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ABSTRACT 
 

Estimating Value-at-risk (VaR) of stock returns, especially from emerging economies has 

recently attracted attention of both academics and risk managers. This is mainly because stock 

returns are relatively more volatile than its historical trend. VaR and other risk management 

tools, such as expected shortfall (conditional VaR) are highly dependent on an appropriate set 

of underlying distributional assumptions being made. Thus, identifying a distribution that best 

captures all aspects of financial returns is of great interest to both academics and risk managers. 

As a result, this study compares the relative performance of the GARCH-type model combined 

with heavy-tailed distribution, namely Skew Student t distribution, Pearson Type IV 

distribution (PIVD), Generalized Pareto distribution (GPD), Generalized Extreme Value 

distribution (GEVD), and stable distribution in estimating Value-at-Risk of South African all 

share index (ALSI) returns. Model adequacy is checked through the backtesting procedure. 

The Kupiec likelihood ratio test is used for backtesting. The proposed models are able to 

capture volatility clustering (conditional heteroskedasticity), and the asymmetric effect 

(leverage effect) and heavy-tailedness in the returns. The advantage of the proposed models 

lies in their ability to capture volatility clustering and the leverage effect on the returns, though 

the GARCH framework and at the same time model their heavy tailed behaviour through the 

heavy-tailed distribution. The main findings indicate that APARCH model combined with this 

heavy-tailed distribution performed well in modelling South African market’s risk at both the 

long and short position. It was also found that when compared in terms of their predictive 

ability, APARCH model combined with the PIVD, and APARCH model combined with GPD 

model gives a better VaR estimation for the short position while APARCH model combined 

with stable distribution give the better VaR estimation for long position. Thus, APARCH model 

combined with heavy-tailed distribution model provides a good alternative for modelling stock 

returns. The outcomes of this research are expected to be of salient value to financial analysts, 

portfolio managers, risk managers and financial market researchers, therefore giving a better 

understanding of the South African market. 

 

Key Words:  

 Asymmertric power ARCH (APARCH), Value-at-Risk (VaR), Kupiec test, Pearson type 

IV distribution (PIVD), Generalized Pareto Distribution (GPD), Generalized Extreme Value 

Distribution (GEVD), and Stable distribution ,All share index (ALSI). 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Introduction 
 

In this chapter, the background of this study is discussed, the literature review, the stylized 

facts of returns, problem statement, aim and objectives and significance of the study are also 

discussed. 

 

1.2 Background  
 

South Africa today is one of the most diverse and promising emerging markets globally. It is 

the sixth most outstanding in the emerging economies category, with vast opportunities within 

her border. It is a gateway to the rest of the African continent (a market of more than one billion 

people) therefore; it is a key investment location. South Africa is strategically located at the tip 

of the continent, with vibrant manufacturing and financial sectors. It is the economic 

powerhouse of Africa and forms part of BRICS group of countries which includes Brazil, 

Russia, India and China. South African stock market – Johannesburg Stock Exchange (JSE) – 

is Africa’s largest stock exchange with more than 400 listed firms and offering a wide range of 

products. The stock market’s estimate is about double the turnout of the country. A white paper 

by the South African Reserve Bank revealed that the South African Stock market is 

significantly a robust one and able to make the list of the first twenty largest stock markets in 

the world consistently Hassan (2013). As of the year 2013, it boasts of an excess of $US0. 9 

trillion market capitalization value. This market value is unavoidably significant among world 

stock indexes, including contributing about 8% MSCI Emerging Markets index, the fifth most 

robust country weight, making it respond significantly to the global economic meltdown 

surrounding emerging markets. The value of this market economically enhances macro-

economic sensitivity to price fluctuations with a possible eventual collapse (Hassan, 2013). 
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This study employs the FTSE/JSE All Share Price Index (ALSI) to reflect the South African 

stock market. It has about 164 listed companies and it is about 100% of the South African 

market capitalization value. ALSI as an equity index portrays the operational activities of a 

typical ordinary share in the South African market. The ALSI positioned against world criteria 

and standards which are majorly a pointer to the market situation. This ALSI also evaluates the 

operationalization of the entire market (Makhwiting, 2014). The major volume of all securities 

listed on the JSE is an integral function of the market index because the share prices flow of 

the listed companies is what makes the market.  

 

However, this market is highly volatile and unpredictable, making it a very risky market. This 

may be as a result of an authentic/stylized fact that well describes stock returns in both 

emerging and developed stock markets (Stavroyiannis et al., 2012), known to exhibit stochastic 

processes with volatility clustering and heavy-tailed (Mandelbrot, 1963; Fama, 1965). There 

are many types of empirical models which have been used to describe the stylized facts in stock 

returns. These include, ARCH (Engle, 1982), GARCH (Bollerslev, 1986), IGARCH (Engle 

and Bollerslev, 1986), EGARCH (Nelson, 1991), TARCH (Glosten et al., 1993a), APARCH 

(Ding et al., 1993), FIGARCH (Baillie et al., 1996), FIGARCHC (Chung, 1999), FIEGARCH 

(Bollerslev and Mikkelsen, 1996), FIAPARCH (Tse, 1998), FIAPARCHC (Chung, 1999), and 

HYGARCH (Davidson, 2004). Additionally, there are also some probability density function 

(pdf) such as normal distribution which is symmetric and does not exhibit heavy-tailed 

phenomenon (Engle, 1982); Student-t distribution (Bollerslev, 1987) with symmetric but 

heavy-tailed behaviour. Furthermore, the list also includes the generalized error distribution 

(GED) (Subbotin, 1923),  with heavy-tailed behaviour, but accommodates flexibility more than 

Student-t distribution. Developed models which are a function of symmetric density 

distribution will perform less in the error term because the pdf of asset returns is non-

symmetric, (Giot and Laurent, 2003a). Lambert and Laurent (2000) also applied the skewed 

Student-t distribution introduced by Fernandez and Steel (1998) which is non-symmetric and 

exhibit heavy-tailed phenomenon. 

 

Risk is an elementary recipe for profit making related activities in a market environment when 

properly managed (Stambaugh, 1996). With the continuous increase  witnessed  in trading, 

both emerging and developed markets have commissioned financial and economic experts, 

searching a well-structured approach in measuring techniques associated with risk used in 
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calculating expected loss a financial body may experience. The emergence of global economic 

and financial issues from the 1980s to 2000s precipitated the need to develop a sustainable 

model that would be able to predict risk factors in the investment world. It would be recollected 

that in 1987, there was a global stock market fall. Mexico stock crisis followed in 1995: 

between 1997 and 1998 was Russia’s financial turmoil, the dotcom bubble as well as the most 

felt ‘the Lehman Brothers’. Variability in the financial world is on the increase, exposing 

financial institutions to incur losses due to unconsidered, unpredicted and unforeseen market 

fluctuations. As a way of providing solutions to some of these challenges, the Basel I and II 

agreements which were more of Committee on Banking Supervision were introduced in 1996 

and executed in 2007.  In this scheme, the financial institutions were motivated to lift assets of 

high risk value from their balance sheets. Investment trading regulation which captures changes 

in price was also obtained after Basel I allowing insured assets as government securities which 

attracts zero risk. With this, there was explosive credit default swaps (CDS) market because 

banks took advantage of the policy. Basel II on the other hand allows banks to use a developed 

institutionalised risk management model which is extremely backtested and stress tested. 

 

The tool Value at risk (VaR) is employed by financial institutions as a control over their 

transactions whilst it allows regulatory authorities to standardise boundaries for the future 

(Bhattacharyya et al., 2008). Ever since the Basel Committee adopted VaR, it has become a 

valuable and useful measure for risk in financial institutions (Chen and Liang, 2008). Value at 

risk (VaR) can be expressed as a single value of the amount at which the risk situation of an 

institution could diminish as a result of market flow or fluctuations in a given period 

(Bhattacharyya et al., 2008). It is described as the most regretful loss with a bounded target 

within a given level of confidence (Chen and Liang, 2008; Jorion, 2007). VaR measures the 

value of the maximum loss certain investments can experience in a specified time of transaction 

at a given level of confidence (Jorion, 2007). In statistical terms, it is quantile of the returns 

distribution at a given confidence interval or probability level. VaR was elaborately applied to 

conventional financial markets (Duffie and Pan, 1997; Dowd, 1998; Holton, 2003; Jorion, 

2007). VaR at the long position is associated with the risk that comes from the price drop. It is 

the left side of the distribution of the returns corresponding to negative returns while VaR at 

the short position is associated with the risk that comes from the price increase. It is the right 

side of the distribution of the returns corresponding to positive returns. Many of the models 

concentrated on VaR computation taking into consideration the left tail of the pdf. In recent 
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times, more models centred on formulating VaR function which considers short and long 

positions. Measurement of VaR is employed using variance-covariance method, historical 

simulation method, dynamic risk models and filtered historical simulation method 

(Bhattacharyya et al., 2008). Each of these methods are further explained below. 

 

Variance-covariance method: This assumes that returns are normally distributed. However, the 

assumption of normal return distribution results in undervalue tails, which in turn undermine 

excess kurtosis and skewness in the returns (Soltane et al., 2012). 

 

Historical simulation method: It assumes that the volatility of the returns is constant over time, 

therefore estimating the future volatility base on the past volatility (Bhattacharyya et al., 2008). 

To assume that there is a perfect volatility is indefensible due to previous market volatility 

clustering records. Research discoveries have shown that in financial markets seasons of 

undulation between high volatility and relatively stable one is periodically experienced 

(Soltane et al., 2012). A motionless VaR may be unnecessary in a time of stability, but this will 

not be able to give a correct estimate during extreme volatility. 

 

Dynamic risk models:  These models consider both the past and present volatility. Many risk 

models have been developed which include the simple moving averages, exponentially 

weighted moving average, Risk Metrics and GARCH (Bhattacharyya et al., 2008). 

 

Filtered historical simulation method: It is a simulation developed by Barone-Adesi et al. 

(1998) based on generalised historical values. This method integrates GARCH models and 

historical simulation method so as to overcome the deficiencies of conventional historical 

simulation. Filtered historical simulation is simple in capturing conditional volatility, volatility 

clustering, and asymmetric effect. This has strong predictive power for unstable market 

situations. McNeil and Frey (2000) also combined GARCH model with extreme value theory, 

whilst Bhattacharyya et al. (2008) proposed a combination of the Pearson’s Type IV 

distribution and the GARCH (1, 1) framework. 

 

In order to investigate the sufficiency and reliability of VaR estimates, the Basle Committee 

specifically suggests that backtesting should be implemented (Baharul-Ulum et al., 2012). 
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Backtesting is a comparison between losses as assumed by the VaR model and the real value 

within a time frame of examination. 

 

1.3 Literature Review 
 

Over the years, in depth studies have been conducted in the area of developing and analysing 

VaR models. These have resulted in generating many methodologies with their associated pros 

and cons. More complex methodologies are being developed so as to enhance the predictability 

and correctness of VaR models. Such complex developments include different aspects of 

Autoregressive Conditional Heteroskedastic (ARCH) models, Extreme Value Theory (EVT), 

stable distributions, and Pearson IV distribution (PIVD). These approaches have been 

employed to investigate different categories of assets in various parts of the world. Outcomes 

prove that there is no single best model that effectively describes all assets. Therefore, it is 

better to test various models on a specific asset and from the outcomes pick the one that best 

handles the particular market financial characteristic. This is best done by employing latest 

financial data. 

 

 Engle (1982), proposed a volatility process with time varying conditional variance known as 

Autoregressive Conditional heteroskedasticity (ARCH) model. It is the first model that 

stipulates a systematic framework for volatility modelling. Previous studies by Engle (1982) 

was further modified by Bollerslev (1986) who generalised the ARCH model to obtain a new 

model known as a GARCH model in which time-varying volatility depends on previous 

volatility and previous innovations.  GARCH model has been widely used to study volatility 

since its inception. The volatility in Government-Sponsored Enterprise (GSE) indices was 

modelled  with specifications like EGARCH, TGARCH, GARCH and RW (Magnus and Fosu, 

2006). Rafique and Kashif (2011) examined Karachi Stock Exchange 100 Index (KSE-100 

Index) considering excess kurtosis, heavy tails and volatility clustering using the ARCH, 

GARCH and EGARCH processes. The GARCH model has been proved to be able to 

effectively capture the tenacity in volatility and EGARCH successfully overcame the leverage 

effect specification in KSE-100 index. Granger and Andersen (1978), revealed the theoretical 

features of a few and up-to-date GARCH specifications that possess the component of leverage 

effect. Parameters were compared to assure the form/state of positivity, stationarity, and finite 

fourth order moment. The results disclosed that EGARCH specification is the most flexible 
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and a detailed description of TGARCH is accompanied with boundaries and deficiencies when 

it has finite kurtosis. The GARCH model and its subsequent variants were used to model and 

elucidate the instability in the financial market risk from daily reflections from Israel (TASE-

100 index) and Egypt (CMA General Index). The Egyptian CMA index is said to be the most 

volatile series due to the economy and price fluctuation during the time phase under 

consideration (Floros, 2008). Many studies have been carried out using the GARCH model in 

the area of VaR studies. Investigations involving volatility using the APARCH model are still 

few. One such research was performed by Giot and Laurent (2003a) who carried out a study 

on VaR to assess both long and short trading positions. He applied Skew Student t-APARCH, 

RiskMetrics, normal-APARCH and Student t-APARCH models for French CAC40, US 

NASDAQ, Swiss SMI, Japanese Nikkel, and German DAX stock indexes and found that for 

VaR forecast, either long or short trading positions, the use of an APARCH model with a 

skewed Student t distribution is best. Using three VaR models; Risk matrices, Student t-

APARCH and normal-APARCH, Huang and Lin (2004) tested their forecasting performance 

based on Taiwan Stock index futures. From the study, the normal-APARCH VaR model 

appeared to be best at the lower confidence point, Student t-APARCH appeared to display 

highest accuracy at the high confidence point when compared to Risk matrices as well as a 

normal-APARCH model. Angelidis and Degiannakis (2008) predicted one-day ahead VaR for 

Athens Stock market. The symmetric and asymmetric ARCH models were assessed to 

determine their predicting performance. The GARCH, the symmetric ARCH VaR model was 

tested with the three innovations; normal, Student t and skewed Student t distributions and the 

same procedure was conducted for the APARCH, the asymmetric ARCH VaR model. It was 

concluded that, the best performing model for this index was the skew Student t-APARCH 

VaR model. Degiannakis et al. (2012) evaluated VaR of specific markets before and after- year 

2008 global financial crises. They applied three alternative VaR models; Risk metrics 

(EMWA), normal-GARCH and skew Student t-APARCH. The tests were conducted on 

developed and emerging markets. The Greece and Turkey markets represent the emerging 

while USA, UK and Germany represent developed markets. The normal-GARCH VaR model 

had satisfactory performance before the 2008 crisis but afterwards only the skew student t 

provided satisfactory forecasts. 

 

A new aspect of review on VaR modelling centres on Extreme Value Theory (EVT) which is 

often employed in risk modelling of extreme occurrence. Models that give a good description 
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of distribution patterns of rare events can be presented using the theory of extreme value. One 

outstanding characteristic of an extreme value is aimed at quantifying the stochastic conduct 

of procedure with both extremely large and small stages. Extreme Value Theory (EVT) can be 

described as a statistical and theoretical distribution which models sample maximum and 

sample minimum extremes behaviour. The characteristics of this statistical arrangement are 

sometimes measured using the precise distribution function or the limiting distribution 

function, the asymptotic distribution function when the size of observation increase toward 

infinity (Vicente, 2012). The account of the EVT application to describe extreme event 

distribution is traced to early work by Fisher and Tippett (1928) followed by Gnedenko (1943). 

These researchers laid a solid foundation in the theories and classic boundary laws guiding 

distributions of extremes. EVT has been employed in various fields of study and proved to be 

a potent tool in extreme event distributions. Torrielli et al. (2013), used EVT in meteorology 

to analyse extreme wind prediction. In hydrology, Fernandes et al. (2010) employed EVT in 

floods and draught prediction. Rocco (2011) with Jonathan and Ewans (2013) likewise used it 

in the financial crisis and wave height predictions respectively. Kuester et al. (2005), studied 

VaR where they employed out of sample performance of recognised models compared with 

other developed alternative models to forecast VaR. They applied those models on the 

NASDAX composite index. The outcomes revealed that a hybrid approach which mixes heavy-

tailed GARCH with EVT based method outperform other VaR methods which undervalue risk. 

Singh et al. (2001), estimated VaR by employing EVT. He modelled VaR using dynamic EVT 

with GARCH (1,1) model, GARCH (1,1), and Risk matrices, for ASX – all ordinaries 

(Australian) index and S&P 500 (USA) index. GARCH (1,1) and Risk matrices could not 

match the performance of dynamic EVT with GARCH (1,1) model. Sigauke et al. (2014) used 

GDP to model a conditional heteroskedasticity in the JSE ALSI index. The distribution ALSI 

returns as well as an approximation of extreme tail quantiles were modelled with a comparison 

between ARMA-GARCH-GDP models and ARMA GARCH models. ARMA-GARCH-GDP 

models generated more precise predictions of extreme returns than the other. Ozun et al. (2010) 

estimated VaR for Istanbul Stock Exchange by comparing eight filtered EVT models, GARCH 

(1,1) with normal, student t and skew student t innovation and FIGARCH model. He found that 

the filtered EVT models outperform the other models. 

 

Mean-variance portfolio theory and pricing of financial derivatives and some other financial 

applications depend on the type of distribution of financial returns involved. Due to outcomes 
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of Mandelbrot (1963) and Fama (1965), normality of returns was rejected because heavy tail 

is a prominent feature when talking about financial returns. As a result of this development, 

many other authors developed several distributions which consider excess kurtosis (Press, 

1967; Praetz, 1972; Blattberg and Gonedes, 1974; Peiró, 1994). This has led to investors 

preferring positive first and third moments while there is dislike for the second and the fourth 

moment, making the skewness significant for financial returns modelling (Kon, 1984; Hansen, 

1994; Young and Graff, 1995; Peiró, 1999; Rachev and Mittnik, 2000; Aparicio and Estrada, 

2001). Therefore, due to the empirical evidence, stable distribution was introduced as a 

substitute model (Mandelbrot, 1963; Fama, 1965). The theory of stable distribution was studied 

and introduced by Paul Levy, a French mathematician. He examined a stable distribution now 

referred to as the Levy distribution (Yang, 2012). While some members in the stable family 

lack distribution function expressible elementarily, developing the relevant theories is very 

difficult leading to more difficult computational applications. All the same, (Mandelbrot and 

Taylor, 1967; Fama, 1965; Samuelson, 1967) equally concluded that theoretical and empirical 

results affirms non-normal stable distributions in specific financial models which include 

financial asset returns, risk management and portfolio management. There are other heavy-

tailed distributions for financial models, for example, Student t, hyperbolic, normal inverse 

Gaussian, or truncated stable. At least modelling financial variables using stable distributions 

is good because they are supported by the generalized Central Limit Theorem (CLT) (Borak et 

al., 2005). This theory states “that stable laws are the only possible limit distributions for 

properly normalized and centred sums of independent, identically distributed random 

variables”. Subsequently, stable distributions have potentials to accommodate the heavy-tails 

and asymmetry which often give a very good match to empirical data. They are also useful 

models for data sets in the class of extreme events including market crashes or usual 

catastrophes making it a very useful tool for financial or insurance analyst (Borak et al., 2005). 

 

The Pearson type-IV distribution (PIVD) which is heavy-tailed with skewness was developed 

as a stationary distribution of Pearson systems (Pearson, 1895; Sato, 2014). In order to design 

a family of probability distribution that will capture the different range of skewness and 

kurtosis, Karl Pearson developed a family of distributions which has a small number of 

parameters to capture any given pair of skewness and kurtosis (Pearson, 1895). The scope of 

PIVD in the skewness–kurtosis axis is quite large. Therefore, in practice this has given the 

PIVD the capacity to fit financial data which most times kurtosis is in excess while skewness 
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is moderate. Premaratne and Bera (2001) innovated this distribution in GARCH models for 

capturing heavy-tail and asymmetry in financial data. A few years later, Yan (2005) employs 

PIVD so as to fit time-varying parameters by following autoregressive conditional density 

(ARCD) models. In the case of the innovated GARCH models with PIVD, (Premaratne and 

Bera, 2001; Yan, 2005) employed parameters of both constants and time variables in modeling 

for skewness and kurtosis. In the research outcome of Premaratne and Bera (2001), the dynamic 

parameter model does not rank better to a static parameter model. While with Yan (2005) it 

was discovered that time-varying shape parameters model behaved better compared to constant 

parameters models. In their research, Bhattacharyya et al. (2008) developed and applied PIVD 

in the estimation of conditional VaR using about fourteen international stock market indices. 

Non-normality of returns were modelled to give a reason for the dynamic volatility using a 

combination of GARCH model and PIVD.  As time goes on, many researches that applied the 

Pearson method of distributions came out with reports that PIVD enhanced the log-likelihood, 

and accurate VaR results at high confidence levels can be obtained, which indicated that it is 

better in performance. Stavroyiannis et al. (2012) and Stavroyiannis (2013) examined a 

TGARCH model of Glosten et al. (1993b), considering the notable daily Standard and Poor’s 

(S&P500) index. Stavroyiannis (2013) -produced results proving that at a high confidence 

level, the PIVD outshines the skewed t-Student. Stavroyiannis (2016), tested the efficiency of 

the APARCH model for a residual after standardized modelling. It was on record that the 

APARCH model alongside the standardized Pearson type IV distribution generated a great 

accuracy. 

 

As a result of the political instability in many African countries which has a huge effect on 

their market structure, stock market research has been limited. Brooks et al. (1997) worked on 

examining the effect of political change in the South African stock market. They discovered 

that ARCH/GARCH model is adequate for South African market and more complex GARCH 

model is needed for the post 1990 period. Makhwiting et al. (2012) employed the ARMA (0,1)- 

GARCH (1,1) model in modelling the volatility of this market and most recently, Huang et al. 

(2014) assessed the performance of different heavy-tailed distributions. However, none 

considered a model that can capture volatility clustering, asymmetric effect and heavy-tailed 

behaviour. Thus, this article uses the APARCH (1,1) model to capture volatility clustering and 

asymmetric effect and uses the heavy-tailed distribution to capture the heavy-tailedness. 
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We are not aware of any literature relating to an application of APARCH (1,1)-heavy tailed 

model to the South Africa market. Since the performance of VaR model depends on the quality 

of the distributional assumptions. Therefore, the main contribution of this study is to compare 

the predictive power of APARCH model combined with different heavy-tailed distributions 

such as:  Pearson Type-IV distribution, stable distribution, GPD and GEVD and also compare 

it with an APARCH model with skewed Student t innovation that has been proven in the 

literature to be a good model.  

 

1.4 Stylized Facts of Asset Returns 
 

Many asset returns share some common statistical properties which include 

 Absence of autocorrelations: Apart from the cases of intraday activities, the 

significance of autocorrelation of asset returns is almost negligible. 

 Heavy-tails: the tails of the unconditional distribution of returns tends to be 

asymptotically equivalent to a Pareto law which means exhibiting power-law behaviour 

and the lower values of the tail index express heavy-tailed. However, making the tail 

shape determination strenuous. 

 Gain/loss asymmetry: Stock prices tend to exhibit large downward fall, but do not 

produce an equal upward rise.  

 Volatility clustering: It is observed from studies that events with high volatility cluster 

over time. This is linked to the fact that the change in volatility is usually positively 

autocorrelated within a few days. 

 Conditional heavy tails: Upon regularising returns as a result of volatility clustering, 

heavy tails is still experienced in the residuals time series.  

 Leverage effect: most times, changes in volatility of an asset exhibit negative 

correlation with the changes in returns of the asset. 

It is important to develop a model that will account for most of these stylized facts in any asset 

returns, however it is rare to get a model capturing all the stylized properties of asset returns. 
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1.5 Problem Statement 
 

An adequate Value-at-Risk (VaR) model for predicting stock price enhances investment. In 

order to attract foreign business investors in emerging markets, it is vital to have an overview 

of the market buoyancy so as to predict its risk rate and frailty nature (Bucevska and Bucevska, 

2012). It has been found in literature that an adequate and robust VaR model must be able to 

capture current volatility clustering. Brooks and Persand (2003) stated the significance of 

asymmetry in the VaR framework, and recommended it be integrated into volatility 

specification models. However, Ortiz and Arjona (2001) studied various stock markets using 

GARCH models and observed that there is no single GARCH model capable of efficiently 

describing the volatility of stock returns in the listed markets. Ortiz and Arjona (2001), 

suggested that using different GARCH models for each market that is ‘the best models seem 

adequate’ is most appropriate. In addition, Mittnik and Paolella (2000) recommended extended 

structures useful in enhancing a VaR forecast in terms of the distribution and the volatility 

operation. It has also been extensively proven in the literature that the performance of VaR 

model depends on the quality of the distributional assumptions. In an emerging market, a model 

that assumes normal distribution is a weak model (Živković and Aktan, 2009). It is not a good 

thing to have an unreliable risk estimate. It is a known fact that there is no singular model that 

is most efficient in estimating VaR for every market condition. Thus, the purpose of this study 

is to identify an appropriate VaR model which captures volatility via an appropriate GARCH 

framework combined with a heavy-tailed distribution for South African market.  

 

1.6 Aim and Objectives 
 

The main aim of embarking on the current research was to obtain the best possible robust VaR 

model for the South African market, by assessing the applicability of APARCH model 

combined with heavy- tailed distribution on the South African market similar to the proposed 

filtered historical simulation by Barone-Adesi et al. (1998).  

This was achieved by: 

 Fitting an APARCH model to capture volatility clustering in the ALSI returns. 

 Extracting the standardized residuals of the APARCH model. 
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 Fitting the heavy-tailed distributions, namely Generalized Pareto Distribution (GPD), 

Generalized Extreme Value Distribution (GEVD), Pearson type IV distribution (PIVD) 

and stable distribution to the standardized residuals. 

 Estimating VaR for the ALSI returns. 

 Backtesting the VaR models to check for model adequacy and selecting the robust 

model. 

 

1.7 Significance of the study 
 

This study is important in ascertaining the applicability of APARCH-GPD model, APARCH-

GEVD, APARCH-PIVD and APARCH-stable model to South African market’s risk. It also 

adds candidate models for estimating VaR for the South African market. The final result of this 

study will help investors, risk managers, portfolio managers and academics who are interested 

in the risk associated with the South African market. 

 

1.8 Research Layout 
 

Chapter 2 of this research work reviews the theoretical framework of financial volatility model. 

The theoretical foundation of extreme value theory, stable distribution, and Pearson Type IV 

distribution are reviewed in chapter 3, chapter 4 and chapter 5 respectively. In chapter 6, the 

methods of application employed in this thesis is discussed. In chapter 7 we applied the 

APARCH model and the heavy-tailed distributions to the ALSI returns. Chapter 8 contains the 

conclusion part as a result of an engaging combination of APARCH model and heavy-tailed 

distribution as a research tool. It also outlines the possible extensions and improvements to the 

used models. 
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CHAPTER 2 

 VOLATILITY MODELS 
 

2.1 Introduction 
 

The aim of this chapter is to review the theoretical framework of a financial volatility model. 

Section 2.2 some basic concepts in financial time series is discussed. Section 2.3 - the basic 

structure of financial volatility model is discussed. In Section 2.4, the mean model is considered 

while Section 2.5 treated the volatility model by reviewing some GARCH model and their 

properties. Section 2.6 reviewed parameter estimation of GARCH models based on maximum 

likelihood estimation (MLE). 

 

2.2 Basic Concept 
 

In this section, some basic concepts in financial time series are defined in details below. 

