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Abstract

This thesis is focused on the construction of optimal designs for detecting drug interactionusing the two-variable binary logistic model. Two speci�c models are considered: (1) thebinary two-variable logistic model without interaction, and (2) the binary two-variable logisticmodel with interaction. The two explanatory variables are assumed to be doses of two drugsthat may or may not interact when jointly administered to subjects. The main objective ofthe thesis is to algebraically construct the optimal designs. However, numerical computationsare used for constructing optimal designs in cumbersome cases. The problem of constructingoptimal designs is to allocate weights to speci�c points of the design space in such a waythat information associated with model parameters is maximized and the variances of themean responses are minimized. Speci�cally, the D-optimality criterion discussed in this thesisminimizes the determinant of the asymptotic variance-covariance matrix of the estimates ofthe model parameters. The number of support points of the D-optimal designs for the two-variable binary logistic model without interaction varies from 3 to 6. Support points areequally weighted only in case of the 3-point designs and in some special cases of the 4-pointdesigns. The number of support points of the D-optimal designs for the two-variable binarylogistic model with interaction varies from 4 to 8. Support points are equally weighted only incase of the 4-point designs and in some special cases of 8-point designs. Numerous examplesare given to illustrate theoretical results.
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1
Introduction

1.1. Background
Experiments on drug interaction are conducted in many research areas such as agriculture,pharmacology and medicine. Statistical modelling of responses to drug interactions is well de-veloped in literature, and the models are now easily �tted using statistical software packagessuch as SAS, STATA, SPSS, GENSTAT and R. Errors in statistical analysis such as choosingthe wrong model can be variously corrected. However, a poorly designed experiment such asa clinical trial is di�cult or impossible to correct at later stages, and thus as a consequenceresults from a weakly planned experiment can be misleading. The focus of this thesis is onthe construction of optimal designs for detecting drug interactions from which synergy is thedesirable e�ect. The advantage of optimal experimental designs over classical experimentaldesigns, such as factorial designs, is that they provide accurate or precise answers to experi-mental questions with minimum experimental e�ort or cost (see for example Atkinson, Donevand Tobias (2007, p. 7). There are many optimality criteria in the theory of optimal designs.The most applied optimality criterion is the D-optimality which maximizes information aboutall the parameters of a statistical model by minimizing in some sense the variance-covariancestructure of the estimates of the parameters.Even though the theory of optimal designs originated from the work of Smith (1918), itwas not fruitful until the 1950s when much research work started to be published (Elfving(1952), Cherno� (1953), Guest (1958), Hoel (1958), Box and Lucas (1959), Kiefer (1958),Kiefer (1959), and Kiefer and Wolfowitz (1960)). Since the 1970s, a large number of articleson optimal designs emerged. Most of these were related to Kiefer's work, generally treatingoptimal design for linear �xed e�ect models. Kiefer (1974) gives a good summary of the
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Chapter 1 { Introduction
�ndings.There are quite a few textbooks in the English literature written on optimal designs. Theseare subdivided into two groups, textbooks and conference proceedings. As far as textbooks areconcerned, a comprehensive pioneering textbook on optimal design is that by Fedorov (1972).The book by Silvey (1980) gives a very good summary while the books by Atkinson and Donev(1992), and Atkinson et al. (2007) give a more accessible account to the theory of optimaldesign. Other books are those by P�azman (1986), Shah and Sinha (1989), Pukelsheim (1993)and Fedorov and Hackl (1997). All these books focus on optimal designs for linear models.Some other general books that treat optimal design for linear and nonlinear models are thoseby Cherno� (1979), Ghosh and Rao (1996), Schwabe (1996), Dette and Studden (1997), M�uller(1998), Liski, Mandal, Shah and Sinha (2001), and Seber and Wild (2003, Section 5.13).There are also a number of published MODA (Model-Oriented Design and Analysis) con-ference proceedings. MODA proceedings go back over many years, and include: Dodge,Fedorov and Wynn (1988), Fedorov, M�uller and Vuchnov (1992), M�uller, Wynn and Zhigl-javsky (1993), Kitsos and M�uller (1995), Atkinson, Pronzato and Wynn (1998), Flournoy,Rosenberger and Wong (1998), Atkinson, Bogacka and Zhigljavsky (2001), Atkinson, Hackland Muller (2001), Bucchianico, Lauter and Wynn (2004), and L�opez-Fidalgo, Rodriguez-Diazand Torsney (2007).The theory of optimal design has been developed extensively for linear models because of therelative ease of constructing optimal designs for these models (see for example Fedorov (1972)and Silvey (1980)), and for generalized linear and nonlinear models but with one explanatoryvariable (see for example Abdelbasit and Plackett (1983), Wu (1988), Ford, Torsney and Wu(1992), Atkinson and Donev (1992, Chapter 22), Sitter (1992), Sitter and Wu (1993), Torsneyand Musrati (1993), Haines (1993), Haines (1995), Sitter and Fainaru (1997), Sitter and Forbes(1997), and Smith and Ridout (2003)). However, very little research has been conducted onoptimal designs for nonlinear and generalized linear models with more than one explanatoryvariable because the construction of optimal designs for such models is challenging. Somework has been done for generalized linear and nonlinear models for two variables withoutinteraction (see for example Burridge and Sebastiani (1992), Burridge and Sebastiani (1994),Sitter and Torsney (1995a), Atkinson and Haines (1996), Myers, Montgomery and Vining(2002), Atkinson (2006), and Atkinson et al. (2007)), and for more than two variables withoutinteraction (see for example Sitter and Torsney (1995b), and Torsney and Gunduz (2001)).Very little research work was done on the construction of optimal design for generalized linearand nonlinear models with two or more explanatory variables with interaction (see for example
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Chapter 1 { Introduction
Kupchak (2000), Jia and Myers (2001), Wang (2002), and Wang, Myers, Smith and Ye (2006)).

1.2. Research problem and objectives
Problem: Responses to drug interactions are generally modelled using generalized linearmodels (e.g. logistic and Poisson models) with at least two explanatory variables. This thesisis focused on constructing optimal designs for the two-variable binary logistic models withand without interaction. Once the theory is well established, generalization to binary logisticmodels with more than two explanatory variables or to some other models can be consideredin further research.
Overall objective: The main aim of the study is to develop a new approach to analyticallyand numerically construct D-optimal designs for the two-variable binary logistic models withand without interaction on an unbounded and on a bounded design (dose) space.
Speci�c objectives

1. To construct D-optimal designs for the two-variable binary logistic model without inter-action logit(p) = �0+�1d1+�2d2 on the design space D = [0;1)� [0;1) and establishconditions on the parameters �0, �1 and �2 and design space D for the optimal designto be supported on 3 or 4 points.
2. To construct D-optimal designs for the two-variable binary logistic model without in-teraction logit(p) = �0 + �1x1 + �2x2 on the rectangular design space X = [a; b]� [c; d]where a, b, c and d are real numbers and set up conditions on the parameters �0, �1 and�2 and design space X for the optimal design to be supported on 3 to 6 points.
3. To construct D-optimal designs for the two-variable binary logistic model with interac-tion logit(p) = �0 + �1d1 + �2d2 + �12d1d2 on the design spaces D = [0;1)� [0;1) andprovide conditions on the parameters �0, �1, �2 and �12, and on the design space D forthe optimal design to be supported on 4 to 6 points.
4. To construct D-optimal designs for the two-variable binary logistic model with interac-tion logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space X = [a; b] � [c; d] andprovide conditions on the parameters �0, �1, �2 and �12, and on the design space X forthe optimal design to be supported on 4 to 8 points.
5. To illustrate the theory of D-optimal designs for the two-variable binary logistic model
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without and with interaction using real world data relating to the detection of drugsynergy.

1.3. Overview of the thesis
This thesis is subdivided into eight chapters. In Chapter 2 some models for drug interactionare reviewed. For each model, mathematical expressions of quantities termed relative potencyand interaction indices are derived. In Chapter 3, a general review of the notion of optimaldesign is presented. Speci�cally the information matrices for generalized linear and nonlinearmodels are introduced, then the optimality criteria and associated equivalence theorems arepresented. The equivalence theorem for each speci�c criterion is formulated. Since the focusof the present research work is to construct optimal designs for estimating all parameters ina given model, special attention is made on the D-optimality criterion. A general review,and extension from the one- to the two-variable binary logistic model without interactionis developed in Chapter 4. The approaches of constructing D-optimal designs for the two-variable binary logistic model without interaction discussed are those introduced in Sitter andTorsney (1995a), Atkinson and Haines (1996) and Jia and Myers (2001). These are shown togive similar results under certain conditions. The extension of existing work is particularlyfocussed on a new proof of D-optimality for the one-variable binary logistic model. In Chapter5 a new approach for constructing D-optimal designs for the two-variable binary logistic modelwithout interaction on an unbounded design space is introduced, and extends the approachesof Sitter and Torsney (1995a), and Jia and Myers (2001). Empirical constructions of D-optimaldesigns for the two-variable binary logistic model without interaction on a rectangular designspace are introduced in Chapter 6. The purpose of the chapter is also to extend results found inSitter and Torsney (1995a), and Jia and Myers (2001) and to rationalize the numerical resultsfound in Atkinson and Haines (1996). Some results of the Chapter are used to illustrate theusefulness of optimal designs over non-optimal but widely used designs. The construction ofD-optimal designs for the two-variable binary logistic model with interaction on unboundedand bounded design spaces is discussed in Chapter 7. The main focus is to introduce a newdesign approach which extends the methodology of constructing the 4-point D-optimal designsintroduced by Jia and Myers (2001) to 4- up to 8-point D-optimal designs. Finally, conclusionsare drawn in Chapter 8.
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2
Review of Models for Detecting Drug

Interaction

2.1. Introduction
This chapter reviews some models for detecting drug interaction. Section 2.2 presents the typesof interaction that jointly administered drugs can exhibit. Section 2.3 reviews the notions ofrelative potency, isobologram and combination index usually used by pharmacologists to assesse�cacy of drugs. Section 2.4 reviews models used in statistical literature for the detection ofdrug synergy. For each model, the expressions of relative potency and combination index arecalculated when possible.

2.2. Types of interactions
The assessment of the joint action of two or more compounds, such as drugs, insecticides,herbicides, fungicides and diverse poisons, is of great interest in many biological studies. Inthis thesis, the terms compounds or drugs will be used invariably.In practical investigations an experimenter has access to two or more compounds and maywish to examine the response or the e�ect on individuals or on any experimental material whenthese compounds are used jointly. In a medical framework, the e�ect can be the recovery orthe death of a number of patients, while in agricultural studies the e�ect can be the deathof a number of insects or the destruction of a certain quantity of weeds or other undesirableplants.A number of terms is employed to di�erentiate the e�ects of compounds when administrated
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jointly to individuals. The most commonly used are additivity, independence, no interaction,synergy and antagonism. These terms are described in Plackett and Hewlett (1952), Hewlettand Plackett (1959), Plackett and Hewlett (1963), Hewlett (1969), Finney (1971, pp. 232-252),Abdelbasit and Plackett (1983), and a general review is given in Greco, Bravo and Parsons(1995).Two compounds are said to be independent or additive if they do not interact when admin-istered jointly. Their e�ect or response is the same as if each compound was used alone. Theterm additivity and independence are used respectively in reference to Loewe (1953) and Bliss(1939) for the concept of no interaction.Two compounds are said to be interacting when their combined e�ect or response di�ers fromthat expected from additivity/independence. Synergy occurs if the joint e�ect is greater thanthat of the sum of the expected individual e�ects. Conversely antagonism occurs when thejoint e�ect of the compounds is less than the sum of the expected individual e�ects (see forexample Finney (1971, p. 231), Giltinan et al. (1988), Greco and Lawrence (1988) and Grecoet al. (1995)). Tallarida (2000) gives a detailed account for drug interactions.

2.3. Relative potency, isobologram and combination index
The concepts of additivity, synergism and antagonism are better described through the notionsof relative potency, isobologram, and combination index.
2.3.1 Relative potency
Relative potency when no model is speci�ed
Two compounds, say A and B, are said to exhibit similar action if they behave as if they werethe same except dilution or concentration e�ects. In other words, administering doses d1 ofA and d2 of B is the same as administering dose d1 + �d2 of A alone. The coe�cient � iscalled the relative potency of drug B compared to drug A. It represents the dose of the drugA required to produce the same e�ect as one unit dose of the drug B. Hence, if p 2 [0; 1] isthe proportion of dose e�ect of equally e�ective doses of A and B, the relative potency of Bwith respect to A is mathematically expressed as:

�p = ED100p;1ED100p;2 (2.1)
6
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where ED100p;1 and ED100p;2 are respective dose concentrations of drugs A and B which o�er100� p percent of response (see for example Finney (1971, p. 231), Abdelbasit and Plackett(1982), and Stokes, Davis and Koch (2000, p. 331)). If the relative potency �p is the sameat any equally e�ective doses, it is often taken to be the ratio of the median e�ective doses,denoted ED50;1 and ED50;2, of the compounds. By ED50 it is meant the amount of dose orconcentration that causes a half e�ect of the range of the response. In medical studies, it isoften denoted by LD50 (LD standing for lethal dose) and originally indicated the amount ofdrug or the concentration of drug that kills 50% of subjects in the sample under study. Hence,the relative potency of B with respect to A is:

� 12 = ED50;1ED50;2 = �21�22 (2.2)
where �21 and �22 are the ED50 of drug A and B respectively.
Relative potency with generalized linear or nonlinear models
For a class of models termed generalized linear models (GLM) (to be de�ned later), therespective general link functions between the probability of response p and the dose values d1and d2 of drugs A and B are given by

g(p) = �1(ln d1 � ln�1); (2.3)
and g(p) = �2(ln d2 � ln�2) (2.4)where �1 and �2 are respective slope parameters for drugs A and B (see O'Brien (2004)). Themedian e�ective dose ED50 for each drug is obtained by noting that g(p) = 0 at p = 12 . Asa consequence, the ED050s for drugs 1 and 2 are respectively �1 and �2. Therefore, accordingto (2.2), the relative potency of drug 2 with respect to drug 1 is

� 12 = �1�2 (2.5)
In general, from g(p) = �i(ln di � ln�i); (2.6)the ED100p, denoted �ip for the two drugs are given by

ln di(p) = ln�ip = g(p)�i + ln�i; (2.7)
7



Chapter 2 { Review of Models for Detecting Drug Interaction
where i = 1; 2, and p is the proportion of response with 0 � p � 1 . As a consequence,

ln��1p�2p
� = g(p)� 1�1 � 1�2

�+ ln��1�2
� ;

which is equivalent to ln(�p) = g(p)� 1�1 � 1�2
�+ ln(� 12 ): (2.8)The condition that �p = � 12 = �, where � is constant, is that �1 = �2 in (2.8). Thus, therelative potency is de�ned only when the curves of the responses at each dose for the twodrugs have equal slope. For example, if the logistic model is used the dilution assumptionimplies parallel lines on the logit scale. Assays that assume parallel relationship on the linearpredictor are called parallel lines assays (see Stokes et al. (2000, p. 331)).Note that the results (2.5) and (2.8) remain the same if di is used instead of ln di, i = 1; 2.

2.3.2 Isobologram
It is convenient to consider the suggestion of Giltinan et al. (1988) that if the potency of Brelative to A is �, a mixture containing d1 units of drug A and d2 units of drug B has an e�ect:(1) equivalent to that for d1+�d2 units of A, then the two drugs are said to exhibit an additivebehavior;(2) greater than that for d1+�d2 units of A, then the two drugs are said to exhibit synergism;(3) less than that for d1 + �d2 units of A, then the two drugs are said to exhibit antagonism.One way of assessing relative e�ects of two drugs is drawing and examining isobolograms. Theisobologram is a visual method generally used by pharmacologists to detect departure fromadditivity. The literature indicates that this method was introduced by Fraser in the 1870's(see for example Meadows, Gennings, Carter and Bae (2002)). An isobologram is a plot ofthe contours of constant responses, termed isoboles. As an example, in medical terminologyconsider the case where a dose combination (d1; d2) of drugs A and B kills a proportion p ofgerms in the target population with 0 � p � 1. Then, the isobole associated with additivity orno interaction is the straight line joining the points at 100p percent e�ective doses (ED100p;1; 0)and (0; ED100p;2) respectively, as in Figure 2.1. Synergy is claimed when the isobole is on theleft side of the additivity line and antagonism is claimed otherwise.If d1 and d2 are doses of drug A and B respectively that produce additive e�ect, Figure 2.1indicates that additivity, synergy and antagonism are respectively observed when:

d1 � 0; d2 � 0; d1ED100p;1 + d2ED100p;2 = 1; (2.9)
8
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Figure 2.1: Illustration of an isobologram: the straight line corresponds to additivity, the leftbowed line indicates synergy and the right bowed line indicates antagonism.
d1 � 0; d2 � 0; d1ED100p;1 + d2ED100p;2 < 1; (2.10)

and d1 � 0; d2 � 0; d1ED100p;1 + d2ED100p;2 > 1: (2.11)
The method of the isobologram presents two major disadvantages. Firstly, as a graphicalmethod, it is di�cult to draw isoboles for assessing the relative e�ects of three or more drugs.
2.3.3 Interaction index or combination index
Consider two drugs A, B jointly given in amounts d1 and d2 to subjects for a de�ned purpose.Suppose that ED100p;1 and ED100p;2, with 0 � p � 1, are the dose of A and B respectivelygiving 100p percent response of the desired e�ect. A measure of interaction introduced andtermed \interaction index" by Berenbaum (1977), or \combination index" by Chou and Ta-lalay (1984), usually denoted by � is given by

� = d1ED100p;1 + d2ED100p;2 : (2.12)
It follows from equation (2.12) and the equations (2.9), (2.10) and (2.11) that two drugsinteract additively, synergically or antagonistically respectively when � = 1, � � 1, or � � 1.

9



Chapter 2 { Review of Models for Detecting Drug Interaction
Furthermore, Berenbaum (1981) showed that the interaction index is directly related to theisoblogram. In parallel lines assays, p is chosen as p = 12 in (2.12) so that ED100p;1 andED100p;2 are the median e�ective doses, ED50s, of drugs A and B. A large review on theisobologram and combination index methodology is given in Berenbaum (1989).An advantage of the interaction or combination index over the isobologram, is that it isde�ned for any number of drugs. The disadvantage of the interaction or combination indexis that it does not take into account the variability inherent to the data. In his Ph.D. thesis,Kupchak (2000) derived some inference technique for assessing the interaction or combinationindex for the two- variable binary logistic model. In the following section, expressions of �for di�erent models will be given. The main objective is to show that all the values of � havesimilar analytical expressions. As a consequence only one model will be studied in subsequentchapters for the construction of optimal designs.

2.4. Models for drug interaction
2.4.1 E�ective dose models of Finney
(i) Continuous responseSuppose that two drugs A and B, in amounts d1 and d2, are applied jointly to subjects ina clinical trial study. O'Brien (2004) considered the model of Finney (1971, p. 262). Oneconsideration in O'Brien (2004) was for a continuous response and it was stated that thee�ective dose for a mixture of the two drugs is de�ned as

z = d1 + �1d2 + �2p�1d1d2; (2.13)where �1 is the potency of drug B relative to drug A, and �2 is the interaction parameter.Thus, additivity, synergy and antagonism occur respectively when �2 = 0, �2 > 0 and �2 < 0.The model relating the continuous response y with the e�ective dose z is the 3-parameterlog-logistic model given by y = �11 + ( z�2 )�3 + �; (2.14)
where z is de�ned in equation (2.13) and � is assumed to follow the normal distribution withzero mean and constant variance �2, i.e. � � N(0; �2).In model (2.14) with �3 > 0, the parameter �1 is the expected response at zero dose while �2and �3 are the ED50 and the slope parameter respectively. When �3 < 0, �1 is the expectedresponse at \in�nity dose".
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Taking the expectation of y, in (2.14) and denoting it by �, gives

�(z;�) = �11 + ( z�2 )�3 (2.15)
which is a decreasing sigmoid when �3 > 0 and an increasing sigmoid when �3 < 0. This canbe checked by noting that �1 and �2 are positive, and at any value of z,

@�@z = ��1�3( z�2 )�3z[1 + ( z�2 )�3 ]2 :Thus, the sign of the parameter �3 determines the sign of the slope. Figure 2.2 illustrates thetwo situations. Also, by performing simple algebra, model (2.15) can be written as
η
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2β0 z

)(a

03 >β
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2β z
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η
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Figure 2.2: Graph of �(z; �) = �11 + � z�2��3 : (a) �3 > 0; (b) �3 < 0.
�(x;�) = �11 + exp f�3(x� �)g ; (2.16)

where x = ln z and � = ln �2. In this case the concentration or dosage is measured on alog-scale.A researcher may need to add a parameter �4 to model (2.16) and get:
�(z;�) = �4 + �11 + ( z�2 )�3 : (2.17)

In this case � = �4 is a lower horizontal asymptote at the right if �3 > 0 or a lower horizontalasymptote at the left if �3 < 0. Figure 2.3 illustrates the two cases. The ED50 for model
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Figure 2.3: Graph of �(z;�) = �4 + �11 + � z�2��3 : (a) �3 > 0; (b) �3 < 0.

(2.17), found by taking �(z; �) = �1 + �42 , is
ED50 = �2��1 + �4�1 � �4

� 1�3 : (2.18)
It follows from equation (2.18) that ED50 = �2 if and only if �4 = 0. The Finney model (2.15)in the continuous case was also discussed by Geric, Blum and Meier (1988) but they replacedthe interaction parameter �2 by 2�2 in (2.13).
The potency of drug B relative to drug A with model (2.15) can be calculated as follows.Suppose that d2 = 0, so that the e�ective dose given in (2.13) is z = d1. Then, (2.6) can bewritten as 0 = logit�12� = �3(ln d1 � ln�)so that the ED50 for drug 1 is �1 = �. Likewise, taking d1 = 0 and z = �1d2 gives

0 = logit�12� = �3(ln �1d2 � ln�)
which implies that the ED50 for drug 2 is �2 = ��1 . Hence, according to (2.5), the relativepotency is � 12 = �1�2 = �1:
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The combination index for model (2.15) can be calculated as follows. As �1 is the relativepotency of drug 2 with respect to drug 1, the e�ective dose (2.13) written in terms of the doseof drug 1 alone at ED50 is d1 + �1d2 + �2p�1d1d2 = �1;or equivalently as d1�1 + �1d2�1 + �2p�1d1d2�1 = 1;
or, since �2 = �1�1 , as d1�1 + d2�2 + �2

s d1d2�1�2 = 1: (2.19)
Results (2.12) and (2.19) imply that the combination index for the Finney model is given by

� = d1�1 + d2�2 = 1� �2
sd1�1 d2�2 : (2.20)

Recall that in Finney models (2.15) with z given by (2.13), additivity, synergy and antagonismoccur if �2 = 0, �2 > 0 and �2 < 0 respectively. As a consequence, equation (2.20) indicatesthat additivity, synergy and antagonism occur when � = 1, � < 1 and � > 1 respectively.Thus, the results obtained using the interaction parameter and the combination index are inagreement(ii) Binary responseThe binary response equivalent to (2.15), also discussed by O'Brien (2004) assumes that theresponse variable is binary with expected probability of success given by
p = ( z�2 )�31 + ( z�2 )�3 (2.21)

= 11 + exp f��3(x� �)g (2.22)
where z is the e�ective dose de�ned in (2.13), x = ln z and � = ln �2.If �3 > 0, then p takes the maximum value of 1 as z ! 1. Conversely, p approaches theminimum value of 0 as z !1. These two cases are illustrated in Figure 2.4.Comments regarding the combination indices for models (2.21) and (2.22) are similar to thoseof model (2.15). Model (2.21) or its equivalent (2.22) was discussed by Finney (1971) in theframework of probit analysis.
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Figure 2.4: Finney model, binary response: (a) �3 > 0, (b) �3 < 0.
Giltinan et al. (1988) analyzed the Finney models (2.15) and (2.21) as generalized nonlinearmodels. They consider a mixture of d1 units of drug A and d2 units of drug B, where therelative potency of drug B with respect to drug A is �. Then, if Y is the response variable,Giltinan et al. (1988) stated that a model of simple similar action, i.e. no interaction, is

g(�) = � + � log(d1 + �d2) (2.23)
where � = E(Y ) and g is the link function of the mean response variable Y and the explanatoryvariables D1 and D2 with values d1 and d2 respectively. The detection of synergy was obtainedby comparing model (2.23) with the alternative model

g(�) = � + � log(d1 + �d2 + (�d1d2) 12 ): (2.24)
Additivity, synergy and antagonism hold respectively when  = 0,  > 0 and  < 0.
2.4.2 Greco models
(i) Continuous responseGreco and Tung (1991) considered the case when two drugs A and B in amounts d1 and d2are administered to subjects and the response of interest is a continuous random variable Y
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with expected value E. The expected value of the e�ect of d1 and d2 was modelled asd1�1[ EEc�E ] 1m1 + d2�2[ EEc�E ] 1m2 + �d1d2�1�2[ EEc�E ]( 12m1+ 12m2 ) = 1; (2.25)
where �1 and �2 are median e�ective doses for drug A and B respectively, m1 and m2 areslope parameters for drug A and drug B respectively, Ec is the maximum value of E and � isthe interaction parameter of the model.Clearly, if m1 6= m2 in model (2.25), it is not possible to �nd an explicit expression of E interms of d1 and d2. However, if m1=m2=m, model (2.25) can be written as

E = Eczm1 + zm (2.26)
where z = d1�1 + d2�2 + � d1d2�1�2 . Note that model (2.26) is similar to the e�ective dose model ofFinney given in (2.16) with �1 = Ec, �2 = 1 and �3 = m.
The value of the combination index for model (2.26) is obtained by setting E = Ec2 . Thisgives d1�1 + d2�2 + �d1�1 d2�2 = 1: (2.27)Then, using the de�nition (2.12) and result (2.27), the combination index for the continuousmodel (2.26) is � = d1�1 + d2�2 = 1� �d1�1 d2�2 : (2.28)This result is similar to result (2.20) obtained for the combination index using the Finneymodel where the square root sign is omitted and �2 replaced by �.It follows from equation (2.28) that if � = 0, � > 0 and � < 0, then � = 1, � < 1 and � > 1respectively corresponding to additivity, synergy and antagonism.(ii) Binary responseGreco and Lawrence (1988) considered the case when the response variable Y is binary, i.e.taking the coded values 0 and 1. If p is the probability of success then, E(Y ) = p since thisis considered as a Bernoulli experiment. Similarly to the continuous model (2.25), Greco andLawrence (1988) stated that the binary response model for the detection of drug interactionis d1�1[ p1�p ] 1m1 + d2�2[ p1�p ] 1m2 + �d1d2�1�2[ p1�p ]( 12m1+ 12m2 ) = 1 (2.29)
where �1 and �2 are median e�ective doses for drug A and B respectively, m1 and m2 areslope parameters for drug A and drug B respectively, and � is the interaction parameter of
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the model. As in model (2.25), if m1 6= m2 in model (2.29), it is not possible to �nd an explicitexpression of p in terms of d1 and d2. However, if m1=m2=m, model (2.29) can be writtenexplicitly as p = zm1 + zm (2.30)
where z = d1�1 + d2�2 + � d1d2�1�2 . Note that model (2.30) is similar to the binary response e�ectivedose model of Finney (2.21) with �2 = 1 and �3 = m.
The value of the combination index for model (2.30) is obtained by setting p = 12. This givesd1�1 + d2�2 + �d1�1 d2�2 = 1 (2.31)
and, thus the combination index is

� = d1�1 + d2�2 = 1� �d1�1 d2�2 (2.32)
which is the same as (2.28) found for the continuous response case.
2.4.3 Plackett-Hewlett model
Giltinan et al. (1988) suggested that an alternative model to (2.24) is the model introducedby Plackett and Hewlett (1952) de�ned as

g(�) = � + ���1 log(d�1 + ��d�2); (2.33)
where � is the interaction parameter and � = �1�2 is the relative potency of drug B withrespect of drug A, �1 and �2 being the median e�ective doses of drugs A and B respectively.Additivity, synergy and antagonism are observed when � = 1, � < 1 and � > 1 respectively.The nature of interaction can be explained as follows. Since �1 is obtained by taking g(�) = 0,and d2 = 0 in model (2.33), it follows that �1 = e��� . As a consequence, taking g(�) = 0,equation (2.33) becomes � d1�21

�� + � d2�22
�� = 1: (2.34)Equation (2.34) is referred to in many articles as the Hewlett-Plackett model (see for ex-ample Hewlett (1969), and Machado and Robinson (1994)). Clearly, additivity, synergy andantagonism occur respectively when � = 1, � < 1 and � > 1 because these three cases arerepresented by a straight line, a hyperbolic curve, and an elliptic curve, and hence agree withthe isobologram of Figure 2.1. However, it is not possible to express (2.34) as the combinationindices given by (2.20) and by (2.32).

16



Chapter 2 { Review of Models for Detecting Drug Interaction
2.4.4 Response surface models
The most popular response surface model for drug interaction is the logistic model. Thisinvolves the continuous response case and the binary response case.(i) Continuous ResponseSuppose that two drugs A and B are jointly administered to subjects in doses d1 and d2respectively. The expected response of interest in a continuous scale is the semi-nonlinearmodel de�ned as �(d;�) = �41 + exp(��0 � �1d1 � �2d2 � �12d1d2) ; (2.35)or, equivalently as log ��4 � � = �0 + �1d1 + �2d2 + �12d1d2: (2.36)Model (2.35) or its equivalent (2.36) is known as the continuous logistic model. The interactionparameter is �12. In the model (2.36) the interaction term d1d2 is not in the same units asthe individual doses d1 and d2. In addition, the model includes a placebo e�ect, obtained bysetting d1 = d2 = 0, and its value is

�(0;�) = �41 + exp(��0) : (2.37)
Since exp(��0) > 0, the quantity (2.37) is always less than �4. Large positive values of �0renders (2.37) close to �4, and large negative values of �0 renders (2.37) close to 0. Figure 2.5is a graphical illustration of the value of �(0;�) de�ned by (2.37) for all possible values of �0.Since, for active drugs, the placebo e�ect must be negligible, �0 must be negative and largein absolute value.The potency of drug B relative to drug A can be calculated as follows. Taking � = �42 inmodel (2.36), d2 = 0, or d1 = 0 gives the ED50's for drugs A and B respectively, i.e.

�1 = ED50;1 = ��0�1 �2 = ED50;2 = ��0�2 : (2.38)
These results assumed to be positive have a meaning when �0 has opposite sign to that of�1 and �2. As discussed that �0 < 0, then �1 > 0 and �2 > 0. However, in real worldsituations, cases when �0 > 0, �1 < 0 and �2 < 0 can also exist. In such cases the placeboe�ect, response at zero doses, has the highest value. An example is when the response variableis the amount of bacteria colonies remaining in a patient's body after a certain period withantibiotic treatments. The amount of colonies is expected to be higher when no treatment isgiven, then decrease with the use of treatments.
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Figure 2.5: Graph of �(0;�) = �41 + exp(��0) .
Now, according to (2.2), the potency of drug B relative to drug A is

� = �1�2 = �2�1 (2.39)
The combination index for model (2.35) or (2.36) can be calculated as follows. Setting � to�42 in model (2.36) gives d1�1 + d2�2 + �d1�1 d2�2 = 1; (2.40)
where �1 and �2 are the respective median e�ective doses given by (2.38) and � = ��0�12�1�2 isthe interaction coe�cient. Thus, according to (2.12), the combination index for model (2.35)is � = d1�1 + d2�2 = 1� �d1�1 d2�2 (2.41)
which is the same expression as those given in (2.28) and (2.32). Recall from Section 2.3.3that additivity, synergy and antagonism are observed if � = 1, � < 1 and � > 1 respectivelywhich respectively correspond to � = 0, � > 0 and � < 0. Therefore, if �1 > 0 and �2 > 0,results (2.41) where � = ��0�12�1�2 lead to the following two cases.(1) If �0 < 0, then additivity, synergy and antagonism are respectively observed when �12 = 0,�12 > 0 and �12 < 0.(2) If �0 > 0, then additivity, synergy, and antagonism are observed when �12 = 0, �12 < 0,
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and �12 > 0 respectively. These results indicate that there are two cases of synergy for model(2.35) corresponding to (1) �0 < 0, �1 > 0, �2 > 0 and �12 > 0, and (2) �0 > 0, �1 < 0,�2 < 0 and �12 < 0, and two cases of antagonism corresponding to (1) �0 < 0, �1 > 0, �2 > 0and �12 < 0, and (2) �0 > 0, �1 < 0, �2 < 0 and �12 > 0. Since it was agreed to only discussthe case when �0 < 0, in this subsequent chapters synergy will be discussed when �0 < 0,�1 > 0, �2 > 0 and �12 > 0, and antagonism will be discussed when �0 < 0, �1 > 0, �2 > 0and �12 < 0.
(ii) Binary response
If the response variable Y is binary with probability of response p, the continuous logisticmodel (2.35) is replaced by the binary logistic model

p = 11 + exp(��0 � �1d1 � �2d2 � �12d1d2) ; (2.42)
or, equivalently,

logit(p) = log� p1� p
� = �0 + �1d1 + �2d2 + �12d1d2 (2.43)

with 0 � p � 1. Note that this model is similar to (2.35), or equivalently to (2.36), exceptthat the parameter �4 is �xed to 1. The placebo e�ect, the median e�ective doses, the relativepotency and the combination index are calculated in a similar way as for the continuous case.The results are the same as those found for the continuous logistic model, but �4 is taken tobe 1. In his PhD thesis, Kupchak (2000) used model (2.42) for modelling drug interaction,but assumed �12 = 0 in almost all the cases for the construction of optimal designs.
2.5. Conclusions

This chapter has reviewed some measures and models for detecting drug interaction. Druginteraction can be detected in di�erent ways. One way is a visual approach by observingan isobologram which in turn is related to a descriptive measure termed combination indexor interaction index. A statistical approach of assessing drug interaction is to calculate thecoe�cient of interaction or the interaction parameter. The relationship between the interac-tion index and the interaction parameter was derived using various models. Speci�cally, fourmodels were discussed: (1) the e�ective dose models of Finney; (2) the Greco models; (3)the Plackett-Hewlett model; and (4) the response surface models. It was shown that these
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models give similar information with respect to values of the combination index and the inter-action parameter. Observed di�culties were that the Plackett-Hewlett model is constructeddi�erently from others, and it is in general di�cult to write the mean response for the Grecomodel. In this thesis, drug interaction will be detected using the interaction parameter ratherthan the combination index since �tting models which incorporate interaction terms is verywell developed in statistical literature and statistical packages are now widespread. As themodels discussed in this chapter have many similarities, the theory of optimal designs will beillustrated using the binary response case of the response surface models.
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3
Review of Optimal Designs

3.1. Introduction
This chapter reviews the theory of optimal designs. The aim of optimal design theory isto provide values of explanatory variables in a model such that the information about theparameters is provided as precisely as possible by reducing noise on these parameters. Thetheory of optimal designs is well developed for linear models (see for Example Fedorov (1972)and Silvey (1980)). However, generalized linear and nonlinear models are known to be suitablefor �tting some kind of data (see for example McCullagh and Nelder (1989), Dobson (2002),Myers et al. (2002), and also Seber and Wild (2003)). Speci�cally, generalized linear modelsand nonlinear models are useful to �t data for the detection of drug interaction (see for exampleFinney (1971) and Tallarida (2000)). This chapter reviews the theory of optimal designs forlinear, nonlinear and generalized linear models and is structured as follows. Section 3.2 gives abrief review of the de�nition of a generalized linear model, and associated information matrixfor the model parameters. Section 3.3 provides an extension of generalized linear models togeneralized nonlinear models. Section 3.4 gives examples of models which belong to generalizedlinear and nonlinear models. Section 3.5 gives an overview of the theory of optimal designs,and speci�cally presents popular optimality criteria. Section 3.6 discusses the constructionof optimal designs for linear models. Section 3.8 reviews the methodology of constructingoptimal designs for nonlinear models. Finally, Section 3.9 provides concluding remarks on theChapter.
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3.2. Generalized linear models and information matrix

3.2.1 Exponential family of distributions
Consider a random variable Y with probability density function (pdf) f(y; �) that depends ona single parameter �. The distribution of Y belongs to the exponential family if f(y; �) canbe written in the following form

f(y; �) = exp[a(y)b(�) + c(�) + d(y)] (3.1)
where a, b, c, and d are known functions. If a(y) = y, the distribution of Y is said to bein canonical form and b(�) is called the natural parameter of the distribution. The normaldistribution, the poisson distribution, and the binomial distribution belong to the exponentialfamily of distributions since the pdf of each of them can be written in the form (3.1) (seefor example Dobson (2002, pp. 44-46)). The mean and the variance of the variable a(Y ) aregiven by � = E[a(Y )] = �c0(�)b0(�) and Var[a(Y )] = b00(�)c0(�)� c00(�)b0(�)[b0(�)]3(Dobson (2002, p. 47)).
3.2.2 Generalized linear models
Consider a set of N independent random variables Y1, Y2, : : :, YN with a distribution thatbelongs to the exponential family. The following features de�ne a generalized linear model(GLM) (Nelder and Wedderburn (1972)).

1. Random component: The random variables Yi belong to the same exponential family inthe canonical form and are such that each of them has its own single parameter �i. Thatis f(yi; �i) = exp[yib(�i) + c(�i) + d(yi)]; i = 1; 2; : : : ; N:In principle not all the parameters �i are involved, but a set of parameters of interest� = (�0; �1; : : : ; �p)T with p < N .
2. Deterministic or systematic component: The linear predictor

�i = �0 + �1xi1 + �2xi2 + : : :+ �pxip = xTi �
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gives a linear combination of values of the explanatory variables X1, X2, : : :, Xp fori = 1; 2; : : : ; N . The involvement of the linear predictor is the source of the terminologygeneralized linear models. It should be noted that if Yi belongs to the exponential familyand is in canonical form then b(�i) = xTi � for i = 1; 2; : : : ; N .

3. Link function: The association between the mean response �i = E(Yi) and the linearpredictor �i is g(�i) = �i = xTi �where g is a monotone, di�erentiable function called the link function (see McCullaghand Nelder (1989, p. 27), Dobson (2002, p. 49), and Myers et al. (2002, p. 161)). Thelink functions for common distributions are listed for example in McCullagh and Nelder(1989, p. 31), and in (Myers et al., 2002, p. 162).
3.2.3 Information matrix
Consider independent random variables Y1, Y2, : : :, YN which satisfy the conditions of a GLM,and suppose that �i = E(Yi). The likelihood function is de�ned by

L(�;y) = NY
i=1 f(yi; �i)where y is the N � 1 vector of observed responses, and the elements of the parameter vector� are related to the parameters �i through the link function. Thus, the log-likelihood can beexpressed as

l(�;y) = lnL(�;y) = NX
i=1fyib(�i) + c(�i)g:

The information matrix for � at a single vector x = (1; x1; x2; : : : ; xp)T is de�ned as
M(x;�) = �E �@2l(�;y)@�@�T �

and is readily shown to be
M(x;�) = 1V ar(Y ) �@�@���@�@��T = 1V ar(Y ) �@�@��2� @�@�

�� @�@�
�T = 1V ar(Y ) �@�@��2 xxT(3.2)where �@�@�� is a (p+1)�1 vector of partial derivatives of � with respect to each of component

of the vector �T = (�0; �1; : : : ; �p), �@�@�� is a scalar and � = g�1(�) since g is a monotone
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function (Dobson (2002, p. 62-63). Thus, for the independent response variables Yi at xi withi = 1; 2; : : : ; N , the information matrix for � is given by

M(X;�) = NX
i=1 1V ar(Yi)

�@�i@�i
�2 xixTi : (3.3)

The information matrix (3.3) can be written in succinct form as
M(X;�) =XTWX (3.4)

whereW is the diagonal matrix with (i; i)th element 1V ar(Yi)
�@�i@�i

�2 andX is the N�(p+1)design matrix with ith row xTi = (1; x1i; : : : ; xpi) (Dobson (2002, p. 64)).
3.3. Generalized nonlinear models

The de�nition of the generalized nonlinear model (GnLM) is the same as that of the generalizedlinear model except that the predictor �i = �(xi;�) for i = 1; 2; : : : ; N is introduced with� a nonlinear function in some or all the parameters �. Writing g(�i) = �(xi;�) gives�i = g�1(�(xi;�)) = h(xi;�). Therefore, �i is itself a nonlinear function. Similarly to (3.2),the information matrix for � at a single point x is given by
M(x;�) = 1V ar(Y ) �@�@���@�@��T = 1V ar(Y ) �@�@��2� @�@�

�� @�@�
�T (3.5)

where � @�@�� is a (p + 1) � 1 vector of partial derivatives of � with respect to the (p + 1)
parameters �i, and 1V ar(Y ) �@�@��2 is a scalar. Thus for the independent responses Yi at xiwith i = 1; 2; : : : ; N , the information matrix for � is given by

M(X;�) = NX
i=1 M(xi;�) = NX

i=1 1V ar(Yi)
�@�i@�i

�2�@�i@�
��@�i@�

�T = F TWF (3.6)
where W is the N � N diagonal matrix with the (i; i)th element 1V ar(Yi)

�@�i@�i
�2 and F

is the N � (p + 1) matrix with the ith row �@�i@�
�T = � @�i@�0 ; @�i@�1 ; : : : ; @�i@�p

�. Clearly, theinformation matrix (3.4) is a special case of the information matrix (3.6).

24



Chapter 3 { Review of Optimal Designs
3.4. Examples

Example 3.1. Normal linear model
In this case,(a) Yi � N(�i;�2) and the normal distribution is a member of the exponential family (Dobson(2002, p. 45)).(b) The linear predictor can be expressed as � = xT�.(c) The link function g is the identity, i.e. �i = �i = xTi �.The information matrix (3.2) at a single point x follows immediately from the fact thatV ar(Yi) = �2, �@�i@�i

� = 1 and @�i@� = x, and thus the information matrix at point x can be
written asM(x) = 1�2xxT . Clearly, this matrix does not depends on �, and thus the notationM(x;�) can be replaced by the notation M(x). The information matrix for N observationsat xi, i = 1; 2; : : : ; N is then M(X) = 1�2XTX (3.7)where X is an N � (p+ 1) matrix whose ith row is xTi = (1; xi1; xi2; : : : ; xip):
Example 3.2. Linear binary logistic model
(a) Suppose that the response variable Y is binary, taking values such as success and failurecoded 1 and 0, i.e. for a single observation, the random variable Y follows a Bernoulli distri-bution with probability of success �. Therefore, for ni observations at xi, the random variableYi, with i = 1; 2; : : : ; N , follows a binomial distribution with probability of success �i, that isYi � Binomial(ni; �i). In consequence, E(Yi) = ni�i and ni is assumed known. In addition,the binomial distribution is a member of the exponential family (Dobson (2002, p. 46)).(b) The linear predictor is � = xT�.(c) The link function for � is the logit and is the natural parameter, namely

� = logit(�) = ln �1� � = xT�
(Dobson (2002, p. 46)). This equation implies that � = e�1 + e� . The information matrixfollows from the fact that V ar(Y ) = n�(1� �), � = E(Y ) = n� and for the logit link�@�@�

� = �@�@���@�@�� = n�(1� �):
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Thus, for a single observation x, the information matrix (3.2) for � is

M(x;�) = n�(1� �)xxT
and for N observations, the information matrix (3.4) is

M(X;�) =XTWX (3.8)
where W = diagfni�i(1 � �i)g and X has the ith row xTi = (1; x1i; : : : ; xpi) with i =1; 2; : : : ; N . The information matrix (3.8) depends on the parameters � through W which isa function of �i = 11 + expf�xT�g .Example 3.3. Normal nonlinear models
Here(a) Yi � N(�i;�2) and the normal distribution is a member of the exponential family.(b) The predictor expressed as � = �(x;�) is not linear.(c) The link function is the identity, i.e. �i = �i with i = 1; 2; : : : ; N .The information matrix (3.5) for � follows immediately from the fact that V ar(Yi) = �2 and�@�i@�i

� = 1 and thus for a single observation at x, the information matrix (3.5) can be writtenas M(x;�) = 1�2 � @�@��� @�@��T : (3.9)
Thus for N observations at xi, i = 1; 2; : : : ; N , the information matrix (3.6) for � is given by

M(X;�) = 1�2F TF (3.10)
where F has the ith row � @�i@�0 ; @�i@�1 ; : : : ; @�i@�p

�: The information matrix (3.10) depends on �through the elements of F .
Example 3.4. Nonlinear binary logistic model
Here(a) Yi � Binomial(ni; �i) and the binomial distribution is a member of the exponential family.(b) The predictor can be expressed as � = �(x;�) and is not linear.(c) The link for � is the logit and is the natural parameter, namely

logit(�) = ln �1� � = �(x;�):
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The information matrix follows from the fact that V ar(Y ) = n�(1 � �), � = n� and for thelogit link �@�@�� = �@�@���@�@�� = n�(1� �): For a single observation x, the informationmatrix is given by M(x;�) = n�(1� �)� @�@��� @�@��T : (3.11)
Thus for N observations at xi with i = 1; 2; : : : ; N the information matrix for � is

M(x;�) = F TWF (3.12)
where W = diagfni�i(1 � �i)g and F has the ith row � @�i@�0 ; @�i@�1 ; : : : ; @�i@�p�. The informationmatrix (3.12) depends on � through W and the elements of F .

3.5. Aim, design and optimality criteria
3.5.1 Aim
The aim of optimal design is to choose a set of values of the explanatory variables in a designspace, say X, in order to maximize the information about a set of parameters so that theseparameters are estimated as precisely as possible. Hence, the precise estimation of modelparameters will lead to reliable inferences and predictions.
3.5.2 Design
A mapping that allocates inputs to suitable points in X is called a design measure or a design,in short. The points of X at which the inputs are allocated are called support points. Designscan be classi�ed as exact or approximate.
Exact design
Consider an experiment in which N observations are made on the response variable. An exactdesign measure �N is a mapping which allocates ni trials to each of k distinct points xi of thedesign space X, where ni is an integer for i = 1; 2; : : : ; k and kX

i=1 ni = N . Such a design issymbolically represented as
�N = ( x1 x2 : : : xkn1 n2 : : : nk

) : (3.13)
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The quantities �i = niN corresponding to the support points xi for i = 1; 2; : : : ; k are calleddesign weights. The weights satisfy the condition

0 � �i � 1 and kX
i=1 �i = 1: (3.14)

The design (3.13) is called an exact design since N�i = ni is an integer (Atkinson and Donev(1992, p. 94), or Atkinson et al. (2007, p. 120)). Recall from Section 3.3 that the informationmatrix for a generalized nonlinear model at N observations was given in (3.6) so which canbe written as M(X;�) = NX
i=1 wi�@�i@�

��@�i@�
�T = F TWF (3.15)

where wi is the scalar 1V ar(Yi)
�@�i@�i

�2 and W is a N � N diagonal matrix with wi as the
(i; i)th element and F has the ith row � @�i@�0 ; @�i@�1 ; : : : ; @�i@�p

�. For a GLM, �@�i@�
� = x and

F = X and in the normal case wi = 1�2 . As a consequence of (3.15), the standardized oraverage information matrix corresponding to the exact design (3.13) is given by1NM(�N ;�) = kX
i=1 niNwi�@�i@�

��@�i@�
�T = F TWF (3.16)

where W is a N �N diagonal matrix with niNVar(Yi)
�@�i@�i

�2 as the (i; i)th element and F
has the ith row � @�i@�0 ; @�i@�1 ; : : : ; @�i@�k

� (see Fedorov and Hackl (1997, p. 18)). In this thesis,
the scalar wi = niNVar(Yi)

�@�i@�i
�2 will be called \model weight" in order to distinguish it withthe design weight �i = niN .

Approximate design
Suppose that in the design (3:13), the condition that ni is an integer is relaxed to the ratio�i = niN with 0 � �i � 1 for i = 1; : : : ; k. This introduces the idea of approximate design.Clearly, an approximate design � de�nes a measure �(x) at each x 2 X. If the design measure� is discrete with k support points on X, then the quantities �i = �(xi) corresponding to thesupport points xi for i = 1; 2; : : : ; k are called design weights. Hence, an approximate designis represented by

� = ( x1 x2 : : : xk�1 �2 : : : �k
) ; (3.17)
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with 0 � �i � 1 and kX

i=1 �i = 1. Similar to (3.16), the standardized or average informationmatrix corresponding to an approximate design is given, in the discrete case, by
M(�;�) = kX

i=1 �iwi�@�i@�
��@�i@�

�T = F TWF ; (3.18)
where W is a N �N diagonal matrix with (i; i)th element wi = �iV ar(Yi)

�@�i@�i
�2 and F has

the ith row � @�i@�0 ; @�i@�1 ; : : : ; @�i@�k
�.

If the design measure is continuous on X, then the design weights are de�ned by means of aprobability density function which is a continuous function �(x); x 2 X such that �(x) � 0and RX �(x)dx = 1.For an approximate continuous design, the information matrix of the parameters is given by
M(�;�) = ZXM(x;�)�(x)dx = ZX �(x)var(Y ) �@�@��2� @�@�

�� @�@�
�T dx: (3.19)

In practice continuous optimal designs are unusual and will not be treated in this thesis.
3.5.3 Optimality criteria
A design is said to be optimal if it maximizes the information on the parameters in such a waythat these parameters are evaluated as precisely as possible. This information is summarizedin the information matrix. Maximizing the information matrix of the vector of parameters �implies minimizing the asymptotic variance-covariance of �. It is not possible to optimize amatrix, except in the one-parameter case. Therefore functions of the information matrix whichare statistically meaningful are introduced. Some criteria, often called alphabetic criteria, havebeen formulated for this purpose, mainly for linear regression models (see for example Fedorov(1972), Silvey (1980), Atkinson and Donev (1992), and Atkinson et al. (2007)). These criteriaform the basis for other more sophisticated criteria such as those for nonlinear models (see forexample White (1973)).The notion of convex or concave functions is important in de�ning some optimality criteria.Concave and convex functions are de�ned as follows. Consider a design space X. A function	(M(�;�)) is convex on X if for any � 2 [0; 1] and for any two designs �1 and �2 de�ned onX the inequality	 f�M(�1;�) + (1� �)M(�2;�)g � �	fM(�1;�)g+ (1� �)	fM(�2;�)g (3.20)
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holds. Similarly, 	 is concave on X, if for any � 2 [0; 1] and for any two designs �1 and �2de�ned on X the inequality

	 f�M(�1;�) + (1� �)M(�2;�)g � �	fM(�1;�)g+ (1� �)	fM(�2;�)g (3.21)
holds (see for example Fedorov (1972, p. 70) and Silvey (1980, p. 17)). The optimalitycriteria are classi�ed with respect to minimizing a convex design criterion 	fM(�;�)g or tomaximizing a concave design criterion 	fM(�;�)g. Optimality criteria are subdivided in threemain categories, namely determinant based, linear based, and minimax based. The followingde�nitions can be found in any of the monographs on optimal designs, such as Fedorov (1972),Silvey (1980), P�azman (1986), Atkinson and Donev (1992), and Atkinson et al. (2007) as wellas in a vast number of articles on optimal designs.
3.5.4 Determinant based criteria
D-optimality
De�nition 3.1. A design �� is said to be D-optimal if and only if it maximizes ln jM(�;�)jor equivalently if and only if it minimizes ln jM�1(�;�)j = � ln jM(�;�)j, where jM(�;�)j isthe determinant of information matrix M(�;�) for the parameters of a given model and � isan element of the set � of all possible designs on a design space X.
The letter D stands for determinant and the design criterion to be minimized is

	DfM(�;�)g = � ln jM(�;�)j: (3.22)
D-optimality criterion has the following important properties:

� The function M(�;�) ! � ln jM(�;�)j is a strictly convex function since it is thereciprocal of ln jM(�;�)j which is a strictly concave function Fedorov (1972, p. 71,Lemma 2:2:2). Thus 	DfM(�;�)g corresponds to a global optimality criterion.
� If �1, �2,. . . ,�p are the eigenvalues of M(�;�), then the D criterion maximizes thedeterminant jM(�;�)j = pY

i=1 �i or minimizes jM�1(�;�)j = pY
i=1 1�i called the generalized

variance of �̂ (see for example Silvey (1980, p. 10), Atkinson and Donev (1992, p.42), and Atkinson et al. (2007, p. 53)). In fact in the generalized linear and nonlinearcase, jM�1(�;�)j is asymptotically the variance-covariance matrix of the vector �, that
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is b� is approximately distributed as N(�;M�1(�;�)). In the linear regression casewith error term normally distributed with mean zero and variance �2, the distributionb� � N(�;M�1(�;�)) is exact (Dobson (2002, p. 73)). The interpretation of this resultis that the D-optimality criterion minimizes the volume of the con�dence ellipsoid of thevector � of parameters given byn� : (� � �̂)TM(�;�)(� � �̂) � constanto (3.23)
where �̂ is an estimate of � (Silvey (1980, p. 10)).

� The D criterion is invariant with respect to any linear transformation of the explanatoryvariables (Atkinson and Donev (1992, p. 107), and (Atkinson et al., 2007, p. 136)).
The above properties make the D-optimality criterion the most used optimality criterion inpractical applications (Silvey (1980, p. 41)).
DA and Ds-optimality criteria
Suppose that A is a p � s matrix with s < p and interest is on estimating the s linearcombinations AT� of the parameters �. Since the asymptotic variance-covariance matrix of�̂ isM�1(�;�), then the asymptotic variance-covariance matrix of AT �̂ is ATM�1(�;�)A. Asa consequence, a criterion for estimating AT� similar to (3.22), is to minimize the followingcriterion 	DAfM(�;�)g = ln jATM�1(�;�)Aj: (3.24)This criterion was called the DA-optimality by Sibson (1974) to emphasize its dependencyon the matrix A (also see Atkinson and Donev (1992, p. 108), and Atkinson et al. (2007, p.137)).One special case of the DA optimality criterion is that for a single linear combination aT�.In this case the determinant in (3.24) is not needed because aTM�1(�;�)a is a scalar. Thecriterion which minimizes the quadratic form aTM�1(�;�)a is called c-optimality and will bediscussed in Section 3.5.5.Another special case of DA optimality is that for a linear combination of a subset of theparameters of the parameter vector �. In that regards, consider a p � 1 parameter vector �and suppose that, without loss of generality, the interest of the experimenter is on estimatingthe vector �1 of the �rst s parameters �1, �2, . . . , �s where s < p and the remaining p � sparameters �s+1; �s+2; : : : ; �p are taken to be nuisance parameters. This is a special case of
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DA-optimality where AT = (Is 0), Is being the s� s identity matrix and 0 the s� (p� s)null matrix. Here, the letter s stands for subset. The information matrix for the parameterscan be conformably partitioned as

M(�;�) =  M11(�;�) M12(�;�)MT12(�;�) M22(�;�)
! :

The variance-covariance matrix of the estimates of �1 is the upper s � s sub-matrix ofM�1(�;�) given by
M11(�;�) = fM11(�;�)�M12(�;�)M�122 (�;�)MT12(�;�)g�1

and the Ds-optimal design maximizes the determinant
ln jfM11(�;�)g�1j = ln jM11(�;�)�M12(�;�)M�122 (�;�)MT12(�;�)j = ln jM(�;�)jjM22(�;�)j (3.25)

(see Silvey (1980, p. 11), Atkinson and Donev (1992, p. 109) and Atkinson et al. (2007, p.139)).
3.5.5 Linear optimality
De�nition 3.2. Suppose that L is a p� q nonnegative de�nite matrix of real coe�cients. Adesign ��L is termed an L-optimal design if it minimizes a criterion of the form

	LfM(�;�)g = trfM�1(�;�)Lg (3.26)
where trfM�1(�;�)Lg is the trace of the matrix M�1(�;�)L, that is the sum of the (i; i)thelements of M�1(�;�)L. The letter L stands for linear. The following two cases are possible.

1. Suppose that s is the rank of L with s � q. Then L can be written as L = AAT whereA is a p� s matrix of rank s. In this case, the criterion (3.26) can be written as
	AAfM(�;�)g = trfM�1(�;�)Lg = trfM�1(�;�)AATg = trfATM�1(�;�)Ag (3.27)

and this criterion is called AA-optimality criterion (see Atkinson and Donev (1992, p.114). Some special cases are the following
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A-optimality
The A-optimality is obtained by taking A = I, where I is the p� p identity matrix, togive the following de�nition.
De�nition 3.3. A design ��A is said to be A-optimal if and only if it minimizes thecriterion 	AM(�;�) = tr fM�1(�;�)g where tr fM�1(�;�)g is the trace of the inverseof the information matrix of the parameters.
Note that trfM�1(�;�)g = pX

i=1 1�i = pX
i=1 var(�̂i) (3.28)

where �i; i = 1; 2; : : : ; p, are the eigenvalues of the information matrix M(�;�). Clearly,minimizing 	AM(�;�) is equivalent to minimizing
	fM(�;�)g = 1ptr�M�1(�;�)	 = 1p pX

i=1 1�i = 1p pX
i=1 var(�̂i) (3.29)

so that A stands for \average". The expression (3.29) shows that one disadvantageof the A-optimality criterion is that it minimizes the average of the variances of theparameters but does not take into account their covariances. Another disadvantage ofthis criterion is that it is not invariant to a linear transformation of the explanatoryvariables (Atkinson and Donev (1992, p. 107), and Atkinson et al. (2007, p. 136)).
c-optimality
If s = 1, then A in (3.27) is the column vector c and the c-optimality is obtained, whichis de�ned as follows.
De�nition 3.4. A design ��c is c-optimal if and only if it minimizes the variance of theestimate of the linear combination cT� of the vector of parameters �, which means that��c minimizes the criterion 	cfM(�;�)g = cTM�1(�;�)c over all designs � 2 � where �is the set of all possible designs on a given design space.
Note that c-optimal designs are interesting since in some cases, parameters may not beestimable but their linear combinations estimable or interest is on these linear combina-tions. A disadvantage of c-optimum designs is that in some situations the informationmatrix and therefore the design is singular. This renders calculations di�cult or requiresthe use of generalized inverses of the information matrices (Silvey (1978), Silvey (1980,
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p. 13), Atkinson and Donev (1992, p. 113), and Atkinson et al. (2007, p. 142)). Twoimportant special cases of c-optimality are the following:
(a) Precision on an individual parameterIf interest is on the parameter �i, i = 1; 2; : : : ; p, then cT=(0; 0; : : : ; 1; 0; : : : ; 0) with1 at the ith position and 0 elsewhere.(b) Two parameter contrastsIf interest is now on the precision of some contrasts �i � �j, i 6= j and i; j =1; 2; : : : ; p, then cT=(0; 0; : : : ; 1; : : : ; 0; 0; : : : ;�1; 0; : : : ; 0) with ci = 1, cj = �1 andcl = 0 for i 6= j 6= l, and i; j; l = 1; 2; : : : ; p.
An interesting feature of c-optimality is that it is invariant to linear transformation ofthe explanatory variables as for D-optimality.

2. Suppose that interest is on several contrasts, say s contrasts CT�, where C is a p � smatrix of coe�cients with elements in each row summing to 0. The criteria to beminimized given by 	CfM(�;�)g = trfCTM�1(�;�)Cg (3.30)is called C-optimality (Atkinson and Donev (1992, p. 114), and Atkinson et al. (2007,p. 143)).
3.5.6 Minimax criteria: G-and E-optimality
Minimax criteria are de�ned in terms of the variance of the predicted response. For alinear model with normal errors, the variance of the predicted response xT �̂ is given byd(x; �) = xTM�1(�)x and this result is exact. However, for a nonlinear model the approxi-mate asymptotic variance of the predicted response � = �(x; �̂) is

d(x; �;�) = � @�@��T M�1(�; b�)� @�@�� (3.31)
(see for examples O'Brien and Funk (2003)).
G-optimality
De�nition 3.5. A design ��G is G-optimal if it minimizes the maximum standardized varianced(x; �;�) of the predicted response over a design space X. In other words, the criterion
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	GfM(�;�)g to be minimized by the choice of design ��G in the set � of all designs on thedesign space X is given by 	GfM(�;�)g = min�2� maxx2Xfd(x; �;�)g (3.32)where d(x; �;�) is de�ned by (3.31).
E-optimality
Consider looking at the variance of the linear combination cT �̂ where c 2 Rp such thatcTc = 1, that is the vector c lies on the unit sphere. The E-optimality criterion minimizes themaximum variance of all linear combinations cT �̂ for c lying in the unit sphere cTc = 1 � Rp,and thus the following de�nition.
De�nition 3.6. A design ��E is E-optimal if and only if it minimizes the variance of the linearcombination cT �̂ subject to cTc = 1. In other words, the criterion 	 to be minimized by thechoice of design ��E in the set � of all designs on the design space X is given by	EfM(�;�)g = maxcTc=1 �cTfM�1(�;�)gc� : (3.33)
Minimizing (3.33) is equivalent to minimizing the maximum eigenvalue ofM�1(�;�) or equiv-alently maximizing the minimum eigenvalue of M(�;�) by choice of designs � in � (Silvey(1980, p. 12) and Atkinson and Donev (1992, p. 107)).

