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Abstract

The analysis and identification of texture is a key area in image processing and computer

vision. One of the most prominent texture analysis algorithms is the Gabor Filter.

These filters are used by convolving an image with a family of self similar filters or

wavelets through the selection of a suitable number of scales and orientations, which

are responsible for aiding in the identification of textures of differing coarseness and

directions respectively.

While extensively used in a variety of applications, including, biometrics such as iris and

facial recognition, their effectiveness depend largely on the manual selection of different

parameters values, i.e. the centre frequency, the number of scales and orientations, and

the standard deviations. Previous studies have been conducted on how to determine

optimal values. However the results are sometimes inconsistent and even contradictory.

Furthermore, the selection of the mask size and tile size used in the convolution process

has received little attention, presumably since they are image set dependent.

This research attempts to verify specific claims made in previous studies about the

influence of the number of scales and orientations, but also to investigate the variation of

the filter mask size and tile size for water body extraction from satellite imagery. Optical

satellite imagery may contain texture samples that are conceptually the same (belong

to the same class), but are structurally different or differ due to changes in illumination,

i.e. a texture may appear completely different when the intensity or position of a light

source changes.

A systematic testing of the effects of varying the parameter values on optical satellite

imagery is conducted. Experiments are designed to verify claims made about the in-

fluence of varying the scales and orientations within predetermined ranges, but also to

show the considerable changes in classification accuracy when varying the filter mask

and tile size. Heuristic techniques such as Genetic Algorithms (GA) can be used to find

optimum solutions in application domains where an enumeration approach is not feasi-

ble. Hence, the effectiveness of a GA to automate the process of determining optimum

Gabor filter parameter values for a given image dataset is also investigated.

The results of the research can be used to facilitate the selection of Gabor filter param-

eters for applications that involve multi-textured image segmentation or classification,

and specifically to guide the selection of appropriate filter mask and tile sizes for auto-

mated analysis of satellite imagery.
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CHAPTER 1

Introduction

Gabor filters are texture analysis algorithms that are prominently used in a variety

of image segmentation and classification applications. By trying to imitate the visual

system of animals, it is able to discriminate between various textures of different scales

and orientations in a multi-textured environment.

Apart from its computational complexity, the Gabor filter does have another major

weakness. Its discriminatory ability is influenced by various parameters. These include

its centre frequency and the number of scales and orientations. Previous studies provide

some guidelines as to what parameter values should be used but are not all consistent.

Guidelines for selecting a suitable tile size for window segmentation and the filter mask

size of the Gabor filter have also generally been neglected. These parameters are influ-

enced by the texton sizes, as well as the textons sizes in relation to the size of the image

tile. Tile sizes that are too small may provide an inadequate texture sample and if too

large a single dominant texture can be difficult to isolate for the application of the filter.

This also applies to the mask size which should be a suitable fraction of the tile size.

Hence, the need to determine the optimum filter mask and tile size for the analysis of a

specific multi-textured image dataset.

Though the Gabor filter is widely used, its ability to distinguish conceptually different

textures that are very similar in structure from multi-textured images is questionable.

A multi-textured image can contain different textures of varying sizes and directions.

Optical satellite systems provide multi-textured images that are used in a variety of land

1



Chapter 1. Introduction 2

cover classification problems, such as water management and flood detection. Water

bodies can be clear, mildly or highly turbid depending on the water contents. Clear

water bodies have little or no debris, while mildly turbid water bodies may contain small

amounts of soil and silt deposits. Highly turbid water bodies contain large amounts of

protruding and surface vegetation. Highly turbid water bodies may therefore exhibit

similar properties (pixel intensities and structure) to other land cover types (such as

dense vegetation) and are therefore difficult to distinguish.

This thesis aims to verify specific claims made in previous studies about the influence

of the number of scales and orientations and investigate the effects of the variation of

the filter mask and tile sizes. This is achieved by attempting to extract clear, mildly

and highly turbid water bodies from optical satellite imagery which may contain texture

samples that are conceptually the same but structurally different.

1.1 Problem Statement

The effectiveness of the Gabor filter is influenced by its parameters, independent of

the application domain. Previous studies have stressed the need for optimizing the

number of scales and orientations and are inconsistent about which values (or range of

values) are suitable [8] [5]. The effects of varying the filter mask and tile sizes have also

been neglected. There is a clear need for further evaluation of the parameter values

and methods to optimize these values. For the purpose of applications such as flood

detection and water management, optical satellite imagery contain textures that are

often quite complex (are visually difficult to distinguish). The similarity between highly

turbid water and natural vegetation will help provide some insight into the effectiveness

of the Gabor filter to aid in such applications.

1.2 Research Objectives

The broad objective is to investigate the effectiveness of the Gabor filter for multi-

textured optical satellite imagery by varying specific parameter values. Specific objec-

tives are to:

1. Identify the effects of varying the values of the following parameters:

• Number of scales.

• Number of orientations.

• Filter mask size.
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• Tile size.

2. Test the effectiveness of the Gabor filter under different conditions as most guide-

lines are based on single-textured image databases for the purpose of image re-

trieval. This is accomplished by trying to identify clear, mildly and highly turbid

water bodies from multi-textured optical satellite imagery.

3. Determine the extent to which the process of determining optimal parameter values

for the Gabor filter can be automated using a heuristic approach.

1.3 Methodology and Expected Impact

To satisfy the broad objective an experimental framework was designed and implemented

to apply the Gabor filter on multi-band and multi-textured satellite imagery, and to

support the variation of the filter parameters.

The framework was used to test the different parameter values on two scenarios:

• Experiment 1: Identification of Clear and Mildly Turbid Water Bodies.

• Experiment 2: This experiment is designed to evaluate the discriminatory ability

of the Gabor filter when faced with conceptually different but structurally similar

textures. A new texture class representing highly turbid water bodies are intro-

duced. These textures exhibit properties similar to that of other vegetation types

(non-water bodies).

For each experiment two approaches are used:

• A linear enumeration (brute-force approach).

• A heuristic approach using a Genetic Algorithm.

The findings from these experiments will help determine which of the Gabor filter pa-

rameters investigated require optimization and whether a Genetic algorithm can help

automate the process with minimal user interaction for a given multi-textured image

dataset.
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1.4 Thesis Layout

This dissertation contains seven chapters. Chapter 2 provides the background for

texture analysis and the Gabor filter: what it is, how it works, and the approaches

taken in previous studies to identify the best parameter values. Finally the use of

satellite imagery and Gabor filters for water body extraction are discussed. Chapter

3 provides an overview of Genetic Algorithms while Chapter 4 describes the design

and implementation details of the Gabor filter and Genetic Algorithms, as well as the

framework and the data used in the experiments. Chapter 5 provides a description

of the experiments and results. Chapter 6 provides a critical analysis of the results

and describes key findings. Chapter 7 describes avenues for future work and our

conclusions.



CHAPTER 2

Literature Review

This chapter provides background information on the Gabor filter and water body ex-

traction. Section 2.1 introduces key concepts and factors in texture analysis. Section

2.2 describes the Gabor filter, its history and its role in texture analysis. Section 2.3

provides a review of previous studies that evaluate and optimize the parameter values

that influence its design, as well as challenges and latest findings. Section 2.4 describes

the use of satellite imagery and Gabor filters for water body extraction.

2.1 Texture Analysis

Texture analysis is of important interest in the scientific community. Recent advances

have allowed for the use of texture analysis to solve a myriad of problems. Being one

of the most well known texture analysis algorithms, Gabor filters are used extensively

in multiple domains [9] [8] [10]. This section briefly describes the Gabor filter including

some of its uses and limitations. Texture analysis will first be discussed to set the context

for the rest of this section.

A surface is said to be textured if it contains a large number of texture elements or texels,

or when placed in an appropriate way it forms a particular texture. The placing of the

texels may be random, regular or directional. Generally if a pattern has randomness and

regularity then it is probably a texture and not noise or a periodic pattern and can be

5
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characterized by ’busy’ microstructures and uniform macrostructures. Different texture

types based on structure are illustrated in Figure 2.1 [1].

Figure 2.1: Types of texture based on structural variation [1].

Another property of a texture is its scale (frequency/coarseness) and orientation (di-

rection). For the purpose of texture classification or segmentation of a multi-textured

image, a given image may contain a texture at a different scale as in Figure 2.2 (adapted

from a Brodatz image [11]), where the brick texture B differs in coarseness but is con-

ceptually the same as A. A texture may also occur in a different orientation as shown

in Figure 2.3 where the brick texture C is the same as texture A but lies at a different

orientation.

Figure 2.2: Texture image composed of bricks with differing scale.

Illumination is also a key factor of texture analysis, as varying intensities of light can

alter its appearance as shown in Figure 2.4 [2].

In some cases the variation in illumination can cause large intra-class variation and a

smaller inter-class variation as shown in Figure 2.5 and may affect texture classification

[12][2].
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Figure 2.3: Texture image composed of bricks with differing orientation.

Figure 2.4: Effects of illumination on textures [2].

Figure 2.5: Class variation due to illumination [2].

Approaches in the field of texture analysis are typically broken down into the following

categories [12]:

• Statistical methods: Involves the use of statistics to create features that repre-

sent textures such as the Gray-Level Co-Occurrence Matrix [13].

• Spectral methods: Similar to statistical methods, these collect filter responses at

different orientations and scales. The Gabor filter is a good example of a spectral

method [14][4].
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• Structural methods: Textures are viewed as two dimensional patterns composed

of textons (subpatterns) organized at different positions which are used to model

textures. A good example is the application of Laplacian of Gaussian (LoG) masks

at different scales for the extraction of more regular textures from an image [15].

• Stochastic methods: Textures are assumed to be part of some non-deterministic

process under the influence of some parameters which need to be estimated. The

Autoregressive (AR) model used for texture segmentation is an example of such a

method [16].

2.1.1 Texture Segmentation and Classification

For a multi-textured image, texture analysis involves the separation and/or grouping

of similar textures into well defined classes. Given some prior knowledge about the

number of texture classes in an image, texture segmentation generally involves the idea

of separating the various texture types in an image by creating a type of boundary map.

Similar to segmentation, texture classification aims to identify the type of textures in

an image given some prior knowledge using texture samples or training sets.

Depending on the nature of the textures in an image, pre or post smoothing (using a

filter) is usually done to remove noise and sudden peaks in intensity which prevents

considerable variation in the same group of structurally similar textures. This allows a

texture analysis algorithm to improve its accuracy when texture segmentation or classi-

fication is performed. However, extensive smoothing can lead to very little variance in

texture and remove most of the criteria that actually help identify the textures. Most

importantly the size of the smoothing filters must also be selected carefully as a large

smoothing filter (in pixels) may lead to the unwanted introduction of new texture types

as shown in Figure 2.6 [12].
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Figure 2.6: Introduction of new textures due to smoothing.

A is a multi-textures image, and B shows the introduction of new textures in A due
to smoothing [12].

2.2 What are Gabor Filters?

Although originally created by Dennis Gabor in 1946, it is the two dimensional Gabor

filter that was introduced by John Daugman in the 1980s [4] [17] that has lead to its

use in a variety of areas such as multi-purpose feature extraction methods in the field of

computer vision and image processing, texture analysis (classification and/or segmenta-

tion) [18], edge detection [19], motion detection [20], document analysis [21], and image

coding and representation [22]. The most notable applications being biometric authen-

tication such as iris recognition [23], facial recognition [10] and finger print matching

[24].

The texture discrimination capability of Gabor filters can be compared to the response of

cortical cells responsible for the processing visual signals. This means that the properties

of Gabor filters can be seen as a way to model the simple visual system of animals [25].

In its continuous case a two dimensional Gabor filter in the spatial domain is a Gaus-

sian kernel function modulated by a sinusoidal plane wave at a certain frequency and

orientation and is defined as:

h(x, y) = s(x, y)g(x, y) (2.1)

where s(x, y) is a complex sinusoid, or carrier signal and g(x, y) is a two dimensional

Gaussian envelope.

