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Abstract

This dissertation details the results of an investigation into, primarily,

three aspects of graph vulnerability namely, i-connectivity, Steiner Dis­

tance hereditatiness and functional isolation.

Following the introduction in Chapter one, Chapter two focusses on

the R-connectivity of graphs and introduces the concept of the strong R­

connectivity of digraphs. Bounds on this latter parameter are investi­

gated and then the R-connectivity function of particular types of graphs,

namely caterpillars and complete multipartite graphs as well as the strong

R-connectivity function of digraphs, is explored. The chapter concludes

with an examination of extremal graphs with a given R-connectivity.

Chapter three investigates Steiner distance hereditary graphs. It is

shown that if G is 2-Steiner distance hereditary, then G is k-Steiner dis­

tance hereditary for all k ~ 2. Further, it is shown that if G is k-Steiner

distance hereditary (k ~ 3), then G need not be (k - l)-Steiner distance

hereditary. An efficient algorithm for determining the Steiner distance of

a set of k vertices in a k-Steiner distance hereditary graph is discussed and

a characterization of 2-Steiner distance hereditary graphs is given which

leads to an efficient algorithm for testing whether a graph is 2-Steiner dis­

tance hereditary. Some general properties about the cycle structure of

k-Steiner distance hereditary graphs are established and are then used to

characterize 3-Steiner distance hereditary graphs.
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Chapter four contains an investigation of functional isolation sequences

of supply graphs. The concept of the Ranked supply graph is introduced

and both necessary and sufficient conditions for a sequence of positive non­

decreasing integers to be a functional isolation sequence of a ranked supply

graph are determined.
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Chapter 1

1.1 Measures of graph vulnerability

Many parameters have been introduced to measure the extent of the dam­

age and disruption caused in a communications network by the loss or

failure of vertices or edges in the system.

Earliest investigations of such problems dealt with the connectivity, /'1"

and edge-connectivity, A, of a graph which are of overriding importance

in cases where the disconnection of the communications network due to

vertex or edge failure is deemed to be catastrophic. These parameters have

been studied since the twenties and thirties of this century (see [M2] and

[WI]) and form the subject of an extensive literature of which we men­

tion but some trends and highlights. Characterizations and properties of

n-connected and n-edge connected graphs were obtained (see [M2], [WI],

[FFI], [EFSI], [DI], [D2], [TI], [B3], [BI], [B4]).

Relations between /'1" A and other graph-theoretical parameters (p, q, 0,

diam, degree sequences) were obtained and the existence of graphs having

prescribed values of such parameters was established (in some cases with

reference to special classes of graphs, such as line graphs, clique graphs

and circulants) (see [WI], [CHI], [H3], [BS2], [BS3], [KQl]' [M3], [M4],

[03], [CSI], [CS2], [BTI], [Zl], [H4], [BTI], [B2], [BT2]). Minimally and
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k-critically n-conneeted graphs were investigated initially in [CKLl], [ESl]

and [MS2] ..

In dealing with practical problems such as the reliability of computer

networks, we may be able to assess the probability that vertices or edges

will remain operational and to model the network in terms of a probabilis­

tic graph (see[C2] in which an extensive list of references is provided).

If a disconnected graph G - S results when a set S of vertices or edges is

removed from a graph G, it is possible that a sufficiently large component

of G - S exists to provide a viable communication system. The assessment

of this situation requires the introduction of a new parameter which takes

into account both the number of elements (vertices or edges) deleted from

G and the maximum number of vertices between which communication is

still possible:

1. In [BESl] and [BES2] the concepts of the integrity I(G) and edge­

integrity 1'(G) of a graph G were introduced and initially developed:

I(G) = min {[SI + m(G - S)} and
SCV(G)

1'(G) = min {ISI + m(G - S)},
S(,;E(G)

where m( G) denotes the maximum order of a component of a graph

G.

2. We shall not present a survey of the results on integrity and edge

integrity that have appeared since 1987 and may be found in [BES 1],

[BES2], [G2], [GSl], [GS2], [GS3], [GS4], [BBLPl], [BBLP2], [BBLP3],

[BBLPSl], [BBLPS2], [BBLP5], [BBLPS3], [BGLl], [BGL2], [CEFl],

[FSl], [LSPl] as well as in the survey article [BBGLPl]. However, we

2



J(G)

shall briefly introduce several related parameters designed to assess

the degree to which other desirable properties are retained after the

deletion of vertices or edges from a graph:

3. Let 5 C V(G) and, for each v E G - 5, let Pv(G - 5) denote the

order of the component of G - 5 that contains v. The mean integrity

of G, J(G), was defined in [CKMOl]:

min {151+ (l/p(G - 5) L Pv(G - 5)}
SCV(G) vEV(G)-S

min {151 + "E)p(H))2/ LP(H)} ,
SCV(G)

where summation takes place over all components H of G - 5.

4. The pure edge-integrity, Ip ( G), of G was defined in [BDl] to be

Ip(G) = min {151 + me(G - 5)},
Sc;.E(G)

where m e ( G - 5) denotes the maximum size of any component of

G-5.

5. The tenacity of a graph G, T(G), defined in [CMSl] as

T(G) = . {15 1 + m( G - 5)}
m.Jn k(G - 5) ,

where the minimum is taken over all vertex cutsets of G, is designed

to be used if it is desirable that, after the loss of a cut set of vertices

from G, G - 5 should contain a component of large order and be

easily reconnected by virtue of having few components. (See also

[MSl] and [CMSl].)

6. The vertex-neighbourhood-integrity of a graph G, V N I( G), is defined

in [CWl] by

VNI(G) = min {151 +m(G - N[5])}
sc;.V(G)

(see also [VVCl] and [WC2]).
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7. Related to edge-integrity is the honesty! h(G), of a graph G: A graph

G is said to be honest if I'~G) = p(G). The smallest number of edges

in a subset of E( G) whose addition to G yields an honest graph is

defined to be h(G) (see [BBLP4]).

8. The toughness of a graph G, t(G), was defined in [Cl] to be

t(G) = min{ISI/k(G - S)},
s

where the minimum is taken over all cutsets S of G if G is non-

complete and t(Kp ) = 00. (The definition was slightly altered in

[G2] and [GS4], the minimum being taken over all S c V(G) with

x:(G - S) = 0, leading to the alteration of t(Kn ) from 00 to p(G) - 1.)

Toughness is of obvious use in assessing the extent of disruption

caused by the removal of vertices from a graph in a situation where it

is deemed desirable that the resulting disconnected graph should be

easily reconnected or that the number of its components should be so

small that the structures represented by them can economically be

provided with essential services, etc. (cf. [BESl], [G2] and [GS4] in

which relations between toughness and other measures of vulnerabil­

ity are explored). However, many papers dealing with toughness have

appeared since 1973, aimed mainly at establishing links between the

toughness of a graph and its cycle structure, inspired by conjectures

in [Cl]: It was conjectured that a constant c exists such that t(G) 2:: c

implies hamiltonicity (or pancyclicity) of G, that t(G) 2: 3/2 implies

the existence of a two-factor in G and that, for any positive integer

k such that kp(G) is even, t(G) 2:: kp( G) implies the existence of

a k-factor in G. Only the last of these conjectures has been proved

[EJKSl] and it would be inappropriate to list all references to progress

made in investigating the remaining conjectures. The names of au­

thors currently most prominent in this field may be found in [BSI]

and [GS4].
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9. The binding number of a graph C, b(C) = min{IN(S)I/ISI}, where
s

the minimum is taken over all nonempty subsets S of V( C) such that

N(S) =j:. S, was defined in [W2] and further investigated in [BESl],

[G2], [GS2], [GS4], [KMHl], [WTLl], [W2], [G3] and [C3].

In the follo'wing chapters we shall explore further meas~resto assess the

vulnerability of graphs and digraphs to disruption caused by the removal

of vertices and edges.

1.2 Graph Theory Nomenclature

The basic text for the graph theory terminology and symbols used here

is Chartrand and Lesniak's Graphs and Digraphs (second edition) [CLl].

However, certain clarification of our conventions is necessary.

All graphs considered are 'simple' graphs; i.e. undirected graphs with­

out loops or multiple edges. Further, we use p = p(C) and q = q(C) to

denote the order and size respectively of a graph C.

Recall that C - S denotes the graph formed by the removal of a set

of vertices S from C, while (S) denotes the vertex-induced subgraph of C

with vertex set S.

For sets A and E, [A, E] denotes the set of edges which have one end in A

and one in E. We also speak of complete n-partite (or complete multipar­

tite graphs) of the form f{Pl,P2, ... ,Pn = f{(pl,PZ, "',Pn), with the complete

bipartite graphs of the form f{l,m being called stars. The symbols f3( C)

and k(C) will denote the independence number and the number of compo­

nents of C respectively.

The contraction of an edge e = xy ofa graph C yields the graph de­

noted C· e, defined by removing e and identifying its ends, i.e. replacing x
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and y by one vertex, w say, such that w is adjacent to v E V(G) - {x,y}

if and only if xv or yv is an edge of G.

Further, we shall use the symbol C to denote strict containment in the

comparison of sets, 151 to denote the cardinality of the set 5, and lxJ and

rx1 to denote the integer part and ceiling of x, respectively.
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Chapter 2

£-Connectivity

2.1 Introduction

The i-connectivity and i-edge connectivity of a graph G, was first intro­

duced in 1984 by Chartrand, Kapoor, Lesniak and Lick [CKLL1] by gener­

alising the concepts of the connectivity and edge-connectivity of a graph.

It is well known that the connectivity K( G) (edge-connectivity A(G))

of a graph G is the minimum number of vertices (edges) whose deletion

produces a graph with at least two components or the trivial graph. These

two parameters have the advantage that they can be computed efficiently.

However, there are situations where the connectivity (edge connectivity) is

inadequate as a measure of vulnerability.

For example, the star J(l,m and the path Pm+l (m ~ 3) are both graphs

of order m + 1 and size m that have connectivity 1, but the deletion of

a cut vertex from J(l,m produces m components whereas the deletion of a

cut vertex from Pm +1 always produces exactly two components. So in some

sense J(l,m is more vulnerable (or less reliable) than Pm +1 (for m 2: 3). The

i-connectivity and i-edge connectivity provide a differentiation between the

vulnerability of these graphs.

In particular, for i 2: 2, the i- connectivity Ke( G) (i- edge-connectivity

Ae(G)) of a graph G of order p ~ i - 1 is defined as the minimum number
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of vertices (edges) that are required to be deleted from G to produce a

graph with at least f components or with fewer than f vertices. So K;2(G) =

K;( G) and ).2(G) = ).(G). Since the problem of determining whether the

independence number (3(G) of a graph G, of order p ~ f, is at least f is

NP-complete and since (3(G) ~ f if and only if K;f.( G) =1= p - f +1, it follows

that the problem of determining whether K;f.( G) =1= p - f +1 is NP-complete.

A graph is (n,f)-connected if K;e(G) ~ n. So n- connected graphs are the

(n, 2)-connected graphs.

Unfortunately there are no known efficient algorithms for computing

K;f.(G) or ).f.(G) for a graph G. In [CKLLI] and [01] sharp bounds for

K;f.( G) are established.

It is well-known that with the aid of Menger's Theorem, Whitney [WI]

showed that a graph G is n-connected if and only if for every pair u, v of

distinct vertices of G, there exist at least n-internally disjoint u - v paths in

G. It was pointed out in [MI] and [01] that no analogous characterization

of (n, f)- connected graphs exists. It is well-known that if G is a graph

of order p, and n is an integer such that 1 :::; n :::; p - 1, then if 8(G) 2:

(p+n-I)j2, the graph G is n- connected. So for such graphs G, VVhitney's

theorem implies, that for every pair u, v of vertices of G there exist at least

n internally disjoint u - v paths. Hedman [HI] actually showed that for

such graphs G and every pair u, v of distinct vertices of G there exist at

least n internally disjoint u - v paths each of length at most 2. An analogue

of this result is established in [01]. For a set S of at least two vertices of a

graph G an S-path is a path between a pair of vertices of S whose internal

vertices do not belong to S. Two S- paths are internally disjoint if they

have no internal vertices in common.

In [01] it is shown that for a graph G of order p ~ 2, and integers f ~ 3

and n (1 :::; n :::; p - l + 1), if

8(G) ~ p+(n-
f
2)(f-I)

then for each set S of f vertices of G there exist at least n internally disjoint
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5-paths each of length at most 2.

In this chapter, we introduce and study the 'e-connectivity' of a di­

graph making use of the concept of strong connectedness. We will then

consider the i-connectivity function of caterpillars and complete multipar­

tite graphs, and then generalise this to define the strong .e-connectivity

function of a digraph. Lastly, we consider minimal graphs of a given .e­

connectivity.

2.2 The f-Connectivity of a Digraph

A digraph D is strongly connected if for every two vertices u and v of D

there exist both a u - v path and a v - u path in D. A strong component

of a digraph is an induced subdigraph that is strongly connected and that

is maximal with respect to this property. It is well-known that the strong

components of a digraph partition its vertex set. The strong independence

number f3s(D) of a digraph D is the maximum cardinality of a set 5 of

vertices of D so that the subdigraph (5) induced by 5 is acyclic, i.e., every

strong component of (5) consists of a single vertex. Such a set 5 is called

a strongly independent set. For example, if T is a transitive tournament of

order p, then f3s(T) = p and if Gp is a p-cycle, then f3s( Gp) = p - 1 whereas

the strong independence number of the complete symmetric digraph 1(; is

1.

For an integer .e 2: 2, and a digraph D of order p, the strong .e ­

connectivity K.e(D)(strong .e-arc connectivity Ae(D)) of D is the minimum

number of vertices (arcs) whose deletion from D produces a digraph with

at least .e strong components or a digraph with at most .e - 1 vertices. So

/\,e( Gp) = 1 and /\,e(I<;) = P - .e + 1 if p 2: .e 2: 3. Further, Ae(Gp) = 1

and Ae(I<;) = (p -.e + 1)(.e - 1) + C;l) = p(.e - 1) - (e;l) for p 2: .e.

Based on the work of Ford and Fulkerson [FF1], [FF2], efficient algorithms

for computing the connectivity, i.e., K.2(D) = K.(D) and the arc-connectivity

A(D) = A2(D) of a digraph D have been developed. However, in general no
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efficient algorithms for computing Kf.(D) and Af.(D) exist. For an integer

n ;::: 0 we say that a digraph D is strongly (n,f)-connected if Kf.(D) ;::: n.

2.2.1 Bounds on the strong i-connectivity of a di­

graph

Chartrand, Kapoor, Lesniak and Lick [CKLL1] provided the following suf­

ficient condition for a graph to be (n, f)-connected.

Theorem A Let G be a graph of order P with f3(G) ;::: f ;::: 2. If for every

vertex v of G

d
p+(£-1)(n-2)

egv;::: £ '

then G is (n, £) connected..

This result can be extended to digraphs.

Theorem 2.2.1.1 Let D be a digraph of order p ;::: £+n -1 with f3s(D) ;:::

£ ;::: 2. If for every vertex v of D

d .d d p(£ + 1) +n (£ - 1) - 3£ + 1
egD v = Z DV + 0 DV> £ '

then D is strongly (n, f)-connected.

Proof Assume, to the contrary, that D is a digraph that satisfies the

hypothesis of the theorem but that is not strongly (n, f)-connected. Since

f3s(D) ;::: £, there exists a set S of n - 1 vertices of D such that D - S has

at least £ strong components. Thus D - S has a strong component D I of

order PI :::; p-;+1
.

For any vertex v of D I , we note that if v is adj acent to any vertex

w in V(D) - (V(DI ) US), then v is not adjacent from w. Hence, since
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IV(D) - (V(D I ) U 5)1 = P - PI - n +1

degD v < 2(Pl - 1) + 2(n - 1) + P - PI - n + 1

- p+pl+ n -3

< P + P-;+l + n - 3
p(£+I)+n(e-l )-3£+1

e

This contradicts our assumption and therefore completes the proof. 0

The result of Theorem 2.2.1.1 is best possible as we now show. Let f :::: 2

be an integer and let m and n be positive integers. For i = 1,2, ... ,f, let

Hi be the complete symmetric digraph of order m. Let H£+1 be a complete

symmetric digraph of order n - 1 if n :::: 2. If n = 1, then let D be

obtained from HI U H2 U .. , UHe by adding all arcs of the type (x, y) where

x E V(Hi) and y E V(Hj ) and 1 .s i < j .s f. If n :::: 2, let D be obtained

from HI U H2 U ... U He+l by adding every pair of arcs of the type (x, y)

and (y,x) where x E V(H£+l) and y E Hi for 1 .s i .s f as well as all the

arcs of the type (u, v) where u E Hi, V E Hj and 1 .s i < j .s f. Then

Kl(D) = n - 1 and since P = mf + n - 1,

d >(°1) 2 4_ p(f+1)+n(f-1)-3f+1
egD v _ {. + m + n - - f

for all v E V(D).

In [01] another sufficient condition for a graph to be (n,f)- connected

is established.

Theorem B Let G be a graph of order P :::: 2, the degrees di of whose

vertices satisfy d1 .s d2 .s ... .s dp . Suppose nand f :::: 2 are integers with

1 .s n .s P - f. + 1. If dk .s k + n - 2 ::::} dp - n+1 :::: P - k(f.- 1) for each k

such that 1 .s k .s l(p - n + l)jf.J, then G is (n,f)-connected.

We now provide an extension of Theorem B to digraphs.
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Theorem 2.2.1.2 Let D be a digraph of order p ~ 2 and let the degrees

di of the vertices of D satisfy d1 ::; d2 ::; ... ::; dp. Suppose nand f ~ 2 are

integers with 1 ::; n ::; p - f + 1. If

dk ::; p + k +n - 3 =} dp-n+l ~ 2p - k(f - 1) - 1

for each integer k such that 1 ::; k ::; L(p - n + 1) / f J, then D is strongly

(n, f)-connected.

Proof Suppose the strong f-connectivity of D is less than n. Then there

is a set 5 of n - 1 vertices such that D - 5 has either at least f strong

components or order less than f. Since 151 = n - 1 ::; p - f, it follows that

D - 5 has at least f vertices; so D - 5 has at least f strong components.

Let D1 be a strong component of D - 5 of minimum order k. Then

k ::; L(p - n + l)/fJ and so p + k + n - 3 ::; 2p - k(f - 1) - 2 < 2p­

k(f - 1) - 1. Each vertex in D l has degree at most p + k +n - 3 in D; so

dk ::; p + k +n - 3. Hence, by the hypothesis, dp- n+1 ~ 2p - k(f - 1) - 1.

Let U E V(D) - (5 U V(Dl )). Then u is non-adjacent to or from each

vertex in at least f - 1 strong components of D - 5, each of order at least

k. Hence degD U ::; 2(p - 1) - k(f - 1) < 2p - k(f - 1) - 1. It follows that

5 has at least n elements, contrary to our assumtion. 0

The digraph following Theorem 2.2.1.1 also serves to illustrate that

Theorem 2.2.1.2 is best possible. Further, it is not difficult to see that

Theorem 2.2.1.1 follows as a corollary to Theorem 2.2.1.2.

2.2.2 Strong connectivity sequences of digraphs

Let G be a graph of order p. Chartrand, Kapoor, Lesniak and Lick [CKLLl]

defined the sequence of numbers K2(G), K3(G), ... ,Kp(G) as the sequence of

connectivity numbers of G. They characterized sequences of integers that

are connectivity numbers of a graph in the following theorem.

12



Theorem C A sequence b2, b3, ... , bp of nonnegative integers is the con­

nectivity sequence of a graph G of order p if and only if there exists an

integer k such that b2 :::; b3 :::; ... :::; bk :::; bk+1 and bk+i = p - (k + i) + 1 for

i = 1,2, ...,p- k. Moreover k = f3(G).

We now study the analogous concept for digraphs. Let D be a digraph

of order p. Then the sequence /\'2(D), /\'3(D), ... , /\'p(D) is called the sequence

of strong connectivity numbers of D. The following lemma will be useful

when characterizing these sequences.

Lemma 2.2.2.1 Let D be a digraph of order p 2 2 and strong inde­

pendence number f3s(D) = f3s. Then the sequence of strong connectivity

numbers has a maximum value p - f3s at k = f3s + 1, i.e. /\'k(D) = P - f3s.

Proof For 1 :::; i :::; p - f3s we have /\,(3s+i(D) = P - (f3s + i) +1. Clearly the

maximum of the subsequence

Since the subsequence /\'2(D), /\'3(D), ... , /\'(3, (D) of the sequence of connec­

tivity numbers is nondecreasing, /\,(3s (D) is the maximum value of this sub­

sequence. Since /\,(3s (D) :::; p - f3s' the lemma now follows. 0

Theorem 2.2.2.1 A sequence b2, b3, ... , bp of nonnegative integers can be re­

alized as the sequence of strong connectivity numbers of a digraph of order

p if and only if there exists an integer k such that b2 :::; b3 :::; ... :::; bk :::; bk+1

and bk+i = p - (k + i) + 1 for i = 1,2, ... , p - k. Moreover k = f3s(D).

Proof Let D be a digraph of order p. Let bi = /\'i(D) for 2 :::; i :::; p and let

k = f3s(D). Then, by the proof of Lemma 2.2.2.1, b2 :::; b3 :::; ... :::; bk :::; bk+1

and for 1 :::; i :::; p - k, bk+i = P - (k + i) + 1.

Suppose now that b2, b3, ... , bp is a sequence of nonnegative integers such

that for some k the following conditions are satisfied:

13



(i) 0 S bi S bi+I for 2 S i S k and

(ii) bk+i = p - (k + i) + 1 for i = 1,2, ... ,p - k.

Define a sequence a2, a3, ... , ak+I by a2 = b2, a3 = b3 - b2, a4 = b4 ­

b3, ... , ak+I = bk+1 - bk. For 2 S i S k +1 let Hi be the complete symmetric

digraph of order ai if ai 2: 1. For convenience we will assume that if ai = 0,

then Hi has no vertices and edges. Let K denote the complete symmetric

digraph of order p - k - I:7~21 ai = P- k - bk+1 and let H be the symmetric

join of H2, H3, ... , Hk+I and K. Now let S = {V2' V3, ... , vk+d and construct

a digraph D by joining each V r E S by a symmetric pair of arcs to each

vertex in Ui=2Hi. The order of D is p. Since S is a strongly independent

set and since H = (V(D) - S) is a complete symmetric digraph of order

p - k and as each vertex of S is joined to at least one vertex of H by a

symmetric pair of arcs, f3s(D) = 151 = k .

. For r = 2,3, ... , k + 1, let Ur = Ui=2 V(Hi ) and observe that the num­

ber of strong components of D - Ur is at least r. Thus Kr(D) S IUrl =

I:~=l ai = br for 2 S i S r +1. By a straightforward inductive argument it

can be shown if S is a set of vertices that does not contain all the vertices of

Ur, then D - 5 has at most r -1 strong components. So Kr(D) 2: IUrI = br.

Thus Ki(D) = bi for i = 2,3'00' k + 1. Further, Kk+i(D) = P - (k + i) + 1

for 1 S i S p - k. Hence bf. = p - £+ 1 = Kf.(D) for £ = k + 1, k + 2, ... ,p.

Thus b2 , b3 , 00" bp is the sequence of strong connectivity numbers of D and

o

Even though the connectivity and arc-connectivity of a digraph are eas­

ily computable measures of reliability of a network the strong connectivity

sequence of a digraph provides more information on the reliability of a net­

work. In particular if D 1 and D 2 are two digraphs with the same strong

connectivity and ki = max{£IKf.(Dd = K(Di)}, then D1 can be considered

to be more reliable than D2 if k1 < k2 .
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2.3 The ·f-connectivity function of certain

classes of graphs

The problem of disconnecting a graph into at least two components by the

deletion of both vertices and edges was first considered by Beineke and

Harary [BH1]. These concepts were extended in [02]. Let G be a graph

with f-connectivity Kt = Kt(G). If k E {O, 1, ... , Kt( G)}, then let Sk be the

minimum f-edge-connectivity among all subgraphs obtained by removing k

vertices from G. The f-connectivity function of G is defined by ft(k) = Sk

for 0 :S k :S Kt(G). So for f = 2, the f- connectivity function of a graph

is its connectivity function, which has been characterized by Beineke and

Harary [BH1]. For f ~ 3 no characterizations of the f-connectivity function

of a graph are known and it appears to be a difficult problem to characterize

such functions. In [02] several necessary conditions for a function to be an

f-connectivity function of a graph are established and the f-connectivity

function of the complete graph is derived. vVe study here the f- connectivity

function of certain types of trees and the complete n-partite graphs.

2.3.1 Caterpillars and complete Multipartite graphs

In [02] the following formula for the f-connectivity function of a complete

graph is established.

Theorem D Let p,.e ~ 2 be integers with p~ .e and suppose that G ~ K p •

Then the f- connectivity function of G is given by

{

0 if k = Kt( G)
ft(k) = .

(f - l)(p - f - k + 1) + (t;1) for 0 :S k < Kt(G).

We now extend this result to complete n-partite graphs.

Theorem 2.3.1.1 Suppose G ~ K m1 ,m2, ... ,mn where m1 :S m2 :S ... :S m n

and n ~ 2. Let p = 2:7=1 mi and let k be an integer with 0 :S k :S Kt( G).

15



If s = min{mn -1' 2::;:11 mi - k}, then the 1'-connectivity function of G is

given by

!£(k) =

o
(1' - 1)(p - m n - k)

(1' - 1)(p - m n- k) - C'-mn
2+s-1)

if k = K,f.(G)

if k i- K,f.( G) and f ~ mn - s +2

if k i- K,f.(G) ande > mn - s + 2.

To prove this result we begin by establishing a series of lemmas.

Lemma 2.3.1.1 Let G = ]{Tl,T2, ... ,Tt be a complete i-partite graph (i 2: 2)

of order p and let l' be an integer, 2 ~ l' ~ p. There exists a set of Af.(G)

edges of G, say Ef.' such that G - Ef. has l' components, at most one of

which is non- trivial.