3.6. Construction of optimal designs for linear models
3.6.1 Preliminaries
Aim
The aim of this section is to review methods of optimization of the criteria given in Sections3.5.4 and 3.5.5.
Scope
The information matrix (3.7) for linear models does not depend on the parameters. Thus, thetheory ows smoothly and all extensions, as for example to generalized linear and nonlinearmodels, are based on these ideas.
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3.6.2 Construction of exact optimal designs
Problem
The construction of exact optimal designs is di�cult. Speci�cally the problem is rootedin combinatorics. As an example, the D-criterion has been shown to be non-deterministicpolynomial-time hard (NP-hard), i.e. no fast solution is known (Welch (1982a)). In certaincases it is possible to enumerate all possible designs and thus �nd the optimum. However thisapproach rapidly becomes prohibitive in terms of computer-time as the size of the problemincreases (Welch (1982b)). Thus, at least in general, heuristic algorithms are needed forconstructing exact optimal designs and these do not guarantee to �nd the global optimum(Atkinson and Donev (1992, p. 178), and Atkinson et al. (2007, p. 181)).
Algorithms
There is a number of algorithms used in the search for exact designs on a given design space.Some of them are the following:(a) Enumeration: This consists of giving a complete list of all possible designs so that theoptimal one can be located. A more e�cient way is to perform a branch-and-bound (Welch,1982b). The method guarantees to �nd an optimal design, but computation becomes cumber-some for high sized designs (Atkinson and Donev (1992, p. 178), and Atkinson et al. (2007,p. 181)).(b) Exchange algorithms: These algorithms are based on adding trials to a smaller candidatedesign or deleting trials from a larger candidate design or exchanging points from the K initialsupport points and from the list L of candidate support points. The aim is to obtain an im-proved N -trial design for a given criterion. Exchange algorithms include DETMAX (Mitchell(1974)) and the Fedorov algorithm (Fedorov (1972, Chap. 3)). The theory related to thesealgorithms are summarized and extended in Atkinson and Donev (1992, Chapter 15), and inAtkinson et al. (2007, Chapter 12).(c) Other heuristic procedures: Examples include the Nelder-Mead simplex method (Nelderand Mead (1965), simulated annealing (Haines (1987)) and genetic algorithms (Joshi andMoudgalya (2004, p. 308)).
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3.6.3 Construction of approximate optimal designs
Idea
An approximate design was de�ned as a design of form (3.17). The theory associated withapproximate optimal design is powerful in the sense that it is based on a well documentedtheory and, in particular, leads to the construction of global optimal designs.
Caratheodory's Theorem
One of the important results in the theory of approximate designs is the Caratheodory'sTheorem as it provides a priori the maximum number of support points of a D-optimaldesign. The theorem is formulated as follows.
Theorem 3.1. Consider a design space X � Rk, and � the set of all designs � on X and acriterion 	 de�ned on X. The Caratheodory's Theorem states there always exist an approx-imate design �� with number of support points at most equal to 12k(k + 1) + 1 that satis�esthe criterion 	. In particular, if the criterion 	 is concave then the number of support pointsof the optimal design �� is at most equal to 12k(k + 1) (Silvey (1980, p. 16)).
Special caseSuppose that the number, k, of support points is equal to the number, p, of parameters andconsider the D-optimality criterion. The information matrix of the approximate design (3.17)is given by

M(�) = pX
i=1 �iM(xi) =XTWX (3.34)

where the design matrixX with ith row xTi = (1; xi1; xi2; : : : ; xi;p�1) and the matrix of weightsW = diag��1�2 ; �2�2 ; : : : ; �p�2� have the same dimension p� p. The determinant of the informa-tion matrix (3.34) factorizes to
jM(�)j = jXTWXj = jXj2jW j = jXj2 pY

i=1 �i: (3.35)
Thus, the optimization problem separate to maximizing jXj with respect to the support points
xi and jW j = pY

i=1 �i with respect to the weights �i subject to 0 < �i < 1 and pX
i=1 �i = 1. The

latter maximization leads to �i = 1p , i = 1; 2; : : : ; p. Thus, yielding a p-point D-optimum
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design with weights 1p at each support point (Fedorov (1972, pp. 84-85) and Silvey (1980, p.42)).

3.7. The general equivalence theorem for approximate designs
The general equivalence theorem for approximate designs is de�ned using the concept ofdirectional derivative that can, in the present context, be de�ned as follows.
De�nition 3.7. Suppose that � is the set of all designs � on the design space X and considera design �x 2 � which puts weight one on x 2 X. The directional derivative of an optimalitycriterion 	fM(�)g at � in the direction of �x is de�ned as

�(x; �) = lim�!0 	f(1� �)M(�) + �M(�x)g �	fM(�)g� : (3.36)
The directional derivative (3.36) is a building block for the following theorem known as thegeneral equivalence theorem for optimal designs.
Theorem 3.2. Suppose that 	 is a convex criterion function on the set of information matriceson the design space X. The general equivalence theorem states that the following threeassertions are equivalent.

1. The design �� minimizes 	fM(�)g for all � 2 �;
2. The directional derivative �(x; ��) is greater than or equal to zero for all x 2 X;
3. The directional derivative �(x; ��) attains its minimum at the support points of thedesign.

This theorem is due to Kiefer and Wolfowitz (1960) and is reported in Atkinson and Donev(1992, p. 96) and in Atkinson et al. (2007, p. 122). The general proof of the theorem is foundin Whittle (1973).
3.7.1 Directional derivatives for some criteria
The emphasis of this section is looking at the general equivalence theorem for the determinant-based and the linear-based optimality criteria. For each criterion the discussion falls into twoparts: (a) deriving the directional derivative and (b) stating the theorem.
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D-optimality
Firstly, recall that the D-optimality criterion is 	DfM(�)g = ln jM�1(�)j = � ln jM(�)j.Secondly note that @@�fln jM jg = tr�M�1�@M@�

�� where M is a nonsingular square matrixand � is a scalar (Fedorov (1972, p. 21)). Therefore, the directional derivative (3.36) forD-optimality criterion is given by
�(x; �) = lim�!0 � ln j(1� �)M(�) + �M(�x)j+ ln jM(�)j�= � lim�!0 trf[(1� �)M(�) + �M(�x)]�1 (�M(�) +M(�x))g= �trfM�1(�)[�M(�) +M(�x)]g= p� tr[M�1(�)M(�x)]= p� xTM�1(�)x

since M(�x) = xxT and d(x; �) = tr[M�1(�)xxT ] = xTM�1(�)x (see for example Graybill(1983, Theorem 9. 1. 20)). This result and the General Equivalence Theorem 3.2 imply thatGeneral Equivalence Theorem 3.2 for D-optimality for linear models is the following.
Theorem 3.3. The following three assertions are equivalent for a D-optimal design, ��, in adesign space X.

1. The design �� minimizes � ln jM(�)j over all designs � 2 �;
2. d(x; ��) � p for all x 2 X;
3. The support points of the D-optimal design �� are real solutions of equation d(x; ��) = p

where d(x; ��) = xTM�1(��)x.
It immediately follows from this theorem that for approximate designs D-and G-optimalityare equivalent. This equivalence is an important result since minimax designs are in generaldi�cult to construct.

39



Chapter 3 { Review of Optimal Designs
DA and Ds-optimality
The DA-optimality criterion is given by the equation (3.24). Thus, for a linear model thedirectional derivative of 	DA at � in the direction of �x is calculated as follows.

�(x; �) = lim�!0 ln jATM�1f(1� �)� + ��xgAj � ln jATM�1(�)Aj�= lim�!0 @@�fln jATM�1f(1� �)� + ��xgAjg= tr�fATM�1(�)Ag�1fAT [�M�1(�)(�M(�) +M(�x))M�1(�)]Ag	= trIs � tr�fATM�1(�)Ag�1ATM�1(�)xxTM�1(�)A	= s� d(x; �)
where s = rank(A) and d(x; �) = xTM�1(�)AfATM�1(�)Ag�1ATM�1(�)x. Thus, the Gen-eral Equivalence Theorem 3.2 for the DA optimality can be formulated as follows.
Theorem 3.4. The following three assertions are equivalent for a DA-optimal design.

1. The design �� minimizes ln jATM�1(�)Aj for all � 2 �;
2. d(x; ��) � s for all x 2 X ;
3. The support points of the DA optimal design are real solutions of d(x; ��) = s

where s = rank(A) and d(x; ��) = xTM�1(��)AfATM�1(��)Ag�1ATM�1(��)x.
The relationship between DA optimality and Ds optimality discussed in Section 3.5.4 impliesthat the directional derivative for the Ds-optimality criterion is given by

�(x; �) = s� xTM�1(�)x+ xT2M�122 (�)x2
where xT is partitioned as xT = (x1;x2) and M(�) is conformably partitioned as in Section3.5.4. Thus the equivalence theorem for Ds-optimality is given by the following assertions.
Theorem 3.5. The following three assertions are equivalent.

1. The design �� minimizes ln ��� M(�)M22(�)��� for � 2 � where M22(�) de�ned in Subsection 3.5.4
is the (2; 2) submatrix in M(�;�) =  M11(�;�) M12(�;�)MT12(�;�) M22(�;�)

!;
2. d(x; ��) � s for all x 2 X;
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3. The support points of the Ds optimal design are solutions of the equation d(x; ��) = s

where s is the number of parameters of interest and d(x; ��) = xTM�1(��)x�xT2M�122 (��)x2.
Linear criteria
Consider the linear optimality criterion de�ned in (3.26). The directional derivative is givenby

�(x; �) = lim�!0 trM�1f(1� �)� + ��xgL� trM�1(�)L�= lim�!0 tr @@�f(1� �)M�1(�) + �M�1(�x)gL=trfM�1(�)Lg � xTM�1(�)LM�1(�)x: (3.37)
Hence the General Equivalence Theorem 3.2 for L-optimality is given by the following asser-tions.
Theorem 3.6. The following three assertions are equivalent.

1. The design �� minimizes trfM�1(�)Lg for all � 2 �;
2. d(x; ��) � tr fM�1(��)Lg for all x 2 X;
3. The support points of the L-optimal design are real solutions of the equation d(x; ��) =tr fM�1(��)Lg

where d(x; ��) = xTM�1(��)LM�1(��)x.
Special casesTwo important special cases are the following:(1) A-optimalityThe directional derivative for the A-optimality is a particular case of (3.37) where L is replacedby the identity matrix Ip, that is:

�(x; �) = trfM�1(�)g � xT �M�1(�)�2 x:
(2) c-optimalityIf L = ccT , where c is a p� 1 column vector, the directional derivative (3.37) may be writtenas �(x; �) = cTM�1(�)c� fxTM�1(�)xg2:
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3.7.2 E�ciency of a design
The e�ciency of a design � is a real number in the interval [0; 1], generally expressed asa percentage, that gives the extent to which the design exhausts the information on theparameters (see Pukelsheim (1993, p. 132)). In other words, the higher the informationobtained from the design � compared to other competing designs from the same set of designs�, the higher the e�ciency of the design �. Two measures of e�ciency are popular. One isthe D-e�ciency de�ned by

De� = � jM(�;�)jjM(��;�)j�1=p ; (3.38)
where � is an arbitrary design, �� is the optimal design and p is the number of the parametersof the model. The ratio of the determinants in (3.38) is taken to the power 1p so that themeasure of e�ciency is proportional to the design size for any dimension of the model (seeAtkinson and Donev (1992, p. 116), and Atkinson et al. (2007, p. 152)).Another measure of e�ciency is that of the L-type and minimax-type optimal design given by

	e� = 	(��;�)	(�;�) (3.39)
where 	(�;�) is the optimality criterion of interest. For example, the G-e�ciency, is given by

Ge� = d(��)d(�) = pd(�) ; (3.40)
where d(�) = maxx2X d(x; �) (see Atkinson and Donev (1992, p. 116), and Atkinson et al. (2007,p. 152)).

3.8. Locally optimal design construction for nonlinear models
3.8.1 Preliminaries
Problem
For generalized linear models (GLM) (but not the normal case) and generalized nonlinearmodels (GnLM), the information matrix (3.18) or (3:19) is a function of the unknown param-eters and this issue needs to be addressed.
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Scope
The theory of optimal designs for linear regression models discussed in Section 3.6 forms thebasis for handling the design problem for nonlinear models for which GLMs and GnLMs arespecial cases. One of the approaches usually adopted is that of \locally optimal designs" whichis briey discussed below.
3.8.2 Locally optimal designs
Idea and Equivalence Theorem
One way of addressing the problem of design dependency of the information matrix to themodel parameters is locally optimal design introduced by Cherno� (1953). The principle istaking a best guess �0 of the vector of parameters �. In this case the information matrices(3.18) and (3.19) for an approximate design do not depend on the parameters of the model, andhence the optimality criteria discussed for the construction of optimal design for linear modelsin Section 3.6 are applicable for locally optimal designs. The presence of � in parenthesesfollowing the criterion's notation is used to indicate the dependence on the best guess of �for locally optimal design. For example, D(�)- and c(�)- will stand for locally D-optimal andlocally c-optimum designs respectively.Some models can be linear, but interest can be in a nonlinear function of the vector of pa-rameters. Suppose for example that g is a nonlinear function of the vector of parameters �with maximum likelihood estimator g(�̂). The �rst order Taylor expansion about the trueparameter value � gives g(b�) = g(�) + �@g(�)@�

�T (b� � �):
Then,

Var[g(b�)] = �@g(�)@�
�T Var(b�) �@g(�)@�

�
= cT (�)M�1(b�)c(�); (3.41)

where c(�) = @g(�)@� and M�1(b�)=var(b�). With a best guess of �, the optimum design isobtained by referring to c-optimality discussed in Section 3.5.5.A pioneering work on the calculation of optimal designs for nonlinear models is that of Boxand Lucas (1959). The one variable compartmental model with two parameters was used to
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illustrate the theory. The methodology used was that of an induced design introduced byElfving (1952), but this approach is complicated and can be unpracticable for a model withmore than one variable.The General Equivalence Theorem 3.2 introduced by Kiefer and Wolfowitz (1960) for theconstruction of optimal designs for linear models was extended to the case of the constructingoptimal designs for nonlinear models byWhite (1973). One of the elegant results established byWhite (1973) is the equivalence between D(�)-optimality and G(�)-optimality as summarizedin the following theorem.
Theorem 3.7. The following three assertions are equivalent.

1. The design �� is D(�)-optimal;
2. The design �� is G(�)-optimal;
3. supx2X d(x; ��;�) = p where p is the number of parameters in the model and d(x; ��;�) =trfM(x;�)M�1(��;�)g is the variance of the predicted response similar to (3.31).

The importance of Theorem 3.7 is in handling minimax criteria, such as G(�)-optimality,which are not based on di�erentiation. In fact, the above Equivalence Theorem permits theevaluation of optimality by means of determinant based criteria, such as D(�)-optimality,which are di�erentiable criteria. This renders the optimization relatively easy to perform.In particular, the D-optimality based on Theorem 3.3 can be extended to GLM and GnLMas follows.
Theorem 3.8. For a generalized linear or nonlinear model, the following three assertions areequivalent for a D-optimal design on a design space X.

1. The design �� minimizes � ln jM(�;�)j for all � 2 �;
2. d(x; ��;�) � p for all x 2 X;
3. The support points of the D-optimal design �� are real solutions of the equation d(x; ��;�) =trfM(x;�)M�1(��;�)g = p where p is the number of model parameters.

3.8.3 Algorithms for constructing optimal designs
As stated previously, constructing an exact optimal design is a di�cult combinatorial problem.In most situations the construction of optimal designs is for approximate designs discussed in
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Section 3.6.3. For a generalized linear or nonlinear model, constrained nonlinear optimizationroutines can be used in the search of candidate D-optimal designs. The constraints rely onthe weights and the design region X with

wi > 0; Xwi = 1; and x 2 X: (3.42)
First suppose that the design region X is an ordered subset of R and that the scalar xmin andxmax are respectively the minimum and the maximum values of a scalar x on X. That is forany x 2 X, xmin � x � xmax. It immediate follows that

0 � x� xminxmax � xmin � 1:
This expression is satis�ed by the one to one transformationx� xminxmax � xmin = sin2 y;
or, equivalently x = xmin + (xmax � xmin) sin2 y; (3.43)and y = arcsinr x� xminxmax � xmin ; (3.44)
where y 2 h0; �2 i. The same process on support points x is repeated on the weights w. If, forexample, the D-optimality criterion is used for a candidate D-optimal design with k distinctsupport points and associated k weights, where some of the weights can be zeros, the criterion	D(�;�) = ln jM�1(�;�)j is transformed into the criterion f(y1; y2; : : : ; y2k), i.e. a functionof k points and k weights in a long (2k � 1) vector y1, y2, . . . , y2k with yi constrained to beon h0; �2 i for i = 1; 2; : : : ; 2k. Therefore the problem of calculating the values of x1, x2, . . . ,
xk of X and wi � 0 with kX

i=1 wi = 1 which minimize the criterion 	D(�;�) = ln jM�1(�;�)jis transferred to the problem of calculating the values of y1, y2, . . . , y2k which minimizef(y1; y2; : : : ; y2k) where y1, y2, . . . , y2k lie in the interval [0; �2 ]. By reasonable starting valuesy01, y02, . . . , y02k, a numerical optimization routine, such as Newton-Raphson, is used for �ndingxr1, xr2, . . . , xrk and wr1, wr2, . . . , wrk via yr1 , yr2, . . . , yr2k at iteration r. Evaluating ln jM�1(�;�)jat every step until convergence to �nal values yf1 , yf2 , . . . , yf2k provides �nal values xf1 , xf2 , . . . ,xfk and wf1 , wf2 , . . . , wfk which minimize ln jM�1(�;�)j.The above algorithm for one explanatory variable, x, is easily extended for X � Rk where kis the number of explanatory variables in the generalized linear or nonlinear model. For each
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variable, say xj for j = 1; : : : k, the transformation (3.44) may be used for �nding the valueof yj. Then, the back transformation (3.43) may used for �nding the actual value of xj. Thismethod of constructing D-optimal designs will be used in numerical examples of this thesiswith Gauss code adjusted from procedures written by Haines in unpublished research work.Another algorithm for constructing optimal designs given in Atkinson and Donev (1992, p.103) and in Atkinson et al. (2007, p. 129) can be described as follows.Atkinson and Donev (1992), and Atkinson et al. (2007) consider a design with k supportpoints on a cubic design space of the form �1 � xi � 1 in the euclidian space Rk wherei = 1; 2; : : : ; k) and k is an integer greater or equal to 1. Then, they take

xi = sin zi (3.45)
as a transformation from unconstrained zi to constrained xi, for i = 1; 2; : : : ; k. Atkinsonand Donev (1992), and Atkinson et al. (2007) state that optimal designs can �rst be con-structed on the unconstrained design space of the zi, then the zi are back transformed to theconstrained space of the xi provided that subspaces used are such that (3.45) is a one-to-one transformation). Furthermore, Atkinson and Donev (1992), and Atkinson et al. (2007)specify the weights at the k support points of the candidate optimal design by the followingtransformation

w1 = sin2 z1w2 = sin2 z2 cos2 z1...
wi = sin2 zi i�1Yj=1 cos2 zj (i = 2; 3; : : : ; k � 1)...
wk = k�1Y

j=1 cos2 zj:
(3.46)

For instance, if k = 2 that is a case of a design with two support points, then the transformation(3.46) is written as w1 = sin2 z1 and w2 = cos2 z2so that w1 � 0; w2 � 0 and w1 + w2 = 1:Atkinson et al. (2007, p. 130-131) use SAS IML to write a code for the numerical constructionof D-optimal designs on the design space [�1; 1].
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3.9. Conclusions

This chapter has provided a brief review on optimal designs. The emphasis was on the de�ni-tion of a design, the optimality criteria, the speci�c equivalence theorem for each optimalitycriterion, and on algorithms for calculating locally optimal designs.It was emphasized that optimal designs are model based. In particular, it was indicated thatgeneralized linear and nonlinear models constitute a large class of useful models in practicalsituations such as in biomedical studies. The general forms of these models were summarizedand corresponding expressions of the information matrices were calculated. Some exampleswere given, namely (1) the normal linear model, (2) the linear binary logistic model, (3) thenormal nonlinear model, and (4) the nonlinear binary logistic model. The expressions of theinformation matrix for the di�erent models were given, as these will be used in subsequentchapters.The designs were de�ned and classi�ed as exact or approximate. Emphasis was on approximatedesigns since they are easy to calculate. A review of the alphabetic design criteria was given.These were broadly classi�ed in three categories, namely (1) determinant based criteria, (2)linear based criteria and (3) minimax based criteria. The General Equivalence Theorem ofKiefer and Wolfowitz (1960) for constructing optimal designs for linear models was reviewed,then adjusted to each optimality criterion discussed in the text. Furthermore, a review onhow the theory of optimal design for linear models can be extended to nonlinear modelsusing the idea of locally optimal design introduced by Cherno� (1953) was done, and thereferring Equivalence Theorem was introduced by White (1973). Finally, two algorithms forconstructing locally D-optimal design were provided, one related to Haines' unpublished workand another on Atkinson et al. (2007)'s approach in numerically constructing optimal designsusing respectively Gauss and SAS.
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4
Review of D-optimal Designs for the
Two-Variable Binary Logistic Model

4.1. Introduction
This chapter reviews some existing work on constructing D-optimal designs for the preciseestimation of the parameters of the two-variable binary logistic model that adequately de-scribes the e�ects of two drugs administered jointly. In Section 4.2, some theory regarding thegeneral logistic model and associated designs is presented. In Section 4.3, the construction ofthe D-optimal design for a single explanatory variable is reviewed and a proof for D-optimalityof the design is given. The two-variable binary logistic models without and with interactionare introduced in Section 4.4. A brief account of the existing work on the construction ofD-optimal designs for the two-variable binary logistic model without interaction is given inSection 4.5. Speci�cally, the approaches reviewed are those of Sitter and Torsney (1995a),Atkinson and Haines (1996), and Jia and Myers (2001). Finally, in Section 4.6, a brief reviewof work reported on the construction of the D-optimal designs for the two-variable binarylogistic model with interaction is presented. Speci�cally, the approaches reviewed are thoseof Kupchak (2000), and Jia and Myers (2001).
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4.2. Binary logistic model and D-optimal designs

4.2.1 Model and information matrix
Consider a binary response variable Yi at the ith setting of explanatory variables representedby the vector xi = (xi1; xi2; : : : ; xik)T for i = 1; 2; : : : ; d � k+1. The two possible values yi atxi can be coded as 1 for success or positive response and 0 for a failure or a negative response.If the probability of success, say pi, at xi is described by the binary logistic model, then

pi = E[Yijxi] = 11 + expf�exTi �g (4.1)
or equivalently ui = logit(pi) = ln pi1� pi = exTi � (4.2)
where exi = �1;xTi �T and � = (�0; �1; �2; : : : ; �k)T is the vector of model parameters (seeDobson (2002, p. 115)). As in Example 3.2, the information matrix for � evaluated at xi is

M(xi;�) = pi(1� pi)exiexTi = pi(1� pi)" 1xi
# �1;xTi � (4.3)

for i = 1; 2; : : : ; d � k + 1.
4.2.2 Design
An exact design with d distinct support points xi is given by

�N = ( x1 x2 : : : xdn1 n2 : : : nd
)

where ni is the number of replications of xi for i = 1; 2; : : : ; d � k + 1, and N = dX
i=1 ni is thetotal sample size. The exact design �E on a per point basis is given by

�E = ( x1 x2 : : : xdn1N n2N : : : ndN
) (4.4)

where dX
i=1 niN = 1. The approximate counterpart of design (4.4) is de�ned as

� = ( x1 x2 : : : xd�1 �2 : : : �d
) (4.5)
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where the design weights �i satisfy the conditions 0 < �i < 1 and dX

i=1 �i = 1. Now, using thematrix (4.3), the information matrix for � evaluated at the approximate design (4.5) is givenby
M(�;�) = dX

i=1 �iM(xi;�) = dX
i=1 �ipi(1� pi)" 1xi

# �1;xTi � (4.6)
or more compactly M(�;�) =XTWXwhere X is a d� (k + 1) matrix whose ith row is [1;xTi ] and W is a d� d diagonal matrix ofweights whose (i; i)th element is

wii = �ipi(1� pi); i = 1; 2; : : : ; d � k + 1: (4.7)
Recall from Section 3.5.4 that if � is the set of all designs on a design space X, then theD-optimal design is the design that maximizes the determinant or log-determinant or, equiv-alently, minimizes minus the log-determinant of the information matrix over all designs in �.The construction of the exact D-optimal designs of the form (4.4) is a di�cult combinatorialproblem (see Atkinson and Donev (1992, Chapter 15), and Atkinson et al. (2007, Chapter12)). The di�culty of �nding exact D-optimal designs has been circumvented by approxi-mating the design �E in (4.4) with the design � in (4.5) which is much easier to construct(Atkinson et al. (2007, p. 119)).The design problem may be further simpli�ed by reducing the problem to an equivalentcanonical form which is solvable independently of � (Ford et al. (1992), Sitter and Torsney(1995a), Sitter and Torsney (1995b), Atkinson and Haines (1996), and Torsney and Gunduz(2001)) as follows. Let B be a (k + 1)� (k + 1) nonsingular matrix of the form

B =
266666664

1 0 0 : : : 0�0 �1 �2 : : : �kb01 b11 b21 : : : bk1... ... ... . . . ...b0(k�1) b1(k�1) b2(k�1) : : : bk(k�1)

377777775 (4.8)

where bij (i = 0; 1; : : : ; k and j = 1; 2; : : : ; k � 1) are coe�cients of (k � 1) linear constraints
uj = b0j + b1jx1 + b2jx2 + : : : + bkjxk. Then, let Bex = B " 1x

# = " 1u
# = eu for all x 2 X,and let Xu = fu : Bex = eu;x 2 Xg be the design space induced by the mapping x to u. The

50



Chapter 4 { Review of D-optimal Designs for the Two-Variable Binary LogisticModel
mapping x to u applied to the support points of design (4.5) results in the induced design

�u = ( u1 u2 : : : ud�1 �2 : : : �d
) ; (4.9)

and hence Bexi = B " 1xi
# = " 1ui

# = eui for i = 1; 2; : : : ; d. In terms of the design �u, theinformation matrix (4.6) is
M(�;�) = dX

i=1 �ipi(1� pi)exiexTi
= dX

i=1 �ipi(1� pi)B�1euieuTi (B�1)T
= B�1 " dX

i=1 �ipi(1� pi)euieuTi
# (B�1)T

= B�1M(�u)(B�1)T :
Consequently, M(�u) = BM(�; �)BT (4.10)and jM(�u)j = jBj2jM(�;�)j. This means that maximizing jM(�u)j by choice of �u on Xuis equivalent to maximizing jM(�;�)j by choice of � on X. Hence the optimal design � mayeasily be found as the back transformation of the optimal design �u using mapping u to x.

4.3. D-optimal design for the one-variable binary logistic model
The one-variable binary logistic model is model (4.2) with � = (�0; �1)T and ex = [1; x]T wherex is a scalar, i.e. u = �0 + �1x.The D-optimal design for the one-variable binary logistic model is a well known two-pointdesign. The following are some reported studies of this design.Abdelbasit and Plackett (1983) considered model u = logit(p) = �0 + �1x re-parameterizedto u = logit(p) = �1(x � �) where � = ��0�1 and x 2 R, and found that a 2-point D-optimaldesign has support points at probabilities of response p = 0:824 and q = 1� p = 0:176, whichrespectively correspond to logits u1 = 1:5434 and u2 = �1:5434. Atkinson and Donev (1992,pp. 292-293), and Atkinson et al. (2007, pp. 399-400) considered model u = logit(p) = �0+�1xwhere �0 = 0, �1 = 1 and the scalar x is an element of the unbounded design space X = R. The
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authors found algebraically that the D-optimal design has two equally weighted support points�1:5434, but did not prove global optimality of the design. Silvey (1980, pp. 59-60) brieyreported the two-point design for the one-variable binary logistic model in a bounded designspace, but no proof of D-optimality of the design was provided. A relatively more detailedgeometrical/numerical construction of the two-point D-optimal designs on the design spacesX = [a; b], X = [a;1) and X = (�1; a], where a and b are real numbers, was introduced byFord et al. (1992). They discussed the construction of c- and D-optimal designs for nine one-variable nonlinear models that are functions of u = �0 + �1x among which is the one-variablebinary logistic model. Ford et al. (1992) expressed the optimal designs in \canonical form", i.e.in terms of u, and presented a geometric argument based on the minimum ellipsoid enclosingthe canonical design locus to prove D-optimality. A formal algebraic proof of D-optimalityof the two-point D-optimal design for model u = logit(p) = �0 + �1x on the design spacesX = [a; b], X = [a;1) and X = (�1; a] is given by Sebastiani and Settimi (1997). Sebastianiand Settimi (1997) report that White (1975) proved D-optimality of the D-optimal design inthe case of the unbounded design space R. However, this does not clearly appear to be thecase in White's thesis (1975). Furthermore, the proof for the case of the design space R doesnot immediately follow from the proof of Sebastiani and Settimi (1997).The aim of this thesis is to construct D-optimal designs for model (4.2) with two variables.Since the case of the one-variable model constitutes a building block for constructing suchdesigns, a new approach of algebraical construction of the two-point D-optimal design forthe one-variable binary logistic model in the unrestricted design space R is presented here.Theorem 4.1 summarizes the results.
Theorem 4.1. The D-optimal design for a one-variable binary logistic model on the designspace R is an equally weighted two-point design with support points located on the logits�u = 1:5434.
ProofThe proof of this theorem has two components, namely (i) construction of the candidate D-optimal design and (ii) proof of D-optimality of the candidate D-optimal design.Step (i): The one-variable binary logistic model is the binary logistic model (4.2) but withex = [1; x]T , where x is a scalar and � = (�0; �1)T : Therefore, the logit for the model can bewritten as u = logit(p) = �0 + �1x: The information matrix for � at the 2-point candidate
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D-optimal design � = ( x1 x212 12

) is given by
M(�;�) = 12 2X

i=1  (ui)
" 1xi

# h 1 xi i = 12 2X
i=1  (ui)

" 1; xixi x2i
# (4.11)

where  (ui) = pi(1� pi) = eui(1 + eui)2 and ui = logit(pi) = �0+�1xi for i = 1; 2. The transfor-mation of this design problem to canonical form as in (4.8), (4.9) and (4.10) is accomplishedwith B = " 1 0�0 �1
#. The transformation results in

M(u) = BM(x;�)B =  (u)" 1 uu u2
# ;

and hence M(�u) = BM(�; �)BT = 12 2X
i=1  (ui)

" 1 uiui u2i
#

where �u = ( u1 u212 12
). As in Atkinson and Donev (1992, p. 292) assume that the supportpoints of the candidate D-optimal design are symmetric about u = 0. Then the candidatetwo-point D-optimal design is

�u = ( �u u12 12
) (4.12)

and the corresponding information matrix is
M(�u) = BM(�;�)BT =  (u)" 1 00 u2

#
for which the determinant is

D = u2 [ (u)]2 = u2e2u(1 + eu)4 : (4.13)
Di�erentiating (4.13) with respect to u and setting the result to zero gives

dDdu = 2ue2u(1 + u+ eu � ueu)(1 + eu)5 = 0:
Therefore, the stationary points of D are u = 0 and the solutions for u to the equation

1 + u+ eu � ueu = 0: (4.14)
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The equation (4.14) has a unique solution for u � 0 for the following reasons. Firstly, considerf(u) = 1+ u+ eu� ueu. Clearly, f(u) is a continuous function on [0;1). In addition, f(0) =2 > 0 and limu!1 f(u) = � limu!1ueu(1� 1ueu � 1eu � 1u) = �1. Thus, the continuous functionf(u) changes sign from positive to negative at least once on [0;1). Secondly, note thatd2f(u)du2 = �(1 + u)eu < 0 for u � 0: Thus, the function f(u) is strictly concave on [0;1),and therefore the curve f(u) intersects the u-axis only once. In other words, the equation(4.14) possesses a unique solution in the interval [0;1). Figure 4.1 (a) gives a graphicalrepresentation of f(u) for u 2 [0;1). Solving the equation (4.14) numerically gives u = 1:5434as the unique solution on the interval [0;1). The second derivative of D with respect to u is

Figure 4.1: Plot of (a) the function f(u) = 1 + u + eu � ueu for u � 0, and (b) the functiong(u) = eu�u�(1 + eu�)2(u�2 + u2)u�2(1 + eu)2 for u 2 R.
d2Ddu2 = 2e2u [(1 + 4u+ 2u2) + (2� 6u2)eu + (1� 4u+ 2u2)e2u](1 + eu)6

so that d2Ddu2 ���u=0 = 18 > 0 and d2Ddu2 ���u=1:5434 = �0:071 < 0. Thus, D possesses a minimum atu = 0 and a maximum at u = 1:5434. It follows from this result that the two-point design(4.12) which maximizes determinant (4.13) is
��u = ( �1:5434 1:543412 12

) : (4.15)
Step (ii): It remains to prove that the design (4.15) is D-optimal. This is done by invoking
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the Equivalence Theorem for D-optimality, i.e. by showing that the directional derivativefunction, �(u; ��u), at the design ��u in the direction of any point u = �0+ �1x 2 R is such that

�(u; ��u) = 2� tr[M�1(��u)M(u)] � 0
with equality holding at the support points of ��u. Equivalently, it has to be shown that thestandardized variance function d(u; ��u) = tr[M�1(��u)M(u)] is such that

g(u) = d(u; ��u) = tr[M�1(��u)M(u)] � 2
for all u 2 R with equality holding at the support points of ��u.In the present case, simple algebra gives

g(u) = eu�u�(1 + eu�)2(u�2 + u2)u�2(1 + eu)2 =  (u) (u�) �1 + u2u�2
� 8u 2 R; (4.16)

where u� = 1:5434. Note that the function g(u) is positive and even in u since g(�u) = g(u) >0, 8u 2 R. The fact that g(u) is even implies that g(u) is symmetric about u = 0. Therefore,any conclusion drawn for u � 0 is applicable to u � 0.The derivative of g(u) with respect to u is
g0(u) = eu�u�(1 + eu�)2[(u�2 + u2 + 2u)� (u�2 + u2 � 2u)eu]u�2(1 + eu)3 = eu�u�(1 + eu�)2u�2(1 + eu)3 h(u)

where h(u) = u�2 + u2 + 2u� (u�2 + u2 � 2u)eu: (4.17)
Now, g0(0) = 0 and g0(u�) = 2(1 + u� + eu� � u�eu�)u�(1 + eu�) = 0 since u� is a solution of equation(4.14). Therefore u = 0 and u = u� are stationary points of the function g(u).The second derivative of g(u) is

g00(u) = eu�u�(1 + eu�)2[(2 + u�2 + u2)(1 + e2u) + 4u(1� e2u) + 4(1� u�2 � u2)eu]u�2(1 + eu)4 :
Here, g00(0) = e�u�(1 + eu�)2(4� u�2)8u�2 > 0 since u� = 1:5434 < 2 implies that 4 � u�2 > 0.
Therefore u = 0 is a minimum of g(u) with g(0) = e�u�(1 + eu�)24 ' 1:72 < 2: Also,
g00(u�) = 2(1 + 2eu� + e2u� + 2u� � 2u�e2u� + u�2 � 4u�2eu� + u�2e2u�)u�2(1 + eu�)2 = � 4eu�(1 + eu�)2 < 0

since 1 + u� + eu� � u�eu� = 0 implies that
1+2eu�+e2u�+2u��2u�e2u�+u�2�4u�2eu�+u�2e2u� = (1+u�+eu��u�eu�)2�2u�2eu� = �2u�2eu� :
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Hence, u = u� corresponds to a maximum of g(u) with g(u�) = 2 as required. Figure 4.1 (b)gives a graphical representation of g(u).To prove that u = u� is the global maximum of g(u) for u � 0, consider evaluating the signof the slope of g(u) which is determined by the sign of h(u) in the expression (4.17). Thepurpose of the derivations below is to show that h(u) � 0 for u 2 [0; u�] and h(u) � 0 foru 2 [u�;1).It follows from (4.17) that h(0) = 0 and h(u�) = 2u�(1+u�+eu��u�eu�) = 0 since u� is solutionof the equation (4.14). Since h(u) is continuous on [0;1), it has at least one stationary point in(0; u�). Also, limu!1h(u) = � limu!1u2eu = �1. Figure 4.2 (a) gives a graphical representationof h(u). To prove that h(u) possesses only one stationary point on [0;1), let

Figure 4.2: Plot of (a) the function h(u) = u�2 + u2 + 2u � (u�2 + u2 � 2u)eu for u � 0, and(b) the functions s1(u) = 2(1 + u) and s2(u) = (u2 + u�2 � 2)eu for u � 0.
s(u) = h0(u) = s1(u)� s2(u) = 2(1 + u)� (u2 + u�2 � 2)euwhere s1(u) = 2(1+u) and s2(u) = (u2+u�2�2)eu. Figure 4.2 (b) gives a graphical illustrationof s1(u) and s2(u). The number of solutions of the equation s(u) = h0(u) = 0 on [0;1) isequal to the number of points of intersection of the curves s1(u) and s2(u). Clearly, s1(u) isa straight line with intercept 2 and slope 2. Furthermore s2(u) is a convex function for allu > 0 since s002(u) = (u2 + 4u+ u�2)eu = (u2 + 4u+ 2:382)eu > 0and, hence there is only one point of intersection of the curves of s1(u) and s2(u). In otherwords the equation h0(u) = 0 has a unique solution u��, or equivalently h(u) has only one
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stationary point on [0;1). Solving numerically gives u�� = 1:032 which is a maximum sinceh00(u) = 2 � (u2 + u�2 + 2u � 2)eu implies that h00(u��) = 2 � (u��2 + u�2 + 2u�� � 2)eu�� =�7:855 < 0: Thus, the sign of h(u) and hence the sign of the slope of g(u) changes from positiveto negative only once at u� = 1:5434 on [0;1). It can then be concluded that u� = 1:5434 isthe global maximum of g(u) on [0;1). By the symmetry of g(u) about u = 0 it can also beconcluded that �u� is the global maximum of g(u) on (�1; 0]. �

4.4. Two-variable binary logistic models
There are two cases of the two-variable binary logistic model that are considered in thisthesis. These are the two-variable binary logistic model without interaction and the two-variable binary logistic model with interaction. Both are used to describe the e�ects, on thebinary response, of two drugs administered simultaneously to subjects at various doses. Littleresearch appears to have been done on the construction of optimal designs for the two-variablebinary logistic model. Where research has been done, only the two-variable binary logisticmodel without interaction was considered in most of the cases. Well-known studies on thisdesign problem are those by Sitter and Torsney (1995a), Atkinson and Haines (1996), and Jiaand Myers (2001). Sitter and Torsney (1995b), and Torsney and Gunduz (2001) extended thework of Sitter and Torsney (1995a) to more than two explanatory variables. The two-variablebinary logistic model with interaction was considered by Kupchak (2000) in his PhD thesisand by Jia and Myers (2001) in an unpublished report. Kupchak (2000) was mainly interestedin �nding optimal designs for the precise estimation of the interaction parameter and, to avery small extent, for the precise estimation of all model parameters, while Jia and Myers(2001) were interested in �nding D-optimal designs for the precise estimation of all the modelparameters.
4.4.1 Two-variable binary logistic model without interaction
The two-variable binary logistic model without interaction, which is also called the two-variable �rst-order or main e�ects binary logistic model, or the parallel line two-variablebinary logistic model (Jia and Myers (2001)), is the binary logistic model described in Section4.2 but with x = (x1; x2)T and � = (�0; �1; �2)T ; i.e.

u = logit(p) = �0 + �1x1 + �2x2: (4.18)
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Model (4.18) assumes that two drugs, say A and B, at doses or log-doses x1 and x2 a�ect thebinary response additively, i.e. the model assumes that there are no drug interaction e�ects onthe binary response. The contours of constant logits speci�ed by equation (4.18) are parallelstraight lines with slope ��1�2 in the (x1; x2)-space (Jia and Myers (2001)).
The information matrix for the parameter vector � = (�0; �1; �2)T evaluated at the approxi-mate design � given by (4.5), with xi = (xi1; xi2)T , is

M(�;�) = dX
i=1 �i (ui)exiexTi (4.19)

where exi = [1;xTi ]T = (1; xi1; xi2)T and  (ui) = eui(1 + eui)2 for ui = logit(pi) = �0+�1xi1+�2xi2and i = 1; 2; : : : ; d � 3.
4.4.2 Two-variable binary logistic model with interaction
The two-variable binary logistic model with interaction is the model described in Section 4.2but with x = (x1; x2; x1x2)T and � = (�0; �1; �2; �12)T ; i.e.u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 (4.20)where the unknown parameter �12 6= 0 is the interaction e�ect between two drugs, say Aand B. In other words, model (4.20) assumes that the two drugs a�ect the response bothadditively and interactively, i.e. the model assumes that there are also drug interaction e�ectson the binary response. The contours of constant logits speci�ed by equation (4.20) are pairsof hyperbolae in the (x1; x2)-space (Jia and Myers (2001)).For model (4.20), the information matrix for the parameter vector � = (�0; �1; �2; �12)Tevaluated at the approximate design � given by (4.5), with xi = (xi1; xi2; xi1xi2)T , is

M(�;�) = dX
i=1 �i (ui)exiexTi (4.21)

where exi = [1;xTi ]T = (1; xi1; xi2; xi1xi2)T and  (ui) = eui(1 + eui)2 forui = logit(pi) = �0 + �1xi1 + �2xi2 + �12xi1xi2 and i = 1; 2; : : : ; d � 4.
4.4.3 Practical examples
Example 4.1. Greco and Lawrence (1988) analyzed data originally reported by Martin (1942)and presented in Table A.1 in Appendix A. Interest focussed on investigating the e�ect of
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jointly applying the insecticides rotenone and deguelin on the number of chrysanthemumaphides that died.
SAS, PROC LOGISTIC, was used here to �t the two-variable binary logistic model withinteraction to the data in Table A.1 and the results are given in Table 4.1. Clearly, �1 > 0 and
Table 4.1: Parameter estimates together with their standard errors (s.e) and p-values for thedata reported in Martin (1942).

Parameters Estimates s.e. p-value�0 -1.9864 0.2071 < 0:0001�1 0.4109 0.0429 < 0:0001�2 0.1473 0.0141 < 0:0001�12 0.0074 0.0061 0:2237
�2 > 0, but the interaction parameter �12 is not signi�cantly di�erent from zero. Thereforethe two insecticides rotenone and deguelin can be assumed to a�ect the mortality of aphidesadditively. This example is used in Chapter 5 to illustrate the construction of D-optimaldesigns for the two-variable binary logistic model without interaction.
Example 4.2. Greco and Lawrence (1988) and Kupchak (2000) analyzed data originallyreported by LePelly and Sullivan (1936) and presented in Table A.2 in Appendix A. Interestfocussed on investigating the e�ect of jointly applying the insecticides rotenone and pyrethrinon the number of houseies that died. The total number of insects exposed to each drugcombination was 1000.
SAS, PROC LOGISTIC, was used to �t the two-variable binary logistic model with interactionto the data in Table A.2 and the results are given in Table 4.2. Clearly, �1 > 0, �2 > 0 and theinteraction parameter �12 is signi�cantly greater than zero. Therefore rotenone and pyrethrina�ect the mortality of houseies both additively and interactively. This is a case of the synergyaction of the two insecticides since �12 > 0. This example is used in Chapter 6 to illustrate theconstruction of D-optimal designs for the two-variable binary logistic model with interaction.
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Table 4.2: Parameter estimates together with their standard errors (s.e.) and p-values for thedata of reported in LePelly and Sullivan (1936).

Parameter Estimate s.e. p-value�0 �2:2054 0:0510 < 0:0001�1 13:5803 0:3035 < 0:0001�2 2:2547 0:0527 < 0:0001�12 1:6261 0:5874 < 0:0056
4.5. Review of D-optimal designs for the two-variable binary logistic

model without interaction
4.5.1 Sitter and Torsney approach
Sitter and Torsney (1995a) considered constructing optimal designs for generalized linearmodels with two explanatory variables without interaction. For the special case of the binarylogistic model (4.18), their approach to constructing D-optimal designs can be summarized asfollows.
In Sitter and Torsney (1995a), the matrix (4.8) is set to B =

2664 1 0 0�0 �1 �2b0 b1 b2
3775 where b0, b1 and

b2 are real numbers with �1�2 6= b1b2 . Hence, the information matrix (4.10) is
M(�u) = BM(�;�)BT = dX

i=1 �i (ui1)
2664 1ui1ui2

3775 [1; ui1; ui2] = dX
i=1 �igigTi (4.22)

where ui1 = �0 + �1xi1 + �2xi2, ui2 = b0 + b1xi1 + b2xi2 and gi = p (ui1) [1; ui1; ui2]T fori = 1; 2; : : : ; d � 3. Thus, for given �, maximizing jM(�u)j by choice of design �u is the sameas maximizing jM(�;�)j by choice of design �.Sitter and Torsney (1995a) �rst considered the case of u1 unbounded in R, and secondly thecase of u1 bounded as a � u1 � b with �1 < a < 0 and 0 < b < 1. In both cases u2 wasassumed to be bounded as �1 � u2 � 1. The design loci generated in the two cases, described
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in Sitter and Torsney (1995a) as 3 dimensional \signet rings", are given by the sets

Gw = ng 2 R3 : g =p (u1)[1; u1; u2]T ; u1 2 R; � 1 � u2 � 1o (4.23)
and G = ng 2 R3 : g =p (u1)[1; u1; u2]T ; a � u1 � b; � 1 � u2 � 1o (4.24)respectively. Clearly G � Gw.Sitter and Torsney (1995a) invoked Elfving (1952), Cherno� (1979) and Silvey (1980, p. 41)in stating that the support points of the D-optimal design are the points of contact betweenthe ridges of Gw and the minimum ellipsoid centered on the origin and enclosing Gw. Sitterand Torsney (1995b) invoked Sibson (1972), Silvey and Titterington (1972), and Silvey (1980,Chapter 5) to assume the same arguments that the support points of the D-optimal designare the points of contact between the ridges of Gw and the minimum ellipsoid centered onthe origin and enclosing Gw. Then, by arguments of symmetry of Gw about u2 = 0, and thesymmetry of  (u1) about u1 = 0, Sitter and Torsney (1995a) conjectured that the D-optimaldesign for the two-variable binary logistic model without interaction is an equally weighteddesign with support points at (�u1;�1), (u1;�1), (�u1; 1) and (u1; 1) for some u1 > 0. Thus,their approximate design (in terms of the logits) is

�u = ( (�u1;�1) (u1;�1) (�u1; 1) (u1; 1)14 14 14 14
) (4.25)

and for this design the determinant of the matrix (4.22) is proportional to
D = u21e3u1(1 + eu1)6 : (4.26)

The �rst and second derivatives of D with respect to u1 are given bydDdu1 = u1eu1(2 + 3u1 + 2eu1 � 3u1eu1)(1 + eu1)7and d2Ddu21 = eu1(2 + 4eu1 + 2e2u1 + 12u1 � 12u1e2u1 + 9u21 � 24u21eu1 + 9u21e2u1)(1 + eu1)8 :
Thus, dDdu1 = 0 implies that u1 = 0 or

2 + 3u1 + 2eu1 � 3u1eu1 = 0: (4.27)
Solving equation (4.27) numerically for u1 � 0 gives u1 = 1:22291. Since d2Ddu21 ���u=0 = 132 > 0
and d2Ddu21 ���u=1:22291 = �0:0017 < 0, then the respective minimum and maximum of determinant
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D are at u1 = 0 and u1 = 1:22291. Thus, design (4.25) which maximizes (4.26), in the (u1; u2)-space, is

��u = ( (�1:22291;�1) (1:22291;�1) (�1:22291; 1) (1:22291; 1)14 14 14 14
) : (4.28)

Sitter and Torsney (1995a) did not prove the D-optimality of design (4.28), but simply arguedD-optimality of the design using intuitive geometric arguments. The proof of D-optimality ofthe design is given in Chapter 5 of this thesis.In the case of the design locus G given by (4.24), Sitter and Torsney (1995a) report that thesupport points of the D-optimal design are located on the ridge of G, and that half of theweights are put on the support points on u2 = �1 and the other half on the support pointson u2 = 1. Furthermore, Sitter and Torsney (1995a) were interested in the number and thepatterns of the support points of the D-optimal design. For the two-variable binary logisticmodel with no interaction, they report that the D-optimal design has 4 support points andthus is a design of the form
�u = ( (a�;�1) (b�;�1) (a�; 1) (b�; 1)�2 1��2 �2 1��2

) (4.29)
for a�; b� 2 [a; b]. Sitter and Torsney (1995a) present the following cases of design �u.(1) If (�1:22291; 1:22291) � [a; b], then the D-optimal design is design (4.28), the design forthe case of design locus Gw given in (4.23).(2) If �1:22291 < a, then the candidate D-optimal design is (4.29) with a� = a and b� =min(b; u�1) where u�1 maximizes the determinant of the information matrix M(�u) in (4.22) on[a; b].(3) If 1:22291 > b, then the D-optimal design is (4.29) with b� = b and a� = max(a; u�1) whereu�1 maximizes the determinant of (4.22) on [a; b].(4) If [a; b] � (�1:22291; 1:22291), then the D-optimal design is (4.29) with a� = a and b� = b.
4.5.2 Atkinson and Haines approach
Atkinson and Haines (1996) considered constructing optimal designs for nonlinear and general-ized linear models with the two-variable binary logistic model without interaction (4.18) as oneof the special cases. In model (4.18), the explanatory variables were taken to be �1 � x1 � 1and �1 � x2 � 1, and the D-optimal designs were found numerically. Their results indicatedthat the designs are highly dependent on the values adopted for the parameters. In particular,
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the number of support points of the D-optimal designs were found to be 3, 4, or 6 dependingon the values of the parameters �0, �1 and �2. Table 4.3 gives the D-optimal designs forselected values of the parameters. Clearly, the number of support points, the weights andthe optimal logits are parameter dependent. The optimal logits in Table 4.3 are the same asthose found in Sitter and Torsney (1995a) and in Jia and Myers (2001) only for the design��6 for which � = (0; 3; 1)T : Similar conclusions concerning parameter dependency of the
Table 4.3: D-optimal logits and the number of support points of the D-optimal designs ofAtkinson and Haines (1996) for selected values of the parameters of the two-variable binarylogistic model without interaction on the design space X = [�1; 1]� [�1; 1].�T D-optimal designs
(0; 1; 1) ��1 =

8>><>>:
(�1;�1) (�1; 1) (1; 1) (1;�1)0:2041 0:2959 0:2041 0:2959�2 0 2 0

9>>=>>;
(0; 2; 2) ��2 =

8>><>>:
(0:118;�1) (�1; 0:118) (�1; 1) (�0:118; 1) (1;�0:118) (1;�1)0:1306 0:1098 0:2654 0:1098 0:1306 0:2538�1:764 �1:764 0 1:764 1:764 0

9>>=>>;
(2; 2; 2) ��3 =

8>><>>:
(�0:737;�1) (�1;�0:737) (�1; 0:737) (0:737;�1)0:1686 0:1686 0:3314 0:3314�1:474 �1:474 1:474 1:474

9>>=>>;
(0; 32 ; 12) ��4 =

8>><>>:
(�0:575;�1) (�1; 1) (0:575; 1) (1;�1)0:2381 0:2619 0:2381 0:2619�1:363 �1 1:363 1

9>>=>>;
(3; 3; 1) ��5 =

8>><>>:
(�1;�1) (�1; 1) (�0:068;�1)13 13 13�1 1 1:796

9>>=>>;
(0; 3; 1) ��6 =

8>><>>:
(�0:074;�1) (�0:741; 1) (0:074; 1) (0:741;�1)14 14 14 14�1:22291 �1:22291 1:22291 1:22291

9>>=>>;
D-optimal designs for the two-variable binary logistic model without interaction on the designspace [�1; 1]� [�1; 1] are reported in Chipman and Welch (1996).The design patterns reported in Atkinson and Haines (1996) are very di�erent to those re-ported in Sitter and Torsney (1995a) because they are not restricted to 4-point designs. Clearly
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the observed relationships between the design patterns and the parameter values need to beexplained.
4.5.3 Jia and Myers approach
The approach of Jia and Myers (2001) to constructing D-optimal designs for the two-variablebinary logistic model without interaction (4.18) is as follows. The authors assumed that thesupport points of the D-optimal design lie on lines of constant logit in the (x1; x2)-space. Theinformation matrix (4.19) depends on u through  (u). Since  (�u) =  (u), it appears thatoptimal logits are of the form �u. Jia and Myers (2001) imposed restrictions on the designspace of the form b01 + b1x1 + b2x2 = 0 and b02 + b1x1 + b2x2 = 0 with b01 6= b02 and b1b2 6= �1�2 .Figure 4.3 displays the two logit lines �u and the two parallel lines that restrict the designspace. The vertices of the parallelogram, indicated by circles, were taken as candidate supportpoints of the D-optimal design. Support points on the same logit line were assumed to have
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Figure 4.3: The design for the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2: Jia and Myers (2001) approach. The support points of thecandidate D-optimal design are represented by circles.
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equal weights, denoted by 1� �2 and �2 for each candidate support point located on the logits�u and u respectively. Simple algebra shows that the coordinates of the support points arefunctions of u, b = (b01; b02; b1; b2)T and � = (�0; �1; �2)T . The determinant of the informationmatrix (4.19) evaluated at the candidate design of Jia and Myers (2001) is given by

D = �(1� �)(b02 � b01)2u2e3u(b2�1 � b1�2)2(1 + eu)6 : (4.30)
Clearly the determinant (4.30) is maximized by � = 12 . In addition, the determinant (4.30) isproportional to the determinant (4.26) if u1 in (4.26) is replaced by u, and hence the optimalvalues of u here are also u� = �1:22291. Thus, the approach of Jia and Myers (2001) givesthe same design as that of Sitter and Torsney (1995a) in the case of the design locus (4.23).The approach of Jia and Myers (2001) for the two-variable binary logistic model withoutinteraction is also briey discussed in Myers et al. (2002, pp. 240-241).
4.5.4 Some summary comments
There are some similarities, but also di�erences, among the results of Sitter and Torsney(1995a), Atkinson and Haines (1996) and Jia and Myers (2001) on the D-optimal designs forthe two-variable binary logistic model without interaction.1) Jia and Myers (2001) considered a design space restricted to lie inside the region de�ned bytwo parallel lines b01+b1x1+b2x2 = 0 and b02+b1x1+b2x2 = 0 with b01 6= b02 in (x1; x2)-space.The candidate D-optimal design derived using the model with u1 = logit(p) = �0+�1x1+�2x2was found to be an equally weighted 4-point design with support points located in pairs oneach of the logit lines �u1 = 1:22291.2) Sitter and Torsney (1995a) used a canonical transformation from the (x1; x2)-space to the(u1; u2)-space where u1 = logit(p) = �0 + �1x1 + �2x2 and u2 = b0 + b1x1 + b2x2. Then theyrestricted u2 as �1 � u2 � 1 and considered two design cases, namely the case of u1 2 R andthe case of u1 2 [a; b] with a < 0 and b > 0. The D-optimal design in the case of u1 2 R(design locus (4.23)) is an equally weighted 4-point design with support points located inpairs on each of the logit lines �u1 = 1:22291. The similarity of the results of Jia and Myers(2001) and Sitter and Torsney (1995a) (design locus (4.23)) is due to the fact that for u1 2 R,the design spaces of Jia and Myers (2001) and Sitter and Torsney (1995a) are equivalent. Infact, the restriction �1 � u2 � 1 in the design locus (4.23) is equivalent to the restrictionsb01+ b1x1+ b2x2 � 0 and b02+ b1x1+ b2x2 � 0 where b01 = b0+1 and b02 = b0� 1. The above
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inequalities jointly de�ne the set of points within the parallel lines b01 + b1x1 + b2x2 = 0 andb02 + b1x1 + b2x2 = 0 in Figure 4.3 with u replaced by u1.In the case of u1 2 [a; b] (design locus (4.24)), Sitter and Torsney (1995a) present four designscenarios. Figure 4:4 indicates the restriction a � u1 � b as the set of points within thedashed lines u1 = a and u1 = b that are both parallel to the logit lines �u1. The constraintu1 2 [a; b] and the restriction �1 � u2 � 1 jointly de�ne a parallelogram design space in the(x1; x2)-space. This case is not discussed by Jia and Myers (2001).
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Figure 4.4: The design for the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2: Sitter and Torsney (1995a) design locus (4.24) approach. Thesupport points of the candidate D-optimal design are represented by circles.
3) Atkinson and Haines (1996) considered designs on the design space [�1; 1] � [�1; 1] inthe (x1; x2)-space and found that the number, which varies from 3 to 6, and patterns of thesupport points and associated weights of the D-optimal designs are parameter dependent. Letu1 = �0 + �1x1 + �2x2. Clearly, (x1; x2) 2 [�1; 1] � [�1; 1] implies that a � u1 � b wherea = �0 � �1 � �2 and b = �0 + �1 + �2 are the values of the logit u1 at the vertices A(�1;�1)and C(1; 1) in the design space [�1; 1]� [�1; 1] represented by the square ABCD in Figures4.5 (a) and (b). The restriction a � u1 � b is similar to that imposed by Sitter and Torsney(1995a) on u1 = �0 + �1x1 + �2x2 in design locus (4.24). However, in Atkinson and Haines
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(1996), there are two restrictions on u2 = b0 + b1x1 + b2x2 instead of only one in Sitter andTorsney (1995a). These two restrictions are �1 � u2 = x1 � 1 (i.e. b0 = b2 = 0) and�1 � u2 = x2 � 1 (i.e. b0 = b1 = 0).The di�erence between the designs of Atkinson and Haines (1996) and those of Sitter andTorsney (1995a) and Jia and Myers (2001) can be attributed to the di�erences in the designspace restrictions. For example, consider Figure 4.5 (a) in the context of the design space ofSitter and Torsney (1995a), and thus design locus (4.23). If u1 2 R and �1 � u2 = x2 � 1,
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Figure 4.5: The design of the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 using [�1; 1]� [�1; 1] as the design space of reference.
it follows that x1 2 R. Furthermore, if the optimal logits are the lines HE and GF , then thesupport points of the D-optimal designs of Sitter and Torsney (1995a) are H, E, F and G.Note that the horizontal dashed lines in Figure 4.5 (a) extending the continuous lines serveto indicate the intersections of the logits �u1 and the parallel line restrictions in case therestriction �1 � x1 � 1 was not imposed on the design space. However, if the restrictionon �1 � x1 � 1 is taken into account the points E and G are outside the square ABCD.Hence, the points E and G would not satisfy the requirements to be support points of theD-optimal designs on the design space of Atkinson and Haines (1996). Similarly, consideringFigure 4.5 (b) and assuming that x2 2 R with �1 � u2 = x1 � 1, leads to a D-optimaldesign with support points at E, F , G and H. Here the vertical dashed lines in Figure 4.5(b) extending the continuous lines serve to indicate the intersections of the logits �u1 and theparallel line restrictions in case the restriction �1 � x2 � 1 was not imposed on the designspace. However, points E and G are outside the square ABCD, and hence do not satisfy the
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conditions to be support points of the D-optimal designs on the design space of Atkinson andHaines (1996).Despite the di�erence in design space restrictions, there are cases where the designs of Atkinsonand Haines (1996) are similar to those of Sitter and Torsney (1995a), and Jia and Myers (2001).For example, the designs are similar when the two logit lines �u1 = �0 + �1x1 + �2x2 andu1 = �0+ �1x1+ �2x2 intersect two parallel sides of the design space [�1; 1]� [�1; 1]. In suchcases, 0 < u1 � 1:22291 � min f�1 � �2 + �0; �1 � �2 � �0g as illustrated in Figure 4.6 (a), or0 < u1 � 1:22291 � min f�2 � �1 + �0; �2 � �1 � �0g as illustrated in Figure 4.6 (b). The twoconditions are jointly satis�ed by 0 < u1 � 1:22291 � min fj�1 � �2j+ �0; j�1 � �2j � �0g.
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Figure 4.6: The design for the two-variable binary logistic model without interactionu = logit(p) = �0 + �1x1 + �2x2: Atkinson and Haines (1996) approach. (a) 0 < u1 �1:22291 � minf�1��2+�0; �1��2��0g (b) 0 < u1 � 1:22291 � minf�2��1+�0; �2��1��0g.
In the three papers, namely those by Sitter and Torsney (1995a), Atkinson and Haines (1996)and Jia and Myers (2001), the authors constructed D-optimal designs but did not provideproofs of the D-optimality of their designs. In addition, the conditions for the D-optimalityof the 3-point, 4-point and 6-point designs of Atkinson and Haines (1996) need to be fullyinvestigated since rectangular design spaces are generally re-parameterized as in Atkinson andHaines (1996) (see for example Atkinson and Donev (1992), Myers and Montgomery (1995),and Atkinson et al. (2007)). These two issues will be addressed in this thesis, and the geometryof Jia and Myers (2001) will be used since it is easier to visualize and to generalize than theapproach of Sitter and Torsney (1995a).
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4.6. Review of D-optimal design for the two-variable binary logistic

model with interaction
4.6.1 Kupchak approach
Kupchak (2000) investigated c-, G- and D-optimal designs for the two-variable binary logisticmodel with interaction

u = logit(p) = �0 + �1d1 + �2d2 + �12d1d2 (4.31)
as speci�ed in (4.20), where d1 � 0 and d2 � 0 represent the doses of two drugs, say A and B.Kupchak (2000) �rst considered the case of designs for detecting \local synergy" which arethe c- and the G-optimal designs for the precise estimation of the interaction parameter �12 inthe model with constant probability of response p. Next, he considered the case of the designsfor detecting \global synergy" which are the c-optimal designs for the precise estimationof the interaction parameter �12, and the D-optimal designs for the precise estimation ofall the parameters under the assumption that �12 = 0, in the model with no constrainton the probability of response p. This section briey describes the Kupchak's approach toconstructing optimal designs for detecting \local" and \global" synergy with emphasis on theconstruction of D-optimal designs which are the main subject of this thesis.
Optimal designs for detecting local synergy
Kupchak (2000) considered model (4.31), with p constant, on the restricted design space

