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Abstract 

Modelling of the vibrational characteristics of a symmetric and asymmetric part for differing 

fixturing setups was performed in SolidWorks. Aluminium was selected for the part material. 

Mesh independency was reached at a mesh size of 1.5 mm and 370000 cells. The results 

revealed a strong correlation between fixturing setup and vibrational response, attributed to 

the corresponding stiffness of each fixture setup.  

The two simulated parts were CNC machined from aluminium and used in experimental 

testing to validate the simulation results. The experimental testing was performed using an NI 

DAQ, 25000HZ accelerometer and NI impact hammer. A strict methodology was used to 

ensure consistent and comparable results. The testing results showed a high amount of 

dampening in the system, the trends however were still apparent and corroborated the 

simulation results. 

A methodology for fixture setup optimization and operation order optimization was developed 

based on the natural frequency results. 
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1 Chapter 1: Introduction 

Product customization is becoming an increasing demand by modern consumers, with 

customers desiring products with more utilitarian, uniqueness and self-expressiveness value 

[1]. This customer demand for mass customization has been a driving force behind further 

developments of flexible manufacturing systems (FMS) [2] and reconfigurable manufacturing 

systems (RMS). In FMS the plant uses process flexibility to accommodate smaller production 

batches, whereas in RMS the plant changes its layout for each new product cycle [3]. 

Manufacturing technologies have a long way to go before mass customization is feasible. In 

order to make mass customization achievable, the manufacturing process must be made as 

efficient as possible, to reduce production costs such as time, human resource and material 

wastage. In current mass production, fixtures generally create the bottle neck in the production 

cycle [4] and are thus a large time-cost to production. The automated flexible fixture system 

(AFFS) was developed to reduce the time wastage caused by fixtures. The AFFS is a robotic 

reconfigurable fixture that can accommodate a large variety of part geometries and make 

change overs automatically. The AFFS allows for greater flexibility in a manufacturing 

environment for facilitating mass customization. 

In machining, one of the greatest limiting factors is chatter. Chatter is an unwanted 

phenomenon involving escalating vibration during machining that leaves a poor surface finish. 

The freshly cut surface contains characteristic wavy lines, resulting in poor precision and 

accuracy [5]. Current research for chatter prevention and control has been focused on cutting 

tool technologies, process dampening technologies and adjusting cutting parameters to achieve 

chatter-free machining. Research into the effect of fixturing on chatter has been minimal. The 

development of the AFFS has provided a platform for investigating the effect that fixturing 

has on the vibrational characteristics of the machining system and thus the formation of chatter.  

1.1 Dissertation outline 

An introduction to the research is put forward in chapter 1. This includes an overview of the 

factories of the future research and the current state of modern manufacturing with relation to 

FMS. This chapter also defines the AFFS and its role in the factories of the future research. 

Finally, the aim and objectives of the research are defined, and the design methodology is 

discussed. 

Chapter 2 outlines the literature reviewed for this research. Chatter and its causes in end 

milling are discussed, followed by a machining model. A history of modelling chatter, 

analytically and experimentally, is provided, followed by an overview of stability lobe 

diagrams. The chapter concludes with a consideration of alternative chatter control methods 
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to adjusting cutting conditions and stiffening cutting tools, and research involving Finite 

Element Method (FEM) simulations of the harmonics of machining systems. 

Chapter 3 introduces a symmetrical and asymmetrical part for the modal response simulations. 

Fixturing set-ups are defined for both parts. Simulation parameters for mesh, fixturing and 

material are outlined. The methodology and procedure followed for the simulation of the 

modal response is presented. 

Chapter 4 presents the simulated modal response data. Mesh Independence is discussed, 

followed by the modal displacement diagrams. The simulation data is presented in both table 

and graph form to highlight the various trends in the relationship between fixturing, part 

geometry and modal response. The implications of the simulation data with reference to 

adjusting the fixturing for optimum frequency response is discussed.   

Chapter 5 presents the physical testing of the modal response to validate the simulation 

findings. The chapter begins with an outline of the experimental setup, including the parts 

analysed, load cell assembly and the data acquisition hardware. The methodology and 

procedure used in testing is put forward. The results are presented in graph form, and the modal 

frequencies are extrapolated from the graphs. The causes of errors in the data capture and 

response of the system is discussed.  

Chapter 6 discusses the implications of the experimental results and the trends revealed by the 

simulations in chapter 2. The relationship of deflection and centre of mass with the harmonic 

response trends are analysed. A methodology for fixture optimization, using expert systems, 

is proposed. The shortfalls of the AFF is examined, and improvements are suggested for future 

work. The AFFS contribution to industry 4.0 is discussed.  

Chapter 7 provides a conclusion to the dissertation. The aims and objectives of the research 

are addressed, and the research results are outlined.  Future work, consisting of improving the 

AFFS and measuring the vibration response during machining in both a chatter induced and 

chatter free environment, is proposed. 

1.2 Overview of the Automated Flexible Fixture 

This section introduces the AFFS, its basic features, and its role in the factories of the future 

research. A more detailed analysis of the AFFS is provided in chapter 2.  

The AFFS consists of a gripper bed for locating the workpiece, and two 3-degree of freedom 

(DOF) pin matrix clamps. The Pin matrix clamps were designed to mould around the 

workpiece to facilitate a variety of workpiece geometries. The gripper bed, or 2-finger parallel 

gripper locator as labelled in figure 1.1, is mounted to a workpiece positioning mechanism that 
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provides two degrees of rotational freedom. The clamps are mounted to lead screw actuators 

that are driven by stepper motors. All the AFFS components are mounted to a single baseplate. 

The full assembly of the AFFS is given in figure 1.1. The figure shows an isometric view of a 

CAD model of the AFFS, with labels of the main components. In the image the steppers motors 

are illustrated in black. The pin matrix clamp positioning assembly consists of one stepper 

motor controlling vertical actuation, one stepper motor providing breadth wise actuation, and 

two stepper motors controlling length wise actuation.  

 

Figure 1.1 The Automated Flexible Fixturing System 

The flexibility inherent in the design of the AFFS allows for a large variety of fixturing setups 

for a single part. The heterogeneity of fixture setups in the AFFS necessitates the selection of 

the optimum fixturing setup(s) for the part. The optimum fixture setup is the one that 

minimizes the time the part spends in the AFFS, setup time, machining time and the fixturing 

time. The setup time is the time it takes to remove a finished part from the AFFS and locate 

the new workpiece. The fixturing time is the time required to move the fixture into its final 

clamped position, including any repositioning of the fixture during the machining process. 

Machining time is dependent on the cutting parameters of the cutting machine. The set-up time 

is assumed constant. A fixturing setup that will allow for the shortest combination of fixturing 

and machining time can be defined as the optimum setup.  

The fixturing setup may play a significant role in the vibrational response of the AFFS and 

thus affect chatter formation during machining. Thus, the fixture time as well as the machining 

time may be dependent on the fixturing setup. 
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1.3 Research Aim and Objectives 

The aim of the research was to develop a methodology for chatter control based on fixture 

optimization. The research objectives were the following: 

• Complete a literature review on vibration and the causes of chatter, as well as current 

work in chatter reduction. 

• Conceptualize a theoretical part to be analysed 

• Perform FEA simulations on the theoretical part to determine its harmonic response  

• Analyse the FEA results to determine the relationship between fixturing and harmonic 

response, as well as part geometry and harmonic response 

• Validate the simulation results through experimental testing of the part in the AFFS 

• Develop a methodology for fixture setup optimization  

In summary, the dissertation aimed to provide research into the merit of using fixturing as the 

means of improving the vibrational response of a fixture-part system, specifically in the 

context of the AFFS.  

1.4 Research Contribution 

The contribution of this research was a methodology for fixture setup generation and 

optimization based on the static harmonic response of the fixture-part system. The simulated 

and experimental results revealed the relationship between fixture setup and the resulting 

vibrational characteristics of the system. The literature review revealed that one of the causes 

of secondary chatter were the vibrations of the part being machined; thus, chatter can be 

suppressed by decreasing the static vibrations of the part-fixture system using the fixture setup 

generation mythology proposed by this research. The primary impact of this research is to 

make flexible fixturing systems more feasible in a reconfigurable manufacturing environment. 

The vibrational results were obtained through the simulation and experimentation of a novel 

part geometry that highlights the effects of symmetry and fixture position on vibration. An 

innovative solution to fixture setup generation is proposed, in the form of an expert system. 

1.5 Chapter Summary 

Chapter 1 introduced the AFFS as a technology developed to accommodate mass 

customisation. It defined the AFFS and its features, and introduced the proposal for chatter 

control using fixturing. It outlined the aims and objectives of the research, principally that of 

chatter reduction through optimizing fixture setup, and offered a solution to them in the form 

of an analysis of a control part in the AFFS. A summary and brief description of the chapters 

in this thesis was provided.  
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2 Chapter 2: Literature review 

2.1 Chapter Introduction 

Chapter 2 focuses on chatter and its causes. Investigates the vibrational phenomena in milling 

and their relationship to chatter. Causes of chatter in milling operations are discussed. The 

models predicting cutting forces in machining, and the conditions for stability as well as 

regenerative vibration, are investigated. Stability lobe diagrams, a result of both analytical 

models and experimental methods, are reviewed. In conclusion, current work in modelling the 

physical structures of the machine tool system are laid out. 

2.2 Vibrations 

The vibrations that occur in machining operations can be classified as one of three types; free 

vibration, forced vibration and self-excited vibration[6]. Free vibration is the natural harmonic 

vibration of a system, such as the vibration in a guitar string or tuning fork. shows. Figure 2.1 

presents a model of a free vibration system. The dampening of the system (c) reduces the 

displacement of the vibration over time to zero. 

 

Figure 2.1 Free vibration model[7] 

Forced vibrations occur when a periodic force acts on a system. The force results in a periodic 

vibration in the system, illustrated in figure 2.2 by a sin wave of amplitude A, proportional to 

the frequency of the applied force. An example of a forced vibration is the vibration in a 

rotating system due to an imbalance in the system, such as an unbalanced shaft. In machining 

the forced vibration is caused by the cutting tools and occurs at the frequency of spindle speed 

and tool teeth setup. The expression for this forced vibration is: 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅𝑅𝑅

60
𝑥𝑥 (𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ) 

 

(2.1) 

 

Thus, a three-tooth stack up running at 6000 rpm will cause forced vibrations at a frequency 

of 300 Hz. 
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Figure 2.2 Forced vibration model[7] 

Self-excited vibration, in machining, occurs when the forces in the system cause regenerative 

vibration due to the feedback of those forces in the system. An example of this type of vibration 

is the case where, during machining, the grooves from a previous tool path coincide with the 

next path of the cutting tool causing an escalating vibration in the system due to this feedback 

between the cut surface and cutting tool. This type of vibration is known as chatter. Figure 2.3 

illustrates the feedback loop of regeneration and the resulting vibrational response. 

 

Figure 2.3 Self excited vibration model[7] 

2.3  Chatter 

Chatter in machining is a major limiting phenomenon for modern manufacturing. Chatter leads 

to poor surface finishes, decreased machining accuracy[8], accelerated wear in cutting tools, 

machines and bearings, and it limits production rates[7]. Chatter can occur in milling, turning, 

grinding and drilling operations. Chatter leads to inaccuracies in machining, excessive noise, 

higher energy consumption, poor surface finish, accelerated machine and tool wear and lower 

production rates (material removal rates). Thus, the methods of eliminating chatter from 

machining have been an important area of research in modern manufacturing. 

Chatter is a resonant vibration phenomenon that causes distinct groove patterns in the 

machined surface of the workpiece[9]. It is identifiable both by the surface patterns and the 

loud distinct noise it produces[10]. It occurs during machining due to the vibration of the 

machine setup or workpiece. Figure 2.4 shows the machining marks on a workpiece for both 
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stable and unstable cutting conditions. The grooves in the lower machine paths is evidence of 

chatter. 

 

Figure 2.4 Chatter marks [9] 

  Causes of Chatter 

There are two main modes of chatter, primary chatter and secondary chatter [11]. Primary 

chatter is the root cause of chatter, where the in initial waviness in the surface of the cutting 

piece is formed. Secondary chatter is the observable phenomenon of regenerative vibrations 

causes by the interaction of the cutting tool with the grooves caused by the primary chatter. 

2.3.1.1  Primary Chatter 

Primary chatter is a direct result of the chip formation process. One suggested origin of primary 

chatter is the effect of dry friction combined with intermittent contact between the cutting tool 

and workpiece[11]. As the cutting tool experiences variable shear stresses in the chip-

formation process, the frictional forces on the cutting tool increase causing deflections that 

lead to regenerative vibrations. An investigation by Mohammad et al shows, through Finite 

Element Model (FEM) analysis, that heat generation in the cutting zone during the chip 

formation process can affect the occurrence of chatter[12]. A relationship between the width 

of cut with its corresponding thermal effects, and cutting stability was established through 

simulated results. 

Mode coupling chatter falls under primary chatter as it occurs without any regeneration[13]. 

It occurs when the mass of the system vibrates at different phases and amplitudes in two 

degrees of freedom of the system[14]. Mode coupling chatter is prevalent in low stiffness 

systems, where low frequency vibrations occur. 
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2.3.1.2 Secondary Chatter 

There are two types of secondary chatter that occur in machining due to self-excited vibrations; 

tool chatter and work piece chatter[9]. For tool chatter the cutting tool and machine harmonic 

vibration being transmitted to the workpiece causes the chatter. In workpiece chatter the 

workpiece harmonic response initiates the regenerative vibrations. This harmonic response 

occurs when the forced vibrations from the cutting tool equals the natural harmonic of the 

workpiece causing large displacements due to the cutting forces building the vibration. These 

large displacements of the workpiece cause the first uneven groove on the materials surface 

that starts the regenerative chatter process.  

Klaver[15] from Okuma America states that an improperly secured part can cause chatter 

inducing vibrations. Kennametal[16] suggests that reworking a fixture to better hold the 

workpiece can reduce chatter. 

2.4 Cutting Force Models 

To further understand the formation of chatter and to build a foundation for analytical chatter 

prediction models, a model of the cutting forces and dynamics of a cutting tool in a milling 

operation is summarised in this section.  

Cutting force models are the foundation to which machine chatter models are build. They also 

serve as a basis for the selection of machining parameters [17] such as feed rate and spindle 

speed [18]. This section serves to give insight into the forces and dynamics involved in 

machining processes. The models that proceed were developed by Wu et al [19] and are based 

on end milling .Wu’s research focuses on two primary cutting force models for end milling: 

linear and circular.  

 Linear Milling Processes 

Linear milling processes involve cutting along a straight-line path. The feed rate at every point 

along the tool path remains constant, and is equal to the feed rate f.  Figure 2.5 illustrates the 

co-ordinate system for linear milling, where 𝑂𝑂𝑤𝑤  𝑋𝑋𝑤𝑤 𝑌𝑌𝑤𝑤  𝑍𝑍𝑤𝑤 is a fixed position on the workpiece, 

and 𝑂𝑂𝑐𝑐  𝑋𝑋𝑐𝑐  𝑌𝑌𝑐𝑐  𝑍𝑍𝑐𝑐 is fixed to the cutting tools centre and moves in the 𝑋𝑋𝑤𝑤  𝑌𝑌𝑤𝑤 plane. Co-ordinate 

vector 𝑋𝑋𝑐𝑐 is oriented towards the feed direction, and 𝑌𝑌𝑐𝑐 is perpendicular to 𝑋𝑋𝑐𝑐  pointing away 

from the cut surface. 
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Figure 2.5 Linear milling process [19] 

The angle that the cutting tool tooth makes with the edge of the workpiece is defined as 𝜙𝜙. 

Figure 2.6 shows the cross-sectional view of the cutting tool. The radius of the cutter is 𝑟𝑟, and 

the feed direction or tool path is denoted by the arrow 𝑓𝑓. 

 

Figure 2.6 Linear milling cross-section[19] 

 Circular Milling Processes 

Circular milling involves cutting along an arc of some radius R. Similar to the linear milling 

process. Figure 2.7 illustrates the co-ordinate system for circular milling, where 𝑂𝑂𝑤𝑤  𝑋𝑋𝑤𝑤 𝑌𝑌𝑤𝑤 𝑍𝑍𝑤𝑤 

is a fixed position on the workpiece, and 𝑂𝑂𝑐𝑐  𝑋𝑋𝑐𝑐  𝑌𝑌𝑐𝑐  𝑍𝑍𝑐𝑐 is fixed to the cutting tools centre and 

moves in the 𝑋𝑋𝑤𝑤  𝑌𝑌𝑤𝑤 plane. Co-ordinate vector 𝑋𝑋𝑐𝑐 is oriented towards the instantaneous feed 

direction, and 𝑌𝑌𝑐𝑐 is positioned perpendicular to the tools path. 

 

Figure 2.7 Circular milling process [19] 
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Figure 2.8 shows the cross-sectional view of the cutting tool. As in the linear model, the angle 

that the cutting tool tooth makes with the edge of the workpiece is defined as 𝜙𝜙. The radius of 

the cutter is 𝑟𝑟, the radius of the tool path is 𝑅𝑅. The feed rates around the leading face of the 

cutter varies about its circumference relative to the radius of the tool path and the distance 

from the centroid of the cutter. 

