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Abstract 
 

Loan lending has become crucial for both individuals and companies. For lending institutions, 

although profitable, it can be very risky due to clients defaulting on their loan agreement. Credit 

risk assessment is a critical process which is carried out by most lending institutions; it reduces 

the possibility of lending to clients who will default on their loan repayment, however, it does 

not eliminate the problem. Thus, a collections process which aims to retrieve unpaid debt is 

also necessary. With South Africa facing another recession, which was only worsened by the 

lockdown during the covid-19 pandemic, lending institutions can expect an increase in the 

number loan defaulters. To counter this increase, changes will have to be made to their policies 

and processes. Changes can be made to either the loan application procedures (e.g. credit risk 

assessment, affordability assessment et cetera) or the post disbursal procedures (e.g. collections 

processes). The aim of this study is to predict whether a client will default on his/her loan, 

using machine learning algorithms, in order to enhance the collection process of the financial 

institution under study, where default is defined as missing at least three payments in the first 

12 months of the loan being granted. The logistic regression model, decision tree, random 

forest, support vector machine, Naïve Bayes classifier, k-nearest neighbours algorithm and the 

artificial neural network were fitted to the balanced dataset. In the researcher’s analysis, loan 

data from a South African financial institution were used for the period August 2019 to 

December 2019. Variables related to a client’s demographics, income, expenses and debt, as 

well as loan information, were included in the dataset. Exploratory data analysis (EDA) was 

utilised in order to analyse the dataset and summarise their main characteristics. To reduce the 

dimensionality of the dataset, two techniques were used, namely principal component analysis 

(PCA), which is also used to correct the data for multicollinearity, and feature selection (i.e., 

recursive feature elimination). Each model was fitted to the dataset using these two techniques, 

and the confusion matrix and metrics such balanced accuracy, true positive ratio, true negative 

ratio, AUC score and the Gini coefficient were used to evaluate the different models in order 

to determine which model performed the best and was most suited for this application problem. 

The results show that when using the PCA approach, the random forest model, which obtained 

a balanced accuracy score, true positive ratio and AUC score of 0.69, 0.74 and 0.74, 

respectively, performed the best. The random forest model also performed the best when using 

the feature selection technique, obtaining a balanced accuracy score, true positive ratio and 

AUC score of 0.69, 0.74 and 0.75, respectively. When comparing the random forest model 

using PCA to the random forest model using feature selection, the results showed a marginal 

difference between each performance metric analysed. The random forest model using PCA 

utilised 48 variables, whereas the random forest model using feature selection utilised only 18 

variables and thus seemed to be more suitable for the classification problem under study. The 

results of this study are expected to benefit analysts and data scientists in financial institutions 

who would like to identify the robust machine learning algorithms for classifying defaulting 

clients. This study is also of significance to policy makers who would want to identify the risk 

factors associated with loan defaulting clients.  

Keywords: Loan Default; Machine learning; logistic regression; decision trees; random forest; 

k-nearest neighbours; Naïve Bayes algorithm; support vector machines; artificial neural 

networks; principal component analysis; feature selection; exploratory data analysis 
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Chapter 1 
 

1 Introduction 

 

In this chapter the background of the study, the literature review, the problem statement, the 

research questions, the aim and objectives, and the significance of the study are discussed. 

 

1.1 Background 
 

Over time, credit has become crucial in the lives of both individuals and companies, such that 

it is almost unavoidable for many of them today (Perera & Premaratne, 2016). Individuals 

throughout the world require loan facilities in order for them to overcome their financial 

constraints and thus achieve their personal goals. Some individuals depend on loans for basic 

needs, whereas others require them for luxuries. Companies, both large and small, often require 

loan facilities in order to function smoothly when faced with financial constraints (Aslam et 

al., 2019). Loaning of money is beneficial to both the borrower and lender. For lending 

institutions, although profitable, it can be very risky. This risk involves the inability of the 

borrower to pay back the loan amount within the agreed-upon time during the loan origination 

stage (Kwofie et al., 2015). This is often referred to as a loan default. Clients may fail to fulfil 

their loan obligation for various reasons; for example, some clients cannot afford payments due 

to mismanagement of funds or additional unexpected costs, whereas others avoid paying their 

debt, even if they can afford the instalment.  

On a daily basis, many individuals, as well as organisations, apply for loans; however, not all 

loans are approved. The financial institution decides whether the applicants are likely to default 

on their instalments before granting the loan (Aphale & Shinde, 2020). There is great difficulty 

in distinguishing between clients who are creditworthy and those who are likely to default on 

their loan repayment (Marqués et al., 2012). Credit risk assessment, which is used to evaluate 

the probability of a client defaulting on his or her loan, helps the institution determine whether 

to grant the client a loan. Effective and thorough evaluation of credit risk reduces possible 

losses incurred by the financial institution by reducing the possibility of lending to clients who 

will default on their loan repayment  (Sudhamathy, 2016),  however, it does not eliminate the 

problem of clients defaulting on their loan repayment. Although most financial institutions 

have a process in place to determine whom to lend to and how much to lend, these institutions 

still expect that a portion of clients will not fulfil their loan obligation. Financial institutions 

thus need to have a good collections procedure which includes a debt recovery process that 

aims to retrieve as much unpaid debt as possible.  

A collections procedure is a statement detailing the steps that should be taken regarding the 

collection of due debts. The absence of a good collections process will result in losses for the 

company due to delinquent accounts. Each lending institution has its own collections process, 

but all procedures need to follow all laws concerned. The South African financial institution 

under study currently starts the debt recovery process after the first missed payment by 
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informing the client telephonically or in writing. If debt in arrears is still not paid after a certain 

period, debt collectors get involved in the process. The current debt recovery process has 

proven to be beneficial to the financial institution under study, as a large sum of unpaid debt is 

retrieved on a monthly basis once the debt recovery process on delinquent accounts begins.  

With the adverse conditions affecting the South African economy such as the current recession, 

aggravated by the lockdown during the covid pandemic, many more companies are closing 

down while others are down-sizing, resulting in many individuals losing their jobs or working 

fewer hours. This leads to a loss of income for many households and as a result, lending 

institutions can expect an increase in the number loan defaulters. Changes can be made to either 

the loan application procedures (e.g. credit risk assessment, affordability assessment et cetera) 

or the post disbursal procedures (e.g. collections processes) to counter this increase. The 

financial institution under study has made numerous changes to their loan application policies 

and procedures to cater for the increase in defaulters, however, no improvements were made 

to the post disbursal procedures. Thus, the financial institution now aims to enhance its 

collections process by sending through a reminder Short Message Service (SMS) or email to 

clients at the beginning of each month, starting from the month in which the first instalment is 

due. This enhanced process will likely result in the financial institution retrieving more unpaid 

debt and reducing the number of clients who miss payments on their loan. The financial 

institution was initially considering sending reminder emails to all clients who received a loan 

as it is not costly, however, the institution decided to use machine learning techniques to target 

a specific population instead. 

Machine learning algorithms identify patterns in data in order to build predictive models. 

Recently, classification methods that use machine learning algorithms have become more 

popular amongst researchers and institutes; these methods are used by analysts in financial 

institutions to identify clients who are likely to default on payment of loans by predicting 

an individual’s credit score, using historical data (Aslam et al., 2019). A similar method can 

be used to improve the collections process by identifying clients who are likely to default 

on their loan repayment using information that is available at the time when the loan is 

disbursed (The financial institution under study defines default as missing at least three 

payments in the first 12 months of the loan being granted). According to Ereiz (2019), often 

predicting that clients will default when they actually do not (i.e., a false positive), is not as 

costly as predicting that clients will not default when they actually do (i.e., a false negative). 

Since the additional step which the financial institution wants to add to their collections process 

is not costly as it involves sending emails and SMSs to the client, the financial institution is not 

too concerned with misclassifying some non-defaulters as defaulters; the institutions main 

concern is correctly classifying clients who default  

 

 

1.2 Literature review 
 

Financial institutions have become a crucial part of our daily lives in the digital era. The number 

of individuals wanting loans has increased in recent years (Radhika et al., 2021). As a result, 

the demand for loans from financial intuitions has increased. According to Madaan et al. 

(2021), loan lending is a vital source of income for financial institutions; however, it is also 

their main source of financial risk. Most of a bank’s assets are obtained by using the profits 
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earned from granting loans (Purswani et al, 2021). It is thus important for the financial 

institution to assess the credit risk of clients before lending to them (Kwofie et al., 2015). An 

applicant’s credit risk is assessed in order to assign them into one of two classes, namely good 

or bad (i.e., not default or default) (Ince & Aktan, 2009), which indicates how the bank should 

treat the client (e.g., whether the bank should approve or decline the application). Sudhamathy 

(2016) opines that this will assist banks to minimise their losses. This chapter review provides 

a brief summary of previous work done on predicting whether clients will default on their loan, 

as well as outlines important features that are commonly used to predict a client’s default status 

and touches on the common problem of imbalance in default datasets. It also provides a review 

on several studies relating to the application of classification algorithms. In this study, machine 

learning algorithms will be used to identify clients who will likely default on their loan so that 

an enhanced collections method can be used.   

Marqués et al. (2012) states that it is difficult to determine which clients are likely to default 

and which of them will be reliable borrowers. The features included in a model have a 

significant influence on how well the model performs. Bayraci and Susuz (2019), Kadam et al. 

(2021) and Kwofie et al. (2015), among others, mention variables included in their default 

models (e.g., age, gender, income, and credit information). The variables mentioned in these 

papers were commonly used in multiple other research papers that aimed to predict a client’s 

default status. Chen and Zhang (2021) and Radhika et al. (2021) utilise feature selection 

methods to sift out important features for their credit default models. Chen and Zhang (2021), 

Radhika et al. (2021), Sudhamathy (2016) and Zhou and Wang (2012), among others, mention 

the common problem of imbalance in the datasets when predicting loan default and discuss and 

explore possible solutions to the problem. The difference in misclassification costs of false 

positives and false negatives when predicting a client’s default status is explained by Ince and 

Aktan (2009). Mwangi (2016) discusses the importance of lending institutions having a good 

collections process in place in order to collect overdue debt from its borrowers.  

Bayraci and Susuz (2019) constructed a neural network model to determine whether an 

applicant is good or bad and compared the model to several other classification models, namely 

logistic regression, decision tree, Naïve Bayes, and the support vector machine. The 

explanatory variables used to predict the clients’ default status were grouped into four groups, 

namely demographical characteristics, employment characteristics, credit characteristics, and 

credit history. These authors concluded that the deep learning model, namely the neural 

network, performs better than the other models on bigger datasets. 

Kadam et al. (2021) mention that features such as gender, marital status, education, 

employment status, number of dependants, income, loan amount, and credit history were 

utilised when predicting whether clients would default on their loan. A comparison between 

the Naïve Bayes algorithm and the Support Vector Machine (SVM) was performed, and results 

showed that the Naïve Bayes classifier performed best. 

Chen and Zhang (2021) reviewed the artificial neural network, k-nearest neighbour, decision 

tree, support vector machine and logistic regression. They aimed to predict automobile credit 

defaulters. Feature selection was utilised in order to identify important features for their 

models. Of the features selected, it was found that date of birth, employment type, disbursed 

amount and asset cost were ranked most important when predicting the ‘default’ target variable. 

The authors used the SMOTE method to solve the imbalanced dataset problem; however, they 
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suggest that the model’s performance did not improve. It was concluded that all six models 

could be used to predict the default of automobile and although the decision tree obtained the 

highest accuracy score of 0.79, the SVM had the best overall performance. 

Zhou and Wang (2012) mention that many loan default datasets are highly skewed, with the 

majority of cases falling within the same class. They propose an improved random forest 

algorithm in which weights are allocated to decision trees in the random forest during tree 

aggregation for prediction. Previous performance, that is, out-of-bag errors during training, is 

used to compute the weights. The weighted majority in the ensemble of trees in the random 

forest is used to make predictions. The proposed model was compared to the original random 

forest, the SVM, the K-Nearest Neighbours (K-NN) and the decision tree; the results indicate 

that the proposed random forest algorithm obtained a better overall accuracy score, as well as 

balanced accuracy score, than all the other models mentioned. 

Chang et al. (2015) adopted the logistic regression model, SVM and Naïve Bayes classifier to 

build a loan default prediction model. They discuss sensitivity, specificity, accuracy and 

precision. These authors noted that accuracy would not reflect the model’s true performance, 

as the dataset was imbalanced. From the results obtained, the Naïve Bayes classifier with 

Gaussian performed the best, obtaining a sensitivity score of 80.1%. 

Financial institutions are faced with many classification problems on a daily basis. Credit 

scoring, which can be used to determine whether a loan application should be approved or 

declined is one type of classification problem. Ince and Aktan (2009) mention other 

classification problems related to decision–making in business, for example, financial 

forecasting, fraud detection, marketing strategy, and process control. The classification 

problem under study involves allocating clients to one of two classes i.e., default or not default, 

in order to determine whether the enhanced collections method should be used.  

According to Lee et al. (2002), it is possible to use techniques such as statistical methods and 

artificial intelligence algorithms to solve classification problems. Common statistical methods 

such as linear discriminant analysis, logistic regression, and their variations, though, have 

several limitations when applied to credit scoring problems. Ince and Aktan (2009) are of the 

opinion that limitations associated with these techniques are the following: they are ineffective 

when high-dimensional inputs are present, and the sample size is small; these methods assume 

linear separability and that the normality assumption is met; and there is difficulty in 

automating the process and designing a continuous update flow. Yang (2007) mentions that 

statistical models are often unable to adapt to population changes over time; as a result, these 

models may have to be reconstructed. Artificial intelligence techniques, which include machine 

learning, can be used instead of discriminant analysis and logistic regression when the 

dependent and independent variables display complex nonlinear relationships (Ince & Aktan, 

2009). According to Madaan et al. (2021), many researchers and bank authorities have recently 

chosen to train classifiers based on numerous machine learning and deep learning algorithms 

in order to automatically predict an applicant’s credit score, as it makes the process 

significantly easier.  

There are several steps involved when building a machine learning model. (Sudhamathy, 2016) 

discusses these steps, which include data selection, pre-processing, treatment of outliers, 

imputations removal, splitting the dataset between the training and test set, and balancing the 

training set; the features selection step, building the classification model, predicting class labels 
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of the test set, and evaluating predictions are also discussed. The author constructed a decision 

tree to predict whether the client is likely to default. 

Madaan et al. (2021) used tree-based machine learning algorithms to predict whether or not 

new clients are likely to default on their loan in order to determine whether to lend to the clients. 

A comprehensive and comparative analysis between the decision tree algorithm and random 

forest algorithm was done. The results showed that the random forest algorithm performed 

better than the decision tree algorithm. The random forest obtained an accuracy score of 80%, 

whereas the decision tree algorithm obtained an accuracy score of 73%. The authors mention 

that the random forest model, which is an ensemble of several decision trees, has the following 

advantages over other machine learning algorithms: it is immune to overfitting; it can produce 

accurate classification or regression results; and it is more efficient on large datasets. 

Ince and Aktan (2009) analysed the performance of credit scoring models in order to identify 

clients who are either “good” or “bad”, using both traditional and artificial intelligence 

methods. They compared the results that were obtained by using discriminant analysis, logistic 

regression, neural network, classification, and regression trees (CART). The authors noted that 

misclassification costs associated with false positives were much lower compared to those of 

false negatives. From the results, the CART model obtained a higher accuracy score in 

comparison with discriminant analysis, logistic regression, and neural networks. However, the 

neural network credit scoring model obtained the lowest percentage of false negatives, which 

is associated with higher misclassification costs. Therefore, it was concluded that the neural 

network has better credit-scoring capabilities overall. 

Radhika et al. (2021) aimed to predict a client’s creditworthiness by using the following 

algorithms: the K-NN classifier, random forest classifier, decision tree and logistic regression. 

The SMOTE and NearMiss techniques were utilised to cater for the data imbalance. From the 

results, it was found that the random forest model performed the best. To improve performance 

and solve the problem of overfitting, the authors combined all models into a single model by 

utilising the voting method. All the model’s votes were considered and the class with the 

maximum votes was the final model prediction. 

Breeden (2020) discusses multiple machine learning methods that are available, including 

random forest, neural networks, logistic regression, k-nearest neighbours, support vector 

machines, Naïve Bayes, stochastic gradient boosting et cetera and indicates that it is impossible 

to declare a single best method. Breeden (2020) states that methods have strengths and 

weaknesses, depending on the application problem, and that the best method for an application 

problem is usually a combination of elements from different methods. 

This study departs from the study of Chen and Zhang (2021) by comparing the PCA approach 

to the feature selection approach (recursive feature elimination) for dimensionality reduction, 

when selecting the best model among several classification algorthims. To the best of the 

researchers knowledge, there is limited use of machine learning models in financial institutions 

which help enhance the collections process by identifying clients who are likely to default on 

their loan as soon as the loan is granted. In the literature, we could not find an application 

showing a comparison of machine learning models using the PCA and feature selection 

approaches for dimensionality reduction on a dataset from a financial institution which aimed 

to enhance their collections process, thus this study will fill the gap in literature. 
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1.3 Problem statement 
 

Although the financial institution under study does have a collection process for unpaid debt 

in place, this process only begins once the client has missed a payment. The sooner clients who 

are likely to default on their debt obligation are identified and contacted, the greater the chances 

of them not actually defaulting on their loan. Therefore, the researcher aims to identify a ‘bad’ 

population who will likely default on their loan obligation by using machine learning 

algorithms. This ‘bad’ population, who the researcher will refer to as the ‘default’ population, 

is defined as clients who fail to make payment for at least three months during the first 12 

months of the loan being granted. This identification needs to take place at the time the loan is 

granted, as it will provide the institution with the opportunity to enhance the collection process 

by sending friendly reminders to these clients on a monthly basis starting from the first month 

the loan is granted. This enhanced process will likely result in the financial institution retrieving 

more unpaid debt and reducing the number of clients who default on their loans. 

 

1.4 Research questions, aim and objectives  
 

In this study, answers to the following research questions are provided: 

1) Which classification algorithms are able to identify correctly a sufficient proportion of 

clients who defaulted on their loan? 

2) Which classification model is most appropriate? 

3) Which features are of most importance when predicting the default status of a client? 

 

The aim is to identify the robust machine learning algorithm from logistic regression, the 

decision tree, random forest, support vector machine, Naïve Bayes classifier, k-nearest 

neighbours and the artificial neural network, using the PCA technique and the feature selection 

technique for dimensionality reduction, to predict which clients will miss at least three 

payments in the first 12 months of the loan being granted. 

 

This is achieved by: 

1) Exploratoratory data analysis to review important features of the applicants 

2) Dimensionality reduction using two techniques, namely, principal component analysis 

(PCA), which is also used to correct the data for multicollinearity, and feature selection.  

3) Fitting classification algorithms namely logistic regression, decision tree, random 

forest, support vector machines, the Naïve Bayes classifier, k-nearest neighbours and 

the artificial neural network to the dataset using both dimensionality reduction 

approaches 

4) Selecting the best fitting classification method for each dimensionality reduction 

approach using metrics such as balanced accuracy, true positive ratio, true negative 

ratio, precision, negative predictive value, Area under the ROC curve (AUC score) and 

the Gini coefficient 
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5) Selecting the overall best fitting model using the following metrics: balanced accuracy, 

true positive ratio, true negative ratio, precision, negative predictive value, Area under 

the ROC curve (AUC score) and the Gini coefficient 

6) Identifying the most robust variables for classifying default clients. 

 

 

1.5 Significance of the study 
 

The results of this study are expected to benefit analysts and data scientists in financial 

institutions who would like to identify the robust machine learning algorithms for classifying 

defaulting clients. This study is also of significance to policy makers who would want to 

identify the risk factors associated with loan defaulting clients.  

 

 

1.6 Theoretical Framework 
 

Machine learning is a subset of artificial intelligence that allows systems to automatically learn 

patterns in the data and improve outcomes through experience without being explicitly 

programmed. Machine learning problems can be divided into different categories. The two 

main categories of machine learning are supervised learning and unsupervised learning. In 

supervised learning, the model learns patterns from a labelled dataset and the trained model is 

used to make predictions on unseen data. Unsupervised learning (e.g., clustering) does not 

require a labelled dataset. The aim of unsupervised learning is to find structure, hidden 

relationships and patterns from the input data. In this study, the researcher focuses on 

supervised learning. There are two types of supervised learning, namely classification and 

regression. A classification problem has a categorical target variable, for example a client’s 

default status, whereas a regression problem has a real value target variable, for example, house 

prices. The aim of this study is to build classification models, using labelled data, to predict a 

client’s default status.  

The variable information in this study was obtained during the application and offer process, 

which includes information captured by clients, bureau information, bank statement and 

payslip information, as well as internal calculations used to determine the final offer. Variables 

used in a machine learning model can be categorised as either numerical or categorical. A 

numerical variable is quantitative and can either be discrete, (i.e., a whole number) for example, 

number of dependants, or it can be continuous, (i.e., it can take any value in a given range) for 

example, weight. A categorical variable is qualitative and can either be nominal, (i.e., 

unordered) for example, male and female, or it can be ordinal, (i.e., ordered) for example, small, 

medium and large. When a large number of variables are included in a dataset, principal 

component analysis (PCA) and feature selection can be used to reduce the dimensionality of a 

dataset. PCA is used to transform a larger set of variables into a smaller set of variables whilst 

retaining most information. By using PCA, one can include the minimum number of principal 

components needed to explain a certain percentage of the variance. The new principal 

components formed are uncorrelated. Feature selection is a dimensionality reduction technique 



 

19 
 

that aims to select a subset of features from the original set of features. This is achieved by 

removing features that are redundant, irrelevant, and noisy. There are several feature selection 

methods that can be used to reduce the number of features in the model. The three main feature 

selection categories are the filter method, wrapper method, and embedded method. 

In this study, several classification machine learning algorithms, namely logistic regression, 

decision trees, random forest, k-nearest neighbours, the Naïve Bayes algorithm, support vector 

machines and artificial neural networks, are fitted to the default dataset using the PCA and 

feature selection approaches. A summary of each of these classification models is provided in 

Chapter 3. Evaluation metrics, such as accuracy, balanced accuracy, recall, specificity, 

precision, the negative predictive value, Gini, and the auc score, are used to evaluate and 

compare the performance of the machine learning models in order to identify the model which 

performed the best. Each of these evaluation metrics are discussed in Chapter 3. 

 

 

1.7 Project layout 
 

This thesis comprises six chapters. Chapter 1 provides an overview of this study and the 

literature review. The dataset, provided by a South African financial institution, is discussed 

and exploratory data analysis, used to analyse and investigate the dataset, is presented in 

Chapter 2. The theory of the classification models and the evaluation metrics is summarised in 

Chapter 3. Chapter 4 provides the empirical results obtained when fitting the classification 

models to the dataset using the PCA approach. Chapter 5 presents the empirical results obtained 

when fitting the classification models to the dataset using feature selection. Chapter 6 provides 

a summary of the main findings and concludes the study. 

 

In this chapter the researcher discussed the background of the study, provided a literature 

review, the problem statement, the research questions, the aim and objectives, and the 

significance of the study. From the literature, the researcher was unable to find an application 

which showed a comparison of machine learning models using the principal component 

analysis  and feature selection approaches for dimensionality reduction on a dataset from a 

financial institution which aimed to enhance their collections process. This study will fill the 

gap in literature. It is important to have an in depth understanding of the dataset used in this 

study. In the next chapter the dataset is analysed using exploratory data analytics. The 

characteristics of the dataset will inform the researcher on which models should be considered 

when predicting whether a client will default on his/her loan. 
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CHAPTER 2 
2 Exploratory Data Analytics 
 

In this chapter, the dataset used in this study is discussed, all variables under study which are 

possibly associated with the ‘default’ target variable are listed and a description is provided, 

and exploratory data analytics, used to analyse and investigate the dataset, are presented. 

 

2.1 Data 
 

The data used in this study were obtained from a South African financial institution.  

Applications that were disbursed during the period August 2019 to December 2019 were 

included in the dataset, which consists of 48 338 disbursed applications and 48 variables. The 

variable information was obtained during the application and offer process, which includes 

information captured by clients, bureau information, bank statement and payslip information, 

as well as internal calculations used to determine the final offer. Of the 48 variables, 32 

variables are categorical and 16 are numerical. Using these variables, the researcher aims to 

predict whether clients will default on their loan. A client is classed as a default if the client 

missed at least three payments in the first 12 months of the loan being disbursed. 

The independent variables used to predict the default class have been grouped into sub-

categories, namely demographics, client information, loan information, income, expenses, and 

debt. In Table 2.1, the researcher indicates and outlines the description of the demographic 

variables and categorises them as either numerical or categorical.    

 

Table 2. 1: Description of demographic variables under study 

Variable Description  Categorical/Numerical 

Age Age at time of application Numerical 

Number of 

dependants 

How many dependants does the applicant 

have? 
Numerical 

Years with current 

employer 

Number of years the applicant has been 

working for his/her current employer at 

the time of application 

Numerical 

Gender  Gender of applicant – male or female Categorical 

Married 
Indicates whether applicant is married or 

unmarried 
Categorical 

Property owner 
Does the applicant own a property? 

(Yes/No) 
Categorical 
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Table 2.2 presents the client information variables, provides a description for each variable, 

and indicates whether these variables are numerical or categorical. 

 

Table 2. 2: Description of client information variables under study 

Variable Description  Categorical/Numerical 

Client type A client is either a new, reload or 

multiple loan client.                                                                             

New – Applicant is new to financial 

institution.                      

Reload – Applicant chooses to 

consolidate a current loan with the 

financial institution.                         

Current – Applicant currently a has loan 

with the financial institution and is 

taking an additional loan.                          

Categorical 

External subsequent 

lending 

Did the applicant take up a loan with 

another company less than 45 days 

before the loan included in our dataset? 

(Yes or No) 

Categorical 

Int/Ext client A client is either Internal or External. 

Internal client – main bank is financial 

institution under study 

External client – main bank is not 

financial institution under study 

Categorical 

Salary bank Bank which applicant’s salary is paid 

into 

Categorical 

Staff member Does the applicant work for the financial 

institution under study?  (Yes or No) 

Categorical 

Weekly/Monthly The applicant either earns a weekly wage 

or a monthly salary (fortnightly earners 

do not qualify for a loan). 

Categorical 
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Table 2.3 presents the loan information variables, provides a description for each variable and 

classifies them as either numerical or categorical. 

 

Table 2. 3: Description of loan information variables under study 

Variable Description Categorical/Numerical 

Limiting rule Rule that limits a client’s affordability  Categorical 

Loan purpose 

The reason the applicant needed a loan       

(consolidate debt, a family crisis, housing 

and related, other emergency, et cetera) 

Categorical 

Lower offer 

Did the applicant receive a lower offer 

once information was verified compared 

to the initial offer received during the 

application process? (Yes or No) 

Categorical 

Product taken 

The type of product taken: home loan 

(HL), personal loan (PL), staff, vehicle 

loan (VL) 

Categorical 

Taking max 
Did the applicant take the maximum 

amount offered? (Yes or No) 
Categorical 

% instalment to 

income allowed 

The maximum ratio of instalment to 

income that the client is allowed 
Numerical 

% instalment to 

income taken 

Loan instalment taken as a percentage of 

income 
Numerical 

% total taken up 
The amount taken as a percentage of the 

amount offered 
Numerical 

Instalment 

/Disposable income 

New instalment amount divided by 

cashflow at the end of the month 

(Cashflow = income minus expenses 

minus debt) 

Numerical 

Max offer 
The maximum amount offered to the 

applicant by the financial institution 
Numerical 
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In Table 2.4, the income, expenses and debt variables are indicated, outlined, and categorised 

as either numerical or categorical variables.    

 

Table 2. 4: Description of income, expenses and debt variables under study 

Variable Description Categorical/Numerical 

Arrears Is the client in arrears for any of 

his/her loans? (Yes or No) 

Categorical 

Credit card Does the client have a credit card? 

(Yes or No) 

Categorical 

Credit inactive The client does not have a credit 

history (Yes or No) 

Categorical 

Home loan Does the client have a home loan? 

(Yes or No) 

Categorical 

Instalment loan Does the client have an instalment 

loan? (Yes or No) 

Categorical 

Insurance Did the client capture any insurance 

expenses? (Yes or No) 

Categorical 

IntConsol Is the client consolidating a loan from 

the financial institution? (Yes or No) 

Categorical 

Internal living 

expenses rule 

Was the internal living expenses rule 

the final living expenses amount used 

in the affordability calculation? (Yes 

or No) 

Categorical 

Medical aid Did the client capture any medical aid 

expenses? (Yes or No) 

Categorical 

Overtime Did the client capture any overtime?                           

(Yes or No) 

Categorical 

Payslip expenses Did the client capture any expenses 

found on payslip? (Yes or No) 

Categorical 

Pensionprovident Did the client capture any 

pension/provident contribution? (Yes 

or No) 

Categorical 

Permanent allowances Did the client capture any permanent 

allowances? (Yes or No) 

Categorical 

Personal loan Does the client have a personal loan? 

(Yes or No) 

Categorical 

Revolving credit Does the client have revolving credit? 

(Yes or No) 

Categorical 

Union fees Did the client capture any union fees? 

(Yes or No) 

Categorical 

Unpaids Does the client have any unpaid 

debts? (Yes or No) 

Categorical 

Vehicle loan Does the client have a vehicle loan? 

(Yes or No) 

Categorical 

Calc disposable 

income/Net income 

Cashflow at the end of the month 

before consolidations (income minus 
Numerical 
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expenses minus debt) as a percentage 

of net income 

Debt to income ratio Debt as a percentage of gross income Numerical 

Debt/Net income Debt as a percentage of net income Numerical 

Disposable income 

/Basic 

Cashflow at the end of the month 

(income minus expenses minus debt) 

as a percentage of basic salary 

Numerical 

External 

consolidations/Amount 

Taken 

The total external loan amount 

consolidated (loan from another 

financial institution) divided by the 

new loan amount disbursed 

Numerical 

Final disposable 

income/Net income 

Final cashflow at the end of the 

month after consolidations (income 

minus expenses minus debt plus 

consolidations) as a percentage of net 

income 

Numerical 

Internal 

consolidations/Amount 

Taken 

The total internal loan amount 

consolidated (loan from the same 

financial institution) divided by the 

new loan amount disbursed 

Numerical 

Total 

consolidations/Amount 

Taken 

The total amount consolidated 

divided by the new loan amount 

disbursed 

Numerical 

 

 

2.2 Data exploration 
 

The main aim of the study (which was discussed in Chapter one) is to predict whether clients 

will default on their loan. The variable default is derived from whether a client misses at least 

three payments in the first 12 months of the loan being disbursed. Figure 2.1 shows the 

percentage of clients who did and did not default on their loan. 

 

Figure 2. 1: Percentage of clients in each default class 

41890
(88%)

5767
(12%)

Not Default

Default
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From Figure 2.1, 12% of the clients under study defaulted whereas 88% of clients did not 

default. This indicates that the majority class (i.e., not default) is significantly larger than the 

minority class (i.e., default). Therefore, there seems to be an imbalance in the dataset. When a 

dataset is imbalanced, a high accuracy can be obtained by only predicting the majority class. 

Since many machine learning algorithms are designed to maximise accuracy by reducing 

errors, the algorithm is often biased towards the majority class and is more likely to misclassify 

the minority class than the majority class. In this study, the main focus is on the default class, 

which is the minority class. The researcher will thus have to cater for the imbalance in the 

dataset for the models to be able to produce satisfactory results. Balanced weighting and 

Synthetic Minority Oversampling Technique (SMOTE) are popular techniques used to cater 

for the imbalance in the dataset. The “balanced” class weight method adjusts weights 

automatically by using the class values (y), such that the weights are inversely proportional to 

the input data’s class frequencies. SMOTE aims to balance class distribution by creating new 

synthetic objects in the minority class (i.e., default). Using either of these methods should 

improve the results obtained when the dataset is imbalanced.  

The researcher then investigates whether the demographics, client information, income, 

expenses, debt and loan information variables have an influence on the ‘default’ target variable. 

Figures 2.2 to 2.7 present the distribution of each variable and the percentage of clients who 

defaulted in each category of each variable. 

The distribution of variables under study are explored in order to identify variables that 

comprise of categories which include a negligible portion of clients. Ideally, the researcher 

wants each category in a variable to include a meaningful portion of clients under study. If a 

variable has two categories and a majority of clients fall within one of the categories, whereas 

a negligible portion of clients fall within the other category, excluding the variable may be 

considered, as this variable will likely add little value to the model, unless the variable has an 

exceptional influence on the ‘default’ target variable. If a variable has more than two categories 

and at least one of the categories comprise a negligible portion of clients under study, the 

researcher may consider combining that category with another category within the variable that 

has a similar default rate.   

The percentage of clients who default is analysed in order to determine whether there is a 

significant difference in the default rate between the different categories in a variable. The 

default rate indicates how well a group of clients performed. The lower the default rate, the 

better the performance, whereas the higher the default rate, the worse the performance. If there 

is a significant difference in default rate (performance) between clients in different categories 

of a variable, it can be concluded that the variable is likely to be associated with default.   

