay X = —tan(VxV), VYV =tra(VxV),

for any X, Y € TF and any V € tr(TF). Then V7 is a connection in TF — M, K
is a symmetric tr(7F)-valued bilinear form on T'F, Ay is an endomorphism of T'F,
and V' is a connection in tr(7'F) — M. Then, the Gauss and Weingarten formulas
of Fin (M, g) are giving by

VxY =VLY + H(X,Y), VxV =—-ApX +VEV. (4.13)

Similarly, if P denotes the projection morphism of TF onto S(TF) with respect to
the decomposition (4.3), we obtain

VXPY = VJPY + H* (X, PY), VLU =—A;X — ViU (4.14)

The details given in [18, p. 83 and 85| show clearly that the pointwise restrictions
of VI, V¥ 3 and Ay to a leaf L of the foliation J are respectively the induced
connections, the second fundamental form and the shape operator of L in (M, g). The
pointwise restrictions of V*¥, H* and Aj; to L are respectively the linear connection,
the second fundamental form and the shape operator on the vector bundle S(T'L) —
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L, while the pointwise restriction of V** to L is linear of connection on the vector
bundle TL+ — L.

Keeping the same notations of geometric objects above for the pointwise restric-
tions to a leaf L of F, and locally supposing {B, N} is a pair of sections on a co-
ordinate neighborhood U N L C L (see [18, Theorem 1.1, p. 79|, then the local
Gauss-Weingarten equations of F are given by

VxY =V3iY +B(X,Y)N, VxN=—-AyX +7(X)N, (4.15)
VYPY =V PY +C(X,PY)B, V%B=-A3X —7(X)B, (4.16)

for all B € I'(TLY), N € T'(tr(TL)), where B and € are the local second fundamental
forms of L and S(T'L), respectively, and 7 is a differential 1-form on L. Notice that
V* is a metric connection on S(T'L) while V7 is generally not a metric connection
and satisfies the following relation

(VR9) (Y, Z) = B(X,Y)NZ) + B(X, Z)\Y), (4.17)

forall X, Y, Z € I'(TF), where A is a 1-form on L given A(-) = g(-, N). It is well-known
from [18] that B is independent of the choice of S(T'L) and it satisfy

B(X,B) =0, X eTI(TL). (4.18)

The local second fundamental forms B and € are related to their shape operators
by the following equations g(ALX,Y) = B(X,Y), g(A5X,N) =0, g(AyX, PY) =
C(X,PY) and g(AnX,N) =0, for all X,Y € I'(T'L). Note that A} is S(TF)-valued,
self-adjoint and satisfies Az B = 0.

In this case, £ is decomposed as follows.

=& +aB+bN, (4.19)

where &g denotes the component of £ on S(7T'L) while a and b are non-zero smooth
functions on M. If {5 = 0, then L is called an ascreen null hypersurface [27].

Theorem 4.1.2. Let L be a leaf of a foliation F in an l.c. almost cosymplectic
manifold M such that ¢ =0 and w(§) # 0. Then L is an ascreen null hypersurface of
F if and only if pRad(TF) = ¢ltr(TF).

Proof. The proof follows from a straightforward calculation. m
Example 4.1.3. Consider M a 7-dimensional semi-Riemannian manifold
M ={peRz; >0,y >0, 2> 0},

with a metric of signature (—, 4+, +, —, 4, +,+) with respect to the canonical basis
{0z;,0y;, 0z}, for i = 1,2,3. The vectors fields X; = e 70z, Y1 = e 70y, Xo =
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e %0xq, Yo = €7 %0yy, X3 =€ %013, Y3 = —e70ys, Z = e 70z, where 0 = x1 + y; +
V/2z, are linearly independent at each point of M. Let ¢ be the indefinite metric on
M defined by g(X1, X1) = g(Y1, Y1) = =1, 9(X;, X;) = g(V;,Y;) = &y, for 4, j = 2,3,
9( X, Xg) = g(Y,Yx) =0, for any [ # k,l,k = 1,2,3 and ¢(£,£) = 1. Let n be the
1-form on M defined by n = e’dz and the structure vector field given by £ = e ?0z.
Let ¢ be the (1, 1)-tensor field defined by, X7 = —Y7, oY = Xj, ¢ Xo = =Y5, ¢Ys =
Xo, 0 X3 = Y3, oY = — X3, 09Xy = Yy, oY, = — Xy, ¢€ = 0. By linearity of ¢ and
g the quadruplet (¢, &, 7, g) defines an almost contact metric structure on M. The
smooth 1-form w is locally given by w = do = day+dy, ++/2dz and satisfies dn = wAn.
The 2-form fundamental ® is given by

b = 6720{—611'1 VAN dy1 + dl’Q A dy2 + dl’g VAN dyg},

and verifies d® = 2w A ®. The Lee vector field is given by B = 0x1 4+ 0y; + V20
and satisfies ¢ = ¢(B,B) = 0. Thus B is a null vector field. It is easy to see
w(€) = e™7v/2 # 0. The distribution D, = kerw, with p € M7 is spanned by
{Xs, X3,Y,,Y3, B}. The non-vanishing components of the Lie brackets are [ X5 3, B] =
4X55 and [Yas, B] = 4Y53, which prove that the distribution D is integrable and
therefore admits a foliation F of codimension 1 and its leaves are null hypersurfaces
immersed in M7. The transversal vector field is given by N = —i{ﬁﬂﬁ + 0y, —v/202}.
We can easily see that £ = ;;;(B +4N) and also B = —4¢N. Hence, the leaves of
JF are ascreen null hypersurfaces of M.

From Theorem 4.1.2, we notice that if L is an ascreen null hypersurface of F then
dim(¢RB & ¢RNy) = 1 and hence T'L decomposes as follows

TL=RB L ¢RB L Dy, (4.20)

where Dy is a non-degenerate ¢ invariant distribution, i.e., ¢ Dy = Dy.

As the geometry of null hypersurfaces depends on the vector bundles S(T'L) and
tr(T'L), it is important to investigate the relationship between geometric objects
induced by two screen distributions. The components of the structural vector field &
in (4.19) depends on both the screen distribution S(7'L) and the transversal bundle
tr(7'L) and this is proven as follows. Suppose a screen S(T'L) changes to another
screen S(T'L)'. The following are some of the local transformation equations due to
this change (see [18] for details):

2n—1
K=Y Kl (K;—¢cB), (4.21)

j=1

1
N'(X) = N = Sg(K, K)B + K. (4.22)
/ 1

VY = VY + B(X, Y){59(K, K)B - K}, (4.23)
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for any X, Y € D(TLlynr), where K = 37" ¢;K;, {K;} and {K!} are the local
orthonormal bases of S(T'F) and S(T'F)" with respective transversal sections N and
N’ for the same null section B. Here ¢; and K7 are smooth functions on U and
{€1, -+ , €1} is the signature of the basis {Ki, -, Ks,—1}. Denote by « is the
dual 1-form of K, characteristic vector field of the screen change, with respect to the

induced metric g = g|, of L — M [18], that is,
K(X)=g(X,K), VXeI(TL). (4.24)

Suppose that the structure vector field £ in (4.19) is written for a given screen
distribution S(T'L). Let £ = &g + a/B + V' N’ be another form of the structure vector
field ¢ in the change distribution S(7'L)’. Then we have the following.

Lemma 4.1.2. If the screen distribution S(T'L) changes to another screen S(TL),
thenV =b and {g = &s + {a — d' + 39(K, K)b}B — bK . Moreover, the combination
in (4.19) is independent of S(T'L) if and only if 1-form k vanishes identically on L.

4.2 Geometry of non-tangential leaves of &

This section deals with the geometry of the leaves of the foliations &F. First of all, we
define the following.

A leaf L of F is called non-tangential if £ satisfies relation (4.19). From (3.22), we
can set

Vxé=hX +AX, VX eI(TF), (4.25)

where A is a (1, 1)-tensor field defined by AX := w(&)X —n(X)B. It is easy to see that
A is symmetric with respect to g, i.e., g(AX,Y) = g(X, AY), for any X, Y € I'(TF),
Af = w(€)¢ — B, AB = 0 and A¢X — pAX = 5(X)¢B.

A null hypersurface L of F with ¢ = 0 is said to be screen conformal [18] if
there exists a non-vanishing smooth function ¢ such that Ay = pA%, and screen
homothetic if ¢ is a constant function.

Theorem 4.2.1. Let L be a leaf of a foliation F in an l.c. almost cosymplectic
manifold M with Sign(B) = 0 such that ¢ = 0 and w(§) # 0. Suppose that L is a
non-tangential null hypersurface. Then L is screen conformal if h satisfies

h=V"7¢+{2n—b\—Aoh}®B— (woh)® N — 0l,

where 1 denotes the identity on F.
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Proof. By straightforward calculations using (4.25), (4.19) and Gauss-Weingetein for-
mulas for L one gets, for any X € I'(TF),

aARX +bANX = V&g +{X(a) —ar(X) + C(X, &)} B
+{X(b) +b7(X) + B(X, &) }N — AX — hX. (4.26)

Then taking the g-product of (4.26) with B and N in turn, we get

X(b) +b7(X)+B(X,&) = —g(AX,B) — g(hX, B) (4.27)
and X(a) —at(X)+ C(X,&s) = —g(AX,N) — g(hX,N), (4.28)

for any X € I'(TF). Applying the definition of A to (4.27) and (4.28), we get
g(AX,B)=0and g(AX,N) = b\X) —n(X). Hence, (4.26) reduces to

aApX +bANX = Vi s+ {n(X) — bA(X) — g(hX,N)}B
— g(hX,B)N — AX — hX, (4.29)

from which our assertion follows and ¢ = —¢, which completes the proof. O]

Theorem 4.2.2. Let L be a leaf of a foliation F in an l.c. almost cosymplectic
manifold M with Sign(B) = (0 such that ¢ = 0 and w(§) # 0. Suppose that L
is mon-tangential null hypersurface in M. Then S(TL) is integrable if and only if
9(V¥&s.Y) = g(Vi€s, X) for all X, Y € (S(T'L)).