Proof: Let VI, V2 , ••. , Vi be the partite sets of G with IViI = T"i for i =

1,2, ... , i. There exists a set Fe of Ae(G) edges of G such that G - Ff. has

l' components. Of all such sets Fe let Ee be one such that G - Ee has as

few non-trivial components as possible. vVe shall show that G - Ee has at

most one non-trivial component.

Assume, to the contrary, that G - Ee has at least two non- trivial

components, G1 and G2 , with V(Gd = A and V(G2 ) = B. For i =

. 1,2, ... , i, let A n Vi = Ai, B n Vi = Bi, IAil = ai and IBil = k Then there

1. Letting H = (A U B)a, we note that for v EAU B i (i E {1, 2, ... , i})

(2.1 )

Furthermore, the set [A, B] of all edges in H with one end vertex in A, the

other in B, has cardinality

t t

I[A, B]I = L ai(b - bi) = L bi(a - ai).
i=l i=I

(2.2)

It follows from our choice of Ee that isolating a single vertex of H requires

the removal of more edges than separating the components G1 and G2 in
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H; i.e., for v E V(H), degH v > I[A, Bll. Hence, for every i E {I, 2, ... , t}

such that ai + bi 2 1,

t t t

2 I)aj + bj) = 2(a + b - ai - bi) > L aj(b - bj) + L bj(a - aj). (2.3)
j=l j=1 j=1
j;ei

Assuming (without loss of generality) that at+bt 2 1, we obtain from (2.3)

with i = t

t-I t-I

L aj(b - bj - 2) +L bj(a - aj - 2) + at(b - bt ) + bt(a - at) < O. (2.4)
j=1 j=1

Since a - aj, b- bj 2 1 for all J E {I, 2, ... , t}, it follows from (2.4) that there

exists J E {I, 2, ... , t -I} such that aj 2 1 and b - bj - 2 < 0 or bj 2 1 and

a - aj - 2 < 0; say bl 2 1 and a - al < 2. Then a - al = 1 and there exists

mE {2, 3, ... , t} such that am = 1 and aj = 0 for all J E {2, 3, ... , t} - {m}.

vVe note that al 2 1.

Since I[A, Bll < degH v for v E A, it follows from (2.1) and (2.2) that

hence

(al - 1) (b - bl ) + b - bm < 0

which, with al - 1 2 0, b - bI 2 1, b - bm 2 1, yields a contradiction, thus

establishing the validity of the lemma. o

For a vertex v in a graph C, let the set of edges of C incident with v be

denoted by EG ( V ) .

Lemma 2.3.1.2 Let C = f{T l,T2, ,Tt with rl :::; r2 :::; ... :::; rt, t 2 2,

p = p(C) = 2::=lri and £. E {2,3, ,p}. Let Vl,1!2, ... ,V'; be the partite

sets of C with IViI = ri· The following algorithm yields a set Ee of edges

of C such that IEel = /\e( C) and C - Ee has £. components, at least £. - 1

of which are trivial:
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1. Let HI = G and let VI be a vertex of minimum degree in HI' (i.e.,

VI E ~). Let E2 = EHl (vd and H2 = HI - VI·

2. For i E {2, ... ,£ -I}, let Vi be a vertex of minimum degree in Hi and

let Ei+l = EH; (Vi) U Ei, Hi+I = Hi - Vi·

Proof: The validity of the lemma for £ = 2 is an immediate consequence

of Lemma 2.3.1.1. Further, the lemma follows if £ = p, in which case

IE£\ = q(G) = Ap(G). Suppose that the lemma does not hold and let m

be the smallest value of £ for which the algorithm yields a set E£ that does

not satisfy the requirements of the lemma; so 2 < m < p. Since G - Em

certainly contains m components, m -1 of which are trivial, it follows that

IEml > Am(G). Let Fm be a set of edges of G such that IFml = Am(G),

G - Fm contains m components of which m-I are trivial.

Let W = {WI, W2, ... ,wm-d denote the set of m-I isolated vertices

in G - Fm and, for Wk E W let Gk = G - (W - {wd). Let i = i(Fm)

be such that VI, ... , Vi-I E vV and Vi tf. W. Choose Fm such that i(Fm)

is as large as possible. Suppose Vs = W s for 1 :S s :S i - 1. Let VV' =

W - {VI, ... , vi-d and let Vi E Vi; then Vi n W' = 0, since otherwise, if

Wk E Vi nw', the set of edges of Fm incident with Wk in Gk, namely

EGk(Wk), may be replaced by EGk(Vi) to yield a set F:n of edges of G with

IF:n1 = Am(G) such that G - F:n has m components, m-I of which are

trivial and i(F:n) > i(Fm), contrary to our choice of Fm. Hence the only

vertices which are adjacent to Vi in Hi and not to Vi in Gm - I are those

in W' - {wm-d· Consequently degGm_
l

Vi = deg H;Vi - (m - 2 - i + 1).

Furthermore, degGm_
l

Wm-l :::: degHi Wm-l - (m - 2 - i + 1); so, since

degH; Wm-I :::: degH; Vi, it follows that degGm_
l

Wm-l :::: degGm_
l

Vi. Hence,

replacing the subset EGm_ l (Wm-l) of Fm by EGm_
1
(Vi), we obtain a set

F~ of edges of G with IF~I :S IFml = Am(G) such that G - F~ has m

components, m-I of which are trivial, and i(F~) > i(Fm ).

Thus the validity of the lemma is established. 0
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Let G = K mj ,m2, ... ,m n with ml S; m2 S; S; mn(n 2: 2) and partite

sets V;, ... , 1~" where IViI = mi for i = 1,2, ,n; p = 2:~1 mi· Let 5 be a

proper subset of V(G) such that \51 = k E {O, 1, ... , Kl(G)} and k < p-mn ,

where we note that

",(G) = {

,\,n-l
p - m n = L..ti=l mi

p-i!+1

if i! S; f3 (G) = m n
. ,

then G - 5 is a complete multipartite graph, say K Tj , ••• ,Tt.It is an immediate

consequence of Lemma 2.3.1.2 that 5 may be chosen to yield G - 5 of

minimum i!-edge connectivity, namely Al(G - 5) = h(k), by letting 5

consist of k vertices of maximum degree in G, i.e., for some j E {1, 2, ... ,m-

1}, 5 = Ui=l Vi', where Vi' = Vi if i < j and V; ~ Vj. Then El ~ E(G - 5)

may be obtained as prescribed by Lemma 2.3.1.2 to produce G - 5 - El

containing i! components, i! - 1 of which are trivial.

If i! > m n or k = p - m n , then h(k) = 0, obviously. Hence we have the

following lemma:

Lemma 2.3.1.3 If G = Kmj, ... ,mn with mI S; m2 S; ... S; mn(n 2: 2),

and partite sets VI, ... ,Vn such that IVi I = mi for i = 1, ... , n, then, for

2 S; i! S; p and °S; k S; Kl, there exist 5 ~ V(G) and El ~ E(G - 5)

such that 151 = k,IEll = jl(k), and such that G - 5 - El contains

at least i! components, at least i! - 1 of which are trivial and, for some

j E {1, ... , n}, 5 = Ui=I Vi', where Vi' = Vi for i < j and V; ~ Vj.

Proof of Theorem 2.3.1.1 Clearly if k = Kl(G), then jl(k) = O. If

i! S; m n - S + 2 then, since the degrees of vertices in Vn - I exceed those of

vertices in Vn by m n - s in G - 5, the i! - 1 vertices isolated in G - 5 - El

occur in Vn . (We note that, for i E {1, ... , i! - 2}, if w E Vn - I - 5 and

z E Vn , then, in G - 5 - {VI, ... , Vi}, deg w 2: deg z.) In this case it is

obvious that IEll = (i! - 1)(p - m n - k).
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If R> m n - 5 + 2 then, applying the algorithm in Lemma 2.3.1.2 to G - 5,

we note that V1, ... , V mn _ '+1 may be chosen from Vn and that their isolation

requires the removal of (p - mn - k) (m n - 5 + 1) edges. The isolation of

V mn - s+2, ..• ,Vg-1 requires the removal, successively of p - m n -·k -l,p­

mn - k - 2, ... , [(p - mn - k) - (R - mn + 5 -:- 2)] edges. Hence, in this case,

g-m n +s-2

IEgl = (p - mn - k)(m n - 5 + 1) + L (p - mn - k - i)
;=1

(
R-m +5-1)(R - 1) (p - mn - k) - n 2 if k =J- K,g (G) .

It is not difficult to see that Theorem D follows as a corollary to Theorem

2.3.1.1.

We next turn our attention to the R-connectivity function of caterpil­

lars. Recall that a caterpillar is a tree that is either isomorphic to K 1 or

K 2 or has the property that if its end- vertices are deleted, then a path

is produced. For a graph G of order p and an integer k, 0 :::; k < p, let

Ck( G) be the maximum number of components that are produced when k

vertices are deleted from G. Note that if R 2: 2 is an integer and T is a

tree with independence number ,8(T) 2: R, then h(k) = (R - 1) - ck(T)

for 0 :::; k < K,g(T). Let o{3(T) = min{klck(T) = (3(T)}. The following

algorithm finds for a given caterpillar T and every k, 0 :::; k :::; O{3(T), a set

Vk of k vertices such that k(T - Vk) = Ck.

Algorithm 1 Let T '1- K 1 , K 2 be a caterpillar.

1. (a) Fa r- T.

(b) Vo r- 0.

(c) So r- {v E V(Fo)1 degFa v = 6(Fo)}

(d) Ho r- (So) Fa

(e)nr-O

(f) Let P : U1, U2, ... , U r be the path produced by deleting the end-

20
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vertices of T.

2. Let TI , Tz, ... , Ts be the components of H n and ai = Ip(;;) 1·
Let Un = {w~, w~, ... ,w~J be a maximum independent set of vertices

of Hn (with (3n = (3(Hn)) chosen as follows: The vertices w~, w~, ... , W~l

belong to TI . If s > 1, then for i = 2, .. , s, the vertices w~l+...+ai_l+I' ... ,

wn . +. belong to Ti and if wm
n = Ui 1 and w~ = Ui2 belong toal + ....+a.-l at .

some Ti and m < I, then i l < i z. Further, w~l+...+ai_l+l is an end-

vertex of Ti for 2 :::; i :::; s and w~ is an end-vertex of TI ·

3. (a) Fn+1 ~ Fn - Un'

(b) n ~ n + 1

(c) Sn ~ {v E V(Fn)1 degFn V = 6(Fn)}

(d) Hn ~ (Sn)Fn

(e) If 6(Fn) > 1, return to Step 2; otherwise let 6{J ~ I:::I1IUil and

continue.

4. For k = 1,2, ... , 6{J let VI, Vz, ... , Vk denote, in order, the first k ver-

. . th 1 1 1 Z z d d fi T /bces In e sequence WllWZ,,,,,Wal,Wl,,,,,Wa2'"'' an e ne Vk =

{ VI, Vz, ... , V k } .

Theorem 2.3.1.2 Suppose Algorithm 1 is applied to a caterpillar T ~ ](1

or ](z. Then

Proof: Suppose the theorem does not hold. Let k be the smallest integer

such that k(T - Vk ) < Ck. Let Z = {ZI' Zz, ... ,zd ~ V(T) such that

k(T - Z) = Ck. If VI E Z, let j be the smallest integer such that Vj+l ~ Z,

otherwise let j = O. Among all sets Z ~ V(T) satisfying k(T - Z) = Ck,

choose Z such that j is as large as possible. For i = 1,2, ... , k, let Zi =

Z - {Zi} and suppose the vertices of Z have been labelled in such a way

that if j 2: 1, then Zs = Vs for 1 :::; s :::; j. By our choice of Z, it follows
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that for i = j +1, j +2, ... , k the vertex Zi cannot be replaced by Vj+l in Z

to form Z[ = Zi U {vj+d with k(T - Zn = q. Hence

However,

degT { .} V)·+l > degT { .} Zi·- Vl,V2,""V) - - Vl,V2"",VJ

Therefore Vj+l has a neighbour in {Zj+l' ... ,zd - {zd, say Zm is such a

neighbour. Similarly, Vj+l has a neighbour in {Zj+l' ... , zd - {zm}; say Zn·

Note that every vertex of Z UVk lies on the path P described in Step 1

(f). Let a and b be neighbours different from Vj+l of Zm and Zn, respectively.

We show next that a, b tJ. Z. Suppose Vj+l E Ut. Then degF
t
Vj+l >

degF
t

Zm. Suppose a E Z. Then a lies on P. Therefore

k(T - (Zm U {vj+d)) 2: k(T - Z) = Ck,

which contradicts our choice of Z. So a tf. Z, and similarly b tf. Z.

Suppose degF
t

Zm < degF
t
Vj+l = 6.(Ft ). Then once again it follows

that

k(T - (Zm U {vj+d)) 2: k(T - Z),

which contradicts our choice of Z. Hence degF
t

Zm = 6.(Ft ). Similarly

degF
t

Zn = 6.(Ft ). If degF
t

a and degFt b are less than 6.(Ft ), then Zm and

Zn are end vertices of a component of Ht, which contradicts our choice of

follows since Zn is an end vertex of a component of Ht, not in Vk , a must

be Vj. This is impossible since a tJ. Z. Otherwise, if degF
t

b = 6.(Ft ), then

a or b is Vj which once again produces a contradiction. This completes the

proof of the validity of Algorithm 1. o

With the aid of Algorithm 1 and Theorem 2.3.1.2 we are now able,

in the next two theorems, to characterize the f-connectivity functions of

caterpillars.
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Theorem 2.3.1.3 For an integer f ~ 2, a function le : {O, ... , Ke} --+ NU{O}

is the f-connectivity function of a caterpillar with independence number at

least f if and only if

(i) h is decreasing,

(ii) le(O) = f - 1, and h(Ke) = 0, and

(iii) if Ke 2: 2, then h(k)-h(k+1) ~ le(k+1)- h(k+2) for 0 ::; k < Ke- 2.

Proof: Suppose first that h is the f-connectivity function of a caterpillar

T. Then h(k) = f - ck(T) for 0 ::; k < Ke(G) = Ke· Since ck(T) < CHI (T)

for 0 ::; k < Ke, it follows that h is decreasing. Since every edge of a tree is

a bridge, f - 1 edges must be deleted from a tree to produce f components.

Hence le(O) = f - 1. Since f ::; ;3(T), it follows that there exists a set of

Ke(T) vertices whose deletion produces a graph with at least f components.

Hence h(Ke) = O. Hence (ii) holds.

Observe that if Ke ~ 2, then h(k) - h(k + 1) = ck+I(T) - ck(T) and

le(k + 1) - h(k + 2) = ck+2(T) - Ck+I(T). Let VI, V2, ... be as in Step 4

of Algorithm 1. Suppose Vk+1 E UT and Vk+2 E Us' Then r ::; s ::; r + 1

and degFr Vk+1 ~ degFs Vk+2· Since Ck+1 (T) - ck(T) = degFr Vk+1 - 1 and

Ck+2(T) - Ck+1 (T) = degF
s

Vk+2 - 1, condition (iii) follows.

For the converse suppose that le : {O, ... , Kd --+ NU {O} is a function

that satisfies conditions (i), (ii) and (iii) of Theorem 2.3.1.3. Construct

a caterpillar T as follows. Begin with a path VI,UI,V2,U2, ... ,U"'e-l ,v"'l"

Next join le(O) - le(1) new vertices to VI and for 2 ::; i ::; V"'e- I join

le(i-I) - le( i) - 1 new vertices to Vi· Finally join le( Ke - 1) - fe( Ke) new

vertices to v"'l" Let T be the resulting caterpillar. Then it can be shown

that T has independence number at least f and its f-connectivity function

is le. 0

The next result characterizes f-connectivity functions of caterpillars

whose independence numbers are less than f.
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Theorem 2.3.1.4 For an integer £ 2: 2 a function h : {O, 1, ... , fl:e} -+

N U {O} is the £-connectivity function of a caterpillar T of order p 2: £,

independence number (3 = (3(T) < £ and m = b{3(T) if and only if

(i) h(O) = £ - 1, h(fl:g) = 0,

(ii) h(k + 1) < h(k) for 0 ::; k ::; m-I and h(m) = fe(m + 1) = ... =

h(fl:g-1) =£-(3.

(iii) h(k) - h(k + 1) 2: h(k + 1) - h(k + 2) for 0 ::; k < fl:g - 2,

(iv) (a) if h(m-1)- h(m) > 1, then m < fl:g ::; 2m- h(m)+2, otherwise

(b) let s be the largest positive integer such that h(t) - h(t +1) = 1

for m - s ::; t ::; m-I, then m < fl:g ::; 2m - h (m) - s + 2.

Proof: Suppose h is the £-connectivity function of a caterpillar with in­

dependence number (3 = (3(T) and m = b{3(T). Then condition (i) clearly

holds. As in Theorem 2.3.1.3 h(k) = £ - ck(T) for 0 ::; k < fl:g. Since

ck(T) < CHI (T) for 0 ::; k < b{3(T) = m it follows that h(k + 1) < fg( k)

for 0 ::; k ::; m - 1. Since ck(T) = ,8 for m = b{3(T) ::; k ::; fl:g - 1,

fg(m) = h(m + 1) = ... = h(fl:g - 1) = £ - (3. Hence condition (ii) holds.

Since h(k + 1) - h(k + 2) = 0 and h(k) - h(k + 1) 2: 0 for m ­

1 ::; k < fl:g - 2, condition (iii) holds for m-I ::; k < fl:g - 2. Suppose

now that 0 ::; k ::; m - 2. Then, as in the proof of Theorem 2.3.1.3,

fe(k) - fe(k + 1) ~ fe(k + 1) - fe(k + 2). Thus condition (iii) holds.

Let ml be the smallest integer so that if S consists of the first ml

vertices selected by Algorithm 1, then the components of T - S are all

paths. (Note possibly ml = m.) For each of the m - ml vertices Vi E

{Vm1 +l, ... , vm } removed next by the algorithm there exists a vertex Wi

isolated by the removal of Vi. Let P be a longest path in T. Let To = T

and for i = 1,2, ... , ml -1 let Ti = T - {VI, ... , vd. Observe that if vertex Vj

is deleted from Tj - I (1 ::; j ::; ml), the number of components is increased
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by ftU -1) - hU). Hence at least hU -1) - hU) -1 vertices not on Pare

isolated in the process. Let there be k vertices Vj for which hU -1) - hU)

vertices not on P are isolated when Vj is deleted from T j - 1 . Then Vj is

adjacent with a vertex from the set {VI, V2, ... , vj-d. Thus there are exactly

"L-';~l(hU - 1) - hU) - 1) + k = 1£(0) - ft(ml) - ml + k vertices of T

not on P. Let SI denote the set of these vertices and 52 = {VI, V2, ... , Vm1 }.

Further, let 53 = {Vm1+l' V m1 +2, ... , vm}U{ W m1 +1, W m1 +2, ... , wm }. Note that

each component of Tm = T -{VI, V2, ... , V m } is isomorphic to K 1 or K 2 .

Let 54 be the set of vertices that belong to components isomorphic to K 2

in Tm . Then 154 1 S 2(ml +1- k). To see this note that the deletion of the

vertices of 52 from T produces a tree with at most ml + 1 - k nontrivial

components. If Algorithm 1 is now applied to T - 52 to delete the next

m-ml vertices and thus to produce Tm , each of the nontrivial components

of T - 52 corresponds to at most one K 2 of Tm . Thus

p I~I+I~I+I~I+I~I

< 1£(0) - h(ml) - ml +k +ml +2(m - md +2(ml +1 - k)

2m - h(ml) + 2.

Since K,f. = p - i + 1 = p - 1£(0), it follows that K,f. S 2m - ff.(md + 2.

Clearly m < K,f.. Now if h(m - 1) - h(m) > 1, then ml = m so that (iv)

(a) follows. Otherwise, s = m - ml and h(ml) = h(m) + s. Hence, in

this case, K,f. :::; 2m - 1£(m) - s + 2; thus (iv) (b) follows.

For the converse suppose 1£ : {O, 1, ... , K,t} - NU {O} is a function that

satisfies conditions (i) - (iv). Let p = K,t+ 1£(0). Let P : Ul, VI, U2, V2, ... , Um,

V m , U rn+1' Join Vi to h(i - 1) - h(i) - 1 new vertices for 1 :::; i :::; m and

let T ' be the resulting caterpillar. Observe that the caterpillar constructed

thus far has order 1£(0) - h(m) +m +1. Since h(m) ~ 1 it follows by (iv)

that p' = p - (1£(0) - h(m) +m +1) = K,f. - m +h(m) -1 ~ O. If p' = 0,

then it can be shown that T = T' has 1£ as its i-connectivity function and

independence number f3 and D(3(T) = m. If p' > 0, then p' :::; m + 1 if

1£(m-I) - 1£(m) > 1 and p' :::; m - s+1 if 1£(m-I) - 1£(m) = 1. Suppose
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first that J,.(m - 1) - J,.(m) > 1. In this case, if p' ::; m, subdivide the

edges UiVi exactly once for 1 ::; i ::; p' to obtain T; otherwise subdivide the

edges UiVi for 1 ::; i ::; m and the edge V m U m +l exactly once to obtain T.

Suppose now that J,.(m -1) -f£(m) = 1. Now subdivide the edges UiVi

exactly once (1 ::; i ::; p') to obtain T. In both cases it can be seen that

the corresponding J,. is the i-connectivity function of T. 0

The complex characterizations of the i-connectivity functions of cater­

pillars given in Theorems 2.3.1.3 and 2.3.1.4 lead one to believe that the

problem of characterizing the £- connectivity functions of trees in general

is a difficult task. It also remains an open problem to characterize the

i-connectivity functions of the n-cube.

2.4 The strong f-connectivity function of a

digraph

Let G be a graph with connectivity /\'. The function f : {D, 1, ... , /\,} -+ NU

{D} defined by f(l) = er where er is the minimum edge-connectivity among
"

all subgraphs of G obtained by deleting 1 vertices, D::; 1 :::; /\', is called the

connectivity function of G. Beineke and Harary [BH1] characterized the

connectivity functions of graphs in the following theorem.

2.4.1 Generalisation from Graphs

Theorem E Let /\, be a positive integer. A function f : {D, 1, ... , /\,} -+

NU {D} is the connectivity function of a graph with connectivity /\, 2: 1 if

and only if f( /\,) = Dand f is decreasing.

For a digraph D with strong connectivity /\', the function f : {D, 1, ... , /\,} -+

NU {D} defined by f(l) = £r where £r is the minimum arc-connectivity

among all subdigraphs of D obtained by deleting 1 vertices, D ::; 1 ::; /\',
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from D is called the connectivity functzon of D. Theorem E has an imme­

diate extension to digraphs.

Theorem 2.4.1.1 Let Kbe a positive integer. A function f : {O, 1, ... , K} -*

Nu {O} is the connectivity function of a digraph with connectivity K 2: 1

if and only if f( K) = 0 and f is decreasing.

Proof:Suppose f is the connectivity function of adigraph with connectivity

K. Then f( K) = O. Suppose 0 ::; k < K and that f( k) = Rk . Then D

contains a set 5 of k vertices such that A(D - 5) = Rk . Let E be a set

of Rk edges of D - 5 so that D' = D - 5 - E has at least two strong

components. If D - 5 - E has a nontrivial strong component D1 , then D 1

contains a vertex v that is incident with an edge of E. Hence 5' = 5 U {v}

is a set of k + 1 vertices so that A(D - 5') ::; IEI - 1 = Rk - 1. If every

strong component of D - 5 - E is trivial, then D - 5 - E consists of

exactly two vertices. Thus D contains a set of k + 1 vertices and Rk - 1

edges whose deletion produces the trivial graph. Therefore in either case

f( k + 1) ::; Rk - 1. Hence f is decreasing.

Suppose now that f : {O, 1, .. , K} -* N U {O} is a decreasing func­

tion such that f(K) = O. Let A = f(O). Let Ho, HI, ... , HI< be K + 1

disjoint copies of the complete symmetric digraph J(~. Denote the ver­

tices of Hk by Vk,j for j = 1,2, ... , A. Add a vertex Uo and join it by a

symmetric pair of arcs to every vertex of Ho. For 0 < k ::; K, add ver­

tices Uk,l, Uk,2, ... , Uk,k and join each of these vertices to every vertex of

V(Hk-d U V(Hk ) by a symmetric pair of arcs. Finally, join Vk-l,i and Vk,i

by a symmetric pair of arcs for i = 1,2, ... , f(k). Let D be the resulting

digraph. It can now be shown that for each k = 1,2, ... , K, the minimum

arc-connectivity of a subdigraph obtained by deleting k vertices from D is

A(D - {Uk,'1,Uk,2,,,,,Uk,d) = !{(Vk-l,i,Vk,i): 1::; i::; f(k)}1 = f(k). So D

has f as its connectivity function. 0
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The digraph D constructed in the proof of Theorem 2.4.1.1 is a sym­

metric digraph, i.e., if (u, v) E E(D), then (v, u) E E(D). Since many

digraphs are obtained by assigning directions to the edges of a graph it

is natural to consider the connectivity function of an asymmetric digraph.

We now characterize the connectivity functions of these digraphs.

Theorem 2.4.1.2 Let K, be a positive integer. A function f : {O, 1, ... , K,} -+

Nu {O} is the connectivity function of an asymmetric digraph with con­

nectivity K, 2 0 if and only if f( K,) = 0 and f is decreasing.

Proof:The necessity ofthe theorem follows as in Theorem 2.4.1.1. Suppose

now that f: {O, 1, ... , K,} -+ NU {O} is a decreasing function with f(K,) = O.

Let A = f(O). Consider J(V,+I. It is well- known that the edge set of this

complete graph can be decomposed into Ahamiltonian cycles GI , G2 , ..• ,C>..

