

1

Classification of Banking Clients

According to their Loan Default Status

using Machine Learning Algorithms

Suveshnee Reddy

(210510172)

UNIVERSITY OF KWAZULU-NATAL

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

WESTVILLE CAMPUS, DURBAN, SOUTH AFRICA

2

Classification of Banking Clients According to

their Loan Default Status using Machine

Learning Algorithms

by

Suveshnee Reddy

(210510172)

Thesis Supervisors: Dr. Retius Chifurira

 Prof. Temesgen Zewotir

A thesis submitted to the University of KwaZulu-Natal in fulfilment

of the requirements for the degree

of

MASTER OF SCIENCE

in

STATISTICS

3

Disclaimer

12/09/2022

4

Abstract

Loan lending has become crucial for both individuals and companies. For lending institutions,

although profitable, it can be very risky due to clients defaulting on their loan agreement. Credit

risk assessment is a critical process which is carried out by most lending institutions; it reduces

the possibility of lending to clients who will default on their loan repayment, however, it does

not eliminate the problem. Thus, a collections process which aims to retrieve unpaid debt is

also necessary. With South Africa facing another recession, which was only worsened by the

lockdown during the covid-19 pandemic, lending institutions can expect an increase in the

number loan defaulters. To counter this increase, changes will have to be made to their policies

and processes. Changes can be made to either the loan application procedures (e.g. credit risk

assessment, affordability assessment et cetera) or the post disbursal procedures (e.g. collections

processes). The aim of this study is to predict whether a client will default on his/her loan,

using machine learning algorithms, in order to enhance the collection process of the financial

institution under study, where default is defined as missing at least three payments in the first

12 months of the loan being granted. The logistic regression model, decision tree, random

forest, support vector machine, Naïve Bayes classifier, k-nearest neighbours algorithm and the

artificial neural network were fitted to the balanced dataset. In the researcher’s analysis, loan

data from a South African financial institution were used for the period August 2019 to

December 2019. Variables related to a client’s demographics, income, expenses and debt, as

well as loan information, were included in the dataset. Exploratory data analysis (EDA) was

utilised in order to analyse the dataset and summarise their main characteristics. To reduce the

dimensionality of the dataset, two techniques were used, namely principal component analysis

(PCA), which is also used to correct the data for multicollinearity, and feature selection (i.e.,

recursive feature elimination). Each model was fitted to the dataset using these two techniques,

and the confusion matrix and metrics such balanced accuracy, true positive ratio, true negative

ratio, AUC score and the Gini coefficient were used to evaluate the different models in order

to determine which model performed the best and was most suited for this application problem.

The results show that when using the PCA approach, the random forest model, which obtained

a balanced accuracy score, true positive ratio and AUC score of 0.69, 0.74 and 0.74,

respectively, performed the best. The random forest model also performed the best when using

the feature selection technique, obtaining a balanced accuracy score, true positive ratio and

AUC score of 0.69, 0.74 and 0.75, respectively. When comparing the random forest model

using PCA to the random forest model using feature selection, the results showed a marginal

difference between each performance metric analysed. The random forest model using PCA

utilised 48 variables, whereas the random forest model using feature selection utilised only 18

variables and thus seemed to be more suitable for the classification problem under study. The

results of this study are expected to benefit analysts and data scientists in financial institutions

who would like to identify the robust machine learning algorithms for classifying defaulting

clients. This study is also of significance to policy makers who would want to identify the risk

factors associated with loan defaulting clients.

Keywords: Loan Default; Machine learning; logistic regression; decision trees; random forest;

k-nearest neighbours; Naïve Bayes algorithm; support vector machines; artificial neural

networks; principal component analysis; feature selection; exploratory data analysis

5

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr Retius Chifurira for the continuous

support, advice and motivation. Thank you for guiding me and sharing your invaluable knowledge

during my research and writing of thesis.

I sincerely acknowledge the support and inspiration that I received from Prof Delia North throughout

my postgraduate studies. Her willingness to assist was always greatly appreciated and has made my

journey a lot less stressful.

I would also like to thank Prof Temesgen Zewotir for his advice and assistance.

To my family and friends, thank you for your motivation and support during this journey. A special

thank you to my parents for being a pillar of strength, and for their continuous encouragement and love

throughout all my endeavours.

6

Contents

Disclaimer.. 3

Abstract ... 4

Acknowledgements ... 5

List of Figures .. 8

List of Tables ... 10

1 Introduction .. 12

1.1 Background ... 12

1.2 Literature review ... 13

1.3 Problem statement ... 17

1.4 Research questions, aim and objectives ... 17

1.5 Significance of the study ... 18

1.6 Theoretical Framework ... 18

1.7 Project layout .. 19

2 Exploratory Data Analytics .. 20

2.1 Data ... 20

2.2 Data exploration ... 24

2.3 Principal Component Analysis (PCA) ... 42

2.4 Summary ... 44

3 Classification algorithms and evaluation metrics ... 47

3.1 Brief introduction to machine learning ... 47

3.2 Logistic regression ... 47

3.3 Decision tree (ID3, C4.5) ... 53

3.4 Random forest .. 56

3.5 Support vector machines .. 58

3.6 Naive Bayesian algorithm ... 64

3.7 K-nearest neighbours .. 66

3.8 Artificial neural network ... 69

3.9 Evaluation metrics... 73

4 Classification with PCA .. 76

4.1 Logistic regression ... 76

4.2 Decision tree ... 82

4.3 Random forest .. 85

4.4 Support vector machines .. 89

7

4.5 Naïve Bayes Classifier .. 90

4.6 K-nearest neighbours (K-NN) .. 91

4.7 Artificial neural network ... 93

4.8 Summary of model performance using PCA ... 95

5 Classification with feature selection ... 98

5.1 Brief introduction to feature selection ... 98

5.2 Logistic regression ... 102

5.3 Decision tree ... 106

5.4 Random forest .. 108

5.5 Support vector machine .. 109

5.6 Naïve Bayes classifier .. 110

5.7 K-nearest neighbours .. 112

5.8 Artificial neural network ... 113

5.9 Summary of model performance using feature selection .. 114

6 Conclusions, limitations and recommendations ... 119

6.1 Conclusions ... 119

6.2 Limitations to the study .. 121

6.3 Recommendations for further study .. 121

References .. 122

Appendix 1 – Principal Component Analysis .. 130

Appendix 2 – Feature Selection .. 148

8

List of Figures

Figure 2. 1: Percentage of clients in each default class ... 24

Figure 2. 2: Distribution and percentage of clients defaulting for variables in the demographics

subgroup ... 26

Figure 2. 3: Distribution and percentage of clients defaulting for variables in the client

information subgroup ... 27

Figure 2. 4: Distribution and percentage of clients defaulting for variables in the loan

information subgroup ... 28

Figure 2. 5: Distribution and percentage of clients defaulting for variables in the income and

expenses subgroup ... 30

Figure 2. 6: Distribution and percentage of clients defaulting in the debt subgroup 31

Figure 2. 7: Distribution and percentage of clients defaulting for variables in the debt related

subgroup ... 33

Figure 2. 8: Volume of clients by age group and percentage of clients who defaulted in each

group .. 35

Figure 2. 9: Volume of clients by number of years with their current employer and percentage

of clients who defaulted in each group .. 35

Figure 2. 10: Percentage of clients who defaulted by number of dependants and the volume of

clients in each group .. 36

Figure 2. 11: Box and Whisker plots for variables in the loan information subgroup 37

Figure 2. 12: Box and Whisker plots for variables in the Income and debt subgroup 38

Figure 2. 13: Histogram plots of numerical variables.. 40

Figure 2. 14: Heatmap showing numerical variables... 42

Figure 2. 15: Cumulative percentage of variance explained by the number of principal

components .. 43

Figure 2. 16: Heatmap for principal components .. 43

Figure 3. 1: Structure of a simple decision tree ... 53

Figure 3. 2: Example of a decision tree that includes both categorical and continuous variables

.. 55

Figure 3. 3: Example of support vector machine structure .. 58

Figure 3. 4: Example of support vector machine structure with misclassifications 61

Figure 3. 5: Impact of selected k value on model’s prediction .. 67

Figure 3. 6: Structure of a feed-back neural network .. 70

Figure 3. 7: Structure of a simple neural network ... 70

Figure 3. 8: Example of a ROC Curve ... 75

Figure 4. 1: Decision tree structure .. 82

Figure 4. 2: Mean absolute SHAP value for each feature in the decision tree 83

Figure 4. 3: Structure of the first five decision trees in the random forest 85

Figure 4. 4: Mean absolute SHAP value for each feature in the random forest 86

Figure 4. 5: SHAP values of every feature for every observation in the random forest model

.. 87

9

Figure 4. 6: Architecture of the artificial neural network .. 93

Figure 5. 1: Feature importance for all variables in the random forest model 100

Figure 5. 2: ROC curve for the random forest model using PCA and the random forest model

using feature selection.. 117

Figure 5. 3: Feature importance of variables in the random forest model that used feature

selection ... 118

10

List of Tables

Table 2. 1: Description of demographic variables under study ... 20

Table 2. 2: Description of client information variables under study 21

Table 2. 3: Description of loan information variables under study ... 22

Table 2. 4: Description of income, expenses and debt variables under study 23

Table 2. 5: Pairs of variables with the 10 highest Cramer coefficient values 34

Table 2. 6: Outlier detection using the interquartile range technique for numerical variables 41

Table 3. 1: Structure of a confusion matrix that illustrates the TP, FP, TN and FN................ 74

Table 4. 1: Deviance test for logistic regression model ... 76

Table 4. 2a: Maximum Likelihood Parameter estimates, and p-values for the fitted logistic

regression model .. 76

Table 4. 2b: Interpretation of the odds ratio estimates for the 29 significant variables in the

fitted logistic regression model……………………………………………………………………….…...78

Table 4. 3: Confusion matrix for the logistic regression model .. 80

Table 4. 4: Performance metrics for the logistic regression model ... 81

Table 4. 5: Confusion matrix for the decision tree algorithm .. 84

Table 4. 6: Performance metrics for the decision tree algorithm ... 84

Table 4. 7: Confusion matrix for the random forest algorithm .. 88

Table 4. 8: Performance metrics for the random forest algorithm ... 88

Table 4. 9: Confusion matrix for the fitted SVM model .. 89

Table 4. 10: Performance metrics for the fitted SVM model .. 90

Table 4. 11: Confusion matrix for the fitted Naïve Bayes classifier 90

Table 4. 12: Performance metrics for the fitted Naïve Bayes classifier 91

Table 4. 13: Confusion matrix for the K-NN model .. 92

Table 4. 14: Performance metrics for the fitted K-NN model ... 92

Table 4. 15: Confusion matrix for the fitted ANN model .. 93

Table 4. 16: Performance metrics for the ANN model .. 94

Table 4. 17: Confusion Matrix for each model under study using the PCA approach 95

Table 4. 18: Evaluation metrics for each model under study using the PCA approach 96

Table 5. 1: Recursive feature elimination results for the random forest model 100

Table 5. 2: Confusion matrix for the fitted logistic regression model using feature selection and

the fitted model using the full set of features ... 102

Table 5. 3: Performance metrics for the logistic regression model using feature selection and

the model using the full set of features .. 103

Table 5. 4: Deviance test for logistic regression model using feature selection 103

Table 5. 5a: Maximum Likelihood Parameter estimates, and p-values for the fitted logistic

regression model .. 103

Table 5. 5b: Interpretation of the odds ratio estimates for the 24 variables in the fitted logistic

regression model using feature selection..104

Table 5. 6: Confusion matrix for the decision tree using feature selection and the decision tree

using the full set of features ... 107

11

Table 5. 7: Performance metrics for the decision tree using feature selection and the decision

tree using the full set of features .. 107

Table 5. 8: Confusion matrix for the random forest model using feature selection and the model

using the full set of features ... 108

Table 5. 9: Performance metrics for the random forest using selected features and the model

using the full set of features ... 108

Table 5. 10: Confusion matrix for the SVM model using feature selection and the model using

the full set of features ... 109

Table 5. 11: Performance metrics for the SVM model using feature selection and the SVM

model using the full set of features .. 110

Table 5. 12: Confusion matrix for the Naïve Bayes classifier using feature selection, and the

model using the full set of features .. 111

Table 5. 13: Performance metrics for the Naïve Bayes classifier using feature selection, and

using the full set of features ... 111

Table 5. 14: Confusion matrix for the K-NN model using selected features and the model using

the full set of features ... 112

Table 5. 15: Performance metrics for the K-NN model using feature selection and the model

using the full set of features ... 112

Table 5. 16: Confusion matrix for the ANN model using selected features and the model using

the full set of features ... 113

Table 5. 17: Performance metrics for the ANN model using selected features and the model

using the full set of features ... 114

Table 5. 18: Confusion matrix for each model under study using feature selection 115

Table 5. 19: Performance metrics for each model under study using the feature selection

approach ... 115

Table 5. 20: Performance metrics for the random forest model using the PCA approach and the

random forest model using feature selection ... 117

12

Chapter 1

1 Introduction

In this chapter the background of the study, the literature review, the problem statement, the

research questions, the aim and objectives, and the significance of the study are discussed.

1.1 Background

Over time, credit has become crucial in the lives of both individuals and companies, such that

it is almost unavoidable for many of them today (Perera & Premaratne, 2016). Individuals

throughout the world require loan facilities in order for them to overcome their financial

constraints and thus achieve their personal goals. Some individuals depend on loans for basic

needs, whereas others require them for luxuries. Companies, both large and small, often require

loan facilities in order to function smoothly when faced with financial constraints (Aslam et

al., 2019). Loaning of money is beneficial to both the borrower and lender. For lending

institutions, although profitable, it can be very risky. This risk involves the inability of the

borrower to pay back the loan amount within the agreed-upon time during the loan origination

stage (Kwofie et al., 2015). This is often referred to as a loan default. Clients may fail to fulfil

their loan obligation for various reasons; for example, some clients cannot afford payments due

to mismanagement of funds or additional unexpected costs, whereas others avoid paying their

debt, even if they can afford the instalment.

On a daily basis, many individuals, as well as organisations, apply for loans; however, not all

loans are approved. The financial institution decides whether the applicants are likely to default

on their instalments before granting the loan (Aphale & Shinde, 2020). There is great difficulty

in distinguishing between clients who are creditworthy and those who are likely to default on

their loan repayment (Marqués et al., 2012). Credit risk assessment, which is used to evaluate

the probability of a client defaulting on his or her loan, helps the institution determine whether

to grant the client a loan. Effective and thorough evaluation of credit risk reduces possible

losses incurred by the financial institution by reducing the possibility of lending to clients who

will default on their loan repayment (Sudhamathy, 2016), however, it does not eliminate the

problem of clients defaulting on their loan repayment. Although most financial institutions

have a process in place to determine whom to lend to and how much to lend, these institutions

still expect that a portion of clients will not fulfil their loan obligation. Financial institutions

thus need to have a good collections procedure which includes a debt recovery process that

aims to retrieve as much unpaid debt as possible.

A collections procedure is a statement detailing the steps that should be taken regarding the

collection of due debts. The absence of a good collections process will result in losses for the

company due to delinquent accounts. Each lending institution has its own collections process,

but all procedures need to follow all laws concerned. The South African financial institution

under study currently starts the debt recovery process after the first missed payment by

13

informing the client telephonically or in writing. If debt in arrears is still not paid after a certain

period, debt collectors get involved in the process. The current debt recovery process has

proven to be beneficial to the financial institution under study, as a large sum of unpaid debt is

retrieved on a monthly basis once the debt recovery process on delinquent accounts begins.

With the adverse conditions affecting the South African economy such as the current recession,

aggravated by the lockdown during the covid pandemic, many more companies are closing

down while others are down-sizing, resulting in many individuals losing their jobs or working

fewer hours. This leads to a loss of income for many households and as a result, lending

institutions can expect an increase in the number loan defaulters. Changes can be made to either

the loan application procedures (e.g. credit risk assessment, affordability assessment et cetera)

or the post disbursal procedures (e.g. collections processes) to counter this increase. The

financial institution under study has made numerous changes to their loan application policies

and procedures to cater for the increase in defaulters, however, no improvements were made

to the post disbursal procedures. Thus, the financial institution now aims to enhance its

collections process by sending through a reminder Short Message Service (SMS) or email to

clients at the beginning of each month, starting from the month in which the first instalment is

due. This enhanced process will likely result in the financial institution retrieving more unpaid

debt and reducing the number of clients who miss payments on their loan. The financial

institution was initially considering sending reminder emails to all clients who received a loan

as it is not costly, however, the institution decided to use machine learning techniques to target

a specific population instead.

Machine learning algorithms identify patterns in data in order to build predictive models.

Recently, classification methods that use machine learning algorithms have become more

popular amongst researchers and institutes; these methods are used by analysts in financial

institutions to identify clients who are likely to default on payment of loans by predicting

an individual’s credit score, using historical data (Aslam et al., 2019). A similar method can

be used to improve the collections process by identifying clients who are likely to default

on their loan repayment using information that is available at the time when the loan is

disbursed (The financial institution under study defines default as missing at least three

payments in the first 12 months of the loan being granted). According to Ereiz (2019), often

predicting that clients will default when they actually do not (i.e., a false positive), is not as

costly as predicting that clients will not default when they actually do (i.e., a false negative).

Since the additional step which the financial institution wants to add to their collections process

is not costly as it involves sending emails and SMSs to the client, the financial institution is not

too concerned with misclassifying some non-defaulters as defaulters; the institutions main

concern is correctly classifying clients who default

1.2 Literature review

Financial institutions have become a crucial part of our daily lives in the digital era. The number

of individuals wanting loans has increased in recent years (Radhika et al., 2021). As a result,

the demand for loans from financial intuitions has increased. According to Madaan et al.

(2021), loan lending is a vital source of income for financial institutions; however, it is also

their main source of financial risk. Most of a bank’s assets are obtained by using the profits

14

earned from granting loans (Purswani et al, 2021). It is thus important for the financial

institution to assess the credit risk of clients before lending to them (Kwofie et al., 2015). An

applicant’s credit risk is assessed in order to assign them into one of two classes, namely good

or bad (i.e., not default or default) (Ince & Aktan, 2009), which indicates how the bank should

treat the client (e.g., whether the bank should approve or decline the application). Sudhamathy

(2016) opines that this will assist banks to minimise their losses. This chapter review provides

a brief summary of previous work done on predicting whether clients will default on their loan,

as well as outlines important features that are commonly used to predict a client’s default status

and touches on the common problem of imbalance in default datasets. It also provides a review

on several studies relating to the application of classification algorithms. In this study, machine

learning algorithms will be used to identify clients who will likely default on their loan so that

an enhanced collections method can be used.

Marqués et al. (2012) states that it is difficult to determine which clients are likely to default

and which of them will be reliable borrowers. The features included in a model have a

significant influence on how well the model performs. Bayraci and Susuz (2019), Kadam et al.

(2021) and Kwofie et al. (2015), among others, mention variables included in their default

models (e.g., age, gender, income, and credit information). The variables mentioned in these

papers were commonly used in multiple other research papers that aimed to predict a client’s

default status. Chen and Zhang (2021) and Radhika et al. (2021) utilise feature selection

methods to sift out important features for their credit default models. Chen and Zhang (2021),

Radhika et al. (2021), Sudhamathy (2016) and Zhou and Wang (2012), among others, mention

the common problem of imbalance in the datasets when predicting loan default and discuss and

explore possible solutions to the problem. The difference in misclassification costs of false

positives and false negatives when predicting a client’s default status is explained by Ince and

Aktan (2009). Mwangi (2016) discusses the importance of lending institutions having a good

collections process in place in order to collect overdue debt from its borrowers.

Bayraci and Susuz (2019) constructed a neural network model to determine whether an

applicant is good or bad and compared the model to several other classification models, namely

logistic regression, decision tree, Naïve Bayes, and the support vector machine. The

explanatory variables used to predict the clients’ default status were grouped into four groups,

namely demographical characteristics, employment characteristics, credit characteristics, and

credit history. These authors concluded that the deep learning model, namely the neural

network, performs better than the other models on bigger datasets.

Kadam et al. (2021) mention that features such as gender, marital status, education,

employment status, number of dependants, income, loan amount, and credit history were

utilised when predicting whether clients would default on their loan. A comparison between

the Naïve Bayes algorithm and the Support Vector Machine (SVM) was performed, and results

showed that the Naïve Bayes classifier performed best.

Chen and Zhang (2021) reviewed the artificial neural network, k-nearest neighbour, decision

tree, support vector machine and logistic regression. They aimed to predict automobile credit

defaulters. Feature selection was utilised in order to identify important features for their

models. Of the features selected, it was found that date of birth, employment type, disbursed

amount and asset cost were ranked most important when predicting the ‘default’ target variable.

The authors used the SMOTE method to solve the imbalanced dataset problem; however, they

15

suggest that the model’s performance did not improve. It was concluded that all six models

could be used to predict the default of automobile and although the decision tree obtained the

highest accuracy score of 0.79, the SVM had the best overall performance.

Zhou and Wang (2012) mention that many loan default datasets are highly skewed, with the

majority of cases falling within the same class. They propose an improved random forest

algorithm in which weights are allocated to decision trees in the random forest during tree

aggregation for prediction. Previous performance, that is, out-of-bag errors during training, is

used to compute the weights. The weighted majority in the ensemble of trees in the random

forest is used to make predictions. The proposed model was compared to the original random

forest, the SVM, the K-Nearest Neighbours (K-NN) and the decision tree; the results indicate

that the proposed random forest algorithm obtained a better overall accuracy score, as well as

balanced accuracy score, than all the other models mentioned.

Chang et al. (2015) adopted the logistic regression model, SVM and Naïve Bayes classifier to

build a loan default prediction model. They discuss sensitivity, specificity, accuracy and

precision. These authors noted that accuracy would not reflect the model’s true performance,

as the dataset was imbalanced. From the results obtained, the Naïve Bayes classifier with

Gaussian performed the best, obtaining a sensitivity score of 80.1%.

Financial institutions are faced with many classification problems on a daily basis. Credit

scoring, which can be used to determine whether a loan application should be approved or

declined is one type of classification problem. Ince and Aktan (2009) mention other

classification problems related to decision–making in business, for example, financial

forecasting, fraud detection, marketing strategy, and process control. The classification

problem under study involves allocating clients to one of two classes i.e., default or not default,

in order to determine whether the enhanced collections method should be used.

According to Lee et al. (2002), it is possible to use techniques such as statistical methods and

artificial intelligence algorithms to solve classification problems. Common statistical methods

such as linear discriminant analysis, logistic regression, and their variations, though, have

several limitations when applied to credit scoring problems. Ince and Aktan (2009) are of the

opinion that limitations associated with these techniques are the following: they are ineffective

when high-dimensional inputs are present, and the sample size is small; these methods assume

linear separability and that the normality assumption is met; and there is difficulty in

automating the process and designing a continuous update flow. Yang (2007) mentions that

statistical models are often unable to adapt to population changes over time; as a result, these

models may have to be reconstructed. Artificial intelligence techniques, which include machine

learning, can be used instead of discriminant analysis and logistic regression when the

dependent and independent variables display complex nonlinear relationships (Ince & Aktan,

2009). According to Madaan et al. (2021), many researchers and bank authorities have recently

chosen to train classifiers based on numerous machine learning and deep learning algorithms

in order to automatically predict an applicant’s credit score, as it makes the process

significantly easier.

There are several steps involved when building a machine learning model. (Sudhamathy, 2016)

discusses these steps, which include data selection, pre-processing, treatment of outliers,

imputations removal, splitting the dataset between the training and test set, and balancing the

training set; the features selection step, building the classification model, predicting class labels

16

of the test set, and evaluating predictions are also discussed. The author constructed a decision

tree to predict whether the client is likely to default.

Madaan et al. (2021) used tree-based machine learning algorithms to predict whether or not

new clients are likely to default on their loan in order to determine whether to lend to the clients.

A comprehensive and comparative analysis between the decision tree algorithm and random

forest algorithm was done. The results showed that the random forest algorithm performed

better than the decision tree algorithm. The random forest obtained an accuracy score of 80%,

whereas the decision tree algorithm obtained an accuracy score of 73%. The authors mention

that the random forest model, which is an ensemble of several decision trees, has the following

advantages over other machine learning algorithms: it is immune to overfitting; it can produce

accurate classification or regression results; and it is more efficient on large datasets.

Ince and Aktan (2009) analysed the performance of credit scoring models in order to identify

clients who are either “good” or “bad”, using both traditional and artificial intelligence

methods. They compared the results that were obtained by using discriminant analysis, logistic

regression, neural network, classification, and regression trees (CART). The authors noted that

misclassification costs associated with false positives were much lower compared to those of

false negatives. From the results, the CART model obtained a higher accuracy score in

comparison with discriminant analysis, logistic regression, and neural networks. However, the

neural network credit scoring model obtained the lowest percentage of false negatives, which

is associated with higher misclassification costs. Therefore, it was concluded that the neural

network has better credit-scoring capabilities overall.

Radhika et al. (2021) aimed to predict a client’s creditworthiness by using the following

algorithms: the K-NN classifier, random forest classifier, decision tree and logistic regression.

The SMOTE and NearMiss techniques were utilised to cater for the data imbalance. From the

results, it was found that the random forest model performed the best. To improve performance

and solve the problem of overfitting, the authors combined all models into a single model by

utilising the voting method. All the model’s votes were considered and the class with the

maximum votes was the final model prediction.

Breeden (2020) discusses multiple machine learning methods that are available, including

random forest, neural networks, logistic regression, k-nearest neighbours, support vector

machines, Naïve Bayes, stochastic gradient boosting et cetera and indicates that it is impossible

to declare a single best method. Breeden (2020) states that methods have strengths and

weaknesses, depending on the application problem, and that the best method for an application

problem is usually a combination of elements from different methods.

This study departs from the study of Chen and Zhang (2021) by comparing the PCA approach

to the feature selection approach (recursive feature elimination) for dimensionality reduction,

when selecting the best model among several classification algorthims. To the best of the

researchers knowledge, there is limited use of machine learning models in financial institutions

which help enhance the collections process by identifying clients who are likely to default on

their loan as soon as the loan is granted. In the literature, we could not find an application

showing a comparison of machine learning models using the PCA and feature selection

approaches for dimensionality reduction on a dataset from a financial institution which aimed

to enhance their collections process, thus this study will fill the gap in literature.

17

1.3 Problem statement

Although the financial institution under study does have a collection process for unpaid debt

in place, this process only begins once the client has missed a payment. The sooner clients who

are likely to default on their debt obligation are identified and contacted, the greater the chances

of them not actually defaulting on their loan. Therefore, the researcher aims to identify a ‘bad’

population who will likely default on their loan obligation by using machine learning

algorithms. This ‘bad’ population, who the researcher will refer to as the ‘default’ population,

is defined as clients who fail to make payment for at least three months during the first 12

months of the loan being granted. This identification needs to take place at the time the loan is

granted, as it will provide the institution with the opportunity to enhance the collection process

by sending friendly reminders to these clients on a monthly basis starting from the first month

the loan is granted. This enhanced process will likely result in the financial institution retrieving

more unpaid debt and reducing the number of clients who default on their loans.

1.4 Research questions, aim and objectives

In this study, answers to the following research questions are provided:

1) Which classification algorithms are able to identify correctly a sufficient proportion of

clients who defaulted on their loan?

2) Which classification model is most appropriate?

3) Which features are of most importance when predicting the default status of a client?

The aim is to identify the robust machine learning algorithm from logistic regression, the

decision tree, random forest, support vector machine, Naïve Bayes classifier, k-nearest

neighbours and the artificial neural network, using the PCA technique and the feature selection

technique for dimensionality reduction, to predict which clients will miss at least three

payments in the first 12 months of the loan being granted.

This is achieved by:

1) Exploratoratory data analysis to review important features of the applicants

2) Dimensionality reduction using two techniques, namely, principal component analysis

(PCA), which is also used to correct the data for multicollinearity, and feature selection.

3) Fitting classification algorithms namely logistic regression, decision tree, random

forest, support vector machines, the Naïve Bayes classifier, k-nearest neighbours and

the artificial neural network to the dataset using both dimensionality reduction

approaches

4) Selecting the best fitting classification method for each dimensionality reduction

approach using metrics such as balanced accuracy, true positive ratio, true negative

ratio, precision, negative predictive value, Area under the ROC curve (AUC score) and

the Gini coefficient

18

5) Selecting the overall best fitting model using the following metrics: balanced accuracy,

true positive ratio, true negative ratio, precision, negative predictive value, Area under

the ROC curve (AUC score) and the Gini coefficient

6) Identifying the most robust variables for classifying default clients.

1.5 Significance of the study

The results of this study are expected to benefit analysts and data scientists in financial

institutions who would like to identify the robust machine learning algorithms for classifying

defaulting clients. This study is also of significance to policy makers who would want to

identify the risk factors associated with loan defaulting clients.

1.6 Theoretical Framework

Machine learning is a subset of artificial intelligence that allows systems to automatically learn

patterns in the data and improve outcomes through experience without being explicitly

programmed. Machine learning problems can be divided into different categories. The two

main categories of machine learning are supervised learning and unsupervised learning. In

supervised learning, the model learns patterns from a labelled dataset and the trained model is

used to make predictions on unseen data. Unsupervised learning (e.g., clustering) does not

require a labelled dataset. The aim of unsupervised learning is to find structure, hidden

relationships and patterns from the input data. In this study, the researcher focuses on

supervised learning. There are two types of supervised learning, namely classification and

regression. A classification problem has a categorical target variable, for example a client’s

default status, whereas a regression problem has a real value target variable, for example, house

prices. The aim of this study is to build classification models, using labelled data, to predict a

client’s default status.

The variable information in this study was obtained during the application and offer process,

which includes information captured by clients, bureau information, bank statement and

payslip information, as well as internal calculations used to determine the final offer. Variables

used in a machine learning model can be categorised as either numerical or categorical. A

numerical variable is quantitative and can either be discrete, (i.e., a whole number) for example,

number of dependants, or it can be continuous, (i.e., it can take any value in a given range) for

example, weight. A categorical variable is qualitative and can either be nominal, (i.e.,

unordered) for example, male and female, or it can be ordinal, (i.e., ordered) for example, small,

medium and large. When a large number of variables are included in a dataset, principal

component analysis (PCA) and feature selection can be used to reduce the dimensionality of a

dataset. PCA is used to transform a larger set of variables into a smaller set of variables whilst

retaining most information. By using PCA, one can include the minimum number of principal

components needed to explain a certain percentage of the variance. The new principal

components formed are uncorrelated. Feature selection is a dimensionality reduction technique

19

that aims to select a subset of features from the original set of features. This is achieved by

removing features that are redundant, irrelevant, and noisy. There are several feature selection

methods that can be used to reduce the number of features in the model. The three main feature

selection categories are the filter method, wrapper method, and embedded method.

In this study, several classification machine learning algorithms, namely logistic regression,

decision trees, random forest, k-nearest neighbours, the Naïve Bayes algorithm, support vector

machines and artificial neural networks, are fitted to the default dataset using the PCA and

feature selection approaches. A summary of each of these classification models is provided in

Chapter 3. Evaluation metrics, such as accuracy, balanced accuracy, recall, specificity,

precision, the negative predictive value, Gini, and the auc score, are used to evaluate and

compare the performance of the machine learning models in order to identify the model which

performed the best. Each of these evaluation metrics are discussed in Chapter 3.

1.7 Project layout

This thesis comprises six chapters. Chapter 1 provides an overview of this study and the

literature review. The dataset, provided by a South African financial institution, is discussed

and exploratory data analysis, used to analyse and investigate the dataset, is presented in

Chapter 2. The theory of the classification models and the evaluation metrics is summarised in

Chapter 3. Chapter 4 provides the empirical results obtained when fitting the classification

models to the dataset using the PCA approach. Chapter 5 presents the empirical results obtained

when fitting the classification models to the dataset using feature selection. Chapter 6 provides

a summary of the main findings and concludes the study.

In this chapter the researcher discussed the background of the study, provided a literature

review, the problem statement, the research questions, the aim and objectives, and the

significance of the study. From the literature, the researcher was unable to find an application

which showed a comparison of machine learning models using the principal component

analysis and feature selection approaches for dimensionality reduction on a dataset from a

financial institution which aimed to enhance their collections process. This study will fill the

gap in literature. It is important to have an in depth understanding of the dataset used in this

study. In the next chapter the dataset is analysed using exploratory data analytics. The

characteristics of the dataset will inform the researcher on which models should be considered

when predicting whether a client will default on his/her loan.

20

CHAPTER 2
2 Exploratory Data Analytics

In this chapter, the dataset used in this study is discussed, all variables under study which are

possibly associated with the ‘default’ target variable are listed and a description is provided,

and exploratory data analytics, used to analyse and investigate the dataset, are presented.

2.1 Data

The data used in this study were obtained from a South African financial institution.

Applications that were disbursed during the period August 2019 to December 2019 were

included in the dataset, which consists of 48 338 disbursed applications and 48 variables. The

variable information was obtained during the application and offer process, which includes

information captured by clients, bureau information, bank statement and payslip information,

as well as internal calculations used to determine the final offer. Of the 48 variables, 32

variables are categorical and 16 are numerical. Using these variables, the researcher aims to

predict whether clients will default on their loan. A client is classed as a default if the client

missed at least three payments in the first 12 months of the loan being disbursed.

The independent variables used to predict the default class have been grouped into sub-

categories, namely demographics, client information, loan information, income, expenses, and

debt. In Table 2.1, the researcher indicates and outlines the description of the demographic

variables and categorises them as either numerical or categorical.

Table 2. 1: Description of demographic variables under study

Variable Description Categorical/Numerical

Age Age at time of application Numerical

Number of

dependants

How many dependants does the applicant

have?
Numerical

Years with current

employer

Number of years the applicant has been

working for his/her current employer at

the time of application

Numerical

Gender Gender of applicant – male or female Categorical

Married
Indicates whether applicant is married or

unmarried
Categorical

Property owner
Does the applicant own a property?

(Yes/No)
Categorical

21

Table 2.2 presents the client information variables, provides a description for each variable,

and indicates whether these variables are numerical or categorical.

Table 2. 2: Description of client information variables under study

Variable Description Categorical/Numerical

Client type A client is either a new, reload or

multiple loan client.

New – Applicant is new to financial

institution.

Reload – Applicant chooses to

consolidate a current loan with the

financial institution.

Current – Applicant currently a has loan

with the financial institution and is

taking an additional loan.

Categorical

External subsequent

lending

Did the applicant take up a loan with

another company less than 45 days

before the loan included in our dataset?

(Yes or No)

Categorical

Int/Ext client A client is either Internal or External.

Internal client – main bank is financial

institution under study

External client – main bank is not

financial institution under study

Categorical

Salary bank Bank which applicant’s salary is paid

into

Categorical

Staff member Does the applicant work for the financial

institution under study? (Yes or No)

Categorical

Weekly/Monthly The applicant either earns a weekly wage

or a monthly salary (fortnightly earners

do not qualify for a loan).