 

Figure 2.8 Circular milling cross-section[19] 

The expressions for the cutting force coefficients developed by Wu et al made use of the 

mechanistic model given by Altintas and Lee [20] where, to calculate the total cutting force, 

the cutting flute was divided into a finite number of differential elements, and each elements 

force component integrated numerically. 

This resulted in the following expressions for the force coefficients: 

 

 
𝐾𝐾𝑇𝑇 =  �

2𝜋𝜋
𝑓𝑓𝑧𝑧𝑁𝑁𝐴𝐴1

��
𝐶𝐶3𝐹𝐹𝐹𝐹 − (𝐶𝐶2 − 𝐶𝐶1)𝐹𝐹𝐹𝐹
𝐶𝐶32 + (𝐶𝐶2 − 𝐶𝐶1)2

� 

 

(2.2) 

 

 
𝐾𝐾𝑅𝑅 =  𝜍𝜍 �

𝐴𝐴2((𝐶𝐶2 − 𝐶𝐶1)𝐹𝐹𝐹𝐹 + 𝐶𝐶3𝐹𝐹𝐹𝐹)
𝐶𝐶32 + (𝐶𝐶2 − 𝐶𝐶1)2

� −
𝐴𝐴3𝐹𝐹𝐹𝐹
𝐶𝐶4

 

 

(2.3) 

 

 
𝐾𝐾𝑅𝑅 =  𝜍𝜍 �

𝐴𝐴2((𝐶𝐶2 − 𝐶𝐶1)𝐹𝐹𝐹𝐹 + 𝐶𝐶3𝐹𝐹𝐹𝐹)
𝐶𝐶32 + (𝐶𝐶2 − 𝐶𝐶1)2

� −
𝐴𝐴3𝐹𝐹𝐹𝐹
𝐶𝐶4

 

 

(2.4) 

 

 
𝐾𝐾𝐴𝐴 =  𝜍𝜍 �

𝐴𝐴3((𝐶𝐶2 − 𝐶𝐶1)𝐹𝐹𝐹𝐹 + 𝐶𝐶3𝐹𝐹𝐹𝐹)
𝐶𝐶32 + (𝐶𝐶2 − 𝐶𝐶1)2

� +
𝐴𝐴2𝐹𝐹𝐹𝐹
𝐶𝐶4

 

 

(2.5) 

 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜍𝜍 =  
2𝜋𝜋

𝑓𝑓𝑧𝑧𝑁𝑁�𝐴𝐴22 + 𝐴𝐴32�
 ,  
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 𝐶𝐶1 =  
1
2

(𝜙𝜙) �
𝜙𝜙𝑒𝑒𝑒𝑒
𝜙𝜙𝑠𝑠𝑠𝑠

 ,   𝐶𝐶2 =  
1
4

(sin(2𝜙𝜙) �
𝜙𝜙𝑒𝑒𝑒𝑒
𝜙𝜙𝑠𝑠𝑠𝑠

,    𝐶𝐶3 =  
1
4

(cos(2𝜙𝜙) �
𝜙𝜙𝑒𝑒𝑒𝑒
𝜙𝜙𝑠𝑠𝑠𝑠

,    𝐶𝐶4 =  (cos(𝜙𝜙) �
𝜙𝜙𝑒𝑒𝑒𝑒
𝜙𝜙𝑠𝑠𝑠𝑠

  

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴1 =  � 𝑑𝑑𝑑𝑑
𝑧𝑧2

𝑧𝑧1
 ,   𝐴𝐴2 =  � sin𝑘𝑘(𝑧𝑧)𝑑𝑑𝑑𝑑

𝑧𝑧2

𝑧𝑧1
,   𝑎𝑎𝑎𝑎𝑎𝑎  𝐴𝐴3 =  � cos𝑘𝑘(𝑧𝑧)𝑑𝑑𝑑𝑑

𝑧𝑧2

𝑧𝑧1
 

𝐾𝐾𝑇𝑇 ,𝐾𝐾𝑅𝑅 , and 𝐾𝐾𝐴𝐴 are the cutting force coefficients in the tangential (𝑋𝑋𝑐𝑐), radial (𝑌𝑌𝑐𝑐) and axial 

(𝑍𝑍𝑐𝑐) directions, of the cutting tool, respectively. The angles  𝜙𝜙𝑒𝑒𝑒𝑒 and 𝜙𝜙𝑠𝑠𝑠𝑠 are the exit and start 

radial immersion angles.  

The force coefficients are constants in the machining process and thus, once they have been 

established, can be used to determine the cutting forces involved in machining operations of 

varying operational parameters. These equations for both linear and circular milling cutting 

forces were validated by Wu et al through experimental data. 

 Chatter prediction model for milling processes 

Several analytical models have been proposed 

One of the earliest models of chatter in orthogonal cutting is by Tlusty and Polacek  [21] who 

derived stability laws identifying the chatter free axial depth of cut as a function of the 

structural dynamics of workpiece and cutting tool system. Tobias and Hanna [22] developed 

a mathematical theory for nonlinear chatter, providing an explanation for the stages at which 

chatter develops, by modelling the cutting tool structure as a single degree of freedom system 

with its corresponding nonlinear stiffness characteristics, and the cutting force being 

represented in terms of the chip thickness. Tobias and Shi later build upon this model showing 

that in cases where the cutting force characteristics are non-linear, stabile machining can be 

achieved through increasing the mean chip thickness of the cut [23]. Tlusty and Ismail used 

computer simulations to analyse chatter in milling, greatly improving accuracy over the then 

present methods of calculating stability [24]. A general mathematical model for predicting the 

limit of the axial depth of cut for chatter free milling was later presented by Minis et al [25]. 

In 1995 Altinas and Budak introduced a new analytical method for predicting stability lobes 

in milling [26]. They later improved upon this analytical model, removing the need for time 

domain simulations to determine chatter free axial and radial depths of cuts [27]. They then 

went on to develop an analytical method for predicting stability for variable pitch cutters, using 

cutting parameters such as cutting constants and number of teeth as inputs for the stability 

expression [28]. 

Some more relatively recent work on modelling chatter include work by Davies et al [29] on 

predicting stability for low radial immersion milling, Budaks’ work on an analytical method 
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for increasing stability for milling cutters with non-constant pitch [30], and Budak and Tekelis 

research on analytical methods for optimizing chatter free end milling[31].  

2.5 Stability Lobe Diagrams 

The stability lobe diagram (SLD) is a tool used to determine parameters for stable cutting 

conditions. The most common SLD for milling operations relates the axial depth of cut 

(ADOC) to the spindle speed. Both axial and radial depth of cut (RDOC) are presented in 

figure 2.9. The ADOC is denoted by 𝑎𝑎𝑝𝑝 and the RDOC by 𝑎𝑎𝑒𝑒. 

 

Figure 2.9 Axial and radial depth of cut [32] 

The SLD’s are characterised by the lobe shape of the curve, which designates the boundary 

between stable and unstable cutting conditions. The features of a SLD are illustrated in figure 

2.10. The ADOC is plotted on the y-axis, and the spindle speed in rpm is plotted on the x-axis. 

The unstable region where chatter occurs is the area above the plotted curve. All combinations 

of spindle speed and axial depth that fall below the curve will result in stable chatter-free 

machining. 

 

Figure 2.10 Stability lobe diagram [31] 
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Stability lobe diagrams are also affected by the RDOC, or radial immersion. A deeper radial 

cut will result in smaller stability zones compared with that of a shallower radial cut. Figure 

2.11 illustrates the effect radial immersion has on the characteristic curve by comparing 3 

scenarios for the same cutting tool system, showing the decrease in size of the stability zones 

with an increase in the percentage radial immersion.  

 

Figure 2.11 Stability lobe diagrams for differing axial depth of cut[7] 

SLD’s are created from the governing equations for machine chatter. These are formulated 

from the equations of vibration, chip width and regenerative vibration. The two equations 

needed for creating SLD’s are equation 2.6 for the dimensionless chip width ratio (𝑟𝑟𝑏𝑏 ), and 

equation 2.7 expressing the relationship between chatter frequency  𝑓𝑓, tooth frequency 𝑓𝑓𝑡𝑡 and 

the lobe number 𝑛𝑛 [33]. 

 𝑏𝑏
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 =  
(1 −  𝑟𝑟2)2 + (2𝜁𝜁𝑟𝑟)2

−4𝜁𝜁(1 + 𝜁𝜁)(1 − 𝑟𝑟2)
=  𝑟𝑟𝑏𝑏     

 

(2.6) 

 

 𝑓𝑓
𝑓𝑓𝑡𝑡

=
𝑟𝑟
𝑟𝑟𝑡𝑡

= 𝑛𝑛 +
1
2

+
1
𝜋𝜋

tan−1
−2𝜁𝜁𝜁𝜁

1 − 𝑟𝑟2
 

 

(2.7) 

 

In equations (2.6 and (2.7: 

𝜁𝜁 = Ratio of the damping co-efficient to the critical damping co-efficient 

𝑐𝑐 = Damping co-efficient  

𝑏𝑏 = The desired chip width 
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𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = The minimum chip width for stable cutting conditions 

𝑟𝑟𝑏𝑏 = Dimensionless Ratio between 𝑏𝑏 and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 

𝑛𝑛 = Lobe number (Number of surface grooves between each consecutive cutter tooth) 

From equations 2.6 and 2.7 we can find the chip width b, and the spindle speed N, using 𝑏𝑏 =

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚. 𝑟𝑟𝑏𝑏 and 𝑁𝑁 =  𝑓𝑓𝑡𝑡. 60 𝑛𝑛. 𝑡𝑡⁄  These can be used to create a SLD, with chip width plotted on 

the y-axis against spindle speed on the x-axis. The proceeding graph, illustrated in figure 2.12, 

shows the curves plotted for chip width against spindle speed for different lobe numbers, with 

each lobe number plotted in a different colour. The upper border, highlighted in red, is where 

the lobes intersect, and are trimmed off for the final SLD, as all points above the upper border 

are unstable. The lower border, highlighted in green, demarcates the area of stable cutting 

conditions relevant to all lobe numbers. 

 

Figure 2.12 Stability Lobe Diagram of b plotted against N 

The SLD can be divided into three differing regions of stability: Unconditionally unstable, 

conditionally stable, and unconditionally stable. The upper region above the upper border line 

is the area of unconditional instability. All points in this area between any two adjacent lobes 

are unstable. Conversely, all points below the lower border are unconditionally stable. The 

points that lie between the upper and lower borders are conditionally stable, where the points 

in this zone are stable below the lobe lines and unstable above them. 
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2.6 Modal Analysis for Harmonic Response of Systems 

Modal analysis can be used to determine the harmonic response of a system. Modal analysis 

can be performed as a computer simulation using FEM analysis, calculated analytically, or 

derived from the physical testing of the vibrational response of the system. Analytical and 

simulation results must be validated through physical testing of the system, for example Wan 

et al uses operational modal analysis from chatter-free milling tests to validate the process 

damping of the system [34].  

Several other researchers made use of FEM simulation in conjunction with experimental 

testing to determine the vibrational response of different milling systems for chatter vibration 

reduction. To reduce surface roughness in end milling, Gaidys et al [35] investigate 

superimposing high frequency vibrations onto the tool lead during machining. Their FEM 

model of the cutting tool is adjusted until the model parameters generate results consistent 

with the experimental findings. A study in FEM by Gaikwad [36] is used to validate analytical 

models developed for end mills for both static and dynamic response. The static analysis yields 

the tool deflection, while the mode shapes are determined by the dynamic analysis. Research 

by Uhlmann [37] used measurements collected during micro-milling to develop an FEM 

simulation of the loaded micro end mill, which in turn was used to create an innovative tool 

design. A methodology for simulating the cutting process in flat end milling was developed 

by Ozel and Altan [38], where chip flow, cutting forces, tool stresses and temperatures were 

obtained using finite element analysis (FEA) with acceptable accuracy in comparison to the 

dry machining experiments performed. 

2.7 Alternative Methods for Chatter Control 

Adjusting factors other than cutting parameters for chatter control has been researched for 

several types of machining operations, in an effort to improve machining efficiency without 

sacrificing cutting speeds. Several researchers have used transient stiffness designs to adjust 

the dampening properties of the machining system. A two-link robotic arm design was 

developed by Abdullah et al, whereby the joint stiffness is varied in synchronization with the 

spindle speed to control chatter[39]. Guo et al found that in a robotic boring process the robot 

itself caused the forced vibrations in the system initiating chatter. A dampening pressure foot 

was used to dampen the vibrations of the robot and control chatter[40]. 

2.8 Industrial Robots and Chatter Reduction 

Machining robots is a technology aimed at improving the flexibility of a manufacturing 

environment due to their kinematic abilities and relative low cost compared to traditional CNC 

machines. Machining robots also offer the advantage of increased working area and allowed 
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workpiece geometry [41] over CNC milling machines. For robotic milling systems however, 

the stiffness of the robot is highly posture dependant [42] and impacts the accuracy of the 

machining process. The predisposed low stiffness of the robots [43] puts them at risk of high 

levels of vibration [44], making them susceptible to poor dimensional accuracy and chatter 

occurrence. The proceeding researchers developed strategies to improve and optimize 

industrial robots (IRs) performance in machining operations. 

Lejun et al proposed a conservative congruence transform (CCT) stiffness model for a robotic 

milling system to avoid the occurrence of chatter [14].  Their stiffness model adjusted the robot 

tool path, based on its stiffness properties, to ensure that the cutting conditions remained stable. 

Vosniakos and Matsas improved upon the stiffness a robotic milling system though placement 

optimisation, using genetic algorithms, of the robot itself [45]. By selecting the correct initial 

position of the robot, a reduction in its range of necessary joint torques, to perform the 

machining operation, was achieved. Similarly to Vosinakos, Guo et al developed a model to 

increase the stiffness of a robot for machining applications [46]. They achieved this through 

maximizing a performance index based on robot posture stiffness. Xiong et al similarly used 

performance indexes to optimize posture of a 5-axis milling robot [47].Lin et al combined 

these two principles in their research by optimizing the posture of a machining robot and then 

extrapolating from this the optimum initial placement of the workpiece [42]. 

2.9 Chapter Summary 

Chapter 2 presented information on the modes of chatter formation. It was found that chatter 

is generated through either the deflection in the tool due to cutting conditions, or the harmonic 

vibrations of the tool or workpiece. A machining model and stability lobe model was 

introduced, as well as the research on the development of analytical models for chatter 

prediction. The chapter concludes with a summary of the research done in harmonic response 

FEA simulations for end milling, and work performed in chatter reduction by using parameters 

other than cutting tool technologies and machining conditions to achieve stability.  
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3 Chapter 3: Modal Response Simulations 

3.1 Chapter Introduction 

This chapter details the simulation methodology used to determine the characteristic response 

of the system to various fixturing scenarios. The parts that were used in the harmonics testing 

are introduced, as well as the fixturing positions chosen for analysis. The simulation aims, 

objectives and procedure are laid out.  

3.2 Simulation Aims and Objectives 

The aim of the simulations was to determine the natural frequencies for a theoretical part under 

fixturing constraints, highlighting the effects fixturing and material removal have on the 

natural frequency of a part. The objectives of the simulations were the following: 

• Select suitable part for simulation 

• Determine fixture setups for part 

• Achieve mesh independence in modal simulations 

3.3 Parts for Modal Simulation 

The selection of suitable parts for testing was a fundamental aspect of the research. The type 

of part chosen would largely determine the outcome of the testing results. Thus, the 

methodology of selecting parts for the simulations and experimental testing focused on 

keeping the research tractable and bounded  

 Part Geometry 

The aim of the simulation is directly related to the part to be simulated, and can be split into 

two aspects: 

• The role that part geometry plays on natural frequency 

• The effect of fixturing position on the natural frequency on a part with a specific 

geometry 

The parts to be used in the simulations need to have sufficient geometric variety to facilitate 

investigating the effect of the geometry on natural frequency, as well as the order of material 

removal. The parts geometry also needed to provide sufficient area for fixturing as well as 

allowing for a variety of unique fixturing positions. The following are constraints related to 

these requirements as well as the AFFS geometry: 

• Parts must fit within the surface area of the fixture bed, to maximize the rigidity of the 

fixturing setups 



MSc. Eng. Dissertation, E. Slabbert                                                              UKZN Mech. Eng 
 

18 
 

• Part geometry must allow space for the locator pin holes 

• The side surfaces of the part are reserved for fixturing, with machining on the top 

surface only  

• Parts will be machined from billet material, to give higher resolution to the effects of 

material removal 

Billet shapes considered for the part were those of the rectangular, square and cylindrical part 

family. The rectangular billet shape was chosen as it would allow ‘flat’ fixture surfaces to be 

used, and simplify the selection of fixturing setups. A rectangular billet better facilitates 

asymmetric features compared to square and cylindrical billets. It also provides more unique 

fixturing possibilities. 