Direct the edges of Gi (1 ::; i ::; A) in such a way that a directed cycle G~

is produced. Let T be the tournament of order 2A + 1 whose arc set is

u{E(GDI1 ::; i ::; A}. Then T has strong connectivity and strong arc

connectivity A. Let Ho, HI, ... , HK, be K, + 1 disjoint copies of T. Denote

the vertices of H k by Vk,l, Vk,2, ... , Vk,>., Wk,l, Wk,2, ... , Wk,>'+I. Add a vertex

Uo and the arcs (uo, VO,i) for 1 ::; i ::; A, as well as the arcs (WO,j, uo) for

1 ::; j ::; A + 1. For 0 < k ::; K, add vertices Uk,l, Uk,2, ... , Uk,k and the

arcs {(Vk-l,i,Uk,j)11 ::; i < A,l ::; j ::; k} U {(uk,j,vk,i)11 ::; i ::; A,l <

j ::; k} U {(Uk,j,Wk-l,i)11 ::; j::; k,l ::; i:S A+ I} U {(wk,i,uk,j)11 ::; j <

k,l::; i::; A + 1}. Finally, add the arcs (Vk-l,i,Vk,i) for 1:S i:S f(k) and

(Wk,), Wk-I,j) for 1 :s j :s f( k). Let D be the resulting asymmetric digraph.

As in Theorem 2.4.1.1 it can be shown that f is the connectivity function

of this asymmetric digraph. 0

We turn to the problem of 'disconnecting' a digraph into more than two
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strong components by the deletion of vertices and arcs.

We have already, in this chapter, dealt with the concept of the R­

connectivity function of a graph and have established some properties of

this function relating to specific graphs. We now investigate this con­

cept for digraphs. Let D be a digraph of order p ;::: R :.- 1 ;::: 1 having

strong R-connectivity Kf.(D) = Kf.. Then the strong R-connectivity func­

tion fe of D is defined as follows: fe : {a, 1, ... , Kf.} -+ N U {a} and for

o~ k ~ Kf., fe( k) = Sk where Sk is the minimum strong R-arc- connectivity

among all subdigraphs of D obtained by deleting k vertices from D. Then

fe( Kt.) = 0 and fe( k) > 0 for 0 ~ k < Kf.. Further, fe is a non-increasing

function; for suppose 0 ~ k < Kf. and that fe(k) = Sk. Then there ex­

ists a set Vk of k vertices of D and a set Ek of Sk edges of D such that

D k = D - Vk - Ek has at least Rstrong components. If D k has at least R+ 1

vertices, then there exists a vertex v of D k such that D k - {v} still has at

least R strong components. So Vk+1 = Vk U {v} is a set of k + 1 vertices

such that the number of strong components of D - Vk+1 - Ek is at least R.

So in this case fe(k + 1) ~ IEkl = fe(k). If Dk has exactly R vertices then

k + 1 = Kf. = P - R+ 1. So in this case ff. (k + 1) = 0 < fe (k).

'While the strong 2-connectivity function of a digraph is strictly decreas­

ing, this is no longer the case for the strong R- connectivity functions of

digraphs for R ;::: 3. For example, if D ~ K;,2 U Iq, then K3(D) = 2 and

{(a, 1), (1, 1), (2, a)} is the strong 3-connectivity function of D and is thus

not strictly decreasing.

Recall (theorem D, section 2.3.1), it was stated that if p ;::: f., then the

R- connectivity function of Kp is given by

fe(k) =

(R-1)(p-R-k+1)+ (1.;1)

o
, for 0 < k < Kf.(Kp )

for k Kf.(Kp ) = P - R+ 1.

2.4.1

Using arguments similar to those employed in [02] it can be shown that the

strong f.-connectivity function of K; is also given by the function defined
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in (2.4.1).

For an integer .e 2: 2 it was shown in [02] that if G is a graph and

f£(k) = h(k+1) for some k,O::; k < K£(G), then h(k)::; (£~l). We

now establish an analogue for digraphs.

Theorem 2.4.1.3. Let.e 2: 2 and suppose D is a digraph with strong

.e-connectivity function hand K£(D) = n. If h(k) = h(k + 1) for some

k, 0::; k < n, then h(k)::; (£~l).

Proof: Let h(k) = Sk. Then there exists a set Vk of k vertices of D and a

set E k of Sk arcs of D such that Dk = D - Vk - E k has at least .e strong

components. If e = (u, v) E E k , then the strong component of D k con­

taining u (and the one containing v) consists of a single vertex, namely u

(respectively, v). To see this suppose, to the contrary, that u, say, belongs

to a nontrivial strong component of D k . Then D k - u has at least .e strong

components, that is, D - (Vk U {u}) - (Ek - {e}) has at least .e strong

components. However, then h(k + 1) ::; tEk - {e}1 ::; Sk - 1 = h(k) -1,

which contradicts our assumption. Now since h(k +1) > 0, it follows that

p(D) - (k +1) 2: .e, i.e. p(D) - k 2: .e + 1. Hence Dk contains at least .e + 1

vertices. So since Dk + e has at most .e - 1 strong components Dk + e has

at least .e - 2 strong components that consist of a single vertex. Further, u

and v belong to a nontrivial strong component of Dk + e. If Dk has more

than.e strong components, then D k - u has at least .e strong components so

that D - (Vk U {u}) - (Ek - e) has at least .e strong components. However,

then h(k + 1) < h(k), which contradicts the hypothesis. Hence Dk has

exactly.e strong components. This implies that D k has at most .e -1 trivial

strong components. Further, from an earlier argument, no arc of D k joins

a vertex from a trivial strong component of D k with a nontrivial strong

component of Dk . Hence the arcs of Dk are only between vertices that
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correspond to trivial components of D k . Since at most C'~I) arcs need to

be deleted from any digraph on at most f - 1 vertices to produce an acyclic

digraph, it follows that IEkl ::; (l~I), i.e. !£(k) ::; (l;I). 0

From Theorem 2.4.1.3 we know that if D is a digraph such that !£(k) =

!£(k + 1) for some k(O ::; k < "'l(D) -1), then !£(k) ::; C;I). The next

result shows that if in addition !£(k) > (l~I), then !£U) for 0 ::; j < k

cannot be arbitrarily large.

Theorem 2.4.1.4 Let D be a digraph with "'l(D) = n, where f ~ 3 and let

il be as in Theorem 2.4.1.3. If !£(k) = !£(k+1), for some k, 0 ::; k < n, and

(i;2) < !£(k) ::; C;I), then !£U) ::; (k- j)(£-1)+ !£(k) for 0::; j ::; k-1.

Proof Let !£(m) = Srn for 0 ::; m ::; n. Since !£(k) = il(k + 1) it fol­

lows from the proof of Theorem 2.4.1.3, that there is a set Vi;; of k ver­

tices and a set Ek of Sk arcs of D such that Dk = D - Vk - Ek has

exactly £ components and where every arc of Ek is incident, in D, with

a pair of vertices that each belong to a trivial strong component of D k .

Since Sk > (l;2) , Dk contains more than f - 2 trivial strong compo­

nents. Since !£(k) = !£(k + 1) = Sk+l > 0, we have p(Dk) ~ f + 1.

Hence D k has at least one nontrivial strong component. Thus D k has ex­

actly f - 1 trivial strong components, with vertices say VI, V2, ... ,Vl-l' Let

V = {VI, V2, ... ,Vi-d. Now every vertex of Vie is adjacent to at most £ - 1

vertices of V. Hence any set of k - j vertices of Vk, 0 ::; j ::; k -1, is joined

by at most (k - j)(f - 1) arcs to vertices of V. Let Vk = {Ul' U2, ... ,ud.
Then there are at most (k - j)(f - 1) arcs denoted by Ej that join vertices

of {Uj+l' Uj+2, ... ,Uk} to vertices of V(O ::; j ::; k -1). Hence D - (Eb U Ek)

is disconnected with at least f strong components and for 1 ::; j ::; k -1, the

digraph D - {Ul,U2, ... ,Uj} - (Ej U Ek) has at least f strong components.

So Sj ::; (k - j)(f - 1) + !£(k) for 0 ::; j ::; k - 1.
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It appears to be a difficult problem to characterize all f-connectivity func­

tions of digraphs. However, the following result provides sufficient condi­

tions for a function to be the f-connectivity function of some digraph.

Theorem 2.4.1.5 Let f ~ 2 be an integer. If f is a decreasing function

from {O, 1, ... , K}, K ~ 1, to the nonnegative integers such ,that f (K) = 0,

then f is the strong f-connectivity function of some digraph.

Proof If f = 2, then the result follows from Theorem 2.4.1.1. Let D

be the digraph having f as strong 2-connectivity function. Then for f ~

3, DUJ{R.-2 is a digraph with f-connectivity funciton f, that is, h(k) = f( k)

for 0 :::; k :::; K. 0

2.5 Maximal and Minimal Graphs of given

i-connectivity

2.5.1 Maximal Graphs

A connected graph G is (n, f)-maximal if G is not complete, KR.( G) = n

and KR.(G + e) > n for every edge e E E(G).

The largest integer q for which there exists a connected (p, q) graph G

of given order p, such that KR.(G) = n is denoted by Qn,R.{p).

A graph G = G(p, q) with q = Qn,R.(p) and KR.(G) = n is called an

(n, f)-maximum graph.

The graph G = J{n +(J{Pl UJ{P2 U ... UJ{P(), where p = Pt +P2+ ...+Pi+n ,

is clearly (n, f)-maximal.

That every (n, f)-maximum graph is of this form may be seen as fol­

lows: Let S be a set of n vertices of G such that the number of components
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of G - S is k(G - S) = m 2: f.. Let GI ,G2 , .. ,Gm be the components of

G - S, of orders PI, P2, ... ,Pm respectively. Then (S) is complete (other­

wise, if e E (S)(j, then k((G + e) - S) = m 2: f, and ISI = n. Similarly

it follows that GI , G2 , .•• , Gm are complete. Furthermore, m = f ( other­

wise, if m > f, let e join a vertex of GR. to a vertex of GR.+larrd note that

k((G + e) - S) = m -1 2: f). Also, every vertex in Sis"adjacent to every

vertex in V( G) - S. So G == (S) + (GI U ... U Gm) where S :::: Km and

Gi ~ K Pi (with Pi = p(Gi)).

It follows that in order to obtain an (n, f)-maximum graph of order P, we

should choose PI = P2 = ... = PR.-I = 1 and PR. = p-n-(f-1) = p-n-f+l.

Thus Qn,R.(P) = ~ Hp - n - f + l)(p - n - f) +n(n - 1)} + n(p - n).

2.5.2 Minimal Graphs

Let n, f, pEN with f 2: 2 and P 2: f + n. A graph G is (n, f)-minimal

if /\'R.(G) = nand /\,e(G - e) < n for every edge e E E(G). The smallest

integer q for which there exists a (p, q) graph G of given order p, such that

/\'R. (G) = n is denoted by qn,R.(P).

A graph G = G(p, q) with q = qn,R. (p) and /\'R. (G) = n is called an (n, f)­

minimum graph and will be denoted by Gn,R.{p)

The class of (n,f)-minimum graphs will be denoted by gn,R., and gn,e(p)

denotes the set of all graphs in gn,e of order p.

By definition (n,f)-minimum graphs are (n,f)-minimal. However, the

converse is not true, as can be seen in figure 2.5.2.1 where both graphs are

(2,2)~minimal.

The characterisation of graphs of gn,R. proves to be more difficult than
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that of the (n,f)-maximum graphs characterised above. However, the

graphs of Yn,l could be useful in designing a network which is deemed

to fail if it splinters into f. or more components after the simultaneous fail­

ure of some of its centres, or if at least n centres fail simultaneously. The

graph, with the minimum possible number of links, which represents such

a network, will belong to Yn,l'

We first prove two general results.

Theorem 2.5.2.1 If P 2: n + 3 2: 5 and G is an (n,3)-minimal graph of

order p, then G contains an edge e for which K 3 (G - e) = n - 1 or G

contains at least n vertices b such that G - b is (n - 1, 3)-minimal.

Proof: Let T C V( G) such that k(G - T) 2: 3 and ITI = n. For

e E E(G), K 3(G - e) ::; n -1; say K3(G - e) = me ::; n - 1 and de­

note by Se an me-set of vertices of G such that k(G - e - Se) 2: 3. We

note that k(G - e - Se) = 3, otherwise, if k(G - e - Se) 2: 4, it follows

that k(G - Se) 2: 3, contrary to the assumption that K 3.(G) = n. Further­

more, e is a bridge of G - Se; so either the component (G1 , say) of G - Se

that contains e is isomorphic to ]{2 or p(G1 ) 2: 3 and the (m + 1)-set

S~ = Se U {u} (where u is the endvertex of e in a nontrivial component of

G - e - Se) satisfies k(G - S') 2: 3 which implies that me + 1 2: n. Hence,

in this latter case, K 3 (G - e) = n -1 (and so, if G is (n,3)-minimum,

Qn-I,3(P) ::; q(G - e) ::; Qn,3(P) - 1).

We now assume that the statement of the theorem is invalid and that

n is the smallest integer (n 2: 2) for which G provides a counter-example

to the theorem. Then me ::; n - 2 for each e E E(G). Let bET; then

K 3 (G - b) ::; n - 1 (as k(G - b - (T - {b})) 2: 3) and K 3 (G - b) 2: n - 1

(as K 3(G) 2: n); hence K 3 (G - b) = n - 1. For e E E(G - b) we note that

K 3 (G - e) = me ::; n - 2 and e joins two trivial components of G - e - Se'
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Furthermore, either k(G - b - e - Se) 2: 3 or (b) is a trivial component

of G - e - Se and k(G - e - Se) = 3. In the latter case lt follows that

G - e - Se has (only) three trivial components, whence P = me + 3 < P,

a contradiction. Hence k(G - b - e - Se) 2: 3, ISel :::; n - 2 for each

e E E(G - b) and G - b is an (n -1,3) graph of order p ~ 1. 0

Theorem 2.5.2.2

Proof: Obvlously qn,f.(P) :::; qn,f.-1(P)· Now assume that qn,R.(p) = qn,f.-1(P)

and let G E Yn,f.(P). Let 5 C V(G) such that 151 = nand k(G - 5) 2:

.e > .e - 1. Then, since G has size qn,f.(P) it follows that G E Yn,f.-1' Now

let e E E(G) and let 5' CV(G - e) such that 15'1 = m = K,f.(G - e)

and k(G - e - 5') 2:.e. Then, as we have seen in the above theorem,

G - e - 5' has exactly .e components; so G - 5' has .e or .e - 1 components.

However, k(G - 5') =1= .e since K,e(G) = n > 15'1 and k(G - 5') =1= .e - 1,

since K,f.-1 (G) = n > 15'1. This contradiction yields the desired result. 0

Graphs of Yn,2

If .e = 2, K,2(G) = K,(G) and so qn,e(P) = qn,2(P) is the smallest size

of a graph of order P and connectivlty n. Harary [H3] has shown that

qn,2(P) = fP2n l and has provided the following associated (p, fP;l) graphs

of connectivity n, Gn,2(p) = Hn,p.

In all cases, let V = V(Hm,p) = {O, 1, ... ,p - I}, p ~ m + 2 ~ 4.

Case 1: If m is even, say m = 2r, then, for i,J E V, i,J E E(Hm,p)

iff li - JI :S r (addition modulo p). Hence, denoting by Cp the cycle

0,1, ... ,p - 2,p -1,0, we note that H2r ,p ~ C;.

Case 2: If m is odd, say m = 2r +1 and P is even, say P = 2a then H is, m,p

obtained from H2r ,p by the insertion of the a edges i( i+a) for 0 :S i :::; a-I.
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Case 3: If m is odd, say m = 2r + 1 and p is odd, say p = 2a + 1, then

Hm,p is obtained from H2r,p by the insertion of the a + 1 edges Oa, O(a + 1)

and i (i +a +1) for 1 ~ i ~ a-I.

We note that q(Hm,p) = I~Pl in all cases and next determine the R­

connectivity of Hm,p in each case, where R 2: 2 and the above notation is

retained.

Proposition 2.5.2.3 In Case 1 Kof.(H2r,p) = { Rr
p-R+1

if p2:R(r+1)

if R~ p < R(r + 1).

Proof: Let p 2: R(r +1) and H = H2r,p. That Kof.(H) ~ Rr follows from the
f.-I

observation that 5 = U {j(r +1) +1, j(r +1) +2, ... ,j(r + 1) +r} is such
j=O

that 151 = Rr and k(H -5) = R, the components of H -5 having vertex sets

{r +I}, {2(r +1) }, ... , {(R- 1) (r +I)} and {R(r +1), R(r +1)+1, ... , p- 1,°}.

To show that Kof.( H) 2: Rr, we assume to the contrary that Kof.( H) < Rr

and let 5 C V(H) such that 151 < Rr and let k(H - 5) 2: R. Let

i o, i l , ... , if.-l be vertices from R distinct components of H - 5, labelled so

that °~ io < io+1 < i l < i l +1 < ... < if.-l < P-1. For j = 0,1, ... , R-1,

let 5j = {i j , i j + 1, ... , ij+d (all addition modulo p) and Tj = 5j n 5.
f.-I

We note that i j , i j +l tt. Tj ; hence, since UTj = 151 <Rr, there exists
j=O

j E {a, 1, ... , f - I} such that ITjl < r. Consequently there exist vertices

i j = aI, a2, ... , as = i j +! in 5 j - Tj such that al < a2 < ... < as and

at+! - at ~ r for t = 1, ... , S -1. So ala2 ...as is an i j - i j +l path in H2r,p - 5,

contradicting our assumption that i j and i j +! are in distinct components

of H - 5, whence it follows that Kof.(H) 2: Rr and so Kof.(H) = Rr. That

Kof.(H2r,p) = p - (R - 1) if R ~ p < R(r + 1) follows immediately from the

observation that f3(H2r,p) ~ lr~lJ . 0
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r£ + 1

~p if

or
if r < £, Ke(H2r+l,p) =

r£ + 1 if

£r + r if

Propositon 2.5.2.4 In case 2, if £ ~ 3 and p ~ 2r£ (where p is even) then

£r +£ - 1 if p ~ 2rR + 2£

~p if 2rf:::; p :::; 2r£ +2f - 2 and £ is odd

or 2rf + 2 :::; P :::; 2r£ + 2£ - 2 and £ is even

if p = 2rf and R is even.

2rf :::; p :::; 2rf +2r- 2 and £ is odd

2r£ + 2 :::; p :::; 2rf + 2r - 2 and £ is even

p = 2r£ and £ is even

p ~ 2r£ +2r.

Proof: Let S = S' uS" C V(H2r+1 ,p), where p ~ Rr + r +£

r1;11-1

S' U {j (r + 1) + 1, ... , j (r + 1) + r} and
j=O

Ll;1 J+l

S" U {a + j (r + 1), a + j (r + 1) + 1, ... , a + j (r + 1) + r - I}
j=O

(addition modulo p).

Then ISI = (£+ l)r and H 2r+1 ,p contains £ components, namely £-1 iso­

lated components induced by the vertices r +1, 2(r +1), ... , (r e~ 11- 1) (r +
1), r + a, r + a + (r + 1), ... , r + a + ll~l J (r + 1), and a component which

is nontrivial if p > £r + r +£, containing the vertices in A U B, where

A= {rl~11 (r+1), re~11 (r+1)+1, .. ,a-1} and

B = {a + r + (ll;1J+ 1) (r + 1), a+ r + (le;1J+ 1) (r + 1) + 1, ... ,p - 1, 0}

if a + r + (le;l J + 1) (r + 1) :::; P and B = 0 otherwise.

(We note that certainly r + a + le;l J (r +1) :::; P and re;11 (r + 1) :::; a as

p ~ £r + r + £.) So Kl(H2r+l,p) S (f + l)r if p ~ £r + r + £ and p is even.

We next investigate conditions under which Ke(H2r+l,p)< (£+ l)r for (even)
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values of P ~ 2ri ~ ir + r + i.

Denoting H 2r+l,p by G and H 2r ,p by H, let 5 c V(G) with k(G-5) ~ i

and suppose that 151 < (i + l)r. Then it follows from the proof of the pre­

ceding lemma that k(H - 5) < i +1. Hence, as k(H - 5) ~k(G - 5) ~ i,

k(H - 5) = k(G - 5) = i. We recall that H = C;, where the vertices

of Gp are labelled consecutively 0,1, ... ,p - 1 in, say, the clockwise sense.

Denote the consecutive components of G - 5 by G I , ... , Gf. and let Ui, Vi be

the first and last vertices in Gi so that all vertices in Gi are contained in

{Ui, Ui+l, ... , vd (i = 1,2, .. , i) where addition is modulo p. Let Pi = p(Gi )

and PI = max{Pili = 1, ... ,e}.

We consider two cases:

Case (i): If PI = a + c > a, let Ul = a - c, VI = 2a - 1; then, as

every pair of consecutive components of G - 5 are separated by at least
f.

r vertices cm Gp and Ul :::; i + a :::; VI for each i E UV(Gj ), it follows
j=2

f.

that 151 ~ er + L Pi ~ er + e - 1, with equality iff Pi = 1 for i = 2, ... ,e.
i=2

f.

Furthermore, a - c = ir + L Pi ~ er +e - 1, whence
i=2

p = 2a > 2(er +e - 1 + c)

> 2e(r + 1)

In this case, as 151 < er + r - 1, it follows that r ~ f. The bound

151 = er +e - 1 can be attained by letting V(Gd = r + (i - 2)(r + 1) for
f.

i = 2, ... ,eand V(G1 ) = ve+e-1,re+e, ... ,2a-1}-U(r+(i-2)(r+1)+a).
i=2

Case (ii): IfPI :::; a, then, as i+a E V -5 for each i E V -5, 151 ~ IVI-ISI
and so 151 ~ a = ~p. Consequently P :::; 2151 :S 2fr +2r - 2. We have to

consider two subcases, where the notation of Case (i) is retained through­

out.
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Subcase (ii)(a): If 2rf :S P :S 2rl + 2r - 2 and f is odd, the bound

\5\ = a = ~P may be attained (where a = fr + m, 0 :S m :S r - 1)

by letting S consist of all integers in the following intervals: [1, r], [2r +

1, 3r], ... , [~(f -1) + 1, Hf + 1]), [Hf + 3)+ 1, Hf + 5) + m]' [Hf + 7) + in +

1, Hf+9)+m], ... , [p-2r-m+l,p-r-mJ. Hr:;::: f, this bound is as good

as or an improvement of the bound obtained in case (i) iff P :S 2rf +2f - 2.

Subcase (ii)(b): Let 2rf :S P :S 2rf + 2r - 2, where f is even. We

shall first show that, if p = 2rf, then 151 > ~P = rf: Suppose, to the

contrary, that 151 = ~P = rf; then exactly r vertices of S are contained

in the interval (Vi, ui+d and no vertex of S is contained in [Ui, Vi], where

i = 1,2, .. ,f (additon modulo p). Hence PI = P2 = :.. = Pe = r. Letting

V(G1 ) = {O,I, ,r-l}, we note that V(Gd = {2ri, ... ,2ri+r-l}; hence

V(G te ) = {fr, ,fr + r -I}, but, as a = fr and V(Gd = {a, 1, ... , r - I},

it follows from the preceding argument that {fr, ... ,fr + r - I} C S, a

contradiction.

However, the value ISI = ~P + 1 may be attained as follows: Let

V(Gi ) = {(2i -1)r + 1, ,2ir} for i = 1, ... , ~f -1;

V(Gle) = {fr - r + 1, ,fr + r} - {fr};
2

V(G tHi ) = {fr + 2ir + 1, ,fr + (2i + l)r} for i = 1, ... , ~e - 2;

V(Ge-d = {2fr - 2r + 1, , 2£r - r - I}, V(Ge) = {O}.

We note that Pi = r for i = 1, ... , ~£ -1, ~£ + 1, ... ,f - 2, while Pk:e =
e <

2r -l,Pe-l = r -1 and Pe = 1; so I.:, Pi = £r -1 and 151 = er + 1.
i=1

If P = 2rf + 2m, where 1 :S m :S r - 1, the bound ISI = ~P may be

attained as follows:

Let

{(2i - l)r + 1, ... , 2ir} for i = 1,2, ... , ~f;
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{£r + r + 1, ... , £r + m + r},

{£r + m + (2i - l)r - r + 1, ... ,£r + m + (2i - l)r}

. f
for ~ = 1,2, ... , 2' - 1.

V(Ge) = {p-2r+1,p-2r+2, ... ,p-1,0}

V( G1l+1)
2

V(G 1Hi )
2

with Pi = r for i = 1,2, ... , ~£, ~f + 1, ... ,£ - 1,
e

P1 e.J..l = m,Pe = 2r, hence L Pi = fr + m.
2 ' i=l

As in subcase (ii)(a) above, we note that the bound \51 = ~P attained

in (ii)(b) if 2r£ + 2 ~ p ~ 2rf + 2r - 2 is as good as or an improvement on

the bound 151 = £r + f - 1 attained in case (i) iff p ~ 2rf + 2£ - 2. 0

Similar techniques suffice to prove the following proposition.

Proposition 2.5.2.5 In case 3, if £ 2: 3 and p 2: 2rf + 1 (where p is odd),

and

Hp - 1) if 2r£ + 1 :S p :S 2rt + 2r - 1

and f is odd

or if 2r£ + 3 :S p ~ 2r£ + 2r - 1

and f is even

Hp + 1) if p = 2rf +1 and £ is even

fr + r if p 2: 2r£ + 2r + 1.
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Graphs of 9n,3

a) If n = 1 and p ~ 4 then q1,3(P) = P- 2 and 91,3 consists of all unions

of two trees, T1 U T2, with p(T1) + p(T2) = p. We note that if G is a

connected graph of order p with 11:3(G) = 1, then q(G) ~ p - 1, where

equality is attained by all trees G of order p with 6(G) ~ 3.

b) If n = 2 and p ~ 5, then q2,3(p) = p - land 92,3 consists of the path

Pp and of the (disjoint) union of a cycle and a trivial graph,Gp _ 1 U f{1

and of the (disjoint) union of a cycle an,d a complete graph on two

vertices, Gp - 2 U f{2'

c) If n = 3 and p ~ 6, then Q3,3(P) = P and the cycle G3,3(P) Gp

belongs to 93,3

Theorem 2.5.2.6

If G E 93,3, then G is connected and is unicyclic.

