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Abstract

This dissertation details the results of an investigation-into, primarily,
three aspects of graph vulnerability namely, ¢-connectivity, Steiner Dis-

tance hereditariness and functional 1solation.

Following the introduction in Chapter one, Chapter two focusses on
the ¢-connectivity of graphs and introduces the concept of the strong /-
connectivity of digraphs. Bounds on this latter parameter are investi-
gated and then the f-connectivity function of particular types of graphs,
namely caterpillars and complete multipartite graphs as well as the strong
{-connectivity function of digraphs, is explored. The chapter concludes

with an examination of extremal graphs with a given {-connectivity.

Chapter three investigates Steiner distance hereditary graphs. It is
shown that if G is 2-Steiner distance hereditary, then G is k-Steiner dis-
tance hereditary for all ¥ > 2. Further, it is shown that if G is k-Steiner
distance hereditary (k > 3), then G need not be (k — 1)-Steiner distance
hereditary. An efficient algorithm for determining the Steiner distance of
a set of k vertices in a k-Steiner distance hereditary graph is discussed and
a characterization of 2-Steiner distance hereditary graphs is given which
leads to an efficient algorithm for testing whether a graph is 2-Steiner dis-
tance hereditary. Some general properties about the cycle structure of
k-Steiner distance hereditary graphs are established and are then used to

characterize 3-Steiner distance hereditary graphs.

v



Chapter four contains an investigation of functional isolation sequences
of supply graphs. The concept of the Ranked supply graph is introduced
and both necessary and sufficient conditions for a sequence of positive non-
decreasing integers to be a functional isolation sequence of a ranked supply

graph are determined.
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Chapter 1

1.1 Measures of graph vulnerability

Many parameters have been introduced to measure the extent of the dam-
age and disruption caused in a communications network by the loss or

failure of vertices or edges in the system.

Earliest investigations of such problems dealt with the connectivity, &,
and edge-connectivity, A, of a graph which are of overriding importance
in cases where the disconnection of the communications network due to
vertex or edge failure is deemed to be catﬁstrophic. These parameters have
been studied since the twenties and thirties of this century (see [M2] and
[W1]) and form the subject of an extensive literature of which we men-
tion but some trends and highlights. Characterizations and properties of

n-connected and n-edge connected graphs were obtained (see [M2], [W1],

[FF1], [EFS1], [D1], [D2], [T1], [B3], [B1], [B4)).

Relations between &, A and other graph-theoretical parameters (p, 9,86,
diam, degree sequences) were obtained and the existence of graphs having
prescribed values of such parameters was established (in some cases with
reference to special classes of graphs, such as line graphs, clique graphs
and circulants) (see {W1], [CHL], [H3], [BS2|, [BS3], [KQ1], [M3], [M4],
(03], [CS1], [CS2], [BT1], [21], [H4], [BT1], [B2], [BT2]). Minimally and



k-critically n-connected graphs were investigated initially in [CKL1], [ES1]
and [MS2].

In dealing with practical problems such as the reliability of computer
networks, we may be able to assess the probability that vertices or edges
will remain operational and to model the network in terms of a probabilis-

tic graph (see[C2] in which an extensive list of references is provided).

If a disconnected graph G — .5 results when a set S of vertices or edges is
removed from a graph G, it is possible that a sufficiently large component
of G — S exists to provide a viable communication system. The assessment
of this situation requires the introduction of a new parameter which takes
into account both the number of elements (vertices or edges) deleted from
G and the maximum number of vertices between which communication is
still possible:

1. In [BESI] and [BESZ2] the concepts of the integrity /(G) and edge-
integrity I'(G) of a graph G were introduced and initially developed:

I(G) = mi(nc){|5| +m(G - S)} and

Scv

I'G) = min {|S|+m(G - $)},

SCE(G)

where m(G) denotes the maximum order of a component of a graph

G.

2. We shall not present a survey of the results on integrify and edge
integrity that have appeared since 1987 and may be found in [BES]],
[BES2], [G2], [GS1], [GS2], [GS3], [GS4], [BBLP1], [BBLP2], [BBLP3]
[BBLPS1], [BBLPS2], [BBLP5], [BBLPS3], [BGL1], [BGL2], [CEF1],
[FS1], [LSP1] as well as in the survey article [BBGLP1]. However, we

bl
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shall briefly introduce several related parameters designed to assess
the degree to which other desirable properties are retained after the

deletion of vertices or edges from a graph:

. Let S ¢ V(G) and, for each v € G — S, let p,(G — §) denote the
order of the component of G — S that contains v. The mean integrity

of G, J(G), was defined in [CKMOL1]:

JG) = min {!sw(l/p(G—S) Y p(G-9)

SCV&) veV(G)-S

= min {181+ Y)Y p(H)]

SCV(G)

where summation takes place over all components H of G — S.

. The pure edge-integrity, I,(G), of G was defined in [BD1] to be

(G) = jmin {IS]+me(G - 5)},

SCE

where m (G — S) denotes the maximum size of any component.of

G-S.

. The tenacity of a graph G, T((G), defined in [CMS1] as

T(G) = min { 5] :(én(_GS_) S)} ;

where the minimum is taken over all vertex cutsets of G, is designed

to be used if it is desirable that, after the loss of a cut set of vertices
from G, G — S should contain a component of large order and be

easily reconnected by virtue of having few components. (See also

[MS1] and [CMS1].)

. The vertex-neighbourhood-integrity of a graph G, VNI(G), is defined
in [CW1] by

VNI(G) = sénvi%lc){|5| +m(G — N[S])}

(see also [WC1] and [WC2]).



7. Related to edge-integrity is the honesty, h(G), of a graph G: A graph
G is said to be honest if I'°G) = p(G). The smallest number of edges
in a subset of E(G) whose addition to G yields an honest graph is
defined to be A(G) (see [BBLP4]).

8. The toughness of a graph G, t(G), was defined in [C1] to be
UG) = min{|51/k(G - 5)},

where the minimum is taken over all cutsets S of G if GG is non-
complete and ¢(K,) = oo. (The definition was slightly altered in
[G2] and [GS4], the minimum being taken over all S C V(G) with
k(G —S) = 0, leading to the alteration of ¢(K,) from co to p(G) —1.)
Toughness is of obvious use in assessing the extent of disruption
caused by the removal of vertices from a graph in a situation where it
is deemed desirable that the resulting disconnected graph should be
easily reconnected or that the number of its components shbuld be so
small that the structures represented by them can economically be
provided with essential services, etc. {cf. [BES1], [G2] and [GS4] in
which relations between toughness and other measures of vulnerabil-
ity are explored). However, many papers dealing with toughness have
appeared since 1973, aimed mainly at establishing links between the
toughness of a graph and its cycle structure, inspired by conjectures
in [C1]: It was conjectured that a constant ¢ exists such that ¢(G) > ¢
implies hamiltonicity (or pancyclicity) of G, that t(G) > 3/2 implies
the existence of a two-factor in G and that, for any positive integer
k such that kp(G) is even, t(G) > kp(G) implies the exi_sténce of
a k-factor in . Only the last of these conjectures has been proved
[EJKS1] and it would be inappropriate to list all references to progress
made in investigating the remaining conjectures. The names of au-

thors currently most prominent in this field may be found in [BS1]

and [GS4].



9. The binding number of a graph G, b(G) = msin{\N(S)l/|S]}, where
the minirmum is taken over all nonempty subsets S of V(G) such that
N(S) # S, was defined in [W2] and further investigated in [BESI1],
[G2], [GS2], [GS4], [KMH1], [WTL1], [W2], [G3] and [C3].

In the following chapters we shall explore further measures’tok assess the
vulnerability of graphs and digraphs to disruption caused by the removal

of vertices and edges.

1.2 Graph Theory Nomenclature

The basic text for the graph theory terminology and symbols used here
i1s Chartrand and Lesniak’s Graphs and Digraphs (second edition) [CL1].

However, certain clarification of our conventions is necessary.

All graphs considered are ‘simple’ graphs; i.e. undirected graphs with-
out loops or multiple edges. Further, we use p = p(G) and ¢ = ¢q(G) to

denote the order and size respectively of a graph G.

Recall that G — S denotes the graph formed by the removal of a set
of vertices S from.G, while (5) denotes the vertex-induced subgraph of G
with vertex set S.
For sets A and B, [A, B] denotes the set of edges which have one end in A
and one in B. We also speak of complete n-partite (or complete multipar-
bipartite graphs of the form K, being called stars. The symbols 8(G)
and k(G) will denote the independence number and the number of compo-

nents of G respectively.

The contraction of an edge e = zy of a graph G yields the graph de-

noted G - ¢, defined by removing e and identifying its ends, i.e. replacing z



and y by one vertex, w say, such that w is adjacent to v € V(@) — {z,y}

if and only if zv or yv is an edge of G.

Further, we shall use the symbol C to denote strict containment in the
comparison of sets, |S| to denote the cardinality of the set S, and |z| and

[z] to denote the integer part and ceiling of z, respectively.



Chapter 2

£-Connectivity

2.1 Introduction

The {-connectivity and f-edge connectivity of a graph G, was first intro-
duced in 1984 by Chartrand, Kapoor, Lesniak and Lick [CKLL1] by gener-
alising the concepts of the connectivity and edge-connectivity of a graph.

It is well known that the connectivity «(G) (edge-connectivity A(G))
of a graph G is the minimum number of vertices (edges) whose deletion
produces a graph with at least two components or the trivial graph. These
two parameters have the advantage that they can be computed efficiently.
However, there are situations where the connectivity (edge connectivity) is
inadequate as a measure of vulnerability.

For example, the star IS, ,, and the path P,,; (m > 3) are both graphs
of order m + 1 and size m that have connectivity 1, but the deletion of
a cut vertex from K ,, produces m components whereas the deletion of a
cut vertex from P4, always produces exactly two components. So in some
sense K1, is more vulnerable (or less reliable) than P4, (for m > 3). The
£-connectivity and Z-edge connectivity provide a differentiation between the
vulnerability of these graphs.

In particular, for £ > 2, the {-connectivity xo(G) (¢-edge-connectivity

Ae(G)) of a graph G of order p > £ — 1 is defined as the minimum number

=1



of vertices (edges) that are required to be deleted from G to produce a
graph with at least £ components or with fewer than £ vertices. So k2(G) =
£(G) and X\(G) = A(G). Since the problem of determining whether the
independence number 3(G) of a graph G, of order p > £, is at least £ is
NP-complete and since 8(G) > £ if and only if k¢(G) # p— £+ 1, 1t follows
that the problem of determining whether x,(G) # p—£+1 isNP—complete.
A graph is (n,£)-connected if k,(G) > n. So n- connected graphs are the
(n,2)-connected graphs.

Unfortunately there are no known efficient algorithms for computing
ke(G) or A\(G) for a graph G. In [CKLLI] and [O1] sharp bounds for
k¢(G) are established.

It is well-known that with the aid of Menger’s Theorem, Whitney [W1]
showed that a graph G is n-connected if and only if for every pair u,v of
distinct vertices of GG, there exist at least n-internally disjoint u—wv paths in
G. It was pointed out in [M1] and [O1] that no analogous characterization
of (n,f)- connected graphs exists. It is well-known that if G is a graph
of order p, and n is an integer such that 1 < n < p —1, then if §(G) >
(p+n—1)/2, the graph G is n- connected. So for such graphs G, Whitney’s
theorem implies, that for every pair u, v of vertices of G there exist at least
n internally disjoint u — v paths. Hedman [H1] actually showed that for
such graphs G and every pair u,v of distinct vertices of G there exist at
least n internally disjoint u —v paths each of length at most 2. An analogue
of this result is established in [O1]. For a set S of at least two vertices of a
graph G an S-path is a path between a pair of vertices of S whose internal
vertices do not belong to S. Two S- paths are internally disjoint if they
have no internal vertices in common.

In [O1] it is shown that for a graph G of order p > 2, and integers £ > 3
andn (1<n<p—I_+1),if

p+(n=-2)(f~-1)
8(G) = 7

then for each set S of £ vertices of (7 there exist at least n internally disjoint



S-paths each of length at most 2.

In this chapter, we introduce and study the ‘¢-connectivity’ of a di-
graph making use of the concept of strong connectedness. We will then
consider the /-connectivity function of caterpillars and complete multipar-
tite graphs, and then generalise this to define the strong /-connectivity
function of a digraph. Lastly, we consider minimal graphs of a given {-

connectivity.

2.2 The /-Connectivity of a Digraph

A digraph D 1s strongly connected if for every two vertices u and v of D
there exist both a v —v path and a v —u path in D. A strong component
of a digraph is an induced subdigraph that is strongly connected and that
is maximal with respect to this property. It is well-known that the strong
components of a digraph partition its vertex set. The strong independence
number Bs(D) of a digraph D is the maximum cardinality of a set S of
vertices of D so that the subdigraph (S5) induced by S is acyclic, i.e., every
strong component of (S) consists of a single vertex. Such a set S is called
a strongly independent set. For example, if T is a transitive tournament of
order p, then B,(T) = p and if C, is a p-cycle, then 8,(C,) = p— 1 whereas
the strong independence number of the complete symmetric digraph K is
1.

For an integer £ > 2, and a digraph D of order p, the strong £ —
connectivity k¢(D)(strong {-arc connectivity Ao(D)) of D is the minimum
number of vertices (arcs) whose deletion from D produces a digraph with
at least £ strong components or a digraph with at most £ — 1 vertices. So
ke(Cp) = 1 and ke(K;) = p—L+1if p > ¢ > 3. Further, Ae(Cp) =1
and A(KG) = (p~ L+ 1)L = 1)+ (5') = p(t = 1) — (') for p > £
Based on the work of Ford and Fulkerson [FF1], [FF2], efficient algorithms
for computing the connectivity, i.e., ko(D) = £(D) and the arc-connectivity

A(D) = Xy(D) of a digraph D have been developed. However, in general no



efficient algorithms for computing &,(D) and A,(D) exist. For an integer

n > 0 we say that a digraph D is strongly (n,{)-connected if k,(D) > n.

2.2.1 Bounds on the strong /-connectivity of a di-
graph

Chartrand, Kapoor, Lesniak and Lick [CKLL1] provided the following suf-

ficient condition for a graph to be (n, £)-connected.

Theorem A Let G be a graph of order p with 8(G) > £ > 2. If for every

vertex v of G
p+(~1)(n—-2)

d >
egv_ Z R

then G is (n, ) connected.

This result can be extended to digraphs.

Theorem 2.2.1.1 Let D be a digraph of order p > £+n —1 with 8,(D) >
£ > 2. If for every vertex v of D

pl+1)+n(f—-1)-30+1
E 9

degp v = tdpv + odpv >

then D is strongly (n,£)-connected.

Proof Assume, to the contrary, that D is a digraph that satisfies the
hypothesis of the theorem but that is not strongly (n,£)-connected. Since
Bs(D) > £, there exists a set S of n — 1 vertices of D such that D — S has
at least £ strong components. Thus D — S has a strong component D, of
order p; < %’H.

For any vertex v of Dy, we note that if v is adjacent to any vertex

w in V(D) — (V(D1) U S), then v is not adjacent from w. Hence, since

10



V(D) — (V(D)US) | =p—p1—n+1

degpv < 2(pp—1)+2(n—1)4+p—p1—n+1
= ptp+n—3
< ptEFE4n-3
_ p(e1)+n(4-1)-3¢41
= - .
This contradicts our assumption and therefore completes the proof. O

The result of Theorem 2.2.1.1 is best possible as we now show. Let £ > 2
be an integer and let m and n be positive integers. For : = 1,2,..., £, let
H; be the complete symmetric digraph of order m. Let Hy; be a complete
symmetric digraph of order n — 1 if.n > 2. If n = 1, then let D be
obtained from H; U H, U...U H, by adding all arcs of the type (z,y) where
ze€V(H)andy € V(H;)and 1 <1< j <! If n> 2 let D be obtained
from H; U Hy U ..U Heyy by adding every pair of arcs of the type (z,y)
and (y,z) where z € V(Hyq) and y € H; for 1 <7 < £ as well as all the
arcs of the type (u,v) where u € Hy,v € H; and 1 <i < j < £ Thén
ke(D) =n —1 and since p=ml+n — 1,

p(f+1)+n(l—1)—30+1
;

degpv > ({+1)m+2n—-4 =

for all v € V(D).
In [O1] another sufficient condition for a graph to be (n,£)- connected

is established.

Theorem B Let G be a graph of order p > 2, the degrees d; of whose
vertices satisfy d; < d; < ... < d,. Suppose n and £ > 2 are integers with
1<n<p—Ll+1 UHdi<k+n—-2=d, n41 >p—k(f—1) for each £k

such that 1 <k < [(p—n +1)/4], then G is (n,£)-connected.

We now provide an extension of Theorem B to digraphs.

11



Theorem 2.2.1.2 Let D be a digraph of order p > 2 and let the degrees
d; of the vertices of D satisfy d; < dy < ... < dp. Suppose n and £ > 2 are
integers with 1 <n<p—-fL+1. If

de <ptk+n—3=dpnp1 >22p—k({-1)-1

for each integer k such that 1 < & < [(p —n +1)/£], then D is strongly

(n, £)-connected.

Proof Suppose the strong ¢-connectivity of D is less than n. Then there
is a set S of n — 1 vertices such that D — S has either at least £ strong
components or order less than £. Since |S| =n —1 < p—{¢, it follows that
D — S has at least £ vertices; so D — S has at least £ strong components.

Let Dy be a strong component of D — S of minimum order k. Then
k<|(p—-n+1)/t] andsop+k+n—-3<2p—k(£—-1)-2<2p—
k(¢ —1) — 1. Each vertex in D; has degree at most p+k +n —3 in D; so
dr < p+ k+n —3. Hence, by the hypothesis, dy_nt1 > 2p — k(£ —1) — 1.
Let u € V(D) — (SUV(Dy)). Then u is non-adjacent to or from each
vertex in at least £ — 1 strong components of D — §, each of order at least
k. Hence degpu < 2(p—1) — k(£ —1) < 2p — k(£ — 1) — 1. It follows that
S has at least n elements, contrary to our assumtion. 0

The digraph following Theorem 2.2.1.1 also serves to illustrate that
Theorem 2.2.1.2 is best possible. Further, it is not difficult to see that
Theorem 2.2.1.1 follows as a corollary to Theorem 2.2.1.2.

2.2.2 Strong connectivity sequences of digraphs

Let G be a graph of order p. Chartrand, Kapoor, Lesniak and Lick [CKLL1]
defined the sequence of numbers £2(G), k3(G), ..., £,(G) as the sequence of
connectivity numbers of (. They characterized sequences of integers that

are connectivity numbers of a graph in the following theorem.
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Theorem C A sequence by, bs, ..., b, of nonnegative integers is the con-
nectivity sequence of a graph G of order p if and only if there exists an
integer k such that by < b3 < ... < b < bryr and beyi =p — (k+1)+1 for
i=1,2,..,p— k. Moreover k = 3(G).

We now study the analogous concept for digraphs. Let D be a digraph
of order p. Then the sequence k2(D), k3(D), ..., 55(D) is called the sequence
of strong connectivity numbers of D. The following lemma will be useful

when characterizing these sequences.

Lemma 2.2.2.1 Let D be a digraph of order p > 2 and strong inde-
pendence number 8,(D) = f;. Then the sequence of strong connectivity

numbers has a maximum value p — Bs at k = G, + 1, i.e. k(D) = p — fs.

Proof For 1 <i < p— §, we have kg, +;(D) =p—(f; +1)+ 1. Clearly the

maximum of the subsequence

kg01( D)y kg, 42( D), vy 5p(D) s kg, 11(D) = p — Bs.

Since the subsequence ko(D), k3(D), ..., k5,(D) of the sequence of connec-
tivity numbers is nondecreasing, xg, (D) is the maximum value of this sub-

sequence. Since xg,(D) < p — fs, the lemma now follows. O

Theorem 2.2.2.1 A sequence by, b3, ..., b, of nonnegative integers can be re-
alized as the sequence of strong connectivity numbers of a digraph of order
p if and only if there exists an integer k such that by < b3 < ... < by < by
and by =p—(k+1¢)+1fore=1,2,...,p— k. Moreover k = 3,(D).

Proof Let D be a digraph of order p. Let b; = x;(D) for 2 < ¢ < p and let
k = B5(D). Then, by the proof of Lemma 2.2.2.1, by < b3 < ... < by < bgyq
and for 1 <1 <p—k, by =p—(k+1)+1.

Suppose now that by, b3, ..., b, is a sequence of nonnegative integers such

that for some & the following conditions are satisfied:

13



(1) 0 < b; < bjgy for 2 <2 <k and
(ii) bxpr=p—(k+3i)+1for:=1,2,...,p—k.

Define a sequence as,as,...,ake1 Dy az = by,az = b3 — bg,aq = by —
b, ..., Qkp1 = bryy — b For 2 < i < k+1 let H; be the complete symmetric
digraph of order a; if a; > 1. For convenience we will assume that if a; = 0,
then H; has no vertices and edges. Let K denote the complete symmetric
digraph of order p—k — Zf:; a; =p—k—bryr and let H be the symmetric
join of Hy, Hs, ..., Hysy and K. Now let S = {vq,v3, ..., vx+1} and construct
a digraph D by joining each v, € S by a symmetric pair of arcs to each
vertex in Ul_,H;. The order of D is p. Since S is a strongly independent
set and since H = (V(D) — §) is a complete symmetric digraph of order
p — k and as each vertex of § is joined to at least one vertex of H by a
symmetric pair of arcs, 8,(D) = |S| = k.

For r =2,3,...,k+ 1, let U, = UI_,V(H;) and observe that the num-
ber of strong components of D — U, is at least r. Thus «,(D) < |U,] =
Yo_jai=b,for 2 <:<r+1. By astraightforward inductive argument it
can be shown if S is a set of vertices that does not contain all the vertices of
U,, then D — S has at most r — 1 strong components. So «.(D) > |U,| = b,.
Thus «;(D) = b; for ¢ = 2,3,..,k+ 1. Further, kp;(D) = p—(k+1) +1
for1 <¢:<p—k Hencebp=p—L+1=rko(D)forb=k+1,k+2 ...,p
Thus b, b3, ..., b, is the sequence of strong connectivity numbers of D and

Bs(D) = k. 0

Even though the connectivity and arc-connectivity of a digraph are eas-
ily computable measures of reliability of a network the strong connectivity
sequence of a digraph provides more information on the reliability of a net-
work. In particular if Dy and D, are two digraphs with the same strong
connectivity and k; = max{{|k,(D;) = «(D;)}, then D; can be considered

to be more reliable than D, if k; < k.

14



2.3 The /-connectivity function of certain
classes of graphs

The problem of disconnecting a graph into at least two components by the
deletion of both vertices and edges was first considered by Beineke and
Harary [BH1]. These concepts were extended in [O2]. Let G be a graph
with £-connectivity ke = £¢(G). If k € {0,1,...,5,(G)}, then let s¢ be the
minimum ¢-edge-connectivity among all subgraphs obtained by removing k
vertices from G. The {-connectivity function of G is defined by fi(k) = s
for 0 < k < k¢(G). So for £ = 2, the £- connectivity function of a graph
1s its connectivity function, which has been characterized by Beineke and
Harary [BH1]. For £ > 3 no characterizations of the Z-connectivity function
of a graph are known and it appears to be a difficult problem to characterize
such functions. In [O2] several necessary conditions for a function to be an
¢-connectivity function of a graph are established and the £-connectivity
function of the complete graph is derived. We study here the ¢- connectivity

function of certain types of trees and the complete n-partite graphs.

2.3.1 Caterpillars and complete Multipartite graphs

In [O2] the following formula for the ¢-connectivity function of a complete

graph is established.

Theorem D Let p,£ > 2 be integers with p > £ and suppose that G = K.

Then the {- connectivity function of G is given by

f[(k) _ 0 if k = Kg(G) .
L=1)(p—L—k+1)+ (5") for 0 < k < x(Q).

We now extend this result to complete n-partite graphs.

Theorem 2.3.1.1 Suppose G = Ky, m, . m, Where my < my < ... < My

and n > 2. Let p= ) 7, m; and let k be an integer with 0 < k < x(G).



If s = min{mn,_1, Z?z"ll m; — k}, then the {-connectivity function of G is

given by
0 - if k = ke(G)

fe(k) =< (£-1)(p—m, — k) if b # ko(G) and £ <y — 5+ 2
(=1 (p—mn—k)— (777 ifk # ko(G) and £ > m, — 5+ 2.

To prove this result we begin by establishing a series of lemmas.

Lemma 2.3.1.1 Let G = K., ,, ., be a complete ¢-partite graph (¢ > 2)

of order p and let £ be an integer, 2 < ¢ < p. There exists a set of A(G)
edges of G, say Fy, such that G — E; has ¢ components, at most one of

which is non- trivial.