 

Figure 2.2 shows the distribution and percentage of clients defaulting in each category within 

each variable in the demographics subgroup, which includes the following variables: gender, 

married and property owner.  
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Figure 2. 2: Distribution and percentage of clients defaulting for variables in the demographics subgroup 

 

From the gender variable in Figure 2.2, 59.3% of the clients under study are males, whereas 

40.7% of the clients are females; 13.6% of males default, whereas 9.5% of females default. 

Therefore, there seems to be a significant difference between the percentage of males and 

females defaulting. There is thus a possibility of gender being associated with default. 

Figure 2.2 displays the married variable which shows that 61.1% of clients are not married and 

the remaining 38.9% are married. The average default rate of unmarried and married clients is 

14.1%, and 8.5%, respectively. This suggests variation in the default rates between the married 

and unmarried clients under study. Thus, there is possibly a relationship between the married 

variable and default.  

From the property owner variable presented in Figure 2.2, 6.5% of clients own a property. The 

default rate of clients who own a property is 5.5%, whereas clients who do not own a property 

have a default rate of 12.4%. The 6.9% difference in default rate indicates that the performance 

of clients who own a property and clients who do not own a property seem to vary substantially. 

Thus, property owner may have an influence on the ‘default’ target variable. 

 

Client information variables were then explored. Figure 2.3 shows the distribution and 

percentage of clients defaulting in each category within each variable in the client information 

subgroup, which includes the following variables: weekly/monthly, int/ext client, client type, 

staff member, salary bank, and external subsequent lending.  
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Figure 2. 3: Distribution and percentage of clients defaulting for variables in the client information subgroup 

 

The weekly/monthly variable in Figure 2.3 shows that 88.1% of clients are monthly earners, 

whereas 11.9% are weekly earners. Monthly earners have a default rate of 11.6% and weekly 

earners have a default rate of 14.6%. As there seems to be a difference in performance between 

monthly earners and weekly earners, it is possible that a relationship between the 

weekly/monthly variable and the ‘default’ target variable exists. 

From the int/ext client variable in Figure 2.3, 60.9% of clients are internal clients, whereas 

39.1% of clients are external. Figure 2.3 also indicates that on average, 10.8% of internal clients 

default, whereas 13.6% of external clients default. This suggests that internal clients tend to 

default on their loan less often than external clients.  Therefore, the variable int/ext client may 

likely be associated with default.  

Figure 2.3 displays the client type variable, which shows that the default rates of current, new, 

and reload clients are 10.9%, 13.6% and 9.2%, respectively. This suggests that new clients, 

who comprise 56.8% of the total number of clients, perform worse than current and reload 

clients. Hence, it can be concluded that the client type variable possibly has an influence on 

default. 

The staff member variable presented in Figure 2.3 indicates that 4.9% of clients are staff 

members and 95.1% are not. Figure 2.3 also shows that staff members perform exceptionally 

well, as indicated by their default rate of 3.5%, whereas a significantly higher percentage of 

non-staff members, that is 12.4%, default. Thus, the staff member variable likely has a 

relationship with the ‘default’ target variable. Although the percentage of staff members is 

small, we may not want to exclude the variable as this population performs significantly better 

than the remaining population. 

The salary bank variable depicted in Figure 2.3 comprises five categories. Clients in Bank 1, 

Bank 2, Bank 3, Bank 4 and Bank 5 have a default rate of 10.1%, 17.9%, 9.1% 10.8% and 

13.8%, respectively. This provides evidence of a substantial difference in default rate between 
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the salary bank categories. Thus, there is a possibility of salary bank having an influence on 

default.  

The ext subsequent lending variable in Figure 2.3 shows that 4.5% of clients have external 

subsequent lending and 23.4% of these clients default, whereas 95.5% of clients do not have 

external subsequent lending and 11.4% of these clients default. This indicates that clients with 

external subsequent lending seem to perform significantly worse than clients without external 

subsequent lending. Although the percentage of clients with external subsequent lending is 

only 4.5%, the variable may still influence the model as there seems to be a very strong 

association between ext subsequent lending and default. 

 

The loan information variables are then examined. Figure 2.4 presents the distribution and 

percentage of clients defaulting in each category within each variable in the loan information 

subgroup, which includes the following variables: limiting rule, lower offer, taking max, 

product taken and loan purpose. 

 

Figure 2. 4: Distribution and percentage of clients defaulting for variables in the loan information subgroup 

 

The limiting rule variable presented in Figure 2.4 shows that the percentage of clients under 

study in the Rule 1, Rule 2, Rule 3 and Rule 4 categories is 58.7%, 16.5%, 20.6% and 4.2%, 

respectively, and their corresponding default rates are 14.5%, 7.3%, 8.5% and 11.2%, 

respectively. As only 4.2% of clients under study fall within the Rule 4 category, grouping this 

category with another category may be considered. Clients falling within the Rule 1 category 

perform significantly worse than clients in all other categories; therefore, it is likely that the 

limiting rule variable and the ‘default’ target variable are associated. 

From the lower offer variable in Figure 2.4, 11.3% of clients under study receive a lower offer 

and 16.4% of these clients default on their loan, whereas 88.7% of clients do not receive a 

lower offer and only 11.3% of these clients default on their loan. As there seems to be a 
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considerable difference in performance between clients who receive a lower offer and clients 

who do not, it is possible that a relationship between lower offer and default exists. 

From Figure 2.4, the taking max variable shows that 24.4% of clients under study take the 

maximum amount offered and 75.6% of clients do not. Figure 2.4 also shows that clients who 

take the maximum amount offered perform poorly, as indicated by their default rate of 18.2%, 

whereas clients who do not take the maximum amount perform significantly better, indicated 

by their default rate of 9.9%. Hence, it can be concluded that the taking max variable likely has 

an influence on default. 

Figure 2.4 displays the product type variable, which shows that the portion of clients under 

study falling within the hl, pl new, pl repeat, staff and vl categories is 7.4%, 48.1%, 35.5%, 

4.9% and 4.1%, respectively, with average default rates of 10.7%, 13.8%, 11.4%, 3.5% and 

7.9%, respectively. This suggests variation in the default rates between these categories. Thus, 

there is a possibility of a relationship between product type and default. From Figure 2.4, we 

observe that a small portion of clients under study fall within the vl and staff categories. 

Therefore, grouping categories in this variable may be considered, however, it is worth noting 

that clients in these categories perform better than clients in all other categories within the 

variable.   

The loan purpose variable depicted in Figure 2.4 shows that each of the following categories 

consist of less than 1% of the total clients under study: service, medical, income loss, furniture, 

food and clothing, and small business. Therefore, grouping these categories with the ‘other’ 

category may be considered as the percentage of clients falling within each of these categories 

is negligible and there is no significant difference in default rates between these categories. 

Figure 2.4 shows that the default rates of clients falling within the remaining categories, 

namely, consolidate debt, family crisis, housing and related, other and other emergency 

categories are 11.8%, 12.9%, 12.4%, 11.8%, and 11.3%, respectively. This indicates that there 

does not appear to be a significant difference in the default rates between these categories. 

Thus, it is unlikely that there is a strong relationship between loan purpose and the ‘default’ 

target variable. 

 

The income and expense variables were then analysed. Figure 2.5 displays the distribution and 

percentage of clients defaulting in each category within each variable in the income and 

expenses subgroup, which includes the following variables: payslip expenses, internal living 

expenses rule, permanent allowances, overtime, union fees, insurance, and pensionprovident. 
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Figure 2. 5: Distribution and percentage of clients defaulting for variables in the income and expenses subgroup 

 

From the payslip expenses variable displayed in Figure 2.5, 83.5% of clients have payslip 

expenses, whereas 16.5% of clients do not have any payslip expenses. 11.0% of clients who 

have payslip expenses default, whereas 16.6% of clients who do not have payslip expenses 

default. This indicates that clients with payslips expenses have a remarkably lower default rate 

compared to clients with no payslip expenses. Hence, the payslip expenses variable is likely 

associated with default. 

The internal living expenses variable in Figure 2.5 shows that 26.4% of clients utilise the 

internal living expense rule and 16.1% of these clients default, whereas 73.6% of clients do not 

utilise the internal living expense rule and 10.6% of these clients default. As there seems to be 

a considerable difference in performance between clients who utilise the rule and clients who 

do not, it is possible that a relationship between the internal living expense rule and default 

exists. 

Figure 2.5 displays the permanent allowances variable, which shows that the number of clients 

who have and clients who do not have permanent allowances is equally distributed between 

the two categories, with a default rate of 11.1% and 12.8%, respectively. This indicates that 

there is little variation in performance between clients who have and clients who do not have 

permanent allowances. Hence, it can be concluded that it is unlikely that the permanent 

allowances variable has a strong influence on default. 

From the overtime variable in Figure 2.5, 35.8% of clients under study earn overtime. Clients 

earning overtime have a default rate of 14.3%, whereas clients who do not earn overtime have 

a default rate of 10.6%. Therefore, overtime earners seem to perform worse than clients who 

do not earn overtime. Thus, overtime and default seem to be associated. 

The union fees variable in Figure 2.5 shows that 46.7% of the clients under study pay union 

fees and 9.2% of these clients default on their loan, whereas 14.1% of clients who do not pay 

union fees default on their loan. Therefore, there could be a relationship between default and 

union fees, as clients paying union fees seem to perform noticeably better than clients who do 

not pay union fees.  
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The medical aid variable presented in Figure 2.5 indicates that 34.5% of clients pay medical 

aid, whereas 65.5% do not pay medical aid. From Figure 2.5, clients who pay medical aid have 

a default rate of 7.8%, which is substantially lower than the 14.1% default rate of clients who 

do not pay medical aid. Therefore, an association between default and the medical aid variable 

seems to exist. 

From the insurance variable in Figure 2.5, 42.5% of clients under study pay for insurance. 

Clients who pay insurance have a default rate of 8.6%, whereas clients who do not pay 

insurance have a default rate of 14.4%. Hence, the difference in default rate between clients 

who pay and clients who do not pay insurance is 5.4%, which is significant. Thus, there is a 

possibility that the insurance variable has an influence on default. 

From the pensionprovident variable displayed in Figure 2.5, 68.9% of clients under study 

contribute towards their pension/provident fund. These clients have a default rate of 10.5%, 

whereas clients who do not contribute, have a default rate of 15.1%. Since there seems to be a 

significant different between clients who contribute towards their pension/provident fund and 

clients who don’t (i.e., 4.6%), the pensionprovident variable is likely associated with default. 

 

The debt variables under study are then explored. Figure 2.6 shows the distribution and 

percentage of clients defaulting in each category within each variable in the debt subgroup, 

which includes the following variables: personal loan, home loan, vehicle loan, instalment loan, 

credit card, and revolving credit. 

 

Figure 2. 6: Distribution and percentage of clients defaulting in the debt subgroup 

 

From the personal loan variable in Figure 2.6, 67.6% of clients under study have a personal 

loan, whereas 32.4% of clients do not have a personal loan. The default rate of clients who 

have a personal loan is 11.6%, whereas clients who do not have a personal loan have a default 

rate of 12.5%. Therefore, there seems to be little variation in performance between clients who 

have and clients who do not have a personal loan. It is thus unlikely that there is a strong 

association between personal loan and the ‘default’ target variable. 
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The home loan variable presented in Figure 2.6 shows that 13.6% of clients have a home loan 

and only 5.0% of these clients default on their loan, whereas 86.4% of clients do not have a 

home loan and 13.0% of these clients default on their loan. This indicates that clients who have 

a home loan perform considerably better than clients without a home loan. Hence, a strong 

relationship between default and the home loan variable seems to exist. 

 

Figure 2.6 displays the vehicle loan variable, which shows that 21.7% of clients have a vehicle 

loan and 78.3% of clients do not have a vehicle loan. The default rate of clients with and without 

a vehicle loan is 8.4% and 12.9%, respectively. Therefore, there seems to be a noticeable 

difference in the default rate between clients who have a vehicle loan and clients who do not 

have a vehicle loan (i.e., 4.1%). It can thus be concluded that the vehicle loan variable may 

have an influence on default. 

 

From the instalment loan variable shown in Figure 2.6, 11.6% of clients under study have an 

instalment loan. The default rate of clients who have an instalment loan is 11.8%, whereas 

clients who do not have an instalment loan have a default rate of 13.3%. This suggests that 

there is little variation in the default rate between clients who have and clients who do not have 

an instalment loan. Thus, it is unlikely that there is a strong relationship between default and 

the instalment loan variable. 

 

The credit card variable shown in Figure 2.6 indicates that 39.6% of clients have a credit card 

and these clients have a default rate of 8.4%, whereas 60.4% of clients do not have a credit card 

and these clients have a default rate of 14.2%. As there seems to be a material difference in 

performance between clients who have and clients who do not have a credit card, it is likely 

that a relationship exists between the credit card variable and the ‘default’ target variable. 

 

Figure 2.6 displays the revolving credit variable, which shows that 64.1% of clients under study 

have a revolving credit facility. 11.1% of clients who have revolving credit, default, whereas 

13.4% of clients without a revolving credit facility, default. Hence, there seems to be variation 

in performance between clients with and clients without a revolving credit facility. Thus, there 

is a possibility that revolving credit may have an influence on the ‘default’ target variable. 

 

 

Figure 2.7 displays the distribution and percentage of clients in each category within each 

variable in the debt related subgroup, which includes the following variables: unpaids, internal 

consolidation, credit inactive and arrears. 
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Figure 2. 7: Distribution and percentage of clients defaulting for variables in the debt related subgroup 

 

The unpaids variable in Figure 2.7 shows that 10.5% of clients under study have unpaids, 

whereas 89.5% do not have unpaids. Figure 2.7 also shows that the default rates of clients who 

have unpaids and clients who do not have unpaids are 16.0% and 11.4%, respectively. This 

suggests a significant difference in the default rate between clients with and clients without 

unpaids. Hence, it can be concluded that a relationship between default and unpaids seems to 

exist. 

 

In Figure 2.7, the int consol variable shows that 30.2% of clients have an internal consolidation. 

Clients who have an internal consolidation have a default rate of 9.2%, whereas clients with no 

internal consolidation have a default rate of 13.1%. Therefore, there appears to be variation in 

performance between clients who have and clients who do not have an internal consolidation. 

Thus, there is a possibility that the int consol variable has an influence on default. 

 

Figure 2.7 also displays the credit inactive variable, which shows that a minority of clients 

under study (i.e., 6.7%) are credit inactive. The default rate of clients who are credit inactive is 

16.1%, which is substantially worse than the 11.6% default rate of clients who are not credit 

inactive. This suggests that there is likely an association between default and credit inactive. 

 

The arrears variable presented in Figure 2.7 indicates that approximately half of the clients 

under study have been in arrears in the last 12 months. Clients who were in arrears in the last 

12 months have a default rate of 13.8%, whereas clients who have not been in arrears in the 

last 12 months perform better, as indicated by their default rate of 10.2%. Therefore, there may 

be a relationship between arrears and default. 

 

 

In Figure 2.2 to Figure 2.7, the relationship between the ‘default’ target variable and the 

categorical variables was explored. The relationship between the independent categorical 

variables is then examined in order to identify any strong association between these variables, 

using Cramer’s rule. The Cramer’s V coefficient ranges from 0 to 1. The researcher considers 

a Cramer’s value of 0.51 or more as a strong association. Table 2.5 provides a list of the 10 

pairs of variables under study with the highest Cramer coefficient values. 
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Table 2. 5: Pairs of variables with the 10 highest Cramer coefficient values 

Variable 1 Variable 2 Cramer coefficient  

Int/Ext Client Salary bank   

                                                                    

1.000  

Staff Member  Product Taken 

                                                                    

1.000  

Client type   IntConsol   

                                                                    

1.000 

PayslipExpenses Internal Living Expenses Rule 

                                                                    

0.439  

Union fees   PayslipExpenses   

                                                                    

0.415  

Medicalaid   Insurance 

                                                                    

0.406  

CreditCard Limiting rule   

                                                                    

0.393  

Union fees   Insurance  

                                                                    

0.390  

Internal Living Expenses Rule Medicalaid 

                                                                    

0.389  

PersonalLoan Credit Inactive 

                                                                    

0.385  

 

From Table 2.5, three pairs of variables with a Cramer’s coefficient value greater than 0.51 

were reported, which indicates a strong association. The pairs of variables are Int/Ext Client and 

Salary bank, Staff Member and Product taken and Client type  and IntConsol. All three pairs have 

a Cramer’s coefficient value of 1. After further investigation, the researcher discovered that the 

strong association between these variables was due to one variable being a subcategory of the 

other variable. For example, Staff, which is one of the subcategories in the Product Taken 

variable, is also included as a separate variable in the dataset as Staff Member. Therefore, we 

can remove Int/Ext Client, Staff Member and IntConsol, as their information is contained in other 

variables. 

 

The discrete variables under study are then examined. Visual representation methods such as 

histogram plots and line graphs are used to explore the discrete variables under study. The 

dataset includes three discrete variables, namely age, years with current employer and number 

of dependants, which are shown in Figures 2.8 to 2.10. 

Figure 2.8 presents the volume of clients by age group and the percentage of clients defaulting 

in each age group. 
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Figure 2. 8: Volume of clients by age group and percentage of clients who defaulted in each group 

 

Figure 2.8 shows that the age of clients ranges from 22 to 67 years. Initially, as age increases, 

the volume of clients increases. Clients who are in their 30s apply for a loan at the financial 

institution most frequently. From the age of 40 years, the volume of clients then starts to 

decrease. Figure 2.8 also shows that as age increases, the percentage of clients defaulting tends 

to decrease and levels off after 60 years. Thus, there seems to be a negative relationship 

between age and the ‘default’ target variable. 

 

Figure 2.9 displays the volume of clients by the number of years with their current employer 

and the percentage of clients defaulting in each group. 

 

Figure 2. 9: Volume of clients by number of years with their current employer and percentage of clients who 

defaulted in each group  

 

From Figure 2.9, we observe that the years with current employer variable ranges from 1 to 41 

years. The most frequent number of years with the current employer is 3 to 5 years. Clients 

falling within this range seem to perform the worst, as indicated by the default rate, which 

ranges from approximately 15% to 18%. The overall trend shows that as the number of years 

with the current employer increases, the percentage of clients defaulting decreases. Therefore, 



 

36 
 

it is likely that the number of years with the current employer has a negative relationship with 

default. 

Figure 2.10 shows the volume of clients and the percentage of clients defaulting by the number 

of dependants. 

 

Figure 2. 10: Percentage of clients who defaulted by number of dependants and the volume of clients in each group 

 

Figure 2.10 indicates that the number of dependants ranges from 0 to 5. A majority of clients 

taking a loan have 1 or 2 dependants or no dependants at all. The percentage of clients 

defaulting decreases from 0 dependants to 2 dependants and thereafter remains approximately 

10%; clients with no dependants perform, on average, the worst. It can therefore be concluded 

that there is possibly an association between the number of dependants and the ‘default’ target 

variable. 

 

The continuous variables are then analysed using the box and whisker plots displayed in 

Figures 2.11 and 2.12. The box and whisker plot is a method used to represent continuous data 

visually when doing explanatory data analysis. The plot shows the minimum value (excluding 

outliers), the first quartile (Q1), the median (Q2), the third quartile (Q3), the maximum value 

(excluding outliers), and the presence of any possible outliers in the dataset. The box and 

whisker plot is also used to visualise the distribution of the data as well as variability in the 

data. In this study, these plots will be used to compare clients who defaulted and clients who 

did not default. 

Figure 2.11 displays box and whisker plots for loan information variables, namely 

instalment/disposable income, % instalment to income allowed, % instalment to income taken, 

and max offer. The dataset is divided according to the client’s default status in order to compare 

the box and whisker plots of clients who default and clients who do not default. 
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Figure 2. 11: Box and Whisker plots for variables in the loan information subgroup 

 

From Figure 2.11, the instalment/disposable income variable ranges from 0.02 to 0.9 for clients 

who do not default and from 0.03 to 0.9 for those who default. The Q1, Q2 and Q3 values for 

clients who do not default are 0.22, 0.35 and 0.50, respectively, whereas the Q1, Q2 and Q3 

values for clients who default are 0.25, 0.37 and 0.52, respectively. Thus, there seems to be no 

significant difference in instalment/disposable income between the clients who default and 

those who do not default. Therefore, from the box and whisker plots in Figure 2.11, there does 

not seem to be a strong relationship between instalment/disposable income and the ‘default’ 

target variable. 

The % instalment to income allowed variable shown in Figure 2.11 ranges for both classes, 

default and not default, from 0.17 to 0.39. The box plot for clients who do not default shows a 

negatively skewed distribution, whereas the box plot for clients who default shows a more 

symmetric distribution. 50% of clients who do not default have a % instalment to income 

allowed value greater than 0.33, whereas only approximately 25% of clients who default have 

a % instalment to income allowed of more than 0.33,. This suggests that clients who do not 

default have, on average, larger % instalment to income allowed values compared to clients 

who default. Thus, % instalment to income allowed possibly has an influence on the ‘default’ 

target variable. 

Figure 2.11 presents the box plot for the % instalment to income taken variable. % instalment 

to income taken ranges from 0.01 to 0.42 for clients who do not default, and from 0.02 to 0.43 

for clients who default. Both default and non-default plots show a relatively symmetric 

distribution. The Q1, Q2 and Q3 values for clients who do not default are 0.13, 0.19 and 0.27, 

respectively, and the Q1, Q2 and Q3 values for clients who default are 0.17, 0.23 and 0.30, 

respectively. This indicates that the % instalment to income taken values seem slightly higher 
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for clients who default compared to clients who do not default. Hence, there is a possibility that 

% instalment to income taken has a relationship with the ‘default’ target variable. 

From Figure 2.11, the max offer box plots for both default and not default indicate that the 

distribution is positively skewed, with noticeably greater variability in the maximum offer for 

clients who do not default. One can also observe that approximately 50% of clients who do not 

default, have a maximum offer value of more than R75 000, whereas only approximately 25% 

of clients who default have a maximum offer value of more than R75 000, which suggests that 

clients who do not default tend to receive higher offers. This provides evidence that maximum 

offer is likely associated with default. 

 

The income and debt variables under study are explored next. Figure 2.12 presents box and 

whisker plots for income and debt variables, namely debt/net income, debt to income ratio, 

disposable income/basic, final disposable income/net income and calculated disposable 

income/net income. 

 

Figure 2. 12: Box and Whisker plots for variables in the Income and debt subgroup 
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The box plot for the debt/net income variable displayed in Figure 2.12 ranges from 0 to 0.75 

for both non-defaulters and defaulters. Both plots for this variable show values which tend 

towards the lower end of the scale. The Q1, Q2 and Q3 values for clients who do not default 

are 0.14, 0.27 and 0.42, respectively, whereas these values for clients who default are 0.10, 

0.23 and 0.38, respectively. This suggests that debt/net income values are higher for clients 

who do not default compared to clients who default. Thus, the debt/net income variable is 

possibly associated with default. 

From the debt to income ratio variable in Figure 2.12, debt to income ratio ranges from 1.7 to 

65.0 for the non-default class and from 4.2 to 65.0 for the default class. The Q1, Q2 and Q3 

values for the non-default class are 23.2, 32.3 and 42.3, respectively, whereas the Q1, Q2 and 

Q3 values for the default class are 23.0, 31.1 and 41.2, respectively. The debt to income ratio 

variable also appears to be equally dispersed for the non-default and default classes. Therefore,  

from Figure 2.12 there does not seem to be significant variation in the debt to income ratio 

between clients who default and clients who do not default. A strong relationship between the 

debt to income ratio and default is thus unlikely. 

The final disposable income/net income variable shown in Figure 2.12 seems to follow a 

normal distribution. This variable ranges from 0.01 to 0.82 for clients who do not default and 

from 0.02 to 0.81 for those who default. Q1, Q2 and Q3 values for the non-default class are 

0.31, 0.45 and 0.57, respectively, and these values for the default class are 0.33, 0.48 and 0.59, 

respectively. Thus, there seems to be little difference between the default and non-default 

classes regarding the final disposable income/net income variable. Association between the 

final disposable income/net income variable and the ‘default’ target variable therefore seems 

improbable.  

The box and whisker plot for the disposable income/basic variable displayed in Figure 2.12 

show that the Q1, Q2 and Q3 values for the non-default class are 0.22, 0.36 and 0.50, 

respectively, whereas Q1, Q2 and Q3 values for the default class are 0.25, 0.39 and 0.53, 

respectively. Therefore, from the box and whisker plot in Figure 2.12, there seems to be little 

variation in disposable income/basic between clients who default and clients who do not 

default. Thus, it seems unlikely that disposable income/basic has an influence on default. 

From Figure 2.12, the box plots for the calculated disposable income/net income range from 

approximately 0 to approximately 0.8 for both non-defaulters and defaulters. Both plots also 

show a normal distribution for this variable. The Q1, Q2 and Q3 values for the non-default 

class are 0.23, 0.37 and 0.51, respectively, whereas these values for the default class are 0.25, 

0.40 and 0.53, respectively.  Thus the researcher concludes that it seems unlikely that calculated 

disposable income/net income has a strong relationship with the target variable, ‘default’. 

After gaining further insight and understanding of the numerical variables under study and their 

relationship with the ‘default’ target variable in Figures 2.11 and 2.12, the researcher analyses 

the distribution, presence of outliers and correlation between the numerical variables. 

Histogram plots of the numerical variables, namely instalment/disposable income, % 

instalment to income allowed, % instalment to income taken, max offer, debt/net income, debt 

to income ratio, disposable income/basic, final disposable income/net income and calc 

disposable income/net income, are explored in Figure 2.13 to determine whether they follow a 

normal distribution. These plots are often used to show the frequency distribution of a variable; 

the histogram plot of a variable that follows a normal distribution will have a bell-shaped curve.                
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Figure 2. 13: Histogram plots of numerical variables 

 

The histogram plots in Figure 2.13 show that the following variables seem to deviate from 

normal distribution: % instalment to income allowed, max offer and debt/net income. The Box-

Cox transformation technique was used to normalise the data; it suggested the natural log 

transformation for the variables % instalment to income allowed and debt/net income, and the 

square root transformation for the variable max offer as the lambda values for % instalment to 

income allowed, max offer and debt/net income were 0.105 (approximately 0), 0.307 

(approximately 0.5) and 0.218 (approximately 0), respectively. 

 

To identify the presence of outliers, the interquartile range technique is used; the results are 

reported in Table 2.6. An outlier is  identified as a point that falls below the lower limit Q1 - 

1.5 * IQR, or above the upper limit Q3 + 1.5 * IQR, where Q1 is the lower quartile, Q3 is the 

upper quartile, and IQR is the interquartile range, that is, Q3-Q1.  
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Table 2. 6: Outlier detection using the interquartile range technique for numerical variables 

  
Quartile 

1 

Quartile 

3 
IQR 

Lower 

limit 

Upper 

limit 
Min Max Outliers 

Instalment/Disposable 

income 
0.22 0.50 0.28 -0.19 0.92 0.02 0.90 0 

% instalment to income 

allowed 
0.27 0.35 0.09 0.13 0.48 0.17 0.39 0 

% instalment to income 

taken 
0.13 0.27 0.14 -0.08 0.48 0.01 0.43 0 

Max offer 29970 130832 100862 -121978 282780 2005 250000 0 

Debt/Net income 0.13 0.42 0.29 -0.30 0.84 0.00 0.75 0 

Debt to income ratio 23.13 42.20 19.07 -5.12 70.45 1.73 64.97 0 

Final disposable income/Net 

income 
0.31 0.58 0.27 -0.08 0.97 0.01 0.82 0 

Disposable income/Basic 0.22 0.51 0.28 -0.20 0.93 -0.01 0.76 0 

Calc disposable income/Net 

income 
0.24 0.51 0.27 -0.17 0.92 -0.01 0.78 0 

 

From Table 2.6, there were no significant outliers present in the dataset. 

 

Multicollinearity between numerical variables is then explored by using the correlation matrix. 

Correlated variables in a model may affect the model’s performance negatively. The correlation 

matrix shows the Pearson correlation coefficient for each combination of the different features. 

The matrix is used to identify which features are correlated, the degree of correlation, and the 

direction. A correlation heatmap is a visual representation of the correlation matrix. The 

correlation values in the heatmap range from -1 to 1, where values close to -1 and 1 represent 

high correlation and 0 represents no correlation. Different colours are used to show the degree 

of correlation and the direction. The cells with correlation values closer to -1 are shaded in 

darker colours, whereas cells with correlation values closer to +1 are shaded in light colours. 

Cells shaded in orange and pink are associated with low correlation values. Pairs of variables 

that have an absolute correlation of 0.61 or more are considered highly correlated in this study. 

Figure 2.14 presents a heatmap for all numerical variables. 
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Figure 2. 14: Heatmap showing numerical variables 

 

The heatmap in Figure 2.14 shows that 12 pairs of variables are highly correlated. The 

following variables are highly correlated with at least one other variable: disposable 

income/basic, final disposable income/net income, calculated disposable income/net income, 

instalment/disposable income, debt/net income, internal consolidations/amount taken, total 

consolidations/amount taken and debt to income ratio. Multicollinearity among variables may 

affect the model negatively. Methods such as principal component analysis, discussed in 

Chapter 2.3, or simply removing one of the correlated variables can remove multicollinearity 

in the dataset.  

 

 

2.3 Principal Component Analysis (PCA) 
 

PCA is a dimensionality reduction method. It is used to transform a larger set of variables into 

a smaller set of variables whilst retaining most information. By using PCA, one can include 

the minimum number of principal components needed to explain a certain percentage of the 

variance. The new principal components formed are uncorrelated. PCA will therefore solve the 

problem observed in section 2.2 in which some of the numerical variables are highly correlated. 

An alternative method to solve the problem of highly correlated variables is to drop one of the 

correlated features; however, this may result in loss of information.  
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When using PCA, the number of principal components needs to be selected. The cumulative 

percentage of variance method was used to select the number of principal components.                 

Figure 2.15 displays the cumulative percentage of variance explained by number of principal 

components. 

 

Figure 2. 15: Cumulative percentage of variance explained by the number of principal components 

 

From Figure 2.15, in order to explain 80% of variance, which was chosen by the researcher, 7 

principal components are required. This will reduce the number of numerical variables from 

16 to 7 principal components, while still explaining 81.8% of variance, and the principal 

components will be uncorrelated. Figure 2.16 represents a heatmap for the 7 principal 

components. 

 

Figure 2. 16: Heatmap for principal components 

From Figure 2.16, correlation coefficients for all pairs of principal components are close to 

zero, which indicates that all 7 principal components are uncorrelated. 
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2.4 Summary 
 

In this study, the researcher’s aim was to predict whether clients will default or not on their 

loan. A client is classed as a default if he/she missed at least three payments in the first 12 

months of the loan being disbursed. 12% of clients under study defaulted, whereas 88% of 

clients did not default, which indicates that the dataset is imbalanced. This often leads to models 

that produce unsatisfactory results, as the models are more likely to misclassify the minority 

class (i.e., default), which is of more interest to the researcher than the majority class (i.e., non-

default). The imbalance in the dataset must thus be catered for by using techniques such as 

balanced weighting and SMOTE. A combination of 32 categorical and 16 numerical variables 

are included in the dataset; these variables are potentially associated with the ‘default’ target 

variable. They were grouped together in the following subcategories: demographics, client 

information, loan information, income, expenses, and debt for analysis purposes.  

Each variable in the dataset was explored and the analysis and key findings are summarised 

below:  

• The categorical variables were analysed using bar graphs and line graphs in order to 

gain insight into the distribution of clients for each variable and to understand the 

relationship between the ‘default’ target variable and the independent variables. 

• Variables such as Ext Subsequent Lending and staff member comprise of two 

categories, where one of the categories have the majority of clients and the other 

category, a negligible portion of clients (i.e., less than 5% of total clients). It is unlikely 

that such variables will be of importance to the model, unless the variable is 

exceptionally good at differentiating between clients who default and those who do not.  

The difference in default rates between the two categories within the Ext Subsequent 

Lending and staff member variables were 12% and 8.9%, respectively, which is 

considerably large and therefore, these variables may still influence the model. 

• Variables such as loan purpose, limiting rule and product type each comprise of more 

than two categories, with at least one category including a minor portion of clients. 

Combining the minority category with another category within the variable may be 

considered. A general practice is to combine the minority category with a category that 

has the closest default rate, alternatively, where numerous categories within a variable 

include a negligible portion of clients, grouping all of these categories into an ‘other’ 

category may be considered. Loan purpose comprised of 11 categories; 6 of these 

categories each included less than 1% of the population. Since the portion of clients 

falling in each of these categories was negligible and there was no significant difference 

in default rates between these categories, the researcher grouped these 6 categories with 

the category ‘other’. The researcher chose not to group categories within the limiting 

rule variable and product type variable as (for both variables) the default rate of the 

clients in the minority category was noticeably different compared to the other 

categories within the variable. 

• The following categorical variables showed little difference in default rates between the 

categories within each variable: permanent allowances, personal loan, loan purpose and 

instalment loan. Therefore, these variables do not seem to be strongly associated with 
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the ‘default’ target variable. All other categorical variables seem to have a relationship 

with default. 

• Cramer’s rule was then used in order to identify pairs of categorical variables that were 

strongly associated. A Cramer’s value of 0.51 or more was considered as a strong 

association. Three pairs of variables, namely Int/Ext Client and Salary bank, Staff 

Member and Product taken and Client type  and IntConsol, were identified as being 

strongly associated, with all pairs having a Cramer’s coefficient value of 1. After further 

investigation, it was observed that the strong association between these variables was 

due to one variable being a subcategory of the other variable. Therefore, Int/Ext Client, 

Staff Member and IntConsol were removed from the dataset, as their information is 

contained in other variables. 