Proof: Suppose G = G1 U G2 E 93,3 with P = p(G1) + p(G2), Q(G1) +
Q(G2):::; P and 1I:3(G) = 3, then for each Gi (i E {1,2}) we have that either

Gi is complete or 11:2 ( Gi ) = 3. However, since 11:3 ( G) = 3 and p(G) ~ 6, G1

and G2 cannot both be complete.

So, say G1 has P1 = p(G1) E {5, ... ,p-1} and 1I:2(G1) = 3 and G2 is

connected. Hence,

3P1> - +p- P1-1
2

P1p+ --1
2
3> p+-
2

> Q( Gp).

Thus it follows that, for p ~ 6, Q3,3(P) is realized by a connected graph.
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By (a) and (b) above G cannot be a tree and q( G) ::; p. Thus G is

unicyclic. In fact Cp is the only unicyclic graph G with K3( G) = 3.

d) If n = 4 and p ~ 7, the graphs of figure 2.5.2.2 can be shown to have

3-connectivity equal to 4, and thus give upper bounds for q4,3(P). It

will be seen that these graphs belong to 94,3.

For p ~ 9, the construction of a graph G in figure 2.5.2.2 may be described

as follows:-

Let p = 4i- j (i,j EN, i ~ 3;j E {O,l, 2,3}) and let C', C" be two disjoint

i-cycles C' = Ul, Uz, .. , Ui, Ul and C" = Vn Vz, ... , Vi, VI with V( C') = U and

v(C") = V. G is obtained from C' U C" by connecting

i) Um to Vm by a path P4 = UmXmYmVm for m = 1, ... , i - 2.

{

Ui-lXi-lYi-l Vi-l
ii) Ui-l to Vi-l by

Ui-1Xi-l Vi-l

UiVi if . > 2J _

iii) Ui to Vi by UiXiVi if J =1

UiXiYiVi if j=O

if . < 2J _

if j = 3

Theorem 2.5.2.7 If G is a graph constructed as above, then K3(G) = 4.

Proof: For pE {7; 8; 9} it is easy to show the theorem true.

For p 2: 9, since k(G - {Ul,U2,Vl,V2} = 3, it follows that K3(G) ::; 4.

Suppose now that K3(G) ::; 3, then there exists 5 = {51, 52, sd C V(G)

such that k(G-5) ~ 3. Clearly 15nU/ ::; 1 or 15nvI ::; 1. Suppose X m E 5,

then either Um is in a trivial component of G-5 (and 5 = {x m , Um-I, um+d

which is impossible if k( G - 5) ~ 3) or 5' = (5 - {x rn } ) U Urn is such that

k(G - 5') ~ 3.

So we may assume, without loss of generality, that 5 n X = 0,5 n

y = 0 and 15nuI = l,I5n VI = 2, where X = {Xl,X2, ... ,X;} and
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Y = {YI,Yz, ... ,yd. Let S n U = {Um}; then in G - S, all vertices in

(U - {um}) U (X - {xm}) U (Y - {Ym}) U (V - S) are in a single component

and Xm, Ym are in another component which can be ({ Xm,Ym}) if Vm E S

or ({ Xm, Ym, vm}) if {Vm-l, vm+d c S.

However, G - {Um,vm} has as components ({Xm,Ym}) ~ 1(z and a

2-connected component G - {um,xm,Ym,vm}, so {Um,Vm} rt. S.

Hence S = {um,Vm-l, Vm+l} and k( G - S) = 2, again a contradiction.

It follows that

Q4,3(P) ~ Q(G) = {
p + 3 if p E {7; 8}

p + i if pE {4i - 3; ... ; 4i}, i ~ 3, i E N

Now pE {4i - 3, ... ,4i} if and only if 4i E {p,p+ 1,p+2,p+ 3} n N if and

only if i = r~l.

Hence

P + 3 if P E {7,8}

p + r~l = r~il if P ~ 9

Theorem 2.5.2.8

For G E 94,3, K( G) = 2.

Proof: vVe show first that G has no cut vertices. Suppose to the contrary

that k(G-v) 2: 2 for some v E V(G). In fact since G E 94,3,' k(G-v) = 2.

Let H l and Hz be the two components of G - v, then clearly K(Hi ) ~

3, i E {I, 2}. If Pi is the order of Hi, then since q3,2 (p) ~ ¥ it follows that

3Pl 3pz
Q4,3(P) 2: Q(H1 ) + q(Hz) + 2 2: :2 + :2 + 2

3(p - 1)
2 +2

43



p+3

Sp+3
4

if pE {7,8}

if p ~ 9

Thus x;( G) ~ 2.

Suppose x;( G) ~ 3, then q4,3(P) ~ q3,2(P) ~ ¥.
Thus x;(G) = 2. o

Let G have P2 vertices of degree 2 and P3 vertices of degree at least 3

forming sets 112 and V3 respectively. We note that (112) cannot contain a

path P3 : VI V2V3, otherwise G would contain either a Ps : VOVI V2V3V4 or a

C4 : VOVI V2V3VO as an induced subgraph. This would imply that X;3( G) < 4.

Theorem 2.5.2.9

q4,3 = { p.+ 3 if pE {7,8}

r;':l if P ~ 9

Proof: If p = 7, then 2P2 + 3(7 - P2) :; 20, hence P2 ~ 1. Let v E V(G)

with deg V = 2, N(v) = {x, y}. Since P3 ~ (V2 ), at least one vertex in {x, y}

is also in V3; say deg y ~ 3. Note that X;3(G - y) ~ 3 and p(G - y) = 6.

Then q( G - y) ~ q3,3(6) = 6 and hence q( G) ~ 6 + 3 = 9 with equality if

and only if q(G - y) =6 and deg y = 3.

Suppose q = 9. If deg x = 2 and xyE E(G), then y is a cut vertex

which is impossible since x;( G) = 2. So either deg x ~ 3 or xy ~ E( G),

hence q(G) = 9 2: q(G - {x,y,v}) + 5 and so H = G - {x,y,v} has

p(H) = 4, q(H) :; 4, and x;(H) 2: 2 since H is a component of G - {x, y}

and X;3(G) ~ 4. So q(H) 2: ¥ = 4 implying that q(H) = 4 and H is

a 4-cycle. Furthermore, x is adj acent to exactly one vertex (say w) of H,

otherwise q( G) ~ q(H) + 6 ~ 10.

Now G - {w, y} has two components, namely ({ x, y}) and H - w which

is a P3 with connectivity 1. So X;3( G) = 3 < 4 which is a contradiction.

Thus q4,3(7) = 10.
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If P = 8, then 2P2 + 3(8 - P2) :::; 22, hence P2 ~ 2and P3 :::; 6.

Let u,v E 112 with N(u) = {x,y}, N(v) = {w,z} where (since P3 rt (112)),

deg y ~ 3 and deg z ~ 3 say. Since K3(G - y) ~ 3, q(G - y) ~ q3,3(7) = 7

and so q( G) ~ 10.

Suppose q(G) = 10. Then 2P2 + 3(8 - P2) :::; 20 and hence P2 ~ 4 and so

there exist u, v E V2 with uv tf. E(G). Since K3( G) = 4, it follows that

IN(u) U N(v)\ ~ 4 and so x,y,w and z are distirict.

If H = G - {u, x, y} then, by a similar argument to that used in the

case P = 7, we can show that q(H) = 5 and G - {x, y, u} is a 5-cycle.

Similarly it follows that G - {v, w, z} ~ Cs. Thus two possibilities (G1 and

G2) for G exist, both of which satisfy K3( G) = 3 < 4. Hence q4,3(8) ~ 11

and so q4,3(8) = 11.

If P ~ 9, we note first that

2P2 + 3P3 :::; 2q :::; 2r¥1

=} 2P2 + 3(p - P2) :::; 2p +2r~l

Hence P2 ~ P - 2r~l

Suppose q :::; r5Jl - 1 = p + r~l - 1, then

2P2 +3(p - P2) :::; 2p +2 r~l - 2 and so

P2 ~ P + 2- 2r~l and P3 :::; 2r~l - 2.

Thus P3 <P2'

Now, every vertex in V2 is adjacent to at least one vertex in 113. Further­

more, any vertex in V3 is adjacent to at most one vertex in 112, otherwise

if u, v E 112 with xu, xv E E(G), then if uv E E(G), x is a cut vertex of G

contradicting K(G) = 2. Whereas, if uv tf. E(G), then IN(u) U N(v)j < 4

and K3( G) :S 3 contrary to assumption. Hence P3 ~. P2 which again is a

contradiciton. Thus q4,3(p) = r¥l. 0
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Clearly the graphs of figure 2.5.2.2 are (4,3)-minimum graphs and hence

belong to Y4,3(P),

e) Ifn=5

Theorem 2.5.2.10 The graphs of figure 2.5.2.3 have K:3(G) = 5.

Proof: For P E {8, 9, 10, 11} it is not difficult to see that K:3(G) = 5.

For mEN, m ~ 2, consider the cubic graph G, obtained from the 6m­

cycle C6m : aOcObOalclbl ...aZm-lCZm-lbzm-laO by the insertion of the edges

in the set {aibi, cjcj+mli = 0,1, ... , 2m-l; j = 0,1, ... ,m-l}. Let Ti denote

thetriangleaibici (i = 0, ... ,2m-l) and let C = {cili = 0, ... ,2m-i}. That

K:3( G) :; 5 follows from the observation that k( G - {ao, bo, Cm, bm-l, bm}) =

3.

To prove that K:3(G) = 5, we assume the existence of a set S c V(G)

such that ISI ::; 4 and k(G-S) = 3. Let G l , Gz, G3 be components of G-S

and, without loss of generality, assume that G l contains at least one vertex

of To and none of Tl . Note that H : aObZm-lCZm-laZm-l ... bm+3Cm+3am+3

bm+zam+Zcm+zczazbza3c3bc ...ambmcmcoboao is a hamiltonian cycle of G -

(V(Tl ) U V(Tm+l )) whence it follows that V(Tl ) et S. (Otherwise, if

V(Tl ) C S, G - S contains at least two components which contain no

vertex of V(Tl ) U V(TmH ) and are separated on H by at least two ver­

tices of S; so ISI ~ 5, a contradiction.) Hence Tl contains a vertex of

G - (S U V(GI)), say a vertex of Gz. Since bOal E E(G) and Tl is com­

plete, {bo,ad n S =1= 0.

Let i be the smallest index such that V( Gz) n V(Ti+l) = 0; then it

follows as above that V(Ti+l ) n V(Gr ) =1= 0 for r = 3 or 1. Let j be the

smallest index such that V( Gr ) n V(Tj+l ) = 0; then V(Tj+l) n V( Gs ) =1= 0

for some sE {1,2,3} - {r}.
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It follows as above that {bi, ai+d n 5 i= 0 and {bj, aj+d n 5 i= 0, where

a < i < j < 2m. Hence 15 n Cl :::; 1.

We note that, as 151 :::; 4, the graph C6m - 5 contains at most four com­

ponents, with vertex sets (say, without loss of generality) either V( Gl ), V(G2 ),

V( G3) or V( Gl ), V( G2 ), V(G4 ), V( Gs ), where V( G4 ) U V( Gs) = V(G3). In

the latter case, let k be the smallest index following j such that V (Gs) n

V(Tk+l ) = 0, then {bk , aHd n5 i= 0 and j < k < 2m, so 5 nC = 0. How­

ever, it then follows from Co E V(Gl ) and Cn5 = 0, as Gl is a component of

C6m - 5 that Gl contains all vertices in the set {cm, bm, am+l, Cm+l, bm+l' ... ,

a2m-l, C2m-l, b2m- l ,aO, Co}; however, from Cl E V(G2) it follows similarly

that Cm+l E V( G2 ), a contradiction.

So k(C6m - 5) = 3 and Gl , G2, G3 are the three components of C6m - 5

(so r = 3 and s = 1). As 15 n Cl :::; 1, at most one of the vertices Co, Cl and

Ci+l are contained in 5; say Co E V (Gl ) and Cl E V (G2 ); then a contradic­

tion follows as above. Hence 151 > 4; i.e. K3(G) = 5. 0

Similar methods suffice to prove that each of the other graphs shown

in Figure 2.5.2.3 have K3( G) = 5.

From the above theorem and the graphs of figure 2.5.2.3 it follows that

(
{

p +6 if p E {8, 9, 1a}
QS,3 p) :::;

f6:l = f3;1 if p 2: 11.

Theorem 2.5.2.11

()
{

p +6 if p E {8, 9, la}
Qs,3 p =

f¥l if p 2: 11

Proof:

1. Let p = 8 and suppose that Qs,3(8) :::; 13. If v is a vertex of maximum

degree in G, say deg v = .6(G) 2: 3, let H = G - v. Then K3(G) 2: 5
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implies that K,3(H) 2: 4 and so q(H) 2: q4,3(7) = 10. But q(G) 2:

q(H) + .6(G) 2: 13. So q(G) = 13 and hence .6(G) = 3. However,

if q(G) = 13 and p(G) = 8 with .6(G) = 3, then q(G):::; ¥ = 12,a

contradiction. Hence qs,3(8) = 14.

2. Suppose next that qs,3(9) :::; 14 and let deg v = .6(G) 2: 3. Then

H = G - v has p(H) = 8, K,3(H) 2: 4, and hence q(H) 2: q4,3(8) = 11.

Consequently q( G) 2: 11 + 3 = 14, with equality only if .6(G) = 3.

Hence q( G) = 14, .6(G) = 3 and G has at most 8 vertices of degree

3, one of degree 2 (since .6(G) = 3) yielding q( G) = t[8(3) +1(2)] =

13 < 14. Hence qs,3(9) = 15.

3. Assume that there exists a (10,15) graph G with K,3(G) = 5. Let

V(G) = {VI, ... ,VlO}. Note that if .6(G) 2: 14 with (say) deg VI 2: 4,

then H = G - VI has p(H) = 9, q(H) :::; 11 and K,3(H) 2: 4, contra­

dicting the fact that q4,3(9) = IS~)l = 12.

Hence, G is a 3-regular graph.

Let N(VI) = {V2,V3,V4} and note that .6(({V2,V3,V4})) :::; 1, oth­

erwise, if (say) V2V3,V3V4 E E(G), then G- {V2,V4} has two com­

ponents: L I = ({VI,V3}) s=: J{2 and L2, where L2 is a (6,8)-graph

with K,2(L2) 2: 3; hence 8(L2) 2: 3 and q(L2) 2: 9, a contradic­

tion. Since IN({vI,Vj})I2: 5 for j E {5,6,7,8,9,10}, it follows that

each vertex Vj (j E {5, ... , 10}) is adjacent to at most one vertex

in {V2, V3, V4} and to at least two vertices in {vs, ... ,VlO}. ·With­

out loss of generality, let N (V2) = {VI, Vs, V6} and suppose that

V3V4 E E(G). Then, as IN({V2,V3})1 2: 5, V3 is non-adjacent to

Vs and V6, as is V4· Let N(V3) = {VI, V4, vd; then V7V4 rt E(G), so let

N( V4) = {VI, V4, V8}. If V7V8 rt E(G), then G - {V2, V7, V8} has two

components, L3 = ({VI,V3,V4}) and L4 = ({VS,V6,V9,VlO}), where

p(L4) = 4, q(L4) = 15 - 12 = 3; so K,2(L4) :::; 1 and K,3( G) :::; 4, a
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contradiction. So V7VS E E(G), which again produces a contradic­

tion since if we follow the same argument for V3 as for VI above, then

Vs can be adjacent to at most one neighbour of V3. Thus V3V4 tt E(G).

Hence N(V3) = {VI,V7,VS} and N(V4) = {Vl,V9,VlO} (say) and we

note that the girth of G is at least 5. Recall that an n-cage is a 3­

regular graph with girth n and smallest possible order (viz. f (3, n);

see [CL1] in which it is shown that f(3, 5) = 32 + 1 = 10 = p(G)).

It is also known that the ~etersen graph is the unique 5-cage ([CL1],

p. 42, Th. 2.9) and so our graph G must be the Petersen graph P

for which K3(P) = 4, producing a contradiction. Thus qs,3(10) 2:: 16,

which together with the above theorem gives qs,3(10) = 16.

4. For p 2:: 11 note that if 5(G) 2:: 3 then qs,3(P) = q(G) 2:: 3;; hence

q(G) 2:: r3;1if 5(G) 2:: 3.

Suppose q(G) < 3;; then 5(G) E {1,2}. If 5(G) = 1, let deg u = 1,

N(u) = {v} and note that H = G - {u,v} has K(H) 2:: 4, hence

5(H) 2:: 4 and q(H) 2:: 2(p - 2) = 2p - 4; so q(G) 2:: 2p - 4 +
deg v 2:: 2p - 2. From q(G) < 3; we obtain ~ < 2, whence p < 4,

contrary to assumption.

If 5(G) = 2, let deg u = 2, N(u) = {VI,V2} and J = G - {U,VI,V2}.

From IN( {u, w}) I 2:: 5 if w tt N[u], we obtain deg w 2:: 3 if w E

V(G) - N[{VI,V2}] and deg w 2:: 4 if w E N[{VI,vd] - {U,Vl,V2};

furthermore, since K(J) 2:: 3, we have 5(J) 2:: 3 and so q(J) 2:: ~(p-3).

Now q(G) 2:: ~(p - 3) + deg VI + deg V2 - E, where
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So, if q( G) < 3;, it follows that ¥ > 3; - ~ + deg VI + deg V2 - c,

whence deg VI + deg V2 < ~ + c, i.e. deg VI + deg V2 ::; 4 + c. But if

VIV2 (j. E(G) (so c = 0), then deg VI + deg V2 2: 5, so vIV2 E E(G).

Let IN(VI) n V(J)I = ai (i = 1,2); then al + a2 +4 = deg VI +
deg V2 ::; 4+1 and so al +a2 ::; 1, but G is connected, so al +a2 2: 1;

hence (say) al = 1 and a2 = 0, with N(VI) = {U,V2'Z}.

Let L = G - {U,VI,V2,Z}; then deg z 2: 4 (since IN({u,z})1 2: 5).

Now K(L) 2: 4, so 8(L) 2: 4 and q(L) 2: 2(p - 4), whence q(G) 2:

2p - 4 +3 +4 2: 2p - 3. So, as q( G) < 3;, we have ¥ > 2p - 3 and

so p < 6, a contradiction.

So qS,3(P) 2: f3;l which together with the above theorem gives

qS,3(P) = f3;1 for p 2: 11. 0

Clearly, from the above, the graphs of figure 2.5.2.3 belong to 9S,3.

f) n = 6.

We first make the observation that, for G E 96,3, if UV E E(G), then

IN(u) U N(v)1 2: 6.

Also it is known that K3( C~) = 6 for p 2: 9; so q6,3(p) ::; 2p for p 2: 9.

Theorem 2.5.2.12 If G E 96,3, then 8(G) 2: 3.

Proof: It is clear that 8(G) 2: 2, otherwise, if degau = 1 and uv E E(G),

then K(G-{U,v}) 2: 5 and so q(G-{u,v}) 2: Hp-2). But q(G-{u,v}::;

2p - 2; so p ::; 6, a contradiction.

Suppose there exists u E V(G) with N(u) = {VI, vd, and let H = G­

{u, VI, V2}. Then K(H) 2: 4; hence 8(H) 2: 4 and q(H) 2: 2(p - 3) = 2p - 6.
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So the number of edges covered by {VI, vd is at most 6, whence it follows

that VIV2 E E(G), otherwise, ifvIv2 E E(G), then, IN(VI)UN(V2)-{u}l~

5 and so {VI, V2} covers at least 7 edges, a contradiction. Thus it follows

that either degavI :s 3 or degav2 :s 3 (say the former).

If degavI = 2, then G - V2 has two components ({ u, vr}) ~ K2 and H,

with K(H) ~ 5, hence q(H) ~ ~(p - 3) and so q(G) ~ Hp - 3) + 4, but

q(G) :s 2p, whence it follows that p :s7, a contradiction.

So degavI = 3 and degav2 :s 4. Let N( VI) = {u, V2, w}; then G-{w, V2}

has 2 components, ({VI'U}) ~ K 2 and (say) J, where K(J) ~ 4 and so

8(J) ~ 4,whence q(J) ~ 2(p-4) = 2p-8; but, as 8(H) ~ 4, w is adjacent

to at least 4 vertices in H and so q(G) ~ q(J) + 3 + I[V2' V(J)]I+ deg

w ~ 2p - 8 + 3 + 1 + 5> 2p, a contradiction. So 8(G) ~ 3. 0

Let G3 = ({v E V(G)I deg V = 3; G E 96,3}) and let Pi denote the

number of vertices in G of degree i(i ~ 3).

Theorem 2.5.2.13 If H is a component of G3 , then IN(V(H)) - V(H)I ~

3.

Proof: We note first that each component of G3 is complete, otherwise G3

contains two vertices, VI and V2, with da (VI, V2) = 2 and IN(VI) UN(V2)1 :s
5. So each component of G3 is isomorphic to K I , K 2 or K3 •

A similar argument shows that if w E V (G) - V (G3 ), then all vertices

in N(w) n V(G3) are contained in a single component of G3 (or N(w) n

V(G3 ) = 0).

If V(H) = {VI,V2,V3} and N(V(H)) - V(H) = {w}, then G - w has

two components, viz. H and (say) LI where K(LI) ~ 5 and so q(Ld ~

~P(LI) = Hp - 4); but q(LI) :s q(G) - 7 :s 2p - 7 whence p :s 6, a

contradiction.
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V3W2 E E(G); but V3WI E E(G), so (as degGv3 = 3 and 6 :::; IN(V3)UN(wdl

= degGv3 + degGwI - IN(V3) n N(WI)I = degGwI + 1), it follows that

degGwI ~ 5. Now G - {WI, wd has two components, viz. H and (say) L 2 ,

where K(L2) ~ 4 and so q(L2) ~ 2(p - 5) = 2p - 10. But q(L2) :::; q - 11 :::;

2p - 11, a contradiction.

So, if H is a component of G3 of order 3, then IN(V(H)) - V(H)I ~ 3.

If H is a trivial component of G3, then obviously IN(V(H)) - V(H)I =

IN(V(H))I = 3.

Finally, if H ~ J{2 with V(H) = {VI, V2} then, if IN(V(H)) - V(H)I =

2, (say N(V(H)) - V(H) = {WI, W2}), then G - {WI, W2} has two compo­

nents viz. H and (say) L3, where K(L3) ~ 4, so 8(L3) ~ 4 and consequently

q(L3) ~ 2p(L3) = 2(p - 4) = 2p - 8.

However, q(L3 ) :::; q( G) - 8 :::; 2p - 8, with equality if and only if q = 2p,

deg WI = deg W2 = 4 and WIW2 E E(G), which must therefore be valid in
,

this case.

If /N( {WI, wd) n V(L3)1 = 1, let {a}= N( {WI, W2}) n V(L3) and note

that G - a has two components, ({VI,V2,WI,W2}) and (say) L4 , where

K(L 4 ) ~ 5, q(L4 ) ~ ~(p - 5) and q(L4 ) :::; q - 10 :::; 2p - 10; whence p :::; 5,

a contradiction. If N({WI,W2}) n V(L 3 ) = {al,a2}, then deg ai ~ 4 for

i = 1,2 and G - {al,a2} has two components, ({VI,V2,WI,W2}) and (say)

Ls where K(Ls) ~ 4, q(Ls) ~ 2(p - 6) = 2p - 12 and q(Ls) :::; q(G) - 13 :::;

2p - 13, a contradiction.

SO IN(V(H)) - V(H)I ~ 3.

Theorem 2.5.2.14 For p ~ 9, r~l :::; q6,3(P) :::; 2p.
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Proof: It follows from the above theorem that if G E 96,3, then p - P3 =

IV(G) - V(G3)1 ~ 3k(G3) = 3nI + 3n2 + 3n3 and P3 = 3n3 + 2n2 + nI,

where ni is the number of components of order i in G3 (i = 1,2,3).

SO P3 ~ p/2,p - P3 ~ p/2 and 2q ~ (3 +4H.
Thus q ~ If.

For the case p = 9, q6,3(9) ~ q(C~) = 18. Furthermore, if S c V( G)

such that ISI = 6 and k(G - S) = 3, then f{3( (S)) ~ 3, hence q( (S)) ~ 6

and each vertex in S is adjacent to at least 2 vertices in V - S; hence

IlS, V - S]I ~ 12 and q ~ 6 + 12 = 18. Thus q6,3(9) = q(C~) = 18.

Figure 2.5.2.4 shows a graph on 24 vertices and r7(~4)1= 42 edges

which is easily seen to have 3-connectivity equal to 6.

At this stage it remains open to discover whether or not q6,3(p) = r7:l
for all p ~ t > 9 and to establish the values of q6,3(P) for 10 ~ P < t.

Finally we conjecture that, for p.~ n + £ and n, £ ~ 2, both qn-I,r.(P) <

qn,r.(P) and qn,e(p-1) < qn,e(p). It should be noted that the validity of these

statements in the case where £ = 2 follows from our knowledge of the exact

value of qn,2(P) (= rp
; l) and that the proofs of the above conjectures (if

true) may be dependent on the establishment of a corresponding value of

qn,r.(p) for £ ~ 3.
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Chapter 3

Steiner Distance Hereditary

Graphs

3.1 Introduction

The distance dG(u, v) between two vertices, u, v of a connected graph G is

the length of a shortest U - v path of G. The eccentricity e(v) of a vertex v

is maxi d(v, u) I u E V(G)}. If G is a connected graph and S ~ V(G), then

the Steiner distance dG(S) is the size of a smallest connected subgraph of G

that contains S. Such a subgraph is obviously a tree and is called a Steiner

tree for S. If T is a tree then a vertex of degree 1 in T is an end-vertex

whilst all other vertices of T are called internal vertices of T.

