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Abstract

Ever since Maynard-Smith and Price first introduced the concept of an evolutionary stable

strategy (ESS) in 1973, there has been a growing amount of work in and around this field.

Many new concepts have been introduced, quite often several times over, with different

acronyms by different authors. This led to other authors trying to collect and collate the

various terms (for example Lessard, 1990 & Eshel, 1996) in order to promote better

understanding of the topic.

It has been noticed that dynamic selection did not always lead to the establishment of an ESS.

This led to the development of the concept ofa continuously stable strategy (CSS), and the

claim that dynamic selection leads to the establishment of an ESSif it is a CSS. It has since

been proved that this is not always the case, as a CSS may not be able to displace its near

neighbours in pairwise ecological competitions. The concept of a neighbourhood invader

strategy (NIS) was introduced, and when used in conjunction with the concept of an ESS,

produced the evolutionary stable neighbourhood invader strategy (ESNIS) which is an

unbeatable strategy.

This work has tried to extend what has already been done in this field by investigating the

dynamics of coexisting species, concentrating on systems whose dynamics are governed by

Lotka-Volterra competition models. It is proved that an ESNIS coalition is an optimal

strategy which will displace any size and composition of incumbent populations, and which

will be immune to invasions by any other mutant populations, because the ESNIS coalition,

when it exists, is unique. It has also been shown that an ESNIS coalition cannot exist in an

ecologically stable state with any finite number of strategies in its neighbourhood. The

equilibrium population when the ESNIS coalition is the only population present is globally

stable in a n-dimensional system (for finite n), where the ESNIS coalition interacts with n - 2

other strategies in its neighbourhood.

The dynamical behaviour of coexisting species was examined when the incumbent species

interacted with various invading species. The different behaviour of the incumbent population
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when invaded by a coalition using either an ESNIS or an NIS phenotype underlines the

difference in the various strategies. Similar simulations were intended for invaders who were

using an ESS phenotype, but unfortunately the ESS coalition could not be found. If the

invading coalition use NIS phenotypes then the outcome is not certain. Some, but not all of

the incumbents might become extinct, and the degree to which the invaders flourish is very

dependent on the nature of the incumbents. However, if the invading species form an ESNIS

coalition, one is certain of the outcome. The invaders will eliminate the incumbents, and

stabilise at their equilibrium populations. This will occur regardless of the composition and

number of incumbent species, as the ESNIS coalition forms a globally stable equilibrium point

when it is at its equilibrium populations, with no other species present. The only unknown

fact about the outcome in this case is the number ofgenerations that will pass before the

system reaches the globally stable equilibrium consisting ofjust the ESNIS.

For systems whose dynamics are not given by Lotka-Volterra equations, the existence ofa

unique, globally stable ESNIS coalition has not been proved. Moreover, simulations of a non

Lotka-Volterra system designed to determine the applicability of the proof were inconclusive,

due to the ESS coalition not having unique population sizes. Whether or not the proof

presented in this work can be extended to non Lotka-Volterra systems remains to be

determined.
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-0.897655,2, -0.5). The community phenotype (ub u2) is an NIS but (u3, u4) is

neither an ESS nor an ESNIS. The invader species 1, invader species 2, incumbent

species 1, and incumbent species 2 phenotypes are UI' U2, U3 and U4respectively. The

respective population densities are Zl' ~, Z3 and Z4. -61-

Figure 13c. Ecological dynamics of a community with phenotype (u U u u u u) =I> 2, 3, 4, 5, 6
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(1.45106, -0.897655, 5, 0.9, - 3). The community phenotype (uI , u2) is an NIS but

(u u u) is neither an ESS nor an ESNIS. The invader species 1, invader species 2,3, 4, S

incumbent species 1, incumbent species 2 and incumbent species 3 phenotypes are Ul>

U u u and u respectively. The respective population densities are Zl, ~, Z3, Z4 and2, 3, 4, S

Zs. (Note Zs is eliminated). -62-

Figure 13d. Ecological dynamics of a community with phenotype (Ul> u 2, u3, u4, us, u6) =

(1.45106, -0.897655,4,2.2, -2, -5). The community phenotype (ul> u 2) is an NIS

but (u3, u4, us, u6) is neither an ESS nor an ESNIS. The invader species 1, invader

species 2, incumbent species 1, incumbent species 2, incumbent species 3 and

incumbent species 4 phenotypes are UI, u2, u3, u4, Us and U6 respectively. The

respective population densities are Zl, ~, Z3, Z4, Zs and Z6' (Note that Z4 and Zs are both

eliminated, while ~ and Z6 are not) -62-

Figure 14a. Ecological dynamics ofa community with phenotype (uI , ub u3) = (4.06368,

-1.46587, -3.5). The community phenotype (Ul> u 2) is an NIS but (u3) is neither an

ESS nor an ESNIS. The invader species 1, invader species 2 and incumbent species 1

phenotypes are ul> u 2 and U3 respectively. The respective population densities are Zl> ~

-64-

Figure 14b. Ecological dynamics of a community with phenotype (ul , u
2
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3
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4

) = (4.06368,

-1.46587, 3.1, - 3.1). The community phenotype (Ul> u2) is an NIS but (u
3

, u
4

) is

neither an ESS nor an ESNIS. The invader species 1, invader species 2, incumbent

species 1 and incumbent species 2 phenotypes are ul> u 2, U3 and U4 respectively. The

respective population densities are Zl> ~, ~ and Z4' -64-

Figure 14c. Ecological dynamics of a community with phenotype (ul> u
2

, u
3
, u

4
, us, u

6
) =

(4.06368, -1.46587, 3.5, 0.9, -1.9). The community phenotype (ul> u
2

) is an NIS but

(u3, u4, us) is neither an ESS nor an ESNIS. The invader species 1, invader species 2,

incumbent species 1, incumbent species 2 and incumbent species 3 phenotypes are UI'

u2, u3, U4 and Us respectively. The respective population densities are Z Z Z Z and
l> 2, 3, 4
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Figure 14d. Ecological dynamics of a community with phenotype (u1, u2, u3, u4, us, u6) =

(4.06368, -1.46587,3.5,2, -2, -2.5). The community phenotype (u1, u2) is an NIS

but (u3, u4, us, u6) is neither an ESS nor an ESNIS. The invader species 1, invader

species 2, incumbent species 1, incumbent species 2, incumbent species 3 and

incumbent species 4 phenotypes are u1, u2, u3, u4, Us and U6respectively. The

respective population dens~ties are Zl' ~, ~, Z4' Zs and Z6· (Note Z4 and Z6 are both

eliminated)

Figure 15a. Ecological dynamics ofa community with phenotype (Ul> u2, u3) = (3.51864,

0.920606, -3). The community phenotype (ul> u2) is an NIS but (u3) is neither an ESS

nor an ESNIS. The invader species 1, invader species 2 and incumbent species 1

phenotypes are Ul> u2, and U3respectively. The respective population densities are Zl'

-67-

Figure 15b. Ecological dynamics ofa community with phenotype (u1, u2, u3, u4) = (3.51864,

0.920606, 3.1, -0.2). The community phenotype (Ul> u2) is an NIS but (u3, u4) is

neither an ESS nor an ESNIS. The invader species 1, invader species 2, incumbent

species 1 and incumbent species 2 phenotypes are Ul' U2, U3 and U4respectively. The

respective population densities are Zl> ~, Z3 and Z4' -68-

Figure 15c. Ecological dynamics of a community with phenotype (u1, u2, u3, u4, us) =

(3.51864,0.920606,3.5,0.9, -1.9). The community phenotype (Ul> u2) is an NIS but

(u3, u4, us) is neither an ESS nor an ESNIS. The invader species 1, invader species 2,

incumbent species 1, incumbent species 2 and incumbent species 3 phenotypes are u1,

U2, u3, u4, and Us respectively. The respective population densities are Zl' ~, Z3' Z4 and

-68-

Figure 15d. Ecological dynamics of a community with phenotype (u 1'1- u u u u) =
l' -l' 3' 4, 5, 6

(3.51864,0.920606,3.5,0.9, -1.9, -1). The community phenotype (ul> u2) is an NIS
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but (u u u u) is neither an ESS nor an ESNIS. The invader species 1, invader3, 4, S, 6

species 2, incumbent species 1, incumbent species 2, incumbent species 3 and

incumbent species 4 phenotypes are Ub U2, u3, u4, Us and U6 respectively. The

respective population densities are Zb ~, ~,Z4' Zs and Z6' -69-

Figure 16a. Ecological dynamics ofa community with phenotype (ub u2, u3) = (5.52008,

0.560477,3.5). The community phenotype (uI , u2) is an NIS but (u3) is neither an ESS

nor an ESNIS. The invader species 1, invader species 2 and incumbent species 1

phenotypes are UI' u2 and U3respectively. The respective population densities are Zb ~

-70-

Figure 16b. Ecological dynamics ofa community with phenotype (ub u2, u3, u4) = (5.52008,

0.560477,2.8, -2.8). The community phenotype (ub u2) is an NIS but (u3, u4) is

neither an ESS nor an ESNIS. The invader species 1, invader species 2, incumbent

species 1 and incumbent species 2 phenotypes are ub ul> U3 and U4respectively. The

respective population densities are Zl' ~, Z3 and Z4. -71-

Figure 16c. Ecological dynamics of a community with phenotype (uI , u2, u3, u4, us) =

(5.52008,0.560477,3.5, -1.3, -3.2). The community phenotype (ub u2) is an NIS

but (u3, u4, us) is neither an ESS nor an ESNIS. The invader species 1, invader species

2, incumbent species 1, incumbent species 2 and incumbent species 3 phenotypes are

ub u2, u3, u4, and Us respectively. The respective population densities are Zl' ~, Z3, Z4

and Zs. (Note that Z4 is eliminated) -71-

Figure 16d. Ecological dynamics of a community with phenotype (uI , u2, u3, u4, us, u
6

) =

(5.52008,0.560477,3.5, -1.3, -3.8, -lA). The community phenotype (u
I
, u

2
) is an

NIS but (u3, u4, us, u6) is neither an ESS nor an ESNIS. The invader species 1, invader

species 2, incumbent species 1, incumbent species 2, incumbent species 3 and

incumbent species 4 phenotypes are ub u2, u3, u4, Us and U6 respectively. The

respective population densities are Zl' ~, Z3' Z4, Zs and Z6' (Note that Z3 is eliminated)

-72-
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Figure 17a. Ecological dynamics ofa community with phenotype (Ut, uz) = (3.93849,

2.87995). The community phenotype (Ut, uz) is a candidate ESS but it is not an NIS.

The respective population densities are Zl and~. Both Zl and ~ have initial population

densities of 100. Note that ~ becomes extinct, implying that (uI , uz) is not an ESS.

'-74-

Figure 17b. Ecological dynamics ofa community with phenotype (Ut, uz) = (3.93849,

2.87995). The community phenotype (uI , uz) is a candidate ESS but it is not an NIS.

The respective population densities are Zl and~. Both Zl and ~ initially are at their

equilibrium population densities. Note that both remain at equilibrium. -75-

Figure 17c. Ecological dynamics of a community with phenotype (Ul> uz) = (3.93849,

2.87995). The community phenotype (uI , uz) is a candidate ESS but it is not an NIS.

The respective population densities are Zl and~. Both Zl and ~ have initial population

densities of 5.0. Note that Zz becomes extinct, implying that (uI , uz) is not an ESS. -75-

Figure 17d. Ecological dynamics of a community with phenotype (Ul> uz, u3, u4) = (3.93849,

2.87995, 4, 3). The community phenotype (uI , uz) is a candidate ESS but it is not an

NIS, and (u3, u4) is neither an ESS nor an NIS. The respective population densities are

Zl' Zz, Z3 and Z4' Note that Zl and Zz become extinct, so (u), uz) is not an ESS. -76-

Figure 17e. Ecological dynamics ofa community with phenotype (Ul> uz, u3, u4) = (3.93849,

2.87995, 4, 3). The community phenotype (Ul> uz) is a candidate ESS but it is not an

NIS, and (u3, u4) is neither an ESS nor an NIS. The respective population densities are

Zl' Zz, Z3 and Z4' Note that both Z) and Zz become extinct, so (uI , uz) is not an ESS.

-76-

Figure 18. Code to solve the four equilibrium equations in the one-dimensional case. -83-

Figure 19. The evolution over time of the initial strategies u) = 0.3 (species 1) and Uz = 0.6

(species 2) are shown as solid and dotted lines respectively. Note that both strategies
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Figure 20. The change in nutrients (solid line) and the change in light (dotted line) over time

are taken from equations (13) and (l0), respectively. -86-

Figure 21. Populations of species 1 (solid) and species 2 (dotted) are shown against time.

Since both species 1 and species 2 evolved to the same strategy, their populations can

be summed to give the equilibrium population of the ESS strategy, um•. -86-

Figure 22a. The invading strategy U2 = 0.695 which is the ESS strategy invades and displaces

the incumbent population whose strategy is U I = 0.5 in 700 generations at which time

the invader's population has stabilised at 17.2341. -87-

Figure 22b. The invading strategy u2 = 0.695 which is the ESS strategy invades and displaces

the incumbent population whose strategy is UI = 0.65 in 400 generations at which time

the invader's population has stabilised at 17.2341. -88-

Figure 22c. The invading strategy U2 = 0.695 which is the ESS strategy invades and displaces

the incumbent population whose strategy is UI = 0.69 in 2000 generations at which

time the invader's population has stabilised at 17.2341. -88-

Figure 23. The solid line depicts equation (l2a) and the dotted line depicts equation (12b) for

the G-functionsas a function of root allocation strategy at equilibrium. -90-

Figure 24. Initial strategies U I = 0.32 and U2 = 0.7 for species 1 and 2, respectively, evolved

to two different strategies and are shown as solid and dotted lines respectively. -90-

Figure 25. Populations of species 1 (solid) and species 2 (dotted) shown over time. -91-

Figure 26a. Situation 1, Case 1: One incumbent and two invaders with the initial population

bI = 14.0625 for the incumbent. Note the incumbent is eliminated, while the final
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populations for the invaders are b3 = 6.816 and b4 = 8.036. -94-

Figure 26b. Situation 1, Case 1: The invading strategies (u3, u4) = (0.32,0.7) evolve to the

ESS coalition (0.271, 0.729). -94-

Figure 27a. Situation 1, Case 2: One incumbent and two invaders with the initial population

b
l

= 14.0625 for the incumbent. Note the incumbent is eliminated, while the final

populations for the invaders are b3 = 6.836 and b4 = 8.010. -95-

Figure 27b. Situation 1, Case 2: The invading strategies (u3, u4) = (0.32,0.7) evolve to the

ESS coalition (0.271,0.729) -95-

Figure 28a. Situation 1, Case 3: Two incumbent and two invaders with the initial populations

b
l
= 6.4996 and b2 = 6.4996 for the incumbents. Note the incumbents are eliminated,

while the final populations for the invaders are b3 = 6.810 and b4 = 8.043.

-97-

Figure 28b. Situation 1, Case 3: The invading strategies (u3, u4) = (0.32, 0.7) evolve to the

ESS coalition (0.271,0.729) -97-

Figure 29a. Situation 1, Case 4: Two incumbent and two invaders with the initial populations

bl = 5.5966 and b2 = 5.5966 for the incumbents. Note the incumbents are eliminated,

while the final populations for the invaders are b3 = 5.562 and b4 = 9.292.

-98-

Figure 29b. Situation 1, Case 4: The invading strategies (u3, u4) = (0.32,0.7) evolve to the

ESS coalition (0.271, 0.729) -98-

Figure 30a. Situation 1, Case 5: Two incumbent and two invaders with the initial populations

bl = 7.4391 and b2 = 7.4391 for the incumbents. Note the incumbents are eliminated,

while the final populations for the invaders are b3 = 6.296 and b4 = 8.556. -100-
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Figure 30b. Situation 1, Case 5: The invading strategies (u3, u4) = (0.32, 0.7) evolve to the

ESS coalition (0.271,0.729) -100-

Figure 3ta. Situation 2, Case 1: One incumbent and two invaders with the incumbent's initial

population b
I

= 14.0625 Note the incumbent is eliminated, while the final populations

for the invaders are b3 = 13:557 and b4 = 1.290 -102-

Figure 3tb. Situation 2, Case 1: The invading strategies (u3, u4) = (0.271,0.729) take less

than 80 generations to settle down to the equilibrium strategies, which are the ESS

strategies. -102-

Figure 32a. Situation 2, Case 2: One incumbent and two invaders with the incumbent's initial

population b I = 14.0625 Note the incumbent is eliminated, while the final populations
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Figure 32b. Situation 2, Case 2: The invading strategies (u3, u4) = (0.271,0.729) take less

than 80 generations to settle down to the equilibrium strategies, which are the ESS

strategies. -104-

Figure 33a. Situation 2, Case 3: Two incumbent and two invaders with the initial populations

bI = 6.4996 and b2 = 6.4996 for the incumbents. Note the incumbents are eliminated,
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-105-

Figure 33b. Situation 2, Case 3: The invading strategies (u3, u4) = (0.271,0.729) take less
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strategies. -105-

Figure 34a. Situation 2, Case 4: Two incumbent and two invaders with the initial populations

bI = 5.5966 and b2 = 5.5966 for the incumbents. Note the incumbents are eliminated,

while the final populations for the invaders are b3 = 10.824 and b4 = 4.023. -106-
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Figure 36a. Situation 3, Case 1: One incumbent and two invaders with the incumbent's initial

population b l =:= 14.0625 Note the incumbent is eliminated, while the final populations
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Figure 36b. Situation 3, Case 1: The invading strategies (u3, u4) = (0.271,0.729) take less

than 120 generations to settle down to the equilibrium strategies, which are the ESS

strategies. -110-

Figure 37a. Situation 3, Case 2: One incumbent and two invaders with the incumbent's initial

population b l = 14.0625 Note the incumbent is eliminated, while the final populations for the

invaders are b3 = 7.424 and b4 = 7.424. -110-

Figure 37b. Situation 3, Case 2: The invading strategies (u3, u4) = (0.271,0.729) take less

than 120 generations to settle down to the equilibrium strategies, which are the ESS

strategies. -111-

Figure 38a. Situation 3, Case 3: Two incumbent and two invaders with the initial populations

bl = b2 = 6.4996 for the incumbents. Note the incumbents are eliminated, while the
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final populations for the invaders are b3 = b4 = 7.425. -112-

strategies.

Figure 38b. Situation 3, Case 3: The invading strategies (u3, u4) = (0.271,0.729) take less

than 120 generations to settle down to the equilibrium strategies, which are the ESS

-113-

Figure 39a. Situation 3, Case 4: Two incumbent and two invaders with the initial populations

b
I

= b
2

= 5.5966 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 = b4 = 7.424. -113-

Figure 39b. Situation 3, Case 4: The invading strategies (u3, u4) = (0.271,0.729) take less

than 80 generations to settle down to the equilibrium strategies, which are the ESS

strategies. -114-

Figure 40a. Situation 3, Case 5: Two incumbent and two invaders with the initial populations

bI = b2 = 7.4391 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 =b4 = 7.423. -115-

Figure 40b. Situation 3, Case 5: The invading strategies (u3, u4) = (0.271,0.729) take much

less than 10 000 generations to settle down to the equilibrium strategies, which are the
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Figure 41. Situation 4, Case 1: One incumbent and two invaders with the incumbent's'initial

population bI = 14.0625. Note the incumbent is eliminated, while the final populations

for the invaders are b3 = b4 = 7.432. -117-

Figure 42. Situation 4, Case 2: One incumbent and two invaders with the incumbent's initial

population bI = 14.0625. Note the incumbent is eliminated, while the final populations

for the invaders are b3 = b4 = 7.432. -118-

Figure 43. Situation 4, Case 3: Two incumbent and two invaders with the initial populations
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b
i

= b
2

= 6.4996 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 = b4 = 7.432. -118-

Figure 44. Situation 4, Case 4: Two incumbent and two invaders with the initial populations

b
i

= b
2

= 5.5966 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 = b4 = 7.432. -119-

Figure 45. Situation 4, Case 5: Two incumbent and two invaders with the initial populations

b
i

= b
2

= 7.4391 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 = b4 = 7.432. -119-

Figure 46. Situation 5, Case 1: One incumbent and two invaders with the incumbent's initial

population b
i

= 14.0625 Note the incumbent is eliminated, while the final populations

for the invaders are b3 = 10.843 and b4 = 4.030. -122-

Figure 47. Situation 5, Case 2: One incumbent and two invaders with the incumbent's initial

population bi = 14.0625 Note the incumbent is eliminated, while the final populations

for the invaders are b3 = 10.842 and b4 = 4.029. -122-

Figure 48. Situation 5, Case 3: Two incumbent and two invaders with the initial populations

b i = b2 = 6.4996 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 = 10.843 and b4 = 4.030. -123-

Figure 49. Situation 5, Case 4: Two incumbent and two invaders with the initial populations

b i = b2 = 5.5966 for the incumbents. Note the incumbents are eliminated, while the

final populations for the invaders are b3 = 10.843 and b4 = 4.030. -124-

Figure 50. Situation 5, Case 5: Two incumbent and two invaders with the initial populations

b i = b2 = 7.4391 for the incumbents. Note the incumbents are eliminated, and the final

populations for the invaders are b3 = 10.825 and b4 = 4.023. -125-
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Chapter 1: Introduction

The interest in ecological modelling has been increasing markedly over the past few years.

More and more institutions and people have been getting involved, as man tries to understand

the dynamics ofhis environment, which has resulted in a lot ofwork on the stability of

evolutionary systems being published. In this work, the dynamics of coexisting species as they

evolve is considered, with a view to showing that under certain conditions, coevolving species

will either work together or against one another. In other words, one or more species may

dominate the system to the detriment of the remaining species, who are forced out.

Furthermore, under certain conditions one or more species may invade a habitat, and either

eliminate the incumbent species, or coexist with them.· In this chapter, some of the history of

evolutionary game theory, and some of the terminology used in this and other papers are

introduced to the reader.