Categorical

22

Table 2.3 presents the loan information variables, provides a description for each variable and

classifies them as either numerical or categorical.

Table 2. 3: Description of loan information variables under study

Variable Description Categorical/Numerical

Limiting rule Rule that limits a client’s affordability Categorical

Loan purpose

The reason the applicant needed a loan

(consolidate debt, a family crisis, housing

and related, other emergency, et cetera)

Categorical

Lower offer

Did the applicant receive a lower offer

once information was verified compared

to the initial offer received during the

application process? (Yes or No)

Categorical

Product taken

The type of product taken: home loan

(HL), personal loan (PL), staff, vehicle

loan (VL)

Categorical

Taking max
Did the applicant take the maximum

amount offered? (Yes or No)
Categorical

% instalment to

income allowed

The maximum ratio of instalment to

income that the client is allowed
Numerical

% instalment to

income taken

Loan instalment taken as a percentage of

income
Numerical

% total taken up
The amount taken as a percentage of the

amount offered
Numerical

Instalment

/Disposable income

New instalment amount divided by

cashflow at the end of the month

(Cashflow = income minus expenses

minus debt)

Numerical

Max offer
The maximum amount offered to the

applicant by the financial institution
Numerical

23

In Table 2.4, the income, expenses and debt variables are indicated, outlined, and categorised

as either numerical or categorical variables.

Table 2. 4: Description of income, expenses and debt variables under study

Variable Description Categorical/Numerical

Arrears Is the client in arrears for any of

his/her loans? (Yes or No)

Categorical

Credit card Does the client have a credit card?

(Yes or No)

Categorical

Credit inactive The client does not have a credit

history (Yes or No)

Categorical

Home loan Does the client have a home loan?

(Yes or No)

Categorical

Instalment loan Does the client have an instalment

loan? (Yes or No)

Categorical

Insurance Did the client capture any insurance

expenses? (Yes or No)

Categorical

IntConsol Is the client consolidating a loan from

the financial institution? (Yes or No)

Categorical

Internal living

expenses rule

Was the internal living expenses rule

the final living expenses amount used

in the affordability calculation? (Yes

or No)

Categorical

Medical aid Did the client capture any medical aid

expenses? (Yes or No)

Categorical

Overtime Did the client capture any overtime?

(Yes or No)

Categorical

Payslip expenses Did the client capture any expenses

found on payslip? (Yes or No)

Categorical

Pensionprovident Did the client capture any

pension/provident contribution? (Yes

or No)

Categorical

Permanent allowances Did the client capture any permanent

allowances? (Yes or No)

Categorical

Personal loan Does the client have a personal loan?

(Yes or No)

Categorical

Revolving credit Does the client have revolving credit?

(Yes or No)

Categorical

Union fees Did the client capture any union fees?

(Yes or No)

Categorical

Unpaids Does the client have any unpaid

debts? (Yes or No)

Categorical

Vehicle loan Does the client have a vehicle loan?

(Yes or No)

Categorical

Calc disposable

income/Net income

Cashflow at the end of the month

before consolidations (income minus
Numerical

24

expenses minus debt) as a percentage

of net income

Debt to income ratio Debt as a percentage of gross income Numerical

Debt/Net income Debt as a percentage of net income Numerical

Disposable income

/Basic

Cashflow at the end of the month

(income minus expenses minus debt)

as a percentage of basic salary

Numerical

External

consolidations/Amount

Taken

The total external loan amount

consolidated (loan from another

financial institution) divided by the

new loan amount disbursed

Numerical

Final disposable

income/Net income

Final cashflow at the end of the

month after consolidations (income

minus expenses minus debt plus

consolidations) as a percentage of net

income

Numerical

Internal

consolidations/Amount

Taken

The total internal loan amount

consolidated (loan from the same

financial institution) divided by the

new loan amount disbursed

Numerical

Total

consolidations/Amount

Taken

The total amount consolidated

divided by the new loan amount

disbursed

Numerical

2.2 Data exploration

The main aim of the study (which was discussed in Chapter one) is to predict whether clients

will default on their loan. The variable default is derived from whether a client misses at least

three payments in the first 12 months of the loan being disbursed. Figure 2.1 shows the

percentage of clients who did and did not default on their loan.

Figure 2. 1: Percentage of clients in each default class

41890
(88%)

5767
(12%)

Not Default

Default

25

From Figure 2.1, 12% of the clients under study defaulted whereas 88% of clients did not

default. This indicates that the majority class (i.e., not default) is significantly larger than the

minority class (i.e., default). Therefore, there seems to be an imbalance in the dataset. When a

dataset is imbalanced, a high accuracy can be obtained by only predicting the majority class.

Since many machine learning algorithms are designed to maximise accuracy by reducing

errors, the algorithm is often biased towards the majority class and is more likely to misclassify

the minority class than the majority class. In this study, the main focus is on the default class,

which is the minority class. The researcher will thus have to cater for the imbalance in the

dataset for the models to be able to produce satisfactory results. Balanced weighting and

Synthetic Minority Oversampling Technique (SMOTE) are popular techniques used to cater

for the imbalance in the dataset. The “balanced” class weight method adjusts weights

automatically by using the class values (y), such that the weights are inversely proportional to

the input data’s class frequencies. SMOTE aims to balance class distribution by creating new

synthetic objects in the minority class (i.e., default). Using either of these methods should

improve the results obtained when the dataset is imbalanced.

The researcher then investigates whether the demographics, client information, income,

expenses, debt and loan information variables have an influence on the ‘default’ target variable.

Figures 2.2 to 2.7 present the distribution of each variable and the percentage of clients who

defaulted in each category of each variable.

The distribution of variables under study are explored in order to identify variables that

comprise of categories which include a negligible portion of clients. Ideally, the researcher

wants each category in a variable to include a meaningful portion of clients under study. If a

variable has two categories and a majority of clients fall within one of the categories, whereas

a negligible portion of clients fall within the other category, excluding the variable may be

considered, as this variable will likely add little value to the model, unless the variable has an

exceptional influence on the ‘default’ target variable. If a variable has more than two categories

and at least one of the categories comprise a negligible portion of clients under study, the

researcher may consider combining that category with another category within the variable that

has a similar default rate.

The percentage of clients who default is analysed in order to determine whether there is a

significant difference in the default rate between the different categories in a variable. The

default rate indicates how well a group of clients performed. The lower the default rate, the

better the performance, whereas the higher the default rate, the worse the performance. If there

is a significant difference in default rate (performance) between clients in different categories

of a variable, it can be concluded that the variable is likely to be associated with default.

Figure 2.2 shows the distribution and percentage of clients defaulting in each category within

each variable in the demographics subgroup, which includes the following variables: gender,

married and property owner.

26

Figure 2. 2: Distribution and percentage of clients defaulting for variables in the demographics subgroup

From the gender variable in Figure 2.2, 59.3% of the clients under study are males, whereas

40.7% of the clients are females; 13.6% of males default, whereas 9.5% of females default.

Therefore, there seems to be a significant difference between the percentage of males and

females defaulting. There is thus a possibility of gender being associated with default.

Figure 2.2 displays the married variable which shows that 61.1% of clients are not married and

the remaining 38.9% are married. The average default rate of unmarried and married clients is

14.1%, and 8.5%, respectively. This suggests variation in the default rates between the married

and unmarried clients under study. Thus, there is possibly a relationship between the married

variable and default.

From the property owner variable presented in Figure 2.2, 6.5% of clients own a property. The

default rate of clients who own a property is 5.5%, whereas clients who do not own a property

have a default rate of 12.4%. The 6.9% difference in default rate indicates that the performance

of clients who own a property and clients who do not own a property seem to vary substantially.

Thus, property owner may have an influence on the ‘default’ target variable.

Client information variables were then explored. Figure 2.3 shows the distribution and

percentage of clients defaulting in each category within each variable in the client information

subgroup, which includes the following variables: weekly/monthly, int/ext client, client type,

staff member, salary bank, and external subsequent lending.

27

Figure 2. 3: Distribution and percentage of clients defaulting for variables in the client information subgroup

The weekly/monthly variable in Figure 2.3 shows that 88.1% of clients are monthly earners,

whereas 11.9% are weekly earners. Monthly earners have a default rate of 11.6% and weekly

earners have a default rate of 14.6%. As there seems to be a difference in performance between

monthly earners and weekly earners, it is possible that a relationship between the

weekly/monthly variable and the ‘default’ target variable exists.

From the int/ext client variable in Figure 2.3, 60.9% of clients are internal clients, whereas

39.1% of clients are external. Figure 2.3 also indicates that on average, 10.8% of internal clients

default, whereas 13.6% of external clients default. This suggests that internal clients tend to

default on their loan less often than external clients. Therefore, the variable int/ext client may

likely be associated with default.

Figure 2.3 displays the client type variable, which shows that the default rates of current, new,

and reload clients are 10.9%, 13.6% and 9.2%, respectively. This suggests that new clients,

who comprise 56.8% of the total number of clients, perform worse than current and reload

clients. Hence, it can be concluded that the client type variable possibly has an influence on

default.

The staff member variable presented in Figure 2.3 indicates that 4.9% of clients are staff

members and 95.1% are not. Figure 2.3 also shows that staff members perform exceptionally

well, as indicated by their default rate of 3.5%, whereas a significantly higher percentage of

non-staff members, that is 12.4%, default. Thus, the staff member variable likely has a

relationship with the ‘default’ target variable. Although the percentage of staff members is

small, we may not want to exclude the variable as this population performs significantly better

than the remaining population.

The salary bank variable depicted in Figure 2.3 comprises five categories. Clients in Bank 1,

Bank 2, Bank 3, Bank 4 and Bank 5 have a default rate of 10.1%, 17.9%, 9.1% 10.8% and

13.8%, respectively. This provides evidence of a substantial difference in default rate between

28

the salary bank categories. Thus, there is a possibility of salary bank having an influence on

default.

The ext subsequent lending variable in Figure 2.3 shows that 4.5% of clients have external

subsequent lending and 23.4% of these clients default, whereas 95.5% of clients do not have

external subsequent lending and 11.4% of these clients default. This indicates that clients with

external subsequent lending seem to perform significantly worse than clients without external

subsequent lending. Although the percentage of clients with external subsequent lending is

only 4.5%, the variable may still influence the model as there seems to be a very strong

association between ext subsequent lending and default.

The loan information variables are then examined. Figure 2.4 presents the distribution and

percentage of clients defaulting in each category within each variable in the loan information

subgroup, which includes the following variables: limiting rule, lower offer, taking max,

product taken and loan purpose.

Figure 2. 4: Distribution and percentage of clients defaulting for variables in the loan information subgroup

The limiting rule variable presented in Figure 2.4 shows that the percentage of clients under

study in the Rule 1, Rule 2, Rule 3 and Rule 4 categories is 58.7%, 16.5%, 20.6% and 4.2%,

respectively, and their corresponding default rates are 14.5%, 7.3%, 8.5% and 11.2%,

respectively. As only 4.2% of clients under study fall within the Rule 4 category, grouping this

category with another category may be considered. Clients falling within the Rule 1 category

perform significantly worse than clients in all other categories; therefore, it is likely that the

limiting rule variable and the ‘default’ target variable are associated.

From the lower offer variable in Figure 2.4, 11.3% of clients under study receive a lower offer

and 16.4% of these clients default on their loan, whereas 88.7% of clients do not receive a

lower offer and only 11.3% of these clients default on their loan. As there seems to be a

29

considerable difference in performance between clients who receive a lower offer and clients

who do not, it is possible that a relationship between lower offer and default exists.

From Figure 2.4, the taking max variable shows that 24.4% of clients under study take the

maximum amount offered and 75.6% of clients do not. Figure 2.4 also shows that clients who

take the maximum amount offered perform poorly, as indicated by their default rate of 18.2%,

whereas clients who do not take the maximum amount perform significantly better, indicated

by their default rate of 9.9%. Hence, it can be concluded that the taking max variable likely has

an influence on default.

Figure 2.4 displays the product type variable, which shows that the portion of clients under

study falling within the hl, pl new, pl repeat, staff and vl categories is 7.4%, 48.1%, 35.5%,

4.9% and 4.1%, respectively, with average default rates of 10.7%, 13.8%, 11.4%, 3.5% and

7.9%, respectively. This suggests variation in the default rates between these categories. Thus,

there is a possibility of a relationship between product type and default. From Figure 2.4, we

observe that a small portion of clients under study fall within the vl and staff categories.

Therefore, grouping categories in this variable may be considered, however, it is worth noting

that clients in these categories perform better than clients in all other categories within the

variable.

The loan purpose variable depicted in Figure 2.4 shows that each of the following categories

consist of less than 1% of the total clients under study: service, medical, income loss, furniture,

food and clothing, and small business. Therefore, grouping these categories with the ‘other’

category may be considered as the percentage of clients falling within each of these categories

is negligible and there is no significant difference in default rates between these categories.

Figure 2.4 shows that the default rates of clients falling within the remaining categories,

namely, consolidate debt, family crisis, housing and related, other and other emergency

categories are 11.8%, 12.9%, 12.4%, 11.8%, and 11.3%, respectively. This indicates that there

does not appear to be a significant difference in the default rates between these categories.

Thus, it is unlikely that there is a strong relationship between loan purpose and the ‘default’

target variable.

The income and expense variables were then analysed. Figure 2.5 displays the distribution and

percentage of clients defaulting in each category within each variable in the income and

expenses subgroup, which includes the following variables: payslip expenses, internal living

expenses rule, permanent allowances, overtime, union fees, insurance, and pensionprovident.

30

Figure 2. 5: Distribution and percentage of clients defaulting for variables in the income and expenses subgroup

From the payslip expenses variable displayed in Figure 2.5, 83.5% of clients have payslip

expenses, whereas 16.5% of clients do not have any payslip expenses. 11.0% of clients who

have payslip expenses default, whereas 16.6% of clients who do not have payslip expenses

default. This indicates that clients with payslips expenses have a remarkably lower default rate

compared to clients with no payslip expenses. Hence, the payslip expenses variable is likely

associated with default.

The internal living expenses variable in Figure 2.5 shows that 26.4% of clients utilise the

internal living expense rule and 16.1% of these clients default, whereas 73.6% of clients do not

utilise the internal living expense rule and 10.6% of these clients default. As there seems to be

a considerable difference in performance between clients who utilise the rule and clients who

do not, it is possible that a relationship between the internal living expense rule and default

exists.

Figure 2.5 displays the permanent allowances variable, which shows that the number of clients

who have and clients who do not have permanent allowances is equally distributed between

the two categories, with a default rate of 11.1% and 12.8%, respectively. This indicates that

there is little variation in performance between clients who have and clients who do not have

permanent allowances. Hence, it can be concluded that it is unlikely that the permanent

allowances variable has a strong influence on default.

From the overtime variable in Figure 2.5, 35.8% of clients under study earn overtime. Clients

earning overtime have a default rate of 14.3%, whereas clients who do not earn overtime have

a default rate of 10.6%. Therefore, overtime earners seem to perform worse than clients who

do not earn overtime. Thus, overtime and default seem to be associated.

The union fees variable in Figure 2.5 shows that 46.7% of the clients under study pay union

fees and 9.2% of these clients default on their loan, whereas 14.1% of clients who do not pay

union fees default on their loan. Therefore, there could be a relationship between default and

union fees, as clients paying union fees seem to perform noticeably better than clients who do

not pay union fees.

31

The medical aid variable presented in Figure 2.5 indicates that 34.5% of clients pay medical

aid, whereas 65.5% do not pay medical aid. From Figure 2.5, clients who pay medical aid have

a default rate of 7.8%, which is substantially lower than the 14.1% default rate of clients who

do not pay medical aid. Therefore, an association between default and the medical aid variable

seems to exist.

From the insurance variable in Figure 2.5, 42.5% of clients under study pay for insurance.

Clients who pay insurance have a default rate of 8.6%, whereas clients who do not pay

insurance have a default rate of 14.4%. Hence, the difference in default rate between clients

who pay and clients who do not pay insurance is 5.4%, which is significant. Thus, there is a

possibility that the insurance variable has an influence on default.

From the pensionprovident variable displayed in Figure 2.5, 68.9% of clients under study

contribute towards their pension/provident fund. These clients have a default rate of 10.5%,

whereas clients who do not contribute, have a default rate of 15.1%. Since there seems to be a

significant different between clients who contribute towards their pension/provident fund and

clients who don’t (i.e., 4.6%), the pensionprovident variable is likely associated with default.

The debt variables under study are then explored. Figure 2.6 shows the distribution and

percentage of clients defaulting in each category within each variable in the debt subgroup,

which includes the following variables: personal loan, home loan, vehicle loan, instalment loan,

credit card, and revolving credit.

Figure 2. 6: Distribution and percentage of clients defaulting in the debt subgroup

From the personal loan variable in Figure 2.6, 67.6% of clients under study have a personal

loan, whereas 32.4% of clients do not have a personal loan. The default rate of clients who

have a personal loan is 11.6%, whereas clients who do not have a personal loan have a default

rate of 12.5%. Therefore, there seems to be little variation in performance between clients who

have and clients who do not have a personal loan. It is thus unlikely that there is a strong

association between personal loan and the ‘default’ target variable.

32

The home loan variable presented in Figure 2.6 shows that 13.6% of clients have a home loan

and only 5.0% of these clients default on their loan, whereas 86.4% of clients do not have a

home loan and 13.0% of these clients default on their loan. This indicates that clients who have

a home loan perform considerably better than clients without a home loan. Hence, a strong

relationship between default and the home loan variable seems to exist.

Figure 2.6 displays the vehicle loan variable, which shows that 21.7% of clients have a vehicle

loan and 78.3% of clients do not have a vehicle loan. The default rate of clients with and without

a vehicle loan is 8.4% and 12.9%, respectively. Therefore, there seems to be a noticeable

difference in the default rate between clients who have a vehicle loan and clients who do not

have a vehicle loan (i.e., 4.1%). It can thus be concluded that the vehicle loan variable may

have an influence on default.

From the instalment loan variable shown in Figure 2.6, 11.6% of clients under study have an

instalment loan. The default rate of clients who have an instalment loan is 11.8%, whereas

clients who do not have an instalment loan have a default rate of 13.3%. This suggests that

there is little variation in the default rate between clients who have and clients who do not have

an instalment loan. Thus, it is unlikely that there is a strong relationship between default and

the instalment loan variable.

The credit card variable shown in Figure 2.6 indicates that 39.6% of clients have a credit card

and these clients have a default rate of 8.4%, whereas 60.4% of clients do not have a credit card

and these clients have a default rate of 14.2%. As there seems to be a material difference in

performance between clients who have and clients who do not have a credit card, it is likely

that a relationship exists between the credit card variable and the ‘default’ target variable.

Figure 2.6 displays the revolving credit variable, which shows that 64.1% of clients under study

have a revolving credit facility. 11.1% of clients who have revolving credit, default, whereas

13.4% of clients without a revolving credit facility, default. Hence, there seems to be variation

in performance between clients with and clients without a revolving credit facility. Thus, there

is a possibility that revolving credit may have an influence on the ‘default’ target variable.

Figure 2.7 displays the distribution and percentage of clients in each category within each

variable in the debt related subgroup, which includes the following variables: unpaids, internal

consolidation, credit inactive and arrears.

33

Figure 2. 7: Distribution and percentage of clients defaulting for variables in the debt related subgroup

The unpaids variable in Figure 2.7 shows that 10.5% of clients under study have unpaids,

whereas 89.5% do not have unpaids. Figure 2.7 also shows that the default rates of clients who

have unpaids and clients who do not have unpaids are 16.0% and 11.4%, respectively. This

suggests a significant difference in the default rate between clients with and clients without

unpaids. Hence, it can be concluded that a relationship between default and unpaids seems to

exist.

In Figure 2.7, the int consol variable shows that 30.2% of clients have an internal consolidation.

Clients who have an internal consolidation have a default rate of 9.2%, whereas clients with no

internal consolidation have a default rate of 13.1%. Therefore, there appears to be variation in

performance between clients who have and clients who do not have an internal consolidation.

Thus, there is a possibility that the int consol variable has an influence on default.

Figure 2.7 also displays the credit inactive variable, which shows that a minority of clients

under study (i.e., 6.7%) are credit inactive. The default rate of clients who are credit inactive is

16.1%, which is substantially worse than the 11.6% default rate of clients who are not credit

inactive. This suggests that there is likely an association between default and credit inactive.

The arrears variable presented in Figure 2.7 indicates that approximately half of the clients

under study have been in arrears in the last 12 months. Clients who were in arrears in the last

12 months have a default rate of 13.8%, whereas clients who have not been in arrears in the

last 12 months perform better, as indicated by their default rate of 10.2%. Therefore, there may

be a relationship between arrears and default.

In Figure 2.2 to Figure 2.7, the relationship between the ‘default’ target variable and the

categorical variables was explored. The relationship between the independent categorical

variables is then examined in order to identify any strong association between these variables,

using Cramer’s rule. The Cramer’s V coefficient ranges from 0 to 1. The researcher considers

a Cramer’s value of 0.51 or more as a strong association. Table 2.5 provides a list of the 10

pairs of variables under study with the highest Cramer coefficient values.

34

Table 2. 5: Pairs of variables with the 10 highest Cramer coefficient values

Variable 1 Variable 2 Cramer coefficient

Int/Ext Client Salary bank

1.000

Staff Member Product Taken

1.000

Client type IntConsol

1.000

PayslipExpenses Internal Living Expenses Rule

0.439

Union fees PayslipExpenses

0.415

Medicalaid Insurance

0.406

CreditCard Limiting rule

0.393

Union fees Insurance

0.390

Internal Living Expenses Rule Medicalaid

0.389

PersonalLoan Credit Inactive

0.385

From Table 2.5, three pairs of variables with a Cramer’s coefficient value greater than 0.51

were reported, which indicates a strong association. The pairs of variables are Int/Ext Client and

Salary bank, Staff Member and Product taken and Client type and IntConsol. All three pairs have

a Cramer’s coefficient value of 1. After further investigation, the researcher discovered that the

strong association between these variables was due to one variable being a subcategory of the

other variable. For example, Staff, which is one of the subcategories in the Product Taken

variable, is also included as a separate variable in the dataset as Staff Member. Therefore, we

can remove Int/Ext Client, Staff Member and IntConsol, as their information is contained in other

variables.

The discrete variables under study are then examined. Visual representation methods such as

histogram plots and line graphs are used to explore the discrete variables under study. The

dataset includes three discrete variables, namely age, years with current employer and number

of dependants, which are shown in Figures 2.8 to 2.10.

Figure 2.8 presents the volume of clients by age group and the percentage of clients defaulting

in each age group.

35

Figure 2. 8: Volume of clients by age group and percentage of clients who defaulted in each group

Figure 2.8 shows that the age of clients ranges from 22 to 67 years. Initially, as age increases,

the volume of clients increases. Clients who are in their 30s apply for a loan at the financial

institution most frequently. From the age of 40 years, the volume of clients then starts to

decrease. Figure 2.8 also shows that as age increases, the percentage of clients defaulting tends

to decrease and levels off after 60 years. Thus, there seems to be a negative relationship

between age and the ‘default’ target variable.

Figure 2.9 displays the volume of clients by the number of years with their current employer

and the percentage of clients defaulting in each group.

Figure 2. 9: Volume of clients by number of years with their current employer and percentage of clients who

defaulted in each group

From Figure 2.9, we observe that the years with current employer variable ranges from 1 to 41

years. The most frequent number of years with the current employer is 3 to 5 years. Clients

falling within this range seem to perform the worst, as indicated by the default rate, which

ranges from approximately 15% to 18%. The overall trend shows that as the number of years

with the current employer increases, the percentage of clients defaulting decreases. Therefore,

36

it is likely that the number of years with the current employer has a negative relationship with

default.

Figure 2.10 shows the volume of clients and the percentage of clients defaulting by the number

of dependants.

Figure 2. 10: Percentage of clients who defaulted by number of dependants and the volume of clients in each group

Figure 2.10 indicates that the number of dependants ranges from 0 to 5. A majority of clients

taking a loan have 1 or 2 dependants or no dependants at all. The percentage of clients

defaulting decreases from 0 dependants to 2 dependants and thereafter remains approximately

10%; clients with no dependants perform, on average, the worst. It can therefore be concluded

that there is possibly an association between the number of dependants and the ‘default’ target

variable.

The continuous variables are then analysed using the box and whisker plots displayed in

Figures 2.11 and 2.12. The box and whisker plot is a method used to represent continuous data

visually when doing explanatory data analysis. The plot shows the minimum value (excluding

outliers), the first quartile (Q1), the median (Q2), the third quartile (Q3), the maximum value

(excluding outliers), and the presence of any possible outliers in the dataset. The box and

whisker plot is also used to visualise the distribution of the data as well as variability in the

data. In this study, these plots will be used to compare clients who defaulted and clients who

did not default.

Figure 2.11 displays box and whisker plots for loan information variables, namely

instalment/disposable income, % instalment to income allowed, % instalment to income taken,

and max offer. The dataset is divided according to the client’s default status in order to compare

the box and whisker plots of clients who default and clients who do not default.

37

Figure 2. 11: Box and Whisker plots for variables in the loan information subgroup

From Figure 2.11, the instalment/disposable income variable ranges from 0.02 to 0.9 for clients

who do not default and from 0.03 to 0.9 for those who default. The Q1, Q2 and Q3 values for

clients who do not default are 0.22, 0.35 and 0.50, respectively, whereas the Q1, Q2 and Q3

values for clients who default are 0.25, 0.37 and 0.52, respectively. Thus, there seems to be no

significant difference in instalment/disposable income between the clients who default and

those who do not default. Therefore, from the box and whisker plots in Figure 2.11, there does

not seem to be a strong relationship between instalment/disposable income and the ‘default’

target variable.

The % instalment to income allowed variable shown in Figure 2.11 ranges for both classes,

default and not default, from 0.17 to 0.39. The box plot for clients who do not default shows a

negatively skewed distribution, whereas the box plot for clients who default shows a more

symmetric distribution. 50% of clients who do not default have a % instalment to income

allowed value greater than 0.33, whereas only approximately 25% of clients who default have

a % instalment to income allowed of more than 0.33,. This suggests that clients who do not

default have, on average, larger % instalment to income allowed values compared to clients

who default. Thus, % instalment to income allowed possibly has an influence on the ‘default’

target variable.

Figure 2.11 presents the box plot for the % instalment to income taken variable. % instalment

to income taken ranges from 0.01 to 0.42 for clients who do not default, and from 0.02 to 0.43

for clients who default. Both default and non-default plots show a relatively symmetric

distribution. The Q1, Q2 and Q3 values for clients who do not default are 0.13, 0.19 and 0.27,

respectively, and the Q1, Q2 and Q3 values for clients who default are 0.17, 0.23 and 0.30,

respectively. This indicates that the % instalment to income taken values seem slightly higher

38

for clients who default compared to clients who do not default. Hence, there is a possibility that

% instalment to income taken has a relationship with the ‘default’ target variable.

From Figure 2.11, the max offer box plots for both default and not default indicate that the

distribution is positively skewed, with noticeably greater variability in the maximum offer for

clients who do not default. One can also observe that approximately 50% of clients who do not

default, have a maximum offer value of more than R75 000, whereas only approximately 25%

of clients who default have a maximum offer value of more than R75 000, which suggests that

clients who do not default tend to receive higher offers. This provides evidence that maximum

offer is likely associated with default.

The income and debt variables under study are explored next. Figure 2.12 presents box and

whisker plots for income and debt variables, namely debt/net income, debt to income ratio,

disposable income/basic, final disposable income/net income and calculated disposable

income/net income.

Figure 2. 12: Box and Whisker plots for variables in the Income and debt subgroup

39

The box plot for the debt/net income variable displayed in Figure 2.12 ranges from 0 to 0.75

for both non-defaulters and defaulters. Both plots for this variable show values which tend

towards the lower end of the scale. The Q1, Q2 and Q3 values for clients who do not default

are 0.14, 0.27 and 0.42, respectively, whereas these values for clients who default are 0.10,

0.23 and 0.38, respectively. This suggests that debt/net income values are higher for clients

who do not default compared to clients who default. Thus, the debt/net income variable is

possibly associated with default.

From the debt to income ratio variable in Figure 2.12, debt to income ratio ranges from 1.7 to

65.0 for the non-default class and from 4.2 to 65.0 for the default class. The Q1, Q2 and Q3

values for the non-default class are 23.2, 32.3 and 42.3, respectively, whereas the Q1, Q2 and

Q3 values for the default class are 23.0, 31.1 and 41.2, respectively. The debt to income ratio

variable also appears to be equally dispersed for the non-default and default classes. Therefore,

from Figure 2.12 there does not seem to be significant variation in the debt to income ratio

between clients who default and clients who do not default. A strong relationship between the

debt to income ratio and default is thus unlikely.

The final disposable income/net income variable shown in Figure 2.12 seems to follow a

normal distribution. This variable ranges from 0.01 to 0.82 for clients who do not default and

from 0.02 to 0.81 for those who default. Q1, Q2 and Q3 values for the non-default class are

0.31, 0.45 and 0.57, respectively, and these values for the default class are 0.33, 0.48 and 0.59,

respectively. Thus, there seems to be little difference between the default and non-default

classes regarding the final disposable income/net income variable. Association between the

final disposable income/net income variable and the ‘default’ target variable therefore seems

improbable.

The box and whisker plot for the disposable income/basic variable displayed in Figure 2.12

show that the Q1, Q2 and Q3 values for the non-default class are 0.22, 0.36 and 0.50,

respectively, whereas Q1, Q2 and Q3 values for the default class are 0.25, 0.39 and 0.53,

respectively. Therefore, from the box and whisker plot in Figure 2.12, there seems to be little

variation in disposable income/basic between clients who default and clients who do not

default. Thus, it seems unlikely that disposable income/basic has an influence on default.

From Figure 2.12, the box plots for the calculated disposable income/net income range from

approximately 0 to approximately 0.8 for both non-defaulters and defaulters. Both plots also

show a normal distribution for this variable. The Q1, Q2 and Q3 values for the non-default

class are 0.23, 0.37 and 0.51, respectively, whereas these values for the default class are 0.25,

0.40 and 0.53, respectively. Thus the researcher concludes that it seems unlikely that calculated

disposable income/net income has a strong relationship with the target variable, ‘default’.

After gaining further insight and understanding of the numerical variables under study and their

relationship with the ‘default’ target variable in Figures 2.11 and 2.12, the researcher analyses

the distribution, presence of outliers and correlation between the numerical variables.

Histogram plots of the numerical variables, namely instalment/disposable income, %

instalment to income allowed, % instalment to income taken, max offer, debt/net income, debt

to income ratio, disposable income/basic, final disposable income/net income and calc

disposable income/net income, are explored in Figure 2.13 to determine whether they follow a

normal distribution. These plots are often used to show the frequency distribution of a variable;

the histogram plot of a variable that follows a normal distribution will have a bell-shaped curve.

40

Figure 2. 13: Histogram plots of numerical variables

The histogram plots in Figure 2.13 show that the following variables seem to deviate from

normal distribution: % instalment to income allowed, max offer and debt/net income. The Box-

Cox transformation technique was used to normalise the data; it suggested the natural log

transformation for the variables % instalment to income allowed and debt/net income, and the

square root transformation for the variable max offer as the lambda values for % instalment to

income allowed, max offer and debt/net income were 0.105 (approximately 0), 0.307

(approximately 0.5) and 0.218 (approximately 0), respectively.

To identify the presence of outliers, the interquartile range technique is used; the results are

reported in Table 2.6. An outlier is identified as a point that falls below the lower limit Q1 -

1.5 * IQR, or above the upper limit Q3 + 1.5 * IQR, where Q1 is the lower quartile, Q3 is the

upper quartile, and IQR is the interquartile range, that is, Q3-Q1.

41

Table 2. 6: Outlier detection using the interquartile range technique for numerical variables

Quartile

1

Quartile

3
IQR

Lower

limit

Upper

limit
Min Max Outliers

Instalment/Disposable

income
0.22 0.50 0.28 -0.19 0.92 0.02 0.90 0

% instalment to income

allowed
0.27 0.35 0.09 0.13 0.48 0.17 0.39 0

% instalment to income

taken
0.13 0.27 0.14 -0.08 0.48 0.01 0.43 0

Max offer 29970 130832 100862 -121978 282780 2005 250000 0

Debt/Net income 0.13 0.42 0.29 -0.30 0.84 0.00 0.75 0

Debt to income ratio 23.13 42.20 19.07 -5.12 70.45 1.73 64.97 0

Final disposable income/Net

income
0.31 0.58 0.27 -0.08 0.97 0.01 0.82 0

Disposable income/Basic 0.22 0.51 0.28 -0.20 0.93 -0.01 0.76 0

Calc disposable income/Net

income
0.24 0.51 0.27 -0.17 0.92 -0.01 0.78 0

From Table 2.6, there were no significant outliers present in the dataset.

Multicollinearity between numerical variables is then explored by using the correlation matrix.

Correlated variables in a model may affect the model’s performance negatively. The correlation

matrix shows the Pearson correlation coefficient for each combination of the different features.

The matrix is used to identify which features are correlated, the degree of correlation, and the

direction. A correlation heatmap is a visual representation of the correlation matrix. The

correlation values in the heatmap range from -1 to 1, where values close to -1 and 1 represent

high correlation and 0 represents no correlation. Different colours are used to show the degree

of correlation and the direction. The cells with correlation values closer to -1 are shaded in

darker colours, whereas cells with correlation values closer to +1 are shaded in light colours.

Cells shaded in orange and pink are associated with low correlation values. Pairs of variables

that have an absolute correlation of 0.61 or more are considered highly correlated in this study.

Figure 2.14 presents a heatmap for all numerical variables.

42

Figure 2. 14: Heatmap showing numerical variables

The heatmap in Figure 2.14 shows that 12 pairs of variables are highly correlated. The

following variables are highly correlated with at least one other variable: disposable

income/basic, final disposable income/net income, calculated disposable income/net income,

instalment/disposable income, debt/net income, internal consolidations/amount taken, total

consolidations/amount taken and debt to income ratio. Multicollinearity among variables may

affect the model negatively. Methods such as principal component analysis, discussed in

Chapter 2.3, or simply removing one of the correlated variables can remove multicollinearity

in the dataset.

2.3 Principal Component Analysis (PCA)

PCA is a dimensionality reduction method. It is used to transform a larger set of variables into

a smaller set of variables whilst retaining most information. By using PCA, one can include

the minimum number of principal components needed to explain a certain percentage of the

variance. The new principal components formed are uncorrelated. PCA will therefore solve the

problem observed in section 2.2 in which some of the numerical variables are highly correlated.

An alternative method to solve the problem of highly correlated variables is to drop one of the

correlated features; however, this may result in loss of information.

43

When using PCA, the number of principal components needs to be selected. The cumulative

percentage of variance method was used to select the number of principal components.

Figure 2.15 displays the cumulative percentage of variance explained by number of principal

components.