Proof: Let V4, Vs,...,V; be the partite sets of G with |V;| = r; for ¢ =
1,2,...,t. There exists a set Fy of A\(G) edges of G such that G — F} has
¢ components. Of all such sets Fy let F,; be one such that G — E, has as
few non-trivial components as possible. We shall show that G — E, has at
most one non-trivial component.

Assume, to the contrary, that G — E, has at least two non- trivial
components, Gy and G,, with V(G;) = A and V(G,) = B. For i =
CL,2,.0t let ANV, = Ay, BNV, = By, |Ai| = a; and |B;| = b;. Then there
exist 41,179, J1,J2 € {1,2,...,t} such that 7y # 15,71 # j2 and a;,, asy, by, b;, >
1. Letting H = (AU B)g, we note that for v € A;UB; (1 € {1,2,...,t})

degyv=a+b—a;—b;- (2.1)
Furthermore, the set [A, B] of all edges in H with one end vertex in A, the
other in B, has cardinality |

[A, B]| :Z (b—b,) Zbi(a—ai). (2.2)

[t follows from our choice of E; that isolating a single vertex of H requires

the removal of more edges than separating the components G; and G in
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H;ie., forv e V(H),degyv > |[A, B]|. Hence, for every ¢+ € {1,2,...,t}
such that a; + b; > 1, '

t t 1
22((1]' +bJ) = 2(a+b—ai , > Za] b—b ij(a—aj). (23)
Jj=1 j=1 j=1 .
oE . .

Assuming (without loss of generality) that a;+b, > 1, we obtain from (2.3)

with s =1t
t—1 t—1
aj(b—b;—2) + > bila—a;—2)+a(b—b)+bla—a)<0 (24)
7=1 J=1

Since a—aj,b—b; > 1forall j € {1,2,...,t}, it follows from (2.4) that there
exists y € {1,2,...,t —1} such that a; > 1 and b—b; —2 < 0 or b; > 1 and
a—a; —2<0; séy by > 1 and a—a; < 2. Then a —a; =1 and there exists
m € {2,3,...,t} such that a,, =1 and a; =0 for all y € {2,3,...,¢} — {m}.
We note that a; > 1.

Since |[A, B]| < degy v for v € A, it follows from (2.1) and (2.2) that

al(b-bl)+am(b—bm)<a—a1+b—b1:1+b—b1;

hence

(a1 — 1)(b=by) +b—b, <0

which, with a; —1 > 0,b—b; > 1,b— b,, > 1, yields a contradiction, thus

establishing the validity of the lemma. | a

For a vertex v in a graph G, let the set of edges of G incident with v be
denoted by Eg(v).

Lemma 2.3.1.2 Let G = K, ,, ., withr, < r < ... < r, ¢ > 2,
p=p(G) =% ,rand £ € {2,3,..,p}. Let Vi,V4,...,V, be the partite
sets of G with [Vi| = r;. The following algorithm yields a set E, of edges
of G such that |E,| = A\(G) and G — E, has £ components, at least £ —1

of which are trivial:
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1. Let H; = G and let v; be a vertex of minimum degree in Hy. (i.e.,

vy € V,). Let By = By, (vi) and Hy = Hy — vy,

2. Fori € {2,...,£ — 1}, let v; be a vertex of minimum degree in H; and

let Ei+1 = EHI.(vi) U Ei, Hi+1 = H,; — ;.

Proof: The validity of the lemma for £ = 2 is an immediate consequence
of Lemma 2.3.1.1. Further, the lemma follows if £ = p, in which case
|Ey| = ¢(G) = A(G). Suppose that the lemma does not hold and let m
be the smallest value of £ for which the algorithm yields a set F, that does
not satisfy the requirements of the lemma; so 2 < m < p. Since G — E,,
certainly contains m components, m — 1 of which are trivial, it follows that
|En| > An(G). Let F,, be a set of edges of G such that |F,.| = A (G),
G — F,, contains m components of which m — 1 are trivial.

Let W = {w;,ws,...,wn_1} denote the set of m — 1 isolated vertices
in G — F, and, for wy € W let Gx = G — (W — {wx}). Let 1 = i(F,)
be such that vy,...,v;-y € W and v; € W. Choose F,, such.that' i(Fm) _
Is as large as possible. Suppose v, = ws; for 1 < s < ¢ —1. Let W' =
W — {v1,...,vi-1} and let v; € V;; then V; N W' = (, since otherwise, if
wr € V; N W', the set of edges of F, incident with wy in Gg, namely
Eg, (we), may be replaced by Eg, (v;) to yield a set F of edges of G with
|F,.| = Am(G) such that G — F), has m components, m — 1 of which are
trivial and i(F},) > ¢(Fy), contrary to our choice of Fy,. Hence the only
vertices which are adjacent to v; in H; and not to v; in G,,_; are those
in W' — {wp,_1}. Consequently deg.  v; = degy. vi —(m —2—1 +1).
Furthermore, degg  wn_1 > deggy wn1 — (m — 2 — ¢ + 1); so, since
degy, wm-1 > degy. v;, it follows that degg _ Wm_1 > degs, ., vi. Hence,
replacing the subset Eg,_ (wm_1) of Fin by Eg__ (v;), we obtain a set
Fy of edges of G with |F)/| < |F,| = A,(G) such that G — F” has m
components, m — 1 of which are trivial, and (F7) > i(F,,).

Thus the validity of the lemma is established. a
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Let G = Kpymy.. .m, With m; < my < .0 < mp(n > 2) and partite
sets Vi, ..., V,, where |Vi| = m; for i = 1,2,...,n;p = > ., m;. Let S be a
proper subset of V(G) such that |S| =k € {0,1,...,5(G)} and k < p—m,

where we note that

Gy | P Tim i< B(G) = m
Ke = )
p—{+1 if £ > my,

then G— S is a complete multipartite graph, say K, . ,.It is an immediate
consequence of Lemma 2.3.1.2 that S may be chosen to yield G — S of
minimum {-edge connectivity, namely A\,(G — S) = fi(k), by lefting S
consist of k vertices of maximum degree in G, i.e., for some j € {1,2,...,m—
1}, S = UL, V/, where V! = V; if ¢ < j and V/ C V;. Then E, C E(G - S)
may be obtained as prescribed by Lemma 2.3.1.2 to produce G — S — E,
containing ¢ components, £ — 1 of which are trivial.

If £ > m, or k=p—m,, then f,(k) = 0, obviously. Hence we have the
following lemma:

Lemma 2.3.1.3 If G = Kpn, . m, with m; < m; < ... < my(n > 2),

and partite sets V;,...,V,, such that |V;| = m; for ¢ = 1,...,n, then, for
2 <f <pand 0 <k < Ky, there exist.S C V(G) and E, C E(G - §)
such that [S| = k,|E,| = fik), and such that G — S — FE, contains
at least £ components, at least £ — 1 of which are trivial and, for some
j€{l,...,n},S =UL_ V/, where V/ = V; for i < j and ViCV.

Proof of Theorem 2.3.1.1 Clearly if £ = «,(G), then fi(k) = 0. If
¢ < m, — s+ 2 then, since the degrees of vertices in V,,_; exceed those of
vertices in V, by m, —s in G — S, the £ — 1 vertices isolated in G — S — E,
occur in V. (We note that, for ¢« € {1,...,0 -2}, if w € V,_; — S and
z € Vp, then, in G — S — {vy,...,v;}, deg w > degz.) In this case it is
obvious that |E,| = (£ — 1)(p — m,, — k).
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If £ > m, — s+ 2 then, applying the algorithm in Lemma 2.3.1.2 to G = 5,
we note that vq, ..., Um,—s+1 may be chosen from V, and that their isolation
requires the removal of (p — m, — k)(m, — s + 1) edges. The isolation of
U, —s42, -, Ve—1 Tequires the removal, successively of p —m, -—»_k -1,p—
My —k =2, .., [(p—myn— k) = ({ —my + 5 —2)] edges. Hence, in this case,

—mp+s—2

B = (p=ma—KE)(ma—s+1)+ D (p—ma—k=i)

=1

(0= 1)(p—mn — k) - (f‘m";s‘l) if k # re(G).

It is not difficult to see that Theorem D follows as a corollary to Theorem

2.3.1.1.

We next turn our attention to the £-connectivity function of caterpil-
lars. Recall that a caterpillar is a tree that is either isomorphic to K; or
K3 or has the property that if its end- vertices are deleted, then a path
is produced. For a graph G of order p and an integer k, 0 < k < p, let
ck((G) be the maximum number of components that are produced when &
vertices are deleted from G. Note that if £ > 2 is an integer and T is a
tree with independence number 3(T) > £, then fi(k) = (£ — 1) — c&(T)
for 0 < k < xo(T). Let 6p(T) = min{k|ce(T) = B(T)}. The following
algorithm finds for a given caterpillar 7" and every k, 0 < k < é5(T), a set
Vi of k vertices such that &(T — Vi) = c4.

Algorithm 1 Let T # K, K, be a caterpillar.

1.
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vertices of 7.

2. Let Ty, Ty, ..., T, be the components of H, and a; = [7’ Z‘ ]

Let U, = {w},w?,...,w} } be a maximum independent set of vertices
of H,, (with 8, = B(H,)) chosen as follows: The vertices w}, w3, ..., w],
belong to 71. If s > 1, then forz = 2, .., s, the vertices wy ¢ 4. 415+
WY 4 vai_,+q; Delong to T; and if wl = uy and wy = u;, belong to
some T; and m < r, then 1y < 1,. Further, w} . ., ., is an end-

vertex of T; for 2. <1 < s and w7 is an end-vertex of T;.

)
c) Sn — {v e V(F)|degr, v=A(F)}

d) H, « <Sn>Fn

e) If A(F,) > 1, return to Step 2; otherwise let 65 « 57! |U;| and

continue.

4. Tor k = 1,2,...,6p let vy,vs,...,v; denote, in order, the first & ver-
tices in the sequence wi,w;,...,w! ;w? .. w2 .. and define V, =

a1) ) az?

{v1,v2, ..., vk}

Theorem 2.3.1.2 Suppose Algorithm 1 is applied to a caterpillar T 2 K
or I{,. Then

KT = Vi) = ex(T) for 0 < k < 6.

Proof: Suppose the theorem does not hold. Let k be the smallest integer
such that k(T — Vi) < ¢ Let Z = {z1,23,...,2x} C V(T) such that
k(T —Z)=ck. If vy € Z, let j be the smallest integerr such that v;4y & Z,
otherwise let j = 0. Among all sets Z C V(T) satisfying k(T — Z) = c,
choose Z such that j is as large as possible. For i = 1,2,...,k, let Z; =
Z — {2} and suppose the vertices of Z have been labelled in such a way

that if 7 > 1, then z, = v, for 1 < s < j. By our choice of Z, it follows
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that for 1 = j + 1,7 +2,..., k the vertex z; cannot be replaced by v;;; in Z
to form Z! = Z; U {vj41} with k(T — Z) = cx. Hence

degr_z, vj+1 < degr_z %

However,
de8r_foy 09,0y} Vitl 2 ACET (0 05,005} i
Therefore v;4; has a neighbour in {zj41,...,2¢} — {2}, say 2, is such a
neighbour. Similarly, v;;1 has a neighbour in {zj41,..., 2k} — {zn}; say 2n.
Note that every vertex of Z UV, lies on the path P described in Step 1
(f). Let a and b be neighbours different from v;4; of 2,, and 2y, respectively.
We show next that a,b ¢ Z. Suppose vj41 € U, Then degp v =

degp, zm. Suppose a € Z. Then a lies on P. Therefore
HT — (Zn U {oj1]) 2 KT - 2) = s,

which contradicts our choice of Z. So a ¢ Z, and similarly b ¢ Z.

Suppose degp, zm < degp, vj41 = A(F}). Then once again it follows
that |

KT = (Zn U {031 })) = K(T - 2),

which contradicts our choice of Z. Hence degp, 2z, = A(F}). Similarly
degp, zn = A(F}). If degp, a and degp, b are less than A(F}), then z, and
z, are end vertices of a component of H;, which contradicts our choice of
Vi. Hence degy, a = A(F,). If degy, b < A(F}), then by the choice of V; it
follows since z, is an end veftex of a component of Hy, not in Vi, a must
be v;. This is impossible since a € Z. Otherwise, if degz b = A(F}), then
a or bis v; which once again produces a contradiction. This completes the

proof of the validity of Algorithm 1. O
With the aid of Algorithm 1 and Theorem 2.3.1.2 we are now able,

in the next two theorems, to characterize the {-connectivity functions of

caterpillars.
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Theorem 2.3.1.3 For an integer £ > 2, a function f; : {0, ..., k¢} — NU{0}
is the ¢-connectivity function of a caterpillar with independence number at

least £ if and only if

(1) fe is decreasing,
(i) fe(0) =4 —1, and fi(k¢) =0, and

(111) if Ke 2 2, then fg(k)—fe(k‘+1) > fg(k-}-l)—fg(k—i—?) for 0 S k < K,g—2.

Proof: Suppose first that f; is the f-connectivity function of a caterpillar
T. Then fo(k) =€ — ¢,(T) for 0 < k < £4(G) = k¢ Since cx(T) < cra1(T)
for 0 < k < Ky, it follows that f; is decreasing. Since every edge of a tree is
a bridge, £ — 1 edges must be deleted from a tree to produce ¢ components.
Hence fo(0) = £ —1. Since £ < B(T), it follows that there exists a set of
k¢(T) vertices whose deletion produces a graph with at least £ components.
Hence fy(x¢) = 0. Hence (i1) holds.

Observe that if x, > 2, then fy(k) — fo(k + 1) = cx41(T) — c(T') and
felk + 1) = fo(k +2) = ce42(T) — k1 (7). Let vy,vs,... be as in Step 4
of Algorithm 1. Suppose vkp1 € U, and vgyo € Us. Thenr < s < r +1
and degp, vik+1 = degp, ve2. Since cey1(T) — cr(T) = degp, vk — 1 and
crp2(T) — cx1(T) = degp, vkg2 — 1, condition (iii) follows.

For the converse suppose that f, : {0,...,5,} — N U {0} is a function
that satisfies conditions (i), (ii) and (iii) of Theorem 2.3.1.3. Construct
a caterpillar T' as follows. Begin with a path vy, u1,vs,ug, ..., Us,~1, Vs,
Next join fi(0) — fi(1) new vertices to v; and for 2 < i < w,,_; join
fe(i = 1) — fe(4) — 1 new vertices to v;. Finally join fo(k; — 1) — fi(ke) new
vertices to vc,. Let T' be the resulting caterpillar. Then it can be shown
that 7" has independence number at least £ and its E—connectivity function

is fg. O

The next result characterizes {-connectivity functions of caterpillars

whose independence numbers are less than 2.
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Theorem 2.3.1.4 For an integer £ > 2 a function fy : {0,1,...,k¢} —
N U {0} is the ¢-connectivity function of a caterpillar T' of order p > £,
independence number 8 = B(T) < £ and m = §g(T') if and only if

(i) fe(0) =L —1, fe(ke) =0,

(i) fe(k+1) < fo(k) for 0 < k <m —1and fy(m) = fofm +1) = ... =
fe(ke—1)=£— 3.

(111) fg(k) — fg(k + l) > fg(k‘ + 1) - fg(k + 2) for 0 <k < kyp— 2,

(iv) (a)if fe(m—=1)— fe(m) > 1, then m < kg < 2m— fy(m)+2, otherwise
(b) let s be the largest positive integer such that fo(t) — fe(t+1) =1

form—s<t<m-—1,thenm < r, <2m — fo(m) —s+2.

Proof: Suppose f; is the £-connectivity function of a caterpillar with in-
dependence number 3 = B(T") and m = 84(T"). Then condition (i) clearly -
holds. As in Theorem 2.3.1.3 fi(k) = £ — cx(T) for 0 < k < k¢. Since
er(T) < cepr(T) for 0 < k < §g(T) = m it follows that fo(k + 1) < fo(k)
for 0 < k < m —1. Since cx(T) = B form = 6(T) < k < kg — 1,
fe(m) = film +1) = ... = fo(kg — 1) = £ — 3. Hence condition (ii) holds.

Since fi(k +1) — fo(k +2) = 0 and fu(k) — fe(k +1) > 0 for m —
1 < k < k¢ — 2, condition (iii) holdé for m — 1 < k < k¢ — 2. Suppose
now that 0 < k < m — 2. Then, as in the proof of Theorem 2.3.1.3,
Folk) = fo(k+1) > folk +1) — fo(k +2). Thus condition (iii) holds.

Let m, be the smallest integer so that if S consists of the first my
vertices selected by Algorithm 1, then the components of T — S are all
paths. (Note possibly m; = m.) For each of the m — my vertices v; €
{vmlH,..;,vm}' removed next by the algorithm there exists a vertex w;
isolated by the removal of v;. Let P be a longest path in T. Let To = T
and for ¢ = 1,2,...,m; —1let T; = T'—{vy, ..., v;}. Observe that if vertex v;

1s deleted from T;_; (1 < j < my), the number of components is increased



by fe(7 —1)— fe(j). Hence at least fo(j —1)— fo(j)—1 vertices not on P are
isolated in the process. Let there be k& vertices v; for which fo(7 —1) — fo(J)
vertices not on P are isolated when v; is deleted from 7;_;. Then v; is
adjacent with a vertex from the set {v1, e, ...,v;_1}. Thus there are exactly
ST = 1) = o) = 1)+ k = fe(0) — f(ma) = my + k vertices of T
not on P. Let S denote the set of these vertices and S, = {v1, v, ..., Um, }.
Further, let S3 = {Vm,+1, Ums+25 - Um } U{Wmy 41, Wiy 42, -, Wi - Note that
each component of T,, = T — {vy,vs, ...,vm'} 1s isomorphic to K; or K.
Let Sy be the set of vertices that belon.g‘to components isomorphic to K,
in Trn. Then |Ss| € 2(mq 41 —k). To see this note that the deletion of the
vertices of Sy from T produces a tree with at most m; + 1 — k£ nontrivial
components. If Algorithm 1 is now applied to T' — S, to delete the next
m —m, vertices and thus to produce T),, each of the nontrivial components

of T'— S5 corresponds to at most one K, of T5,. Thus

p = |Si|+ S| + [Ss| + |S4
fe(0) = fo(my) —my + k+my +2(m —my) +2(my +1 — k)
2m — fo(mq) 4 2.

IN

{l

Since kg = p— L+ 1 = p~ fi(0), it follows that x, < 2m — fy(m,) + 2.
Clearly m < k¢. Now if fy(m — 1) — fe(m) > 1, then m; = m so that (iv)
(a) follows. Otherwise, s = m —m; and fi(m,) = fi(m) + s. Hence, in
this case, ke < 2m — fy(m) — s + 2; thus (iv) (b) follows.

For the converse suppose f; : {0,1,...,x,} — NU{0} is a function that
satisfies conditions (i) - (iv). Let p = k¢4 fo(0). Let P : uy, vy, uz, va, ..., Unm,
Umy Um+1. Join v; to fo(t — 1) — fo(2) — 1 new vertices for 1 < 7 < m and
let T be the resulting caterpillar. Observe that the caterpillar constructed
thus far has order f,(0) — fe(m) +m+ 1. Since fy(m) > 1 it follows by (iv)
that p' = p = (fe(0) = fe(m) + m+1) = ke —=m+ fr(m) -1 > 0. If p =0,
then it can be shown that T = T has f, as its £-connectivity function and

independence number 8 and 65(T) = m. If p' > 0, then p’ < m + 1 if
fem—=1)—fa(m) > land p' <m—s+1if fe(m —=1) = fi(m) = 1. Suppose
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first that fo(m — 1) — fe(m) > 1. In this case, if p’ < m, subdivide the
edges u;v; exactly once for 1 <7 < p' to obtain T'; otherwise subdivide the
edges u;v; for 1 < ¢ < m and the edge vnumt exactly once to obtain 7.
Suppose now that fy(m — 1) — fe(m) = 1. Now subdivide the edges u;v;
exactly once (1 <1 < p') to obtain T. In both cases it can be seen that -

the corresponding f is the £-connectivity function of 7. . o

The complex characterizations of the -connectivity functions of cater-
pillars given in Theorems 2.3.1.3 and 2.3.1.4 lead one to believe that the
problem of characterizing the ¢- connectivity functions of trees in‘ general
is a difficult task. It also remains an open problem to characterize the

{-connectivity functions of the n-cube.

2.4 The strong /-connectivity function of a
digraph

Let G be a graph with connectivity . The function f: {0,1,...,x} — NU
{0} defined by f(r) = £, where £, is the minimum edge-connectivity among
all subgraphs of G obtained by deleting r vertices, 0 < r < &, is called the
connectivity function of G. Beineke and Harary [BH1| characterized the

connectivity functions of graphs in the following theorem.

2.4.1 Generalisation from Graphs

Theorem E Let x be a positive integer. A function f : {0,1,...,x} —
N U {0} is the connectivity function of a graph with connectivity & > 1 if
and only if f(x) = 0 and f is decreasing.

For a digraph D with strong connectivity x, the function f : {0,1,...,x} —

N U {0} defined by f(r) = ¢, where £, is the minimum arc-connectivity
among all subdigraphs of D obtained by deleting r vertices, 0 < r < «,
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from D is called the connectivity function of D. Theorem E has an imme-

diate extension to digraphs.

Theorem 2.4.1.1 Let % be a positive integer. A function f: {0,1,...,k} —
IN U {0} is the connectivity function of a digraph with connectivity k > 1

if and only if f(kx) =0 and f is decreasing.

Proof:Suppose f is the connectivity function of a digraph with connectivity
k. Then f(k) = 0. Suppose 0 < k < k and that f(k) = £;. Then D
contains a set S of k vertices such that A(D — S) = £;. Let E be a set
of £, edges of D — § so that D' = D — 5§ — E has at least two strong
components. If D — S — F has a nontrivial strong component Dy, then Dy
contains a vertex v that is incident with an edge of E. Hence §’ = SU{v}
is a set of k 4+ 1 vertices so that A(D — S") < |E| =1 = {4, — 1. If every
strong component of D — S — E is trivial, then D — § — E consists of
exactly two vertices. Thus D contains a set of & + 1 veftices and ¢, — 1
edges whose deletion produces the trivial graph. Therefore in either case
f(k+1) <4, —1. Hence f is decreasing,.

Suppose now that f : {0,1,..,x} — N U {0} is a decreasing func-
tion such that f(x) = 0. Let A = f(0). Let Hy, Hy,...,H. be x +1
disjoint copies of the complete symmetric digraph K3. Denote the ver-
tices of Hy by wi; for j = 1,2,...,A. Add a vertex uy and join it by a
symmetric pair of arcs to every vertex of Hy. For 0 < k < k, add ver-
tices ug,i,Uk2,..., Uk, and join each of these vertices to every vertex of
V(Hg-1) UV(Hy) by a symmetric pair of arcs. Finally, join vg_y ; and Vi s
by a symmetric pair of arcs for ¢ = 1,2,..., f(k). Let D be the resulting
digraph. It can now be shown that for each k£ = 1,2, ..., x, the minimum
arc-connectivity of a subdigraph obtained by deleting k vertices from D is
D = {1y k2, oy i) = {(heriy vi) 1 <0 < f(B)}] = F(K). So D

has f as its connectivity function. a
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The digraph D constructed in the proof of Theorem 2.4.1.1 is a syvm-
metric digraph, i.e., if (u,v) € E(D), then (v,u) € E(D). Since many
digraphs are obtained by assigning directions to the edges of a graph it
is natural to consider the connectivity function of an asymmetric digraph.

We now characterize the connectivity functions of these digraphs.

Theorem 2.4.1.2 Let & be a positive integer. A function f: {0,1,...,x} —
N U {0} is the connectivity function of an asymmetric digraph with con-

nectivity & > 0 if and only if f(«x) =0 and f is decreasing.

Proof:The necessity of the theorem follows as in Theorem 2.4.1.1. Suppose
now that f:{0,1,...,k} = NU{0} is a decreasing function with f(x) = 0.

Let A = f(0). Consider Kzy11. It is well- known that the edge set of this
complete graph can be decomposed into A hamiltonian cycles Gy, Ga, ..., G,.
Direct the edges of G; (1 <7 < ) in such a way that a directed cycle G
is produced. Let T be the tournament of order 2\ + 1 whose arc set is
U{E(Gi)|1 <@ < A}. Then T has strong connectivity and strong arc
coﬁnectivity A. Let Ho, Hy,...,H, be & + 1 disjoint copies of T. Denote
the vertices of Hy by ve1,Vk 2,0y Ukx, Wh 1, Wh 2y ooy Wea41- Add a vertex
up and the arcs (ug,vg;) for 1 < i < A, as well as the arcs (wo j, ug) for
1 <5< A+1 For0 < k < k add vertices Uk,1, Uk,2, .-, Uk, and the
arcs {(vk—1iues)]l <1 <A1 <7 < kP U {(up;, o)l <6< A1 <
7 < kP U{(ukgwe-1)1 €7 < kT <0 <A+ 1T U {(wiu)]l €7 <
k,1 <1 < A+ 1}, Finally, add the arcs (vg_y,v;) for 1 <7 < f(k) and
(wrj,wir_1,;) for 1 < 5 < f(k). Let D be the resulting asymmetric digraph.
As in Theorem 2.4.1.1 it can be shown that f is the connectivity'function

of this asymmetric digraph. ’ a

We turn to the problem of ‘disconnecting’ a digraph into more than two



strong components by the deletion of vertices and arcs.