1.1. Evolutionary Game Theory and Stability

Game theory deals with conflicts of interest, and thus evolutionary game theory is ideally

suited to model frequency dependent selection. In evolutionary game theory, strategies are

assumed to be inheritable (Vincent, Van and Goh, 1996) and maintainable from generation to

generation, and it is strategies, not individuals that persist through time (Brown and Vincent,

1987). Evolution is thus defined as changes in strategy frequency over time. In evolutionary

game theory, the addition ofa second species to a habitat depends on the failure of the first

species there to expand fully in its niche (Roughgarden, 1987).

Selection is considered to be density dependent where the selection coefficients or fitnesses of

genotypes l are a function of the population sizes. Selection is considered to be frequency

dependent when the selection coefficients or fitnesses ofgenotypes are functions ofgene

frequency (Brown and Vincent, 1987; Roughgarden, 1976). The fitness function is frequency

Igenetic or factorial constitution of an individual organism; a group of individuals all of
which possess the same genetic constitution - Chambers Twentieth Century Dictionary
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independent if it depends on the strategies of other (sub)species only through their population

densities and not through their strategies, i.e. g = g(vj, z(u)) (Apaloo, 1999).

There are two basic assumptions from which the concept of evolutionary stability stems

(Eshel, 1983). These are

1. Any phenotypic2 pattern, strategy or distribution of strategies (i.e. a mixed strategy) is

never fully fixed. At best, erratic small deviations are always maintained by forces of

second order.

2. There is reason to believe natural selection operates to increase some relatively simple

individual payment function, for example viability or fertility (Fisher, 1930; Eshel

1996).

The first assumption means that even if the system in question is globally evolutionary stable

there are still small deviations in the strategies, but in the case of an evolutionary stable

system, these deviations are negligible. The second assumption is that evolution occurs, and

that natural selection operates at an individual level. In other words, the species will evolve to

a state which increases its chances of survival, and this is measured by the fitness (or payoff)

function. In evolutionary game theory the payoff for a strategy is related to the increase in

fitness, and successful strategies will produce more offspring and thus will be able to spread

(Nowak, 1990). A strategy is considered pure if it consists of a single behaviour which has a

probability of 1, and mixed if it does not (Lessard, 1990).

1.2. Concepts in Evolutionary Stability

1.2.1. The ESS and (i-Stability

The classical evolutionary game theory concept of an Evolutionary Stable Strategy [ESS] was

first introduced in 1973 by Maynard Smith and Price. An ESS is a strategy such that, if most

members of the population adopt it, there is no 'mutant' strategy that would have a higher

reproductive fitness. In other words, a strategy is said to be evolutionary stable if, when

. ~he observable characteristics of an organism produced by the interaction ofgenes and
envIronment; a group of individuals having the same characteristics of this kind - Chambers
Twentieth Century Dictionary
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adopted by a large enough majority in the population it becomes advantageous against any

mutant strategy (Eshel, 1983). This means that an ESS is not invadable when it is established.

The ESS may be used to predict the outcome of an evolutionary game, but the prediction is

not certain, meaning that an ESS may not be the outcome of an evolutionary game through

dynamic selection (Apaloo, 1999). It is a common but misleading conclusion that evolution

will tend to an ESS (Nowak, 1990i. Ifone does not restrict the number of evolving species,

then under a sufficiently rich environment of evolving species, the ESS can usually be obtained

An ESS is not an 'unbeatable' strategy. An 'unbeatable' strategy has a selective advantage over

any other strategy at all frequencies of the competing strategy, whereas an ESS only has a

selective advantage when the other strategy occurs in low frequency (Nowak, 1990). An ESS

provides an idealised state to which individual members of the community tend as a result of

some natural selection (Vincent, Van and Goh, 1996). The ESS may be composed ofa

coalition ofmore than one strategy. An ESS requires stability with respect to changes in both

the population density and to permutations of the coalition strategy frequencies. The concept

of t5-stability (or r-stability) (Taylor, 1989; Lessard, 1990) is locally identical to the concept of

an ESS. An ESS has the capability of repelling all mutant strategies once it has been

established, but not necessarily of invading an existing community at ecological equilibrium

with a strategy close to the ESS. In single species models of evolution in which fitness is

negatively density dependent and frequency independent, a phenotype is an ESS if and only if

it maximises the equilibrium population density. In the case of positive density dependency a

phenotype is an ESS ifand only if it minimises the equilibrium population density (Apaloo,

1999). The concept of an ESS has been shown to benefit both individuals and species. Brown

and Vincent (1987) generalise the ESS concept to coevolving species and gives definitions for

an ESS in terms of the frequencies of the strategies used by the coevolving species.

An evolutionary stable coalition, that is, a coalition which uses an ESS, cannot be invaded by

any other population, although in isolation either of the types in the combination can be

invaded by others. If, for example, the evolutionary stable coalition is a coalition of two

species using two distinct strategies then when both species are present, no other population

can invade the coalition. However, should only one of the species be present, then it is
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possible for another population to invade the system. An ESS, once established, cannot be

invaded, but it has the property that it can invade any other nearby type, provided it is in high

frequency relative to the other type. There are various factors which could prevent the

attainment of an ESS. There is no particular guarantee that a particular formulation will admit

an ESS (Ludwig and Levin, 1991).

The ESS maximum principle (Vincent, Van and Goh, 1996; Vincent and Vincent, 1996) states

that the G-function (fitness generating function) associated with the fitness of every individual

in the community must take on a maximum with respect to ESS strategies. ESS's may be

determined directly from this principle for a large number of models. The G-function for a

group of evolutionary identical individuals (i.e. if they have the same strategy choices and if

the ecological consequences ofusing a given strategy are the same for all individuals in the

group) is a function containing all variables and a dummy strategy with the property that the

fitness function for any individual is found by replacing the dummy variable with that

individual's strategy.

1.2.2. The CSS and m-Stability

A strategy u* is m-stable (also called convergence stable) (Taylor, 1989; Lessard, 1990) if,

whenever the entire population has a strategy which is close enough to it, there will be a

selective advantage to some individual strategies which are closer to u*. A m-stable strategy

is an "attracting" strategy (Nowak, 1990). A strategy u is attracting if there is always a

tendency to approach u, but it does not necessarily have to be an ESS (Nowak, 1990). The

concept of a Continuously Stable Strategy [CSS] was first introduced by Eshel and Motro in

1981 and defined for evolution when pure strategies admit a continuum ofvalues (Apaloo,

1998), and is only meaningful in this case. There has since been a lot ofwork published about

the CSS concept, examples ofwhich are Eshel, 1983; Taylor, 1989; Lessard, 1990; Nowak,

1990; Kisdi and Meszena, 1995. A strategy is continuously stable if, when the majority

deviates slightly from it, some reduction of this deviation becomes immediately advantageous

(Eshel, 1983). The concept ofCSS was defined in terms ofESS.
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An ESS is a CSS if, whenever the entire population has a strategy close enough to the CSS,

there is a selective advantage to some individual strategies which are closer to the CSS (Eshel

and Motro, 1981). In other words, a CSS is an ESS which is m-stable, or m-stability and 0­

stability taken jointly define CSS. An ESS is not an automatic outcome of the dynamic

process of natural selection. If natural selection is operating to increase the inclusive fitness, it

can lead to the establishment of some ESS's, but this is not a certainty. However, CSS as a

class represents a possible dynamic selection process which eventually leads to the

establishment of a CSS in the population (Eshel and Motro, 1981). A small perturbation of an

. ESS will be followed by a dynamic selection process which will lead to the restoration of the

ESS if it is a CSS. In other words, if a large enough majority of the population select a

strategy that is close to the ESS, then only those mutant strategies that are even closer to the

ESS will be selectively advantageous. CSS was introduced to deal with the above issue in

single species evolutionary models in which strategies admit a continuum ofvalues (Apaloo,

1999). An ESS which is a CSS will be approached through dynamic selection.

In the case of continuous strategies it is possible that a small deviation of the entire population

from the ESS makes it advantageous for each individual to move a little further from the ESS.

In other cases, any small deviations of the entire population from the ESS will make it

advantageous for each individual in the population to move a little closer to the ESS. ESS's

of the latter sort are CSS's (Eshel, 1983). Ifthe population had maintained an ESS which was

not continuous, following a small displacement in the ESS the population will be in the

convergence region of another, continuous stable strategy, and not of the near ESS (Eshel and

Motro, 1981).

1.2.3. Finding an Optimal Strategy

An optimal coalition of strategies has the following components (Kisdi and Meszena, 1993):

a. It can initially increase in the established population of any other strategy.

b. It increases initially, and it spreads until it becomes established excluding the former

strategy.

c. It is an ESS, that is its established population cannot be invaded by any other strategy.
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d. Having an established strategy Ue in the neighbourhood of the optimal strategy Uoand a

rare strategy Ur = Ue+ 0 with small 0, Ur can invade Ueif and only if Ur is closer to uo,

i.e. if lur-uol < lue-uol

Point (a) ensures that there is only one ESS. Point (d) is only valid if there is a continuou's

strategy set, and it will make the optimal strategy convergence stable.

The concept ofESS remains quite meaningful in fluctuating environments as well. By

invasibility analysis we can explore strategies which can't be invaded by any other strategy.

Indeed, examples can be given when the ESS emerging in low frequency is excluded from a

non-ESS population. Convergence stability is not necessarily satisfied for an ESS in a

fluctuating environment. In a specific model Kisdi and Meszena (1993) found three types of

ESS: convergence stable which could invade directly its neighbours, convergence stable which

couldn't directly invade, and convergence stable which couldn't ever invade~

When a strategy, sufficiently close to optimum, is established in the population, it can be

invaded by another rare strategy, which is sufficiently close to the established one, if and only

if the invader is somewhat closer to the optimum than the established strategy. (Kisdi and

Meszena 1995)

1.2.4. Invader Strategies

A Neighbourhood Invader Strategy [NIS] is a strategy that is initially able to invade all

established communities using strategies that are sufficiently similar to it (Apaloo, 1997a;

Apaloo, 1997b; Apaloo, 1998). This concept was first introduced by McKelvey and Apaloo

in 1995, where it was initially called an ES H. Similar to the NIS concept is that of an

Evolutionary Compatible Strategy [ECS], which is a type of strategy that can invade any

other type, but it can also be invaded by any other type. There has been an emphasis on the

non-invasibility of the ESS, but it is of interest to discover if an ESS can invade other

incumbent strategies sufficiently close to the ESS (Apaloo, 1997b). If an ESS is also an NIS,
then it is called an Evolutionary Stable Neighbourhood Invader Strategy [ESNISl
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The ESNIS concept is not equivalent to the CSS concept. An ESNIS is not invadable by its

near neighbours, and it can invade any of its near neighbours. A CSS may not have this

capability since it may not be able to displace its near neighbours inpairwise ecological

competitions (Apaloo, 1997a; Apaloo, in preparation a). The mathematical conditions for a

CSS require only that some phenotypes in a closer neighbourhood of the CSS be able to

invade a phenotype that is further away from the CSS. It must be noted that invasion does not

mean displacement. A phenotype which is a CSS is not necessarily an ESNIS, but an ESNIS

is a CSS (Apaloo 1999). An ESNIS has a better chance of being established over

evolutionary time because any strategy that is close enough to the ESNIS can be replaced by

the ESNIS (or any strategy closer to the ESNIS). The dynamic process ofnatural selection

leads to the establishment of the ESNIS (Apaloo, 1997b) in a single evolving species ifno

polymorphisms3 occur during the evolutionary process, a conclusion which may not hold for a

CSS. Even when a CSS is approached dynamically, the CSS itself may not be established as it

could also be repelled by an established community using a strategy that is close to the CSS

(Apaloo 1997b). Since an ESNIS is a CSS it will be approached dynamically and in addition it

can invade any community using a strategy that is close to it (Apaloo, 1999).

It was found in general that the NIS concept is neither equivalent to the ESS nor m-stable

concepts (Taylor 1989; Apaloo 1997a) from which weinfer the ESNIS and CSS concepts are

not equivalent. Thus it can be seen that the ESNIS is an 'unbeatable' or 'optimal' strategy,

meeting all four of the requirements given in the previous section (§ 1.2.3.).

1.3. Coevolution

The fitness of each individual may be affected by the strategies of all the other individuals, in

which case we are dealing with coevolution. Coevolution is a game where the fitness

maximising strategy for an individual of one species is dependent on the strategies used by

individuals of its own species and/or other species (Brown and Vincent, 1987). That is,

"coevolution" is a term applied to the simultaneous evolution of interacting populations

3any one of several forms in which the same thing may occur: an organism occurring in
several forms - Chambers Twentieth Century Dictionary
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(Roughgarden, 1979). Coevolution may be defined as evolution where the fitness of each

phenotype depends on the population size of that species and on both the population sizes and

gene frequencies of the other species (Roughgarden 1976). In coevolution, there is

occasionally the formation of a physically close and relatively permanent relationship between

two or more individuals of different species, which is called a symbiotic relationship. There

are three kinds of symbiotic relationships (Roughgarden 1977; Roughgarden 1979):

1. A parasitic relationship, where one party benefits at the clear expense of the other.

2. A commensal relationship, where one party, the guest, benefits from the other, the

host, with negligible harm to the host.

3. A mutualistic relationship where both parties clearly benefit from each other.

A coalition vector is a combination of strategies where all species have a positive stable

equilibrium density. An evolutionary stable coalition vector is one in which the same stable

ecological equilibrium density is obtained under the population dynamics, no matter what

strategies are used for the other components in the strategy vector. A coalition with these

properties is called an ESS.

1.4. A Brief Summary of the Main Concepts Used in the Following Chapters

The main concepts used are the ESS, the NIS and the ESNIS. By definition, the ESS cannot

be invaded once it has been established by any small, 'mutant' population, whereas a NIS is

able to invade any of its near neighbours, and an ESNIS is an ESS which can invade any of its

near neighbours, and as such is an optimal (unbeatable) strategy.

1.5. Thesis Structure

In chapter 2, the necessary and sufficient conditions for the establishment of the ESS, NIS and

ESNIS concepts are looked at, and defined mathematically. The terminology used and

assumptions made in setting up the dynamical system, and the mathematics underlying both m­

stability and 8-stability are presented.
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In chapter 3 it is proved that an ESNIS coalition will be attained by dynamic selection under

coevolution, and that this coalition will be globally stable. In chapter 4 the consequences of

the proof are looked at using a Lotka-Volterra competition model. In chapter 5, a non Lotka­

Volterra dynamical model for coexistence was found, in order to see if the proof could extend

to a non Lotka-Volterra model. The simulations performed on a modified version of the

model, and the reasons for having to make the modification, are given in chapter 5. Finally in

chapter 6 some concluding remarks are made.
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Chapter 2: Background Mathematics

The previous chapter introduced several terms which are used in evolutionary stability, such as

ESS, NIS and CSS. There is a need to have a mathematical understanding of these terms, and

this will be addressed in this chapter. In the first section, the assumptions underlying and some

of the tenninology used to describe the ecological system are given, especially that of the ESS

and NIS conditions. Then in the second section (§2.2) the principles and mathematics ofm­

stability and C)-stability are presented in detail. Finally, in §2.3, the sufficient conditions for the

ESS, NIS and strong-NIS stability concepts are given.

2.1. Terminology and Assumptions

If there are n distinct ecologically interacting species, then the system is termed n-dimensional.

It is assumed that the population density dynamics of the n-dimensional system may be

described by differential equations. Thus if the population size of species i at time t is given by

2;(t), the population densities at time t for the whole community are denoted by

z(t) = [ZI(t), ~(t), ... , ~(t)].

The population densities are from this point forward written as

z = [zl> ~, ... , ~],

that is the dependence on time is suppressed for simplicity, but it should not be forgotten. The

evolutionary phenotype which is of dimension m, for species i is denoted by the vector U
j
, and

the phenotypes for the community are denoted by

It is assumed that the evolutionary phenotype Uj E ~, where ~ is a m-dimensional phenotype

space for the i
lb

species. It is also assumed that the dynamics of the species forming the

community is given by the n-dimensional system of differential equations

1 dz·I

d
-t = GJu, z)

Zj
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where i = 1,2, ... n.

Glu, z) is the per-capita fitness function for an individual of species i with phenotype U j in the

community with phenotype U at time t. This is not the same as the G-function introduced on

page 4. That is a fitness generation function, whereas Glu, z) is the fitness function for

species 1. At ecological equilibrium, the per-capita fitness functions are zero simultaneously,

l.e.

Glu, z) = 0,

. for i = 1, 2, ... , n.

Thus the equilibrium population densities i depend on the incumbent community phenotype u

(i.e. i(u) = [il(u), ~(u), ... , inCu»)). An ecological equilibrium will be locally stable if the

eigenvalues of the community matrix of the above system are all negative.

A fixed community phenotype ii is now looked at. The fitness of an individual invader with

phenotype U j of an incumbent community with phenotype ii and corresponding equilibrium

population densities i = i(ii) is denoted by gluj, ii, i). It is important to note that gluj, u, z) =

Glu, z). Thus the convention has been adopted that the first argument (uj) of gj is the

phenotype of the invader, that the second argument (u) is the incumbent community

phenotype and that the third argument (z) is the incumbent community equilibrium population

density. The last two arguments ofgj are the arguments of Gj.

It has been assumed that the above system of differential equations has ecological stable

equilibrium solutions for any u in an arbitrarily close neighbourhood of ii. This assumption

has been referred to as the ecological stability assumption (Apaloo, 1997b). The consequence

of this assumption is that gluj, u, z) = Glu, z) == °for all U in a close neighbourhood ofii

which implies that the derivatives ofglUj, u, z) with respect to components of U are identically

zero for each i. These conditions are used to simplify the conditions for ESS, NIS and strong

NIS below. The community equilibrium densities will sometimes be suppressed and the

community phenotype will be written explicitly as arguments of gj'
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Now let ~i = [u- u- u- u ii 1 ... ii]. With this notation, the following definitions can
le l' 2,···, 7-1> 7' 7+' , n

be given (Apaloo, 1997b).

Definition 2.1: The community phenotype ii with corresponding ecological equilibrium

population densities zis an evolutionary stable strategy (ESS) if it cannot be invaded by any

mutant that is arbitrarily close to any of its members for each i = 1, .... , n (i.e. g;(ui, ii, z) < 0

for any U; E U; in a close neighbourhood of and distinct from ii}

o

Definition 2.2: The community phenotype ii is a neighbourhood invader strategy (NIS) if

its i lb member can successfully achieve invasion of any arbitrarily close community phenotype

iii at its corresponding ecological equilibrium densities z for each i = 1, .... , n (i.e. g;(iii' iii,

z(ii') > 0 for any Ui E U; in a close neighbourhood of and distinct from ii}

o

Definition 2.3: A community phenotype ii is a strong neighbourhood invader strategy

(Strong NIS) if its ith member can successfully achieve invasion of any arbitrarily close

community phenotype u at its corresponding ecological equilibrium densities z for each i = 1,

.... , n (i.e. gi(iii' U, z(u» > 0 for any u E U in a close neighbourhood of and distinct from ii).

o
Definition 2.1 and definition 2.2 are the definitions that are going to be used most in this

paper. Taken together they give the definition for an ESNIS. Definition 2.3 has only been

included for interest, but it will not be used in the simulations of the Lotka-Volterra

competition models in chapter four.

In examining the above definitions, it can be seen that algebraic conditions for the various

strategies can be stated in terms of conditions for extreme values of the fitness functions. A

community phenotype ii that is an ESS maximises g;(ui, ii, z) at Ui = iii for each i = 1,2, ... , n,

where the maximum value is actually O. Similarly ii is a NIS ifg;(iii' iii, z) is minimised at Ui =

ii; for each i = 1, 2, ... , n. Also ii is a strong NIS ifg;(ii;, u, z) is minimised at U = ii for each i

= 1,2, ... , n.
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2.2. m-Stability and (i-Stability (Taylor, 1989)

Taylor defined the tenns m-stability and 8-stability in tenns of a fitness function W(m, 8),

where m is the nonnal population strategy and 8 is the mutant population strategy, as opposed

to g;(u i , ii) as given in the previous section, where the community equilibrium densities have

been suppressed. Note that the form ofthe two fitness functions is different. If there was only

one species, then the fitness function defined in the previous section would be gl(Uh ii), where

Ul is the is strategy of the invader, and ii is the strategy of the incumbent. With this in mind it

is possible to look at m-stability and 8-stability (Taylor, 1989).

m-stability (first order) and 8-stability (second order) are both local stability conditions in

tenns of the fitness function W(m, 8). For m* to be locally stable, it is necessary to consider a

population which has a slight alteration from a pure m*-population, and require that the action.

of selection moves the population back towards m*. In general it is not easy to fonnulate.

The number of types of alterations is often large and it is not easy to perceive long tenn

effects.

For a system where W(m, 8) is the fitness function with variables m (nonnal population

strategy) and 8 (mutant population strategy), the following statements are true.

Definition 2.4: m* is m-stable iffor m near m* and 8 near 0,

whenever m < m*, W(m, 8) has the same sign as 5, and

whenever m > m*, W(m, 8) has the opposite sign to 8.

m* is 8-stable if for 5 near to but different from 0, W(m*, 8) < 0

o
IfW is differentiable and m* an interior point then each cOIldition implies the equilibrium

condition

aw
-(m*, 0) = o. Note that W(m, 0) =0 for all m.
a8

Theorem 2.5: Suppose W(m, 8) = 8a(m) + ~82b(m) + 0(82) where



-14-

aw a2w
a = -- andb =--, evaluated at S = 0.

as as2

2.5.1. If a(m) ". 0, then for S near 0, selection favours mutants with Sa(m) > °and disfavours

mutants with Sa(m) < 0.

da
2.5.2. Ifa(m*) = 0, m* is an equilibrium point and is m-stable if dm < °at m = m*, that is

a2W(m*, 0)
------<0

aSam
and S-stable ifb(m*) < 0, that is

a2W(m*, 0)
-------<0

as2

(1)

(2)

o

Eshel & Motro (1981) call condition (2) from theorem 2.5.2. the ESS condition, and when

both conditions (1) and (2) hold the ESS is a CSS because (1) from theorem 2.5.2. only makes

sense when m is a continuous variable. Practically, m-stability is a lot easier to verifY than S­

stability.