Figure 2. 15: Cumulative percentage of variance explained by the number of principal components

From Figure 2.15, in order to explain 80% of variance, which was chosen by the researcher, 7

principal components are required. This will reduce the number of numerical variables from

16 to 7 principal components, while still explaining 81.8% of variance, and the principal

components will be uncorrelated. Figure 2.16 represents a heatmap for the 7 principal

components.

Figure 2. 16: Heatmap for principal components

From Figure 2.16, correlation coefficients for all pairs of principal components are close to

zero, which indicates that all 7 principal components are uncorrelated.

44

2.4 Summary

In this study, the researcher’s aim was to predict whether clients will default or not on their

loan. A client is classed as a default if he/she missed at least three payments in the first 12

months of the loan being disbursed. 12% of clients under study defaulted, whereas 88% of

clients did not default, which indicates that the dataset is imbalanced. This often leads to models

that produce unsatisfactory results, as the models are more likely to misclassify the minority

class (i.e., default), which is of more interest to the researcher than the majority class (i.e., non-

default). The imbalance in the dataset must thus be catered for by using techniques such as

balanced weighting and SMOTE. A combination of 32 categorical and 16 numerical variables

are included in the dataset; these variables are potentially associated with the ‘default’ target

variable. They were grouped together in the following subcategories: demographics, client

information, loan information, income, expenses, and debt for analysis purposes.

Each variable in the dataset was explored and the analysis and key findings are summarised

below:

• The categorical variables were analysed using bar graphs and line graphs in order to

gain insight into the distribution of clients for each variable and to understand the

relationship between the ‘default’ target variable and the independent variables.

• Variables such as Ext Subsequent Lending and staff member comprise of two

categories, where one of the categories have the majority of clients and the other

category, a negligible portion of clients (i.e., less than 5% of total clients). It is unlikely

that such variables will be of importance to the model, unless the variable is

exceptionally good at differentiating between clients who default and those who do not.

The difference in default rates between the two categories within the Ext Subsequent

Lending and staff member variables were 12% and 8.9%, respectively, which is

considerably large and therefore, these variables may still influence the model.

• Variables such as loan purpose, limiting rule and product type each comprise of more

than two categories, with at least one category including a minor portion of clients.

Combining the minority category with another category within the variable may be

considered. A general practice is to combine the minority category with a category that

has the closest default rate, alternatively, where numerous categories within a variable

include a negligible portion of clients, grouping all of these categories into an ‘other’

category may be considered. Loan purpose comprised of 11 categories; 6 of these

categories each included less than 1% of the population. Since the portion of clients

falling in each of these categories was negligible and there was no significant difference

in default rates between these categories, the researcher grouped these 6 categories with

the category ‘other’. The researcher chose not to group categories within the limiting

rule variable and product type variable as (for both variables) the default rate of the

clients in the minority category was noticeably different compared to the other

categories within the variable.

• The following categorical variables showed little difference in default rates between the

categories within each variable: permanent allowances, personal loan, loan purpose and

instalment loan. Therefore, these variables do not seem to be strongly associated with

45

the ‘default’ target variable. All other categorical variables seem to have a relationship

with default.

• Cramer’s rule was then used in order to identify pairs of categorical variables that were

strongly associated. A Cramer’s value of 0.51 or more was considered as a strong

association. Three pairs of variables, namely Int/Ext Client and Salary bank, Staff

Member and Product taken and Client type and IntConsol, were identified as being

strongly associated, with all pairs having a Cramer’s coefficient value of 1. After further

investigation, it was observed that the strong association between these variables was

due to one variable being a subcategory of the other variable. Therefore, Int/Ext Client,

Staff Member and IntConsol were removed from the dataset, as their information is

contained in other variables.

• The relationship between default and the following discrete variables was also

explored: age, years with current employer and number of dependants. All three

discrete variables seem to have a negative relationship with default; as age, years with

current employer and number of dependants increased, the percentage of clients

defaulting decreased and eventually levelled off.

• To analyse the continuous variables, box and whisker plots were used. The continuous

variables were grouped into subgroups, namely loan information, and income and debt.

In order to explore each variable’s association with default, the dataset was grouped

according to the client’s default status.

• The box plots for instalment/disposable income, debt to income ratio, disposable

income/basic, final disposable income/net income and calculated disposable

income/net income showed that there was no significant difference between clients who

defaulted and clients who did not default. Therefore, it is unlikely that these variables

have a strong relationship with the target variable, default. Box plots for max offer, %

instalment to income allowed, % instalment to income taken and debt/net income did

show a difference between clients who defaulted and clients who did not. Thus, these

variables are possibly associated with the ‘default’ target variable.

• The distributions, presence of outliers and the correlation between the numerical

variables were analysed to gain further insight into the models’ inputs.

• Using histogram plots, the researcher observed that % instalment to income allowed,

max offer and debt/net income seemed to deviate from normal distribution. The Box-

Cox transformation was used to normalise the data. This technique suggested the

natural log transformation for the variables % instalment to income allowed and

debt/net income, and the square root transformation for the variable max offer.

• To identify outliers, the interquartile range method was used; there were no significant

outliers identified in the dataset.

• Correlation heatmaps were then used to identify multicollinearity between numerical

variables. Pairs of variables with an absolute correlation value of more than 0.61 were

considered highly correlated. Disposable income/basic, final disposable income/net

income, calculated disposable income/net income, instalment/disposable income,

debt/net income, internal consolidations /amount taken, total consolidations/amount

taken and the debt to income ratio were identified as being highly correlated with at

46

least one other variable. The principal component analysis (PCA) method in section 2.3

can be used to solve the problem of highly correlated variables by creating new

variables (principal components) that are uncorrelated. An alternative method is to drop

one of the correlated variables; however, this may result in a loss of information.

The researcher notes that before the model building step, the data needs to be pre-processed.

The number of variables in the processed dataset increased to 57, prior to using dimensionality

reduction techniques (the original dataset included 48 variables). The increase in the number

of variables was a result of categorical variables being encoded using the dummy variable

method. Dummy variables are used to represent categorical variables and can only take values

0 and 1 where 0 represents the absence of a condition and 1 represents the presence of it.

Categorical variables, which have more than two categories, are represented by a set of dummy

variables. Encoding categorical variables is critical as most machine learning algorithms

require numeric input and output variables.

From the findings in this chapter, the researcher is also aware of the large number of variables

in the dataset and is mindful that not all variables will be important in the model. Principal

component analysis, which is also used to correct the data for multicollinearity, and feature

selection, which aims to remove irrelevant and redundant features, are dimensionality reduction

techniques which can be used to reduce the number of variables used in the model.

In Chapter 3, machine learning classification algorithms are discussed, in Chapter 4, the

classification algorithms are fitted to the default dataset using PCA and in Chapter 5, the

classification algorithms are fitted to the dataset using feature selection; the feature selection

technique used is recursive feature elimination.

47

Chapter 3

3 Classification algorithms and evaluation metrics

In this chapter, the researcher provides a brief introduction to machine learning, explains the

theory of the classification algorithms used in this study and presents the performance metrics

which the models will be evaluated on.

3.1 Brief introduction to machine learning

Machine learning has become increasingly popular amongst researchers and institutes over a

short period of time; it is a subset of artificial intelligence that allows systems to learn patterns

in the data automatically and improve outcomes through experience without being explicitly

programmed. There are two main categories of machine learning, namely supervised learning

and unsupervised learning. In supervised learning, the model learns patterns from a labelled

dataset and the trained model is used to make predictions on unseen data. Unsupervised

learning does not require a labelled dataset. The aim of unsupervised learning is to find

structure, hidden relationships, and patterns from the input data. This study focuses on

supervised learning. There are two types of supervised learning, namely classification and

regression. A classification problem has a categorical target variable, for example a client’s

default status, whereas a regression problem has a real value target variable. The process, for

both classification and regression problems, include the following steps; collection of data, data

cleaning and feature engineering, selection of machine learning algorithm and model building,

model evaluation, model improvement and lastly, model deployment. The objective of this

study is to build classification models, using labelled data, to predict a client’s default status.

The researcher explores several classification machine learning algorithms, namely logistic

regression, decision trees, random forest, k-nearest neighbours, the Naïve Bayes algorithm,

support vector machines and artificial neural networks. Evaluation metrics, such as accuracy,

balanced accuracy, recall, specificity, precision, the negative predictive value, Gini, and the

AUC score, are used to evaluate and compare the performance of the machine learning models.

3.2 Logistic regression

Generalized linear models (GLM) is an extension of linear models which allows for non-

normal response distributions (Venables & Ripley, 1999). Linear regression, logistic regression

and Poisson regression are all examples of GLMs. GLMs consists of 3 components namely,

the response component, the systematic component and the link function. The distribution of

the response variable belongs to the exponential family (e.g., Poisson, binomial, gamma

distribution), the systematic component is the linear predictor, and the link function is the

48

connection between the mean of the response and the linear predictor (Naufal, Devila, &

Lestari, 2019). The link function is often based on the response distribution. It maps the range

of the mean response on to the whole real line (McCullagh & Nelder, 1989). Examples of link

functions are the identity link function (normal distribution), log link function (Poisson

distribution) and the logit link function (binomial distribution). To estimate the parameters for

the GLM, the maximum likelihood estimation method is used (Naufal et al., 2019). In this

study, the GLM which the researcher focuses on, is logistic regression.

Logistic regression is used to analyse the relationship between a categorical dependent variable,

for example a client’s default status, and a set of independent variables that affects the

dependent variable (Park, 2013). In most cases, the target variable (i.e., response variable) has

only two possible outcomes, namely the event occurs (Y=1, e.g., the client defaults) or the

event does not occur (Y=0, e.g., the client does not default). However, the model can be

modified to cater for a dependent variable with more than two categories, which is referred to

as multinomial logistic regression (Hintze, 2007). This study will focus on binary target

variables.

The logistic regression model assumes that the target variable is categorical. However, the

target variable is not modelled directly; instead, logistic regression analysis is based on

probabilities that are associated with the target variable’s values. Logistic regression estimates

the probability that an event will occur, and these estimated probabilities are used to assign an

observation to a class, based on the threshold selected (Dayton, 1992).

Consider a binary output 𝑌𝑖 that is equal to one when the event occurs (e.g., the clients default

on their loan) and zero when the event does not occur (e.g., the clients do not default on their

loan); for each observation i = 1, 2, …., n, with k explanatory variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑘.

Let p be the probability of 𝑌𝑖 =1 such that p = 𝑃(𝑌𝑖 = 1) for a given observation. In logistic

regression, the log-odds (or logit) are modelled as a linear combination of the intercept and

explanatory variables, as shown below:

 𝑙𝑜𝑔𝑖𝑡(𝑦𝑖) = ln⁡(
⁡𝑝⁡

1 − 𝑝⁡
) ⁡= 𝛼 + 𝛽1𝑥𝑖1+. . . . +𝛽𝑘𝑥𝑖𝑘, (3.2.1)

where
⁡𝑝

1−𝑝⁡
 is referred to as the odds of an event and denotes the likelihood of the event

occurring, ln⁡(
⁡𝑝⁡

1−𝑝⁡
) is known as the log odds or logit, 𝛼 is the Y intercept and 𝛽𝑗’s denote

coefficients of the explanatory variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑘 (Park 2013; Peng et al., 2002).

The estimated probability of an event occurring can be derived by taking the antilog and

rearranging the equation (3.2.1).

This is given by

𝑝 = 𝑃(𝑌𝑖 = 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

=
𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘

1 +⁡𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘

⁡⁡⁡⁡⁡=
1

1 +⁡𝑒−(𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘)
.

(3.2.2)

49

In logistic regression, the aim is to obtain the strongest linear combination of independent

variables such that we maximise the probability (likelihood) of predicting the correct class for

each training observation (Stoltzfus, 2011). The maximum likelihood function is often used to

estimate the function’s coefficients.

For a sample size of n where each observation has a vector of features 𝑋 and a target variable

𝑌𝑖, 𝑌𝑖⁡ = 1 if the event occurred and 𝑌𝑖⁡ = 0 if the event did not occur, and the probability is p

when 𝑌𝑖⁡ = 1 and 1- p when 𝑌𝑖⁡ = 0.

The likelihood function is given by

𝐿 =∏𝑝(𝑦|𝑥)𝑌𝑖(1 − 𝑝(𝑦|𝑥))
1−𝑌𝑖

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡= 𝑝(𝑦|𝑥)∑ 𝑌𝑖⁡
𝑛
𝑖=1 (1 − 𝑝(𝑦|𝑥))𝑛−∑ 𝑌𝑖⁡

𝑛
𝑖=1 .

 (3.2.3)

The logarithm of the likelihood equation is often utilised, as it is mathematically easier to work

with. It is known as the log likelihood and is given by the following equation:

 𝑙 = log(𝐿) =∑𝑌𝑖⁡ log[𝑝(𝑦|𝑥)] + (𝑛 −⁡∑𝑌𝑖⁡)

𝑛

𝑖=1

𝑛

𝑖=1

log[1 − 𝑝(𝑦|𝑥)], (3.2.4)

where 𝑝(𝑦|𝑥) =
𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘

1+⁡𝑒𝛼+𝛽1𝑥1+....+𝛽𝑘𝑥𝑘
 .

The maximum likelihood estimates are obtained by computing the first derivative of the log

likelihood and solving for 𝛼 and 𝛽 (Park, 2013; Shalizi, 2019).

A predefined threshold value is selected in order to classify each observation into a class. The

threshold is defaulted to 50%; however, this value can be adjusted. When using the default

threshold of 50%, if 𝑝 > 0.5, the model predicts that the event will occur (the client will

default) and if 𝑝 < 0.5, the model will predict that the event will not occur (the client will not

default) (Shalizi, 2019).

Interpretation

Consider a binary dependent variable 𝑦 with values 0 and 1 (0 = not default and 1 = default)

and one explanatory variable 𝑥 where the logistic regression equation is given by

ln

𝑝

1−𝑝
= 𝛼 +⁡𝛽1𝑥.

(3.2.5)

50

If 𝑥 increases by one unit, the logistic regression equation is

 ln
𝑝′

1 − 𝑝′
= 𝛼 +⁡𝛽1(𝑥 + 1) = 𝛼 + 𝛽1𝑥 + 𝛽1. (3.2.6)

𝛽1⁡ can be obtained by taking the difference between equations (3.2.5) and (3.2.6), as shown

below:

 𝛽1 = (𝛼 + 𝛽1𝑥 + 𝛽1)⁡ – (𝛼 +⁡𝛽1𝑥)

 = (ln
𝑝′

1−𝑝′
) - (ln

𝑝

1−𝑝
)

 = ln((
𝑝′

1−𝑝′
)/(

𝑝

1−𝑝
))

 = ln(
𝑜𝑑𝑑𝑠′

𝑜𝑑𝑑𝑠
).

 (3.2.7)

Thus, the logistic regression coefficient 𝛽𝑖 associated with the explanatory variable 𝑥𝑖 can be

interpreted as the change in log-odds of the event (e.g., a client defaulting on his/her loan) per

unit change in 𝑥. By exponentiating both sides of equation (3.2.7), the following equation is

obtained:

 𝑒𝛽1 =

𝑜𝑑𝑑𝑠′

𝑜𝑑𝑑𝑠
.

 (3.2.8)

When multiple independent variables are present, the regression coefficients are interpreted

in a similar manner while holding all other independent variables constant (Hintze, 2007).

Overall model evaluation:

Deviance Test: To assess the goodness-of-fit of a model, the deviance statistic can be used.

The deviance statistic compares the log-likelihood of the fitted model to the log-likelihood of

the saturated model. A saturated model has the same number of estimated parameters as the

number of observations.

The deviance statistic is given by

 𝐷 = (−2𝑙𝑜𝑔𝐿⁡𝑜𝑓⁡𝑓𝑖𝑡𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙) ⁡−(−2 𝑙𝑜𝑔𝐿⁡𝑜𝑓⁡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙). (3.2.9)

Equation 3.2.9 can be written as

𝐷 = ⁡−2 log(
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑓𝑖𝑡𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑⁡𝑚𝑜𝑑𝑒𝑙
⁡).

 (3.2.10)

51

The test statistic D asymptotically follows a 𝑋2 distribution with n-p degrees of freedom i.e.,

the degrees of freedom is equal to the number of parameters in the saturated model (n) minus

the number of parameters in the fitted model (p) (Badi, 2017).

The rule of thumb for the Deviance test is that the D statistic should be less than the degrees of

freedom i.e., n-p. A model is acceptable if the D statistic is within 1.5 times the degrees of

freedom (Chifurira, 2018).

Residual Analysis

The analysis of residuals to assess the adequacy of a fitted model is an important step in the

model building process. Residual analysis can be used to identify unusual observations i.e.,

outliers, influential observations and observations which have high leverage. Observations with

values that deviate from the expected range, resulting in very large residuals, may be

considered outliers; outliers in a dataset can lead to incorrect inferences. An observation is

considered influential if the estimate of coefficients changes significantly once the observation

is removed. An observation with an extreme value on a covariate is said to have high leverage

and can have an uncommonly large impact on the coefficient estimates (Sarkar, Midi, & Rana,

2011). The Pearson residual, deviance residual and the hat diagonal are commonly used for

logistic regression diagnostics.

Given a binary response variable Y, the logistic regression model can be written as:

𝑌𝑖 = 𝜋𝑖(𝑥) +⁡𝜀𝑖⁡⁡⁡𝑤ℎ𝑒𝑟𝑒⁡𝑖 = 1,2, … , 𝑛.

 (3.2.11)

Since the response variable Y can only take on the value 0 and 1, the ordinary residual is given

by:

 𝜀𝑖̂ = {
1 −⁡𝜋̂𝑖⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑌𝑖 = 1
−⁡𝜋̂𝑖⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑌𝑖 = 0

. (3.2.12)

Therefore, the error variance can be defined as:

𝑉(𝑌|𝑋) = (𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖).⁡

 (3.2.13)

To obtain the Pearson residual, the ordinary residual is divided by the estimated standard error

of 𝑌𝑖 and is given by:

𝑟𝑃𝑖 =⁡
𝜀𝑖̂

√(𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖)

⁡⁡⁡⁡⁡⁡⁡=
𝑌𝑖 − 𝜋̂𝑖(𝑥)⁡

√(𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖)⁡
.

 (3.2.14)

52

Pearson residuals can be defined as the standardized distance between the observed and

predicted responses.

Since the Pearson residuals do not have unit variance, they are standardized further by their

estimated standard deviation which results in the studentized Pearson Residuals. This is defined

as:

𝑟𝑆𝑃𝑖 =⁡
𝑌𝑖 − 𝜋̂𝑖⁡

√(𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖)(1 −⁡ℎ𝑖𝑖)
⁡= ⁡

𝑟𝑃𝑖

√(1 −⁡ℎ𝑖𝑖)
.

 (3.2.15)

Where ℎ𝑖𝑖 (often called hat diagonal in logistic regression) is the 𝑖-th element on the diagonal

of the 𝑛𝑥𝑛 estimated hat matrix H, which is given by:

𝐻 =⁡𝑊̂
1
2𝑋(𝑋́𝑊̂𝑋)

−1
𝑋́𝑊̂

1
2,

 (3.2.16)

where 𝑊̂ is the 𝑛𝑥𝑛 diagonal matrix with elements (𝜋̂𝑖)(1⁡ −⁡ 𝜋̂𝑖) (Sarkar, Midi, & Rana,

2011). The hat diagonal measures the leverage of an observation.

Deviance residuals are also often analysed when using logistic regression. Deviance residuals

are defined as the difference between the log-likelihood of the saturated model and the log-

likelihood of the fitted model. They represent the contribution of individual observations to the

deviance (Feng, Longhai, & Sadeghpour, 2020).

The deviance residuals are calculated based on the deviance statistic and is given by

𝐷 = 2∑{𝑌𝑖 log (
𝑌𝑖
𝜋̂𝑖
) + (1 − 𝑌𝑖) log (

1 − 𝑌𝑖
1 − 𝜋̂𝑖

)}
2

,

𝑛

𝑖=1

 (3.2.17)

where 𝑌𝑖 is the response variable which has two possible outcomes for logistic regression i.e.,

1 and 0 with probabilities 𝜋̂𝑖 and 1-𝜋̂𝑖, respectively (Ahmad, 2011).

The deviance residual for the 𝑖-th individual component is defined as

𝑟𝐷𝑖 = ⁡𝑠𝑖𝑔𝑛(𝑌𝑖 − 𝜋̂𝑖)√−2[𝑌𝑖 log(𝜋̂𝑖) + (1 − 𝑌𝑖) log(1 − 𝜋̂𝑖)].

 (3.2.18)

If 𝑦𝑖 = 0 then 𝑟𝐷𝑖 =⁡−√−2[log(1 − 𝜋̂𝑖)] and if 𝑦𝑖 = 1 then 𝑟𝐷𝑖 =⁡√−2 log(𝜋̂𝑖) .

When assessing the model fit, the residuals are often plotted against the predicted probabilities.

Standardized residuals greater than |2| are potential outliers and should be further investigated.

53

If the LOWESS smooth (Locally Weighted Scatterplot Smoothing or LOWESS is a technique

used in regression analysis to produce a smooth curve through a scatterplot) of the plot of the

residuals against the predicted probability approximates a line which has a zero slope and

intercept, one can conclude that there does not seem to be significant model inadequacy and no

influential outliers seem to be present (Sarkar, Midi, & Rana, 2011).

3.3 Decision tree (ID3, C4.5)

Decision trees are one of the most popular classification methods used in machine learning.

They are non-parametric, as there are no distributional assumptions made and a predefined

relationship is not required between the dependent and independent variables (Kuhn et al.,

2013). A decision tree is similar to a flowchart that takes on the form of a tree structure.

Decision trees consist of three types of nodes, namely the root node, the internal nodes

(decision nodes), and the leaf nodes.

The root node is the node found at the top of the tree; it has outgoing edges but no incoming

edges. The feature that classifies the data the best is used as the test feature for the root node.

Internal nodes are the nodes found between the root node and the leaf node. They have an

incoming edge and outgoing edges. At each root node and internal node, a certain feature is

tested and each of the node’s branches represents an outcome of the test, such that the space is

split into two or more sub-spaces. The leaf nodes are the final nodes of each branch, and these

nodes indicate which class an observation belongs to. Leaf nodes have an incoming edge but

no outgoing edges (Patel & Upadhyay, 2012; Singh & Giri, 2014).

Figure 3.1 displays an example of a simple decision tree structure.

Figure 3. 1: Structure of a simple decision tree

Most decision tree algorithms use the standard top-down approach. At each node, starting from

the root node, a feature is selected by using a certain splitting criterion; the chosen feature is

used to split the data into subsets. Some of the common splitting criteria are entropy,

information gain, gain ratio and the Gini index. Most splitting criteria are defined in terms of

how much the impurity reduces by after the split, that is, from parent to child node. The

splitting/partitioning process is repeated until the nodes cannot be split further, or a stopping

criterion is met, and all leaf nodes are present (Singh & Giri, 2014). To avoid overfitting, post-

pruning may be used once the tree has been grown.

54

Once the decision tree is constructed, new observations can be classified. For each new

observation, one starts at the top of the tree, which is the root node, and makes one’s way down

the tree by moving along the internal nodes and selecting the branch that presents the correct

answer to the question asked at each node. The answer to each question determines the next

question. This continues until the leaf node is reached. The leaf node will represent the class to

which the new observation is assigned to, according on the model’s prediction (Podgorelec et

al., 2002).

There are many decision tree algorithms available. In this study, the C4.5 algorithm is used,

which is an improved version of ID3. Quinlan (1986) developed the ID3 algorithm. This is

often considered one of the simplest decision tree algorithms. Like many other decision tree

algorithms, it uses the top-down approach when building the decision tree (Singh & Giri, 2014).

The ID3 algorithm utilises information gain (which is based on entropy) to determine the best

split (Murthy & Salzberg, 1995).

Shannon entropy is one of the most popular splitting criteria used in decision tree algorithms.

Entropy is the measure of randomness or impurity in a dataset and ranges from zero to one. If

the outcome of an event, such as clients defaulting on their loan, is certain, the entropy will

equal to zero. If the probability of an event occurring is 50%, the entropy will equal one.

The equation for entropy is given by

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =∑𝑝𝑖 log 𝑝𝑖 ,

𝑐

𝑖=1

 (3.3.1)

where c = the number of classes and 𝑝𝑖 is the proportion of values that fall within the class i,

that is, 𝑝𝑖 is the probability of the event (Fakir et al., 2020; Gulati et al., 2016).

Entropy before the split minus entropy after the split is known as information gain. Information

gain measures homogeneity in a dataset. The higher the information gain, the more informative

the feature (Gulati et al., 2016).

The equation for information gain is given by

 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) ⁡⁡− ⁡∑
|𝑆𝑖|

|𝑆|
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖),

𝑛

𝑖=1

 (3.3.2)

where

|𝑆| = total number of observations in S;

|𝑆𝑖 | = number of observations in the subset 𝑆𝑖 |;
n = number of attribute A.

When choosing the test feature at each test node, the entropy of the parent node and the entropy

of each category in each feature is calculated. This is used to calculate the information gain for

each feature. The feature which maximises the information gain is selected as the splitting

criterion for that specific node. This process starts at the root node and runs in a recursive

manner by treating the new child node as a parent node. The splitting process continues until

55

the new node is a leaf node, that is, all observations in the node belong to the same class, all

observations have identical feature values, or a predefined stopping criterion is met. A tree is

generated once all branches end with leaf nodes. This method is often referred to as the divide-

and-conquer approach (Fakir et al., 2020; Murthy & Salzberg, 1995).

Stopping criteria are utilised during the learning process. They are used to reduce over-fitting

by preventing insignificant branches from being generated; however, it may also result in loss

of information. Common pre-pruning/stopping conditions that may be utilised when building

a decision tree are listed below:

• All observations in a node belong to the same class.

• The maximum pre-specified tree depth is reached.

• The decision node has fewer observations than the (pre-specified) minimum number of

observations allowed in a parent node.

• After the node is split, the number of observations in at least one child node is less than

the pre-specified minimum number of observations allowed in a child node

(Singh & Giri, 2014).

• A statistical test can also be utilised to determine whether splitting the data on a certain

attribute is statistically significant. If the null hypothesis cannot be rejected, the split

does not occur and the splitting stops at that node (Patel & Upadhyay, 2012).

Using a stopping criterion may result in leaf nodes consisting of observations that belong to

different classes. The majority vote rule can be utilised to determine the class of that leaf node

(Quinlan, 1986).

The main disadvantage of ID3 is that it only supports categorical data and not continuous data.

Using the same method on continuous data will result in very small subsets. This will lead to

continuous attributes with unrealistically high information gain, which will likely result in a

poor model (Fakir et al., 2020). Another issue that arises when using the ID3 algorithm is that

it uses the greedy approach. ID3 chooses the best locally optimal split at each node without

allowing for backtracking. Using a strategy that chooses locally optimal splits may result in a

suboptimal tree (Murthy & Salzberg, 1995).

C4.5 is an extension of ID3 to overcome disadvantages of the latter and was also developed by

Quinlan (Adhatrao et al., 2013). The C4.5 algorithm utilises the same method as ID3 when

handling categorical features; however, unlike ID3, C4.5 can handle continuous attributes.

Figure 3.2 displays a decision tree that consists of both categorical and continuous variables.

Figure 3. 2: Example of a decision tree that includes both categorical and continuous variables

56

In order to handle features that are continuous, the C4.5 algorithm converts the continuous

features into nominal features by creating a threshold that is used to split the data into two

subsets. When selecting the threshold value, all values of the continuous feature are considered

as an option. For each possible threshold value, the dataset is split into two subsets: those whose

feature value is less than or equal to the possible threshold value, and those whose values are

greater. The entropy and information gain are then calculated by using each possible threshold

value; the one selected is the threshold value that offers maximum gain (Fakir et al., 2020;

Gulati et al., 2016).

Another advantage that the C4.5 algorithm has over the ID3 algorithm is that it allows for post-

pruning. Decision tree classifiers aim to split the training set into subsets, such that each subset

includes observations that all belong to the same class. Often, fitting a decision tree until all

leaf nodes consist of observations that belong to the same class results in over-fitting

(Podgorelec et al., 2002). The latter occurs when the learning algorithm continues to develop

hypotheses, such that the training set error decreases, but the test set error increases (Patel &

Upadhyay, 2012). By overfitting, the decision tree is classifying the training set instead of the

overall population and the algorithm becomes too specific to the training set (Podgorelec et al.,

2002).

To avoid overfitting, many decision tree algorithms use a method called ‘pruning’. Pruning

helps to optimise the computational efficiency and classification accuracy of a decision tree. In

most cases, pruning leads to a reduction of the tree size (Patel & Upadhyay, 2012). Post-

pruning allows the tree to grow to its maximum size and thereafter, insignificant branches are

removed. Examples of post-pruning methods are given by the authors, namely reduced error

pruning, error complexity pruning, minimum error pruning, pessimistic pruning and cost-based

pruning (Patel & Upadhyay, 2012).

3.4 Random forest

Ensemble classification is a method which uses multiple classifiers that work together in order

to assign a new observation to a class. Generally, the ensemble of classifiers has a higher

accuracy than the individual classifiers in the ensemble. Random forest classification is an

example of an ensemble classification algorithm in which the base learners are decision trees

(Fawagreh et al., 2014). Breiman (2001) developed the random forest algorithm and Breiman

et al. (1984) proposed using the classification and regression trees (CART) method to build the

individual trees in the random forest. As its name suggests, CART can be used to build both

classification and regression trees. If the target variable is categorical (e.g., defaulting or not

defaulting), a classification tree is used and if the target variable is continuous, a regression

tree is used (Kuhn et al., 2013). The CART algorithm builds binary decision trees, in other

words, it splits the data at each test node into two subsets.

The splitting criteria used in CART to determine the feature that best splits the data is the Gini

index, which is a measure of impurity (Singh & Giri, 2014).

57

The Gini index is defined by

 𝐺𝑖𝑛𝑖(𝐷) = 1 −⁡∑ (𝑃𝑗)
2⁡

𝑛

𝑗=1
, (3.4.1)

where 𝑃𝑗 denotes the probability of an observation being classified as class j.

If the features are categorical, the feature with the minimum Gini index is chosen as the splitting

feature at each test node. If the features are continuous, a strategy similar to the one used by

the C4.5 algorithm for information gain (discussed in section 3.3) is used for the Gini index.

The point of a continuous feature that minimises the Gini index is used to split the data (Han

et al., 2006; Lin & Fan, 2019). When building a decision tree, CART (like C4.5) uses the

recursive partitioning method, also known as the divide-and-conquer method, until all nodes

cannot be split further or one of the stopping criteria is met.

To construct a random forest, Breiman (2001) combined the CART approach, the bagging

sampling approach, also known as bootstrap aggregation, which he developed in 1996

(Breiman, 1996), and random feature selection. As a result, individual trees in the forest are

trained by using different datasets and features to make predictions. This reduces correlation

between the individual decision trees in the model.

During the building process of the random forest model, a training set needs to be created. The

bootstrap random sampling method is used to draw N samples from the original dataset. The

samples are created with replacement and each of the bootstrap samples should include the

same number of observations, which is usually about two-thirds the size of the original dataset

(Ali et al., 2012; Gao, Wen, & Zhang, 2019). This method helps to reduce instability in the

model (Tyralis et al., 2019).

A decision tree for each bootstrap training set is then constructed. These N trees form the

random forest. Breiman (2001) uses the CART method when building decision trees for the

random forest. Each tree should be grown to its full size, that is, until the leaf nodes are pure,

or until the leaf node contains a specified number of observations, or another stopping criterion

is met. These trees should not be pruned (Ali et al., 2012).

When building a single decision tree that is not part of a random forest, all possible features

are considered and the feature that results in the largest decrease in impurity is chosen as the

splitting feature for that node. In a random forest, each tree selects m features randomly from

all the features and only these m features are considered when selecting a feature to split the

data at each node. This method adds more variation between the trees and further randomness

to the model, which reduces correlation between the individual trees, resulting in the reduction

of variance of the prediction (Gao, Wen, & Zhang, 2019; Tyralis et al., 2019).

The final prediction for the classification problem is determined by using the majority vote rule

based on each individual tree’s vote, that is, each decision tree in the random forest makes a

prediction and the class with the most votes is the random forest model’s final prediction (Gao,

Wen, & Zhang, 2019). The random forest will only predict incorrectly when a higher portion

of the individual trees predict the incorrect class.

According to Breiman (2001), the error rate of a random forest depends on the strength of the

trees and the correlation between the trees. An increase in correlation between two trees in the

58

random forest will result in an increase in the error rate of the random forest. An increase in

the strength of the trees in the random forest will result in a decrease in the error rate of the

random forest (Fawagreh et al., 2014; Tyralis et al., 2019).

To compute the error rate, out-of-bag observations can be used. Out-of-bag samples are those

ones that were not included in the bootstrap training set (Chen & Ishwaran, 2012). These

observations can also be used for parameter tuning. Some of the parameters that are often tuned

are the number of trees, the number of observations in each tree, the number of randomly

selected predictor variables, and stopping criteria such as the number of observations in each

leaf node (Tyralis et al., 2019).

3.5 Support vector machines

The support vector machine, also known as SVM, was introduced by Vapnik (1982). SVM is

a supervised learning algorithm that can be used for both linear and nonlinear classification as

well as regression (Jakkula, 2006). For classification problems, which will be focused on in

this study, support vector machines separate the observations into classes, based on the

observation’s features, by identifying the optimal hyperplane (Rampisela & Rustam, 2018).

Vapnik initially described an optimal hyperplane as “a linear decision function with maximal

margin between the vectors of the two classes”, but extended this method to cater for non-

linearly separable training data (Vapnik, 1995).

Figure 3. 3: Example of support vector machine structure

Figure 3.3 illustrates the structure of a support vector machine with two linearly separable

classes, namely C1 and C2. In this study, the objective is to separate clients into the default

(C1) and not default (C2) classes. Figure 3.3 shows the separating hyperplane, parallel

hyperplanes, support vectors, and the margin. Hyperplanes are the decision boundaries that

help to classify the observations, support vectors are the data points from each class that are

situated closest to the separating hyperplane, and the margin is the distance between the parallel

hyperplanes associated with the support vectors of the two classes. The number of hyperplanes

which could separate the data into the two classes are infinite. The aim is to identify the

separating hyperplane that is as far as possible from the support vectors of both classes, thus

maximising the margin between the support vectors (while trying to minimise the error when

the data are not fully linearly separable) so that the training data are classified correctly and the

59

model works well on unseen data. The assumption is that the larger the distance between the

two parallel hyperplanes, the smaller the classification error will be (Bhavsar & Panchal, 2012;

Pal & Mather, 2005). During the training phase, all observations in the training set need to be

available when the SVM model’s parameters are obtained. Once these parameters are obtained,

only the support vectors are required when predicting the unseen data (Awad & Khanna, 2015).