Proof. By straightforward calculations using (4.29) and the fact that h is symmetric,
we have g([X, Y], N) = Hg(Vi¥es, V) — g(Vi¢s, X)}, for any X,V € D(S(TL)),
which completes the proof. O]

The following corollary is obvious.

Corollary 4.2.1. Let L be a leaf of a foliation F in an [. c. almost cosymplectic
manifold M with Sign(B) = () such that ¢ =0 and w(§) # 0. If L is an ascreen null
hypersurface, then S(TL) is integrable.

Using the Koszul’s formula, the non-vanishing components of the covariant deriva-
tives on the basis of the T'L defined in Example 4.1.3 are given by V x; X; = —4N and
Vy:iY; = —4N for i = 2,3, from which we deduce B(X;, X;) = —4 and B(Y},Y;) = —4
and zero otherwise. Also, g(VyB, N) = 0 for all U € T'(T'F) which means V3, B has
no component along Rad T'L and hence € = 0 on F. This means that S(T'L) is totally
geodesic and therefore integrable.

Next, we study the geometry of distribution Dg in (4.20). Suppose that {g = 0,
that is L is an ascreen null hypersurface immersed in M. First, we notice that if
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Y € I'(Dy) then w(Y') = w(¢Y) = 0. Let F' be the projection of T'L on to Dy. Then
by decomposition (4.20) we have

X = FX +MX)B - =g(X,6B)¢B, VX € [(IF). (4.30)
Applying ¢ to (4.30) we get
1 1
pX = [X + b—Qg(X, ¢B)B + A(X)¢B — 59(X7 ¢B)E, (4.31)

for all X € I'(T'F), where fX = ¢FX.

Theorem 4.2.3. Let L be a leaf of a foliation F in an l.c. almost cosymplectic
manifold M with Sign(B) = 0 such that ¢ = 0 and w(§) # 0. Suppose that L is an
ascreen null hypersurface. Then Dy is integrable if and only if, for any X, Y € I'(Dy)
and Z € D(S(TL)), 20((V% )Y —(VE )X, Z) = g(Ni(Y, Z), fX) —g(Ni(X, Z), fY),
and in this case f is anti-symmetric on S(TL).

Proof. Let X,Y € I'(Dy), then Vx¢Y = Vx fY. Then, using this equation together
with (3.20) we derive

29((VX Y. 2)
= 2M(2)B(X, fY) = 2M(VXY)w(#2) + 559
_ %g(vg;y, 6B)N(Z) — 29(X, Y )w(Z)B — g(X,Y)w(¢Z)

g(NL(Y, Z),$X), ¥ Z eT(TF). (4.32)

2 §(V5Y, 6B)w(2)

Then from (4.32) we get
24(VENY ~ (VX 2) + A 2){B(X, fY) = BV, [X)}
= 291X, Y], 6B)w(Z) — (X, YJw(62) — (X, Y], 0B)n(2)
+g(N(Y, 2),6X) = (N (X, 2), 6Y) + 496X, Y )u(2). (1.33)
Hence, from(4.33) we can see that if Dy is integrable then

20((VENY = (VRX, Z) = g(Ni(Y, 2), FX) = g(N(X, 2), [Y),
for all Z € T'(S(TF)). Conversely, using this relation and (4.33) we can easily see that
9([X,Y],¢B) = 0 and A\([X,Y]) = 0, which together shows that Dy is integrable. [

Corollary 4.2.2. Let L be a leaf of a foliation F in an l.c. almost cosymplectic
manifold M with Sign(B) = 0 such that ¢ = 0 and w(§) # 0. Suppose that L is an as-
creen null hypersurface. Then Dy is integrable if and only if, B(X, fY)—B(Y, fX) =
le){g(Nl(Y7 Z)7 fX) - g(Nl(X7 Z>7 fY)}7 VXa Y € F(D(J)f S F((TLJ_))
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A leaf L of F will be called Dg-totally geodesic if for any X,Y € I'(Dg) we have
h(X,Y) =0, or equivalently, B(X,Y) = 0.

Theorem 4.2.4. Let L be a leaf of a foliation F in an l.c. almost cosymplectic
manifold M with Sign(B) = 0 such that ¢ = 0 and w(§) # 0. Suppose that L is
an ascreen null hypersurface. Then L is Dy-totally geodesic if and only if h + A =
—w(§)ANn on Dy.

Proof. By straightforward calculations, using (4.2), (4.15) and (4.25), we have
JH(X,Y), B) =g(¢VxY,¢B) —w(&)g((h + A)X,Y), (4.34)

for any X,Y € I'(Dy). Now, applying (4.15) to (4.34) we get
1

from which we deduce that B(X,Y) = —2b’A\(V%Y) — 2w(&)g((h + A)X,Y), which
completes the proof. Il

It is important to investigate the relationship between some geometric objects in-
duced, studied above, with the change of the screen distributions. We know that the
local second fundamental form B of L on UN L is independent of the vector bundles
(S(TL),S(TL*)) and tr(TL). This means that all results above depending only on B
are stable with respect to any change of those vector bundles. Let P and P’ be projec-
tions of 'L on S(T'L) and S(T'L)’, respectively, with respect to the orthogonal decom-
position of T'L. Any vector field X on L < M can be written as X = PX+A(X)B =
P'X + N(X)B with ' (X) = A(X) + (X). Then we have P’X = PX — k(X )B and
C'(X,P'X) = C(X,PY). The relationship between the local second fundamental
forms € and € of the screen distributions S(7'L) and S(T'L)’, respectively is given
using (4.22) by €'(X, PY) = €(X, PY) — 3k(VXPY + B(X,Y)K). All equations in
this section depending only on the local second fundamental form € (making equations
non unique), are independent of S(T'L) if and only if x(V%PY + B(X,Y)K) = 0.

Using the changes 7/(X) = 7(X) + B(X, K) and A% X = A5X — B(X, K)B, the
linear connections V*7 and V*7" associated to the change are related by

V' PY =V PY — B(X,PY)K — k(Y)ALX — X (k(Y))B
—{r(Y)7T(X) + %m(v’;}PY +B(X,Y)K)

— 5 B(X. PY)g(K, K)}B. (4.35)
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4.3 Higher order geodesibility of leaves of I

Let L be a leaf of the foliation. In this section L is considered to be an ascreen null
hypersurface immersed in an l.c. almost cosymplectic manifold M with Sign(B) = ()
such that ¢ = 0 and w(&) # 0. Denote the vector & given in (3.4) by Q. Since L is an
ascreen null hypersurface, we have

Q=& =e"Y¢=e""(aB+bN). (4.36)
Let denote the tangential part ae” B of Q by @Q. Then
Q=Q—be"N. (4.37)

Now, we study the umbilicity of L via the divergence of T,.(), where T, denotes the
Newton transformation with respect to the operator Ay. Applying Vx to Q and
using (4.25), we have

VxQ = X(ct)Q+e"D(h+ A)X, VX eT(TF). (4.38)
In a similar way using (4.37) and (4.38), we have
ViQ =e"D(h+ A)X +be"WANX + X (0(t)Q

—{X ()" 4+ X (a(t))be”™ 4 be”O7(X) + B(X,Q)}N, (4.39)

for any X € I'(T'F). Then from (4.39) we deduce that
g(V%Q,Y) =e"Dg((h + A)X,Y) + beDg(AnyX,Y), (4.40)
and  g(ViQ, N) = X(o())g(Q, N) + ¢"g(hX, N), (4.41)

for any X € I'(TF) and Y € T'(S(TF)).

Proposition 4.3.1. [35] Let (L,g,c = 0) be an ascreen null hypersurface immersed
in an l.c. almost cosymplectic manifold, with Sign(B) = 0, w(§) # 0 and a conformal
vector field Q = e If the Ricci tensor of the induced connection V7 is symmetric,
then there exists a pair {B, N} on W C L such that the corresponding 1-form T
vanishes on any U N L. Moreover, g(Q, B) # 0 and g(Q, N) # 0.