• The relationship between default and the following discrete variables was also 

explored: age, years with current employer and number of dependants. All three 

discrete variables seem to have a negative relationship with default; as age, years with 

current employer and number of dependants increased, the percentage of clients 

defaulting decreased and eventually levelled off.  

• To analyse the continuous variables, box and whisker plots were used. The continuous 

variables were grouped into subgroups, namely loan information, and income and debt. 

In order to explore each variable’s association with default, the dataset was grouped 

according to the client’s default status.  

• The box plots for instalment/disposable income, debt to income ratio, disposable 

income/basic, final disposable income/net income and calculated disposable 

income/net income showed that there was no significant difference between clients who 

defaulted and clients who did not default. Therefore, it is unlikely that these variables 

have a strong relationship with the target variable, default. Box plots for max offer, % 

instalment to income allowed, % instalment to income taken and debt/net income did 

show a difference between clients who defaulted and clients who did not. Thus, these 

variables are possibly associated with the ‘default’ target variable. 

• The distributions, presence of outliers and the correlation between the numerical 

variables were analysed to gain further insight into the models’ inputs.  

• Using histogram plots, the researcher observed that % instalment to income allowed, 

max offer and debt/net income seemed to deviate from normal distribution. The Box-

Cox transformation was used to normalise the data. This technique suggested the 

natural log transformation for the variables % instalment to income allowed and 

debt/net income, and the square root transformation for the variable max offer. 

• To identify outliers, the interquartile range method was used; there were no significant 

outliers identified in the dataset. 

• Correlation heatmaps were then used to identify multicollinearity between numerical 

variables. Pairs of variables with an absolute correlation value of more than 0.61 were 

considered highly correlated. Disposable income/basic, final disposable income/net 

income, calculated disposable income/net income, instalment/disposable income, 

debt/net income, internal consolidations /amount taken, total consolidations/amount 

taken and the debt to income ratio were identified as being highly correlated with at 
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least one other variable. The principal component analysis (PCA) method in section 2.3 

can be used to solve the problem of highly correlated variables by creating new 

variables (principal components) that are uncorrelated. An alternative method is to drop 

one of the correlated variables; however, this may result in a loss of information. 

 

The researcher notes that before the model building step, the data needs to be pre-processed. 

The number of variables in the processed dataset increased to 57, prior to using dimensionality 

reduction techniques (the original dataset included 48 variables). The increase in the number 

of variables was a result of categorical variables being encoded using the dummy variable 

method. Dummy variables are used to represent categorical variables and can only take values 

0 and 1 where 0 represents the absence of a condition and 1 represents the presence of it. 

Categorical variables, which have more than two categories, are represented by a set of dummy 

variables. Encoding categorical variables is critical as most machine learning algorithms 

require numeric input and output variables. 

From the findings in this chapter, the researcher is also aware of the large number of variables 

in the dataset and is mindful that not all variables will be important in the model. Principal 

component analysis, which is also used to correct the data for multicollinearity, and feature 

selection, which aims to remove irrelevant and redundant features, are dimensionality reduction 

techniques which can be used to reduce the number of variables used in the model.  

In Chapter 3, machine learning classification algorithms are discussed, in Chapter 4, the 

classification algorithms are fitted to the default dataset using PCA and in Chapter 5, the 

classification algorithms are fitted to the dataset using feature selection; the feature selection 

technique used is recursive feature elimination. 
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Chapter 3 
 

3 Classification algorithms and evaluation metrics 
 

In this chapter, the researcher provides a brief introduction to machine learning, explains the 

theory of the classification algorithms used in this study and presents the performance metrics 

which the models will be evaluated on. 

 

 

3.1 Brief introduction to machine learning 
 

Machine learning has become increasingly popular amongst researchers and institutes over a 

short period of time; it is a subset of artificial intelligence that allows systems to learn patterns 

in the data automatically and improve outcomes through experience without being explicitly 

programmed. There are two main categories of machine learning, namely supervised learning 

and unsupervised learning. In supervised learning, the model learns patterns from a labelled 

dataset and the trained model is used to make predictions on unseen data. Unsupervised 

learning does not require a labelled dataset. The aim of unsupervised learning is to find 

structure, hidden relationships, and patterns from the input data. This study focuses on 

supervised learning. There are two types of supervised learning, namely classification and 

regression. A classification problem has a categorical target variable, for example a client’s 

default status, whereas a regression problem has a real value target variable. The process, for 

both classification and regression problems, include the following steps; collection of data, data 

cleaning and feature engineering, selection of machine learning algorithm and model building, 

model evaluation, model improvement and lastly, model deployment. The objective of this 

study is to build classification models, using labelled data, to predict a client’s default status. 

The researcher explores several classification machine learning algorithms, namely logistic 

regression, decision trees, random forest, k-nearest neighbours, the Naïve Bayes algorithm, 

support vector machines and artificial neural networks. Evaluation metrics, such as accuracy, 

balanced accuracy, recall, specificity, precision, the negative predictive value, Gini, and the 

AUC score, are used to evaluate and compare the performance of the machine learning models.  

 

 

3.2 Logistic regression 
 

Generalized linear models (GLM) is an extension of linear models which allows for non-

normal response distributions (Venables & Ripley, 1999). Linear regression, logistic regression 

and Poisson regression are all examples of GLMs. GLMs consists of 3 components namely, 

the response component, the systematic component and the link function. The distribution of 

the response variable belongs to the exponential family (e.g., Poisson, binomial, gamma 

distribution), the systematic component is the linear predictor, and the link function is the 
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connection between the mean of the response and the linear predictor  (Naufal, Devila, & 

Lestari, 2019). The link function is often based on the response distribution. It maps the range 

of the mean response on to the whole real line (McCullagh & Nelder, 1989). Examples of link 

functions are the identity link function (normal distribution), log link function (Poisson 

distribution) and the logit link function (binomial distribution). To estimate the parameters for 

the GLM, the maximum likelihood estimation method is used (Naufal et al., 2019). In this 

study, the GLM which the researcher focuses on, is logistic regression. 

 

Logistic regression is used to analyse the relationship between a categorical dependent variable, 

for example a client’s default status, and a set of independent variables that affects the 

dependent variable (Park, 2013). In most cases, the target variable (i.e., response variable) has 

only two possible outcomes, namely the event occurs (Y=1, e.g., the client defaults) or the 

event does not occur (Y=0, e.g., the client does not default). However, the model can be 

modified to cater for a dependent variable with more than two categories, which is referred to 

as multinomial logistic regression (Hintze, 2007). This study will focus on binary target 

variables. 

 

The logistic regression model assumes that the target variable is categorical. However, the 

target variable is not modelled directly; instead, logistic regression analysis is based on 

probabilities that are associated with the target variable’s values. Logistic regression estimates 

the probability that an event will occur, and these estimated probabilities are used to assign an 

observation to a class, based on the threshold selected (Dayton, 1992).                                                                                                                   

 

Consider a binary output 𝑌𝑖 that is equal to one when the event occurs (e.g., the clients default 

on their loan) and zero when the event does not occur (e.g., the clients do not default on their 

loan); for each observation i = 1, 2, …., n, with k explanatory variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑘. 

Let p be the probability of 𝑌𝑖 =1 such that p = 𝑃(𝑌𝑖 = 1) for a given observation. In logistic 

regression, the log-odds (or logit) are modelled as a linear combination of the intercept and 

explanatory variables, as shown below: 
 

 𝑙𝑜𝑔𝑖𝑡(𝑦𝑖) = ln⁡(
⁡𝑝⁡

1 − 𝑝⁡
) ⁡= 𝛼 + 𝛽1𝑥𝑖1+. . . . +𝛽𝑘𝑥𝑖𝑘,  (3.2.1) 

 

 

where 
⁡𝑝

1−𝑝⁡
 is referred to as the odds of an event and denotes the likelihood of the event 

occurring, ln⁡(
⁡𝑝⁡

1−𝑝⁡
) is known as the log odds or logit, 𝛼 is the Y intercept and 𝛽𝑗’s denote 

coefficients of the explanatory variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑘 (Park 2013; Peng et al., 2002). 

 

The estimated probability of an event occurring can be derived by taking the antilog and 

rearranging the equation  (3.2.1).  

 

This is given by 

 

𝑝 = 𝑃(𝑌𝑖 = 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
 

=
𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘

1 +⁡𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘
 

 

⁡⁡⁡⁡⁡=
1

1 +⁡𝑒−(𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘)
. 

(3.2.2) 
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In logistic regression, the aim is to obtain the strongest linear combination of independent 

variables such that we maximise the probability (likelihood) of predicting the correct class for 

each training observation (Stoltzfus, 2011). The maximum likelihood function is often used to 

estimate the function’s coefficients. 

 

For a sample size of n where each observation has a vector of features 𝑋 and a target variable 

𝑌𝑖,  𝑌𝑖⁡ = 1 if the event occurred and 𝑌𝑖⁡ = 0 if the event did not occur, and the probability is p 

when 𝑌𝑖⁡ = 1 and 1- p when 𝑌𝑖⁡ = 0. 

 

The likelihood function is given by 

 
 

 

𝐿 =∏𝑝(𝑦|𝑥)𝑌𝑖(1 − 𝑝(𝑦|𝑥))
1−𝑌𝑖

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 

⁡= 𝑝(𝑦|𝑥)∑ 𝑌𝑖⁡
𝑛
𝑖=1 (1 − 𝑝(𝑦|𝑥))𝑛−∑ 𝑌𝑖⁡

𝑛
𝑖=1 . 

 

 

 (3.2.3) 

The logarithm of the likelihood equation is often utilised, as it is mathematically easier to work 

with. It is known as the log likelihood and is given by the following equation:  

 

 𝑙 = log(𝐿) =∑𝑌𝑖⁡ log[𝑝(𝑦|𝑥)] + (𝑛 −⁡∑𝑌𝑖⁡)

𝑛

𝑖=1

𝑛

𝑖=1

log[1 − 𝑝(𝑦|𝑥)], (3.2.4) 

 

where 𝑝(𝑦|𝑥) =
𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘

1+⁡𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘
 . 

   

The maximum likelihood estimates are obtained by computing the first derivative of the log 

likelihood and solving for 𝛼 and 𝛽 (Park, 2013; Shalizi, 2019). 

 

A predefined threshold value is selected in order to classify each observation into a class. The 

threshold is defaulted to 50%; however, this value can be adjusted. When using the default 

threshold of 50%, if   𝑝 > 0.5, the model predicts that the event will occur (the client will 

default) and if 𝑝 < 0.5, the model will predict that the event will not occur (the client will not 

default) (Shalizi, 2019). 

 

Interpretation 

 

Consider a binary dependent variable 𝑦 with values 0 and 1 (0 = not default and 1 = default) 

and one explanatory variable 𝑥 where the logistic regression equation is given by 

 

 
ln

𝑝

1−𝑝
= 𝛼 +⁡𝛽1𝑥. 

 
(3.2.5) 
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If 𝑥 increases by one unit, the logistic regression equation is 

 

 ln
𝑝′

1 − 𝑝′
= 𝛼 +⁡𝛽1(𝑥 + 1) = 𝛼 + 𝛽1𝑥 + 𝛽1. (3.2.6) 

 

𝛽1⁡ can be obtained by taking the difference between equations (3.2.5) and (3.2.6), as shown 

below: 

                                           𝛽1 = (𝛼 + 𝛽1𝑥 + 𝛽1)⁡ – (𝛼 +⁡𝛽1𝑥) 

                                                         = (ln
𝑝′

1−𝑝′
) - (ln

𝑝

1−𝑝
) 

                                                         = ln((
𝑝′

1−𝑝′
)/(

𝑝

1−𝑝
)) 

                                                         = ln(
𝑜𝑑𝑑𝑠′

𝑜𝑑𝑑𝑠
). 

 

                          (3.2.7) 

 

Thus, the logistic regression coefficient 𝛽𝑖 associated with the explanatory variable 𝑥𝑖 can be 

interpreted as the change in log-odds of the event (e.g., a client defaulting on his/her loan) per 

unit change in 𝑥. By exponentiating both sides of equation (3.2.7), the following equation is 

obtained:  

 

 
                                                 𝑒𝛽1 = 

𝑜𝑑𝑑𝑠′

𝑜𝑑𝑑𝑠
. 

 
      (3.2.8) 

When multiple independent variables are present, the regression coefficients are interpreted 

in a similar manner while holding all other independent variables constant (Hintze, 2007). 
 

 

Overall model evaluation: 

 

Deviance Test: To assess the goodness-of-fit of a model, the deviance statistic can be used.  

The deviance statistic compares the log-likelihood of the fitted model to the log-likelihood of 

the saturated model. A saturated model has the same number of estimated parameters as the 

number of observations.  

                             

The deviance statistic is given by 

 

                    𝐷 = (−2𝑙𝑜𝑔𝐿⁡𝑜𝑓⁡𝑓𝑖𝑡𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙) ⁡−(−2 𝑙𝑜𝑔𝐿⁡𝑜𝑓⁡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙).      (3.2.9) 

 

 

Equation 3.2.9 can be written as 

 

 

 

𝐷 = ⁡−2 log(
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑓𝑖𝑡𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙
⁡). 

    (3.2.10) 
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The test statistic D asymptotically follows a 𝑋2 distribution with n-p degrees of freedom i.e., 

the degrees of freedom is equal to the number of parameters in the saturated model (n) minus 

the number of parameters in the fitted model (p) (Badi, 2017).  

The rule of thumb for the Deviance test is that the D statistic should be less than the degrees of 

freedom i.e., n-p. A model is acceptable if the D statistic is within 1.5 times the degrees of 

freedom (Chifurira, 2018).  

 

Residual Analysis 

The analysis of residuals to assess the adequacy of a fitted model is an important step in the 

model building process. Residual analysis can be used to identify unusual observations i.e., 

outliers, influential observations and observations which have high leverage. Observations with 

values that deviate from the expected range, resulting in very large residuals, may be 

considered outliers; outliers in a dataset can lead to incorrect inferences. An observation is 

considered influential if the estimate of coefficients changes significantly once the observation 

is removed. An observation with an extreme value on a covariate is said to have high leverage 

and can have an uncommonly large impact on the coefficient estimates (Sarkar, Midi, & Rana, 

2011). The Pearson residual, deviance residual and the hat diagonal are commonly used for 

logistic regression diagnostics.  

 

Given a binary response variable Y, the logistic regression model can be written as: 

 

 

𝑌𝑖 = 𝜋𝑖(𝑥) +⁡𝜀𝑖⁡⁡⁡𝑤ℎ𝑒𝑟𝑒⁡𝑖 = 1,2, … , 𝑛. 

 

    (3.2.11) 

Since the response variable Y can only take on the value 0 and 1, the ordinary residual is given 

by: 

 𝜀𝑖̂ = {
1 −⁡𝜋̂𝑖⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑌𝑖 = 1
−⁡𝜋̂𝑖⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑌𝑖 = 0

.     (3.2.12) 

 

Therefore, the error variance can be defined as: 

 

 

𝑉(𝑌|𝑋) = (𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖).⁡ 

 

    (3.2.13) 

To obtain the Pearson residual, the ordinary residual is divided by the estimated standard error 

of 𝑌𝑖 and is given by: 

 

 

𝑟𝑃𝑖 =⁡
𝜀𝑖̂

√(𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖)
 

 

⁡⁡⁡⁡⁡⁡⁡=
𝑌𝑖 − 𝜋̂𝑖(𝑥)⁡

√(𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖)⁡
. 

    (3.2.14) 
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Pearson residuals can be defined as the standardized distance between the observed and 

predicted responses. 

Since the Pearson residuals do not have unit variance, they are standardized further by their 

estimated standard deviation which results in the studentized Pearson Residuals. This is defined 

as: 

 

 

𝑟𝑆𝑃𝑖 =⁡
𝑌𝑖 − 𝜋̂𝑖⁡

√(𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖)(1 −⁡ℎ𝑖𝑖)
⁡= ⁡

𝑟𝑃𝑖

√(1 −⁡ℎ𝑖𝑖)
. 

 

    (3.2.15) 

Where ℎ𝑖𝑖 (often called hat diagonal in logistic regression) is the 𝑖-th element on the diagonal 

of the 𝑛𝑥𝑛 estimated hat matrix H, which is given by: 

 
 

𝐻 =⁡𝑊̂
1
2𝑋(𝑋́𝑊̂𝑋)

−1
𝑋́𝑊̂

1
2, 

    (3.2.16) 

 

where 𝑊̂ is the 𝑛𝑥𝑛 diagonal matrix with elements (𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖) (Sarkar, Midi, & Rana, 

2011). The hat diagonal measures the leverage of an observation. 

 

 

Deviance residuals are also often analysed when using logistic regression. Deviance residuals 

are defined as the difference between the log-likelihood of the saturated model and the log-

likelihood of the fitted model. They represent the contribution of individual observations to the 

deviance (Feng, Longhai, & Sadeghpour, 2020). 

The deviance residuals are calculated based on the deviance statistic and is given by 

 

 

𝐷 = 2∑{𝑌𝑖 log (
𝑌𝑖
𝜋̂𝑖
) + (1 − 𝑌𝑖) log (

1 − 𝑌𝑖
1 − 𝜋̂𝑖

)}
2

,

𝑛

𝑖=1

 

 

    (3.2.17) 

where 𝑌𝑖 is the response variable which has two possible outcomes for logistic regression i.e., 

1 and 0 with probabilities  𝜋̂𝑖 and 1-𝜋̂𝑖, respectively (Ahmad, 2011). 

 

The deviance residual for the 𝑖-th individual component is defined as 

 

 

 

𝑟𝐷𝑖 = ⁡𝑠𝑖𝑔𝑛(𝑌𝑖 − 𝜋̂𝑖)√−2[𝑌𝑖 log(𝜋̂𝑖) + (1 − 𝑌𝑖) log(1 − 𝜋̂𝑖)]. 

 

    (3.2.18) 

 

If   𝑦𝑖 = 0 then 𝑟𝐷𝑖 =⁡−√−2[log(1 − 𝜋̂𝑖)]  and if   𝑦𝑖 = 1 then 𝑟𝐷𝑖 =⁡√−2 log(𝜋̂𝑖) .  

 

 

When assessing the model fit, the residuals are often plotted against the predicted probabilities.  

Standardized residuals greater than |2| are potential outliers and should be further investigated. 
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If the LOWESS smooth (Locally Weighted Scatterplot Smoothing or LOWESS is a technique 

used in regression analysis to produce a smooth curve through a scatterplot) of the plot of the 

residuals against the predicted probability approximates a line which has a zero slope and 

intercept, one can conclude that there does not seem to be significant model inadequacy and no 

influential outliers seem to be present (Sarkar, Midi, & Rana, 2011). 

 

 

 

3.3 Decision tree (ID3, C4.5) 
 

Decision trees are one of the most popular classification methods used in machine learning. 

They are non-parametric, as there are no distributional assumptions made and a predefined 

relationship is not required between the dependent and independent variables (Kuhn et al., 

2013). A decision tree is similar to a flowchart that takes on the form of a tree structure. 

Decision trees consist of three types of nodes, namely the root node, the internal nodes 

(decision nodes), and the leaf nodes.  

 

The root node is the node found at the top of the tree; it has outgoing edges but no incoming 

edges. The feature that classifies the data the best is used as the test feature for the root node. 

Internal nodes are the nodes found between the root node and the leaf node. They have an 

incoming edge and outgoing edges. At each root node and internal node, a certain feature is 

tested and each of the node’s branches represents an outcome of the test, such that the space is 

split into two or more sub-spaces. The leaf nodes are the final nodes of each branch, and these 

nodes indicate which class an observation belongs to. Leaf nodes have an incoming edge but 

no outgoing edges (Patel & Upadhyay, 2012; Singh & Giri, 2014). 

 

Figure 3.1 displays an example of a simple decision tree structure. 

 

Figure 3. 1: Structure of a simple decision tree 

 

Most decision tree algorithms use the standard top-down approach. At each node, starting from 

the root node, a feature is selected by using a certain splitting criterion; the chosen feature is 

used to split the data into subsets. Some of the common splitting criteria are entropy, 

information gain, gain ratio and the Gini index. Most splitting criteria are defined in terms of 

how much the impurity reduces by after the split, that is, from parent to child node. The 

splitting/partitioning process is repeated until the nodes cannot be split further, or a stopping 

criterion is met, and all leaf nodes are present (Singh & Giri, 2014). To avoid overfitting, post-

pruning may be used once the tree has been grown. 
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Once the decision tree is constructed, new observations can be classified. For each new 

observation, one starts at the top of the tree, which is the root node, and makes one’s way down 

the tree by moving along the internal nodes and selecting the branch that presents the correct 

answer to the question asked at each node. The answer to each question determines the next 

question. This continues until the leaf node is reached. The leaf node will represent the class to 

which the new observation is assigned to, according on the model’s prediction (Podgorelec et 

al., 2002). 

There are many decision tree algorithms available. In this study, the C4.5 algorithm is used, 

which is an improved version of ID3. Quinlan (1986) developed the ID3 algorithm. This is 

often considered one of the simplest decision tree algorithms. Like many other decision tree 

algorithms, it uses the top-down approach when building the decision tree (Singh & Giri, 2014). 

The ID3 algorithm utilises information gain (which is based on entropy) to determine the best 

split (Murthy & Salzberg, 1995). 

 

Shannon entropy is one of the most popular splitting criteria used in decision tree algorithms. 

Entropy is the measure of randomness or impurity in a dataset and ranges from zero to one. If 

the outcome of an event, such as clients defaulting on their loan, is certain, the entropy will 

equal to zero. If the probability of an event occurring is 50%, the entropy will equal one. 

The equation for entropy is given by 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =∑𝑝𝑖 log 𝑝𝑖 ,

𝑐

𝑖=1

 (3.3.1) 

where c = the number of classes and 𝑝𝑖 is the proportion of values that fall within the class i, 

that is, 𝑝𝑖 is the probability of the event (Fakir et al., 2020; Gulati et al., 2016).  

Entropy before the split minus entropy after the split is known as information gain. Information 

gain measures homogeneity in a dataset. The higher the information gain, the more informative 

the feature (Gulati et al., 2016).  

The equation for information gain is given by 

 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) ⁡⁡− ⁡∑
|𝑆𝑖|

|𝑆|
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖),

𝑛

𝑖=1

 (3.3.2) 

where 

|𝑆|      = total number of observations in S;                                                                                

|𝑆𝑖 |     = number of observations in the subset 𝑆𝑖 |;                                                                        
n        = number of attribute A. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                

When choosing the test feature at each test node, the entropy of the parent node and the entropy 

of each category in each feature is calculated. This is used to calculate the information gain for 

each feature. The feature which maximises the information gain is selected as the splitting 

criterion for that specific node. This process starts at the root node and runs in a recursive 

manner by treating the new child node as a parent node. The splitting process continues until 
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the new node is a leaf node, that is, all observations in the node belong to the same class, all 

observations have identical feature values, or a predefined stopping criterion is met. A tree is 

generated once all branches end with leaf nodes. This method is often referred to as the divide-

and-conquer approach (Fakir et al., 2020; Murthy & Salzberg, 1995). 

Stopping criteria are utilised during the learning process. They are used to reduce over-fitting 

by preventing insignificant branches from being generated; however, it may also result in loss 

of information. Common pre-pruning/stopping conditions that may be utilised when building 

a decision tree are listed below: 

• All observations in a node belong to the same class. 

• The maximum pre-specified tree depth is reached.  

• The decision node has fewer observations than the (pre-specified) minimum number of 

observations allowed in a parent node. 

• After the node is split, the number of observations in at least one child node is less than 

the pre-specified minimum number of observations allowed in a child node 

(Singh & Giri, 2014). 

• A statistical test can also be utilised to determine whether splitting the data on a certain 

attribute is statistically significant. If the null hypothesis cannot be rejected, the split 

does not occur and the splitting stops at that node (Patel & Upadhyay, 2012). 

 

Using a stopping criterion may result in leaf nodes consisting of observations that belong to 

different classes. The majority vote rule can be utilised to determine the class of that leaf node 

(Quinlan, 1986).  

 

The main disadvantage of ID3 is that it only supports categorical data and not continuous data. 

Using the same method on continuous data will result in very small subsets. This will lead to 

continuous attributes with unrealistically high information gain, which will likely result in a 

poor model (Fakir et al., 2020). Another issue that arises when using the ID3 algorithm is that 

it uses the greedy approach. ID3 chooses the best locally optimal split at each node without 

allowing for backtracking. Using a strategy that chooses locally optimal splits may result in a 

suboptimal tree (Murthy & Salzberg, 1995). 

C4.5 is an extension of ID3 to overcome disadvantages of the latter and was also developed by 

Quinlan (Adhatrao et al., 2013). The C4.5 algorithm utilises the same method as ID3 when 

handling categorical features; however, unlike ID3, C4.5 can handle continuous attributes. 

Figure 3.2 displays a decision tree that consists of both categorical and continuous variables. 

 

Figure 3. 2: Example of a decision tree that includes both categorical and continuous variables 
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In order to handle features that are continuous, the C4.5 algorithm converts the continuous 

features into nominal features by creating a threshold that is used to split the data into two 

subsets. When selecting the threshold value, all values of the continuous feature are considered 

as an option. For each possible threshold value, the dataset is split into two subsets: those whose 

feature value is less than or equal to the possible threshold value, and those whose values are 

greater. The entropy and information gain are then calculated by using each possible threshold 

value; the one selected is the threshold value that offers maximum gain (Fakir et al., 2020; 

Gulati et al., 2016). 

Another advantage that the C4.5 algorithm has over the ID3 algorithm is that it allows for post-

pruning. Decision tree classifiers aim to split the training set into subsets, such that each subset 

includes observations that all belong to the same class. Often, fitting a decision tree until all 

leaf nodes consist of observations that belong to the same class results in over-fitting 

(Podgorelec et al., 2002). The latter occurs when the learning algorithm continues to develop 

hypotheses, such that the training set error decreases, but the test set error increases (Patel & 

Upadhyay, 2012). By overfitting, the decision tree is classifying the training set instead of the 

overall population and the algorithm becomes too specific to the training set (Podgorelec et al., 

2002). 

To avoid overfitting, many decision tree algorithms use a method called ‘pruning’. Pruning 

helps to optimise the computational efficiency and classification accuracy of a decision tree. In 

most cases, pruning leads to a reduction of the tree size (Patel & Upadhyay, 2012). Post-

pruning allows the tree to grow to its maximum size and thereafter, insignificant branches are 

removed. Examples of post-pruning methods are given by the authors, namely reduced error 

pruning, error complexity pruning, minimum error pruning, pessimistic pruning and cost-based 

pruning  (Patel & Upadhyay, 2012). 
 

 

 

3.4 Random forest 
 

Ensemble classification is a method which uses multiple classifiers that work together in order 

to assign a new observation to a class. Generally, the ensemble of classifiers has a higher 

accuracy than the individual classifiers in the ensemble. Random forest classification is an 

example of an ensemble classification algorithm in which the base learners are decision trees 

(Fawagreh et al., 2014). Breiman (2001) developed the random forest algorithm and Breiman 

et al. (1984) proposed using the classification and regression trees (CART) method to build the 

individual trees in the random forest. As its name suggests, CART can be used to build both 

classification and regression trees. If the target variable is categorical (e.g., defaulting or not 

defaulting), a classification tree is used and if the target variable is continuous, a regression 

tree is used (Kuhn et al., 2013). The CART algorithm builds binary decision trees, in other 

words, it splits the data at each test node into two subsets. 

The splitting criteria used in CART to determine the feature that best splits the data is the Gini 

index, which is a measure of impurity (Singh & Giri, 2014). 
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The Gini index is defined by  

 𝐺𝑖𝑛𝑖(𝐷) = 1 −⁡∑ (𝑃𝑗)
2⁡

𝑛

𝑗=1
, (3.4.1) 

where 𝑃𝑗 denotes the probability of an observation being classified as class j. 

If the features are categorical, the feature with the minimum Gini index is chosen as the splitting 

feature at each test node. If the features are continuous, a strategy similar to the one used by 

the C4.5 algorithm for information gain (discussed in section 3.3) is used for the Gini index. 

The point of a continuous feature that minimises the Gini index is used to split the data (Han 

et al., 2006; Lin & Fan, 2019). When building a decision tree, CART (like C4.5) uses the 

recursive partitioning method, also known as the divide-and-conquer method, until all nodes 

cannot be split further or one of the stopping criteria is met.  

To construct a random forest, Breiman (2001) combined the CART approach, the bagging 

sampling approach, also known as bootstrap aggregation, which he developed in 1996 

(Breiman, 1996), and random feature selection. As a result, individual trees in the forest are 

trained by using different datasets and features to make predictions. This reduces correlation 

between the individual decision trees in the model.  

During the building process of the random forest model, a training set needs to be created. The 

bootstrap random sampling method is used to draw N samples from the original dataset. The 

samples are created with replacement and each of the bootstrap samples should include the 

same number of observations, which is usually about two-thirds the size of the original dataset 

(Ali et al., 2012; Gao, Wen, & Zhang, 2019). This method helps to reduce instability in the 

model (Tyralis et al., 2019). 

A decision tree for each bootstrap training set is then constructed. These N trees form the 

random forest. Breiman (2001) uses the CART method when building decision trees for the 

random forest. Each tree should be grown to its full size, that is, until the leaf nodes are pure, 

or until the leaf node contains a specified number of observations, or another stopping criterion 

is met. These trees should not be pruned (Ali et al., 2012).  

When building a single decision tree that is not part of a random forest, all possible features 

are considered and the feature that results in the largest decrease in impurity is chosen as the 

splitting feature for that node. In a random forest, each tree selects m features randomly from 

all the features and only these m features are considered when selecting a feature to split the 

data at each node. This method adds more variation between the trees and further randomness 

to the model, which reduces correlation between the individual trees, resulting in the reduction 

of variance of the prediction (Gao, Wen, & Zhang, 2019; Tyralis et al., 2019). 

The final prediction for the classification problem is determined by using the majority vote rule 

based on each individual tree’s vote, that is, each decision tree in the random forest makes a 

prediction and the class with the most votes is the random forest model’s final prediction (Gao, 

Wen, & Zhang, 2019). The random forest will only predict incorrectly when a higher portion 

of the individual trees predict the incorrect class.  

According to Breiman (2001), the error rate of a random forest depends on the strength of the 

trees and the correlation between the trees. An increase in correlation between two trees in the 
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random forest will result in an increase in the error rate of the random forest. An increase in 

the strength of the trees in the random forest will result in a decrease in the error rate of the 

random forest (Fawagreh et al., 2014; Tyralis et al., 2019). 

To compute the error rate, out-of-bag observations can be used. Out-of-bag samples are those 

ones that were not included in the bootstrap training set (Chen & Ishwaran, 2012). These 

observations can also be used for parameter tuning. Some of the parameters that are often tuned 

are the number of trees, the number of observations in each tree, the number of randomly 

selected predictor variables, and stopping criteria such as the number of observations in each 

leaf node (Tyralis et al., 2019). 

 

 

3.5 Support vector machines 
 

The support vector machine, also known as SVM, was introduced by Vapnik (1982). SVM is 

a supervised learning algorithm that can be used for both linear and nonlinear classification as 

well as regression (Jakkula, 2006). For classification problems, which will be focused on in 

this study, support vector machines separate the observations into classes, based on the 

observation’s features, by identifying the optimal hyperplane (Rampisela & Rustam, 2018). 

Vapnik initially described an optimal hyperplane as “a linear decision function with maximal 

margin between the vectors of the two classes”, but extended this method to cater for non-

linearly separable training data (Vapnik, 1995).  

 

 

Figure 3. 3: Example of support vector machine structure 

 

Figure 3.3 illustrates the structure of a support vector machine with two linearly separable 

classes, namely C1 and C2. In this study, the objective is to separate clients into the default 

(C1) and not default (C2) classes. Figure 3.3 shows the separating hyperplane, parallel 

hyperplanes, support vectors, and the margin. Hyperplanes are the decision boundaries that 

help to classify the observations, support vectors are the data points from each class that are 

situated closest to the separating hyperplane, and the margin is the distance between the parallel 

hyperplanes associated with the support vectors of the two classes. The number of hyperplanes 

which could separate the data into the two classes are infinite. The aim is to identify the 

separating hyperplane that is as far as possible from the support vectors of both classes, thus 

maximising the margin between the support vectors (while trying to minimise the error when 

the data are not fully linearly separable) so that the training data are classified correctly and the 
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model works well on unseen data. The assumption is that the larger the distance between the 

two parallel hyperplanes, the smaller the classification error will be (Bhavsar & Panchal, 2012; 

Pal & Mather, 2005). During the training phase, all observations in the training set need to be 

available when the SVM model’s parameters are obtained. Once these parameters are obtained, 

only the support vectors are required when predicting the unseen data (Awad & Khanna, 2015). 

There are different types of support vector machines, namely a hard margin SVM, a soft margin 

SVM and a kernel method SVM. The SVM utilised depends on the complexity of the 

classification problem.  

A hard margin SVM is an SVM which can fully linearly separate the data into the correct 

classes by identifying the hyperplane with the maximum margin (Fletcher, 2008). Figure 3.3 

represents a hard margin SVM. 