There are different types of support vector machines, namely a hard margin SVM, a soft margin

SVM and a kernel method SVM. The SVM utilised depends on the complexity of the

classification problem.

A hard margin SVM is an SVM which can fully linearly separate the data into the correct

classes by identifying the hyperplane with the maximum margin (Fletcher, 2008). Figure 3.3

represents a hard margin SVM.

Consider a problem with N number of observations where each input 𝑥𝑖 has D features and

belongs to one of two classes, namely 𝑦𝑖 = -1 or 𝑦𝑖 = 1; in other words, the training data used

to build the model is in the form

{𝑥𝑖,⁡𝑦𝑖}, where i= 1, 2,.., N, 𝑥 E R^D and 𝑦𝑖 E {-1,1}.

Now consider the following function:

 𝑔(𝑥) = 𝜔𝑇𝑥 + 𝑏. (3.5.1)

The separating hyperplane is given by the equation

 𝜔𝑇𝑥 + 𝑏 = 0,⁡ (3.5.2)

and the equations for the parallel hyperplanes, which are the planes that the support vectors lie

on, are given below:

 𝜔𝑇𝑥 + 𝑏 = −1,⁡ (3.5.3)

 𝜔𝑇𝑥 + 𝑏 = +1,⁡ (3.5.4)

where 𝜔 E 𝑅𝑛 is a p-dimensional vector that is perpendicular to the separating hyperplane, 𝑏

E R is a parameter that relates to the closest distance between the origin of coordinates and the

separating hyperplane, and 1 and -1 relate to the two classes. The hyperplane will pass through

the origin in the absence of 𝑏 (Bhavsar & Panchal, 2012; Rampisela & Rustam, 2018).

𝜔 and 𝑏 are selected such that the training data can be described by

 𝑥𝑖𝜔 + 𝑏 ≤ −1 when 𝑦𝑖 = -1 (3.5.5)

 and 𝑥𝑖𝜔 + 𝑏 ≥ +1 when 𝑦𝑖 = +1. (3.5.6)

Combining equations (3.5.5) and (3.5.6) will result in the following:

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦𝑖⁡(𝑥𝑖𝜔 + 𝑏) − 1 ≥ 0 for all 𝑖’s. (3.5.7)

60

The distance from each observation to the hyperplane is
|𝑔(𝑥)|

||𝜔||
 (Fletcher, 2008). To find 𝜔 and

b such that 𝑔(𝑥)⁡equals to 1 and -1 for the closest point belonging to each of the two classes,

⁡𝜔1 and ⁡𝜔2,⁡respectively, the margin can be described as follows:

1

||𝜔||
+

1

||𝜔||
=

2

||𝜔||
⁡⁡, (3.5.8)

where 𝜔𝑇𝑥 + 𝑏 = +1 for 𝑥E⁡𝜔1 and 𝜔𝑇𝑥 + 𝑏 = −1 for 𝑥E⁡𝜔2.

In order to maximise the margin and solve the optimisation problem, the following objective

function (in primal form) will need to be minimised:

 𝐽(𝑤) =
1

2
||𝜔||2, (3.5.9)

s.t. 𝑦𝑖(𝜔𝑖
𝑇𝑥 + 𝑏) ≥ 1 where 𝑖 =1,2,…,N (Awad & Khanna, 2015; Nayak et al., 2015).

In an optimisation problem where the variables being optimised have constraints, the

constraints, multiplied by the Lagrange multipliers, are added to the error function in order to

augment it. With support vector machines, the Lagrangian function is attained by augmenting

the objective function with a weighted sum of the constraints.

 𝐿(𝜔, 𝑏, 𝜆) =
1

2
𝜔𝑇𝜔 −⁡∑𝜆𝑖[

𝑁

𝑖=1

𝑦𝑖(𝜔
𝑇𝑥𝑖 + 𝑏) − 1], (3.5.10)

where λ𝑖’s are the Lagrange multiplies and 𝜔 and 𝑏 are referred to as primal variables.

The Karush-Kuhn-Tucker conditions, also known as KKT conditions, are used to generalise

the Lagrange multipliers when inequality constraints are present (Awad & Khanna, 2015).

Using the KKT conditions and partially differentiating with respect to w, b and λ, the following

equations are obtained:

 𝜔 =⁡∑ 𝜆𝑖
𝑁
𝑖=1 𝑦𝑖𝑥𝑖, (3.5.11)

subject to ∑ 𝜆𝑖
𝑁
𝑖=1 𝑦𝑖 = 0. (3.5.12)

The optimisation problem can be solved in primal form or in dual form. The primal form is in

terms of 𝜔 and 𝑏, whilst the dual form is in terms of λ (Srivastava & Bhambhu, 2010).

According to these authors, the primal problem can be written in the dual form by substituting

equation (3.5.11) into the Lagrange function.

61

The problem in dual form for the hard margin SVM is given by

 𝑚𝑎𝑥𝜆⁡(∑𝜆𝑖 −⁡
1

2

𝑁

𝑖=1

∑𝜆𝑖

𝑁

𝑖⁡𝑗⁡

𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗), (3.5.13)

subject to the following:

∑𝜆𝑖

𝑁

𝑖=1

𝑦𝑖 = 0,

𝜆𝑖 ≥ 0⁡∀𝑖.

(3.5.14)

This problem can be solved by using a quadratic optimisation solver.

The dual form is often used, as it always has a unique optimal solution and is often quicker and

more efficient compared to the primal form, since the number of primal variables can be

considerably more than the number of dual variables (Awad & Khanna, 2015; Nayak et al.,

2015).

In the real world, data are often not fully linearly separable. A soft margin SVM may be

utilised to solve this problem. Figure 3.4 illustrates an example of an SVM structure in which

some observations are misclassified. The SVM objective function can be modified by adding

slack variables, also referred to as error variables, 𝜉𝑖, which allow for small misclassifications

(errors), that is, if the data points are on the incorrect side of the separating plane by a short

distance, the data points can be misclassified without violating the constraints (Jakkula, 2006).

Data points on the incorrect side of the separating plane are penalised according to their

distance away from the ‘correct side’ (Fletcher, 2008). Instead of finding a hyperplane that

separates the data into two classes correctly and without any errors, the soft margin SVM

algorithm now searches for a hyperplane that maximises the margin while trying to minimise

the error (Pal & Mather, 2005).

Figure 3. 4: Example of support vector machine structure with misclassifications

When including the slack variable, 𝜔 and 𝑏 are selected such that the training data can be

described by

 𝑥𝑖𝜔 + 𝑏 ≤ −1 +⁡𝜉𝑖 when 𝑦𝑖 = -1 (3.5.15)

 and 𝑥𝑖𝜔 + 𝑏 ≥ +1 +⁡𝜉𝑖 when 𝑦𝑖 = +1. (3.5.16)

where 𝜉𝑖 ⁡>= 0 for all 𝑖’s (Fletcher, 2008).

62

Combining equations (3.5.15) and (3.5.16) results in the following:

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦𝑖 ⁡(𝑥𝑖𝜔 + 𝑏) − 1 +⁡𝜉𝑖 ⁡≥ 0 where ⁡𝜉𝑖 ≥ 0 for all 𝑖’s. (3.5.17)

In order to maximise the margin and solve the optimisation problem, the following objective

function (in primal form) will need to be minimised (Awad & Khanna, 2015; Nayak et al.,

2015):

 𝐽(𝜔, 𝑏, 𝜉) =
1

2
||𝜔||

2
+ 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 , (3.5.18)

subject to the following constraints:

 𝑦𝑖(𝜔𝑖
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖⁡⁡⁡⁡⁡where⁡𝑖⁡ = 1,2,3, … , N, (3.5.19)

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜉𝑖 ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡where⁡𝑖⁡ = 1,2,3, … , N. (3.5.20)

The parameter C is the regularisation term that is based on the optimisation goal. It controls

the trade-off between the margin size and misclassification error. As C increases, the margin

gets smaller (SVM prioritises the minimisation of the number of misclassification errors). As

C decreases, the number of misclassifications allowed increases (SVM prioritises the

maximisation of the margin between the classes) (Rampisela & Rustam, 2018).

The problem in dual form for the soft margin SVM is given by

 𝑚𝑎𝑥𝜆⁡(∑𝜆𝑖 −⁡
1

2

𝑁

𝑖=1

∑𝜆𝑖

𝑁

𝑖⁡𝑗⁡

𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗), (3.5.21)

subject to the following constraints:

∑𝜆𝑖

𝑁

𝑖=1

𝑦𝑖 = 0,

0 ≤ 𝜆𝑖 ≤ 𝐶⁡⁡⁡𝑖 = 1,2,3, … ,𝑁.

(3.5.22)

The difference between the hard margin dual problem and the soft margin dual problem is that

the dual variable for the soft margin is upper bounded by C (Awad & Khanna, 2015; Nayaket

al., 2015).

63

The SVM method can be extended to cater for cases where a nonlinear boundary exists by

using a kernel function (Jakkula, 2006). A kernel function is used to project the input data to

a higher dimensional space by the function ϕ. The SVM will then try to obtain the optimal

linear separating hyperplane in the higher dimensional space (Srivastava & Bhambhu, 2010).

When kernels are utilised, all computations are carried out in the input space and no

computations are performed in the higher dimensional space. The hyperplane in the input space

corresponds to a nonlinear decision function, which is based on the kernel used (Hearst et al,

1998). Mercer’s conditions need to be satisfied when using the kernel method.

The kernel function is defined below:

 K(x𝑖, x𝑗) = φ(x𝑖)φ(x𝑗), (3.5.23)

where the φ(𝑥) maps 𝑥 E⁡𝑅𝑛 to a higher dimensional feature space and belongs to the Hilbert

space. φ(x𝑖)φ(x𝑗)⁡⁡can be replaced by K(x𝑖 , x𝑗)⁡in the classification algorithm (Rampisela &

Rustam, 2018).

The primal form for the problem is given below:

 𝑚𝑖𝑛𝜔,𝜉
1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 , (3.5.24)

subject to the following constraints:

 𝑦𝑖(𝜔
𝑇φ(x𝑖) + 𝑏) ≥ 1 − 𝜉𝑖⁡⁡⁡and⁡⁡⁡𝜉𝑖 ≥ 0⁡∀𝑖. (3.5.25)

The KKT conditions will also need to be satisfied when using the kernel method to separate

data (Awad & Khanna, 2015).

The dual form for the problem is shown below:

 𝑚𝑎𝑥𝜆⁡(∑𝜆𝑖 −⁡
1

2

𝑁

𝑖=1

∑𝜆𝑖

𝑁

𝑖⁡𝑗⁡

𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗), (3.5.26)

subject to the following constraints:

 ∑𝜆𝑖

𝑁

𝑖=1

𝑦𝑖 = 0. (3.5.27)

The kernel function is chosen, based on the problem. Equations (3.5.28), (3.5.29) and (3.5.30)

display kernel functions that are commonly utilised:

64

• Linear kernel

 K(x𝑖 , x𝑗) = x𝑖
𝑇x𝑗 + C.⁡ (3.5.28)

• Polynomial

 K(x𝑖 , x𝑗) = (𝛾x𝑖
𝑇x𝑗 + r)𝑑 ⁡⁡⁡⁡, 𝛾 > 0. (3.5.29)

• Radial basis function

 K(x𝑖, x𝑗) = ⁡ 𝑒
−𝛾||x𝑖−x𝑗||

2

⁡⁡⁡⁡, 𝛾 > 0. (3.5.30)

where 𝛾, 𝑟⁡𝑎𝑛𝑑⁡𝑑 are kernel parameters.

3.6 Naive Bayesian algorithm

The Naive Bayesian algorithm is a statistical classification method that was proposed by

Thomas Bayes, a British scientist (Wibawa et al., 2019). It is a Bayesian network that is based

on the Bayesian theorem, combined with the assumption of independence among features

(Ginting et al., 2018). The Naïve Bayesian classifier classifies data by identifying the class with

the maximum posterior probability given a set of features that were observed. The new

observation is then assigned to this class (Demichelis et al., 2006).

The formula for the Bayesian theorem on which the Naïve Bayesian classifier is based, is given

by

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌) ∗ 𝑃(𝑌)

𝑃(𝑋)
,

(3.6.1)

where

X: A feature vector for an observation with n features values, i.e., X = (x1, x2,…, x𝑛).

Y: The hypothesis that an observation belongs to a specific class.

P(X): Prior probability of X, regardless of Y.

P(Y): Prior probability of Y, regardless of X.

𝑃(𝑋|𝑌): Conditional probability of X, given hypothesis Y.

. This is referred to as the posterior probability of X or the conditional probability.

𝑃(𝑌|𝑋): Probability of hypothesis Y, given the feature vector X (posterior probability of Y)

(Demichelis et al, 2006; Gangrade & Patel, 2012).
 .

The Bayesian theorem uses P(X), P(Y) and 𝑃(𝑋|𝑌) to determine the posterior probability

𝑃(𝑌|𝑋) (Gao, Zeng, & Yao, 2019). The Naïve Bayes classifier calculates the probability of an

observation belonging to a specific class by using the Bayes formula (Liu et al., 2014).

65

The Naïve Bayesian algorithm is often referred to as naïve, as it is based on a very strong

assumption, namely the class independence assumption. This means that the effect of a

particular feature in a class is assumed to be independent of the other features in the class. In

our study, we aim to classify an applicant as default or not default, based on the applicant’s

age, salary, credit history et cetera. These features will be considered independently, even if

they are interdependent. The independence assumption is often not true in the real world;

however, the model is often still able to generate reliable results for classification (Jang et al.,

2015). The assumption is made in order to simplify the computation of 𝑃(𝑋|𝑌), as discussed

below (Gao, Zeng, & Yao, 2019).

Consider a sample of observations where each observation has a feature vector X with n

features, that is, x1, x2,…, x𝑛, and each observation needs to be assigned to a class Y.

Since the Naive Bayes classifier assumes independence of class conditions, the formula for the

Naïve Bayes theorem can be written as

 𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦)

𝑛
𝑖=1

𝑃(𝑥1)𝑃(𝑥2)…𝑃(𝑥𝑛)
. (3.6.2)

Since 𝑃(𝑋) is constant for all classes, only the prior probability 𝑃(𝑦) and the conditional

probability 𝑃(𝑥𝑖|𝑦) will need to be computed (Berrar, 2018).

That is,

 𝑃(𝑦|𝑥1, … , 𝑥𝑛) ⁡∝ 𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦).
𝑛
𝑖=1 (3.6.3)

We can estimate 𝑃(𝑌 = 𝑦) by using the following formula:

 𝑃(𝑌 = 𝑦) =
𝑁𝑦
|𝐷|

, (3.6.4)

where

𝑁𝑦 : number of observations in class Y and

|𝐷| : number of observations in the training set D (He et al., 2012).

The method used to calculate 𝑃(𝑥𝑖|𝑦) depends on whether the data are categorical or

continuous. If the data are categorical, equation (3.6.5) can be used to estimate the conditional

probability

𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) = ⁡

𝑁𝑦𝑖⁡

𝑁𝑦⁡
,

(3.6.5)

where

𝑁𝑦 : number of observations in class Y and

𝑁𝑦𝑖 : the number of observations in class Y where 𝑋𝑖 = 𝑥𝑖 (He et al., 2012).

66

When the data is numeric, kernel density estimation can be used to estimate 𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦),
which is given by

 𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) = ⁡
1⁡

𝑁𝑦ℎ𝑖
𝑦
⁡
∑𝐾(

𝑥𝑖 − 𝑥𝑖,𝑘

ℎ𝑖
𝑦)

𝑁𝑦

𝑘=1

, (3.6.6)

where

𝑁𝑦 is the number of observations in class Y

K : kernel function,

ℎ𝑖
𝑦

 : smoothing parameter for the i-th feature in class Y, and

𝑥𝑖,𝑘 : i-th feature in the k-th sample for Class Y (He et al., 2012).

According to He et al. (2012), the standard Gaussian function is often used as the kernel

function and is given by

𝐾(𝑥) =

1

√2𝜋
exp (−

1

2
𝑥2).

(3.6.7)

The Naïve Bayes Classifier utilizes the equation; 𝑃(𝑦|𝑥1, … , 𝑥𝑛) = 𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦)
𝑛
𝑖=1 to

estimate the probability of an observation belonging to each class. During the classification

phase, the Naïve Bayes classifier, given by equation (3.6.8) (Krichene, 2017), is used to

identify the class with the highest probability and the new observation will be assigned to it:

 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦)∏𝑃(𝑥𝑖|𝑦).

𝑛

𝑖=1

 (3.6.8)

3.7 K-nearest neighbours

The k-nearest neighbours (K-NN) algorithm was initially proposed by Fix and Hodges (1951)

and was later modified by Cover and Hart (1967). K-NN is a non-parametric algorithm that

can be used to solve both classification and regression problems. It has gained popularity due

to its simplicity and easy implementation and is often used as a baseline classifier in

classification problems (Hu et al, 2016).

K-NN is a distance-based classification algorithm that assigns a new observation to a class by

calculating the distance between the new observation and the observations in the training set

in order to find the new observation’s nearest neighbours. The new observation is then

classified according to its k-nearest neighbours by using the majority rule (Ali et al., 2019).

This classifier is often referred to as a lazy learner. Lazy learners are memory-based algorithm

in which the learning phase is usually quite simple, whereas most of the work is done in the

classification phase. A K-NN classifier stores the training data during the learning phase and

67

only uses them in the classification phase when new observations need to be classified

(Mazinani & Fathi, 2015).

There are four main steps in the K-NN process. During the first step, the number of k-nearest

neighbours used in the algorithm will need to be selected. The ‘k’ in k-nearest neighbours is a

parameter used to define the number of nearest neighbours that are included in the voting

process (Ali et al., 2019). The value of k may significantly impact the performance of the K-

NN algorithm, as it may alter the prediction.

From Figure 3.5, we observe that if the value of k was set to 5, the model would predict that

the new data point belonged to Class B. However, if the value of k was set to 12, the model

would predict that the new data point belonged to Class A.

Figure 3. 5: Impact of selected k value on model’s prediction

A k-value that is too small will result in overfitting, whereas one that is too large will result in

underfitting. Common methods utilised when selecting the k-parameter are discussed below.

• An odd value is usually chosen to prevent ties in the voting process when the output is

binary.

• K = 1 is the simplest form of the K-NN rule and is often used as a benchmark, as it

provides reasonable results (Hu et al., 2016).

• When assigning k, a fixed value method across all test samples may be used (Zhang et

al., 2018).

• Lall and Sharma (1996) mentioned using k = N^(0.5) as the fixed optimal k-value

across different test samples when the number of training samples N > 100.

• The alternative to assigning a fixed optimal k-value for all test samples is to assign

different optimal k-values for each test sample (Zhang et al., 2018). There are different

methods available that may be used. For example, the algorithm can be run multiple

times, using different values for k each time. The k-value that results in the best

performance is the one that should be chosen (Guo et al., 2003).

During the second step, a distance metric needs to be selected. There are numerous methods

available that may be used to compute the distance between two points. Some of the common

distance calculations used in K-NN to measure the distance between two vectors⁡𝑥 and 𝑦, where

𝑥 = {𝑥1, 𝑥2,…., 𝑥𝑛} and 𝑦 = {𝑦1, 𝑦2,…., 𝑦𝑛}, are given below:

68

• Minkowski distance measure

 𝐷𝑀𝑖𝑛𝑘(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑝
𝑛

𝑖=1

.
𝑝

 (3.7.1)

This is a generalised metric where 𝑝 is a positive value, 𝑥𝑖 is the ith value in the vector

𝑥, and 𝑦𝑖 is the ith value in the vector y (Alfeilat et al., 2019).

• Manhattan distance measure

 𝑀𝐷(𝑥, 𝑦) =∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

. (3.7.2)

This is a special case of the Minkowski distance measure where 𝑝 = 1 (Alfeilat et al.,

2019).

• Euclidean distance measure

 𝐸𝐷(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|2
𝑛

𝑖=1

. (3.7.3)

This is a special case of the Minkowski distance measure where 𝑝 = 2. The Euclidean

distance measure is an extension to the Pythagorean theorem (Alfeilat et al., 2019).

• Normalised Euclidean distance measure

 𝑁𝐸𝐷(𝑥, 𝑦) = √
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1

𝑛
. (3.7.4)

• Hamming distance metric

 𝐻𝑎𝑚𝐷(𝑥, 𝑦) =∑1𝑥𝑖≠𝑦𝑖

𝑛

𝑖=1

. (3.7.5)

The Hamming distance metric measures how many mismatches there are between two

vectors (Hamming, 1958).

69

• Pearson correlation distance measure

𝑃𝑒𝑎𝐷(𝑥, 𝑦) = 1 −⁡

∑ (𝑥𝑖 ⁡− ⁡ 𝑥̅) ⁡∗ ⁡ (𝑦𝑖 ⁡− ⁡𝑦̅)𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2 ∗ ⁡∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 ⁡𝑛

𝑖=1

⁡.

(3.7.6)

Pearson correlation distance measures the linear relationship between two vectors. The

Pearson correlation coefficient is used to derive the Pearson correlation distance

(Alfeilat et al., 2019).

According to Hu et al. (2016), the Euclidean distance method is the most popular distance

metric used in literature.

During the third step, the distance between the new data point and each training data point is

calculated (using the chosen distance metric) (Ali et al., 2019). The final step involves sorting

the data points based on their distance away from the new observation and identifying the k-

nearest neighbours (where k was selected during step one). The majority voting rule is then

used to assign the new observation to a class, that is, the new observation is assigned to the

most common class among those k data points (Ali et al., 2019).

3.8 Artificial neural network

In 1943, Warren McCulloch, a neurophysiologist, and Walter Pitts, a mathematician,

introduced a simple neural network, which was the first step towards the artificial neural

network (ANN) (McCulloch & Pitts, 1943). The latter is a modelling tool used for pattern

classification problems. It has non-parametric, non-linear and adaptive learning properties (Hu

et al., 1999). ANNs aim to replicate the human brain, which is made up of interconnected cells

called neurons. The neurons in the artificial network strive to copy the structure and behaviour

of these human cells (Shiruru et al., 2016).

The artificial neural network comprises different layers of interconnected cells; the complexity

of this network depends on the complexity of the problem. ANN models used for classification

problems are either feed-forward or feed-back neural networks, which are also known as back-

propagation neural networks. In feed-forward neural networks, information flows in a single

direction. The simplest artificial neural network is called a single-layer perceptron, which only

has an input layer and an output layer, whereas a multiple layer perceptron has an input layer,

at least one hidden layer, and an output layer. A feed-back neural network has at least one

hidden layer and one feedback loop (Shahid et al., 2019).

This study focuses on the feed-back neural network, which uses an iterative process in order to

train the model. Figure 3.6 illustrates the architecture of a feed-back neural network with one

hidden layer, such that the network includes three layers, namely the input layer, the hidden

layer and the output layer. The feed-back neural network consists of two phases i.e., forward-

propagation and back-propagation. During the forward-propagation phase, information moves

forward through the network, from input layer to hidden layer and then to output layer. During

70

this phase, the network produces an output value, which is a prediction. During the back-

propagation phase, information is propagated backward through the network and used to adjust

the weights in order to minimise the error between the predicted output and actual value.

Figure 3. 6: Structure of a feed-back neural network

All artificial neural networks comprise the following components: the input signals, weights,

bias, activation function, and the output. Figure 3.7 represents the architecture of a simple

neural network:

Figure 3. 7: Structure of a simple neural network

The feed-back neural network is more complex in comparison to the architecture of the neural

network shown in Figure 3.7, as it includes at least one hidden layer and one feedback loop;

however, the components within the input layer, hidden layer/s and output layer are similar.

In feed-back neural networks, the input data from the external environment are received by the

input layer. The data do not undergo any transformations in this layer. The input information

is multiplied by weights and sent through to the processing components of the hidden layer in

the artificial neural network (Lallahem & Mania, 2002). Each input in the neural network has

a corresponding weight. These weights are initially randomly assigned (Pasini, 2015); they

may be positive, negative, or zero. Inputs multiplied by the corresponding weights produce the

strength of a signal (Shiruru et al., 2016).

The weighted inputs from the input layer (assuming one hidden layer only) are received by the

hidden layer; the latter is required when there are complex patterns in the data. A feed-back

neural network contains one or more hidden layers, which are found between the input layer

71

and the output layer (Hu et al., 1999). Generally, by adding more hidden layers, we can improve

the performance of the model; however, adding too many hidden layers may result in

overfitting (Moon et al., 2019). In the hidden layer, an activation function is applied to the

weighted sum of the inputs and the bias term in order to transform the inputs. This is given by

 𝑦𝑖 = 𝜎(⁡∑𝑤𝑖𝑥𝑖 ⁡+ 𝑏𝑖)

𝑛

𝑖=1

, (3.8.1)

where 𝑥𝑖 is representative of the inputs, 𝑤𝑖 is the weight assigned to each input, 𝑏𝑖 is the bias

term that allows one to shift the activation function, 𝜎⁡is the activation function, and 𝑦𝑖 is the

output value of the neuron. The activation function uses the strength of the signal to determine

whether the neuron should be activated and whether the signal from the hidden layer will be

passed on to the next neuron (Oken, 2017).

In the absence of an activation function, the output of each layer can range from anything

between -∞ and +∞, and each layer’s outputs will be a linear function of the layer’s inputs. The

activation function adds non-linearity to the outputs and allows the output to range from 0 to 1

or from -1 to 1. It also allows for back propagation, where the gradients and error information

are used to adjust weights and biases. There are two types of activation functions, namely linear

and non-linear activation functions. Non-linear activation functions are more popular in

comparison to the linear functions, as they allow the model to generalise easily as well as

differentiate between outputs (Feng & Lu, 2019). The sigmoid function, tangent hyperbolic

function (tanh), and rectified linear unit function (ReLU) are commonly used non-linear

activation functions and are given by the following equations:

Sigmoid function:

 f(xi) =
exi

1 +⁡exi

(3.8.2)

Tangent hyperbolic function:

 tanh⁡(𝑥𝑖) =
sinh⁡(𝑥𝑖)

cosh⁡(𝑥𝑖)
 (3.8.3)

Rectified linear unit function (ReLU):

 f(𝑥𝑖) = max(0, 𝑥𝑖) = {
𝑥𝑖⁡,⁡⁡⁡𝑥𝑖 > 0
0⁡⁡,⁡⁡⁡𝑥𝑖 < ⁡0

⁡ (3.8.4)

where 𝑥𝑖 is the input of the activation function f (Feng & Lu, 2019).

72

According to Feng and Lu (2019), ReLU, which was proposed by Nair and Hinton (2010), is

one of the most popular activation functions used in the hidden layer in ANN, as it can correct

the vanishing gradient problem that the Sigmoid function and Tanh function face. The

disadvantage of ReLU is that it suffers from the dying ReLU problem, where weights cannot

be adjusted during back propagation when the gradient is 0; this happens when inputs are

negative. New activation functions were proposed to improve the ReLU function, for example,

the Leaky ReLU function, Parametric ReLU function and randomised ReLU function (Feng &

Lu). Bing et al. (2015) compared the performance of the different ReLU functions and found

that the modified ReLU functions all performed better than the original ReLU function.

The activation function in the hidden layer determines whether the neuron will fire or not. The

output from the hidden layer is then multiplied by a second set of weights and passed to the

output layer, where it is summed together along with a bias term and transformed by using

another activation function (assuming there is one hidden layer in the network). According to

Feng and Lu (2019), the sigmoid function is one of the most commonly used activation

functions in the outer layer for a binary classification problem where the output is either 0 or

1. Since the sigmoid function outputs a value that ranges from 0 to 1, the sigmoid function

output value can be easily interpreted as a prediction of 0 if the output value is less than 0.5,

and 1 if the output value is greater or equal to 0.5.

The initial output value from the output layer determines the model’s initial prediction. The

predicted value is then compared to the actual value in order to calculate the error. The smaller

the error, the closer the prediction is to the actual observation. The aim is to construct a function

such that the predicted value will be equal to the actual target value, that is, 𝑦𝑖 = 𝑡𝑖 where 𝑦𝑖 is

the predicted value and 𝑡𝑖 the actual target value. To obtain the function, an error function can

be used and the parameters that minimise the error function will need to be identified. A

common error function is the sum of squared error between the actual and predicted value and

is given by

 E(𝑤𝑖, 𝑏𝑖) = ⁡
1

2
∑||𝑡𝑖 −⁡𝑦𝑖||

2

𝑝

𝑖=1

, (3.8.5)

where 𝑡𝑖 is the actual target value and the output, 𝑦𝑖, is dependent on the weights, 𝑤𝑖, and the

bias term,⁡𝑏𝑖. In order to minimise the error function, 𝑤𝑖 and 𝑏𝑖 will therefore need to be

adjusted appropriately (Oken, 2017). The information obtained from the error calculation is

propagated backwards into the neural network, which is then used to update and change the

weights and bias terms in the model. Thus, in training the model, you are adjusting the weights

assigned to the signals (Hu et al., 1999). The weights can be adjusted via gradient descent.

These new weights are then used in the neural network to recalculate the model’s output and

thereafter, by using the new predicted value, the error is recalculated; this information is then,

once again, propagated backwards into the neural network and the weights and bias terms are

adjusted again. The cycle of moving from input to output and then from output to input is

known as an epoch. This process is repeated until the neural network learns the training data

and the error is within a certain threshold. The backward process is called ‘back propagation’

and the back-propagation algorithm is used to reduce the error (Shiruru et al., 2016).

73

Gradient descent optimisation is one of the most popular algorithms used to optimise an

artificial neural network by minimising the error function (Feng & Lu, 2019). In order to

minimise the error by adjusting the weights using the gradient descent method, the derivatives

of the error with respect to the weights and the bias in the artificial neural network need to be

calculated. For each iteration, the weights and biases are updated in the opposite direction of

the error function’s gradient, in other words, a positive derivative implies that the error function

will increase if the weights are increased; therefore, the weights should be decreased. A

negative derivative implies that the error function will decrease if the weights are increased;

therefore, the weights should be increased. If the derivative is zero, the weights should not be

changed, as this shows that the model has reached a stable point (Tawfiq & Thirthar, 2013).

There are three variants of gradient descent, namely stochastic gradient descent, batch gradient

descent and mini-batch gradient descent. When stochastic gradient descent is used, weights are

adjusted after each observation goes through the neural network; when batch gradient descent

is used, weights are adjusted after all observations go through the neural network; and when

mini-batch gradient descent, which is a combination of both methods, is used, small batches of

data run through the neural network each time (Ruder, 2017).

3.9 Evaluation metrics

Sections 3.2 to 3.8 outlined the following machine learning models: logistic regression,

decision trees, random forest, k-nearest neighbours, the Naïve Bayes algorithm, support vector

machines and artificial neural networks. We train each model by using labelled data and the

trained models are used to make predictions on unseen data. The model’s ability to make

correct predictions is evaluated in order to understand how well the model has performed. In

this section, the confusion matrix as well as evaluation metrics such as accuracy, balanced

accuracy, precision, recall, Area under ROC curve (AUC score) and the Gini coefficient are

discussed.

The confusion matrix is a visual representation that summarises a classification algorithm’s

performance. It comprises four possible outcomes, namely true positive (TP), false positive

(FP), true negative (TN), and false negative (FN). In this study, a positive case represents a

client who defaulted on his or her loan at least three times in the first 12 months of the loan

being granted, whereas a negative case represents a client who did not default on his or her

loan at least three times in the first 12 months of the loan being disbursed. Thus, TP, FP, TN

and FN can be defined as follows:

True positive (TP): TP represents the number of times the classification algorithm correctly

predicted that the clients defaulted on their loan.

False positive (FP): FP represents the number of times the classification algorithm incorrectly

predicted that the clients defaulted on their loan.

True negative (TN): TN represents the number of times the classification algorithm correctly

predicted that the clients did not default on their loan.

74

False negative (FN): FN represents the number of times the classification algorithm incorrectly

predicted that the clients did not default on their loan.

Table 3.1 displays the structure of a confusion matrix. TP, FP, TN and FN can be used to derive

evaluation metrics such as accuracy, balanced accuracy, true positive ratio, true negative ratio,

positive predictive value, negative predictive value and false positive rate.

Table 3. 1: Structure of a confusion matrix that illustrates the TP, FP, TN and FN

 Predicted client defaulted Predicted client did not default

Client defaulted True positive (TP) False negative (FN)

Client did not default False positive (FP) True negative (TN)

Accuracy: This represents how often the model classifies observations correctly. It can be

computed as
TP+TN

TP+TN+FP+FN
. Accuracy is not very reliable when the dataset is imbalanced.

Balanced accuracy: The balance accuracy ratio describes the overall accuracy of the model

while taking into consideration the imbalance in the dataset. The balance accuracy is computed

as
TPR⁡+⁡TNR

2
 where 𝑇𝑃𝑅 =

TP

TP+FN
 and 𝑇𝑁𝑅 =

TN

TN+FP
.

True positive ratio (Sensitivity/Recall): Recall describes the proportion of positive cases that

the classification algorithm identified correctly. True positive ratio is computed as
TP

TP+FN
.

True negative ratio (Specificity): Specificity describes the proportion of negative cases that

the classification algorithm identified correctly. True negative ratio is computed as
TN

TN+FP
.

Positive predictive value (Precision): Precision represents the proportion of observations that

the classification algorithm correctly identified as positive cases of the total number of

observations classified as positive cases. Precision is computed as
TP

TP+FP
.

Negative predictive value: This value represents the proportion of observations that the

classification algorithm correctly identified as negative cases of the total number of

observations classified as negative cases. Negative predictive value is computed as
TN

TN+FN
.

False positive rate: This rate describes the proportion of negative cases that the classification

algorithm incorrectly identified as positive cases. False positive rate is computed as
FP

FP+TN

(Arjaria et al., 2021).

ROC curve: The receiver operating characteristic curve (ROC curve) is used to analyse a

classification algorithm’s performance, based on its ability to discriminate between classes. It

is a plot of the true positive rate (TPR) against the false positive rate (FPR) under different

thresholds (Schechtman & Schechtman, 2019). Each point on the graph is a different threshold

75

and together, all the points form the curve. The curve shows how the performance of the

classifier changes as the threshold is changed. Figure 3.8 illustrates an example of a ROC curve.

Figure 3. 8: Example of a ROC Curve

AUC score (area under the ROC curve): This is a single score that summarises the ROC

plot. It is used to measure the ability of a classification algorithm to distinguish between

positive and negative classes and can be used to compare the different models. The AUC value

ranges from 0 to 1. A model will have an AUC value of 0 if all its predictions are wrong and a

model that predicts 100% correctly will have an AUC value of 1. An AUC value of 0.5 is just

as good as a random guess (Singpurwalla & Lai, 2020).

Gini coefficient: The Gini can be computed as (2*AUC) – 1 (Hand & Till, 2001). The

relationship between AUC and Gini is linear. The Gini coefficient ranges from -1 to 1 where a

random classifier has a score of 0 and a perfect classifier has a score of 1.