Howorka [H2] in 1977 defined a graph G to be distance- hereditary if

each connected induced subgraph F of G has the property that dF ( u, v) =

dG ( U, v) for each u, v E V(F). In order to state the characterizations of

distance hereditary graphs given by Howorka [H2], we need the following

terminology. An induced path of G is a path which is an induced subgraph

of G. Let u, v E V(G). Then a u-v geodesic is a shortest u - v path. Let C

be a cycle of G. A path P is an essential part of Cif P is a subgraph of C

and ~IE(C)I < IE(P)I < IE(C)I· An edge of G that joins two vertices of C

that are not adjacent in C is called a diagonal of C. We say that two diag-
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onals el, e2 of Care skew diagonals, if C +el + e2 is homeomorphic with ](4.

Theorem F (Howorka)

The following are equivalent:

(i) G is distance-hereditary;

(ii) every induced path of G is a geodesic;

(iii) no essential part of a cycle is induced;

(iv) each cycle of length at least 5 has at least two diagonals and each

5-cycle has a pair of skew diagonals.

(v) Each cycle of G of length at least 5 has a pair of skew diagonals.

The definition of the Steiner distance of a set of vertices together with the

concept of distance-hereditary graphs suggests a generalization to Steiner

distance hereditary graphs. In this chapter we first consider this general­

ization and then characterize the 3-Steiner Distance Hereditary Graphs.

3.2 Generalization of Steiner Distance Hered­

itary Graphs

A connected graph is k-Steiner distance hereditary, k ~ 2, if for every

connected induced subgraph H of G of order at least k and set 5 of k ver­

tices of H, dH(S) = da(S). Thus 2-Steiner distance hereditary graphs are

. distance hereditary. Figure 3.2(a) shows a graph G that is not 3-Steiner

distance hereditary since dF( {u, v, w}) =f da({u, v, w}) where F is the in­

duced subgraph of G shown in Figure 3.2(b). However, it is not difficult

to show that the graph of Figure 3.2(c) is 3-Steiner distance hereditary.
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The problem of determining the Steiner distance of a set of vertices in a

graph appears to be difficult. In fact the following related decision problem

1r is NP-complete (see [GJl p. 208]).

1r : Suppose G is a weighted graph whose edges have positive integer

weights. Let S ~ V( G) and suppose B is a positive integer. Does there

exist a subtree T of G that includes S and is such that the sum of the

weights of the edges of T is no more than B?

Furthermore, the problem remains NP-complete even if G is a graph.

This suggests solving the problem in certain special cases. If it is known

that a graph is k-Steiner distance hereditary, then dG (5) can easily be

determined for every set 5 of k 2: 2 vertices of G as follows:

Let the vertices of G - 5 be denoted by VI, V2, ... , Vp-k. Let Go = G. For

each i(l :s: i :s: p - k), if the vertices of S belong to the same component of

G i - I -Vi, then Gi is defined to be Gi - I -Vi, otherwise, let Gi be Gi - I . Thus

Gp - k is a connected induced subgraph of G that contains 5. Therefore

dGp_
k
(5) = dG(S). However, since the deletion of any vertex of Gp - k

separates at least two vertices of 5, no subgraph with fewer vertices than

p(Gp - k ) contains 5 and is connected. Thus Gp - k is a connected subgraph

of smallest order that contains 5. Hence any spanning tree of Gp - k is a

Steiner tree for 5.

Our first result shows that if G is a connected distance hereditary graph,

then dG (5) can be determined by the above procedure for any set 5 ~ V(G)

of at least two vertices.

Theorem 3.2.1 If G is 2-Steiner distance hereditary, then G is k-Steiner

distance hereditary for all k 2: 3.

Proof Suppose, to the contrary, there exists a graph G which is 2-Steiner
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distance hereditary, but not k- Steiner distance hereditary for some k 2 3.

Let k be as small as possible and let H be a connected induced subgraph

of G of smallest order, n say, for which there is a set 5 of k vertices of H

such that dH (5) > da(5). Let 5 = {Xl, X2, ... , xd. If 'IV(H)I= k, then

there exists exactly one set of k vertices in H, namely V(H). However,

then every spanning tree of H is a Steiner tree for V (H) in H and has size

k - 1. Since da(V(H)) 2 k - 1, it follows that da(V(H)) = dH(V(H))

in this case. This contradicts our choice of H. Hence IV(H)I 2 k + 1. If

dH (5) :::; k - 2 let T be a Steiner tree for 5 in H and let H' = (V(T))a.

Then dH,(5) = dH(5) > da(5) and IV(H')I < IV(H)I which contradicts

our choice of H. Hence dH (5) = n - 1, i.e. a Steiner tree for 5 in H

must contain all the vertices of H. By our choice of k, dH (5 - {xd) =

da (5 - {Xi}) for all i(l :::; i :::; k).

We now show that no Steiner tree T' for 5 in G contains any Xi (1 :::; i :::;

k) as an internal vertex. Suppose T' contains some Xi as internal vertex.

Let Tl , T2, ... , Tm be the components of T' - Xi. Let T{ be the subgraph

of T' induced by V(Td U {xd and let T~ be the subgraph of T' induced
m

by (U V(Tj )) U {xd. Let 51 = 5 n V(TD and 52 = 5 n V(Tn. Since
j=2

2 :::; 15i l < k for i = 1,2, it follows that dH (5i ) = da (5i ) for i = 1,2.

Further, IE(Tf) I = da(5i ) for i = 1,2, otherwise we can find a tree with

fewer than q(T') = da (5) edges that contains 5. This is not possible.

Let Ti be a Steiner tree for 5 i in H(i = 1,2). Then dH (5) :::; dH (5l ) +
dH (52 ) = IE(T{) I+ IE(Tnl = da(5). This again produces a contradiction

to the choice of 5. Hence, every Steiner tree for 5 in G has k end-vertices

which are precisely the vertices of 5. Thus da(5 - {xd) < da (5) for all

i(l:::;i:::;k).

We prove next that every vertex of 5 has degree 1 in H and is therefore

an end-vertex of every Steiner tree for 5 in H.

Let Xi E 5 and note that every Steiner tree for 5 - {xd in H does

not contain Xi; otherwise dH(5) = dH(5 - {xd) = da(5 - {Xi}) < da(5)
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(3.2.1)

which contradicts the fact that dH(S) > dc(S). Let Ti be a Steiner tree

for S - {xd in H. Denote by Pi a shortest path in H from Xi to V(Ti ) and

note that every vertex in H occurs in V(Ti ) U V(Pi ) for 1 ::; i ::; k, since

dH(S) = IV(H)I - 1. So Pi contains at least one edge. If Pi contains an

internal vertex, W say, and degH Xi 2: 2, then Xi has a neighbour y in H

which is contained in V(Ti ) and y (j. V(Pi ), which produces a contradiction

as Xi,y is a path from Xi to V(Ti ), which is shorter than Pi· Hence if

degH Xi 2: 2, then Pi has length 1. Therefore

dH(S) dH(S - {xd) + 1

dc(S - {xd) + 1

< dc(S);

contrary to our assumption. Hence every Xi E S has degree 1 in H. There­

fore every Steiner tree for S in H has k end- vertices.

Next consider T, a Steiner tree for S in H. Let f i be the length of a

shortest path Q i (in H) from Xi to a vertex Vi of degree at least 3 in T for

i = 1,2, ... , k. Let Wi,l be the vertex that precedes Vi on Qi and observe

that except for possibly Wi,l no internal vertex of Qi has degree exceeding

2 in H. We now show that

dH(S) = { dH(S - {xd) + f i if Vi E V(Tj )

dH(S - {xd) + f i + 1 if Vi rt V(Ti ),

where Ti is a Steiner tree on S - {xd and where in the latter case Wi,l has

degree 2 in H.

We show first that dH(S - {xd) 2: dH(S) - (Ri + 1). If this is not the

case, then dH(S - {xd) ::; dH(S) - Ri - 2 and neither Vi nor any of its

neighbours in T belongs to Ti . Let Wi,2 and Wi,3 be two vertices distinct

from Wi,l that are adjacent with Vi in T. Then T - ViWi,2 must contain Xi

and Wi,3 in the same component and thus some vertex X j i= Xi such that

the Xi - Xj path pI in T contains Wi,3' Then pI together with Ti produces

a connected subgraph of H that contains S but not Wi,2' However, then

dH(S) < p(H) -1, a contradiction. Hence, dH(S - {xd) 2: dH(S) - (fi +1).
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If Vi E V(Ti), then the length of a shortest path from Xi to Ti is at most

Ri. On the other hand we know that it is at least Ri. Hence it is exactly

Ri. So dH(S) = dH(S - {x;}) + £i in this case. If Vi tj. V(Ti), then some

neighbour of Vi distinct from Wi,l must belong to Ti. Further, Vi must be

on a shortest path from Xi to Ti. Therefore Wi,lhas degree 2 in H. Hence

dH(S) = dH(S - {x;}) + £i + 1 in this case.

Let T' be a Steiner tree for S in G and let H' = (V(T'))a. Since T'

has k end-vertices there is some pair Xi, Xj of vertices of S for which the

Xi - Xj path in T' contains exactly one vertex of degree at least 3 in T',

say y. Without loss of generality we may assume Xi = Xl and Xj = X2. Let

£~ = dT '(X1,y) and £; = dT ,(X2,Y). Observe that da (X1,X2):::; £~ +£; and

that dH(X1' X2) 2: £1 + £2 - 1. Hence da(X1, X2) 2: £1 + £2 - 1. We now

consider two cases.

Case 1 Suppose dH(Xl, X2) = £1 +£2 -1. Then W1,1 and W2,1 must be adjacent

in H and further, Vi must belong to Ti for i = 1,2, by (3.2.1). Thus

dH(S) = dH(S - {x;}) +£i > da(S) 2: da(S - {x;}) +R~ for i = 1,2.

Therefore Ri 2: R~ + 1 for i = 1,2. Hence

a contradiction, since G is 2-Steiner distance hereditary and because

H is a connected induced subgraph of G.

Case 2 Suppose dH(X1, X2) 2: RI +R2. Suppose first that dH(X1' X2) 2: RI +R2+

1. SincedH(S-{x;})+£i+1 2: dH(S) > da(S) 2: da(S-{Xi})+£~, it

follows that Ri 2: R~ for i = 1,2. Hence dH(X1' X2) 2: £1 +R2+ 1 > R~ +R;

2: da(xI, X2). This again contradicts the fact that G is 2-Steiner

distance hereditary.

Suppose thus that dH(X1, X2) = RI + R2. Then W1,1 and W2,1 are not

adjacent in H. If dH(S - {x;}) + Ri = dH(S) for i = 1,2, then, by

(3.2.1), Vi is in the vertex set of Ti. Suppose dH(S - {xd) + RI =

dH(S). Then, as before RI 2: .e~ + 1, and £2 2: £;. Hence dH(X1, X2) =
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£1 +£2> £~ +£; 2: dC(Xl' X2)' This is not possible since G is 2-Steiner

distance hereditary.

So we may assume dH(S) = dH(S - {Xi}) +£i + 1 for i = 1,2. Thus by

(3.2.1), Vi rt V(Ti ) for i = 1,2. We show next that Wl,l anqw2,1 both

have degree 2 in H. Suppose Wl,l has degree at least 3 in H. Let W be

a vertex adjacent with Wl,l that does not belong to Ql. Then there is

a path P in H from Xl to Tl that passes through W but does not con­

tain VI. Thus Tl together with P produce a connected subgraph of H

that contains all the vertices 5 but not VI. Thus dH(S) < p(H) - 1,

a contradiction. Therefore Wltl and W2,1 both have degree 2 in H.

Thus VI = V2. However, then necessarily Vl(= V2) must belong to Tl ,

so that dH(S) = dH(S - {xd) + £1, which we have already shown

cannot happen. 0

Observe that, for k 2: 3, the (k + 2)-cycle Ck+2, is (k + 2)-, (k + 1)- and

k- Steiner distance hereditary but hot (k - 1)-Steiner distance hereditary.

Thus the converse of Theorem 3.2.1 does not hold.

Several characterizations of distance hereditary graphs which yield poly­

nomial algorithms that test whether a graph is distance hereditary have

been established. In order to state some of these characterizations we de-

fine an isolated vertex to be a vertex having degree 0, and two vertices V

and VI are twins if they have the same neighbourhood or the same closed

neighbourhood.

The following characterization of distance hereditary graphs was discov­

ered independently by Bandelt and Mulder [BMl]' D'Atri and Moscarini

[DMl] and Hammer and Maffray [HMI].

Theorem G A graph G is distance hereditary if and only if every induced

subgraph of G contains an isolated vertex, an end-vertex or a pair of twins.
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The result we establish next is another characterization of 2- Steiner dis­

tance hereditary graphs and also suggests an efficient algorithm for deter­

mining whether a connected graph is 2-Steiner distance hereditary. This re- .

suIt is also a direct consequence of a characterization of distance hereditary

graphs obtained independently by Bandelt and Mulder [BM1] and D'Atri

and Moscarini [DM1]. We will need the following terminology. Suppose G

is a connected graph and U E V(G). Let Vu,i = {x E V(G)ldG(u,x) = i}

for 0 :::; i :::; eG(u) where eG(u) is the eccentricity of U in G and let

Ni-I(U, v) = N(v) n Vu,i-l for 1 :::; i :::; eG(u),

Theorem 3.2.2

A connected graph G contains an induced path that is not a geodesic, if

and only if there exists a vertex U and an integer i 2: 2 such that for some

pair x, y of vertices in Vu,i,

(1) xy E E(G) and Ni_I(U,X) =1= Ni-I(U,y) or 3.2.2.1

(2) xy t/- E(G), Ni- l (u, v) =1= Ni- l (u, y) and x and y are both adjacent

with some vertex z in Vu,i+l' 3.2.2.2

Proof Suppose there is some vertex U and an integer i 2: 2 such that

for some pair x, y E Vu,i, 3.2.2.1 or 3.2.2.2 holds. Suppose first 3.2.2.1

holds. Since Ni-I(U,X) =1= Ni-I(U,y), so Ni-I(U,X) - Ni-I(U,y) =1= 0 or

Ni-I(U,y) - Ni_I(U,X) =1= 0. Suppose that the former holds. Let Xl E

Ni- l (U, x) - Ni- l (U, y). Let PI be a shortest U- x path that passes through

Xl and let P2 be a shortest U - Y path. Let a be the last vertex that PI

and P2 have in common (possibly a = u). Then the vertices on the a - x

subpath of PI together with y induce an a - y path P that is longer than

the a - y subpath of P2 . Hence G contains an induced path that is not a

geodesic.

Suppose now that 3.2.2.2 holds. vVe may again assume that there exists

a vertex Xl E Ni- l (U, x) - Ni- l (u, y). Clearly XlY t/- E( G) and XlZ t/- E( G).
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As above, let Pl be a shortest u - x path that contains Xl and P2 a shortest

U - Y path, and a the last vertex that Pl and P2 have in common. The

vertices on the a-x subpath of P l together with z and y induce a path that

has length two bigger than the a - y subpath of P2 (which is a geodesic).

Hence G contains an induced subpath that is not a geodesic.

For the converse suppose G contains an induced path P (say a u - v

path) which is not a geodesic. Then da(u, v) > 1. Among the induced

paths that are not geodesics let P be one that is as short as possible. We

show that P has length at most da(u, v)+2. Suppose IE(P)j > da(u, v)+2.

Let P : u = Ul,U2, ... ,Un = v. Then da(U,Un-l) ::; dG(u,v) + 1 and

P' : Ul, U2, ... , Un-l is a path of length at least JE(P)J - 1 ~ da (u, v) + 2 >

da (u, Un-l)' However, then pI is an induced path that is not a geodesic

but has length less than P. This contradicts our choice of P. Hence P has

length da (u, v) + 1 or da (u, v) + 2. ote that the U - Un-l subpath of P

must be a geodesic, otherwise we have a contradiction to our choice of P.

Thus if IE(P) I = da (u, v) + 1, then da(u, Un-l) = da (u, V). Since the

vertex that precedes Un-l on P is not adjacent with v, Ni-l(U, Un-l) =I­

Ni- l (U, V) where i = da (u, v). If we let x = Un-l and y = v, then it follows

that 3.2.2.1 holds.

Suppose now that IE(P)I = da (u,v)+2. Thenda(u,un_l) = da(U,Un-l)+

1. Let x be U n -2 and let y = v. Then xy tJ. E (G) and the vertex that

precedes x on P is not adjacent with y. Thus if i = da (u, v), then

Ni_l(U,X) =I- Ni-l(U,y). If we now let z = Un-l, then z E Vu,i+l and z

is adjacent with both x and y. Thus 3.2.2.2 holds. 0

This result suggests a polynomial algorithm, using a breadth first search

technique which has complexity O(IV(G)1 4
), for determining whether a

(connected) graph is 2-Steiner distance hereditary. Spinrad [SI] has de­

veloped an algorithm based on this characterization which has complexity

O(IV(G)1 2
). Once this is done and the graph has been found to be 2-Steiner
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distance hereditary, we can efficiently determine, by Theorem 3.2.1, the

Steiner distance of any set of vertices, which was also shown independently

in [DMl].

We conjecture here that whenever G is k-Steiner distance hereditary,

then G is (k + 1)-Steiner distance hereditary for k ~ 3.

3.3 The Characterization of 3-Steiner Dis­

tance Hereditary Graphs

Before proving this characterization we establish some useful properties

about the cycle structure of k-Steiner distance hereditary graphs.

Proposition 3.3.1 If G is k-Steiner distance hereditary, then no cycle C

of length .e ~ k + 3 has two adjacent vertices neither of which is incident

with a diagonal of C.

Proof Suppose C : VI, V2, ... , Ve, VI is a cycle of length .e ~ k + 3 that

has two adjacent vertices neither of which is incident with a diagonal of

C. We may assume VI and V2 are not incident with diagonals of C. Let

5 = {V2' V4, Vs, ... , Vk+2}' Then dG(5) = k since (5)G is not connected and

since (5 U {V3})G is connected. Let H = (V( C) - {V3} )G. Then H contains

5 and dH (5) > k since a Steiner tree for 5 in H must contain VI and Vi,

neither of which belongs to 5. Thus dH(S) > dG(S), contrary to hypothe­

sis that G is k-Steiner distance hereditary. 0

Proposition 3.3.2 If G is k-Steiner distance hereditary, then every cycle

C : VI, V2, ... , Ve, VI of length .e ~ k + 3 has at least two diagonals not a:11 of

which are incident with a single vertex.
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Proof Suppose G has a cycle as described in the statement of the propo­

sition and assume, to the contrary, that all the diagonals of C are incident

with the same vertex, say VI' Let 5 = {V2, ... ,Vk,Vi}' Then (5)G is not

connected. Thus dG(5) ~ k. However, since (5 U {vd) is connected,

dG (5) ~ k. Therefore dG (5) = k. If H = (V(C) - {vd), then it follows

since every diagonal of C is incident with VI and since .e ~ k + 3 that

dH ( 5) ~ k + 1. This contradicts the fact that G is k-Steiner distance

hereditary. 0

Proposition 3.3.3 If G is k-Steiner distance hereditary, then every cycle

C : VI, V2, ... , Vi, VI of length .e ~ k + 3 has at least two skew diagonals, or

if .e = k + 3 and k is odd, then VI, V3, ... , Vk+2, VI or V2, V4, ... , Vk+3, V2 is a

cycle.

Proof Suppose first that .e = k + 3 and that C does not have skew diag­

onals. Then there exists a vertex of C not incident with a diagonal. We

show that if Vi is incident with a diagonal, then ViVi+2 is a diagonal where

subscripts are expressed modulo (k +3). Suppose that this is not the case.

Then there exists a Vi which is incident with a diagonal ViVi+n(n ~ 3) but

ViVi+j is not a diagonal for 2 ~ j ~ n. Let 5 = V( C) - {Vi, Vi+I, Vi+n}. Then

dG(S) = k. Let H = (V( C) - {Vi+n}). Then every connected subgraph of

H that contains 5 must contain Vi and Vi+I. So dH (5) = k + 1 > dG (5),

contrary to the fact that G is k-Steiner distance hereditary. Since C has

no skew diagonals, it follows that k is odd and that either VI, V3, ... , Vk+2, VI

or V2, V4, ... , Vk+3, V2 is a cycle.

Suppose now that .e ~ k + 4 and that C does not have skew diago­

na:ls. We show again if Vi is incident with a diagonal of C, then Vi Vi+2

is a diagonal. Suppose that this is not the case. Then there is a Vi such

that ViVi+n is a diagonal where n ~ 3 and ViVi+j is not a diagonal for
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2 :::; j < n. If n - 1 2: k, let 5 = {Vi+n+l' Vi+n-l, Vi+n+2, ... , Vi+n-(k-I)}'

Otherwise let 5 = {Vi+2, Vi+3, ...., vi+n-d U {Vi+n+l' Vi+n+2, ...Vi+k+z}. Then

da (5) = k, since (5) is disconnected, but (5 U {Vi+n}) is connected. Let

H = (V (C) - {Vi+n})' Then Vi and Vi+l must both belong to a Steiner

tree for 5 in H. So dH (5) 2: k + 1 contrary to the fact that G is k­

Steiner distance hereditary. Thus if Vi is incident with a diagonal, then

ViVi+2 is a diagonal (subscripts expressed modulo .e). By Proposition 3.3.2,

C has diagonals. Thus.e must be even and either VI, V3, Vs, ... , Ve-I, VI or

V2, V4, ... , Ve, V2 is a cycle, suppose the former. Let 5 = {V2' V4, Vs, ... , Vk+z}.

Then (5)a is disconnected but (5U {V3})a is connected. Hence da(S) = k.

Let H = (V( C) - {V3} )a. Since G is k- Steiner distance heredi­

tary, dH (5) = k = da (5). Thus Vk+2VI is an edge. Now let 5' =
{Ve,V2,V3, ... ,vd. Then it is not difficult to see that da(5') = k. Let

F = (V( C) - {vd )a. Since G is k-Steiner distance hereditary, dF (5') = k.

So VkVe-I must be an edge of G. Thus C has two skew diagonals. 0

vVe have already mentioned that, if G is 2- Steiner distance hereditary,

then G is 3-Steiner distance hereditary, but that the converse of this state­

ment does not hold. The next result shows that if a graph is 3-Steiner

distance hereditary but not 2-Steiner distance hereditary, then G has short

cycles without skew diagonals.

Proposition 3.3.4 If G is 3-Steiner distance hereditary, but not 2-Steiner

distance hereditary, then there exists a 5-cycle in G which does not possess

two skew diagonals.

Proof Let G be 3-Steiner distance hereditary, but not 2-Steiner distance

hereditary. Then, by Theorem F, G contains a cycle Ce of length .e 2: 5

which does not have two skew diagonals. Let Ce = VI, V2, ... , Ve, VI' If.e 2: 6,
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then certainly Cl. contains at least one diagonal, otherwise Cl. - VI IS an

induced path and dCe - v1 ({V2,V3,Vt}) > dG ({V2,V3,Vt}), contradicting the

assumption that G is 3-Steiner distance hereditary. Furthermore, if I! ~ 6

and all the diagonals of Ce are incident with a single vertex VI (say), then

Ct - VI is an induced path and once again a contradiction arises to the fact

that G is 3-Steiner distance hereditary. Hence I! = 5 or Cl. contains two

diagonals which are independent, but not skew. Suppose the statement of

the proposition is false and let Ct (I! ~ 5) be a shortest cycle of length

I! ~ 5 in G which does not have two skew diagonals. Certainly I! ~ 6 and

Cl. has two nonadjacent diagonals, say VIVi and VjVk, where 3 :::; i < j and

j + 2 :::; k :::; I!. Then Cm : VI,Vi,Vi+I, ... ,Vj, ... ,Vk, ... ,Vt,VI is a cycle of

length m ~ 5 (where m = I! +2 - i) without two skew diagonals. We note

m f- 5 (by assumption), but m < I!, which contradicts our choice of I!. The

validity of the proposition now follows. o

'vVe are now in a position to characterize the graphs that are 3-Steiner

distance hereditary.

Theorem 3.3.1 A graph G is 3-Steiner distance hereditary if and only if

it is 2-Steiner distance hereditary or the following conditions hold.

3.3.1.1 Every cycle C : VI, V2, ... , Ve, VI of length I! ~ 6

(a) has at least two skew diagonals, or, if I! = 6, then VI, V3, Vs, VI or

V2, V4, V6, V2 is a cycle in (V(C)); and

(b) has no two adjacent vertices neither of which is on a diagonal of

C.

3.3.1.2 G does not contain an induced subgraph isomorphic to any of the
graphs shown in Figure 3.3.1 (any subset of dotted edges may be

included in the graph).

Proof Suppose first that G is 3-Steiner distance hereditary but not 2-

Steiner distance hereditary. Then conditions 3.3.1.1(a) and (b) follow from
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Propositions 3.3.1 and 3.3.3. Suppose now that G contains one of the sub­

graphs shown in Figure 3.3.1 as induced subgraphs. Let 5 = {u' ,Vi, w' }.

Since (5) is not connected, da(5) 2': 3. Since ({u' ,Vi, X, w' }) is a connected

graph in all cases, da(5) = 3. If we now delete x from anyone of the

subgraphs shown in Figure 3.3.1 we obtain a connected induced subgraph

of G that contains 5; but the distance of 5 in each of these induced sub­

graphs is 4 > da(5). This contradicts the fact that G is 3-Steiner distance

hereditary. Thus G does not contain any of the graphs shown in Figure

3.3.1 as induced subgraphs.

