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ABSTRACT 

The use of fertilisers in agricultural production systems, particularly nitrogen and 

phosphorous, has been shown to be one of the causes of eutrophication as a result of the 

excessive enrichment of freshwater systems through surface runoff and soil infiltration. 

The contamination of freshwater bodies from horticultural production systems in South 

Africa has, however, been rarely studied, although influx from such systems are 

considered highly polluting elsewhere. Eutrophication is particularly considered a major 

problem in areas with limited water resources.  Phosphate is especially limiting in 

contributing to eutrophication in South African rivers and dams. The development of 

harmful algal blooms, particularly from cyanobacteria, has been a concern for a long time 

due to toxins introduced into freshwater systems from these algae.  

This study investigated whether the use of organic fertilisers compared with inorganic 

fertilisers was potentially less detrimental to freshwater systems as a result of leachate 

nutrient and algal microorganism composition; further it was examined, if organic fertiliser 

was more beneficial to plant growth of Pseuderanthemum atropurpureum. Liquid and 

soluble granular organic and inorganic N equilibrated fertiliser treatments were applied at 

low, medium and high concentrations based on recommended label rates. Plant growth 

parameters were determined from mean height, number of leaves, size of leaves, number 

of nodes, internode length and number of branches. The species was grown over a period 

of three months and the experiment was repeated three times. Leaf tissue was analysed for 

mineral nutrient content and chlorophyll a, b and total chlorophyll. Leachate was analysed 

for mineral nutrient content including total phosphate, orthophosphate and chlorophyll a. 

Growth media was analysed for total nitrogen, ammonium and nitrate. A phase contrast 

light microscope was used to identify larger algal microorganisms and a scanning electron 
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microscope (SEM) to identify smaller algal microorganisms from growth media extracted 

leachate. 

One specimen of green algae and some diatoms were identified, including two which may 

be found in eutrophic waters, but would not pose a threat similar to some species of 

cyanobacteria, if leached into freshwater systems over a period of time. Further, results 

showed that total phosphate and orthophosphate concentrations were significantly higher 

in leachate extracts from bark-based growth media across all fertiliser treatments and at all 

rates of treatment compared with soil-based growth media. This may have been due to a 

lack of binding sites in soilless media such as bark. Nitrate concentrations from organic 

soluble granular treatments were higher in both growth media types, whilst other 

treatments were similar. Ammonium and leachate nitrogen concentrations were found to 

be also similar. This may explain why plant growth traits assessed together were similar 

across all parameters tested. No single fertiliser compared with any other, produced plants 

that were superior in all growth characteristics measured. It is, therefore, suggested that the 

fertiliser treatments used in this study be applied at the half rate and plants be rather grown 

in randles growth medium than gromor for the production of Pseuderanthemum 

atropurpureum.  
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This dissertation is a compilation of manuscripts where individual chapters are 

independent articles/manuscripts introduced disjointedly. Hence, some repetition between 

individual chapters has been inevitable. Chapters 3 and 4 are formatted to the requirements 

of Elsevier BV Publishers of Scientia Horticulturae. This dissertation consists of four 

chapters. Chapter 1 presents background information, reasons and justification for this 

study as well as objectives. Chapter 2 is a broad review of relevant literature pertaining to 

eutrophication, effects of ornamental plant production systems as one of its causes and its 

effects on South African freshwater resources. Chapter 3 was written in paper format and 

draws on information presented in the literature review in investigating the comparative 

effects of organic and inorganic fertilisers and soil and bark-based growth media on soil 

fertility and Pseuderanthemum atropurpureum growth. Chapter 4 was also written in paper 

format with a view to publishing, and also drawing on information presented in the 

literature review in investigating the comparative effects of organic and inorganic 

fertilisers and soil and bark-based growth media on leachate which may potentially pollute 

freshwater systems and result in eutrophication. General conclusions and 

recommendations for future study follows. 
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CHAPTER 1 

1.0 GENERAL INTRODUCTION 

1.1 Background 

Agriculture has become the dominant land use over the past 300 years, mostly at the expense 

of forests, savannahs and grasslands. It is estimated that the global area of cropland in just 

less than three centuries increased from 265 Mha (mega hectares - 10
6
) in 1700 to 1471 Mha 

in 1990 and pastureland from 524 Mha to 3451 Mha during the same period (Goldewijk, 

2001). There is mounting pressure on the global agricultural system to provide sufficient food 

to an ever-increasing world population, which is expected to reach nine billion by 2050 

(Wegner and Zwart, 2011). As developing countries adopt a more westernised diet (Tai et al., 

2014), the transition to livestock-based diets have mostly been embraced in developed 

countries (Alexandratos and Bruinsma, 2012). Undernourishment rates in developing 

countries are projected to decline substantially through a combination of economic growth 

and agricultural advancements (Tai et al., 2014).  Today only one third of all landscapes can 

be considered non-agricultural (Ostberg et al., 2015).  

Food provision is critical for human well-being, but its production has had adverse effects on 

the environment (Bennett et al., 2014). Global threats from climate change, soil erosion, 

diminishing water resources as well as agricultural and horticultural practices present a 

formidable challenge to food security and plant production for commercial purposes. 

Agricultural and horticultural plant production are highly dependent on adequate amounts of 

water, but both do impact on its quality and availability as a resource necessary for its 

sustainability (Serediak, 2014; Bonacin et al., 2015). Commercial greenhouse and nursery 

production systems are highly intensive and also require sufficient amounts of nutrients to 

maintain plant growth, thus ensuring crops of high value and quality (Smith et al., 1999; 
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Taylor et al., 2006; Andiru, 2010; Dennis et al., 2010). Fertiliser usage per unit area is higher 

under protected cultivation, particularly in the greenhouse industry, than in any other 

agricultural system (van Iersel, 1999). This is partly due to the high nutrient supply to 

ornamental species, such as tropical foliage plants, produced in nursery environments; yet, 

little is known about the leaching of nutrients from containers to surrounding areas  

(Broschat, 1995). Literature on specialist crops, like potted chrysanthemums, poinsettias and 

geraniums exist (e.g. Tayama and Carver, 1992), but no information seems available on 

optimal nutrient supply to woody ornamentals (Ristvey, 2004).  Nutritional requirements for 

container-grown plants are also known to vary widely among species and even between 

cultivars (Agro and Zheng, 2014). A newly transplanted seedling, for example,  requires 

much less nitrogen  than a rapidly growing forty day old plant (Evans, 2007). Several factors, 

however, complicate the management and economic considerations of fertiliser use. 

Nitrogen (N) cannot be fully utilised in any production system (Schröder et al., 2004), and 

along with phosphate (P) under moderate to excessive irrigation, leads to the risk of nutrient 

leaching, contamination of groundwater and eutrophication of receiving surface waters from 

runoff. (Goh et al., 1979; van Iersel, 1999; Juntunen et al., 2003; Merhaut et al., 2006; Alem 

et al., 2015). Eutrophication causes an increase in phytoplankton primary production and has 

been aligned with a number of environmental problems. These include depletion of dissolved 

oxygen, ultimately causing fish death, water turbidity and harmful algal blooms (HABs). 

Eutrophication also affects water usage for agriculture, human and animal consumption and 

recreation as well as for commercial enterprises, such as thermal power, pulp and paper and 

beverage plants (Carpenter et al., 1998; Chislock et al., 2013;  Lemley et al., 2015). 

In some countries legislation dictates how open water resources should be used, maintained 

and sustained (Lemley et al., 2015). Of particular concern is the use of fertilisers, the type, 

../../../AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/CHAPTER%204%20-%2017%20April%20a.docx#_ENREF_87
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mode of action and methods of application, as this determines the amount of discharge over a 

certain period of time. Controlled-release, liquid and water-soluble fertilisers have been the 

subject of many studies. Broschat (1995) investigated fertiliser types that could have low 

environmental impact, whilst at the same time producing plants of high quality and value. The 

Broschat study (Broschat, 1995) revealed that all controlled-release, liquid and water-soluble 

fertilisers leached N and P, with controlled-release fertilisers leaching the least. Comparative 

investigations have also been carried out between organic and inorganic fertilisers relating to 

plant growth (Bi et al., 2010) and the leaching of nutrients.  

1.2 Problem Statement 

Eutrophication presents a major problem to South African agriculture, as the country has one 

of the most nutrient-enriched surface waters in the world (Frost and Sullivan, 2010). These 

water resources are under threat from HAB’s (Chetty et al., 2013) which are damaging to 

ecosystems (Ramkilowan et al., 2013). Harmful algal blooms (especially cyanobacteria and 

dinoflagellates) appear to be increasing worldwide in frequency and the extent of the blooms 

(Van Ginkel, 2008). A broad definition of HAB’s describes these planktonic algae as being 

potentially toxic species that can cause hypoxia and anoxia as a consequence of an 

extraordinary increase in biomass which may result in mortalities of aquatic life in a water 

system irrespective of whether toxins are produced or not (Heisler et al., 2008). Agriculture is 

the largest consumer of surface water in South Africa, with large amounts used for irrigation 

purposes (Blignaut et al., 2009). Ncube (2015) identified the agricultural industry as being the 

leading contributor of pollution to South African fresh water systems. It is, however, unclear 

to what extent the horticultural, floricultural and forestry seedling industry contribute to this 

problem. The use of organic fertilisers, particularly the fact that many of these are slow-

release fertilisers (Carpio et al., 2005) could allow South African nurseries to achieve high 
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plant quality for commercial plant production purposes rather than inorganic fertilisers that 

may discharge more N and P in nursery runoff. 

 1.3 Research questions 

A range of fertilisers, both organic and inorganic, with different application methods are used 

in commercial nurseries.  Plants (seedlings and cuttings) are mostly grown-on in plastic plant 

bags, pots and trays. Research has been carried out to identify best management practices 

(BMP’s) in agricultural and horticultural enterprises worldwide with regard to fertiliser and 

irrigation usage and practices. There, however, appears to be little research on groundwater 

contamination and run-off from commercial ornamental plants, floriculture and forestry 

nurseries to natural and man-made water bodies in South Africa. 

To identify the potential impact of organic fertiliser use in the ornamental/ nursery industry, 

the following research questions are addressed in this project: 

 Are organic fertilisers more beneficial than inorganic fertilisers for plant growth and 

soil fertility? 

 Are organic fertilisers less detrimental to freshwater systems in terms of its potential 

total nitrogen and total phosphorous leachate output, than inorganic fertilisers? 

 What are the possible effects of nutrient leaching from any given ornamental plant 

nursery using the four types of fertiliser utilised in this study?  

1.4 Hypothesis 

The hypothesis of this study is that organic fertilisers are potentially less detrimental to 

freshwater systems, more beneficial for plant growth and soil fertility. This is based on 

reports that controlled poultry litter use from two formulations of organic poultry litter 

treatments at low to intermediate rates resulted in container grown plants with the highest dry 
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weights and similar quality compared to plants that received the highest rates of an inorganic 

treatment (Burnett et al., 2016) and that organic fertilisers compared with inorganic fertilisers 

are often considered less damaging to the environment whilst improving soil quality            

(Bi et al., 2010). 

1.5 Objectives of this study 

The main objective of this study was to establish potential beneficial effects of organic 

fertilisers on plant growth, while, at the same time, being less damaging to the environment 

than inorganic fertilisers due to less N and P runoff from a soil based growth medium and a 

bark based growth medium. The following set of specific objectives was carried out: 

 comparison of plant growth traits and nutrient uptake of Pseuderanthemum 

atropurpureum under the different fertiliser regimes, 

 determination of chlorophyll concentrations in leaf tissue, 

 determination of mineral nutrients in leachates, 

 determination of total nitrogen (TN), and inorganic nitrogen (NO3-N plus NO4-N) in 

the two types of growing medium, 

 determination of total phosphate and Orthophosphate (PO4-P) concentrations in 

leachates, 

 comparison of growing media with respect to response of soil fertility, plant growth 

and fertiliser type, 

 assessment of chlorophyll a concentrations in leachate from plant bags (water column 

phytoplankton biomass) since phytoplankton contain chlorophyll, and 

 detect mineral nutrient content in growing media qualitatively using scanning electron 

microscope (SEM). 
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1.6 Reason for the study 

The lack of information on runoff from tunnels and nurseries in South Africa makes it 

impossible to gauge its potential impact on eutrophication of surface waters. There also seems 

to be no specific legislation restricting the indiscriminate use of fertilisers in the horticultural 

and agricultural runoff of discharge water.  

1.7 Motivation for the study  

South Africa will have to provide food for an ever increasing population, similar to the rest of 

the world; in addition a fast-growing wealthier African population will put pressure on the 

available water sources. There is a rapidly increasing demand for water in a country that is 

classified as water scarce (Blignaut and Van Heerden, 2009) due to a relatively low annual 

rainfall. Water demand is expected to exceed availability by 2025 (Musvoto et al., 2015). In 

turn, low water availability could result in increasing food insecurity. It has become important 

to regulate water consumption, prevent contamination and reduce pollution of water sources 

(Rouwenhorst, 2007). Agricultural impacts on eutrophication have been studied, but little 

emphasis has been placed on run-off from nursery and tunnel operations. 

1. 8 Expected outcomes 

It is anticipated that organic fertilisers give rise to, lower amounts of N, P and K in the run-

off, as well as greater plant growth compared to inorganic fertilisers. 
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CHAPTER 2 - Literature Review 

A literature review of the factors and elements affecting leachate composition, 

consequences and plant growth in soil and soilless growth media as a result of 

type and method of fertilisation under South African conditions 

 

2.0 Introduction 

The factors that affect the production of a field grown crop differ from those of a greenhouse 

or nursery container crop in some aspects. Fertigation, for instance, is not practical for large 

scale field crop production and may only be used if economically viable. It is widely used in 

greenhouses and nurseries, but nutrients applied in a dissolved form are likely to leach with 

the irrigation water from containers. Application of slow-release and controlled-release 

fertilisers are also used in both field and nursery production systems. Literature, however, has 

shown that these too leach nutrients into production areas. Nutrients are often applied in 

excess of plant requirements (Newman and Hayden-Smith, 2014). The extent of nutrients 

leached, notwithstanding irrigation quantities, is largely dependent on the type of growth 

medium and fertiliser used. This has been extensively investigated in container plant 

production. Organic and inorganic fertiliser use in field and nursery crop production has also 

been researched and there is support for its use in both systems of production. Consumers are 

willing to pay 10-15% more for organically grown crops Burnett et al. (2016) and organic 

fertiliser use has often been considered environmentally friendly Bi et al. (2010). 

Runoff from production areas of greenhouses and agricultural lands carrying nutrient loads 

from fertiliser inputs can lead to excessive enrichment of surface waters which results in 

eutrophication. Symptomatic changes may include a considerable increase of algal biomass 

and aquatic macrophytes in freshwater systems, deteriorating the water quality and other 
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undesirable conditions affecting water usage (Van Ginkel, 2007). This chapter reviews 

literature on factors influencing the production of container grown plants, leachate 

composition and eutrophication of freshwater systems. The importance of this is that they are 

interrelated and a problem in many parts of the world. 

2.1 Eutrophication of fresh water systems 

The word ‘eutrophication’ comes from the Greek word ‘eutrophos’ meaning well-nourished 

and has also been described as well-fed (Barnard, 2009; Gilau, 2015). Eutrophication can be 

considered as natural, occurring as leaching of nutrients from a source over lengthy periods of 

time, or cultural, also called anthropogenic, which refers to human input and disturbance. The 

latter can result in an undesirable increase in algae biomass also called an algal bloom due to 

an often rapid, but generally excessive increase in nutrient content in surface water (Carpenter 

et al., 1998; Khan and Ansari, 2005; Serediak, 2014).  Khan and Ansari (2005), Yang et al. 

(2008) and Roy et al. (2013) defined eutrophication as ‘the sum of the effects of the excessive 

growth of phytoplankton leading to imbalanced primary and secondary productivity and a 

faster rate of succession from an existing ecosystem to a higher seral stage as caused by 

nutrient enrichment through runoffs that carry down excessive nutrient loads from agro-

ecosystems and/or discharged human waste from settlements.  

The American Heritage Science Dictionary, (2005) describes phytoplankton as plankton 

consisting of free-floating algae, protists, and cyanobacteria which forms the beginning of the 

food chain for aquatic animals and fixes large amounts of carbon, which would otherwise be 

released as carbon dioxide. The rate of carbon fixation by photosynthesis is referred to as 

primary production and the primary driving force for this is therefore light                   

(Sathyendranath and Platt, 2001). Eutrophication forms part of a natural ageing process of 

lakes where the waterbody, through the accumulation of organic matter, becomes a wetland 
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and later a part of the terrestrial system. This takes a long time naturally, but is quickened 

through human input (Van Ginkel, 2007). There are a number of causes of eutrophication as a 

result of human influence and activity. 

2.1.1 Causes of the eutrophication of fresh water systems 

Available global sources of freshwater are groundwater (>98%) and surface water (<2%). 

Surface or freshwater systems include inland rivers, streams and lakes (Bouwer, 2000;  

Ndlovu, 2013). Rivers are streams by definition, just larger with more flow volume. Sources 

of groundwater are boreholes and springs (Ndlovu, 2013). Carpenter et al. (1998) and Yates 

(2008) have differentiated the causes of eutrophication in aquatic systems into point and non-

point sources. Contaminants and mineral elements are transferred to fresh water systems and 

groundwater by precipitation, runoff and leaching (Yates, 2008). Runoff and soil infiltration 

from agricultural production systems are regarded as non-point or diffuse sources which lead 

to eutrophication, including the return flow of source irrigation water from irrigated 

agricultural lands (Carpenter et al., 1998). Other non-point sources include runoff from 

pasture, unsewered areas, small construction sites, abandoned mines and atmospheric 

deposition over water surfaces. Point sources include wastewater discharge from 

municipalities and effluent from industry (Carpenter et al., 1998). 

Runoff from agricultural lands and nurseries contains varying, but significant, amounts of N 

and P (Carpenter et al., 1998; Smith et al., 1999; Taylor et al., 2006; Evans, 2007). There are 

different schools of thought on which of these is the main cause of eutrophication in 

freshwater systems. Some studies have suggested that N is the limiting nutrient in marine 

systems and P the limiting nutrient in fresh water bodies, especially in temperate zones, but 

exceptions exist (Howarth and Marino, 2006). Elser et al. (2007) reported that either N or P 

can increase the primary production of a fresh water system, principally through 
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phytoplankton photosynthesis, whilst an increase in both simultaneously leads to a rather 

significant increase in phytoplankton biomass. Co-limitation of nutrients, more specifically N 

and P, has been suggested by Bracken et al. (2015) as a reason for an increase in 

phytoplankton biomass based on a study involving the collation, meta-analysis and review of 

data from long-term experiments. Additionally, silicon (Si) is needed by diatoms in their body 

structure and as such is limited by Si availability (Rabalais, 2002). The need for Si is greater 

than for N and P, to such an extent that a diatom assemblage in a column of water will die off 

(Tallberg, 2000).  

Primary productivity of phytoplankton, is also affected by other factors besides nutrient 

inputs that may lead to a eutrophic event and these include light, temperature, salinity, 

thermal stratification and water pH, dissolved O2 and CO2, as well as turbidity (Khan and 

Ansari, 2005; Yang et al., 2008; Serediak, 2014), river flow, water residence time and grazing 

(Mortazavi et al., 2000). The interplay between these factors will determine how a freshwater 

ecosystem will respond to nutrient additions and over-enrichment (National Research 

Council, 2000). The nutrient loading of N and P to fresh waters is the most common cause of 

eutrophication. This is brought on principally by rain and hydrological factors in the 

catchment landscape and watershed, which ultimately determine the flow path to freshwater 

ecosystems (Ojwando, 2014). Literature on the mechanisms by which N and P may be 

transported from a plant nursery site to a freshwater body is limited. 

2.1.2 Pathways of total N and total P to fresh water systems 

Terrestrial runoff  and atmospheric input are the primary sources of new nutrient loading to 

fresh water systems (Guildford and Hecky, 2000). N and P are critical mineral elements for 

the growth of algae and aquatic plants as well as terrestrial plants (Smith et al., 1999; Elser et 

al 2007; Li, 2016). Large quantities of water and nutrients, especially N and P, are used in 
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commercial container plant greenhouses and nurseries for the production of high value and 

high quality plants (Polomski et al., 2007; Matysiak, 2015). A large amount of this nutrient-

rich irrigation water, estimated at 78% by Furuta (1978), ends up as runoff. Samant (2010) 

suggested that between 60 to 80 % of irrigation water from a forestry container nursery is lost 

as runoff. This therefore implies that, in similar production systems, a large volume of 

irrigation water with dissolved nutrients has been - and still is - lost to runoff, given the time 

periods between these reports. Drechsel et al. (2015) reported that irrigation management in 

developing countries and fertilisation practices in developed countries have improved 

agricultural systems over the last thirty years. Van Iersel et al. (2013), Bayer (2014) and 

Million and Yeager (2015) have carried out investigations into the use of automated irrigation 

systems. The authors suggested that such technology can be used for more precise irrigation 

amounts and frequencies, thereby conserving irrigation water; however, this does not 

necessarily mitigate the effects of nutrients on runoff or groundwater contamination. Alem et 

al. (2015) have reported that up to 65% N or P from fertiliser applications can be lost in the 

production of potted plants using timer-controlled systems. Even lesser quantities than these 

lost amounts to wastage. 

Nutrients applied to plants in container production are generally incorporated into or placed 

on the surface of the growing medium or delivered through fertigation systems. During 

irrigation or fertigation, the growing medium pores are filled, making dissolved nutrients and 

water available to the roots. The remaining pore water and dissolved nutrients is displaced 

during the next irrigation or fertigation event and discharged into the production area as 

runoff (Hoskins et al., 2014). Total N and Total P forms in the irrigation water respond 

differently when entering the production environment and soil zone when either progressively 

becoming part of surface runoff or being absorbed through infiltration.  
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2.1.2.1 Total nitrogen (TN) 

Nitrogen is often measured as TN in water samples and samples collected from runoff 

(Brosch, 2015). In leachate from production areas of container nurseries TN concentrations 

may exceed 500 mg·L
-1

 (Cregg et al., 2004). One, however, has to take into account the 

“fate” of N in leachate as it becomes part of the surface water and groundwater watersheds. In 

leachate, TN is composed of four fractions: Inorganic N, including nitrate (NO3-N), nitrite 

(NO2-N) and ammonium (NH4-N) and complex forms of organic N, including refractory 

nitrogen, amino sugars, amino acids, or proteins (Janßen and Koopmann, 2003; Bergese, 

2013; Bhatt and Sapra, 2015). Refractory nitrogen is the nitrogen that cannot be biologically 

altered and is no longer available for biological productivity (Knicker and Hatcher, 1997). 

Nitrate is more water-soluble than the other N fractions (Janßen and Koopmann, 2003; 

Follett, 2008; Serediak, 2014; Matysiak, 2015) and has the highest potential to leach from 

mineral soils and pot growing media. This is because of low anion-holding-capacity of most 

growth media and especially if composed of pinebark, peat, vermiculite and sand (Broschat, 

1995; Follett and Delgado, 2002; Janßen and Koopmann, 2003; Matysiak, 2015; Bhatt and 

Sapra, 2015). McAvoy (1994) and Dunn et al. (2015) reported excessively high 

concentrations of NO3-N in the soil under greenhouses. The rate of NO3-N discharge in run-

off or soil infiltration found in potted plant nurseries is dependent on factors such as the 

amount of rain or irrigation received, type and rate of fertilisers used, soil or growing media 

texture and structure, soil or growing media organic matter content and crop nutrient uptake 

(Howarth et al., 1996; Letey and Vaughan, 2013). Dissolved NO3-N leaches readily into the 

upper soil profile, through an intermediate unsaturated area called the vadose zone and then 

into the ground water or saturated zone (Hermanson et al., 2000; Follett and Delgado, 2002; 

Evans, 2007). The actual rate of movement through the soil profile may be slow (Follett et al., 
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2010) taking several months in sandy soils with coarse-textured vadose zones (Ferguson and 

De Groot, 2000). Nitrate leaching will not occur unless the rate of water infiltration and deep 

percolation, through precipitation or irrigation, exceeds the rate of evapotranspiration (Smith 

and Cassel, 1991; Rubin, 2013).  

High levels of nitrate in ground water destined for human consumption poses a health risk, 

potentially resulting in methaemoglobinaemia. Esterhuizen et al. (2015) found levels of 

nitrate on some farms in South Africa to be seven times more than the South African health 

limit of 11 mg·L
-1

 and reported increasing nitrate groundwater levels in rural areas of South 

Africa which are hazardous to bottle-fed infants (blue baby syndrome) and livestock. 

According to Ndlovu (2013), about 15% of South African water consumption emanates from 

groundwater sources.   

Nitrate contaminated groundwater can discharge into surface water by base flow         

(Brosch, 2015). Ground water, including the contaminants in it, is able to move to rivers, 

lakes and dams from all landscapes such as agricultural and forestry                            

(Lasagna et al., 2016; Wang et al., 2015). This interaction is also possible in the opposite 

direction. Surface water, including the contaminants in it, is able to move to adjacent ground 

water systems (Lasagna et al., 2016). Brunner et al. (2011) refer to a ‘gaining or losing fresh 

water regime flow’, in the interaction between surface and groundwater. 

A further pathway for NO3-N to enter fresh water systems is through surface or overland 

runoff. Given a preceding period of dry conditions, runoff is initiated through heavy rainfall 

or through irrigation due to infiltration excess whereby the intensity of rainfall or irrigation 

exceeds the soil infiltration rate (Qiu et al., 2007; Nyawade, 2015). Runoff can also occur 

through saturation excess, where soils are nearly or fully saturated, and unable to 

accommodate more water. This scenario is considered the main mechanism of runoff in well-
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vegetated areas with a humid climate and permeable soils (Steenhuis et al., 1995; Nyawade, 

2015); NO3-N concentrations in surface runoff from nursery and greenhouse operations have 

been reported to range between 1.6 and 55 mg·L
-1 

(Taylor et al., 2006). The South African 

Environmental Protection Act (2002) stipulates that concentrations of NO3-N in discharged 

effluent onto land, into a watercourse or a freshwater body may not exceed 10 mg·L. Actual 

data from soil analysis for NO3-N concentrations in catchment areas and riparian zones 

linking adjoining freshwater systems and agricultural lands is limited. 

Nitrite (NO2-N), like NO3-N, does not readily adsorb to soil fractions because of its anionic 

nature and is able to move freely with water (Ghaly and Ramakrishnan, 2015). Nitrite occurs 

as an intermediate form when, during the process of mineralisation, ammonium (NH4-N) is 

converted to NO3-N. Nitrite is also the intermediate form in the process of nitrification , 

when, within aerobic conditions, NH4-N is converted to NO3-N (Follett, 2008; Ghaly and 

Ramakrishnan, 2015). This is a rapid process that may be completed within two days (Follett, 

2008; Yates, 2008). 

Ammonium adsorbs to soil fractions because of its cationic nature and will not readily leach 

into the soil profile nor be part of runoff (Follett, 2008; Grahmann et al., 2013; Nyawade, 

2015). Wind or surface flow transports NH4-N with eroded soil aggregates that are detached 

from the soil surface by rainfall. Ammonium is deposited either en route to freshwater bodies 

in the watershed or loaded directly into receiving surface waters (Follett, 2008; Nyawade, 

2015). 

In recent times, organic N has become an important and significant N fraction of fresh water 

systems, so that its transport dynamics and origin warrant more studies, including that of 

agricultural land use watersheds (Vogt et al., 2011; Vogt et al., 2015). The export of 

terrestrial N occurs in the form of dissolved and particulate organic nitrogen (Lee et al., 
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2016). Organic N occurs in dissolved forms of N (DON) which include wastes excreted by 

organisms or from the degradation of particulate organic-N (Berman and Bronk, 2003) and 

particulate forms of N (PON) including small organisms, such as algae, bacteria and 

protozoa,. both living and dead, and fragments of organisms (Johnson and Gerald, 2006). The 

amount of N leached or in surface runoff, more specifically organic N, is dependent on N 

mobility and results from factors of the environment including vegetation, hydrological 

processes, biological processes existent in the watershed and the primary source of N 

(Johnson and Gerald, 2006; Vogt et al., 2011).  

In greenhouse and field crop production, the N input refers primarily to use of fertilisers used. 

Organic N fractions predominate in magnitude depending on the land use. In most soils, 

organic N comprises more than 90% of total N (TN) and this could have a significant impact 

on DON in receiving waters from surface runoff (Wang et al., 2015b). Similar to NH4-N, 

PON is adsorbed to soil fractions and is also subject to rapid mineralisation                    

(Veras et al., 2016). The mode of transport to receiving surface waters is the same as for NH4-

N (Durand et al., 2011). 

2.1.2.2 Total phosphorous 

Total phosphorous exists in both organic and inorganic forms in soils (Evans, 2005; Davis, 

2006; Jarosch, 2012; Nthejane et al., 2012; Ojwando, 2014). These forms may also be 

classified as orthophosphate, polyphosphate or organic phosphate (Evans, 2005) and may 

either be dissolved or particulate and bound to soil fractions or the structure of some soil 

minerals (Evans, 2005; Davis, 2006; Ojwando, 2014). Davis (2006) reported that organic 

phosphate accounts for more than 50% of TP, while Nthejane et al. (2012) reported values of 

15-80% of TP, while Johnson and Gerald (2006) reported organic phosphates to make up 25-

65% of TP. These phosphate forms consist mainly of inositol phosphates, phospholipids and 
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nucleic acids (Nthejane et al., 2012; Lyngsie, 2013). Microorganisms break down otherwise 

unavailable organic P to inorganic forms of plant available orthophosphate (Davis, 2006; 

Johnson and Gerald, 2006; Nthejane et al., 2012). Orthophosphate (PO4
3-

) is also referred to 

by its hydrated forms (HPO4
2-

 , H2PO
4-

 or H3PO
4
)
 
of the ion (Pettersen, 2014). Temperature, 

soil water and organic matter in the soil influence the conversion rate and magnitude of 

organic to soluble phosphate (Nthejane et al., 2012).  

Dissolved phosphate, also referred to as soluble, reactive phosphate, is defined as the fraction 

that can pass through a 0.45 µm filter (Brothers, 2014; Shumaker and Paul, 2008). Particulate 

phosphate is smaller than 0.45 µm and is readily adsorbed to soil fractions or some soil 

minerals (Shumaker and Paul, 2008). Phosphate is the form of P that is readily taken up by 

both, terrestrial and aquatic plants, including phytoplankton, and is available for immediate 

uptake (Lee et al., 1980). 

Phosphate, like NO3-N, can move from watersheds to receiving surface waters and 

groundwater through surface runoff, erosion and infiltration (Nthejane et al., 2012; Shumaker 

and Paul, 2008). Phosphorous surface runoff occurs mainly in the form of particulate 

phosphate with eroded soil fractions (Miguntanna, 2009; Ojwando, 2014) although dissolved 

phosphate runoff also occurs (Shumaker and Paul, 2008); it can infiltrate the soil profile to 

groundwater as dissolved P (Davis, 2006) or particulate P (Lyngsie, 2013). Wind erosion of P 

is also a factor in its transport to fresh water bodies (Davis, 2006). 

Studies of nutrients applied in container production have reported that up to 65% of P is lost 

through leaching (Alem et al., 2015), with 0.01 to 20 mg·L
-1

 P lost through surface runoff 

from nurseries (Pomolski et al., 2008). The phosphate (PO4-P) concentrations in samples 

taken from nursery drainage areas ranged from 0.60 mg·L
-1

 during  winter to 144 mg·L
-1

 

during the growing season (Sharma et al., 2008). The South African Environmental 
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Protection Act (2002) stipulates that concentrations of PO4-P in discharged effluent onto land 

may not exceed 10 mg·L and may not exceed 1 mg·L when discharged into a watercourse or 

a freshwater body. Actual data from soil analyses for PO4-P concentrations in catchment areas 

and riparian zones linking adjoining freshwater systems and agricultural lands is limited and 

therefore the possibility of predicting an algal bloom event before a storm is remote. This may 

be particularly important in a country like South Africa where water is scarce. 

Most freshwater pollution studies focus on N and P as limiting nutrients, with silicon 

commonly being overlooked (Pearson et al., 2016). 

2.1.2.3 Silicon  

Diatoms, which form a major part of phytoplankton communities (Choudhury and Bhadury, 

2015), require silicon (Si), unlike other phytoplankton (Javaheri et al., 2015). Silicate, a 

primary constituent of diatoms, is specifically used for the growth of these organisms which 

utilize this compound to produce their external shell called the frustule (Choudhury and 

Bhadury, 2015; Javaheri et al., 2015). Studies have determined that growth is influenced by 

the N:Si ratio, when either N or Si are limiting (Gilpin et al., 2004; Choudhury and Bhadury, 

2015). Pearson et al. (2016) suggested that phytoplankton, more limited by N than Si, will 

outcompete diatoms for dominance, except for periods of lower temperatures, lower light 

levels and increased Si enrichment and that this limitation may result in eutrophication. With 

global warming, the length of these diatom algal bloom periods as a time factor are 

decreasing and toxic cyanobacterial blooms may  potentially be more prevalent for longer 

periods of time (Pearson et al., 2016).  

Another major concern, is that diatom species are biological indicators of the health of 

freshwater ecosystems (De la Rey, 2008). Testing for every possible pollutant chemical is 

costly and difficult. Some of the reasons for using biological indicators include cost 
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effectiveness as the difficulty in testing for every possible pollutant is reduced; assemblages 

of organisms such as certain diatom species by their presence or disappearance and past 

history indicate the condition of a water body, techniques are quick, accurate and have been 

widely used to assess fresh water quality. Identifications and counts can be done by 

nonspecialists with a biological background if they are provided with illustrated guides 

(Taylor, 2006; De la Rey, 2008).  

Soils containing, or amended with, Si have a good adsorption capacity and reduced P leaching 

(Matichenkov et al., 2001). When plants were grown in soilless growing media, Si in plant 

tissue was found to be significantly lower in comparison with plants grown in soil-type media 

due to limited Si availability in soilless growth media (Voogt and Sonneveld, 2001). This 

implies that lower levels of Si in soilless growth media result in a limited capacity of the 

medium to prevent P leaching. Tubaña and Heckman (2015), citing findings from previous 

studies, stated that dissolved silicon in soil solution (H4SiO4) displaced P from slightly 

soluble phosphates of Al, Ca, Fe and Mg releasing it into the soil solution, making P more 

plant available.  

2.1.3 Total N and total P as indicators of the eutrophication of fresh water systems 

Dissolved inorganic mineral elements in aquatic ecosystems are assimilated by phytoplankton 

via metabolic processes (van Ginkel, 2011). Phytoplankton is critically dependent on N and P 

for growth (Kohn, 2016). Over-enrichment of water sources with these primary nutrients 

leads to increased phytoplankton biomass (Kitsios, 2004; Smith et al., 2016) which is often 

too large for the phytoplankton consumer populations, such as zooplankton, to control 

(Kitsios, 2004). 

In nutrient-phytoplankton relationships attention is often focused on TN and TP 

concentrations as well as the TN to TP ratio (Guildford and Hecky, 2000). Measurements of 
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the TN to TP ratio in freshwater samples are considered a true reflection of all N and P 

fractions in the system. Analysis for only NO3-N, NH4-N and PO4-P fractions and not TP and 

TN as well, will only show what is immediately available for phytoplankton uptake but not 

for possible future use  (Van Ginkel, 2007). The TN to TP ratio determines growth, 

abundance and taxonomic composition of a phytoplankton community but is particularly 

important when this ratio favours cyanobacteria dominance (Filstrup et al., 2016). The 

community structure is determined by competition between the individual species for 

nutrients (Brauer, 2015) and also by physical factors such as light, temperature, turbidity and 

alkalinity (Reynolds et al., 2002).  

Cyanobacteria are strong competitors for N and weak competitors for P (Brauer, 2015), but 

will become the predominant phytoplankton species (toxic algal bloom) of a phytoplankton 

community at a low TN:TP ratio (Mihajlov, 2005; Brauer, 2015; Palus, 2015). Microcystis is 

the most dominant cyanobacteria in South Africa followed by Anabaena (Van Ginkel, 2004). 

Microcystis produces the toxin microcystin. Anabaena produces anatoxin and microcystin 

amongst others (Sivonen and Jones, 1999). This may impact human and livestock health 

adversely because of the toxicity in water if consumed (Van Ginkel, 2007). Blooms of this 

nature have been an increasing problem in South Africa over the last thirty years (Van Ginkel, 

2011; Oberholster et al., 2012).  

The determination of TP and TN are frequently used to describe the ‘trophic’ status of 

freshwater bodies and are ideal parameters as the total nutrient content of the phytoplankton 

biomass are measured as well as those nutrients that are available to it (Dodds, 2003). All 

species of phytoplankton contain chlorophyll and the determination of this is a reliable and 

internationally used proxy for total phytoplankton biomass (Gregor and Maršálek, 2004) and 

an excellent trophic state indicator (Boyer et al., 2009).  
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2.1.4 Algal chlorophyll a (PChl a) 

There are many different parameters, which may differ from study to study, used to assess 

eutrophication and trophic status of which TN and TP are the basic ones (Yang et al., 2008). 