Consider a problem with N number of observations where each input 𝑥𝑖 has D features and 

belongs to one of two classes, namely 𝑦𝑖 = -1 or 𝑦𝑖 = 1; in other words, the training data used 

to build the model is in the form 

{𝑥𝑖,⁡𝑦𝑖}, where i= 1, 2,.., N, 𝑥 E R^D and 𝑦𝑖 E {-1,1}. 

Now consider the following function:  

 𝑔(𝑥) = 𝜔𝑇𝑥 + 𝑏.    (3.5.1) 

 

The separating hyperplane is given by the equation 

 

 𝜔𝑇𝑥 + 𝑏 = 0,⁡     (3.5.2)  

 

and the equations for the parallel hyperplanes, which are the planes that the support vectors lie 

on, are given below: 

 𝜔𝑇𝑥 + 𝑏 = −1,⁡ (3.5.3) 

 𝜔𝑇𝑥 + 𝑏 = +1,⁡ (3.5.4) 

 

where 𝜔 E 𝑅𝑛 is a p-dimensional vector that is perpendicular to the separating hyperplane, 𝑏 

E R is a parameter that relates to the closest distance between the origin of coordinates and the 

separating hyperplane, and 1 and -1 relate to the two classes. The hyperplane will pass through 

the origin in the absence of 𝑏 (Bhavsar & Panchal, 2012; Rampisela & Rustam, 2018). 

𝜔 and 𝑏 are selected such that the training data can be described by 

 𝑥𝑖𝜔 + 𝑏 ≤ −1  when 𝑦𝑖 = -1       (3.5.5) 

                        and  𝑥𝑖𝜔 + 𝑏 ≥ +1  when 𝑦𝑖 = +1.       (3.5.6) 

 

Combining equations (3.5.5) and (3.5.6) will result in the following: 

                      ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦𝑖⁡(𝑥𝑖𝜔 + 𝑏) − 1 ≥ 0 for all 𝑖’s.  (3.5.7) 
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The distance from each observation to the hyperplane is 
|𝑔(𝑥)|

||𝜔||
 (Fletcher, 2008). To find 𝜔 and 

b such that 𝑔(𝑥)⁡equals to 1 and -1 for the closest point belonging to each of the two classes, 

⁡𝜔1 and ⁡𝜔2,⁡respectively, the margin can be described as follows: 

                      
1

||𝜔||
+

1

||𝜔||
=

2

||𝜔||
⁡⁡, (3.5.8) 

 

where  𝜔𝑇𝑥 + 𝑏 = +1 for 𝑥E⁡𝜔1 and 𝜔𝑇𝑥 + 𝑏 = −1 for 𝑥E⁡𝜔2. 

In order to maximise the margin and solve the optimisation problem, the following objective 

function (in primal form) will need to be minimised: 

                      𝐽(𝑤) =
1

2
||𝜔||2, (3.5.9) 

 

s.t. 𝑦𝑖(𝜔𝑖
𝑇𝑥 + 𝑏) ≥ 1 where 𝑖 =1,2,…,N (Awad & Khanna, 2015; Nayak et al., 2015). 

 

In an optimisation problem where the variables being optimised have constraints, the 

constraints, multiplied by the Lagrange multipliers, are added to the error function in order to 

augment it. With support vector machines, the Lagrangian function is attained by augmenting 

the objective function with a weighted sum of the constraints. 

                      𝐿(𝜔, 𝑏, 𝜆) =
1

2
𝜔𝑇𝜔 −⁡∑𝜆𝑖[

𝑁

𝑖=1

𝑦𝑖(𝜔
𝑇𝑥𝑖 + 𝑏) − 1],  (3.5.10) 

where λ𝑖’s are the Lagrange multiplies and 𝜔 and 𝑏 are referred to as primal variables. 

The Karush-Kuhn-Tucker conditions, also known as KKT conditions, are used to generalise 

the Lagrange multipliers when inequality constraints are present (Awad & Khanna, 2015). 

Using the KKT conditions and partially differentiating with respect to w, b and λ, the following 

equations are obtained: 

 𝜔 =⁡∑ 𝜆𝑖
𝑁
𝑖=1 𝑦𝑖𝑥𝑖, (3.5.11) 

subject to ∑ 𝜆𝑖
𝑁
𝑖=1 𝑦𝑖 = 0. (3.5.12) 

 

The optimisation problem can be solved in primal form or in dual form. The primal form is in 

terms of 𝜔 and 𝑏, whilst the dual form is in terms of λ (Srivastava & Bhambhu, 2010). 

According to these authors, the primal problem can be written in the dual form by substituting 

equation (3.5.11) into the Lagrange function. 
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The problem in dual form for the hard margin SVM is given by 

                      𝑚𝑎𝑥𝜆⁡(∑𝜆𝑖 −⁡
1

2

𝑁

𝑖=1

∑𝜆𝑖

𝑁

𝑖⁡𝑗⁡

𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗), (3.5.13) 

subject to the following: 

                      
∑𝜆𝑖

𝑁

𝑖=1

𝑦𝑖 = 0, 

𝜆𝑖 ≥ 0⁡∀𝑖. 
 

(3.5.14) 

This problem can be solved by using a quadratic optimisation solver. 

The dual form is often used, as it always has a unique optimal solution and is often quicker and 

more efficient compared to the primal form, since the number of primal variables can be 

considerably more than the number of dual variables (Awad & Khanna, 2015; Nayak et al., 

2015). 

In the real world, data are often not fully linearly separable. A soft margin SVM may be 

utilised to solve this problem. Figure 3.4 illustrates an example of an SVM structure in which 

some observations are misclassified. The SVM objective function can be modified by adding 

slack variables, also referred to as error variables, 𝜉𝑖, which allow for small misclassifications 

(errors), that is, if the data points are on the incorrect side of the separating plane by a short 

distance, the data points can be misclassified without violating the constraints (Jakkula, 2006). 

Data points on the incorrect side of the separating plane are penalised according to their 

distance away from the ‘correct side’ (Fletcher, 2008). Instead of finding a hyperplane that 

separates the data into two classes correctly and without any errors, the soft margin SVM 

algorithm now searches for a hyperplane that maximises the margin while trying to minimise 

the error (Pal & Mather, 2005). 

 

Figure 3. 4: Example of support vector machine structure with misclassifications 

When including the slack variable, 𝜔 and 𝑏 are selected such that the training data can be 

described by 

 𝑥𝑖𝜔 + 𝑏 ≤ −1 +⁡𝜉𝑖  when 𝑦𝑖 = -1 (3.5.15) 

                     and  𝑥𝑖𝜔 + 𝑏 ≥ +1 +⁡𝜉𝑖   when 𝑦𝑖 = +1. (3.5.16) 

 

where 𝜉𝑖 ⁡>= 0 for all 𝑖’s (Fletcher, 2008). 
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Combining equations (3.5.15) and (3.5.16) results in the following: 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦𝑖 ⁡(𝑥𝑖𝜔 + 𝑏) − 1 +⁡𝜉𝑖 ⁡≥ 0 where ⁡𝜉𝑖 ≥ 0 for all 𝑖’s. (3.5.17) 

 

 

In order to maximise the margin and solve the optimisation problem, the following objective 

function (in primal form) will need to be minimised (Awad & Khanna, 2015; Nayak et al., 

2015): 

 𝐽(𝜔, 𝑏, 𝜉) =
1

2
||𝜔||

2
+ 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 , (3.5.18) 

 

subject to the following constraints:   

 

 𝑦𝑖(𝜔𝑖
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖⁡⁡⁡⁡⁡where⁡𝑖⁡ = 1,2,3, … , N, (3.5.19) 

 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜉𝑖 ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡where⁡𝑖⁡ = 1,2,3, … , N. (3.5.20) 

   

 

The parameter C is the regularisation term that is based on the optimisation goal. It controls 

the trade-off between the margin size and misclassification error. As C increases, the margin 

gets smaller (SVM prioritises the minimisation of the number of misclassification errors). As 

C decreases, the number of misclassifications allowed increases (SVM prioritises the 

maximisation of the margin between the classes) (Rampisela & Rustam, 2018). 

 

The problem in dual form for the soft margin SVM is given by 

 𝑚𝑎𝑥𝜆⁡(∑𝜆𝑖 −⁡
1

2

𝑁

𝑖=1

∑𝜆𝑖

𝑁

𝑖⁡𝑗⁡

𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗), (3.5.21) 

 

 

subject to the following constraints:  

 
∑𝜆𝑖

𝑁

𝑖=1

𝑦𝑖 = 0, 

 

0 ≤ 𝜆𝑖 ≤ 𝐶⁡⁡⁡𝑖 = 1,2,3, … ,𝑁. 

(3.5.22) 

 

The difference between the hard margin dual problem and the soft margin dual problem is that 

the dual variable for the soft margin is upper bounded by C (Awad & Khanna, 2015; Nayaket 

al., 2015). 
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The SVM method can be extended to cater for cases where a nonlinear boundary exists by 

using a kernel function (Jakkula, 2006). A kernel function is used to project the input data to 

a higher dimensional space by the function ϕ. The SVM will then try to obtain the optimal 

linear separating hyperplane in the higher dimensional space (Srivastava & Bhambhu, 2010). 

When kernels are utilised, all computations are carried out in the input space and no 

computations are performed in the higher dimensional space. The hyperplane in the input space 

corresponds to a nonlinear decision function, which is based on the kernel used (Hearst et al, 

1998). Mercer’s conditions need to be satisfied when using the kernel method. 

 

The kernel function is defined below: 

 K(x𝑖, x𝑗) = φ(x𝑖)φ(x𝑗), (3.5.23) 

   

where the φ(𝑥) maps 𝑥 E⁡𝑅𝑛 to a higher dimensional feature space and belongs to the Hilbert 

space. φ(x𝑖)φ(x𝑗)⁡⁡can be replaced by K(x𝑖 , x𝑗)⁡in the classification algorithm (Rampisela & 

Rustam, 2018).   

 

The primal form for the problem is given below: 

 𝑚𝑖𝑛𝜔,𝜉
1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 ,  (3.5.24) 

 

subject to the following constraints: 

 𝑦𝑖(𝜔
𝑇φ(x𝑖) + 𝑏) ≥ 1 − 𝜉𝑖⁡⁡⁡and⁡⁡⁡𝜉𝑖 ≥ 0⁡∀𝑖. (3.5.25) 

 

The KKT conditions will also need to be satisfied when using the kernel method to separate 

data (Awad & Khanna, 2015). 

 

The dual form for the problem is shown below: 

 

 𝑚𝑎𝑥𝜆⁡(∑𝜆𝑖 −⁡
1

2

𝑁

𝑖=1

∑𝜆𝑖

𝑁

𝑖⁡𝑗⁡

𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗), (3.5.26) 

 

subject to the following constraints:  

 ∑𝜆𝑖

𝑁

𝑖=1

𝑦𝑖 = 0. (3.5.27) 

 

The kernel function is chosen, based on the problem. Equations (3.5.28), (3.5.29) and (3.5.30) 

display kernel functions that are commonly utilised: 
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• Linear kernel 

 K(x𝑖 , x𝑗) = x𝑖
𝑇x𝑗 + C.⁡ (3.5.28) 

 

• Polynomial  

 K(x𝑖 , x𝑗) = (𝛾x𝑖
𝑇x𝑗 + r)𝑑 ⁡⁡⁡⁡, 𝛾 > 0. (3.5.29) 

 

• Radial basis function 

 K(x𝑖, x𝑗) = ⁡ 𝑒
−𝛾||x𝑖−x𝑗||

2

⁡⁡⁡⁡, 𝛾 > 0. (3.5.30) 

 

where 𝛾, 𝑟⁡𝑎𝑛𝑑⁡𝑑 are kernel parameters. 

 

 

3.6 Naive Bayesian algorithm 
 

The Naive Bayesian algorithm is a statistical classification method that was proposed by 

Thomas Bayes, a British scientist (Wibawa et al., 2019). It is a Bayesian network that is based 

on the Bayesian theorem, combined with the assumption of independence among features 

(Ginting et al., 2018). The Naïve Bayesian classifier classifies data by identifying the class with 

the maximum posterior probability given a set of features that were observed. The new 

observation is then assigned to this class (Demichelis et al., 2006).  

 

The formula for the Bayesian theorem on which the Naïve Bayesian classifier is based, is given 

by 

 

 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌) ∗ 𝑃(𝑌)

𝑃(𝑋)
, 

(3.6.1) 

 

where                                                                                                                                                  

X:            A feature vector for an observation with n features values, i.e., X = (x1, x2,…, x𝑛).                               

Y:            The hypothesis that an observation belongs to a specific class.                                                     

P(X):      Prior probability of X, regardless of Y.                                                                      

P(Y):       Prior probability of Y, regardless of X.                                                                      

𝑃(𝑋|𝑌):  Conditional probability of X, given hypothesis Y.                                                                  

.                This is referred to as the posterior probability of X or the conditional probability.                                                                 

𝑃(𝑌|𝑋):  Probability of hypothesis Y, given the feature vector X (posterior probability of Y) 

(Demichelis et al, 2006; Gangrade & Patel, 2012).                                                                   
                                                                                                                           .                                                                                                                                         

The Bayesian theorem uses P(X), P(Y) and 𝑃(𝑋|𝑌) to determine the posterior probability 

𝑃(𝑌|𝑋) (Gao, Zeng, & Yao, 2019). The Naïve Bayes classifier calculates the probability of an 

observation belonging to a specific class by using the Bayes formula (Liu et al., 2014). 
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The Naïve Bayesian algorithm is often referred to as naïve, as it is based on a very strong 

assumption, namely the class independence assumption. This means that the effect of a 

particular feature in a class is assumed to be independent of the other features in the class. In 

our study, we aim to classify an applicant as default or not default, based on the applicant’s 

age, salary, credit history et cetera. These features will be considered independently, even if 

they are interdependent. The independence assumption is often not true in the real world; 

however, the model is often still able to generate reliable results for classification (Jang et al., 

2015). The assumption is made in order to simplify the computation of 𝑃(𝑋|𝑌), as discussed 

below (Gao, Zeng, & Yao, 2019).  

Consider a sample of observations where each observation has a feature vector X with n 

features, that is, x1, x2,…, x𝑛, and each observation needs to be assigned to a class Y.  

Since the Naive Bayes classifier assumes independence of class conditions, the formula for the 

Naïve Bayes theorem can be written as 

 𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦)

𝑛
𝑖=1

𝑃(𝑥1)𝑃(𝑥2)…𝑃(𝑥𝑛)
. (3.6.2) 

 

Since 𝑃(𝑋) is constant for all classes, only the prior probability 𝑃(𝑦) and the conditional 

probability 𝑃(𝑥𝑖|𝑦) will need to be computed (Berrar, 2018). 

That is, 

 𝑃(𝑦|𝑥1, … , 𝑥𝑛) ⁡∝  𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦).
𝑛
𝑖=1  (3.6.3) 

 

 

We can estimate 𝑃(𝑌 = 𝑦) by using the following formula: 

 𝑃(𝑌 = 𝑦) =
𝑁𝑦
|𝐷|

, (3.6.4) 

 

where                                                                                                                                                       

𝑁𝑦   : number of observations in class Y and                                                                                      

|𝐷|  : number of observations in the training set D (He et al., 2012).          

                                                          

The method used to calculate 𝑃(𝑥𝑖|𝑦) depends on whether the data are categorical or 

continuous. If the data are categorical, equation (3.6.5) can be used to estimate the conditional 

probability 

 
𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) = ⁡

𝑁𝑦𝑖⁡

𝑁𝑦⁡
, 

 

(3.6.5) 

where                                                                                                                                                 

𝑁𝑦   : number of observations in class Y and                                                                                         

𝑁𝑦𝑖  : the number of observations in class Y where 𝑋𝑖 = 𝑥𝑖 (He et al., 2012).                                                                
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When the data is numeric, kernel density estimation can be used to estimate 𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦), 
which is given by 

 𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) = ⁡
1⁡

𝑁𝑦ℎ𝑖
𝑦
⁡
∑𝐾(

𝑥𝑖 − 𝑥𝑖,𝑘

ℎ𝑖
𝑦 )

𝑁𝑦

𝑘=1

, (3.6.6) 

where                

𝑁𝑦 is the number of observations in class Y                                                                                                                                                                                                                               

K    : kernel function,                                                                                                                              

ℎ𝑖
𝑦

  : smoothing parameter for the i-th feature in class Y, and                                                                  

𝑥𝑖,𝑘 : i-th feature in the k-th sample for Class Y (He et al., 2012).                                                                                          

 

According to He et al. (2012), the standard Gaussian function is often used as the kernel 

function and is given by 

 
𝐾(𝑥) =

1

√2𝜋
exp (−

1

2
𝑥2). 

 

(3.6.7) 

 

The Naïve Bayes Classifier utilizes the equation; 𝑃(𝑦|𝑥1, … , 𝑥𝑛) = 𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦)
𝑛
𝑖=1  to 

estimate the probability of an observation belonging to each class. During the classification 

phase, the Naïve Bayes classifier, given by equation (3.6.8) (Krichene, 2017), is used to 

identify the class with the highest probability and the new observation will be assigned to it: 

 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦)∏𝑃(𝑥𝑖|𝑦).

𝑛

𝑖=1

 (3.6.8) 

 

 

3.7 K-nearest neighbours 
 

The k-nearest neighbours (K-NN) algorithm was initially proposed by Fix and Hodges (1951) 

and was later modified by Cover and Hart (1967). K-NN is a non-parametric algorithm that 

can be used to solve both classification and regression problems. It has gained popularity due 

to its simplicity and easy implementation and is often used as a baseline classifier in 

classification problems (Hu et al, 2016).   

K-NN is a distance-based classification algorithm that assigns a new observation to a class by 

calculating the distance between the new observation and the observations in the training set 

in order to find the new observation’s nearest neighbours. The new observation is then 

classified according to its k-nearest neighbours by using the majority rule (Ali et al., 2019). 

This classifier is often referred to as a lazy learner. Lazy learners are memory-based algorithm 

in which the learning phase is usually quite simple, whereas most of the work is done in the 

classification phase. A K-NN classifier stores the training data during the learning phase and 
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only uses them in the classification phase when new observations need to be classified 

(Mazinani & Fathi, 2015). 

There are four main steps in the K-NN process. During the first step, the number of k-nearest 

neighbours used in the algorithm will need to be selected. The ‘k’ in k-nearest neighbours is a 

parameter used to define the number of nearest neighbours that are included in the voting 

process (Ali et al., 2019). The value of k may significantly impact the performance of the K-

NN algorithm, as it may alter the prediction.  

From Figure 3.5, we observe that if the value of k was set to 5, the model would predict that 

the new data point belonged to Class B. However, if the value of k was set to 12, the model 

would predict that the new data point belonged to Class A. 

 

Figure 3. 5: Impact of selected k value on model’s prediction 

A k-value that is too small will result in overfitting, whereas one that is too large will result in 

underfitting. Common methods utilised when selecting the k-parameter are discussed below. 

• An odd value is usually chosen to prevent ties in the voting process when the output is 

binary.  

• K = 1 is the simplest form of the K-NN rule and is often used as a benchmark, as it 

provides reasonable results (Hu et al., 2016). 

• When assigning k, a fixed value method across all test samples may be used (Zhang et 

al., 2018). 

• Lall and Sharma (1996) mentioned using k = N^(0.5) as the fixed optimal k-value 

across different test samples when the number of training samples N > 100. 

• The alternative to assigning a fixed optimal k-value for all test samples is to assign 

different optimal k-values for each test sample (Zhang et al., 2018). There are different 

methods available that may be used. For example, the algorithm can be run multiple 

times, using different values for k each time. The k-value that results in the best 

performance is the one that should be chosen (Guo et al., 2003).  

 

During the second step, a distance metric needs to be selected. There are numerous methods 

available that may be used to compute the distance between two points. Some of the common 

distance calculations used in K-NN to measure the distance between two vectors⁡𝑥 and 𝑦, where 

𝑥 = {𝑥1, 𝑥2,…., 𝑥𝑛} and 𝑦 = {𝑦1, 𝑦2,…., 𝑦𝑛}, are given below: 
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• Minkowski distance measure 

 𝐷𝑀𝑖𝑛𝑘(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑝
𝑛

𝑖=1

.
𝑝

 (3.7.1) 

This is a generalised metric where 𝑝 is a positive value, 𝑥𝑖 is the ith value in the vector 

𝑥, and 𝑦𝑖 is the ith value in the vector y (Alfeilat et al., 2019). 

 

• Manhattan distance measure 

 𝑀𝐷(𝑥, 𝑦) =∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

. (3.7.2) 

This is a special case of the Minkowski distance measure where 𝑝 = 1 (Alfeilat et al., 

2019). 

 

• Euclidean distance measure 

 𝐸𝐷(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|2
𝑛

𝑖=1

. (3.7.3) 

This is a special case of the Minkowski distance measure where 𝑝 = 2. The Euclidean 

distance measure is an extension to the Pythagorean theorem (Alfeilat et al., 2019). 

 

• Normalised Euclidean distance measure 

 𝑁𝐸𝐷(𝑥, 𝑦) = √
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1

𝑛
. (3.7.4) 

 

• Hamming distance metric 

 𝐻𝑎𝑚𝐷(𝑥, 𝑦) =∑1𝑥𝑖≠𝑦𝑖

𝑛

𝑖=1

. (3.7.5) 

The Hamming distance metric measures how many mismatches there are between two 

vectors (Hamming, 1958). 
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• Pearson correlation distance measure 

 
𝑃𝑒𝑎𝐷(𝑥, 𝑦) = 1 −⁡

∑ (𝑥𝑖 ⁡− ⁡ 𝑥̅) ⁡∗ ⁡ (𝑦𝑖 ⁡− ⁡𝑦̅)𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2 ∗ ⁡∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 ⁡𝑛

𝑖=1

⁡. 

 

(3.7.6) 

Pearson correlation distance measures the linear relationship between two vectors. The 

Pearson correlation coefficient is used to derive the Pearson correlation distance 

(Alfeilat et al., 2019). 

 

According to Hu et al. (2016), the Euclidean distance method is the most popular distance 

metric used in literature. 

During the third step, the distance between the new data point and each training data point is 

calculated (using the chosen distance metric) (Ali et al., 2019). The final step involves sorting 

the data points based on their distance away from the new observation and identifying the k-

nearest neighbours (where k was selected during step one). The majority voting rule is then 

used to assign the new observation to a class, that is, the new observation is assigned to the 

most common class among those k data points (Ali et al., 2019). 

 

 

3.8 Artificial neural network 
 

In 1943, Warren McCulloch, a neurophysiologist, and Walter Pitts, a mathematician, 

introduced a simple neural network, which was the first step towards the artificial neural 

network (ANN) (McCulloch & Pitts, 1943). The latter is a modelling tool used for pattern 

classification problems. It has non-parametric, non-linear and adaptive learning properties (Hu 

et al., 1999). ANNs aim to replicate the human brain, which is made up of interconnected cells 

called neurons. The neurons in the artificial network strive to copy the structure and behaviour 

of these human cells (Shiruru et al., 2016).  

The artificial neural network comprises different layers of interconnected cells; the complexity 

of this network depends on the complexity of the problem. ANN models used for classification 

problems are either feed-forward or feed-back neural networks, which are also known as back-

propagation neural networks. In feed-forward neural networks, information flows in a single 

direction. The simplest artificial neural network is called a single-layer perceptron, which only 

has an input layer and an output layer, whereas a multiple layer perceptron has an input layer, 

at least one hidden layer, and an output layer. A feed-back neural network has at least one 

hidden layer and one feedback loop (Shahid et al., 2019).  

This study focuses on the feed-back neural network, which uses an iterative process in order to 

train the model.  Figure 3.6 illustrates the architecture of a feed-back neural network with one 

hidden layer, such that the network includes three layers, namely the input layer, the hidden 

layer and the output layer. The feed-back neural network consists of two phases i.e., forward-

propagation and back-propagation. During the forward-propagation phase, information moves 

forward through the network, from input layer to hidden layer and then to output layer. During 
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this phase, the network produces an output value, which is a prediction. During the back-

propagation phase, information is propagated backward through the network and used to adjust 

the weights in order to minimise the error between the predicted output and actual value.  

 

Figure 3. 6: Structure of a feed-back neural network 

 

All artificial neural networks comprise the following components: the input signals, weights, 

bias, activation function, and the output. Figure 3.7 represents the architecture of a simple 

neural network:  

 

 

Figure 3. 7: Structure of a simple neural network 

 

The feed-back neural network is more complex in comparison to the architecture of the neural 

network shown in Figure 3.7, as it includes at least one hidden layer and one feedback loop; 

however, the components within the input layer, hidden layer/s and output layer are similar.  

In feed-back neural networks, the input data from the external environment are received by the 

input layer. The data do not undergo any transformations in this layer. The input information 

is multiplied by weights and sent through to the processing components of the hidden layer in 

the artificial neural network (Lallahem & Mania, 2002). Each input in the neural network has 

a corresponding weight. These weights are initially randomly assigned (Pasini, 2015); they 

may be positive, negative, or zero. Inputs multiplied by the corresponding weights produce the 

strength of a signal (Shiruru et al., 2016).  

The weighted inputs from the input layer (assuming one hidden layer only) are received by the 

hidden layer; the latter is required when there are complex patterns in the data. A feed-back 

neural network contains one or more hidden layers, which are found between the input layer 
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and the output layer (Hu et al., 1999). Generally, by adding more hidden layers, we can improve 

the performance of the model; however, adding too many hidden layers may result in 

overfitting (Moon et al., 2019). In the hidden layer, an activation function is applied to the 

weighted sum of the inputs and the bias term in order to transform the inputs. This is given by 

 𝑦𝑖 = 𝜎(⁡∑𝑤𝑖𝑥𝑖 ⁡+ 𝑏𝑖)

𝑛

𝑖=1

, (3.8.1) 

where 𝑥𝑖 is representative of the inputs, 𝑤𝑖 is the weight assigned to each input, 𝑏𝑖 is the bias 

term that allows one to shift the activation function, 𝜎⁡is the activation function, and 𝑦𝑖 is the 

output value of the neuron. The activation function uses the strength of the signal to determine 

whether the neuron should be activated and whether the signal from the hidden layer will be 

passed on to the next neuron (Oken, 2017).  

In the absence of an activation function, the output of each layer can range from anything 

between -∞ and +∞, and each layer’s outputs will be a linear function of the layer’s inputs. The 

activation function adds non-linearity to the outputs and allows the output to range from 0 to 1 

or from -1 to 1. It also allows for back propagation, where the gradients and error information 

are used to adjust weights and biases. There are two types of activation functions, namely linear 

and non-linear activation functions. Non-linear activation functions are more popular in 

comparison to the linear functions, as they allow the model to generalise easily as well as 

differentiate between outputs (Feng & Lu, 2019). The sigmoid function, tangent hyperbolic 

function (tanh), and rectified linear unit function (ReLU) are commonly used non-linear 

activation functions and are given by the following equations: 

 

Sigmoid function:  

 f(xi) =
exi

1 +⁡exi
 

               

(3.8.2) 

 

Tangent hyperbolic function: 

 tanh⁡(𝑥𝑖) =
sinh⁡(𝑥𝑖)

cosh⁡(𝑥𝑖)
        (3.8.3) 

 

Rectified linear unit function (ReLU): 

 f(𝑥𝑖) = max(0, 𝑥𝑖) = {
𝑥𝑖⁡,⁡⁡⁡𝑥𝑖 > 0
0⁡⁡,⁡⁡⁡𝑥𝑖 < ⁡0

⁡       (3.8.4) 

 

where 𝑥𝑖 is the input of the activation function f (Feng & Lu, 2019). 
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According to Feng and Lu (2019), ReLU, which was proposed by Nair and Hinton (2010), is 

one of the most popular activation functions used in the hidden layer in ANN, as it can correct 

the vanishing gradient problem that the Sigmoid function and Tanh function face. The 

disadvantage of ReLU is that it suffers from the dying ReLU problem, where weights cannot 

be adjusted during back propagation when the gradient is 0; this happens when inputs are 

negative. New activation functions were proposed to improve the ReLU function, for example, 

the Leaky ReLU function, Parametric ReLU function and randomised ReLU function (Feng & 

Lu). Bing et al. (2015) compared the performance of the different ReLU functions and found 

that the modified ReLU functions all performed better than the original ReLU function. 

The activation function in the hidden layer determines whether the neuron will fire or not. The 

output from the hidden layer is then multiplied by a second set of weights and passed to the 

output layer, where it is summed together along with a bias term and transformed by using 

another activation function (assuming there is one hidden layer in the network). According to 

Feng and Lu (2019), the sigmoid function is one of the most commonly used activation 

functions in the outer layer for a binary classification problem where the output is either 0 or 

1. Since the sigmoid function outputs a value that ranges from 0 to 1, the sigmoid function 

output value can be easily interpreted as a prediction of 0 if the output value is less than 0.5, 

and 1 if the output value is greater or equal to 0.5. 

The initial output value from the output layer determines the model’s initial prediction. The 

predicted value is then compared to the actual value in order to calculate the error. The smaller 

the error, the closer the prediction is to the actual observation. The aim is to construct a function 

such that the predicted value will be equal to the actual target value, that is, 𝑦𝑖 = 𝑡𝑖 where 𝑦𝑖 is 

the predicted value and 𝑡𝑖 the actual target value. To obtain the function, an error function can 

be used and the parameters that minimise the error function will need to be identified. A 

common error function is the sum of squared error between the actual and predicted value and 

is given by 

 E(𝑤𝑖, 𝑏𝑖) = ⁡
1

2
∑||𝑡𝑖 −⁡𝑦𝑖||

2

𝑝

𝑖=1

,       (3.8.5) 

 

where  𝑡𝑖 is the actual target value and the output, 𝑦𝑖, is dependent on the weights, 𝑤𝑖, and the 

bias term,⁡𝑏𝑖. In order to minimise the error function, 𝑤𝑖 and 𝑏𝑖 will therefore need to be 

adjusted appropriately (Oken, 2017). The information obtained from the error calculation is 

propagated backwards into the neural network, which is then used to update and change the 

weights and bias terms in the model. Thus, in training the model, you are adjusting the weights 

assigned to the signals (Hu et al., 1999). The weights can be adjusted via gradient descent. 

These new weights are then used in the neural network to recalculate the model’s output and 

thereafter, by using the new predicted value, the error is recalculated; this information is then, 

once again, propagated backwards into the neural network and the weights and bias terms are 

adjusted again. The cycle of moving from input to output and then from output to input is 

known as an epoch. This process is repeated until the neural network learns the training data 

and the error is within a certain threshold. The backward process is called ‘back propagation’ 

and the back-propagation algorithm is used to reduce the error (Shiruru et al., 2016). 
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Gradient descent optimisation is one of the most popular algorithms used to optimise an 

artificial neural network by minimising the error function (Feng & Lu, 2019). In order to 

minimise the error by adjusting the weights using the gradient descent method, the derivatives 

of the error with respect to the weights and the bias in the artificial neural network need to be 

calculated. For each iteration, the weights and biases are updated in the opposite direction of 

the error function’s gradient, in other words, a positive derivative implies that the error function 

will increase if the weights are increased; therefore, the weights should be decreased. A 

negative derivative implies that the error function will decrease if the weights are increased; 

therefore, the weights should be increased. If the derivative is zero, the weights should not be 

changed, as this shows that the model has reached a stable point (Tawfiq & Thirthar, 2013). 

There are three variants of gradient descent, namely stochastic gradient descent, batch gradient 

descent and mini-batch gradient descent. When stochastic gradient descent is used, weights are 

adjusted after each observation goes through the neural network; when batch gradient descent 

is used, weights are adjusted after all observations go through the neural network; and when 

mini-batch gradient descent, which is a combination of both methods, is used, small batches of 

data run through the neural network each time (Ruder, 2017). 

 

 

3.9 Evaluation metrics  
 

Sections 3.2 to 3.8 outlined the following machine learning models: logistic regression, 

decision trees, random forest, k-nearest neighbours, the Naïve Bayes algorithm, support vector 

machines and artificial neural networks. We train each model by using labelled data and the 

trained models are used to make predictions on unseen data. The model’s ability to make 

correct predictions is evaluated in order to understand how well the model has performed. In 

this section, the confusion matrix as well as evaluation metrics such as accuracy, balanced 

accuracy, precision, recall, Area under ROC curve (AUC score) and the Gini coefficient are 

discussed.  

The confusion matrix is a visual representation that summarises a classification algorithm’s 

performance. It comprises four possible outcomes, namely true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN). In this study, a positive case represents a 

client who defaulted on his or her loan at least three times in the first 12 months of the loan 

being granted, whereas a negative case represents a client who did not default on his or her 

loan at least three times in the first 12 months of the loan being disbursed. Thus, TP, FP, TN 

and FN can be defined as follows: 

True positive (TP): TP represents the number of times the classification algorithm correctly 

predicted that the clients defaulted on their loan.     

False positive (FP): FP represents the number of times the classification algorithm incorrectly 

predicted that the clients defaulted on their loan.     

True negative (TN): TN represents the number of times the classification algorithm correctly 

predicted that the clients did not default on their loan.                              
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False negative (FN): FN represents the number of times the classification algorithm incorrectly 

predicted that the clients did not default on their loan.                  

