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ABSTRACT 

Globally, soil erosion by water is often reported as the worst form of land degradation owing 

to its adverse effects, cutting across the ecological and socio-economic spectrum. In general, 

soil erosion negatively affects the soil fertility, effectively rendering the soil unproductive. 

This poses a serious threat to food security especially in the developing world including 

South Africa where about 6 million households derive their income from agriculture, and yet 

more than 70% of the country’s land is subject to erosion of varying intensities. The Eastern 

Cape in particular is often considered the most hard-hit province in South Africa due to 

meteorological and geomorphological factors. It is on this premise the present study is aimed 

at assessing the spatial and temporal patterns of water-borne erosion in the Umzintlava 

Catchment, Eastern Cape, using the Revised Universal Soil Loss Equation (RUSLE) model 

together with geospatial technologies, namely Geographic Information System (GIS) and 

remote sensing. Specific objectives were to: (1) review recent developments on the use of 

GIS and remote sensing technologies in assessing and deriving soil erosion factors as 

represented by RUSLE parameters, (2) assess soil erosion vulnerability of the Umzintlava 

Catchment using geospatial driven RUSLE model, and (3) assess the impact of 

landuse/landcover (LULC) change dynamics on soil erosion in the study area during the 

period 1989-2017.  

To gain an understanding of recent developments including related successes and challenges 

on the use of geospatial technologies in deriving individual RUSLE parameters, extensive 

literature survey was conducted.  An integrative methodology, spatially combining the 

RUSLE model with Systeme Pour l’Obsevation de la Terre (SPOT7) imagery within a digital 

GIS environment was used to generate relevant information on erosion vulnerability of the 

Umzintlava Catchment. The results indicated that the catchment suffered from unprecedented 

rates of soil loss during the study period recording the mean annual soil loss as high as 

11 752 t ha−1yr−1. Topography as represented by the LS-factor was the most sensitive 

parameter to soil loss occurring in hillslopes, whereas in gully-dominated areas, soil type (K-

factor) was the overriding factor. In an attempt to understand the impact of LULC change 

dynamics on soil erosion in the Umzintlava Catchment from the period 1989-2017 (28 years), 

multi-temporal Landsat data together with RUSLE was used. A post-classification change 

detection comparison showed that water bodies, agriculture, and grassland decreased by 

0.038%, 1.796%, and 13.417%, respectively, whereas areas covered by forest, badlands, and 
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bare soil and built-up area increased by 3.733%, 1.778%, and 9.741% respectively, during the 

study period. The mean annual soil loss declined from 1027.36 t ha−1yr−1 in 1989 to 138.71 

t ha−1yr−1 in 2017. Though soil loss decreased during the observed period, there were 

however apparent indications of consistent increase in soil loss intensity (risk), most notably, 

in the elevated parts of the catchment. The proportion of the catchment area with high (25 – 

60 t ha−1yr−1) to extremely high (>150 t ha−1yr−1) soil loss risk increased from 0.006% in 

1989 to 0.362% in 2017. Further analysis of soil loss results by different LULC classes 

revealed that some LULC classes, i.e. bare soil and built-up area, agriculture, grassland, and 

forest, experienced increased soil loss rates during the 28 years study period. Overall, the 

study concluded that the methodology integrating the RUSLE model with GIS and remote 

sensing is not only accurate and time-efficient in identifying erosion prone areas in both 

spatial and temporal terms, but is also a cost-effective alternative to traditional field-based 

methods. Although successful, few issues were encountered in this study. The estimated soil 

loss rates in Chapter 3 are above tolerable limits, whereas in Chapter 4, soil loss rates are 

within tolerable limits. The discrepancy in these results could be explained by the differences 

in the spatial resolution of SPOT (5m * 5m) and Landsat (30m * 30m) images used in 

chapters 3 and 4, respectively. Further research should therefore investigate the impact of 

spatial resolution on RUSLE-estimated soil loss in which case optical sensors including 

Landsat, Sentinel, and SPOT images may be compared.             

Keywords: Water-borne erosion; Optical remote sensing; Geographic Information System 

(GIS); Revised Universal Soil Loss Equation (RUSLE); Land use/land cover (LULC) 

change; Umzintlava Catchment 
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1.1. Soil erosion in context 

Increasingly, soil erosion is internationally recognised as one of the most critical forms of 

land degradation adversely affecting the productivity of terrestrial ecosystems including land 

(Lal and Stewart, 1990; Pimentel and Kounang, 1998; Pimentel, 2006). In general, it is the 

most fertile topsoil that is eroded, resulting in loss of arable land (Huete, 2004). Over the past 

40 years or so, almost one-third (30%) of the world’s productive land has been lost to the 

consequences of soil erosion (Lal., 2003; Yang et al., 2003; Jahun et al., 2015). A threat to 

land productivity is a threat to agricultural productivity. Currently, about 80% of the world’s 

agricultural land suffers moderate to severe erosion, whilst the remainder experiences slight 

erosion (Pimentel, 1993; Lal, 1994). Consequently, it is estimated that about 1 billion people 

worldwide are currently at risk of soil erosion whereas over 250 million are directly affected 

(Adger et al., 2001). Due to these devastating effects, soil erosion still remains a source of 

serious concern not only in the developing world but also in the developed world, where 

persistent and often successful soil conservation efforts have been made (Carter, 1977).  

The developing world however, unlike its developed counterparts, which are relatively 

industrialised and technologically advanced, suffers the most, primarily because of its 

reliance on agriculture. An example is Africa, where agriculture plays a pivotal role in job 

creation, contributing to economic growth. According to the New Partnership for Africa’s 

Development (NEPAD, 2013), nearly half (48%) of the African population relies on 

agriculture, yet the continent is said to have the highest proportion of eroded agricultural land 

(Scherr and Yadav, 1997). It is reported that the continent records an annual average yield 

losses of about 8.2% from past erosion (Ashiagbor et al., 2013). If this trend continues 

unabated, yield reductions by 2020 may exceed 16% (Lal, 1995), potentially undermining 

food security in many countries across the continent. South Africa for instance, is one country 

in the continent where about 6 million households derive their income from agriculture 

(Department of Agriculture - DoA, 2007).   

Unfortunately, more than 70% of South Africa’s land is affected by soil erosion of varying 

intensities (Garland et al., 2000), costing the country about R12 billion per year (Hoffman 

and Ashwell, 2001). The Eastern Cape is often considered the most hard-hit province in 

South Africa due to meteorological and geomorphological factors. In this province, soil 

erosion negatively affects not only land as a natural resource and part of the terrestrial 

ecosystem but also its availability for sustainable livelihood. The latter is particularly true in 

most rural areas of the province where most households primarily rely on subsistence 
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agriculture for their livelihoods (Phinzi and Ngetar, 2017). Although national food security 

may not be in jeopardy, household food security is (De Villiers et al., 2003). This background 

provides the impetus to assess the spatial and temporal patterns of soil erosion in affected 

areas. The assessment of soil erosion however, requires an understanding of erosion 

processes and related factors (Renard et al., 2011) because spatial and temporal patterns of 

soil erosion are a direct product of complex interactions of such erosion processes and factors 

(Mitasova et al., 2013).               

1.2. Understanding soil erosion by water 

It is difficult if not impossible to provide a satisfactory definition of soil erosion considering 

the multiplicity of processes and factors involved in erosion which all vary in both spatial and 

temporal terms. Perhaps, it is for this reason many definitions of soil erosion exist (e.g. 