We have already, in this chapter, dealt with the concept of the £-
connectivity function of a graph and have established some properties of
this function relating to specific graphs. We now investigate this con-
cept for digraphs. Let D be a digraph of order p > ¢ —1 > 1 having
strong {-connectivity ko(D) = k. Then the strong {-connectivity func-
tion fy of D is defined as follows: f, : {0,1,...,x,} — N U {0} and for
0 < k < ke, fo(k) = sk where s is the minimum strong £-arc- connectivity
among all subdigraphs of D obtained by deleting & vertices from D. Then
fe(ke) = 0 and fo(k) > 0 for 0 < k < «,. Further, f; is a non-increasing
function; for suppose 0 < k < &, and that f,(k) = s¢. Then there ex-
ists a set Vi of k vertices of D and a set E; of s, edges of D such that
Dy = D —V;— E) has at least £ strong components. If Dy has at least £+1
vertices, then there exists a vertex v of Dy such that Dy — {v} still has at
least £ strong components. So Viy; = Vi U {v} is a set of k + 1 vertices
such that the number of strong components of D — Vi4; — Ey is at least. L.
So in this case fy(k+ 1) < |Ex| = fo(k). If Dy has exactly £ vertices then
k+1=ryg=p—~£+1. Soin this case f(k+ 1) =0 < fo(k).

While the strong 2-connectivity function of a digraph is strictly decreas-
ing, this is no longer the case for the strong ¢- connectivity functions of
digraphs for £ > 3. For example, if D = K3, U K7, then x3(D) = 2 and
{(0,1),(1,1),(2,0)} is the strong 3-connectivity function of D and is thus
not strictly decreasing.

Recall (theorem D, section 2.3.1), it was stated that if p > ¢, then the

{- connectivity function of K, is given by

U=Dp—L-k+1)+(5") , for0 < k< ry(I,)

fe(k)=¢ 0 , fork = k(K,)=p—£+1.
2.4.1

Using arguments similar to those employed in [02] it can be shown that the

strong £-connectivity function of K is also given by the function defined



in (2.4.1).

For an integer £ > 2 it was shown in [O2] that if G is a graph and
fo(k) = fo(k 4+ 1) for some k,0 < k < ke(G), then fo(k) < (’3;1). We

now establish an analogue for digraphs.

Theorem 2.4.1.3. Let £ > 2 and suppose D is a digraph with strong
{-connectivity function f; and &¢(D) = n. If fo(k) = fo(k + 1) for some
k, 0 <k < n, then fo(k) < (lzl).

Proof: Let fy(k) = sg. Then there exists a set Vi of k vertices of D and a
set Fy of s arcs of D such that Dy = D — Vi — Ejy has at least £ strong
components. If e = (u,v) € Ej, then the strong component of Dy con-
taining u (and the one containing v) consists of a single vertex, namely u
(respectively, v). To see this suppose, to the contrary, that u, say, belongs
to a nontrivial strong component of Dx. Then Dy —u has at least £ strong
components, that is, D — (Vi U {u}) — (Ex — {e}) has at least £ strong
components. However, then fy(k + 1) < |Ep — {e}| < s —1 = fo(k) — 1,
which contradicts our assumption. Now since f,(k+1) > 0, it follows that
p(D)~(k+1) > {,i.e. p(D)—k >{+1. Hence Dy contains at least (41
vertices. So since Dy + e has at most £ — 1 strong components Dy + e has
at least £ — 2 strong components that consist of a single vertex. Further, u
and v belong to a nontrivial strong component of Dy + e. If Dy has more
than £ strong components, then Dy —u has at least ¢ strong components so
that D — (Vi U {u}) — (Ex — €) has at least £ strong components. However,
then fy(k + 1) < fe(k), which contradicts the hypothesis. Hence Dy has
exactly ¢ strong components. This implies that Dy has at most £ — 1 trivial
strong components. Further, from an earlier argument, no arc of Dy joins
a vertex from a trivial strong component of Dy with a nontrivial strong

component of Dy. Hence the arcs of Dy are only between vertices that
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correspond to trivial components of Dy. Since at most (Zgl) arcs need to

be deleted from any digraph on at most £ — 1 vertices to produce an acyclic

digraph, it follows that |Ex| < (31), i.e. fe(k) < (31)- 5

From Theorem 2.4.1.3 we know that if D is a digraph such that f,(k) =
Folk + 1) for some k(0 < k < ko(D) — 1), then fo(k) < (“7'). The next
result shows that if in addition fy(k) > (251), then fo(y) for 0 < 5 < k

cannot be arbitrarily large.

Theorem 2.4.1.4 Let D be a digraph with x;(D) = n, where £ > 3 and let
fo be as in Theorem 2.4.1.3. If fo(k) = fo(k+1), for some k, 0 < k < n, and
(37) < felk) < (51), then fo(5) < (k—j)(£—1)+ fo(k) for 0 <7 < k—1.

Proof Let f(m) = s, for 0 < m < n. Since fo(k) = fo(k + 1) it fol-
lows from the proof of Theorem 2.4.1.3, that there is a set Vk of k ver-
tices and a set Ey of s arcs of D such that D, = D — V., — E has
exactly £ components and where every arc of Ej is incident, in D, with

a pair of vertices that each belong to a trivial strong component of Dy.

-2

) ), Dy contains more than ¢ — 2 trivial strong compo-

Since sx > (
nents. Since fo(k) = fo(k +1) = skp1 > 0, we have p(Dyx) > £+ 1.
Hence Dy has at least one nontrivial strong component. Thus D has ex-
actly £ — 1 trivial strong components, with vertices say vy, vo, ..., vo_;. Let
V = {v1,vq,...,v-1}. Now every vertex of Vi is adjacent to at most £ — 1
vertices of V. Hence any set of £ — j vertices of V4,0 < j <k —1, is joined
by at most (k — j)(¢£ — 1) arcs to vertices of V. Let Vi = {uy,uq,...,us}.
Then there are at most (k —7)(¢ — 1) arcs denoted by E’ that join vertices
of {ujy1,ujs2,...,ux} to vertices of V(0 < j < k—1). Hence D — (E4U E)
is disconnected with at least £ strong components and for 1 < 7 < k—1, the
digraph D — {uy,us,...,u;} — (E U E}) has at least £ strong components.
Sos; <(k—7)(£—=1)+ fe(k) for 0 <j <k —1. o
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It appears to be a difficult problem to characterize all ¢-connectivity func-
tions of digraphs. However, the following result provides sufficient condi-

tions for a function to be the {-connectivity function of some digraph.

Theorem 2.4.1.5 Let £ > 2 be an integer. If f is a decreasing function
from {0,1,...,&}, & > 1, to the nonnegative integers such-that f(x) = 0,

then f is the strong £-connectivity function of some digraph.

Proof If / = 2, then the result follows from Theorem 2.4.1.1. Let D
be the digraph having f as strong 2-connectivity function. Then for £ >
3, DUK,_, is a digraph with {-connectivity funciton f, that is, f,(k) = f(k)
for 0 < k < k. A a

2.5 Maximal and Minimal Graphs of given

/-connectivity

2.5.1 Maximal Graphs

A connected graph G is (n,£)-maximal if G is not complete, x,(G) = n
and x¢(G + €) > n for every edge e € E(G).

The largest integer ¢ for which there exists a connected (p, q) graph G
of given order p, such that x,(G) = n is denoted by Q,¢(p).

A graph G = G(p,q) with ¢ = Q,(p) and k,(G) = n is called an

(n,£)-maximum graph.

The graph G = K, + (K, UK, U...UK,,), where p = py+pa+...+po+n,
is clearly (n,#)-maximal. |
That every (n,£)-maximum graph is of this form may be seen as fol-

lows: Let S be a set of n vertices of G such that the number of components
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(a)

Figure 2.5.2.1

(b)



of G —Sis k(G—S) =m > {. Let Gy,Gy,..,Gn be the components of
G — S, of orders py,ps, ..., Pm respectively. Then (S) is complete (other-
wise, if e € (S)g, then k((G +e) — §) = m > £, and |S| = n. Similarly
it follows that Gi,Ga, ..., G are complete. Furthermore, m = £ ( other-
wise, if m > £, let e join a vertex of G to a vertex of Gy and note that
E((G+e)—S)=m—12{). Also, every vertex in S 1s adjacent to every
vertex in V(G) = S. So G = (S) + (G1 U ..U Gp) where S = K, and
G; = K, (with p; = p(Gy)). |

It follows that in order to obtain an (n, £)-maximum graph of order p, we

should choose p; = p3 = ... = ppoy = land pp = p—n—({—1) = p—n—L+1.
Thus Qne(p) = 5{(p—n—L+1)(p—n—~¥¢) +n(n—1)} +n(p—n).

2.5.2 Minimal Graphs

Let n,¢,p € N with £ > 2 and p > £ +n. A graph G is (n,ﬁ)-minimal
if ko(G) = n and k(G — €) < n for every edge e € F(G). The smallest
integer ¢ for which there exists a (p, ¢) graph G of given order p, such that
ke(G) = n is denoted by gn¢(p).

A graph G = G(p, q) with ¢ = ¢, 4(p) and k(G) = n is called an (n, £)-
minimum graph and will be denoted by G, 4(p)
The class of (n,£)-minimum graphs will be denoted by G, ., and G, .(p)
denotes the set of all graphs in G, , of order p.

By definition (n,¢)-minimum graphs are (n,£)-minimal. However, the
converse is not true, as can be seen in figure 2.5.2.1 where both graphs are

(2,2)-minimal.

The characterisation of graphs of G, , proves to be more difficult than
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that of the (n,?)-maximum graphs characterised above. However, the
graphs of G,, could be useful in designing a network which is deemed
to fail if it splinters into £ or more components after the simultaneous fail-
ure of some of its centres, or if af least n centres fail simultaneously. The
graph, with the minimum possible number of links, which represents such

a network, will belong to G, ..
We first prove two general results.

Theorem 2.5.2.1 If p > n+3 > 5 and G is an (n, 3)-minimal graph of
order p, then G contains an edge e for which x3(G —e¢) =n—-1or G

contains at least n vertices b such that G — b is (n — 1, 3)-minimal.

Proof: Let ' C V(G) such that k(G —T) > 3 and |T| = n. For
e € E(G), K3(G —e) <n—1;say s(G—¢€e) = me, <n—1 and de-
note by S. an m.-set of vertices of G such that k(G —e — S.) > 3. We
note that k(G — e — S.) = 3, otherwise, if k(G — e — S,) > 4, it follows
that k(G — S.) > 3, contrary to the assumption that <a(G) = n. Further-
more, e is a bridge of G — S.; so either the component (Gy, say) of G — S,
that contains e is isomorphic to I{; or p(Gy) > 3 and the (m + 1)-set
S. = S.U{u} (where u is the endvertex of e in a nontrivial component of
G —e— S.) satisfies k(G — §’) > 3 which implies that m, + 1 > n. Hence,
in this latter case, «3(G —e) = n —1 (and so, if G is (n,3)-minimum,

gn-13(P) < ¢(G —¢) < gn3(p) — 1).

We now assume that the statement of the theorem is invalid and that
n is the smallest integer (n > 2) for which G providesk a counter-example
to the theorem. Then m, < n — 2 for each e € E(G). Let b € T; then
Ks(G—b) <n—1(as k(G—b— (T —{b})) >3) and «x3(G—b)>n—1
(as ¥3(G) > n); hence a(G —b) =n — 1. For e € E(G — b) we note that

k3(G —e)=m, <n—2and e joins two trivial components of G — e — S..
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Furthermore, either k(G — b — e — S.) > 3 or (b) is a trivial component
of G—e— 8. and k(G — e — S.) = 3. In the latter case it follows that
G — e — S, has (only) three trivial components, whence p = m, + 3 < p,
a contradiction. Hence k(G — b — e — S.) > 3, |Se|] < n — 2 for each
e € E(G~b)and G —bisan (n —1,3) graph of order p = 1. ' a
Theorem 2.5.2.2

Gn,e(p) < Gne-1(p).

Proof: Obviously ¢ne(p) < gne—1(p). Now assume that ¢, 4(p) = gne1(p)
and let G € Gno(p). Let S C V(G) such that |S| = n and k(G — S) >
£ > £ — 1. Then, since G has size ¢, (p) it follows that G € G, ;. Now
let ¢ € E(G) and let S" C V(G — e) such that |S'] = m = k(G — €)
and k(G —e —S’) > £. Then, as we have seen in the above theorem,
G — e — S’ has exactly £ components; so G — S’ has £ or £ — 1 components.
However, k(G — S') # £ since £¢(G) = n > |S'| and k(G - §') # £ -1,

since ko—1(G) = n > |S’|. This contradiction yields the desiljed'fesult. a

Graphs of G, »

If £ = 2, ko(G) = k(G) and 50 ¢ne(p) = ¢no(p) is the smallest size
of a graph of order p and connectivity n. Harary [H3] has shown that
gn2(p) = [2] and has provided the following associated (p, (%D graphs
of connectivity n, Gr2(p) = Hy .

In all cases, let V=V(H,,)={0,1,...,p—1}, p>m+2 > 4.

Case 1: If m is even, say m = 2r, then, for 4,5 € V, 1,7 € E(Hn,)
iff |¢ — j| < r (addition modulo p). Hence, denoting by C, the cycle
0,1,...,p=2,p — 1,0, we note that H,,, = CJ.

Case 2: If mis odd, say m = 2r +1 and p is even, say p = 2q, then H,,, is
obtained from Hj,, by the insertion of the a edges i(:+a) for 0 < i < a—1.
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Case 3: If m is odd, say m = 2r + 1 and p is odd, say p = 2a + 1, then
H,,p is obtained from Hy; , by the insertion of the a + 1 edges 0a,0(a + 1)
and i(t+a+1)forl1 <:1<a—1.

We note that ¢(Hm,) = [%2] in all cases and next determine the {-

connectivity of H.,, in each case, where £ > 2 and the above notation is

retained.

lr if p>8r+1)

Proposition 2.5.2.3 In Case 1 k(Ha,p) =
p—L+1 if £<p<i(r+1).

Proof: Let p > 4(r+1) and H = Hj,,. That k,(H) < £r follows from the
observation that S = %L_Jl{j(r + 1)+ 1, j(r+1)+2,...,7(r+1)+r} is such
that |S| = ¢r and k(H]j(jS‘) = £, the components of H— S having vertex sets
{r+1}, {200+ 1)}, ., {(d=1)(r+1)} and {£(r+1),4(r+1)+1,...,p—1,0}.

To show that k,(H) > fr, we assume to the contrary that x,(H) < ¢r
and let S C V(H) such that |S| < fr and let k(H — S) > €. Let

20,1, ..., 29—1 be vertices from £ distinct components of H — .S, labelled so
that 0 <o <ig+l <y <n+1l<.. <ty <p—1. Fory=0,1,..,0-—1,
let S; = {¢;,1; + 1,...,1;41} (all addition modulo p) and 7; = S; N S.

-1
We note that ¢;,¢,+1 € Tj; hence, since || J T;| = |S| < £r, there exists
=0

J €40,1,...,¢£ — 1} such that |T}| < r. Consequently there exist vertices
1j = G1,Q2,...,as = t;41 10 S; — T such that a1 < ay < ... < a, and

agp1—ay Srfort =1,...,5—1. 50 ayas...a, is an 1; — 1,4 path in Ho,p, — S,
contradicting our assumption that ¢; and ¢;4; are in distinct components
of H — S, whence it follows that x,(H) > ¢r and so x,(H) = ¢r. That
ke(Hoyrp) =p— (€ —1)if £ < p < 4(r + 1) follows immediately from the

observation that §(Hs,,) < \_ﬁ—lj : O
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Propositon 2.5.2.4 In case 2, if £ > 3 and p > 2r{ (where p is even) then

br+4—1 if p>2rf+2
oD if 2r{ <p<2r{+2{—2and{isodd
if r 2 27 K'K(H2'r+1,p) = .
or 2r{+2<p<2rf+2¢{—2and/is even
rd+1 if p=2rfand/{is even.

p if 2rf <p<2rf+2r—2and{is odd

or 2rf +2<p<2rf+2r—2and/iseven
if r <, ke(Hart1,0) =
rd+1 if p=2rfand/{iseven

br+r if p>2rf+2r.
Proof: Let S =5'US" C V(Hart1,p), where p > fr + 7 44

[54]-
S = {7jr+1)+1,..,5(r+1)+r}and
j=0
eI | |
S" = {a+jir+1),a+5(r+1)+1,.,a+j{r+1)+r—1}
=0

(addition modulo p).

Then |S| = ({+1)r and Hy, 41, contains £ components, namely £—1 iso-
lated components induced by the vertices r+1,2(r+1), ..., (V‘Tq ~1) (r+
),r+ar+a+(r+1),.,7r+a+ V‘le (r 4+ 1), and a component which
is nontrivial if p > #r + r + £, containing the vertices in AU B, where

A= {[Z'Tl.l (r-{—l),!_z—;—q (r+1)+1,..,a—1} and

B={a+r+ (|5 +)+1),a+r+ (5] +1)(r+1)+1,...,p—1,0}
ifa+r+(|_§;—1j -l—l) (r+1) < pand B = 0 otherwise.

(We note that certainly r + a + L’Z'le (r+1)<pand ’_l—'z'l-w (r+1)<aas
p>4lr+r+L) So ke(Hyrp1p) S+ 1)rifp>4r+r+4£and pis even.

We next investigate conditions under which &¢(Hz 41,5 < (€4 1)r for (even)
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values of p > 2rd > lr +r + £.

Denoting Hary1, by G and Ha., by H, let S C V(G) with k(G—-S5) > ¢
and suppose that |S| < (£+ 1)r. Then it follows from the proof of the pre-
ceding lemma that k(H — S) < £+ 1. Hence, as k(H — §) > k(G — 5) > ¢,
k(H—S)=k(G—-S) =L Werecall that H = C}, where the vertices
of C, are labelled consecutively 0,1,...,p — 1 in, say, the clockwise sense.
Denote the consecutive components of G — S by Gy, ..., G, and let u;, v; be
the first and last vertices in GG; so that all vertices in (G; are contained in
{ui, vig1, .., v} (2 = 1,2,..,¢) where addition is modulo p. Let p; = p(G;)
and p; = max{p;|t = 1,...,£}. '

We consider two cases:

Case (i): If pp = a+c¢ > a,let uy = a —c,v; = 2a — 1; then, as
every pair of consecutive components of G — S are separated by at least
¢

r vertices on Cp and u; < ¢+ a < v for each ¢ € |J V(G;), it follows
i=2

¢
that |S| > &r 4+ > pi > fr + £ — 1, with equality iff p; = 1 for i = 2, ..., 4.
1=2
¢
Furthermore, a —c=4r + 5" p; > ér + ¢ — 1, whence
1=2 '

p=2a > 2(r+{—1+4¢)

> 20(r+1)

In this case, as |S| < ¢ér + r — 1, it follows that » > 4. The bound

|S| =&r + £ —1 can be attained by letting V(G;) =r + (1 — 2)(r + 1) for
;

1 =2,..,4and V(Gy) = {ré+l=1,70+¢, ..., 2a=1} = | (r+(i=2)(r4+1)+a).
1=2

Case (ii): Ifp; < a,then,asi+a € V—Sforeachi € V-5, |S| > V|—15|
and so |S| > a = 1p. Consequently p < 2|S| < 20r + 2r — 2. We have to
consider two subcases, where the notation of Case (i) is retained through-

out.
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Subcase (ii)(a): If 2r{ < p < 2rl + 2r — 2 and £ is odd, the bound
S| = a = %p may be attained (where a = fr +m, 0 < m < r —1)
by letting S consist of all integers in the following intervals: [1,r], [2r +
~1,3r],...,[%(€—1)+1,%(f—&—l]),[%(ﬁ—f—i%)_—}—1,%(€+5)+m],[%(€+7)+m+
1,2(¢49)+m], ..., [p—2r—m+1,p—r~m]. lf r > ¢, this bound is as good

as or an improvement of the bound obtained in case () iff p<2rf+20-2.

Subcase (ii)(b): Let 2rf < p < 270 + 2r — 2, where ¢ is even. We
shall first show that, if p = 2r¢, then |S| > %p = r{: Suppose, to the
contrary, that |S| = %p = r{; then exactly r vertices of S are contained
in the interval (v;,u;41) and no vertex of S is contained in [u;,v;], where
i =1,2,..,¢ (additon modulo p). Hence p; = p, = ... = p, = r. Letting
V(G;) = {0,1,...,7 — 1}, we note that V(G;) = {2r7,...,2ri +r — 1}; hence
V(Gy) = {r,.. lr+71— 1}, but, as a = r and V(G;) = {O’.,'l,....,r -1},
it follows from the preceding argument that {{r,...,lr +r -1} C S, a
contradiction.

However, the value |S| = 2p + 1 may be attained as follows: Let

o) ={r+2r+ 1, e+ (20 4+ D} fori=1,...,
Gg._l) = {2E7‘ — 2r + 1,...,2f7‘ - T — l}, V(Gg) = {O}

0 —2;

1
2

We note that p; = r for 1 = l,...,%f — 1, %Z +1,...,4 — 2, while p1, =
2

¢
2r—1l,pp.1 =7 —1and p, = 1; so Zpizfr—land |S| = 4r + 1.

1=1

If p=2rf+2m, where 1 < m < r — 1, the bound |S| = %p may be
attained as follows:

Let

V(G) = {(2—1)r+1,.,2ir) fori=1,2, .. %g;

<
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V(Grep) = {br +r 41, lr + m+r},
V(Gryps) = {br+m+ (20 —r—r+1,..,8r+m+ (2t —1)r}
?

fori=1,2,..., = = 1.
ori 1y

V(G,) = {p—2r+1,p—2f—{—2,...,p—1,0}

with p; =r forz=1,2, ..., %Zf, %Z +1,...,0—1,
Pieq1 =M, pe = 2r, hence > p; = 4r + m.
=1
As in subcase (ii)(a) above, we note that the bound |S| = 3p attained
in (if)(b) if 2r +2 < p < 2rf + 2r — 2 is as good as or an improvement on
the bound |S| = 4r + £ — 1 attained in case (1) iff p < 2rf +2¢ — 2. 0

Similar techniques suffice to prove the following proposition.

Proposition 2.5.2.5 In case 3, 1f £ > 3 and p > 2r{ + 1 (where p is odd),

then

br+ -1 f p>2r0+20+1

Mp—1) i 2+ 1<p< 24201
] and £ is odd

i r >0 kg (Harerp) =
or 2r{+3<p<2rf4+20-1

and £ is even

%(p-}-l) if p=2rf{+1and/{iseven
and

%(P—l) if 2l +1<p<2rt+2r-1
and £ is odd

: if2rl +3 <p<2rf +2r —

Hr <l ke(Hypp) = o d""[“*' spsTeE

and £ is even

%(_p_;_l) f p=2r{+1and{iseven

lr 4+ if p>2rf +2r+1.
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Graphs of G, 3

a) If n =1 and p > 4 then ¢;3(p) = p— 2 and Gy 3 consists of all unions

of two trees, Ty U T, with p(Ty) 4+ p(T2) = p. We note that if G is a

connected graph of order p with x3(G) = 1, then ¢(G) > p—1, where

equality is attained by all trees G of order p with A(G) > 3.

b) If n =2 and p > 5, then ¢23(p) = p — 1 'and G, 3 consists of the path

P, and of the (disjoint) union of a cycle and a trivial graph,Cp-1 U K

and of the (disjoint) union of a cycle and a complete graph on two

vertices, Cp_q U Kj.

c) Ifn =3 and p > 6, then g33(p) = p and the cycle Gs3(p) = C)

belongs to Gs 3

Theorem 2.5.2.6

If G € G33, then G is connected and is unicyclic.

Proof: Suppose G = G, UGy € Gs3 with p = p(G1) + p(Gy), ¢(Gy) +
q(G2) < pand x3(G) = 3, then for each G; (i € {1,2}) we have that either

G; is complete or £,(G;) = 3. However, since x3(G) = 3 and p(G) > 6,G,

and (5 cannot both be complete.