Others include mean annual chlorophyll a (PChl a) and % of time PChl a > 30 g·L
-1

 as used 

by Van Ginkel et al. (2001) or dissolved inorganic nitrogen, dissolved inorganic phosphate, 

dissolved oxygen and benthic diatom index as used by Lemley et al. (2015). It has been 

established that there is a relationship between TN, TP and Chl a that indicates the status of 

freshwater ecosystems (Magumba et al., 2014). Chlorophyll a concentration is typically 

proportional to the concentration of a phytoplankton assemblage or community within a water 

column (Galvez-Cloutier and Sanchez, 2007).  

There are four broad categories used in the classification of South Africa’s aquatic 

ecosystems: oligotrophic, mesotrophic, eutrophic and hyper-eutrophic (De Villiers, 2007) 

which were categorized as ‘Good’, ‘Fair’, ‘Poor’ or ‘Very Poor’, respectively in the Lemley 

et al. (2015) study. Mean annual PChl a concentrations > 30 µg·L-1 would indicate hyper-

eutrophic conditions according to the classification system used by the Department of Water 

Affairs for sampling sites and should be considered a serious problem (Van Ginkel, 2011). 

Variables to determine the biological properties of freshwater ecosystems typically include 

Chl a as well as algal species composition (Van Ginkel and Hohls, 2001). Aquatic algal 

species composition has been determined by the use of scanning electron microscopes (SEM), 

transmission electron microscopes and optical phase contrast microscopy. 

2.1.5 Freshwater microalgae dynamics 

Aquatic microalgae may be classified as  phytoplankton which are free-floating or periphyton 

which are attached to rocks, sediment or other aquatic organisms (Sigee, 2005). 

Phytoplankton and periphyton are photosynthetic and autotrophic organisms that form as 
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primary producers, the base of the food web in both fresh and marine water systems (Striebel, 

2008; Simmons, 2012; Fayiss, 2015) driving and sustaining the ecological functioning of 

these ecosystems (Lemley et al., 2016). Some of the more common freshwater microalgae 

phyla occurring in South African dams and rivers are Chlorophyta (Green Algae), 

Cyanophyta (Blue-Green Algae), Chrysophyta (Golden-Brown Algae), Bacillariophyta 

(Diatoms), Euglenophyta (Euglenoids), Cryptophyta (Cryptomonads) and Dinophyta 

(Dinoflagellates) (Van Vuuren et al., 2006). Each algal family has specific biotic and abiotic 

requirements for its survival (Lai, 2013). Light, temperature and nutrients are factors that 

regulate biomass, distribution, and structure of phytoplankton communities in the water 

column and freshwater body (Perez et al., 2007; Striebel, 2008).  

Tobin (2011) reported that populations of diatoms, green algae and cyanobacteria in lakes 

have often peaked sequentially, beginning with diatoms when temperatures are cooler in late 

winter and early spring followed by green algae at warmer temperatures and then 

cyanobacteria during hotter periods. A defined seasonal succession of phytoplankton species 

in temperate lakes, as reported by Wehr (2011), is of significance in the more temperate 

regions of South Africa. Toxic cyanobacterial blooms arising from sewer and industrial 

effluent, particularly in the summer months, have been a regular eutrophic occurrence in 

many, if not most, of the rivers and impoundments in South Africa  (Oberholster and Ashton, 

2008). Recorded cyanobacterial and dinoflagellate bloom events appear to have increased in 

frequency in South Africa and worldwide. The N:P ratio has been considered a potential 

management option in understanding the dynamics of phytoplankton proliferation which is 

influenced by dissolved, particulate and sediment-bound nutrients within a freshwater 

ecosystem and the control this ratio could have in reducing eutrophication (Van Ginkel, 

2007).  
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2.1.6 Soil microalgae 

Soil algae, also contain chlorophyll. Green algae are more abundant at the soil surface than 

below the surface, due to light accessibility (Messyasz, 2006). Terrestrial diatoms are also 

mostly found at the soil surface (Antonelli et al., 2017), but may migrate deeper into soil due 

to possible desiccation at higher temperatures (Souffreau et al., 2013). Top soil and river 

sand, used as growth media components in potting mixes, may contain soil algae. These may 

include the cyanobacteria – Anabaena and Oscillatoria, as identified in soil by Zancan et al. 

(2006) and in freshwater (Van Vuuren et al., 2006), and the green algae – Scenedesmus,  in 

soil (Zancan et al., 2006) and in freshwater (Van Vuuren et al., 2006). Some diatom species 

have also been described in freshwater systems, such as Achnanthes minutissima and 

Nitzschia palea (Kutzing) (Taylor et al., 2007) and in soil (Zancan et al., 2006). Living algal 

microorganisms in potting media may be able to enter freshwater systems in much the same 

way as N and P enter freshwater systems. 

2.1.7 Current water situation in South Africa 

South Africa is a semi-arid country (Snyman 1998; Turpie and Visser, 2013; Dalu, 2014). 

The demand for water in a country that has a relatively low annual rainfall of 497 mm per 

year (the global rainfall average is 860mm) is, however rapidly increasing (Kapuku, 2015. 

Rainfall distribution is also uneven with 21% of the country receiving less than 200 mm 

annually (Lai, 2013). South Africa’s freshwater resources are under strain due to increased 

use and demand from a growing population, agricultural growth, socio-economic 

development and industrialisation (Oberholster and Ashton, 2008; Mwangi, 2014; Kapuku, 

2015). Approximately 98% of these water resources, which include rivers, dams and 

groundwater, have been fully allocated (Hedden and Cilliers, 2014) since 2005 (Oberholster 

and Ashton, 2008). There have already been water restrictions across the whole country      
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(du Plessis et al., 2015) as a result of critically low dam levels (Kapuku, 2015). The three 

main consumers of water are agriculture, industrial and domestic use (Rouwenhorst, 2007). 

These three are also the main causes of the deterioration of freshwater quality through 

salinisation, eutrophication, acidification, and microbial pathogens (Mwangi, 2014). Effluent 

from manufacturing, mining and power generation industries, sewage discharge as well as 

nutrient loads in agricultural, urban and forestry runoff and groundwater infiltration lead to a 

decline below the standards of water (Oberholster and Ashton, 2008; Jordaan and 

Bezuidenhout, 2013).  

Agricultural irrigation accounts for about 62% of freshwater usage in South Africa                 

(Rouwenhorst, 2007, Kapuku, 2015).  The South African National Water Act (Act No. 36 of 

1998) recognises that water is scarce, that government is responsible for water as a national 

asset and that there is a need for water quality and quantity protection, as well as its 

sustainable use for the people of this country into the near future (Africa, 1998). Water 

security remains a concern as South Africa’s freshwater resources will be unable to sustain 

the current patterns of water use and discharge, as a result of anthropogenic activities 

(Oberholster and Ashton, 2008; du Plessis et al., 2015). 

2.1.8 Eutrophication of freshwater in South Africa: Current view 

Agriculture is considered a major underlying cause of eutrophication in many catchments 

around the world (Withers et al., 2014; Esterhuizen et al., 2015). Intensive agricultural 

practices continue to result in the eutrophication of aquatic ecosystems due to high nutrient 

fluxes from agricultural landscapes (Heathcote, 2013; Jarvie et al., 2013; Pettersen, 2014; 

Botha, 2015; Sakadevan and Nguyen, 2015).  

Agricultural production systems in South Africa include intensive crop and mixed farming in 

winter rainfall and high summer rainfall areas with both, direct and indirect effects on surface 
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water quality (Shabalala et al., 2013). The concerns surrounding eutrophication in South 

Africa are described by Thornton et al. (2013) as a “wicked” problem. Turton (2012) 

suggested that around one third of all South Africa’s water that is stored is eutrophic. The 

impairment of surface waters presents a major threat to potable and irrigation water 

(Oberholser et al., 2009), which mostly comes from man-made dams to ensure supply 

(Pindihama et al., 2011; Botha, 2015). Rural communities depend on water from sources that 

are frequently of poor quality, unreliable and inefficient; this part of the population is also 

often faced with polluted river water as an alternative source for domestic consumption 

(Oberholster et al., 2009; Pindihama et al., 2011). 

Recently, studies have revealed toxins inside produce from crops irrigated with eutrophic 

waters (Turton, 2012). The National Eutrophication Monitoring Programme (NEMP) has 

been in place since 1985 but the problem of eutrophication remains a threat (Mwangi, 2014). 

Ally (2013) suggested that a solution to the eutrophication problem requires a 

multidisciplinary, multi-sector and multi-focal approach to arrest the impairment of the 

country’s freshwater systems. If the reservoirs are to fulfil the basic and multiple functions of 

resource provision, waste assimilation and recreation, then intense attention needs to be 

devoted to the concept of ‘integrated water resource management’ to prevent eutrophication 

(Botha, 2015). 

The consequences of the over enrichment of freshwater as a result of nutrients in runoff and 

groundwater infiltration from agricultural lands and nurseries have been examined. 

Agricultural activity is considered one of the leading causes of the eutrophication problem in 

South Africa (Ncube, 2015). Literature relating to greenhouse and nursery practices, on the 

effects of fertiliser usage and subsequent surface runoff and infiltration, seems non-existent 

for South African conditions. There is practically no information on the types of growth 
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media and fertilisers used in ornamental commercial plant production in South Africa or on 

the cultivation of Pseuderanthemum. 

 2.2 Greenhouse and nursery ornamental plant industry and production 

Greenhouse and nursery-cultivated ornamental plants include trees, shrubs, palms, 

groundcovers, climbers, ornamental grasses and bedding plants (Dobres, 2008; Chandler and 

Sanchez, 2012; Witcher, 2013), with many species and cultivars of each being propagated 

(Chandler, 2013; Zhu et al., 2015) for the commercial market. The ornamental plant industry 

has grown tremendously worldwide as the search for new marketable plant species has 

increased (Drew, 2010). There are more ornamental plant species and cultivars propagated 

today than all other agricultural and horticultural crops put together (Middleton, 2012). 

Ornamental plants are sought after and grown for their aesthetic, amenity and cultural value 

they afford to indoor and outdoor open spaces integral to daily living (Afrin, 2009; 

Middleton, 2012; Chandler, 2013).  

Common propagation systems for ornamentals include seed, cutting, grafting, and micro-

propagation methods (Wu, 2013; Swelih, 2015). The type and species of a plant determines 

the propagation method and the optimal propagation environment. Cold-hardy ornamentals 

may be staged and grown on in open compounds after establishment, whereas tender plants 

must be propagated and grown on in a protected environment, such as a greenhouse, during 

the colder months until it has reached saleable age (Witcher, 2013). In some geographical 

locations, cuttings of certain ornamentals do not require sophisticated greenhouse conditions 

and controls. In most parts of South Africa, a plastic clad tunnel with a misting facility 

suffices. Often plants are produced more rapidly by vegetative propagation methods than 

from seed (Wu, 2013), avoiding the challenges aligned with seed dormancy (Ruchala, 2002) 

or with recalcitrant seeds (Pammenter et al., 2007; Varghese et al., 2011). Vegetative 
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propagation also has the distinct advantage of producing plant material that is true to type 

(Swelih, 2015), as vegetative propagation is cloning, where duplicates of the mother plant are 

produced, thus ensuring desirable characteristics are passed on (Ruchala, 2002) 

Mass production of ornamental plants for commercial markets occurs mainly through 

propagation by stem cuttings (Jones et al., 2010), commonly achieved in a relatively small 

area (Araya, 2005). Most ornamental plants are produced in plastic containers, which may be 

pots or bags, and are grown in growth medium (Witcher, 2013).  

2.2.1 Growth media 

A growth medium for plants, such as ornamentals, in containers commonly consists of a 

variety of components in order to offer plants adequate support, oxygen, water and nutrients 

for plant growth (Ingram et al., 1993; Jackson, 2008). Knowledge of plant nutrition and soil 

fertility is essential in greenhouse and nursery plant production to ensure adequate, sustained 

and available forms of plant nutrients for plant uptake within the root zone (Jones and 

Jacobsen, 2005). Soil fertility may be defined as the capability of a soil to supply essential 

nutrients that will enhance plant growth, while soil productivity refers to a soil’s ability to 

produce a crop (Follett et al., 1987). Traditionally, soils were used to produce container 

ornamental plants (Adriaanse, 2013). The use of field soil for ornamental propagation is still 

common practice in some parts of the world today, such as Romania (Popescu and Popescu, 

2015) and Nigeria, although there are concerns of soil-borne pathogens (Adriaanse, 2013).  

Most growth media mixes used today in greenhouse and nursery production do not contain 

mineral soils (Richard, 2006), and are referred to as soilless or artificial media ( Agro, 2014). 

Primary components of these media may include peat, pine bark, perlite, vermiculite, compost 

and coarse sand (Dewayne et al., 2003). Peat and bark are both acidic with little buffering 

capacity (Bilderback et al., 2013). Some media components, like peat, bark, and vermiculite, 
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possess a high cation exchange capacity CEC (Ingram et al., 1993). These and other 

components either singly or blended in a growth media mix give rise to different biological, 

physical and chemical properties (Richard, 2006, ). 

2.2.1.1 Properties of growth media 

Biological properties of growth media: Biological properties of soils are influenced by the 

presence and activities of soil macro-fauna (earthworms etc.) and micro-fauna (nematodes 

etc.) as well as soil micro-flora (bacteria, fungi, actinomycetes, algae etc.) which are involved 

in biochemical reactions and biological processes within the soil (Brussaard, 1997). Soil algae 

includes green algae (Messyasz, 2006), diatoms (Vacht et al., 2014) and cyanobacteria. It has 

been reported that soilless media are preferable over soil as they are relatively free from soil-

borne pathogens (Raviv et al., 2008), affording more accurate control of the root zone, 

improved plant quality and increased plant production (Van Winden, 1987; Vallance et al., 

2010). Peat and coir possess low biological activity but might harbour root pathogens (Avilés 

et al., 2011). Soilless cultures may develop root pathogenic problems soon after the 

introduction of the plant material and irrigation, even in inorganic growth media mixes which 

barely contain any microorganisms (Vallance et al., 2010). Jackson (2008) reported that 

composts may suppress soil-borne diseases, although not all composts suppress all root 

pathogens (Avilés et al., 2011). Schwarz and Krienitz (2005) reported that certain algae can 

prevent anaerobiosis around the root system and may even promote plant growth, while being 

potentially problematic in greenhouse production systems. Due to fertigation in hydroponic 

systems, algae are prone to cover all surfaces containing sufficient light, nutrients and 

moisture (Chase and Conover, 1993; Schwarz and Krienitz, 2005). 

Physical properties of growth media: Physical properties of growth media include soil texture 

(Westervelt, 2003). A growth medium has a textural and a structural component, both 
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affecting porosity and water-holding capacity (Nimmo, 2004). Soil structure is the 

arrangement of the soil particles into aggregates of various sizes and shapes (Yoon, 2009), 

while texture refers to the size and distribution of the particles in a medium (Westervelt, 

2003; Nimmo, 2004). The texture of a soilless growth medium has a similar impact on the 

growth medium’s physical properties as it has on soil physical properties. A soilless growth 

medium with high porosity cannot hold nutrients easily, causing low nutrient uptake 

efficiency and a high run-off rate (Zhu et al., 2015). It is critical that a growth medium 

provides a balance between aeration and water holding capacity to ensure a quality crop of 

containerised ornamental plants (Ingram et al., 1993; Kukal et al., 2012).  

Chemical properties of growth media: Chemical properties of soils and growth media include 

pH, electrical conductivity (EC) and cation exchange capacity (CEC) (Ingram et al., 1993; 

Richard, 2006; Witcher, 2013). Growth media chemical properties have a major influence on 

plant quality as they affect the solubility of nutrients, nutrient retention and plant nutrient 

uptake (Richard, 2006). The term CEC refers to a growth mediums ability to hold plant 

nutrients of positive charge, reducing nutrient leaching after rain or an irrigation event 

(Ingram et al., 1993; Witcher, 2013). Chemical properties such as EC and pH can be 

determined from leachate extracted from growth media by a number of methods, including 

the pour-through extraction procedure (Jackson, 2008) and the saturated media extract 

method (Warncke, 1988). 

2.2.1.2 Effects of EC and pH on growth media characteristics  

The main distinguishing factor between the fertilisation management of soil-grown plants and 

that of plants grown in soilless media is the limited volume of growth media in the latter.  

This implies lower buffer capacity for solution composition and limited supply of nutrients 

due to inherent capacity (Silber and Bar-Tal, 2008). The pour-through extraction procedure 
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(Wright, 1986,) is a procedure for monitoring pot soluble salts, measured as EC, individual 

nutrient concentrations and pH. 

The effectiveness of this procedure in monitoring the nutrient status of growth media for 

shrubs and foliage plants has been demonstrated (Wright et al., 1990), and has been verified 

to test the soil solution available to plant roots (Richard, 2006). Suggestions of the ideal pH 

range of a growth medium for greenhouse crops are variable. Suggestions range from 5.0 to 

6.5 (Ingram et al., 1993), 5.4 to 6.4 (Bailey et al., 2005), 5.4 to 6.5 (Jackson et al., 2009), 5.5 

to 6.5 (Witcher, 2013) and 5.4 to 6.0 for soilless media, and, with media having more than 

20% incorporated soil, to lie between 6.2 and 6.8 (Westervelt, 2003). Plants such as azaleas, 

blue hydrangeas, rhododendrons and camellias require a more acidic growth medium, while 

Easter lilies prefer a higher pH (Bailey et al., 2005) and, thus, optimal pH ranges are species-

dependent (Miller and Jones, 1995). 

Soilless growth media offer less pH buffering capacity than soil and soil-based growth media 

(Fisher and Argo, 2003). A growth medium’s pH can change in response to fertiliser 

application, irrigation water alkalinity (Westervelt, 2003) and can even be altered by the plant 

itself (Westervelt, 2003; Raymond, 2004). The pH of a growth medium is important because 

it affects the solubility and availability of plant nutrients (Adriaanse, 2013), especially 

micronutrients (van Iersel, 1999). The medium pH can therefore also cause toxicity (Ingram 

et al., 1993; Soti et al., 2015). In general, micronutrients become more available as the pH 

decreases and less so as the pH rises (Jarvel, 1996). Ingram et al. (1993) reported that a pH 

above 7.5 usually results in the chemical binding of micronutrients, with the possibility of 

iron chlorosis (Landis, 1990), and a pH below 4.0 could result in toxic concentrations of ions 

such as aluminium (Al
3+

), zinc (Zn
2+

), copper (Cu
2+

), iron (Fe
3+

)
 
and manganese (Mn

2+
) 

(Ingram et al., 1993; Soti et al., 2015). Organic container medium components, such as bark 
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and peat moss, typically have lower pH values than mineral soils and can sometimes cause 

problems with Fe, Mn and Zn toxicity (Wada, 2005). Additionally, in alkaline soil media, 

Calcium (Ca), Magnesium (Mg), Potassium (K) and Orthophosphate (PO4), exist in forms 

unavailable to plants, causing nutrient deficiency (Soti et al., 2015). 

The uptake and availability of phosphorus (P) in growth media is influenced by pH changes 

in a number of ways. The plant availability of several nutrients is affected by medium-pH, but 

one of nutrients most likely to leach is P (Fisher and Argo, 2003); P availability decreases in 

increasingly acidic soil media, due to P precipitation forming Al
3+

 and Fe
3+

 as well as Ca
2+

 

and Mg
2+

 compounds under alkaline conditions (Landis, 1990; Raymond, 2004). Soilless 

growth media have little ability to hold P due to low phosphate sorption capacities of such 

substrates (Scagel, 2003; Oh et al., 2016), especially with organic growth media components 

such as peat and bark lacking the binding sites that soils have to fix Al
3+

 and Fe
3+

complexes 

(Williams and Nelson, 1996). As much as 79% applied P may be lost from soilless growth 

media (Yuan-Ling et al., 1996).  

Arguedas Rodriguez (2009) suggested an optimal soilless medium pH of 5.5 for P uptake, as 

P solubility decreases above this pH value. This is supported by Argo (1998). In soils, and on 

sites where P is bound, desorption may also occur, influenced by pH. As the pH is raised, 

bicarbonate (HCO
3-

) is able to exchange with adsorbed P and releases it into soil solution 

(Ojwando, 2014). Subsequently, this P is leached into the nursery production environment. 

The rate of desorption is higher in soils with a higher phosphate buffer capacity and soils are 

better able to buffer the phosphate concentration of the soil solution during the growing 

season (De Villiers, 2007), possibly due to prevailing higher temperatures. 

Nitrogen can be absorbed by plants as either the ammonium (NH4
+
) cation or the nitrate 

(NO3
−
) anion (Nye, 1981; Silber and Bar-Tal, 2008) and in these forms has a significant 
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influence on rhizosphere pH and uptake (Marschner, 2011).  When NH4-N is taken up by a 

plant, H
+
 is secreted by the roots, inducing a decrease in soil solution pH (Marschner, 2011). 

Conversely, when NO3-N is assimilated by the plant, OH
- 
and HCO

3-
 are secreted by the roots 

and the soil pH rises (Argo and Biernbaum, 1997; Silber and Bar-Tal, 2008). Bacterial 

nitrification of NH4-N into nitrite (NO2-N) and nitrate (NO3-N) may be inhibited by high 

levels of NH4-N and high solute concentrations (Silber and Bar-Tal, 2008). The critical pH 

for the inhibition of nitrification in soilless media lies in a pH range from 5.4 to 5.7. An 

increase in the concentration of NH4-N was found in media below this pH range with minimal 

concentrations of NH4-N in media above this range (Argo, 1998; Arguedas-Rodriguez, 2009). 

High concentrations of NH4-N are toxic to most plants, especially at high temperature and 

high salinity levels.  

Electrical conductivity of growth medium solution is a measure of the ability of the solution 

to conduct electricity and indicates total soluble salts present but not individual nutrient 

species concentrations (Hanlon, 2012). As the level of soluble salts increases beyond 

recommended levels, the effect is of a decrease in plant growth; therefore, soluble salt 

determination has considerable significance (Jones Jr, 2001). High EC levels inhibit the root 

growth of some established crops (Whipker, 1999). 

Electrical conductivity measurements give rapid results for growers, thereby allowing for 

timeous adjustments, if necessary. Levels of EC increase exponentially with increasing 

fertiliser input. Bilderback (2002) suggested minimal levels for liquid feed to range from 0.5 

to 1 mS∙cm
-1

, while Mathers et al. (2007) regarded an EC of 0.75 to 1.50 mS∙cm
–1 

for pot-

grown nursery plants in soilless media as optimal, when treated with a liquid feed at pH 5.2-

6.2. Agro (2014) reported that an ideal growth medium will have an EC between 2.7 to 4.6 

mS∙cm
–1

 for most crops, whereas Raymond (2004) recommended that the maximum EC level 
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for ornamentals grown in containers to not exceed 1.5 mS∙cm
-1

. An ideal growth medium for 

the production of containerised ornamental plants may have just one component or several 

components which may vary in proportions, depending on the type of plant being grown. 

2.2.1.3 Composted pine bark and soil-based growth media mixes 

Bark is a by-product of the timber and paper mill industries (Jackson, 2008). Composted bark 

is more preferable to shavings due to potential associated phytotoxicity problems         

(Carlile et al., 2015). Physiochemical properties of bark-based soilless growth media can be 

quite different from soils (Hoskins et al., 2014). Composted bark is stable over time and 

drains well, whilst maintaining adequate media moisture for plant growth (Schnelle and 

Henderson, 2003). It is acidic with little buffering capacity (Bilderback et al., 2013) and 

lightweight, making it ideal for handling and transport of plants (Schnelle and Henderson, 

2003). Miller and Jones (1995) suggested that as an amendment, composted bark is useful in 

increasing air porosity and water-holding capacity should this be required, although its water-

holding capacity is not as high as peat. The size of the particles in the medium is important 

and the required size is achieved through hammer milling and screening (Landis, 1990). This 

is particularly important for smaller container use (Witcher, 2013) especially for seedling 

trays. 

Pinebark is preferred over hardwood bark as it contains fewer leachable organic acids and can 

be composted relatively quickly, yielding the final product within five to seven weeks 

(Robbins and Evans, 2011). Composted pinebark also has anti-pathogenic effects (Bertrand, 

2014). The similarity of composted pinebark to peat and its local availability have made this 

medium a common component of growth media in South Africa, despite it not having 

sufficient nutrients for plant needs (Mupondi et al., 2006). Miller and Jones (1995) have 

reported significant, but low quantities of macro- and micronutrients in composted pinebark. 
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Initial pH ranges of composted pinebark have been reported to range between pH 4.0 to 4.3 

(Mupondi et al., 2006),  4.0 to 4.5 (Jackson et al., 2009), pH 4.0 and 5.0 (Ingram et al., 1993) 

and 3.5 to 6.0 (Witcher, 2013). Adding agricultural lime (CaCO3), dolomitic limestone 

(MgCO3) or a combination of calcium or magnesium hydroxides (CaOH2), and (MgOH2) will 

raise the pH of acidic media to required levels, but rates incorporated of any of these will 

depend on media characteristics, the lime particle size, surface area and irrigation water 

quality (Raymond, 2004). 

Soil-based growth media should be amended with other components that will improve 

aeration and drainage, whilst maintaining water-holding capacity and should not contain more 

than thirty percent soil (Landis, 1990). Literature on media blends of topsoil, river sand and 

compost is limited. De Silva and Senarath (2013) reported a topsoil, river sand and compost 

blend (1:1:1, v:v:v) to be the best potting mix compared with coir dust substituting each of 

these components respectively (coir, river sand, compost; topsoil, coir, compost; topsoil, river 

sand, coir) , in a study on acclimatisation of tissue-cultured plants. Coconut coir dust is 

described as brown, spongy particle of low weight which falls out when the fiber is shredded 

from the husk. 

Pine seedlings used to be raised only in topsoil for the South African forestry industry, but 

because of poor quality and insufficient topsoil supply, soilless growth media was 

investigated as alternatives (Hodgson, 1981). A lack of available peat in South Africa resulted 

in a comprehensive research programme to develop pine bark as a suitable alternate growth 

medium for the extensive containerised seedling industry in South Africa (Smith, 1992). The 

addition of topsoil, though, introduces desirable microorganisms into the growth medium and 

also adds weight for plant stability, but does contain weed seeds (Jacobs et al., 2009). Sand is 

the coarse fraction of soil minerals (Tan, 2010). It is a commonly used component of growth 
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media mixes (Papadopoulos et al., 2008).  Sand is typically added to a growth media mix to 

increase its porosity (Bertrand, 2014), with coarse sand being most preferable to prevent 

aeration problems (Papadopoulos et al., 2008). When combined with pine bark, sand reduces 

air space and total porosity (Bertrand, 2014). Growers generally use medium to coarse sands; 

0.25 to 2 mm (Robbins and Evans, 2011). Sand is a chemically inactive medium and 

nutritionally valueless, but serves as diluent of more reactive components in growth media. 

Sand is very durable because it is neither chemically nor biologically altered during the 

course of its use as a growing medium component  (Papadopoulos et al., 2008).  

The ornamental nursery industry worldwide has used growing media based on peat for many 

decades. Peat is obtained from wetlands and regarded as a non-renewable resource. Its rapid 

depletion, due to use as a growing medium, is causing rising environmental concerns that 

have led to many individual countries limiting the extent of peat mining, which has resulted in 

price increases (Ostos et al., 2008). Increased commercial interest has been directed towards 

developing complete or partial alternatives for peat utilised in traditional growth media within 

nursery production (Mugnai et al., 2007). Composts can improve the physical, chemical and 

biological properties of a growth media (Raviv, 2005; Jacobs et al., 2009). Properly 

composted pine bark has been shown to possess most of the necessary chemical properties to 

produce a containerised pine seedling of desired quality (Jarvel, 1996). Compost is an ideal 

peat substitute, as it tends to have porosity and aeration properties comparable to peat (Ostos 

et al., 2008) and enhances water retention and fertility (Jacobs et al., 2009). Leaching from 

potting mixes containing composts is variable. Researchers have reported that some growth 

media leach equal or less N as NO3–N and NH4–N than a comparable peat-based substrate 

(Shober et al., 2011). Frost (1997) reported that more P leached from a peat: vermiculite 1:1 

blend than from sand: soil: peat 1:1:1 by volume. Compost is a valuable source of nutrients 
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(Mugnai et al., 2007) and has been found to suppress seed-borne and soil-borne pathogens 

(Jacobs et al., 2009). Gallo and Roberts (2010) reported that the benefits of compost 

amendments in growth media also include improved biological activity by bacteria, 

microalgae, mycorrhizal fungi, nematodes, protozoa and micro-arthropod organisms, as well 

as improved nutrient cycling, infiltration rate and growth medium texture. 

2.2.1.4 Effects of growth medium texture on growth medium water leaching  

A greenhouse or nursery crop growing in fine-textured media will be affected by poor 

aeration  and a crop growing in a coarse-textured medium easily suffers from lack of water 

(Spomer et al., 1997). Texture has, thus, a profound effect on the properties of a growth 

medium and is considered the most important physical property  (McCauley et al., 2005) 

Soil texture is altered by the combination of sand, silt and clay, components determining the 

particle size distribution of a soil sample (Gee and Or, 2002; McCauley et al., 2005). Porosity 

is affected by soil texture and this directly influences water and air movement through the 

growth medium and, subsequently, nutrient retention, nutrient uptake and plant growth 

(McCauley et al., 2005). Fine-textured soils contain more clay particles and have smaller pore 

spaces than fine-textured components, resulting in media that is saturated after irrigation with 

little available oxygen. A coarse-textured medium is one comprised primarily of coarse to 

very coarse size particles resulting in large pores (Spomer et al., 1997), like sandy soils; such 

media drain relatively quickly (Magdoff and Van Es, 2000). Rapidly draining media also 

leach mineral nutrients readily (Magdoff and Van Es, 2000;  Fogg et al., 2004). All soils are a 

combination of sand, silt, and clay-sized particles but vary in the proportion of these. Loamy 

soils have better water- and nutrient-holding capacities than sandy soils (Oyinlola and Jinadu, 

2012) and, as with clay soils, benefit from the addition of compost. The ideal media mix, soil 

or soilless, should have a balance between medium and coarse particles with a minimum of 
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fine particles (Kukal et al., 2012). This ‘perfect medium’ can be achieved by soil amendment 

or component mixing (Spomer et al., 1997), and allows for optimal nutrient uptake by the 

cultivated plant.  

2.2.2 Fertiliser use in pot plant production  

Soil fertility is allowing adequate plant nutrition ensuring sustained provision and available 

forms of plant nutrients for uptake within the root zone (Foth and Ellis, 1997) Ornamental 

plant production in greenhouses and nurseries are highly intensive and require sufficient 

amounts of nutrients to enhance plant growth, thus, ensuring production of high value and 

quality crops (Taylor et al., 2006; Dennis et al., 2010;). On the other hand, fertiliser use can 

also create serious environmental hazards from leachate (Zhu et al., 2015). Follett et al. 

(1987) defined fertiliser as any organic or inorganic material of natural or synthetic origin, 

which is added to a soil to supply certain elements essential to the growth of plants. Organic 

and inorganic fertilisers are used in greenhouse and nursery production systems as well as in 

field production systems in the form of dry-soluble, wet-soluble, slow-release or controlled-

release fertilisers (Benson, 1997). Inorganic fertilisers are most commonly used in potted 

plant production, because nutrients are immediately available for plant uptake (Richard, 

2006). 

There is no legal definition of ‘organic fertilisers’ or ‘composts’. Regulatory bodies authorise 

its use for specific organic systems. Manufactured organic fertiliser products may include 

liquid fertilisers from hydrolysed animal waste (Cantrell et al., 2008), solid forms, such as 

vermicompost, blood meal, hoof meal, horn meal and bone meal Bateman and Kelly, (2007) 

as well as animal manures in pellet form (Augustinus, 2007). Organic fertilisers, like 

compost, are considered to have a slow rate of nutrient release Ostrom, (2011) and may be 

less detrimental to receiving fresh waters than inorganic fertilisers (Reiter, 2008). Organic N 
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in organic fertilisers must undergo a mineralisation and nitrification process to inorganic N 

before being available for plant uptake (Bi et al., 2010; Treadwell et al., 2011). The release of 

nutrients from slow-release fertilisers depends on growth medium moisture, temperature and 

microorganism activity. Although variable and inconsistent in respect of demand, slow-

release fertilisers allow nutrients to be available over an extended period of time                  

(Bi et al., 2010; Treadwell et al., 2011).  

Several studies have reported on the beneficial effects of organic fertilisers on the growth and 

yield of plants in production compared with inorganic fertilisers. Reiter (2008) stated that 

poultry litter, barring more total suspended solids, generally produced lower inorganic N, 

total Kjeldahl N, dissolved reactive P and TP in surface run-off concentrations than inorganic 

fertiliser sources applied at comparable rates.  

In 2010, Guihong et al. conducted two experiments in a greenhouse study to evaluate the 

effects of two organic chicken litter fertilisers (4-2-2 and 3-3-3) and an inorganic controlled-

release fertiliser (14-14-14) on the growth and flowering of potted French marigold plants. 

Plants fertilised with 4-2-2 and 3-3-3 produced the highest plant growth index, shoot dry 

weight, number of flowers per plant, total flower dry weight, and root rating, at low to 

intermediate rates and had higher tissue nutrient concentrations of N, P, K, Fe, Mn, Zn, and 

Cu than plants receiving 14-14-14. These results suggest that chicken litter as an organic 

fertiliser, may be used in commercial greenhouse crop production. Broschat (2008) suggested 

that pasteurized poultry litter was a suitable substitute for controlled-release fertilisers in 

greenhouse plant production, but also expressed concerns due to the initial rapid P leaching 

from a pine bark : Canadian peat : sand (5:4:1, by volume) blend during plant establishment. 

Soluble, granular fertilisers are known to dissolve quickly in soil, but can result in plant injury 

coupled with leaching risks. Greenhouse operations typically apply a constant rate of 
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nutrients to plants through fertigation to meet the crop nutrient requirements,  rarely changing 

the amount supplied during the production cycle (Majsztrik 2011). Fertigation is an efficient 

and uniform application of inorganic and organic sources of liquid fertilisers from dry or wet 

soluble forms (Saha et al., 2005), when monitored correctly (Wells, 2013). Water-soluble 

fertiliser (WSF) provides considerable control over the fertility regime. Nutrients such as 

nitrate, however, present in liquid fertiliser formulations, are more likely to enrich drainage 

water as it is already dissolved (Wilson and Albano, 2011). 

Ostrom (2011) conducted a study to evaluate the effect of four different fertilisers on plant 

growth, nutrition and nutrient leaching in New Guinea Impatiens (Impatiens hawkeri Bull) 

“Paradise New Red”. The author compared water soluble fertiliser (WSF) (20-4.4-16.6) at a 

rate of 75 mg·L
-1

 N, organic soybean-based fertiliser (SBF) (10-1.8-2.5) at a rate of 150 

mg·L
-1 

N, controlled-release fertiliser (CRF) 15-4-10 at a rate of 7.11 kg∙m
-3

 and granular 

slow-release turf fertiliser (AGT) (15-4-10), at a rate of 2.14 kg∙m
-3

 with no fertiliser as 

control. The growth medium for this experiment consisted of a peat - perlite (7:3, v:v) mix. 

Rooted plugs were transplanted into 11.4 cm diameter plastic pots followed by an evenly 

distributed surface top-dressing of AGT and CRF. Results indicated increased EC in all 

growth media at 36 days after planting and were unacceptably high. Treatment with distilled 

water followed and EC came within acceptable limits (<1.5 dS∙m
-1

) by 66 days after planting.   

Results of the study indicated CRF leached significantly more N than SBF and WSF, which 

were similar, in spite of SBF application rate being twice that of WSF. SBF and WSF P 

concentrations in leachate were similar and significantly higher than AGT, CRF and the 

control in decreasing concentration values respectively. Soybean-based fertiliser leached 

similar amounts of total N (N = NH4 + NO3) as WSF, however, SBF leachates may have had 

higher total N concentrations due to unmeasured urea in leachate. Ostrom (2011) suggested 
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that a three-month release CRF similar to that used in this experiment may not be ideal for 

New Guinea Impatiens production due to high EC and N leaching early in the production 

period, even though production of these plants occurred over a shorter period of time than 

three months. Use of WSF and SBF resulted in larger plants and less waste of nutrients 

through leaching and suggested that further investigation on the impact of SBF and CRF of 

varying longevities on N leaching and growth of bedding plants should be carried out. 

Perhaps reducing the concentration of SBF and WSF will reduce the amount of P leached, 

whilst still producing similar growth rates. 

2.2.2.1 Plant nutrition  

Plant nutrition and soil fertility are closely related in that the availability of nutrients through 

the substrate and the ability of the plant to take up the nutrients have to be coordinated. Soil 

available macro-nutrients including N, P and K, can arise out of mineralisation and available 

components of fertiliser contribute greatly to soil fertility (Dong et al., 2012). Factors such as 

sufficient light, suitable temperature, and substances such as water, CO2, oxygen, and mineral 

elements impact on plant growth and development (Roy et al., 2006), affecting growth media 

nutrient availability, uptake as well as accumulation within the plant. Optimization of plant 

nutrition without due regard to the other primary factors may result in limited growth and 

yield (Osvalde, 2011).  