Meyer, 1975; Boardman et al., 1990; Ritchie, 2000; Huete, 2004; Morgan, 2005; Kinnel, 

2010). Although there is no universal definition of soil erosion, there is however a general 

consensus amongst scholars that soil erosion is a three-fold process, comprising of 

detachment, transportation, and deposition phases (Foster and Meyer, 1972; Merritt et al., 

2003). For the purpose of this study, the definition provided by Meyer and Wischmeier 

(1969) is adopted since it captures all three erosion phases (i.e. detachment, transportation, 

and deposition) which are critical when assessing soil erosion. Meyer and Wischmeier (1969) 

define soil erosion by water as the process involving the detachment, transportation, and 

deposition of soil particles due to erosive forces of raindrops and runoff. To fully appreciate 

soil erosion, the underlying processes related to detachment, transportation, and deposition 

ought to be understood.  

1.2.1. Detachment 

Defined as the removal or entrainment of soil particles either by rainfall or runoff, 

detachment marks the beginning of soil erosion (Ghadiri, 2004) and occurs when the shear 

stress exceeds the cohesive strength of soil particles (Merritt et al., 2003). Rainfall initiates 

erosion as soon as the falling raindrops hit the soil surface, detaching soil particles and 

causing them to splash into the air, hence the name splash erosion (Parlak and Parlak, 2010). 

The capacity of rainfall to detach soil particles is a function of raindrop impact size, kinetic 

energy, duration, drop velocity, soil properties, and slope steepness (Meyer and Wischmeier, 

1969; Cruse et al., 2000; Ran et al., 2012). Once detached or at least left in a detachable state 

(Lal, 2001), such soil particles can easily be transported with the aid of overland flow.   
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1.2.2. Transportation  

Transportation of soil particles by overland flow occurs in two forms, viz. sheet and rill 

erosion. When overland flow results in the uniform removal of soil particles from the entire 

slope, the resulting erosion form is called sheet erosion. Sheet erosion is sometimes used 

interchangeable with interrill erosion, but in general, the latter accounts for both splash and 

sheet erosion (Wei et al., 2009). In other words, interrill erosion results from the rainfall that 

detaches (splash erosion) soil particles from the soil surface and transports them in a thin 

sheet (Jayawardena and Bhuiyan, 1999). Interrill erosion is termed so because it occurs on the 

lands between the rills (Morgan, 2005). Rill erosion is caused by small but concentrated 

overland flows (Mitasova et al., 2013), which are characterised by V-shaped channels of less 

than 30cm deep within which soil particles are transported as suspended load (Nill et al., 

1996). Overtime, rills may evolve into deep and large channels created by overland flow 

through headwall migration (Mitasova et al., 2013; Luffman et al., 2015), resulting in gully 

erosion. Gully erosion can also develop from subsurface erosion (also called piping). Upon 

the collapse of a pipe roof for instance; gully erosion may be initiated (Beckehdahl and De 

Villiers, 2000). 

1.2.3. Deposition  

A third phase of erosion, deposition, may occur at any point depending on the capacity of the 

erosive agent, in this case water, to carry soil particles. As Morgan (2005) notes, when 

sufficient energy is no longer available to transport the particles, deposition takes place. In 

general, the carrying capacity of the overland flow is reduced by decrease in velocity (Lal, 

2001). Deposition can be caused by anything that slows or reduces runoff and causes 

sediment to deposit (Renard et al., 2011). Among other things, an increase in surface 

roughness caused by management change (e.g. a strip of dense vegetation, or decrease in 

slope steepness) can lead to deposition of sediments (Renard et al., 2011). 

1.3. Assessment of water-borne erosion 

The assessment of soil erosion caused by water has been traditionally confined to man-made 

erosion plots or small sub-catchments using empirical models such as the Universal Soil Loss 

Equation (USLE) (Wischmeier and Smith (1978), or Revised USLE (RUSLE) (Renard et al., 

1991; Renard et al., 1997). Although considerable successes have been achieved with these 

models, the results of small-plot studies are difficult to extrapolate to the catchment level, due 

to the necessity of sampling temporal and spatial variability (Huete, 2004; Li et al., 2011), 

which can be both costly and time-consuming. However, the availability of geospatial 
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technologies related to Geographic Information System (GIS) and remote sensing have made 

the soil erosion assessment using the RUSLE model more comprehensive and robust (Wang 

et al., 2003), curtailing exorbitant fieldwork expenditures (Peng et al., 2003). A plethora of 

research is available on the use of these technologies in conjunction with RUSLE (Jain and 

Das, 2010; Mhangara et al., 2012; Alkharabsheh et al., 2013; Ostovari et al., 2017).  

In South Africa however, literature survey reveals that substantial research has yet to be done 

on the integration of RUSLE and remote sensing within a digital GIS environment to 

understand spatial and temporal patterns of soil erosion in relation to land use/land cover 

(LULC) change dynamics at catchment level. In data poor countries like South Africa, optical 

remote sensing including freely available Landsat and Systeme Pour l’Obsevation de la Terre 

(SPOT) data, may be the only feasible and cost-effective means that can be relied on if 

effective management and monitoring of soil resources are to be achieved at catchment level. 

It is for the latter reason that the present study intends to assess soil erosion using readily 

available optical remotely sensed data in conjunction with RUSLE.        

1.4. Aim 

Based on the above observations (Section 1.3), the main aim of this study was to assess the 

spatial and temporal patterns of water-borne erosion in the Umzintlava Catchment, Eastern 

Cape, using the RUSLE model in conjunction with geospatial technologies related to GIS and 

remote sensing.  

1.5. Objectives 

The specific objectives of this study were: 

1) To review recent developments on the use of GIS and remote sensing technologies 

in assessing and deriving soil erosion factors as represented by RUSLE parameters. 

2) To assess soil erosion risk in the Umzintlava Catchment using a geospatial driven 

RUSLE model. 

3) To assess the impact of land use/land cover (LULC) change on soil erosion in the 

Umzintlava Catchment during the period 1989 – 2017. 

1.6. Description of study area 

The study was conducted in the Umzintlava Catchment (T32E). Occupying about 382km², 

the catchment is located in the Eastern Cape, one of the most severely eroded provinces in 

South Africa (Figure 1.1). Geographically, the catchment extends between latitudes 30º36'55"     
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Figure 1.1 Location of study area. The true colour composite image was generated using Landsat-8 bands 2 (Blue), 3 (Green), and 4 (Red) (Data 

source: United Sates Geological Survey and the School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, 

Howard College, Durban, South Africa).   
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1 Note: The abbreviations SA and EC in the legend stand for South Africa and Eastern Cape, respectively. 
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S and 30º49'28" S to longitudes 29º32'34" E and 29º14'26" E. It is located on the western section 

of Umzimvubu Local Municipality, bordered by KwaZulu-Natal on the north and north-west, 

and by Ntabankulu and Mbizana Local municipalities on the south and south-west. The major 

rivers draining the catchment are Umzintlava River, followed by Mvalweni River and its 

tributaries. Like in most rural areas of South Africa, the majority of inhabitants in the 

Umzintlava Catchment are involved in agriculture in the form of livestock and crop farming at 

subsistence level.       

1.6.1. Climate  

The climate of the study area has been described by Boardman et al. (2003) and falls under that 

of Umzimvubu Municipality which can be classified as semi-arid with warm and rainy summer 

months (e.g. November to January) as well as dry and cold winter months (e.g. May to July) with 

occasional snowfalls. The average minimum temperatures range from 7 ºC to 10 ºC in winter and 

18 ºC to 30 ºC in summer with the annual rainfall of 671mm. Convectional thunderstorms, 

tornados, and floods are generally experienced during summer (Boardman et al., 2003).   

1.6.2. Topography 

The catchment is characterised by hills and mountains (Integrated Development Plan-IDP, 

2013), with the latter dominating the south-eastern, eastern, and northern parts of the catchment 

(Appendix A). In terms of elevation, mountains vary from 1490m to 2015m above sea level. 