 

Table 3.1 displays the structure of a confusion matrix. TP, FP, TN and FN can be used to derive 

evaluation metrics such as accuracy, balanced accuracy, true positive ratio, true negative ratio, 

positive predictive value, negative predictive value and false positive rate. 

 
Table 3. 1: Structure of a confusion matrix that illustrates the TP, FP, TN and FN 

 Predicted client defaulted Predicted client did not default 

Client defaulted True positive (TP) False negative (FN) 

Client did not default False positive (FP) True negative (TN) 
 

 

Accuracy: This represents how often the model classifies observations correctly. It can be 

computed as 
TP+TN

TP+TN+FP+FN
. Accuracy is not very reliable when the dataset is imbalanced.  

Balanced accuracy: The balance accuracy ratio describes the overall accuracy of the model 

while taking into consideration the imbalance in the dataset. The balance accuracy is computed 

as 
TPR⁡+⁡TNR

2
  where 𝑇𝑃𝑅 =

TP

TP+FN
 and 𝑇𝑁𝑅 =

TN

TN+FP
. 

True positive ratio (Sensitivity/Recall): Recall describes the proportion of positive cases that 

the classification algorithm identified correctly. True positive ratio is computed as 
TP

TP+FN
.  

True negative ratio (Specificity): Specificity describes the proportion of negative cases that 

the classification algorithm identified correctly. True negative ratio is computed as 
TN

TN+FP
.  

Positive predictive value (Precision): Precision represents the proportion of observations that 

the classification algorithm correctly identified as positive cases of the total number of 

observations classified as positive cases. Precision is computed as 
TP

TP+FP
. 

Negative predictive value: This value represents the proportion of observations that the 

classification algorithm correctly identified as negative cases of the total number of 

observations classified as negative cases. Negative predictive value is computed as 
TN

TN+FN
. 

False positive rate: This rate describes the proportion of negative cases that the classification 

algorithm incorrectly identified as positive cases. False positive rate is computed as 
FP

FP+TN
 

(Arjaria et al., 2021). 

 

ROC curve: The receiver operating characteristic curve (ROC curve) is used to analyse a 

classification algorithm’s performance, based on its ability to discriminate between classes. It 

is a plot of the true positive rate (TPR) against the false positive rate (FPR) under different 

thresholds  (Schechtman & Schechtman, 2019). Each point on the graph is a different threshold 
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and together, all the points form the curve. The curve shows how the performance of the 

classifier changes as the threshold is changed. Figure 3.8 illustrates an example of a ROC curve. 

 

Figure 3. 8: Example of a ROC Curve 

 

AUC score (area under the ROC curve): This is a single score that summarises the ROC 

plot. It is used to measure the ability of a classification algorithm to distinguish between 

positive and negative classes and can be used to compare the different models. The AUC value 

ranges from 0 to 1. A model will have an AUC value of 0 if all its predictions are wrong and a 

model that predicts 100% correctly will have an AUC value of 1. An AUC value of 0.5 is just 

as good as a random guess (Singpurwalla & Lai, 2020). 

Gini coefficient: The Gini can be computed as (2*AUC) – 1 (Hand & Till, 2001). The 

relationship between AUC and Gini is linear. The Gini coefficient ranges from -1 to 1 where a 

random classifier has a score of 0 and a perfect classifier has a score of 1. 

 

In this chapter several machine learning classification algorithms and evaluation metrics were 

discussed. In the next chapter, empirical results obtained when fitting these classification 

models to the default dataset using the PCA approach are presented. 
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Chapter 4 

4 Classification with PCA 
 

Each classification algorithm discussed in Chapter 3 was fitted to the balanced default dataset 

using the PCA approach, discussed in Chapter 2, to reduce the dimension of the dataset and to 

correct the dataset for multicollinearity. In this chapter, the confusion matrix and evaluation 

metrics, discussed in Chapter 2, are presented and examined for each model in order to identify 

the one which was most appropriate for the classification problem under study when using the 

PCA approach. 

 

 

4.1 Logistic regression 
 

Logistic regression models the probability of a discrete target variable given a set of input 

variables. In this study, the target variable is the default status of a client. The logistic regression 

model was fitted to the balanced default dataset and the results are examined. 

The researcher assesses the fit of the model using the deviance test (discussed in Chapter 2) 

which is presented in Table 4.1; thereafter, the researcher analyses the maximum likelihood 

parameter estimates, p-values and odds ratios associated with each variable. 

Table 4. 1: Deviance test for logistic regression model 

Deviance statistic (D) dof (n-p) Deviance statistic/dof 

18591 14454                                    1.286 

 

Table 4.1 reports a deviance statistic/dof of 1.286 where the deviance statistic is 18591 and 

degrees of freedom (dof) are 14454. Since D/(n-p) = 1.286 < 1.5, we conclude that the model 

fits the data well. 

The maximum likelihood parameter estimates and p-values for the fitted logistic regression 

model are presented in Table 4.2a.  

 

Table 4. 2a: Maximum Likelihood Parameter estimates, and p-values for the fitted logistic regression model 

  

Parameter 

estimate 
p-value 

Intercept 0.617 <0.001*** 

principalcomponent1 -0.089 <0.001*** 

principalcomponent2 -0.517 <0.001*** 

principalcomponent3 0.182 <0.001*** 

principalcomponent4 -0.074 <0.001*** 

principalcomponent5 0.056 0.003*** 
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principalcomponent6 0.063 <0.001*** 

principalcomponent7 0.186 <0.001*** 

Gender_M 0.388 <0.001*** 

LowerOffer_Yes 0.037 0.406 

Married_Yes -0.148 <0.001*** 

Weekly/Monthly_Weekly 0.019 0.612 

Internal Living Expenses Rule_Yes 0.108 <0.001*** 

Unpaids_Yes 0.301 <0.001*** 

Taking Max_Yes 0.56 0.002*** 

PayslipExpenses_Yes -0.034 0.368 

Permanent Allowances_yes -0.004 0.891 

Overtime_yes 0.022 0.486 

Union fees_yes -0.089 0.011** 

Pensionprovident_yes -0.021 0.565 

Medicalaid_yes -0.26 <0.001*** 

Client Type_New -0.112 0.044** 

Client Type_Reload -0.286 <0.001*** 

Insurance_yes -0.175 <0.001*** 

Salary Bank_2 -0.068 0.334 

Salary Bank_3 -0.129 0.104 

Salary Bank_4 -0.276 <0.001*** 

Salary Bank_5 0.007 0.832 

PersonalLoan_yes 0.084 0.074* 

VehicleLoan_yes -0.047 0.374 

HomeLoan_yes -0.292 <0.001*** 

Product Taken_PL New 0.400 <0.001*** 

Product Taken_PL Repeat 0.169 0.009*** 

Product Taken_Staff -0.964 <0.001*** 

Product Taken_VL 0.005 0.902 

InstallmentLoan_yes 0.073 0.104 

Limiting Rule_2 0.003 0.952 

Limiting Rule_3 0.148 0.006*** 

Limiting Rule_4 0.444 <0.001*** 

External Subsequent Lending_Yes 0.69 <0.001*** 

CreditCard_yes -0.119 0.019** 

RevolvingCredit_yes -0.167 <0.001*** 

Credit Inactive_yes 0.039 0.546 

Loan Purpose_Family Crisis 0.047 0.414 

Loan Purpose_Housing and Ralated -0.026 0.617 

Loan Purpose_Other -0.043 0.38 

Loan Purpose_Other Emergency -0.018 0.77 

PropertyOwner_yes 0.016 0.845 

Arrearrs_1 0.173 <0.001*** 

Note: ***, ** and * indicate significance at 1%, 5% and 10% level of significance respectively 
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From Table 4.2a, principalcomponent1, principalcomponent2, principalcomponent3, 

principalcomponent4, principalcomponent5, principalcomponent6, principalcomponent7, 

Gender_M, Married_Yes, Internal Living Expenses Rule_Yes, Unpaids_Yes, Taking 

Max_Yes, Medicalaid_yes, Client Type_Reload,  Insurance_yes, Limiting Rule_3, Salary 

Bank_4,  HomeLoan_yes, Product Taken_PL New, Product Taken_PL Repeat, Product 

Taken_Staff, External Subsequent Lending_Yes, Limiting Rule_4, RevolvingCredit_yes and 

Arrearrs_1  are significant at 1% level of significance,  Union fees_yes, Client Type_New, and 

CreditCard_yes are significant at 5% level of significance and PersonalLoan_yes is significant 

at 10% level of significance. Thus, these 29 variables influence the prediction of loan defaulting 

clients; the estimates indicate how much they influence it. The researcher exponentiated the 

maximum likelihood parameter estimates (𝛽𝑖 coefficients) to obtain the odds ratio estimates, 

as the odds ratios can be interpreted more easily. Table 4.2b lists the 29 significant variables in 

the fitted logistic regression model and provides an interpretation of the odds ratio estimates 

for each variable. 

 

Table 4.2b: Interpretation of the odds ratio estimates for the 29 significant variables in the fitted logistic regression 

model  

Variable 

Odds 

ratio 

estimates 
Interpretation 

principalcomponent1 0.915 

One unit increase in principalcomponent1 is associated 

with an 8.5% ((1 – 0.915) x 100%) reduction in the odds 

of a client defaulting when all other variables are held 

constant 

principalcomponent2 0.596 

Increasing principalcomponent2 by one unit, decreases 

the odds of a client defaulting on their loan by 40.4%  

((1 – 0.596) x 100%)  when all other variables are held 

constant 

principalcomponent3 1.200 

One unit increase in Principalcomponent3 is associated 

with a 20% ((1.2-1)*100%) increase in the odds of a 

client defaulting, holding all other variables constant 

principalcomponent4 0.929 

Each unit increase in principalcomponent4 reduces the 

odds of a client defaulting by 7.1%                                      

((1 – 0.929) x 100%), holding all other variables 

constant 

principalcomponent5 1.057 

Each unit increase in principalcomponent5 increases the 

odds of a client defaulting by 5.7% ((1.057-1)*100%), 

when all other variables are held constant 

principalcomponent6 1.065 

One unit increase in Principalcomponent6 is associated 

with a 6.5% ((1.065-1)*100%) increase in the odds of a 

client defaulting when all other variables are held 

constant 

principalcomponent7 1.204 

A single unit increase in principalcomponent7 increases 

the odds of a client defaulting on their loan by 20.4% 

((1.204-1) x 100%),  holding all other variables constant 

Gender_M 1.474 

Gender_M (male) is associated with a 47.4%                              

((1.474 – 1) x 100%) increase in the odds of a client 
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defaulting when all other variables are held constant 

(Gender_M is equal to 1 if male and 0 if female) 

Married_Yes 0.863 

Married is associated with a 13.7%                               

((1-0.863)*100%)  decrease in the odds of a client 

defaulting when all other variables are held constant 

(Married_Yes is equal to 1 if married and 0 if  not 

married) 

Internal Living Expenses 

Rule_Yes 1.114 

The odds of a client defaulting increases by 11.4% 

((1.114-1)*100%) if the internal living expenses rule is 

used, holding all other variables constant 

Unpaids_Yes 1.351 

The odds of a client defaulting increases by 35.1% 

((1.351 – 1) x 100%)  if the client has unpaids, holding 

all other variables constant 

Taking Max_Yes 1.751 

Taking Max is associated with a 75.1%                              

((1.751 – 1) x 100%) increase in the odds of a client 

defaulting when all other variables are held constant 

Union fees_yes 0.915 

The odds of a client defaulting reduces by 8.5%                               

((1-0.915)*100%) if the client pays union fees, holding 

all other variables constant  

Medicalaid_yes 0.771 

When all other variables are held constant, the odds of a 

client defaulting reduces by 22.9% ((1-0.771)*100%)  if 

the client has medical aid 

Client Type_New 0.894 

Client Type New is associated with a 10.6%                   

((1-0.894)*100%)  decrease in the odds of a client 

defaulting when all other variables are held constant  

Client Type_Reload 0.751 

There is a 24.9% ((1-0.751)*100%) decrease in the odds 

of a client defaulting when client type is reload, holding 

all other variables constant 

Insurance_yes 0.839 

If a client pays insurance, the odds of defaulting 

decreases by 16.1% ((1-0.839)*100%), when all other 

variables are held constant 

Salary Bank_4 0.759 

The odds of a client defaulting reduces by 24.1% ((1-

0.759)*100%), if the client’s main bank is Salary Bank 

4, holding all other variables constant 

PersonalLoan_yes 1.087 

If the client has a personal loan, the odds of defaulting 

increases by 8.7% ((1.087 – 1) x 100%) holding all other 

variables constant 

HomeLoan_yes 0.747 

The odds of a client defaulting decreases by 25.3% ((1-

0.747)*100%)  if the client has a home loan, when all 

other variables are held constant 

Product Taken_PL New 1.492 

The odds of a client defaulting increases by 49.2% 

((1.492-1)*100%), if the product taken is PL new, 

holding all other variables  constant 

Product Taken_PL Repeat 1.184 

If product taken is PL Repeat, the odds of a client 

defaulting increases by 18.4% ((1.184-1)*100%), when 

all other variables are held constant 

Product Taken_Staff 0.382 

If product taken is Staff, the odds of a client defaulting 

reduces by 61.8% ((1-0.382)*100%), holding all other 

variables  constant 

Limiting Rule_3 1.159 

The odds of defaulting increases by 15.9% ((1.159-

1)*100%) if the client is limiting by rule 3, holding all 

other variables constant 
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Limiting Rule_4 1.559 

If a client is limiting by rule 4, the odds of defaulting 

increases by 55.9% ((1.559-1)*100%), when all other 

variables are held constant 

External Subsequent 

Lending_Yes 1.893 

External subsequent lending is associated with an 89.3% 

((1.893-1)*100%) increase in the odds of a client 

defaulting when all other variables are held constant  

CreditCard_yes 0.888 

If a client has a credit card, the odds of defaulting 

reduces by 11.2% ((1-0.888)*100%), holding all other 

variables constant (CreditCard_yes is equal to 1 if the 

client has a credit card and 0 if he/she doesn’t) 

RevolvingCredit_yes 0.846 

When all other variables are held constant, the odds of a 

client defaulting reduces by 15.4% ((1-0.846)*100%)  if 

the client has revolving credit 

Arrearrs_1 1.189 

Arrears is associated with an 18.9%                              

((1.189 – 1) x 100%) increase in the odds of a client 

defaulting, holding all other variables constant 

(Arrearrs_1 is equal to 1 if the client was in arrears and 0 

if he/she wasn’t in arrears) 

 

Once the significance of the variables in the model and the impact the variables have on the 

‘default’ target variable is examined, the fitted logistic regression model’s performance is 

analysed. Table 4.3 presents the confusion matrix for the fitted logistic regression model. 

 
Table 4. 3: Confusion matrix for the logistic regression model 

  PREDICTION 

ACTUAL 

CLASS 

                                

  Default Not default Total 

Default    1265    (8.7%)  546    (3.8%)       1811   (12.5%) 

Not default    4735  (32.7%)   7956  (54.9%)      12691  (87.5%)  

Total    6000  (41.4%)   8502  (58.6%)      14502   (100%)  

 

Table 4.3 shows that 1811 clients under study defaulted on their loan, whereas 12691 did not 

default. From Table 4.3 the fitted logistic regression model classified 1265 out of 1811 

defaulters correctly; however, out of 6000 clients whom the model classified as defaulters, 

4735 clients were actually non-defaulters (false positives). Thus, although the fitted logistic 

regression model identified a significant number of clients who defaulted correctly (1265 out 

of 1811), the model also misclassified many non-defaulters as defaulters. This can be attributed 

to the imbalance in the dataset. Table 4.3 also shows that 7956 out of 12691 non-defaulters 

were classified correctly; however, out of 8502 clients who were classified as non-defaulters, 

546 clients were actually defaulters (false negatives). This indicates that although the model 

misclassified a significant number of non-defaulters, the majority of clients who were classified 

as non-defaulters were classified correctly. Overall, the fitted logistic regression model 

classified 9221 out of 14502 clients correctly, resulting in an accuracy score of 63.6%. As 

explained in Chapter 3, since the dataset is imbalanced and the class of interest is the minority 

class (i.e., default), the accuracy score may not be reliable when evaluating the model’s 

performance. Table 4.4 shows several performance metrics the researcher explored to gain 

further insight into the fitted logistic regression model’s performance. 
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Table 4. 4: Performance metrics for the logistic regression model 

Performance metric   

Accuracy 0.636 

Balanced accuracy 0.663 

Sensitivity/True positive ratio/recall 0.699 

Specificity/True negative ratio 0.627 

Precision/Positive predictive value 0.211 

Negative predictive value 0.936 

AUC 0.720 

Gini 0.440 

 

From Table 4.4, a balanced accuracy score of 0.663 is reported, which is close to 70%, and 

therefore acceptable. Since the main focus of this study is to identify clients who default, the 

researcher then examines the true positive ratio to determine whether the model performs well 

when identifying defaulters. The true positive ratio (sensitivity) of 0.699 suggests that the 

model correctly classified approximately 70% of clients who defaulted. Thus, the model 

produces good results when identifying clients who default. Table 4.4 also shows a true 

negative ratio of 0.627, which indicates that the model correctly identified 62.7% of non-

defaulters. This suggests that the model did not perform as well when identifying clients who 

did not default. However, since the cost of misclassifying non-defaulters as defaulters is very 

low, the researcher considers a true negative rate of about 65% and above acceptable. From 

Table 4.3, out of the clients who were classified as defaulters, a substantial portion of them did 

not default on their loan, whereas only a small portion of the clients who were classified as 

non-defaulters, did default on their loan; this is indicated by the low positive predictive value 

of 0.211 and high negative predictive value of 0.936. The low positive predictive value 

(precision) is presumably due to the imbalance in the dataset; the researcher focuses on the 

balanced accuracy, true positive ratio and true negative ratio when assessing the model’s 

performance. 

From the confusion matrix results in Table 4.3 and performance metrics in Table 4.4, the 

researcher concludes that although the logistic regression model did misclassify a considerable 

portion of non-defaulters, i.e., 37.3% (1-62.7%), the model was able to correctly identify a 

significant portion of defaulters (approximately 70%). Thus, the logistic regression model’s 

performance is acceptable as the researcher’s main focus is identifying clients who default, and 

the costs associated with misclassifying non-defaulters is low.  
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4.2 Decision tree 
 

Figure 4.1 shows the structure of the decision tree used to predict the ‘default’ target variable 

under study.  
 

 

 
Figure 4. 1: Decision tree structure 

 

From Figure 4.1, the test feature of the root node, which is the feature that best splits the data, 

is PrincipalComponent2. The internal nodes are all nodes found between the root node and the 

leaf node. Features such as Gender_M, Married_Yes, Taking Max_Yes  et cetera, are tested at 

the internal nodes. Figure 4.1 also shows the leaf nodes that indicate which class the client is 

assigned to according to the model’s prediction (i.e., default or not default). 

To understand the importance of each feature in the decision tree, SHapley Additive 

exPlanations (SHAP) values are used. SHAP is a technique used in game theory to quantify 

how much each player in a team has contributed to the team’s success. In machine learning, 

SHAP values measure the contribution each feature makes to the model’s prediction, while 

taking into consideration the other features in the model. Every feature for every observation 

has a SHAP value. Figure 4.2 presents the mean absolute value of the SHAP values across all 

observations for each feature included in the decision tree, ranked in ascending order of 

importance. 

Root Node 

(PrincipalComponent2) 

 

 Internal Node Eg. 

Gender_M, 

Married_Yes, 

Taking Max_Yes 

Leaf Not                     

(Default or Not Default) 
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Figure 4. 2: Mean absolute SHAP value for each feature in the decision tree 

 

Figure 4.2 shows that principalcomponent2 has the highest mean absolute SHAP value, which 

indicates that it contributes the most to the model’s prediction. Taking Max_Yes is the second 

highest ranked feature, followed by Gender_M. A gradual decrease in mean absolute SHAP 

values for all remaining features in the model is then observed. 
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The researcher then examines the model’s performance. Table 4.5 reports the confusion matrix 

which was obtained by fitting the decision tree algorithm to the balanced default dataset using 

the PCA approach. 

 
Table 4. 5: Confusion matrix for the decision tree algorithm 

  PREDICTION 

ACTUAL 

CLASS 

                 .                 

  Default Not default  Total 

Default  1325     (8.7%)   486     (3.8%)        1811    (12.5%)  

Not default   5285   (32.7%)   7406   (54.9%)   12691    (87.5%)  

Total  6000   (41.4%)   8502  (58.6%)      14502     (100%) 

 

The results in Table 4.5 indicate that the decision tree algorithm correctly classified 1325 out 

of 1811 defaulters and 7406 out of 12691 non-defaulters. This indicates that the decision tree 

seems to classify a significant number of defaulters correctly, however the model appears to 

misclassify a considerable number of non-defaulters. Overall, the model classified 8731 out of 

14502 clients under study correctly, resulting in an accuracy score of 60.2% (8731/14502). 

Evaluation metrics in Table 4.6 are then explored in order to obtain a better understanding of 

the model’s performance. 

 
Table 4. 6: Performance metrics for the decision tree algorithm 

Performance metric   

Accuracy 0.602 

Balanced accuracy 0.658 

Sensitivity/True positive ratio/Recall 0.732 

Specificity/True negative ratio 0.584 

Precision/Positive predictive value 0.200 

Negative predictive value 0.938 

AUC 0.705 

Gini 0.409 
 

Table 4.6 reports a balanced accuracy score of 0.658 which is noticeably higher than the 

accuracy score of 0.602, suggesting that the model performed significantly better when 

predicting the minority class (i.e., default). This is confirmed when observing the true positive 

ratio and true negative ratio of 0.732 and 0.584, respectively, in Table 4.6. The true positive 

ratio of 0.732 indicates that 73.2% of defaulters were correctly identified, whereas the true 

negative ratio of 0.58 indicates that the model only classified 58.4% of non-defaulters correctly. 

Thus, although the model performed well when identifying the default class, which is the focus 

of the study, the model seems unsuitable as it performed poorly when identifying non-

defaulters.  
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4.3 Random forest  
 

A random forest is an ensemble classification algorithm in which the base learners are decision 

trees. Figure 4.3 displays the structure of the first five decision trees in the random forest under 

study. 

 

Figure 4. 3: Structure of the first five decision trees in the random forest 

 

Figure 4.3 shows that the structures of the first five decision trees in the random forest are 

significantly different. Each tree is constructed independently and trained on a subset of 

features and subset of samples selected with replacement. There are 50 trees in the random 

forest under study. Observations are assigned to the class that receives the majority votes. 

The importance of each feature in the random forest is examined by using SHAP values. Figure 

4.4 shows the mean absolute value of the SHAP values across all observations, for each feature, 

ranked in ascending order. 
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Figure 4. 4: Mean absolute SHAP value for each feature in the random forest 

 

From Figure 4.4, PrincipalComponent2 ranked the highest which suggests that it contributed 

the most to the model’s prediction. PrincipalComponent2 contributes significantly more than 

all other features in the model. The feature ranked second highest is Taking Max_yes followed 

by Gender_M. A gradual decrease in the mean absolute SHAP value for all remaining features 

is observed thereafter. 

To gain further understanding of the importance of the features in the dataset and the impact 

they have on the ‘default’ target variable, the researcher examines Figure 4.5, which displays 

the SHAP values of every feature for every observation i.e., each dot on the plot represents the 

SHAP value associated with a feature for a particular observation. The vertical axis shows the 

features included in the model; the features are ranked in ascending order, from least important 
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to most important. The colour indicates whether the feature’s value was large or small. Larger 

values of a feature are indicated by red dots, whereas smaller values are indicated by blue dots.  

The horizontal axis shows the SHAP values which indicate whether the effect of a value, for a 

particular feature, resulted in a higher or lower prediction. A positive SHAP value is associated 

with a higher prediction whilst a negative SHAP value is associated with a lower prediction, 

and when the SHAP value is approximately zero, the feature has negligible or no impact on the 

model itself. Since the default target variable is equal to 1 (higher prediction) when ‘default’ 

and 0 (lower prediction) when ‘not default’, a positive SHAP value is associated with ‘default’ 

and a negative value is associated with ‘not default’.  

 

Figure 4. 5: SHAP values of every feature for every observation in the random forest model 

 

From Figure 4.5, Principalcomponent2 contributes the most to the model’s prediction. Smaller 

Principalcomponent2 values, represented by the colour blue, increase the chance of defaulting, 

as indicated by the positive SHAP values, whereas large Principalcomponent2 values, 

represented by the colour red, decrease the chance of defaulting, as indicated by negative SHAP 
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values. The second most important feature is Taking Max_Yes. Large values of Taking 

Max_Yes imply that the client took the maximum amount offered, whereas small values imply 

that the client did not take the maximum amount offered as Taking Max_Yes is equal to 1 when 

the maximum amount offered is taken and 0 when the maximum amount offered is not taken. 

Figure 4.5 shows that high values of Taking Max_Yes (i.e., maximum amount taken) increase 

the chance of defaulting, as indicated by positive SHAP values, whereas low values of Taking 

Max_Yes (i.e., maximum amount not taken) decreases the chance of defaulting, as indicated 

by negative SHAP values. A similar method can be used to interpret the importance of all other 

features in Figure 4.5. 

The results obtained from the fitted random forest algorithm are then analysed. Table 4.7 

reports the confusion matrix for the random forest algorithm, which shows the number of true 

positives, true negatives, false positives, and false negatives. 

 
Table 4. 7: Confusion matrix for the random forest algorithm 

  PREDICTION 

ACTUAL 

CLASS 

                 .                 

  Default Not default  Total 

Default  1336     (9.2%)   475     (3.3%)      1811    (12.5%)  

Not default   4510   (31.1%)   8181   (56.4%)   12691    (87.5%)  

Total  5846   (40.3%)   8656   (59.7%)    14502     (100%)  

 

The results in Table 4.7 show that the random forest model classified 1336 out of 1811 

defaulters correctly and out of 5846 clients whom the model classified as defaulters, 4510 

clients were actually non-defaulters (false positives). Therefore, although the random forest 

model identified a significant number of clients who defaulted correctly (1336 out of 1811), 

the model also misclassified many non-defaulters as defaulters. Given the nature of the dataset, 

the researcher expects a considerable number of false positives. From Table 4.7, 8181 out of 

12691 non-defaulters were classified correctly, and out of 8656 clients whom the model 

classified as non-defaulters, only 475 clients were actually defaulters (false negatives). Thus, 

although the model misclassified a relatively large number of clients who did not default, most 

of the clients who were classified as non-defaulters, did not actually default on their loan. 

Overall, the random forest model classified 9517 out of 14502 clients correctly, resulting in an 

accuracy score of 65,6%. Table 4.8 summarises performance metrics that were explored to gain 

further insight into the random forest model’s performance. 

 
Table 4. 8: Performance metrics for the random forest algorithm 

Performance metric   

Accuracy 0.656 

Balanced accuracy 0.691 

Sensitivity/True positive ratio/Recall 0.738 

Specificity/True negative ratio 0.645 

Precision/Positive predictive value 0.229 

Negative predictive value 0.945 

AUC 0.744 

Gini 0.489 
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From Table 4.8, a balanced accuracy score of approximately 70% is reported which suggests 

that the model performed well overall. The balance accuracy score is greater than the accuracy 

score of 0.656; this indicates that the model correctly identified a larger portion of clients in 

the minority class i.e., the default class. The true positive ratio of 0.738 is then analysed; the 

model correctly identified approximately 74% of clients who defaulted. This suggests that the 

model performs very well when identifying clients who default. Table 4.8 shows a true negative 

ratio of 0.645, which indicates that the model correctly identified approximately 65% of clients 

who did not default. This implies that the model did not perform as well when identifying 

clients who did not default, however, the true negative ratio of 65% is still acceptable as 

misclassification costs related to false negatives is very low. From Table 4.8, a positive 

predictive value (precision) of 0.229 and negative predictive value of 0.945 is also reported. 

The low precision is presumably influenced by the imbalance in the dataset; the researcher 

concentrates on the balanced accuracy, true positive ratio and true negative ratio when 

evaluating the model’s performance. 

From the confusion matrix in Table 4.7 and the evaluation metrics in Table 4.8, the researcher 

concludes that the random forest model seems suitable for the classification problem under 

study as the model was able to correctly identify a significant portion of defaulters 

(approximately 74%), which is the class that the researcher is more interested in, and the 

model’s performance was acceptable when classifying non-defaulters (i.e., a true negative ratio 

of approximately 65%) 

 

 

4.4 Support vector machines 
 

In classification problems, the support vector machine is used to separate the observations into 

classes, by identifying the optimal hyperplane with the largest margin. The SVM method can 

be extended to cater for cases where a nonlinear boundary exists by using a kernel function. In 

this study, the RBF kernel was used in order to separate the data and classify clients according 

to their default class. The SVM model was fitted to the balanced default dataset. Table 4.9 

reports the confusion matrix results for the fitted SVM model. 

 
Table 4. 9: Confusion matrix for the fitted SVM model 

  PREDICTION 

ACTUAL 

CLASS  

                .                 

  Default Not default  Total 

Default  1079     (7.4%)   731     (5.0%)     1811    (12.5%)  

Not default   3605   (24.9%)   9086   (62.7%)   12691    (87.5%)  

Total  4684   (32.3%)   9818   (67.7%)   14502     (100%)  

 

The results in Table 4.9 show 1079 true positives and 731 false negatives, which indicates that 

the fitted SVM model seemed to misclassify a considerable portion of defaulters as non-

defaulters. Table 4.9 also reports 9086 true negatives and 3605 false positives; this suggests 

that relative to the number of actual non-defaulters (i.e., 12691), the fitted SVM model 

classified a substantial number of them correctly (i.e. 9086). Overall, the model assigned 10165 



 

90 
 

clients to the correct class out of 14502 clients under study, resulting in an accuracy score of 

0.701. Since our dataset is imbalanced, accuracy score is not the most reliable metric when 

examining a model’s performance. We then analyse several evaluation metrics presented in 

Table 4.10. 

Table 4. 10: Performance metrics for the fitted SVM model 

Performance metric   

Accuracy        0.701  

Balanced accuracy        0.656  

Sensitivity/True positive ratio/Recall        0.596  

Specificity/True negative ratio        0.716  

Precision/Positive predictive value        0.230  

Negative predictive value        0.925  

AUC        0.720  

Gini        0.440  

 

From Table 4.10, the researcher discusses the balanced accuracy score, true positive ratio and 

true negative ratio. Table 4.10 reports a balanced accuracy score of 0.656 which is close to 

70% and therefore acceptable. This table shows that the true positive ratio for the fitted SVM 

model is 0.596, which indicates that the model only correctly classified 59.6% of clients who 

defaulted, whereas the true negative ratio of 0.716 suggests that the model correctly classified 

71.6% of non-defaulters. Thus, the fitted SVM model seems to perform better when predicting 

the non-default class. Overall, we conclude that although the SVM model performed well when 

classifying non-defaulters, the model does not seem fitting for the classification problem under 

study, as the SVM’s ability to correctly identify defaulters, which is the main focus of this 

study, was below the acceptable level. 

 

 

4.5 Naïve Bayes Classifier 
 

The Naïve Bayes Classifier is a Bayesian network that is based on the Bayesian theorem, 

combined with the assumption of independence among features. It classifies data by identifying 

the class with the maximum posterior probability given a set of features. The Naïve Bayes 

Classifier was fitted to the balanced default dataset and the performance was then examined. 

The confusion matrix for the fitted Naïve Bayes classifier is presented in Table 4.11. 

 
Table 4. 11: Confusion matrix for the fitted Naïve Bayes classifier 

  PREDICTION 

ACTUAL 

CLASS  

                .                 

  Default Not default  Total 

Default  1220     (8.4%)   591     (4.1%)      1811    (12.5%)  

Not default   4755   (32.8%)   7936   (54.7%)   12691    (87.5%)  

Total  5975   (41.2%)   8527   (58.8%)    14502     (100%)  
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From Table 4.11, 1220 true positives and 591 false negatives are reported. This suggests that a 

substantial portion of clients who defaulted were incorrectly classified as non-defaulters 

(591/1811). Thus, the model’s ability to identify defaulters seems unsatisfactory. Table 4.11 

shows 7936 true negatives and 4755 false positives; this indicates that the model also 

misclassified many non-defaulters. Overall, the model correctly classified 9156 clients out of 

the 14502 clients under study, resulting in an accuracy score of 63.1%.  Evaluation metrics are 

then analysed in Table 4.12 to further understand the model’s performance.  

 
Table 4. 12: Performance metrics for the fitted Naïve Bayes classifier 

Performance metric   

Accuracy 0.631 

Balanced accuracy 0.649 

Sensitivity/True positive ratio/Recall 0.674 

Specificity/True negative ratio 0.625 

Precision/Positive predictive value 0.204 

Negative predictive value 0.931 

AUC 0.703 

Gini 0.406 

 

From Table 4.12, the researcher discusses the true positive ratio and the true negative ratio. 

The true positive ratio of 0.674 does not meet the researcher’s expectation as it suggests that a 

large portion of defaulters were misclassified (i.e., 32.6%); the cost associated with 

misclassifying defaulters is high. The true negative ratio of 0.625 in Table 4.12 is then 

analysed; the model did not perform very well when identifying clients who did not default, 

however, the true negative ratio is still acceptable as it is close to 65%. From the confusion 

matrix in Table 4.11 and the performance metrics in Table 4.12, we conclude that the Naïve 

Bayes classifier does not seem appropriate for the classification problem under study as it did 

not perform well when identifying both the default and non-default class. 