So, say Gy has p1 = p(G1) € {5,...,p— 1} and x2(G;) = 3 and G, is

connected. Hence,

9(G) = q(G1)+4¢(G2) 2 ——+p—p—1

Thus it follows that, for p > 6, ¢33(p) is realized by a connected graph.

41



Figure 2.5.2.2



By (a) and (b) above G cannot be a tree and ¢(G) < p. Thus G is
unicyclic. In fact C, is the only unicyclic graph G with «3(G) = 3.

d) If n =4 and p > 7, the graphs of figure 2.5.2.2 can be shown to have
3-connectivity equal to 4, and thus give upper bounds for ¢43(p). It
will be seen that these graphs belong to G4 3. ‘

For p > 9, the construction of a graph G in figure 2.5.2.2 may be described

as follows:-

Let p=41—7 (¢, € N,1 > 3;7 € {0,1,2,3}) and let C’, C" be two disjoint
i-cycles C" = uy,uq, .., ui, uy and C" = vy, vq,...,v;,v; with V(C’) = U and

V(C") =V. G is obtained from C'U C” by connecting
1) Um t0 v, by a path Py = UnZTmYmvm for m=1,...,1 — 2.

. Ui1ZTio1Yi—1Viey M ) <2
1) u;—1 to v;_; by
Ui—1Ti-1Vi1 if =3
U;v; if 7>2
i) u; tov; by ¢ iz, i j=1

U TY:V; lf j: 0

Theorem 2.5.2.7 If G is a graph constructed as above, then x3(G) = 4.

Proof: For p € {7;8;9} it is easy to show the theorem true.
For p > 9, since k(G — {uy, uz,v1,v2} = 3, it follows that x3(G) < 4.
Suppose now that £5(G) < 3, then there exists S = {s,, 55,53} C V(G)
such that k(G—S) > 3. Clearly |SNU| < 1or |SNV| < 1. Suppose z,, € S,
then either u,, is in a trivial component of G—S (and S = {Zm, Um—1, U1}
which is impossible if k(G = S) > 3) or & = (§ — {£.}) U, is such that
k(G—-S5")>3.
So we may assume, without loss of generality, that S N X = 0,5n
Y = 0and [SNU| = 1L,[SNV| = 2, where X = {21,2,,...,2;} and



Y = {y1,92,-,¥i}. Let SNU = {un}; then in G — 5, all vertices in
U~ {up NU(X = {zmn})U(Y = {yn})U(V —5) are in a single component
and Z.m,Ym are in another component which can be ({Zm,ym}) if vm € S
or {({Zm,Ym,Vm}) if {Vm-1,vm1} C 5.

However, G — {Uum,v,n} has as components ({Zm,ym}) = K and a
9-connected component G — {Um, Tm, Ym, Vm}, SO {tUm,Vm} € 5.

Hence S = {Um,Vm-1,Vmt1} and k(G — §) = 2, again a contradiction.

Thus k3(G) = 4.

It follows that

p+3 if pe {78}

g43(p) < q(G) = o , , .
p+1 if pe {41-3;...;4i}, 1> 3,1€N

Now p € {41 —3,...,41} if and only if 47 € {p,p+1,p+2,p+ 3} NN if and
only if i = [E].

Hence
p+3if pe {7,8}

gs3(p) < q(G) =
p+[8] =[2]ifp>9
Theorem 2.5.2.8

For G € Gy3, «(G)=2.

Proof: We show first that G' has no cut vertices. Suppose to the contrary
that k(G —v) > 2 for some v € V(G). In fact since G € Gya,; k(G —v) = 2.
Let Hy; and H, be the two components of G — v, then clearly «(H;) >
3, i € {1,2}. If p; is the order of H;, then since ¢3,(p) > ?—’23 it follows that

3
q13(p) > q(Hy) + q(Hy) +2 > 3P, 3;

9 2+2

_3(p-1)
= s +2
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p+3 if pe {78}
éﬂf—:s if p>9
Thus (G) > 2.
Suppose x(G) > 3, then gus(p) = daa(p) 2 2.
Thus «(G) = 2. 0

Let G have p, vertices of degree 2 and ps vertices of degree at least 3
forming sets V3 and V3 respectively. We note that (V2) cannot contain a
path P; : vjvaus, otherwise G would contain either a Ps : vovjv2vu3v4 OF 2

Cly : Uov1V2V3vg as an induced subgraph. This would imply that «3(G) < 4.

Theorem 2.5.2.9

p+3 if pe{7,8}
2] i p>9

4

qa3 =

Proof: If p = 7, then 2p; 4+ 3(7 — py) < 20, hence p, > 1. Let v € V(G)
with deg v = 2, N(v) = {z,y}. Since P3 ¢ (V3), at least one vertex in {z,y}
is also in Va; say deg y > 3. Note that x3(G —y) > 3 and p(G —y) = 6.
Then q(G ~y) > ¢33(6) = 6 and hence ¢(G) > 6 + 3 = 9 with equality if
and only if ¢(G —y) =6 and deg y = 3.

Suppose ¢ = 9. If deg z = 2 and zy € F(G), then y is a cut vertex
which is impossible since £(G) = 2. So either deg z > 3 or zy ¢ E(G),
hence ¢(G) = 9 > ¢(G — {z,y,v}) + 5 and so H = G — {z,y,v} has
p(H) =4, ¢(H) <4, and x(H) > 2 since H is a component of G — {z,y}
and k3(G) > 4. So q(H) > 2 = 4 implying that q(H) = 4 and H is
a 4-cycle. Furthermore, z is adjacent to exactly one vertex (say w) of H,
otherwise ¢(G) > q(H) +6 > 10.

Now G — {w, y} has two components, namely ({z,y}) and H —w which
is a P3 with connectivity 1. So x3(G) = 3 < 4 which is a contradiction.

Thus ¢43(7) = 10.
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If p =8, then 2p, + 3(8 — p2) < 22, hence pp > 2 and p; < 6.

Let u,v € Vs with N(u) = {z,y}, N(v) = {w, z} where (since P5 Z (V2)),
deg y > 3 and deg z > 3 say. Since k3(G —y) 23, ¢(G—y) 2 @as(7) =T
and so ¢(G) > 10.

Suppose q(G) = 10. Then 2p; + 3(8 — p2) < 20 and hence p, > 4 and so
there exist u,v € V5 with uwv ¢ E(G). Since k3(G) = 4, it follows that
|N(u) U N(v)| > 4 and so z,y,w and z are distinct.

If H=G - {u,z,y} then, by a similar argumenf to that used in the
case p = 7, we can show that ¢(H) = 5 and G — {z,y,u} is a 5-cycle.
Similarly it follows that G — {v,w, z} 2 Cs. Thus two possibilities (G and
G,) for G exist, both of which satisfy x3(G) = 3 < 4. Hence ¢43(8) > 11
and so ¢43(8) = 11.

If p > 9, we note first that

2py + 3ps < 2¢ < 2[ 2]
= 2p+3(p—p2) < 2p +2[E].

Hence p2 > p—2[E].

Suppose g<[%2]-1=p+[8] -1, then
2p2 +3(p — p2) < 2p+2[2] — 2 and so
p2 > p+2—2[E] and p3 < 2[E] — 2.

Thus p3 < pa.

Now, every vertex in V; is adjacent to at least one vertex in V5. Further-
more, any vertex in V3 is adjacent to at most one vertex in V3, otherwise
if u,v € Vo with zu,zv € E(G), then if uv € E(G), z is a cut vertex of G
contradicting x(G) = 2. Whereas, if uv ¢ E(G), then |N(u) U N(v)| < 4
and k3(G) < 3 contrary to assumption. Hence p3 > p; which again is a

contradiciton. Thus gs3(p) = [2]. O
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p=28 p =39 p =10 p="1
q=14 q=15 q= 16 q=17
Form = 2:
) = 6m . p=6m+1




Clearly the graphs of figure 2.5.2.2 are (4,3)-minimum graphs and hence
belong to Gas(p).

e) Ifn=>5

Theorem 2.5.2.10 The graphs of figure 2.5.2.3 have x3(G) = 5.
Proof: For p € {8,9,10,11} it is not difficult to see that x3(G) = 5.

For m € N, m > 2, consider the cubic graph G, obtained from the 6m-
cycle Com : aocoboaiciby...agm—1¢am-1bam—1a0 by the insertion of the edges
in the set {a:b;, cjcjem|t = 0,1,...,2m—1; 7 =0,1,...,m—1}. Let T; denote
the triangle a;b;c; (1 = 0,...,2m—1) and let C = {¢;]s = 0, ...,2m—¢}. That
k3(G) < 5 follows from the observation that k(G — {ag, bo, cm, bm—1,br}) =
3.

To prove that x3(G) = 5, we assume the existence of a set S C V(G)
such that |S] < 4 and k(G—-S) = 3. Let Gy, G2, G be components of G— .5
and, without loss of generality, assume that G; contains at least one vertex
of To and none of T;. Note that H : apbam-1C2m-162m—-1---Om13Cmi3m+s
by 2Gme2Cm4+2C2G209a3¢3b,. .. A bmcmcoboag s a hamiltonian cycle of G —
(V(T1) U V(Tin41)) whence it follows that V(T3) ¢ S. (Otherwise, if
V(Ty) € S, G — S contains at least two components which contain no
vertex of V(T1) U V(Tm41) and are separated on H by at least two ver-
tices of S; so |S| > 5, a contradiction.) Hence T; contains a vertex of
G — (SUV(Gh)), say a vertex of Go. Since bga; € E(G) and Tj is com-
plete, {by,a1} N S # 0.

Let ¢ be the smallest index such that V(G2) N V(Ti11) = 0; then it
follows as above that V(Ti+1) N V(G,) # 0 for r = 3 or 1. Let j be the
smallest index such that V(G,) NV (Tj41) = 0; then V(T;1) N V(G,) £ 0
for some s € {1,2,3} — {r}.
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It follows as above that {b;,a,41} NS # 0 and {b;,a;+1} NS # 0, where
0<i<j<2m. Hence |SNC| < 1.

We note that, as |S| < 4, the graph Cg,, — S contains at most four com-
ponents, with vertex sets (say, without loss of generality) either V(Gy), V(G,),
V(G3) or V(Gy),V(G2), V(G4),V(Gs), where V(G4)UV(Gs) = V(G3). In
the latter case, let k& be the smallest index following j such that V(Gs) N
V(Tks1) = 0, then {bx,ar41} NS # 0 andj <k<?2m,s0 SNC = 0. How-
ever, it then follows from ¢o € V(G;) and CNS = 0, as G is a component of
Cem— S that Gy contains all vertices in the set {cm, bm, Gmt1, Cmtt, Omat, -
@2m~1, Cam—1, D2am—1, G0, Co }; however, from ¢; € V(Gs) it follows similarly
that ¢ni1 € V(G2), a contradiction.

So k(Cem — S) = 3 and Gy, G, Gy are the three components of Cg,, — S
(sor =3 and s =1). As |[SNC| <1, at most one of the vertices ¢y, ¢; and
ci+1 are contained in S; say ¢p € V(Gy) and ¢; € V(Gy); then a contradic-

tion follows as above. Hence |S| > 4; i.e. k3(G) = 5. O

Similar methods suffice to prove that each of the other graphs shown

in Figure 2.5.2.3 have x3(G) = 5.

From the above theorem and the graphs of figure 2.5.2.3 it follows that

) < { p+6ifpe {89 10}
5,3 -~

Tl =131 ifp =11

Theorem 2.5.2.11

p+6if p e {8,9,10}
g5,3(p) = S
[2] ifp>11

Proof:

1. Let p =8 and suppose that g5 3(8) < 13. If v is a vertex of maximum
degree in G, say deg v = A(G) > 3, let H = G —v. Then k3(G) > 5
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implies that x3(H) > 4 and so ¢(H) > ¢43(7) = 10. But ¢(G) >
q(H) + A(G) > 13. So q(G) = 13 and hence A(G) = 3. However,
if ¢(G) = 13 and p(G) = 8 with A(G) = 3, then ¢(G) < %ﬂ =12,a

contradiction. Hence ¢53(8) = 14.

. Suppose next that gs3(9) < 14 and let deg v = A(G) > 3. Then
H = G —vhas p(H) = 8,k3(H) > 4, and hence ¢(H) > ¢4 5(8) = 11.
Consequently ¢(G) > 11 + 3 = 14, with equality only if A(G) = 3.
Hence ¢(G) = 14, A(G) = 3 and G has at most 8 vertices of degree
3, one of degree 2 (since A(G) = 3) yielding ¢(G) = 3[8(3) + 1(2)] =
13 < 14. Hence gs5(9) = 15.

. Assume that there exists a (10,15) graph G with x3(G) = 5. Let
V(G) = {v1,...,v10}. Note that if A(G) > 14 with (say) deg v; > 4,
then H = G — vy has p(H) = 9,¢(H) < 11 and k3(H) > 4, contra-
dicting the fact that g43(9) = [ﬂ?] = 12.

Hence, G is a 3-regular graph.

Let N(v1) = {v2,vs,va} and note that A(({ve,vs,va})) < 1, oth-
erwise, if (say) vqvs,vavy € E(G), then G — {vq,v4} has two com-
ponents : Ly = ({vi,vs}) = K; and L,, where L, is a (6,8)-graph
with k9(L2) > 3; hence 8(Ls) > 3 and g(Ly) > 9, a contradic-
tion. Since |N({v,v;})] > 5 for j € {5,6,7,8,9,10}, it follows that
each vertex v; (j € {5,...,10}) is adjacent to at most one vertex
in {v2,vs,v4} and to at least two vertices in {vs,...,v10}. With-
out loss of generality, let N(vy) = {v1,vs,v6} and suppose that
vavg € E(G). Then, as |[N({vs,v3})| > 5, vz is non-adjacent to
vs and vg, as is vg. Let N(v3) = {v1, v4,v7}; then vivy € E(G), so let
N(vg) = {v1,v4,v8}. If vovsg &€ E(G), then G — {vq,v7,vs} has two
components, Lz = ({vi,v3,v4}) and Ly = ({vs,ve,v9,v10}), where

p(L4) = 4, q(Ls) = 156 -12 = 3; so k2(Ls) < 1 and Ks(G) <4, a
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contradiction. So wvrvg € E(G), which again produces a contradic-
tion since if we follow the same argument for v as for v; above, then

vg can be adjacent to at most one neighbour of v3. Thus vsvs € E(G).

Hence N(v3) = {v1,vr,v8} and N(vs) = {v1,vs,v10} (say) and we
note that the girth of G is at least 5. Recall that an n-cage is a 3-
regular graph with girth n and smallest possible order (viz. f(3,n);
see [CL1] in which it is shown that f(3,5) = 3%+ 1 =10 = p(G)).

It is also known that the Petersen graph is the unique 5-cage ([CL1],
p. 42, Th. 2.9) and so our graph G must be the Petersen graph P
for which x3(P) = 4, producing a contradiction. Thus ¢53(10) > 16,

which together with the above theorem gives g5 3(10) = 16.

. For p > 11 note that if 6(G) > 3 then ¢s3(p) = ¢(G) > %’3; hence
g(G) > [2] if §(G) > 3.

Suppose ¢(G) < &; then §(G) € {1,2}. If §(G) = 1, let deg u = 1,
N(u) = {v} and note that H = G — {u,v} has x(H) > 4, hence
6(H) > 4 and g(H) > 2(p—2) = 2p — 4 50 4(G) > 2p — 4 +

deg v > 2p — 2. From ¢(G) < 3 we obtain 2 < 2, whence p < 4,

contrary to assumption.

If 6(G) =2, let deg u =2, N(u) = {vy,v2} and J = G — {u, vy, v5}.
From |[N({u,w})| > 5 if w ¢ N[u], we obtain deg w > 3 if w €
V(G) — N[{v1,v,}] and deg w > 4 if w € N[{v1,v2}] — {u, vy, v2};
furthermore, since x(.J) > 3, we have §(J) > 3 and so q(J) > 2(p—3).
Now ¢(G) > 2(p — 3) + deg vy + deg vy — ¢, where
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0 if vivy & E(G)
€ =
1 if V1V € E(G)

So, if ¢(G) < 3?7’, it follows that %E > ?’22 — 2 + deg v1 + deg vy — ¢,
whence deg‘vl + deg v, < %-}— ¢, l.e. deg v; + deg vo <4+ €. But if
vv, € E(G) (so € = 0), then deg v1 + deg vy > 5, so viv, € E(G).
Let [N(vy) NV(J)| =a; (1=1,2); then a; +as +4 =degv; +

deg v; < 4+1 and so a1 +a; < 1, but G is connected, so a; + a3 > 1;

hence (say) a; = 1 and ag = 0, with N(v1) = {u, v, 2}.

Let L = G — {u,v1,vs,2}; then deg z > 4 (since |[N({u, z})| > 5).
Now «(L) > 4, so §(L) > 4 and ¢q(L) > 2(p — 4), whence ¢(G) >
2p—4+3+42>2p—3. So,as ¢(G) < 3%",Wehave %’3 > 2p — 3 and

so p < 6, a contradiction.

So gs3(p) > [22] which together with the above theorem gives

gs,3(p) = [£] for p > 11. 0

Clearly, from the above, the graphs of figure 2.5.2.3 belong to Gs 3.

f) n=6.

We first make the observation that, for G € g3, if uv € E(G), then
N () UN )| > 6.

Also it is known that x3(C2) = 6 for p > 9; so gg3(p) < 2p for p > 9.

Theorem 2.5.2.12 If G € Gg 3, then §(G) > 3.

Proof: It is clear that 6(G) > 2, otherwise, if degeu = 1 and wv € E(G),
then £(G —{u,v}) > 5 and so ¢(G—{u,v}) > 2(p—2). But ¢(G—{u,v} <

2p — 2; so p £ 6, a contradiction.

Suppose there exists u € V(G) with N(u) = {vy,v;}, and let H = G —

{u,v1,v2}. Then x(H) > 4; hence §(H) > 4 and g(H) > 2(p—3) = 2p—6.
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So the number of edges covered by {v1,v2} is at most 6, whence it follows

that v1v, € E(G), otherwise, if viv; € E(G), then, |[N(v1)UN(v2) — {u}| >
5 and so {vi,va} covers at least 7 edges, a contradiction. Thus it follows
that either deggv; < 3 or deggvs < 3 (say th¢ former). ‘

If deggvy = 2, then G — v, has two components ({u,v;}) = K; and H,
with (H) > 5, hence q(H) > 2(p — 3) and so q(G) > 3(p — 3) + 4, but
q(G) < 2p, whence it follows that p < 7, a contradiction.

So deggu; = 3 and deggus < 4. Let N(v1) = {u, v2, w}; then G—{w, vy}
has 2 components, ({vi,u}) = K, and (say) J, where x(J) > 4 and so
8(J) > 4,whence g(J) > 2(p—4) = 2p—38; but, as §(H) > 4, w is adjacent
to at least 4 vertices in H and so ¢(G) > ¢(J) + 3 + |[va, V(J)]|+ deg

w>2p—8+3+1+5> 2p, a contradiction. So §(G) > 3. O

Let G3 = ({v € V(G)| deg v = 3;G € Gs3}) and let p; denote the

number of vertices in G of degree i(7 > 3).

Theorem 2.5.2.13 If H is a component of Gj, then |[N(V(H)) -V (H)| >
3.

Proof: We note first that each component of G5 is complete, otherwise G5
contains two vertices, vy and vy, with dg(vi,va) = 2 and |N(v;) U N(vq)| <
5. So each component of Gj is isomorphic to Ky, K, or Kj.

A similar argument shows that if w € V(G) — V(G3), then all vertices
in N(w) N V(G3) are contained in a single component of Ga (or N(w) N
V(Gs) = D).

If V(H) = {v1,vs,v3} and N(V(H)) — V(H) = {w}, then G — w has
two components, viz. H and (say) L, where £(L;) > 5 and so ¢(L,) >
p(L1) = 3(p —4); but ¢(L1) < ¢(G) =7 < 2p — 7 whence p < 6, a
- contradiction.

If N(V(H)) ~ V(H) = {w1,ws}, where (say) viwy,vw; € E(G) and

ol



vawy € E(G); but vawy € E(G), so (as degguz = 3 and 6 < [N (v3)UN (wy)]
= deggvs + deggw; — |N(vs) N N(w;)| = deggw; + 1), it follows that
degow; > 5. Now G — {wy,ws} has two componénts, viz. H and (say) Lo,
where k(L) > 4 and so ¢(Lz) > 2(p—5) = 2p—10. But ¢(Ly) <g¢—-11 <
2p — 11, a contradiction.

So, if H is a component of G3 of order 3, then |N(V(H)) — V(H)| > 3.

If H is a trivial component of G3, then obviously |N(V(H)) - V(H)| =
IN(V(H)) = 3.

Finally, if H = K, with V(H) = {vy, vy} then, if |[N(V(H)) -V (H)| =
2, (say N(V(H)) — V(H) = {w1,ws}), then G — {wy, w2} has two compo-
nents viz. H and (say) L, where x(L3) > 4, s0 §(L3) > 4 and consequently
q(Ls) = 2p(Ls) =2(p—4) = 2p - 8.

However, q(L3) < q(G)—8 < 2p—8, with equality if and only if ¢ = 2p,
deg w; = deg wy = 4 and wyw, € E(G), whiych must therefore be valid in

this case.

If IN({wr,w2}) N V(L3)| =1, let {a}= N{{ws,w;}) N V(L3) and note
that G — a has two components, ({vi,vs, w1, w;}) and (say) L4, where
k(L4) > 5,q(Ls) > 5(p—5) and ¢(L4) < ¢ —10 < 2p — 10; whence p < 5,
a contradiction. If N({wy,w;}) N V(L3) = {aj, a2}, then deg a; > 4 for
i =1,2 and G — {ay, a3} has two components, ({v1, v, wy,w2}) and (say)
Ls where x(Ls) > 4, q(Ls) > 2(p — 6) = 2p — 12 and g(Ls) < ¢(G) — 13 <

2p — 13, a contradiction.
So |N(V(H)) - V(H)| > 3. =

Theorem 2.5.2.14 For p > 9, I_Zf] < gs3(p) < 2p.






Proof: It follows from the above theorem that if G € Gg 3, then p — p3 =
[V(G) = V(G3)] > 3k(G3) = 3nq + 3nz 4 3ng and ps = 3ng + 2n,y + ny,
where n; is the number of components of order 7 in G5 (1 = 1,2, 3).

So ps < p/2,p—ps > p/2 and 2¢ > (3 +4)5.

Thus ¢ > 143. ]

For the case p = 9, ¢63(9) < q(C2) = 18. Furthermore, if S C V(G)
such that |S| = 6 and k(G — S) = 3, then K5((S)) > 3, hence q((S)) > 6
and each vertex in S is adjacent to at least 2 vertices in V — §; hence

I[S,V — S]| > 12 and ¢ > 6 4+ 12 = 18. Thus ¢3(9) = ¢(C3) = 18.

Figure 2.5.2.4 shows a graph on 24 vertices and [7(34] = 42 edges

which is easily seen to have 3-connectivity equal to 6.

At this stage it remains open to discover whether or not ge3(p) = I-’;—p-l

for all p >t > 9 and to establish the values of ¢g3(p) for 10 < p < ¢t.

Finally we conjecture that, for p > n + £ and n,£ > 2, both g, (p) <
gn,e(p) and ¢ e(p—1) < gne(p). It should be noted that the validity of these
statements in the case where £ = 2 follows from our knowledge of the exact

pn

value of gn2(p) (= [2*]) and that the proofs of the above conjectures (if

true) may be dependent on the establishment of a corresponding value of

gne(p) for ¢ > 3.
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Chapter 3

Steiner Distance Hereditary

Graphs

3.1 Introduction

~ The distance dg(u,v) between two vertices, u,v of a connected graph G is
the length of a shortest u — v path of G. The eccentricity e(v) of a vertex v
is max{d(v,u) | v € V(G)}. If G is a connected graph and S C V(G), then
the Steiner distance dg(S) is the size of a smallest connected subgraph of G
that contains S. Such a subgraph is obviously a tree and is called a Steiner
tree for S. If T is a tree then a vertex of degree 1 in T is an end-verter
whilst all other vertices of T are called internal vertices of 7.

Howorka [H2] in 1977 defined a graph G to be distance- hereditary if
each connected induced subgraph F of G has the property that dr(u,v) =
de(u,v) for each u,v € V(F'). In order to state the characterizations of
distance hereditary graphs given by Howorka [H2], we need the following
terminology. An induced path of G is a path which is an induced subgraph
of G. Let u,v € V(G). Then a u-v geodesic is a shortest u — v pa.t}.l'. Let C
be a cycle of G. A path P is an essential part of C if P is a subgraph of C
and 3|E(C)| < |E(P)

< |E(C)|. An edge of G that joins two vertices of C
that are not adjacent in C is called a diagonal of C. We say that two diag-
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onals ey, ey of C are skew diagonals, if C'+ ey + e, is homeomorphic with Kj.
Theorem F (Howorka)

The following are equivalent:
(1) G is distance-hereditary;
(i1) every induced path of G is a geodesic;
(iil) no essential part of a cycle is induced,;

(iv) each cycle of length at least 5 has at least two diagonals and each

5-cycle has a pair of skew diagonals.
(v) Each cycle of G of length at least 5 has a pair of skew diagonals.

