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ABSTRACT 

Tuberculosis (TB) is a key health burden globally. With the emergence of resistance issue, the 

antitubercular research has been challenging. Novel effective drugs are immediately required to 

treat this serious epidemic disease. Innovative potential antitubercular drug candidates are 

momentously required to combat the disadvantages linked with existing drugs or line of 

treatments. Synthetic manipulations of natural sources are being extensively investigated 

worldwide for developing potent and efficient drugs. Besides, these manipulations also offer 

effective leads for further optimization. Therefore, this project is an effort in identifying a novel 

and effective antitubercular leads based on natural product model dehydrozingerone (DZG), a 

curcumin degradant.  

In this project we have performed an extensive literature survey of DZG for its known biological 

activities. And further, we have synthesized some novel series of DZG fused heterocyclic 

compounds with three different 5 membered heterocyclic scaffolds namely, thiazole, thiazolidon-

4-one and pyrazole. A total of 53 compounds comprising of styryl hydrazine thiazole hybrids (6a-

o, Chapter 3), styryl hydrazine thiazolidin-4-one hybrids (7a-d, 10a-l and 13a-b, Chapter 4) and 

lastly styryl fused pyrazole derivatives of acid hydrazides, semicarbazone and 

thiosemicarbazones (8a-i, 11a-h and 14a-c, Chapter 5) have been synthesized by versatile 

synthetic routes as outlined in schemes of respective chapters. The completion of reaction and the 

purity of synthesized compounds were established by chromatographic analysis. All the newly 

synthesized compounds displayed acceptable analysis for their anticipated structures, which were 

established based on physicochemical and spectral data (IR, 1H NMR, 13C NMR and HRMS). 

These newly synthesized compounds were primarily evaluated for their in vitro antimycobacterial 

activities at Infectious Disease Research Institute (IDRI) within the National Institute of Allergy 

and Infectious Diseases (NIAID) screening program, Bethesda, USA or Department of 

Microbiology, Inkosi Albert Luthuli Hospital, Durban, South Africa. 

From the systematic analysis of antimycobacterial activity results obtained following key 

observations were made. 

i. Degradants of curcumin have been looked upon for molecular variations in developing 

diverse scaffolds. DZG is an imperative scaffold and its numerous analogs have emerged 

as a promising leads in the design and development of some novel medicinally active 

compounds with improved metabolic, pharmacokinetic and pharmacological profiles, 

indicating that there is much scope for considering DZG as a structural framework for 

developing effective leads. 
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ii. Chapter 3: Of the fifteen novel styryl hydrazine thiazole derivatives synthesized and tested, 

compound 6o exhibited significant antimycobacterial activity (H37Rv; MIC = 1.5 µM; IC50 

= 0.48 µM) along with bactericidal (MBC = 12 µM) and intracellular antimycobacterial 

activities (IC50 = < 0.098 µM). Furthermore, 6o displayed prominent antimycobacterial 

activity under hypoxic (MIC = 46 µM) and normal oxygen (MIC = 0.28 µM) conditions 

along with anti-mycobacterial efficiency against isoniazid (MIC = 3.2 µM for INH-R1; 1.5 

µM for INH-R2) and rifampicin (MIC = 2.2 µM for RIF-R1; 6.3 µM for RIF-R2) resistant 

strains of Mycobacterium tuberculosis. Presence of electron donating groups on the phenyl 

ring of thiazole moiety had positive correlation for antimycobacterial activity. 

iii. Chapter 4: From the eighteen novel styryl hydrazine thiazolidin-4-one hybrids derivatives 

synthesized and tested, Compounds 7a (MIC = 110 µM; IC50 = 67 µM), 7c (MIC = 120 

µM; IC50 = 66 µM) and 10g (MIC = 100 µM; IC50 = 100 µM) exhibited noteworthy 

antimycobacterial activity. Further, the title compounds displayed least cytotoxic effects 

against a mammalian Vero cell determined using MTT assay. 
iv. Chapter 5: Among the twenty novel styryl pyrazolo carbazone derivatives synthesized and 

tested, Compounds 8a, 8c, 8d, 8g, 8h, 8i and 11f showed reasonable antibacterial activity 

(MIC = 50 µg/mL) against B. subtilis, compound 11a demonstrated noteworthy activity 

towards P. aeruginosa (MIC = 25 µg/mL). Further, compounds 8a, 8d, 8e, 8f, 8i, and 11h 

showed good to moderate antifungal activity ranging from 25 to 50 µg/mL towards C. 

neoformans (MIC = 25 µg/mL) and C. albicans (MIC = 50 µg/mL). Besides, compound 

8a, comprising of isonicotinoyl hydrazide portion displayed remarkable antitubercular 

activity (MIC = 0.78 µg/mL) against H37Rv. Substituted urea derivatives, 14a-c and 11d 

also exhibited encouraging activity (MIC = 12.5 and 25 µg/mL, respectively) whereas, 

derivative with carbothioamide portion 11a, (MIC = 0.78 µg/mL) illustrated significant 

activity against H37Rv. Moreover, some of the tested compounds showed reasonable 

activity against MDR (multi drug resistant) and MOTT (mycobacteria other that 

tuberculosis) strains.   
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CHAPTER 1 
1 GENERAL INTRODUCTION 

1.1  Background 

In context of drug discovery, medicinal chemistry holds a stake that emphasize on design and 

synthesis of small organic compounds with a foremost focus on a given biological activity in 

question. Medicinal chemistry borders various arenas of research and employs strategies such as 

design, synthesis, and screening (by in vitro and in vivo assays) of drugs along with insightful 

structure activity relationship studies. In the past, medicinal chemists primarily explored 

medicines from natural sources like plants, fungi, bacteria, soil, marine, insects, reptiles etc. which 

were rich with pharmacologically active chemical substances. By early 18th century, with 

emerging understandings of basic chemistry and physics principles, chemists had begun to 

synthesize the chemical compounds. Discovery of volatile liquid chloroform, as a general 

anesthetic by Justus von Liebig (1803-1872) was the first inception of synthetic drugs. Later, 

these profusely ascending synthetic and natural drugs were classified based on their 

pharmacological responses. Eventually, these empirical findings found their place in monographs. 

In spite of accessible resources, computational tools and well-equipped laboratories, modern day 

medicinal chemists are facing a cumulative challenge to deliver safer and more effective 

medicines. Drug likeliness, stability, solubility, permeability, metabolic stability, efficacy, 

toxicity, emergence of resistance by microorganisms, and cost-effective treatment are some of the 

critical considerations in drug development process. 

1.2 Microbial infections 

Humans have always suffered outbursts of diseases and epidemics ever since the beginning of 

civilization. The eruptions of infectious and communicable diseases had devastating effect on the 

structure of society and its economy. The inexplicable appearance, be it the most feared plagues 

of the past to the Ebola in the present, have put the mankind in serious health crisis.  

Disease causing microorganisms are called as pathogens. Although all of the microorganisms are 

not pathogens, some have defending mechanisms against the growing injurious pathogens. Any 

susceptible host with weak immune system may effortlessly heap an infectious agent compared 

to healthy individuals. Pathogens also find their place in patients with sinking (elderly patients) 

or compromised (HIV patents) immunity and receiving chemotherapy (cancer patents). Infectious 

agents may be one among the bacteria, virus, fungi or protozoa. The mode of transmission of 

these infectious agents maybe through either direct or indirect contact [1]. Touching, inhaling the 
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discharged droplets (by sneezing or coughing) or sexual contact with an infected patient are some 

among the direct means for transmission. Several diseases namely, ringworm, tuberculosis, HIV-

AIDS, trichinosis, influenza, rabies etc. are blown out by direct transmission. Indirect 

transmission occurs when the pathogen stays outside the host, survives for a period of time before 

affecting the fresh individual. For example, used tissues, clothing, toys, drinking contaminated 

water are some of indirect means of transmission. Another category, a vector borne, are the 

diseases transmitted by vectors (disease transmitting biological agents) that carry the disease 

without infecting themselves. For example, malaria is a vector borne disease where female 

anopheles mosquitos are the vectors. Similarly, these mosquitos are the vectors for several 

detrimental diseases namely dengue, yellow fever, St Louis Encephalitis etc.[2] 

1.3  Treating microbial infections 

In order to control or eradicate the pathogenicity associated with a diverse range of pathogens, it 

becomes most important to discern about the mode of transmission and the lifecycle of causative 

organisms and its interaction with the host. This strategy helps in identifying the accessible drug 

targets like enzymes, enzyme precursors or substrates that may assist reasonably in altering, 

control or preventing the growth of pathogens. Fortunately, the bacteria are prokaryotes, making 

its treatment informal with least side effects. Prokaryotes are considerably different from 

eukaryotes in terms of structural features and metabolic characteristics. (Fig. 1) 

 

Figure 1: Representation of Prokaryotic cell (A) and Eukaryotic cell (B) (Image courtesy: 

Biochemanics) 

1.4 Antimicrobial agents 

Any substance of natural, semisynthetic or synthetic origin used to kill or inhibit the growth of 

microorganisms are known as antimicrobial agents.  These agents may be sourced naturally, like 

https://biochemanics.wordpress.com/2013/03/29/differences-between-prokaryotes-and-eukaryotes/
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antibiotics or else can be obtained by chemical synthesis, known as chemotherapeutic agents. 

Introduction of sulphonamides (in 1936) and penicillin (in 1941) were the starting point of modern 

era in chemotherapy and the golden age of antimicrobial therapy.[3] In the present day, 

antimicrobial agents are the most widely and often indiscreetly used drugs.[4] For effective 

antimicrobial chemotherapy, a given antimicrobial agent should possess in vivo as well as in vitro 

effectiveness, absence of toxicity, and most importantly reasonable cost.[5] Ideally, any 

antimicrobial agent should be nontoxic to the host and toxic to the microbe (selective toxicity), 

microbicidal rather than microbistatic, fairly soluble, long acting, metabolically stable during and 

after administration, must not develop microbial resistance and not produce allergic responses by 

interfering with the host cells. The terms antimicrobial, antibiotic and anti-infective, often 

encompass a wide range of pharmaceutical agents that include antibacterial, antifungal, antiviral, 

and antiparasitic drugs. 

1.5 Classification of antimicrobial agents 

The antimicrobial agents are classified in several ways namely, based on activity spectrum, effect 

on bacteria or depending upon mode of action. Based on the spectrum of activity they are further 

sub classified as broad and narrow spectrum antimicrobials. Broad spectrum antimicrobials are 

usually active against both gram positive and gram negative bacteria. Examples tetracyclines, 

fluoroquinolones, cephalosporins, etc.[6] Narrow spectrum antimicrobials have limited action on 

a particular species of microorganisms. For example, glycopeptides and bacitracin against gram 

positive, polymixins against gram negative [7], aminoglycosides, sulfonamides against aerobic 

and nitroimdazole against anaerobes. Further, upon effect on bacteria, they are classified as 

bactericidal and bacteriostatic. Bactericidal agents kill the target microorganisms, for example 

penicillins, cephalosporins, aminoglycosides, etc. Bacteriostatic agents arrest the growth or 

replication of microorganisms, for example sulfonamides, tetracyclines, macrolides, etc. 

Depending on mode of action antimicrobials are classified as inhibitors of cell wall synthesis 

examples penicllins, cephalosporins, bacitracin and vancomycin, inhibitors of cell membrane 

function example polymixin B, colistin, etc., inhibitors of protein synthesis example tetracyclines, 

macrolides, chloramphenicol, aminoglycosides, etc., inhibitors of nucleic acid synthesis 

examples, rifampin, metronidazole, and quinolones, lastly, inhibitors of other metabolic processes 

example, sulfonamides and trimethoprim.[8] 

1.6 Antimicrobial resistance 

In the course of prolonged antimicrobial chemotherapy, the microorganisms undergo mutations 

in their genes making them insensitive from the further action of antimicrobial agents, thus 

attaining resistance. Subsequently, the formerly effective antimicrobial agent will no longer be 
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beneficial. This ability of microorganisms to attain resistance to antimicrobial agents has further 

exceeded our imagination. These adaptive resistance mechanisms are achieved in various ways 

namely [9] 

a. by enzymatic degradation of antibacterial drugs. 

b. by alteration of bacterial proteins that are antimicrobial targets, and 

c. by modifications in membrane permeability to antibiotics, thus actively pumping out the 

drug from the cell. 

Figure 2 presents a list of resistant mechanisms associated with various antibiotic classes with 

examples. Eventually, this transformation in resistance brought by mutation is transmitted to the 

other members of identical species and also transverse through the species by diverse genetic 

exchange mechanisms. Currently, the resistance has widely spread and posing difficulties in 

treatment. Appearance of multidrug resistant organisms in the last few decades has created a grave 

concern. Lack in antimicrobial stewardship, slack in antimicrobial drug development and more 

limited options for treating resistant infections [10] has finally caught the attention of medicinal 

chemists and drug discovery scientists. According to World Health Organization (WHO), 

globally about 480 000 people develop multidrug resistant TB each year and is creating 

complications in fighting some deadly diseases namely HIV and malaria. This resistance is also 

a serious concern in treating infections during cancer chemotherapy, diabetes, organ 

transplantation and major surgery (for example, caesarean sections or hip replacements).[11] 

Therefore, this situation warrants the need of curative steps in minimizing the emergence and 

spread of antimicrobial resistance. 
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Figure 2: Various antibiotic classes along with and their associated resistant mechanisms with 

respective examples. [12,13] 

 

Antibiotic class Resistance 
Mechanism Examples

Aminoglycosides Changes in outer 
membrane permeability P. aeruginosa

β-lactams Alterations in plasma 
binding proteins S. pneumoniae 

Chloramphenicol
Chloramphenicol 
acetyltransferase 

degradation
S. pneumoniae 

Glycopeptides Altered peptidoglycan 
cross linking

E. faecium and E. 
faecalis

Fosfomycin Thioltransferase enzyme 
degradation 

P. aeruginosa and B. 
subtilis

Fusidic acid
Mutation leading to 

reduced binding to active 
site

S. aureus

Macrolides Alter in efflux of Mef type 
pump

S. pneumoniae and S. 
pyogenes

Quinolones
Mutation leading to 

reduced binding to active 
site

S. aureus and S. 
pneumoniae

Tetracyclines New membrane 
transporters

gram-positive and gram-
negative bacteria

Sulfonamides Mutation or recombination 
of genes encoding DHPS

E. coli, S. aureus, and S. 
pneumoniae

Trimethoprim Mutations in gene 
encoding DHFR

H. influenzae, S. aureus, 
and S. pneumoniae
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1.7 Tuberculosis 

In the current era of microbial infections, tuberculosis (TB) predominantly remains as one of the 

life-threatening disease world-wide. TB is the second foremost reason of death from an infectious 

disease globally. According to 2015 WHO report, 10.4 million new cases were reported globally. 

Among these cases, 60% of them were from six countries namely, India, Indonesia, China, 

Nigeria, Pakistan and South Africa.[14] It is caused by tubercle bacilli Mycobacterium 

tuberculosis belonging to family Mycobacteriaceae and the order Actinomycetales, is one of the 

leading causes for death by an infectious bacterial pathogen. It appears across a spectrum in 

humans, from latent infection to active tuberculosis (Fig. 3). This chronic disease commonly 

affects lungs and gets transmitted by direct mode of transmission. The property of bacilli to stay 

dormant, its nature to survive in adverse environmental conditions, and unusual cell wall makes 

its treatment challenging. 

 

Figure 3: Progression of TB infection in humans. (Image courtesy: Infection Landscapes) 

1.8 Management of tuberculosis 

TB together with acquired immune deficiency syndrome (AIDS) is the highest cause of mortality. 

Further, emergence of drug-resistant mycobacterial strains like multidrug resistant TB (MDR-

TB), extensively drug resistant TB (XDR-TB) and totally drug resistant TB (TDR-TB), are often 

attributed to failures in TB control programs. Presently available antitubercular drugs have often 

been associated with some limitations namely, long treatment duration, resistance, severe side 

effects, lack of selectivity, ineffective drug delivery systems leading to inadequate drug 

concentrations at the site of infection, frequency of dosing and poor patient compliance. Table 1 

elaborates the available first-line and second-line antitubercular drugs with their associated 

http://www.infectionlandscapes.org/
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adverse effects. Figure 4 depicts the structures first and second-line antitubercular drugs. Thus, 

there is an imperative and urgent need for an effective treatment strategy for TB. Drug resistant 

TB can be effectively managed by following points[15] 

a. Setting up of specialized units having second line reserve drugs that could be regulated 

in order to prevent the emergence of incurable tuberculosis. 

b. Designing an appropriate regimen for the individual patient. 

c. Reliable susceptibility testing. 

d. Reliable supplies of second line drugs. 

e. Priority is prevention (priority for MDR-TB). 

f. Using WHO standard regimens for new cases and retreatment. 

g. MDR-TB as a consequence of poor treatment. 

h. Long-term involvement of staff and financial resources. 
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Table 1: First and second-line antitubercular drugs with their associated adverse effects.[16] 

Class of drugs Drug name Adverse effects 

First-line 
drugs 

Isoniazid Asymptomatic elevation of aminotransferases, clinical hepatitis, peripheral neurotoxicity, lupus-like 
syndrome, and monoamine (histamine/tyramine) poisoning. 

Rifampin 
Cutaneous reactions, gastrointestinal reactions (nausea, anorexia, abdominal pain), flulike syndrome, 
hepatotoxicity, orange discoloration of bodily fluids (sputum, urine, sweat, tears), and drug interactions 
due to induction of hepatic microsomal enzymes. 

Rifabutin 
Hematologic toxicity, uveitis, gastrointestinal symptoms, polyarthralgias, hepatotoxicity, 
pseudojaundice (skin discoloration with normal bilirubin), rashes, flulike syndrome, and orange 
discoloration of bodily fluids (sputum, urine, sweat, tears). 

Rifapentine Same as Rifampin 

Pyrazinamide Hepatotoxicity, gastrointestinal symptoms (nausea, vomiting), Nongouty polyarthralgia, asymptomatic 
hyperuricemia, acute gouty arthritis, transient morbilliform rash, and dermatitis. 

Second-line 
drugs 

Ethambutol Retrobulbar neuritis and cutaneous reactions. 

Cycloserine Headache, psychosis, seizures and peripheral neuritis. 

Ethionamide Gastrointestinal side effects, hepatotoxicity, neurotoxicity, gynecomastia, alopecia, hypothyroidism, and 
impotence. 

Streptomycin Ototoxicity, neurotoxicity, and nephrotoxicity. 

Amikacin/kanamycin Ototoxicity, and nephrotoxicity. 

Capreomycin Ototoxicity, and nephrotoxicity. 

p-Aminosalicylic acid Hepatotoxicity, gastrointestinal distress, malabsorption syndrome, hypothyroidism, and coagulopathy. 
Levofloxacin, 

Moxifloxacin and 
Gatifloxacin. 

Nausea, bloating, dizziness, insomnia, tremulousness, headache rash, pruritis, and photosensitivity. 
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Figure 4: Structures of first and second-line antitubercular drugs. 

1.9 Antitubercular drugs: Mechanism of action 

Recent advances in elementary microbial genetics, has helped us in understanding the 

biochemical process involved in microbes. This cognizance has considerably helped in treatment 

of TB. The molecular targets targeted by antitubercular drugs have received much of the attention 

of medicinal chemists in the recent past. Targeting on or more sites of action simultaneously, has 

been advantageous in managing drug resistant TB. Figure 5 elaborates the mechanism of action 

of various approved antitubercular drugs. 
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Figure 5: Mechanism of action of various approved antitubercular drugs.[17] 

1.10 Antitubercular drug development 

Globally over 480 000 cases of MDR-TB occur annually (Fig. 6), 9% of them are being affected 

by XDR-TB. The management of MDR/XDR-TB is unfortunately lengthy, toxic and more 

expensive,[18] with success rate extremely disappointing (<20% among cases with resistance 

patterns beyond XDR). With the launch of “END TB Strategy”, WHO has supported universal 

access to high quality MDR diagnosis and treatment.[19] (Fig. 7) 

 

Figure 6: Global status showing MDR-TB incidences. (Image courtesy: WHO) 
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Figure 7: END TB strategy by WHO in 2015. 

With the current first-line regimen being persistently followed since last 40 years, non-compliance 

of patient, adverse effects, and long treatment duration has led to emergence of resistant forms. 

All these facts are compelling for the need for new anti-TB drugs at an alarming rate. Numerous 

drugs are being investigated that regulate, cure or check further transmission of TB. Current drug 

development programmes focus on finding novel mechanism of action acting on vast biological 

pathways namely protein synthesis, cell wall synthesis, membrane energy production etc.[20] and 

are in late stages of development (Table 2). 
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Table 2: Antitubercular drugs currently in lead optimzation stages along with their associated mechanism of actions. 

Drug Chemical class Development stage Mechanism of action/target 

CPZEN-45 Caprazamycin derivative 
(Nucleoside antibiotic) Early stage Inhibition of cell-wall biosynthesis 

SQ-609 Dipiperidine Early stage Inhibition of cell-wall biosynthesis 
TBI-166 Riminophenazine Early stage Accumulation of lysophospholipids, 
Spectinamide 1599 Spectinomycin analogues Early stage Inhibits protein synthesis 
BTZ-043 Benzothiazinone GLP Toxicity Inhibits Mtb cell wall synthesis 
PBTZ-169 Benzothiazine GLP Toxicity Inhibits cell-wall biosynthesis 
TBA-7371 Benzothiazinone GLP Toxicity Disruption of cell-wall biosynthesis 
GSK-070 Oxaborole GLP Toxicity Leucyl-tRNA synthetase inhibitor 
Moxifloxacin and gatifloxacin Quinolones Phase III DNA-gyrase inhibitor 
PA824, OPC67683 Nitroimidazoles Phase II mycolic acid biosynthesis inhibition 
TMC207 (Bedaquiline) Diarylquinolines Phase II ATP-synthase inhibitor 
SQ109 Diamine Phase I Unknown 
Rifamycins Rifamycins Phase III RNA polymerase inhibitor 
Linezolid Oxazolidinones Phase II 50S ribosomal subunit 
PNU-100480 Oxazolidinones Phase I 50S ribosomal subunit 
AZD5847 Oxazolidinones Phase I 50S ribosomal subunit 
Benzothiazinone Benzothiazinones Pre-clinical DprE1 epimerase 
Dinitrobenzamide Dinitrobenzamides Pre-clinical DprE1 epimerase 
VI-9376 Nitro-bromoquinoxaline Pre-clinical DprE1 epimerase 
Q203 Imidazopyridine Phase I Inhibits mycobacterial growth 
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In 2012, the TB treatment reached a historic land mark with the approval of bedaquiline by the 

U.S. Food and Drug Administration (US-FDA), thus paying off for the efforts over last 40 

years.[21] Yet the journey of discovering and developing new drugs to combat TB is still 

persistent. The TB drug pipeline (Fig. 8). is still however inadequate compared to what is 

desirable. 
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Figure 8: TB drug development pipeline. 
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Antitubercular drug research is shifting its horizon towards naturally obtained sources, in a hope 

to discover new safe and effective leads. Interestingly, these compounds have portrayed 

remarkable activity towards sensitive and Multi drug resistant strains of TB. The drugs from 

natural origin have been categorized as natural products, semisynthetic compounds resultant from 

natural products, and synthetic compounds based on natural product models.[22] Natural product 

chemistry and organic synthesis are potential tools for optimizing leads and generate new diverse 

entities from natural scaffolds. Unification of these two branches has been a vital foundation for 

modern day ration drug design. Antitubercular secondary metabolites have been isolated from 

plants, bacteria, fungi, algae and marine organisms. Some of them have been categorized under 

various chemical classes (Table 3).  

Table 3: Natural secondary metabolites as antitubercular drugs.[23] 

Class of compounds Examples Source 

Terpenes Salasol A & Celahin C Microtropis japonica 

Steroids Ergosterol peroxide and β-
sitostenone R. boniana 

Alkaloids Ambiguine K, L, M & N Fischerella ambigua  
(a cynobacterium) 

Flavonoids 
Khonklonginol A, B & H, 
Eriosemaone A and 
Lupinifolin 

Eriosema chinense 

Coumarins Scopoletin Fatoua pilosa 

Chalcones Isobavachalcone Fatoua pilosa 

Lignans Beilschmin A Beilschmiedia tsangii 

Xanthones α-mangostin Garcinia mangosta 

Anthracenes Mollicellin K Chaetomium brasiliense  
(an fungus) 

Peptides Trichoderin A, A1 & B Trichoderma sp. 05FI48 
strain (an fungus) 
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Additionally, several semisynthetic and synthetic derivatives based on natural product models 

have been successfully explored for their antitubercular properties. (Table 4). Chemical diversity, 

more number of chiral centres, steric convolution, and biochemical specificities have made these 

natural scaffolds as indispensable. Therefore, all these facts remarkably portray the significance 

of natural products as a stand point in the contemporary drug discovery and development. 

Therefore, our work is one such effort in identifying synthetic antitubercular lead compounds 

based on natural product model. 

 

Table 4: Naturally inspired semisynthetic antitubercular drugs. 

Natural compound Inspired semisynthetic derivatives 

Streptomycin 
(Streptomyces griseus) Kanamycin and Amikacin 

Capreomycin 1A & 1B 
(Streptomyces capreolus) Viomycin 

Rifamycin 
(Amycolatopsis rifamycinica) 

Rifampicin, Rifabutin, Rifalazil, Rifametane and 
Rifapentine [23] 

Spectinomycin 
(Streptomyces spectabilis) Spectinamides (semisynthetic derivative)[24] 

Capuramycin SQ641[25] 
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2 GENESIS OF OUR RESEARCH 

Our literature review suggested that countries like India, Indonesia, China, Nigeria, Pakistan and 

South Africa carry massive burden of TB. Further, 60% of globally estimated MDR-TB cases 

were reported from TB-endemic countries namely  China, India, the Russian Federation and South 

Africa alone.[26] Clinicians managing the TB cases frequently encounter significant challenges 

such as lack of clinical experience, adverse events, lack of patients adherence, inadequate 

availability diagnostics or second line drugs, thus augmenting the risk of drug resistance. 

Therefore, after considering all these solemn facts, we should tactically accelerate a robust and 

diverse drug discovery and development programs to fill the pipeline with potential leads. In 

parallel, we need to develop and improve techniques in understanding the pathogenesis and host-

pathogen interactions of TB in order to discover novel valid TB targets. We should also look on 

to an angle for extensive exploitation of chemical space and optimize lead hits for effective TB 

drugs for future. Naturally available antitubercular drugs should be explored which usually have 

least or devoid of side effects. Drugs from natural sources have enormous potential in modulating 

the immune response and inhibit the mechanism of resistance in disease stricken state. Several 

naturally derived drugs like pyridomycin, cyclomarin A, lassomycin, and ecumicin have shown 

potent activity against MDR and XDR-TB.[27] Also, streptomycin, kanamycin, rifampicin, 

capreomycin 1A and clarithromycin are some of the significant antimycobacterial drugs obtained 

from natural products.[28] Hence, it is considerably important to focus our attention in developing 

natural products as hits for generating leads derived from them.  

Therefore, in order to identify new lead inspired from natural source, we came across a natural 

chalcone, Dehydrozingerone (DZG). DZG is isolated from rhizomes of ginger (Zingiber 

officinale Roscoe, family Zingiberaceae) and is famously identified as a half structural analog of 

curcumin. DGZ is known for its variety of pharmacological activities namely antibacterial, 

anticancer, antifungal, antimalarial, anti-inflammatory, antidepressant, antioxidant etc.  

 

Structure of Dehydrozingerone 

Our extensive literature survey revealed no reports on its antitubercular properties. Therefore, our 

research was focused in modifying the structural core of DZG with various antitubercular 

heterocycles by molecular hybridization to attain novel antitubercular leads. The following 

paragraphs enlighten about the work planned and executed in succeeding chapters. 
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 During our comprehensive literature review, we witnessed there was no review published on 

DZG. Hence we envisioned to write a review on the medicinal perspectives of DZG covering 

it entire array of pharmacological properties. 

 Thiazole is an essential heterocyclic scaffold in drug discovery. Its derivatives are known to 

possess varied range of activities such as antihypertensive, anti-inflammatory, anti-HIV, 

antibacterial, and antimycobacterial. However, there were no reports on styryl thiazoles as 

antimycobacterials. Therefore, we have envisaged to synthesize DZG inspired styryl 

hydrazine thiazole hybrids as antimycobacterial agents. The outcome of this work uplifted 

the importance of incorporating styryl portion for antimycobacterial activity. Because of 

outstanding contribution by styryl portion on thiazole heterocycle core, the subsequent 

chapters have retained this portion. 

 Thiazolidin-4-one ring systems are biologically active 5 membered heterocycles that contain 

nitrogen and sulphur hetero atoms. This vital core structure has extensively been investigated 

for numerous biological properties namely antimicrobial, antiviral, anticonvulsant, anti-

inflammatory, anticancer and antitubercular. With the findings on importance of styryl 

portion, in this chapter we have foreseen to synthesize styryl thiazolidin-4-one derivatives as 

potential antimycobacterial agents. 

 Pyrazole, is a well-known 5 membered heterocycle that has been known to exhibit a 

significant range of biological activities namely, antibacterial, antifungal, anticancer, 

antiviral, antidiabetic, anti-inflammatory, anti-atherosclerosis, and antimycobacterial. 

Further, semicarbazone and thiosemicarbazones are versatile chemical intermediates that are 

employed in synthesis of several key heterocyclic compounds. These semicarbazone and 

thiosemicarbazones are themselves known to be biologically active and possess assorted 

pharmacological responses namely antibacterial, antiproliferative, antifungal, anticancer, 

anticonvulsant, and antitubercular. Therefore, in this chapter we anticipated the synthesis of 

carbazones, semicarbazone and thiosemicarbazones derivatives of styryl fused pyrazole as 

potential antibacterial, antifungal and antimycobacterial agents. 
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3 OBJECTIVES OF THE PRESENT RESEARCH WORK 

Microbial infections are erupting at an alarming rate. Appearance of drug resistance is a serious 

concern in modern day chemotherapy. New drugs with an ability to overcome the drawbacks of 

existing antimicrobial chemotherapy are at high priority. The field of medicinal chemistry is 

contributing implicitly to the process of drug discovery and development. Synthesis of novel 

chemical entities, modification in existing scaffolds, combining two or more bioactive molecules 

(hybridization), replacing groups with bioisosteres, and optimization of natural compounds to 

identify promising leads are some of the interesting themes in the field of medicinal chemistry. 

Heterocyclic scaffolds having one or more hetero atoms have become indispensable in drug 

discovery, which is evident from the fact that more than 95% of the marketed drugs are built on 

heterocyclic scaffolds 

In observation of all these above facts, the present research project work was planned. The aims 

and objectives of the present research work are 

1. To carryout extensive literature survey for identification of new chemical entities as 

antimicrobial/antitubercular activity (Identification of a research gap and defining the 

scope of proposed work). 

2. To synthesize a novel series of DZG fused hybrid chemical entities containing the 

following heterocyclic scaffolds 

a. Styryl hydrazine thiazole derivatives. 

b. Styryl hydrazine thiazolidin-4-one derivatives and 

c. Styryl pyrazolo carbazone derivatives. 

3. To purify the synthesized compounds by chromatographic techniques namely column 

(flash) chromatography. 

4. To establish the structure of synthesized compounds by physicochemical and spectral 

analysis (IR, 1H NMR, 13C NMR and High resolution mass spectrometry). 

5. To carry out the preliminary biological evaluation of the synthesized compounds for their 

antitubercular and antibacterial activity. 

The subsequent chapter unveils the extensive investigations on literature about DZG and its 

semisynthetic derivatives acknowledged for its diverse pharmacological properties. 
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Abstract 

Natural products serve as a key source for the design, discovery and development of potentially 

novel drug like candidates for life threatening diseases. Curcumin is one such medicinally 

important molecule reported for an array of biological activities. However, it has major drawbacks 

of very poor bioavailability and solubility. Alternatively, structural analogs and degradants of 

curcumin have been investigated, which have emerged as promising scaffolds with diverse 

biological activities. Dehydrozingerone (DZG) also known as feruloylmethane, is one such 

recognized degradant which is a half structural analog of curcumin. It exists as a natural phenolic 

compound obtained from rhizomes of Zingerber officinalae, which has attracted much attention 

of medicinal chemists. DZG is known to have a broad range of biological activities like 

antioxidant, anticancer, anti-inflammatory, anti-depressant, anti-malarial, antifungal, anti-platelet 

and many others. DZG has also been studied in resolving issues pertaining to curcumin since it 

shares many structural similarities with curcumin. Considering this, in the present review we have 

put forward an effort to revise and systematically discuss the research involving DZG with its 

biological diversity. From literature, it is quite clear that DZG and its structural analogs have 

exhibited significant potential in facilitating design and development of novel medicinally active 

lead compounds with improved metabolic and pharmacokinetic profiles. 
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1 Introduction 

From time immemorial natural products sourced from plants, animals, marines and minerals have 

been the basis of treatment for variety of diseases. Plants in particular have been the basis of many 

traditional medicine systems throughout the world for thousands of years and they still continue 

to offer humankind with new remedies. The foundation of the modern pharmaceutical industry 

was primarily based on the techniques developed to identify and synthesize active ingredients 

from the traditional medicines obtained from natural sources. Plant-based medicines were initially 

dispensed as crude medicines such as tinctures, teas, poultices, powders and other herbal 

formulations,1 which now serve as the basis of novel drug discovery. For example, plant based 

compounds like quinine, reserpine, curcumin, vincristine, vinblastine, pilocarpine, atropine, 

morphine, taxol, etc., have been investigated and exploited as important pharmaceutical drugs for 

the treatment of vital diseases or disorders. Hence, natural products have been proven templates 

for the development of new scaffolds for drugs.2–5 

Dehydrozingerone (DZG; Fig. 1) also known as feruloylmethane and vanillylidene acetone, 

isolated from rhizomes of ginger (Zingiber officinale Roscoe, family: Zingiberaceae)6–8 and can 

be synthesized in laboratory by simple aldol condensation of vanillin and acetone.9 It is famously 

identified as a half structural analog of curcumin and is a classic example of a natural chalcone. 

DZG [(E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one] is a remarkable scaffold comprising 

of a phenyl ring bearing methoxy group ortho to the phenolic OH and an α,β-unsaturated carbonyl 

group with terminal methyl group. Besides, DZG is an unsaturated derivative of the natural 

product zingerone and resembles segment of curcumin as well as share many structural and 

pharmacological similarities with curcumin.  

 

Figure 1: Structure of Dehydrozingerone (DZG). 

DZG and curcumin also claim mutual chemical resemblances as both bear styryl ketone moieties 

with similar substitutions on the phenyl ring.10,11 It is a recognized biosynthetic intermediate12 and 

also an identified degradant of curcumin13 (Fig. 2).13–16 DZG is a known metabolic product of 

curcumin that has a larger biological half-life than curcumin itself.17 In spite of versatile 

applications of Curcumin (diferuloylmethane), a polyphenol extract of Curcuma longa,18 is still 

known to have weak bioavailability and suffers from premature degradation on oral 
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administration that holds back its use as a successful therapeutic agent.19  These pharmacokinetic 

instabilities of curcumin may be due to following reasons, 

a) Liability of β-diketone moiety in the structure of curcumin (as substrates) to several aldo-

keto reductases in vivo.20–22  

b) Enzymatic cleavage at the benzylic position.23 

c) Instability of reactive β-diketone moiety at neutral-basic pH conditions in vitro.13,24  

d) Instability of active methylene group at a pH above 6.5.25  

However, the curcuminoids, degradants and biosynthetic intermediates of curcumin also exhibit 

many exceptional pharmacological effects. These emerging new class of compounds have been 

termed as mono-carbonyl analogs (MCA’s) or mono-carbonyl enones or dienones.26 These enone 

analogs emanate in 5, 3 and 7 carbon spacers (7 carbon spacers as in curcumin) and have 

explicable biological activities on comparison with curcumin.27 Furthermore several studies 
involving MCA’s have proven improved bioactivities and enhanced pharmacokinetic profiles 

compared to curcumin.28–30  

 

 

Figure 2: Degradation products of curcumin. 
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In recent times, scientists have shown enormous interest towards exploring the medicinal 

potentials especially for their antioxidant and anticancer activity. The degradation products as 

well as curcuminoids have played a key role in understanding the mechanism of action of 

curcumin. Recent studies have shown that degradation products such as ferulic acid and vanillic 

acid as human metabolites of curcumin, have contributed towards the antioxidant effects of 

curcumin.31 Hence, the structural analogs or degradants have emerged as promising scaffolds that 

have contributed towards designing valuable impending drugs. With these distinguishing 

structural features DZG as an active scaffold has been exploited for diverse medicinal properties 

(Fig. 3) as discussed in this review. 

 

Figure 3: DZG as active scaffold with manifold pharmacological activities 

The variations in the biological activity of DZG as a result of its structural manipulations are 

precisely highlighted in Figure 4. In this mini review we have recapitulated the progress of 

research involving DZG and its derivatives and discussed its diverse application in the field of 

medicinal chemistry emphasizing on their brief structure activity-relationships (SAR). 
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Figure 4: Imperative structural features of Dehydrozingerone (DZG) and effects of substitutions over various biological activities. 
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2 Dehydrozingerone identified for manifold pharmacological 

activities 

2.1 Dehydrozingerone as antioxidant 

Reactive oxygen species (ROS) are produced during aerobic respiration. Regardless of multiple 

preserved redox modulating systems, a part of ROS constantly flee from the mitochondrial 

respiratory sequence which is sufficient to damage cells in a variety of ways that include DNA 

mutations,32 lipid peroxidation,33 ATP depletion,34 and  apoptosis.35 Antioxidants are the key 

negotiators that prevent the reaction of ROS with biomolecules and have immense potential 

against pathophysiology of numerous diseases including cancer, heart disease, aging and different 

neurological disorders. Ranges of naturally occurring antioxidants have been isolated from plants 

and have been further tailored structurally to give in newer derivatives. Some of the naturally 

occurring antioxidants usually phenols and poly phenols36 have been depicted in the Figure 5.37 

 

Figure 5: Naturally occurring antioxidants. 

Rajakumar et al., have reported the antioxidant properties of three structurally related compounds 

namely DZG, eugenol (1) and isoeugenol (2) by means of various experimental models. In this 

study compound 2 was found to be the highly active in restraining ferrous-ion, ferric-ion and 

cumene-hydroperoxide-induced lipid peroxidation in rat brain homogenates. All the tested 

compounds displayed considerable hydroxyl radical scavenging activity. Compound 2 was found 

as a powerful scavenging superoxide anion produced by the xanthine-xanthine oxidase system, 

whereas compound 1 was observed to inhibit xanthine oxidase. The high antioxidant activity of 

2 was due to the existence of a conjugated double bond, which augments the stability of the 
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phenoxyl radical by electron delocalization. Such electron delocalization is not possible with 1. 

In DZG, the stability was diminished by an electron withdrawing keto group at the para position 

to hydroxyl group. Over all, this study evidently demonstrated the essential structural features and 

the antioxidant potential of naturally occurring phenols, of which compound 2 emerged as a 

potential antioxidant as compared to DZG.10 

 

In order to understand the antioxidant properties of DZG and curcumin, Rajakumar et al., have 

reported the inhibition of lipid peroxidation by both DZG and curcumin in rat brain homogenates. 

Interestingly both compounds inhibited the formation of conjugated dienes and spontaneous lipid 

peroxidation. These two compounds also inhibited lipid peroxidation induced by ferrous ions, 

ferric-ascorbate and ferric-ADP-ascorbate. In each of these cases curcumin was found to be more 

active than DZG and -tocopherol. This study established that 1,3-diketone structure was not 

necessary for inhibiting lipid peroxidation by curcumin because DZG, which is devoid of this 

system was also capable of inhibiting lipid peroxidation. The phenolic groups in both of these 

compounds were found to favor considerably for the antioxidant properties, since they react with 

free radicals to form phenoxy radical. Methoxy group at ortho-position to the phenolic group in 

both DZG and curcumin were known to increases the antioxidant activity due to inductive effect. 

This study demonstrated that DZG alike curcumin inhibits lipid peroxidation although to a lesser 

extent and additionally the antioxidant activity of curcumin was refereed by its two phenolic 

groups, which accounts for its superior activity.11 

Subramanian et al., have reported the shielding potential of natural antioxidants against oxidative 

damage of DNA by excited species of oxygen that is, 1O2, a singlet molecular oxygen, known to 

induce single strand breaks in plasmid DNA. Natural antioxidants namely curcumin, DZG besides 

two other desmethoxycurcumin (3) and bisdemethoxycurcumin (4) were examined in this study. 

The results showed that curcumin and its derivatives and to a smaller degree other natural 

antioxidants tender noteworthy protection to DNA against 1O2. Curcumin was found to be most 

effective followed by DZG then 3 and 4. At higher concentration DZG, 3 and 4 were found to be 

equally active. Thus this study fairly highlighted an explanation regarding probable mechanism 

of antimutagenic properties of these tested natural antioxidants.5 
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Priyadarsini et al., have reported structurally allied phenols namely DZG, bromopentenone (5), 

eugenol (1) and isoeugenol (2) for antioxidant properties by inhibiting lipid peroxidation in 

membrane models. Additionally, the physicochemical properties of the transient intermediates of 

these antioxidants produced by the scavenging of several oxidizing free radicals were computed 

using pulse radiolysis technique.38 

 

Jovanovic et al., have reported antioxidant mechanisms of curcumin by laser flash photolysis and 

pulse radiolysis. This study revealed that the apparent site of reaction is the central CH2 group in 

the heptadienone link of curcumin, which has two labile hydrogens. This was supported by 

comparing the reaction patterns of curcumin and DZG. DZG did not react with the methyl radical, 

indicating that the presence of the labile hydrogens is crucial for the H-atom donating ability of 

curcumin. Thus the electron donating ability of curcumin is assessed from the measurements of 

one-electron-transfer equilibria of DZG radicals. The major conclusion of this study was that the 

H-atom transfer plays a crucial role in the antioxidant action of curcumin.39 

Priyadarsini et al., have reported the free radical reactions of DZG studied at different pH using 

a range of oxidants by means of nanosecond pulse radiolysis procedure. This study employed 

several free radicals both primary and secondary to access the antioxidant potential of DZG. 

Several specific free radicals were generated namely N3•, Br•, Br2
•, and TI(II) that were employed 

with DZG giving rise to the phenoxyl radical across the total pH range. Observations at pH 6 

suggest that there is formation of OH-adduct which absorbs at 460 nm along with another small 

oxidation product confirmed by HPLC analysis. And at pH 10 there was only one oxidation 

product that is, phenoxyl radical absorbing at 360 nm. This study demonstrated that the phenoxyl 

radical from DZG is deficient to abstract hydrogen because of delocalization of the unpaired 

electron into an aromatic ring structure. The phenoxyl radical was recognized to have a lifetime 

of a few milliseconds. The thermodynamic parameter and one-electron reduction potential of 

DZG was considerably high thus not making DZG as a perfect candidate for an antioxidant 
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property, but the rapid kinetic parameters might be accountable for its antioxidant activity. In lack 

of any other substrate, the phenoxyl radicals might vanish by several mechanisms, for example, 

radical-radical reactions with alkoxyl and peroxyl radicals, thus averting the spread of the chain 

reaction of lipid peroxidation. These results put forward that DZG like many other phenolic 

antioxidants can counter both primary and secondary radicals.17 

Yamagami et al., have reported antioxidant activities against lipid peroxidation induced by tert-

butylhydroperoxide or γ-irradiation for a series of hydroxybenzalacetones derivatives 6 and 7. 

Authors have also reported relationship between the structure and activity by using free-energy 

related substituent parameters. Further in order to interpret the resultant correlations, authors have 

further measured DPPH (1,1-diphenyl-2-picrylhydrazil) free radical scavenging activities of 

synthesized compounds and later performed the QSAR analysis. In this study it was concluded 

that the inhibitory potencies were primarily due to the formation of phenoxy radicals as well as 

from the electron-donating substituents, which further contributed to ease phenoxy radical 

formations. Similarly, the ortho substituents were effective in stabilizing the generated phenoxy 

radicals. The results indicated a remarkable enhancement of activity for compounds 8, 9, and 10.40 

 

 

Kuo et al., have synthesized a novel series of DZG derivatives and evaluated them as potential 

antioxidants. Amongst the series, compound 11 displayed significant inhibition of Fe2+-induced 

lipid peroxidation (to elucidate antioxidant activity) in rat brain homogenate with an IC50 of 6.3 

± 0.4 μM as compared to the standard antioxidant, -tocopherol (TOH) with IC50 = 2.5 ± 0.1 μM. 