With an altitude of approximately 890m to 900m above sea level, low lying areas are found on 

the central parts of the catchment. 

1.6.3. Vegetation 

Forest, Thicket, and Grassland biomes characterise the study area, with latter occupying a 

significant portion of the area. Three major vegetation types as per Acocks’s (1988) 

classification are found within the Umzintlava Catchment. These include the Temperate and 

Transitional Forest and Scrub Types (Highland Sourveld and Dohne Sourveld) which are widely 

distributed across high lying areas, the False Grassveld Types (Southern Tall Grassveld), as well 

as the Karoo and Karroid Types (Vally Bushveld) which typically occur in areas of low elevation 

(Appendix B). 
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1.6.4. Soils 

The study area is covered by six broad soil types (Appendix C), namely, Fa, Ac, Aa, Ab, Ea, and 

Ib soils, as classified by Agricultural Research Council – Institute for Soil, Climate, and Water 

(ARC-ISCW, 2006). Associated with rocky and shallow lithosols (Council for Geoscience 

report, 2012), the Fa land type dominates with more than 65% coverage of the total surface area 

(e.g. 382 km²) of the Umzintlava Catchment. The Ib land type which is characterised by rock 

outcrops covers the least aerial extent of the catchment. In general, most of the soils found within 

the study area are predominantly red-yellow apedal freely drained soils providing lands with 

great potential for cropping owing to the high levels of iron and other minerals in such soils 

(IDP, 2013).    

1.7. Thesis outline 

This thesis consists of five chapters beginning with the introductory chapter (Chapter 1) and 

ending with the concluding chapter (Chapter 5). In between these chapters, are Chapters 2, 3, and 

4 presented as a series of individual journal articles addressing the first, second, and third 

objectives of the study, respectively. These three chapters have been written as manuscripts, 

submitted for publication in the Department of Higher Education and Training (DHET) 

accredited peer-reviewed journals. Although each chapter has been written as a separate research 

manuscript which can be read independently from the thesis, each chapter is linked to the main 

aim of the study. For this reason, there are some replications and overlaps in the ‘introduction’ 

and ‘method’ sections of individual chapters. To avoid duplication of references, a single 

reference list for the entire thesis was compiled. A brief overview of each chapter is provided 

below.       

Chapter 1 has presented a general introduction to the thesis, outlining the research aim and 

objectives including the description of study area. 

Chapter 2 provides an overview of recent developments on the use of GIS and remote sensing 

technologies in deriving individual RUSLE factors, placing an emphasis on related successes and 

challenges. The chapter also highlights gaps in the literature. 

Chapter 3 focuses on the erosion risk assessment in the study area, using the RUSLE model 

coupled with GIS and remote sensing. In this chapter, quantitative and qualitative information on 
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areas susceptible to soil erosion within the catchment is provided. RUSLE-derived soil loss and 

remote sensing-classified soil erosion map are spatially integrated in a digital GIS environment. 

Also, the relationship between soil loss and each RUSLE parameter is statistically explored. 

Chapter 4 explores the relationship between LULC change and soil erosion from 1989-2017. 

Multispectral Landsat data, available free of charge, are utilised to study LULC changes from 

1989 to 2017. The temporal and spatial patterns of soil erosion as influenced by LULC change 

dynamics are analysed.   

Chapter 5 presents a synthesis of different chapters, summarising findings, contributions, and 

providing concluding remarks. Directions for future research are also outlined in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Phinzi, K. and Ngetar, N.S. (In Revision). The assessment of water-borne erosion at catchment 

level using GIS-based RUSLE and remote sensing: A review. International Soil and Water 

Conservation Research. 
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 Abstract 

Soil erosion is a direct product of the complex interactions between natural and anthropogenic 

factors. Such factors vary over space and time, making the assessment of soil erosion even more 

difficult. Empirical models such as the Revised Universal Soil Loss Equation (RUSLE) provides 

a rather simple and yet comprehensive framework for assessing soil erosion and its causative 

factors. RUSLE considers rainfall (R), topography (LS), soil erodibility (K), cover management 

(C), and support practice (P) as important factors affecting soil erosion. In the past few years, 

RUSLE has benefited tremendously from advances in geospatial technologies like Geographic 

Information System (GIS) and remote sensing. In this paper, an overview of recent developments 

on the use of these geospatial technologies in deriving individual RUSLE factors is provided, 

placing an emphasis on related successes and challenges. This review is expected to improve the 

understanding of the role played by such technologies in deriving RUSLE parameters despite 

existing challenges. Future research, however, must pay special attention to error assessment of 

remote sensing-derived RUSLE parameters.     

Keywords: Soil erosion; Revised Universal Soil Loss Equation (RUSLE) parameters; 

Geographic Information System (GIS); Remote sensing              

2.1. Introduction                 

Soil erosion by water is often reported as the worst form of land degradation with serious 

environmental and socio-economic ramifications (Oldeman et al., 1991; Fu et al., 2006; Rahman 

et al., 2009; Aiello et al., 2015). Throughout the world, the struggle to combat soil erosion and 

other forms of land degradation has drawn the attention of decision-makers, land managers and 

politicians (Röder and Hill, 2009). This is reflected in numerous global initiatives including but 

not restricted to Global Land Assessment of Degradation (GLASOD), United Nations 

Convention to Combat Desertification (UNCCD), as well as the United Nations Environment 

Programme (UNEP) (Röder and Hill, 2009). Due to this worldwide concern, the invaluable role 

increasingly played by erosion models in estimating soil loss at catchment levels cannot be 

overemphasized. Modelling soil erosion provides both quantitative and qualitative estimation of 

the phenomenon under various conditions (Aiello et al., 2015). In addition to estimating spatial 

and temporal patterns of soil loss, erosion models serve as a guide to policy formulation and 
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implementation of effective strategies on the conservation of soil and water resources at 

catchment levels (Smith, 1999; Prasannakumar et al., 2012; Farhan et al., 2013).  

Several models have been developed around the world for the assessment of water-borne erosion 

(Lal, 2001), ranging from physical (Beasley et al., 1980; Laflen et al., 1991; Yu et al., 1997), 

conceptual (Johanson et al., 1980; Viney and Sivalapan, 1999), and empirical (Wischmeier and 

Smith, 1978; Mitasova et al., 1996; Renard et al., 1997) models. Empirical models are generally 

the simplest (Merritt et al., 2003), with comparative ease of application and less computational 

requirements (Eisazadeh et al., 2012); hence the most preferred and widely used models 

worldwide. The assessment of soil erosion using empirical-based models has long been an active 

research topic (Aiello et al., 2015). The so-called Universal Soil Loss Equation (USLE) initially 

introduced in the mid-1960s (Wischmeier and Smith, 1965) and improved in late 1970s 

(Wischmeier and Smith, 1978), is possibly the most widely applied and accepted erosion 

empirical model worldwide. Over the past few decades, USLE has undergone significant 

modifications resulting to improved versions such as the Modified USLE (MUSLE) developed 

by Williams and Berndt (1977), Soil Loss Estimation Model for Southern Africa (SLEMSA) 

developed by Elwell (1977), and Revised USLE (RUSLE) proposed by Renard et al. (1991) and 

Renard et al. (1997). Amongst these models, RUSLE has proven to be the most frequently used 

computer-based model (Alexakis et al., 2013) which provides a clear perspective for 

understanding the interaction of erosion and its causative factors (Xiao et al., 2015).    