 

2.2.1 Stationarity 
 

Stationarity is a critical part of time series and most of the analysis completed on financial time 

series involve stationarity. It is a suitable assumption that allows the description of statistical 

properties in a time series (Nason, 2008). The statistical properties of a stationary time series 

remain constant through time period of interest that is the periodic variations or seasonality 

does not occur. In other words, a time series is said to be stationary if the mean and variance 

remains constant over time and the covariance (correlation) between the series 𝑋𝑡 and 𝑋𝑡+𝑘 

depend on the time difference, (lag) only. For instance, if the joint distribution of the 

observation 𝑋𝑡, 𝑋𝑡+1, … , 𝑋𝑡+𝑛 and 𝑋𝑡+𝑘, 𝑋𝑡+𝑘+1, … , 𝑋𝑡+𝑘+𝑛 is the same then, the time series is 

said to be strictly stationary. That is: 

                                                        𝐸(𝑋𝑡) = 𝜇𝑡 = 𝜇 

 

Var(𝑋𝑡) = 𝜎𝑡
2 = 𝜎2 

and  
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𝛾𝑘 = cov(𝑋𝑡, 𝑋𝑡+𝑘) = 𝐸[(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑘 − 𝜇)] 

 

where 𝛾𝑘, 𝑘 = 0,1,2, …  is the auto-covariance function at lag k, and the auto-covariance at lag 

𝑘 =  0, i.e. 𝛾0 is the variance of the time series. 

 

2.1.2 Serial Correlation 
 

There are numerous circumstances, especially in finance, where sequential observations of a 

stochastic time series will exhibit correlation. Correlation occurs when the behaviour of 

sequential observations influence one another in a dependent way. One noteworthy case 

happens in mean-reverting pairs trading. Mean-inversion appears as the correlation between 

successive observations in time series (Halls-Moore, 2015b).  

 

It is important to be able to recognize the structure of these correlations, as they will permit us 

to extraordinarily enhance our forecasts. Moreover, it will enhance the authenticity of any 

simulated time series in light of the model. This is greatly valuable for enhancing the adequacy 

of risk management techniques. If the sequential observations of a time series possess 

correlation, then the series exhibit serial correlation (or autocorrelation). Mathematically, the 

serial correlation or autocorrelation of lag k, 𝜌𝑘 of a second order stationary time series is given 

by:  𝜌𝑘 =
𝛾𝑘

𝛾0
  

 

2.2.3 Conditional Heteroskedasticity 
 

Most assets price possesses conditional heteroskedastic. The fundamental need for examining 

conditional heteroskedasticity is volatility of asset returns. In the event that we have a series of 

observations, we say that the series is heteroskedastic if there are sure subsets, of observations 

inside a set of the series that have a variance different from the other observations. For example, 

in a non-stationary time series that shows seasonality or trending effects, whereby variance 

increases as the seasonality or the trend increase. Be that as it may, in finance time series there 

are numerous reasons why an increment in variance is correlated to a further increment in 

variance (Halls-Moore, 2015a).  
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Accordingly, when a time series shows autoregressive conditional heteroskedasticity, it can be 

said that it has the ARCH effect or exhibit volatility clustering. 

  

2.3 Basic Structure of Financial Volatility Model 
 

A common idea of volatility modelling with GARCH is the serially uncorrelated nature of log 

return or manifesting a negligibly small degree of serial correlation (Tsay, 2013). As a way of 

putting volatility model in the right perspective, it will enrich knowledge by identifying 

conditional mean and variance of the log return in this review. 

 

Let 𝑟𝑡   represent- the daily log return of the financial time series at time 𝑡, given by; 

 

𝑟𝑡 = ln (
𝑃𝑡
𝑃𝑡−1

)                                                                                                                                     (2.1) 

where 𝑃𝑡 is the stock price at time 𝑡. 

 

Then, Tsay (2013) defined the conditional mean of the 𝑟𝑡 given 𝐹𝑡−1 as; 

 

𝜇𝑡 = E(𝑟𝑡|𝐹𝑡−1) 

 

and conditional variance of the 𝑟𝑡 given 𝐹𝑡−1as; 

 

𝜎𝑡
2 = Var(𝑟𝑡|𝐹𝑡−1) =  E([𝑟𝑡 − 𝜇𝑡]

2|𝐹𝑡−1), 

where, 𝐹𝑡−1 represents the past information at pre-set time, 𝑡 − 1, which comprises all linear 

functions of the past returns. 

 

If 𝑟𝑡~ARMA (p,q), then 

 

𝑟𝑡 = 𝜇𝑡 + 𝑍𝑡                                                                                                                                        (2.2) 

where  

𝜇𝑡 = 𝜙𝑜 +∑𝜙𝜄

𝑝

𝚤=1

𝑟𝑡−𝜄 −∑𝜃𝑗

𝑞

𝑗=1

𝑍𝑡−𝑗  .                                                                                              (2.3) 
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This is referred to as the mean equation for 𝑟𝑡  and 𝑍𝑡   is the return innovation/shock at time 𝑡 

given as: 

 

𝑍𝑡 = 𝜎𝑡𝜀𝑡                                                                                                                                               (2.4) 

where 𝜀𝑡 is sequence of identical and independent random variable with mean zero and variance 

one. While; 

 

𝜎𝑡
2 = Var(𝑟𝑡|𝐹𝑡−1) = Var(𝑍𝑡|𝐹𝑡−1).                                                                                              (2.5) 

 

This is referred to as the volatility equation for 𝑟𝑡. The manner in which the conditional variance 

σt
2 evolves over time distinguishes one volatility model from one another.  

 

2.4 The Mean Model 
 

The model for 𝜇𝑡 in Equation (2.3) is referred to as the mean model for 𝑟𝑡. The removal of 

possible linear dependence in the data is achieved by specifying the mean model; this is the 

same as to remove sample mean from the data. This is practised when the sample mean is 

substantively not zero. Another reason is that the residuals of the ARMA model can be 

relevantly useful in identifying the presence of ARCH effects. The mean models of choice 

usually give residual with white noise and at the same time having the ARCH effect. 

 

ARMA Models: The ARMA models came into existence through Box et al. (2015). They are 

generally employed in the analysis involving time series as a result of its ability to estimate 

many stationary processes. In finance return series, ARMA models are not usually used but the 

idea is of high relevance on modelling volatility (Tsay, 2013). In the real sense, ARMA 

combines and summarises the knowledge of AR and MA models into a simple form which 

keeps the number of parameters involved relatively small, resulting in closeness in parameter 

description. 

 

Autoregressive (AR) Model is a model that exclusively estimates future values based on the 

previous values of the time series. An AR model for 𝑝 ≥ 1 can be defined using  

 

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 +⋯+ 𝜙𝑝𝑟𝑡−𝑝 + 𝑍𝑡 
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where 𝑍𝑡 is a sequence of independent and identically distributed random variable with mean 

zero and variance 𝜎2 known as white noise. 

 

Taking a vivid look at the model illustrated above, it is not a task to demonstrate that 𝑋𝑡 is a 

linear regression function through past values. Since its implementation is easy, this method 

remains the most employed model of time series. 

 

Moving Average (MA) Model: is a model where estimates of future values are exclusively 

estimated based on past shocks.  An MA process with a for 𝑞 ≥ 1is likewise defined using 

 

𝑟𝑡 = 𝑍𝑡 − 𝜃1𝑍𝑡−1 −⋯− 𝜃𝑞𝑍𝑡−𝑞 

 

An MA model suggests that a time series is a moving average of a white noise process while 

𝑟𝑡 and 𝑟𝑡−ℎ remain uncorrelated.  AR(p) may be identified as an infinite-order of a MA process 

and vice versa. 

 

Autoregressive Moving Average (ARMA) Model: is a model that combines AR and MA 

model ARMA model is defined as: 

 

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 +⋯+ 𝜙𝑝𝑟𝑡−𝑝 + 𝑍𝑡 − 𝜃1𝑍𝑡−1 −⋯− 𝜃𝑞𝑍𝑡−𝑞 

 

ARMA models are commonly used in the time series analysis because of their flexibility in 

estimating many stationary processes. But, they do not have advantages in nonlinear 

phenomena (Fan and Yao, 2003). 

 

2.5 The Volatility Models 
 

Many new models with distinctive features have been proposed since the invention of 

Bollerslev’s GARCH model. The existing models can be categorized into symmetric and 

asymmetric models. In the former model, the conditional variance does not depend on the sign 

of the underlying assets r𝑡, but only on the magnitude. This property is always in line with 

empirical results where leverage effect is frequently present. In other words, volatility increases 

for negative return shocks more than positive return shocks of the same magnitude, i.e. bad 
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news produces volatility more than good news reduces the volatility. These features are more 

or less captured in asymmetric models. 

 

2.5.1 Symmetric GARCH Models 
 

2.5.1.1 ARCH Model 

 

The meaning of Autoregressive Conditional heteroskedasticity (ARCH process) can be 

summarized as follow (Karlsson, 2002): 

 Autoregressive property on a fundamental level implies that old occasions leave 

 waves behind a certain time after the real time of the action. The process relies on its 

 past. 

 Conditional heteroskedasticity implies the variance (conditional on the available data) 

 shifts and relies on old estimations of the process. Therefore, one can say that the 

 process has a transient memory and that the process' behaviour is affected by this 

 memory. 

The two underpinning ideas of the ARCH model are: the shock 𝑍𝑡 of an asset return is serially 

uncorrelated but dependent and the dependency of 𝑍𝑡  can be explained with a simple quadratic 

function of its lagged values (Tsay, 2013). In ARCH model, the volatility of the process at time 

𝑡 is given as:  

 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖𝑍𝑡−𝑖

2

𝑝

𝑖=1

                                                                                                                        (2.6) 

under the condition that 𝛼0 > 0 and 𝛼𝑖 ≥ 0 for any value of 𝑖. 

 

The setbacks of ARCH model are identified by Karlsson (2002): 

 It requires many parameters to correctly describe the volatility process 

 It cannot model asymmetric effects of both positive and negative shocks 

because it only uses the squared shocks as variable to model conditional 

variance. 
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 Lastly, it imposes restrictive intervals for the parameters only if it is finite fourth 

moments and does over envisage volatility since it reacts slowly to large isolated 

shocks. 

 

2.5.1.2 GARCH Model 

 

However, the empirical study indicates that high ARCH order has to be picked in order to 

capture the dynamic nature of the conditional variance. High ARCH order means that many 

parameters have to be estimated and the calculations become more involving.  

 

After four years of introducing Engel’s ARCH process, Bollerslev (1986) purported a natural 

solution to the problem of high ARCH orders using generalised ARCH (GARCH) model and 

the use of infinite ARCH specification. This specification allows to significantly reduce 

estimated parameters in number. 

 

The ARCH model was expanded to the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) by Bollerslev (1986) which possesses the same main properties 

with ARCH but only differs in the sense that it requires less parameters to correctly model the 

volatility process. 

The volatility equation for the GARCH (p,q) model is given as: 

 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖𝑍𝑡−𝑖

2

𝑝

𝑖=1

 +∑𝛽𝑗

𝑞

𝑗=1

𝜎𝑡−𝑗
2                                                                                                (2.7) 

under the condition that 𝛼0 > 0, 𝛼𝑖, 𝛽𝑗  ≥ 0 and 𝛼 + 𝛽 < 1 

  

The parameters 𝛼𝑖 , 𝑖 = 1,2, … , 𝑝 measures volatility reaction to developments in the market 

and 𝛽𝑗 , 𝑗 = 1,2, … , 𝑞 capture the degree of shocks persistence brought about by extreme values 

of conditional variance. It shows the conditional variance as a linear function of previous data 

permitting the returns’ conditional heteroskedasticity (Curto et al., 2009).  

 

The GARCH (1,1) model is adequate to catch all the volatility clustering in the data (Brooks, 

2008). In most observational applications (French et al.,1987; Pagan and Schwert, 1990; 
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Franses and Van Dijk, 1996; Gokcan, 2000) the fundamental GARCH (1,1) model fits the 

varying conditional variance of most financial time series sensibly well. The primary 

formulation of the GARCH (1,1) model depicts the ARCH component and the second one 

shows dynamic average. Specifically, the GARCH (1,1) model is given by: 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑍𝑡−1

2 + 𝛽1𝜎𝑡−1
2                                                                                                          (2.8) 

 

The properties of GARCH models can easily be observed from basic model Equation (2.8).The 

GARCH (1,1) shows that  large 𝑍𝑡−1
2  or 𝜎𝑡−1

2  will lead to a large 𝜎𝑡
2. GARCH models can model 

volatility clustering but they cannot model the asymmetric effect. A GARCH model is akin to 

ARCH model in the modelling of volatility if not for the addition of lagged conditional 

variances, 𝜎𝑡−1
2  coupled with lagged squared returns,  𝑍𝑡−1

2 . This helps to decreases the quantity 

of parameters that need to be estimated. Conditional variance when considering                 

GARCH (1, 1) model can be modified as below; 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑍𝑡−1

2 + 𝛽1(𝛼0 + 𝛼1𝑍𝑡−2
2 + 𝛽1𝜎𝑡−2

2 ) 

 

It demonstrates that the GARCH (1,1) model is similar to an ARCH(∞) model with a certain 

structure for the parameters' value of the lagged returns 𝑍𝑡−𝚤
2 .  

 

Besides, as the ARCH(1) could be written as an AR(1) model of the squared returns, the 

GARCH(1,1) model can similarly be written as an ARMA(1,1) model on the squared returns. 

 

Suppose  𝜂𝑡 = 𝑍𝑡
2 − 𝜎𝑡

2, then   𝜎𝑡
2 = 𝑍𝑡

2 − 𝜂𝑡.  

By substituting 𝜎𝑡−1
2 = 𝑍𝑡−1

2 − 𝜂𝑡−1 into GARCH (1,1) in Equation 2.8, then; 

 

𝑍𝑡
2 − 𝜂𝑡 = 𝛼0 + 𝛼1𝑍𝑡−1

2 + 𝛽1[𝑍𝑡−1
2 − 𝜂𝑡−1] 

 

𝑍𝑡
2  = 𝛼0 + (𝛼1 + 𝛽1)𝑍𝑡−1

2 − 𝛽1𝜂𝑡−1 + 𝜂𝑡 

 

This shows an ARMA (1,1) for the squared returns of  𝑍𝑡
2. This connection to ARMA model 

suggests that the hypothesis behind the GARCH model may be firmly identified with that of 

ARMA model, which is entirely simple and broadly known (Karlsson, 2002). According to 
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Tsay (2013), by using the unconditional mean of ARMA model, the unconditional variance of 

𝑍𝑡 can be written as  

 

E(𝑍𝑡
2)  =

𝛼0
1 − (𝛼1 + 𝛽1)

                                                                                                                   (2.9) 

 

The unconditional kurtosis of 𝑍𝑡 is given as 

 

 
E(𝑍𝑡

4)

[E(𝑍𝑡
2)]2

=
3[1 − (𝛼1 + 𝛽1)

2]

1 − 2𝛼1
2 − (𝛼1 + 𝛽1)2

> 3                                                                                     (2.10) 

given that 1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2 > 0 

 

Since the unconditional kurtosis is greater than 3, then GARCH (1,1) has a tail heavier than 

that of normal distribution. 

 

2.5.1.3 The Integrated GARCH Model (IGARCH) 

 

The name Integrated GARCH (IGARCH) was authored by Bollerslev et al. (1994). Here, 

"integrated" means that there may be a unit root issue which could prompt the existence of a 

non-stationary form of the time series 𝑋𝑡, -i.e. it exhibits an infinite variance.  

 

Therefore, IGARCH models are unit-root GARCH models. Compared to ARMA models, a 

key element of IGARCH models is that the effect of the past square shocks on 𝑍𝑡
2 is constant 

(Tsay, 2013). The volatility process of the IGARCH (1,1) can be written as: 

 

  𝜎𝑡
2 = 𝛼0 + (1 − 𝛽1)𝑍𝑡−1

2 + 𝛽1𝜎𝑡−1
2                                                                                             (2.11) 

 

The significant contrast between GARCH and IGARCH is that the unconditional variance of 

𝑍𝑡 and that of 𝑟𝑡 are not characterized under the IGARCH (1,1) model. This appears to be 

difficult to justify for log return series. From the theoretical purpose of view, the IGARCH 

process may be brought about by occasional level shifts in volatility (Tsay, 2013). 
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2.5.2 Asymmetric GARCH Models 
 

In various literature studies, it has been shown that the sign of the shock is consequential 

(Bekaert and Guojun, 2000; Bucevska, 2013).  The conclusion of the comprehensive literature 

studies show that negative returns have a greater volatility when compared to positive returns 

of equivalent size. In simplified words, bad news increases volatility than good news (Angabini 

and Wasiuzzaman, 2011). 

 

For asymmetry to be captured in return volatility, a new class of models was developed and 

called asymmetric ARCH models. These are the Exponential GARCH (EGARCH), Threshold 

GARCH (TGARCH) models, and Asymmetric Power ARCH (APARCH).  

 

2.5.2.1 The Exponential GARCH Model (EGARCH) 

 

Nelson (1991), suggested the first extension to GARCH called Exponential GARCH 

(EGARCH) to model the asymmetric effects of both positive and negative asset returns. The 

volatility process of the EGARCH (p,q) can be written as:  

 

ln(𝜎𝑡
2) = 𝛼𝑜 +∑𝛼𝑖𝑔(𝜀𝑡−1

𝑝

𝑖=1

) +∑𝛽𝑗 ln 𝜎𝑡−1
2

𝑞

𝑗=1

                                                                        (2.12) 

where 

 

𝑔(𝜀𝑡) = 𝛾1𝜀𝑡 + 𝛾2[|𝜀𝑡| − E(|𝜀𝑡|)] 

 

So that 𝛾1𝜀𝑡 is the sign effect and 𝛾2[|𝜀𝑡| − 𝐸(|𝜀𝑡|)] is the magnitude effect, 𝛾1 and 𝛾2 are real 

constants. The conditional variance of the EGARCH model is in logarithmic form that 

guarantees its non-negativity without the need to force extra non-negativity limitations. 

 

The mean of  [𝑔(𝜀𝑡)] is zero since the mean of 𝜀𝑡 and [|𝜀𝑡| − E(|𝜀𝑡|)] are zero. As a result 

𝑔(𝜀𝑡)  permit the conditional variance to response to asymmetric effects which can clearly be 

seen by rewriting 𝑔(𝜀𝑡) in the following form: 
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𝑔(𝜀𝑡) = {
(𝛾1 + 𝛾2)𝜀𝑡 − 𝛾2E(|𝜀𝑡|), 𝜀𝑡 ≥ 0
(𝛾1 − 𝛾2)𝜀𝑡 − 𝛾2E(|𝜀𝑡|), 𝜀𝑡 < 0

 

 

If 𝜀𝑡 ≥ 0 the positive shocks have an impact of (𝛾1 + 𝛾2) on the conditional variance and if 

𝜀𝑡 < 0 the negative shocks have an impact of (𝛾1 − 𝛾2) on the condition variance. To ascertain 

a non-negative conditional variance, no restrictions are required on the parameters which are 

contrary to GARCH models. As a result, it is able to model asymmetrical effect, volatility 

persistence and mean reversion. The pertinent importance of EGARCH over GARCH is that it 

permits positive and negative shocks to have different impact on the volatility (Karlsson, 2002). 

 

2.5.2.2 The Threshold GARCH Model (TGARCH) 

 

Glosten et al. (1993a) proposed another means of modelling the asymmetric effects of positive 

and negative asset returns called TGARCH or GJR-GARCH. The volatility equation is shown 

below: 

 

𝜎𝑡
2 = 𝛼0 +∑(𝛼𝑖 + 𝜔𝑖𝐺𝑡−𝑖)𝑍𝑡−𝑖

2 +∑𝛽𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝜎𝑡−𝑗
2                                                                         (2.13) 

where 𝐺𝑡−𝑖 is an indicator variable for negative 𝑍𝑡−𝑖, given as 

 

𝐺𝑡−𝑖 = {
1, 𝑍𝑡−𝑖 < 0
0, 𝑍𝑡−𝑖 ≥ 0

 

 

Under the condition that  𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝜔𝑖 ≥ 0, and 𝛽𝑗 ≥ 0 in order to ensure nonnegative 

conditional variance. From this model, the impact of 𝑍𝑡−𝑖
2  on 𝜎𝑡

2 is dependent on the sign of 

𝑍𝑡−𝑖 which permits the model to accommodate asymmetric effect. As a result, the positive 

shock have an impact of  𝛼𝑖𝑍𝑡−𝑖
2  on the conditional variance while the negative shock has an 

impact of (𝛼𝑖 +𝜔𝑖)𝑍𝑡−𝑖
2  on the conditional variance. 

 

The GJR-GARCH model are fundamentally the same to the EGARCH model which both have 

the capacity to capture the impact of both positive and negative shocks. As a result, the 

TGARCH and the EGARCH might both be considered for the same data hence, it is important 

to find a criterion for choosing between the two models (Karlsson, 2002). 
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2.5.2.3 Asymmetric Power ARCH (APARCH) MODEL 

 

Ding et al. (1993), introduced the APRACH model as an extension of the GARCH model. The 

APARCH generalized both the ARCH and GARCH models. The structure of the volatility 

equation is given as (Tsay, 2013) 

 

𝜎𝑡
𝛿 = 𝜔 +∑𝛼𝑖(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)

𝛿

𝑝

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑞

𝑗=1

                                                                     (2.14) 

Under the condition that 𝜔 > 0,  𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, and  0 ≤ ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑗

𝑞
𝑗=1 ≤ 1, where 𝛼𝑖 

and 𝛽𝑗 are respectively the ARCH and GARCH coefficients, 𝛾𝑖 is the leverage coefficient such 

that when 𝛾𝑖 is positive it implies that the negative shocks has stronger impact on price volatility 

than the positive shocks, and 𝛿 is the positive real number which functions as the symmetric 

power transformation of 𝜎𝑡. Considering the case, where 𝛿 = 1 for  𝑝 = 𝑞 = 1, then the 

volatility equation becomes: 

 

𝜎𝑡 = 𝜔 + 𝛼1(|𝑍𝑡−1| + 𝛾1𝑍𝑡−1) + 𝛽1𝜎𝑡−1 

 

In this case, the model uses volatility directly and it is more robust to outliers. Recall, Equation 

(2.5) shows that the conditional variance of 𝑟𝑡 is given as: 𝜎𝑡
2 = Var(𝑟𝑡|𝐹𝑡−1) = Var(𝑍𝑡|𝐹𝑡−1) . 

Thus, the conditional variance of 𝑟𝑡 for the APARCH model is  

 

𝜎𝑡
𝛿 = Var(𝑟𝑡|𝐹𝑡−1) 

 

Therefore, if 𝑡 → ∞, then the conditional variance of 𝑍𝑡 would be 

 

𝜎𝑡
𝛿 =

𝜔

1 − ∑ 𝛼𝑖(1 − 𝛾𝑖)
𝑝
𝑖=1 − ∑ 𝛽𝑗

𝑞
𝑗=1

                                                                                          (2.15) 

 

The idea behind the APARCH model is in the introduction of the parameter 𝛿. The power factor 

𝛿 enhances the flexibility character of the proposed GARCH-type model, allowing a previous 

choice of the arbitrary power to be avoided. The APARCH model is a nested model which 

include: 
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 ARCH Model of Engle when 𝛿 = 2, 𝛽 = 0, and 𝛾 = 0 

 GARCH Model of Bollerslev when 𝛿 = 2, and γ=0 

 TGARCH Model of Glosten, Jagannathan, and Runkle when δ=2 

 TS-GARCH (Taylor and Schwert GARCH) Model of Taylor and Schwert when δ=1 

 and γ=0 

 TARCH (Threshold ARCH) Model of Zakoian when δ=1 

 NARCH ( Nonlinear ARCH) Model of Higgens and Bera when β=0, and γ=1 

 EGARCH Model of Nelson when δ→0 

 

The Stationarity of the APARCH (1,1) model. 

Given that {𝑍𝑡−𝑖 > 0} = {𝜀𝑡−𝑖 > 0}, then according to Francq and Zakoian (2010), 

 

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝑎𝑖(𝜀𝑡−𝑖)𝜎𝑡−𝑖

𝛿

max[𝑝,𝑞]

𝑖=1

                                                                                                    (2.16) 

where 

𝑎𝑖(𝑘) = 𝛼𝑖(|𝑘| − 𝛾𝑘)
𝛿 + 𝛽𝑖 

                                                                       = 𝛼𝑖(1 − 𝛾𝑖)
𝛿|𝑘|𝛿𝕀[𝑘>0] + 𝛼𝑖(1 + 𝛾𝑖)

𝛿|𝑘|𝛿𝕀[𝑘<0] + 𝛽𝑖 

for 𝑖 = 1,… ,max[𝑝, 𝑞] 

 

Thus, the strict stationarity condition of the process is 

 

𝐸[log[𝛼1(1 − 𝛾1)
𝛿|𝜀𝑡|

𝛿𝕀[𝜀𝑡>0] + 𝛼1(1 + 𝛾1)
𝛿|𝜀𝑡|

𝛿𝕀[𝜀𝑡<0] + 𝛽1]] < 0                                (2.17) 

 

For the APARCH (1,0) model  

 

                   log[𝛼1(1 − 𝛾1)
𝛿|𝜀𝑡|

𝛿𝕀[𝜀𝑡>0] + 𝛼1(1 + 𝛾1)
𝛿|𝜀𝑡|

𝛿𝕀[𝜀𝑡<0]]

= log(1 − 𝛾1)
𝛿𝕀[𝜀𝑡>0] + log(1 + 𝛾1)

𝛿 𝕀[𝜀𝑡<0] + log𝛼1|𝜀𝑡|
𝛿 . 

 

It shows that if the distribution of 𝜀𝑡 is symmetric, then the strict stationarity condition becomes 

|1 − 𝛾1|
𝛿
2⁄ |1 + 𝛾1|

𝛿
2⁄ 𝛼1 < 𝑒

−E(log|𝜀𝑡|
𝛿). 
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In the case of |𝛾1| = 1, the model is strictly stationary for any value of 𝛼1. The solution for 

strict stationarity condition given in Equation 2.17 is 

 

𝑍𝑡 = 𝜎𝑡𝜀𝑡,          𝜎𝑡
𝛿 = 𝜔 + ∑ 𝑘1𝜀𝑡 …

∞

𝑚=1

𝑘1𝜔𝜀𝑡−𝑚+1                                                                   (2.18) 

 

Assuming E|𝜀𝑡|
𝛿 < ∞, the condition for the existence of E(𝑍𝑡

𝛿) and E(𝜎𝑡
𝛿) is 

 

E(𝑘1𝜀𝑡) = 𝛼1{(1 − 𝛾1)
𝛿E|𝜀𝑡|

𝛿𝕀[𝜀𝑡>0] + (1 + 𝛾1)
𝛿E|𝜀𝑡|

𝛿𝕀[𝜀𝑡<0]} + 𝛽1 < 1                      (2.19) 

 

which reduces to 

 

1

2
E|𝜀𝑡|

𝛿𝛼1[(1 − 𝛾1)
𝛿 + (1 + 𝛾1)

𝛿] + 𝛽1 < 1                                                                           (2.20) 

when the distribution of 𝜀𝑡 is symmetric, with 

E|𝜀𝑡|
𝛿 = √

2𝛿

𝜋
Γ (
1 + 𝛿

2
) 

given that 𝜀𝑡 follows a normal distribution. 