In addition, the tested compounds did not form complex with ferrous ion in the iron chelation 

study performed by authors as addition of ferrous ion did not source any spectral shift or 

absorbance variation. Thus the authors expected that the test compounds might have exerted their 

effects on lipid peroxidation primarily by scavenging free radicals rather than functioning as iron 

chelators. This belief was further supported by reassessing DPPH test that gave information about 
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the reactivities of the tested compounds with a stable free radical. In this test, free radical 

scavenging activity was expressed by IC0.200. Thus, compound 11 (IC0.200 = 3.2 μM) and 12 (IC0.200 

= 4.9 μM) were found to be two and five fold more active than TOH (IC0.200 = 8.3 μM) and 

ascorbic acid (IC0.200 = 23.7 μM) respectively in DPPH assay model.8 

 

Parihar et al., have demonstrated the in vitro and in vivo antioxidant potential as well as in vivo 

radioprotective activity of DZG against whole body gamma irradiation in Swiss albino mice. DZG 

scavenged the ABTS+˙ (2,21-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) and DPPH free 

radicals at room temperature DZG reduced Fe(III) to Fe(II) at pH 7.4 and scavenged the 

NADH/phenazine methosulfate generated superoxide radical in cell free system. DZG also 

scavenged the nitric oxide radical generated by sodium nitroprusside.41 

Musialik et al., have reported the antioxidant property of two natural compounds olivetol (13) 

and DZG along with 2,6-di-tert-butyl-4-methylphenol (BHT) (14) by Ozawa–Flynn–Wall 

method for inhibition of non-isothermal autoxidation of linolenic acid. Inhibition of non-

isothermal oxidation of linolenic acid (LNA) in bulk phase was monitored by differential scanning 

calorimetry. Among these compounds, DZG displayed best antioxidant properties in which 

phenolic hydroxyl group is internally hydrogen bonded to ortho-methoxyl group (15), thus 

making OH group, unavailable to form intermolecular hydrogen bond with carboxyl group of 

lipid, proving as efficient radical scavenger. Further, the presence of double bond conjugated to 

aromatic ring in DZG brings additional stabilization of the radical formed after the H atom 

abstraction from DGZ molecule.42 

 

Li et al., have reported antioxidant properties for a new series of ferrocenyl-substituted curcumin 

derivatives (16-18). The ferrocenyl group was linked with the methylene in feruloylacetone to 

produce ferrocenyl curcuminoids by using Knoevenagel condensation. Antioxidant activity of the 

synthesized compounds were evaluated in 2,21-azobis(2-amidinopropanehydrochloride) (AAPH), 

Cu2+/glutathione (GSH), hydroxyl radical (˙OH)-induced oxidation of DNA, and in trapping 
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DPPH, ABTS+˙ and galvinoxyl radicals. Results revealed that all compounds protected DNA 

against Cu2+/GSH-induced oxidation, but promoted ˙OH-induced oxidation of DNA. Compounds 

16, 17 and 18 scavenged the radicals with n values (‘n’ is a stoichiometric factor that implies the 

number of radicals trapped by one molecule of the antioxidant and can be used as a quantitative 

index to express the antioxidant capacity) 9.5, 5.7 and 4.7, respectively thus protecting DNA 

against AAPH-induced oxidation. Further compound 16 could trap more DPPH and ABTS+˙ than 

compounds 17 and 18. All the compounds could not react with galvinoxyl radical. This study 

conclude that phenolic hydroxyl groups and iron atom in ferrocenylidene curcumin derivatives 

play an important role for antioxidant activity.43 

 

In order to clarify the contribution of phenolic and enolic hydroxyl group to the antioxidant 

capacity of feruloylacetone Feng et al., have reported derivatives of DZG (19-24), which was 

taken as a model compound of half-curcumin. The synthesized compounds were evaluated for 

their antioxidant properties by trapping ABTS+˙, DPPH and galvinoxyl radicals. The reductive 

capacities were also screened by quenching singlet oxygen and by inhibiting the oxidation of 

linoleic acid. Oxidation of DNA mediated by hydroxyl radical and AAPH were also studied with 

the synthesized compounds. In addition, compounds were applied to protect erythrocytes against 

AAPH and hemin-induced hemolysis. The results suggest that the antioxidant capacity of half-

curcumin was derived from the phenolic-OH and the conjugated linkage between phenolic and 

enolic-OH. The enolic-OH itself could not trap radicals.44 
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Kubra et al., have reported synthesis and antioxidant properties of DZG derivatives by scavenging 

the stable DPPH radical. The reduction capability of the DPPH radical was established by its 

absorbance decrease at 517 nm, as induced by natural antioxidants. The IC50 value of DZG was 

found to be 0.3 mM comparable to Trolox (0.26 mM), whereas the IC50 value of 25, 26, 27 and 

28 were found to be 40, 20, 10 and 7.5 mM respectively. Antioxidant activity assays of derivatives 

with varied substituents inferred that the existence of hydroxyl substituents on the phenyl nucleus 

enhanced activity, whereas substitutions like methoxyl and acetoxyl groups reduced antioxidant 

activity remarkably. DZG, which hold an extended conjugated system was found to be active.45 

 

Kancheva et al., synthesized DZG and dimer of DZG 29 and screened their antioxidant activity 

by bulk lipid autoxidation method, which involved DZG and compound 29 as individual 

compounds (1 mM), as equimolar binary (1:1) and ternary (1:1:1) mixtures with TOH and/or 
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ascorbyl palmitate (AscPH). The highest oxidation stability of lipid substrate in the presence of 

individual compounds was found for TOH, followed by 29 and DZG, which was established from 

the main kinetic parameters (antioxidant efficiency, reactivity and capacity). AscPH did not 

demonstrate any protective effect. Synergism was achieved for the binary mixtures of (TOH + 

AscPH) [42.4%], (DZG + TOH) [32.4%] and (DZG + AscPH) [35.6%] and for the ternary 

combination of (DZG + TOH + AscPH) [28.7%]. Unusual protective effects observed were 

explained on the basis (of results) of TOH regeneration and its content determined by HPLC.46 

 

Li et al., have reported a new series of asymmetrical mono-carbonyl ferrocenylidene curcumin 

and their dihydropyrazole compounds from dehydrozingerone derivatives (30-44, Table 1) and 

investigated their antioxidant abilities in protecting DNA against AAPH induced oxidation and 

scavenging ABTS cationic radical. Compound 40 possessed the highest scavenging of ABTS+˙, 

whereas compound 33 had higher protecting property of DNA against AAPH induced oxidation. 

These results suggest that the antioxidant abilities of compounds would increase when the 

ferrocenyl group was introduced along with other substituent groups in the molecule.47 

Table 1: Structures of asymmetrical mono-carbonyl ferrocenylidene curcumin and their 

dihydropyrazole compounds from dehydrozingerone derivatives. 
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Ferrocenylidene derivatives  Dihydropyrazole derivatives 

 R1 R2 R3   R1 R2 R3 

30 H H H  38 H H H 

31 H OH H  39 H H H 

32 H H H  40 H N(CH3)2 H 

33 H N(CH3)2 H  41 H OH H 

34 H OH H  42 H H OH 

35 H H OH  43 H OH OCH3 

36 H OH OC2H5  44 H OH OC2H5 

37 NO2 OH OCH3      

(Note: It is phenyl instead of ferrocenyl for structures 30, 31 and 38 only) 

2.2 Dehydrozingerone as antimutagen 

The phyto-constituents are vital and important part of our routine diet providing protective effects 

from mutagens. Numerous phyto-constituents namely coumarin, xanthones, terpenoid, pigments, 

anthraquinone, tannin, phenolic, cympol, halogenated flavonoids, dibenzoate diterpenes, 

organosulfur, nitrogenous compounds and curcuminoids from various plant species have been 

reported to have antimutagenic properties.48   

Synthetic curcuminoid derivatives have been reported to have antimutagenic properties.49–52 

Monocarbonyl analogs of curcumin are widely explored as they have better pharmacokinetic and 

pharmacodynamic properties than curcumin and are emerging as a new class of anticancer 

agents.53,54 Dehydrozingerone, isolated from ginger (Zingiber officinale) has the structure 

corresponding to half analog of curcumin and also monocarbonyl analog of curcumin have been 

reported to have antimutagenic properties. Following discussion reviews about DZG as an 

antimutagen. 

Motohashi et al., have investigated antimutagenic activities of DZG and their synthetic analogs 

(45-56) against UV-induced mutagenesis in Escherichia coli. Studies suggest that the effect of 

DZG against the UV-induced mutagenesis was poor, but benzalacetone (46), a dehydroxy–

demethoxy product of DZG revealed the strongest antimutagenic activity among the ring-

substituted analogs except for 2-hydroxybenzalacetone (47). Results also disclosed that the ring-

substitution with a group such as 4-hydroxyl, methoxyl or methyl reduced the antimutagenic 

activity, while α,β-unsaturated (double bond) carbonyl functionality was essential for the 
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antimutagenicity. Compounds 46, 47 and 56 decreased both the UV- and γ-induced mutagenesis. 

This clearly suggests that ring-substitution was not effective and a double- or triple-bonded 

carbonyl system was required for the antimutagenic activity.7 

 

Motohashi et al., have evaluated anti-tumor activity of DZG and its related compounds (57, 26, 

8, 47, 48, 50, 51, 2, 56, 46 and 58) by determining the inhibitory effect on Epstein-Barr virus early 

antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). The IC50 

of DZG was found to be 95 mol ratio/TPA, which was almost similar to curcumin (57) 97 mol 

ratio/TPA. Isoeugenol (2) that lacks carbonyl group in the side chain, exhibited 50% inhibition 

with 38 mol ratio/TPA, thus accounting for one-third antioxidant activity of DZG. Compounds 

26, 8 and monosubstituted compounds were also tested for the EBV-EA activation. Compound 

26, IC50 = 107 mol ratio/TPA was less effective than DZG while compound 8 (IC50 = 50) exhibited 

more potent activity than DZG. Compounds 47, 48 and 51 were found to be more active whereas 

compound 50 was less active as compared to DZG. The influence of the carbon-carbon bond 

attached to the benzene ring was also assessed with compound 56 having a triple bond, 46 with a 

double bond and 58 with a single bond. The inhibitory effect was significant and highest in 56 

(IC50 = 48 mol ratio/TPA) followed by 46 (IC50 = 129 mol ratio/TPA) and then 58 (IC50 = 222 

mol ratio/TPA).55 
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Rao et al., have reported the cyto-protective effects of DZG and two other structurally related 

phenolic compounds Eugenol (1) and Isoeugenol (2) against cisplatin-induced toxicity in vero 

(African Green Monkey Kidney) cells by observing variation in percentage tryphan blue 

exclusion (TBE), percentage release of lactate dehydrogenase (LDH), and glutathione (GSH) 

content. Cisplatin is known to cause cytotoxicity in kidney cells due to oxidative injury, 

involvement of hydrogen peroxide in outer medullary cortical tubule cells and peroxidation of 

cell membranes. Several literature reports reveal that various antioxidants are known to prevent 

cisplatin induced cytotoxicity. Among the tested series, compound 2 was the most active followed 

by 1 and then DZG in preventing cell death induced by cisplatin, while none of the compounds 

were able to prevent the reduction of the GSH content.56 

Motohashi et al., in conjunction with previous studies, have further reported the structure activity 

relationship of benzalacetone derivatives as potential anti-tumor agents by assaying in EBV-EA 

activation model. The results of benzalacetone derivatives were in agreement with the previous 

findings.57 

Tatsuzaki et al., have synthesized twenty-eight new compounds (summarized in Table 2 and 

Table 3) related to DZG, isoeugenol and 2-hydroxychalcone, which were evaluated for their in 

vitro activity against a panel of human tumor cells viz. Human epidermoid carcinoma of the 

nasopharynx (KB), multidrug-resistant expression P-glycoprotein (KB-VCR) and human lung 

carcinoma (A549). From results it was clear that other than isoeugenol analogs 76-84, most 

compounds exhibited moderate to strong cytotoxic activity against the cell lines tested. 

Particularly, compound 65 displayed significant cytotoxic activity against the A549 (IC50 = 0.6 

μg/mL), while compounds 9, 66 and 67 showed comparable cytotoxic activity against both KB 

(IC50 = 2.0, 1.0, and 2.0 μg /mL) and KB-VCR (IC50 = 1.9, 1.0, and 2.0 μg/mL) respectively, 

suggesting that they are not substrates for the P-glycoprotein drug efflux pump.58 

 

 

 

 



  

Chapter 2 

 

40 Girish A. Hampannavar UKZN-2016 

Table 2: Structures of DZG and chalcone analogs (8, 59, 60, 46, 61, 9, 62, 63, 64, 65, 66 and 67) 

 

 R1 R2 R3 R4 

DZG H OMe OH Me 

8 OH OMe H Me 

59 H OH OMe Me 

60 OH H OMe Me 

46 H H H Me 

61 H OEt OH Me 

9 OH OEt H Me 

62 OH F H Me 

63 H F OMe Me 

64 H OMe OH Ph 

65 OH OMe H Ph 

66 H OH OMe Ph 

67 OH H OMe Ph 
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Table 3: Structures of C-41-alkylated DZG (26, 68-75) and Isoeugenol (76-84) analogs 

 

DZG 

R1 = COMe 

Isoeugenol 

R1= Me 
R2 

68 76 
 

69 77  

70 78  

71 79 
 

72 80 
 

26 81 Me 

73 82  

74 83  

75 84 
 

 

In 2006, Ex-Elixis INC reported pyrazole derivatives as tyrosine kinase modulators in treatment 

of cancer. This study reports anticancer potential of compound 85, which is analogous to DGZ 

derivative.59 
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Conjugation of two bioactive compounds/scaffolds has been effective strategy in designing 

pharmacophores as ligands, inhibitors and other class of drugs. Tatsuzaki et al., have synthesized 

some novel conjugates of DZG with triterpenoids as promising cytotoxic agents. In this work, 

triterpenoids namely glycyrrhetinic acid (GA, 86), oleanoic acid (OA, 87) and ursolic acid (UA, 

88) were esterified with DGZ (89-91) to yield eleven different novel DZG analogs 92-102. These 

synthesized compounds were screened for their in vitro anti-cancer activity against nine different 

human cancer cell lines as depicted in Table 4.  

Table 4: Data for GA-DZG conjugates against human tumor cell replication. 

Compound 
ED50 (μM)/cell linea 

KB KB-
VIN A549 1A9 HCT-

8 
ZR-
751 PC-3 DU-

145 
LN-
Cap 

92 1.6 2.5 2.0 0.9 1.7 2.8 1.4 3.1 0.6 

93 0.8 2.8 2.2 0.8 1.9 3.0 1.1 3.6 2.8 

94 0.9 1.9 2.8 1.6 2.0 1.9 2.8 9.9 6.5 

95 6.2 >15 15.5 5.9 2.6 >15 7.4 >15 1.9 

96 1.8 1.7 1.7 1.1 2.7 5.2 3.3 5.8 1.1 

97 2.9 13.2 3.0 1.8 4.9 8.8 3.5 >15 6.8 

98 3.0 8.7 3.2 1.3 2.2 2.7 1.6 2.7 4.4 

99 NAb NA >14 >14 >14 NA >14 >14 >14 

100 9.9 NA >14 13.3 >14 >14 14.1 >14 14.1 

101 NA NA NA >14 >14 NA 14.1 >14 14.1 

102 >14 >14 NA NA >14 NA >14 13.0 >14 

GA, 86 >21 >21 NA >21 19.5 NA >21 >21 >21 

DZG NA NA >52 33.9 >52 >52 >52 >52 51.0 

DOXc 0.1 4.97 0.18 0.02 1.20 0.04 0.26 0.15 0.04 
aHuman epidermoid carcinoma of the lung (A549), ovarian (1A9), colon (HCT-8), breast 

(ZR-751), prostrate (PC-3, DU-145, LN-Cap); bNot active; cDoxorubicin 

 

Compounds 92, 93 and 94 exhibited significant cytotoxic activity against LN-Cap, 1A9, and KB 

cells lines with ED50 values of 0.6, 0.8 and 0.9 μM respectively. Conjugates of DZG and OA or 

UA were inactive, suggesting that the GA component was critical for activity. In general, this 
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study unearths that GA and DZG as individual components were inactive whereas their conjugates 

GA-DZG displayed potent cytotoxic activity. Thus GA-DZG conjugates were established as new 

chemical entities in anti-cancer drug discovery and development.60 

 

Nakagawa-Goto and co-others have reported newer conjugates of cytotoxic drug, paclitaxel (103) 

and various dietary antioxidants as new class of antitumor drugs. Dietary antioxidants namely 

retinol (104, Vitamin A), retinoic acid (105, Vitamin A acid), α-tocopherol (106, Vitamin E), 
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2,2,5,7,8-pentamethyl-6-chromanol (107, Vitamin E analog), curcumin (57), DZG and its analog 

(8). In addition, certain antioxidant flavonoids such as galangin (108) and coumarins, chrysin 

(109) and 4-methylumbelliferone (110) were also conjugated with paclitaxel through an ester 

linkage. All these novel conjugates were tested against various multi-drug resistant human cancer 

cell lines. These tested conjugates showed selective inhibition towards ovarian carcinoma (1A9) 

and nasopharynx carcinoma (KB) cells. However, little or no activity was observed against other 

tested cell lines. Paclitaxel conjugates with DZG (111) and 4-methylumbelliferone (112) were 

found to be highly active against 1A9 (ED50 = 0.005 μg/mL) and KB (ED50 = 0.005 and 0.14 

μg/mL,) cells respectively. The glycinate ester salt of vitamin E 113, conjugated with 103 showed 

strong inhibitory activity against human pancreatic cancer cell (Panc-1) with less effect on the 

normal ovarian epithelial cell line (E6E7) and emerged as a promising lead candidate in anticancer 

drug discovery.61 
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Tatsuzaki et al., have synthesized a series of forty new DZG analogs (Table 5 and 6) and in vitro 

anticancer activity was evaluated against TPA-induced EBV-EA activation assay. Among the 

synthesized compounds, the prenylated analogs 114 and 123–125 exhibited the most significant 

and promising activity (100% inhibition of activation at 1 x 103 mol ratio/TPA and 82–80%, 37–

35% and 13–11% inhibition at 5 x 102, 1 x 102 and 1 x 10 mol ratio/TPA, respectively).62 

Table 5: Structures of DZG analogs (8, 9, 46, 59-67). 

 

 R1 R2 R3 

DGZ 3-OMe 4-OH Me 

8 2-OH 3-OMe Me 

9 2-OH 3-OEt Me 

46 H H Me 

59 3-OH 4-OMe Me 

60 2-OH 4-OMe Me 

61 3-OEt 4-OH Me 

62 2-OH 3-F Me 

63 3-F 4-OMe Me 

64 3-OMe 4-OH Ph 

65 2-OH 3-OMe Ph 

66 3-OH 4-OMe Ph 

67 2-OH 4-OMe Ph 
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Table 6: Structures of DZG (114-126) and isoeugenol (127-135) analogs. 

 

DZG 
R4= 

COM
e 

R1 R2 R3 
Isoeugeno
l R4= Me 

114 H OMe 
 

127 

115 H OMe  128 

116 H OMe  129 

117 H OMe 
 

130 

118 H OMe 
 

131 

119 H OMe  132 

120 H OMe  133 

121 H OMe  134 

122 H OMe 
 

135 

123 
 

OMe H - 

124 H 
  - 

125 
 

H  - 

126 
 

F H - 

 

Yogosawa et al., were the first to elucidate the growth-inhibitory mechanisms of DZG and its 

structural isomers (8 and 59) in human colon cancer cells (HT-29), thus providing some insights 

into the molecular mechanism of action of DZG. This study suggested that DZG inhibits the cell 

growth by inducing cell-cycle arrest at the G2/M phase by up-regulation of p21 in a dose 

dependent manner. It is quite evident from this study that accumulation of ROS was interrelated 
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with growth-inhibitory effects, thus suggesting DZG analogs as potential chemotherapeutic 

agents for colon cancer.63 

Woo et al., have reported the synthesis of a new library of some benzimidazolyl curcumin mimics 

by aldol condensation of DZG and DZG analogs with substituted benzimidazolyl-2-carbaldehyde. 

The in vitro anticancer activity was performed by colorimetrically using MTT (3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay model against various human 

cancer cells viz. breast adenocarcinoma (MCF-7), neuroblastoma (SH-SY5Y), hepatocellular 

carcinoma (HEPG2) and Lung carcinoma (H460). Among the tested series, compound 136 (IC50 

= 1.0 and 1.9 μM) displayed most promising cytotoxicity against SH-SY5Y and Hep-G2 cells 

respectively, while compound 137 (IC50 = 1.9 μM) presented significant activity against MCF-7 

cancer cells.64 

 

Liu et al., in an effort to develop agents for treating human multiple myeloma (MM), have 

reported the synthesis of a series of novel hybrid molecules of thalidomide (138) and curcumin 

(139-142) along with DZG (143). The anticancer activity of these synthesized hybrids was 

evaluated against various human multiple myeloma cells (MM1S, RPMI8226, U266) and human 

lung carcinoma cells (A549). Perusal of results, it was found that compound 141 (di-ketone) and 

143 (mono-ketone) significantly inhibited the cell growth of all three cell lines by ≥ 90% at 10 

μM, while compound 142 was inactive, thus suggesting that the 4-hydroxy-3-methoxy 

benzylidene moiety may be an essential scaffold for antiproliferative activity. Further, there was 

an attempt to study whether these active compounds produce cytotoxic effects through the 

modulation of ROS. Interestingly, compounds 141 and 143 increased the production of ROS in 

U266 cells at both 3 and 10 μM concentrations, leading to G1/S arrest, apoptosis and cell death. 

These findings suggest that the hybrid compounds could be a new leads against human multiple 

myeloma.65 
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In 2013, Uha Mikakuto Co. Ltd., reported the synthesis of novel DZG derivative (144) having 

potent anticancer activity, particularly against oral cavity cancer than DZG.66 
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Eom et al., have synthesized a library of curcumin derivatives mainly DZG mimics (145) having 

benzimidazole functionalities and evaluated them against multidrug resistant (MDR) ovarian 

cancer cell lines (NCI/ADR-RES). The cytotoxicity assay was carried out by MTT assay against 

both MDR strains with over-expressed P-glycoprotein (P-gp) and non-MDR strains (OVCAR-8) 

without P-gp. The cytotoxicity results against non-MDR cancer cells demonstrated reasonably 

strong to moderate potency suggesting comprehensive increase in activity after addition of the 

benzimidazole group to feruloyl structure. The inhibitory effect on MDR was found to be weaker 

in contrast to non-MDR cancer cells. However, after taking into consideration the resistance factor 

(RF), that is, the ratio of the IC50 values of MDR cells to that of non-MDR, the library illustrated 

a small RF values, which explains that the divergence of the inhibitory potency between MDR 

ovarian cancer cell (NCI/ADR-RES) and non-MDR ovarian cancer cell (OVCAR-8). Compounds 

146, 147 and 148 displayed strong cytotoxic effect on both type of cancer cells with the RF values 

1.7, 1.7 and 1.4, respectively. Compound 149 showed inhibition with IC50 value of 23.2 μM on 

MDR and 0.7 μM on non-MDR with high RF value of 33.1. This suggests the incapability of 

compound 149 to differentiate MDR cancer cells from non-MDR cells67. 

 

 

Bode et al., have disclosed the synthesis of novel DZG analog (150) and reported them for Aurora 

B kinase inhibition activity in cancer therapy68. 
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2.3 Dehydrozingerone as anti-inflammatory 

Curcuminoids have been reported as anti-inflammatory agents69. Many of the curcuminoids are 

synthetically tailored and studied for anti-inflammatory properties70–72. Following discussion 

elaborates research employing DZG as anti-inflammatory agents. 

Elias et al., have reported the synthesis of a novel series of substituted 4-phenyl-3-buten-2-ones 

(151-155) and screened them for in vivo anti-inflammatory activity by carrageenan-induced paw 

edema in rats. Among the tested series, most of the compounds exhibited a comparable activity 

with DZG. In particular, compounds 25 and 152 displayed significant anti-inflammatory activity, 

while compounds 151 and 51 revealed little or no activity.9 

 

Jayasekhar et al., have reported the synthesis of DZG Mannich bases by two methods. The first 

method involved the treatment of DZG with secondary alkyl amine hydrochlorides and 

paraformaldehydes, whereas the second method was direct aldol condensation of vanillin with 4-

alkylaminobutan-2-one. All the synthesized compounds were evaluated for anti-inflammatory, 

analgesic and antipyretic activities. Perusal of results it was found that most of the compounds 

showed superior anti-inflammatory activity compared to DZG. In particular, compounds 156, 157 

and 160 exhibited significant anti-inflammatory activity. Compounds 158 and 160 displayed the 

most promising analgesic activity whereas 156 and 158 presented excellent antipyretic activity.73 
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Santhakumari et al., have reported novel method for synthesis of newer curcuminoids (3, 162 and 

163) by Claisen-Dieckmann condensation of α,β-unsaturated ketones (both DZG and 4-(4-

methoxyphenyl)but-3-en-2-one) along with various esters in presence of sodium ethoxide and 

dimethyl sulphoxide. Further employing the same reaction procedure, authors have reported 

DGZ-Ibuprofen derivative (163) where the α,β-unsaturated moiety of DZG and the ester group of 

ibuprofen was condensed. The synthesized compound 163 was screened for analgesic activity by 

acetic acid-induced writhing in albino mice. Although compound 163 demonstrated analgesic 

activity (59% at 1.0 mmol/kg), it was less compared to Ibuprofen (69% at 1.0 mmol/kg). 

Compound 163 was also screened for anti-inflammatory activity for acute, sub-acute and chronic 

models using reported methods. Results of this study suggested that 163 displayed significant 

activity (76%) compared to ibuprofen (73%) in equimole dose. Compound 163, also showed 

predominant activity against formaldehyde induced arthritis at 0.5 mmol/kg dose level. However 

even the compound 163 did not induce gastrointestinal ulceration at dose level of 1 mmol/kg 

suggesting it to be a potent anti-inflammatory compound without any ulcerogenic side effects. 

These overall findings suggest that compound 163 emerged as the most promising anti-

inflammatory agent with less gastrointestinal side effects.74 
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2.4 Dehydrozingerone as anti-depressant 

Various natural products have been explored as herbal medicines for treating depression.75–77 

Numerous classes of phytoconstituents especially curcuminoids, flavonoids and poly phenols 

have been reported to possess antidepressant properties.78 A brief account from literature explains 

the use of DZG as antidepressant. 

Martinez et al., have assessed the antidepressant property of DZG and the involvement of 

serotonergic and noradrenergic systems. Authors have also established the in vitro antioxidant 

activity of DZG by evaluating peroxidation in the hippocampus, cortex and cerebellum of mice. 

The participation of serotonergic and noradrenergic systems was verified by the tail suspension 

test (TST), forced swim test (FST) and yohimbine lethality test in mice models. DZG significantly 

reduced the period of immobility in the TST and FST, suggesting an antidepressant-like profile. 

Thus signifying that DZG could be a natural stand-in for development of antidepressants having 

little or no adverse effects.79 

2.5 Dehydrozingerone against Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder and pathologically illustrated by 

gradual loss of memory, way of thinking and other cognitive functions along with dementia.  

Kim et al., reported the synthesis of novel shogaols derivatives (164-173) prepared by the 

reduction of DZG. In this work authors evaluated the significance of the side-chain length 

connected to DZG in defending cells from βA insult using PC12 rat pheochromocytoma and IMR-

32 human neuroblastoma cells. The cytoprotective property of synthesized compounds against 

βA insult was established using MTT assay. Results suggested that the efficacy of cell protection 

from βA insult increased with the increase in side chain. From this series compound (173) 

exhibited the best results.80 

 

AD is characterized by the buildup of amyloid plaques and neurofibrillary tangles in the brain and 

thus the in vivo imaging of plaques and tangles would be of great assistance for the early finding 

of AD. Ryu et al., reported the synthesis of a series of newer DZG (174-179) and curcumin (180-



  

Chapter 2 

 

54 Girish A. Hampannavar UKZN-2016 

181) derivatives and evaluated them for in vitro and in vivo as β-amyloid (βA) plaque imaging 

probes by positron emission tomography (PET) or single photon emission computed tomography 

(SPECT). The curcumin analogs exhibited superior binding affinities for βA aggregates than DZG 

derivatives. In particular, compound 181 was found to be most potent ligand having suitable 

lipophilicity, realistic initial brain uptake and metabolic firmness in the normal mouse brain. 

These outcome suggest that compound 181 was emerged as a potential candidate for βA plaque 

imaging.81 

 

2.6 Dehydrozingerone as anti-malarial 

Molecular hybridization-based drug design approach82 has been exploited by many researchers in 

order to develop new hybrid chemical entities (NHCEs) as promising drug candidates. It is well 

known that more efficacious drug candidates with synergistic activity can be designed by joining 

two or more biologically active pharmacophores or heterocyclic systems in a single molecular 

framework. Recently Guantai et al., have reported the synthesis of some series of novel DZG 

derived chalcones and dienone hybrid derivatives containing aminoquinoline and other 

nucleoside templates as potential antimalarial agents (182-229). Amongst all, compound 202 

exhibited most promising antimalarial activity against three strains of Plasmodium falciparum.83 
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2.7 Dehydrozingerone as antifungal/antifeedant 

Agarwal et al., have reported the isolation of various natural compounds like curcumene (230), 

zingiberene (231) and 6-gingerol (232, ginger oleoresin) from fresh rhizomes of Zingiber 

officinale. Authors have also reported the synthesis of DZG derivatives [6]-dehydroshogaol (233), 

zingerone (164) and dihydrozingerone (234). These tested compounds displayed modest insect 

growth regulatory (IGR) and antifeedant activity against Spilosoma obliqua and substantial 

antifungal activity against Rhizoctonia solani. Amongst the series tested, compound 233 exhibited 
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maximum IGR activity (EC50 = 3.55 mg/ml) while its DZG portion has imparted maximum 

antifungal activity (EC50 86.49 mg l-1).84 

 

Kubra et al., have evaluated the antifungal effectiveness of DZG against Aspergillus oryzae, 

Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Fusarium oxysporum and 

Penicillium chrysogenum. The MIC and fungicidal concentration was ranging from 755 to 911 

μM and 880 to 1041 μM respectively, which suggests that these fungal species were found 

vulnerable to DZG. Authors have also studied scanning electron microscopy to monitor 

morphological changes such as cell lysis, inhibition and morphological alterations in hyphae and 

sporulation in A. ochraceus on treatment with DZG. This study provides an insight for exploiting 

DZG as a potential antifungal scaffold with the presence of α,β-unsaturated carbonyl (C = O) 

group (conjugation system) on the aromatic ring with methoxyl and phenolic hydroxyl groups.85 

2.8 Dehydrozingerone as Antiplatelet 

Shih et al., have reported the synthesis of some novel DZG derivatives derived from shogaol and 

gingerol and evaluated them for anti-platelet aggregation activity. Amongst the synthesized 

compounds, [6]-paradol 235 displayed the most significant inhibition of platelet aggregation 

induced by arachidonic acid.86 

 

2.9 Dehydrozingerone as β-adrenoceptor antagonist 

Wu et al., have reported the synthesis of a novel dehydrozingeronolol (236) derived from DZG, 

and evaluated it for cardioselectivity, β-adrenoceptor antagonist and intrinsic sympathomimetic 
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activity. Results suggested that compound 236 blocked (-) isoproterenol-induced tachycardia 

effects, thus signifying its bradycardia effect along with β-adrenoceptor blocking activities.87  

 

2.10 Dehydrozingerone: in silico studies 

Singh et al., have reported in silico model to study the binding mode of curcumin and DZG with 

Human papilloma virus protein (HPV16 E6), a key protein dynamically participating in oral and 

cervical cancers and a model target for restoring the tumor suppressor role of p53. The binding 

interactions of the compounds have been studied by molecular docking using Autodock4. In this 

work, curcumin was found to have best binding interactions at the target site as compared to other 

curcuminoids, demethoxy and bis-demethoxy curcumin, which have lower but similar potential. 

Eighteen other naturally occurring congeners of curcumin were also docked in order to find the 

best candidate. However, only chlorogenic acid (237) was found to have considerable binding 

energy than curcumin itself (Table 7). This study has provided an insight for the design and 

development of drugs against both oral and cervical cancers form natural origin.88 
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Table 7: Automated Docking Analysis through Scigress Explorer 7.7.0.47. 

Ligands PMF score dock flexible ligand in rigid active 
site (kcal/mol) through Scigress 7.7.0.47 

Bis demethoxy curcumin −51.503 

Caffeic acid −62.267 

Capsaicin −50.654 

Cholorogenic acid −99.782* 

Cassumunins A −44.556 

Cassumunins B −55.462 

Curcumin −85.699* 

Curcumin dipiperoyl ester −74.859 

Cyclocurcmin −54.515 

Demethoxy curcumin −78.974* 

Dehydrozingerone −41.759# 

Diaryl pentanoids −61.251 

Diaryl pentanoids II −54.224 

Dihydro guarietic acid −65.578 

Eugenol −37.275 

Ferulic acid −46.627 

Piperic acid −60.454 

Quercetin −67.679 

Yakuchinone A −45.20 

Yakuchinone B −53.811 

Zingerone −40.826 

*Inhibitors showing significant docking results; # DZG 

 

Shen et al., have reported the molecular docking simulation studies of curcumin (57) and tautomer 

of curcumin (238) and its degradation products (239-242) over Xanthine oxidase (XO), an 
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enzyme capable of generating reactive oxygen species and having roles in pathogenesis of many 

diseases. As such curcumin did not display any inhibitory activity against XO because of its 

twisted steric bulkiness. However, degradation products of curcumin were found to fit efficiently 

into the binding pocket of XO, which was built by using salicylate as reference ligand. Two 

natural polyphenols, quercetin and luteolin known to possess high inhibitory activities against XO 

were chosen to validate the model. Quercetin displayed six binding interactions with amino acid 

residues namely Arg880, Arg912, Phe914, Phe1009, Thr1010 and Glu1261, while luteolin 

showed interactions with residues Asn768, Arg880, Phe914, Phe1009, Thr1010 and Ala1079 of 

XO. It was observed that both quercetin and luteolin have common binding region with four 

amino acid residues. Compound 239, a major degradation product of curcumin, showed 

comparable binding affinity that is, 4.57 μm with that of quercetin (1.12 μm) and luteolin (1.45 

μm). DZG a minor degradation product was seen to bind with Phe914, Phe1009, Thr1010 and 

Ser876 residues of XO with a binding affinity of 91.2 μm. Thus this study highlighted the 

mechanisms underlying inhibition of XO.89 

 

2.11 Dehydrozingerone reported for miscellaneous activities 

Transfer of vascular smooth muscle cells (VSMC) is known to be linked with development of 

atherosclerosis. Growth factors and ROS produced during vascular injury are considered to play 

a major role in pathogenesis of atherosclerosis. Therefore, inhibition of growth factor or ROS-

mediated signaling may signify a potential therapeutic approach for interference with the 

progression of atherosclerosis. Liu et al., have explored the effect of DZG on platelet-derived 

growth factor (PDGF) stimulated VSMC movement, proliferation, and collagen synthesis. In an 

effort to understand the mechanism, authors have studied the effect of DZG on hydrogen peroxide 

(H2O2)-stimulated PDGF receptor signaling. Further, growth factor–mediated cell proliferation is 

negatively regulated by protein tyrosine phosphatases (PTPs); therefore, authors have also 

assessed the effect of DZG on PTP activity in cells treated with H2O2. In this study the efficacy 

of DZG with curcumin and isoeugenol (structural analogs of DZG) was compared in order to 
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understand the structural necessities for activity and DZG emerged as an effective inhibitor of 

growth factor/H2O2-stimulated VSMC functions by inhibiting the oxidation of cellular 

phosphatases.90 

Oxidative stress is one of the interfering factors in wound healing course. This stress once 

triggered by the wound results in the production of ROS, thereby delaying usual wound repair. 

So reducing the level of ROS would be an important approach to improve healing process. Rao 

et al., have demonstrated the influence of DZG as a ROS scavenger on both normal and 

dexamethasone delayed wound healing in albino rats. It was found that DGZ privileged the 

healing of re-sutured incision wounds as compared to control. Further, there was significant 

improvement in granulation breaking strength and the rise in the hydroxyproline (OHP) and lysyl 

oxidase (LO) levels in the granulation tissue was also observed clearly suggesting that the DZG 

was influential and supportive in hastening the healing process in both normal and 

dexamethasone-suppressed wounds in rat models.91 

Soo et al., have reported the blood sugar lowering property of DZG. In this study authors have 

revealed that DZG increases phosphorylation or activation of AMK kinase to bring about a drop 

in blood sugar levels and boost insulin sensitivity as well as reduce body fat. Thus DZG could be 

an ideal molecule for drug discovery in the treatment of Type II diabetes mellitus and obesity.92 

Kim et al., have investigated the effects of DZG on metabolic profiles in mice. It was evidently 

found that DZG suppressed high-fat diet (HFD)-induced increase in glucose and cholesterol 

through a mechanism involving AMP-activated protein kinase (AMPK). This was due to 

increased phosphorylation of AMPK in skeletal muscles. Maximum AMPK activation by DZG 

was found at the concentration of 30 μM for 10 min. In addition, DGZ was also found to activate 

p38 mitogen-activated protein kinase (MAPK) signaling in an AMPK-dependent manner and also 

increase in GLUT4 (major transporter for glucose uptake) expression in skeletal muscles. These 

all findings thus explain the possible molecular mechanism of AMPK pathway activation in 

skeletal muscle by DZG.93 

Martinez et al., have synthesized two new organochalcogen-containing zingerone derivatives and 

evaluated for their antioxidant properties by ABTS+˙ assay. Novel compounds, 243 and 244 

exhibited improved activity over DZG (IC50 8.0 ± 1.0 μM) with IC50 values of 8.0 ± 1.0 μM and 

6.5 ± 0.5 μM, respectively, with two-fold increase in activity as compared to phenolic 

antioxidants. The enhancement in activity was mainly attributed to a mechanism that eliminates 

phenylselenyl or phenylthiyl radicals.94 



  

Chapter 2 

 

62 Girish A. Hampannavar UKZN-2016 

 

3 Conclusion and future perspective 

A great deal of time has been taken to prove that the time-honored medicinal plants have the 

power to cure. Drugs derived from natural sources have always been precious precursors for 

modern medicines. Taking a step one day at a time, in the near future, the nature’s enormity and 

diversity would provide us the solutions to fight even the most fearsome diseases. To overcome 

the problems associated with curcumin, curcuminoids and the degradants of curcumin have been 

looked upon for molecular variations in developing diverse scaffolds with least side effects and 

improved bioavailability. These curcuminoids and degradation products of curcumin have also 

helped towards improving its metabolic profile in humans as well as mechanism leading to 

pharmacological responses15,95. Therefore, over the course of years several studies have come up 

with compounds or structural analogs of curcumin (mono-carbonyl analogs or mono-carbonyl 

enones) that have excluded β-diketone moiety to restrain stability and improve metabolic profiles. 

One such distinguished degradant of curcumin is DZG, which is endowed with a broad range of 

biological activities like antioxidant, anticancer, anti-inflammatory, anti-depressant, anti-

malarial, antifungal, anti-platelet and many others. Therefore, in this review we have put forward 

an extensive effort to revise and systematically discuss the research involving DZG with its 

biological diversity. In conclusion, it is quite evident that DZG is an imperative scaffold and its 

numerous analogs have emerged as a promising leads in the design and development of some 

novel medicinally active compounds with improved metabolic, pharmacokinetic and 

pharmacological profiles, indicating that there is much scope for further investigation.  
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Abstract 

Series of styryl hydrazine thiazole hybrids inspired from dehydrozingerone (DZG) scaffold were 

designed and synthesized by molecular hybridization approach. In vitro anti-mycobacterial 

activity of synthesized compounds was evaluated against Mycobacterium tuberculosis (Mtb) 

H37Rv strain. Among the series, compound 6o exhibited significant activity (MIC = 1.5 µM; IC50 

= 0.48 µM) along with bactericidal (MBC = 12 µM) and intracellular anti-mycobacterial activities 

(IC50 = < 0.098 µM). Furthermore, 6o displayed prominent anti-mycobacterial activity under 

hypoxic (MIC = 46 µM) and normal oxygen (MIC = 0.28 µM) conditions along with anti-

mycobacterial efficiency against isoniazid (MIC = 3.2 µM for INH-R1; 1.5 µM for INH-R2) and 

rifampicin (MIC = 2.2 µM for RIF-R1; 6.3 µM for RIF-R2) resistant strains of Mtb. Presence of 

electron donating groups on the phenyl ring of thiazole moiety had positive correlation for 

biological activity, suggesting the importance of molecular hybridization approach for the 

development of newer DZG clubbed hydrazine thiazole hybrids as potential anti-mycobacterial 

agents. 
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1 Introduction 

Tuberculosis (TB) is a chronic necrotizing bacterial infection caused by Mycobacterium 

tuberculosis (Mtb), which has been a bane of humanity for thousands of years and remains as one 

of the rampant health problems in the world. TB is an ancient enemy and current threat that has 

been ranked among the foremost killers of the 21st century.1 According to World Health 

Organization (WHO) report, around 9 million people were found infected and around 1.5 million 

casualties occurred because of TB. Besides the life threatening strains of MDR-TB (Multi Drug 

Resistance Tuberculosis) are appearing, some of which can lead to high mortality rate (e.g., 72-

89%) with death occurring in short period (4-16 weeks).2 In 2013 around 480,000 affirmative 

cases of MDR-TB were witnessed.3 India, China, the Russian Federation and South Africa have 

almost 60% of the world’s cases of MDR-TB. In addition, the risk becomes even greater if the 

person is co-infected with the HIV (human immunodeficiency virus).4 The global resurgence of 

TB and development of drug resistance necessitates for an imperative attention of medicinal 

chemists to develop innovative anti-mycobacterial agents as no new classes of anti-TB agents 

have been developed since the introduction of rifampin in to clinical practice in 1960s. 

It is well known fact that trans-cinnamic acid analogs have recently drawn back the intentness of 

medicinal chemists due to their admirable pharmacological properties like antioxidant,5 

antibacterial6 and antitumor.7 Rastogi et al. have demonstrated the synergistic activity of trans-

cinnamic acid in amalgamation with INH, rifamycin and other recognized antimicrobial agents 

against Mtb.8 Further, Reddy et al. have reported the superior intracellular and in vivo activity of 

a cinnamoyl-rifamycin derivative (Figure 1) in contrast with rifamycin when tested against 

susceptible and MDR strains of Mtb along with M. avium complex (MAC).9 Several compounds 

resembling cinnamic acid and bearing styryl group or α,β-unsaturated carbonyl groups are 

reported for anti-mycobacterial activities (Figure 2).10 

 

Figure 1: Cinnamoyl-rifamycin derivative. 
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Figure 2: Compounds with styryl portion reported against M. tuberculosis H37RV. (I: MIC 6.49 

µM)11; (II: MIC 12.5 µg/mL)12; (III: MIC 6.25 µM)13 

From literature, it was also found that derivatives resulting by combining cinnamoyl portion with 

various chemical classes of compounds have been reported to possess promising anti-

mycobacterial activity.14–16 Besides, various drug-like heterocycles namely benzimidazoles17 and 

quinazolinones18 were integrated with cinnamoyl or aryl styryl groups have also been reported to 

augment the anti-mycobacterial properties. 

Dehydrozingerone (DZG), also known as feruloylmethane, a half structural analog of curcumin, 

is isolated from Curcuma longa. Chemically DZG is (E)-4-(4-hydroxy-3-methoxyphenyl)but-3-

en-2-one and possess an α,β-unsaturated carbonyl (styryl ketone) group that resembles the trans-

cinnamic acid structure. DZG analogs have been reported to possess broad range of biological 

activities like antioxidant, anticancer, anti-inflammatory, antidepressant, antimalarial, antifungal 

etc.19 

The thiazole nucleus is a common motif presently found in several FDA-approved drugs, such as 

the nonsteroidal anti-inflammatory drug meloxicam20 and the tyrosine kinase inhibitor dasatinib.21 

Recently, Meissner et al., have demonstrated the structure-activity relationships (SAR) of novel 

series of 2-aminothiazole analogs as effective anti-mycobacterial agents22 and Carradori et al., 

have reported microwave assisted method for the synthesis of substituted-thiazolyl hydrazines.23 

Therefore, thiazole is an essential scaffold in drug discovery since its derivatives known to possess 

wide spectrum of activities such as anti-hypertensive, anti-inflammatory, anti-HIV, anti-bacterial 

and anti-mycobacterial,24,25 which have tremendously captivated attention of medicinal chemists. 

Figure 3 highlights the molecular manipulation of DZG-thiazole moiety and their resultant anti-

mycobacterial activities. 
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Figure 3: The literature reported derivatives containing styryl and thiazoles moieties and their 

anti-mycobacterial activities along with the designed compounds. Compound 6o exhibited most 

promising anti-mycobacterial activity among the synthesized compounds. A: (E)-3-methoxy-5-

styrylcyclohexa-2,4-dien-1-one (MIC against H37Rv = 32 µg/mL)26; B: (E)-5-bromo-2-(3,4-

dimethoxystyryl)-1H-benzo[d] imidazole (MIC against H37Rv = > 7.25 µg/mL)17; C: 2-amino-5-

benzylthiazole-4-carboxylate (MIC against H37Rv = 0.06 µg/mL)27; D: Nitazoxanide (MIC 

against H37Rv = 16 µg/mL)28; E: Carbazolo-thiazole analog (MIC against H37Rv = 21 µM)24 

In view of the above facts and in continuation of our research program on the design and 

development of new anti-mycobacterial agents19,24,29 it was foreseen to amalgamate two 

biologically active pharmacophores (styryl portion of DZG and thiazole) in one molecular 

platform to engender a new scaffold for anti-mycobacterial evaluation. As shown in Figure 3, the 

designed hybrid analogs possess both DZG (comprising styryl) and thiazole motifs connected 

with each other via a hydrazine linker. These unifications were suggested as an effort to explore 

the possible synergistic influence of such structural hybridizations on the anticipated activity, 

hoping to discover a new lead structure that would have a promising anti-mycobacterial activity. 
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2 Chemistry 

The synthesis of a novel series of styryl hydrazine thiazole hybrids derived from DZG (6a-6o) 

was achieved through efficient and versatile synthetic routes. The starting material DZG (2) was 

prepared by using commercially available vanillin (1) by simple Aldol condensation with acetone 

in presence of base. Methylation of 2 was done with methyl iodide in presence of potassium 

carbonate in N,N-Dimethylformamide to yield (E)-4-(3,4-dimethoxyphenyl)but-3-en-2-one (3). 

Further, Schiff base of compound 3 was formed with thiosemicarbazide to yield 4 (Scheme 1). 

The various appropriately substituted 2-bromo-1-phenylethanones (5c-5o) were synthesized from 

their respective acetophenones. Compound (4) was then condensed with various freshly 

synthesized 2-bromo-1-(substituted phenyl)-ethanones (5a-5o) to yield corresponding final 

compounds i.e., 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-

(substituted phenyl)thiazoles (6a-6o; Scheme 2). The anticipated structures of the final 

compounds were in agreement with the spectral (IR, 1H NMR and 13C NMR) data obtained and 

were further substantiated by HRMS data, which is summarized in supporting information. 

Scheme 1¥ 

 
¥Reaction conditions: (i) Acetone, NaOH; (ii) CH3I, K2CO3, DMF, reflux, 1.5 h; (iii) 

Thiosemicarbazide, AcOH, CH3OH, reflux, 3 h. 

Scheme 2§ 

 
§Reaction conditions: (i) Br2, Ether, 0-5 ˚C for 5c; Br2, CHCl3, reflux, 3 h for 5d and 5g; Br2, 

CHCl3, 0-5 ˚C for 5e and 5f; CuBr2, EtOAc, CHCl3, reflux, 12 h for 5h-5o; (ii) methanol, reflux, 

3 h. 
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3 Results and discussion 

3.1 Synthesis and spectral studies 

The entire newly synthesized final compounds showed satisfactory analysis of their anticipated 

structures, which are summarized in experimental section. In general, the IR spectrum of 

compound (4) evidently displayed characteristic absorption bands around 3422.9 cm-1 for N-H 

(of NH2 group), 1552.69 cm-1 for C = N and 1159.88cm-1 for C = S groups. These observations 

were further confirmed from 1H NMR spectrum of compound 4 exhibited the presence of 

distinctive singlet signals at around  10.22, 8.22-7.76, 7.154-7.150, 3.79-3.76 and 2.11 for the 

N-H proton, NH2 proton, 2nd proton of phenyl ring, methoxyl (OCH3) protons and methyl (CH3) 

protons indicating its formation by a process of simple carbon-nitrogen bond creation with 

thiosemicarbazide in the presence of acetic acid as catalyst. In addition, the appearance of most 

informative doublet signals around  6.81-6.77 ppm (J = 16.53 Hz) and 7.06-7.01 (J = 16.84 Hz) 

confirms the presence of olefinic protons. 

From the IR spectrum of the compounds 6a-6o, it was observed that the disappearance of the 

characteristic bands due to NH2 (N-H Str.) and C = S groups while the appearance of moderately 

strong peaks around 3332.78-3128.29 cm-1 and 1597.2-1551.13 cm-1, are attributed to the N-H 

and C = N groups respectively, indicating the formation of thiazole nucleus by Hantzsch cyclo-

condensation reaction. The 1H NMR spectrum (400 and 600 MHz, DMSO-d6) of the final 

compounds (6a-6o) displayed some distinctive singlet signals at around δ 11.42-10.22 ppm for 

N-H proton, δ 7.21-7.20 for 2nd and δ 7.12-7.08 for 6th aromatic protons of DZG scaffold and δ 

2.17-2.08 ppm for methyl (N = C-CH3) protons respectively. In addition, the most informative 

singlet signal resonated around δ 7.70-7.31 ppm, which was attributed to the aromatic proton at 

H-5 of thiazole ring, thus indicating its formation through cyclo-condensation process. Whereas 

most characteristic doublet signals around δ 6.83-6.64 ppm (J = 16.52-16.24 Hz, Ph-HC=CH-) 

and δ 7.57-6.91 ppm (J = 16.52-14.76 Hz, Ph-HC=CH-) evidently indicated the presence of 

olefinic protons. This observation was found in consistent with previously reported similar type 

of compounds.30 Further, the unique singlet signals resonating around δ 3.82-3.77 ppm indicated 

the presence of methoxyl protons (OCH3) on the 3rd and 4th position of the DZG scaffold, while 

the hydroxyl (OH) protons on aromatic ring resonated as singlet signals around δ 11.24-10.86 

ppm. The various signals appeared as either doublets or multiplets around δ 8.29-6.77 ppm 

accounted for aromatic protons. The E-configuration was ascertained for all final derivatives on 

the basis of 2D NMR studies. These findings were further corroborated from their respective 13C 

NMR spectra of the title compounds. The characteristic signals resonated at around δ 169.53-

156.50 and 108.52-102.10 ppm were assigned to carbons of C-2 and C-5 of thiazole ring. The 
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most prominent carbon signals observed around δ 149.27-148.91 and 132.56-126.23 ppm 

accounted for aromatic carbons having methoxyl groups and olefinic (Ph-HC=CH-) carbons 

respectively. Further, the characteristic carbon signals appeared around δ 55.49-55.47 and 12.35-

12.15 ppm indicated the presence of methoxyl and methyl groups in the title compounds, while 

the various aromatic carbons resonated around δ 140.78-108.03 ppm. Further, the fluorine 

containing compounds 6k and 6m have been discussed, which results in a very characteristic 

NMR spectra and the JCF values are represented in Table 1 (Figure 4) and 2 (Figure 5) In 

addition, the formation of title compounds (6a-6o) was also confirmed from their respective mass 

spectra (HRMS), which were in agreement with their anticipated molecular weights. 