Proof. Since L is ascreen, then Q = e’W¢ = e?W(aB + bN) and thus, ¢(Q, B) =
be?® £ 0 and 9(Q, N) = ae®® # 0. Furthermore, since the Ricci tensor with respect
V7 is symmetric, then the induced 1-form 7 is closed [18]. That is dr = 0; so we
can set 7 = da. Thus, 7(X) = X(a). If we take B = fB and N = %N, then the
corresponding 1-form 7 is given by

7(X) =9(ViN, B) = —X(log f) + 7(X),

where f is a smooth function. Then, one can choose f = e* and hence 7(X) = 0

for any X € I'(TJy). Since g(Q, B) # 0 and g(Q, N) # 0, then {B, N} are the

corresponding vectors which satisfies Proposition 4.3.1. Il
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We have seen that if L is ascreen null hypersurface immersed in an l.c. almost
cosymplectic manifold M with Sign(B) = 0, ¢ = 0 and w(§) # 0, then S(TL) is
integrable (see Corollary 4.2.1). Further still, A is screen-valued and AB = 0, which
leads to AxyB = 0. The operator Ay is also symmetric on S(T'L) and hence diag-
onalizable. Let [y = 0,[y,--- ,l,, its principal curvatures with respect to the quasi-
orthonormal basis {B, Zy,--- , Z,,}, where {Zy,--- , Z,,} is the basis S(T'L). Associ-
ated to the operator Ay are the m algebraic invariants S, = e,.(lo,l1, - , 1), where
e, : R™™ — R denotes the r-th symmetric polynomial in variables ly, Iy, - - -, l,n. We
usually set Sp = 1 and it is also easy to see that S; = tr(Ay), the mean curvature. Fur-
thermore, S, is called the r-th mean curvature with respect to Ay. Then the Newton
transformations 7T, with respect to the operator Ay are defined by T, : TL — TL
and explicitly given by the recurrence relation

T, =(-1)"SI+AyoT,y, 0<r<m. (4.42)
It is important to know that 7). is also symmetric and commutes with Ay. Let H, =

m+1\ " : :
( ) S, denote the normalized mean curvature with respect to Ay and let
r

1
further ¢, = (m +1—7r) (m N ) The following properties of 7, can be deduced
r
from (4.42).
tr(7,) = (-1)"(m+1—-7r)S, = (-1)"¢c.H,, (4.43)
tr(AyoT,) = (=1)"(r+1)S,11 = (1) ¢, Hpy1. (4.44)

Details on Newton transformations can be found in [3], [16] and many more references
therein.

Note that the interrelation between the second fundamental forms of the null hy-
persurface L and its screen distribution and their respective shape operators indicates
that the null geometry depends on the choice of a screen distribution. By [18, p. 87],
Ay and A, are related by

2n—1 2n—1
A X = ANX +6(X)B+ > (XK = Y ¢ VLK
i=1 j=1
1
— 59K, K)ARX, (4.45)

where § = 377" e X (¢) = T(X)ej(¢))? + 56;(¢;)*B(X, K) — ¢;€(X, K;)} and p1; =
¢(T(X) + B(X, K)) — X(c;).
The dependence of T, on S(T'L) is as follows. Let Z; € I'(S(T'L)) be an eigenvector

of Ay, then it is easy to show that T,Z; = (—1)"S"Z;. Notice that (—1)"S! is an
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eigenvalue of T,. corresponding to eigenvector Z;. Then by direct calculations we have

T,7Z; = (—=1)" S, I+ (=118 AnZ;, (4.46)
and T'Z; = (—1)"SI+ (=1)"1S" AN, Z;. (4.47)

Subtracting (4.46) from (4.47) we deduce that

T =T, + (—1)"(S. — S)I + &,_1 Ay

2n—1 2n—1
r— { 1 *
+(=1)S {53 + ; pi G — ; V7K = S9(K, K>AB} , o (4.48)

where &, = (—1)"(S” — S). Hence, from (4.48) we can see that the operators T,
depends on a chosen section N and on S(T'L). Note that 7, is unique if and only if
M is r-maximal (i.e., S, = 0, for all 7).

Next, the divergence of T} on the screen distribution will be denoted by div"" (7))
and given by

divV (T;) = i(vgﬂ)zi. (4.49)

=1

Since L is null, the divergence divvrf(Y) of a vector Y € I'(T'F) with respect to the
degenerate metric g on L is intrinsically defined by (see [19, p. 136], for more details
and references therein)

divY’ (V) = divV (V) + g(VY, N). (4.50)

Let dV)y; be the volume element of M with respect to g and a given orientation. Then,
we denote the volume form on F by

dV =indVy,
where 7, is the contraction with respect to the vector field N. We have the following.

Theorem 4.3.1. Let (L, g,c = 0) be a compact ascreen null hypersurface of a F in an
l.c. almost cosymplectic manifold M of constant sectional curvature, with Sign(B) =
0, w(€) # 0 and a conformal vector field Q = e? ¢, If the Ricci tensor of the induced
connection V7 is symmetric, then

/ (B-9(L,Q, N) + e Vtr(T, 0 h) + (=1) c;w(Q){ Hy + Hys1})dV = 0.

Proof. Our proof follows by computation of the divergence of the vector field 7,Q
from (4.50). That is;

A vEl -V —F
divV (1,Q) = div’ (T.Q) + g(VT,.Q, N). (4.51)
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Applying (4.49) to (4.51) we obtain

divV (1,Q) = g(div¥ (T,),Q) + > g(V,Q. T,Z:) + G(V5T,Q, N),

i=1

from which, after applying (4.40), Proposition 4.3.1 and the fact that M is a space
form of constant sectional curvature, we get

divvrf(TrQ) = "Otr(T, o h) + e“Dtr(T, 0 A)
+be"Wtr(T, 0 Ay) + B-g(T,Q, N). (4.52)

When L is ascreen, we see from (4.29) that A is screen-valued operator and in fact
AX = w(&)X for any X € I'(S(TF)). Thus, (4.51) reduces to

divV (1,Q) = e"Dtr(T, o h) + e”Dw()tr(T})
+ be”Wtr(T, 0 Ay) + B - §(T,.Q, N). (4.53)

Finally, our result follows from (4.53) by considering (4.49) and the fact that L is
compact. ]

Next we look at some applications of Theorem 4.3.1 in which the functions a =
n(N),b=n(B) =w(&) and o(t) are all constants. Hypersurfaces with constant higher
order mean curvatures are of great importance to modern differential geometry and
have been a focal point of study for the past decades. For instance, in the analysis of
minimal surfaces (surfaces with zero mean curvatures) and in the study of physical
interfaces between fluids, which are assumed to have constant mean curvatures (see
[2] and many more references therein). We suppose that L is of constant higher order
mean curvature in the rest of the paper.

Theorem 4.3.2. Under the assumptions of Theorem 4.3.1, if the functions a, b and
o are all constant, then

/(aB(ST) + (=" (T o h) + w(&) e {H, + H, 1 })dV = 0. (4.54)

Proof. By Proposition 4.3.1 and the fact that B(g(7,Q, N)) = (—=1)"B(S:\(Q)) =
(—=1)"ae’®B(S,), we complete the proof. O

Theorem 4.3.3. [35] Let (L,g,c = 0) be a compact ascreen null hypersurface of a
F in an l.c. almost cosymplectic manifold M of constant sectional curvature, with
Sign(B) = 0, w(€) # 0 and a conformal vector field Q = e D¢, Let a, b and o be
constant such that h is tangent to F. If the Ricci tensor of the induced connection V7
is symmetric and Hy is constant, then S(T'L) is totally geodesic.
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Proof. By considering r = 0 in (4.54) and multiplying the resultant equation by Hj,
we get

/ (H, + H}dV = 0. (4.55)

Then substituting = 1, (4.54) and using 77, properties of h, the fact that B(S;) = 0,
we get

/ (H, + Hy)dV — 0. (4.56)

Then, from (4.55) and (4.56) we have [, (H{ — Hs)dV = 0. But, for [ = --- = [,,, we
have

2
1 m—1 [ & -
H? — H, = Ll —2 2. 4.57

i=1

Using Cauchy-Schwarz inequality on (4.57) we get that

m—2 <
HY —Hy> ———-Y 12>0 4.58
1 Q—m(m_l);z—7 ( )
with equality if [y = --- =[,, = 0. Hence, S(TF) is totally geodesic. O

Corollary 4.3.1. Under the assumptions of Theorem 4.5.3, if Hy is a positive con-
stant (or H,_y and H,, forr =1,--- ,m, are both constant) and tr(T, o h) = 0, then
S(TL) is also totally geodesic.

Note that all results above depending only on the local second fundamental form
B are independent of any change of screen distributions.

On the geometry of locally conformal almost cosymplectic Ange Maloko Mavambou ©QUKZN 2017
manifolds and 2-order Lagrange spaces angemaloko@gmail.com
Scholarship from SIMONS FOUNDATION through

the RGSMA-Project (BIUST, Botswana)



CHAPTER FIVE

GEOMETRY OF 2-LAGRANGE SPACE
AND CONFORMAL CHANGE

In this chapter, we study the effect of the conformal deformation of fundamental

tensors on 2-Lagrange spaces.

5.1 Conformal deformation and 2-Lagrange spaces

Definition 5.1.1. [39]

(a) A differential Lagrangian of order 2, is a mapping L : Osc*(M) — R of C*°-
class on Osc?(M )y = Osc*(M) — {0} and continuous on the null section of the
projection w2 : Osc?(M) — M, such that

gii (g, y?) = %% (5.1)
is a (0, 2)-type symmetric d-tensor field on Osc?(M).
(b) A differential Lagrangian is said to be regular (or non-degenerate) if
rank(g;;) = n, (5.2)

on Osc*(M).

c¢) A Lagrange space is a pair L™ = (M, L) formed by a smooth real n-dimensional
manifold M and a regular differentiable Lagrangian L on M, for which the d-
tensor field g;; from (5.1) has constant signature on Osc?(M).