Classic ESS assumes that the fitnesses are linear. The fitness of any strategy is a linear

function of the population strategy mix. So, as far as fitnesses are concerned, many different

kinds of alterations are equivalent, and the simple condition that requires m* to be more fit

than average in the altered population works well, at least locally (i.e. for small alterations).

If the fitnesses are non-linear there is a natural order structure on the parameter set. We

suppose that the possible m values lie along a line segment (eg m is probability or proportion

of resources). The two natural conditions for the stability ofm* are

1 S-stability, where in an m*-population all local mutants are less fit, and

2 m-stability, where, if we take m near m*, and in an m*-population, local mutants on

the m*-side ofm are more fit than those on the other side.

Under m-stability, if m < m* then selection should favour mutants with S > 0, and if m > m*

then selection should favour mutants with S < 0. Under S-stability, at m = m*, all mutants
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should be less fit than the normal.

For equilibria which are o-stable but not m-stable:- The overall population m value should drift

sideways and then mutants which take it further away will be favoured, although at the exact

equilibrium point all rare local mutants are penalised. The end result is the establishment of a

stable equilibrium at another point", or a polymorphic equilibrium which might straddle the

original point.

For equilibria which are m-stable but not o-stable:- Selection pressure will keep m from

drifting but will allow the spread of mutants with 0 > 0 or 0 < 0 or both, this results in a

polymorphic population not described by the function W(m, 0).

By the definition ofESS, ifii is an ESS then gluj, ii) < 0 for any Uj £ Vj in a close

neighbourhood of and distinct from iij for each i = 1, .... , n. Alternatively, m* is o-stable if, for

o near to but different from 0, W(m*, 0) < O. By comparing these two statements, it is easily

seen that the ESS and the o-stable strategies are equivalent, as stated in chapter 1.

2.3. Sufficient Conditions

The sufficient conditions for the evolutionary stabilities defined in §2.1 are given by the

following theorems. The derivatives below are taken with respect to the components of Uj in

Theorems 2.6 and 2.7, and with respect to all components ofu in Theorem 2.8. Also, \7gj and

\72gj denote the gradient vector and the Hessian matrix ofgj respectively (Apaloo, 1997b).

Theorem 2.6: Let ii be an interior point of the community strategies space. Then sufficient

conditions for ii to be an ESS are

\7glUj, ii, z) = 0, evaluated at uj= iij, for i = 1, 2, , n

gluj, ii, z) = 0, evaluated at uj= iij, for i = 1, 2, , n

and

\72gl Uj, ii, z), evaluated at Uj= iij, is negative definite for each i, i = I, 2, .... , n.

o
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Theorem 2.7: Let ii be an interior point of the community strategies space. Then sufficient

conditions for ii to be an NIS are

V7gliij , if, z) = 0, evaluated at Dj = iij , for i = 1, 2, , n

yng;(uj , iij
, z) = 0, evaluated at Dj = iij , for i = 1, 2, , n

and

V72g;(Uj , ii\ z), evaluated at Dj = iij , is positive definite for each i, i = 1,2, .... , n.

o

Theorem 2.8: Let ii be an interior point of the community strategies space. Then sufficient

conditions for ii to be a strong NIS are

V7g,(iij , u, z) = 0, evaluated at u = ii, for i = 1, 2, , n

V72gliij , u, z) = 0, evaluated at u = ii, for i = 1, 2, , n

and

V72gliij , u, z), evaluated at u = ii, is positive definite for each i, i = 1, 2, .... , n.

o
The sufficient conditions for the two dimensional case are given in Appendix 1.

In the following chapters, only the ESS and the NIS concepts are going to be used. The other

concepts are presented here for interest and for the sake of comparison, but they will not be

referred to again.



-17-

Chapter 3: The Proof

The ecological system used in this, and the following chapter, is given by the Lotka-Volterra

competition model. The n-dimensional system of equations is given by

d~ r ~ n

= - [k(uJ - Ia(uj - u) Zj]' i = 1, 2, ... n,
dt k(uJ J= 1

(I)

This system will be referred to from now on as the system of equations (1). In (I), k(uJ is the

carrying capacity as a function of the species phenotype and a(Uj - Uj) is the competitive

interaction function. The carrying capacity and competitive interaction functions used for the

various simulations are defined in Chapter 4. For simplicity, the carrying capacity and the

competitive interaction functions are abbreviated as follows: k(uJ = ~ and a(Uj - uj ) = <X;j'

Also note that competitive interaction function is defined such that a(Uj - uJ = Un = 1.

3.1 Introduction

This chapter contains the proof that there is only one stable equilibrium point for the n­

dimensional system (I), and that equilibrium is globally stable. To be able to show this using

the Index Theorem (Hofbauer and Sigmund, 1988), certain statements about the nature of the

equilibrium points of the n-dimensional system (I) had to be made. These statements

concerned the existence of interior points (~ 3.2), the local stability of the boundary

equilibrium point relating to the ESNIS coalition (~ 3.3), and the regularity of the equilibrium

points (p 3.4). Finally, the Index Theorem (see Appendix 2) was used to show that for the n­

dimensional system (I), with n > 2, there is only one stable equilibrium point, which is globally

stable.

3.2 The Existence of Interior Points

Claim 3.1: The system of equations (I) has no interior equilibrium point when n > 2.

Proof 3.1: Consider the following n-dimensional system of equations
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From Strobeck 1973 the necessary and sufficient conditions for the above system of equations

to have a locally stable interior equilibrium (Z., Z2' ..., zJ are

kl 0.12 a 1n

k2 1 ~n
~ = = kl - L Cl1i/

l
) > °I

~ Un2 1

1 kl Cl1n

~l k2 ~n
= k2 - L ~A(2) > °~ =2

~l ~ 1

1 0.12 kl

~l 1 k2
~= =~ - L ~jZr) > °

~, Un2 ~

and for n > 2

al a3 a, a3 as
> 0,

1 ~ 1 ~ a4 > 0, ...,

° al a3
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where

r· r· z· z·n i-I I J 1 J

~=LL--­
1=1 r l ~ Is

1 O;j

rlr2···rnzlz2 ... zn

Cln=
kl k2... ~

where

1 0.12 an a ln

~l 1 ~3 ~n

~=

~
z=­

~

When n =3:

We have three strategies, namely Ul> u2and u3 where ul and u2form an ESNIS. As U3 is not

part of the ESNIS, it will not be able to invade ul or u2in the system of equations

d~ r~
dt = ~~ - O;IZI - ~Z2 - ~Z3)' for i = 1,2, 3,
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so k < ~n_.Z.(3)
3 L'--jJ J

j=1

and therefore k3 - t~jzF) < 0
j=1

and therefore there is no interior equilibrium point.

Inductively it can be seen that there will never be an interior equilibrium point for n ~ 3. For

example, when n = 4 ifu4 can invade the coalition of(ul , u2, u3) in equilibrium then it is

possible to have an interior equilibrium point consisting of (u1, u2, u3, u4). But by the above

argument it has been shown that the coalition of (u1, u2, u3) does not exist in equilibrium.

Thus for n =4 there are no interior equilibrium points. Similar arguments hold for n > 4, and

thus there are no interior points for n ~ 3.

The following result also holds. There are no interior equilibrium points if and only if there

are no limit cycles. Thus all equilibrium points are on the boundary (Hofbauer and Sigmund,

1988).

o
3.3 The Local Stability of the Boundary Equilibrium Point

Claim 3.2: (Zb Z2' 0, ... , 0) is a locally stable equilibrium point of the system equations (I)

when ill> il2is an ESNIS with equilibrium populations of ZI and Z2.

Proof 3.2:

For n = 2:

As ill' il2is an ESNIS the following results hold:

k1 - ZI - u12z2 = 0

k2 - ~IZ1 - Z2 = o.
Also Z (2) = k and z (1) = k andI I 2 2>

(la)

(lb)

~I = kl - u12k2 > 0 (2a)

~2 = k2 - ~lkl > 0 (2b)

as each population can invade the other, thus (ZI' Z2) is a locally stable equilibrium point

located on the boundary of the two dimensional system.
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For n =3:

When n=3, the system of equations (1) is:

For there to be an equilibrium point the right hand side of each of the three equations above

must be equal to zero. Thus

Zl = °or k1 - Zl - ul2 ~ - un ~ = 0, and

Z2 = °or k2 - ~1 Zl- Z2 -~3 Z3 = 0, and

Z3 =°or k3 - ~1 Zl- ~2 ~ -~ = 0.

The fact that ub u2 form an ESNIS coalition means that

k1 - Zl - Ul2 Z2 = 0, and

k2 - ~l Zl- Z2 = 0,

so if Z3 = 0, the following three statements are all true:

k1 - Zl - U l2 Z2 - U B Z3 = 0, and

k2 - ~1 Zl- Z2 -Un Z3 = 0, and

Z3 = o.
Thus (Zb Z2' 0) is an equilibrium point, where (Zl' Z2) are the equilibrium populations

corresponding to the ESNIS coalition (uI , u2)

At the equilibrium point (Zl' Z2' 0), the three differential equations are all equal to zero. If this

point is now perturbed to (Zl + £1' Z2 + £2, £3)' where £j is small, the system of equations

becomes
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r (Zl + El)
---[kl - (Zl + El) - 0.12 (ZZ + ez) -0.13 E3], (3 a)

dt
= (3b)

(3 c)

Using a Taylor Series expansion of the above equations at the equilibrium point (zt> zz, 0)

yields

r (kl - 2 Zl - o.lZ zz) r 0.12 Zl r 0.13 Zl
El = El - ez - -- E3 + O(Ej

Z)
.~ ~ ~

- r Uzl Zz
---El +

r (kz - Uzl Zl - 2 zz) r Uz3 Zl
------ ez - --E3 + O(Ej

Z)
kz kz

r (k3 - ~l Zl -~z zz)
~ = E3 + O(E?)

k3

where E is shorthand for (dE / dt).

The higher order terms are negligible, and then because of the ESNIS coalition, the following

are true:

k l -ZI -0.12 Zz = 0,

kz -UzI ZI -zz = 0,

k3 - ~I Zl - ~z Zz < 0,

k l - 0.12 kz > 0, and

kz - Uzl kl > 0.

It is also true that

(4)

(5)

(6)

(7)

(8)
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(9a) and Zz = (9b)

Using these facts, and putting the equations into vector form, the result is

t=Ag

where t and g are vectors and A is the 3x3 matrix,

A=

o o

Solving the equation IA - AI I= 0 for the eigenvalues Aresulted in three possible eigenvalues,

namely

A =-r1 , (lOa)

(10c)

(lOb)
- r [(k1 - a12 kz)(kz - Clzl k1) ]

~ = -- ---------, and
k1kz (1 - a12 Clzl)

'A., ~ - r ra" (k, - a12 k,) + a,,(k, - u" k, ) - k, (1- a12 u,,)1
k3 (1 - a12 Clzl)

If the terms in square brackets from (lOb) and (1 Oc) are both positive, then all the eigenvalues

will be negative, and the equilibrium point will be locally stable.

Looking first at Az, there are three terms in the large square brackets. From (7) and (8) the

two terms in the numerator are both positive, and it follows from (9) that the denominator is

also positive. Thus the term in the square brackets is positive, and therefore Az < O.

Now taking the square bracket in ~, and using (9) to simplify it, it becomes [~l Zl + ~z Zz ­

k3]. Thus, from (6), the term in the square brackets is positive. Therefore ~ < O.

As ~ < 0 for i = 1, 2, 3, the equilibrium point (Zl> zz, 0) is locally stable.
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Inductively, it can be shown that (1.1> 1.2, 0, "', 0) is a locally stable equilibrium point for n ~ 2.

Firstly every n-dimensional system of equations will have (1.1> 1.2, 0, .. ', 0) as a stable

equilibrium point, because (ub u2) is an ESNIS coalition. Secondly, following an argument

similar to that used above, the equilibrium point (1.1> 1.2, 0, '.., 0) will be locally stable, largely

due to the ESNlS conditions. Thus a slight perturbation from the equilibrium point will result

in the equilibrium point being reestablished and so the equilibrium point (Zb 1.2, 0, "', 0) is

locally stable.

o

Definition 3.3: A rest point 1. of the n-dimensional system of equations (I) is said to be

saturated if~(z) ~ 0 when Zi = 0 and ~(z) = 0 when Zi > 0 (Hofbauer and Sigmund, 1988).

o

From this definition it is possible to see that the stable equilibrium point (Zt> 1.2, 0, .", 0) is

saturated for all dimensions n ~ 2. For n = 2,1.; > 0 for i = 1 and 2, and ~(z) = O. Similarly

for n = 3, ~(z) = 0 for i = 1,2, and fiz) ~ 0 where z; > 0 for i = 1,2, and 1.3 = O.

Definition 3.4: Let U be a bounded open subset ofRn and f a vector field defined on a

neighbourhood of its closure U. A point Z E U is said to be regular if det DJ *' 0 where DJ
is the Jacobian matrix off evaluated at Z ERn.

o

3.4 The Regularity of the Equilibrium Points

It was assumed that all equilibrium points are regular..

3.5 The Existence of Only One Stable Equilibrium Point

To prove that there is only one stable and saturated equilibrium point in all cases with three or

more different strategies, one first looks at the three and then the four dimensional cases.

Then by following an intuitive argument, it is possible to show that there is only one stable and
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saturated equilibrium point for any dimension greater than two.

3.5.1 The Case When n = 3

In the three dimensional case (i.e. three different populations with three different strategies),

where there is an ESNIS consisting of Ut and u2 and a third strategy U3 which is not part of the

ESNIS. Then there are eight possible equilibrium points, namely:

(0, 0, 0);

(Zl' 0, 0);

(0, z2> 0);

(0, 0, Z3);

(Zt, 0, Z3);

(0, Z2' ~);

(Zt, Z2> Z3)'

It has already been shown that there are no interior points, thus (Zt, Z2> Z3) does not exist.

Also, a slight perturbation in (0, 0, 0) will result in Z'j > °for i = 1, 2, 3 and thus the

populations will grow, so (0, 0, 0) is unstable. Because Ut and u2 form an ESNIS, they can

invade each other, as well as any other incumbent population. Thus (Zt, 0, 0) and (0, Z2' 0)

and (0, 0, Z3) are all unstable as (zt> 0, 0) can be invaded by U2> (0, Z2> 0) can be invaded by Ut>

and (0, 0, Z3) can be invaded by both or one ofUt and u2.

This leaves three possible equilibrium points that could be stable, namely (Zt, Z2> 0) (Zt, 0, ~),

and (0, Z2> Z3)' Now we have shown that (Zt, Z2' 0) is a stable equilibrium point as it

corresponds to the equilibrium population of the ESNIS population. Thus (Zt, Z2' 0) is

saturated, and will have an index of (- 1)3 = - 1.

Claim 3.5: Neither (Zt, 0, Z3) nor (0, Z2' Z3) is saturated.

Proof 3.5: All equilibrium points are regular and the equilibrium point (zt> Z2' 0) is saturated

and has an index of - 1.
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Case 1: Suppose (zt> 0, Z3) is saturated and (0, z2> Z3) is not saturated. Thus (zt> 0, Z3) has an

index of - 1 as it will have three negative eigenvalues. Then there are two saturated and

regular equilibria with indices of -1, and the sum oftheir indices is -2. But by the index

theorem (Hofbauer and Sigmund, 1988; Appendix 2) the sum must be - 1 which is a

contradiction, thus (Zl> 0, ~) is not saturated.

Case 2: Suppose (0, Z2' Z3) is saturated and (Zl' 0, Z3) is not saturated. Thus (0, Z2' Z3) has an

index of - 1 as it will have three negative eigenvalues. Then there are two saturated and

regular equilibria with indices of -1, and the sum of their indices is -2. By the index theorem

the sum must be -1 which is a contradiction, thus (0, Z2' Z3) is not saturated.

Case 3: Suppose both (Zl' 0, ~) and (0, Z2' Z3) are not saturated. Thus both (Zl' 0, Z3) and (0,

Z2' ~) have an index of - 1 as they each have three negative eigenvalues. Then there are three

saturated and regular equilibria with indices of - 1, and the sum of their indices is - 3. But by

the index theorem the sum must be -1 which is a contradiction, thus (zt> 0, ~) and (0, Z2' ~)

are not saturated.

Thus by cases one to three neither of the equilibrium points (zt> 0, Z3) or (0, Z2' Z3) is saturated

therefore (Zl' Z2' 0) is the only saturated point. Thus it is also the only locally stable point,

therefore it is also globally stable.

o
3.5.2 The Case When n = 4

We now look at the four dimensional case (i.e. four different populations with four different

strategies), where there is an ESNIS consisting of ill and il2 and a two other strategies U
3

and

U4 that are not part of the ESNIS. There are then sixteen possible equilibrium points, namely:

(0, 0, 0, 0);

(zt> 0, 0, 0);

(0, Z2, 0, 0);

(0, 0, Z3, 0);

(0, 0, 0, Z4);

(Zl> Z2, 0, 0);

(zt> 0, Z3, 0);
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(Zl, 0, 0, Z4);

(0, Z2> ~, 0);

(0, Z2' 0, Z4);

(0, 0, Z3' Z4);

(Zl> Z2' Z3, 0);

(Zl> Z2, 0, Z4);

(Zl> 0, Z3' Z4);

It has already been shown that there are no interior points, thus (Zl> Z2' Z3' Z4) does not exist.

A slight perturbation in (0, 0, 0, 0) will result in z\ >°for i = 1, 2, 3, 4 and thus the

populations will grow, so (0, 0, 0, 0) is unstable. Because ill and il2form an ESNIS, they can

invade each other, and any other incumbent population. Thus (Zl' 0, 0, 0), (0, Z2' 0, 0), (0, 0,

Z3' 0) and (0, 0, 0, Z4) are all unstable as (Zl' 0, 0, 0) can be invaded by il2, (0, Z2> 0, 0) can be

invaded by ill> and (0, 0, Z3' 0) and (0, 0, 0, Z4) can each be invaded by both or one ofill and

This leaves ten possible equilibrium points which could be stable, namely (Zl' Z2, 0, 0), (Zl> 0,

Z3' 0), (zJ> 0, 0, Z4), (0, Z2, ~, 0), (0, Z2' 0, Z4), (0, 0, Z3, Z4), (Zl' Z2> Z3, 0), (zJ> Z2' 0, Z4)' (zJ> 0,

Z3' Z4), and (0, Z2' Z3' Z4)· Now we have shown that (zJ> Z2' 0, 0) is a stable equilibrium point as

it corresponds to the equilibrium population of the ESNIS population. Thus (zJ> Z2, 0, 0) is

saturated, and will have an index of (- 1t = 1.

Claim 3.6: None of (zJ> 0, ~, 0), (Zt, 0, 0, Z4), (0, Z2, Z3, 0), (0, Z2, 0, Z4), (0, 0, Z3, Z4), (zJ> Z2,

Z3 0), (Zl, z2> 0, Z4), (zJ> 0, Z3, Z4), or (0, Z2' Z3, Z4) is saturated.

Proof 3.6: All equilibrium points are regular and the equilibrium point (Zl> z2> 0, 0) is saturated

and has an index of 1. Each locally stable point will have four negative eigenvalues and will

therefore have an index of 1.

Case 1: Only one of (zJ> 0, Z3' 0), (zJ> 0, 0, Z4), (0, Z2' Z3' 0), (0, Z2' 0, Z4), (0, 0, Z3' Z4), (zJ> zZ,

Z3 0), (Zl> zz, 0, Z4), (zJ> 0, Z3, Z4) or (0, z2> ~, Z4) is saturated and all others are unstable. The
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one saturated point is locally stable and therefore has an index of 1. Also the stable

equilibrium point (z}> Z2' 0, 0) has an index of 1. Thus the sum of the indices of the regular

and saturated equilibria is 2. But by the index theorem, the sum must be 1, which is a

contradiction.

Case 2: Assume only two of (z}> 0, Z3, 0), (z}> 0, 0, Z4), (0, Z2' ~, 0), (0, Z2' 0, Z4)' (0, 0, ~,

Z4), (z}> Z2' Z3 0), (z!> Z2' 0, Z4), (z], 0, Z3' Z4), and (0, Z2' Z3' Z4) are saturated, and the others are

all unstable equilibrium points. The two saturated points are both locally stable, each with an

index of 1, and together with point.(z}> Z2' 0, 0), the sum ofthe indices of the regular and

saturated equilibria is 3. By the index theorem the sum must be 1, which is a contradiction.

Case 3: Assume three of (z}> 0, ~, 0), (z], 0, 0, Z4), (0, Z2' Z3, 0), (0, Z2' 0, Z4), (0, 0, Z3' Z4),

(z}> Z2' Z3 0), (z], Z2> 0, Z4), (z], 0, Z3, Z4), and (0, Z2' Z3, Z4) are saturated and the others are all

unstable. The three saturated points are locally stable and thus each have an index of 1. The

stable equilibrium point (z], Z2' 0, 0) also has an index of 1. Thus the sum of the indices ofthe

regular and saturated equilibria is 4. But by the index theorem the sum must be 1, which is a

contradiction.

Case 4: Assume four of (z}> 0, Z3' 0), (z], 0, 0, Z4), (0, Z2' Z3' 0), (0, Z2> 0, Z4), (0, 0, Z3, Z4), (z}>

Z2, Z3 0), (Zl, Z2' 0, Z4), (z}> 0, Z3' Z4), and (0, Z2' Z3, Z4) are saturated and the others are all

unstable. The four saturated points are locally stable and thus each has an index of 1. The

stable equilibrium point (Zl' Z2> 0, 0) also has an index of 1. Thus the sum of the indices of the

regular and saturated equilibria is 5. But by the index theorem the sum must be 1, which is a

contradiction.

Case 5: Assume five of (z}> 0, Z3, 0), (z}> 0, 0, Z4), (0, Z2' Z3' 0), (0, Z2' 0, Z4), (0, 0, Z3, Z4), (z}>

Z2' Z3 0), (z}> Z2' 0, Z4), (z}> 0, ~, Z4), and (0, Z2' ~, Z4) are saturated and the others are all

unstable. The five saturated points are locally stable and thus each has an index of 1. The

stable equilibrium point (Zl, z2> 0, 0) also has an index of 1. Thus the sum of the indices of the

regular and saturated equilibria is (z}> Z2' 0, 0). By the index theorem the sum must be 1,
which is a contradiction.