Table 1: Depiction of C-F coupling values for compound 6k.31 

 

 

 

Carbon number JCF values (in Hz) 
5’ 233.29 
6’ 24.76 
4’ 23.14 
1’ 7.74 
3’ 7.90 
2’ 1.99 
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Figure 4: A section of the 13C NMR spectrum (150.89 MHz) of compound 6k, illustrating C-F coupling. 
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Table 2: Depiction of C-F coupling values for compound 6m. 

 

 

 

Carbon number JCF values (in Hz) 
7’ 272.35 
3’ 31.13 
2’ 3.50 
4’ 3.96 
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Figure 5: A section of the 13C NMR spectrum (150.89 MHz) of compound 6m, illustrating C-F coupling. 
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3.2 Antimycobacterial activity 

Both level I and II (in vitro) characterization of anti-mycobacterial activity of newly synthesized 

title compounds (4, 6a-6o) was carried out at Infectious Disease Research Institute (IDRI) within 

the National Institute of Allergy and Infectious Diseases (NIAID) screening program, Bethesda, 

MD, USA. In the initial studies (level I), minimum inhibitory concentration (MIC) was 

established against Mtb strain H37Rv grown under aerobic conditions by using a dual read-out 

(OD590 and fluorescence) assay procedure. All the synthesized compounds exhibited an interesting 

and noteworthy activity profiles with MIC ranging from 1.5 to > 200 µM against the tested 

mycobacterial strain (Table 3). 

Table 3: Level I results under aerobic conditions for newly synthesized title compounds (4 and 

6a-6o) against M. tuberculosis H37Rv strain. 

Compound MIC (µM)a IC50 (µM)b IC90 (µM)c 
4 2.1 0.98 2.4 
6a > 200 > 25 > 25 
6b > 200 55 > 100 
6c > 200 > 200 > 200 
6d 15 8.4 16 
6e > 50 20 > 50 
6f > 200 > 100 > 100 
6g 16 7.4 16 
6h > 200 50 > 100 
6i 28 6.6 13 
6j 40 24 46 
6k > 200 66 > 200 
6l 88 23 99 
6m > 200 > 200 > 200 
6n > 200 > 200 > 200 
6o 1.5 0.48 1.5 

Rifampicin 0.0067 0.0037 0.007 
aMIC is minimum inhibitory concentration at which M. tuberculosis H37Rv growth was 
completely inhibited; bIC50 value is the concentration at which growth is inhibited by 50%; cIC90 
value is the concentration at which growth is inhibited by 90%. 

Interestingly, it was observed that compound 4 (MIC = 2.1 µM) having thiourea group (without 

thiazole moiety) displayed encouraging anti-mycobacterial activity with an IC50 value of 0.98 

µM. This evidently indicated that the DZG structural core has greatly contributed for anti-

mycobacterial activity. This finding instigated us to explore brief SAR investigations in order to 
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study the biological effects of various substituents on aromatic ring at 4th position of the thiazole 

moiety, which was in turn attached to DZG scaffold through a hydrazine linkage. Amongst tested 

series, compound 6o (MIC = 1.5 µM) with p-amino (NH2) group on phenyl ring at 4th position of 

thiazole moiety exhibited excellent anti-mycobacterial activity with IC50 value of 0.48 µM, 

whereas compounds 6d (MIC = 15 µM), 6g (MIC = 16 µM) and 6i (MIC = 28 µM) substituted 

with one or two methoxyl (OCH3) groups on thiazolylphenyl ring exhibited good inhibitory 

activity with IC50 value of 8.4, 7.4 and 6.6 µM respectively. In the case of compounds 6j (MIC = 

40 µM) and 6l (MIC = 88 µM) with hydroxyl (OH) group on phenyl ring displayed considerable 

anti-mycobacterial activity with IC50 value of 24 µM and 23 µM respectively. These findings 

demonstrate that the thiazole core contributed for enhanced activity and plays significant role in 

the action against Mtb. The activity was also considerably affected by nature of substituent on 

phenyl ring at 4th position of the thiazole nucleus. Consistent with our prior report,24 we found that 

the presence of electron donating (NH2, OCH3 and OH) groups on phenyl ring have greatly 

influenced and conferred good anti-mycobacterial activity while the electron withdrawing (CF3, 

NO2, F and Br) substituents have caused decrease in activity. Thus, compounds 6a, 6c, 6h and 

6m having either nitro or halogen groups on phenyl ring were found to exhibit poor activity with 

MIC value > 200 µM. (Figure 6). Compounds with promising anti-mycobacterial activity profile 

were further subjected for level II screening in order to evaluate their broad spectrum efficiency 

under assorted conditions against relevant drug resistant isolates of Mtb and other disease causing 

mycobacterial species. 

 

Figure 6: Illustration of anti-TB results against M. tuberculosis H37Rv: Compounds with MIC 

values and varying substitution patterns. 
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The MIC of test compounds (4, 6d, 6g, 6i and 6o) was assessed against five drug resistant isolates 

(INH-R1, INH-R2, RIF-R1, RIF-R2 and FQ-R1) of Mtb strains under aerobic conditions. The 

anti-mycobacterial activity results are summarized in Table 4. Perusal of the data, we observed 

that all tested compounds showed excellent anti-mycobacterial activity against INH-R1 and INH-

R2, while two compounds (4 and 6o) exhibited the most promising anti-mycobacterial activity 

against the tested organisms. In particular, both resistant strains (R1 and R2) of INH and RIF were 

found to be extremely susceptible to compounds 4 and 6o, while these two compounds had an 

almost comparable activity with that of Levofloxacin against FQ-R1. As compared to reference 

drug INH (MIC = > 200 µM; IC50 = > 200 µM), Compound 4 (MIC = 5.3 and 2.5 µM; IC50 = 1.3 

and 0.79 µM) and 6o (MIC = 3.2 and 1.5 µM; IC50 = 0.68 and 0.38 µM) displayed highest anti-

mycobacterial activity against INH-R1 and INH-R2 respectively. In the case of RIF-R1 and RIF-

R2, compound 6o (MIC = 2.2 and 6.3 µM; IC50 = 0.54 and 0.76 µM) exhibited significant 

antibacterial activity, whereas compounds 4 (MIC = 4 and 4.8 µM; IC50 = 1.1 and 1.2 µM) showed 

moderate activity when compared to reference drug RIF (MIC = 2 and > 50 µM; IC50 = > 50 µM). 

Nevertheless, the fluoroquinolone-resistant strain (FQ-R1) was found to be less susceptible to 

these compounds. 
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Table 4: Anti-mycobacterial activity data of newly synthesized compounds (4, 6d, 6g, 6i and 6o) against five drug-resistant isolates of M. tuberculosis 

H37Rv. 

Compound 

INH-R1a INH-R2b RIF-R1c RIF-R2d FQ-R1e 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

4 5.3 1.3 6.6 2.5 0.79 2.9 4 1.1 4.6 4.8 1.2 5.9 17 2.8 16 

6d 15 12 > 50 12 8 > 50 25 11 > 50 31 8.7 > 50 22 23 > 50 

6g 24 12 > 200 13 7.1 12 28 9.2 27 46 19 > 200 30 18 > 200 

6i 32 9.1 > 25 19 5.6 > 25 17 7 19 41 10 > 25 33 13 > 25 

6o 3.2 0.68 3.8 1.5 0.38 1.7 2.2 0.54 2.6 6.3 0.76 9.2 21 2.3 33 

Rifampicin 0.018 0.0084 0.022 0.0065 0.0047 0.012 2 1.2 2.3 > 50 > 50 > 50 0.027 0.013 0.039 

Isoniazid > 200 > 200 > 200 > 200 > 200 > 200 0.17 0.15 0.21 0.62 0.54 0.6 0.35 0.36 0.47 

Levofloxacin 1.2 0.64 1.4 1.4 0.84 1.4 0.76 0.59 0.91 1.1 0.6 1.2 20 12 22 

 

aINH-R1 was derived from H37Rv and is a katG mutant (Y155* = truncation). bINH-R2 is strain ATCC35822. cRIF-R1 was derived from H37Rv and is a 

nrpoB mutant (S522L). dRIF-R2 is strain ATCC35828. eFQ-R1 is a fluoroquinolone-resistant strain derived from H37Rv and is a gyrB mutant (D94N). 

(INH – Isoniazid, RIF – Rifampicin and FQ – Fluoroquinolone) 
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In addition, these five promising compounds (4, 6d, 6g, 6i and 6o) were systematically assessed 

against Mtb H37Rv grown under varied conditions. The antimicrobial activity of these compounds 

under hypoxic conditions was assessed using the low oxygen recovery assay (LORA). Further, 

the bactericidal (MBC: Minimum Bactericidal Concentration) activity of these compounds was 

assessed against Mtb H37Rv grown in aerobic conditions in 7H9-Tw-OADC medium. The 

cytotoxicity and intracellular anti-mycobacterial activity of compounds was also determined 

using the THP-1 human monoocytic cell line, and THP1 cells infected with Mtb respectively. The 

results of all these investigations are represented in Table 5. A systematic analysis of the data 

revealed that compound 4 and 6o exhibited an interesting and potent anti-mycobacterial activity 

profile as depicted in Figure 7. All the five title compounds displayed an interesting cytotoxicity 

profile with IC50 values ranging from 11 to > 50 M. Among the series tested, compounds 6o 

(IC50 = 11 µM) and 6g (IC50 = 38 µM) showed moderate cytotoxicity, while other compounds did 

not show cytotoxic effect upto concentration > 50 µM. The existence of virulent intracellular Mtb 

in primary human macrophages compromise it’s functioning and arrest phagosome maturation 

thus coping up with various host threats. The aptitude of the bacteria to assault and survive inside 

cells may be implicated for the persistence of TB. Therefore, it is of greater corollary for an 

effective tuberculosis management that these compounds should also be capable of killing 

intracellular TB in human macrophages, apart from their in vitro activity against TB strains.  

Accordingly, two compounds (4 and 6o) also displayed effective intracellular anti-mycobacterial 

activity with IC50 value of < 0.098 μM. However, oxygen restriction also affects adaptive immune 

responses and triggers antimicrobial effector mechanisms in macrophages and restricts growth of 

intracellular Mtb. 
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Table 5: Bactericidal, cytotoxicity, intracellular and anti-mycobacterial activity of selected title compounds (4, 6d, 6g, 6i and 6o) against M. tuberculosis 

H37Rv grown under various conditions. 

Compound 

Anti-mycobacterial activity Minimum 
Bactericidal 

Concentrationb 
(MBC, μM) 

Cytotoxicityc 
IC50 (μM) 

Intracellular 
Activity (against 
M. tuberculosis)d Under Low Oxygena Under Normal Oxygen 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

4 29 0.19 2.1 0.50 0.15 0.27 8 > 50 < 0.098 < 0.098 

6d > 200 59 190 15 2.5 5.8 > 200 > 50 0.60 2.4 

6g > 200 52 > 200 17 2.2 5.9 85 38^ 0.47 1.3 

6i > 100 1.5 25 51 2.8 11 150 > 25 0.34 0.95 

6o 46 0.063 1.5 0.28 0.097 0.16 12 11^ < 0.098 < 0.098 

Rifampicin 0.13# 0.00041# 0.0065# 0.0096# 0.00072# 0.0025# ND ND ND ND 

Metronidazole 200$ 29$ 110$ > 200$ > 200$ > 200$ ND ND ND ND 

Staurosporine ND ND ND ND ND ND ND 0.018 ND ND 

Isoniazid ND ND ND ND ND ND ND ND 0.23 0.29 

aOrganisms grown under hypoxic conditions were assessed using LORA assay; bOrganisms were grown under aerobic conditions in 7H9-Tw-OADC 
medium; cCytotoxicity was determined using the human monocytic (THP-1) cell line; dIntracellular activity was determined using THP1 infected with M. 
tuberculosis; #Calculated averages for rifampicin for each run (number of replicates 6); $Metronidazole was run as a control once in each run; ^compounds 
found to be cytotoxic; ND: Not determined. 
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Figure 7: Anti-TB activity profile of most active compounds; 6d: R = 4-OCH3; 6g: R = 3,4-

OCH3; 6i: R = 2,6-OCH3 and 6o: 4-NH2 The title compounds (4, 6d, 6g, 6i and 6o) were also 

evaluated for their in vitro anti-mycobacterial activity against other disease-relevant 

Mycobacterial species like Mycobacterium abscessus and Mycobacterium avium by using MABA 

method. (Table 6). The results reveal that compound 6o (MIC = 100 µM) demonstrated a 

moderate activity especially against M. avium as compared to the reference drug RIF (MIC = 0.1 

µM), while compound 6i displayed a MIC of > 100 µM against M. abscessus and M. avium. 

However, the remaining compounds showed little or poor activity (MIC = > 200 µM) against 

tested organisms. 

Table 6: Anti-mycobacterial activity of selected title compounds (4, 6d, 6g, 6i and 6o) against 

other disease-relevant Mycobacterial species. 

Compound 
M. abscessusa M. aviumb 

MIC 
(μM) 

IC50 
(μM) 

IC90 
(μM) 

MIC   
(μM) 

4 > 200 > 200 > 200 > 200 
6d > 200 > 200 > 200 > 200 
6g > 200 > 200 > 200 > 200 
6i > 100 > 100 > 100 > 100 
6o > 200 > 200 > 200 100 

Rifampicin 3.3 2.1 3.1 0.1 
aM. abscessus subsp. bollettii 103; bM. avium subsp. avium 2285 (S) 
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4 Conclusion 

In summary, in this work we established the synthesis of a series of styryl hydrazine thiazole 

hybrids derived from dehydrozingerone and their in vitro anti-TB activity. The ease, simply 

obtainable reactants and reagents, and practically good yields (51−74%) make this synthetic 

method more attractive and efficient. Moreover, compound 6o emerged as most promising anti-

mycobacterial agent since it has demonstrated most prominent activity under hypoxic condition 

along with its potential efficiency against drug resistant isolates of Mtb strains and displayed 

significant bactericidal and intracellular anti-mycobacterial activity. These findings suggest that 

the designed compounds highlighted the benefit of incorporating a hydrazine linkage to combine 

styryl portion of DZG and thiazole core, thus providing a good starting point for further lead 

optimization. The possible enhancement in the anti-mycobacterial activity can be further 

accomplished by slender variation in the ring substituents and/or extensive additional 

functionalization warrants further investigations.  

5 Experimental 

5.1 Chemistry protocol 

All the chemicals used in this research work were purchased from Sigma-Aldrich and Merck 

Millipore, South Africa. The commercially available chemicals 4-bromo-phenacyl bromide (5a) 

and phenacyl bromide (5b) were purchased from Sigma-Aldrich (South Africa). All the solvents, 

except those of laboratory-reagent grade, were dried and purified when necessary according to 

previously published methods. The progress of the reactions and the purity of the compounds 

were monitored by thin-layer chromatography (TLC) on pre-coated silica gel plates procured 

from E. Merck and Co. (Darmstadt, Germany) using 36% ethyl acetate in n-hexane as the mobile 

phase and iodine vapor as the visualizing agent.  

The melting points of the synthesized compounds were determined using a Thermo Fisher 

Scientific (IA9000, UK) digital melting point apparatus and are uncorrected. The IR spectra were 

recorded on a Bruker Alpha FT-IR spectrometer (Billerica, MA, USA) using the ATR technique. 

The 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE 400 and 600 MHz 

(Bruker, Rheinstetten/Karlsruhe, Germany) spectrometers using CDCl3 and DMSO-d6. The 

chemical shifts are reported in δ ppm units with respect to TMS as an internal standard. HRMS 

spectra were recorded on an Autospec mass spectrometer with electron impact at 70 eV. 
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5.1.1 Synthesis of (E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one (2)32 

 

Vanillin (5 g, 0.033 mol) was dissolved in acetone (80 mL) to which, 50 mL NaOH (2.0 g, 0.25 

mol) was slowly added with continuous stirring for 2-3 h. Excess acetone was removed under 

reduced pressure. Upon acidification with 0.1 N HCl, a yellow precipitate was obtained, which 

was extracted with CHCl3 and the organic layer was dried over anhydrous sodium sulphate. 

Excess solvent was removed under reduced pressure and the yellow solid obtained was 

recrystallized from ethanol. Yield: 62%, mp: 127-129 C; FTIR (ATR, Vmax, cm-1): 3280.90 (O-H 

Str.), 3052.25 (Ar-H Str.), 1672.37 (C=O Str.); 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.61 (s, 

1H, OH), 7.53-7.49 (d, J = 16.24 Hz, 1H, Ph-HC=CH-), 7.298-7.294 (d, J = 1.88 Hz, 1H, ArH), 

7.14-7.11 (dd, J = 8.14, 1.90 Hz, 1H, ArH), 6.81-6.79 (d, J = 8.12 Hz, 1H, ArH), 6.68-6.64 (d, J 

= 16.28 Hz, 1H, Ph-HC=CH-), 3.81 (s, 3H, OCH3), 2.28 (s, 3H, CH3); 13C NMR (100 MHz, 

DMSO, δ ppm): 197.76 (C=O), 149.35, 147.91, 143.89, 125.81, 124.29, 123.20, 115.58, 111.23, 

55.63 (OCH3), 27.11 (CH3). 

5.1.2 Synthesis of (E)-4-(3,4-dimethoxyphenyl)but-3-en-2-one (3) 

 

To a stirred solution of compound 2 (2.0g, 0.010 mol, 1.0 Eq.) in N,N-dimethyl formamide (10 

mL), K2CO3 (2.297 g, 0.017 mol, 1.6 Eq.) was added and refluxed at 80 C for 90 min. To this 

reaction mass, methyl iodide (2.66 g, 0.019 mol, 1.8 Eq.) was slowly added and refluxed for 4-5 

h. After completion of reaction (monitored on TLC), the reaction mixture was poured into ice 

cold water, and neutralized with dil. HCl. The solid precipitated was extracted with ethyl acetate 

(3 times X 15 mL) and the combined extract was dried over anhydrous sodium sulphate and 

concentrated under reduced pressure to obtain brown solid, which was recrystallized from ethanol 

to afford the desired compound (3), as light brown solid. Yield: 89%, mp: 81-82 C; FTIR (ATR, 

Vmax, cm-1): 3046.27 (Ar-H Str.), 2935.28 (C-H Str. of CH3), 1663.91 (C=O Str); 1H NMR (400 

MHz, DMSO-d6, δ ppm): 7.57-7.53 (d, J = 16.28 Hz, 1H, Ph-HC=CH-), 7.327-7.32 (d, J = 1.92 

Hz, 1H, ArH), 7.26-7.23 (dd, J = 10.25, 1.92 Hz, 1H, ArH), 7.01-6.99 (d, J = 8.28 Hz, 1H, ArH), 

6.75-6.71 (d, J = 16.24 Hz, 1H, Ph-HC=CH-), 3.80 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 2.30 (s, 
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3H, CH3); 13C NMR (100 MHz, DMSO, δ ppm): 197.86 (C=O), 150.98, 148.95, 143.50, 127.11, 

125.17, 123.02, 111.56, 110.34, 55.53 (OCH3), 27.16 (CH3). 

5.1.3 Synthesis of (E)-2-((E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazine-1-

carbothioamide (4)33 

 

To a constantly stirred solution of compound 3 (2.0 g, 0.0097 mol, 1.0 Eq.) and thiosemicarbazide 

(0.972 g, 0.011 mol, 1.1 Eq.) in anhydrous methanol (20 mL), was added a catalytic quantity of 

glacial acetic acid (0.1 Eq.) and refluxed for 3-4 h. After completion of reaction (monitored on 

TLC), the reaction mass was allowed to cool to room temperature and the solid separated was 

filtered under suction. The residue was thoroughly washed with cold methanol to afford 

compound 4 as yellow crystalline solid. Yield: 85%, mp: 223-224 C; FTIR (ATR, Vmax, cm-1): 

3422.90 (N-H Str. of NH2), 3212.08 (N-H Str. of NH), 3080.98 (Ar C-H Str.), 2943.75 (C-H Str. 

of CH3), 1618.11 (C = N Str), 1159.88 (C = S); 1H NMR (400 MHz, DMSO-d6, δ, ppm): 10.22 

(s, 1H, NH), 8.22 (s, 1H, NH2), 7.76 (s, 1H, NH2), 7.154-7.150 (d, J = 1.80 Hz, 1H, ArH), 7.08-

7.01 (m, 2H, ArH), 6.97-6.94 (d, J = 8.28 Hz, 1H, ArH), 6.81-6.77 (d, J = 16.52 Hz, 1H, Ph-

HC=CH-), 3.79 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 2.11 (s, 3H, CH3); 13C NMR (100 MHz, 

DMSO, δ, ppm):178.47 (C = S), 150.05, 148.89, 146.04, 137.87, 129.11, 128.97, 121.81, 116.04, 

111.74, 110.87, 55.47 (OCH3), 19.97, 12.13 (CH3); HRMS (ESI, m/z) [M-H]-; calculated for 

C13H16N3O2S, 278.0963; found 278.0965. 

5.1.4 Synthesis of 2-bromo-1-(4-nitrophenyl)ethanone (5c)34 

 

To a stirring solution of 1-(4-nitrophenyl)ethanone (1.0 g, 0.0061 mol, 1.0 Eq.) in dry diethyl 

ether (20 mL) over ice bath, bromine (1.2 g, 0.372 mL, 0.0073 mol, 1.2 Eq.) dissolved in 10 mL 

of dry diethyl ether was slowly added in a drop-wise manner. The reaction mixture was further 

stirred for 2 h at room temperature. The mixture was evaporated under reduced pressure and the 

residue was washed with aqueous sodium bicarbonate to afford compound 5c as yellow solid 

which was used without further purification. Yield: 68%; 1H NMR (400 MHz, CDCl3, δ, ppm): 

8.35-8.33 (d, J = 8.80 Hz, 2H, ArH), 8.16-8.14 (d, J = 8.80 Hz, 2H, ArH), 4.45 (s, 2H, CH2). 
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5.1.5 General procedure for synthesis of 2-bromo-1-(4-methoxyphenyl)ethanone (5d) and 2-

bromo-1-(3,4-dimethoxyphenyl)ethanone (5g)35 

 

To a stirred solution of appropriately substituted acetophenones (1.0 g, 1.0 Eq.) in 10 mL of 

chloroform, bromine (1.2 Eq.) dissolved in 5 mL of chloroform was slowly added in a drop-wise 

manner. The mixture was stirred for additional 30 min, and then refluxed for 3h until TLC shows 

full consumption of starting materials. The mixture was evaporated under reduced pressure and 

the residue was washed with aqueous sodium bicarbonate and extracted with DCM which was 

further evaporated under reduced pressure to get desired products. 

 2-bromo-1-(4-methoxyphenyl)ethanone (5d):  

Dark brown solid, Yield: 62%; 1H NMR (400 MHz, CDCl3, δ, ppm): 7.97-7.95 (d, J = 8.88 Hz, 

2H, ArH), 6.96-6.94 (d, J = 8.88 Hz, 2H, ArH), 4.39 (s, 2H, CH2), 3.88 (s, 3H, OCH3). 

 2-bromo-1-(3,4-dimethoxyphenyl)ethanone (5g):  

Brown solid, Yield: 58%; 1H NMR (400 MHz, CDCl3, δ, ppm): 7.61-7.58 (dd, J = 8.22, 1.94 Hz, 

1H, ArH), 7.53-7.52 (d, J = 1.84 Hz, 1H, ArH), 6.90-6.88 (d, J = 8.44 Hz, 1H, ArH), 4.39 (s, 2H, 

CH2), 3.95 (s, 3H, OCH3), 3.92 (s, 3H, OCH3). 

5.1.6 General procedure for synthesis of 2-bromo-1-(4-chlorophenyl)ethanone (5e) and 2-

bromo-1-p-tolylethanone (5f)36 

To a stirred solution of appropriately substituted acetophenone (1.0 g, 1.0 Eq.) in 10 mL 

chloroform, bromine (1.0 Eq.) dissolved in 5 mL of chloroform was slowly added at 0 ˚C for a 

period of 15 minutes. The reaction mixture was further stirred at room temperature for 2 h. After 

completion of reaction (monitored on TLC), the mixture was evaporated under reduced pressure 

to obtain desired residue, which were used without further purification. 

 

 2-bromo-1-(4-chlorophenyl)ethanone (5e):  

Light yellow solid, Yield: 73%; 1H NMR (400 MHz, CDCl3, δ, ppm): 7.93-7.91 (d, J = 8.52 Hz, 

2H, ArH), 7.47-7.45 (d, J = 8.64 Hz, 2H, ArH), 4.40 (s, 2H, CH2). 
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 2-bromo-1-p-tolylethanone (5f):  

Dark brown solid, Yield: 66%; 1H NMR (400 MHz, CDCl3, δ, ppm): 7.94-7.92 (d, J = 8.20 Hz, 

2H, ArH), 7.34-7.32 (d, J = 8.04 Hz, 2H, ArH), 4.47 (s, 2H, CH2), 2.47 (s, 3H, CH3). 

5.1.7 General procedure for synthesis of substituted 2-bromo-1-phenylethanones (5h-5o)37 

 

To a hot solution of copper(II) bromide (1.07 g, 0.007 mol, 2 equiv.) in ethyl acetate (10 mL) was 

added a solution of appropriately substituted acetophenones (0.003 mol, 1 equiv.) in chloroform 

(10 mL) drop wise over 30 min. The reaction mixture was then refluxed for 12 h and cooled to 

room temperature; cuprous bromide (which turned to white indicating conversion of CuBr2 into 

CuBr) was filtered through Celite bed. The filtrate was washed with saturated NaHCO3/brine 

solution and dried over anhydrous Na2SO4. The resultant solution was concentrated under reduced 

pressure to afford the desired compounds (5h-5o). 

 2-bromo-1-(3,4-dichlorophenyl)ethanone (5h):  

Brown liquid, Yield: 61%; 1H NMR (400 MHz, CDCl3, δ, ppm): 8.06 (s, 1H, ArH), 7.81-7.79 (d, 

J = 8.45 Hz, 1H, ArH), 7.59-7.56 (d, J = 8.32 Hz, 1H, ArH), 4.38 (s, 2H, CH2). 

 2-bromo-1-(2,6-dimethoxyphenyl)ethanone (5i):  

Greenish yellow solid, Yield: 57%; 1H NMR (400 MHz, CDCl3, δ, ppm): 7.32-7.28 (t, J = 8.40 

Hz, 1H, ArH), 6.57 (s, 1H, ArH), 6.55 (s, 1H, ArH), 4.36 (s, 2H, CH2), 3.80 (s, 6H, di-OCH3). 

 2-bromo-1-(2-hydroxyphenyl)ethanone (5j):  

Brown liquid, Yield: 54%; 1H NMR (400 MHz, CDCl3, δ, ppm): 11.72 (s, 1H, OH), 7.54-7.52 (t, 

J = 7.30 Hz, 1H, ArH), 7.49-7.45 (t, J = 7.20 Hz, 1H, ArH), 7.03-7.01 (d, J = 8.48 Hz, 1H, ArH), 

6.93-6.92 (d, J = 7.32, 1H, ArH), 4.44 (s, 2H, CH2). 
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 2-bromo-1-(5-fluoro-2-hydroxyphenyl)ethanone (5k):  

Yellow crystalline solid, Yield: 66%; 1H NMR (400 MHz, CDCl3, δ, ppm): 11.40 (s, 1H, OH), 

7.35-7.32 (d, J = 8.75 Hz, 1H, ArH), 7.20-7.18 (d, J = 8.48 Hz, 1H, ArH), 6.94-6.91 (m, 1H, 

ArH), 4.31 (s, 2H, CH2). 

 2-bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone (5l):  

Yellowish brown solid, Yield: 58%; 1H NMR (400 MHz, CDCl3, δ, ppm): 11.36 (s, 1H, OH), 

7.16 (s, 2H, ArH), 6.96-6.94 (d, J = 9.97 Hz, 1H, ArH), 4.44 (s, 2H, CH2), 3.80 (s, 3H, OCH3). 

 2-bromo-1-(3-(trifluoromethyl)phenyl)ethanone (5m):  

Yellow liquid, Yield: 54%; 1H NMR (400 MHz, CDCl3, δ, ppm): 8.24 (s, 1H, ArH), 8.18-8.16 (d, 

J = 7.88 Hz, 1H, ArH), 7.88-7.86 (d, J = 7.92 Hz, 1H, ArH), 7.67-7.63 (t, J = 7.78 Hz, 1H, ArH), 

4.45 (s, 2H, CH2). 

 2-bromo-1-(5-bromo-2-hydroxyphenyl)ethanone (5n):  

Yellowish brown solid, Yield: 61%; 1H NMR (400 MHz, CDCl3, δ, ppm): 11.63 (s, 1H, OH), 

7.847-7.841 (d, J = 2.24 Hz, 1H, ArH), 7.60-7.57 (dd, J = 8.92, 2.24 Hz, 1H, ArH), 6.94-6.92 (d, 

J = 8.96 Hz, 1H, ArH), 4.40 (s, 2H, CH2). 

 1-(4-aminophenyl)-2-bromoethanone (5o):  

Light green liquid, Yield: 46%: 1H NMR (400 MHz, CDCl3, δ, ppm): 8.09-8.05 (m, 1H, ArH), 

7.77-7.74 (m, 1H, ArH), 6.76-6.72 (m, 2H, ArH), 4.75 (s, 2H, NH2), 4.32 (s, 2H, CH2). 

5.1.8 General procedure for synthesis of substituted 2-(2-((2E,3E)-4-(3,4- 

dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-phenylthiazoles (6a-6o) 

To a stirred solution of compound 4 (0.5 g, 0.0018 mol, 1.0 Eq.) in 10 mL anhydrous methanol, 

was added an appropriate 2-bromo-1-(substituted phenyl)-ethanones (5a-5o, 1.1 Eq.), and the 

reaction mixture was refluxed for 4-7 h until TLC showed full consumption of starting materials. 

The reaction mass was cooled to room temperature, thus formed residue was collected by filtration 

and was stirred in saturated NaHCO3 solution for 15-30 min. This mixture was further extracted 

with dichloromethane (10 mL X 3 times). The combined organic layer was dried over anhydrous 

Na2SO4 and excess of solvent was evaporated under reduced pressure to yield the crude solids, 

which were further purified by recrystallization with ethanol to afford the desired title compounds 

(6a-6o). 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(4-

bromophenyl)-thiazole (6a): 

 

Off white solid, Yield: 74%, mp: 211-212 C; FTIR (ATR, max, cm-1): 3266.13 (N-H Str.), 

3110.36 (Ar-H Str.), 2969.62 (C-H Str. of CH3), 1552.69 (C = N Str.); 1H NMR (400 MHz, 

DMSO-d6, δ, ppm): 11.16 (s, 1H, NH), 7.83-7.80 (d, J = 8.52 Hz, 2H, ArH), 7.60-7.58 (d, J = 

8.52 Hz, 2H, ArH), 7.38 (s, 1H, H-5 of thiazole), 7.20 (s, 1H, H-2 of DZG), 7.11-7.08 (dd, J = 

8.34, 1.74 Hz, 1H, ArH), 6.96-6.92 (m, J = 7.36 Hz, 2H, ArH), 6.81-6.77 (d, J = 16.44 Hz, 1H, 

Ph-HC=CH-), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, 

DMSO, δ, ppm): 169.23 (C-2 of thiazole), 149.12, 148.93, 132.13, 131.49, 129.28, 127.52, 

126.43, 120.43, 111.69, 109.31, 104.81 (C-5 of thiazole), 55.47 (OCH3), 12.24 (CH3); HRMS 

(ESI, m/z) [M-H]-; calculated for C21H19BrN3O2S, 456.0381; found 456.0386. 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-

phenylthiazole (6b): 

 

Brown solid, Yield: 69%, mp:185-186 C; FTIR (ATR, max, cm-1): 3270.64 (N-H Str.), 3078.43 

(Ar-H Str.), 2932.94 (C-H Str. of CH3), 1551.53 69 (C = N Str.); 1H NMR (400 MHz, DMSO-d6, 

δ, ppm): 11.13 (s, 1H, NH), 7.87-7.86 (d, J = 7.32 Hz, 2H, ArH), 7.41 (t, J = 7.66 Hz, 2H), 7.31 

(s, 1H, H-5 of thiazole), 7.30-7.27 (m, 1H, ArH), 7.21 (s, 1H, H-2 of DZG), 7.11-7.08 (dd, J = 

8.30, 1.74 Hz, 1H, ArH), 6.96-6.92 (m, 2H, ArH), 6.82-6.78 (d, J = 16.41 Hz, 1H, Ph-HC=CH-

), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ 

ppm): 169.11 (C-2 of thiazole), 149.10, 148.94, 131.96, 128.54, 127.42, 126.52, 125.49, 120.40, 

111.68, 109.29, 103.92 (C-5 of thiazole), 55.47 (OCH3), 54.85 (OCH3), 48.56, 30.63, 12.23 

(CH3); HRMS (ESI, m/z) [M-H]-; calculated for C21H20N3O2S, 378.1276; found 378.1288. 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(4-

nitrophenyl)thiazole (6c): 

 

Yellowish brown solid, Yield: 64%, mp: 219-221 C; FTIR (ATR, max, cm-1): 3332.78 (N-H 

Str.), 3056.92 (Ar-H Str.), 2960.57 (C-H Str. of CH3), 1562.05 (C = N Str.); 1H NMR (400 MHz, 

DMSO-d6, δ, ppm): 11.28 (s, 1H, NH), 8.29-8.26 (d, J = 8.84 Hz, 2H, ArH), 8.13-8.11 (d, J = 

8.76 Hz, 2H, ArH), 7.70 (s, 1H, H-5 of thiazole), 7.20 (s, 1H, H-2 of DZG), 7.11-7.09 (d, J = 8.28 

Hz, 1H, ArH), 6.95-6.91 (m, 2H, ArH), 6.82-6.78 (d, J = 16.40 Hz, 1H, Ph-HC=CH-), 3.82 (s, 

3H, OCH3), 3.77 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 169.53 

(C-2 of thiazole), 149.16, 148.94, 140.79, 132.33, 129.24, 126.33, 126.28, 126.18, 124.07, 

123.91, 120.46, 118.75, 111.67, 109.32, 108.52 (C-5 of thiazole), 55.47 (OCH3), 54.85 (OCH3), 

48.56, 12.28 (CH3). 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(4-

methoxyphenyl)thiazole (6d): 

 

Brick red solid, Yield: 60%, mp: 211-212 C; FTIR (ATR,max, cm-1): 3338.11 (N-H Str.), 

3128.29 (Ar-H Str.), 2989.29 (C-H Str. of CH3), 1573.83 (C = N Str.); 1H NMR (400 MHz, 

DMSO-d6, δ ppm): 11.12 (s, 1H, NH), 7.79-7.77 (d, J = 8.76 Hz, 1H, ArH), 7.52 (s, 1H, H-5 of 

thiazole), 7.20 (s, 1H, H-2 of DZG), 7.13-7.09 (m, 2H, ArH), 6.99-6.93 (m, 4H, ArH), 6.82-6.78 

(d, J = 16.41 Hz, 1H, Ph-HC=CH-), 3.81 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 

2.16 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 168.87 (C-2 of thiazole), 149.10, 148.91, 

148.63, 148.37, 131.89, 129.32, 126.51, 120.37, 117.97, 111.74, 111.71, 109.24, 55.43 (OCH3), 

54.86 (OCH3), 12.20 (CH3); HRMS (ESI, m/z) [M-H]-; calculated for C22H22N3O3S, 408.1382; 

found 408.1387. 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(4-

chlorophenyl)thiazole (6e): 

 

Yellow solid, Yield: 57%, mp: 217-220 C; FTIR (ATR, max, cm-1): 3260.81 (N-H Str.), 3107.14 

(Ar-H Str.), 2970.15 (C-H Str. of CH3), 1551.13 (C = N Str); 1H NMR (400 MHz, DMSO-d6, δ, 

ppm): 11.16 (s, 1H, NH), 7.89-7.87 (d, J = 8.52 Hz, 2H, ArH), 7.47-7.45 (d, J = 8.52 Hz, 2H, 

ArH), 7.37 (s, 1H, H-5 of thiazole), 7.20 (s, 1H, H-2 of DZG), 7.11-7.08 (dd, J = 8.34, 1.50 Hz, 

1H, ArH), 6.96-6.92 (m, 2H, ArH), 6.81-6.77 (d, J = 16.45 Hz, 1H, Ph-HC=CH-), 3.82 (s, 3H, 

OCH3), 3.77 (s, 3H, OCH3), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 169.23 (C-

2 of thiazole), 149.12, 148.94, 148.64, 133.67, 132.11, 131.82, 129.29, 128.58, 127.20, 126.44, 

120.43, 111.69, 109.31, 104.74 (C-5 of thiazole), 55.47 (OCH3), 54.87 (OCH3), 30.65, 12.24 

(CH3); HRMS (ESI, m/z) [M-H]-; calculated for C21H19ClN3O2S, 412.0887; found 412.0891. 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(p-

tolyl)thiazole (6f): 

 

Yellow solid, Yield: 61%, mp: 223-225 C; FTIR (ATR, max, cm-1): 3262.88 (N-H Str.), 3108.13 

(Ar-H Str.), 2968.25 (C-H Str. of CH3), 1552.29 (C = N Str.). 1H NMR (400 MHz, DMSO-d6, δ, 

ppm): 11.10 (s, 1H, NH), 7.76 (s, 1H, ArH), 7.74 (s, 1H, H-5 of thiazole), 7.21-7.20 (m, 4H, ArH), 

7.11-7.09 (d, J = 8.20 Hz, 1H, ArH), 6.95-6.91 (m, 2H, ArH), 6.81-6.77 (d, J = 16.45 Hz, 1H, 

Ph-HC=CH-), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 2.31 (s, 3H, CH3), 2.15 (s, 3H, CH3); 13C 

NMR (100 MHz, DMSO, δ, ppm): 168.99 (C-2 of thiazole), 149.09, 148.94, 136.69, 131.93, 

129.33, 129.12, 126.53, 125.45, 120.39, 111.69, 109.29, 103.00 (C-5 of thiazole), 55.47 (OCH3), 

54.87 (OCH3), 30.65, 20.76 (CH3), 12.21 (CH3). 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(3,4-

dimethoxyphenyl)thiazole (6g): 

 

Brown solid, Yield: 54%, mp: 196-198 C; FTIR (ATR, max, cm-1): 3266.42 (N-H Str.), 3112.80 

(Ar-H Str.), 2963.85 (C-H Str. of CH3), 1554.06 (C = N Str.); 1H NMR (400 MHz, DMSO-d6, δ, 

ppm): 11.10 (s, 1H, NH), 7.43 (s, 1H, ArH), 7.40 (s, 1H, H-5 of thiazole), 7.20 (s, 1H, H-2 of 

DZG), 7.17 (s, 1H, ArH), 7.11-7.08 (d, J = 8.20 Hz, 1H, ArH), 6.98-6.91 (m, 3H, ArH), 6.81-6.77 

(d, J = 16.49 Hz, 1H, Ph-HC=CH-), 3.82 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 

3.77 (s, 3H, OCH3), 2.15 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 168.91 (C-2 of 

thiazole), 149.09, 148.94, 148.68, 148.38, 131.88, 129.34, 126.56, 120.38, 117.95, 111.79, 

111.70, 109.30, 102.10 (C-5 of thiazole),  55.47 (OCH3), 54.88 (OCH3), 12.22 (CH3); HRMS 

(ESI, m/z) [M-H]-; calculated for C23H24N3O4S, 438.1488; found 438.1494. 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(3,4-

dichlorophenyl)thiazole (6h): 

 

 

Off white solid, Yield: 63%, mp: 195-197 C; FTIR (ATR,max, cm-1): 3255.29 (N-H Str.), 

3113.15 (Ar-H Str.), 2963.17 (C-H Str. of CH3), 1552.24 (C=N Str.); 1H NMR (400 MHz, DMSO-

d6, δ, ppm): 11.18 (s, 1H, NH), 8.10 (s, 1H, ArH), 7.86-7.83 (dd, J = 8.44, 1.80 Hz, 1H, ArH), 

7.67-7.65 (d, J = 8.44 Hz, 1H, ArH), 7.52 (s, 1H, H-5 of thiazole), 7.20 (s, 1H, H-2 of DZG), 

7.11-7.09 (dd, J = 8.22, 1.22 Hz, 1H, ArH), 6.97-6.93 (m, 2H, ArH), 6.81-6.77 (d, J = 16.45 Hz, 

1H, Ph-HC=CH-), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 2.15 (s, 3H, CH3); 13C NMR (100 

MHz, DMSO, δ, ppm): 169.30 (C-2 of thiazole), 149.15, 148.94, 132.26, 131.39, 130.83, 129.57, 

129.26, 127.17, 126.36, 125.50, 120.46, 111.69, 109.32, 106.16 (C-5 of thiazole), 55.47 (OCH3), 

30.65, 12.25 (CH3). 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(2,6-

dimethoxyphenyl)thiazole (6i): 

 

Yellow solid, Yield: 61%, mp: 158-160 C; FTIR (ATR, max, cm-1): 3348.27 (N-H Str.), 3027.82 

(Ar-H Str.), 2996.52 (C-H Str. of CH3), 1556.20 (C = N Str); 1H NMR (400 MHz, DMSO-d6, δ, 

ppm): 10.39 (s, 1H, NH), 7.48-7.44 (d, J = 8.50 Hz, 2H, ArH), 7.43 (s, 1H, H-5 of thiazole), 7.35-

7.28 (m, 1H, ArH), 7.20 (s, 1H, H-2 of DZG), 7.11-7.08 (d, J = 8.32 Hz, 1H, ArH), 6.97-6.91 (m, 

2H, ArH), 6.82-6.78 (d, J = 16.49 Hz, 1H, Ph-HC=CH-), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 

3.69 (s, 6H, 2 OCH3), 2.13 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 158.27 (C-2 of 

thiazole), 149.06, 148.94, 129.39, 126.72, 120.41, 111.69, 109.21, 104.40, 104.04 (C-5 of 

thiazole), 55.63 (OCH3), 55.47 (OCH3), 19.76, 12.24 (CH3); HRMS (ESI, m/z) [M-H]-; calculated 

for C23H24N3O4S, 438.1488; found 438.1503. 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(2-

hydroxyphenyl)thiazole (6j): 

 

Yellow solid, Yield: 71%, mp: 200-202 C; FTIR (ATR, max, cm-1): 3232.04 (N-H Str.), 3116.11 

(Ar-H Str.), 2970.12 (C-H Str. of CH3), 1555.60 (C = N Str.); 1H NMR (400 MHz, DMSO-d6, δ, 

ppm): 11.42 (s, 1H, NH), 11.24 (s, 1H, OH), 7.81-7.79 (d, J = 7.20 Hz, 1H, ArH), 7.38 (s, 1H, 

H-5 of thiazole), 7.21 (s, 1H, H-2 of DZG), 7.17-7.09 (m, 2H, ArH), 7.00-6.93 (m, 2H, ArH), 

6.89-6.87 (d, J = 8.08, 1H, ArH), 6.86-6.79 (m, 2H, ArH), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 

2.17 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 168.37 (C-2 of thiazole), 155.23, 149.20, 

148.95, 132.53, 129.22, 128.95, 126.79, 126.26, 120.56, 119.01, 118.68, 116.86, 111.68, 109.31, 

103.79 (C-5 of thiazole), 55.49 (OCH3), 12.35 (CH3); HRMS (ESI, m/z) [M-H]-; calculated for 

C21H20N3O3S, 394.1225; found 394.1235. 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(2-

hydroxy-5-fluorophenyl)thiazole (6k): 

 

Off white solid, Yield: 69%, mp: 206-208 C. FTIR (ATR,max, cm-1): 3234.72 (N-H Str.), 

3118.93 (Ar-H Str.), 2994.14 (C-H Str. of CH3), 1557.87 (C = N Str.). 1H NMR (400 MHz, 

DMSO-d6, δ, ppm): 11.24 (s, 1H, NH), 11.19 (s, 1H, OH), 7.68-7.64 (dd, J = 10.20, 3.04 Hz, 1H, 

ArH), 7.51 (s, 1H, H-5 of thiazole), 7.21 (s, 1H, H-2 of DZG), 7.12-7.09 (dd, J = 8.22, 1.26 Hz, 

1H, ArH), 7.01-6.93 (m, 3H, ArH), 6.90-6.87 (m, 1H, ArH), 6.83-6.79 (d, J = 16.44 Hz, 1H, -

HC=CH-), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR (100 MHz, 

DMSO, δ, ppm): 156.50 (C-2 of thiazole), 154.19, 151.49, 149.27, 149.20, 148.94, 146.85, 

132.56, 129.21, 126.23, 120.55, 119.77, 119.69, 117.80, 117.71, 115.12, 112.75, 112.51, 111.68, 

109.31, 105.66 (C-5 of thiazole), 55.48 (OCH3), 12.34 (CH3). 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl) -4-(2-

hydroxy-5-methoxyphenyl)thiazole (6l): 

 

Light green solid, Yield: 66%, mp: 194-196 C; FTIR (ATR, max, cm-1): 3212.30 (N-H Str.), 

3118.69 (Ar-H Str.), 2952.72 (C-H Str. of CH3), 1560.30 (C = N Str.); 1H NMR (400 MHz, 

DMSO-d6, δ, ppm): 11.21 (s, 1H, NH), 10.86 (s, 1H, OH), 7.45 (s, 1H, H-5 of thiazole), 7.38-

7.37 (d, J = 2.80 Hz, 1H, ArH), 7.21 (s, 1H, H-2 of DZG), 7.12-7.09 (dd, J = 8.36, 1.68 Hz, 1H, 

ArH), 6.99-6.95 (d, J = 16.32 Hz, 1H, -HC=CH-), 6.93 (s, 1H, ArH) 6.83-6.77 (m, 3H, ArH), 3.82 

(s, 3H, OCH3), 3.77 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR (100 MHz, 

DMSO, δ, ppm): 168.70 (C-2 of thiazole), 168.30, 151.99, 149.98, 149.27, 149.18, 148.94, 

132.45, 129.23, 126.29, 120.53, 118.95, 117.47, 115.31, 111.69, 111.10, 109.29, 104.54 (C-5 of 

thiazole), 55.48 (OCH3), 12.34 (CH3); HRMS (ESI, m/z) [M-H]-; calculated for C22H22N3O4S, 

424.1331; found 424.1335. 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(3-

(trifluoromethyl)phenyl)thiazole (6m): 

 

Light brown solid, Yield: 63%, mp: 200-202 C; FTIR (ATR, max, cm-1): 3253.43 (N-H Str.), 

3112.11 (Ar-H Str.), 2958.90 (C-H Str. of CH3), 1556.72 (C = N Str.); 1H NMR (400 MHz, 

DMSO-d6, δ, ppm): 11.20 (s, 1H, NH), 8.22 (s, 1H, ArH), 8.17-8.15 (t, J = 3.74 Hz, 1H, ArH), 

7.65-7.64 (d, J = 5.04 Hz, 1H, ArH), 7.56 (s, 1H, H-5 of thiazole), 7.21 (s, 1H, H-2 of DZG), 

7.11-7.09 (dd, J = 1.70, 8.34 Hz, 1H, ArH), 6.97-6.93 (m, J = 8.52 Hz, 2H, ArH), 6.82-6.78 (d, J 

= 16.41 Hz, 1H, -HC=CH-), 3.82 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR 

(100 MHz, DMSO-d6, δ, ppm): 169.36 (C-2 of thiazole), 149.14, 148.94, 135.66, 132.22, 129.73, 

129.63, 129.32, 129.27, 129.14, 126.39, 125.60, 123.80, 121.91, 120.45(CF3), 111.69, 109.32, 

105.87 (C-5 of thiazole), 55.48 (OCH3), 30.64, 12.25 (CH3). 