For the converse, we already know from Theorem 3.3.1, that if G is

2-Steiner distance hereditary, then G is 3-Steiner distance hereditary. Sup­

pose thus that G is not 2-Steiner distance hereditary and that G satisfies

conditions 3.3.1.1 and 3.3.1.2 of the theorem. Suppose G is not 3-Steiner

distance hereditary. Then G contains an induced subgraph H and a set

5 = {u,v,w} such that dH(5) > dc (5). Choose H in such a way that

IV(H)I is as small as possible. Let Ts and T~ be Steiner trees for 5 =

{u,v,w} in Hand G, respectively. By our choice of H, IV(H)I = IV(Ts)l.

Moreover (5) is not connected.

We now consider several cases.

Case 1 Suppose Ts and T~ are both paths, but that they do not have the

same end-vertices; say Ts is a v - w path and T~ a u - w path and that no

Steiner tree for 5 in G is a v - w path. Let P and pi be the u - v sections

in Ts and T~, respectively. If the lengths of P and pi are the same we may

assume P = Pi. Let the length of pi be a' and of P be a. Note that u

cannot be adjacent with w; otherwise there would be a Steiner tree in G

that is a v-w path. So the vertex x adjacent with u on the u-w section of

Ts is distinct from w. Thus if a> ai, then dH-w({x,u,v}) > da({x,u,v})

and so we have a contradiction to our choice of H. Thus a :::; a'. Clearly
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a/ ~ a. Thus a = a'. By our choice of H, a = a/ = 1.

Let u = Xo, Xl, ... , Xm=~ W be the u-w section of Ts and v = Yo, YI, ... , Yn

= w the v - w section in Ts. Then n ~ 2 and m ~ 3. Observe that the

u - w section of Ts and the v - w section of Tshave no vertex except w

in common; otherwise we have a contradiction to our choice of H. Hence,

the u - w section of Ts and the v - w section of Tsand the edge uv form

a cycle C of length at least 6.

If n = 2 and m = 3, so that C has length 6, then neither Xl, w, v, Xl

nor X2, YI, U, X2 is a cycle since Xl wand UX2 are not edges of G. Thus C

must have two skew diagonals whether or not C has length 6, i.e., XiYk

and XjYl are edges where 1 ~ i < j <m and 1 ~ £ < k < n. By our

choice of H, de ({Xj, u, v}) = dH({Xj, U, v}); hence 1+j = dH({xj, U, v}) =

de({xj,U,v})~£+2. So

j ~ £ + 1 ~ k.

But n + 1 = de (u, v, w) ~ 1 + i + 1 + (n - k). So

k ~ 1 +i ~ j.

3.3.1.3

3.3.1.4

From 3.3.1.3 and 3.3.1.4 it follows that k = j = 1 + i = £ + 1. Now

dH({u, Xi, w}) = m, whereas de ({u, Xi, w}) ~ i + 1 + n - k = n < m; so

dH-v({U,Xi,W}) > de({U,Xi,W}), contradicting our choice of H. Hence

Case 1 cannot occur.

Case 2 Suppose Ts and Tsare both paths with the same end-vertices, say

they are both u - w paths. Then either uv or vw is an edge, otherwise

we have a contradiction to our choice of H. Suppose uv E E(G). Observe

then that the v - w sections of Ts and Tsare internally disjoint other­

wise we have a contradiction to our choice of H. So the v - w sections

of Ts and Tsform a cycle C. Suppose Ts : u,v = vG, VI, ... , Vm = wand

Ts : u,v = Wo, WI, ... , Wn = w. Then n < m. If C has length 6, then

m = 4 and n = 2. Clearly neither VI, V3, WI, VI nor v, v2, W, v is a cycle.
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Thus if C has length at least 6, then C has a pair of skew diagonals. As

in Case 1 we obtain a contradiction. Thus we may assume C has length

5. Note dH({u,v,w}) = 4 and dc({u,v,w}) = 3. So C: V,Wl,W,V2,Vl,V.

Since v is not adjacent with any vertices of C except VI and Wl and since

the graphs of Figure 3.3.1(a) are not induced subgraphs of G, it follows

that u must be adjacent with at least one vertex in {Wl' VI, V2}' (Note

that uw tj. E(G), since otherwise dH({u,v,w}) = 2 = dc({u,v,w}).) If

UV2 E E(G), then dH({u,v,w}) = 3 < 4. So UWl or UVl is an edge of G. If

UWl tj. E(G), the 6-cycle U, v, Wl, W, V2, VI cannot have two skew diagonals

since VVl, WIVl and WIV2 are the only possible diagonals. If UVl tj. E(G),

the 6- cycle u, V, VI, V2, W, Wl, U also does not have two skew diagonals. So

both UVl and UWl E E(G). Further, Wl V2 E E( G); otherwise wand V2

are two consecutive vertices on the 6-cycle w, V2, VI, U, V, w, that are not

incident with any diagonal. However, then (V(Ts ) U V(T~)) is isomorphic

to one of the graphs in Figure 3.3.1(d) which is impossible. Thus Case 2

cannot occur either.

Case 3 Suppose both Ts and T~ have three end-vertices. Let y and z be

the vertices of degree 3 in Ts and T~, respectively.

We show first that V(Ts ) n V(T~) = {u, V, w}. Suppose there exists

x E V(Ts ) n V(T~) - {u, V, w}. vVithout loss of generality we may assume

that x is on the V - Y path in Ts . If x also belongs to the V - z path of

T~, then we obtain a contradiction to our choice of H. So we may assume

that x belongs to the w - z or U - z .path of T~, say the former. Also x =1= y

otherwise we again have a contradiction to our choice of H.

Let dT~(u, z) = £1, dT~(Z, v) = £2, dT~(Z, x) = £3, dT~(X, w) =£4, dTs (U, y)

= d1 , dTs(y, x) = d2 , dTs(x, V) = d3 and dTs(y, w) = d4 . By our choice of

H, dH({u, x, v}) = dc({u, x, v}). So £1 + £2 + £3 = d1 +d2 + d3

or d1 + d2 + d3 - 1.

Suppose first that £1 + £2 + £3 = d1 + d2 + d3 . Since dc(S) < dH(S)
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it follows that f l + f 2 + f 3 + f 4 < dl + d2 + d3 + d4 • Thus f 4 < d4 • But

dH({v, w, y}) = dG({v, w, y}). So d2 +d3 +d4 ~ d2 +d3 + f 4 , i.e. d4 ~ f 4 .

This produces a contradiction. Hence we may assume that f l + f 2 + f 3 =

dl + d2 + d3 - 1. Since dc(S) < ,dH(S), it follows that f 4 ~ d4 • As above

it follows that d4 ~ f 4 . So f 4 = d4 . Let UI, VI and WI be the neighbours

of y in Ts that lie on the y - U, Y - V and y - W paths, respectively.

Since dH({u,x,v}) = dl + d2 + d3 -1, it follows that UIVI E E(G). So

VIWI ri E(G). Hence dH(x, w) = d2 + d4 . Since x =1= y, d2 2 1. Hence

dH(x,w) > d4 = f 4 2 dG(x,w). So if x' is the neighbour of x on the x - z

path in Ts' and if H' is the subgraph induced by x' and the vertices on

the x - w path in H, then dH,({X',x,w}) > f 4 + 1 2 dC({x',x,w}). But

p(H' ) < p(H), so we have a contradiction to our choice of H. Thus we

may conclude that

V(Ts ) n V(T~) = {u, V, w}.

Note that dH(S) ~ dG(S) + 2, otherwise let a =1= y be a vertex on

one of the paths from y to {u, V, w} in Ts , say on the y - U path such

that ua E E(G), and observe that dG({v,w,a}) ~ dc({v,w,u}) + 1 <

dH({v,w,u}) - 1 = dH_{u}({v,w,a}), contrary to our choice of H. Let

Pu , Pv and Pw be the y - u, y - v and y - w paths in Ts , respectively

and suppose Qu, Qv and Qw are the z - u, z - v and z - w paths in Ts'
respectively. We say that Pu corresponds to Qu, Pv to Qv and Pw to Qw in

Ts. Then, by the above observation, at most two of the paths Pu , Pv and

Pw are longer than their corresponding paths in T~. We consider several

subcases.

Subcase 3.1 Suppose exactly two of the paths in {Pu , Pv , Pw } are longer

than their corresponding paths in Ts. Suppose Pv and Pw are two such

paths. Let Cvw be the cycle produced by Pv, Pw, Qv and Qw'

Assume first that the neighbours of y on the Pv and Pw paths in Ts

are not adjacent. By our assumption, no vertex of Pv is joined to a vertex
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of Pw . Since G satisfies condition 3.3.1.1(b) of the theorem, it follows,

if we consider Cvw , that some vertex y' =1= V, w on the v - w path of Ts

is joined to some vertex y" =1= v, w on the v - w path of Ts. But then

dH-{tL} ({y', v, w}) > da({y'; v, w}). This contradicts our choice of H.

Assume thus that the neighbours of y on Pv and Pw are adjacent. If y is

adjacent with any vertex on the v - w path in Ts(different from v and w),

then dH_{tL}({v,w,y}) > da({v,w,y}), again a contradiction to our choice

of H. Note that q(Pv) = q(Qv) + 1 and q(Pw) = q(Qw) + 1 otherwise we

again have a contradiction to our choice of H.

If Qv or Qw has length at least 2, say Qw, then Pw has length at least

3.

Let v' and w' be the vertices adjacent with y on Pv and Pw , respectively.

Let C~w be the cycle obtained from Cvw by deleting y and adding the edge

v'w'. Since Qw has length at least 2, C~w has length at least 7. We show

next that C~w does not have a pair of skew diagonals, thereby producing a

contradiction to condition 3.3.1.1(a).

Observe first that every diagonal of C~w must join a vertex of V(Pv ) U

V(Pw) - {y} with a vertex in V(Qv) U V(Qw). Let x be a vertex of Pw ­

{y} that is incident with a diagonal e = xx'. Let dH(x,w) = d. Then

dTs(w, x') :::; d; otherwise

da ({ v, w, x} ) < q(Qv) + q(Qw)

< q(Pv) + q(Pw ) - 1

- dH_{tL}(v,w,x)

which contradicts our choice of H. Similarly if x is a vertex of Pv - {y}

that is incident with a diagonal e = xx', then dH(v, x) ~ dTs(v, x'). So

the only diagonals of C~w join vertices of Pw - {y} and Qworvertices of

Pv - {y} and Qv.

Suppose aa' and bb' are skew diagonals with a, b E V(Pw - {y}) and

a', b' E V(Qw). Suppose dH(a, w) > dH(b, w). Then necessarily d =

dTs (b', w) > dTs (a', w). From the earlier observation it follows that dH(a, w) >
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dH(b,w) :2: d; i.e., dH(a,w) :2: d + 1. If we now take the shortest v - a

path in H, together with the edge aa' and the a' - w path in Tswe

obtain a tree of size at most dH ( v, a) + d that contains v, wand a. So

dG({v,w,a}) < dH(v,a) + d. This contradicts our choice of H. So C~w

cannot have two skew diagonals each of which is incident witha vertex of

Pw - {y}. Similarly C~w cannot have two skew diagonals each of which is

incident with a vertex of Pv - {y}.

Thus Qv and Qw each have length 1, so that Pv and Pw each have

length 2. Hence Cvw has length 6. We already know that v'w' is an edge

of G where v' and w' are the neighbours of y on Pv and Pw , respectively.

Note that vw rf. E(G). Also wv' rf. E(G) and vw' rf. E(G), otherwise

dH ( {u, v, w}) < p(H) - 1. So Cvw does not have crossing diagonals. Thus·

v', z, w', v' must be a cycle. Let u' be the neighbour of y on Pu . Note that

u' is not adjacent with v', w' , v or w, otherwise we obtain a contradiction

to our choice of H. If u'z rf. E(G), then ({u',y,v',w',v,z})G is isomorphic

to one of the graphs shown in Figure 3.3.1a. Since this is not possible,

u'z E E(G). However, then ({u',y,w',w,v',z})c is isomorphic to one of

the graphs of Figure 3.3.1(e), which is again impossible.

Subcase 3.2 So exactly one of Pu , Pv and Pw has length greater than their

corresponding paths. Suppose Pw is longer than Qw'

Subcase 3.2.1 Suppose q(Pw) = q(Qw) + 1. Then necessarily q(Qv) =

q(Pv) and q(Qu) = q(Pu). Let Cuv be the cycle induced by the edges of

Pu, Pv, Qu and Qv. Then Cuv has even length. Suppose first that Cuv has

length exceeding 6. Then, by condition 3.3.1.1(a) of thetheorem,Cuv has

a pair of skew diagonals. We show next that the only possible such skew

diagonals are yz and u'v' (where u' and v' are adjacent with y on Pu and

Pv , respectively) or yz and u"v" (where u" and v" are adjacent with z on

Qv. and Qv, respectively).
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Suppose that Pv (and hence Qv) has an internal vertex and that some

vertex a of Pv is adjacent with some vertex a/ of Qv' Then dpv (v, a) =

dQv (v, at) as we now see.

If dp.(v, a) < dQv (v, at), then the edges of Qu together with those of

Qw, the edge aa/, the edges of the a - v path of Pv and those of the z - a/

path of Qv induce a tree T of size at most q(T~) that contains u, v and w.

Thus T is a Steiner tree for u, v and w. This is impossible since T contains

vertices of H other than u, v and w which we have shown is impossible.

Suppose now that dpv(v,a) > dQv(v,a'). Let T be the tree induced by

the edges of Pu , Pw , the edge aa/, the edges of the a - y path of Pv and

those of the a/ - v path of Qv' If T is a Steiner tree for u, v and w, then

T and Ts have more vertices in common than only u, v and w. But this is

not possible as we have shown.

Thus q(T) = q(Ts). If H' = (V(T)) contains a Steiner tree for {u, v, w},

then we again have a contradiction since such a Steiner tree has ver­

tices other than u,v and w in common with Ts . So dH,({u,v,w}) =

dH ( {u, v, w}), i.e., H' is an induced subgraph of G of the same order as

H for which dH,({u,v,w}) > dc({u,v,w}). Once again a Steiner tree

for {u, v, w} in H' contains vertices of T~ other than u, v and w which is

impossible.

Therefore if aa/ is a diagonal of Cuv where a lies on Pv and a/ on Qv,

then dpv (v, a) = dQv (v, a/). It can be shown similarly if aa/ is a diagonal of

Cuv such that a lies on Pu and a/ on Qu, then dpu (u, a) = dQu (u, at).

It remains to show that no internal vertex of Pv(Pu) is adjacent with

an internal vertex of Qu( Qv). Suppose aa/ is an edge of G where a is an

internal vertex of Pv and a/ is an internal vertex of Qu' Then let T be the

tree induced by the edges of Qu, Qw, the a - v path in Pv and the edge

aa/. Then q(T) ::;; q(T~). So T must be a Steiner tree for {u, v, w}. But

T has vertices other than u, v and w in common with Ts , which we have

shown is impossible. Therefore no internal vertex of Pv is adjacent with an
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internal vertex of Qu' Similarly no internal vertex of Pu is adjacent with

an internal vertex of Qv'

Hence the only possible candidates for crossing diagonals are yz and

u'v' or yz and u"v". If u'v' is a diagonal, then let C~v be the cycle obtained

from C uv by deleting y and adding the edge u'v'. Observe that C~v is a cycle

of length at least 7 without skew diagonals, contrary to the hypothesis. If

u"v" is a diagonal of C uv , then let C:v be the cycle obtained from C uv by

deleting z and adding the edge u"v". Once again it follows that C:v is a

cycle of length at least 7 without skew diagonals, contrary to hypothesis.

Therefore we may assume C uv has length at most 6. Assume first that

C uv has length 6. We may, without loss of generality, assume that Pv and

Qv each have length 2. Let Cu.v be y, v', v, v", z, u, y. Then it can be shown

in a straightforward manner that zv, yv, uv and zv' are not diagonals of

Cuv '

Suppose uv" is a diagonal of Cuv . Then the subgraph H' induced by

u,y,v",v and the vertices of Pw either contains a Steiner tree for u,v

and w that has more vertices in common with Ts than u, v and w or

dH,( {u, v, w}) = dH({u, v, w}) and a Steiner tree for u, v and w in H' has

more vertices in common with T~ than only u, v and w, which is again

impossible. Hence uv" tf. E(G). By condition 3.3.1.1(a) it now follows,

since neither y, v, z, y nor v', v", u, v' is a cycle, that Cuv must contain skew

diagonals. However, then uv' E E(G). This is again not possible since

uv', uz, v'v and the edges of Qw induce a Steiner tree for u, v and w that

has more ver~ices in common with Ts than only u, v and w.

Hence Cuv must have length exactly 4. Let w' be the vertex adjacent

with y on Pw . If vw' is an edge, then Ts - yv + vw' is a Steiner tree for

{u, v, w} in H. Using the argument that was used to show that Cuv has

length 4 it can be shown that ww' and wz are edges of G. The induced sub­

graph ({u, v, w, y, z, w'}) thus has edgeset {uy, uz, yv, vz; vw', yw', w'w, wz}U

E where E is any subset of {zy, zw'}. However, then G has as induced
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subgraph one of the graphs of Figure 3.3.1(c) or (e) which is impossible.

Assume thus that vw' tJ. E(G). Similarly we may assume that uw' tJ.

E(G). We show next that zw E E(G). If this is not the case, then the

cycle Cvw induced by the edges of Pv, Pw, Qv and Qw has length at least

7. Thus by condition 3.3.1.1(a) Cvw must have skew diagonals. Using ar­

guments similar to those used before, we can show that the only diagonals

of Cvw of the type aa' where a E V(Pw - y), a' E V( Qw) are those where

dpw (w, a) = dQw (w, a'). It is not difficult to see that the only diagonal with

which y may be incident is yz. Since w cannot be incident with any diago­

nals of Cvw , it now follows that vw" E E( G) where w" is adjacent with z on

Qw. If C is the cycle obtained from Cvw by deleting z and adding the edge

vw", then C has length at least 6 and contains adj acent vertices namely

y and w', neither of which is incident with a diagonal. This contradicts

condition 3.3.1.1(b). Hence wz must be an edge of G. Thus the induced

subgraph ({u,v,y,z,w,w'}) has edge set {uy,uz,vy,vz,wz,ww',w'y}UE

where E is any subset of {zy,zw'}. But then G contains anyone of the

subgraphs of Figure 3.3.1(b) as induced subgraph which is not possible.

Hence subcase 3.2.1 cannot occur.

Subcase 3.2.2 Suppose q(Pw) 2: q(Qw) + 2. We have already shown that

q(Ts ) = q(T~) + k where k = 1 or 2. Furthermore we are assuming that

q(Pu) ~ q(Qv) and q(Pv) ~ q(Qv). Suppose q(Pu) = q(Qu) - R. where R. is

a non-zero integer. We show now that k = 1 and that R. ~ 1. Further if

k == 1 and R. = 1, then the neighbours of y on Pv and Pw are adjacent and

q(Pv) = q(Qv).
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To see this let w" be the neighbour of w on Pwand note that

dH ( {v, w, w"}) > q(Ts ) - q(P11. ) - 1

q(Ts ) - q(Q11.) + f - 1

and da({v, w, w"}) < q(T~) - q(Q11.) + 1

q(Ts ) - k - q(Q11.) + 1.

Hence da({v, w, w"}) < dH({v,w,w"}) if k ~ 2 or if f ~ 2.

This contradicts our choice of H. Hence k = 1 and f :::; 1. So da({v, w, w"})

:::; q(Ts) - q(Q11.) and dH{(v,w,w"}) ~ q(Ts) - q(Q11.) +f -1. However,

dH ( {v, w, w"}) = q(Ts)- q(P11. )-1 only if the neighbours of y on Pv and Pw

are adjacent. Since da({v,w,w"}) = dH({v,w,w"}), otherwise we get a

contradiction to our choice of H, it follows if f = 1 that the neighbours of y

on Pv and Pw are adjacent and, since k = 1, this implies that q(Pv) = q(Qv).

Suppose f = 1. Let v' and w' be the neighbours of y on Pv and Pw . Let

T = Ts + v'w' - v'y. Then T is a Steiner tree for {u,v,w} in H that was

considered in Subcase 3.2.1.

So we may assume f = 0 so that q(P11. ) = q(Q11.)' vVe may also assume

q(Pv) = q(Qv), otherwise we may repeat the above arguments with Pv in­

stead of P11. and arrive at a contradiction. In addition we may assume that

w', the neighbour of y on Pw , is not adjacent with the neighbour of y on

either Pu or Pv . Otherwise we can easily arrive at a case we have already

considered. But this contradicts the fact that k = 1.

Case 4 Suppose Ts has three end-vertices, namely u, v and wand that T~

is a path, say a u - w path. Let y be the vertex of degree 3 in Ts and

Pu , Pv and Pw the u - y, v - y and w - y paths in Ts . Observe that u, v and

ware pairwise nonadjacent. Therefore the u - v path Q11. and the v - w

path Qw in T~ must both have length at least 2.

We show first that V(Ts ) n V(T~) = {u,v,w}. Suppose this is not the

case. Then we may assume that some internal vertex of Q11. also belongs

to Ts . Let x be the first such vertex on Qv. after u that also belongs to Ts .
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Suppose first that x belongs to Pu. Let dpu (u, x) = d and dQu (u, x) = /!.

Note first that d I- R; otherwise there exists a tree of size less than that of T~

which contains u, v and w, which is impossible. Hence d 2:: /!. If d = R, then

we obtain a contradiction to our choice of H as follows: We may assume

that the u - x subpaths of Pu and Qu are the same. If u' follows u on these

subpaths, then dH_{u}({u',v,w}) > da({u',v,w}), contrary to our choice

of H. Thus we may assume d> f. If x is an internal vertex of Pu , then let

x' be a vertex of Pu that is adjacent with x but does not lie on the u - x

subpath of Pu. Then dH_w({u,x,x'}) = d + 1 > R+ 1 2:: da({u,x,x'}),

contrary to our choice of H. If x = y, then let z be a vertex on Pv adjacent

with y and observe that dH - w ({ u, x, z}) > da({u, x, z}) contrary to our

choice of H. Hence x cannot be on Pu ·

Suppose next that x is an internal vertex of Pv . Let dH(u, x) = d and

dQu (u, x) = R. Then d I- R since otherwise T~ is not a Steiner tree for u, v

and w. If d > R we have, as before, a contradiction to our choice of H.

Suppose thus that d = R.

If the shortest u - x path in H contains vertices of Qu distinct from u,

then we can replace the u - x subpath of Qu with the u - x subpath in

H and obtain, as above, a contradiction. Suppose then that the shortest

u - x path in H contains no vertex of Qu. Then necessarily u must be

adjacent with x and x and u must be neighbours of y. But then

dH-u({x,v,w}) = dH({u,v,w}) -1 > da({u,v,w})-1

dG ( { x, v, w} ),

contrary to our choice of H. Thus x is not an internal vertex of Pv .

Suppose now that x is an internal vertex of Pw • As before, let d =

dH ( U, x) and let R = dQu (u, x). Then it can be shown, using arguments

that were used before, that d ;t R and that d I- R, so that d = /!. But

again, as in the previous paragraph, it can be argued that in this case

necessarilydH_u({x,v,w}) > da({x,v,w}) which produces a contradiction

to our choice of H. Hence V(Ts ) n V(T~) = {u, v, w}.
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vVe may assume that dH(v, w) > dc (v, w) = dQw (v, w) and that dH(u, v)

> dc (u, v) = dQJu, v); otherwise there either exists a Steiner tree for u,v

and w that has vertices other than u, v and w in common with Ts , which

we have shown is impossible, or there exists a tree with fewer edges than

Tswhich contains u, v and w, which is again impossible.

Thus dH(v, w) ~ dc(v, w)+1. We show next that dH(v, w) = dc(v, w)+

1. Suppose this is not the case, then dH(v, w) ~ dc (v, w) + 2. Let v'

be the vertex adjacent with v on a shortest v - w path in H. Then

dH_u({v,v',w}) ~ dc(v,w) + 2> dc(v,w) + 1 ~ dc({v,v',w}), contrary

to our choice of H. Hence dH(v, w) = dc (v, w) + 1. Similarly dH(u, v) =

dc(u,v) + 1. Let d1 = dH(u,y),d2 = dH(v,y),d3 = dH(w,y),f1 = dc(u,v)

and £2 = dc(v,w). Then d1 + d2 + d3 = dH({u,v,w}) > dc({u,v,w}) =
£1 +£2, i.e.

3.3.1.5

Since at most one pair of the three pairs of neighbours of y III Ts are

adjacent,

3.3.1.6

So d2 ::; 2. Let u', v' and w' be the vertices adjacent with y on Pu , Pv and

Pw, respectively.

We show first that we need only consider the case where d2 = 1. Note

that d2 is the length of the v - ypath in Ts . If d2 = 2, then it follows

from 3.3.1.5 and 3.3.1.6 that either u'v' or v'w' must be an edge of H. Of

course, since Ts is a Steiner tree for {u, v, w} in H, at most one of these

two edges belongs to H. Hence exactly one of these edges belongs to H,

say v'w'. But then T = Ts + v'w' - yw' is a Steiner tree for u, v and w in

H for which the distance from v to the vertex of degree 3 in T is 1.