The complex sinusoid is defined as:

s(x, y) = e−j2π(u0x+v0y) (2.2)



Chapter 2. Literature Review 10

The two dimensional Gaussian function is defined as follows:

g(x, y) =
1√

2πσxσy
e
− 1

2
( x

2

σ2
x
+ y2

σ2
y
)

(2.3)

Therefore the two dimensional Gabor filter can be written as:

h(x, y) =
1√

2πσxσy
e
− 1

2
( x

2

σ2
x
+ y2

σ2
y
)
e−j2π(u0x+v0y) (2.4)

The frequency response of the Gabor filter:

H(u, v) = G(u− u0, v − v0)

H(u, v) = 2πσxσy[e
−2π2[(u−u0)2σ2

x+(v−v0)2σ2
y ]]

H(u, v) =
1

2πσuσv
e
− 1

2
[
(u−u0)2

σ2
u

+
(v−v0)2

σ2
v

]
(2.5)

where,

σu =
1

2πσx
(2.6)

σv =
1

2πσy
(2.7)

and u0 and v0 represent the center frequency. σx and σy refers to the standard deviations

of the Gaussian envelope and determine the bandwidth of the filter, which can be used

to derive the Gabor filter mask size (size of the Gabor filter in pixels) in the spatial

domain.

While there are many approaches to designing Gabor filters in the literature, the two

dimensional Gabor filter can be envisioned as a filter bank consisting of Gabor wavelets

with various scales (frequency) and orientations (rotations) generated from a mother

wavelet, with each wavelet covering a portion of the frequency spectrum. Given an

input image I(x,y) with size P × Q, the discrete Gabor Wavelet transform is given by :

[3][8][26]:

Gmn(x, y) =
∑
s

∑
t

I(x− s)ψ∗
mn(s, t) (2.8)

where s and t are the filter mask sizes. ψ∗
mn is a complex conjugate (has both a real

and imaginary components) and represents a group of similar functions generated from

the mother wavelet ψmn through the use of various scales (m) and orientations (n).

ψ(x, y) =
1

2πσxσy
exp[−1

2
(
x2

σ2x
+
y2

σ2y
)].exp(j2πWx) (2.9)
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W is known as the modulation frequency. ψ(x, y) is the Gaussian modulated by a

sinusoid. The self-similar Gabor filters are then created through a generating function:

ψm,n(x, y) = a−mψ(x́, ý) (2.10)

m and n are the current scale and orientations respectively. m = 0, 1, 2, ...M − 1 and

n = 0, 1, 2, ...N−1, with M being the number of scales and N the number of orientations.

Increasing the scale can be viewed as zooming into a region of interest, while increasing

the number of orientations allows for the ability to identify textures that lie in different

directions. Figure 2.7 [3] shows the scaling and rotation of the various Gabor filters in

the frequency domain. The aim of this design is to ensure that the half-peak magnitude

of the filter responses touch each other and hence no bias is introduced due to overlap.

Equations 2.11 and 2.12 are used to rotate the Gabor filter using a rotation angle θ.

Figure 2.7: The half-peak magnitude of the filter responses in the frequency spectrum
[3].

The parameter values used are: Uh= 0.4, Ul= 0.05, M= 6 and N= 4

a > 1 and θ = nπN and a−m represents the scaling factor and is used to ensure that

the energy is independent of the scale m.

x́ = a−m(xcosθ + ysinθ) (2.11)

ý = a−m(−xsinθ + ycosθ) (2.12)

The wavelet function is a band-pass filter, it passes frequencies within a certain range

and rejects frequencies outside that range. The problem is that the entire spectrum

needs to be covered which leads to the use of a scaling function to filter to the lowest
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level of the transform and ensure that most of the frequency spectrum is covered.

a = (Uh/Ul)
1

M−1 (2.13)

Wmn = amUl (2.14)

The standard deviations of the Gaussian envelope which aid in the detection of lines and

edges represent the bandwidth and spatial extent of the filters in the x and y directions

are defined as:

σx,m,n =
(a+ 1)

√
2ln2

2πam(a− 1)Ul
(2.15)

σy,m,n =
1

2πtan( π
2N )

√
U2
h

2ln2 − ( 1
2πσx,m,n

)2
(2.16)

Uh denotes the highest center frequency and Ul is the lowest center frequency.

Figure 2.8 illustrates the real part of a two dimensional Gabor wavelet centred at the

origin (0,0) and its corresponding Fourier Transform (filter response) in the spatial do-

main [4] while Figure 2.9 shows the real and imaginary components of a two dimensional

Gabor filter in the spatial domain. The effects of scaling and rotating the real component

of a two dimensional Gabor filter can be seen in Figure 2.10.

Figure 2.8: Real part of a two dimensional Gabor wavelet and its Fourier transform
[4].

2.2.1 Applying the Gabor Filter

Firstly, when creating and applying the Gabor filter, the filter mask size refers to the

size of the Gabor filter wavelets in pixels. Tiles refer to windows that are created during

window segmentation prior to applying the Gabor filter and are used to isolate a single

dominant texture. The tile size therefore refers to the size of the tiles in pixels.
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Figure 2.9: Two dimensional Gabor filter showing phase offset for the real and imag-
inary components.

Figure 2.10: Gabor filter wavelets of differing scales and orientations.

There are two ways of applying the Gabor filter, either in the spatial domain using a

discrete convolution in the spatial domain or using the Fast Fourier Transform (FFT)

and the Inverse Fourier Transform (IFFT) in the frequency domain to improve speed.

For simplicity its use in the spatial domain will be discussed.

As illustrated in Figure 2.11 (adapted from [27]), the discrete convolution for an image

I with size P ×Q and filter mask with size S×T with weighted averaging in the spatial
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Figure 2.11: The Convolution Process.

domain can be expressed as [27]:

G(x, y) =

∑a
j=−a

∑b
k=−bW (j, k)I(x+ j, y + k)∑a
j=−a

∑b
k=−bw(j, k)

(2.17)

This process is done for all pixels of the image I, where x = 0, 1, 2, ..., P − 1 and y =

0, 1, 2, ..., Q − 1, S = 2a + 1 and T = 2b + 1, with S and T odd and, a and b are

non-negative integers.

From the convolution process two challenges arise when performing texture classification:

• The selection of a suitable filter mask size.

• The selection of a suitable tile size for window segmentation.

The filter mask size and tile size are generally selected based on the size of textons in

the image and the size of the image or tile.

Figure 2.12 shows a multi-textured image taken from the Brodatz database [11] contain-

ing textures with differing sizes. For the selection of a suitable tile size for texture A for

example, one would assume that the smallest occurrence of texture A would be suitable
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Figure 2.12: Simple textured image with texture regions of different sizes.

for determining a tile size, but depending on the nature of the textures the smallest

occurrence of texture A may not have enough discriminatory detail.

The aim of using these tiles is isolate a single texture but it is still possible for no single

dominant texture to exist in a given tile as illustrated in Figure 2.13.

2.3 Gabor Filter Parameter Optimization

Gabor filters provide superior performance over other known techniques such as the

Pyramid-structured Wavelet Transform, Tree-structured Wavelet Transform and Multi-

resolution Simultaneous Autoregressive Models [3]. Although widely used in various

domains, Gabor filters do have limitations, they depend on a number of parameters,

certain assumptions and in some cases contradicting information about their influence

during filter design [5] [7].

For parameter optimization researchers have primarily investigated the effects of the

varying the following [5] [8] [26]:

• Number of Scales M .
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Figure 2.13: Selecting filter mask and tile sizes.

• Number of Orientations N .

• Standard deviations of the Gaussian envelope (σx and σy) in the x and y directions;

which can be derived.

• Mask size, which represents the size of the Gabor filter kernels in pixels, with the

aim of capturing variation of the original signal.

• Tile size, which refers to the size of the tiles in pixels, created when performing

segmentation, with the aim to isolate a region with a predominant texture.

• Centre Frequency of the Gabor filter.

Another factor in filter design is that the scaling and rotating of the Gabor filter in the

image space domain has an inverse relation with the radial and angular dimensions of

the filter in the frequency domain. The consequences of adjusting Gabor filter scales are

explained in detail by Daugman [4]. Assuming the modulation frequency is facing the

y− axis, a higher spatial resolution in the y direction can be achieved at the expense of

orientation selectivity, or a higher spatial resolution can be achieved in the x direction at

the expense of spatial-frequency selectivity. This means that scaling has a direct impact

on the orientation selectivity of the filter and vice-versa. By reducing the standard

deviations along both axes in the spatial domain a greater spatial resolution can be



Chapter 2. Literature Review 17

achieved. This results in the increase in size of the filter in the frequency domain and

as a result reduces its scale and orientation selectivity [26].

The latest research with regards to recommended values for aiding in the selection of

optimal Gabor filter parameter values will now be discussed with a brief description

about the parameters selected for optimization and experiments.

F. Bianconi and A. Fernández [5] used statistical analysis to identify the effects of various

Gabor filter parameters on texture classification. They conducted two experiments:

one with no overlap of filters in the frequency domain and the other with radial and

circumferential overlap as shown in Figure 2.14.

Figure 2.14: Overlap of Gabor filters in the frequency domain [5].

The effects of the following parameters were investigated:

• Centre Frequency (Ul and Uh): values chosen are
√

2/4 and σx
2σx+2

√
(log2/π)

for two

experiments, respectively.

• Scales (M): values chosen are 4, 5, 6.

• Orientations (N): values chosen are 4, 6, 8.

• Standard Deviation in the x direction (σx): values chosen are 0.5, 1.0, 1.5.

• Standard Deviation in the y direction (σy): values chosen are 0.5, 1.0, 1.5.

Though they contain natural but not necessarily real world textures, 40 images from the

Brodatz [11] and the Outex [28] databases were used to create eight groups of similar
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textures. For each group, a hundred tests were conducted with the use of training

and test sets created from the 80 images. They found significant change when varying

the centre frequencies and standard deviations in both experiments and no significance

change when varying the number of scales and orientations.

For the second experiment, allowing for radial overlap of the filters (non-orthogonal)

were found to make a significant difference in classification accuracy. One concern is

that by allowing the size of the standard deviations of the Gabor filter to vary the filter

banks become too large, thus increasing the computational complexity [7].

Gabor filters are computationally expensive due to the possibility of large filter banks

generated by using multiple scales and orientations. Li et al. [7] stressed the point that

by taking the parameters σx and σy into consideration the resultant filter bank becomes

even larger and therefore more computationally expensive. They proposed a supervised

approach using Mahalanobis separability to create a compact bank of non-redundant

filters. This means that if the distance between one filter and another filter (based on

some user defined value) is small (similar), one of the filters is discarded from the initial

family of filters. The parameters were predefined and chosen as follows:

• Centre Frequency (Ul and Uh): σx
2σx+2

√
(log2/π)

.

• Scales (M): 4.

• Orientations (N): 4.

• Standard Deviation in the x direction (σx): 0.5, 1.0.

• Standard Deviation in the y direction (σy): 0.5, 1.0.

The initial filter bank consists of 288 filters with the final set of filters reduced to a

range of 2.6 – 14.4. After numerous runs a classification accuracy higher than previous

methods were observed using the Outex and Brodatz databases. Both the Fisher-ratio

and Mahalanobis distance metrics were tested with the latter providing better results.

Zhang et al. [8] and Chen et al. [26] evaluated the effects of specific Gabor filter

parameters and highlighted the lack of attention placed on the filter mask size of the

Gabor filter. If the imagery used contains large texture samples with respect to the

image size, then a larger mask size can be utilized. Conversely, smaller filter sizes are

used in areas where the dominant textures are quite small.

The following were investigated:

• Scales (M): values chosen are 4, 6, 8.
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• Orientations (N): values chosen are 3, 4, 16.

• Filter Mask size (S): 9 x 9, 33 x 33, 61 x 61 and 81 x 81.

All Brodatz database textures were used, each cut into sixteen 128 x 128 sub-images.

Some images were then rotated to provide a total of 1852 textures for single-textured

image retrieval. An experiment based approach was used to determine the best values

for the parameters. Suitable values for the lower and upper centre frequencies are said

to lie between 0 and 0.5 respectively. The lower and upper centre frequencies are set to

0.05 and 0.4 respectively and the standard deviations are derived using equations 2.15

and 2.16 [3].

They concluded that the selection of a suitable number of scales and orientations is

required and that the filter mask size is dependent on the image size and resolution and

hence the best filter mask size must be determined.