3.3.1.1 Part 1 

Part 1 is a rectangular part with symmetric features machined on its upper surface at right 

angles to the plane of the upper surface. The machined features consist of two rectangular 

countersunk bores with filets on the corners, and four holes cut around the centre bores, shown 

in figure 3.1. The two central bores represent the bulk of the material removal, compared to 

the four circumferential holes.   

 

Figure 3.1 Part 1 
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The stages of machining for part 1 follow a natural progression from the billet to the finished 

part, seen in figure 3.2.The stages in machining will be referred to as operations 0 through 6, 

labelled in the figure as (a) through (g) respectively. Operation 0 is the billet, operations 1 and 

2 are the counter sunk bores, and operations 3 to 6 are the circumferential holes. 

 

Figure 3.2 Operations 0 to 6 for Part 1 

  

(a) (b) 

(d) (c) 

(f) (e) 

(g) 
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3.3.1.2 Part 2 

Part 2 is cut from the same billet size as part 1. The geometric features of part two are also the 

same as part 1, except that their positioning has been changed to create asymmetry about the 

two horizontal axis. The features consist of two counter sunk bores in one corner of the billet, 

with three holes cut around the circumference of the bores, seen in figure 3.3. The asymmetric 

nature of part 2 is vital in determining the effect that moving a geometric feature has on the 

natural frequency of the system. The natural frequency response of part 1 will be used for 

comparison with part 2. 

 

Figure 3.3 Part 2 

The stages of machining for part 2 follow a natural progression from the billet to the finished 

part, seen in figure 3.4. The stages in machining will be referred to as operations 0 through 5, 

labelled in the figure as (a) through (f) respectively. Operation 0 is the billet, operations 1 and 

2 are the counter sunk bores, and operations 3 to 6 are the circumferential holes. 
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Figure 3.4 Operations 0 to 5 for Part 2 

 Part Material  

The effect of material choice on the natural frequency was not an objective of this research, 

although it is known that the mechanical properties of materials influence free vibration and 

modal shape [48]. The material chosen was aluminium, based on its availability to the Author. 

The aluminium alloy used in the simulations and experiments was Aluminium 6082 with a 

Young Modulus of 71 GPa, Ultimate Tensile Strength of 330 MPa and a Yield Strength of 280 

MPa.  

  

(f) (e) 

(d) (c) 

(b) (a) 
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3.4 The Automated Flexible Fixturing System 

The anatomy of the AFFS was the first constraint on part size as well as fixturing positions. 

The aim of the AFFS was to prove the concept of a reconfigurable robotic fixture, though not 

necessarily to create a final product. This fact combined with budget constraints resulted in 

many of the components being built using the cheapest materials possible including fabrication 

in plastic using 3-d printing. This resulted in a working conceptual fixture with several rigidity 

flaws. The rigidity of the AFFS effected the experimental testing results and is discussed in 

detail in chapter 4. 

Figure 3.5 illustrates a CAD model of the final assembly of the AFFS. The AFFS consisted of 

the following main components: The base plate, clamping arms tilting mechanism, pin matrix 

clamp, locator bed, stepper motors, electromagnetic brakes, lead screws, guide arms. The 

locator bed and the clamping arms actuation system is mounted to the base plate. The clamping 

arm actuation is achieved through a lead screw actuation system driven by stepper motors, 

with guide arms to add rigidity.  

 

Figure 3.5 CAD model of the Automated Flexible Fixture System components with components 
labelled 

Guide arm 

Lead screw 

Elec. brake 

Guide arm 

Base plate 

Locator bed 

Pin Matrix clamp 

Tilting mechanism 
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The X-Y plane, illustrated in figure 3.6, is the horizontal plane parallel to the ground. The z 

axis is the vertical axis, perpendicular to the ground. The positioning of the co-ordinate system 

relative to the components of the AFFS will be used as reference for the other figures 

illustrating individual components and assemblies. 

The clamping arms are constrained to move linearly along the X, Y and Z axis. The length of 

the x, y and z travel of the arms is 250 𝑚𝑚𝑚𝑚, 200 𝑚𝑚𝑚𝑚 and 250 𝑚𝑚𝑚𝑚 respectively, illustrated in 

figure 3.6. The distance from the bed to the upper most clamping arm position along the Z axis 

is 150 𝑚𝑚𝑚𝑚. The distance along the x axis between the clamping surfaces of the two arms is 

170 𝑚𝑚𝑚𝑚. Thus, the AFFS can facilitate parts smaller than the 170𝑥𝑥250𝑥𝑥100 cubic 

millimetres of volume between the fixture surfaces.   

 

Figure 3.6 CAD model of the Flexible Fixturing System with co-ordinate system and dimensions 

 Locator Bed or 2-Finger Parallel Gripper 

The purpose of the locator bed is to provide a platform for the part to rest on, as well as locating 

the part to a known position. Figure 3.7 shows the bed and its locating pins. The locator bed 

is a two-finger parallel gripper, consisting of two locating pins that actuate linearly, moving 

towards or away from each other. The locating pins have a variable gap size of 14 – 38 mm. 

The linear motion allows the locator to accommodate workpieces with varying feature gap 

sizes and locations. The workpieces are required to have pre-machined 2-point parallel 

200mm 

100mm 

Z 

Y 

X 
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features for the location process. The pins exert a gripping force on the part to fix its location 

while the clamping arms move into position. The grip from the pins also holds the part in place 

during rotation of the bed. The locator beds internal parts were made mostly from 3-d printed 

parts in acrylonitrile butadiene styrene (ABS) plastic. The actuator is driven by 2 continuous 

stepper motors, one for each pin. The beds external structure is a stock ABS enclosure, with a 

fabricated aluminium sheet to strengthen and add rigidity to the top surface. 

 

 

Figure 3.7 Locator bed gripper pins 

The locator bed is mounted to a workpiece positioning mechanism, made up of  two rotational 

actuators. The rotational actuators consist of aluminium chassis that are driven by geared 

stepper motors. Rotational locking is achieved using geared electromagnetic brakes. The inner 

actuator allows the bed to be rotated about the Z-axis, and the outer allows the bed to be 

roatated abut the Y-axis. The Z-axis rotation enables the clamp arms to fixture the workpiece 

along its length or breadth for cubic parts, or any arbitrary angle desired. The Y-axis roation 

orientates the workpiece in either the home position, illustrated in figure 3.8, for machining on 

the ‘top’ surface, or tilts the workpiece to allow machining on the ‘side’ surfaces.  
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Figure 3.8 Fixture bed degrees of freedom 

 Pin Matrix Clamping Arms 

The clamping arms consists of the pin matrix clamps and the tilting mechanism, illustrated in 

figure 3.10. The purpose of the pin matrix clamp is to mould around features in order to provide 

the optimum surface contact for a variety of possible geometries. It consists of a pin field, 

where each pin is able to move independently of the others. The pins are spring loaded, and 

are constrained to move linearly inwards and outwards of the body of the pin matrix. The pins 

are fastened in place using a friction plate that is driven by a micro servo motor, illustrated in 

figure 3.9. The entire pin matrix is 3-d printed from ABS with the exception of the pins, and 

friction plate. 

 

Figure 3.9 Pin matrix 

z-axis 

rotation 

y-axis 

rotation 
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The pin matrix tilting mechanism is driven by a geared stepper motor and held in place by an 

electromagnetic brake. The tilting mechanism rotates about the y-axis, shown in figure 3.10. 

The tilting bracket was assembled from aluminium segments. The rotation allows the clamping 

force to be applied perpendicular to a surface, angled ‘downwards’ towards the locating bed 

or at any angle relevant to the workpiece geometry. 

 

Figure 3.10 Pin matrix clamp adjustability 

3.5 Fixturing Variations 

The area between the clamping arm and the workpiece will be referred to as the fixture surface. 

The forces acting on the fixture surfaces must balance each other out as well as hold the 

workpiece in place without allowing any movement. The number of clamping arms limits the 

possible fixturing positions. The AFFS has two clamping arms, and thus they will be 

positioned in-line with each other on opposite sides of the workpiece for all fixture setups.  

 Final Fixturing Strategies 

Each of the fixture setups for the simulations need to be positioned such that it provides a 

unique result for the frequency response. When the clamping arms are in-line with each other, 

the fixture surfaces can be positioned anywhere along the length or breadth of the workpiece. 

The areas for fixturing will be limited to three positions along both the length and breadth of 

the workpiece. These positions are the centroid of the length and breadth sides, and the extreme 

ends of the length and breadth sides. 

3.5.1.1 Part 1 Fixturing 

Two of the fixturing setups for part 1 operation 6 are seen in figure 3.11. The workpiece has 

been fixtured with the fixture surfaces along its breadth. Image (a) shows the fixture surface 

at the breadth-centre position, while image (b) shows the fixture surface at the breadth-side 
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position. The name of each fixture setup describes the location of the two fixture surfaces 

along the sides of the workpiece. 

 

Figure 3.11 (a) Breadth-centre and (b) breadth-side fixturing for part 1 

The final two fixturing positions for part 1 operation 6 are shown in figure 3.12. Image (a) of 

Figure 3.12 shows the length-centre fixture setup, and image (b) shows the length-side fixture 

setup. Part 1 operation 6 has geometric features that are symmetric about the horizontal 

centrelines on its upper surface, and thus has only 4 unique fixture setups. 

 

Figure 3.12 (a) Length-centre and (b) length-side fixturing for part 1 

3.5.1.2 Part 2 Fixturing 

Part 2 operation 1 has an asymmetric geometry about its horizontal centrelines on its upper 

surface. Due to the positions of the main bore all the stages of machining are asymmetric. 

figure 3.13 shows the fixturing positions on the breadth surface of part 2. Image (a) shows the 

breadth-centre fixture position, image (b) depicts the breadth-side-a fixture position and image 

(c) depicts the breadth-side-b fixture setup. The breadth-side-a setup is positioned away from 

the centre of mass (COM), whereas the breadth-side-b fixture setup is positioned closer to the 

COM. 

(b) (a) 

(b) (a) 
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Figure 3.13 (a) Breadth-centre, (b) breadth-side-a and (c) breadth-side-b fixturing for part 2 op. 1 

The fixture positions along the length of part 2 for operation 1 are shown in Figure 3.14. Image 

(a) shows the length-centre fixture position, image (b) depicts the length-side-a fixture position 

and image (c) depicts the length-side-b fixture setup. The length-side-a setup is positioned 

away from the COM, whereas the length-side-b fixture setup is positioned closer to the COM. 

 

Figure 3.14  (a) Length-centre, (b) length-side-A and (c) length-side-B fixturing for part 2 operation 1 

  

(c) 

(b) (a) 

(c) 

(b) (a) 
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 Simulation Fixturing Properties 

The dampening effect of the AFFS on the part was an important consideration in determining 

the fixture properties for the simulation. The dampening properties of the AFFS were unknown 

and could not be determined through simulation of the AFFS due to its complexity. The fixture 

surfaces were chosen to be set as fixed, which sets the dampening forces to zero and does not 

allow for any motion of the fixed surface. This fixture type yielded the maximum possible 

frequency response of the workpiece for a given fixture setup. 

Determining the dampening properties of the AFFS requires an iterative approach where the 

dampening properties of the workpiece fixture constraints are adjusted in each simulated until 

the frequency response matches those of the experimental results. The expert systems for 

fixture optimization were based on vibration testing rather than simulation, thus the dampening 

properties of the AFFS were not required.  

3.6 Mesh 

SolidWorks high quality mesh type was used to mesh the workpiece models. This mesh type 

uses 3D tetrahedral elements, consisting of 10 nodes, for all solid components. This mesh 

model does require more computational power than other simpler meshes, but is able to 

represent curved boundaries with more accuracy which makes it suitable for the workpiece 

geometry. 

Figure 3.15 shows the final volume mesh for part 1 operation 1. The optimal mesh size was 

determined, through iteration, as 1.5 mm corresponding to 370000 cells, illustrated in Figure 

4.1 on page 31. The image of the mesh shows minimal cell warpage, including the cells in 

areas of particular concern such as the corners and around the curved edges of the solid. 

 

Figure 3.15 Mesh for part 1 operation 1 
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3.7 Simulation Procedure 

The following procedure was followed for each simulation: 

• Open the part file in SolidWorks 
• Create a sketch on the side wall surface of the part 

• Draw the area of the fixture surface in the relevant position 

• Create a spit line feature from sketch 

• Start a new frequency analysis simulation 

• Apply fixed geometry to the fixturing area, or split line feature  

• Select the part material as aluminium 6082 

• Select the mesh option  

• Specify mesh type and size 

• Create a surface mesh 

• After meshing is completed check mesh for geometric errors 

• Run the frequency simulation 

• Export the simulation data as a MS word file 

In the procedure, a split line feature was created from the sketch of the fixture surface. The 

split line feature converts a closed sketch that has been drawn on the part to a surface that can 

be constrained as a fixture or have a load applied to it.  

3.8 Chapter Summary 

Chapter 3 introduces the simulation aims and objectives. The two parts that were chosen for 

the modal simulations, a symmetrical and non-symmetrical part, were presented. The fixturing 

capabilities of the AFFS were discussed and fixture setups were developed. The mesh 

parameters and material selection were given, as well as the simulation procedure to be 

followed. 
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4 Chapter 4: Simulation Results 

4.1 Chapter Introduction 

Chapter 4 presents the simulation results for part 1 and part 2. It focuses on the harmonic 

frequencies and briefly discusses the displacement results. The results are presented in table 

form to illustrate the maximum frequencies, as well as in graph form. The frequency graphs 

highlight the effect of material removal on the harmonic vibrations for each fixture setup. 

Simulations regarding the rearrangement of operation order are also presented.   

4.2 Mesh Independence 

Determining mesh independence ensured the accuracy of the simulation results. The mesh size 

and quality were directly related to the accuracy of the simulations, but came at a 

computational cost. At a certain point a large increase in computational cost lead to a very 

small improvement in simulation accuracy. Thus, a balance between accuracy and 

computational time had to be achieved. A mesh independence plot was used to visualize the 

relationship between the mesh density, representative of the computational cost, and the results 

for the harmonic frequency.  

The graph in figure 4.1 shows the mesh independence plot. Five simulations are plotted, each 

run with decreasing mesh sizes, represented by the nodes on the graph. The decrease in mesh 

size correlates to an increase in the mesh cell count. The x-axis of the graph shows the cell 

count; the y-axis represents the corresponding frequency result of the simulation for that cell 

count.   

 

Figure 4.1 Mesh independency for part 1 operation 1 
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For the first 3 simulations a relatively small change in cell count resulted in a substantial 

change in harmonic frequency. Between the point on the graph of approximately 51000 and 

370000 cells, simulation 4 and 5, the curve begins to asymptotically approach 7340 Hz. The 

cell counts of 51000 and 370000 correspond to mesh sizes of 3 mm and 1.5 mm respectively. 

The last node, at 37000 cells, represents the point where mesh independence is reached. All 

the modal simulations were thus performed with a mesh size of 1.5 mm. 

4.3 Modal Displacement Results 

Figure 4.2 (a) illustrates the displacement results for the first mode of vibration of part 1 

operation 1. The CAD model is represented with a colour scheme that reflects the amount of 

deflection, blue representing no deflection gradating to red for maximum deflection. Image 

(b) illustrates the fourth harmonic shape of part 1 operation 6.  

 

(a)                                                                        (b)  

Figure 4.2 (a) First harmonic shape for part 1 operation 1 (b) Fourth harmonic shape for part 1 
operation 4 

The blue areas on the models in both image (a) and (b) represent anti-nodes, while the red 

areas represent nodes. Image (a) has 2 nodes and 2 anti-nodes, while image (b) has 4 nodes 

and 4 anti-nodes. These results for the workpiece deflection were used to determine the 

positioning of the accelerometer for experimental testing. The nodal areas where maximum 

deflection occurs are the optimum position for the accelerometer to record the vibration 

frequency. 
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4.4 Harmonic Frequencies of Part 1 

This section presents all the simulation results for natural frequency in both table and graph 

form, for part 1. 

 Results in Table Form 

Table 4.1 shows the first 5 modal frequencies for part 1 for all operations and fixture setups. 

The results are placed in descending operation order, starting from the billet (operation 0) at 

the head of the list and ending at operation 6. The table facilitates quick comparisons of the 

natural frequencies of each fixture setup for each operation.  