 

2.6 Maximum Likelihood Estimation (MLE). 
 

Maximum-likelihood estimation (MLE) method is the most common method for the estimation 

of GARCH model (Karlsson, 2002). Let 𝐿(𝜂|𝑍1, 𝑍2 , … , 𝑍𝑇) to be the likelihood function 

defined as a function of the parameters with the data, where 𝜂 =  (𝛾, 𝛿, 𝜃) are the set of 

parameters needed to be estimated in the case of APARCH (p,q) model, given that 𝛾 and 𝜃 are 

defined as 𝛾 = (𝛾1, 𝛾2… , 𝛾𝑝) and 𝜃 =  (𝜔,  𝛼1 , … , 𝛼𝑝, 𝛽1 , … , 𝛽𝑞 ). Also, given that the data 

𝑍1, 𝑍2 , … , 𝑍𝑇 are not independent, then the joint density function is the product of the 

conditional density functions are given as: 

 

𝑓(𝑍1, 𝑍2, … , 𝑍𝑇|𝜂) = 𝑓(𝑍𝑇|𝐹𝑇−1)𝑓(𝑍𝑇−1|𝐹𝑇−2)…𝑓(𝑍1)                                                   (2.21) 

 

So that the likelihood function can be written as: 
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L(𝜂|𝐹𝑡−1) =∏𝑓(𝑍𝑡|𝐹𝑡−1)

𝑇

𝑡=1

                                                                                                       (2.22) 

Then, the log-likelihood function is: 

 

ℓ(𝜂|𝐹𝑡−1) = log[𝐿(𝜃|𝐹𝑡−1)] = log [∏𝑓(𝑍𝑡|𝐹𝑡−1)

𝑇

𝑡=1

]                                                       (2.23) 

where 𝐹𝑡  is information at time 𝑡, and 𝑓 is the density function of ɛ𝑡. 

 

Hence, the distribution of the error term will determine the likelihood function that will be used 

for estimation. Therefore, to specify any GARCH model, it is important to assume a specific 

distribution for the error term.  

In Equation 2.4, the innovation 𝑍𝑡  is given as; 

 

𝑍𝑡 = 𝜎𝑡𝜀𝑡.  

where 𝜀𝑡 is assumed to follow one of the following distribution namely; standard normal, 

standardized Student t, and skewed Student t distributions. Given the types of distribution 

assumed for the error term, the log-likelihood function can be divided into three, namely: 

Gaussian Quasi Maximum-Likelihood Estimation, Fat-Tailed Maximum-Likelihood 

Estimation, and the Skewed Maximum-Likelihood Estimation. 

 

 2.6.1 Gaussian Quasi Maximum-Likelihood Estimation 
 

Suppose that the error term 𝜀𝑡 is assumed to be normally distributed, then the innovation Zt  

also follows normal (Gaussian) distribution with zero mean and variance 𝜎𝑡
2. Therefore, the 

probability density function Zt is defined as: 

 

𝑓(𝑍𝑡) =
1

√2𝜋𝜎𝑡
2
exp (−

𝑍𝑡
2

2𝜎𝑡
2)                                                                                                    (2.24) 

So that the likelihood function from Equation 2.22 becomes: 

 

L(𝜂|𝐹𝑇−1) =∏
1

√2𝜋𝜎𝑡
2
exp (−

𝑍𝑡
2

2𝜎𝑡
2)

𝑇

𝑡=1

                                                                                    (2.25) 
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Consequently, the log-likelihood equation is given as: 

ℓ(𝜂|𝐹𝑇−1) = −
𝑇

2
ln(2𝜋) −

1

2
∑ln(𝜎𝑡

2)

𝑇

𝑡=1

−
1

2
∑

𝑍𝑡
2

𝜎𝑡
2

𝑇

𝑡=1

                                                              (2.26) 

 

Since ln(2𝜋) does not involve any parameter the log –likelihood can be simplified and re-

written as: 

 

ℓ(𝜂|𝐹𝑇−1) = −∑(
ln(𝜎𝑡

2)

2
+
𝑍𝑡
2

2𝜎𝑡
2)

𝑇

𝑡=1

                                                                                          (2.27) 

 

Therefore, we have: 

 

𝜕ℓ(𝜂|𝐹𝑇−1)

𝜕𝜂
=
1

2
∑(−

1

𝜎𝑡
2

𝜕𝜎𝑡
2

𝜕𝜂
−
1

𝜎𝑡
2

𝜕𝑍𝑡
2

𝜕𝜂
+
𝑍𝑡
2

𝜎𝑡
4

𝜕𝜎𝑡
2

𝜕𝜂
)

𝑇

𝑡=1

 

 

𝜕ℓ(𝜂|𝐹𝑇−1)

𝜕𝜂
=
1

2
∑(

𝑍𝑡
2 − 𝜎𝑡

2

𝜎𝑡
4

𝜕𝜎𝑡
2

𝜕𝜂
−
𝑍𝑡

𝜎𝑡
2

𝜕𝑍𝑡
𝜕𝜂
)

𝑇

𝑡=1

 

 

In order to differentiate the log-likelihood function with respect to 𝜂, it requires the 

computation of  
𝜕𝜎𝑡

𝛿

𝜕𝜂
 in the case of APARCH model which is given as 

 

 
𝜕𝜎𝑡

𝛿

𝜕𝜂
=
𝜕(𝜔 + ∑ 𝛼𝑖(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)

𝛿𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

𝛿𝑞
𝑗=1 )

𝜕𝜂
                                                     (2.28) 

Rewriting 𝜎𝑡
2 as (𝜎𝑡

𝛿)
2
𝛿⁄  leads to  

 

𝜕𝜎𝑡
2

𝜕(𝜃′, 𝛾′)
=
2𝜎𝑡

2

𝜕𝜎𝑡
𝛿

𝜕𝜎𝑡
𝛿

𝜕(𝜃′, 𝛾′)
 

and 

𝜕𝜎𝑡
2

𝜕𝛿
=
2𝜎𝑡

2

𝜕𝜎𝑡
𝛿
[
𝜕𝜎𝑡

𝛿

𝜕𝛿
−
𝜎𝑡
𝛿 ln(𝜎𝑡

𝛿)

𝛿
] 
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Thus, to obtain a tractable solution then 𝜎𝑡
𝛿  must be differentiated with respect to each 

parameter. According to Laurent (2003) it is better to set unobserved components to the sample 

average at the start of a recursion of the Equation 2.12 . That is  

 

|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖 =
1

𝑇
∑(|𝑍𝑠| + 𝛾𝑖𝑍𝑠)

𝛿

𝑇

𝑠=1

                     for  𝑡 ≤ 𝑖 

and 

𝜎𝑡
𝛿 = (

1

𝑇
∑𝑍𝑠

2

𝑇

𝑠=1

)

𝛿
2

                                                   for 𝑡 ≤ 0 

   

 Laurent (2003) obtained the 
𝜕𝜎𝑡

𝛿

𝜕𝛾
 as 

 

𝜕𝜎𝑡
𝛿

𝜕𝛾
=
𝜕𝜔

𝜕𝛾
+∑

𝜕𝛼𝑖(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)
𝛿

𝜕𝛾

𝑝

𝑖=1

+∑
𝛽𝑗𝜎𝑡−𝑗

𝛿

𝜕𝛾

𝑞

𝑗=1

                                                             (2.29) 

where  

(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)
𝛿 = {

(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)
𝛿−1𝑍𝑡−𝑖                   if  𝑡 > 𝑗

𝛿

𝑇
∑(|𝑍𝑠| + 𝛾𝑖𝑍𝑠)

𝛿−1

𝑇

𝑠=1

𝑍𝑠                   if 𝑡 ≤ 𝑗
 

and 
𝜕𝜎𝑡

𝛿

𝜕𝛾
= 0,     for 𝑡 ≤ 0. As t changes the derivative changes. 

 

 Laurent (2003) obtained 
𝜕𝜎𝑡

𝛿

𝜕𝛿
 as 

 

𝜕𝜎𝑡
𝛿

𝜕𝛿
=
𝜕𝜔

𝜕𝛾
+∑

𝜕𝛼𝑖(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)
𝛿

𝜕𝛿

𝑝

𝑖=1

+∑
𝛽𝑗𝜎𝑡−𝑗

𝛿

𝜕𝛿

𝑞

𝑗=1

                                                            (2.30) 

then 
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𝜕𝜎𝑡
𝛿

𝜕𝛿
= 𝛿∑[𝛼𝑖(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)

𝛿 ln(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)]
𝐹𝑡−𝑖

𝑝

𝑖=1

 

× [
1

𝑇
∑[(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)

𝛿 ln(|𝑍𝑠| + 𝛾𝑖𝑍𝑠)]
1−𝐹𝑡−𝑖

𝑇

𝑠=1

]

+∑𝛽𝑗[𝜎𝑡−𝑗
𝛿 ln(𝜎𝑡−𝑗)]

𝐹𝑡−𝑗

𝑞

𝑗=1

[−
1

𝑇
(
1

𝑇
∑𝑍𝑠

2

𝑇

𝑠=1

)

𝛿
2

    ln (
1

𝑇
∑𝑍𝑠

2

𝑇

𝑠=1

)]

1−𝐹𝑡−𝑗

(2.31) 

where 𝐹𝑡 = {
1, 𝑡 > 0
0, 𝑡 ≤ 0

 

 

 Finally, 
𝜕𝜎𝑡

𝛿

𝜕𝜃
 is given as 

 

𝜕𝜎𝑡
𝛿

𝜕𝜃
=
𝜕𝜎𝑡

𝛿

𝜕𝜃
=
𝜕𝜔

𝜕𝜃
+∑

𝛼𝑖𝜕(|𝑍𝑡−𝑖| + 𝛾𝑖𝑍𝑡−𝑖)
𝛿

𝜕𝜃

𝑝

𝑖=1

+∑
𝛽𝑗𝜎𝑡−𝑗

𝛿

𝜕𝜃

𝑞

𝑗=1

                                               (2.32) 

and 
𝜕𝜎𝑡

𝛿

𝜕𝛾
= 0     for 𝑡 ≤ 0. 

 

2.6.2 Heavy-tailed Maximum-Likelihood Estimation (MLE) 
 

The best way to manage a non-Gaussian error term is by assuming a non-Gaussian distribution 

for the error term that can explain the behaviour of the data better. Hence, the parameters will 

be estimated by using the non-Gaussian distribution in the likelihood function. This section 

will consider a non-Gaussian distribution known as Student 𝑡 Distribution.  

 

 2.6.2.1 MLE for Student t Distribution 

 

The Student t distribution was proposed by Praetz (1972) and Blattberg and Gonedes (1974) 

for modeling financial returns. If the error terms are assumed to follow a student t distribution 

then the innovation 𝑍𝑡 also follows symmetric student t distribution with 𝑤 degree of freedom 

and has a mean of zero and variance of   
𝑤

𝑤−2
 for 𝑤 > 2. The probability density function is 

given as: 
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𝑓(𝑍𝑡|𝑤) =
Γ (
𝑤 + 1
2 )

Γ (
𝑤
2)
√(𝑤 − 2)𝜋

1

𝜎𝑡
(1 +

𝑍𝑡
2

(𝑤 − 2)𝜎𝑡
2) ,     for 𝑤 > 2                                      (2.33) 

 

Then, the log-likelihood function can be written as: 

 

ℓ(𝜃|𝐹𝑇−1) = −
1

2
∑ln(𝜎𝑡

2)

𝑇

𝑡=1

−
𝑤 + 1

2
∑ln(1 +

𝑍𝑡
2

(𝑤 − 2)𝜎𝑡
2)

𝑇

𝑡=1

                                           (2.34) 

 

Therefore 

𝜕ℓ(𝜂|𝐹𝑇−1)

𝜕𝜂
= −

1

2
∑

1

𝜎𝑡
2

𝑇

𝑡=1

 
𝜕𝜎𝑡

2

𝜕𝜂
−
𝑤 + 1

2
∑

𝜕 ln (1 +
𝑍𝑡
2

(𝑤 − 2)𝜎𝑡
2)

𝜕𝜂

𝑇

𝑡=1

  

 

𝜕ℓ(𝜂|𝐹𝑇−1)

𝜕𝜂
= −

1

2
∑

1

𝜎𝑡
2

𝑇

𝑡=1

 
𝜕𝜎𝑡

2

𝜕𝜂
−

𝑤 + 1

2(𝑤 + 1)

1

1 +
𝑍𝑡
2

(𝑤 − 2)𝜎𝑡
2

∑
𝜕𝑍𝑡

2

𝜕𝜂

𝑇

𝑡=1

 

where 
𝜕𝑍𝑡

2

𝜕𝜂
= 𝜎𝑡

2 𝜕𝜀𝑡
2

𝜕𝜂
+ 𝜀𝑡

2 𝜕𝜎𝑡
2

𝜕𝜂
= 2𝜀𝑡𝜎𝑡

2 𝜕𝜀𝑡

𝜕𝜂
− 2𝜀𝑡𝜎𝑡

3 𝜕𝜎𝑡

𝜕𝜂
 

 

From the above 
𝜕𝜎𝑡

2

𝜕(𝜃′,𝛾′)
=

2𝜎𝑡
2

𝜕𝜎𝑡
𝛿

𝜕𝜎𝑡
𝛿

𝜕(𝜃′,𝛾′)
 and 

𝜕𝜎𝑡
2

𝜕𝛿
=

2𝜎𝑡
2

𝜕𝜎𝑡
𝛿 [
𝜕𝜎𝑡

𝛿

𝜕𝛿
−
𝜎𝑡
𝛿 ln(𝜎𝑡

𝛿)

𝛿
] 

 

The derivative of 𝜎𝑡
𝛿with the respect to 𝛾, 𝛿, and 𝜃 will follow the same steps as normal 

distribution above.  

 

2.6.3 Skewed Maximum-Likelihood Estimation 
 

Since Kon (1984) presented the Skewed Maximum-Likelihood Estimation, it has been set as 

standard practice in considering asymmetry of financial returns. Broadening the density 

function as described in Equation 2.18 by 𝜆, which is the skewness parameter gives skewed 

student t distribution and account for skewness and excess kurtosis. Hansen (1994), also 

described the density of the skewed student t distribution as positive skewness if 𝜆 is positive 

or negative skewness for negative 𝜆. The probability density function is given as: 
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𝑓(𝑍𝑡|𝜆, 𝑤) =

{
 
 

 
 

2

𝜆 +
1
𝜆

𝑠𝑔(𝜆[𝑠𝑍𝑡 +𝑚]|𝑤), 𝑍𝑡 < −
𝑚

𝑠

2

𝜆 +
1
𝜆

𝑠𝑔 (
𝑠𝑍𝑡 +𝑚

𝜆
|𝑤) , 𝑍𝑡 ≥ −

𝑚

𝑠

                                                      (2.35) 

where 𝑔(. ) is the pdf of the standardized student t distribution, 𝑚 and 𝑠 is the mean and 

variance of non-standardized skew student respectively given as 

 

𝑚 =
Γ(
𝑤 − 1
2 )√𝑤 − 2

√𝜋Γ (
𝑤
2)

(𝜆 −
1

𝜆
) 

and  

𝑠2 = (𝜆2 +
1

𝜆2
− 1) −𝑚2 

 

According to Hansen (1994), if 𝜆 =  0, then skewed student t distribution becomes a student t 

distribution.  

 

2.7 Conclusion  
 

In this chapter, basic concepts of financial time series, basic structure of financial volatility 

model, the mean model, the volatility model and MLE of GARCH model were reviewed.  
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CHAPTER 3 

EXTREME VALUE THEORY (EVT) 
 

3.1 Introduction 
 

 The aim of this chapter is to review the theoretical foundation of parametric EVT and the 

modelling technique for extreme events. Section 3.2 considers various modelling techniques 

used to describe an extreme event. The mathematical concepts and results that constitute the 

theoretical foundation of the extreme value modelling approach are presented. Sections 3.3 

consider the parameter estimation of the extreme value models based on maximum likelihood 

estimation. Sections 3.4 consider the problems with extreme value modelling.  

 

3.2 Extreme Value Modelling 
 

The peaks over threshold (POT) and the block maxima (BM) approaches are the two aspects 

to modelling events in extreme distribution (Gilli and Kellezi, 2006). Suppose 𝑋𝑖, where 𝑖 =

 1, … , 𝑛 are random variables which represents data of daily returns. The characteristic of each 

approach is identified in detail- below: 

 

Block maxima approach (BM): This type of approach demands selection of maximum values 

in every consecutive period. The selected observations are named block maxima while 

matching periodic extreme events.  

 

The block maxima approach which is used to generate generalized extreme value distribution 

is not efficient and therefore considered as data waster especially if complete data is available 

(Hu, 2013). For example in an instance where 20 daily observations are considered with a block 

size n, that is the number of observations for each block, given 4 blocks then every block will 

consist of 5 days. Figure 2.1a below described the observations 𝑋3, 𝑋7, 𝑋15 and 𝑋19 as the block 

maxima or the extreme events in block 𝑚 = 1,2,3 up to 4 respectively; 𝑚 symbolizes a specific 

block (Gilli and Kellezi, 2006). 
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Peaks over threshold approach (POT): centres on events exceeding a big threshold value ‘𝑢’. 

It is necessary to choose a threshold value ‘𝑢’ which is large enough and equally has many 

events above it. 

 

The POT which is used to generate generalized Pareto distribution is better because it makes 

use of every extreme data (Hu, 2013). Now, if another 20 daily observations are considered as 

revealed in Figure 2.1b, assume 80th percentile of “𝑢” is chosen with 4 observations above ‘𝑢’. 

It is observed from the figure that 𝑋3, 𝑋7, 𝑋18, and 𝑋19 are the extreme event since they exceed 

the threshold of ‘𝑢’. For each of these four observations, the exceedances above ‘𝑢’ can be 

computed as: 𝑋3 − 𝑢, 𝑋7 − 𝑢, 𝑋18 − 𝑢 and 𝑋19 − 𝑢, which are random observations 

characterized by a distribution of excesses (Gilli and Kellezi, 2006). 

 

 

 

 

FIGURE 3. 1: (A) BLOCK MAXIMA AND (B) PEAKS OVER THRESHOLD (GILLI AND KELLEZI, 2006) 

 

These approaches were compared by using simulation data of over 200 years by Caries (2009) 

and results from the research show the estimate accuracy outcomes from each of the two 

approaches have similar figures. For data obtained within a time span of fewer than 200 years, 

POT approach has better performance compared to the BM approach. Jaruskova and Hanek 

(2006), made a conclusion after working on data of daily discharges from two rivers for forty-

five years and daily precipitations forty years that both approaches correlate based on their 

results. It was also noted that in a situation where the number of observation is moderately 
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large, the BM approach shows good results whereas the POT approach would give a poor 

outcome. 

 

Coles (2001) illustrates that if 𝑋1, . . . , 𝑋𝑛 is a sequence of independent stochastic variables with 

𝐹 representing the common population distribution and 𝑀𝑛  is the process maxima (or minima) 

over block size n, that is, 𝑀𝑛  =  max{𝑋1, . . . , 𝑋𝑛} , then the distribution 𝑀𝑛 in the case of a 

maxima is given as 

 

P{𝑀𝑛 ≤ 𝑥 = P{𝑋1 ≤ 𝑥, . . . , 𝑋𝑛 ≤ 𝑥}} 

                             = P{𝑋1 ≤ 𝑥} × …× 𝑃{𝑋𝑛 ≤ 𝑥} 

 =∏P(𝑋 ≤ 𝑥)

𝑛

𝑖=1

 

= [P(𝑋 ≤ 𝑥)]𝑛  

 = [𝐹(𝑥)]𝑛            

 

Two problems can possibly be developed from this approach. The first one, 𝐹(𝑥)𝑛 approaches 

zero as 𝑛 approaches ∞ since 𝐹(𝑥) < 1 (Pocernich, 2002). The second problem is that the 

distribution of 𝐹 may be unknown. The values can be renormalized in a way that 𝑀𝑛
∗ =

𝑀𝑛−𝑑𝑛

𝑐𝑛
  as a solution to the first problem for 𝑐𝑛 > 0. 𝑐𝑛and 𝑑𝑛are also sequences of constants. 

 

Theorem 3.1: (Extremal types theorem) - If there exist a sequence of constants 𝑐𝑛 > 0 and 

𝑑𝑛 such that, 

lim
𝑛→∞

P [
𝑀𝑛 − 𝑑𝑛
𝑐𝑛

≤ 𝑥] → 𝐻(𝑥) 

where 𝐻 is a non-degenerate distribution function, then H belongs to one of following extreme 

value distributions (Coles, 2001). 

 

Gumble: 𝐻(𝑥) = exp {−exp [−(
𝑥 − 𝜇

𝜎
)]} ,     − ∞ < 𝑥 < ∞; 

 

Fréchet: 𝐻(𝑥) = {
0, 𝑥 ≤ 𝑢;

exp {− (
𝑥 − 𝜇

𝜎
)
−𝛼

} , 𝑥 > 𝑢;
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  Weibull: 𝐻(𝑥) = {
exp {− [− (

𝑥 − 𝜇

𝜎
)
𝛼

]} , 𝑥 < 𝑢,

1, 𝑥 ≥ 𝑢,
 

for parameters for  𝑐 >  0, 𝑑 and 𝛼 > 0. 

 

Leadbetter et al. (1983), provided a proof that validates this theorem as it was concluded that 

for every population whose distribution is unknown, applying a definite type of limiting 

distribution is not appropriate because uncertainties attributed to family distribution is 

disregarded. Therefore, it is better to apply a wider extreme value distribution which covers the 

three types. 

 

3.2.1 Generalized Extreme Value Distribution (GEVD) 

 

An approach to unify the three aspects of extreme value distribution was proposed by von 

Mises (1954) and Jenkinson (1955), leading to what is termed ‘generalized extreme value 

distribution’ GEVD mostly used for modelling block maxima distribution. Coles (2001), gives 

GEV family as; 

 

𝐻(𝑥) = exp {− [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
}                                                                                              (3.1) 

defined on {𝑥: 1 + 𝜀 (
𝑥−𝜇

𝜎
) > 0},where 𝜎 > 0,𝜇, 𝜀 𝜖 ℝ and 𝜀 =

1

𝛾
 such that 𝛾 = 𝜀−1 is the rate 

of tail decay. The meaning of three parameters are given below: 

 𝜇  is defined as the location parameter, correspondent to the mean. 

 𝜎 is the scale parameter corresponding to the standard deviation. 

 ɛ is defined as the shape parameter/tail index, which defines the thickness at the tails. 

 

There are three cases of Equation (3.1) which include: 

1. Gumbel distribution which has two main parameters 𝜇 and 𝜎 as ɛ → 0. It comprises 

distributions such as; 

 

 Exponential distribution: if  𝐹(𝑥) = 1 − 𝑒−𝑥, then 

 

𝐻(𝑥) = [1 − 𝑒−𝑥𝑛−1]𝑛 → exp(−𝑒−𝑥) 
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which is the Gumbel distribution with 𝜇 = 0 and σ = 1. 

 

 Normal, Logistic and Gamma  distributions 

These mentioned cases are identified as light-tailed distribution, therefore, ɛ →

0 is related to light-tailed Gumbel order of distribution. It is also called the 

double exponential distribution. The tail decreases progressively in an 

exponential distribution and is unbounded, which means every moment exists. 

 

2. A Weibull distribution with 𝜀 < 0 comprises of uniform and beta distributions 

which are identified as short-tailed distribution. The Weibull type of distribution is 

characterised by a bounded tail with a finite endpoint, even though not all of its 

moments are finite. 

3. A heavy tail distribution of Frechet type with ɛ > 0 includes Pareto, Log-gamma, 

Student t and Cauchy. Frechet type of distribution is described by a polynomial tail 

decay, having moments only up to γ. Both the Weibull and Frechet distribution have 

three parameters. 

 

A few properties of the Generalised Extreme Value (Smith, 2003) include: 

 if 𝜀 < 1, then the mean exist, thus the expectation is; 

 

E(𝑥) = 𝜇 +
𝜎

𝜀
{Γ(1 − 𝜀) − 1}                                                                                                         (3.2) 

 

 if 𝜀 <
1

2
, then the variance exist which is given by; 

 

Var(𝑥) = E {𝑋 − (E(𝑋))
2
} =

𝜎2

𝜀2
{Γ(1 − 2𝜀) − Γ2((1 − 𝜀))}                                              (3.3) 

 

 if 𝜀 = 0, the then expectation of the mean and the variance are; 

 

E(𝑥) = 𝜇 + 𝜎𝛾                                                                                                                                    (3.4) 

and 
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Var(𝑥) =
𝜎2𝜋2

6
                                                                                                                                  (3.5) 

where 𝛾 ≈ 0.5772 (Euler’s constant). 

 

 The 𝑞th quantile of  the GEVD is  

 

𝑥𝑞 = {
𝜇̂ +

𝜎̂

𝜀̂
{[−𝑛𝑙𝑛(1 − 𝑞)]−𝜀̂ − 1}, 𝜀 ≠ 0

𝜇̂ − 𝜎̂ 𝑙𝑛[−𝑛𝑙𝑛(1 − 𝑞)] ,  𝜀 → 0
                                                                      (3.6) 

 

3.2.2 Generalized Pareto Distribution (GPD) 

 

The GPD is used to model the peaks over threshold which was proposed by Pickands (1975) 

and a comprehensive treatment of the model was given later by Davison and Smith (1990). 

Given that 𝑋1, … , 𝑋𝑛 is a sequence of IID random variables with 𝐹 common distribution, 

consider the  𝑋𝑖′𝑠 over the given threshold ‘𝑢’ as extreme events. Given that 𝑋 is the arbitrary 

term in the sequence 𝑋𝑖 and let 𝑦 = 𝑋 − 𝑢, be the value of an exceedance over the threshold 

‘𝑢’. Then, by using the law of conditional probability, the cumulative distribution function of 𝑦 

is; 

 

𝐹𝑢(𝑦) = P(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢) 

 

           =
P(𝑋 ≤ 𝑢 + 𝑦|𝑋 > 𝑢)

P(𝑋 > 𝑢)
 

 

                                                                 =
𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
,   𝑦 > 0                                (3.7)  

 

Coles (2001), shows that as 𝑢 → ∞, F𝑢(y) is approximately a generalized Pareto family. By 

Theorem 3.1, for large 𝑛 we have; 

 

𝐹𝑛(𝑥) ≈ exp {− [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
} ,      𝜇, 𝜎 > 0 

. 

Thus, taking the natural log, we have: 
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𝑛 log 𝐹(𝑥) ≈ − [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
                                                                                                 (3.8) 

 

Now, by Taylor expansion; 

 

𝐹(𝑥) = 1 − [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
+⋯ 

  = 1 − [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
   

for large 𝑥 

 

By rearrangement, we get; 

 

−(1 − 𝐹(𝑥)) = [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
 

Thus, we have; 

 

ln 𝐹(𝑥) ≈ −(1 − 𝐹(𝑥))                                                                                                                   (3.9) 
 

Substituting Equation (3.9) into (3.8), we have; 

 

𝑛(1 − 𝐹(𝑥)) ≈ [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−
1
𝜀
 

 

(1 − 𝐹(𝑥)) ≈
1

𝑛
[1 + 𝜀 (

𝑥 − 𝜇

𝜎
)]
−
1
𝜀
 

Thus; 

𝐹(𝑢) ≈ 1 −
1

𝑛
[1 + 𝜀 (

𝑢 − 𝜇

𝜎
)]
−
1
𝜀
 

 

𝐹(𝑦 + 𝑢) − 𝐹(𝑢) ≈ −
1

𝑛
[1 + 𝜀 (

𝑦 + 𝑢 − 𝜇

𝜎
)]
−
1
𝜀
+
1

𝑛
[1 + 𝜀 (

𝑢 − 𝜇

𝜎
)]
−
1
𝜀
 

Therefore; 
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𝐹𝑢(𝑦) = {1 − (1 +
𝜀𝑦

𝜎∗
)
−1 𝜀⁄

} 

where 𝜎∗ = 𝜎 + 𝜀(𝑢 − 𝜇). 
 

Theorem 3.2:  

Supposed 𝑋1, … , 𝑋𝑛 is the sequence of independent and identically distributed random 

variables with common distribution function, 𝐹 (Coles, 2001), and let 

 

𝑀𝑛 = 𝑚𝑎𝑥 {𝑋1, … , 𝑋𝑛 } 

 

Given that the common cumulative distribution function, 𝐹 of 𝑋1, … , 𝑋𝑛 satisfies Theorem 3.1, 

so that for large 𝑛,  

 

P{𝑀𝑛 ≤ 𝑥} ≈ 𝐻(𝑥) 

where 𝐻(𝑥) is given in Equation 3.1 above. 