More than 50 elements have been found in plants, though not all are considered to be 

essential (Silber and Bar-Tal, 2008). An element is considered to be essential, if a plant 

cannot complete its lifecycle without it or this element can be substituted by another one 

(Brown et al., 1987). Some micronutrients, which may be considered beneficial, are essential 

for some taxa of plants (DalCorso et al., 2014). An example with a special requirement is 

silicon (Si) for diatoms (Pearson et al., 2016). Mineral elements are grouped in two categories 



43 

 

based on the amount required by a plant. Macronutrients are required in large quantities, 

whilst micronutrients are typically required only in smaller quantities or trace amounts 

(Marschner, 2011). carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), 

calcium (Ca), sulphur (S), potassium (K) and magnesium (Mg) are the macronutrients 

essential to the growth of most plants. Iron (Fe), manganese (Mn), boron (B), zinc, copper 

(Cu), molybdenum (Mo), sodium (Na), chlorine (Cl), and selenium (Se) are also essential but 

required in small amounts.  

Furthermore, macronutrients can be considered as primary nutrients (N, P and K) or 

secondary nutrients (Mg, S and Ca) according to amounts needed by plants respectively 

(Tucker, 1999). To some extent and under most agricultural and horticultural conditions, only 

N, P and K are depleted to a point that growth and development are interrupted. Nitrogen 

deficiency is often characterised by stunted growth. Liebig’s ‘Law of the Minimum’ is an 

important concept explaining that nutrients do not work in isolation. The nutrient that is in 

shortest supply regulates the development of the plant and only, when all minerals are 

available at certain ratios and concentrations, optimal growth can result                              

(van der Ploeg et al, 1999). Concentrations of nutrients in media solutions above or below the 

optimal requirements can inhibit plant growth and reduce crop yields (Macnicol and Beckett, 

1985) Deficiency or toxicity occurs when nutrients in solution are outside of a plants 

sufficiency range. When the concentration of nutrients is low, so is the plant growth rate. As 

the concentration of nutrients is increased so does plant growth rate increase up till the plants 

critical level and any further increases in concentration progressively impairs plant growth 

rate (Mengel and Kirkby, 1978). Knowledge of the functions and properties of the individual 

mineral elements is considered beneficial for its management and efficiency of use and 

essential for crops nutritional requirements which are guided by a sufficiency range. The 
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width of this range is dependent on plant species and the particular mineral element           

(van Maarschalkerweerd and Husted, 2015).  

Ranges of the essential element concentrations in nutrient solutions and plant tissues are 

given in Table 2.1. 

Macronutrients: Nitrogen – Nitrogen (N) is the element required in the largest quantity by 

plants and has many functions including the formation of amino acids, the building blocks of 

protein,  in shoots or roots after uptake as NO3-N or  NH4-N (Marschner, 2011). It is essential 

for plant cell division as a constituent of phytohormones and thus growth and photosynthesis 

as a major structural component of chlorophyll (Marschner, 2011).  

Phosphorous – Phosporous (P) exerts regulatory functions in energy transfer and storage and 

is a structural element in nucleic acids. It is necessary for photosynthesis, cell division and 

cell enlargement as a component of phospholipids. Phosporous serves to increase the 

acquisition of nutrients and is involved in nutrient translocation (Marschner, 2011). Levels of 

between 0.01 to 20 mg∙L
-1

 P in nursery runoff have been reported, which has led to 

eutrophication of freshwater ecosystems (Taylor et al., 2006). 

Potassium – The main function of potassium (K) in plants is osmotic regulation which is 

important in cell extension and opening and closing of the stomata and therefore               

plant respiration (Marschner, 2011). Potassium influences enzyme reactions, regulates 

photosynthesis and increases diseases resistance. (Barker and Pilbeam, 2015). This element is 

also involved in the synthesis of proteins from amino acid building blocks (Marschner, 2011). 

Potassium is a base cation and as such more weakly bound to the soil, which makes it prone 

to leaching at low pH (McCauley et al., 2009b). 
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Calcium – Calcium (Ca) is a part of cell walls and membranes, and is used to stabilise and 

strengthen cell walls and plant tissue  (Marschner, 2011). Calcium is a base cation and as such 

more weakly bound to the soil, which makes it prone to leaching at low pH (McCauley et al., 

2009b). 

Magnesium – Magnesium (Mg) is a part of the chlorophyll molecule and as such a key 

element of photosynthesis and is also required for protein synthesis  (Marschner, 2011). It 

stimulates P utilisation and its transport. Iron utilisation in plants is increased due to Mg 

(Negrea et al., 2012). Magnesium is a base cation and as such more weakly bound to the soil, 

which makes it prone to leaching at low pH (McCauley et al., 2009a). 

Sulphur – Sulphur (S) is essential for the synthesis of amino acids, the building blocks of 

protein. It is also necessary for chlorophyll production and is a constituent of vitamins and 

some plant hormones. Sulphur is susceptible to leaching (Manjula, 2009). 

Micronutrients: Most micronutrients are predominantly constituents of enzyme molecules and 

are thus essential in small amounts at the whole plant level (Marschner, 2011). The required 

range is quite narrow for several micronutrients (Jones Jr, 2016). Deficiency or toxicity 

occurs when the homeostatic mechanisms in plants breakdown and are unable to maintain the 

optimal range of supply of a particular micronutrient (Alloway, 2013). Deficiency symptoms 

detected early enough may be corrected during the current season for field crops or 

propagation cycle of container ornamentals (Tisdale and Nelson, 1958) but correction is more 

difficult for toxicity (Jones Jr, 2016). Trace metal (including Fe, Cu, Mn, and Zn) 

contamination of fresh water systems emanates from a variety of sources including 

agricultural activities. These essential plant micronutrients transported in runoff and eroded 

soil can have potentially toxic effects when they accumulate in sediment, aquatic organisms 

and fish of an aquatic ecosystem (Crafford and Avenant-Oldewage, 2011). Except for Fe, the 
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following micronutrients are only investigated for their potential effects on plant growth in 

the growth media used in this study. 

Boron - Boron (B) is essential for seed and cell wall formation, activation of enzyme systems 

and transport of sugars in the plant. Promotes root growth, fertilisation and has been 

associated with lignin synthesis (Uchida, 2000).  

Iron – Iron (Fe) functions for plants include involvement in the production of chlorophyll, as 

a constituent of some enzymes and proteins, in respiration, plant metabolism, energy transfer 

and nitrogen reduction and fixation. It has been suggested that low K availability can result in 

increased Fe uptake (Negrea et al., 2012). South African legislation stipulates that 

concentrations of Fe in effluent may not exceed 2 mg·L
-1

 (Environmental Protection Act, 

2002).  

Manganese – Manganese (Mn) aids in chlorophyll synthesis, and assimilation of carbon 

dioxide during photosynthesis, activates enzyme systems including nitrate assimilation and 

fat forming enzymes. Mn increases the availability of P (Negrea et al., 2012). 

Zinc – Zinc  is necessary for chlorophyll production, as enzyme activator and to form, auxin a 

growth hormone (Negrea et al., 2012). It aids in seed formation and is necessary for 

carbohydrate and starch formation, as well as nitrogen metabolism (Prasad, 2007). Uptake of 

zinc is adversely affected by high levels of available phosphorus and iron in substrate 

(Marschner, 2011) .  

Copper – Copper  (Cu) is involved in the activation of enzymes and in chlorophyll formation 

(Tucker, 1999). It has a major function in photosynthesis and reproductive stages (Prasad, 

2007).  
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Molybdenum – Molybdenum (Mo) is involved in several enzyme systems including the 

formation of nitrate reductase, forming ammonium out of nitrates. It is also involved in the 

formation of legume nodules, N fixation by legumes and protein synthesis (Roy et al., 2006). 

Table 2.1 Ranges of essential element concentrations in nutrient solutions and plant tissues 

(Silber and Bar-Tal, 2008). 

Element Chemical Symbol Forms available to plants Nutrient solution Plant tissues 

Macronutrients   mg∙L
-1

 g∙kg
-1

 

Nitrogen N NO3
−
, NH4

+
 50-200 10-56 

Phosphorous P HPO4
−2

,H2PO
4-

 5-50 1.2-5.0 

Potassium K K
+
 50-200 14-64 

Calcium Ca Ca
+2

 40-200 2.0-9.4 

Magnesium Mg Mg
+2

 10-50 1.0-2.1 

Sulphur S SO4
−2

 5-50 2.8-9.3 

Micronutrients  
mg∙L

-1
 µg∙g

-1
 

Boron B H3BO3, HBO3
−
 0.1-0.3 1.0-35 

Iron Fe Fe
+3

, Fe 
+2

 0.5-3.0 53-550 

Manganese Mn Mn
+2

 0.1-1.0 50-250 

Zinc Zn Zn
+2

 0.01-0.1 10-100 

Copper Cu Cu
+
, Cu 

+2
 0.001-0.01 2.3-7.0 

Molybdenum Mo MoO4
−2

 0.01-0.1 1.0-2.0 

 

2.2.3 Ornamental woody shrubs 

Woody plants have a special place within the greenery elements of gardens, commercial sites 

and cities. They grow bigger than other plants with their biomass filling large areas of 

overhead space. It is vital to know their form and structure, growth requirements and 

ecological qualities for efficient utilisation. The functionality of the landscape area is 

increased through proper woody plant selection for specific conditions and the establishment 

of effective vegetation elements (Paganová and Jureková, 2012). 

2.2.4 Basic plant growth parameters 

Protected cultivation is based on the reduction of environmental stress, leading to fast growth 

and higher yields (Wittwer and Castilla, 1995). In order to assess plant growth, measurements 
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such as overall height, number of leaves, leaf area, number of branches, number of nodes and 

internode length can be made non-destructively (Evans, 1972). A specialised leaf-area meter 

or a portable leaf area meter for field measurements may be used to determine leaf area as the 

other parameters are relatively simple to quantify. Leaf area is an important variable for most 

physiological and agronomic studies involving plant growth, light interception, 

photosynthetic efficiency, evapotranspiration and response to fertilisers and irrigation (Blanco 

and Folegatti, 2005). Plants require adequate, but not excessive amounts of nitrogen. N 

deficiency due to low levels of available soil N or a decline in N uptake may result in plants 

that are stunted with narrow leaves (Marschner, 1995). Lynch et al. (1991) found that P 

deficiency primarily reduced leaf area by diminishing the number of leaves of bean plants 

through effects on the number of nodes, branching, and relative leaf appearance rate. Leaf 

area was also found to be significantly reduced in K deficient bean plants (Marschner, 1995). 

The over-application of fertiliser can also lead to nutrients being in excess and others 

deficient. High applications of P can induce Zn deficiency (Fageria et al., 2002). Symptoms 

of Zn deficiency include stunted growth and inhibition of internode elongation      

(Marschner, 1995). The assessments of species-specific plant growth parameters are 

important tools in the choice of fertiliser for optimum growth of commercial crops and to 

avoid excess nutrients in leachate and runoff. 

2.2.5 Effects of temperature on plant growth under cultivation 

The importance of temperature in influencing the growth and development of plants has long 

been recognised (Haferkamp, 1988), due to its impact on photosynthesis, respiration, nutrient 

uptake and phytohormones (Marschner, 1995). These vital processes are restricted by a 

temperature range (Haferkamp, 1988), for each plant species, as represented by a minimum, 

optimum and maximum temperature range (Hatfield and Prueger, 2015). Increasing the 
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temperature in the environment in which the plant is grown in, results in an increase in 

vegetative growth up to the optimum temperature level for this species. The rate of leaf 

development is strongly regulated by temperature (Marschner, 1995). Protected cultivation of 

plants allows for greater control of environmental conditions including temperature. Tunnels 

covered with shade cloth are a less expensive option though, which serves to protect 

cultivated plants from excess heat and frequent drying out. 

2.2.6 Greenhouse and nursery industry in South Africa 

Protected horticultural cultivation is a relatively small part of the horticultural industry in 

South Africa, with plants produced under protected cultivation throughout the country, but 

predominantly close to Gauteng, Cape Town and Durban. Vegetables and cut flowers are 

mostly cultivated using greenhouse production systems (de Visser and Dijkxhoorn, 2011). 

The largest market for ornamental plants is in the Gauteng province, which includes the 

Highveld area, which has cold winters (Middleton, 2012). It is unclear how much of these 

plants are grown under protected cultivation. 

South Africa’s ornamental plant industry is characterised by its great diversity, especially in 

its indigenous plants (Middleton, 2012). Several of these indigenous species are well-known 

internationally in the floriculture and pot plant industry. These have been a source of genetic 

material for plant breeding and hybridisation (Reinten et al., 2011). The South African 

nursery industry has been a professionally run industry with numerous member organisations 

representing the various sectors, and all falling under the South African Nursery Association 

(SANA). These organisations include the Allied, Bulb and Seed Trade Association, Bedding 

Plant Association, Garden Centre Association and Growers Association, representing allied 

trade to the nursery industry, seedling growers, retail nurseries and wholesale growers, 

respectively.  
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There has been very little investigation into the South African nursery industry or the volume 

of plants that are traded annually (Pollard, 2005). SANA-affiliated growers generally expect 

that maximum production and crop turnover time to last no longer than eight weeks for 

annuals, twelve weeks for herbaceous perennials and more than sixteen weeks for other 

horticultural groups of plants (Middleton, 2012). Another seedling organisation, the South 

African Seedling Growers Association, has members that produce about 381 million 

seedlings annually (Pollard, 2005). de Visser and Dijkxhoorn (2011) reported that on average 

seedling growers produce 40 million trays per annum but a few large growers produce in the 

region of 100 to 150 million trays per year. Most of these are vegetables and are for local 

growers. The forestry industry plants in the region of 84 million seedlings per annum 

(Pollard, 2005).  

2.2.7 Conclusion  

Current and older horticultural practices, especially the containerised production of 

ornamental plants in soilless growth media, have led to the eutrophication of freshwater 

systems as outlined. South Africa’s water resources are currently under threat and have been 

for some time due to drought and environmental pollution. Literature has shown that 

eutrophication of South African freshwater systems is a serious problem, especially when 

harmful algal blooms occur. Agricultural practices in South Africa have been identified as a 

significant contributor of nutrients, especially P, which is limiting in South African freshwater 

systems. It is not clear to what extent the greenhouse and nursery industry in South Africa is a 

contributor to the over enrichment of freshwater but leachate composition studies elsewhere 

and its potential consequences, have confirmed this. Leachate composition and plant growth 

has been shown to differ due to fertiliser type and components of growth media used, as well 

as factors such as pH, EC and temperature. Pathways of N and P from agricultural lands to 
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freshwater systems, has been reviewed. There is, however, practically no literature on 

leachate chlorophyll analysis and algal content. This study compares the effects of organic 

and inorganic on the growth of Pseuderanthemum atropurpureum and leachate composition 

under South African conditions. 
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CHAPTER 3 

Effects of organic and inorganic fertilisers on growth of Pseuderanthemum 

atropurpureum and soil fertility 

 

Abstract  

Nutrients, especially N and P, are often applied in excess of plant requirements and leach with 

irrigation water in run-off to surface water systems; this may result in eutrophication. 

Components of growth media, fertiliser types and application methods differ in nutrient 

application, resulting in varying concentrations of plant growth responses, growth media 

fertility and nutrients leached. Organic (Nitrosol
®
 and WonderTM Organic Vita Boost) and 

inorganic fertilisers (WonderTM 
Lawn and leaf and Polyfeed

®
) were, therefore, compared at 

different dosages when applied to two potting mixes (soil-based and bark-based) for their 

effects on Pseuderanthemum atropurpureum growth, growth media ability to sustain growth 

and leachate composition. The pot experiment was laid out in a completely randomised 

design in a 4x3x2 factorial design (fertiliser type x fertiliser concentration x growth media) 

with a control for each of the two growth media used. The experiment was repeated three 

times and there were seven N-equilibrated treatments per trial. Leachate extracts were 

obtained using the ‘pour-through’ method and used to determine electrical conductivity and 

pH and also used in laboratory determination of P, total phosphorous (TP), orthophosphate, B 

and other macro- and micronutrients. Growth media samples were taken for laboratory 

determination of total nitrogen (TN), nitrate and ammonium.  Leaf samples were taken for 

laboratory determination of macro- and micronutrients and leaf chlorophyll concentration. 

Organic Vitaboost treatments to both growth media, especially at higher concentrations, 

resulted in significantly higher EC, lower pH, significantly higher NO3-N growth media 
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concentrations and significantly higher leaf tissue N concentrations. Results from the other 

treatments for these parameters were similar to each other including leaf chlorophyll 

concentrations. Organic Vitaboost treatments also resulted in significantly more leaves, 

significantly more branches and significantly more nodes (p=0,009, p=0.006 and p=0.023, 

respectively) of P. atropurpureum plants. Bark-based growth media produced significantly 

more branches on the plants than soil-based growth media which might have been due to 

higher NH4-N than NO3-N supply in the bark-based growth media. The significant 

differences of bark-based growth media compared with soil-based ones on leaf number 

appear to be a result of significant differences in P-uptake evidenced by significantly higher 

leaf tissue P in bark-based media. Bark-based growth media leached significantly higher 

concentrations of P than soil based growth media. The effects of organic and inorganic 

fertiliser treatments did not produce significant differences for any plant growth 

characteristics measured at all levels of treatment. This may have been as a result of organic 

and inorganic fertiliser N concentrations being equilibrated prior to commencement of 

treatments. It is, therefore, recommended that Pseuderanthemum atropurpureum be 

propagated in a soil-based growth media with fertiliser treatments at the lowest concentrations 

used in this study due to environmental concerns of P leaching. 

Keywords: Fertiliser, growth media, soil fertility, plant growth, leachate,  
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3.0 Introduction 

Greenhouse- and nursery-cultivated ornamental plants include trees, shrubs, palms, 

groundcovers, climbers, ornamental grasses and bedding plants (Dobres, 2008; Chandler and 

Sanchez, 2012; Witcher, 2013), with many species and cultivars of each being propagated 

(Chandler, 2013; Zhu et al., 2015) for the commercial market. The ornamental plant industry 

has grown tremendously worldwide, as the search for new marketable plant species has 

increased (Drew, 2010). More ornamental plant species and cultivars are grown today than all 

other agricultural and horticultural crops combined (Middleton, 2012). Ornamental plants are 

sought after as they present an aesthetic, amenity and cultural value to indoor and outdoor 

open spaces and enhance daily living. 

Most ornamental plants are produced in containers, such as plastic pots or bags, and grown in 

a variety of media (Witcher, 2013). Such container production is the most widely used 

practice for growing shrubs (Richard, 2006). As the root volume of these plants is limited, 

such a system relies on optimal irrigation and fertilisation using conventional, slow-release 

and soluble fertiliser (Lea-Cox et al., 2001; Majsztrik et al., 2011). For ornamental plant 

production, containers result in better plant quality and faster plant growth in smaller areas, 

thus maximising space, production time and profit (De Lucia et al., 2013; Agro and Zheng, 

2014).  

Fertilisation on an intensive scale is a necessity in this production system. The large amount 

of fertiliser applied to enhance plant growth can also have downsides. Broschat (1995) stated 

that PO4-P is rather immobile in many soils, but is readily leached from container media 

composed of pine bark, sphagnum peat, vermiculite or sand; NO3-N is readily leached from 

most mineral soils and also from container media. Nutrients applied in excess of plant 

demand have the potential to stunt plant growth (Liu et al., 2014). 
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The movement towards naturally-managed gardens, and the growing interest in managing the 

environmental impacts of agriculture, have led to the development of organic and natural 

fertilisers that may have a lesser impact on the environment, while being suitable for 

commercial use. The use of organic fertilisers has been reported to be frequently similar to 

and often superior to inorganic fertilisers, when comparing growth, yield or quality of plants 

(Russo, 2005; Treadwell et al., 2007; Bi et al., 2010; Rochefort et al., 2011). There does not 

appear to be any study comparing plant growth under the application of an organic liquid 

fertiliser, an organic pelletised chicken litter fertiliser, an inorganic granular fertiliser and an 

inorganic liquid fertiliser to soilless and soil-based growth media. 

Pseuderanthemum atropurpureum belongs to the Acanthaceae family (Acanths) of 

herbaceous plants and shrubs mostly grown in warm climates (Pienaar, 1987). This family is 

one of the most popular ornamental tropical families (Meyer and Lavergne, 2004) with about 

60 species commercially produced in the genus Pseuderanthemum (Pienaar, 1987). Acanths 

are widely used in horticulture for their numerous flowers or bracts of showy colours and for 

their variegated or bicolored foliage (Meyer and Lavergne, 2004). Pseuderanthemum 

atropurpureum, endemic to the tropical Pacific Islands, has leaves which are obovate, 

leathery, plum-coloured with rose, grey, green and cream markings in no set pattern. Rosy 

purple flowers with red markings appear in midsummer, borne in terminal spikes. The species 

grows to about 1 m in height (Sheat and Schofield, 1995).  There has, however, been little 

research on the species, especially regarding its nutrient requirements. 

The aim of this study was to compare the effects of organic and inorganic fertilisers on the 

growth of Pseuderanthemum atropurpureum in a soil-based and a bark-based growth medium 

and to determine whether these growth alterations are related to the general medium fertility. 
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 3.1 Materials and methods 

3.1.1 Study site and production environment 

This research project was carried out at Randles Nursery (latitude 29°49'22''S, longitude 

30°58'47''E), Durban, South Africa (Fig. 3.7). This nursery is operated by the eThekwini 

Municipality and is the site where most of the trees, shrubs, palms and ornamental grasses 

used in the municipality’s landscaping and beautification operations are grown. A quonset-

shaped tunnel structure covered with 40% shade cloth was used in this study which was 

located on the north-facing side of the tunnel to make maximum use of sunlight. There was no 

climate control. Precipitation in Durban averages 129mm in winter and 349mm in summer 

with annual precipitation averaging 828mm (www.durban.climatemps.com).Winter 

temperatures average a high of 22°C and a low of 11.3°C. Summer temperatures average a 

high of 27°C and a low of 22°C (www.durban.climatemps.com). The first and third 

experiments were carried out mostly in the summer and the second mostly in the winter, 

terminating in early spring. 

3.1.2 Plant preparation 

Plant material for cuttings was sourced from large, container-grown Pseuderanthemum 

atropurpureum plants at Randles nursery. Cuttings were inserted into washed river sand in 

large flat seedling trays (no cavities) and rooted in a greenhouse under manually operated 

mist, with no temperature control, at the Durban University of Technology nursery. Plants 

were potted, once cuttings had developed sufficient root mass. Two growth media were used 

for potting. 
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3.1.3 Growth media preparation and analysis 

The soil-based medium used was a blended mix consisting of one part topsoil, one part 

compost and one part river sand (v/v/v); this mix is hereafter referred to as “randles”. The 

topsoil and river sand were acquired locally by Randles nursery and the compost obtained 

from Gromor (Cato Ridge, KwaZulu-Natal). These media components were thoroughly hand-

mixed before use. The second growth medium was a commercial blend consisting of 

composted pinebark and 10% river sand, also purchased from Gromor. The supplier usually 

adds up to 2% Accelerator
®
 (chicken litter fines) to bring the EC up to 2.4 (Jan van Vuuren, 

Gromor, personal communication, 2015). Samples of these growth media mixes, which 

served as controls, were sent to laboratories at the Soil Fertility and Analytical Service 

Section, KZN Department of Agriculture and Rural Development, Cedara for total nitrogen 

(TN), inorganic nitrogen (nitrate - NO3-N and ammonium - NH4-N), mineral nutrient and soil 

texture analysis. Upon termination of the study (after a period of 90 days (DAP)) TN, NO3-N 

and NH4-N of growth media were again determined.  

Total N was analysed by the automated Dumas dry combustion method using a LECO CNS 

2000 (Leco Corporation, Michigan, USA; Matejovic, 1996). The NO3-N and NH4-N in 

filtered extracts were measured by segmented flow analysis with a Perstorp Flow Solution III 

analyser using the sodium salicylate - sodium nitroprusside-hypochlorite method for NH4
+
- N 

(Perstorp Analytical, 1993) and the sulphanilamide-naphthyl-ethylenediamine method for 

NO3
-
- N after having reduced nitrate to nitrite with copperized cadmium wire (Willis & 

Gentry, 1987). For mineral element analysis, samples were dried at 105°C, and milled to pass 

through a 0.84 mm sieve. Subsamples were then dry-ashed at 450°C overnight and taken up 

in 1 M HCl. Concentrations of P, K, Ca, Fe, Mg, Cu, Mn and Zn in samples were determined 

using ICP-OES. Leachate N concentrations were determined on an Elementar Vario analyser 
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(Elementar Analysensysteme, Hanau, Germany). Soil texture analysis of samples involved 

suspended clay and fine silt content, determined after dispersion and sedimentation, and sand 

fractions by sieving. Once the particle size distributions of the soils was known, their textural 

class was determined from a textural triangle defining particle size limits of the various 

textural classes (Manson and Roberts, 2000). 

3.1.4 Experimental design 

Treatment was a 4 (four fertilisers used) x 3 (at three concentration levels) x 2 (in two growth 

media types) factorial design with a control for each of the two growth media used. A total of 

208 cuttings were potted into either growth medium in 3 L black plastic plant bags. Plants 

were labelled and colour-coded according to each of the four fertiliser treatments and 

concentrations that they were going to receive, for ease of identification. This experiment was 

laid out in a completely randomised design to account for varying light exposure. Potted 

plants were randomly divided into two batches of 13 groups, arranged with eight plants per 

group (row) and each group representing an experimental unit. The two batches were laid out 

within adjacent areas measuring 3.5 m x 1.5 m on either side of a 1 m pathway. Each group 

had received either an N equilibrated organic or inorganic fertiliser treatment based on half 

label, label or double the recommended label rate except for the two controls. There were 

seven fertiliser treatments. The entire experiment was repeated three times. Experimental 

units in subsequent trials were not in the same position as previously sited. 

3.1.5 Fertiliser treatments 

The N content of the four fertilisers used in this study were not of equal concentration   (Table 

3.1). In order to equilibrate N and determine the dosage rate for treatments, the average N 

content of the four fertilisers used in this pot experiment was calculated and used to adjust the 
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recommended label dosage rates accordingly. This had the effect of either increasing or 

decreasing the recommended dosage rate, and, therefore, the recommended concentrations of 

the other mineral elements.  

One of the organic fertilisers, Nitrosol
®

 (NPK analysis 4:1:3 (16)), is a liquid, water-soluble 

treatment. This natural organic plant food is formulated from sterilised blood, bone and 

carcass meal and manufactured by Envirogreen (PTY) Ltd for Fleuron
® 

(PTY) Ltd. Nitrosol
®

 

solution (200 ml∙pot
-1

) was applied every two weeks at concentrations of 2.61 ml∙L
-1

, 5.22 

ml∙L
-1

 and 10.44 ml∙L
-1

 to plants in rows labelled as 1/2 label rate, label rate and 2 x label 

rate, respectively (Table 3.2). This liquid treatment also contained other macronutrients as 

well as micronutrients and gibberellic acid (Table 3.1).  

Table 3.1 Source and amount (by mass) of macronutrients and micronutrients in Nitrosol
®

, 

Lawn and Leaf, Polyfeed
®

 and Organic Vitaboost fertilisers 

Trade name Nitrosol
1
 Lawn and Leaf Polyfeed Vitaboost 

Formulation 4:1:3 7:1:3 6:1:3 6:1:3 

N g/kg 80 95 266 60 

P g/kg 20 14 44 13 

K g/kg 58 41 134 27 

Ca g/kg 6 - - 25.3 

Mg g/kg 7 - 4 6.4 

S g/kg 4 - 5.3 - 

Fe mg/kg 60 - 751 4452 

Mn mg/kg 40 - 273 517 

Zn mg/kg 1 - 699 319 

Cu mg/kg 1 - 75 68 

B mg/kg 23 - 1054 - 

Mo mg/kg 15 - 63 - 

1 – Nitrosol
®

 contains Gibberellic acid at 0.003 g·kg-1 

 

WonderTM Organic Vitaboost (NPK analysis 6:1:3), a dry water soluble fertiliser, supplied by 

Efekto, (Bryanston, South Africa) was the second organic treatment used in this study and 
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consisted of chicken litter pellets. Organic Vita-Boost was applied every two weeks at rates of 

2.77 g∙pot
-1

, 5.54 g∙pot
-1

 and 11.07 g∙pot
-1 

to plants in rows labelled as 1/2 label rate, label rate 

and 2 x label rate, respectively (Table 3.2). This fertiliser, which was incorporated just below 

the surface of the growth media, also contained other macronutrients as well as micronutrients 

(Table 3.1).  

Polyfeed
®

 (NPK analysis 6:1:3 (44)), a highly concentrated dry, powdered, water-soluble 

fertiliser, was one of the two inorganic fertilisers treatments utilised in this study, and is 

manufactured by Nulandis (A Division of AECI Ltd, Kempton Park, South Africa)). 

Polyfeed
®

 solution (200ml∙pot
-1

) was applied every two weeks at concentrations of 0.59 g·L
-

1
, 1.18 g∙L

-1
 and 2.36 g∙L

-1
 to plants in rows labelled as 1/2 label rate, label rate and 2 x label 

rate respectively. This liquid treatment also contained other macronutrients as well as 

micronutrients (Table 3.1). 

WonderTM Lawn and Leaf supplied by Efekto (NPK analysis 7:1:3 (15)) was the second 

inorganic fertiliser treatment used in this study. This fertiliser is a nitrogen, sustained-release 

fertiliser, with bio-carbon pellets which were removed. Lawn and Leaf was applied every two 

weeks at rates of 0.36 g∙pot
-1

, 0.71 g∙pot
-1

 and 1.42 g∙pot
-1 

to plants in rows labelled as 1/2 

label rate, label rate and 2 x label rate, respectively. The soil-based growth medium control 

and pinebark-based growth medium control received no fertiliser (Table 3.2).  
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Table 3.2 Dosage rate of N equilibrated fertiliser nutrients incorporated (g) into each 3 L plant 

bag or liquid fed·L
-1

 concentration as nutrient solution 

Formulation Treatment Source Form 
Application 

method 
 Dosage rate 

Control CR - - - - 

Control CG - - - - 

4.1.3 NRA organic liquid liquid feed 2.61 ml∙L-1 

4.1.3 NRB organic liquid liquid feed 5.22 ml∙L-1 

4.1.3 NRC organic liquid liquid feed 10.44 ml∙L-1 

4.1.3 NGA organic liquid liquid feed 2.61 ml∙L-1 

4.1.3 NGB organic liquid liquid feed 5.22 ml∙L-1 

4.1.3 NGC organic liquid liquid feed 10.44 ml∙L-1 

6.1.3 PRA inorganic powder liquid feed 0.59 g∙L-1 

6.1.3 PRB inorganic powder liquid feed 1.18 g∙L-1 

6.1.3 PRC inorganic powder liquid feed 2.36 g∙L-1 

6.1.3 PGA inorganic powder liquid feed 0.59 g∙L-1 

6.1.3 PGB inorganic powder liquid feed 1.18 g∙L-1 

6.1.3 PGC inorganic powder liquid feed 2.36 g∙L-1 

7.1.3 LRA inorganic granule incorporated 0.36 g∙pot-1 

7.1.3 LRB inorganic granule incorporated 0.71 g∙pot-1 

7.1.3 LRC inorganic granule incorporated 1.42 g∙pot-1 

7.1.3 LGA inorganic granule incorporated 0.36 g∙pot-1 

7.1.3 LGB inorganic granule incorporated 0.71 g∙pot-1 

7.1.3 LGC inorganic granule incorporated 1.42 g∙pot-1 

6.1.3 ORA organic pellet incorporated 2.77 g∙pot-1 

6.1.3 ORB organic pellet incorporated 5.54 g∙pot-1 

6.1.3 ORC organic pellet incorporated 11.07 g∙pot-1 

6.1.3 OGA organic pellet incorporated 2.77 g∙pot-1 

6.1.3 OGB organic pellet incorporated 5.54 g∙pot-1 

6.1.3 OGC organic pellet incorporated 11.07 g∙pot-1 

* - CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 

fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium, A – ½ label rate, B – label rate and C – 2 x label rate  

 

 

3.1.6 Plant analysis  

3.1.6.1 Leaf analysis 

At the termination of the experiment, after a period of 90 days after planting (DAP), all leaves 

from all plants were harvested, counted, measured and chlorophyll a, b, and total chlorophyll 

of each replication determined. Leaf samples were separately packaged, labelled and sent to 

the Plant Laboratory at the Soil Fertility and Analytical Service Section, KZN Department of 
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Agriculture and Rural Development, Cedara, for tissue mineral element analysis. Samples 

were dried at 105°C, and milled to pass through a 0.84 mm sieve. Subsamples were then dry-

ashed at 450°C overnight and taken up in 1 M HCl and P, K, Ca, Fe, Mg, Cu, Mn and Zn 

concentration of the leaf tissue determined using ICP-OES. Leaf N was determined by the 

Automated Dumas dry combustion method using a LECO CNS 2000. 

3.1.6.2 Leaf chlorophyll determination 

Three fully mature leaves were selected at random from three plants in each row 

(experimental unit) for chlorophyll a, chlorophyll b and total chlorophyll analyses. Leaf 

samples were separately packaged into paper bags, labelled and transported in a cooler box 

with ice bricks to the laboratory for same day analysis. 

Determination of chlorophyll was carried out according to Lichtenthaler (1987) allowing for 

the simultaneous determination of chlorophylls (a and b) using exact absorbance readings of 

plant extracts in certain solvents. Fresh leaf tissue (1.0g) was placed into test tubes and kept 

on ice in a covered cooler box. Chlorophyll was extracted using 80% acetone. Samples were 

macerated using an Ultra Turrax
®

 (IKA, Staufen, Germany) to achieve a homogeneous 

suspension. This suspension was then decanted into 10 ml centrifuge tubes and centrifuged 

for 5 minutes at 4500 rpm in a PLC Series table top centrifuge (Gemmy Industrial Corp., 

Taipei, Taiwan). The centrifuged supernatant was diluted by a factor of 10 and absorbance 

units read at 664 nm, 630 nm and 647 nm in a Hellma glass cuvette (1 cm light path, Type 

100-T4) (Hellma Analytics, Müllheim, Germany) using a Shimadzu Spectrophotometer UV-

1800 (Shimadzu Corp, Kyoto, Japan). 
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Chlorophyll content in extract (µg·ml
-1

) was calculated using formulas by Lichtenthaler 

(1987): 

Chla = 12.25 A664 – 2.79 A647 

Chlb = 21.50 A647 – 5.10 A664 

Chla+b = 7.15 A664 + 18.71A647 

Chlorophyll content in leaves was calculated using the formula used by Mitić et al. (2013), 

C      (mg·g
-1

) 

where, C1 = concentration of extract chlorophyll pigment (mg·L
-1

), V = initial volume of 

extract (ml),  r = dilution factor and m = fresh leaf mass (g) 

3.1.6.3 Plant growth parameter analyses 

Plant height, leaf number, leaf size, number of nodes, internode length and number of 

branches were determined 90 days after planting, at termination of the experiment. Data was 

recorded from three replications and means determined. 

Height: Height was measured from the surface of the growth media (base of plants) to the tips 

of the new leaves using a stainless steel ruler and TESA 0.02mm dial callipers, model 

CCMA-M (TESA Technology, Switzerland), after all leaves were removed.  

Number of leaves: Leaves were counted as they were removed from the plants. These were 

packaged separately, labelled and batched in preparation for individual leaf measurements 

and mineral analyses. 

Leaf size: Leaf area was determined using a LI-COR Biosciences portable area meter, model 

LI-3000C, with transparent belt conveyer accessory, model LI-3050C (LI-COR, Lincoln, NE, 

USA) and expressed in (cm)
2
, as a unit of area. 

Number of nodes: The number of all nodes, including those on all stems and branches, was 

recorded. 
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Internode length: Internode length was measured on the main stem only using callipers and 

expressed in centimetres (cm). 

Number of branches: All side branches on the main stem were counted. 

3.1.7 Cultural practices 

Weeding was carried out regularly throughout the course of the experiment. Plants were 

irrigated by hosepipe using tap water, and this was limited to the well (volume between 

growth media surface and lip of each pot) of each pot being filled. Plants were watered on 

Mondays, Wednesdays and Fridays. Irrigation water was analysed by the Soil Salinity 

Laboratory at the Soil Fertility and Analytical Service Section, KZN Department of 

Agriculture and Rural Development, Cedara, for EC, pH, cations and anions. 

3.1.8 Leachate collection and analysis 

Leachate collection was carried out from each plant bag, using the pour-through extraction 

method (Wright, 1986). Plants were watered at least an hour before collection to ensure that 

pots were at container capacity. This method recommends pouring enough water to yield 50 

ml leachate, as not to dilute the leachate too much, which may result in lower EC values. 

Approximately 200 ml deionised water was applied to each 3 L bag. Leachate was collected 

in foil trays, previously washed in 5% nitric acid and transferred into labelled sample bottles.  

3.1.8.1 EC and pH analysis 

Analysis of EC and pH of the leachate were carried out after potting, 60 DAP and at 

termination of the experiment (90 DAP). EC and pH were determined using a Hanna 

HI98130 combo tester meter (Hanna Instruments
®

, Woonsocket, RI, USA) after being 

calibrated according to manufacturer’s guidelines, before each set of analyses. 
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3.1.8.2 Mineral element, total phosphate, orthophosphate and boron analysis 

Leachate samples collected at termination of the experiment (after a period of 90 days) were 

sent to the Plant Laboratory at the Soil Fertility and Analytical Service Section, KZN 

Department of Agriculture and Rural Development, Cedara, for mineral element analysis. 

Leachate N concentrations were measured using an elemental analyzer (Vario EL III; 

Elementar Analysensystem GmbH, Germany), while the other elements were determined by 

ICP-OES. Samples were also sent to Regen Waters laboratory (Witbank, Mpumalanga, South 

Africa) for total phosphate as well as orthophosphate analysis (Aquakem 600 Photometric 

Discrete Analyser, Thermo Scientific) and boron analysis (ICP-OES).  