Note that the null section 0 : M — T2M of the projection 72 is defined by
0:(x) € M — (2,0,y?) € T?M. Constant signature means that the signature is
either (n,0) or (0,n).
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The change of local coordinates on Osc?(M): (xf, y@', y@?) — (T, 5V, 5?1) is

given by
=i on Kk Z _
T =7(x, - ,2"), ran HaxJH n,
Wi 2 (15 92 2 (1)) 29 (2
We have,
o7 a—(l)z’ a—(2)i
o %Y (5.4)

Ozi  oyWi — gy@i

Let L be a 2-Lagrangian and c a time-parametrized curve, ¢* its extension Osc?(M),
the integral for the action of the Lagrangian L on the curve c is given by the functional

! dzt 1d?*z’
I(c) = /0 L, S St (5.5)

The variational problem we obtain allows us to get the Euler-Lagrange equations

given by (see [40, p. 110] for more details)

(0) dx’ - 1d%at
Ej(L)=0, yV =—- 4@ =_— 5.6
J ( ) y Y dt Y 2 dt2 ) ( )
(0) 0 d 0 1d*> 0
where Ei (L) = % - EW + Eﬁm (57)
on the curve c*.
Using the 2-almost tangent structure J we obtain
(1) (0) 0 d 0 2) 1. 1 9
E=—-J FE=— -+ — - Fi=—=J F= = - 5.8
Oy + dt Oy 2 2 Oy 2 (58)

0) 1) (2
where F;, E;, E; are covectors called by Craig-Synge covectors on the curve c*.

Let M be a smooth manifold and L and L be two 2-Lagrangian on M. The
fundamental tensors g and g of L and L, respectively, are conformally deformed if
there exists a smooth positive function ¢ on Osc?*(M) such that

g=9v®g. (5.9)

Lemma 5.1.1. [37] For the 2-Langrange space L®™ = (M, L), the following proper-
ties hold:

; . _ 0L
(1) The functions f; = g are the components of d-covector field.
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(2) The functions
TR L Gy @igy@igy @k T 2 9y@k
are the components of a third order symmetric d-tensor field.

(5.10)

Proof. (1) The transformation of coordinates (5.3) and (5.4) on Osc*(M) produces
the transformation

;1027 OL 102/
208 O0y@i 203177
Which proves that f; are the components of d-covector field on Osc?(M).

(2) In the same manner, we have
= Ox" OxP Oxf
then we obtain that Cjj;; are the components of a symmetric d-tensor field of
(0,3) type.

(5.11)

]

The tensor field Cjj; defined in (5.10) is called Cartan tensor field of the 2-
osculator bundle.

Proposition 5.1.1. [37] Let M be a real n-dimensional manifold, L and L be two
2-Lagrangian on M. If the fundamental tensors g and g of L and Z, respectively,
are conformally deformed, then the factor of proportionality is constant in the y®-
direction.

Proof. Assume the fundamental tensors g and g of L and Z, respectively, are con-
formally deformed. Then, there exists a positive function ¢ on Osc?(M) such that
Gij = Vg,;. By differentiating the latter with respect to y?, we have

5@‘]’ 8¢ 3gij

It follows by (5.12) that,

~ 8¢

20k = 20Cyj + By @i (5.13)

since Oy, is completely symmetric. Then we have,

~ 8¢
Thus by (5.13) and (5.14) we obtain,

O O

By @I = gyt I (5.15)
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It follows from the relation (5.15), that
N, O

Gy — nm, (5.16)

and one obtain o0
8y @i =0 (5.17)
Thus the factor of proportionality is constant in the y®-direction. Il

Lemma 5.1.2. [37] Let M be a real n-dimensional manifold, L and L be two 2-
Lagrangian on M with fundamental tensors g and g, respectively, such that (5.9) is
satisfied. If g is 0-homogeneous with respect to y'?, so is g.

Proof. As v is constant in y®-direction then it is 0-homogeneous with respect to
y? then § = ¢ ® g is 0-homogeneous with respect to y(?. O

Note that if g;; is the fundamental tensor of L and 0-homogeneous with respect
to ¥, then one of the solutions of the partial differential equation

1 9’L
% = 3 5oy (5.18)
is given by
L = giy®"y®Y + Bi(a,y D)y +V, (5.19)

where B;(x,y")) is an arbitrary covector and V an arbitrary function in Osc!(M)
(see [40] for more details).
Therefore, we have the following.

Proposition 5.1.2. Let M be a real n-dimensional manifold, L and L be two 2-
Lagrangian on M with fundamental tensors g and g, respectively, such that (5.9) is
satisfied. If g is 0-homogeneous with respect to y?, then L and L are related as

L=vL+ Ala,y® )y + Ulz,y), (5.20)
where A; an arbitrary covector and U an arbitrary function on Osc'(M).

Proof. By lemma 5.1.2, g is 0-homogeneous since g and then from the equation

~ 1 0?L (5.21)
93 = 5 9y @igy@i° '
we have
T — 7.2y, (2] (1)Y,,(2)1
L = giy7"y™ + ai(z, 4 )y +u, (5.22)
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and also
L = gy y ™7 4 by, y Oy + v, (5.23)
since g;; is also 0-homogeneous. From (5.22), one obtains
L =9L+ (a; = ¥b)y®" + (u —vv)
— L+ Ay + U, (5.24)
where A; = a; — ¢b; and U = u — yv. This completes the proof. n

In this case, we say that L and L are conformal-type.
Let us recall by the following theorem the coefficients of 2-semispray in terms of
Lagrangian (see [41, theorem 7.3] for more details).

Theorem 5.1.1. [41] If L is the fundamental function of a Lagrange space of second
order L®™, then on a curve ¢*, the system of differential equation

)
g7 E; (L) =0 (5.25)

determines a 2-spray S, with components

oL oL
ay(z)j) a ay(l)j}

) 1 ..
3G" = Sg” {1 (5.26)

1)
where E; is a Craig-Synge covector given in equation (5.8).

Corollary 5.1.1. The coefficients G of the semispray are obtained along every ex-
(0)
tremal curve of Euler-equations E; (L) = 0.

Y
Proof. We have ¢” E; (L) = 0, using the first equation in (5.8), one gets

. (0) i
g”J Ej (L) = ng Ej (L) =0

(0)
wich implies E; (L) = 0. This completes the proof. O

The objects G? given by (5.26) allows us to obtain the coefficients of the nonlinear
connection given by
, oG" 1 , ,
N and N; = -(SN; — N, N"). (5.27)

@ Oy @ 2 @ @

From now on, let us denote the conformal factor by e, where p € C*°(Osc*(M)).
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Lemma 5.1.3. The coefficients G* and G of the 2-semispray with respect to L and
L, respectively, are related as

G'=G + H, (5.28)
where
i i) _ _ P A @k L =

Proof. Replacing (5.20) in (5.26) then by a direct calculation one gets the assertion.
[

Corollary 5.1.2. According to L on Osc?(M) the 2-semispray is given by
§-s—3mwY 5.30
=S gy 30

where S is the 2-semispray arised from the Lagrangian L.

Proposition 5.1.3. [37] Let M be a real n-dimensional manifold, L and L be two
2-Lagrangians on M with fundamental tensors g and g, respectively, such that (5.9)
is satisfied. Then, the coefficients of the nonlinear connection are given by

Ni=N!+H! and Ni=N!+H, (5.31)
n o @ @ @
where
- OH!
Hj = Oy@i’
(1)
7 1 1 i ryT m 9 1 ) 1 ryr T N\T
Hj = E{SHJ — HTH]- —3H W(NJ + Hj) - NrHj — HTNj }
(2) 1) M) (1) y ®n o 1) (1) 1) (1)
Notations

In the sequel, we adopt the following notations

4] o 4]

S Oi, W = 014, W = 02i,
0 9, 9,
o i W = O, W = Oai,

éi = —HZ"5’1m — H{”’&zm, 312‘ = —H" 0y,
(1) (2) 1)
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Note that the adapted basis changes also under the conformal transformation. That
is described by

0; = 8 + iy 01 = 01y + Duyy 025 = G- (5.32)
The 1-forms from the adapted co-basis are given by

dat, oy’ = dy™M’ 4 ]\Afj’?dxj, oy = dyP? 4 mdy(l)j + ]V[;dxj (5.33)
(1) (1) (2)

where (]\7/;, ]\Afj’) are the dual coefficients to (NJZ, N;) satisfying
1n @ 1 (@

M!=Ni, M!=M +K., (5.34)
(SO I OO RN ) 2)
) ; oG! . oH
whith M} = —ay(l)j and K = —ay(l)j.