 

 

4.6 K-nearest neighbours (K-NN) 
 

K-NN is a distance-based classification algorithm that assigns a new observation to a class by 

calculating the distance between the new observation and the observations in the training set 

in order to find the new observation’s k-nearest neighbours. The new observation is then 

classified based on the k-nearest neighbours by using the majority vote rule. In the application 

problem, the Manhattan distance formula was used to measure the distance between new 

observations and observations in the training set and 121 nearest neighbours were considered 

when classifying the new observations. The K-NN model was trained on the balanced dataset; 

Tables 4.13 and 4.14 summarises the results obtained by the model. The confusion matrix for 

the fitted K-NN model is presented in Table 4.13. 
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Table 4. 13: Confusion matrix for the K-NN model 

  PREDICTION 

ACTUAL 

CLASS 

                 .                 

  Default Not default  Total 

Default  1140     (7.9%)   671     (4.6%)      1811    (12.5%)  

Not default   4187   (28.9%)   8504   (58.6%)   12691    (87.5%)  

Total  5327   (36.7%)   9175   (63.3%)    14502     (100%)  

 

From the results in Table 4.13, the fitted K-NN model correctly identified 1140 out of 1811 

clients who defaulted. Thus, since there seems to be a significant number of defaulters who 

were misclassified as non-defaulters (i.e.,671), the K-NN model is likely unsuitable for the 

classification problem under study, as the main objective is to identify clients who defaulted. 

Table 4.13 shows that 8504 out of 12691 clients who did not default, were correctly classified, 

which suggests that a large number of clients who did not default were also misclassified (i.e., 

4187). Overall, 9644 out of the 14502 clients under study were correctly classified, which 

results in an accuracy score of 66.5%. Table 4.14 displays several evaluation metrics that 

provide us with more clarity on the K-NN model’s performance. 

 
Table 4. 14: Performance metrics for the fitted K-NN model 

Performance metric   

Accuracy        0.665  

Balanced accuracy        0.650  

Sensitivity/True positive ratio/Recall        0.629  

Specificity/True negative ratio        0.670  

Precision/Positive predictive value        0.214  

Negative predictive value        0.927  

AUC        0.701  

Gini        0.403  

 

From Table 4.14, the researcher discusses the balanced accuracy score, the true positive ratio 

and the true negative ratio. The balanced accuracy score of 0.65 is close to 70% and thus 

acceptable. The researcher then examines the true positive ratio to determine whether the model 

performs well when classifying defaulters. Table 4.14 shows that the fitted K-NN model 

attained a true positive ratio of 0.629; this indicates that the model correctly identified only 

62.9% of clients who defaulted which is below the acceptable level of 70%. The true negative 

ratio shown in Table 4.14 is then analysed to gain insight into the model’s performance when 

identifying non-defaulters; the true negative ratio of 0.67 is acceptable as misclassification 

costs associated with false positives is low.  

Since the K-NN model performed poorly when identifying clients who defaulted, this model 

seems unsuitable for the classification problem under study, whose main focus is to identify 

clients who defaulted on their loan. 
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4.7 Artificial neural network 
 

Artificial neural networks consist of multiple interconnected nodes and activation functions. 

Figure 4.6 represents the architecture of the artificial neural network in this study, when using 

the PCA approach. A feed-back neural network was used with two hidden layers. 

 

 

Figure 4. 6: Architecture of the artificial neural network 

 

Figure 4.6 shows that the input layer comprises 48 nodes (i.e., one node for each feature); the 

first hidden layer includes six nodes, the second hidden layer includes ten nodes and the output 

layer includes one node that outputs the model’s prediction (i.e., default or not default). The 

activation function used in the first and second hidden layer is the RELU function, whereas the 

activation function used in the output layer is the sigmoid function. The confusion matrix for 

the ANN model fitted to the balanced dataset is displayed in Table 4.15.     

  
          Table 4. 15: Confusion matrix for the fitted ANN model 

  PREDICTION 

ACTUAL 

CLASS  

                .                 

  Default Not default  Total 

Default  1338     (9.2%)   473     (3.3%)      1811    (12.5%)  

Not default   4597   (31.7%)   8094   (55.8%)   12691    (87.5%)  

Total  5935   (40.9%)   8567   (59.1%)    14502     (100%)  

 

From Table 4.15, the results show that the ANN model correctly classified 1338 out of 1811 

defaulters; however, out of 5935 clients whom the model classified as defaulters, 4597 clients 

did not default (false positives). Therefore, although the ANN model correctly identified a large 

portion of clients who defaulted, the model also misclassified many non-defaulters as 

defaulters. Given the nature of the dataset, a relatively large number of false positives can be 

2nd  hidden layer 

(10) 

 

1st hidden layer 

(6) 

Input layer      

(48) 

Output Layer 

(1) 
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expected. From Table 4.15, 8094 out of 12691 non-defaulters were correctly classified and out 

of 8567 clients who were classified as non-defaulters, 473 clients were actually defaulters (false 

negatives). This suggests that although the model misclassified a substantial number of clients 

who did not default, most of the clients who were classified as non-defaulters, did not default. 

Overall, the ANN model correctly classified 9432 out of 14502 clients, resulting in an accuracy 

score of 65%. From Chapter 3, the researcher has learned that the accuracy score is not a 

reliable evaluation measure when the dataset is imbalanced and the class of interest is the 

minority class (i.e., default). Several performance metrics in Table 4.16 are then explored to 

further understand each model’s performance. 

 
Table 4. 16: Performance metrics for the ANN model 

Performance metric  
Accuracy        0.650  

Balanced accuracy        0.688  

Sensitivity/True positive ratio/Recall        0.739  

Specificity/True negative ratio        0.638  

Precision/Positive predictive value        0.225  

Negative predictive value        0.945  

AUC        0.745  

Gini        0.490  

 

From Table 4.16, a balanced accuracy score of approximately 0.69 is reported. The balanced 

accuracy score is good, given the imbalance in the dataset and the difficulty in identifying 

whether a client will default at the time the loan is granted, when information is restricted. We 

then examine the true positive ratio (sensitivity) of 0.739; it suggests that the model correctly 

identified approximately 74% of clients who defaulted. Thus, the model performs well when 

identifying clients who default. Table 4.16 reports a true negative ratio of 0.638, which 

indicates that the model correctly identified approximately 64% of clients who did not default; 

although the score is acceptable given the classification problem under study, the model did 

not seem to perform as well when identifying clients who did not default. A positive predictive 

value (precision) and negative predictive value of 0.225 and 0.945, respectively, is also shown 

in Table 4.16. As previously stated, the low precision is presumably influenced by the 

imbalance in the dataset; therefore, the researcher focuses on the balanced accuracy, true 

positive ratio and true negative ratio when evaluating the model’s performance. 

The researcher therefore concludes that, although the model did misclassify a considerable 

portion of non-defaults, that is, 36.2% (1-63.8%), the model was able to correctly identify a 

significant portion of defaulters (approximately 74%), which is the class that the researcher is 

more interested in. Thus, the ANN model seems appropriate for the classification problem 

under study. 
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4.8 Summary of model performance using PCA 
 

In Chapter 3, multicollinearity was identified and the researcher was also aware of the large 

number of features in the dataset. In this chapter, the researcher fitted the logistic regression 

model, decision tree, random forest, support vector machines, Naïve Bayes classifier, k-nearest 

neighbours, and artificial neural network to the balanced default dataset, corrected for 

multicollinearity by using the PCA approach, which is also a dimensionality reduction 

technique. The number of features in the dataset decreased from 57 to 48, and the 

multicollinearity problem was solved when using this approach. In this section of Chapter 4, 

the results obtained by these models are compared by using the confusion matrix and following 

evaluation metrics: accuracy, balanced accuracy, true positive ratio, true negative ratio, positive 

predictive value, negative predictive value, the AUC score and the Gini coefficient.  

Table 4.17 displays the confusion matrix for each algorithm under study using the PCA 

approach 

 
Table 4. 17: Confusion Matrix for each model under study using the PCA approach 

      PREDICTED 

     DEFAULT NOT DEFAULT 

LR 

ACTUAL 

DEFAULT 1265 546 

NOT DEFAULT 4735 7956 

DT 
DEFAULT 1325 486 

NOT DEFAULT 5285 7406 

RF 
DEFAULT 1336 475 

NOT DEFAULT 4510 8181 

SVM 
DEFAULT 1079 731 

NOT DEFAULT 3605 9086 

NB 
DEFAULT 1220 591 

NOT DEFAULT 4755 7936 

   K-NN 
DEFAULT 1140 671 

NOT DEFAULT 4187 8504 

ANN 
DEFAULT 1338 473 

NOT DEFAULT 4597 8094 

 

From Table 4.17, the fitted ANN model attained the highest number of true positives, closely 

followed by the random forest model and then the decision tree algorithm; the number of 

defaulters correctly identified by these models were 1338, 1336 and 1325, respectively. This 

is an important factor to consider when selecting the most suitable model as the main aim of 

this study is to identify clients who default. 

Evaluation metrics for each model under study using the PCA approach are reported in Table 

4.18. 
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Table 4. 18: Evaluation metrics for each model under study using the PCA approach 

  Logistic 

regression 

Decision 

tree 

Random 

forest 
SVM 

Naïve 

Bayes 
K-NN ANN 

Accuracy 0.636 0.602 0.656 0.701 0.631 0.665 0.650 

Balanced accuracy 0.663 0.658 0.691 0.656 0.649 0.650 0.688 

True positive ratio 

(Sensitivity) 
0.699 0.732 0.738 0.596 0.674 0.629 0.739 

True negative ratio 

(Specificity) 
0.627 0.584 0.645 0.716 0.625 0.670 0.638 

Positive predictive value 

(Precision) 
0.211 0.200 0.229 0.230 0.204 0.214 0.225 

Negative predictive value 0.936 0.938 0.945 0.925 0.931 0.927 0.945 

AUC score 0.720 0.705 0.744 0.720 0.703 0.701 0.745 

Gini 0.440 0.409 0.489 0.440 0.406 0.403 0.490 

 

From Table 4.18, the SVM model obtained the highest accuracy score (i.e., 0.701). In Chapter 

3, the researcher ascertained that the dataset is imbalanced as 88% of clients under study did 

not default on their loan, whereas only 12% of the clients under study defaulted. Thus, since 

the accuracy score is biased toward the majority class (i.e., not default), and since the 

researcher’s focus is on the minority class (i.e., default), accuracy is not a reliable metric for 

the imbalanced dataset under study. The balanced accuracy score provides a better indication 

of the model’s overall performance in comparison to the accuracy score, as it takes into 

consideration the imbalance in the dataset. Table 4.18 shows that the random forest model 

obtained the highest balanced accuracy score of 0.691, which was marginally higher than the 

balanced accuracy score attained by the ANN model of 0.688; the researcher considers these 

to be good scores as they are both very close to 70%. 

To understand each model’s ability to predict the individual classes (i.e., default and not 

default), the researcher then examined the true positive ratio and the true negative ratio. The 

true positive ratio represents the percentage of clients who were correctly classified as 

defaulters of those who actually defaulted. It is one of the most important metrics in this study 

as the main aim of this study is to identify clients who default on their loan. The random forest 

and ANN model both obtained a true positive ratio of approximately 0.74, which was the 

highest true positive ratio obtained across the different models. In this study, a true positive 

ratio above 70% indicates that a model performs well when identifying clients who default. 

The researcher then analyses the true negative ratio; this represents the percentage of clients 

who were correctly classified as non-defaulters, of the actual non-defaulters. Ideally, the 

researcher would also want a good true negative ratio, however, since the cost associated with 

misclassifying a non-defaulter is very low for the classification problem under study, the 

researcher is not as concerned about misclassifying non-defaulters as defaulters; a true negative 

ratio of about 65% and above is considered acceptable. The SVM model obtained the highest 

true negative ratio of 0.716, however, the SVM attained the worst true positive ratio (i.e., 

0.596). The random forest and ANN models, which achieved the best true positive ratios, 

obtained true negative ratios of approximately 0.65 and 0.64, respectively, which are both 

acceptable scores.  

The positive predictive values and negative predictive values were then analysed. The positive 

predictive value, which represents the portion of clients who were correctly classified as 



 

97 
 

defaulters, of all clients who were classified as defaulters, was exceptionally low across all 

models; the researcher presumes that the large imbalance in the dataset had an influence on this 

score. As previously stated, since the costs associated with misclassifying non-defaulters is 

negligible, the low precision values are not a concern to the researcher. The random forest, 

SVM and ANN models all obtained a positive predictive value of approximately 0.23, which 

was the highest value obtained across all models. The negative predictive value was then 

analysed; it represents the portion of clients who were correctly classified as non-defaulters of 

all clients who were classified as non-defaulters. The negative predictive value was remarkably 

high across all models which indicates that the majority of clients who were classified as non-

defaulters, did not default on their loan. The random forest and ANN models both attained the 

highest negative predictive value of 0.945. Lastly, the AUC score and Gini were examined; the 

random forest and ANN model both attained an AUC score of approximately 0.74 and a Gini 

of approximately 0.49 which were the highest values across all classifiers under study. The 

researcher considers these to be good scores given the nature of the classification problem 

under study. 

Table 4.18 also reports the AUC score and Gini for each model; the random forest and ANN 

model both attained an AUC score of approximately 0.74 and a Gini of approximately 0.49, 

respectively, which were the highest values across all classifiers under study. 

Since the large imbalance in the dataset presumably had an influence on the accuracy, positive 

predictive value and negative predictive value, the researcher focuses on the confusion matrix, 

balanced accuracy, true positive ratio, true negative ratio, AUC score and Gini coefficient when 

identifying the most appropriate classification algorithm for the problem under study. Overall, 

the random forest and ANN models seemed to achieve the best scores across most metrics. The 

SVM model attained the highest true negative ratio, however, it did not perform well when 

identifying clients who defaulted. Since the ANN model has a significantly longer training 

time, has several parameters that need to be tuned, and has little interpretability, the random 

forest model seems to be the most suitable model when predicting the default status of clients 

under study when using the PCA approach. 

 

In this chapter, the dataset was corrected for multicollinearity by using the PCA approach 

which is also a dimensionality reduction technique; thereafter, several models were 

constructed. The importance and contribution of features across the various models were 

examined and the researcher noticed that numerous features were of little importance to the 

model. In Chapter 5, the aim is to build new models that only include relevant features by 

utilising a feature selection method.  
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Chapter 5  

5 Classification with feature selection 
 

Each classification algorithm discussed in Chapter 3 was fitted to the balanced default dataset 

using the feature selection approach (recursive feature elimination). In this chapter, the features 

selected using the recursive feature elimination technique are listed, and the confusion matrix 

and evaluation metrics, discussed in Chapter 2, are presented and examined for each model in 

order to identify the one which was most appropriate for the classification problem under study. 

A comparison is also made between the model which performed the best when using the PCA 

approach (from Chapter 4) and the feature selection approach in order to identify the best model 

overall. 

 
 

5.1 Brief introduction to feature selection 
 

Feature selection is a dimensionality reduction technique that aims to select a subset of features 

from the original set of features. This is achieved by removing features that are redundant, 

irrelevant, and noisy. Feature selection often leads to models with improved accuracy, lower 

computational costs, and improved model interpretability (Wang et al., 2016). This technique 

can also simplify models, make implementation easier and reduce the risk of data errors, since 

reducing the number of features reduces the risk of errors during data collection and storage. 

There are several feature selection methods that can be used to reduce the number of features 

in the model. The three main feature selection categories are the filter method, wrapper method, 

and embedded method (Venkatesh & Anuradha, 2019). 

Filter methods do not consider the induction algorithm when selecting features (Kohavi & 

John, 1997); instead, they use characteristics of the features in order to select relevant features 

and are thus model agnostic, in other words, they can be used for any machine learning model. 

This method ranks features based on the scores computed for each feature that is independent 

of the induction algorithm. Either a predefined number of features with the highest scores are 

selected, or all features that attain a score above a certain threshold are included in the subset 

of selected features (Bommert et al., 2020). The chi-square test, variance threshold, Fisher 

score and correlation coefficient are examples of types of filter methods (Venkatesh & 

Anuradha, 2019). This method is generally less computationally expensive than wrapper 

methods and embedded methods; however, this method often result in lower prediction 

performance.  

The wrapper method utilises a machine learning algorithm within its feature selection process. 

The feature selection algorithm exists as a wrapper around the selected machine learning 

algorithm (Kohavi & John, 1997). Wrapper methods are often referred to as greedy algorithms, 

as they try to find the best subset of features that will lead to the best performing model (Belete 

& Manjaiah, 2020). During the feature selection process, a subset of features is first chosen 

from the available features by employing a search strategy. There are different search strategies 

that can be used, for example, sequential forward feature selection and sequential backward 
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feature selection. Forward selection is an iterative method in which the model initially has no 

features in the subset. At each iteration, a single feature is added, one at a time. In backward 

elimination, all features are initially included in the model and one feature is removed at each 

iteration, one at a time (Panthong & Srivihok, 2015). Once the subset of features is selected, a 

chosen machine learning algorithm is trained on this subset and the model performance is 

evaluated by using a selected evaluation metric. This process is repeated by using a new subset 

of features, which depends on the search strategy selected, and continues until pre-defined 

stopping criteria is met. Once the stopping criteria is met, the best subset of features is chosen 

(Li et al., 2016). A disadvantage of the wrapper method is that it is computationally more 

complex compared to the filter and embedded methods (Venkatesh & Anuradha, 2019). 

The embedded method is, as its name suggests, a feature selection method that is embedded in 

the algorithm, that is, feature selection is performed as part of the model-building process 

(Bommert et al., 2020). By combining feature selection with model building, the embedded 

method considers the interaction between the classification model and the features. When using 

an embedded method, a machine learning model is trained and feature importance is derived 

from the model for each feature; thereafter, the irrelevant features are removed. LASSO 

regularisation and tree-based methods such as CART, random forests and gradient boosting 

are examples of embedded methods (Bommert et al.). This method has the advantage of 

considering the classification algorithm in the process while being less computationally 

intensive compared to the wrapper method (Mwadulo, 2016).  

The researcher then discusses feature selection methods that do not fall into a single category; 

instead, a combination of methods from different categories is used. These methods are known 

as hybrid methods which often aim to combine the advantages of different feature selection 

methods. The hybrid method used in this study is recursive feature elimination; this method, 

like the embedded method, uses the importance derived from a machine learning algorithm, 

and like the wrapper method, features are removed one at a time and the model performance is 

evaluated at each iteration. This method is often better than embedded methods and quicker 

than wrapper methods. Some studies, however, consider recursive feature elimination as a 

wrapper method and not a hybrid method.  

To understand the recursive feature elimination technique, the researcher discusses and 

explains it by using the random forest algorithm. The random forest algorithm is initially 

trained using the original dataset with the full set of features. Thereafter, the feature importance 

values of all features used during the training process is derived by using, for example, tree-

based models, lasso or logistic regression. In this study, a tree-based feature importance method 

was used for the random forest model. Figure 5.1 shows the feature importance of all features 

in the random forest model, ranked in ascending order (from the least important to the most 

important feature). 
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Figure 5. 1: Feature importance for all variables in the random forest model 

 

From Figure 5.1, Max Offer is ranked the most important feature, followed by % instalment to 

income allowed. We also observe that several features are of very little importance to the 

model. 

Features are then removed one by one, from the least important to the most important feature, 

as per the feature importance value associated with each feature. Figure 5.1 shows that 

Product_Taken_VL was ranked the least important feature in the random forest model. 

Therefore, Product_Taken_VL is the first feature to be removed; thereafter, a new random 

forest model is constructed by using the remaining features. An evaluation metric is then 

selected, and the performance of the new model is analysed and compared to the performance 

of the initial random forest model. In this study, the AUC score was the selected evaluation 

metric. Therefore, the change in AUC score between the models is compared to an arbitrary 

threshold and if the change is greater than the threshold, the feature will not be removed; if the 

change is less than the threshold, though, the feature will be removed. In this study, 0.001 was 

selected as the threshold for the random forest model. This process is repeated such that at each 

iteration, the next least-important feature is removed. Thus, in the second iteration, Credit 

Inactive_yes is removed. The process ends once all features have been ‘tested’. The researcher 

then builds the final model, which only includes the features that were deemed important. 

Table 5.1 lists each feature under study, shows the drop in ROC AUC score when the feature 

is removed from the random forest model, and indicates whether the feature should be removed 

from the model. 

 
Table 5. 1: Recursive feature elimination results for the random forest model 

Feature Drop in ROC AUC score Decision 

Product Taken_VL 0.0006 Remove 

Credit Inactive_yes -0.0009 Remove 

Salary Bank_3 0.0005 Remove 

LowerOffer_Yes 0.0005 Remove 

InstallmentLoan_yes 0.0007 Remove 

Limiting Rule_4 0.0006 Remove 

Loan Purpose_Other -0.0003 Remove 
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Loan Purpose_Family Crisis -0.0013 Remove 

VehicleLoan_yes 0.0001 Remove 

Loan Purpose_Other Emergency -0.0004 Remove 

Permanent Allowances_yes -0.0009 Remove 

Loan Purpose_Housing and Ralated 0.0008 Remove 

Product Taken_PL New 0.0002 Remove 

Client Type_New 0.0003 Remove 

Product Taken_PL Repeat 0.0001 Remove 

Weekly/Monthly_Weekly 0.0004 Remove 

PropertyOwner_yes -0.0003 Remove 

Overtime_yes -0.0001 Remove 

RevolvingCredit_yes 0.0002 Remove 

Salary Bank_5 -0.0002 Remove 

PersonalLoan_yes 0.0002 Remove 

Unpaids_Yes 0.0004 Remove 

Limiting Rule_3 0.0003 Remove 

Limiting Rule_2 0.0008 Remove 

PayslipExpenses_Yes 0.0006 Remove 

Client Type_Reload 0.0017 Keep 

External consolidations/Amount Taken 0.0008 Remove 

NumberOfDependents 0.0002 Remove 

Pensionprovident_yes 0.0012 Keep 

Internal Living Expenses Rule_Yes 0.0012 Keep 

Salary Bank_4 0.0005 Remove 

Union fees_yes 0.0019 Keep 

Salary Bank_2 0.0009 Remove 

Total consolidations/Amount Taken 0.0013 Keep 

Final Disposable Income/NetIncome 0.0005 Remove 

External Subsequent Lending_Yes 0.0001 Remove 

Internal consolidations/Amount Taken 0.0007 Remove 

Insurance_yes 0.0010 Keep 

Disposable income/Basic 0.0002 Remove 

Debt/Net Income 0.0020 Keep 

Gender_M 0.0024 Keep 

Calc Disposable Income/NetIncome 0.0007 Remove 

Arrearrs_1 0.0007 Remove 

CreditCard_yes 0.0016 Keep 

Taking Max_Yes 0.0010 Keep 

Product Taken_Staff 0.0008 Remove 

Married_Yes 0.0025 Keep 

Debt to Income ratio 0.0001 Remove 

Medicalaid_yes 0.0021 Keep 

Instalment /Disposable income 0.0005 Remove 

HomeLoan_yes 0.0009 Remove 

% instalment to income taken 0.0028 Keep 

YearsWithCurrentEmployer 0.0032 Keep 

% Total Taken Up 0.0038 Keep 

Age 0.0044 Keep 

% instalment to income allowed 0.0024 Keep 

Max Offer 0.0033 Keep 
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From Table 5.1, we observe that 39 out of 57 features can be removed from the dataset when 

using the recursive feature elimination technique in combination with the random forest model, 

in which the AUC score was chosen as the evaluation metric and 0.001 was selected as the 

threshold. 

The researcher uses a similar feature selection method for the logistic regression model, 

decision tree, support vector machines, Naïve Bayes classifier, k-nearest neighbours and the 

artificial neural network models. Sections 5.2 to 5.8 provide and compare results obtained by 

the model fitted to the full set of features and the model fitted to the selected features using the 

recursive feature elimination technique, for each classifier, in order to identify the better model. 

 

 

5.2 Logistic regression 
 

In this section, the recursive feature elimination technique outlined in section 5.1 was utilised 

in conjunction with the logistic regression model to select features deemed important. The 

following 24 features (out of 57) were selected as input variables: % instalment to income 

allowed, % instalment to income taken, Age, % Total Taken Up, Gender_M, CreditCard_yes, 

Debt/Net Income, External Subsequent Lending_Yes, Arrearrs_1, Client Type_Reload, 

Insurance_yes, Internal consolidations/Amount Taken, Internal Living Expenses Rule_Yes, 

Limiting Rule_4, Married_Yes, Max Offer, Medicalaid_yes, Product Taken_PL Repeat, 

Product Taken_Staff, RevolvingCredit_yes, Salary Bank_4, Taking Max_Yes, Union 

fees_yes, YearsWithCurrentEmployer. 

Thereafter, two logistic regression models were trained, one using the full set of features and 

the other only the selected features. To compare the performance of these two models, the 

confusion matrix is analysed in Table 5.2. 

 
Table 5. 2: Confusion matrix for the fitted logistic regression model using feature selection and the fitted model using 

the full set of features  

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1280 531 

Not Default 4784 7907 

Full set of 

features 

Default  1253 558 

Not Default 4772 7919 

 

From Table 5.2, 1280 true positives and 7907 true negatives were reported for the fitted logistic 

regression model that used the feature selection approach, whereas 1253 true positives and 

7919 true negatives were reported for the fitted model that used the full set of features. This 

indicates that the model using feature selection correctly predicted more clients who defaulted 

on their loan compared to the model that included the full set of features; the latter predicted 

more non-defaulters. We then examine several evaluation metrics (listed in Table 5.3) to 

ascertain which of these two models performed better overall. 
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Table 5. 3: Performance metrics for the logistic regression model using feature selection and the model using the full 

set of features  

Performance metric Feature selection Full set of features 

Accuracy 0.633 0.632 

Balanced accuracy 0.665 0.658 

Sensitivity/True positive ratio/Recall 0.707 0.692 

Specificity/True negative ratio 0.623 0.624 

Positive predictive value (Precision) 0.211 0.208 

Negative predictive value 0.937 0.934 

AUC 0.726 0.717 

Gini 0.453 0.434 

 

From Table 5.3, an accuracy score of approximately 0.63 was reported for both fitted logistic 

regression models. This table shows that the model using feature selection attained a better 

balanced accuracy score, true positive ratio, AUC score, and Gini in comparison to the model 

that utilised the full set of features. From Table 5.3, the true negative ratio obtained by both 

models was approximately 0.62. The researcher thus concludes that overall, the logistic 

regression model trained on selected features seemed to perform better than the model trained 

on the full set of features. 

The researcher assesses the fit of the model that used feature selection, using the deviance test 

(discussed in Chapter 2) which is presented in Table 5.4; thereafter, the researcher analyses the 

maximum likelihood parameter estimates, p-values and odds ratios associated with each 

variable. 

Table 5. 4: Deviance test for logistic regression model using feature selection 

Deviance statistic (D) dof (n-p) Deviance statistic/dof 

18689 14478                                    1.291 

 

Table 5.4 displays the deviance statistic/dof of 1.291, where the deviance statistic is 18689 and 

the degrees of freedom (dof) are 14 478. Since D/(n-p) = 1.291 < 1.5, the researcher concludes 

that the model fits the data well. 

The maximum likelihood parameter estimates and p-values for the fitted logistic regression 

model are presented in Table 5.5a.  

 

Table 5. 5a: Maximum Likelihood Parameter estimates, and p-values for the fitted logistic regression model 

  

Parameter 

estimate 
p-value 

Intercept 0.749 <0.001*** 

% instalment to income allowed - 0.253 <0.001*** 

% instalment to income taken 0.150 <0.001*** 

Age - 0.203 <0.001*** 

% Total Taken Up 0.211 <0.001*** 

Gender_M 0.393 <0.001*** 
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CreditCard_yes - 0.167 0.014** 

Debt/Net Income 0.114 0.035** 

External Subsequent Lending_Yes 0.583 <0.001*** 

Arrearrs_1 0.133 0.006*** 

Client Type_Reload - 0.264 <0.001*** 

Insurance_yes - 0.139 0.002*** 

Internal consolidations/Amount Taken - 0.152 0.021** 

Internal Living Expenses Rule_Yes 0.129 <0.001*** 

Limiting Rule_4 0.380 0.008*** 

Married_Yes - 0.161 0.001*** 

Max Offer - 0.371 <0.001*** 

Medicalaid_yes - 0.235 <0.001*** 

Product Taken_PL Repeat 0.116 <0.001*** 

Product Taken_Staff - 1.052 <0.001*** 

RevolvingCredit_yes - 0.145 0.009*** 

Salary Bank_4 - 0.263 <0.001*** 

Taking Max_Yes 0.451 <0.001*** 

Union fees_yes - 0.111 0.001*** 

YearsWithCurrentEmployer - 0.153 <0.001*** 
Note: ***, ** and * indicate significance at 1%, 5% and 10% level of significance respectively 

 

From Table 5.5a, % instalment to income allowed, % instalment to income taken, Age, % Total 

Taken Up, Gender_M, External Subsequent Lending_Yes, Arrearrs_1, Client Type_Reload, 

Insurance_yes, Internal Living Expenses Rule_Yes, Limiting Rule_4, Married_Yes, Max 

Offer, Medicalaid_yes, Product Taken_PL Repeat, Product Taken_Staff, 

RevolvingCredit_yes, Salary Bank_4, Taking Max_Yes, YearsWithCurrentEmployer and 

Union fees_yes are significant at 1% level of significance and CreditCard_yes, Debt/Net 

Income and Internal consolidations/Amount Taken are significant at 5% level of significance 

Thus, all 24 variables influence the prediction of loan defaulting clients; the estimates indicate 

how much they influence it. The researcher exponentiated the maximum likelihood parameter 

estimates (𝛽𝑖 coefficients) to obtain the odds ratio estimates, as the odds ratios can be 

interpreted more easily. Table 5.5b lists the 24 significant variables in the fitted logistic 

regression model and provides an interpretation of the odds ratio estimates for each variable. 