The following are observations on the modal highest frequencies for each operation: 

• For the base part the fixture setup that produces the highest frequency response for 

modes 1 and 2 is length-centre. The best response for modes 3, 4 and 5 is breadth-

centre 

• For operation 1 length-centre produces the highest frequencies for mode 1, followed 

breadth-centre for modes 2 to 5 

• For operations 2 length-centre fixturing produces the highest frequencies for mode 1, 

followed breadth-centre for modes 2 and 3, length-side for mode 4, and breadth-centre 

for modes 5 and 6 

•  For operation 3 length-centre produces the highest frequencies for mode 1, followed 

breadth-centre for modes 2 to 5 

•  For operation 4 and 5 length-centre fixturing produces the highest frequencies for 

mode 1, followed breadth-centre for modes 2 and 3, length-side-1 for mode 4, and 

breadth-centre for modes 5 and 6 

• For operation 6 length-centre fixturing produces the highest frequencies for mode 1, 

followed breadth-centre for modes 2 to 5 

The fixture setup that provides the highest natural frequencies for the majority of the modal 

frequencies for the operations is the breadth-centre fixture setup.  
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Table 4.1 Modal Frequencies for Part 1 for all Fixturing Setups 

  Part 1 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Billet (op.0) Breadth centre 8166 12454 15260 16150 17802 

  breadth side 7618 11109 13232 13883 17629 

  Length centre 10586 12217 12391 12533 16371 

  length side 6925 10035 13022 14652 17267 

Operation 1  Breadth centre 8231 11505 13589 15069 18319 

  breadth side 7342 9670 12635 13854 15934 

  Length centre 10283 10508 11187 11267 16206 

  Length side 6048 9368 12740 13734 17420 

Operation 2 breadth centre 8150 10159 12413 14243 18259 

  breadth side 6972 8509 11677 13594 15073 

  Length centre 9616 9753 10527 10561 16073 

  length side 5469 8530 12430 12738 16515 

Operation 3 Breadth centre 8114 10113 12462 14238 18271 

  Breadth side a 6912 8464 11453 13568 15049 

  Breadth side b 6996 8655 11664 13732 15183 

  Length centre 9644 9831 10523 10744 16125 

  Length side a 5550 8625 12539 12667 16592 

  Length side b 5453 8508 12386 12720 16494 

Operation 4 Breadth centre 8080 10066 12511 14236 18282 

  Breadth side a 6943 8608 11439 13708 15156 

  Breadth side b 6943 8608 11438 13710 15155 

  Length centre 9762 9841 10664 10774 16174 

  Length side a 5637 8719 12579 12665 16666 

  Length side b 5443 8490 12344 12701 16472 

Operation 5 Breadth centre 8042 10018 12545 14225 18293 

  Breadth side a 6968 8756 11425 13852 15258 

  Breadth side b 6882 8565 11222 13681 15132 

  Length centre 9776 9989 10677 10888 16242 

  Length side a 5624 8702 12558 12628 16645 

  Length side b 5522 8585 12454 12626 16547 

Operation 6 Breadth centre 8009 9971 12607 14224 18312 

  Breadth side 6913 8711 11212 13829 15232 

  Length centre 9954 9990 10740 10939 16303 

  Length side 5609 8683 12541 12576 16622 
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 Results in Graph Form 

The table results are represented in this section in graph form. The results have been graphed 

to better illustrate the relationship between the machining operations and the corresponding 

frequency change for a given mode of vibration. This illustrates the effect of material removal 

or geometry change on the natural frequency. 

4.4.2.1 First Harmonic 

The first harmonic for breadth centre fixturing, seen in figure 4.3, starts at 8166 Hz for the 

billet and increases to 8231 Hz after machining the first rectangular cut. The second cut brings 

the frequency down to 8150 Hz. The four holes bring the frequency down to 8009 in a linearly 

proportional manner. 

Figure 4.3 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 1 

The first harmonic for breadth side fixturing, seen in figure 4.4, starts at 7618 Hz and decreases 

through 7342 Hz for the first cut to 6972 Hz for the second. The first hole decreases the 

frequency to 6912 Hz, followed by an increase to linearly to 6968 Hz for holes 2 and 3. The 

last hole corresponds to a frequency of 6913 Hz. The length side 2 fixturing, applicable to the 

asymmetric operations 3 to 5, is shown in blue. The harmonic of operation 3 for breadth side 

2 fixturing is 6996 Hz, it then drops linearly to 6882 Hz for operation 5. 
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Figure 4.4 Natural Frequencies for Machining Operations for Breadth Side Fixturing of Part 1 

The first harmonic for length centre fixturing, seen in figure 4.5, starts at 10586 Hz for the 

billet. It then decreases through 10283 Hz for cut 1 to 9616 Hz for cut 2. Thereafter it increases 

in a linear fashion to 9954 Hz through the machining of the four holes.  

 

Figure 4.5 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 1 

The first harmonic for length side fixturing, shown in figure 4.6, starts at 6925 Hz for the billet. 

It then decreases linearly through 6048 Hz to 5469 Hz for operation 2.  The first two holes 

each increase the harmonic frequency until it reaches 5637 Hz. It then decreases to 5624 Hz 

for operation 5 and ends at 5609 Hz for operation 6. The length side 2 operation, shown in 

blue, starts at operation 3 with a frequency of 5453 Hz which decreases slightly to 5443 Hz 

and finally increases to 5522 Hz. 

 

6800

7000

7200

7400

7600

7800

0 1 2 3 4 5 6

Fr
eq

ue
nc

y 
(H

z)

Machining Operation

First harmonic frequency for maching 
operations for breadth side fixturing

breadth side A

breadth side B



MSc. Eng. Dissertation, E. Slabbert                                                              UKZN Mech. Eng 
 

37 
 

  

Figure 4.6 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 1 

4.4.2.2 Second Harmonic 

The second harmonic for breadth centre fixturing, shown in figure 4.7, starts at 12454 Hz for 

the billet and decreases linearly to the second operation at 8150 Hz. The four holes each 

decrease the frequency slightly to a final harmonic of 9971 Hz at operation 6. 

 

Figure 4.7 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 1 

The second harmonic frequency for breadth side fixturing, shown in figure 4.8, starts at 11109 

Hz for the billet and then decreases linearly to 8509 Hz. It then increases for each hole cut 

until it reaches 8771 Hz at operation 6. The breadth side 2 fixturing, shown in blue, starts at 

8655 Hz for operation 3. It then decreases through 8608 Hz to 8565 Hz for operation 5. 
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Figure 4.8 Natural Frequencies for Machining Operations for Breadth Side Fixturing of Part 1 

The second harmonic for length centre fixturing, seen in figure 4.9, starts at 12217 Hz and 

decreases though 10508 Hz to 9753 Hz for operation 2. It then increases with each hole cut 

until it reaches 9990 Hz at operation 6. 

 

Figure 4.9 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 1 

The second harmonic for length side fixturing, seen in figure 4.10,starts at 10035 Hz and then 

decreases to 9368 Hz for cut 1 and 8530 for cut 2. The frequency increases to 8702 Hz after 

the third cut hole. The last hole cut increases the frequency to 9990 Hz. The length side 2 

fixturing, shown in blue, starts at 8508 Hz for operation 3 and increases to 8585 Hz for 

operation 5. 
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Figure 4.10 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 1 

4.4.2.3 Third Harmonic 

The Third harmonic for breadth centre fixturing, shown in figure 4.11, starts at 15260 Hz. It 

then decreases through 13589 Hz to 12413 Hz at operation 2. The four holes increase the 

frequency to a final state of 12607 Hz. 

 

 

Figure 4.11 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 1 

The third harmonic frequency for breadth side fixturing, shown in figure 4.12, starts at 13232 

Hz for the billet. It then decreases through 12635 Hz to 11677 for operation 2. The four holes 

each decrease the frequency until it reaches 11212 Hz for operation 6. The breadth side 2 

fixturing, shown in blue, starts at 11664 Hz for cut 3. It then decreases to a final frequency of 

11222 Hz for cut 5. 
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Figure 4.12 Natural Frequencies for Machining Operations for Breadth Side Fixturing of Part 1 

The third harmonic frequency for length centre fixturing, shown in figure 4.13, starts at 12391 

Hz for the billet. It then decreases through 11187 Hz to 10527 Hz for operation 2. It then 

increases, as the four holes are cut, to a final frequency of 10740 Hz. 

 

Figure 4.13 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 1 

The third harmonic frequency for length side fixturing, shown in figure 4.14, starts at 13022 

Hz for the billet. It then decreases linearly to 12430 Hz for operation 2. The first 2 holes cut 

bring the frequency up to 12579 Hz. The last two holes decrease the frequency to 12541 Hz at 

operation 6. The length side 2 fixturing, shown in blue, starts at 12386 Hz. It then decreases 

to 12344 Hz followed by an increase to 12454 Hz for operation 5. 
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Figure 4.14 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 1 
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4.4.2.4 Fourth Harmonic 

The fourth harmonic frequency for breadth centre fixturing, shown in figure 4.15, starts at 

16150 Hz for the billet. It then decreases to 14243 Hz for operation 2. The four holes decease 

the frequency to a final state of 12576 Hz at operation 6.  

 

Figure 4.15 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 1 

The fourth harmonic frequency for breadth side fixturing, shown in figure 4.16, starts at 13883 

Hz for the billet. It then decreases through 13854 Hz to 13594 Hz. The first hole cut decreases 

the frequency to 13568 Hz. The frequency is increased linearly to 13852 Hz for operation 5, 

and decreases to a final frequency of 13829 Hz. The breadth side 2 fixturing, seen in blue, 

starts at 13732 Hz for operation 3. It then decreases through 13710 Hz to a final of 13681 Hz. 

  

Figure 4.16 Natural Frequencies for Machining Operations for Breadth Side Fixturing of Part 1 
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The fourth harmonic frequency for length centre fixturing, shown in figure 4.17, starts at 

12533 for the billet. It then decreases through 11267 Hz to 10561 Hz for operation 2. The four 

holes each increase the frequency to a final state of 10939 Hz for operation 6. 

 

Figure 4.17 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 1 

The fourth harmonic frequency for length side fixturing, shown in figure 4.18, starts at 14652 

Hz for the billet. It then decreases to 12738 Hz after operation 1 and 2. The four holes cut 

decreases the frequency further to 12576 Hz. The length side 2 fixturing, shown in blue, starts 

at 12386 Hz. It then decreases though 12701 Hz to 12626 Hz at operation 5. 

  

Figure 4.18 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 1 
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4.4.2.5 Fifth Harmonic 

The fifth harmonic for breadth centre fixturing, shown in figure 4.19, starts at 17802 Hz. It 

then increases to 18319 Hz for operation 1, and decreases slightly to 18259 For operation 2. 

The four holes cut increase the frequency to a final of 18312 Hz. 

 

Figure 4.19 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 1 

The fifth harmonic frequency for breadth side fixturing, shown in figure 4.20, starts at 17629 

Hz for the billet. It then decreases to 15934 Hz for operation 1 and 15073 Hz for operation 2. 

The four holes cut increase the frequency to 15232 Hz at operation 6. The breadth side 2 

fixturing, shown in blue, starts at 15183 Hz for operation 3. It decreases to 15156 Hz for 

operation 4 and finally 15132 for operation 5. 

  

Figure 4.20 Natural Frequencies for Machining Operations for Breadth Side Fixturing of Part 1 
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The fifth harmonic for length centre fixturing, shown in figure 4.21, starts at 16371 Hz for the 

billet, and then decreases linearly to 16073. The four holes each increase the frequency until 

it reaches 16303 Hz at operation 6. 

 

Figure 4.21 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 1 

The fifth harmonic for length side fixturing, shown in figure 4.22, starts at 17267 Hz for the 

billet. It then increases to 17420 Hz for operation 1. Operation 2 bring the frequency down to 

16515 Hz. The first two holes cut increase the frequency to 16666 Hz at operation 4. The 

frequency then decreases to 16622 Hz. The length side 2 fixturing, shown in blue, starts at 

16494 Hz for operation 3. It decreases to 16472 Hz and then increases to 16547 at operation 

5. 

  

Figure 4.22 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 1 
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4.5 Harmonic Frequencies of Part 2 

 Results in Table Form 

Table 4.3 shows the modal frequencies for part 2 for all operation and fixture setups. The data 

is placed in order of operation starting from the billet at the head of the list down to operation 

5. The table facilitates comparisons between the modal frequency and fixture setup for each 

operation.  

For the billet, the fixture setup that produces the best frequency response for the first two 

modes is length-centre, the best response is for modes 3 to 5 is breadth-centre. For each mode, 

the order of order of best to worst response is different. For the lowest mode the differences 

are greater in size than for some of the higher modes.  
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Table 4.2 Modal Frequencies for Part 1 for all Fixturing Setups 
 

Part 2 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Billet (op. 1) Breadth centre 8166 12454 15260 16150 17802 

 Breadth side 7618 11109 13232 13883 17629 

 Length centre 10586 12217 12391 12533 16371 

 Length side 6925 10035 13022 14652 17267 

Operation 1 Breadth centre 8107 11725 13814 15382 18270 
 

Breadth side 1 7132 9993 12914 13563 16715 
 

Breadth side 2 7562 9975 12678 13989 15690 
 

Length centre 10250 10956 11535 11679 16243 
 

Length side 1 6192 9553 12580 13974 17374 
 

Length side 2 6440 9612 13061 13970 17310 

Operation 2 Breadth centre 7980 10404 12424 14860 17951 
 

Breadth side 1 6754 9217 12182 13309 16150 
 

Breadth side 2 7263 8572 11944 13825 14531 
 

Length centre 9354 10275 10884 11313 16125 
 

Length side 1 5750 9169 12116 13515 17152 
 

Length side 2 5887 8515 12696 13001 15607 

Operation 3 Breadth centre 7928 10380 12460 15006 17968 

 Breadth side 1 6808 9377 12182 13440 16197 

 Breadth side 2 7215 8560 11717 13805 14499 

 Length centre 9548 10259 10936 11333 16160 

 Length side 1 5736 9148 12059 13494 16972 

 Length side 2 5994 8620 12682 13173 15567 

Operation 4 Breadth centre 7897 10363 12458 15098 17967 

 Breadth side 1 6843 9505 12188 13580 16301 

 Breadth side 2 7112 8509 11586 13773 14463 

 Length centre 9584 10279 10930 11563 16237 

 Length side 1 5815 9244 12144 13514 17079 

 Length side 2 5979 8600 12662 13128 15528 

Operation 5 Breadth centre 7872 10339 12472 15080 17999 
 

Breadth side 1 6747 9443 12018 13545 16273 
 

Breadth side 2 7156 8603 11581 13925 14631 
 

Length centre 9585 10340 11116 11628 16326 
 

Length side 1 5885 9413 12282 13511 17136 
 

Length side 2 5968 8587 12644 13099 15499 
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 Results in Graph Form 

4.5.2.1 First Harmonic  

The first harmonic for breadth-centre fixturing, shown in figure 4.23, starts at 8166 Hz for the 

billet. It then decreases though 8107 Hz at operation 1 to 7980 Hz for operation 2. The three 

holes bring the frequency down to 7872 Hz. 

 

 Figure 4.23 Natural Frequencies for Machining operations for Breadth Centre Fixturing of 
Part 2 

The first harmonic frequency for breadth-side fixturing, shown in figure 4.24, has a billet 

frequency of 7618 Hz. The breadth-side-A fixturing, shown in blue, starts at 7132 Hz for 

operation 1. It then decreases to 6754 Hz for operation 2, increases though operation 3 to 6843 

Hz for operation 4, and ends at 6747 Hz for operation 5. Breadth-side-B fixturing, shown in 

orange, starts at 7562 Hz for operation 1. It then decreases through 7263 Hz at operation 2 to 

7112 Hz for operation 4, and increases to 7156 Hz at operation 5. 

 

Figure 4.24 Natural Frequencies for Machining operations for Breadth side Fixturing of part 2 
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The first harmonic frequency for length-centre fixturing, shown in figure 4.25, starts at 10586 

Hz for the billet. It then decreases through 10250 Hz for operation 1, to 9354 Hz for operation 

2. The three holes increase the frequency to 9585 Hz. 

 

Figure 4.25 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 2 

The first harmonic frequency for length-side fixturing, shown in figure 4.26, has a billet 

frequency of 6925 Hz. The length-side-A fixturing, shown in blue, starts at 6192 Hz for 

operation 1. It then decreases to 5450 Hz for operation 2 and increases to 5968 Hz for operation 

5. Length-side-B fixturing, shown in orange, starts at 6440 Hz for operation 1. It then decreases 

to 5887 Hz at operation 2. It then increases to 5994 Hz for operation 3, and decreases to a final 

frequency of 5885 Hz for operation 5. 

 

Figure 4.26 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 2 
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4.5.2.2 Second Harmonic 

The second harmonic frequency for breadth-centre fixturing, shown in figure 4.27, starts at 

12454 Hz for the billet. It then decreases through 11725 Hz at operation 1 to 10404 Hz at 

operation 2. The three holes decrease the frequency to 10339 Hz. 

 

Figure 4.27 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 2 

The second harmonic for breadth-side fixturing, shown in figure 4.28, results in a billet 

frequency 11109 Hz. The breadth-side-A fixturing, shown in blue, starts at 9993 Hz for 

operation 1, and then decreases to 9217 Hz for operation 2. Operation 4 increases the frequency 

to 9505 Hz, after which it decreases to 9443 Hz at operation 5. Breadth-side-B fixturing, shown 

in orange, starts at 9975 Hz for operation 1. It then decreases to 8572 Hz at operation 2, and 

increases to 8603 Hz for operation 5. 

  

Figure 4.28 Natural Frequencies for Machining Operations for Breadth side Fixturing of part 2 
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The second harmonic for length-centre fixturing, shown in figure 4.29, starts at 12217 Hz for 

the billet. It then decreases through 10956 Hz for operation 1, to 10275 Hz for operation 2. 

The three holes cut increase the frequency slightly to 10340 Hz at operation 5. 