(2)
Therefore, the change of the adapted co-basis can be described by

da', oy = sy 4 Hidat, 5y = 5y + HidyW7 4 Kida?. (5.35)
) ()

5.2 Examples in Riemannian and Finsler geometry

Example 5.2.1. Let (M, ;) be a (pseudo) Riemannian space. We denote by ~%; its
Christoffel symbol, The Liouville d-vector field is given by

, -1 ;
S — @i g 57;k(x)y(1)]y(1)k (5.36)

where vjk is the christoffel symbol of the metric v;; define on M. 2 g globally

—2
defined on Osc (M) and depends only on the metric ;;, then the function given by
L(x, yb, y(Q)) — %.jz(2)iz(2)j (5.37)

2
is a differentiable Lagrangian globally defined on Osc (M), depending only on the
metric 7;; and it is regular. By differentiating (5.37), one gets

1
582102]-[/ = Yij, (538)

and the coefficients of the canonical 2-spray are given by

7 i 2)m 2)m 2m
3G" = 1 (@D (™) = Yz ®m0;20™) (5.39)
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the canonical nonlinear connection determined by the Lagrange (5.37) has the dual
coefficients

i i ;1 i i
Mj = ’ijy(l)k7 Mj = §{F<7jky(1)k) + Mer } (5.40)
1) (2) 1) ()

—2
They are globally defined on Osc (M) and depend only on the structure ~;;.
Let p: M — R be a function over M and

Yij = exp(p) i (5.41)
be the conformal metric to the metric v;;.

Proposition 5.2.1. Let M be a real n-dimensional manifold, L and L be two 2-
Lagrangians on M with fundamental tensors v;; and ¥;;, respectively, such that (5.41)
is satisfied, The following statement hold

(a) The Liouville d-vector field Z®7 is written as
7@ = @, (5.42)
where

1 . .
Qi = 5 (0005 + 0;0% — Dapging™)yVyr. (5.43)

(b) The fundamental functions L and L are related as

L(z,y, y?) = "Lz, yD, y?) + (2,2 + 27 + 0,0).  (5.44)

(¢) The coefficients of the canonical spray related to 7;; are given by

G'=G + H, (5.45)
where
H ( ){F( ) ]mZ VmiZ(Q)male erzQ 81] +F(Qm7]m)

Proof. Under the conformal change the Christofell symbol 7% in terms of %, is given
by

) ) 1 . ) .
~t 1 7 7 1S
Yik = Yk T 5(81',0% + 0065 — Ospyiey") (5.47)
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then we get the Liouville d-vector field using (5.36), following equation (5.37), one
has

L(z,yM,y?) = 7,207, (5.48)
By a direct expansion of (5.48) and taking into account (5.42) one gets .
L = ePy;5(2™" + Q) (2% + Q)
=L+ ef(Q2P" + Q2P 4+ Q,0)). (5.49)
Then one gets the assertion (b). Under the conformal change we have
3G =79 (a{T (FjmZ®™) = a2 01,20™), (5.50)
then substituting (5.42), (5.41) and (5.47) in (5.50), one gets the assertion (¢). [

Definition 5.2.1. [9/ A Finsler space is a pair F" = (M, F') formed by a real n-
dimensional M and a scalar positive function F' on T'M, differentiable on T'M, and
continuous on the null section, which has the properties:

(1) F(z,y) is positively homogeneous of degree 1, with respect to y* on T M.
(2) The pair (M, F?) is a Lagrange space.

The function F'is called the fundamental or metric function and the d-tensor field

1 OF?

2057057 o2

9ij(2,y) =

is the fundamental tensor or metric of the Finsler space F™, it is 0-homogeneous with
respect to y* and it is non-degenerate. The Cartan tensor field

3 2
Cop = i% (5.52)
is completely symmetric, using the homogeneity of F' and g;;,
Y™ Cmij = Coij = 0. (5.53)
Then one obtains
F? = gy, y)yD'y (5.54)

(see [40] and references therein for details).

By making use of Theorem 5.1.1 and equation (2.27) we obtain the coefficients of
nonlinear connection Nj(z, y™1)) of the Lagrange space (M, F'?), called Cartan non-
linear connection of the Finsler space F™ = (M, F').
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According to Miron [40, Theorem 4.10.1], the function L : Osc*(M) — R given
by

L(%y(l)’ y(2)) _ gl-j(:c,y(l))z@)iz@)j, (5.55)
where
. . 1 . .
20— i §N;(9L’, gDy (L3 (5.56)

is a regular Lagrangian on the manifold Osc?(M). It depends only on the fundamental
function F' of the Finsler space F™.

Proposition 5.2.2. [37] Let p : Osc*(M) — R be a 0-homogeneous function con-
stante on y? -direction, if gij 18 the fundamental tensor of the Finsler space F™ then
Gij = €*°gi; is a fundamental tensor of the Finsler space having F = ¢’F as funda-
mental function.

Proof. 1t is known that F' is positively 1-homogeneous. Then we have

ep(L/\y(l))F(x’ )\y(l)) — /\e”(””’y(l))F(x,y(l)),
since p is 0-homogeneous. This means Fis positively homogeneous of degree 1. As F'
is fundamental function of Finsler space F™ one has

F? = gz, y)yMiyWi.

]

Corollary 5.2.1. The pair (M, ﬁ) is a Finsler space and the function L : Osc*(M) —
R given by

Lz, yM,y®?) = e* L + 1), (5.57)

where
77/) = Gngij(Z(Q)in + 912(2)2 + QZ‘Q]‘),

and ; follows from (5.43), is a reqular Lagrangian depending on the fundamental
function F' of the Finsler space (M, F).

Note that in proposition 5.2.2, the fact that p is 0-homogeneous allows the function
F to satisty the assumptions of the definition 5.2.1.

5.3 Canonical metrical N-linear connections under

the conformal change

We start this section by establishing the expressions of Lie-brackets under the con-
formal change.
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Canonical metrical N-linear connections under the conformal change 65

5.3.1 Lie brackets and conformal deformation

Proposition 5.3.1. [40] The Lie bracket of the vector fields of the adapted basis are
given by

(01) (02) (11) (12)
[53'7 Oor| = Bji-k(slz‘ + B§k52i, [51]'; dor| = R§k52m (5.59)
(21) (22) (12)
(02, 0ok] = B§k52i7 (5.60)
(21)
where
R}y, = 0pNj — 6; Ny, Ry = N, R + 6, N; — 0;N;,
(01) (1) 1) (02) (1) (01) (2) (2)
B! = 61cN;, Bl = N} B + 61 N; — 01;N},
(11) (1) (12 1) (11) (2 @)
B! = 6 N;, By = N} B + 63N}, Rly = 61N} — 61, N} (5.61)
(21) (1) (22 (1) (21) (2) (12) (1) (1)

Remark 5.3.1. Note that the N-linear connection N is integrable if and only if

ik = R, =0,
(01 (02)
and the vertical distribution V] is integrable if and only if
(12)
The analogue result to proposition 5.3.1 for the conformal adapted basis is given
as follows.

Theorem 5.3.1. [37] Let M be a real n-dimensional manifold, L and L be two 2-
Lagrangian on M with fundamental tensors g and g, respectively, such that (5.9) is
satisfied. Then the Lie brackets of the conformal adapted basis is given by

[gj> gk] = 105, 0] + Ték(sli - r;kélm + 7“;-/.3521', (5.62)
(01) (01) (02)
[fgﬁ glk] = [5j7 511@] + b;kéll + b;kélm + bé‘kazm, (563)
iy (12)
16, 02x) = [0, 0or) — b 101 — b;‘kélm + 01,0, (5.64)
) @1 (22)
[51]‘,511@] = [01;, 01k) — 7“2-;9521‘, (5.65)
(12)
[g1j752k] = (015, Ook) + békazi, (5.66)
(21)
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where
vty = 6 H! — §;HF + 0N} — 0 Ni + O HY — 0, Hj, (5.67)
(01) (1) 1) (1) (1) 1) 1)
rty = N+ Hl R+ 6, H: + 0N} — 6,H], — O;N., (5.68)
(02) (1) (o1) (1) (o1) (2) (2) (2) (2)
L = O + 0N, (5.69)
(11) (1) (1)
e = N b+ HE B+ 0y HY + 0y Ni — 61, H — 013N, (5.70)
(12) (1) (11) 1) (11) (2) (2) (2) (2)
i = O], (5.71)
(21) 1)
' = N b+ G HY, (5.72)
(22) 1) (21) (2)

(12) (1) (1 (1) (1) (1) (1)

Proof. Indeed, we have E;k = gkﬁ; - gjﬁ,z then by using the equations (5.32) and
(01) (1) (1)

(5.31) one gets Riy = 6y Ni — 0;Nj + 6, H! — 6;HF + 0, Ni — 0, Ni + O HF — 0, H}, =

A ‘ (01) (1) (1) 1) 1) (1) 1) 1) 1)
R}k + -
(01) (01)
Likewise, we obtain R;k = R;k + r?k, then we obtain (5.62). In the same way the

(02) ~ (02)  (02)

relations (5.63)-(5.66) are obtained. O

Now, let us endow the osculator bundle Osc?(M) with the Riemannian metric
(4.5) given in [5, p.72| by:

G = gijdxi @ dr? + gijéy(l)i ® 5y(1)j + gz-jéy(z)i ® 5y(2)j, (5.74)

where

1 0L

9ii = 5 gy @igy @i

2)n is an N-linear connection if

A connection D on L
(1) D preserves by parallelism the horizontal distribution N,
(2) DJ =0.