3.1.9 Temperature-logging  

Two Brannan ‘quick set push-button minimum maximum’ thermometers (Brannan, Cumbria, 

England) were placed between the plants at ground level. These were moved randomly after 

temperatures were logged daily. Mean minimum and maximum temperatures for replications 

1, 2 and 3 were 20.90°C
min

 and 27.76°C
max

, 12.76°C
min

 and 25.14°C
max

 and 20.31°C
min

 and 

29.75°C
max

 with temperature ranges recorded for the same periods 18.13°C
min

 – 31.5°C
max

, 

8.67°C
min

 – 27.83°C
max

 and 16.08°C
min

 - 36°C
max

, respectively. Minimum temperatures were 

significantly lower during replication two. The variance in temperature between the three 

experiments was accounted for by checking the blocks box and entering the column data 

containing the three experiments in the box alongside, as a blocking factor in the Genstat 

ANOVA analysis of data. 

3.1.10 Statistical analysis 

Statistical analyses were performed using GenStat® 12
th

 Edition (VSN International, Hemel 

Hempstead, UK). Data collected were subjected to analysis of variance and means separated 
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using the Duncan’s Multiple Range Test at 5% probability level. Treatment for all parameter 

means were compared with each control (randles (CR) and gromor (CG)) separately, by 

partitioning each comparison separately into polynomial contrasts to determine main effects 

and interactions at p<0.05 and elucidate treatment responses for each parameter investigated. 

Fertiliser main effects were subjected to polynomial contrasts to determine, if there were any 

linear or quadratic components.  

3.2 Results  

3.2.1 Analyses of irrigation water 

Electrical conductivity (EC) is usually used as an indicator of salinity and sodium adsorption 

ratio (SAR) as an indicator of sodicity when water quality is classified (Culverwell and 

Swinford, 1986). Interpretations of SAR and EC are based on criteria developed by the 

United States Department of Agriculture (Meyer and van Antwerpen, 1995). Electrical 

conductivity of the irrigation water was measured as 24.32 mS·m
-1

 and pH as 7.64         

(Table 3.3). 

Table 3.3 Chemical properties of irrigation water 

Parameter Elements Value 

EC (mS·m-1) 

 

24.32 

pH 
 

7.64 

 
 

Cations (me·L-1) 

 
 

Na 0.93 

Ca 0.95 

Mg 0.23 

K 0.05 

Anions (me·L-1) 
TA 1.1 

Cl 1.1 

SAR   1.21 

Class of water   C1-S1 
TA – Total alkalinity 

SAR – Sodium adsorption ratio 
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3.2.2 Analyses of growth media before planting 

Chemical properties (EC, pH, % Fe, % Mn and % Cu) of the two growth media used in this 

study showed some significant differences between the soil-based potting mix (randles) and 

the bark-based potting mix ‘gromor’ whereas soil texture was similar. The two controls, 

control randles and control gromor (CR and CG), were not treated.  

Table 3.4 Physicochemical properties of randles (CR) and gromor (CG) growth media 

(elements as %DM) 

 

Parameter 
 

CR 
 

CG 

 

 

EC (mS·cm-1) Leachate  2.58 Leachate 3.05 

 

 

pH Leachate  6.28 Leachate 5.84 

 

 

C/N ratio 
 

20.91:1 
 

20.40:1 

 

 

Moisture (%) 
 

6.24 
 

29.68 

 

 

Elements 
    

 

 

C (%) 
 

2.17 
 

17.27 

 

 

N (%) 
 

0.64 
 

1.38 

 

 

P (%) 
 

0.18 
 

0.22 

 

 

K (%) 
 

0.28 
 

0.83 

 

 

Ca (%) 
 

1.04 
 

1.22 

 

 

Mg (%) 
 

0.14 
 

0.22 

 

 

S (%) 
 

0.26 
 

0.32 

 

 

Fe (mg/kg) 
 

24028.81 
 

17374.56 

 

 

Mn (mg/kg) 
 

237.79 
 

302.17 

 

 

Zn (mg/kg) 
 

83.43 
 

94.97 

 

 

Cu (mg/kg) 
 

157.69 
 

106.62 

 

 

Soil Texture 
    

 

 

Sand (%) (0.02 - 2 mm) 80.33 (0.02 - 2 mm) 73.80 

 

 

Silt (%) (0.02 - 0.002 mm) 6.17 (0.02 - 0.002 mm) 7.80 

 

 

Clay (%) (<0.002 mm) 13.83 (<0.002 mm) 18.50 

 

 

Soil texture classification* 
 

Loamy sand 
 

Sandy loam 

 * According to: - Soil Classification, A Taxonomic System for South Africa - Soil Classification Working Group and Macvicar 1991 
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3.2.3. Leachate EC and pH 

Results indicated were determined from extracted leachate. 

3.2.3.1 Leachate pH 60 days after planting  

All mean pH values increased after a period of 60 DAP from the start (initial) values, except 

for Organic Vitaboost in randles growth media at label rate (ORB), Organic Vitaboost in 

randles growth media at twice label rate (ORC) and Organic Vitaboost in gromor growth 

media at twice label rate (OGC) (Table 3.5).  

Mean growth medium pH at 60 DAP (Table 3.5) was significantly (p<0.001) affected by the 

main effects of fertiliser type and growth media type. Soil-based growth media maintained 

higher pH than bark-based growth media. Inorganic Lawn and Leaf fertiliser at the lower 

dosages added to randles soil-based growth media (LRA and LRB) resulted in a significantly 

higher (p=0.004) pH compared with Organic Vitaboost at the highest level of treatment in 

randles growth medium (ORC), Organic Vitaboost, at all levels of treatment, in gromor bark-

based media (OGA, OGB, and OGC), organic Nitrosol at the highest level of treatment in 

gromor growth medium and inorganic Polyfeed at the lowest and highest levels of treatment 

in gromor growth medium (PGA and PGC).  

The pH for all treatments decreased linearly with increasing fertiliser rates except for PRC, 

PGB and OGB.  

3.2.3.2 Leachate EC 60 days after planting  

Overall, all mean EC values (mS·cm
-1

) had decreased after a period of 60 DAP, from the start 

values except for Nitrosol (NGC) and Polyfeed (PRC), Lawn and Leaf (LRC, LGB and LGC) 

and all Organic Vitaboost treatments (ORA, ORB, ORC, OGA, OGB and OGC) (Table 3.5).  
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At 60 DAP, EC values of all leachates had increased with increasing fertiliser rates, except 

for NGB. Mean EC values were significantly affected by the main effects of fertiliser type 

and levels of treatment (concentration) at p<0.001 and p=0.002, for both effects and 

comparisons (Table 3.5). Differences between treatments were significant at p<0.001.  

3.2.3.3 Leachate pH 90 days after planting  

Leachate pH values had decreased from 60 DAP to 90 DAP, except for several of the gromor 

treatments (NGA, NGC, PGA and PGB) (Table 3.5). The pH of Lawn and Leaf treatments in 

randles growth medium were the only treatments that became more acidic with increasing 

fertiliser rates.  

Statistically, pH was not significantly affected by the differences between treatments 

(p=0.080), but PGB was significantly different from some treatments and main effects were 

significantly affected by fertiliser type at p<0.001 (Table 3.5). 

3.2.3.4 Leachate EC 90 days after planting  

All mean leachate EC values decreased from 60 to 90 DAP (Table 3.5), while the EC of all 

treatments increased with increasing fertiliser rates, except for three gromor (PGC, LGC and 

OGB) and one randles treatment (PRB).  

The EC values for the Organic Vitaboost treatments (OR and OG) were in general higher than 

those of all other groups with the EC of high addition (ORC and OGC) to both media being 

significantly different from all other treatments at p<0.001. The EC results of the other 

organic fertiliser, Nitrosol (NR and NG), were similar to the other inorganic treatments. 

Controls (CR and CG) EC mean values were not the lowest, as might have been expected, 

despite not receiving any additional solutes by fertiliser treatment.  
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Fertiliser type and level of treatment (concentration) significantly affected the EC values at 

p<0.001 and p=0.001, respectively. There were also significant interactions for both 

comparisons to the controls between the fertiliser used and its concentration on EC values 

(CR: p=0.008; CG: p=0.007).  
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Table 3.5 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on mean pour-through extracted leachate 

EC (mS·cm-1) and pH compared to two controls after a period of 60 DAP and 90 DAP 

Type Treatment EC start pH start EC 60 DAP pH 60 DAP EC  end pH  end 

Control CR
6
 2.58 6.28 1.95 ± 0.63ab

1
 6.77 ± 0.02fg 0.93 ± 0.31 ab 6.26 ± 0.35bcd 

Control CG 3.05 5.84 1.55 ± 0.33a 6.48 ± 0.39c-g 1.13 ± 0.12abc 6.18 ± 0.21a-d 

4.1.3 NRA 2.58 6.28 1.86 ± 0.45ab 6.58 ± 0.11c-g 0.88 ± 0.22ab 6.09 ± 0.33a-d 

4.1.3 NRB 2.58 6.28 2.15 ± 0.34ab 6.40 ± 0.18a-g 1.08 ± 0.34ab 6.12 ± 0.42a-d 

4.1.3 NRC 2.58 6.28 2.52 ± 0.48ab 6.39 ± 0.18a-g 1.12 ± 0.36abc 6.25 ± 0.33bcd 

4.1.3 NGA 3.05 5.84 2.18 ± 0.58ab 6.28 ± 0.37a-g 0.75 ± 0.16a 6.32 ± 0.22bcd 

4.1.3 NGB 3.05 5.84 2.10 ± 0.61ab 6.21 ± 0.23a-g 0.88 ± 0.16ab 6.11 ± 0.16a-d 

4.1.3 NGC 3.05 5.84 3.29 ± 0.92ab 6.10 ± 0.26a-f 1.29 ± 0.41a-e 6.38 ± 0.30cd 

6.1.3 PRA 2.58 6.28 1.73 ± 0.42ab 6.78 ± 0.05fg 0.83 ± 0.19a 6.11 ± 0.33a-d 

6.1.3 PRB 2.58 6.28 1.80 ± 0.32ab 6.38 ± 0.34a-g 0.78 ± 0.12a 6.19 ± 0.26a-d 

6.1.3 PRC 2.58 6.28 2.64 ± 0.27ab 6.61 ± 0.11d-g 1.22 ± 0.16a-d 6.12 ± 0.35a-d 

6.1.3 PGA 3.05 5.84 1.74 ± 0.77ab 6.10 ± 0.40a-f 0.87 ± 0.27ab 6.13 ± 0.06a-d 

6.1.3 PGB 3.05 5.84 2.51 ± 1.20ab 6.39 ± 0.34a-g 1.35 ± 0.44a-e 6.44 ± 0.170d 

6.1.3 PGC 3.05 5.84 2.84 ± 1.03ab 6.06 ± 0.20a-e 0.96 ± 0.04ab 5.94 ± 0.21a-d 

7.1.3 LRA 2.58 6.28 1.90 ± 0.48ab 6.82 ± 0.06g 1.30 ± 0.44a-e 5.99 ± 0.45a-d 

7.1.3 LRB 2.58 6.28 2.25 ± 0.72ab 6.79 ± 0.04g 1.37 ± 0.35a-e 5.96 ± 0.45a-d 

7.1.3 LRC 2.58 6.28 3.79 ± 0.51ab 6.71 ± 0.13efg 2.13 ± 0.63a-e 5.85 ± 0.44abc 

7.1.3 LGA 3.05 5.84 2.62 ± 1.62ab 6.51 ± 0.32c-g 0.95 ± 0.19ab 6.14 ± 0.29ab 

7.1.3 LGB 3.05 5.84 4.00 ± 2.22ab 6.48 ± 0.33c-g 1.81 ± 0.30a-e 5.80 ± 0.21ab 

7.1.3 LGC 3.05 5.84 4.44 ± 1.51abc 6.47 ± 0.16b-g 1.72 ± 0.44a-e 5.93 ± 0.36a-d 

6.1.3 ORA 2.58 6.28 2.88 ± 0.49ab 6.40 ± 0.15a-g 2,55 ± 0.76de 5.75 ± 0.41ab 

6.1.3 ORB 2.58 6.28 4.38 ± 0.62abc 6.27 ± 0.13a-g 2.63 ± 0.59e 5.85 ± 0.21abc 

6.1.3 ORC 2.58 6.28 6.87 ± 0.91c 5.80 ± 0.32ab 4.78 ± 0.57f 5.77 ±n0.14ab 

6.1.3 OGA 3.05 5.84 4.09 ± 0.67ab 5.92 ± 0.21abc 2.50 ± 0.50cde 5.80 ± 0.13ab 

6.1.3 OGB 3.05 5.84 4.69 ± 0.95bc 5.97 ± 0.37a-d 2.26 ± 0.78b-e 5.90 ± 0.20a-d 

6.1.3 OGC 3.05 5.84 6.81 ± 1.37c 5.76 ± 0.30a 4.22 ± 0.84f 5.67 ± 0.28a 

Sig p<0.05       <0.001 0.004 <0.001 0.080 

LSD
2
       2.43 0.56 1.17 0.46 

CV %
3
    48.50 5.30 43.80 4.70 

 
Fertiliser (F)

4
 

  

<0.001 <0.001 <0.001 <0.001 

CR Medium (G) 

  

ns <0.001 ns ns 

vs Levels (C) 

  

0.002 ns 0.001 ns 

Treatments F x G 

  

ns ns ns ns 

 
F x C 

  

ns ns 0.008 ns 

 

G x C 

  

ns ns ns ns 

Sig.
5
       Q** L***Q*** Q*** ns 

 
Fertiliser (F)

4
 

  
<0.001 <0.001 <0.001 <0.001 

CG Medium (G) 

  

ns <0.001 ns ns 

vs Levels (C) 

  

0.002 ns 0.001 ns 

Treatments F x G 

  

ns ns ns ns 

 

F x C 

  

ns ns 0.007 ns 

 
G x C 

  

ns ns ns ns 

Sig.
5
       Q** L**Q* Q*** ns 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 
2. LSD – Least significant difference at p < 0.05  

3. CV % - Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 
5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 

6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 
label rate and C – 2 x label rate, Table adapted from (Bi et al., 2010) 
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3.2.4 Analysis of growth medium inorganic nitrogen  

3.2.4.1 Growth medium nitrate (NO3-N) 

Concentrations of NO3-N in the media increased for all treatments with increasing fertiliser 

rates, except for the gromor treatments NGB and PGC (Table 3.6). Nitrate-N concentrations 

for the Organic Vitaboost addition to the randles (OR) and gromor (OG) treatments were 

higher than the other fertiliser treatments. 

Nitrate-N level main effects were significantly influenced by fertiliser type (p<0.001). The 

statistical analysis for NO3-N was not significant overall (p=0.087), but the high randles 

Organic Vitaboost fertiliser (ORC) produced significantly higher NO3-N growth media 

concentrations compared with most treatments.  

3.2.4.2 Growth medium ammonium (NH4-N)  

The NH4-N concentrations in the media only increased with increasing fertiliser rates (at all 

concentrations A to C) from Nitrosol (NR, NG), the gromor Lawn and Leaf (LG) and the 

gromor Organic Vitaboost (OG) fertiliser treatments (Table 3.6). The Vitaboost fertiliser 

applied to gromor at twice the recommended rate (OGC) resulted in a significantly higher 

NH4-N concentration.  

Mean growth media NH4-N concentrations were significantly (p=0.044) affected by the main 

effects of growth medium when treatments were compared with each control (CR and CG). 

Ammonium-N concentrations in the randles medium were significantly lower than those in 

the gromor medium.  
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3.2.5 Growth medium total nitrogen (TN) 

The TN concentrations in the growth media were significantly affected by the main effects of 

growth medium type (p<0.001) for all treatments compared with each control (Table 3.6). 

There were significantly lower TN concentrations in the soil-based randles media mixes than 

those containing the bark-based mixes. The Nitrosol and Polyfeed (NGA and PGA) 

applications had significantly higher (p=0.018) %TN concentrations than all soil-based 

treatments.  

3.2.6 Phosphate-P and TP in growth medium extracted leachate 

Leachate was collected from growth medium for orthophosphate (PO4-P) and total phosphate  

analyses using the pour through extraction method (Wright, 1986). This method tests the 

amount of phosphate available to the plant roots. 

3.2.6.1 Phosphate-P in extracted leachate  

The orthophosphate (PO4-P) concentrations in leachate were, in general, lower for fertiliser 

groups containing randles media than those containing the bark-based media (Table 3.6). The 

high Organic Vitaboost-supplied gromor medium (OGC) had a tendency towards the highest 

phosphates in the leachate (p<0.001).  

The main effects of the factors fertiliser, growth medium and levels of fertiliser used in 

treatments, were statistically significantly different at p=0.035, p<0.001 and p=0.050, 

respectively, for randles medium control comparison, while only the factors growth medium 

and fertiliser level were significant at p<0.001 and p=0.050, respectively for the gromor 

medium control.  
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3.2.6.2 Total phosphates in extracted leachate  

The TP concentrations in leachate were in general lower for fertiliser groups containing 

randles medium mixes than those containing the bark-based medium. The overall effect of 

growth medium type (randles or gromor) differed significantly (p<0.001) due to fertiliser 

treatments when compared with either of the controls (CR or CG). Gromor-based media 

showed a tendency to leach significantly higher concentrations of TP compared with randles-

based ones. The higher organic Vitaboost and higher Polyfeed applications to the gromor 

medium (OGC and PGC) resulted in statistically higher phosphate leachates than most 

treatments at p<0.001 (Table 3.6).  
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Table 3.6 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on mean growth media nitrogen (nitrate, 

ammonium and total N) and phosphorus (phosphate and total phosphorus concentrations) after a period of 90DAP 

Type Treatment NO3–N mg L-1 NH4-N mg L-1 TN % PO4-P mg L-1 TP mg L-1 

Control CR
6
 2.63 ± 1.11a

1
 5.15 ± 1.24a 0.17 ± 0.06a 0.46 ± 0.21ab 0.69 ± 0.36 

Control CG 3.19 ± 1.76a 5.52 ± 0.66a 0.39 ± 0.12a-d 3.80 ± 0.33a-e 4.16 ± 0.35a-d 

4.1.3 NRA 8.50 ± 4.13ab 5.44 ± 0.48a 0.17 ± 0.04a 0.50 ± 0.17ab 1.17 ± 0.33ab 

4.1.3 NRB 16.70 ± 11.33abc 5.84 ± 0.39a 0.18 ± 0.08a 0.51 ± 0.17ab 0..93 ± 0.32ab 

4.1.3 NRC 33.46 ± 24.64abc 6.36 ± 0.73a 0.22 ± 0.03ab 0.99 ± 0.47abc 1.48 ± 0.48ab 

4.1.3 NGA 40.43 ± 40.21abc 7.18 ± 1.11a 1.09 ± 0.68d 5.91 ± 2.38a-e 7.17 ± 2.69a-e 

4.1.3 NGB 15.47 ± 9.83abc 7.46 ± 1.55a 0.78 ± 0.23a-d 7.34 ± 2.54a-f 8.23 ± 2.88a-e 

4.1.3 NGC 38.77 ± 19.36abc 7.60 ± 1.35a 0.65 ± 0.18a-d 8.01 ± 2.41b-f 10.40 ± 3.56b-e 

6.1.3 PRA 10.26 ± 6.26ab 6.09 ± 1.07a 0.18 ± 0.07a 0.62 ± 0.32ab 0.99 ± 0.29ab 

6.1.3 PRB 14.95 ± 8.36abc 5.06 ± 0.44a 0.21 ± 0.03ab 0.31 ± 0.01ab 0.41 ± 0.04a 

6.1.3 PRC 35.95 ± 35.26abc 5.74 ± 1.05a 0.31 ± 0.05abc 0.26 ± 0.10ab 0.34 ± 0.10a 

6.1.3 PGA 16.64 ± 15.10abc 6.76 ± 0.68a 1.09 ± 0.40d 6.83 ± 2.58a-e 7.50 ± 2.64a-e 

6.1.3 PGB 26.58 ± 26.09abc 6.43 ± 1.04a 0.78 ± 0.24a-d 5.74 ± 4.33a-e 6.77 ± 4.78a-e 

6.1.3 PGC 12.34 ± 9,84abc 7.78 ± 0.17a 0.79 ± 0.28a-d 10.36 ± 5.19ef 14.20 ± 8.35e 

7.1.3 LRA 21.94 ± 16.22abc 5.76 ± 0.58a 0.20 ± 0.03ab 0.21 ± 0.05a 0.52 ± 0.21a 

7.1.3 LRB 25.23 ± 20.40abc 5.57 ± 0.70a 0.16 ± 0.09a 0.17 ± 0.02a 0.34 ± 0.05a 

7.1.3 LRC 64.74 ± 57.94a-d 6.10 ± 0.87a 0.18 ± 0.03a 0.53 ± 0.09ab 0.98 ± 0.28ab 

7.1.3 LGA 6.03 ± 5.80ab 6.97 ± 0.63a 1.04 ± 0.60cd 6.04 ± 2.43a-e 8.23 ± 3.93a-e 

7.1.3 LGB 15.64 ± 15.27abc 7.46 ± 0.75a 0.93 ± 0.44bcd 6.79 ± 2.48a-e 10.93 ± 5.76cde 

7.1.3 LGC 22.76 ± 13.69abc 8.32 ± 1.28a 0.67 ± 0.19a-d 9.14 ± 3.54ef 11.55 ± 4.90de 

6.1.3 ORA 61.11 ± 45.04a-d 6.15 ± 0.62a 0.24 ± 0.02ab 1.07 ± 0.49a-d 1.61 ± 0.63abc 

6.1.3 ORB 109.96 ± 94.05bcd 5.77 ± 0.98a 0.22 ± 0.02ab 1.46 ± 0.62a-d 3.06 ± 1.45a-d 

6.1.3 ORC 147.32 ± 88.45d 5.76 ± 0.87a 0.23 ± 0.07ab 8.65 ± 6.45def 10.37 ± 6.59b-e 

6.1.3 OGA 40.53 ± 20.63abc 6.95 ± 1.19a 0,77 ± 0.35a-d 8.43 ± 3.07c-f 9.47 ± 3.47a-e 

6.1.3 OGB 85.86 ± 24.79a-d 8.61 ± 1.67a 0,81 ± 0.37a-d 7.42 ± 3.94a-f 9.10 ± 4.83a-e 

6.1.3 OGC 115.89 ± 10.98cd 52.09 ± 31.54b 0.56 ± 0.12a-d 14.51 ± 4.58f 16.05 ± 4.95e 

Sig p<0.05 
 

0.087 (ns) 0.012 0.018 <.001 <.001 

LSD
2
   85.79 17.60 0.63 6.38 7.86 

CV (%)
3
  137 130.40 61.60 87.10 85.00 

 
Fertiliser (F)

4
 <0.001 ns ns 0.035 ns 

CR Medium (G) ns 0.044 <0.001 <0.001 <0.001 

vs Levels (C) ns ns ns 0.050 ns 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
   Q* ns ns Q* ns 

 
Fertiliser (F)

3
 <0.001 ns ns ns ns 

CG Medium (G) ns 0.044 <0.001 <0.001 <0.001 

vs Levels (C) ns ns ns 0.050 ns 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
   Q* ns ns ns ns 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) - Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 
6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate, Table adapted from (Bi et al., 2010) 
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3.2.7 Macronutrients in growth medium extracted leachate 

Leachate was collected from growth medium for macronutrient analyses using the pour-

through extraction method (Wright, 1986). This method tests the nutrients available in the 

growth medium solution for plant roots (Richard, 2006).  

3.2.7.1 Nitrogen (N) in extracted leachate 

There were no significant differences between any of the treatments, including comparison 

with the controls, at p=0.919, nor were there any significant main effects or interactions for 

mean N concentrations in the leachates (Table 3.7).  

3.2.7.2 Phosphorous (P) in extracted leachate 

Phosphorous concentrations in extracted leachate were significantly lower from soil-based 

growth media (randles) than from bark-based media (gromor). The gromor medium leachate 

containing the highest Organic Vitaboost supply (OGC) had a significantly higher P 

concentration than most treatments (Table 3.7).  

The main effects of the factor fertiliser type were statistically significantly different when 

treatments were compared with the randles control and also gromor control (p=0.026 and 

p<0.001, respectively) Growth medium main effects were also significantly different when 

treatments were compared with the randles and gromor controls (p=0.011 and p<0.001, 

respectively) (Table 3.7). 

3.2.7.3 Potassium (K) in extracted leachate 

The leachate K concentrations were higher in the randles Organic Vitaboost treatments, 

whilst the other fertiliser treatments were similar, irrespective of growth medium effects. The 

organic fertiliser supplied to the randles medium at double the recommended rate (ORC) was 
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significantly different from most treatments (p=0.001), except the high Lawn and Leaf (LRC) 

and the lower Organic Vitaboost application to the randles medium (ORA and ORB)     

(Table 3.7).  

The main effects of fertiliser type, growth medium type and level of fertiliser were 

statistically significantly different (p<0.001, p<0.001 and p=0.038, respectively) for the 

randles medium (CR) comparison and (p<0.001, p<0.001 and p=0.040, respectively) for the 

gromor comparison.  

3.2.7.4 Calcium (Ca) in extracted leachate 

The Ca concentrations in the leachate increased with increasing fertiliser application, except 

for the PG fertiliser group (Table 3.7). The Ca concentrations in the growth medium were 

higher when it contained randles mix than the bark-based mix. Similar to the potassium 

figures, the high Organic Vitaboost application to the randles medium (ORC) was 

significantly different from all treatments (p<0.001), except for the high Lawn and Leaf and 

the standard Organic Vitaboost to the randles mediun (LRC and ORB).  

The main effects of the factors fertiliser type and growth medium type and levels of fertiliser 

used in treatments were statistically significantly different (<0.001, p<0.001 and p=0.046, 

respectively) for the CR comparison and (p<0.001, p<0.001 and p=0.050, respectively) for 

the CG comparison (Table 3.7).  

3.2.7.5 Magnesium (Mg) in extracted leachate  

The Mg concentrations increased with increasing fertiliser rate, except for the Polyfeed 

applied to the randles mix (PR) group (Table 3.7). Leachate Mg concentrations were, in 

general, higher for fertiliser groups containing the randles medium than those containing the 

bark-based medium.  
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The main effects of fertiliser, growth medium and levels of fertiliser used were statistically 

significantly different (p<0.001, p=0.001 and p=0.009, respectively) when treatments were 

compared with the randles medium control (CR) and similarly when compared with the 

gromor control (p<0.001, p=0.002 and p=0.010, respectively).  
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Table 3.7 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and leaf) applied at three concentrations to two different growth media, on mean growth media pour-through 

extracted nutrient solution N, P, K, Ca and Mg concentrations compared to two controls after a period of 90 DAP  

Type Treatment N mg∙L-1 (x1000) P  mg∙L-1 K (mg∙L-1) Ca mg∙L-1 Mg mg∙L-1 

Control CR
6
 2.57 ± 1.11a

1
 2.34 ± 1.75a 121.20 ± 54.89a 58.00 ± 28.65ab 13.41 ± 6.31ab 

Control CG 2.30 ± 1.57a 5.26 ± 1.47abc 91.90 ± 38.25a 39.00 ± 10.67a 10.83 ± 0.86ab 

4.1.3 NRA 3.43 ± 1.70a 4.34 ± 3.74ab 166.00 ± 76.88ab 136.90 ± 100.88a-d 23.51 ± 16.33a-d 

4.1.3 NRB 3.68 ± 1.93a 4.48 ± 3.89ab 198.70 ± 92.89ab 154.30 ± 99.15a-e 24.60 ± 13.92a-d 

4.1.3 NRC 3.27 ± 1.82a 7.52 ± 6.52a-d 258.20 ± 124.85abc 179.70 ± 94.55a-e 35.14 ± 18.30a-e 

4.1.3 NGA 3.61 ± 2.17a 13.04 ± 5.65a-f 130.60 ± 47.35a 29.80 ± 8.51a 9.89 ± 2.49ab 

4.1.3 NGB 3.86 ± 1.91a 15.42 ± 5.17a-g 150.30 ± 37.74ab 54.30 ± 4.04ab 18.25 ± 2.10abc 

4.1.3 NGC 2.89 ± 1.50a 22.36 ± 8.46fg 208.80 ± 67.17ab 61.80 ± 17.32ab 24.89 ± 8.62a-d 

6.1.3 PRA 3.91 ± 2.39a 6.66 ± 6.26a-d 142.40 ± 61.63ab 115.20 ± 77.38abc 20.70 ± 13.23a-d 

6.1.3 PRB 3.33 ± 1.63a 8.10 ± 7.70a-e 157.60 ± 80.31ab 130.20 ± 79.77a-d 20.59 ± 10.80a-d 

6.1.3 PRC 2.61 ± 1.25a 7.32 ± 6.93a-d 238.00 ± 103.97abc 173.90 ± 110.03a-e 31.91 ± 19.20a-d 

6.1.3 PGA 2.71 ± 1.88a 15.22 ± 6.83a-g 94.60 ± 31.67a 32.00 ± 9.68a 8.78 ± 2.33a 

6.1.3 PGB 3.67 ± 2.73a 13.98 ± 5.36a-f 142.70 ± 12.01ab 44.60 ± 8.23a 14.51 ± 1.45ab 

6.1.3 PGC 4.03 ± 2.01a 17.96 ± 7.85b-g 155.50 ± 61.19ab 38.40 ± 8.05a 15.24 ± 4.74ab 

7.1.3 LRA 4.01 ± 2.33a 2.96 ± 2.56a 242.30 ± 114.06abc 152.70 ± 95.93a-e 26.36 ± 14.75a-d 

7.1.3 LRB 2.85 ± 1.38a 6.24 ± 5.84abc 289.10 ± 129.65abc 183.60 ± 103.29a-e 37.63 ± 21.31a-e 

7.1.3 LRC 3,04 ± 1.38a 4.75 ± 4.15ab 478.50 ± 217.36cd 297.50 ± 160.56def 64.69 ± 36.17def 

7.1.3 LGA 2.40 ± 1.72a 12.76 ± 5.63a-f 104.20 ± 19.31a 40.10 ± 16.59a 11.40 ± 3.40ab 

7.1.3 LGB  2.88 ± 1.57a 16.12 ± 8.67a-g 195.10 ± 67.72ab 67.50 ± 18.80ab 23.90 ± 6.52a-d 

7.1.3 LGC 4.26 ± 3.27a 20.36 ± 10.33d-g 209.40 ± 84.89ab 88.00 ± 36.81abc 30.98 ± 11.69a-d 

6.1.3 ORA 3.15 ± 1.90a 5.82 ± 5.03abc 390.70 ± 191.62bcd 246.90 ± 110.22cde 62.05 ± 28.03c-f 

6.1.3 ORB 5.50 ± 3.41a 9.2 ± 8.21a-f 480.20 ± 253.72cd 311.70 ± 121.46ef 89.70 ± 38.83fg 

6.1.3 ORC 4.60 ± 2.94a 14.68 ± 12.13a-f 560.80 ± 256.25d 408.10 ± 87.90f 119.13 ± 38.69g 

6.1.3 OGA 2.92 ± 1.76a 21.72 ± 13.06efg 242.10 ± 98.69abc 132.10 ± 39.88a-d 48.62 ± 17.33a-f 

6.1.3 OGB 4.12 ± 2.79a 18.96 ± 9.30c-g 226.10 ± 111.08ab 141.50 ± 9.97a-d 54.87 ± 18.31b-f 

6.1.3 OGC 3.83 ± 1.77a 28.52 ± 14.88g 293.00 ± 133.81abc 220.00 ± 35.81b-e 76.34 ± 21.85ef 

Sig p<0.05   0.919  (ns) <0.001 0.001 <.001 <.001 

LSD
2
   2.75 11.47 110.40 142.85 37.14 

CV (%)
3  48.80 59.20 56.40 64.00 63.50 

 
Fertiliser (F)4 ns 0.011 <.001 <0.001 <0.001 

CR Medium (G) ns <0.001 <0.001 <0.001 0.001 

vs Levels (C) ns ns 0.038 0.046 0.009 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
   ns L*Q* Q** Q** Q*** 

 
Fertiliser (F)

4
 ns 0.026 <.001 <0.001 <0.001 

CG Medium (G) ns <0.001 <0.001 <0.001 0.002 

vs Levels (C) ns ns 0.040 0.050 0.010 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
   ns Q* Q** Q** Q*** 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) - Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 
6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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 3.2.8 Micronutrients in growth medium extracted leachate  

3.2.8.1 Iron (Fe) in extracted leachate  

The Fe concentrations were higher in leachate extracted from the randles mix than in 

leachates from the bark-based mix, except for OR and OG (Table 3.8). There were no 

significant differences between treatments overall (p=0.227). Treatments compared with each 

control showed that the main effect of growth medium type was statistically significantly 

different (p=0.001) for both comparisons.  

3.2.8.2 Boron (B) in extracted leachate  

The B concentrations increased with increasing fertiliser rate. The high Organic Vitaboost 

application to the randles medium (ORC) resulted in significantly higher amounts of B 

leached than from most treatments at p=0.03 (Table 3.8).  

The main effects of the factors fertiliser type and levels of fertiliser, were statistically 

significantly different (p=0.028 and p=0.006) for the randles (CR) comparison, respectively, 

and (p=0.033 and p=0.006) respectively for the gromor (CG) comparison. There was also a 

statistically significant interaction between the effects of fertiliser and levels of fertiliser on 

boron concentrations for both media.  

3.2.8.3 Manganese (Mn) in extracted leachate  

The Mn leachate concentrations increased in all fertiliser groups with increasing fertiliser 

rates, except for the Polyfeed supplemented randles medium (PR) (Table 3.8). Again, ORC 

Mn concentrations were significantly higher (p=0.016) than all other treatments. The Mn 

concentrations had a tendency to be lower in substrates containing the soil-based growth 

medium (randles) than those containing the bark-based medium (gromor) mix. The main 
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effects of fertiliser type used in treatments were significantly different (p<0.001) for both 

media.  

3.2.8.4 Zinc (Zn) in extracted leachate 

Overall, the Zn concentration in the leachates was not significantly different (p=0.091), 

although ORC was significantly higher than several treatments (Table 3.8). The Zn 

concentrations had a tendency to be lower in the fertiliser groups containing the soil-based 

growth medium than the bark-based medium. The fertiliser type used in treatments 

significantly affected the Zn concentration in both media (p<0.001).  