 

Figure 4.29 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 2 

The second harmonic frequency for length-side fixturing, shown in figure 4.30, starts at 10035 

Hz for the billet. The length-side-A fixturing, shown in blue, starts at 9553 Hz for operation 

1. It then decreases through 9169 Hz for operation 2, and increases to 9244 Hz for operation 

5. Operation 5 bring the frequency down to 8587 Hz. Length-side-B fixturing, shown in 

orange, starts at 9612 Hz for operation 1. It then decreases to 8515 Hz at operation 2, and 

increases to 9413 Hz for operation 5. 

  

Figure 4.30 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 2 
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4.5.2.3 Third Harmonic 

The third harmonic frequency for breadth-centre fixturing, shown in figure 4.31, starts at 

15260 Hz for the billet. It then decreases linearly to 12424 Hz at operation 2. The three holes 

cut increase the frequency slightly to 12472 Hz at operation 5. 

 

Figure 4.31 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 2 

The third harmonic frequency for breadth-side fixturing, shown in figure 4.32, starts at 13232 

Hz for the billet. The breadth-side-A fixturing, shown in blue, starts at 12914 Hz for operation 

1. It then decreases to 12182 Hz for operation 2 and ends at 12018 Hz for operation 5. Breadth-

side-B fixturing, shown in orange, starts at 12678 Hz for operation 1. It then decreases through 

11944 Hz at operation 2 to 11581 Hz for operation 5. 

  

Figure 4.32 Natural Frequencies for Machining Operations for Breadth side Fixturing of part 2 
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The third harmonic frequency for length-centre fixturing, shown in figure 4.33, starts at 12391 

Hz for the billet. It then decreases though 11535 Hz for operation 1, to 10884 Hz for operation 

2. The three holes cut increase the frequency to 11116 Hz at operation 5. 

 

Figure 4.33 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 2 

The third harmonic frequency for length-side fixturing, shown in figure 4.34, starts at 13022 

Hz for the billet. The length-side-A fixturing, shown in blue, starts at 13974 Hz for operation 

1 and then decreases to 12116 Hz for operation 2. Operation 3 decreases the frequency to 

12059 after which the harmonic increases to 12644 Hz for operation 5. Length-side-B 

fixturing, shown in orange, increases from the billet frequency to 13061 Hz for operation 1. It 

then decreases through 12696 Hz at operation 2 to 12282 Hz for operation 5. 

  

Figure 4.34 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 2 
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4.5.2.4 Fourth Harmonic 

The fourth harmonic frequency for breadth-centre fixturing, shown in figure 4.35, starts at 

16150 Hz for the billet. It then decreases to 15382 Hz for operation 1 and 14860 Hz for 

operation 2. The three holes increase the frequency to 15080 Hz at operation 5. 

 

Figure 4.35 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 2 

The fourth harmonic frequency for breadth-side fixturing, shown in figure 4.36, starts at 13883 

Hz for the billet. The breadth-side-A fixturing, shown in blue, starts at 13563 Hz for operation 

1. It then decreases to 13309 Hz for operation 2 and increases to 13580 at operation 4. 

Operation 5 decreases the harmonic to 13545 Hz. Breadth-side-B fixturing, shown in orange, 

starts at 13989 Hz for operation 1. It then decreases through 13825 Hz at operation 2, to 13773 

Hz at operation 4, after which it increases to 13925 Hz for operation 5. 

  

Figure 4.36 Natural Frequencies for Machining Operations for Breadth side Fixturing of part 2 
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The fourth harmonic frequency for length-centre fixturing, shown in figure 4.37, starts at 

12533 Hz for the billet. It then decreases through 11679 Hz at operation 1, to 11313 Hz at 

operation 2. The three holes increase the frequency to 11628 Hz. 

 

Figure 4.37 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 2 

The fourth harmonic frequency for length-side fixturing, shown in figure 4.38, starts at 14652 

Hz for the billet. The length-side-A fixturing, shown in blue, starts at 13974 Hz for operation 

1. It then decreases to 13515 Hz for operation 2, and further to 13099 Hz for operation 5. 

Length-side-B fixturing, shown in orange, decreases from the billet frequency to 13970 Hz for 

operation 1. It decreases further to 13001 Hz for operation 2, and increases to 13511 Hz for 

operation 5. 

  

Figure 4.38 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 2 

  

11200

11400

11600

11800

12000

12200

12400

12600

0 1 2 3 4 5 6

Fr
eq

ue
nc

y 
(H

z)

Machining Operation

Fourth harmonic frequency for machining 
operations for length centre fixturing

12500

13000

13500

14000

14500

15000

0 1 2 3 4 5 6

Fr
eq

ue
nc

y 
(H

z)

Machining Operation

Fourth harmonic frequency for machining 
operations for length side fixturing

length side A

length side B



MSc. Eng. Dissertation, E. Slabbert                                                              UKZN Mech. Eng 
 

56 
 

4.5.2.5 Fifth Harmonic 

The fifth harmonic frequency for breadth-centre fixturing, shown in figure 4.39, starts at 17802 

Hz for the billet. It then increases to 18270 Hz for operation 1, and decreases to 17951 Hz for 

operation 2. The machining of the three holes brings the frequency to 17999 Hz at operation 

5.  

 

Figure 4.39 Natural Frequencies for Machining Operations for Breadth Centre Fixturing of Part 2 

The fifth harmonic frequency for breadth-side fixturing, shown in figure 4.40, starts at 17629 

Hz for the billet. The breadth-side-A fixturing, shown in blue, starts at 16715 Hz for operation 

1. It then decreases to 17951 Hz for operation 2 and increases to 17999 Hz for operation 5. 

Breadth-side-B fixturing, shown in orange, starts at 15690 Hz for operation 1. It then decreases 

to 14531 Hz at operation 2, and increases to 14631 Hz for operation 5. 

  

Figure 4.40 Natural Frequencies for Machining Operations for Breadth side Fixturing of part 2 
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The fifth harmonic frequency for length-centre fixturing, shown in figure 4.41, starts at 16371 

Hz for the billet. It then decreases through 16243 Hz at operation 1, to 16125 Hz for operation 

2. The machining of the three holes increases the frequency to 16326 Hz at operation 5. 

 

Figure 4.41 Natural Frequencies for Machining Operations for Length Centre Fixturing of Part 2 

The fifth harmonic frequency for length-side fixturing, shown in figure 4.42, starts at 17267 

Hz for the billet. The length-side-A fixturing, shown in blue, increases from the billet 

frequency to 17374 Hz for operation 1. It then decreases to 17152 Hz for operation 2, and 

further to 17079 Hz at operation 4. Operation 5 decreases the harmonic drastically to 15499 

Hz. Length-side-B fixturing, shown in orange, increases from the billet frequency to 17310 

Hz for operation 1, and decreases to 15607 Hz for operation 2. From operation 4 the harmonic 

increases greatly to 17136 Hz for operation 5. 

  

Figure 4.42 Natural Frequencies for Machining Operations for Length Side Fixturing of Part 2 
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4.6 Order of Part Feature Machining   

This section presents the simulation results for changing the order of part features for part 1, 

such that the holes are machined before the slots. This investigation was a result of 

observations that in several instances the machining of the holes increased the natural 

frequency of part 1. The aim of the simulations is twofold; to determine if machining the holes 

(operations 3 to 6) before the slots (operations 1 and 2) improve the natural frequency response 

of part 1, and to determine if the effect of the operation on natural frequency are independent 

of each other. The new simulation data is plotted with the original machining-order simulation 

data, to illustrate the effect of the order change. In each graph the two simulations share the 

billet frequency and the final operation 6 frequency, which are the first and final states of both 

machining routes.  

 Graphs for Part 1 

For each of the graphs: The blue data represents the original machining order, where the central 

slots are machined first as operations 1 and 2, and the holes are machined afterwards as 

operations 3 to 6. The orange data points represent the rearranged machining operations where 

the 4 holes are cut first as operations 1 to 4, and the 2 slots are machined last as operations 5 

and 6. Simulations were performed for all fixture setups of Part 1 mode 1. 

The two data sets for breadth-centre fixturing are featured in figure 4.43. The rearranged 

machining order, in blue, shows the four holes decreasing the natural frequency linearly, the 

same as in the original simulation. The machining of the first slot increases the frequency, after 

which the frequency decreases to 8009 Hz at operation 6. 

  

Figure 4.43 Rearranged machining order for first harmonic frequency for breadth centre fixturing 
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Figure 4.44 shows the first-harmonic frequencies for the rearranged machining order for 

breadth-side fixturing, plotted against the original frequencies. The first two holes increase the 

natural frequency to 7715 Hz, whereas holes 3 and 4 decrease the frequency to 7453 Hz. The 

machining of the slots further decreases the frequency, similar to the original machining order, 

to a final frequency of 6913 Hz at operation 6. 

  

Figure 4.44 Rearranged machining order for first harmonic frequency for breadth side fixturing 

The graph of the first-harmonic frequencies for the rearranged machining order for length-

centre fixturing is shown in figure 4.45. The four holes increase the natural frequency linearly 

to 10851 Hz. The machining of the slots decreases the frequency, similar to the original 

machining order, to a final frequency of 9954 Hz at operation 6. 

  

Figure 4.45 Rearranged machining order for first harmonic frequency for length centre fixturing 
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Figure 4.46 shows the graph of the first-harmonic frequencies of the rearranged machining 

order for length-side fixturing. The four holes increase the natural frequency slightly to 7063 

Hz. The machining of the slots decreases the frequency, similar to the original machining 

order, to a final frequency of 5609 Hz at operation 6. 

  

Figure 4.46 Rearranged machining order for first harmonic frequency for length side fixturing 

4.7 Chapter Summary 

Chapter 4 showed that mesh independence was reached with a mesh size of 1.5mm. The 

simulations revealed a strong correlation between the natural frequency of the part and both 

material removal and fixturing position. The results summarised in table 4.1 and table 4.2 

illustrated the fixturing setups that produced the highest natural frequency for each operation, 

and revealed that the breadth-centre fixture setup performed best overall for both part 1 and 

part 2. The natural frequency graphs showed that similar trends exist in breadth-centre and 

length-centre fixturing for part 1 and 2. Simulation results for part 1 with the operation orders 

rearranged showed that the frequency response can be improved for certain fixture setups.  
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5 Chapter 5: Modal Frequency Verification 

5.1 Chapter Introduction 

This chapter presents the experimental analysis of the natural frequencies of the control parts 

as verification for the simulation results. The parts machined for experimental testing are 

specified, as well as all fixturing positions implemented. A load cell clamp assembly is 

outlined, followed by the vibration testing equipment used and the physical setup of the AFFS. 

The procedure employed in testing and the experimental results are then specified. 

5.2 Parts for Testing 

Material restrictions required the number of test parts to be minimized for the experimental 

analysis. It was anticipated that the dampening of the system would reduce the resolution of 

the resonant frequencies. The small changes in the resonant frequencies between the four holes 

would become immeasurable due to the dampening. Thus, the test parts included one part with 

all four holes machined. The billets that were machined for testing are illustrated in figure 5.1 

and figure 5.2 for part 1 and 2 respectively. The parts shown in the figures are the first two 

machining operations for the initial bores, and the final machining operation with all holes 

machined. 

 

Figure 5.1 Part 1 Workpieces  
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Figure 5.2 Part 2 Workpieces 

5.3 Load Cell Assembly 

The purpose of the load cell assembly was to provide a means of monitoring the clamping 

forces in order to keep them constant throughout the experimental testing. The clamping force 

is related to the dampening effect of the AFFS, therefore the force must remain constant to 

ensure the measurements integrity.  

The pin matrix clamp did not function as desired due to design simplifications and 

manufacturing errors. The clamping arms were redesigned to incorporate load cells to measure 

the clamping force, keeping the original contact surface size of the pin matrix clamp. Figure 

5.3 illustrates the components of the load cell assembly through a cad assembly. The assembly 

shows (a) the bracket that mounts the load cell to the existing mounts on the AFFS (b) the load 

cell and (c) the clamping surface mount. The CSM has a clamping surface equal in area to the 

pin matrix clamping surface. That CMS remains parallel with the part due to its rotary joint, 

keeping full surface contact with the part. The force sensors available were 20 kg cantilever 

wheat-stone bridge load cells. Any force greater than 20 kg exerted on the load cell will 

damage it. To avoid this from occurring during testing the clamping force was kept at 15 kg. 
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      (a)                                                                   (b)                   

Figure 5.3 (a) Load cell model (b) Load cell physical assembly 

The three components used in to measure the clamping force are the Arduino Uno, load cell 

and HX711 amplifier, illustrated in figure 5.4. The Hx711 was required to amplify the load 

cell signal and convert it to a digital signal.  

 
   (a)                                                    (b)                                    (c)  

Figure 5.4 (a) Arduino uno (b) Load cell (c) HX711 amplifier 
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Figure 5.5 shows the wiring diagram for the load cells. The Arduino supplied power to the 

amplifiers which powered the load cells. The analogue load cell signals were retrieved from 

the amplifiers as digital signals and read from analogue pins 5 and 6 on the Arduino. The 

Arduino code used to calculate and display the two Force readings is shown in appendix. 

 

Figure 5.5 Load cell wiring diagram 

The load cells were calibrated using weights illustrated in figure 5.6. The weights were added 

in increments to ensure that the load cell was measuring accurately across its range. 

 

 
Figure 5.6 Load cell calibration setup with calibration weight  
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With no load applied the loadcell reading from the Arduino was 8385700. A mass of 200 

grams gave a digital reading of 8406200 on the load cell. A mass of 500 grams gave a reading 

of 8436950 on the load cell. A simple calculation using the no load signal and the applied mass 

signal gave a calibration factor of 102.5. The equation below was formulated to give a reading 

in grams from the digital signal. 

 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝑣𝑣𝑣𝑣𝑣𝑣 − 8385700

102.5
 

 

(5.1) 

 

The ‘𝑣𝑣𝑣𝑣𝑣𝑣’ function in the equation represents the digital signal measured by the Arduino, the 

8385700 value is the no load reading and 102.5 is the calibration factor. 

5.4 Ni DAQ 

The vibration signals were measured with National Instruments Data Acquisition (NI-DAQ) 

hardware, shown in figure 5.7 (a). The accelerometer used, shown in figure 5.7 (a), had a 1 – 

20000 Hz frequency range and a sensitivity of 10 𝑚𝑚𝑚𝑚/𝑚𝑚. 𝑠𝑠−2. The accelerometer was tested 

using a Bruel & Kjaer accelerometer calibrator that vibrates at a constant frequency of 159.15 

Hz. The accelerometer was held against the calibrator to test its accuracy and sensitivity. The 

measured frequency of the accelerometer was 159.15 Hz, confirming the accuracy of the 

accelerometer. The accelerometer was mounted to the parts using an adhesive. The adhesive 

technique allowed the accelerometer position to be adjusted without removing material from 

the part, which is required for a fixed mounting. An impact hammer, figure 5.7 (c), was used 

to excite the part in its clamped position for the frequency measurements. The analogue signal 

from the accelerometer was converted the frequency spectrum by applying a Fast Fourier 

Transform function in LabVIEW. The impact hammer signal was monitored to ensure all 

measurements were taken using the same impact force. Appendix B contains the LabVIEW 

code that was used to generate the frequency graphs. 

    

(a)                                      (b)                                     (c) 

Figure 5.7 (a) NI-DAQ (b) Accelerometer (c) Impact hammer 
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5.5 Final Experimental Assembly 

The load assembly was fixed to the AFFS using the mounting points for the previously 

removed pin matrix clamp, illustrated in figure 5.9. Figure 5.8 illustrates the acceleromter 

attached to part 1, which is clamped in the AFFS. 

 

Figure 5.8 Part 1 fixtured on the fixture bed with accelerometer attached  

The part was fixed between the load cells with a force of 150 N or 15000 grams measured 

from the Arduino. The fixture arms were moved in and out of position by controlling the 

stepper motors. The Parallel gripper was controlled using the servo motor.  

 

Figure 5.9 Part 1 fixtured in the AFFS 
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5.6 Frequency Response Experimental Procedure 

 Aim 

The aim of the testing is to measure the acceleration of each control part under various 

fixturing positions to determine the parts natural frequency for that fixture setup. 

 Objectives 

• Measure the acceleration of each part under all specified fixturing position 

• Determine the natural frequencies of the part for each specific fixturing position 

 Procedure 

• Place control part onto two-finger locater 

• Tighten two-finger locater using servo motor 

• Position clamping surfaces correctly relative to part for fixturing position 

• Move clamping surfaces onto part until clamping force of 15kg is achieved 
• Fasten accelerometer in position on part 

• Induce vibration by exciting part with impact hammer until force of 5kg achieved 

• Record z-axis acceleration with accelerometer 

• Read the modal frequencies from the FFT LabVIEW frequency graph 

• Repeat for each part 
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5.7 Frequency Response Results for Part 1 

 Part 1 Operation 1 

Part 1 operation 1 is a symmetric part, with a single rectangular bore in its centre. It was fixed 

along its breadth on the side surface at both the centre and far corner, as well as along its length 

on the side surface at both the centre and far corner. The results of the frequency tests of this 

part for each fixturing setup are recorded and discussed in this section. 