In this chapter several machine learning classification algorithms and evaluation metrics were

discussed. In the next chapter, empirical results obtained when fitting these classification

models to the default dataset using the PCA approach are presented.

76

Chapter 4

4 Classification with PCA

Each classification algorithm discussed in Chapter 3 was fitted to the balanced default dataset

using the PCA approach, discussed in Chapter 2, to reduce the dimension of the dataset and to

correct the dataset for multicollinearity. In this chapter, the confusion matrix and evaluation

metrics, discussed in Chapter 2, are presented and examined for each model in order to identify

the one which was most appropriate for the classification problem under study when using the

PCA approach.

4.1 Logistic regression

Logistic regression models the probability of a discrete target variable given a set of input

variables. In this study, the target variable is the default status of a client. The logistic regression

model was fitted to the balanced default dataset and the results are examined.

The researcher assesses the fit of the model using the deviance test (discussed in Chapter 2)

which is presented in Table 4.1; thereafter, the researcher analyses the maximum likelihood

parameter estimates, p-values and odds ratios associated with each variable.

Table 4. 1: Deviance test for logistic regression model

Deviance statistic (D) dof (n-p) Deviance statistic/dof

18591 14454 1.286

Table 4.1 reports a deviance statistic/dof of 1.286 where the deviance statistic is 18591 and

degrees of freedom (dof) are 14454. Since D/(n-p) = 1.286 < 1.5, we conclude that the model

fits the data well.

The maximum likelihood parameter estimates and p-values for the fitted logistic regression

model are presented in Table 4.2a.

Table 4. 2a: Maximum Likelihood Parameter estimates, and p-values for the fitted logistic regression model

Parameter

estimate
p-value

Intercept 0.617 <0.001***

principalcomponent1 -0.089 <0.001***

principalcomponent2 -0.517 <0.001***

principalcomponent3 0.182 <0.001***

principalcomponent4 -0.074 <0.001***

principalcomponent5 0.056 0.003***

77

principalcomponent6 0.063 <0.001***

principalcomponent7 0.186 <0.001***

Gender_M 0.388 <0.001***

LowerOffer_Yes 0.037 0.406

Married_Yes -0.148 <0.001***

Weekly/Monthly_Weekly 0.019 0.612

Internal Living Expenses Rule_Yes 0.108 <0.001***

Unpaids_Yes 0.301 <0.001***

Taking Max_Yes 0.56 0.002***

PayslipExpenses_Yes -0.034 0.368

Permanent Allowances_yes -0.004 0.891

Overtime_yes 0.022 0.486

Union fees_yes -0.089 0.011**

Pensionprovident_yes -0.021 0.565

Medicalaid_yes -0.26 <0.001***

Client Type_New -0.112 0.044**

Client Type_Reload -0.286 <0.001***

Insurance_yes -0.175 <0.001***

Salary Bank_2 -0.068 0.334

Salary Bank_3 -0.129 0.104

Salary Bank_4 -0.276 <0.001***

Salary Bank_5 0.007 0.832

PersonalLoan_yes 0.084 0.074*

VehicleLoan_yes -0.047 0.374

HomeLoan_yes -0.292 <0.001***

Product Taken_PL New 0.400 <0.001***

Product Taken_PL Repeat 0.169 0.009***

Product Taken_Staff -0.964 <0.001***

Product Taken_VL 0.005 0.902

InstallmentLoan_yes 0.073 0.104

Limiting Rule_2 0.003 0.952

Limiting Rule_3 0.148 0.006***

Limiting Rule_4 0.444 <0.001***

External Subsequent Lending_Yes 0.69 <0.001***

CreditCard_yes -0.119 0.019**

RevolvingCredit_yes -0.167 <0.001***

Credit Inactive_yes 0.039 0.546

Loan Purpose_Family Crisis 0.047 0.414

Loan Purpose_Housing and Ralated -0.026 0.617

Loan Purpose_Other -0.043 0.38

Loan Purpose_Other Emergency -0.018 0.77

PropertyOwner_yes 0.016 0.845

Arrearrs_1 0.173 <0.001***

Note: ***, ** and * indicate significance at 1%, 5% and 10% level of significance respectively

78

From Table 4.2a, principalcomponent1, principalcomponent2, principalcomponent3,

principalcomponent4, principalcomponent5, principalcomponent6, principalcomponent7,

Gender_M, Married_Yes, Internal Living Expenses Rule_Yes, Unpaids_Yes, Taking

Max_Yes, Medicalaid_yes, Client Type_Reload, Insurance_yes, Limiting Rule_3, Salary

Bank_4, HomeLoan_yes, Product Taken_PL New, Product Taken_PL Repeat, Product

Taken_Staff, External Subsequent Lending_Yes, Limiting Rule_4, RevolvingCredit_yes and

Arrearrs_1 are significant at 1% level of significance, Union fees_yes, Client Type_New, and

CreditCard_yes are significant at 5% level of significance and PersonalLoan_yes is significant

at 10% level of significance. Thus, these 29 variables influence the prediction of loan defaulting

clients; the estimates indicate how much they influence it. The researcher exponentiated the

maximum likelihood parameter estimates (𝛽𝑖 coefficients) to obtain the odds ratio estimates,

as the odds ratios can be interpreted more easily. Table 4.2b lists the 29 significant variables in

the fitted logistic regression model and provides an interpretation of the odds ratio estimates

for each variable.

Table 4.2b: Interpretation of the odds ratio estimates for the 29 significant variables in the fitted logistic regression

model

Variable

Odds

ratio

estimates
Interpretation

principalcomponent1 0.915

One unit increase in principalcomponent1 is associated

with an 8.5% ((1 – 0.915) x 100%) reduction in the odds

of a client defaulting when all other variables are held

constant

principalcomponent2 0.596

Increasing principalcomponent2 by one unit, decreases

the odds of a client defaulting on their loan by 40.4%

((1 – 0.596) x 100%) when all other variables are held

constant

principalcomponent3 1.200

One unit increase in Principalcomponent3 is associated

with a 20% ((1.2-1)*100%) increase in the odds of a

client defaulting, holding all other variables constant

principalcomponent4 0.929

Each unit increase in principalcomponent4 reduces the

odds of a client defaulting by 7.1%

((1 – 0.929) x 100%), holding all other variables

constant

principalcomponent5 1.057

Each unit increase in principalcomponent5 increases the

odds of a client defaulting by 5.7% ((1.057-1)*100%),

when all other variables are held constant

principalcomponent6 1.065

One unit increase in Principalcomponent6 is associated

with a 6.5% ((1.065-1)*100%) increase in the odds of a

client defaulting when all other variables are held

constant

principalcomponent7 1.204

A single unit increase in principalcomponent7 increases

the odds of a client defaulting on their loan by 20.4%

((1.204-1) x 100%), holding all other variables constant

Gender_M 1.474

Gender_M (male) is associated with a 47.4%

((1.474 – 1) x 100%) increase in the odds of a client

79

defaulting when all other variables are held constant

(Gender_M is equal to 1 if male and 0 if female)

Married_Yes 0.863

Married is associated with a 13.7%

((1-0.863)*100%) decrease in the odds of a client

defaulting when all other variables are held constant

(Married_Yes is equal to 1 if married and 0 if not

married)

Internal Living Expenses

Rule_Yes 1.114

The odds of a client defaulting increases by 11.4%

((1.114-1)*100%) if the internal living expenses rule is

used, holding all other variables constant

Unpaids_Yes 1.351

The odds of a client defaulting increases by 35.1%

((1.351 – 1) x 100%) if the client has unpaids, holding

all other variables constant

Taking Max_Yes 1.751

Taking Max is associated with a 75.1%

((1.751 – 1) x 100%) increase in the odds of a client

defaulting when all other variables are held constant

Union fees_yes 0.915

The odds of a client defaulting reduces by 8.5%

((1-0.915)*100%) if the client pays union fees, holding

all other variables constant

Medicalaid_yes 0.771

When all other variables are held constant, the odds of a

client defaulting reduces by 22.9% ((1-0.771)*100%) if

the client has medical aid

Client Type_New 0.894

Client Type New is associated with a 10.6%

((1-0.894)*100%) decrease in the odds of a client

defaulting when all other variables are held constant

Client Type_Reload 0.751

There is a 24.9% ((1-0.751)*100%) decrease in the odds

of a client defaulting when client type is reload, holding

all other variables constant

Insurance_yes 0.839

If a client pays insurance, the odds of defaulting

decreases by 16.1% ((1-0.839)*100%), when all other

variables are held constant

Salary Bank_4 0.759

The odds of a client defaulting reduces by 24.1% ((1-

0.759)*100%), if the client’s main bank is Salary Bank

4, holding all other variables constant

PersonalLoan_yes 1.087

If the client has a personal loan, the odds of defaulting

increases by 8.7% ((1.087 – 1) x 100%) holding all other

variables constant

HomeLoan_yes 0.747

The odds of a client defaulting decreases by 25.3% ((1-

0.747)*100%) if the client has a home loan, when all

other variables are held constant

Product Taken_PL New 1.492

The odds of a client defaulting increases by 49.2%

((1.492-1)*100%), if the product taken is PL new,

holding all other variables constant

Product Taken_PL Repeat 1.184

If product taken is PL Repeat, the odds of a client

defaulting increases by 18.4% ((1.184-1)*100%), when

all other variables are held constant

Product Taken_Staff 0.382

If product taken is Staff, the odds of a client defaulting

reduces by 61.8% ((1-0.382)*100%), holding all other

variables constant

Limiting Rule_3 1.159

The odds of defaulting increases by 15.9% ((1.159-

1)*100%) if the client is limiting by rule 3, holding all

other variables constant

80

Limiting Rule_4 1.559

If a client is limiting by rule 4, the odds of defaulting

increases by 55.9% ((1.559-1)*100%), when all other

variables are held constant

External Subsequent

Lending_Yes 1.893

External subsequent lending is associated with an 89.3%

((1.893-1)*100%) increase in the odds of a client

defaulting when all other variables are held constant

CreditCard_yes 0.888

If a client has a credit card, the odds of defaulting

reduces by 11.2% ((1-0.888)*100%), holding all other

variables constant (CreditCard_yes is equal to 1 if the

client has a credit card and 0 if he/she doesn’t)

RevolvingCredit_yes 0.846

When all other variables are held constant, the odds of a

client defaulting reduces by 15.4% ((1-0.846)*100%) if

the client has revolving credit

Arrearrs_1 1.189

Arrears is associated with an 18.9%

((1.189 – 1) x 100%) increase in the odds of a client

defaulting, holding all other variables constant

(Arrearrs_1 is equal to 1 if the client was in arrears and 0

if he/she wasn’t in arrears)

Once the significance of the variables in the model and the impact the variables have on the

‘default’ target variable is examined, the fitted logistic regression model’s performance is

analysed. Table 4.3 presents the confusion matrix for the fitted logistic regression model.

Table 4. 3: Confusion matrix for the logistic regression model

 PREDICTION

ACTUAL

CLASS

 Default Not default Total

Default 1265 (8.7%) 546 (3.8%) 1811 (12.5%)

Not default 4735 (32.7%) 7956 (54.9%) 12691 (87.5%)

Total 6000 (41.4%) 8502 (58.6%) 14502 (100%)

Table 4.3 shows that 1811 clients under study defaulted on their loan, whereas 12691 did not

default. From Table 4.3 the fitted logistic regression model classified 1265 out of 1811

defaulters correctly; however, out of 6000 clients whom the model classified as defaulters,

4735 clients were actually non-defaulters (false positives). Thus, although the fitted logistic

regression model identified a significant number of clients who defaulted correctly (1265 out

of 1811), the model also misclassified many non-defaulters as defaulters. This can be attributed

to the imbalance in the dataset. Table 4.3 also shows that 7956 out of 12691 non-defaulters

were classified correctly; however, out of 8502 clients who were classified as non-defaulters,

546 clients were actually defaulters (false negatives). This indicates that although the model

misclassified a significant number of non-defaulters, the majority of clients who were classified

as non-defaulters were classified correctly. Overall, the fitted logistic regression model

classified 9221 out of 14502 clients correctly, resulting in an accuracy score of 63.6%. As

explained in Chapter 3, since the dataset is imbalanced and the class of interest is the minority

class (i.e., default), the accuracy score may not be reliable when evaluating the model’s

performance. Table 4.4 shows several performance metrics the researcher explored to gain

further insight into the fitted logistic regression model’s performance.

81

Table 4. 4: Performance metrics for the logistic regression model

Performance metric

Accuracy 0.636

Balanced accuracy 0.663

Sensitivity/True positive ratio/recall 0.699

Specificity/True negative ratio 0.627

Precision/Positive predictive value 0.211

Negative predictive value 0.936

AUC 0.720

Gini 0.440

From Table 4.4, a balanced accuracy score of 0.663 is reported, which is close to 70%, and

therefore acceptable. Since the main focus of this study is to identify clients who default, the

researcher then examines the true positive ratio to determine whether the model performs well

when identifying defaulters. The true positive ratio (sensitivity) of 0.699 suggests that the

model correctly classified approximately 70% of clients who defaulted. Thus, the model

produces good results when identifying clients who default. Table 4.4 also shows a true

negative ratio of 0.627, which indicates that the model correctly identified 62.7% of non-

defaulters. This suggests that the model did not perform as well when identifying clients who

did not default. However, since the cost of misclassifying non-defaulters as defaulters is very

low, the researcher considers a true negative rate of about 65% and above acceptable. From

Table 4.3, out of the clients who were classified as defaulters, a substantial portion of them did

not default on their loan, whereas only a small portion of the clients who were classified as

non-defaulters, did default on their loan; this is indicated by the low positive predictive value

of 0.211 and high negative predictive value of 0.936. The low positive predictive value

(precision) is presumably due to the imbalance in the dataset; the researcher focuses on the

balanced accuracy, true positive ratio and true negative ratio when assessing the model’s

performance.

From the confusion matrix results in Table 4.3 and performance metrics in Table 4.4, the

researcher concludes that although the logistic regression model did misclassify a considerable

portion of non-defaulters, i.e., 37.3% (1-62.7%), the model was able to correctly identify a

significant portion of defaulters (approximately 70%). Thus, the logistic regression model’s

performance is acceptable as the researcher’s main focus is identifying clients who default, and

the costs associated with misclassifying non-defaulters is low.

82

4.2 Decision tree

Figure 4.1 shows the structure of the decision tree used to predict the ‘default’ target variable

under study.

Figure 4. 1: Decision tree structure

From Figure 4.1, the test feature of the root node, which is the feature that best splits the data,

is PrincipalComponent2. The internal nodes are all nodes found between the root node and the

leaf node. Features such as Gender_M, Married_Yes, Taking Max_Yes et cetera, are tested at

the internal nodes. Figure 4.1 also shows the leaf nodes that indicate which class the client is

assigned to according to the model’s prediction (i.e., default or not default).

To understand the importance of each feature in the decision tree, SHapley Additive

exPlanations (SHAP) values are used. SHAP is a technique used in game theory to quantify

how much each player in a team has contributed to the team’s success. In machine learning,

SHAP values measure the contribution each feature makes to the model’s prediction, while

taking into consideration the other features in the model. Every feature for every observation

has a SHAP value. Figure 4.2 presents the mean absolute value of the SHAP values across all

observations for each feature included in the decision tree, ranked in ascending order of

importance.

Root Node

(PrincipalComponent2)

 Internal Node Eg.

Gender_M,

Married_Yes,

Taking Max_Yes

Leaf Not

(Default or Not Default)

83

Figure 4. 2: Mean absolute SHAP value for each feature in the decision tree

Figure 4.2 shows that principalcomponent2 has the highest mean absolute SHAP value, which

indicates that it contributes the most to the model’s prediction. Taking Max_Yes is the second

highest ranked feature, followed by Gender_M. A gradual decrease in mean absolute SHAP

values for all remaining features in the model is then observed.

84

The researcher then examines the model’s performance. Table 4.5 reports the confusion matrix

which was obtained by fitting the decision tree algorithm to the balanced default dataset using

the PCA approach.

Table 4. 5: Confusion matrix for the decision tree algorithm

 PREDICTION

ACTUAL

CLASS

 .

 Default Not default Total

Default 1325 (8.7%) 486 (3.8%) 1811 (12.5%)

Not default 5285 (32.7%) 7406 (54.9%) 12691 (87.5%)

Total 6000 (41.4%) 8502 (58.6%) 14502 (100%)

The results in Table 4.5 indicate that the decision tree algorithm correctly classified 1325 out

of 1811 defaulters and 7406 out of 12691 non-defaulters. This indicates that the decision tree

seems to classify a significant number of defaulters correctly, however the model appears to

misclassify a considerable number of non-defaulters. Overall, the model classified 8731 out of

14502 clients under study correctly, resulting in an accuracy score of 60.2% (8731/14502).

Evaluation metrics in Table 4.6 are then explored in order to obtain a better understanding of

the model’s performance.

Table 4. 6: Performance metrics for the decision tree algorithm

Performance metric

Accuracy 0.602

Balanced accuracy 0.658

Sensitivity/True positive ratio/Recall 0.732

Specificity/True negative ratio 0.584

Precision/Positive predictive value 0.200

Negative predictive value 0.938

AUC 0.705

Gini 0.409

Table 4.6 reports a balanced accuracy score of 0.658 which is noticeably higher than the

accuracy score of 0.602, suggesting that the model performed significantly better when

predicting the minority class (i.e., default). This is confirmed when observing the true positive

ratio and true negative ratio of 0.732 and 0.584, respectively, in Table 4.6. The true positive

ratio of 0.732 indicates that 73.2% of defaulters were correctly identified, whereas the true

negative ratio of 0.58 indicates that the model only classified 58.4% of non-defaulters correctly.

Thus, although the model performed well when identifying the default class, which is the focus

of the study, the model seems unsuitable as it performed poorly when identifying non-

defaulters.

85

4.3 Random forest

A random forest is an ensemble classification algorithm in which the base learners are decision

trees. Figure 4.3 displays the structure of the first five decision trees in the random forest under

study.

Figure 4. 3: Structure of the first five decision trees in the random forest

Figure 4.3 shows that the structures of the first five decision trees in the random forest are

significantly different. Each tree is constructed independently and trained on a subset of

features and subset of samples selected with replacement. There are 50 trees in the random

forest under study. Observations are assigned to the class that receives the majority votes.

The importance of each feature in the random forest is examined by using SHAP values. Figure

4.4 shows the mean absolute value of the SHAP values across all observations, for each feature,

ranked in ascending order.

86

Figure 4. 4: Mean absolute SHAP value for each feature in the random forest

From Figure 4.4, PrincipalComponent2 ranked the highest which suggests that it contributed

the most to the model’s prediction. PrincipalComponent2 contributes significantly more than

all other features in the model. The feature ranked second highest is Taking Max_yes followed

by Gender_M. A gradual decrease in the mean absolute SHAP value for all remaining features

is observed thereafter.

To gain further understanding of the importance of the features in the dataset and the impact

they have on the ‘default’ target variable, the researcher examines Figure 4.5, which displays

the SHAP values of every feature for every observation i.e., each dot on the plot represents the

SHAP value associated with a feature for a particular observation. The vertical axis shows the

features included in the model; the features are ranked in ascending order, from least important

87

to most important. The colour indicates whether the feature’s value was large or small. Larger

values of a feature are indicated by red dots, whereas smaller values are indicated by blue dots.

The horizontal axis shows the SHAP values which indicate whether the effect of a value, for a

particular feature, resulted in a higher or lower prediction. A positive SHAP value is associated

with a higher prediction whilst a negative SHAP value is associated with a lower prediction,

and when the SHAP value is approximately zero, the feature has negligible or no impact on the

model itself. Since the default target variable is equal to 1 (higher prediction) when ‘default’

and 0 (lower prediction) when ‘not default’, a positive SHAP value is associated with ‘default’

and a negative value is associated with ‘not default’.

Figure 4. 5: SHAP values of every feature for every observation in the random forest model

From Figure 4.5, Principalcomponent2 contributes the most to the model’s prediction. Smaller

Principalcomponent2 values, represented by the colour blue, increase the chance of defaulting,

as indicated by the positive SHAP values, whereas large Principalcomponent2 values,

represented by the colour red, decrease the chance of defaulting, as indicated by negative SHAP

88

values. The second most important feature is Taking Max_Yes. Large values of Taking

Max_Yes imply that the client took the maximum amount offered, whereas small values imply

that the client did not take the maximum amount offered as Taking Max_Yes is equal to 1 when

the maximum amount offered is taken and 0 when the maximum amount offered is not taken.

Figure 4.5 shows that high values of Taking Max_Yes (i.e., maximum amount taken) increase

the chance of defaulting, as indicated by positive SHAP values, whereas low values of Taking

Max_Yes (i.e., maximum amount not taken) decreases the chance of defaulting, as indicated

by negative SHAP values. A similar method can be used to interpret the importance of all other

features in Figure 4.5.

The results obtained from the fitted random forest algorithm are then analysed. Table 4.7

reports the confusion matrix for the random forest algorithm, which shows the number of true

positives, true negatives, false positives, and false negatives.

Table 4. 7: Confusion matrix for the random forest algorithm

 PREDICTION

ACTUAL

CLASS

 .

 Default Not default Total

Default 1336 (9.2%) 475 (3.3%) 1811 (12.5%)

Not default 4510 (31.1%) 8181 (56.4%) 12691 (87.5%)

Total 5846 (40.3%) 8656 (59.7%) 14502 (100%)

The results in Table 4.7 show that the random forest model classified 1336 out of 1811

defaulters correctly and out of 5846 clients whom the model classified as defaulters, 4510

clients were actually non-defaulters (false positives). Therefore, although the random forest

model identified a significant number of clients who defaulted correctly (1336 out of 1811),

the model also misclassified many non-defaulters as defaulters. Given the nature of the dataset,

the researcher expects a considerable number of false positives. From Table 4.7, 8181 out of

12691 non-defaulters were classified correctly, and out of 8656 clients whom the model

classified as non-defaulters, only 475 clients were actually defaulters (false negatives). Thus,

although the model misclassified a relatively large number of clients who did not default, most

of the clients who were classified as non-defaulters, did not actually default on their loan.

Overall, the random forest model classified 9517 out of 14502 clients correctly, resulting in an

accuracy score of 65,6%. Table 4.8 summarises performance metrics that were explored to gain

further insight into the random forest model’s performance.

Table 4. 8: Performance metrics for the random forest algorithm

Performance metric

Accuracy 0.656

Balanced accuracy 0.691

Sensitivity/True positive ratio/Recall 0.738

Specificity/True negative ratio 0.645

Precision/Positive predictive value 0.229

Negative predictive value 0.945

AUC 0.744

Gini 0.489

89

From Table 4.8, a balanced accuracy score of approximately 70% is reported which suggests

that the model performed well overall. The balance accuracy score is greater than the accuracy

score of 0.656; this indicates that the model correctly identified a larger portion of clients in

the minority class i.e., the default class. The true positive ratio of 0.738 is then analysed; the

model correctly identified approximately 74% of clients who defaulted. This suggests that the

model performs very well when identifying clients who default. Table 4.8 shows a true negative

ratio of 0.645, which indicates that the model correctly identified approximately 65% of clients

who did not default. This implies that the model did not perform as well when identifying

clients who did not default, however, the true negative ratio of 65% is still acceptable as

misclassification costs related to false negatives is very low. From Table 4.8, a positive

predictive value (precision) of 0.229 and negative predictive value of 0.945 is also reported.

The low precision is presumably influenced by the imbalance in the dataset; the researcher

concentrates on the balanced accuracy, true positive ratio and true negative ratio when

evaluating the model’s performance.

From the confusion matrix in Table 4.7 and the evaluation metrics in Table 4.8, the researcher

concludes that the random forest model seems suitable for the classification problem under

study as the model was able to correctly identify a significant portion of defaulters

(approximately 74%), which is the class that the researcher is more interested in, and the

model’s performance was acceptable when classifying non-defaulters (i.e., a true negative ratio

of approximately 65%)

4.4 Support vector machines

In classification problems, the support vector machine is used to separate the observations into

classes, by identifying the optimal hyperplane with the largest margin. The SVM method can

be extended to cater for cases where a nonlinear boundary exists by using a kernel function. In

this study, the RBF kernel was used in order to separate the data and classify clients according

to their default class. The SVM model was fitted to the balanced default dataset. Table 4.9

reports the confusion matrix results for the fitted SVM model.

Table 4. 9: Confusion matrix for the fitted SVM model

 PREDICTION

ACTUAL

CLASS

 .

 Default Not default Total

Default 1079 (7.4%) 731 (5.0%) 1811 (12.5%)

Not default 3605 (24.9%) 9086 (62.7%) 12691 (87.5%)

Total 4684 (32.3%) 9818 (67.7%) 14502 (100%)

The results in Table 4.9 show 1079 true positives and 731 false negatives, which indicates that

the fitted SVM model seemed to misclassify a considerable portion of defaulters as non-

defaulters. Table 4.9 also reports 9086 true negatives and 3605 false positives; this suggests

that relative to the number of actual non-defaulters (i.e., 12691), the fitted SVM model

classified a substantial number of them correctly (i.e. 9086). Overall, the model assigned 10165

90

clients to the correct class out of 14502 clients under study, resulting in an accuracy score of

0.701. Since our dataset is imbalanced, accuracy score is not the most reliable metric when

examining a model’s performance. We then analyse several evaluation metrics presented in

Table 4.10.

Table 4. 10: Performance metrics for the fitted SVM model

Performance metric

Accuracy 0.701

Balanced accuracy 0.656

Sensitivity/True positive ratio/Recall 0.596

Specificity/True negative ratio 0.716

Precision/Positive predictive value 0.230

Negative predictive value 0.925

AUC 0.720

Gini 0.440

From Table 4.10, the researcher discusses the balanced accuracy score, true positive ratio and

true negative ratio. Table 4.10 reports a balanced accuracy score of 0.656 which is close to

70% and therefore acceptable. This table shows that the true positive ratio for the fitted SVM

model is 0.596, which indicates that the model only correctly classified 59.6% of clients who

defaulted, whereas the true negative ratio of 0.716 suggests that the model correctly classified

71.6% of non-defaulters. Thus, the fitted SVM model seems to perform better when predicting

the non-default class. Overall, we conclude that although the SVM model performed well when

classifying non-defaulters, the model does not seem fitting for the classification problem under

study, as the SVM’s ability to correctly identify defaulters, which is the main focus of this

study, was below the acceptable level.

4.5 Naïve Bayes Classifier

The Naïve Bayes Classifier is a Bayesian network that is based on the Bayesian theorem,

combined with the assumption of independence among features. It classifies data by identifying

the class with the maximum posterior probability given a set of features. The Naïve Bayes

Classifier was fitted to the balanced default dataset and the performance was then examined.

The confusion matrix for the fitted Naïve Bayes classifier is presented in Table 4.11.

Table 4. 11: Confusion matrix for the fitted Naïve Bayes classifier

 PREDICTION

ACTUAL

CLASS

 .

 Default Not default Total

Default 1220 (8.4%) 591 (4.1%) 1811 (12.5%)

Not default 4755 (32.8%) 7936 (54.7%) 12691 (87.5%)

Total 5975 (41.2%) 8527 (58.8%) 14502 (100%)

91

From Table 4.11, 1220 true positives and 591 false negatives are reported. This suggests that a

substantial portion of clients who defaulted were incorrectly classified as non-defaulters

(591/1811). Thus, the model’s ability to identify defaulters seems unsatisfactory. Table 4.11

shows 7936 true negatives and 4755 false positives; this indicates that the model also

misclassified many non-defaulters. Overall, the model correctly classified 9156 clients out of

the 14502 clients under study, resulting in an accuracy score of 63.1%. Evaluation metrics are

then analysed in Table 4.12 to further understand the model’s performance.

Table 4. 12: Performance metrics for the fitted Naïve Bayes classifier

Performance metric

Accuracy 0.631

Balanced accuracy 0.649

Sensitivity/True positive ratio/Recall 0.674

Specificity/True negative ratio 0.625

Precision/Positive predictive value 0.204

Negative predictive value 0.931

AUC 0.703

Gini 0.406

From Table 4.12, the researcher discusses the true positive ratio and the true negative ratio.

The true positive ratio of 0.674 does not meet the researcher’s expectation as it suggests that a

large portion of defaulters were misclassified (i.e., 32.6%); the cost associated with

misclassifying defaulters is high. The true negative ratio of 0.625 in Table 4.12 is then

analysed; the model did not perform very well when identifying clients who did not default,

however, the true negative ratio is still acceptable as it is close to 65%. From the confusion

matrix in Table 4.11 and the performance metrics in Table 4.12, we conclude that the Naïve

Bayes classifier does not seem appropriate for the classification problem under study as it did

not perform well when identifying both the default and non-default class.

4.6 K-nearest neighbours (K-NN)

K-NN is a distance-based classification algorithm that assigns a new observation to a class by

calculating the distance between the new observation and the observations in the training set

in order to find the new observation’s k-nearest neighbours. The new observation is then

classified based on the k-nearest neighbours by using the majority vote rule. In the application

problem, the Manhattan distance formula was used to measure the distance between new

observations and observations in the training set and 121 nearest neighbours were considered

when classifying the new observations. The K-NN model was trained on the balanced dataset;

Tables 4.13 and 4.14 summarises the results obtained by the model. The confusion matrix for

the fitted K-NN model is presented in Table 4.13.

92

Table 4. 13: Confusion matrix for the K-NN model

 PREDICTION

ACTUAL

CLASS

 .

 Default Not default Total

Default 1140 (7.9%) 671 (4.6%) 1811 (12.5%)

Not default 4187 (28.9%) 8504 (58.6%) 12691 (87.5%)

Total 5327 (36.7%) 9175 (63.3%) 14502 (100%)

From the results in Table 4.13, the fitted K-NN model correctly identified 1140 out of 1811

clients who defaulted. Thus, since there seems to be a significant number of defaulters who

were misclassified as non-defaulters (i.e.,671), the K-NN model is likely unsuitable for the

classification problem under study, as the main objective is to identify clients who defaulted.

Table 4.13 shows that 8504 out of 12691 clients who did not default, were correctly classified,

which suggests that a large number of clients who did not default were also misclassified (i.e.,

4187). Overall, 9644 out of the 14502 clients under study were correctly classified, which

results in an accuracy score of 66.5%. Table 4.14 displays several evaluation metrics that

provide us with more clarity on the K-NN model’s performance.

Table 4. 14: Performance metrics for the fitted K-NN model

Performance metric

Accuracy 0.665

Balanced accuracy 0.650

Sensitivity/True positive ratio/Recall 0.629

Specificity/True negative ratio 0.670

Precision/Positive predictive value 0.214

Negative predictive value 0.927

AUC 0.701

Gini 0.403

From Table 4.14, the researcher discusses the balanced accuracy score, the true positive ratio

and the true negative ratio. The balanced accuracy score of 0.65 is close to 70% and thus

acceptable. The researcher then examines the true positive ratio to determine whether the model

performs well when classifying defaulters. Table 4.14 shows that the fitted K-NN model

attained a true positive ratio of 0.629; this indicates that the model correctly identified only

62.9% of clients who defaulted which is below the acceptable level of 70%. The true negative

ratio shown in Table 4.14 is then analysed to gain insight into the model’s performance when

identifying non-defaulters; the true negative ratio of 0.67 is acceptable as misclassification

costs associated with false positives is low.

Since the K-NN model performed poorly when identifying clients who defaulted, this model

seems unsuitable for the classification problem under study, whose main focus is to identify

clients who defaulted on their loan.

93

4.7 Artificial neural network

Artificial neural networks consist of multiple interconnected nodes and activation functions.

Figure 4.6 represents the architecture of the artificial neural network in this study, when using

the PCA approach. A feed-back neural network was used with two hidden layers.

Figure 4. 6: Architecture of the artificial neural network

Figure 4.6 shows that the input layer comprises 48 nodes (i.e., one node for each feature); the

first hidden layer includes six nodes, the second hidden layer includes ten nodes and the output

layer includes one node that outputs the model’s prediction (i.e., default or not default). The

activation function used in the first and second hidden layer is the RELU function, whereas the

activation function used in the output layer is the sigmoid function. The confusion matrix for

the ANN model fitted to the balanced dataset is displayed in Table 4.15.

 Table 4. 15: Confusion matrix for the fitted ANN model

 PREDICTION

ACTUAL

CLASS

 .

 Default Not default Total

Default 1338 (9.2%) 473 (3.3%) 1811 (12.5%)

Not default 4597 (31.7%) 8094 (55.8%) 12691 (87.5%)

Total 5935 (40.9%) 8567 (59.1%) 14502 (100%)

From Table 4.15, the results show that the ANN model correctly classified 1338 out of 1811

defaulters; however, out of 5935 clients whom the model classified as defaulters, 4597 clients

did not default (false positives). Therefore, although the ANN model correctly identified a large

portion of clients who defaulted, the model also misclassified many non-defaulters as

defaulters. Given the nature of the dataset, a relatively large number of false positives can be

2nd hidden layer

(10)

1st hidden layer

(6)

Input layer

(48)

Output Layer

(1)

94

expected. From Table 4.15, 8094 out of 12691 non-defaulters were correctly classified and out

of 8567 clients who were classified as non-defaulters, 473 clients were actually defaulters (false

negatives). This suggests that although the model misclassified a substantial number of clients

who did not default, most of the clients who were classified as non-defaulters, did not default.

Overall, the ANN model correctly classified 9432 out of 14502 clients, resulting in an accuracy

score of 65%. From Chapter 3, the researcher has learned that the accuracy score is not a

reliable evaluation measure when the dataset is imbalanced and the class of interest is the

minority class (i.e., default). Several performance metrics in Table 4.16 are then explored to

further understand each model’s performance.

Table 4. 16: Performance metrics for the ANN model

Performance metric
Accuracy 0.650

Balanced accuracy 0.688

Sensitivity/True positive ratio/Recall 0.739

Specificity/True negative ratio 0.638

Precision/Positive predictive value 0.225

Negative predictive value 0.945

AUC 0.745

Gini 0.490

From Table 4.16, a balanced accuracy score of approximately 0.69 is reported. The balanced

accuracy score is good, given the imbalance in the dataset and the difficulty in identifying

whether a client will default at the time the loan is granted, when information is restricted. We

then examine the true positive ratio (sensitivity) of 0.739; it suggests that the model correctly

identified approximately 74% of clients who defaulted. Thus, the model performs well when

identifying clients who default. Table 4.16 reports a true negative ratio of 0.638, which

indicates that the model correctly identified approximately 64% of clients who did not default;

although the score is acceptable given the classification problem under study, the model did

not seem to perform as well when identifying clients who did not default. A positive predictive

value (precision) and negative predictive value of 0.225 and 0.945, respectively, is also shown

in Table 4.16. As previously stated, the low precision is presumably influenced by the

imbalance in the dataset; therefore, the researcher focuses on the balanced accuracy, true

positive ratio and true negative ratio when evaluating the model’s performance.