 

Then for large “𝑢”, if ε ≠ 0, then 

 

lim
𝑢→∞

𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢) ≈ 𝐾(𝑦) = {1 − (1 +
𝜀𝑦

𝜎∗
)
−1 𝜀⁄

},                                                  (3.10) 

defined on {𝑦: 𝑦 > 0 𝑎𝑛𝑑 (1 +
𝜀𝑦

𝜎∗
) > 0 }, where 

𝜎∗ = 𝜎 + 𝜀(𝑢 − 𝜇).                                                                                                                         (3.11) 

 

and for large “𝑢”, if ε = 0, then 

 

𝑙𝑖𝑚
𝑢→∞

𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢) ≈ 𝐾(𝑦) = {1 − exp (
𝑦

𝜎∗
)
−1 𝜀⁄

}  ,    𝑦 > 0                                  (3.12) 

 

The Equations 3.10 and 3.12 defined above are the generalized Pareto distribution. The 

deduced outcome shows that the GPD shape parameter is similar to that of the GEVD making 

the dependence of the GPD scale 𝜎∗ and threshold ‘𝑢’ extremely distinct. 

The properties of GPD include: 

 The mean and the variance of the GPD are given by (Pocernich, 2002) as follows; 
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 E(𝑌) =
𝜎∗

1−𝜀
                                                                                                                          (3.13) 

 Var(𝑌) =
(𝜎∗)2

(1−𝜀)2(1−2𝜀)
                                                                                                       (3.14) 

 E(𝑌 − 𝑢|𝑦 > 𝑤) =
𝜎∗+𝜀𝑤

1−𝜀
                                                                                                (3.15) 

where 𝑤 > 0 

 The 𝑞th quantile of  the GEVD is 

𝑥𝑞 =

{
 
 

 
 
𝑢 +

𝜎 ∗̂

𝜀̂
[(𝑞

𝑁

𝑛
)
−𝜀̂

− 1] , 𝜀 ≠ 0

𝑢 − 𝜎 ∗̂ ln 𝑞
𝑁

𝑛
, 𝜀 → 0

                                                                                 (3.16) 

 

3.3 Parameter Estimation 
 

Different methods are used in the parameter estimation determination. Musah (2010) listed 

some of these as Method of Moments Estimation (MME), equivalently L-Moments (LM) or 

Probability Weighted Moments (PWM), Bayesian methods and Maximum Likelihood 

Estimation (MLE). Zhao (2010) described the ML method as the most widely used of all the 

approaches in spite of even likelihood for only 𝜀 >
1

2
 . In dealing with finance data, L- moment 

has proven to be a preferred approach because it obtains reliable estimates for events with 

heavy tails. Alternatively, Bayesian inference can help in implicit sparsity of extreme events 

through explicit processing of known expert information.  

 

MLE is not suitable when handling smaller sample sizes, specifically, for 𝑛 < 50 (Musah, 

2010). This is because it is unstable and as a result prone to giving uncertain shape parameter 

estimates. The following researchers, (Hosking and Wallis, 1987; Coles and Dixon, 1999; 

Martins and Stedinger, 2000; Martins and Stedinger, 2001; Madsen et al., 1997) all disputed 

this instead and argued that the MME quantile estimators give lower root mean square error 

when the true shape parameter values zero.  

 

The method of moments estimation (MME) and Probability weighted moments (PWM) are 

inapplicable when  ε ≤ −0.5 because moments ≤ 2 are non-existent, therefore values for using 

PWM or MME also do not exist (Castillo and Hadi, 1997). Apart from the stated effect, both 
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can equally result in non-consistent estimates involving the observed data. Castillo and Hadi 

(1997), used simulations to compare results of using these stated methods. 

 

The integration of covariate data into parameter estimates is achieved easily with MLE. In 

addition, MLE allows a fairly easy way of obtaining error bounds for parameter estimates when 

compared with other methods. Using Bayesian estimation for extreme-value analysis has been 

carried out by Coles (2001); Stephenson and Tawn (2004) and Cooley et al. (2007). It is noted 

that the Gumbel distribution does not hold when data is to be fitted to a GEV due to the fact 

that Gumbel distribution is scaled down to a unit point in an uninterrupted parameter space. A 

usual approach used is to a preliminary hypothesis in determining which of the extreme 

indicator is most appropriate after which data is fitted into it. It is evident that this method will 

not give explanation for uncertainty encountered in the choice of tail type on the resultant 

inference, which are usually large. Stephenson and Tawn (2004) therefore proposed that 

Bayesian method in estimation of parameters which accords the Gumbel distribution to be 

accomplished with positive probability. The outcomes can be extremely dependent on the 

selection of prior distributions. 

 

3. 3.1 Maximum Likelihood Estimation of GEVD 
 

Suppose 𝑋1, … , 𝑋𝑚 is a sequence of a block maxima for ‘𝑚’ blocks, given that 𝑋 is a random 

variable defined as: 

𝑋 ≡ 𝑀𝑘 = max {𝑋1, … , 𝑋𝑘 } 

 

Assume GEVD is fitted to 𝑋1, … , 𝑋𝑚, then the probability density function of Equation 3.1 is  

(by differentiation of H(x) with respect to x), if ε ≠ 0; 

 

𝐻′(𝑥) =
1

𝜎
{[1 + 𝜀 (

𝑥 − 𝜇

𝜎
)]
−1−1 𝜀⁄

} exp {− [1 + 𝜀 (
𝑥 − 𝜇

𝜎
)]
−1 𝜀⁄

} 

 

If ε → 0; 

 

𝐻′(𝑥) =
1

𝜎
exp [−exp(−(

𝑥 − 𝜇

𝜎
)) − (

𝑥 − 𝜇

𝜎
)] 
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Thus, the log-likelihood as a function of  𝑋1, … , 𝑋𝑚  is given as; 

 

ℓ(𝜇, 𝜎, 𝜀) = ln 𝐿(𝜇, 𝜎, 𝜀) = ln∏𝐻′(𝑥𝑗)

𝑚

𝑗=1

 

 

Therefore, for ε ≠ 0; 

ℓ(𝜇, 𝜎, 𝜀) = −𝑚 ln𝜎 − (1 +
1

𝜀
)∑ln [1 + 𝜀 (

𝑥𝑗 − 𝜇

𝜎
)] −∑[1 + 𝜀 (

𝑥𝑗 − 𝜇

𝜎
)]
−1 𝜀⁄

(3.17)

𝑚

𝑗=1

𝑚

𝑗=1

 

  

and, for ε → 0; 

 

ℓ(𝜇, 𝜎, 𝜀) = −𝑚 ln 𝜎 −∑exp (−
𝑥𝑗 − 𝜇

𝜎
) −∑(

𝑥𝑗 − 𝜇

𝜎
)

𝑚

𝑗=1

𝑚

𝑗=1

                                                  (3.18) 

 

The estimates of (𝜇, 𝜎, 𝜀) are obtained by optimising Equation 3.17 or its equivalent Equation 

3.18. By differentiating these equations, the score expressions are obtained with no definite 

solutions. Even though ML has attractive advantages, the ML method is not suitable for solving 

some EVT problems. The asymptotic tendencies of ML estimators make it effective under 

normal ML theory specifics (Cox and Hinkley, 1974). Since GEVD applications depends on 

unknown parameters, the normal conditions are not satisfied, even though adequate numerical 

processes is available in obtaining the ML estimates, but they still lack the normal asymptotic 

properties of ML estimation. The normal asymptotic condition of ML estimators used in GEVD 

is a function of the unknown EV index value (Smith, 1985). This was further established that 

the ML estimator exist for ε > −1, however classical asymptotic property of consistency and 

asymptotic normality hold only for ε > −0.5, therefore the case −1 < 𝜀 ≤ −0.5 remain 

unsolved. For example, if we let ε > −0.5, we have; 

 

√𝑚[(𝜇̂, 𝜎̂, 𝜀̂) − (𝜇, 𝜎, 𝜀)]
𝑑
→ 𝑧 ≈ 𝑁(0, 𝐼−1),     𝑚 → ∞ 

where I is the Fisher Information matrix. 
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In actual sense, a sample having an extremely short tail ɛ < −0.5 is uncommon. In the financial 

application aspect, most models show a positive tail index of ɛ > 0, making ML a relevant tool 

for GEVD calculation (Smith, 1985). 

 

When considering ɛ ≤  −1, ML approach is inapplicable because the log-likelihood function 

does not have local maximum. It was observed that the density has a J-shape and the 

corresponding log-likelihood function approach +∞  along some path in the log-likelihood 

space. It was observed that this shortcoming poses a negligible application importance. This 

anchor on the fact that, distributions with ε ≤ −1 with a very light upper tail are hardly 

experience in typical EVT analysis. Zhou (2009) and Zhou (2010) proffered solutions to 

problem discovered by Smith (1985) by establishing that the ML estimator meets the two listed 

asymptotic properties for ε ≤ −1. Another problem associated with using ML estimation is 

identified as the convergence of iterative process of maximisation. This can be linked to the 

fact that computational process do not converge, making it difficult to find a suitable estimator. 

Upon its numerous challenges, estimating with ML handles processes with missing data, 

temporary dependence, and non-stationarity with minor alteration which will be difficult using 

other estimators, in fact almost impossible. 

 

3.3.2 Maximum Likelihood Estimation of GPD 
 

Suppose yi, … , ym is excess over a sufficiently high threshold “𝑢” from the original random 

variable 𝑥𝑖 , … , 𝑥𝑛, 𝑚 < 𝑛. That is, 𝑦𝑖 = 𝑥𝑖 − 𝑢. Assume GPD is fitted to the excess values 𝑦𝑖,  

then the probability density function obtained by differentiation of 𝐾(𝑦) with respect to 𝑦 from 

Equation 3.10 and 3.12 are; 

 

For ε ≠ 0; we have 

𝑘 ˈ(𝑦) =
1

𝜎∗
(1 +

𝜀𝑦

𝜎∗
)
−1−1 𝜀⁄

 

For ε → 0; we have 

𝑘 ˈ(𝑦) =
1

𝜎∗
exp (−

𝑦

𝜎∗
) 

 

Thus, the log-likelihood function of 𝑦𝑖 , … , 𝑦𝑚 is given in Vicente (2012) as; 
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ℓ(𝜎∗, 𝜀) = ln L(𝜎∗, 𝜀) = ln∏𝐾 ˈ(𝑦𝑖)

𝑚

𝑖=1

 

For 𝜀 ≠ 0; we have 

ℓ(𝜎∗, 𝜀) = −𝑚 ln 𝜎∗ − (1 +
1

𝜀
)∑ln (1 +

𝜀𝑦𝑖
𝜎∗
)

𝑚

𝑖=1

                                                                    (3.19) 

where 1 +
𝜀𝑦𝑖

𝜎∗
> 0. 

 

For ε → 0; we have 

ℓ(𝜎∗, 𝜀) = −𝑚 ln 𝜎∗ −
1

𝜎∗
∑𝑦𝑖

𝑚

𝑖=1

                                                                                                  (3.20) 

 

 By defining 𝜏 =
𝜀

𝜎∗
, the log-likelihood function could be represented as: 

ℓ( 𝜏, 𝜀) = −𝑚 ln 𝜀 + 𝑚 ln 𝜏 −(1 +
1

𝜀
)∑ln(1 + 𝜏𝑦𝑖)

𝑚

𝑖=1

 

where 1 + 𝜏𝑦𝑖 > 0. 

 

Then, the estimates of (𝜀̂, 𝜏̂)  is given as: 

 

1

𝜏̂
− (1 +

1

𝜀̂
)
1

𝑚
∑

𝑦𝑖
1 + 𝑦𝑖 𝜏̂

𝑚

𝑖=1

= 0                                                                                                     (3.21) 

where 𝜀̂ =
1

𝑚
∑ ln(1 + 𝑦𝑖𝜏̂)
𝑚
𝑖=1 . 

 

The re-parameterisation of the log-likelihood function recommended by Davison (1984) is 

essential in getting ε̂ explicitly as a function of τ̂, which is computed mathematically using 

Equations 3.21. with the replacement of ε̂ =
1

𝑚
∑ ln(1 + yiτ̂)
𝑚
i=1 . For 𝜀 → 0, there is a definite 

example of the exponential distribution, yielding  𝜎∗ = 𝑌̅. 

Referring to Zhou (2009) and Zhou (2010) in Section 3.3.1, it is demonstrated that the 

asymptotic normality and consistency of the estimates of maximum likelihood within the EVT 

for ε > −1 is specified to yield: 

√𝑚[(𝜎∗̂, 𝜀̂) − (𝜎∗, 𝜀)]
𝑑
→ 𝑧 ≈ 𝑁(0, 𝑉),     𝑚 → ∞ 
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where 𝑉 = [
(1 + 𝜀)2 −𝜎∗(1 + 𝜀)

−𝜎∗(1 + 𝜀) −2(𝜎∗)2(1 + 𝜀)
] 

 

3.4 Problems with Extreme Value Modelling. 
 

Extreme value models are characterised with challenges ranging from dependency of extremes, 

threshold selection and to extremal observations deficiency. An overview of the listed 

challenges is provided in the section below (Zhao, 2010). 

 

3.4.1 Dependence of Extremes 
 

The theory behind generalised extreme value distribution establishes a limiting distribution of 

a series of random variables which are IID and whose upper or lower limits justification are 

asymptotical. Extreme events usually take place in clusters as a result of dependency in data. 

Beirlant et al. (2004), stated that under specific conditions, the distribution of the extreme levels 

lies along the same GEVD family as a result of minimum range within events. However, these 

conditions are not usually satisfied, also the dependent extreme sequences has less information 

than an IID sequences and the statistical inference should be adjusted in situation of 

dependence. It is logical to attempt minimising dependence while selecting extremes for a 

given sample in order to reduce the effect of dependence. 

 

Financial returns mostly demonstrate clusters of events also called Auto Regressive 

Conditional Heteroskedastic (ARCH) process and the general form also known as GARCH 

process. Latest developments in the finance review shows that a two level model is used to 

apply extreme models to analyse dependency in events (McNeil and Frey, 2000; Chan et al., 

2007; Zhao et al., 2010a) 

The first stage uses GARCH model to stimulate clusters volatility by addressing dependence 

in the returns while the second stage uses extreme value model to develop independent residual 

concept. A major setback is as a result of uncertainty estimation. 

 

 

 



47 
 
 

3.4.2 Lacking extremal observation 
 

A distinct difficulty attached to using extreme value models is linked to the fact that extremal 

data is sparsely distributed. This can easily lead to model classification as well as parameter 

estimation difficulties, especially when considering a system with complex model. Bayesian 

inference is an approach that can make use of the advantage prior information in a complex 

extreme model. 

 

3.4.3 Threshold selection and Common Approach 
 

Prior to introducing GPD into certain data, it is necessary to choose an appropriate threshold. 

Coles (2001), recommended that selecting threshold process accommodates a compromise 

between the variance and bias. 

 

For a low threshold, the asymptotic arguments that form the foundation GPD model derivation 

are violated. By contrast, extremely high threshold generates less exceedances capable of 

estimating the shape (pattern) and scale parameter which leads to a very high variance. For this 

reason, it is required during threshold selection to consider if the limiting model offers a 

sufficiently good approximation against the variance of the parameter estimate. Three 

diagnostics were listed by Coles (2001) in determining threshold choice. These are; 

1.  Mean residual life plot, 

2.  Parameter stability plot, 

3. Model fits diagnostics plots. 

 

3.4.3.1 Mean Residual Life Plot 

 

This approach considered the mean of the GPD (Coles, 2001). If the GPD of 𝑌 has parameters 

𝜎 and 𝜀 then  

E(𝑌) =
𝜎 

1 − 𝜀
 

For excess 𝑋 − 𝑢 approximated by a GPD, for a suitable 𝑤, by Equation 3.12 the mean excess 

is: 

E(𝑋 − 𝑤|𝑋 > 𝑤) =
𝜎𝑤
1 − 𝜀
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At every higher threshold 𝑢 > 𝑤, by Equation 3.11, mean excess can be defined as: 

 

E(𝑋 − 𝑢|𝑋 > 𝑢) =
𝜎𝑢
1 − 𝜀

                                         

 

                                                                           =
𝜎𝑤  + 𝜀(𝑢 − 𝑤)

1 − 𝜀
,      for  𝜀 < 1                      (3.22) 

 

This implies that, mean excesses:E(𝑋 − 𝑢|𝑋 > 𝑢)gives a linear function of 𝑢, when a desirable 

high threshold 𝑢 has been attained. 

The sample mean residual life plot points, which was drawn using 

 

[(𝑢,
1

𝑁𝑢
∑𝑥(𝑗)

𝑁𝑢

𝑗=1

− 𝑢) : 𝑢 < 𝑥(𝑚𝑎𝑥)] 

where; 

 

𝑥(𝑗) is the observation over ‘𝑢’, 𝑁𝑢 is the number of observation over ‘𝑢’ and 𝑥(𝑚𝑎𝑥)is the 

largest of the observations 𝑥(𝑗).  If threshold ‘𝑢’ is adequately high, then all excesses 𝑢 >  𝑤 

in the mean residual life plot changes directionally with 𝑢. This attribute potentially makes 

ways to deciding the threshold value. As soon as the sampling variability is included, the model 

threshold would be decided relative to the mean excess for the entire higher thresholds being 

linear. Therefore, in the conclusion of Coles (2001), the interpretation given to such plot 

becomes more complex. 

 

3.4.3.2 Parameter Stability Plot 

 

If GPD is true for excesses over threshold ‘𝑤’ with ɛ and 𝜎𝑤, then for higher threshold 𝑢 >

 𝑤, these excesses also adopt a GPD with ε which has a scale parameter given as: 

𝜎𝑢 = 𝜎𝑤 + 𝜀(𝑢 − 𝑤) 

By re-parameterising the scale parameter 𝜎𝑢 

𝜎∗ = 𝜎𝑢 −  𝜀𝑢 
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Then, σ∗ no more depends on ‘𝑢’, because 𝑤 is positioned at a threshold of reasonably high 

value (Coles, 2001). Parameter stability plot conforms GPD over specific values of the 

thresholds in contrast to scale and shape parameter. The model threshold is selected at the spot 

where the shape and the scale parameter remain fixed even upon considering sampling 

variability. As soon as the most suitable threshold is obtained, the exceedance follows a GPD. 

 

3.4.3.3 Model Fit Diagnostic Plot 

 

Probability plot, return level plot, quantile plot, and empirical versus fitted density comparison 

plot are part of standard statistical model diagnostic plots used in checking models fit as well 

as threshold choice suitability. Most of the checks are post-calculation diagnostic plots and are 

therefore based on a chosen threshold. This property makes it more a suitable alternative 

quantifying assess performance (Coles, 2001). 

 

3.5 Conclusion 
 

In this chapter, reviews of POT and BM models, GEVD, GPD, and the parameter estimation 

of both GEVD and GPD were presented. Also reviewed was the problem with extreme value 

modelling. 
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CHAPTER 4 

STABLE DISTRIBUTION 
 

4.1 Introduction  
 

The aim of this chapter is to review the theoretical background of stable distributions. Section 

4.2 describes stable distributions and their properties. In Sections 4.3, the parameter estimation 

of stable distributions is outlined. 

 

4.2 Definition and Properties of Stable Distributions 
 

Stable distributions fall in the class of probability laws with attractive theoretical and practical 

properties for economic models. This is the reason why their application in financial modelling 

is based on the fact that they generalize the normal (Gaussian) distribution having heavy tails 

and skewness, which are regular features in financial data (Nolan, 2003). 

 

Stable distributions are distributions that keep their complete shape under addition. For 

instance; if 𝑌, 𝑌1, 𝑌2, . . . , 𝑌𝑚 are independent and identical distributed stable random variables, 

then for all 𝑚. 

 

𝑌1 + 𝑌2 +⋯+ 𝑌𝑚 ≐ 𝑎𝑚𝑌 + 𝑏𝑚                                                                                                    (4.1) 

where 𝑎𝑚  >  0 and 𝑏𝑚 are constants. 

 

Equation 4.1 implies that the left hand side of the equation have the same distribution with 

right hand. This law is identified simply as strictly stable if 𝑏𝑚 =  0 for every 𝑚. In other 

words, 𝑌 is a stable distributed random variable if for positive real numbers 𝑑1 and 𝑑2 there 

exist real numbers 𝑏 and 𝑎 >  0, such that 

 

𝑑1𝑌1 + 𝑑2𝑌2 ≐ 𝑎𝑌 + 𝑏                                                                                                                   (4.2) 
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Stable distributions can be classified into normal and non-normal stable distributions. A 

Normal stable distribution has a finite variance such as the normal distribution while a non-

normal stable distribution has infinite variance which includes the Cauchy distribution and 

Levy distribution (Nolan, 2003). 

 

4.2.1 Characteristic Function Representation 
 

Broadly speaking, a stable distribution has neither a probability density function nor cumulative 

distribution function that can be expressed in a closed form but can be easily be described by 

its characteristic function of four parameters (Yang, 2012). These four parameters are the index 

of stability or the tail index, tail exponent or characteristic exponent (α), and skewness (β), 

scale (γ), and location (µ) parameters (Nolan, 2003; Borak et al., 2005). As a result of multiple 

parametric conditions for stable distribution, this led to different representations mix-up. Series 

of past developments in solving problems associated with analysing special forms of stable 

distributions led to generation of various formulas (Yang, 2012). 

 

Here two different parameterizations will be described, which are S(α, β, γ, µ0;0) which refer 

to the 0- parameterization and S(α, β, γ, µ1;1) refer to as 1- parameterization. The parameters 

α, β, and γ are of the same meaning in the parameterizations, location parameter µ, is the only 

one different (Nolan, 2003). 

 

Definition 1 Nolan S(α,β,γ,µ0;0): A random variable 𝑌 is described as from a stable 

distribution with parameters: α, β, γ, and µ0 if it has characteristic function given as: 

  

E(𝑒𝑖𝑧𝑌) = {
exp{−𝛾𝛼|𝑧|𝛼[1 + 𝑖𝛽(tan 𝜋𝛼

2
)(sign 𝑧)(|𝛾𝑧|1−𝛼 − 1)] + 𝑖𝜇𝑧}, 𝛼 ≠ 1

exp{−𝛾|𝑧|[1 + 𝑖𝛽(𝟐
𝝅
)(sign 𝑧) ln|𝛾𝑧|] + 𝑖𝜇𝑧},                                𝛼 = 1

          (4.3) 

 

Definition 2 Nolan S(α,β,γ,µ0;1): A random variable 𝑌 is described as from a stable 

distribution with parameters: α, β, γ, and µ1 if it has characteristic function given as: 

  

𝐸(𝑒𝑖𝑧𝑌) = {
exp{−𝛾𝛼|𝑧|𝛼[1 − 𝑖𝛽(tan 𝜋𝛼

2
)(sign 𝑧)] + 𝑖𝜇𝑧}, 𝛼 ≠ 1

exp {−𝛾|𝑧| [1 + 𝑖𝛽 (
𝟐

𝝅
) (sign 𝑧) ln|𝑧|] + 𝑖𝜇𝑧} ,              𝛼 = 1

                         (4.4) 
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The location parameters are connected using  

 

𝜇0 = {
𝜇1 + 𝛽𝛾(tan

𝜋𝛼

2
), 𝛼 ≠ 1

𝜇1 + 𝛽(
2

𝜋
)𝛾 ln 𝛾 ,            𝛼 = 1

 

 

𝜇1 = {
𝜇0 + 𝛽𝛾(tan

𝜋𝛼

2
), 𝛼 ≠ 1

𝜇0 + 𝛽(
2

𝜋
)𝛾 ln γ ,            𝛼 = 1

 

 

The four parameters in the characteristic function are described as follows: 

 

 Index of stability (α): It defines the rate at which the tails of the distribution taper away. 

This exists in the range 0 <  𝛼 ≤  2. The constant am indicated in equation 4.1 must 

be of the form 𝑛1 𝛼⁄ . For α = 2, it becomes the Gaussian distribution but β loses its 

influence. For 𝛼 <  2, the variance becomes infinite while the tails tend to be 

asymptotically equivalent to a Pareto law which means exhibiting power-law behaviour 

and the lower values of α express heavy tails (Nolan, 2003).When 𝛼 >  2, the mean of 

the distribution exists which is equal to µ, while for 𝛼 <  1, it means the stable 

distribution has no mean either. 

 Skewness (β): This is expected to fall within −1 ≤  𝛽 ≤  1. So for 𝛽 =  0, it is said 

that the distribution is symmetric. In case 𝛽 >  0, it is skewed to the right hand 

direction while for left skewness, 𝛽 <  0. Therefore β and α are the parameters 

responsible for determining the shape of the distribution (Nolan, 2003). 

 Scale (γ ): This is responsible for width determination and can always be any positive 

real number. 

 Location (µ): is identified as the shift of the mode of the density. It is expected to fall 

within −∞ ≤  µ ≤  ∞. It shifts the distribution right if µ >  0, and left if µ <  0. A 

distribution is said to be standard stable when 𝛾 =  1 and µ =  0 (Nolan, 2003). 

 

It is of importance to mention that for 𝛽 =  0, parameterization is similar. For 𝛼 ≠  1 and 𝛽 ≠

0, there is a shift in parameterization by 𝛽𝛾tan
𝜋𝛼

2
 which increases towards infinity, as α tend 

towards 1. For instance, as α tend towards 1, the mode of S(α, β, γ, µ1;1) density approaches ∞ 

if sign (𝛼 − 1)𝛽 >  0 or -∞ if sign (𝛼 − 1)𝛽 < 0 (Nolan, 2003). 



53 
 
 

When α is close to 1, working out probability density functions and cumulative distribution 

function in the numeric class range is usually difficult and the estimated parameters is 

undependable. With 𝛼 =  1, the 0-parameterization falls into a simple unit standard, unlike the 

1-parameterization which is not. Considering the application to practical events, it is preferred 

to use S(α, β, γ, µ0; 0) parameterization, because it uses continuously the four parameters. The 

reason for using S(α, β, γ, µ1;1) appears to be historic algebraic simplicity.  

 

4.2.2 Stable Probability Density Function. 
 

Stable random variables have probability density functions which are continuous and unimodal 

but do not have a closed form except for Normal, Cauchy and Levy distributions (Belov, 2005). 