Dp = f(d1; d2) : logit(p) = �0 + �1d1 + �2d2g :
The information matrix M(�;�) for model (4.31), as given by (4.21), is singular because thesupport points of the design lie on the straight line Dp. Therefore, the D-optimality criterionis not applicable in this case. However, the c- or the G- optimality criterion can be used.
(1) c-optimality criterion
For the precise estimation of the parameter �12, Kupchak (2000) proposed minimizing thecriterion Var�b�12� = aTM�(�;�)a (4.32)
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where M�(�;�) is a generalized inverse of M(�;�) for all M(�;�) such that a = [0 0 0 1]T =M(�;�)q, for some vector q = [q1; q2; q3; q4], i.e. such that q is in the column space ofM(�;�). As the design � that minimizes criterion (4.32), Kupchak (2000) suggested, with noexplanation, the 3-point design

�� = ( (ED100p;1; 0) (12ED100p;1; 12ED100p;2) (0; ED100p;2)14 12 14
) (4.33)

where ED100p;1 = logit(p)� �0�1 and ED100p;2 = logit(p)� �0�2 are the respective doses of Aand B associated with the �xed probability of response p. Kupchak (2000) used the GeneralEquivalence Theorem for c-optimality to prove that the design (4.33) is globally optimal.
(2) G-optimality criterion
On the design space Dp, the information matrix M(�;�) is singular because the supportpoints of the design � lie on the straight line de�ned by Dp and hence the D-optimalitycriterion is not applicable. Kupchak (2000) invoked Atkinson and Donev (1992, p. 114) insuggesting a design � that minimizes the G-optimality criterion 	p(�) = maxc2[0;1] cTM�(�;�)cwhere c = p (u)[1; c; (1� c); c(1� c)]T for some vector q such that c = M(�;�)q. Clearly,cTM�(�;�)c = qTc and hence, the criterion 	p(�) is invariant to the choice of a generalizedinverse M�(�;�). Kupchak (2000) proposed, without explanation, the 3-point G-optimaldesign

��G = ( (ED100p;1; 0) (12ED100p;1; 12ED100p;2) (0; ED100p;2)13 13 13
)

and showed that the design is G-optimal under the null hypothesis that �12 = 0.
Optimal designs for detecting \global synergy"
Kupchak (2000) also considered model (4.31) with no constraint on the probability of responsep on the design space given by

D = f(d1; d2) : 0 � d1 � a; 0 � d2 � bg
where a and b are positive real numbers. For this case, Kupchak (2000) discussed the construc-tion of c-optimal designs for minimizing Var(b�12), and D-optimal designs for minimizing thedeterminant of the asymptotic variance-covariance matrix of b�. The two criteria are brieydescribed below following Kupchak's approach.
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(1) c-optimality criterion
Kupchak (2000) argued that �xing the vector of parameters � = (�0; �1; �2; �12)T at a knownvalue implies that the median e�ective doses ED50;1 = ��0�1 and ED50;2 = ��0�2 of the drugsA and B respectively are also known. This reduces the 4 parameter model (4.31) to the 2parameter model u = logit(p) = �0(1� d�1 � d�2) + �Id�1d�2 (4.34)where d�1 = d1ED50;1 , d�2 = d2ED50;2 and �I = �12ED50;1ED50;2. Thus, the information matrixfor the parameters of model (4.34) evaluated at a single point x� = (d�1; d�2) is

M(x�; �0; �I) =  (u)" (1� d�1 � d�2)2 (1� d�1 � d�2)d�1d�2(1� d�1 � d�2)d�1d�2 d�21 d�22
#

and the information matrix for the parameters of model (4.34) evaluated at the approximatedesign of the form
� = ( (d�11; d�12) (d�21; d�22) : : : (d�d1; d�d2)�1 �2 : : : �d

) (4.35)
is the 2� 2 matrix

M(�; �0; �I) = dX
i=1 �i (ui)

" (1� d�i1 � d�i2)2 (1� d�i1 � d�i2)d�i1d�i2(1� d�i1 � d�i2)d�i1d�i2 d�2i1 d�2i2
# : (4.36)

The c-optimality criterion proposed by Kupchak (2000) for the precise estimation of �I , andhence for the precise estimation of �12, is the asymptotic variance of b�I given byVar(b�I) = �M�1(�; �0; �I)�22 (4.37)where [M�1(�; �0; �I)]22 is the (2; 2) element of M�1(�; �0; �I). Kupchak (2000) showed thatif in model (4.34) �0 < �2p2 and �I = 0, then the optimal design � which minimizes criterion(4.37) is
��I = ( �12 ; 12�1

) :
Kupchak (2000) also showed that for some � where 0 < � < 1, if in model (4.34) �I = 0 and�2p2 < �0 < �2:39936 where �2:39936 is a numerical solution of the equation �0(1�e��0) =2(1 + e��0), then the optimal design � which minimizes criterion (4.37) is

��I = ( 12(1� �; 1� �) 12(1 + �; 1 + �)12 12
) :

Finally, Kupchak (2000) reported that if �0 � �2:39936, then the c-optimal design for esti-mating �I is an unequally weighted two-point design with support points at (0; 0) and at apoint (d�1; d�2) which can only be determined numerically.
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(2) D-optimality criterion
Kupchak (2000) also considered constructing designs for the precise estimation of all theparameters of model (4.31) with p not �xed, i.e. 0 < p < 1. Thus, he used the D-optimalitycriterion 	(�;�) = log jM�1(�;�)j = � log jM(�;�)j:As in (4.21), the information matrix M(�;�) at the approximate design of the form

�d = ( (d11; d12) (d21; d22) : : : (dd1; dd2)�1 �2 : : : �d
) (4.38)

is the 4� 4 matrix
M(�d;�) = dX

i=1 �i (ui)
266664

1 di1 di2 di1di2di1 d2i1 di1di2 d2i1di2di2 di1di2 d2i2 di1d2i2di1di2 d2i1di2 di1d2i2 d2i1d2i2

377775 (4.39)
where  (ui) = eui(1 + eui)2 for i = 1; 2; : : : ; d � 4. Kupchak (2000) used an example for nu-merically constructing D-optimal designs. Then, he proved that, under the hypothesis that�12 = 0, any candidate D-optimal design is independent of the choice of the parameters �1 and�2 as follows. Kupchak re-parameterized model (4.31) with d�1 = d1ED100p;1 and d�2 = d2ED100p;2to obtain u = logit(p) = �0 + ��1d�1 + ��2d�2 + ��12d�1d�2where ��1 = �1ED100p;1, ��2 = �2ED100p;2 and ��12 = �12ED100p;1ED100p;2. In terms of � =(�0; �1; �2; �12)T and the alternative parameter vector �� = (�0; ��1 ; ��2 ; ��12)T , d�1 and d�2 canbe expressed as

d�1 = �1d1�1ED100p;1 = �1��1 d1 and d�2 = �2d2�2ED100p;2 = �2��2 d2:
Hence, the vector ex = (1; d1; d2; d1d2)T is transformed to ex� = �1; �1��1 d1; �2��2 d2; �1��1 �2��2 d1d2

�T = Bexwhere
B =

2666664
1 0 0 00 �1��1 0 00 0 �2��2 00 0 0 �1��1 �2��2

3777775 ;
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and the design (4.38) is transformed to the design

�d� = ( (d�11; d�12) (d�21; d�22) : : : (d�d1; d�d2)�1 �2 : : : �d
) : (4.40)

As a consequence, the information matrix for the parameter vector �� evaluated at thedesign (4.40) is M(�d� ;��) = BM(�d;�)B where M(�d;�) is given by (4.39). Therefore,jM(�d� ;��)j = jBj2jM(�d;�)j and thus minimizing ln jM�1(�d� ;��)j by choice of �d� is equiva-lent to minimizing ln jM�1(�d;�)j by choice of �d. Furthermore, the directional derivative func-tion is invariant to the choice of the parameters �1 and �2. In fact, M(�d� ;��) = BM(�d;�)Band  (u) = p(1� p) = eu(1 + eu)2 imply that
M�1(�d� ;��) = B�1M�1(�d;�)B�1;

and
 (u)ex�TM�1(�d� ;��)ex� =  (u)exTB �B�1M�1(�d;�)B�1�Bex =  (u)exTM�1(�d;�)ex:

Consequently, the directional derivation functions of the designs (4.38) and (4.40) are equalbecause
�(x�; �d� ;��) = 4�  (u)ex�TM�1(�d� ;��)ex� = 4�  (u)exTM�1(�d;�)ex = �(x; �d;�):

In addition to the discussion of D-optimal designs for the precise estimation of all the fourparameters of model (4.31), Kupchak (2000) also considered D-optimal designs for the preciseestimation of the parameters �0 and �I of model (4.34) assuming that both ED50;1 and ED50;2are known. Finally, Kupchak (2000) briey discussed robust designs to misspeci�cation of theprior values of the parameter vector � = (�0; �1; �2; �12)T . These were Bayesian D-optimaldesigns (see Chaloner and Lantz (1989), and Chaloner and Verdinelli (1995)) and minimaxD-optimal designs (see Sitter (1992), and King and Wong (2000)). For the Bayesian approach,the uniform and the Gaussian distributions were used as priors for the parameters �0, �1, �2and �12, and the number of support points increased as the prior became more di�use.
4.6.2 Jia and Myers approach
Jia and Myers (2001) considered the construction of D-optimal designs for the two-variablebinary logistic model with interaction as speci�ed in (4.20) following similar arguments tothose for the no interaction case. The following is a summary of their ideas.
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For �xed logit u, the equation

u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 (4.41)
with �12 6= 0 is that of a hyperbola with orthogonal asymptotes x1 = � �2�12 and x2 = � �1�12 . Thevariables x1 and x2 can be taken as doses or log-doses of two drugs, say A and B, respectively.As for the case of no interaction, it is assumed that �0 < 0, �1 > 0 and �2 > 0. For each valueof u the graph de�ned by equation (4.41) has two branches which are symmetric with respectto the point (x01; x02) = �� �2�12 ;� �1�12� in the (x1; x2)-space. Using the transformation( z1 = x1 � x01z2 = x2 � x02; (4.42)
the equation (4.41) can be rewritten as

u = ��0 + �12z1z2 (4.43)
or equivalently as z2 = u� ��0�12z1 (4.44)
where ��0 = �0 � �1�2�12 . Thus for a given value of u, the hyperbola (4.44) has orthogonalasymptotes z1 = 0 and z2 = 0 in the (z1; z2)-space, and hence its graph has two symmetricbranches with respect to the point (0; 0).If ��0 = u the hyperbola (4.44) degenerates into the asymptotes z1 = 0 and z2 = 0 or,equivalently the hyperbola (4.41) degenerates into the asymptotes x1 = � �2�12 and x2 = � �1�12 .For u 6= ��0 , Jia and Myers (2001) suggested that the D-optimal design for model (4.41) orequivalently for model (4.43) has 4 support points located on the lines of two constant responseprobability levels p1 and p2 with p1 < p2 or equivalently logits u1 < u2 where ui = logit(pi)for i = 1; 2. Speci�cally, one support point lies on each of the two branches of the constantu1 hyperbola, and likewise on each branch of the constant u2 hyperbola. In addition, Jia andMyers (2001) chose the 4 support points of the candidate D-optimal design as vertices of aparallelogram, and proposed the following three design cases.

1. u1 < ��0 < u2: In this case, the 4 branches of the u1 and u2 hyperbolae are in 4 di�erentquadrants of the (z1; z2)-space. In other words, the support points of the candidateD-optimal design are spread over the four quadrants of the (z1; z2)-space. Figure 4.7 (a)illustrates the case when �12 < 0, i.e. x01 = � �2�12 > 0 and x02 = � �1�12 > 0, and Figure4.7 (b) illustrates the case when �12 > 0, i.e. x01 = � �2�12 < 0 and x02 = � �1�12 < 0.
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Figure 4.7: The hyperbola-based design for the two-variable binary logistic model with inter-action u = ��0 + �12z1z2 for u1 < ��0 < u2 and (a) �12 < 0 and (b) �12 > 0 : the candidatesupport points (z11; z12), (z21; z22), (�z11;�z12) and (�z21;�z22) are represented by circles.
2. ��0 < u1 < u2: In this case, the 4 branches of the u1 and u2 hyperbolae are locatedin only two quadrants of the (z1; z2)-space. If �12 < 0, the branches of the u1 and u2hyperbolae, and hence the support points of the candidate D-optimal design, are in thesecond and the fourth quadrants of the (z1; z2)-space as indicated in Figure 4.8 (a). If�12 > 0 the branches of the u1 and u2 hyperbolae, and hence the support points of thecandidate D-optimal design are in the �rst and the third quadrants of the (z1; z2)-spaceas shown in Figure 4.8 (b).
3. u1 < u2 < ��0 : As in case 2 the 4 branches of the u1 and u2 hyperbolae, and hencethe support points of the candidate D-optimal design, are in only two quadrants of the(z1; z2)-space, but the order is reversed. That is if �12 < 0 the branches of the u1 and u2hyperbolae, and hence the support points of the candidate D-optimal design are in the�rst and the third quadrants of the (z1; z2)-space as shown in Figure 4.9 (a). If �12 > 0,the branches of the u1 and u2 hyperbolae, and hence the support points of the candidateD-optimal design are in the second and the fourth quadrants of the (z1; z2)-space asshown in Figure 4.9 (b).

In constructing the D-optimal designs, Jia and Myers (2001) assumed equal weights for supportpoints located on branches of the same hyperbola (u1 or u2) in each of the Figures 4.7 to 4.9.Now, letting z11 = �1 > 0 and z21 = t�1 for some t 2 (0;1), it follows from (4.44) that
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Figure 4.8: The hyperbola-based design for the two-variable binary logistic model with inter-action u = ��0 + �12z1z2 for ��0 < u1 < u2 and (a) �12 < 0 and (b) �12 > 0 : the candidatesupport points (z11; z12), (z21; z22), (�z11;�z12) and (�z21;�z22) are represented by circles.
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Figure 4.9: The hyperbola-based design for the two-variable binary logistic model with inter-action u = ��0 + �12z1z2 for u1 < u2 < ��0 and (a) �12 < 0 and (b) �12 > 0 : the candidatesupport points (z11; z12), (z21; z22), (�z11;�z12) and (�z21;�z22) are represented by circles.
z12 = u1���0�12�1 and z22 = u2���0t�12�1 , and that (�z11;�z12) = (��1;�u1���0�12�1 ) and (�z21;�z22) =
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(�t�1;� u2���0t�12�1 ). Hence, the approximate design corresponding to Figures 4.7 to 4.9 is

� = 8<:
��1; u1 � ��0�12�1

� �t�1; u2 � ��0t�12�1
� ���1;�u1 � ��0�12�1

� ��t�1;�u2 � ��0t�12�1
�

�2 1��2 �2 1��2
9=;(4.45)on the (z1; z2)-space. Jia and Myers (2001) used the transformation (4.42) to back transformthe coordinates of the support points of the above design from the (z1; z2)-space to the (x1; x2)-space.The information matrix associated with the design obtained by back transforming design(4.45) to the (x1; x2)-space is intricate and lengthy and is not reported here. However, itsdeterminant is given compactly by

Dt = �2(1� �)2e2u1+2u2(u2 � u1)2[t(u2 � ��0)� 1t (u1 � ��0)]2�412(1 + eu1)4(1 + eu2)4 : (4.46)
Clearly, as highlighted by Jia and Myers (2001), Dt approaches in�nity as t! 0+ or t!1.Therefore, Dt has a �nite value only if 0 < t <1. The magnitude of t determines the size ofthe design space and hence the magnitude of the determinant Dt. Giving a value to t can beinterpreted as imposing a restriction on the design space. Jia and Myers (2001) state that inmany practical situations t can be taken as 1, and for t = 1 the determinant (4.46) becomes

D1 = �2(1� �)2e2u1+2u2(u2 � u1)4�412(1 + eu1)4(1 + eu2)4 : (4.47)
which is maximized by � = 12 , and is symmetric in u1 and u2. Symmetry arguments implythat u1 = �u2 = u, and hence that the determinant (4.47) is proportional to

D = u4e4u(1 + eu)8 (4.48)
which is the square of the determinant (4.13) in Section 4.3. This means that the determinant(4.48) also has maxima at u = �1:5434.
Comments
The approach of Jia and Myers (2001) for constructing D-optimal designs for the two-variablebinary logistic model with interaction is based on relatively easy calculations since the can-didate D-optimal designs have 4 support points, and are therefore equally weighted 4-pointdesigns (see Silvey (1980, p. 42). In addition, the fact that the support points of the candidate
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D-optimal designs are located on the two constant logits �u further simpli�es the calculationsof the D-optimal designs for a given best guess of the parameters �0, �1, �2 and �12. However,the approach of Jia and Myers (2001) has the following drawbacks.

1. The reason for using the special case of t = 1 in the expression (4.46) has the e�ectof removing the dependency of the determinant Dt on ��0 , and hence results in \lossof generality". With such a restriction, it appears that Jia and Myers (2001) searchedfor D-optimal designs in a limited class of designs. In addition, the dependency of thelocation of the support points of the candidate D-optimal design on the value of �1increases the degree of uncertainty about the design since in addition to guessing thevalues of the parameters, the value of �1 has also to be provided.
2. Jia and Myers (2001) do not prove the D-optimality of their design.

The geometric approach of Jia and Myers (2001) for the two-variable binary logistic modelwith interaction will be used in a more elaborate way in Chapter 7 for constructing D-optimaldesigns in a restricted design space.
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5
D-optimal Designs for the Two-Variable

Binary Logistic Model without
Interaction: Theoretical Results

5.1. Introduction
This chapter introduces a new design approach for the construction of D-optimal designs forthe two-variable binary logistic model without interaction and draws together the approachesof Sitter and Torsney (1995a), Atkinson and Haines (1996) and Jia and Myers (2001). Specif-ically, the approach takes into account the fact that for generalized linear models, for whichthe binary logistic model is a special case, the D-optimal design depends on the parametervector and the design space. The chapter contains the following sections. Section 5.2 gives aproof of D-optimality of the equally weighted 4-point design introduced by Sitter and Torsney(1995a) for the design locus Gw given in (4.23) and by Jia and Myers (2001). In the proof, thedesign space is assumed to be the log-dose space. Section 5.3 discusses the construction of newD-optimal designs, de�ned on the actual dose space, termed trapezium designs. The designsobtained are 4-point or 3-point D-optimal designs depending on the value of the interceptparameter �0 in the logit u = �0 + �1x1 + �2x2. Section 5.4 contains the conclusions for thischapter.
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5.2. D-optimal designs with parallel line restrictions.

Section 4.5 described the approaches of Sitter and Torsney (1995a), Atkinson and Haines(1996), and Jia and Myers (2001) to constructing D-optimal designs for the two-variablebinary logistic model u = logit(p) = �0 + �1x1 + �2x2 de�ned in Section 4.4.1. To obtain arestriction on the design space, Sitter and Torsney (1995a) used the constraint �1 � u2 � 1where u2 = b0 + b1x1 + b2x2 is a straight line in (x1; x2)-space for a given value of u2. Settingu2 = �1 gives the same constraints as the two parallel line restrictions b01 + b1x1 + b2x2 = 0and b02 + b1x1 + b2x2 = 0 implicitly used by Jia and Myers (2001). Note that the restriction�1 � u2 � 1 can be generalized to �b � u2 � b. For logit u1 = �0+ �1x1+ �2x2 unrestricted,the candidate D-optimal design in both approaches was an equally weighted 4-point designwith support points located on the intersection of u2 = �b and two logit lines which aresymmetric about the logit line u1 = 0, and thus the candidate support points are of the form(�u1;�b), (u1;�b), (�u1; b) and (u1; b) in (u1; u2)-space. Figure 5.1, where circles representthe support points, is a graphical representation of the candidate 4-point D-optimal design ofSitter and Torsney (1995a). The approach of Atkinson and Haines (1996) leads to the same

1
u

2
u

0

b−

b

( )buA −− ,
1

( )buB ,
1

− ( )buC ,
1

( )buD −,
1

Figure 5.1: Candidate 4-point D-optimal design of Sitter and Torsney (1995a) in the (u1; u2)-design space R� [�b; b] where b is a �xed real number. Circles are support points.
conclusion for certain values of the parameters �0, �1 and �2 (see Section 4.5.2, Table 4.3 for� = (0; 3; 1)T , and item (3) in Section 4.5.4). The information matrix on a per point basisevaluated at the 4-point design

�u = ( A D B C14 14 14 14
) = ( (�u1;�b) (u1;�b) (�u1; b) (u1; b)14 14 14 14

) (5.1)
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is

M(�u) =  (u1)
2664 1 0 00 u21 00 0 b2

3775 ;
and its determinant is D = [ (u1)]3 u21b2;where  (u1) = eu1(1 + eu1)2 : The determinant D is maximized by �u� where u� = 1:22291 isthe positive solution for u1 to the equation

2 + 2eu1 + 3u1 � 3u1eu1 = 0: (5.2)
Thus, the design (5.1) is

��u = ( (�1:22291;�b) (1:22291;�b) (�1:22291; b) (1:22291; b)14 14 14 14
)

and can be taken as a candidate D-optimal design. Hence, the following theorem.
Theorem 5.1. For the two-variable binary logistic model u1 = logit(p) = �0 + �1x1 + �2x2where p is the probability of positive response with u1 unrestricted in R, and for the restriction�b � u2 = b0 + b1x1 + b2x2 � b where b1b2 6= �1�2 and b > 0, the design

��u = ( (�u�;�b) (u�;�b) (�u�; b) (u�; b)14 14 14 14
) ; (5.3)

where u� = 1:22291, is D-optimal on the (u1; u2)-space.
ProofLet

M(u) =  (u1)
2664 1u1u2

3775h 1 u1 u2 i
be the information matrix for � = (�0; �1; �2)T evaluated at a one-point design with anarbitrary support point u = (u1; u2)T 2 R � [�b; b]. The D-optimality of design (5.3) isproved using the Equivalence Theorem for the D-optimality criterion (3.3) by showing thatthe directional derivative function

�(u; ��u) = 3� tr �M�1(��u)M(u)� � 0
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for all u = (u1; u2)T 2 R � [�b; b] with equality holding at the support points of the design��u, or equivalently, the standardized variance function

d(u; ��u) = tr �M�1(��u)M(u)� � 3for all u = (u1; u2)T 2 R � [�b; b] with equality holding at the support points of the design��u.The standardized variance function d(u; ��u) is given by
d(u; ��u) =  (u1) (u�) �1 + u21u�2 + u22b2

� = e�u�+u1(1 + eu�)2(1 + eu1)2 �1 + u21u�2 + u22b2
� (5.4)

where u� = 1:22291. Clearly, if u1 = �u� and u2 = �b, then d(u; ��u) = 3 at the supportpoints of design (5.3) as required. It remains to be shown that d(u; ��u) � 3 at any other pointu = (u1; u2)T 2 R� [�b; b].Applying the fact that �b � u2 � b) u22 � b2 to (5.4) provides the inequality
d(u; ��u) � g(u1) =  (u1) (u�) �2 + u21u�2

� = e�u�+u1(1 + eu�)2(2u�2 + u21)u�2(1 + eu1)2 :
It has to be shown that g(u1) � 3 for all u1 2 R. Note that g(u1) is an even function inu1 since g(�u1) = g(u1), and thus g(u1) is symmetric about u1 = 0. Hence, g(u1) is to beinvestigated on [0;1) since the conclusions will also apply to g(u1) on (�1; 0].The stationary points of g(u1) on [0;1) are solutions for u1 to the equation

g0(u1) = dg(u1)du1 = e�u�+u1(1 + eu�)2[(2u�2 + u21 + 2u1)� (2u�2 + u21 � 2u1)eu1 ]u�2(1 + eu1)3 = 0;
or equivalently, the equation

h(u1) = (2u�2 + u21 + 2u1)� (2u�2 + u21 � 2u1)eu1 = 0: (5.5)
Note that g0(0) = 0 and g0(u�) = 2 + 2eu� + 3u� � 3u�eu�u�(1 + eu�) = 0 since u� is the solution of equa-tion (5.2). Therefore u1 = 0 and u1 = u� are stationary points of g(u1), or equivalently, u1 = 0and u1 = u� are solutions of equation (5.5). The second derivative of g(u1) with respect to u1is
g00(u1) = eu1�u�(1 + eu�)2[(2 + 2u�2 + u21)(1 + e2u1) + 4u1(1� e2u1) + 4(1� 2u�2 � u21)eu1 ]u�2(1 + eu1)4 :

Hence, g00(0) = e�u�(1 + eu�)2(2� u�2)4u�2 = 0:480 > 0. Therefore g(u1) takes on a local mini-
mum value at 0 and g(0) = e�u�(1 + eu�)22 ' 2:85 < 3. Also,

g00(u�) = 2 + 4eu� + 2e2u� + 4u� � 4u�e2u� + 3u�2 � 12u�2eu� + 3u�2e2u�u�2(1 + eu�)2 = �0:608 < 0
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which means g(u1) takes on its local or global maximum value at u�, and g(u�) = 3. It has tobe shown that g(u�) = 3 is the unique global maximum value of g(u1) on [0;1). Figure 5.2suggests that g(u�) = 3 is indeed the global maximum value of g(u1) on [0;1).

Figure 5.2: Plot of g(u1) = eu1�u�(1 + eu�)2(2u�2 + u21)u�2(1 + eu1)2 versus u1 2 R with u� = 1:22291.
To analytically prove that g(u�) = 3 is the unique global maximum value of g(u1) on [0;1),it has to be shown that g0(u1) � 0 on [0; u�] and that g0(u1) � 0 on [u�;1), or equivalently,that h(u1) given by (5.5) is nonnegative on [0; u�] and less than or equal to zero on [u�;1)since the sign of g0(u1) is determined by the sign of h(u1). Figure 5.3 (a) suggests that indeed,h(u1) � 0 on [0; u�] and h(u1) � 0 on [u�;1).Note that h(u1) = h1(u1)�h2(u1), where h1(u1) = u21+2u1+2u�2 is a parabola and h2(u1) =(u21 � 2u1 + 2u�2)eu1 . Figure 5.3 (b) displays the graphs of h1(u1) and h2(u1). On [0;1)both h1(u1) and h2(u1) are strictly increasing functions of u1 since h01(u1) = 2(u1 + 1) > 0and h02(u1) = (u21 + 2u�2 � 2)eu1 = (u21 + 0:991)eu1 > 0. Clearly, h1(u1) is a convex parabolaon [0;1) and also h2(u1) is convex on [0;1) since h002(u1) = (u21 + 2u1 + 0:991)eu1 > 0 forall u1 2 [0;1). This means that, on [0;1), the graphs of h1(u1) and h2(u1) meet twice atmost. Since 0 and u� are solutions for u1 to the equation h(u1) = 0, as was shown above,it follows that h1(u1) and h2(u1) only meet at u1 = 0 and u1 = u�. This and the fact thatlimu1!1 h1(u1)h2(u1) = 0 imply that h(u1) = h1(u1)� h2(u1) � 0 on [u�;1), and that h(u1) must begreater than or equal to zero on [0; u�]. �
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Figure 5.3: Plots of (a) h(u1) = 2u�2 + u21 + 2u1 � (2u�2 + u21 � 2u1)eu1 versus u1 � 0, and (b)h1(u1) = 2u�2 + u21 + 2u1 and h2(u1) = (2u�2 + u21 � 2u1)eu1 versus u1 � 0 with u� = 1:22291.
5.3. D-optimal designs on actual dose design space

In this section D-optimal designs for the two-variable binary logistic model u = logit(p) = �0+�1d1+�2d2 are constructed on the actual dose design space D = [0;1)�[0;1). Speci�cally, itis shown that if �1 < �0 < �1:5434, then the D-optimal design has 4 support points locatedat the boundaries of the design space D. This design is termed a trapezium design becauseits support points are vertices of a trapezium in D. It is also shown that if �1:5434 � �0 � 0,then the trapezium design degenerates to a 3-point D-optimal design, and if �0 ! �1, thenthe trapezium design degenerates to the equally weighted 4-point D-optimal design as in Sitterand Torsney (1995a), Atkinson and Haines (1996), and Jia and Myers (2001).
5.3.1 The design problem in canonical form
For actual doses d1 and d2 of two drugs under study, model (4.18) becomes

u = logit(p) = �0 + �1d1 + �2d2; (5.6)or equivalently, u = logit(p) = �0 + z1 + z2 (5.7)where z1 = �1d1 � 0 and z2 = �2d2 � 0 assuming that �0 < 0, �1 > 0 and �2 > 0 as in Chapter2, Section 2.4.4. The information matrix for the parameter vector � = (�0; �1; �2)T evaluated
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at the 1-point design d = (d1; d2)T for model (5.6) isM(d;�) given by the information matrix(4.3) evaluated at xi = di for i = 1; 2; : : : ; d � 3. Similarly evaluating the information matrix(4.3) at the 1-point design z = (z1; z2)T = (�1d1; �2d2)T for model (5.7) gives the informationmatrix M(z; �0) = BM(d;�)BT = eu(1 + eu)2ezezT (5.8)
where ez = (1; zT )T and B =

2664 1 0 00 �1 00 0 �2
3775 is a nonsingular matrix since jBj = �1�2 > 0.

A design � for model (5.6) is design (4.5) with the xi replaced by di = (di1; di2)T for i =1; 2; : : : ; d. The transformation of model (5.6) to (5.7) transforms the design � to
�z = ( z1 z2 : : : zd�1 �2 : : : �d

) (5.9)
where zi = (zi1; zi2)T = (�1di1; �2di2)T with associated weights �i such that �i > 0 anddX
i=1 �i = 1 for i = 1; 2; : : : ; d. Note that under the assumption that �0 < 0, �1 > 0 and �2 > 0,designs � and �z are de�ned on the same design space D = [0;1)� [0;1).
Let M(�z; �0) = dX

i=1 �iM(zi; �0) and M(�;�) = dX
i=1 �iM(di;�). Then design �z is D-optimalwith respect to maximizing jM(�z; �0)j if and only if design � is D-optimal with respect tomaximizing jM(�;�)j. In fact, note that jM(�z; �0)j = jBM(�;�)BT j = jBj2jM(�;�)j whereB is the matrix de�ned in (5.8). This implies that maximizing jM(�;�)j is equivalent tomaximizing jM(�z; �0)j. Furthermore, the directional derivative function for D-optimalityassociated with design �z for model (5.7) is given by

�(z; �z; �0) = 3� tr�M�1(�z; �0)M(z; �0)	= 3� tr��B�1M�1(�;�)B�1�BM(d;�)B	 ; since M(z; �0) = BM(d;�)B= 3� tr�M�1(�;�)M(d;�)	= �(d; �;�)
which is the directional derivative function associated with design �. The equality of thedirectional derivative functions implies that design �z is D-optimal with respect to maximizingjM(�z; �0)j if and only if design � is D-optimal with respect to maximizing jM(�;�)j.
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5.3.2 4-point D-optimal trapezium design
From the literature, as discussed in Section 4.5, it can be assumed that the support points ofthe candidate D-optimal design for the two-variable binary logistic model without interactionlie on two logit lines which are symmetric about u = 0. Furthermore, the support pointslocated on the same logit line are equally weighted (see for example Sitter and Torsney (1995a),and Jia and Myers (2001)). In addition, it has been reported that the determinant of theinformation matrix for the parameter vector � is an increasing function of the size of thedesign space (e.g. see Jia and Myers (2001), and Myers et al. (2002, p. 240)). Hence, it canbe conjectured that the support points of a candidate 4-point D-optimal design, de�ned onD = [0;1) � [0;1), are located at the intersection of the logit lines �u and the boundariesof the design space D as illustrated in Figure 5.4. Thus, under the above assumptions, the
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Figure 5.4: The pattern of a 4-point candidate D-optimal design for a two-variable binarylogistic model without interaction u = �0 + z1 + z2 on the design space D = [0;1)� [0;1):A, B, C and D are support points.
candidate 4-point D-optimal design in (z1; z2)-space is given by
�z = ( A B C D1��2 1��2 �2 �2

) = ( (�u� �0; 0) (0;�u� �0) (0; u� �0) (u� �0; 0)1��2 1��2 �2 �2
)

with 0 < � < 1 and 0 � u < ��0. The following theorem gives conditions on �0, u and �under which the design �z given above is D-optimal.
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Theorem 5.2. The respective optimal values of u and � in the candidate D-optimal designof the form

�z = ( (�u� �0; 0) (0;�u� �0) (0; u� �0) (u� �0; 0)1��2 1��2 �2 �2
) (5.10)

for the two-variable binary logistic model u = logit(p) = �0 + z1 + z2 on the design space[0;1) � [0;1) with parameter �0 < �1:5434 are u� and ��, solutions for u and � to thesimultaneous equations
3(1 + u+ eu � ueu)[(u+ �0)2 � 4��0u]� (�20 � u2)(1 + eu) = 0

and (1� 2�)(u+ �0)2 � 4�(2� 3�)�0u = 0:
Furthermore, u� 2 (1:22291; 1:5434) and �� = �20 + 6�0u� + u�2 �p�40 + 14�20u�2 + u�412�0u� 2 �12 ; 23

�.
ProofLet M(�z; �0) be the information of the vector of parameters � = (�0; �1; �2)T evaluated atdesign �z given in (5.10). Then,

M(�z; �0) = 12 (u)
2664 2 �u� �0 + 2�u �u� �0 + 2�u�u� �0 + 2�u (u+ �0)2 � 4��0u 0�u� �0 + 2�u 0 (u+ �0)2 � 4��0u

3775 (5.11)
and the associated determinant is

D = (1� �)�u2e3u[(u+ �0)2 � 4��0u](1 + eu)6 : (5.12)
The value and the interval for � in the candidate D-optimal design �z of the form (5.10) iscalculated as follows. Di�erentiating D, in (5.12), with respect to � gives@D@� = u2e3u f(1� 2�)(u+ �0)2 � 4�(2� 3�)�0ug(1 + eu)6 :
Setting @D@� = 0 and solving for � gives

(1� 2�)(u+ �0)2 � 4�(2� 3�)�0u = 0 (5.13)
which is a quadratic equation in �, and hence has at most two solutions for �. Solving theequation (5.13) for � gives

� = �� = �20 + 6�0u+ u2 �p�40 + 14�20u2 + u412�0u (5.14)
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or � = ��� = �20 + 6�0u+ u2 +p�40 + 14�20u2 + u412�0u : (5.15)
where �0 < 0 and u > 0. An admissible solution for � in (5.13) must satisfy the condition0 < � < 1.Consider � = ���. Now

�40 + 14�20u2 + u4 = (�20 + 6�0u+ u2)2 � 12�0u(u+ �0)2= (�20 + 6�0u+ u2)2 + 12j�0ju(u+ �0)2 since �0 < 0
which implies thatq�40 + 14�20u2 + u4 �q(�20 + 6�0u+ u2)2 = j�20 + 6�0u+ u2j � �20 + 6�0u+ u2; (5.16)
and thus that

�20 + 6�0u+ u2 +q�40 + 14�20u2 + u4 � �20 + 6�0u+ u2 + j�20 + 6�0u+ u2j � 0:
Hence, ��� � 0 since in the expression (5.15) for ���, the numerator is nonnegative and thedenominator 12�0u is negative. Thus, ��� is not the required solution.Consider � = ��. It follows from (5.16) that �20 + 6�0u + u2 �p�40 + 14�20u2 + u4 � 0, andhence �� � 0 since in the expression (5.14) for ��, the numerator is not positive and thedenominator 12�0u is negative. Furthermore,

(�20 � 6�0u+ u2)2 = �40 + 14�20u2 + u4 � 12�0u(u� �0)2� �40 + 14�20u2 + u4 since �0 < 0
which impliesq�40 + 14�20u2 + u4 � j�20 � 6�0u+ u2j = �20 � 6�0u+ u2 since �0 < 0
and
12�0u = �20 + 6�0u+ u2 � (�20 � 6�0u+ u2) � �20 + 6�0u+ u2 �q�40 + 14�20u2 + u4 � 0:

Hence �� � 1 since in the expression (5.14) for ��, the numerator and the denominator arenegative with the absolute value of the numerator less than or equal to that of the denominator.Thus, for �� evaluated at u = u�, the candidate D-optimal value of u, is the required candidateD-optimal value of �.
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For now, note that equation (5.13) can be written as(u+ �0)24��0u = 2� 3�1� 2�: (5.17)
Since (u + �0)2 > 0, 4�0u � 0 and � > 0, it follows from (5.17) that 2� 3�1� 2� < 0 whichimplies that 12 < � < 23 : Hence, the candidate D-optimal value of � is �� given in (5.14) and
�� 2 �12 ; 23�.The value and the interval for u in the candidate D-optimal design �z of the form (5.10) iscalculated as follows. Di�erentiating D, in (5.12), with respect to u gives@D@u = (1� �)�ue3u f3(1 + u+ eu � ueu)[(u+ �0)2 � 4��0u] + (�20 � u2)(1 + eu)g(1 + eu)7 :
Setting @D@u = 0 and solving for u gives u = 0 or u satisfying the equation

3(1 + u+ eu � ueu)[(u+ �0)2 � 4��0u]� (�20 � u2)(1 + eu) = 0 (5.18)
Equation (5.18) cannot be solved analytically for u since its left hand side is a transcendentalexpression in u. However, as it will be shown later, numerical solutions can be found forgiven values of �0. For now, note that @2D@u2 ���u=0 = (1� �)��2032 > 0, and hence D takes on aminimum value at u = 0. Note also that dividing both sides of (5.13) and (5.18) by �20 andcalculating the limits of the results as �0 goes to �1 gives � = 12 and

2 + 3u+ 2eu � 3ueu = 0: (5.19)
The equation (5.19) is the same as (4.27) for which the unique solution for u on [0;1) isu = 1:22291. Hence, when �0 tends to �1, the trapezium design �z (5.10) tends to theequally weighted 4-point parallelogram design discussed in Section 5.2.Since ��0 > u and �4��0u > 0, it follows from equation (5.18) that

1 + u+ eu � ueu = (�20 � u2)(1 + eu)3[(u+ �0)2 � 4��0u] > 0: (5.20)
Hence, suitable optimal values of u must satisfy the inequality

1 + u+ eu � ueu > 0: (5.21)
Consider the function f(u) = 1 + u+ eu � ueu on [0;1). The equation f(u) = 0 is the sameas (4.14) for which the unique solution on [0;1) was found to be u = 1:5434. Furthermore, itwas shown in Theorem 4.1 that f(u) > 0 on [0; 1:5434] and f(u) < 0 on (1:5434;1). Hence,for all �0 2 (�1;�1:5434), the candidate D-optimal value of u is u� 2 (1:22291; 1:5434). �
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Numerical approximation of �� and u� for given �0 2 (�1;�1:5434)
For a given value of �0, the values of �� and u� are the respective numerical solutions for �and u to the simultaneous equations (5.13) and (5.18). Table 5.1 gives the solutions �� andu� for selected values of �0. Figure 5.5 displays the scatter plots of u� and �� versus �0 in

Table 5.1: The relationship between �0, u� and ��.
�0 u� ��-500 1.2229 0.5012-400 1.2229 0.5013-300 1.2229 0.5020-200 1.2230 0.5031-100 1.2231 0.5061-90 1.2232 0.5068-80 1.2232 0.5076-70 1.2233 0.5087-60 1.2235 0.5102-50 1.2237 0.5122-40 1.2242 0.5152

�0 u� ��-30 1.2252 0.5203-20 1.2280 0.5302-15 1.2318 0.5400-12.5 1.2356 0.5476-10 1.2425 0.5587-9.5 1.2445 0.5615-9 1.2468 0.5646-8.5 1.2495 0.5680-8 1.2527 0.5717-7.5 1.2565 0.5759-7 1.2611 0.5805

�0 u� ��-6.5 1.2666 0.5856-6 1.2734 0.5914-5.5 1.2817 0.5978-5 1.2923 0.6051-4.5 1.3056 0.6132-4 1.3230 0.6223-3.5 1.3458 0.6323-3 1.3763 0.6430-2.5 1.4176 0.6537-2 1.4741 0.6628-1.6 1.5338 0.6666
the interval [�10;�1:6]. Both Table 5.1 and Figure 5.5 indicate that �� and u� are increasingfunctions of �0.Now, let ��z be the design �z given in (5.10) with � = �� and u = u� respective solutionsfor (�; u) to the simultaneous equations (5.13) and (5.18). The D-optimality of design ��zis proved in Theorem 5.3 by showing that the standardized variance function d(z; ��z ; �0) =trfM�1(��z ; �0)M(z; �0)g � 3 for all z = (z1; z2)T 2 [0;1)� [0;1).
Theorem 5.3. The design

��z = ( (�u� � �0; 0) (0;�u� � �0) (0; u� � �0) (u� � �0; 0)1���2 1���2 ��2 ��2
) (5.22)

for the two-variable binary logistic model u = logit(p) = �0 + z1 + z2 on the design space[0;1)� [0;1) with parameter �0 < �1:5434, where u� and �� satisfy the equalities
(1� 2��)(u� + �0)2 � 4��(2� 3��)�0u� = 0
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Figure 5.5: The scatter plots of �� (solid squares) and u� (solid circles) versus �0. Values of�� and u� are respective solutions for � and u in the simultaneous equations (5.13) or (5.14)and (5.18) respectively.
and 3(1 + u� + eu� � u�eu�)[(u� + �0)2 � 4���0u�]� (�20 � u�2)(1 + eu�) = 0;is D-optimal.
ProofLet M(��z ; �0) be the information matrix (5.11) evaluated at design ��z given in (5.22), and letM(z; �0) be the information matrix (5.8) evaluated at a one-point design with an arbitrarysupport point z = (z1; z2)T = (z1; u � �0 � z1)T 2 D = [0;1) � [0;1) where u = logit(p) =�0+z1+z2 � �0 since z1 � 0 and z2 � 0. Theorem 5.3 is proved using the Equivalence Theoremfor the D-optimality criterion (3.3) by showing that the standardized variance function

d(z; ��z ; �0) = tr �M�1(��z ; �0)M(z; �0)� � 3
for all z = (z1; z2)T 2 D = [0;1)� [0;1) with equality holding at the support points of thedesign ��z .
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The standardized variance function d(z; ��z ; �0) simpli�es to

d(z; ��z ;�0) =eu�u�(1 + eu�)2(1 + eu)2 �(u+ u�)2 � 4��uu�4��(1� ��)u�2 + (u� �0)2 + 4[z21 � (u� �0)z1](u� + �0)2 � 4���0u�
� (5.23)

�g(u) = eu�u�(1 + eu�)2(1 + eu)2 �(u+ u�)2 � 4��uu�4��(1� ��)u�2 + (u� �0)2(u� + �0)2 � 4���0u�
� : (5.24)

The inequality (5.24) follows from the fact that for �xed u 2 [�0;1) and z1 2 [0; u� �0], theparabola z21 � (u� �0)z1 takes on its maximum value of 0 at z1 = 0 and z1 = u� �0.Let z� = (z�1 ; z�2)T represent the support points of design ��z . It has to be shown thatd(z�; ��z ; �0) = 3 and g(u) � 3 for all u 2 [�0;1). The expressions d(z; ��z ; �0) given in(5.23) and g(u) given in (5.24) are simpli�ed using an identity derived as follows.The expression (5.14) for �� gives
��3�� � 1 = �20 + 6�0u� + u�2 �p�40 + 14�20u�2 + u�43(�20 + 2�0u� + u�2 �p�40 + 14�20u�2 + u�4)

= (�20 + 6�0u� + u�2 �p�40 + 14�20u�2 + u�4)(�20 + 2�0u� + u�2 +p�40 + 14�20u�2 + u�4)3(�20 + 2�0u� + u�2 �p�40 + 14�20u�2 + u�4)(�20 + 2�0u� + u�2 +p�40 + 14�20u�2 + u�4)
= 4�0u�(2u�2 + 2�20 +p�40 + 14�20u�2 + u�4)12�0u�(u� � �0)2
= 2(u�2 + �20) +p�40 + 14�20u�2 + u�43(u� � �0)2 :

Hence, ��(u� � �0)23�� � 1 = 2(u�2 + �20) +p�40 + 14�20u�2 + u�43 : (5.25)Also, (u� + �0)2 � 4���0u� = 2(u�2 + �20) +p�40 + 14�20u�2 + u�43 : (5.26)Thus, comparing (5.25) and (5.26) gives the identity
(u� + �0)2 � 4���0u� = ��(u� � �0)23�� � 1 : (5.27)

Substituting the right hand side of (5.27) with the left hand side of (5.27) in (5.23) and in(5.24) gives
d(z; ��z ;�0) =eu�u�(1 + eu�)2(1 + eu)2

((u+ u�)2 � 4��uu�4��(1� ��)u�2 + (3�� � 1)�(u� �0)2 + 4[z21 � (u� �0)z1]	��(u� � �0)2
)

(5.28)
�g(u) = eu�u�(1 + eu�)2(1 + eu)2 �(u+ u�)2 � 4��uu�4��(1� ��)u�2 + (3�� � 1)(u� �0)2��(u� � �0)2

� for u � �0:
(5.29)
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Evaluating (5.28) at z = z� = (z�1 ; z�2)T , the support points of design ��z , is equivalent to sub-stituting (u; z1) with (u�; 0) and with (u�; u���0). The two substitutions give d(z�; ��z ; �0) = 3as required. What remains to be shown is that g(u) given by (5.29) is less than or equal to 3for all u 2 [�0;1) and �0 2 (�1;�1:5434). The following is an algebraic proof that g(u) � 3for all u 2 [�0;1) and �0 2 (�1;�1:5434).Consider g(u) given by (5.29). The function g(u) is even on [�0;��0] since u� the solution foru to equations (5.13) implies that
g(u)� g(�u) = ueu�u�(1 + eu�)2 f(1� 2��)(u� + �0)2 � 4��(2� 3��)�0u�gu���(1� ��)(u� � �0)2(1 + eu)2 = 0;

and thus g(u) = g(�u). The symmetry of g(u) on [�0;��0] implies that if g(u) � 3 on [0;��0],then g(u) � 3 on [�0; 0]. Hence, it has only to be shown that g(u) � 3 on [0;1).Consider g(u) on [0;1). Clearly, g(u�) = 3. It has to be shown that g0(u) � 0 on [0; u�] andthat g0(u) < 0 on (u�;1). After some simpli�cations, using the fact that
(1� 2��)(u� + �0)2 � 4��(2� 3��)�0u� = 0;

the �rst derivative of g(u) with respect to u is
g0(u) = eu�u�(1 + eu�)2h(u)4��(1� ��)u�2(u� � �0)2(1 + eu)3 (5.30)

where
h(u) = (u� � �0)2(u�2 + u2 + 2u) + 4u�2(3�� � 1)(1� ��)(�20 + u2 + 2u)�eu [(u� � �0)2(u�2 + u2 � 2u) + 4u�2(3�� � 1)(1� ��)(�20 + u2 � 2u)] : (5.31)

Hence, showing that g0(u) � 0 on [0; u�] and g0(u) < 0 on (u�;1) are respectively equivalentto showing that h(u) � 0 on [0; u�] and h(u) < 0 on (u�;1).Consider h(u) on [0;1). Clearly, h(0) = 0. Furthermore, the equality
3(1 + u� + eu� � u�eu�)[(u� + �0)2 � 4��0u�]� (�20 � u�2)(1 + eu�) = 0

can be written as
eu� = u�2(3u� + 4) + �20(3u� + 2)� 6�0u�(2�� 1)(u� + 1)u�2(3u� � 4) + �20(3u� � 2)� 6�0u�(2�� 1)(u� � 1) : (5.32)

Then, substituting eu� in (5.31) gives
h(u�) = 4(5� 6��)u�(u�2 � �20) [(1� 2��)(u� + �0)2 � 4��(2� 3��)u��0]�20(2� 3u�) + 6�0(2�� � 1)(u� � 1)u� + (4� 3u�)u�2 = 0
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since (u�+�0)2(1�2��)�4��(2�3��)�0u� = 0. Hence, h(u) = 0 has two solutions u = 0 andu = u�. The fact that h(0) = h(u�) = 0 implies that h(u) has at least one stationary pointin the interval (0; u�) since h(u) is continuous on [0;1). Furthermore, h(u) goes to �1 as ugoes to 1 since

limu!1h(u) = � limu!1[(u� � �0)2 + 4u�2(3�� � 1)(1� ��)]u2eu = �1:
As a consequence, if there is only one stationary point for u 2 (0;1) then the stationary pointwould be a maximum and the equation h(u) = 0 would have only two solutions u = 0 andu = u�. For illustration purpose, Figure 5.6 (a) indicates the pro�le of function h(u) when forexample �0 = �3.

Figure 5.6: (a) Function h(u) and (b) functions s1(u) (dashed curve) and s2(u) (solid curve)for �0 = �3.
Stationary points of h(u) are obtained by solving s(u) = h0(u) = 0. In the present cases(u) = h0(u) = s1(u) � s2(u) where s1(u) = 2(u + 1)[(u� � �0)2 + 4u�2(3�� � 1)(1 � ��)] is astraight line with both slope and intercept equal to 2[(u� � �0)2 + 4u�2(3�� � 1)(1� ��)] ands2(u) = [(u� � �0)2(u�2 + u2 � 2) + 4u�2(3�� � 1)(1� ��)(�20 + u2 � 2)]eu is a convex functionon [0;1) since s002(u) = [(u���0)2(u�2+u2+4u)+4u�2(3��� 1)(1���)(�20 +u2+4u)]eu > 0:In addition, note that s1(0) > s2(0). In fact,

s1(0)� s2(0) = (u� � �0)2(4� u�2) + 4u�2(3�� � 1)(1� ��)(4� �20)
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which can be written as:
s1(0)� s2(0) = (u�2�2u��0)(4�u�2)+16u�2(3���1)(1���)+�20 [4+3u�2+u�2(3��2�4��)]:
Clearly, u�2�2u��0 > 0 because ��0 > 0 and u� > 0. Furthermore, the conditions 12 < �� < 23and 1:22291 < u� < 1:5434 shown in Theorem 5.2 imply that 4�u�2 > 0 and (3���1)(1���) >0. Moreover, the quadratic convex polynomial f(��) = 3��2 � 4�� is negative on �13 ; 23� andhas its minimum value at the boundary �� = 23 which corresponds to u� = ��0 = 1:5434.Evaluating s1(0) � s2(0) at �� = 23 and u� = ��0 = 1:5434 gives s1(0) � s2(0) = 20:5547 >0. Hence, the straight line s1(u) is above the convex curve s2(u) at u = 0 . Moreover,limu!1[s2(u)� s1(u)] = limu!1(u� � �0)2u2eu =1: Hence, the convex curve s2(u) passes aboveline s1(u) as u ! 1. The alternating values of the straight line s1(u) and the convex curves2(u) at u = 0 and u =1 imply that line s1(u) and curve s2(u) intersect only once on (0;1),and in particular only once on (0;��0). Figure 5.6 (b) illustrates the pro�les of s1(u) ands2(u) when �0 = �3. The fact that s1(u) and s2(u) intersects only once on [0;1) impliesthat the equation h0(u) = 0 has only one solution for u 2 [0;1). In other words, h(u) has asingle stationary point on [0;1) and the stationary point is a maximum located in the interval[0; u�]. Therefore, h(u) � 0 on [0; u�] and h(u) < 0 on (u�;1), or equivalently, the sign ofg0(u) changes from positive to negative only once at u = u�. Thus, overall the function g(u)in (5.29) has a local minimum g(0) at u = 0 and a unique maximum g(u) = 3 at u = u� on[0;1), and by symmetry about u = 0, g(u) has a unique maximum g(u) = 3 at u = �u� on(�0; 0]. �
Numerical check of D-optimality for design ��z given in (5.22)
D-optimality of a candidate optimal design is often checked numerically by verifying on aplot that the standardized variance function is less than or equal to the number of modelparameters with equality holding at the support points of the candidate optimal design. Figure5.7 displays the graphs of g(u) given in (5.29) versus u � �0 = f�8;�4;�2g. Note that g(u)was evaluated at these values of �0 and the corresponding u� values that are displayed inTable 5.1. Figure 5.7 indicates that g(u) � 3 for all u � �0 = f�8;�4;�2g, with g(u) = 3holding only at u = �u�, and hence suggests that the 4-point designs ��z in (5.22) associatedwith these values of �0 are D-optimal.
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Figure 5.7: Function g(u) given by (5.29) with �0 = �8 (solid line), �0 = �4 (dashed line),�0 = �2 (dotted line).
Approximate relationship between �0 and u�
The values of u� and �� in Table 5.1 were found for just the selected values of �0. Since allvalues of �0 with �0 2 (�1;�1:5434) are not enumerated, it may be of interest to approximatethe relationship between �0 and u� by a regression equation. Then, the value of �� can bederived using the straightforward equation (5.14). The scatter plot of u� versus �0 illustratedin Figure 5.5 indicates that an exponential function with a lower asymptote can represent u�in terms of �0. Fitting an exponential function of the form u = �0 + �1e�2�0 to the data usingmoderate values of �0 (here, from �0 = �500 with steps of 10, then a change of steps to 1from �0 = �60 to �20, then steps smaller or equal to 0:5 beyond �20) gives the �tted model

bu = 1:2260 + 0:5716e0:4256�0 (5.33)
with R2 ' 0:993. It can be important to evaluate the e�ciencies of the design generated usingmodel (5.33) when compared to designs generated using solutions of the equation (5.18) as inTable 5.1. Recall from Section 3.7.2 that D-e�ciency of � relative to ��z is de�ned by

De� = � jM(�;�)jjM(��z ;�)j
�1=p ;
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where � is an arbitrary design, ��z is the optimal design and p is the number of the parametersof the model. In the present case p = 3, ��z is the design (5.10) with � and u solutions ofthe equations (5.13) and (5.18) respectively. Now � = ��� is the counterpart of design (5.10)obtained using bu given by (5.33), and � obtained from (5.14) evaluated at u = bu. Table 5.2provides the e�ciencies for selected values of �0. Clearly, all the e�ciencies are close to 1.