Afshang et al. [29] used Genetic Algorithms (GA) with the aim of optimizing some of

the Gabor filter parameter values. These include:

• Standard Deviations of the Gaussian envelope in the x and y directions.

• Centre Frequency.

A Genetic Algorithm was used with criteria to maximize classification accuracy for the

type of image dataset used. Forty images from the Brodatz and forty from the Outex

databases were used with each image divided into sixteen non-overlapping sub-images.

The resultant set of 160 images was used to form training and test sets. Experiments

were then performed on eight groups of images, each containing textures samples from

ten classes of similar textures. As expected, for each group of textures the optimum

values for the parameters differed across the tests due to the different types of textures

contained within.

From these studies a suitable range can be identified for the selection of the number of

scales and orientations for the Gabor filter. There is however some confusion as to which

parameters (and their respective ranges of values) are the most influential for filter bank

design. Parameters such as the scales and orientations are inversely related and need

to be chosen carefully. Other studies deem the standard deviations of the Gaussian

envelope more important to filter design than the number of scales and orientations.

The Brodatz and Outex databases are useful for testing texture analysis algorithms

for single-textured image retrieval as they are of considerable resolution and variation.
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There is however no clear evidence that the filters chosen for these databases would pro-

vide the same level of performance on real-world and multi-textured image datasets. The

filter mask and tile sizes may have a considerable effect when segmenting or classifying

multi-textured images such as optical satellite imagery with limited spatial resolution and

non-homogenous textures of varying sizes that exist in close vicinity to each other. This

can make it difficult to select sample textures for class creation and more importantly

determine an appropriate mask and tile size for the entire image set.

Table 2.1 has been taken from [5] and [7] and has been expanded to cater for the

evaluation of the filter mask and tile sizes.

2.4 Water Body Extraction from Satellite Imagery

The identification of water bodies allows for the ability to manage water resources and

aid in preventing and monitoring disasters such as floods. Certain types of water bodies

such as those containing traces of other substances (protruding or surface vegetation

or soil) are much more difficult to distinguish from other land cover types. A suitable

source of data and relevant techniques are therefore required to extract the various water

bodies.

The ideal sources of data would be the placement of in-situ sensors with wireless teleme-

try but coverage is generally sparse and maintenance is difficult due to damage caused

by debris or vandalism. Instead, this has led to the need for remotely sensed imagery to

acquire the relevant data. Airborne or spaceborne sensors provide a myriad of remotely

sensed imagery that can be used in a variety of applications.

Airborne missions use aircraft and are quite expensive leading to the use satellite systems

as the only viable solution. Satellites can cover the entire globe and frequent regions of

interest in a matter of days providing suitable imagery for a variety of applications.

2.4.1 Satellite Imagery

Imagery that can be acquired from satellite systems include optical (multispectral or

hyperspectral) and Synthetic Aperture Radar (SAR) imagery. Multispectral and hy-

perspectral images are produced by sensors that use the visible light (red, green and

blue) and infrared frequencies of the electromagnetic spectrum [37]. Using these light

waves multiple image bands are created, with each band providing unique descriptions of

the various phenomena being observed. For example, vegetation appears much brighter

than soil or water in an infrared image. However, sunlight and reflective surfaces can
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cause classification errors. These types of imagery are cheaper than SAR imagery and

more widely available.

SAR sensors use radar waves that bounce or reflect off surfaces and provide a good

description of the topography of an area. A key property of SAR for this case study,

is that the incident radar waves are reflected away from water bodies such as rivers

and lakes unlike other land cover types. This results in these water bodies appearing

much darker than the surrounding vegetation and soil in the resultant SAR image. By

using two images of the same region taken at different angles, Digital Elevation Models

(DEMs) can be created and provide details of the elevation of the terrain. Perhaps the

most important property of a SAR sensor is its ability to penetrate cloud cover unlike

optical sensors, and can therefore be used during adverse atmospheric conditions.

While there are many public and military satellite systems available, their capabilities

can differ considerably. Imagery produced can differ by the [37]:

• Spatial resolution: the area (in square metres) on the ground that corresponds to

a single pixel. Low to medium resolution satellites provide 30 – 1000 m and more

modern high resolution satellites of with 1m or less.

• Image bands: images produced by the sensor using various frequency ranges.

• Revisit time: how often the satellite system produces images for a specific area.

Some satellites such as EO-1 have side-look capabilities which allows for a more

frequent revisit, but the scenes may have different viewing angles.

• Availability : whether the satellite is for military (such as Cosmos 2441 and Helios

2B) or civil (such as LANDSAT, MODIS and EO-1) purposes. Low cost missions

or more readily available pubic data sets from newer systems may allow in the

improvement of existing applications.

Selecting Satellite Imagery

Even though some satellites may provide high resolution data, the choice is dependent

on the image bands they provide and how often the images are produced. For example,

a satellite may provide multi-band and high resolution imagery to allow one to clearly

identify water bodies, but has a low revisit time and hence is not suitable for applications

like flood detection.

The National Point of Contact in the Netherlands [38] provides information on the

capabilities of all earth observation satellites. The information is gathered from public

sources (the Internet) and is regularly updated. The tables they provide contain satellite

systems that have completed their missions and some that are yet to be launched, and

as a result may not reflect their current status and availability.
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2.4.2 Water Body Extraction: Sources of Data and Methods

Techniques for the identification of land cover and hence water body extraction for use

with either SAR and/or optical imagery will now be discussed. The simplest of methods

is the use of pixel intensities from single or a combination of bands. This can be fairly

straight forward such as user defined pixel value ranges for classes or better techniques

such as the mean shift algorithm, which is a type of clustering algorithm that tries to

isolate homogenous regions by determining the most common values (the mode) within

a local region.

For optical imagery, one of the most well known “techniques” is the use of composite

imagery computed from multiple bands. Composite imagery such as Normalized Veg-

etation Difference Index (NDVI) and Normalized Water Difference Index (NDWI) use

the near-infrared and visible red bands, and near-infrared and visible green bands re-

spectively to generate an image with pixels intensities in the range [−1, 1]. For NDVI

highly positive values represent vegetation with soils varying in pixel intensity due to

water content. Clear water bodies appear much darker with values close to zero (or

negative values), with the opposite true for NDWI.

Each satellite sensor has its own characteristics. For indices such as NDVI, NDWI and

the mean shift algorithm, user defined ranges of pixel intensities that represent classes

of land cover will vary depending on the type of satellite images used. The resultant

pixel intensities can also vary due to atmospheric conditions. There is also no guarantee

that a land cover class will not exhibit similar pixel intensities to other classes. These

techniques may work well for clear water types but not for mildly turbid (muddy) water

and highly turbid waters (surface vegetation) and as a result texture analysis may be

more suitable.

The ideal situation would be the use of SAR imagery and/or suitable DEMs imagery

together with optical imagery for the identification and monitoring of water bodies of

varying sizes and types. However, publicly available 90 m resolution DEMs are just not

good enough for the extraction of “thin” water bodies such as rivers and the acquisition

of data for developing countries are few and far between. Suitable times series are also

difficult to acquire, even for optical imagery.

High resolution DEMs are difficult to acquire, SAR imagery is expensive and publicly

available datasets are also almost impossible to find. Therefore the only viable option

is to use optical imagery.
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Unfortunately for the coverage of developing countries, there is also limited access and

availability of optical satellite images with a suitable time series (even for research pur-

poses) and this is still a major concern.

2.4.3 Using Gabor filters for the Identification of Water Bodies

Gabor filters have been used on satellite imagery for a variety of land cover segmentation

and classification problems [39][40]. This involves selecting and categorizing texture

samples into well defined classes with the aims of identifying various land cover types

such as mountains, dense vegetation, shrubs, rivers and urban areas, etc.

The focus of this case study is the identification of not just clear water bodies commonly

performed using spectral based classifiers (mentioned earlier) but the identification of

turbid water bodies that are more difficult to extract.

Nath and Deb [41] provide a list of techniques used for the extraction of water bodies from

some optical and SAR satellite imagery. These include Neural networks and Maximum-

Likelihood classifiers. They concluded that while many techniques exist, none of them

are universally accepted and none are applicable to all available satellite images. Gabor

filters are mentioned but not used and the identification of turbid and highly turbid

water bodies were also not tackled.

Figures 2.15 and 2.16 show colour and red band (TM3) LANDSAT images of New York

Bay used by Hellweger et al. [6] for identifying turbid waters. These rivers contain

a green tinge with noticeable texture and are somewhat distinguishable from the sur-

rounding urban environment. The main concern in this research were the shadows that

were being cast from buildings which affected classification results.
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Figure 2.15: New York Bay Turbid Water [6].

Figure 2.16: New York Bay Turbid Water (Red Band) [6].

As illustrated in Figure 2.17, the data used in this research (discussed in more detail in

Chapter 3) however, have no shadows from urban structures that distort the land cover

types. Some of the major concerns are:

• Highly turbid water containing vegetation that exhibit spectral properties similar

to that of other vegetation types. Their appearance also differs due to varying

illumination caused by sunlight and natural changes in land cover. This is evident

in the images marked A.

• Mildly turbid water with soil deposits (B).

• The similarity in “smoothness” of the dense vegetation textures (C) to that of

clear and mildly turbid water bodies (D).
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Figure 2.17: The difficulty in identifying Highly Turbid water bodies and changes
due to sunlight.

2.5 Conclusion

From various studies, it can be concluded that while the Gabor filter is a widely adopted

technique for texture analysis its effectiveness is dependent on the selection of suitable

parameters values. Studies into the effects of varying these parameters (centre frequency,

scales, orientations and standard deviations) are usually based on experiments using the

Brodatz and Outex databases. However, these findings do have limitations, there is still

some contradiction as to which values to use and which parameters need to be optimized.
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Only a few of the studies have stressed the importance of the Gabor filter mask size and

the effects of varying the tile sizes for window segmentation has not been investigated.

Suitable values for the filter mask and tile sizes are image set dependent and there are

limited studies that use multi-textured images for the optimization of these parameters.

There are a variety of techniques used for water body extraction from satellite imagery,

with SAR imagery generally being preferable as the source of data. However, optical

imagery is more commonly available than SAR imagery and texture analysis algorithms

such as the Gabor filter have already been used in other land cover classification problems

that use optical satellite imagery.

Mildly and highly turbid water bodies is a concern, as there is limited research on how

to extract these from optical satellite imagery alone. Spectral based classifiers cannot

be used for these water bodies since most of their pixel intensities are similar to those

of other land cover types.



CHAPTER 3

Methodology: Genetic Algorithms

In this research, the Genetic Algorithm (GA) is investigated as a heuristic tool for

Gabor filter parameter optimization. This chapter provides a description of Genetic

Algorithms. The first section provides an introduction and the basic requirements of

the GA, while Section 3.2 describes encoding schemes. Section 3.3 highlights some of

the selection operators used and Section 3.4 provides a list of GA operators.

3.1 Genetic Algorithms

Heuristic algorithms are those algorithms that find solutions among all possible solutions.

It is not guaranteed that the best solution will be found but it is possible if the optimum

solution or solution space is known.

Genetic Algorithms (GA) are heuristics that are inspired by and aims to mimic the

natural evolution process by using techniques such inheritance, mutation, selection and

crossovers [42]. They have been used in a variety of fields such as bioinformatics, phy-

logenetics, computational science, engineering, mathematics and physics, etc.

GAs have proved to be capable of solving large, complex problems in areas which other

techniques have experienced difficulties. One of its major advantages is its ability to

tackle problems with multiple local optima. For a given numerical search and optimiza-

tion problem, a list of possible solutions is searched in order to find the solution that best

28
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fits a given problem. This is known as the search space, and could possibly be of infinite

size. Enumeration can also be used to evaluate the search space for a few parameters

but if the search space growth is complex, or the algorithm for whose parameters are

being optimized is computationally expensive, then GAs are deemed more suitable.

The basic requirements of a Genetic Algorithm are:

1. A population of individuals or estimates (guesses) of the solution p.

2. A genetic representation of the solution, usually an array, string of bits or trees.

3. A fitness function to evaluate the solution.

4. Methods for mixing fragments to form new solutions such as a cross-over operator.

5. A Mutation operator to prevent a possible loss of diversity within a given popula-

tion.