 

Table 5.5b: Interpretation of the odds ratio estimates for the 24 variables in the fitted logistic regression model using 

feature selection 

Variable 

Odds 

ratio 

estimates 
Interpretation 

 

 

% instalment to income 

allowed 0.776 

One unit increase in % instalment to income allowed 

is associated with a 22.4% ((1 – 0.776) x 100%) 

reduction in the odds of a client defaulting when all 

other variables are held constant 
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% instalment to income taken 1.162 

Increasing % instalment to income taken by one unit, 

increases the odds of a client defaulting on their loan 

by 16.2%  ((1.162-1) x 100%)  when all other 

variables are held constant 

 

 

Age 0.816 

Each unit increase in Age reduces the odds of a client 

defaulting by 18.4% ((1 – 0.816) x 100%), holding all 

other variables constant 

 

 

 

% Total Taken Up 1.235 

One unit increase in % Total Taken Up is associated 

with a 23.5% ((1.235-1)*100%) increase in the odds 

of a client defaulting, holding all other variables 

constant 

 

 

 

Gender_M 1.482 

Gender_M (male) is associated with a 48.2%                              

((1.482 – 1) x 100%) increase in the odds of a client 

defaulting when all other variables are held constant 

(Gender_M is equal to 1 if male and 0 if female) 

 

 

 

 

CreditCard_yes 0.846 

The odds of a client defaulting decreases by 15.4% 

((1-0.846)*100%) if the client has a credit card, 

holding all other variables constant. (CreditCard_yes 

is equal to 1 if the client has a credit card and 0 if 

he/she does not) 

 

 

 

Debt/Net Income 1.121 

One unit increase in Debt/Net Income is associated 

with a 12.1% ((1.121-1)*100%) increase in the odds 

of a client defaulting, holding all other variables 

constant 

 

 

External Subsequent 

Lending_Yes 1.791 

External subsequent lending is associated with a 

79.1% ((1.791-1)*100%) increase in the odds of a 

client defaulting when all other variables are held 

constant 

 

 

 

 

Arrearrs_1 1.142 

Arrears is associated with a 14.2%                              

((1.142 – 1) x 100%) increase in the odds of a client 

defaulting, holding all other variables constant 

(Arrearrs_1 is equal to 1 if the client was in arrears 

and 0 if he/she wasn’t in arrears) 

 

 

Client Type_Reload 0.768 

There is a 23.2% ((1-0.768)*100%) decrease in the 

odds of a client defaulting when client type is reload, 

holding all other variables constant 

 

 

Insurance_yes 0.870 

If a client pays insurance, the odds of defaulting 

decreases by 13.0% ((1-0.870)*100%), when all other 

variables are held constant 

 

 

Internal 

consolidations/Amount Taken 0.859 

Increasing Internal consolidations/Amount Taken by 

one unit, decreases the odds of a client defaulting on 

their loan by 14.1%  ((1-0.859) x 100%)  when all 

other variables are held constant 

 

Internal Living Expenses 

Rule_Yes 1.138 

The odds of a client defaulting increases by 13.8% 

((1.138-1)*100%) if the internal living expenses rule 

is used, when holding all other variables constant 

 

 

Limiting Rule_4 1.462 

If a client is limiting by rule 4, the odds of defaulting 

increases by 46.2% ((1.462-1)*100%), when all other 

variables are held constant 

 

 

 

 

Married_Yes 0.851 

Married is associated with a 14.9%                               

((1-0.851)*100%)  decrease in the odds of a client 

defaulting when all other variables are held constant 

(Married_Yes is equal to 1 if married and 0 if  not 

married) 
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Max Offer 0.690 

One unit increase in Max Offer is associated with a 

31.0% ((1 – 0.690) x 100%) reduction in the odds of a 

client defaulting, holding all other variables constant 

 

 

Medicalaid_yes 0.791 

When all other variables are held constant, the odds 

of a client defaulting reduces by 20.9% ((1-

0.791)*100%)  if the client has medical aid 

 

 

Product Taken_PL Repeat 1.123 

If product taken is PL Repeat, the odds of a client 

defaulting increases by 12.3% ((1.123-1)*100%), 

when all other variables are held constant 

 

 

Product Taken_Staff 0.349 

If product taken is Staff, the odds of a client 

defaulting reduces by 65.1% ((1-0.349)*100%), 

holding all other variables  constant 

 

 

RevolvingCredit_yes 0.865 

When all other variables are held constant, the odds 

of a client defaulting reduces by 13.5% ((1-

0.865)*100%)  if the client has revolving credit 

 

 

Salary Bank_4 0.769 

The odds of a client defaulting reduces by 23.1% ((1-

0.769)*100%), if the client’s main bank is Salary 

Bank 4, holding all other variables constant 

 

 

Taking Max_Yes 1.570 

Taking Max is associated with a 57.0%                              

((1.570 – 1) x 100%) increase in the odds of a client 

defaulting when all other variables are held constant 

 

 

 

 

Union fees_yes 0.895 

The odds of a client defaulting reduces by 10.5%                               

((1-0.895)*100%) if the client pays union fees, 

holding all other variables constant  

(Union fees_yes is equal to 1 if the client pays union 

fees and 0 if  he/she does not) 

 

 

 

YearsWithCurrentEmployer 0.858 

One unit increase in YearsWithCurrentEmployer is 

associated with a 14.2% ((1 – 0.858) x 100%) 

reduction in the odds of a client defaulting when all 

other variables are held constant 

 

 

5.3 Decision tree  
 

The recursive feature elimination technique was used in combination with the decision tree 

algorithm in order to remove features that contributed little to the model. 27 out of 57 features 

were removed; the 30 features included in the decision tree when using the feature selection  

approach are  % instalment to income allowed, % instalment to income taken, % Total Taken 

Up, Age, Arrearrs_1, Client Type_Reload, CreditCard_yes, Debt/Net Income, External 

consolidations/Amount Taken, External Subsequent Lending_Yes, Final Disposable 

Income/NetIncome, Gender_M, Internal consolidations/Amount Taken, Internal Living 

Expenses Rule_Yes, Limiting Rule_2, Debt to Income ratio, Limiting Rule_3, Married_Yes, 

Max Offer, Medicalaid_yes, NumberOfDependents, Product Taken_PL Repeat, 

Pensionprovident_yes, PersonalLoan_yes, Product Taken_PL New, HomeLoan_yes, Product 

Taken_Staff, Taking Max_Yes, Unpaids_Yes and YearsWithCurrentEmployer. 

The confusion matrix for the decision tree trained on selected features and the decision tree 

trained on the full set of features is reported in Table 5.6. 
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Table 5. 6: Confusion matrix for the decision tree using feature selection and the decision tree using the full set of 

features  

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1310 501 

Not Default 5267 7424 

Full set of 

features 

Default  1210 601 

Not Default 5064 7627 

 

Table 5.6 shows that the decision tree trained on selected features correctly predicted 1310 

clients who defaulted and 7427 clients who did not default, whereas the decision tree trained 

on the full set of features correctly predicted 1210 defaulters and 7627 non-defaulters. Thus, 

the decision tree using feature selection performed better when predicting the default class and 

the decision tree using all features under consideration performed slightly better when 

predicting the non-default class. Performance metrics for both decision trees are shown in 

Table 5.7 and the results are analysed to gain further insight into each model’s performance. 

 
Table 5. 7: Performance metrics for the decision tree using feature selection and the decision tree using the full set of 

features  

Performance metric Feature selection Full set of features 

Accuracy 0.602 0.609 

Balanced accuracy 0.654 0.635 

Sensitivity/True positive ratio/Recall 0.723 0.668 

Specificity/True negative ratio 0.585 0.601 

Positive predictive value (Precision) 0.199 0.193 

Negative predictive value 0.937 0.927 

AUC 0.698 0.687 

Gini 0.396 0.375 

 

Table 5.7 indicates that the accuracy score for the decision tree using feature selection is 0.602, 

which is marginally lower than the accuracy score of 0.609 obtained by the decision tree using 

all features. Since the dataset is imbalanced, accuracy is not the most reliable evaluation metric. 

From Table 5.7, the balanced accuracy score, true positive ratio, AUC score and Gini attained 

by the decision tree that used selected features showed better results compared to the decision 

tree trained on the full set of features in the dataset. The true negative ratio of 0.585 obtained 

by the decision tree using feature selection was lower than the true negative ratio score of 0.601 

obtained by the decision tree that utilised all features. Since the model using feature selection 

obtained better scores for all metrics other than the true negative ratio (which was marginally 

lower than the score obtained by the model using the full set of features), it can be concluded 

that this decision tree seems more appropriate for the classification problem under study, whose 

main focus is to identify clients who defaulted on their loan. 
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5.4 Random forest  
 

In section 5.1, the researcher discussed in detail the recursive feature elimination technique 

using the random forest algorithm and indicated that 39 features could be removed. The 

following 18 features were selected using this approach: % instalment to income allowed, % 

instalment to income taken, % Total Taken Up, Age, Client Type_Reload, CreditCard_yes, 

Debt/Net Income, Gender_M, Insurance_yes, Internal Living Expenses Rule_Yes, 

Married_Yes, Max Offer, Medicalaid_yes, Pensionprovident_yes, Taking Max_Yes, Total 

consolidations/Amount Taken, YearsWithCurrentEmployer and Union fees_yes. 

One random forest model was trained on the full set of features and another on only the selected 

features. In order to establish how many true positives and true negatives were attained by these 

two models, the confusion matrix in Table 5.8 is examined. 

 
Table 5. 8: Confusion matrix for the random forest model using feature selection and the model using the full set of 

features  

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1332 479 

Not Default 4501 8190 

Full set of 

features 

Default  1317 494 

Not Default 4391 8300 

 

Table 5.8 reports 1332 true positives and 8190 true negatives for the random forest model using 

the recursive feature elimination method, whereas 1317 true positives and 8300 true negatives 

are reported for the model using the full set of features. This indicates that the model using 

only selected features correctly predicted more clients who defaulted on their loan compared 

to the model that used the full set of features; the latter predicted more non-defaulters. In order 

to determine which model performed better overall, evaluation metrics (listed in Table 5.9) are 

examined. 

 
Table 5. 9: Performance metrics for the random forest using selected features and the model using the full set of 

features 

Performance metric Feature selection Full set of features 

Accuracy 0.657 0.663 

Balanced accuracy 0.690 0.691 

Sensitivity/True positive ratio/Recall 0.736 0.727 

Specificity/True negative ratio 0.645 0.654 

Positive predictive value (Precision) 0.228 0.231 

Negative predictive value 0.945 0.944 

AUC 0.745 0.744 

Gini 0.491 0.488 
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From Table 5.9, there was no significant difference between the accuracy score and balanced 

accuracy score obtained by the two random forest models. Table 5.9 shows that the model 

using feature selection obtained a higher true positive ratio (i.e., 0.736) compared to the  model 

that included all features under consideration (i.e., 0.727). The true negative ratio of 0.645 

attained by the model with only selected features was marginally lower than the true negative 

ratio of 0.654 obtained by the model that used the full set of features. It is not a concern, as the 

researcher is more interested in identifying clients who default. From this table,  the AUC score 

and Gini coefficient of 0.745 and 0.491, respectively, which were attained by the model using 

feature selection, were both slightly higher than the AUC score and Gini coefficient of 0.744 

and 0.488, respectively, obtained by the model that included all features. Therefore, from 

Tables 5.8 and 5.9, the researcher concludes that the random forest model trained on 18 features 

seems to be the more favourable model.   

 

 

5.5 Support vector machine 
 

Recursive feature elimination was utilised in order to select important features to include in the 

SVM model’s building process; the following 25 features were chosen using this approach: % 

instalment to income allowed, % instalment to income taken, % Total Taken Up, Age, 

Arrearrs_1, Client Type_New, CreditCard_yes, Debt/Net Income, Gender_M, Insurance_yes, 

Internal consolidations/Amount Taken, Internal Living Expenses Rule_Yes, Limiting Rule_2, 

Married_Yes, Max Offer, Medicalaid_yes, NumberOfDependents, Pensionprovident_yes, 

Union fees_yes, Product Taken_PL New, Product Taken_PL Repeat,  RevolvingCredit_yes, 

Taking Max_Yes, Unpaids_Yes and YearsWithCurrentEmployer. 
 

Two SVM models were trained thereafter, one using the full set of features and the other only 

the selected features. A confusion matrix for these two models is reported in Table 5.10. 

 
Table 5. 10: Confusion matrix for the SVM model using feature selection and the model using the full set of features  

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1269 542 

Not Default 4431 8260 

Full set of 

features 

Default  1103 708 

Not Default 3655 9036 

 

From Table 5.10, the SVM model using the feature selection approach correctly predicted 1269 

defaulters and 8260 non-defaulters, whereas the model using all features under consideration 

correctly predicted 1103 defaulters and 9036 non-defaulters. Thus, the model using selected 

features seems to perform better when predicting the default class. However, this model 

misclassified more non-defaulters than the model trained on the full set of features. The 

researcher then examines the evaluation metrics (listed in Table 5.11) to ascertain which of 

these two models performed better overall. 
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Table 5. 11: Performance metrics for the SVM model using feature selection and the SVM model using the full set of 

features 

Performance metric Feature selection Full set of features 

Accuracy  0.657   0.699  

Balanced accuracy  0.676   0.661  

Sensitivity/True positive ratio/Recall  0.701   0.609  

Specificity/True negative ratio  0.651   0.712  

Positive predictive value (Precision)  0.223  0.232 

Negative predictive value  0.938  0.927 

AUC  0.733   0.720  

Gini  0.466   0.440  

 

From Table 5.11, the balanced accuracy score for the SVM model using feature selection is 

0.676, which is higher than the score of 0.661 obtained by the model using all features. Table 

5.11 also shows that the true positive and true negative ratio for the SVM model trained on 

selected features are 0.701 and 0.651, respectively, and for the SVM model using the full set 

of features, the ratios are 0.609 and 0.712, respectively. Thus, the model using the feature 

selection approach performed significantly better when identifying defaulters, which is the 

study’s main focus; however, it performed worse when identifying non-defaulters. From Table 

5.11, it can be observed that the AUC score and Gini obtained by the model using selected 

features are 0.733 and 0.466, respectively; these values are higher than the AUC score and Gini 

obtained by the model using all features, namely 0.720 and 0.440, respectively. Therefore, from 

Tables 5.10 and 5.11, the researcher concludes that the SVM model trained on the 25 selected 

features appears to be the better model for the application problem under study. 

 

 

5.6 Naïve Bayes classifier 
 

The Naïve Bayes classifier, in conjunction with the feature selection technique discussed in 

section 5.1, was used in order to select features which were most relevant. The model using the 

feature selection approach was trained on the following 19 features: % instalment to income 

allowed, % instalment to income taken, % Total Taken Up, Age, Arrearrs_1, External 

Subsequent Lending_Yes, Gender_M, Limiting Rule_2, Married_Yes, Max Offer, 

PayslipExpenses_Yes, Product Taken_Staff, RevolvingCredit_yes, Salary Bank_2, Union 

fees_yes, Unpaids_Yes, Taking Max_Yes, YearsWithCurrentEmployer and Insurance_yes. 

The confusion matrix results for the Naïve Bayes classifier trained on selected features only 

and the Naïve Bayes classifier trained on the full set of features are reported in Table 5.12. 
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Table 5. 12: Confusion matrix for the Naïve Bayes classifier using feature selection, and the model using the full set of 

features 

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1012 799 

Not Default 3103 9588 

Full set of 

features 

Default  1186 625 

Not Default 4658 8033 

 

From Table 5.12, the Naïve Bayes classifier using the feature selection approach correctly 

classified 1012 defaulters and 9588 non-defaulters, whereas the model using all features under 

consideration correctly classified 1186 defaulters and 8033 non-defaulters. Thus, the Naïve 

Bayes classifier using feature selection performed significantly better when identifying non-

defaulters; however, the classifier using the full set of features correctly identified more 

defaulters. 

A summary of the performance metrics for the Naïve Bayes classifier that used selected 

features and the one  that used the full set of features are presented in Table 5.13. 

 
Table 5. 13: Performance metrics for the Naïve Bayes classifier using feature selection, and using the full set of 

features 

Performance metric Feature selection Full set of features 

Accuracy 0.731 0.636 

Balanced accuracy 0.657 0.644 

Sensitivity/True positive ratio/Recall 0.559 0.655 

Specificity/True negative ratio 0.755 0.633 

Positive predictive value (Precision) 0.246 0.203 

Negative predictive value 0.923 0.928 

AUC 0.730 0.700 

Gini 0.460 0.400 

 

From Table 5.13, all reported performance metrics (other than the true positive ratio) showed 

better results for the Naïve Bayes classifier trained on selected features in comparison to the 

classifier trained on all features. The true positive ratio attained by the Naïve Bayes classifier 

using feature selection was 0.559, whereas the true positive ratio attained by the classifier that 

included the full set of features was significantly higher at 0.655. Although the classifier using 

feature selection obtained a better score for all other performance metrics except for the true 

positive ratio, it is not necessarily the better suited model, since the study’s main focus is to 

identify clients who default. From Table 5.13, the overall performance of the Naïve Bayes 

classifier that used the full set of features in the model building process seems unsatisfactory. 

Since the Naïve Bayes classifier that used only selected features performed poorly when 

identifying clients who defaulted, this model is also unsuitable. 
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5.7 K-nearest neighbours 

 

The recursive feature elimination method, in combination with the K-NN model, was used to 

identify important features in the model. The following 28 features (out of 57) were deemed 

important: % instalment to income allowed, % instalment to income taken, % Total Taken Up, 

Age, Arrearrs_1, Client Type_Reload, CreditCard_yes, External Subsequent Lending_Yes, 

Gender_M, HomeLoan_yes, Insurance_yes, Internal consolidations/Amount Taken, Internal 

Living Expenses Rule_Yes, Limiting Rule_3, LowerOffer_Yes, Married_Yes, Max Offer, 

Product Taken_PL Repeat, Medicalaid_yes, NumberOfDependents, PayslipExpenses_Yes, 

Salary Bank_2, RevolvingCredit_yes, Taking Max_Yes, Unpaids_Yes, Union fees_yes, 

Weekly/Monthly_Weekly and YearsWithCurrentEmployer.                                   

Two K-NN models were trained thereafter, one using the full set of features and the other only 

the selected features. The confusion matrix results for these two models are presented in Table 

5.14. 

Table 5. 14: Confusion matrix for the K-NN model using selected features and the model using the full set of features  

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1163 648 

Not Default 4114 8577 

Full set of 

features 

Default  1192 619 

Not Default 4493 8198 

 

From Table 5.14, the number of true positives attained by the K-NN model using the feature 

selection approach and the model using the full set of features is 1163 and 1192, respectively. 

This suggests that the model using feature selection misclassified a few more defaulters 

compared to the model trained on all features under consideration. Table 5.14 also shows that 

the number of true negatives obtained by the K-NN model using feature selection and the          

model using the full set of features is 8577 and 8192, respectively, indicating that the model 

using feature selection correctly predicted significantly more non-defaulters compared to the 

model using all features. The researcher then examines Table 5.15, which shows a summary of 

performance metrics for both models. 

 
Table 5. 15: Performance metrics for the K-NN model using feature selection and the model using the full set of 

features 

Performance metric Feature selection Full set of features 

Accuracy  0.672   0.647  

Balanced accuracy  0.659   0.652  

Sensitivity/True positive ratio/Recall  0.642   0.658  

Specificity/True negative ratio  0.676   0.646  

Positive predictive value (Precision)  0.220  0.210 

Negative predictive value  0.930  0.930 

AUC  0.711   0.702  

Gini  0.422   0.404  
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From Table 5.15, it can be observed that the K-NN model using feature selection obtained a 

true positive ratio of 0.642, whereas the K-NN model using the full set of features obtained a 

slightly higher true positive ratio of 0.658. Table 5.15 also reports that the true negative ratio 

attained by the K-NN model trained on selected features is 0.676, which is higher than the true 

negative ratio of 0.646 that was attained by the model trained on the full set of features. All 

other evaluation metrics shown in Table 5.15 indicate better performance for the K-NN model 

that only included selected features. Thus, from Tables 5.14 and 5.15, the K-NN model with 

29 fewer features appears to be the more appropriate model for the classification problem under 

study. 

 

5.8 Artificial neural network  

 

The feature selection technique discussed in Chapter 5.1 was utilised in order to remove 

features which contributed little to the model. The following 24 features (out of 57) were 

chosen as input variables for the ANN model: % instalment to income allowed, % instalment 

to income taken, % Total Taken Up, Age, Arrears_1, Client Type_Reload, CreditCard_yes, 

Debt/Net Income, Gender_M, Insurance_yes, Internal Living Expenses Rule_yes, Limiting 

Rule_2, Married_yes, Max Offer, Medicalaid_yes, PayslipExpenses_Yes, Taking Max_yes,  

Pensionprovident_yes, Product Taken_PL Repeat, Salary Bank_2, Union fees_yes, 

Unpaids_yes, Total consolidations/Amount Taken and YearsWithCurrentEmployer,. 

The confusion matrix results for the ANN model trained using feature selection and the model 

trained on the full set of features are reported in Table 5.16. 

 
Table 5. 16: Confusion matrix for the ANN model using selected features and the model using the full set of features  

      Predicted 

      Default Not Default 

Selected 

features 
Actual 

Default 1308 503 

Not Default 4403 8288 

Full set of 

features 

Default  1346 465 

Not Default 4848 7843 

 

From Table 5.16, the ANN model using selected features correctly classified 1308 out of 1811 

defaulters, whereas the model using all features under consideration correctly classified 1 346 

defaulters. This indicates that the model using feature selection misclassified a few more 

defaulters compared to the model using all features. Table 5.16 also indicates that the ANN 

model that used selected features correctly identified 8288 out of 12691 non-defaulters and the 

model using the full set of features correctly identified 7843 non-defaulters. This suggests that 

the model using feature selection correctly identified a significantly larger portion of non-

defaulters compared to the model trained on the full set of features.  

In order to ascertain which model performed better overall, evaluation metrics (listed in Table 

5.17) are examined. 
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Table 5. 17: Performance metrics for the ANN model using selected features and the model using the full set of 

features 

Performance metric Feature selection Full set of features 

Accuracy  0.662   0.634  

Balanced accuracy  0.688   0.681  

Sensitivity/True positive ratio/Recall  0.722   0.743  

Specificity/True negative ratio  0.653   0.618  

Positive predictive value (Precision)  0.229  0.217 

Negative predictive value  0.943  0.944 

AUC  0.745   0.737  

Gini  0.490   0.475  

 

From Table 5.17, the ANN model trained on selected features obtained better results for all 

evaluation metrics (other than the true positive ratio) in comparison to the ANN model that 

included the full set of features in the model-building process. The true positive ratio obtained 

by the model using only selected features was 0.722, whereas the true positive ratio attained 

by the model including all features was 0.743. Although the ANN model using feature selection 

attained a lower true positive ratio, the true positive ratio of 0.722 is still very good. Thus, the 

ANN model that included 24 features is more favourable. 

 

 

5.9 Summary of model performance using feature selection 
 

In this chapter, recursive feature elimination was utilised in order to select a subset of the most 

relevant features in the dataset for each machine learning algorithm outlined in Chapter 3. Each 

algorithm was trained twice, first using the full set of features and then using only the selected 

features, and a comparison was done between the two models for each algorithm. From sections 

5.2 to 5.8, the researcher observed that the machine learning algorithms that utilised the 

recursive feature elimination technique generally seemed more suitable for the classification 

problem under study compared to the models that utilised the full set of features. In section 5.9, 

a comparison of results obtained by each classification algorithm (discussed in Chapter 3), 

when using the feature selection approach, is performed. Table 5.18 shows the confusion 

matrix for each algorithm and Table 5.19 provides a summary of several performance metrics 

used to evaluate the models, namely accuracy, balanced accuracy, true positive ratio, true 

negative ratio,  positive predictive value (precision), negative predictive value, AUC score, and 

the Gini coefficient.  
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Table 5. 18: Confusion matrix for each model under study using feature selection 

      PREDICTED 

     DEFAULT NOT DEFAULT 

LR 

ACTUAL 

DEFAULT 1280 531 

NOT DEFAULT 4784 7907 

DT 
DEFAULT 1310 501 

NOT DEFAULT 5267 7424 

RF 
DEFAULT 1332 479 

NOT DEFAULT 4501 8190 

SVM 
DEFAULT 1269 542 

NOT DEFAULT 4431 8260 

NB 
DEFAULT 1012 799 

NOT DEFAULT 3103 9588 

   K-NN 
DEFAULT 1163 648 

NOT DEFAULT 4114 8577 

ANN 
DEFAULT 1308 503 

NOT DEFAULT 4403 8288 

 

From Table 5.18, the random forest model attained the highest number of true positives, 

followed by the decision tree algorithm and then the ANN model; the number of defaulters 

correctly identified by these models were 1332, 1310 and 1308, respectively. Since the main 

aim of this study is to identify clients who default, the number of defaulters correctly identified 

by each algorithm is a significant factor when selecting the most suitable model. To compare 

the overall performance of the logistic regression model, decision tree, random forest, support 

vector machine, Naïve Bayes classifier, k-nearest neighbours algorithm and the artificial neural 

network when using the feature selection approach, Table 5.19 is examined. 

 
Table 5. 19: Performance metrics for each model under study using the feature selection approach 

  Logistic 

regression 

Decision 

tree 

Random 

forest 
SVM 

Naïve 

Bayes 
K-NN ANN 

Accuracy 0.633 0.602 0.657 0.657 0.731 0.672 0.662 

Balanced accuracy 0.665 0.654 0.69 0.676 0.657 0.659 0.688 

True positive ratio 

(Sensitivity) 
0.707 0.723 0.736 0.701 0.559 0.642 0.722 

True negative ratio 

(Specificity) 
0.623 0.585 0.645 0.651 0.755 0.676 0.653 

Positive predictive value 

(Precision) 
0.211 0.199 0.228 0.223 0.246 0.22 0.229 

Negative predictive value 0.937 0.937 0.945 0.938 0.923 0.93 0.943 

AUC score 0.726 0.698 0.745 0.733 0.73 0.711 0.745 

Gini 0.453 0.396 0.491 0.466 0.46 0.422 0.49 

 

Table 5.19 shows that the Naïve Bayes classifier obtained the highest accuracy score of 0.731. 

In Chapter 2, we established that there was an imbalance in the dataset, as only 12% of the 

clients under study defaulted on their loan, whereas 88% of clients under study did not default 

on their loan. Thus, accuracy is not the most reliable metric in this study since the minority 

class, default, is the class that the researcher is more interested in, and accuracy tends to be 
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biased towards the majority class (i.e., not default). The balanced accuracy score is then 

examined. Table 5.19 shows that the random forest model obtained the highest balanced 

accuracy score of 0.690, which is marginally higher than the ANN classifier’s balanced 

accuracy score of 0.688; the researcher considers these scores to be good as they are both very 

close to 70%. 

The true positive ratios and true negative ratios are then analysed. From Table 5.19, the random 

forest attained the highest true positive ratio of 0.736, which corresponds to the researcher’s 

findings from the confusion matrix in Table 5.18 which indicated that the random forest 

correctly classified the most number of defaulters. The decision tree classifier and ANN 

classifier both attained a true positive ratio of approximately 0.72, which was the second 

highest. A true positive ratio above 70% is considered to be a good score by the researcher. 

The true negative ratios are examined next. Table 5.19 shows that the Naïve Bayes classifier 

attained the highest true negative ratio of 0.755; however, this classifier obtained the worst true 

positive ratio of 0.559, which is one of the most significant metrics in the study. Since the 

misclassification costs associated with false positives is negligible, the researcher considers a 

true negative ratio of about 65% and higher as acceptable. The random forest and ANN model 

both obtained a true negative ratio of approximately 65%. 

The positive predictive values and negative predictive values are then analysed. The positive 

predictive value (precision) was low across all models which was presumably influenced by 

the significant imbalance in the dataset. The Naïve Bayes classifier obtained the highest 

positive predictive value of 0.246; the ANN and random forest model attained the second and 

third highest values of 0.229 and 0.228, respectively. As previously stated, the low positive 

predictive value (precision) is not a concern to the researcher as the main focus of this study is 

to identify defaulters and the costs associated with misclassifying non-defaulters is very low. 

The negative predictive value was high across all models; the random forest and ANN models 

attained the highest and second highest negative predictive values of 0.945 and 0.943, 

respectively. Table 5.19 also reports the AUC score and Gini for each model; the random forest 

and ANN model both attained an AUC score of 0.745 and a Gini of approximately 0.49, 

respectively, which were the highest values across all classifiers under study.  

Since the large imbalance in the dataset likely had an influence on the accuracy, positive 

predictive value and negative predictive value, the researcher focuses on the balanced accuracy, 

true positive ratio, true negative ratio, AUC score and Gini when identifying the most 

appropriate classification algorithm for the problem under study. From the confusion matrix in 

Table 5.18 and the performance metrics in Table 5.19, the random forest classifier seemed to 

have the best overall performance, followed by the ANN classifier. Since the ANN model’s 

training time is longer and there are several parameters that need to be tuned, the random forest 

classifier is the most favourable one. 

The researcher then compares the models that were most suitable for the classification problem 

under study when using the PCA approach in Chapter 4 and the feature selection approach in 

Chapter 5 in order to identify the most appropriate model overall. In both cases, the random 

forest algorithm seemed to be the most suitable model. Therefore, the performance metrics 

associated with the random forest model using the PCA approach is compared to the 

performance metrics associated with the random forest model that utilised feature selection. 

The results are presented in Table 5.20. 
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Table 5. 20: Performance metrics for the random forest model using the PCA approach and the random forest model 

using feature selection 

Random Forest PCA Feature Selection 

Accuracy 0.656 0.657 

Balanced accuracy 0.691 0.690 

True positive ratio 0.738 0.736 

True negative ratio 0.645 0.645 

Positive predictive value (Precision) 0.229 0.228 

Negative predictive value 0.945 0.945 

AUC 0.744 0.745 

Gini 0.489 0.491 

 

Table 5.20 shows a marginal difference between each performance metric listed, when 

comparing the random forest model using the PCA approach to the random forest model using 

feature selection. The AUC value is a single scaler value that can be used to compare the overall 

performance of the models; from Table 5.20, the AUC scores are similar across both models. 

The ROC curves for the random forest classifier using feature selection and the random forest 

classifier using PCA are then analysed in Figure 5.2. 

 

 

Figure 5. 2: ROC curve for the random forest model using PCA and the random forest model using feature selection 

From Figure 5.2, remarkably similar results for both models are shown. This supports the 

results reported in Table 5.20. Thus, from Table 5.20 and Figure 5.2, both classifiers seem to 

have attained similar results. Since the random forest model using feature selection included 

18 features, whereas the random forest model using PCA included 48 features, the random 

forest model using feature selection seems to be the more suitable model. Fewer features in a 

model reduce the computational costs of modelling as well as the risk of data errors. Figure 5.3 

shows the feature importance of the 18 features included in the random forest model using 

feature selection, ranked in ascending order of importance.  
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 Figure 5. 3: Feature importance of variables in the random forest model that used feature selection 

 

From Figure 5.3, Max Offer, % instalment to income allowed, Age, % Total Taken Up, % 

instalment to income taken and YearsWithCurrentEmployer were the most important features 

in the random forest model which used the feature selection approach, when predicting the 

default status of clients. Features toward the lower end of the tail (e.g., Pensionprovident_yes, 

Internal Living Expenses Rule_Yes and Client Type_Reload) seem to be considerably less 

important compared to features such as Max Offer and % instalment to income allowed. The 

objective of this study was to obtain the best model; however, more features may be removed 

by adjusting the threshold used in the feature selection process, to simplify the model. This 

results in a tradeoff between model performance and model simplicity. 

 

Each classification algorithm discussed in Chapter 3 was fitted to the balanced default dataset 

under study. In chapter 4 and chapter 5 we discussed the results obtained for each model when 

using the PCA approach and feature selection approach, respectively. The next chapter 

concludes this study and provides answers to each of the research questions listed in Chapter 

1. 
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Chapter 6 
6 Conclusions, limitations and recommendations 
 

This chapter provides the conclusions and limitations to this study, and recommendations for 

further study. 

 

6.1  Conclusions 
 

Financial institutions have rules and regulations in place that dictate whom to lend to and how 

much the institution is willing to lend, depending on the client’s affordability and risk levels, 

among other factors. Lending institutions, however, still expect a percentage of clients to 

default on their payments. Clients miss payments on their loans for multiple reasons. Some 

cannot afford payments due to mismanagement of funds, additional unexpected costs et cetera, 

whereas others choose not to pay. It is necessary for financial institutions to have a good 

collections process in place in order reduce the number of clients who default on their debt 

obligation and to collect as much unpaid debt as possible. The financial institution under study 

currently starts the debt recovery process once a client misses a payment. The institution now 

wants to enhance the collection process by identifying clients who are more likely to miss 

payments, as soon as the loan is granted, in order for the institution to send through reminder 

SMS messages and emails to this population at the beginning of each month, starting from the 

month in which the first instalment is due. This enhanced process will likely result in the 

financial institution retrieving more unpaid debt and reducing the number of clients who default 

on their loans. 

Thus, in this study, machine learning algorithms were used to predict whether a client will 

default on his/her loan (i.e., miss at least three payments in the first 12 months of the loan being 

granted) by using information available at the time the loan is granted so that an enhanced 

collections process can be used on clients who were classified as defaulters. The researcher 

fitted the logistic regression model, decision tree, random forest, support vector machines, 

Naïve Bayes classifier, k-nearest neighbours and artificial neural network to the balanced 

default dataset. To reduce the dimensionality of the dataset, two techniques were used, namely, 

principal component analysis (PCA), which is also used to correct the data for multicollinearity, 

and feature selection i.e., recursive feature elimination, which aims to remove irrelevant and 

redundant features. The researcher compared the results obtained by the different models in 

order to identify the model which was most suitable for the problem under study. Since the 

additional step in the collections process involving the sending of emails and SMS’s is not 

costly, misclassifying non-defaulters as defaulters (i.e., false positives) was not a major 

concern; the financial institution was more concerned with identifying clients who default.  

The first research question aimed to identify which classification algorithms were able to 

correctly classify a sufficient proportion of clients who defaulted on their loan. From the results 

in the study, it can be concluded that, where the PCA approach was used, the random forest, 

ANN and logistic regression model classified a significant proportion of clients who defaulted 
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correctly; where feature selection was used, the random forest, ANN, SVM, decision tree and 

logistic regression models were able to correctly classify a substantial portion of defaulters by 

using the reduced subset of features. Chen and Zhang (2021) reviewed the artificial neural 

network, k-nearest neighbour, decision tree, support vector machine and logistic regression and 

concluded that all six models, including the K-NN model, could be used to predict the default 

of automobile. In contrary, in this study, the K-NN model obtained results which were 

unsatisfactory when using both, the PCA approach and the feature selection approach. By 

fitting the K-NN algorithm to various default datasets, one can gain further insight into the 

algorithm’s ability to predict the default status of clients. 

The second research question aimed to identify which classification algorithm was most 

appropriate when using the PCA approach and the feature selection approach, and which model 

was most appropriate overall. The evaluation metrics used to analyse and compare the model’s 

performance were accuracy, balanced accuracy, true positive ratio, true negative ratio, positive 

predictive value, negative predictive value, AUC score, and the Gini coefficient. From the 

results presented in Chapters 4 and 5, where the PCA and feature selection methods were 

utilised, respectively, both methods showed that the random forest and ANN models seemed 

to have the best overall performance when considering the classification problem under study. 

When using the PCA approach, the random forest model obtained a balanced accuracy score, 

true positive ratio, true negative ratio and AUC score of 0.69, 0.74, 0.65 and 0.74, respectively; 

these values for the fitted ANN model were 0.69, 0.74, 0.64 and 0.75, respectively. When using 

the feature selection approach (i.e., recursive feature elimination), the random forest model 

attained a balanced accuracy score, true positive ratio, true negative ratio and AUC score of 

0.69, 0.74, 0.65 and 0.75, respectively, whereas these values were 0.69, 0.72, 0.65 and 0.75, 

respectively for the fitted ANN model. Since the ANN model has a significantly longer training 

time, has several parameters that need to be tuned, and has little interpretability, the random 

forest model seemed to be the most suitable model when predicting the default status of clients 

under study when using both PCA and feature selection techniques. In line with the results of 

this study, Bayraci and Susuz (2019), Madaan et al. (2021), Ince and Aktan (2009) and Radhika 

et al. (2021) concluded that either the random forest model or the neural network performed 

the best when comparing various models used to predict the default status of clients. 