The definition of the Steiner distance of a set of vertices together with the
concept of distance-hereditary graphs suggests a generalization to Steiner
distance hereditary graphs. In this chapter we first consider this general-

ization and then characterize the 3-Steiner Distance Hereditary Graphs.

3.2 Generalization of Steiner Distance Hered-
itary Graphs

A connected graph is k-Steiner distance hereditary, k > 2, if for every
connected induced subgraph H of G of order at least k& and set S of k ver-
tices of H, dy(S) = dg(S). Thus 2-Steiner distance hereditary graphs are
~distance hereditary. Figure 3.2(a) shows a graph G that is not 3-Steiner
distance hereditary since dp({u,v,w}) # dg({u,v,w}) where F is the in-
duced subgraph of G shown in Figure 3.2(b). However, it is not difficult
to show that the graph of Figure 3.2(c) is 3-Steiner distance hereditary.
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The problem of determining the Steiner distance of a set of vertices in a
graph appears to be difficult. In fact the following related decision problem

7 is NP-complete (see [GJ1 p. 208]).

7 : Suppose GG is a weighted graph whose edges have positive integer
weights. Let S C V(G) and suppose B is a positive integer. Does there
exist a subtree T" of G that includes S and is such that the sum of the

weights of the edges of T is no more than B?

Furthermore, the problem remains NP-complete even if GG is a graph.
This suggests solving the problem in certain special cases. If it is known
that a graph is k-Steiner distance hereditary, then dg(S) can easily be
determined for every set .S of £ > 2 vertices of GG as follows:

Let the vertices of G — S be denoted by v1,v, ..., v,—k. Let Go = G. For
each 1(1 <7 < p—k), if the vertices of S belong to the same component of
G;_1—v;, then G; is defined to be G;_; —v;, otherwise, let G; be G;_;. Thus
Gp-k 1s a connected induced subgraph of G that contains S. Therefore
dg,_.(S) = dg(S). However, since the deletion of any vertex of G,_;
separates at least two vertices of S, no subgraph with fewer vertices than
p(Gp-k) contains S and is connected. Thus G, is a connected subgraph
of smallest order that contains S. Hence any spanning tree of G,_; is a
Steiner tree for S.

Our first result shows that if G is a connected distance hereditary graph,
then dg(S) can be determined by the above procedure for any set S C V(G)

of at least two vertices.

Theorem 3.2.1 If G is 2-Steiner distance hereditary, then G is k-Steiner
distance hereditary for all £ > 3.

Proof Suppose, to the contrary, there exists a graph G which is 2-Steiner
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distance hereditary, but not k- Steiner distance hereditary for some &£ > 3.
Let k£ be as small as possible and let H be a connected induced subgraph
of G of smallest order, n say, for which there is a set S of k vertices of H
such that dy(S) > dg(S). Let S = {z1,23,...,zx}. If |V(H)| = k, then
there exists exactly one set of k vertices in H, namely V(H). However,
then every spanning tree of H is a Steiner tree for V(H) in H and has size
k — 1. Since dg(V(H)) > k — 1, it follows that de(V(H)) = dy(V(H))
in this case. This contradicts our choice of H. Hence |V(H)| > k+ 1. If
dg(S) <k —2let T be a Steiner tree for S in H and let H' = (V(T))q.
Then dg/(S) = dg(S) > ds(S) and |V(H')| < |V(H)| which contradicts

our choice of H. Hence dy(S) = n — 1, i.e. a Steiner tree for S in H
must contain all the vertices of H. By our choice of k,dy(S — {z:}) =
de(S — {z;}) for all 71(1 <1 < k).

We now show that no Steiner tree 7" for S in G contains any z; (1 <1 <
k) as an internal vertex. Suppose T’ contains some z; as internal vertex.
Let Ty, Ty, ..., T be the components of T/ — z;. Let T! be the subgraph
of T" induced by V(1)) U {z;} and let T; be the subgraph of T’ induced
by (U V(T,) U {z:}. Let S = SN V(T) and S, = § 0 V(TY). Since
2 SJTSQQ[ < k for 1 = 1,2, it follows that dy(S;) = dg(S;) for 7 = 1,2.
Further, |E(T})| = dg(S;) for ¢« = 1,2, otherwise we can find a tree with
fewer than ¢(1") = dg(S) edges that contains S. This is not possible.
Let T; be a Steiner tree for S; in H(: = 1,2). Then dy(S5) < dg(S)) +
du(S2) = |E(TY)| + | E(T;)| = dg(S). This again produces a contradiction
to the choice of 5. Hence, every Steiner tree for S in G has k end-vertices
which are precisely the vertices of §. Thus do(S — {z:}) < dg(S) for all
(1 <i<k).

We prove next that every vertex of S has degree 1 in H and is therefore
an end-vertex of every Steiner tree for S in H.

Let z; € S and note that every Steiner tree for S — {x;} in H does
not contain z;; otherwise dgy(S) = dg(S — {z:}) = dg(S — {z:}) < dg(S)
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which contradicts the fact that dg(S) > dg(S). Let T; be a Steiner tree
for S —{z;} in H. Denote by P; a shortest path in H from z; to V(T;) and
note that every vertex in H occurs in V(T3) U V(F;) for 1 <4 < k, since
dy(S) = |V(H)| — 1. So P; contains at least one edge. If F; contains an
internal vertex, w say, and degy z; > 2, then z; has a neighbour y in H
which is contained in V(7T;) and y ¢ V(P;), which produces a contradiction
as z;,y is a path from z; to V(T;), which is shorter than P;. Hence if
degy z; > 2, then P; has length 1. Therefore

dH(S) = dH(S - {17,}) +1
= dg(S—{z:}) +1
< dg(S);

contrary to our assumption. Hence every z; € S has degree 1 in H. There-
fore every Steiner tree for S in H has k end- vertices.

Next consider 7', a Steiner tree for S in H. Let ¢; be the length of a
shortest path @; (in H) from z; to a vertex v; of degree at least 3 in 7' for |
i =1,2,...,k. Let w;; be the vertex that precedes v; on Q); and observe
that except for possibly w;; no internal vertex of ); has degree exceeding
2 in H. We now show that

41 (5) = dy(S —{z:}) + & it v, € V(T)) (3.2.1)
dy(S —{z:})+ 4+ 1if v, & V(T3),
where T; is a Steiner tree on S — {z;} and where in the latter case w;; has
degree 2 in H.

We show first that dg(S — {z;}) > duy(S) ~ (4 + 1). If this is not the
case, then dy(S — {z:}) < du(S) — ¢ — 2 and neither v; nor any of its
neighbours in 7' belongs to 7;. Let w;2 and w; 3 be two vertices distinct
from w;; that are adjacent with v; in T'. Then T" — v;w; 5 muét'contain z;
and w;3 in the same component and thus some vertex z; # z; such that
the z; — z; path P/ in T contains w; ;3. Then P’ together with T} produces

a connected subgraph of H that contains S but not w;,. However, then

du(S) < p(H)—1, a contradiction. Hence, dg(S—{z;}) > dy(S)— (& +1).
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If v; € V(T}), then the length of a shortest path from z; to 7; is at most
Z;. On the other hand we know that it is at least £;. Hence it is exactly
4. So dg(S) = dg(S — {z:}) + 4 in this case. If v; € V(T3), then some
neighbour of v; di_stinct from w;; must belong to 7T;. Further, v; must be
on a shortest path from z; to T;. Therefore w; ;-has degree 2 in H. Hence
dH(S) =dy(S ~ {z;}) + ¢ + 1 in this case. |

Let T’ be a Steiner tree for S in G and let ' = (V(T"))¢. Since T'
has k end-vertices there is some pair z;,z; of vertices of S for which the
z; — r; path in 7" contains exactly one vertex of degree at least 3 in 77,
say y. Without loss of generality we may assume z; = z; and z; = z,. Let
0} = dp(z1,y) and £ = dri(2q,y). Observe that dg(z1,22) < €] + £, and
that dy(z1,z2) > € + £ — 1. Hence dg(zy,z2) > 4 + £, — 1. We now

consider two cases.

Case 1 Suppose dy(z1,z2) = f1+42—1. Then w; ; and w;; must be adjacent
in A and further, v; must belong to T; for ¢ = 1,2, by (3.2.1). Thus
dp(S) =du(S — {2:}) + & > dg(S) > da(S — {z:}) + ¢ for i = 1, 2.
Therefore £; > £/ + 1 for i = 1,2. Hence

dH(.Z'l,.Z'Q) = gl +£2 —-1> g,l + glz +1> dg(l‘1,l'2),

a contradiction, since G is 2-Steiner distance hereditafy and because

H is a connected induced subgraph of G.

Case 2 Suppose dy(z1,2) > £14{;. Suppose first that dg(zy,z2) > £y +L4,+
1. Since dy(S—{z:})+4i+1 = du(S) > dg(S) > da(S—{z:})+£, it
follows that £; > £} for 1 = 1,2. Hence dy(z1,22) > £1+bo+1 > £, +2,
> dg(z1,2,). This again contradicts the fact that G is 2-Steiner

distance hereditary.

Suppose thus that dy(z1,22) = £; + ¢,. Then w;; and wq; are not
adjacent in H. If dg(S — {z:}) + ¢ = dy(S) for ¢ = 1,2, then, by
(3.2.1), v; is in the vertex set of T;. Suppose dy(S — {z1}) + 4, =
di(S). Then, as before ¢; > ¢, + 1, and £, > ¢5. Hence dy(zy,2,) =
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O +4y > 0+ 2, > dg(z1, x2). This is not possible since & is 2-Steiner

distance hereditary.

So we may assume dg (S) = dy(S—{z:})+4:+1 for ¢ = 1,2. Thus by
(3.2.1), v; ¢ V(T3) for i = 1,2. We show next that wy, and w,,; both
have degree 2 in H. Suppose w;; has degree at least 3in H. Let w be
a vertex adjacent with wy ; that does not belong to Ql. Then there is
a path P in H from z; to T} that passes through w but does not con-
tain v;. Thus T together with P produce a connected subgraph of H
that contains all the vertices S but not vy. Thus dy(S) < p(H) — 1,
a contradiction. Therefore w;; and w,; both have degree 2 in H.
Thus v; = v,. However, then necessarily v1(= v2) must belong to T7,
so that dy(S) = dy(S — {z1}) + 41, which we have already shown

cannot happen. m

Observe that, for k£ > 3, the (k + 2)-cycle Crya, is (K +2)—,(k + 1)— and
k- Steiner distance hereditary but not (k — 1)-Steiner distance hereditary.
Thus the converse of Theorem 3.2.1 does not hold.

Several characterizations of distance hereditary graphs which yield poly-
nomial algorithms that test whether a graph is distance hereditary have
been established. In order to state some of these characterizations we de-
fine an isolated vertez to be a vertex having degree 0, and two vertices v
and v’ are twins if they have the same neighbourhood or the same closed
neighbourhood.

The following characterization of distance hereditary graphs was discov-
ered independently by Bandelt and Mulder [BM1], D’Atri and Moscarini
[DM1] and Hammer and Maffray [HM1]. '

Theorem G A graph G is distance hereditary if and only if every induced

subgraph of G contains an isolated vertex, an end-vertex or a pair of twins.
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The result we establish next is another characterization of 2- Steiner dis-
tance hereditary graphs and also suggests an efficient algorithm for deter-
mining whether a connected graph is 2-Steiner distance hereditary. This re-
sult is also a direct consequence of a characterization of distance hereditary
graphs obtained independently by Bandelt and Mulder [BMl] and D’Atri
and Moscarini [DM1]. We will need the following terminology. Suppose G
is a connected graph and u € V(G). Let V,; = {z € V(G)|dg(u,z) = 1}
for 0 < 7 < eg(u) where eg(u) is the eccentricity of u in G and let

Nii(uyv) = N@w)N Vg for 1 <@ <eg(u).

Theorem 3.2.2

A connected graph G contains an induced path that is not a geodesic, if
and only if there exists a vertex u and an integer ¢ > 2 such that for some
pair z,y of vertices in V,;,

(1) oy € B(G) and Nioy(1t,3) # Nis(1, ) or 3001
(2) zy ¢ E(G), Nii(u,v) # Ni_i(u,y) and = and y are b.oth adjacent

with some vertex z in V,, ;4. 3.2.2.2

Proof Suppose there is some vertex u and an integer 7 > 2 such that
for some pair z,y € V,;, 3.2.2.1 or 3.2.2.2 holds. Suppose first 3.2.2.1
holds. Since N;—y(u,z) # Ni_1(u,y), so Ni—1(u,z) — Nioq(u,y) # 0 or
Ni_i(u,y) — Niz1(u,z) # 0. Suppose that the former holds. Let z, €
Ni_1(u,z) = Nio1(u,y). Let P be a shortest u—z path that passes through
z; and let P, be a shortest u —y path. Let a be the last vertex that P
and P, have in common (possibly @ = u). Then the vertices on the a — z
subpath of P together with y induce an a — y path P that is longer than
the a — y subpath of P,. Hence G contains an induced path that is not a
geodesic. |

Suppose now that 3.2.2.2 holds. We may again assume that there exists
a vertex 21 € Ni_y(u,2)— N;_1(u,y). Clearly 21y ¢ E(G) and 2,12 € E(G).
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As above, let P; be a shortest u—z path that contains z, and P, a shortest
u — y path, and a the last vertex that P; and P, have in common. The
vertices on the a—z subpath of P, together with z and y induce a path that
has length two bigger than the a — y subpath of P, (which is a geodesic).
Hence G contains an induced subpath that is not a geodesic.

For the converse suppose G contains an induced path P (say a u — v
path) which is not a geodesic. Then dg(u,v) > 1. Among the induced
paths that are not geodesics let P be one that is as short as possible. We
show that P has length at most dg(u,v)+2. Suppose |E(P)| > dg(u,v)+2.
Let P : u = uy, Uz, ..., un = v. Then dg(u,un—1) < dg(u,v) + 1 and
P’ i uq,ug, ..., un_1 is a path of length at least |E(P)| —1 > dg(u,v)+ 2 >
de(u,un-1). However, then P’ is an induced path that is not a geodesic
but has length less than P. This contradicts our choice of P. Hence P has
length dg(u,v) + 1 or dg(u,v) + 2. Note that the u — u,_; subpath of P
must be a geodesic, otherwise we have a contradiction to our choice of P.

Thus if |E(P)| = dg(u,v) + 1, then dg(u, un—1) = dg(u,v). Since the
vertex that precedes u,—, on P is not adjacent with v, N;_;(u,u,_;) #
Ni_1(u,v) where 1 = dg(u,v). If welet £ = u,_; and y = v, then it follows
that 3.2.2.1 holds.

Suppose now that |E(P)| = dg(u,v)+2. Then dg(u, un-1) = da(u, un_1 )+
1. Let z be up_5 and let y = v. Then zy ¢ E(G) and the vertex that
precedes z on P is not adjacent with y. Thus if ¢ = dg(u,v), then
Nio1(u,z) # Nioi(u,y). If we now let z = u,_y, then z € V,;4; and :z
is adjacent with both z and y. Thus 3.2.2.2 holds. a

This result suggests a polynomial algorithm, using a breadth first search
technique which has complexity O(|V(G)|*), for determining whether a
(connected) graph is 2-Steiner distance hereditary. Spinrad [S1] has de-
veloped an algorithm based on this characterization which has complexity

0(]V(G)I?). Once this is done and the graph has been found to be 2-Steiner



distance hereditary, we can efliciently determine, by Theorem 3.2.1, the
Steiner distance of any set of vertices, which was also shown independently

in [DM1].

We conjecture here that whenever G is k—Steiner distance hereditary,

then G is (k + 1)-Steiner distance hereditary for £ > 3.

3.3 The Characterization of 3-Steiner Dis-
tance Hereditary Graphs

Before proving this characterization we establish some useful properties

about the cycle structure of k-Steiner distance hereditary graphs.

Proposition 3.3.1 If G is k-Steiner distance hereditary, then no cycle C
of length £ > k + 3 has two adjacent vertices neither of which is incident

with a diagbnal of C.

Proof Suppose C : vy1,vs,...,vp,v1 1s a cycle of length £ > &k + 3 that
has two adjacent vertices neither of which is incident with a diagonal of
C. We may assume v; and v, are not incident with diagonals of C. Let
S = {vq,V4, Vs, ..., Uk42}. Then dg(S) = k since (S)¢ is not connected and
since (SU{v3})¢ is connected. Let H = (V(C)—{v3})g. Then H contains
S and dy(S) > k since a Steiner tree for S in H must contain v; and vy,
neither of which belongs to S. Thus dy(S) > dg(S), contrary to hypothe-
sis that GG is k-Steiner distance hereditary. ' a

Proposition 3.3.2 If G is k-Steiner distance hereditary, then every cycle

C :v1,v9,...,v,0v; of length £ > k + 3 has at least two diagonals not all of

which are incident with a single vertex.
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Proof Suppose G has a cycle as described in the statement of the propo-
sition and assume, to the contrary, that all the diagonals of C' are incident
with the same vertex, say v;. Let S = {vq,...,vg,v¢}. Then (S)g is not
connected. Thus dg(S) > k. However, since (S U {vy}) is connected,
dg(S) < k. Therefore dg(S) = k. If H = (V(C) — {v1}), then it follows
since every diagonal of C is incident with v; and since £ > k 4 3 that

dy(S) > k + 1. This contradicts the fact that G is k-Steiner distance

hereditary. O

Proposition 3.3.3 If G is k-Steiner distance hereditary, then every cycle
C : vy, va,...,ug,v; of length £ > k& + 3 has at least two skew diagonals, or
if £ =k + 3 and k is odd, then vy, vs, ..., k42, v1 OT vy, V4, ..., Vks3, V2 1S @

cycle.

Proof Suppose first that £ = k£ 4+ 3 and that C does not have skew diag-
onals. Then there exists a vertex of C not incident witbh é diagonal. We
show that if v; is incident with a diagonal, then v,v,4, is a diagonal where
subscripts are expressed modulo (k4 3). Suppose that this is not the case.
Then there exists a v; which is incident with a diagonal v;v;4,(n > 3) but
v;Viy; is not a diagonal for 2 <7 < n. Let S = V(C') — {v;, viy1,Visn }. Then
de(S) = k. Let H = (V(C) — {viyn}). Then every connected subgraph of
H that contains S must contain v; and vit1. So dp(S) = k+1 > dg(S),
contrary to the fact that G is k-Steiner distance hereditary. Since C has
no skew diagonals, it follows that & is odd and that either vy, vs, ..., Viso, vy

OT Vg, Vg, ..., Vp+3, U2 18 & cycle.

Suppose now that £ > k 4+ 4 and that C does not have skew diago-
nals. We show again if v; is incident with a diagonal of C, then vv;,,
is a diagonal. Suppose that this is not the case. Then there is a v; such

that v;v;4, is a diagonal where n > 3 and v;v;it; 1s not a diagonal for
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2<j<n Ifn—12k let S = {Vignt1, Vigno1,Vitns2, s Vigno(k=1) }-
Otherwise let S = {v;12, Vig3, oo Vi4n—1} U {Vigns1, Vitns2, ---Viges2}. Then
dg(S) = k, since (S) is disconnected, but (S U {vi4n}) is connected. Let
H = (V(C) — {vitn}). Then v; and v;4; must both belong to a Steiner
tree for S in H. So dg(S) > k + 1 contrary to the fact that G is k-
Steiner distance hereditary. Thus if v; is incident with a diagonal, then
v;viy2 is a diagonal (subscripts expressed modulo £). By Proposition 3.3.2,
C has diagonals. Thus ¢ must be even and either vy, vs,vs, ..., v¢-1,v; Or
Vg, V4, ..., Vg, Ug 18 & cycle, suppose the former. Let S = {v2, V4, Vs, eey Vketa }-

Then (S)¢ is disconnected but {(SU{vs})¢ is connected. Hence dg(S) = k.

Let H = (V(C) — {vs})g. Since G is k- Steiner distance heredi-
tary, dg(S) = k = dg(5). Thus vkpavy is an edge. Now let §' =
{ve, v2,v3,...,0x}. Then it is not difficult to see that dg(S’) = k. Let
F =(V(C)—{v1})s. Since G is k-Steiner distance hereditary, dp(S') = k.

So vgve—1 must be an edge of G. Thus C has two skew diagonals. O

We have already mentioned that, if G is 2- Steiner distance hereditary,
then G is 3-Steiner distance hereditary, but that the converse of this state-
ment does not hold. The next result shows that if a graph is 3-Steiner
distance hereditary but not 2-Steiner distance hereditary, then GG has short

cycles without skew diagonals.

Proposition 3.3.4 If G is 3-Steiner distance hereditary, but not 2-Steiner
distance hereditary, then there exists a 5-cycle in G which does not possess

two skew diagonals.
Proof Let G be 3-Steiner distance hereditary, but not 2-Steiner distance

hereditary. Then, by Theorem F, G contains a cycle Cy of length £ > 5

which does not have two skew diagonals. Let C; = vy, vs, ..., v, v1. If £ > 6,
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then certainly C; contains at least one diagonal, otherwise Cy — vy 1s an
induced path and d¢,—,, ({v2,v3,ve}) > dg({v2,v3,v¢}), contradicting the
assumption that G is 3-Steiner distance hereditary. Furthermore, if £ > 6
and all the diagonals of Cy are incident with a single vertex vy (say), then
(¢ — vy is an induced path and once again a contradiction.ariséé.to the fact
that G 1s 3-Steiner distance hereditary. Hence ¢ = 5 or C; contains two
diagonals which are independent, but not skew. Suppose the statement of
the proposition is false and let C; (£ > 5) be a shortest cycle of length
£ > 5 in G which does not have two skew diagonals. Certainly £ > 6 and
Cy has two nonadjacent diagonals, say v,v; and vjvg, where 3 < ¢ < j and
7+ 2 <k <L Then Cn @ v1,0,Vig1, -y Ujy ey Uk, -, Vg, Uy 1S & Cycle of
length m > 5 (where m = £ + 2 — 1) without two skew diagonals. We note
m # 5 (by assumption), but m < £, which contradicts our choice of £. The

validity of the proposition now follows. _ o

We are now in a position to characterize the graphs that are 3-Steiner

distance hereditary.

Theorem 3.3.1 A graph G is 3-Steiner distance hereditary if and only if

it is 2-Steiner distance hereditary or the following conditions hold.
3.3.1.1 Every cycle C : vy,vg, ..., 05,01 of length £ > 6

(a) has at least two skew diagonals, or, if £ = 6, then vy, v3, vs, v1 or

V2, V4, Vg, V2 1 a cycle in (V(C)); and

(b) has no two adjacent vertices neither of which is on a diagonal of

C.

3.3.1.2 G does not contain an induced subgraph isomorphic to any of the
graphs shown in Figure 3.3.1  (any subset of dotted edges may be

included in the graph).
Proof Suppose first that G is 3-Steiner distance hereditary but not 2-

Steiner distance hereditary. Then conditions 3.3.1.1(a) and (b) follow from
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Propositions 3.3.1 and 3.3.3. Suppose now that G contains one of the sub-
graphs shown in Figure 3.3.1 as induced subgraphs. Let S = {u/,v',w'}.
Since (S) is not connected, dg(S) > 3. Since ({v/,v',z,w'}) is a connected
graph in all cases, dg(S) = 3. If we now delete z from any one of the
subgraphs shown in Figure 3.3.1 we obtain a connected induced subgraph
of G that contains S; but the distance of S in each of these-.induced sub-
graphs is 4 > dg(S). This contradicts the fact that G is 3-Steiner distance
hereditary. Thus G does not contain any of the graphs shown in Figure
3.3.1 as induced subgréphs.

For the converse, we already know from Theorem 3.3.1, that if G is
2-Steiner distance hereditary, then G is 3-Steiner distance hereditary. Sup-
pose thus that G is not 2-Steiner distance hereditary and that G satisfies
conditions 3.3.1.1 and 3.3.1.2 of the theorem. Suppose G is not 3-Steiner
distance hereditary. Then G contains an induced subgraph H and a set
S = {u,v,w} such that dg(S) > dg(S). Choose H in such a way that
|V(H)| is as small as possible. Let Ts and T§ be Steiner trees fof S =
{u,v,w} in H and G, respectively. By our choice of H, |V(H)| = |V (Ts)|.

Moreover (S) is not connected.
We now consider several cases.