3.2.8.5 Copper (Cu) in extracted leachate 

The leachate Cu concentrations were statistically significantly higher for leachate extracted 

from the randles media than those containing the gromor medium (Table 3.8). The randles 

medium supplied with high concentrations of Organic Vitaboost (ORC) or Polyfeed (PRC) 

were significantly higher than most other treatments (p=0.033). The main effects of growth 

medium type were statistically significantly different (p<0.001). 
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Table 3.8 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on mean growth media pour-through 

extracted nutrient solution Fe, B, Mn, Zn and Cu concentrations compared to two controls after a period of 90 DAP  

Type Treatment Fe mg∙L-1 (x 1000) B mg∙L-1 Mn mg∙L-1 (x 1000) Zn mg∙L-1 Cu mg∙L-1 

Control CR
6
 5.17 ± 2.61ab

1
 0.12 ± 0.03abc 0.32 ± 0.24a 321.80 ±  243.80a 286.40 ± 177.10a-d 

Control CG 3.82 ± 2.88a 0.13 ± 0.01a-d 0.56 ± 0.35a 358.10 ± 234.70a 49.30 ± 24.90a 

4.1.3 NRA 7.72 ± 4.95abc 0.11 ± 0.03ab 0.37 ± 0.23a 208.10 ± 115.80a 409.50 ± 130.50a-e 

4.1.3 NRB 13.28 ± 6.66abc 0.14 ± 0.04a-d 0.50 ± 0.36a 325.00 ± 242.80a 464.60 ± 177.90a-e 

4.1.3 NRC 17.12 ± 8.63bc 0.22 ± 0.07a-e 0.68 ± 0.48a 351.10 ± 236.10a 763.80 ± 391.30de 

4.1.3 NGA 5.06 ± 3.67ab 0.16 ± 0.03a-d 0.52 ± 0.14a 207.10 ± 115.70a 97.60 ± 51.30abc 

4.1.3 NGB 5.45 ± 5.25abc 0.22 ± 0.04a-e 1.25 ± 0.99a 493.20 ± 362.50a 150.40 ± 108.10a-d 

4.1.3 NGC 5.43 ± 4.26abc 0.29 ± 0.07cde 4.00 ± 3.60a 744.10 ± 430.70abc 129.00 ± 97.40abc 

6.1.3 PRA 17.21 ± 8.30bc 0.10 ± 0.03a 0.71 ± 0.47a 359.80 ± 234.40a 711.50 ±324.00 b-e 

6.1.3 PRB 12.42 ± 9.46abc 0.12 ± 0.03abc 0.58 ± 0.35a 352.70 ± 235.70a 460.40 ± 91.40a-e 

6.1.3 PRC 18.22 ± 9.89c 0.18 ± 0.05a-d 1.07 ± 0.67a 334.70 ± 240a  990.70 ± 667.90e 

6.1.3 PGA 8.94 ± 7.15abc 0.16 ± 0.02a-d 0.70 ± 0.25a 638.90 ± 161.10ab 87.30 ± 17.10ab 

6.1.3 PGB 5.36 ± 3.79abc 0.25 ± 0.06a-e 1.06 ± 0.67a 731.10 ± 438.50abc  97.90 ± 51.20abc 

6.1.3 PGC 7.58 ± 5.21abc 0.30 ± 0.13de 1.88 ± 1.67a 621.10 ± 495.30ab 58.30 ± 11.70a 

7.1.3 LRA 11.34 ± 6.08abc 0.10 ± 0.02ab 0.49 ± 0.36a 177.40 ± 117.70a 490.20 ± 199.10a-e 

7.1.3 LRB 9.65 ± 5.83abc 0.13 ± 0.03a-d 0.67 ± 0.48a 203.00 ± 115.50a 466.90 ± 162.10a-e 

7.1.3 LRC 9.17 ± 5.09abc 0.15 ± 0.05a-d 0.87 ± 0.77a 569.70 ± 326.50ab 728.90 ± 351.10cde 

7.1.3 LGA 5.99 ± 4.10abc 0.14 ± 0.03a-d 0.97 ± 0.52a 772.50 ± 255.10abc 218.90 ± 99.60a-d 

7.1.3 LGB 5.01 ± 5.01ab 0.15 ± 0.03a-d 1.38 ± 1.12a 762.10 ± 420.20abc 115,20 ± 62.80abc 

7.1.3 LGC 6.52 ± 6.32abc 0.16 ± 0.04a-d 2.89 ± 2.56a 777.00 ± 412,00abc 119.60 ± 23.50abc 

6.1.3 ORA 5.45 ± 5.06abc 0.19 ± 0.06a-d 3.04 ± 2.88a 469.30 ± 370.30a 487.00 ± 206.40a-e 

6.1.3 ORB 6.70 ± 5.73abc 0.28 ± 0.13b-e 9.19 ± 9.01a 1147.40 ± 1028.70abc 600.00 ± 400.00a-e 

6.1.3 ORC 5.02 ± 4.63ab 0.36 ± 0.18e 31.95 ± 17.51b 2337.3 ± 1335.20c 1038.70 ± 629.50e 

6.1.3 OGA 5.44 ± 5.44abc 0.17 ± 0.03a-d 7.27 ± 6.77a 1594.70 ± 1407.00abc 62.50 ± 11.80a 

6.1.3 OGB 4.40 ± 4.40ab 0.18 ± 0.05a-d 12.32 ± 12.04a 2168.10 ± 1716.20bc 97 40 ± 32.30abc 

6.1.3 OGC 5.32 ± 5.12abc 0,22 ± 0.04a-e 13.75 ± 13.33a 1872.60 ± 1463.70abc 61.45 ± 11.60a 

Sig p<0.05   0.227 (ns) 0.038 0.016 0.091(ns) 0.033 

LSD
2
   10.64 0.143 13.63 1383.20 633.00 

CV (%)
3  78.20 48.40 118.30 116.00 108.60 

 
Fertiliser (F)

4
 ns 0.028 <0.001 <0.001 ns 

CR Medium (G) 0.001 ns ns ns <0.001 

vs Levels (C) ns 0.006 ns ns ns 

Treatments F x G ns 0.017 ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
   ns  L*Q* Q* ns ns 

 
Fertiliser (F)

4
 ns 0.033 <0.001 <0.001 ns 

CG Medium (G) 0.001 ns ns ns <0.001 

vs Levels (C) ns 0.006 ns ns ns 

Treatments F x G ns 0.016 ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
   ns  L* Q* ns ns 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at p < 

0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) – Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 
6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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3.2.9 Nutrient composition of leaf tissue 

As the mineral concentration in leachates of the various treatments was affected by the 

medium and the fertiliser applied, nutrients in leaf tissues could also be affected by growth 

medium and fertiliser application. 

3.2.9.1 Macronutrients in leaf tissue 

Nitrogen (N) The N concentration in leaf tissue (Table 3.9) were significantly affected by the 

main effects of fertiliser type and applied concentration (p<0.001 and p=0.013, respectively) 

for treatments compared with the randles control (CR) and the gromor control (p<0.001 and 

p=0.016, respectively). The N concentrations of leaf tissue from media containing Organic 

Vitaboost (OR and OG) were the highest amongst all treatments. Leaf N concentrations 

increased as fertiliser rates increased. High Organic Vitaboost applications (OGC) produced 

significantly higher N leaf tissue concentrations than most treatments (p<0.001). 

Phosphorous (P) – Leaf tissue P concentrations were significantly affected by growth 

medium type (p<0.001) compared with the controls (Table 3.9). The P concentrations in leaf 

tissue were significantly lower for randles-containing treatments than gromor-containing 

treatments. Leaf phosphorous concentrations of plants in randles media mixes decreased 

linearly as applied concentrations increased. Leaf P concentrations in both controls were even 

higher than those of randles soil-based treatments. 

Potassium (K) – There were no significant differences in leaf tissue K concentrations 

amongst treatments and between treatments and the controls (p=0.811) (Table 3.9).  

Calcium (Ca) – Mean leaf tissue Ca concentrations were significantly affected by the main 

effect of growth medium type (p<0.001) when treatments were compared with the controls 

(Table 3.9). Leaf Ca concentrations were significantly higher for fertiliser groups containing 
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the soil- than the bark-based medium. There were no significant differences overall between 

treatments, including the controls (p=0.081) in leaf tissue Ca concentrations.  

Magnesium (Mg) – Leaf Mg concentrations were significantly affected by fertiliser type 

(p=0.002 and p=0.012), when treatments were compared with the controls (CR and CG, 

respectively). Significantly more Mg was taken up by the randles control plants than most 

Organic Vitaboost treatments (Table 3.9). Treatments were not significantly different overall 

(p=0.325). Leaf Mg concentrations decreased or had a tendency to decrease as fertiliser rates 

increased.  
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Table 3.9 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on mean leaf tissue N, P, K, Ca and Mg 

concentrations compared to two controls after a period of 90 DAP  

Type Treatment N % P % K % Ca % Mg % 

Control CR
6
 3.04 ± 0.63abc

1
 0.89 ± 0.11cde 4.64 ± 0.70a 2.80 ± 0.59a-d 1.67 ±0.34b 

Control CG 2.63 ± 0.58a 0.93 ± 0,35cde  5.68 ± 0.45a 2.38 ± 0.30abc 1.47 ± 0.21ab 

4.1.3 NRA 2.89 ± 0.39ab 0.73 ± 0.18a-e 4.78 ± 0.95a 3.06 ± 0.25a-d 1.53 ± 0.23ab 

4.1.3 NRB 3.34 ± 0.65a-d 0.60 ± 0.16a-d 4.93 ± 0.96a 3.31 ± 0.22cd 1.51 ± 0.27ab 

4.1.3 NRC 3.43 ± 0.76a-d 0.53 ± 0.13abc 5.01 ± 1.06a 3.37 ± 0.47cd 1.39 ± 0.22ab 

4.1.3 NGA 2.95 ± 0.39ab 1.01 ± 0.41de 5.30 ± 0.46a 2.44 ± 0.17abc 1.42 ± 0.22ab 

4.1.3 NGB 3.14 ± 0.56abc 1.06 ± 0.26e 5.05 ± 0.58a 2.44 ± 0.28abc 1.44 ± 0.21ab 

4.1.3 NGC 3.55 ± 0.69a-e 1.07 ± 0.21e 4.92 ± 0.67a 2.46 ± 0.29a-d 1.40 ± 0.16ab 

6.1.3 PRA 3.04 ± 0.70abc 0.84 ± 0.19b-e 4.61 ± 0.96a 3.00 ± 0.37a-d 1.56 ± 0.30ab 

6.1.3 PRB 3.16 ± 0.72abc 0.66 ± 0.16a-e 4.55 ± 1.08a 3.49 ± 0.76d 1.51 ± 0.30ab 

6.1.3 PRC 3.49 ± 0.68a-d 0.56 ± 0.10abc 4.99 ± 1.11a 3.27 ± 0.52bcd 1.38 ± 0.22ab 

6.1.3 PGA 3.15 ± 0.24abc 1.07 ± 0.28e 5.02 ± 0.35a 2.55 ± 0.34a-d 1.55 ± 0.24ab 

6.1.3 PGB 3.43 ± 0.43a-d 1.03 ± 0.24e 5.05 ± 0.63a 2.46 ± 0.32a-d 1.48 ± 0.16ab 

6.1.3 PGC 3.41 ± 0.65a-d 0.96 ± 0.16cde 4.94 ± 0.65a 2.15 ± 0.21a 1.38 ± 0.17ab 

7.1.3 LRA 3.06 ± 0.72abc 0.78 ± 0.07a-e 4.95 ± 1.11a 2.78 ± 0.29a-d 1.55 ± 0.27ab 

7.1.3 LRB 3.14 ± 0.78abc 0.55 ± 0.12abc 5.21 ± 1.11a 3.03 ± 0.61a-d 1.47 ± 0.31ab 

7.1.3 LRC 3.35 ± 0.63a-d 0.43 ± 0.13ab 5.83 ± 0.98a 3.06 ± 0.65a-d 1.42 ± 0.30ab 

7.1.3 LGA 3.05 ± 0.24abc 0.95 ± 0.27cde 5.32 ± 0.31a 2.23 ± 0.25ab 1.49 ± 0.25ab 

7.1.3 LGB 3.39 ± 0.46a-d 1.04 ± 0.32e 5.60 ± 0.42a 2.37 ± 0.30abc 1.55 ± 0.28ab 

7.1.3 LGC 3.65 ± 0.59a-e 0.87 ± 0.20cde 5.40 ± 0.32a 2.24 ± 0.24ab 1.38 ± 0.18ab 

6.1.3 ORA 3.96 ± 0.84b-f 0.56 ± 0.20abc 5.64 ± 0.98a 2.57 ± 0.30a-d 1.25 ± 0.14a 

6.1.3 ORB 4.16 ± 0.56c-f 0.44 ± 0.15ab 5.91 ± 1.08a 2.83 ± 0.45a-d 1.32 ± 0.20a  

6.1.3 ORC 4.61 ± 0.33ef 0.40 ± 0.12a 6.19 ± 1.16a 2.76 ± 0.51a-d 1.31 ± 0.22a 

6.1.3 OGA 4.39 ± 0.58def 0.88 ± 0.12cde 5.18 ± 0.22a 2.43 ± 0.53abc 1.36 ± 0.21ab 

6.1.3 OGB 4.98 ± 0.62fg 0.92 ± 0.15cde 4.87 ± 0.27a 2.48 ± 0.65a-d 1.32 ± 0.24a 

6.1.3 OGC 5.61 ± 0.62g 0.95 ± 0.13cde 5.31 ± 0.19a 2.50 ± 0.79a-d 1.27 ± 0.29a 

Sig p<0.05   <0.001 <0.001 0.811 (ns) 0.081 (ns) 0.325 (ns) 

LSD
2
   0.96 0.36 1.45 0.86 0.27 

CV (%)
3  16.40 27.50 17.30 19.40 11.40 

 
Fertiliser (F)

4
 <0.001 ns ns ns 0.002 

CR Medium (G) ns <0.001 ns <0.001 ns 

vs Levels (C) 0.013 ns ns ns ns 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
    L**Q*** ns ns ns Q** 

 
Fertiliser (F)

4
 <0.001 ns ns ns 0.012 

CG Medium (G) ns <0.001 ns <0.001 ns 

vs Levels (C) 0.016 ns ns ns ns 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

Sig.
5
    L**Q*** ns ns ns Q* 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) – Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 
6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate, Table adapted from (Bi et al., 2010) 
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3.2.9.2 Micronutrients in leaf tissue 

Irons (Fe) – Mean Fe concentrations in leaf tissue from treatments were similar. 

Concentrations were, however, significantly affected by the fertiliser type (p=0.004 and 

p=0.002, for CR and CG comparisons, respectively), when treatments were compared with 

the controls (Table 3.10). The high concentration of Organic Vitaboost fertiliser applied to the 

bark-based media (OGC) resulted in significantly more leaf tissue Fe than all other 

treatments, except the lower Vitaboost amendment OGB  (p=0.036).  

Copper (Cu) – Mean leaf Cu tissue concentrations were significantly affected by the fertiliser 

type (p=0.033) for CG comparison only, and were significantly affected by the main effects 

of growth medium (p<0.001) for CG and CR when treatments were compared with the 

controls (Table 3.10). The leaf Cu concentrations were significantly higher for fertiliser 

groups containing the randles media mix than those containing the bark-based medium. There 

were no statistically significant differences overall (p=0.095), although ORC had a 

significantly higher Cu concentration than several treatments.  

Manganese (Mn) – Mean leaf tissue Mn concentrations were significantly affected by the 

main effects fertiliser type and growth medium (p<0.001 and p=0.002, respectively for CR 

comparison, and p<0.001 and p=0.002, respectively for CG comparison) when treatments 

were compared with the controls (Table 3.10). Leaf tissue Mn concentrations were 

significantly lower for fertiliser groups containing the randles mix than those containing the 

bark-based mix. Leaf tissue concentrations of OGC plants had significantly higher Mn 

concentrations than most other fertiliser treatments (p=0.018).  

Zinc (Zn) - Leaf tissue Zn concentrations were similar for most treatments, including the 

controls. Concentrations were significantly affected by fertiliser type and growth medium 

(p<0.001 for both factors) when treatments were compared to the both controls (Table 3.10). 
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The Zn concentrations in leaf tissue of plants grown in randles as the basic medium were in 

general lower than those grown in the bark-based medium.  
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Table 3.10 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on mean leaf tissue Fe, Mn, Zn and Cu 

concentrations compared to two controls after a period of 90 DAP  

Type Treatment Fe mg·kg
-1

 Cu mg·kg
-1

 Mn mg·kg-1 Zn mg·kg-1 

Control CR
6
 375.00 ± 60.89ab

1
 8.75 ± 1.28bcd 123.20 ± 31.99abc 56.81 ± 2.58abc 

Control CG 287.30 ± 29.77a 6.26 ± 0.40ab 84.30 ± 21.90ab 55.32 ± 8.85abc 

4.1.3 NRA 308.80 ± 32.09a 8.30 ± 0.60a-d 77.00 ± 127.03a 47.18 ± 5.38abc 

4.1.3 NRB 320.00 ± 29.95ab 9.43 ± 1.02cd 69.40 ± 16.99a 47.49 ± 8.56abc 

4.1.3 NRC 327.90 ± 54.30ab 8.39 ± 0.84a-d 64.50 ± 64.50a 41.23 ± 7.12abc 

4.1.3 NGA 275.60 ± 75.71a 6.95 ± 1.08abc 115.70 ± 43.23abc 57.10 ± 6.90abc 

4.1.3 NGB 325.00 ± 84.52ab 6.50 ± 0.41abc 163.20 ± 58.99a-d 54.39 ± 7.02abc 

4.1.3 NGC 343.20 ± 83.03ab 6.66 ± 0.52abc 209.70 ± 81.41a-d 57.41 ± 3.45abc 

6.1.3 PRA 399.90 ± 104.56ab 8.08 ± 0.63a-d 110.00 ± 7.10abc 48.93 ± 2.91abc 

6.1.3 PRB 339.40 ± 75.26ab 8.47 ± 1.03bcd 80.90 ± 4.89ab 44.75 ± 4.88abc 

6.1.3 PRC 296.00.± 54.07ab 8.63 ± 1.27bcd 72.10 ± 3.94a 49.23 ± 5.22abc 

6.1.3 PGA 348.10 ± 94.10ab 7.47 ± 1.17a-d 137.40 ± 46.10abc 56.64 ± 1.43abc 

6.1.3 PGB 374.00 ± 84.63ab 7.26 ± 0.31a-d 144.60 ± 49.54abc 56.51 ± 46.963abc 

6.1.3 PGC 296.00 ± 54.07a 5.48 ± 0.55a 138.80 ± 50.37abc 45.48 ± 1.15abc 

7.1.3 LRA 301.30 ± 47.47a 7.21 ± 0.53a 112.10± 17.38abc 42.83 ± 2.24abc 

7.1.3 LRB 405.00 ± 111.67ab 8.39 ± 1.25a-d 75.10 ± 2.99a 39.79 ± 5.18a 

7.1.3 LRC 371.50 ± 18.67ab 8.22 ± 0.81a-d 69.00 ± 3.13a 40.45 ± 4.63ab 

7.1.3 LGA 318.70 ± 56.14ab 7.16 ± 0.66abc 143.40 ± 53.12abc 54.65 ± 4.42abc 

7.1.3 LGB 417.90 ± 99.07ab 7.80 ± 0.49a-d 189.70 ± 75.00a-d 68.43 ± 3.98b-e 

7.1.3 LGC 369.60 ± 58.72ab 6.88 ± 0.25abc 205.10 ± 80.74a-d 58.78 ± 6.11abc 

6.1.3 ORA 341.00 ± 70.75ab 9.33 ± 2.16cd 244.60 ± 107.45a-d 68.16 ± 23.17b-e 

6.1.3 ORB 364.60 ± 68.55ab 9.14 ± 1.66bcd 184.40 ± 19.22a-d 60.70 ± 16.97abc 

6.1.3 ORC 391.60 ± 85.86ab 9.94 ± 1.21d 260.40 ± 98.58bcd 63.44 ± 5.22a-d 

6.1.3 OGA 410.40 ± 122.68ab 8.19 ± 0.67a-d 221.30 ± 79.21a-d 69.07 ± 10.64cde 

6.1.3 OGB 464.80 ±152.95bc 8.05 ± 0.92a-d 286.60 ± 109.98cd 91.29 ± 25.34e 

6.1.3 OGC 549.60 ± 144.16c 7.88 ± 1.81a-d 327.40 ± 132.42d 87.17 ± 13.89de 

Sig p<0.05   0.036* 0.095 (ns) 0.018 0.003 

LSD
2
   124.80 2.42 148.60 23.15 

CV (%)
3  21.10 18.80 60.30 25.10 

 
Fertiliser (F)

4
 0.004 ns <0.001 <0.001 

CR Medium (G) ns <0.001 0.002 <0.001 

vs Levels (C) ns ns ns ns 

Treatments F x G ns ns ns ns 

 
F x C ns ns ns ns 

 
G x C ns ns ns ns 

Sig.
5
   ns ns Q* Q* 

 
Fertiliser (F)

4
 0.002 0.033 <0.001 <0.001 

CG Medium (G) ns <0.001 0.002 <0.001 

vs Levels (C) ns ns ns ns 

Treatments F x G ns ns ns ns 

 
F x C ns ns ns ns 

 
G x C ns ns ns ns 

Sig.
5
   ns Q* Q** Q* 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) – Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 
6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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3.2.10 Leaf chlorophyll a, chlorophyll b and total chlorophyll concentrations 

Chlorophyll a (Chl a) – Mean leaf Chl a concentrations were statistically similar between 

treatments (p=0.452) (Table 3.11). Leaf Chl a concentrations were significantly affected by 

fertiliser type for the CG comparison only (p=0.024).  Concentrations ranged from 39.54 to 

80.26 µg µg·Chl a g
-1

 (OGB).  

Chlorophyll b (Chl b) – Mean leaf Chl b concentrations were significantly affected by 

fertiliser type (p=0.001, p=0.004 for CR and CG comparisons to treatments, respectively). 

The high Organic Vitaboost treatment (ORC) resulted in significantly higher leaf tissue Chl b 

concentrations than CR, CG and the lower Nitrosol (NRA, NRB) and lower Polyfeed (PRA) 

treatments. There were no significant differences overall between treatments (p=0.064) (Table 

3.11). Concentrations ranged from 24.52 µg·g
-1

 (PRA) to 48.11 µg·g
-1

 (ORC).  

Total chlorophyll (TChl) – Leaf total chlorophyll concentrations (TChl) were significantly 

affected by the fertiliser type compared with the gromor control only (p=0.013). There were 

no significant differences overall between treatments (p=0.262) (Table 3.11). Concentrations 

ranged from 71.00 µg·g
-1

 to 119.90 µg·g
-1

 (OGB). 
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Table 3.11 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and leaf) applied at three concentrations to two different growth media, on mean leaf tissue Chl a, Chl b and Tchl 

concentrations compared to two controls after a period of 90 DAP 

Type Treatment Chl a μg g-1 Chl b μg g-1 Total Chl μg g-1 

Control CR
6
 51.56 ± 2.15ab

1
 30.48 ± 3.53abc 82.00 ± 2.92ab 

Control CG 39.54 ± 4.44a 31.41 ± 5.29a-d 71.00 ± 9.65a 

4.1.3 NRA 62.68 ± 5.80ab 29.28 ± 5.96ab 92.00 ± 4.74abc 

4.1.3 NRB 60.14 ± 1.79ab 31.39 ± 7.13a-d 91.50 ± 8.92abc 

4.1.3 NRC 78.95 ± 10.80b 37.45 ± 4.11a-e 116.40 ± 10.31bc 

4.1.3 NGA 64.79 ± 18.06ab 33.06 ± 5.70a-e 97.80 ± 20.86abc 

4.1.3 NGB 79.22 ± 12.53b 46.56 ± 8.75de 125.80 ± 16.76c 

4.1.3 NGC 70.28 ± 10.14b 35.23 ± 8.87a-e 105.50 ± 16.22abc 

6.1.3 PRA 70.83 ± 10.31b 24.52 ± 10.10a 95.30 ± 5.65abc 

6.1.3 PRB 70.97 ± 10.21b 35.26 ± 7.88a-e 106.20 ± 16.01abc 

6.1.3 PRC 68.95 ± 10.34ab 37.19 ± 4.01a-e 106.10 ± 12.55abc 

6.1.3 PGA 59.91± 10.91ab 39.75 ± 7.82a-e 99.70 ± 18.47abc 

6.1.3 PGB 71.95 ± 9.09b 38.66 ± 7.42a-e 110.60 ± 14.26abc 

6.1.3 PGC 65.32 ± 2.65ab 35.57 ± 8.12a-e 100.90 ± 8.06abc 

7.1.3 LRA 64.88 ± 4.52ab 33.85 ± 5.52a-e 98.70 ± 3.58abc 

7.1.3 LRB 68.28 ± 4.41ab 36.05 ± 5.79a-e 104.30 ± 4.13abc 

7.1.3 LRC 72.87 ± 2.81b 37.77 ± 8.37a-e 110.60 ± 10.24abc 

7.1.3 LGA 75.46 ± 7.77b 38.23 ± 9.16a-e 113.70 ± 16.13bc 

7.1.3 LGB 72.18 ± 7.12b 37.76 ± 10.05a-e 109.90 ± 16.51abc 

7.1.3 LGC 69.84 ± 8.86b 38.30 ± 11.17a-e 108.10 ± 19.47abc 

6.1.3 ORA 68.85 ± 9.00ab 44.38 ± 6.92b-e 113.00 ± 15.84bc 

6.1.3 ORB 74.57 ± 9.36b 45,91 ± 6.83cde 120.50 ± 16.06bc 

6.1.3 ORC 76.83 ± 10.97b 48.11 ± 6.60e 124.90 ± 17.06c 

6.1.3 OGA 74.62 ± 12.11b 45.31 ± 9.33cde 119.90 ± 21.35bc 

6.1.3 OGB 80.26 ± 8.00b 42.74 ± 10.27b-e 123.00 ± 18.28bc 

6.1.3 OGC 62.83 ± 6.13ab 37.72 ± 7.77a-e 100.50 ± 13.86abc 

Sig p<0.05   0.452 (ns) 0.064 (ns) 0.262 (ns) 

LSD
2
   24.97 12.61 33.44 

CV (%)
3  22.30 20.60 19.30 

 
Fertiliser (F)

4
 ns 0.001 ns 

CR Medium (G) ns ns ns 

vs Levels (C) ns ns ns 

Treatments F x G ns ns ns 

 
F x C ns ns ns 

 
G x C ns ns ns 

Sig.
5
   ns Q* Q* 

 
Fertiliser (F)

4
 0.024 0.004 0.013 

CG Medium (G) ns ns ns 

vs Levels (C) ns ns ns 

Treatments F x G ns ns ns 

 
F x C ns ns ns 

 
G x C ns ns ns 

Sig.
5
   Q* Q* Q** 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) – Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 
6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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3.2.11 Plant growth parameters 

Height – Plant height was significantly affected by fertiliser type (p<0.001) for both media, 

when treatments were compared with both controls (Table 3.12). Height increased linearly or 

quadratically with increasing fertiliser rate. Several treatments (NRC, NGB, PGB, PGC, 

LRB, LRC, LGC, ORA, ORB, ORC and OGB) produced significantly taller plants than both 

controls. (Fig.3.1). Plant height ranged from 19.84 cm to 40.39 cm.  

 
1. Means followed by the same letter do not differ significantly according to Duncans Multiple Range Test at p < 0.05.  

2. LSD – Least significant difference 

3. CV (%) – Percentage coefficient of variance 
4. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 

fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium 
 

 

Figure 3.1: Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic 

fertiliser treatment types (Polyfeed
®
 and Lawn and Leaf) applied at three concentrations, on 

mean height of Pseuderanthemum atropurpureum, grown in two growth media and compared 

with the two controls after a period of 90 days (DAP) 
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Number of leaves – Leaf number was significantly affected by fertiliser type (p<0.001) and 

growth medium (p=0.014 and p=0.022, for CR and CG, respectively; when treatments were 

compared with both controls Table 3.12). Organic Vitaboost (OGB) applied to the gromor 

media produced significantly more leaves than Polyfeed at all treatment levels in the randles 

growth medium (PRA, PRB and PRC) and significantly more leaves than Lawn and Leaf in 

randles growth medium at the lower treatment levels (LRA and LRB). Mean plant leaf 

number ranged from 21 in the gromor control to 54 in gromor amended with the highest 

Organic Vitaboost rate (OGC). The mean number of leaves increased with increasing 

fertiliser rate for most treatments (Fig. 3.2).  

 
1. Means followed by the same letter do not differ significantly according to Duncans Multiple Range Test at p < 0.05.  
2. LSD – Least significant difference 

3. CV (%) – Percentage coefficient of variance 

4. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 
fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium 

 
 

Figure 3.2: Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic 

fertiliser treatment types (Polyfeed
®
 and Lawn and Leaf) applied at three concentrations, on 

mean leaf number of Pseuderanthemum atropurpureum, grown in two growth media and 

compared with the two controls after a period of 90 days (DAP) 
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Leaf size - Leaf size was significantly affected by the fertiliser type (p=0.003 and p=0.004, for 

CR and CG comparisons, respectively (Table 3.12). Statistical analysis showed no significant 

effect of treatments on leaf size overall (p=0.115). Low organic Vitaboost amendments 

(ORA) produced significantly larger leaves on plants grown in randles growth medium than 

when lower Nitrosol levels (NRA and NRB) were used in the same medium (Fig. 3.3). Mean 

leaf area ranged from a low 11.99 cm
2
 for the randles control (CR) to 22.77 cm

2
 in the randles 

Organic Vitaboost low treatment (ORA).  

 
1. Means followed by the same letter do not differ significantly according to Duncans Multiple Range Test at p < 0.05.  
2. LSD – Least significant difference 

3. CV (%) – Percentage coefficient of variance 

4. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 
fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium 

 
 

Figure 3.3: Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic 

fertiliser treatment types (Polyfeed
®
 and Lawn and Leaf) applied at three concentrations, on 

mean leaf size of Pseuderanthemum atropurpureum, grown in two growth media and 

compared with the two controls after a period of 90 days (DAP) 
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Number of nodes - Mean plant node number was significantly affected by the fertiliser type 

(p<0.001) for both media as well as by the fertiliser level (p=0.017 and p=0.042 for CR and 

CG comparisons, respectively; Table 3.12). Overall statistical analysis showed significant 

differences (p=0.006). The plant node number ranged from 15.69 to 31.00 (OGB). In most 

treatments, the number of nodes increased with increasing fertiliser rate (Fig. 3.4).  

 
1. Means followed by the same letter do not differ significantly according to Duncans Multiple Range Test at p < 0.05.  

2. LSD – Least significant difference 

3. CV (%) – Percentage coefficient of variance 

4. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 

fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium 
 

 

Figure 3.4: Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic 

fertiliser treatment types (Polyfeed
®
 and Lawn and Leaf) applied at three concentrations, on 

mean node number of Pseuderanthemum atropurpureum, grown in two growth media and 

compared with the two controls after a period of 90 days (DAP) 
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Internode length - Mean internode length was significantly affected by the main effect of 

fertiliser type (p=0.011 and p=0.005) for CR and CG comparisons, respectively (Table 3.12). 

Statistical analysis showed no significant differences in internode length overall (p=0.136), 

although there were some treatments that were significantly different from the controls    (Fig. 

3.5). Mean internode length ranged from 1.54 cm (CR) to 2.95 cm (PGC).  

 
1. Means followed by the same letter do not differ significantly according to Duncans Multiple Range Test at p < 0.05.  
2. LSD – Least significant difference 

3. CV (%) – Percentage coefficient of variance 

4. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 
fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium 
 
 

Figure 3.5: Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic 

fertiliser treatment types (Polyfeed
®
 and Lawn and Leaf) applied at three concentrations, on 

mean internode length of Pseuderanthemum atropurpureum, grown in two growth media and 

compared with the two controls after a period of 90 days (DAP) 
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Number of branches - Branch number per plant was significantly affected by fertiliser type 

(p=0.033 and p=0.009) for comparisons to CR and CG, respectively and growth medium at 

(p<0.001) for both comparisons (Table 3.12). The overall statistical analysis showed 

significant differences at p=0.023. The number of branches of plants in grown in the randles-

containing media mixes was significantly lower in bark-based mixes (Fig. 3.6). The mean 

plant branch number ranged from 1.96 to 4.28 (OGB).  

 
1. Means followed by the same letter do not differ significantly according to Duncans Multiple Range Test at p < 0.05.  
2. LSD – Least significant difference 

3. CV (%) – Percentage coefficient of variance 

4. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 
fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vitaboost fertiliser, R – Randles growth medium, G – Gromor growth 

medium 
 

Figure 3.6: Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic 

fertiliser treatment types (Polyfeed
®
 and Lawn and Leaf) applied at three concentrations, on 

mean branch number of Pseuderanthemum atropurpureum, grown in two growth media and 

compared with the two controls 90 days after planting (DAP) 
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Table 3.12 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on Pseuderanthemum atropurpureum 

growth parameters compared to two controls at 90 DAP 

Type Treatment Height (cm) No of Leaves Leaf Size (cm2) No of nodes Internode Length (cm) No of Branches 

Control CR
6
 22.46 ± 6.91ab

1
 27.67 ± 8.25ab 11.99 ± 3.45a 17.77 ± 2.46ab 1.73 ± 0.45ab 2.32 ± 1.00abc 

Control CG 19.84 ± 9.22a 21 ± 11.53a 12.47 ± 4.46ab 15.69 ± 4.99a 1.54 ± 0.44a 1.96 ± 0.58a 

4.1.3 NRA 31.73 ± 9.51bc 39.40 ± 8.03b-e 12.33 ± 1.88ab 23.37 ± 2.90b-f 2.58 ± 0.89bc 3.09 ± 0.71a-f 

4.1.3 NRB 32.84 ± 9.45bc 44.14 ± 11.57cde 12.64 ± 2.19abc 24.64 ± 5.08b-f 2.22 ± 0.73abc 2.98 ± 1.02a-f 

4.1.3 NRC 37.95 ± 11.40c 45.99 ±11.97cde 19.28 ± 5.52a-d 26.69 ± 6.42e-f 2.62 ± 0.91bc 3.43 ± 0.47a-f 

4.1.3 NGA 28.02 ± 7.96abc 40.78 ± 8.24b-e 14.46 ± 4.36a-d 22.43 ± 3.93a-e 2.16 ± 0.53abc 3.20 ± 0.33a-f 

4.1.3 NGB 37.28 ± 11.22c 44.00 ± 3.06cde 19.72 ± 7.00a-d 25.62 ± 2.84c-f 2.78 ± 0.97c 3.79 ± 0.91c-f 

4.1.3 NGC 32.1 ± 7.06bc 48.68 ± 2.87de 18.74 ± 6.53a-d 28.69 ± 3.98d-f 2.66 ± 0.70c 3.72 ± 0.68b-f 

6.1.3 PRA 31.42 ± 8.54bc 30.67 ± 5.81abc 14.19 ± 2.86a-d 20.43 ± 4.51a-c 2.43 ± 0.86abc 2.27 ± 0.68ab 

6.1.3 PRB 33.05 ± 10.74bc 37.32 ± 7.94bcd 14.23 ± 3.38a-d 23.09 ± 4.40b-e 2.76 ± 0.95c 2.79 ± 0.61a-e 

6.1.3 PRC 34.58 ± 13.03bc 37.43 ± 12.51bcd 17.83 ± 5.46a-d 22.95 ± 5.65a-e 2.61 ± 0.68bc 2.50 ± 0.92a-d 

6.1.3 PGA 33.45 ± 8.31bc 38.33 ± 3.53b-e 18.30 ± 5.64a-d 24.38 ± 1.94b-f 2.84 ± 0.89c 3.30 ± 0.53a-f 

6.1.3 PGB 35.15 ± 10.15c 38.83 ± 2.07b-e 19.43 ± 6.56a-d 23.25 ± 2.96b-f 2.67 ± 0.89c 3.34 ± 0.13a-f 

6.1.3 PGC 36.03 ± 11.88c 38.60 ± 4.07b-e 20.13 ± 7.08a-d 23.42 ± 3.44b-f 2.95 ± 0.99c 3.39 ± 0.45a-f 

7.1.3 LRA 31.42 ± 10.72bc 33.16 ± 6.91a-d 15.14 ± 4.84a-d 21.25 ± 3.76a-d 2.50 ± 1.08bc 2.81 ± 0.61a-f 

7.1.3 LRB 35.12 ± 12.39c 33.33 ± 7.75a-d 21.32 ± 8.02a-d 22.81 ± 4.99a-e 2.52 ± 0.93bc 2.25 ± 0.45ab 

7.1.3 LRC 35.61 ± 12.04c 39.67 ± 8.88b-e 20.73 ± 7.44a-d 26.21 ± 6.02c-f 2.30 ± 0.75abc 2.88 ± 0.65a-f 

7.1.3 LGA 32.16 ± 8.58c 38.18 ± 3.16b-e 18.34 ± 6.61a-d 24.75 ± 2.46b-f 2.85 ± 1.08c 3.36 ± 0.26a-f 

7.1.3 LGB 34.12 ± 11.97bc 41.67 ± 2.19b-e 19.78 ± 7.57a-d 25.62 ± 2.56c-f 2.68 ± 0.82c 3.54 ± 2.29b-f 

7.1.3 LGC 36.82 ± 12.11c 46.89 ± 5.28cde 20.94 ± 7.87a-d 29.62 ± 5.04ef 2.44 ± 0.84abc 4.08 ± 0.58ef 

6.1.3 ORA 38.97 ± 13.27c 39.49 ± 9.42b-e 22.77 ± 8.15d 25.01 ± 4.19b-f 2.55 ± 0.87bc 2.77 ± 0.62a-e 

6.1.3 ORB 40.39 ± 15.50c 40.42 ± 12.21b-e 22.60 ± 8.36cd 27.07 ± 7.80c-f 2.82 ± 1.01c 3.01 ± 0.91a-f 

6.1.3 ORC 39.15 ± 14.71c 45.06 ± 12.49cde 22.06 ± 8.10bcd 27.21 ± 6.47c-f 2.48 ± 0.84bc 3.35 ± 0.71a-f 

6.1.3 OGA 34.76 ± 12.23bc 42.96 ± 4.28b-e 21.43 ± 8.22a-d 27.04 ± 2.96c-f 2.55 ± 0.81bc 3.71 ± 0.38b-f 

6.1.3 OGB 39.21 ± 12.31c 54.38 ± 5.33e 20.82 ± 7.49a-d 31.00 ± 5.92f 2.35 ± 0.65abc 4.28 ± 0.15f 

6.1.3 OGC 34.09 ± 12.10bc 48.01 ± 9.31de 20.77 ± 7.73a-d 27.39 ± 3.81c-f 2.34 ± 0.79abc 3.89 ± 0.11def 

Sig p<0.05 0.060 (ns) 0.009** 0.115 (ns) 0.006** 0.136 (ns) 0.023* 

LSD2 
 

10.38 13.76 8.15 6.38 0.77 1.21 

CV (%)
3  18.70 20.40 27.30 15.90 18.70 23.40 

 
Fertiliser (F)4 < 0.001*** <0.001*** 0.003** <0.001*** 0.011* 0.033* 

CR Medium (G) ns 0.014* ns ns ns <0.001*** 

vs Levels (C) ns ns ns 0.017* ns ns 

Treatments F x G ns ns ns ns ns ns 

 
F x C ns ns ns ns ns ns 

 
G x C ns ns ns ns ns ns 

Sig.
5
 

 
L*Q** Q*** ns Q*** L* Q** 

 
Fertiliser (F)4 <0.001 <0.001*** 0.004** <0.001*** 0.005** 0.009** 

CG Medium (G) ns 0.022* ns ns ns <0.001*** 

vs Levels (C) ns ns ns 0.042* ns ns 

Treatments F x G ns ns ns ns ns ns 

 
F x C ns ns ns ns ns ns 

 
G x C ns ns ns ns ns ns 

Sig.
5
 

 
L*Q** Q*** ns Q*** L* Q*** 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at p < 
0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  

3. CV (%) – Percentage coefficient of variance 
4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. Significant linear (L) or quadratic contrast at p < 0.05 (*), 0.01 (**) or 0.001 (***) across fertiliser types and growth media 

6. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 
Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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3.3 Discussion 

3.3.1 Analyses of irrigation water and growth media 

Irrigation water can be placed into various categories according to salinity and sodicity levels 

(Richard, 1954). The salinity level (EC) of irrigation water (24.32 mS·cm
-1

) used in this study 

fell into the lowest category (C1<250 mS·cm
-1

). The other categories (C2, 250 – 750   

mS·cm
-1

; C3, 750-2250 mS·cm
-1 

and C4, 2250 – 5000 mS·cm
-1

) are of decreasing fitness for 

use as salinity increases. The sodicity level (SAR) of irrigation water used in this study (1.21) 

also fell within the ‘low’ category (S1, 1-10). A concern of high sodicity levels is, that as 

concentrations of sodium in relation to calcium and magnesium in irrigation water increases, 

soil permeability decreases (Menezes et al., 2014). The other categories (S2, 10-18; S3, 18-26 

and S4 > 26) are therefore of decreasing suitability for use as irrigation water (Richard, 1954). 