As a computer-based model, RUSLE has tremendously benefited from the burgeoning computer 

processing power, and even more so from the advances in Geographic Information System (GIS) 

and remote sensing technologies. Although important challenges still remain despite these 

technological advances (Boardman, 2006), previous studies have shown that such geospatial 

technologies make the determination of soil erosion and its spatial distribution attainable at 

limited costs and with reasonable accuracies (Wang et al., 2003). Recently, a growing number of 

studies using the RUSLE model took advantage of these technologies more than before 

(Rodriquez and Suarez, 2012; de Carvalho et al., 2014; Panagos et al., 2015, Lazzari et al., 2015; 

Noori et al., 2016; Tamene et al., 2017). However, little effort has been directed towards 

understanding the role of GIS and remote sensing in estimating the RUSLE parameters, 

providing a rationale for this paper to review the role of these geospatial technologies, outlining 
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recent developments and challenges. In the next section, a brief overview of erosion modelling 

using the RUSLE procedure is provided. The second section reviews the utility of GIS and 

remote sensing in estimating individual RUSLE factors including associated developments and 

challenges. The final section presents summary and concluding remarks.  

2.2. An overview of the RUSLE model for erosion assessment 

Soil erosion results from a synergy of natural and anthropogenic factors. Accordingly, erosion 

assessment requires the specific knowledge of such factors (Aiello et al., 2015). Using traditional 

methods relating to field measurements, though detailed and accurate at plot scales, these can be 

difficult or even inappropriate to employ at catchment levels given that they require considerable 

amount of time, money, and effort. RUSLE provides an ideal framework for assessing soil 

erosion and its factors. Specifically, RUSLE considers rainfall (R), topography (LS), soil 

erodibility (K), cover management (C), and support practice (P) as important factors affecting 

soil erosion. Like its predecessor (USLE), RUSLE maintains the same empirical principles and 

fundamental structure (Renard et al., 1994; Farhan et al., 2013). The models can both be 

mathematically expressed as (Renard et al., 2011):  

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃                [1] 

Where A is the mean annual soil loss rate (t ha−1yr−1)2, R is the rainfall erosivity 

(MJ mm. m−2h−1)3, K is the soil erodibility factor  (t ha J−1mm−1)4, LS is slope length and 

slope steepness factor (dimensionless), C is the cover and management factor (dimensionless), 

and P is the support practice factor (dimensionless).  

Various setbacks surrounding USLE model have been identified and rigorously discussed in the 

literature (i.e. Renard et al., 1994; Hann et al., 1996; Smith, 1999; Lin et al., 2002; Kinnell, 

2005) and will therefore not be treated here. The introduction of RUSLE was a direct attempt to 

address USLE limitations. Some of the most prominent modifications of RUSLE include, among 

others (see Renard et al., 1991; Eisazadeh et al., 2012; Mitasova et al., 2013):  

 Correction of the classical USLE factor-R to account for rainfall on ponded water.  

                                                 
2 t (tons),  ha ( hectare), and  yr (year)  
3 MJ (megajoule), mm (millimetre), m (metre), and  h (hour) 
4 J (joule) 
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 Derivation of topographic parameters from digital elevation model (DEM).  

 Introduction of new equations based on the ratio of rill to interrill erosion that 

accommodate complex aspects of the LS-factor.  

Given the same structure and basic empirical principles as the classical USLE model, RUSLE 

suffers the same limitations as its predecessor. Listed below are some of the limitations 

associated with RUSLE as found in Tran et al. (2002), Merritt et al. (2003) and Kinnell (2005): 

 RUSLE only accounts for soil loss resulting from sheet/interill and rill erosion, and does 

not consider gully erosion. 

 The model does not directly represent sediment yield from the catchment.  

 In the RUSLE expression, there is no explicit consideration of runoff (an important factor 

of erosion); instead, runoff is incorporated within the R-factor. 

 RUSLE was originally developed to estimate the annual soil loss based on a single storm 

and its application for individual storm events leads to large errors.  

In spite of these major drawbacks, the use of the RUSLE model increases almost on a day by day 

basis (Noori et al., 2016), because the model still represents a good compromise between easy 

applicability and accuracy of the derived soil loss estimates (Risse et al., 1993). Such 

proliferation in the use of RUSLE can also, to a large degree, be attributed to the advances in 

GIS and remote sensing technologies. When combined with GIS and remote sensing, RUSLE 

has proven to be an important tool for soil conservation planning in different areas around the 

world including Brazil (Lu et al., 2004), South Africa (Mhangara et al., 2012), India (Kumar and 

Kushwaha, 2013), Jordan (Alkharabsheh et al., 2013), Ethiopia (Tadesse et al., 2017), Italy 

(Napoli et al., 2017) and many other countries. While several reviews have covered the 

application of space-borne remote sensing in water erosion assessment and monitoring (e.g. 

Vrieling, 2006; Sepuru and Dube, 2017; Seutloali et al., 2018), no specific attempt has been 

made to review the use of GIS and remote sensing in deriving RUSLE parameters until now.        

2.3. Derivation of RUSLE parameters using GIS and remote sensing 

Interest in the use of GIS and remotely sensed data to derive RUSLE parameters is growing. The 

former is defined as any computer based set of procedures used to store and manipulate 

geographically referenced data (Aronoff, 1989). As per this definition, in RUSLE modelling, 
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GIS is commonly used for data analysis, management and visualization of the results, in addition 

to combining RUSLE factors within a single digital environment. On the other hand, remote 

sensing, which is defined as the science and art of acquiring information about material objects 

from measurements made at a distance and without coming into physical contact with the objects 

(Johannsen and Barney, 1981), serves as a main data source from which RUSLE parameters can 

be directly or indirectly estimated. This article focuses on satellite remote sensing as opposed to 

airborne (e.g. aerial imagery, Lidar, and airborne radar data) and proximal (e.g. 

spectroradiometer) remote sensing. Satellite remote sensing data are available from a wide 

variety of sensors covering the optical (Table 2.1) and microwave (Table 2.3 and Table 2.7) 

regions of the electromagnetic spectrum.  

First launched in 1972, Landsat provides the oldest archive of images from different sensors 

ranging from Landsat Multispectral Scanner (MSS) to Landsat Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS). With a spatial resolution of 30 m, Landsat remains one of 

the most commonly used satellite images in erosion modelling (Figure 2.1). Other low or 

medium spatial resolution sensors include Advanced Spaceborne Thermal Emission and 

Reflection (ASTER), Sentinel, Linear Imaging Self-scanning Sensor (LISS), and Systeme Pour 

l’Observation de Terre SPOT. As illustrated in Table 2.1, the acquisition costs for most of these 

images is generally low or even completely free for some. High spatial resolution sensors such as 

IKONOS, GeoEye, and QuickBird are also available for assessing erosion factors. However, 

high acquisition costs often limit their usage (Napierallski et al., 2013) for erosion assessment 

over large areas. Illustrated in Figure 2.1, is the percentage (%) proportion of RUSLE-based 

studies conducted worldwide using the sensors mentioned in the preceding paragraph for 

assessing individual RUSLE parameters such as K-factor, LS-factor, C-factor, and P-factor. 

Though the climate factor (R-factor) can be retrieved from other parts of the electromagnetic 

spectrum, for example, the microwave region (discussed later in this article), there is apparently 

no optical remote sensing application in literature for assessing the rainfall characteristics 

(Vrieling, 2006). Hence, the R-factor has not been considered in Figure 2.1. As portrayed in 

Figure 2.1, though conducted at catchment scales, the majority of RUSLE studies use medium 

spatial resolution sensors to assess the cover management (C) factor. Landsat for instance, has 

been the most frequently used sensor worldwide for estimating the C-factor while ASTER data   
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Table 2.1 Characteristics of available optical remote sensing data for erosion assessment at catchment scales 

Satellites (operational period) Sensor٭ Spatial resolution  Spectral 

resolution 

Use in soil erosion assessment Cost  

Landsat 1,  2 and 3 (1972 – 1983) 

Landsat 4 and 5 (1982 – 1999) 

Landsat 7 (1999 – present)  

Landsat 8 (2013 – present) 

 

MSS 

TM 

ETM+ 

OLI and TIRS 

80 m 

30 m and 120 m 

30 m  

30 m and 100 m 

4 

6 

8  

11 

Vegetation cover, soil erosion, and 

land use/land cover (LULC) mapping. 