Suppose thus that d2 = 1. Then u'v' = u'v and v'w' = vw' are not

edges of H, otherwise there is a Steiner tree for u, v and w in H which is a

u - w path. But this situation was already considered in Case 2 and shown

to be impossible. However, then d1 = £1 + 1 and d2 = £2 + 1.
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Consider the cycle C induced by the edges of Pv , Pw and Qw. This

cycle has odd length, namely length 2£2 + 1. Suppose first that C has

length at least 7. Then C must have a pair of skew diagonals z' z and x'x

where z', x' E V( Qw) and z, x E V(Pw). Note w rJ. {x, x', z, z'}. Suppose

da(w, z') > da(w, x'). We show first that dH(w, x) 2: da(w, x'), otherwise

we can replace the x' - w subpath of T~ by the edge x'x followed by the

x - w subpath of Pw and obtain either a Steiner tree for u, v and w that

has more vertices in common with Ts than u, v and w or a. tree conta.ining

u, v and w with fewer edges than T~. Both situations cannot occur. Hence

dH(w,x) 2: da(w,x'). Similarly dH(w,z) 2: da(w,z'). However, then

dH ( w, x) 2: da(w, x') + 2. Let T' be the tree induced by the edges of Pu ,

the edges of the y - x subpath of Pw , the edge xx', the edges of the x' - w

subpath of Qw and the edge of Pv . Then T' is a tree that contains u, v, w,

and has at most q(T~) edges and contains vertices of Ts other than u, v and

w. This cannot happen as we have seen before. Hence C cannot have skew

diagonals. This contradicts condition 3.3.1.1(a) of the hypothesis. Hence

C must have length 5. Suppose C : y, w', W, w", v, y. Using arguments

similar to those employed earlier, it can be shown that the only potential

diagonals of Care w"y and w"w'.

Let u' be the vertex adjacent with v on Qu' Then u'w rJ. E(G); oth­

erwise there exists a tree with fewer edges than T~ that contains u, v and

w. This is impossible. We may also assume that u'w" is not an edge of

G otherwise T~ + u'w" - u'v is a Steiner tree for u, v and w having three

end vertices. This is a situation already considered in Case 3. We show

next that u'w' rJ. E (G). If u'w' E E(G), then T~ - w" together with w'

and the edges u'w' and w'w is a Steiner tree for u, v and w having three

end vertices, again a case we have already considered. If u'y rJ. E(G), then

({u',y,v,w,w',w"})a is one of the subgraphs shown in Figure 3.3.1(a).

This contradicts the hypothesis. So we may assume u'y E E(G). How­

ever, then u', y, w', w, w", v, u' is a 6-cycle that does not satisfy condition
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3.3.1.1(a), contrary to the hypothesis. This completes the proof of Case 4.

Case 5 Suppose that no Steiner tree for S in H has three end-vertices

and that every Steiner tree for S in G has three end-vertices. Suppose

Ts has u and w as end-vertices. Observe that Ts must be an induced

path. Let Pu be the u - v subpath of Ts and Pw the w - v subpath

of Ts . Let z be the vertex of degree 3 in T~ and let Qu, Qv and Qw

be the u - z subpath, the v - z subpath and the w - z subpath of T~,

respectively. Suppose Tshas been chosen in such a way that Qv is as short

as possible. With this choice of T~ it follows that the vertex adjacent with

z on Qv is not adjacent with the vertices adjacent with z on Qu or Qw' Let

f 1 =q(Qu), f 2 = q(Qw), f 3 = q(Qv), d1 = q(Pu) and d2 = q(Pw). Observe

that d1 2:: f 1 + 1 and d2 2:: £2 + 1, otherwise there is a Steiner tree for u, v

and w that is a path, contrary to our assumption.

We now show that Pu and Qu have no vertex in common except u.

Suppose this is not the case. Let x be the first vertex after u on Qu that

also lies on P11. ' The u - x subpath of Pu cannot be longer than the u - x

subpath of Q11. otherwise, by choosing u, x and the vertex x' following x on

P11. ' we see that dG ( {u, x, x'}) < dH - w ( {u, x, x'}) contrary to our choice of

H. Further, the length of the u - x subpath of P11. cannot be less than the

length of the u - x subpath of Q11.' otherwise we could replace the u - x

subpath in Tswith the u - x subpath in Ts to obtain a tree containing

u, v and w which has fewer edges than Tsand this is impossible. Hence

the u - x subpaths of P11. and Qu have the same length. However, then

dG ( {x, v, w}) < dH - 11. ({ x, v, w}) contrary to our choice of H. Thus Pu and

Qu are vertex disjoint except for u. Similarly Pw and Qw are disjoint except

for w.

We show next that P11. and Qv have at most one vertex distinct from

v in common. Suppose x is the first vertex after v on Qv that belongs to

both P11. and Qv' Clearly x =J u. Then the length of the v - x subpath
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of Pu cannot exceed the length of the v - x subpath of Qv; otherwise we

obtain a contradiction to our choice of H. Further, the length of the v - x

subpath in Pu cannot be less than the length of the v - x subpath in Qv

otherwise we can find a tree of size less than that of T~ which contains u, v

and w. So dp...(v,x) = dQv(v,x). If dp...(v, x) ~ 2, then

dH({u,x,w}) dH({u,v,w})

> dG({u,v,w})+l

> dG ( { u, x, w} ) + 3

which is impossible. Hence dp ...(v, x) = 1.

So the only vertex x of Pu distinct from v that can possibly belong to

both Pu and Qv is the neighbour of v on Pu and in this case dH ( {u, v, w}) =

dG({u, v, w}) + 1, otherwise dH({u, x, w}) = dG( {u, x, w}) + 3, which is not

possible.

We assume first that Pu and Qv have no vertex other than v in common.

Consider the cycle Cu induced by the edges of Pu, Qu and Qv.

Suppose first that Cu has length at least 6. We show that Cu cannot

possess two skew diagonals. Since u is incident with no diagonals of Cu ,

it follows from condition 3.3.1.1(b) that the vertex Xl adjacent with u on

Pu must be incident with a diagonal of Cu . We use this to show that

dH ( {u, v, w}) = dl +d2 = dG ( {u, v, w}) +1 = RI +R2 +R3 + 1. If this is not

the case, then dH({u, v, w}) = dG({u, v, w}) + 2. Let XlX~ be a diagonal

incident with Xl. If x~ belongs to Qu, let T be the tree induced by the

edges of Qw, Qv, the x~ - z path of Qu and XlX~. Then q(T) ::; q(T~).

Also dH_u({Xl'V,W}) = dH({u,v,w}) -1 = dG({u,v,w}) + 1 > q(T) ~

da({Xl, v, w}). This contradicts our choice of H. So dR( {u, v, w}) =

da ({u, v, w} ) + 1.

Observe that the diagonals of Cu must join internal vertices of Pu with

vertices of Qu or Qv' Since condition 3.3.1.1(a) holds, it follows that Qu or

Qv must have length at least 2.

81



Suppose first that Q11. has length at least 2. Suppose xx' is a diagonal

of C11. where x is an internal vertex of P11. and x' is a vertex of Q11.' If

dQ) U, x') > dH(U, x), then the U - x subpath of P11. together with the

edge xx', the x' - z subpath of Q11.' Qv and Qw induces a tree T of size

at most dc ({u, v, w}) that contains u, v and w. Since T cannot have size

less than dc ({u, v, w}), it follows that dQ) u, x') = dH(u, x) + 1. However,

then dH_11.({x,v,w}) > dc({x,v,w}), contrary to our choice of H. Hence

dQ) u, x') ~ dH(u, x). But dQu (u, x') + 1 ~ dH(u, x). To see this, suppose

dH ( U, x) ~ dQu (u, x') + 2. Let T be the tree induced by the edges of the

U - x' subpath of Q11.' the edge x'x, the x - v subpath of P11. and the edges

of Pw . Then T has size (at least) one less than Ts and T contains u, v and

w. Hence T is a Steiner tree for u, v and w. However, this gives rise to a

situation already shown to be impossible in Case 2. Thus if xx' is a diagonal

of C11. where x =F u is on P11. and x' on Q11.' then dH(u, x) = dQu (u, x') or

dQ ) u, x') + 1. Consequently there is no pair of skew diagonals for which

two end-vertices are on Q11. and the other two on P11.'

Suppose now that Qv has length at least 2. Suppose xx' is a diagonal

of C11. where x is on P11. and x' on Qv' Then dH(x,v) ~ dQv(v,x') unless

dQv(v,x' ) = 2, in which case dH(v,x) may be 1. Suppose dH(x,v) = d <

dQv (v, x') = £ where £ ~ 2. Then the edges of Q11.' Qw, those on the z - x'

subpath of Qv and the edge x'x induce a tree of size PI +P2 + £3 - £ + 1

which contains u, x and w. However, dH ( {u, x, w}) = £1 + £2 + £3 + 1. So

dH ( {u, x, w}) - 3 2: dG ( {u, x, w}) if P 2: 3, which is impossible. So £ = 2 if

dH(v,x) < dQ.(v, x') and in this casedH(v,x) = dQv(v,x' ) -1 = 1.

We show next that dH(x,v) ~ dQv(v,x') + 1. Suppose dH(x,v) >

dQv (v, x') + 2. Then the edges of the u - x subpath of P11.' together with

the edge xx', the edges of the x' - v subpath of Qv and Pw induce a tree

of size d1 + d2 - 1 = dG ( {u, v, w}) which is a path and contains u, v and

w. This again leads to a situation we have considered in Case 2 and shown

to be impossible. So if there are skew diagonals xx', yy' of C11. such that x
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and y are on Pu and x' and y' are on Qv, then we may assume dQv (v, x') =

l,dpjv,x) = 2,dQv (v,y') = 2 and dpu(v,y) = 1. If Qu has length at least

2, then necessarily the neighbour Xl of u on Pu must be incident with the

diagonal whose other end-vertex is the neighbour of u on Qu. However,

then dH_u({XI,y,W}) = dl +d2 -1 and da({XI,y,W}) ~ da({u,v,w})-l.

This produces a contradiction to our choice of H. If Qu has length 1,

then the neighbour Xl of u on Pu must be incident with a diagonal whose

other end-vertex x~ is on Qv. If Xl f. X and so X~ f. x', then we still

obtain a contradiction to our choice of H. So we may assume x~ = x'.

Howev:er, then dl = 3. So since £3 2 2, and since dl 2 £3 + 1, it follows

that £3 = 2. So the subgraph induced by the vertices of Cu is as shown in

Figure 3.3.2. (The dotted line mayor may not be in the subgraph.) Let

v' be the neighbour of v on Pw. Then v' f. x' since xx' is an edge but xv'

is not an edge. Also v' f. y' since yy' is an edge but v'y is not an edge.

If v'x' is an edge, then da({u,x,v /}) = 3, and dH_w({u,x,v'}) = 4. This

contradicts our choice of H. Hence v'x' t/:. E(G). If V'y' E E(G), then

da({u,y,v /}) = 3 and dH_w({u,y,v'}) = 4. Once again this contradicts

our choice of H. Hence V'y' t/:. E(G).

Note that neither X nor y is on Qw' Also, as it was shown that Pu and

Qu have no vertices in common, it can be shown that Pw and Qw have

no vertex in common. Also since v' f. x', Pw and Qv have no vertex in

common.

Thus the edges of Ts , Qu and Qw induce some cycle C of length at least

7. If y'w is an edge of G, i.e., if Qw is a path of length 1, then C has no

skew diagonals contrary to condition 3.3.1.1(a). Hence we may assume Qw

has length at least 2. Since £2 = q(Qw) > q(Pw), the cycle Cw induced by

the edges of Qw, Qv and Pw has length at least 7 and hence by condition

3.3.1.1(a) has skew diagonals. Furthermore, these skew diagonals have two

end-vertices that belong to Pw and the other two are on Qv or Qw. As was

argued in the case of Cu , they cannot both be on Qw. Also they cannot
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both be on Qv, since in this case Cw would have length 6 which it does not.

Hence one end-vertex is on Qv and the other one on Qw' Next consider C.

Since C has length at least 8, it must have a pair of skew diagonals. One

end- vertex from each of these two skew diagonals must be on Ts (call them

a and b) and the other two (one from each of the pair of skew diagonals

(call them a' and b') must be on Qw' Say aa' and bb' are edges. Note that

a and b cannot both be on Pw by an earlier observation. So a, say, is an

internal vertex of Pu . Now a =1= x; otherwise the edges of Pu , the edge aa'

and the edges of the a' - w subpath of Qw induce a tree of size at most T/;.

However, then dH_u({x,v,w}) > da({x,v,w}), contrary to our choice of

H. Since u is not incident with a diagonal of C, x must beincident with a

diagonal, which therefore is xy'. We show next that the only diagonal of C

with which y can be adjacent is yy'. Suppose ye is a diagonal of C where

e is an internal vertex of Qw' Then Pv. together with the edge ye and the

e-w subpath of Qw produces a tree T of size at most q(T/;) = da(S) which

contains u, v and w. So T is a Steiner tree for S. But the distance from

v to a vertex of degree 3 in T has length less than f 3 = dT~ (v, y'), which

contradicts our choice of T/;. Hence the only diagonal of C with which y

can be incident is yy'. But then C has no skew diagonals.

So we may assume that Cu has no skew diagonals with two end- vertices

on Pu and the other two on Qv' Suppose now that Cu has two skew

diagonals XXi, yyl where x, y are on Pu and x precedes y on Pu , Xl is on Qv

and yl on Qu' By the previous cases Xl and yl must be internal vertices. of

Qv and Qu, respectively. Note that dH(u,x) ~ £1: Suppose dH(u,x) < £1.

If dH ( u, x) ~ f 1 - 2, then the edges of the u - x subpath of Pu , the edge

xx' and the edges of Qv and Qw induce a tree that contains u, v and w but

has fewer edges than T/;, which is impossible. If dH ( u, x) = f 1 - 1, then

dH-u({x,v,w}) = d1 +d2-f1+1 andda({x,v,w}) = f2 +f3 +1 = d1 +d2-f1 ;

contrary to our choice of H. Hence dH ( u, x) ~ £1.

If dpu (v, y) ~ f 3 - 2, then there is a tree of size less than da({u, v, w})
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which contains u, v and w. Since this is not possible we may assume

dpu(v,y) 2: .£3 -1. If dpu(v,y) == .£3 - 1, then d1 2: .£1 + '£3. Observe

that d2 2: .£2 + 1, otherwise we can either find a Steiner tree for u, v and w

that is a u - w path ( a situation considered in Case 2) or a tree of size

less than da ({u, v, w}) that contains u, v and w, which is again impossible.

_. However, since d1 + d2 = .£1 +.£2 +.£3 + 1, it follows that d2 = .£2 + 1 and that

d1 = .£1 +'£3, If we now take the u - y' subpath of Qu together with the edge

y'y, the y - v subpath of Pu and Pw , we obtain a path of length at most

.£1 + £2 +.£3 which contains u, v and w. Again this is a situation considered

in Case 2. Hence dpu (v, y) 2: '£3. However, then d1 2: .£1 + .£3 + 1 and since

d2 2: .£2 + 1, it follows that d1 + d2 2: £1 +.£2 + £3 + 2. This contradicts the

fact that d1 + d2 = .£1 + .£2 + £3 + 1. So Cu cannot contain skew diagonals.

However, Cu cannot be a 6-cycle that satisfies the remaining conditions in

3.3.1.1(a) either.

Hence Cu is a 5-cycle or a 4-cycle. Suppose Cu is a 5-cycle. Since

d1 2: £1 + 1 and d1 2: .£3 + 1, it follows that uz and vz are edges and that

the path Pu has length 3. Suppose Cu : u, Ul, U2, v, Z, u. Let Vi be the

neighbour of v on Pw . Then Vi =1= z since zu is an edge but v'u is not

an edge. If ViZ tt. E(G), then the subgraph induced by V(Cu ) u {Vi} is

one of the forbidden subgraphs shown in Figure 3.3.1(a). If ViZ E E( G),

then u, Ul, U2, v, Vi, Z, u is a 6-cycle that does not satisfy the conditions in

3.3.1.1(a).

Thus we may assume that Cu is a 4-cYcle,say u, Ul, v, Z, u. Clearly z

does not lie on Pw • By considering the cycle Cw induced by the edges of

Qv, Qw and Pw and applying the arguments similar to those applied to Cu,

it can be shown that Cw must be a 4-cycle, say v, VI, W, Z, v. However,

then u, UI, v, VI, W, Z, u is a 6-cycle that does not satisfy the conditions in

3.3.1.1(a).

If Pu and Qv have a vertex in common, then we have shown that it

must be the vertex x that precedes v on Pu . Since da ({u, x, w}) ::;
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da({u,v,w}) -1 and dH({u,x,w}) = dH({u,v,w}), it follows that

da({u,x,w}) = dH({71,X,W}) - 2. Also Qu,Qw and the z - x subpath of

Qv (call it Qx) form a Steiner tree for u, x and w. If we now replace Qv in

the preceding arguments with Qx, we once again arrive at a contradiction.

Hence Case 5 cannot occur either.

Thus G must be 3-Steiner distance hereditary.
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Chapter 4

Functional Isolation

Sequences

The concept of a Supply Graph was introduced by Goldsmith [Gl] and

was defined to be a connected graph with its vertex set V( G) partitioned

into two non-empty subsets P = P(G) and C = C(G), called the sets of

producer and consumer vertices respectively. We denote a supply graph by

G = G(P,C).

Such a graph could represent a network in which the vertices of P rep­

resent producers of commodities or services (e.g. power stations, supply

depots, computers with data storage facilities etc.) and the vertices in

V( G) - P( G) = C(G) represent consumers of the commodities produced

(e.g. users of power, dealers, computers processing data, radio receivers,

military outposts, etc.).

Further, Goldsmith [Gl] defined the kth-orderfunctionaledge-connectivity

().}k)(G)) of G = G(P, C) to be the smallest number of edges of G whose

removal from G yields a graph with k functionally isolated components

(i.e. components containing consumer vertices only).
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We introduce here, the parameter f.l~k)(G) which we define to represent

the minimum number of edges in G whose removal ensures that at least k

vertices are functionally isolated.

Clearly )..~k\G) = f.l~k) (G) whenever the k functionally isolated com­

ponents existing, after the removal of ).. ~k) (G) = f.l ~k) (G) edges, consist of

single vertices.

4.1 f.-l f-sequences

Let G = G(P, C) be a supply graph with ICI = mj then the sequence

f.l~l)(G), f.l}2) (G), ... , f.l~m)(G) will be called the f.lrsequence of G.

A non-decreasing sequence of positive integers A : aI, a2, ... , am is a f.l r

sequence if there exists a supply graph G = G(P, C), with ICj = m, which

has A as its f.l rsequence.

In this chapter we will characterize the f.l f-sequence of a Ranked Supply

Graph (yet to be defined), and giveboth necessary and sufficient conditions

for a non-decreasing sequence of positive integers to be the f.l rsequence of

a Ranked Supply Graph.

First, some general examples:

1. A : 1,2, ... , m is the f.lrsequence of J{l,m where P consists of the

central vertex if m ;::: 2 or of either vertex if m = 1.

2. The sequence A where al = ... = a( = 1, a(+! = ... = au =

2; ... ;a(n-l)f.+l = ... = ani = n is the f.l i-sequence of the supply graph

obtained by £ - 1 subdivisions of each edge of J{l,n with P consisting

of the central vertex.

3. The sequence A where al = a( = 2; al+l = ... = au =

4; ... ; a(n-l)f.+l = '" = anl = 2n is the f.lf-sequence of the supply
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graph obtained from the graph in (2) above by the introduction of a

new vertex made adjacent to all end-vertices.

4. If i 1 , i 2 , ... , in are positive integers with i l > 'l2 > ... > 'In 2 2,

let G be the graph obtained from the union of the disjoint stars

](1,i 1 -1; ](1,i2 -l; ... ; ](1,in -1 (with centres Xl, ... , Xn respectively) by the

introduction of a new vertex, Xo, adjacent to Xl, X2, ... , Xn where

P = {xo}. The J.Lrsequence of G is J.Ljl) J.Lj2)

1. (i1+1) _ _ (i2) _ 2. . (t n _l+1 ) _ (in)_
,J.Lj - ... -J.Lj - , ... ,J.Lj -f-lj -no

5. If G = G(P, C) ~ ](m+k, where IPI = k and ICI
p=m+k

m, then with

J.L jf.) (G) min{k(p - k), f(p - fn

{

f(p - f) for 1 ~ f ~ k

k(p - k) for k ~ f ~ ICI = m = p - k.

4.2 The Ranked Supply Graph

Let A : aI, ... , am be a sequence of positive integers such that

4.1

Consider the supply graph CR = CR(P, C) (with IPI = k,ICI = m)

such that 4.1 holds as a J.Lf-sequence. Let C be partitioned into (disjoint

subsets VI, V2 , ... , Vj such that for t E {1, ... ,j -1}, IY;I = it and VI UV;U .. U

Y; can be functionally isolated by the removal of a set Et of bt = J.Ljs)(GR)

edges where s = i 1 +i 2 +... + it and Et ~ [Vi U ... U Y;, P U ~+1 U ... U Vj].

Furthermore, for 1 ~ r < j the functional isolation of a set of i l + .. + iT

vertices containing at least one element from some Vn (n > r) requires the
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removal of more than br edges.

We will call GR a Ranked Supply Graph.

For R,m E {1,2, ... ,j} let s£

For i = 1,2, ... ,l -1 let

I[Vi, P] I and for R < m, let r£m

bi . Lse + L rem and
£=1 [=I, ...• i

m=i+l, .. ,j

It follows from the above definition that At-I: aI, a2, ... , ail +i2 +...+i t _ 1 is

the Ilf-sequence of the ranked supply graph G~-l)(p(t-l),C(t-l)), where

p(t-l) = P U ~ U ~+1 U ... U Vi; C(t-l) = Vi U Vi U ... U ~-l and

E(G~-l)) = E(GR ).

The consumer vertices in a ranked supply graph could represent con­

sumers which have been ranked according to strategic importance with i l

vertices of Vi being the least important and the i j vertices of Vi being the

most important. The values of the bi would give an indication of the rela­

tive importance of the vertices in Vi,
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Lemma 4.2.1

If A is the J1~k)-sequenceof the ranked supply graph GR = GR(P, C) then

A is also the J1~k)-sequence of the ranked supply graph HR = HR(P, C)

obtained from GR by joining every pair of non-adjacent vertices in (\il)CR

for f = 1,2, ... ,j.

For 1 ::; f < m ::; j, the (f, m)-deficiency ofGR, Tf.m (GR) and the f­

deficiency of GR, Tf. (GR), are defined as follows:

j

Tf.m(GR)=if.im-remandTf.(GR)= L:: Tem(GR). (So Tem(GR) is the num-
m=f.+l

ber of edges in [11£, Vm]c
R

and Te(GR) is the number of edges in [11£,11£+1 U

... U Vj]cR ·)

vVe introduce now, a ranked supply graph JR = JR(P I
, C) obtained from

GRas follows:-

Define J l as follows if j 2: 2:

b) If SI, Tl (GR) 2: 1, we distinguish between two cases:

(i) If SI ::; Tl (GR), let m be the largest integer such that 2 ::; m ::; j
J

and SI ::::; I: TH(GR). Let SI = im + im+l + .. + ij, where
e=m

if. = TH(GR) if m < f ::; j (and im ::; Tlm(GR), obviously).

Replace the SI edges in [Vi, P] by SI edges in [Vi, Vm U ... U

Vj], assigning if. edges to [Vi, 11£], (f = m, .. ,j) and keeping the

degrees of all vertices in Vi fixed (i.e. degJ1 v = degcRv \Iv E Vi).

Finally, for each "new" edge vw inserted above between a vertex

v E Vi and a vertex w E 11£ (m ::; f ::; j), insert another new

edge wx, with x E pi (where pi is a superset of P, containing

91



new vertices, not in V(GR) as required). Hence tl new edges are

inserted into [ve, Pi], m :::; f :::; j.

(ii) If SI > 1"1 (GR), let Sl- Tl(GR) edges of [Vi, P]GR be retained

and replace the remaining Tl(GR) edges in [Vi, P]GR by 2Tl(GR)

edges as indicated in (i), with Tl (GR) replacing SI in (i).

If j 2 3 and J1 , ... , Jt- 1 have been defined, we introduce Jt as follows

(t E {2, ... ,j -I}).

a) If St = 0 and Tt( Jt- 1 ) = 0, let Jt = Jt- 1 .

b) If St > 0 and Tt( Jt - 1 ) > 0, we distinguish between two cases:

(i) If St :::; Tt(Jt- 1), let m be the largest integer such that t + 1 <
j

m :::; j and St :::; L Ta(Jt- 1 ). Let St = tm + ... + tj, where
l=m

tl = Ta(Jt- 1) for m < f :::; j (if j > m) (and t m :::; Ttm(Jt- 1),

obviously).

Replace the St edges in ["Vt, P] by St edges in ["Vt, "Vt+l u ... u Vj]

by assigning tl new edges to ["Vt, vel (f = m, ... ,j), keeping the

degrees of vertices in "Vt unchanged from their values in Jt - 1

and finally inserting tl new edges into [ve, pi], for each edge

vw E [ve, Vm ] inserted above, introducing a new edge wx with

x E pi, where pi is again a superset of P, if necessary.

(ii) If St > Tt(Jt- 1 ), retain St - Tt(Jt- 1 ) edges of ["Vt,P] and replace

the remaining Tt(Jt-d edges in [~, P] by Tt(Jt-l) edges in each

of [~, ~+l U ... U Vj] and [~,P'las above.

Finally, denote Jj - 1 by JR = JR(P' , C)

Lemma 4.2.2

JR(P I
, C) is a ranked supply graph (with pi and C as sets of producers

and consumers, respectively) and JR(P I
, C) has A as its f.lrsequence.
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l=l, ... ,r
m=r+I, ... ,j

Proof: Denote the tLrsequence of JR by C : Cl :::; ... :::; Cm' Suppose that,
r

for some i E {l, .. , m}, Ci =} ai· Let ai = br ; then ai = .z= Sf. + .z= rf.m
f.=1 l=I, ... ,r

m=r+l, ... ,J"

and r =} j.