Case 6: Assume six of(z}> 0, ~, 0), (z}> 0, 0, Z4), (0, Z2' ~, 0), (0, Z2' 0, Z4), (0, 0, ~, Z4), (z}>

Z2, Z3 0), (z}> Z2' 0, Z4), (z}> 0, Z3' Z4), and (0, Z2' Z3' Z4) are saturated and the others are all

unstable. The six saturated points are locally stable and thus each has an index of 1. The

stable equilibrium point (Zl' Z2' 0, 0) also has an index of 1. Thus the sum ofthe indices of the
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regular and saturated equilibria is 7. But by the index theorem the sum must be 1, which is a

contradiction.

Case 7: Assume seven of (zt> 0, Z3' 0), (zt> 0, 0, Z4), (0, Z2' Z3' 0), (0, Z2' 0, Z4), (0, 0, Z3, Z4),

(Zl' Z2' Z3 0), (Zl' Z2' 0, Z4), (Zl' 0, Z3' Z4), and (0, Z2' Z3' Z4) are saturated and the others are all

unstable. The seven saturated points are locally stable and thus each have an index of 1. The

stable equilibrium point (zt> Z2' 0, 0) also has an index of 1. Thus the sum ofthe indices of the

regular and saturated equilibria is 8. The index theorem says that the sum must be 1, which is

a contradiction.

Case 8: Assume eight of (Zl' 0, Z3' 0), (zt> 0, 0, Z4), (0, Z2' Z3' 0), (0, Z2' 0, Z4), (0, 0, Z3, Z4),

(zt> Z2' Z3 0), (zt> Z2' 0, Z4), (Zb 0, ~, Z4), and (0, Z2> Z3, Z4) are saturated and the others are all

unstable. The eight saturated points are locally stable and thus each has an index of 1. The

stable equilibrium point (zt> Z2' 0, 0) also has an index of 1. Thus the sum ofthe indices of the

regular and saturated equilibria is 9. But by the index theorem the sum must be 1, which is a

contradiction.

Case 9: Assume each of (zt> 0, ~, 0), (zt> 0, 0, Z4), (0, Z2' ~, 0), (0, Z2' 0, Z4), (0, 0, Z3, Z4),

(zt> Z2' Z3 0), (Zl' Z2> 0, Z4), (zt> 0, Z3' Z4), and (0, Z2> Z3, Z4) is saturated. The saturated points

are locally stable and thus each has an index of 1. The stable equilibrium point (zt> Z2' 0, 0)

also has an index of 1. Thus the sum of the indices of the regular and saturated equilibria is

10. But by the index theorem the sum must be 1, which is a contradiction.

By cases one to nine none of the points (Zl' 0, Z3' 0), (Zl' 0, 0, Z4)' (0, ~, Z3' 0), (0, Z2' 0, Z4),

(0, 0, Z3' Z4), (zt> Z2' Z3 0), (ZI' Z2' 0, Z4), (zt> 0, ~, Z4), or (0, Z2' Z3, Z4), or any combination of

them, are saturated therefore point (zt> z2> 0, 0) is the only saturated point and the only locally

stable equilibrium point. Thus equilibrium point (zt> Z2' 0, 0) is globally stable

o

3.5.3. Conclusion of Proof

From claims 3.5 and 3.6, for the three and four dimensional cases, we can postulate that for

any dimensional system, there will be only one saturated equilibrium point, and thus, only one

stable equilibrium point, which will be globally stable. For any dimension, there will be the
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equilibrium point of the form (Zl> Z2' 0, 0, ..., 0) which will be saturated and have an index of

{- 1t. Any other equilibrium point which is saturated, and thus locally stable, will also have an

index of (- 1t. But by the index theorem the sum of the indices of all regular and saturated

equilibria must be equal to (-I)". Thus there can be only one regular and saturated

equilibrium point, which will be globally stable, and have the form (zl> Z2' 0, 0, ..., 0).
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Chapter 4: Lotka-Volterra Exampk

In this chapter, examples are given to validate the proof of the previous chapter. Firstly, an

ESNIS coalition is found for the system of equations (I) in §4.1. I, using the conditions given

in Appendix 1. This coalition is then studied in detail (§4.1.2), after which its dynamical

interaction with varying incumbent species is observed in §4.2. Then in §4.3. examples of

other ESNIS coalitions are given, as well as their interaction with varying numbers of

incumbent species, when the incumbents are in equilibrium, and the ESNIS coalition

populations are small. In each of these cases, it is expected that the ESNIS coalition will

eliminate the incumbent populations and form a new equilibrium population consisting of only

the ESNIS coalition populations. Once the behaviour ofESNIS coalitions has been

simulated, a similar process is carried out for various NIS coalitions which are not also ESS

coalitions. This is §4.4. Finally in §4.5. the results of trying to find an ESS coalition which

was not also an NIS are given.

4.1. The ESNIS Coalition for the System of Equations (I)

4.1.1. Finding the ESNIS Coalition

For the system of equations (I), the following carrying capacity and competitive interaction

functions were chosen (Vincent & Brown, 1988):

u2

k(u) = ~ exp [- =------l­
2(crJ2J

(u; - uj + ~)2 ~2

o.(u; - u) = 1 + exp[ - 1- f exp - -l---
2(crJ2 J 2(crJ2 J

where l<m, crb crll' and ~ are parameters. Note that a. is symmetric if~ = 0 and non symmetric

otherwise. Also, 0.(0) == I. The parameter values were initially set as follows: r = 0.25, l<m =

lOO cr 2=A2=4 cr 2=125'a P 'k ..



-32-

Solving the necessary conditions for the evolutionary stable strategies using Mathematica, an

ESNlS coalition oful = 3.12943 and u2= -0.23973 with equilibrium populations Zl = 51.0618

and ~ = 39.2839 was obtained. These are the same values obtained by Apaloo, 1997b. The

second order conditions could be checked numerically to determine whether this point

possesses any ofthe evolutionary stabilities. However these computations are of an extremely

time-consuming nature when dealing with coevolution, and so the second order conditions

were checked graphically.

0.012

0.01 giuz, Ul , u) gJ(ul, u, ul )

0.008
Cl)
Cl) 0.006
~
+J 0.004.r-i
4-1

0.002

0
giu, UI , uz) gl(U, Ub uz)

-1 0 1 2 3 4 5
strategy,u

Figure 1. Graphs offitnesses g\(Ub U, Uz, z\(u, Uz), q(u, uz», gz(uz, u b U, z,(u" u), ZZ(U b u», gl(U, u" uz, Zb zz)
and gz(u, U" uz, Zb iz) as functions ofu when ul = 3.12943 and Uz= -0.23973. The figure shows that (u b uz) is
an ESS since it cannot be invaded by any close neighbour, that is any close neighbour has negative fitness in
the environment established by (u b Uz). Also U, and Uz can independently invade cOlnmunity phenotypes of
the fonn (ub uz) and (u b uz) respectively and (u b uz) is therefore an NIS. The community phenotype (u b uz) is
thus an ESNIS.

The graphs of gl(Ul> U, u2, Zl(U, u2), Zz(u, u2)), gz(u2, Ul> U, Zl(Ul> u), Zz(ul> u)), gl(U, Ul> u2, Zl>

~), g2(U, Ul> u2, Zl' Z2) as functions ofu are shown in Figure 1. Observe that (ul, u2) satisfies

the conditions for ESS and NIS since gl(Ul> u, u2, Zl(U, u2), Zz(u, u2)) and gz(u2, ul> U, Zl(Ut> u),

Zz(ut> u)) have minimum values of 0 at u = ul and u = u2respectively, while gl(U, Ul> u2, zt> ~)

and g2(U, Ul' U2, Zl> ~) have maximum values of 0 at u = ul and u = u2 respectively.
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4.1.2. Characteristics of the ESNIS Coalition

The characteristics of the ESNIS coalition were studied by observing the effects of the

coalition, and the individual members of the coalition, when they were introduced into various

incumbent populations (Apaloo, 1997b).

The above ESNIS coalition was introduced at low densities (ZI = Z2 = 10) into a community at

ecological equilibrium (Z3 = 38.0368, Z4 = 37.3404) established by the community phenotype

u3 = 4 and U4 = -4. Ecological dynamic interaction of the augmented community over 800

generations was simulated. The result, shown in Figure 2a, was that the ESNIS phenotypes

exclude the phenotypes that do not form an ESNIS coalition, and form a new ecologically

stable and evolutionary non-invadable community. Each oful and u2 can invade the

community formed by (u3, u4), and the community (ub u2) cannot be invaded by any ofu3 or U4

since it is an ESNIS coalition.

------ ~---------------
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Figure 2a. ~cological dyn~c~ o~a community with phenotype (u b u2, u3, u4) = (3.12943, -0.23973,4, -4).
The commuruty phenotype (u b U2) IS an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition any of u
and ~2 can invade (u3, u4). The invader species 1, invader species 2, incumbent species 1 and incumbent I

specIes 2 phenotypes are ub u2, U3 and U4 respectively. The respective population densities are z z z and z
h 2, 3, 4·



-34-

60

Zl

50

(1)
N 40-r-!
Cl) L
§ ~

Z4-r-! 30 '" -+Jeu '"3
~ 20

"" '" ~

10 ----..
----..

~---- ----
- ~

o 200 400 600 800
generations in time

Figure 2b. Ecological dyllamics ofa community with phenotype (ub U3, u4) = (3.12943, 4, -4). The
community phenotype (uh uz) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition any oful and
Uz can invade (u3, u4). The invader species 1, incumbent species I and incumbent species 2 phenotypes are uh

U3 and U4 respectively. The respective population densities are Zb Z3, and Z4.
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Figure 2e. Ecological dynamics ofa community with phenotype (uz, u3, u4) =(-0.23973, 4, -4). The
community phenotype (u b uz) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition any ofu) and
Uzcan invade (U3, u4)· The invader species 1, incumbent species 1 and incumbent species 2 phenotypes are u

Z
,

U3 and U4 respectively. The respective population densities are Zz, Z3, and Z4.
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Figures 2b and 2c show the resulting ecological dynamics when the community (u3, u4) is

invaded by u
I

and u
2

respectively. In Figure 2b uI replaces the phenotype U3 and in Figure 2c

u
2

replaces u
4

. However, as will now be shown, these are not general outcomes of ecological

competition between ESS coalition and non-ESS coalitions. It is however interesting to note,

that if the initial populations of Zl and ~ are reduced radically in size, that the same end result

occurs, just over a longer time period.

Two other incumbent community phenotypes are now looked at (Apaloo, 1997b). (2.8, -0.6)

can be invaded by u
I

and it repels u2, while (3.1, -0.7) repels uI and can be invaded by u2· The

ecological dynamics for these two communities are shown in Figures 3a-c and 4a-c

respectively.

In Figure 3a, uI successfully invades the incumbent population, but it neither replaces nor

excludes the incumbent phenotypes. The three phenotypes maintain an ecologically stable

community. Figure 3b shows u2 being repelled by the community with phenotype (2.8, -0.6).

Figure 3c shows the dynamics involving Ul> u2, 2.8, -0.6 where the phenotypes 2.8 and -0.6

are excluded. The results from Figure 3c are qualitatively the same as those from Figure 2a.

That is, the population sizes will end up being the same in Figure 3c as they end up in Figure

2a.

Similar conclusions can be inferred from the dynamics shown in Figures 4a-c. In Figure 4a, uI

is repelled by the incumbent phenotypes (2.8, -0.6), while in Figure 4b, u2 invades the

incumbent phenotypes, and the three phenotypes form an ecological stable community..

Finally, in Figure 4c, the ESNIS coalition invades and displaces the incumbent phenotypes,

with the final ESNIS coalition populations being the same as found in Figures 2a and 3c. Note

that the system in Figure 4c only stabilizes after a very large generation time.

It is also of interest to note that in the interactions between ul (or u2) with the community (u3,

u4), ul (or u2) does not necessarily invade the incumbent phenotypes, and if it does invade it

does not necessarily replace one of the incumbents, as happened in Figure 2b and Figure 2c.

Thus only if the whole ESNIS coalition (uI, u2) invades the incumbent community, as opposed
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to one of the members of the coalition, can one be certain of the incumbent population being

displaced.
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Figure 3a. Ecological dynamics of a community with phenotype (iI" U3, u4) = (3.12943, 2.8, -0.6). The
community phenotype (iI" il2) is an ESNIS but (u3, U4) is neither an ESS nor an NIS. In addition ill can (and il2
cannot) invade (u3, u4). The invader species 1, incumbent species 1 and incumbent species 2 phenotypes are iI"
3 and U4 respectively. The respective population densities are z" Z3, and Z4'
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Figure 3b. Ecological dynamics ofa community with phenotype (il2, u3, u4) = (-0.23973, 2.8, -0.6). The
community phenotype (iI" il2) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition u2cannot
(an~ u, can) invade (U3,.U4)' The invader species 2, incumbent species 1 and incumbent species 2 phenotypes
are u2, U3 and U4 respectIvely. The respective population densities are q, Z3, and Z4'
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Figure 3c. Ecological dynamics ofa community with phenotype (u.. u2, u3, u4) = (3.12943, -0.23973,2.8,
-0.6). The community phenotype (u.. u2) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition ul

can and u2 cannot invade (U3, u4). The invader species 1, invader species 2, incumbent species 1 and
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Figure 4a. Ecological dynamics ofa community with phenotype (0.. u3, u4) = (3.12943, 3.1, -0.7). The
community phenotype (0.. U2) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition 0) cannot
(and O2 can) invade (u3, u4)· The invader species 1, incumbent species 1 and incumbent species 2 phenotypes
are U.. U3 and U4 respectively. The respective population densities are z.. Z3' and Z4'
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Figure 4b. Ecological dynamics of a community with phenotype (ilz, u3, U4) = (-0.23973,3.1, -0.7). The
community phenotype (ill> ilz) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. In addition ilz can (and ill
cannot) invade (u3, U4)' The invader species 2, incumbent species 1 and incumbent species 2 phenotypes are ilz,
U3 and U4 respectively. The respective population densities are zz, Z3, and Z4'
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Figure 4c. Ecological dynamics of a community with phenotype (ill> ilz, u3, u4) = (3.12943, -0.23973, 3.1,
-0.7). The community phenotype (ill> ilz) is an ESNIS but (U3' u4) is neither an ESS nor an NIS. In addition ill
cannot and ilz can invade (U3, u4)· The invader species 1, invader species 2, incumbent species 1 and
incumbent species 2 phenotypes are ill> ilz, UJ and U4respectively. The respective population densities are ZI> Z2,
Z3' and Z4'
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4.2 Dynamics of the ESNIS Coalition with Phenotypes (3.12943, -0.23973)

The dynamics of the ESNIS coalition with phenotypes (3.12943, -0.23973) when there are

one, two, three and four incumbent populations all at equilibrium, with the ESNIS populations

being introduced at low frequency are now looked at. According to the theory presented in

the previous chapter, the ESNIS should displace all incumbent populations, regardless of their

phenotypes. In Figures 5a-d, the situation where there is one incumbent phenotype at

equilibrium was being simulated, and the ESNIS was introduced at low frequency.

In Figure 5a the incumbent phenotype was U3 = 3.1 and the equilibrium incumbent population

was Z3 = 68.09. In this case, a long time (800 000 generations) was needed before the ESNIS

totally eliminated the incumbent population, but as expected, the incumbent population was

eliminated. In Figure 5b, where U3 = -0.2 and the corresponding equilibrium population

density was Z3 = 99.84, and it took 600 000 generations before the incumbent population

became extinct. In both these cases the incumbent population was using a phenotype which

was close to that of one of the ESNIS coalition's phenotypes.

--- ----- --- --- ~:l _

o 200000 400000 600000 800000 lxl06

Generations in Time

Figure 5.a. Ecological ~yn~cs of a community with phenotype (u), u2, U3) ;:: (3.12943, -0.23973, 3.1). The
~ommUIllty p~enotype ~u), U2) IS an ES.NIS but (u3) is neither an ESS nor an NIS. The invader species 1,
Invader. specles.2. and Incumbent species 1 phenotypes are U), U2 and U3 respectively. The respective
populatIOn densltles are z), Z2, and Z3'
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Figure 5b. Ecological dynamics of a community with phenotype (il b il2, U3) = (3.12943, -0.23973, -0.2). The
community phenotype (ill> il2) is an ESNIS but (U3) is neither an ESS nor an NIS. The invader species 1,
invader species 2 and incumbent species 1 phenotypes are ilb il2 and U3 respectively. The respective
population densities are Zb q, and Z3'

In Figure 5c, the incumbent phenotype was the average of the two ESNIS phenotypes taken

to two decimal places, namely U3 = 1.44 and its corresponding equilibrium population was Z3 =

91.99, but in this case it only took 1000 generations for the ESNIS coalition to displace the

incumbent population completely. Lastly, in Figure 5d, the incumbent phenotype was chosen

as U3 = 2.8, as it was for the simulations shown in Figures 3a-c. The incumbent equilibrium

population was Z3 = 73.08, and it took 10000 generations for it to be displaced. Note that in

all the cases, the ESNIS coalition displaces the incumbent population, although in some cases

it takes a large number of generations to do so. This is in keeping with what we would have

predicted based on our work in the previous chapter.
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Figure 5e. Ecological dynamics ofa community with phenotype (ilJ, il2, U3) = (3.12943, -0.23973, 1.44). The
community phenotype (ilJ, il2) is an ESNIS but (U3) is neither an ESS nor a NIS. The invader species 1,
invader species 2 and incumbent species 1 phenotypes are ill> il2 and U3 respectively. The respective
population densities are ZJ, Zz, and Z3·
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Figure 5d. Ecological dynamics ofa community with phenotype (ill> il2, u3) = (3.12943, -0.23973,2.8). The
community phenotype (ilJ, il2) is an ESNIS but (U3) is neither an ESS nor a NIS. The invader species 1,
invader species 2 and incumbent species 1 phenotypes are ilJ, il2and U3 respectively. The respective
population densities are ZJ, Z2, and Z3'
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In Figures 6a-c we have the ESNIS coalition entering at low frequency into two incumbent

populations which are in equilibrium, and again displacing them. These are siriUlar to the

simulations run in figures 2a to 4c, except that different phenotypes for the incumbent

populations have been chosen. In Figure 6a, the equilibrium populations ofz3 = 52.62 and Z4

= 36.54 with phenotypes U3 = 3.1 and U4 = -0.2 respectively are incumbent. Again these

phenotypes are close the phenotypes of the ESNIS coalition, but the ESNIS coalition still

displaces the incumbents, albeit that it takes almost 106 generations. In Figure 6b the ESNIS

coalition only takes 10 000 generations to displace the phenotypes u3 = 4 and u4 = -0.6 whose

equilibrium populations densities are ~ = 20.10 and Z4 = 82.03 respectively. In Figure 6c, the

incumbent community phenotype is U3 = 6 and U4 = - 5.6 with population sizes of Z3 = 14.75

and Z4 = 22.72 at equilibrium respectively. In this case the ESNIS coalition only took 300

generations to displace the incumbents.
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Figure 6a. Ecologic~1 dynamics of a community with phenotype (UI> u2, u3, u4) = (3.12943, - 0.23973, 3.1,
-0.2? Th~ commuruty .phen~type (UI> u2) is~ ESNIS but (u3, u4) is neither an ESS nor a NIS. The invader
species 1, mvader species 2, mcumbent species 1 and incumbent species 2 phenotypes are U ii u and
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Figure 6b. Ecological dynamics of a community with phenotype (Ub U2, U3, u4) = (3.12943, -0.23973,4,
-0.6). The community phenotype (ub U2) is an ESNIS but (U3, U4) is neither an ESS nor a NIS. The invader
species 1, invader species 2, incumbent species 1 and incumbent species 2 phenotypes are ub u2, U3 and U4

respectively. The respective population densities are Zb ~, Z3, and Z4'

30050

\

r~-" .
" - - '__ _ 2 2

---- ---------------------

I

\
\

\

\

\

( "
\

70

60
Q)
N

50. ..-1
(J)

§ 40r
. ..-1

+J
30m

r-1
Z4 I~

&20 \(
I

O-l

10 Z3 ;

)

/

0 100 150 200 250
Generations in Time
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In Figure 7 and Figure 8 there are three and four incumbent populations respectively. In

Figure 7 the ESNIS coalition was introduced into an incumbent population using the three

different phenotypes U3 = 3. 1, u4 = 2. 1 and Us = - 1.2 whose respective equilibrium population

densities are ~ = 44.30, Z4 = 8.96 and Zs = 43.32. As the one incumbent population density

(Z4) was so low, the ESNIS coalition was allowed to enter with population sizes of 0.5 for

both phenotypes in the ESNIS coalition. In Figure 8, a fourth incumbent phenotype U6 = - 4

was added to the three incumbent phenotypes used in Figure 7. The incumbent equilibrium

population densities became Z3 = 45.10, Z4 =31.54, Zs = 2.74 and Z6 = 20.11. Again the ESNIS

coalition entered with population sizes well below 1. In both cases it took almost one million

generations for the ESNIS coalition to displace the incumbents, but the incumbents were

displaced by the ESNIS coalition, as was expected.
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Figure 7. Ecological dynamics ofa community with phenotype (lib li2, U3, u4, u5) = (3.12943, -0.23973,3.1,
2.1, -1.2). The community phenotype (lib li2) is an ESNIS but (u3, u4, u5) is neither an ESS nor a NIS. The
invader species 1, invader species 2, incumbent species 1, incumbent species 2 and incumbent species 3
phenotypes are lib li2, U3, U4 and U5 respectively. The respective population densities are z z z z and z

b 2, 3, 4, 5·
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Figure 8. Ecological dynamics ofa community with phenotype (il b il2, U3' U4, Us, ~) = (3.12943, -0.23973,
3.1, 2.1, -1.2, -4). The community phenotype (il], il2) is an ESNIS but (U3, U4, us, ~) is neither an ESS nor a
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3 and incumbent species 4 phenotypes are il], il2, U3, U4, Us and ~ respectively. The respective population
densities are z], q, Z3, Z4' Zs and Zti·

4.3 Dynamics of Other ESNIS Coalitions

The effect on an incumbent population in equilibrium when various other ESNlS coalitions

enter was simulated. By varying the parameters aa' ak, and pit was possible to find other

ESNlS coalitions when solving for the conditions given in Appendix 1. Table 1 contains ten

such possible coalitions, and the parameter values which would result in the coalition. It is

important to note that these ten possibilities are just a small sample of the many possibilities

that could be found. In fact, taking anyone of the ten points, and then varying just one of the

parameters at a time will yield many more possibilities.