D is called canonical N-linear connection of a second order Lagrange space L™ if it
satisfies the properties of the following theorem
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Theorem 5.3.2. [39] The following properties hold:

(1) There exists a unique N-linear connection D on Osci(M) verifying the azioms
(1) (2)
ise =05 9i | 1o 935 1w (5.75)
ik =0, 55 =0, 5, =0 (5.76)
(0) (1) (2)

(2) This connection has the coefficients

P 1 s
ij = Qg (5jgsk + 5kgjs - 6ngk)’
. 1.
;k _ §gzs((5ajgj8 + 5akgj5 — 5asgjk)a o = 1, 2, (577)

(a)

where T}y, Sk and S}, are the coefficients of the d—tensor of torsion respectively
0 @ (2)

along the directions of the distributions N, Vi and Vs given by
T;k = L;"k - sz, ;k = Jlk - lija a=1,2. (5.78)
(0) (@ (@ ()
Denote by D the canonical metrical N-linear connection under the conformal
change, it is clear that it is given by means of the coefficients

CT(N) = {Ek(x,y“),y@), Cir(a,yV,y®), ~;ﬁk<x,y<”,y<2>>} . (5.79)
e9) @)
The covariant derivative of the conformal adapted basis is given by
Egjgsi = z;?gsma 55(1]55@' = ég?Nsrm = 17 27 § = 07 17 2. (580>

(o)
It follows then the relations

ey) (2) ~. ~ o~ ~.
Gijl, = 0, Gij | = Yij | h 0, L;k = Zjv ;k - Clzcjﬂ (a =1, 2) (581>
(o) ()
hold.
Lemma 5.3.1. Let M be a real n-dimensional manifold, L and L be two 2-Lagrangians

on M with fundamental tensors g and g, respectively, such that (5.9) is satisfied.
Then, the coefficients of the N-linear connections D and D are related as

Ti o 1i i
ik = L + Uy (5.82)
i i i
1) 1) (1)
i i
ik = Cjps (5.84)
(2 2
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68

where
i 1 i 7 S 1 is( A A 3
jt = 5(05P0k + 0kp0; = 0spgig™) + 59" (0;gsk + Okgss — Osgjk)
Lo w2 o 4 :
+ 5(03p0) + Oupd; — Dsp;rg™),
‘ 1 . . 1 .. 4 A A
and cj), = 5(51jp5;2 + 01105 — 015pGj1Gis) + §gzs(aljgsk + O1kgjs — D159k )-

1)

Proof. Indeed, under the conformal change, the equations (5.77) become

~’i 1 1S T~ T~ ~
ij = 5?]1 (5jgsk + 0kGjs — 5sgjk),
i 1~is N T o~ T o~
jl’k = 59 (5ajgjs + dargjs — 5asgjk), a=1,2,

()
then by using equations (5.32) in (5.86), we get

i

k= %gis((fsj +0;)(€gar) + (O + i) (€”g5s) — (05 + 05) (e gn.)

i 1
:ij+§<

1~ o A o .
~ 1. A A A
ik = 5?8((513' + 015)(€”9sk) + (11 + Ow)(€°gjs) — (15 + Ors)(€”gjk))
2

which complete the proof.

5.3.2 Conformal change of d-tensors of Curvature

i i is 1 is (A 3 3
5j,05k + 5k,05j - 5spgjkg ) + ég (ajgsk + akgjs - asgjk)

(5.85)

(5.86)

. . 1 . - ~ ~
(01008 + 61,005 — 615pGjkGis) + 59" (O1jgsk + O1k3js) — O1s9jk ),

(5.87)

]

In this section, we investigate the relationship between the d-tensor of curvature
associated to D and D. For a N-linear connection D in L®®" the coefficients of the
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d-tensor of the curvature are given by (see [40, theorem 3.5.3] for more details)

Rl = 0Ll — &; LY + L3 LY — Ly L — R3,Cl — R5,CL (5.88)
(01) (1) (02) 01
Ply = 6Ll — 6;Ch + L3,Cl — Cs Ll + BS,Ch + B5,Ch (5.89)
(1) 1) 1) 1) (11) (1) (02) (2)
Pl =05 LY, 5j0 + L3CL — Ci Ll + BS,Ch + B3.CL, (5.90)
(2) (2) (2) (1) (21) (1) (22) (2)
Sk = 02iClh, — 61;Cl + C5,.Cl — C3.Cl + B5,CYL, (5.91)
(21) (1) (2) (1) (2) 2 @ (21 @
S]k = (5thk 61JC + CjkCi’; — C" + R, Csk, (5.92)
(11) (1) (1) (1) @) (1) (1) (12) 2)
S’ij S@]k? (593>
(22)  (22)

with
Rl = g(R(8:,6,)6%, 6r), Pl =
(o)
b = 9(R(G1is 0,080, 84), Sl = 9( BBt 607)00s00), = 1,2,

(11) (2a)

g(R(éaiv 5j)6l€7 5h)>

In the next proposition, we give the d-tensor of curvature under the conformal change
of the fundamental tensor of the Lagrange space (M, L) in terms of d-tensor of cur-
vature of the Lagrange space (M, L). Thus, in view of equations (5.32), (5.82), (5.83)
and (5.84), we have the following

Proposition 5.3.2. Let M be a real n-dimensional manifold, L and L be two fun-
damental functions on M with fundamental tensors g and g, respectively, such that
(5.9) is satisfied. Then, the coefficients of the d-tensor of the curvatures associated to
D and D are given by

h Dh _ ph
Rzgk R Jk + rz]k? Pz]k P Jk +p1]k7 (594>
1) (1) 1
Qh h
Pzgk ng + pljk? Sij Sz]k + 8ijk7 (595)
) 2) (2 (@ (1) (@2
h
Szyk: Sz]k + Sijk? (596)
(11) (11) (11)
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where
= 0lly, + O, L, — Ul — O;Ll + Lyl + U5, L0 — L0

l Lh R’L] sk ijC R’L] sk istk7 (597)

(o) (M (o1) 1)  (02) 01 (02) 01
pzhjk' = 511‘% + éliL]k 01,13 alyL + Lsk% + lskch fkl?s
(1) (1) (1) (1)
- cszh + B]Sz Zk + B]Szé?k + B i sk + bs Csk? (598>
(1) an @ a1 @ (12)( ) (12) (1)

Pl = Ooillt + i Ll — 8¢l — 0;,Ch + Lipch + 15,Cl — Csl
2) (2) (2) 2) (2) 1)
- kazgs + B]z sk + bS C 3 sk + bS C (599)
(1) (21) (1) (21) (1) (22) (2) (22) (2 )

'lec

k 521 ]k + aQZO]k 51jczk aljc ik + O kc’bs —|— C]kch C/ch
( 1) (1) (1) (2) (2) (1) @2 @ @ () (1)

— ¢, Ch + Bl + b5, Ch (5.100)
(2) ) (21) (2) (21) (2)

SZF-ij - 517:0?]4: + élz’cv';]lk - 51jczk 8130 + C kC’LS + C kCh + RS Sk

(11) (1) (1) (1) 1) (1) 1) (1) (1) (12)( )
rs, Ch. (5.101)
(12) (2)

Proposition 5.3.3. Let M be a real n-dimensional manifold, L and L be two 2-
Lagrangians on M with fundamental tensors g and g, respectively, such that (5.9) is
satisfied. Then, the d-tensors of the Ricci and the scalar curvature are given by

Ricr(3:,01,) = Ricp(5:,6,) + (‘i-divﬁ(gk) — 135.divP (8,) + 6:div? (3)
— 5~divD(6k) — L3divP (8y) + LidivP (6,)

—Z 0;lh, + Oy L, — L3 U, — I3, L1 + Rl + v O

1j sk
j=1 (01) (1) (01) (1)

+ R, + 15 Gy, (5.102)
(02) 01 (p2) 01
Ricp, (0:,01,) = Ricp, (51, 31) + OaidivP (5y,) — Sasdiv? (8

+ D0idiv? (3) — Cs (divD (8,) — divP(5y)) — &, divP (3,
(a) (a)

— > (Bajlly + Oag i), — Liycl, — 15.C%, + Biycly, + Bl

j=1 (a) (a) (041)( ) (al) (o)
5 Cl), (5.103)
+ B”E;k + bj; Oy, 5.103
(a2) (@) (a2) (o)
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Ricg,, (6;,04) = chSm@Z,ak)mmdw (0) — 625div® (53

+ DoidivP (8,) — C5.(divP (3,) — divP(8,)) — Tdiv? (3,)
(2) (2)

- Z 513 + 01,4, — CgskCZs Oj stjcik — by C),
(2) 1 (2 (1) (2) (21) (2)  (21) (2)

j:z\’i/CSn(gi, gk) = RiCSU (g“ gk) + 51idiV5 (gk) — (511d1VD(5k> + 511d1v5(gk)

(1) (1) (1) (1) (1) (12) (2)  (12) (2)

Kp=Kr+ Y (0div?(5;) — 55divP(3,) + 6div (5;) — 6idiv? (5;)
k=1
— LydivP(5) + Lydiv?(6)) + Y (L3l — 05t — ;L
j=1,k=1