Table 5.2: Values of u�, bu and D-e�ciencies for selected values of �0.
�0 u� bu De�-10 1.2425 1.2341 0.999973-9 1.2468 1.2384 0.999973-8 1.2527 0.2450 0.999977-7 1.2611 1.2551 0.999986-6 1.2734 1.2705 0.999997-5 1.2923 1.2941 0.999999-4 1.3230 1.3302 0.999982-3 1.3763 1.3854 0.999972-2 1.4741 1.4700 0.999995

Therefore, in practice there is little loss in e�ciency if the optimal value of u is estimatedusing model (5.33) instead of exact optimal value of u calculated using equation (5.18).
5.3.3 3-point design
In Section 5.3.2 it was shown that the 4-point D-optimal trapezium design exists if �1 <�0 < �1:5434. In this section it is shown that if �1:5434 � �0 � 0, then the 4-point D-optimaltrapezium design degenerates to a 3-point D-optimal design.Consider Figures 5.4 (a). Note that (z1; z2) 2 [0;1) � [0;1), and hence the conditionfor the 4-point design displayed in the �gure is that �u � �0 = z1 + z2 > 0. However, if�u� �0 = z1 + z2 � 0, then z1 = z2 = 0 and u � ��0, and hence the 4-point design becomesthe 3-point design with optimal logits �0 � 0 and u > ��0 > 0. Figure 5.8 (a) displays thelayout of the 3-point design. The 3-point design displayed in the �gure has the following form:
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Figure 5.8: Pattern of a 3-point D-optimal design for a two-variable binary logistic modelwithout interaction u = �0 + z1 + z2 on the design space D = [0;1)� [0;1): (a) u = �0 and(b) u = ��0.
�z =

8>><>>:
(z1; z2)�u

9>>=>>; =
8>><>>:

(0; 0) (0; u� �0) (u� �0; 0)13 13 13�0 u u
9>>=>>; (5.34)

where u > 0. Let M(�z; �0) be the information matrix for the parameter vector � =(�0; �1; �2)T , on the (z1; z2)-space, evaluated at design �z given by (5.34). Then,
M(�z; �0) = 13

2664
e�0(1+e�0 )2 + 2 eu(1+eu)2 eu(u��0)(1+eu)2 eu(u��0)(1+eu)2eu(u��0)(1+eu)2 eu(u��0)2(1+eu)2 0eu(u��0)(1+eu)2 0 eu(u��0)2(1+eu)2

3775 (5.35)
and its determinant is given by

D = (u� �0)4e2u+�027(1 + e�0)2(1 + eu)4 :Maximizing D with respect to u is equivalent to maximizing
Ds = (u� �0)4e2u(1 + eu)4 (5.36)

with respect to u. Di�erentiating the expression (5.36) with respect to u gives
@Ds@u = �2e2u(u� �0)3(2� �0 + u+ 2eu + �0eu � ueu)(1 + eu)5 : (5.37)

Hence, the candidate D-optimal value of u is a solution for u to the equation
2� �0 + u+ 2eu + �0eu � ueu = 0 (5.38)

98



Chapter 5 { D-optimal Designs for the Two-Variable Binary Logistic Modelwithout Interaction: Theoretical Results
which is greater than or equal to ��0, and has a unique solution on [��0;1) since it hasunique solution on [0;1). In fact, consider the continuous function of u, f(u) = 2 � �0 +u+ 2eu + �0eu � ueu on [0;1). Clearly, f(0) = 4 > 0 and limu!1 f(u) = � limu!1ueu = �1, i.e.f(u) = 0 has at least one solution on [0;1). In addition, f 00(u) = (�0 � u)eu < 0 since u � 0and �0 < 0. Hence, f(u) is concave on [0;1) and thus, f(u) = 0 or equation (5.38) has aunique solution for u on [0;1).Consider the special case when �0 = �u with u > 0. Figure 5.8 (b) is a graphical representa-tion of the design for this case. The support points of the candidate D-optimal design are A,B and C symbolized by circles. Setting �0 = �u in equation (5.38) gives 1+ u+ eu� ueu = 0which is the same as equation (4.14) which was shown to have the unique solution u� = 1:5434for u � 0. Furthermore, the equation is the same as equation (5.18) evaluated at �0 = �uand at � = 23, the solution for � to the equation (5.13) when �0 = �u. Thus, from thisobservation and Theorem 5.2 it is deduced that �0 = �u = �1:5434 forms the \boundary"between the 3-point and the 4-point trapezium design. Table 5.3, second row, displays thenumerical solutions, u�, of equation (5.38) evaluated at selected values of �0 2 [�1:5434; 0].The table suggests that the solutions u� of equation (5.38) form an increasing function of�0 2 [�1:5434; 0]. What remains is to prove the D-optimality of the design (5.34) withu = u� a solution of equation (5.38) for all �0 2 [�1:5434; 0]. The D-optimality of design ��z
Table 5.3: Relationship between �0 and u�, and a local minimum u = um of g(u) whereu = �0 + �(u� � �0) and 0 � � � 1: 3-point D-optimal design.�0 -1.543 -1.5 -1.25 -1 -0.75 -0.5 -0.25 -0.15 -0.1 0u = u� 1.543 1.562 1.674 1.796 1.930 2.075 2.231 2.297 2.331 2.399u = um 0 0.001 0.043 0.132 0.255 0.404 0.571 0.642 0.679 0.753
given in (5.34) is proved in Theorem 5.4 by showing that the standardized variance functiond(z; ��z ; �0) = trfM�1(��z ; �0)M(z; �0)g � 3 for all z = (z1; z2)T 2 [0;1)� [0;1).
Theorem 5.4. The design

��z =
8>><>>:

(0; 0) (0; u� � �0) (u� � �0; 0)13 13 13�0 u u
9>>=>>; (5.39)

for the two-variable binary logistic model u = logit(p) = �0 + z1 + z2 on the design space[0;1)� [0;1) with parameter �0 2 [�1:5434; 0], where u� > 0 satis�es the equation2� �0 + u� + 2eu� + �0eu� � u�eu� = 0, is D-optimal.
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ProofLet M(��z ; �0) be the information matrix (5.35) evaluated at design ��z given in (5.39), and letM(z; �0) be the information matrix (5.8) evaluated at a one-point design with an arbitrarysupport point z = (z1; z2)T = (z1; u � �0 � z1)T 2 D = [0;1) � [0;1) where u = logit(p) =�0 + z1 + z2 � �0 since z1 � 0 and z2 � 0. Theorem 5.4 is proved using the EquivalenceTheorem for the D-optimality criterion (3.3) by showing that the condition

d(z; ��z ; �0) = tr �M�1(��z ; �0)M(z; �0)� � 3
holds for all z = (z1; z2)T 2 D = [0;1)� [0;1) with equality holding at the support points ofthe design ��z . Simple algebraic calculations show that for all z = (z1; z2)T 2 [0;1)� [0;1),
d(z; ��z ;�0) =3eu �e��0(1 + e�0)2(u� u�)2 + e�u�(1 + eu�)2[(u� �0)2 + 2[z21 � (u� �0)z1]]	(u� � �0)2(1 + eu)2 (5.40)

�g(u) = 3eu �e��0(1 + e�0)2(u� u�)2 + e�u�(1 + eu�)2(u� �0)2	(u� � �0)2(1 + eu)2 for u � �0: (5.41)
The inequality (5.41) follows from the fact that for �xed u � �0 and z1 2 [0; u � �0], theparabola z21 � (u � �0)z1 takes on its maximum value of 0 at z1 = 0 and z1 = u � �0.Evaluating (5.40) at z = z� = (z1; z2)T , the support points of design ��z , is equivalent tosubstituting (u; z1) with (�0; 0), (u�; 0) and (u�; u� � �0). All the three substitutions gived(z; ��z ; �0) = 3 as required at the support of a D-optimal design. What remains to be shownis that g(u) given by (5.41) is less than or equal to 3 for all u � �0 2 [�1:5434; 0].Consider the function g(u) given by (5.41) and u� = ��0 = 1:5434. Then, (5.41) reduces to

g(u) = 3eu�u�(1 + eu�)2(u2 + u�2)2u�2(1 + eu)2 � 3
since eu�u�(1 + eu�)2(u2 + u�2)u�2(1 + eu)2 � 2 for u� = 1:5434 and all u 2 [�0;1) as was shown inTheorem 4.1.Consider the case of u� > ��0 with �0 2 [�1:5434; 0]. It has to be shown that g(u) � 3with equality holding only at u = �0 and u = u�. Since u � �0, u can be written asu = �0 + �(u� � �0) where � 2 [0;1). In particular, u = �0 and u = u� respectivelycorrespond to � = 0 and � = 1. Hence, function (5.41) can be written in terms of � as

g(�) = 3e�0+�(u���0) ��2e�u�(1 + eu�)2 + (�� 1)2e��0(1 + e�0)2	[1 + e�0+�(u���0)]2 : (5.42)
The aim of the following derivations is to show that g(�) attains the maximum 3 only at � = 0and � = 1, a minimum at � 2 (0; 1), and that g(�) goes to 0 as � gets larger and larger.
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Clearly, g(0) = g(1) = 3 as required at the support points of a D-optimal design. Thestationary points of g(�) are zeros of the function

g0(�) = 3e�0+�(u���0) [h1(�)� h2(�)][1 + e�0+�(u���0)]3where
h1(�) = ��2(u� � �0) + 2�� e�u�(1 + eu�)2 + �(�� 1)2(u� � �0) + 2(�� 1)� e��0(1 + e�0)2(5.43)is a convex parabola in � and
h2(�) = eu n��2(u� � �0)� 2�� e�u�(1 + eu�)2 + �(�� 1)2(u� � �0)� 2(�� 1)� e��0(1 + e�0)2o(5.44)where u = �0 + �(u� � �0). The number of stationary points of g(�) given in (5.42) is thenumber of solutions of g0(�) = 0, or, equivalently of h1(�) = h2(�). It follows from g0(�) andthe fact that u� is solution of equation (5.38) that

g0(1) = 3�2� �0 + u� + (2 + �0 � u�)eu�	1 + eu� = 0:
Hence, g(�) has a stationary point at � = 1, or equivalently, h1(�) and h2(�) given by (5.43)and (5.44) meet at � = 1. Curves h1(�) and h2(�) intersect only twice on [0;1) as it is shownbelow.First, note that h2(0) > h1(0). In fact, the condition u� > ��0 implies that (u� + �0) > 0,and u� solution of equation (5.38) implies that (u� � �0 � 2) = (u� � �0 + 2)e�u� > 0. Hence,

h2(0)� h1(0) = (1 + e�0)2 �(u� � �0 + 2)� (u� � �0 � 2)e��0	= (1 + e�0)2(u� � �0 + 2)(1� e�u���0) > 0:
Thus, curve h2(�) is above the parabola h1(�) at � = 0. Furthermore, curve h2(�) has onlyone point of inexion on [0;1), and hence intersects the parabola h1(�) in only one point �other than � = 1. In fact, the second derivative of h2(�) with respect to � is

h002(�) = (u� � �0)e�0+�(u���0)n(u� � �0)2 �e�u�(1 + eu�)2 + e��0(1 + e�0)2��2+ 2�(u� � �0) �e�u�(1 + eu�)2 + (1� u� + �0)e��0(1 + e�0)2�
� 2e�u�(1 + eu�)2 � 2(u� � �0 + 1)e��0(1 + e�0)2 + (u� � �0)2e��0(1 + e�0)2o

The points of inexion of h2(�) are solutions of equation h002(�) = 0, and change of concavityare determined by the sign of h002(�). Since (u� � �0)e�0+�(u���0) > 0, zeros of h002(�) are those
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of the quadratic polynomial in �:

h3(�) = (u� � �0)2 �e�u�(1 + eu�)2 + e��0(1 + e�0)2��2 (5.45)+ 2�(u� � �0) �e�u�(1 + eu�)2 + (1� u� + �0)e��0(1 + e�0)2�� 2e�u�(1 + eu�)2 � 2(u� � �0 + 1)e��0(1 + e�0)2 + (u� � �0)2e��0(1 + e�0)2:
Using properties of quadratic equations, the product of the roots of h3(�) = 0 is

s(�0; u�) = �2e�u�(1 + eu�)2 � 2(u� � �0 + 1)e��0(1 + e�0)2 + (u� � �0)2e��0(1 + e�0)2(u� � �0)2 [e�u�(1 + eu�)2 + e��0(1 + e�0)2] (5.46)Clearly, the denominator of expression (5.46) is positive, and the two �rst terms of the nu-merator are negative. The third term in the numerator of (5.46) is positive, but as �0 < 0,then e��0(1+e�0)2 is a decreasing function of �0 with �0 2 [�1:5434; 0]. Hence, the numeratorattains its largest value �4:449 at �0 = �1:5434. Therefore, s(�0; u�) < 0 for �0 2 [�1:5434; 0]which implies that h2(�) has two points of inexion of opposite signs, say �1 < 0 and �2 > 0.However, �1 is to be rejected because it is not in the domain [0;1). Hence, h2(�) changes itsconcavity only once on [0;1) because h2(�) has only one point of inexion �2 on [0;1). Fur-thermore, � = 1 belongs to the subset of [0;1) where h2(�) is convex. In fact u� > ��0 > 0and u� � �0 � 2 > 0 imply that e�u�(1 + eu�)2 > e��0(1 + e�0)2, and hence
h3(1) = �(u� � �0)2 + 2(u� � �0 � 1)� e�u�(1 + eu�)2 � 2e��0(1 + e�0)2 > 0:

Hence, h2(�) is concave on [0; �2] and convex on [�2;1). As a consequence, the curve h2(u)and the parabola h1(�) cross each other at � = 1 and at another point �m 2 (0; 1). The abovederivations can be summarized as follows.
� If � 2 [0; �m], then h1(�)� h2(�) < 0, i.e. g(�) decreases on [0; �m].
� If � 2 [�m; 1], then h1(�)� h2(�) > 0, i.e. g(�) increases on [�m; 1].
� If � 2 [1;1], then h1(�)� h2(�) < 0, i.e. g(�) decreases on [1;1].
� Figure 5.9 shows the pattern of h1(�) and h2(�) for �0 = �1. The signs of the graphare those of h1(�)� h2(�).

Hence, g(�) has maximum g(0) = g(1) = 3 and a local minimum g(�m), and decays to zero as� gets larger and larger. In other words, g(�) � 3 for all � 2 [0;1), or equivalently, g(u) � 3for all u 2 [�0;1) where g(u) is given by (5.41). Hence, the design of the form (5.34) isD-optimal. �
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Figure 5.9: Plots of functions h1(�) (dashed line) and h2(�) (solid line) respectively given by(5.43) and (5.44) for �0 = �1 (u� = 1:796). The sign + and � are those of h1(�)� h2(�).
Numerical check of D-optimality of design ��z given in (5.34)
D-optimality of a design of the form (5.34) could be checked numerically by verifying thatthe plot of the standardized variance function is less than or equal to the number of modelparameters with equality holding at the support points of the candidate optimal design. Figure5.10 displays the graphs of g(u) versus u � �0 = f�1:5434;�1;�0:25; 0g. Note that g(u) wasevaluated at these values of �0 and the corresponding u� values that are displayed in Table 5.3.Figure 5.10 indicates that g(u) � 3 for all u � �0 = f�1:5434;�1;�0:25; 0g, and hence the�gure indicates that the 3-point designs ��z associated with these values of �0 are D-optimal.Note that unlike the case of the 4-point trapezium design discussed in Section 5.3.2, the localminimum of g(u) is not necessarily attained at u = 0 as evidenced by Figure 5.10. Table5.3, last row, contains the local minimum values um = �0 + �m(u� � �0) of g(u) obtained bynumerically solving equation g0(u) = 0 on [�0;1) for some selected values of �0. Only thecase �0 = �1:5434 leads to a local minimum at u = 0. Values of um increase from 0 to 0:753as �0 increases from �1:5434 to 0
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Figure 5.10: Function g(u) given by (5.41) with �0 = �1:5434 (solid line), �0 = �1 (dashedline), �0 = �0:25 (dotted line) and �0 = 0 (dashed and dotted line).
Approximate relationship between �0 and u�
An approximate equation for the relationship between �0 and u� can be found as follows. Thescatter plot of the data of Table 5.3 is represented by \circles" in Figure 5.11. The scatterplot indicates that a straight line can �t the data. Fitting a simple linear model to the datagives bu = 2:3738 + 0:5538�0 (5.47)with R2 = 0:996. The �tted values of model (5.47) are represented by \plus" in Figure 5.11,and clearly �tted values are not discernable from the observed values.Finally, Table 5.4 provides the values of u� solution of (5.38), bu given by (5.47) and thee�ciencies for selected values of �0. Table 5.4 reveals that all the e�ciencies are close to 1.Therefore, in practical situations there is no loss in e�ciency if u estimated using model (5.47)is used instead exact values of u calculated using equation (5.38).
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Figure 5.11: Scatter plot of the values of u for given values of �0: O represent the observedvalues of u, and + represent the �tted values of u.
Table 5.4: Values of u�, bu and D-e�ciencies for selected values of �0 in model u = logit(p) =�0 + z1 + z2 where z1 � 0 and z2 � 0.

�0 u� u�� De�-1.5434 1.5434 1.5191 0.999901-1.5 1.5618 1.5431 0.999942-1 1.7960 1.8200 0.999904-0.75 1.9295 1.9585 0.999862-0.5 2.0746 2.0969 0.999918-0.25 2.2313 2.2354 0.9999970 2.3994 2.3738 0.999890
5.4. Conclusions

In this chapter, the construction of D-optimal designs for the two-variable binary logisticmodel without interaction u = logit(p) = �0 + �1x1 + �2x2 on the (�1;1)� [�b; b] and the[0;1)� [0;1) design spaces as follows.The design space (�1;1) � [�b; b] is the (u1; u2)-design space where u1 is the logit line
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u = �0 + �1x1 + �2x2 assumed to take any value on (�1;1) and u2 = b0 + b1x1 + b2x2 is astraight line in (x1; x2)-space R2 for a given value of u2 such that lines u = �0 + �1x1 + �2x2and u2 = b0 + b1x1 + b2x2 are not parallel. Two parallel line restrictions were imposed bysetting �b � u2 � b where b > 0, then D-optimal designs were shown to have 4 equallyweighted support points located on the intersection of the parallel lines u2 = �b and the twoparallel logit lines u = �1:22291. This design case corresponds to the 4-point parallelogramdesign of Sitter and Torsney (1995a) with design locus Gw which is equivalent to the 4-pointparallelogram design introduced by Jia and Myers (2001), and a special case of the 4-pointdesign of Atkinson and Haines (1996). This design case is also reported in Myers et al. (2002,p. 240-241).The design space [0;1)�[0;1) is the (d1; d2) actual dose. On the design space [0;1)�[0;1),two new D-optimal designs, a 4-point trapezium design with support points at the intersectionof the boundary of the design space and two parallel logit lines, and an equally weighted3-point were found under the respective conditions that �1 < �0 < �1:5434 and that�1:5434 � �0 � 0 about the intercept parameter �0. These designs were proved algebraicallyand illustrated numerically to be D-optimal. The support points of the trapezium D-optimaldesigns are points of intersection between the boundary of the design space [0;1) � [0;1)and two parallel logits lines u = �u� with u� positive and not necessary equal to 1:22291. Itwas found that only support points located on the same logit line have equal weights, and thatif �0 tends to �1, then u� tends to 1:22291, which means that the 4-point trapezium designintroduced in this thesis tends to the 4-point parallelogram designs of Sitter and Torsney(1995a), also in found in Jia and Myers (2001), Myers et al. (2002), and in Atkinson andHaines (1996). For the 4-point D-optimal trapezium designs, closed expressions of weightsassociated with the support points were derived algebraically. However, it was not possibleto express optimal values of u in closed forms. Instead a regression approach was used toprovide approximate D-optimal values u as functions of �0. The e�ciencies of the designsconstructed using these approximations relative to the optimal designs were found to be veryclose to unity for selected values of the parameter �0. A subset of results found in this chapterare in Haines, Kabera, Ndlovu and O'Brien (2007).
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6
D-optimal Designs for the Two-Variable

Binary Logistic Model without
Interaction: Empirical Results

6.1. Introduction
Chapter 5 discussed the construction of D-optimal designs for the two-variable binary logisticmodel without interaction u = logit(p) = �0 + �1x1 + �2x2 (6.1)on the design space [0;1) � [0;1). The design space [0;1) � [0;1) is unbounded in thesense that the upper limit on each axis is not speci�ed. However, in practice such a limit ispredetermined leading to a rectangular design space of the form

X = f(x1; x2) : x1 2 [a; b] and x2 2 [c; d]g (6.2)
where x1 and x2 are either doses or log-doses, and a, b, c and d are real numbers. For example,doses of drugs given to patients generally have predetermined lower and upper limits. Thischapter discusses the construction of D-optimal design for the two-variable binary logisticmodel without interaction (6.1) on the rectangular design space X given in (6.2) which, forsimplicity of derivations, will be transformed to a square design space. As in Sections 2.4.4and 5.3.1, it will be assumed the parameter values in model (6.1) satisfy the conditions �0 < 0,�1 > 0 and �2 > 0.The chapter contains the following sections. Section 6.2 establishes the similarities of thedesign spaces used by Sitter and Torsney (1995a), Atkinson and Haines (1996) and Jia and
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Myers (2001), then provides transformations of one rectangular design space to another rect-angular design space. Section 6.3 discusses the construction of a 4-point trapezium and 3-pointD-optimal designs on a rectangular design space. Section 6.4 provides cases of non-trapeziumD-optimal designs on a rectangular design space. Section 6.5 discusses the construction of4-point parallelogram D-optimal designs. Section 6.6 discusses the construction of D-optimaldesigns with support points varying from 4 to 6. Section 6.7 provides a summary chart ofthe designs patterns of the D-optimal designs for model (6.1) on the design space [0; b]� [0; b]satisfying condition 2�0 + b(�1 + �2) = 0. Section 6.8 discusses the construction of 4-pointnon-parallelogram designs. Section 6.9 gives a practical example of the application of someof the design theory in this chapter. Finally, Section 6.10 contains the conclusions for thischapter.All candidate D-optimal designs for model (6.1) discussed throughout this chapter are classi-�ed as related to the trapezium design, or to the parallelogram, except cases when the numberof support points is greater than 4. D-optimal designs for simple cases are constructed an-alytically using the Equivalence Theorem for D-optimality. In complex cases the patternsof the candidate D-optimal designs are conjectured under speci�c conditions, and then theD-optimal designs are constructed numerically using the Gauss program given in Appendix B.D-optimality of the designs is checked by plotting the standardized variance function whichis p minus the directional derivative function on the design space, where p is the number ofmodel parameters (see Atkinson et al. (2007, p. 124)).

6.2. Preliminaries
Consider the two-variable binary logistic model without interaction (6.1) where the explana-tory variables x1 and x2 are elements of the rectangular design space X given by (6.2), andare considered as dose or log-dose concentrations of two drugs. Candidate D-optimal designsfor model (6.1) were constructed by Sitter and Torsney (1995a), Atkinson and Haines (1996),and Jia and Myers (2001) but with di�erent designs spaces. The candidate D-optimal designsof Jia and Myers (2001) for model (6.1) can also be found in Myers et al. (2002).The D-optimal designs of this chapter will be constructed on the (x1; x2) design space witha � x1 � b and c � x2 � d. The (x1; x2) design space [a; b]� [c; d] underlie the (u1; u2) designspace used by Sitter and Torsney (1995a), and (x1; x2) designs spaces used by Atkinson andHaines (1996), and Jia and Myers (2001). In fact, consider the two-variable binary logisticmodel u = logit(p) = u1 = �0 + �1x1 + �2x2 and a straight line of the u2 = b0 + b1x1 + b2x2
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for �xed u2 where �0 < 0, �1 > 0, �2 > 0 and b1b2 6= �1�2 . If a � x1 � b and c � x2 � d,then ea � u1 � eb, where ea = �0 + �1a + �2c and eb = �0 + �1b + �2d. Furthermore, therestriction c � x2 � d, can be written as c � u2 = x2 � d where b0 = b1 = 0 and b2 = 1in u2 = b0 + b1x1 + b2x2. Hence, there is a one-to-one correspondence between a D-optimaldesigns in terms of (x1; x2) 2 [a; b]� [c; d] and (u1; u2) 2 [ea;eb]� [c; d].Sitter and Torsney (1995a) considered two design cases in constructing D-optimal designs formodel (6.1). The �rst design case was reviewed in Section 4.5.1 in which u1 is unrestricted,but u2 restricted and this case was shown in Section 5.2 to be the same as the design caseused by Jia and Myers (2001). The candidate D-optimal design of Sitter and Torsney (1995a)with u1 unrestricted and Jia and Myers (2001) was an equally weighted 4-point design withsupport points on the logit lines u� = �1:22291. The second design case of Sitter and Torsney(1995a) reviewed in Section 4.5.1 was also a 4-point D-optimal design in the (u1; u2)-space,but with both u1 and u2 restricted. Four candidate D-optimal designs were identi�ed, but theD-optimality proved in Section 5.2 was for only one of those cases. The construction of theD-optimal designs for the other cases is discussed in subsequent sections of this chapter. Themain di�culty encountered in the construction of these designs is due to the dependence ofthe candidate D-optimal designs on the model parameters and on the design space.Atkinson and Haines (1996) considered numerical construction of D-optimal designs for model(6.1) on the (x1; x2) design space [�1; 1] � [�1; 1]. Clearly, the design space [�1; 1] � [�1; 1]is the design space (6.2) with a = c = �1 and b = d = 1.For ease of calculations, it is usual to transform a rectangular design space such as [a; b]� [c; d]to another rectangular design space.Generally, a linear transformation from one rectangular design space to another rectangularor square design space can be constructed as follows. Consider the model u = logit(p) =�0 + �1x1 + �2x2, and the transformation from the (x1; x2) design space [a; b] � [c; d] to the(x1new; x2new) design space [a1; b1] � [c1; d1]. The relationships between points (x1; x2) and(x1new; x2new), and also between model parameters in design spaces [a; b]� [c; d] and [a1; b1]�[c1; d1] are ( x1new = (b1�a1)x1�(ab1�a1b)b�ax2new = (d1�c1)x2�(cd1�c1d)d�c (6.3)
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and 8>><>>:

�1new = b�ab1�a1�1�2new = d�cd1�c1�2�0new = �0 + ab1�a1bb1�a1 �1 + cd1�c1dd1�c1 �2:
(6.4)

In order to link results of the subsequent sections of this chapter with those in Section 5.2 andSection 5.3, the (x1; x2) design space [a; b]� [c; d] that will be used is the square design space[0; b] � [0; b] obtained by setting a = c = 0 and b = d. If required, the transformations (6.3)and (6.4) will be used to transform the designs from the (x1; x2) design space [0; b]� [0; b] tothe (x1new; x2new) design space [a; b]� [c; d].
6.3. 4- and 3-point trapezium designs

6.3.1 4-point trapezium designs
The trapezium design was discussed in Section 5.3 where the design space was [0;1)� [0;1).However, on the design space [0; b] � [0; b], the existence of a trapezium design depends onthe location of the optimal logit lines �u� relative to the vertices of the square [0; b] � [0; b].Figure 6.1 (a) and Figure 6.1 (b) display the design patterns of candidate D-optimal designsfor arbitrary �u = �0 + �1x2 + �2x2.Consider Figure 6.1 (a). Note that the logit line CD is below the diagonal line FH of thesquare whose vertices are E, F , G and H, and the logit line AB is above the vertex E.In addition, and more importantly note that the position of logit u = 0 in Figure 6.1 (a)implies that the logit values at points F (0; b) and H(b; 0) are both positive, i.e. respectively�0 + �2b > 0 and �0 + �1b > 0. This design pattern is similar to the design pattern of Figure5.4, and hence the 4-point D-optimal trapezium design exists if the following conditions aresatis�ed: �1 < �0 < �1:5434, �0 + �1b � 1:5434 and �0 + �2b � 1:5434, or, equivalently1:5434 < ��0 <1 and 1:5434 � minf�0 + �1b; �0 + �2bg which implies that

1:5434 � minf��0; �0 + �1b; �0 + �2bg: (6.5)
In this case, the D-optimal design is of the form

�� = 8<:
��u���0�1 ; 0� �0; �u���0�2 � �0; u���0�2 � �u���0�1 ; 0�1���2 1���2 ��2 ��2

9=; (6.6)
where for a given value of �0, optimal values of �� and u� are solutions to the simultane-ous equations (5.13) and (5.18). D-optimality of a 4-point trapezium design was proved in
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Figure 6.1: Design patterns for the candidate D-optimal trapezium designs for the two-variablebinary logistic model without interaction u = �0 + �1x1 + �2x2 on the dose space D =[0; b]� [0; b]: (a) 1:5434 � minf��0; �0+�1b; �0+�2bg and (b) 1:5434 � minf��0��1b;��0��2b; �0 + (�1 + �2)bg. Circles represent support points.
Theorem 5.3.Now, consider Figure 6.1 (b). The D-optimal trapezium design of this �gure can be taken asa symmetric reection of the design of Figure 6.1 (a) with respect to the diagonal line FH.Especially the position of the logit u = 0 implies that the logit values �0 + �2b and �0 + �1brespectively at points F (0; b) and H(b; 0) are now both negative. Reasoning as for the designof Figure 6.1 (a), a 4-point D-optimal trapezium design is obtained if

1:5434 � minf��0 � �1b;��0 � �2b; �0 + (�1 + �2)bg: (6.7)
The D-optimal trapezium design is of the form

�� = 8<:
�b; �u��0��1b�2 � ��u��0��2b�1 ; b� �u��0��2b�1 ; b� �b; u��0��1b�2 �

��2 ��2 1���2 1���2
9=; : (6.8)

Observe that the results obtained from the design of Figure 6.1 (a) can be used to calculatethe design of Figure 6.1 (b) since the design of Figure 6.1 (b) is a reection of the design ofFigure 6.1 (a) about line FH. In fact, if (x1; x2) are coordinates of a support point of theD-optimal trapezium design in Figure 6.1 (b) and (y1; y2) are corresponding coordinates of
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a support point of the D-optimal trapezium design in Figure 6.1 (a), these coordinates arelinked by the following transformation

(x1; x2) = (b� y2; b� y1) (6.9)
Suppose that u is the logit value in the design of Figure 6.1 (b). If eu is the correspondinglogit value in the design of Figure 6.1 (a) then the transformation (6.9) takes eu to �u andvice versa. Speci�cally assume that u = �0 + �1x1 + �2x2 and that eu = �00 + �01y1 + �02y2. Thetransformation (6.9) gives

�00 + �01y1 + �02y2 = eu = �u= ��0 � �1x1 � �2x2= ��0 � �1(b� y2)� �2(b� y1)= ��0 � b(�1 + �2) + �2y1 + �1y2which implies that 8>><>>:
�00 = ��0 � (�1 + �2)b�01 = �2�02 = �1: (6.10)

The following example illustrates a situation where the parameter values in model u =logit(p) = �0 + �1x1 + �2x2 lead to either the D-optimal trapezium design (6.6) or the D-optimal trapezium design (6.8).
Example 6.1. Consider the two-variable binary logistic models without interaction u =logit(p) = �0 + �1x1 + �2x2 with parameter values �1 = �2 = 2, and a) �0 = �2 and (b)�0 = �6 on the design space [0; 2]� [0; 2].
In part (a), condition (6.5) is satis�ed since

1:5434 < minf��0 = 2; �0 + �1b = 2; �0 + �2b = 2g = 2:
Hence, the appropriate D-optimal design is the 4-point D-optimal trapezium design (6.6), i.e.

�� = ( (0:263; 0) (0; 0:263) (0; 1:737) (1:737; 0)0:1686 0:1686 0:3314 0:3314
) (6.11)

since u� = 1:4741 for �0 = �2 (see Table 5.1). If the design space [�1; 1] � [�1; 1] was usedinstead of the design space [0; 2]� [0; 2], the transformations (6.3) and (6.4) give( x1new = x1 � 1x2new = x2 � 1
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and 8>><>>:

�1new = 2�2new = 2�0new = 2:Hence, the D-optimal trapezium design (6.11) becomes
�� = ( (�0:737; 0) (0;�0:737) (0; 0:737) (0:737; 0)0:1686 0:1686 0:3314 0:3314

)

which is the same as the D-optimal design found numerically by Atkinson and Haines (1996)for � = (2; 2; 2)T .The parameters of the model in part (b) satisfy condition (6.7) since
1:5434 < min f��0 � �1b = 2;��0 � �2b = 2; �0 + (�1 + �2)b = 2g = 2:

In addition, the parameters of the model in part (b) are linked to those of the model in part(a) by the transformation (6.10) by writing the parameters of the model in part (a) as �00 = �2and �01 = �02 = 2. Hence, the D-optimal design for the parameters of the model in part (b)obtained from the 4-point D-optimal trapezium design (6.11) using the transformation (6.9)is �� = ( (2; 1:737) (1:737; 2) (2; 0:263) (0:263; 2)0:1686 0:1686 0:3314 0:3314
) (6.12)

6.3.2 3-point designs
If in Figure 6.1 (a), A = B = E, then the design pattern is similar to the design patternin Figure 5.8 (a), and hence an equally weighted 3-point trapezium related D-optimal designexists if 0 � ��0 � 1:5434 and 1:5434 � minf�0 + �2b; �0 + �1bg, which is equivalent to

0 � ��0 � 1:5434 � minf�0 + �1b; �0 + �2bg: (6.13)
As model u = logit(p) = �0+�1x1+�2x2 has 3 parameters, for given values of the parametersa 3-point design puts weight 13 at each of its support points (Silvey (1980, p.42). In this case,the D-optimal design is of the form

�� = 8<: (0; 0) �0; u���0�2 � �u���0�1 ; 0�13 13 13
9=; (6.14)
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where u� is the solution for u to the equation (5.38) for a given value of �0. D-optimality ofthe design was proved in Theorem 5.4.If in Figure 6.1 (b), A = B = G, then the parameters �0, �1 and �2 satisfy the condition

0 � �0 + (�1 + �2)b � 1:5434 � minf��0 � �2b;��0 � �1bg: (6.15)
Hence, as for the case of the 4-point D-optimal trapezium design, the 3-point D-optimaldesign is obtained from the D-optimal design (6.14) using the transformations (6.9) to givethe D-optimal design

�� = 8<:
�b; �u���0��1b�2 � ��u���0��2b�1 ; b� (b; b)13 13 13

9=; (6.16)
The following example illustrates cases where parameter values lead to a 3-point design onthe design space [0; 2]� [0; 2].
Example 6.2. Consider the two-variable binary logistic model without interaction u = �0 +�1x1 + �2x2 on the design space [0; 2] � [0; 2] and with �1 = 3, �2 = 2 and (a) �0 = �1 and(b) �0 = �9.
In part (a) 0 < ��0 = 1 < 1:5434 < minf�0 + �1b = 5; �0 + �2b = 3g = 3:Therefore condition (6.13) is satis�ed so that a 3-point design of the form (6.14) is appropriateto this example. Table 5.3 gives u� = 1:7960 for �0 = �1. Thus, the design (6.14) is

�� = ( (0; 0) (0; 1:398) (0:932; 0)13 13 13
) : (6.17)

In part (b), consider following transformation (6.10) by writing the parameters of the modelin part (a) as �00 = �1, �01 = 3 and �02 = 2. The parameters �0 = �9, �1 = 3 and �2 = 2 leadto a 3-point design since they satisfy condition (6.15). In fact,
0 < �0 + �1b+ �2b = 1 < 1:5434 < minf��0 � �1b = 3;��0 � �2b = 5g = 3:

Hence, the 3-point D-optimal design for this case can be obtained using the transformation(6.9) on the 3-point D-optimal design (6.17) to give
�� = ( (2; 0:602) (1:068; 2) (2; 2)13 13 13

) : (6.18)
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6.4. Some non-trapezium candidate D-optimal designs

The trapezium designs described in Section 6.3 have support points which either are all aboveor all below the main diagonal of the design space [0; b]�[0; b] (see Figures 6.1 (a) and (b)). Forsome values of the vector � = (�0; �1; �2)T and the bound b, the conditions for the existenceof the D-optimal designs with these patterns may not always be satis�ed, i.e. D-optimaltrapezium designs with design patterns in Figures 6.1 (a) and (b) may not exist. In suchcases, the alternative designs to be sought are the non-trapezium D-optimal designs which arediscussed in this section. A few design patterns for the 3-point and 4-point non-trapeziumdesigns are considered for illustration purposes.
6.4.1 4-point non-trapezium designs
Case of Figure 6.2 (a) patternConsider the design pattern of the candidate 4-point D-optimal design displayed in Figure6.2 (a). The design pattern of Figure 6.2 (a) verify necessary conditions of a trapeziumdesign on the design space [0; b] � [0; b] since �0 + �1b < 0 and �0 + �2b < 0. However, thiscondition is not su�cient to obtain a trapezium design because the logit line JD in Figure6.2 does not lie completely below the diagonal line FH. Without any restrictions on x2 thesupport points of the design can be A, I, J and D, i.e. point J is outside the design space[0; b] � [0; b]. The restriction 0 � x2 � b moves point J to F , and possibly changes thepositions of A and D in the x1 direction, and the position of I in the x2 direction. Thisresults in a non-trapezium design with support points A, I, F , D, and for which point I isnot necessarily on line AB. Furthermore, the distribution of the weights among the supportpoints is not expected to be systematic as in the case of trapezium designs. This makes theanalytic construction of non-trapezium D-optimal designs di�cult. However, the D-optimaldesigns can be constructed numerically for known values of the parameters �0, �1 and �2 inthe model u = logit(p) = �0 + �1x1 + �2x2. In addition, the condition for design of Figure6.2 (a) to exist is easy to establish. In fact, if the design pattern of Figure 6.2 (a) is possible,then the following can be concluded. The vertex (0; 0) is not a support point of the candidateD-optimal design and �1 < �0 < �1:5434 (see Theorem 5.2). Since point (0; b) is above thelogit line u = 0 and point J is above the main diagonal of the design space [0; b]� [0; b], then0 < �0 + �2b � 1:5434 � �0 + �1b. Hence, overall, the condition for the 4-point candidate
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Figure 6.2: Design patterns for candidate 4-point D-optimal non-trapezium designs for thetwo-variable binary logistic model without interaction u = �0+�1x1+�2x2 on the design space[0; b] � [0; b] with (a) 0 � �0 + �2b � 1:5434 � minf��0; �0 + �1bg and (b) 0 � ��0 � �1b �1:5434 � minf��0 � �2b; �0 + (�1 + �2)bg.
non-trapezium D-optimal design of Figure 6.2 (a) to exist is0 < �0 + �2b � 1:5434 � minf��0; �0 + �1bg: (6.19)Note that one of the optimal logits is at point F , i.e. u = �0 + �2b. The following exampleillustrates a case where parameter values lead to the non-trapezium design of Figure 6.2 (a).
Example 6.3. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2]� [0; 2] where �0 = �3, �1 = 3 and �2 = 2 .
In this case 0 < �0 + �2b = 1 < 1:5434 < minf��0 = 3; �0 + �1b = 3g = 3. Thus, condition(6.19) is satis�ed and the D-optimal design exists with support points as in Figure 6.2 (a).One of the optimal logits is u = �0 + b�2 = 1. The other optimal logits have to be foundnumerically. Numerical optimization gives the following design

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:507; 0) (0; 0:767) (0; 2) (1:493; 0)0:2653 0:0815 0:3262 0:3270�1:478 �1:466 1 1:478

9>>=>>; : (6.20)
This design highlights the fact that (0:507; 0) and (0; 0:767) are not on the same logit line andthus do not have equal weights. Clearly, the support points of the design (6.20) displayed in
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Figure 6.3 (a) are not vertices of a trapezium. The standardized variance function, d(x; ��;�),

Figure 6.3: (a) Support points of the 4-point non-trapezium D-optimal design and (b) stan-dardized variance function d(x; ��;�) for the two-variable binary logistic model without in-teraction u = logit(p) = �0+�1x1+�2x2 on the design space [0; 2]� [0; 2] and with parametervector � = (�3; 3; 2)T .
is plotted in Figure 6.3 (b). The graph indicates that at least numerically d(x; ��;�) = 3 atthe 4 support points of the design (6.20) and that d(x; ��;�) < 3 everywhere else on thedesign space [0; 2]� [0; 2].Case of Figure 6.2 (b) patternNow consider Figure 6.2 (b). The displayed design pattern is a reection of the design patternof Figure 6.2 (a) about the diagonal line FH. Hence the comments are similar to thoseintroduced for the design pattern of Figure 6.2 (a), but the signs of �0+�1b and �0+�2b havechanged from positive to negative. The support points of the candidate D-optimal design havelocations similar to vertices of the quadrilateral BCJH but J is not necessarily on the lineCD. Also, one of the optimal logits is u = �0 + b�1. The condition for the design of Figure6.2 (b) to exist is0 < ��0 � �1b � 1:5434 � minf��0 � �2b; �0 + (�1 + �2)bg: (6.21)The following example is a case where parameter values lead to a non-trapezium design of theform presented in Figure 6.2 (b).Example 6.4. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2]� [0; 2] where �0 = �7, �1 = 3 and �2 = 2.
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Condition (6.21) holds since0 < ��0 � �1b = 1 < 1:5434 < minf��0 � �2b = 3; �0 + (�1 + �2)b = 3g = 3:Therefore, �0 + 2�2 = �1 is one of the optimal logits and the others can be calculatednumerically to give the following candidate D-optimal design

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(2; 0) (0:507; 2) (1:493; 2) (2; 1:233)0:3262 0:3270 0:2653 0:0815�1 �1:478 1:478 1:466

9>>=>>; : (6.22)
Clearly, the support points of design (6.22) displayed in Figure 6.4 (a) are not vertices of atrapezium.

Figure 6.4: (a) Support points of the 4-point non-trapezium D-optimal design and (b) stan-dardized variance function d(x; ��;�) for the two-variable binary logistic model without in-teraction u = logit(p) = �0+�1x1+�2x2 on the design space [0; 2]� [0; 2] and with parametervector � = (�7; 3; 2)T .
The standardized variance function, d(x; ��;�), is plotted in Figure 6.4 (b), and the graphsuggests that design (6.22) is D-optimal.
6.4.2 3-point non-trapezium related designs
The construction of the 3-point D-optimal design on the design spaces [0;1) � [0;1) and[0; b] � [0; b] was discussed in Section 5.3.3 and Section 6.3, respectively. There exists othercases of 3-point D-optimal designs on [0; b]� [0; b], and these are briey discussed below.
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Figure 6.5: Sample patterns of 3-point D-optimal designs for the two-variable binary logisticmodel without interaction u = �0 + �1x1 + �2x2 on the design space [0; b]� [0; b].
Case of Figure 6.5 (a) patternConsider the design pattern displayed in Figures 6.5 (a). Clearly, the location of the logit u = 0and the points F (0; b) and H(b; 0) in Figure 6.5 (a) imply that �0 + �1b > 0 and �0 + �2b > 0so that the necessary conditions of a trapezium design on the design space [0; b] � [0; b] aresatis�ed. Without the restrictions x1 � 0 and x2 � 0, supports A and B can be outside thedesign space [0; b]� [0; b]. The restriction of the design space [0; b]� [0; b] and the location oflogit u = 0 moves point J to F and line AB degenerates to point A. Hence, the candidateD-optimal design has support points E, D and F . The conditions for the existence of thecandidate D-optimal design are derived as follows. As point E at (0; 0) is a support of thecandidate D-optimal design, then �1:5434 � �0 � 0 (see Theorem 5.4). Furthermore, sincepoint F at (0; b) is above logit u = 0 and point J is above the main diagonal of the design
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space [0; b]� [0; b], then 0 < �0+ �2b � 1:5434 � �0+ �1b. Hence, overall the design of Figure6.5 (a) must satisfy the condition

0 < maxf��0; �0 + b�2g � 1:5434 � �0 + �1b: (6.23)
The optimal logits at support points E and F are u = �0 and u = �0 + �2b, respectively.Hence, the construction of the D-optimal design is reduced to searching for the optimal logitat point D. The form of the candidate D-optimal design is

�� =
8>><>>:

(x1; x2)�u�
9>>=>>; =

8>><>>:
(0; 0) (0; b) (u; 0)13 13 13�0 �0 + �2b u�

9>>=>>; (6.24)
where u� is the optimal logit. The information matrix for � = (�0; �1; �2)T (4.19) evaluatedat design (6.24) is

M(�;�) = 13
26664

e�0+b�2(1+e�0+b�2)2 + eu(1+eu)2 + e�0(1+e�0)2 eu(u��0)3�1(1+eu)2 be�0+b�23(1+e�0+b�2)2eu(u��0)3�1(1+eu)2 eu(�0�u)23�21(1+eu)2 0ae�0+b�23(1+e�0+b�2)2 0 b2e�0+b�23(1+e�0+b�2)2
37775 (6.25)

and its determinant is
D = b2(u� �0)2eu+2�0+b�227�21(1 + e�0)2(1 + e�0+b�2)2(1 + eu)2 : (6.26)

The determinant (6.26) is proportional to the square root of determinant (5.36) obtained forthe case of the 3-point design on the design space [0;1]� [0;1). Di�erentiating (6.26) withrespect to u gives
@D@u = b2e2�0+b�2+u(u� �0)(2� �0 + u+ 2eu + �0eu � ueu)27�21(1 + e�0)2(1 + e�0+b�2)2(1 + eu)3 : (6.27)

Equating (6.27) to zero and solving the equation for u gives u = �0 or u which satis�es theequation 2� �0 + u+ 2eu + �0eu � ueu = 0: (6.28)Equation (6.28) is the same as equation (5.38). It was shown in Section 5.3.3 that the equa-tion (5.38) has a unique solution for u on [0;1), but it is also easy to show that it has aunique solution on [�0;1) where �0 < 0 and u � �0. In fact, consider the continuous func-tion f(u) = 2 � �0 + u + 2eu + �0eu � ueu on [�0;1). Clearly, f(�0) = 2 + 2�0 > 0 andlimu!1 f(u) = � limu!1ueu = �1, i.e. f(u) = 0 has at least one solution on [�0;1). In addition,
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f 00(u) = (�0 � u)eu < 0 since u � 0 and �0 < 0. Hence, f(u) is concave on [0;1) and thus,f(u) = 0 or equation (6.28) has a unique solution for u on [�0;1).Hence, the proof of D-optimality of design (6.24) follows from Theorem 5.4. The following isan illustration of parameter values which lead to a design of the form (6.24).
Example 6.5. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2]� [0; 2] where �0 = �1, �1 = 3 and �2 = 1.
Condition (6.23) holds since

0 < maxf��0; �0 + b�2g = 1 � 1:5434 � �0 + �1b = 5:
Hence, the candidate D-optimal design is (6.24) where u� is the solution to equation (6.28).Since �0 = �1, solving equation (6.28), or using Table 5.3, gives u� = 1:796, and henceu� � �0�1 = 0:932. The two other optimal logits are �0 = �1 and �0 + b�2 = 1. Hence, thecandidate D-optimal design (6.24) is

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; 2) (0:932; 0)13 13 13�1 1 1:796

9>>=>>; : (6.29)
The support points of the design (6.29) are displayed in Figure 6.6 (a). The standard-ized variance function d(x; ��;�) is plotted in Figure 6.26 (b), and the graph suggests thatd(x; ��;�) � 3 with equality holding only at each of the support points of the design (6.29).Thus, the design (6.29) is shown numerically to be D-optimal.If the design space [�1; 1]�[�1; 1] was used instead of [0; 2]�[0; 2], transforming the parametervector � = (�1; 3; 1)T using (6.4) gives �0 = (3; 3; 1)T and hence, the D-optimal design (6.29)becomes

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(�1;�1) (�1; 1) (�0:068; 0)13 13 13�1 1 1:796

9>>=>>; : (6.30)
Atkinson and Haines (1996) used a numerical approach with design space [�1; 1]� [�1; 1] andparameter vector � = (3; 3; 1)T and found the same D-optimal design as (6.30).Case of Figure 6.5 (b) design patternNow consider Figure 6.5 (b). As in the case of the design pattern of Figure 6.5 (a), �0+�1b > 0and �0 + �2b > 0 so that the necessary conditions of a trapezium design on the design space
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Figure 6.6: (a) Support points of the 3-point non-trapezium D-optimal design and (b) stan-dardized variance function d(x; ��;�) for the two-variable binary logistic model without in-teraction u = logit(p) = �0+�1x1+�2x2 on the design space [0; 2]� [0; 2] and with parametervector � = (�1; 3; 1)T . Design pattern of Figure 6.5 (a).
[0; b] � [0; b] are satis�ed. If the design space was [0;1) � [0;1), then following the samearguments as in the preceding case, the D-optimal design could be a 3-point design withsupport points at E, D and J (see Section 5.3.3). Since D and J are located outside thedesign space [0; b] � [0; b] they must move to H and F respectively, hence resulting in a 3-point candidate D-optimal design with support points at E, D and F . As E(0; 0) is a supportpoint, then �1:5434 � �0 � 0 (see Theorem 5.4), and as logit line u is above the main diagonalof the design space [0; b]� [0; b] and below the vertex G at (b; b), thenmaxf�0 + �1b; �0 + �2bg � 1:5434 � �0 + (�1 + �2)b:Hence, the design of Figure 6.5 (b) can exists provided that0 < maxf��0; �0 + �1b; �0 + �2bg � 1:5434 � �0 + (�1 + �2)b: (6.31)Clearly, the optimal logit lines are u = �0, u = �0 + �1b and u = �0 + �2b. The followingexample illustrates this design case.
Example 6.6. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2]� [0; 2] where �0 = �1:4, �1 = 1:2 and �2 = 1.
Condition (6.31) is satis�ed since0 < maxf��0 = 1:4; �0 + �1b = 1; �0 + �2b = 0:6g = 1:4 < 1:5434 < �0 + (�1 + �2)b = 3:
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Hence the candidate D-optimal design is given by

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; 2) (2; 0)13 13 13�1:4 0:6 1

9>>=>>; : (6.32)
To save space the plots of the support points and the standardized variance function d(x; ��;�)on the design space [0; 2]� [0; 2] are not reported here, but it can be demonstrated numericallythat d(x; ��;�) � 3 with equality holding only at the three support points.Case of Figure 6.5 (c) design patternConsider Figure 6.5 (c). The design of Figure 6.5 (c) is the symmetric reection of the designof Figure 6.5 (a) with respect to the centre of symmetry of the design space [0; b] � [0; b].Let (y1; y2) and (x1; x2) be corresponding support points in Figure 6.5 (a) and Figure 6.5 (c)respectively. Then, (x1; x2) = (b� y1; b� y2) (6.33)Clearly, if u is a logit line in Figure 6.5 (c), the corresponding logit line in Figure 6.5 (a) iseu = �u. Hence, the vector of parameters � = (�0; �1; �2)T and �0 = (�00; �01; �02)T in Figure6.5 (c) and Figure 6.5 (a) respectively are linked by8>><>>:

�00 = ��0 � (�1 + �2)b�01 = �1�02 = �2 (6.34)
In fact, assume that u = �0 + �1x1 + �2x2 and eu = �00 + �01x01 + �02x02. It follows from thetransformation (6.33) that

�00 + �01y1 + �02y2 = eu = �u= ��0 � �1x1 � �2x2= ��0 � �1(b� y1)� �2(b� y2)= ��0 � (�1 + �2)b� �1y1 � �2y2
which implies the relations (6.34). The following example is a case where the design patternof Figure 6.5 (c) is derived from the design pattern of Figure 6.5 (a).
Example 6.7. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2]� [0; 2] where �0 = �7, �1 = 3 and �2 = 1. The parameters �0 = �7,�1 = 3 and �2 = 1 of this example are linked to the parameters of Example 6.5, here written
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as �00 = �1, �01 = 3 and �02 = 1, by the relations (6.34). Hence, the following 3-point D-optimal design with the pattern as in Figure 6.5 (c) is derived from design (6.29) using thetransformations (6.33) and is given by

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(2; 2) (2; 0) (1:068; 2)13 13 131 �1 �1:796

9>>=>>; :
Case of Figure 6.5 (d) design patternThe design of Figure 6.5 (d) is the symmetric reection of the design of Figure 6.5 (b) withrespect to the centre of symmetry of the design space [0; b]� [0; b]. Using the same argumentas in the previous case, the support points (x1; x2) of the D-optimal design can be obtainedfrom support points (y1; y2) of Figure 6.5 (b) using the transformation (6.33). Parameters arelinked by the relations (6.34). The following example is a case where the design pattern ofFigure 6.5 (d) is derived from the design pattern of Figure 6.5 (b).
Example 6.8. Consider the two-variable binary logistic model u = �0 + �1x1 + �2x2 on thedesign space [0; 2]�[0; 2] where �0 = �3, �1 = 1:2 and �2 = 1. The parameters of this exampleare linked to the parameters �00 = �1:4, �01 = 1:2 and �02 = 1 of Example 6.6 by the relations(6.34). Hence the 3-point D-optimal design with pattern as in Figure 6.5 (d) follows as

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(2; 2) (2; 0) (0; 2)13 13 131:4 �0:6 �1

9>>=>>; :

6.5. General 4-point D-optimal parallelogram designs
6.5.1 Building block of 4-point parallelogram D-optimal designs
The assumption made in the construction of the 4-point D-optimal parallelogram designs bySitter and Torsney (1995a) and Jia and Myers (2001) in Section 5.2 was that one pair of thesupport points lies on the logit line �u and the other pair on the logit line u with u unrestrictedin R. The optimal designs found under this assumption were equally weighted 4-point D-optimal parallelogram designs with support points lying on the optimal logit lines �u� =1:22291 only. This section discusses the construction of 4-point D-optimal parallelogramdesigns for model u = logit(p) = �0+�1x1+�2x2 on the rectangular design space [0; b]� [0; b],
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and hence for �1 > 0 and �2 > 0, the logit u is restricted by �0 � u � �0 + (�1 + �2)b. Itwill be conjectured and veri�ed numerically that the support points of the candidate 4-pointD-optimal designs are not necessarily on logit lines of the form �u. The following results areused to establish the conditions for the existence of these designs.Consider Figure 6.7, and in particular the quadrilateral design pattern with support points A,I, C and J . The quadrilateral AICJ is a parallelogram if the slope (m1) of the line AJ is equalto the slope (m2) of the line IC since both lines AI and JC have slope ��1�2 . The coordinates
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Figure 6.7: Building blocks for a parallelogram design for the two-variable binary logisticmodel with interaction u = �0 + �1x1 + �2x2 on the design space [0; b]� [0; b].
of the support points are: A(�u��0�1 ; 0), I(0; �u��0�2 ), C(u��0��2b�1 ; b) and J(b; u��0��1b�2 ). Hence,

m1 = u��0��1b�2 � 0b+ u+�0�1 = �1(u� �0 � �1b)�2(u+ �0 + �1b) and m2 = b+ u+�0�2u��0��2b�1 � 0 = �1(u+ �0 + �2b)�2(u� �0 � �2b) :
It thus follows that m1 = m2 implies that u� �0 � �1bu+ �0 + �1b = u+ �0 + �2bu� �0 � �2b . Simple algebra leadsto 2�0 + (�1 + �2)b = 0: Thus, the condition for AICJ to be a parallelogram is

2�0 + (�1 + �2)b = 0 or, equivalently, �0 + 12�1b+ 12�2b = 0: (6.35)
Note that condition (6.35) implies that the logit line �0 + �1x1 + �2x2 = 0 passes throughthe point � b2 ; b2� which is the centre of symmetry of the square design space [0; b] � [0; b].
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Equation (6.35) also implies that �0 + �1b = �(�0 + �2b) which means that the logit valuesat points F (0; b) and H(b; 0) in Figure 6.7 have opposite signs, i.e. either �0 + �1b > 0 and�0 + �2b < 0 or �0 + �2b > 0 and �0 + �1b < 0. This fact was not the case for the trapeziumdesigns and related designs discussed in Sections 6.3 and 6.4 where �0 + �1b and �0 + �2bhad the same sign. Equation (6.35) has an in�nite number of solutions for �0, �1 and �2which implies that there are an in�nite number of parallelogram design patterns that satisfycondition (6.35). However, these parallelogram design patterns can be classi�ed into a fewbroad categories described below.
6.5.2 4-point equally weighted designs
Consider the design patterns in Figures 6.8 (a) and 6.8 (b) where the candidate support pointsA, B, C and D are represented by circles. In Figure 6.8 (a) �1 > �2 and in Figure 6.8 (b)�1 < �2.
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Figure 6.8: Parallelogram design patterns for the two-variable binary logistic model withoutinteraction on the design space [0; b] � [0; b] and with parameters satisfying conditions �0 =� b2(�1 + �2) and (a) 0 < 2:44582b � �1 � �2, (b) 0 < 2:44582b � �2 � �1 .
In both �gures, the 4 support points are vertices of a parallelogram with either 0 � x1 � b and
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x2 2 f0; bg or x1 2 f0; bg and 0 � x2 � b. Furthermore, the support points of the candidate4-point D-optimal design are located on two parallel logit lines �u which intersect only thetwo horizontal sides of the rectangular design space. Thus the D-optimal designs with designpatterns in Figure 6.8 (a) and Figure 6.8 (b) are similar to those of Sitter and Torsney (1995a)with design locus Gw and of Jia and Myers (2001), and are a special case of the designs ofAtkinson and Haines (1996). These designs were fully discussed in Section 5.2, and it wasproved in Theorem 5.1 that the D-optimal design is an equally weighted 4-point design withsupport points on the logit lines u� = �1:22291. Note that as in the case of Sitter and Torsney(1995a) and of Jia and Myers (2001), discussed in Section 4.5 and Section 5.2, no candidatesupport point is on the logit u = 0. However, as it will be observed later the logit u = 0 servesas a line of reference in deriving the conditions for existence of various design patterns. Theconditions on the parameters and the design space for which the designs of Figure 6.8 (a) andFigure 6.8 (b) are possible are given below.Consider the design pattern in Figure 6.8 (a). The pattern is possible if the abscissa of pointB is greater than or equal to that of F and the abscissa of D is less than or equal to thatof H. Since the respective coordinates of F and H are (0; b) on logit line �u and (b; 0) onlogit line u, the design pattern of Figure 6.8 (a) is possible if the condition (6.35) is satis�ed,�0 + �2b � �u < 0 and 0 < u � �0 + �1b, or, equivalently if the condition (6.35) is satis�ed,and 0 < u � ��0 � �2b and 0 < u � �0 + �1b which simpli�es to

�0 = � b2(�1 + �2) and 0 < u � �0 + �1b = b2(�1 � �2) (6.36)
since condition (6.35) implies that ��0 � �2b = �0 + �1b = b2(�1 � �2). Since the optimalvalue of u is u� = 1:22291, it follows from (6.36) that the conditions that an equally weighted4-point parallelogram exists with �1 > �2 are

�0 = � b2(�1 + �2) and 0 < 2u�b � �1 � �2 (6.37)
where u� = 1:22291. Thus, if b > 0 and � = (�0; �1; �2)T satisfy condition (6.37), then thecandidate D-optimal design with the pattern in Figure 6.8 (a) in the (x1; x2)-space is

�� = ( (�2u�+b(�1+�2)2�1 ; 0) (�2u�+b(�1��2)2�1 ; b) (2u�+b(�1��2)2�1 ; b) (2u�+b(�1+�2)2�1 ; 0)14 14 14 14
) (6.38)

where u� = 1:22291, or, equivalently, in the (u1; u2) space, where u1 = u and u2 = x2, is
��u = ( (�1:22291; 0) (�1:22291; b) (1:22291; b); (1:22291; 0)14 14 14 14

) : (6.39)
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Note that the design ��u given in (6.39) can be deduced from the D-optimal design (5.3) bytransforming each point (u; x2) of design (5.3) to (u; 12(x2+b)). Then, it follows from Theorem5.1 that the design ��u given in (6.39) is D-optimal, or, equivalently, the design �� given in(6.38) is D-optimal.In a similar way, the design pattern in Figure 6.8 (b) is possible if 2�0+b(�1+�2) = 0, �0+�1b ��u < 0 and 0 < u � �0 + �2b, or, equivalently, if �0 = � b2(�1 + �2) and 0 < 2ub � �2 � �1:Hence, the conditions that an equally weighted 4-point parallelogram exists with �2 > �1 are

�0 = � b2(�1 + �2) and 0 < 2u�b � �2 � �1 (6.40)
where u� = 1:22291.Thus, if b > 0 and � = (�0; �1; �2)T satisfy the conditions (6.40), then the (x1; x2)-space is

�� = ( (0; �2u�+b(�1+�2)2�2 ) (b; �2u�+b(�2��1)2�2 ) (b; 2u�+b(�2��1)2�2 ) (0; 2u�+b(�1+�2)2�2 )14 14 14 14
) (6.41)

where u� = 1:22291, or, equivalently, in the (u; x2) space is
��u = ( (0;�1:22291) (b;�1:22291) (b; 1:22291) (0; 1:22291)14 14 14 14

) : (6.42)
Note that the conditions (6.40) are obtained from (6.37) by exchanging �1 and �2 in modelu = �0+ �1x1+ �2x2. In addition, design (6.41) is obtained from design (6.38) by exchangingthe �rst and second coordinates of each support point of design (6.38). Hence, it also followsfrom Theorem 5.1 that the design ��u given in (6.42) is D-optimal, or, equivalently, the design�� given in (6.41) is D-optimal.Finally, it can be deduced from conditions (6.37) and (6.40) that the conditions of existenceof an equally weighted parallelogram D-optimal design on the design space [0; b]� [0; b] are

�0 = � b2(�1 + �2) and 0 < 2u�b � j�1 � �2j (6.43)
where u� = 1:22291 and j�1 � �2j is the absolute value of �1 � �2. The following exampleillustrates a situation where the parameter values and the design space lead to equally weighted4-point D-optimal designs given in (6.38) and in (6.41).
Example 6.9. Consider the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 where (a) �0 = �4, �1 = 3 and �2 = 1 and (b) �0 = �4,
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�1 = 1 and �2 = 3 on the design space [0; 2]� [0; 2]. The parameter values of part (a) satisfycondition (6.37) for design (6.38) since

�0 = � b2(�1 + �2) = �4 and 2u�b = 1:22291 < �1 � �2 = 2
Hence, the D-optimal design (6.38) is

�� = ( (0:926; 0) (0:259; 2) (1:074; 2) (1:741; 0)14 14 14 14
) : (6.44)

The transformation of this design to the design space [�1; 1] � [�1; 1] is as follows. Thetransformations (6.3) and (6.4) can be written respectively as( x1new = (1+1)x1�(0+2)2�0 = x1 � 1x2new = (1+1)x2�(0+2)2�0 = x2 � 1
and 8>><>>:

�1new = 2�01+1 � 3 = 3�2new = 2�01+1 � 1 = 1�0new = �4 + 0+21+1 � 3 + 0+21+1 � 1 = �4 + 3 + 1 = 0:Therefore, the design (6.44) becomes
�� = ( (�0:074;�1) (�0:741; 1) (0:074; 1) (0:741;�1)14 14 14 14