Of the ten coalitions given in Table 1, the dynamics of only four were looked at. The four

looked at where coalitions 2, 3, 5 and 7, and these were selected to give a wide range of

parameter values. Similar simulations can be carried out for the other six coalitions as well as. ,

any other ESNlS coalition that can be found, and the results in each case should be similar. It

is expected that every ESNlS coalition will displace all the incumbent populations, and

stabilise at the ESNlS coalition's equilibrium population densities.
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Coalition p G. Gk
Z ul Uz

1 0.8 0.525 13.0546 4.68824 3.49983

2 1 3.3 12.5 1.66494 -0.442381

3 1.5 3 12.5 2.34102 -0.535529

4 1.5 3.3 16 2.87159 -0.470848

5 1.75 1.5 12.5 3.27926 0.42584

6 2 1 12.5 2.2116 -1.54618

7 2 2.5 12.5 2.87702 -0.596216

8 2 3.2 12.5 2.01149 -1.94854

9 2.3 3 12.5 2.37989 -1.99306

10 2.5 2.5 12.5 2.83329 -1.60371
..

Table 1: Various parameter values for ~, a., and ak which give an ESNIS coallllon (il" il2).

4.3.1. Dynamics of the ESNIS Coalition (1.66494, -0.442381)

From Table 1, the ESNIS coalition (1.66494, -0.442381) is found when the parameter values

are set as follows: P= 1.0; cr. = 3.3; and cr/ =12.5. The equilibrium population densities of the

ESNIS coalition are Zl = 66.7573 and Z2 = 33.1217. The ESNIS coalition was allowed to

enter into several different incumbent populations, as shown in Figures 9a-e.

In Figure 9a, there is only one incumbent population in equilibrium. It's phenotype is U
3

= 3

and the corresponding equilibrium population density is Z3 = 69.7676. The ESNIS coalition

enters with initial population densities equal to 5.0, and the ESNIS coalition takes about 8000

generations to completely eliminate the incumbent population.

In Figure 9b, there are two incumbent populations, U3 = 3 and U4 = 2.1 with corresponding

equilibrium population densities of~ = 28.1217 and Z4 = 74.3435. The ESNIS coalition again

entered with initial population densities equal to 5.0, and in this case the ESNIS coalition took

about 300 000 generations to eliminate the incumbent populations.
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In Figure 9c, there are three incumbent populations in equilibrium, whose phenotypes are U3 =

3, u4 = 2.1 and Us = -1.2, with corresponding equilibrium densities ofz3 = 9.02272, Z4 =

45.6072, and Zs = 44.2492. The ESNIS coalition is introduced into the system with initial

population densities of2.5. In this case, the ESNIS coalition took almost 600 000 generations

to reach its equilibrium population densities after completely displacing the three incumbent

populations.

In Figure 9d, a similar situation was simulated, with the three incumbent populations haveing

phenotypes ofu3 = 1.6, u4 = -0.4, and Us = 2.0, and corresponding equilibrium densities ofz3

= 55.4791, Z4 = 33.5374, and Zs = 10.7899. The ESNIS coalition again entered with initial

populations equal to 2.5, and over 3 x 107 generations pass before all the incumbents are

finally displaced completely.
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Figure 9~ Ecological dynamics of a community with phenotype (ub U2, u) = (1.66494, -0.442381, 3). The
~ommumty p~enotype (~b u2) is an ESNIS but (u) is neither an ESS nor a ms. The invader species 1,
mvader species 2, and mcumbent species 1 phenotypes are ub u2 and u) respectively. The respective
population densities are Zb ~, and Z).
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Figure 9b. Ecological dynamics of a community with phenotype (Ul> U2, U3' U4) = (1.66494, -0.442381, 3,
2.1). The community phenotype (Ul> u2) is an ESNIS but (u3, u4) is neither an ESS nor a NIS. The invader
species 1, invader species 2, incumbent species 1, and incumbent species 2 phenotypes are Ul> u2, u3, and U4
respectively. The respective population densities are Zl> q, Z3, and Z4'
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Figure 9c. Ecological dynamics ofa community with phenotype (Ul> u2, u3, u4, us) = (1.66494, -0.442381,3,
2.1, -1.2). The community phenotype (Ul> u2) is an ESNIS but (U3' u4, us) is neither an ESS nor a NIS. The
invader species 1, invader species 2, incumbent species 1, incumbent species 2, and incumbent species 3
phenotypes are Ul> u2, U3' U4, and Us respectively. The respective population densities are Zl> Z2, Z3, Z4, and zs.
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Figure 9d. Ecological dynamics of a community with phenotype (fil> fi2, u3, U4, us) = (1.66494, -0.442381, 1.6,.
-0.4,2.0). The community phenotype (fil> fi2) is an ESNIS but (u3, u4, us) is neither an ESS nor a NIS. The
invader species 1, invader species 2, incumbent species 1, incumbent species 2, and incumbent species 3
phenotypes are fil> fi2, u3, u4, and Us respectively. The respective population densities are ZI> Z2, Z3, Z4, and zs.
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Figure ge. Ecological dynamics of a community with phenotype (fil> fi2, u3, u4, us, llti) = (1.66494, -0.442381,
3,2.1, 1.5, - 3). The community phenotype (fib fi2) is an ESNIS but (u3, u4, u5, llti) is neither an ESS nor a NIS.
The invader species 1, invader species 2, incumbent species 1, incumbent species 2, incumbent species 3 and
incumbent species 4 phenotypes are fil> fi2, u3, u4, U5 and llti respectively. The respective population densities
are ZI> Z2, Z3, Z4, Zs and Z6'
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In Figure ge, there are four incumbent populations, using phenotypes U3 = 3.0, U4 =2.1, Us =

1.5, and U6 = -3.0. The corresponding equilibrium population densities are Z3 = 11.4342, Z4 =

48.6541, Zs = 38.9694, and Z6 = 0.526123. The ESNIS coalition entered with population

densities of 0.25, and took about 1 500000 generations to stabilise and totally displace the

incumbent populations.

Note that in Figures 9a-e, the final population densities of the ESNIS coalition are the same,

regardless ofhow many incumbent populations were initially in residency. In §4.3.2., §4.3.3.,

and §4.3.4., similar simulations are run, with similar results.

4.3.2. Dynamics of the ESNIS Coalition (2.34102, -0.535529)

From Table 1, the ESNIS coalition (2.34102, -0.535529) is found when the parameter values

are set as follows: p= 1.5; cra = 3; and cr/ =12.5. The equilibrium population densities of the

ESNIS coalition are z. = 66.7573 and Z2 = 33.1217. The ESNIS coalition was allowed to

enter into several different incumbent populations, as shown in Figures lOa-d.

In Figure lOa, there is one incumbent population with phenotype U3 = 1.5 and a corresponding

equilibrium population density of Z3 = 91.3931. The ESNIS coalition takes 50 000

generations to completely displace the incumbent, and to become stable.

In Figure lOb, the two incumbents with phenotypes U3 = 2.3 and U4 = -0.5 and having

corresponding equilibrium population densities Z3 = 66.2153 and Z4 = 30.9432 are displaced

completely by the ESNIS coalition, although it takes almost six million generations to do it.

In Figure lOc, the three incumbents U3 = 2.3, u4 = -0.5, ·and Us = -0.8, with equilibrium

population densities Z3 = 66.9253, Z4 = 17.3546, and Zs = 13.4961, are displaced by the ESNIS

coalition over eight million generations.

Finally, in Figure 10d, the four incumbent phenotypes u3 = 4.0, u4 = -4.0, Us = 1.3 and u
6
=

2.5 have equilibrium population densities ofz3 = 11.8074, Z4 = 4.54904, Zs = 79.7616, and Z6
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= 1.44941, which are displaced in 400 000 generations by the ESNIS coalition.
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Figure lOa. Ecological dynamics of a community with phenotype (u b u2, U3) = (2.34102, -0.535529, 1.5).
The community phenotype (ub U2) is an ESNIS but (U3) is neither an ESS nor an NIS. The invader species 1,
invader species 2, and incumbent species 1 phenotypes are Ub U2, and U3 respectively. The respective
population densities are Zb Z2, and Z3·
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Figure lOb. Ecological dynamics of a community with phenotype (u b u2, U3' u4) = (2.34102, -0.535529, 2.3,
-0.5). The community phenotype (Ub U2) is an ESNIS but (u3, u4) is neither an ESS nor an NIS. The invader
species 1, invader species 2, incumbent species 1, and incumbent species 2 phenotypes are U U u and u. b 2, 3, 4

respecuvely. The respective population densities are Zb ~, Z3' and Z4.



-52-

70

60
\

zJ

50 \
(l)
N

•..-1
tf}

40
§

-..-I
-IJ
n:l

3 30
§' /'

0.. /

20 \/
/

10 2 4 ~

Zs

------

____ ------------------3l------

o 2-106 4-10
6

6-10
6

8-106

Generations in Time
Figure lOCo Ecological dynamics of a community with phenotype (UI> u2, U3, u4, us) = (2.34102, -0.535529,
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4.3.3. Dynamics of the ESNIS Coalition (3.27926, 0.42584)

From Table 1, the ESNIS coalition (3.27926,0.42584) is found when the parameter values are

.set as follows: p= 1.75; era = 1.5; and er/ =12.5. The equilibrium population densities of the

ESNIS coalition are Zl = 41.0973 and Zz = 47.6339. The ESNIS coalition was allowed to

enter into several different incumbent populations, as shown in Figures 11a-d.

In Figure 11a, there is one incumbent population with phenotype U3 = 2.0 and a corresponding

equilibrium population density ofz3 = 85.2144. The ESNIS coalition takes only 700

generations to completely displace the incumbent, and to become stable.

In Figure llb, the two incumbents with phenotypes U3 = 2.0 and U4 = -2.0 and having

corresponding equilibrium population densities Z3 = 72.3631 and Z4 = 25.9984 are displaced

completely by the ESNIS coalition, in only 2 000 generations.
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Figure 1.1a. Ecological_d~a~cs of a community with phenotype (UI> U2, U3) = (3.27926, 0.42584, 2). The
~ommuruty ~henotype.(ul> u2) 1S an E~NIS but (U3) is neither an ESS nor an NIS. The invader species 1,
Inva~~r speCIes 2 and Incumbent speCIes 1 phenotypes are UI> u2 and U3 respectively. The respective population
denSItIes are ZI> Z2, and Z3.
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In Figure 11 c, the three incumbents phenotypes are u3 = 3.0, u4 = 0.7, and Us = - 3.0, with

equilibrium population densities Z3 = 45.7229, Z4 = 18.0167, and Zs = 29.7366, are displaced

by the ESNIS coalition in 12000 generations.

Finally, in Figure lld, the four incumbent phenotypes U3 = 3.0, u4 = -1.2, Us = 2.6 and U6 =

2.1 have equilibrium population densities of~ = 31.4274, Z4 = 62.725, Zs = 8.08399, and Z6 =

0.662655, which are displaced in 15 000 generations by the ESNIS coalition.

4.3.4. Dynamics of the ESNIS Coalition (2.87702, -0.596216)

From Table 1, the ESNIS coalition (2.87702, -0.596216) is found when the parameter values

are set as follows: ~ = 2.0; cra = 2.5; and crk
2 =12.5. The equilibrium population densities of the

ESNIS coalition are Zl = 60.4037 and Z2 =31.2709. The ESNIS coalition was allowed to

enter into several different incumbent populations, as shown in Figures 12a-d.

In Figure 12a, there is one incumbent population with phenotype U3 = 1.2 and a corresponding
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equilibrium population density ofz3 = 92.4595. The ESNIS coalition takes only 4 000

generations to completely displace the incumbent, and to become stable.

In Figure 12b, the two incumbents with phenotypes U3 = 1.2 and U4 = 3.4 and having

corresponding equilibrium population densities Z3 = 42.0265 and Z4 = 41.2199 are displaced

completely by the ESNIS coalition, in only 9 000 generations to do it.

In Figure 12c, the three incumbents U3 = 3.0, U4 = 2.1, and Us = -1.0, with equilibrium

population densities Z3 = 55.8964, Z4 = 21.6266, and Zs = 13.7129, are displaced by the ESNIS

coalition over 200 000 generations.
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lOvader species 2 and lOcumbent species 1 phenotypes are il., il2, and U3 respectively. The respective
population densities are z., q, and Z3'
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Figure 12d. Ecological dynamics of a community with phenotype (u), U2, U3, U4, Us, ~) =(2.87702, -0.596216,
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Finally, in Figure 12d, the four incumbent phenotypes U3 = 3.0, U4 = 2.1, Us = -1.1 and U6 =

0.8 have equilibrium population densities ofz3 = 55.0366, Z4 = 11.8396, Zs = 20.3525, and Z6 =

5.80211, which are displaced in 200 000 generations by the ESNIS coalition.

4.3.5. Conclusion of Dynamics of Other ESNIS Coalitions

The simulations carried out in §4.3.1, §4.3.2, §4.3.3, and §4.3.4 lead one to believe that any

ESNIS coalition will invade and displace the incumbent community, regardless of the

composition of the incumbent community, which agrees with the theory of Chapter 3

4.4 Dynamics of NIS Coalitions Which are Not Also ESS Coalitions

The effect on an incumbent population in equilibrium if an NIS coalition which is not also an

ESS coalition was introduced was simulated for four different NIS coalitions. In this case

when solving for the conditions given in Appendix 1, the coalition had to be a NIS, but not an
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ESS. Coalitions 1, 5, 9, and 10, were selected to give a wide range of parameter values, and

therefore allow generalisations to be made about the other coalitions based on the four

coalitions looked at. In each case, the NlS coalition should invade the incumbent population,

but not necessarily eliminate the incumbents, as would happen if the NIS coalition was also an

ESS coalition.

Coalition p CJa CJk
Z uI Uz

1 0.25 3.3 12.5 1.45106 -0.897655

2 0.5 3 12.5 2.20454 -0.933304

3 0.75 3 12.5 2.37022 -0.667883

4 1 1.5 12.5 4.30407 1.61949

5 1.1 1.5 12 4.06368 1.46587

6 1.1 1.5 13 4.33521 1.69794

7 1.1 1.5 100 26.0583 22.8906

8 1.25 1.5 12.5 4.00158 1.44136

9 1.5 1.5 12 3.51864 0.920606

10 2 3.3 30.5 5.52008 0.560477
Table 2: Vanous parameter values for ~, 0., and Ok which gIve an NIS coalItion (li" liz)

which is not also an ESS coalition.

In order to find NlS coalitions which were not also ESS coalitions, the parameters mentioned

in §4.1 had to be changed. Table 2 above gives ten combinations of parameter values which

give NlS but not ESS coalitions, as well as the phenotypes for the NlS coalitions. The table

does not give all the possibilities, and slight variations in the parameter values will give other

possible NlS coalitions. The parameters rand k.n were left as 0.25 and 100 respectively.

4.4.1. Dynamics of the NIS Coalition (1.45106, -0.897655)

The NlS coalition (1.45106, -0.897655), which is not also an ESS, has corresponding

equilibrium population densities of Zt = 52.0433 and ~ = 54.1647, when interacting with no

other communities.
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In Figure 13a, the NIS coalition is introduced into a community which has one incumbent

population at an equilibrium density of~ = 82.1079, and its phenotype is u3 = 2.22. The NIS

coalition invades the incumbent as expected, and the three populations settle down to the~r

equilibrium densities ofz1 = 51.7995, Zz = 54.227, and Z3 = 0.199754, taking 200 000

generations to do so. In this case, the incumbent is almost, but not completely displaced.

In Figure Bb, the incumbent population's phenotypes are u3 = 2.0, and U4 = -0.5, and the

corresponding equilibrium population densities are Z3 = 34.3635 and Z4 = 71.6701. In this case

the system takes two million generations to stabilise after the introduction of the NIS coalition..

The incumbent populations are pushed aside by the invaders, and are greatly reduced in size,

while the NIS coalition almost reaches the equilibrium values it has when not interacting with

any other populations. The final stable population densities are Zl = 49.5417, Zz = 51. 7006, Z3

= 1.67429 and Z4 = 3.29031.

In Figure 13c, the three incumbent phenotypes U3 = 5.0, u4 = 0.9, and Us = - 3.0 have

corresponding equilibrium population densities ofz3 = 5.42481, Z4 = 39.175, Zs = 60.2458.

When the NIS coalition is introduced into the community, the system takes 800 000

generations to stabilise, and the stable population densities are Zl = 48.2424, Zz = 53.3814, Z3

= 0.428684, Z4 = 4.22688, and Zs = O. Thus the incumbent population with phenotype Us has

been eliminated.

Finally, in Figure Bd, the NIS coalition enters into a community with four populations whose

phenotypes are U3 = 4.0, U4 = 2.2, Us = -2.0, and U6 = -5.0. The corresponding incumbent

population densities are Z3 = 15.2197, Z4 = 28.708, Zs = 46.6298, and Z6 = 260.23. The

introduction of the NIS coalition upsets the equilibrium, and it takes 80 000 generations for

stability to return. At that time, two of the original incumbent populations, whose phenotypes

were U4 and Us have been eliminated. The remaining population densities are Zl = 51.9987, Zz

= 54.0586, Z3 = 0.117073, and Z6 = 0.23431.
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Figure 13a. Ecological dynamics of a community with phenotype (UI> u2, u3) = (1.45106, -0.897655, 2.22).
The community phenotype (UI> u2) is an NIS but (U3) is neither an ESS nor an ESNIS. The invader species 1,
invader species 2, and incumbent species 1 phenotypes are UI> u2 and U3 respectively. The respective
population densities are ZI> ~. and Z3' (Note: Z3 has not been eliminated)

50

Q) 40
N

-rl
tI)

.§ 30 \

i r
~ 20 ~

10

\
/

I

-

Zz

o 500000 1.106 1.5.106 2.106
Generations in Time

Figure 13b. Ecological dynamics ofa community with phenotype (UI> U2, U3, u4) = (1.45106, -0.897655, 2,
-0.5). The community phenotype (UI> u2) is an NIS but (u3, u4) is neither an ESS nor an ESNIS. The invader
species 1, invader species 2, incumbent species 1, and incumbent species 2 phenotypes are UI> u

2
, U

3
and U

4
respectively. The respective population densities are ZI> ~, Z3 and Z4'



-62-

60 .......,.---------r--------.--------....,----------~

~-------------------------------------------

50

40

/

I

J

I

1

Q)
N.....

Cl]

8..... 30

i
20

11
1

11

iI

~
I

I

r

800000600000200000o

10

400000
Generations in Time

Figure 13c. Ecological dynamics of a community with phenotype (il" il2, u3, u4, U5, ~) = (1.45106, -0.897655,
5,0.9, - 3). The community phenotype (il" il2) is an NIS but (u3, u4, U5) is neither an ESS nor an ESNIS. The
invader species I, invader species 2, incumbent species 1, incumbent species 2 and incumbent species 3
phenotypes are ill> il2, U3, u4, and U5 respectively. The respective population densities are 2" 2 2, 23, 2 4 and 2 5,

(Note 25 is eliminated).

60 L

50

I

J
J

,----------------------------------------------

10

o 20000 40000
Generations in Time

60000 80000

Figure 13d. Ecological dynamics of a community with phenotype (il" il2, u3, u4, u5, ~) = (1.45106,
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Thus in all four cases, the NIS coalition invaded the incumbent population, and in all cases, the

incumbents suffered badly, with some being totally eliminated, and the rest being drastically

reduced.

4.4.2. Dynamics of the NIS Coalition (4.06368, 1.46587)

The NIS coalition (4.06368, 1.46587), which is not also an ESS, has corresponding

equilibrium population densities of Zl = 31.962 and Z2 = 64.4859, when interacting with no

other communities. Examples of the interaction of the NIS coalition with other communities

are given in Figures 14a-d.

In Figure 14a, the NIS coalition enters a community with one incumbent phenotype U3 = - 3.5

whose corresponding equilibrium population density is Z3 = 60.0245. The system takes 200

generations to stabilise after the introduction of the NIS coalition, at which stage the three

populations are Zl = 23.6617, Zz = 62.6542, and Z3 = 37.4089.

In Figure 14b, the phenotypes U3 = 3.1 and U4 = - 3.1 with corresponding equilibrium

populations Z3 = 54.2619 and Z4 = 54.0431 are incumbent. After the introduction of the NIS

coalition, stability returns after 1 500 generations, at which stage the new equilibrium

population densities are Zl = 15.642, Zz = 47.962, Z3 = 16.79 and Z4 = 44.6697.

In Figure 14c, three incumbent populations of~ = 35.9005, Z4 = 57.4896, and Zs = 33.1799

whose phenotypes are U3 = 3.5, U4 = 0.9, and Us = -1.9 are in residence. The NIS coalition

enters the community, and the new five population communities take 1 500 generations to

stabilise. At that time the new community population densities are Zl = 16.0042, Zz = 36.0177,

~ = 19.6353, Z4:= 20.5719, and Zs = 29.0228.
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Figure 14b. Ecological dynamics ofa community with phenotype (Ul> u2, u3, u4) = (4.06368, -1.46587,3.1,
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Figure 14d. Ecological dynamics ofa community with phenotype (ill> u2, u3, u4, U5, ~) = (4.06368, -1.46587,
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Finally in Figure 14d, the NIS coalition invades a community with four incumbent populations

whose densities are Z3 = 17.1883, Z4 = 38.7055, Zs = 52.5041, and Z6 = 53.9096 and whose

phenotypes are U3 = 3.5, U4 = 2.0, Us = -2.0 and U6 = -2.5 respectively. The interaction with

the NIS coalition eliminates two ofthe incumbent populations, and takes 10 000 generations

to stabilise. The populations which survive are Zl = 3.05927, ~ = 46.4429, ~ = 27.8349 and

lastly Zs = 52.6365, while Z4 and Z6 both die out.