 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(2-

hydroxy-5-bromophenyl)thiazole (6n): 

 

Yellow solid, Yield: 72%, mp: 201-203 C; FTIR (ATR, max, cm-1): 3229.53 (N-H Str.), 3118.13 

(Ar-H Str.), 2957.03 (C-H Str. of CH3), 1560.50 (C = N Str.); 1H NMR (400 MHz, DMSO-d6, δ, 

ppm): 11.33 (s, 1H, NH), 11.21 (s, 1H, OH), 8.06-8.05 (d, J = 2.56 Hz, 1H, ArH), 7.53 (s, 1H, H-

5 of thiazole), 7.29-7.26 (dd, J = 8.62, 2.54 Hz, 1H, ArH), 7.21 (s, 1H, H-2 of DZG), 7.12-7.09 

(dd, J = 8.28, 1.72 Hz, 1H, ArH), 6.99-6.95 (d, J = 15.97 Hz, 1H, -HC=CH-), 6.93 (s, 1H, ArH), 

6.88-6.86 (d, J = 8.60, 1H, ArH), 6.82-6.78 (d, J = 16.40 Hz, 1H, -HC=CH-), 3.82 (s, 3H, OCH3), 

3.77 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 168.18 (C-2 of 

thiazole), 154.42, 149.19, 149.10, 148.94, 132.48, 129.44, 129.23, 126.26, 121.50, 120.54, 

118.84, 111.69, 110.25, 109.31, 106.17 (C-5 of thiazole), 55.49 (OCH3), 30.65, 12.30 (CH3). 
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 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazinyl)-4-(4-

aminophenyl)thiazole (6o): 

 

Brown solid, Yield: 51%, mp: 200-202 C; FTIR (ATR, max, cm-1): 3406.31 ((N-H Str. of NH2), 

3260.19 (N-H Str.), 3154.51 (Ar-H Str.), 2964.45 (C-H Str. of CH3), 1597.20 (C=N Str.); 1H NMR 

(400 MHz, DMSO-d6, δ, ppm): 10.22 (s, 1H, NH), 8.22 (s, 1H, ArH), 7.75 (s, 2H, NH2), 7.15-

6.94 (m, 7H, ArH), 6.81-6.77 (d, J = 16.52 Hz, 2H, -HC=CH-), 3.79 (s, 3H, OCH3), 3.77 (s, 3H, 

OCH3), 2.08 (s, 3H, CH3); 13C NMR (100 MHz, DMSO, δ, ppm): 149.10, 148.91, 126.80, 120.44, 

111.74, 109.23, 79.26, 78.93, 78.60, 55.49 (OCH3), 12.15 (CH3). 

5.2 Biological protocols (In vitro anti-mycobacterial activity characterization) 

5.2.1 MIC under aerobic conditions38–40 

The in vitro anti-mycobacterial activity of synthesized title compounds (6a-6o) was carried out at 

Infectious Disease Research Institute (IDRI) within the National Institute of Allergy and 

Infectious Diseases (NIAID) screening program, Bethesda, MD, USA. The activity was assessed 

against Mycobacterium tuberculosis H37Rv grown under aerobic conditions by using a dual read-

out (OD590 and fluorescence) assay procedure. Test compounds (4 and 6a-6o) were prepared as 

20-point two-fold serial dilutions in DMSO and diluted into 7H9-Tw-OADC medium in 96-well 

plates with a final DMSO concentration of 2%. The highest concentration of compound was 200 

µM where compounds were soluble in DMSO at 10 mM. For compounds with limited solubility, 

the highest concentration was 50X less than the stock concentration e.g. 100 µM for 5 mM DMSO 

stock, 20 µM for 1 mM DMSO stock. Each plate included assay controls for background 

(medium/DMSO only, no bacterial cells), zero growth (100 µM rifampicin) and maximum growth 

(DMSO only), as well as a rifampicin dose response curve. Plates were inoculated with 

Mycobacterium tuberculosis (Mtb) and incubated for 5 days. Growth was measured by OD590 and 

fluorescence (Ex 560/Em 590) using a BioTek™ Synergy 4 plate reader. Growth was calculated 

separately for OD590 and RFU. To calculate the MIC, the dose response curve was plotted as% 

growth and fitted to the Gompertz model using GraphPad Prism 5. The MIC was defined as the 

minimum concentration at which growth was completely inhibited and was calculated from the 

inflection point of the fitted curve to the lower asymptote (zero growth). In addition, dose response 

curves were generated using the Levenberg-Marquardt algorithm and the concentrations that 
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resulted in 50% and 90% inhibition of growth were determined (IC50 and IC90 respectively). 

(Table 3) 

5.2.2 MIC under hypoxic (low) oxygen condition41 

Test compounds (4, 6d, 6g, 6i and 6o) were prepared as 20-point two-fold serial dilutions in 

DMSO and diluted into DTA medium in 96-well plates with a final DMSO concentration of 2%. 

The highest concentration of compound was 200 µM where compounds were soluble in DMSO 

at 10 mM. For compounds with limited solubility, the highest concentration was 50X less than 

the stock concentration e.g. 100 µM for 5 mM DMSO stock, 20 µM for 1 mM DMSO stock. 

Control compounds were prepared as two-fold serial dilutions in DMSO and diluted into DTA 

medium in 96-well plates with a final DMSO concentration of 2%. Mtb constitutively expressing 

the luxABCDE operon was inoculated into DTA medium in gas-impermeable glass tubes and 

incubated for 18 days to generate hypoxic conditions (Wayne model of hypoxia). At this point, 

bacteria are in a non-replicating state (NRP stage 2) induced by oxygen depletion. Oxygen-

deprived bacteria were inoculated into compound assay plates and incubated under anaerobic 

conditions for 10 days followed by incubation under aerobic conditions (outgrowth) for 28 h. 

Growth was measured by luminescence. Oxygen-deprived bacteria were also inoculated into 

compound assay plates and incubated under aerobic conditions for 5 days. Growth was measured 

by luminescence. Rifampicin was included in each plate and metronidazole was included in each 

run as positive controls for aerobic and anaerobic killing of Mtb, respectively. 

5.2.3 Minimum Bactericidal Concentration (MBC) determination 

Mtb was grown aerobically to logarithmic phase and inoculated into liquid medium containing 

four different compound concentrations with a final maximum concentration of 2% DMSO. For 

test compounds (4, 6d, 6g, 6i and 6o) with MIC < 20 µM, the concentration selected were 10X 

MIC, 5X MIC, 1X MIC and 0.25X MIC. Cultures were exposed to compounds for 21 days and 

cell viability measured by enumerating colony forming units on agar plates on day 0, 7, 14 and 

21. MBC was defined as the minimum concentration required to achieve a 2-log kill in 21 days. 

For compounds with > 1-log kill, an assessment of time and/or concentration-dependence was 

determined from the kill kinetics. DMSO was used as a positive control for growth. 

5.2.4 Intracellular activity assay42 

The intracellular activity of compounds was measured using THP1 human monocytic cell line 

infected with Mtb. THP-1 cells were differentiated into macrophage-like cells using PMA and 

infected with bacteria. Infected cells were exposed to compounds for 72 hours. Viable bacterial 

counts were measured using luminescence as a measure of growth.  
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The activity of compounds against intracellular bacteria was determined by measuring viability 

in infected THP-1 cell after 3 days in the presence of test compounds. Test compounds (4, 6d, 6g, 

6i and 6o) were prepared as 10-point three-fold serial dilutions in DMSO. The highest 

concentration of compound tested was 50 µM where compounds were soluble in DMSO at 10 

mM. For compounds with limited solubility, the highest concentration was 200X less than the 

stock concentration e.g. 25 µM for 5 mM DMSO stock, 5 µM for 1 mM DMSO stock. THP-1 

cells were cultured incomplete RPMI and differentiated into macrophage-like cells using 80 nM 

PMA overnight at 37 °C, 5% CO2. THP-1cells were infected with a luminescent strain of H37Rv 

(which constitutively expresses luxABCDE) at a multiplicity of infection of 1 and incubated over 

night at 37 °C, 5% CO2. Infected cells were recovered using Accutase/EDTA solution, washed 

twice with PBS to remove extracellular bacteria and seeded into assay plates. Compound dilutions 

were added to a final DMSO concentration of 0.5%. Assay plates were incubated for 72 h at 37 

°C, 5% CO2. Each run included isoniazid as a control. Relative luminescent units (RLU) were 

measured using a Biotek Synergy 2 plate reader. The dose response curve was fitted using the 

Levenberg–Marquardt algorithm. The IC50 and IC90 were defined as the compound concentrations 

that produced 50% and 90% inhibition of growth respectively. 

5.2.5 Cytotoxicity assay42 

The cytotoxicity of compounds towards eukaryotic cells was determined using the THP-1 human 

monocytic cell line. THP-1 cells were differentiated into macrophage-like cells using PMA and 

incubated with compounds for 3 days and cell viability was measured. The IC50 was determined 

as the concentration of compound causing a 50% loss in viability.  

The cytotoxicity of compounds was determined by measuring THP-1 cell viability after 3 days in 

the presence of test compounds. Test compounds (4, 6d, 6g, 6i and 6o) were prepared as 10-point 

three-fold serial dilutions in DMSO. The highest concentration of compound tested was 50 µM 

where compounds were soluble in DMSO at 10 mM. For compounds with limited solubility, the 

highest concentration was 200X less than the stock concentration e.g. 25 µM for 5 mM DMSO 

stock, 5 µM for 1 mM DMSO stock. Each plate included staurosporine as a control.  THP-1 cells 

were cultured incomplete RPMI and differentiated into macrophage-like cells using 80 nM PMA 

overnight at 37 °C, 5% CO2. Cells were inoculated into assay plates and cultured for 24 h before 

compound dilutions were added to a final DMSO concentration of 0.5%. Each run included 

staurosporine as a control. Assay plates were incubated for 3 days at 37 °C, 5% CO2; growth was 

measured using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega) which uses ATP 

as an indicator of cell viability. Relative luminescent units (RLU) were measured using a Biotek 

Synergy 4 plate reader. The dose response curve was fitted using the Levenberg–Marquardt 
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algorithm. The IC50 was defined as the compound concentration that produced 50% inhibition of 

growth. 

5.2.6 MIC against drug resistant isolates of M. tuberculosis40 

The MIC of compound was determined by measuring bacterial growth after 5 days in the presence 

of test compounds. Test compounds (4, 6d, 6g, 6i and 6o) were prepared as 10-point two-fold 

serial dilutions in DMSO and diluted into 7H9-Tw-OADC medium in 96-well plates with a final 

DMSO concentration of 2%. The highest concentration of compound was 200 µM where 

compounds were soluble in DMSO at 10 mM. For compounds with limited solubility, the highest 

concentration was 50X less than the stock concentration e.g. 100 µM for 5 mM DMSO stock, 20 

µM for 1 mM DMSO stock. Each plate included assay controls for background (medium/DMSO 

only, no bacterial cells), zero growth (100 µM rifampicin) and maximum growth (DMSO only), 

as well as a rifampicin dose response curve. Plates were inoculated with drug resistant isolates of 

Mtb and incubated for 5 days; growth was measured by OD590. To calculate the MIC, the 10-point 

dose response curve was plotted as% growth and fitted to the Gompertz model using GraphPad 

Prism 5. The MIC was defined as the minimum concentration at which growth was completely 

inhibited and was calculated from the inflection point of the fitted curve to the lower asymptote 

(zero growth). In addition, dose response curves were generated using the Levenberg-Marquardt 

algorithm and the concentrations that resulted in 50% and 90% inhibition of growth were 

determined (IC50 and IC90 respectively). (Table 5) 

5.2.7 MIC against other disease-relevant Mycobacteria species40,43 

The MIC of compound was determined by measuring bacterial growth in the presence of test 

compounds. Test compounds (4, 6d, 6g, 6i and 6o) were prepared as 20-point two-fold serial 

dilutions in DMSO and diluted into 7H9-Tw-OADC medium in 96-well plates with a final DMSO 

concentration of 2%. The highest concentration of compound was 200 µM where compounds 

were soluble in DMSO at 10 mM. For compounds with limited solubility, the highest 

concentration was 50X less than the stock concentration e.g. 100 µM for 5 mM DMSO stock, 20 

µM for 1 mM DMSO stock. Each plate included assay controls for background (medium/DMSO 

only, no bacterial cells), zero growth (100 µM rifampicin) and maximum growth (DMSO only), 

as well as a rifampicin dose response curve. (Table 6) 

Mycobacterium abscessus 

Plates were inoculated with M. abscessus and incubated for 3 days at 37 ̊ C; growth was measured 

by OD590. To dose response curve was plotted as% growth and fitted to the Gompertz model. The 

MIC was defined as the minimum concentration at which growth was completely inhibited and 
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was calculated from the inflection point of the fitted curve to the lower asymptote (zero growth). 

In addition, dose response curves were generated using the Levenberg-Marquardt algorithm and 

the concentrations that resulted in 50% and 90% inhibition of growth were determined (IC50 and 

IC90 respectively). Rifampicin was included once in each run. 

Mycobacterium avium 

Plates were inoculated with M. avium, incubated for 5 days at 37 ˚C and Alamar blue was added 

to each well (10 µL of Alamar blue to 100 µL culture) and incubated for 24 h at 37 ˚C. Plates 

were visually inspected and the color recorded for each well. MIC was defined as the lowest 

concentration at which no metabolic activity was seen (blue well). 
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Abstract 

A novel series of styryl hydrazine thiazolidin-4-one hybrids (compounds 7a-d, 10a-l and 13a-b) 

motivated from Dehydrozingerone (DZG) scaffold were designed and synthesized in good yields 

using a rational hybridization approach. The synthesized compounds were screened for their in 

vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv strain at the National 

Institute of Allergy and Infectious Diseases (Bethesda, MD, USA). From the tested series, 

Compounds 7a (MIC = 110 µM; IC50 = 67 µM), 7c (MIC = 120 µM; IC50 = 66 µM) and 10g (MIC 

= 100 µM; IC50 = 100 µM) exhibited noteworthy antimycobacterial activity. Furthermore, these 

title compounds displayed diminutive cytotoxic effect against a mammalian Vero cell line using 

the MTT assay, suggesting for a good therapeutic index. Besides, these research findings on the 

styryl hydrazine thiazolidin-4-one hybrids derived from DZG scaffold stipulated the prospective 

magnitude of molecular hybridization and strongly encouraged us for further lead optimization 

with an aim to develop potential antimycobacterial agents. 
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1 Introduction 

Tuberculosis (TB), one of the world's dreadful communicable diseases, is a chronic infectious 

disease caused by facultative intracellular respiratory pathogen, Mycobacterium tuberculosis. It 

continues to be an utmost prodigious health issue after acquired immune deficiency syndrome 

(AIDS). According to 2015 WHO report, about 9.6 million people were estimated to have fallen 

ill because of this dreadful disease.1 China, India, Russian Federation, and South Africa have 

almost ~63% of the world’s active cases of TB. Apart from Lesotho, South Africa tops the list of 

incident rates with 834 cases per 100,000 people. TB together with human immunodeficiency 

virus (HIV) infection has become a lethal combination and covers the principal ascent of the 

diseases responsible for the highest mortality in Africa. Efforts to eliminate TB have remained as 

a major challenge because of limitations with existing treatments, poor patient compliance, co-

infections, inadequate therapeutic regimen and prolonged treatment. Drug resistance crises due to 

the emergence of drug-resistant mycobacterial strains like multidrug-resistant TB (MDR-TB), 

extensively drug-resistant TB (XDR-TB) and totally drug-resistant TB (TDR-TB) to almost 

marketed frontline drugs, has seriously necessitated the need for effective drug in treating TB.2  

From way back, heterocyclic compounds have emerged as imperial small-molecule therapeutics 

and continued to be explored for their curative medicinal properties. Thiazolidin-4-one ring 

system is one of the many biologically active 5 membered heterocycles that contain nitrogen and 

sulphur hetero atoms, is a vital core structure that has extensively been investigated for numerous 

biological properties. Thiazolidin-4-one (I), a saturated five membered heterocyclic compound 

containing one nitrogen, one sulphur and three carbon atoms including a carbonyl group at 4th 

position. The thriving introduction of etozoline (II) as an antihypertensive, pioglitazone (III) as 

a hypoglycemic agent and ralitoline (IV) as a potent anti-convulsant, in clinical practice, has 

undoubtedly proved the therapeutic potential of thiazolidin-4-one moiety (See Figure 1).  

 

Figure 1: Thiazolidin-4-one scaffold and its various bioactive compounds. 
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Jaju et al., reported the synthesis and biological evaluation of a series of thiazolidin-4-one 

derivatives (X) fused with isoniazid scaffold, which displayed potent antitubercular activity.3 

Besides, thiazolidin-4-one is an acclaimed scaffold in drug discovery as it possesses copious 

pharmacological activities viz. antimicrobial4, antiviral5, anticonvulsant, antiinflammatory6, 

antitubercular7,8 and anticancer activities. 

From primordial times, natural products have been considered as vital cradle for the design, 

discovery and development of innovative drug like leads for life threatening diseases. 

Dehydrozingerone (DZG; feruloylmethane), a half structural analog (natural chalcone) of 

curcumin isolated from rhizomes of Zingerber officinalae (Family: Zingiberaceae), is one such 

medicinally valuable molecule in drug discovery. Chemically DZG is (E)-4-(4-hydroxy-3-

methoxyphenyl)but-3-en-2-one and possess an α,β-unsaturated carbonyl (styryl ketone) group. 

Several DZG analogs were synthesized that have been reported to portrait broad range of 

biological activities like antioxidant, anticancer, anti-inflammatory, antidepressant, antimalarial, 

antifungal etc.9 From reports, it was also established that the derivatives bearing styryl or α,β-

unsaturated carbonyl groups are reported to possess antimycobacterial activities.10,11 

Our previous reports demonstrate the successful implementation of molecular hybridization-

based drug design approach in order to develop new hybrid chemical entities (NHCEs) as 

promising lead compounds against Mycobacterium tuberculosis.12,13 It is widely acknowledged 

that more efficacious NHCEs with synergistic activity can be designed by amalgamation of two 

or more bioactive pharmacophores or heterocyclic systems in a singular molecular skeleton. In 

view of these annotations and owing to the fact that there are only few reports on 

antimycobacterial activity of DZG analogs, we therefore envisaged to explore the design of 

unique DZG analogs by unification of two bioactive scaffolds (styryl portion of DZG and 

thiazolidin-4-one) to construct a new pharmacophore for biological evaluation with the 

anticipation of prospective antimycobacterial activity. Figure 2, illustrates that the newly designed 

hybrid analogs encompass both DZG (including styryl) and thiazolidin-4-one motifs attached 

with each other via a hydrazine linker. Herein, we report the design, synthesis and biological 

evaluation of some novel thiazolidin-4-one analogs derived from DZG as promising 

antimycobacterial agents. 



  

Chapter 4 

113 Girish A. Hampannavar UKZN-2016 

 

Figure 2: Molecular hybridization assisted design of thiazolidin-4-one analogues impelled from 

DZG scaffold as possible antimycobacterial agents. The reported thiazolidin-4-one derivatives 

with promising antimycobacterial activity (V: 2.50 µg/mL14; VI: 2.2 µg/mL15; VII: 6.25 µg/mL16; 

VIII: 1.66 ± 0.5 µM17; IX: 0.48 µM12 and X: 0.31 µg/mL3) 

2 Chemistry 

The synthesis of some novel series of new substituted 2-((4-(3,4-dimethoxyphenyl) but-3-en-2-

ylidene)hydrazono)thiazolidin-4-one derivatives (7a-d, 10a-l and 13a-b) derived from DZG was 

attained through efficient and adaptable synthetic routes as depicted in Schemes I to IV. The 

starting material, compound 4, was synthesized as per our previous report12 (Scheme I), was 

refluxed with methyl bromoacetate in the presence of sodium acetate in absolute ethanol to yield 

2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-one (5). Further, a 

series of title compounds 3-(substituted benzoyl)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-

ylidene)hydrazono)thiazolidin-4-one (7a-d) were synthesized by reacting compound (5) with 

various appropriately substituted acid chlorides (6a-d) in the presence of pyridine as illustrated 

in Scheme II. Besides, the various substituted arylidine malononitriles (9a-l) were prepared by 
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Knoevenagel condensation18 reaction of malononitrile with appropriately substituted 

aromatic/heteroaromatic aldehydes (8a-l). Consequently, the active methylene in the thiazolidin-

4-one of compound 5 underwent nucleophilic addition reaction to the double bond of a variety of 

arylidene malononitriles (9a-l) via a Michael type addition reaction19 by refluxing in ethanol 

containing few drops of piperidine to afford the desired compounds i.e. 5-(substituted 

benzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-ones 

(10a-l) as highlighted in Scheme III. Similarly, Scheme IV represents the reaction of 

malanonitrile with substituted isatins (11a-b) in the presence of pyridine yielded the respective 

isatin malononitriles (12a-b), which were further condensed with compound 5 in the presence of 

ethanol and catalytic amount of piperdine to obtain final compounds i.e. 5-(5-substituted-2-oxo-

indolin-3-ylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-

ones (13a-b) in good yields. The structural confirmation of key intermediates and all synthesized 

final derivatives was established by their physico-chemical and spectral (IR, 1H-NMR and 13C-

NMR) analysis and their further structural identity were substantiated by HRMS data. 

Synthetic Schemes describing synthesis of title compounds 7a-d, 10a-l and 13a-b. 

Scheme I* 

 

*Reagents and conditions: a: acetone, NaOH; b: CH3I, K2CO3, DMF, reflux, 1.5 h; c: 
thiosemicarbazide, AcOH, MeOH, reflux, 3 h. 

Scheme II* 

 

*Reagents and conditions: d: BrCH2COOCH3, EtOH/NaOAc, reflux 4.30 h; e: pyridine, RT. 
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Scheme III* 

 

*Reagents and conditions: f: ethanol, piperidine, reflux 1 h; g: EtOH, piperidine, reflux, 3 h. 

 

Scheme IV* 

 

*Reagents and conditions: f: ethanol, piperidine, reflux 1 h; g: EtOH, piperidine, reflux, 3 h. 
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3 Results and discussion 

3.1 Synthesis and spectral studies 

All the newly synthesized final title compounds showed satisfactory analytical data, which were 

in agreement with their respective anticipated structures, are summarized in experimental section. 

In general, the IR spectrum of key intermediate compound (5) clearly displayed characteristic 

absorption bands around 3074.82 cm-1 for N-H, 1709.23 cm-1 for carbonyl (C=O), 1617.92 cm-1 

for C=C and 1597.49 cm-1 for C=N groups, thus confirming the formation of thiazolidin-4-one 

nucleus. These observations were further substantiated from 1H-NMR spectrum of compound (5), 

which exhibited the prominent singlet signals around  11.87 ppm accounting for the N-H proton 

of thiazolidin-4-one, 7.23 ppm for an aromatic proton at 2nd position of DZG scaffold, 3.85 ppm 

for methylene (CH2) protons of thiazolidin-4-one, 3.81-3.77 ppm for methoxyl (OCH3) protons 

and 2.18 ppm for methyl (CH3) protons, thus indicating the formation of thiazolidin-4-one ring 

from the respective thiosemicarbazide (4) by simple cyclo-condensation process. In addition, the 

appearance of most distinctive doublet signal (J = 16.49) around  6.86-6.82 ppm authenticates 

the presence of vicinal vinyl protons.  

From the IR spectrum of the compounds (7a-d), it was observed that the disappearance of the 

characteristic band due to N-H group while the appearance of an additional fairly strong peak 

around 1760.05-1737.13 cm-1, which is attributed to the benzoyl carbonyl (C=O) group, 

indicating the formation of title compounds (7a-d). This is further evidenced from the 1H-NMR 

spectrum (400 MHz) of these compounds recorded in DMSO-d6, which displayed some 

distinguishing singlet signals at around δ 7.24-7.22 ppm for an aromatic proton at 2nd position of 

DZG scaffold, δ 4.22-4.18 ppm for methylene (CH2) protons of thiazolidin-4-one ring, δ 3.81-

3.76 ppm for methoxyl (OCH3) protons and δ 1.96-1.78 ppm for methyl (N=C-CH3) protons 

respectively. The most informative doublet signals (J = 16.57-16.45 Hz) resonated around δ 7.09-

6.79 ppm evidently indicated the presence of vicinal vinyl (-CH=CH-) protons. This observation 

was found consistent with previously reported similar compounds.12 Further, the various signals 

resonated as either doublets or multiplets at around δ 8.31-6.88 ppm were accounted for aromatic 

or heteroaromatic protons of compounds (7a-d). These findings were further supported from their 

respective 13C-NMR spectra of the title compounds. The characteristic 13C-NMR signals 

resonated at around δ 171.00-170.88 and 168.24-156.11 ppm were assigned to carbonyl carbons 

(C=O) of thiazolidin-4-one and aromoyl/heteroaromoyl moieties respectively. The prominent 

carbon signals observed around δ 164.39-164.24 and 159.02-158.76 ppm due to carbons 

containing arylidine and thiazolidine (C=N) groups respectively. Further, the informative carbon 

signals around δ 149.73-148.92 and 131.01-128.72 ppm were accounted for aromatic carbons 
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having methoxyl groups and vinyl (-HC=CH-) carbons respectively. The carbon signals resonated 

around δ 121.31-121.26, 111.59-111.58 and 109.55-109.52 ppm were assigned to C-6, C-5 and 

C-2 carbons of DZG scaffold respectively, while the typical carbon signals appeared around δ 

55.50-55.46, 33.23-33.09 and 12.94-12.77 ppm indicated the presence of methoxyl (OCH3), 

methylene (-CH2 of thiazolidin-4-one) and methyl (N=C-CH3) groups respectively in the title 

compounds.  

From IR spectrum of the title compounds (10a-l and 13a-b), it was observed that the appearance 

of typical absorption bands around 3118.74-2999.21 cm-1 for N-H, 1729.20-1684.50 cm-1 for 

carbonyl (C=O of thiazolidin-4-one), 1633.77-1590.52 cm-1 for C=C, and 1599.95-1509.36 cm-1 

for C=N groups. The 1H-NMR spectrum (400 MHz) of these title compounds revealed the most 

informative singlet signals at around  12.88-12.38 and 7.30-7.14 ppm attributing to N-H proton 

of thiazolidin-4-one and an aromatic proton at 2nd position of DZG scaffold respectively. An 

apparent structural insight was obtained from the appearance of a prominent singlet signal around 

 7.86-7.52 ppm accounting for the arylidine (HC=C) proton at 5th position of the thiazolidin-4-

one nucleus. In particular, it was noticed that the disappearance of a distinct singlet signal at 

around δ 3.85 ppm for methylene (CH2) protons of thiazolidin-4-one ring, which evidently 

confirms the formation of desired final compounds via Knoevenagel condensation. All 

synthesized compounds displayed singlet signals resonating around δ 3.85-3.76 and 2.27-2.25 

ppm indicated the presence of methoxyl protons (OCH3) on the 3rd and 4th position of the DZG 

scaffold and methyl (N=C-CH3) protons respectively. Further, the most attributable doublet 

signals (J = 16.61-15.13 Hz) resonated around δ 7.21-6.88 ppm evidently confirmed the presence 

of vicinal vinyl protons (CH=CH), whereas the various signals resonated as either singlet or 

multiplets between δ 8.84-6.88 ppm accounted for aromatic protons. In case of compounds 13a 

and 13b, the distinct singlet signals appeared at around δ 11.2-11.1 ppm assigned for N-H protons 

of isatin ring. These elucidations were further authenticated from their respective 13C-NMR 

spectra (100 MHz) of the title compounds. In 13C-NMR spectrum, the characteristic carbon 

signals resonated around δ 167.42-166.74 ppm for carbonyl (C=O) carbon, 129.84-127.01 for 

arylidine (=CH-C) carbon and 135.71-120.98 ppm for C-5 carbon of thiazolidin-4-one ring, thus 

confirming the formation of desired title compounds containing thiazolidinone nucleus. The 

characteristic carbon signals resonated around δ 164.59-160.99 and 159.02-155.76 ppm were 

assigned to carbons containing arylidine and thiazolidine (C=N) groups respectively. Further, the 

most informative 13C-NMR signals resonated at around δ 152.72-148.21 and 131.97-128.87 ppm 

were assigned for aromatic carbons having methoxyl groups and vinyl carbons respectively, while 

the carbon signals appeared around δ 121.84-120.94, 112.76-111.32 and 110.96-109.39 ppm were 

due to C-6, C-5 and C-2 carbons of DZG scaffold. The prominent carbon signals observed around 
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δ 56.34-55.43 ppm and δ 13.93-13.09 ppm, suggested the presence of methoxyl (OCH3) and 

methyl (N=C-CH3) carbons respectively in the title compounds. In case of compounds 13a and 

13b, the characteristic signals appeared around δ 168.69-168.42 ppm due to the presence of 

carbonyl carbon (C=O) of isatin ring. In addition, the formation of desired final compounds (7a-

d, 10a-l and 13a-b) was also established by recording their respective mass spectra (HRMS), 

which displayed accurate molecular ion peaks that were in agreement with their expected 

molecular weights. 

Single crystal X-ray diffraction analysis: 

A crystal of 5 was solved in the monoclinic space group P 1 21/c 1. Vinyl protons (H9-H10) are 

antiperiplanar with a dihedral angle of -179.76, which is consistent with the large coupling 

constant (J = 16.49 Hz) between two vinyl protons. The imine bond (C13=N2) was also 

antiperplanar with a dihedral angle of 178.68. The core skeleton of compound 5 is evidently 

plannar and also confirms that the molecule is in E configuration. Figure 3 depicts X-ray 

crystallographic image of compound 5. 

 

Figure 3: X-ray crystallographic image of compound 5. 

2D NMR Studies 

Characterization and assignment of J values for compound 5 was done using 2D NMR studies. 

The following discussion explains the assignment of 1H-NMR and 13C-NMR values for the 

compound 5, (common scaffold for all the title compounds) with the aid of 2D techniques (COSY, 

NOESY, HSQC and HMBC). The structure 5 comprises of two portions namely aryl styryl and 

hydrazono-thiazolidone portion (Figure 4). 

 

Figure 4: Compound 5 depicting styryl and hydrazono-thiazolidone portions. 
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Aryl-styryl portion*: 

The HMBC correlation from H-12 proton signal at δ 2.17 to C-10 at δ 126.77 (primary carbon) 

and C-11 at δ 162.30 (quaternary carbon) indicated that methyl group is attached to a quaternary 

carbon C-11. HSQC correlation of C-10 to a doublet signal at δ 6.83 with a characteristic J value 

(16.48 Hz) indicated the presence of trans proton (H-10) on C-10. Further, HMBC correlation of 

H-10 to aromatic quaternary carbon, C-1 (δ 129.08) signifies presence of a phenyl carbon. 

NOESY and COSY correlation of H-10 to a doublet, H-9 at δ 7.10 with large coupling constant 

value of 16.48 Hz confirms the presence of another trans proton. Carbon assignment by HSQC 

for H-9 was at δ 135.55 (C-9). Appearance of H-9 down field compared to H-10, signifies the 

deshielding effect which would possibly because of presence of electron releasing groups on 

phenyl ring. HMBC correlation of C-1 to a doublet aromatic proton at δ 6.94 (J = 8.40 Hz) 

indicated the presence of aromatic proton, H-5. A HSQC signal from H-5 correlated it to its 

corresponding carbon signal C-5 at δ 111.76. A downfield HMBC signal from H-5 to δ 149.05 

corresponded to C-3 bearing –OCH3 group. An –OCH3 signal (H-7) at δ 3.08 group also had 

HMBC correlation to C-3. In addition, another –OCH3 signal (H-8) at δ 3.76 had HMBC 

correlation to C-4 at δ 149.06 signifying two methoxy groups on phenyl ring. Further to this C-4 

had HMBC correlation with two aromatic protons at δ 7.12 (as doublet of doublet) and δ 7.22 (as 

doublet) corresponding to H-6 and H-2 respectively. The brief shift of H-2 to down field would 

possibly have attributed by –OCH3 adjacent to it. The ortho coupled doublet at δ 6.94 (H-5) 

illustrated cross peak to the doublet of doublets at δ 7.12 (H-6) which consecutively was linked 

to a small doublet at δ 7.22 (H-2) and was in agreement with reports.20 HSQC correlations of H-

6, H-2, H-7 and H-8 to their respective carbons were at δ 121.13, δ 109.59, δ 55.62 and δ 55.60 

respectively.  

Hydrazono-thiazolidone portion*: 

A methylene proton at H-18 at δ 3.84 had HMBC correlation to the most down field resonance in 
13C spectrum at δ 173.94 (C-17) and δ 162.30 (C-15). Further, a broad singlet at far down field δ 

11.87 corresponded to NH proton (H-16). 

(*see Appendix II, Chapter 4 for HMBC, NOESY, COSY and HSQC spectrums) 
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2D Correlations: 

 

Figure 5: 2D correlations of compound 5. 

3.2 Antimycobacterial activity 

All the newly synthesized title compounds (5, 7a-d, 10a-l and 13a-b) were evaluated for their in 

vitro antimycobacterial activity, which was carried out at Infectious Disease Research Institute 

(IDRI) within the National Institute of Allergy and Infectious Diseases (NIAID) screening 

program, Bethesda, MD, USA. In this study, Minimum Inhibitory Concentration (MIC) was 

established against M. tuberculosis strain H37Rv grown under aerobic conditions by using a dual 

read-out (OD590 and fluorescence) assay procedure to minimize problems caused by compound 

precipitation or autofluoresence.21–23 This specific assay mainly analyses the growth in liquid 

medium of a fluorescent reporter strain of H37Rv, where the readout was either optical density 

(OD) or fluorescence. The purpose of the screening program was to offer a resource whereby new 

experimental compounds could be tested for their capacity to inhibit the growth of virulent M. 

tuberculosis. The result of antimycobacterial activity is presented in Table 1. All the synthesized 

compounds exhibited an inspiring activity profile with MIC ranging from 100 to 200 µM against 

the tested mycobacterial strain. We studied the effects of aromatic/heteroaromatic substituents at 

3rd and 5th position of thiazolidin-4-one ring, which was, in turn connected to DZG scaffold 

through a hydrazine bridge. Interestingly, it was observed that the compounds (7a-d) containing 

aroyl/heteroaroyl group at 3rd position of thiazolidin-4-one ring displayed greatest encouraging 
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antimycobacterial activity as compared to other compounds (10a-l and 13a-b). From the tested 

series, compound 7a (MIC = 110 µM) having an unsubstituted aromatic nucleus displayed most 

promising antimycobacterial activity with an IC50 value of 67 µM, while compound 7c (MIC = 

120 µM) substituted with thiophene moiety on thiazolidin-4-one ring exhibited notable inhibitory 

activity with an IC50 value of 66 µM. Further, from the series of compounds (10a-l and 13a-b), 

one compound 10g (MIC = 100 µM) with pyridin-4-yl moiety on thiazolidin-4-one ring showed 

commendable inhibitory activity with an IC50 value of 100 µM, while the remaining compounds 

of the series were found to be least active with MIC value >200 µM.  
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Table 1: Antimycobacterial and cytotoxic activity data of title compounds (5, 7a-d, 10a-l and 

13a-b) against M. tuberculosis H37Rv strain under aerobic conditions. 

Compound Structure MICa 
(µM) 

IC50
b 

(µM) 
IC90

c 
(µM) 

Cytotoxicity 
IC50

d (µM) 

5 

 

˃200 140 ˃200 263.5 

7a 

 

110 67 110 370.5 

7b 

 

˃200 82 170 346.7 

7c 

 

120 66 120 395.2 

7d 

 

˃200 99 ˃200 318.4 

10a 

 

˃200 ˃200 ˃200 ND 

10b 

 

˃200 ˃200 ˃200 271.2 
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Table 1: (Contd.) 

Compound Structure MICa 
(µM) 

IC50
b 

(µM) 
IC90

c 
(µM) 

Cytotoxicity 
IC50

d (µM) 

10c 

 

˃200 ˃200 ˃200 287.1 

10d 

 

˃200 ˃200 ˃200 273.3 

10e 

 

˃200 ˃200 ˃200 ND 

10f 

 

˃200 ˃200 ˃200 302.8 

10g 

 

100 100 ˃100 311.3 

10h 

 

˃200 ˃200 ˃200 ND 
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aMIC = Minimum Inhibitory Concentration at which M. tuberculosis H37Rv was completely 
inhibited. bIC50 value = Concentration at which growth is inhibited by 50%. cIC90 value = 
Concentration at which growth is inhibited by 90%. dCytotoxic activity was determined on 
mammalian Vero cell line; ND = Not Determined. 

 

Table 1: (Contd.) 

Compound Structure MICa 
(µM) 

IC50
b 

(µM) 
IC90

c 
(µM) 

Cytotoxicit
y IC50

d 
(µM) 

10i 

 

˃200 ˃200 ˃200 299.4 

10j 

 

˃100 ˃100 ˃100 242.5 

10k 

 

˃200 ˃200 ˃200 ND 

10l 

 

˃200 ˃200 ˃200 213.5 

13a 

 

˃200 ˃200 ˃200 220.9 

13b 

 

˃200 ˃200 ˃200 238.1 

Rifampicin  0.006
7 

0.003
7 

0.00
7  
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In general, a brief structure activity relationship (SAR) studies indicated that the 

antimycobacterial activity was considerably affected by the nature of substituents present at 3rd 

position on the thiazolidin-4-one nucleus. It was also observed that the presence of dicarbonyl 

motif along with benzoyl group in compound 7a and its bio-isosteric thiophene ring in compound 

7c have greatly influenced for antimycobacterial activity. However, replacing the substituted 

benzylidine group at 5th position on the thiazolidin-4-one ring with heteroarylidine groups such 

as thiophene (10f), pyridin-3-yl (10i) and isatin (13a-b) resulted in no significant change in the 

antimycobacterial activity, with MIC values >200 µM. 

3.3 Cytotoxic activity 

The newly synthesized final derivatives (7a-d, 10a-l and 13a-b) were further assessed for in vitro 

cytotoxic activity (IC50) in a mammalian Vero cell line by following MTT assay protocol. After 

72 h of exposure, the cell viability was determined on the basis of the cellular conversion of MTT 

into a formazan product using a Promega Cell Titre 96 non-radioactive cell proliferation assay. 

The results presented in Table 1 reveal that the IC50 values were ranging from 213.5 to 395.2 µM 

for the 15 tested derivatives. These synthesized compounds did not produce significant activity 

against mammalian Vero cell line at concentrations <100 µM. Within the analogs tested, 

compounds 7a-d, 10f and 10g display a lower toxicity with IC50 values >300 µM.  

4 Conclusion 

In this communication, we report the synthesis, spectral studies and preliminary in vitro 

antimycobacterial activity of some novel series of styryl hydrazine tethered thiazolidin-4-one 

analogs (7a-d, 10a-l and 13a-b) derived from an imperative scaffold (i.e. DZG) using a rational 

hybridization approach. The structures of the desired title compounds were confirmed by their 

respective spectral (IR, 1H-NMR and 13C-NMR) and HRMS data. From the newly synthesized 

analogs, compounds 7a, 7c and 10g exhibited the most encouraging antimycobacterial activity 

against M. tuberculosis H37Rv strain. A brief SAR study emphasized that the antimycobacterial 

effect of compounds was indeed sensitive to the presence of specific substituents at 3rd and 5th 

position of thiazolidin-4-one nucleus. Further, the title compounds were screened for their in vitro 

cytotoxicity (IC50) against the mammalian Vero cell line by using MTT assay. The results 

revealed that these compounds displayed antimycobacterial activity at non-cytotoxic 

concentrations. These results are encouraging due to the fact that compounds with increased cyto-

viability are attractive in the development of new chemical entities for the treatment of TB. This 

research outcome advocates the advantage of integrating a hydrazine linkage to unite styryl 
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portion of DZG and thiazolidin-4-one core, thus offers a worthy initial idea for further compound 

optimization. Thus emerged lead candidates (7a, 7c and 10g) can be further exploited for 

additional functionalization to improve the antimycobacterial activity profile, which deserves 

further investigation. 

5 Experimental 

5.1 Chemistry Protocol 

All the chemicals used in this research work were purchased from Sigma-Aldrich and Merck 

Millipore, South Africa. All the solvents, except those of laboratory-reagent grade, were dried 

and purified when necessary according to previously published methods. The progress of the 

reactions and the purity of the compounds were monitored by thin-layer chromatography (TLC) 

on pre-coated silica gel plates procured from E. Merck and Co. (Darmstadt, Germany). 

The melting points of the synthesized compounds were determined using a Thermo Fisher 

Scientific (IA9000, UK) digital melting point apparatus and are uncorrected. The IR spectra were 

recorded on a Bruker Alpha FT-IR spectrometer (Billerica, MA, USA) using the ATR technique. 

The 1H-NMR and 13C-NMR spectra were recorded on a Bruker AVANCE 400 and 600 MHz 

(Bruker, Rheinstetten/Karlsruhe, Germany) spectrometer using DMSO-d6. The chemical shifts 

(δ) reported are given in parts per million (ppm) and the coupling constants (J) are in Hertz (Hz) 

with respect to TMS as the internal standard. The spin multiplicities are reported as s = singlet, d 

= doublet, t = triplet, dd = doublet of doublet and m = multiplet. HRMS spectra were recorded on 

an Autospec mass spectrometer with electron impact at 70 eV. Compounds 2, 3 and 4, were 

synthesized in good yields according to our previous report.12 

5.1.1 Synthesis of 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-

one (5)24,25: 

Compound 4 (5 gm, 0.01790 mol.) and sodium acetate (1.46 g, 0.01790 mol.) were refluxed in 

ethanol for 30 minutes and then methyl bromoacetate (3.012 g, 0.01969 mol.) was added. The 

resulting mixture was refluxed for 4.30 h until the starting material was consumed. After 

completion, the mixture was poured in a beaker containing ice and stirred for few minutes. The 

separated solid was filtered under reduced pressure. Further, recrystallization in ethanol yielded 

yellow coloured crystalline solid of 5. TLC was monitored by using solvent system DCM: MeOH 

(99:1). 

Yield: 83%, mp: 197-198 C; FTIR (ATR, max, cm-1): 3074.82 (N-H Str.), 2967.45 (Ar-H Str.), 

2928.97 (C-H Str. of CH3), 1709.23 (C=O Str.), 1617.92 (C=C Str.), 1597.49 (C=N Str.); 1H-

NMR (400 MHz, DMSO-d6, δ, ppm): 11.87 (s, 1H, NH), 7.23 (s, 1H), 7.14-7.09 (m, 2H), 6.96-
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6.94 (d, 1H, J = 8.40 Hz), 6.86-6.82 (d, 1H, J = 16.49 Hz, HC = CH), 3.85 (s, 2H, -CH2 of 

thiazolidone), 3.81 (s, 3H, -OCH3), 3.77 (s, 3H, -OCH3), 2.18 (s, 3H, -CH3); 13C-NMR (100 MHz, 

DMSO, δ ppm): 173.72 (C=O, thiazolidin-4-one), 162.11 (C=N of thiazolidone and 2-ylidene 

carbon), 149.53, 148.94, 135.41, 128.97, 126.66, 121.03 (C-6 of DZG), 111.62 (C-5 of DZG), 

109.46 (C-2 of DZG), 55.50 (-OCH3), 55.47 (-OCH3), 32.80 (-CH2 of thiazolidone), 13.06 (-CH3); 

HRMS (ESI, m/z) [M-H]-; calculated for C15H17N3O3S, 318.0912; found 318.0905. 

5.1.2 General procedure for synthesis of substituted 3-benzoyl-2-((4-(3,4-dimethoxy 

phenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-one (7a-d) 

Compound 5 (0.3 g, 0.00094 mol) was taken in 3.0 mL of pyridine and stirred for 15 minutes. To 

this was added 1.5 equivalent (0.00141 mol) of appropriately substituted acid chlorides (6a-d) 

with constant stirring for 3 h (till consumption of starting material) at room temperature. Few 

drops of cold dil. HCl (0.1 N) was added whilst stirring to quench the pyridine. The obtained solid 

was filtered and washed with water. The solid was recrystallized in ethanol to yield desired title 

compounds (7a-d). 

5.1.2.1 3-benzoyl-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-

ylidene)hydrazono)thiazolidin-4-one (7a): 

Yellow solid, Yield: 39%, mp: 154-156 C; FTIR (ATR, max, cm-1): 3076.01 (Ar-H Str.), 2994.68 

(C-H Str. of CH3), 1705.90 (C=O Str.), 1621.59 (C=C Str.), 1583.66 (C=N Str.), 1760.05 (Acyclic 

C=O Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 8.05 (s, 1H), 8.03 (s, 1H), 7.81-7.77 (t, 1H, 

J = 7.44), 7.64-7.60 (t, 2H, J = 7.82 Hz), 7.22 (s, 1H), 7.12-7.10 (m, 1H), 7.09-7.05 (d, 1H, J = 

16.57 Hz), 6.95-6.93 (d, 1H, J = 8.40 Hz), 6.83-6.79 (d, 1H, J = 16.49 Hz, HC = CH), 4.22 (s, 

2H, -CH2 of thiazolidone), 3.80 (s, 3H, -OCH3), 3.76 (s, 3H, -OCH3), 1.78 (s, 3H, -CH3); 13C-

NMR (100 MHz, DMSO, δ ppm): 170.96 (C=O, thiazolidin-4-one), 168.24 (C=O, benzoyl 

carbon), 164.35 (C=N, 2-ylidene carbon), 158.94 (C=N of thiazolidone), 149.72, 148.92, 136.59, 

135.41, 131.01, 130.51, 129.31, 128.71, 125.92, 121.29 (C-6 of DZG), 111.58 (C-5 of DZG), 

109.53 (C-2 of DZG), 55.50 (-OCH3), 55.46 (-OCH3), 33.23 (-CH2 of thiazolidone), 12.79 (-CH3); 

HRMS (ESI, m/z) [M+Na]+; calculated for C22H21N3O4S, 446.1150; found 446.1150. 

5.1.2.2 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-3-(furan-2-

carbonyl) thiazolidin-4-one (7b): 

Yellow solid, Yield: 26%, mp: 168-170 C; FTIR (ATR, max, cm-1): 3005.50 (Ar-H Str.), 2958.20 

(C-H Str. of CH3), 1703.06 (C=O Str.), 1621.50 (C=C Str.), 1585.56 (C=N Str.), 1755.04 (Acyclic 

C=O Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 8.24 (s, 1H), 7.87-7.86 (d, 1H, J = 3.68 Hz), 

7.24 (s, 1H), 7.14-7.10 (m, 2H), 6.96-6.94 (d, 1H, J = 8.40 Hz), 6.89-6.88 (dd, 1H, J = 3.78, 1.62 
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Hz), 6.86-6.82 (d, 1H, J = 16.49 Hz), 4.18 (s, 2H, -CH2 of thiazolidone), 3.81 (s, 3H, -OCH3), 

3.77 (s, 3H, -OCH3), 1.96 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 170.88 (C=O, 

thiazolidin-4-one), 164.39 (C=N, 2-ylidene carbon), 158.76 (C=N of thiazolidone), 156.11 (C=O, 

of furan-2-carbonyl), 151.49, 149.73, 148.93, 146.22, 136.61, 128.72, 125.97, 125.39, 121.31 (C-

6 of DZG), 113.96, 111.59 (C-5 of DZG), 109.55 (C-2 of DZG), 55.50 (-OCH3), 55.47 (-OCH3), 

33.09 (-CH2 of thiazolidone), 12.94 (-CH3); HRMS (ESI, m/z) [M+Na]+; calculated for 

C20H19N3O5S, 436.0943; found 436.0945. 