The researcher therefore concludes that, although the model did misclassify a considerable

portion of non-defaults, that is, 36.2% (1-63.8%), the model was able to correctly identify a

significant portion of defaulters (approximately 74%), which is the class that the researcher is

more interested in. Thus, the ANN model seems appropriate for the classification problem

under study.

95

4.8 Summary of model performance using PCA

In Chapter 3, multicollinearity was identified and the researcher was also aware of the large

number of features in the dataset. In this chapter, the researcher fitted the logistic regression

model, decision tree, random forest, support vector machines, Naïve Bayes classifier, k-nearest

neighbours, and artificial neural network to the balanced default dataset, corrected for

multicollinearity by using the PCA approach, which is also a dimensionality reduction

technique. The number of features in the dataset decreased from 57 to 48, and the

multicollinearity problem was solved when using this approach. In this section of Chapter 4,

the results obtained by these models are compared by using the confusion matrix and following

evaluation metrics: accuracy, balanced accuracy, true positive ratio, true negative ratio, positive

predictive value, negative predictive value, the AUC score and the Gini coefficient.

Table 4.17 displays the confusion matrix for each algorithm under study using the PCA

approach

Table 4. 17: Confusion Matrix for each model under study using the PCA approach

 PREDICTED

 DEFAULT NOT DEFAULT

LR

ACTUAL

DEFAULT 1265 546

NOT DEFAULT 4735 7956

DT
DEFAULT 1325 486

NOT DEFAULT 5285 7406

RF
DEFAULT 1336 475

NOT DEFAULT 4510 8181

SVM
DEFAULT 1079 731

NOT DEFAULT 3605 9086

NB
DEFAULT 1220 591

NOT DEFAULT 4755 7936

 K-NN
DEFAULT 1140 671

NOT DEFAULT 4187 8504

ANN
DEFAULT 1338 473

NOT DEFAULT 4597 8094

From Table 4.17, the fitted ANN model attained the highest number of true positives, closely

followed by the random forest model and then the decision tree algorithm; the number of

defaulters correctly identified by these models were 1338, 1336 and 1325, respectively. This

is an important factor to consider when selecting the most suitable model as the main aim of

this study is to identify clients who default.

Evaluation metrics for each model under study using the PCA approach are reported in Table

4.18.

96

Table 4. 18: Evaluation metrics for each model under study using the PCA approach

 Logistic

regression

Decision

tree

Random

forest
SVM

Naïve

Bayes
K-NN ANN

Accuracy 0.636 0.602 0.656 0.701 0.631 0.665 0.650

Balanced accuracy 0.663 0.658 0.691 0.656 0.649 0.650 0.688

True positive ratio

(Sensitivity)
0.699 0.732 0.738 0.596 0.674 0.629 0.739

True negative ratio

(Specificity)
0.627 0.584 0.645 0.716 0.625 0.670 0.638

Positive predictive value

(Precision)
0.211 0.200 0.229 0.230 0.204 0.214 0.225

Negative predictive value 0.936 0.938 0.945 0.925 0.931 0.927 0.945

AUC score 0.720 0.705 0.744 0.720 0.703 0.701 0.745

Gini 0.440 0.409 0.489 0.440 0.406 0.403 0.490

From Table 4.18, the SVM model obtained the highest accuracy score (i.e., 0.701). In Chapter

3, the researcher ascertained that the dataset is imbalanced as 88% of clients under study did

not default on their loan, whereas only 12% of the clients under study defaulted. Thus, since

the accuracy score is biased toward the majority class (i.e., not default), and since the

researcher’s focus is on the minority class (i.e., default), accuracy is not a reliable metric for

the imbalanced dataset under study. The balanced accuracy score provides a better indication

of the model’s overall performance in comparison to the accuracy score, as it takes into

consideration the imbalance in the dataset. Table 4.18 shows that the random forest model

obtained the highest balanced accuracy score of 0.691, which was marginally higher than the

balanced accuracy score attained by the ANN model of 0.688; the researcher considers these

to be good scores as they are both very close to 70%.

To understand each model’s ability to predict the individual classes (i.e., default and not

default), the researcher then examined the true positive ratio and the true negative ratio. The

true positive ratio represents the percentage of clients who were correctly classified as

defaulters of those who actually defaulted. It is one of the most important metrics in this study

as the main aim of this study is to identify clients who default on their loan. The random forest

and ANN model both obtained a true positive ratio of approximately 0.74, which was the

highest true positive ratio obtained across the different models. In this study, a true positive

ratio above 70% indicates that a model performs well when identifying clients who default.

The researcher then analyses the true negative ratio; this represents the percentage of clients

who were correctly classified as non-defaulters, of the actual non-defaulters. Ideally, the

researcher would also want a good true negative ratio, however, since the cost associated with

misclassifying a non-defaulter is very low for the classification problem under study, the

researcher is not as concerned about misclassifying non-defaulters as defaulters; a true negative

ratio of about 65% and above is considered acceptable. The SVM model obtained the highest

true negative ratio of 0.716, however, the SVM attained the worst true positive ratio (i.e.,

0.596). The random forest and ANN models, which achieved the best true positive ratios,

obtained true negative ratios of approximately 0.65 and 0.64, respectively, which are both

acceptable scores.

The positive predictive values and negative predictive values were then analysed. The positive

predictive value, which represents the portion of clients who were correctly classified as

97

defaulters, of all clients who were classified as defaulters, was exceptionally low across all

models; the researcher presumes that the large imbalance in the dataset had an influence on this

score. As previously stated, since the costs associated with misclassifying non-defaulters is

negligible, the low precision values are not a concern to the researcher. The random forest,

SVM and ANN models all obtained a positive predictive value of approximately 0.23, which

was the highest value obtained across all models. The negative predictive value was then

analysed; it represents the portion of clients who were correctly classified as non-defaulters of

all clients who were classified as non-defaulters. The negative predictive value was remarkably

high across all models which indicates that the majority of clients who were classified as non-

defaulters, did not default on their loan. The random forest and ANN models both attained the

highest negative predictive value of 0.945. Lastly, the AUC score and Gini were examined; the

random forest and ANN model both attained an AUC score of approximately 0.74 and a Gini

of approximately 0.49 which were the highest values across all classifiers under study. The

researcher considers these to be good scores given the nature of the classification problem

under study.

Table 4.18 also reports the AUC score and Gini for each model; the random forest and ANN

model both attained an AUC score of approximately 0.74 and a Gini of approximately 0.49,

respectively, which were the highest values across all classifiers under study.

Since the large imbalance in the dataset presumably had an influence on the accuracy, positive

predictive value and negative predictive value, the researcher focuses on the confusion matrix,

balanced accuracy, true positive ratio, true negative ratio, AUC score and Gini coefficient when

identifying the most appropriate classification algorithm for the problem under study. Overall,

the random forest and ANN models seemed to achieve the best scores across most metrics. The

SVM model attained the highest true negative ratio, however, it did not perform well when

identifying clients who defaulted. Since the ANN model has a significantly longer training

time, has several parameters that need to be tuned, and has little interpretability, the random

forest model seems to be the most suitable model when predicting the default status of clients

under study when using the PCA approach.

In this chapter, the dataset was corrected for multicollinearity by using the PCA approach

which is also a dimensionality reduction technique; thereafter, several models were

constructed. The importance and contribution of features across the various models were

examined and the researcher noticed that numerous features were of little importance to the

model. In Chapter 5, the aim is to build new models that only include relevant features by

utilising a feature selection method.

98

Chapter 5

5 Classification with feature selection

Each classification algorithm discussed in Chapter 3 was fitted to the balanced default dataset

using the feature selection approach (recursive feature elimination). In this chapter, the features

selected using the recursive feature elimination technique are listed, and the confusion matrix

and evaluation metrics, discussed in Chapter 2, are presented and examined for each model in

order to identify the one which was most appropriate for the classification problem under study.

A comparison is also made between the model which performed the best when using the PCA

approach (from Chapter 4) and the feature selection approach in order to identify the best model

overall.

5.1 Brief introduction to feature selection

Feature selection is a dimensionality reduction technique that aims to select a subset of features

from the original set of features. This is achieved by removing features that are redundant,

irrelevant, and noisy. Feature selection often leads to models with improved accuracy, lower

computational costs, and improved model interpretability (Wang et al., 2016). This technique

can also simplify models, make implementation easier and reduce the risk of data errors, since

reducing the number of features reduces the risk of errors during data collection and storage.

There are several feature selection methods that can be used to reduce the number of features

in the model. The three main feature selection categories are the filter method, wrapper method,

and embedded method (Venkatesh & Anuradha, 2019).

Filter methods do not consider the induction algorithm when selecting features (Kohavi &

John, 1997); instead, they use characteristics of the features in order to select relevant features

and are thus model agnostic, in other words, they can be used for any machine learning model.

This method ranks features based on the scores computed for each feature that is independent

of the induction algorithm. Either a predefined number of features with the highest scores are

selected, or all features that attain a score above a certain threshold are included in the subset

of selected features (Bommert et al., 2020). The chi-square test, variance threshold, Fisher

score and correlation coefficient are examples of types of filter methods (Venkatesh &

Anuradha, 2019). This method is generally less computationally expensive than wrapper

methods and embedded methods; however, this method often result in lower prediction

performance.

The wrapper method utilises a machine learning algorithm within its feature selection process.

The feature selection algorithm exists as a wrapper around the selected machine learning

algorithm (Kohavi & John, 1997). Wrapper methods are often referred to as greedy algorithms,

as they try to find the best subset of features that will lead to the best performing model (Belete

& Manjaiah, 2020). During the feature selection process, a subset of features is first chosen

from the available features by employing a search strategy. There are different search strategies

that can be used, for example, sequential forward feature selection and sequential backward

99

feature selection. Forward selection is an iterative method in which the model initially has no

features in the subset. At each iteration, a single feature is added, one at a time. In backward

elimination, all features are initially included in the model and one feature is removed at each

iteration, one at a time (Panthong & Srivihok, 2015). Once the subset of features is selected, a

chosen machine learning algorithm is trained on this subset and the model performance is

evaluated by using a selected evaluation metric. This process is repeated by using a new subset

of features, which depends on the search strategy selected, and continues until pre-defined

stopping criteria is met. Once the stopping criteria is met, the best subset of features is chosen

(Li et al., 2016). A disadvantage of the wrapper method is that it is computationally more

complex compared to the filter and embedded methods (Venkatesh & Anuradha, 2019).

The embedded method is, as its name suggests, a feature selection method that is embedded in

the algorithm, that is, feature selection is performed as part of the model-building process

(Bommert et al., 2020). By combining feature selection with model building, the embedded

method considers the interaction between the classification model and the features. When using

an embedded method, a machine learning model is trained and feature importance is derived

from the model for each feature; thereafter, the irrelevant features are removed. LASSO

regularisation and tree-based methods such as CART, random forests and gradient boosting

are examples of embedded methods (Bommert et al.). This method has the advantage of

considering the classification algorithm in the process while being less computationally

intensive compared to the wrapper method (Mwadulo, 2016).

The researcher then discusses feature selection methods that do not fall into a single category;

instead, a combination of methods from different categories is used. These methods are known

as hybrid methods which often aim to combine the advantages of different feature selection

methods. The hybrid method used in this study is recursive feature elimination; this method,

like the embedded method, uses the importance derived from a machine learning algorithm,

and like the wrapper method, features are removed one at a time and the model performance is

evaluated at each iteration. This method is often better than embedded methods and quicker

than wrapper methods. Some studies, however, consider recursive feature elimination as a

wrapper method and not a hybrid method.

To understand the recursive feature elimination technique, the researcher discusses and

explains it by using the random forest algorithm. The random forest algorithm is initially

trained using the original dataset with the full set of features. Thereafter, the feature importance

values of all features used during the training process is derived by using, for example, tree-

based models, lasso or logistic regression. In this study, a tree-based feature importance method

was used for the random forest model. Figure 5.1 shows the feature importance of all features

in the random forest model, ranked in ascending order (from the least important to the most

important feature).

100

Figure 5. 1: Feature importance for all variables in the random forest model

From Figure 5.1, Max Offer is ranked the most important feature, followed by % instalment to

income allowed. We also observe that several features are of very little importance to the

model.

Features are then removed one by one, from the least important to the most important feature,

as per the feature importance value associated with each feature. Figure 5.1 shows that

Product_Taken_VL was ranked the least important feature in the random forest model.

Therefore, Product_Taken_VL is the first feature to be removed; thereafter, a new random

forest model is constructed by using the remaining features. An evaluation metric is then

selected, and the performance of the new model is analysed and compared to the performance

of the initial random forest model. In this study, the AUC score was the selected evaluation

metric. Therefore, the change in AUC score between the models is compared to an arbitrary

threshold and if the change is greater than the threshold, the feature will not be removed; if the

change is less than the threshold, though, the feature will be removed. In this study, 0.001 was

selected as the threshold for the random forest model. This process is repeated such that at each

iteration, the next least-important feature is removed. Thus, in the second iteration, Credit

Inactive_yes is removed. The process ends once all features have been ‘tested’. The researcher

then builds the final model, which only includes the features that were deemed important.

Table 5.1 lists each feature under study, shows the drop in ROC AUC score when the feature

is removed from the random forest model, and indicates whether the feature should be removed

from the model.

Table 5. 1: Recursive feature elimination results for the random forest model

Feature Drop in ROC AUC score Decision

Product Taken_VL 0.0006 Remove

Credit Inactive_yes -0.0009 Remove

Salary Bank_3 0.0005 Remove

LowerOffer_Yes 0.0005 Remove

InstallmentLoan_yes 0.0007 Remove

Limiting Rule_4 0.0006 Remove

Loan Purpose_Other -0.0003 Remove

101

Loan Purpose_Family Crisis -0.0013 Remove

VehicleLoan_yes 0.0001 Remove

Loan Purpose_Other Emergency -0.0004 Remove

Permanent Allowances_yes -0.0009 Remove

Loan Purpose_Housing and Ralated 0.0008 Remove

Product Taken_PL New 0.0002 Remove

Client Type_New 0.0003 Remove

Product Taken_PL Repeat 0.0001 Remove

Weekly/Monthly_Weekly 0.0004 Remove

PropertyOwner_yes -0.0003 Remove

Overtime_yes -0.0001 Remove

RevolvingCredit_yes 0.0002 Remove

Salary Bank_5 -0.0002 Remove

PersonalLoan_yes 0.0002 Remove

Unpaids_Yes 0.0004 Remove

Limiting Rule_3 0.0003 Remove

Limiting Rule_2 0.0008 Remove

PayslipExpenses_Yes 0.0006 Remove

Client Type_Reload 0.0017 Keep

External consolidations/Amount Taken 0.0008 Remove

NumberOfDependents 0.0002 Remove

Pensionprovident_yes 0.0012 Keep

Internal Living Expenses Rule_Yes 0.0012 Keep

Salary Bank_4 0.0005 Remove

Union fees_yes 0.0019 Keep

Salary Bank_2 0.0009 Remove

Total consolidations/Amount Taken 0.0013 Keep

Final Disposable Income/NetIncome 0.0005 Remove

External Subsequent Lending_Yes 0.0001 Remove

Internal consolidations/Amount Taken 0.0007 Remove

Insurance_yes 0.0010 Keep

Disposable income/Basic 0.0002 Remove

Debt/Net Income 0.0020 Keep

Gender_M 0.0024 Keep

Calc Disposable Income/NetIncome 0.0007 Remove

Arrearrs_1 0.0007 Remove

CreditCard_yes 0.0016 Keep

Taking Max_Yes 0.0010 Keep

Product Taken_Staff 0.0008 Remove

Married_Yes 0.0025 Keep

Debt to Income ratio 0.0001 Remove

Medicalaid_yes 0.0021 Keep

Instalment /Disposable income 0.0005 Remove

HomeLoan_yes 0.0009 Remove

% instalment to income taken 0.0028 Keep

YearsWithCurrentEmployer 0.0032 Keep

% Total Taken Up 0.0038 Keep

Age 0.0044 Keep

% instalment to income allowed 0.0024 Keep

Max Offer 0.0033 Keep

102

From Table 5.1, we observe that 39 out of 57 features can be removed from the dataset when

using the recursive feature elimination technique in combination with the random forest model,

in which the AUC score was chosen as the evaluation metric and 0.001 was selected as the

threshold.

The researcher uses a similar feature selection method for the logistic regression model,

decision tree, support vector machines, Naïve Bayes classifier, k-nearest neighbours and the

artificial neural network models. Sections 5.2 to 5.8 provide and compare results obtained by

the model fitted to the full set of features and the model fitted to the selected features using the

recursive feature elimination technique, for each classifier, in order to identify the better model.

5.2 Logistic regression

In this section, the recursive feature elimination technique outlined in section 5.1 was utilised

in conjunction with the logistic regression model to select features deemed important. The

following 24 features (out of 57) were selected as input variables: % instalment to income

allowed, % instalment to income taken, Age, % Total Taken Up, Gender_M, CreditCard_yes,

Debt/Net Income, External Subsequent Lending_Yes, Arrearrs_1, Client Type_Reload,

Insurance_yes, Internal consolidations/Amount Taken, Internal Living Expenses Rule_Yes,

Limiting Rule_4, Married_Yes, Max Offer, Medicalaid_yes, Product Taken_PL Repeat,

Product Taken_Staff, RevolvingCredit_yes, Salary Bank_4, Taking Max_Yes, Union

fees_yes, YearsWithCurrentEmployer.

Thereafter, two logistic regression models were trained, one using the full set of features and

the other only the selected features. To compare the performance of these two models, the

confusion matrix is analysed in Table 5.2.

Table 5. 2: Confusion matrix for the fitted logistic regression model using feature selection and the fitted model using

the full set of features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1280 531

Not Default 4784 7907

Full set of

features

Default 1253 558

Not Default 4772 7919

From Table 5.2, 1280 true positives and 7907 true negatives were reported for the fitted logistic

regression model that used the feature selection approach, whereas 1253 true positives and

7919 true negatives were reported for the fitted model that used the full set of features. This

indicates that the model using feature selection correctly predicted more clients who defaulted

on their loan compared to the model that included the full set of features; the latter predicted

more non-defaulters. We then examine several evaluation metrics (listed in Table 5.3) to

ascertain which of these two models performed better overall.

103

Table 5. 3: Performance metrics for the logistic regression model using feature selection and the model using the full

set of features

Performance metric Feature selection Full set of features

Accuracy 0.633 0.632

Balanced accuracy 0.665 0.658

Sensitivity/True positive ratio/Recall 0.707 0.692

Specificity/True negative ratio 0.623 0.624

Positive predictive value (Precision) 0.211 0.208

Negative predictive value 0.937 0.934

AUC 0.726 0.717

Gini 0.453 0.434

From Table 5.3, an accuracy score of approximately 0.63 was reported for both fitted logistic

regression models. This table shows that the model using feature selection attained a better

balanced accuracy score, true positive ratio, AUC score, and Gini in comparison to the model

that utilised the full set of features. From Table 5.3, the true negative ratio obtained by both

models was approximately 0.62. The researcher thus concludes that overall, the logistic

regression model trained on selected features seemed to perform better than the model trained

on the full set of features.

The researcher assesses the fit of the model that used feature selection, using the deviance test

(discussed in Chapter 2) which is presented in Table 5.4; thereafter, the researcher analyses the

maximum likelihood parameter estimates, p-values and odds ratios associated with each

variable.

Table 5. 4: Deviance test for logistic regression model using feature selection

Deviance statistic (D) dof (n-p) Deviance statistic/dof

18689 14478 1.291

Table 5.4 displays the deviance statistic/dof of 1.291, where the deviance statistic is 18689 and

the degrees of freedom (dof) are 14 478. Since D/(n-p) = 1.291 < 1.5, the researcher concludes

that the model fits the data well.

The maximum likelihood parameter estimates and p-values for the fitted logistic regression

model are presented in Table 5.5a.

Table 5. 5a: Maximum Likelihood Parameter estimates, and p-values for the fitted logistic regression model

Parameter

estimate
p-value

Intercept 0.749 <0.001***

% instalment to income allowed - 0.253 <0.001***

% instalment to income taken 0.150 <0.001***

Age - 0.203 <0.001***

% Total Taken Up 0.211 <0.001***

Gender_M 0.393 <0.001***

104

CreditCard_yes - 0.167 0.014**

Debt/Net Income 0.114 0.035**

External Subsequent Lending_Yes 0.583 <0.001***

Arrearrs_1 0.133 0.006***

Client Type_Reload - 0.264 <0.001***

Insurance_yes - 0.139 0.002***

Internal consolidations/Amount Taken - 0.152 0.021**

Internal Living Expenses Rule_Yes 0.129 <0.001***

Limiting Rule_4 0.380 0.008***

Married_Yes - 0.161 0.001***

Max Offer - 0.371 <0.001***

Medicalaid_yes - 0.235 <0.001***

Product Taken_PL Repeat 0.116 <0.001***

Product Taken_Staff - 1.052 <0.001***

RevolvingCredit_yes - 0.145 0.009***

Salary Bank_4 - 0.263 <0.001***

Taking Max_Yes 0.451 <0.001***

Union fees_yes - 0.111 0.001***

YearsWithCurrentEmployer - 0.153 <0.001***
Note: ***, ** and * indicate significance at 1%, 5% and 10% level of significance respectively

From Table 5.5a, % instalment to income allowed, % instalment to income taken, Age, % Total

Taken Up, Gender_M, External Subsequent Lending_Yes, Arrearrs_1, Client Type_Reload,

Insurance_yes, Internal Living Expenses Rule_Yes, Limiting Rule_4, Married_Yes, Max

Offer, Medicalaid_yes, Product Taken_PL Repeat, Product Taken_Staff,

RevolvingCredit_yes, Salary Bank_4, Taking Max_Yes, YearsWithCurrentEmployer and

Union fees_yes are significant at 1% level of significance and CreditCard_yes, Debt/Net

Income and Internal consolidations/Amount Taken are significant at 5% level of significance

Thus, all 24 variables influence the prediction of loan defaulting clients; the estimates indicate

how much they influence it. The researcher exponentiated the maximum likelihood parameter

estimates (𝛽𝑖 coefficients) to obtain the odds ratio estimates, as the odds ratios can be

interpreted more easily. Table 5.5b lists the 24 significant variables in the fitted logistic

regression model and provides an interpretation of the odds ratio estimates for each variable.

Table 5.5b: Interpretation of the odds ratio estimates for the 24 variables in the fitted logistic regression model using

feature selection

Variable

Odds

ratio

estimates
Interpretation

% instalment to income

allowed 0.776

One unit increase in % instalment to income allowed

is associated with a 22.4% ((1 – 0.776) x 100%)

reduction in the odds of a client defaulting when all

other variables are held constant

105

% instalment to income taken 1.162

Increasing % instalment to income taken by one unit,

increases the odds of a client defaulting on their loan

by 16.2% ((1.162-1) x 100%) when all other

variables are held constant

Age 0.816

Each unit increase in Age reduces the odds of a client

defaulting by 18.4% ((1 – 0.816) x 100%), holding all

other variables constant

% Total Taken Up 1.235

One unit increase in % Total Taken Up is associated

with a 23.5% ((1.235-1)*100%) increase in the odds

of a client defaulting, holding all other variables

constant

Gender_M 1.482

Gender_M (male) is associated with a 48.2%

((1.482 – 1) x 100%) increase in the odds of a client

defaulting when all other variables are held constant

(Gender_M is equal to 1 if male and 0 if female)

CreditCard_yes 0.846

The odds of a client defaulting decreases by 15.4%

((1-0.846)*100%) if the client has a credit card,

holding all other variables constant. (CreditCard_yes

is equal to 1 if the client has a credit card and 0 if

he/she does not)

Debt/Net Income 1.121

One unit increase in Debt/Net Income is associated

with a 12.1% ((1.121-1)*100%) increase in the odds

of a client defaulting, holding all other variables

constant

External Subsequent

Lending_Yes 1.791

External subsequent lending is associated with a

79.1% ((1.791-1)*100%) increase in the odds of a

client defaulting when all other variables are held

constant

Arrearrs_1 1.142

Arrears is associated with a 14.2%

((1.142 – 1) x 100%) increase in the odds of a client

defaulting, holding all other variables constant

(Arrearrs_1 is equal to 1 if the client was in arrears

and 0 if he/she wasn’t in arrears)

Client Type_Reload 0.768

There is a 23.2% ((1-0.768)*100%) decrease in the

odds of a client defaulting when client type is reload,

holding all other variables constant

Insurance_yes 0.870

If a client pays insurance, the odds of defaulting

decreases by 13.0% ((1-0.870)*100%), when all other

variables are held constant

Internal

consolidations/Amount Taken 0.859

Increasing Internal consolidations/Amount Taken by

one unit, decreases the odds of a client defaulting on

their loan by 14.1% ((1-0.859) x 100%) when all

other variables are held constant

Internal Living Expenses

Rule_Yes 1.138

The odds of a client defaulting increases by 13.8%

((1.138-1)*100%) if the internal living expenses rule

is used, when holding all other variables constant

Limiting Rule_4 1.462

If a client is limiting by rule 4, the odds of defaulting

increases by 46.2% ((1.462-1)*100%), when all other

variables are held constant

Married_Yes 0.851

Married is associated with a 14.9%

((1-0.851)*100%) decrease in the odds of a client

defaulting when all other variables are held constant

(Married_Yes is equal to 1 if married and 0 if not

married)

106

Max Offer 0.690

One unit increase in Max Offer is associated with a

31.0% ((1 – 0.690) x 100%) reduction in the odds of a

client defaulting, holding all other variables constant

Medicalaid_yes 0.791

When all other variables are held constant, the odds

of a client defaulting reduces by 20.9% ((1-

0.791)*100%) if the client has medical aid

Product Taken_PL Repeat 1.123

If product taken is PL Repeat, the odds of a client

defaulting increases by 12.3% ((1.123-1)*100%),

when all other variables are held constant

Product Taken_Staff 0.349

If product taken is Staff, the odds of a client

defaulting reduces by 65.1% ((1-0.349)*100%),

holding all other variables constant

RevolvingCredit_yes 0.865

When all other variables are held constant, the odds

of a client defaulting reduces by 13.5% ((1-

0.865)*100%) if the client has revolving credit

Salary Bank_4 0.769

The odds of a client defaulting reduces by 23.1% ((1-

0.769)*100%), if the client’s main bank is Salary

Bank 4, holding all other variables constant

Taking Max_Yes 1.570

Taking Max is associated with a 57.0%

((1.570 – 1) x 100%) increase in the odds of a client

defaulting when all other variables are held constant

Union fees_yes 0.895

The odds of a client defaulting reduces by 10.5%

((1-0.895)*100%) if the client pays union fees,

holding all other variables constant

(Union fees_yes is equal to 1 if the client pays union

fees and 0 if he/she does not)

YearsWithCurrentEmployer 0.858

One unit increase in YearsWithCurrentEmployer is

associated with a 14.2% ((1 – 0.858) x 100%)

reduction in the odds of a client defaulting when all

other variables are held constant

5.3 Decision tree

The recursive feature elimination technique was used in combination with the decision tree

algorithm in order to remove features that contributed little to the model. 27 out of 57 features

were removed; the 30 features included in the decision tree when using the feature selection

approach are % instalment to income allowed, % instalment to income taken, % Total Taken

Up, Age, Arrearrs_1, Client Type_Reload, CreditCard_yes, Debt/Net Income, External

consolidations/Amount Taken, External Subsequent Lending_Yes, Final Disposable

Income/NetIncome, Gender_M, Internal consolidations/Amount Taken, Internal Living

Expenses Rule_Yes, Limiting Rule_2, Debt to Income ratio, Limiting Rule_3, Married_Yes,

Max Offer, Medicalaid_yes, NumberOfDependents, Product Taken_PL Repeat,

Pensionprovident_yes, PersonalLoan_yes, Product Taken_PL New, HomeLoan_yes, Product

Taken_Staff, Taking Max_Yes, Unpaids_Yes and YearsWithCurrentEmployer.

The confusion matrix for the decision tree trained on selected features and the decision tree

trained on the full set of features is reported in Table 5.6.

107

Table 5. 6: Confusion matrix for the decision tree using feature selection and the decision tree using the full set of

features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1310 501

Not Default 5267 7424

Full set of

features

Default 1210 601

Not Default 5064 7627

Table 5.6 shows that the decision tree trained on selected features correctly predicted 1310

clients who defaulted and 7427 clients who did not default, whereas the decision tree trained

on the full set of features correctly predicted 1210 defaulters and 7627 non-defaulters. Thus,

the decision tree using feature selection performed better when predicting the default class and

the decision tree using all features under consideration performed slightly better when

predicting the non-default class. Performance metrics for both decision trees are shown in

Table 5.7 and the results are analysed to gain further insight into each model’s performance.

Table 5. 7: Performance metrics for the decision tree using feature selection and the decision tree using the full set of

features

Performance metric Feature selection Full set of features

Accuracy 0.602 0.609

Balanced accuracy 0.654 0.635

Sensitivity/True positive ratio/Recall 0.723 0.668

Specificity/True negative ratio 0.585 0.601

Positive predictive value (Precision) 0.199 0.193

Negative predictive value 0.937 0.927

AUC 0.698 0.687

Gini 0.396 0.375

Table 5.7 indicates that the accuracy score for the decision tree using feature selection is 0.602,

which is marginally lower than the accuracy score of 0.609 obtained by the decision tree using

all features. Since the dataset is imbalanced, accuracy is not the most reliable evaluation metric.

From Table 5.7, the balanced accuracy score, true positive ratio, AUC score and Gini attained

by the decision tree that used selected features showed better results compared to the decision

tree trained on the full set of features in the dataset. The true negative ratio of 0.585 obtained

by the decision tree using feature selection was lower than the true negative ratio score of 0.601

obtained by the decision tree that utilised all features. Since the model using feature selection

obtained better scores for all metrics other than the true negative ratio (which was marginally

lower than the score obtained by the model using the full set of features), it can be concluded

that this decision tree seems more appropriate for the classification problem under study, whose

main focus is to identify clients who defaulted on their loan.

108

5.4 Random forest

In section 5.1, the researcher discussed in detail the recursive feature elimination technique

using the random forest algorithm and indicated that 39 features could be removed. The

following 18 features were selected using this approach: % instalment to income allowed, %

instalment to income taken, % Total Taken Up, Age, Client Type_Reload, CreditCard_yes,

Debt/Net Income, Gender_M, Insurance_yes, Internal Living Expenses Rule_Yes,

Married_Yes, Max Offer, Medicalaid_yes, Pensionprovident_yes, Taking Max_Yes, Total

consolidations/Amount Taken, YearsWithCurrentEmployer and Union fees_yes.

One random forest model was trained on the full set of features and another on only the selected

features. In order to establish how many true positives and true negatives were attained by these

two models, the confusion matrix in Table 5.8 is examined.

Table 5. 8: Confusion matrix for the random forest model using feature selection and the model using the full set of

features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1332 479

Not Default 4501 8190

Full set of

features

Default 1317 494

Not Default 4391 8300

Table 5.8 reports 1332 true positives and 8190 true negatives for the random forest model using

the recursive feature elimination method, whereas 1317 true positives and 8300 true negatives

are reported for the model using the full set of features. This indicates that the model using

only selected features correctly predicted more clients who defaulted on their loan compared

to the model that used the full set of features; the latter predicted more non-defaulters. In order

to determine which model performed better overall, evaluation metrics (listed in Table 5.9) are

examined.

Table 5. 9: Performance metrics for the random forest using selected features and the model using the full set of

features

Performance metric Feature selection Full set of features

Accuracy 0.657 0.663

Balanced accuracy 0.690 0.691

Sensitivity/True positive ratio/Recall 0.736 0.727

Specificity/True negative ratio 0.645 0.654

Positive predictive value (Precision) 0.228 0.231

Negative predictive value 0.945 0.944

AUC 0.745 0.744

Gini 0.491 0.488

109

From Table 5.9, there was no significant difference between the accuracy score and balanced

accuracy score obtained by the two random forest models. Table 5.9 shows that the model

using feature selection obtained a higher true positive ratio (i.e., 0.736) compared to the model

that included all features under consideration (i.e., 0.727). The true negative ratio of 0.645

attained by the model with only selected features was marginally lower than the true negative

ratio of 0.654 obtained by the model that used the full set of features. It is not a concern, as the

researcher is more interested in identifying clients who default. From this table, the AUC score

and Gini coefficient of 0.745 and 0.491, respectively, which were attained by the model using

feature selection, were both slightly higher than the AUC score and Gini coefficient of 0.744

and 0.488, respectively, obtained by the model that included all features. Therefore, from

Tables 5.8 and 5.9, the researcher concludes that the random forest model trained on 18 features

seems to be the more favourable model.

5.5 Support vector machine

Recursive feature elimination was utilised in order to select important features to include in the

SVM model’s building process; the following 25 features were chosen using this approach: %

instalment to income allowed, % instalment to income taken, % Total Taken Up, Age,

Arrearrs_1, Client Type_New, CreditCard_yes, Debt/Net Income, Gender_M, Insurance_yes,

Internal consolidations/Amount Taken, Internal Living Expenses Rule_Yes, Limiting Rule_2,

Married_Yes, Max Offer, Medicalaid_yes, NumberOfDependents, Pensionprovident_yes,

Union fees_yes, Product Taken_PL New, Product Taken_PL Repeat, RevolvingCredit_yes,

Taking Max_Yes, Unpaids_Yes and YearsWithCurrentEmployer.

Two SVM models were trained thereafter, one using the full set of features and the other only

the selected features. A confusion matrix for these two models is reported in Table 5.10.

Table 5. 10: Confusion matrix for the SVM model using feature selection and the model using the full set of features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1269 542

Not Default 4431 8260

Full set of

features

Default 1103 708

Not Default 3655 9036

From Table 5.10, the SVM model using the feature selection approach correctly predicted 1269

defaulters and 8260 non-defaulters, whereas the model using all features under consideration

correctly predicted 1103 defaulters and 9036 non-defaulters. Thus, the model using selected

features seems to perform better when predicting the default class. However, this model

misclassified more non-defaulters than the model trained on the full set of features. The

researcher then examines the evaluation metrics (listed in Table 5.11) to ascertain which of

these two models performed better overall.

110

Table 5. 11: Performance metrics for the SVM model using feature selection and the SVM model using the full set of

features

Performance metric Feature selection Full set of features

Accuracy 0.657 0.699

Balanced accuracy 0.676 0.661

Sensitivity/True positive ratio/Recall 0.701 0.609

Specificity/True negative ratio 0.651 0.712

Positive predictive value (Precision) 0.223 0.232

Negative predictive value 0.938 0.927

AUC 0.733 0.720

Gini 0.466 0.440

From Table 5.11, the balanced accuracy score for the SVM model using feature selection is

0.676, which is higher than the score of 0.661 obtained by the model using all features. Table

5.11 also shows that the true positive and true negative ratio for the SVM model trained on

selected features are 0.701 and 0.651, respectively, and for the SVM model using the full set

of features, the ratios are 0.609 and 0.712, respectively. Thus, the model using the feature

selection approach performed significantly better when identifying defaulters, which is the

study’s main focus; however, it performed worse when identifying non-defaulters. From Table

5.11, it can be observed that the AUC score and Gini obtained by the model using selected

features are 0.733 and 0.466, respectively; these values are higher than the AUC score and Gini

obtained by the model using all features, namely 0.720 and 0.440, respectively. Therefore, from

Tables 5.10 and 5.11, the researcher concludes that the SVM model trained on the 25 selected

features appears to be the better model for the application problem under study.