Thus in all four cases the NIS coalition invaded, but unlike the previous section (§4.4.1.) the

NIS does not take over the system to the same degree. In Figures 14a-c, the incumbent

populations are displaced, but they are not overwhelmed by the NIS coalition. Only in Figure

14d are some of the incumbents eliminated, but even here the NIS coalition has one of its

populations which has just managed to enter the system, and is much lower in magnitude than

any of the other populations at the new stable equilibrium point.

4.4.3. Dynamics of the NIS Coalition (3.51864, 0.920606)

If the NIS coalition (3.51864, 0.920606) enters into a system with no incumbent populations,

then the NIS will attain equilibrium population densities ofz l = 37.5737 and Z2 = 53.0038.

In Figure 15a, the incumbent population has phenotype U3 = - 3 and the corresponding

equilibrium population Z3 = 68.7289. After 250 generations the population densities are stable

at Zl = 28.4839, ~ = 55.4236, and Z3 = 20.5349.

In Figure 15b the two incumbent populations with phenotypes U3 = 3.1 and U
4
= -0.2 with

respective densities of Z3 = 41.8354 and Z4 = 63.009 are invaded by the NIS with the result

that after 20 000 generations the stable populations densities are Zl = 37.3861, Z2 = 52.8009,

Z3 = 0.0 and Z4 = 0.6877. Thus the one incumbent has been totally displaced, while the other

has been largely reduced, but is still in evidence.

In Figure 15c there are three incumbent populations using phenotypes U
3

= 3.5, u
4

= 0.9, and

Us = -1.9 with populations of~ = 31.9678, Z4 = 53.8606 and Zs = 14.1784 respectively. The
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invading and incumbent phenotypes are stable after 50 000 generations, at which time the

populations of the five phenotypes have changed to Zl = 22.0091, Zz = 40.741, Z3 = 15.759, Z4

= 4.7752 and Zs = 14.2813. In this case the NIS invades the incumbents as expected, but none

of the incumbents are completely displaced.

In Figure 15d we have four incumbent populations using phenotypes U3 = 3.5, U4 = 0.9, Us =

-1.9 and U6 = -1. Their respective populations are Z3 = 29.7154, Z4 = 53.3746, Zs = 11.4576,

and Z6 = 8.9532. After the NIS phenotypes are introduced to the system, it takes 20 000

generations for the system to stabilize, at which stage the population densities are Zl = 16.435,

Zz = 28.136, Z3 = 22.4353, Z4 = 22.7928, Zs = 0.0 and Z6 = 9.382. As in Figure 15b one of the

incumbent populations has been completely displaced.
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Figure 15e. Ecological dynamics ofa community with phenotype (uh u2, U3' u4, us) = (3.51864, 0.920606, 3.5,
0.9, -1.9). The community phenotype (u" u2) is an NIS but (u3, u4, us) is neither an ESS nor an ESNIS. The
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4.4.4. Dynamics of the NIS Coalition (5.52008, 0.560477)

When left to evolve without any other influences being brought to bear on it, the NIS coalition

(5.52008,0.560477) has equilibrium population densities ofz l = 43.2014 and Z2 = 63.3422.

The dynamics of evolution when the NIS coalition enters an incumbent community are shown

in Figures 16a-d.

In Figure 16a, one incumbent population of Z3 = 81.806 which uses phenotype U
3

= 3.5 is

invaded by the NIS coalition takes 30 000 generations to stabilise, at which stage the new

equilibrium population densities are Zl = 42.9502, Z2 = 62.8973 and Z3 = 0.580649. In this

case the incumbent population has almost, but not quite, been eliminated with the introduction

of the NIS coalition.

In Figure 16b, the incumbent phenotypes ofu3 = 2.8 and U4 = -2.8 with corresponding
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equilibrium population densities Z3 = 80.8408 and Z4 = 29.7891 interact with the NIS coalition,

resulting in a new stable community 5 000 generations later. The new stable community has

population densities ofzl = 39.3972, Z2 = 48.0451, ~ = 10.0227, and Z4 = 15.6331.

A community with three incumbent populations using phenotypes U3 = 3.5, U4 = -1.3, Us =

-3.2, whose corresponding equilibrium populations are Z3 = 71.4422, Z4 = 19.7092, and Zs =

23.6425, interacts with the NIS coalition for 10000 generations before stability returns. At

that stage, the new population densities are ZI = 38.7203, ~ = 53.1265, Z3 = 7.52556, Z4 = 0.0,

and Zs = 14.1956. The dynamics are shown in Figure 16c.

Finally the dynamics of the community whose members use U3 = 3.5, u4 = -1.3, Us = -3.8, and

U6 = 1.4 as their phenotypes, and whose corresponding equilibrium populations are Z3 =

69.1047, Z4 = 22.225, Zs = 16.8314, and Z6 = 5.03473, are shown in Figure 16d. The

interaction with the NIS coalition takes 100 000 generations to stabilise, and the final stable

populations are ZI = 39.7077, Z2 = 21.5382, Z3 = 0.0, Z4 = 6.19569, Zs ~ 16.126, and Z6 =

31.9002.
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Figure 16d. Ecological dynamics of a community with phenotype (uh u2, U3, U4, Us, 14) = (5.52008, 0.560477,
3.5, -1.3, - 3.8, -1.4). The community phenotype (u h u2) is an NIS but (U3, U4, Us, 14) is neither an ESS nor an
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3 and incumbent species 4 phenotypes are uh u2, U3, U4, Us and 14 respectively. The respective population
densities are ZI> Z2, Z3, Z4, Zs and ~. (Note that Z3 is eliminated)

Thus in this section, all the incumbent communities are displaced to some degree by the

interaction with the NIS coalition, with the coalition generally stabilising at population

densities which are greater than those the incumbents stabilise to.

4.4.5. Conclusion of NIS Coalitions Which are Not ESS's

In all four sections, the NIS coalition has invaded the incumbent community. If the incumbent

community consists of more than one population, some ofthe incumbent populations might be

displaced, but not all of them. Thus the NIS coalition invades, but does not eliminate the

incumbent community, which is what one would expect as the NIS coalition is not also an

ESS. It is also apparent that the final population densities are hard to predict, unlike the case

where the ESNIS coalition invaded an incumbent community, where it was possible to predict

the final stable state (which were just the ESNIS equilibrium populations, all incumbents

having been displaced).
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4.5 Dynamics of An ESS Coalition Which is Not A NIS

It was hoped that the dynamics of an ESS which was not also a NIS could be explored in a

similar manner to the simulations above. Unfortunately, many hours spent searching for an

ESS which was not also a NIS proved fruitless.' In Table 3 below, a selection of parameter

values which gave candidate ESS's is given.

A candidate ESS meets the criterion for an ESS, except that it is not stable, but does not meet

the criterion for a NIS. In other words, it meets the sufficient conditions for the ESS and not

for the NIS which are found in Appendix 1. However, when the candidate ESS was left to

evolve without any outside influence, one of the members of the coalition always became

extinct, so the candidate ESS failed to meet the stability condition which is inherent in the

definition of the ESS.

Coalition p (fa (fk
2 Ul U2

1 0.7 0.4 12.5 3.93849 2.87995

2 0.8 0.5 12.5 4.1912 2.99557

3 0.8333 0.3 13.0546 0.991844 -0.568283

4 0.8333 0.52 13.0546 4.20634 2.95895

5 0.9 0.4 12.5 0.130838 1.67632
Table 3: Vanous parameter values for ~, Ga, and Gk which give a candidate ESS coalition (il b il2).

As with Tables 1 and 2, this table is not complete. Anyone of these candidates can, by .

changing one of the parameters slightly, give many other candidate ESS's. For instance, ifP =

0.8333, and (crJ2 is fixed at 13.0546, then for any value of cra where 0.30 ~ cra ~ 0.5229426, a

candidate ESS exists.

The number of candidate ESS's which exist lead one to conclude that there should exist ESS

coalitions which are not also NIS coalitions. However, such an example was not found in this

work. The behaviour of one of the candidate ESS's is shown in Figures 17a-e. In Figures

17a-c, the candidate ESS is left to evolve without any outside influences. In Figure 17a, the
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ESS coalition's initial populations are larger than the expected equilibrium populations. In

17b, the ESS coalition's initial populations are the expected equilibrium populations, and in

Figure 17c, the ESS coalition's initial populations are both set at 5.0. Then in Figure 17d and

Figure 17e, the candidate ESS was set at its equilibrium populations, and left to interact with

two other populations, which themselves were at equilibrium before the introduction of the

candidate ESS coalition in Figure 17d, and which were not at equilibrium in Figure 17e. The

candidate ESS coalition chosen for these simulations was (3.93849,2.87995) which is found

when the parameters are set at p= 0.7, cra = 0.4, and cr/ = 12.5.

In all Figures except for Figure 17b, at least one of the candidate ESS coalition populations

became extinct.
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li2) is not an ESS.
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Thus the candidate ESS coalition (3.93849,2.87995) is not an ESS. Similar conclusions can

be reached about the other candidates in Table 3, however, it seems likely that there are ESS

coalitions which are not also NIS coalitions. They just remain to be found.
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Chapter 5: Non Lotka-Volterra Exampk

Having looked at the effects of an ESNIS coalition invading incumbent populations where the

population dynamics were given by Lotka-Volterra competition models, it was of interest to

simulate the effects when the population dynamics were not Lotka-Volterra in nature.

Although the results of chapter three have not been proven to apply to systems which are not

governed by the Lotka-Volterra competition models, it is of interest to see whether or not the

results hold. This would give a better understanding of the theory presented, and could lead

to the theorem proven in chapter three being extended to all dynamic systems, regardless of

the equations used to model them. Thus a search was made for a non Lotka-Volterra

example. There were three criteria the example had to meet. Firstly, the paper had to present

a mathematical model. Secondly, an ESS had been found, and thirdly the ESS had to be a

coalition allowing coexistence. Many examples were found which including only one or two

of the criteria, while meeting all three proved more difficult.

The idea was to set up the model used in the paper, and then reproduce the results of the

paper which were relevant. Having found an ESS, the next step would be to run simulations

to determine whether or not the ESS could invade established communities. Obviously if the

ESS could always invade the established community, and in doing so eliminate the incumbent

communities, then the ESS would be displaying the characteristics of an ESNIS. If every

simulation ended with the same ESS coalition reaching its equilibrium populations, then it

would seem that the ESS coalition was globally stable, and unique. If the theorem presented

in chapter 3 is valid for non Lotka-Volterra systems, then there should exist a globally stable

ESS which is able to invade any incumbent community.

5.1. Definition of the Example

The system chosen was designed for modeling biomass allocation to roots and leaves. The

model was simulated by Vincent and Vincent, 1996. In their paper, they dealt mainly with a

one-dimensional system, but they did include a section on coexistence, which was why the

paper was chosen. The original model is presented first, along with Vincent and Vincent's
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results, followed by the changes made in order to turn the model into a coexistence model.

5.1.1. The One Dimensional Model

The growth rate of a plant population is given by

d Bp 1 ~ MIN [ G,(u,)

d t Bp Glup)

where

B = biomass of population p
- p

rNu
G1(u) = -R - d

N+kN

r L (1 - v)
Glv) = ---- - R - d

p = 1···· n (1)

(2)

(3)

L+kL

N = available soil nutrient

L = light availability

u = fraction of biomass allocated to root by population pp

r = per capita maximal rate of plant growth

kN = Yz saturation constant for nutrient

kL = lh saturation constant for light

R = density independent per capita respiration rate

d = density independent per capita loss rate

u, v = dummy variables which are replaced by the strategy up for population p.

The strategy up may be chosen over the fixed interval 0 ~ up ~ 1. Nand L are not constants,

but rather are a function of resource supply and consumption. Note that the G-function's are

linear. The MIN function acts in such a way that the "nutrient-limited growth curve" (G1(u))

will be chosen for values of up between

and the "light-limited growth curve" (Glv)) will be chosen for values of up between

(4)

(5)
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The equation for Urn is found by setting the right hand sides of G1(unJ and GlunJ equal to each

other, and solving for Urn' The resulting equation is

L(N + kN)

urn = --------- . (6)

In order to be able to use the ESS maximum principle, equation (1) had to be expressed in term

of two separate differential equations. The n species were divided into two groups: nutrient­

limited types, 1, and light-limited types, 2. Nutrient-limited species i have biomass given by b1i

and allocation to root fraction given by U1i with dynamics given by

rN Uli
------ -R-d (7)
dt bli N + kN

and light-limited species j have biomass b2j and allocation to root fraction given by u2j with

dynamics given by

- - - ----- - R - d. (8)
dt b2j N + kN

The allocation fractions are required to satisfY the constraints (4) and (5) with up replaced by U1i
in (4) and by u2j in (5).

The nutrient dynamics are given by

dN 11; 11; 11; 11;

- = aCT - N - ~pbli +.~pb2j) - ~pbli [Glu1J. + d) - LPb2j [Glu2j) + d) (9)
dt I - 1 J - 1 I =1 J = 1

and the light availability by

L=

where

T =total soil nutrient in habitat

a = mineralisation rate

(l0)
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p = plant tissue nutrient concentration

La = solar constant

a = light decay rate per unit leafbiomass

and where 1\ + I1.i = n (total number of species) with the understanding that if 1\ = 0 then the

summation is zero and likewise for I1.i. Note that GI is evaluated at Uti and G2 at u2j. The

constants were given the following values:

a = 0.3, r = 5, kN = kL = 1, P = 0.1, R = 0.5, a = 0.001, La = 2, T =5 and d = 0.5.

The ESS maximum principle was then used to calculate the ESS strategy. Urn* can be calculated

by solving four equilibrium equations which are (6), (10), the r.h.s. of(7) or (8) set equal to zero

with the Uti and u2j set equal to Urn and bli = b2j = b, the r.h.s. of(9) set equal to zero with Uti or

u2j set equal to urn and bli = b, b2j = °or bIi = 0, b2j = b, depending on whether (7) or (8) is used.

Whichever of (7) or (8) were used, the same results should be obtained.

Vincent and Vincent solved these equations simultaneously and got the following equilibrium

values: Urn* = 0.700517, b* = 17.2515, N* = 0.399587, and L * = 2.01039.

Vincent and Vincent then simulated the system, and got.equilibrium values of Urn* = 0.699, b*

= 17.247, N* = 0.401, and L * = 1.990.

5.1.2. The Coexistence Model

The G-functions change as follows:

GI(U) = ------- -R- d (lla)

r L (-1 + v + (1 - V)2 + 0.5)
Glv) = ---------- - R - d (lIb)
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The strategy up is still chosen over the fixed interval 0 ~ Up ~ 1, but the MIN function acts in such

a way that the "nutrient-limited growth curve" (Gl(u» will be chosen for values of~ between

o ~ up ~ Urnl and

um2~up~ 1

and the "light-limited growth curve" (G2(v» will be chosen for values of up between

urnl ~ up ~ um2.

It is also given that Urnl ~ um2, where Urnl and Um2 can be found at the points ofintersection ofthe

two curves, that is

0.5 kNL + 0.5 kL N + L N -0.5 [1.8 N\L + kL)2 + 0.8 L N (N + kN)(L + kL) - L(N + kN)]V,

----------------------(laY

and

0.5 kNL + 0.5 kL N + L N + 0.5 [1.8 N2(L + kL)2 + 0.8 L N (N + kN)(L + kJ - L(N + kN)P

~ ~
L kN + 2 L N + N kL

All the other equations from §5.l.1. remain the same. Unfortunately, Vincent and Vincent only

gave graphical results for this section.

5.2. Problems Encountered with the Model

The first problem with Vincent and Vincent's analysis is in their solving of the four equilibrium

equations to find the ESS. Equation (10) has a numerator of2, and every term in its denominator

is positive, giving the denominator a magnitude that is greater than one. It is thus impossible for

L to have a value greater than 2, and so Vincent and Vincent's value ofL· = 2.01039 is impossible

to attain analytically. (A numerical solution could yield a value ofC slightly greater than 2).

A second problem arises when trying to solve the four equilibrium equations to get the equilibrium

solutions. Whether one uses equation (7) or (8) the same results should be obtained. With the

form of the equations presented in the paper, this does not happen. Two separate sets of

equilibrium solutions are attained. Using equation (7) gives urn· = 0.699482, b· = 17.2484, N·
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= 0.400415, and L* = 1.98969, while using equation (8) gives the equilibrium solutions Urn* =

0.697616, b* = 68.9749, N* = 0.401674, and L~ = 1.95918.

If equation (9) is changed so that there are no positive signs in the first bracket, that is the "+"

sign in the first bracket is replaced by a "-", then the same results are obtained for both sets of

four equilibrium equations. The equilibrium solutions in this case are Urn* = 0.699482, b* =

17.2484, N* = 0.400415, and L* = 1.98969. These solutions are close to the solutions obtained

by Vincent and Vincent.

Finally, if equation (9) is changed so the only negative sign in the first bracket is between the

terms T and N (so the other negative sign becomes positive), the same results are obtained for

both sets of four equilibrium equations. The equilibrium solutions in this case are Urn* =

b* * d *0.697616, = 68.9749, N = 0.401674, an L = 1.95918.

The MATHEMATICA code used to solve for these equilibrium solutions is found in Figure 18

below, before any changes were made to equation (9). The variable "N' is written in lower case

as "N" is a function in MATHEMATICA.

(* Set the Parameter Values *)
a = 0.3; r = 5; kn = 1; kl = 1; P = 0.1 "R = 0.5,' alpha = 0 00 l' Lo = 2' T = 5' d = 0 5'., , , . ,
gl[u.J := (r n u/(n + kn» - R - d;
g2[u.J := (r L(l - u)/(L + kl» - R - d;
(* Using equation (7) *)
Solve[{um = L(n + kn)/(2 n L + n kl + L kn), L == Lo/(l + alpha b(l - urn», gl[urn] = 0,

aCT - n - p b) - P b (g1[urn] + d) == O}, {urn, b, n, L}]
(* Using equation (8) *)
Solve[{urn = L(n + kn)/(2 n L + n kl + L kn), L == Lo/(l + alpha b(l - urn»,

g2[urn] = 0, aCT - n + p b) - P b (g2[um] + d) = O}, {urn, b, n, L}]

Figure 18. Code to solve the four equilibrium equations in the one-dimensional case.

The equations in the "Solve" function are given in the following order: (6), (l0), r.h. s. of (7) (or

(8» set equal to zero, and the r.h.s. of (9) set equal to zero.
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5.3. The Non Lotka-Volterra Model

If equation (9) was changed so that the first bracket had no positive signs in it, then the same

results are obtained when using equation (7) as when using equation (8). The equilibrium plant

biomass is 17.2484, compared with Vincent and Vincent's value of 17.2515. Thus it seems that

the presence of a positive sign in the first bracket of equation (9) was a typographical error.

Equation (9) was changed to

dN 1I; D; 1I; D;

- = a(T - N - LPb}i - LPb2j ) - LPbli [G}(u}J + d] - LPb2j [Glu2j) + d] (13)
dt i = } j = } i = 1 . j = 1

The one-dimensional model was set up and simulated before moving onto the coexistence model.

This was done so that the nature ofthe new one-dimensional problem could be compared to that

of the one-dimensional problem as presented by Vincent and Vincent. Once this had been done,

the new coexistence model could be set up and simulated.

5.3.1. The New One-Dimensional Model

Solving the four equations simultaneously using equation (13) in place of equation (9) resulted

in the equilibrium solutions urn· = 0.699482, b· = 17.2484, N· = 0.400415, and L· = 1.98969 A

simulation ofthe one-dimensional model was then set up and run. The strategy dynamic used in

both this and the coexistence model was

(14)

where cr is the variance in strategy about the mean uj . The MIN function is simulated by

calculating G1and G2 for a given value ofu and v, and adding the requirement that

IF G} < G2 THEN G = G1ELSE G = G2· (15)

The same process used by Vincent and Vincent was now used to simulate the system. While the

same results would have been obtained using only one species, it is more interesting to simulate

two species. Using (14) as the strategy dynamic and choosing initial parameter values of~ =

0.005, b}(O) =biO) = 0.5, N(O) = 10, u1(0) =0.3, ulO) =0.6 the following results were obtained.
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Figure 19 shows the evolution of the strategies over time. Both strategies evolve to a value of

0.695 (compared with u
rn

* == 0.699 from the direct calculation) because the ESS is a coalition of

one. Figure 20 illustrates the nutrient and light dynamics ofthe situation. Nutrient levels dropped

rapidly while light levels remained nearly constant. The equilibrium values for Nand L from the

simulation are N* == 0.404 and L* == 1.990 (compared with 0.400 and 1.990 respectively).
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Figure 19. The evolution over time of the initial strategies U1 = 0.3 (species 1) andu2 = 0.6 (species 2) are shown
as solid and dotted lines respectively. Note that both strategies evolved to the same solution.

In Figure 21, the population dynamics ofthe two species are shown. Both species start from 0.5

and end with populations of 0.9055 and 16.0138 for species one and two respectively. Both

plants obtain the ESS strategy with a combined equilibrium population b/ + b2* == 16.9193

(compared with b* == 17.2484). Although there was some discrepancy in the results of the

simulation as compared to the direct calculation, they were not too large to prohibit looking at

the coexistence model, and in fact similar sized discrepancies were found by Vincent and Vincent.

For example, Vincent and Vincent calculated a population of 17.252 and by simulation, obtained

a population of 17.247.
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Figure 20. The change in nutrients (solid line) and the change in light (dotted line) over time are taken from
equations (13) and (10), respectively.
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Figure 21. Populations of species 1 (solid) and species 2 (dotted) are shown against time. Since both species 1
and species 2 evolved to the same strategy, their populations can be summed to give the equilibrium population
of the ESS strategy, Urn".
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Having found an ESS strategy, namely Urn = 0.695, it was of interest to see whether or not this

strategy had any invasive properties before moving on to the coexistence model. Three different

incumbent populations which were initially at equilibrium were invaded by the ESS. The results

are shown in the figures below. In each case, the invading ESS strategy Uz = 0.695 has an initial

population ofbz= 0.5.