 

Normal or Gaussian Distributions: is a stable distribution with parameters 𝛼 =  2, 𝛽 =  0, 

𝛾 =   𝜎
√2

, and µ =  0 for both 0-parameterization and 1-parameterization.Therefore, it is 

symmetric with finite variance. For normal distribution all moments exist. The probability 

density is given as: 

 

𝑓(𝑦) =
1

√2𝜋𝜎
exp [−

(𝑦 − 𝜇)2

2𝜎2
] , −∞ < 𝑦 < ∞ 

 

Cauchy Distributions: is a stable distribution with parameters α = 1, 𝛽 = 0, γ and µ for both 

0-parameterization and 1-parameterization.This implies that it is symmetric with infinite 

variance. For Cauchy distribution, not all moment exists. The probability density is given as: 

 

𝑓(𝑦) =
𝛾

𝜋[𝛾2 + (𝑦 − 𝛿)2]
, −∞ < 𝑦 < ∞ 

 

Levy Distributions: is a stable distribution with parameters 𝛼 = 1/2, 𝛽 = 1, 𝛾 and µ =  𝛾 +

 µ for 0-parameterization and 𝛼 = 1/2, 𝛽 = 1, γ and µ for 1-parameterization.This implies that 

it is non-symmetric with infinite variance. Also, for the Levy distribution, not all moments 

exist. The probability density is given as: 
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𝑓(𝑦) =
√𝛾

√2𝜋(𝑦 − 𝛿)
3
2

exp [−
𝛾

2(𝑦 − 𝛿)
] , 𝛿 < 𝑦 < ∞ 

 

In general terms, linear amalgamations of individual stable laws having same α are described 

to be stable (Belov, 2005). For instance: 𝑌𝑗 is a stable random variable for any independent 

stable distribution 𝑗 with parameters α, βj, γj, µj for any k-parameterization, where 𝑗 =

1,2, … ,𝑚, then;  

 

𝑑1𝑌1 + 𝑑2𝑌2  + ⋯+ 𝑑𝑚𝑌𝑚~𝑺(𝛼, 𝛽, 𝛾, 𝜇; 𝑘)                                                                                (4.5) 

 

where 

𝛽 =
[∑ 𝛽𝑗(sign𝑑𝑗)|𝑑𝑗𝛾𝑗|

𝛼𝑚
𝑗=1 ]

∑ |𝑑𝑗𝛾𝑗|
𝛼𝑚

𝑗=1

 

 

𝛾𝛼 =∑|𝑑𝑗𝛾𝑗|
𝛼

𝑚

𝑗=1

 

 

and 

𝜇 =

{
 
 
 
 

 
 
 
 ∑𝜇𝑗

𝑚

𝑗=1

+ 𝛽𝛾(tan 𝜋𝛼

2
),     𝑘 = 0, 𝛼 ≠ 1

∑𝜇𝑗

𝑚

𝑗=1

+ 𝛽(2
𝜋
)𝛾 ln 𝛾 ,       𝑘 = 0, 𝛼 = 1

∑𝜇𝑗

𝑚

𝑗=1

,                                           𝑘 = 1

 

 

One important part is that all α’s are the same and adding two stable variables which differs in 

α’s will not make the sum stable (Nolan, 2003). This result in generalised Equation (3.1) which 

means that different skewness, scales, and locations are allowed in the terms. 

 

The stable density is supported in the domain (- ∞, ∞) or a half-line. The half-line happens only 

if 0 <  𝛼 <  1 or 𝛽 =  ±1. Moreover, according to Nolan (2003),  the support of the stable 
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density for stable random variable Y given parameters α ,β, γ, µ with any K-parameterization 

is given as:  

𝑓(𝑦|𝛼, 𝛽, 𝛾, 𝜇; 𝑘) =

{
 
 

 
 
[𝜇 − 𝛾(tan 𝜋𝛼

2
),∞),                  𝛼 < 1, 𝛽 = 1, 𝑘 = 0

(−∞, 𝜇 + 𝛾(tan 𝜋𝛼

2
)],          𝛼 < 1, 𝛽 = −1, 𝑘 = 0   

[𝜇,∞),                                             𝛼 < 1, 𝛽 = 1, 𝑘 = 1
(−∞, 𝜇],                                    𝛼 < 1, 𝛽 = −1, 𝑘 = 1  
(−∞,∞),                                                        elsewhere

 

 

Aside from the normal distribution, every stable distribution has heavy tail with an asymptotic 

Pareto. Samorodnitsky and Taqqu (1994), affirm the asymptotic tail behaviour of stable 

distribution is Pareto when 𝛼 <  2 is given as: 

 

lim
𝑦→∞

P(𝑌 > 𝑦) = 𝑦−𝛼𝑎𝛼(1 − 𝛽)𝛾
𝛼 

where   𝑎𝛼 =
Γ(𝛼) sin(𝜋𝛼

2
)

𝜋
; 

 

At the point when 𝛽 =  −1, the right tail decays speedier than any power. The left tail 

behaviour is comparable on the grounds 𝑓(𝑦|𝛼,−𝛽, 𝛾, 𝜇) = 𝑓(−𝑦|𝛼, 𝛽, 𝛾, −𝜇), (Nolan, 1999). 

 

4.3  Parameter Estimation of Stable Distributions 
 

The fundamental problem of estimation in stable distributions is to estimate the four parameters 

α, β, γ, and µ. Many approaches have been used in estimating this basic problem; McCulloch 

(1986), proposed a quantile method, Ma and Nikias (1995), developed a fractional moment 

method, while sample characteristic function (SCF) method was introduced by Kogon and 

Williams (1998),  which was a product of the foundation built by DuMouchel (1973b) on 

maximum likelihood (ML) estimation. Ojeda (2001), extensively compared these approaches 

where he concluded that ML estimates showed the most accurate measure or estimate. The 

second best is the SCF, followed by the quantile method and the moment method. This ML 

approach makes it easily for one to give large sample confidence intervals for the parameters, 

thus making it the more preferred method. 

If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent and identically distributed stable samples, Nolan et al. (2001) 

defined the log likelihood function as: 
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ℓ(𝛼, 𝛽, 𝛾, 𝜇0) =∑ln(𝑋𝑖|𝛼, 𝛽, 𝛾, 𝜇0)

𝑛

𝑖=1

 

 

The lack of closed form formulas for general stable densities is a major challenge in evaluating 

this equation.  

 

The suggested ML approaches reviewed are different in the selection of their approximating 

algorithm. At the same time, they have a close common characteristic which is, having the ML 

estimator to be asymptotically normal under specific conditions. 

 

It should be mentioned here that, new innovative ML estimation techniques employ two 

methods which are; the direct integration method (Nolan et al., 2001) and the fast Fourier 

transform (FFT) method for approximating the stable pdf (Mittnik et al., 1999). The two 

approaches can be evaluated based on the efficiency terms while the types of approximation 

algorithms differentiate both. 

 

Nolan (1997), suggested a stable program which establishes authentic computations of stable 

densities ranging between 𝛼 >  0.1 and any β, γ, and δ0. 

 

4.4 Conclusion 
 

Review of the properties of stable distribution, characteristic function representation and 

parameter estimation of stable distribution was achieved.  
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CHAPTER 5 

PEARSON TYPE IV DISTRIBUTION 

(PIVD) 
 

5.1 Introduction 
 

The aim of this chapter is to review the theoretical framework of Pearson Type IV distribution. 

The mathematical concepts of probability density function (pdf) and the cumulative density 

function (cdf) of PIVD are reviewed in section 5.2 and section 5.3 respectively. Section 5.4 

considers the parameter estimation based on maximum likelihood estimation.  

 

5.2 The Probability Density Function (pdf) of PIVD 
 

The Pearson system Pearson (1916) which is a generalization of the differential equation  

𝑓′(𝑥)

𝑓(𝑥)
=

𝛼 − 𝑥

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2
                                                                                                           (5.1) 

 

whose solution was given as (Stavroyiannis, 2013), 

 

𝑓(𝑥) = (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2)−

1
2𝑎2
⁄ exp [tan−1 (

𝑎1 + 2𝑎2𝛼

4𝑎0𝑎2 − 𝑎2
2)

𝑎1 + 2𝑎2𝛼

𝑎2√4𝑎0𝑎2 − 𝑎2
2
] .               (5.2) 

 

Depending on the coefficients of the 𝑎𝑖 and 4𝑎0𝑎2 − 𝑎2
2 in Equation 5.2. The Pearson system 

provides any of the known distribution provided in Table 5.1. 
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Table 5:1: Family of distribution for the Pearson System 

Distribution Type 

Normal distribution 0 

Beta I 

Continuous uniform distribution II 

Chi-squared, Gamma, and Exponential 

distributions 

III 

Cauchy (or Lorentz, or Breit-Wigner) IV 

Inverse Gamma, and the inverse chi-squared 

distributions 

V 

F-distribution VI 

t-Student location scale distribution VII 

Monotonically decreasing power distribution VIII 

 

 

If 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 in Equation 5.1 is negative, then  4𝑎0𝑎2 − 𝑎2

2 in Equation 5.2 are real, thus 

rearranging Equation 6.2 resulting in Pearson type IV distribution given as (Nagahara, 1999); 

(Nagahara, 2007). 

 

𝑓(𝑥) = 𝑘 (1 + (
𝑥 − 𝜆

𝑎
)
2

)

−𝑚

exp [−𝑣 tan−1 (
𝑥 − 𝜆

𝑎
)]                                                            (5.3) 

where 𝑎 > 0 is the scale parameter, λ is the location parameter, 𝑚 > 1 2⁄  controls the kurtosis, 

so that the normalization coefficient exist, ν is the asymmetry of the distribution. The 

distribution is negatively skewed for 𝑣 > 0 and positively skewed for 𝑣 < 0 while for 𝑣 = 0 

reduces to the Student's t-distribution (Pearson Type VII) with 𝑣 = 2𝑚 − 1, 𝑘 is the 

normalization constant which is chosen in order to ensure that this function is a probability 

density function, is given as (Pearson, 1895; Nagahara, 2007). The expression for 𝑘 is: 
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𝑘 =
22𝑚−2|Γ(𝑚 − 𝑖𝑣 2⁄ )|2

𝜋𝑎𝛤(2𝑚 − 1)
                                                                                                                     

 

      =
𝛤(𝑚)

√𝜋𝑎𝛤(𝑚 − 0.5)
|
𝛤(𝑚 − 𝑖𝑣 2⁄ )

𝛤(𝑚)
|

2

                                                                                       (5.4) 

 

As a result, the mean and variance of Pearson type IV is given as: 

 

𝜇 = 𝜆 −
𝑎𝑣

2𝑚 − 2
,               𝑚 > 1                                                                                                    (5.5) 

 

𝜎2 =
𝑎2

2𝑚 − 3
[1 +

𝑣2

4(𝑚 − 1)2
] ,               𝑚 > 3 2⁄                                                                     (5.6) 

 

5.3 The Cumulative Density Function (cdf) of Pearson Type IV 

Distribution. 
 

The cumulative distribution defined as: 

 

𝐹(𝑥) = ∫ 𝑓(𝑡) 𝑑𝑡
𝑥

−∞

  

 

Therefore the cdf of Pearson type IV distribution is given as: 

 

𝐹(𝑥) = ∫ 𝑘 (1 + (
𝑡 − 𝜆

𝑎
)
2

)

−𝑚

exp [−𝑣 tan−1 (
𝑡 − 𝜆

𝑎
)] 𝑑𝑡 

𝑥

−∞

                                              (5.7) 

 

According to Heinrich (2004) the cdf of Pearson type IV that is F(x) in Equation (5.7) can be 

expressed in terms of the hyper-geometric function; See Appendix A 

 

5.4 Parameter Estimation of Pearson Type IV Distribution 
 

As at the time Karl Pearson’s classes of distribution was developed, the necessity for maximum 

likelihood methodology was not identified. He based his approach on method of moments, later 
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proven to be inadequate. The method of moment is usually applied in setting good foundation 

in fitting a maximum likelihood.  In that case, setting the preliminary estimates in this manner 

is less important. It is discovered that in few cases where the moment method estimates are 

inadequate for starting the maximum likelihood approach, then using a mere typical parameter 

will be more proficient. 

 

Let X1, … , X𝑛  be independent and identically distributed values obtained in a Pearson Type IV 

distribution. Then, the likelihood function is given as 

 

𝐿(𝑚, 𝑣, 𝑎, 𝜆) =∏𝑓(𝑚, 𝑣, 𝑎, 𝜆; 𝑥𝑗)

𝑛

𝑗=1

=∏𝑘(1 + (
𝑥𝑗 − 𝜆

𝑎
)

2

)

−𝑚

exp [−𝑣 tan−1 (
𝑥𝑗 − 𝜆

𝑎
)]

𝑛

𝑗=1

                           (5.23) 

 

Then, the log-likelihood is given by 

 

ℓ(𝑚, 𝑣, 𝑎, 𝜆) = ln 𝐿(𝑚, 𝑣, 𝑎, 𝜆)

=∑ln 𝑓(𝑚, 𝑣, 𝑎, 𝜆; 𝑥𝑗)

𝑛

𝑗=1

                                                                                          

= 𝑛 𝑙𝑛 𝑘 − 𝑣∑tan−1 (
𝑥𝑗 − 𝜆

𝑎
)

𝑛

𝑗=1

−𝑚∑ln(1 + (
𝑥𝑗 − 𝜆

𝑎
)

2

)

𝑛

𝑗=1

                (5.24) 

 

where 𝑝 is the number of observed data points 𝑥𝑗.The parameter estimates of 𝑚, 𝑣, 𝑎, 𝑎𝑛𝑑 𝜆 is 

obtained by minimizing the negative log likelihood of Equation 5.24 which can be done 

numerically. 

 

5.5 Conclusion 
 

This chapter successfully reviewed the pdf of PIVD, cdf of PIVD and the parameter estimation 

of PIVD. 
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CHAPTER 6 

METHODOLOGY 
 

6.1 Introduction 
 

The aim of this chapter is to give an overview of the applied methods used in the thesis. Section 

6.2 provides a brief description of stationarity test. The approach for the Value-at-risk (VaR) 

model employed in this analysis is provided in Section 6.3 Section 6.4 describes the criteria 

used for selecting the best model. Section 6.5 describes the method employed in model 

diagnostics. Section 6.6 discusses the backtesting method employed in this study. 

 

6.2 Test for stationarity 
 

It is necessary to ensure that the data are a stationary form before analysis, so that the statistical 

properties of the data are constant over time. In this study, the unit root test is used to check if 

the data is stationary or not. The unit root test employed are: 

 Augmented Dickey-Fuller (ADF) test 

 Phillips-Perron (PP) test 

 Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test 

 

6.2.1 Augmented Dickey-Fuller test 
 

The ADF is used to accommodate ARMA (p,q) model with unknown orders. It is based on the 

regression equation 

 

𝑋𝑡 = ∅𝑋𝑡−1 +∑𝛼𝑗Δ𝑋𝑡−1

𝑝

𝑗=1

+ 𝑍𝑡                                                                                                    (6.1) 

where the error 𝑍𝑡 is assumed to be homoscedastic. 

 

The AR(p) in equation 6.1 is used to get rid of the serial correlation in the errors, by setting the 

value of the lag p of the difference term Δ𝑋𝑡−1 large enough to allow the approximation of the 
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ARMA(p,q) process such that the errors  𝑍𝑡 are serially uncorrelated. Based on the regression 

equation estimate the test statistics is given as  

 

𝐴𝐷𝐹𝑡 = 𝑡∅=1 =
𝜙̂ − 1

𝑆𝐸(𝜙)
                                                                                                                     (6.2) 

 

While the normalized bias statistics is 

 

𝐴𝐷𝐹𝑛 =
𝑇(𝜙̂ − 1)

1 − 𝛼̂1 −⋯− 𝛼̂𝑝
                                                                                                               (6.3) 

 

Under the null hypothesis that the data has a unit root (that is 𝜙 = 1) against an alternative 

hypothesis that the data is stationary (that is 𝜙 > 1). 

 

6.2.2 Phillips-Perron (PP) test 
 

The PP test is based on the regression equation 

 

𝑋𝑡 = ∅ 𝑋𝑡−1 + 𝑍𝑡                                                                                                                                (6.4) 

where 𝑍𝑡 is assumed to be stationary and heteroscedastic. 

 

The PP test is used to correct for any serial correlation and heteroskedasticity in the errors 𝑍𝑡  in 

the regression Equation 6.4 by applying the modified test statistics given as 

 

𝑃𝑡 = (
𝜎̂1
2

𝜎̂2
2)

1
2⁄

𝑡𝜙=1 −
1

2
(
𝜎̂2
2 − 𝜎̂1

2

𝜎̂2
2 ) (

𝑇 − 𝑆𝐸(∅̂ − 1)

𝜎̂1
2 )                                                             (6.5) 

and 

𝑃∅̂ = 𝑇∅̂ −
1

2

𝑇2𝑆𝐸(∅̂ − 1)

𝜎̂1
2

(𝜎̂2
2 − 𝜎̂1

2)                                                                                          (6.6) 

where variance parameters 𝜎̂1
2 and 𝜎̂2

2 are given as 

 

𝜎1
2 = lim

𝑇→∞

1

𝑇
∑𝐸(𝑍𝑡

2)

𝑇

𝑡=1
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𝜎2
2 = lim

𝑇→∞
∑𝐸(

𝑆𝑇
2

𝑇
)

𝑇

𝑡=1

 

and 𝑆𝑇 = ∑ 𝑍𝑡
𝑇
𝑡=1  

 

Under the null hypothesis that ∅ = 1, the modified test statistics 𝑃𝑡 and 𝑃∅̂ have the same 

asymptotic distributions as the ADF t-statistic and normalized bias statistics. 

 

6.2.3 Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test 
 

The KPSS is based on the model 

 

𝑋𝑡 = 𝜀𝑡 + 𝑍𝑡 

where 𝑍𝑡 is assumed to be stationary and heteroskedastic  and 𝜀𝑡 is a random walk  given as 

 

𝜀𝑡 = 𝜀𝑡−1 + 𝑣𝑡 

 

and with 𝑣𝑡 is independent and identically distributed with mean zero and variance 𝜎𝑣
2. For 

𝜎𝑣
2=0, then 𝜀𝑡 is a constant for all value of 𝑡 and 𝑋𝑡 is stationary. Thus, using the regression 

equation  

 

𝑋𝑡 = 𝜇̂ + 𝑍̂𝑡 

 

The test statistics is 

 

𝐾𝑃𝑆𝑆 =
∑ 𝑆̂𝑡

2𝑇
𝑡=1 𝑇2⁄

𝜆̂2
                                                                                                                         (6.7) 

 

The test statistic is the Lagrange multiplier (LM) for testing the null hypothesis of 𝜎𝑣
2 = 0 

against the alternative hypothesis of 𝜎𝑣
2 > 0 
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6.3 The VaR Model: Combining the GARCH type model and 

heavy-tailed distribution 
 

The VaR model used in this thesis is formed by combining the GARCH-type model with the 

heavy-tailed distribution. The heavy tailed distributions considered are: Generalized Pareto 

Distribution (GPD), Generalized Extreme Value Distribution (GEVD), stable distribution, and 

Pearson Type IV distribution (PIVD). This method is similar to that of McNeil and Frey (2000) 

and Bhattacharyya et al. (2008). The VaR for the long and short position is considered. As 

indicated in the introduction, VaR at the long position is associated with the left side of the 

distribution of the returns corresponding to negative returns. It is the left quantile of the 

distribution. In finance, traders at the long position incur a loss when prices drop. These are 

traders buying a particular equity. Correspondingly, the VaR at the short position is associated 

with the right side of the distribution of the returns corresponding to positive returns. It is the 

right quantile of the distribution. In finance, traders at the short position incur a loss when 

prices increase. These are traders selling a particular equity. 

 

Mathematically, VaR is defined as the 𝑞𝑡ℎ quantile of the distribution F. Thus, VaR at the long 

position is given as 

 

VaRq = F
−1(q) 

where F-1 is the inverse of F called quantile function and 0 < 𝑞 < 1. 

 

Likewise, VaR at the short position is given as 

 

VaR1−q = F
−1(1 − q) 

 

Let 𝑃𝑡 be the stock price on day 𝑡. A 1-day VaR at the long position on day t is the solution to 

 

P(𝑃𝑡 − 𝑃𝑡−1 ≤ 𝑉𝑎𝑅𝑞
𝑡) = 𝑞 

where 𝑡 is used to indicate a varying time. 

 

Similarly, a 1-day VaR at the short position on day t is defined as 
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P(𝑃𝑡 − 𝑃𝑡−1 ≥ 𝑉𝑎𝑅𝑞
𝑡) = 𝑞 

 

Traders at the long position incur a loss when Δ𝑃𝑡 = 𝑃𝑡 − 𝑃𝑡−1 < 0, while traders at the short 

position incur a loss when Δ𝑃𝑡 = 𝑃𝑡 − 𝑃𝑡−1 > 0. Considering the value at risk for returns 

series, 1-day log returns on day t is defined as 

 

𝑟𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1) 

 

Given that the past information at pre-set time 𝑡 − 1 is 𝐹𝑡−1. Thus, the VaR of a returns series 

is given as 

 

P(𝑟𝑡 ≤ 𝑉𝑎𝑅𝑞
𝑡 |𝐹𝑡−1) = 𝑞 

 

The process of the stock returns is modelled as follows 

 

𝑟𝑡 = 𝜇𝑡 + 𝑍𝑡 

 

With conditional mean of the 𝑟𝑡 given 𝐹𝑡−1 as; 𝜇𝑡 = 𝐸(𝑟𝑡|𝐹𝑡−1) and conditional variance of the 

𝑟𝑡 given 𝐹𝑡−1 as; 𝜎𝑡
2 = 𝑣𝑎𝑟(𝑟𝑡|𝐹𝑡−1).  And if the standardized residuals of the returns model is 

fitted to a heavy-tailed distribution; then, the 1- day ahead VaR at day t for a given probability 

level is given as: 

 

𝑉𝑎𝑅𝑞
𝑡 = 𝜇̂𝑡+1 + 𝜎̂𝑡+1𝐹

−1(𝑞)                                                                                                             (6.8) 

 

for the long position. The VaR the short position is given as: 

 

𝑉𝑎𝑅𝑞
𝑡 = 𝜇̂𝑡+1 + 𝜎̂𝑡+1𝐹

−1(1 − 𝑞)                                                                                                    (6.9) 

where  𝜇𝑡+1 is the conditional mean forecast at time 𝑡 + 1, 𝜎𝑡+1  is the conditional variance 

forecast at time 𝑡 + 1 and, 𝐹−1(. ) is the VaR for the given heavy tailed distribution at a given 

probability level. 
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6.3.1 Step-by-step method  
 

The step-by-step method for this research procedure is described in Figure 6.1 as follows: 

 

 The first step is to choose the best GARCH-type model that adequately capture the 

properties of the all share returns. The selection of best GARCH-type model is based 

on model selection criteria.  

 Then, the best GARCH-type model is fitted to the all share returns by Gaussian quasi 

maximum-likelihood estimation. That is, the log-likelihood is maximized by assuming 

a normal distribution innovation. 

 The standardized residuals of this best GARCH-type model is extracted and fitted to 

the four heavy-tailed distributions. 

 Finally, the forecast VaR is computed based on Equation 6.8 and 6.9 and compared by 

backtesting. 

 

Returns

Fitting the best GARCH 

Model

Best GARCH-GPD Best GARCH-GEVD Best GARCH-Stable
Best GARCH-Peason type 

IV

COMPUTING and BACKTESTING 
VaR

Figure 6. 1: Step-by-step method. 

 

6.4 Model selection criteria 
 

Model selection criteria are used to select the best model from candidate GARCH-type to 

describe the JSE all share returns. It is a useful tool for assessing if a fitted model provides an 
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optimal balance between parsimony and goodness-of-fit. It helps to find the best GARCH-type 

model that is either too simple or too complex to accommodate the JSE all share returns. The 

model selection criteria employed in this thesis are: Akaike information criterion (AIC) and 

Bayesian information criteria or Schwarz-Bayesian criteria (BIC). 

 

6.4.1 The Akaike Information Criterion (AIC) 
 

AIC measures how well the evaluated model fits with the data in respect to candidate models. 

Given a GARCH-type models of different structures, each model is fitted to the JSE all share 

returns using Gaussian quasi maximum likelihood. The AIC is computed for each model 

(Akaike, 1974). 

 

𝐴𝐼𝐶 = −
2

𝑘
log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) +

2

𝑘
(𝑝 + 𝑞)                                                                                   (6.10) 

 

where 𝑘 is the sample size and 𝑝 + 𝑞 is the number of parameters in the model. The model with 

the smallest number of parameters and with the largest likelihood has the minimum AIC. The 

model with the smallest AIC is regarded as the best model for the data (Tsay, 2013). 

 

6.4.2 The Bayesian Information Criterion (BIC) 
 

BIC is concerned with the Bayes factor. The BIC of a model is given as: 

 

𝐵𝐼𝐶 = −2log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + [(𝑝 + 𝑞) + (𝑝 + 𝑞)log𝑘]                                                        (6.11) 

 

where 𝑘 is the sample size and 𝑝 + 𝑞 is the number of parameters in the model. BIC allows 

comparison of multiple models by penalising complex models (model with many parameters) 

relative to simpler models. The model that has the largest posterior probability has the 

minimum BIC and is regarded as the best model for the data. 
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6.5 Model Diagnostics 
 

The model diagnostic is important for checking for any possible model inadequacy. It is divided 

into sections which include: test for serial correlation and ARCH effect, test for leverage effect, 

and the test for goodness-of-fit. 

 

6.5.1 Test for Serial Correlation and ARCH effect 
 

The standardized residuals of the GARCH-type model are assumed to be independent and 

identically distributed therefore, if the model is adequate the standardized residuals are 

expected not to exhibit autocorrelation (serial correlation) and conditional heteroskedasticity 

(ARCH effect). In this study, the autocorrelation plot and the partial autocorrelation plot are 

used to check for the presence of autocorrelation and conditional heteroskedasticity (ARCH 

effect). Then, formal tests are also applied which include: Ljung-Box test and ARCH test. 

 

6.5.1.1 Autocorrelation plot and Partial autocorrelation plot 

  

These are the graphical techniques used to examine if the standardized residuals exhibit serial 

correlation and conditional heteroskedasticity. The plot of autocorrelation function (ACF) of 

the standardized residuals against the lags and the plot of the partial autocorrelation function 

(PACF) of the standardized residuals against the lags are used to assess the presence of serial 

correlation in the standardized residuals. While, the plot of ACF of the squared standardized 

residuals against the lags and the plot of PACF of the squared standardized residuals against 

the lags are used to check for conditional heteroskedasticity. The plots also include a middle 

horizontal reference line at zero and the confidence bands at 95%. If the autocorrelation or 

partial autocorrelation at several lags fall outside the 95% confident bands, then they are said 

to exhibit serial correlation or conditional heteroskedasticity.  
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6.5.1.2 Ljung-Box test 

 

This test is used for both autocorrelation and conditional heteroskedasticity. It is based on the 

sample autocorrelation of the standardized residuals. When the Ljung-Box test is used to test 

whether the first L lags of the ACF of the standardized residuals are zero, the test statistic is 

 

𝑄(𝐿) = 𝑁(𝑁 + 2)∑
𝜌̂𝑘
2(𝑧)

𝑁 − 𝑘

𝐿

𝑘=1

                                                                                                        (6.12) 

where N is the sample size, L is the total number of autocorrelation,  𝜌̂𝑘
2 is the squared sample 

autocorrelation of standardized residual (𝑧𝑡) at lag k.  

 

The test statistic 𝑄(𝐿) follows a chi-squared with 𝐿 degree of freedom under the null hypothesis 

of no serial correlation. The null hypothesis is rejected if 𝑄(𝐿)  > 𝜒1−𝛼
2  where 𝜒1−𝛼

2  is the 1−𝛼 

quantile of the chi-squared distribution with 𝐿 degrees of freedom or if p-value is less than 𝛼, 

significant level. It is also used to test whether the first 𝐿 lags of the ACF of the squared 

standardized residuals are zero, the test statistic is 

 

𝑄 = 𝑁(𝑁 + 2)∑
𝜌̂𝑘
2(𝑧2)

𝑁−𝑘

𝐿
𝑘=1                                                                                                              (6.13) 

It also follows a chi-squared with 𝐿 degree of freedom, but under the null hypothesis of no 

conditional heteroskedasticity (that is, no ARCH effect). The null hypothesis of no ARCH 

effect is rejected if 𝑄(𝐿)  > 𝜒1−𝛼
2  or if p-value is less than 𝛼, significant level. 

 

6.5.1.3 Lagrange multiplier ARCH (ARCH-LM) test 

 

It is also used to examine the presence of ARCH effect in the standardized residuals based on 

the linear regression. 

 

𝑧𝑡
2 = 𝛼0 + 𝛼1𝑧𝑡−1

2 +⋯ + 𝛼𝑚𝑧𝑡−𝑚
2 + 𝑒𝑡                                                                                   (6.14) 

where 𝑡 = 𝑚 + 1,… , 𝑇 

 

The test statistic is given as: 
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𝐿𝑀 = 𝑇𝑅2                                                                                                                                          (6.15) 

where T is the sample size, 𝑅 = is the sample multiple correlation coefficient obtained from 

the regression Equation 6.14 using estimated residuals. 