1L — Ry — v, GO — Ryl — v, OO,

e (01)() (01) (1) (02) 01 (02) 01

f({vpa = Kpa + Z <5md1V5(’(§;) — 5aidiVD((si) + émdlvﬁ(gl)
3,j=1

— C5(divP(3,) — divP(s;) — &divP (3,))
(@) (@)
— > (Bajll + 0oy L — Liycl, — 15,04 + Bicl, + B CY,

ji-is jiis
ij=1 (a) (a) (al)(a) (a1) (@)
+ ByE, + b, CY),
(a2)(@) (a2)( a)

[?521 K521 + Z 522d1V ((5 ) — 521d1V ((Sl) + égldlvf)(’(i)
=1
— O3 (divP(3,) — divP(6,)) — EdivP (3,))
(2 (2)

— > (el + 01,Ch = Ciiel, — ¢,CY — Biycl, — b5,C%),

Jr s Z 18

ij=1 (2 (2) ()(2) (1) (2 (21)(2) (21) (2)

[?511 = KSH + Z((shdlvf)(gz) — (ShleD(éz) + élldlvﬁ(é\;))
=1

_251J m+al]C]+CSCJ—C C] RSCJ—T C])

Jiis J1 1S

ij=1 (1) L@ @ (12)() (12) 2

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)
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where div”(6;,) = Zgjjg(ng(Sk, ;) and divf)(gk) = Zﬁ”ﬁ(ﬁgjgk, 5;).
j=1

J=1

Proof. We have ﬁzk = R?jk —i—r?jk, and contracting 7 by h in the term R?jk, we obtain

jok = Ric(d;,0;), and in term rlhjk,

Z iy = Z(‘szl?k + éZL;k: — 0l — 0L + Lyl + Uy Ll — L3, — 13 L3,
j=1 j=1

— R, — 5 Ol — Ricly — 15, CO). (5.110)

15~ sk 1J sk
(o1) (1)  (o1) (1) (02) 01 (02) 01

But Z E;k = Z Z?k = Z'gv(ﬁgjgk,gj) = div?(8;), so we have
j=1 j=1 j=1

Sl = OdivP (5y) — 5divP (8,) + 8idiv (8,) — Sidiv? ()
j=1
— L5 divP (5)) + LidivP(s,) + > (=0l — O;LY, + Ly,
j=1
+ ljs'kLZs - fjcik — T ng - fjcék — 1 ngﬁ (5.111)
(o1) (1)  (o1) (1) (02) 01 (02) 01

which leads to (5.115). In the same manner for the scalar curvature, contracting k& by
i in the relation (5.115), one gets

n,n n ~ -
> ol = (0divP(6;) — 15div? (6,) + didiv? (6;)
j=1,k=1 k=1
— 6;div”(5;) — Lfidivf)(gi) + Lidiv?(6,)) + Z (_53’[1]"1' - éjzgz
j=1,k=1
+ Lj'ilz]'s + lj’iLgs - Rfjc;i - Tfj Cli — Rfjc';i - Tfj ), (5.112)
(o1)(1)  (o1) (1) (02) 01 (o2) 01
which leads to (5.103). Similarly, we obtain the others expressions. ]
Using Example 5.2.1, the components of the d-tensor fields of curvatures are given
as follows
i i 1 i i is i i
ik = Viko bk = 5(5jﬂ5k + 0kp0; — 0spYjkg ); Ci =0, ¢ =0. (5.113)
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Then the non-vanishing d-tensor fields are
Ricg(3:,04) = Ricr(3:,8,) — 15.divP (3,) + 6,divC (3)
— 6;div” (6;) — yfkdivf)(gk) + ~5.div? ()

- Z(éjlgk - V;klgs - l;kﬁs)’ (5.114)
=1

Kp = Kg+ 6divP(3;) — 6:divP(6;) — 75div? (3;) + vadivP(6;)

= > (6t = 5l — BAL). (5.115)
=1
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CHAPTER SIX

PROLONGATION OF STRUCTURES TO
Osc?(M)

In this chapter the 2-osculator bundle Osc?(M) is endowed with an almost n-contact
structure, we define an locally conformal almost cosymplectic structure on Osc?(M).
We suppose M is endowed with an l.c. almost cosymplectic structure then we prolong

it to Osc?(M).

6.1 Riemannian almost n-contact structures

Let us consider the linear mapping F : X(Osc*(M)) — X(Osc*(M)) defined on the
adapted basis by

F(6;) = =015, F(01;) =0;, F(de) =0, (i=1,---,n). (6.1)
We have the following properties:
ker F=V;, ImF = Ny+ N, , rank|F| = 2n, and F* + F = 0.
Denote by {¢}, (s = 1,--- ,n) the adapted vector fields of the distribution V5 and
their duals b; ).
Proposition 6.1.1. The 2-osculator bundle Osc*(M) endowed with the structure

(F,¢, 7%, G) with G given in (5.74) is an almost n-contact Riemannian structure.
S

Proof. Indeed, we have F(§) = 0, 7 (&) = 6f and TOsc*(M) = Ny @ Ny & Vs. For any
s t
X € TOsc*(M),

n
2
F°X =Y+ ) a& where Y €Im(F) (6.2)
s=1 s
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with ag the 1-forms in TOsc*(M). The equation (6.2) leads to F2X = FY then
Y = —X since we have the property F?X = —[FX, then we have

F°X =X + Y 1 (X)E.

s=1 s

Which implies

G(FX,FY) = G(X,Y) — i (X)) (Y) (6.3)

s=1

This completes the proof. n

6.1.1 L.c. almost cosymplectic structure on Osc?*(M)

Let {U;}sc; be a family of an open covering Osc?(M). Assume that at each U; there
exist a map p; : U; — R. The requirement on p, is that it is constant on y®-direction.

Proposition 6.1.2. The structure

F, ¢=epf)e =ep(—) k€= exp(—p)Cy, (6.4)

15 almost cosymplectic in Uy if and only if the following equations are satisfied

d® = wA® + (g;;Hiw — Hidgs; + g;dHL) A da? A da”, (6.5)
1) (1) (1)

i 1 i 1 . 1. ' j
= 5= G Ay = S N et — AN dy D — I et (60
1 1

where w = dp obtained by gluing up dp; on Osc*(M).

Proof. The fundamental 2-form given by ®(X,Y) = G(X,FY) is locally written as

where g;; = e7”g;; and the n-contact forms are given by

2

1= exp(—)dy ™" (6.8)

By differentiating equations (6.7), (6.8) and using (5.35) together with the definition

of almost cosymplectic structure i.e., d® = d n= 0, one completes the proof. Il
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The normality condition is given by
N3 (X, Y)+ Y d0y®*)(X,Y) =0, ¥ X,Y € X(Osc*(M)). (6.9)
a=1

Note that if a such open covering {U; }s; exists on Osc?(M) then the 2-osculator
bundle Osc?(M) endowed with the almost n-contact metric structure (F, ¢, 787, G) is

said to be locally conformal almost cosymplectic manifold.

The almost n-contact structure I associated to the nonlinear connection /N satis-
fies
DxF =0, VX € X(Osc*(M)). (6.10)

Thus, the coefficients of the N-linear connection D on (Osc*(M),F, €, 7%, G) satisfy

(1)

6.2 Prolongation to Osc?’(M) of l.c. almost cosym-
plectic structures

In this section the base manifold M is endowed with an almost contact structure

(¢7€7 n?g)'

Complete lift of tensor fields

Let X be a vector field over M, and let {¢;} be the l-parameter group of local
transformations of M induced by X its extension on Osc*(M) {¢;} is again a 1-
parameter group of local transformations of Osc?(M), and hence it defines a unique
vector field over Osc?(M) which will be denoted by X¢ and called complete lift of X
(see [13] for more details). In [39], the authors expressed it locally by

) . 1 )
X = (XZ e} 7r2)8i + S(XZ 0] 7T2)81i + 552(){1 ©) 7T2)82i, (611)

for any X = X'0; € X(M) and S a 2-semispray. For two semisprays S and S', we
have S%(X") = S’*(X") so the complete lift of a vector field X is independent on the
choice of the semispray.

The complete lift of a function f € (M) is the function f¢ € €>(Osc*(M))
given by

c 1 2
1= S(F) +55%). (6.12)
On the geometry of locally conformal almost cosymplectic Ange Maloko Mavambou ©QUKZN 2017
manifolds and 2-order Lagrange spaces angemaloko@gmail.com

Scholarship from SIMONS FOUNDATION through
the RGSMA-Project (BIUST, Botswana)



Prolongation to Osc?(M) of l.c. almost cosymplectic structures 77

Properties 6.2.1. The following holds
(i) JF(X®¢) = X, where X% is the vertical vi-lift of X given by X = X®)ig, ;.
(i) (fX)° = Tome arS*(HJU(X), f € F(M), X € X(M).
(iii) X and X¢ are w2-related i.e.,

X om? =dn?o X°.

(iv) The complete lift of a linear connection D on M is given by:
D%.YC = (DyY)e

and we also have

(V) DuixeY© = D5 (V) = J*(DxY), a =0,2.

Now M is endowed with an almost contact Riemannian structure (¢, ¢, 7, g). Re-
call that for any point (2, y? y?%) € Osc?*(M) the canonical submersion 7?2 is given
by 72(z', 5y, 3") = (2%). The kernel of its differential dr? : TOsc*(M) — TM is
ker dm? = Span{dy;, 02 }. Hence, from equation (6.11) and by taking into account the
property 6.2.1(iii), we have

dr*(X¢) = (X' o n?)0; = X. (6.13)

Then we obtain
¢X = ¢pdr*(X°).