Observe that Vl U... U11,. is functionally isolated in GR by the removal of 5,
r

the set of .z= Sf. edges from [Vl u ... U 11,., P]cR and R, the set of .z= rf.m

e=1

edges in [Vl U ... U 11,.,11,.+1 U ... U VileR'

In JR the vertices in Vl U ... U 11,. can be functionally isolated by the

removal of the set of edges R above as well as the set 5' of edges in

[Vl U ... U 11,., P'bR and 5", the set of all "new" edges incident with a

vertex in Vl U ... U 11,. and a vertex in 11,.+1 U U Vi in J R, i.e. 5" =

[Vl U ... 11,., 11,.+1 U ... U VibR - [Vl u ... U 11,., 11,.+1 U U VileR' By the defini-

tion of JR , if.f.. < m < rand tem edges from [Yl, P] are replaced by tem edges

in [Yl, Vm ] together with tem edges in [Vm , P'], then eventually, when J m is

defined, each element of the latter set of tem edges in [Vm , P'bl is either left

unchanged in [Vm , P'bm or is replaced by an edge in [Vm , Vm+l U .. U Vi bm
r

and an edge in [Vm +1 U ... U Vi; P']Jm; consequently IS' U 5"1 = .z= Si and
i=1

so Vl U ... U 11,. is functionally isolated in JR by the removal of ai edges. It

follows that Ci < a.

Let E be a largest set of vertices in JR functionally isolated by the

removal of Ci edges from E(JR), and let F = [E, V - E]JR' We note that,

by the maximality of E, IFI = Ci. Let F1 = F n E(GR ) and F2 = F - F1 •

As Ci < ai, E is not functionally isolated in GR - F1 .

Hence, there exists at least one edge e = VIWI E [E, V - E]cR with VI E E

(say VI E Yl I ) and WI E V - E such that VlWl ~ F1 ; so Wl E P. Fur­

thermore, in the construction of JR , VI WI was replaced bya sequence of

edges, say VI Wl by VI V2 and V2W2 (V2 E Yl2 , Wl E P') in the construction
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of le!, V2Wl by V2V3 and V3W3 (V3 E ve3 , W3 E P;) in the construction of

le
2

, ••• etc. until, in 1R, the single edge VI Wl has been replaced by the

edges of a path VlV2V3"'Vn and an edge VnWn ' where Vi E ve i , W n E P' and

If VI, V2, ... , V n E B, then VnWn E F2 and, if Ve tf. B for some.e E {2, ... , n}

with .e as small as possible, then .e :::: 2 and Ve-l ve E F 2 (denote bye' the

appropriate edge VnWn or Ve-lVe).

Obviously, if el i- e2 in [B, V - BJaR' then e~ i- e~ and so IF2 1 ::::

I[B,V - B]GR - F1 1· So IF1 U F2 1 :::: I[B, V - B]GRI :::: ai, a contradiction.

Hence ai = Ci for i = 1, ... , m. o

vVe return now to the ranked supply graph GR and derive some neces-

sary conditions for a non-decreasing sequence of positive integers to be a

fL f-sequence for GR·

Lemma 4.2.3

If A is the fLf-sequence of GR,then

i(i j -1)(b.-b )1
. ) )-1
Z .

)

Proof: For WE YJ, all the vertices in Vi U ... U YJ-l U {w} can be func­

tionally isolated by removing from GR all edges in the set E' = [Vi U ... U

Vj-l U {w}, P u (Vj - {w})] = [Vi u ... U Vj-l U {w}, P] U [Vi u... U Vj-l' Vj­

{w}] U [{w}, Vj - {w}] 4.2.3.1

Furthermore IE'I :::: bj
j-l

and bj- 1 = L:(se+rej)
e=1
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Also

L (1[{w},PJI-I[{w}' VI U ... U Vj-lJ1)

I[Vj, PJI-I[Vj, Vi U ... U Vj-IlI
- 1

Sj - 2.:~:1 rej; hence w can be chosen so that

1[{w}'PII-I[{w}, v, u ... u V;-dl ~ li~ (s; -~ Cl;) J
Thus from 4.2.3.1; 4.2.3.2; 4.2.3.3 and 4.2.3.4 we obtain

4.2.3.4

b; ~ IE'I ~ (~Sl + 1[{w},PII)+(~CI; -I[{w), Vi u ... u V;-111)+(i;-1)

= b;-d (i; - 1) +li~ (s; -~ Cl;) J 4.2.3.5

j j-l j-l
Since bj - bj- 1 = 2.: Sj - 2.: (se - rej) ~ Sj - 2.: r£j, it follows from 4.2.3.5

£-1 £-1 £=1
that

lbj -bj - 1 j
bj .S; bj- 1 + (i j - 1) + i

j

from which it follows that

[
(i--l) 1

J (b--b- 1) <i-l- J J- - J .z-
J

o

- By applying lemma 4.2.3 to the flf-sequence of GR(P U V£+1 U ... U Vj, C­

(V£+1 U ... U Vj)) we obtain the following corollary.

Corollary 4.2.3

If A is the fl rsequence of GR(P, C), then for 2 S; .e S; j,

r(i ti:l) (b£ - be-d1S; i£ - 1.

Lemma 4.2.4

If A is the flf-sequence of GR(P, C), then for .e < j

b b lbj-l+bjj
HI - £ S; i

j
. + i j - 1
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Proof: For w E Vi and .e < j, the vertices in Vi U ... U Vi U {w} can

be functionally isolated by removing from GR all edges in the set E' =

[Vi U ... U Vi U {w}, P U Vi+l U ... U (Vi - {w})] = [Vi U ... U Vi, Vi+l U ... U

Vi UP] + [{w}, Vi+! U ... U Vi-I U (Vi - {w} UP] ~ [{w}, Vi U ... U Vi].

Thus

bi +! ::; L rit+ L Si+I[{iv},Vi+l U ... U Vi':'I U (Vi-{w})UP]1
i<l i<i

t~l+l

-I[{w}, VI U ... U Vi] I

bi + I[{w}, Vi U U Vi-I U (Vi - {w}) U P]I- 21[{w}, VI U ... U Vi] I

< bi + I[{w}, Vi U U Vi-I]I + i j -1 + 1[{w},P]I.

Now summing over all w E Vi gives

j-l

and since bj - 1 = I[Vi, VI U ... u Vi-l]1 + l: Si it follows that
i=:1

j-l j-l

i j (b£+1 - bi) ::; bj - 1 - L Si + ij(i j - 1) + bj - L Si
i=:1 i=:1

Hence
j-l

i j (b£+1 - be) < bj - 1 + ij(i j - 1) - 2L Si + bj
i=:1

Thus o

Corollary 4.2.4

If A is the f.L rsequence of GR(P, C), then for 1 ::; t ::; q - 1 ::; j - 1,

b b < . 1 lbq + bq
-

1Jt - t-l _ Zq - + -=----.--'--
Zq

Lemma 4.2.5
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If A is the fL f-sequence of GR(P, C) for which j = 1, then m = 1 or bl ::; m.

Proof: Let A : al = a2 = ... = am = bl be the fLrsequence of GR and

let v E C. Since v can be functionally isolated by the removal of the

edges incident with v and since there exists v* E Cfor which 1[{v*},P]I::;

I[C,PH = h it follows that
m m'

b d * blI::; eg v ::; m-I + -;
m

hence bl(m -1) ::; (m - l)m.

Consequently m = 1 or bl ::; m. o

For the ranked supply graph GR = GR(P, C) with A as fLf-sequence with

j 2:: 2, lemma 4.2.5 together with the fact that aI, a2, ... ,ail is the fLf­

sequence of GR(P U V2 U '" U Vj, Vi) leads to the following corollary.

Corollary 4.2.5

For the J-Lrsequence of the ranked supply graph GR(P, C), bl ::; i l or i l = 1.

Lemma 4.2.6

If A is the J-Lf-sequence of GR(P, C), then

Proof: Let w E Vj bea vertex of smallest degree in GR - E((Vj)), then

l,\"J-I J. 6' rr+ s .degGR W ::; Zj - 1 + ,-I Z/ J. Hence

and consequently (b l - i j + l)i j ::; bj - l + bj .
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This condition is clearly satisfied if i j ~ 2 and since aI, a2, ... , ai1+ +it

is the f.lrsequence of GR(P U Vi+l U ... U Yj, v;, U ... U Vi) for £ E {2, ,j}

the next corollary follows.

Corollary 4.2.6

If A is the f.l f-sequence of GR(P, C) then be- l + be > CbI - ie + 1)ie for

£ E {2, ... ,j} and ie ~ 3.

Lemma 4.2.7

If A is the f.lrsequence of GR(P, C), let 2 ~ t +2 ~ n ~ j and am = br for

m = { ~l + + i.t + in + ... + i j = ~v;, U ... U ~ U Vn U ... U Yjl if t ~ 1 then

Zn + + Zj = IVn U ... U Yj I If t = 0,

br - bt < bj - bn- l + 2in- l in if t ~ 1 and

br < bj - bn- l + 2in_Iin if t = O.

Proof: If G is a ranked supply graph, the functional isolation of Vi U V; U

... U 11,. requires fewer edge removals than the functional isolation of

{

ViU",U~UVnU",UYjs=
VnU ... U~

Consequently, if t ~ 1

if t ~ 1

if t = O.

whence we obtain

and, if t = 0,

Corollary 4.2.7
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If A is the fl rsequence of GR(P, C) then for n .:; q .:; j,

b b b b + 2 · . l'f t >_ 1 andr - t < q - n-l 2n -12n

br < bq - bn - 1 + 2in - 1in if t = O.

The necessary conditions for a sequence A, of positive non-decreasing in­

tegers, to be the fl rsequence of a ranked supply graph can be summarized

as follows:-

2) r(ili~l)(be-be-l)l':;ie-l 2,:;£':;j

3) bt - bt - I .:; i q - 1 + lb
q+i:

q
-

1 J i':; t .:; q - 1 .:; j - 1

5) be- I - be- 2 .:; be - be- l + 2ieie- l

That these conditions are independent can be shown by the following se-

quences

Al : 1,1,1,3,3,5,5

A2 : 3,3,5,5,7,7

A3 : 1,1,4,4,7,7

As : al = ... = alO = 10; all = ... = a13 = 11; a14 = ... = a16 = 12

A 6 : 2,2,10, 11

Al satisfies all conditions, A2 satisfies all but condition 1, A3 satisfies all

but condition 2, A4 satisfies all but condition 3, As satisfies all but condi­

tion 4 and A6 satisfies all but condition 5.

Theorem 4.2.8 If A is a non-decreasing sequence of m positive num-
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bz < ... < ai1+ ...ij_1+l = ... = ai1+...+ij_1+iJ = bj , m = i l + iz + ... + i j , and

A satisfies the following conditions

bl ::; i l or i l = 1 (1)

f(i e -l)(be - be-l)/iel ::; ie-1 for 2::; R::; j (2)

be- l + be 2: (bl - ie+ l)ie for 2 ::; R::; j (3)

bt - bt - l ::; iq - 1 + l(bq+ bq-l)/iqJ for 2 ::; t ::; q - 1 ::; j - 1 (4)

bq- l - bq- 2 ::; bq - bq- l + 2i qiq_ l for 3 ::; q ::; j, (5)

then there exists a ranked supply graph GR = GR(P, C) with ICI = m

which has A as its fLrsequence.

Proof: We construct a sequence of supply graphs, G l , Gz, ... , Gj as follows:

G l = Gl(Pl , Cl) is a graph with Cl = VI (say), IVII = i l , (VI) ~ 1{;1 and

each vertex in VI is adjacent to lbI/id or fbI/ill vertices in PI, so that

I[VI, Pl]1 = bl . (The only restriction on PI is that IPll 2: fbI/ill Let (PI)

be empty.)

Suppose that G l , ... , Ge have been defined (1 ::; R :::; j - 1) where, for

1 :::; h :::; R, Gh = Gh(Ph, Ch), Ch = VI U ... U Vh, (VI )Gh ~ J{i1' ... , (Vh)Gh ~

1{;h' and, for Sh = I[Vh , Ph] I, each vertex in Vh is on fSh/ ihl or lSh/ ihJ edges
e=l

of [Vh, Pe] in Ge. Furthermore, be - I: Si = Se·
i=l

We next define Gi'+l = Gi'+l (Pe+l , Ce+l); Ci'+l = VI U ... U Vi U Vi+l'

where IVi+l1 = ie and (Vi+l)Gl +1 ~ J{ii+1' The edge set E(Gi'+l) consists

of all the edges in E(Ge) - [Vi, Pe] together with E((Vi+l)) and a set Fe

defined as follows:

Case (a): If Se :::; ieie+l, then for each edge e = uv E [Vi, Pe] with

u Eve, v E Pe, Fe contains the edges e' = uw and e" = wv (with
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w E Vi+l), assigned so that each vertex w in Vi+l is on rse/iH1 l or lse/ iH1J

such edges of [Vi, Vi+l]' Finally a further set of bH1 - bg edges is inserted

into [Vi+ll Pg+1] in Ft and 1[l1t+1' Pg+1]! is denoted by Sg+1, where the edges

of [Vi+l' PHd are chosen so that each vertex in Vi+l is on rSHI!iH1l or

lSHdiHIJ edges of [Vi+l' PHI]' In this case in Ct+1,[Vi, Pg+1] = 0 and
g-1

(in Cg+1) Sg = 0 (whereas Sg = bg -2:Si in Cg),so St+1 = bg+1 - bg =
i=1

t-l g

bg+1 - 2: Si = bg+1 - 2: Si· PHI is equal to Pt if rSHI!igl ::; IPgl and is
i=1 i=1

a superset of Pg of size rsHdig+1l otherwise, inducing an empty subgraph

in Cg+1'

Case (b): If Sg > igiH1 , we recall that each vertex in Vi is on lse/id or

rse/igl edges of [Vi, Pg]' hence on at least ig+1 edges of [Vi, Pg] in Cg. For

each u E Vi, insert into Fg,iH1 edges in [{U},Vi+l] (so (Vi U Vi+1)Gl+1 rv

J(il+il+1 ) as well as the set of rse/igl - iH1 or lse/igJ - iH1 edges of

[{ u}, Pg] remaining after the removal of any edges from [{ u}, Pg]Gi" Finally

Sg+1 = bH1 -bg+igig+1 edges of [Vi+l, PHI] are inserted into Fg, so that each

vertex of Vi+l is on lsg+1/iHd or rSHdiHll of them. The set PHI equals

Pg if rSHI!ig+1l ::; IPgl and is a superset of Pt with IPH1 1 = rSt+1/ig+1l

otherwise, inducing an empty subgraph in CHI' Finally the symbol Sg is

changed to denote I[Vi, Pg+1]Gl+1 1 (i.e. St in Cg is reduced by igig+1 to Sg in
g

GHd· Thereafter SHl = bH1 -bg+igig+1 = bt+1-(bt -itig+1) = bg+1 -2: Si·
i=1

Nate that in GH1 , for 1 ::; h ::; R+ 1, each vertex of Vh is on rSh/ ih1 or

lSh/ihJ edges in [Vh, PHI], as required in the inductive definition.

Note that in this case, as in (a), it may be said that each edge e =

uv E [Vi, Pg)Gl - [Vi, PH1 ]Gl+1 (u E Vi, v E Pg) is replaced bye' = uw E

[Vi, Vi+l]Cl+1 and e" = wv E [Vi+1, PHI]cl+l and we shall say that e', e"

correspond to e.
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by De : di, d~, ... , dJ1+...+il ' vVe shall prove by induction on /! that De IS

Let /! = 1. The il vertices in 1Ji can be functionally isolated in GI(PI , Cl)

by the removal of the bl edges in [1Ji, PI]' If i I ~ 2, then the fundamental

isolation of exactly k vertices of 1Ji in GI(PI , Cl) (for 1 ~ k < il ) requires

the removal of at least nk = k(i l - k) + klbdilJ edges. We recall that

in this case, by condition (1), bl ~ i l . However, the use of elementary

calculus yields nk ~ il -1 + lbdilJ. Hence nk ~ bl for k = 1, ... , il -1 and

so di = ... = d~l = bl , as required.

vVe now assume that Dn is aI, a2, ... , ai1+ ...+ir for all integers 'r satisfying

1 ~ 'r ~ /! and that 1Ji U ... U~ can be isolated by the removal of br edges.

To show that DHI is aI, a2, ... , ai1+ ..+il+il+1, we establish a few lemmas.

Lemma 4.2.9 If /! E {I, 2, ...,j -I} and S ~ Ce, the minimum number of

edges required to be removed in Ce and in CHI for the functional isolation

of S are equal.

Proof: Let the minimum number of edges whose removal from Ce (or CHI)

functionally isolates S be a (or /3, respectively) and let F' ~ E(Ce), F" ~

E(Ce+I) such that IF'I = a, [F"I = /3 and S is functionally isolated

in both Ce - F' and Ce+l - F". Then, by replacing each edge e in

F' n [Vi, Pe] - E(Ce+I) by a corresponding edge e' in [Vi, Vi+I], we ob­

tain from F' a set F'" ~ E( CHI) with IF'" I = IF'I = a such that S is

functionally isolated in Ce+I' Hence /3 ~ a. Conversely, by replacing every

edge e' E F" n [Vi, Vi+ I] or e" E F" n [Vi+ I, PH I] by the corresponding edge

e in [Vi, Pe]' we obtain a set F IV from F" with IFIvl ~ IF"I such that S

is functionally isolated in CR. - F IV . So a ~ IFIvl ~ IF"I = /3 and hence

a = /3. 0
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We now suppose that D l+! =!= aI, a2, ... , ail +...+;l+l and let i be the largest

index for which ai =!= d~+I; say ai = br . Let S ~ Cl+! such that 151 = i and

5 can be functionally isolated in CHI by the removal of a set F of d~+1

edges of CHI. For i = 1,2, ... ,.e + 1, let Vi n 5 = 5i and Vi - 5i = Ti .

Lemma 4.2.10

b) dHI
ai < i ,

Proof: That (a) holds is obvious, as the functional isolation of all vertices
HI

in CHI requires removal of the l: Si (= bl+l ) edges in [CH l,PHl]'
i:=1

Furthermore, as the set 11;. U ... U 11,. of i l + ... + ir (~ i) vertices can be

functionally isolated by the removal from GHl of the br edges in [VI U .. U

11,., Vl+! U PHI], it follows that d~+1 :::; br = ai and so d~+1 < ai. From

h · f .. f 11 h dHl d dHl < dHlour c Olce 0 ~ It 0 ows t at i+l = ai+l an so i < ai _ ai+l = i+l'

whence (c) follows. If 5 n Vl+l = 0, then 5 ~ Cl and so, by Lemma 4.2.9

and the inductive hypothesis, d~+! = d; = ai, a contradiction.

Lemma 4.2.11 If 5 n VI =!= 0, then 11;. ~ 5, i.e., 11;. = 51.

o

Proof: If i l = 1, this is obvious. So assume that i l 2: 2. Note that i l ~ bl

and let F' be the set of edges obtained from F by replacing the set of all

edges in F covered by 11;. by [11;., V2]Gl +1 • Then, if 51 =!= 11;., IF'I :::; IFI. (This

is obvious if bl < i l , whereas, if bl = i l , each vertex of 11;. is on an edge in

[11;., \12] and so at least one of the bl edges in [11;., \12] is contained in F, at

most bl - 1 in F' - F, whereas F - F' contains at least i l - 1(~ bl - 1)

edges.) However, the set of vertices functionally isolated in GH1 - F' is a
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proper superset of S, viz. S U VI, which contradicts Lemma 4.2.10(c). So,

if S n Vi i- 0, then Vi ~ S. o

Lemma 4.2.12 If t is the smallest index for which v;: i- St, then St = 0.

Proof: The statement is obviously true if it = 1. So assume that it 2: 2

and suppose that 0 i- St i- V;:; then t 2: 2. Furthermore, if t = £ + 1, then

Vi U... UVl c S and it is a consequence of condition (2) and the maximality

of i that St = V;:, a contradiction. So 2 :::; t :::; .e.
Let Ft denote the subset of F covered by Vi U ... U V;:-I U St; then

Vi U .. U V;:-I U St is functionally isolated in CHI - Ft by the removal of

ht = IFtl edges. By Lemma 4.2.9, Vi U ... U V;:-I U St can be function­

ally isolated in C t by the removal of h~ :::; ht edges. By the inductive

hypothesis all vertices in Vi U .. U V;:-I U v;: can be functionally isolated

in Ce (hence, by Lemma 4.2.9, in CHI) by the removal of bt edges and

bt :::; h~ :::; ht = IFtl. So SUTt can be functionally isolated in CHI by the re­

moval ofthe d;+! - ht+bt(:::; di ) edges in (F - Ft) U [Vi U, ... , UV;:, V;:+I UPHI ].

But SUTt is a proper superset of S and so Lemma4.2.10(c) is contradicted.

Hence it follows that St = 0. o

For the following Lemma t is defined as above, so t :::; £, and we note

that, as Se+! i- 0, there exists some q 2: t + 1 for which Sq i- 0.

Lemma 4.2.13 If q is the smallest index such that q 2: t + 1 and Sq i- 0,

then Sq = ~.

Proof: Denote by nl and n2 the smallest number of edges of Cq the removal

of which functionally isolates the sets Vi U... UV;:-I USq and Vi U.. UV;:-I U~.

Suppose that Sq i- ~; then iq 2: 2 and, by Lemma 4.2.10(c), nl < n2. We
q-I q-l

note that in Cq, I[~, ~-l] I = bq- I - 2:= Si and I[~, Pq] I = bq- 2:= Si; so, for
i=l i=1
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Now nl .bt - 1 + I[Sq, ~-l U TqU Pq]1

bt- 1 + ISqllTql + I[Sq, ~-l U Pq]l

> bt - 1 + iq-1 + l(bq- 1 + bq- <~ Si) jiqj ,

and

n2 bt - 1 + I[~-l, ~ UPq]1
q-l

bt - 1 + bq- 1 + bq - 2 I: Si·
i=l

q-l

bq + bq- 1 - 2 I: Si >
i=l

iq+ l(bq- 1 + bq- 2~ Si)jiqj
q-l

> iq- 1 + (bq- 1 + bq- 2 I: si)jiq.
i=l

But, by condition (4),

q-l

bq+ bq- 1 ~ iq- 1 + (bq- 1 + bq - 2~ si)jiq.
i=l

... (4.2.13.1)

...(4.2.13.2)

q-l (q-l)
Now (4.2.13.2)-(4.2.13.1) yields i~ Si < ~ Si jiq, a contradiction, from

which it follows that Sq = ~. 0

By applying the conditions (1) to (5) and the techniques used in the

proofs of Lemma 4.2.12 and Lemma 4.2.13 in the obvious manner, we ob­

tain the following result:

Lemma 4.2.14 If, for i E {I, .. ,£ + I}, Si i= 0, then Si = Vi,

Lemma 4.2.15 If S is chosen to yield the largest possible value of t,

then S = VI U ... U Vx U Vy U ... U ~+l for some indices x, y satisfying

l~x<x+2~y~£+1.
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Proof: Let y be the largest number in {I, ... , f + I} for which Sy-l :f. \1,;-1

(i.e., Sy-l = 0). Then Vy U .. U Vf+l C S and we note that, as observed in

the proof of Lemma 4.2.12, Vi U ... U Vf (j.. S, so y exists and, by Lemma

4.2.10, y ~ t + 1.

Let S' = S - (Vx U ... U Vf+l), IS'I = i' and ai' = bx, then IVi U ... U Vxl ~

IS'I = i'.

Denote by f, 1', f" and f'" the smallest numbers of edges whose removal

from GH1 functionally isolates S, S', Vi U ... U Vx and VI U ... U Vx U Vy U

... U Vf+l' respectively. Then f = l' + f" and fill = f" + bx'

Note that l' ~ ai' = bx (by the inductive hypothesis and Lemma 4.2.9).

By our choice of S, f :s; fill and, if S' :f. Vi U ... U Vx , then f < fill; hence

l' < bx , a contradiction. So S' = Vi U ... U Vx ' o

Lemma 4.2.16 S = Vi U ... U~ UVn U ... UVf+l' where 1 :s; t < n :s; f +1.

Proof: Let S" = S-(VnU... UVf+l) and i" = IS''I; then S" C Ce and so, by

Lemma 4.2.9 and the inductive hypothesis, the functional isolation of S"

in GR. (and in GHd requires the removal of at least ai" edges. Let ai" = bm

and let f" = I[S", V(Ge) - S"ll· Then 1" ~ bm with equality attained if

and only if S" = VI U ... U Vm (as m ~.IS"I = i" and i is maximal).

Furthermore, as IVi U ... U Vm U Vn U ... U Vf+ll ~ i and the functional

isolation of Vi U ... U VmU Vn U ... U Vf+l is accomplished by the removal of
HI HI

bm + r n -l + L: Si edges, it follows that d;+1 :s; bm + r n -l + L: Si. However,
i=n i=n

HI
df+l = f" + r n-l + ~ Si; so f" < bm and consequently f" = bm . It follows

l=n

that S" = Vi U ... U Vm and m = t, as required. 0

We are now able to complete the proof of the theorem:
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H1
IfT"n-1 = in-1in, thend1+1 = bt +in--1in+'2: Si = bt+bH1-bn-1+2in-1in;

t=n
SO br > d;+l = bt + be+l - bn- 1 + 2in- 1in' which contradicts condition (5).

Hence T"n-1 < in-1in and (by the definition of CH1 ) Sn-1 = O. We

note that 1 ~ bn- 1 - bn- 2 = T"n-1 + Sn-1 - T"n-2 = T"n-1 - T"n-2 and so

T"n-1 > T"n-2. It now follows that the functional isolation of 5 U Vn- 1 =
Vi u ... u ~ U Vn- 1 U Vn U ... U Y£+1 in Cl+1 may be accomplished by the

e+1 e+1
removal of bt + T"n-2 + '2: Si < bt + T"n-1 + '2: Si = b1+l edges, which is

t=n t=n
impossible, as IS U Vn-11 > 151 = i and b1ti > b1+1. This contradiction

completes the proof of the theorem.

We conclude this chapter with the conjecture:

Every supply graph is a ranked supply graph.
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