Case 1 Suppose Ts and T§ are both paths, but that they do not have the
same end-vertices; say Ts is a v —w path and 7% a u — w path and that no
Steiner tree for S'in G is a v — w path. Let P and P’ be the u — v sections
in T's and Ty, respectively. If the lengths of P and P’ are the same we may
assume P = P’. Let the length of P’ be o’ and of P be a. Note that u
cannot be adjacent with w; otherwise there would be a Steiner tree in G
that is a v—w path. So the vertex z adjacent with v on the u —w section of
Ts is distinct from w. Thus if a > @/, then dy_,,({z,u,v}) > de({z,u,v})

and so we have a contradiction to our choice of H. Thus a < a’. Clearly
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a’ < a. Thus a = a’. By our choice of H, a =a' = 1.

Let u = 29,21, ..., Zm == w be the u—w section of T's and v = Yo, y1, ..+, Yn
= w the v — w section in T§. Then n > 2 and m > 3. Observe that the
u — w section of T's and the v — w section of T have no vertex except w
in common; otherwise we have a contradiction to our chqi_ce ‘o-f H. Hence,
the u — w section of Ts and the v — w section of T and the edge uv form
a cycle C of length at least 6.

If n =2 and m = 3, so that C has length 6, then neither z1,w,v, z;
nor xs,Y1,u, s 1s a cycle since zyw and uz, are not edges of G. Thus C
must have two skew diagonals whether or not C has length 6, 1.e., T;Yk
and z;y, are edges where 1 < i < j <mand 1 < £ < k < n. By our
choice of H, dg({zj,u,v}) = du({z;,u,v}); hence 1 +;j = dg({z;,u,v}) =
de({z;,u,v}) <€+2. So

J<L+1<k. 3.3.1.3
But n+1=dg(u,v,w) <l+:i+1+(n—k). So
k<1+4i<j 3.3.1.4

From 3.3.1.3 and 3.3.1.4 it follows that k = j = 1437 = £+ 1. Now
duy({u,zi,w}) = m, whereas dg({u,z;,w}) < i+ 14+n—k =n < m; so
di—({u, zi,w}) > de({u,z;,w}), contradicting our choice of H. Hence

Case 1 cannot occur.

Case 2 Suppose T's and T are both paths with the same end-vertices, say
they are both u — w paths. Then either uv or vw is an edge, otherwise
we have a contradiction to our choice of H. Suppose uv € E(G). Observe
then that the v — w sections of Ts and T% are internally disjoint other-
wise we have a contradiction to our choice of H. So the v — w sections
of Ts and Tg form a cycle C. Suppose Ts : u,v = vg, vy, ..., Um = w and
TS @ u,v = wo,wy,...,w, = w. Then n < m. If C has length 6, then

m = 4 and n = 2. Clearly neither vy, v, w;,v; nor v, vy, w,v is a cycle.
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Thus if C' has length at least 6, then C has a pair of skew diagonals. As
in Case 1 we obtain a contradiction. Thus we may assume C has length
5. Note dg({u,v,w}) =4 and dg({u,v,w}) =3. So C : v, wy,w,vy,v1,v.
Since v is not adjacent with any vertices of C' except vy and Wy and since
the graphs of Figure 3.3.1(a) are not induced subgraphs of G’, it follows
that u must be adjacent with at least one vertex in {ws,v1,v2}. (Note
that uw ¢ E(G), since otherwise dy({u,v,w}) = 2 = dg({u,v,w}).) If
uvy € E(G), then dy({u,v,w}) =3 < 4. So uw,; or uv, is an edge of G. If
uw; € E(G), the 6-cycle u, v, wy, w, vy, v; cannot have two skew diagonals
since vv1, w1v; and wyvy are the only possible diagonals. If uvy ¢ E(G),
the 6- cycle u,v,vy,v2, w, w;, u also does not have two skew diagonals. So
both uv, and wwy € E(G). Further, wiv, € E(G); otherwise w and v,
are two consecutive vertices on the 6-cycle w, vy, vy, u,v,w, that are not
incident with any diagonal. However, then (V(Ts) U V(Tg)) is isomorphic
to one of the graphs in Figure 3.3.1(d) which is impossible. Thus Case 2

cannot occur either.

Case 3 Suppose both Ts and T have three end-vertices. Let y and 2z be
the vertices of degree 3 in Ts and T}, respectively.

We show first that V(Ts) N V(T%) = {u,v,w}. Suppose there exists
e V(Ts)NV(Tg) — {u,v,w}. Without loss of generality we may assume
that z is on the v — y path in Ts. If z also belongs to the v — z path of
T, then we obtain a contradiction to our choice of H. So we may assume
that z belongs to the w —z or u — 2z, path of T, say the former. Also z # y
otherwise we again have a contradiction to our choice of H.

Let dry(u, z) = 41, dry(2,v) = b2, dry(2,2) = ba, dri (z,w) = Ly, dg(u, y)
= dy,drg(y,z) = dp,drs(z,v) = ds and d7.(y,w) = dy. By our choice of
H, dg({u,z,v}) =de({u,z,v}). So by + L3+ 03 =dy + dy + ds
or dy +dy +ds — 1.

Suppose first that &; + £y + 43 = dy + dy + d5. Since da(S) < dy(S)

69



it follows that ¢y + ¢y + 45 + 44 < dy + dy + d3 + dy. Thus 44 < dy. But
dg({v,w,y}) = de({v,w,y}). So dy + ds + ds < do +d3 + 4y, ie. dy < 4y,
This produces a contradiction. Hence we may assume that ¢, +4; + {3 =
dy + dy +ds — 1. Since dg(S) < dy(5), it follows that £4 < d4. As above
it follows that dy < 44. So £4 = d4. Let uy,v; and w; be the heighbours
of y in Ts that lie on the y — u, y — v and y — w paths, respectively.
Since dy({u,z,v}) = di + da + d3 — 1, it follows that u;v; € E(G) So
viw, ¢ E(G). Hence dy(z,w) = dy + ds. Since z # y,d, > 1. Hence
di(z,w) > dy = £y > dg(z,w). So if 2’ is the neighbour of z on the z — 2
path in 7§, and if H' is the subgraph induced by z’ and the vertices on
the z — w path in H, then dy:/({2’,z,w}) > ¢y + 1 > dg({z';z,w}). But
p(H') < p(H), so we have a contradiction to our choice of H. Thus we

may conclude that

V(Ts)NV(Ts) = {u,v,w}.

Note that dg(S) < dg(S) + 2, otherwise let a # y be a vertex on
one of the paths from y to {u,v,w} in Ts, say on the y — u path such
that ua € E(G), and observe that dg({v,w,a}) < de({v,w,u}) +1 <
dg({v,w,u}) =1 = dy_(3({v,w,a}), contrary to our choice of H. Let
P,, P, and P, be the y — u,y — v and y — w paths in T, respectively
and suppose (), @, and @, are the z — u,z — v and z — w paths in 7%,
respectively. We say that P, corresponds to Qu,_PU to @, and P, to @, in
T5. Then, by the above observation, at most two of the paths P,, P, and

P, are longer than their corresponding paths in 7%. We consider several

subcases.

Subcase 3.1 Suppose exactly two of the paths in {P,, P,, P,,} are longer
than their corresponding paths in 7%. Suppose P, and P, are two such
paths. Let C,, be the cycle produced by P,, P,,Q, and Q..

Assume first that the neighbours of y on the P, and P, paths in T

are not adjacent. By our assumption, no vertex of P, is joined to a vertex
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of P,. Since G satisfies condition 3.3.1.1(b) of the theorem, it follows,
if we consider C,.,, that some vertex y' # v,w on the v — w path of T
is joined to some vertex y” # v,w on the v — w path of 7. But then
dy—tu3({y'sv,w}) > de({y’,v,w}). This contradicts our choice of H.

Assume thus that the neighbours of y on P, and P,, are adjacent. If y is
adjaceﬁt with any vertex on the v — w path in T (different from v and w),
then dy_qy({v,w,y}) > de({v,w,y}), again a contradiction to our choice
of H. Note that ¢(P,) = ¢(Q,) + 1 and ¢(P,) = q(Qw) + 1 otherwise we
again have a contradiction to our choice of H.

If @, or @, has length at least 2, say @, then P, has length at least

Let v" and w’ be the vertices adjacent with y on P, and P,,, respectively.
Let C,, be the cycle obtained from C,,, by deleting y and adding the edge
v'w’. Since (), has length at least 2, C}  has length at least 7. We show
next that C,, does not have a pair of skew diagonals, thereby producing a
contradiction to condition 3.3.1.1(a).

Observe first that every diagonal of C},, must join a vertex of V(P,) U
V(Py) — {y} with a vertex in V(Q,)U V(Q,). Let z be a vertex of P, —
{y} that is incident with a diagonal e = za’. Let dy(z,w) = d. Then
dr:(w,z") < d; otherwise

ds({v,w,z}) < (@) + 9(Qu)
< q(B) +q(h) -1
= dy-guy(v,w, )
which contradicts our choice of H. Similarly if z is a vertex of P, — {y}
that is incident with a diagonal e = zz’, then dgy(v,z) > dr;(v,z’). So

the only diagonals of C7,, join vertices of P, — {y} and Q, or vertices of
P, = {y} and Q..

Suppose aa’ and bb’ are skew diagonals with a,b € V(P, — {y}) and
a’,b" € V(Qu). Suppose dy(a,w) > dp(b,w). Then necessarily d =

dr (b, w) > dr;(a’,w). From the earlier observation it follows that dr(a,w) >
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dy(b,w) > d; ie., dy(a,w) > d + 1. If we now take the shortest v — a
path in H, together with the edge ad’ and the o’ — w path in T§ we
obtain a tree of size at most dy(v,a) + d that contains v,w and a. So
de({v,w,a}) < du(v,a) + d. This contradicts our choice of H. So C],
cannot have two skew diagonals each of which is incident with a vertex of
P, — {y}. Similarly C!, cannot have two skew diagonals each of which is
incident with a vertex of P, — {y}.

Thus @, and @, each have length 1, so that P, and P, each have
length 2. Hence C,,, has length 6. We already know that v'w’ is an edge
of G where v’ and w’ are the neighbours of y on P, and P, respectively.
Note that vw ¢ E(G). Also wv' ¢ E(G) and vw' ¢ E(G), otherwise
dg({u,v,w}) < p(H) — 1. So C,,, does not have crossing diagonals. Thus
v/, z,w’,v" must be a cycle. Let u’ be the neighbour of y on P,. Note that
u’ 1s not adjacent with v’, w’,v or w, otherwise we obtain a contradiction
to our choice of H. If v’z ¢ E(G), then ({v/,y,v’,w’,v, z})s is isomorphic
to one of the graphs shown in Figure 3.3.1a. Since this is ndt possible,
uw'z € E(G). However, then ({u',y,w',w,v’,2})¢ is isomorphic to one of

the graphs of Figure 3.3.1(e), which is again impossible.

Subcase 3.2 So exactly one of P,, P, and P, has length greater than their
corresponding paths. Suppose P, is longer than Q..

Subcase 3.2.1 Suppose ¢(P,) = ¢(Qw) + 1. Then necessarily ¢(Q,) =
q(P,) and ¢(Q.) = ¢(P.). Let Cy, be the cycle induced by the edges of
P,,P,,Q. and @,. Then C,, has even length. Suppose first that C,, has
length exceeding 6. Then, by condition 3.3.1.1(a) of the theorem, C,, has
a pair of skew diagonals. We show next that the only possible such skew
diagonals are yz and u'v’ (where u' and v’ are adjacent with y on P, and
P,, respectively) or yz and u"v” (where u” and v” are adjacent with 2 on

Qu and @), respectively).
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Suppose that P, (and hence @),) has an internal vertex and that some
vertex a of P, is adjacent with some vertex a’ of @,. Then dp,(v,a) =
do,(v,a’) as we now see.

If dp,(v,a) < dg,(v,a’), then the edges of @), together with those of
Quw, the edge aa’, the edges of the a — v path of P, and those of the z — a’
path of ), induce a tree T of size at most ¢(7) that contains u,v and w.
Thus T is a Steiner tree for u,v and w. This is impossible since T' contains
vertices of H other than u,v and w which we have shown is impossible.

Suppose now that dp,(v,a) > dg,(v,a’). Let T be the tree induced by
the edges of P,, P,, the edge aa’, the edges of the a — y path of P, and
those of the a’ — v path of @Q),. If T is a Steiner tree for u,v and w, then
T and Ts have more vertices in common than only u,v and w. But this is
not possible as we have shown.

Thus ¢(T) = ¢(Ts). If H' = (V(T')) contains a Steiner tree for {u,v,w},
then we again have a contradiction since such a Steiner tree has ver-
tices other than u,v and w in common with Ts. So dg({u,v,w}) =
dg({u,v,w}), i.e., H' is an induced subgraph of G of the same order as
H for which dy/({u,v,w}) > de({u,v,w}). Once again a Steiner tree
for {u,v,w} in H' contains vertices of T% other than u,v and w which is
impossible.

Therefore if aa’ is a diagonal of C,, where a lies on P, and o’ on Q,,
then dp, (v, a) = dg, (v, a’). It can be shown similarly if aa’ is a diagonal of
C.y such that a lies on P, and o’ on Q,, then dp,(u,a) = dg,(u,d’).

It remains to show that no internal vertex of P,(P,) is adjacent with
an internal vertex of Q.(@.). Suppose aa’ is an edge of G where @ is an
internal vertex of P, and a’ is an internal vertex of Q. Then let T be the
tree induced by the edges of Q.,Qu, the a — v path in P, and the edge
aa’. Then ¢(T) < ¢(Ts). So T must be a Steiner tree for {u,v,w}. But
T has vertices other than u,v and w in common with Ts, which we have

shown is impossible. Therefore no internal vertex of P, is adjacent with an
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internal vertex of @,. Similarly no internal vertex of P, is adjacent with
an internal vertex of Q). ‘

Hence the only possible candidates for crossing diagonals are yz and
w'v' or yz and uvv"”. If w'v' is a diagonal, then let C,, be the cycle obtained
from C,, by deleting y and adding the edge v'v’. Observe that C} is a cycle
of length at least 7 without skew diagonals, contrary to the hypothesis. If
u'v" is a diagonal of C,,, then let C}, be the cycle obtained from C, by
deleting z and adding the edge u”v”. Once again it follows that C7, is a
cycle of length at leé,st 7 without skew diagonals, contrary to hypothesis.

Therefore we may assume C,, has length at most 6. Assume first that
Cuv has length 6. We may, without loss of generality, assume that Pv and
@, each have length 2. Let C,, be y,v",v,v”, z,u,y. Then it can be shown
in a straightforward manner that zv,yv,uv and zv’ are not diagonals of
Cluv-

Suppose uv” is a diagonal of C,,. Then the subgraph H’ induced by
u,y,v”,v and the vertices of P, either contains a Steiner tree for u,v
and w that has more vertices in common with Ts than u,v and w or
dg({u,v,w}) = dg({u,v,w}) and a Steiner tree for u,v and w in H' has
more vertices in common with T¢ than only u,v and w, which is again
impossible. Hence uv” ¢ E(G). By condition 3.3.1.1(a) it now follows,
since neither y,v, z,y nor v’,v"” u,v’" is a cycle, that C,, must contain skew
diagonals. However, then uv' € E(G). This is again not possible since
uv’,uz,v'v and the edges of @), induce a Steiner tree for u,v and w that
has more vertices in common with T's than only u,v and w.

Hence C,, must have length exactly 4. Let w’ be the vertex adjacent
with y on P,. If vw’ is an edge, then Ts — yv + vw’ is a Steiner tree for
{u,v,w} in H. Using the argument that was used to show that C,, has
length 4 it can be shown that ww’ and wz are edges of G. The induced sub-
graph ({u,v,w,y, 2,w'}) thus has edge set {uy, uz, yv, vz, vw’, yw', w'w, wz U

E where E is any subset of {zy,zw’}. However, then G has as induced
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subgraph one of the graphs of Figure 3.3.1(c) or (e) which is impossible.
Assume thus that vw’ ¢ E(G). Similarly we may assume that uw’ ¢
E(G). We show next that zw € E(G). If this is not the case, then the
cycle Cyy induced by the edges of P,, P,,Q, and @, has length at least
7. Thus by condition 3.3.1.1(a) C,, must have skew diagonals. Using ar-
guments similar to those used before, we can show thatithe only diagonals
of Cyy of the type aa’ where a € V(P, —y),d’ € V(Q,) are those where
dp,(w,a) = dg, (w,a’). It 1s not difficult to see that the only diagonal with
which y may be incident is yz. Since w cannot be incident with any diago-
nals of Cyy, it now follows that vw” € E(G) where w” is adjacent with z on
Q- If C is the cycle obtained from C,,, by deleting z and adding the edge
vw", then C has length at least 6 and contains adjacent vertices namely
y and w', neither of which is incident with a diagonal. This contradicts
condition 3.3.1.1(b). Hence wz must be an edge of G. Thus the induced
subgraph {{u,v,y,z,w,w'}) has edge set {uy, uz,vy,vz, wz,ww', wy}UE
where E is any subset of {zy,zw’}. But then G contains any one of the
subgraphs of Figure 3.3.1(b) as induced subgraph which is not possible.

Hence subcase 3.2.1 cannot occur.

Subcase 3.2.2 Suppose ¢(Py,) > q(Qw) + 2. We have already shown that
q(Ts) = q(T§) + k where k = 1 or 2. Furthermore we are assuming that

q(P.) < q(Qy) and ¢(P,) < q(Q»). Suppose ¢(P.) = q(Q.) — £ where £ s
a non-zero integer. We show now that £ = 1 and that £ < 1. Further if

k =1 and £ =1, then the neighbours of y on P, and P, are adjacent and
q(Py) = q(Qw).
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To see this let w” be the neighbour of w on P, and note that

di({v,w,w"}) > ¢(Ts) —q(Pu) —1
. = ¢(Ts) —q(Qu) + 41

and  do({v,w,w"}) < ¢(T§) —q(Qu) +1
= q(Ts) =k —q(Qu) + 1.

Hence dg({v,w,w"}) < du({v,w,w"})if k>2 orif £> 2.

This contradicts our choice of H. Hence k = 1 and £ < 1. So dg({v,w,w"})
< q(Ts) — ¢(Qu) and du{(v,w,w"}) > ¢(Ts) — ¢(Q) + £ — 1. However,
dgr({v, w,w"}) = ¢(Ts)—q(P.)—1 only if the neighbours of y on P, and Py,
are adjacent. Since de({v,w,w"}) = du({v,w,w"}), otherwise we get a
contradiction to our choice of H, it follows if £ = 1 that the neighbours of y
on P, and P, are adjacent and, since k = 1, this implies that ¢(P,) = ¢(Q.).
Suppose £ = 1. Let v' and w' be the neighbours of y on P, and P,. Let
T =Ts + v'w' —v'y. Then T is a Steiner tree for {u,v,w} in H that was
considered in Subcase 3.2.1.

So we may assume ¢ = 0 so that ¢(P,) = ¢(@.). We may also assume
q(P,) = q(Q,), otherwise we may repeat the above arguments with P, in-
stead of P, and arrive at a contradiction. In addition we may assume that
w', the neighbour of y on P,, is not adjacent with the neighbour of y on
either P, or P,. Otherwise we can easily arrive at a case we have already

considered. But this contradicts the fact that &£ = 1.

Case 4 Suppose T's has three end-vertices, namely u,v and w and that T§
is a path, say a u — w path. Let y be the vertex of degree 3 in Ts and
P,, P, and P, the u—y,v —y and w —y paths in Ts. Observe that u,v and
w are pairwise nonadjacent. Therefore the u — v path @, and the v — w
path @, in T¢ must both have length at least 2.

We show first that V(Ts) N V(Tg) = {u,v,w}. Suppose this is not the
case. Then we may assume that some internal vertex of @), also belongs

to Ts. Let z be the first such vertex on (), after u that also belongs to 7.



Suppose ﬁrét that z belongs to P,. Let dp,(u,z) = d and dg,(u,z) = £.
Note first that d £ £; otherwise there exists a tree of size less than that of T'g
which contains u, v and w, which is impossible. Hence d > £. If d = £, then
we obtain a contradiction to our choice of H as follows: We may assume
that the u — x subpaths of P, and @, ére the same. If v’ follows u on these
subpaths, then dy_g;3({v/,v,w}) > de({v',v,w}), contrary to our choice
of H. Thus we may assume d > £. If z is an internal vertex of P,, then let
z’ be a vertex of P, that is adjacent with = but does not lie on the u — z
subpath of P,. Then dy_,({u,z,2'}) = d+1 > £+ 1 > de({u,z,z'}),
contrary to our choice of H. If x = y, then let z be a vertex on P, adjacent
with y and observe that dy_,({u,z,2}) > dg({u,z,2}) contrary to our
choice of H. Hence z cannot be on P,.

Suppose next that = is an internal vertex of P,. Let dy(u,z) = d and
dg.(u,z) = £. Then d £ £ since otherwise T is not a Steiner tree for u,v
and w. If d > ¢ we have, as before, a contradiction to our choice of H.
Suppose thus that d = £.

If the shortest u — z path in H contains vertices of ), distinct from u,
then we can replace the u — z subpath of @), with the u — z subpath in
H and obtain, as above, a contradiction. Suppose then that the shortest
u — ¢ path in H contains no vertex of Q,. Then necessarily u must be

adjacent with z and z and v must be neighbours of y. But then

dg-w({z,v,w}) = du({v,v,w}) -1 > ds({u,v,w})—1

= de({z,v,w}),

contrary to our choice of H. Thus z is not an internal vertex of P,.
Suppose now that z is an internal vertex of P,. As before, let d =
du(u,z) and let £ = dg,(u,z). Then it can be shown, using arguments
that were used before, that d ¥ £ and that d £ £, so that d = £. But
again, as in the previous paragraph, it can be argued that in this case
necessarily dg_.({z,v,w}) > de({z,v,w}) which produces a contradiction

to our choice of H. Hence V(Ts) N V(T§) = {u,v,w}.
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We may assume that dg (v, w) > dg(v,w) = dg, (v, w) and that dy(u,v)
> dg(u,v) = dg,(u,v); otherwise there either exists a Steiner tree for u,v
and w that has vertices other than u,v and w in common with Ts, which
we have shown is impossible, or there exists a tree with fewer edges than
T; which contains u, v and w, which is again impossible.
Thus dg(v,w) > dg(v, w)+1. We show next that dH(v,w) = dg(v,w)+
1. Suppose this is not the case, then dy(v,w) > dg(v,w) + 2. Let o/
be the vertex adjacent with v on a shortest v — w path in H. Then
dr—o({v,v,w}) > de(v,w) + 2 > dg(v,w) + 1 > dg({v,v’,w}), contrary
to our choice of H. Hence dy(v,w) = dg(v,w) + 1. Similarly dg(u,v) =
do(u,v) + 1. Let dy = dy(u,y),dy = dg(v,y),ds = duy(w,y), 4 = de(u,v)
and £; = dg(v,w). Then dy + dy + ds = dy({u,v,w}) > da({u,v,w}) =
{1 + 45, 16,
di+dy+d3 >0+ 4, +1 3.3.1.5

Since at most one pair of the three pairs of neighbours of y in Ts are
adjacent,

di+2dy+dyg —1 <4 +4y +2. 3.3.1.6

So dy < 2. Let u',v" and w’ be the vertices adjacent with y on P,, P, and
P, respeétively. | |

We show first that we need only consider the case where d, = 1. Note
that dy is the length of the v — y path in Ts. If dy = 2, then it follows
from 3.3.1.5 and 3.3.1.6 that either u'v’ or v'w’ must be an edge of H. Of
course, since Ts is a Steiner tree for {u,v,w} in H, at most one of these
two edges belongs to H. Hence exactly one of these edges belongs to H,
say v'w’. But then T' = Ts + v'w’ — yw' is a Steiner tree for v, v and w in
H for which the distance from v to the vertex of degree 3 in T is 1.