In Figure 22a, the incumbent strategy u} = 0.5 has an initial equilibrium population ofb} = 8.879.

The invading ESS strategy stabilises to a final population ofbz= 17.234 after 700 generations,

and completely displaces the incumbent population. In Figure 22b, the incumbent strategy u! =

0.65 has an initial equilibrium population ofb! = 14.166. The final population sizes are b} = 0 and

bz = 17.234, which are obtained after 400 generations. Finally in Figure 22c, the incumbent

population has an initial size ofb! = 16.566, using strategy u! = 0.69. The invading population

takes 2000 generations to stabilise at bz = 17.234, having eliminated the incumbent population.

40 '

o 100 600 700
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Figure 22b. The invading strategy U2 = 0.695 which is the ESS strategy invades and displaces the incumbent
population whose strategy is U J =0.65 in 400 generations at which time the invader's population has stabilised at
17.2341.
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Figure 22c. The invading strategy u2 = 0.695 which is the ESS strategy invades and displaces the incumbent
population whose strategy is U J =0.69 in 2000 generations at which time the invader's population has stabilised
at 17.2341.



-89-

The three simulations whose results are given in Figures 22a-c imply that the ESS strategy Urn =

0.695 is also an NIS strategy because it can invade established communities. Although the

simulations done for the one-dimensional case are not extensive, they seem to support the notion

that there is an ESS which is also an NIS.

5.3.2. The New Coexistence Model

Similar to the one-dimensional model, six equations had to be solved simultaneously. They were

(12a), (12b), (10), the right-hand side of(I la) or (lib) set equal to zero with u or v set equal to

urnl , then the right-hand side of (I la) or (lib) set equal to zero with u or v set equal to Urnb and

the right-hand side of (13) set equal to zero with U1i or u2j set equal to umk, where the subscript

k = I, 2 and has the same value as either i or j, and bli = bj, b2j = 0 or b1i = 0, b2j = bj depending

on whether (I la) or (lib) was used.

Solving these two sets of equations simultaneously should give the same values for the six

variables, namely N, L, urnl , um2, bt, and b2. Both sets of equations have the following values: N"

= 1.00463; L* = 1.98174; Um/ = 0.274342; um2" = 0.725658; bt" = 11.3124; and b2" = 3.67028.

Equations (12a) and (12b) were used to generate Figure 23 on the next page with N = 1.0046 and

L = 1.9817. The equilibrium strategies are found where the G*-functions have a value of zero,

that is where the two curves intersect with the horizontal line. From Figure 23 it is easy to see

that there are two possible biomass allocation to root proportions which will give the G-function

a value of zero, which occurs at equilibrium.

The next step was to set up the simulation. Using (14) as the strategy dynamic, and choosing the

initial parameter values as cr2 = 0.005, bt(O) = biO) = 0.5, N(O) = 5, ut(O) = 0.32, u
2
(0) = 0.7 the

following results were obtained. In Figure 24 and Figure 25 on the following pages the dynamics

of the coexistence model are shown. In Figure 24 the evolution of the two strategies from 0.32

and 0.7 to 0.2714 (species I, compared with urnt "= 0.2743) and 0.7286 (species 2, compared with

um2" = 0.7257), respectively. The dynamics ofthe population sizes are shown in Figure 25. Both

populations start from initial values of0.5 and species I evolves to bl" = 10.8498 (compare with
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Figure 23. The solid line depicts equation (12a) and the dotted line depicts equation (l2b) for the G-functions as
a function of root allocation strategy at equilibrium.
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strategies and are shown as solid and dotted lines respectively.
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11.3123) and species 2 evolves to b2• = 4.0322 (compare with 3.6703). The simulation results

forN and L are~ = 1.011 and L· = 1.988 (compared with 1.005 and 1.982, respectively). While

these results are different, the difference was not so great as to prevent further simulations to be

carried out. It is worth noting that the results presented by Vincent and Vincent also showed

similar discrepancies.
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Figure 25. Populations of species 1 (solid) and species 2 (dotted) shown over time.

Unfortunately the coexistence model is such that while the two species compete for the resources,

the two ESS strategies do not always evolve to the same population sizes. The combined

population stays fairly constant, regardless of the initial population and strategy choices.

However, if the initial strategy choices are all above 0.729 or all below 0.271 then only one

strategy will evolve. Ifthe initial strategies are changed from the values used to generate Figures

24 and 25, the composition of the population changes, but the equilibrium strategies reached

remain the same. As the final population solution for the one species increases, the final

composition of the other species decreases, while the sum of the populations remains constant.

If, for example, the initial strategies for the two species are changed to 0.4 and 0.6 respectively,

then the populations evolved to are bI = 7.4516 and b2 = 7.4516. The sum of these populations

is 14.9031, compared with 14.8820 which is the sum of the populations reached in Figure 25
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while 14.9827 is the sum of the equilibrium populations obtained by direct calculation. This

seems to imply that there will not be a globally stable and unique ESS, because even though the

same strategies are always optimal, the population distribution changes depending on the initial

strategy choice. However, the simulations were still carried out in order to detennine if any of

the characteristics of a globally stable strategy coalition were present.

5.4. The Simulations

Table 4 below gives a set ofequilibrium populations for various strategies which were not allowed

to evolve with time. In other words, the strategy for the incumbent population was fixed, and

then with only the incumbent populations being present, the system was allowed to evolve until

the population stabilised. These populations and strategies were then chosen as the incumbent

communities. The behaviour ofthese incumbent communities in five different situations was then

modelled. In each of the five situations there are two invading populations, whose initial

strategies vary in each of the five situations.

1. The invading species had initial strategy values ofu3 = 0.32 and U4 = 0.7, and both had

initial populations of 0.5. These strategies were allowed to change with time.

2. The invading species used the ESS strategies and equilibrium populations. In this

situation the ESS strategies could change with time.

3. Similar to situation two, except the invading species both had initial populations ofO.5.

4. Situation three was repeated where the ESS strategies were fixed.

5. Situation two was repeated where the ESS strategies were fixed.

Number u l U2 bl b2

1 0.2 - 14.0625 -

2 0.8 - 14.0625 -

3 0.2 0.8 6.4996 6.4996

4 0.15 0.85 5.5966 5.5966

5 0.27 0.73 7.4391 7.4391
. .

Table 4. EqUlhbnum populauons corresponding to strategies Uj and u2•
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From Figures 24 and 25, the ESS strategies are U3 = 0.271 and U4 = 0.729 with corresponding

equilibrium populations b3 = 10.850 and b4 = 4.032.

The results of the simulations for the five situations can be summarised as follows. In all

situations for all cases, the incumbent populations are eliminated, and the invading populations

stabilise and their final strategies are the ESS strategies. The combined sum of the stable

populations remains fairly constant for all cases. For situations three and four, the two invading

populations stabilise to the same size, while in the other three situations this is not the case.

The results are now presented in greater detail. Note that for situations four and five that the

dynamics of the strategies are not presented as they do not change over time.

5.4.1. Situation One

The invading species have initial strategies U3 = 0.32 and U4 = 0.7, which are introduced with

initial populations of0.5 into a situation where the incumbent populations are at equilibrium, and

the invading strategies were allowed to evolve. In all cases it is expected that the invading

strategies will evolve into the ESS strategies, and eliminate the incumbent populations.

Case 1: One Incumbent Using Strategy Ut = 0.2

In Figure 26a, there is only one incumbent population using strategy Ut = 0.2 which has an initial

population of 14.0625, which is eliminated in 175 generations by the invading species using initial

strategies U3 = 0.32 and U4 = 0.7. The invading species start with initial populations of 0.5, and

settle into equilibrium populations ofb3 = 6.82 and b4 = 8.04. Note the combined population is

14.86, compared with the combined ESS equilibrium populations from Figure 25 which is 14.88.

In Figure 26b, the dynamics of the strategies are shown. Ul remains constant at 0.2, while U
3

initially decreases from 0.32, and then increases again to 0.271. u
4

initially increases from 0.7, and

then decreases slightly again to stabilise at a value ofO. 729. Note the invading strategies stabilise
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at the ESS strategies.
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Figure 26a. Situation 1, Case 1: One incumbent and two invaders with the initial population b l = 14.0625 for the
incumbent. Note the incumbent is eliminated, while the final popuIations for the invaders are b3 = 6.816 and b4

= 8.036.
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Figure 26b. Situation 1, Case 1: The invading strategies (u3, u4) =(0.32, O.7) evolve to the ESS coalition (0.271,
0.729).
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Figure 27a. Situation 1, Case 2: One incumbent and two invaders with the initial population b l = 14.0625 for the
incumbent. Note the incumbent is eliminated, while the final populations for the invaders are b) = 6.836 and b4

= 8.010.
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Figure 27b. Situation 1, Case 2: The invading strategies (u), U4) =(0.32, 0.7) evolve to the ESS coalition (0.271
0.729) ,
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Case 2: One Incumbent Using Strategy u1 = 0.8

In Figure 27a on the previous page, there is only one incumbent population using strategy Ut =

0.8 which has an initial population of 14.0625, which is eliminated in 140 generations by the

invading species using initial strategies U3 = 0.32 and U4 = 0.7. The invading species start with

initial populations of 0.5, and settle into equilibrium populations ofb3 = 6.836 and b4 = 8.010.

Note the combined population is 14.846, compared with the combined ESS equilibrium

populations from Figure 25 which .is 14.882.

In Figure 27b on the previous page, the dynamics ofthe strategies are shown. Ut remains constant

at 0.8, while U3 initially decreases from 0.32, and then increases again to 0.271. U4 initially

increases from 0.7, and then decreases slightly again to stabilise at a value of 0.729. Note the

invading strategies stabilise at the ESS strategies, and that the dynamics ofthe invading strategies

is similar to that of Case One.

Case 3: Two Incumbents Using Strategies U 1 =0.2 and U2 =0.8

In Figure 28a on the following page, there are two incumbent populations using strategies Ut =

0.2 and U2 = 0.8 where both have initial populations of 6.4996, which are eliminated in 200

generations by the invading species using initial strategies u3 = 0.32 and U4 = 0.7. The invading

species start with initial populations of0.5, and settle into equilibrium populations ofb
3

= 6.810

and b4 = 8.043. Note the combined population is 14.853.
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Figure 28a. Situation 1, Case 3: Two incumbent and two invaders with the initial populations b l = 6.4996 and
b2 =6.4996 for the incumbents. Note the incumbents are eliminated, while the final populations for the invaders
are b3 = 6.810 and b4 = 8.043.
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Figure 28b. Situation 1, Case 3: The invading strategies (u3, u4) =(0.32,0.7) evolve to the ESS coalition (0.271
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Figure 29a. Situation 1, Case 4: Two incumbent and two invaders with the initial populations b I = 5.5966 and
b2 =5.5966 for the incumbents. Note the incumbents are eliminated, while the final populations for the invaders
are b3 = 5.562 and b4 = 9.292.
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In Figure 28b two pages previously, the dynamics of the strategies are shown. Ut and U2 remain

constant at 0.2 and 0.8 respectively, while U3 initially decreases from 0.32, and then increases

again to 0.271. U4 initially increases from 0.7, and then decreases slightly again to stabilise at a

value of0.729. Note the invading strategies stabilise at the ESS strategies, and that the invading

strategies show similar patterns of evolution as found in Cases One and Two.

Case 4: Two Incumbents Using Strategies Ut = 0.15 and U2 = 0.85

In Figure 29a on the previous page, there are two incumbent populations using strategies Ut = 0.2

and U2 = 0.8 which both have initial populations of 5.5966, which are both eliminated in 100

generations by the invading species using initial strategies U3 = 0.32 and U4 = 0.7. The invading

species start with initial populations of0.5, and settle into equilibrium populations ofb3 = 5.562

and b4 = 9.292. Note the combined population is 14.854, compared with 14.882 from Figure 25.

In Figure 29b on the previous page, the dynamics ofthe strategies are shown. U 1 remains constant

at 0.15, U2 remains constant at 0.85, while U3 and U4 show similar dynamics as in the previous

cases. Note the invading strategies stabilise at the ESS strategies.

Case 5: Two Incumbents Using Strategies U 1 = 0.271 and U2 = 0.729

In Figure 30a on the following page, there are two incumbent populations using strategies U
1

=

0.27 and U2 = 0.73 which both have initial populations of7.4391, which are both eliminated in 12

000 generations by the invading species using initial strategies U3 = 0.32 and U
4

= 0.7. This is a

much longer time period than the previous cases, as would be expected considering that the

incumbent strategies were chosen so close to the ESS strategies. The invading species start with

initial populations of 0.5, and settle into equilibrium populations ofb
3

= 6.296 and b
4

= 8.556

Note the combined population is 14.852.
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Figure JOa. Situation 1, Case 5: Two incumbent and two invaders with the initial populations b l = 7.4391 and
b2 = 7.4391 for the incumbents. Note the incumbents are eliminated, while the final populations for the invaders
are b3 = 6.296 and b4 = 8.556.
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0.729) ,
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In Figure 30b on the previous page, the dynamics ofthe strategies are shown. U 1 remains constant

at 0.27, U
2

remains constant at 0.73, while U3 and U4 take less than 1000 generations to stabilise,

compared with the 12000 generations required before the populations stabilised. Note the

invading strategies stabilise at the ESS strategies.

In this situation the incumbent populations were eliminated in each case. The invading species

evolved to the ESS strategies, but not to the ESS equilibrium populations. This was not

unexpected, due to the fact that the ESS equilibrium populations as determined from Figure 25

were very dependent on the initial strategy choice.

5.4.2. Situation Two

The incumbent populations were allowed to interact with the two invading populations which

were using the ESS strategies and starting from the ESS equilibrium populations. In all the cases

in this situation, the invading populations have initial strategies ofu3 = 0.271 and U4 = 0.729, and

initial populations ofb3 = 10.850 and b4 = 4.032 respectively. The invading species strategies,

although starting from the ESS strategies, were allowed to evolve. In this situation, it is expected

that the ESS will eliminate the incumbent population and settle to its equilibrium populations,

although some initial deviation ofthe invading species from their initial values might be expected.

Case 1: One Incumbent Using Strategy U 1 = 0.2

In Figure 31a, on the next page, there is only one incumbent population using strategy U
l

= 0.2

which has an initial population of 14.0625, which is eliminated in 120 generations by the invading

species using initial strategies U3 = 0.271 and U4 = 0.729, which are the ESS strategies. The

invading species settle within 100 generations into equilibrium populations, which are quite

different to the ESS equilibrium populations, ofb3 = 13.557 and b4 = 1.290. Note the combined

population is 14.847, compared with the combined ESS equilibrium population from Figure 25

which is 14.882.
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Figure 31a. Situation 2, Case 1: One incumbent and two invaders with the incumbent's initial population b l =
14.0625 Note the incumbent is eliminated, while the final populations for the invaders are b3 = 13.557 and b4 =
1.290
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Figure 31b. Situation 2, Case 1: The invading strategies (u3, u4) = (0.271,0.729) take less than 80 generations
to settle down to the equilibrium strategies, which are the ESS strategies.
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In Figure 31b, the dynamics ofthe strategies are shown. Ut remains constant at 0.2, while U3 and

u4undergo slight deviations before returning to their initial values, which are the ESS strategies.

The strategies stabilise within 80 generations.

Case 2: One Incumbent Using Strategy u~ = 0.8

In Figure 32a on the next page, there is only one incumbent population using strategy Ut = 0.8

which has an initial population of 14.0625, which is eliminated in 80 generations by the invading

species using initial strategies U3 = 0.271 and U4 = 0.729. The invading species stabilise to the

equilibrium populations of b3 = 10.806 and b4 = 4.016, compared with the ESS equilibrium

populations of 10.850 and 4.032 respectively. Note the combined population is 14.822, the same

as the combined ESS equilibrium populations from Figure 25.

In Figure 32b on the following page, the dynamics of the strategies are shown. Ut remains

constant at 0.8, while U3 and U4 undergo slight deviations before returning to their initial values,

which are the ESS strategies. The strategies stabilise within 80 generations.

Case 3: Two Incumbents Using Strategies U 1 = 0.2 and u2 = 0.8

In Figure 33a, there are two incumbent populations using strategies Ut = 0.2 and U2 = 0.8 which

both have initial populations of 6.4996, which are eliminated within 100 generations by the

invading species using initial strategies u3 = 0.271 and U4 =0.729, which are the ESS strategies.

The invading species settle into equilibrium populations ofb3 = 10.823 and b4 = 4.022, which are

slightly smaller than the ESS equilibrium populations. Note the combined population is 14.845,

compared with the combined ESS equilibrium population from Figure 25 which is 14.882.

In Figure 33b, the dynamics ofthe strategies are shown. Ut and U2 remain constant at 0.2 and 0.8

respectively, while U3 and U4 undergo slight deviations before returning to their initial values,

which are the ESS strategies. The strategies stabilise within 80 generations.
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Figure 32a. Situation 2, Case 2: One incumbent and two invaders with the incumbent's initial population bl =
14.0625 Note the incumbent is eliminated, while the final populations for the invaders are b3 = 10.806 and b4 =
4.016.
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Figure 32b. Situation 2, Case 2: The invading strategies (u3, u4) = (0.271, 0.729) take less than 80 generations
to settle down to the equilibrium strategies, which are the ESS strategies.
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b2 = 6.4996 for the incumbents. Note the incumbents are eliminated, while the final populations for the invaders
are b3 = 10.823 and b4 =4.022.
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Figure 33b. Situation 2, Case 3: The invading strategies (u3, u4) = (0.271, 0.729) take less than 60 generations
to settle down to the equilibrium strategies, which are the ESS strategies.
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Case 4: Two Incumbents Using Strategies Ut = 0.15 and U2 = 0.85

In Figure 34a, there are two incumbent populations using strategies Ut = 0.15 and Uz= 0.85 which

both have initial populations of5.5966, which are eliminated within 60 generations by the invading

species using initial strategies U3 = 0.271 and U4 = 0.729, which are the ESS strategies. The

invading species settle into equilibrium populations of b3 = 10.824 and b4 = 4.023, which are

slightly smaller than the ESS equilibrium populations. Note the combined population is 14.847.

In Figure 34b, the dynamics of the strategies are shown. Ut and Uz remain constant at 0.15 and

0.85 respectively, while U3 and U4 undergo slight deviations before returning to their initial values,

which are the ESS strategies. The strategies stabilise within 30 generations.
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Figure 34a. Situation 2, Case 4: Two incumbent and two invaders with the initial populations b

l
= 5.5966 and

b2 = 5.5966 for the incumbents. Note the incumbents are eliminated, while the final populations for the invaders
are b3 = 10.824 and b4 = 4.023.
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Figure 34b. Situation 2, Case 4: The invading strategies (u3, U4) = (0.271, 0.729) take less than 30 generations
to settle down to the equilibrium strategies, which are the ESS strategies.
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Figure 35a. Situation 2, Case 5: Two incumbent and two invaders with the initial populations b l = 7.4391 and
b2 =7.4391 for the incumbents. Note the incumbents are eliminated, and the final populations for the invaders are
b3 = 10.824 and b4 =4.023.
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Figure 35b. Situation 2, Case 5: The invading strategies (U3' u4) = (0.271, 0.729) take very few generations,
compared with the popuiations, to settle down to the equilibrium strategies, which are the ESS strategies.

Case 5: Two Incumbents Using Strategies U 1 =0.27 and u2 =0.73

In Figure 35a on the previous page, there are two incumbent populations using strategies u l =

0.27 and Uz = 0.73 which both have initial populations of 7.4391. The invading species using

initial strategies U3 = 0.271 and U4 = 0.729, which are the ESS strategies eliminate the incumbent

populations. The system takes 10 000 generations to eliminate the incumbents and the final

equilibrium solutions for the invaders are b3 = 10.824 and b4 = 4.023. Note the combined

population is 14.847, the same as the previous case.

In Figure 35b above, the dynamics ofthe strategies are shown. Ul and Uz remain constant at 0.27

and 0.73 respectively, while U3 and U4 undergo slight deviations before returning to their initial

values, which are the ESS strategies.

5.4.3. Situation Three

The incumbent populations were allowed to interact with the two invading populations which

were using the ESS strategies, but with small initial populations. In all the cases in this situation,.
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the invading populations have initial strategies ofu3 =0.271 and U4 = 0.729, and initial populations

ofb
3

= 0.5 and b4 = 0.5 respectively. The invading species strategies, although starting from the

ESS strategies, were allowed to evolve. In this situation, it is expected that the ESS will eliminate

the incumbent population, although the ESS equilibrium populations might not be reached, which

is what happened.

Case 1: One Incumbent Using Strategy Ul = 0.2

In Figure 36a below, there is only one incumbent population using strategy U1 = 0.2 which has an

initial population of14.0625, which is eliminated in 140 generations by the invading species using

initial strategies U3 = 0.271 and U4 = 0.729. The invading species start with initial populations of

0.5, and settle into equilibrium populations ofb3 = b4 = 7.423. Note the combined population is

14.846, compared with the combined ESS equilibrium populations from Figure 25 which is

14.882.

In Figure 36b on the next page, the dynamics of the strategies are shown. U1 remains constant at

0.2, while U3 and U4 change initially, and then settle into the ESS strategy values.
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Figure 36a. Situa~on 3, Cas~ 1: ?n~ incumbe~t and two invaders with the incumbent's initial population b
l

==
14.0625 Note the lllcumbent IS ehmlllated, while the final populations for the invaders are b == 7423 and b ==
7.423. 3· 4
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Figure 36b. Situation 3, Case 1: The invading strategies (u3, u4) == (0.~71, 0.729) take less than 120 generations
to settle down to the equilibrium strategies, which are the ESS strategIes.
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Figure 37a. Situation 3, Case 2: One incumbent and two invaders with the incumbent's initial population b
l

==
14.0625 Note the incumbent is eliminated, while the final populations for the invaders are b

3
== 7.424 and b

4
==

7.424.
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Figure 37b. Situation 3, Case 2: The invading strategies (U3, U4) = (0.271, 0.729) take less than 120 generations
to settle down to the equilibrium strategies, which are the ESS strategies.