 

The test statistic follows a chi-squared with 𝑚 degrees of freedom under the null hypothesis of 

no ARCH effect. It should also be noted that the test for serial correlation and ARCH effect 

can also be applied to the returns before estimation in order to examine if the time series exhibit 

autocorrelation and conditional heteroskedasticity. The purpose of this is to decide if there is a 

need for GARCH-type model. 

 

6.5.2 Test for Leverage effect 
 

In this study, Engle and Ng test known as sign and size test is employed to test for leverage 

effect. The test is used to determine whether an asymmetric GARCH-type model is needed for 

the ALSI returns or whether the symmetric GARCH model is adequate for the given returns. 

The test is applied to the standardized residuals of the GARCH model fit to the returns. Engle-

Ng test is a joint test of sign and size bias which is based on regression. 

 

𝜇̂𝑡
2 = 𝛽0 + 𝛽1𝑆𝑡−1

− + 𝛽2𝑆𝑡−1
− 𝜇𝑡−1 + 𝛽3𝑆𝑡−1

+ 𝜇𝑡−1 + 𝑒𝑡                                                               (6.16) 

where 𝑒𝑡 is the independent and identically distributed error term, 𝑆𝑡−1
−  is an indicator dummy 

variable given as: 

 

𝑆𝑡−1
− = {

1, 𝜇𝑡−1 < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        and 𝑆𝑡−1
+ = 1 − 𝑆𝑡−1

− . 

 

The coefficient 𝛽𝑖, 𝑖 = 1,2,3 follow student-t distribution. If  𝛽1 is significant, it indicates the 

presence of sign bias implying that positive and negative shocks impact differently upon future 

volatility. If  𝛽2 𝑜𝑟 𝛽3 is significant, it indicates the presence of size bias, meaning the size of 

the negative or positive affect the response of volatility from being symmetric. The joint test 

statistic is 

 

𝑇𝑅2 

where, 𝑅 is based on the regression Equation 6.15 and T is the sample size.  
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The test follows a chi-squared distribution with 3-degree of freedom under the null hypothesis 

of no asymmetric effect. 

6.5.3 Test for Independent and Identically Distribution (IID) 
 

If the GARCH-type model has successfully captured linear dependence in the returns, then the 

standardized residuals are expected to be IID or random. Therefore, this study employs the 

following test: 

 Bartels’ rank test 

 Cox and Stuart test 

 Brock, Dechert and Scheinkman test 

 

6.5.3.1 Bartels’ rank test 

 

The Bartels’ rank test is based on the rank of standardized residuals in ascending order. The 

ranks are sequential number of 𝑍𝑖: Rank (𝑍𝑖). All the possible set of rank arrangement of 

standardized residuals is given as 𝑁!. Under the null hypothesis of randomness each rank 

arrangement is equally likely to occur. The test statistic is given as 

 

𝑁𝑀 = ∑(rank(𝑍𝑖) − rank(𝑍𝑖+1))
2

𝑁−1

𝑖=1

                                                                                      (6.17) 

For large sample size, test statistics is 

 

𝑅𝑉𝑀 =
∑ (rank(𝑍𝑖) − rank(𝑍𝑖+1))

2𝑁−1
𝑖=1

𝑛(𝑛2 − 1) 12⁄
                                                                                 (6.18) 

 

6.5.4.2 Cox and Stuart test 

 

The Cox-Stuart test is based on trend. Given a set of standardized residuals 𝑍1, … , 𝑍𝑡  which 

are assumed to be arranged in the order of occurrence. They are grouped into pairs of the 

following form 
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(𝑍1, 𝑍1+𝑘), (𝑍2, 𝑍2+𝑘),…  , (𝑍𝑡−𝑘, 𝑍𝑡) 

 

So that 

𝑘 = 𝑓(𝑥) = {

𝑡

2
, if 𝑡 is even

𝑡 + 1

2
, if 𝑡 is odd

 

 

A sign test is then computed by defining 

 

𝑠𝑖𝑔𝑛(𝑍𝑖, 𝑍𝑖+𝑘) = {

+,   if 𝑍𝑖 < 𝑍𝑖+𝑘
0,   if 𝑍𝑖 = 𝑍𝑖+𝑘
−,   if 𝑍𝑖 > 𝑍𝑖+𝑘

                                                                                          (6.19) 

 

To test if P(𝑍𝑖 < 𝑍𝑖+𝑘) = P(𝑍𝑖 > 𝑍𝑖+𝑘), the tied pairs 𝑍𝑖 = 𝑍𝑖+𝑘 are omitted. Let  

T = total number of +’s  

N =total number of +’s and -’s 

 

Under the null hypothesis of no trend, T~ Bin(N,1/2). Hence, the null hypothesis is rejected at 

a given level of significance if 𝑇 ≤ 𝑚 or 𝑇 ≥ 𝑁 −𝑚, where 𝑚 is chosen such that 

 

∑(
𝑁

𝑗
) (1 2⁄ )

𝑛
𝑚

𝑗=0

≈
𝛼

2
 

While for large 𝑁, 

 

(
𝑇

𝑁
)~𝑁 [

1

2
,
𝑁

4
] 

 

Hence, the null hypothesis is rejected if 

  

𝑇 ≤
1

2
− 𝑍𝛼

2⁄
√
1

4𝑁
    0𝑟   𝑇 ≥

1

2
+ 𝑍𝛼

2⁄
√
1

4𝑁
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6.5.3.4 Brock, Dechert and Scheinkman (BDS) Test 

 

The BDS test is used to examine if the standardized residuals are IID. The standardized 

residuals are embedded into m- dimensional vectors by taking each m successive point in the 

series such that 

𝑍𝑡
𝑚 = (𝑍𝑡, 𝑍𝑡+1, … , 𝑍𝑡+𝑚−1) 

 

The correlation integral with 𝑚 dimensions and distance 𝜀 is given as 

 

𝐶𝑚,𝜀 = lim
𝑇→∞

(
𝑇 − 𝑚

2
)
−1

∑ 𝐼𝜀(𝑍𝑡
𝑚, 𝑍𝑠

𝑚)

∀𝑠<𝑡

 

where 

𝐼𝜀(𝑍𝑡
𝑚, 𝑍𝑠

𝑚) = {
1, ‖𝑍𝑡

𝑚 − 𝑍𝑠
𝑚‖ ≤ 𝜀

0, otherwise
 

 

The correlation integral is used to measure the proportion of pairs of any m-vectors 

(𝑍𝑡
𝑚𝑎𝑛𝑑 𝑍𝑠

𝑚) with the distance 𝜀. If the standardized residuals are IID, the 𝑍𝑡
𝑚 will show pattern 

in the m-dimensional space, that is 

 

𝐶𝑚,𝜀 ≈ [𝐶1,𝜀]
𝑚

 

 

The BDS test statistic is 

𝐵𝐷𝑆𝑚,𝜀 =
√𝑁(𝐶𝑚,𝜀 − [𝐶1,𝜀]

𝑚
)

√𝑉𝑚,𝜀
                                                                                                   (6.20) 

where 𝑉𝑚,𝜀 is a consistent estimator of the asymptotic standard deviation, 𝜎𝑚,𝜀 of  

√𝑁(𝐶𝑚,𝜀 − [𝐶1,𝜀]
𝑚
).  

 

Under the null hypothesis that the standardized residuals are independent and identically 

distributed, 𝐵𝐷𝑆𝑚,𝜀 follows a normal distribution with mean 0 and variance 1. Hence, the null 
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hypothesis is rejected, if the test statistic is greater than or less than the critical values (e.g. if 

=0.05, the critical value = 1.96) 

 

6.5.4 Test for Normality and Goodness-of-fit 
 

Test for goodness of fit is necessary to examine how well the standardized residuals fit a given 

distribution. Jarque-Berea (JB) Test, Shapiro-Wilk Test, Anderson-Darling test (AD test), 

probability plot and quantile-quantile plot were used for the goodness-of-fit test. 

 

6.5.4.1 Jarque-Berea (JB) Test 

 

The JB test is used to examine if the standardized residuals have skewness and kurtosis 

corresponding to that of normal distribution. It tests whether the skewness and excess kurtosis 

of the standardized residuals are zero. The test statistic is 

 

𝐽𝐵 = 𝑛 [
𝑆2

6
+
𝐾2

24
]                                                                                                                            (6.21) 

where 𝑆 is the skewness parameter given as 

 

𝑆 =
1

𝑛

∑ (𝑍𝑖 − 𝑍̅)
3𝑛

𝑖=1

(𝜎̂2)
3
2⁄

 

 

and 𝐾 is the excess kurtosis parameter given as 

 

𝐾 =
1

𝑛

∑ (𝑍𝑖 − 𝑍̅)
4𝑛

𝑖=1

(𝜎̂2)2
− 3 

Under the null hypothesis of standardized residuals are normally distributed, JB follows a chi-

square distribution with two degree freedom. Hence, the null hypothesis is rejected if  

𝐽𝐵 > 𝜒𝛼,2
2  or p-value is less than the given significant level. 
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6.5.4.2 Shapiro-Wilk Test 

 

The Shapiro-Wilk test is used to test if the standardized residuals follows a normal distribution. 

The test statistics is given as 

 

𝑊 =
(∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1

                                                                                                                         (6.22) 

where 𝑥(𝑖) are the 𝑖𝑡ℎ ordered statistics, 𝑥̅ is the sample mean, 𝑎𝑖 are constants obtained from 

the means, variances and covariance of the order statistics of a sample of size n from a normal 

distribution.  

   

6.5.3.2 Anderson-Darling test (AD test) 

 

The AD test is also to test if the standardized residuals came from a population with specified 

distribution. This test is based on the difference between an observed CDF and the expected 

CDF. The test statistic is 

 

𝐴2 = −𝑁 −
1

𝑁
∑(2𝑖 − 1){ln 𝐹(𝑌𝑖) + ln(1 − 𝐹(𝑌𝑁+1−𝑖))}

𝑁

𝑖=1

                                                (6.23) 

 

The test statistic, 𝐴, is defined under the null hypothesis of standardized residuals follow the 

specified distribution. It is a one-sided test and the null hypothesis is rejected, if 𝐴 is greater 

than the critical value (given by the table of AD test) or p-value is less than 𝛼, significant level. 

 

6.5.3.4 Probability Plot (PP plot) 

 

The PP plot is a graphical method for examining if standardized residuals follow a given 

distribution. The empirical distribution of the data is plotted against the specified theoretical 

distribution in such a way that the points should form approximately a straight line. If there is 

a departure from the straight line, then it indicates the departure of the data from the specified 

distribution, implying that that the data does not follow the specified distribution. 
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6.5.3.5 Quantile-Quantile plot (Q-Q plot) 

 

It is a graphical method for assessing if the empirical distribution and the specified theoretical 

distribution come from population with common distribution. It is a plot of the quantiles of the 

empirical distribution against the quantiles of theoretical distribution. A qq-line is also plotted. 

A qq-line is a 45-degree reference line that represents a perfect match between the empirical 

and theoretical distribution. The departure from the qq-line indicates that the empirical 

distribution and the theoretical distribution come from population of different distribution. 

  

6.6 Backtesting procedure 
 

In order to analyse the predictive ability of the model, the data is divided into two periods: the 

in-sample periods and out-of-sample period. The in-sample period, which is from 20-May-

2005 to 31-Dec-2013, is used for the model estimation and for forecasting risk. The out-of-

sample period from 2-Jan-2014 to 31-May-2016 is used for testing Value-at-risk (VaR) 

forecast. As a result, the estimation window has about 2155 observations, the testing window 

has 602 observations, and thus the total observations are 2757. The in-sample and the out-of-

sample backtesting is conducted. The in-sample backtesting is used to check for the adequacy 

of the VaR estimate obtained from the heavy-tailed distributions. This is done by backtesting 

on the standardized residuals of the in-sample period which consists of 2155 observations. The 

out-of-sample backtesting: is used to test for adequacy and predictive ability of the VaR 

models. The VaR model is used to compute an out-of-sample forecast for the 602 observations 

sequentially. The period [𝑡 + 1;  𝑡 + ℎ] is used for the VaR forecast where ℎ = 1 𝑑𝑎𝑦 is the 

time horizon of the VaR forecasts. The one-day-ahead VaR (both for long and short positions) 

is then compared with the 602 observed returns by employing the statistical test known as 

Kupiec likelihood ratio test. 

 

6.6.1 Kupiec Likelihood Ratio Test 
 

The backtesting method employed in this study is the Kupiec test. Kupiec test is used to 

examine the frequency of losses along the tail. It is based on the fact that a sufficient model 

should have a boundary exceedance of VaR estimates around the matching tail probability level 
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(Baharul-Ulum et al., 2012). The approach allows computing the probability of observed 

returns x in sample size N around the VaR estimate level β, by using the binomial distribution. 

 

f(𝑥) = (
N

𝑥
) β𝑥(1 − β)N−𝑥     

 

The test evaluates the operation of a VaR model while also assuming independence. Kupiec 

(1995), then recommends an examination that makes use of likelihood ratio so as to create a 

concession between type 1 and 2 errors. The null hypothesis for Kupiec test is that the expected 

proportion of exceedances is equal to β with a test statistic (Chinhamu et al., 2015); 

 

LRuc = 2 ln [
(1 −

𝑥
N)

N−𝑥

(
𝑥
N)

𝑥

(1 − β)N−𝑥β𝑥
]   ≈ χ2(1)                                                                                (6.24) 

 

Therefore, we reject the null hypothesis if the expected proportion of exceedances 𝑥 is less than 

LRuc, (Dowd, 2005).   

 

6.7 Conclusion 
 

This chapter discussed the methods and various statistical tests employed in carrying out the 

analysis for this study. 
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CHATPER 7 

EMPIRICAL RESULTS 
 

7.1 Introduction 
 

In this chapter, data source and description are reported. GARCH type models combined with 

heavy-tailed distribution are fitted and VaR estimates were backtested using the Kupiec 

likelihood test for ALSI returns. Lastly robust VaR model is selected. Section 7.2 describes the 

characteristics of ALSI returns. In section 7.3, how APARACH (1,1) model was chosen as the 

best possible GARCH-type model was justified. The combination of APARCH (1,1) with 

heavy-tailed distribution are discussed in section 7.4.  Section 7.5 considers the VaR estimate. 

Finally, section 7.6 and 7.7 discuss the backtesting result for the in-sample and out-sample 

respectively. 

 

7.2 Data Description 
 

The data is made up of the daily closing price of the all share index (ALSI) from 20-May-2005 

to 31-May-2016 obtained from INET. Figure 7.1(a) shows the time series plots of both the 

daily closing price of JSE ALSI and ALSI log returns. 

 

 

(a)                                                                             (b) 

Figure 7. 1: Time series plots 
*(a) Time series plot of the daily ALSI index, (b) Time series plot of the daily ALSI log returns. 
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From Figure 7.1, it is observed that the daily ALSI index data does not seem to be stationary 

both in mean and in variance. The data seems to exhibit a stochastic trend, and it suggests the 

presence of heteroskedasticity. Therefore, we obtain the daily log returns (𝑟𝑡). The log returns 

is given by 

𝑟𝑡 = ln (
𝑃𝑡
𝑃𝑡−1

) 

where, 

𝑟𝑡, is the natural logarithmic return of daily price of ALSI at time 𝑡 

𝑃𝑡 is the daily closing price of ALSI at time 𝑡 

𝑃𝑡−1 is the daily closing price of ALSI at time 𝑡 − 1 

 

The time series plots of daily ALSI log returns in Figure 7.1 (b), shows that log returns appear 

to be stationary. However, the variance appears not to be constant over time indicating 

volatility clustering. In order to confirm the stationarity of the JSE ALSI returns, the unit root 

tests are employed, namely: Augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) Unit 

root test, and Kwiakkowski, Phillips, Schmidt and Shin (KPSS) test. The unit root test statistics 

with their corresponding p-values are presented in Table 7.1. 

 

Table 7. 1: Test for Stationarity for the ALSI returns 

Test Statistics P-value 

ADF -13.6101 0.0100 

PP -2457.7280 0.0100 

KPSS 0.1418 0.1000 

 

From Table 7.1 the ADF and the PP test statistics have a p-value which are less 0.05, therefore 

the null hypothesis of non-stationarity of ALSI returns is rejected at the 5 % level of 

significance. While the KPSS test statistics has a p-value which is greater than 0.05, therefore 

the null hypothesis of stationarity of the ALSI returns is not rejected at 5% level of significance. 

In conclusion, the results of ADF, PP and KPSS tests confirm that the ALSI returns are 

stationary. The descriptive statistics of the ALSI returns are reported in Table 7.2. 
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Table 7. 2 Descriptive statistics of the daily JSE ALSI returns 

N Mean Minimum Maximum Medium Skewness Excess 

Kurtosis 

2757 0.0005 -0.0758 0.0683 0.0010 -0.1922 3.5236 

 

Table 7.2 indicate that the JSE daily ALSI returns consists of 2757 observations ranging from 

-0.0758 to 0.0683 with an average of -0.0005 and a medium 0.001. The average is quite large, 

implying that the overall returns were slightly on the increase. A positive skewness is also 

known as, right-skewed indicates a distribution with asymmetric side which tends in the 

direction of more positive numbers. On the other hand, negative skewness, also left-skewed 

expresses a distribution that tends asymmetrically in the left direction. In this case, as reported 

in the Table 7.2, the skewness is negative and indicating that losses (left tail) of JSE ALSI 

returns is larger than the profits (right tail). Kurtosis is a measure of its levelness in comparison 

to the frequency distribution peak, which is actually the values of excess kurtosis with reference 

to Amir (1993) who described a positive kurtosis as one that demonstrates a moderately peaked 

distribution, also called leptokurtic, while a negative kurtosis is viewed as a comparatively flat 

distribution, also known as  Platykurtic. From Table 7.2, it is observed that the excess kurtosis 

value of JSE ALSI returns is positive indicating leptokurtic behaviour of the returns. The 

kurtosis value is 3.5236 which is greater than 3. It suggests that the empirical distributions of 

the daily JSE ALSI returns have a much heavier tail than that of normal distribution. This 

suggests that the JSE ALSI returns follow a heavy tailed distribution. To check for the non-

normality of the returns, the Q-Q plot and numerical normality test, namely:  Jarque-Bera (JB) 

test and Shapiro-Wilk tests are employed. Figure 7.2 shows the Q-Q plot of the daily JSE ALSI 

returns. 

 

 

                              Figure 7. 2: Q-Q plot of JSE ALSI returns 
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From Figure 7.2, the Q-Q plot indicates that ALSI returns seem to diverge from the normal 

distribution at both tails of the distribution. This is confirmed by the Jarque-Bera (JB) and 

Shapiro-Wilk test statistics reported in Table 7.3.  

 

Table 7. 3: Test for normality of the ALSI returns 

Test Statistics p-value 

Shapiro-Wilk 0.9591 < 0.0001 

Jarque-Bera 1447.1069 < 0.0001 

 

From the Table 7.3, both test statistics have a p-value less than 0.05, thus we reject the null 

hypothesis of normality at 5% significance level. This confirms that ALSI returns are not 

normality distributed. Thus, there is strong evidence of modelling the JSE ALSI returns 

incorporating a heavy tailed distribution. This study also tests for serial correlation in ALSI 

returns. The Autocorrelation (ACF) plot, Ljung-Box statistics 𝑄(𝐿) of the returns and the 

Dublin Watson (DW) test are used to investigate serial correlation of ALSI returns. The ACF 

plot of JSE ALSI returns is shown in Figure 7.3(a). 

 

 

(a)                                                                        (b) 

Figure 7. 3: ACF plots of ALSI returns 
*(a) ACF plot of ALSI returns (b) ACF plot of squared ALSI returns 

 

From Figure 7.3(a) ACF plot of JSE ALSI returns does not have any significant spike at any 

lag, this suggests that the JSE ALSI returns are not serially correlated. Table 7.4 shows the p-

value of the Ljung-Box and the DW statistics.  
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Table 7. 4: Test for serial correlation in the ALSI returns 

Test Statistics p-value 

Ljung-Box 0.65047 0.4199 

DW test 1.9792 0.2920 

 

From Table 7.4, Ljung-Box 𝑄(𝐿) and DW statistics of JSE ALSI returns have a p-value greater 

than 0.05, therefore the null hypothesis of no serial correlation is not rejected at 5% level of 

significance. This confirms that the JSE ALSI returns are not serially correlated. In order to 

further examine for higher order serial correlation that is the heteroskedasticity in the ALSI 

returns, this study employed the ACF plot of the squared returns, Ljung-Box statistics, 𝑄2(𝐿) 

of the squared returns and the ARCH Langrage Multiplier (ARCH-LM) test. From Figure 

7.3(b), the sample ACF plot of squared ALSI returns shows significant spikes at several lags 

suggesting high order serial dependence in JSE ALSI returns. This suggests that the ALSI 

returns seem to be heteroskedastic. Table 7.5 shows the p-value of the Ljung-Box and the 

ARCH-LM statistics.  

 

Table 7. 5: Test for ARCH effect in the ALSI returns 

Test Statistics p-value 

Ljung-Box, 𝑄2(20) 3642.3000 < 0.0001 

ARCH-LM 734.5172 < 0.0001 

 

From Table 7.5, Ljung-Box, 𝑄2(𝐿) and the ARCH-LM statistics have p-values less than 0.05, 

therefore the null hypothesis of no heteroskedasticity in the returns is rejected at 5% level of 

significance. This confirms ALSI returns exhibit conditional heteroskedasticity or ARCH 

effect. 

 

In summary, results from Table 7.1- 7.5 show that the ALSI returns are stationary, asymmetric, 

have an Arch effect and not serially correlated, thus a GARCH type model can be fitted to 

capture volatility clustering and the asymmetric effect on the returns. Results also have shown 
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that the returns are non –normal, this suggests that a heavy-tailed distribution can be fit to be 

the data to capture normality property of the ALSI returns. 

 

7.3 GARCH Parameter Estimation and Model Selection 
 

This section involves the selection of the best GARCH-type model that can adequately capture 

the volatility clustering and the leverage effect in JSE ALSI returns. In this study, the data 

series used for the model estimation is from 20-May-2005 to 31-Dec-2013, that is 2155 

observations so that the others will be used for out-of-sample forecasting. Firstly, GARCH 

(1,1) model was fitted to JSE ALSI returns. According to Yang et al. (2016), it has proved to 

be the most common model for predicting volatility. Table 7.6 shows the maximum likelihood 

(ML) parameter estimates of GARCH (1,1) model with normal distribution governing the 

innovations. 

 

Table 7. 6: ML Parameter estimates of GARCH (1,1) model and goodness-of- fit statistics 

 𝝁̂ 𝜶̂𝟎 𝜶̂𝟏 𝜷̂𝟏 Ljung-

Box,Q2 

ARCH LM 

statistics 0.0009 

  

2𝑒2 

 

0.1006 

 

0.8861 

 

15.3300 

 

14.949 

 

p-value 0.0000 0.0976  0.0000 0.0000 0.7572 0.7793 

 

From Table 7.6, the parameters are significant at 5% level of significance expect 

𝛼̂0.  It is also observed that the GARCH (1,1) model has successively captured the volatility 

clustering with Ljung-Box and ARCH-LM p-values greater than 0.05, therefore the null 

hypothesis of no heteroscedasticity in the returns is accepted at 5% level of significance. To 

further check if GARCH (1,1) has successively captured the asymmetric effect in JSE ALSI 

returns. The sign and size test is employed. Table7.7 displays the result of the asymmetric test. 
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Table 7. 7: Sign and size test 

Test t-value p-value 

Sign Bias 2.2256 0.0026 

Negative Sign Bias 0.8455 0.3979 

Positive Sign Bias 2.2542 0.0242 

Joint Effect 23.6960 0.0003 

 

From Table 7.7, the sign bias has p-value less than 0.05, thus the null hypothesis of no sign 

bias is rejected at 5% level of significance. This indicates the presence of sign bias implying 

that positive and negative shocks have different impacts upon future volatility. The p-value of 

the negative sign bias is greater than 0.05, thus the null hypothesis of no negative bias is not 

rejected. This implies no presence of negative size bias. The p-value of the positive sign bias 

is less than 0.05, thus the null hypothesis of no positive bias is rejected. This suggests the 

presence of positive size bias, implying that the size of the positive shocks affects the response 

of volatility from being symmetric. The joint effect test has a p-value less than 0.05, thus the 

null hypothesis of no asymmetric effect is rejected at 5% level of significance. It implies that 

there is a combined effect of the sign and size on future volatility. This shows that the sign bias, 

the positive sign and the joint effect provide some evidence of bias. This suggests that the 

GARCH (1,1) model has not successively captured the asymmetric effect in ALSI returns. 

Therefore, GARCH (1,1) model may not be able to represent the ALSI returns adequately. 

Thus, an asymmetric GARCH model is required for ALSI returns. Secondly, the following 

asymmetric GARCH models: EGARCH (1,1), TGARCH (1,1) and APARCH (1,1) models are 

fitted to the JSE ALSI returns using the MLE method. The Table 7.8 shows the results of 

maximum likelihood estimates of the asymmetric GARCH models with normal distribution 

innovation. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

model selection criteria are also reported in Table 7.8. 

 

 

 

 

 



85 
 
 

Table 7. 8: ML Parameter estimates of asymmetric GARCH models 

 EGARCH (1,1) TGARCH (1,1) APARCH (1,1) 

𝜇̂ 0.0005 (0.0247)** 0.0005 (0.0195)** 0.0004 (0.0048)*** 

𝛼̂0 -0.1616 (0.0000)*** 0.0000 (0.0897)* 0.0002 (0.0000)*** 

𝛼̂1 -0.1023 (0.0000)*** 0.0105 (0.3905) 0.0713 (0.0000)*** 

𝛽̂1 0.9819 (0.0000)*** 0.9057 (0.0000)*** 0.9251 (0.0000)*** 

𝛾1 0.1369 (0.0000)*** 0.1319 (0.0000)*** 0.7932 (0.0000)*** 

𝛿 - - 1.0000 

AIC -6.1498 -6.1459 -6.1533 

BIC -6.1367 -6.1327 -6.1402 

NOTE:*, **, *** indicates ( p-value ) that significant at 10%, 5%, and 1% level of significant .respectively. 

 

From Table 7.8, it is observed that the ML parameters estimates for the three asymmetric 

GARCH models fitted to the ALSI returns are significant at least at 10% level of significance. 

The APARCH (1,1) model has the least AIC and BIC values, this is selected as the best 

GARCH type model. Finally, the standardized residual of the best GARCH type model is used 

for checking for model adequacy. Table 7.9 shows the descriptive statistics of standardized 

residuals. 

 

Table 7. 9:  Descriptive Statistics of standardized residuals of the APARCH (1,1) model 

Mean Minimum Maximum Median Skewness Excess 

Kurtosis 

0.0063 -4.4260 3.4712 0.0684 -0.3748 0.4203 

 

From Table 7.9, it is observed that the excess kurtosis value of the standardized residuals of 

APARCH (1,1) with normal distribution innovation is greater than zero. This indicates that 

there is still relatively more value in the tail, therefore the standardized residuals seem to have 

a tail heavier than that of normal distribution. To check for the non-normality of the 

standardized residuals, the Q-Q plot, Jarque-Bera (JB) test and Shapiro-Wilk tests are 
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employed. Figure 7.4 shows the empirical density plot and a Q-Q plot of the standardized 

residuals. 

 

 

(a)                                                                    (b) 

Figure 7. 4: Empirical density plot and Q-Q plot of standardized residuals 
*(a) Empirical density plot of standardized residuals (b) Q-Q plot of standardized residuals 

 

From Figure 7.4, the empirical density and Q-Q plot suggest that standardized residuals seem 

not to be the normal distribution. This is confirmed by the Jarque-Bera (JB) and Shapiro-Wilk 

test statistics reported in Table 7.10. 