Figure 5.10 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-centre fixturing. The natural frequencies for the first three modes visible in the graph 

are 85Hz, 165Hz, and 250Hz respectively. 

 

Figure 5.10 Natural Frequencies of Part 1 Operation 1 for Breadth-Centre Fixturing 

Figure 5.11 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side fixturing. The natural frequencies for the first three modes visible in the graph 

are 60Hz, 120Hz, and 230Hz respectively. 

 

Figure 5.11 Natural Frequencies of Part 1 operation 1 for breadth side fixturing 
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Figure 5.12 shows the frequency response of the knock test for part 1 operation 1 under length-

centre fixturing. The natural frequencies for the first three modes visible in the graph are 48Hz, 

115Hz, and 168Hz respectively. 

 

Figure 5.12 Natural Frequencies of Part 1 Operation 1 for Length-Centre Fixturing 

Figure 5.13 shows the frequency response of the knock test for part 1 operation 1 under length-

side fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

85Hz, and 120Hz respectively. 

 

Figure 5.13 Natural Frequencies of Part 1 Operation 1 for Length-Side Fixturing 
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5.7.1.1 Analysis of Part 1 Operation 1 Results 

The experimental results for part 1 operation 1 are organized in table 5.1. 

Table 5.1 Natural frequencies for part 1 operation 1 

Fixturing Mode 1 Mode 2 Mode 3 

Breadth centre 85 165 250 

Breadth side  60 120 230 

Length centre 48 115 168 

Length side  40 85 120 

 

 Part 1 Operation 2 

Part 1 operation 2 is a symmetric part, with two countersunk rectangular bores in its centre. It 

was fixed along its breadth on the side surface at both the centre and far corner, as well as 

along its length on the side surface at both the centre and far corner. The results of the 

frequency tests of this part for each fixturing setup are recorded and discussed in this section. 

Figure 5.14 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-centre fixturing. The natural frequencies for the first two modes visible in the graph 

are 110Hz, and 240Hz respectively. The third mode appears to be around 525hz, dismissing 

the peak at 330hz as an irregularity caused by the fixture. This frequency falls out of the 

spectrum of expected frequencies that could reasonable be the third mode, thus the final mode 

from the graph is indecisive. 

 

Figure 5.14 Natural Frequencies of Part 1 Operation 2 for Breadth-Centre Fixturing 
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Figure 5.15 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side fixturing. The natural frequencies for the first three modes visible in the graph 

are 110Hz, 150Hz, and 230Hz respectively. 

 

Figure 5.15 Natural Frequencies of Part1 Operation 2 for Breadth-Side Fixturing 

Figure 5.16 shows the frequency response of the knock test for part 1 operation 1 under length-

centre fixturing. The natural frequencies for the first three modes visible in the graph are 60Hz, 

110Hz, and 175Hz respectively. 

 

Figure 5.16 Natural Frequencies of Part 1 Operation 2 for Length-Centre Fixturing 
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Figure 5.17 shows the frequency response of the knock test for part 1 operation 1 under length-

side fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

60Hz, and 100Hz respectively. 

 

Figure 5.17 Natural Frequencies of Part 1 Operation 2 for Length-Side Fixturing 

5.7.2.1 Analysis of Part 1 Operation 2 Results 

The experimental results for part 1 operation 2 are organized in Table 5.2. 

Table 5.2 Natural frequencies for part 1 operation 2 

Fixturing Mode 1 Mode 2 Mode 3 

Breadth centre 110 240 - 

Breadth side  100 150 230 

Length centre 60 110 175 

Length side  40 60 100 

 

 Part 1 Operation 6 

Part 1 operation 6 is a symmetric part, with two countersunk rectangular bores in its centre 

and four holes drilled at each corner. It was fixed along its breadth on the side surface at both 

the centre and far corner, as well as along its length on the side surface at both the centre and 

far corner. The results of the frequency tests of this part for each fixturing setup are recorded 

and discussed in this section. 
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Figure 5.18 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-centre fixturing. The natural frequencies for the first three modes visible in the graph 

are 100Hz, 220Hz, and 320Hz respectively. 

 

Figure 5.18 Natural Frequencies of Part 1 Operation 6 for Breadth-Centre Fixturing 

Figure 5.19 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side fixturing. The natural frequencies for the first three modes visible in the graph 

are 100Hz, 210Hz, and 295Hz respectively. 

 

Figure 5.19 Natural Frequencies of Part 1 Operation 6 for Breadth-Side Fixturing 
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Figure 5.20 shows the frequency response of the knock test for part 1 operation 1 under 
length-centre fixturing. The natural frequencies for the first three modes visible in the graph 
are 70Hz, 140Hz, and 230Hz respectively. 

 

Figure 5.20 Natural Frequencies of Part 1 Operation 6 for Length-Centre Fixturing 

Figure 5.21 shows the frequency response of the knock test for part 1 operation 1 under length-

side fixturing. The natural frequencies for the first three modes visible in the graph are 25Hz, 

70Hz, and 110Hz respectively. 

 

Figure 5.21 Natural Frequencies of Part 1 Operation 6 for Length-Side Fixturing 
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5.7.3.1 Analysis of Part 1 Operation 6 Results 

The experimental results for part 1 operation 6 are organized in Table 5.3 

Table 5.3 Natural frequencies for part 1 operation 6 

Fixturing Mode 1 Mode 2 Mode 3 

Breadth centre 100 220 320 

Breadth side  100 210 295 

Length centre 70 140 230 

Length side  25 70 110 

 

5.8 Frequency Response Results for Part 2 

 Part 2 Operation 1 

Part 2 operation 1 is a non-symmetric part, with a rectangular bore cut off-centred on its upper 

surface. It was fixed along its breadth on the side surface at both the centre and far corner, as 

well as along its length on the side surface at both the centre and far corner. The results of the 

frequency tests of this part for each fixturing setup are recorded and discussed in this section. 

Figure 4.22 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-centre fixturing. The natural frequencies for the first three modes visible in the graph 

are 110Hz, 180Hz, and 250Hz respectively. 

 

Figure 5.22 Natural Frequencies of Part 2 Operation 1 for Breadth-Centre Fixturing 
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Figure 4.23 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side-A fixturing. The natural frequencies for the first two modes visible in the graph 

are 100Hz, 190Hz. The Third mode is not captured in the graph. 

 

Figure 5.23 Natural Frequencies of Part 2 Operation 1 for Breadth-Side-A Fixturing 

Figure 4.24 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side-B fixturing. The natural frequencies for the first three modes visible in the graph 

are 110Hz, 150Hz, and 240Hz respectively. 

 

Figure 5.24 Natural Frequencies of Part 2 Operation 1 for Breadth-Side-B fixturing 
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Figure 4.25 shows the frequency response of the knock test for part 1 operation 1 under length-

centre fixturing. The natural frequencies for the first three modes visible in the graph are 50Hz, 

130Hz, and 200Hz respectively. 

 

Figure 5.25 Natural Frequencies of Part 2 Operation 1 for Length-Centre Fixturing 

Figure 4.26 shows the frequency response of the knock test for part 1 operation 1 under length-

side-A fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

80Hz, and 120Hz respectively. 

 

Figure 5.26 Natural Frequencies of Part 2 Operation 1 for Length-Side-A fixturing 
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Figure 4.27 shows the frequency response of the knock test for part 1 operation 1 under length-

side-B fixturing. The natural frequencies for the first three modes visible in the graph are 50Hz, 

70Hz, and 100Hz respectively. 

 

Figure 5.27 Natural Frequencies of Part 2 Operation 1 for Length-Side-B Fixturing 

5.8.1.1 Analysis of Part 2 Operation 1 Results 

The experimental results for part 2 operation 1 are organized in Table 5.4. 

Table 5.4 Natural frequencies for part 2 operation 1 

Fixturing Mode 1 Mode 2 Mode 3 

Breadth centre 110 180 250 

Breadth side a 100 190 - 

Breadth side b 110 150 240 

Length centre 50 130 200 

Length side a 40 80 120 

Length side b 50 70 100 

 

 Part 2 Operation 2 

Part 2 operation 2 is a non-symmetric part, with two countersunk rectangular bores cut off-

centre on its upper surface. It was fixed along its breadth on the side surface at both the centre 

and far corner, as well as along its length on the side surface at both the centre and far corner. 

The results of the frequency tests of this part for each fixturing setup are recorded and 

discussed in this section. 
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Figure 5.28 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-centre fixturing. The natural frequencies for the first three modes visible in the graph 

are 110Hz, 200Hz, and 320Hz respectively. 

 

Figure 5.28 Natural Frequencies of Part 2 Operation 2 for Breadth-Centre Fixturing 

Figure 5.29 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side-A fixturing. The natural frequencies for the first three modes visible in the graph 

are 100Hz, 160Hz, and 220Hz respectively. 

 

Figure 5.29 Natural Frequencies of Part 2 Operation 2 for Breadth-Side-A Fixturing 
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Figure 5.30 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side-B fixturing. The natural frequencies for the first three modes visible in the graph 

are 100Hz, 160Hz, and 230Hz respectively. 

 

Figure 5.30 Natural Frequencies of Part 2 Operation 2 for Breadth-Side-B Fixturing 

Figure 5.31 shows the frequency response of the knock test for part 1 operation 1 under length-

centre fixturing. The natural frequencies for the first three modes visible in the graph are 48Hz, 

120Hz, and 190Hz respectively. 

 

Figure 5.31 Natural Frequencies of Part 2 Operation 2 for Length-Centre Fixturing 
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Figure 5.32 shows the frequency response of the knock test for part 1 operation 1 under length-

side-A fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

65Hz, and 110Hz respectively. 

 

Figure 5.32 Natural Frequencies of Part 2 Operation 2 for Length-Side-A Fixturing 

Figure 5.33 shows the frequency response of the knock test for part 1 operation 1 under length-

side-B fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

80Hz, and 120Hz respectively. 

 

Figure 5.33 Natural Frequencies of Part 2 Operation 2 for Length-Side-B Fixturing 
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5.8.2.1 Analysis of Part 2 Operation 2 Results 

The experimental results for part 2 operation 2 are organized in Table 5.5. 

Table 5.5 Natural frequencies for part 2 operation 2 

Fixturing Mode 1 Mode 2 Mode 3 

Breadth centre 110 200 320 

Breadth side a 100 160 220 

Breadth side b 100 160 230 

Length centre 48 120 190 

Length side a 40 65 110 

Length side b 40 80 120 

 

 Part 2 Operation 6 

Part 2 operation 6 is a non-symmetric part, with two countersunk rectangular bores cut off-

centre on the upper surface with three holes drilled at each corner around the bore. It was fixed 

along its breadth on the side surface at both the centre and far corner, as well as along its length 

on the side surface at both the centre and far corner. The results of the frequency tests of this 

part for each fixturing setup are recorded and discussed in this section. 

Figure 5.34 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-centre fixturing. The natural frequencies for the first three modes visible in the graph 

are 106Hz, 200Hz, and 300Hz respectively. 

 

Figure 5.34 Natural Frequencies of Part 2 Operation 6 for Breadth-Centre Fixturing 
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Figure 5.35 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side-A fixturing. The natural frequencies for the first three modes visible in the graph 

are 80Hz, 160Hz, and 230Hz respectively. 

 

Figure 5.35 Natural Frequencies of Part 2 Operation 6 for Breadth-Side-A Fixturing 

Figure 5.36 shows the frequency response of the knock test for part 1 operation 1 under 

breadth-side-B fixturing. The natural frequencies for the first three modes visible in the graph 

are 80Hz, 122Hz, and 215Hz respectively. 

 

Figure 5.36 Natural Frequencies of Part 2 Operation 6 for Breadth-Side-B Fixturing 
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Figure 5.37 shows the frequency response of the knock test for part 1 operation 1 under length-

centre fixturing. The natural frequencies for the first three modes visible in the graph are 70Hz, 

130Hz, and 215Hz respectively. 

 

Figure 5.37 Natural Frequencies of Part 2 Operation 6 for Length-Centre Fixturing 

Figure 5.38 shows the frequency response of the knock test for part 1 operation 1 under length-

side-A fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

80Hz, and 100Hz respectively. 

 

Figure 5.38 Natural Frequencies of Part 2 Operation 6 for Length-Side-A Fixturing 
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Figure 5.39 shows the frequency response of the impact test for part 1 operation 1 under length-

side-B fixturing. The natural frequencies for the first three modes visible in the graph are 40Hz, 

80Hz, and 98Hz respectively. 

 

Figure 5.39 Natural Frequencies of Part 2 Operation 6 for Length-Side-B Fixturing 

5.8.3.1 Analysis of Part 2 Operation 6 Results 

The experimental results for part 2 operation 6 are organized in Table 5.6. 

Table 5.6 Natural frequencies for part 2 operation 6 

Fixturing Mode 1 Mode 2 Mode 3 

Breadth centre 106 200 300 

Breadth side a 80 160 230 

Breadth side b 80 122 215 

Length Centre 70 130 215 

Length side a 40 80 100 

Length side b 40 80 98 
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5.9 Results Analysis 

 Part 1 

Table 5.7 contains all the experimental frequency data for part 1, grouped together according 

to the fixturing scenario implemented. The data has been arranged according to mode and 

operation for each fixturing scenario to facilitate identifying trends in the frequency response, 

and to highlight differences between each fixturing setup.  

For part 1 the prevalent trend is that breadth centre fixturing gives the best frequency response 

for all stages of material removal for all modes. The order of highest to lowest frequency 

response for the remainder of the fixturing setups are; breadth-side, length-centre, and length-

side fixturing.  

Table 5.7 Natural Frequencies for each Fixturing Scenario for Part 1 

Part 1 Operation Mode 1 Mode 2 Mode 3 

Breadth centre Op. 1 85 165 250 
 

Op. 2 110 240 - 
 

Op. 6 100 220 320 

Breadth side Op. 1 60 120 230 
 

Op. 2 100 150 230 
 

Op. 6 100 210 295 

Length centre Op. 1 48 115 168 
 

Op. 2 60 110 175 
 

Op. 6 70 140 230 

Length side Op. 1 40 85 120 
 

Op. 2 40 60 100 
 

Op. 6 25 70 110 

 

For the breadth-centre, breadth-side, and length-centre fixturing setup the natural frequency 

tends to increase with each material removal operation. This is true for all three modes with a 

few exceptions, those being mode 1 and mode 2 of operation 6 for the breadth-centre fixturing, 

as well as mode 2 of operation 2 for length centre fixturing. For length-side fixturing, the 

natural frequencies tend to decrease for each new operation.  
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 Part 2 

Table 5.8 contains the experimental results for part 2. Similarly, to part 1, the breadth centre 

fixturing gives the highest natural frequency for all modes and operations. The only exception 

is for mode 2 operation 1, where breadth-side-a provides the highest natural frequency. The 

table illustrates that, in general, operation 6 reduces the natural frequency, with the exception 

of length-centre fixturing which causes natural frequency to increase. 

Table 5.8 Natural Frequencies for each Fixturing Scenario for Part 2 

Part 2 Operation mode1 mode2 mode3 

Breadth centre Op. 1 110 180 250 
 

Op. 2 110 200 320 
 

Op. 6 106 200 300 

Breadth side a Op. 1 100 190 - 
 

Op. 2 100 160 220 
 

Op. 6 80 160 230 

Breadth side b Op. 1 110 150 240 
 

Op. 2 100 160 230 
 

Op. 6 80 122 215 

Length centre Op. 1 50 130 200 
 

Op. 2 48 120 190 
 

Op. 6 70 130 215 

Length side a Op. 1 40 80 120 
 

Op. 2 40 65 110 
 

Op. 6 40 80 100 

Length side b Op. 1 50 70 100 
 

Op. 2 40 80 120 
 

Op. 6 40 80 98 

 

Breadth-centre fixturing yields the highest overall frequency response for both part 1 and 2. 

This may be a result of the breadth-centre fixturing setup holding the most material between 

the fixture surfaces compared with the other setups.  

This explains why for both cases of fixturing along the length and breadth, the centre position 

yields a better response than the side. It also explains why fixturing along the breadth gives 

the highest frequency response, since fixturing along the breadth holds the largest volume of 

material between the fixture surfaces. 
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5.10 Chapter Summary 

Chapter 5 outlined the equipment, methods and procedure used in the experimental analysis 

to ensure the integrity of the results. The vibration testing revealed a high level of dampening 

by the AFFS on the parts. The general trends in the natural frequencies follow similar trends 

to those discovered in the simulations. The results show that breadth-centre fixturing yields 

the highest overall frequencies for both part 1 and part 2. 

  



MSc. Eng. Dissertation, E. Slabbert                                                              UKZN Mech. Eng 
 

89 
 

6 Chapter 6: Discussion 

6.1 Chapter Introduction 

Chapter 6 discusses the research as a whole, focusing primarily on the correlation between the 

simulation and experimental results. The discrepancies between the simulation and 

experimental results are reviewed and analysed. The implications of the research for fixturing 

methods is explored, and methodologies are suggested. The weaknesses of the AFFS and the 

limitations of the experimental results are discussed, along with an explication of future 

improvements to both the hardware and methodology that could resolve those limitations. 