5.6 Naïve Bayes classifier

The Naïve Bayes classifier, in conjunction with the feature selection technique discussed in

section 5.1, was used in order to select features which were most relevant. The model using the

feature selection approach was trained on the following 19 features: % instalment to income

allowed, % instalment to income taken, % Total Taken Up, Age, Arrearrs_1, External

Subsequent Lending_Yes, Gender_M, Limiting Rule_2, Married_Yes, Max Offer,

PayslipExpenses_Yes, Product Taken_Staff, RevolvingCredit_yes, Salary Bank_2, Union

fees_yes, Unpaids_Yes, Taking Max_Yes, YearsWithCurrentEmployer and Insurance_yes.

The confusion matrix results for the Naïve Bayes classifier trained on selected features only

and the Naïve Bayes classifier trained on the full set of features are reported in Table 5.12.

111

Table 5. 12: Confusion matrix for the Naïve Bayes classifier using feature selection, and the model using the full set of

features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1012 799

Not Default 3103 9588

Full set of

features

Default 1186 625

Not Default 4658 8033

From Table 5.12, the Naïve Bayes classifier using the feature selection approach correctly

classified 1012 defaulters and 9588 non-defaulters, whereas the model using all features under

consideration correctly classified 1186 defaulters and 8033 non-defaulters. Thus, the Naïve

Bayes classifier using feature selection performed significantly better when identifying non-

defaulters; however, the classifier using the full set of features correctly identified more

defaulters.

A summary of the performance metrics for the Naïve Bayes classifier that used selected

features and the one that used the full set of features are presented in Table 5.13.

Table 5. 13: Performance metrics for the Naïve Bayes classifier using feature selection, and using the full set of

features

Performance metric Feature selection Full set of features

Accuracy 0.731 0.636

Balanced accuracy 0.657 0.644

Sensitivity/True positive ratio/Recall 0.559 0.655

Specificity/True negative ratio 0.755 0.633

Positive predictive value (Precision) 0.246 0.203

Negative predictive value 0.923 0.928

AUC 0.730 0.700

Gini 0.460 0.400

From Table 5.13, all reported performance metrics (other than the true positive ratio) showed

better results for the Naïve Bayes classifier trained on selected features in comparison to the

classifier trained on all features. The true positive ratio attained by the Naïve Bayes classifier

using feature selection was 0.559, whereas the true positive ratio attained by the classifier that

included the full set of features was significantly higher at 0.655. Although the classifier using

feature selection obtained a better score for all other performance metrics except for the true

positive ratio, it is not necessarily the better suited model, since the study’s main focus is to

identify clients who default. From Table 5.13, the overall performance of the Naïve Bayes

classifier that used the full set of features in the model building process seems unsatisfactory.

Since the Naïve Bayes classifier that used only selected features performed poorly when

identifying clients who defaulted, this model is also unsuitable.

112

5.7 K-nearest neighbours

The recursive feature elimination method, in combination with the K-NN model, was used to

identify important features in the model. The following 28 features (out of 57) were deemed

important: % instalment to income allowed, % instalment to income taken, % Total Taken Up,

Age, Arrearrs_1, Client Type_Reload, CreditCard_yes, External Subsequent Lending_Yes,

Gender_M, HomeLoan_yes, Insurance_yes, Internal consolidations/Amount Taken, Internal

Living Expenses Rule_Yes, Limiting Rule_3, LowerOffer_Yes, Married_Yes, Max Offer,

Product Taken_PL Repeat, Medicalaid_yes, NumberOfDependents, PayslipExpenses_Yes,

Salary Bank_2, RevolvingCredit_yes, Taking Max_Yes, Unpaids_Yes, Union fees_yes,

Weekly/Monthly_Weekly and YearsWithCurrentEmployer.

Two K-NN models were trained thereafter, one using the full set of features and the other only

the selected features. The confusion matrix results for these two models are presented in Table

5.14.

Table 5. 14: Confusion matrix for the K-NN model using selected features and the model using the full set of features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1163 648

Not Default 4114 8577

Full set of

features

Default 1192 619

Not Default 4493 8198

From Table 5.14, the number of true positives attained by the K-NN model using the feature

selection approach and the model using the full set of features is 1163 and 1192, respectively.

This suggests that the model using feature selection misclassified a few more defaulters

compared to the model trained on all features under consideration. Table 5.14 also shows that

the number of true negatives obtained by the K-NN model using feature selection and the

model using the full set of features is 8577 and 8192, respectively, indicating that the model

using feature selection correctly predicted significantly more non-defaulters compared to the

model using all features. The researcher then examines Table 5.15, which shows a summary of

performance metrics for both models.

Table 5. 15: Performance metrics for the K-NN model using feature selection and the model using the full set of

features

Performance metric Feature selection Full set of features

Accuracy 0.672 0.647

Balanced accuracy 0.659 0.652

Sensitivity/True positive ratio/Recall 0.642 0.658

Specificity/True negative ratio 0.676 0.646

Positive predictive value (Precision) 0.220 0.210

Negative predictive value 0.930 0.930

AUC 0.711 0.702

Gini 0.422 0.404

113

From Table 5.15, it can be observed that the K-NN model using feature selection obtained a

true positive ratio of 0.642, whereas the K-NN model using the full set of features obtained a

slightly higher true positive ratio of 0.658. Table 5.15 also reports that the true negative ratio

attained by the K-NN model trained on selected features is 0.676, which is higher than the true

negative ratio of 0.646 that was attained by the model trained on the full set of features. All

other evaluation metrics shown in Table 5.15 indicate better performance for the K-NN model

that only included selected features. Thus, from Tables 5.14 and 5.15, the K-NN model with

29 fewer features appears to be the more appropriate model for the classification problem under

study.

5.8 Artificial neural network

The feature selection technique discussed in Chapter 5.1 was utilised in order to remove

features which contributed little to the model. The following 24 features (out of 57) were

chosen as input variables for the ANN model: % instalment to income allowed, % instalment

to income taken, % Total Taken Up, Age, Arrears_1, Client Type_Reload, CreditCard_yes,

Debt/Net Income, Gender_M, Insurance_yes, Internal Living Expenses Rule_yes, Limiting

Rule_2, Married_yes, Max Offer, Medicalaid_yes, PayslipExpenses_Yes, Taking Max_yes,

Pensionprovident_yes, Product Taken_PL Repeat, Salary Bank_2, Union fees_yes,

Unpaids_yes, Total consolidations/Amount Taken and YearsWithCurrentEmployer,.

The confusion matrix results for the ANN model trained using feature selection and the model

trained on the full set of features are reported in Table 5.16.

Table 5. 16: Confusion matrix for the ANN model using selected features and the model using the full set of features

 Predicted

 Default Not Default

Selected

features
Actual

Default 1308 503

Not Default 4403 8288

Full set of

features

Default 1346 465

Not Default 4848 7843

From Table 5.16, the ANN model using selected features correctly classified 1308 out of 1811

defaulters, whereas the model using all features under consideration correctly classified 1 346

defaulters. This indicates that the model using feature selection misclassified a few more

defaulters compared to the model using all features. Table 5.16 also indicates that the ANN

model that used selected features correctly identified 8288 out of 12691 non-defaulters and the

model using the full set of features correctly identified 7843 non-defaulters. This suggests that

the model using feature selection correctly identified a significantly larger portion of non-

defaulters compared to the model trained on the full set of features.

In order to ascertain which model performed better overall, evaluation metrics (listed in Table

5.17) are examined.

114

Table 5. 17: Performance metrics for the ANN model using selected features and the model using the full set of

features

Performance metric Feature selection Full set of features

Accuracy 0.662 0.634

Balanced accuracy 0.688 0.681

Sensitivity/True positive ratio/Recall 0.722 0.743

Specificity/True negative ratio 0.653 0.618

Positive predictive value (Precision) 0.229 0.217

Negative predictive value 0.943 0.944

AUC 0.745 0.737

Gini 0.490 0.475

From Table 5.17, the ANN model trained on selected features obtained better results for all

evaluation metrics (other than the true positive ratio) in comparison to the ANN model that

included the full set of features in the model-building process. The true positive ratio obtained

by the model using only selected features was 0.722, whereas the true positive ratio attained

by the model including all features was 0.743. Although the ANN model using feature selection

attained a lower true positive ratio, the true positive ratio of 0.722 is still very good. Thus, the

ANN model that included 24 features is more favourable.

5.9 Summary of model performance using feature selection

In this chapter, recursive feature elimination was utilised in order to select a subset of the most

relevant features in the dataset for each machine learning algorithm outlined in Chapter 3. Each

algorithm was trained twice, first using the full set of features and then using only the selected

features, and a comparison was done between the two models for each algorithm. From sections

5.2 to 5.8, the researcher observed that the machine learning algorithms that utilised the

recursive feature elimination technique generally seemed more suitable for the classification

problem under study compared to the models that utilised the full set of features. In section 5.9,

a comparison of results obtained by each classification algorithm (discussed in Chapter 3),

when using the feature selection approach, is performed. Table 5.18 shows the confusion

matrix for each algorithm and Table 5.19 provides a summary of several performance metrics

used to evaluate the models, namely accuracy, balanced accuracy, true positive ratio, true

negative ratio, positive predictive value (precision), negative predictive value, AUC score, and

the Gini coefficient.

115

Table 5. 18: Confusion matrix for each model under study using feature selection

 PREDICTED

 DEFAULT NOT DEFAULT

LR

ACTUAL

DEFAULT 1280 531

NOT DEFAULT 4784 7907

DT
DEFAULT 1310 501

NOT DEFAULT 5267 7424

RF
DEFAULT 1332 479

NOT DEFAULT 4501 8190

SVM
DEFAULT 1269 542

NOT DEFAULT 4431 8260

NB
DEFAULT 1012 799

NOT DEFAULT 3103 9588

 K-NN
DEFAULT 1163 648

NOT DEFAULT 4114 8577

ANN
DEFAULT 1308 503

NOT DEFAULT 4403 8288

From Table 5.18, the random forest model attained the highest number of true positives,

followed by the decision tree algorithm and then the ANN model; the number of defaulters

correctly identified by these models were 1332, 1310 and 1308, respectively. Since the main

aim of this study is to identify clients who default, the number of defaulters correctly identified

by each algorithm is a significant factor when selecting the most suitable model. To compare

the overall performance of the logistic regression model, decision tree, random forest, support

vector machine, Naïve Bayes classifier, k-nearest neighbours algorithm and the artificial neural

network when using the feature selection approach, Table 5.19 is examined.

Table 5. 19: Performance metrics for each model under study using the feature selection approach

 Logistic

regression

Decision

tree

Random

forest
SVM

Naïve

Bayes
K-NN ANN

Accuracy 0.633 0.602 0.657 0.657 0.731 0.672 0.662

Balanced accuracy 0.665 0.654 0.69 0.676 0.657 0.659 0.688

True positive ratio

(Sensitivity)
0.707 0.723 0.736 0.701 0.559 0.642 0.722

True negative ratio

(Specificity)
0.623 0.585 0.645 0.651 0.755 0.676 0.653

Positive predictive value

(Precision)
0.211 0.199 0.228 0.223 0.246 0.22 0.229

Negative predictive value 0.937 0.937 0.945 0.938 0.923 0.93 0.943

AUC score 0.726 0.698 0.745 0.733 0.73 0.711 0.745

Gini 0.453 0.396 0.491 0.466 0.46 0.422 0.49

Table 5.19 shows that the Naïve Bayes classifier obtained the highest accuracy score of 0.731.

In Chapter 2, we established that there was an imbalance in the dataset, as only 12% of the

clients under study defaulted on their loan, whereas 88% of clients under study did not default

on their loan. Thus, accuracy is not the most reliable metric in this study since the minority

class, default, is the class that the researcher is more interested in, and accuracy tends to be

116

biased towards the majority class (i.e., not default). The balanced accuracy score is then

examined. Table 5.19 shows that the random forest model obtained the highest balanced

accuracy score of 0.690, which is marginally higher than the ANN classifier’s balanced

accuracy score of 0.688; the researcher considers these scores to be good as they are both very

close to 70%.

The true positive ratios and true negative ratios are then analysed. From Table 5.19, the random

forest attained the highest true positive ratio of 0.736, which corresponds to the researcher’s

findings from the confusion matrix in Table 5.18 which indicated that the random forest

correctly classified the most number of defaulters. The decision tree classifier and ANN

classifier both attained a true positive ratio of approximately 0.72, which was the second

highest. A true positive ratio above 70% is considered to be a good score by the researcher.

The true negative ratios are examined next. Table 5.19 shows that the Naïve Bayes classifier

attained the highest true negative ratio of 0.755; however, this classifier obtained the worst true

positive ratio of 0.559, which is one of the most significant metrics in the study. Since the

misclassification costs associated with false positives is negligible, the researcher considers a

true negative ratio of about 65% and higher as acceptable. The random forest and ANN model

both obtained a true negative ratio of approximately 65%.

The positive predictive values and negative predictive values are then analysed. The positive

predictive value (precision) was low across all models which was presumably influenced by

the significant imbalance in the dataset. The Naïve Bayes classifier obtained the highest

positive predictive value of 0.246; the ANN and random forest model attained the second and

third highest values of 0.229 and 0.228, respectively. As previously stated, the low positive

predictive value (precision) is not a concern to the researcher as the main focus of this study is

to identify defaulters and the costs associated with misclassifying non-defaulters is very low.

The negative predictive value was high across all models; the random forest and ANN models

attained the highest and second highest negative predictive values of 0.945 and 0.943,

respectively. Table 5.19 also reports the AUC score and Gini for each model; the random forest

and ANN model both attained an AUC score of 0.745 and a Gini of approximately 0.49,

respectively, which were the highest values across all classifiers under study.

Since the large imbalance in the dataset likely had an influence on the accuracy, positive

predictive value and negative predictive value, the researcher focuses on the balanced accuracy,

true positive ratio, true negative ratio, AUC score and Gini when identifying the most

appropriate classification algorithm for the problem under study. From the confusion matrix in

Table 5.18 and the performance metrics in Table 5.19, the random forest classifier seemed to

have the best overall performance, followed by the ANN classifier. Since the ANN model’s

training time is longer and there are several parameters that need to be tuned, the random forest

classifier is the most favourable one.

The researcher then compares the models that were most suitable for the classification problem

under study when using the PCA approach in Chapter 4 and the feature selection approach in

Chapter 5 in order to identify the most appropriate model overall. In both cases, the random

forest algorithm seemed to be the most suitable model. Therefore, the performance metrics

associated with the random forest model using the PCA approach is compared to the

performance metrics associated with the random forest model that utilised feature selection.

The results are presented in Table 5.20.

117

Table 5. 20: Performance metrics for the random forest model using the PCA approach and the random forest model

using feature selection

Random Forest PCA Feature Selection

Accuracy 0.656 0.657

Balanced accuracy 0.691 0.690

True positive ratio 0.738 0.736

True negative ratio 0.645 0.645

Positive predictive value (Precision) 0.229 0.228

Negative predictive value 0.945 0.945

AUC 0.744 0.745

Gini 0.489 0.491

Table 5.20 shows a marginal difference between each performance metric listed, when

comparing the random forest model using the PCA approach to the random forest model using

feature selection. The AUC value is a single scaler value that can be used to compare the overall

performance of the models; from Table 5.20, the AUC scores are similar across both models.

The ROC curves for the random forest classifier using feature selection and the random forest

classifier using PCA are then analysed in Figure 5.2.

Figure 5. 2: ROC curve for the random forest model using PCA and the random forest model using feature selection

From Figure 5.2, remarkably similar results for both models are shown. This supports the

results reported in Table 5.20. Thus, from Table 5.20 and Figure 5.2, both classifiers seem to

have attained similar results. Since the random forest model using feature selection included

18 features, whereas the random forest model using PCA included 48 features, the random

forest model using feature selection seems to be the more suitable model. Fewer features in a

model reduce the computational costs of modelling as well as the risk of data errors. Figure 5.3

shows the feature importance of the 18 features included in the random forest model using

feature selection, ranked in ascending order of importance.

118

 Figure 5. 3: Feature importance of variables in the random forest model that used feature selection

From Figure 5.3, Max Offer, % instalment to income allowed, Age, % Total Taken Up, %

instalment to income taken and YearsWithCurrentEmployer were the most important features

in the random forest model which used the feature selection approach, when predicting the

default status of clients. Features toward the lower end of the tail (e.g., Pensionprovident_yes,

Internal Living Expenses Rule_Yes and Client Type_Reload) seem to be considerably less

important compared to features such as Max Offer and % instalment to income allowed. The

objective of this study was to obtain the best model; however, more features may be removed

by adjusting the threshold used in the feature selection process, to simplify the model. This

results in a tradeoff between model performance and model simplicity.

Each classification algorithm discussed in Chapter 3 was fitted to the balanced default dataset

under study. In chapter 4 and chapter 5 we discussed the results obtained for each model when

using the PCA approach and feature selection approach, respectively. The next chapter

concludes this study and provides answers to each of the research questions listed in Chapter

1.

119

Chapter 6
6 Conclusions, limitations and recommendations

This chapter provides the conclusions and limitations to this study, and recommendations for

further study.

6.1 Conclusions

Financial institutions have rules and regulations in place that dictate whom to lend to and how

much the institution is willing to lend, depending on the client’s affordability and risk levels,

among other factors. Lending institutions, however, still expect a percentage of clients to

default on their payments. Clients miss payments on their loans for multiple reasons. Some

cannot afford payments due to mismanagement of funds, additional unexpected costs et cetera,

whereas others choose not to pay. It is necessary for financial institutions to have a good

collections process in place in order reduce the number of clients who default on their debt

obligation and to collect as much unpaid debt as possible. The financial institution under study

currently starts the debt recovery process once a client misses a payment. The institution now

wants to enhance the collection process by identifying clients who are more likely to miss

payments, as soon as the loan is granted, in order for the institution to send through reminder

SMS messages and emails to this population at the beginning of each month, starting from the

month in which the first instalment is due. This enhanced process will likely result in the

financial institution retrieving more unpaid debt and reducing the number of clients who default

on their loans.

Thus, in this study, machine learning algorithms were used to predict whether a client will

default on his/her loan (i.e., miss at least three payments in the first 12 months of the loan being

granted) by using information available at the time the loan is granted so that an enhanced

collections process can be used on clients who were classified as defaulters. The researcher

fitted the logistic regression model, decision tree, random forest, support vector machines,

Naïve Bayes classifier, k-nearest neighbours and artificial neural network to the balanced

default dataset. To reduce the dimensionality of the dataset, two techniques were used, namely,

principal component analysis (PCA), which is also used to correct the data for multicollinearity,

and feature selection i.e., recursive feature elimination, which aims to remove irrelevant and

redundant features. The researcher compared the results obtained by the different models in

order to identify the model which was most suitable for the problem under study. Since the

additional step in the collections process involving the sending of emails and SMS’s is not

costly, misclassifying non-defaulters as defaulters (i.e., false positives) was not a major

concern; the financial institution was more concerned with identifying clients who default.

The first research question aimed to identify which classification algorithms were able to

correctly classify a sufficient proportion of clients who defaulted on their loan. From the results

in the study, it can be concluded that, where the PCA approach was used, the random forest,

ANN and logistic regression model classified a significant proportion of clients who defaulted

120

correctly; where feature selection was used, the random forest, ANN, SVM, decision tree and

logistic regression models were able to correctly classify a substantial portion of defaulters by

using the reduced subset of features. Chen and Zhang (2021) reviewed the artificial neural

network, k-nearest neighbour, decision tree, support vector machine and logistic regression and

concluded that all six models, including the K-NN model, could be used to predict the default

of automobile. In contrary, in this study, the K-NN model obtained results which were

unsatisfactory when using both, the PCA approach and the feature selection approach. By

fitting the K-NN algorithm to various default datasets, one can gain further insight into the

algorithm’s ability to predict the default status of clients.

The second research question aimed to identify which classification algorithm was most

appropriate when using the PCA approach and the feature selection approach, and which model

was most appropriate overall. The evaluation metrics used to analyse and compare the model’s

performance were accuracy, balanced accuracy, true positive ratio, true negative ratio, positive

predictive value, negative predictive value, AUC score, and the Gini coefficient. From the

results presented in Chapters 4 and 5, where the PCA and feature selection methods were

utilised, respectively, both methods showed that the random forest and ANN models seemed

to have the best overall performance when considering the classification problem under study.

When using the PCA approach, the random forest model obtained a balanced accuracy score,

true positive ratio, true negative ratio and AUC score of 0.69, 0.74, 0.65 and 0.74, respectively;

these values for the fitted ANN model were 0.69, 0.74, 0.64 and 0.75, respectively. When using

the feature selection approach (i.e., recursive feature elimination), the random forest model

attained a balanced accuracy score, true positive ratio, true negative ratio and AUC score of

0.69, 0.74, 0.65 and 0.75, respectively, whereas these values were 0.69, 0.72, 0.65 and 0.75,

respectively for the fitted ANN model. Since the ANN model has a significantly longer training

time, has several parameters that need to be tuned, and has little interpretability, the random

forest model seemed to be the most suitable model when predicting the default status of clients

under study when using both PCA and feature selection techniques. In line with the results of

this study, Bayraci and Susuz (2019), Madaan et al. (2021), Ince and Aktan (2009) and Radhika

et al. (2021) concluded that either the random forest model or the neural network performed

the best when comparing various models used to predict the default status of clients.

The researcher then identified which model was the most appropriate overall. Since the random

forest model was most suitable when using both PCA and feature selection, a comparison

between the random forest model using PCA and the random forest model using feature

selection was made in order to ascertain the most suitable model overall. When comparing both

models, the results (presented in Chapter 5) showed a marginal difference between each

performance metric analysed. The ROC AUC curves also showed great similarity between the

two models. The random forest model using feature selection utilised 18 features, whereas the

random forest model using PCA utilised 48 features. Fewer features help to simplify models,

make implementation easier, and may reduce the risk of data errors, since reducing the number

of features reduces the risk of errors during data collection and storage. Therefore, the random

forest model using feature selection seemed most appropriate for the classification problem

under study.

121

The third research question aimed to identify the key risk factors associated with loan

defaulting clients; based on the recommended model (i.e., the random forest using feature

selection), these factors are the client’s age, the number of years the client has been with their

current company, the maximum amount offered to the client, the maximum ratio of instalment

to income that the client is allowed, the percentage of the total offer taken up by the client and

the instalment amount taken by the client as a percentage of their income. Chen and Zhang

(2021), who aimed to predict automobile credit defaulters, used feature selection and found

that date of birth, employment type, disbursed amount and asset cost were ranked most

important when predicting the ‘default’ target variable. Bayraci and Susuz (2019), Kadam et

al. (2021) and Kwofie et al. (2015), among others, mention that variables such as age, gender,

income, and credit information were included in their default models. Thus, features related to

a client’s age, income and loan amount often seem to be important in models which aim to

predict the default status of clients.

6.2 Limitations to the study

This study entailed fitting machine learning classification algorithms to loan data from a South

African financial institution in order to predict a client’s default status. There were a few

limitations and challenges experienced that were related to the dataset and classification

algorithms. Firstly, the data used in this study was limited to banking clients from only one

South African financial institution whose name is withheld due to the nondisclosure agreement.

Secondly, this study focused on clients who defaulted at least three times in the first 12 months

of the loan being granted; clients who defaulted outside of this condition could not be identified

and were included in the non-defaulting class. Thirdly, all results from this study are pertaining

to data from the period August 2019 to December 2019. Fourthly, many machine learning

algorithms are often considered black boxes. It is difficult to attain a comprehensive

understanding of how the models work once they have been trained; therefore, it is difficult to

understand and explain the behaviour of the models.

6.3 Recommendations for further study

For future research, alternate techniques used to handle imbalanced datasets can be investigated

to help improve the model performance, focusing on the reduction of false positives; the

SMOTE method and weightings method, among others, were investigated in this study,

however, whilst it did improve each model’s performance when identifying clients who

defaulted, the models still attained many false positives. Secondly, machine learning

algorithms are often considered black boxes; there is little understanding of how a specific

prediction is made for many of these models. Further research into tools and methods which

help with the interpretability of these algorithms can be explored.

122

References

Adhatrao, K., Gaykar, A., Dhawan, A., Jha, R., & Honrao, V. (2013). Predicting students'

performance using ID3 And C4.5 classification algorithms. International Journal of Data

Mining & Knowledge Management Process (IJDKP), 3(5), 39-52.

Ahmad, S. (2011). Diagnostic for Residual Outliers using Deviance Component in Binary Logistic

Regression. World Applied Sciences Journal 14(8), 1125-1130.

Ahmed, M. S., & Rajaleximi, P. R. (2019). An empirical study on credit scoring and credit scorecard

for financial institutions. International Journal of Advanced Research in Computer

Engineering & Technology, 8(7), 2278-1323.

Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Salman, H. S., &

Prasath, V. S. (2019). Effects of distance measure choice on k-nearest neighbor classifier

performance: a review. Big Data, 7(4).

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random forests and decision trees. International

Journal of Computer Science Issues, 9(5), 272-278.

Ali, N., Neagu, D., & Trundle, P. (2019). Evaluation of k-nearest neighbour classifier performance for

heterogeneous datasets. SN Applied Sciences, 1, Article 1559. https://doi.org/10.1007/s42452-

019-1356-9

Aphale, A. S., & Shinde, S. R. (2020). Predict loan approval in banking system machine learning

approach for cooperative banks loan approval. International Journal of Engineering Research

& Technology, 9(8), 991-995.

Arjaria, S. K., Rathore, A. S., & Cherian, J. S. (2021). Kidney disease prediction using a machine

learning approach: a comparative and comprehensive analysis. In N. Pradeep, S. Kautish, &

S.-L. Peng (Eds.), Demystifying big data, machine learning, and deep learning for healthcare

analytics (pp. 307-333). Academic Press.

Aslam, U., Aziz, H. I., Sohail, A., & Batcha, N. K. (2019). An empirical study on loan default

prediction models. Journal of Computational and Theoretical Nanoscience, 16, 3483-3488.

Awad, M., & Khanna, R. (2015). Efficient learning machines: theories, concepts, and applications for

engineers and system designers. Apress.

Badi, N. H. (2017). Asymptomatic Distribution of Goodness-of-Fit Tests in Logistic Regression

Model. Journal of Statistics, vol 7, No.3, 434-445.

Bayraci, S., & Susuz, O. (2019). Deep neural network (DNN) based classification model in

application to loan default prediction. Theoretical and Applied Economics : GAER Review,

26, 75-84.

Belete, D. M., & Manjaiah, D. H. (2020). Wrapper based feature selection techniques on EDHS-

HIV/AIDS dataset. European Journal of Molecular & Clinical Medicine, 7(8), 2642-2657.

123

Berrar, D. (2018). Bayes' theorem and Naive Bayes classifier. In S. Ranganathan, M. Gribskov, K.

Nakai, & C. Schonbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology (Vol

1, 403-412). Elsevier.

Bhavsar, H., & Panchal, M. H. (2012). A review on support vector machine for data classification.

International Journal of Advanced Research in Computer Engineering & Technology

(IJARCET), 1(10), 185-189.

Bing, X., Naiyan, W., Tianqi, C., & Mu, L. (2015). Empirical evaluation of rectified activations in

convolutional network. arXiv:1505.00853v2[cs.KG],

https://doi.org/10.48550/arXiv.1505.00853

Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Langa, M. (2020). Benchmark for filter

methods for feature selection in high-dimensional classification data. Computational Statistics

& Data Analysis, 143.

Breeden, J. (2020). A survey of machine learning in credit risk. ResearchGate.

DOI:10.13140/RG.2.2.14520.37121

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.

Wadsworth International Group.

Chang, S., Kim, S. D.-O., & Kondo, G. (2015). Predicting default risk of lending club loans. CS229:

Machine Learning. http://cs229.stanford.edu/proj2015/199_report.pdf

Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-

329.

Chen, Y., & Zhang, R. (2021). Default prediction of automobile credit based on support cector

machine. Journal of Information Processing Systems, 17(1), 75-88.

Chifurira, R. (2018). Modelling Mean Annual Rainfall for Zimbabwe, PhD thesis. University Of The

Free State, Bloemfontein.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13(1), 21-27.

Dayton, C. M. (1992). Logistic Regression Analysis.

http://www.econ.upf.edu/~satorra/dades/M2012LogisticRegressionDayton.pdf

Demichelis, F., Magni, P., Piergiorgi, P., Rubin, M. A., & Bellazzi, R. (2006). A hierarchical Naïve

Bayes model for handling sample heterogeneity in classification problems: an application to

tissue microarrays. BMC Bioinformatics, 7(1), 1-12.

Ereiz, Z. (2019, November 26-27). Predicting default loans using machine learning (OptiML).

Conference: 27th Telecommunications Forum (TELFOR 2019). Belgrade, Serbia.

Fagerland, M. W., & Hosmer, D. W. (2012). A generalized Hosmer–Lemeshow goodness-of-fit test

for multinomial logistic regression models. Stata Journal 12(3), 447-453

http://dx.doi.org/10.13140/RG.2.2.14520.37121

124

Fakir, Y., Azalmad, M., & Elaychi, R. (2020). Study of The ID3 and C4.5 Learning Algorithms.

Journal of Medical Informatics and Decision Making, 1(2), 29-43.

Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: from early developments to recent

advancements. Systems Science & Control Engineering, 2(1), 602-609.

Feng, C., Longhai, & Sadeghpour, A. (2020). A comparison of residual diagnosis tools for diagnosing

regression models for count data. BMC Medical Research Methodology 20(175), 1-21.

Feng, J., & Lu, S. (2019). Performance analysis of various activation functions in artificial neural

networks. Journal of Physics: Conference Series, 1237(2).

Fix, E., & Hodges, J. (1951). Discriminatory analysis, nonparametric discrimination: consistency

properties. (Technical Report No. 4). USAF School of Aviation Medicine, Randolph Field.

Fletcher, T. (2008, December 23). Support vector machines explained.

www.cs.ucl.ac.uk/staff/T.Fletcher/

Gangrade, A., & Patel, R. (2012). Privacy preserving Naive Bayes classifier for horizontally

distribution scenario using un-trusted third party. IOSR Journal of Computer Engineering,

7(6), 4-12.

Gao, H., Zeng, X., & Yao, C. (2019). Application of improved distributed naive Bayesian algorithms

in text classification. The Journal of Supercomputing, 75, 5831-5847.

Gao, X., Wen, J., & Zhang, C. (2019). An improved random forest algorithm for predicting employee

turnover. Mathematical Problems in Engineering, 4, 1-12.

https://doi.org/10.1155/2019/4140707

Ginting, S. L., Adler, J., Ginting, Y. R., & Kurniadi, A. H. (2018, September). The development of

bank applications for debtors' selection by using Naive Bayes classifier technique. IOP

Conference Series Materials Science and Engineering, 407(1), 012090. DOI:10.1088/1757-

899X/407/1/012090

Gulati, P., Sharma, A., & Gupta, M. (2016). Theoretical study of decision tree algorithms to identify

pivotal factors for performance improvement: a review. International Journal of Computer

Applications, 141(14), 19-25.

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). K-NN model-based approach in

classification. International Conference on Ontologies, Databases and Applications of

Semantics (pp. 986-996). Catania, Sicily, Italy: Springer.

Hamming, R. (1958). Error detecting and error correcting codes. Bell System Technical Journal,

131(1), 147-160.

Han, J., Pei, J., & Kamber, M. (2006). Data mining, Southeast Asia edition (2nd ed.). Elsevier.

Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC. Machine Learning,

45, 171-186.

http://dx.doi.org/10.1088/1757-899X/407/1/012090
http://dx.doi.org/10.1088/1757-899X/407/1/012090

125

He, J., Zhang, Y., Li, X., & Shi, P. (2012). Learning Naive Bayes classifiers from positive and

unlabelled examples with uncertainty. International Journal of Systems Science, 43(10),

1805-1825 .

Hearst, M. A., Dumais, S., Osman, E., Platt, J. C., & Scholkopf, B. (1998). Support vector machines.

IEEE Intelligent Systems, 13(4), 18-28.

Hintze, J. L. (2007). NCSS User's Guide 3. NCSS.

Hu, L.Y., Huang, M.W., Ke, S.W., & Tsai, C.F. (2016). The distance function effect on k-nearest

neighbor classification for medical datasets. SpringerPlus, 5(1), 1-9.

Ince, H., & Aktan, B. (2009). A comparison of data mining techniques for credit scoring in banking: a

managerial perspective. Journal of Business Economics and Management, 10(3), 233-240.

Jakkula, V. (2006). Tutorial on support vector machine (SVM). School of EECS, Washington State

University. https://course.ccs.neu.edu/cs5100f11/resources/jakkula.pdf

Jang, W., Lee, J. K., Lee, J., & Han, S. H. (2015). Naïve Bayesian classifier for selecting good/bad

projects during the early stage of international construction bidding decisions. Mathematical

Problems in Engineering 2015(10), 1-12.

Kadam, A. S., Nikam, S. R., Aher, A. A., Shelke, G. V., & Chandgude, A. S. (2021). Prediction for

loan approval using machine learning algorithm. International Research Journal of

Engineering and Technology, 8(4), 4089-4092.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence. 97(1-

2), 273-324.

Krichene, A. (2017). Using a Naive Bayesian classifier methodology for loan risk assessment:

evidence from a Tunisian commercial bank. Journal of Economics Finance and

Administrative Science, 22(42), 3-24.

Kuhn, L., Page, K., Ward, J., & Worrall-Carter, L. (2013). The process and utility of classification

and regression tree methodology in nursing research. Journal of Advanced Nursing, 70, 1276-

1286.

Kwofie, C., Ansah, C. O., & Boad, C. (2015). Predicting the probability of loan-default: an

application of binary logistic regression. Research Journal of Mathematics and Statistics 7(4),

46-52.

Lall, U., & Sharma, A. (1996). A nearest neighbor bootstrap for resampling hydrologic time series.

Water Resour. Res., 32(3), 679-693.

Lallahem, S., & Mania, J. (2003). A nonlinear rainfall-runoff model using neural network technique:

example in fractured porous media. Mathematical and Computer Modelling, 37, 1047-1061.

Lavrač, N., Todorovski, L., & Jantke, K. P. (Eds.) (2006, October 7-10). Proceedings of the Discovery

Science: 9th International Conference, (DS 2006), Barcelona, Spain. Springer.

Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (2002). Credit scoring using the hybrid neural

discriminant technique. Expert Systems with Applications, 23(3), 245-254.

126

Li, J., Wang, S., Cheng, K., & Morstatter, F. (2016). Feature selection: a data perspective. ACM

Computing Surveys, 50(6).