)

which is the same as the D-optimal design found numerically by Atkinson and Haines (1996)for � = (0; 3; 1)T .The parameter values of part (b) of the example satisfy condition (6.40) for design (6.41) since
�0 = � b2(�1 + �2) = �4 and 2u�b = 1:22291 < �2 � �1 = 2:

Hence, the D-optimal design (6.41) is
�� = ( (0; 0:926) (2; 0:259) (2; 1:074) (0; 1:741)14 14 14 14

) :
As expected this design can be obtained from design (6.44) by exchanging the �rst and thesecond coordinate of each support point.
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6.5.3 4-point design with two equally weighted pairs of support

points
Consider the designs of Figure 6.9 (a). Here, it is assumed that �1 > �2. Note that the locationof the logit line u = 0 in Figure 6.9 (a) implies that �0+ �1b > 0 and �0+ �2b < 0, and hencethe necessary conditions of a candidate 4-point parallelogram designs are satis�ed. As thelogit line u = 0 passes through the origin � b2 ; b2� of the design space [0; b] � [0; b], then thebuilding block condition (6.35) for a parallelogram design is satis�ed. As discussed in Chapter
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Figure 6.9: Parallelogram design patterns for the two-variable binary logistic model withoutinteraction u = logit(p) = �0+�1x1+�2x2 on the design space [0; b]�[0; b] and with parameterssatisfying conditions where �0 = � b2(�1 + �2) and (a) 0 < �1 � �2 � 2:44582b < �1 + �2, (b)0 < �2 � �1 � 2:44582b < �1 + �2.
4, Sections 4.5.1 and 4.5.4, if the restriction 0 � x1 � b is not imposed in Figure 6.9 (a), thenthe support points of the candidate D-optimal design are A, B, C and D. However with therestriction 0 � x1 � b the candidate D-optimal design has support points A, F , C andH. Notethat A and F are not on the same logit line and therefore are not expected to have equal designweights. Similarly, points C and H are not expected to have equal weights. However, pointsA and C are on the respective logits �u and u, with u � 0, and are also symmetric about the
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centre � b2 ; b2� of the design space. Thus A and C are expected to have equal weights, say �2 ,in a D-optimal design. In the same �gure, points F and H are symmetric with respect to thecentre of symmetry of the design space [0; b]� [0; b]. Hence, the two candidate support pointsF and H are expected to have equal weights, say 1� �2 , in a D-optimal design. Condition(6.35) implies that logit values at F and H are respectively �a and a with a = �0 + �2b suchthat 0 < a = �0 + �1b = ��0 � �2b = b2(�1 � �2) � u < �0 + b(�1 + �2) = b2(�1 + �2). Thus,the conditions for the design pattern of Figure 6.9 (a) to hold are

�0 = � b2(�1 + �2) and 0 < �1 � �2 � 2u�b < �1 + �2 (6.45)
where u� = 1:22291 is the optimal value of u when if the restriction was imposed on u. Thecandidate D-optimal design, in terms of (u; x2) space, is of the form

�u = ( (�u; 0) (�a; b) (u; b) (a; 0)�2 1��2 �2 1��2
) (6.46)

where u � a = �0 + �1b > 0, and the optimal values of u and � are not necessarily equal to1:22291 and 0:5 respectively. Clearly �a with a 2 (0; 1:22291) are the logit values at the cornerpoints (0; b) and (b; 0). The purpose of using (u; x2) space here, and not the (x1; x2)-space isto obtain relatively readable expressions of the information matrix and its determinant.Now, consider deriving the optimal values of u and � in design (6.46) algebraically. Theinformation matrix for the model parameters is
M(�u;�) = (1� �)ea2(1 + ea)2

2664 2 0 b0 2a2 �abb �ab b2
3775+ �eu2(1 + eu)2

2664 2 0 b0 2u2 �ubb �ub b2
3775 (6.47)

and its determinant is
D = b2�(1� �)ea+u(a+ u)2 [2ea+u + (1� �)ea(1 + e2u) + �eu(1 + e2a)]4(1 + ea)4(1 + eu)4 : (6.48)

The respective derivatives of D with respect to � and u are
@D@� = b2(a+ u)2ea+u [�(2� 3�)eu(1 + e2a) + 2(1� 2�)ea+u + (1� 4�+ 3�2)ea(1 + e2u)]4(1 + ea)4(1 + eu)4and@D@u = b2�(1� �)(a+ u)ea+u4(1 + ea)4(1 + eu)5 n(a+ u) �(1� �)ea(1� e3u) + eu(1� eu)(2�(1 + e2a) + (1 + 3�)ea)�+

2(1� �)ea(1 + e3u) + 2eu(1 + eu) �(3� �)ea + �(1 + e2a)� o:
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Hence, the optimal values of � and u are the solutions for (�; u) to the simultaneous equations

�(2� 3�)eu(1 + e2a) + 2(1� 2�)ea+u + (1� 4�+ 3�2)ea(1 + e2u) = 0 (6.49)
and

(a+ u) �(1� �)ea(1� e3u) + eu(1� eu)(2�(1 + e2a) + (1 + 3�)ea)� (6.50)+2(1� �)ea(1 + e3u) + 2eu(1 + eu) �(3� �)ea + �(1 + e2a)� = 0:
An analytical closed form solution for u is not possible since neither of the equations is alinear function of u. However, for a given u, an analytical closed form solution for � can befound from equation (6.49) which is a quadratic polynomial in �. The two possible solutionsof (6.49) for � are �� = S1S2 +pS3 (6.51)
and ��� = S1S2 �pS3 (6.52)
where S1 = ea(1 + eu)2, S2 = ea(1 + eu)2 + (eu � ea)(ea+u � 1) and S3 = [ea(1 + eu)2 � (eu �ea)(ea+u � 1)]2 + ea(1 + eu)2(eu � ea)(ea+u � 1). A feasible solution must be positive and lessthan 1.Consider �� as de�ned in (6.51). Since, u � a > 0, then �� > 0 because S1 > 0, S2 > 0 andS3 > 0. Furthermore �� < 1 because S2 +pS3 � S1 = (eu � ea)(ea+u � 1) + S3 > 0. Hence,�� is a feasible value of � since 0 < �� < 1.Now, consider ��� as de�ned in (6.52). Clearly, ��� > 1. This is achieved by showing that S1 >S2�pS3. In fact, S1�(S2�pS3) = �(eu�ea)(ea+u�1)+pS3. Note that (eu�ea)(ea+u�1) > 0,S3 > 0 and S3 � [eu � ea)(ea+u � 1)]2 = ea+u(1 + ea)2(1 + eu)2 > 0 which implies thatpS3 > (eu � ea)(ea+u � 1). Hence S1 > S2 �pS3, and therefore ��� is not a feasible value of�.Solving the equation (6.50) numerically, evaluated at a given value a = �0 + �1b of the logitat the corner point (b; 0) and at weight � = ��, for u gives u� as the candidate optimal logit.For example, Table 6.1 gives values of u� and �� for selected values of a. The values a = 0 anda = 1:22291 are included only to indicate boundary optimal values of � and u. Figure 6.10displays the scatter plot of u� (circles) and �� (squares) versus a in the interval [0; 1:22291].Both Table 6.1 and Figure 6.10 indicate that �� is an increasing function and u� is a decreasingfunction of a. A scatter plot of u� versus a is displayed by \circles" in Figure 6.10. Clearly
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Table 6.1: Values of u� and �� for selected values of a = �0 + �1b: 4-point D-optimal paral-lelogram design for model u = logit(p) = �0 + �1x1 + �2x2 with two equally weighted pairs ofsupport points. a u� ��0 2.1150 0.40170.1 2.0340 0.40640.125 2.0139 0.40770.25 1.9144 0.41460.375 1.8165 0.42230.5 1.7205 0.43140.625 1.6267 0.44100.75 1.5355 0.45180.875 1.4474 0.46361 1.3629 0.47621.15 1.2671 0.49711.22291 1.22291 0.5

Figure 6.10: The scatter plot of �� (solid squares) and u� (open circles) and u�� (plus) versusa. Values of �� and u� are respective solutions for � and u in the simultaneous equations (6.49or 6.51) and (6.50) respectively, and u�� is given by (6.53).
a straight line with a negative slope can �t the data. The regression line for u� as a simple
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linear function of a on [0; 1:22291] is

u�� = bu = 2:0994� 0:733a (6.53)
with R2 = 0:999. The scatter plot of u�� versus a is represented by \plus" symbols in Figure6.10. Clearly, the points (a; u��) are very close to the points (a; u�), and hence are good �t. Ifu�� is used instead of u�, it can easily be checked that each D-e�ciency, given by expression(3.38) with p = 3, of the design (6.46) with u = u�� relative to the design (6.46) with u = u�is practically equal to 1.For a candidate D-optimal design ��u, D-optimality can be checked by plotting the standardizedvariance function d(u; ��u) = tr[M�1(��u)M(u)] versus u � �0. In this case
d(u; ��u) = eu�u��a(1 + ea)4(1 + eu�)4(s1 + s2)b2��(1� ��)[2ea+u� + (1� ��)ea(1 + e2u�) + ��eu�(1 + e2a)](a+ u�)2(1 + eu)2(6.54)where

s1 = b2(� �(�� � 1)aea(1 + ea)2 + ��u�eu�(1 + eu�)2�2 + �(1� ��)ea(1 + ea)2 + ��eu�(1 + eu�)2�2 u2
)

and
s2 = 2�(1� ��)ea(1 + ea)2 + ��eu�(1 + eu�)2�n�(1� ��)aea(u� a)(1 + ea)2 � ��u�eu�(u+ u�)(1 + eu�)2 � b(2x2 � b)+
2x22 �(1� ��)a2ea(1 + ea)2 + ��u�2eu�(1 + eu�)2�o:Setting u = �0 + �1x1 + �2x2 in (6.54) transforms d(u; ��u) with u � �0 to d(x; ��;�) withx = (x1; x2)T 2 [0; b]� [0; b]. The following example illustrates the case of Figure 6.9 (a).

Example 6.10. Consider the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] where �0 = �2, �1 = 32 and�2 = 12 . Here, b = 2 and 2�0 + (�1 + �2)b = 0. In addition, �1 � �2 = 1 < 1:22291 < ��0 = 2.Therefore condition (6.45) is satis�ed. Thus, a 4-point design of the form (6.46) is expected.Moreover, a = �0 + �1b = 1. Then, from Table 6.1, the optimal values of u and � areu� = 1:3629 and �� = 0:4762. Hence, ��2 = 0:2381 and 1� ��2 = 0:2619, and the design (6.46)is given by
��u = ( (u; x2)�

) = ( (�1:363; 0) (�1; 2) (1:363; 2) (1; 0)0:2381 0:2619 0:2381 0:2619
)
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or in the (x1; x2)-space by

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:425; 0) (0; 2) (1:575; 2) (2; 0)0:2381 0:2619 0:2381 0:2619�1:363 �1 1:363 1

9>>=>>; : (6.55)
The standardized variance function (6.54) associated with design (6.55) is

d(x; ��;�) = (27:117� 24:187x1 � 18:951x2 + 9:129x21 + 6:511x22 + 5:930x1x2)eu(1 + eu)2 (6.56)
where u = �2+1:5x1+0:5x2. The support points of the candidate D-optimal design (6.55) arerepresented by symbols in Figure 6.11 (a) and are vertices of a parallelogram. Furthermore,the function (6.56) represented in Figure 6.11 (b) con�rms numerically that d(x; ��;�) = 3 atthe four support points of the design (6.55) and d(x; ��;�) < 3 elsewhere in [0; 2]� [0; 2] andthus the �gure suggests global optimality of the design (6.55).

Figure 6.11: (a) Support points and (b) the standardized variance function d(x; ��;�) for thetwo-variable binary logistic model without interaction u = logit(p) = �0 + �1x1 + �2x2 on thedesign space [0; 2]� [0; 2] and with parameter vector � = (�2; 32 ; 12)T .
If the design space [�1; 1] � [�1; 1] was used instead of the design space [0; 2] � [0; 2], theparameter vector corresponding to ��2; 32 ; 12�T is �0; 32 ; 12�T and the new variables are
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x1new = x1 � 1 and x2new = x2 � 1 so that the design (6.55) becomes

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(�0:575;�1) (�1; 1) (0:575; 1) (1;�1)0:2381 0:2619 0:2381 0:2619�1:363 �1 1:363 1

9>>=>>; : (6.57)
The design (6.57) corresponds to that constructed numerically by Atkinson and Haines (1996)for the parameter vector � = (0; 32 ; 12)T using the design space [�1; 1]� [�1; 1].
Now, consider the designs of Figure 6.9 (b) where it is assumed that �1 < �2 and 2�0+ b(�1+�2) = 0. Reasoning in a similar way as for the design pattern of Figure 6.9 (a), the D-optimaldesign corresponding to Figure 6.9 (b) has support points at H, B, F and D, and the designpattern exists if the following conditions are satis�ed

�0 = � b2(�1 + �2) and 0 < �2 � �1 � 2u�b < �1 + �2: (6.58)
In this case the candidate D-optimal design, with support points expressed in term of (u; x1),is �u = ( (�a; b) (�u; 0) (a; 0) (u; b)1��2 �2 1��2 �2

) (6.59)
where 0 < �a = ��0 � �1b = b2(�2 � �1) � 1:22291 < b2(�1 + �2) and the optimal values of uand � have to be calculated.To summarize, it can be deduced from the conditions (6.45) and (6.58) that the conditionsof existence of a 4-point parallelogram D-optimal design with two equally weighted pairs ofsupport points on the design space [0; b]� [0; b] are

�0 = � b2(�1 + �2) and 0 < j�1 � �2j � 2u�b < �1 + �2 (6.60)
where u� = 1:22291 and j�1 � �2j is the absolute value of �1 � �2.
6.5.4 4-point design with support points at the vertices of the de-

sign space
Consider the design patterns in Figures 6.12 (a) and Figure 6.12 (b) with support points E,F , G and H.In each of the two �gures, the logit line u = 0 passes through the centre of the design space[0; b] � [0; b], but the logit lines �u pass outside the design space. Then, the conditions for
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Figure 6.12: Parallelogram design for the two-variable binary logistic model without interac-tion u = logit(p) = �0 + �1x1 + �2x2 with 2�0 + (�1 + �2)b = 0 and support points at thevertices of the design space [0; b]� [0; b].
the design patterns of Figure 6.12 (a) to hold are �0 = � b2(�1 + �2), �u� � �0 < �0 + �2 < 0,and 0 < �0 + �1b < �0 + b(�1 + �2) � u� which can summarized as

�0 = � b2(�1 + �2) and 0 < �1 � �2 < �1 + �2 � 2u�b (6.61)
where u� = 1:22291. In a similar way, the conditions for the design patterns of Figure 6.12(b) to hold are �0 = � b2(�1 + �2) and 0 < �2 � �1 < �1 + �2 � 2u�b (6.62)where u� = 1:22291. It follows from the conditions (6.61) and (6.62) that the conditions ofexistence of a 4-point parallelogram D-optimal design with support points at the vertices ofthe design space [0; b] � [0; b] for model u = logit(p) = �0 + �1x1 + �2x2 with �1 6= �2 and2�0 + b(�1 + �2) = 0 are

�0 = � b2(�1 + �2) and 0 < j�1 � �2j < �1 + �2 � 2u�b (6.63)
where u� = 1:22291 and j�1 � �2j is the absolute value of �1 � �2. Since the feasible optimallogit lines must intersect the design space, the candidate D-optimal designs corresponding to
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Figure 6.12 (a) and Figure 6.12 (b) are the same as designs (6.46) and (6.59) with u replacedby ��0. For example, the design corresponding to the design pattern in Figure 6.12 (a) interms of (x1; x2) coordinates is of the form

� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; b) (b; b) (b; 0)�2 1��2 �2 1��2�0 �a ��0 a

9>>=>>; (6.64)
where a = b2(�1 � �2) > 0 and only the optimal value of � needs to be calculated. Similarly, thedesign corresponding to the design pattern in Figure 6.12 (b) in terms of (x1; x2) coordinatesis of the form

� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; b) (b; b) (b; 0)�2 1��2 �2 1��2�0 a ��0 �a

9>>=>>; (6.65)
where a = b2(�2 � �1) > 0 and only the optimal value of � needs to be calculated. The optimalvalues of � and u are still those satisfying the simultaneous equations (6.49) and (6.50) withu = u� = ��0. Hence, the optimal weight is � = �� given by (6.51) with u = ��0. Thestandardized variance function is also (6.54) with u = ��0. The following example is anillustration of parameter values and the design space for a 4-point D-optimal design withsupport points at the vertices of the design space.
Example 6.11. Consider the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] where �0 = �1, �1 = 0:6 and�2 = 0:4. Clearly the parameters satisfy conditions (6.61) since

�0 = � b2(�1 + �2) = �1 and 0 < �1 � �2 = 0:2 < �1 + �2 = 1 < 2u�b = 1:22291:Hence, a 4-point D-optimal design with support points at the vertices of the design space[0; 2] � [0; 2] is conjectured. The weight (6.51) is �� = 0:4716 obtained for u = ��0 = 1 anda = �0 + 2�1 = 0:2. The resultant D-optimal design of the form (6.64) is therefore given by
�� =

8>><>>:
(x1; x2)�u

9>>=>>; =
8>><>>:

(0; 0) (0; 2) (2; 2) (2; 0)0:2358 0:2642 0:2358 0:2642�1 �0:2 1 0:2
9>>=>>; :

6.6. D-optimal designs for the case when �1 = �2 and �0 + b�1 = 0
The parallelogram D-optimal designs in Section 6.5 were constructed on the design space[0; b] � [0; b] under the assumption that �1 6= �2 and 2�0 + b(�1 + �2) = 0 (condition (6.35)).
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Now, consider the case when �1 = �2 and 2�0 + b(�1 + �2) = 0 which imply that �1 = �2 and�0 + b�1 = 0. These conditions imply that �0 + b�1 = �0 + b�2 = 0 which is equivalent to thelogit line u = 0 passing through the vertices (b; 0) and (0; b) of the design space [0; b]� [0; b].Figures 6.13 (a) and (b) display the patterns of the candidate D-optimal designs in this case.Figure 6.13 (a) displays the pattern of a candidate 4-point D-optimal design with supportpoints E, F , G and H, while Figure 6.13 (b) displays the pattern of a 6-point D-optimaldesign with support points A, I, F , C, J and H. It will be conjectured later that the latterdesign is a mixture of the 4-point D-optimal designs with support points A, F , J and H, andthe 4-point D-optimal design with support points I, H, C and F .
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Figure 6.13: 6- and 4-point designs for the two-variable binary logistic model without interac-tion u = logit(p) = �0+�1x1+�2x2 on the design space [0; b]� [0; b] with 2�0+(�1+�2)b = 0.
Case of Figure 6.13 (a) design patternsConsider the design pattern in Figure 6.13 (a) with support points at E, F , G and H. Thisdesign pattern is the same as the designs in Figures 6.12 (a) and (b) when the logit u = 0passes through the vertices (b; 0) and (0; b) of the design space which implies that a = 0. It wasfound in Section 6.5 that for a 2 [0; 1:22291], the value at the boundary a = 0 is u� = 2:1150,and that u� is a decreasing function of a (see Table 6.1 and equation (6.53) or Figure 6.10).Hence, if �1 = �2 and �0 = � b2(�1 + �2), a candidate 4-point D-optimal design with supportpoints at the vertices of the design space exists if the logit lines u� = �2:1150 passe at (0; 0)and (b; b) or outside the design space [0; b] � [0; b], i.e. if �0 + b(�1 + �2) = b�1 � 2:1150 and
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�2:1150 � �0 = �b�1, or, equivalently, if

�0 = �b�1 and 0 < �1 = �2 � 2:1150b : (6.66)
The optimal logits are u = �0 passing through point E, u = �0 + b�2 passing through pointF , u = �0 + b(�1 + �2) = ��0 passing through point G, and u = �0 + b�1 passing throughpoint H in Figure 6.13 (a). The design weights are still calculated using �� given in (6.51)with a = 0 and u = ��0 to give

�� = (1 + e�0)22(1 + e2�0) +p1 + 14e2�0 + e4�0 : (6.67)
Hence, the D-optimal design in this case has the same pattern as design (6.64) where a = 0,i.e.

� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; b) (b; b) (b; 0)�2 1��2 �2 1��2�0 0 ��0 0

9>>=>>; : (6.68)
The following example illustrates the discussion.
Example 6.12. Consider the two-variable logistic model u = logit(p) = �0 + �1x1 + �2x2 onthe design space [0; 2]� [0; 2] where the parameter vector is � = (�2; 1; 1)T . In this example,a = �0+2�1 = 0, �0+b�1 = 0, �1 = �2 = 1 < 2:1150b = 1:0575. Hence, a candidate D-optimaldesign is the design in (6.68) with �0 = �2. Further, the optimal logits are a = 0, �0 = �2and ��0 = 2 and �u = ��0 = 2. The optimal weight is (6.67) where �0 = �2 to give�� = 0:4082. Hence, ��2 = 0:2041 and 1� ��2 = 0:2959. Therefore, the candidate D-optimaldesign of the form (6.68) is

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; 2) (2; 2) (2; 0)0:2041 0:2959 0:2041 0:2959�2 0 2 0

9>>=>>; : (6.69)
The standardized variance function (6.54) is

d(x; ��;�) = (28:926� 23:711x1 � 23:711x2 + 7:599x21 + 7:599x22 + 8:513x1x2)eu(1 + eu)2 (6.70)
where u = �2 + x1 + x2 and (x1; x2) 2 [0; 2]� [0; 2].The support points of the design (6.69) are represented by symbols in Figure 6.14 (a). Thestandardized variance function d(x; ��;�) illustrated in Figure 6.14 (b) suggests that thedesign (6.69) is D-optimal.
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Figure 6.14: (a) Support points of the D-optimal design and (b) the standardized vari-ance function d(x; ��;�) for the two-variable binary logistic model without interactionu = logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�2; 1; 1)T .
Adding �1 to each coordinate in design (6.69) leads to the same result as that found numer-ically by Atkinson and Haines (1996), and Atkinson et al. (2007, p. 403) using the designspace [�1; 1]� [�1; 1] and parameter vector � = (0; 1; 1)T .
CommentA slight departure from the conditions �0+b�1 = 0 and/or 0 < �1 = �2 < 2:1150b on the designspace [0; b] � [0; b] can still lead to a 4-point D-optimal design with support at the verticesof the design space. However, the weights at the support points of the candidate D-optimaldesigns are not expected to be equal and they cannot be calculated using result (6.67). Thefollowing example is a numerical illustration.
Example 6.13. Consider the two-variable logistic model u = logit(p) = �0 + �1x1 + �2x2on the design space [0; 2] � [0; 2] where the parameter vector is � = (�2:114; 1:05; 1:04)T .In this case b = 2 and condition �0 + b�1 = 0 is not satis�ed since �0 + b�1 = �0:014.Here, the logit line u = 0 passes just below the centre (0; 0) of the design space [0; 2]� [0; 2].Furthermore, the logits at (0; 2) and (2; 0) depart slightly from a = 0 since �0+ b�1 = �0:014and �0 + b�2 = �0:034. As the logits at (0; 2) and (2; 0) are not of the form �a, then result(6.51) cannot be used in the calculation of weights at support points of the candidate D-optimal design. The candidate D-optimal design constructed numerically for this example
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is

��u =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; 2) (2; 2) (2; 0)0:1944 0:2985 0:2086 0:2985�2:114 �0:034 2:066 �0:014

9>>=>>; : (6.71)
Note that no pairs of logits are exactly equal. Also, the weights at points (0; 0) and (2; 2)are not equal. The support points of the design (6.71) are represented by triangle symbols inFigure 6.15 (a). The standardized variance function d(x; ��; �) illustrated in Figure 6.15 (b)suggests that the design (6.71) is D-optimal.

Figure 6.15: (a) Support points of the D-optimal design and (b) the standardized vari-ance function d(x; ��;�) for the two-variable binary logistic model without interactionu = logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�2:114; 1:05; 1:04)T .
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Case of Figure 6.13 (b) design patternsConsider Figure 6.13 (b). The design pattern of Figure 6.13 (b) is generated by the designpattern of 6.13 (a) by moving the logit lines �u from the vertices E and G to the interior ofthe design space. Recall from the above subsection that the conditions for the existence ofthe design pattern of Figure 6.13 (a) is that �0 = �b�1 and 0 < �1 = �2 � 2:1150b . Thus, itis clear that the condition for the existence of the design patterns of Figure 6.13 (b) is that�0 = �b�1 and �1 = �2 > 2:1150b : The candidate D-optimal designs can be found as follows.Without the restriction 0 � x1 � b, and with the assumption that �1 > �2, the candidate4-point D-optimal design would have support points A, B, C and D in Figure 6.13 (b). Asdiscussed in Section 6.5 (see design pattern of Figure 6.9 (a)), the restriction 0 � x1 � bwould force the candidate 4-point D-optimal design to have support points A, F , C and H in6.13 (b). Similarly, without the restriction 0 � x2 � b and with the assumption that �1 < �2,the candidate 4-point D-optimal design would have support points I, K, J and L. Then, therestriction 0 � x2 � b would force the candidate 4-point D-optimal design to have supportpoints I, F , J and H. However, as the equality �1 = �2 is equivalent to the simultaneousinequalities �1 � �2 and �1 � �2, it can be conjectured that none of the suggested designswould be D-optimal on its own. Intuitively, the symmetry in parameters �1 and �2 generatedby the equality �1 = �2 indicates that the candidate D-optimal designs are those with supportpoints symmetric with respect to the logit line u = 0. Hence, the candidate D-optimal designsare the 4-point designs with support points A, F , J and H, or I, H, C and F , and the 6-pointdesign with support points A, I, F , C, J and H. The candidate D-optimal designs for these3 cases are discussed below.Design with support points A, F , J and HConsider Figure 6.13 (b). The line AJ is perpendicular to the logit line u = 0, line FH. In fact,it was found in Section 6.5 (see Figure 6.7) that the slopem1 of lineAJ ism1 = �1(u� �0 � �1b)�2(u+ �0 + �1b) .Since �1 = �2 and �0 = �b�1 = �b�2, then m1 = 1. Clearly, the slope of the line FH ism2 = �1. As m1�m2 = �1, then the line AJ is perpendicular to the line FH. Furthermore,the triangle AHJ is isosceles in H since the distances from A and J to H are both equalto u�1 . Hence, points A and J are equidistant from the logit line u = 0, line FH, and it isreasonable to assume that the support points A and J will be equally weighted with weight�12 . The design pattern AFJH is not a parallelogram, and hence the support points F andH are expected to be unequally weighted. If �2 is the weight of support point F , then theweight of support point H must be �3 = 1� �1 � �2. Thus, under the conditions �0 = �b�1
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and �1 = �2, the candidate D-optimal design with support points A, F , J and H has the form

� = ( (b+ bu�0 ; 0) (0; b) (b;� bu�0 ) (b; 0)�12 �2 �12 1� �1 � �2
) : (6.72)

The information matrix for the parameters �0 and �1 = �2 evaluated at design (6.72) is26664
(1+eu)2��1(1�eu)24(1+eu)2 bf�0(1��1��2)(1+eu)2+2�1eu(u+2�0)g4�0(1+eu)2 b[�0�2(1+eu)2�2�1ueu]4�0(1+eu)2bf�0(1��1��2)(1+eu)2+2�1eu(u+2�0)g4�0(1+eu)2 b2f�20(1��1��2)(1+eu)2+2�1eu[�20+(u+�0)2]g4�20(1+eu)2 � �1b2ueu2�0(1+eu)2b[�0�2(1+eu)2�2�1ueu]4�0(1+eu)2 � �1b2ueu2�0(1+eu)2 b2[�20�2(1+eu)2+2�1u2eu]4�20(1+eu)2

37775
(6.73)where u > 0 and 0 < �i < 1 for i = 1; 2, and the determinant of the information matrix(6.73) is

D = b4�1u2eu f�20�2 [(1� �1 � �2)(1 + eu)2 + �1eu[u2(1� �) + 4(1 + �2�0u)]]g16�40(1 + eu)4 : (6.74)
It is di�cult to �nd the optimal values of u, and �1; �2 2 (0; 1) which maximizes D givenby (6.74) analytically. However, the following example indicates that the 4-point D-optimaldesign (6.72) can be obtained numerically.
Example 6.14. Consider the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] where the parameter vector is� = (�4; 2; 2)T . Here b = 2. Since �1 = �2 = 2 > 2:1150b = 1:0575 and �0+b�1 = 0, a 4-pointD-design of the form (6.72) is expected. The Mathematica directive:

NMaximize[fD; 0 < �1 < 1; 0 < �2 < 1; u > 0g; f�1; �2; ug]gives D = 0:001317 or � ln jM(��;�)j = 6:632, �1 = 0:4808, �2 = 0:3267 and u = 1:7644.Hence, the candidate 4-point D-optimal design (6.72) is given by
�� =

8>><>>:
(x1; x2)�u

9>>=>>; =
8>><>>:

(1:118; 0) (0; 2) (2; 0:882) (2; 0)0:2404 0:3267 0:2404 0:1925�1:764 0 1:764 0
9>>=>>; : (6.75)

The corresponding standardized variance function is
d(x; ��;�) = (90:879� 85:611x1 � 85:611x2 + 23:086x21 + 23:086x22 + 39:439x1x2)eu(1 + eu)2 (6.76)

where u = �4 + 2x1 + 2x2. The support points of design (6.75) are displayed in Figure6.16 (a). The standardized variance function (6.76) is plotted in Figure 6.17 (b). Clearly,d(x; ��;�) � 3 with equality holding at 6 support points among which the 4 support pointsof design (6.75) form a subset.
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Figure 6.16: Support points of two equivalent 4-point D-optimal designs for the two-variablebinary logistic model without interaction u = logit(p) = �0 + �1x1 + �2x2 on the design space[0; 2]� [0; 2] and with parameter vector � = (�4; 2; 2)T .

Figure 6.17: (a) Support points of the 6-point D-optimal design and (b) the standardizedvariance function d(x; ��;�) given in (6.76) for the two-variable binary logistic model withoutinteraction u = logit(p) = �0+�1x1+�2x2 on the design space [0; 2]�[0; 2] and with parametervector � = (�4; 2; 2)T .
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Design with support points I, H, C and FThe same arguments which yielded design (6.72) can be used to construct a candidate D-optimal design with support points I and C each with weight �12 , and support points Hand F with respective weights �2 and 1 � �1 � �2. Under the conditions �0 = �b�1 and�1 = �2 > 2:1150b , the form of the candidate D-optimal design is

� = ( (0; b+ bu�0 ) (b; 0) (� bu�0 ; b) (0; b)�12 �2 �12 1� �1 � �2
) (6.77)

which is obtained from design (6.72) by interchanging the coordinate values of the supportpoints. Hence, the determinant of the information matrix for the parameters �0 and �1 = �2evaluated at design (6.77) is also (6.74). Then, the D-optimal values for u > 0 and �1; �2 2(0; 1) for design (6.72) and the present design (6.77) are the same.
Example 6.15. (Example 6.14 continued). Using the results found in Example 6.14, the4-point D-optimal design (6.77) is given by

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 1:118) (0; 2) (0:882; 2) (2; 0)0:2404 0:1925 0:2404 0:3267�1:764 0 1:764 0

9>>=>>; (6.78)
with the same criterion value � ln jM(��;�)j = 6:632 as in Example 6.14. The support pointsof design (6.78) are displayed in Figure 6.16 (b), and the standardized variance function isagain plotted in Figure 6.17 (b) and suggesting that the design (6.78) is D-optimal.
Design with support points A, I, F , C, J and H.An example of a 6-point D-optimal design with support points A, I, F , C, J and H wasconstructed numerically by Atkinson and Haines (1996), and is reported in Atkinson et al.(2007, p. 403) to be a convex combination of two 4-point D-optimal designs. In the contextof the design pattern of Figure 6.13 (b), the 6-point design is the convex combination

Design AIFCJH = �(Design AFJH) + (1� �)(Design IHCF )
where the mixing constant � is such that 0 � � � 1. As the analytic derivations were notgiven by Atkinson et al. (2007, p. 403), and comprehensive derivations are di�cult, the aimof the following discussion is to sketch the rationale of the 6-point D-optimal design patternsand then provide evidence supporting the theory by a numerical example.
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Consider Figure 6.13 (b). It was shown in the above paragraphs that the lines AJ and IC areperpendicular to the logit line u = 0, line FH, so that the support points A and J are equallyweighted each with weight �12 , and the support points I and C are equally weighted each withweight �22 . If �3 is the weight of support point F , then the weight of support point H must be�3 = 1��1��2 so that the sum of the weights of the six support points equals 1. Hence, underthe conditions �0 = �b�1 and �1 = �2 > 2:1150b , the candidate 6-point D-optimal design withsupport points A, I, F , C, J and H has the form

� = ( (b+ bu�0 ; 0) (0; b+ bu�0 ) (0; b) (� bu�0 ; b) (b;� bu�0 ) (b; 0)�12 �22 �3 �22 �12 1� �1 � �2 � �3
) : (6.79)

The information matrix for the parameters �0 and �1 = �2 evaluated at design (6.79) is givenby
M(�;�) =

2664 m11 m12 m13m21 m22 m23m31 m32 m33
3775 (6.80)

where
m11 = (1��2)(1+eu)2��1(1�eu)24(1+eu)2m21 = bf�0[(1��2��3)(1+eu)2��2(1�eu)2]+2(�1��2)ueug4�0(1+eu)2 = m12m22 = b2f�20 [(1��2��3)(1+eu)2��1(1�eu)2]+2ueu[(�1+�2)u+2�1�0]g4�20(1+eu)2m31 = bf[�3(1+eu)2+4�2eu]�2ueu(�1��2)g4�0(1+eu)2 = m13m32 = � b2ueu(�1+�2)2�0(1+eu)2 = m23m33 = b2f�20 [�3(1+eu)2]+2ueu[(�1+�2)u+2�0�2]g4�20(1+eu)2with u > 0 and 0 < �i < 1 for i = 1; 2; 3.The expression for the determinant of the information matrix (6.80) is a long completedexpression and hence is not reported here. Furthermore, it is di�cult to �nd the optimalvalues of u > 0, and �1, �2, �3 2 (0; 1) which maximize the determinant of the informationmatrix given by (6.80) analytically. However, the following numerical example suggests thatthe 6-point D-optimal design (6.79) can exist, and is a mixture of the 4-point D-optimaldesigns (6.72) and (6.77).

Example 6.16. (Example 6.14 continued). Consider Example 6.14 and suppose a 6-pointD-optimal design has the form (6.79). The assumption of a 6-point design follows the fact that�0 = �b�1 = �4 and �1 = �2 = 2 > 2:1150b = 1:0575. Mathematica was used to maximize thedeterminant of the information (6.80) with respect to u and the three weights �1, �2 and �3
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but failed to converge. However, numerical calculation using the Gauss program in AppendixB gives the following 6-point design

�� =
8>><>>:

(1:118; 0) (0; 1:118) (0; 2) (0:882; 2) (2; 0:882) (2; 0)0:1306 0:1098 0:2654 0:1098 0:1306 0:2538�1:764 �1:764 0 1:764 1:764 0
9>>=>>; : (6.81)

Clearly, the patterns of the support points and corresponding weights agree with those con-jectured theoretically. The weights, say �(3)i , of the design given in (6.81) are the convexcombinations �(3)i = ��(1)i + (1� �)�(2)i (6.82)where �(1)i are weights associated with the support of the design (6.75), and �(2)i are weightsassociated with the support of design given (6.78) for i = 1; 2; : : : ; 6, and � is the mixingconstant. The expression on the right hand side of equation (6.82) is such �(j)i = 0 if theith support point in design (6.81) is not present in the jth design, for i = 1; 2; : : : ; 6 andj = 1; 2. A comparison of the weights in designs (6.75), (6.78) and (6.81) indicates that themixing constant of the convex combination (6.82) is � = 0:5433. For example, the supportpoint (1:118; 0) in design (6.81) is present in design (6.75) and absent in design (6.78), andthus the weight 0:1306 at the support point (1:118; 0) in design (6.81) can be calculatedas �(3)1 = 0:5433 � 0:2408 + (1 � 0:5433) � 0 = 0:1306. Similarly, the weight 0:1098 atthe support point (0; 1:118) in design (6.81) can be calculated as �(3)2 = 0:5433 � 0 + (1 �0:5433) � 0:2404 = 0:1098. As the support point (0; 2) in design (6.81) is present in bothdesigns (6.75) and (6.78), the weight 0:2654 at (0; 2) in design (6.81) can be calculated as�(3)3 = 0:5433 � 0:3267 + 0:4567 � 0:1925 = 0:2654. The weights at the remaining 3 supportpoints in design (6.81) can also be derived from the weights of the same support points indesigns (6.75) and (6.78). The support points of the design (6.81) are represented by symbolsin Figure 6.17 (a). Note that superimposing one of Figure 6.16 (a) and Figure 6.16 (b) uponthe other gives Figure 6.17 (a). The standardized variance function is still (6.76), and is againplotted in Figure 6.17 (b). The criterion value for the design (6.81) is � ln jM(��;�)j = 6:632,i.e. the same as in the two 4-point D-optimal designs (6.75) and (6.78).
5-point D-optimal designsSlight deviations from the condition 2�0 + b(�1 + �2) = 0 or �1 = �2 > 2:1150b can still leadto a 6-point D-optimal design which is a mixture of two 4-point D-optimal designs, but, forbrevity, examples are not discussed. For instance, the parameters �0 = �4, �1 = 2:04 and�2 = 2 do not satisfy condition 2�0 + b(�1 + �2) = 0, but lead to a 6-point D-optimal design,
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but for brevity the example is not discussed. However, the departure from the conditions ofa 6-point design can be such that no 6-point design is still D-optimal. The following exampleindicates that a small change of the parameter �2 = 2 to �2 = 1:9 leads to a 5-point D-optimaldesign.
Example 6.17. Consider the two-variable logistic model u = logit(p) = �0 + �1x1 + �2x2on the design space [0; 2] � [0; 2] where the parameter vector is � = (�4; 2; 1:9)T . Here,� = 2 > 1:0575, and �2 = 1:9 > 1:0575, but 2�0 + b(�1 + �2) = �0:2 < 0. In this casethe logit line �0 + �1x1 + �2x2 = 0 does not pass through the centre (1; 1) of the designspace [0; 2]� [0; 2], but has been slightly translated upward. Numerical calculation gives thefollowing 5-point design

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(1:118; 0) (0; 2) (1:010; 2) (2; 0) (2; 0:943)0:2023 0:3097 0:0873 0:2233 0:1774�1:763 �0:2 1:820 0 1:791

9>>=>>; : (6.83)
The support points of the design (6.83) are represented by symbols in Figure 6.18 (a). Figure6.18 (b) gives a plot of the standardized variance function d(x; ��; �). The plot suggests thatthe design is globally optimal.

Figure 6.18: (a) Support points of the D-optimal design and (b) the standardized vari-ance function d(x; ��;�) for the two-variable binary logistic model without interactionu = logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�4; 2; 1:9)T .
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6.7. Summary chart for the case when 2�0 + b(�1 + �2) = 0

The D-optimal parallelogram designs in Section 6.5 and the D-optimal designs in Section 6.6share the condition that 2�0 + (�1 + �2)b = 0. Figure 6.19 displays a chart that summarizescases when 2�0+ (�1+ �2)b = 0. The case of b = 2 was taken for illustration purpose and thepattern will be similar for any other value of b.
:

6- or 4- point design

Slight deviation from 
4-point equally weighted design

  5-point designs

4-point design with 
(0,b) and (b,0) being
support points

4-point design with 4-point equally weighted design
(0,b) and (b,0) being

4-point design support points
with (0,0),(0,b)
(b,b), (b,0) as
support points

22291.1 1β

2β

21 ββ =

0575.1

0 0575.1

21 ββ =

22291.10 12 ≤−< ββ

22291.112 ≥− ββ

22291.121 ≥− ββ22291.10 21 ≤−< ββ

22291.1

Figure 6.19: Pattern and number of support points of the D-optimal design for the two-variable binary logistic model without interaction u = logit(p) = �0 + �1x1 + �2x2 on thedesign space [0; b]� [0; b] with b = 2 and when 2�0 + (�1 + �2)b = 0.
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6.8. Non-parallelogram designs

6.8.1 Non-parallelogram designs with 1 or 2 nonconsecutive sup-
port points at the vertices of the design space

In Section 6.5, it was shown that for the two-variable binary logistic model u = logit(p) =�0 + �1x1 + �2x2 with �1 6= �2, the necessary condition for the existence of a D-optimalparallelogram design is that 2�0 + (�1 + �2)b = 0, or equivalently, that the logit line u = 0passes through the centre of the design space [0; b]� [0; b]. If the condition does not hold, thenthe D-optimal designs, if they exist, are non-parallelogram designs. Examples of such designsare the trapezium and related designs discussed in Section 6.3. For these designs, the logitline u = 0 intersects two non parallel sides of the design space [0; b] � [0; b], or equivalently�0 + �1b and �0 + �2b have same sign. In addition, it was found in Section 6.6 that the D-optimal designs associated with conditions 2�0+ (�1+ �2)b = 0 and �1 = �2 > 1:0575 are notparallelogram designs, but have 5 or 6 support points.In this section, non-parallelogram D-optimal designs for the case when the logit line u = 0does not pass through the centre of the design space [0; b] � [0; b] but intersects two parallelsides of the design space are considered. For example, see Figures 6.20 (a) to (c) in which thelogit line u = 0 intersects the horizontal sides of the design space [0; b]� [0; b]. Similar designpatterns, not presented here, are those in which the logit line u = 0 intersects the verticalsides of the design space.The analytical construction of D-optimal designs with design patterns such as those displayedin Figures 6.20 (a) to (c) is expected to be more di�cult than the construction of D-optimalparallelogram or trapezium designs because of the asymmetry of the designs induced by thelogit u = 0 passing o� centre of the design space. However, conditions for the existence of theD-optimal designs can be derived as in Section 6.4. This section considers the constructionof 4-point D-optimal designs with patterns in Figures 6.20 (a) to (c) only. Four-point designswith 3 support points at the vertices of the design space are discussed in Section 6.8.2.Case of Figure 6.20 (a) design patternConsider Figure 6.20 (a). Using similar arguments to those used in Sections 6.4 and 6.5, thecandidate D-optimal design with the design pattern in Figure 6.20 (a) can only have support
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Figure 6.20: 4-point D-optimal designs for the two-variable binary logistic model withoutinteraction u = logit(p) = �0 + �1x1 + �2x2 on the design space [0; b]� [0; b] with 2�0 + (�1 +�2)b 6= 0 and one or two nonadjacent vertices support points.
points indicated by circles. In this case the following conditions hold:

�0 � �u� � �0 + �2b < 0 and 0 < �0 + �1b � u� � �0 + (�1 + �2)b
where u� = 1:22291. The two conditions can be summarized as

0 < maxf��0 � �2b; �0 + �1bg � 1:22291 � minf��0; �0 + (�1 + �2)bg: (6.84)
152



Chapter 6 { D-optimal Designs for the Two-Variable Binary Logistic Modelwithout Interaction: Empirical Results
Clearly, the respective candidate optimal logits at the support points F and H are �0 + b�2and �0 + b�1. As the design pattern in Figure 6.20 (a) is the same as the design patternin Figure 6.9 (a) but with condition (6.35) not satis�ed, the candidate D-optimal design isexpected to be an unequally weighted 4-point design of the form

�� = ( (�u�1��0�1 ; 0) (0; b) (u�2��0�b�2�1 ; b) (b; 0)�1 �2 �3 1� �1 � �2 � �3
) (6.85)

where u�1 6= u�2, u�1 > 0, u�2 > 0, and the design weights �i with 0 < �i < 1 (i = 1; : : : ; 4) arenot necessarily equal.
Example 6.18. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2] � [0; 2] where the parameter vector is � = (�3; 2; 1:4)T . In thisexample, 2�0+2(�1+�2) = 0:8 6= 0. Therefore condition (6.35) is not satis�ed. Furthermore
0 < maxf��0�2�2 = 0:2; �0+2�1 = 1g = 1 < 1:22291 < minf��0 = 3; �0+2(�1+�2) = 4:6g = 4:6:
Thus, condition (6.84) holds and an unequally weighted 4-point design with two verticesas support points (0; 2) and (2; 0) is expected. Numerical calculations give the followingunequally weighted 4-point design as expected:

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:665; 0) (0; 2) (0:850; 2) (2; 0)0:2937 0:2774 0:1212 0:3077�1:671 �0:2 1:498 1

9>>=>>; : (6.86)
The support points of the design (6.86) are represented by symbols in Figure 6.21 (a). Clearlythese support points follow the shape of the quadrilateral AFCH in Figure 6.20 (a), and thusare not vertices of a parallelogram. The standardized variance function d(x; ��;�), for allxT = (x1; x2) 2 [0; 2]� [0; 2], represented in Figure 6.21 (b) suggests that the design (6.86) isD-optimal.
Case of Figure 6.20 (b) design patternAgain using similar arguments to those used in Sections 6.4 and 6.5, the candidate D-optimaldesigns with the design pattern in Figure 6.20 (b) have support points indicated by circles.In this case the following conditions hold:

�0 � �u� � �0 + �2b < 0 and 0 < u� � �0 + �1b
where u� = 1:22291. The two conditions can be summarized as

0 < ��0 � �2b � 1:22291 � minf��0; �0 + �1bg: (6.87)
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Figure 6.21: (a) Support points and (b) the standardized variance function d(x; ��;�) for thetwo-variable binary logistic model without interaction u = logit(p) = �0 + �1x1 + �2x2 on thedesign space [0; 2]� [0; 2] and with parameter vector � = (�3; 2; 1:4)T .
Clearly, the optimal logit at support point F is �0 + b�2. The support points A and D aresymmetric with respect to u = 0, and hence are expected to have equal weights as in Figures6.8 (a) and 6.8 (b). Hence, the expected candidate D-optimal design corresponding to thedesign pattern of Figure 6.20 (b) is

�� = ( (�u�1��0�1 ; 0) (0; b) (u�2��0�b�2�1 ; b) (u�2��0�1 ; 0)�12 �2 1� �2 �12
) (6.88)

where u�1 6= u�2, u�1 > 0, u�2 > 0, and the design weights �i with 0 < �i < 1 (i = 1; : : : ; 2) arenot necessarily equal.
Example 6.19. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2] � [0; 2] where �0 = �3, �1 = 3 and �2 = 1. Here, b = 2, ��0 = 3,��0 � �2b = 1, and �0 + �1b = 3 so that

0 < ��0 � �2b < 1:22291 < minf��0; �0 + �1bg:
Therefore condition (6.87) is satis�ed, and thus the suitable candidate D-optimal design is ofthe form (6.88). Hence one of the optimal logits is �0 + �2b = �1. Numerical calculations
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give the following 4-point candidate D-optimal design

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:574; 0) (0; 2) (0:755; 2) (1:426; 0)0:2608 0:2497 0:2287 0:2608�1:279 �1 1:265 1:279

9>>=>>; : (6.89)
The support points of the candidate D-optimal design (6.89) are represented by symbols inFigure 6.22 (a). Observe that these support points are not vertices of a parallelogram and thatpoints (0:5737; 0) and (1:4263; 0) have equal weights as expected. In addition, the candidateD-optimal design has only one vertex support point at (0; 2). The standardized variance

Figure 6.22: (a) Support points and (b) the standardized variance function d(x; ��;�) for thetwo-variable binary logistic model without interaction u = logit(p) = �0 + �1x1 + �2x2 on thedesign space [0; 2]� [0; 2] and with parameter vector � = (�3; 3; 1)T .
function d(x; ��;�) represented in Figure 6.22 (b) has a value of 3 at the four support pointsand values less than 3 elsewhere in [0; 2] � [0; 2], and thus the design (6.89) is demonstratedto be D-optimal, at least numerically.
Case of Figure 6.20 (c) design patternThe design pattern of the support points in Figure 6.20 (c) can be obtained from those ofFigure 6.20 (b) by symmetric reection about the centre of the design space [0; b] � [0; b].Using the same arguments as those developed for the previous case, the design of Figure 6.20
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(c) holds provided the following condition is satis�ed

0 < �0 + �1b � 1:22291 � minf��0 � �2b; �0 + (�1 + �2)bg: (6.90)
The expected candidate D-optimal design corresponding to the design pattern of Figure 6.20(c) is thus given by

�� = ( (�u�1��0�1 ; 0) (�u�1��0�b�2�1 ; b) (u�2��0�b�2�1 ; b) (b; 0)�1 �22 1�22 1� �1 � �2
) (6.91)

where u�1 6= u�2, u�1 > 0, u�2 > 0, and the design weights �i with 0 < �i < 1 (i = 1; : : : ; 2) arenot necessarily equal.
Example 6.20. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2]� [0; 2] where �0 = �3, �1 = 2 and �2 = 0:5. For this example,

0 < �0 + �1b = 1 < 1:22291 < minf��0 � �2b; �0 + (�1 + �2)bg = 2:
Therefore, condition (6.90) is satis�ed. Hence, the expected candidate D-optimal design is ofthe form (6.91). One of the optimal logits is �0 + 2�1 = 1. Numerical calculations give thefollowing 4-point candidate D-optimal design:

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:867; 0) (0:361; 2) (1:639; 2) (2; 0)0:2287 0:2608 0:2608 0:2497�1:265 �1:279 1:279 1

9>>=>>; : (6.92)
This design satis�es the conjectures in terms of support points and weights. The supportpoints of design (6.92) are represented by symbols in Figure 6.23 (a) and clearly these pointsare not vertices of a parallelogram. The standardized variance function d(x; ��;�) representedby Figure 6.23 (d) suggests that the design (6.92) is D-optimal.
6.8.2 Non-parallelogram designs with 2 or 3 consecutive support

points at the vertices of the design space
This section discusses the construction of 4-point non-parallelogram D-optimal designs withtwo or three adjacent support points at the vertices of the design space [0; b] � [0; b]. Thepatterns of the designs is displayed in Figures 6.24 (a) to (d). Note that for all the four designpatterns, the logit line u = 0 passes o� the centre of the design space, but intersects the twohorizontal sides. Furthermore, one of the logit lines �u and u passes outside the design space.
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Figure 6.23: (a) Support points and (b) the standardized variance function d(x; ��;�) for thetwo-variable binary logistic model without interaction u = logit(p) = �0 + �1x1 + �2x2 on thedesign space [0; 2]� [0; 2] and with parameter vector � = (�3; 2; 0:5)T .
Case of Figure 6.24 (a) design patternConsider Figure 6.24 (a). On the design space [0;1) � [0;1) and under the condition that0 � ��0 � 1:5434, the D-optimal design is known to be an equally weighted 3-point design(see Section 5.3.3). Following Sitter and Torsney (1995a), and Jia and Myers (2001), on thedesign space (�1;1) � [0; b], the support points of the candidate D-optimal design are A,B, C, and D, and lie on the optimal logit lines u� = �1:22291 (see Section 5.2). Now, on thedesign space [0; b] � [0; b], the points A, B, and D are outside the design space. Using thesame arguments as in Section 6.8.1 for the design space [0; b]� [0; b], the candidate D-optimaldesigns has support points E, F , C, and H in Figure 6.24 (a). Hence, 3 of the 4 candidateoptimal logits are u = �0 passing through point E, u = �0+�1b passing through point H, andu = �0 + �2b passing through point F . The candidate optimal logit passing through point C,and the unequal weights of the support points have to be calculated. The conditions for theexistence of the design pattern of Figure 6.24 (a) are

�1:5434 � �0 < �0 + �2b � 0 and 0 < �0 + �1b � 1:5434 < �0 + (�1 + �2)b
and the two conditions can be summarized as

0 < maxf��0; �0 + �1bg � 1:5434 < �0 + (�1 + �2)b: (6.93)
Example 6.21. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2
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Figure 6.24: 4-point D-optimal designs for the two-variable binary logistic model withoutinteraction u = logit(p) = �0 + �1x1 + �2x2 on the design space [0; b]� [0; b] with 2�0 + (�1 +�2)b 6= 0 and two or three adjacent vertices support points.
on the design space [0; 2]� [0; 2] where �0 = �1:4, �1 = 1:2 and �2 = 0:6. In this case,

0 < maxf��0 = 1:4; �0 + �1b = 1g = 1:4 < 1:5434 < �0 + 2(�1 + �2) = 2:2:
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Thus, condition (6.93) is satis�ed and hence the design pattern of Figure 6.24 (a) is conjecturedto hold. The D-optimal design corresponding to this case is

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; 2) (1:516; 2) (2; 0)0:2864 0:2797 0:1371 0:2968�1:4 �0:2 1:6194 1

9>>=>>; : (6.94)
The support points of the design (6.94) are represented by symbols in Figure 6.25 (a) and

Figure 6.25: (a) Support points and (b) the standardized variance function d(x; ��;�) ofthe D-optimal design for the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�1:4; 1:2; 0:6)T .
clearly, are not vertices of a parallelogram. As expected no pair of weights are equal forthe design (6.94). Furthermore, Figure 6.25 (b) demonstrates that the standardized variancefunction d(x; ��;�) = 3 at the 4 support points and d(u; ��;�) < 3 elsewhere as requiredfor an optimal design. Hence, the design (6.94) is demonstrated to be D-optimal, at leastnumerically.
Case of Figure 6.24 (b) design patternConsider Figure 6.24 (b). Using similar arguments to those used in the case of Figure 6.24(a), the support points of the candidate D-optimal design corresponding to Figure 6.24 (b)are E, F , C and D. Hence, 2 of the 4 candidate optimal logits are u = �0 passing throughpoint E and u = �0 + �2b passing through point F . The candidate optimal logit passing
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through points C and D, and the unequal weights of the support points have to be calculatednumerically. The conditions for the existence of the design pattern of Figure 6.24 (b) are

�1:5434 � �0 < �0 + �2b � 0 and 0 < 1:5434 � �0 + �1band the two conditions can be summarized as0 � ��0 � 1:5434 � �0 + �1b: (6.95)
Example 6.22. Consider the two-variable binary logistic model u = logit(p) = �0+�1x1+�2x2on the design space [0; 2] � [0; 2] where �0 = �1:4, �1 = 1:8 and �2 = 0:6. This example isthe same as Example 6.21 except that the value of �1 changes from 1:2 to 1:8. This impliesthat 0 < ��0 = 1:4 < 1:5434 < �0+ �1b = 2:2 and thus condition (6.95) holds, and hence thecandidate D-optimal design is that with the pattern displayed in Figure 6.24 (b). Calculationsgives the following candidate D-optimal design

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; 2) (0:840; 2) (1:618; 0)0:3117 0:2749 0:1034 0:3100�1:4 �0:2 1:312 1:512

9>>=>>; : (6.96)
Observe that no pairs of the 4 support points have equal design weights. The support pointsof the design (6.96) are represented by symbols in Figure 6.26 (a). As expected these supportpoints are not vertices of a parallelogram. Figure 6.26 (b) suggests that the design (6.96) isD-optimal since the standardized variance function d(x; ��;�) = 3 at each of the 4 supportpoints of the design (6.96), and d(x; ��;�) < 3 elsewhere in [0; 2] � [0; 2]. Thus, the design(6.96) is demonstrated to be D-optimal, at least numerically.
Case 3 of Figure 6.24 (c) design patternConsider Figure 6.24 (c). The design pattern of Figure 6.24 (c) is the symmetric reection ofthe design pattern of Figure 6.24 (a) with respect to the centre of the design space [0; b]� [0; b].Hence, the support points of the candidate D-optimal design are A, F , G, and H. Reasoningin a similar way as for the design pattern of Figure 6.24 (a), the condition for the existenceof the design pattern of Figure 6.24 (c) is0 < maxf��0 � �2b; �0 + (�1 + �2)bg � 1:5434 < ��0: (6.97)
Example 6.23. Consider the two-variable logistic model u = logit(p) = �0 + �1x1 + �2x2on the design space [0; 2] � [0; 2] where �0 = �2, �1 = 1:2 and �2 = 0:5. For this example,condition (6.97) holds since0 < maxf��0 � �2b = 1; �0 + (�1 + �2)b = 1:4g = 1:4 < 1:5434 < ��0 = 2:
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Figure 6.26: (a) Support points and (b) the standardized variance function d(x; ��;�) ofthe D-optimal design for the two-variable binary logistic model without interaction u =logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�1:4; 1:8; 0:6)T .
Therefore, a design pattern of the form displayed in Figure 6.24 (c) is conjectured. Thecandidate D-optimal design for this case is

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:362; 0) (0; 2) (2; 2) (2; 0)0:1697 0:2860 0:2715 0:2728�1:566 �1 1:4 0:4

9>>=>>; : (6.98)
The support points of the design (6.98) are represented by symbols in Figure 6.27 (a) and thestandardized variance function d(x; ��;�) is represented in Figure 6.27 (b). Figure 6.27 (a)illustrates that the support points of the design (6.98) have the pattern of Figure 6.24 (c) andFigure 6.27 (b) demonstrates, at least numerically, that the design (6.98) is D-optimal.
Case of Figure 6.24 (d) design patternConsider Figure 6.24 (d). The design pattern of Figure 6.24 (d) is the symmetric reection ofthe design pattern of Figure 6.24 (b) with respect to the centre of the design space [0; b]� [0; b].Hence the support points of the candidate D-optimal design are A, B, G and H. Reasoningin a similar way as for the design pattern of Figure 6.24 (b), the condition for the existenceof the design pattern of Figure 6.24 (d) is

0 < �0 + (�1 + �2)b � 1:5434 < ��0 � �2b: (6.99)
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Figure 6.27: (a) Support points and (b) the standardized variance function d(x; ��;�) of theD-optimal design for the two-variable binary logistic model without interaction u = logit(p) =�0+ �1x1+ �2x2 and with parameter vector is � = (�2; 1:2; 0:5)T on the design space [0; 2]�[0; 2].
Example 6.24. Consider the two-variable logistic model u = logit(p) = �0 + �1x1 + �2x2 onthe design space [0; 2]� [0; 2] where �0 = �3, �1 = 1:6 and �2 = 0:5. In this example,

0 < �0 + (�1 + �2)b = 1:2 < 1:5434 < ��0 � �2b = 2:
Therefore, condition (6.99) holds. Hence the appropriate design pattern is of the form in-dicated in Figure 6.24 (d). The corresponding candidate D-optimal design is conjectured tobe

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(1:002; 0) (0:255; 2) (2; 2) (2; 0)0:111 0:303 0:310 0:276�1:397 �1:591 1:2 0:2

9>>=>>; : (6.100)
The support points of the design (6.100) are represented by symbols in Figure 6.28 (a) and thestandardized variance function d(x; ��;�) is represented in Figure 6.27 (b). Clearly, Figure6.28 (a) illustrates that the design (6.100) has the design pattern of Figure 6.24 (d) and Figure6.28 (b) suggests that the design (6.100) is D-optimal.
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Figure 6.28: (a) Support points and (b) the standardized variance function d(x; ��;�) of theD-optimal design for the two-variable binary logistic model without interaction u = logit(p) =�0+�1x1+�2x2 on the design space [0; 2]�[0; 2] and with parameter vector � = (�3; 1:6; 0:5)T .
6.9. Practical example

Consider the data analyzed by Martin (1942) and by Greco and Lawrence (1988) presented inTable A.1. The purpose of the experiment which generated the data was to examine the lethale�ect of two insecticides, rotenone and deguelin, on chrysanthemum aphids. The explanatoryvariables, d1 and d2, were concentrations in milligrams per littre, mg/l, of the two insecticides.The design setting appears to be 16-point ray design on the design space [0; 10:2] � [0; 50:5]with 5 support point points on each of the rays d1 = 0 and d2 = 0, and 6 support pointson the ray d2 ' 4d1. Greco and Lawrence (1988) �tted the binary response model (2.29) inSection 2.4.2. The results for the present data were that the interaction parameter was notsigni�cantly di�erent from zero.The aim of introducing this example here is �rst to show that the two-variable binary logisticmodel without interaction, discussed in this chapter, provides similar results to those reportedby Greco and Lawrence (1988). Secondly, and more importantly, the example is chosen as areal life application of the trapezium design introduced in this thesis, and in order to showthat the 4-point trapezium design is more e�cient than the 16-point design used to generatethe data. It has been found in Section 4.4.3, Example 4.1, that �tting the two-variablebinary logistic model with interaction u = logit(p) = �0 + �1d1 + �2d2 + �12d1d2 to the
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present data set gives the estimates b�12 = 0:0074 (p-value = 0:2237). Since the interactionparameter is not signi�cantly di�erent from zero, �tting the two-variable binary logistic modelwithout interaction u = logit(p) = �0 + �1d1 + �2d2 gives parameter estimates b�0 = �2:0297,b�1 = 0:4276 and b�2 = 0:1554 all signi�cantly di�erent from zero. Transforming the rectangulardesign space [0; 10:2]�[0; 50:5] to the square design space [0; 2]�[0; 2] using the transformation(6.4) gives �0new = �2:0297, �1new = 2:1808 and �2new = 3:9239. For this example
1:5434 < minf��0new = 2:0297; �0new + �1newb = 2:3319; �0new + �2newb = 5:8181g = 2:0297:
Hence, condition (6.5) holds and thus the candidate D-optimal design is conjectured to be a4-point trapezium design. The design for this example is therefore

�� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0:257; 0) (0; 0:143) (0; 0:892) (1:605; 0)0:1688 0:1688 0:3312 0:3312�1:470 �1:470 1:470 1:470

9>>=>>; (6.101)
where x1 = 5:1d1 and x2 = 25:25d2 following transformations (6.3). The support points of thedesign (6.101) are represented by symbols in Figure 6.29 (a) and are vertices of a trapezium.The weights associated with points located on the same logit are equal as expected for a4-point trapezium design. For all x = (x1; x2)T with (x1; x2) 2 [0; 2]� [0; 2], the standardized

Figure 6.29: (a) Support points of the D-optimal design and (b) the standardized vari-ance function d(x; ��;�) for the two-variable binary logistic model without interactionu = logit(p) = �0 + �1x1 + �2x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�2:0297; 2:1808; 3:9239)T for Martin (1942) data.
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variance function d(x; ��;�) plotted in Figure 6.29 (b) suggests that the design is D-optimalsince d(x; ��;�) � 3 with equality at the support points of the design (6.101).The D-optimal design for the original data can be obtained using the transformations (6.3)and is given by

�� =
8>><>>:

(d1; d2)�u
9>>=>>; =

8>><>>:
(1:311; 0) (0; 3:611) (0; 22:523) (8:1855; 0)0:1688 0:1688 0:3312 0:3312�1:470 �1:470 1:470 1:470

9>>=>>; : (6.102)
Now, consider calculating the e�ciency of the 16-point design, �, used to generate the dataof Table A.1 relative to the D-optimal design �� given by (6.102). The determinant of theinformation for the parameter vector � = (�2:0297; 0:4276; 0:1554)T evaluated at design � isjM(�;�)j = 1:071, while the determinant of the information matrix of the same parametervector at design (6.102) is jM(��;�)j = 3:106. Hence, the D-e�ciency (3.38) for the originaldesign � relative to the D-optimal design (6.102) is

De� = � jM(�;�)jjM(��;�)j�1=3 = 0:701:
Thus, since De� = 0:701 < 1, then the 4-point D-optimal trapezium design (6.102) is moree�cient than the 16-point ray design used to generate the data of Table A.1.