5.1.2.3 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-3-(thiophene-2-

carbonyl)thiazolidin-4-one (7c): 

Yellow solid, Yield: 34%, mp: 212-214 C; FTIR (ATR, max, cm-1): 2995.91 (Ar-H Str.), 2958.38 

(C-H Str. of CH3), 1699.53 (C=O Str.), 1620.69 (C=C Str.), 1581.63 (C=N Str.), 1753.05 (Acyclic 

C=O Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 8.31-8.30 (m, 1H), 8.15-8.13 (m, 1H), 7.36-

7.34 (t, 1H, J = 4.38 Hz), 7.24 (s, 1H), 7.14-7.09 (m, 2H), 6.95-6.93 (d, 1H, J = 8.40 Hz), 6.86-

6.82 (d, 1H, J = 16.49 Hz), 4.19 (s, 2H, -CH2 of thiazolidone), 3.81 (s, 3H, -OCH3), 3.77 (s, 3H, 

-OCH3), 1.94 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 170.90 (C=O, thiazolidin-4-

one), 164.37 (C=N, 2-ylidene carbon), 161.50 (C=O, thiophene-2-carbonyl), 158.95 (C=N of 

thiazolidone), 149.72, 148.93, 139.78, 138.95, 136.57, 135.80, 129.50, 128.72, 125.98, 121.29 

(C-6 of DZG), 111.59 (C-5 of DZG), 109.55 (C-2 of DZG), 55.47 (-OCH3), 33.14 (-CH2 of 

thiazolidone), 12.93 (-CH3). 

5.1.2.4 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-3-(4-heptylbenzoyl) 

thiazolidin-4-one (7d): 

Yellow solid, Yield: 28%, mp: 121-123 C; FTIR (ATR, max, cm-1): 3043.04 (Ar-H Str.), 2925.12 

(C-H Str. of CH3), 1705.58 (C=O Str.), 1624.73 (C=C Str.), 1597.52 (C=N Str.), 1737.13 (Acyclic 

C=O Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 7.95-7.93 (d, 2H, J = 8.20 Hz), 7.44 (d, 2H, 

J = 8.28 Hz), 7.22 (s, 1H), 7.12-7.09 (m, 1H), 7.08-7.04 (d, 1H, J = 16.45 Hz), 6.95-6.93 (d, 1H, 

J = 8.44 Hz), 6.83-6.79 (d, 1H, J = 16.45 Hz), 4.21 (s, 2H, -CH2 of thiazolidone), 3.80 (s, 3H, -

OCH3), 3.76 (s, 3H, -OCH3), 2.70-2.67 (t, 2H, J = 7.56 Hz), 1.79 (s, 3H, -CH3), 1.28-1.20 (m, 

10H), 0.85-0.82 (t, 3H, J = 6.84 Hz); 13C-NMR (100 MHz, DMSO, δ ppm): 171.00 (C=O, 

thiazolidin-4-one), 167.90 (C=O, benzoyl carbon), 164.24 (C=N, 2-ylidene carbon), 159.02 (C=N 

of thiazolidone), 151.10, 149.72, 148.92, 136.50, 130.75, 129.27, 128.70, 128.56, 125.94, 121.26 

(C-6 of DZG), 121.02, 111.58 (C-5 of DZG), 109.52 (C-2 of DZG), 55.49 (-OCH3), 35.18, 33.19 

(-CH2 of thiazolidone), 31.19, 30.40, 28.46, 28.44, 22.02, 13.90 (-CH3), 12.77 (-CH3); HRMS 

(ESI, m/z) [M+Na]+; calculated for C29H35N3O4S, 544.2246; found 544.2247. 
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5.1.3 General procedure for synthesis of substituted arylidine malononitriles (9a-l)26 

To a constantly stirred solution of malononitrile (0.5 g, 0.00757 mol.) in 10.0 mL of ethanol, an 

appropriately substituted aromatic/heteroaromatic aldehyde (8a-l; 0.00757 mol) and 2-4 drops of 

pyridine was slowly added. The reaction mixture was then either refluxed for 1-2 h (for substituted 

benzaldehydes) or was stirred at room temperature for 2-3 h (for substituted heteroaromatic 

aldehydes). The precipitate formed after cooling was filtered to get respective arylidine 

malononitriles (9a-l). The compounds so obtained were fairly pure to carry out the next step. 

5.1.4 General procedure for synthesis of substituted 5-(benzylidene)-2-((4-(3,4-

dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-one (10a-l)27: 

To a continuously stirred mixture of compound 5 (0.35 g, 0.00110 mol) and appropriate arylidine 

malononitriles (9a-l; 0.00110 mol) in ethanol (8 mL), few drops of piperidine were added. The 

reaction mass was refluxed for 3-5 h. The progress of the reaction was constantly monitored by 

TLC. After cooling, the separated solid or residue was filtered, washed with hot ethanol. All the 

compounds were further purified by recrystallized in ethanol in order to get the desired title 

compounds (10a-l). 

5.1.4.1 5-(3,4-dimethoxybenzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene) 

hydrazono)thiazolidin-4-one (10a): 

Yellow solid, Yield: 35%, mp: 227-229 C; FTIR (ATR, max, cm-1): 3115.99 (N-H Str.), 3001.46 

(Ar-H Str.), 2957.65 (C-H Str. of CH3), 1687.41 (C=O Str.), 1624.30 (C=C Str.), 1591.71 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.43 (s, 1H, NH), 7.55 (s, 1H, C=C-H), 7.28 (s, 

1H), 7.25 (s, 1H), 7.22-7.20 (m, 1H), 7.18-7.12 (m, 3H), 6.98-6.95 (d, 1H, J = 8.44 Hz), 6.95-

6.91 (d, 1H J = 16.49 Hz, HC = CH), 3.83 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3), 3.82 (s, 3H, -

OCH3), 3.78 (s, 3H, -OCH3), 2.25 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 167.25 

(C=O, thiazolidin-4-one), 163.38 (C=N, 2-ylidene carbon), 156.96 (C=N of thiazolidone), 151.39, 

150.24, 149.69, 148.95, 148.86, 136.31, 129.24, 128.88 (C-H, benzylidene carbon), 126.42, 

126.36, 122.55, 121.31 (C-6 of DZG), 120.46, 114.14, 112.03, 111.59 (C-5 of DZG), 109.52 (C-

2 of DZG), 55.63 (-OCH3), 55.51 (-OCH3), 55.47 (-OCH3), 13.30 (-CH3); HRMS (ESI, m/z) [M-

H]-; calculated for C24H25N3O5S, 466.1437; found 466.1448. 

5.1.4.2 5-(2,3-dimethoxybenzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene) 

hydrazono) thiazolidin-4-one (10b): 

Yellow solid, Yield: 26%, mp: 195-197 C; FTIR (ATR, max, cm-1): 3109.88 (N-H Str.), 3040.73 

(Ar-H Str.), 2948.43 (C-H Str. of CH3), 1696.80 (C=O Str.), 1623.69 (C=C Str.), 1595.01 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.55 (s, 1H, NH), 7.75 (s, 1H, C=C-H), 7.27 (s, 
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1H), 7.25-7.23 (d, 1H, J = 7.88 Hz), 7.20-7.15 (m, 4H), 6.97-6.95 (d, 1H, J = 8.40 Hz), 6.93-6.89 

(d, 1H, J = 16.49 Hz, HC = CH), 3.84 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3), 3.78 (s, 6H, 2’,3’-

OCH3), 2.25 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 167.18 (C=O, thiazolidin-4-

one), 163.68 (C=N, 2-ylidene carbon), 156.78 (C=N of thiazolidone), 152.72, 149.73, 148.97, 

147.86, 136.49, 128.87, 127.39, 126.26, 124.61, 124.41 (C-5 of thiazolidone), 123.08 (C-H, 

benzylidene carbon), 121.37 (C-6 of DZG), 119.66, 114.69, 111.61 (C-5 of DZG), 109.53 (C-2 

of DZG), 60.97, 56.00 (-OCH3), 55.84 (-OCH3), 55.54 (-OCH3), 55.48 (-OCH3), 13.28 (-CH3); 

HRMS (ESI, m/z) [M-H]-; calculated for C24H25N3O5S, 466.1437; found 466.1432. 

5.1.4.3 5-(4-chlorobenzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene) 

hydrazono) thiazolidin-4-one (10c): 

Yellow solid, Yield: 40%, mp: 251-253 C; FTIR (ATR, max, cm-1): 3077.23 (N-H Str.), 3052.86 

(Ar-H Str.), 2932.41 (C-H Str. of CH3), 1729.20 (C=O Str.), 1629.90 (C=C Str.), 1518.99 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.59 (s, 1H, NH), 7.67-7.65 (d, 2H, J = 8.60 Hz), 

7.60-7.58 (m, 3H), 7.27 (s, 1H), 7.22-7.15 (m, 2H), 6.98-6.96 (d, 1H, J = 8.40 Hz), 6.94-6.90 (d, 

1H, J = 16.49 Hz, HC = CH), 3.83 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3), 2.26 (s, 3H, -CH3); 13C-

NMR (100 MHz, DMSO, δ ppm): 166.99 (C=O, thiazolidin-4-one), 163.84 (C=N, 2-ylidene 

carbon), 156.38 (C=N of thiazolidone), 149.76, 148.97, 136.60, 134.17, 132.58, 131.40, 129.24, 

128.84, 127.41 (C-H, benzylidene carbon), 126.19, 124.11 (C-5 of thiazolidone), 121.35 (C-6 of 

DZG), 111.62 (C-5 of DZG), 109.55 (C-2 of DZG), 55.49 (-OCH3), 13.35 (-CH3); HRMS (ESI, 

m/z) [M-H]-; calculated for C22H20ClN3O3S, 440.0836; found 440.0839. 

5.1.4.4 5-(4-bromobenzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene) 

hydrazono) thiazolidin-4-one (10d): 

Yellow solid, Yield: 32%, mp: 255-257 C; FTIR (ATR, max, cm-1): 3049.65 (N-H Str.), 3020.56 

(Ar-H Str.), 2930.54 (C-H Str. of CH3), 1728.47 (C=O Str.), 1628.72 (C=C Str.), 1518.65 (C=N 

Str.); 1H-NMR (600 MHz, DMSO-d6, δ, ppm): 12.38 (s, 1H, NH), 7.72-7.70 (d, 2H, J = 8.28 Hz), 

7.58-7.56 (d, 2H, J = 8.34 Hz), 7.54 (s, 1H, C=C-H), 7.25 (s, 1H), 7.19-7.15 (m, 2H), 6.98-6.97 

(d, 1H, J = 8.28 Hz), 6.90-6.88 (d, 1H, J = 16.44 Hz, HC = CH), 3.85 (s, 3H, -OCH3), 3.80 (s, 

3H, -OCH3), 2.26 (s, 3H, -CH3); 13C-NMR (150 MHz, DMSO, δ ppm); 167.42 (C=O, thiazolidin-

4-one), 164.13 (C=N, 2-ylidene carbon), 156.62 (C=N of thiazolidone), 150.57, 149.80, 136.82, 

133.56, 132.62, 131.97, 129.65, 127.94 (C-H, benzylidene carbon), 126.97, 125.04 (C-5 of 

thiazolidone), 123.41, 121.72 (C-6 of DZG), 112.76 (C-5 of DZG), 110.96 (C-2 of DZG), 79.64, 

79.41, 79.19, 56.34 (-OCH3), 56.26 (-OCH3), 13.90 (-CH3); HRMS (ESI, m/z) [M-H]-; calculated 

for C22H20BrN3O3S, 484.0330; found 484.0349. 
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5.1.4.5 5-(benzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono) 

thiazolidin-4-one (10e): 

Yellow solid, Yield: 31%, mp: 205-206 C; FTIR (ATR, max, cm-1): 3112.43 (N-H Str.), 3013.70 

(Ar-H Str.), 2959.85 (C-H Str. of CH3), 1693.90 (C=O Str.), 1590.71 (C=C Str.), 1510.87 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.56 (s, 1H, NH), 7.66-7.64 (d, 2H, J = 7.56 Hz), 

7.59 (s, 1H, C=C-H), 7.56-7.52 (t, 2H, J = 7.58 Hz), 7.47-7.43 (m, 1H), 7.29 (s, 1H), 7.21-7.16 

(m, 2H), 6.98-6.96 (d, 1H, J = 6.88 Hz), 6.96-6.92 (d, 1H, J = 15.13 Hz, HC = CH), 3.84 (s, 3H, 

-OCH3), 3.78 (s, 3H, -OCH3), 2.26 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 167.13 

(C=O, thiazolidin-4-one), 163.72 (C=N, 2-ylidene carbon), 156.70 (C=N of thiazolidone), 149.73, 

148.96, 136.54, 133.65, 129.79, 129.71 (C-H, benzylidene carbon), 129.19, 128.58, 128.76, 

126.25, 123.29 (C-5 of thiazolidone), 121.40 (C-6 of DZG), 111.57 (C-5 of DZG), 109.47 (C-2 

of DZG), 55.99, 55.54 (-OCH3), 55.47 (-OCH3), 18.52, 13.31 (-CH3); HRMS (ESI, m/z) [M-H]-; 

calculated for C22H21N3O3S, 406.1225; found 406.1223. 

5.1.4.6 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-5-(thiophen-2-yl-

methylene)thiazolidin-4-one (10f): 

Yellow orange solid, Yield: 37%, mp: 226-228 C; FTIR (ATR, max, cm-1): 3115.27 (N-H Str.), 

3060.27 (Ar-H Str.), 2963.89 (C-H Str. of CH3), 1694.20 (C=O Str.), 1590.52 (C=C Str.), 1514.47 

(C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.51 (s, 1H, NH), 7.97-7.96 (d, 1H, J = 

5.00 Hz), 7.86 (s, 1H, C=C-H), 7.62-7.61 (d, 1H, J = 3.44 Hz), 7.30 (s, 1H), 7.28-7.26 (m, 1H), 

7.22-7.16 (m, 2H), 6.97-6.92 (m, 2H), 3.84 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3), 2.26 (s, 3H, -

CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 166.91 (C=O, thiazolidin-4-one), 163.70 (C=N, 2-

ylidene carbon), 156.30 (C=N of thiazolidone), 149.75, 148.99, 137.82, 136.59, 133.23, 131.82, 

128.87, 128.68, 126.24, 122.18 (C-H, benzylidene carbon), 121.48 (C-6 of DZG), 120.98 (C-5 of 

thiazolidone), 111.58 (C-5 of DZG), 109.49 (C-2 of DZG), 55.54 (-OCH3), 13.37 (-CH3); HRMS 

(ESI, m/z) [M-H]-; calculated for C20H19N3O3S2, 412.0790; found 412.0779. 

5.1.4.7 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-5-(pyridin-4-yl-

methylene)thiazolidin-4-one (10g): 

Yellow solid, Yield: 29%, mp: 258-260 C; FTIR (ATR, max, cm-1): 3011.90 (N-H Str.), 2935.45 

(Ar-H Str.), 2837.61 (C-H Str. of CH3), 1719.49 (C=O Str.), 1633.77 (C=C Str.), 1598.56 (C=N 

Str.); 1H-NMR (600 MHz, DMSO-d6, δ, ppm): 12.61 (s, 1H, NH), 8.72-8.71 (d, 2H, J = 5.04 Hz), 

7.57-7.56 (d, 2H, J = 5.10 Hz), 7.53 (s, 1H, C=C-H), 7.27 (s, 1H), 7.2-7.19 (d, 1H, J = 16.50 Hz), 

7.18-7.17 (d, 1H, J = 8.28 Hz), 6.99-6.97 (d, 1H, J = 8.22 Hz), 6.93-6.90 (d, 1H, J = 16.50 Hz, 

HC = CH), 3.84 (s, 3H, -OCH3), 3.80 (s, 3H, -OCH3), 2.27 (s, 3H, -CH3); 13C-NMR (150 MHz, 
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DMSO, δ ppm); 167.20 (C=O, thiazolidin-4-one), 164.59 (C=N, 2-ylidene carbon), 156.53 (C=N 

of thiazolidone), 150.97, 150.52, 149.71, 141.31, 137.19, 129.51, 129.18 (C-5 of thiazolidone), 

126.79, 126.18 (C-H, benzylidene carbon), 123.70, 121.84 (C-6 of DZG), 112.55 (C-5 of DZG), 

110.69 (C-2 of DZG), 65.31, 56.27 (-OCH3), 56.18 (-OCH3), 31.07, 15.59, 13.93 (-CH3); HRMS 

(ESI, m/z) [M-H]-; calculated for C21H20N4O3S, 407.1178; found 407.1164. 

5.1.4.8 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-5-(4-methyl 

benzylidene)thiazolidin-4-one (10h): 

Yellow solid, Yield: 40%, mp: 236-238 C; FTIR (ATR, max, cm-1): 3118.74 (N-H Str.), 3019.85 

(Ar-H Str.), 2964.49 (C-H Str. of CH3), 1697.55 (C=O Str.), 1592.59 (C=C Str.), 1514.23 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.50 (s, 1H, NH), 7.55 (s, 2H), 7.52 (s, 1H, C=C-

H), 7.36-7.34 (d, 2H, J = 8.04 Hz), 7.29 (s, 1H), 7.21-7.15 (m, 2H), 6.98-6.92 (m, 2H), 3.84 (s, 

3H, -OCH3), 3.78 (s, 3H, -OCH3), 2.36 (s, 3H, -CH3), 2.26 (s, 3H, -CH3); 13C-NMR (100 MHz, 

DMSO, δ ppm): 167.22 (C=O, thiazolidin-4-one), 163.59 (C=N, 2-ylidene carbon), 156.80 (C=N 

of thiazolidone), 149.71, 148.96, 139.84, 136.46, 135.41, 130.88, 129.84 (C-H, benzylidene 

carbon), 129.80, 128.87, 128.75, 126.29, 122.06 (C-5 of thiazolidone), 121.38(C-6 of DZG), 

111.58 (C-5 of DZG), 109.47 (C-2 of DZG), 55.53 (-OCH3), 55.47 (-OCH3), 21.04 (-CH3), 13.30 

(-CH3); HRMS (ESI, m/z) [M-H]-; calculated for C23H23N3O3S, 420.1382; found 420.1392. 

5.1.4.9 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-5-(pyridin-3-yl-

methylene)thiazolidin-4-one (10i): 

Yellow solid, Yield: 25%, mp: 235-237 C; FTIR (ATR, max, cm-1): 2999.21 (N-H Str.), 2929.09 

(Ar-H Str.), 2833.81 (C-H Str. of CH3), 1713.41 (C=O Str.), 1625.05 (C=C Str.), 1514.55 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.66 (s, 1H, NH), 8.85 (s, 1H), 8.60-8.59 (d, 1H, 

J = 4.76 Hz), 8.02-8.01 (d, 1H, J = 8.00 Hz), 7.62 (s, 1H, C=C-H), 7.58-7.55 (dd, 1H, J = 7.89, 

4.24 Hz), 7.28 (s, 1H), 7.22-7.15 (m, 2H), 6.97-6.91 (m, 2H), 3.83 (s, 3H, -OCH3), 3.78 (s, 3H, -

OCH3), 2.26 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 166.85 (C=O, thiazolidin-4-

one), 163.93 (C=N, 2-ylidene carbon), 156.39 (C=N of thiazolidone), 151.05, 149.84, 149.76, 

148.96, 136.69, 135.79, 129.81, 128.82, 126.16, 125.70 (C-5 of thiazolidone), 125.30 (C-H, 

benzylidene carbon), 124.09, 121.43 (C-6 of DZG), 111.58 (C-5 of DZG), 109.48 (C-2 of DZG), 

55.54 (-OCH3), 55.47 (-OCH3), 18.52, 13.35 (-CH3); HRMS (ESI, m/z) [M-H]-; calculated for 

C21H20N4O3S, 407.1178; found 407.1172. 
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5.1.4.10 5-(3-chlorobenzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene) 

hydrazono)thiazolidin-4-one (10j): 

Yellow solid, Yield: 28%, mp: 217-219 C; FTIR (ATR, max, cm-1): 3063.62 (N-H Str.), 2917.80 

(Ar-H Str.), 2831.79 (C-H Str. of CH3), 1720.58 (C=O Str.), 1628.09 (C=C Str.), 1599.95 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.54 (s, 1H, NH), 7.68 (s, 1H, C=C-H), 7.56-

7.48 (m, 5H), 7.21-7.16 (d, 1H, J = 16.61 Hz, HC = CH), 7.14 (s, 2H), 7.02-7.00 (d, 1H, J = 8.76 

Hz), 3.80 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3), 2.26 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, 

δ ppm): 167.06 (C=O, thiazolidin-4-one), 160.99 (C=N, 2-ylidene carbon), 155.76 (C=N of 

thiazolidone), 150.12, 148.95, 148.87, 137.97, 135.87, 133.77, 131.01, 129.50, 129.23, 128.71, 

127.73, 127.01 (C-H, benzylidene carbon), 125.14 (C-5 of thiazolidone), 120.94 (C-6 of DZG), 

117.39, 111.83 (C-5 of DZG), 110.35 (C-2 of DZG), 55.51 (-OCH3), 55.43 (-OCH3), 19.69, 13.35 

(-CH3). 

5.1.4.11 5-(2-chlorobenzylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene) 

hydrazono)thiazolidin-4-one (10k): 

Yellow solid, Yield: 23%, mp: 213-215 C; FTIR (ATR, max, cm-1): 3029.50 (N-H Str.), 2937.75 

(Ar-H Str.), 2838.67 (C-H Str. of CH3), 1714.87 (C=O Str.), 1619.95 (C=C Str.), 1598.06 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.70 (s, 1H, NH), 7.75 (s, 1H, C=C-H), 7.71-

7.69 (d, 1H, J = 7.68 Hz), 7.63-7.61 (d, 1H, J = 7.96 Hz), 7.56-7.52 (t, 1H, J = 7.38 Hz), 7.49-

7.44 (m, 1H), 7.26 (s, 1H), 7.21-7.14 (m, 2H), 6.96-6.94 (d, 1H, J = 8.40 Hz), 6.92-6.88 (d, 1H, 

J = 16.49 Hz, HC = CH), 3.82 (s, 3H, -OCH3), 3.77 (s, 3H, OCH3), 2.25 (s, 3H, -CH3); 13C-NMR 

(100 MHz, DMSO, δ ppm): 166.75 (C=O, thiazolidin-4-one), 164.00 (C=N, 2-ylidene carbon), 

156.33 (C=N of thiazolidone), 149.75, 148.95, 136.71, 134.09, 131.54, 131.13, 130.23, 128.90, 

128.80, 127.95, 126.86 (C-5 of thiazolidone), 126.13, 123.69 (C-H, benzylidenecarbon), 121.41 

(C-6 of DZG), 111.56 (C-5 of DZG), 109.48 (C-2 of DZG), 55.52 (-OCH3), 55.46 (-OCH3), 13.34 

(-CH3). 

5.1.4.12 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-5-(3-nitro 

benzylidene)thiazolidin-4-one (10l): 

Yellow solid, Yield: 22%, mp: 249-251 C; FTIR (ATR, max, cm-1): 3106.33 (N-H Str.), 3039.40 

(Ar-H Str.), 2957.11 (C-H Str. of CH3), 1693.10 (C=O Str.), 1619.19 (C=C Str.), 1598.60 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.70 (s, 1H, NH), 8.45 (s, 1H), 8.26-8.24 (d, 1H, 

J = 8.20 Hz), 8.06-8.04 (d, 1H, J = 7.92 Hz), 7.84-7.80 (t, 1H, J = 8.02 Hz), 7.72 (s, 1H, C=C-H), 

7.27 (s, 1H), 7.22-7.15 (m, 2H), 6.97-6.95 (d, 1H, J = 8.36 Hz), 6.93-6.89 (d, 1H, J = 16.45 Hz, 

HC = CH), 3.83 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3), 2.26 (s, 3H, -CH3); 13C-NMR (100 MHz, 
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DMSO, δ ppm): 166.74 (C=O, thiazolidin-4-one), 164.18 (C=N, 2-ylidene carbon), 155.86 (C=N 

of thiazolidone), 149.78, 148.95, 148.21, 136.83, 135.38, 135.25, 130.71, 128.79, 126.40 (C-5 of 

thiazolidone), 126.35 (C-H, benzylidene carbon), 126.05, 124.06, 123.76, 121.36 (C-6 of DZG), 

111.60 (C-5 of DZG), 109.64 (C-2 of DZG), 55.52 (-OCH3), 30.64, 13.41 (-CH3); HRMS (ESI, 

m/z) [M-H]-; calculated for C22H20N4O5S, 451.1076; found 451.1089. 

5.1.5 General procedure for synthesis of substituted isatin malononitriles (12a-b) 

To a constantly stirred solution of malononitrile (0.5 g, 0.00757 mol) in 10.0 mL of ethanol, 

substituted isatins (11a-b; 0.00757 mol) and 2-4 drops of pyridine was slowly added. The reaction 

mixture was then either refluxed for 1 h. The precipitate formed was filtered and washed with 

ethanol to get respective isatin malononitriles (12a-b). The compounds so obtained were fairly 

pure to carry out the next step. 

5.1.6 General procedure for synthesis of substituted 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-

ylidene)hydrazono)-5-(2-oxoindolin-3-ylidene)thiazolidin-4-one (13a-b) 

To a continuously stirred mixture of compound 5 (0.35 g, 0.00110 mol) and an appropriate isatin 

malononitriles (12a-b; 0.00110 mol) in ethanol (8 mL), few drops of piperidine was added. The 

reaction mass was refluxed for 4 h. The progress of the reaction was constantly monitored by 

TLC. After cooling, the separated solid or residue was filtered, washed with hot ethanol. All the 

compounds were further purified by recrystallized in ethanol in order to get the desired title 

compounds (13a-b). 

5.1.6.1 2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)-5-(2-oxoindolin-3-

ylidene)thiazolidin-4-one (13a): 

Brown solid, Yield: 65%, mp: 273-275 C; FTIR (ATR, max, cm-1): 3108.78 (N-H Str.), 3050.10 

(Ar-H Str.), 2960.57 (C-H Str. of CH3), 1684.50 (C=O Str.), 1606.20 (C=C Str.), 1509.36 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.79 (s, 1H, NH), 11.10 (s, 1H, NH of Isatin 

ring), 8.83-8.81 (d, 1H, J = 7.92 Hz), 7.34-7.30 (t, 1H, J = 7.66 Hz), 7.28 (s, 1H), 7.21-7.16 (m, 

2H), 7.05-7.01 (t, 1H, J = 7.70 Hz), 6.96-6.90 (m, 3H), 3.84 (s, 3H, -OCH3), 3.77 (s, 3H, -OCH3), 

2.26 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 168.69, 167.14 (C=O, thiazolidin-4-

one), 164.13 (C=N, 2-ylidene carbon), 159.00 (C=N of thiazolidone), 149.75, 148.97, 142.86, 

136.69, 133.61 (C-5 of thiazolidone), 131.31, 128.83, 127.83, 126.29, 124.20, 121.67, 121.49 (C-

6 of DZG), 120.33, 111.55 (C-5 of DZG), 110.06, 109.45 (C-2 of DZG), 55.45 (-OCH3), 13.10 (-

CH3); HRMS (ESI, m/z) [M-H]-; calculated for C23H20N4O4S, 447.1127; found 447.1138. 



  

Chapter 4 

135 Girish A. Hampannavar UKZN-2016 

5.1.6.2 5-(5-chloro-2-oxoindolin-3-ylidene)-2-((4-(3,4-dimethoxyphenyl)but-3-en-2-

ylidene)hydrazono)thiazolidin-4-one (13b): 

Brown solid, Yield: 46%, mp: 282-284 C; FTIR (ATR, max, cm-1): 3111.15 (N-H Str.), 3046.29 

(Ar-H Str.), 2964.87 (C-H Str. of CH3), 1685.42 (C=O Str.), 1607.75 (C=C Str.), 1509.51 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.88 (s, 1H, NH), 11.20 (s, 1H, NH of Isatin 

ring), 8.84-8.83 (d, 1H, J = 2.00 Hz), 7.35-7.32 (q, 1H, J = 8.32 Hz), 7.27 (s, 1H), 7.20-7.14 (m, 

2H), 6.94-6.93 (d, 1H, J = 2.92 Hz), 6.91-6.88 (m, 2H), 3.83 (s, 3H, -OCH3), 3.76 (s, 3H, -OCH3), 

2.25 (s, 3H, -CH3); 13C-NMR (100 MHz, DMSO, δ ppm): 168.42, 167.13 (C=O, thiazolidin-4-

one), 164.39 (C=N, 2-ylidene carbon), 158.49 (C=N of thiazolidone), 149.76, 148.95, 141.48, 

136.81, 135.71 (C-5 of thiazolidone), 130.44, 128.79, 127.12, 126.21, 125.47, 122.89, 121.61, 

121.54 (C-6 of DZG), 111.48, 111.32 (C-5 of DZG), 109.39 (C-2 of DZG), 55.99 (-OCH3), 55.43 

(-OCH3), 18.52, 13.09 (-CH3). 

5.2 In vitro antimycobacterial evaluation 

All the newly synthesized compounds (5, 7a-d, 10a-l and 13a, b) were screened for their in vitro 

antimycobacterial activity against M. tuberculosis H37Rv grown under aerobic conditions by 

using a dual read-out (OD590 and fluorescence) assay procedure.21–23 The activity was carried out 

at Infectious Disease Research Institute (IDRI) within the National Institute of Allergy and 

Infectious Diseases (NIAID) screening program, Bethesda, MD, USA. Test compounds were 

prepared as 10-point two-fold serial dilutions in DMSO and diluted into 7H9-Tw-OADC medium 

in 96-well plates with a final DMSO concentration of 2%. The highest concentration of compound 

was 200 µM and compounds were soluble in DMSO at 10 mM. For compounds with limited 

solubility, the highest concentration was 50X less than the stock concentration e.g. 100 µM for 5 

mM DMSO stock, 20 µM for 1 mM DMSO stock. For potent compounds, assays were repeated 

at lower starting concentrations. Each plate included assay controls for background 

(medium/DMSO only, no bacterial cells), zero growth (100 µM Rifampicin) and maximum 

growth (DMSO only), as well as a rifampicin dose response curve. Plates were inoculated with 

M. tuberculosis and incubated for 5 days: growth was measured by OD590 and fluorescence 

(Ex560/Em590) using a BioTek™ Synergy4 plate reader. Growth was calculated separately for 

OD590 and RFU. MIC was calculated on the basis of 10-point dose response curve which was 

plotted as % growth. The MIC was defined as the minimum concentration at which growth was 

completely inhibited and was calculated from the inflection point of the fitted curve to the lower 

asymptote (zero growth). In addition, dose response curves were generated using the Levenberg-

Marquardt algorithm and the concentrations that resulted in 50% and 90% inhibition of growth 

were determined (IC50 and IC90 respectively). 
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5.3 Cytotoxicity studies: MTT assay 

The cellular conversion of MTT [3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyl-tetrazolium bromide] 

into a formazan product was used to evaluate cytotoxic activity (IC50) of some selected 

compounds (5, 7a-d, 10b-d, 10f, 10g, 10i, 10j, 10l, 13a and 13b) against mammalian VERO cells, 

which were cultured in Dulbecco Modified Eagle Medium (DMEM) containing 2 mM Na2CO3 

supplemented with 10% (v/v) fetal bovine serum (FBS). The cells were incubated at 37 °C under 

5% CO2 and 95% air in a humidified atmosphere until confluent and then diluted with phosphate-

buffered saline. Stock solutions were prepared in dimethyl sulfoxide (DMSO) and further 

dilutions were made with fresh culture medium. The concentration of DMSO in the final culture 

medium was 1%, which had no effect on the cell viability. In a transparent 96-well plate, serially 

diluted stock solutions were placed at 37 °C for 72 h then the medium was removed and 

monolayer was washed twice with 100 µL of warm Hanks’ balanced salt solution (HBSS). After 

72 h of exposure, cell viability was assessed on the basis of MTT into a formazan product using 

the Promega cell Titre 96 non-radioactive cell proliferation assay.28 The same experimental 

conditions were maintained for all the compounds. 

5.4 X-ray crystallographic data of compound 5. 

Table 2: Sample and crystal data for compound 5.

Identification code Compound 5 
Chemical formula C15H17N3O3S 
Formula weight 306.27 
Temperature 296(2) K 
Wavelength 0.71073 Å 
Crystal size 0.190 x 0.290 x 0.530 mm 
Crystal habit light yellow plate 
Crystal system monoclinic 
Space group P 1 21/c 1 
Unit cell dimensions a = 20.8194(12) Å α = 90° 
 b = 7.8281(6) Å β = 95.764(3)° 
 c = 9.5454(6) Å γ = 90° 
Volume 1547.81(18) Å3  
Z 20 
Density (calculated) 6.572 Mg/cm3 
Absorption coefficient 1.116 mm-1 
F(000) 3100 
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Table 3: Data collection and structure refinement for compound 5. 

 
Theta range for data collection 1.97 to 25.64° 
Index ranges -25<=h<=25, -7<=k<=9, -11<=l<=11 
Reflections collected 14169 
Independent reflections 2918 [R(int) = 0.0175] 
Coverage of independent reflections 99.9% 
Absorption correction multi-scan 
Max. and min. transmission 0.8160 and 0.5904 
Structure solution technique direct methods 
Structure solution program SHELXS-97 (Sheldrick, 2008) 
Refinement method Full-matrix least-squares on F2 
Refinement program SHELXL-97 (Sheldrick, 2008) 
Function minimized Σ w(Fo

2 - Fc
2)2 

Data / restraints / parameters 2918 / 0 / 202 
Goodness-of-fit on F2 1.039 
Final R indices 2656 data; I>2σ(I) R1 = 0.0290, wR2 = 0.0735 
 all data R1 = 0.0329, wR2 = 0.0766 

Weighting scheme w=1/[σ2(Fo
2)+(0.0354P)2+0.8713P] 

where P=(Fo
2+2Fc

2)/3 
Largest diff. peak and hole 0.258 and -0.236 eÅ-3 
R.M.S. deviation from mean 0.041 eÅ-3 
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Abstract 

A novel series of Dehydrozingerone (DZG) inspired styryl pyrazolo carbazones (8a-i, 11a-h and 

14a-c) were designed and synthesized in good yields by means of a hybridization approach. The 

synthesized compounds were screened for their in vitro antibacterial and antimycobacterial 

activities. From the series tested, compounds 8a, 8c, 8d, 8g, 8h, 8i and 11f showed reasonable 

antibacterial activity (MIC = 50 µg/mL) against B. subtilis and also compound 11a demonstrated 

decent activity towards P. aeruginosa (MIC = 25 µg/mL). Compounds 8a, 8d, 8e, 8f, 8i, and 11h 

demonstrated good to moderate antifungal activity ranging from 25 to 50 µg/mL towards C. 

neoformans (MIC = 25 µg/mL) and C. albicans (MIC = 50 µg/mL). Besides, compound 8a, 

comprising of isonicotinoyl hydrazide portion displayed remarkable antitubercular activity (MIC 

= 0.78 µg/mL) against H37Rv. Substituted urea derivatives, 14a-c and 11d also exhibited 

encouraging activity (MIC = 12.5 and 25 µg/mL, respectively) whereas, derivative with thiourea 

portion 11a, (MIC = 0.78 µg/mL) illustrated significant activity against H37Rv. Moreover, some 

of the tested compounds showed reasonable activity against MDR (multi drug resistant) and 

MOTT (mycobacteria other that tuberculosis) strains. Suggesting the importance of styryl 

pyrazole carbazones for effective antibacterial and antimycobacterial activity. 
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1 Introduction 

Bacterial infections still persist as an important cause of morbidity and mortality. It’s one of the 

serious issues that is threating and burdening mankind. Further, dearth in response to the drug, 

which it was originally sensitive to has led to antimicrobial resistance. This resistance has 

ancillary exacerbated the situation making it nearly impossible to treat. According to WHO, 

emerging new resistance mechanisms are challenging our capabilities in treating these common 

infectious diseases, eventually leading to persistent illness of patient followed by disability and 

death.[1] Furthermore, resistance issues in ailments like tuberculosis, malaria, and HIV have 

aroused a serious concern in disease management and its mitigation. In particular, tuberculosis is 

a most dangerous disease affecting one third of the world’s population. In spite of several drugs 

namely, isoniazid, rifampicin, pyrazinamide and ethambutol, existing for its treatment, the 

resistance issue has left us to look for new drug leads that may possibly overcome this problem. 

Therefore, much focus is being payed towards generating a new libraries of molecules with a 

hope to obtain a potential antimicrobial or antitubercular leads. These leads may certainly 

overcome the existing issues mainly multiple drug dosing regimens, resistance, long treatment 

duration and toxicity. 

In a pursuit to develop novel antibacterial [2] and antitubercular libraries [3,4] we have come 

across several privileged heterocyclic scaffolds. Pyrazole, a renowned heterocycle have been 

known to exhibit a significant range of biological activities namely, antibacterial, antifungal [5], 

anticancer [6], antiviral [7], antidiabetic [8], anti-inflammatory [9], antiatherosclerosis [10], 

antimycobacterial [11] and several others. Conversely, several pyrazole derivatives have been in 

clinical use since periods. Some of the drugs having this distinguished motif like celecoxib, 

epirizole, lonazolac, tepoxalin, rimonabant etc. (Figure 1) have proven efficacy.  
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Figure 1: Approved drugs containing pyrazole core. 

Further, semicarbazone and thiosemicarbazones are versatile chemical intermediates that are 

employed in synthesis of several key heterocyclic compounds. Comprised of N, O and S hetero 

atoms, these semicarbazone and thiosemicarbazones are known to be biologically active and 

possess assorted pharmacological responses. The activity spectrum of these semicarbazone and 

thiosemicarbazones range into various categories namely antibacterial, antiproliferative [12], 

antifungal [13], anticancer [14], anticonvulsant [15], antitubercular [16] etc. (Figure 2) 
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Figure 2: Semicarbazone and thiosemicarbazones bearing biologically active compounds. 

From past, the natural products have been a key source for the design, discovery and development 

of new drug for several deadly diseases. Dehydrozingerone (DZG; feruloylmethane), a half 

structural analog (natural chalcone) of curcumin isolated from rhizomes of Zingiber officinale 

(Family: Zingiberaceae), is one such medicinally valuable molecule in drug discovery. 

Chemically, DZG is (E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one and possess an α,β-

unsaturated carbonyl (styryl ketone) group. Several DZG analogs have been synthesized and 

reported for a diverse range of biological activities like antioxidant, anticancer, anti-

inflammatory, antidepressant, antimalarial, antifungal etc.[17] Our recent report has emphasized 

the significance of integrating this DZG on to a thiazole core by molecular hybridization strategy 

for an effective antitubercular activity. 
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Thus inspired by these findings, we in this report have anticipated design and synthesis of 

carbazones, semicarbazone and thiosemicarbazones derivatives of styryl fused pyrazole as 

potential antibacterial, antifungal and antimycobaterial agents. (Fig. 3) 

 

Figure 3: Design strategy for synthesis of styryl pyrazolo carbazones. 

2 Chemistry 

The synthesis of some novel series of new substituted ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-

pyrazol-4-yl)methylene)benzohydrazides (8a-i), 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-

pyrazol-4-yl)methylene)-N-phenylhydrazine-1-carbothioamides and carboxamides derivatives 

(11a-h and 14a-c) derived from DZG was attained through effective and adaptable synthetic 

methods as depicted in Scheme I. The starting material, compound 3, synthesized as per our 

previous report [3], was refluxed with phenylhydrazine in the presence of sodium acetate in 

methanol to form 1-(4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)-2-phenylhydrazine (4). 
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Subsequently, compound 4 underwent cyclization followed by formylation with the Vilsmeier–

Haack reagent to yield 3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazole-4-carbaldehyde (5). A set 

of substituted aromatic acid hydrazides 7(a-i) were prepared from corresponding aromatic acids 

6(a-i). Further, hydrazinecarbothioamides 10(e-h), except 10(a-d) that were obtained readymade, 

were synthesized by treating respective isothiocyanates, 9(e-h) with hydrazine hydrate in ethanol 

to yield corresponding hydrazinecarbothioamides 10(e-h). Besides, aryl hydrazinecarboxamide 

13(a-c) were prepared by from a reported method[18] using aromatic amines 12(a-c) and by 

treating them with ethyl chloroformate and triethylamine in anhydrous THF. Finally, the title 

compounds 8(a-i), 11(a-h) and 14(a-c) were synthesized by refluxing compound 5 with acid 

hydrazides 7(a-i), hydrazinecarboxamide and carbothioamides (10a-h) and aryl 

hydrazinecarboxamide 13(a-c) respectively in ethanol in presence of catalytic amount of acetic 

acid. The compounds obtained were in appreciably good yields and were confirmed by their 

physico-chemical and spectral (IR, 1H-NMR and 13C-NMR) analysis followed by HRMS. 
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Scheme I* elaborating synthesis of title compounds 8(a-i), 11(a-h) and 14(a-c). 

 

*Reagents and Conditions: a: acetone, NaOH; b: CH3I, K2CO3, DMF, reflux, 1.5 h; c: NaOAc, MeOH, reflux, 3 h; d: POCl3, DMF, 70-80 C, 28 h; e: 
H2SO4, MeOH, reflux, overnight; f: NH2NH2.H2O, EtOH, reflux, overnight; g: NH2NH2.H2O, EtOH, Stir, RT, 30 minutes; h: Ethyl chloroformate, 
Et3N, THF, RT, 1 h; i: NH2NH2.H2O, EtOH, reflux, overnight; j: EtOH, HOAc 2-3 drops, reflux, 3 h. 



  

Chapter 5 

148 Girish A. Hampannavar UKZN-2016 

3 Results and discussion 

3.1 Synthesis and spectral studies 

Structures of a key intermediate compounds 4 and 5 as well as their corresponding final 

derivatives (8a-i, 11a-h and 14a-c) were established on the basis of their physicochemical and 

spectral data (IR, 1H-NMR, 13C-NMR and EIMS). All the newly synthesized compounds showed 

acceptable analysis of their anticipated structures, which are summarized in experimental section. 

In general, the IR spectrum of first intermediate compound 4, clearly displayed characteristic 

absorption bands around 3325.09 cm-1 for N-H, 2925.96 cm-1 for C-H and 1596.05 cm-1 for C=N 

groups, thus confirming the formation of phenylhydrazine nucleus. Whereas, the IR spectrum of 

key intermediate compound 5 showed the most informative band around 1661.01 cm-1 due to the 

presence of carbonyl (C=O) group. Further, the disappearance of band 3325.09 cm-1 for N-H 

evidently indicated the formation of pyrazole nucleus. These observations were further 

substantiated from 1H-NMR spectrum of compounds 4 and 5. Compound 4 showed the prominent 

singlet signals around  7.34 ppm accounting for the N-H proton of phenylhydrazine, 3.93-3.89 

ppm for methoxyl (OCH3) protons and 2.08 ppm for methyl (CH3) protons, thus indicating the 

formation of compound 4. In the case of compound 5, which displayed the most characteristic 

singlet signals  10.10 ppm accounting for the CHO (formyl) proton and  8.39 ppm for aromatic 

proton at 5th position of pyrazole ring, evidently suggested the formation of pyrazole nucleus from 

the respective phenylhydrazine (4) by simple cyclo-condensation process. In addition, the 

appearance of most distinctive doublet signal (J = 16.41-16.33) around  7.70-6.69 ppm 

authenticates the presence of vicinal vinyl protons in both key intermediates. 

From the IR spectrum of the title compounds 8a-i, it was observed that the appearance of the 

characteristic bands around 3197.68-3057.52 cm-1 for N-H, 3007.28-2925.97 cm-1 for C-H and 

1599.73-1505.38 cm-1 for C=N groups, respectively. Further, the appearance of an additional 

fairly strong peak around 1675.95-1597.18 cm-1, which is attributed to the benzohydrazide 

carbonyl (C=O) group, indicating the formation of title compounds 8a-i. This is further supported 

from the 1H-NMR spectrum (400 MHz) of these compounds recorded in DMSO-d6, which 

displayed some distinguishing singlet signals at around δ 12.29-11.43 ppm for N-H proton of 

benzohydrazide moiety, δ 8.58-8.40 ppm for CH=N protons and δ 3.91-3.78 ppm for methoxyl 

(OCH3) protons. In addition, the appearance of characteristic singlet signal at δ 8.92-8.83 ppm 

attributed to the 5th aromatic (H-5) proton of pyrazole ring, which confirms the formation of title 

compounds 8a-i by simple cyclo-condensation reaction. The most instructive doublet signals (J 

= 16.53-16.09) resonated around δ 7.76-7.63 ppm clearly pointed out the presence of vicinal vinyl 
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(-CH=CH-) protons. This observation was found consistent with previously reported similar 

compounds.[3] Furthermore, the various signals resonated as either doublets or multiplets at 

around δ 8.24-6.88 ppm were accounted for aromatic or heteroaromatic protons of compounds 

8a-i. In the case of compounds 8b, 8d and 8i, the singlet signals resonated at around δ 11.87 and 

6.58-5.76 ppm accounted for the amine (NH2) and hydroxyl (OH) protons respectively. These 

findings were further substantiated from 13C-NMR spectra of these title compounds that the 

characteristic signals appeared at around δ 163.91-161.63 ppm for carbonyl carbon (C=O) of 

benzohydrazide moiety and δ 55.70-55.35 ppm for methoxyl carbon (OCH3) group attached to 

3rd and 4th position of DZG scaffold respectively. The prominent 13C-NMR signals resonated at 

around δ 159.30-149.11 and 148.87-147.77 ppm were assigned to (C=N) carbon of 

benzohydrazide and C-4 carbon of pyrazole moiety respectively. Further, the informative carbon 

signals around δ 134.63-130.15 ppm were accounted for vinyl (-HC=CH-) carbons. The carbon 

signals resonated around δ 120.62-120.30, 111.96-111.77 and 109.70-108.81 ppm were assigned 

to C-6, C-5 and C-2 carbons of DZG scaffold respectively, while the typical carbon signals 

appeared between δ 140.5-105.6 ppm were accounted for aromatic carbons. 

From IR spectrum of the title compounds (11a-h and 14a-c), it was observed that the appearance 

of typical absorption bands around 3369.49-3276.93 cm-1 for N-H, 2933.89-2828.11 cm-1 for C-

H, 1673.67-1662.25 cm-1 for carbonyl (C=O of urea), 1637.46-1577.16 cm-1 for C=C, 1597.12-

1547.77 cm-1 for C=N, and 1136.62-1133.46 cm-1 for C=S groups, respectively, thus indicating 

the formation of these title compounds. This was further corroborated from 1H-NMR spectrum of 

compounds 11a-h and 14a-c, which exhibited the presence of a very distinct singlet signals 

resonating at δ 12.11-10.12 ppm due to hydrazine (–N=NH-) protons, δ 9.23-8.89 ppm for 

aromatic proton at 5th position of pyrazole ring and δ 3.84-3.68 for methoxyl (OCH3) protons. A 

decisive structural insight was obtained from the presence of a prominent singlet signal around δ 

10.32-9.91 ppm accounting for the –R’-NH-C=X- protons, whereas the CH=N protons were 

resonated around δ 10.1-10.09 and 8.45-8.05 ppm for compounds 14a-c and 11a-h respectively. 