A typical Genetic Algorithm involves the iteration through multiple generations g, (g =

0, 1, 2, ...G − 1) of a population p of N individuals. The GA can be terminated after

a certain number of predetermined generations G has been reached. It can also be

terminated if no change in the best fitness (fmax) over a given number of generations

is observed or until a generation contains an individual with a suitable fitness. For

each generation the fitness f of all individuals i (i = 0, 1, 2, ...N − 1) of the current

population p are evaluated. Individuals that meet a certain criteria (or randomly chosen)

are then selected as cross-over pairs. The offspring of these individuals have a chance

of undergoing mutation, the resultant individuals (and possibly their parents) are then

placed into a new population p + 1. The remaining individuals or weakest individuals

from the current population p are not allowed to form part of the new population p+ 1.

The above is just the basic case. The way in which individuals are chosen for cross-overs

and mutation and the manner in which new populations are created can differ depending

on the type of selection operators used.

Based on various books and tutorials [42][43][44], a brief description of Genetic Repre-

sentations, Selection Operators and Genetic Operations are explained below.
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3.2 Genetic Representation

A suitable method for representing the genes and chromosomes of individuals are re-

quired. Whilst there is no single best encoding scheme, one usually selects the appro-

priate scheme depending on the type of application used. The following are some of the

more popular encoding schemes used:

Bit strings are the most commonly used encoding, the main reason being Holland’s

work in 1975 [45] which many have tended to follow. Most of the literature on Genetic

Algorithms are also based on bit strings of fixed length and fixed-order. Research on

parameter settings for cross-over and mutation rates are mostly done for binary encod-

ings.

Many-Character and Real-Valued Encodings: One way to form chromosomes is

the use of alphabets of many characters or real numbers. Applications include represen-

tations of graph-generation grammars, and real-valued representation for neural-network

weights.

Tree encoding schemes are mainly used for evolving programs or expressions, for

genetic programming. Every chromosome is a tree of some objects, such as functions

or commands in programming language. There is a possibility that the trees can grow

uncontrollably large, and can also be very difficult to simplify.

Unlike Binary Genetic Algorithms (BGM), Real-valued Genetic Algorithms (RGM) use

real values, no encoding schemes are used [46].

3.3 Selection Operators

The next part in the design of a Genetic Algorithm is the manner in which individuals

from a population are chosen to create offspring for the next generation, including the

number of offspring each pair produces. A balance has to be found to gain the best

results, as very strong selection results in a population saturated with suboptimal highly

fit individuals, thus reducing the diversity needed for further progress. Conversely a very

weak selection will result in a very slow evolution rate. Various selection schemes have

been proposed, seven of which are described below [42] and [43].

• Fitness-Proportionate Selection

In fitness-proportionate selection, the expected number of times an individual I

will be selected as a parent to produce offspring, is the fitness f of I divided by

the sum of the population fitness P .
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The roulette wheel is the most common type: each individual I is assigned a slice

of the roulette wheel. with each slice being proportional to the individual’s fitness.

For each spin a random number r (0 ≤ r ≥ S, where S is the sum of all the

chromosome fitness values) is generated. An individual with an expected value

that exceeds r is added to be in the collection of parents for the next generation.

Another variation, proposed by James Baker (1987) [47] is a sampling method

called stochastic universal sampling(SUS), where a roulette wheel with N equally

spaced pointers is spun N times to select N individuals (parents). However both

fitness-proportionate selection and Stochastic Universal Sampling are both suscep-

tible to premature convergence, due to limited variation in fitness in subsequent

generations.

• Sigma Scaling

Sigma Scaling is designed to keep the extent at which highly fit individuals are

allowed to produce many offspring relatively constant. It does so by preventing the

selection pressure from being strong too early, to prevent premature convergence,

and not too weak once the population has stabilized.

• Elitism

When a new population is created by crossover and mutation, there is a high

possibility that some of the best chromosome/(s) will be lost. Elitism allows

for the retention of a few of the best individuals from a population by copying

some of these individuals to a new population, and can substantially increase the

performance of the GA.

• Boltzmann Selection

Unlike sigma scaling, sometimes different amounts of selection pressure is needed at

different times in a run. Less fit individuals can reproduce at rates similar to that

of fitter individuals. This may be accomplished by having selection occur slowly

while maintaining a lot of variation in the population early on, but increasing

the selection of highly fit individuals (higher probability) later on. Boltzmann

selection is one of such approaches that uses a temperature to adjust the rate at

which individuals produce offspring throughout the run.

• Rank Selection

In Rank selection individuals in the population are ranked according to fitness

and the expected value of each individual depends on its rank rather than its

fitness. Since the use of absolute fitness can lead to convergence problems, ranking

prevents the possibility of the largest share of offspring being produced by the

fittest individuals. Selection pressure is also reduced when the fitness variance is

high and keeps up selection pressure when the fitness variance is low.
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• Tournament Selection

Unlike the fitness-proportionate methods that require two passes through the pop-

ulation at each generation, one pass is used to compute the mean fitness and an-

other pass is required to compute the expected value of each individual. Similar to

rank selection in selection pressure, tournament selection is computationally more

efficient. Two individuals are chosen at random from the population. A random

number r is then chosen between 0 and 1, if r < p (p is a parameter) and the

individual with the greater fitness is selected to be a parent, otherwise the less

fit individual is selected. The two individuals are then returned to the original

population and can be selected again.

• Steady-State Selection

In Steady-State Selection, in every generation a few individuals with a high fitness

are selected as parents, those with poor fitness values are replaced by the new

resultant offspring. The rest the of population survives to new generation with the

offspring as well as their parents.

3.4 Genetic Operators

Genetic operators are techniques that try to mirror the natural manipulation of chro-

mosomes via crossovers and mutations. Listed below are some of the commonly used

crossover techniques as well as the what mutation is and its purpose [42] [43].

• Single-point Crossover is the simplest form of crossover. A single crossover

point p is chosen at random and the parts of two parents I1 and I2 after the

crossover position are exchanged to form two offspring. One major limitation of

the single-point crossover is its inability to combine all possible schemas and main

long length schemas. It is also noted that in single-point crossover the segments ex-

changed between the two parents always contain the endpoints of the chromosomes

of the individuals I1 and I2.

• Two-point or Multi-point Crossover is used to reduce positional bias and

endpoint bias. Two positions are chosen at random and the segments between

them are exchanged. Two-point crossover is less likely to disrupt schemas with

large defining lengths and can combine more schemas than single-point crossover.

Also, the exchanged segments do not necessarily contain the endpoints of the

strings of the parents.
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• Cut and splice is similar to single-point crossover, but the difference is that each

chromosome has a separate crossover point and may result in a change of length

of the child chromosomes.

• Uniform Crossover allows the parent chromosomes to contribute at the gene

level rather than at the segment level. A mixing ratio for the crossover is chosen

so that a certain number of of randomly chosen genes are chosen from the respective

parents. Bits are typically swapped with a probability of 0.2.

• Half Uniform Crossover: half of the non matching bits are swapped. The

Hamming distance is first calculated and then divided by two and is used to de-

termine how many of the genes that do not match between the two parents will

be swapped.

The suitability of a particular crossover operator depends on the type of fitness function

and encoding schemes used. Even with various crossover operators (with key criteria be-

ing positional bias, degree of disruption potential and the creation of different schemas),

there is still no comprehensive evidence as to which type of crossover is to be used [42].

For real valued chromosomes (not used in this research), known techniques include: In-

termediate recombination, Line recombination and Extended line recombination Expla-

nations below are provided by the Genetic and Evolutionary Algorithm Toolbox Website

[48]:

• For Intermediate recombination, variable values of the offspring are chosen

around and between the variable values of their parents (P1 and P2). Offspring

are produced according to the rule the following rule:

V ar0i = V arP1
i .ai + V arP2

i .(1− ai) (3.1)

1 ≤ i ≥ N , −d ≤ ai ≥ 1 + d and d = 0.25.ai for each new i. a is the scaling

factor that is selected uniformly at random over an interval [−d, 1 + d] for each

new variable. d defines the size of the area for possible offspring. A value of d = 0

defines an area for the offspring which is the same size as the area spanned by

the parents. The area for the variables shrinks over each generations. A value of

= 0.25 statistically ensures that the variable area of the offspring is the same as

the variable area spanned by the variables of the parents.

• Line recombination is similar to intermediate recombination but instead only a

single a value is used for all variables.
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• For Extended line recombination offspring are generated on a line defined by

the variable values of the parents but is not restricted to the line between the

parents and a small area outside. The parents are only used to define a line where

possible offspring may be created. The domain of the variables are used to define

the area for possible offspring. The offspring are not uniform at random and there

is a high chance of them being created near their parents. Offspring are produced

according to the following rule:

V ar0i = V arPi .si.ri.a
V arP2

i − V ar
P1
i

‖V arP1
i − V ar

P2
i ‖

(3.2)

1 ≤ i ≥ N , a = 2−ku is the relative step size. k is the mutation precision and

typical values range from 4 – 20. 0 ≤ u ≥ 1 (uniform at random). r = r. domain of

r, and represents the range of recombination steps and is usually 10% of the domain

of the variable. siε {-1, 1} and represents the direction of the recombination.

Mutation

The mutation operator is used to maintain and introduce genetic diversity from one

generation to the next and to avoid local minima by preventing premature convergence

or slowing down the GA. The basic concept is choosing an arbitrary position in a chro-

mosome and altering it from its original state, the most common method involves the

generation of a random variable for each allele in the chromosome. A given probability

is then used to determine if a random variable indicates a particular allele will be mod-

ified and is known as single point mutation. Other types of mutation include inversion,

floating point mutation swaps and scrambles.

For real valued GAs, a type of “swingometer” crossover operator can be use. For a given

parameter c , a certain number is added or extracted from c the resultant number that

is generated is restricted by some defined upper limit U and lower limit L [49].

3.5 Conclusion

Genetic Algorithms can be used as a means of determining some of the best Gabor filter

parameter values for a given image dataset. As mentioned in Chapter 2, Afshang et.

al [29] have already used a GA to find optimum values of the standard deviations of

the Gaussian envelope and the centre frequency. For the purpose of determining the

optimum filter mask and tile sizes, a well constructed GA will save computation time

for large solution spaces and datasets. There is potential to design a tool that uses a GA

to automate the process of determining the best parameter values for the Gabor filter

for any given multi-textured image dataset.



CHAPTER 4

Design of Experiments

This chapter describes the design of the Gabor filter, the Genetic Algorithm and an

experimental framework that was developed for the experiments. Section 4.1 describes

the design of the Gabor filter, representation of the feature vectors and classification. The

framework is described in Section 4.2. The assumptions and constraints on the research,

description of the dataset and finally the Genetic Algorithm design are discussed in

Sections 4.4 and 4.5.

4.1 Gabor Filter Design

The values of the following parameters are investigated:

• Number of scales.

• Number of orientations.

• Filter mask size.

• Tile size.

Masks ranging from 3 x 3 pixels to about a third of the tile size were considered. In

order to centre the mask only odd sized masks were investigated. True overlapping of

tiles for window segmentation is not used for this research, however, even sized tiles

35
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were allowed. When referring to a filter mask or tile of size m it is assumed that the

dimensions are m x m pixels.

The lower and upper values for the centre frequencies are kept constant at 0.05 and 0.4

(as used in the literature) with the filter bandwidth (σx and σy) being derived using the

equations 2.15 and 2.16 [8].

4.1.1 Feature Vector Representation and Classification

Statistics are required to represent the filtered image G of size P x Q, firstly an array

of magnitudes E that represent the energy at different scales m and orientations n is

computed:

E(m,n) =

P−1∑
x=0

Q−1∑
y=0

|Gmn(x, y)| (4.1)

m = 0, 1, ...,M − 1 and n = 0, 1, ..., N − 1. The first and second order statistics, namely

the mean and standard deviation are generally used, and are given by:

µmn =
E(m,n)

P ×Q
(4.2)

σmn =

√∑P−1
x=0

∑Q−1
y=0 (|Gm,n(x, y)| − µmn)2

P ×Q
(4.3)

For a Gabor filter with m scales and n orientations, the mean µ and standard deviation

σ are used to create a feature vector f [3] of the form:

f = (µ00, σ00, µ01, σ01, ..., µmn, σmn).