Suppose thus that d; = 1. Then w'v' = u'v and v'w’' = vw' are not
edges of H, otherwise there is a Steiner tree for u,v and w in H which is a
u —w path. But this situation was already considered in Case 2 and shown

to be impossible. However, then d; = ¢; + 1 and d, = 4y + 1.
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Consider the cycle C' induced by the edges of P,, P, and Q. This
cycle has odd length, namely length 2¢; 4+ 1. Suppose first that C' has
length at least 7. Then C must have a pair of skew diagonals 2’z and z'z
where z/,z' € V(Q.,) and z,z € V(P,). Note w & {z,z’,2,2'}. Suppose
dg(w, ') > dg(w,z’). We show first that dgy(w,z) > dG(w‘,-i’), btherwise
we can replace the ' — w subpath of Tg by the edge z'z followed by the
z — w subpath of P, and obtain either a Steiner tree for u,v and w that
has more vertices in common with T's than u,v and w or a tree containing
u,v and w with fewer edges than T'¢. Both situations cannot occur. Hence
dy(w,z) > dg(w,z’). Similarly dg(w,2) > de(w,z’). However, then
dp(w,z) > de(w,z’) + 2. Let T be the tree induced by the edges of P,
the edges of the y — = subpath of P,, the edge zz’, the edges of the 2’ —w
subpath of @), and the edge of P,. Then 7" is a tree that contains u,v,w,
and has at most ¢(7%) edges and contains vertices of T's other than u,v and
w. This cannot happen as we have seen before. Hence C' cannot have skew
diagonals. This contradicts condition 3.3.1.1(a) of the hypothesis. Hence
C must have length 5. Suppose C : y,w’,w,w" ;v,y. Using arguments
similar to those employed earlier, it can be shown that the only potential
diagonals of C are w"y and w'w'.

Let u’ be the vertex adjacent with v on @,. Then v'w ¢ E(G); oth-
erwise there exists a tree with fewer edges than 7§ that contains u,v and
w. This is impossible. We may also assume that v'w” is not an edge of
G otherwise T¢ + u'w” — ﬁ’v is a Steiner tree for u,v and w having three
end vertices. This is a situation already considered in Case 3. We show
next that vw'w’ ¢ E(G). If v'vw' € E(G), then Ts& — w” together with w'
and the edges u'w’ and w'w is a Steiner tree for u,v and w having three
end vertices, again a case we have already considered. If u'y € E(G), then
({v,y,v,w,w’,w"})q is one of the subgraphs shown in Figure 3.3.1(a).
This contradicts the hypothesis. So we may assume u'y € E(G). How-

ever, then v/, y,w’,w,w”,v,u’ is a 6-cycle that does not satisfy condition

9



3.3.1.1(a), contrary to the hypothesis. This completes the proof of Case 4.

Case 5 Suppose that no Steiner tree for S in H has three end-vertices
and that every Steiner tree for S in G has three end-vertices. Suppose
Ts has v and w as end-vertices. Observe that Ts must be an induced
paﬁh. Let P, be the u — v subpath of Ts and P, the w — v subpath
of Ts. Let z be the vertex of degree 3 in T and let Q,,Q, and Q.
be the u — z subpath, the v — z subpath and the w — z subpath of Tg,
respectively. Suppose T has been chosen in such a way that @, is as short
as possible. With this choice of T’ it follows that the vertex adjacent with
z on (), is not adjacent with the vertices adjacent with z on @, or @),,. Let
O = q(Qu),lr = ¢(Qu), ls = ¢(Qv),d1 = q(P,) and dy = q(P,). Observe
that dy > #1 + 1 and dy > 4, + 1, otherwise there is a Steiner tree for u,v
and w that is a path, contrary to our assumption.

We now show that P, and (), have no vertex in common except u.
Suppose this is not the case. Let z be the first vertex after u on @, that
also lies on P,. The u — z subpath of P, cannot be longer than the u — 2
subpath of @, otherwise, by choosing u, z and the vertex z’ following = on
P,, we see that dg({u,z,2'}) < dy—,({u,z,2'}) contrary to our choice of
H. Further, the length of the u — z subpath of P, cannot be less than the
length of the u — z subpath of Q,, otherwise we could replace the u — z
subpath in Tg with the u — z subpath in Ts to obtain a tree containing
u,v and w which has fewer edges than T and this is impossible. Hence
the u — z subpaths of P, and @, have the same length. However, then
dG({x,v,w}) < dg_,({z,v,w}) contrary to our choice of H. Thus P, and
Q. are vertex disjoint except for u. Similarly P, and @Q,, are disjoint except
for w.

We show next that P, and @, have at most one vertex distinct from
v in common. Suppose z is the first vertex after v on (v that belongs to

both P, and Q,. Clearly £ # u. Then the length of the v — z subpath
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of P, cannot exceed the length of the v — z subpath of Q,; otherwise we
obtain a contradiction to our choice of H. Further, the length of the v — z
subpath in P, cannot be less than the length of the v — = subpath in @,

otherwise we can find a tree of size less than that of T¢ which contains u, v

and w. So dp,(v,z) = dg,(v,z). If dp,(v,z) > 2, then

dp({u,z,w}) = dy({y,v,w})
de({u,v,w})+1
> de({u,z,w}) +3

v

which is impossible. Hence dp,(v,z) = 1.

So the only vertex z of P, distinct from v that can possibly belong to
both P, and @, is the neighbour of v on P, and in this case dg({u,v,w}) =
de({u,v,w})+1, otherwise dg({u, z,w}) = de({u, z,w}) +3, which is not
possible.

We assume first that P, and @), have no vertex other than v in common.
Consider the cycle C, induced by the edges of P,, @, and QU.

Suppose first that C, has length at least 6. We show that C, cannot
possess two skew diagonals. Since u is incident with no diagonals of C,,
it follows from condition 3.3.1.1(b) that the vertex z; adjacent with u on
P, must be incident with a diagonal of C,. We use this to show that
dg({u,v,w}) = di +dp = dg({u,v,w})+1 =4, + £, + {3+ 1. If this is not
the case, then dy({u,v,w}) = dg({v,v,w}) + 2. Let z,z} be a diagonal
incident with z;. If | belongs to Qu, let T be the tree induced by the
edges of Qu, Ry, the 2} — z path of ), and z1z]. Then ¢(T) < ¢(T%).
Also dy_u({z1,v,w}) = du({u,v,w}) — 1 = do({u,v,w}) + 1 > ¢(T) >
de({z1,v,w}). This contradicts our choice of H. So dy({u,v,w}) =
de({u,v,w}) + L.

Observe that the diagonals of C, must join internal vertices of P, with
vertices of @, or @,. Since condition 3.3.1.1(a) holds, it follows that Q, or
@, must have length at least 2.
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Suppose first that @), has length at least 2. Suppose zz' is a diagonal
of C, where z is an internal vertex of P, and z’ is a vertex of Q,. If
do.(u,z') > dy(u,z), then the u — = subpath of P, together with the
edge zz’', the 2’ — 2z subpath of @,, ¢, and @, induces a tree T of size
at most dg({u,v,w}) that contains u,v and w. Since T' cannot have size
less than dg({u,v,w}), it follows that dQu(u,i’) = dy(u,z) + 1. However,
then dy_.({z,v,w}) > dg({z,v,w}), contrary to our choice of H. Hence
dg.(u,z') < dp(u,z). But dg,(u,z’) +1 > dy(u, z). To see this, suppose
dy(u,z) > dg,(u,z') + 2. Let T be the tree induced by the edges of the
u — z’ subpath of @), the edge 2'z,the z — v subpath of P, and the edges
of P,. Then T has size (at least) one less than Tss and T contains u,v and
w. Hence T is a Steiner tree for u,v and w. However, this gives rise to a
situation already shown to be impossible in Case 2. Thus if zz' is a diagonal
of C, where z # u is on P, and z’ on @, then dy(u,2z) = dg,(u,z’) or
dg.(u,z’) + 1. Consequently there is no pair of skew diagonals for which
two end-vertices are on (), and the other two on P,. |

Suppose now that ), has length at least 2. Suppose zz’ is a diagonal
of C, where z is on P, and 2z’ on @,. Then dy(z,v) > dg,(v,z’) unless
dg,(v,2’') = 2, in which case dy(v,z) may be 1. Suppose dy(z,v) = d <
dg,(v,z') = ¢ where £ > 2. Then the edges of Q.,Qw, those on the z — z’
subpath of ¢, and the edge 2’z induce a tree of size £; + £ + 435 — { + 1
which contains u,z and w. However, dg({u,z,w}) = ¢; + 4, + 45+ 1. So
dr({u,z,w}) — 3 > dg({u,z,w}) if £ > 3, which is impossible. So £ = 2 if
dy(v,z) < dg,(v,z’) and in this case dy(v,z) = dg,(v,z') — 1 = 1.

We show next that dy(z,v) < dg,(v,z’) + 1. Suppose dg(z,v) >
dQ,(v,z’) + 2. Then the edges of the u — z subpath of P,, together with
the edge zz’, the edges of the z' — v subpath of Q, and P, induce a tree
of size dy 4+ dy — 1 = dg({u,v,w}) which is a path and contains u,v and
w. This again leads to a situation we have considered in Case 2 and shown

to be impossible. So if there are skew diagonals zz’, yy’ of C, such that z
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Figure 3.3.2



and y are on P, and z’ and y’ are on Q,, then we may assume dg, (v,z’) =
1,dp,(v,z) = 2,dg,(v,y’) = 2 and dp,(v,y) = 1. If @, has length at least
2, then necessarily the neighbour z; of u on P, must be incident with the
diagonal whose ofher end-vertex is the neighbour of » on Q,. However,
then dgy—o({z1,y,w}) = di +dy — 1 and dg({z1,y, w}) < de({u,v,w})—1.
This produces a contradiction to our choice of H. If (), has length 1,
then the neighbour z; of u on P, must be incident with a diagonal whose
other end-vertex zj is on @,. If 21 # z and so z] # 2/, then we still
obtain a contradiction to our choice of H. So we may assume z] = z’.
However, then d; = 3. So since £3 > 2, and since d; > f3 + 1, it follows
that 43 = 2. So the subgraph induced by the vertices of C, is as shown in
Figure 3.3.2. (The dotted line may or may not be in the subgraph.) Let
v’ be the neighbour of v on P,. Then v’ # z’ since zz’ is an edge but zv’
is not an edge. Also v’ # ¥ since yy' is an edge but v’y is not an edge.
If 'z’ is an edge, then dg({u,z,v'}) = 3, and dy_,({u,z,v'}) = 4. This
contradicts our choice of H. Hence v'z’ ¢ E(G). If v'y’ € E(G), then
de({u,y,v'}) = 3 and dy_,({u,y,v'}) = 4. Once again this contradicts
our choice of H. Hence vy’ ¢ E(G).

Note that neither z nor y is on J,,. Also, as it was shown that P, and
(). have no vertices in common, it can be shown that P, and Q. have
no vertex in common. Also since v’ # 2/, P, and @, have no vertex in
common.

Thus the edges of T, Q) and @, induce some cycle C of length at least
7. If y'w is an edge of G, i.e., if Q, is a path of length 1, then C has no
skew diagonals contrary to condition 3.3.1.1(a). ‘Hence we may assume @,
has length at least 2. Since £, = ¢(Q,,) > ¢(P.), the cycle C,, induced by
the edges of Q,,Q, and P, has length at least 7 and hence by condition
3.3.1.1(a) has skew diagonals. Furthermore, these skew diagonals have two

end-vertices that belong to P, and the other two are on @, or Qw- As was

argued in the case of Cy, they cannot both be on Q,. Also they cannot
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both be on QU, since in this case C,, would have length 6 which i1t does not.
Hence one end-vertex is on ), and the other one on (). Next consider C'.
Since C has length at least 8, it must have a pair of skew diagonals. One
end- vertex from each of these two skew diagonals must be on T (call them
a and b) and the other two (one from each of the pair of skew diagonals
(call them a’ and &) must be on Q. Say aa’ and bb’ are edges. Note that
a and b cannot both be on P, by an earlier observa,tiOn; So a, say, is an
internal vertex of P,. Now a # z; otherwise the edges of P,, the edge ad’
and the edges of the o’ —w subpath of @, induce a tree of size at most 7.
However, then dy—.({z,v,w}) > de({z,v,w}), contrary to our choice of
H. Since u is not incident with a diagonal of C', z must be incident with a
diagonal, which therefore is zy’. We show next that the only diagonal of C
with which y can be adjacent is yy’. Suppose yc is a diagonal of C' where
c is an internal vertex of (J,,. Then P, together with the edge yc and the
c—w subpath of @, produces a tree T' of size at most ¢(7%) = dg(S) which
contains u,v and w. So T is a Steiner tree for S. But the distance from
v to a vertex of degree 3 in T has length less than €3 = dr.(v,y’), which
contradicts our choice of T's. Hence the only diagonal of C' with which y
can be incident is yy’. But then C has no skew diagonals.

So we may assume that C, has no skew diagonals with two end- vertices
on P, and the other two on @,. Suppose now that C, has two skew
diagonals zz',yy’ where z,y are on P, and z precedes y on P,, z' is on @,
and 3’ on @,. By the previous cases z’ and 3’ must be internal vertices of
Qv and Qu, respectively. Note that dy(u,z) > ¢;: Suppose dy(u,z) < 4.
If dg(u,z) < £; — 2, then the edges of the u — z subpath of P,, the edge
zz' and the edges of @), and @, induce a tree that contains u, v and w but
has fewer edges than T, which is impossible. If dg(u,z) = #; — 1, then
dg-u({z,v,w}) = dy+da—l1+1 and dg({z,v,w}) = ly+l3+1 = dy+do—0;;
contrary to our choice of H. Hence dg(u,z) > 4;.

If dp,(v,y) < €3 — 2, then there is a tree of size less than dg({u,v,w})
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which contains u,v and w. Since this is not possible we may assume
dp,(v,y) =2 43— 1. If dp,(v,y) = €3 — 1, then d; > ¢; + ¢3. Observe
that dy > ¢2 + 1, otherwise we can either find a Steiner tree for u,v and w
that is a u — w path ( a situation considered in Case 2) or a tree of size
less than dg({u,v,w}) that contains u,v and w, which is again impossible.

However, since dy +dy = £ +£5+£03+1, it follows that dy == £, + 1 and that
dy = £ +/45. If we now take the u—y’ subpath of Q), together with the edge
y'y, the y — v subpath. of P, and P,, we obtain a path of length at most
£y + 5 + ¢35 which contains u,v and w. Again this is a situation considered
in Case 2. Hence dp, (v,y) > ¢3. However, then d; > ¢; + 3 + 1 and since
dy > £y + 1, it follows that di +dy > €1 + 45 + €3+ 2. This contradicts the
fact that dy +dy =41 + 4, + ¢35+ 1. So C, cannot contain skew diagonals.
However, C, cannot be a 6-cycle that satisfies the remaining conditions in
3.3.1.1(a) either.

Hence C, is a 5-cycle or a 4-cycle. Suppose C, is a 5-cycle. Since
di >4 +1and dy > 43 +1, it follbws that vz and vz are edges and that
the path P, has length 3. Suppose C, : u,u;,us,v,z,u. Let v’ be the
neighbour of v on P,. Then v # z since zu is an edge but v'u is not
an edge. If v’z ¢ E(G), then the subgraph induced by V(C,) U {v'} is
one of the forbidden subgraphs shown in Figure 3.3.1(a). If v’z € E(G),
then u,u1,ug,v,v’,z,u is a 6-cycle that does not satisfy the conditions in
3.3.1.1(a).

Thus we may assume that C, is a 4-cycle,say u,u;,v,2,u. Clearly z
does not lie on P,. By considering the cycle C,, induced by the edges of
Qv, @w and P, and applying the arguments similar to those applied to C,,
it can be shown that C,, must be a 4-cycle, say v, vy, w, z, v. However,
then u,uy,v,v1,w,2,u is a 6-cycle that does not satisfy the conditions in
3.3.1.1(a).

If P, and @), have a vertez in common, then we have shown that it

must be the vertex z that precedes v on P,. Since dg({u, z,w}) <
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de({u,v,w}) — 1 and dg({u,z,w}) = dg({u,v,w}), it follows that
de({u,z,w}) = dg({u,z,w}) — 2. Also Q., Q. and the z — z subpath of
Qv (call it Q) form a Steiner tree for u,z and w. If we now replace @, in
the preceding arguments with ¢, we once again arrive at a contradiction.
Hence Case 5 cannot occur either.

Thus G must be 3-Steiner distance hereditary. a
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Chapter 4

Functional Isolation

Sequences

The concept of a Supply Graph was introduced by Goldsmith [G1] and
was defined to be a connected graph with its vertex set V(G) partitioned
into two non-empty subsets P = P(G) and C = C(G), called the sets of
producer and consumer vertices respectively. We denote a supply graph by

G =G(P,C).

Such a graph could represent a network in which the vertices of P rep-
resent producers of commodities or services (e.g. power stations, supply
depots, computers with data storage facilities etc.) and the vertices in
V(G) — P(G) = C(G) represent consumers of the commodities produced
(e.g. users of power, dealers, computers processing data, radio receivers,

military outposts, etc.).

Further, Goldsmith [G1] defined the k**-order funct.ion‘al edge-connectivity
(/\Sk)(G)) of G = G(P,C) to be the smallest number of edges of G whose
removal from G yields a graph with & functionally isolated components

(i.e. components containing consumer vertices only).
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We introduce here, the parameter ,ug,k)(G) which we define to represent
the minimum number of edges in G whose removal ensures that at least k

vertices are functionally isolated.

Clearly /\(fk)(G) = u(fk)(G) whenever the k£ functionally isolated com-
ponents existing, after the removal of /\(fk)(G) = p(fk)(G) edges, consist of

single vertices.

4.1 uy-sequences

Let G = G(P,C) be a supply graph with |[C| = m; then the sequence
u(fl)(G), u(f2)(G), ...,,uS,m)(G) will be called the u;-sequence of G.

A non-decreasing sequence of positive integers A : a1, aq, ...,y 1S a py-
sequence if there exists a supply graph G = G(P,C), with |C| = m, which

has A as its ps-sequence.

In this chapter we will characterize the ps-sequence of a Ranked Supply
Graph (yet to be defined), and give both necessary and sufficient conditions
for a non-decreasing sequence of positive integers to be the p-sequence of

a Ranked Supply Graph.

First, some general examples:

1. A:1,2,...,m 1s the us-sequence of K, ,, where P consists of the

central vertex if m > 2 or of either vertex if m = 1.

2. The sequence A where a7 = ... = ay = 1, a1 = ... = a9 =
25 ..5Q(n_1)e41 = ... = ang = n is the pys-sequence of the supply graph
obtained by £ — 1 subdivisions of each edge of K, with P consisting

of the central vertex.

3. The sequence A where a; = ... = ay = 2; amp; = ... = ay =

4;.58(mo1)er1 = o = ang = 2n is the py-sequence of the supply
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graph obtained from the graph in (2) above by the introduction of a

new vertex made adjacent to all end-vertices.

4. If iy,14,...,4, are positive integers with ¢4 > 10 > ... > 1n 2 2,
let G be the graph obtained from the union of the disjoint stars
Kii-1; Kii-1; - K1in—1 (with centres z, ..., z, respectively) by the

introduction of a new vertex, zo, adjacent to z1,Z2,..,Z, Where

P = {zo}. The puj-sequence of G is u&l) = /J(f?) - .= ygfl) =
l;lu(f“'H) =..= ‘ugf?) =2 ...;,u(fz"“l“) = /,LS,’") =n.

5 If G = G(P,C) = Kk, where |P| = k and |C] = m, then with
p=m+k

pV(G) = min{k(p k), &p— )}
{p—4) for 1 <2<k
k(p—k) for k<{<|C|l=m=p—k.

4.2 The Ranked Supply Graph

Let A :ay,...,a, be a sequence of positive integers such that
a; = ... = a;, = b < Aiy41 = cor = A4y 44y = b, < ... < Qi) intootiy g1 =
= Qi = bjon < Giggi41 T o0 = Gaotoqq; = by (where

Consider the supply graph Gr = Ggr(P,C) (with |P| = k,|C| = m)
such that 4.1 holds as a ps-sequence. Let C be partitioned into (disjoint
subsets V4, V2, ..., V; such that for t € {1,...,5 =1}, |V;| = it and V1UV2U..U
V; can be functionally isolated by the removal of a set E; of b, = /LS,S)(GR)
edges where s =4; + i+ ...+ 4, and B, C [V U..UV,,PUV, U...UV]].

Furthermore, for 1 < r < j the functional isolation of a set of 17 +.. +1,

vertices containing at least one element from some V,(n > r) requires the

39



removal of more than b, edges.
We will call Gr a Ranked Supply Graph.

For £,m € {1,2,...,7} let s = |[Vo, P]| and for £ < m, let rp, =
Ve, Vinll-

Fori=1,2,....,7 — 1 let

b; = ZSz +
=1

J

b]’ = ZSg.

=1

Z Tem and

{=1,...,
m=i+1,..,J

It follows from the above definition that A;_1 : a1,a2, ..., @i 4iyt..4i,_, 1S
the p;-sequence of the ranked supply graph Gg_l)(P(t‘l),C(t‘l)), where
P = PUV, UV U..UV; CY = VU V,u .. U Viy and
E(GY™V) = E(Gn).

The consumer vertices in a ranked supply graph could represent con-
sumers which have been ranked according to strategic importance with 7,
vertices of Vi being the least important and the z; vertices of V; being the
most important. The values of the b; would give an indication of the rela-

tive importance of the vertices in V..
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Lemma 4.2.1

If Ais the ,u(fk)-sequence of the ranked supply graph Gr = Ggr(P, () then
A is also the ,u(fk)—sequence of the ranked supply graph Hr = Hgr(P,C)
obtained from G by joining every pair of non-adjacent vertices in (Vi)en

ford =1,2,...,J.

For 1 < £ < m < j, the ({,m)-deficiency of G, 7em(GRr) and the ¢-

deficiency of Ggr, 7:(GRr), are defined as follows:

J
Tm(GR) = 1eim—Tem and 7(Gr) = 5, 7tm(GR). (S0 7em(GRr) is the num-

m=£{+1
ber of edges in [Vz, Vilg, and 7(GR) is the number of edges in [Vi, Viy1 U
.U Vj](;R.)

R

~ We introduce now, a ranked supply graph Jr = Jr(P’,C) obtained from

G R as follows:-

Define J; as follows if j > 2:
a) If sy =0 o0rn(Gg) =0, let J; = Gg.
b) If s1,71(GRr) > 1, we distinguish between two cases:

(i) If s1 < 71(GR), let m be the largest integer such that 2 <m <
and s; < Z]: 71e(GRr). Let s; = tm + tmy1 + .. + t;, where
ty = ‘/'u(C?RZ):;f1 m < £ < j (and t,, < 11,(GR), obviously).
Replace the s; edges in [V, P] by s; edges in [V}, V,, U...U
V;], assigning ¢, edges to [Vi, Vi], (£ = m,..,7) and keeping the
degrees of all vertices in V; fixed (i.e. degj, v = degg,v Vv € V7).
Finally, for each “new” edge vw inserteci above between a vertex

v € Vi and a vertex w € V; (m < £ < ), insert another new

edge wz, with z € P’ (where P’ is a superset of P, containing
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(1)

new vertices, not in V(GRr) as required). Hence t, new edges are
inserted into [V, P'], m <4 < j.

If s; > m(GR), let s; — 71(GRr) edges of [Vi, Plg, be retained .
and replace the remaining 71(Gr) edges in [V1, Plg, by 211(Gr)

edges as indicated in (1), with 7(GRr) replacing s; in (i).

If j > 3 and Jy,...,Ji—1 have been defined, we introduce J; as follows

(te{2,..,5-1}).

a) If s
b) If St

(1)

=0 and Tt(Jt—l) = 0, let Jg = Jt—l-
> 0 and 7(Ji—1) > 0, we distinguish between two cases:

If sy < 7(Je-1), let m be the largest integer such that ¢t +1 <
m < j and s, < ZJ: Te(Ji-1). Let sy = tn + ... + t;, where
te = Tu(Ji—1) for riz:m< £ <5 (fj > m)(and tm < Tam(Jie1),
obviously).

Replace the s, edges in [V, P] by s, edges in [V;, Vi1 U ... U V]
by assigning t; new edges to [V, V;] (£ = m,...,J), keeping the
degrees of vertices in V; unchanged from their values in J,_;
and finally inserting ¢, new edges into [V, P'], for each edge

vw € [Vi, V;,] inserted above, introducing a new edge wz with

z € P', where P’ is again a superset of P, if necessary.

If s¢ > 7(Ji-1), retain s, — 1(Ji—1) edges of [V;, P] and replace
the remaining 7,(J;—1) edges in [V, P] by 7(Ji—1) edges in each
of [Vi, Vigr U ...U V] and [V, P} as above.

Finally, denote J;_; by Jr = Jgr(P’,C)

Lemma 4.2.2

Jr(P',C)

is a ranked supply graph (with P’ and C as sets of producers

and consumers, respectively) and Jr(P’,C) has A as its pu;-sequence.
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Proof: Denote the u -sequence of Jg by C : ¢; < ... < ¢ Suppose that,
for some i € {1,..,m}, ¢; # a;. Let a; = b,; then a; = ) s¢ + S Tim
=1

£=1,...,7
m=rdl,...]

and r # J.

Observe that Vi U...UV, is functionally isolated in Gr by the removal of S,
the set of > sy edges from [V; U...UV;, Plg, and R, the set of S Tem

=1 &=1,...,r _

edges in [V U ..UV, Vi1 U...U Vjlg,.