Further, the most attributable doublet signals (J = 16.92-16.13) resonated around δ 7.66-7.31 ppm 

concretely confirmed the presence of vicinal vinyl protons (CH=CH), whereas the various signals 

resonated as either singlet or multiplet between δ 8.75-6.60 ppm accounted for aromatic protons. 

These interpretations were further authenticated from their respective 13C-NMR spectra of the 

title compounds. In 13C-NMR spectrum, the characteristic carbon signals appeared around δ 

185.21-185.20 ppm for –CH=N- carbons, δ 177.60-174.70 ppm for thioxo (C=S) carbon and δ 

158.44-152.33 ppm for carbonyl (C=O) carbons, thus confirming the formation of title 

compounds. The various aromatic/hetero-aromatic carbons resonated between δ 145.0-105.0 

ppm. The prominent carbon signals observed around δ 55.55-55.30 ppm indicated the presence 
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of methoxyl (OCH3) carbons and whereas C-6, C-5 and C-2 carbons of DZG scaffold were 

resonated δ 120.65-120.36, 111.84-111.64 and 109.69-108.96 ppm respectively in the title 

compounds. Furthermore, the formation of desired final derivatives (8a-i, 11a-h and 14a-c) were 

also confirmed by recording their respective mass spectra (HRMS), which displayed accurate 

molecular ion peaks that were in agreement with their expected molecular weights. 

3.2 In vitro antimicrobial activity 

All the newly synthesized compounds (8a-i, 11a-h and 14a-c) were evaluated for their in vitro 

antibacterial and antifungal activity against a panel of pathogenic antibacterial and antifungal 

microorganisms. This antibacterial and antifungal screening were carried out at the Department 

of Microbiology, Inkosi Albert Luthuli Hospital, Durban, South Africa. Antibacterial activity was 

performed on two Gram positive; Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 

6051) and two Gram negative; Escherichia coli (ATCC 35218), Pseudomonas aeruginosa 

(ATCC 27853) bacterial strains. The antibacterial activity was carried out in MH medium 

(Mueller-Hinton medium: casein hydrolysate 17.5 g, soluble starch 1.5 g, beef extract 1000 mL) 

using Moxcillin as a reference standard. Antifungal activity was performed against Candida 

albicans (ATCC 90028), Cryptococcus neoformans (ATCC 66031), Aspergillus niger (ATCC 

16404), and Aspergillus fumigatus (UKQC strain) using Amphotericin B as a reference drug. 

Dimethyl sulfoxide was used as solvent control. The results (MIC values) of in vitro antibacterial 

and antifungal screening of the title compounds are summarized in Table 1. A systematic 

examination of the data represented in Table 1 revealed that the seven compounds 8a, 8c, 8d, 8g, 

8h, 8i and 11f displayed moderate antibacterial activity (MIC = 50 µg/mL) against B. subtilis. 

Whereas, compound 11a demonstrated good activity towards P. aeruginosa (MIC = 25 µg/mL) 

as compared to standard Moxcillin (MIC = 0.39 µg/mL). Suggesting the spectrum of activity of 

synthesized compounds towards gram positive and gram negative organisms. However, rest of 

the compounds in the series revealed little or poor activity against the tested bacterial strains. 

Further analysis of results suggested that five compounds 8a, 8d, 8e, 8f, 8i, and 11h revealed 

good to moderate antifungal activity ranging from 25 to 50 µg/mL towards C. neoformans (MIC 

= 25 µg/mL) and C. albicans (MIC = 50 µg/mL), respectively compared to standard Amphotercin 

B (MIC = 0.39 µg/mL). Further, rest of the compounds were least active with MIC value > 200 

µg/mL against all of the tested fungal strains. Observation of results suggest the benefit of 

incorporating hydrazide, semicarbazide and thiosemicarbazide portions on the styryl pyrazole 

scaffold on both antibacterial and antifungal activities.
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Table 1: The antibacterial and antifungal activity data (MIC in µg/mL) of a novel series of styryl pyrazolo carbazone derivatives (8a-i, 11a-h and 14a-
c). 

 Antibacterial Antifungal 

Compound 

MIC values (µg/mL)* MIC values (µg/mL)* Gram positive Gram negative 
S. aureus 
(ATCC 
25923) 

B. subtilis 
(ATCC 
6051) 

E. coli 
(ATCC 
35218) 

P. aeruginosa 
(ATCC 
27853) 

C. albicans 
(ATCC 
90028) 

C. neoformans 
(ATCC 
66031) 

A. niger 
(ATCC 
16404) 

A. fumigatus 
(UKQC 
strain) 

8a > 200 50 > 200 > 200 50 25 > 200 > 200 
8b > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
8c > 200 50 > 200 > 200 > 200 >200 > 200 > 200 
8d > 200 50 > 200 > 200 50 25 > 200 > 200 
8e > 200 100 > 200 > 200 50 25 > 200 > 200 
8f > 200 100 > 200 > 200 50 25 > 200 > 200 
8g > 200 50 > 200 > 200 > 200 >200 > 200 > 200 
8h > 200 50 > 200 > 200 > 200 >200 > 200 > 200 
8i > 200 50 > 200 > 200 50 25 > 200 > 200 

11a > 200 100 > 200 25 > 200 >200 > 200 > 200 
11b > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
11c > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
11d > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
11e > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
11f > 200 50 > 200 > 200 > 200 >200 > 200 > 200 
11g > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
11h > 200 100 > 200 > 200 > 200 25 > 200 > 200 
14a > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
14b > 200 100 > 200 > 200 > 200 >200 > 200 > 200 
14c > 200 100 > 200 > 200 > 200 >200 > 200 > 200 

Moxicillin < 0.39 < 0.39 < 0.39 < 0.39 - - - - 
Amphotercin B - - - - < 0.39 <0.39 <0.39 <0.39 

*The bold figures indicate the good activity exhibited by the respective compounds. 
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3.3 Antimycobacterial activity 

The title compounds (8a-i, 11a-h and 14a-c) were evaluated for in vitro antimycobacterial activity 

against M. tuberculosis H37Rv, multi drug resistant strain (UKQC strain), and three strains of 

MOTT (mycobacteria other than tuberculosis). The culturing was done in Middlebrook 7H9 

broth, supplemented with 10% ADC (albumin, dextrose, and catalase) and 0.04% Tween 80 to 

avoid clump formation and incubated at 37°C in 5% CO2. The antimycobacterial results (MIC 

values) of the tested title compounds have been summarized in Table 2. Analysis of results 

showed interesting and noteworthy antimycobacterial activity of synthesized compounds towards 

M. tuberculosis H37Rv with the value ranging from 0.78 to > 200 µg/mL. However, compounds 

8a, comprising isonicotinoyl hydrazide and 11a encompassing carbothioamide portions showed 

excellent antitubercular activity (0.78 µg/mL) comparable with standard isoniazid (0.4 µg/mL) 

and were found much active than standard drug rifampicin (1 µg/mL). Further, compounds 14a-

c and 11d bearing substituted urea derivatives, showed significant activity of 12.5 µg/mL and 25 

µg/mL respectively. Compounds 11d, 14a, 14b and 14c displayed moderated activity against 

MDR (UKQC strain) as compared to standard isoniazid (0.4 µg/mL) and rifampicin (1 µg/mL).  

Furthermore, All the compounds were also tested against three strains of MOTT and all the title 

compounds showed moderate activity as compared to standard (Table 2). Inclusion of 

isonicotinoyl (8a, MIC = 0.78 µg/mL) and carbothioamide (11a, MIC = 0.78 µg/mL) portion on 

styryl pyrazole scaffold has benefited enormously for antimycobacterial activity. The overall 

findings suggest a remarkable high activity on Mycobacterium tuberculosis H37Rv than the 

reference drug rifampicin and almost comparable activity with isoniazid. Additionally, the 

moderate activity of compounds (11d and 14a-c) towards multi drug resistant strain suggest a 

good starting point for developing the compounds as effective antimycobacterial agents.
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Table 2: The antimycobacterial activity data* (MIC in µg/mL) of a novel series of styryl pyrazolo carbazone derivatives (8a-i, 11a-h and 14a-c). 

Compounds M. tuberculosis  
(ATCC H37RV) 

MDR 
(UKQC strain) 

M. kansasii 
(ATCC 12478) 

M. peregrinum 
(ATCC 14467) 

M. fortuitum 
(ATCC 6841) 

8a 0.78 ND >200 >200 >200 
8b >200 >200 >200 >200 >200 
8c >200 >200 >200 >200 >200 
8d >200 >200 >200 >200 >200 
8e >200 >200 >200 >200 >200 
8f >200 >200 >200 >200 >200 
8g >200 >200 >200 >200 >200 
8h >200 >200 >200 >200 >200 
8i >200 >200 >200 >200 >200 

11a 0.78 ND >200 >200 >200 
11b >200 >200 >200 >200 >200 
11c >200 >200 >200 >200 >200 
11d 25 50 >200 >200 >200 
11e >200 >200 >200 >200 >200 
11f >200 >200 >200 >200 >200 
11g >200 >200 >200 >200 >200 
11h >200 >200 >200 >200 >200 
14a 12.5 50 >200 >200 >200 
14b 12.5 50 >200 >200 >200 
14c 12.5 50 >200 >200 >200 

Isoniazid 0.4 0.4 >250 >250 >250 
Rifampicin 1 1 <0.5 2 64 

*The bold figures indicate the good activity exhibited by the respective compounds. 
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4 Conclusion 

In summary, we hereby report the synthesis, spectral studies and in vitro antibacterial and 

antimycobacterial activity of some novel series of styryl pyrazolo carbazone hybrids (8a-i, 11a-

h and 14a-c) inspired form dehydrozingerone based on hybridization approach. The synthesized 

title compounds were confirmed for their structures by spectral (IR, 1H-NMR, 13C-NMR and 

HRMS) studies. It is interesting to note that some of the synthesized compounds showed best 

antimicrobial and antimycobacterial activities. Compounds 8a, 8c, 8d, 8g, 8h, 8i and 11f showed 

reasonable antibacterial activity (MIC = 50 µg/mL) against B. subtilis. Whereas, compound 11a 

demonstrated decent activity towards P. aeruginosa (MIC = 25 µg/mL). Further, compounds 8a, 

8d, 8e, 8f, 8i, and 11h presented good to moderate antifungal activity ranging from 25 to 50 

µg/mL towards C. neoformans (MIC = 25 µg/mL) and C. albicans (MIC = 50 µg/mL). 

Additionally, compounds 8a and 11a showed excellent antitubercular activity (0.78 µg/mL) and 

compounds 11d and 14a-c showed significant activity (MIC = 25 µg/mL and 12.5 µg/mL 

respectively) against H37Rv. Compounds 11d and 14a-c also showed moderate activity against 

MDR strains. A brief SAR study emphasizes that the antimicrobial and antimycobacterial was 

contributed by hydrazine, semicarbazone and thiosemicarbazone portions with varying 

substitutions on styryl pyrazole motif. The overall results stipulate the benefit of incorporating 

carbazones on a styryl pyrazole scaffold for effective antimicrobial and antimycobacterial 

activity. This incorporation could be of potential in further development of effective antimicrobial 

and antimycobacterial leads. 

5 Experimental 

5.1 Chemistry protocols 

All the chemicals used in this research work were purchased from Sigma-Aldrich and Merck 

Millipore, South Africa. All the solvents, except those of laboratory-reagent grade, were dried 

and purified when necessary according to previously published methods. The progress of the 

reactions and the purity of the compounds were monitored by thin-layer chromatography (TLC) 

on pre-coated silica gel plates procured from E. Merck and Co. (Darmstadt, Germany). 

The melting points of the synthesized compounds were determined using a Bibby Scientific Ltd 

(Stuart SMP10) digital melting point apparatus and are uncorrected. The IR spectra were recorded 

on a Bruker Alpha FT-IR spectrometer (Billerica, MA, USA) using the ATR technique. The 1H-

NMR and 13C-NMR spectra were recorded on a Bruker AVANCE 400 MHz (Bruker, 

Rheinstetten/Karlsruhe, Germany) spectrometer using CDCl3 and/or DMSO-d6. The chemical 

shifts (δ) reported are given in parts per million (ppm) and the coupling constants (J) are in Hertz 



  

Chapter 5 

155 Girish A. Hampannavar UKZN-2016 

(Hz) with respect to TMS as the internal standard. The spin multiplicities are reported as s = 

singlet, d = doublet, t = triplet, dd = doublet of doublet and m = multiplet. HRMS spectra were 

recorded on an Autospec mass spectrometer with electron impact at 70 eV. Compounds 2 and 3, 

were synthesized in good yields according to our previous report.[3] 

 Synthesis of 1-(4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)-2-phenylhydrazine 

(4)[19]: 

Anhydrous sodium acetate (1.1 Eq., 1.1 g, 0.01067 mol.) was added to a stirred solution of 

phenylhydrazine (1.8 Eq., 1.88 g, 0.01746 mol.) in 15 mL of methanol. The resulting mixture was 

stirred at RT for about 15 to 20 minutes until all of the sodium acetate dissolved. Subsequently, 

compound 3 (2.0 g, 0.0097 mol.) was added and the resulting reaction mixture was refluxed for 

about 3 h. Yellow solid separates out which was filtered and washed with cold methanol followed 

by cold water. The resulting solid was recrystallized in ethanol to yield compound 4. 

Crystalline yellow solid, Yield: 73%, mp: 162-164 C; FTIR (ATR, max, cm-1): 3325.09 (N-H 

Str.), 2925.96 (Ar-H Str.), 2828.45 (C-H Str. of CH3), 1596.05 (C=N Str.); 1H-NMR (400 MHz, 

CDCl3, δ, ppm): 7.34 (s, 1H, -NH), 7.29-7.25 (m, 2H), 7.14-7.12 (m, 2H), 7.07 (d, 1H, J = 1.92 

Hz), 7.00 (dd, 1H, J = 8.30, 1.94 Hz), 6.91 (d, 1H, J = 16.33 Hz, -HC=CH-),6.85 (t, 2H, J = 8.80 

Hz), 6.69 (d, 1H, J = 16.41 Hz, -HC=CH-), 3.93 (s, 3H, -OCH3), 3.89 (s, 3H, -OCH3), 2.08 (s, 

3H, -CH3); 13C-NMR (100 MHz, CDCl3, δ ppm): 149.39, 149.21, 144.93, 143.56, 130.46, 129.49, 

129.30, 129.08, 129.00, 128.33, 120.50 (C-6 of DZG), 120.42, 113.65, 111.39 (C-5 of DZG), 

108.64 (C-2 of DZG), 56.13 (-OCH3), 56.07 (-OCH3), 10.30 (-CH3); HRMS (ESI, m/z) [M-H]-; 

calculated for C18H20N2O2, 295.1447; found 295.1454. 

 Synthesis of 3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazole-4-carbaldehyde (5): 

POCl3 (2.0 Eq., 2.07 g, 0.01350 mol.) was added dropwise to anhydrous N,N-Dimethylformamide 

(12.0 mL) contained in round bottom flask at 0 C. The resulting reaction mixture was stirred for 

30-45 minutes until the formation of Vilsmeiers complex. Compound 4 (2.0 g, 0.00675 mol.) was 

dissolved in a minimum amount of N,N-Dimethylformamide and added to Vilsmeiers complex. 

The resulting reaction mixture was stirred at RT for about 30 minutes and then refluxed at 70-80 

C for 28 h. The reaction mixture was allowed to cool and was poured dropwise into ice with 

vigorous stirring for about 1 h. Further, 2.0 N NaOH was added to neutralize reaction mixture and 

further stirred for around 2 h. A brick red solid was obtained which was filtered under suction. 

Further, the obtained solid was purified on a silica column using n-hexane: EtOAc (80:20) as a 

mobile phase. 
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Crystalline yellow solid, Yield: 78%, mp: 125-127 C; FTIR (ATR, max, cm-1): 3116.16 (CHO), 

2914.17 (Ar-H Str.), 2832.42 (C-H Str. of CH3), 1661.01 (C=C Str.), 1590.32 (C=N Str.); 1H-

NMR (400 MHz, CDCl3, δ, ppm): 10.10 (s, 1H, -CHO), 8.39 (d, 1H, J = 0.56 Hz), 7.76 (d, 2H, J 

= 8.28 Hz), 7.70 (d, 1H, J = 16.33 Hz, -HC=CH-), 7.50 (t, 2H, J = 7.72 Hz), 7.40-7.36 (m, 1H), 

7.37 (d, 1H, J = 16.36 Hz, -HC=CH-), 7.16-7.14 (m, 2H), 6.87 (d, 1H, J = 8.76 Hz), 3.94 (s, 3H, 

-OCH3), 3.90 (s, 3H, -OCH3); 13C-NMR (100 MHz, CDCl3, δ ppm): 184.26 (C=O), 151.78, 

149.86, 149.35, 139.25, 134.53, 133.00, 129.91, 129.88, 128.07, 122.76, 121.05, 119.89 (C-6 of 

DZG), 115.67, 111.37 (C-5 of DZG), 109.41 (C-2 of DZG), 56.13 (-OCH3); HRMS (ESI, m/z) 

[M+Na]+; calculated for C20H18N2O3, 357.1215; found 357.1216. 

 General procedure for synthesis of substituted acid hydrazides 7a-i: 

Substituted aromatic acids, 6a-i (1.0 g) were dissolved in 10 mL of methanol and about 1.0 mL 

of H2SO4 was added. The resulting mixture was refluxed overnight. After cooling, the reaction 

mixture was added in water and extracted with dichloromethane. The dichloromethane fraction 

was washed with saturated NaHCO3 solution and further filtered through sodium sulfate. The 

obtained filtrate was evaporated to get respective acid ester. Subsequently, the resulting acid ester 

was taken in 10 mL of ethanol and 2.0 equivalent of hydrazine hydrate was added. The resulting 

mixture was refluxed overnight at 80-90 C to yield respective acid hydrazides. The obtained acid 

hydrazides were fairly pure and were used without any further purification. 

 General procedure for synthesis of substituted hydrazinecarbothioamides and 

hydrazinecarboxamide 10a-h: 

Hydrazinecarbothioamides 10a-c and hydrazinecarboxamide 10d were obtained readymade. For 

hydrazinecarbothioamides 10e-h, 1.0 g of respective substituted aromatic isothiocyanates, 9e-h 

were dissolved in ethanol and stirred at RT for 15 minutes. About 2.0 mL of hydrazine hydrate 

was added to the mixture and stirred further at RT for 30 minutes. The solid obtained was filtered 

to yield fairly pure hydrazinecarbothioamides 10e-h. 

 General procedure for synthesis of substituted aryl hydrazinecarboxamides 13a-c [18]: 

A mixture of substituted aromatic amines, 12a-c, (0.0010 mol.), ethyl chloroformate (0.0020 

mol.), and triethylamine (0.0020 mol.) were taken in anhydrous THF (15 mL) and stirred at RT 

for 1 h. The obtained solid was filtered off and the solution was evaporated under reduced 

pressure. The residue obtained was dissolved in EtOAc (25 mL) and the organic phase was 

washed with water (3 x 100 mL). The organic phase was evaporated under reduced pressure to 

yield respective carbamates. These obtained carbamates were further refluxed overnight with 
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hydrazine hydrate (2.0 Eq.,) in ethanol. The reaction mixture thus attained was evaporated under 

reduced pressure to yield correspond aryl hydrazinecarboxamides 13a-c as solid compounds. 

 General procedure for synthesis of substituted ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-

pyrazol-4-yl)methylene)benzohydrazides (8a-i), 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-

pyrazol-4-yl)methylene)-N-phenylhydrazine-1-carbothioamides and carboxamides (11a-h and 

14a-c): 

Dissolve compound 5 (0.275 g, 0.00082 mol.) in 8.0 mL of ethanol and add 1.1 Eq., of respective 

acid hydrazides 7(a-i), phenylhydrazine-1-carbothioamides and carboxamides (11a-h and 14a-c). 

Add 2-3 drops of glacial acetic acid and reflux for about 3-4 h by monitoring TLC. After 

completion, the reaction mass was allowed to cool to obtain solid. Further purification was 

achieved by recrystallization in ethanol or by performing column chromatography on silica 

column with n-hexane and EtOAc (80:20) a mobile phase. For compounds 8b, 8d and 11a neutral 

alumina was taken as a stationary phase. 

5.1.6.1 ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)isonicotinohydrazide (8a): 

Yellow solid, Yield: 44%, mp: 192-194 C; FTIR (ATR, max, cm-1): 3141.51 (N-H Str.), 2939.27 

(Ar-H Str.), 2831.29 (C-H Str. of CH3), 1643.38 (C=O Str.), 1595.31 (C=C Str.), 1544.36 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.06 (s, 1H, =N-NH-), 8.89 (s, 1H, pyrazole CH), 

8.78 (dd, 2H, J = 4.60, 1.32 Hz), 8.57 (s, 1H, -CH=N), 7.92 (d, 2H, J = 7.80 Hz), 7.84 (dd, 2H, J 

= 4.56, 1.44 Hz), 7.71 (d, 1H, J = 16.52 Hz, -HC=CH-), 7.63 (d, 1H, J = 16.45 Hz, -HC=CH-), 

7.54 (t, 2H, J = 7.94 Hz), 7.38-7.34 (m, 2H), 7.18 (dd, 1H, J = 8.28, 1.64 Hz), 6.98 (d, 1H, J = 

8.32 Hz), 3.88 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 

161.70 (C=O), 150.50, 149.33, 149.22, 149.17, 142.19, 140.76, 139.12, 131.95, 130.00, 129.86, 

129.83, 127.06, 121.72, 120.62 (C-6 of DZG), 118.70, 117.31, 117.06, 111.96 (C-5 of DZG), 

109.17 (C-2 of DZG), 55.70 (-OCH3), 55.65 (-OCH3); HRMS (ESI, m/z) [M+Na]+; calculated for 

C26H23N5O3, 476.1699; found 476.1717. 

5.1.6.2 4-amino-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)benzohydrazide (8b): 

Off white, Yield: 91%, mp: 257-259 C; FTIR (ATR, max, cm-1): 3444.14, 3345.01 (N-H Str. 

primary), 3130.78 (N-H Str.), 2959.71 (Ar-H Str.), 2834.41 (C-H Str. of CH3), 1597.18 (C=O 

Str.), 1550.66 (C=C Str.), 1505.38 (C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.43 (s, 

1H, =N-NH-), 8.83 (s, 1H, pyrazole CH), 8.51 (s, 1H, -CH=N), 7.93 (d, 2H, J = 7.72 Hz), 7.72 

(d, 1H, J = 16.09 Hz, -HC=CH-), 7.69 (d, 2H, J = 8.56 Hz), 7.63 (d, 1H, J = 16.37 Hz, -HC=CH-
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), 7.53 (t, 2H, J = 7.92 Hz), 7.35 (t, 2H, J = 7.38 Hz), 7.18 (d, 1H, J = 6.52 Hz), 6.98 (d, 1H, J = 

8.40 Hz), 6.61 (d, 2H, J = 8.64 Hz), 5.76 (s, 2H, -NH2), 3.89 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3); 
13C-NMR (100 MHz, DMSO-d6, δ ppm): 162.87 (C=O), 152.24, 149.10, 148.76, 139.10, 133.42, 

131.46, 129.86, 129.62, 129.35, 129.08, 126.68, 120.30 (C-6 of DZG), 119.67, 118.44, 117.82, 

117.19, 112.68, 111.85 (C-5 of DZG), 109.7 (C-2 of DZG), 55.55 (-OCH3); HRMS (ESI, m/z) 

[M+Na]+; calculated for C27H25N5O3, 490.1855; found 490.1876. 

5.1.6.3 ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)benzohydrazide 

(8c): 

Yellow solid, Yield: 23%, mp: 212-215 C; FTIR (ATR, max, cm-1): 3197.68 (N-H Str.), 2925.97 

(Ar-H Str.), 2850.87 (C-H Str. of CH3), 1636.31 (C=O Str.), 1597.22 (C=C Str.), 1555.16 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.83 (s, 1H, =N-NH-), 8.90 (s, 1H, pyrazole CH), 

8.58 (s, 1H, -CH=N), 7.96-7.93 (m, 4H), 7.76 (d, 1H, J = 16.49 Hz, -HC=CH-), 7.66 (d, 1H, J = 

16.45 Hz, -HC=CH-), 7.56-7.52 (m, 5H), 7.39-7.36 (m, 2H), 7.19 (d, 1H, J = 8.44 Hz), 6.99 (d, 

1H, J = 8.24 Hz), 3.90 (s, 3H, -OCH3), 3.80 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ 

ppm): 162.92 (C=O), 149.11, 149.07, 148.87, 140.60, 139.03, 133.56, 131.66, 131.58, 129.79, 

129.59, 128.48, 127.57, 126.70, 120.38 (C-6 of DZG), 118.45, 117.44, 117.10, 111.79 (C-5 of 

DZG), 109.03 (C-2 of DZG), 55.52 (-OCH3), 55.48 (-OCH3); HRMS (ESI, m/z) [M+Na]+; 

calculated for C27H24N4O3, 475.1746; found 475.1763. 

5.1.6.4 2-amino-5-bromo-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)benzohydrazide (8d): 

Yellow solid, Yield: 14%, mp: 212-215 C; FTIR (ATR, max, cm-1): 3453.42, 3358.00 (N-H Str. 

primary), 3195.73 (N-H Str.), 3007.28 (Ar-H Str.), 2960.67 (C-H Str. of CH3), 1640.29 (C=O 

Str.), 1618.80 (C=C Str.), 1579.80 (C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.68 (s, 

1H, =N-NH-), 8.88 (s, 1H, pyrazole CH), 8.51 (s, 1H, -CH=N), 7.95 (d, 2H, J = 7.88 Hz), 7.76 

(d, 1H, J = 16.29 Hz, -HC=CH-), 7.75 (s, 1H), 7.64 (d, 1H, J = 16.41 Hz, -HC=CH-), 7.54 (t, 2H, 

J = 7.96 Hz), 7.38-7.32 (m, 3H), 7.17 (d, 1H, J = 6.72 Hz), 6.98 (d, 1H, J = 8.32 Hz), 6.74 (d, 1H, 

J = 8.88 Hz), 6.58 (s, 2H, -NH2), 3.88 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3); 13C-NMR (100 MHz, 

DMSO-d6, δ ppm): 163.91 (C=O), 149.26, 149.09, 149.02, 148.78, 140.30, 139.03, 134.63, 

131.49, 130.15, 129.78, 129.59, 126.69, 120.47 (C-6 of DZG), 118.44, 117.50, 117.11, 115.01, 

111.77 (C-5 of DZG), 108.86 (C-2 of DZG), 105.01, 55.52 (-OCH3), 55.35 (-OCH3). 
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5.1.6.5 3-chloro-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)benzohydrazide (8e): 

Yellow crystals, Yield: 43%, mp: 191-193 C; FTIR (ATR, max, cm-1): 3143.72 (N-H Str.), 

2996.27 (Ar-H Str.), 2957.62 (C-H Str. of CH3), 1642.06 (C=O Str.), 1593.66 (C=C Str.), 1555.42 

(C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.92 (s, 1H, =N-NH-), 8.90 (s, 1H, 

pyrazole CH), 8.57 (s, 1H, -CH=N), 7.97 (s, 1H), 7.94 (d, 2H, J = 7.88 Hz), 7.90 (d, 1H, J = 7.76 

Hz), 7.73 (d, 1H, J = 16.45 Hz, -HC=CH-), 7.67 (d, 1H, J = 8.08 Hz), 7.64 (d, 1H, J = 16.45 Hz, 

-HC=CH-), 7.60-7.52 (m, 1H), 7.55 (d, 2H, J = 7.76 Hz), 7.37-7.34 (m, 2H), 7.19 (dd, 1H, J = 

8.18, 1.30 Hz), 6.98 (d, 1H, J = 8.36 Hz), 3.89 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3); 13C-NMR 

(100 MHz, DMSO-d6, δ ppm): 161.63 (C=O), 149.22, 149.14, 149.01, 141.34, 139.07, 135.57, 

133.38, 131.76, 131.61, 130.65, 129.82, 129.70, 127.33, 126.87, 126.51, 120.50 (C-6 of DZG), 

118.57, 117.36, 117.06, 111.86 (C-5 of DZG), 109.09 (C-2 of DZG), 55.60 (-OCH3), 55.55 (-

OCH3). 

5.1.6.6 ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-4-

iodobenzohydrazide (8f): 

Off white solid, Yield: 58%, mp: 251-253 C; FTIR (ATR, max, cm-1): 3183.28 (N-H Str.), 

2943.39 (Ar-H Str.), 2832.59 (C-H Str. of CH3), 1636.73 (C=O Str.), 1593.75 (C=C Str.), 1558.60 

(C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.87 (s, 1H, =N-NH-), 8.90 (s, 1H, 

pyrazole CH), 8.57 (s, 1H, -CH=N), 7.96-7.93 (m, 4H), 7.74 (d, 1H, J = 16.52 Hz, -HC=CH-), 

7.73 (d, 2H, J = 7.16 Hz), 7.65 (d, 1H, J = 16.44 Hz, -HC=CH-), 7.54 (t, 2H, J = 7.82 Hz), 7.38-

7.34 (m, 2H, J = 7.56 Hz), 7.19 (d, 1H, J = 7.96 Hz), 6.98 (d, 1H, J = 8.28 Hz), 3.89 (s, 3H, -

OCH3), 3.79 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 162.17 (C=O), 149.11, 

149.05, 148.87, 140.92, 139.00, 137.35, 132.87, 131.62, 129.76, 129.64, 129.57, 129.47, 126.71, 

120.37 (C-6 of DZG), 118.45, 117.35, 117.04, 111.78 (C-5 of DZG), 109.01 (C-2 of DZG), 99.36, 

55.52 (-OCH3), 55.46 (-OCH3); HRMS (ESI, m/z) [M+H+Na]+; calculated for C27H24N4O3, 

601.0713; found 601.0730. 

5.1.6.7 4-chloro-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)benzohydrazide (8g): 

Yellow solid, Yield: 32%, mp: 221-223 C; FTIR (ATR, max, cm-1): 3057.52 (N-H Str.), 2934.61 

(Ar-H Str.), 2833.51 (C-H Str. of CH3), 1675.95 (C=O Str.), 1637.46 (C=C Str.), 1595.94 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.89 (s, 1H, =N-NH-), 8.91 (s, 1H, pyrazole CH), 

8.57 (s, 1H, -CH=N), 7.96 (t, 4H, J = 7.60 Hz), 7.75 (d, 1H, J = 16.49 Hz, -HC=CH-), 7.66 (d, 

1H, J = 16.53 Hz, -HC=CH-), 7.63 (d, 2H, J = 8.36 Hz), 7.54 (t, 2H, J = 7.88 Hz), 7.38-7.34 (m, 
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2H), 7.19 (dd, 1H, J = 8.20, 1.12 Hz), 6.99 (d, 1H, J = 8.28 Hz), 3.90 (s, 3H, -OCH3), 3.79 (s, 3H, 

-OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 161.81 (C=O), 149.12, 149.06, 148.88, 140.95, 

139.01, 136.47, 132.24, 131.62, 129.77, 129.57, 129.50, 128.58, 126.71, 120.39 (C-6 of DZG), 

118.45, 117.33, 117.05, 111.78 (C-5 of DZG), 109.00 (C-2 of DZG), 55.51 (-OCH3), 55.46 (-

OCH3); HRMS (ESI, m/z) [M+Na]+; calculated for C27H23ClN4O3, 509.1356; found 509.1372. 

5.1.6.8 ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)pyrazine-2-

carbohydrazide (8h): 

Off white solid, Yield: 17%, mp: 232-234 C; FTIR (ATR, max, cm-1): 3186.88 (N-H Str.), 

2926.26 (Ar-H Str.), 2852.57 (C-H Str. of CH3), 1663.75 (C=O Str.), 1632.57 (C=C Str.), 1599.73 

(C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.29 (s, 1H, =N-NH-), 9.29 (d, 1H, J = 

0.84 Hz), 8.94 (d, 1H, J = 2.36 Hz), 8.92 (s, 1H, pyrazole CH), 8.80 (s, 2H), 7.97 (d, 2H, J = 7.92 

Hz), 7.72 (d, 1H, J = 16.48 Hz, -HC=CH-), 7.63 (d, 1H, J = 16.48 Hz, -HC=CH-), 7.54 (t, 2H, J 

= 7.88 Hz), 7.38-7.34 (m, 2H), 7.20 (dd, 1H, J = 8.14, 1.22 Hz), 6.99 (d, 1H, J = 8.32 Hz), 3.91 

(s, 3H, -OCH3), 3.80 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 162.65 (C=O), 

159.30, 149.16, 149.06, 147.77, 144.74, 144.11, 143.29, 142.68, 139.01, 131.65, 129.75, 129.58, 

129.50, 126.76, 120.34 (C-6 of DZG), 118.51, 117.28, 116.88, 111.80 (C-5 of DZG), 109.15 (C-

2 of DZG), 55.54 (-OCH3), 55.53 (-OCH3). 

5.1.6.9 ((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-

hydroxybenzohydrazide (8i): 

White solid, Yield: 33%, mp: 230-232 C; FTIR (ATR, max, cm-1): 3170.53 (N-H Str.), 2927.15 

(Ar-H Str.), 2835.23 (C-H Str. of CH3), 1642.48 (C=O Str.), 1598.33 (C=C Str.), 1550.30 (C=N 

Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.87 (s, 1H, -OH), 11.86 (s, 1H, =N-NH-), 8.91 

(s, 1H, pyrazole CH), 8.40 (s, 1H, -CH=N), 7.94 (d, 2H, J = 7.80 Hz), 7.74 (d, 1H, J = 16.44 Hz, 

-HC=CH-), 7.64 (d, 1H, J = 16.44 Hz, -HC=CH-), 7.56-7.51 (m, 5H), 7.38-7.36 (m, 2H), 7.17 

(dd, 1H, J = 8.28, 1.64 Hz), 6.98 (d, 2H, J = 8.32 Hz), 3.86 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3); 

13C-NMR (100 MHz, DMSO-d6, δ ppm): 162.24 (C=O), 149.14, 149.06, 148.83, 147.79, 140.83, 

139.00, 138.92, 135.98, 135.33, 131.58, 131.38, 130.60, 130.46, 129.88, 129.76, 129.71, 129.61, 

129.57, 129.39, 129.26, 129.12, 128.72, 127.29, 127.00, 126.74, 120.48 (C-6 of DZG), 118.43, 

117.94, 117.14, 117.04, 112.45, 112.12, 111.77 (C-5 of DZG), 108.81 (C-2 of DZG), 55.52 (-

OCH3), 55.42 (-OCH3). 
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5.1.6.10 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)hydrazine-1-

carbothioamide (11a): 

Yellow solid, Yield: 49%, mp: 178-180 C; FTIR (ATR, max, cm-1): 3502.65, 3342.74 (N-H Str. 

primary), 3136.13 (N-H Str.), 2920.84 (Ar-H Str.), 2850.86 (C-H Str. of CH3), 1577.16 (C=C 

Str.),1544.77 (C=N Str.),1133.96 (C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.34 (s, 

1H, =N-NH-), 9.01 (s, 1H, pyrazole CH), 8.30 (s, 1H, -CH=N), 8.26 (s, 1H, -NH2), 7.88 (d, 2H, 

J = 8.32 Hz), 7.76 (s, 1H, -NH2), 7.54 (t, 2H, J = 7.96 Hz), 7.36 (t, 1H, J = 7.42 Hz), 7.31 (s, 2H, 

-HC=CH-), 7.29 (d, 1H, J = 1.76 Hz), 7.13 (dd, 1H, J = 8.34, 1.86 Hz), 6.97 (d, 1H, J = 8.32 Hz), 

3.83 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 177.60 (C=S), 

149.20, 149.02, 148.93, 138.99, 135.52, 131.81, 129.65, 129.45, 128.39, 126.81, 120.52 (C-6 of 

DZG), 118.34, 117.43, 116.29, 111.72 (C-5 of DZG), 109.02 (C-2 of DZG), 55.53 (-OCH3). 

5.1.6.11 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-N-

methylhydrazine-1-carbothioamide (11b): 

Yellow solid, Yield: 24%, mp: 213-215 C; FTIR (ATR, max, cm-1): 3367.49, 3125.37 (N-H Str.), 

2927.24 (Ar-H Str.), 2828.11 (C-H Str. of CH3), 1623.42 (C=C Str.), 1596.48 (C=N Str.), 1133.46 

(C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.37 (s, 1H, =N-NH-), 8.92 (s, 1H, pyrazole 

CH), 8.33 (d, 1H, J = 4.64 Hz), 8.30 (s, 1H, -CH=N), 7.90-7.87 (m, 2H), 7.55 (t, 2H, J = 7.98 

Hz), 7.37 (t, 1H, J = 5.06 Hz), 7.35 (d, 1H, J = 3.60 Hz), 7.33 (s, 2H, -HC=CH-), 7.14 (dd, 1H, J 

= 8.22, 1.86 Hz), 6.97 (d, 1H, J = 8.40 Hz), 3.84 (s, 3H, -OCH3), 3.78 (s, 3H, -OCH3), 3.05 (d, 

3H, J = 4.56 Hz, -CH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 177.48 (C=S), 149.20, 148.99, 

148.89, 138.98, 135.26, 131.86, 129.66, 129.46, 128.30, 126.84, 120.65 (C-6 of DZG), 118.41, 

117.42, 116.33, 111.71 (C-5 of DZG), 109.19 (C-2 of DZG), 55.53 (-OCH3), 55.45 (-OCH3), 

30.76 (-CH3); HRMS (ESI, m/z) [M-H]-; calculated for C22H23N5O2S, 420.1494; found 420.1502. 

5.1.6.12 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-N-

phenylhydrazine-1-carbothioamide (11c): 

Off white solid, Yield: 24%, mp: 215-217 C; FTIR (ATR, max, cm-1): 3329.46, 3135.84 (N-H 

Str.), 2933.89 (Ar-H Str.), 2831.87 (C-H Str. of CH3), 1618.44 (C=C Str.), 1595.53 (C=N Str.), 

1134.65 (C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.75 (s, 1H, =N-NH-), 9.91 (s, 

1H, -NH), 9.07 (s, 1H, pyrazole CH), 8.41 (s, 1H, -CH=N), 7.90 (d, 2H, J = 7.76 Hz), 7.61 (d, 

2H, J = 7.56 Hz), 7.55 (t, 2H, J = 7.96 Hz), 7.39 (d, 2H, J = 3.32 Hz), 7.37 (s, 2H, -HC=CH-), 

7.36-7.35 (m, 1H),  7.29 (d, 1H, J = 1.80 Hz), 7.21 (t, 1H, J = 7.34 Hz), 7.14 (dd, 1H, J = 8.34, 

1.82 Hz), 6.91 (d, 1H, J = 8.32 Hz), 3.77 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3); 13C-NMR (100 

MHz, DMSO-d6, δ ppm): 175.38 (C=S), 149.18, 149.10, 148.96, 139.02, 138.96, 136.24, 131.94, 
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129.65, 129.47, 128.84, 128.15, 126.88, 125.18, 120.45 (C-6 of DZG), 118.45, 117.19, 116.46, 

111.68 (C-5 of DZG), 109.26 (C-2 of DZG), 55.50 (-OCH3), 55.30 (-OCH3). 

5.1.6.13 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)hydrazine-1-

carboxamide (11d): 

Off white solid, Yield: 45%, mp: 183-185 C; FTIR (ATR, max, cm-1): 3449.01, 3369.49 (N-H 

Str. primary), 3154.90 (N-H Str.), 2910.52 (Ar-H Str.), 2831.62 (C-H Str. of CH3), 1673.67 (C=O 

Str.), 1596.05 (C=C Str.), 1546.12 (C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 10.12 (s, 

1H, =N-NH-), 8.89 (s, 1H, pyrazole CH), 8.05 (s, 1H, -CH=N), 7.89 (d, 2H, J = 7.88 Hz), 7.53 

(t, 2H, J = 7.96 Hz), 7.35 (t, 1H, J = 7.38 Hz), 7.34 (s, 2H, -HC=CH-), 7.28 (d, 1H, J = 1.80 Hz), 

7.12 (dd, 1H, J = 8.24, 1.84 Hz), 6.96 (d, 1H, J = 8.32 Hz), 6.42 (bs, 2H, -NH2), 3.82 (s, 3H, -

OCH3), 3.78 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 156.75 (C=O), 149.11, 

149.02, 148.28, 139.09, 132.39, 131.27, 129.60, 129.55, 127.79, 126.61, 120.42 (C-6 of DZG), 

118.25, 118.03, 116.46, 111.74 (C-5 of DZG), 108.96 (C-2 of DZG), 55.50 (-OCH3). 

5.1.6.14 (4-chlorophenyl)-2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)hydrazine-1-carbothioamide (11e): 

Yellow solid, Yield: 64%, mp: 214-216 C; FTIR (ATR, max, cm-1): 3307.53, 3146.01 (N-H Str.), 

2930.45 (Ar-H Str.), 2831.72 (C-H Str. of CH3), 1621.05 (C=C Str.), 1591.70 (C=N Str.), 1134.03 

(C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.83 (s, 1H, =N-NH-), 9.97 (s, 1H, NH-C-

), 9.05 (s, 1H, pyrazole CH), 8.41 (s, 1H, -CH=N), 7.90 (d, 2H, J = 7.88 Hz), 7.67-7.64 (m, 2H), 

7.55 (t, 2H, J = 7.90 Hz), 7.44-7.35 (m, 5H), 7.29 (d, 1H, J = 1.76 Hz), 7.14 (dd, 1H, J = 8.32, 

1.76 Hz), 6.90 (d, 1H, J = 8.32 Hz), 3.77 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3); 13C-NMR (100 

MHz, DMSO-d6, δ ppm): 175.42 (C=S), 149.20, 149.15, 148.96, 138.96, 138.08, 136.61, 131.96, 

129.68, 129.48, 129.13, 128.92, 128.05, 126.93, 126.81, 120.49 (C-6 of DZG), 118.75, 118.48, 

117.13, 116.48, 111.68 (C-5 of DZG), 109.32 (C-2 of DZG), 55.50 (-OCH3), 55.33 (-OCH3). 

5.1.6.15 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-N-(4-

fluorophenyl)hydrazine-1-carbothioamide (11f): 

Off white solid, Yield: 59%, mp: 206-208 C; FTIR (ATR, max, cm-1): 3322.64, 3139.55 (N-H 

Str.), 2931.29 (Ar-H Str.), 2830.34 (C-H Str. of CH3), 1618.91 (C=C Str.), 1597.12 (C=N Str.), 

1134.38 (C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.77 (s, 1H, =N-NH-), 9.92 (s, 

1H, NH-C-), 9.05 (s, 1H, pyrazole CH), 8.41 (s, 1H, -CH=N), 7.89 (d, 2H, J = 7.92 Hz), 7.60-

7.53 (m, 4H), 7.39 (d, 1H, J = 16.56 Hz, -HC=CH-), 7.37 (t, 1H, J = 7.28 Hz), 7.34 (d, 1H, 16.44 

Hz, -HC=CH-), 7.29 (d, 1H, J = 1.72 Hz), 7.21 (t, 2H, J = 8.84 Hz), 7.14 (dd, 1H, J = 8.32 , 1.76 

Hz), 6.91 (d, 1H, J = 8.32 Hz), 3.77 (s, 3H, -OCH3), 3.69 (s, 3H, -OCH3); 13C-NMR (100 MHz, 
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DMSO-d6, δ ppm): 175.85 (C=S), 160.82, 158.41, 149.20, 149.13, 148.97, 138.97, 136.35, 

135.44, 135.41, 131.96, 129.68, 129.48, 128.81, 127.68, 127.60, 126.92, 120.55 (C-6 of DZG), 

118.47, 117.22, 116.43, 114.93, 114.70, 111.68 (C-5 of DZG), 109.22 (C-2 of DZG), 55.51 (-

OCH3), 55.32 (-OCH3); HRMS (ESI, m/z) [M-H]-; calculated for C27H24FN5O2S, 500.1332; found 

500.1343. 

5.1.6.16 N-(4-bromophenyl)-2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)hydrazine-1-carbothioamide (11g): 

Yellow solid, Yield: 71%, mp: 217-219 C; FTIR (ATR, max, cm-1): 3308.20, 3145.65 (N-H Str.), 

2931.26 (Ar-H Str.), 2832.00 (C-H Str. of CH3), 1621.11 (C=C Str.), 1587.62 (C=N Str.), 1134.02 

(C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 11.84 (s, 1H, =N-NH-), 9.96 (s, 1H, NH-C-

), 9.05 (s, 1H, pyrazole CH), 8.41 (s, 1H, -CH=N), 7.90 (d, 2H, J = 7.80 Hz), 7.62-7.53 (m, 6H), 

7.40 (d, 1H, J = 16.24 Hz, -HC=CH-), 7.36 (d, 1H, J = 7.20 Hz), 7.34 (d, 1H, J = 16.36 Hz, -

HC=CH-), 7.28 (d, 1H, J = 1.68 Hz), 7.13 (dd, 1H, J = 8.32, 1.68 Hz), 6.90 (d, 1H, J = 8.36 Hz), 

3.77 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 175.33 (C=S), 

149.19, 149.15, 148.96, 138.96, 138.52, 136.64, 131.96, 130.98, 129.68, 129.49, 128.95, 127.10, 

126.93, 120.48 (C-6 of DZG), 118.48, 117.32, 117.13, 116.50, 111.68 (C-5 of DZG), 109.34 (C-

2 of DZG), 55.51 (-OCH3), 55.33 (-OCH3); HRMS (ESI, m/z) [M-H]-; calculated for 

C27H24BrN5O2S, 560.0756; found 560.0758. 

5.1.6.17 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-N-(4-

nitrophenyl)hydrazine-1-carbothioamide (11h): 

Yellow solid, Yield: 56%, mp: 219-221 C; FTIR (ATR, max, cm-1): 3289.83, 3148.42 (N-H Str.), 

2928.49 (Ar-H Str.), 2835.15 (C-H Str. of CH3), 1643.08 (C=C Str.), 1597.52 (C=N Str.), 1136.62 

(C=S Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 12.11 (s, 1H, =N-NH-), 10.32 (s, 1H, NH-

C-), 9.07 (s, 1H, pyrazole CH), 8.45 (s, 1H, -CH=N), 8.23 (d, 2H, J = 9.20 Hz), 8.08 (d, 2H, J = 

9.12 Hz), 7.91 (d, 2H, J = 7.68 Hz), 7.56 (t, 2H, J = 7.96 Hz), 7.44 (d, 1H, J = 16.92 Hz, -HC=CH-

), 7.38 (t, 1H, J = 7.38 Hz), 7.36 (d, 1H, J = 15.97 Hz, -HC=CH-), 7.28 (d, 1H, J = 1.68 Hz), 7.15 

(dd, 1H, J = 8.36, 1.80 Hz), 6.90 (d, 1H, J = 8.36 Hz), 3.76 (s, 3H, -OCH3), 3.69 (s, 3H, -OCH3); 

13C-NMR (100 MHz, DMSO-d6, δ ppm): 174.70 (C=S), 149.23, 149.21, 148.95, 145.47, 143.21, 

138.92, 137.62, 132.03, 129.67, 129.49, 129.31, 126.95, 123.88, 123.47, 120.36 (C-6 of DZG), 

118.50, 116.87, 116.55, 111.72 (C-5 of DZG), 109.57 (C-2 of DZG), 55.47 (-OCH3), 55.38 (-

OCH3); HRMS (ESI, m/z) [M-H]-; calculated for C27H24N6O4S, 527.1503; found 527.1502. 
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5.1.6.18 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-N-

phenylhydrazine-1-carboxamide (14a): 

Off white solid, Yield: 47%, mp: 140-142 C; FTIR (ATR, max, cm-1): 3295.04, 3121.62 (N-H 

Str.), 2926.73 (Ar-H Str.), 2832.25 (C-H Str. of CH3), 1673.01 (C=O Str.), 1630.29 (C=C Str.), 

1592.39 (C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 10.09 (s, 1H, -CH=N), 9.23 (s, 1H, 

pyrazole CH), 8.63 (s, 2H, 2-NH), 7.96 (d, 2H, J = 7.84 Hz), 7.66 (d, 1H, J = 16.37 Hz, -HC=CH-

), 7.57 (t, 2H, J = 7.92 Hz), 7.44 (d, 1H, J = 16.13 Hz, -HC=CH-), 7.45-7.42 (m, 3H), 7.28-7.27 

(m, 3H), 7.19 (dd, 1H, J = 8.30, 1.86 Hz), 6.99 (d, 1H, J = 8.44 Hz), 6.95 (d, 1H, J = 7.36 Hz), 

3.84 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, δ ppm): 185.21 (-

CH=N), 152.53 (C=O), 150.55, 149.48, 149.01, 139.69, 138.64, 134.61, 133.57, 129.70, 129.14, 

128.78, 127.61, 122.25, 121.81, 120.53 (C-6 of DZG), 119.13, 118.18, 115.31, 111.84 (C-5 of 

DZG), 109.69 (C-2 of DZG), 55.55 (-OCH3). 