6.10. Conclusions
In this chapter, the construction of the D-optimal designs for the two-variable binary logisticmodel without interaction u = logit(p) = �0 + �1x1 + �2x2 on the design space [a; b] � [c; d],transformed to [0; b]� [0; b] for ease of calculations, was discussed. The candidate D-optimalwere investigated semi-analytically and semi-numerically. Conditions for the existence of thedesign patterns of the candidate D-optimal designs were derived and the optimal designs wereconstructed numerically, and the optimality of the designs checked graphically. The numberof support points of the D-optimal designs varied from 3 to 6. In cases when �0 + �1b > 0and �0+�2b > 0 and the logit line u = 1:5434 lies below the diagonal line joining points (0; b)and (b; 0), the D-optimal designs were found to be same as the 4-point trapezium and the3-point designs discussed in Chapter 5. In addition cases when �0+ �1b < 0 and �0+ �2b < 0and the logit line u = �1:5434 lies above the diagonal line joining points (0; b) and (b; 0), theD-optimal designs were also found to be 4-point trapezium D-optimal designs and the 3-pointD-optimal designs. The term trapezium is taken in the sense that parallel sides are logit lines.
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Non-trapezium D-optimal designs were found in cases when �0 + �1b and �0 + �2b have thesame sign, but the logit line u = 1:5434 passes above at least one of the points (0; b) and (b; 0).In cases when the signs of �0 + �1b and �0 + �2b alternate but with �1 6= �2 and the logitline u = 0 passes through the origin of the design space [0; b] � [0; b], i.e. �0 = �b(�1 + �2)2 ,the candidate D-optimal designs were found to be same as the 4-point parallelogram designsof Sitter and Torsney (1995a), and Jia and Myers (2001), and some cases of Atkinson andHaines (1996) discussed in 4 and in Section 5.2. D-optimal parallelogram designs for modelu = logit(p) = �0+�1x1+�2x2 on the design space [0; b]�[0; b] were also found when �0 = �b�1and �1 = �2 � 2:1150b . Candidate D-optimal designs with 5 or 6 support points were found incases when �1 = �2 > 2:1150b and �0 = �b�1. Cases of 4-point non-parallelogram designs werefound when the signs of �0+�1b and �0+�2b alternate, and �1 6= �2, but with �0 6= � b(�1+�2)2 .A practical example on the joint e�ect of two insecticides was used to show that optimaldesigns use less experimental runs but are more e�cient than some well known experimentaldesigns.
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7
D-optimal Designs for the Two-Variable
Binary Logistic Model with Interaction

7.1. Introduction
Drugs, insecticides, or other compounds may exhibit a synergistic e�ect when administeredin combination. Some models for detecting an interaction between two drugs were reviewedin Chapter 2. This chapter will deal with the construction of D-optimal designs for thetwo-variable binary logistic model with interaction

u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 (7.1)
discussed in Section 2.4.4. In the model (7.1), x1 2 R and x2 2 R can be taken as dose orlog-dose concentrations of two drugs. The theory of statistical tests for drug interaction iswell developed. For example, Hosmer and Lemeshow (2000) and Collett (2003) describe theapplications to data that is described by the binary logistic regression model without andwith interaction. However, very little work exists in literature on the construction of optimaldesigns for detecting drug interaction. D-optimal designs for the precise estimation of theparameters of the two-variable binary logistic model with interaction (7.1) was discussed byJia and Myers (2001). The class of the designs discussed by Jia and Myers (2001) is narrowsince the designs were restricted to equally weighted 4-point designs with support points beingthe vertices of a parallelogram whose two opposite sides lie on the logit lines u = �1:5434(see Section 4.6.2). In addition to these restrictions on the class of the designs, Jia and Myers(2001) did not prove the D-optimality of their 4-point design. These two issues are addressedin this chapter by further investigating the candidate D-optimal design patterns introducedin Jia and Myers (2001). In particular, the D-optimal designs do not necessarily need to
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have 4 support points, and the support points of the D-optimal designs do not necessarilyhave to be equally weighted. Kupchak (2000), as reviewed in Section 4.6.1, also discussed theconstruction of D-optimal designs for the two-variable binary logistic model with interaction(7.1), but his interest was mainly in constructing designs for the precise estimation of theinteraction parameter �12 alone, and for the precise estimation of all the parameters assumingthat the interaction �12 = 0. In this chapter, analytical and numerical constructions ofD-optimal designs for the precise estimation of all the four parameters in model (7.1) areundertaken. The approach used to construct candidate D-optimal design patterns is that ofJia and Myers (2001) with some modi�cations and extensions.This chapter contains the following sections. Section 7.2 gives a proof of the D-optimality ofthe design of Jia and Myers (2001) for the two-variable binary logistic model with interaction.Section 7.3 discusses a variant of the design approach of Jia and Myers (2001) on the designspace (�1;1)� [c; d] where c and d are real numbers. Section 7.4 discusses the constructionof the D-optimal designs for synergy using the two-variable binary logistic model (7.1) withparameters satisfying the conditions �0 < 0, �1 > 0, �2 > 0 and �12 > 0. Section 7.5discusses the construction of the D-optimal designs for antagonism using model (7.1) withparameters satisfying the conditions �0 < 0, �1 > 0, �2 > 0 and �12 < 0. Section 7.6briey discusses the construction of D-optimal designs for synergy and antagonism for model(7.1) with respectively �0 > 0, �1 < 0, �2 < 0 and �12 < 0, and �0 > 0, �1 < 0, �2 < 0and �12 > 0. Two practical examples of constructing D-optimal designs for synergy andantagonism are given in Section 7.7 and Section 7.8 concludes the chapter. Throughout thechapter, D-optimal designs for simple cases are constructed analytically using the EquivalenceTheorem for D-optimality. In complex cases the patterns of the candidate D-optimal designsare conjectured under speci�c conditions, and then the D-optimal designs are constructednumerically using the Gauss program in Appendix C. The D-optimality of the designs ischecked graphically by plotting the standardized variance function over the design space.

7.2. D-optimality of the design of Jia and Myers
In Section 4.4.2, the equation u = �0 + �1x1 + �2x2 + �12x1x2 given in model (7.1), with(x1; x2) 2 R2, was described by Jia and Myers (2001) as an hyperbola with centre(x01; x02) = ���2�12 ; ��1�12

� for a �xed value of u. Then model (7.1) was re-parameterized tomodel u = logit(p) = ��0 + �12z1z2 (7.2)
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where ��0 = �0 � �1�2�12 is the value of the logit u given in (7.1) with (x1; x2) = (x01; x02),
and (z1; z2) = �x1 + �2�12 ; x2 + �1�12

� 2 R2 is the transformed value of an arbitrary (x1; x2)
by translation which moves the centre ���2�12 ; ��1�12

� to (0; 0) (see Figures 4.7 to 4.9). Jiaand Myers (2001) suggested for model (7.2) a 4-point candidate D-optimal design � withsupport points located on each of the two branches of the hyperbolae u1 = ��0 + �12z1z2 andu2 = ��0+�12z1z2 with u1 < u2. The abscissa of the support points located on the two branchesof the hyperbola u1 were chosen as z11 = �1 and z31 = ��1, and those on the hyperbolau2 as z21 = t�1 and z41 = �t�1 where �1 > 0 and t 2 (0;1). In addition, Jia and Myers(2001) assumed that the support points located on the same hyperbola, or logit line, haveequal weights. Hence, the candidate D-optimal design proposed by Jia and Myers (2001) formodel (7.2) on the (z1; z2) design space R2 is of the form
� = 8<:

��1; u1 � ��0�12�1
� �t�1; u2 � ��0t�12�1

� ���1;�u1 � ��0�12�1
� ��t�1;�u2 � ��0t�12�1

�
�2 1��2 �2 1��2

9=; :
(7.3)Jia and Myers (2001) set t = 1 so that the support points of the candidate D-optimal design(7.3) are vertices of a parallelogram and obtained an equally weighted 4-point design withsupport points on the two logit lines u� = �1:5434. Hence, the design (7.3) of Jia and Myers(2001) can be written as

�� = 8<:
��1; �u� � ��0�12�1

� ��1; u� � ��0�12�1
� ���1; u� + ��0�12�1

� ���1; �u� + ��0�12�1
�

14 14 14 14
9=;

where �1 > 0 and u� = 1:5434. Jia and Myers (2001) did not prove the D-optimality of theabove 4-point design. However, a proof for D-optimality of the design �� is easy by noting thatmodel (7.2) is explicitly de�ned by only two parameters ��0 and �12. The following propositionis on the D-optimality of the design ��.
Proposition 7.1. The design

�� = 8<:
��1; �u� � ��0�12�1

� ��1; u� � ��0�12�1
� ���1; u� + ��0�12�1

� ���1; �u� + ��0�12�1
�

14 14 14 14
9=; ;
(7.4)for the two-variable binary logistic model u = logit(p) = ��0 + �12z1z2 on the design space R2,where �1 > 0 and u� = 1:5434, is D-optimal.
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ProofThe information matrix for � = (��0 ; �12)T , in model (7.2), evaluated at a support pointz = (z1; z2)T is

M(z;�) = eu(1 + eu)2
" 1z1z2

# [1 z1z2] = eu(1 + eu)2
" 1 z1z2z1z2 z21z22

# : (7.5)
Furthermore, the information matrix for � = (��0 ; �12)T evaluated at the 4-point design (7.4)is

M(��;�) = 14 4X
i=1 M(zi;�) = eu�(1 + eu�)2

24 1 � ��0�12� ��0�12 (��20 +u�2)�212
35

where u� = 1:5434. The D-optimality of design (7.4) is proved by showing that the standard-ized variance function d(z; ��;�) = tr fM�1(��;�)M(z;�)g � 2 for all z = (z1; z2)T 2 R2with the equality holding at the support points of design ��. Let u = ��0 + �12z1z2 where(z1; z2) 2 R2. Simple calculations combined with the results of Theorem 4.1 lead to
d(z; ��;�) = eu�u�(1 + eu�)2(u�2 + ��20 + 2��0�12z1z2 + �212z21z22)u�2(1 + eu)2= eu�u�(1 + eu�)2(u�2 + u2)u�2(1 + eu)2 � 2

for all u 2 R with the equality holding at u = u�: �
7.3. An alternative to the design of Jia and Myers

7.3.1 Equally weighted 4-point D-optimal designs on the design
space R� [c; d]

In Section 4.6.2, it was argued that setting t = 1 leads to a narrow class of designs, particularlydesigns with support points which are vertices of a parallelogram. In addition, guessing thevalue of �1 in design (7.4) further narrows the class of D-optimal designs. This sectiondiscusses an alternative approach for constructing a 4-point D-optimal design without anexplicit knowledge of �1 and without forcing the candidate 4-point D-optimal designs to havesupport points at the vertices of a parallelogram. In this regard, consider the two-variablebinary logistic models (7.1) and (7.2). As in the case of the construction of D-optimal designsfor the two-variable binary logistic model without interaction discussed in Chapters 5 and 6,a restriction on the design space R2 is needed for constructing D-optimal designs for the two-variable binary logistic model with interaction (7.1). To obtain a restriction on the design space
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R2 for model (7.1), assume that x1 2 R and x2 2 [c; d] where c and d are �xed real numbers.The restriction c � x2 � d is equivalent to c� � z2 � d� in model (7.2), where c� = c+ �1�12and d� = d+ �1�12 . Since x1 2 R, it follows from (7.1) that the logit u is unrestricted and henceu can theoretically be any real number. Also, as in Jia and Myers (2001), assume that thesupport points of the D-optimal design are located on two logits u1 and u2 with u1 < u2. Asin Section 4.6.2, the following three design cases can be considered.

1. u1 < ��0 < u2. Figure 7.1 (a) displays the design pattern for this case when �12 < 0,and Figure 7.1 (b) displays the design pattern for the case when �12 > 0. The supportpoints of the candidate 4-point D-optimal design are A, B, C and D which are spreadin the 4 quadrants of the (z1; z2) design space with z1 2 R and z2 2 [c�; d�].
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Figure 7.1: Design patterns of the candidate D-optimal design for the two-variable binarylogistic model with interaction u = logit(p) = �0+�1x1+�2x2+�12x1x2 on the (x1; x2) designspace R� [c; d] and for the case of u1 < ��0 < u2: (a) �12 < 0; (b) �12 > 0: Circles are supportpoints.
2. ��0 < u1 < u2. Figures 7.2 (a) and (b) display the respective design patterns for thiscase when �12 < 0 and �12 > 0. The support points of the 4-point candidate D-optimaldesign are A, B, C and D which are in the following two quadrants of the (z1; z2) designspace: (a) second and fourth quadrants when �12 < 0; and (b) �rst and third quadrantswhen �12 > 0.
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Figure 7.2: Design patterns of the candidate D-optimal design for the two-variable binarylogistic model with interaction u = logit(p) = �0+�1x1+�2x2+�12x1x2 on the (x1; x2) designspace R � [c; d] and for the case of ��0 < u1 < u2: (a) �12 < 0; and (b) �12 > 0: Circles aresupport points.
3. u1 < u2 < ��0 . Figures 7.3 (a) and (b) display the respective for this case when �12 < 0and �12 > 0. The support points of the 4-point candidate D-optimal design are A, B,C and D which are in the following two quadrants of the (z1; z2) design space: (a) �rstand third quadrants when �12 < 0; and (b) second and fourth quadrants when �12 > 0.

Proposition 7.2 formalizes the fact that each of the 4-point designs with design patternsdisplayed in Figures 7.1 to 7.3 is D-optimal.
Proposition 7.2. The design

�� = 8<:
�u���0��2c�1+�12c ; c� ��u���0��2c�1+�12c ; c� �u���0��2d�1+�12d ; d� ��u���0��2d�1+�12d ; d�14 14 14 14

9=; ; (7.6)
where u� = 1:5434, for the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space R � [c; d] where c and d are constants, isD-optimal.
ProofConsider Figures 7.1 to 7.3. In each of the �gures, the support points of a candidate 4-point D-optimal design � for model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design
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Figure 7.3: Design patterns of the candidate D-optimal design for the two-variable binarylogistic model with interaction u = logit(p) = �0+�1x1+�2x2+�12x1x2 on the (x1; x2) designspace R � [c; d] and for the case of u1 < u2 < ��0 : (a) �12 < 0; and (b) �12 > 0: Circles aresupport points.
space R � [c; d] are A�u2 � �0 � �2c�1 + �12c ; c�, B�u1 � �0 � �2c�1 + �12c ; c�, C �u2 � �0 � �2d�1 + �12d ; d� and
D�u1 � �0 � �2d�1 + �12d ; d�. As model u = logit(p) = �0+�1x1+�2x2+�12x1x2 has 4 parameters,then the weights associated with the 4 support points of � are equal. Then the candidate4-point D-optimal design for model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the (x1; x2)design space R� [c; d] is of the form

� = 8<:
�u2��0��2c�1+�12c ; c� �u1��0��2c�1+�12c ; c� �u2��0��2d�1+�12d ; d� �u1��0��2d�1+�12d ; d�14 14 14 14

9=; : (7.7)
LetM(�;�) be the information matrix for the parameters of model u = logit(p) = �0+�1x1+�2x2 + �12x1x2 evaluated at the design � given by (7.7). The determinant of M(�;�) is

D1 = (d� c)4e2(u1+u2)(u1 � u2)4256(�1 + �12c)2(�1 + �12d)2(1 + eu1)4(1 + eu2)4which is proportional to D = e2(u1+u2)(u1 � u2)4(1 + eu1)4(1 + eu2)4 (7.8)
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which, in turn, is proportional to the determinant (4.47) in Section 4.6.2. Therefore, D andthus D1 is maximum at u2 = �u1 = u� = 1:5434. Consequently, the candidate D-optimaldesign of the form (7.7) is

�� = 8<:
�u���0��2c�1+�12c ; c� ��u���0��2c�1+�12c ; c� �u���0��2d�1+�12d ; d� ��u���0��2d�1+�12d ; d�14 14 14 14

9=; ; (7.9)
where u� = 1:5434. Clearly, the candidate D-optimal design �� given in (7.9) is the sameas the design (7.6). It remains to prove D-optimality of the design (7.9) by showing thatthe standardized variance function is less than or equal to the number of parameters 4 withequality holding at the support points of ��. The standardized variance function associatedwith the design (7.9) is
d(x; ��;�) = 2eu�u�(1 + eu�)2 f[u�2 + (s0 + s1x1)2] (x2 � c)2 + [u�2 + (q0 + q1x1)2] (x2 � d)2g(d� c)2u�2(1 + eu)2 (7.10)where s0 = �0+�2c, s1 = �1+�12c, q0 = �0+�2d, q1 = �1+�12d and x = (x1; x2)T 2 R� [c; d].Note that as x1 2 R, then s0 + s1x1 = �0 + �2c+ �1x1 + �12x1c is the branch intersecting theline x2 = c of an arbitrary hyperbola u = �0 + �1x1 + �2x2 + �12x1x2. Similarly, q0 + q1x1 =�0 + �2d+ �1x1 + �12dx1 is the branch intersecting the line x2 = d of the arbitrary hyperbolau = �0 + �1x1 + �2x2 + �12x1x2. Thus, the standardized variance function (7.10) can besimpli�ed to

d(x; ��;�) = 2eu�u�(1 + eu�)2(u�2 + u2) [(x2 � c)2 + (x2 � d)2](d� c)2u�2(1 + eu)2 (7.11)
Clearly, d(x; ��;�) = 4 at all the 4 support points of the design (7.9) at which u = �u� andx2 = c or x2 = d. It remains to show that d(x; ��;�) � 4 for all (x1; x2)T 2 R � [c; d]. In(7.11) the quadratic polynomial f(x2) = (x2� c)2+ (x2� d)2 = 2x22� 2(c+ d)x2+ c2+ d2 hasthe global minimum (d� c)22 attained at x2 = c+ d2 . Then, since c � x2 � d, then f(x2) hasthe global maximum (d� c)2 attained at x2 = c or x2 = d. Hence,

d(x; ��;�) � g(u) = 2eu�u�(1 + eu�)2(u2 + u�2)u�2(1 + eu)2 � 4
since eu�u�(1 + eu�)2(u2 + u�2)u�2(1 + eu)2 � 2 (see Theorem 4.1 in Section 4.3). Thus, the design (7.6)is D-optimal. �
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7.3.2 D-optimal designs on the design space [0; b]� [0; d]
In practical situations the design space is bounded. In the case of two drugs, say A and B, thedoses or log-doses x1 and x2 can be from a rectangular design space of the form [a; b]� [c; d]where a, b, c and d are real numbers. Because of the restrictions a � x1 � b and c � x2 � don both x1 and x2, the number of points of intersection of the curves of the hyperbolae u1 andu2 in each of the Figures 7.1 to 7.3 and the design space boundaries is no longer necessarily 4,but can vary from 4 to 8. Hence, various design patterns with the number of support pointsvarying from 4 to 8 can result depending on the values of the model parameters and the designspace [a; b] � [c; d]: In such cases, it can be conjectured that the optimal positive logit is notnecessary u� = 1:5434.As in Section 6.2 of Chapter 6, suppose that the original design space [a; b]�[c; d] is transformedto a new design space [a1; b1]� [c1; d1] for the sake of ease of constructing the designs on thenew space. Then as in (6.3), the support points on [a1; b1]� [c1; d1] are (x1new; x2new) given by( x1new = (b1�a1)x1�(ab1�a1b)b�ax2new = (d1�c1)x2�(cd1�c1d)d�c : (7.12)
However, because of the additional interaction term �12x1x2 in model (7.1), the new parame-ters are no longer given by (6.4), but are given by8>>>>><>>>>>:

�1new = (b�a)�1b1�a1 + (b�a)(cd1�c1d)�12(b1�a1)(d1�c1)�2new = (d�c)�2d1�c1 + (d�c)(ab1�a1b)�12(d1�c1)(b1�a1)�12new = (b�a)(d�c)�12(b1�a1)(d1�c1)�0new = �0 + (ab1�a1b)�1b1�a1 + (cd1�c1d)�2d1�c1 + (ab1�a1b)(cd1�c1d)�12(b1�a1)(d1�c1) :
(7.13)

In order to reduce complications in the notations and calculations, the design space that willbe used throughout this chapter is the square [0; b]� [0; b] obtained by setting a = c = 0 andd = b in the design space [a; b]�[c; d]. If required, the transformations (7.12) and (7.13) will beused to transform the designs from the (x1; x2) design space [0; b]� [0; b] to the (x1new; x2new)design space [a1; b1]� [c1; d1].As discussed in Chapter 2, if �0 < 0, �1 > 0 and �2 > 0, then there is synergy betweentwo drugs if �12 > 0, no interaction between the drugs if �12 = 0, and antagonism betweenthe drugs if �12 < 0. The construction of D-optimal designs on the square [0; b] � [0; b] will�rst be discussed assuming that the two drugs interact synergically, and then the results willbe extended to some cases of antagonistic interaction. Other cases of antagonism will bediscussed independently when deduction from synergy is di�cult.
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7.4. D-optimal designs for synergy

Consider the two-variable binary logistic model with interaction (7.1) on the design space[0; b]� [0; b]. It has to be noted that under the assumptions that �0 < 0, �1 > 0, �2 > 0 and�12 > 0, ��0 = �0 � �1�2�12 < �0 < 0. Furthermore, in the case of synergy (�12 > 0) with logit u�xed, �1 > 0 and �2 > 0, the centre �� �2�12 ;� �1�12
� of the hyperbola given by (7.1) is outsidethe design space [0; b] � [0; b] since the coordinates of the centre are all negative. Becausethe branches of any hyperbola are symmetric with respect to its centre, the pattern of thecandidate D-optimal design will depend on the location of the 4 branches of the hyperbolae�u = �0 + �1x1 + �2x2 + �12x1x2 relative to the design space [0; b] � [0; b]. As discussed inSection 4.6.2 and Section 7.3, these branches may be spread in the four quadrants of R2 ifj��0 j < 1:5434 or in just two quadrants if j��0 j > 1:5434, where ��0 = �0 � �1�2�12 .Section 7.4.1 discusses D-optimal designs for the case when (x1; x2) 2 [0;1)�[0;1) and j��0 j <1:5434 while Section 7.4.2 considers the designs for the cases when (x1; x2) 2 [0; b]� [0; b] andj��0 j < 1:5434. Section 7.4.3 discusses the designs for the cases when (x1; x2) 2 [0;1)� [0;1)and ��0 < �1:5434, and when (x1; x2) 2 [0; b]� [0; b] and ��0 < �1:5434.

7.4.1 D-optimal designs on [0;1)� [0;1) when j��0 j < 1:5434
Consider the two-variable binary logistic model (7.1) where (x1; x2) 2 [0;1)� [0;1). Recallfrom Section 4.6.2 and Section 7.3 that if j��0 j < u = u� = 1:5434 and �1 < x1 < 1and c � x2 � d, then the 4 hyperbolic branches corresponding to logits �u = 1:5434 arespread in the 4 quadrants of R2 generated by the asymptote lines x1 = � �2�12 and x2 = � �1�12 .If (x1; x2) 2 [0;1) � [0;1), then only points located in the �rst quadrant of R2 can bethe support points of the candidate D-optimal design. Figure 7.4, without the upper limitsx1 = b and x2 = b, displays the pattern of one such candidate D-optimal design. Also,since ��0 = �0 � �1�2�12 < �0 � 0, then hyperbolic curves in Figure 7.4 satisfy the condition�u = �u� < ��0 < �0 � 0 where u� = 1:5434, or, equivalently

0 � ��0 < ���0 � 1:5434: (7.14)
The construction of the D-optimal design with the design pattern displayed in Figure 7.4 canbe done as follows. As in Section 5.3.3 on the 3-point D-optimal design, point E(0; 0) is oneof the support points of the candidate D-optimal design. Therefore one of the optimal logits
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Figure 7.4: Design pattern of the candidate D-optimal design for the two-variable binarylogistic model with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space[0;1)� [0;1) where �0 < 0, �1 > 0, �2 > 0, �12 > 0, ��0 = �0 � �1�2�12 and 0 < ��0 < ���0 <1:5434 <1. Circles are support points.
is u = �0. As with the case of the two-variable binary logistic model without interaction, theother two support points are A(u� �0�1 ; 0) and B(0; u� �0�2 ), the points of intersection of thelogit line u = �0+�1x1+�2x2+�12x1x2 and the boundary of the design space [0;1]� [0;1].However, a design with support points A, B, and E is singular for estimating the interactionparameter �12 since the interaction term in model (7.1) vanishes at the three support points.Hence, there is a need of an interior support point, say J in Figure 7.4 at which the interactionterm in the model does not vanish. In order to account for the potency of the second drugwith respect to the �rst drug, the coordinates of the interior support point J should satisfythe condition x2 = 1�x1 where � = �2�1 is the potency of the second drug relative to the �rst
drug (see Section 2.4.4). Hence, x2 = �1�2x1, i.e. J is the point of intersection of logit line, sayu1, and the interior ray joining E(0; 0) and the centre (� �2�12 ;� �1�12 ) of the hyperbolae logit �u:Ray designs for similar models are also discussed in O'Brien (2004), and in Kupchak (2000,pp. 126-138). The coordinates of the interior point J are positive solutions for x1 and x2 to
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the simultaneous equations( x2 = �1x1�2u1 = �0 + �1x1 + �2x2 + �12x1x2: (7.15)
The solution for (x1; x2) to the equations (7.15) is8<: x1J = � �2�12 + p�1�2[�1�2+�12(u1��0)]�1�12x2J = � �1�12 + p�1�2[�1�2+�12(u1��0)]�2�12 : (7.16)
Hence, the candidate D-optimal design � with support points represented by circles in Figure7.4 is

� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) �0; u��0�2 � �u��0�1 ; 0� (x1J ; x2J)14 14 14 14�0 u u u1

9>>=>>; (7.17)
where x1J and x2J are given by (7.16). The information matrix for the parameter vector� = (�0; �1; �2; �12)T evaluated at design (7.17) is

M(�;�) =
266664
m11 m12 m13 m14m21 m22 m23 m24m31 m32 m33 m34m41 m42 m43 m44

377775
where

m11 = 14 � 2eu(1+eu)2 + eu1(1+eu1 )2 + e�0(1+e�0)2�m12 = m21 = eu(u��0)4�1(1+eu)2 + eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�4�1�12(1+eu1 )2m13 = m31 = eu(u��0)4�2(1+eu)2+ eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�4�2�12(1+eu1 )2m14 = m41 = eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�24�1�212�2(1+eu1 )2m22 = eu(�0�u)24�21(1+eu)2 + eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�24�21�212(1+eu1 )2m23 = m32 = eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�24�1�212�2(1+eu1 )2m24 = m42 = eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�34�21�312�2(1+eu1 )2m33 = eu(�0�u)24�22(1+eu)2 + eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�24�22�212(1+eu1 )2m34 = m43 = eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�34�1�312�22(1+eu1 )2m44 = eu1�p�1�2(��0�12+u1�12+�1�2)��1�2�44�21�412�22(1+eu1 )2 :

(7.18)
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The determinant of M(�;�) is

D = (u� �0)4e�0+2u+u1 n�212(u1 � �0)2 + 8�1�2[�1�2 + �12(u1 � �0)]� 4[2�1�2 + �12(u1 � �0)]p�1�2[�1�2 + �12(u1 � �0)]o256�21�22�412(1 + e�0 )2(1 + eu)4(1 + eu1 )2which is proportional to the product of
Du = (u� �0)4e2u(1 + eu)4 (7.19)

and Du1 = n�212(u1 � �0)2 + 8�1�2[�1�2 + �12(u1 � �0)]� 4[2�1�2 + �12(u1 � �0)]p�1�2[�1�2 + �12(u1 � �0)]o eu1(1 + eu1 )2 : (7.20)Expression (7.19) is the same as the determinant (5.36) which was shown to have equalmaximum values at u = �0 and u = u� where u� is the unique solution, on [0;1), of theequation 2� �0 + u+ 2eu + �0eu � ueu = 0 (7.21)for 0 � ��0 � 1:5434 (see equation (5.38)). The second row of Table 5.3 contains values ofu� for selected values of �0.For a given value of the parameter vector � = (�0; �1; �2; �12)T , the value of u1 which max-imizes (7.20) can be found numerically. The D-optimality of the numerically constructeddesign (7.17) can be checked using the graph of the standardized variance function d(x; �;�)versus xT = (x1; x2) 2 [0;1]� [0;1] as illustrated in the following numerical example.
Example 7.1. Consider the two-variable binary logistic model with interaction u = logit(p) =�0+�1x1+�2x2+�12x1x2 where (x1; x2) 2 [0;1]�[0;1] and with parameter values �0 = �0:5,�1 = 2, �2 = 1:5 and �12 = 3. In this example, �12 = 3 > 0 and ��0 = �0 � �1�2�12 = �1:5 sothat 0 < ��0 = 0:5 < ���0 = 1:5 < 1:5434: Hence, condition (7.14) is satis�ed. Therefore,the expected D-optimal design is of the form (7.17). Since, �0 = �0:5 > �1:5434, the secondrow of Table 5.3 gives u� = 2:075 as solution for u to the equation (7.21). Furthermore, thefunction (7.20) is

Du1 = �110:25 + 81u1 + 9u21 � (51:96 + 20:79u1)p4:5 + 3u1	 eu1(1 + eu1)2 :
The graph of Du1 versus u1 � �0 = �0:5 displayed in Figure 7.5 indicates that the Du1 hasonly one maximum on [�0:5;1). Di�erentiating Du1 with respect to u1 and numericallysolving @Du1@u1 = 0 for u1 gives the solution u�1 = 2:832. Setting �0 = �0:5, �1 = 2, �2 = 1:5,�12 = 3, u = 2:075 and u1 = 2:832 in design (7.17) gives

�� =
8>><>>:

(0; 0) (0; 1:717) (1:287; 0) (0:541; 0:721)14 14 14 14�0:5 2:075 2:075 2:832
9>>=>>; : (7.22)
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Figure 7.5: Graph of the function Du1 = f110:25+81u1+9u21�(51:96+20:79u1)p4:5+3u1geu1(1+eu1 )2 versus u1 ��0 = �0:5:
The support points of the design (7.22) are represented by triangles and a diamond in Figure7.6 (a). The standardized variance function associated with design (7.22) is

Figure 7.6: (a) Support points of design (7.22) and (b) the standardized variance functiond(x; ��;�) on the design space [0;1]� [0;1] where � = (�0:5; 2; 1:5; 3)T . The triangles anda diamond are support points of design (7.22).

180



Chapter 7 { D-optimal Designs for the Two-Variable Binary Logistic Modelwith Interaction
d(x; ��;�) = eu(1+eu)2n17:02� 26:44x1 + 34:62x21 � 19:83x2 + 1:42x1x2 � 56:69x21x2+19:47x22 � 42:52x1x22 + 597:84x21x22o (7.23)

where u = �0:5 + 2x1 + 1:5x2 + 3x1x2 and (x1; x2) 2 [0;1) � [0;1). The function (7.23)plotted in Figure 7.6 (b) has maximum value of 4 at the 4 support point of the candidateD-optimal design (7.22). Hence, the design (7.22) is D-optimal.
7.4.2 D-optimal designs on [0; b]� [0; b] when j��0 j < 1:5434
Reconsider Figure 7.4 but with the design space restricted to the square [0; b] � [0; b]. Re-stricting the design space to [0; b]� [0; b] is practical as was argued in Section 7.3.2, and givesrise to the following candidate D-optimal design cases.Case when 1:5434 � min(�0 + �1b; �0 + �2b)In this case, the points (0; b) and (b; 0) lie above the logit line u = 1:5434. This conditioncombined with condition (7.14) gives the design condition

0 < ��0 < ���0 < 1:5434 � min(�0 + �1b; �0 + �2b) (7.24)
where ��0 = �0� �1�2�12 . The candidate D-optimal design which satis�es condition (7.24) is design(7.17). Furthermore, the parameter values in Example 7.1 satisfy condition (7.24) since

0 < ��0 = 0:5 < ���0 = 1:5 < 1:5434 � min(�0 + �1b; �0 + �2b) = 2:5:
Case when �0 + �1b < 1:5434 < �0 + �2bIn this case, the points (b; 0) and (0; b) lie below and above the logit line u = 1:5434: Thiscondition together with condition (7.14) gives the design condition

�1:5434 < ��0 < �0 < �0 + �1b � 1:5434 � �0 + �2b (7.25)
where ��0 = �0 � �1�2�12 . The candidate D-optimal design which satis�es condition (7.25) is
design (7.17) with support point (u� �0�1 ; 0) replaced by (b; 0). That is, design

� =
8>><>>:

(0; 0) (0; u��0�2 ) (b; 0) (x1J ; x2J)14 14 14 14�0 u �0 + �1b u1
9>>=>>; : (7.26)
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The determinant of the information matrix for � = (�0; �1; �2; �12)T evaluated at design (7.26)is the product of (7.20) and

D = (u� �0)2(�0 + �1b� �0)2eu+�0+�1b(1 + eu)2(1 + e�0+�1b)2 = �21b2(u� �0)2eu+�0+�1b(1 + eu)2(1 + e�0+�1b)2
which is proportional to Du = (u� �0)2eu(1 + eu)2 , and the latter is the square root of (7.19). Hence,the optimal value of u is still the solution for u to the equation (7.21).
Example 7.2. Consider the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2]� [0; 2] where �0 = �0:5, �1 = 1, �2 = 2and �12 = 3. In this example, ��0 = �0 � �1�2�12 ' �1:17, �0 + �1b = 1:5 and �0 + �2b = 3:5so that condition (7.25) is satis�ed. Thus, the expected D-optimal design should be (7.26)with optimal logits �0 = �0:5 and �0 + �1b = 1:5, and the respective optimal logits u and u1which maximize (7.19) and (7.20). For �0 = �0:5, Table 5.3 gives u = 2:075 as the optimalvalue of logit u. Setting �0 = �0:5, �1 = 1, �2 = 2 and �12 = 3 in Du1 given by (7.20), andthen solving @Du1@u1 = 0 for u1 gives u1 = 2:725 as the optimal value of logit u1. Hence, thecandidate D-optimal design (7.26) is

�� =
8>><>>:

(0; 0) (0; 1:287) (2; 0) (0:944; 0:472)14 14 14 14�0:5 2:075 1:5 2:725
9>>=>>; : (7.27)

The support points of design (7.27) are represented by triangles and a diamond in Figure 7.7(a). The standardized variance function corresponding to design (7.27) is
d(x; ��;�) = eu(1+eu)2n17:02� 17:02x1 + 10:96x21 � 26:44x2 + 0:89x1x2 � 22:25x21x2+34:62x22 � 42:01x1x22 + 408:56x21x22o (7.28)

where u = �0:5 + x1 + 2x2 + 3x1x2 and (x1; x2) 2 [0; 2] � [0; 2]. The function (7.28) plottedin Figure 7.7 (b) clearly indicates that design (7.27) is D-optimal.
Case when �0 + �2b < 1:5434 � �0 + �1bThis case is similar to the case when �0 + �1b < 1:5434 � �0 + �2b (discussed above) exceptthat now the respective points (0; b) and (b; 0) lie below and above the logit line u = 1:5434:Thus, the design condition (7.25) becomes

�1:5434 < ��0 < �0 < �0 + �2b < 1:5434 � �0 + �1b (7.29)
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Figure 7.7: (a) Support points of design (7.27) and (b) the standardized variance functiond(x; ��;�) on the design space [0; 2] � [0; 2] where � = (�0:5; 1; 2; 3)T . The triangles and adiamond are support points of design (7.27).
where ��0 = �0� �1�2�12 . The candidate D-optimal design which satis�es condition (7.29) is design(7.17) with support point B(0; u��0�2 ) replaced by C(0; b). Furthermore, the construction of theD-optimal design which satis�es condition (7.29) is as for the case when �0 + �1b < 1:5434 <�0 + �2b above.Case when [�0 + �1b; �0 + �2b] � 1:5434In this case, the points (b; 0) and (0; b) lie on or below the logit line u = 1:5434. This conditiontogether with condition (7.14) gives the design condition

�1:5434 < ��0 < �0 < [�0 + �1b; �0 + �2b] � 1:5434: (7.30)
The candidate D-optimal design which satis�es condition (7.30) is design (7.17) with therespective support points �u��0�1 ; 0� and �0; u��0�2 � replaced by (b; 0) and (0; b). That is, design

� =
8>><>>:

(0; 0) (0; b) (b; 0) (x1J ; x2J)14 14 14 14�0 �0 + �2b �0 + �1b u1
9>>=>>; : (7.31)

In this case, the determinant of the information matrix for � = (�0; �1; �2; �12)T evaluated atdesign (7.31) is proportional to (7.20).
183



Chapter 7 { D-optimal Designs for the Two-Variable Binary Logistic Modelwith Interaction
Example 7.3. Consider the two-variable binary logistic model with interaction u = logit(p) =�0+�1x1+�2x2+�12x1x2 on the design space [0; 2]� [0; 2] where �0 = �1, �1 = 0:9, �2 = 1:2and �12 = 3. The parameter values in this example satisfy condition (7.30) since

�1:5434 < ��0 = �1:36 < �0 = �1 < �0 + �1b = 0:8 < �0 + �2b = 1:4 < 1:5434:Hence, the candidate D-optimal is (7.31) where the logit u1 maximizes (7.20). Setting �0 = �1,�1 = 0:9, �2 = 1:2 and �12 = 3 in (7.20), and then solving @Du1@u1 = 0 for u1 gives u1 = 2:151so that the candidate D-optimal design is
�� =

8>><>>:
(0; 0) (0; 2) (2; 0) (0:867; 0:650)14 14 14 14�1 1:4 0:8 2:251

9>>=>>; : (7.32)
The support points of design (7.32) are represented by triangles and a diamond in Figure 7.8(a). The standardized variance function associated with design (7.32) is

Figure 7.8: (a) Support points of design (7.32) and (b) the standardized variance functiond(x; ��;�) on the design space [0; 2]� [0; 2] where � = (�1; 0:9; 1:2; 3)T . The triangles and adiamond are support points of design (7.32).
d(x; ��;�) = eu(1+eu)2n20:34� 20:34x1 + 9:76x21 � 20:34x2 + 7:27x1x2 � 5:66x21x2+11:39x22 � 5:82x1x22 + 169:31x21x22o (7.33)

where u = �1 + 0:9x1 + 1:2x2 + 3x1x2 and (x1; x2) 2 [0; 2] � [0; 2]. The graph of function(7.33) displayed in Figure 7.8 (b) attains the maximum of 4 at the 4 support points of design(7.32), and hence design (7.32) is D-optimal.
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7.4.3 D-optimal designs on [0;1) � [0;1) or [0; b] � [0; b] when ��0 <

�1:5434
Now, consider the case when ��0 < �1:5434. As discussed in Section 4.6.2, with the helpof Figure 4.8 (b), the hyperbolic curves corresponding to this case are in the �rst and thirdquadrants generated by the asymptotes x1 = � �2�12 and x2 = � �1�12 . However, in the case ofsynergy on the design space [0;1) � [0;1), only hyperbolic branches in the �rst quadrantintersect the design space. Furthermore, as ��0 < �0, condition ��0 < �1:5434 can be split intotwo cases: (a) ��0 < �1:5434 � �0 < 1:5434; and (b) ��0 < �0 < �1:5434. The construction ofD-optimal designs for these two cases will be discussed separately.D-optimal designs on [0;1)� [0;1) or [0; b]� [0; b] when ��0 < �1:5434 � �0 < 1:5434Firstly, consider the design pattern of the candidate D-optimal design, on the design space[0;1) � [0;1) and for the case when ��0 < �1:5434 � �0 < 1:5434, displayed in Figure 7.9(a). Since the design space and the condition �1:5434 � �0 are as in Section 7.4.1, all theresults of Section 7.4.1 apply to this case. Hence, the candidate D-optimal design in this caseis of the form (7.17).Secondly, consider the design pattern of the candidate D-optimal design, on the design space[0; b]� [0; b] and for the case when ��0 < �1:5434 � �0 < 1:5434, displayed in Figure 7.9 (a).The D-optimal designs are constructed on this design space in the same way as discussed inSection 7.4.2. The following numerical example illustrates the construction of the designs.
Example 7.4. Consider the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2]� [0; 2] where �0 = �1:5, �1 = 3, �2 = 2and �12 = 4. The parameter values in this example satisfy the condition ��0 < �1:5434 ��0 < 1:5434 since ��0 = �3 < �1:5434 < �0 = �1:5 < 1:5434. Hence, a 4-point D-optimaldesign with �0 = �1:5 as one of the optimal logits is expected. The other two optimal logitsu and u1 are obtained as follows. Table 5.3 gives u = 1:562 as the optimal value of logit uif �0 = �1:5. Setting �0 = �1:5, �1 = 3, �2 = 2 and �12 = 4 in Du1 given by (7.20), andthen solving @Du1@u1 = 0 for u1 gives u1 = 2:272 as the optimal value of logit u1. Hence, thecandidate D-optimal design (7.17) is

�� =
8>><>>:

(0; 0) (1:021; 0) (0; 1:531) (0:437; 0:656)14 14 14 14�1:5 1:562 1:562 2:272
9>>=>>; : (7.34)

The support points of design (7.34) are represented by triangles and a diamond in Figure 7.10
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Figure 7.9: Design patterns of the candidate D-optimal design for the two-variable binarylogistic model with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 where �0 < 0,�1 > 0, �2 > 0 and �12 > 0, and (a) ��0 < �1:5434 � �0 < 1:5434 and (b) ��0 < �0 < �1:5434.Circles are support points.
(a). The standardized variance function associated with design (7.34) is
d(x; ��;�) = eu(1+eu)2n26:82� 52:54x1 + 52:52x21 � 35:04x2 + 7:46x1x2 � 55:39x21x2+23:35x22 � 36:962x1x22 + 704:70x21x22o (7.35)

where u = �1:5+ 3x1+2x2+4x1x2 and (x1; x2) 2 [0; 2]� [0; 2]. The graph of function (7.35)
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Figure 7.10: (a) Support points of design (7.34) and (b) the standardized variance functiond(x; ��;�) given in (7.35) on the design space [0; 2] � [0; 2] and with parameter vector � =(�1:5; 3; 2)T . The triangles and a diamond are support points of design (7.34).
displayed in Figure 7.10 (b) attains the maximum of 4 at the 4 support points of design (7.34),and hence the design (7.34) is D-optimal.
D-optimal designs on [0;1)� [0;1) or [0; b]� [0; b] when ��0 < �0 < �1:5434Consider the design pattern of the candidate D-optimal design, on the design space [0;1)�[0;1) and for the case when ��0 < �0 < �1:5434, displayed in Figure 7.9 (b). In this case bothlogit lines �u = 1:5434 pass through the design space [0;1)� [0;1). As in Section 7.4.1, thesupport points of the candidate D-optimal design are: the points of intersection A, B, C andD of the logit lines of the form �u and the boundary of the design space [0;1)� [0;1); andthe respective points of intersection J1 and J2 of the ray x2 = �1�2x1 and the logit lines u1 andu2 where u1 < u2 (see Figure 7.9 (b)). Thus, the candidate D-optimal design has at most 6support points. The analytical construction of this design is cumbersome because of the largenumber of support points and the fact that the support points are not all equally weighted.However, the design can be numerically constructed. Under the assumption that the supportpoints on the same logit line are equally weighted, the candidate D-optimal design on the
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design space [0;1)� [0;1) is given by
� =

8>><>>:
��u��0�1 ; 0� �0; �u��0�2 � �0; u��0�2 � �u��0�1 ; 0� (x1J1 ; x2J1) (x1J2 ; x2J2)�12 �12 �22 �22 �3 1� �1 � �2 � �3�u �u u u u1 u2

9>>=>>;(7.36)where 8<: x1J1 = � �2�12 + p�1�2[�1�2+�12(u1��0)]�1�12x2J1 = � �1�12 + p�1�2[�1�2+�12(u1��0)]�2�12 (7.37)
and 8<: x1J2 = � �2�12 + p�1�2[�1�2+�12(u2��0)]�1�12x2J2 = � �1�12 + p�1�2[�1�2+�12(u2��0)]�2�12 : (7.38)
Now, consider constructing candidate D-optimal designs on the design space [0; b]� [0; b] andfor the case when ��0 < �0 < �1:5434. The restriction of the design space to [0; b] � [0; b]implies that the design of the form (7.36) exists only when the logit line u� = 1:5434 liesbelow the vertices (0; b) and (b; 0) of the design space [0; b]� [0; b]. If the logit line u� = 1:5434lies above at least one of the vertices (0; b) and (b; 0), it can be conjectured that a candidateD-optimal design does not necessarily follow the pattern of design (7.36). The conditions ofexistence of possible D-optimal designs on the design space [0; b]� [0; b] are given below, andselected numerical examples are used to demonstrate that the number of support points rangefrom 4 to 6, and associated weights are not necessarily equal.Case when �0 < �1:5434 < 1:5434 < min(�0 + �1b; �0 + �2b)In this case, the point (0; 0) lies below the logit line u = �1:5434 and the points (0; b) and(b; 0) lie above the logit line u = 1:5434 as indicated in Figure 7.9 (b). This condition togetherwith condition ��0 < �0 < �1:5434 gives the design condition

��0 < �0 < �1:5434 < 1:5434 < min(�0 + �1b; �0 + �2b): (7.39)
The candidate D-optimal design which satis�es condition (7.39) is still design (7.36).
Example 7.5. Consider the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] where �0 = �3, �1 = 4, �2 = 3and �12 = 5. In this case,��0 = �5:4 < �0 = �3 < �1:5434 < 1:5434 < min(�0 + �1b; �0 + �2b) = 3: Therefore, condition(7.39) is satis�ed, and the D-optimal design is expected to be of the form (7.36). The design
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was calculated using the Gauss program in Appendix C and the result was the 6-point design

�� =
8>><>>:

(0:417; 0) (1:083; 0) (0; 0:556) (0; 1:444) (0:172; 0:229) (0:434; 0:579)0:0895 0:2429 0:0894 0:2429 0:0870 0:2483�1:333 1:333 �1:333 1:333 �1:431 1:734
9>>=>>; : (7.40)

Figure 7.11 (a) displays the location of the support points of design (7.40) on the design space[0; 2] � [0; 2], and Figure 7.11 (b) displays the graph of the standardized variance functiond(x; ��;�). The graph in Figure 7.11 (b) suggests that design (7.40) is D-optimal.

Figure 7.11: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2+ �12x1x2 on the design space [0; 2]� [0; 2] and with parameters �0 = �3, �1 = 4, �2 = 3and �12 = 5. The triangles and diamonds are support points of design (7.40).
Case when �0 < �1:5434 < �0 + �1b � 1:5434 < �0 + �2bIn this case, the point (0; 0) lies below the logit line u = �1:5434, the respective points (b; 0)and (0; b) lie below and above the logit line u = 1:5434. This condition together with thecondition ��0 < �0 < �1:5434 gives the design condition

��0 < �0 < �1:5434 < �0 + �1b � 1:5434 < �0 + �2b: (7.41)
The candidate D-optimal design which satis�es condition (7.41) is design (7.36) with supportpoint �u��0�1 ; 0� replaced by (b; 0). In the candidate D-optimal design, the support points�u��0�1 ; 0� and (b; 0) no longer lie on the same logit line. The e�ect of this is that the weights
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of these points as well as those of the support points ��u��0�1 ; 0� and �0; �u��0�2 � may no longerconjectured to be equal. This is con�rmed by the following examples.
Example 7.6. Consider the two-variable binary logistic model with interaction u = logit(p) =�0+�1x1+�2x2+�12x1x2 on the design space [0; 2]� [0; 2] where �0 = �3, �1 = 2, �2 = 3 and�12 = 5. In this example, ��0 = �4:2 < �0 = �3 < �1:5434 < �0 + �1b = 1 < 1:5434 < �0 + �2b = 3so that condition (7.41) is satis�ed. The candidate D-optimal design calculated using theGauss program in Appendix C is the 6-point design

�� =
8>><>>:

(0:810; 0) (2; 0) (0; 0:537) (0; 1:463) (0:303; 0:205) (0:727; 0:485)0:0050 0:2491 0:1114 0:2447 0:1420 0:2478�1:3801 1 �1:390 1:390 �1:469 1:670
9>>=>>; : (7.42)

Figure 7.12 (a) indicates the location of the support points of design (7.42) on the design space[0; 2] � [0; 2], and Figure 7.12 (b) displays the graph of the standardized variance functiond(x; ��;�). The graph in Figure 7.12 (b) suggests that design (7.42) is D-optimal.

Figure 7.12: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2+ �12x1x2 on the design space [0; 2]� [0; 2] and with parameters �0 = �3, �1 = 2, �2 = 3and �12 = 5. The triangles and diamonds are support points of design (7.42).
In Example 7.6, the pairs of support points which would otherwise lie on the same logitand hence be equally weighted in the absence of the restriction on the design space, lie ondi�erent logits and are unequally weighted. Depending of the values of the parameter vector
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� = (�0; �1; �2; �12)T and the design space [0; b]� [0; b], the weights of some support points canbe so small such that the 6-point D-optimal design is practically a less than 6-point D-optimaldesign or degenerates to a less than 6-point D-optimal design. Example 7.6 and the followingexample illustrates this.
Example 7.7. Consider the two-variable binary logistic model u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2]� [0; 2] where �0 = �3, �1 = 2, �2 = 3 and �12 = 1.This example is the same as Example 7.6 except that here �12 = 1: In this example, condition(7.41) for expecting a 6-point D-optimal design is also satis�ed. However, the candidateD-optimal design calculated using the Gauss program in Appendix C is the 5-point design

�� =
8>><>>:

(2; 0) (0; 0:532) (0; 1:468) (0:345; 0:245) (1:048; 0:698)0:2494 0:1048 0:2460 0:1509 0:24891 �1:404 1:404 �1:490 1:921
9>>=>>; : (7.43)

Figure 7.13 (a) indicates the location of the support points of design (7.43) on the design space[0; 2] � [0; 2], and Figure 7.13 (b) displays the graph of the standardized variance functiond(x; ��;�). The graph of Figure 7.13 (b) suggests that design (7.43) is D-optimal.

Figure 7.13: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2]� [0; 2] where �0 = �3, �1 = 2, �2 = 3 and �12 = 1.The triangles and diamonds are support points of design (7.43).
In Example 7.7, a 6-point D-optimal design with 2 support points on each of the x1-axis,
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x2-axis and the ray x2 = 23x1 was expected. However, the second support point on the x1-axis was found to be (0.848,0) with weight 10�8 which meant that the 6-point D-optimal waspractically the 5-point design (7.43). It should also be noted that the interior support point(0:345; 0:245) of design (7.43) does not exactly lie on the ray x2 = 23x1 as expected.Case when �0 < �1:5434 < �0 + �2b � 1:5434 < �0 + �1bThis case is similar to the case of �0 < �1:5434 < �0 + �1b � 1:5434 < �0 + �2b (above)except that in this case the respective points (0; b) and (b,0) lie below and above the logit lineu = 1:5434. Thus, the condition for the candidate 6-point D-optimal design is

��0 < �0 < �u� � �0 + �2b � u� � �0 + �1b:Furthermore, the construction of the D-optimal designs in this case is as for the case of
�0 < �1:5434 < �0 + �1b � 1:5434 < �0 + �2babove.Case when �0 < �1:5434 < [�0 + �2b; �0 + �1b] � 1:5434In this case, the point (0; 0) lies below the logit u = �1:5434, the respective points (b; 0)and (0; b) lie on or below the logit line u = 1:5434. This condition together with condition��0 < �0 < �1:5434 gives the design condition

��0 < �0 < �1:5434 < [�0 + �1b; �0 + �2b] � 1:5434: (7.44)The candidate D-optimal design which satis�es condition (7.44) is design (7.36) with respectivesupport points �u��0�1 ; 0� and �0; u��0�2 � replaced by (b; 0) and (0; b). The e�ect of this changeis that the pattern of the other support points in design (7.36) may also be modi�ed, and thusthe support points of the resulting candidate D-optimal design may not have equal weightsas in the following example.
Example 7.8. Consider the two-variable binary logistic model u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2]� [0; 2] where �0 = �3, �1 = 2, �2 = 2 and �12 = 5.In this case ��0 = �3:8 < �0 = �3 < �1:5434 < �0 + �1b = �0 + �2b = 1 < 1:5434:Hence, condition (7.44) is satis�ed. Therefore, the vertices (2; 0) and (0; 2) belong to thesupport points of the candidate D-optimal design. The Gauss program in Appendix C givesthe following 6-point design.

�� =
8>><>>:

(0:770; 0) (2; 0) (0; 0:769) (0; 2) (0:273; 0:273) (0:647; 0:647)0:0133 0:2490 0:0135 0:2490 0:2260 0:2492�1:461 1 �1:462 1 �1:534 1:684
9>>=>>; : (7.45)
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Figure 7.14 (a) indicates the location of the support points of design (7.43) on the design space[0; 2] � [0; 2], and Figure 7.14 (b) displays the graph of the standardized variance functiond(x; ��;�). The graph of Figure 7.14 (b) suggests that design (7.45) is D-optimal.

Figure 7.14: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2+ �12x1x2 on the design space [0; 2]� [0; 2] and with parameters �0 = �3, �1 = 2, �2 = 2and �12 = 5. The triangles and diamonds are support points of design (7.45).
In Example 7.8, note that the coordinates of each interior support point are equal because�1 = �2 = 2 implies the interior ray is x2 = �1�2x1 = x1. That the support points (0:770; 0) and(0; 0:769), the corresponding logits �1:461 and 1:462, and the corresponding weights 0:0133and 0:0135 are slightly di�erent can be attributed to accumulated small numerical errorsduring the optimization process. Note that derivatives or gradients used during optimizationwere calculated numerically by the optimization routines.The following example conjectures that a 4-point D-optimal design can be obtained when a6-point D-optimal design is expected as a result of a large di�erence between the values of theparameters �1 and �2:
Example 7.9. Consider the two-variable binary logistic model u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2]� [0; 2] and with parameter values �0 = �3, �1 = 2,�2 = 1:5 and �12 = 5. This example is the same as Example 7.8 except that here �2 = 1:5. Inthis example, condition (7.44) for expecting a 6-point D-optimal design with (0; 2) and (2; 0)
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as two of its support points is satis�ed. Furthermore, the interior support points are expectedto lie on the ray x2 = 43x1 which is not the axis of symmetry of the design space [0; 2]� [0; 2]as was the ray x2 = x1 in Example 7.8. The D-optimal design in this case was found to bethe 4-point design

�� =
8>><>>:

(2; 0) (0; 2) (0:427; 0:154) (0:564; 0:805)14 14 14 140 1 �1:587 1:604
9>>=>>; (7.46)

Figure 7.15 (a) indicates the location of the support points of design (7.46) on the design space[0; 2] � [0; 2], and Figure 7.15 (b) displays the graph of the standardized variance functiond(x; ��;�). The graph of Figure 7.15 (b) suggests that the design (7.46) is D-optimal.

Figure 7.15: (a) Support points of the D-optimal design and (b) the standardized variancefunction for the two-variable binary logistic model with interaction u = logit(p) = �0+�1x1+�2x2+�12x1x2 on the design space [0; 2]� [0; 2] and with parameters �0 = �3, �1 = 2, �2 = 1:5and �12 = 5. The triangles and diamonds are support points of design (7.43).
In Example 7.9, note that in addition to the reduction of number of support points of the D-optimal design from 6 to 4, none of the interior support points is located on the ray x2 = 43x1.Hence, it can be conjectured that a complete loss of \balance" was generated by the presenceof the support points (0; 2) and (2; 0) and the asymmetric ray x2 = 43x1 with respect to designspace [0; 2]� [0; 2].