In Jgr the 'vertices in V; U...UV, can be functionally isolated by the
removal of the set of edges R above as well as the set S’ of edges in
ViU ..UV, Py, and S”, the set of all “new” edges incident with a
vertex in V4 U ..UV, and a vertex in V,;qu U ... UV, in Jg, 1e. S =
ViUV, ViU UV, =[NV ..UV, Vi U LU V]g,. By the defini-
tion of Jr, if £ < m < r and ¢4, edges from [V;, P| are replaced by tem edges
in [V4, V;n] together with te, edges in [V, P'], then eventually, when J, is
defined, each element of the latter set of ¢4, edges in [V, P’]y, is either left
unchanged in [Vi,, P'];,, or is replaced by an edge in [V, Vi1 U ..UV},
and an edge in [Vipe1 U ... U V}; P']5

m)

; consequently |S"U S| = > s; and
=1
so V4 U ...U V; is functionally isolated in Jg by the removal of a; edges. It

follows that ¢; < a.

Let B be a largest set of vertices in Jgr functionally isolated by the
removal of ¢; edges from E(Jg), and let F' = [B,V — Bl;,. We note that,
by the maximality of B, |F|=¢;. Let Fy = F N E(GR) and F, = F — F.
As ¢; < a;, B is not functionally isolated in Gg — F}.

Hence, there exists at least one edge e = vyw; € [B,V — Blg, with v; € B
(say v1 € Vp,) and wy € V — B such that viw; € Fi; so w; € P. Fur-
thermore, in the construction of Jg, viw; was replaced by a sequence of

edges, say viw; by v1v, and vowy (v € Vj,,w; € P') in the construction
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of Jo, ,voawy by vquz and vaws (vz € Vi,,ws € P/) in the construction of
Je,, ... etc. until, in Jg, the single edge vyw;, has been replaced by the
edges of a path v1v,vs...v, and an edge v,wy,, where v; € V,, w, € P’ and

b <ty <. .< ¥,

If vy, v2,...,v; € B, then vyw, € F; and, if v, & B for some £ € {2,...,n}
with ¢ as small as possible, then £ > 2 and v,_yv, € F) _(denote by €’ the

appropriate edge v,wy, Or Vp_1V;).
Obviously, if e; # e, in [B,V — Blgy, then €] # e, and so |Fy| >
I[B,V — Blas — Fi|. So |[F1U Fy| > |[B,V — Blg,| > ai, a contradiction.

Hence a; = ¢; forz=1,...,m. |

We return now to the ranked supply graph Ggr and derive some neces-
sary conditions for a non-decreasing sequence of positive integers to be a

 s-sequence for Gp.
Lemma 4.2.3

If A is the ps-sequence of Gg,then

[(ijfl)(bj_bj_l) < -1,

i
Proof: For w € V}, all the vertices in V4 U ... U V;_; U {w} can be func-

tionally isolated by removing from G all edges in the set £’ = [V, U ... U
%;1U{leNJﬂg—{wD]:[MLLHUV;Ju{waﬂuﬂﬂuqu%;hv;—

()] U}, V; ~ {w)] 1231

Furthermore |E'| > b, 4.2.3.2
7-1

and bj._l = Z(Sg + T‘g]') 4.2.3.3
=1
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> (I{w}, Pl = [{w}, iU ... U V)

weV;
= Vi, Pl = V3, A U U Vi
= §;— fz Y 74;; hence w can be chosen so that
1 =
[}, Pl = [{w}, V5 U e U Vima]| < [— ( - Z”f)J 1234
J =1

Thus from 4.2.3.1; 4.2.3.2; 4.2.3.3 and 4.2.3.4 we obtain

b < | < (2 e+ u{w},Pu>+<im {wh KU U vj_l:||>+(z;-—1>

=1 =1
1
=bj1 + (i, —1) { ( ZWJ)J 4.2.3.5
j i-1 i-1
Since bj — bj_l = Z 85 — Z(S@ — T‘[j) =5 = Z Te5, 1t fOHOWS fI‘OIIl 4.2.3.5
- -1 =1

that
b, —b._
by <bj_y+(z; — 1)+ {J—”J

5]

from which it follows that

1
M(b] — bj_l)-’ < ij - 1. O
tj

"By applying lemma 4.2.3 to the us-sequence of Gr(P U Vi U...UV;,C —

(Ve41 U ...UV;)) we obtain the following corollary.
Corollary 4.2.3

If A is the ps-sequence of Gp(P,C), then for 2 < ¢ < j,
ey — )] <1

Lemma 4.2.4

If A is the ps-sequence of Gr(P,C), then for £ < 5
| bj—1 + b;

2

be+1—b£S{ J-’r]—l
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Proof: For w € V; and £ < j, the vertices in V; U ... U V; U {w} can

be functionally isolated by removing from Gpg all edges in the set E' =

ViU..uVeU{w},PUVi U.. U( Vi—{w})]=[VLUu..UV, Vi UL U

ViU PI+ [{w}, Vst U .. UV, U (Vi = {w} U P] = [{w}, i U...U V.
Thus | |

bes < > it Y si+[[{w), Ve U..UVieU (V) — {w}) U P

i<¢e 1</
£>T41 =

—{w}, u...u V|
= b+ |[{w}, iU .UV, U(V; = {w})UP]| —2][{w}, Vs U...U V]|
< b+ |[{w}, ViU UVia) 445 — 1+ [[{w}), P}

Now summing over all w € V; gives

15(berr = be) < [V3, ViU U Vs 445055 — 1) + 55

j-1
and since bj_y = |[V;, V1 U...UV;4]| + > s; it follows that
1=1
J- ' J-1
1j(bep1 — be) < Z +25(1; +bj—ZSi
=1 =1

Hence ij(bg+1—bg) S bj 1+2J —1 —2281+b
< bj—1+2;(j—1)+bj-

Thus bg+1 — bg _<_ {—"—-b._;+ij + ij — 1 d
7
Corollary 4.2.4

If Ais the pg-sequence of Gr(P,C), thenfor 1 <t<g—-1<j—1

b, + bq_lJ

b

7

bt—bt—lgiq—1+l\

q

Lemma 4.2.5
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If A is the ps-sequence of Gr(P,C) for which j =1,then m =1or b < m.

Proof: Let A: a; = a3 = ... = @, = by be the uy-sequence of Gr and
let v € C. Since v can be functionally isolated by the removal of the

edges incident with v and since there exists v* € C for which |[{v*}, P]| <
[P — b it follows that

m

b
b < degv*gm—1+—1;
m

hence by(m —1) < (m — 1)m.

Consequently m = 1 or b; < m. a

For the ranked supply graph Gp = Gg(P,C) with A as L s-sequence with

J 2 2, lemma 4.2.5 together with the fact that ay,a,,...,a;, is the py-

1

sequence of Gr(P UV, U ...UV,, V1) leads to the following corollary.
Corollary 4.2.5

For the ps-sequence of the ranked supply graph Gr(P,C), b <ijori; = 1.
Lemma 4.2.6

If A is the us-sequence of Gr(P,C), then
bj-1 + b; > (bl —1; + l)ij

Proof: Let w € V; be a vertex of smallest degree in Gr — E((V;)), then

Il 45
degg,w <12; — 1+ [A-MJ Hence

L%

=t : , ,
blgij—l_’_“#J Sij—1+[b]—_17+—b]J
7 j

and consequently (b; —2; + 1)¢; < b;_; + b;. O
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This condition is clearly satisfied if 7; < 2 and since a1, az, ..., @i 4. 44,
is the pj-sequence of Gr(P U Vi1 U ..UV, ViU ..U V) for £ € {2,...,5}

the next corollary follows.
Corollary 4.2.6

If A is the us-sequence of Gr(P,C) then by_y + by > (by — 10 + 1)1 for
2e{2,...,7} and 2, > 3.

Lemma 4.2.7

If A is the ps-sequence of Gp(P,C),let 2<t+2<n <jand a, = b, for

Wttt +..F+,=VUu. .UV uV,u...uV|ift>1
m = then
' In+ ...+ 1;=|Vo,U..UV|ift =0,

br — bt < b] t bn—l + 2Z.n_1lln lft Z 1 and
br < b] t bn—l + Qin_lin lf t = 0

Proof: If G is a ranked supply graph, the functional isolation of V4 U V5 U

... UV, requires fewer edge removals than the functional isolation of

ViU UV,UV,U..UV, if ¢t>1
V,U.. .UV if ¢=0.

Consequently, if ¢ > 1
by < by +b; — bu_y + 2|[ V-1, Vil

whence we obtain _
br - bt < b] - bn—l + 27:77.—17:71
and, if ¢ =0,
br < bj = by_1 + 20, 11,. O

Corollary 4.2.7
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If A is the pj-sequence of Gr(P,C) then for n < ¢ <7,
by — by < by — by + 2in_1in if t>1and
b.,- < bq - b'n.—l + 2in_1in lf t= 0

The necessary conditions for a sequence A, of positive non-decreasing in-
tegers, to be the us-sequence of a ranked supply graph can be summarized
as follows:-

]) bl S 7:1 or il =1.

2) [ﬁ"ﬁ—ji(bg—bg_l)] <ip—1 2<4<j

3) b= by g — 14 M| i<i<g-1<j -1
4) bg_1+bg2(b1—ig+1)ig 2<2<y
5) be_1 — be—y < by — ooy + 280201 3<i<y

That these conditions are independent can be shown by the following se-

quences

Ar: 1,1,1,3,3,5,5

At 3,3,5,5,7,7

Az 1,1,4,4,7,7

As:iar=1l,a=...=a3=10,a1u = ... = a3 =11

Asi a1 =..=ap=10an1=...=a3=11;a14 = ... = a16 = 12
Ag @ 2,2,10, 11

A, satisfles all conditions, A, satisfies all but condition 1, Az satisfies all
but condition 2, A4 satisfies all but condition 3, As satisfies all but condi-

tion 4 and Ag satisfies all but condition 5.

Theorem 4.2.8 If A is a non-decreasing sequence of m positive num-

bers, A : aq,as,...,0m, Where a1 = ... = a;, = by < a;,41 = ... = 44, =
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bg < ... < iy oy +1 = oo = Qi pbijg iy = bj,m =111 +10+ ...+ 15, and

A satisfies the following conditions

blgilorilzl (1)
I_(Z.g—l)(bg—bg_l)/iﬂ Sie—lfOI‘QSij (2)
boey +be > (by —tp+ 1)z for2 <€ <y (3)

bt'—bt—l Slq_l_*"_(bq_}—bq—l)/ij for2§t§q—l§]—1 (4)
bq—l - bq~2 _<_ bq - bq—l + 22'qiq—l for 3 S q S j, (5)

then there exists a ranked supply graph Gg = Ggr(P,C) with |C| = m

which has A as its ps-sequence.
Proof: We construct a sequence of supply graphs, Gy, Gy, ..., G; as follows:

Gy = G1(P,Cy) is a graph with Cy = V; (say), || =11, (V1) 2 K, and
each vertex in Vj is adjacent to |by/i1] or [b;/i1] vertices in Py, so that
\[Vi, P1]| = by. (The only restriction on Py is that |Py| > [b1/4;]. Let (P))
be empty.)

Suppose that G4, ..., G, have been defined (1 < ¢ < j — 1) where, for
1 <h <4, Gr=Gr(Ph,Ch), Ch =V1U..UVh, V)G, Z Kiyy ooy (Vida, =
Ki,, and, for s, = [[Vi, Pr]|, each vertex in Vj, ison [sa/ix] or |si/in] edges

=1
of [Vh, Py] in G,. Furthermore, by — > s; = s,.
=1

We next define Gg+1 = Gg+1(Pg+1,Cg+1); Og+1 = ‘/1 U...u W U I/g_f.l,
where |Voy1| = 4 and (Viya)6,,, = Ki,,,. The edge set E(Gyy1) consists
of all the edges in E(G,) — [V, P;] together with F((V,41)) and a set F,

defined as follows:

Case (a): If sy < 41, then for each edge e = wv € [V,, P with

u € Vo, v € P, Fy contains the edges ¢/ = ww and €’ = wv (with
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w € V1), assigned so that each vertex win Viyq is on [s¢/ie41] or [Se/te41]
such edges of [Vi, Viy1]. Finally a further set of by, — by edges is inserted
into [Veg1, Pey1] in Fy and |[Vey1, Pe1]| is denoted by se4y, where the edges
of [Viy1, Per1] are chosen so that each vertex in Vigq is on [seq1/te4a] or
| se41/1041] edges of [V, Pey1]. In this case in Gg+1,..[Vg,Pg+1] = 0 and
(in Gey1) s¢ = 0 (whereas s, = by — gsi in Gé),so Sep1 = bopy — by =

-1 ¢
berr — 3. 8i = bopr — 3. si. Pey1 is equal to Py if [sp4q/10] < |Py| and is
1=1 1=1

a superset of P of size [s¢41/¢1] otherwise, inducing an empty subgraph

in G[+1 .

Case (b): If s; > 142041, we recall that each vertex in V; is on |s,/7¢] or
[s¢/1e] edges of [Vi, Py], hence on at least 04y edges of [Vi, Py in G,. For
each u € Ve, insert into Fy, 2041 edges in [{u}, Viga] (so (Ve U Vigr)g,,, =
Kiptie,,) as well as the set of [s¢/1¢] — teq1 or |s¢/1s] — g1 edges of
[{u}, P remaiﬁing after the removal of any edges from [{u}, Pg}GZ. Finally
Sep1 = bpp1—=bg+1ot041 edges of [Vioy1, Pes1] are inserted into Fy, so that each
vertex of Vpyq is on [Sgy1/te41] or [Se41/%041] of them. The set Ppyy equals
Py if [sg41/ie41] < |Pr| and is a superset of P with |Popy| = [se1/1041]
otherwise, inducing an empty subgraph in Gyy1. Finally the symbol s, is
changed to denote |[Vg,P£+1]Gl+1| (i.e. 8¢ in Gy 1s reduced by isip; to sy in
Gey1). Thereafter spqq = bpp1 —betiptop1 = bpyr — (bp—1o2pp1) = ?)u_l —Zezl S;.

Note that in Gy, for 1 < h < £+ 1, each vertex of Vj, is on [sp/i4] or

|sn/in] edges in [Vi, Ppy1], as required in the inductive definition.
Note that in this case, as in (a), it may be said that each edge e =
uv € [V, Prle, — Vi, Perila,,, (u € Vi, v € P) is replaced by ¢/ = uw €

[Ve, Verile,,, and €’ = wv € [Viyy, Pripile,,, and we shall say that e/, e”

correspond to e.

Now let Gr(P,C) = G;(P;,C;) and denote the us-sequence of Go( P, Cy)

101



by D! : d¢,ds,...,df - We shall prove by induction on £ that D* is

A1, 02,y .00y a,'1+m+1-£:

Let £ = 1. The 4, vertices in Vi can be functionally isolated in G1(Py, C1)
by the removal of the by edges in [V, P]. If 7; > 2, then the fundamental
isolation of exactly k vertices of V; in G1(P1, C1) (for 1 < k < 1;) requires
the removal of at least n, = k(i; — k) + k|b1/11] edges. We recall that
in this case, by condition (1), b; < 4;. However, the use of elementary
calculus yields ng > ¢y — 1+ [b1/i1]. Hence ng > by for k =1,...,5;—1 and
so d} = ...=d} = by, as required.

We now assume that D™ is ay, as, ..., @i, +..+, for all integers r satisfying
1 <r < /¢ and that Vi U...UV, can be isolated by the removal of b, edges.

To show that D! is a1, as, ..., Giy 4. 4iptire:, We establish a few lemmas.

Lemma 4.2.9 If£€{1,2,...,7—1} and S € Cy, the minimum number of
edges required to be removed in G, and in G4y for the functional isolation

of S are equal.

Proof: Let the minimum number of edges whose removal from Gy (or Goyq)
functionally isolates S be « (or 8, respectively) and let F' C E(Gy), F" C
E(Ggy1) such that |[F'| = «, |F”| = p and S is functionally isolated
in both G, — F’ and Gy — F”. Then, by replacing each edge e in
F' 0 [Vi, P] — E(Ge41) by a corresponding edge ¢’ in [V4, Vpy1], we ob-
tain from F' a set F"" C FE(Gyy1) with |F"”| = |F'| = « such that S is
functionally isolated in Gyt;. Hence § < a. Conversely, by replacing every
edge ¢ € F'"N[Vg, Veyi] or € € F"N[Vps1, Pey1] by the corresponding edge
e in [Vg, P, we obtain a set F!V from F" with |FV| < |F”| such that S
is functionally isolated in G, — F*V. So a < |F!V| < |F"| = 8 and hence

a=p. |
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We now suppose that D1 # a1, az, ..., ai, 4. 4i,,, and let ¢ be the largest
index for which a; # d**'; say a; = b,. Let S C Cpyy such that |S| =7 and
S can be functionally isolated in G¢y; by the removal of a set F' of dit?

edges of Goyq. For1=1,2,..,0+1,let ;NS =S and Vi — S, =1T;.

Lemma 4.2.10
a) 1<ty 4 ...+l = |Cesl,
b) a; < df“,
¢) di*t < dif,
d) SNV #0.

Proof: That (a) holds is obvious, as the functional isolation of all vertices
in Ce,q1 requires removal of the eil $i (= bey1) edges in [Coyr, Poy].

Furthermore, as the set V} U ...ILL-JlVT of 11 + ... + ¢, (> 1) vertices can be
functionally isolated by the removal from Gyyq of the b, edges in [V} U .. U

Vi, Vie1 U Py, it follows that de < b, = a; and so df“ < a;. From

— dt’+l

our choice of ¢ it follows that df_tl1 = a;41 and so df“ < a; < Gigq 1

whence (¢) follows. If SN Voyy =0, then S C Cy and so, by Lemma 4.2.9

and the inductive hypothesis, df“ = d¢ = a;, a contradiction. O
Lemma 4.2.11 £ SNV, # 0, then V; C S5, ie., Vi = 51

Proof: If z; = 1, this is obvious. So assume that z; > 2. Note that i; > b,
and let [ be the set of edges obtained from F' by replacing the set of all
edges in I covered by V; by [V1, V2]g,,,. Then, if S # V4, [F’'| < |F|. (This
is obvious if b; < ¢;, whereas, if b; = 11, each vertex of V] is on an edge in
[V, V2] and so at least one of the b; edges in [Vi, V3] is contained in F, at
most by — 1 in F' — F, whereas F' — F' contains at least ¢y — 1(> b; — 1)

edges.) However, the set of vertices functionally isolated in Ggp; — F' is a
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proper superset of S, viz. S U V4, which contradicts Lemma 4.2.10(c). So,
if SNV, #0,then V3 CS. O

Lemma 4.2.12 If t is the smallest index for which V; # S;, then S; = 0.

Proof: The statement is obviously true if 7, = 1. So assume that z; > 2
and suppose that § # S; # V;; then ¢ > 2. Furthermore, if t = £ 4- 1, then
ViU...UV, C S and it is a consequence of condition (2) and the maximality
of 1 that S; =V}, a contradiction. So 2 <t < 2.

Let F, denote the subset of F' covered by V; U...U V;_; U S;; then
Vi U ..U V,_; US; is functionally isolated in Gyy; — F} by the removal of
h, = |Fi| edges. By Lemma 4.2.9, V; U ... U Vi_y U 5, can be function-
ally isolated in G; by the removal of h; < h; edges. By the inductive
hypothesis all vertices in V4 U ..U V,_; UV, can be functionally isolated
in Gy (hence, by Lemma 4.2.9, in Gy} by the removal of b, edges and
by < b} < hy = |Fy]. So SUT, can be functionally isolated in Gy by the re-
moval of the i — by +b,(< d;) edges in (F—F,)U[V4U, ...,UV, Vig1 U Pppq).
But SUT; is a proper superset of S and so Lemma 4.2.10(c) is contradicted.
Hence it follows that S; = 0. O

For the following Lemma ¢ is defined as above, so t < £, and we note

that, as Sey1 # 0, there exists some ¢ > ¢ + 1 for which S, # 0.

Lemma 4.2.13 If g is the smallest index such that ¢ >t + 1 and S, # 0,
then S, = V,.

Proof: Denote by n; and n; the smallest number of edges of G, the removal
of which functionally isolates the sets V;U...UV,_;US, and V; U.uV,1UV,.
Suppose that S; # V; then ¢, > 2 and, by Lemma 4.2.10(c), n; < n,. We
note that in Gy, [V, Vy-1]| = by—y —q_ij s and [V, P,]| = by— 3" s so, for

=1
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g—-1
2 €Sy, S0 Vet UB]| = [l{ah Voer U B[ 2 Kb 2% ) /J

Now ny, = -bt—l + |[Sq_, ‘/q—l U Tq U Pq”
= b1+ |Sq| |Tq| + ’[Sm Vq—-l U Pq”

q—1
> b+, —14 Kbq_l +b, -2 si) /qu ,
1=1

and

ng = bt—l + HVq—l,Vq U Pq”
-1

q
= b +bi1+b—2) s

=1
So, as ng > ny + 1,

-1

q g—-1 '
bq + bq_l -2 Z S; Z iq + ‘\(bq—l -+ bq -2 E Si)/qu

=1 = .(4.2.13.1)
> iy — 1+ (bgm1 +0,—23 si)/1,.
1=1
But, by condition (4),
g-—1
by +bg1 Sig— 1+ (i +bg =2 si)/1g ...(4.2.13.2)
=1
q—1 g—1
Now (4.2.13.2)-(4.2.13.1) yields ) s; < (Z si) /14, a contradiction, from
1=1 =1
which it follows that S, = V. O

By applying the conditions (1) to (5) and the techniques used in the
proofs of Lemma 4.2.12 and Lemma 4.2.13 in the obvious manner, we ob-

tain the following result:
Lemma 4.2.14 If forie {1,..,£+ 1}, S;# 0, then S; = V.
Lemma 4.2.15 If S is chosen to yield the largest possible value of t,

then S = VU ..UV, UV, U..UVy for some indices z,y satisfying
1<z<z+2<y<l+1.
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Proof: Let y be the largest number in {1,...,£+ 1} for which S,_; # V,_4
(i.e., Sy-1 = 0). Then V, U..U Viyy C S and we note that, as observed in
the proof of Lemma 4.2.12, VU ..UV, ¢ 5, so y exists and, by Lemma
4210,y >t + 1.

Let §' =8 — (Ve U...U V1), |S'| =4 and ay = by, then [V U ..U V| >
|S| =7".

Denote by f, f', f" and f" the smallest numbers of edges whose removal
from Ggyy functionally isolates S, 5", yU...UV; and VU ..UV, UV, U
... U Viyq, respectively. Then f = f' + f” and f"' = f" + b,.

Note that f' > as = b, (by the inductive hypothesis and Lemma 4.2.9).
By our choice of S, f < f" and, if S" # V; U ...UV,, then f < f; hence
f" < bz, a contradiction. So S’ =V, U...UV,. ]

Lemma 4.2.16 S =WV U..UV,UV,U...UVp1, where ]l <t <n <441,

Proof: Let S" = S—(V,U...UVy1) and ¢ = |S”|; then S” C Cy and so, by
Lemma 4.2.9 and the inductive hypothesis, the functional isolation of §”
in Gy (and in Ggy1) requires the removal of at least a;» edges. Let a; = b,
and let f" = |[S",V(G,) — S”]|. Then f” > b,, with equality attained if

and only if " =V, U...UV, (as m > |S”| =" and i is maximal).

Furthermore, as [V U...UV,, UV, U...U Voq| > ¢ and the functional

isolation of V; U...UV, UV, U...U V,y; is accomplished by the removal of
£+1 e+1

b + Tt + Z s; edges, it follows that df“ < bm +71p1+ Y s;. However,
Z i=n Z+1 | 1=n

At = f' e+ Z si; so f" < b, and consequently f” = b,,. It follows

that S" =WV U ..U f/m and m = ¢, as required. 0

We are now able to complete the proof of the theorem:
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0+1
U rn_1 = tn_1in, then df“ = bytin-1tnt 5i = bitbey1 —bno14+20n_12n;

so b, > df“ = by + bey1 — bn_y + 2in-11n, which contradicts condition (5).

Hence 7,-; < i,_11, and (by the definition of Gepy) sp—1 = 0. We
note that 1 < b,y — bp_g = Thot + Sp1 — Tne2 = Th1 — Th—2 and so
Tno1 > Tn—2. 1t now follows that the functional isolation of SU V,_; =

Nu.uuV,_; UV, U...UVy in Gy may be accomplished by the

£+1 241
removal of by + rno + D8 < by + Thoy + DL 8 = be edges, which is
impossible, as [S U V,_1| > |S] = ¢ and bF] > b{*'. This contradiction
completes the proof of the theorem. O

We conclude this chapter with the conjecture:

Every supply graph is a ranked supply graph.
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