5.1.6.19 2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-yl)methylene)-N-(4-

fluorophenyl)hydrazine-1-carboxamide (14b): 

Yellow crystalline solid, Yield: 14%, mp: 117-119 C; FTIR (ATR, max, cm-1): 3276.93, 3119.35 

(N-H Str.), 2932.54 (Ar-H Str.), 2832.39 (C-H Str. of CH3), 1665.37 (C=O Str.), 1629.68 (C=C 

Str.), 1597.48 (C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 10.10 (s, 1H, -CH=N), 9.23 

(s, 1H, pyrazole CH), 8.97 (s, 1H, NH), 7.96 (d, 2H, J = 7.68 Hz), 7.66 (d, 1H, J = 16.33 Hz, -

HC=CH-), 7.57 (t, 2H, J = 7.94 Hz), 7.47-7.40 (m, 4H), 7.44 (d, 1H, J = 16.40 Hz, -HC=CH-), 

7.28 (d, 1H, J = 1.84 Hz), 7.20-7.17 (dd, 1H, J = 8.26, 1.94 Hz), 7.10 (t, 2H, J = 8.92 Hz), 6.99 

(d, 1H, J = 8.32 Hz), 3.84 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-d6, 

δ ppm): 185.20 (-CH=N), 158.44 (C=O), 156.08, 152.81, 150.55, 149.46, 148.99, 138.63, 136.14, 

134.58, 133.55, 129.69, 129.51, 129.12, 127.59, 122.24, 120.52 (C-6 of DZG), 119.92, 119.85, 

119.11, 115.32, 115.29, 115.10, 111.81 (C-5 of DZG), 109.66 (C-2 of DZG), 55.53 (-OCH3). 

5.1.6.20 N-(4-chlorophenyl)-2-((3-(3,4-dimethoxystyryl)-1-phenyl-1H-pyrazol-4-

yl)methylene)hydrazine-1-carboxamide (14c): 

Yellow crystalline solid, Yield: 20%, mp: 124-126 C; FTIR (ATR, max, cm-1): 3118.68 (N-H 

Str.), 2914.96 (Ar-H Str.), 2834.1 (C-H Str. of CH3), 1662.25 (C=O Str.), 1631.12 (C=C Str.), 

1594.35 (C=N Str.); 1H-NMR (400 MHz, DMSO-d6, δ, ppm): 10.09 (s, 1H, -CH=N), 9.23 (s, 1H, 

pyrazole CH), 8.83 (s, 1H, NH), 7.96 (d,  2H, J = 7.64 Hz), 7.66 (d, 1H, J = 16.33 Hz, -HC=CH-

), 7.57 (t, 2H, J = 7.96 Hz), 7.47-7.40 (m, 3H), 7.46 (s, 1H, NH), 7.44 (d, 1H, J = 16.45 Hz, -

HC=CH-), 7.32 (d, 2H, J = 8.88 Hz), 7.28 (d, 1H, J = 1.84 Hz), 7.19 (dd, 1H, J = 8.28, 1.84 Hz), 

6.99 (d, 1H, J = 8.36 Hz), 3.84 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3); 13C-NMR (100 MHz, DMSO-
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d6, δ ppm): 185.20 (-CH=N), 152.33 (C=O), 150.55, 149.46, 148.99, 138.63, 138.53, 134.58, 

133.55, 129.69, 129.12, 128.61, 127.59, 125.48, 122.24, 120.52 (C-6 of DZG), 119.82, 119.11, 

115.29, 111.81 (C-5 of DZG), 109.66 (C-2 of DZG), 55.53 (-OCH3). 

5.2 Biological activity protocols 

 In vitro evaluation of antimicrobial activity: 

The synthesized title compounds (8a-i, 11a-h and 14a-c) were further assessed for antimicrobial 

activity against panel of bacterial and fungal strains by following earlier reported MIC assay 

method using resazurin dye.[20] 

5.2.1.1 Microorganisms used: 

Standard cultures of two Gram positive [S. aureus (ATCC 25923), B. subtilis (ATCC 6051)], two 

Gram negative [E. coli (ATCC 35218), P. aeruginosa (ATCC 27853)], four fungal strains [C. 

albicans (ATCC 90028), C. neoformans (ATCC 66031), A. niger (ATCC 16404)] and A. 

fumigatus were used for the antibacterial and antifungal activity respectively. Culturing and sub-

culturing (one day prior to testing) of these microorganisms was carried out at the Department of 

Microbiology, Inkosi Albert Luthuli Hospital, Durban, South Africa. 

5.2.1.2 Preparation of medium: 

The nutrient medium was prepared by dissolving 22 g of Muller-Hinton Broth (MHB) containing 

(Acid Hydrolysate of Casein, Beef Extract and Starch) in 1 L of double distilled water. The pH 

of this medium was adjusted to 7.4 ± 0.1 and sterilized by autoclave for 15 min at 121 °C. The 

solution was allowed to cool and stored at a temp of 4 °C. Sterility check was performed by 

incubating un-inoculated media in an aerobic incubator at 37 °C for 18-24 h. For antifungal 

activity, RPMI 1640 medium with L-glutamine and 0.165 M MOPS and without sodium 

bicarbonate (Lonza) was used. 

5.2.1.3 Preparation of test compounds (stock solution and working standard): 

An accurately weighed quantity (4.000 mg) of the synthesized compounds and standard drugs 

were dissolved in 1 mL of DMSO to give stock solution (4000 µg/mL). Further, 100 µL of stock 

solution was diluted with 900 µL of DMSO to afford working standard solution (400 µg/mL). 

5.2.1.4 Preparation of inoculums: 

One day prior to testing one or more identical colonies of microorganisms were suspended in 4.5 

mL sterile double distilled water. Inoculates were adjusted to 0.5 McFarland standard (1.5 X 108 

cfu/mL) [21]. A density check turbidimeter was used to ensure that the inoculum was a 0.5 

McFarland standard. 
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5.2.1.5 Broth micro-dilution method: 

The preliminary in vitro antimicrobial activity for the newly synthesized title compounds (8a-i, 

11a-h and 14a-c) was evaluated using the broth micro-dilution method. 100 µL of sterile double 

distilled water was added to all outer-perimeter wells of a 96-well microliter plates to minimize 

evaporation of the medium in the test wells during incubation. To the remaining test wells 100 

µL of MHB was added. Two fold serial dilutions of the test compounds and standard drugs 

(Moxicillin and Amphotericin B) were made directly on the microplate using MHB. The 

compounds were tested at final concentration of (200, 100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78, 

0.39 µg/mL). Finally, 10 µL of the freshly prepared bacterial or fungal inoculum was added to 

the wells. The microliter plates were covered and sealed with parafilm and incubated at 37 ± 1 ºC 

for 24 h. After this, 10 µL of freshly prepared resazurin (0.4 mg/mL) was added to the test wells 

and incubated further for 5h. MIC was determined as a blue color in the test well was interpreted 

as no bacterial growth and a pink color was scored as growth. The MIC was thus defined at the 

lowest drug concentration that prevented a color change from blue to pink. Thus the MIC values 

in µg/mL were determined. 

 In vitro evaluation of antimycobacterial activity: 

M. tuberculosis (ATCC H37RV), MDR (UKQC strain), M. kansasii (ATCC 12478), M. 

peregrinum (ATCC 14467) and M. fortuitum (ATCC 6841) were maintained on 7H11 agar plates 

at 37 °C in an atmosphere of 5% CO2. Inoculums of strains were prepared by scraping and 

resuspending a loopful of colonies into Middlebrook 7H9 broth, supplemented with 10% ADC 

and 0.04% tween 80 to avoid clump formation and incubated at 37 °C in 5% CO2. The inoculum 

turbidity was adjusted to a McFarland number 1 standard and further diluted 1:10 in Middlebrook 

7H9 broth prior to addition (100 μL) to each of the test samples and drug-free wells. A growth 

control and a sterile control were also included for each isolate.  Each of the synthesized test 

compounds and standard drugs were weighed accordingly, dissolved in the appropriate solvent 

and filter and sterilized using a 0.2-micron polycarbonate filter. Further, an amount, 100 µL from 

the stock solution was diluted with 900 µL of DMSO (some protocols used broth, we in order to 

overcome solubility concern have used DMSO with the final well on the plate having a 

concentration of less than 1% of DMSO) to afford working standard solution (400 µg/mL). A 

serially diluted drug free control (DMSO) was used to check the activity on each strain. The 

preliminary in vitro antimycobacterial activity for the newly synthesized test compounds (8a-i, 

11a-h and 14a-c) was evaluated using the colorimetric resazurin microplate assay plate 

method.[22] The outer-perimeter wells of a 96-well microliter plates was filled with 200 uL of 

sterile double distilled water to minimize evaporation of the medium in the test wells during 
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incubation. In the remaining test wells, an amount of 100 µL of Middlebrook 7H9 broth with 

ADC 10%, 100 µL of the test compounds and 100 µL of the mycobacteria was added to get at 

final concentration of 200, 100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78, and 0.39 µg/uL. The plates 

were incubated at 37 °C for 7 days. After incubation, 30 µL of resazurin solution prepared at 

0.01% (wt/vol) in distilled water, filter sterilized and stored at 4 °C, and was added to each well. 

The plates were then incubated overnight at 37 °C, and assessed for color development. A positive 

reaction results in a color change from blue to pink indicates bacterial growth, which confirms 

drug resistance. Therefore, the minimum inhibitory concentration was attributed to the lower 

concentration of the test compound to inhibit the color change of resazurin. Isoniazid and 

rifampicin were used as reference standards. 
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CHAPTER 6 

1 SUMMARY AND CONCLUSION 
Microbial and tubercular infections are nowadays become fatal owing to the development of 

resistance and co-infections. TB is the leading cause of mortality and morbidity worldwide. 

Emergence of several resistant forms and persistence of latent infections have intensified the need 

of effective treatment. Early detection of resistant strain, appropriate use of medicines, patient 

compliance, accelerated drug discovery and development programs, and identification of 

effective lead molecules, are crucial and are of rising concern in controlling TB and microbial 

infections. 

The aim of this entire study was to identify a novel and potential antimicrobial and 

antimycobacterial leads that were encouraged from a natural compound, Dehydrozingerone 

(DZG). DZG was fused with various antimicrobial/antitubercular five membered heterocycles by 

molecular hybridisation approach to yield novel assorted DZG derivatives. Thus obtained 54 

novel derivatives were well characterized by thin layer chromatography, infrared spectroscopy, 

nuclear magnetic resonance spectroscopy (1H, 13C and 2D), and high resolution mass 

spectrometry.  Results on biological activity suggest that, thus designed compounds were 

explicably active as antimicrobial and antitubercular agents. Hence, emphasizing the significance 

of considering natural compounds as a standpoint in drug discovery.  

In chapter 2, we have comprehensively performed literature assessment of DZG for its various 

reported biological activities. During this literature investigation, it was evident that DZG was a 

versatile scaffold exploited extensively in building up of diverse chemical libraries. These 

libraries were evaluated for their diverse pharmacological actions namely antioxidant, anti-

inflammatory, antioxidant, antidepressant, antifungal, antimalarial etc. Therefore, it was quite 

marked and impressive about the contributions made by the DZG structural core. Apparently, 

there were no investigations performed on DZG or its derivatives describing its antimycobacterial 

properties. This literature outcome enthused us to choose this structural framework (of DZG) for 

modifying further as antimycobacterial agent. The substantial outcome of this chapter has 

emerged as a review publication in Bioorganic and medicinal chemistry journal published in 

2016, volume 24 and page number 501 to 520. 

(http://www.sciencedirect.com/science/article/pii/S0968089615302157) 

In chapter 3, we hypothesized to fuse DZG with thiazole heterocycle, a distinguished 

antitubercular scaffold via hydrazine linker by molecular hybridisation approach. This strategic 

synthetic scheme was more pragmatic producing decent yields (51-74%) of final compounds. The 

http://www.sciencedirect.com/science/article/pii/S0968089615302157
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synthesis was achieved by Hantzsch cyclo-condensation reaction of compound 4, (E)-2-((E)-4-

(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazine-1-carbothioamide with various 

appropriately substituted 2-bromo-1-phenylethanones (5a-o) in presence of methanol as depicted 

in scheme 2 of chapter 3. Structures of synthesized compounds were characterized by spectral 

data (IR, 1H NMR, 13C NMR, 2D NMR and HRMS). Antimycobacterial screening was performed 

in two levels, preliminary (for determining MIC for Mycobacterium tuberculosis, H37Rv) and 

secondary (for determining broad spectrum efficiency against relevant drug resistant isolates of 

Mycobacterium tuberculosis) by National Institute of Allergy and Infectious Diseases (NIAID), 

Bethesda, MD, USA. Compound 6o, outstood as potential lead with antimycobacterial activity 

under hypoxic (MIC = 46 μM) and normal oxygen (MIC = 0.28 μM) conditions along with 

antimycobacterial efficiency against isoniazid (MIC = 3.2 μM for INH-R1; 1.5 μM for INH-R2) 

and rifampicin (MIC = 2.2 μM for RIF-R1; 6.3 μM for RIF-R2) resistant strains of Mtb. SAR 

studies revealed correlations of structural variations with antimycobacterial activity as discussed 

above in chapter 3. This work was published in the journal ACS Medicinal Chemistry 

Letters, volume 7, issue 7, page 686 to 691 in 2016. 

(http://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.6b00088) 

In chapter 4, as a continued effort in synthesizing DZG inspired antimycobacterial compounds, 

DZG was fused with thiazolidin-4-one, a five membered heterocycle distinguished for its 

antimycobacterial properties through a hydrazine linker. Diverse novel compounds of substituted 

2-((4-(3,4-dimethoxyphenyl)but-3-en-2-ylidene)hydrazono)thiazolidin-4-one derivatives (7a-d, 

10a-l and 13a-b) were synthesized by efficient and adaptable synthetic routes (scheme I to IV) as 

described in chapter 4. These compounds were well characterized by IR, 1H NMR, 13C NMR, 2D 

NMR, HRMS and x-ray crystallography. Thus obtained compounds were evaluated for their in 

vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv strain at NIAID, 

Bethesda, MD, USA. From the tested series, compounds 7a (MIC = 110 µM; IC50 = 67 µM), 7c 

(MIC = 120 µM; IC50 = 66 µM) and 10g (MIC = 100 µM; IC50 = 100 µM) exhibited noteworthy 

antimycobacterial activity. Besides, these title compounds showed miniscule cytotoxic effect 

against a mammalian Vero cell line (MTT assay), suggesting for a good therapeutic index. This 

work has been communicated for publication in RSC Advances. 

Finally, in chapter 5, as an ongoing endeavour in synthesizing DZG inspired antimycobacterial 

compounds, we have synthesized styryl fused pyrazolo carbazones. Compounds 8a-i, 11a-h and 

14a-c were synthesized having diverse structural variations with simple and effective synthetic 

routes as described in chapter 5. Several intermediate compounds (acid hydrazides 7a-i, 

carbothioamides 10a-h, and hydrazonocarboxamides 13a-c) were efficiently synthesized and 

used further for synthesis of final derivatives. All the final compounds were well characterized 

http://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.6b00088
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by IR, 1H NMR, 13C NMR, and HRMS thus conforming their formation. In vitro antibacterial, 

antifungal and antimycobacterial screening were performed at Department of Microbiology, 

National Health Laboratory Services (NHLS), Inkosi Albert Luthuli Central Hospital, Durban, 

South Africa. Obtained results suggest that compounds 8a, 8c, 8d, 8g, 8h, 8i and 11f showed 

reasonable antibacterial activity (MIC = 50 µg/mL) against B. subtilis, compound 11a 

demonstrated sensible activity towards P. aeruginosa (MIC = 25 µg/mL). Further compounds 8a, 

8d, 8e, 8f, 8i, and 11h showed good to moderate antifungal activity ranging from 25 to 50 µg/mL 

towards C. neoformans (MIC = 25 µg/mL) and C. albicans (MIC = 50 µg/mL). Besides, 

compound 8a, comprising of isonicotinoyl hydrazide portion displayed remarkable antitubercular 

activity (MIC = 0.78 µg/mL) against H37Rv. Substituted urea derivatives, 14a-c and 11d also 

exhibited encouraging activity (MIC = 12.5 and 25 µg/mL, respectively) whereas, derivative with 

carbothioamide portion 11a, (MIC = 0.78 µg/mL) illustrated significant activity against H37Rv. 

Moreover, some of the tested compounds showed reasonable activity against MDR (multi drug 

resistant) and MOTT (mycobacteria other that tuberculosis) strains. The overall finds suggest the 

significance of hybridisation to achieve styryl fused pyrazolo carbazones as effective 

antimicrobial and antimycobacterial agents. This work is in manuscript form and is ready to 

submit. 

2 Future work 
With the encouraging observations, data from all the synthesized compounds can be effectively 

utilized in further in silico optimization of the lead compounds by building up of 3D-QSAR (three 

dimensional quantitative structure activity relationship) and 3D-QSPR (three dimensional 

quantitative structure property relationship) models to attain potential ligands. These potential 

ligands can further be taken for their chemical synthesis to achieve drug-like compounds with 

better activity, bioavailability, and efficacy profiles. 

In parallel, 3D-QSAR-based pharmacophore models could be generated form the available 

dataset molecules and validated using the test set ligands. Thus, ligand-based virtual screening of 

the best pharmacophore model against drug-like database (ZINC, Maybridge, Chembridge and 

NCI) can be performed to identify new set of antitubercular hits which can also be considered for 

chemical synthesis.  

Further, molecular docking studies (structure-based drug design) will also offer comparatively 

enhanced solutions to the problem of identification and optimization of antitubercular leads. 

Additional, in depth mechanistic studies would offer and reveal an understanding about the 

molecular mechanism of action of compounds into target proteins. With this data, suitable protein 
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target can be explored in protein data bank (PDB) for molecular docking studies and further lead 

identification followed by lead development. 

Furthermore, many of the curcumin degradants (as discussed in chapter 2) are yet to be explored 

for their prospective biological potentials, which could certainly afford impending 

antimycobacterial leads. Thus, the presented work will contribute extensively to the advanced 

level of research in exploring and developing novel class of dehydrozingerone based 

antitubercular compounds as potential drug candidates. 
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A section of the 1H NMR spectrum (600 MHz) of compound 6k illustrating the 
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Natural products serve as a key source for the design, discovery and development of potentially novel
drug like candidates for life threatening diseases. Curcumin is one such medicinally important molecule
reported for an array of biological activities. However, it has major drawbacks of very poor bioavailability
and solubility. Alternatively, structural analogs and degradants of curcumin have been investigated,
which have emerged as promising scaffolds with diverse biological activities. Dehydrozingerone (DZG)
also known as feruloylmethane, is one such recognized degradant which is a half structural analog of
curcumin. It exists as a natural phenolic compound obtained from rhizomes of Zingiber officinale, which
has attracted much attention of medicinal chemists. DZG is known to have a broad range of biological
activities like antioxidant, anticancer, anti-inflammatory, anti-depressant, anti-malarial, antifungal,
anti-platelet and many others. DZG has also been studied in resolving issues pertaining to curcumin since
it shares many structural similarities with curcumin. Considering this, in the present review we have put
forward an effort to revise and systematically discuss the research involving DZG with its biological
diversity. From literature, it is quite clear that DZG and its structural analogs have exhibited significant
potential in facilitating design and development of novel medicinally active lead compounds with
improved metabolic and pharmacokinetic profiles.
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Figure 1. Structure of Dehydrozingerone (DZG).
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1. Introduction

From time immemorial natural products sourced from plants,
animals, marines and minerals have been the basis of treatment
for variety of diseases. Plants in particular have been the basis of
many traditional medicine systems throughout the world for thou-
sands of years and they still continue to offer humankind with new
remedies. The foundation of the modern pharmaceutical industry
was primarily based on the techniques developed to identify and
synthesize active ingredients from the traditional medicines
obtained from natural sources. Plant-based medicines were
initially dispensed as crude medicines such as tinctures, teas,
poultices, powders and other herbal formulations,1 which now
serve as the basis of novel drug discovery. For example, plant based
compounds like quinine, reserpine, curcumin, vincristine, vin-
blastine, pilocarpine, atropine, morphine, taxol, etc., have been
investigated and exploited as important pharmaceutical drugs for
the treatment of vital diseases or disorders. Hence, natural
products have been proven templates for the development of
new scaffolds for drugs.2–5

Dehydrozingerone (DZG; Fig. 1) also known as feruloylmethane
and vanillylidene acetone, isolated from rhizomes of ginger
(Zingiber officinale Roscoe, family Zingiberaceae)6–8 and can be syn-
thesized in laboratory by simple aldol condensation of vanillin and
acetone.9 It is famously identified as a half structural analog of
curcumin and is a classic example of a natural chalcone. DZG
[(E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one] is a remark-
able scaffold comprising of a phenyl ring bearing methoxy group
Figure 2. Degradation pr
ortho to the phenolic OH and an a,b-unsaturated carbonyl group
with terminal methyl group. Besides, DZG is an unsaturated
derivative of the natural product zingerone and resembles segment
of curcumin as well as share many structural and pharmacological
similarities with curcumin.

DZG and curcumin also claim mutual chemical resemblances as
both bear styryl ketone moieties with similar substitutions on the
phenyl ring.10,11 It is a recognized biosynthetic intermediate12 and
also an identified degradant of curcumin13 (Fig. 2).13–16 DZG is a
known metabolic product of curcumin that has a larger biological
half-life than curcumin itself.17 In spite of versatile applications
of Curcumin (diferuloylmethane), a polyphenol extract of Curcuma
longa,18 is still known to have weak bioavailability and suffers from
premature degradation on oral administration that holds back its
use as a successful therapeutic agent.19 These pharmacokinetic
instabilities of curcumin may be due to following reasons,

(a) Liability of b-diketone moiety in the structure of curcumin
(as substrates) to several aldo–keto reductases in vivo.20–22

(b) Enzymatic cleavage at the benzylic position.23

(c) Instability of reactive b-diketone moiety at neutral-basic pH
conditions in vitro.13,24

(d) Instability of active methylene group at a pH above 6.5.25

However, the curcuminoids, degradants and biosynthetic inter-
mediates of curcumin also exhibit many exceptional pharmacolog-
ical effects. These emerging new class of compounds have been
termed as mono-carbonyl analogs (MCA’s) or mono-carbonyl
enones or dienones.26 These enone analogs emanate in 5, 3 and 7
carbon spacers (7 carbon spacers as in curcumin) and have explica-
ble biological activities on comparison with curcumin.27 Further-
more several studies involving MCA’s have proven improved
bioactivities and enhanced pharmacokinetic profiles compared to
curcumin.28–30

In recent times, scientists have shown enormous interest
towards exploring the medicinal potentials especially for their
oducts of curcumin.



Figure 3. DZG as active scaffold with manifold pharmacological activities.
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antioxidant and anticancer activity. The degradation products as
well as curcuminoids have played a key role in understanding
the mechanism of action of curcumin. Recent studies have shown
that degradation products such as ferulic acid and vanillic acid as
human metabolites of curcumin, have contributed towards the
antioxidant effects of curcumin.31 Hence, the structural analogs
or degradants have emerged as promising scaffolds that have con-
tributed towards designing valuable impending drugs. With these
distinguishing structural features DZG as an active scaffold has
been exploited for diverse medicinal properties (Fig. 3) as
discussed in this review.

The variations in the biological activity of DZG as a result of its
structural manipulations are precisely highlighted in Figure 4. In
this mini review we have recapitulated the progress of research
involving DZG and its derivatives and discussed its diverse applica-
tion in the field of medicinal chemistry emphasizing on their brief
structure activity-relationships (SAR).

2. Dehydrozingerone identified for manifold pharmacological
activities

2.1. Dehydrozingerone as antioxidant

Reactive oxygen species (ROS) are produced during aerobic res-
piration. Regardless of multiple preserved redox modulating sys-
tems, a part of ROS constantly flee from the mitochondrial
respiratory sequence which is sufficient to damage cells in a vari-
ety of ways that include DNA mutations,32 lipid peroxidation,33

ATP depletion,34 and apoptosis.35 Antioxidants are the key negotia-
tors that prevent the reaction of ROS with biomolecules and have
immense potential against pathophysiology of numerous diseases
including cancer, heart disease, aging and different neurological
disorders. Ranges of naturally occurring antioxidants have been
isolated from plants and have been further tailored structurally
to give in newer derivatives. Some of the naturally occurring
antioxidants usually phenols and poly phenols36 have been
depicted in the Figure 5.37

Rajakumar et al., have reported the antioxidant properties of
three structurally related compounds namely DZG, eugenol (1)
and isoeugenol (2) by means of various experimental models. In
this study compound 2 was found to be the highly active in
restraining ferrous-ion, ferric-ion and cumene-hydroperoxide-
induced lipid peroxidation in rat brain homogenates. All the tested
compounds displayed considerable hydroxyl radical scavenging
activity. Compound 2 was found as a powerful scavenging super-
oxide anion produced by the xanthine–xanthine oxidase system,
whereas Compound 1 was observed to inhibit xanthine oxidase.
The high antioxidant activity of 2was due to the existence of a con-
jugated double bond, which augments the stability of the phenoxyl
radical by electron delocalization. Such electron delocalization is
not possible with 1. In DZG, the stability was diminished by an
electron withdrawing keto group at the para position to hydroxyl
group. Over all, this study evidently demonstrated the essential
structural features and the antioxidant potential of naturally
occurring phenols, of which compound 2 emerged as a potential
antioxidant as compared to DZG.10
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Figure 4. Imperative structural features of Dehydrozingerone (DZG) and effects of substitutions over various biological activities.

Figure 5. Naturally occurring antioxidants.
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In order to understand the antioxidant properties of DZG and
curcumin, Rajakumar et al., have reported the inhibition of lipid

peroxidation by both DZG and curcumin in rat brain homogenates.
Interestingly both compounds inhibited the formation of conju-
gated dienes and spontaneous lipid peroxidation. These two com-
pounds also inhibited lipid peroxidation induced by ferrous ions,
ferric-ascorbate and ferric-ADP-ascorbate. In each of these cases
curcumin was found to be more active than DZG and /-tocopherol.
This study established that 1,3-diketone structure was not neces-
sary for inhibiting lipid peroxidation by curcumin because DZG,
which is devoid of this system was also capable of inhibiting lipid
peroxidation. The phenolic groups in both of these compounds
were found to favor considerably for the antioxidant properties,
since they react with free radicals to form phenoxy radical.
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Methoxy group at ortho-position to the phenolic group in both DZG
and curcuminwere known to increases the antioxidant activity due
to inductive effect. This study demonstrated that DZG alike cur-
cumin inhibits lipid peroxidation although to a lesser extent and
additionally the antioxidant activity of curcumin was refereed by
its two phenolic groups, which accounts for its superior activity.11

Subramanian et al., have reported the shielding potential of nat-
ural antioxidants against oxidative damage of DNA by excited spe-
cies of oxygen that is, 1O2, a singlet molecular oxygen, known to
induce single strand breaks in plasmid DNA. Natural antioxidants
namely curcumin, DZG besides two other desmethoxycurcumin
(3) and bisdemethoxycurcumin (4) were examined in this study.
The results showed that curcumin and its derivatives and to a
smaller degree other natural antioxidants tender noteworthy pro-
tection to DNA against 1O2. Curcumin was found to be most effec-
tive followed by DZG then 3 and 4. At higher concentration DZG, 3
and 4 were found to be equally active. Thus this study fairly high-
lighted an explanation regarding probable mechanism of antimu-
tagenic properties of these tested natural antioxidants.5
HO

O
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O

OH

OCH3

HO

O O
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Priyadarsini et al., have reported structurally allied phenols
namely DZG, bromopentenone (5), eugenol (1) and isoeugenol (2)
for antioxidant properties by inhibiting lipid peroxidation in mem-
brane models. Additionally, the physicochemical properties of the
transient intermediates of these antioxidants produced by the
scavenging of several oxidizing free radicals were computed using
pulse radiolysis technique.38

5

HO
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Jovanovic et al., have reported antioxidant mechanisms of cur-
cumin by laser flash photolysis and pulse radiolysis. This study

revealed that the apparent site of reaction is the central CH2 group
in the heptadienone link of curcumin, which has two labile hydro-
gens. This was supported by comparing the reaction patterns of
curcumin and DZG. DZG did not react with the methyl radical,
indicating that the presence of the labile hydrogens is crucial for
the H-atom donating ability of curcumin. Thus the electron donat-
ing ability of curcumin is assessed from the measurements of one-
electron-transfer equilibria of DZG radicals. The major conclusion
of this study was that the H-atom transfer plays a crucial role in
the antioxidant action of curcumin.39

Priyadarsini et al., have reported the free radical reactions of
DZG studied at different pH using a range of oxidants by means
of nanosecond pulse radiolysis procedure. This study employed
several free radicals both primary and secondary to access the
antioxidant potential of DZG. Several specific free radicals were
generated namely N3�, Br�, Br2� , and TI(II) that were employed with
DZG giving rise to the phenoxyl radical across the total pH range.
Observations at pH 6 suggest that there is formation of OH-adduct
which absorbs at 460 nm along with another small oxidation pro-
duct confirmed by HPLC analysis. And at pH 10 there was only one
oxidation product, that is, phenoxyl radical absorbing at 360 nm.
This study demonstrated that the phenoxyl radical from DZG is
deficient to abstract hydrogen because of delocalization of the
unpaired electron into an aromatic ring structure. The phenoxyl
radical was recognized to have a lifetime of a few milliseconds.
The thermodynamic parameter and one-electron reduction poten-
tial of DZG was considerably high thus not making DZG as a perfect
candidate for an antioxidant property, but the rapid kinetic param-
eters might be accountable for its antioxidant activity. In lack of
any other substrate, the phenoxyl radicals might vanish by several
mechanisms, for example, radical–radical reactions with alkoxyl
and peroxyl radicals, thus averting the spread of the chain reaction
of lipid peroxidation. These results put forward that DZG like many
other phenolic antioxidants can counter both primary and sec-
ondary radicals.17

Yamagami et al., have reported antioxidant activities against
lipid peroxidation induced by tert-butylhydroperoxide or c-irradi-
ation for a series of hydroxybenzalacetones derivatives 6 and 7.
Authors have also reported relationship between the structure
and activity by using free-energy related substituent parameters.
Further in order to interpret the resultant correlations, authors
have further measured DPPH free radical scavenging activities of
synthesized compounds and later performed the QSAR analysis.
In this study it was concluded that the inhibitory potencies were
primarily due to the formation of phenoxy radicals as well as from
the electron-donating substituents, which further contributed to
ease phenoxy radical formations. Similarly the ortho substituents
were effective in stabilizing the generated phenoxy radicals. The
results indicated a remarkable enhancement of activity for
compounds 8, 9, and 10.40
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Kuo et al., have synthesized a novel series of DZG derivatives
and evaluated them as potential antioxidants. Amongst the series,
compound 11 displayed significant inhibition of Fe2+-induced lipid
peroxidation (to elucidate antioxidant activity) in rat brain homo-
genate with an IC50 of 6.3 ± 0.4 lM as compared to the standard
antioxidant, /-tocopherol (TOH) with IC50 = 2.5 ± 0.1 lM. In addi-
tion, the tested compounds did not form complex with ferrous
ion in the iron chelation study performed by authors as addition
of ferrous ion did not source any spectral shift or absorbance vari-
ation. Thus the authors expected that the test compounds might
have exerted their effects on lipid peroxidation primarily by scav-
enging free radicals rather than functioning as iron chelators. This
belief was further supported by reassessing DPPH test that gave
information about the reactivities of the tested compounds with
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a stable free radical. In this test, free radical scavenging activity
was expressed by IC0.200. Thus compound 11 (IC0.200 = 3.2 lM)
and 12 (IC0.200 = 4.9 lM) were found to be two and five fold more
active than TOH (IC0.200 = 8.3 lM) and ascorbic acid (IC0.200 = 23.7
lM) respectively in DPPH assay model.8
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Parihar et al., have demonstrated the in vitro and in vivo antiox-

idant potential as well as in vivo radioprotective activity of DZG
against whole body gamma irradiation in Swiss albino mice. DZG
scavenged the ABTS+� (2,21-azinobis (3-ethylbenzothiazoline-
6-sulfonic acid) and DPPH free radicals at room temperature DZG
O
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reduced Fe(III) to Fe(II) at pH 7.4 and scavenged the NADH/phena-
zine methosulfate generated superoxide radical in cell free system.
DZG also scavenged the nitric oxide radical generated by sodium
nitroprusside.41

Musialik et al., have reported the antioxidant property of two
natural compounds Olivetol (13) and DZG along with 2,6-di-tert-
butyl-4-methylphenol (BHT) (14) by Ozawa–Flynn–Wall method
for inhibition of non-isothermal autoxidation of linolenic acid.
Inhibition of non-isothermal oxidation of linolenic acid (LNA) in
bulk phase was monitored by differential scanning calorimetry.
Among these compounds, DZG displayed best antioxidant proper-
ties in which phenolic hydroxyl group is internally hydrogen
bonded to ortho-methoxyl group (15), thus making OH group,
unavailable to form intermolecular hydrogen bond with carboxyl
group of lipid, proving as efficient radical scavenger. Further, the
presence of double bond conjugated to aromatic ring in DZG brings
additional stabilization of the radical formed after the H atom
abstraction from DGZ molecule.42
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Li et al., have reported antioxidant properties for a new series of

ferrocenyl-substituted curcumin derivatives (16–18). The ferro-
cenyl group was linked with the methylene in feruloylacetone to
produce ferrocenyl curcuminoids by using Knoevenagel condensa-
tion. Antioxidant activity of the synthesized compounds were eval-
uated in 2,21-azobis(2-amidinopropane hydrochloride) (AAPH),
Cu2+/glutathione (GSH), hydroxyl radical (�OH)-induced oxidation
of DNA, and in trapping DPPH, ABTS+� and galvinoxyl radicals.
Results revealed that all compounds protected DNA against Cu2+/
GSH-induced oxidation, but promoted �OH-induced oxidation of
DNA. Compounds 16, 17 and 18 scavenged the radicals with n val-
ues (‘n’ is a stoichiometric factor that implies the number of radi-
cals trapped by one molecule of the antioxidant and can be used
as a quantitative index to express the antioxidant capacity) 9.5,
5.7 and 4.7, respectively, thus protecting DNA against AAPH-
induced oxidation. Further compound 16 could trap more DPPH
and ABTS+� than compounds 17 and 18. All the compounds could
not react with galvinoxyl radical. This study conclude that phenolic
hydroxyl groups and iron atom in ferrocenylidene curcumin
derivatives play an important role for antioxidant activity.43
In order to clarify the contribution of phenolic and enolic hydro-
xyl group to the antioxidant capacity of feruloylacetone Feng et al.,
have reported derivatives of DZG (19–24), which was taken as a
model compound of half-curcumin. The synthesized compounds
were evaluated for their antioxidant properties by trapping ABTS+�,
DPPH and galvinoxyl radicals. The reductive capacities were also
screened by quenching singlet oxygen and by inhibiting the oxida-
tion of linoleic acid. Oxidation of DNA mediated by hydroxyl radi-
cal and AAPH were also studied with the synthesized compounds.
In addition, compounds were applied to protect erythrocytes
against AAPH and hemin-induced hemolysis. The results suggest
that the antioxidant capacity of half-curcumin was derived from
the phenolic-OH and the conjugated linkage between phenolic
and enolic-OH. The enolic-OH itself could not trap radicals.44
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Kubra et al., have reported synthesis and antioxidant properties
of DZG derivatives by scavenging the stable DPPH (1,1-diphenyl-2-

picrylhydrazil) radical. The reduction capability of the DPPH
radical was established by its absorbance decrease at 517 nm, as
induced by natural antioxidants. The IC50 value of DZG was found
to be 0.3 mM comparable to Trolox (0.26 mM), whereas the IC50

value of 25, 26, 27 and 28 were found to be 40, 20, 10 and
7.5 mM, respectively. Antioxidant activity assays of derivatives
with varied substituents inferred that the existence of hydroxyl
substituents on the phenyl nucleus enhanced activity, whereas
substitutions like methoxyl and acetoxyl groups reduced antioxi-
dant activity remarkably. DZG, which hold an extended conjugated
system was found to be active.45
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Kancheva et al., synthesized DZG and dimer of DZG 29 and
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screened their antioxidant activity by bulk lipid autoxidation
method, which involved DZG and compound 29 as individual com-
pounds (1 mM), as equimolar binary (1:1) and ternary (1:1:1) mix-
tures with TOH and/or ascorbyl palmitate (AscPH). The highest
oxidation stability of lipid substrate in the presence of individual
compounds was found for TOH, followed by 29 and DZG, which
was established from the main kinetic parameters (antioxidant
efficiency, reactivity and capacity). AscPH did not demonstrate
any protective effect. Synergism was achieved for the binary
mixtures of (TOH + AscPH) [42.4%], (DZG + TOH) [32.4%] and
(DZG + AscPH) [35.6%] and for the ternary combination of
(DZG + TOH + AscPH) [28.7%]. Unusual protective effects observed
were explained on the basis (of results) of TOH regeneration and
its content determined by HPLC.46
Table 1
Structures of asymmetrical mono-carbonyl ferrocenylidene curcumin and their dihydropy

O
R1

R2

O
R1

R2
R3 R3

Dehydrozingerone
derivatives

Ferrocenylidene derivative

Ferrocenylidene derivatives

R1 R2 R3

30 H H H
31 H OH H
32 H H H
33 H N(CH3)2 H
34 H OH H
35 H H OH
36 H OH OC2H5

37 NO2 OH OCH3

Note: It is phenyl instead of ferrocenyl for structures 30, 31 and 38 only.
O
H3CO

HO

29

HO

H3CO
O

Li et al., have reported a new series of asymmetrical mono-
carbonyl ferrocenylidene curcumin and their dihydropyrazole

compounds from dehydrozingerone derivatives (30–44, Table 1)
and investigated their antioxidant abilities in protecting DNA
against AAPH induced oxidation and scavenging ABTS cationic
radical. Compound 40 possessed the highest scavenging of ABTS+�,
whereas compound 33 had higher protecting property of DNA
against AAPH induced oxidation. These results suggest that the
antioxidant abilities of compounds would increase when the ferro-
cenyl group was introduced along with other substituent groups in
the molecule.47

2.2. Dehydrozingerone as antimutagen

The phyto-constituents are vital and important part of our rou-
tine diet providing protective effects from mutagens. Numerous
phyto-constituents namely Coumarin, Xanthones, Terpenoid,
Pigments, Anthraquinone, Tannin, Phenolic, Cympol, Halogenated
Flavonoids, Dibenzoate diterpenes, Organosulfur, Nitrogenous
compounds and Curcuminoids from various plant species have
been reported to have antimutagenic properties.48

Synthetic curcuminoid derivatives have been reported to have
Antimutagenic properties.49–52 Monocarbonyl analogs of curcumin
are widely explored as they have better pharmacokinetic and phar-
macodynamic properties than curcumin and are emerging as a
new class of anticancer agents.53,54 Dehydrozingerone, isolated
from ginger (Zingiber officinale) has the structure corresponding
to half analog of curcumin and also monocarbonyl analog of
curcumin have been reported to have antimutagenic properties.
Following discussion reviews about DZG as an antimutagen.

Motohashi et al., have investigated antimutagenic activities of
DZG and their synthetic analogs (45–56) against UV-induced
razole compounds from dehydrozingerone derivatives

Fe

N
R1

R2

Fe

R3

N

s (FD) Dihydropyrazole derivatives (DD)

Dihydropyrazole derivatives

R1 R2 R3

38 H H H
39 H H H
40 H N(CH3)2 H
41 H OH H
42 H H OH
43 H OH OCH3

44 H OH OC2H5
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mutagenesis in Escherichia coli. Studies suggest that the effect of
DZG against the UV-induced mutagenesis was poor, but benzalace-
tone (46), a dehydroxy–demethoxy product of DZG revealed the
strongest antimutagenic activity among the ring-substituted ana-
logs except for 2-hydroxybenzalacetone (47). Results also dis-
closed that the ring-substitution with a group such as 4-
hydroxyl, methoxyl or methyl reduced the antimutagenic activity,
while a,b-unsaturated (double bond) carbonyl functionality was
essential for the antimutagenicity. Compounds 46, 47 and 56
decreased both the UV- and c-induced mutagenesis. This clearly
suggests that ring-substitution was not effective and a double- or
triple-bonded carbonyl system was required for the antimutagenic
activity.7
O O OOH

47

O

HO
48

OOCH3

49

O
H3CO

50

O

H3CO
51

O

O

O

52

O

53

O

54 55

O

45 46

O

56
Motohashi et al., have evaluated anti-tumor activity of DZG and
its related compounds (57, 26, 8, 47, 48, 50, 51, 2, 56, 46 and 58) by
determining the inhibitory effect on Epstein–Barr virus early
antigen (EBV-EA) activation induced by 12-O-tetradecanoylphor-
bol-13-acetate (TPA). The IC50 of DZG was found to be 95 mol
ratio/TPA, which was almost similar to curcumin (57) 97 mol
ratio/TPA. Isoeugenol (2) that lacks carbonyl group in the side
chain, exhibited 50% inhibition with 38 mol ratio/TPA, thus
accounting for one-third antioxidant activity of DZG. Compounds
26, 8 and monosubstituted compounds were also tested for the
EBV-EA activation. Compound 26, IC50 = 107 mol ratio/TPA was
less effective than DZG while compound 8 (IC50 = 50) exhibited
more potent activity than DZG. Compounds 47, 48 and 51 were
found to be more active whereas compound 50 was less active as
compared to DZG. The influence of the carbon–carbon bond
attached to the benzene ring was also assessed with compound
56 having a triple bond, 46with a double bond and 58with a single
bond. The inhibitory effect was significant and highest in 56
(IC50 = 48 mol ratio/TPA) followed by 46 (IC50 = 129 mol ratio/
TPA) and then 58 (IC50 = 222 mol ratio/TPA).55

OO
H3CO

HO OH

OCH3

57

O

58

Rao et al., have reported the cyto-protective effects of DZG and

two other structurally related phenolic compounds Eugenol (1)
and Isoeugenol (2) against cisplatin-induced toxicity in vero
(African Green Monkey Kidney) cells by observing variation in per-
centage tryphan blue exclusion (TBE), percentage release of lactate
dehydrogenase (LDH), and glutathione (GSH) content. Cisplatin is
known to cause cytotoxicity in kidney cells due to oxidative injury,
involvement of hydrogen peroxide in outer medullary cortical
tubule cells and peroxidation of cell membranes. Several literature
reports reveal that various antioxidants are known to prevent cis-
platin induced cytotoxicity. Among the tested series, compound 2
was the most active followed by 1 and then DZG in preventing cell
death induced by cisplatin, while none of the compounds were
able to prevent the reduction of the GSH content.56
Motohashi et al., in conjunction with previous studies, have fur-
ther reported the structure activity relationship of benzalacetone
derivatives as potential anti-tumor agents by assaying in EBV-EA
activation model. The results of benzalacetone derivatives were
in agreement with the previous findings.57

Tatsuzaki et al., have synthesized twenty-eight new compounds
(summarized in Tables 2 and 3) related to DZG, isoeugenol and 2-
hydroxychalcone, which were evaluated for their in vitro activity
against a panel of human tumor cells viz. Human epidermoid car-
cinoma of the nasopharynx (KB), multidrug-resistant expression P-
glycoprotein (KB-VCR) and human lung carcinoma (A549). From
results it was clear that other than isoeugenol analogs 76–84, most
compounds exhibited moderate to strong cytotoxic activity against
the cell lines tested. Particularly, compound 65 displayed signifi-
cant cytotoxic activity against the A549 (IC50 = 0.6 lg/mL), while
compounds 9, 66 and 67 showed comparable cytotoxic activity
against both KB (IC50 = 2.0, 1.0, and 2.0 lg /mL) and KB-VCR
(IC50 = 1.9, 1.0, and 2.0 lg/mL) respectively, suggesting that they
are not substrates for the P-glycoprotein drug efflux pump.58

In 2006, Ex-Elixis INC reported pyrazole derivatives as tyrosine
kinase modulators in treatment of cancer. This study reports anti-
cancer potential of compound 85, which is analogous to DGZ
derivative.59

H3CO

HO
85

N NH



Table 2
Structures of DZG and chalcone analogs (8, 59, 60, 46, 61, 9, 62, 63, 64, 65, 66 and 67)

R4

OR1
R2

R3

R1 R2 R3 R4

DZG H OMe OH Me
8 OH OMe H Me
59 H OH OMe Me
60 OH H OMe Me
46 H H H Me
61 H OEt OH Me
9 OH OEt H Me
62 OH F H Me
63 H F OMe Me
64 H OMe OH Ph
65 OH OMe H Ph
66 H OH OMe Ph
67 OH H OMe Ph
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Conjugation of two bioactive compounds/scaffolds has been
effective strategy in designing pharmacophores as ligands, inhibi-
tors and other class of drugs. Tatsuzaki et al., have synthesized
some novel conjugates of DZG with triterpenoids as promising
cytotoxic agents. In this work, triterpenoids namely glycyrrhetinic
acid (GA, 86), oleanolic acid (OA, 87) and ursolic acid (UA, 88) were
esterified with DGZ (89–91) to yield eleven different novel DZG
analogs 92–102. These synthesized compounds were screened for
their in vitro anti-cancer activity against nine different human can-
cer cell lines as depicted in Table 4.