194



Chapter 7 { D-optimal Designs for the Two-Variable Binary Logistic Modelwith Interaction
7.5. D-optimal designs for antagonism

This section discusses the construction of D-optimal designs for detecting drug interactionusing the two variable binary logistic model with interaction
u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 (7.47)

on the design space [0; b] � [0; b] where �0 < 0, �1 > 0, �2 > 0 and �12 < 0. As discussedin Chapter 2 this case represents antagonism. It was also found that antagonism can also beobserved with the same model when �0 > 0, �1 < 0, �2 < 0 and �12 > 0. However, as it wasearlier stated the construction of D-optimal design is to be discussed only for the �rst case.The construction of D-optimal designs in the second case will be easily deduced from the �rstcase. A brief discussion on the construction of D-optimal designs for antagonism using model(7.47) in the second case will be presented in Section 7.6.For model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 with �0 < 0, �1 > 0, �2 > 0 and�12 < 0, �u are hyperbolae whose centre is �� �2�12 ;� �1�12� 2 R2+. The logit value at the centreof the hyperbolae �u is ��0 = �0 � �1�2�12 . The location of the centre of the hyperbolae �uand the logit value ��0 relative to the design space [0; b]� [0; b] determine the patterns of thecandidate D-optimal design. This section is subdivided as follows. Sections 7.5.1 discussesthe construction of D-optimal designs on the design space [0; b] � [0; b] when j��0 j < 1:5434and � �2�12 > b. Section 7.5.2 discusses the construction of D-optimal designs on the designspace [0; b] � [0; b] when ��0 > 1:5434, and � �2�12 > b and � �1�12 > b. Sections 7.5.3 discussesthe construction of D-optimal designs of the case when j��0 j < 1:5434, and � �2�12 < b and� �1�12 < b. Section 7.5.4 discusses the construction of D-optimal designs of the case whenj��0 j < 1:5434, and either � �2�12 < b and � �1�12 > b, or � �2�12 > b and � �1�12 < b. Section 7.5.5discusses the construction of D-optimal designs of the case when ��0 > 1:5434, and � �1�12 < band � �1�12 < b. Section 7.5.6 discusses the construction of D-optimal designs of the case when��0 < �1:5434, and � �1�12 < b and � �1�12 < b. Section 7.5.7 discusses the construction of D-optimal designs of the case when ��0 > 1:5434, and either � �2�12 < b and � �1�12 > b, or � �2�12 > band � �1�12 < b. Finally, Section 7.5.8 discusses the construction of D-optimal designs of thecase when ��0 < �1:5434, and either � �2�12 < b and � �1�12 > b, or � �2�12 > b and � �1�12 < b.
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7.5.1 D-optimal designs when j��0 j < 1:5434, and � �2

�12
> b and � �1

�12
> b

Consider model (7.47) on the design space [0; b] � [0; b] where �0 < 0, �1 > 0, �2 > 0 and�12 < 0, and where �1:5434 < ��0 = �0 � �1�2�12 < 1:5434, � �1�12 > b and � �2�12 > b. Forthis model, Figure 7.16 (a) indicates that the centre �� �2�12 ;� �1�12� of the hyperbolae �u isoutside the design space [0; b]� [0; b] and that the branches of hyperbolae �u are in 4 di�erentquadrants generated by the asymptotes x1 = � �2�12 an x2 = � �1�12 . The support points of thecandidate D-optimal design for this case are points A, B, G and J marked by circles in Figure7.16 (a).The relationship between the support points (x1; x2) in Figure 7.16 and the support points(y1; y2) in Figure 7.4 is given by
(x1; x2) = (�y2 + b;�y1 + b): (7.48)

This transformation is the composition of the translation from point (0; 0) to point (b; b)followed by the reection with respect to the line passing through point G and perpendicularto line GI. By inspection of Figure 7.16 (a), it is clear that each curve u in Figure 7.16 (a)is the image of curve eu = �u in Figure 7.4 by the transformation (7.48). The relationshipbetween the parameter vector �0 = (�00; �01; �02; �012)T of the model in terms of (y1; y2) andparameter vector � = (�0; �1; �2; �12)T of the model in terms of (x1; x2) is derived from thetransformation (7.48) as follows.
�00 + �01y1 + �02y2 + �012y1y2 = eu = �u= ��0 � �1x1 � �2x2 � �12x1x2= ��0 � �1(�y2 + b)� �2(�y1 + b)� �12(�y2 + b)(�y1 + b)= ��0 � �1b� �2b� �12b2 + (�2 + �12b)y1 + (�1 + �12b)y2 � �12y1y2
and, hence8>>>>><>>>>>:

�00 = ��0 � �1b� �2b� �12b2�01 = �2 + �12b�02 = �1 + �12b�012 = ��12
()

8>>>>><>>>>>:
�0 = ��00 � �01b� �02b� �012b2�1 = �02 + �012b�2 = �01 + �012b�12 = ��012

(7.49)

Then, using the transformations (7.48) and (7.49), the ray y2 = �01�02y1 in the (y1; y2) space istransformed to the ray x2 = �1 + �12b�2 + �12bx1 + (�2 � �1)b�2 + �12b (7.50)
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Figure 7.16: Design patterns for the candidate D-optimal design for the two-variable logisticmodel with interaction u = logit(p) = �0+�1x1+�2x2+�12x1x2 on the design space [0; b]�[0; b]with �0 < 0, �1 > 0, �2 > 0, �12 < 0, � �2�12 > b and � �1�12 > b where (a) j��0 j < 1:5434 and (b)��0 > 1:5434. Circles are support points.
in the (x1; x2)-space. In summary, the candidate D-optimal design with the design pattern
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displayed in Figure 7.16 (a) is

� =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(b; b) ��u��0��2b�1+�12b ; b� �b; �u��0��1b�2+�12b � (x1J ; x2J)14 14 14 14�0 �u �u u1

9>>=>>; (7.51)
and its support points are related to those of design (7.17) by the transformations (7.48)and (7.49). The following numerical example demonstrates the application of transformations(7.48) and (7.49) to deriving design (7.51) from design (7.17).
Example 7.10. Consider the two-variable binary logistic model u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2]� [0; 2] with parameter values �0 = �18:5, �1 = 7:5,�2 = 8 and �12 = �3. Transforming theses parameter values using the transformation (7.49)gives �00 = �0:5, �01 = 2, �02 = 1:5 and �012 = 3 which are the values of the parameters of themodel in Example 7.1. Hence, it can be conjectured that the D-optimal design for the modelin this example can be derived from the D-optimal design (7.22) in Example 7.1 using thetransformation (7.48) with b = 2 to obtain

�� =
8>><>>:

(2; 2) (0:284; 2) (2; 0:713) (1:279; 1:459)14 14 14 140:5 �2:075 �2:075 �2:832
9>>=>>; :

Note that with the parameters of this example ray (7.50) is x2 = 0:75x1+0:5, and clearly theinterior support point (1:279; 1:459) belongs to this ray.
7.5.2 D-optimal designs when ��0 > 1:5434, and � �2

�12
> b and � �1

�12
> b

Consider the design pattern displayed in Figure 7.16 (b) where the support points of the candi-date D-optimal design are marked by circles. The candidate D-optimal design � correspondingto the design displayed in Figure 7.16 (b) is
� =

8>><>>:
�b; �u��0��2b�1+�12b � ��u��0��2b�1+�12b ; b� �u��0��1b�2b�12b ; b� �b; u��0��1b�2+�12b � (x1J1 ; x2J1) (x1J2 ; x2J2)�12 �12 �22 �22 �3 �4�u �u u u u1 u2

9>>=>>;(7.52)where �4 = 1� �1 � �2 � �3:Clearly, the design pattern in Figure 7.16 (b) is the reection of the design pattern in Figure7.9 (b) with respect to line FH. Hence, the support points (x1; x2) in Figure 7.16 (b) can be
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derived from the support points (y1; y2) in Figure 7.9 (b) using the relationship

(x1; x2) = (�y1 + b;�y2 + b): (7.53)
In addition, logit line u in the design of Figure 7.16 (b) corresponds to a logit line eu = �u inthe design of Figure 7.9 (b). That is, the candidate D-optimal design with the design patternin Figure 7.16 (b) can be derived from the design (7.36) using (7.53). As in Section 7.5.1,the relationship between the parameter vectors �0 = (�00; �01; �02; �012)T in the design displayedin Figure 7.9 (b) and � = (�0; �1; �2; �12)T in the design displayed in Figure 7.16 (b) can becalculated as follows.
�00 + �01y1 + �02y2 + �012y1y2 = eu = �u= ��0 � �1x1 � �2x2 � �12x1x2= ��0 � �1(�y1 + b)� �2(�y2 + b)� �12(�y1 + b)(�y2 + b)= ��0 � �1b� �2b� �12b2 + (�1 + �12b)y1 + (�2 + �12b)y2 � �12y1y2so that8>>>>><>>>>>:

�00 = ��0 � �1b� �2b� �12b2�01 = �1 + �12b�02 = �2 + �12b�012 = ��12
()

8>>>>><>>>>>:
�0 = ��00 � �01b� �02b� �012b2�1 = �01 + �012b�2 = �02 + �012b�12 = ��012

(7.54)
Furthermore, the equation of the ray passing through points G and I in Figure 7.16 (b) isgiven by (7.50).
Example 7.11. Consider the two-variable binary logistic model u = logit(p) = �0 + �1x1 +�2x2+�12x1x2 on the design space [0; 2]� [0; 2] and with parameter values �0 = �31, �1 = 14,�2 = 13 and �12 = �5. Transforming these parameter values using the transformation (7.54)gives �00 = �3, �01 = 4, �02 = 3 and �012 = 5 which are the values of the parameters of the modelin Example 7.5. Hence, the D-optimal design for the model in this example can be derivedfrom the D-optimal design (7.40) in Example 7.5 using the transformation (7.53) with b = 2to obtain the 6-point D-optimal design

�� =
8>><>>:

(1:583; 2) (0:917; 2) (2; 1:444) (2; 0:556) (1:828; 1:771) (1:566; 1:421)0:0895 0:2429 0:0895 0:2429 0:0870 0:24821:333 �1:333 1:333 �1:333 1:431 �1:734
9>>=>>; :

For the parameter values of this example, ray (7.50) is x2 = 43x1 � 23, and clearly the twointerior support points (1:566; 1:421) and (1:828; 1:771) of the above design belong to this ray.
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7.5.3 D-optimal designs when j��0 j < 1:5434, and � �2

�12
< b and � �1

�12
< b

In Section 7.5.1, Figure 7.16 (a) was used to show that if j��0 j < 1:5434 then the branchesof the hyperbolae �u = �0 + �1x1 + �2x2 + �12x1x2 are spread in the 4 quadrants generatedby the asymptotes x1 = � �2�12 and x2 = � �1�12 . If 0 < � �2�12 < b and 0 < � �1�12 < b, then thecentre of the hyperbolae �u is inside the design space [0; b]� [0; b]. Consequently, the branchesof the hyperbolae �u may intersect the boundaries of the design space at between 4 and 8points. Thus, the number of support points of the candidate D-optimal design is expected tovary from 4 to 8. In this section, a candidate D-optimal design with a simple 8-point designpattern is used to demonstrate the analytical construction of the D-optimal designs in thiscase. Then, the existence conditions for more complicated design patterns are derived, andnumerical examples are used to illustrate the construction of the corresponding D-optimaldesigns.
4 and 8 point D-optimal designs with a simple design patterns
Consider the design pattern displayed in Figure 7.17 where the design points are representedby circles. The conditions for the 8-point design pattern in the �gure are that 0 < u � ��0,��0 = �0 � �1�2�12 = 0, and that the centre of the hyperbolae �u is � b2 ; b2� which is also thecentre of the design space [0; b] � [0; b]. These conditions imply that �1 = �2 = �2�0b and�12 = 4�0b2 with �0 < 0. Note that if 0 < u � ��0 and the centre of the hyperbolae �u is� b2 ; b2�, then the 8-point design pattern becomes a 4-point design with support points (0; 0),(0; b), (b; 0) and (b; b).Next, consider the construction of the candidate 8-point D-optimal design, �8, with the 8-pointdesign pattern discussed above. The support points of the design are equidistant from thecommon centres of both hyperbolae �u and the design space [0; b]� [0; b]. Hence, the supportpoints of the candidate 8-point D-optimal design �8 can be assumed to be equally weighted.
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Figure 7.17: Support points of an 8-point D-optimal design for the two variable binary logisticmodel u = �0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b]� [0; b] with �1 = �2 = �2�0b ,�12 = 4�0b2 , and �0 < 0. Circles symbolize support points.
The design matrix associated with the equally weighted 8-point D-optimal design �8 is

X =

26666666666666664

1 (�0+u)b2�0 0 01 0 (�0+u)b2�0 01 0 (�0�u)b2�0 01 (�0+u)b2�0 b (�0+u)b22�01 (�0�u)b2�0 b (�0�u)b22�01 b (�0�u)b2�0 (�0�u)b22�01 b (�0+u)b2�0 (�0+u)b22�01 (�0�u)b2�0 0 0

37777777777777775
; (7.55)

where 0 < u � ��0, and the matrix of model weights is W = 18 eu(1 + eu)2 I8 where I8 isthe 8 � 8 identity matrix. Hence, the information matrix for the vector of parameters � =
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(�0; �1; �2; �12)T is given by

M(�8;�) =XTWX = eu(1 + eu)2
2666664

1 b2 b2 b24b2 b2(3�20+u2)8�20 b24 b3(3�20+u2)16�20b2 b24 b2(3�20+u2)8�20 b3(3�20+u2)16�20b24 b3(3�20+u2)16�20 b3(3�20+u2)16�20 b4(�20+u2)8�20

3777775 (7.56)
and its determinant is D1 = b8u2e4u(u2 + �20)21024�60(1 + eu)8which is proportional to D = u2e4u(u2 + �20)2(1 + eu)8 : (7.57)
The derivative of lnD, in (7.57), with respect to u is
d lnDdu = 2u + 4 + 4uu2 + �20 � 8eu1 + eu = 2 [�20(1 + eu + 2u� 2ueu) + u2(3 + 3eu + 2u� 2ueu)]u(u2 + �20)(1 + eu) (7.58)and the second derivative of lnD isd2 lnDdu2 = �2(�40 + 3u4)u2(u2 + �20)2 � 8eu(1 + eu)2 < 0: (7.59)
This means that equation d lnDdu = 0 has a unique solution, u�, for u which depends on �0,and that D takes on its maximum at this unique solution for u. Note that solving for u inequation (7.58) is equivalent to solving for u in equation

�20(1 + eu + 2u� 2ueu) + u2(3 + 3eu + 2u� 2ueu) = 0: (7.60)
Furthermore, recall that the candidate 8-point D-optimal design discussed above becomes the4-point D-optimal design if ��0 � u > 0. This means that the branches of the hyperbolae�u pass on or beyond the vertices of the design space [0; b] � [0; b]. Thus, in the case of a4-point design the optimal logit u > 0 is u = ��0. The largest optimal value of u in the caseof a candidate 4-point D-optimal design with support points (0; 0), (0; b), (b; 0) and (b; b) isobtained by setting u = ��0 in equation (7.60) and then numerically solving the equation foru to obtain u = 1:5434 as the unique solution. It follows that the candidate 8-point D-optimaldesign is possible if �1 < �0 < �1:5434, and that the candidate 4-point D-optimal design ispossible if �1:5434 � �0 � 0. Dividing the two sides of equation (7.60) by �20 , then setting�0 equal to a very large number, in absolute value, in equation (7.60) and then numericallysolving the equation for u, gives u = 1:04363. Table 7.1 provides the values of optimal u = u�for selected values of �0 when �0 � �1:5434. The results in Table 7.1 suggests that as �0
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Table 7.1: Relationship between �0 and D-optimal values of u for the two-variable binarylogistic model with interaction when �0 � �1:5434.

�0 u�-1000 1.0436-500 1.0436-50 1.0441-10 1.0561-9.5 1.0575-9 1.0591-8.5 1.0609-8 1.0632

�0 u�-7.5 1.0659-7 1.0693-6.5 1.0735-6 1.0788-5.5 1.0856-5.75 1.0820-5.5 1.0856-5.25 1.0898

�0 u�-5 1.0947-4.75 1.1004-4.5 1.1071-4.25 1.1151-4 1.1247-3.75 1.1364-3.5 1.1507-3.25 1.1687

�0 u�-3 1.19146-2.75 1.2208-2.5 1.25921-2.25 1.3098-2 1.37630-1.75 1.4610-1.6 1.51992-1.5434 1.5434
increases from �1 to �1:5434, the optimal of u increase from 1:04363 to 1:5434. Hence, it canbe conjectured that for the candidate 8-point D-optimal design discussed above, the optimalvalue of u is such that 1:04363 < u < 1:5434. What remains to be proved is the D-optimalityof the designs. The following theorem provides the proofs.
Theorem 7.1. Consider the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b]� [0; b] where �0 < 0, �1 > 0, �2 < 0 and�12 < 0. Suppose that the ��0 = �0 � �1�2�12 = 0 and that the centre of the hyperbolae �u is� b2 ; b2�, or, equivalently that �1 = �2 = �2�0b and �12 = 4�0b2 with �0 < 0. Then the followinghold.

1. If �0 < �1:5434, then the D-optimal design, ��8 , for the model is an equally weighted 8-point design with support points � (�0+u�)b2�0 ; 0�, �0; (�0+u�)b2�0 �, �0; (�0�u�)b2�0 �, � (�0+u�)b2�0 ; b�,� (�0�u�)b2�0 ; b�, �b; (�0�u�)b2�0 �, �b; (�0+u�)b2�0 � and � (�0�u�)b2�0 ; 0� where u� is the solution for uto the equation
�20(1 + eu + 2u� 2ueu) + u2(3 + 3eu + 2u� 2ueu) = 0:

2. If �1:5434 � �0 � 0, then the D-optimal design for the model is the equally weighed
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4-point design

��4 =
8>><>>:

(x1; x2)�u
9>>=>>; =

8>><>>:
(0; 0) (0; b) (b; b) (b; 0)14 14 14 14�0 ��0 �0 ��0

9>>=>>; :
Proof1. Let M(x;�) and M(��8 ;�) be the respective information matrices for � = (�0; �1; �2; �12)Tevaluated at a single point x = (x1; x2)T 2 [0; b]� [0; b] and at design ��8 . It has to be shownthat the standardized variance function d(x; ��;�) = tr[M(x;�)M�1(��;�)] � 4 with equalityholding at the support points of ��8 .Let u be the logit at point (x1; x2) 2 [0; b]� [0; b]. Then, the conditions �1 = �2 = �2�0b and�12 = 4�0b2 imply that u = logit(p) = �0+�1x1+�2x2+�12x1x2 = �0� 2�0b x1� 2�0b x2+ 4�0b2 x1x2 2[�0;��0]. Using the simpler of the expression of u above, the standardized variance functiond(x; ��8 ;�) can be written as
d(x; ��8 ;�) =eu�u�(1 + eu�)2 �b4u�2(3u2 + u�2) + b4�20(u2 + 3u�2)� 32�20u�2x1x2(x1 � b)(x2 � b)	b4(1 + eu)2u�2(�20 + u�2) (7.61)

�g(u) = eu�u�(1 + eu�)2 �u�2(3u2 + u�2) + �20(u2 + 3u�2)�u�2(u�2 + �20)(1 + eu)2 : (7.62)
The inequality (7.62) follows from the fact that x1x2(x1 � b)(x2 � b) � 0 on [0; b] � [0; b].Clearly, at the support points of ��8 , d(x; ��8 ;�) = g(u�) = 4 as required at the support pointsof a D-optimal design. It remains to be shown that g(u) � 4 for all u 2 [�0;��0] where�0 < �1:5434. The function g(u) is even on [�0;��0] since g(�u) = g(u). Hence, considershowing that g(u) < 4 for all u 2 [0;��0] since it will then follow that g(u) < 4 for allu 2 [�0; 0].
The derivative of g(u) with respect to u is g0(u) = dg(u)du = eu�u�(1 + eu�)2h(u)u�2(u�2 + �20)(1 + eu)3 where
h(u) = �20(2u+2ueu+u2�u2eu+3u�2� 3u�2eu)+u�2(6u+6ueu+3u2� 3u2eu+u�2�u�2eu):(7.63)Thus, the solutions for u to the equation g0(u) = 0 are the same as the solutions for u to theequation h(u) = 0. Now, h(0) = 0 and

h(u�) = 2u�[�20(1 + eu� + 2u� � 2u�eu�) + u�2(3 + 3eu� + 2u� � 2u�eu�)] = 0
since u� is solution for u to the equation (7.60). This means that u = 0 and u = u� are at leasttwo stationary points of g(u). However, u = 0 corresponds to a minimum for the following
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reasons. The second derivative of g(u) evaluated at u = 0 is

g00(0) = e�u�(1 + eu�)2 [u�2(12� u�2) + �20(4� 3u�2)]8u�2(�20 + u�2) = e�u�(1 + eu�)2f(u�)8u�2(�20 + u�2) (7.64)
where f(u�) = u�2(12� u�2) + �20(4� 3u�2) (7.65)has the same sign as g00(0): The fact that u� is solution for u to the equation (7.60) impliesthat �20 = u�2(2u�eu� � 3� 2u� � 3eu�)1 + 2u� + eu� � 2u�eu� ;and hence f(u�) can be written as

f(u�) = 4u�3 �(u�2 � 2u� + 4)eu� � (u�2 + 2u� + 4)�(2u� � 1)eu� � (2u� + 1) = f1(u�)f2(u�) > 0 (7.66)
where f1(u�) = (u�2�2u�+4)eu��(u�2+2u�+4) > 0 and f2(u�) = (2u��1)eu��(2u�+1) > 0:The functions f1(u�) and f2(u�) are positive on [1:04363; 1:5434) for the following reasons:(1) The fact that u� satis�es �20(1 + 2u� + eu� � 2u�eu�) + u�2(3 + 3eu� + 2u� � 2u�eu�) = 0implies that f2(u�) = (2u� � 1)eu� � (2u� + 1) = 2u�2(eu� + 1)u�2 + �20 > 0:(2) The derivative of f1(u�) with respect to u� is f 01(u�) = 2(eu� � 1) + u�(u�eu� � 2) > 0for all u� 2 [1:04363; 1:5434], i.e. f1(u�) is strictly increasing on [1:04363; 1:5434) and henceits smallest value is f1(1:04363) = 1:348 > 0. Thus, the inequality (7.66) holds true whichimplies that g00(0) > 0, and hence u = 0 corresponds to a minimum of g(u). It remains to beshown that u = u� is the only stationary point at which g(u) takes on its maximum value on[0;��0]. This is equivalent to showing that h(u) = 0 given by (7.63) posses roots 0 and u�only on [0;��0] or has only one stationary point on [0;��0].The continuity of h(u) and the fact that h(0) = h(u�) = 0 imply that h(u) has at least onestationary point on [0; u�]. Consider the behavior of h(u) on [0;1]. The �rst derivative ofh(u) with respect to u is h0(u) = s1(u)� s2(u) (7.67)where s1(u) = 2(1+u)(�20 +3u�2) is the equation of a straight line with intercept 2(�20 +3u�2)and slope 2(�20 + 3u�2); and s2(u) = (u�4 + 3u2u�2 + 3�20u�2 + �20u2 � 2�20 � 6u�2)eu is astrictly convex function on [0;1) since the second derivative of s2(u) with respect to u iss002(u) = [u�2(12u+ 3u2 + u�2) + �20(4u+ u2 + 3u�2)]eu > 0: At u = 0, h0(0) = s1(0)� s2(0) =�20(4 � 3u�2) + u�2(12 � u�2) = f(u�) given by (7.66) which was shown to be positive on(1:04363; 1:5434): This means that u = 0 is not a stationary point of h(u), and s1(u) > s2(u)
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at u = 0. At u = u�,
h0(u�) = s1(u�)� s2(u�) = 2 ��20(1 + u� + eu� � 2u�2eu�) + u�(3 + 3eu� + 3u� � 2u�2eu�)� < 0
for the following reasons. The fact that u� is the solution for u to the equation (7.60) impliesthat �20(1 + u� + eu�) + u�2(3 + 3eu�) = ��20u�2 + 2�20u�eu� � 2u�3 + 2u�3eu� :Hence,
h0(u�) = s1(u�)� s2(u�) = 2 h�20(1 + u� + eu�) + u�2(3 + 3eu�)� 2�20u�2eu� + 3u�3 � 2u�4eu�i

= 2 h��20u�2 + 2�20u�eu� � 2u�3 + 2u�3eu� � 2�20u�2eu� + 3u�3 � 2u�4eu�i
= 2 h2(1� u�)u�(�20 + u�2)eu� + u�(u�2 � �20)i < 0

because u� > 1:04363 > 1 and u�2 < �20 . This means that u = u� is not a stationary point ofh(u), and s1(u) < s2(u) at u = u�. The facts that s1(u) is a straight line with s1(0) > s2(0),s2(u) is convex on [0;1) and s2(u�) > s1(u�) imply that curves s1(u) and s2(u) intersectonly once on [0;1] and the point of intersection, which is clearly a maximum, is on [0; u�].Hence, h0(u) = 0 has a unique solution for u on [0;1) which implies that h(u) has a uniquestationary point on [0;1).In conclusion, g0(u) = 0 has the unique solution u = u� on [0;1) which implies that on[0;��0], g(u) attains a global maximum of 4 at u = u� as was to be proved. The symmetry ofg(u) about u = 0 implies that [�0; 0], g(u) attains a global maximum of 4 at u� = �u� whichcompletes the proof.2. The proof for D-optimality of the candidate 4-point D-optimal design ��4 given in Theorem7.1 is deduced from the D-optimality of the 8-point design ��8 as follows. Setting u� = �0implies that 8-point D-optimal design ��8 degenerates to the 4-point design ��4 . Thus, design ��4is the same as design ��8 when pairs of support points on the same hyperbolic branch are takenat each of the 4 vertices of the design space [0; b]� [0; b]. The fact that the 8-point design ��8has been shown to be D-optimal implies that the 4-point design ��4 is also D-optimal. �RemarkConsider Figure 7.17. Let �(1)4 be the equally weighted 4-point design with support pointsA, C, E and G, and let �(2)4 be the equally weighted 4-point design with support points B,D, F and H. If �0 < �1:5434, �1 = �2 = �2�0b and �12 = 4�0b2 , then the equally weighted8-point D-optimal design with support points A , B, C, D, E, F , G, H is �8 = 12 ��(1)4 + �(2)4 �.
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Furthermore, the designs �(1)4 , �(2)4 and �8 are equally e�cient as shown below. The respectivedesign matrices associated with designs �(1)4 and �(2)4 are

X(1)4 =
266664
1 (�0+u)b2�0 0 01 0 (�0�u)b2�0 01 (�0�u)b2�0 b (�0�u)b22�01 b (�0+u)b2�0 (�0+u)b22�0

377775 (7.68)
and

X(2)4 =
266664
1 0 (�0+u)b2�0 01 (�0+u)b2�0 b (�0+u)b22�01 b (�0�u)b2�0 (�0�u)b22�01 (�0�u)b2�0 0 0

377775 ; (7.69)
where 0 < u � ��0, and for both designs the matrix of model weights is W = 14 eu(1 + eu)2 I4where I4 is a 4�4 identity matrix. The respective information matrices for � = (�0; �1; �2; �12)Tevaluated at designs �(1)4 and �(2)4 are M(�(1)4 ;�) and M(�(2)4 ;�) given by

M(�(1)4 ;�) =M(�(2)4 ;�) = eu(1 + eu)2
2666664

1 b2 b2 b24b2 b2(3�20+u2)8�20 b24 b3(3�20+u2)16�20b2 b24 b3(3�20+u2)8�20 b3(3�20+u2)16�20b24 b3(3�20+u2)16�20 b3(3�20+u2)16�20 b4(�20+u2)8�20

3777775 : (7.70)
Clearly, the information matrix (7.70) is equal to the information matrix (7.56). Therefore

jM(�(1)4 ;�)j = jM(�(2)4 ;�)j = jM(�8;�)j
which implies that designs �(1)4 , �(2)4 and �8 are equally e�cient.Regression approximation of the 8-point D-optimal designTable 7.1 displays numerical solutions for u to the equation (7.60) for various values of �0 ��1:5434. The data in Table 7.1 were used to determine a regression equation that can be usedto determine optimal value, u�, of u from a given �0. For example, for �5 � �0 � �1:5434,the equation was found to be

u�� = bu = 1:0835 + 2:1598 exp(�0) (7.71)
with R2 = 0:999. Figure 7.18 also indicates that equation (7.71) �ts the data in Table 7.1reasonably well. The following examples demonstrate numerically the application of equation(7.71) as well as verify Theorem 7.1.
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Figure 7.18: Scatter plot of the values of u for given values of �0 for the two-variable binarylogistic model with interaction with u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the designspace [0; b] � [0; b] and with parameter values �1 = �2 = �2�0b , �12 = 4�0b2 and �5 � �0 ��1:5434: The \O" represent the observed values of u, and the \+" represent the �tted valuesof u.
Example 7.12. Consider constructing the D-optimal design for parameters of model u =logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameters�0 = �3, �1 = 3, �2 = 3 and �12 = �3. The hyperbola u is centred at (1; 1) which is alsothe centre of the design space [0; 2] � [0; 2]. Since, ��0 = 0, �1 = �2 = �2�0b , �12 = 4�0b2 and�0 < �1:5434, it follows from Theorem 7.1 that an equally weighted 8-point D-optimal designis expected. For �0 = �3, Table 7.1 indicates that the optimal logit value is u� = 1:1915.Therefore the candidate 8-point D-optimal design in this example is

��8 =
8>><>>:

(0:60; 0) (1:40; 0) (0; 0:60) (0; 0:1:40) (0:60; 2) (1:40; 2) (2; 0:60) (2; 1:40)18 18 18 18 18 18 18 18�1:191 1:191 �1:191 1:191 1:191 �1:191 1:191 �1:191
9>>=>>; :
(7.72)The 8 support points of design (7.72) are represented by triangles in Figure 7.19 (a). Thegraph of the standardized variance function d(x; ��;�) associated with design (7.72) is dis-played in Figure 7.19 (b). The �gure indicates that d(x; ��;�) � 4 with equality holding atthe 8 support points of design (7.72) which suggests that the design (7.72) is D-optimal.
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Figure 7.19: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameter values �0 = �12 = �3,�1 = �2 = 3. The triangles are support points of design (7.72).
Now, for �0 = �3, equation (7.71) gives u�� = bu = 1:1910 which is almost equal to theoptimal value u� = 1:1915 given in Table 7.1. The approximate value u�� = 1:1910 leads toan 8-point design, �8, with the same values of support points and weights as the D-optimaldesign (7.72), and hence the e�ciency of design �8 relative to the D-optimal design ��8 ise�D = � jM(�8;�)jjM(��8 ;�)j

� 14 = 1:
Example 7.13. Consider constructing the D-optimal design for parameters of model u =logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameters�0 = �1:4, �1 = 1:4, �2 = 1:4 and �12 = �1:4. The parameter values and design space in thisexample are such that �1 = �2 = �2�0b , �12 = 4�0b2 with b = 2 and �1:5434 < �0 = �1:4 < 0.Thus, it is expected that the D-optimal design for the model in this example is an equallyweighted 4-point design with support points at the vertices of the design space [0; 2] � [0; 2].Therefore, the optimal logits are u = ��0 = 1:4 and �u = �0 = �1:4. Thus, the candidate4-point D-optimal design is the 22 factorial design

�� =
8>><>>:

(0; 0) (2; 0) (0; 2) (2; 2)14 14 14 14�1:4 1:4 1:4 �1:4
9>>=>>; : (7.73)
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The support points of the design (7.73) are represented by symbols in Figure 7.20 (a). Thestandardized variance function of design (7.73) is given by Figure 7.20 (b). The �gure indicatesthat design (7.73) is D-optimal.

Figure 7.20: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameters �0 = �12 = �1:4 and�1 = �2 = 1:4. The symbols are support points of design (7.73).

General design patterns
The 4-point and the 8-point D-optimal designs discussed above have simple design patterns aswell as equally weighted support points because of the assumption that ��0 = �0� �1�2�12 = 0 andthe centre � b2 ; b2� of the design space [0; b]� [0; b] coincides with the centre (� �2�12 ;� �1�12 ) of thehyperbolae �u where u = �0+�1x1+�2x2+�12x1x2. Without this assumption, the structureof the candidate D-optimal design can be complicated, and hence the analytical constructionsof the designs is very di�cult. However, even without the assumption, certain design patternsand structures of the candidate D-optimal designs can still be derived under certain symmetryconditions. This section discusses the construction of the D-optimal designs with such designpatterns and structures of the candidate D-optimal designs. The construction of the D-optimaldesigns is done numerically due to the high complexity of analytically constructing the designs.
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The design patterns and structures of the candidate D-optimal designs in this section arediscussed with reference to Figure 7.21.
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Figure 7.21: General design patterns for an 8-point D-optimal design for the two-variablebinary logistic model u = �0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b]� [0; b] where�0 < 0, �1 > 0, �2 > 0, �12 < 0 and j��0 = �0 � �1�2�12j � u� = 1:5434. The candidate supportpoints are represented by circles.
The following is a brief description of Figure 7.21. The point W1( b2 ; b2) is the centre of thedesign space [0; b] � [0; b] while the point W2(� �2�12 ;� �1�12 ) is the centre of the hyperbolae�u = �0+�1x1+�2x2+�12x1x2: The lines IJ and MN are the asymptotes of the hyperbolae�u, and the lines OT and RS are the diagonals of the design space [0; b]� [0; b] with respectiveequations x2 � x1 = 0 and x1 + x2 = b. The median lines of the design space [0; b]� [0; b] arethe lines KL and MN with the respective equations x2 = b2 and x1 = b2. The support pointsof a candidate 8-point D-optimal design are A, B, C, D, E, F , G and H.
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Symmetry conditions and their implications
Consider the 8-point design with support points A, B, C, D, E, F , G and H displayed inFigure 7.21.Symmetry of the hyperbolae �u about OT and RSSymmetry about OT implies that OT passes through point W2, or equivalently, that �1 = �2.In this case, the following pairs of points are expected to have equal weights: fA;Bg, fC;Hg,fD;Gg, and fE;Fg.Symmetry about RS implies that RS passes through point W2, or equivalently, that �1 +�2 + b�12 = 0. In this case, the following pairs of points are expected to have equal weights:fA;Fg, fB;Eg, fC;Dg, and fH;Gg.Symmetry of the hyperbolae �u about KL and PQSymmetry about KL implies that KL passes through point W2 and C and B are at the samedistance from KL, or equivalently, that 2�0 + b�2 = 0 and 2�1 + �12b = 0. In this case, thefollowing points are expected to have equal weights: fA;Dg, fB;Cg, fE;Hg, and fF;Gg.Symmetry about PQ implies that PQ passes through point W2 and A and H are at the samedistance from PQ, or equivalently, that 2�2 + b�1 = 0 and 2�2 + �12b = 0. In this case, thefollowing points are expected to have equal weights: fA;Hg, fB;Gg, fC;Fg, and fD;Eg.Symmetry of the hyperbolae �u about the point W1Symmetry about W1 = W2 implies that the two lines MN and IJ pass through the centreof the design space [0; b] � [0; b], or equivalently that �1 = �2 and �1 + �2 + b�12 = 0. Thatis �1 = �2 and 2�1 + b�12 = 0. In this case, the following points are expected to have equalweights: fA;Eg, fB;Eg, fC;Gg, and fD;Hg.Symmetry of the hyperbolae �u about the point W1, and about KL and PQIn case, the following conditions are satis�ed: 2�0+ b�1 = 0, 2�0+ b�2 = 0 and 2�1+ b�12 = 0,or equivalently, �1 = �2 = �2�0b and �12 = 4�0b2 which is the case of the equally weighted8-point design discussed above.The implications of the above symmetry conditions on the weights of the support points ofthe candidate 8-point D-optimal design with the design pattern displayed in Figure 7.21 werederived assuming that the 8 support points are the expected ones. However, depending onthe values of the model parameters and the design space, the number of support points of
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the candidate D-optimal design may not necessarily be equal to 8. For example, in Theorem7.1, an 8-point D-optimal design exists if �0 < �1:5434 and the design becomes a 4-pointD-optimal design if �1:5434 � �0 � 0. In general, the four hyperbolic branches of �u maynot be equidistant from the vertices of the design space [0; b]� [0; b] which results in a 4-pointor an 8-point design. Thus, in theory the number of support points of a candidate D-optimaldesign may vary from 4 to 8 depending of the values of the model parameters and the designspace [0; b]� [0; b].
D-optimal design patterns on [0; b]� [0; b] when j��0 j < 1:5434
Consider Figure 7.21. The condition that the curves of the hyperbolae �u = �0 + �1x1 +�2x2 + �12x1x2 be spread in the four quadrants generated by the asymptotes x1 = � �2�12 andx2 = � �1�12 was found to be j��0 j < 1:5434. Clearly, the hyperbolic curves of �u will be withinthe design space [0; b]� [0; b] when the following conditions are satis�ed:

0 � �u� � �0�1 < � �2�12 < u� � �0�1 � b
and 0 � u� � �0 � b�2�1 + b�12 < � �2�12 < �u� � �0 � b�2�1 + b�12 � b;or equivalently, �0 � �u� < ��0 < u� � �0 + b�1 (7.74)and �0 + b(�1 + �2) + b2�12 � �u� < ��0 < u� � �0 + b�2 (7.75)where u� = 1:5434. Combining conditions (7.74) and (7.75) gives condition
maxf�0; �0+(�1+�2)b+�12b2g � �1:5434 < ��0 < 1:5434 � minf�0+�1b; �0+�2bg: (7.76)
Various violations of condition (7.76) results in candidate D-optimal designs with the numberof support points varying from 4 to 8. The following are conditions of the candidate 4-pointto 8-point D-optimal designs with corresponding numerical examples.Case of candidate 8-point D-optimal designsAn 8-point design is expected if the inequalities in condition (7.76) are all strict, i.e.

maxf�0; �0 + (�1 + �2)b+ �12b2g < �1:5434 < ��0 < 1:5434 < minf�0 + �1b; �0 + �2bg;
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or, equivalently,

j��0 j < 1:5434 < minf��0; �0 + �1b; �0 + �2b;��0 � (�1 + �2)b� �12b2g: (7.77)
In such a case, all the branches of the hyperbolae �u in Figure 7.21 intersect the design space[0; b]� [0; b], but no point of intersection is a vertex of the design space.Table 7.2 displays examples of numerically constructed 8-point D-optimal designs on the designspace [0; 2] � [0; 2] and for selected values of � = (�0; �1; �2; �12)T which satisfy conditions(7.77). The designs were constructed using the Gauss program in Appendix C and the D-optimality of the designs were checked using the plots of the standardized variance function.
Table 7.2: D-optimal designs with 8 support points for selected values of parameters for modelu = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b] � [0; b] where �0 < 0,�1 > 0, �2 > 0, �12 < 0, �1 + �12b < 0, �2 + �12b < 0, j��0 j < 1:5434 with b = 2.� D-optimal designs�3 x1 0.472 1.028 0 0 0.314 0.686 2 24 ��1 x2 0 0 0.629 1.371 2 2 0.555 0.8733 � 0.1881 0.0960 0.0396 0.0387 0.1728 0.1405 0.1587 0.1657�5 u -1.114 1.114 -1.114 1.114 1.114 -1.114 1.114 -1.1143 x1 0.475 1.025 0 0 0.650 1.017 2 2�4 ��2 x2 0 0 0.475 1.025 2 2 0.650 1.017�4 � 0.1115 0.0870 0.1126 0.0862 0.1600 0.1414 0.1594 0.14195 u -1.099 1.099 -1.099 1.099 1.099 -1.099 1.099 -1.099�3 x1 0.464 1.036 0 0 0.964 1.536 2 24 ��3 x2 0 0 0.464 1.036 2 2 0.964 1.5364 � 0.1112 0.1380 0.1168 0.1340 0.1380 0.1112 0.1340 0.1168�4 u -1.142 1.142 -1.142 1.142 1.142 -1.142 1.142 -1.142
Consider the designs ��1 , ��2 and ��3 in Table 7.2. The design ��1 in Table 7.2 is an 8-point designbecause the model parameter values satisfy conditions (7.77), and the weights of the supportpoints are all di�erent because none of the symmetry conditions discussed above holds. Fordesign ��2 , the conditions are satis�ed as well as the symmetry condition �1 = �2. Hence, thefollowing pairs of support points are almost equally weighted.
f(0:475; 0); (0; 0:475)g ; f(1:025; 0); (0; 1:025)g ; f(0:650; 2); (2; 0:650)g ; f(1:017; 2); (2; 1:017)g :
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Finally, for design ��3 , conditions (7.77) and conditions �1 = �2 and 2�1+b�12 = 0 are satis�ed,and hence there is symmetry relative to the center of the design space, and hence the followingpairs of support points are equally weighted.
f(0:464; 0); (1:536; 2)g ; f(1:036; 0); (0:964; 2)g ; f(0; 0:464); (2; 1:536)g ; f(0; 1:036); (2; 0:964)g :
Cases of 7-point design patternsA 7-point D-optimal design is expected if one of the inequalities in condition (7.76) does nothold. The following are examples of when a 7-point D-optimal design on the design space[0; b]� [0; b] can be expected.
�0 + (�1 + �2)b+ �12b2 < �1:5434 � �0 < ��0 < 1:5434 � minf�0 + �1b; �0 + �2bg: (7.78)

This is the condition for the support points A and B in Figure 7.21 to be both (0; 0).
�0 < �1:5434 � �0 + (�1 + �2)b+ �12b2 < ��0 < 1:5434 � minf�0 + �1b; �0 + �2bg: (7.79)

This is the condition for the support points E and F in Figure 7.21 to be both (b; b).
maxf�0; �0 + (�1 + �2)b+ �12b2g � �1:5434 < ��0 < �0 + �1b � 1:5434 < �0 + �2b (7.80)

This is the condition for the support points G and H in Figure 7.21 to be both (b; 0).
maxf�0; �0 + (�1 + �2)b+ �12b2g � �1:5434 < ��0 < �0 + �2b � 1:5434 < �0 + �1b (7.81)

This is the condition for the support points C and D in Figure 7.21 to be both (0; b).In Table 7.3, the design ��1 is an example of a numerically constructed 7-point design on thedesign space [0; 2] � [0; 2] and for the value of � = (�0; �1; �2; �12)T which satisfy condition(7.78). The design was constructed using the Gauss program in Appendix C and D-optimalityof the design was checked using the plot of the standardized variance function. Note that noneof the symmetry conditions discussed above is satis�ed and hence the 7-point D-optimal design��1 is not symmetric.
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Table 7.3: D-optimal designs with 4 to 7 support points for selected values of parameters formodel u = logit(p) = �0+�1x1+�2x2+�12x1x2 on the design space [0; b]� [0; b] where �0 < 0,�1 > 0, �2 > 0, �12 < 0, �1 + �12b < 0, �2 + �12b < 0 and j��0 j < u� with b = 2.� D-optimal designs�1 x1 0 0.714 0 0.493 0.821 2 23 ��1 x2 0 0 0.766 2 2 0.535 0.8542:8 � 0.2252 0.0666 0.0207 0.1950 0.1504 0.1767 0.1654�5 u -1 1.143 1.143 1.146 -1.146 1.146 -1.146�3 x1 0.746 0 0 0.931 2 22 ��2 x2 0 0.672 2 2 0 0.8502:2 � 0.0625 0.1963 0.2306 0.1786 0.2281 0.1039�2:5 u -1.509 -1.522 1.4 -1.393 1 -1.379�3 x1 0.755 0 0 2 22 ��3 x2 0 0.681 2 0 22:2 � 0.0696 0.1910 0.2450 0.2444 0.2500�1:7 u -1.490 -1.503 1.4 1 -1.4�1:5 x1 0 0 2 21:3 ��4 x2 0 2 0 21:2 � 0:25 0:25 0:25 0:25�1 u -1.5 0.9 1.1 -0.5
Case of candidate 6-point D-optimal designsA 6-point D-optimal design is expected if 2 of the 4 vertices of the design space [0; b]� [0; b] inFigure 7.21 are support points of the candidate D-optimal design. This means that there are�42� = 6 conditions under which a 6-point D-optimal design can be expected. The followingis the list of the 6 conditions
�1:5434 � [�0; �0 + (�1 + �2)b+ �12b2] < ��0 < 1:5434 < minf�0 + �1b; �0 + �2bg: (7.82)

This is the condition for the pairs fA;Bg and fE;Fg of support points in Figure 7.21 to be(0; 0) and (b; b), respectively.
maxf�0; �0 + (�1 + �2)b+ �12b2g < �1:5434 < ��0 < [�0 + �1b; �0 + �2b] � 1:5434: (7.83)

This is the condition for the pairs fC;Dg and fG;Hg of support points in Figure 7.21 to be(0; b) and (b; 0), respectively.
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�0 + (�1 + �2)b+ �12b2 < �1:5434 � �0 < ��0 < �0 + �2b � 1:5434 < �0 + �1b (7.84)This is the condition for the pairs fA;Bg and fC;Dg of support points in Figure 7.21 to be(0; 0) and (0; b), respectively.
�0 + (�1 + �2)b+ �12b2 < �1:5434 � �0 < ��0 < �0 + �1b � 1:5434 < �0 + �2b: (7.85)

This is the condition for the pairs fA;Bg and fG;Hg of support points in Figure 7.21 to be(0; 0) and (b; 0), respectively.
�0 < �1:5434 � �0 + (�1 + �2)b+ �12b2 < ��0 < �0 + �2b � 1:5434 < �0 + �1b (7.86)

This is the condition for the pairs fC;Dg and fE;Fg of support points in Figure 7.21 to be(0; b) and (b; b), respectively.
�0 < �1:5434 � �0 + (�1 + �2)b+ �12b2 < ��0 < �0 + �1b � 1:5434 < �0 + �2b (7.87)

This is the condition for the pairs fG;Hg and fE;Fg of support points in Figure 7.21 to be(b; 0) and (b; b), respectively.Design ��2 in Table 7.3 is an example of a numerically constructed 6-point D-optimal design onthe design space [0; 2]� [0; 2] and for the value of � = (�0; �1; �2; �12)T which satisfy condition(7.83). The design was constructed numerically using the Gauss program in Appendix C andthe D-optimality of the design checked using the plot of the standardized variance function.Note that none of the symmetry conditions discussed above is satis�ed and hence the supportpoints of the 6-point D-optimal design ��2 are unequally weighted.Cases of candidate 5-point D-optimal designsA 5-point design is expected if 3 of the 4 vertices of the design space [0; b]� [0; b] in Figure 7.21are support points of the candidate D-optimal design. This means that there are �43� = 4conditions under which a 5-point D-optimal design can be expected. The following is the listof the 4 conditions.
�1:5434 � [�0; �0 + (�1 + �2)b+ �12b2] < ��0 < �0 + �2b � 1:5434 < �0 + �1b: (7.88)

This is the condition for the pairs fA;Bg, fC;Dg and fE;Fg of support points in Figure 7.21to be (0; 0), (0; b) and (b; b), respectively.
�1:5434 � [�0; �0 + (�1 + �2)b+ �12b2] < ��0 < �0 + �1b � 1:5434 < �0 + �2b: (7.89)
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This is the condition for the pairs fA;Bg, fG;Hg and fE;Fg of support points in Figure7.21 to be (0; 0), (b; 0) and (b; b), respectively.

�0 + (�1 + �2)b+ �12b2 < �1:5434 � �0 < ��0 < [�0 + �1b; �0 + �2b] � 1:5434: (7.90)
This is the condition for the pairs fA;Bg, fC;Dg and fG;Hg of support points in Figure7.21 to be (0; 0), (0; b) and (b; 0), respectively.

�0 < �1:5434 � �0 + (�1 + �2)b+ �12b2 < ��0 < [�0 + �1b; �0 + �2b] � 1:5434: (7.91)
This is the condition for the pairs fC;Dg, fG;Hg and fE;Fg of support points in Figure7.21 to be (0; b), (b; 0), and (b; b), respectively.Design ��3 in Table 7.3 is an example of a numerically constructed 5-point D-optimal designon the design space [0; 2] � [0; 2] and for the value of � = (�0; �1; �2; �12)T which satisfycondition (7.91). The design was constructed using the Gauss program in Appendix C andthe D-optimality of the design checked using the plot of the standardized variance function.Note that none of the symmetry conditions discussed above is satis�ed and hence the supportpoints of the 5-point D-optimal design ��3 are unequally weighted.Case of candidate 4-point D-optimal designA 4-point D-optimal design is expected if all the 4 vertices of the design space [0; b]� [0; b] inFigure 7.21 are support points of the candidate D-optimal design, or equivalently, if all the 4inequalities in condition (7.76) do not hold. That is, if

j��0 j < maxf��0; �0 + �1b; �0 + �2b;��0 � (�1 + �2)b� �12b2g � 1:5434: (7.92)
Design ��4 in Table 7.3 is an example of a numerically constructed 4-point D-optimal designon the design space [0; 2] � [0; 2] and for the value of � = (�0; �1; �2; �12)T which satisfycondition (7.92). The design was constructed using the Gauss program in Appendix C andthe D-optimality of the design checked using the plot of the standardized variance function.
7.5.4 D-optimal designs when j��0 j < 1:5434, and either � �2

�12
< b and

� �1
�12

> b, or � �2
�12

> b and � �1
�12

< b

For �0 < 0, �1 > 0, �2 > 0 and �12 < 0, if j��0 j = j�0 � �1�2�12 j < 1:5434, then the hyperbolae�u = �0+�1x1+�2x2+�12x1x2 are spread in the four quadrants generated by the asymptotesx1 = � �2�12 and x2 = � �1�12 as in Figures 7.22 (a) and (b). If in addition to the condition on
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Figure 7.22: Design patterns of the candidate D-optimal designs for the two-variable binarylogistic model with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the designspace [0; b] � [0; b] where (a) �0 + �2b � �u < ��0 < u � �0 + (�1 + �2)b + �12b2 and (b)�0 + �1b � �u < ��0 < u � �0 + (�1 + �2)b+ �12b2.
��0 , 0 < � �2�12 < b and � �1�12 > b, then the candidate D-optimal design has 4 support pointsindicated by circles in Figures 7.22 (a). The 4-point D-optimal design with the design patternof Figure 7.22 (a) is possible if

0 � �u� �0 � �2b�1 + b�12 < � �2�12 < u� �0 � �2b�1 + b�12 � b;
or equivalently, if

�0 + �2b � �u < ��0 < u � �0 + (�1 + �2)b+ �12b2: (7.93)
On the other hand, if in addition to the condition on ��0 , 0 < � �1�12 < b and � �2�12 > b, thenthe candidate D-optimal design has 4 support points indicated by circles in Figures 7.22 (b).The 4-point D-optimal design with the design pattern of Figure 7.22 (b) is possible if

�0 + �1b � �u < ��0 < u � �0 + (�1 + �2)b+ �12b2: (7.94)
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Theorem 7.3 is about the D-optimality of the candidate 4-point D-optimal designs with thedesign patterns of the form displayed in Figures 7.22 (a) and (b).
Proposition 7.3. The design

��1 =
8<:
��1:5434��0�1 ; 0� ��1:5434��0��2b�1+�12b ; b� �1:5434��0��2b�1+�12b ; b� �1:5434��0�1 ; 0�14 14 14 14

9=; (7.95)
for the two-variable binary logistic model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on thedesign space [0; b]� [0; b] with the model parameters satisfying the conditions �0 < 0, �1 > 0,�2 > 0 and �12 < 0, and �0 + �2b � �1:5434 < ��0 < 1:5434 � �0 + (�1 + �2)b + �12b2, isD-optimal. Similarly, the design

��2 =
8<:
�0; 1:5434��0�2 � �b; 1:5434��0��1b�2+�12b � �b; �1:5434��0��1b�2+�12b � �0; �1:5434��0�2 �

14 14 14 14
9=; (7.96)

for the two-variable binary logistic model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on thedesign space [0; b]� [0; b] with the model parameters satisfying the conditions �0 < 0, �1 > 0,�2 > 0 and �12 < 0, and �0 + �1b � �1:5434 < ��0 < 1:5434 � �0 + (�1 + �2)b + �12b2, isD-optimal.
ProofConsider design ��1 given by (7.95) as the candidate D-optimal design for the 4-parametertwo-variable binary logistic model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the designspace [0; b]� [0; b] with design pattern displayed in Figure 7.22 (a) where the support pointsare represented by circles. The pattern of design points in Figure 7.22 (a) indicates that thecandidate D-optimal design is of the form

�1 = 8<:
��u��0�1 ; 0� ��u��0��2b�1+�12b ; b� �u��0��2b�1+�12b ; b� �u��0�1 ; 0�14 14 14 14

9=; (7.97)
where u satisfying equation (7.93). Clearly, the design �1 given (7.97) has the same form asthe design (7.6), where c = 0 and d = b, which was shown to be D-optimal in Proposition 7.2.Hence, the optimal value of u in design (7.97) is u = u� = 1:5434 so that the design (7.95) isD-optimal and condition (7.93) becomes

�0 + �2b � �1:5434 < ��0 < 1:5434 � �0 + (�1 + �2)b+ �12b2: (7.98)
Now, consider the 4-point design ��2 given by (7.96) corresponds to the case when j��0 j < 1:5434,and � �2�12 > b and � �1�12 < b. Clearly, Figures 7.22 (a) and (b) suggest that the candidate
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D-optimal design ��2 with support points corresponding the design pattern in Figure 7.22 (b)can be obtained from design ��1 given in (7.95) by exchanging the parameters �1 and �2.Hence, the design (7.96) is D-optimal provided that condition (7.94), where u = u� = 1:5434,is satis�ed. The transformation on parameter values and support points from design (7.95)to design (7.96) can be derived as follows.A support point (x1; x2) of design (7.96) can be a transform of a support point (y1; y2) ofdesign (7.95) using the transformation

(x1; x2) = (y2; b� y1): (7.99)
Clearly, a logit line u in the design of Figure 7.22 (b) is image of a logit line eu = �u in Figure7.22 (a). The correspondence between the values of the parameters can be obtained as follows.Assume that eu = �00 + �01y1 + �02y2 + �012y1y2. Setting eu = �u gives

�00 + �01y1 + �02y2 + �012y1y2 = eu = �u� �0 � �1y1 � �2(b� y1)� �12y2(b� y1)= ��0 � �2b+ �2y1 � (�1 + �12b)y2 + �12y1y2;and hence 8>>>>><>>>>>:
�00 = ��0 � �2b�01 = �2�02 = ��1 � �12b�012 = �12

()
8>>>>><>>>>>:

�0 = ��00 � �01b�1 = ��02 � �012b�2 = ��01�12 = �012:
(7.100)

For example, applying the transformations (7.99) and (7.100) to the second support point ofdesign (7.95) gives the second support of design (7.96) since x1 = y2 = b and
x2 = b� y1 = b� �1:5434� �00 � �02b�01 + �012b = 1:5434 + (�00 + b�01) + b(�02 + �012b)�01 + �012b = 1:5434� �0 � �1b�2 + �12b :
Other support points of design (7.96) can be obtained from the support points of design(7.95) in the same way. The weights of the corresponding support points of designs (7.95)and (7.95) remain equal. Hence, design ��2 given in (7.96) is also D-optimal because it is theimage of the D-optimal design (7.95) through the transformations (7.99) and (7.100). �.The following numerical example illustration the above theoretical results.
Example 7.14. Consider the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameters �0 = �4,�1 = 5, �2 = 1 and �12 = �1:2. In this example,

�0 + �2b = �2 < �1:5434 < ��0 ' 0:17 < 1:5434 < �0 + (�1 + �2)b+ �12b2 = 3:2:
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Hence, the condition (7.98) is satis�ed, and thus the candidate D-optimal design associatedto this example given in (7.95) is

��1 =
8>><>>:

(0:491; 0) (0:176; 2) (1:363; 2) (1:109; 0)14 14 14 14�1:5434 �1:5434 1:5434 1:5434
9>>=>>; :

The support points of the design ��1 are represented by triangles in Figure 7.23 (a), and thestandardized variance function is displayed in Figure 7.23 (b) which suggests that the abovedesign is D-optimal.

Figure 7.23: (a) Support points and (b) the standardized variance function of the candidateD-optimal design for the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�4; 5; 1;�1:2)T .
CommentsIf in Figure 7.22 (a) or Figure 7.22 (b) some branches of the optimal hyperbolae �u = 1:5434pass through vertices of or outside the design space [0; b] � [0; b], then the vertices becomesupport points of the D-optimal design instead of any other point outside the design space.Consequently, the logits at the support points, for example at B and C, are not necessarilyequal to the optimal logits �u = 1:5434: The following numerical example is an illustration.
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Example 7.15. Consider the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameters �0 = �4,�1 = 5, �2 = 1:3 and �12 = �1:2. The design space and the model parameter values in thisexample are the same as those in Example 7.14 with �2 = 1 replaced by �2 = 1:3. In this case

�1:5434 < �0 + �2b = �1:4 < ��0 = 1:42 < 1:5434 < �0 + (�1 + �2)b+ �12b2 = 3:8:
Hence, the D-optimal design has the pattern of design (7.95), but with the vertex (0; 2)expected to be one of the support points. The presence of this vertex support point forcessome of the support points to lie o� the optimal logits �1:5434: Indeed, numerical calculationsof the D-optimal design for the model in this example gave the 4-point design

��2 =
8>><>>:

(0:491; 0) (0; 2) (1:156; 2) (1:109; 0)14 14 14 14�1:5434 �1:4 1:6053 1:5434
9>>=>>; :

Figures 7.24 (a) and (b) indicate the location of the support points on the designs space[0; 2]� [0; 2], and that the design is D-optimal.

Figure 7.24: (a) Support points and (b) the standardized variance function of the D-optimaldesign for the two-variable binary logistic model with interaction u = logit(p) = �0 + �1x1 +�2x2+�12x1x2 on the design space [0; 2]� [0; 2] and with parameters �0 = �4, �1 = 5, �2 = 1:3and �12 = �1:2. The triangles are support points of the design.
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7.5.5 D-optimal designs when ��0 > 1:5434, and � �1

�12
< b and � �1

�12
< b

For �0 < 0, �1 > 0, �2 > 0 and �12 < 0, if ��0 = �0 � �1�2�12 > 1:5434 then the hyperbolae�u = �0 + �1x1 + �2x2 + �12x1x2 are located in the �rst and third quadrants generated bythe asymptotes x1 = � �2�12 and x2 = � �1�12 as illustrated in Figure 7.25. If in addition to the
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Figure 7.25: Design patterns of the candidate D-optimal designs for the two-variable binarylogistic model with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space[0; b]� [0; b] where max(�0; �0 + (�1 + �2)b+ �12b2) < �u < u < ��0 < min(�0 + �1b; �0 + �2b).Circles represent the support points.
condition on ��0 , 0 < � �1�12 < b and 0 < � �2�12 < b, then the candidate D-optimal design hasthe 8 support points indicated by circles in Figure 7.25. Using the same reasoning as in Section7.5.3, the 8-point D-optimal design with design pattern in Figure 7.25 is expected if

max(�0; �0 + (�1 + �2)b+ �12b2) � �1:5434 < 1:5434 < ��0 < min(�0 + �1b; �0 + �2b): (7.101)
As in Section 7.5.3, violations of at least one of the inequalities in condition (7.101) leads tocandidate D-optimal designs with fewer than 8 support points. The following are conditionsof the candidate 4-point to 8-point D-optimal designs with corresponding numerical examples.The designs were constructed using the Gauss program in Appendix C and the D-optimalityof the designs checked using the plot of the standardized variance function.
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Case of candidate 8-point D-optimal designsAn 8-point D-optimal design is expected if condition (7.101) holds, but with strict inequalitysigns. For example, the designs ��1 in Table 7.4 is an examples of numerically constructed8-point D-optimal designs on the design space [0; 2]� [0; 2] and for the parameter values � =(�0; �1; �2; �12)T which satisfy condition (7.101). None of the symmetry conditions discussed inSection 7.5.3 are satis�ed for design ��1 and hence the support points of the 8-point D-optimaldesign ��1 are unequally weighted.
Table 7.4: D-optimal designs for selected values of parameters for model u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b] � [0; b] where �0 < 0, �1 > 0, �2 > 0,�12 < 0, �1 + �12b < 0, �2 + �12b < 0 and ��0 > 1:5434 or ��0 < �1:5434 with b = 2.� D-optimal designs�3 x1 0.311 0.689 0 0 0.966 1.534 2 26 ��1 x2 0 0 0.466 1.034 2 2 1.311 1.6894 � 0.1327 0.1502 0.0831 0.1342 0.1309 0.0878 0.1526 0.1285�5 u -1.135 1.135 -1.135 1.135 1.135 -1.135 1.135 -1.1359 x1 1.689 1.311 2 2 1.034 0.466 0 0�6 ��2 x2 0 0 0.466 1.034 2 2 1.311 1.689�6 � 0.1327 0.1502 0.0831 0.1342 0.1309 0.0878 0.1526 0.12855 u -1.135 1.135 -1.135 1.135 1.135 -1.135 1.135 -1.135
Case of candidate 7-point D-optimal designsA 7-point D-optimal design is expected if one vertex of the design space is a support pointof the candidate D-optimal design. The following are conditions of when a 7-point D-optimaldesign on the design space [0; b]� [0; b] can be expected.