The water used was, thus, very acceptable from a salinity as well as a sodicity perspective 

(Table 3.3); pH was, however, higher than the acceptable range of 5.4 to 6.8 for container 

production (Bailey et al,. 2005). No remedial action was taken as plants grown at Randles 

nursery were of good quality. Sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), 

total alkalinity (TA) and chlorine (Cl) concentrations (me·L
-1

) of the irrigation water were all 

below the recommended upper limits (Bailey et al., 1999) of 3, 6, 2, 0.26, 2 and 2 me·L
-1

, 

respectively. 

Results of EC (CR – 2.58, CG – 3.05 mS·cm
-1

) and pH (CR – 6.28, CG – 5.84) (Table 3.4) 

were within recommended ranges of 0.75 – 3.49 mS·cm
-1

 and pH 5.2 – 6.3, respectively 

(Abad et al., 2001), for growth media. The bark-based control had a higher EC and a lower 

pH than the soil-based growth medium control. Most mineral nutrients were present in higher 

concentration in the bark-based growth media (Table 3.4). The only exceptions were Fe and 

Cu, which were higher in the soil-based growth medium. The Carbon to Nitrogen (C:N) ratio 
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was similar between the growth media, with no likelihood of immobilization (at a C:N ratio 

>30:1) with no demand for immediate N treatment to growth media (Tripepi, 2014).  

Chemical properties, particularly N (0.43%), P (0.15%), Ca (1.03%) and Fe (25800 mg∙kg
-1

), 

of the commercial potting medium Metro-Mix 360 (Scotts, Marysville, Ohio) used by Atiyeh 

et al. (2001) were comparable to soil-based growth medium N, P, Ca, Fe concentrations in 

this study. The bark-based growth medium in this study had higher concentrations of N, P and 

Ca than soil-based growth media and Metro-Mix 360, except for Fe. In a later study, Atiyeh 

et al. (2002) reported lower Cu concentration and higher Mn and Zn concentrations in Metro-

Mix 360 than either of the growth media used in this study. Metro-Mix 360 contains a starter 

nutrient fertiliser and is formulated from soilless components (Canadian sphagnum peat moss, 

bark ash and sand). Approximate concentrations of nutrients required for healthy plant growth 

are N (1.4%), P (0.2%), K (1%), Ca (0.5%), Mg (0.2%), Fe (100 mg∙kg
-1

), Mn (50 mg∙kg
-1

 ), 

Zn (20 mg∙kg
-1

) and 6 mg∙kg
-1

 for Cu (Jones Jr, 2012); Fe, Mn, Zn and Cu concentrations 

(Table 3.4) were significantly higher than those recommended by Jones Jr (2012) in both 

growth media used in this study.   

Nutrients in both growth media used in this study were at acceptable levels when compared 

with commercial Metro-Mix 360 and those recommended by Jones Jr (2012), including Fe, 

Mn and Zn when compared with Metro-Mix 360, but not Cu in soil-based medium. Bunt 

(2012) suggested that Cu concentrations in potting mixes below 150 mg·kg
-1

 were not likely 

to result in toxicity. The soil-based growth medium Cu concentration was marginally over 

this limit (157.69 mg·kg
-1

), but was not a major concern given that the Cu concentration 

would decrease due to leaching into irrigation water, prior to first treatments. 
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3.3.2 Effects of fertiliser treatments on growth medium EC and pH  

Organic treatments improved growth and development of Pseuderanthemum atropurpureun 

to a similar and sometimes greater extent as the other conventional fertilisers considered to 

produce saleable plants. Growth media EC values of solutions obtained by the pour-through 

method showed similar trends at 60 DAP and at termination of the study (90 DAP), indicating 

that the amounts supplied had been used for plant growth. Statistically, EC results showed 

higher values following Organic Vitaboost treatments for both growth media, with the highest 

treatment concentrations significantly different (p<0.001), whilst the other treatments were 

similar at both sampling times. There were also significant interactions between the factors of 

fertiliser treatment and levels of treatment at termination (90 DAP). Electrical conductivity 

variations which occurred for Organic Vitaboost treatments in both growth media, were 

similar, but above the recommended range at the highest level of application.  

Bi et al. (2010) reported on two poultry-based organic fertilisers and an inorganic controlled-

release fertiliser for the production of marigolds in a growth medium that contained peatmoss, 

vermiculite and perlite (7.5:1:1.5 ratio by volume). The presented results       (Table 3.5) 

indicate that incorporated organic treatments may lead to high EC and that high EC may 

adversely affect plant growth. The same authors reported that poultry litter EC levels were 

significantly higher than those from the inorganic treatment and considerably higher at the 

highest concentration used. Poultry litter-based Organic Vitaboost applied at the highest 

concentration in this study resulted in EC levels that were also significantly higher than the 

inorganic Lawn and Leaf and Polyfeed treatments as well as Nitrosol organic treatment at all 

levels of treatment. The EC of Lawn and Leaf treatment was similar to that of liquid feeds 

(Nitrosol and Polyfeed). Bi et al. (2010) found, as in this study with leachate, that EC levels 

of growth media decreased over time..  
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 Ruter (1992), investigating the growth response of 'Burfordii' and 'Nellie R. Stevens' holly in 

pine bark and sand (4: 1 by volume) to multicoated controlled-release fertilisers, found a 

strong linear relationship between media NO3-N and EC values. . There were also similarities 

between NO3-N concentrations in both growth media and EC in this study. This was 

especially seen at the upper application rates of Organic Vitaboost, where nitrate seemed to 

affect EC and resulted in an interaction, evident when treatments were compared statistically 

to both controls (Table 3.5). Similar to Organic Vitaboost EC values, Organic Vitaboost 

treated growth media had NO3-N concentrations that were virtually higher than all other 

growth media NO3-N concentrations. This is also evident in leaf N concentrations, with 

Organic Vitaboost treatments generally increasing leaf N, even significantly so at upper 

treatment levels.  

The pelleted organic (Organic Vitaboost) and granular (Lawn and Leaf) inorganic treatments 

caused a greater decrease in pH from 60 DAP to termination (90 DAP), compared with the 

liquid feeds. This is in line with findings by Fisher and Argo (2003) that soilless growth 

media offer less pH-buffering capacity than soil and soil-based growth media. Goh (1979) 

found that the presence of soil in peat-sand-soil growth media buffered drastic changes in pH. 

This was not as evident in pH results from fertiliser treatments at 60 DAP as at 90 DAP, 

comparing soil-based and bark-based (soilless) growth media used in this study. Changes 

were more gradual in the soil-based (90 DAP), more drastic in the same media at 60 DAP and 

in bark-based media 90 DAP (Table 3.5). The pH of a growth medium affects solubility and 

availability of plant nutrients and thereby impacts nutrient uptake (Fisher and Argo, 2003; 

Adriaanse, 2013). These drastic pH changes did, however, not affect leaf N concentrations, 

which increased linearly with increasing treatment levels (Table 3.9).  
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Organic Vitaboost applied to gromor at twice amended rate (OGC) resulted in a significantly 

higher NH4-N concentration at termination of this study. Leachate displayed the lowest pH at 

both, 60 DAP and 90 DAP. The lowered pH may have been due to NH4-N uptake (Argo and 

Biernbaum, 1997; Silber and Bar-Tal, 2008). The critical pH range for the inhibition of 

nitrification, whereby NH4-N is oxidised to NO3-N, is 5.4 – 5.7 and may explain the 

significant difference between the pH for OGC at 5.67, while the other treatments were 

characterised by significantly higher pH.  

At 60 DAP bark-based growth media displayed pH values significantly lower than those of 

soil-based growth media. The reasons why are not clear as analysis for growth media NO3-N 

and NH4-N did not take place at 60 DAP, but may be related to lower pH values typical of 

bark and peat moss compared to mineral soil (Wada, 2005) and this was the case in start pH 

unit values. Bark based growth media initial pH values were lower than soil based growth 

media. Results for pH at 60 DAP in this study, which had decreased in general, were 

comparable to results obtained before termination of the study by Bi et al. (2010) and Ostrom 

(2011) and pour-through extraction results from Wright et al. (1990), but not final pH values 

in this study which were quite variable at termination of the study. 

 The N in leachate solutions from growth media, as determined by pour-through extraction, 

was similar among treatments. The variability in pH between treatments may have been 

solely due to variations in NO3-N uptake, as the effects of growth media on NH4-N 

concentrations were relatively similar at final sampling, albeit significantly different between 

the growth media types (Table 3.6).  

3.3.3 Effects of fertiliser treatments and growth media on medium fertility  

Effects from fertiliser treatments used in this study on growth medium fertility were 

significantly affected by growth media type. Soil fertility, or availability of nutrients in the 
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growing medium for plants, is typically expressed as the concentration of dissolved N or P in 

soil or total N (TN) or total P in soil (Fujita et al., 2013). There were similar, significant main 

effects for the factor growth medium type relating to TN and TP. Concentrations of both were 

significantly higher in the bark-based growth media (gromor) than in the soil-based growth 

media (randles). Like TP, PO4-P, exhibited significant main effects for the factor growth 

medium and was also significantly different for the main effect factor, fertiliser type.  

Additionally, significant main effect growth medium differences were found in NH4-N 

concentrations of growth media tested (Table 3.6). There were significantly higher NH4-N 

concentrations in pine bark-based media than in soil-based growth media. These significant 

differences may be explained by similar growth media adsorption capacity and pH. Knowles 

et al. (1993), Jarvel (1996) and Yu and Zinati (2006) have reported on pine bark capacity to 

adsorb NH4-N. Foster et al. (1983) showed that NH4-N adsorption to pine bark increased with 

an increase in pH of growth media. Although NH4-N concentrations were not strongly 

correlated with pH (not statistically tested), the degree of significant difference between the 

two media with respect to NH4-N was quite high at p<0.001. 

 In a study evaluating the release characteristics of a range of slow- and rapid-release nitrogen 

(N) fertilisers in potting mixes contained in PVC (polyvinyl chloride) columns, greater levels 

of NH4-N compared with NO3-N in leachate were found in a peat-sand-sawdust medium and 

very low levels of NH4-N in a peat-sand-soil medium (Goh, 1979). The significant growth 

media main effect differences in TN concentrations appeared to be more related to those of 

NH4-N, as NO3-N was not significantly different in growth media (Table 3.6).  

There appeared to be a correlation (not statistically tested) between TP, PO4-P and P     (Table 

3.6), all determined by leachate extraction and any differences may be a result of 

experimental error. Merhaut et al. (2006), in a simulated plant production cycle, found that 
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leachate TP concentrations extracted from a peatmoss, pinebark and sand (5:4:1 ratio) growth 

media mix prepared separately with four controlled release fertilisers at equal rates of N, 

averaged below 10 mg TP·L
-1

 in the last 27 weeks of a 47 week study. Results in this study 

showed bark based media solution TP concentrations range from 6.77 mg·L
-1

-16.05 mg·L
-1

 at 

termination with an average of 9.97 mg·L
-1

 (Table 3.6); TP concentrations in soil-based 

media were much lower in general. Zinati et al. (2011) investigated leachate PO4-P 

concentrations, extracted from a pinebark, Canadian sphagnum peatmoss, and builders sand 

(8:1:1 ratio) media and fertilized at recommended and half-label rates with Polyon controlled 

release fertiliser. The authors found leachate PO4-P, whilst growing Leucothoe axillaris and 

Pieris japonica, showed mean values of 8.35 mg·L
-1

 and 3.91 mg·L
-1

 and 8.64 mg·L
-1

 and 

3.32 mg·L
-1

, respectively in such media. These label rate concentrations were comparable to 

the gromor bark-based treatment results and the half label concentrations to the gromor 

control results in this study, except for OGC (Table 3.6). P concentrations in bark-based 

media leachates were about twice as high as those of soil-based media, in agreement with 

Raymond (2004) who evaluated soilless and soil-based media. The significant differences in 

leachate TP, P and PO4-P may also be explained by growth media adsorption capacity. 

Williams and Nelson (2000), Scagel (2003) and Oh et al. (2016) reported that soilless growth 

media, such as bark, have little ability to hold P due to low sorption capacities.  

Adsorption–precipitation and desorption–dissolution reactions regulate the removal of 

nutrients from, or release into, the soil solution (Comerford, 2005). Concentrations of K, Ca, 

Mg, Fe and Cu were significantly higher in leachate extracted from randles growth media 

than from gromor-based media leachate (Tables 3.8 and 3.9). Concentrations of Mn (0.1-1 

mg·L
-1

 suggested by Silber and Bar-Tal (2008) and 0.02-3 mg·L
-1

 suggested by LeBude and 

Bilderback (2009) and Zn (0.01-0.1 mg·L
-1

 suggested by Silber and Bar-Tal (2008) as well as 
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0.3-3 mg·L
-1

 suggested by LeBude and Bilderback (2009) far exceeded the recommended 

range in all extracted leachate from all fertiliser treatments (Table 3.8).  

 Plants in low-pH growth media may experience toxicities in Fe, Mn, Zn and Cu along with 

deficiencies in Ca or Mg (Mathers et al., 2007). The pH values were within recommended 

limits (5.2 – 6.3) proposed by Abad et al (2001) at 90 DAP or mostly higher at 60 DAP 

(Table 3.5). Calcium was however, below the recommended range of 40-200 mg·L
-1

 

suggested by Silber and Bar-Tal (2008) and LeBude and Bilderback (2009) in the bark-based 

media CG, NGA, PGA, PGC. Magnesium was below the recommended range of 10-50 mg·L
-

1
 as suggested by Silber and Bar-Tal (2008) and LeBude and Bilderback (2009) in NGA and 

PGA (Table 3.7). Magnesium is a part of the chlorophyll molecule and as such a key element 

of photosynthesis and is also required for protein synthesis whilst Ca is used to stabilise and 

strengthen cell walls and plant tissue; a severe lack of these elements will impact plant growth 

adversely (Marschner, 2011). This did not appear to be the case on plant growth parameters 

tested. 

Fe and Cu leachate concentrations also exceeded the recommended range. The Fe 

concentrations in all solution analysed were much higher than 0.3-3 mg·L
-1

 suggested by 

LeBude and Bilderback (2009) and the 0.5-3 mg·L
-1 

suggested by (Silber and Bar-Tal, 2008). 

Mean Cu concentrations, including the controls, were above the sufficiency range (0.001-0.01 

mg·L
-1

) suggested by Silber and Bar-Tal (2008) and the sufficiency range (0.01-0.5 mg·L
-1

) 

suggested by LeBude and Bilderback (2009). Smith et al. (2004) stated that Fe and Mn are 

mutually antagonistic and excess soluble Fe or Mn can suppress the uptake of the less soluble 

nutrient. There did not appear to be any suppression to deficient levels in this study, as 

suggested by Smith et al. (2004). 
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 It would, however, appear that these growth media effects are more due to cation competition 

for sites within growth media than effects of leaching carrying nutrients with it and that Mn 

and Zn were significantly desorbed from exchange sites in the bark-based media (Table 3.8). 

Dominy (2010) reported competition for Zn
2+

 uptake by Cu
2+

, Fe
2+

 and Mn
2+

, as these cations 

are of similar ionic size, and, therefore, compete for Zn
2+

 exchange sites. It has been stated 

that Zn availability is significantly reduced at higher pH levels (pH > 6.5). The same research 

stated that Mn
2+ 

exhibits similar characteristics to other divalent cations and competition for 

uptake with Mg
2+

 and Ca
2+

 is common, whilst Mn
2+

 availability can be limited at higher soil 

solution pH levels (pH levels > 6.5). In this study Ca and Cu leaf tissue concentrations were 

significantly higher from soil based treatments, Mn and Zn leaf tissue concentrations 

significantly higher from bark based treatments whilst Mg and Fe leaf tissue concentrations 

were similar between the two growth media after a period of 90 days (Tables 3.10 and 3.11). 

Since all pH unit values at 90 DAP were ˂ 6.5, it would appear that Mn and Zn were more 

strongly bound to exchange sites in soil-based growth media.  

Significantly higher concentrations of P were also found in leaf tissue of plants grown in 

gromor growth media compared with those in randles growth media (Table 3.9), Reasons 

why significant differences between growth media did not extend to leaf tissue concentrations 

for K, Mg and Fe may be explained by cation competition. Uptake processes of Mg, K, and 

Ca are strongly antagonistic, Mg being the nutrient of the lowest uptake preference       

(Farhat et al., 2015; Farhat et al., 2016). Significant and excessive Ca leaf tissue of plants 

grown in the studied media would suggest that Ca influenced the uptake of K and Mg, but not 

reducing these elements to deficient levels, as the concentrations for these elements in leaf 

tissue were similar between treatments and within the sufficiency range (Table 3.9). The same 
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principle may explain why Mn leaf tissue concentrations were significantly different as 

affected by growth media, while Fe leaf tissue concentrations were not. 

3.3.4 Effects of growth media on Pseuderanthemum atropurpureum growth  

There were significant main effects of growth media on leaf number and branch number 

(Table 3.12). Plants grown in media containing gromor potting mix produced more leaves and 

more branches than those grown in the randles potting mix. The significantly higher number 

of branches of plants grown in the gromor media may have been related to the significant 

main effects of NH4-N in gromor media compared with the randles media. Handreck and 

Black (2002) suggested increasing the NH4-N proportion of N in the fertiliser treatment, if 

more shoot growth is desired. Raymond (2004) stated that growers focus on NH4-N nutrition 

in the early stages of plant growth in order to achieve lush green growth, including greater 

leaf expansion and stem internode length. Leaf size and height differences, however, were not 

significantly affected as a result of growth media. 

Insufficient P impacts, to a relatively greater extent, on leaf number by reducing the time to 

new leaf appearance (Atwell, 1999). Significantly higher concentrations of P may have 

resulted in significantly more leaves and leaf tissue concentrations of plants grown in gromor 

media. The treatments producing the highest number of leaves (NGC, OGB and OGC) were, 

however, only significantly different from the two controls and PRA. 

 3.3.5 Effects of treatments on Pseuderanthemum atropurpureum growth  

Mineral elements in foliage were generally within the sufficiency range (Table 2.1)        

(Silber and Bar-Tal, 2008). Plant nutrient (especially NO3-N) uptake resulted in higher levels 

of leaf N concentrations from Organic Vitaboost treatments than from the other treatments.  
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The strong relationship between leaf chlorophyll content and leaf N content is well 

documented and chlorophyll is one of the indices in photosynthesis (Bojović and Stojanović, 

2005;  Yang et al., 2009). Incorporation of higher Organic Vitaboost leaf N did, however, not 

result in significantly higher leaf chlorophyll a or b concentrations (Table 3.11). Leaf 

chlorophyll a concentrations (Table 3.11.) were similar between treatments, but leaf 

chlorophyll b appeared more correlated with leaf N concentrations. 

Organic Vitaboost (OGB) produced significantly more leaves, significantly more branches 

and significantly more nodes (p=0,009, p=0.006 and p=0.023, respectively). Results for leaf 

size in the Organic Vitaboost (OR and OG) treatment groups and for internode length in the 

commercial fertiliser (LG treatment group) decreased linearly (Fig, 3.3, 3.5). The decrease in 

certain plant growth parameters before increasing again may have been due to a reduction in 

available NH4-N. The decrease in internode length from the medium Polyfeed application rate 

(PGB) compared to lower and higher rates (PGA and PGC), corresponds to the highest pH 

result in this study at termination (Table 3.5) and reduced NH4-N concentration in growth 

media. Ammonium nutrition increases internode length (Raymond, 2004).  

The second experiment conducted during the winter period (July, August and September) had 

lower temperatures which affected growth rate and resulted in larger standard errors. Randles 

combined with Nitrosol increased plant growth parameters in all treatments with increasing 

fertiliser rate, except for the number of branches produced and internode length and warrants 

a repeat investigation to determine if results are similar.  Combining ‘gromor’ with Lawn and 

Leaf treatment increased plant growth parameters in all treatments with increasing fertiliser 

rate, except for internode length and warrants further investigation as it does not contain all 

essential plant nutrients. These would have been supplied by the growth medium initially. It 

appeared that randles supplied with Organic Vitaboost will only produce more leaves and 
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more branches at higher concentrations than those used in this study. Similarly, Polyfeed will 

only increase plant height, leaf size and the number of nodes at higher concentrations than 

those used in this study in either of the growth media used. Increasing the concentration of the 

fertilisers used in this study would require careful consideration. This could be of concern due 

to possible eutrophication of freshwater systems as a result of surface runoff or soil 

infiltration. South African standards for effluent discharge restricts NO3-N to <10 mg·L
–1

 and 

PO4-to <10 mg·L
–1

 for land discharges whilst PO4-P discharges to watercourses is restricted 

to 1 mg·L
–1

. Growth media NO3-N concentrations could potentially exceed 10 mg·L
–1

 in 

leachate due to its anionic nature as several treatments contained more than this. Phosporous 

species are however the limiting nutrient in freshwater systems in South Africa. Bark medium 

Polyfeed (PGC - 12.34 mg·L
–1

 PO4-P) and Organic Vitaboost (OGC – 14.51 mg·L
–1

 PO4-P) 

exceeded the 10 mg·L
–1

. 

3.3.6 Effects of organic and inorganic fertiliser treatments on plant growth  

There were no significant differences between organic and inorganic fertiliser effects on the 

determined plant growth parameters of height, leaf size and internode length. Pelleted 

Organic vitaboost (OGB) added to the gromor medium produced significantly more leaves 

than addition of the liquid, inorganic treatment Polyfeed, at all levels of treatment in randles 

growth medium (PRA, PRB and PRC) and significantly more leaves than the granular 

inorganic treatment, Lawn and Leaf, in randles growth media at the lower levels of treatment 

(LRA and LRB). Organic vitaboost (OGB) added to the gromor medium produced 

significantly more branches than the inorganic treatment, Polyfeed, at all levels of treatment 

when added to the randles medium (PRA, PRB and PRC).  

Similarly, OGB resulted in significantly more branches than the randles inorganic treatment, 

Lawn and Leaf (LRA). Organic vitaboost (OGB) added to the gromor medium produced 
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significantly more nodes than the inorganic treatment, Polyfeed, at all levels of treatment in 

randles growth medium (PRA, PRB and PRC) and significantly more nodes than randles 

inorganic Lawn and Leaf (LRA and LRB). Results in this study were mostly consistent with a 

decrease in height, number of leaves and leaf size when the level of Organic vitaboost 

exceeded the intermediate rate, whilst Lawn and Leaf fertiliser mostly increased these growth 

parameters further (Table 3.12).  

Mbangcolo (2008), evaluating the effects of organic fertiliser and cutting position on 

Cyclopia species grown in fine pinebark and river sand (1:1 ratio by volume), found that 

Nitrosol applied at two rates (1.67 ml·L
-1

 and 3.33 ml·L
-1

), significantly affected plant height 

and the number of shoots produced among other parameters tested when compared with a 

control in that study. In this study, results were similar for Nitrosol treatment when comparing 

height and number of branches in that NGB and NGC produced significantly taller plants and 

significantly more branches than the gromor control. 

 Bi et al. (2010) found that only the inorganic treatment increased plant growth characteristics 

with increasing fertiliser rate and that the organic treatments (poultry litter) responded linearly 

or quadratically. Results were similar in this study (Table 3.12), although the growth media 

used differed. Bi et al. (2010) reported that growth of French marigolds (Tagetes patula L. 

‘Janie Deep Orange’) varied and suggested that such variation may be the result of 

differences in nutrient availability and mineralisation rates of various nutrient fractions under 

the environmental and horticultural conditions of a particular study. Treatments effects in this 

study increased plant growth parameters or showed luxury consumption at higher treatment 

concentrations as also reported by Bi et al., (2010). 

Statistical analysis of variance of fertiliser treatments only, based on the average of means of 

all plant growth parameters determined, showed the following overall effect in order on plant 
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growth: Organic Vitaboost (23.18
b
) > Nitrosol (20.78

a
) > Lawn & leaf (20.52

a
) > Polyfeed 

(19.47
a
) with means separated by Duncan’s multiple range test at p<0.05. This suggests that 

Organic Vitaboost was superior to the other treatments in effects on plant growth. Results 

however, by parameters assessed, indicate that the effects of treatment were more similar. 

This may have been as a result of N being equilibrated. Bojović and Stojanović (2005) stated 

that, amongst all nutrients, N has the greatest influence on plant growth and leaf development, 

with P, and to a lesser extent by K. The results of this study may be of importance to a 

Grower of Pseuderanthemum or plants from the same Family, who is seeking more shoots 

and more leaves from his crop. 

3.4 Conclusions 

Organic and inorganic fertilisers used in this study enhanced plant growth, especially when 

compared to the soil based growth medium control (randles) and the bark based growth 

medium control (gromor). Plants were at a marketable size after a period of 90 DAP and of 

acceptable quality visually at the termination of this experiment.  

The objective of this study was to determine which of the organic or inorganic fertilisers used 

in study was more desirable for its effects on plant growth. Some treatments showed 

significance for some parameters tested. Results from this study would suggest that 

Pseuderanthemum atropurpureum be grown at the lowest fertiliser concentrations used in this 

study in either of the growth media, as there was no single treatment which showed 

significant differences for all plant growth characteristics measured at all levels of treatment.  
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Figure 3.7: Google earth image of Randles Nursery where this study took place 
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CHAPTER 4 

Effects of organic and inorganic fertilisers on growth media leachate 

composition under Pseuderanthemum atropurpureum production 

 

Abstract  

In South Africa, agriculture is considered to be a major contributor to eutrophication, but little 

is known of the contribution by the greenhouse and nursery industry. Nutrients, especially N 

and P, are readily leached in container production systems which may potentially result in 

nutrient over-enrichment of freshwater ecosystems, followed by algal blooms or harmful algal 

blooms. Leachates from container production systems are mostly analysed for nutrient 

content and pollutants due to recognised impacts on the environment, but not for chlorophyll 

and algal composition. A tunnel pot experiment was, therefore, conducted to evaluate the 

effects of organic and inorganic fertilisers and the rate of application and soil- as well as bark-

based growth media on leachate composition. Nitrogen equilibrated treatments were 

administered to the two growth media in a 4 x 3 x 2 (fertiliser type x fertiliser concentration x 

growth media) factorial design in a completely randomised layout with a control for each 

growth media.  Leachate from container grown Pseuderanthemum atropurpureum was 

extracted using the pour-through method at termination of the study (90 DAP) for laboratory 

determination of TP, PO4-P, Al, Ca, Fe, N, Mg and P concentrations. Extracted leachate was 

also filtered and used to determine algal chlorophyll a (PChl a) concentrations and to identify 

the prevalence of algal organisms. Growth media samples were used for laboratory 

determination of TN and NO3-N and SEM-EDX qualitative analysis of Al, Ca, Fe, Mg, P, and 

Si. Soil-based growth media leached significantly more Al, Ca, Fe and Mg than bark-based 

growth media which leached significantly more TP, PO4-P and P than soil-based growth 
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media. Concentrations of leached PO4-P from all bark-based treatments and soil-based 

Organic Vitaboost treatments were above the permissible limit of 1 mg·L
-1

 for direct 

discharge into a freshwater ecosystem or surface water courses in South Africa. Leached N 

was similar between treatments. Growth media NO3-N concentrations were significantly 

higher under the higher application rates of Organic Vitaboost to both growth media and 

represent a potential for increased NO3-N leaching. The low presence of microalgae was most 

likely influenced by irrigation, followed by leaching during the course of the study, as PChl a 

concentrations at the end of study had decreased from initial concentrations. Diatoms 

identified, except for Microcostatus, represented those found in a variety of conditions in 

freshwater systems, including Nitzschia amphibia Grunow and Navicula veneta Kützing, both 

organisms associated with eutrophic waters. The implications from this study are that leachate 

NO3-N and forms of P as well as algal content from nurseries may potentially result in over-

enrichment and increased algal biomass of surface water. 

Keywords: Fertiliser, growth media, leaching, eutrophication, algae 
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4.0 Introduction 

Successful agricultural and horticultural plant production requires a continuous supply of 

uncontaminated water, but also impacts on quality and availability of freshwater        

(Bonacin et al., 2015). Commercial production systems in the greenhouse and nursery 

industries are highly intensive and utilise large quantities of water and nutrients to enhance 

plant growth and ensure crop production of high value and quality (Taylor et al., 2006; 

Dennis et al., 2010).  

Greenhouse and nursery produced plants are grown almost exclusively in soilless growth 

media (Margenot et al., 2018). Nutrients are however readily leached from soilless growth 

media compared to soils due to its higher porosity and lower anionic and cationic properties 

(Majsztrik et al., 2011). Nutrients that have leached, particularly Nitrogen (N) and 

Phosphorous (P), can result in the contamination of groundwater and eutrophication of 

receiving surface waters through runoff (Juntunen et al., 2003; Alem et al., 2015; Majsztrik et 

al., 2017). Eutrophication causes an increase in phytoplankton biomass and has been aligned 

with a number of environmental problems (Kyewalyanga, 2015), including algal and harmful 

algal blooms (Van Ginkel, 2011).  

Toxic cyanobacterial blooms dominate eutrophic freshwater systems in South Africa in the 

warmer seasons (Van Ginkel, 2004), brought on by nutrient enrichment. Phosphorus is 

usually the limiting factor in South African freshwater systems for eutrophication (Lai, 2013) 

and initiatives to curb the release of P into freshwater systems have been advocated. The 

Environmental Protection Act (No. 44 of 2003) limits land and underground reactive             

P (PO4
3-

)
 
discharge to 10 mg·L

-1
. The current standard for surface water course and point 

source effluent discharge is 1 mg·L
-1

 P (Pillay, 1994; Van Ginkel, 2011). There does not 

appear to be any literature on specific nutrients and amounts leached from greenhouse and 
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nurseries operations or from agricultural production systems in South Africa. Studies have 

taken place in America which has reported on concentrations of nutrients that are leached into 

the environment. For instance, Nitrate-N concentrations in surface runoff from nursery and 

greenhouse operations have been reported to lie between 1.6 and 55mg L
-1 

(Taylor et al., 

2006). Phosphate concentrations in samples taken from nursery drainage areas ranged from 

0.60 mg·L
-1

 during the winter to 144 mg·L
-1

 during the growing season (Sharma et al., 2008).  

Broschat (1995) investigated environmental impact from controlled-release, liquid and 

granular slow release fertiliser leachate and reported lower primary nutrient losses from 

controlled release fertilisers. Few studies have compared the effects of organic and inorganic 

fertilisers on leachate content (Altland et al., 2000; Carpio et al., 2005). Fertiliser type (liquid 

or soluble granular, organic or inorganic) may significantly affect the amount of N and P 

leached, as surface runoff, over the course of a study as a consequence of growth media type. 

Rainfall (intensity and duration) and hydrological factors in the watershed principally 

influence the nutrient loading of N (Durand et al., 2011) and P (Ojwando, 2014) to freshwater 

ecosystems. A key implication for freshwater management from the findings of Sun et al. 

(2018) suggests that all hydrological variables should be taken into consideration for bio-

monitoring protocols. Chlorophyll a concentrations in surface runoff (Johnson and Gerald, 

2006) have been little researched. Nutrients in leachate from container production have been 

widely investigated (Merhaut et al., 2006; Alem et al., 2015; Shreckhise et al., 2018) but not 

the microalgae that are contained therein nor its chlorophyll a concentrations. 

The addition of soil to growth media increases P retention in the medium (Logsdon, 2017). 

Soils containing, or amended with, Si have good adsorption capacity and reduced P leaching 

(Matichenkov et al., 2001). Goh (1979), Raymond (2004) and Logsdon (2017) appear to be 

the only studies found in available literature, comparing the effects of soilless and soil-
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containing growth media, on nutrient leaching. There does not appear to be any study 

comparing leachate concentrations under the application of organic liquid, organic pelletised 

chicken litter, inorganic granular and inorganic liquid fertilisers to soilless and soil based 

growth media. 

 It was therefore investigated if organic or inorganic fertilisers, at varying rates, affect the 

nutrient leachate with respect to N and more especially P, as P is mostly instrumental in 

freshwater eutrophication. Additionally, the leachate content from soil and soilless          bark-

based growth media used to grow potted Pseuderanthemum atropurpureum was determined 

to grasp, if fertiliser applications in nurseries and algal organisms in leachate could potentially 

contribute to eutrophication. 

The objectives of this study were, therefore, to  

 determine N and P forms, chlorophyll a (PChl a) concentrations as well as the 

concentration of the mineral elements Al, Ca, Fe and Mg in nursery container 

leachate, 

 determine concentrations of total phosphate and orthophosphate (PO4-P) in leachate 

and growth media TN and NO3-N concentrations, 

 detect Si, P, Al, Ca, Fe, and Mg in growing media using a scanning electron 

microscope (SEM) and identify soil algal organisms in leachate using SEM as well a 

phase contrast light microscope. 
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4.1 Materials and methods 

4.1.1 Study site 

This research project was carried out at Randles Nursery (latitude 29°49'22''S, longitude 

30°58'47''E), Durban, South Africa).  

4.1.2 Growth medium preparation and analysis 

Two basic growth media were used. A soil-based growth medium, a blended mix consisting 

of topsoil, compost and river sand (1:1:1, v/v/v) (herein referred to as “randles”). The topsoil 

and river sand were acquired locally by Randles nursery and the compost was supplied by 

Gromor® (Cato Ridge, KwaZulu-Natal). The media components were thoroughly hand-

mixed before potting up. The gromor medium was a commercial blend consisting of 

composted pinebark and 10% river sand, also purchased from Gromor®. The supplier usually 

adds up to two percent Accelerator® poultry litter fertiliser fines to bring the EC up to 2.4 

(Jan van Vuuren, Gromor, personal communication, 2015). These two growth media served 

as the controls. 

Samples of all growth media mixes were sent to laboratories at the Soil Fertility and 

Analytical Service Section, KZN Department of Agriculture and Rural Development, Cedara, 

for total nitrogen, inorganic nitrogen (nitrate - NO3-N and ammonium - NH4-N) and mineral 

nutrient content as well as soil texture analysis. These growth media parameters (TN, NO3-N 

and NH4-N) were again determined at termination of the study (90 days after planting 

(DAP)). 

Total N was analysed by the automated Dumas dry combustion method using a LECO CNS 

2000 analyser (Leco Corporation, St. Joseph, MI) which measures total carbon, nitrogen and 

sulphur in soils. Both, NO3-N and NH4-N were measured in filtered extracts by segmented 
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flow analysis with a Perstorp Flow Solution III analyser using the sodium salicylate - sodium 

nitroprusside-hypochlorite method for NH4
+
- N (Perstorp Analytical, Warrington, UK) and 

the sulphanilamide-naphthyl-ethylenediamine method for NO3
-
- N after having reduced 

nitrate to nitrite with copperized cadmium wire (Willis and Gentry, 1987).  For mineral 

element analysis, samples were dried at 105°C and milled to pass through a 0.84 mm sieve.  

Subsamples were then dry-ashed at 450°C overnight and taken up in 1 M HCl. Minerals (P, 

K, Ca, Fe, Mg, Cu, Mn and Zn) were determined by inductively coupled plasma optical 

emission spectrometry (ICP-OES). Soil texture analysis involved determination of the 

suspended clay and fine silt content after dispersion and sedimentation, while sand fractions 

were determined by sieving. Once the particle size distributions of the soils was known, their 

textural class was determined from a textural triangle defining particle size limits of the 

various textural classes (Manson and Roberts, 2000). 

4.1.3 Plant preparation 

Cuttings were prepared from plant material sourced from large container-grown 

Pseuderanthemum atropurpureum plants at Randles nursery. Cuttings were rooted in flat 

seedling trays (no cavities) filled with washed river sand and kept under manually operated 

mist in a greenhouse at the Durban University of Technology nursery with no temperature 

control. Cuttings were ready for potting in either of the growth media once sufficient root 

mass had developed. 

4.1.4 Production environment 

This project was carried out in a tunnel covered with 40% black shade cloth. Rooted cuttings 

were potted into 3 L black plastic growing bags and placed on the north-facing side of the 

tunnel on black plastic sheeting on top of a layer of gravel to prevent weed growth. Plants 

were labelled according to rows and separately colour coded according to each of the four 
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fertiliser treatments and concentrations for ease of identification. This tunnel had no climate 

control and temperatures in the structure varied over the experimental period. The experiment 

in this study was repeated three times with the second conducted mostly during winter (July, 

August and September). Minimum temperatures were significantly lower during this period in 

comparison to the other experiments. Mean minimum and maximum temperatures for 

replications 1, 2 and 3 were 20.90°C
min

 and 27.76°C
max

, 12.76°C
min

 and 25.14°C
max

 and 

20.31°C
min

 and 29.75°C
max

 with temperature ranges recorded for the same periods   

18.13°C
min

 – 31.5°C
max

, 8.67°C
min

 – 27.83°C
max

 and 16.08°C
min

 - 36°C
max

 respectively. The 

variance in temperature between the three experiments was accounted for by checking the 

blocks box and entering the column data containing the three experiments in the box 

alongside, as a blocking factor prior to running Genstat ANOVA analysis of data. 