Lin, C., & Fan, C. (2019). Evaluation of CART, CHAID, and QUEST algorithms: a case study of

construction defects in Taiwan. Journal of Asian Architecture and Building Engineering,

18(6), 539-553.

Liu, Q., Lu, J., Chen, S., & Zhao, K. (2014). Multiple Naïve Bayes classifiers ensemble for traffic

incident detection. Mathematical Problems in Engineering, 4, 1-16. Article ID 383671.

DOI:10.1155/2014/383671

Ma, C.M., Yang, W.S., & Cheng, B.W. (2014). How the parameters of k-nearest neighbor algorithm

impact on the best classification accuracy: in case of Parkinson dataset. Journal of Applied

Sciences, 14(2), 171-176. DOI: 10.3923/jas.2014.171.176

Madaan, M., Kumar, A., Keshri, C., Jain, R., & Nagrath, P. (2021). Loan default prediction using

decision trees and random forest: a comparative study. In IOP Conference Series Materials

Science and Engineering (Vol. 1022, No. 1, p. 012042). IOP Publishing. Pp 1-12

Marqués, A., García, V., & Sánchez, J. (2012). Exploring the behaviour of base classifiers in credit

scoring ensembles. Expert Systems with Applications, 39, 10244-10250.

Mazinani, S. M., & Fathi, K. (2015). Combining K-NN and decision tree algorithms to improve

intrusion detection system performance. International Journal of Machine Learning and

Computing, 5(6), 476-479.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models 2nd Edition. London: Chapman

and Hall.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.

The Bulletin of Mathematical Biophysics, 5, 115-133.

Moon, J., Park, S., Rho, S., & Hwang, E. (2019). A comparative analysis of artificial neural network

architectures for building energy consumption forecasting. International Journal of

Distributed Sensor Networks. https://doi.org/10.1177%2F1550147719877616

Murthy, S. K., & Salzberg, S. (1995). Decision tree induction: how effective is the greedy heuristic?

KDD https://dblp.org/db/conf/kdd

Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks. International

Journal of Computer Applications Technology and Research, 5(6), 395-402.

Mwangi, M. C. (2016). Effect of loan collection procedures and loan default in microfinance

institutions in Kirinyaga County. Global Journal of Management and Business

Research,16(8), Version 1.0, 36-42.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines.

Proceedings of the 27th International Conference on International Conference on Machine

Learning (ICML 10), 807-814.

Naufal, N., Devila, S., & Lestari, D. (2019). Generalized Linear Model (GLM) to Determine Life

Insurance Premiums. AIP Conference Proceedings 2168 (020036), Pp 1-8.

http://dx.doi.org/10.1155/2014/383671
https://dx.doi.org/10.3923/jas.2014.171.176

127

Nayak, J., Naik, B., & Behera, H. (2015). A comprehensive survey on support vector machine in data

mining tasks: applications and challenges. International Journal of Database Theory and

Application, 8(1), 169-186.

Oken, A. (2017, May 5). An introduction to and applications of neural networks.

https://www.whitman.edu/Documents/Academics/Mathematics/2017/Oken.pdf

Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing.

International Journal of Remote Sensing, 26(5).

Panthong, R., & Srivihok, A. (2015). Wrapper feature subset selection for dimension reduction based

on ensemble learning algorithm. Procedia Computer Science, 72, 162-169.

Park, H.A. (2013). An introduction to logistic regression: from basic concepts to interpretation with

particular attention to nursing domain. Journal of Korean Academy of Nursing, 43(2), 154-

164.

Pasini, A. (2015). Artificial neural networks for small dataset analysis. Journal of Thoracic Disease,

7(5), 953-960.

Patel, N., & Upadhyay, S. (2012). Study of various decision tree pruning methods with their empirical

comparison in WEKA. International Journal of Computers and Applications, 60(12), 20-25.

Peng, J., So, T.-S. H., Stage, K., & John, E. P. (2002). The use and interpretation of logistic regression

in higher education journals 1988-1999. Research in Higher Education, 43(3), 259-293.

Perera, H., & Premaratne, S. (2016, September). An artificial neuralnetwork approach for the

predictive accuracy of payments of leasing customers in Sri Lanka. Full Paper Proceeding

BESSH-2016, 285(2), 1-11.

Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: an overview and their use

in medicine. Journal of Medical Systems, 26(5), 445-463.

Purswani, R., Verma, S., & Jaiswal, Y. (2021). Loan approval prediction using machine learning: a

review. International Research Journal of Engineering and Technology, 8(6), 3252-3255.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Radhika, R., Dharani, G. V., & Thanuja, G. (2021). Loan risk prediction using machine learning.

International Research Journal of Engineering and Technology, 8(3).

Rampisela, T., & Rustam, Z. (2018). Classification of schizophrenia data using support vector

machine (SVM). Journal of Physics: Conference Series 1108 012044.

Ruder, S. (2017, June 15). An overview of gradient descent optimization algorithms. Sebastian Ruder.

https://ruder.io/optimizing-gradient-descent/

Sarkar, S., Midi, H., & Rana, S. (2011). Detection of Outliers and Influential Observations in Binary

Logistic Regression: An Empirical Study. Journal of Applied Sciences, 11, 26-35.

Schechtman, E., & Schechtman, G. (2019). The relationship between Gini terminology and the ROC

curve. Metron, 77(6). DOI:10.1007/s40300-019-00160-7

http://dx.doi.org/10.1007/s40300-019-00160-7

128

Shahid, N., Rappon, T., & Berta, W. (2019). Applications of artificial neural networks in health care

organizational decision-making: a scoping review. PLOS One, 14(2): e0212356.

https://doi:10.1371/journal.pone.0212356.

Shalizi, C. R. (2019). Advanced data analysis from an elementary point of view.

https://freecomputerbooks.com/Advanced-Data-Analysis-from-an-Elementary-Point-of-

View.html

Shiruru, K., Kukreja, H., Bharath, N., & Siddesh, C. (2016). An introduction to artificial neural

network. International Journal Of Advance Research And Innovative Ideas In Education,

1(5), 27-30.

Singh, S., & Giri, M. (2014). Comparative study Id3, Cart And C4.5 decision tree algorithm: a survey.

International Journal of Advanced Information Science and Technology (IJAIST), 3(7), 47-

52.

Singpurwalla, N. D., & Lai, B. (2020, August 30). The dinegentropy of diagnostic tests. Retrieved

from arXiv:2008.13127v1: https://arxiv.org/abs/2008.13127v1

Srivastava, D., & Bhambhu, L. (2010). Data classification using support vector machine. Journal of

Theoretical and Applied Information Technology, 12(1), 1-7.

Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Academic Emergency Medicine, 18(10),

1099-1104.

Sudhamathy, G. (2016). Credit risk analysis and prediction modelling of bank loans using r.

International Journal of Engineering and Technology, 8(5), 1954-1966.

Tawfiq, L. N., & Thirthar, A. A. (2013). Improving gradient descent method for training feed forward

neural networks. International Journal of Modern Computer Science & Engineering, 2(1),

12-24.

Tyralis, H., Papacharalampous, G., & Langousis, A. (2019). A brief review of random forests for

water scientists and practitioners and their recent history in water resources. Water, 11(5),

910-946.

Vapnik, V. N. (1982). Estimation of dependences based on empirical data (S. Kotz, Trans.). Springer.

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.

Venables, W. N., & Ripley, B. D. (1999). Generalized Linear Models. In: Modern Applied Statistics

with S-PLUS. Statistics and Computing. New York: Springer.

Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. Cybernetics and

Information Technologies, 19(1), 3-26.

Wang, S., Tang, J., & Liu, H. (2016). Feature Selection. In C. Sammut & G. I. Webb (Eds.),

Encyclopedia of Machine Learning and Data Mining. Springer Science+Business Media.

Wibawa, A., Kurniawan, A. C., Adiperkasa, R. P., Murti, D. M., Putra, S. M., Kurniawan, S. A., &

Nugraha, Y. R. (2019). Naïve Bayes classifier for journal quartile classification. International

Journal of Recent Contributions from Engineering Science & IT, 7(2), 91-99.

129

Yang, Y. (2007). Adaptive credit scoring with kernel learning methods. European Journal of

Operational Research, 183(3), 1521-1536.

Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in bankruptcy

prediction: general framework and cross-validation analysis. European Journal of Operational

Research, 116(1), 16-32.

Zhang, S., Li, X., Zong, M., Zhu, X., & Wang, R. (2018). Efficient K-NN Classification With

Different Numbers of Nearest Neighbors. IEEE Transactions on Neural Networks and

Learning Systems, vol. 29, no. 5, 1774-1785.

Zhou, L., & Wang, H. (2012). Loan default prediction on large imbalanced data using random forests.

TELKOMNIKA Indonesian Journal of Electrical Engineering, 10(6), 1519-1525.

130

Appendix 1 – Principal Component Analysis

#########Packages#########

import pandas as pandas

from pandas.plotting import scatter_matrix

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

import scipy.stats

import seaborn as sns

from sklearn.preprocessing import OneHotEncoder

from sklearn.preprocessing import StandardScaler

#from sklearn.datasets import make_classification

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

from sklearn.feature_selection import VarianceThreshold

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

from sklearn.feature_selection import SelectFromModel

from sklearn.model_selection import GridSearchCV

from sklearn import model_selection

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.svm import SVC

import tensorflow

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.constraints import maxnorm

from keras.layers import Dropout

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import matthews_corrcoef, precision_score, accuracy_score, recall_score,

f1_score

from sklearn.metrics import roc_auc_score, r2_score

from sklearn.metrics import roc_curve

#########PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###First select number of principal components###

PCAfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

131

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

PCAFeat = dataset.loc[:, PCAfeatures].values

PCAFeat = StandardScaler().fit_transform(PCAFeat)

pca = PCA(n_components=16)

principalComponents = pca.fit_transform(PCAFeat)

var = pca.explained_variance_ratio_

var1 = np.cumsum(np.round(pca.explained_variance_ratio_, decimals = 3)*100)

var1

###Create 7 principal components###

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(PCAFeat)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

###Check correlation of principal components###

plt.figure(figsize=(20,20))

heatmap = sns.heatmap(principalDf.corr(),

 vmin=-1,vmax=1,annot=True)

heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':15},pad=15);

#########Logistic Regression – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

132

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

133

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

###Classifier###

classifier = LogisticRegression(n_jobs=-1,

 solver = 'newton-cg',

 C = 10,

 penalty = 'l2',

 class_weight=class_weight,

 random_state=0)

classifier.fit(X_train, y_train)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred_prob = classifier.predict_proba(X_train)

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

#Test Set

y_pred = classifier.predict(X_test)

y_pred_prob = classifier.predict_proba(X_test)

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########Decision Tree – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

134

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

135

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

###Classifier###

classifier = DecisionTreeClassifier(criterion='entropy',

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 200,

 splitter = 'best',

 min_impurity_split = 0.6,

 class_weight=class_weight,

 random_state=0)

classifier.fit(X_train, y_train)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred_prob = classifier.predict_proba(X_train)

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

#Test Set

y_pred = classifier.predict(X_test)

y_pred_prob = classifier.predict_proba(X_test)

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

136

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#SHAP Graphs

import shap

shap.initjs()

explainer = shap.TreeExplainer(classifier)

shap_values = explainer.shap_values(X_train)

shap.summary_plot(shap_values[1], X_train, plot_type="bar",max_display=57)

explainer = shap.TreeExplainer(classifier)

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values[1], X_test, plot_type="bar",max_display=57)

#########Random Forest – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

137

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

###Classifier###

classifier = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 40,

 max_features = 'auto',

 min_samples_leaf = 50,

 min_samples_split = 550,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

138

classifier.fit(X_train, y_train)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred_prob = classifier.predict_proba(X_train)

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

#Test Set

y_pred = classifier.predict(X_test)

y_pred_prob = classifier.predict_proba(X_test)

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#SHAP Graphs

import shap

shap.initjs()

explainer = shap.TreeExplainer(classifier)

shap_values = explainer.shap_values(X_train)

shap.summary_plot(shap_values[1], X_train, plot_type="bar",max_display=57)

shap.summary_plot(shap_values[1], X_train,max_display=57)

explainer = shap.TreeExplainer(classifier)

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values[1], X_test, plot_type="bar",max_display=57)

shap.summary_plot(shap_values[1], X_test,max_display=57)

#########SVM – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

139

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

140

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

###Classifier###

classifier = SVC(kernel = 'rbf',

 gamma = 0.005 ,

 C = 21,

 class_weight = 'balanced',

 probability=True)

classifier.fit(X_train, y_train)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred_prob = classifier.predict_proba(X_train)

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

#Test Set

y_pred = classifier.predict(X_test)

y_pred_prob = classifier.predict_proba(X_test)

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

141

#########NB – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

142

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

###Classifier###

classifier = GaussianNB()

classifier.fit(X_train, y_train)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred_prob = classifier.predict_proba(X_train)

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

143

#Test Set

y_pred = classifier.predict(X_test)

y_pred_prob = classifier.predict_proba(X_test)

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########KNN – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

144

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

###Smote###

from collections import Counter

from sklearn.datasets import make_classification

from imblearn.over_sampling import SMOTE

print(Counter(y_train))

sampling strategy

sample = SMOTE()

X_train, y_train = sample.fit_resample(X_train, y_train)

print(Counter(y_train))

###Classifier###

classifier = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights = 'uniform')

classifier.fit(X_train, y_train)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

145

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred_prob = classifier.predict_proba(X_train)

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

#Test Set

y_pred = classifier.predict(X_test)

y_pred_prob = classifier.predict_proba(X_test)

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########ANN – PCA#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###PCA###

correlatedfeatures = ['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

]

xcorr = dataset.loc[:, correlatedfeatures].values

xcorr = StandardScaler().fit_transform(xcorr)

from sklearn.decomposition import PCA

146

pca = PCA(n_components=7)

principalComponents = pca.fit_transform(xcorr)

principalDf = pandas.DataFrame(data = principalComponents

 , columns = ['principalcomponent1'

 ,'principalcomponent2'

 ,'principalcomponent3'

 ,'principalcomponent4'

 ,'principalcomponent5'

 ,'principalcomponent6'

 ,'principalcomponent7'

])

pca.explained_variance_ratio_

dataset.reset_index(drop=True, inplace=True)

principalDf.reset_index(drop=True, inplace=True)

dataset = pandas.concat([dataset,principalDf],axis=1)

dataset.drop(['Age',

'Instalment /Disposable income',

'YearsWithCurrentEmployer',

'% Total Taken Up',

'NumberOfDependents',

'Disposable income/Basic',

'Debt/Net Income',

'Max Offer',

'% instalment to income taken',

'% instalment to income allowed',

'External consolidations/Amount Taken',

'Internal consolidations/Amount Taken',

'Total consolidations/Amount Taken',

'Debt to Income ratio',

'Final Disposable Income/NetIncome',

'Calc Disposable Income/NetIncome',

],axis=1,inplace=True)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

###Classifier###

147

classifier = Sequential()

classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim

= 48))

classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))

classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

classifier.fit(X_train, y_train, batch_size = 128, epochs = 200, class_weight=class_weight)

###Evaluation###

Gini function

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

#Training Set

y_train_pred = classifier.predict(X_train)

y_train_pred = (y_train_pred > 0.5)

print('Confusion Matrix: ')

print(confusion_matrix(y_train, y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

#Test Set

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5)

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

148

Appendix 2 – Feature Selection

#########Packages#########

import pandas as pandas

from pandas.plotting import scatter_matrix

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

import scipy.stats

import seaborn as sns

from sklearn.preprocessing import OneHotEncoder

from sklearn.preprocessing import StandardScaler

#from sklearn.datasets import make_classification

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

from sklearn.feature_selection import VarianceThreshold

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

from sklearn.feature_selection import SelectFromModel

from sklearn.model_selection import GridSearchCV

from sklearn import model_selection

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.svm import SVC

import tensorflow

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.constraints import maxnorm

from keras.layers import Dropout

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import matthews_corrcoef, precision_score, accuracy_score, recall_score,

f1_score

from sklearn.metrics import roc_auc_score, r2_score

from sklearn.metrics import roc_curve

#########Logistic Regression – Feature Selection#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

149

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

seed_val = 1000000000

np.random.seed(seed_val)

feature selection###

build initial model using all the features###

model_all_features = LogisticRegression(n_jobs=-1,

 solver = 'newton-cg',

 C = 10,

 penalty = 'l2',

 class_weight=class_weight,

 random_state=0)

model_all_features.fit(X_train, y_train)

calculate the roc-auc in the test set

y_pred_test = model_all_features.predict_proba(X_test)[:, 1]

auc_score_all = roc_auc_score(y_test, y_pred_test)

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all))

###determine order in which features are removed from model ###

feature_order = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 100,

 min_samples_split = 400,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

feature_order.fit(X_train, y_train)

obtaining feature names and importance

features = pandas.Series(feature_order.feature_importances_)

features.index = X_train.columns

sorting features by importance

features.sort_values(ascending=True, inplace=True)

plotting feature importance

features.plot.bar(figsize=(20,6))

show list of ordered features

features = list(features.index)

features

###recursive feature elimination###

tol = 0.001

print('doing recursive feature elimination')

features_to_remove = []

count = 1

150

for feature in features:

 print()

 print('testing feature: ', feature, ' which is feature ', count,

 ' out of ', len(features))

 count = count + 1

build model

 model_int = LogisticRegression(n_jobs=-1,

 solver = 'newton-cg',

 C = 10,

 penalty = 'l2',

 class_weight=class_weight,

 random_state=0)

 model_int.fit(

 X_train.drop(features_to_remove + [feature], axis=1), y_train)

 y_pred_test = model_int.predict_proba(

 X_test.drop(features_to_remove + [feature], axis=1))[:, 1]

 auc_score_int = roc_auc_score(y_test, y_pred_test)

 print('New Test ROC AUC={}'.format((auc_score_int)))

 print('All features Test ROC AUC={}'.format((auc_score_all)))

 diff_auc = auc_score_all - auc_score_int

 if diff_auc >= tol:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('keep: ', feature)

 print

 else:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('remove: ', feature)

 print

 auc_score_all = auc_score_int

 features_to_remove.append(feature)

print('End')

features_to_keep = [x for x in features if x not in features_to_remove]

print('total features to keep: ', len(features_to_keep))

###final model###

final_model = LogisticRegression(n_jobs=-1,

 solver = 'newton-cg',

 C = 10,

 penalty = 'l2',

 class_weight=class_weight,

 random_state=0)

final_model.fit(X_train[features_to_keep], y_train)

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1]

auc_score_final = roc_auc_score(y_test, y_pred_test)

print('Test selected features ROC AUC=%f' % (auc_score_final))

Gini function###

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

###Train###

y_train_pred = final_model.predict(X_train[features_to_keep])

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep])

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train,y_train_pred))

print()

print('Model Results: ')

151

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

###Test###

y_pred = final_model.predict(X_test[features_to_keep])

y_pred_prob = final_model.predict_proba(X_test[features_to_keep])

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########Decision Tree– Feature Selection#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

seed_val = 1000000000

np.random.seed(seed_val)

feature selection###

build initial model using all the features###

model_all_features = DecisionTreeClassifier(criterion='entropy',

 max_depth = 60,

152

 max_features = 'auto',

 min_samples_leaf = 200,

 splitter = 'best',

 min_impurity_split = 0.6,

 class_weight=class_weight,

 random_state=0)

model_all_features.fit(X_train, y_train)

calculate the roc-auc in the test set

y_pred_test = model_all_features.predict_proba(X_test)[:, 1]

auc_score_all = roc_auc_score(y_test, y_pred_test)

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all))

###determine order in which features are removed from model ###

feature_order = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 100,

 min_samples_split = 400,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

feature_order.fit(X_train, y_train)

obtaining feature names and importance

features = pandas.Series(feature_order.feature_importances_)

features.index = X_train.columns

sorting features by importance

features.sort_values(ascending=True, inplace=True)

plotting feature importance

features.plot.bar(figsize=(20,6))

show list of ordered features

features = list(features.index)

features

###recursive feature elimination###

tol = 0.001

print('doing recursive feature elimination')

features_to_remove = []

count = 1

for feature in features:

 print()

 print('testing feature: ', feature, ' which is feature ', count,

 ' out of ', len(features))

 count = count + 1

build model

 model_int = DecisionTreeClassifier(criterion='entropy',

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 200,

 splitter = 'best',

 min_impurity_split = 0.6,

 class_weight=class_weight,

 random_state=0)

 model_int.fit(

 X_train.drop(features_to_remove + [feature], axis=1), y_train)

 y_pred_test = model_int.predict_proba(

 X_test.drop(features_to_remove + [feature], axis=1))[:, 1]

 auc_score_int = roc_auc_score(y_test, y_pred_test)

 print('New Test ROC AUC={}'.format((auc_score_int)))

 print('All features Test ROC AUC={}'.format((auc_score_all)))

 diff_auc = auc_score_all - auc_score_int

153

 if diff_auc >= tol:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('keep: ', feature)

 print

 else:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('remove: ', feature)

 print

 auc_score_all = auc_score_int

 features_to_remove.append(feature)

print('End')

features_to_keep = [x for x in features if x not in features_to_remove]

print('total features to keep: ', len(features_to_keep))

###final model###

final_model = DecisionTreeClassifier(criterion='entropy',

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 200,

 splitter = 'best',

 min_impurity_split = 0.6,

 class_weight=class_weight,

 random_state=0)

final_model.fit(X_train[features_to_keep], y_train)

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1]

auc_score_final = roc_auc_score(y_test, y_pred_test)

print('Test selected features ROC AUC=%f' % (auc_score_final))

Gini function###

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

###Train###

y_train_pred = final_model.predict(X_train[features_to_keep])

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep])

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train,y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

###Test###

y_pred = final_model.predict(X_test[features_to_keep])

y_pred_prob = final_model.predict_proba(X_test[features_to_keep])

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

154

#########Random Forest– Feature Selection#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

seed_val = 1000000000

np.random.seed(seed_val)

feature selection###

build initial model using all the features###

model_all_features = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 40,

 max_features = 'auto',

 min_samples_leaf = 50,

 min_samples_split = 550,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

model_all_features.fit(X_train, y_train)

calculate the roc-auc in the test set

y_pred_test = model_all_features.predict_proba(X_test)[:, 1]

auc_score_all = roc_auc_score(y_test, y_pred_test)

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all))

###determine order in which features are removed from model ###

feature_order = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 40,

 max_features = 'auto',

155

 min_samples_leaf = 50,

 min_samples_split = 550,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

feature_order.fit(X_train, y_train)

obtaining feature names and importance

features = pandas.Series(feature_order.feature_importances_)

features.index = X_train.columns

sorting features by importance

features.sort_values(ascending=True, inplace=True)

plotting feature importance

features.plot.bar(figsize=(20,6))

show list of ordered features

features = list(features.index)

features

###recursive feature elimination###

tol = 0.001

print('doing recursive feature elimination')

features_to_remove = []

count = 1

for feature in features:

 print()

 print('testing feature: ', feature, ' which is feature ', count,

 ' out of ', len(features))

 count = count + 1

build model

 model_int = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 40,

 max_features = 'auto',

 min_samples_leaf = 50,

 min_samples_split = 550,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

 model_int.fit(

 X_train.drop(features_to_remove + [feature], axis=1), y_train)

 y_pred_test = model_int.predict_proba(

 X_test.drop(features_to_remove + [feature], axis=1))[:, 1]

 auc_score_int = roc_auc_score(y_test, y_pred_test)

 print('New Test ROC AUC={}'.format((auc_score_int)))

 print('All features Test ROC AUC={}'.format((auc_score_all)))

 diff_auc = auc_score_all - auc_score_int

 if diff_auc >= tol:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('keep: ', feature)

 print

 else:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('remove: ', feature)

 print

 auc_score_all = auc_score_int

 features_to_remove.append(feature)

156

print('End')

features_to_keep = [x for x in features if x not in features_to_remove]

print('total features to keep: ', len(features_to_keep))

###final model###

final_model = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 40,

 max_features = 'auto',

 min_samples_leaf = 50,

 min_samples_split = 550,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

final_model.fit(X_train[features_to_keep], y_train)

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1]

auc_score_final = roc_auc_score(y_test, y_pred_test)

print('Test selected features ROC AUC=%f' % (auc_score_final))

Gini function###

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

###Train###

y_train_pred = final_model.predict(X_train[features_to_keep])

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep])

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train,y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

###Test###

y_pred = final_model.predict(X_test[features_to_keep])

y_pred_prob = final_model.predict_proba(X_test[features_to_keep])

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########SVM– Feature Selection#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

157

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

seed_val = 1000000000

np.random.seed(seed_val)

feature selection###

build initial model using all the features###

model_all_features = SVC(kernel = 'rbf',

 gamma = 0.005,

 C = 21,

 class_weight = 'balanced',

 probability=True)

model_all_features.fit(X_train, y_train)

calculate the roc-auc in the test set

y_pred_test = model_all_features.predict_proba(X_test)[:, 1]

auc_score_all = roc_auc_score(y_test, y_pred_test)

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all))

###determine order in which features are removed from model ###

feature_order = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 100,

 min_samples_split = 400,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

feature_order.fit(X_train, y_train)

obtaining feature names and importance

features = pandas.Series(feature_order.feature_importances_)

features.index = X_train.columns

sorting features by importance

features.sort_values(ascending=True, inplace=True)

plotting feature importance

158

features.plot.bar(figsize=(20,6))

show list of ordered features

features = list(features.index)

features

###recursive feature elimination###

tol = 0.001

print('doing recursive feature elimination')

features_to_remove = []

count = 1

for feature in features:

 print()

 print('testing feature: ', feature, ' which is feature ', count,

 ' out of ', len(features))

 count = count + 1

build model

 model_int = SVC(kernel = 'rbf',

 gamma = 0.005,

 C = 21,

 class_weight = 'balanced',

 probability=True)

 model_int.fit(

 X_train.drop(features_to_remove + [feature], axis=1), y_train)

 y_pred_test = model_int.predict_proba(

 X_test.drop(features_to_remove + [feature], axis=1))[:, 1]

 auc_score_int = roc_auc_score(y_test, y_pred_test)

 print('New Test ROC AUC={}'.format((auc_score_int)))

 print('All features Test ROC AUC={}'.format((auc_score_all)))

 diff_auc = auc_score_all - auc_score_int

 if diff_auc >= tol:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('keep: ', feature)

 print

 else:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('remove: ', feature)

 print

 auc_score_all = auc_score_int

 features_to_remove.append(feature)

print('End')

features_to_keep = [x for x in features if x not in features_to_remove]

print('total features to keep: ', len(features_to_keep))

###final model###

final_model = SVC(kernel = 'rbf',

 gamma = 0.005,

 C = 21,

 class_weight = 'balanced',

 probability=True)

final_model.fit(X_train[features_to_keep], y_train)

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1]

auc_score_final = roc_auc_score(y_test, y_pred_test)

print('Test selected features ROC AUC=%f' % (auc_score_final))

Gini function###

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

159

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

###Train###

y_train_pred = final_model.predict(X_train[features_to_keep])

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep])

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train,y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

###Test###

y_pred = final_model.predict(X_test[features_to_keep])

y_pred_prob = final_model.predict_proba(X_test[features_to_keep])

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########NB – Feature Selection#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

160

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

seed_val = 1000000000

np.random.seed(seed_val)

feature selection###

build initial model using all the features###

model_all_features = GaussianNB()

model_all_features.fit(X_train, y_train)

calculate the roc-auc in the test set

y_pred_test = model_all_features.predict_proba(X_test)[:, 1]

auc_score_all = roc_auc_score(y_test, y_pred_test)

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all))

###determine order in which features are removed from model ###

feature_order = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 100,

 min_samples_split = 400,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

feature_order.fit(X_train, y_train)

obtaining feature names and importance

features = pandas.Series(feature_order.feature_importances_)

features.index = X_train.columns

sorting features by importance

features.sort_values(ascending=True, inplace=True)

plotting feature importance

features.plot.bar(figsize=(20,6))

show list of ordered features

features = list(features.index)

features

###recursive feature elimination###

tol = 0.001

print('doing recursive feature elimination')

features_to_remove = []

count = 1

for feature in features:

 print()

 print('testing feature: ', feature, ' which is feature ', count,

 ' out of ', len(features))

 count = count + 1

build model

 model_int = GaussianNB()

 model_int.fit(

 X_train.drop(features_to_remove + [feature], axis=1), y_train)

 y_pred_test = model_int.predict_proba(

 X_test.drop(features_to_remove + [feature], axis=1))[:, 1]

 auc_score_int = roc_auc_score(y_test, y_pred_test)

 print('New Test ROC AUC={}'.format((auc_score_int)))

 print('All features Test ROC AUC={}'.format((auc_score_all)))

 diff_auc = auc_score_all - auc_score_int

 if diff_auc >= tol:

 print('Drop in ROC AUC={}'.format(diff_auc))

161

 print('keep: ', feature)

 print

 else:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('remove: ', feature)

 print

 auc_score_all = auc_score_int

 features_to_remove.append(feature)

print('End')

features_to_keep = [x for x in features if x not in features_to_remove]

print('total features to keep: ', len(features_to_keep))

###final model###

final_model = GaussianNB()

final_model.fit(X_train[features_to_keep], y_train)

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1]

auc_score_final = roc_auc_score(y_test, y_pred_test)

print('Test selected features ROC AUC=%f' % (auc_score_final))

Gini function###

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

###Train###

y_train_pred = final_model.predict(X_train[features_to_keep])

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep])

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train,y_train_pred))

print()

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

###Test###

y_pred = final_model.predict(X_test[features_to_keep])

y_pred_prob = final_model.predict_proba(X_test[features_to_keep])

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

#########KNN – Feature Selection#########

###import data###

url = “C:/Users/suered/Desktop/masters/MastersData.csv”

dataset = pandas.read_csv(url,low_memory=False)

###categorical variables - get_dummies###

X= dataset.drop('Default', axis=1)

Y = dataset['Default']

X_transformed = pandas.get_dummies(X, drop_first=True)

dataset = pandas.concat([Y,X_transformed],axis=1)

162

###Splitting Data###

X = dataset.iloc[:, 1:]

Y = dataset.iloc[:, 0]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0,)

###Standardisation###

set up the scaler

scaler = StandardScaler()

fit the scaler to the train set

scaler.fit(X_train)

transform train and test sets

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

transform NumPy arrays to dataframes

X_train_scaled = pandas.DataFrame(X_train_scaled, columns=X_train.columns)

X_test_scaled = pandas.DataFrame(X_test_scaled, columns=X_test.columns)

standardisation

X_train = X_train_scaled

X_test = X_test_scaled

Getting class weight###

from sklearn.utils.class_weight import compute_class_weight

cw = compute_class_weight('balanced', np.unique(y_train), y_train)

class_weight = {c: w for c, w in zip(np.unique(y_train), cw)}

seed_val = 1000000000

np.random.seed(seed_val)

###SMOTE###

from collections import Counter

from sklearn.datasets import make_classification

from imblearn.over_sampling import SMOTE

print(Counter(y_train))

sampling strategy

sample = SMOTE()

X_train, y_train = sample.fit_resample(X_train, y_train)

print(Counter(y_train))

feature selection###

build initial model using all the features###

model_all_features = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights =

'uniform')

model_all_features.fit(X_train, y_train)

calculate the roc-auc in the test set

y_pred_test = model_all_features.predict_proba(X_test)[:, 1]

auc_score_all = roc_auc_score(y_test, y_pred_test)

print('Test all features Random Forrest ROC AUC=%f' % (auc_score_all))

###determine order in which features are removed from model ###

feature_order = RandomForestClassifier(criterion='gini',

 bootstrap = True,

 max_depth = 60,

 max_features = 'auto',

 min_samples_leaf = 100,

 min_samples_split = 400,

 n_estimators = 50,

 n_jobs=-1,

 oob_score=True,

 class_weight=class_weight,

 random_state=0)

feature_order.fit(X_train, y_train)

obtaining feature names and importance

features = pandas.Series(feature_order.feature_importances_)

features.index = X_train.columns

sorting features by importance

features.sort_values(ascending=True, inplace=True)

163

plotting feature importance

features.plot.bar(figsize=(20,6))

show list of ordered features

features = list(features.index)

features

###recursive feature elimination###

tol = 0.001

print('doing recursive feature elimination')

features_to_remove = []

count = 1

for feature in features:

 print()

 print('testing feature: ', feature, ' which is feature ', count,

 ' out of ', len(features))

 count = count + 1

build model

 model_int = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights =

'uniform')

 model_int.fit(

 X_train.drop(features_to_remove + [feature], axis=1), y_train)

 y_pred_test = model_int.predict_proba(

 X_test.drop(features_to_remove + [feature], axis=1))[:, 1]

 auc_score_int = roc_auc_score(y_test, y_pred_test)

 print('New Test ROC AUC={}'.format((auc_score_int)))

 print('All features Test ROC AUC={}'.format((auc_score_all)))

 diff_auc = auc_score_all - auc_score_int

 if diff_auc >= tol:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('keep: ', feature)

 print

 else:

 print('Drop in ROC AUC={}'.format(diff_auc))

 print('remove: ', feature)

 print

 auc_score_all = auc_score_int

 features_to_remove.append(feature)

print('End')

features_to_keep = [x for x in features if x not in features_to_remove]

print('total features to keep: ', len(features_to_keep))

###final model###

final_model = KNeighborsClassifier(metric= 'manhattan',n_neighbors= 121, weights = 'uniform')

final_model.fit(X_train[features_to_keep], y_train)

y_pred_test = final_model.predict_proba(X_test[features_to_keep])[:, 1]

auc_score_final = roc_auc_score(y_test, y_pred_test)

print('Test selected features ROC AUC=%f' % (auc_score_final))

Gini function###

def gini(y_true, y_pred, sample_weight=None):

 y_true = np.squeeze(y_true)

 y_pred = np.squeeze(y_pred)

 return 2.*roc_auc_score(y_true, y_pred, sample_weight=sample_weight) - 1.

###Train###

y_train_pred = final_model.predict(X_train[features_to_keep])

y_train_pred_prob = final_model.predict_proba(X_train[features_to_keep])

y_train_pred_adj = (y_train_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_train,y_train_pred))

print()

164

print('Model Results: ')

print(classification_report(y_train,y_train_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_train,y_train_pred), 4))

print("Gini:",gini(y_train.astype(int), y_train_pred_prob[:,1]))

###Test###

y_pred = final_model.predict(X_test[features_to_keep])

y_pred_prob = final_model.predict_proba(X_test[features_to_keep])

y_pred_adj = (y_pred_prob[:,1] >= 0.5).astype('int')

print('Confusion Matrix: ')

print(confusion_matrix(y_test,y_pred))

print()

print('Model Results: ')

print(classification_report(y_test,y_pred))

print('Model Accuracy: ')

print(round(accuracy_score(y_test, y_pred), 4))

print("Gini:",gini(y_test.astype(int), y_pred_prob[:,1]))