Let L : TM — TOsc*(M) be a linear map given by L(X) = X° Such a map is
unique (see [42, lemma 1.9] for more details). Let ¢y be a F(Osc?(M))-linear map
given by

1y =Logodr?:TOsc*(M) — TOsc*(M). (6.14)
Locally in adapted basis, we have
dr?(8;) = 0, dr*(6y) = 0, dn*(dy) = 0,
which implies
Gdr?(6;) = $0; = ¢10;, ¢ o dn*(d1;) = ¢ o dn?(6a) = 0.

Therefore we have 14(8;) = L(¢!0;), which implies

. A 1 A
— (A 2 J 2 2( 40 2

t(0i) = (¢ 0 m°)0; + S(¢j 0 )01y + 5 57(d; 0 7). (6.15)
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Clearly, we have
ker v, = Span{dy, d2}.

In virtue of equations (2.36) the equation (6.15) may be written as
1p(0;) = ald; + blo1; + ¢, (6.16)
where
a = ¢l o’ b = S(¢] on®) + (¢] o m) M,
1)

1 . . ‘ . ‘
¢ = 5S¢l o) + S(9] 0 WQ)J\({;% + (g7 0 WQ)%%%- (6.17)

It follows that

15 (8;) = alabs; + aﬁbé‘f’élj + a{cfégj. (6.18)

J
Let A be a (1,1)-tensor in Osc?*(M) defined by
A(6y) = ald;, A(6;) = —aldy;, A(61) =0, (6.19)
It is clear that A satisfies
ker A = Span{dy;}, Im A = Span{§;,ds;} and A®+ A =0.

Indeed, A%(05;) = alAd; = —alakdo, = —(¢] om?)(¢% 0m?)dyy, then for an orthonor-
mal basis {;,- -+, 0yn, £} in M one has (¢] on?)(¢F o n?) = g(¢°0;,0;) = —g(0;, 0;) =
—gi;, which implies A?(dy;) = —ds; then A3 + A = 0.

Therefore, in view of Proposition 6.1.1 the (1,1)-tensor A is an almost n-contact
structure and it depends only on the almost structure ¢ on M and compatible with
the metric

G = gydr' @ da? + gi;dy™M' @ dy™ + gi;dy®* @ dy®. (6.20)
Theorem 6.2.1. Let (M,¢,£,1,9) be an almost contact manifold, the manifolds

Osc*(M) endowed with the structure (A,f,ﬁ,G) where € = &1y and 1= 6yM* is an

almost n-contact manifold. Moreover, z'fiID is the fund;mental 2-forms of M then
the fundamental 2-form ®F satisfies P¢(X,Y) = G(X,AY), X,Y € TOsc*(M) of
Osc*(M) is given by

G % 2)j
OC = @;da’ A oy (6.21)
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Proof. The proof of the first part of the theorem follows from the proof of Proposition
6.1.1 by replacing the (1, 1)-tensor F by the (1, 1)-tensor A given in (6.19). Using the
adapted vector fields ¢; and J,; one gets

J

Since ®;; = ®(9;,0;) = g(9;,99;) = g(9, ¢f0k) = (¢} o 7%)gi = afgs. Hence, we
have
@G = (I)Udl'z A 5y(2)j,

which completes the proof. n
Then the proof is completed.
Proposition 6.2.1. If (M, ¢,£,n, g) is an locally conformal almost cosymplectic man-
ifold then the fundamental 2-form of (Osc*(M), A, €, 7%, G) satisfies
d®C A dr? = 2w A BC A da? + d(5yP7) A D. (6.23)

Proof. By A-producting the equation (6.21) with dz’/ and taking into account the
equation (3.5), one gets

OC A da? = —®y;da’ A da? A Sy = —D A GyP (6.24)
Then differentiating (6.24), one obtains (6.23). O
For a given co-basis

da’, oy = dyW' + Mida?, 5y = dy® + Midy™7 + Mda?, (6.25)
(1) (1) @)

we recall that

Lemma 6.2.1. [40, page 104] The exterior differential of the 1-forms (5.35) are given
by the following formula

d(dz’) =0, d(6yW) = R da™ Ada' + Bl sy"W™ Adax' + Bl syP™ A dat,

2 (01) (11) (21)
d(6y P9y = R da™ Ada’ + B) oyW™ Adx' + Bl syP™ A dat + R] syM™ A sy
2 (02) (12) (22) (12)
+ B oy@m A sy (6.26)
(21)
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Theorem 6.2.2. Let (M, ¢,&,m,9) be an l.c. almost cosymplectic manifold. If the
horizontal and the vertical distribution Ny and Ny in (2.28) are integrable and the

coefficients Bfm vanish then the fundamental 2-form ®F satisfies
(21)

dd® = 2w A O° (6.27)

and there exists 1-forms «; such that one has
dN=a;N 7. (6.28)
Proof. According to the Remark 5.3.1, the distributions Ny and N; in (2.28) are

integrable if and only if R/, = R/ = R} = 0, then the second and the third
o) () (12
equation in (6.26) become

d(6yM7) = B syW™ A dat + B? syP™ A da,

(11) (21)
d(6y@7) = B} sy W™ A da' + Bl syP™ Adat + Bl oyP™ A oy
(12) (22) (21)

and using the assumption B/ = 0 together with the observation that ® = O, ;dr' Nda?
(21)
one obtains

d(6y W) = BI 5y V™ A da’ = —BI dxt A 5y,
(11) (11)

d(6y@Y AN ® = Bl sy A dat A ®idat A da? + Bl oy@™ A dat A ®ydat A da? =0,
(12) (22)

Therefore, we obtain d(6y®7) A ® = 0, then in virtue of (6.23) and posing a =

— B dx" we complete the proof. O
(11)

Corollary 6.2.1. Under the assumptions of Theorem 6.2.2, if the Lee form w of the

L.c. almost cosymplectic manifold M satisfies w = —BJ_dx" then the bundle Osc*(M)
(11)
1s an l.c. almost cosymplectic manifold.

Note that the coefficients B? identically vanish if the coefficients N} are constant
(21) (1)
in y®-direction.
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CHAPTER SEPT

CONCLUSION AND PERSPECTIVES

7.1 Conclusion

This thesis contains recent author’s investigations on differential geometry of smooth
manifolds equipped with almost complex and almost contact structures. One of the
main goals was the relationships between geometric objects of the almost contact
structures (¢, &, n,¢g) and (¢, &y, nu, gu). We recalled the Chern-Hamilton tensor and
used its parallelism to prove that, under some geometric conditions, the class of l.c.
almost cosymplectic manifolds contains in the class of cosymplectic manifolds. The
Lee form w and its dual, Lee vector field B, played a primary role in this study. The
Lee vector field B was used by G. Olszack in [43, theorem 3.3] to define a subclass
of 1.c. almost cosymplectic manifolds based on its proportionality with the structure
vector field £. We enrich the Olszack’s study by proving that there are many classes
of this kind in which the proportionality condition introduced by Olszack is also
satisfied. Furthermore, we used the distributions kern and its orthogonal to study
foliations on l.c. almost cosymplectic manifolds.

The indefinite case of locally conformal almost cosymplectic manifolds was also
studied. Here we paid attention to canonical foliations & whose leaves are the maxi-
mal connected integral manifolds of the Pfaffian equation w = 0. The casual character
of the Lee vector B played a very important role in this study. Leaves of &, seen as
submanifolds of the ambient space under consideration, led to the study of intrin-
sic geometric objects. The formulas of change of screen distributions were derived.
Moreover, the non-tangential leaves, the screen conformal leaves and the higher order
geodesibility of leaves of F were studied. The latter yielded to some integral formulas.

The Conformal-type Lagrangian functions were defined on 2-osculator bundle
Osc?(M). For a given conformal-type regular Lagrangian functions L and Z, some
examples in Riemannian and Finsler cases were given. In the latter case, the 0-
homogeneity was required on the conformal change in order to get a conformal fun-
damental tensor which is still satisfying Finsler assumptions. We also showed how
geometric objects, such as Lie brackets, d-tensors of Riemannian curvatures, Ricci
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tensors, and scalar curvatures, are related.

By the means of Vaisman characterization of l.c. almost cosymplectic structures
on a smooth manifold M, we characterized an l.c. almost cosymplectic structure on
the 2-osculator bundle Osc?(M). Finally, under some conditions, we prolonged the
l.c. almost cosymplectic structure from M to Osc*(M).

7.2 Future research directions

As perspectives, we would like to focus on the l.c. almost cosymplectic submersions,
that is, submersions from l.c. almost cosymplectic manifolds.

As known there are 4,096 classes of almost contact metric structures and here
we have examined only a few number of them. It shall be of interest to pursue the
study with new manifolds. What shall be needed is the defining relations of some
new almost contact metric manifolds. Other manifolds can be obtained by the use
of warped product following the formalism of Kenmotsu [25]. An investigation shall
also be oriented towards the study of the geometry of singular 2-Lagrange spaces and
the conformal 2-Hamilton space using the Legendre mapping.
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