6.2 Simulation Results 

 Part 1 Maximum Harmonic Response 

The first observations for part 1 were in identifying the fixturing setup that resulted in the 

highest natural frequency for each machining operation. Table 6.1 summarises the best 

performing setups for each mode from the data in table 4.1. It revealed that for the first mode 

of vibration the length-centre fixture setup natural frequencies were largest for all machining 

operations. In the proceeding modes the breadth-centre fixture setup results in the highest 

frequency response with a few exceptions: mode 2 operation 6 as well as mode 3 operations 2 

to 5, which had the highest frequency response with the Length-Side setup. 

Table 6.1 Fixturing Setups for Highest Natural Frequency for Part 1 

Mode number Machining operations Fixture setup 

1 All Length centre 

2 Op 1, op2, op3, op4, op5 Breadth centre 

Op6 Length side 

3 Op1, op6 Breadth centre 

Op2, op3, op4, op5 Length side 

4 All Breadth centre 

5 All Breadth centre 

 

The two main observations with respect to the fixture setup that yields the highest natural 

frequency were: 

1. The breadth-centre fixturing yields the highest overall frequency response. 

2.  The majority of the modes have a single fixturing setup that yields the highest 

frequencies for all the machining operations 

 



MSc. Eng. Dissertation, E. Slabbert                                                              UKZN Mech. Eng 
 

90 
 

 Part 2 Maximum Harmonic Response 

Table 6.2 contains a summary of the best performing fixture setups from the frequency results 

in table 4.2. The table reveals that the Length-centre fixturing resulted in the highest frequency 

for all operations for mode 1. For the higher order modes, 4 and 5, breadth-centre fixturing 

resulted in the highest frequency response. For operations 2 and 3, the highest frequency 

response was obtained through several different fixturing setups for the various machining 

operations. Thus, the breadth-centre setup was the best overall performing fixture setup.  

Table 6.2  Fixturing Setups for Highest Natural Frequency for Part 2 

Mode number Machining operations Fixture setup 

1 All Length centre 

2 Op 1, op2, op3, op4 Breadth centre 

Op5 Length side 

3 Op1 Breadth centre 

Op5 Length side a 

Op2, op3, op4  Length side b 

4 All Breadth centre 

5 All Breadth centre 

 

 Natural Frequency Graphs Part 1 

The natural frequency data for part 1 was plotted in graph form, contained in Chapter 4.4, 

illustrating the relationship between natural frequency and machining operations for each 

mode. The graphs reveal that material removal either increases or decreases the natural 

frequency depending on geometry and fixturing. The optimal machining order is one where 

the features that increase natural frequency are machined first, followed by those that decrease 

natural frequency. If a feature requires a high amount of accuracy, that feature should be 

machined directly after those that increase the natural frequency. 

For some fixturing setups, the default machining order is already optimum for a specific mode, 

for example the breadth-centre fixturing for mode 1 given in figure 4.3. The natural frequency 

increases for the first operation and thereafter decreases for each proceeding operation. This 

can be compared to length-centre fixturing for mode 1, illustrated in figure 4.5, where the 

natural frequency decrease for operations 1 and 2, thereafter increasing for operations 3 to 6. 

For breadth-centre fixturing the operations are already in the optimum order, operation 1 

increases the natural frequency of the system, after which it decreases. The length-centre 

fixturing operation order is not optimised and should be rearranged so that operations 3 to 6 

occur first, before operations 1 and 2 lower the natural frequency. If the order was rearranged 
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then operations 3 to 6 could be machined at a higher rate, and would increase the natural 

frequency for the next 2 operations; operation 1 and 2. 

As a general rule, operations 1 and 2 lower the natural frequency, and operations 3 to 6 either 

all increase or decrease the frequency together. There are several unique cases where this 

general rule is broken. Observing the trend in figure 4.16, the fourth harmonic for breadth-side 

fixturing, the frequency decreases for operation 3 followed by an increase for both operation 

4 and 5, and lastly decreasing for operation 6. The breadth-centre and length-side fixturing of 

part 1 for mode 5, graphed in figure 4.19 and figure 4.22 respectively, are the only cases of 

operations 1 or 2 increasing the natural frequency. 

 Natural Frequency Graphs Part 2 

The graphs for part 2 show the rise and fall of the natural frequency as the part geometry is 

changed by the different machining operations. Similar to part 1, the default order of 

machining for part 2 was not always optimal for certain fixture setups. 

The length-centre fixture setup that gave the highest harmonic response for mode 1, is graphed 

in figure 4.25. Operations 1 and 2 cause the natural frequency to decrease, and are arranged 

before operations 3 to 5. The optimal order would be to arrange operations 3, 4 and 5 first to 

take advantage of their effect of increasing the natural frequency. 

 Part Feature Order Simulations 

The Simulation results verify that adjusting the machining order can improve the harmonic 

response of the part, and revealed that the trends of geometric features remained the same after 

the order was changed. There are two situations where rearranging the operation order could 

improve efficiency: 

1. Arranging a feature that requires high accuracy directly after all features that increase 

natural frequency and stiffness 

2. Selecting a machining order resulting in all features harmonic response improving by 

the arrangement, where all features require the same accuracy 

Breadth-side fixturing from figure 4.44 is an example of the first case, where the holes are 

machined at a higher frequency but decrease the starting frequency for the slots. Length-centre 

and length-side fixturing, figure 4.45 and figure 4.46, are examples of the second case. In both 

fixture setups the holes are machined first at a higher frequency than the original, and increase 

the frequency for the slot operations. For breadth-centre fixturing, figure 4.43,  the original 

machining order was already optimum. By changing the machining order, the holes natural 

frequencies stayed the same, while the slots natural frequency were decreased. The tendency 
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for each operation to increase or decrease natural frequency remained the same for both the 

original and rearranged operation orders. 

 Comparison Between Part 1 and Part 2 

The frequency response for part 1 and part 2 are highly similar in several cases. For mode 1 

the highest frequency response is obtained by length-centre fixturing for both parts. The graphs 

for length-centre fixturing are almost identical for both part 1 and part 2 for mode 1, illustrated 

in figure 4.5 and figure 4.25. This similarity also exists for breadth-centre fixturing, 

particularly for mode 2 illustrated in figure 4.7 and figure 4.27.  

The similarities diminish when comparing the ‘Side’ fixturing setups. Part 1 is symmetrical 

for the majority of its length-side and breadth-side setups. Conversely, part 2 is asymmetrical 

for all of its length-side and breadth-side setups. Comparing the frequency response graphs for 

part 1 and part 2 show different trends for the same setups. An example of this is the length-

side setup for mode 3. Part 1, graphed in figure 4.14, shows the natural frequency first 

decreasing for operations 1 and 2, increasing for operations 3 and 4, and finally decreasing to 

operation 6. Part 2, graphed in figure 4.34, Shows that length-side-b fixturing resulted in the 

highest overall frequencies, with a very different profile to part 1. For part 2, another 

observation is that the length-side-b fixturing shows a mirrored trend to length-side-a fixturing 

for operations 3 to 5. 

When comparing the overall performance, using table 4.1 and table 4.2, it is evident that the 

breadth-centre setup achieves higher frequencies overall for both part 1 and part 2. Both part 

1 and part 2 show similarities, for all modes, with respect to their best performing fixture 

setups. 

 Machining Speeds 

Machining parameters are directly affected by the modes of vibration. The modal frequencies 

must be avoided when selecting parameters, as machining at the natural frequency of the part 

will cause regenerative vibrations. The input frequency of a machining operation is determined 

by the cutting speed and the number of teeth on the cutting tool, and will be referred to as the 

machining input frequency (MIF). Table 4.1 reveals that the first mode of vibration for 

operation 1 was 10283 Hz. This indicates that after the geometric feature of operation 1 has 

been machined part 1 will vibrate at 10283 Hz. Thus, the machining parameters for machining 

operation 1 should be chosen such that the MIF is either greater or smaller than 10283 Hz to 

avoid regenerative vibration. Similarly, the machining parameters for performing operation 2 

should be chosen such that the MIF is either greater or smaller than 9616 Hz.  
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Examining a single operation across all modes reveals the allowable machining input 

frequencies, which are the frequencies between each mode. The natural frequency of part 1 is 

both a constraint on cutting parameters, and a measure of the effective rigidity of a fixturing 

setup.  

6.3 Simulation and Experimental Results  

In both the simulations and experiments, the breadth-centre fixture setup was shown to be the 

best overall performing setup. The experimental results showed that the breadth-centre fixture 

setup had the highest natural frequencies for each mode and operation, with only a few 

exceptions. This result implies that the overall billet shape has a greater effect on the optimum 

fixture setup than the part features. The breadth-centre setup holds the greatest volume of 

material between its fixture surfaces, for the billet shape, which may be the reason for its 

dominant natural frequencies. 

The trends in the experimental natural frequencies with respect to material removal did not 

match those of the simulation results. The simulations showed that operations 1 and 2 

decreased natural frequency, and operation 6 was always at a lower frequency compared to 

operation 1. The experimental frequencies for part 1, arranged in table 5.7, show that the 

material removal from operation 1 to operation 6 generally increases the natural frequency for 

all setups except length-side. 

Upon initial inspection of the simulation results, the percentage difference in natural 

frequencies of part 1 and part 2 for a common mode and fixture setup is relatively small. In 

contrast, the experimental results show noticeable differences in the magnitudes of the natural 

frequencies for part 1 and part 2. 
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6.4 Deflection 

The cause of a particular fixture setup to have a higher natural frequency compared to another 

setup may be related to the modal shape of the part. The modal shapes for length-centre and 

breadth-centre fixturing are illustrated in figures 6.1 (a) and (b) respectively. Although the area 

of deflection for length centre fixturing in (a) is far greater than that in (b) for breadth-centre 

fixturing, length-centre fixturing yielded a higher natural frequency. Table 6.3 shows that the 

length-centre fixture setup had a displacement of 2.99 mm compared to breadth-centres 3.17 

mm. 

 

Figure 6.1 Modal shapes of (a) length-centre and (b) breadth-centre fixturing setups for  

part 1 mode 1 

Figure 6.2 illustrates the 5 modal shapes for part 1, starting with (a) the first harmonic through 

to (e) the fifth harmonic. The second modal shape shown in (b) is identical to the first harmonic 

shown in (a) but with slightly larger areas of displacement. The third and fourth modal shapes, 

pictured in (c) and (d) respectively, have 4 areas of high displacement situated at each corner 

of the part. The fourth mode has slightly larger areas of displacement compared to the third 

mode. The fifth mode, shown in (e), has an identical shape to the first and second harmonic, 

but with noticeably larger areas of displacement. Figure 6.2 infers that there are only 2 unique 

modal shapes for part 1 operation 6, which are repeated numerically with increasingly larger 

displacement areas. Inspecting all the modal shapes for operations 1 through 6 of part 1, for 

breadth-centre fixturing, reveals the same 2 modal shapes consistently throughout. Thus, a 

billet shape may only have a few unique modal shapes for a specific fixture setup regardless 

of the material removal.  

(b) (a) 
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Figure 6.2 Part 1 operation 6 modal shapes under breadth-centre fixturing for (a) mode 1 

 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5 

Table 6.3 shows the deflection data for part 1. The deflections are arranged to illustrate the 

differences between each fixture setup for a particular mode and operation. Fixture setups that 

had the highest frequency, for each mode, are marked with a black dot next to the 

corresponding deflection. The fixture setups that achieved the lowest deflection as well as the 

highest natural frequency are marked with a blue highlighted dot. The table shows that for the 

higher modes and for most of operation 1, the fixture setup that produced the highest natural 

frequency and the lowest displacement was the breadth-centre setup. For part 2 only two cases 

appear where the highest natural frequency coincides with the smallest deflection. Thus, for 

higher order modes of symmetrical workpieces, the deflection may indicate the fixture setup 

with the highest natural frequency. Conversely, the table also illustrates that deflection is 

generally independent of harmonic response, as there is only a moderate correlation for the 

symmetric part 1 and almost no correlation with the asymmetric part 2. Measuring the 

(b) (a) 

(d) (c) 

(e) 
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displacement experimentally to validate the simulations would be difficult due to the 

dependence of deflection on the location where the measurement is taken, as well as 

inexpedient due to the sensor expense and a lack of motivating simulation results.  

Table 6.3 Simulated deflections for part 1 and part 2 

  
  Part 1 deflections (mm) Part 2 deflections (mm) 

Mode: 1 2 3 4 5 1 2 3 4 5  

           

O
pe

ra
tio

n 
1 

Breadth centre 2,98 •2,84 •3,31 3,08 •2,19 •3,09 •3,43 4,74 3,95 •2,37 
Breadth side a 3,22 4,46 4,24 3,23 4,32 3,11 4,53 4,81 •3,18 4,29 
Breadth side b - - - - - 3,31 5,59 •3,66 3,41 5,54 
Length centre •2,84 3,63 3,65 2,9 3,17 4,27 5,61 5,27 5,14 3,65 
Length side a 3,94 3,78 3,87 3,12 3,09 3,79 4,09 3,93 3,52 3,77 
Length side b - - - - - 4,26 4,64 5,06 4,12 4,51 

            

O
pe

ra
tio

n 
2 

Breadth centre 3,12 •3,22 3,2 •3,01 2,77 3,75 5,39 5,73 4,32 9,88 
Breadth side a 3,62 4,4 4,87 3,3 4,25 •3,39 4,46 7,01 •3,27 4,26 
Breadth side b - - - - - 4,58 5,85 •3,77 4,49 5,52 
Length centre •3,63 2,84 3,7 2,96 3,14 5,49 6,59 4,03 5,09 •3,64 
Length side a 4,04 3,73 •3,82 3,58 3,87 3,79 •4,38 3,81 4,57 4,17 
Length side b - - - - - 4,91 4,93 6,62 4,21 5,92 

            

O
pe

ra
tio

n 
3 

Breadth centre 3,2 •3,27 3,25 •3,17 •2,78 3,68 5,46 5,8 4,47 9,89 
Breadth side a 3,59 4,46 4,84 3,32 4,27 •3,39 4,77 7,03 •3,34 4,59 
Breadth side b 3,68 4,59 4,87 3,42 4,67 4,51 5,93 •3,8 4,73 5,52 
Length centre •4,4 4,74 4,43 5,39 3,31 5,58 6,46 4,28 5,11 •3,8 
Length side a 4,16 3,94 •3,99 3,66 4,15 3,79 •4,36 3,81 4,55 4,49 
Length side b 4,04 3,73 3,86 3,58 3,87 5,15 4,81 6,77 4,13 5,96 

            

O
pe

ra
tio

n 
4 

Breadth centre 3,15 •3,24 3,26 •3,13 •2,78 3,65 5,47 5,84 4,6 9,92 
Breadth side a 3,65 4,55 4,83 3,38 4,65 •3,46 4,75 7 •3,39 4,66 
Breadth side b - - - - - 4,32 6,05 •3,75 4,7 5,56 
Length centre •4,3 3,18 3,49 4,56 3,47 5,71 6,29 4,62 5,67 •3,73 
Length side a 4,16 3,87 •3,74 3,92 4,21 3,83 •4,36 3,81 4,57 4,66 
Length side b 4,03 3,72 3,79 3,59 3,88 5,14 4,81 6,7 4,11 5,96 

            

O
pe

ra
tio

n 
5 

Breadth centre 3,22 •3,29 3,33 •3,26 •2,77 3,72 5,43 5,89 4,61 10,14 
Breadth side a 3,72 4,63 4,83 3,43 4,57 •3,39 4,79 6,78 •3,39 4,65 
Breadth side b 3,62 4,6 4,79 3,41 4,66 4,51 5,98 •3,73 4,89 5,42 
Length centre •5,17 4,65 4,75 4,57 3,39 5,71 6,73 4,37 5,29 •3,64 
Length side a 4,17 3,87 •3,71 4,07 4,22 5,13 4,79 6,66 4,17 5,94 
Length side b 4,15 3,93 3,94 3,68 4,15 3,93 •4,55 3,89 4,59 4,65 

            

O
pe

ra
tio

n 
6 Breadth centre 3,17 3,26 •3,31 •3,19 •2,79 - - - - - 

Breadth side 3,68 4,59 4,79 3,41 4,56 - - - - - 
Length centre •2,99 •3,84 3,14 3,88 3,24 - - - - - 
Length side 4,14 3,85 3,75 3,91 4,22 - - - - - 
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6.5 Centre of Volume and Mass 

This section discusses the role that the centre of mass plays in the harmonic response of the 

part. If the material is assumed to be homogenous throughout then the location, and therefore 

equation, for the COM will be the same as that of the centre of volume (COV). Equation (6.1) 

was used to calculate the location of the COV for part 1 and 2:        

𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   = Σ (volume x Distance)
Σ Volume

 =  𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝       (6.1) 

 

Figure 6.3 shows the location of the COV as well as the individual geometric features for (a) 

part 1 and (b) part 2. In each case the COV of the billet is at the geometric centre. The x-y axis 

used for measuring the COV is positioned on the bottom left corner of the billet. The position 

of the COV on the billet before the machining operations is illustrated on figure 6.3 (a) and 

(b) as (x, y) = (36mm, 52mm). 