Evaluation of soil properties. Most 

suited for large catchment areas.  

Free               

 

 

  

IRS-1A and 1B (1988 – 1991) 

IRS-1C and 1D (1995 – 1997) 

LISS-1, and 2 

LISS-3 and 

PAN 

 

72.5 m, 36.25 m 4 

1-3 

Vegetation cover, soil erosion, and 

LULC mapping. Mapping of soil 

attributes. Suitable for large catchment 

areas. 

 

Free/low 

Terra (1999 – present) 

 

ASTER 15 m, 30 m and 90 

m 

14 Topographic features (e.g. slope 

steepness and length) extraction. 

Suitable for medium and large 

catchment applications. 

 

Free 

Santinel-1A and 2A (2014 – 

present) 

 10 m, 20 m and 60 

m   

13 Vegetation cover, soil erosion, and 

LULC mapping in small to large 

catchment areas. Suited for spectral 

characterization of soil properties. 

Free      

 

 

 

 

SPOT 1, 2 and 3 (1986 – 1993) 

SPOT 4 and 5 (1998 – present) 

SPOT 6 and 7 (2012 – present) 

 

HRV 

HRVIR and 

HRG 

NAOMI 

10 m, 20 m  

10 m, 20 m 

6 m 

1 

1- 4 

4 

Vegetation, soil erosion, and LULC 

mapping at small, medium, and large 

catchments. Extraction of topographic 

parameters. 

 

Free/low 
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Table 2.1 (Continued) 

Satellites (operational period) Sensor٭ Spatial resolution  Spectral 

resolution 

Use in soil erosion assessment Cost  

IKONOS  (1999 – present) 

 

PAN, MS 1 m, 4 m 

 

5 

 

Vegetation, soil erosion, and LULC 

mapping at fine resolution scales (e.g. 

sub-catchment and small catchment 

areas). Also allows for topographic 

features characterization at similar 

scales. 

High 

QuickBird (2001 – present) 

 

PAN, MS 

 

0.61 m, 2.4 m 

 

5 

 

Allows for vegetation, LULC mapping 

and detection of small erosion features. 

Topographic feature extraction 

(stereoscopic images). Most suited for 

sub-catchment to very small catchment 

applications. 

 

High         

 

 

 

 

GeoEye (2008 – present) 

 

HRG 

 

0.41 m, 1.65 m 

 

5 

 

Detailed vegetation, soil erosion, and 

LULC mapping. Topographic features 

extraction and characterization. Most 

suited for sub-catchment to very small 

catchment applications. 

 

High  

WorldView (2007 – present) 

 

 

 

PAN, MS 0.46 m, 2 m 8 Detailed vegetation, soil erosion, and 

LULC mapping. Topographic feature 

extraction and quantification of soil 

attributes. Suited for sub-catchment to 

very small catchment applications. 

 

High  

 MSS (Multi Spectral Scanner); TM (Thematic Mapper); ETM+ (Enhanced Thematic Mapper plus); OLI (Operational Land Imager); TIRS (Thermal Infrared٭

Sensor); LISS (Linear Imaging Self-scanning Sensor); ASTER (Advanced Spaceborne Thermal Emission and Reflection); HRV (High Resolution Visible); 

HRVIR (High Resolution Visible Infrared); HRG (High Resolution Geometry); NAOMI (New AstroSat Optical Modular Instrument); PAN (Panchromatic); MS 

(Multispectral).  
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Figure 2.1 Proportion of studies conducted worldwide that used different sensors in estimating 

RUSLE parameters. Note: This Figure was generated by the authors of this article from different 

search engines including Google Scholar and Science Direct, using key words like erosion 

modelling, RUSLE parameter derivation, GIS, and remote sensing. 

has been commonly used for deriving the LS-factor. A more detailed review of the application of 

these sensors in estimating individual RUSLE parameters is presented in subsequent sections.  

2.3.1. Rainfall (R) factor          

Rainfall is a prerequisite for any water-borne erosion to take place. Rainfall amount and intensity 

are considered the most important rainfall attributes (Foster et al., 2003). The higher the amount, 

and intensity of a given rainfall event, the greater is the propensity for erosion to occur. The 

relationship between these rainfall characteristics and soil detachment has been explored in the 

literature (Ma et al., 2014), revealing a strong correlation between them (Angulo-Martínez and 

Beguería, 2009). Thus, the R-factor is a function of the rainfall amount and intensity. Various 

equations are available for deriving the R-factor (Table 2.2).                                   
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Commonly obtained from meteorological gauge stations, rainfall data is one key input parameter 

in all the equations presented in Table 2.2. Such rainfall data is then interpolated within a GIS 

environment to create a continuous surface of rainfall distribution and variability. While rainfall 

measurements by traditional rain gauge stations provide relatively accurate estimates (Collison et 

al., 2008), representativeness of a sparse and irregular gauge network is a major problem (Kidd 

et al., 2012), particularly in remote locations (Li et al., 2012). The spatio-temporal characteristics 

of remote sensing together with its ability to acquire data from inaccessible locations are 

considered to be of primary advantage in environmental studies (Sepal et al., 2016), and can 

potentially be an alternative to in-situ-based rainfall measurements. During the last few decades, 

satellites instruments have been specifically designed for precipitation monitoring (Prevent, 

2010). The most well-known satellite instruments for monitoring precipitation are summarized in 

Table 2.3.  

In many parts of the world, the lack of high temporal resolution rainfall intensity data has been 

one key impediment to successful application of the RUSLE model in erosion assessment 

(Loureiro and Coutinho, 2001; Bonilla and Vidal, 2011; Wang et al., 2016). With the availability 

of space-based precipitation instruments such as HydroEstimator and MPE (Multi-sensor 

Precipitation Estimate), it is now possible to obtain rainfall intensity data with a temporal 

resolution as high as 15 minutes. The TRMM-TMPA (Tropical Rainfall Measurement Mission-

Multi-satellite Precipitation Analysis) offers multiple resolution rainfall data including 3 hourly 

intensity (3B42, 3B42 real time), and monthly data (3B43). The use of these and other satellite-

products (Table 2.3) in rainfall erosivity assessment is explored in more detail below.        

Based on 11 years (1998-2008) TMPA data, Vrieling et al. (2010) calculated average annual 

erosivity for Africa using two erosivity methods, with one method based on 3-hourly intensity 

data and the other based on monthly precipitation data. The authors concluded that the 3-hourly 

TMPA data could not sufficiently represent high-intensity erosive events while on the contrary;   

monthly satellite-based TMPA data provided good spatial estimates of average annual erosivity. 

In calculating the R-factor as the product of the maximum 180-min rainfall intensity and the 

rainfall energy, Zhu et al. (2011) used the TMPA 3B42 data together with interpolated rain-

gauge data. According to their results, the TMPA dataset showed a strong correlation with the 

interpolated rain-gauge data. The authors concluded that the TMPA data can represent the impact  
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Table 2.2 Empirical relationships commonly used to estimate the R-factor (MJ mm ha−1h−1yr−1) 

Equation٭ Reference  

𝑅 =  
1

𝑛
∑ (∑(𝐸)𝑘(𝐼30)𝑘

𝑚

𝑘=1

)

𝑛

𝑗=1

 

Where E is the kinetic energy (𝑚𝐽ℎ𝑎−1), 𝐼30 is the maximum 30 minutes rainfall intensity (𝑐𝑚 ℎ−1), j is an index 

of the number of years used to produce the average, k is an index of the number of storms in each year, n represents 

the number of years used to obtain the average R, m is the number of storms in each year. 