�0 + (�1 + �2)b+ �12b2 < �1:5434 � �0 < 1:5434 < ��0 < min(�0 + �1b; �0 + �2b): (7.102)
This is the condition for the support points A and B in Figure 7.25 to be both (0; 0).

�0 < �1:5434 � �0 + (�1 + �2)b+ �12b2 < 1:5434 < ��0 < min(�0 + �1b; �0 + �2b): (7.103)
This is the condition for the support points E and F in Figure 7.25 to be both (b; b).For example, in Table 7.5, the design ��1 is an example of a numerically constructed 7-pointD-optimal design on the design space [0; 2] � [0; 2] and for the value of � = (�0; �1; �2; �12)Twhich satisfy condition (7.103).
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Table 7.5: D-optimal designs for selected values of parameters for model u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b] � [0; b] where �0 < 0, �1 > 0, �2 > 0,�12 < 0, �1 + �12b < 0, �2 + �12b < 0 and ��0 > 1:5434 with b = 2.� D-optimal designs�3 x1 0.253 0.604 0 0 2 1.259 27 ��1 x2 0 0 0.443 1.057 1.630 2 24 � 0.1652 0.1863 0.0636 0.2388 0.1367 0.0048 0.2046�5 u -1.227 1.227 -1.227 1.227 1.219 1.222 -1�1 x1 0 1.032 0 2 1.288 22:5 ��2 x2 0 0 0.712 0.968 2 23:5 � 0.2203 0.1349 0.1448 0.1348 0.1449 0.2203�3 u -1 1.580 1.490 1.580 1.490 -1�3 x1 0.338 0.912 0 0 24:8 ��3 x2 0 0 0.406 1.094 24 � 0.1339 0.2411 0.1339 0.2411 0.250�2:5 u -1.376 1.376 -1.376 1.376 3
Case of 6-point design patternsA 6-point D-optimal design is expected if 2 vertices of the design space [0; b]� [0; b] in Figure7.25 are support points of the candidate D-optimal design. In such a case, the vertices (0; 0)and (b; b) both lie on the logit line u = �1:5434 or are above and below the logit line u =�1:5434, respectively. Hence, a 6-point D-optimal design is expected if

�1:5434 � [�0; �0 + (�1 + �2)b+ �12b2] < 1:5434 < min(�0 + �1b; �0 + �2b): (7.104)
This is the condition for the pairs fA;Bg and fB;Fg of support points in Figure 7.25 tobe (0; 0) and (b; b), respectively. In Table 7.5, the design ��2 is an example of a numericallyconstructed 6-point D-optimal design on the design space [0; 2] � [0; 2] and for the value of� = (�0; �1; �2; �12)T which satis�es condition (7.104).Case of 5-point design patternsConsider Figure 7.25. A 5-point candidate D-optimal design is expected in either of thefollowing cases: (1) two branches, one of �u and one of u lie at or below point (0; 0), andthe other two branches one of �u and one of u lie above point (0; 0) but below point (b; b);or (2) two branches, one of �u and one of u lie at or above point (b; b) and the other twobranches, one of �u and one of u lie below point (b; b) but above point (0; 0). Hence, a 5-point
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D-optimal design may exist if one of the following two conditions is satis�ed.

�0 + (�1 + �2)b+ �12b2 < �1:5434 < 1:5434 � �0 < ��0 < min(�0 + �1b; �0 + �2b): (7.105)
This the condition for the support points A and B in Figure 7.25 to be both (0; 0).

�0 < �1:5434 < 1:5434 � �0 + (�1 + �2)b+ �12b2 < ��0 < min(�0 + �1b; �0 + �2b): (7.106)
This is the condition for the support points E and F in Figure 7.25 to be both (b; b). Forexample, in Table 7.5, the design ��3 is an example of a numerically constructed 5-point D-optimal design on the design space [0; 2] � [0; 2] and for the value of � = (�0; �1; �2; �12)Twhich satisfy condition (7.106).
7.5.6 D-optimal designs when ��0 < �1:5434, and � �2

�12
< b and � �1

�12
<

b

For �0 < 0, �1 > 0, �2 > 0 and �12 < 0, if ��0 = �0 � �1�2�12 < �1:5434 then the branches of thehyperbolae �u = �0 + �1x1 + �2x2 + �12x1x2 are located in the second and fourth quadrantsgenerated by the asymptotes x1 = � �2�12 and x2 = � �1�12 as in Figure 7.26.
If in addition to the condition on ��0 , 0 < � �1�12 < b and 0 < � �2�12 < b, then the candidateD-optimal design has the 8 support points indicated by circles in Figure 7.26. Note that therelationship between support points (x1; x2) of this candidate 8-point D-optimal design andthe support points (y1; y2) of the candidate D-optimal design with the design pattern displayedin Figure 7.25 is given by (x1; x2) = (�y1 + b; y2): (7.107)Clearly, if u is a logit line in the design of Figure 7.26, then the corresponding logit line inFigure 7.25 is eu = �u. The correspondence between the values of the parameters can beobtained as follows. Assume that eu = �00 + �01y1 + �02y2 + �012y1y2. Setting eu = �u gives

�00 + �01y1 + �02y2 + �012y1y2 = eu = �u= ��0 � �1x1 � �2x2 � �12x1x2= ��0 � �1(�y1 + b)� �2y2 � �12(�y1 + b)y2= ��0 � �1b+ �1y1 � (�2 + �12b)y2 + �12y1y2
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Figure 7.26: Design patterns of the candidate D-optimal designs for the two-variable binarylogistic model with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space[0; b]� [0; b] where max(�0; �0 + (�1 + �2)b+ �12b2) < �u < u < ��0 < min(�0 + �1b; �0 + �2b).
and, hence 8>>>>><>>>>>:

�00 = ��0 � �1b�01 = �1�02 = ��2 � �12b�012 = �12
()

8>>>>><>>>>>:
�0 = ��00 � �01b�1 = �01�2 = ��02 � �012b�12 = �012:

(7.108)
For example, consider point C in Figure 7.25. Using the notation above, assume thatC �0; eu��00�02 �. The transformations (7.107) and (7.108) give x1 = �y1 + b = b and

x2 = u� �00�02 = u+ �0 + �1b��2 � �12b = �u� �0 � �1b�2 + �12band these are coordinates of point C in Figure 7.25. Also, note that if ��00 = �00 � �01�02�012 fordesign pattern in Figure 7.25 and ��0 = �0 � �1�2�12 for the design pattern in Figure 7.26, itfollows from (7.108) that
��00 = �00 � �01�02�012 = ��0 � �1b� �1(��2 � �12b)�12 = ���0 � �1�2�12

� = ���0 :
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Consequently, for u� = �1:5434, condition ��00 > u� is transformed to ���0 > u� or, equiva-lently, to ��0 < �u�.For example, the support points of the D-optimal design ��2 in Table 7.4 are obtained fromthose of the D-optimal design ��1 in Table 7.4 using the transformation (7.107). The weightsat support points of design ��2 are the same as those of design ��1 , but the optimal logit ateach support point of design ��2 has an opposite sign to that of the logit of the correspondingsupport point of design ��1 .
7.5.7 D-optimal designs when ��0 > 1:5434, and either � �2

�12
< b and

� �1
�12

> b, or � �2
�12

> b and � �1
�12

< b

For �0 < 0, �1 > 0, �2 > 0, �12 < 0 and ��0 = �0 � �1�2�12 , if ��0 > 1:5434, then the branches ofthe hyperbolae �u = �0 + b1x1 + b2x2 + �12x1x2 are located in the �rst and third quadrantsgenerated by the asymptotes x1 = � �2�12 and x2 = � �1�12 as indicated in Figure 7.27 (a) and
(b). The support points of the designs are represented by circles in the �gures. If � �2�12 < b
and � �1�12 > b, then the candidate D-optimal design has the design pattern displayed in Figure
7.27 (a), and if � �2�12 > b and � �1�12 < b, then the candidate D-optimal design has the designpattern displayed in Figure 7.27 (b).Consider the design pattern displayed in Figure 7.27 (a). The support points at A, B, C andD are points of intersection of the boundary of the design space [0; b] � [0; b] and the twobranches of the hyperbolae �u. However, the interaction parameter �12 may not be estimablefrom a design with support points A, B, C and D since the interaction term in model vanishesat the four support points. Hence, there is a need of an interior support point, say the vertex(b; b) at which the interaction term in the model does not vanish. The choice of vertex (b; b)as a support point is sensible because it is an obvious substitute for the imaginary pointsof intersection of the boundary of the design space and the two branches of the hyperbolae�u which do not intersect the design space. Thus, the candidate D-optimal design with thedesign pattern displayed in Figure 7.27 (a) is

� =
8>><>>:
��u��0�1 ; 0� �0; �u��0�2 � �0; u��0�2 � �u��0�1 ; 0� (b; b)�1 �2 �3 �4 �5�u �u u u �0 + (�1 + �2)b+ �12b2

9>>=>>; (7.109)
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Figure 7.27: Design patterns of the candidate D-optimal designs for the two-variable binarylogistic model with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design space[0; b] � [0; b] and with parameter values with (a) �0 < �1:5434 < 1:5434 � �0 + �2b < ��0 <�0 + �1b and (b) �0 < �1:5434 < 1:5434 � �0 + �1b < ��0 < �0 + �2b.
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where 0 < �i < 1 and 5X

i=1 �i = 1. Clearly, the condition for the existence of design (7.109) is
�0 < �1:5434 < 1:5434 � �0 + �2b < ��0 < �0 + �1b (7.110)

Table 7.5 displays two examples of the numerically constructed D-optimal designs of the formdesign (7.109) on the design space [0; 2]� [0; 2] and for selected values of the parameter vector� = (�0; �1; �2; �12)T : Note that the values of the model parameters which obtained ��1 in
Table 7.6: D-optimal for selected values of parameters for model u = logit(p) = �0 + �1x1 +�2x2 + �12x1x2 on the design space [0; b] � [0; b] and with parameters satisfying conditions� �2�12 < b and � �1�12 > b or � �2�12 > b and � �1�12 < b.� D-optimal designs�3 x1 0.325 0.875 0 0 25 ��1 x2 0 0 0.541 1.459 23 �� 0.1339 0.2411 0.1339 0.2411 0.2500�2 u� -1.376 1.376 -1.376 1.376 5�3 x1 0 0 0.541 1.459 25 ��2 x2 0.325 0.875 0 0 22 �� 0.1339 0.2411 0.1339 0.2411 0.2500�2 u� -1.376 1.376 -1.376 1.376 5
Table 7.6 satisfy condition (7.110). In fact,

�0 = �3 < �1:5434 < 1:5434 � �0 + �2b = 3 < ��0 = 4:5 < �0 + �1b = 7:
Now, consider the design pattern displayed in Figure 7.27 (b). The candidate D-optimaldesign with this pattern is

� =
8>><>>:
�0; �u��0�2 � ��u��0�1 ; 0� �0; u��0�2 � �u��0�1 ; 0� (b; b)�1 �2 �3 �4 �5�u �u u u �0 + (�1 + �2)b+ �12b2

9>>=>>; (7.111)
where 0 < �i < 1 and 5X

i=1 �i = 1. Note that a support point (x1; x2) of the design (7.111) isrelated to a support point (y1; y2) of design (7.109) by the transformation
(x1; x2) = (y2; y1) (7.112)

231



Chapter 7 { D-optimal Designs for the Two-Variable Binary Logistic Modelwith Interaction
Clearly, if u is a logit line in the design of Figure 7.27 (b), then the corresponding logit linein Figure 7.27 (a) is u0 = u. The correspondence between the values of the parameters can beobtained as follows. Assume that u0 = �00 + �01y1 + �02y2 + �012y1y2. Setting u0 = u gives

�00 + �01y1 + �02y2 + �012y1y2 = u0 = u= �0 + �1x1 + �2x2 + �12x1x2= �0 + �1y2 + �2y1 + �12y2y1Hence, the respective parameter vectors � = (�0; �1; �2; �12)T and �0 = (�00; �01; �02; �012)T arelinked by 8>>>><>>>>:
�00 = �0�01 = �2�02 = �1�012 = �12:

(7.113)
For example, the vector of parameters � = (�3; 5; 3;�2)T for the candidate D-optimal design��2 is linked to the vector of parameters � = (�3; 3; 5;�5) for the design ��1 in Table 7.6 by therelations (7.113). Thus the support points of the design ��2 can be derived from those of design�1 by the transformation (7.112). The weights and the optimal logits remain unchanged.
7.5.8 D-optimal designs when ��0 < �1:5434, and either � �2

�12
< b and

� �1
�12

> b, or � �2
�12

> b and � �1
�12

< b

For �0 < 0, �1 > 0, �2 > 0, �12 < 0 and ��0 = �0 � �1�2�12 , if ��0 < �1:5434, then the branchesof the hyperbolae �u = �0 + �1x1 + �2x2 + �12x1x2 are located in the second and fourthquadrants generated by the asymptotes x1 = � �2�12 and x2 = � �1�12 as indicated in Figures7.28 (a) and (b). The �gures display the design patterns of the candidate D-optimal designs,and the support points of the designs are represented by circles in the �gures. If � �2�12 < band � �1�12 > b, then the candidate D-optimal design has the design pattern displayed in Figure7.28 (a), and if � �2�12 > b and � �1�12 < b, then the candidate D-optimal design has the designpattern displayed in Figure 7.28 (b).Consider the design pattern displayed in Figure 7.28 (a). The candidate D-optimal designwith the displayed design pattern is
� =

8>><>>:
�u��0�1 ; 0� �b; u��0��1b�2+�12b � �b; �u��0��1b�2+�12b � �0; u��0�2 � (0; b)�1 �2 �3 �4 �5u u �u �u �0 + �2b

9>>=>>; (7.114)
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Figure 7.28: Design patterns of the candidate D-optimal designs for the two-variable binarylogistic model u = logit(p) = �0+ �1x1+ �2x2+ �12x1x2 on the design space [0; b]� [0; b] with(a) �0 < ��0 < �0 + (�1 + �2)b + �12b2 � �1:5434 < 1:5434 < �0 + �1b and (b) �0 < ��0 <�0 + (�1 + �2)b+ �12b2 � �1:5434 < 1:5434 < �0 + �2b.
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where 0 < �i < 1 and 5X

i=1 �i = 1. Note that design (7.114) can be obtained from design(7.109) using the transformation
(x1; x2) = (b� y1; y2) (7.115)

where (x1; x2) is a support point in design (7.114) and (y1; y2) is a support point in design(7.109). If u is a logit line for a design pattern in Figure 7.28 (a), then the corresponding logitline in Figure 7.27 (a) is eu = �u. Hence, the relationship between parameters can be derivedas follows using the transformation (7.115).
�00 + �01y1 + �02y2 + �012y1y2 = eu = �u= ��0 � �1x1 � �2x2 � �12x1x2= ��0 � �1(b� y1)� �2y2 � �12(b� y1)y2= ��0 � �1b+ �1y1 � (�2 + �12b)y2 + �12y1y2and, thus 8>>>>><>>>>>:

�00 = ��0 � �1b�01 = �1�02 = ��2 � �12b�012 = �12
()

8>>>>><>>>>>:
�0 = ��00 � �01b�1 = �01�2 = ��02 � �012b�12 = �012:

(7.116)
Hence, the condition (7.110) for the existence of design (7.109) is transformed to condition

�0 < ��0 < �0 + (�1 + �2)b+ �12b2 � �1:5434 < 1:5434 < �0 + �1b: (7.117)
For example, the parameter values for design ��1 in Table 7.7 satisfy condition (7.117), andhence a design of the form (7.114) can be conjectured. Furthermore, the parameters of design��1 in Table 7.7 are linked to those of design ��1 in Table 7.6 by the transformation (7.116).Consequently, the support points and associated weights and logits of design ��1 , in Table 7.7can be calculated from those of design ��1 in Table 7.6 using transformation (7.115).Now, consider the design pattern displayed in Figure 7.28 (b). The candidate D-optimaldesign with the displayed design pattern is given by

� =
8>><>>:
�u��0��2b�1+�12b ; b� �0; u��0�2 � �0; �u��0�2 � ��u��0��2b�1+�12b ; b� (b; 0)�1 �2 �3 �4 �5u u �u �u �0 + �1b

9>>=>>; : (7.118)
Design (7.118) can be obtained from design (7.109) by the transformation

(x1; x2) = (y1; b� y2) (7.119)
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Table 7.7: D-optimal designs for selected values of parameters for model u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; b] � [0; b] and with parameters satisfyingconditions ��0 < �1:5434 with � �2�12 < b and � �1�12 > b, or � �2�12 > b and � �1�12 < b.� D-optimal designs�7 x1 1.675 2 2 1.125 05 ��1 x2 0 0.541 1.459 0 21 �� 0.13391 0.1339 0.2411 0.2411 0.2500�2 u� 1.376 1.376 -1.376 -1.376 -5�7 x1 0 0.541 1.459 0 21 ��2 x2 1.675 2 2 1.125 05 �� 0.1339 0.1339 0.2411 0.2411 0.2500�2 u� 1.376 1.376 -1.376 -1.376 -5
where (x1; x2) is a support point in design (7.118) and (y1; y2) is a support point in design(7.109). The transformation (7.119) which is similar to transformation (7.115) by interchang-ing the roles of x1 and x2. Therefore, the relationship between parameters can found fromequations (7.116) by interchanging the roles of �1 and �2 to obtain8>>>>><>>>>>:

�00 = ��0 � �2b�01 = ��1 � �12b�02 = �2�012 = �12
()

8>>>>><>>>>>:
�0 = ��00 � �02b�1 = ��01 � �012b�2 = �02�12 = �012:

(7.120)
For example, the parameter values in Table 7.7 and equations (7.120) indicate that thesupport points of design ��2 in Table can be obtained from those of design ��2 in Table 7.6 usingthe transformation (7.119). The weights and the logit values remain unchanged. Equivalently,design ��2 in Table 7.7 can be deduced from design ��1 in the same table by exchanging x1 andx2 coordinates of support points.

7.6. Other cases of synergy and antagonism
Recall from Section 2.4.4 that in the two-variable binary logistic model

u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 (7.121)
two cases of synergy and two cases of antagonism were possible. Synergy occurs when �0 < 0,�1 > 0, �2 > 0 and �12 > 0 or �0 > 0, �1 < 0, �2 < 0 and �12 < 0. Antagonism occurs
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when �0 < 0, �1 > 0, �2 > 0 and �12 < 0 or �0 > 0, �1 < 0, �2 < 0 and �12 > 0. Theconstruction of D-optimal designs for synergy when �0 < 0, �1 > 0, �2 > 0 and �12 > 0 wasdiscussed in Section 7.4, and that for antagonism when �0 < 0, �1 > 0, �2 > 0 and �12 < 0in Section 7.5. This section briey discusses the construction of the D-optimal designs formodel u = logit(p) = �0+ �1x1+ �2x2+ �12x1x2 for synergy when �0 > 0, �1 < 0, �2 < 0 and�12 < 0, and for antagonism when �0 > 0, �1 < 0, �2 < 0 and �12 > 0.Consider model (7.121) for synergy on the design spaces [0;1)� [0;1) or [0; b]� [0; b] where�0 > 0, �1 < 0, �2 < 0 and �12 < 0. In this case, � �2�12 < 0 and � �1�12 < 0 so that the
asymptotes x1 = � �2�12 and x2 = � �1�12 of the hyperbola (7.121) intersect in the third quadrantof R2. The construction of D-optimal designs for this case is the same as that of Section 7.4by multiplying each parameter �0, �1, �2 and �12 by �1. In fact, multiplying both sides of(7.121) by �1 gives model

U = B0 +B1x1 +B2x2 +B12x1x2 (7.122)where U = �u, B0 = ��0 < 0, B1 = ��1 > 0, B2 = ��2 > 0 and B12 = ��12 > 0. Clearly,model (7.122) is that of synergy discussed in Section 7.4. If the design space remains the same,the support points and weights of the D-optimal design remain unchanged, but the optimallogit u� changes to �u�.Now, consider model (7.121) for antagonism on the design spaces [0;1)�[0;1) or [0; b]�[0; b]where �0 > 0, �1 < 0, �2 < 0 and �12 > 0. In this case, � �2�12 > 0 and � �1�12 > 0 so that the
asymptotes x1 = � �2�12 and x2 = � �1�12 of the hyperbola (7.121) intersect in the �rst quadrantof R2. The construction of D-optimal designs for this case in the same as that of Section 7.5by changing the signs of the parameters �0, �1, �2 and �12. In fact, multiplying both sides of(7.121) by �1 gives model

U = B0 +B1x1 +B2x2 +B12x1x2 (7.123)where U = �u, B0 = ��0 < 0, B1 = ��1 > 0, B2 = ��2 > 0 and B12 = ��12 < 0. Clearly,model (7.123) is that of antagonism discussed in Section 7.5. If the design space remains thesame, the support and weights remain unchanged, but the optimal logit u� changes to �u�.
7.7. Practical examples

The objective of this section is to demonstrate the real world applications of the design the-ories and conjectures in this chapter to constructing D-optimal designs for detecting synergy
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or antagonism. "Real world" means that real life experimental data which is adequately de-scribed by the two-variable binary logistic model with interaction will be used to re-designthe experiments using the estimated model parameters as the values of the parameters. Thesecond objective of this section is to show that D-optimal designs discussed in this chaptermay be more e�cient than designs which are used in life because of their practicality and/orconvenience.
Example 7.16. The data set in Table A.2 is from LePelly and Sullivan (1936) and wasreported by Greco and Lawrence (1988). Two insecticides, rotenone and pyrethrin, weresprayed either alone or jointly to a species of ies, the chrysanthemum aphids. The totalnumber of insects exposed to each drug combination was 1000. The response of interest wasthe number of insects killed. The explanatory variables, d1 and d2, were dose concentrations inmg/cc (grams per centimeters cubed) of the two insecticides. The design appears to be a 15-point ray design, on the design space [0; 0:350]�[0; 2]; with 5 support points on each of the raysd1 = 0 and d2 = 0, and 5 support points on ray d2 ' 5d1. Greco and Lawrence (1988) �ttedthe binary response model (2.29) in Section 2.4.2 to the data, and found that the interactionparameter was signi�cantly positive suggesting that the two drugs act synergistically.PROC LOGISTIC in SAS Version 9.2 was used �t the two-variable logistic model with in-teraction logit(p) = u = �0 + �1d1 + �2d2 + �12d1d2 to the data. The estimates of the modelparameters are given in Table 7.8. Table 7.8 indicates that �0 < 0, �1 > 0, �2 > 0 and
Table 7.8: Parameter estimates for the two-variable binary logistic model with interactionu = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 for the data of Table A.2.

Drug/combination Parameter Estimate p-valueIntercept �0 �2:2054 < 0:0001Rotenone �1 13:5803 < 0:0001Pyrethrin �2 2:2547 < 0:0001Rotenone.Pyrethrins �12 1:6261 < 0:0001
�12 = 1:6261 > 0. Thus, rotenone and pyrethrin interact synergically. Also, the relativepotency of rotenone to pyrethrin is � = 13:58032:2547 ' 6:Consider transforming model u = logit(p) = �0 + �1d1 + �2d2 + �12d1d2 on the design spaceD = [0; 0:35]� [0; 2], with the estimates in Table 7.8 taken as the model parameter values, tomodel u = logit(p) = �00 + �01x1 + �02x2 + �12x1x2 on the design space X = [0; 2]� [0; 2] using
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transformations (7.12) and (7.13). This is accomplished by letting(x1; x2) = (d1; d2); (x1new; x2new) = (x1; x2) and (�0new; �1new; �2new; �12new) = (�00; �01; �02; �012);and setting a = c = a1 = c1 = 0, b = d = d1 = 2, and b1 = 0:35: The process obtains�00 = �2:2054, �01 = 2:3766, �02 = 2:2547 and �012 = 0:2846 which satisfy condition (7.39).Thus a 6-point D-optimal design is expected with two support points on line x1 = 0, twosupport points on line x2 = 0 and two interior support points on ray x2 = �01�02x1 ' 1:054x1.The D-optimal design constructed using the Gauss program in the Appendix C is the 6-pointdesign

�� =
8>>>><>>>>:

(0:320; 0) (1:536; 0) (0; 0:337) (0; 1:619) (0:149; 0:157) (0:911; 0:960)0:1149 0:2475 0:1149 0:2475 0:0252 0:2500�1:446 1:446 �1:446 1:446 �1:489 2:3740:191 0:809 0:191 0:809 0:184 0:915

9>>>>=>>>>;(7.124)where the last row contains the probabilities of responses at the support points. Clearly, thesupport points are practically located on the 3 rays x1 = 0, x2 = 0 and x2 = 1:054. Supportpoints located on the same logit have equal weights. The optimal logits, and in turn theprobabilities of responses increase with the increase of each insecticide given alone or givenin combination with the other insecticide. Hence, con�rmation of synergistic e�ect of the twoinsecticides. The location of the six support points of the D-optimal design is indicated bytriangles and diamonds in Figure 7.29 (a). The graph of the standardized variance functiond(x; ��;�) is displayed in Figure 7.29 (b), and it suggests that design (7.124) is D-optimal.The D-optimal design (7.124) can be back-transformed to the original actual doses designspace D = [0; 0:35] � [0; 2] using (7.12). In this case, the back-transformation of the supportpoints is d1 = 0:352 x1 = 0:175x1 and d2 = x2 to which gives the following 6-point design
�� =

8>>>><>>>>:
(0:056; 0) (0:269; 0) (0; 0:337) (0; 1:619) (0:026; 0:157) (0:159; 0:960)0:1149 0:2475 0:1149 0:2475 0:0252 0:2500�1:446 1:446 �1:446 1:446 �1:489 2:3740:191 0:809 0:191 0:809 0:184 0:915

9>>>>=>>>>; :
(7.125)Note that on the original design spaceD = [0; 0:35]�[0; 2], the two interior points (0:026; 0:157)and (0:159; 0:960) are practically located on the interior ray d2 = 6d1.Now, consider calculating the e�ciency of the equally weighed 15-point ray design, say �, usedto generate the data in Table A.2 relative to the D-optimal design �� given by (7.125). The de-terminant of the information for the parameter vector � = (�2:2054; 13:5803; 2:2547; 1:6261)T
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Figure 7.29: (a) Support points and (b) the standardized variance function of the D-optimal design for the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�2:2054; 2:3766; 2:2547; 0:2846)T for the data set in Table A.2 reported by Le Pelly andSullivan (1936).
evaluated at design � is jM(�;�)j = 1:39341 � 10�9, while the determinant of the infor-mation matrix of the same parameter vector at design �� given in (7.125) is jM(��;�)j =3:18527 � 10�9. Hence, the D-e�ciency (3.38) of design � relative to the D-optimal design(7.125) is

De� = � jM(�;�)jjM(��;�)j�1=4 = 0:813:
As De� = 0:813 < 1, the 6-point D-optimal design (7.125) is more e�cient than the 15-pointray design used to generate the data in Table A.2.
Example 7.17. The data set in Table A.3 is from Giltinan et al. (1988). Two insecticides,A and B, were sprayed either alone or jointly to tobacco budworms, known under the nameof Heliothis virescens. The total number of insects exposed to each drug combination was30. The response of interest was the number of killed budworms in 4 days after spray ofinsecticides. One worm in each of 3 batches was lost of follow up, making observations on29 instead of 30 budworms in these groups. The explanatory variables, d1 and d2, were doseconcentrations in ppm (parts per million) of respectively the two insecticides. The designappears to be a 20-point 5-ray design on the design space [0; 30]� [0; 30] with 4 support pointson each of the rays d1 = 0 and d2 = 0, d2 = 3d1, d2 = d1 and d1 = 3d2. Giltinan et al. (1988)
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�tted model (2.24) in Section 2.4.2 to the data, and found that the interaction parameter wassigni�cantly negative suggesting that the two insecticides act antagonistically.PROC LOGISTIC in SAS Version 9.2 was used to �t the two-variable binary logistic modelwith interaction logit(p) = u = �0 + �1d1 + �2d2 + �12d1d2 to the data. The estimates ofthe parameters are given in Table 7.9. Table 7.9 indicates that �0 < 0, �1 > 0, �2 > 0 and�12 < �0:0092 < 0. Therefore, A and B interact antagonistically.
Table 7.9: Parameter estimates for the two-variable binary logistic model with interactionu = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 for the data of Table A.3.

Drug/Combination Parameters Estimates p-valueIntercept �0 �2:5190 < 0:0001A �1 0:1636 < 0:0001B �2 0:1693 < 0:0001A �B �12 �0:0092 0:0005
Consider transforming the model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the designspace D = [0; 30]�[0; 30], with parameter estimates in Table 7.9 taken as the model parametervalues, to model u = logit(p) = �00+�01x1+�02x2+�12x1x2 on the design space X = [0; 2]� [0; 2]using transformations (7.12) and (7.13). This is accomplished by letting
(x1; x2) = (d1; d2); (x1new; x2new) = (x1; x2) and (�0new; �1new; �2new; �12new) = (�00; �01; �02; �012);and setting a = c = a1 = c1 = 0, b = 2, b1 = d1 = 30. The process leads �00 = �2:5190, �01 =2:4540, �02 = 2:5395 and �012 = �2:0700 to give u = �25190+2:4540x1+2:5395x2�2:0700x1x2.These parameters satisfy condition (7.79) for a candidate D-optimal design with at most 7support points with vertex (2; 2) as one of the support points. The candidate D-optimal designconstructed using the Gauss program in the Appendix C is the 5-point design

�� =
8>>>><>>>>:

(0:450; 0) (1:603; 0) (0; 0:434) (0; 1:549) (2; 2)0:1300 0:2450 0:1300 0:2450 0:2500�1:416 1:416 �1:416 1:416 �0:8120:195 0:805 0:195 0:805 0:307

9>>>>=>>>>; : (7.126)
where the last row contains the probabilities of response at the support points. Clearly, theprobability of response increases when the dose of each drug given alone increases. However,the probability of response is dramatically reduced with high doses of the two drugs when

240



Chapter 7 { D-optimal Designs for the Two-Variable Binary Logistic Modelwith Interaction
given together. Hence, con�rmation of the antagonistic e�ect of the two insecticides A andB. The location of the �ve support points of the D-optimal design are indicated by trianglesin Figure 7.30 (a). The graph of the standardized variance function d(x; ��;�) is displayedin Figure 7.30 (b), and it suggests that design (7.126) is D-optimal. The D-optimal design

Figure 7.30: (a) Support points and (b) the standardized variance function of the D-optimal design for the two-variable binary logistic model with interaction u = logit(p) =�0 + �1x1 + �2x2 + �12x1x2 on the design space [0; 2] � [0; 2] and with parameter vector� = (�2:5190; 2:4540; 2:5395;�2:0700)T for the data set in Table A.3 reported by Giltinanet al. (1988).
(7.126) can be back-transformed to the original actual dose design space D = [0; 30]� [0; 30]using (7.12). In this case, the back-transformation of the support points is d1 = 302 x1 = 15x1and d2 = 302 x2 = 15x2 which gives the following 5-point design

�� =
8>>>><>>>>:

(6:750; 0) (24:045; 0) (0; 6:510) (0; 23:235) (30; 30)0:130 0:245 0:130 0:245 0:250�1:416 1:416 �1:416 1:416 �0:8120:195 0:805 0:195 0:805 0:307

9>>>>=>>>>; : (7.127)
Now, consider calculating the e�ciency of the 20-point 5-ray design, say �, used to generatethe data of Table A.3 relative to the D-optimal design �� given by (7.127). The determinant ofthe information for the parameter vector � = (�2:5190; 0:1636; 0:1693;�0:0092)T evaluated atdesign � is jM(�;�)j = 2153:28, while the determinant of the information matrix of the same
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parameter vector at design �� given in (7.127) is jM(��;�)j = 440410. Hence, the D-e�ciency(3.38) of design � relative to the D-optimal design (7.127) is

De� = � jM(�;�)jjM(��;�)j�1=4 = 0:264:
As De� = 0:264 is very small compared to 1, the 5-point D-optimal design (7.127) is moree�cient than the 20-point ray design used to generate the data of Table A.3.O'Brien (2004) discussed the assessment of drug interaction of the data in Table A.3 usingseparate ray models constructed on the basis on the Finney (1971) model for binary responsesgiven by (2.22) in Section 2.4.1. O'Brien (2004) assessed the interaction e�ect of the twoinsecticides A and B for data on each interior ray and on d1 = 0 and d2 = 0 by evaluatingcombination indices given in Section 2.3. The results were that all the combination indicesare signi�cantly greater than 1, and hence the insecticides exhibit antagonism along all the 3interior rays d2 = 3d1, d2 = d1 and d1 = 3d2.Consider assessing interaction e�ect and constructing D-optimal designs for data in Table A.3corresponding to each of the three interior rays supplemented by data on rays d1 = 0 andd2 = 0 with the two-variable binary logistic model with interaction (7.1) used in this thesis.
Ray d2 = 3d1In this case, the estimates of the parameters of model ulogit(p) = �0 + �1d1 + �2d2 + �12d1d2are given in Table 7.10. As the interaction parameter �12 is negative, but not signi�cant (p-
Table 7.10: Parameter estimates for the two-variable binary logistic model with interactionu = logit(p) = �0 + �1d1 + �2d2 + �12d1d2 for the data of Table A.3 on ray d2 = 3d1.

Drug/Combination Parameters Estimates p-valueIntercept �0 �2:100 < 0:0001A �1 0:1415 < 0:0001B �2 0:1404 < 0:0001A �B �12 �0:0038 0:3631
value = 0.3631), additivity can be concluded on ray d2 = 3d1. Estimates of parameters usingthe two-variable binary logistic model without interaction u = logit(p) = �0 + �1d1 + �2d2are given in Table 7.11. Since �0 = �2:064 > �1:5434, �0 + 30�1 = 2:06 > 1:5434 and�0+30�2 = 1:875 > 1:5434, then condition (6.5) for a trapezium design is satis�ed. Therefore,the D-optimal design is the 4-point trapezium design (6.5) where b = 30, and (��; u�) are
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Table 7.11: Parameter estimates for model u = logit(p) = �0 + �1d1 + �2d2 for the data ofTable A.3 on ray d2 = 3d1.

Drug/Combination Parameters Estimates p-valueIntercept �0 �2:064 < 0:0001A �1 0:1370 < 0:0001B �2 0:1313 < 0:0001
solutions of the simultaneous equations (5.13) and (5.18). For �0 = �2:064, the optimalsolution is (��; u�) = (0:6618; 1:466), and hence the D-optimal corresponding to the parametersof Table 7.11 is

�� =
8>>>><>>>>:

(4:367; 0) (25:765; 0) (0; 4:556) (0; 26:884)0:1691 0:3309 0:1691 0:3309�1:466 1:466 �1:466 1:4660:188 0:812 0:188 0:812

9>>>>=>>>>; : (7.128)
Ray d2 = d1Parameter estimates are given in Table 7.12. Because the interaction parameter �12 is negative,
Table 7.12: Parameter estimates for the two-variable binary logistic model with interactionu = logit(p) = �0 + �1d1 + �2d2 + �12d1d2 for the data of Table A.3 on ray d2 = d1.

Drug/Combination Parameters Estimates p-valueIntercept �0 �2:1080 < 0:0001A �1 0:1382 < 0:0001B �2 0:1414 < 0:0001A �B �12 �0:0102 0:0002
and signi�cant (p-value = 0.0002), antagonism can be concluded on ray d2 = d1. Considertransforming the model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design spaceD = [0; 30] � [0; 30], with parameter estimates in Table 7.12 taken as the model parametervalues, to model u = logit(p) = �00+�01x1+�02x2+�12x1x2 on the design space X = [0; 2]� [0; 2]using transformations (7.12) and (7.13). This is accomplished by letting
(x1; x2) = (d1; d2); (x1new; x2new) = (x1; x2) and (�0new; �1new; �2new; �12new) = (�00; �01; �02; �012);
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and setting a = c = a1 = c1 = 0, b = 2, b1 = d1 = 30. The process leads �00 = �2:1080,�01 = 2:073, �02 = 2:121 and �012 = �2:295. The parameters of this model satisfy condition(7.77) of an 8-point D-optimal design. The D-optimal design constructed using the Gaussprogram in Appendix C for data on rays d1 = 0, d2 = 0 and d2 = d1 of the data in Table A.3is indeed the following 8-point design.
�� =

8>>>>><>>>>>:
(5:80; 0) (24:71; 0) (0; 5:67) (0; 24:15) (4:93; 30) (30; 4:44) (30; 20:32) (20:51; 30)0:1165 0:0803 0:1341 0:0822 0:1618 0:1625 0:1285 0:1341�1:307 1:307 �1:307 1:307 1:307 1:307 �1:307 �1:3070:213 0:787 0:213 0:787 0:787 0:787 0:213 0:213

9>>>>>=>>>>>;
:

(7.129)Ray d1 = 3d2The parameter estimates are given in Table 7.13. The interaction parameter �12 is negative,
Table 7.13: Parameter estimates for the two-variable binary logistic model with interactionu = logit(p) = �0 + �1d1 + �2d2 + �12d1d2 for the data of Table A.3 on ray d1 = 3d2.

Drug/Combination Parameters Estimates p-valueIntercept �0 �1:9310 < 0:0001A �1 0:1319 < 0:0001B �2 0:1366 < 0:0001A �B �12 �0:0065 0:0976
but not quite signi�cant (p-value = 0.0976). Hence, additivity can be concluded on ray d1 =3d2. Estimates of parameters using the two-variable binary logistic model without interactionu = logit(p) = �0 + �1d1 + �2d2 are given in Table 7.14. Since �0 = �1:8676 > �1:5434,
Table 7.14: Parameter estimates for the two-variable binary logistic model without interactionu = logit(p) = �0 + �1d1 + �2d2 for the data of Table A.3 on ray d1 = 3d2.Drug/Combination Parameters Estimates p-valueIntercept �0 �1:8676 < 0:0001A �1 0:1159 < 0:0001B �2 0:1284 < 0:0001
�0 + 30�1 = 1:6094 > 1:5434, and �0 + 30�2 = 1:9844 > 1:5434, then condition (6.5) isveri�ed and therefore, and the D-optimal design is the 4-point trapezium design (6.5) where
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b = 30, and (��; u�) = (0:6646; 1:492) solutions of the simultaneous equations (5.13) and(5.18). Hence, the D-optimal corresponding to the parameters of Table 7.14 is

�� =
8>>>><>>>>:

(3:239; 0) (28:989; 0) (0; 2:923) (0; 26:167)0:1677 0:3323 0:1677 0:3323�1:492 1:492 �1:492 1:4920:184 0:816 0:184 0:816

9>>>>=>>>>; : (7.130)

7.8. Conclusions
In this chapter, the construction of the D-optimal designs for the two-variable binary logisticmodel with interaction u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 on the design spaces(�1;1) � [c; d], [0;1) � [0;1) and [0; b] � [0; b] was discussed. The equally weighted 4-point, with support points on two pairs of hyperbolae �u = �0 + �1x1 + �2x2 + �12x1x2,introduced by Jia and Myers (2001) was proved to be D-optimal. An alternative 4-pointD-optimal design on the design space X = (�1;1)� [c; d], also with support points on thehyperbolae �u, was introduced in this chapter. The design was constructed from a candidate4-point D-optimal whose support points were the points of intersection of the hyperbolaeu1 = �0 + �1x1 + �2x2 + �12x1x2 and u2 = �0 + �1x1 + �2x2 + �12x1x2 and the boundarylines x2 = c and x2 = d of the design space X. This approach of constructing the 4-pointD-optimal design was extended to constructing D-optimal designs on the [0;1)� [0;1) andthe [0; b] � [0; b] design spaces. The number of support points of the D-optimal designs onthe design [0; b] � [0; b] space, which can easily be transformed to a rectangular design space[a; b] � [c; d], varied from 4 to 6 for synergy and from 4 to 8 for antagonism depending onthe size of the design space and the model parameter values. Because the interaction term inthe model vanishes at design support points on the boundaries of the [0;1)� [0;1) and the[0; b]� [0; b] design spaces, D-optimal designs without interior support points are singular forestimating the interaction parameter �12: This problem was resolved by choosing candidateD-optimal designs with one or two interior support points de�ned by the intersection of theinterior ray x2 = �1�2x1 and one or two branches of the hyperbolae u1 and u2. Simple D-optimal designs such as equally weighted 4-point and 8-point designs were constructed semi-analytically and semi-numerically in simple cases such as those of equally weighted 4-pointand 8-point designs. Otherwise, conditions for the existence of the design patterns of thecandidate D-optimal designs were derived, then the D-optimal designs for speci�c exampleswere constructed numerically, and the D-optimality of these designs was checked graphically.
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Two practical examples, one on synergy and another on antagonism, were used to illustratethe usefulness of the design strategy adopted in this chapter in terms of their e�ciency andcost reduction due to the use of fewer experimental runs over designs used to generate thedata.
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8
Conclusions

In this thesis, D-optimal designs for the two-variable binary logistic model without and withinteraction for detecting drug interaction were investigated.In Chapter 4, the D-optimal design for the one-variable binary logistic model u = logit(p) =�0+�1x on the design space R which is known to have two support points on logit u = �1:5434was shown to be D-optimal. The D-optimality of the 2-point design for the one-variable binarylogistic model on the design space R was derived since it is relevant to the construction ofD-optimal designs for the two-variable binary logistic model with interaction.In Chapter 5, theoretical constructions of D-optimal designs for the two-variable binary logisticmodel without interaction u = logit(p) = �0 + �1x1 + �2x2 on the design spaces (�1;1) �[�b; b] and [0;1) � [0;1) were discussed. For u unrestricted, the equally weighted 4-pointparallelogram candidate D-optimal design, with support on the logit lines u = �1:22291, ofSitter and Torsney (1995a), Jia and Myers (2001) also found in Myers et al. (2002), and inAtkinson and Haines (1996), was proved analytically to be D-optimal on the design spacegiven by the (u1; u2)-space (�1;1) � [�b; b] where u1 = logit(p) = �0 + �1x1 + �2x2 andu2 = b0 + b1x1 + b2x2. Two new D-optimal designs, for the two-variable binary logisticmodel without interaction u = logit(p) = �0 + �1x1 + �2x2 on the (x1; x2) design space[0;1)� [0;1), a 4-point trapezium design and a 3-point design respectively associated withthe conditions about the intercept parameter �0, �1 < �0 < �1:5434 and �1:5434 � �0 � 0,were introduced and proved to be D-optimal.In Chapter 6, D-optimal designs for the two-variable binary logistic model without interactionu = logit(p) = �0+�1x1+�2x2 on the bounded design space [0; b]�[0; b] were semi-analyticallyand semi-numerically investigated. In some cases, the D-optimal designs were found to besimilar to the parallelogram and the trapezium D-optimal designs discussed in Chapter 5,
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and in other cases the design patterns were very di�erent. The candidate D-optimal designstermed trapezium designs and non-trapezium designs satisfy the necessary condition thateither �0 + �1b > 0 and �0 + �2b > 0 or �0 + �1b < 0 and �0 + �2b < 0. The candidateD-optimal designs termed parallelogram designs and non-parallelogram designs satisfy thenecessary condition that the signs of �0+�1b and �0+�2d alternate. The case when �0+�1b = 0or �0 + �2b = 0 lead to candidate D-optimal designs with 4 to 6 support points. A practicalexample on the joint e�ect of two insecticides was used to show that optimal designs canbe less expensive in terms of experimental runs, and more e�cient than some well knownexperimental designs.In Chapter 7, D-optimal designs for the two-variable binary logistic model with interaction,u = logit(p) = �0+�1x1+�2x2+�12x1x2, on the design spaces (�1;1)�[c; d] and [0; b]�[0; b]were investigated. In the case of the design space (�1;1)� [c; d], candidate equally weighted4-point D-optimal designs were suggested and calculations indicated designs with supportpoints located on the hyperbolic logit lines u = �1:5434. Then, the design was proved to beoptimal algebraically. In the case of the design space [0; b] � [0; b], the candidate D-optimaldesigns were found to have 4 to 6 support points for synergistic e�ect and 4 to 8 supportpoints for antagonistic e�ect. The candidate D-optimal designs were proved to be optimalalgebraically in the simplest cases of equally weighted 4- or 8-point designs. In complicatedcases with unequally weighted design points, the patterns of various candidate D-optimaldesigns were conjectured and the conditions of existence of these design patterns were derivedalgebraically. Then D-optimality of these designs was checked graphically by plotting thestandardized variance function. Real world examples were used to demonstrate the usefulnessof the D-optimal designs and their superiority relative to some designs generally used inexperimentation.The results of this thesis on constructing D-optimal designs for the two-variable binary logisticmodels without and with interaction on a subset of the space R2 can be extended in furtherresearch, at least numerically, to binary logistic models with more than two explanatoryvariables on a subset of Rk where k is an integer greater than or equal to 3. Future studiescan also be done by constructing optimal designs for other models containing two or moreexplanatory variables such as the Finney models reviewed in Chapter 2. Furthermore in orderto avoid problems of parameter misspeci�cation, the Bayesian or minimax methodologies canbe used in constructing D-optimal designs for nonlinear and generalized linear models withtwo or more explanatory variables.
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A
Data sets

Table A.1: Data from Martin (1942): the total number and the number of dead chrysanthe-mum aphides due to joint application of rotenone and deguelin concentrates.
Rotenone (mg=l) Deguelin (mg=l) Total number Number ofof insects dead insects10.2 0.0 50 447.7 0.0 49 425.1 0.0 46 243.8 0.0 48 162.6 0.0 50 60.0 50.5 48 480.0 40.4 50 470.0 30.3 49 470.0 20.2 48 340.0 10.1 48 185.1 20.3 50 484.0 16.3 46 433.0 12.2 48 382.0 8.1 46 271.0 4.1 46 220.5 2.0 47 7
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Table A.2: Data from Le Pelly and Sullivan (1936): the total number and number of deadhouseies due to joint application of rotenone and pyrethrin concentrates.
Rotenone (mg/l) Pyrethrin (mg/l) Number of insects Number of dead insects0.100 0.0 1000 2400.150 0.0 1000 4400.200 0.0 1000 6300.250 0.0 1000 8100.350 0.0 1000 9000.0 0.500 1000 2000.0 0.750 1000 3500.0 1.000 1000 5300.0 1.500 1000 8000.0 2.000 1000 8800.050 0.250 1000 2700.075 0.375 1000 5300.100 0.500 1000 6400.146 0.729 1000 8200.196 0.979 1000 930

Table A.3: Data from Giltinan, Capizzi, and Malani (1988): Mortality in response to twoinsecticides A and B.
A (ppm) B (ppm) Number Dead0.000 30.000 30 260.000 15.000 30 190.000 7.500 30 70.000 3.750 30 56.500 019.500 30 233.250 9.750 30 111.625 4.875 30 30.813 2.438 30 013.000 13.000 30 156.500 6.500 30 5

A (ppm) B (ppm) Number Dead3.250 3.250 29 41.625 1.325 29 019.500 6.500 30 209.750 3.250 30 134.875 1.625 29 62.438 0.813 30 030.000 0.000 30 2315.000 0.000 30 217.500 0.000 30 133.750 0.000 30 5
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B
Gauss program for the construction of
D-optimal designs for the two-variable
binary logistic model without interaction

on a rectangular design space

@ | D-optimal designs for model u = logit(p) = �0 + �1x1 + �2x2 | @@ | on the rectangular design space [a; b]� [c; d] | @output �le=optdes.out reset;library optmum,pgraph;# include optmum.ext;graphset;format 15,6;@|Rectangular design space|@a = 0; b = 2; c = 0; d = 2;\ "; \Minimum and maximum x1 values" a � b;\ "; \Minimum and maximum x2 values" c � d;@|Optimality criterion|@\ "; \Minimizing -ln(det)";mult=1;@ | Best guess of parameters and starting design | @/*Martin's data*/b0=-2.0287;
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b1=2.1808;b2=3.9239;npts=4;dmat=f0.2 0,0 0.2,0 1,1.5 0g;wvec=ones(npts,1)/npts;dwmat=dmat�wvec;\ ";\Best guess of the parameters b0 b1 b2" b0�b1�b2;\Starting design";\Number of support points = " npts;\Support points and weights = " dwmat;@ | Grid over the design space [a; b]� [c; d] | @ng=51;dx1=(b-a)/(ng-1);dx2=(d-c)/(ng-1);gridx1=seqa(a,dx1,ng);gridx2=seqa(c,dx2,ng);grid=gridgen(ng);ntop=16;
@ | Optimization process | @y0=constr(dwmat);f y,f,g,h g = optmum(&fun,y0);dwmat=unconstr(y);y=constr(dwmat);crit=fun(y);infomatopt=infomat(dwmat);invmat=inv(infomatopt);@ | results | @\ ";\optimal design";\Number of support points = " npts;\Support points and weights = " dwmat;\ ";\Criterion value " crit;\ ";\Optimum information matrix " infomatopt;\ ";\Inverse of the optimum information matrix " invmat;
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@ | Standardized variance function d(x; ��;�) at the support points | @stdvgrid=stdvarf(infomatopt,dwmat[.,1:2]);expu=exp(b0+b1*dwmat[.,1]+b2*dwmat[.,2]);pvec=expu./(1+expu);lvec=ln(pvec./(1-pvec));\ ";\Optimal design, p and logit(p) at support points" stdvgrid � pvec � lvec;@ | Plot of d(x; ��;�) over a grid | @stdvgrid=stdvarf(infomatopt,grid);matcont=reshape(stdvgrid[.,3],ng,ng);pdate = 0;fonts(\simplex complex microb simgrma");ztics(0,3,1,0.5);xtics(0,2,0.5,0.1);ytics(0,2,0.5,0.1);zlabel(\d(x; ��;�)");xlabel(\x]1[");ylabel(\x]2[");pnum = 2;pnumht = 0:25;paxht = 0:2;pmcolor = f0; 0; 0; 0; 0; 0; 0; 0; 15g;pmsgctl = f0:8 0:7 0:3 0 1 0 0g;/* pmsgstr=\(b)";/ surface(gridx1',gridx2,matcont');stdvgrid=rev(sortc(stdvgrid,3));ddmax=stdvgrid[1:ntop,.];\ ";\maximum d(x; ��;�) values over the rectangle [a; b]� [c; d] " ddmax;@ | Procedure - Function for minimization { @proc fun(y);local dwmat,imat,crit;dwmat=unconstr(y);imat=infomat(dwmat);crit=-mult*ln(det(mmat));
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retp(crit);endp;@ | Procedure to generate grid on the rectangle [a; b]� [c; d] | @proc gridgen(ng);local grid,k,i,j,toler;toler=0:0000000001;grid=zeros(ng*ng,2);k=1;i=1;do until i > ng;j=1;do until j > ng;if(abs(gridx1[i]) < toler);gridx1[i]=0;endif;if(abs(gridx2[j]) < toler);gridx2[j]=0;endif;grid[k,.]=gridx1[i]�gridx2[j];k=k+1;j=j+1;endo;i=i+1;endo;retp(grid);endp;@ | Procedure - Information matrix | @proc infomat(dwmat);local n,dmat,wvec,x1,x2,expu,vterm,xmat,wmat,imat;n=rows(dwmat);dmat=dwmat[.,1:2];wvec=dwmat[.,3];x1=dmat[.,1];x2=dmat[.,2];
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expu=exp(b0+b1*x1+b2*x2);vterm=sqrt(expeta)./(1+expeta);xmat=vterm.*(ones(n,1)�x1�x2);wmat=diagrv(zeros(n,n),wvec);imat=xmat'.*wmat.*xmat;retp(imat);endp;@ | Procedure - Unconstrained x and � to constrained y| @proc constr(dwmat);local y,dmat,i,wvec,den;y=zeros(3*npts-1,1);/* transform support points */dmat=dwmat[.,1:2];i=1;do until i>npts;y[i,1]=arcsin(sqrt((dmat[i,1]-a)/(b-a)));y[i+npts,1]=arcsin(sqrt((dmat[i,2]-c)/(d-c)));i=i+1;endo;/* transform weights */ wvec=dwmat[.,3];den=1.0;i=1;do until i>npts-1;y[i+2*npts,1]=arcsin(sqrt(wvec[i]/den));den=den-wvec[i];i=i+1;endo;retp(y);endp;@ | procedure - constrained y to unconstrained x and �| @proc unconstr(y);local dmat,i,wvec,yw,mult,dwmat;/* transform support points */dmat=zeros(npts,2);
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i=1;do until i>npts;dmat[i,1]=x1min+(x1max-x1min)*sin(y[i,1])*sin(y[i,1]);dmat[i,2]=x2min+(x2max-x2min)*sin(y[i+npts,1])*sin(y[i+npts,1]);i=i+1;endo;/* transform weights */wvec=zeros(npts,1);yw=y[2*npts+1:3*npts-1,.];mult=1;i=1;do until i>npts-1;wvec[i,1]=sin(yw[i,1])*sin(yw[i,1])*mult;mult=mult*cos(yw[i,1])*cos(yw[i,1]);i=i+1;endo;wvec[npts,1]=mult;dwmat=dmat�wvec;retp(dwmat);endp;@ | Procedure to calculate the standardized variance function | @proc stdvarf(mopt,grid);local ngrid,stdvgrid,i,matx;ngrid=rows(grid);stdvgrid=grid zeros(ngrid,1);i=1;do until i > ngrid;matx=infomat(grid[i,.]�1);ddgrid[i,3]=sumc(diag(inv(mopt)*matx));i=i+1;endo;retp(stdvgrid);endp;
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C
Gauss program for the construction of
D-optimal designs for the two-variable
binary logistic model with interaction on

a rectangular design space

@ | D-optimal designs for model u = logit(p) = �0 + �1x1 + �2x2 + �12x1x2 | @@ | on the rectangular design space [a; b]� [c; d] | @output �le=optdes.out reset;library optmum,pgraph;# include optmum.ext;graphset;format 15,6;@|Rectangular design space|@a = 0; b = 2; c = 0; d = 2;\ "; \Minimum and maximum x1 values" a � b;\ "; \Minimum and maximum x2 values" c � d;@|Optimality criterion|@\ "; \Minimizing -ln(det)";mult=1;@ | Best guess of parameters and starting design | @/*LePelly and Sullivan data*/b0=-2.2054;
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b1=2.3766;b2=2.2547;b12=0.2846;npts=4;dmat=f0.3 0,1.5 0,0 0.3,0 1.5,0.2 0.2,0.9 0.9g;wvec=ones(npts,1)/npts;dwmat=dmat�wvec;\ ";\Best guess of the parameters b0 b1 b2 b12" b0 �b1�b2�b12;\Starting design";\Number of support points = " npts;\Support points and weights = " dwmat;@ | Grid over the design space [a; b]� [c; d] | @ng=51;dx1=(b-a)/(ng-1);dx2=(d-c)/(ng-1);gridx1=seqa(a,dx1,ng);gridx2=seqa(c,dx2,ng);grid=gridgen(ng);ntop=16;@ | Optimization process | @y0=constr(dwmat);f y,f,g,h g = optmum(&fun,y0);dwmat=unconstr(y);y=constr(dwmat);crit=fun(y);infomatopt=infomat(dwmat);invmat=inv(infomatopt);@ | results | @\ ";\optimal design";\Number of support points = " npts;\Support points and weights = " dwmat;\ ";\Criterion value " crit;\ ";\Optimum information matrix " infomatopt;\ ";\Inverse of the optimum information matrix " invmat;
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@ | Standardized variance function d(x; ��;�) at the support points | @stdvgrid=stdvarf(infomatopt,dwmat[.,1:2]);expu=exp(b0+b1*dwmat[.,1]+b2*dwmat[.,2]+b12*dwmat[.,1].*dwmat[.,2]);pvec=expu./(1+expu);lvec=ln(pvec./(1-pvec));\ ";\Optimal design, p and logit(p) at support points" stdvgrid � pvec � lvec;@ | Plot of d(x; ��;�) over a grid | @stdvgrid=stdvarf(infomatopt,grid);matcont=reshape(stdvgrid[.,3],ng,ng);pdate = 0;fonts(\simplex complex microb simgrma");ztics(0,4,1,0.5);xtics(0,2,0.5,0.1);ytics(0,2,0.5,0.1);zlabel(\d(x; ��;�)");xlabel(\x]1[");ylabel(\x]2[");pnum = 2;pnumht = 0:25;paxht = 0:2;pmcolor = f0; 0; 0; 0; 0; 0; 0; 0; 15g;pmsgctl = f0:8 0:7 0:3 0 1 0 0g;/* pmsgstr=\(b)";/ surface(gridx1',gridx2,matcont');stdvgrid=rev(sortc(stdvgrid,3));ddmax=stdvgrid[1:ntop,.];\ ";\maximum d(x; ��;�) values over the rectangle [a; b]� [c; d] " ddmax;@ | Procedure - Function for minimization { @proc fun(y);local dwmat,imat,crit;dwmat=unconstr(y);imat=infomat(dwmat);crit=-mult*ln(det(mmat));retp(crit);
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endp;@ | Procedure to generate grid on the rectangle [a; b]� [c; d] | @proc gridgen(ng);local grid,k,i,j,toler;toler=0:0000000001;grid=zeros(ng*ng,2);k=1;i=1;do until i > ng;j=1;do until j > ng;if(abs(gridx1[i]) < toler);gridx1[i]=0;endif;if(abs(gridx2[j]) < toler);gridx2[j]=0;endif;grid[k,.]=gridx1[i] � gridx2[j];k=k+1;j=j+1;endo;i=i+1;endo;retp(grid);endp;@ | Procedure - Information matrix | @proc infomat(dwmat);local n,dmat,wvec,x1,x2,x3,expu,vterm,xmat,wmat,imat;n=rows(dwmat);dmat=dwmat[.,1:2];wvec=dwmat[.,3];x1=dmat[.,1];x2=dmat[.,2];x3=x1 .*x2;
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expu=exp(b0+b1*x1+b2*x2+b12*x3);vterm=sqrt(expeta)./(1+expeta);xmat=vterm.*(ones(n,1)� x1 � x2 � x3);wmat=diagrv(zeros(n,n),wvec);imat=xmat'.*wmat.*xmat;retp(imat);endp;@ | Procedure - Unconstrained x and � to constrained y| @proc constr(dwmat);local y,dmat,i,wvec,den;y=zeros(3*npts-1,1);/* transform support points */dmat=dwmat[.,1:2];i=1;do until i>npts;y[i,1]=arcsin(sqrt((dmat[i,1]-a)/(b-a)));y[i+npts,1]=arcsin(sqrt((dmat[i,2]-c)/(d-c)));i=i+1;endo;/* transform weights */ wvec=dwmat[.,3];den=1.0;i=1;do until i>npts-1;y[i+2*npts,1]=arcsin(sqrt(wvec[i]/den));den=den-wvec[i];i=i+1;endo;retp(y);endp;@ | procedure - constrained y to unconstrained x and � | @proc unconstr(y);local dmat,i,wvec,yw,mult,dwmat;/* transform support points */dmat=zeros(npts,2);
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i=1;do until i>npts;dmat[i,1]=x1min+(x1max-x1min)*sin(y[i,1])*sin(y[i,1]);dmat[i,2]=x2min+(x2max-x2min)*sin(y[i+npts,1])*sin(y[i+npts,1]);i=i+1;endo;/* transform weights */wvec=zeros(npts,1);yw=y[2*npts+1:3*npts-1,.];mult=1;i=1;do until i>npts-1;wvec[i,1]=sin(yw[i,1])*sin(yw[i,1])*mult;mult=mult*cos(yw[i,1])*cos(yw[i,1]);i=i+1;endo;wvec[npts,1]=mult;dwmat=dmat�wvec;retp(dwmat);endp;@ | Procedure to calculate the standardized variance function | @proc stdvarf(mopt,grid);local ngrid,stdvgrid,i,matx;ngrid=rows(grid);stdvgrid=grid zeros(ngrid,1);i=1;do until i > ngrid;matx=infomat(grid[i,.]�1);ddgrid[i,3]=sumc(diag(inv(mopt)*matx));i=i+1;endo;retp(stdvgrid);endp;
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