Given an input image A and target image B, the Euclidean distance is used as a texture

similarity measurement [50][29] is given by:

D(A,B) =
∑
m

∑
n

dmn (4.4)

where,

dmn =
√

(µAmn − µBmn)2 + (σAmn − σBmn)2 (4.5)

For the classification of texture types, 1-nearest neighbour is used.

4.2 Workflow Design

Given a single input image for texture segmentation or classification, a workflow is

shown in Figure 4.1 and is further extended for the utilization of a Genetic Algorithm
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as illustrated in Figure 4.2.

Figure 4.1: Workflow for the framework.

This workflow is used to create a framework that is intended to be extendable at the code

level for the use of other texture analysis algorithms and distance metrics other than the

Euclidean distance (which is used here). The aim is to implement the algorithms using a

low-level language such as c++ and use a scripting language (in this case Python) to call

these algorithms as well as manage their respective meta-data. The database caters for

a specific dataset only and Figure 4.3 illustrates these design choices. Metadata stores

descriptions of the algorithms used, and for each algorithm- the type of feature vectors

and parameter combinations used. The Satellite Image Properties file is used to store

metadata about the satellite system and the data it provides. Finally a colour map file

stores corresponding colours for each class of textures/concepts used. For a given image

dataset, it is assumed that corresponding ground-truth images that comply with the

colour map are available .

For storing data created and used by the texture analysis algorithms, the following is

required:

• A Class represents the concepts that we need to identify, independent of the type

of texture algorithm used and may contain subclasses (which are also classes ).

There is also an option of having a single feature vector computed from a specific

texture algorithm (in this case the Gabor filter) to represent all samples that fall

immediately within that class.

• A Sample refers to individual texture samples and contain features for each of the

texture algorithms used.
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Figure 4.2: Workflow for the framework extended to incorporate the use of a Genetic
Algorithm.

• A Feature contains feature vectors from the texture analysis algorithms. For each

algorithm there are corresponding feature vectors composed of statistics for every

parameter value combination used. For example, if the Gabor filter is used, there

are corresponding feature vectors for all scale, orientation, filter mask, and tile

sizes.

4.3 Initial Case Study and Difficulties:

The initial case study for this research was Flood Detection from Satellite Imagery with

the area of study being Mozambique during December 2007 and February 2008 1. Re-

quirements were to identify remote sensing satellites used for earth observation and to

select those most suitable for this type for flood detection. This meant acquiring a time

series of imagery containing rivers in Mozambique for change detection. The following

constraints led to a new direction for the research:

1A project funded by the ICT4EO research group at CSIR, South Africa
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Figure 4.3: Database Design.

• While there are many satellites available for earth observation, there are very few

publicly available datasets that are free.

• With high revisit times, numerous MODIS satellite imagery are available but their

low spatial resolution is more suited for weather monitoring than the identification

of rivers.

• LANDSAT imagery are also widely available but the limited number of imagery

available for African countries and hence Mozambique was and still is a problem,

especially for change detection applications.

• SAR imagery is expensive and difficult to acquire.

• The Hyperion EO-1 sensor provides hyperspectral imagery that have a 30 m spa-

tial resolution and can easily used for identify rivers. Unfortunately most of the

Hyperion EO-1 imagery provided by NASA have a considerable amount of cloud

cover and had to be discarded and the change detection component of this research

had to be abandoned.

The EO-1 Hyperion dataset of the Zambezi River do however contain images with dif-

fering water types and sizes, namely: clear, mildly turbid (muddy) and highly turbid

(with surface vegetation).
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4.4 The Dataset

The EO-1 Hyperion dataset consists of hyper-spectral imagery of the Zambezi River

taken between 2006 and 2008 with dimensions: 256 × 3241 or 256 × 3176 pixels, a 30

m spatial resolution and a revisit time of 200 days. Due to subtle noise and sudden

peaks in pixel intensities, preprocessing involved the use of a 5 × 5 Gaussian filter

(standard deviation of 1.0) to smoothen the images and retain the edges. The initial

experiments consisted of the selection of the blue, green, red, and infrared bands for land

cover classification. Through visual inspection these preliminary results were similar to

that of those obtained using only a single NDVI composite band. Due to most satellite

systems have differing instruments and actual pixel intensity values not being used, the

NDVI image was selected as suitable used for dimension reduction with little to no loss

in accuracy. The NDVI is a composite band that can be created from any satellite sensor

that provides the red and near-infrared bands. The use of the NDVI band may serve to

improve the applicability of the research to other satellite systems which have different

sensors but similar spatial resolutions.

4.4.1 Factors that Influence Sample Selection

The manner in which texture samples are selected depends on the goals of the application

and how the ground truth images are interpreted and created. This means that texture

samples for classification are selected depending on the context in which they are used.

Samples can have one dominant texture but may include traces of other textures. For

example, in Figure 4.4, the area (A) contains soil (brown) and sparse vegetation (light

green) textures, but in its entirety one can view (A) as a single texture representing an

arid climate (contains both sparse vegetation and vast amounts of sand).

Figure 4.4: Sample Selection.

The classification accuracy of satellite imagery (using the same dataset) may yield dif-

ferent results when used on the same or different application domains. This means that

results can not only vary due to parameter value selection but also due to ground truth

creation and sample selection.
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4.4.2 Image Variation and Dataset Preparation

EO-1 Hyperion images from 5 regions of Zambezi river are used as shown in the Figure

4.5. Images from each region were used from different years, with some containing

major changes in land cover. They contain water bodies and non-water bodies, each

of different size and texture. To minimize the effects that atmospheric conditions have

on the appearance of the land cover and hence the results obtained when applying the

Gabor filter, images with any cloud cover and high levels of surface reflection due to

sunlight were discarded.

• Region 1 contains mostly clear and mildly turbid waters but also water based

vegetation occupying neighbouring areas. Three images were available, one of the

images was used for the selection of clear water, mildly turbid water and non-water

bodies.

• Region 2 contains some highly turbid water which consists of vegetation on the

surface of the river and an intricate network of moist soil and clear water at the

base of the image. Between the three images available, there are considerable

changes in appearance and hence texture due to land cover change and sunlight.

To provide a good representation of how the Gabor filter performs, only a single

image was used for the selection of non-water and highly turbid water bodies.

• Region 3 contains a mildly turbid water body with soil deposits. Only one image

was available and hence only a single sample of turbid water was taken. Note the

smooth vegetation textures located at the bottom half of the image. No samples

of these textures are taken in order to determine which class these textures are

assigned to during classification.

• Region 4 contains two images from the same area as Region 1 but the revisit point

is slightly different. There is considerable change in land cover in the area occupied

by the river. No samples were taken from these images.

• Region 5 : only a single image was available and contains a large body of water

with sunlight reflection. No samples were taken.

As illustrated in Figure 4.7, the Hyperion EO-1 images were windowed to create a dataset

consisting of 135 sub-images with a dimension of 256 × 256 pixels. As mentioned in

Chapter 2, Section 2.2, it is possible to have more intra-class variation than inter-class

variation, so instead of creating a single feature vector to represent a single class, multiple

samples (hence multiple feature vectors) are used. To avoid experiential bias 50 of the

sub-images are used to create a Sample dataset and are not used in the experiments
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Figure 4.5: Images from Zambezi, Mozambique.

(except for a single sample of mildly turbid water (muddy)). The remaining 85 sub-

images were then used to create a Test dataset for the experiments.

Figure 4.8 shows some of the land cover types under investigation. Three classes of

textures are used for the experiments conducted in this research (discussed in detail in

Section 5.1), namely:

• Clear or Mildly Turbid Water: consists of water bodies that are clear or those

with soil deposits.
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Figure 4.6: Images from Zambezi with cloud cover.

• Highly Turbid Water: consist of vegetation protruding from, or growing on

the water surface. Even before post processing (smoothing), these highly turbid

waters appear similar in structure (texture) to that of other vegetation types.

• Non-water Bodies: these include: soil, mud, rock and vegetation; with the latter

being the most common land cover. These do not contain urban textures as none

were available and may affect results in similar studies.
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Figure 4.7: Creating Sub-images from the EO-1 Hyperion images.

4.5 Genetic Algorithm Design

For the heuristic approach suitable design choices were made to use the Genetic Algo-

rithm effectively. Bit strings are used to represent chromosomes of the individuals with

fixed lengths. The length has an upper limit defined by the user (upper values set for the

number of scales, orientation, and filter mask and tile sizes respectively). For example,

if the highest number of scales and orientations are 8 then the length is 4 (4 bits) and
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Figure 4.8: Land cover types.

if the maximum tile size is 31 then the length is 6 (6 bits). For the genetic operators, a

two point crossover and mutation with a probability of 0.2 is used.

Elitism works well for high dimensional data and Steady-State for low dimensions [51].

For this research pure elitism is not used, but instead, the concept of elitism is used with

a variation of Steady-State selection. The aim is to ensure that most of the individuals

survive to the next generation but also allow a certain percentage of the best individuals

to survive. Individuals are randomly selected as parents from the top 20 percent of

the population. Two offspring are produced from a two point crossover and both then

undergo mutation if necessary. Each of the chromosomes that represent the scales,

orientations, mask size and tiles sizes respectively are treated independently of each

other and have random chances of being selected for mutation.

With a fixed population size of 50 individuals, the GA is terminated when no consider-

able change over 10 consecutive generations is observed. Classification accuracy serves

as the fitness function for the GA, with the aim of maximizing this value.

4.6 Summary

An experimental framework was designed to cater for the application of the Gabor filter

on multi-band and multi-textured imagery. To meet the objectives of this research it

had to allow for the variation of the Gabor filter parameters and the use of a Genetic

Algorithm. The following Gabor filter parameters were then selected for investigation:

the scales and orientations, filter mask size and the tile size for window segmentation.
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Due to the large size of the Hyperion EO-1 images, 135 sub-images were created to

form a Test dataset of 85 images and a Sample dataset of 50 images. Three texture

classes were created to represent clear or mildly turbid water, highly turbid water and

non-water bodies. Texture samples for the different classes were carefully selected to

avoid experimental bias.

This framework, dataset and GA provides the basis for conducting the experiments

described in the next chapter.



CHAPTER 5

Experiments and Results

This chapter provides a description of two experiments (scenarios) and the two ap-

proaches used for determining the best Gabor filter parameter values for the respective

experiments. Sections 5.2 and 5.4 provide results for the GA and linear enumeration

approaches for both experiment 1 and experiment 2, respectively, while Sections 5.3 and

5.5 provide summaries of these results.

For all results presented in this chapter, Accuracy refers to the classification accuracy

in percentage. Filter mask size S refers to a filter of size S x S, the same applies to the

tile sizes (T ).

5.1 Experiments

The following experiments are conducted:

• Experiment 1: Identification of Clear and Mildly Turbid Water Bodies. The

reason for adding mildly turbid waters such as muddy water, is that during flooding

(especially flash floods) there are large amounts of sediment deposits in overflowing

and fast moving rivers. Two classes of textures are used for this experiment: A

single class for clear or mildly turbid water body textures, and one for non-water

bodies (mostly vegetation).

47
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• Experiment 2: Identification of Clear or Mildly and Highly Turbid Water Bodies.

Highly turbid waters have vast amounts of protruding and/or surface vegetation.

Three classes of textures are used for this experiment. The first class represents

clear or mildly turbid water bodies, the second represents highly turbid water bod-

ies and the last class represents non-water bodies.

For the approaches described below, for the Gabor filter (see Chapter 4, Section 4.1),

the lower and upper centre frequencies are kept constant at 0.05 and 0.4, the mean

and standard deviations are used for feature vector representation. For classification,

1-nearest neighbour with Euclidean distance is used.

5.1.1 A Heuristic Approach: Using a Genetic Algorithm

The first approach involves the use of GA to find the best solutions under parameter

derived constraints to eliminate unsuitable or spurious parameter value combinations

for the Gabor Filter, otherwise the GA would take considerable time to find the best

solutions.