  

Wischmeier and Smith 

(1959); Renard et al. (1997) 

𝑅 =  ∑ 1.735 𝑥 

12

𝑖=1

10
(1.5𝑙𝑜𝑔

𝑝𝑖
2

𝑝
−0.8188)

 

Where 𝑝𝑖 represents the total monthly precipitation (mm), and p is the mean annual precipitation (mm). 

 

Wischmeier and Smith 

(1978) 

𝑅 =
2.5𝑃2

100(0.073𝑃 + 0.73)
 

Where P is the annual precipitation (mm) 

 

Bols (1978)  

𝑀𝐹𝐼 =  
∑ 𝑝𝑖212

𝐼=1

∑ 𝑝12
𝑖=1

 

Where MFI is the Modified Fournier Index (mm), 𝑝𝑖 is the monthly precipitation (mm), and p is the mean annual 

precipitation (mm). This index approximates the R-factor reasonable well (Arnoldus, 1980), and has been used as 

an input parameter in empirical equations deriving the R-factor  

  

Arnoldus (1977, 1980) 

𝑅 = 𝑎𝑃√𝑃𝑚𝑑(𝑏 + 𝑐𝐿) 

Where P is the annual precipitation (cm), 𝑃𝑚𝑑 is the annual maximum daily precipitation (cm), L is site longitude 

(°), and a, b, and c are site-specific coefficients. 

Diodato and Bellocchi 

(2010)  

𝐸 =  ∑ ((29.8 −
127.5

𝑘 tan 0𝑖
) × 𝑞𝑖) (𝐽/𝑚2)

𝑛

𝑖=1

 

Where E is the total kinetic energy, 𝑞𝑖 is the quantity of rain (mm) in increment, i, k is the constant equivalent to 

4.675 for Zimbabwe, and 0 is the angle for each increment.  

Stocking and Elwell (1976) 

  .Note: cm (centimetre), mm (millimetre), MJ (megajoule), J (joule), ha (hectares), h (hour), yr (year), m (metre)٭
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Table 2.3 Overview of satellite-borne precipitation products and their main characteristics 

Satellite 

product٭ 

Operational 

period  

Temporal 

resolution 

Spatial 

resolution 

Spatial domain Acquisition 

cost 

Reference 

CFSR 1979 - present 1 h 0.5° x 0.5° Global Free  Saha et al. (2010) 

 

CMAP 

 

1979 – 2009  

 

5 days 

 

2.5° x 2.5° 

 

Global (90°N-90°S, 0°-36°E) 

 

Free  

 

Xie and Arkin (1997) 

 

CMORPH 

 

2002 – present 

 

30 min 

 

0.07° x 0.07° 

 

Global (60°N-60°S, 180°W-

180°E)  

 

Free  

 

Joyce et al. (2004) 

 

CPC-RFE2.0 

 

2001 – present  

 

1 day 

 

0.10° x 0.10° 

 

Global (70°E-110°E, 5°N-35°N) 

 

Free  

 

Xie et al. (2002) 

 

GPCP 1DD 

 

1997 – 2008  

 

1 day 

 

1.0° x 1.0° 

 

Global (40°N-40°S) 

 

Free  

 

Huffman et al. (2001) 

 

GPCP-V2 

 

1979 – 2008  

 

1 month 

 

2.5° x 2.5° 

 

Global 

 

Free  

 

Adler et al. (2003) 

 

GSMap 

 

2003 – 2006  

 

1 h 

 

0.10° x 0.10° 

 

Global (60°N-60°S) 

 

Free  

 

Kubota et al. (2007) 

 

HydroEstimator 

 

2006 – present  

 

15 min 

 

4 km x 4 km 

 

Global (60°N-60°S) 

 

Free  

 

Vincente et al. (1998) 

 

MPE 

 

2004 – present  

 

15 min 

 

3 km x 3 km 

 

Global (57°N-57°S) 

 

Free  

 

Heinemann et al. 

(2002) 

 

MWCOMB 

 

2002 – present  

 

3 h 

 

0.25° x 0.25° 

 

Global (60°N-60°S) 

 

Free  

 

Joyce et al. (2004) 

 

NRL-Blended 

 

2003 – present  

 

3 h 

 

0.25° x 0.25° 

 

Global (60°N-60°S) 

 

Free  

 

Turk and Miller 

(2005) 

 

PERSIANN 

 

2000 – present 

 

1 h 

 

0.25° x 0.25° 

 

Global (50°N-50°S, 180°W-

180°E)  

 

Free  

 

Hsu et al. (1997) 

 

TAMSAT 

 

1983 – present  

 

10 days 

 

3 km x 3 km 

 

Africa 

 

Free  

 

Grimes et al. (1999) 

 

TRMM TMPA 

3B42    

 

1998 – present  

 

3 h 

 

0.25° x 0.25° 

 

Global  (50°N-50°S) 

 

Free  

 

Adler et al. (2000) 
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Table 2.3 (Continued) 

Satellite 

product٭ 

Operational 

period  

Temporal 

resolution 

Spatial 

resolution 

Spatial domain Acquisition 

cost 

Reference 

TRMM-TMPA 

3B42-RT 

2000 – present  3 h 0.25° x 0.25° Global  (50°N-50°S) Free  Adler et al. (2000) 

 

TRMM-TMPA 

3B43 

 

1998 – present  

 

1 month 

 

0.25° x 0.25° 

 

Global  (50°N-50°S) 

 

Free 

 

Adler et al. (2000) 

 CFSR (Climate Forecast System Reanalysis), CMAP (merged Analysis of Precipitation), CMORPH (Climate Prediction Centre MORPHing), CPC-RFE٭

(Climate Prediction Centre-RainFall Estimation), GPCP 1DD (Global Precipitation Climatology Project 1 Degree Daily), GPCP-V2 (Global Precipitation 

Climatology Project-version 2), GSMap (Global Satellite Mapping of Precipitation), MPE (Multi-sensor Precipitation Estimate), MWCOMB (simple average of 

the microwave-based estimates used in creating the CMORPH), NRL-Blended (Naval Research Laboratory-Blended), PERSIANN (Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Network), TAMSAT (Temporal Applications of Meteorology using SATellite), and Tropical Rainfall 

Measurement Mission (TRMM) TMPA (Multi-satellite Precipitation Analysis), TMPA-RT (TMPA-Real Time). 
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of rainfall on erosion more accurately because such data are based on rainfall intensity. In an 

attempt to improve rainfall erosivity estimates across China, Teng et al. (2017) merged the 

TRMM data and rain-gauge data. The merged dataset achieved desirable accuracy in terms of the 

rainfall erosivity estimates in comparison to using rain-gauge and TRMM data alone. It is 

apparent from these studies that the TRMM data has been, so far, the only satellite-borne 

precipitation product used to derive the R-factor. This may be due to its relatively high spatial 

and temporal resolution precipitation estimates compared to other space-borne precipitation 

products (Li et al., 2013; Huffman et al., 2017). Additionally, the TRMM uniquely provides both 

the rainfall intensity and monthly rainfall estimates (Huffman et al., 2017), making it possible to 

investigate the spatial and temporal variability of rainfall erosivity. 