4.1.5 Experimental design 

The experiment was laid out as randomized complete block design in a 4x3x2 factorial design 

(fertiliser type x fertiliser level x growth media) with a control for each of the two growth 

media used. In total, 208 Pseuderanthemum atropurpureum plants in either growth medium 

were randomly divided (blocking) into two batches of 13 groups including a control group for 

each growth medium, with eight plants per group (row) and each group representing an 

experimental unit. The batches (two) were staged within adjacent areas measuring 3.5 m x 1.5 

m and laid out in rows on either side of a 1 m pathway. Each group received either an N 

equilibrated organic or inorganic fertiliser treatment based on half, recommended or double 

the recommended rate, except for the two controls. There were seven fertiliser treatments per 

trial (Table 4.2). The experiment was repeated three times (3 trials). 



145 

 

4.1.6 Plant treatment  

The fertiliser treatments included two organic and two inorganic fertilisers. Fertiliser 

application rates were equilibrated according to N as the N content of the four fertilisers used 

in this study varied (Table 4.1). For the dosage rates of the treatments, the average nitrogen 

content of the four fertilisers used in the pot experiment was calculated, and fertiliser 

treatments were adjusted according to their N concentration. This had the effect of either 

increasing or decreasing the stipulated dosage rate and, therefore, also the concentrations of 

the other mineral elements. Comparisons were made between Nitrosol
®
, Wonder

TM
 Organic 

Vita Boost, Wonder
TM 

Lawn and Leaf, Polyfeed
®
 at three concentrations in two types of 

growth media. 

Nitrosol
®
 (NPK analysis 4:1:3 (16)), an organic liquid water-soluble fertiliser, is formulated 

using sterilised blood, bone and carcass meal. It is manufactured by Envirogreen (Pty) Ltd for 

Fleuron
® 

(Pty) Ltd. Nitrosol
®
 solution (200ml∙pot

-1
) was applied to each plant every two 

weeks at 2.61 ml∙L
-1

, 5.22 ml∙L
-1

 and 10.44 ml∙L
-1

  as 1/2 label rate, label rate and 2 x label 

rate, respectively (Table 4.2). This liquid treatment also contained other macronutrients, as 

well as micronutrients and gibberellic acid (Table 4.1).  
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Table 4.1. Source and amount (by weight) of macronutrients and micronutrients in Nitrosol
®
, 

Lawn and Leaf, Polyfeed
®
 and Organic Vitaboost fertilisers 

Trade name Nitrosol
1
 Lawn and Leaf Polyfeed Vitaboost 

Formulation 4:1:3 7:1:3 6:1:3 6:1:3 

N g/kg 80 95 266 60 

P g/kg 20 14 44 13 

K g/kg 58 41 134 27 

Ca g/kg 6 - - 25.3 

Mg g/kg 7 - 4 6.4 

S g/kg 4 - 5.3 - 

Fe mg/kg 60 - 751 4452 

Mn mg/kg 40 - 273 517 

Zn mg/kg 1 - 699 319 

Cu mg/kg 1 - 75 68 

B mg/kg 23 - 1054 - 

Mo mg/kg 15 - 63 - 

1 – Nitrosol also  contains Gibberellic acid at 0.003 g·kg-1 

 

Wonder
TM

 Organic Vita Boost (NPK analysis 6:1:3), a dry water-soluble fertiliser, supplied 

by Efekto was the second organic treatment used in this study and consisted of chicken litter 

pellets. Vita Boost was applied every two weeks at 2.77 g∙pot
-1

, 5.54 g∙pot
-1

 or 11.07 g∙pot
-1 

to 

each plant in rows as 1/2 label rate, label rate or 2 x label rate, respectively (Table 4.2). This 

fertiliser, which was incorporated just below the surface, also contained other macro and 

micronutrients.  

Polyfeed
®
 (NPK analysis 6:1:3 (44)), a highly concentrated dry, powdered, water-soluble 

inorganic fertiliser is manufactured by Nulandis (A Division of AECI Ltd). Polyfeed
®

 

(200ml∙pot
-1

) was applied as a liquid treatment every two weeks at concentrations of         

0.59 g∙L
-1

, 1.18 g∙L
-1

 and 2.36 g∙L
-1

 as 1/2 label rate, label rate and 2 x label rate, respectively 

(Table 4.2). This liquid treatment also contained other macro and micronutrients. 

Wonder
TM 

Lawn and Leaf (NPK analysis 7:1:3 (15)), supplied by Efekto, an inorganic 

fertiliser was used as the 4
th

 fertiliser treatment in this study. This is a high N, sustained-



147 

 

release fertiliser, with bio-carbon pellets, which were removed prior to application. Lawn and 

Leaf was applied every two weeks at rates of 0.36 g∙pot
-1

, 0.71 g∙pot
-1

 and 1.42 g∙pot
-1 

to each 

plant in rows as 1/2 label rate, label rate and 2 x label rate, respectively. The controls of the 

soil-based medium and the pinebark-based medium received no fertiliser (Table 4.2).  

Table 4.2 Dosage rate of N equilibrated fertiliser nutrients incorporated (g) into each 3 L plant 

bag or liquid fed·L
-1

 concentration as nutrient solution 

Formulation Treatment Source Form 
Application 

method 
 Dosage rate 

Control CR* - - - - 

Control CG - - - - 

4.1.3 NRA organic liquid liquid feed 2.61 ml∙L-1 

4.1.3 NRB organic liquid liquid feed 5.22 ml∙L-1 

4.1.3 NRC organic liquid liquid feed 10.44 ml∙L-1 

4.1.3 NGA organic liquid liquid feed 2.61 ml∙L-1 

4.1.3 NGB organic liquid liquid feed 5.22 ml∙L-1 

4.1.3 NGC organic liquid liquid feed 10.44 ml∙L-1 

6.1.3 PRA inorganic powder liquid feed 0.59 g∙L-1 

6.1.3 PRB inorganic powder liquid feed 1.18 g∙L-1 

6.1.3 PRC inorganic powder liquid feed 2.36 g∙L-1 

6.1.3 PGA inorganic powder liquid feed 0.59 g∙L-1 

6.1.3 PGB inorganic powder liquid feed 1.18 g∙L-1 

6.1.3 PGC inorganic powder liquid feed 2.36 g∙L-1 

7.1.3 LRA inorganic granule incorporated 0.36 g∙pot-1 

7.1.3 LRB inorganic granule incorporated 0.71 g∙pot-1 

7.1.3 LRC inorganic granule incorporated 1.42 g∙pot-1 

7.1.3 LGA inorganic granule incorporated 0.36 g∙pot-1 

7.1.3 LGB inorganic granule incorporated 0.71 g∙pot-1 

7.1.3 LGC inorganic granule incorporated 1.42 g∙pot-1 

6.1.3 ORA organic pellet incorporated 2.77 g∙pot-1 

6.1.3 ORB organic pellet incorporated 5.54 g∙pot-1 

6.1.3 ORC organic pellet incorporated 11.07 g∙pot-1 

6.1.3 OGA organic pellet incorporated 2.77 g∙pot-1 

6.1.3 OGB organic pellet incorporated 5.54 g∙pot-1 

6.1.3 OGC organic pellet incorporated 11.07 g∙pot-1 

 * - CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed 

fertiliser, L – Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth 

medium, A – ½ label rate, B – label rate and C – 2 x label rate  
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4.1.7 Leachate collection and analysis 

The ‘pour-through’ extraction method (Wright, 1986), was used to produce and collect 

leachate. The ‘pour-through’ extraction method recommends pouring sufficient water to yield 

50 ml of leachate. It is also recommended that plants were watered at least an hour before 

collection, to ensure that the moisture content of pots was at container capacity. 

Approximately 200 ml deionised water was applied to each 3 L pot. Foil trays, washed with 

nitric acid except for those collecting algal samples, were used to collect the leachate. The 

leachate was transferred to labelled sample bottles. Samples were sent to the Plant Laboratory 

at the Soil Fertility and Analytical Service Section, KZN Department of Agriculture and 

Rural Development, Cedara, for mineral element analysis. The leachate N concentration was 

measured using an elemental analyzer (Vario EL III; Elementar Analysensysteme GmbH, 

Germany). Leachate P, K, Ca, Mg, Fe, Cu, Mn and Zn was determined using Inductively 

Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). Samples were also sent to 

Regen Waters laboratory (Witbank, South Africa) for total phosphate and orthophosphate 

analysis (Aquakem 600 Photometric Discrete Analyser, Thermo-Scientific, South Africa). 

Samples were also sent to Talbot Laboratories for an initial analysis of leachate algal 

chlorophyll a (PChl a) concentrations from soil-based growth media (CR) and bark-based 

growth media (CG) controls before commencement of fertilization. 

4.1.8 Algal chlorophyll a determination 

The spectrophotometric algal chlorophyll a determination was based on the method suggested 

by Arar (1997), to measure the pigment concentrations of freshwater phytoplankton. Leachate 

was collected using the pour through extraction method (Wright, 1986). Plants were watered 

at least an hour before collection, to ensure that pot moisture content was at container 

capacity. Approximately 200 ml deionised water was applied to each 3 L plant bag. Leachate 
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was collected in foil trays, then the liquid was transferred to labelled sample bottles and 

placed on ice in cooler bags. Chlorophyll-containing algal microorganisms in the sample 

solution were filtered at low vacuum through Whatman 25 mm GF/F glass microfiber fibre 

filters under low light. This was achieved by using a sidearm filter flask connected to a 

vacuum pump. The leachate volume was recorded prior to filtration. Filters were folded, 

wrapped in foil, labelled and immediately frozen. On arrival in the laboratory, the entire filter 

was cut up and placed into a 30 mm test tube, adding 10 ml of 90% laboratory grade acetone. 

Samples were kept on ice in a closed cooler box under low light. An Ultra Turrax
®
 T-25 

(IKA, Germany) digital high speed homogeniser was used to extract pigments from algal 

organisms. Each sample was allowed to steep for at least two hours. The filter slurry was 

centrifuged at 1000G for 5 min to clarify the solution using a PLC Series tabletop centrifuge 

(Gemmy Industrial Corp, Taiwan). The absorbance of the centrifuged supernatant was read at 

750 nm, 664 nm, 647 nm and 630 nm in a Hellma glass cuvette (1 cm light path, Type 100-

T4) (Hellma Analytics, Müllheim, Germany) using a Shimadzu Spectrophotometer UV-1800 

(Shimadzu Corp., Japan). The sample absorbance at 750 nm was subtracted from the values at 

664, 647 and 630 nm to correct for turbidity. These samples were then filtered through nylon 

25 mm Pall Acrodisc PSF syringe filters (0.45 µm). Acidification of samples before reading 

on the spectrophotometer was not carried out, as Stich and Brinker (2005) suggested this 

methodological procedure for photometric determination of chlorophyll concentrations from 

non-acidified extracts to be less time-consuming with a better accuracy of resulting data.  

The amount of algal chlorophyll a (PChla) in the extract (mg·L
-1

) was calculated using the 

formula provided by Lichtenthaler (1987)) with amendments recommended by Arar (1997). 

PChlaextract = 11.85 (Abs 664) - 1.54 (Abs 647) - 0.08 (Abs 630) 

 

PChla concentration in the sample was calculated using the formula used by Arar (1997), 
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PChla       (mg·L
-1

) 

where, PChlaextract  = concentration (mg·L
-1

) of pigment in extract measured in the cuvette, 

extract volume = volume (L) of extract (before any dilution), 

DF = dilution factor 

sample volume = volume (L) of whole water sample that was filtered, and 

cell length = optical path length (cm) of cuvette used. 

4.1.9 Algal microorganism identification 

A phase contrast light microscope (Olympus BHS Phase Contrast Microscope, Tokyo, Japan) 

was used to identify larger algal microorganisms and a scanning electron microscope (Zeiss 

EVO LS15 SEM, Oberkochen, Germany) to identify smaller algal microorganisms. Wet 

mounts from leachate extraction, a droplet at a time, were placed between a microscope glass 

slide and a cover slip for observation at 20x and 40x objective lens magnitude for the possible 

presence of microalgae.  

Scanning electron microscope (SEM) samples were filtered at low vacuum through Whatman 

25 mm GF/F glass microfiber filters in a Buchner funnel into a sidearm filter flask connected 

to a hand-held vacuum pump. The filter paper was cut up and sections mounted onto 

aluminium stubs using double-sided carbon tape. Further sample preparation was carried out 

as described by Whitton (2012). Sections were sputter-coated with gold palladium using a 

Polaron E5100 ion sputter coater (Eiko IB-3, Japan) before microalgae observation. 

4.1.10 SEM EDX qualitative analysis of growth media 

A qualitative analysis of the mineral element composition of the growth media samples was 

carried out using a scanning electron microscope (Zeiss EVO LS15 SEM, Oberkochen, 
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Germany) fitted with an Oxford X-Max 80mm SSD (Silicon Drift Detector) using INCA 

Analysis Software (version 4) for the EDX (Energy Dispersive X-ray) analysis. The samples 

were evenly dispersed and mounted onto aluminium stubs with double-sided carbon tape for 

viewing, without coating for conductivity, as variable pressure was used in the SEM 

operation. Three spots were observed per sample. The qualitative results of SEM EDX 

analysis of growth media reflect all detectable mineral elements in the sample in relation to 

each other, and minerals are expressed as percentage of 100%. The Al, Ca, Fe, Mg, P and Si 

percentages of the three replicates per sample were read from the EDX report, averaged and 

means from the three experiments determined statistically. Means were then partitioned into 

polynomial contrasts to determine the main effects of Al, Ca, Fe, Mg, P and Si within growth 

media from treatments as a qualitative reference and to compare the two growth media with 

the leachates. 

4.1.11 Cultural practices 

Weeding and irrigation were carried out regularly throughout the course of each successive 

experiment. Plants were irrigated by hosepipe using tap water, with the irrigation amount 

limited to the well (volume between growth media surface and lip of each pot) of each pot. 

Plants were watered on Mondays, Wednesdays and Fridays, except in the event of sufficient 

rain.  

Irrigation water was analysed by the Soil Salinity Laboratory at the Soil Fertility and 

Analytical Service Section, KZN Department of Agriculture and Rural Development, Cedara 

for EC, pH, cations and anions. Electrical conductivity (EC) of irrigation water is usually 

used as an indicator of salinity and sodium adsorption ratio (SAR) of sodicity when water 

quality is classified (Culverwell and Swinford, 1986). The determination of the Sodium 

Adsorption Ratio (SAR) describes the level of sodicity of irrigation water and the ratio of 
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sodium to the sum of calcium and magnesium ions. Higher levels of calcium and magnesium 

counteract the potential for degradation of soil structure which may result in infiltration 

problems in soils and growth media due to high sodium levels (Menezes et al., 2014). EC and 

SAR interpretation are based on criteria developed by the United States Department of 

Agriculture (Meyer and van Antwerpen, 1995). 

4.1.12 Statistical analysis 

GenStat® 12
th

 Edition (VSN International, Hemel Hempstead, UK) was the statistical 

package used in the analyses of data. The data that was collected were subjected to analysis of 

variance and treatment means separated using the Duncan Multiple Range Test at 5% 

probability level. Treatment for all parameter means were compared to each control, randles 

(CR) and gromor (CG) by partitioning each comparison separately into polynomial contrasts 

to determine possible main effects and interactions at (p<0.05) and elucidate treatment 

responses for each parameter investigated.  
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4.2 Results 

4.2.1 Analyses of irrigation water 

Results from the analysis of irrigation water are contained in Table 4.3. All parameters were 

acceptable except for irrigation water pH. 

Table 4.3 Chemical properties of irrigation water 

Parameter Elements Value 

EC (mS·m-1) 

 

24.32 

pH 
 

7.64 

 
 

Cations (me·L-1) 

 
 

Na 0.93 

Ca 0.95 

Mg 0.23 

K 0.05 

Anions (me·L-1) 
TA 1.1 

Cl 1.1 

SAR   1.21 

Class of water   C1-S1 
TA – Total alkalinity 

SAR – Sodium adsorption ratio 

4.2.2 Analyses of growth media before planting 

Results from the analysis of growth media are contained in Table 4.4. EC and pH analyses 

were at acceptable levels for growth media. Bark-based control had a higher EC and lower pH 

than soil-based growth media. Most mineral nutrients were present in higher concentrations in 

the bark-based growth media. The only exceptions were Fe and Cu, which was higher in the 

soil-based growth media. Carbon:Nitrogen (C:N) ratio in growth media were similar. 
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Table 4.4 Physicochemical properties of randles (CR) and gromor start growth medium  

 

Parameter 
 

CR 
 

CG 

 

 

EC (mS·cm-1) Leachate  2.58 Leachate 3.05 

 

 

pH Leachate  6.28 Leachate 5.84 

 

 

C/N ratio 
 

20.91:1 
 

20.40:1 

 

 

Moisture (%) 
 

6.24 
 

29.68 

 

 

Elements 
    

 

 

C (%) 
 

13.38 
 

28.27 

 

 

N (%) 
 

0.64 
 

1.38 

 

 

P (%) 
 

0.18 
 

0.22 

 

 

K (%) 
 

0.28 
 

0.83 

 

 

Ca (%) 
 

1.04 
 

1.22 

 

 

Mg (%) 
 

0.14 
 

0.22 

 

 

S (%) 
 

0.26 
 

0.32 

 

 

Fe (mg/kg) 
 

24028 
 

17374 

 

 

Mn (mg/kg) 
 

237.79 
 

302.17 

 

 

Zn (mg/kg) 
 

83.43 
 

94.97 

 

 

Cu (mg/kg) 
 

157.69 
 

106.62 

 

 

Soil Texture 
    

 
 

Sand (%) (0.02 - 2 mm) 80.33 (0.02 - 2 mm) 73.8 

 
 

Silt (%) (0.02 - 0.002 mm) 6.17 (0.02 - 0.002 mm) 7.8 

 
 

Clay (%) (<0.002 mm) 13.83 (<0.002 mm) 18.5 

 

 

Soil texture classification* 
 

Loamy sand 
 

Sandy loam 

 * According to: - Soil Classification, A Taxonomic System for South Africa - Soil Classification Working Group and Macvicar,  

1991 

4.2.3 Leachate mineral composition (N, P, Ca, Mg, Fe, Al) 

4.2.3.1 Nitrogen (N) in leachate 

There were no significant differences between any of the treatments, including comparison 

with the controls, at p<0.05 level of confidence (p=0.919), nor were there any significant 

main effects or interactions for mean N concentrations in leachate (Table 4.5).  

4.2.3.2 Phosphorus (P) in leachate 

Mean leachate P concentrations were significantly lower in the fertiliser groups contained in 

the soil-based growth media than those of the groups contained in the bark-based media mix. 

The main effects of the factors, fertiliser type and growth medium type, were significantly 

different at p=0.011 and p<0.001, respectively, when treatments were statistically compared 
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to the randles control (CR), with p=0.026 and p<0.001, respectively when treatments were 

compared statistically to the gromor control (CG). The amendment of the gromor-containing 

media with the high concentration of Organic Vitaboost (OGC) resulted in significantly 

higher leachate P, different from most treatments at p<0.001 (Table 4.5). Phosporous leachate 

concentrations ranged from 2.34 mg·L
-1

 to 21.72 mg·L
-1

. 

4.2.3.3 Calcium (Ca) in leachate  

Mean Ca concentrations increased with increasing fertiliser rate, except for the Polyfeed in 

gromor (PG) fertiliser group (Table 4.5). Leachate Ca concentrations were in general higher, 

from soil-based randles media than from bark-based gromor media. The highest application 

of Organic Vitaboost to the randles medium (ORC) was significantly different from all 

treatments at p<0.001, other than the high Lawn and Leaf (LRC) and the medium Organic 

Vitaboost addition to the randles medium. The main effects of the factors, fertiliser type, 

growth medium and levels of fertiliser, were statistically significantly different at p<0.001, 

p<0.001 and p=0.046, respectively when treatments were statistically compared to the randles 

control (CR) and at p<0.001, p<0.001 and p=0.050, respectively, when treatments were 

statistically compared to the gromor control (CG) (Table 4.5).  

4.2.3.4 Magnesium (Mg) in leachate 

Mean Mg concentrations increased with increasing fertiliser rates, except for the Polyfeed 

addition to the soil-based medium (PR) (Table 4.5). Leachate Mg concentrations were, in 

general, higher from soil-based randles media than from bark-based gromor media. The 

Organic Vitaboost treatment produced significantly higher Mg concentrations in randles 

growth medium (ORC) compared to all treatments (p<0.001), except the lower randles 

Organic Vitaboost treatment (ORA). The main effects of fertiliser type, growth medium and 

level of fertiliser were significantly different at p<0.001, p=0.001 and p=0.009, respectively, 
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when treatments were statistically compared to the randles control (CR) and at p<0.001, 

p=0.002 and p=0.010, respectively, when treatments were statistically compared to the 

gromor control (CG) (Table 4.5). 

4.2.3.5 Iron (Fe) in leachate 

Mean leachate Fe concentrations followed, in general, a trend similar to Ca and Mg 

concentrations, with higher amounts of Fe leached from the soil-based randles media than 

from the bark-based gromor media, except for OR and OG (Table 4.5). The main effect of the 

factor growth medium type was significantly different at p=0.001 for treatments statistically 

compared to both controls (CR and CG). Statistical analysis showed no significant differences 

between treatments overall (p=0.227), although PRC leachate contained significantly higher 

Fe concentrations than the leachate from a few treatments (CR, CG, NGA, LGB, ORC and 

OGB). 

4.2.3.6 Aluminium (Al) in leachate 

Mean leachate Al concentrations were, in general, higher from soil-based randles media than 

from bark-based gromor media. Treatment comparisons showed that growth medium type 

was significantly different at p=0.001 and p<0.001 for CR and CG, respectively (Table 4.5). 

Statistical analysis showed no significant differences between treatments overall (p=0.250), 

although PRA leachate contained significantly higher Al concentrations than the bark- based 

treatments CG, NGA, NGB, NGC, PGB, PGC, LGA and OGC. 
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Table 4.5 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on mean growth media pour-through 

extracted nutrient solution N, P, Ca, Mg, Fe and Al concentrations and compared with the two controls after a period of  90 

days 

Type Treatment N mg∙l-1 (x1000) P  mg∙l-1 Ca mg∙l-1 Mg mg∙l-1 Fe mg∙l-1 (x 1000) Al mg∙l-1 (x1000) 

Control CR
5
 2.57 ± 1.11a

1
 2.34 ± 1.75a 58.00 ± 28.65ab 13.41 ± 6.31ab 5.17 ± 2.61ab 19.37 ± 4.61ab 

Control CG 2.30 ± 1.57a 5.26 ± 1.47abc 39.00 ± 10.67a 10.83 ± 0.86ab 3.82 ± 2.88a 12.56 ± 6.43a 

4.1.3 NRA 3.43 ± 1.70a 4.34 ± 3.74ab 136.90 ± 100.88a-d 23.51 ± 16.33a-d 7.72 ± 4.95abc 20.40 ± 5.89ab 

4.1.3 NRB 3.68 ± 1.93a 4.48 ± 3.89ab 154.30 ± 99.15a-e 24.60 ± 13.92a-d 13.28 ± 6.66abc 30.54 ± 3.89ab 

4.1.3 NRC 3.27 ± 1.82a 7.52 ± 6.52a-d 179.70 ± 94.55a-e 35.14 ± 18.30a-e 17.12 ± 8.63bc 34.77 ± 5.05ab 

4.1.3 NGA 3.61 ± 2.17a 13.04 ± 5.65a-f 29.80 ± 8.51a 9.89 ± 2.49ab 5.06 ± 3.67ab 15.05 ± 7.54a 

4.1.3 NGB 3.86 ± 1.91a 15.42 ± 5.17a-g 54.30 ± 4.04ab 18.25 ± 2.10abc 5.45 ± 5.25abc 13.83 ± 6.72a 

4.1.3 NGC 2.89 ± 1.50a 22.36 ± 8.46fg 61.80 ± 17.32ab 24.89 ± 8.62a-d 5.43 ± 4.26abc 11.34 ± 4.47a 

6.1.3 PRA 3.91 ± 2.39a 6.66 ± 6.26a-d 115.20 ± 77.38abc 20.70 ± 13.23a-d 17.21 ± 8.30bc 42.65 ± 9.25b 

6.1.3 PRB 3.33 ± 1.63a 8.10 ± 7.70a-e 130.20 ± 79.77a-d 20.59 ± 10.80a-d 12.42 ± 9.46abc 26.90 ± 9.55ab 

6.1.3 PRC 2.61 ± 1.25a 7.32 ± 6.93a-d 173.90 ± 110.03a-e 31.91 ± 19.20a-d 18.22 ± 9.89c 34.43 ± 9.19ab 

6.1.3 PGA 2.71 ± 1.88a 15.22 ± 6.83a-g 32.00 ± 9.68a 8.78 ± 2.33a 8.94 ± 7.15abc 22.94 ± 12.45ab 

6.1.3 PGB 3.67 ± 2.73a 13.98 ± 5.36a-f 44.60 ± 8.23a 14.51 ± 1.45ab 5.36 ± 3.79abc 13.64 ± 7.07a 

6.1.3 PGC 4.03 ± 2.01a 17.96 ± 7.85b-g 38.40 ± 8.05a 15.24 ± 4.74ab 7.58 ± 5.21abc 11.58 ± 5.93a 

7.1.3 LRA 4.01 ± 2.33a 2.96 ± 2.56a 152.70 ± 95.93a-e 26.36 ± 14.75a-d 11.34 ± 6.08abc 31.61 ± 8.80ab 

7.1.3 LRB 2.85 ± 1.38a 6.24 ± 5.84abc 183.60 ± 103.29a-e 37.63 ± 21.31a-e 9.65 ± 5.83abc 20.97 ± 2.49ab 

7.1.3 LRC 3,04 ± 1.38a 4.75 ± 4.15ab 297.50 ± 160.56def 64.69 ± 36.17def 9.17 ± 5.09abc 28.35 ± 8.93ab 

7.1.3 LGA 2.40 ± 1.72a 12.76 ± 5.63a-f 40.10 ± 16.59a 11.40 ± 3.40ab 5.99 ± 4.10abc 15.59 ± 7.51a 

7.1.3 LGB  2.88 ± 1.57a 16.12 ± 8.67a-g 67.50 ± 18.80ab 23.90 ± 6.52a-d 5.01 ± 5.01ab 30.39 ± 22.44ab 

7.1.3 LGC 4.26 ± 3.27a 20.36 ± 10.33d-g 88.00 ± 36.81abc 30.98 ± 11.69a-d 6.52 ± 6.32abc 24.70 ± 15.11ab 

6.1.3 ORA 3.15 ± 1.90a 5.82 ± 5.03abc 246.90 ± 110.22cde 62.05 ± 28.03c-f 5.45 ± 5.06abc 25.26 ± 16.32ab 

6.1.3 ORB 5.50 ± 3.41a 9.2 ± 8.21a-f 311.70 ± 121.46ef 89.70 ± 38.83fg 6.70 ± 5.73abc 21.87 ± 12.36ab 

6.1.3 ORC 4.60 ± 2.94a 14.68 ± 12.13a-f 408.10 ± 87.90f 119.13 ± 38.69g 5.02 ± 4.63ab 21.76 ± 13.75ab 

6.1.3 OGA 2.92 ± 1.76a 21.72 ± 13.06efg 132.10 ± 39.88a-d 48.62 ± 17.33a-f 5.44 ± 5.44abc 20.96 ± 13.73ab 

6.1.3 OGB 4.12 ± 2.79a 18.96 ± 9.30c-g 141.50 ± 9.97a-d 54.87 ± 18.31b-f 4.40 ± 4.40ab 18.27 ± 12.59ab 

6.1.3 OGC 3.83 ± 1.77a 28.52 ± 14.88g 220.00 ± 35.81b-e 76.34 ± 21.85ef 5.32 ± 5.12abc 13.29 ± 7.13a 

Sig p<0.05   0.919 (ns) <0.001 <0.001 <0.001 0.227 (ns) 0.250 (ns) 

LSD
2
   2.75 11.47 142.85 37.14 10.64 20.97 

CV %
3
  48.80 59.20 64.00 63.50 78.20 57.00 

 

Fertiliser (F)
4
 ns 0.011 <0.001 <0.001 ns ns 

CR Medium (G) ns <0.001 <0.001 0.001 0.001 0.001 

vs Levels (C) ns ns 0.046 0.009 ns ns 

Treatments F x G ns ns ns ns ns ns 

 

F x C ns ns ns ns ns ns 

 

G x C ns ns ns ns ns ns 

 

Fertiliser (F)
4
 ns 0.026 <0.001 <0.001 ns ns 

CG Medium (G) ns <0.001 <0.001 0.002 0.001 <0.001 

vs Levels (C) ns ns 0.050 0.010 ns ns 

Treatments F x G ns ns ns ns ns ns 

 

F x C ns ns ns ns ns ns 

 

G x C ns ns ns ns ns ns 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  

3. CV (%) – Percentage coefficient of variance 
4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 

Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 
label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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4.2.4 Phosphate (PO4-P) and total phosphate in leachates 

4.2.4.1 Phosphate (PO4-P) in leachate  

Mean leachate orthophosphate (PO4-P) concentrations were in general lower from the soil-

based randles media than from the bark-based gromor media (Table 4.6). The high Organic 

Vitaboost application to the gromor medium (OGC) resulted in a significantly higher 

phosphate concentration (p<0.001) than most other treatments (Table 4.6).. The main effects 

of the factors fertiliser type, growth medium type and the level of fertiliser were significantly 

different at p=0.035, p<0.001 and p=0.050, respectively, when treatments were statistically 

compared to the randles control (CR) but only the factors growth medium (p<0.001) and 

levels of fertiliser (p=0.050) were significantly different when treatments were statistically 

compared to the gromor control (CG). Phosphate-P concentrations in leachates ranged from 

0.17 to 8.65 mg·L
-1

 in the soil-based growth media and from 3.80 to 14.51 mg·L
-1 

in the bark-

based ones. 

4.2.4.2 Total phosphate in leachate  

Mean leachate TP concentrations were, like the orthophosphates, in general, lower from the 

soil-based growth media than from the bark-based ones. Leachates from the bark-based high 

Organic Vitaboost (OGC) and the high Polyfeed-containing (PGC) soil-based medium 

displayed significantly higher TP concentrations than most treatments (p<0.001, Table 4.6). 

The main effects factor, growth medium type, showed significant differences as a result of the 

effects of the two growth media (p<0.001), when treatments were statistically compared with 

both controls (CR and CG) Leachate TP concentrations ranged from 0.34 mg·L
-1

 to 

16.05mg·L
-1

. 
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4.2.5 Analysis of nitrate and total nitrogen in growth media 

4.2.5.1 Growth medium nitrate (NO3-N) 

Mean NO3-N concentrations for all treatments increased with increasing fertiliser 

applications, except for the medium Nitrosol level (NGB) and the high Polyfeed amount 

added to the bark-based medium (PGC, Table 4.6). The NO3-N concentrations of the organic 

fertiliser (OR and OG) were, in general, higher than the other treatments. The statistical 

analysis for this parameter was not significant overall (p=0.087), but the high organic 

fertiliser application to the soil-based medium (ORC) increased NO3-N concentrations 

significantly over most treatments. Levels of NO3-N were significantly affected by Organic 

Vitaboost fertiliser applied at the highest dosage (p<0.001). 

4.2.5.2 Growth medium total nitrogen (TN) 

There were no uniform effects on growth medium total nitrogen (TN) concentrations as a 

result of increasing fertiliser application (Table 4.6). Mean growth medium TN 

concentrations were significantly affected by both growth media (p<0.001). The TN 

concentrations for treatments containing randles medium were significantly lower than for 

those containing the gromor bark-based medium; TN in the low Nitrosol  (NGA) and the low 

Polyfeed application to the bark medium (PGA) was significantly higher (p=0.018) than in all 

soil-based treatments, including the randles control.  
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Table 4.6 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations, to two different growth media, on mean growth media NO3–N, and TN 

and leachate PO4-P, TP and PChl a concentrations compared with the two controls after a period of  90 days  

Type Treatment NO3 mg L-1 TN % PO4 mg L-1 TP mg L-1 PhChl a μg g-1 

Control CR
5
 2.63 ± 1.11a

1
 0.17 ± 0.06a 0.46 ± 0.21ab 0.69 ± 0.36 1.92 ± 0.76ab 

Control CG 3.19 ± 1.76a 0.39 ± 0.12a-d 3.80 ± 0.33a-e 4.16 ± 0.35a-d 2.05 ± 0.93ab 

4.1.3 NRA 8.50 ± 4.13ab 0.17 ± 0.04a 0.50 ± 0.17ab 1.17 ± 0.33ab 5.65 ± 2.82b-e 

4.1.3 NRB 16.70 ± 11.33abc 0.18 ± 0.08a 0.51 ± 0.17ab 0..93 ± 0.32ab 5.62 ± 2.59b-e 

4.1.3 NRC 33.46 ± 24.64abc 0.22 ± 0.03ab 0.99 ± 0.47abc 1.48 ± 0.48ab 4.53 ± 2.02a-e 

4.1.3 NGA 40.43 ± 40.21abc 1.09 ± 0.68d 5.91 ± 2.38a-e 7.17 ± 2.69a-e 4.95 ± 2.43a-e 

4.1.3 NGB 15.47 ± 9.83abc 0.78 ± 0.23a-d 7.34 ± 2.54a-f 8.23 ± 2.88a-e 8.34 ± 3.90e 

4.1.3 NGC 38.77 ± 19.36abc 0.65 ± 0.18a-d 8.01 ± 2.41b-f 10.40 ± 3.56b-e 3.58 ± 1.79a-d 

6.1.3 PRA 10.26 ± 6.26ab 0.18 ± 0.07a 0.62 ± 0.32ab 0.99 ± 0.29ab 3.22 ± 1.43a-d 

6.1.3 PRB 14.95 ± 8.36abc 0.21 ± 0.03ab 0.31 ± 0.01ab 0.41 ± 0.04a 3.03 ± 1.10a-d 

6.1.3 PRC 35.95 ± 35.26abc 0.31 ± 0.05abc 0.26 ± 0.10ab 0.34 ± 0.10a 1.20 ± 0.32a 

6.1.3 PGA 16.64 ± 15.10abc 1.09 ± 0.40d 6.83 ± 2.58a-e 7.50 ± 2.64a-e 3.05 ± 1.54a-d 

6.1.3 PGB 26.58 ± 26.09abc 0.78 ± 0.24a-d 5.74 ± 4.33a-e 6.77 ± 4.78a-e 6.40 ± 2.57cde 

6.1.3 PGC 12.34 ± 9,84abc 0.79 ± 0.28a-d 10.36 ± 5.19ef 14.20 ± 8.35e 4.97 ± 1.95a-e 

7.1.3 LRA 21.94 ± 16.22abc 0.20 ± 0.03ab 0.21 ± 0.05a 0.52 ± 0.21a 3.92 ± 1.65a-d 

7.1.3 LRB 25.23 ± 20.40abc 0.16 ± 0.09a 0.17 ± 0.02a 0.34 ± 0.05a 1.80 ± 0.77ab 

7.1.3 LRC 64.74 ± 57.94a-d 0.18 ± 0.03a 0.53 ± 0.09ab 0.98 ± 0.28ab 3.53 ± 1.45a-d 

7.1.3 LGA 6.03 ± 5.80ab 1.04 ± 0.60cd 6.04 ± 2.43a-e 8.23 ± 3.93a-e 2.26 ± 0.98ab 

7.1.3 LGB 15.64 ± 15.27abc 0.93 ± 0.44bcd 6.79 ± 2.48a-e 10.93 ± 5.76cde 4.09 ± 1.93a-d 

7.1.3 LGC 22.76 ± 13.69abc 0.67 ± 0.19a-d 9.14 ± 3.54ef 11.55 ± 4.90de 4.39 ± 2.05a-d 

6.1.3 ORA 61.11 ± 45.04a-d 0.24 ± 0.02ab 1.07 ± 0.49a-d 1.61 ± 0.63abc 2.91 ± 1.47a-d 

6.1.3 ORB 109.96 ± 94.05bcd 0.22 ± 0.02ab 1.46 ± 0.62a-d 3.06 ± 1.45a-d 3.08 ± 1.57a-d 

6.1.3 ORC 147.32 ± 88.45d 0.23 ± 0.07ab 8.65 ± 6.45def 10.37 ± 6.59b-e 1.18 ± 0.48a 

6.1.3 OGA 40.53 ± 20.63abc 0,77 ± 0.35a-d 8.43 ± 3.07c-f 9.47 ± 3.47a-e 6.73 ± 3.57de 

6.1.3 OGB 85.86 ± 24.79a-d 0,81 ± 0.37a-d 7.42 ± 3.94a-f 9.10 ± 4.83a-e  2.45 ± 0.67abc 

6.1.3 OGC 115.89 ± 10.98cd 0.56 ± 0.12a-d 14.51 ± 4.58f 16.05 ± 4.95e 4.83 ± 2.68a-e 

Sig p<0.05   0.087 (ns) 0.018 <.001 <.001 0.005 

LSD
2
   85.79 0.63 6.38 7.86 3.29 

CV %
3  137.00 61.60 87.10 85.00 52.30 

 
Fertiliser (F)

4
 <0.001 ns 0.035 ns 0.008 

CR Medium (G) ns <0.001 <0.001 <0.001 0.006 

vs Levels (C) ns ns 0.050 ns ns 

Treatments F x G ns ns ns ns ns 

 
F x C ns ns ns ns ns 

 
G x C ns ns ns ns ns 

 
Fertiliser (F)

4
 <0.001 ns ns ns 0.009 

CG Medium (G) ns <0.001 <0.001 <0.001 0.006 

vs Levels (C) ns ns 0.050 ns ns 

Treatments F x G ns ns ns ns ns 

 

F x C ns ns ns ns ns 

 

G x C ns ns ns ns ns 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  

3. CV (%) – Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 
Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 



161 

 

4.2.6 Leachate composition 

4.2.6.1 Algal chlorophyll concentration in leachate 

Initial analysis of leachate from the soil-based (CR) and the bark-based (CG) growth media 

before commencement of fertilisation, revealed PChl a to be lower in the soil (11 μg·L
-1

) than 

in the bark-based medium (52 μg·L
-1

). Mean leachate PChl a concentrations ranged from 1.20 

μg·L
-1

 to 8.34 μg·L
-1

, with NGB significantly higher (p=0.005, Table 4.6) than most 

treatments. The main effects of the factors, fertiliser type and growth medium type had 

affected leachate chlorophyll significantly, evidenced when treatments were statistically 

compared to the randles control (p=0.008 and p=0.006, respectively) and when treatments 

were statistically compared to the gromor control (p=0.009 and p=0.006, respectively).  