 

Table 7. 10: Test for normality of the standardized residuals 

Test Statistics p-value 

Shapiro-Wilk 0.99182 < 0.0001 

Jarque-Bera 66.6210 < 0.0001 

 

From Table 7.10, it is observed that both tests have p-values less than 0.05, thus the null 

hypothesis of normality is rejected at 5% level of significance. This confirms that the 

standardized residuals of APARCH (1,1) have a much heavier tail than that of the normal 

distribution. To test for serial correlation in the standardized residuals, the autocorrelation 

(ACF) plot, Ljung-Box statistics 𝑄(𝐿) of the standardized residuals and the DW tests are 

employed. The ACF plot of standardized residuals is shown in Figure 7.5(a). 
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(a)                                                                                    (b) 

Figure 7. 5: ACF plots of the Standardized residuals 
*(a) ACF plot of ALSI standardized residuals (b) ACF plot of squared standardized residuals 

 

From Figure 7.5(a), it is observed that the sample ACF of the standardized residuals APARCH 

(1,1) model shows no significant spike, suggesting that the standardized residuals of APARCH 

(1,1) model are not serially correlated. The Ljung-Box statistics 𝑄(𝐿) of the standardized 

residuals and the DW test is used to test the null hypothesis of no serial correlation in the 

residuals. Table 7.11 shows the p-values of the Ljung-Box and DW statistics. 

 

Table 7. 11: Test for serial correlation on the standardized residuals 

Test Statistics p-value 

Ljung-Box, 𝑄(20) 19.8670 0.4663 

DW test 1.9763 0.2913 

 

From Table 7.11, Ljung-Box 𝑄(𝐿) and DW statistics of the standardized residuals have p-value 

greater than 0.05, therefore the null hypothesis of no serial correlation is not rejected at 5% 

level of significance. This confirms that the standardized residuals are not serially correlated. 

In order to examine the presence of ARCH effect in the standardized residuals, the ACF plot 

of the squared standardized residuals, the Ljung-Box statistics, 𝑄2(𝐿) of the squared 

standardized residuals and the ARCH-LM test are examined for heteroscedasticity in the 

standardized residuals. It is observed from Figure 7.5(b) that the ACF plot of squared 

standardized residuals shows no significant spike. This suggests that the standardized residuals 

do not exhibit ARCH effect. Table 7.12 shows the results of the ARCH tests of the standardized 

residuals. 
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Table 7. 12: Test for ARCH effect in the standardized residuals 

Test Statistics p-value 

Ljung-Box, 𝑄2(20) 21.8100 0.3509 

ARCH-LM 21.3940   0.3743 

 

From Table 7.12, both the tests have p-values greater than 0.05, therefore the null hypothesis 

of no arch effect in the squared standardized residuals of APRACH (1,1) model, is not rejected 

at 5% levels of significance. This confirms that the APRACH (1,1) has adequately captured 

conditional heteroskedasticity/ARCH effect on JSE ALSI returns. The standardized residuals 

are also examined for randomness. The Bartels’ rank, Cox Stuart, and BDS tests are employed 

for testing. Table 7.13 shows statistics of independent and identically distributed (IID) tests 

with their corresponding p-values. 

 

Table 7. 13 : Test for independent and identically distributed of the standardized residuals 

Test Statistics p-value 

Bartels’ rank -0.1109 0.9117 

Cox Stuart 537.0000 0.9514 

BDS -1.6930 0.0904 

 

From Table 7.13, it is observed that the Bartels’ rank, Cox Stuart and the BDS tests have a p-

value greater than 0.05, the null hypothesis of standardized residuals are independent and 

identically distributed (random) is not rejected at 5% level of significance. This implies that 

the standardized residuals of APARCH (1,1) model are white noise. 

 

From results reported in Table 7.9, 7.10, 7.11, 7.12 and 7.13, the standardized residuals are not 

serially correlated, do not have any arch effect and are IID, however they seem to exhibit heavy-

tailness. This suggests that the APARCH (1,1) model, although a fairly good model failed to 

adequately capture non-normality property of the ALSI returns exhibited in the standardized 

residuals. 
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7.4 Combining APARCH (1,1) with heavy tailed distribution 
 

The heavy-tailed distributions are fitted to the standardized residuals of APARCH (1,1) model. 

This is like combining the APARCH model with the heavy-tailed distributions. The four heavy-

tail distributions fitted are: Pearson Type IV distribution (PIVD), stable distribution, GPD and 

GEVD. The APARCH (1,1) with skew Student t (sstd) innovation is also considered. All the 

heavy-tailed distributions are fitted to the standardized residuals using the MLE method. 

 

7.4.1 APARCH (1,1) model with skew Student t Distribution (sstd) 
 

The JSE ALSI returns, fit to APARCH model with heavy-tail innovations. The AIC and BIC 

are used to compare these models. See Appendix B for the result of the model selection criteria. 

The APARCH (1,1) model with skew Student’s t distribution minimized both the AIC and the 

BIC. Table 7.14 shows the parameter estimates of APARCH (1,1) with sstd innovation. 

  

Table 7. 14: Parameter estimates of APARCH (1,1) with sstd governing the innovation 

𝝁̂ 𝜶̂𝟎 𝜶̂𝟏 𝜷̂𝟏 𝜸̂𝟏 δ Skew shape AD Test 

0.0004 

(0.004) 

0.0002 

(0.000) 

0.0652 

(0.000) 

0.9331 

(0.000) 

0.9197 

(0.000) 

1.0000 

 

0.8041 

(0.000) 

23.46 

(0.000) 

0.0010 

(0.9832) 

NOTE: statistics (p-value)  

 

From Table 7.14, all parameters are significant at 5% levels of significance. The skewness 

parameter is less than 1 indicating that the distribution is negatively skewed. The shape 

parameter is high, implying that the distribution is heavy-tailed. The empirical density and the 

Q-Q plot shown in Figure 7.6 seem to follow a skew Student t distribution. This is confirmed 

by the Anderson-Darling (AD) tests statistics whose p-value is greater than 0.05. This implies 

that the model is adequate. 
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(a)                                                                      (b) 

Figure 7. 6: Empirical Density plot and Q-Q plot of APARCH with sstd 
*(a) Empirical density plot of standardized residuals (b) Q-Q plot of standardized residuals 

 

7.4.2 APARCH (1,1)-GPD model 
 

Since the standardized residuals of APRCH (1,1) are now independent and identically 

distributed, it is therefore considered as suitable for the application of the extreme value 

analysis. The GPD is fitted to the standardized residuals for both the upper (gains) and lower 

tails (losses). The mean residual life plot, parameter stability plot will be used for the selection 

of proper threshold. The Pareto quantile plot is also used to confirm the threshold selected. To 

obtain the threshold and fit the losses, the standardized residuals was multiplied by -1, that is  

𝑍𝑡
∗ = −𝑍𝑡. This converts the minimum values to become maximum values. The mean residual 

life plot and the Pareto quantile plot select the highest possible threshold on the upper tail of 

the distribution. Figure 7.7 shows the mean residual life plot of the standardized residuals of 

both the positive standardized residuals (upper tail) and the negative standardized (lower tail). 
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(a)                                                                 (b) 

Figure 7. 7: Mean residual life plot of standardized residuals 
*(a) Mean residual life plot of positive standardized residuals (b) Mean residual life plot of negative standardized residuals 

 

In Figure 7.7, it can be seen that the 95% confidence bands (dotted lines) around the mean 

excesses have been superimposed for both the gains and losses. The suitable threshold must lie 

where there is a positive gradient change in the mean excess. Thus, the selected threshold 𝑢 

should lie around 2 for both plots. Unfortunately, and this is often encountered empirically, a 

definite choice for the threshold value can hardly be deduced from this kind of plot. Therefore, 

to further explore what the proper threshold should be, the parameter stability plot is used. 

Figure 7.8 and Figure 7.9 show the parameter stability plots for the positive and negative 

standardized residuals respectively. 

 

Figure 7. 8: Parameter stability plot for positive standardized residuals. 
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Figure 7. 9: Parameter stability plot for negative standardized residuals 

 

From Figure 7.8 and Figure 7.9, the parameter stability plots show the plot of the optimized 

shape and scale parameters of possible threshold values from 1.0 to 2.0, it can be seen that the 

estimated parameters are more or less stable when 𝑢 ≥  1.2 for the 𝑍𝑡 while for the 𝑍𝑡
∗ 

when 𝑢 ≥  1.5  . To confirm the threshold the Pareto quantile plot is employed. Figure 7.10, 

shows the Pareto quantile plots for both the positive and negative standardized residuals. 

 

 

(a)                                                              (b) 

Figure 7. 10 : Pareto quantile plot of standardized residuals 
*(a) Pareto quantile plot for positive standardized residuals (b) Pareto quantile plot for negative standardized residuals 
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From Figure 7.10(a), the threshold is 𝑢 =  exp(0.2261406) = 1.25 for the 𝑍𝑡 and Figure 

7.10(b), show that 𝑢 = exp(0.4400882) = 1.56 for 𝑍𝑡
∗. The number of observations above the 

selected thresholds is 197 and 146 for positive (upper) and negative (lower) standardized 

residuals respectively. The GPD is fitted to both the positive and negative standardized 

residuals using MLE. Table 7.15, shows the ML parameter estimates with corresponding 

standard errors in brackets.  

 

Table 7. 15: ML Parameter estimates of GPD with standard errors in bracket 

 Threshold,(𝒖) 

No of  

exceedances, 

(Y) 

𝜺̂ 

Se(𝜺̂) 

𝝈̂ 

Se(𝝈̂) 

𝑍𝑡 1.25 197 

-0.0806 

(0.0647) 

0.4337 

(0.0417) 

𝑍𝑡
∗ 1.56 146 

-0.0434 

(0.0820) 

0.571 

(0.0665) 

 

It is observed from Table 7.15, that the shape parameter is negative, which also suggests that 

standardized residuals of APARCH (1,1) for JSE ALSI returns follow a GPD for both the upper 

and left tail. However, the 95% confidence interval of the shape parameters is (0.046212,-

0.207412) for the upper tail and is (0.041664,-0.128464) for the lower tail. This indicates that 

there is no evidence to reject the null hypothesis - the upper and lower tail follows Gumbel 

distribution or Weibull distribution. Given the impact of shape parameter on the upper and 

lower tail, there is much uncertainty regarding its characteristics. Figures 7.11 and 7.12 show 

the GPD model fit diagnostic plot of the positive and negative standardized residuals. 
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Figure 7. 11: GPD Diagnostic plot of positive standardized residuals 
* PP plot (on the upper left panel), (b) Q-Q plot (on the upper right panel), (c) Return level plot (on the lower left panel), (d) 

Density plot (on the lower right panel) 
 

From Figure 7.11, it is observed that the positive standardized residuals seem to follow the 

GPD. The Q-Q and the PP plots do not show any serious divergences from the straight lines. 

The empirical density plot and the return level estimates of the GPD all suggest that the positive 

standardized residuals follow a GPD at the upper tail. 

 

 

Figure 7. 12: GPD Diagnostic plot of negative standardized residuals 
* PP plot (on the upper left panel), (b) Q-Q plot (on the upper right panel), (c) Return level plot (on the lower left panel), (d) 

Density plot (on the lower right panel) 
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From Figure 7.12, the Q-Q and the PP plot do not show any serious divergences from the 

straight lines. The empirical density plot and the return level estimates of the GPD all suggest 

that the negative standardized residuals follow a GPD at the lower tail. This implies that the 

negative standardized residuals follow the GPD. 

 

7.4.3 APARCH (1,1)- GEVD model 
 

The GEVD is fitted to the positive and negative standardized residuals using MLE. The block 

size of 5 is used to perform a block maxima method due to fact that less accuracy is attached 

to estimates with larger block sizes in accordance with asymptotic property as noted by Coles 

(2001). Table 7.16 shows the ML parameter estimates of the GEVD with corresponding 

standard errors in brackets. 

 

Table 7. 16: ML Parameter estimates of GEVD with standard error 

 Maxima,(m)  𝜺̂,  

Se(𝜺̂) 

 µ̂ 

Se(µ̂) 

 𝛔̂ 

Se(𝝈̂) 

AD test 

(p-value) 

𝑍𝑡 

431 -0.1797 

(0.0185) 

0.9102 

(0.0287) 

0.5547 

(0.0191) 

0.3744 

(0.9681) 

𝑍𝑡
∗ 

431 -0.0852 

(0.0296) 

0.9027 

(0.0245) 

0.6535 

(0.0348) 

0.2551 

(0.9676) 

 

From Table 7.16, the shape parameter is negative suggesting that the standardized residuals 

follow Weibull distribution. This is supported by the 95% confidence interval of the shape 

parameters which is (-0.14344,-0.21596) for the upper tail and (-0.027184,-0.143216) for the 

lower tail. Figures 7.13 and Figure 7.14 show the GEVD model fit diagnostic plot of the 

positive and negative standardized residuals. 
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Figure 7. 13: GEVD Diagnostic plot of positive standardized residuals 
* PP plot (on the upper left panel), (b) Q-Q plot (on the upper right panel), (c) Return level plot (on the lower left panel), (d) 

Density plot (on the lower right panel) 
 

From Figure 7.13, the Q-Q and the PP plot do not show any serious divergences from the 

straight lines. The empirical density plot and the return level estimates of the GPD all suggest 

that the positive standardized residuals seem to follow a GEVD at the upper tail. This is 

confirmed by the AD statistics whose p-value is greater than 0.05. Thus, the GEVD distribution 

is a good fit for the upper tail. 
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Figure 7. 14: GEVD Diagnostic plot of positive standardized residuals 
* PP plot (on the upper left panel), (b) Q-Q plot (on the upper right panel), (c) Return level plot (on the lower left panel), (d) 

Density plot (on the lower right panel) 

 

From Figure 7.14, it is observed that the Q-Q and the PP plot do not show any serious 

divergences from the straight lines. The empirical density plot and the return level estimates of 

the GPD all suggest that the negative standardized residuals seem to follow a GEVD at the 

lower tail. This is confirmed by the AD statistics which p-value is greater than 0.05. Thus, the 

GEVD distribution is a good fit for the lower tail. 

 

7.4.4 APARCH (1,1)-Stable Distribution model 
 

The stable distribution is also fitted to the extracted standardized residuals of the APARCH 

(1,1) model. The model is referred to as APARCH (1,1)-stable distribution model. Table 7.17 

shows the ML parameter estimates of a stable distribution fitted to the standardized residuals 

of APARCH (1,1) model. 

 

Table 7. 17: ML Parameter estimates of stable distribution and goodness-of-fit statistics 

𝜶̂ 𝜷̂ 𝜸̂ 𝜹 AD test 

(p-value) 

1.9163 -1.0000 0.6784 0.0778 1.0652 

(0.3248) 
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From Table 7.17, the value of the index of stability (𝛼̂) is 1.92 which is less than 2. This 

suggested that the tail of the standardized residuals follows a Pareto law indicating the 

distribution is heavy-tailed and also has infinite variance. The stable skewedness (𝛽̂) is -1, 

meaning that it is skewed to the left. From Figure 7.15, it is observed that the variance stabilized 

P-P plot of the standardized residuals does not show any divergence from the straight line. This 

suggested that the standardized residuals seem to follow a stable distribution. The AD statistics 

has a p-value greater than 0.05, thus the null hypothesis of the standardized residuals follow a 

stable distribution is not rejected at 5% level of significance. This confirmed that the stable 

distribution is a good fit for the standardized residuals. 

 

 

                               Figure 7. 15: Variance stabilized P-P plot of the standardized residuals 

 

7.4.5 APARCH (1,1)-PIVD model 
 

Finally, PIVD, is fitted to the standardized residuals from extracted from APARCH (1,1) Table 

7.18 shows the ML parameter estimates of PIVD.  
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Table 7. 18: ML Parameter estimates of PIVD and goodness-of-fit statistics 

𝒎̂ 𝒗̂ 𝝀̂ 𝒂̂ AD-test  

(p-value) 

12.6666 11.7361 -2.1298 4.2221 0.2868 

(0.9477) 

 

From Table 7.18, it can be seen that kurtosis parameter is 12.6666 which is greater than 2.5. 

Therefore, it satisfies the conditions for a PIVD. The AD statistics has a p-value greater than 

0.05, the null hypothesis of standardized residuals follow a PIVD is not rejected. Thus, the 

PIVD is a good fit for the standardized residuals. 

 

7.5 Estimating Value at Risk (VaR)  
 

The VaR is estimated for both the long and the short position. The VaR for the short position 

is associated with the right quantiles of the distribution at a given probability level. The VaR 

for the long position is associated with is the left quantiles of the distribution at a given 

probability level. Table 7.19 shows of the VaR estimates for both the short and long position 

respectively. 

 

Table 7. 19: Value-at-Risk estimates at short and long position 

Model Long position short position 

0.10 0.05 0.025 0.01 0.90 0.95 0.975 0.99 

APARCH(1,1)-sstd -1.3006 -1.7367 -2.1326 -2.6170 1.2068 1.5126 1.7834 2.1090 

APARCH(1,1)-PIVD -1.2861 -1.7261 -2.1348 -2.6466 1.2253 1.5368 1.8045 2.1150 

APARCH(1,1)-stable -1.2160 -1.6378 -2.0569 -2.6967 1.2811 1.6123 1.8975 2.2270 

APARCH(1,1)GEVD -1.3103 -1.7423 -2.1411 -2.6279 1.2460 1.5798 1.8679 2.1936 

APARCH(1,1)-GPD -1.3357 -1.7323 -2.117 -2.6084 1.2109 1.5054 1.7839 2.1290 

Note: Values in Bold blue and red are the highest and smallest VaR estimates at given levels respectively 
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From Table 7.19, it is observed that the stable distribution has the highest VaR estimate for 

both short and long positions except at 1% level of the long position where the GPD has the 

highest VaR estimate. The sstd has the smallest VaR estimate at the short position except at 

95% level where the GPD has the smallest VaR estimate. For the long position, the smallest 

VaR differs at difference level, the GPD has the smallest VaR at 10%, sstd distribution has the 

smallest VaR at 5%, GEVD has the smallest VaR at 2.5% and the stable distribution has the 

smallest VaR at 1% 

 

7.6 In-Sample Backtesting 
 

In order to check model adequacy in estimating the VaR estimate, the VaR estimates are 

backtested using the Kupiec likelihood ratio test. Table 7.20 shows the p-value of the Kupiec 

likelihood ratio test at different levels for the in-sample data.  

 

Table 7. 20: In-sample backtesting: p-values of Kupiec likelihood ratio test  

Model Long position Short position 

0.10 0.05 0.025 0.01 0.90 0.95 0.975 0.99 

APARCH(1,1)-sstd 0.9714 0.4383 0.9862 0.9227 0.9714 0.7850 0.9036 0.7341 

APARCH(1,1)-PIVD 0.5921 0.8623 0.7947 0.9048 0.3278 0.4384 0.6890 0.5731 

APARCH(1,1)-stable 0.1280 0.0786 0.4064 0.7341 0.0137 0.0197 0.1200 0.1336 

APARCH(1,1)GEVD 0.8578 0.7849 0.7947 0.9227 0.1783 0.1107 0.1596 0.3064 

APARCH(1,1)-GPD 0.5883 0.7849 0.9862 0.7562 0.8011 0.7849 0.9862 0.4289 

Note: Values in Bold blue are the highest p-value at a given level. 

 

From Table 7.20, the p-values for all the fitted models are greater than 0.05, thus the null 

hypothesis of model adequacy is not rejected at all levels under investigation. The best model 

is selected at different levels using the p-value of the Kupiec likelihood test statistics. The 

model with the highest p-value at a given level is selected as the best (robust) model. The sstd 

distribution has the highest p-value at all probability levels except at 97.5% where GPD has 

outperformed it. For the long position, sstd distribution has the highest p-value at 10% level, 
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the PIVD has the highest at 5% level, the GPD and sstd distribution highest p-value at 2.5% 

level and finally the GEVD and sstd distribution has the highest p-value at 1% level. 

 

7.7 Out of Sample Backtesting  
 

In this section, adequacy and predictive ability of the VaR model is examined by backtesting 

VaR models. Table 7.21 shows the p-value of the Kupiec test for both long and short position. 

 

Table 7. 21: Out of sample backtesting: p-values of Kupiec likelihood ratio test 

Model Long position Short position 

0.10 0.05 0.025 0.01 0.90 0.95 0.975 0.99 

APARCH(1,1)-sstd 0.2005 0.2377 0.0882 0.3782 0.0059 0.0018 0.0436 0.1707 

APARCH(1,1)-PIVD 0.7637 0.3265 0.1607 0.3782 0.0022 0.0018 0.0882 0.3782 

APARCH(1,1)-stable 0.7056 0.4329 0.2672 0.3782 0.0000 0.0003 0.0191 0.0558 

APARCH(1,1)GEVD 0.3921 0.2377 0.1607 0.3782 0.0002 0.0008 0.0191 0.0558 

APARCH(1,1)-GPD 0.1546 0.3265 0.1607 0.3782 0.0059 0.0078 0.0882 0.3782 

Note: Values in bold red are p-values that is not significant, Values in Bold blue are the highest p-values at a given level. 

 

From Table 7.21, it is observed that for the short position, all the models rejected the null 

hypothesis of model adequacy at lower VaR levels while at higher levels the models fail to 

reject the null hypothesis of model adequacy. This implies that at the short position, all the VaR 

models are adequate at high levels. For long positions, all the VaR models did not reject the 

null hypothesis of model adequacy at all levels. This implies that at the long position, the VaR 

models are adequate at all levels. At the short position, the APARCH (1,1)-PIVD model and 

the APARCH (1,1)-GPD model have the highest p-values at 97.5% and 99% levels 

respectively. This implies that they outperform the other models at 97.5% and 99% levels. It is 

noted that the APARCH (1,1)-PIVD model and APARCH (1,1)-GPD model seems to produce 

similar results at 97.5% and 99% levels. At the long position, all the models produced similar 

results at 1% and the APARCH (1,1)-PIVD models and APARCH (1,1)-GPD model produce 

results that are quite close except at the 10% level. The APARCH (1,1)-stable distribution 
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model has the highest p-values at 5% and 2.5% levels while the APARCH (1,1)-PIVD model 

has the highest p-value at 10% levels. This implies that at the long position, the APARCH 

(1,1)-stable distribution model outperforms the other models at all levels except at 10% where  

APARCH (1,1)-PIVD model outperforms the other models. 

 

7.8 Conclusion 
 

In this chapter, the main finding of the fitted APARCH (1,1)-GPD model, APARCH (1,1)-

GEVD model, APARCH (1,1)-PIVD models, and APARCH (1,1)-stable distribution model 

was presented. APARCH (1,1) model with sstd governing the innovation is also fitted to the 

ALSI returns. VaR is estimated for the distributions and backtesting is performed to assess the 

adequacy of the VaR estimates and the VaR models.  
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CHAPTER 8 

CONCLUSION 
 

In order to find an adequate Value-at-risk (VaR) model for South Africa’s market risk, this 

study examines the combination of APARCH (1,1) model and heavy-tailed distribution: 

generalized Pareto distribution (GPD), generalized extreme value distribution (GEVD), stable 

distribution and Pearson Type IV distribution (PIVD) on JSE all share index (ALSI) returns. 

The APARCH (1,1) model has the ability to capture both volatility clustering and leverage 

effect while the heavy-tail feature is captured by the heavy-tailed distributions. 

 

The asymmetric GARCH model -APARCH (1,1) was found to be the best possible model to 

capture both volatility clustering and the leverage effect on ALSI returns based on Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). It has been confirmed 

by the Anderson-Darling test (AD test) and Kolmogorov-Smirnov test (K-S test) that these 

heavy tailed distributions adequately fitted the standardized residuals of APARCH (1,1) model. 

Besides, the APARCH (1,1) model with skew Student t (sstd) innovation is also found to be an 

adequate model. 

 

The adequacy of these heavy-tailed distributions is examined through in-sample backtesting 

by employing Kupiec test. It was found that both in the short position and the long position, all 

the heavy-tailed distributions have adequately produced an adequate VaR estimation for the 

innovation of APARCH (1,1). At the short position, the skew Student t distribution is found to 

be the most adequate distribution for VaR estimate of the innovation of APARCH (1,1) except 

at 97.5% VaR level where the GPD outperforms it. While for the long position, it was found 

that best distribution for the VaR estimation for the innovation of APARCH (1,1) differ at 

different VaR levels. The sstd distribution outperforms others at 10% VaR level, the PIVD has 

outperformed others at 5% VaR level, the GPD and sstd distribution outperforms at 2.5% VaR 

level and finally the GEVD and sstd distribution outperforms at 1% VaR level. 

  

The relative performance of APARCH (1,1)-GPD model, APARCH (1,1)-GEVD, APARCH 

(1,1)-stable, APARCH (1,1)-Pearson Type IV model, and APARCH (1,1) with skew student t 
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innovation are compared in terms of their predictive ability of the South Africa market risk. It 

was found from the out of sample backtesting that all the models performed well at higher VaR 

levels in the short position and APARCH (1,1)-GPD model and APARCH (1,1)-Pearson Type 

IV model outperformed the other models. While at the long position, all the models performed 

well at all VaR levels. At the long position, the APARCH (1,1)-stable model outperformed the 

other models at 5% and 2.5% VaR levels while the APARCH (1,1)-Pearson Type IV models 

has outperformed the other models at 10% probability levels. 