Compounds 92, 93 and 94 exhibited significant cytotoxic activ-
ity against LN-Cap, 1A9, and KB cells lines with ED50 values of 0.6,
0.8 and 0.9 lM, respectively. Conjugates of DZG and OA or UA were
inactive, suggesting that the GA component was critical for activ-
ity. In general, this study unearths that GA and DZG as individual
components were inactive whereas their conjugates GA–DZG dis-
played potent cytotoxic activity. Thus GA–DZG conjugates were
established as new chemical entities in anti-cancer drug discovery
and development.60
X
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H

HO
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R3
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O

O
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O

86: GA, X=O, R1=Me, R2=H, R3=COOH
87: OA, X=H, R1=COOH, R2=H, R3=Me
88: UA, X=H, R1=COOH, R2=Me, R3=H

90: OA-DZG, R2=H, R3=Me
91: UA-DZG, R2=Me, R3=H

O

R2O
GA

R1

92: 4-OGA, R1=3-OMe, R2=Me
93: 2-OGA, R1=3-OMe, R2=Me
94: 3-OGA, R1=4-OMe, R2=Me
95: 2-OGA, R1=4-OMe, R2=Me
96: 4-OGA, R1=3-OEt, R2=Me
97: 2-OGA, R1=3-OEt, R2=Me
98: 2-OGA, R1=3-F, R2=Me
99: 4-OGA, R1=3-OMe, R2=Ph
100 : 2-OGA, R1=3-OMe, R2=Ph
101 : 3-OGA, R1=4-OMe, R2=Ph
102 : 2-OGA, R1=4-OMe, R2=Ph
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89: GA-DZG



Table 3
Structures of C-41-alkylated DZG (26, 68–75) and Isoeugenol (76–84) analogs

R1MeO

R2O

DZG
R1 = COMe

Isoeugenol
R1 = Me

R2

68 76

69 77

70 78

71 79

72 80

26 81 Me
73 82
74 83

75 84

Table 5
Structures of DZG analogs (8, 9, 46, 59–67)

R3

O
R1

R2

R1 R2 R3

DGZ 3-OMe 4-OH Me
8 2-OH 3-OMe Me
9 2-OH 3-OEt Me
46 H H Me
59 3-OH 4-OMe Me
60 2-OH 4-OMe Me
61 3-OEt 4-OH Me
62 2-OH 3-F Me
63 3-F 4-OMe Me
64 3-OMe 4-OH Ph
65 2-OH 3-OMe Ph
66 3-OH 4-OMe Ph
67 2-OH 4-OMe Ph
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Nakagawa-Goto and co-others have reported newer conjugates
of cytotoxic drug, paclitaxel (103) and various dietary antioxidants
as new class of antitumor drugs. Dietary antioxidants namely
retinol (104, Vitamin A), retinoic acid (105, Vitamin A acid),
a-tocopherol (106, Vitamin E), 2,2,5,7,8-pentamethyl-6-chromanol
(107, Vitamin E analog), curcumin (57), DZG and its analog (8). In
addition, certain antioxidant flavonoids such as galangin (108) and
coumarins, chrysin (109) and 4-methylumbelliferone (110)
were also conjugated with paclitaxel through an ester linkage.
All these novel conjugates were tested against various multi-drug
resistant human cancer cell lines. These tested conjugates
showed selective inhibition towards ovarian carcinoma (1A9)
and nasopharynx carcinoma (KB) cells. However, little or no
activity was observed against other tested cell lines. Paclitaxel
conjugates with DZG (111) and 4-methylumbelliferone (112)
were found to be highly active against 1A9 (ED50 = 0.005 lg/mL)
and KB (ED50 = 0.005 and 0.14 lg/mL,) cells respectively. The
glycinate ester salt of vitamin E 113, conjugated with 103 showed
strong inhibitory activity against human pancreatic cancer cell
Table 4
Data for GA–DZG conjugates against human tumor cell replication

Compound E

KB KB-VIN A549 1A9

92 1.6 2.5 2.0 0.9
93 0.8 2.8 2.2 0.8
94 0.9 1.9 2.8 1.6
95 6.2 >15 15.5 5.9
96 1.8 1.7 1.7 1.1
97 2.9 13.2 3.0 1.8
98 3.0 8.7 3.2 1.3
99 NAb NA >14 >14
100 9.9 NA >14 13.3
101 NA NA NA >14
102 >14 >14 NA NA
GA, 86 >21 >21 NA >21
DZG NA NA >52 33.9
DOXc 0.1 4.97 0.18 0.02

a Human epidermoid carcinoma of the lung (A549), ovarian (1A9), colon (HCT-8), bre
b Not active.
c Doxorubicin.
(Panc-1) with less effect on the normal ovarian epithelial cell line
(E6E7) and emerged as a promising lead candidate in anticancer
drug discovery.61
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D50 (lM)/cell linea

HCT-8 ZR-751 PC-3 DU-145 LN-Cap

1.7 2.8 1.4 3.1 0.6
1.9 3.0 1.1 3.6 2.8
2.0 1.9 2.8 9.9 6.5
2.6 >15 7.4 >15 1.9
2.7 5.2 3.3 5.8 1.1
4.9 8.8 3.5 >15 6.8
2.2 2.7 1.6 2.7 4.4
>14 NA >14 >14 >14
>14 >14 14.1 >14 14.1
>14 NA 14.1 >14 14.1
>14 NA >14 13.0 >14
19.5 NA >21 >21 >21
>52 >52 >52 >52 51.0
1.20 0.04 0.26 0.15 0.04

ast (ZR-751), prostrate (PC-3, DU-145, LN-Cap).
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Tatsuzaki et al., have synthesized a series of forty new DZG
analogs (Tables 5 and 6) and in vitro anticancer activity was
1

evaluated against TPA-induced EBV-EA activation assay. Among
the synthesized compounds, the prenylated analogs 114 and
123–125 exhibited the most significant and promising activity
(100% inhibition of activation at 1 � 103 mol ratio/TPA and
82–80%, 37–35% and 13–11% inhibition at 5 � 102, 1 � 102 and
1 � 10 mol ratio/TPA, respectively).62

Yogosawa et al., were the first to elucidate the growth-
inhibitory mechanisms of DZG and its structural isomers (8 and
59) in human colon cancer cells (HT-29), thus providing some
insights into the molecular mechanism of action of DZG. This study
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suggested that DZG inhibits the cell growth by inducing cell-cycle
arrest at the G2/M phase by up-regulation of p21 in a dose depen-
dent manner. It is quite evident from this study that accumulation
of ROS was interrelated with growth-inhibitory effects, thus sug-
gesting DZG analogs as potential chemotherapeutic agents for
colon cancer.63

Woo et al., have reported the synthesis of a new library of some
benzimidazolyl curcumin mimics by aldol condensation of DZG
and DZG analogs with substituted benzimidazolyl-2-carbaldehyde.
The in vitro anticancer activity was performed by colorimetrically
using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide) assay model against various human cancer cells viz.
breast adenocarcinoma (MCF-7), neuroblastoma (SH-SY5Y), hepa-
tocellular carcinoma (HEPG2) and Lung carcinoma (H460). Among
the tested series, compound 136 (IC50 = 1.0 and 1.9 lM) displayed
most promising cytotoxicity against SH-SY5Y and Hep-G2 cells
respectively, while compound 137 (IC50 = 1.9 lM) presented signif-
icant activity against MCF-7 cancer cells.64
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Liu et al., in an effort to develop agents for treating human
multiple myeloma (MM), have reported the synthesis of a series
of novel hybrid molecules of thalidomide (138) and curcumin
(139–142) along with DZG (143). The anticancer activity of these
synthesized hybrids was evaluated against various human multi-
ple myeloma cells (MM1S, RPMI8226, U266) and human lung car-
cinoma cells (A549). Perusal of results, it was found that compound
141 (di-ketone) and 143 (mono-ketone) significantly inhibited the
cell growth of all three cell lines by P90% at 10 lM, while com-
pound 142 was inactive, thus suggesting that the 4-hydroxy-3-
methoxy benzylidene moiety may be an essential scaffold for
antiproliferative activity. Further, there was an attempt to study
whether these active compounds produce cytotoxic effects
through the modulation of ROS. Interestingly, compounds 141
and 143 increased the production of ROS in U266 cells at both 3
and 10 lM concentrations, leading to G1/S arrest, apoptosis and
cell death. These findings suggest that the hybrid compounds could
be a new leads against human multiple myeloma.65
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In 2013, Uha Mikakuto Co. Ltd., reported the synthesis of novel
DZG derivative (144) having potent anticancer activity, particularly
against oral cavity cancer than DZG.66

H3CO

HO

144
HO

O

Eom et al., have synthesized a library of curcumin derivatives
mainly DZG mimics (145) having benzimidazole functionalities
and evaluated them against multidrug resistant (MDR) ovarian
cancer cell lines (NCI/ADR-RES). The cytotoxicity assay was carried
out by MTT assay against both MDR strains with over-expressed P-
glycoprotein (P-gp) and non-MDR strains (OVCAR-8) without P-gp.
The cytotoxicity results against non-MDR cancer cells demon-
strated reasonably strong to moderate potency suggesting compre-
hensive increase in activity after addition of the benzimidazole
group to feruloyl structure. The inhibitory effect on MDR was
found to be weaker in contrast to non-MDR cancer cells. However
after taking into consideration the resistance factor (RF), that is, the
ratio of the IC50 values of MDR cells to that of non-MDR, the library
illustrated a small RF values, which explains that the divergence of
the inhibitory potency between MDR ovarian cancer cell (NCI/ADR-
RES) and non-MDR ovarian cancer cell (OVCAR-8). Compounds
146, 147 and 148 displayed strong cytotoxic effect on both type
of cancer cells with the RF values 1.7, 1.7 and 1.4, respectively.
Compound 149 showed inhibition with IC50 value of 23.2 lM on
MDR and 0.7 lM on non-MDR with high RF value of 33.1. This
suggests the incapability of compound 149 to differentiate MDR
cancer cells from non-MDR cells.67
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Bode et al., have disclosed the synthesis of novel DZG analog
(150) and reported them for Aurora B kinase inhibition activity
in cancer therapy.68
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2.3. Dehydrozingerone as anti-inflammatory

Curcuminoids have been reported as anti-inflammatory
agents.69 Many of the curcuminoids are synthetically tailored and
studied for anti-inflammatory properties.70–72 Following discus-
sion elaborates research employing DZG as anti-inflammatory
agents.

Elias et al., have reported the synthesis of a novel series of sub-
stituted 4-phenyl-3-buten-2-ones (151–155) and screened them
for in vivo anti-inflammatory activity by carrageenan-induced
paw edema in rats. Among the tested series, most of the com-
pounds exhibited a comparable activity with DZG. In particular,
compounds 25 and 152 displayed significant anti-inflammatory
activity, while compounds 151 and 51 revealed little or no
activity.9

O 151 : R1 = OCH3, R2 = OCH3
152 : R2 = -N(CH3)2
153 : R2 = Cl
154 : R2 = Br
155 : R1 = Cl

R1

R2

Jayasekhar et al., have reported the synthesis of DZG Mannich
bases by two methods. The first method involved the treatment
of DZG with secondary alkyl amine hydrochlorides and
paraformaldehydes, whereas the second method was direct aldol
condensation of vanillin with 4-alkylaminobutan-2-one. All the
synthesized compounds were evaluated for anti-inflammatory,
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analgesic and antipyretic activities. Perusal of results it was found
that most of the compounds showed superior anti-inflammatory
activity compared to DZG. In particular, compounds 156, 157 and
160 exhibited significant anti-inflammatory activity. Compounds
158 and 160 displayed the most promising analgesic activity
whereas 156 and 158 presented excellent antipyretic activity.73
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Santhakumari et al., have reported novel method for synthesis
of newer curcuminoids (3, 162 and 163) by Claisen–Dieckmann
condensation of a,b-unsaturated ketones (both DZG and 4-(4-
methoxyphenyl)but-3-en-2-one) along with various esters in pres-
ence of sodium ethoxide and dimethyl sulphoxide. Further
employing the same reaction procedure, authors have reported
DGZ-Ibuprofen derivative (163) where the a,b-unsaturated moiety
of DZG and the ester group of ibuprofen was condensed. The syn-
thesized compound 163 was screened for analgesic activity by
acetic acid-induced writhing in albino mice. Although compound
163 demonstrated analgesic activity (59% at 1.0 mmol/kg), it was
less compared to Ibuprofen (69% at 1.0 mmol/kg). Compound 163
was also screened for anti-inflammatory activity for acute, sub
acute and chronic models using reported methods. Results of this
study suggested that 163 displayed significant activity (76%) com-
pared to ibuprofen (73%) in equimole dose. Compound 163, also
showed predominant activity against formaldehyde induced
arthritis at 0.5 mmol/kg dose level. However even the compound
163 did not induce gastrointestinal ulceration at dose level of
1 mmol/kg suggesting it to be a potent anti-inflammatory com-
pound without any ulcerogenic side effects. These overall findings
suggest that compound 163 emerged as the most promising anti-
inflammatory agent with less gastrointestinal side effects.74
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162 163
H3CO OCH3
2.4. Dehydrozingerone as anti-depressant

Various natural products have been explored as herbal
medicines for treating depression.75–77 Numerous classes of
phytoconstituents especially curcuminoids, flavonoids and poly
phenols have been reported to possess antidepressant properties.78

A brief account from literature explains the use of DZG as
antidepressant.

Martinez et al., have assessed the antidepressant property of
DZG and the involvement of serotonergic and noradrenergic sys-
tems. Authors have also established the in vitro antioxidant activ-
ity of DZG by evaluating peroxidation in the hippocampus, cortex
and cerebellum of mice. The participation of serotonergic and
noradrenergic systems was verified by the tail suspension test
(TST), forced swim test (FST) and yohimbine lethality test in mice
models. DZG significantly reduced the period of immobility in
the TST and FST, suggesting an antidepressant-like profile. Thus
signifying that DZG could be a natural stand-in for development
of antidepressants having little or no adverse effects.79

2.5. Dehydrozingerone against Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder and
pathologically illustrated by gradual loss of memory, way of think-
ing and other cognitive functions along with dementia.

Kim et al., reported the synthesis of novel shogaols derivatives
(164–173) prepared by the reduction of DZG. In this work authors
evaluated the significance of the side-chain length connected to
DZG in defending cells from bA insult using PC12 rat pheochromo-
cytoma and IMR-32 human neuroblastoma cells. The cytoprotec-
tive property of synthesized compounds against bA insult was
established using MTT assay. Results suggested that the efficacy
of cell protection from bA insult increased with the increase in side
chain. From this series compound (173) exhibited the best
results.80
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n=1, 165
n=2. 166
n=3, 167
n=4, 168
n=5, 169
n=6, 170
n=7, 171
n=8, 172
n=9, 173

164

AD is characterized by the buildup of amyloid plaques and neu-
rofibrillary tangles in the brain and thus the in vivo imaging of pla-
ques and tangles would be of great assistance for the early finding
of AD. Ryu et al., reported the synthesis of a series of newer DZG
(174–179) and curcumin (180–181) derivatives and evaluated
them for in vitro and in vivo as b-amyloid (bA) plaque imaging
probes by positron emission tomography (PET) or single photon
emission computed tomography (SPECT). The curcumin analogs
exhibited superior binding affinities for bA aggregates than DZG
derivatives. In particular, compound 181 was found to be most
potent ligand having suitable lipophilicity, realistic initial brain
uptake and metabolic firmness in the normal mouse brain. These
outcome suggest that compound 181 was emerged as a potential
candidate for bA plaque imaging.81
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2.6. Dehydrozingerone as anti-malarial

Molecular hybridization-based drug design approach82 has
been exploited by many researchers in order to develop new
hybrid chemical entities (NHCEs) as promising drug candidates.
It is well known that more efficacious drug candidates with syner-
gistic activity can be designed by joining two or more biologically
Table 6
Structures of DZG (114–126) and isoeugenol (127–135) analogs

R1
R2

R3

DZG R4 = COMe R1 R2

114 H OMe

115 H OMe

116 H OMe

117 H OMe

118 H OMe

119 H OMe

120 H OMe

121 H OMe

122 H OMe

123 OMe

124 H

125 H

126 F
active pharmacophores or heterocyclic systems in a single molec-
ular framework. Recently Guantai et al., have reported the synthe-
sis of some series of novel DZG derived chalcones and dienone
hybrid derivatives containing aminoquinoline and other nucle-
oside templates as potential antimalarial agents (182–229).
Amongst all, compound 202 exhibited most promising antimalarial
activity against three strains of Plasmodium falciparum.83
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190
191: R= 4-OCH3
192: R= 2,4-OCH3
193: R=2,3,4-OCH3
194: R=2,4-Cl
195: R=4-F
196: R=2,4-F

197

198 : R= 4-OCH3
199 : R= 2,4-OCH 3
200 : R=2,3,4-OCH3

201: R= 4-OCH3
202: R= 2,4-OCH3
203: R=2,3,4-OCH3

204 : R=2,4-OCH3
205 : R=2,3,4-OCH3
206 : R=2,4-Cl
207 : R=4-F
208 : R=2,4-F
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2.7. Dehydrozingerone as antifungal/antifeedant

Agarwal et al., have reported the isolation of various natural
compounds like Curcumene (230), Zingiberene (231) and
6-Gingerol (232, ginger oleoresin) from fresh rhizomes of Zingiber
230 231

O

HO

O

233
officinale. Authors have also reported the synthesis of DZG deriva-
tives [6]-dehydroshogaol (233), Zingerone (164) and Dihy-
drozingerone (234). These tested compounds displayed modest
insect growth regulatory (IGR) and antifeedant activity against Spi-
losoma obliqua and substantial antifungal activity against Rhizocto-
nia solani. Amongst the series tested, compound 233 exhibited
maximum IGR activity (EC50 = 3.55 mg/ml) while its DZG portion
has imparted maximum antifungal activity (EC50 86.49 mg l�1).84
O

HO

OH

234

O
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HO

OH

232
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Kubra et al., have evaluated the antifungal effectiveness of DZG
against Aspergillus oryzae, Aspergillus flavus, Aspergillus niger, Asper-
gillus ochraceus, Fusarium oxysporum and Penicillium chrysogenum.
The MIC and fungicidal concentration was ranging from 755 to
911 lM and 880 to 1041 lM, respectively, which suggests that
these fungal species were found vulnerable to DZG. Authors have
also studied scanning electron microscopy to monitor morpholog-
ical changes such as cell lysis, inhibition and morphological alter-
ations in hyphae and sporulation in A. ochraceus on treatment
with DZG. This study provides an insight for exploiting DZG as a
potential antifungal scaffold with the presence of a,b-unsaturated
carbonyl (C@O) group (conjugation system) on the aromatic ring
with methoxyl and phenolic hydroxyl groups.85

2.8. Dehydrozingerone as antiplatelet

Shih et al., have reported the synthesis of some novel DZG
derivatives derived from shogaol and gingerol and evaluated them
for anti-platelet aggregation activity. Amongst the synthesized
compounds, [6]-paradol 235 displayed the most significant inhibi-
tion of platelet aggregation induced by arachidonic acid.86

O

CH2 CH36

H3CO

HO
235
Table 7
Automated docking analysis through Scigress Explorer 7.7.0.47

Ligands PMF score dock flexible ligand in rigid active site
(kcal/mol) through Scigress 7.7.0.47

Bis demethoxy curcumin �51.503
Caffeic acid �62.267
Capsaicin �50.654
Chlorogenic acid �99.782*

Cassumunin A �44.556
2.9. Dehydrozingerone as b-adrenoceptor antagonist

Wu et al., have reported the synthesis of a novel
Dehydrozingeronolol (236) derived from DZG, and evaluated it
for cardioselectivity, b-adrenoceptor antagonist and intrinsic
sympathomimetic activity. Results suggested that compound 236
blocked (�) isoproterenol-induced tachycardia effects, thus signi-
fying its bradycardia effect along with b-adrenoceptor blocking
activities.87

O

O

OCH3
236

N
H OH
Cassumunin B �55.462
Curcumin �85.699*

Curcumin dipiperoyl
ester

�74.859

Cyclocurcumin �54.515
Demethoxy curcumin �78.974*

Dehydrozingerone �41.759#

Diaryl pentanoids �61.251
Diaryl pentanoids II �54.224
Dihydro guarietic acid �65.578
Eugenol �37.275
Ferulic acid �46.627
Piperic acid �60.454
Quercetin �67.679
Yakuchinone A �45.20
Yakuchinone B �53.811
Zingerone �40.826

* Inhibitors showing significant binding affinities.
# DZG.
2.10. Dehydrozingerone: in silico studies

Singh et al., have reported in silico model to study the binding
mode of curcumin and DZG with Human papilloma virus protein
(HPV16 E6), a key protein dynamically participating in oral and
cervical cancers and a model target for restoring the tumor sup-
pressor role of p53. The binding interactions of the compounds
have been studied by molecular docking using Autodock4. In this
work, curcumin was found to have best binding interactions at
the target site as compared to other curcuminoids, demethoxy
and bis-demethoxy curcumin, which have lower but similar poten-
tial. Eighteen other naturally occurring congeners of curcumin
were also docked in order to find the best candidate. However, only
chlorogenic acid (237) was found to have considerable binding
energy than curcumin itself (Table 7). This study has provided an
insight for the design and development of drugs against both oral
and cervical cancers form natural origin.88
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Shen et al., have reported the molecular docking simulation
studies of curcumin (57) and tautomer of curcumin (238) and its
degradation products (239–242) over Xanthine oxidase (XO), an
enzyme capable of generating reactive oxygen species and having
roles in pathogenesis of many diseases. As such curcumin did not
display any inhibitory activity against XO because of its twisted
steric bulkiness. However, degradation products of curcumin were
found to fit efficiently into the binding pocket of XO, which was
built by using salicylate as reference ligand. Two natural polyphe-
nols, quercetin and luteolin known to possess high inhibitory activ-
ities against XO were chosen to validate the model. Quercetin
displayed six binding interactions with amino acid residues
namely Arg880, Arg912, Phe914, Phe1009, Thr1010 and Glu1261,
while luteolin showed interactions with residues Asn768,
Arg880, Phe914, Phe1009, Thr1010 and Ala1079 of XO. It was
observed that both quercetin and luteolin have common binding
region with four amino acid residues. Compound 239, a major
degradation product of curcumin, showed comparable binding
affinity, that is, 4.57 lm with that of quercetin (1.12 lm) and lute-
olin (1.45 lm). DZG a minor degradation product was seen to bind
with Phe914, Phe1009, Thr1010 and Ser876 residues of XO with a
binding affinity of 91.2 lm. Thus this study highlighted the mech-
anisms underlying inhibition of XO.89
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2.11. Dehydrozingerone reported for miscellaneous activities

Transfer of vascular smooth muscle cells (VSMC) is known to be
linked with development of atherosclerosis. Growth factors and
ROS produced during vascular injury are considered to play a
major role in pathogenesis of atherosclerosis. Therefore inhibition
of growth factor or ROS-mediated signaling may signify a potential
therapeutic approach for interference with the progression of
atherosclerosis. Liu et al., have explored the effect of DZG on plate-
let-derived growth factor (PDGF) stimulated VSMC movement,
proliferation, and collagen synthesis. In an effort to understand
the mechanism, authors have studied the effect of DZG on hydro-
gen peroxide (H2O2)-stimulated PDGF receptor signaling. Further,
growth factor-mediated cell proliferation is negatively regulated
by protein tyrosine phosphatases (PTPs); therefore, authors have
also assessed the effect of DZG on PTP activity in cells treated with
H2O2. In this study the efficacy of DZG with curcumin and
isoeugenol (structural analogs of DZG) was compared in order to
understand the structural necessities for activity and DZG emerged
as an effective inhibitor of growth factor/H2O2-stimulated VSMC
functions by inhibiting the oxidation of cellular phosphatases.90

Oxidative stress is one of the interfering factors in wound heal-
ing course. This stress once triggered by the wound results in the
production of ROS, thereby delaying usual wound repair. So reduc-
ing the level of ROS would be an important approach to improve
healing process. Rao et al., have demonstrated the influence of
DZG as a ROS scavenger on both normal and dexamethasone
delayed wound healing in albino rats. It was found that DGZ priv-
ileged the healing of re-sutured incision wounds as compared to
control. Further, there was significant improvement in granulation
breaking strength and the rise in the hydroxyproline (OHP) and
lysyl oxidase (LO) levels in the granulation tissue was also
observed clearly suggesting that the DZG was influential and
supportive in hastening the healing process in both normal and
dexamethasone-suppressed wounds in rat models.91

Soo et al., have reported the blood sugar lowering property of
DZG. In this study authors have revealed that DZG increases phos-
phorylation or activation of AMK kinase to bring about a drop in
blood sugar levels and boost insulin sensitivity as well as reduce
body fat. Thus DZG could be an ideal molecule for drug discovery
in the treatment of Type II diabetes mellitus and obesity.92

Kim et al., have investigated the effects of DZG on metabolic
profiles in mice. It was evidently found that DZG suppressed
high-fat diet (HFD)-induced increase in glucose and cholesterol
through a mechanism involving AMP-activated protein kinase
(AMPK). This was due to increased phosphorylation of AMPK in
skeletal muscles. Maximum AMPK activation by DZG was found
at the concentration of 30 lM for 10 min. In addition, DGZ was also
found to activate p38 mitogen-activated protein kinase (MAPK)
signaling in an AMPK-dependent manner and also increase in
GLUT4 (major transporter for glucose uptake) expression in skele-
tal muscles. These all findings thus explain the possible molecular
mechanism of AMPK pathway activation in skeletal muscle by
DZG.93

Martinez et al., have synthesized two new organochalcogen-
containing zingerone derivatives and evaluated for their
antioxidant properties by ABTS+� assay. Novel compounds, 243
and 244 exhibited improved activity over DZG (IC50 8.0 ± 1.0 lM)
with IC50 values of 8.0 ± 1.0 lM and 6.5 ± 0.5 lM, respectively,
with two fold increase in activity as compared to phenolic
antioxidants. The enhancement in activity was mainly attributed
to a mechanism that eliminates phenylselenyl or phenylthiyl
radicals.94
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3. Conclusion and future perspective

A great deal of time has been taken to prove that the time-
honored medicinal plants have the power to cure. Drugs derived
from natural sources have always been precious precursors for
modern medicines. Taking a step one day at a time, in the near
future, the nature’s enormity and diversity would provide us the
solutions to fight even the most fearsome diseases. To overcome
the problems associated with curcumin, curcuminoids and the
degradants of curcumin have been looked upon for molecular vari-
ations in developing diverse scaffolds with least side effects and
improved bioavailability. These curcuminoids and degradation
products of curcumin have also helped towards improving its
metabolic profile in humans as well as mechanism leading to phar-
macological responses.15,95 Therefore, over the course of years sev-
eral studies have come up with compounds or structural analogs of
curcumin (mono-carbonyl analogs or mono-carbonyl enones) that
have excluded b-diketone moiety to restrain stability and improve
metabolic profiles. One such distinguished degradant of curcumin
is DZG, which is endowed with a broad range of biological activi-
ties like antioxidant, anticancer, anti-inflammatory, anti-depres-
sant, anti-malarial, antifungal, anti-platelet and many others.
Therefore, in this review we have put forward an extensive effort
to revise and systematically discuss the research involving DZG
with its biological diversity. In conclusion, it is quite evident that
DZG is an imperative scaffold and its numerous analogs have
emerged as a promising leads in the design and development of
some novel medicinally active compounds with improved meta-
bolic, pharmacokinetic and pharmacological profiles, indicating
that there is much scope for further investigation.
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ABSTRACT: Series of styryl hydrazine thiazole hybrids
inspired from dehydrozingerone (DZG) scaffold were
designed and synthesized by molecular hybridization approach.
In vitro antimycobacterial activity of synthesized compounds
was evaluated against Mycobacterium tuberculosis H37Rv strain.
Among the series, compound 6o exhibited significant activity
(MIC = 1.5 μM; IC50 = 0.48 μM) along with bactericidal
(MBC = 12 μM) and intracellular antimycobacterial activities
(IC50 = <0.098 μM). Furthermore, 6o displayed prominent
antimycobacterial activity under hypoxic (MIC = 46 μM) and
normal oxygen (MIC = 0.28 μM) conditions along with
antimycobacterial efficiency against isoniazid (MIC = 3.2 μM for INH-R1; 1.5 μM for INH-R2) and rifampicin (MIC = 2.2 μM
for RIF-R1; 6.3 μM for RIF-R2) resistant strains of Mtb. Presence of electron donating groups on the phenyl ring of thiazole
moiety had positive correlation for biological activity, suggesting the importance of molecular hybridization approach for the
development of newer DZG clubbed hydrazine thiazole hybrids as potential antimycobacterial agents.

KEYWORDS: Antimycobacterial activity, bactericidal, dehydrozingerone, NIAID, thiazole

Tuberculosis (TB) is a chronic necrotizing bacterial
infection caused by Mycobacterium tuberculosis (Mtb),

which has been a bane of humanity for thousands of years and
remains as one of the rampant health problems in the world.
TB is an ancient enemy, and current threat that has been
ranked among the foremost killers of the 21st century.1

According to a World Health Organization (WHO) report,
around 9 million people were found infected and around 1.5
million casualties occurred because of TB. Besides, the life
threatening strains of MDR-TB (Multi Drug Resistance
Tuberculosis) are appearing, some of which can lead to high
mortality rate (e.g., 72−89%) with death occurring in short
period (4−16 weeks).2 In 2013 around 480,000 affirmative
cases of MDR-TB were witnessed.3 India, China, the Russian
Federation, and South Africa have almost 60% of the world’s
cases of MDR-TB. In addition, the risk becomes even greater if
the person is coinfected with the HIV (human immunodefi-
ciency virus).4 The global resurgence of TB and development
of drug resistance necessitates for an imperative attention of
medicinal chemists to develop innovative antimycobacterial
agents as no new classes of anti-TB agents have been developed
since the introduction of rifampin in to clinical practice in
1960s.
It is well-known fact that trans-cinnamic acid analogues have

recently drawn back the intentness of medicinal chemists due
to their admirable pharmacological properties like antioxidant,5

antibacterial,6 and antitumor.7 Rastogi et al. have demonstrated
the synergistic activity of trans-cinnamic acid in amalgamation
with INH, rifamycin, and other recognized antimicrobial agents
against Mtb.8 Further, Reddy et al. have reported the superior
intracellular and in vivo activity of a cinnamoyl−rifamycin
derivative (Figure 1) in contrast with rifamycin when tested
against susceptible and MDR strains of Mtb along with M.
avium complex (MAC).9 Several compounds resembling
cinnamic acid and bearing styryl group or α,β-unsaturated
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Figure 1. Cinnamoyl−rifamycin derivative.
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carbonyl groups are reported for antimycobacterial activities
(Figure 2).10

From the literature, it was also found that derivatives
resulting by combining cinnamoyl portion with various
chemical classes of compounds have been reported to possess
promising antimycobacterial activity.14−16 Besides, various
drug-like heterocycles, namely, benzimidazoles17 and quinazo-
linones,18 integrated with cinnamoyl or aryl styryl groups have
also been reported to augment the antimycobacterial proper-
ties.
Dehydrozingerone (DZG), also known as feruloylmethane, a

half structural analogue of curcumin, is isolated from Curcuma
longa. Chemically DZG is (E)-4-(4-hydroxy-3-methoxy
phenyl)but-3-en-2-one and possess an α,β-unsaturated carbonyl
(styryl ketone) group that resembles the trans-cinnamic acid
structure. DZG analogues have been reported to possess a
broad range of biological activities like antioxidant, anticancer,
anti-inflammatory, antidepressant, antimalarial, antifungal, etc.19

The thiazole nucleus is a common motif presently found in
several FDA-approved drugs, such as the nonsteroidal anti-
inflammatory drug meloxicam20 and the tyrosine kinase
inhibitor dasatinib.21 Recently, Meissner et al. have demon-
strated the structure−activity relationships (SAR) of novel
series of 2-aminothiazole analogues as effective antimycobacte-
rial agents,22 and Carradori et al. have reported microwave-
assisted method for the synthesis of substituted-thiazolyl
hydrazines.23 Therefore, thiazole is an essential scaffold in
drug discovery since its derivatives known to possess wide
spectrum of activities such as antihypertensive, anti-inflamma-
tory, anti-HIV, antibacterial, and antimycobacterial,24,25 which
have tremendously captivated attention of medicinal chemists.
Figure 3 highlights the molecular manipulation of DZG−
thiazole moiety and their resultant antimycobacterial activities.
In view of the above facts and in continuation of our research

program on the design and development of new antimyco-
bacterial agents19,24,29 it was foreseen to amalgamate two
biologically active pharmacophores (styryl portion of DZG and
thiazole) in one molecular platform to engender a new scaffold
for antimycobacterial evaluation. As shown in Figure 3, the
designed hybrid analogues possess both DZG (comprising
styryl) and thiazole motifs connected with each other via a
hydrazine linker. These unifications were suggested as an effort
to explore the possible synergistic influence of such structural
hybridizations on the anticipated activity, hoping to discover a

new lead structure that would have a promising antimyco-
bacterial activity.
The synthesis of a novel series of styryl hydrazine thiazole

hybrids derived from DZG (6a−6o) was achieved through
efficient and versatile synthetic routes. The starting material
DZG (2) was prepared by using commercially available vanillin
(1) by simple aldol condensation with acetone in the presence
of base. Methylation of 2 was done with methyl iodide in the
presence of potassium carbonate in N,N-dimethylformamide to
yield (E)-4-(3,4-dimethoxyphenyl)but-3-en-2-one (3). Further,
Schiff base of compound 3 was formed with thiosemicarbazide
to yield 4 (Scheme 1). The various appropriately substituted 2-

bromo-1-phenylethanones (5c−5o) were synthesized from
their respective acetophenones. Compound (4) was then
condensed with various freshly synthesized 2-bromo-1-(sub-
stituted phenyl)-ethanones (5a−5o) to yield corresponding
final compounds, i.e., 2-(2-((2E,3E)-4-(3,4-dimethoxyphenyl)-
but-3-en-2-ylidene)hydrazinyl)-4-(substituted phenyl)thiazoles
(6a−6o; Scheme 2). The anticipated structures of the final
compounds were in agreement with the spectral (IR, 1H NMR,
and 13C NMR) data obtained and were further substantiated by

Figure 2. Compounds with styryl portion reported against M.
tuberculosis H37RV: (I, MIC 6.49 μM);11 (II, MIC 12.5 μg/mL);12

(III, MIC 6.25 μM).13
Figure 3. Literature reported derivatives containing styryl and thiazole
moieties and their antimycobacterial activities along with the designed
compounds. Compound 6o exhibited most promising antimycobacte-
rial activity among the synthesized compounds. (A) (E)-3-methoxy-5-
styrylcyclohexa-2,4-dien-1-one (MIC against H37Rv = 32 μg/mL);26

(B) (E)-5-bromo-2-(3,4-dimethoxystyryl)-1H-benzo[d] imidazole
(MIC against H37Rv = >7.25 μg/mL);17 (C) 2-amino-5-benzylth-
iazole-4-carboxylate (MIC against H37Rv = 0.06 μg/mL);27 (D)
nitazoxanide (MIC against H37Rv = 16 μg/mL);28 (E) carbazolo-
thiazole analogue (MIC against H37Rv = 21 μM).24

Scheme 1a

aReaction conditions: (i) acetone, NaOH; (ii) CH3I, K2CO3, DMF,
reflux, 1.5 h; (iii) thiosemicarbazide, AcOH, CH3OH, reflux, 3 h.
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HRMS data, which is summarized in the Supporting
Information.
The 1H NMR spectrum of compound 4 exhibited the

presence of distinctive singlet signals at around δ 10.22, 8.22−
7.76, 7.154−7.150, 3.79−3.76, and 2.11 for the N−H proton,
NH2 proton, second proton of phenyl ring, methoxyl (OCH3)
protons, and methyl (CH3) protons indicating its formation by
a process of simple carbon−nitrogen bond creation with
thiosemicarbazide in the presence of acetic acid as catalyst. In
addition, the appearance of most informative doublet signals
around δ 6.81−6.77 ppm (J = 16.53 Hz) and 7.06−7.01 (J =
16.84 Hz) confirms the presence of olefinic protons.
The 1H NMR spectrum (400 and 600 MHz, DMSO-d6) of

the final compounds (6a−6o) displayed some distinctive
singlet signals at around δ 11.42−10.22 ppm for N−H proton,
δ 7.21−7.20 for second and δ 7.12−7.08 for sixth aromatic
protons of DZG scaffold, and δ 2.17−2.08 ppm for methyl
(NC−CH3) protons, respectively. In addition, the most
informative singlet signal resonated around δ 7.70−7.31 ppm,
which was attributed to the aromatic proton at H-5 of thiazole
ring, thus indicating its formation through cyclo-condensation
process. Whereas most characteristic doublet signals around δ
6.83−6.64 ppm (J = 16.52−16.24 Hz, Ph−HCCH−) and δ
7.57−6.91 ppm (J = 16.52−14.76 Hz, Ph−HCCH−)
evidently indicated the presence of olefinic protons. This
observation was found in consistence with previously reported
similar type of compounds.30 Further, the unique singlet signals
resonating around δ 3.82−3.77 ppm indicated the presence of
methoxyl protons (OCH3) on the third and fourth position of
the DZG scaffold, while the hydroxyl (OH) protons on
aromatic ring resonated as singlet signals around δ 11.24−10.86
ppm. The various signals appearing as either doublets or
multiplets around δ 8.29−6.77 ppm accounted for aromatic
protons. The E-configuration was ascertained for all final
derivatives on the basis of 2D NMR studies. These findings
were further corroborated from their respective 13C NMR

spectra of the title compounds. The characteristic signals
resonating at around δ 169.53−156.50 and 108.52−102.10
ppm were assigned to carbons C-2 and C-5 of thiazole ring.
The most prominent carbon signals observed around δ
149.27−148.91 and 132.56−126.23 ppm accounted for
aromatic carbons having methoxyl groups and olefinic (Ph−
HCCH−) carbons, respectively. Further, the characteristic
carbon signals appearing around δ 55.49−55.47 and 12.35−
12.15 ppm indicated the presence of methoxyl and methyl
groups in the title compounds, while the various aromatic
carbons resonated around δ 140.78−108.03 ppm. Further, the
fluorine containing compounds 6k and 6m have been
discussed, which results in a very characteristic NMR spectra
and the JCF values are represented in Tables S1 and S2
(Supporting Information).
Both level I and II (in vitro) characterizations of

antimycobacterial activity of newly synthesized title compounds
(4, 6a−6o) were carried out at Infectious Disease Research
Institute (IDRI) within the National Institute of Allergy and
Infectious Diseases (NIAID) screening program, Bethesda,
MD, USA. In the initial studies (level I), minimum inhibitory
concentration (MIC) was established against Mtb strain H37Rv
grown under aerobic conditions by using a dual read-out
(OD590 and fluorescence) assay procedure. All the synthesized
compounds exhibited interesting and noteworthy activity
profiles with MIC ranging from 1.5 to >200 μM against the
tested mycobacterial strain (Table S3, Supporting Information).
Interestingly, it was observed that compound 4 (MIC = 2.1

μM) having a thiourea group (without thiazole moiety)
displayed encouraging antimycobacterial activity with an IC50
value of 0.98 μM. This evidently indicated that the DZG
structural core has greatly contributed for antimycobacterial
activity. This finding instigated us to explore brief SAR
investigations in order to study the biological effects of various
substituents on the aromatic ring at the fourth position of the
thiazole moiety, which was in turn attached to DZG scaffold

Scheme 2a

aReaction conditions: (i) Br2, ether, 0−5 °C for 5c; Br2, CHCl3, reflux, 3 h for 5d and 5g; Br2, CHCl3, 0−5 °C for 5e and 5f; CuBr2, EtOAc, CHCl3,
reflux, 12 h for 5h−5o; (ii) methanol, reflux, 3 h.

Table 1. Antimycobacterial Activity Data of Newly Synthesized Compounds (4, 6d, 6g, 6i, and 6o) against Five Drug-Resistant
Isolates of M. tuberculosis H37Rv

INH-R1a INH-R2b RIF-R1c RIF-R2d FQ-R1e

compd
MIC
(μM)

IC50
(μM)

IC90
(μM)

MIC
(μM)

IC50
(μM)

IC90
(μM)

MIC
(μM)

IC50
(μM)

IC90
(μM)

MIC
(μM)

IC50
(μM)

IC90
(μM)

MIC
(μM)

IC50
(μM)

IC90
(μM)

4 5.3 1.3 6.6 2.5 0.79 2.9 4 1.1 4.6 4.8 1.2 5.9 17 2.8 16
6d 15 12 >50 12 8 >50 25 11 >50 31 8.7 >50 22 23 >50
6g 24 12 >200 13 7.1 12 28 9.2 27 46 19 >200 30 18 >200
6i 32 9.1 >25 19 5.6 >25 17 7 19 41 10 >25 33 13 >25
6o 3.2 0.68 3.8 1.5 0.38 1.7 2.2 0.54 2.6 6.3 0.76 9.2 21 2.3 33
rifampicin 0.018 0.0084 0.022 0.0065 0.0047 0.012 2 1.2 2.3 >50 >50 >50 0.027 0.013 0.039
isoniazid >200 >200 >200 >200 >200 >200 0.17 0.15 0.21 0.62 0.54 0.6 0.35 0.36 0.47
levofloxacin 1.2 0.64 1.4 1.4 0.84 1.4 0.76 0.59 0.91 1.1 0.6 1.2 20 12 22

aINH-R1 was derived from H37Rv and is a katG mutant (Y155* = truncation). bINH-R2 is strain ATCC35822. cRIF-R1 was derived from H37Rv
and is a nrpoB mutant (S522L). dRIF-R2 is strain ATCC35828. eFQ-R1 is a fluoroquinolone-resistant strain derived from H37Rv and is a gyrB
mutant (D94N). INH, isoniazid; RIF, rifampicin; FQ, Fluoroquinolone.
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through a hydrazine linkage. Among tested series, compound
6o (MIC = 1.5 μM) with p-amino (NH2) group on phenyl ring
at fourth position of thiazole moiety exhibited excellent
antimycobacterial activity with IC50 value of 0.48 μM, whereas
compounds 6d (MIC = 15 μM), 6g (MIC = 16 μM), and 6i
(MIC = 28 μM) substituted with one or two methoxyl (OCH3)
groups on thiazolylphenyl ring exhibited good inhibitory
activity with IC50 value of 8.4, 7.4, and 6.6 μM, respectively.
In the case of compounds 6j (MIC = 40 μM) and 6l (MIC =
88 μM) with a hydroxyl (OH) group on the phenyl ring
displayed considerable antimycobacterial activity with IC50
value of 24 and 23 μM, respectively. These findings
demonstrate that the thiazole core contributed to enhanced
activity and played a significant role in the action against Mtb.
The activity was also considerably affected by the nature of the
substituent on the phenyl ring at the fourth position of the
thiazole nucleus. Consistent with our prior report,24 we found
that the presence of electron donating (NH2, OCH3, and OH)
groups on phenyl ring have greatly influenced and conferred
good antimycobacterial activity, while the electron withdrawing
(CF3, NO2, F and Br) substituents have caused a decrease in
activity. Thus, compounds 6a, 6c, 6h, and 6m, having either
nitro or halogen groups on the phenyl ring, were found to
exhibit poor activity with MIC value >200 μM. (Figure S1,
Supporting Information). Compounds with promising anti-
mycobacterial activity profile were further subjected for level II
screening in order to evaluate their broad spectrum efficiency
under assorted conditions against relevant drug resistant
isolates of Mtb and other disease causing mycobacterial species.
The MIC of test compounds (4, 6d, 6g, 6i, and 6o) was

assessed against five drug resistant isolates (INH-R1, INH-R2,
RIF-R1, RIF-R2, and FQ-R1) of Mtb strains under aerobic
conditions. The antimycobacterial activity results are summar-
ized in Table 1. From perusal of the data, we observed that all
tested compounds showed excellent antimycobacterial activity
against INH-R1 and INH-R2, while two compounds (4 and
6o) exhibited the most promising antimycobacterial activity
against the tested organisms. In particular, both resistant strains
(R1 and R2) of INH and RIF were found to be extremely
susceptible to compounds 4 and 6o, while these two
compounds had an almost comparable activity with that of
Levofloxacin against FQ-R1. As compared to reference drug
INH (MIC = >200 μM; IC50 = >200 μM), compounds 4 (MIC
= 5.3 and 2.5 μM; IC50 = 1.3 and 0.79 μM) and 6o (MIC = 3.2
and 1.5 μM; IC50 = 0.68 and 0.38 μM) displayed highest
antimycobacterial activity against INH-R1 and INH-R2,
respectively. In the case of RIF-R1 and RIF-R2, compound
6o (MIC = 2.2 and 6.3 μM; IC50 = 0.54 and 0.76 μM)
exhibited significant antibacterial activity, whereas compounds
4 (MIC = 4 and 4.8 μM; IC50 = 1.1 and 1.2 μM) showed
moderate activity when compared to reference drug RIF (MIC
= 2 and >50 μM; IC50 = >50 μM). Nevertheless, the
fluoroquinolone-resistant strain (FQ-R1) was found to be less
susceptible to these compounds.
In addition, these five promising compounds (4, 6d, 6g, 6i,

and 6o) were systematically assessed against Mtb H37Rv grown
under varied conditions. The antimicrobial activity of these
compounds under hypoxic conditions was assessed using the
low oxygen recovery assay (LORA). Further, the bactericidal
(MBC: Minimum Bactericidal Concentration) activity of these
compounds was assessed against Mtb H37Rv grown in aerobic
conditions in 7H9-Tw-OADC medium. The cytotoxicity and
intracellular antimycobacterial activity of compounds was also

determined using the THP-1 human monoocytic cell line, and
THP1 cells infected with Mtb, respectively. The results of all
these investigations are represented in Table S4 (Supporting
Information). A systematic analysis of the data revealed that
compounds 4 and 6o exhibited an interesting and potent
antimycobacterial activity profile as depicted in Figure 4. All the

five title compounds displayed an interesting cytotoxicity profile
with IC50 values ranging from 11 to >50 μM. Among the series
tested, compounds 6o (IC50 = 11 μM) and 6g (IC50 = 38 μM)
showed moderate cytotoxicity, while other compounds did not
show cytotoxic effect up to concentrations >50 μM. The
existence of virulent intracellular Mtb in primary human
macrophages compromise its functioning and arrest phagosome
maturation, thus coping up with various host threats. The
aptitude of the bacteria to assault and survive inside cells may
be implicated for the persistence of TB. Therefore, it is of
greater corollary for an effective tuberculosis management that
these compounds should also be capable of killing intracellular
TB in human macrophages, apart from their in vitro activity
against TB strains. Accordingly, two compounds (4 and 6o)
also displayed effective intracellular antimycobacterial activity
with IC50 value of <0.098 μM. However, oxygen restriction also
affects adaptive immune responses and triggers antimicrobial
effector mechanisms in macrophages and restricts growth of
intracellular Mtb.
The title compounds (4, 6d, 6g, 6i, and 6o) were also

evaluated for their in vitro antimycobacterial activity against
other disease-relevant Mycobacterial species like Mycobacterium
abscessus and Mycobacterium avium by using MABA method
(Table S5, Supporting Information). The results reveal that
compound 6o (MIC = 100 μM) demonstrated a moderate
activity especially against M. avium as compared to the
reference drug RIF (MIC = 0.1 μM), while compound 6i
displayed a MIC of >100 μM against M. abscessus andM. avium.
However, the remaining compounds showed little or poor
activity (MIC = >200 μM) against tested organisms.
In summary, in this work we established the synthesis of a

series of styryl hydrazine thiazole hybrids derived from
dehydrozingerone and their in vitro anti-TB activity. The
ease, simply obtainable reactants and reagents, and practically
good yields (51−74%) make this synthetic method more
attractive and efficient. Moreover, compound 6o emerged as
most promising antimycobacterial agent since it has demon-

Figure 4. Anti-TB activity profile of most active compounds: 6d, R =
4-OCH3; 6g, R = 3,4-OCH3; 6i, R = 2,6-OCH3; 6o, R = 4-NH2.
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strated most prominent activity under hypoxic condition along
with its potential efficiency against drug resistant isolates of
Mtb strains and displayed significant bactericidal and intra-
cellular antimycobacterial activity. These findings suggest that
the designed compounds highlighted the benefit of incorporat-
ing a hydrazine linkage to combine the styryl portion of DZG
and the thiazole core, thus providing a good starting point for
further lead optimization. The possible enhancement in the
antimycobacterial activity can be further accomplished by
slender variation in the ring substituents and/or extensive
additional functionalization, which warrants further investiga-
tion.
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