4.2.6.2 Phase contrast light microscope algae identification 

Only one algal microorganism was identified from all samples observed under the microscope 

using keys provided by John et al. (2002) and Bellinger and Sigee (2015). These keys only 

allow identification up to the genus level. It was, therefore not certain whether 

Klebsormidium flaccidum or K. nitens was the observed specimen, as these species bear 

similarities in morphology and chloroplast characteristics (Fig. 4.1). Filamentous cells of K. 

nitens should be thinner than cells of K. flaccidum (Škaloud, 2006). Strains with a cell width 

of 6 μm and below should represent K. nitens (Škaloud, 2006). Although cells of K. flaccidum 

appeared to be thicker, the results were not conclusive. This species is, therefore, described as 

Klebsormidium sp. 

4.2.6.3 Scanning electron microscope (SEM) algae identification 

Only Bacillariophyta algal organisms were present in the growth medium leachates. Several 

pennate diatom cells were observed under the SEM. Various sources and literature, including 
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keys by Weber, (1971), Compère (2000) and Bellinger and Sigee (2015) aided in the 

identification of the diatoms as well as Van Vuuren et al. (2006); Taylor et al. (2007); 

Spaulding et al. (2010) and Antonelli et al. (2017). Diatom taxa were identified to species 

level using valve face structure and morphological characteristics, such as shape and 

ornamentation. Five diatom species were identified, belonging to five genera: Amphora 

montana Krasske, Navicula veneta Kützing, Nitzschia amphibia Grunow, Planothidium 

engelbrechtii (Cholnoky) Round & Bukhityarova, and Tryblionella levidensis W Smith. A 

further two genera, Microscostatus sp. and Planothidium sp., were identified, but not the 

species. 

4.2.7 SEM EDX qualitative analysis of mineral elements in growth media  

Energy Dispersive X-ray (EDX) spectroscopy was used to identify mineral elements in the 

growth media (Figure 4.9, 4.10). These qualitative results showed, as expected, a much higher 

Si content in the soil-based randles than the bark-based gromor medium (Table 4.7. Mean Al, 

Ca, Fe, Mg and P results showed significant differences between treatments (p<0.05); the 

growth medium influenced the presence of all of these elements significantly. The trends 

obtained by statistical analysis show Al, Fe and Si concentrations to be significantly higher in 

the randles growth medium than in the gromor one and Ca, Mg and P concentrations 

significantly higher in gromor than in randles growth medium.  
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Table 4.7 Effects of two organic (Nitrosol
®

 and Organic Vitaboost) and two inorganic fertiliser treatment types (Polyfeed
®

 

and Lawn and Leaf) applied at three concentrations to two different growth media, on SEM growth media qualitative 

analysis of Al, Si, P, Ca, Fe and Mg concentrations compared with the two controls after a period of  90 days  

Type Treatment Al % Si % P  % Ca  % Fe  % Mg % 

Control CR
5
 6.93 ± 2.60e

1
 18.89 ± 4.20d 0.08 ± 0.02a 0.46 ± 0.07a 2.94 ± 0.68ab 0.16 ± 0.00a-d 

Control CG 1.48 ± 0.55ab 9.30 ± 5.08abc 0.26 ± 0.11a 1.71 ± 0.13a 1.17 ± 0.32ab 0.27 ± 0.08bcd 

4.1.3 NRA 4.73 ± 0.77de 17.92 ± 0.48d 0.13 ± 0.00a 0.59 ± 0.11a 3.42 ± 0.86ab 0.11 ± 0.02ab 

4.1.3 NRB 4.94 ± 1.33de 16.42 ± 4.16cd 0.10 ± 0.02a 0.56 ± 0.08a 3.27 ± 1.38ab 0.14 ± 0.03abc 

4.1.3 NRC 5.68 ± 2.70e 20.19 ± 3.09d 0.08 ± 0.06a 0.49 ± 0.13a 3.12 ± 1.51ab 0.17 ± 0.06a-d 

4.1.3 NGA 1.28 ± 0.33ab 5.69 ± 1.56ab 0.36 ± 0.19a 2.36 ± 1.49a 0.95 ± 0.19a 0.32 ± 0.13d 

4.1.3 NGB 1.46 ± 0.53ab 5.93 ± 3.50ab 0.33 ± 0.23a 2.21 ± 1.17a 1.27 ± 0.59ab 0.25 ± 0.08a-d 

4.1.3 NGC 1.37 ± 0.32ab 13.45 ± 0.36bcd 0.30 ± 0.18a 1.27 ± 0.71a 1.25 ± 0.80ab 0.17 ± 0.06a-d 

6.1.3 PRA 6.30 ± 1.52e 15.91 ± 3.23cd 0.14 ± 0.05a 0.58 ± 0.18a 5.74 ± 2.52c 0.11 ± 0.02ab 

6.1.3 PRB 4.07 ± 1.10a-e 17.63 ± 0.19d 0.20 ± 0.18a 1.06 ± 0.79a 3.11 ± 0.17ab 0.14 ± 0.04abc 

6.1.3 PRC 5.16 ± 0.61e 18.48 ± 2.89d 0.16 ± 0.07a 0.83 ± 0.40a 3.60 ± 0.38b 0.23 ± 0.04a-d 

6.1.3 PGA 1.51 ± 0.33ab 8.00 ± 0.33ab 0.40 ± 0.32a 1.84 ± 1.22a 1.15 ± 0.43ab 0.25 ± 0.12a-d 

6.1.3 PGB 1.36 ± 0,01ab 5.55 ± 0.60ab 0.37 ± 0.25a 2.44 ± 1.22a 1.46 ± 0.32ab 0.29 ± 0.11cd 

6.1.3 PGC 2.15 ± 0.11a-d 6.79 ± 0.60ab 0.34 ± 0.18a 1.73 ± 0.81a 1.33 ± 0.10ab 0.24 ± 0.09a-d 

7.1.3 LRA 4.90 ± 1.01de 19.80 ± 2.27d 0.13 ± 0.08a 0.51 ± 0.12a 3.06 ± 0.23ab 0.13 ± 0.02abc 

7.1.3 LRB 6.05 ± 0.36e 18.04 ± 0.22d 0.16 ± 0.11a 0.73 ± 0.44a 2.92 ± 0.50ab 0.10 ± 0.00a 

7.1.3 LRC 4.36 ± 1.20cde 17.88 ± 0.19d 0.16 ± 0,07a 0.57 ± 0.24a 3.00 ± 0.80ab 0.13 ± 0,02abc 

7.1.3 LGA 1.40  ± 0.16ab 7.19 ± 2.41ab 0.29 ± 0.17a 1.64 ± 0.66a 1.03 ± 0.06a 0.22 ± 0.03a-d 

7.1.3 LGB 1.33  ± 0.11ab 7.56 ± 3.31ab 0.29 ± 0.14a 2.08 ± 0.54a 1.37 ± 0.03ab 0.21 ± 0.05a-d 

7.1.3 LGC 1.64  ± 0.08abc 5.01 ± 1.59a 0.47 ± 0.27a 2.52 ± 1.55a 1.21 ± 0.56ab 0.32 ± 0.12d 

6.1.3 ORA 5.74 ± 0.91e 19.69 ± 0.63d 0.12 ± 0.04a 0.52 ± 0.20a 2.42 ± 0.16ab 0.11 ± 0.04ab 

6.1.3 ORB 5.37 ± 0.21e 16.80 ± 1.05cd 0.16 ± 0.05a 0.54 ± 0.10a 3.14 ± 1.10ab 0.14 ± 0.01abc 

6.1.3 ORC 4.20 ± 0.04b-e 17.45 ± 3.07d 0.18 ± 0.07a 0.61 ± 0.02a 2.98 ± 0.26ab 0.19 ± 0.04a-d 

6.1.3 OGA 1.36 ± 0.01ab 6.50 ± 2.20ab 0.40 ± 0.24a 2.13 ± 0.97a 1.21 ± 0.11ab 0.29 ± 0.05cd 

6.1.3 OGB 1.15 ± 0.02a 5.54 ± 1.28ab 0.41 ± 0.24a 2.22 ± 1.05a 1.10 ± 0,11ab 0.25 ± 0.05a-d 

6.1.3 OGC 1.49 ± 0.04ab 5.78 ± 1.34ab 0.47 ± 0.29a 2.59 ± 1.23a 1.16 ± 0.13ab 0.25 ± 0.07a-d 

Sig p<0.05   <0.001 <0.001 0.829 0.241 0.008 0.032 

LSD
2
   2.51 7.08 0.44 1.99 2.13 0.14 

CV %
3  36.20 27.30 87.20 72.50 46.10 34.30 

 
Fertiliser(F)

4
 0.011 ns ns ns ns ns 

CR Medium (G) <0.001 <0.001 0.002 <0.001 <0.001 <0.001 

vs Levels (C) ns ns ns ns ns ns 

Treatments F x G ns ns ns ns ns ns 

 

F x C ns ns ns ns ns ns 

 

G x C ns ns ns ns ns ns 

 
Fertiliser(F)

4
 ns ns ns ns ns ns 

CG Medium (G) <0.001 <0.001 0.001 <0.001 <0.001 <0.001 

vs Levels (C) ns ns ns ns ns ns 

Treatments F x G ns ns ns ns ns ns 

 

F x C ns ns ns ns ns ns 

 

G x C ns ns ns ns ns ns 

1. Means (±SE) within columns followed by the same letter do not differ significantly according to Duncan’s Multiple Range Test at            

p < 0.05. Non-significant (ns) or significant at p < 0.05 (*), 0.01 (**) or 0.001 (***) 

2. LSD –Least significant difference at p < 0.05  
3. CV (%) – Percentage coefficient of variance 

4. Main effects and interactions at both control levels. Non-significant (ns) or significant at P < 0.05 (*), 0.01 (**) or 0.001 (***) 

5. CR – Control in Randles growth medium, CG – Control in Gromor growth medium, N – Nitrosol fertiliser, P – Polyfeed fertiliser, L – 
Lawn and Leaf fertiliser, O – Organic Vita boost fertiliser, R – Randles growth medium, G – Gromor growth medium, A – ½ label rate, B – 

label rate and C – 2 x label rate,  Table adapted from (Bi et al., 2010) 
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4.3 Discussion 

4.3.1 Analyses of irrigation water 

Analysis of irrigation water demonstrated the lowest salinity level (C1) and lowest sodicity 

level (S1), according to the United States Department of Agriculture classification. The EC of 

irrigation water (24.32 mS·cm
-1

) used in this study was acceptable (Table 4.3) as it fell into 

the most suitable category (C1<250 mS·cm
-1

). Concentration of sodium (Na) relative to 

calcium (Ca) plus magnesium (Mg), known as the sodium adsorption ratio (SAR) in analysed 

water, was considered to be also acceptable for irrigation use.  The sodicity level (SAR) of 

irrigation water used in this study (1.21) fell within the ‘low’ category (S1, 1-10). The pH of 

7.64 was higher than the acceptable range of 5.4 to 6.8 for container production according 

Bailey et al. (2005). This did not seem to have an effect on the various species grown at 

Randles nursery for landscape use within the Ethekwini municipality. No remedial action 

was, therefore, taken. Sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), total 

alkalinity (TA) and chlorine (Cl) concentrations (me·L
-1

) of irrigation water (Table 4.3) were 

all below the recommended upper limits (Bailey et al., 1999) of 3, 6, 2, 0.26, 2 and 2, 

respectively. 

4.3.2 Analyses of growth media before planting 

Growth media EC and pH were also within recommended (Abad et al., 2001) ranges       

(0.75 – 3.49 mS·cm
-1

 and pH 5.2 – 6.3, respectively). Soil-based growth medium N, P, Ca, Fe 

concentrations in both used media (Table 4.4) were comparable to N (0.43%), P (0.15%), Ca 

(1.03%) and Fe (25800 mg∙kg
-1

) in the commercial potting medium Metro-Mix 360  (Scotts, 

Marysville, Ohio) used by Atiyeh et al (2001) for tomato (Solanum lycopersicum) production. 

Concentrations of N, P and Ca in bark-based growth medium used in this study were higher 
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than in soil-based growth media and Metro-Mix 360, except for Fe, which was lower than in 

soil-based growth media and Metro-Mix 360. All nutrients analysed in growth media were, 

therefore, at acceptable levels for potting media use, except for Cu (157.69 mg·kg
-1

) in soil-

based growth medium, which was marginally over the limit (150 mg·kg
-1

) recommended by 

Bunt (2012). This would have corrected through irrigation prior to treatments. 

4.3.3 Effects of treatments on leachate Al, Ca, Fe, Mg and forms of P concentration 

The leaching of fertilisers from nurseries is contributing to the pollution of freshwater 

systems due to nurseries applying fertiliser in excess of plant needs (Majsztrik et al., 2011). In 

this particular study the effects of organic and inorganic fertilisers on soil- versus bark-based 

growth media leachate composition were investigated using two growth media.  

Amongst the leached nutrients investigated, P, Al and Fe are the only elements listed in the 

South African Environmental Protection Act (No. 44 of 2003) for which effluent discharge 

limits to freshwater bodies have been set. Significantly more Fe and Al were leached by soil-

based water soluble treatments compared with water-soluble bark-based treatments. Pelleted 

and granular fertiliser treatments leached similar concentrations of Al and Fe from both 

growth media.  Concentrations exceeded the permissible limits (5 and 2 mg·L
-1

, respectively) 

by more than 1000-fold at the time of sampling (Table 4.5) from both growth media. 

Ingestion of high concentrations of Al and Fe in water is harmful to human and fish health 

and toxicity can cause irreversible tissue damage (Crafford and Avenant-Oldewage, 2011). 

Calcium and magnesium affect hardness of water and have significance in aquaculture 

(Wurts, 1993), but, along with K, are not an environmental threat. Calcium and magnesium 

compounds which may have formed insoluble phosphates under alkaline conditions were not 

favoured, as pH was slightly acidic for all treatments. 
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According to water quality criteria set by the US Environmental Protection Agency (USEPA, 

1986) total P concentration should not exceed 0.025 mg·L
-1

 within lakes or reservoirs   (Owen 

et al., 2008). To achieve this in the US, the recommended best management practice 

advocated for P concentrations in growth media nutrient solutions is 10-15 mg·L
–1         

(Yeager et al., 1997). Leachates from most bark-based treatments (Table 4.5) exceeded this 

level when extracted using Wright’s (1986) pour-through method. The results of this study 

are in agreement with Scagel (2003) and Oh et al. (2016). These authors described P to leach 

more readily from peat-amended and peat-perlite growth media than from coir-amended and 

soil-amended peat-perlite media, respectively.  

Treating the bark medium with high concentrations of Polyfeed (PGC) or high amounts of 

Vitaboost (OGC) resulted in the highest PO4-P leachates, exceeding the limit of 10 mg·L
-1

 

PO4-P (South African Environmental Protection Act, 2002), for land or underground 

discharge (Table 4.6). All bark-based treatments and soil-based Organic Vitaboost treatments 

(ORA, ORB and ORC) exceeded the 1 mg·L
-1

 PO4-P discharge limit into water courses or 

water bodies. The TP leachate concentrations were significantly different between growth 

media, with randles producing less phosphate, leachate TP (0.34 mg·L
-1

- 10.37 mg·L
-1

, 

0.000034% - 0.0010%) than the bark-based medium (6.77 mg·L
-1

 - 16.05 mg·L
-1

, 0.00068% - 

0.0016%). No significant differences between liquid, granular and pelletised fertiliser were 

observed with respect to P forms (P, PO4-P and TP) in the leachate and by extension organic 

and inorganic fertilisers.  

It is unclear, what the PO4-P leaching losses from treatments amounted to over the course of 

this study, but 49.4 kg·ha
-1

 may be potentially lost annually, assuming a density of 80 000 

pots·ha
-1

, with foliage plants grown in Margate fine sand and fertilised with a soluble granular 

fertiliser at rate of 6.1 g·pot
-1 

(Broschat, 1995). If the same density of plants would have been 
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used in this study, a potential release of between 0.014 kg·L
-1

 at the lowest leached 

concentration PO4-P and 0.69 kg·L
-1 

at the highest leached concentration PO4-P from the 

randles mix would have resulted, using the lower and upper levels of leachate PO4-P     (Table 

4.6). For the bark-based medium between 0.304 and 1.16 kg PO4-P·L
-1

 would have been 

leached in only one irrigation event. Leached PO4-P concentrations exceeded recommended 

levels for most treatments used in this study and represent the potential to cause 

eutrophication. Extrapolating leached PO4-P over the production cycle of a nursery crop, as 

presented here, would suggest the urgent need for strategies to mitigate the effects of fertiliser 

use, especially the use of soilless growth media. Runoff from production areas of some 

ornamental plant nurseries may discharge directly into fresh water bodies during irrigation, 

storm or heavy rainfall events (Sharma et al. 2008, Fig 4.8), which may enrich and pollute 

water quicker than from sites further away.  

4.3.4 Effects of treatments on growth media N  

Nitrate dissolves readily in water and leaches easily with water due to its anionic nature and 

the generally low anion-holding capacity of growth media (Matysiak, 2015). Although P is 

the primary limiting nutrient in South Africa (Lai, 2013), N may be equally or more important 

than P as a limiting nutrient for enrichment in low latitude warm-water and eutrophic systems 

in general (Hart and Harding, 2015). Samples for mean growth media nitrate (NO3-N) and 

total nitrogen (TN) concentrations were taken at termination of the experiment to correlate 

concentrations at end of the production period, with plant growth and nutrient leaching 

potential.  

The increase in NO3-N in all growth media with increasing fertiliser rates, except for NGB 

and PGC (Table 4.6) may imply that NO3-N leached or was taken up from growth media for 

these treatments. Both, NGB and PGC were among the eight treatments resulting in the tallest 
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plants with PGC achieving the longest internode (Table 3.12). It is not clear whether NO3-N 

leached at higher rates than the limit set by the South African Environmental Protection Act 

in discharge onto land or into a watercourse (higher than 10 mg·L
-1

, General notice No. 44 of 

2003) as leachate was not tested for NO3-N.  

Broschat (1995) found soluble granular fertilisers to leach more NO3-N than liquid fertilisers 

when used in a pinebark, peat and sand potting mix (5:4:1 v/v/v). Application and 

reapplication of Organic Vitaboost fertiliser resulted in higher growth media NO3-N 

concentrations at the end of this study compared with the other treatments in both growth 

media. It may be reasonable to assume that higher concentrations of NO3-N leached from 

growth media treated with Organic Vitaboost given its anionic nature. In the Broschat (1995) 

study, a sandy soil growth medium leached 54% of applied N, whilst a 5 pine bark : 4 sedge 

peat : 1 sand medium (by volume) -potting mix leached 52% N of soluble granular fertiliser 

treatment.  

Total N concentrations in randles medium were significantly lower (0.16% - 0.31%) than 

those of the groups containing the bark-based medium (0.56%-1.09%). Lack of P is, however 

of more concern, in South African freshwater systems with respect to growth media leachate 

runoff. 

The TN:TP ratio is used to determine the limiting nutrient (N or P) in freshwater systems, 

with a TN:TP ratio greater than 10:1 signifying P limitation. This scenario is desirable from a 

management perspective, as P is easier to control and favours population growth of green 

algae which may be less problematic than that of cyanobacteria (van Ginkel, 2002). It appears 

highly probable that TN leachates, if having been measured from samples in this study, would 

yield a TN:TP ratio that is greater than 10:1. It, therefore, appears highly probable, that TN 
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and TP leachate in runoff to fresh water bodies over a period of time and assessed from a 

study like this, is desirable with respect to the high TN:TP ratio.  

4.3.5 Algal presence in leachate 

Chlorophyll a (PChl a) in water indicates the presence of algae. Results of initial leachate 

PChl a analysis were 11 μg·L
-1 

and 52 μg·L
-1

 for the two growth media controls, CR and CG, 

respectively. The PChl a concentration in the leachate from the soil-based growth medium 

(CR) was one fifth of the leachate from the bark-based growth medium. The addition of 

Nitrosol to the bark-based medium at medium rate (NGB) resulted in highest PChl a 

concentration, while the Nitrosol addition to the randles growth medium (NRA, NRB), 

Polyfeed to gromor at medium rate (PGB) and Organic Vitaboost to gromor at low label rate 

(OGA) resulted in PChl a concentrations that were significantly higher than all the other 

treatments (p=0.005). 

 The main effects of fertiliser and growth medium were statistically significantly different at 

p=0.008 and p=0.006, respectively for the CR comparison, with p=0.009 and p=0.006, 

respectively for the CG comparison. Mean PChl a concentrations had dropped from the initial 

analysis especially during the third repetition of this study, and ranged from 1.20 μg·L
-1

 to 

8.34 μg·L
-1 

(Table 4.6). This implies that algal organisms had leached out. It also suggests 

that the rate of increase of these organisms in the growth media was lower than the rate at 

which they leached. Concentrations of PChl a were much lower than the 30 μg·L
-1

, and more, 

in a freshwater system which indicate hyper-eutrophic status due to a large population of 

microalgae. This is only one of the parameters used to assess trophic status. The high PChl a 

concentration in the gromor control (52 μg·L
-1

) may not appear to be of major concern but 

does warrant further investigation into algal content when using these media as it represents 

the potential to increase biomass when loading to freshwater systems. 
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 Of the algal organisms identified, the green algae Klebsormidium flaccidum or 

Klebsormidium nitens (Fig. 4.1) are terrestrial and no literature seems to indicate that either of 

them can be found in freshwater. Klebsormidium sp. are considered cosmopolitan and 

widespread in different soil types (Zancan et al., 2006). Diatoms and one unidentified 

specimen (Fig. 4.7) were the only algal organisms observed under the scanning electron 

microscope (SEM).   

Amphora montana Krasske (Fig. 4.3, 4.6) is a cosmopolitan species which rarely becomes 

dominant in the alkaline waters in which it is found (Taylor et al., 2007). Amphora montana 

has been found in soil on sites that are characteristically wet and periodically dry (Stanek-

Tarkowska and Noga, 2012).  The genus Microcostatus most commonly develops on wet 

aerial surfaces, mosses and wet soils (Taylor et al., 2010; Stanek-Tarkowska et al., 2016) 

although these diatom cells have also been found in water (Stanek-Tarkowska et al., 2016). 

Taylor et al. (2010) described three new species of Microcostatus in South Africa which 

survive in very dry and periodically wet sandy soils, that can be dry for several consecutive 

months. A new species of Microcostatus, found in brackish to saline waters, was recently 

described by Li et al. (2016). The habitat of the observed Microcostatus sp. (Fig. 4.2, 4.5) is 

unknown, as these diatom cells could only be identified up to the genera level. Navicula 

veneta Kützing (Fig. 4.4) is a high nutrient indicator (Potapova and Charles, 2007), often 

found in heavily eutrophic, electrolyte-rich to brackish water (Taylor et al., 2007). These 

cosmopolitan species are very pollution-tolerant (Potapova et al., 2005; Taylor et al., 2007) 

and are often the dominant species in polluted water resulting from industrial effluent and 

runoff (Taylor et al., 2007). Leachate containing heavy metals from plant production to 

surface runoff may therefore be potentially harmful. Nitzschia amphibia Grunow (Fig. 4.3) is 
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considered a eutrophic species (Faustino et al., 2016) and is found in waters over a range 

from electrolyte-poor to electrolyte-rich waters (Taylor et al., 2007).  

Bate (2013) reported that Planothidium engelbrechtii (Fig. 4.2) is a marine, brackish water 

and freshwater species. These diatom cells are often associated with saline freshwater, but 

have also been found in permanent pans (Riato et al., 2014). Planothidium engelbrechtii are 

found abundantly in saline inland waters with very high electrolyte content and are capable of 

tolerating critical to very heavy organic pollution (Taylor et al., 2007). Tryblionella levidensis 

W Smith (Fig. 4.6) is a cosmopolitan species, especially common in brackish waters, and in 

waters ranging from moderate electrolyte content to electrolyte-rich waters. These diatom 

cells are tolerant of strongly polluted conditions (Taylor et al., 2007). Some diatom cells 

observed had ruptured frustules. It is not clear, if the chloroplasts of those diatom cells shown 

here were intact.  

The types of diatoms identified from leachate in this study are characterised by a variety of 

conditions found in freshwater systems. Two of the diatom species, Nitzschia amphibia 

Grunow and Navicula veneta Kützing, are found in eutrophic waters and have been found in 

riparian zones and wetlands. Little information is available on soil microalgae found in areas 

surrounding agricultural sites and commercial nurseries or the hillslopes of watersheds in 

South Africa. It is plausible that when water flows between such areas, microalgae are able to 

migrate to freshwater bodies. Plants are watered regularly in commercial production nurseries 

in order to maintain high plant quality. Runoff areas therefore also remain moist. Diatoms 

may be transported in water flow and between elements of the hydrological cycle due to their 

small size (Pfister et al., 2009). Hantzschia amphioxys (Ehrenberg) Grunow, which favours 

periodically dry habitats including soils and rock crevices, lives also in freshwater systems. It 
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grows larger in comparison to N. amphibia Grunow and N. veneta Kützingand, and is said to 

be washed into freshwater bodies from soils (Taylor et al., 2007).  

In a study by Martínez-Carreras et al. (2015) in the Weierbach catchment, Luxembourg, 

aerial diatoms (i.e., diatoms nearly exclusively occurring outside water bodies and in wet and 

moist or temporarily dry places) served as natural tracers to investigate connectivity between 

hillslopes, riparian zones and stream water during rainfall events. Results from that study 

showed diatom cell abundance in overland flow from hillslope to be low and that there was 

greater connectivity between the riparian zone and stream water because of aerial diatoms 

found in stream water that were discharged after rainfall events. Similar studies under South 

African conditions may yield different results due to different vegetation and climatic 

conditions. Pfister et al. (2017) confirmed that terrestrial diatoms may be flushed from their 

terrestrial habitats to freshwater bodies. Although not detected in this study, cyanobacteria 

and other green algal species do develop on container growth medium (Brissette et al., 1991), 

and may also be transported by the similar hydrological effects (surface runoff and erosion) 

that transport P. 

The effects of surface run-off and infiltration from greenhouses and nurseries, over months 

and years, pose questions. Literature investigating run-off and infiltration from ornamental 

container plant nurseries seems non-existing in South Africa. Ferreira (2008) found that 

agricultural land use and practices changed the water quality of the Harts and Vaal rivers in 

South Africa at the sites studied. The diatom community structure had changed as a result 

compared with those communities upstream. This was mostly due to mineralisation and 

salinisation, which appeared to mask the effects of nutrients on diatom communities. The 

influences of agricultural land use on fresh water systems is further highlighted in a study 

carried out by Walsh and Wepener (2009) at sites in South Africa on the Crocodile and 
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Magalies rivers. These authors reported that high intensity agriculture is characterised by 

motile diatom species of the genus Nitzschia and low intensity agriculture by motile diatom 

species of the genus Navicula. It is unclear from both studies if any plant nurseries were in the 

vicinity of these study sites and whether Nitzschia amphibia Grunow and Navicula veneta 

Kützing which are associated with eutrophic waters, could have washed into freshwater 

bodies and impacted trophic status. 

4.3.6 SEM EDX qualitative analysis of growth media  

Statistical trend analysis showed patterns in response to treatments. The Al, Fe and Si levels 

detected (SEM EDX) tended to be higher in the soil-based randles than in the bark-based 

gromor media (Table 4.7) as expected in soil versus bark. Levels of Ca, Mg and P detected 

(SEM EDX) tended to be lower in soil-based randles than in the bark-based gromor media. 

Leachate analysis showed that Ca, Mg, Fe and Al leachates were significantly higher in    

soil-based than from bark-based media and P concentrations significantly higher in the bark-

based than the soil-based media. 

It has been described that bark-based (soilless) growth media have little ability to hold P 

(Scagel, 2003; Oh et al., 2016). The P sorption of growth media is most efficient in the 

presence of Fe or Al hydroxides or easily soluble Ca or Mg compounds (Klimeski et al., 

2012). Higher P retention can be achieved with a high Ca or Mg presence and a basic pH or 

high Fe or Al content at lower pH (Klimeski et al., 2012).  

The mean leachate pH determined from leachate was slightly acidic, ranging from 5.77 – 6.26 

for randles and 5.67 – 6.44 for gromor media (Table 3.5). It seems likely that higher Ca and 

Mg levels at a lower pH range in the bark-based media could not retain P to the extent that 

soil-based media with higher Fe or Al levels at a lower pH range did. The Si concentrations 
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detected were significantly higher in randles than in gromor growth media (Table 4.7), but it 

is unclear, whether Si helped to displace P from Ca and Mg compounds in bark media sites or 

assisted in good adsorption capacity in soil-based media.  

4.4 Conclusion  

Elemental Al, Ca, Fe and Mg were only considered in this study because of their relationship 

with P, the major driver of eutrophication in freshwater bodies. The high concentrations of Al 

and Fe leached from both growth media are, however, a cause for concern due to possible 

toxicity to humans and aquatic life as a result of Al and Fe potentially leaching to freshwater 

systems. 

Organic Vitaboost treatments resulted in higher growth media NO3-N concentrations which 

potentially represents a higher concentration of applied N leached compared to the other 

treatments but P is of greater concern in South African freshwater systems. Intensive plant 

production using bark-based growth media and the fertilisers used this study poses a potential 

threat to the eutrophication of freshwater systems. Pelleted Organic Vitaboost and water 

soluble Polyfeed applied at the highest concentration leached PO4-P exceeding the legislated 

South African limit (10 mg·L
-1

) for land or underground discharge. Application of Lawn and 

Leaf, Nitrosol and Polyfeed to soil-based growth media were the only treatments with 

leachates within the limit (PO4-P<1 mg·L
-1

) for watercourse or surface water discharge. The 

use of soil based growth media is therefore key when applying organic and inorganic 

fertilisers to keep leachate PO4-P concentrations within acceptable limits in South Africa. 

Chlorophyll a concentrations extracted from leachate indicated the presence of microalgae 

and this was confirmed by the identification of a green algal species and several genera of 

diatoms. Concentrations of 52 μg·L
-1

 PChl a in freshwater would indicate hyper-eutrophic 

conditions and a high abundance of microalgae. Chlorophyll a concentrations had dropped 
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from 11 μg·L
-1 

and 52 μg·L
-1

 for the two growth media controls, CR and CG respectively, to 

1.20 μg·L
-1

 to 8.34 μg·L
-1 

by the end of the experimental period. This would have most likely 

been as a result of microalgae leaching. It is, therefore, plausible that microalgae, including 

cyanobacteria, are able to be flushed from watersheds or directly from close proximity 

nurseries to freshwater systems. This may result in a substantial increase in algal biomass 

during heavy rain events, and possibly eutrophication when accompanied by high PO4-P in 

the runoff. 
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Figure 4.1: Phase contrast microscope images: (A) Image of Klebsormidium sp.and (B) Brightfield image of Klebsormidium 

sp. 

 

 

 

 

                                
 

Figure 4.2: SEM micrograph of (1) Microcostatus sp. and (2) Planothidium engelbrechtii. (Cholnoky) Round & 

Bukhityarova 
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Figure 4.3: SEM micrograph of (3) Nitzschia amphibia Grunow and (4)  Amphora montana Krasske 

 

 

 

 

 

                            
                              

Figure 4.4: SEM micrograph of (5) Navicula veneta Kützing and (6) Navicula veneta Kützing 
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Figure 4.5: SEM micrograph of (7) Microcostatus sp. and (8) Planothidium sp. 

 

                            

Figure 4.6: SEM micrograph of (9) Amphora montana Krasske and (10) Tryblionella levidensis W Smith 
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Figure 4.7: SEM micrograph of an unidentified microorganism 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

              Figure 4.8: Runoff from production areas at an ornamental plant nursery. Sharma et al., 2008 
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Element Weight% Atomic%  

           

C K 15.59 22.84  

O K 52.70 57.96  

Al K 2.85 1.86  

Si K 26.14 16.38  

S K 0.19 0.10  

K K 0.23 0.10  

Ca K 0.28 0.12  

Ti K 0.18 0.07  

Fe K 1.61 0.51  

Cu K 0.24 0.07  

    

Totals 100.00   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Randles growth media control (CR) mineral element analysis from Energy Dispersive X-ray (EDX) spectroscopy 

with the corresponding image and EDX spectrum. 
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Element Weight% Atomic%  

         

C  56.49 65.43  

O  35.74 31.08  

Na K 0.32 0.19  

Mg K 0.15 0.09  

Al K 0.97 0.50  

Si K 3.48 1.73  

P K 0.19 0.08  

S K 0.17 0.07  

Cl K 0.45 0.18  

K K 0.56 0.20  

Ca K 0.79 0.28  

Fe K 0.69 0.17  

    

Totals 100.00   

 

 

 

 

 

 

 

Figure 4.10: Gromor growth media control (CG) mineral element analysis from Energy Dispersive X-ray (EDX) 

spectroscopy with the corresponding image and EDX spectrum 
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                        Figure 4.11: Pseuderanthemum atropurpureum grown at Randles Nursery at termination of study 
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General conclusion and recommendations 

Results of this study showed that there were no significant differences between the two types 

of growth media with respect to the treatments on plant growth parameters or elemental N in 

leachate. There were also no significant differences between treatments due to type of 

fertiliser (organic or inorganic) or application method (liquid feed or slow release). The 

reasons for this may have been due to N being equilibrated. Organic Vitaboost did produce 

more leaves, branches and nodes than some of the other treatments but growth media NO3-N 

concentrations were significantly higher than the other treatments at final sampling. This 

represents the potential to leach more NO3-N but also the potential to fare better as saleable 

product if not sold relatively quickly in a retail plant nursery. There were, however, 

significant differences between the two types of growth media with respect to nutrients 

leached. 

The effect of equilibrating N increased the concentrations of Nitrosol, Lawn and Leaf and 

Organic Vitaboost nutrients applied, including N and P, and decreased the same of Polyfeed 

from supplier recommended rates. The increase in nutrient dosage was not substantial for 

Nitrosol and Lawn and Leaf, but more than doubled for Organic Vitaboost and was more than 

halved for Polyfeed. There may have have been more or less PO4-P and TP leached at 

recommended rates than these results suggest - had no adjustments been made. Organic 

Vitaboost, therefore, may have been more suitable at recommended rates and Polyfeed only 

suitable at rates lower than recommended. 

Two treatments leached more than 10 mg·L
-1

 PO4-P, the South African standard for non-point 

source discharge onto land or underground. Discharge into surface water courses, however, is 

1 mg·L
-1

 and only some of the soil-based growth media treatments (Lawn and Leaf, Nitrosol 

and Polyfeed) were below this limit at experiment termination. Testing for leachate NO3-N 
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and PO4-P during the course of a study will help better understand discharge rates from 

fertiliser treatments over the course of a study and will help to quantify the potential effects of 

these amendments. Literature on the effects of effluent discharge from greenhouses and 

nurseries in South Africa appears limited. Results from this study would suggest that fertiliser 

treatments applied at the lowest rate would suffice for the growth of Pseuderanthemum 

atropurpureum, when produced in a soil-based growth medium.  

Composted pinebark is commonly used as a growth medium in South Africa and future 

research should include the amendment of this growth medium with soil. Controlled release 

fertilisers and nitrogen use efficiency (NUE) were not tested in this study and although these 

still leach nutrients, controlled release fertiliser nutrients may leach appreciably less from 

soilless growth media amended with soil. Some literature indicates lower N applications 

when plants are small with N rates increasing as plants grow, thereby reducing fertiliser usage 

without compromising plant quality. The same should hold true for P, but increasing rates 

within a production cycle may be a problem for controlled release fertilisers which are usually 

incorporated in the growth medium. Increasing rates through the use of water soluble 

fertilisers would afford this control. It is also recommended that algal identification from 

leachate and watersheds be carried out during the course of a study as growth medium algal 

chlorophyll a concentrations appear to decrease over time.  

 

 