 

For further research, we can examine these models on other emerging markets. 
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Appendix A: CDF of PIVD in hyper geometric function 

 

Let  𝑢 =
𝑡−𝜆

𝑎
   in Equation 5.7, so that: 

 

𝐹(𝑥) = 𝑘𝑎∫ (1 + 𝑢2)−𝑚 𝑒−𝑣 tan
−1 𝑢𝑑𝑢 

𝑥−𝜆
𝑎

−∞

 

 

Replacing 𝑢 with tan 𝜃, so that: 

 

𝐹(𝑥) = 𝑘𝑎∫ cos2𝑚−2 𝜃 𝑒−𝑣𝜃𝑑𝜃 
tan−1(

𝑥−𝜆
𝑎
)

−
𝜋
2

                                                                                (5.8) 

 

Now, let ∅ = 𝜃 +
𝜋

2
, then Equation 5.8 becomes: 

 

𝐹(𝑥) = 𝑘𝑎∫ sin2𝑚−2 ∅
tan−1(

𝑥−𝜆
𝑎
+
𝜋
2
)

0

𝑒𝑣
𝜋
2
−𝑣∅𝑑∅                                                                       (5.9)  

 

Given that: 

 

𝐼 = ∫ sin𝑟 ∅
𝑦

0
𝑒−𝑣∅𝑑∅                                                                                                                     (5.10)  

 

and let 𝑤 = 1 − 𝑒−2𝑖∅ = −2𝑖𝑒𝑖∅ sin ∅, so that: 

 

𝑒−𝑣∅ = (1 − 𝑤)
𝑖𝑣
2  

and 

 

sin𝑟 ∅ = (
𝑖

2
)
𝑟

𝑤𝑟𝑒−𝑟𝑖∅ = (−2𝑖)−𝑟𝑤𝑟(1 − 𝑤)−
𝑟
2 

also 

𝑑∅ = (−2𝑖)−1 (1 − 𝑤)−1 𝑑𝑤 

From Equation 5.10, ∅  ranges from 0 to y, w ranges from 0 to z and so that: 
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𝑧 = 1 − 𝑒−2𝑖𝑦 = −2𝑖 𝑒𝑖𝑦  sin 𝑦                                                                                                 (5.11) 

 

Therefore, Equation 5.10 becomes: 

 

𝐼 = (−2𝑖)−(𝑟+1)∫ 𝑤𝑟(1 − 𝑤)
(𝑖𝑣−𝑟−2)

2

𝑧

𝑜

𝑑𝑤                                                                              (5.12) 

 

Equation 5.12 is an incomplete Beta function, which is related to the hyper-geometric function 

by: 

 

𝐼 =
𝑧𝛼

𝛼
𝐹(𝛼, 1 − 𝛽; 𝛼 + 1; 𝑧)                                                                                                                      

 

     =
𝑧𝛼(1 − 𝑧)𝛽

𝛼
𝐹(1, 𝛼 + 𝛽; 𝛼 + 1; 𝑧)                                                                                      (5.13) 

 

Now, substitute 𝛼 = 𝑟 + 1 and 𝛽 =
𝑖𝑣−𝑟

2
 into Equation 5.13, so that: 

 

𝐼 =
𝑧𝑟+1(1 − 𝑧)

𝑖𝑣−𝑟
2

𝑟 + 1
𝐹 (1,

𝑖𝑣 + 𝑟 + 2

2
; 𝑟 + 2; 𝑧)                                                                    (5.14) 

 

Since from Equation 5.11: 

 

𝑧𝑟+1 = (−2𝑖 𝑒𝑖𝑦  sin 𝑦)
𝑟+1

= (−2𝑖)𝑟+1𝑒𝑖𝑦𝑒𝑟𝑖𝑦 sin𝑟+1 𝑦 

 

and 

 

(1 − 𝑧)
𝑖𝑣−𝑟
2 = [1 − (1 − 𝑒2𝑖𝑦)]

𝑖𝑣−𝑟
2 = 𝑒−𝑣𝑦𝑒−𝑟𝑖𝑦 

 

Hence, Equation 5.14 becomes: 
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𝐼 = ∫ 𝑠𝑖𝑛𝑟 ∅
𝑦

0

𝑒−𝑣∅𝑑∅ =
𝑒−𝑣𝑦 sin𝑟+1 𝑦

𝑟 + 1
𝑒𝑖𝑦𝐹 (1,

𝑖𝑣 + 𝑟 + 2

2
; 𝑟 + 2;−2𝑖 𝑒𝑖𝑦  sin 𝑦)     (5.15)  

 

Applying Equation 5.15 to Equation 5.9, we have: 

 

𝐹(𝑥) = 𝑘𝑎
𝑒𝑣
𝜋
2
−𝑣𝑦 sin2𝑚−1 𝑦

2𝑚 − 1
𝑒𝑖𝑦𝐹 (1,𝑚 +

𝑖𝑣

2
; 2𝑚;−2𝑖 𝑒𝑖𝑦  sin 𝑦)                               (5.16)  

where,  𝑦 = tan−1 (
𝑥−𝜆

𝑎
+
𝜋

2
) 

 

so that: 

𝑒−𝑣𝑦 = 𝑒
−𝑣 tan−1(

𝑥−𝜆
𝑎
+
𝜋
2
)
                                                                                                               (5.17) 

 

and,  

 

𝑒𝑖𝑦 = 𝑒
𝑖 tan−1(

𝑥−𝜆
𝑎
+
𝜋
2
)
= −

(𝑥 − 𝜆) + 𝑖𝑎

√𝑎2 + (𝑥 − 𝜆)2
                                                                              (5.18) 

also, 

 

sin 𝑦 = sin [tan−1 (
𝑥 − 𝜆

𝑎
+
𝜋

2
)] =

𝑎

√𝑎2 + (𝑥 − 𝜆)2
                                                             (5.19) 

 

then, 

 

−2𝑖 𝑒𝑖𝑦  sin 𝑦 =
2

1 −
𝑥 − 𝜆
𝑎 𝑖

                                                                                                         (5.20) 

 

Hence, applying Equation 5.17, 5.18, 5.19 and 5.20 to Equation 5.16 yields the cdf, 𝐹(𝑥) of 

Pearson type IV in form hyper-geometric function which is given as: 
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𝐹(𝑥) =
𝑘𝑎

2𝑚 − 1
(1 + (

𝑥 − 𝜆

𝑎
)
2

)

−𝑚

𝑒𝑥𝑝 [−𝑣 tan−1 (
𝑥 − 𝜆

𝑎
)]

× (𝑖 −
𝑥 − 𝜆

𝑎
)𝐹 (1,𝑚 +

𝑖𝑣

2
; 2𝑚;

2

1 −
𝑥 − 𝜆
𝑎 𝑖

) 

 

which can also be written as: 

 

𝐹(𝑥) =
𝑘𝑎

2𝑚 − 1
𝑓(𝑥) (𝑖 −

𝑥 − 𝜆

𝑎
)𝐹 (1,𝑚 +

𝑖𝑣

2
; 2𝑚;

2

1 −
𝑥 − 𝜆
𝑎 𝑖

)                                  (5.21) 

 

which converges absolutely when 𝑥 < 𝜆 − 𝑎√3  but for the case of 𝑥 > 𝜆 + 𝑎√3 , () suggest 

the use of  identity given as: 

 

𝐹(𝑚, 𝑣, 𝑎, 𝜆; 𝑥) = 1 − 𝐹(𝑚,−𝑣, 𝑎, −𝜆; 𝑥) 

 

and when |𝑥 − 𝜆| < 𝑎√3 a linear transformations described in Abramovitz and A. (1964) can 

be used, as a result Equation 5.21 becomes: 

 

𝐹(𝑥) = 𝑓(𝑥)
𝑖𝑎

2𝑚 − 𝑖𝑣 − 2
[1 + (

𝑥 − 𝜆

𝑎
)
2

] 𝐹 (1,2 − 2𝑚; 2 − 𝑚 +
𝑖𝑣

2
;
1 −

𝑥 − 𝜆
𝑎 𝑖

2
)

+
1

1 + exp[−(𝑣 + 2𝑖𝑚)𝜋]
                                                                                (5.22 
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Appendix B: Model estimate results 

 

APACH (1,1) model with heavy- tailed distributions 

The JSE ALSI returns are fitted to APARCH (1,1) with heavy-tail innovations: student t 

distribution (std), skewed student t distribution (sskew), generalized error distribution (ged), 

skew generalized error distribution (sged), inverse Gaussian distribution (nig), generalized 

hyperbolic distribution (ghyp), and Johnson’s Su distribution (jsu). The AIC and BIC are used 

to compare these models. Table B.2 shows the result of the model selection criteria. 

 

Table B.1: Model selection of APACH (1,1) model with heavy- tailed distribution 

Information 

criteria 

std sstd ged sged nig ghyp jsu 

AIC -6.1571     -6.1762 -6.1546     -6.1749    -6.1753 -6.1747    -6.1753 

BIC -6.1413     -6.1578 -6.1388    -6.1565    -6.1569 -6.1536    -6.1568 
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Appendix C: R Codes 

 

###########Test  for stationarity############ 

data<-(ALSI.WF)[,c("Close")] 

ALSI=diff(log(data)) 

par(mfrow=c(1,2)) 

cod=ts(data,frequency=249,start=c(2005,5)) 

plot(cod, type= 'l', xlab= 'Year', ylab= "closing price") 

cod2=ts(ALSI,frequency=249,start=c(2005,5)) 

plot(cod2, type= 'l', xlab= 'Year', ylab= "closing price") 

par(mfrow=c(1,1)) 

adf.test(ALSI) 

pp.test(ALSI) 

kpss.test(ALSI) 

###########Descriptive Statistics############## 

basicStats(ALSI) 

jarqueberaTest(ALSI) 

qqnorm(ALSI);qqline(ALSI) 

#######Checking for serial correlation and volatility clustering of returns############## 

par(mfrow=c(1,2)) 

acf(ALSI) 

Box.test(ALSI, lag =20, type = "Ljung-Box", fitdf = 0) 

dwtest(ALSI ~ ALSI) 

acf(ALSI^2) 

Box.test(ALSI^2, lag = 20, type = "Ljung-Box", fitdf = 0) 

ArchTest(ALSI, lags=20, demean = FALSE) 

###################Test for Asymmetric effect########################## 

spech = ugarchspec(variance.model = list(garchOrder = c(1, 1)),  

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE)) 

garchr= ugarchfit(spec=spech,data= ALSI[1:2155]) 

signbias(garchr) 
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#####################Fitting asymmetric GARCH models###################### 

spech = ugarchspec(variance.model = list(model="eGARCH",garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE)) 

Egarchr= ugarchfit(spec=spech,data= ALSI[1:2155]) 

Tspech = ugarchspec(variance.model = list(model="gjrGARCH",garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE)) 

Tgarchr= ugarchfit(spec=Tspech,data= ALSI[1:2155]) 

speca = ugarchspec(variance.model = list(model="apARCH",garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),fixed.pars=list(delta=1)) 

Agarchr2= ugarchfit(spec=speca,data= ALSI[1:2155]) 

#######################Model diagnosis###################################### 

resi= residuals(Agarchr2, standardize= TRUE) 

basicStats(resi) 

resi=as.vector(resi) 

Resi=resi*-1 

basicStats(Resi) 

##########test for autocorrelation and volatility clustering######### 

dwtest(resi ~ resi) 

acf(resi) 

Box.test(resi, lag = 20, type = "Ljung-Box", fitdf = 0) 

acf(resi^2) 

Box.test(resi^2, lag =20, type = "Ljung-Box", fitdf = 0) 

ArchTest(resi, lags=20, demean = FALSE) 

############Test for IID################# 

bartels.rank.test(resi) 

bds.test(resi) 

cox.stuart.test(resi) 

###############test for normality################# 

shapiro.test(resi) 

jarque.bera.test(resi) 

############## fitting APARCH with sstd####################### 
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spec = ugarchspec(variance.model = list(model="apARCH",garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),distribution.model = 

"sstd",fixed.pars=list(delta=1)) 

ssAgarchr= ugarchfit(spec=spec,data= ALSI[1:2155]) 

############Goodnees-of-fit for sstd###################### 

ssresi= residuals(ssAgarchr, standardize= TRUE) 

basicStats(ssresi) 

ssresi=as.vector(ssresi) 

ad.test(ssresi, psstd,0.008367,0.997462,23.459483,0.804057) 

###############Threshold selection####################### 

mrl.plot(resi) 

mrl.plot(Resi) 

gpd.fitrange(resi,1.00,2.00,nint=20) 

gpd.fitrange(Resi,1.00,2.00,nint=20) 

paretoQPlot(resi) 

paretoQPlot(Resi) 

################fitting GPD and model diagnosis###################3 

out <- gpd(resi, 1.25) 

SieGpd <- gpd.fit(out$data,1.25) 

gpd.diag(SieGpd) 

Rout <- gpd(Resi, 1.56) 

SieGpd2 <- gpd.fit(Rout$data,1.56) 

gpd.diag(SieGpd2) 

#fitting GEVD and model diagnosis# 

out.gev <- gev(resi, 5) 

SieGEV <- gev.fit(out.gev$data) 

gev.diag(SieGEV) 

ad.test(out.gev$data, pgev,xi =-0.08523683, mu =0.90270379, sigma =0.65348487) 

Rout.gev <- gev(Resi, 5) 

SieGEV2 <- gev.fit(Rout.gev$data) 

gev.diag(SieGEV2) 

ad.test(Rout.gev$data, pgev,xi =-0.08523683, mu =0.90270379, sigma =0.65348487) 
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###############Fitting stable distribution and model diagnosis################## 

stable.fit(resi,method=1,param=0) 

theta=c(1.9159194 ,-1.0000000,0.6775130,0.1205831) 

stable.ks.gof(resi,theta,method=0,param=0) 

ad.test(resi, pstable,alpha=1.9159194, beta=-1.0000000, gamma=0.6775130, 

delta=0.1205831) 

ppstable(resi, theta1, var.stabilized = FALSE, param = 0) 

#############FittingPearsonTypeIVandmodeldiagnosis################### 

pearsonFitML(resi) 

ad.test(Aresi, ppearsonIV,m=12.66659,nu=11.73608,location= 2.129829,scale=4.222132) 

######################In-sample Backtesting########################### 

############In-samples_skewshort########################## 

IsstdVaR1 = qdist("sstd", 0.90,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR2 = qdist("sstd", 0.95,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR3 = qdist("sstd", 0.975,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR4 = qdist("sstd", 0.99,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

VT1=VaRTest(0.90,resi,rep(IsstdVaR1,2155)) 

VT2=VaRTest(0.95, resi,rep(IsstdVaR2,2155)) 

VT3=VaRTest(0.975, resi,rep(IsstdVaR3,2155)) 

VT4=VaRTest(0.99, resi,rep(IsstdVaR4,2155)) 

###############################In-samples_skewlong################### 

IsstdVaR1 = qdist("sstd", 0.1,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR2 = qdist("sstd", 0.05,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR3 = qdist("sstd", 0.025,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR4 = qdist("sstd", 0.01,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 

IsstdVaR5 = qdist("sstd", 0.005,mu =0.008418, sigma = 0.997427,skew  = 0.803948, 

shape=23.415740) 
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VT1=VaRTest(0.1,ssresi,rep(IsstdVaR1,2155)) 

VT2=VaRTest(0.05, ssresi,rep(IsstdVaR2,2155)) 

VT3=VaRTest(0.025, ssresi,rep(IsstdVaR3,2155)) 

VT4=VaRTest(0.01, ssresi,rep(IsstdVaR4,2155)) 

##############################In-samples_pearsonshort################### 

IpearsonVaR1=qpearsonIV(0.90,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR2=qpearsonIV(0.95,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR3=qpearsonIV(0.975,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR4=qpearsonIV(0.99,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

VT1=VaRTest(0.90,resi,rep(IpearsonVaR1,2155)) 

VT2=VaRTest(0.95, resi,rep(IpearsonVaR2,2155)) 

VT3=VaRTest(0.975, resi,rep(IpearsonVaR3,2155)) 

VT4=VaRTest(0.99, resi,rep(IpearsonVaR4,2155)) 

##############################In-samples_pearsonlong################### 

IpearsonVaR1=qpearsonIV(0.1,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR2=qpearsonIV(0.05,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR3=qpearsonIV(0.025,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR4=qpearsonIV(0.01,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

IpearsonVaR5=qpearsonIV(0.005,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

VT1=VaRTest(0.1,resi,rep(IpearsonVaR1,2155)) 

VT2=VaRTest(0.05, resi,rep(IpearsonVaR2,2155)) 

VT3=VaRTest(0.025, resi,rep(IpearsonVaR3,2155)) 

VT4=VaRTest(0.01, resi,rep(IpearsonVaR4,2155)) 

##########Insampleshort_stable################## 

IstableVaR1 = qstable(0.90,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

IstableVaR2 = qstable(0.95,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0)  
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IstableVaR3 = qstable(0.975,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

IstableVaR3 

IstableVaR4 = qstable(0.99,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

VT1=VaRTest(0.90,resi,rep(IstableVaR1,2155)) 

VT2=VaRTest(0.95,resi,rep(IstableVaR2,2155)) 

VT3=VaRTest(0.975,resi,rep(IstableVaR3,2155)) 

VT4=VaRTest(0.99,resi,rep(IstableVaR4,2155)) 

############in-samplewlong_stable############################# 

IstableVaR1 = qstable(0.1,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

IstableVaR2 = qstable(0.05,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

IstableVaR3 = qstable(0.025,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

IstableVaR4 = qstable(0.01,1.9159194,-1.0000000 ,0.6775130,0.1205831 ,0) 

VT1=VaRTest(0.1, resi,rep(IstableVaR1,2155)) 

VT2=VaRTest(0.05, resi,rep(IstableVaR2,2155)) 

VT3=VaRTest(0.025,resi,rep(IstableVaR3,2155)) 

VT4=VaRTest(0.01,resi,rep(IstableVaR4,2155)) 

#############Insampleshort_GEVD################################# 

IgevVaR1 =qgev(0.90, xi = -0.179686,mu =0.9101711,sigma =0.5547224) 

IgevVaR2 =qgev(0.95, xi = -0.179686,mu =0.9101711,sigma =0.5547224) 

IgevVaR3 =qgev(0.975, xi = -0.179686,mu =0.9101711,sigma =0.5547224) 

IgevVaR4 =qgev(0.99, xi = -0.1796867, mu =0.9101711, sigma = 0.5547224) 

VT1=VaRTest(0.90,resi,rep(IgevVaR1,2155)) 

VT2=VaRTest(0.95,resi,rep(IgevVaR2,2155)) 

VT3=VaRTest(0.975,resi,rep(IgevVaR3,2155)) 

VT4=VaRTest(0.99,resi,rep(IgevVaR4,2155)) 

##################longposition_GEVD########################### 

IgevVaR1 =qgev(0.1, xi = -0.08524132,mu =0.90272571,sigma =0.65347411) 

IgevVaR2 =qgev(0.05, xi = -0.08524132,mu =0.90272571,sigma =0.65347411) 

IgevVaR3 =qgev(0.025, xi = -0.08524132,mu =0.90272571,sigma =0.65347411) 

IgevVaR4 =qgev(0.01, xi = -0.08524132,mu =0.90272571,sigma =0.65347411) 

VT1=VaRTest(0.1,Resi,rep(IgevVaR1,2155)) 
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VT2=VaRTest(0.05,Resi,rep(IgevVaR2,2155)) 

VT3=VaRTest(0.025,Resi,rep(IgevVaR3,2155)) 

VT4=VaRTest(0.01,Resi,rep(IgevVaR4,2155)) 

#####################Insampleshortposition_GPD############################# 

riskmeasures(out, c(0.900,0.950,0.975,0.990)) 

VT1=VaRTest(0.90,resi,rep(1.210929,2155)) 

VT2=VaRTest(0.95,resi,rep(1.505440,2155)) 

VT3=VaRTest(0.975,resi,rep(1.783939,2155)) 

VT4=VaRTest(0.99,resi,rep(2.128996,2155)) 

############################Insamplelongposition_GPD######################## 

riskmeasures(Rout, c(0.900,0.950,0.975,0.990 )) 

VT1=VaRTest(0.1, Resi,rep(-0.003206271,2155)) 

VT2=VaRTest(0.05,Resi,rep(-0.037792434,2155)) 

VT3=VaRTest(0.025,Resi,rep(-0.054437553,2155)) 

VT4=VaRTest(0.01,Resi,rep(-0.064229732,2155)) 

##########################OUT-SAMPLEBACKTESTING################# 

#########shortpostion_skew############# 

spec2=spec 

setfixed(spec2)<-as.list(coef(ssAgarchr)) 

filt = ugarchfilter(spec2, ALSI[2156:2757]) 

actual = ALSI[2156:2757] 

sstdVaR1 = fitted(filt) + sigma(filt)*qdist("sstd", 0.90,mu =0.008418, sigma = 0.997427,skew  

= coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

sstdVaR2 = fitted(filt) + sigma(filt)*qdist("sstd", 0.95,mu =0.008418, sigma = 0.997427,skew  

= coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

sstdVaR3 = fitted(filt) + sigma(filt)*qdist("sstd", 0.975,mu =0.008418, sigma = 

0.997427,skew  = coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

sstdVaR4 = fitted(filt) + sigma(filt)*qdist("sstd", 0.99,mu =0.008418, sigma = 0.997427,skew  

= coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

VT1=VaRTest(0.90, as.numeric(actual), as.numeric(sstdVaR1)) 

VT2=VaRTest(0.95, as.numeric(actual), as.numeric(sstdVaR2)) 

VT3=VaRTest(0.975, as.numeric(actual), as.numeric(sstdVaR3)) 

VT4=VaRTest(0.99, as.numeric(actual), as.numeric(sstdVaR4)) 
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#################longposition_skew############## 

sstdVaR1 = fitted(filt) + sigma(filt)*qdist("sstd", 0.1, mu = 0, sigma = 1,skew  = 

coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

sstdVaR2 = fitted(filt) + sigma(filt)*qdist("sstd", 0.05, mu = 0, sigma = 1,skew  = 

coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

sstdVaR3 = fitted(filt) + sigma(filt)*qdist("sstd", 0.025, mu = 0, sigma = 1,skew  = 

coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

sstdVaR4 = fitted(filt) + sigma(filt)*qdist("sstd", 0.01, mu = 0, sigma = 1,skew  = 

coef(ssAgarchr)["skew"], shape=coef(ssAgarchr)["shape"]) 

VT1=VaRTest(0.1, as.numeric(actual), as.numeric(sstdVaR1)) 

VT2=VaRTest(0.05, as.numeric(actual), as.numeric(sstdVaR2)) 

VT3=VaRTest(0.025, as.numeric(actual), as.numeric(sstdVaR3)) 

VT4=VaRTest(0.01, as.numeric(actual), as.numeric(sstdVaR4)) 

###############shortposition_pearsonIV###########################  

spec2=speca 

setfixed(spec2)<-as.list(coef(Agarchr2)) 

filt = ugarchfilter(spec2, ALSI[2156:2757]) 

actual = ALSI[2156:2757] 

pearsonVaR1 = fitted(filt) + 

sigma(filt)*qpearsonIV(0.90,m=12.66659,nu=11.73608,location= 2.129829,scale=4.222132) 

pearsonVaR2 = fitted(filt) + 

sigma(filt)*qpearsonIV(0.95,m=12.66659,nu=11.73608,location= 2.129829,scale=4.222132) 

pearsonVaR3 = fitted(filt) + 

sigma(filt)*qpearsonIV(0.975,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

pearsonVaR4 = fitted(filt) + 

sigma(filt)*qpearsonIV(0.99,m=12.66659,nu=11.73608,location= 2.129829,scale=4.222132) 

VT1=VaRTest(0.90, as.numeric(actual), as.numeric(pearsonVaR1)) 

VT2=VaRTest(0.95, as.numeric(actual), as.numeric(pearsonVaR2)) 

VT3=VaRTest(0.975, as.numeric(actual), as.numeric(pearsonVaR3)) 

VT4=VaRTest(0.99, as.numeric(actual), as.numeric(pearsonVaR4)) 

###############longposition_pearsonIV###################### 

pearsonVaR1 = fitted(filt) + sigma(filt)*qpearsonIV(0.1,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 
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pearsonVaR2= fitted(filt) + sigma(filt)*qpearsonIV(0.05,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

pearsonVaR3=fitted(filt)+sigma(filt)*qpearsonIV(0.025,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

pearsonVaR4= fitted(filt) + sigma(filt)*qpearsonIV(0.01,m=12.66659,nu=11.73608,location= 

2.129829,scale=4.222132) 

VT1=VaRTest(0.1, as.numeric(actual), as.numeric(pearsonVaR1)) 

VT2=VaRTest(0.05, as.numeric(actual), as.numeric(pearsonVaR2)) 

VT3=VaRTest(0.025, as.numeric(actual), as.numeric(pearsonVaR3)) 

VT4=VaRTest(0.01, as.numeric(actual), as.numeric(pearsonVaR4)) 

##########shortposition_stable################## 

stableVaR1=fitted(filt)+sigma(filt)*qstable(0.90,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

stableVaR2=fitted(filt)+sigma(filt)*qstable(0.95,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

stableVaR3=fitted(filt)+sigma(filt)*qstable(0.975,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

stableVaR4=fitted(filt)+sigma(filt)*qstable(0.99,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

VT1=VaRTest(0.90, as.numeric(actual), as.numeric(stableVaR1)) 

VT2=VaRTest(0.95, as.numeric(actual), as.numeric(stableVaR2)) 

VT3=VaRTest(0.975, as.numeric(actual), as.numeric(stableVaR3)) 

VT4=VaRTest(0.99, as.numeric(actual), as.numeric(stableVaR4)) 

############longposition_stable############################# 

stableVaR1=fitted(filt)+ sigma(filt)*qstable(0.1,1.9159194,-1.0000000 ,0.6775130,0.1205831 

,0) 

stableVaR2=fitted(filt)+sigma(filt)*qstable(0.05,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

stableVaR3=fitted(filt)+sigma(filt)*qstable(0.025,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

stableVaR4=fitted(filt)+sigma(filt)*qstable(0.01,1.9159194,-1.0000000 

,0.6775130,0.1205831 ,0) 

VT1=VaRTest(0.1, as.numeric(actual), as.numeric(stableVaR1)) 

VT2=VaRTest(0.05, as.numeric(actual), as.numeric(stableVaR2)) 

VT3=VaRTest(0.025, as.numeric(actual), as.numeric(stableVaR3)) 
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VT4=VaRTest(0.01, as.numeric(actual), as.numeric(stableVaR4)) 

#############shortposition_GEVD################################# 

gevVaR1 =fitted(filt)+sigma(filt)*qgev(0.90, xi = -0.179686,mu =0.9101711,sigma 

=0.5547224) 

gevVaR2 =fitted(filt)+sigma(filt)*qgev(0.95, xi = -0.179686,mu =0.9101711,sigma 

=0.5547224) 

gevVaR3 = fitted(filt)+sigma(filt)*qgev(0.975, xi = -0.179686,mu =0.9101711,sigma 

=0.5547224) 

gevVaR4 = fitted(filt)+sigma(filt)*qgev(0.99, xi = -0.1796867, mu =0.9101711, sigma = 

0.5547224) 

VT1=VaRTest(0.90, as.numeric(actual), as.numeric(gevVaR1)) 

VT2=VaRTest(0.95, as.numeric(actual), as.numeric(gevVaR2)) 

VT3=VaRTest(0.975, as.numeric(actual), as.numeric(gevVaR3)) 

VT4=VaRTest(0.99, as.numeric(actual), as.numeric(gevVaR4)) 

##################longposition_GEVD########################### 

RgevVaR1 = fitted(filt) + sigma(filt)*qgev(0.1,xi =-0.08523683, mu =0.90270379, sigma 

=0.65348487) 

RgevVaR2 = fitted(filt) + sigma(filt)*qgev(0.05,xi =-0.08523683, mu =0.90270379, sigma 

=0.65348487) 

RgevVaR3 = fitted(filt) + sigma(filt)*qgev(0.025,xi =-0.08523683, mu =0.90270379, sigma 

=0.65348487) 

RgevVaR4 = fitted(filt) + sigma(filt)*qgev(0.01,xi =-0.08523683, mu =0.90270379, sigma 

=0.65348487) 

VT1=VaRTest(0.1, as.numeric(actual), as.numeric(RgevVaR1)) 

VT2=VaRTest(0.05, as.numeric(actual), as.numeric(RgevVaR2)) 

VT3=VaRTest(0.025, as.numeric(actual), as.numeric(RgevVaR3)) 

VT4=VaRTest(0.01, as.numeric(actual), as.numeric(RgevVaR4)) 

#####################shortposition_GPD############################# 

gpdVaR1 = fitted(filt) + sigma(filt)*1.210929 

gpdVaR2 = fitted(filt) + sigma(filt)*1.505440 

gpdVaR3 = fitted(filt) + sigma(filt)* 1.783939 

gpdVaR4 = fitted(filt) + sigma(filt)*2.128996 

VT1=VaRTest(0.90, as.numeric(actual), as.numeric(gpdVaR1)) 

VT2=VaRTest(0.95, as.numeric(actual), as.numeric(gpdVaR2)) 
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VT3=VaRTest(0.975, as.numeric(actual), as.numeric(gpdVaR3)) 

VT4=VaRTest(0.99, as.numeric(actual), as.numeric(gpdVaR4)) 

##############################longposition_GPD########################### 

RgpdVaR1 = fitted(filt) + sigma(filt)*-0.003206271 

RgpdVaR2 = fitted(filt) + sigma(filt)*-0.037792434 

RgpdVaR3 = fitted(filt) + sigma(filt)*-0.054437553 

RgpdVaR4 = fitted(filt) + sigma(filt)*-0.064229732 

VT1=VaRTest(0.05, as.numeric(actual), as.numeric(RgpdVaR1)) 

VT2=VaRTest(0.01, as.numeric(actual), as.numeric(RgpdVaR2)) 

VT3=VaRTest(0.005, as.numeric(actual), as.numeric(RgpdVaR3)) 

VT4=VaRTest(0.001, as.numeric(actual), as.numeric(RgpdVaR4)) 

 