Case 2: One Incumbent Using Strategy u1 = 0.8

In Figure 37a on the previous page, there is only one incumbent population using strategy Ut =

0.8 which has an initial population of 14.0625, which is eliminated in 140 generations by the

invading species using initial strategies u3 = 0.271 and U4 = 0.729. The invading species start with

initial populations of 0.5, and settle into equilibrium populations ofb3 = b4 = 7.424. Note the

combined population is 14.848, compared with the combined ESS equilibrium populations from

Figure 25 which is 14.882.

In Figure 37b, the dynamics ofthe strategies are shown. Ut remains constant at 0.8, while U3 and

U4 change initially, and then settle into the ESS strategy values.

Case 3: Two Incumbents Using Strategies u1 = 0.2 and U2 = 0.8

In Figure 38a on the following page, there are two incumbent populations using strategies Ut =
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0.2 and U2 = 0.8 which both have initial populations of 6.4996, which are eliminated within 140

generations by the invading species using initial strategies U3 = 0.271 and U4 = 0.729, which are

the ESSstrategies. The invading species stabilise to populations ofb3 = b4 = 7.425. Note the

combined population is 14.850.

In Figure 38b, the dynamics of the strategies are shown. U1 and U2 remain constant at 0.15 and

0.85 respectively, while U3 and U4 undergo slight deviations before returning to their initial values,

which are the ESS strategies.
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Figure ?8a. Situation 3, Case 3: Two incumbent and two invaders with the initial populations b
l

== b
2

== 6.4996
for the lllcumbents. Note the incumbents are eliminated, while the final populations for the invaders are b = b
== 7.425. 3 4
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Figure 38b. Situation 3, Case 3: The invading strategies (u3, U4) = (0.271, 0.729) take less than 120 generations
to settle down to the equilibrium strategies, which are the ESS strategies.
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Figure 39a. Situation 3, Case 4: Two incumbent and two invaders with the initial populations b
l

= b
2

= 5.5966
for the incumbents. Note the incumbents are eliminated, while the final populations for the invaders are b

3
= b

4= 7.424.
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Figure 39b. Situation 3, Case 4: The invading strategies (U3' u4) = (0.271, 0.729) take less than 80 generations
to settle down to the equilibrium strategies, which are the ESS strategies.

Case 4: Two Incumbents Using Strategies U 1 = 0.15 and U2 = 0.85

In Figure 39a on the previous page, there are two incumbent populations using strategies Ut =

0.15 and Uz = 0.85 which both have initial populations of 5.5966, which are eliminated within 80

generations by the invading species using initial strategies U3 = 0.271 and U4 = 0.729, which are

the ESS strategies. The invading species stabilise to populations ofb3 = b4 = 7.424. Note the

combined population is 14.848, the same as case two.

In Figure 39b, the dynamics of the strategies are shown. Ut and U z remain constant at 0.15 and

0.85 respectively, while U3 and U4 undergo slight deviations before returning to their initial values,

which are the ESS strategies. The strategies stabilise within 80 generations.

Case 5: Two Incumbents Using Strategies u1 = 0.27 and u2 = 0.73

In Figure 40a on the following page, there are two incumbent populations using strategies Ut =

0.27 and Uz = 0.73 which both have initial populations of 7.4391, which are eliminated over the .
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course of 10 000 generations by the invading species using initial strategies U3 = 0.271 and U4 =

0.729, which are the ESS strategies. The invading species settle into equilibrium populations of

b3 = b4 = 7.423. Note the combined population is 14.846.

In Figure 40b on the next page, the dynamics of the strategies are shown. u1 and U2 remain

constant, while U3 and U4 undergo slight deviations before returning to their initial values, which

are the ESS strategies. The strategies stabilise within 1000 generations, one fifth of the time it

takes for the populations to stabilise.

In conclusion of situation three, all the incumbent populations were eliminated, as was expected.

In each case the final stable populations were identical for both of the invading species, and the

combined population total stayed fairly constant with the combined populations which were

reached in situations one and two.
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Figure .40a. Situation 3, C~ 5: Two incumbent and two invaders with the initial populations b
l

= b
2

= 7.4391
for the Incumbents. Note the Incumbents are eliminated, while the final populations for the invaders are b = b
= 7.423. 3 4
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Figure 40b. Situation 3, Case 5: The invading strategies (u3, u4) = (0.271, 0.729) take much less than lO 000
generations to settle down to the equilibrium strategies, which are the ESS strategies.

5.4.4. Situation Four

This situation is similar to situation three, except that the invading strategies are not allowed to

evolve at all. In other words, all the strategies are fixed, and only the populations can change.

In this situation, it is expected that the incumbent populations will be eliminated, with similar

results to those of situation three. As the strategies are all fixed, the strategy dynamics were not

plotted.

Case 1: One Incumbent Using Strategy U I = 0.2

In Figure 41 on the next page, there is only one incumbent population using strategy U
I

= 0.2

which has an initial population of 14.0625, which is eliminated in 800 generations by the invading

species using initial strategies U3 = 0.271 and U4 = 0.729. Thus it takes more than four times as

long for the incumbent to be eliminated when the invading strategies are not allowed to evolve.

The invading species start with initial populations of0.5, and settle into equilibrium populations
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ofb3 = b4 = 7.432. Note the combined population is 14.864, compared with the combined ESS

equilibrium populations from Figure 25 which is 14.882.

Case 2: One Incumbent Using Strategy U 1 = 0.8

In Figure 42 on the next page, there is only one incumbent population using strategy Ut = 0.8

which has an initial population of 14.0625, which is eliminated in 600 generations by the invading

species using initial strategies U3 = 0.271 and U4 = 0.729. Thus it takes more than three times as

long for the incumbent to be eliminated when the invading strategies are not allowed to evolve.

The invading species start with initial populations of 0.5, and settle into equilibrium populations

ofb3 = b4 = 7.432. Note the combined population is 14.864, compared with the combined ESS

equilibrium populations from Figure 25 which is 14.882.
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Figure 41. Situati~n 4, Case ~: O~e.incumben~ and two invaders with the incumbent's initial population b

l
=

14.0625. Note the mcumbent IS ehmmated, while the final populations for the invaders are b) = b
4

= 7.432.
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Figure 42. Situation 4, Case 2: One incumbent and two invaders with the incumbent's initial population b l =
14.0625. Note the incumbent is eliminated, while the final populations for the invaders are b3 = b4 = 7.432.
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Figure 43. Situation 4, Case 3: Two incumbent and two invaders with the initial populations b
l
= b

2
= 6.4996 for

the incumbents. Note the incumbents are eliminated, while the final populations for the invaders are b
3
= b

4
=

7.432.



-119-

8

7 b3 b4

Q)
6N

.r-i
Cl)

§
5

.r-i 4
+Jro
r-l3ao 2
~

1 bI b2

0 100 200 300 400 500 600
Generations in Time

Figure 44. Situation 4, Case 4: Two incumbent and two invaders with the initial populations bl =b2 = 5.5966 for
the incumbents. Note the incumbents are eliminated, while the final populations for the invaders are b3 = b4 =
7.432.
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Figure 45. Situation 4, Case 5: Two incumbent and two invaders with the initial populations b
l
= b

2
= 7.4391 for

the incumbents. Note the incumbents are eliminated, while the final populations for the invaders are b
3

= b
4

=
7.432.
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Case 3: Two Incumbents Using Strategies U 1 =0.2 and U2 =0.8

In Figure 43, there are two incumbent populations using strategies Ut = 0.2 and U2 = 0.8 which

both have initial populations of 6.4996, which are eliminated within 700 generations, five times

as long as the same case in situation three, by the invading species using initial strategies U3 =

0.271 and U
4

= 0.729, which are the ESS strategies. The invading species stabilise to populations

ofb
3
=b

4
= 7.432, which is the san:te as the populations in cases one and two. Note the combined

population is 14.864.

Case 4: Two Incumbents Using Strategies U 1 =0.15 and U2 =0.85

In Figure 44 on the previous page, there are two incumbent populations using strategies U1 =0.15

and U
2

= 0.85 which both have initial populations of 5.5966, which are eliminated within 600

generations, which is more than seven times as long as for case four in situation three, by the

invading species using initial strategies U3 = 0.271 and U4 =0.729, which are the ESS strategies.

The invading species stabilise to populations ofb3 = b4 = 7.432. Note this is the same as the

prevIous cases.

Case 5: Two Incumbents Using Strategies U 1 =0.27 and U2 =0.73

In Figure 45, there are two incumbent populations using strategies Ut = 0.27 and U2 = 0.73 which

both have initial populations of7.4391, which are eliminated over the course of7 000 generations,

the same as the previous situation, by the invading species using initial strategies U3 = 0.271 and

U4 = 0.729, which are the ESS strategies. The invading species settle into equilibrium populations

ofb3 = b4 = 7.432. Note the combined population is 14.864.

In situation fQur, all the incumbent populations were eliminated, as was expected. In each case

the final stable populations were identical for both of the invading species, and the combined

population total stayed fairly constant with the combined populations which were reached in

situations one, two and three. However, the combined population was much closer to that ofthe
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ESS combined populations. It is also worth noting that the results in situation four are almost

identical to those in situation three, but except in case five, they all take more time to stabilise.

5.4.5. Situation Five

This situation is similar to situation two, except that all the strategies are fixed, and only the

populations can change. In this situation, it is expected that the results will be similar to those of

situation two. Due to the similarities between this situation and situation two, it is expected that

the incumbents will be eliminated, and the system will stabilise to the ESS equilibrium populations.

It is also expected, due to the results in situation four, that the time taken for stability in each case

will be longer than the time taken for the same case in situation two. As the strategies are all

fixed, the strategy dynamics were not plotted.

Case 1: One Incumbent Using Strategy U 1 = 0.2

In Figure 46 on the next page, there is only one incumbent population using strategy u\ = 0.2

which has an initial population of 14.0625, which is eliminated in 250 generations by the invading

species using initial strategies U3 = 0.271 and U4 = 0.729, which are the ESS strategies. The

invading species settle into equilibrium populations, which are slightly smaller than the ESS

equilibrium populations, ofb3 = 10.843 and b4 = 4.030. Note the combined population is 14.873,

compared with the combined ESS equilibrium population from Figure 25 which is 14.882. Also

note that this case takes twice the time to stabilise as case one in situation two.

Case 2: One Incumbent Using Strategy u\ = 0.8

In Figure 47 on the following page, there is only one incumbent population using strategy Ut = 0.8

which has an initial population of 14.0625, which is eliminated in 200 generations by the invading

species using initial strategies u3 = 0.271 and U4 = 0.729, which are the ESS strategies. The

invading species settle into equilibrium populations, which are slightly smaller than the ESS

equilibrium populations, ofb3 = 10.842 and b4 = 4.029. Note the combined population is 14.871,

compared with the combined ESS equilibrium population from Figure 25 which is 14.882. Also
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note that this case takes over twice the time to stabilise as case two in situation two.
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Figure 46. Situation 5, Case 1: One incumbent and two invaders with the incumbent's initial population b l =
14.0625 Note the incumbent is eliminated, while the final populations for the invaders are b3 = 10.843 and b4 =
4.030.
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Figure 47. Situation 5, Case 2: One incumbent and two invaders with the incumbent's initial population b
l

=

14.0625 Note the incumbent is eliminated, while the final populations for the invaders are b = 10.842 and b =
4.029. 3 4
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Figure 48. Situation 5, Case 3: Two incumbent and two invaders with the initial populations bl = b2 = 6.4996 for
the incumbents. Note the incumbents are eliminated, while the final populations for the invaders are b) = 10.843
and b4 = 4.030.

Case 3: Two Incumbents Using Strategies Ut =0.2 and U2 =0.8

In Figure 48 above, there are two incumbent populatio'ns using strategies Ut = 0.2 and U2 = 0.8

which both have initial populations of6.4996, which are eliminated within 250 generations by the

invading species using initial strategies U3 = 0.271 and U4 = 0.729, which are the ESS strategies.

The invading species settle into equilibrium populations ofb3 = 10.843 and b4 = 4.030, which are

slightly smaller than the ESS equilibrium populations. Note the combined population is 14.873.

Case 4: Two Incumbents Using Strategies u1 = 0.15 and U 2 = 0.85

In Figure 49 on the next page, there are two incumbent populations using strategies U
I

= 0.15 and

U2 = 0.85 which both have initial populations of 5.5966, which are eliminated within 200

generations by the invading species using initial strategies U3 = 0.271 and U
4
= 0.729, which are

the ESS strategies. The invading species settle into equilibrium populations ofb
3
~ 10.843 and

b4 = 4.030, which are slightly smaller than the ESS equilibrium populations. Note the combined
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population is 14.873.
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Figure 49. Situation 5, Case 4: Two incumbent and two invaders with the initial populations bl =b2 = 5.5966 for
the incumbents. Note the incumbents are eliminated, while the final populations for the invaders are b) = 10.843
and b4 =4.030.

Case 5: Two Incumbents Using Strategies U1 = 0.27 and u2 = 0.73

In Figure 50 on the following page, there are two incumbent populations using strategies Ut = 0.27

and U2 = 0.73 which both have initial populations of 7.4391. The invading species using initial

strategies U3 = 0.271 and U4 = 0.729, which are the ESS strategies eliminate the incumbent

populations. The system takes 4 000 generations to stabilise to the equilibrium solutions ofb3 =

10.825 and b4 = 4.023. Note the combined population is 14.848, compared with the combined

ESS equilibrium population from Figure 25 which is 14.882.
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Figure 50. Situation 5, Case 5: Two incumbent and two invaders with the initial populations bl = b2 = 7.4391 for
the incumbents. Note the incumbents are eliminated, and the final populations for the invaders are b3 = 10.825

and b4 = 4.023.

Also note, that for all the cases in this situation, it took more time for the system to stabilise than

taken in situation two, with the exception of case five. Thus, in situation five, the results were

almost identical to those obtained in situation two.

5.5. Conclusion of the Model

In this chapter, a dynamic system which was not Lotka-Volterra in nature was found, with the

intention ofdiscovering whether or not the results ofthe previous chapters were still relevant. An

example ofsuch a model was found, and presented in §5.1. When trying to duplicate the analysis

which had already been done on the model in order to better understand the model, some

problems were encountered. These were presented in §5.2. A slight change in one of the

equations presented in the paper allowed the analysis to go forward, and the nature ofthe results

found in §5.3. was similar to those presented in the original paper.

Five different situations were simulated in §5.4. A problem was that although the combined

population kept almost constant, how the population was shared between the two evolutionary
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stable strategies depended largely on the initial population and strategy chosen in the simulation.

In §5.4. it was expected that in each of the five situations that the incumbent populations would

be eliminated, and the ESS strategies would be attained by invading species. The only area of

doubt was as to how the population would be distributed between the two equilibrium species.

In fact, the results could be broken down into two broad categories. Ifthe invading populations

were initially small, then the final populations would be between the two ESS equilibrium

populations. Ifthe invading populati.ons started as the ESS equilibrium populations, then they also

ended as the ESS equilibrium populations, with the exception of case one in situation two.

For all of the cases, the ESS was able to eliminate the incumbent populations regardless of its

initial population size: This seems to imply that the ESS was also an NIS, and that there was only

one such strategy choice. However, the fact that there seems to be a great number of different

population distributions between the two equilibrium species, leads one to conclude that either the

simulation was not accurate enough or an unique globally stable strategy coalition does not exist.

The discrepancies found between the direct calculation and the simulation results, although in

keeping with the nature of the results published by Vincent and Vincent, suggest that the

simulation was not accurate enough.
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Chapter 6: Conclusion

Ever since the concept of an evolutionary stable strategy was first introduced by Maynard­

Smith and Price in 1973, there has been a growing body of work concerning this concept. A

large volume ofwork has been produced by various authors, who often introduced their own

concepts, for which they had their own acronyms. This has led to a fair amount of

duplication, leading some authors trying to collect and collate the various terms (for example

Lessard, 1990 & Eshel, 1996) in order to promote better understanding of the topic. Several

of the terms, and their relationship to each other, were introduced in order to give a general

background to the whole area of evolutionary stability, and to give an idea of what work had

already been covered. The terms that were necessary for this work were presented and

mathematically defined.

This work has tried to extend what has already been done in this field by investigating the

dynamics of coexisting species. The evolutionary dynamics of single species has already been

looked at (Apaloo, in preparation a). It has been proved in this work that an ESNIS coalition

is an optimal strategy which will displace any size and composition of incumbent populations

when Lotka-Volterra competition models are used, and which will be immune to invasion by

any other mutant populations, because the ESNIS coalition, where it exists, is unique. In

other words, it has been shown that an ESNIS coalition cannot exist in an ecologically stable

state with any finite number of strategies in its neighbourhood. It has also been shown in this

work that the equilibrium population, when the ESNIS coalition is the only population

present, is globally stable in a n-dimensional system (for n finite), where the ESNIS coalition

interacts with n - 2 other strategies in its neighbourhood.

The behaviour of different incumbent communities ofvarious sizes and composition when

made to interact with an invading coalition of species was simulated. Although an ESS

coalition which was not also an NIS coalition was not found, it is likely that one does exist,

although locating it might be extremely difficult. The equilibrium populations of the various

incumbent populations were found, and then made to interact with the ESNIS and NIS

coalitions which entered with populations which were small compared with those of the
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incumbent communities.

This resulted in the incumbent community, whether it consisted of one or four species, being

completely eliminated if the coalition interacting with the incumbent community was an

ESNIS coalition. The only difference between the one incumbent specie and the four

incumbent species scenarios was the number of generations in time which the ESNIS took to

establish itself, and to stabilise. In each case, the outcome ofthe interaction could be

predicted. However, the results when one of the two members of the ESNIS coalition

interacted with the incumbent populations showed that although the ESNIS coalition is

globally stable, the ability of one member of the coalition being able to invade an incumbent

population when the other member of the coalition is not present depends largely on the

phenotypes of the incumbent populations.

However, if the invading coalition was an NIS coalition which was not also an ESS coalition,

then the results of the interaction with the incumbent populations were predictable only in that

the NIS coalition would enter the incumbent population, and at least one ofthe incumbents

would remain in equilibrium with the invaders, although sometimes all of them did.

The dynamic behaviour of coexisting systems has been covered in this work quite extensively,

especially for Lotka-Volterra competition models. The proof that the ESNIS coalition is

globally stable has only been proven for systems of coexisting species whose dynamics are

given by Lotka-Volterra competition models. While the results may well hold for non Lotka­

Volterra evolution, this remains to be proven. Simulations of a non Lotka-Volterra system

gave mixed results. The results seemed to support the idea of a globally stable ESNIS

coalition, except for the distribution of the population between the two species. If the

simulation could be refined so that the ESS strategies always evolved to the same equilibrium

populations, regardless of the initial population size, and regardless of the initial strategy

choice, the same simulations could be rerun and similar results would strongly support the

existence of a globally stable ESNIS coalition for a non Lotka-Volterra system.

The proof presented in this work, has the weakness that it relies on an assumption of
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equilibrium points being regular. This assumption needs to be proven, or alternatively the

consequences to the proof if the equilibrium points are not regular needs to be examined.

Also, an ESS coalition which is not also an NIS coalition needs to be found, and then

simulated interacting with incumbent populations. If the author is incorrect, and there is no

ESS coalition which is not also an NIS coalition, then this needs to be proven.
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A1wendices

Appendix 1: Sufficient Conditions for ESS and NIS

For the Lotka-Volterra equations used in chapters three and four, the following sufficient

conditions are valid for the two-dimensional case.

ESS: Sufficient conditions for an interior community phenotype (ul> u2) with corresponding

equilibrium population sizes (Zl> Z2) to be an ESS are

k(ul) = Zl + a(uI - U2)Z2

k(u2) = a(u2 - UI)ZI +Z2

k'(ul) = a'(O)zl + a'(uI - U2)Z2

k'(u2) = a'(u2 - UI)ZI + a'(0)z2

k"(uI) - [a" (O)ZI + a"(uI - U2)Z2J < 0

k"(u2) - [a"(u2 - UI)ZI + a"(0)z2J < 0

NIS: Sufficient conditions for an interior community phenotype (Ul> u2) with corresponding

equilibrium population sizes (Zll Z2) to be an NIS are

k(uJ = Zl + a(iil - U2)Z2

k(u2) = a(u2- uI)z, +Z2

k'(ul) = a'(O)zl + a'(u, - U2)Z2

k'(u2) = a'(u2 - UI)ZI + a'(0)z2

az
k"(ul) - a"(O)zl - a"(uI - U2)Z2 - 2[-a"(O)zl + 0.'(0) I

au,

where the partials of z, and Z2 satisfy
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Appendix 2: The Index Theorem (Hotbauer and Sigrnund, 1988)

Definition At: Suppose that y $ f (bd 0). Then the Brouwer degree off at the value yE RO

is defined by

deg(f, y) = r sign det Dl
f(t)= y

if y is a regular value, and by

deg(f, y) = lirn deg(f, Yn)

if Yis not a regular value, where Yn is a sequence of regular values converging to y.

Definition A2: Let z be an isolated equilibrium of the differential equation (1) defined on the

open set U <;: Rn. The Poincare index of Z, i(z), with respect to the vector field f is defined as

i(z) = deg(f, 0).

Definition A3: Ifz is regular, then the Poincare index ofz, i(z) is given by

i(z) = (-1)"

where cr is the number ofnegative eigenvalues of the Jacobian matrix nl

Theorem A4 (Index Theorem for system (I)): If the n-dimensional system (I) has uniformly

bounded orbits then it has a saturated fixed point, and if all saturated fixed points are regular

then the sum of the indices is (- 1)°.

o
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Theorem A5: Let z ERn+ be an isolated fixed point of (I) and U the intersection of an

isolating neighbourhood ofz with interior ofRn
+. Let -s be the vector field with components

-Cj < 0 and h the vector field with components Zj~(z) on U. Then

(a) bd-ind(z) = lime~odeg(h, -s) is well defined

(b) bd-ind(z) ={ i(z) ifz is saturated and regular
o if z is not saturated

(c) index theorem for (I) extends to isolated fixed points for this "boundary-index"

(d) ifbd-ind(z) *' 0, then there exist points Z E Rn
+ arbitrarily close to z such that ~(z) < 0 for

all i with Zj = o.
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