Parameter derived Constraints for the Genetic Algorithm:

• Number of scales: values between 3 and 8 (inclusive) are used to cover the ranges

provided in the literature as shown in Table 2.1 from Chapter 2, Section 2.3.

• Number of orientations: values between 3 and 8 (inclusive) are selected for the

same reason mentioned above.

• Filter mask size (restricted by tile size): at 3 x 3 to a third of the tile size.

• Tile size (restricted by texture sample size): 9 x 9 – 32 x 32, with odd and even

sizes allowed.

Recall from Chapter 4, Section 4.5, the GA uses a population size of 50 individuals,

a mutation probability of 0.2, and is terminated when no considerable change over 10

consecutive generations are observed. The test dataset of 85 images is randomly split

into static training and validation subsets consisting of 42 and 43 images, respectively.

To reiterate the 50 sub-images used from the original set of 135 sub-images in the creation

of samples are not used in any of the experiments.

With these restrictions there are 6480 possible solutions with the Gabor filter being

theoretically (GA is constrained) applied 550800 times to a dataset consisting of 85

images. For example, for a Gabor filter bank consisting of 7 scales and 7 orientations
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(49 filters), for all filter mask and tile sizes (60 combinations), 249900 convolutions will

be performed for the Test dataset.

5.1.2 Linear Enumeration Approach

For the second approach, the following parameters are investigated:

• Number of scales: 3, 4, 5, 6, 7.

• Number of orientations: 3, 5, 7.

• Filter mask size (restricted by tile size- at 3 x 3 to a third of the current tile size).

• Tile size (restricted by texture sample size- 9 x 9 - 32 x 32, with odd and even

sizes allowed).

This provides 2700 parameter value combinations and results in a family/bank of Gabor

filters being applied 229500 times to a dataset consisting of 85 images.

5.2 Experiment 1: Identification of Clear and Mildly Tur-

bid Water Bodies

The first objective as stated in Section 5.1 is to conduct an experiment based on the

identification of clear and mildly turbid water bodies.

5.2.1 Heuristic Approach: Results obtained from the Genetic Algo-

rithm

Table 5.1 shows the results obtained for all sub-images in the training and validation

subsets, while Table 5.2 contrasts the results obtained from the validation subset and

test datasets. In Tables 5.1 and 5.2 the first 2 entries are the best solutions produced by

the GA after multiple runs and the remaining entries show some of the best solutions

encountered over different generations.

5.2.2 Results obtained through Linear Enumeration

For the evaluation of Gabor filter behavior using the enumeration approach the Test

dataset is used. The following figures show the results obtained by using scale values:
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3, 4, 5, 6, and 7 but allowing the filter mask size and tile size to vary. Within each of

the figures, three graphs also depict the effects of orientation values: 3, 5, and 7.

Figure 5.1: Identification of Clear and Mildly Turbid Water Bodies. Scales: 3.

Figure 5.2: Identification of Clear and Mildly Turbid Water Bodies. Scales: 4.

Figure 5.3: Identification of Clear and Mildly Turbid Water Bodies. Scales: 5.
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Figure 5.4: Identification of Clear and Mildly Turbid Water Bodies. Scales: 6.

Figure 5.5: Identification of Clear and Mildly Turbid Water Bodies. Scales: 7.

The next task is to identify how well the parameter value combinations worked for all of

the images in each “Region” (see Chapter 4, Figure 4.5). Each figure depicts the effects

of the filter mask and tile sizes, while maintaining a fixed scale and orientation value.

Figure 5.6: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 3 and Orientations: 3.
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Figure 5.7: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 3 and Orientations: 5.

Figure 5.8: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 3 and Orientations: 7.

Figure 5.9: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 4 and Orientations: 3.
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Figure 5.10: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 4 and Orientations: 5.

Figure 5.11: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 4 and Orientations: 7.

Figure 5.12: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 5 and Orientations: 3.
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Figure 5.13: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 5 and Orientations: 5.

Figure 5.14: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 5 and Orientations: 7.

Figure 5.15: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 6 and Orientations: 3.
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Figure 5.16: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 6 and Orientations: 5.

Figure 5.17: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 6 and Orientations: 7.

Figure 5.18: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 7 and Orientations: 3.
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Figure 5.19: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 7 and Orientations: 5.

Figure 5.20: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 7 and Orientations: 7.

5.3 Experiment 1: Summary

5.3.1 The Genetic Algorithm

The Genetic Algorithm was applied to the training and validation subsets and the test

dataset. The best solutions from Tables 5.1 and 5.2 are summarized below:

• Training subset: 4 scales, 3 orientations, mask size 3 x 3, and tile size 21 x 21

pixels.

• Validation subset: 8 scales, 6 orientations, mask size 3 x 3, and tile size 10 x 10

pixels.

• Test dataset: 5 scales, 3 orientations, mask size 3 x 3, and tile size 23 x 23 pixels.

The best scale and orientation values vary across the datasets. However, a filter mask

size of 3 x 3 pixels is consistent for all three data datasets. Table 5.2 does however

indicate that most solutions favoured tile sizes of 10 x 10.
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5.3.2 Linear Enumeration

Results obtained from the Test dataset

From Chapter 4, the graphs in Figures 5.1 to 5.5 depict very little change over scales: 3,

4, 5, 6 and 7 but also individual orientations: 3, 5 and 7. There is a slight increase in clas-

sification accuracy when more scales are chosen. For 7 scales (Figure 5.5), the difference

in classification accuracy over orientations: 3, 5 and 7 is almost indistinguishable.

Analysis of Region images

For selected scale values, Figures 5.6 to 5.20 illustrate the effects of the performance

of the Gabor filter using various filter mask and tile size combinations on the different

“Region” images. When larger filter mask and tile size combinations are used a slight

drop in classification accuracy is observed. For individual regions similar behavior is

observed for all the scale and orientation value combinations.

5.4 Experiment 2: Identification of Clear, Mildly and Highly

Turbid Water Bodies

The next objective as stated in Section 5.1 is to conduct an experiment based on the

identification of clear, mildly and highly turbid water bodies.

5.4.1 Heuristic Approach: Results obtained from the Genetic Algo-

rithm

As with the previous experiment a Genetic Algorithm was first applied. These are the

averaged results for all sub-images, and the first 3 entries in Tables 5.3 and 5.4 are the

best solutions generated by the GA over multiple runs. The remaining entries are some

of the best solutions generated after different generations. Table 5.3 provides the results

obtained from the training and validation subsets and Table 5.4 contrasts the results

obtained from the validation subset and test dataset.

5.4.2 Results obtained through Linear Enumeration

The following figures show the results obtained by using scale values: 3, 4, 5, 6, and 7

but allowing the filter mask size and tile size to vary. Within each of the figures three

graphs depict the effects of orientation values: 3, 5, and 7 as well.
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Figure 5.21: Identification of Clear, Mildly and Highly Turbid Water Bodies. Scales:
3.

Figure 5.22: Identification of Clear, Mildly and Highly Turbid Water Bodies. Scales:
4.

Figure 5.23: Identification of Clear, Mildly and Highly Turbid Water Bodies. Scales:
5.
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Figure 5.24: Identification of Clear, Mildly and Highly Turbid Water Bodies. Scales:
6.

Figure 5.25: Identification of Clear, Mildly and Highly Turbid Water Bodies. Scales:
7.

Again, the next task was to identify how well the parameter value combinations worked

for all of the images in each “Region” (see Chapter 4, Figure 4.5). Each figure depicts

the effects of the filter mask and tile sizes while maintaining a fixed scale and orientation

value.

Figure 5.26: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 3 and Orientations: 3.
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Figure 5.27: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 3 and Orientations: 5.

Figure 5.28: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 3 and Orientations: 7.

Figure 5.29: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 4 and Orientations: 3.
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Figure 5.30: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 4 and Orientations: 5.

Figure 5.31: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 4 and Orientations: 7.

Figure 5.32: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 5 and Orientations: 3.
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Figure 5.33: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 5 and Orientations: 5.

Figure 5.34: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 5 and Orientations: 7.

Figure 5.35: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 6 and Orientations: 3.
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Figure 5.36: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 6 and Orientations: 5.

Figure 5.37: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 6 and Orientations: 7.

Figure 5.38: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 7 and Orientations: 3.
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Figure 5.39: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 7 and Orientations: 5.

Figure 5.40: The effects of filter mask and tile sizes on images taken from different
regions. Scales: 7 and Orientations: 7.

5.5 Experiment 2: Summary

5.5.1 The Genetic Algorithm

The best solutions from Tables 5.3 and 5.4 are summarized below:

• 7 scales, 7 orientations, with mask size 3 x 3 and tile size 9 x 9.

• 6 scales, 7 orientations, with mask size 3 x 3 and tile size 9 x 9.

• 7 scales, 6 orientations, with mask size 3 x 3 and tile size 9 x 9.

The best values for the scales and orientations for the training, validation and test

datasets are in fact more consistent for this experiment, with the most common param-

eter values being the filter mask and tile size of 3 x 3 and 9 x 9, respectively.
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5.5.2 Linear Enumeration

Results obtained from the Test dataset

The addition of an extra class of textures that represent the highly turbid waters resulted

in a drop in classification accuracy due to the similarity of the highly turbid waters to

other vegetation types as shown in Figures 5.21 to 5.25. For all graphs within these

figures the results show more erratic behaviour than those of experiment 1. For each

scale value investigated, this similarity between textures also affects the accuracy for

orientation selectivity as well and a noticeable difference between orientations: 3, 5 and

7 is observed.

Region images

For selected scale values, the Figures 5.26 to 5.40 illustrate the effects of the performance

of the Gabor filter using various filter mask and tile size combinations on the different

“Region” images. The graphs depict similar behavior for the “Region” images for all the

scale and orientation values just like experiment 1 but a drop in classification accuracy

is also apparent.

5.6 Summary

Two experiments were conducted to determine the effectiveness of Gabor filter for the

identification of clear, mildly and highly turbid water bodies. For each of the experiments

two approaches were used to determine optimum Gabor filter parameters values: the

first is a linear enumeration approach and the other a heuristic approach using a GA.

By taking 8 – 9 generations to find optimal solutions, the constrained GA is good for

quickly finding optimal values for parameters in large solutions spaces and datasets,

but the linear enumeration approach is better for identifying trends by varying different

parameter values.

For the enumeration approach, the behavior of the Gabor filter on the various Hyperion

EO-1 “Region” images shows that each image can have its own optimum Gabor filter

parameter values. This implies that the optimal Gabor filter parameter values for a

given dataset can be influenced by the bias introduced through the addition of more

images that favour specific parameter values.



CHAPTER 6

Analysis and Discussion

This chapter provides an analysis of the results obtained from the experiments. Section

6.1 provides an analysis of varying the number of scales and orientations, while Section

6.2 analyses the effects of varying the filter mask and tile sizes. Section 6.3 provides

some insight into the behaviour of the Gabor filter when attempting to classify some of

the images used in this research. Most importantly Section 6.4 evaluates the suitability

of a GA for the purpose of Gabor filter parameter value optimization.

6.1 Effects of Scales and Orientations

Figures 6.1 and 6.2 show that there is very little change in classification accuracy when

the number of scales are varied.

70
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Figure 6.1: Experiment 1: Classification Accuracy over Selected Scales.

Figure 6.2: Experiment 2: Classification Accuracy over Selected Scales.

As with the scales, a similar observation can be made for orientation values: 3, 5, and 7

averaged over all scale, filter mask and tile size values in Figures 6.3 and 6.4, where the

increase in classification accuracy is also negligible.

Gabor filters are created using multiple scales and orientations and are used to identify

textures with different directions and scales (coarseness). The main concern here is that

in general, the selection of too few scale and orientation values (less than 3) may result in

an inadequate representation of the underlying texture when applying the Gabor filters.
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Figure 6.3: Experiment 1: Classification Accuracy over Selected Orientations.

Figure 6.4: Experiment 2: Classification Accuracy over Selected Orientations.

Due to the nature of this research (multiple solutions), the False Positives (FP) and False

Negatives (FN) are evaluated instead of False Positive Rates (FPR) and False Negative

Rates (FNR). For experiment 1, Tables 6.1 and 6.2 show a consistent level of FPs and

FNs. However, this means that for the purpose of identifying water bodies, the Gabor

filter has in fact failed to identify approximately 13 – 14 percent of the occurrences of

water bodies.