While the spatial and temporal resolutions of TRMM data have proven sufficient, the short 

period of data records (e.g. since 1998 – present) greatly limits their use in RUSLE erosivity 

calculation. Rainfall data spanning a period of at least 22 years is required for the calculation of 

the RUSLE R-factor, as recommended by Renard et al. (2011). One way to solve this problem of 

limited TRMM data archive has been to combine the TRMM data with other satellite-borne 

precipitation products such as the long-term (since 1979-present) GPCP data (AghaKouchak and 

Nakhjiri, 2012). Apart from the TRMM data, the use of many other space-based precipitation 

products in deriving the RUSLE R-factor has not yet been reported in the literature. Instead, 

comparisons have been made between ground-based rainfall estimates and satellite-derived 

rainfall estimates (e.g. Shen et al., 2010; AghaKouchak et al., 2011; Getirana et al., 2011). Thus, 

the feasibility of these satellite products remains to be evaluated from the point of view of soil 

erosion modelling in general and R-factor derivation in particular. Despite this predicament, 

these satellite products especially those readily available could offer unprecedented benefits to 

areas with relatively few meteorological stations (Wang et al., 2017). A good case in point is the 

study by Worqlul et al. (2014) who tested the use of three satellite products (TRMM, MPEG, and 

CFSR) for augmenting gauge-based data in providing improved spatial estimates of rainfall. 

Their results indicated that the MPEG and CFSR satellites provided the most accurate rainfall 

estimates.  

Although the possibility of estimating global and near-real time rainfall from satellite-borne 

rainfall measurements is extremely attractive for erosion modelling (Kidd and Huffman, 2011), 



  

24 

 

satellite instruments still represent a significant challenge as these do not allow for direct 

measurements of rainfall rates. Quantitative determination of rainfall from various space-borne 

sensors is a challenging undertaking, requiring sophisticated algorithms (Levizzani et al., 2001). 

Such complex algorithms may under/overestimate precipitation in some regions, given that 

different satellites are used at different latitudes, leading to some spatial heterogeneity 

(Pendergrass et al., 2016). Huffman et al. (2017) notes that TRMM precipitation radar algorithm 

likely underestimates precipitation in regions of intense convection over land and higher 

latitudes. In the United States, AghaKouchak et al. (2011) evaluated four satellite-derived 

precipitation products viz. CMORPH, PERSIANN, TMPA-RT, and TMPA-V6 and found that no 

single satellite product can be considered ideal for detecting extreme rainfall events and that such 

precipitation products tend to miss a significant volume of rainfall. Contrary to the above study, 

Shen et al. (2010) found that MWCOMB, CMORPH, PERSIANN, NRL, TMPA-RT and 

TMPA-V6 products represent the overall spatial distribution and temporal variations of 

precipitation reasonably well in China. Given the variability of observations from these studies, 

it is apparent that different satellite-based precipitation products have their own pros and cons at 

different spatio-temporal scales (Qin et al., 2014; Yang et al., 2016). For this reason, it is not 

wise to select any satellite product for use in one region on the basis of its performance in 

another region.         

2.3.2. Erodibility (K) factor               

Different soils exhibit different degrees of susceptibility to water-borne erosion. By definition, 

soil erodibility (K-factor) refers to the inherent susceptibility of soil to erosion by rain water and 

runoff (Thomas et al., 2017). Soil erodibility is affected by a wide variety of physical and 

chemical properties of soil. The RUSLE model considers the physical properties such as the 

primary particle size distribution, organic matter, soil structure, and permeability as the most 

important factors influencing the erodibility of a soil. These soil properties are quantitatively 

determined in a laboratory using conventional methods such as the pipette for particle size 

distribution and dry combustion or Walkley-Black methods for soil organic matter content 

determination (Yufeng et al., 2011). The K values are then calculated for each soil type using 

any of the soil erodibility equations presented in Table 2.4. Alternatively, K values can be 

determined from the soil erodibility nomograph (Wischmeier and Smith, 1978) or obtained from 

literature for certain locations (Renard et al., 2011). While laboratory-based methods are still 



  

25 

 

commonly used, these are not only expensive and time-consuming but may also cause 

environmental problems through generating chemical residues (Nanni and Demattê, 2006; 

Demattê et al., 2007). Even more concerning, is the issue of inaccuracy associated with these 

methods. Yufeng et al. (2011) note that the extrapolation of soil properties from a limited 

number of locations where they are known, to much greater locations where they are not known 

introduces errors. Such errors are often ignored (Jamshidi et al., 2014), compromising the 

reliability of the RUSLE model in guiding conservation efforts.   

Geostatistical methods available within the GIS environment have been found useful for 

simulating the RUSLE erodibility parameter (Goovaerts, 1997, Wang et al., 2001; Parysow et al., 

2003; Panagopoulos and Antunes, 2008), whilst simultaneously providing spatial uncertainty and 

error estimates of simulated soil erodibility values (Jamshidi et al., 2014). One advantage of 

geostatistical methods over traditional approaches is the ability to establish the spatial variability 

and dependency among soil properties and erodibility index. A special tool in geostatistics 

known as semivariogram allows for evaluation of such spatial variability and dependency. 

Gyamfi et al. (2016) assessed soil erodibility using the kriging-based semivariogram model and 

the spatial dependence of soil parameters such as sand, silt, clay, bulk density and organic matter 

content was established based on the nugget/silt ratio. Baskan et al. (2009) used the Sequential 

Gaussian Simulation (SGS) geostatistical method for mapping soil erodibility factor of the 

RUSLE model and a reliable erodibility map was produced. Jamshidi et al. (2014) also 

confirmed in their study that the SGS approach generated reliable estimates of soil erodibility in 

most areas.  

Though reasonable results can be obtained with geostatistical methods as evident in the above 

studies, such methods tend to rely on laboratory-determined soil samples which could be 

laborious and time-consuming. Furthermore, unless coupled with remotely sensed data, the 

application of geostatistical methods over large catchments is not an alternative either. Few 

studies have rarely combined remote sensing with geostatistics (Wang et al., 2003). Remote 

sensing still presents a much cheaper, faster, and fairly accurate method for quantitative 

characterization of soil attributes (Yufeng et al., 2011), and is environmentally friendly unlike 

laboratory-based methods. There are two possible ways in which the information relating to soil 

properties can be retrieved from remotely sensed data (Grunwald et al., 2015). The first is the 
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direct method whereby soil attributes are extracted directly from remote sensing images of bare 

soil. The second method is indirect in which case soil characteristics are inferred indirectly by 

sensing biotic (vegetation) properties. The former is the most commonly used method as shown 

in the next paragraph. 

There have been successes in retrieving soil properties from remote sensing data (Vidhya et al., 

2015) using various statistical and geostatistical models (Table 2.5). Wang et al. (2003) 

combined geostatistical techniques related to collocated co-kriging and joint sequential co-

simulation with Landsat TM band 7 to generate the spatial variability of the RUSLE K-factor. A 

study by Dematte et al. (2007) determined a number of physical and chemical attributes of soil 

from Landsat7 ETM+ based on a multiple-linear regression (MLR) model. The results indicated 

that soil properties can be predicted in similar landscapes using both remote sensing and MLR. 

Forkuor et al. (2017) investigated the use of RapidEye and Landsat data to map the spatial 

distribution of soil properties based on four statistical models, including MLR, random forest 

regression (RFR), support vector machine (SVM), as well as stochastic gradient boosting (SGB). 

As is evident in these studies, remotely sensed data has undoubtedly led to better understanding 

of complex soil characteristics (Nanni and Demattê, 2006) and at the centre of that, is the use of 

statistical models which predict soil attributes from or relate to spectral reflectance. An important 

challenge, however, is that a statistical model developed for relating specific soil properties to 

spectral reflectance in one geographic region may not be able to measure the same soil properties 

in another region (Yufeng et al., 2011), due to different environmental conditions. 