The researcher then identified which model was the most appropriate overall. Since the random 

forest model was most suitable when using both PCA and feature selection, a comparison 

between the random forest model using PCA and the random forest model using feature 

selection was made in order to ascertain the most suitable model overall. When comparing both 

models, the results (presented in Chapter 5) showed a marginal difference between each 

performance metric analysed. The ROC AUC curves also showed great similarity between the 

two models. The random forest model using feature selection utilised 18 features, whereas the 

random forest model using PCA utilised 48 features. Fewer features help to simplify models, 

make implementation easier, and may reduce the risk of data errors, since reducing the number 

of features reduces the risk of errors during data collection and storage. Therefore, the random 

forest model using feature selection seemed most appropriate for the classification problem 

under study.  
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The third research question aimed to identify the key risk factors associated with loan 

defaulting clients; based on the recommended model (i.e., the random forest using feature 

selection), these factors are the client’s age, the number of years the client has been with their 

current company, the maximum amount offered to the client, the maximum ratio of instalment 

to income that the client is allowed, the percentage of the total offer taken up by the client and 

the instalment amount taken by the client as a percentage of their income. Chen and Zhang 

(2021), who aimed to predict automobile credit defaulters, used feature selection and found 

that date of birth, employment type, disbursed amount and asset cost were ranked most 

important when predicting the ‘default’ target variable. Bayraci and Susuz (2019), Kadam et 

al. (2021) and Kwofie et al. (2015), among others, mention that variables such as age, gender, 

income, and credit information were included in their default models. Thus, features related to 

a client’s age, income and loan amount often seem to be important in models which aim to 

predict the default status of clients. 

 

6.2 Limitations to the study 
 

This study entailed fitting machine learning classification algorithms to loan data from a South 

African financial institution in order to predict a client’s default status. There were a few 

limitations and challenges experienced that were related to the dataset and classification 

algorithms. Firstly, the data used in this study was limited to banking clients from only one 

South African financial institution whose name is withheld due to the nondisclosure agreement. 

Secondly, this study focused on clients who defaulted at least three times in the first 12 months 

of the loan being granted; clients who defaulted outside of this condition could not be identified 

and were included in the non-defaulting class. Thirdly, all results from this study are pertaining 

to data from the period August 2019 to December 2019. Fourthly, many machine learning 

algorithms are often considered black boxes. It is difficult to attain a comprehensive 

understanding of how the models work once they have been trained; therefore, it is difficult to 

understand and explain the behaviour of the models.  

 

6.3 Recommendations for further study 
 

For future research, alternate techniques used to handle imbalanced datasets can be investigated 

to help improve the model performance, focusing on the reduction of false positives; the 

SMOTE method and weightings method, among others, were investigated in this study, 

however, whilst it did improve each model’s performance when identifying clients who 

defaulted, the models still attained many false positives. Secondly, machine learning 

algorithms are often considered black boxes; there is little understanding of how a specific 

prediction is made for many of these models. Further research into tools and methods which 

help with the interpretability of these algorithms can be explored.  
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Appendix 1 – Principal Component Analysis 
 

#########Packages######### 

import pandas as pandas 

from pandas.plotting import scatter_matrix 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import stats 

import scipy.stats 

import seaborn as sns 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.preprocessing import StandardScaler 

#from sklearn.datasets import make_classification 

from sklearn.decomposition import PCA 

from sklearn.model_selection import train_test_split 

from sklearn.feature_selection import VarianceThreshold 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2 

from sklearn.feature_selection import SelectFromModel 

from sklearn.model_selection import GridSearchCV 

from sklearn import model_selection 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

from sklearn.svm import SVC 

import tensorflow 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.constraints import maxnorm 

from keras.layers import Dropout 

from sklearn.metrics import classification_report 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import matthews_corrcoef, precision_score, accuracy_score, recall_score, 

f1_score 

from sklearn.metrics import roc_auc_score, r2_score 

from sklearn.metrics import roc_curve 

 

 

 

#########PCA######### 

 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

 

###First select number of principal components### 

 

PCAfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 
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'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

 

 

PCAFeat = dataset.loc[:, PCAfeatures].values 

PCAFeat = StandardScaler().fit_transform(PCAFeat) 

 

pca = PCA(n_components=16) 

principalComponents = pca.fit_transform(PCAFeat) 

 

var = pca.explained_variance_ratio_ 

var1 = np.cumsum(np.round(pca.explained_variance_ratio_, decimals = 3)*100) 

var1 

 

 

###Create 7 principal components### 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(PCAFeat) 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

 

                         ]) 

 

pca.explained_variance_ratio_ 

 

 

###Check correlation of principal components### 

plt.figure(figsize=(20,20)) 

 

heatmap = sns.heatmap(principalDf.corr(), 

            vmin=-1,vmax=1,annot=True) 

 

heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':15},pad=15); 

 

 

 

#########Logistic Regression – PCA######### 

 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 
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'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

                         ]) 

 

pca.explained_variance_ratio_ 

 

dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 
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X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

 

###Classifier### 

classifier = LogisticRegression(n_jobs=-1, 

                                solver = 'newton-cg', 

                                C = 10, 

                                penalty = 'l2', 

                                class_weight=class_weight,  

                                random_state=0) 

classifier.fit(X_train, y_train) 

 

###Evaluation### 

# Gini function 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1 

 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred_prob = classifier.predict_proba(X_train) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

#Test Set 

y_pred = classifier.predict(X_test) 

y_pred_prob = classifier.predict_proba(X_test) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

#########Decision Tree – PCA######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 



 

134 
 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

                         ]) 

 

pca.explained_variance_ratio_ 

 

dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 
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###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

 

###Classifier### 

classifier = DecisionTreeClassifier(criterion='entropy',     

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 200, 

                                splitter = 'best', 

                                min_impurity_split = 0.6, 

                                class_weight=class_weight,  

                                random_state=0) 

classifier.fit(X_train, y_train) 

 

 

###Evaluation### 

# Gini function 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1 

 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred_prob = classifier.predict_proba(X_train) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

#Test Set 

y_pred = classifier.predict(X_test) 

y_pred_prob = classifier.predict_proba(X_test) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 
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print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

#SHAP Graphs 

 

import shap 

shap.initjs() 

 

explainer = shap.TreeExplainer(classifier) 

shap_values = explainer.shap_values(X_train) 

shap.summary_plot(shap_values[1], X_train, plot_type="bar",max_display=57) 

 

explainer = shap.TreeExplainer(classifier) 

shap_values = explainer.shap_values(X_test) 

shap.summary_plot(shap_values[1], X_test, plot_type="bar",max_display=57) 

 

 

 

#########Random Forest – PCA######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 
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                         ,'principalcomponent7' 

                         ]) 

 

pca.explained_variance_ratio_ 

 

dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

###Classifier### 

classifier = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 40, 

                                max_features = 'auto', 

                                min_samples_leaf = 50, 

                                min_samples_split = 550, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight,  

                                random_state=0) 
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classifier.fit(X_train, y_train) 

 

###Evaluation### 

# Gini function 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1 

 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred_prob = classifier.predict_proba(X_train) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

#Test Set 

y_pred = classifier.predict(X_test) 

y_pred_prob = classifier.predict_proba(X_test) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

#SHAP Graphs 

 

import shap 

shap.initjs() 

 

explainer = shap.TreeExplainer(classifier) 

shap_values = explainer.shap_values(X_train) 

shap.summary_plot(shap_values[1], X_train, plot_type="bar",max_display=57) 

shap.summary_plot(shap_values[1], X_train,max_display=57) 

explainer = shap.TreeExplainer(classifier) 

shap_values = explainer.shap_values(X_test) 

shap.summary_plot(shap_values[1], X_test, plot_type="bar",max_display=57) 

shap.summary_plot(shap_values[1], X_test,max_display=57) 

 

 

#########SVM – PCA######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 
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dataset = pandas.concat([Y,X_transformed],axis=1) 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

                         ]) 

 

pca.explained_variance_ratio_ 

 

dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 
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scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

 

###Classifier### 

classifier = SVC(kernel = 'rbf',  

                 gamma = 0.005 ,  

                 C = 21,  

                 class_weight = 'balanced', 

                 probability=True) 

 

classifier.fit(X_train, y_train) 

 

###Evaluation### 

# Gini function 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1 

 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred_prob = classifier.predict_proba(X_train) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

#Test Set 

y_pred = classifier.predict(X_test) 

y_pred_prob = classifier.predict_proba(X_test) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 
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#########NB – PCA######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

                         ]) 

 

 

pca.explained_variance_ratio_ 

 

dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 
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'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

 

###Classifier### 

classifier = GaussianNB() 

classifier.fit(X_train, y_train) 

 

###Evaluation### 

# Gini function 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1 

 

 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred_prob = classifier.predict_proba(X_train) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 
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#Test Set 

y_pred = classifier.predict(X_test) 

y_pred_prob = classifier.predict_proba(X_test) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

 

#########KNN – PCA######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

                         ]) 

 

pca.explained_variance_ratio_ 
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dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

###Smote### 

from collections import Counter 

from sklearn.datasets import make_classification 

from imblearn.over_sampling import SMOTE 

print(Counter(y_train)) 

# sampling strategy 

sample = SMOTE() 

X_train, y_train = sample.fit_resample(X_train, y_train) 

print(Counter(y_train)) 

 

###Classifier### 

classifier = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights = 'uniform') 

classifier.fit(X_train, y_train) 

 

###Evaluation### 

# Gini function 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 
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    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred_prob = classifier.predict_proba(X_train) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

#Test Set 

y_pred = classifier.predict(X_test) 

y_pred_prob = classifier.predict_proba(X_test) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

 

#########ANN – PCA######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

 

###PCA### 

correlatedfeatures = ['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

] 

xcorr = dataset.loc[:, correlatedfeatures].values 

xcorr = StandardScaler().fit_transform(xcorr) 

from sklearn.decomposition import PCA 
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pca = PCA(n_components=7) 

principalComponents = pca.fit_transform(xcorr) 

 

principalDf = pandas.DataFrame(data = principalComponents 

             , columns = ['principalcomponent1' 

                        ,'principalcomponent2' 

                         ,'principalcomponent3' 

                         ,'principalcomponent4' 

                         ,'principalcomponent5' 

                         ,'principalcomponent6' 

                         ,'principalcomponent7' 

                         ]) 

 

pca.explained_variance_ratio_ 

 

dataset.reset_index(drop=True, inplace=True) 

principalDf.reset_index(drop=True, inplace=True) 

dataset = pandas.concat([dataset,principalDf ],axis=1) 

 

dataset.drop(['Age', 

'Instalment /Disposable income', 

'YearsWithCurrentEmployer', 

'% Total Taken Up', 

'NumberOfDependents', 

'Disposable income/Basic', 

'Debt/Net Income', 

'Max Offer', 

'% instalment to income taken', 

'% instalment to income allowed', 

'External consolidations/Amount Taken', 

'Internal consolidations/Amount Taken', 

'Total consolidations/Amount Taken', 

'Debt to Income ratio', 

'Final Disposable Income/NetIncome', 

'Calc Disposable Income/NetIncome', 

],axis=1,inplace=True) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

 

###Classifier### 
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classifier = Sequential() 

classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim 

= 48)) 

classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu')) 

classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) 

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) 

classifier.fit(X_train, y_train, batch_size = 128, epochs = 200, class_weight=class_weight) 

 

 

###Evaluation### 

 

# Gini function 

 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

#Training Set 

y_train_pred = classifier.predict(X_train) 

y_train_pred = (y_train_pred > 0.5) 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train, y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

 

 

#Test Set 

y_pred = classifier.predict(X_test) 

y_pred = (y_pred > 0.5) 

 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 
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Appendix 2 – Feature Selection 
 

#########Packages######### 

import pandas as pandas 

from pandas.plotting import scatter_matrix 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import stats 

import scipy.stats 

import seaborn as sns 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.preprocessing import StandardScaler 

#from sklearn.datasets import make_classification 

from sklearn.decomposition import PCA 

from sklearn.model_selection import train_test_split 

from sklearn.feature_selection import VarianceThreshold 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2 

from sklearn.feature_selection import SelectFromModel 

from sklearn.model_selection import GridSearchCV 

from sklearn import model_selection 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

from sklearn.svm import SVC 

import tensorflow 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.constraints import maxnorm 

from keras.layers import Dropout 

from sklearn.metrics import classification_report 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import matthews_corrcoef, precision_score, accuracy_score, recall_score, 

f1_score 

from sklearn.metrics import roc_auc_score, r2_score 

from sklearn.metrics import roc_curve 

 

 

 

#########Logistic Regression – Feature Selection######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

###Standardisation### 

# set up the scaler 
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scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

seed_val = 1000000000 

np.random.seed(seed_val) 

 

 

### feature selection### 

### build initial model using all the features### 

model_all_features = LogisticRegression(n_jobs=-1, 

                                solver = 'newton-cg', 

                                C = 10, 

                                penalty = 'l2', 

                                class_weight=class_weight,  

                                random_state=0) 

 

model_all_features.fit(X_train, y_train) 

# calculate the roc-auc in the test set 

y_pred_test = model_all_features.predict_proba(X_test)[:, 1] 

auc_score_all = roc_auc_score(y_test, y_pred_test) 

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all)) 

 

###determine order in which features are removed from model ### 

feature_order   = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 100, 

                                min_samples_split = 400, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight, 

                                random_state=0) 

 

feature_order.fit(X_train, y_train) 

 

# obtaining feature names and importance 

features = pandas.Series(feature_order.feature_importances_) 

features.index = X_train.columns 

# sorting features by importance 

features.sort_values(ascending=True, inplace=True)   

# plotting feature importance 

features.plot.bar(figsize=(20,6)) 

# show list of ordered features 

features = list(features.index) 

features 

 

 

###recursive feature elimination### 

tol = 0.001 

print('doing recursive feature elimination') 

features_to_remove = [] 

count = 1 
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for feature in features: 

    print() 

    print('testing feature: ', feature, ' which is feature ', count, 

          ' out of ', len(features)) 

    count = count + 1 

 

# build model  

    model_int = LogisticRegression(n_jobs=-1, 

                                solver = 'newton-cg', 

                                C = 10, 

                                penalty = 'l2', 

                                class_weight=class_weight,  

                                random_state=0) 

 

    model_int.fit( 

             X_train.drop(features_to_remove + [feature], axis=1), y_train) 

    y_pred_test = model_int.predict_proba( 

        X_test.drop(features_to_remove + [feature], axis=1))[:, 1] 

 

    auc_score_int = roc_auc_score(y_test, y_pred_test) 

    print('New Test ROC AUC={}'.format((auc_score_int))) 

    print('All features Test ROC AUC={}'.format((auc_score_all))) 

 

    diff_auc = auc_score_all - auc_score_int 

 

 

    if diff_auc >= tol: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('keep: ', feature) 

        print 

    else: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('remove: ', feature) 

        print 

 

        auc_score_all = auc_score_int 

        features_to_remove.append(feature) 

     

print('End') 

 

 

features_to_keep = [x for x in features if x not in features_to_remove] 

print('total features to keep: ', len(features_to_keep)) 

 

###final model### 

final_model = LogisticRegression(n_jobs=-1, 

                                solver = 'newton-cg', 

                                C = 10, 

                                penalty = 'l2', 

                                class_weight=class_weight,  

                                random_state=0) 

 

final_model.fit(X_train[features_to_keep], y_train) 

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1] 

auc_score_final = roc_auc_score(y_test, y_pred_test) 

print('Test selected features ROC AUC=%f' % (auc_score_final)) 

 

### Gini function### 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

 

###Train### 

y_train_pred = final_model.predict(X_train[features_to_keep]) 

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep]) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train,y_train_pred)) 

print() 

print('Model Results: ') 
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print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

###Test### 

y_pred = final_model.predict(X_test[features_to_keep]) 

y_pred_prob = final_model.predict_proba(X_test[features_to_keep]) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

 

#########Decision Tree– Feature Selection######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

seed_val = 1000000000 

np.random.seed(seed_val) 

 

 

### feature selection### 

### build initial model using all the features### 

model_all_features = DecisionTreeClassifier(criterion='entropy',     

                                max_depth = 60, 
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                                max_features = 'auto', 

                                min_samples_leaf = 200, 

                                splitter = 'best', 

                                min_impurity_split = 0.6, 

                                class_weight=class_weight,  

                                random_state=0) 

 

model_all_features.fit(X_train, y_train) 

# calculate the roc-auc in the test set 

y_pred_test = model_all_features.predict_proba(X_test)[:, 1] 

auc_score_all = roc_auc_score(y_test, y_pred_test) 

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all)) 

 

###determine order in which features are removed from model ### 

feature_order   = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 100, 

                                min_samples_split = 400, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight, 

                                random_state=0) 

 

feature_order.fit(X_train, y_train) 

 

# obtaining feature names and importance 

features = pandas.Series(feature_order.feature_importances_) 

features.index = X_train.columns 

# sorting features by importance 

features.sort_values(ascending=True, inplace=True)   

# plotting feature importance 

features.plot.bar(figsize=(20,6)) 

# show list of ordered features 

features = list(features.index) 

features 

###recursive feature elimination### 

tol = 0.001 

print('doing recursive feature elimination') 

features_to_remove = [] 

count = 1 

for feature in features: 

    print() 

    print('testing feature: ', feature, ' which is feature ', count, 

          ' out of ', len(features)) 

    count = count + 1 

 

# build model  

    model_int = DecisionTreeClassifier(criterion='entropy',     

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 200, 

                                splitter = 'best', 

                                min_impurity_split = 0.6, 

                                class_weight=class_weight,  

                                random_state=0) 

 

    model_int.fit( 

             X_train.drop(features_to_remove + [feature], axis=1), y_train) 

    y_pred_test = model_int.predict_proba( 

        X_test.drop(features_to_remove + [feature], axis=1))[:, 1] 

 

    auc_score_int = roc_auc_score(y_test, y_pred_test) 

    print('New Test ROC AUC={}'.format((auc_score_int))) 

    print('All features Test ROC AUC={}'.format((auc_score_all))) 

 

    diff_auc = auc_score_all - auc_score_int 
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    if diff_auc >= tol: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('keep: ', feature) 

        print 

    else: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('remove: ', feature) 

        print 

 

        auc_score_all = auc_score_int 

        features_to_remove.append(feature) 

     

print('End') 

 

 

features_to_keep = [x for x in features if x not in features_to_remove] 

print('total features to keep: ', len(features_to_keep)) 

 

###final model### 

final_model = DecisionTreeClassifier(criterion='entropy',     

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 200, 

                                splitter = 'best', 

                                min_impurity_split = 0.6, 

                                class_weight=class_weight,  

                                random_state=0) 

 

final_model.fit(X_train[features_to_keep], y_train) 

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1] 

auc_score_final = roc_auc_score(y_test, y_pred_test) 

print('Test selected features ROC AUC=%f' % (auc_score_final)) 

 

### Gini function### 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

 

###Train### 

y_train_pred = final_model.predict(X_train[features_to_keep]) 

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep]) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train,y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

###Test### 

y_pred = final_model.predict(X_test[features_to_keep]) 

y_pred_prob = final_model.predict_proba(X_test[features_to_keep]) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 
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#########Random Forest– Feature Selection######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

seed_val = 1000000000 

np.random.seed(seed_val) 

 

 

### feature selection### 

### build initial model using all the features### 

model_all_features = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 40, 

                                max_features = 'auto', 

                                min_samples_leaf = 50, 

                                min_samples_split = 550, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight,  

                                random_state=0) 

 

model_all_features.fit(X_train, y_train) 

# calculate the roc-auc in the test set 

y_pred_test = model_all_features.predict_proba(X_test)[:, 1] 

auc_score_all = roc_auc_score(y_test, y_pred_test) 

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all)) 

 

###determine order in which features are removed from model ### 

feature_order   = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 40, 

                                max_features = 'auto', 
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                                min_samples_leaf = 50, 

                                min_samples_split = 550, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight,  

                                random_state=0) 

 

feature_order.fit(X_train, y_train) 

 

# obtaining feature names and importance 

features = pandas.Series(feature_order.feature_importances_) 

features.index = X_train.columns 

# sorting features by importance 

features.sort_values(ascending=True, inplace=True)   

# plotting feature importance 

features.plot.bar(figsize=(20,6)) 

# show list of ordered features 

features = list(features.index) 

features 

 

 

###recursive feature elimination### 

tol = 0.001 

print('doing recursive feature elimination') 

features_to_remove = [] 

count = 1 

for feature in features: 

    print() 

    print('testing feature: ', feature, ' which is feature ', count, 

          ' out of ', len(features)) 

    count = count + 1 

 

# build model  

    model_int = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 40, 

                                max_features = 'auto', 

                                min_samples_leaf = 50, 

                                min_samples_split = 550, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight,  

                                random_state=0) 

 

    model_int.fit( 

             X_train.drop(features_to_remove + [feature], axis=1), y_train) 

    y_pred_test = model_int.predict_proba( 

        X_test.drop(features_to_remove + [feature], axis=1))[:, 1] 

 

    auc_score_int = roc_auc_score(y_test, y_pred_test) 

    print('New Test ROC AUC={}'.format((auc_score_int))) 

    print('All features Test ROC AUC={}'.format((auc_score_all))) 

 

    diff_auc = auc_score_all - auc_score_int 

 

 

    if diff_auc >= tol: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('keep: ', feature) 

        print 

    else: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('remove: ', feature) 

        print 

 

        auc_score_all = auc_score_int 

        features_to_remove.append(feature) 
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print('End') 

 

 

features_to_keep = [x for x in features if x not in features_to_remove] 

print('total features to keep: ', len(features_to_keep)) 

 

###final model### 

final_model = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 40, 

                                max_features = 'auto', 

                                min_samples_leaf = 50, 

                                min_samples_split = 550, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight,  

                                random_state=0) 

 

final_model.fit(X_train[features_to_keep], y_train) 

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1] 

auc_score_final = roc_auc_score(y_test, y_pred_test) 

print('Test selected features ROC AUC=%f' % (auc_score_final)) 

 

 

### Gini function### 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

 

###Train### 

y_train_pred = final_model.predict(X_train[features_to_keep]) 

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep]) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train,y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

###Test### 

y_pred = final_model.predict(X_test[features_to_keep]) 

y_pred_prob = final_model.predict_proba(X_test[features_to_keep]) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

 

#########SVM– Feature Selection######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 
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X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

seed_val = 1000000000 

np.random.seed(seed_val) 

 

 

### feature selection### 

### build initial model using all the features### 

model_all_features = SVC(kernel = 'rbf',  

                 gamma = 0.005,  

                 C = 21,  

                 class_weight = 'balanced', 

                 probability=True) 

 

model_all_features.fit(X_train, y_train) 

# calculate the roc-auc in the test set 

y_pred_test = model_all_features.predict_proba(X_test)[:, 1] 

auc_score_all = roc_auc_score(y_test, y_pred_test) 

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all)) 

 

###determine order in which features are removed from model ### 

feature_order   = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 100, 

                                min_samples_split = 400, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight, 

                                random_state=0) 

 

feature_order.fit(X_train, y_train) 

 

# obtaining feature names and importance 

features = pandas.Series(feature_order.feature_importances_) 

features.index = X_train.columns 

# sorting features by importance 

features.sort_values(ascending=True, inplace=True)   

# plotting feature importance 
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features.plot.bar(figsize=(20,6)) 

# show list of ordered features 

features = list(features.index) 

features 

 

 

###recursive feature elimination### 

tol = 0.001 

print('doing recursive feature elimination') 

features_to_remove = [] 

count = 1 

for feature in features: 

    print() 

    print('testing feature: ', feature, ' which is feature ', count, 

          ' out of ', len(features)) 

    count = count + 1 

 

# build model  

    model_int = SVC(kernel = 'rbf',  

                 gamma = 0.005,  

                 C = 21,  

                 class_weight = 'balanced', 

                 probability=True) 

 

    model_int.fit( 

             X_train.drop(features_to_remove + [feature], axis=1), y_train) 

    y_pred_test = model_int.predict_proba( 

        X_test.drop(features_to_remove + [feature], axis=1))[:, 1] 

 

    auc_score_int = roc_auc_score(y_test, y_pred_test) 

    print('New Test ROC AUC={}'.format((auc_score_int))) 

    print('All features Test ROC AUC={}'.format((auc_score_all))) 

 

    diff_auc = auc_score_all - auc_score_int 

 

 

    if diff_auc >= tol: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('keep: ', feature) 

        print 

    else: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('remove: ', feature) 

        print 

 

        auc_score_all = auc_score_int 

        features_to_remove.append(feature) 

     

print('End') 

 

 

features_to_keep = [x for x in features if x not in features_to_remove] 

print('total features to keep: ', len(features_to_keep)) 

 

###final model### 

final_model = SVC(kernel = 'rbf',  

                 gamma = 0.005,  

                 C = 21,  

                 class_weight = 'balanced', 

                 probability=True) 

 

final_model.fit(X_train[features_to_keep], y_train) 

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1] 

auc_score_final = roc_auc_score(y_test, y_pred_test) 

print('Test selected features ROC AUC=%f' % (auc_score_final)) 

 

 

### Gini function### 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 
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    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

 

###Train### 

y_train_pred = final_model.predict(X_train[features_to_keep]) 

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep]) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train,y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

###Test### 

y_pred = final_model.predict(X_test[features_to_keep]) 

y_pred_prob = final_model.predict_proba(X_test[features_to_keep]) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

 

#########NB – Feature Selection######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 

 

###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 
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### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

seed_val = 1000000000 

np.random.seed(seed_val) 

 

 

### feature selection### 

### build initial model using all the features### 

model_all_features = GaussianNB() 

model_all_features.fit(X_train, y_train) 

# calculate the roc-auc in the test set 

y_pred_test = model_all_features.predict_proba(X_test)[:, 1] 

auc_score_all = roc_auc_score(y_test, y_pred_test) 

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all)) 

 

###determine order in which features are removed from model ### 

feature_order   = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 100, 

                                min_samples_split = 400, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight, 

                                random_state=0) 

 

feature_order.fit(X_train, y_train) 

 

# obtaining feature names and importance 

features = pandas.Series(feature_order.feature_importances_) 

features.index = X_train.columns 

# sorting features by importance 

features.sort_values(ascending=True, inplace=True)   

# plotting feature importance 

features.plot.bar(figsize=(20,6)) 

# show list of ordered features 

features = list(features.index) 

features 

 

 

###recursive feature elimination### 

tol = 0.001 

print('doing recursive feature elimination') 

features_to_remove = [] 

count = 1 

for feature in features: 

    print() 

    print('testing feature: ', feature, ' which is feature ', count, 

          ' out of ', len(features)) 

    count = count + 1 

 

# build model  

    model_int = GaussianNB() 

    model_int.fit( 

             X_train.drop(features_to_remove + [feature], axis=1), y_train) 

    y_pred_test = model_int.predict_proba( 

        X_test.drop(features_to_remove + [feature], axis=1))[:, 1] 

 

    auc_score_int = roc_auc_score(y_test, y_pred_test) 

    print('New Test ROC AUC={}'.format((auc_score_int))) 

    print('All features Test ROC AUC={}'.format((auc_score_all))) 

    diff_auc = auc_score_all - auc_score_int 

 

 

    if diff_auc >= tol: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 
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        print('keep: ', feature) 

        print 

    else: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('remove: ', feature) 

        print 

 

        auc_score_all = auc_score_int 

        features_to_remove.append(feature) 

     

print('End') 

 

 

features_to_keep = [x for x in features if x not in features_to_remove] 

print('total features to keep: ', len(features_to_keep)) 

 

###final model### 

final_model = GaussianNB() 

final_model.fit(X_train[features_to_keep], y_train) 

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1] 

auc_score_final = roc_auc_score(y_test, y_pred_test) 

print('Test selected features ROC AUC=%f' % (auc_score_final)) 

 

### Gini function### 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

 

###Train### 

y_train_pred = final_model.predict(X_train[features_to_keep]) 

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep]) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train,y_train_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

###Test### 

y_pred = final_model.predict(X_test[features_to_keep]) 

y_pred_prob = final_model.predict_proba(X_test[features_to_keep]) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

#########KNN – Feature Selection######### 

###import data### 

url = “C:/Users/suered/Desktop/masters/MastersData.csv” 

dataset = pandas.read_csv(url,low_memory=False) 

 

###categorical variables - get_dummies### 

X= dataset.drop('Default', axis=1) 

Y = dataset['Default'] 

X_transformed = pandas.get_dummies(X, drop_first=True) 

dataset = pandas.concat([Y,X_transformed],axis=1) 
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###Splitting Data### 

X = dataset.iloc[:, 1:] 

Y = dataset.iloc[:, 0] 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,) 

 

 

###Standardisation### 

# set up the scaler 

scaler = StandardScaler() 

# fit the scaler to the train set 

scaler.fit(X_train) 

# transform train and test sets 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# transform NumPy arrays to dataframes  

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns) 

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns) 

# standardisation 

X_train = X_train_scaled 

X_test = X_test_scaled 

 

 

 

### Getting class weight### 

from sklearn.utils.class_weight import compute_class_weight 

cw = compute_class_weight('balanced', np.unique(y_train), y_train) 

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)} 

seed_val = 1000000000 

np.random.seed(seed_val) 

 

 

###SMOTE### 

from collections import Counter 

from sklearn.datasets import make_classification 

from imblearn.over_sampling import SMOTE 

print(Counter(y_train)) 

# sampling strategy 

sample = SMOTE() 

X_train, y_train = sample.fit_resample(X_train, y_train) 

print(Counter(y_train)) 

### feature selection### 

### build initial model using all the features### 

model_all_features = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights = 

'uniform') 

 

model_all_features.fit(X_train, y_train) 

# calculate the roc-auc in the test set 

y_pred_test = model_all_features.predict_proba(X_test)[:, 1] 

auc_score_all = roc_auc_score(y_test, y_pred_test) 

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all)) 

 

###determine order in which features are removed from model ### 

feature_order   = RandomForestClassifier(criterion='gini', 

                                bootstrap = True, 

                                max_depth = 60, 

                                max_features = 'auto', 

                                min_samples_leaf = 100, 

                                min_samples_split = 400, 

                                n_estimators = 50, 

                                n_jobs=-1, 

                                oob_score=True, 

                                class_weight=class_weight, 

                                random_state=0) 

feature_order.fit(X_train, y_train) 

 

# obtaining feature names and importance 

features = pandas.Series(feature_order.feature_importances_) 

features.index = X_train.columns 

# sorting features by importance 

features.sort_values(ascending=True, inplace=True)   
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# plotting feature importance 

features.plot.bar(figsize=(20,6)) 

# show list of ordered features 

features = list(features.index) 

features 

 

 

###recursive feature elimination### 

tol = 0.001 

print('doing recursive feature elimination') 

features_to_remove = [] 

count = 1 

for feature in features: 

    print() 

    print('testing feature: ', feature, ' which is feature ', count, 

          ' out of ', len(features)) 

    count = count + 1 

 

# build model  

    model_int = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights = 

'uniform') 

 

    model_int.fit( 

             X_train.drop(features_to_remove + [feature], axis=1), y_train) 

    y_pred_test = model_int.predict_proba( 

        X_test.drop(features_to_remove + [feature], axis=1))[:, 1] 

 

    auc_score_int = roc_auc_score(y_test, y_pred_test) 

    print('New Test ROC AUC={}'.format((auc_score_int))) 

    print('All features Test ROC AUC={}'.format((auc_score_all))) 

 

    diff_auc = auc_score_all - auc_score_int 

 

 

    if diff_auc >= tol: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('keep: ', feature) 

        print 

    else: 

        print('Drop in ROC AUC={}'.format(diff_auc)) 

        print('remove: ', feature) 

        print 

 

        auc_score_all = auc_score_int 

        features_to_remove.append(feature) 

     

print('End') 

 

features_to_keep = [x for x in features if x not in features_to_remove] 

print('total features to keep: ', len(features_to_keep)) 

 

###final model### 

final_model = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights = 'uniform') 

final_model.fit(X_train[features_to_keep], y_train) 

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1] 

auc_score_final = roc_auc_score(y_test, y_pred_test) 

print('Test selected features ROC AUC=%f' % (auc_score_final)) 

 

### Gini function### 

def gini(y_true, y_pred, sample_weight=None): 

    y_true = np.squeeze(y_true) 

    y_pred = np.squeeze(y_pred) 

    return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1. 

###Train### 

y_train_pred = final_model.predict(X_train[features_to_keep]) 

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep]) 

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_train,y_train_pred)) 

print() 
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print('Model Results: ') 

print(classification_report(y_train,y_train_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_train,y_train_pred), 4)) 

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1])) 

 

###Test### 

y_pred = final_model.predict(X_test[features_to_keep]) 

y_pred_prob = final_model.predict_proba(X_test[features_to_keep]) 

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int') 

print('Confusion Matrix: ') 

print(confusion_matrix(y_test,y_pred)) 

print() 

print('Model Results: ') 

print(classification_report(y_test,y_pred)) 

print('Model Accuracy: ') 

print(round(accuracy_score(y_test, y_pred), 4)) 

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1])) 

 

 

 

 

 