 

Figure 6.3 Centre of volume position 

Table 6.5 contains the COV positions calculated from equation (6.1). The COV calculations 

were used both to verify that there were no errors in the part CAD geometry, as well as 

investigating the relationship between fixture setups and the COV. The Z component of the 

COV has been neglected in the absence of z-direction changes to the fixture surfaces position. 

Operations 1 and 2 for part 1 do not influence the x and y COV position and have been omitted 

from the table. The results are displayed both as the position from the axis origin, as well as 

the change from billet position. 

(a) (b) 
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Table 6.4 Centre of volume positions for part 1 and part 2 

Centre of volume position 
Part 1 

  
x,y Position Change from billet COV 

x axis (mm) y axis(mm) x axis (mm) y axis (mm) 
Op. 3 35,79 52,34 -0,2 0,34 
Op. 4 35,58 52,00 -0,41 0,00 
Op. 5 35,79 51,66 -0,20 -0,34 
Op. 6 36,00 52,00 0,00 0,00 

Part 2 

  
x,y Position Change from billet COV 

x axis (mm) y axis (mm) x axis (mm) y axis (mm) 
Op. 1 34,89 50,74 -1,11 -1,251 
Op. 2 33,98 49,71 -2,01 -2,286 
Op. 3 33,72 50,08 -2,27 -1,912 
Op. 4 33,94 50,47 -2,05 -1,529 
Op. 5 34,16 50,04 -1,83 -1,951 

 

Figure 6.4 shows the COM position calculated from the CAD model of part 2 operation 5, 

using SolidWorks. The measured COM was (x, y) = (34.15mm, 50.04mm). The calculated 

COV position, read from Table 6.4, matches the measured position. The slight difference in 

the x-position values can be attributed to rounding-off errors in the hand calculations.  

 

Figure 6.4 Centre of mass position calculated by SolidWorks 

Several cases exist where the highest natural frequency, determined by simulation for a 

specific feature, is not produced by the breadth-centre fixture setup. For example, the fixturing 

of part 2 operation 5 for mode 3. The length-side-b fixture setup produces the highest natural 

frequency for monde 3, at 12644 Hz. The COV position had moved downwards, towards the 

length-side-b fixture surface, during the 5 operations. Thus, the position of the COV matches 
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the position of the best performing fixture setup. An examination of the connection between 

the COV and its relationship to the fixture setup for all the cases where a side fixture setup 

produced a maximum harmonic response revealed that in each case the COV moved towards 

the fixture surface.  

Although a logical fixturing strategy might be to clamp the part towards the COM, the COM 

position changes were very small, having a maximum change from the billet location of 

2.27mm. Observations of the COM corresponding to the best harmonic response may be a 

result of the geometry changes relating to the COM, rather than the position of the COM itself. 

6.6 Expert System and Artificial Intelligence 

An expert system is a program that uses artificial intelligence to simulate a human experts 

decision making to solve problems in a specific domain [49]. Expert systems consist of 

knowledge bases and inference engines [50]. The knowledge base consists of organized facts, 

generally represented as ‘if-then’ rules, about the domain. The inference engine is the 

‘intelligence’ part of the expert system, which uses the knowledge base facts to make 

decisions. The purpose of an expert system for chatter control is to select fixturing strategies 

that achieve high-quality machined surfaces in the shortest amount of time possible. The 

machining time is minimized by maximizing stable cutting speeds and feed rates. The more 

rigidly a part is fixtured, the larger its natural frequency will be, which in turn allows 

machining to occur at higher cutting speeds. Thus, the strategy that maximizes rigidity while 

minimizing fixturing time is optimum. The two strategies considered for fixturing with the 

AFFS are: 

1. Individual fixturing setups 

2. The Inclusive fixturing setup 

The individual fixturing setup strategy involves adjusting the fixture for each operation such 

that the machining of that operation occurs at its maximum harmonic frequency. The inclusive 

fixturing setup strategy uses a single fixture setup, that provides the best average frequency 

response for all the operations, for machining the entire part. The following steps are necessary 

in determining which of the two fixturing strategies to use: 

1. Generation of fixturing setups 

2. Selection of optimum fixture setup for each operation 

3. Optimizing machining order 

4. Time analysis of fixture strategies 

Two types of parts must be accommodated by the fixture: parts that are similar to previous 

jobs and new parts. The generation of fixturing setups will create individual setups for ‘new’ 
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parts, after which the optimum fixture setup for each operation must be determined. For a part 

that is similar to previous jobs, the optimum setup can be selected form the expert systems 

knowledge base. The machining order is then optimized for the individual fixturing strategy, 

after which the time analysis and comparison for both the individual and inclusive strategies 

will occur. The time element of the individual strategy will be measured during machining, 

while the inclusive strategy time element will be calculated analytically. At the end of this 

process a fixturing strategy that minimizes chatter will be achieved.  

 Expert System Process Diagrams 

The process of determining a parts optimum fixturing strategy was broken down into three 

parts: Fixture setup generation, fixture setup optimization and operation order optimization. 

Figure 6.5 shows the process algorithm for fixture setup generation. It consists of assigning 

fixture setups to a known part from the knowledge base, and for generating fixture setup 

possibilities for a new part type or new part features.  

 

Figure 6.5 Expert system for fixture setup generation  

The first step is the analysis of the CAD geometry of the part, comparing its billet shape and 

part features to the library. If the billet shape is new the expert system will assign the part to a 

new family group, and then generate the fixture setups for that part based on existing rules. If 

the part has new features the expert system will create new feature types for them, and generate 

fixture setups for those features. The process of generating new fixture setups will result in 

several possibilities for the new part. If the billet shape and features match existing part 

families and feature types, the expert system will assign a known fixture setup to each 

operation of that part. The ‘fixture setup and operation order optimization’ stage of the 

algorithm is a separate process whereby the best fixture setup for each operation of the new 

Load CAD geometry 
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part is determined though the experimental modal analysis. For a known part, this process will 

be used to determine the ideal machining order of the part features. 

The process for verifying fixture setups for a known part, to optimize machining order, is 

shown in Figure 6.6. This is a result of the simulation results which revealed that changing the 

operation order can improve the overall harmonic response of the part by machining features 

that increase the natural frequency before those that decrease it. Although in most simulated 

cases the effect of a certain geometric feature on the natural frequency, whether frequency 

increases or decreases by the addition of that feature, is not affected by other geometric 

features, it is necessary to validate this for new feature arrangements. The process involves 

measuring the harmonic response of the part after each machining operation. Each 

measurement will be compared to those that preceded it, after which the corresponding 

operation will be placed in the appropriate order position. Once the first part has been 

completed all the individual machining operations that make up the part will be ordered from 

highest to lowest harmonic response. The new machining order will be implemented in the 

proceeding machining operations. 

Figure 6.6 starts with loading the billet into the AFFS and performing a vibration test to 

determine the reference harmonic frequency of the part. This will require an input vibration 

signal from a vibration generator such as a sonic transducer. The first machining operation is 

performed and the vibrations are recorded, both during machining and statically. The 

frequency is compared to the other measured frequencies of the part. If it is smaller than the 

other frequencies it is placed at the end of the list. If it is larger than one of the frequencies it 

is placed before that machining operation. If there are machining operations remaining the 

cycle continues until the part is completed and removed from the AFFS. 
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Figure 6.6 Expert system for determining operation machining order through vibration testing 

Figure 6.7 shows the expert system process for ‘verifying fixture setups’ for a part from a new 

part family or one with new feature types. The process involves two unique stages: fixture 

setup optimization and operation order optimization. 

Fixture setup optimization, grouped in the yellow box, is the process whereby the optimum 

fixture setup is determined from the setups generated by the expert system in Figure 6.5. The 

process begins by applying a fixture setup, for a single operation, to the part. A static vibration 

test is performed and its harmonic frequency is recorded. If there is another setup remaining 

the process is repeated, otherwise the optimum fixture setup is chosen based on the recorded 

harmonic frequencies. 

Operation order optimization, grouped in the blue box, begins directly after the optimum 

fixture setup is determined. In this process the fixture setup is applied and its corresponding 

machining operation is performed. The frequency is recorded and used to place the current 

operation in its position, relative to the other operations, on the scale of highest to lowest 

frequency. After the position is established, the process returns to the beginning of the fixture 

setup optimization process for any remaining operations to be completed, otherwise the 
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completed part is unloaded from the AFFS. The final stage determines whether to continue 

with an individual fixture setup strategy, or to use an inclusive fixture setup strategy.  

 

Figure 6.7 Expert system for determining fixture setup strategies for new part geometries 

The two formulae for calculating the time required for each fixturing strategy to complete a 

part are given in equations 6.2 and 6.3. These two formulae are used in the final stage of 

operation order optimization (figure 6.7) to choose between the individual or inclusive 

fixturing strategies. 

If the time taken to apply a single fixture setup can be denoted by 𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑢𝑢, the time to machine 

a feature represented as 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 and the number of features being 𝑋𝑋 then equation 6.1 

describes the total time required to machine a part using the inclusive fixturing strategy: 
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𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +   �𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖

1

𝑋𝑋

 

 

(6.2) 

 

Considering the individual fixturing strategy, if the time taken to change the fixture setup from 

setup 𝑎𝑎 to setup 𝑏𝑏 can be denoted by 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 and the time to machine a feature can be 

represented as 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 , where 𝑋𝑋 is the number of part features and the number of fixturing 

strategies to be implemented is 𝑌𝑌, then the equation describing the total machining time can 

be written as: 

 
𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  �𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎   

1

𝑌𝑌

+  �𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖

1

𝑋𝑋

 

 

(6.3) 

 

Setup a and setup b represent any two adjacent fixture setups in the operation order. The 

number of fixture setups may be less than the number of machining operations. This would 

occur when operations that follow one another, in the machining order, share a common 

individual fixture setup.  

6.7 The AFFS 

The experimental analysis of the harmonics of the AFFS during fixturing exposed a high level 

of dampening when compared to the simulations results. The measured acceleration revealed 

the first 3 harmonics only, and contained a large amount of noise in the signal. These 

phenomena can be attributed to three factors; The load cells, plastic components, and the 

rigidity of the AFFS design. This section will explore the effect of each of these factors on the 

experimental results. 

Load cells were used to keep clamping forces consistent across all the fixturing setups. The 

maximum allowable load of the load cells limited the clamping forces. This maximum 

allowable load before deterioration was 20 kg’s. To limit the risk of overloading the load cells 

the clamping forces were 150 N or 15 kg’s of load. The lower clamping forces limited the 

rigidity of the system and thus limited the amplitude of vibration. 

Several plastic components were used in the AFFS, including the Fixture bed, Parallel gripper 

mounts, and the servo motor mounts. These components are part of the fixture bed assembly. 

The use of plastics over metals in the fixture bed resulted in its rigidity being decreased and 

an increase in its dampening effect. 

The overall rigidity of the AFFS is affected by several design choices. The fixturing arms are 

cantilevered by a large bracket that allows the arms to actuate linearly up and down using a 
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lead screw and a steel runner. The bracket itself is mounted, at its base, to another lead screw 

with a steel runner that allows the bracket to move from side to side. This system produces a 

large amount of bending in the bracket during clamping, particularly when the fixture arm is 

at the upper position on the bracket. The fixture bed is attached to the AFFS base by two 

rotational joints. The joints have a measure of looseness to them from either wear or 

manufacture flaws. This looseness permeates to the fixture bed itself, causing it to rotate 

slightly when locked in place.  Several 3d-printed components inside the fixture bed have poor 

tolerances in their fitment which also cause vibrational interference.  

6.8 Industry 4.0 and the AFFS 

Industry 4.0 is the emergence of the fourth industrial revolution, driven by internet of things 

(IoT) and is the vision of future manufacturing [51]. Manufacturing in industry 4.0 will focus 

on flexibility in customization and production volume [52], with the ultimate goal of  creating 

individualized products in a batch size of one, while maintaining the efficiency of mass 

production [53]. The AFFS technology eliminates the costs involved in manufacturing custom 

fixtures, as well as optimizing the fixturing of workpieces to minimize chatter in machining. 

Thus, the AFFS is a technology essential to achieving the vision of customization in industry 

4.0.  

6.9 Chapter Summary 

Chapter 6 contained a summary of the research findings, discussing the possible causes for the 

trends in the simulation and experimental results. The breadth-centre fixturing strategy had the 

best overall performance for both parts, due to its geometric advantage on minimizing 

deflection. Although there were shortfalls in the experimental testing due to the rigidity and 

plastic use in the gripper bed, the experimental results supported the simulations. An expert 

system methodology for fixture setup optimization was proposed, using vibration testing 

procedures to determine the optimum fixturing setup for the AFFS.  
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7 Chapter 7: Conclusion 

7.1 Aim, Objectives and Research Findings 

The aim of the research was to develop a methodology for fixture setup optimization for the 

AFFS as a means of chatter reduction. The literature review revealed that workpiece chatter 

occurs when the natural frequency of the billet matches that of the cutting tool. Thus, 

maximizing the natural frequency of the billet can allow higher cutting speeds with less risk 

of chatter occurring. The modal simulations and experimentation revealed that fixturing 

position has a significant effect on the natural frequency of a part. The order of machining of 

part features was also shown to play a significant role optimizing the natural frequency. The 

combination of selecting the appropriate machining order in conjunction with optimum 

fixturing strategy maximizes the natural frequency of the workpiece and thus minimizes the 

risk of chatter. 

7.2 Results  

The simulations for part 1 and part 2 showed a strong correlation between fixturing position 

and harmonic response. For both parts, the breadth-centre fixture resulted in the highest 

frequencies for the majority of part features and modes. This was attributed to the overall part 

shape having a greater effect on natural frequency than the individual part features. Part 

features either increased or decreased the natural frequency. Rearranging part features with 

those that increase natural frequency first was shown to optimize the harmonic response. Each 

part features effect to either decrease or increase natural frequency was independent of 

machining order. 

The experimental testing results confirmed the simulation findings that breadth-centre 

fixturing produces the highest natural frequencies for the majority of modes and part features. 

The frequency signals measured were far smaller than the simulated frequencies, and 

contained a high level of noise. This was attributed to several weaknesses in the AFFS due to 

its proof-of-concept nature. This design weakness involved the use of cantilevered fixture arms 

without support structures to reduce deflection, and the reliance on several geared rotational 

mechanisms with poor rotational rigidity. The manufacturing weaknesses included the use of 

3d-printed plastic components, the use of a plastic fixture bed structure, and a poorly 

assembled parallel pin locator mechanism.   

7.3 Summary and Contribution 

This research has shown that for two theoretical parts, the simulated natural frequency was 

affected both by fixture setup and geometry. The fixture setup allowing the highest overall 

natural frequencies was independent of geometry. The arrangement of part features was shown 
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to improve the overall harmonic response of the part. The experimental tests validated the 

simulation results, but were limited by the dampening and interference vibrations of the 

system. These effects were attributed to the use of plastic components in the fixture bed, 

flexion in the fixture arms and play in the rotational mechanisms. The results proved the 

existence of a relationship between fixturing and the harmonic response of a part, and showed 

how fixturing can be used to optimize harmonic response and thus minimize chatter. 

This research contribution is that of an expert planning system for fixture setup generation and 

optimization, based on the static vibrational response of the fixture-part system. The expert 

system is able to determine the ideal fixture setup as well as influence machining operation 

order for chatter free machining conditions. 

7.4 Further Development 

The redesign of the AFFS incorporating stiffer joint mechanisms and fixture arm structures, 

and the replacement of all plastic components with a metal alternative, is imperative in 

improving the natural frequency of the system. This would better enable the simulation results 

for material removal to be validated through experimentation. The relationship between 

machining and natural frequency for different fixture setups should be investigated, focusing 

on the input frequency and cutting forces in relation to fixture position. The redesigned AFFS 

should be put to use in a CNC milling machine to capture vibration information for a large 

variety of parts and machining operations. This vibration information can be used to build a 

knowledge base for the development of the fixture-setup expert system for the AFFS.  
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Appendix A: Load Cell Code 

#include "HX711.h” //using the HX11 library to read the Load Cell values 

HX711 cell1(3, 2); // 

HX711 cell2(5, 4); // 

void setup() { 

  Serial.begin(9600); //setting baud rate to 9600 

} 

long val1 = 0; 

long val2 = 0; 

float count = 0; 

void loop() { 

 

  count = count + 1;   

  val1= 0.5 * val1    +   0.5 * cell1.read(); //take recent average (cell1.read is the HX711 load cell 

reading) 

  val1 = cell1.read(); //most recent reading   

  Serial.println( ( val1 - 8385700 ) / 102.5 ); //Scaling the reading to Kg’s  

 

Val2 = 0.5 * val2    +   0.5 * cell2.read(); //take recent average (cell2.read is the HX711 load cell 

reading) 

  Val2= cell2.read(); //most recent reading   

  Serial.println( ( val2 - 8385700 ) / 102.5 ); //Scaling the reading to Kg’s  

 

} 
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Appendix B: LabVIEW Code 
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Appendix C: Machine Drawings 
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