Table 6.1: Experiment 1: Confusion Table for Selected Scales, averaged over all
Orientations, and Filter Mask and Tile Size Combinations.

Scales True Positives False Positives False Negatives Standard Deviations

3 80.67491017 5.672354526 13.6527353 0.245536734
4 80.82463105 5.368387685 13.80698127 0.020251657
5 80.85170135 5.572808237 13.57549041 0.02163964
6 80.87256105 5.595069859 13.53236909 0.053636603
7 80.88426997 5.715520047 13.40020998 0.066647601



Chapter 6. Analysis and Discussion 73

Table 6.2: Experiment 1: Confusion Table for Selected Orientations averaged over all
Scale, and Filter Mask and Tile Combinations.

Orientations True Positives False Positives False Negatives Standard Deviations

3 80.80090077 5.307327577 13.89177165 0.784456446
5 80.80620469 5.739413814 13.4543815 0.853828021
7 80.86530709 5.78795847 13.34673444 0.803491364

For experiment 2, Tables 6.3 and 6.4 show that the results are also consistent for scale and

orientation selectivity (with slight increase in FNs). However, there are now considerably

more FPs than FNs and this is due to more vegetation textures (non-water bodies) being

incorrectly classified as turbid water. This phenomenon is explained in detail in Section

6.3.

Table 6.3: Experiment 2: Confusion Table for Selected Scales averaged over all Ori-
entations, and Filter Mask and Tile Size Combinations.

Scales True Positives False Positives False Negatives Standard Deviations

3 66.77405223 18.86565903 14.36028874 2.487856
4 67.18322934 18.1986773 14.61809336 2.418944
5 67.01748361 18.53697725 14.44553914 2.327136
6 67.24256691 18.31158139 14.4458517 2.048832
7 67.55559542 18.03900015 14.40540443 2.069859

Table 6.4: Experiment 2: Confusion Table for Selected Orientations averaged over all
Scale, and Filter Mask and Tile Combinations.

Orientations True Positives False Positives False Negatives Standard Deviations

3 66.97498915 18.54229398 14.48271687 2.211209695
5 67.06446499 18.28382981 14.6517052 4.516850445
7 67.20075416 18.40199699 14.39724885 2.325763619

As mentioned in Chapter 2, the Gabor filter is generally applied on the Brodatz and Ou-

tex databases for research experiments pertaining to single-textured images. Similarly,

when applied to multi-texture satellite imagery, any number of scales and orientations

values within the range is suitable.

The results from the experiments also comply with the findings from Bianconi and

Fernández [5], and Li et al. [7], that no conclusive evidence is available to warrant

the need for optimization of the number of scales and orientations. It can therefore be

concluded that determining the best scale and orientation values for the Gabor filter can

be seen as a minor objective.
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6.1.1 Summary

This research has used a different dataset and experimental setup using the ranges of

parameter values deduced from previous studies. The findings from the experiments

conducted indicates that the number of scales and orientations have no considerable

effect on Gabor filter’s discriminatory ability. This complies with some of the recent

studies that utilized single-texture image databases.

6.2 Effects of Filter Mask and Tile Sizes

For selected filter mask and tile sizes averaged over all scales and orientations, Figures

6.5 and 6.6 show a general decline for each progressive mask size and tile size combi-

nation. It can be deduced that for this experiment, larger tile sizes negatively impact

the classification accuracy of the Gabor filter, and that a smaller mask and tile size is

preferred. One must also consider that these results are specific to the nature of the

image set used. Other image sets where the smallest distinct representation of a texture

is quite large when compared to the size of the image may have differing unique solutions

as noted with some of the “Region” images (see Chapter 4, Section 4.4.2, Figure 4.5).

As stated in Chapter 4, though an image set may come from the same satellite sensor,

individual images may contain phenomena of different sizes which have their own opti-

mum solutions. The more images added to a dataset that favour a specific filter mask

and tile size combination, the more biased the “optimum” parameter values will become

to those images.

For experiment 1, from Table 6.5, the filter mask and size combinations show some

slightly erratic behaviour, however a similar observation can be made to that of scales

and orientations, whereby the FNs are much higher than FPs due to more vegetation

textures (non-water bodies) being incorrectly classified as turbid water.

For experiment 2 however, Table 6.6 clearly shows the increase in FPs, due to vegetation

being misclassified as highly turbid waters.
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Figure 6.5: Experiment 1: Classification Accuracy for Selected Filter Mask and Tile
Sizes.

Table 6.5: Experiment 1: Confusion Table for Selected Filter Mask and Tile Sizes
averaged over all Scales and Orientations

Mask Size Window Size True Positives False Positives False Negatives Standard Deviations
3 9 81.91189439 4.795006848 13.29309876 0.688371621
3 10 82.18099702 5.146151623 12.67285136 0.710853849
3 11 81.317017 6.444273222 12.23870978 0.430306413
3 12 81.46235408 6.532276037 12.00536988 0.235734527
3 13 81.57634602 6.453218315 11.97043567 0.158503688
3 14 81.54369155 6.344248677 12.11205977 0.458944704
3 15 81.64336673 6.341940062 12.01469321 0.514173321
3 16 81.77135632 6.328517949 11.90012573 0.312612587
3 17 81.74244174 6.361585437 11.89597282 0.183588217
3 18 81.8524311 6.09153194 12.05603696 0.132349604
3 19 81.70952984 6.056536028 12.23393413 0.332910156
3 20 81.80606345 5.859136272 12.33480028 0.351530234
3 21 81.92716222 5.910557068 12.16228071 0.365517064
3 22 81.79120546 5.698589517 12.51020502 0.43171775
3 23 81.8394227 5.785410053 12.37516725 0.373709002
3 24 81.5589597 5.673122131 12.76791817 0.25466916
3 25 81.36400314 5.663379661 12.9726172 0.270478408
3 26 81.16504879 5.600440093 13.23451112 0.152711355
3 27 81.01914827 5.73265621 13.24819552 0.143155186
3 28 81.13051393 5.629396926 13.24008914 0.147732165
3 29 80.72744574 5.66067371 13.61188055 0.182976309
3 30 80.74746596 5.732305547 13.52022849 0.099902033
3 31 80.68433872 5.871340313 13.44432097 0.145455126
3 32 80.62114162 5.635165059 13.74369332 0.205065001
5 15 80.02148073 6.121866251 13.85665302 0.486498717
5 16 79.92297483 6.435731177 13.64129399 0.725091566
5 17 80.46612057 6.364343126 13.1695363 0.532967023
5 18 81.12062603 6.060978712 12.81839526 0.29245154
5 19 81.08034205 6.121209375 12.79844858 0.202358024
5 20 81.14517974 5.97399646 12.8808238 0.251819188
5 21 81.31064648 5.91803388 12.77131964 0.166982151
5 22 80.9226735 5.734913103 13.3424134 0.280814888
5 23 81.17552954 5.508559918 13.31591054 0.200940355
5 24 81.1832353 5.319872004 13.4968927 0.172930119
5 25 80.97938071 5.290646588 13.7299727 0.19932298
5 26 80.82945517 5.151575832 14.018969 0.173386283
5 27 80.6961822 5.345145391 13.95867241 0.262841412
5 28 80.7037988 5.224593541 14.07160766 0.214769402
5 29 80.12893585 5.330742463 14.54032169 0.206957325
5 30 80.09581836 5.416659858 14.48752178 0.114577949
5 31 79.84886429 5.752924089 14.39821162 0.350137089
5 32 79.67684398 5.808981503 14.51417452 0.417396666
7 21 80.88384119 5.674923056 13.44123575 0.523751609
7 22 80.83015196 5.595321224 13.57452682 0.533126541
7 23 81.02632013 5.525050246 13.44862962 0.558623543
7 24 80.6858624 5.053629569 14.26050803 0.395816588
7 25 80.65246118 5.053891765 14.29364706 0.326940398
7 26 80.48259587 4.975129036 14.54227509 0.276896083
7 27 80.47663307 4.891075176 14.63229175 0.237479307
7 28 80.24026648 4.861615634 14.89811789 0.183184091
7 29 79.83092753 4.884695362 15.28437711 0.246465759
7 30 79.8033061 4.984160539 15.21253336 0.248799231
7 31 79.48567158 5.387675088 15.12665333 0.338037244
7 32 79.43057154 5.441421103 15.12800736 0.364244964
9 27 80.27390213 4.928704276 14.79739359 0.550967499
9 28 80.23562141 4.90631623 14.85806236 0.608208259
9 29 79.82480147 4.747458674 15.42773986 0.405615676
9 30 79.85195 4.855058174 15.29299183 0.429081175
9 31 79.59570445 5.279464775 15.12483078 0.381846151
9 32 79.4362289 5.420175331 15.14359577 0.351047897
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Figure 6.6: Experiment 2: Classification Accuracy for Selected Filter Mask and Tile
Sizes.

The tables, specifically those pertaining to experiment 2 show that the dataset favour

Gabor filter mask sizes of 3 x 3. This finding complies with statements made by Zhang

et al. [8] and Chen et al. [26] who stressed the lack of attention placed on effects of the

Gabor filter mask sizes and the need for determining its optimum value.

In this research, not only were the effects of varying the filter mask size investigated

but the tile size for window segmentation as well. The tables 6.5 and 6.6, and figures

6.5 and 6.6 clearly show a trend that the dataset favors specific filter mask and tile size

combinations. On average the smaller filter mask (3 × 3) and tile sizes (9 × 9 and

10 × 10) produced better classification accuracy and a lower number of false positives

which is important for applications like water management and flood detection. It can

be concluded that for the classification or segmentation of multi-textured images, the

need for the optimization of Gabor filter masks and tile sizes supersedes the requirement

of optimum scale and orientation values.

6.2.1 Summary

Unlike the evaluation of the number scales and orientations, the experiments clearly

showed that the Gabor filter favours specific filter mask and tile sizes. When suitable

constraints for these parameters were applied, it was much easier to identify good so-

lutions (those with high true positives and low false positives). These constraints may

therefore be used by a Genetic Algorithm to further improve its effectiveness when trying

to find optimum filter mask and tile size combinations.
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Table 6.6: Experiment 2: Confusion Table for Selected Filter Mask and Tile Sizes
averaged over all Scales and Orientations.

Mask Size Window Size True Positives False Positives False Negatives Standard Deviations
3 9 71.77490008 14.09918041 14.12591951 1.492960912
3 10 70.95780267 15.55110149 13.49109584 1.157964295
3 11 69.68268494 17.24220078 13.07511428 1.090291874
3 12 69.92876904 17.02115499 13.05007597 0.699263983
3 13 69.95272379 16.82242514 13.22485107 0.63368981
3 14 69.82983934 17.05429669 13.11586397 1.357330691
3 15 69.56481956 17.27472128 13.16045916 1.088932582
3 16 68.8652607 17.91908614 13.21565316 0.968684178
3 17 68.19801615 18.45141348 13.35057037 0.73582549
3 18 67.98483714 18.45916572 13.55599714 0.316209217
3 19 67.50207282 18.76535958 13.7325676 0.273036066
3 20 67.60198529 18.63410338 13.76391133 0.256637953
3 21 67.6933193 18.58904226 13.71763844 0.478124286
3 22 67.85788767 18.17890146 13.96321087 0.388259187
3 23 68.36399661 17.81540461 13.82059878 0.47878662
3 24 68.40988834 17.29646106 14.2936506 0.681284016
3 25 68.33821239 17.12636775 14.53541986 0.624853106
3 26 68.79325607 16.40068072 14.80606321 0.760909879
3 27 69.18383569 16.1133802 14.70278411 0.929551473
3 28 69.43399953 15.84631914 14.71968133 0.880373306
3 29 69.19014333 15.59356767 15.216289 0.702115057
3 30 69.68977397 15.37435326 14.93587277 0.8230305
3 31 69.97529636 15.22234962 14.80235402 0.616949621
3 32 69.59505328 15.33586676 15.06907996 0.412755807
5 15 66.74273635 19.34520438 13.91205927 0.811622696
5 16 66.47039795 19.37050291 14.15909914 0.836969723
5 17 66.5573621 19.66724078 13.77539712 1.169614304
5 18 65.24042827 21.39213882 13.36743291 1.106081676
5 19 65.26127196 21.15595494 13.5827731 0.783108097
5 20 64.9035512 21.47738237 13.61906643 0.859562384
5 21 65.09722161 21.20961224 13.69316615 0.478861058
5 22 64.64188801 21.20751556 14.15059643 0.899124762
5 23 65.68979179 20.17907687 14.13113134 1.551370392
5 24 66.34938726 19.01501714 14.6355956 1.119639694
5 25 66.15802479 19.20456011 14.6374151 1.451533564
5 26 68.07911032 16.6976994 15.22319028 0.927631946
5 27 67.89733086 16.7199136 15.38275554 1.269523642
5 28 67.96099304 16.53493538 15.50407158 1.115015166
5 29 66.46185826 17.48537219 16.05276955 1.137872862
5 30 66.52601579 17.47567171 15.9983125 0.955060545
5 31 67.09405542 17.1368629 15.76908168 1.373405081
5 32 66.78768741 17.75256527 15.45974732 0.860935922
7 21 63.26339054 23.80992775 12.92668171 1.590291703
7 22 62.94683745 23.92222207 13.13094048 1.694440224
7 23 64.46269229 22.26361305 13.27369466 1.022259979
7 24 64.16634909 21.83555293 13.99809798 1.130938204
7 25 63.26520722 22.80059956 13.93419322 1.770554576
7 26 65.24732396 20.37160253 14.38107351 1.629915833
7 27 67.27856526 17.64102402 15.08041072 0.771881784
7 28 67.49401551 16.56217959 15.9438049 1.256205895
7 29 67.22419039 16.35930242 16.41650719 1.086013073
7 30 65.69769472 17.71228814 16.59001714 1.628065544
7 31 66.47927187 17.20433026 16.31639787 1.701769202
7 32 65.33495177 19.36393713 15.3011111 1.15739024
9 27 62.20731347 24.55548041 13.23720612 1.731166805
9 28 65.76338407 19.59767713 14.6389388 1.045749022
9 29 66.78385653 17.36438289 15.85176058 1.052512052
9 30 66.96493502 17.42585538 15.6092096 0.682116764
9 31 66.25158201 18.17703862 15.57137937 0.959215133
9 32 66.1560827 18.38127144 15.46264586 0.945070261

6.3 Challenges in Water Body Extraction

From the experiments conducted on the different Hyperion EO-1 “Region” images, the

“Region 3” image shows very erratic behavior compared to that of the other images. As

stated earlier in Section 4.4.2, the sub-images created from the bottom of the full satellite

image contained smooth vegetation textures that were not used for samples. Although

these smooth vegetation textures have different pixel intensities similar to that of water

bodies (for NDVI in this case), the smooth vegetation textures were incorrectly classified

as water bodies as illustrated in Figure 6.7.
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Figure 6.7: Anomalies in a sub-image from Region 3.

This sub-image from Region 3 depicts the effects of deliberately leaving out some of
the smooth vegetation samples.

For experiment 2, two examples of textures in Figure 6.8(c) taken from images in Region

1 clearly show how similar in appearance the dense vegetation on land is to the highly

turbid waters (X) in 6.8(a). Figures 6.8(a) and (b) depict highly turbid waters (red)

being misclassified as vegetation (green). This resulted in a small percentage increase

in false negatives.

The massive increase in false positives in experiment 2 shown in Table 6.6 can only be

equated to more numerous instances where vegetation types (green) were misclassified as

highly turbid water (red), as illustrated in 6.8(d)). For the purpose of flood detection and

monitoring applications, this provides a misconception that there are numerous areas

with large water bodies that have protruding or surface vegetation. The limitations

in trying to prevent experimental bias (using minimal textures for samples) in a ever

changing environment (that is the texture of highly turbid waters changed over time) is

apparent.



Chapter 6. Analysis and Discussion 79

Figure 6.8: Anomalies in sub-images from Region 2.

This sub-image from Region 2 depicts the similarity of some of the highly turbid waters
to that of vegetation textures. Recall, the highly turbid water is surface vegetation.
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For the identification of phenomena that are small, the effects of performing region based

(Gabor filter) rather than spectral/pixel based classification is shown in Figure 6.9. The

large water body can be easily identified but the smaller water bodies are impossible to

extract. Thus, water bodies smaller than the smallest tile size (in this research 9 × 9)

will not be easily identified.

Figure 6.9: Anomalies in a sub-image from Region 5.

As mentioned previously, the imagery provided by optical satellite sensors can differ

considerably and while the simple framework used was aimed at combining multiple

bands for texture classification, only the NDVI band was selected. NDVI is applicable

to any optical satellite that has a red and near-infrared band, such as LANDSAT. It can

therefore be safely assumed that similar results may be obtained when using satellite

images provided by sensors that have similar properties as this research is based on

texture and not pixel intensities.

For the identification of phenomena using textures that are conceptually different but

exhibit similar properties to other phenomena (such as the highly turbid waters and

vegetation in this research), higher resolution imagery maybe required to provide a

better delineation.

As stated by Nath and Deb [41] in Chapter 2, Section 2.4.3 while various methods do

exist, not all methods will work with the various types of satellite imagery available and

there is also no universal standard for water body extraction.

6.3.1 Conclusion

The Gabor filter being a region based classifier is inferior to pixel based classifiers for

the identification of small objects that are clearly delineated by pixels. However, for

concepts that are meaningful only by structure or patterns, the Gabor filter is one
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the best techniques to utilize. Although, even its discriminatory ability cannot truly

overcome all instances where textures that are conceptually different but structurally

similar (inter-class similarity) exist. For land cover classification problems, access to

freely available or less costly high resolution optical satellite imagery may provide better

results when using the Gabor filter when SAR and/or high resolution Digital Elevation

Models are not available.

6.4 Automating Gabor Filter Parameter Value Optimiza-

tion

The Genetic Algorithm was used as one of the two approaches for the scenarios (experi-

ments) to determine its suitability as a means to automate the process of determining the

best parameter values. The aim was to design a tool driven by a GA with recommended

values and compare its effectiveness to the enumeration approach.

6.4.1 Effectiveness of the Genetic Algorithm

For the scales and orientations, although not all the values between the range 3 and 8

for the linear enumeration approach were investigated, the Tables 6.7 and 6.8 contrast

the best results using the test dataset from experiment 1 and 2. For these experiments

however, the best solutions provided by the GA coincide with the best solutions obtained

via the enumeration approach.

Table 6.7: Experiment 1: Comparison of the best results obtained via the Linear
Enumeration and GA Approaches.

Linear Enumeration GA

Scales 5 5
Orientations 3 3
Mask Size 3 x 3 3 x 3
Tile Size 23 x 23 23 x 23
Accuracy 82.86487 82.86487

Table 6.8: Experiment 2: Comparison of the best results obtained via the Linear
Enumeration and GA Approaches.

Linear Enumeration GA

Scales 7 7
Orientations 6 6
Mask Size 3 x 3 3 x 3
Tile Size 9 x 9 9 x 9
Accuracy 82.86487 82.86487
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While performance (time complexity) benchmarks are not used in this research, the GA

is a much more attractive option. It has provided the same optimum solutions within

8 or 9 generations. This is extremely promising since the preliminary results obtained

via the enumeration approach meant evaluating more than 1300 solutions, whereas the

GA needed to evaluate about 400 possible solutions. The GA is therefore more suitable,

especially for large datasets and when using computationally expensive algorithms like

the Gabor filter.

6.4.2 Improving GA Effectiveness and Performance

From its very definition, the GAs primary purpose is to be as “natural” as possible

when finding solutions from large search spaces, but at the same time prevent premature

convergence. However, one also needs to consider when it is not feasible to use a Genetic

Algorithm. With regards to this area of research, the following provides some guidelines

as to when a GA is problematic to use:

• A GA cannot produce results that will identify trends when varying parameter

values.

• If the solution space is small then there is possibly no need for a GA.

• Design choices are generally made to suit the application. A natural GA (no

constraints) may produce many solutions that do not exist in the context of the

application. If constraints are not placed, the cost overhead induced together with

an already computationally expensive algorithm, such as the Gabor filter, is not

feasible.

• If the GA takes a considerable time to complete its task then fitness approximation

techniques are required to build a model of the fitness function. Therefore some

enumeration (using only certain parameter values) maybe required to acquire some

real world fitness values so that a fitness approximation technique can then be used

to “fill in the gaps”.

By taking into account the statements presented above, for the initial tests the GA was

unrestricted but this produced many solutions that were not valid or too far fetched for

this application. For example:

• Scale and orientations values in the thousands that are too computationally ex-

pensive.

• Filter mask sizes larger than the tile sizes.



Chapter 6. Analysis and Discussion 83

• Filter mask and/or tile sizes that are larger than the largest textures/phenomena

in the image.

Constraints were deduced and placed on the GA to better suit the Gabor filter and the

image dataset. By doing this, significant improvement in performance can be made.

For both experiments all sub-images were segmented and stored on disk and loaded into

RAM only when necessary. The primary reason for this was to ensure use the GA and/or

Gabor filter scripts could continue from a previous state so that no solutions were lost,

which unfortunately slowed down the process.

With dropping RAM costs and the availability of 64 bit processors that are able to

address and utilize more RAM, the sub-image can be kept in RAM for a significant

performance boost and makes the GA approach even more desirable.

6.4.3 Methodology: Recommending the GA

One of the main objectives was to automate the process of determining the best Gabor

filter parameter values for a given a dataset (complemented by suitable ground-truth

images). From the experiments, the following are recommended values when using the

GA for parameter value optimization:

• A range of 3 - 8 for both the scales and orientations.

• Filter mask sizes ranging from 3 x 3 pixels to a third of current tile size.

• Tile sizes ranging from three times the size of the filter mask size up to the size

of the image (or some user-defined range which depends on the size of the largest

distinct textures relative to the size of the image; for this research it was set to 32

x 32 pixels).

6.4.4 Summary

To summarize, through a once-off enumerated approach conducted for the two exper-

iments, this research has provided suitable ranges of values aid in the identification of

the optimum Gabor filter parameter values. These values can be used in an automated

tool driven by a Genetic Algorithm to significantly improve the rate at which optimal

values can be determined for any given multi-textured image database.

Recall Table 2.1 from Chapter 2. Table 6.9 incorporates the results from this research

and can be used as constraints on a Genetic Algorithm to automatically determine

optimal Gabor filter parameter values for other image datasets.
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CHAPTER 7

Future Work and Conclusion

7.1 Future Work

• As stated by [5], the radial and circumferential superposition of the filters in the

frequency domain have not been fully explained, they did however identify a sig-

nificant improvement on classification due to radial overlap. These therefore need

to be further investigated.

• Conduct experiments using fixed values for the lower and upper centre frequency,

suitable ranges of values for the number of scales and orientations, but vary the

following:

– Standard deviations of the Gaussian envelope (due to the limited amount of

investigation of these parameters).

– Filter Mask size and Tiles Sizes. Overlapping tiles may provide significantly

different results.

• Application of the Gabor filter on higher resolution satellite imagery (if available).

• Finally the use of other distance metrics other than the Euclidean distance.
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7.2 Conclusion

Gabor filters can be a very effective tool for discriminating textures in complex and

multi-textured optical satellite imagery. The filter mask and tile size values have a great

influence on the classification of multi-textured image datasets, more so than that of

the number of scale and orientations. These parameters must be optimized to allow

the Gabor filter to provide the best possible descriptions of textures when using multi-

textured images.

By using a different dataset to those used in previous studies, the variation of the number

of scales and orientations had no major impact on the results. This outcome complies

with some of the findings in the literature.

For the purpose of optimizing parameters for algorithms that are computationally expen-

sive such as the Gabor filter, the Genetic Algorithm is deemed a more suitable alternative

than a linear enumeration approach. However in this study, prior evaluation through

linear enumeration will allow for a well designed and constrained GA that will eliminate

or alleviate the computational complexity caused by large datasets or algorithms with

large time complexities.

The results of this study can allow for the creation of a GA driven tool that can automate

the selection of suitable Gabor filter parameter values for a given multi-textured image

dataset.
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