Soil colour is perhaps one readily observable soil property from which other soil properties such 

as organic matter can be inferred and mapped through remote sensing. For instance, though not 

in all cases, dark-coloured soils commonly indicate the presence of humus, hence high organic 

matter content whereas lighter soils typically suggest low organic matter content. Generally, soil 

reflectance is a direct product of the interactions of several factors, viz. particle size, soil soil 

structure, water content (Demattê et al., 2007), as well as different types and amount of rock-

forming minerals (Breul and Gourves, 2006). For this reason, quantifying organic matter through 

soil colour reflectance can be extremely challenging (Hill and Schutt, 2000). Acquired in many 
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Table 2.4 Equations that are commonly used to calculate the K-factor (ton h MJ−1mm−1) 

Equation Reference  

𝐾 = [
2.1 ×  10−4(12 − 𝑂𝑀)𝑀1.14 + 3.25(𝑆 − 2) + 2.5(𝑃 − 3)

7.59
× 100] 

Where OM is soil organic matter content, M is product of the primary particle size fractions (%silt + %very fine sand) × (100 - 

%clay), S is soil structure code, P is permeability class.  

  

Wischmeier and 

Smith (1978) 

𝐾 = 311.63 − 4.48 × (𝑆𝐺% + 𝑆%) + 613.4 + 6.45 × 𝐸𝐶 
Where SG is the coarse sand content (%), S is the sand content (%), and EC is the electrical conductivity. 

 

Merzouk (1985)  

𝐾 = (0.2 + 0.3𝑒
[−0.0256𝑆𝐴𝑁(1−

𝑆𝐼𝐿

100
)]

) × (
𝑆𝐼𝐿

𝐶𝐿𝐴+𝑆𝐼𝐿
)0.3 × [1 −

0.25𝐶

𝐶+𝑒(3.72−2.95𝐶)] × [1 −
0.7𝑆𝑁1

𝑆𝑁1+𝑒(22.9𝑆𝑁1−5.51)] 

 

Where SAN is the sand content (%), SIL is the silt content (%), CLA is the clay content (%), C is the soil organic content (%), 

and 𝑆𝑁1 = 1 − 𝑆𝐴𝑁/100. 
 

Sharply and 

Williams (1990)  

𝐾 = 0.0034 + 0.0387exp [−
1

2
 
(log10(𝐷𝑔) + 1.533)2

0.7671
] 

𝐷𝑔 = exp (0.1 × ∑ 𝑓𝑖1𝑛 𝑚𝑖)

𝑛

𝑖=1

 

Where 𝐷𝑔 is the geometric mean diameter of the soil particles (mm), 𝑓𝑖 is the weight percentage of the particle size fraction 

(%), 𝑚𝑖 is the arithmetic mean of the particle size limits (mm), and 𝑛 is the number of particle size fractions. 

   

Römkens et al. 

(1997)  

𝐾 = 0.0293(0.65 − 𝐷𝑔 + 0.24𝐷𝑔
2)𝑒𝑥𝑝 {−0.0021

𝑂𝑀

𝐶𝑙
− 0.00037(

𝑂𝑀

𝐶𝑙
)2 − 4.02𝐶𝑙2 + 1.72𝐶𝑙2} 

𝐷𝑔 = ∑ 𝑓𝑖

𝑖

1𝑛(√𝑑𝑖𝑑𝑖−1) 

Where 𝐷𝑔 is the Naperian logarithm of the geometric mean of the particle size distribution, OM is the organic matter conent 

(%), Cl is the clay fraction (%),𝑓𝑖 is the mass fraction in the corresponding particle size class (%), 𝑛 is the number of particle 

size fractions, 𝑑𝑖 is the maximum diameter of the ith class (mm), and 𝑑𝑖−1 is the minimum diameter (mm).  

    

Torri et al. 

(1997)  



  

28 

 

Table 2.5 Methods commonly used to relate various soil attributes to remote sensing spectra 

Study Location  Soil attributes٭ Methods٭ Remotely sensed 

data  

Reference 

Use of high resolution remote 

sensing data for generating site-

specific soil management plan 

 

India Sand, silt, clay, OM, and 

N  

MLR IKONOS Ray et al. (2004)   

Quantification of tropical soil 

attributes from ETM+/Landsat-7 

data 

 

Brazil  Sand, silt, clay, OM, SB, 

CEC, AS, BS, K, SC, 

Ca, Al, P, pH, Mg, H 

MLR Landsat-7 ETM+ Demattê et al. 

(2007)  

Spatial prediction of soil properties 

using EBLUP with the Matérn 

covariance function 

 

Australia Zn, pH, and clay KEXD, cokriging, 

regression kriging, 

and REM-EBLUP 

Landsat-5 TM Minasny and 

McBratney (2007) 

Prediction of soil texture 

distribution using VNIR-SWIR 

reflectance spectroscopy 

 

Italy Sand, silt, and clay CR and PLSR VNIR-SWIR 

Reflectance 

spectroscopy 

Curcio et al. 

(2013) 

Spatial prediction of soil surface 

texture in a semiarid region using 

random forest and multiple linear 

regressions 

 

Brazil Sand, silt, and clay MLR and RFR Landsat-5 TM Da Silva et al. 

(2016) 

High resolution mapping of soil 

properties using remote sensing 

variables in south-western Burkina 

Faso: a comparison of machine 

learning and multiple linear 

regression models 

Burkina Faso Sand, silt, clay, CEC, 

SOC, and N  

MLR, RFR, SVM, 

and SGB 

RapidEye, Landsat-8 

OLI, and ASTER 

Forkuor et al. 

(2017) 

 OM (organic matter); N (nitrogen); CEC (cations exchange capacity); AS (aluminum saturation); BS (base saturation); K (kalium); SC (sum of cations); Ca٭

(calcium); Al (aluminum); P (potassium); pH (potential of hydrogen); Mg (magnesium); H (hydrogen); Zn (zinc); SOC (soil organic carbon). MLR (multiple 

linear regression); KEXD (kriging with external drift); REM-EBLUP (residual maximum likelihood-empirical best linear unbiased predictor); CR (continuum 

removal); PLSR (partial least squares regression); RFR (random forest regression); SVM (support vector machine); SGB (stochastic gradient boosting) 
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narrow-wavelength bands, hyperspectral images are capable of quantifying many soil attributes 

(Jamshid and Abbas, 2002), although these may not be affordable in many parts of the world. 

At medium or coarse resolution scales, optical sensors with improved spectral resolution 

(available at no cost) like Landsat OLI and Sentinel may permit better spectral discernment 

amongst different soil colours. However, their coarse spatial resolutions and spectral confusion 

between different soils may undermine the success of this type of mapping. This challenge has 

often been resolved through the use of spectral unmixing approaches, such as linear spectral 

unmixing, a process by which a proportion of several land cover classes is determined within a 

single pixel (Vidhya et al., 2015). Spectral unmixing has also been used to retrieve soil properties 

from remote sensing data. For instance, using three endmembers related to medium sand, fine 

sand, and water content, Lakshmi et al. (2015) successfully performed spectral unmixing on 

Landsat ETM+ and IKONOS images. Nonetheless, when the same soil type is highly spectrally 

variable, there is still much uncertainty, even with the use of spectral unmixing. Further 

investigations are therefore needed to deal with such uncertainty. Such investigations may focus 

but not be restricted to the use of spectral indices and image band ratios. Already, the potential 

use of the latter in generating textural indices has been demonstrated. For instance, Minasny and 

Mcbratney (2007) successfully derived the clay index from Landsat TM band 5/band 7 ratio. 

This ratio effectively generates a clear spectral contrast between land and water because of the 

absorption of soil in band 7 and high reflectance in band 5, highlighting the distribution of clay 

in the area under study. With the aid of spectral indices such as Hue Index (HI), and Coloration 

Index (CI), high spatial resolution optical sensors particularly, IKONOS, Quick-Bird, and Rapid-

Eye have a potential for mapping spatial variation of soil colour at fine spatial resolution scales 

despite their possession of low spectral resolutions.    

 In instances where vegetation inhibits direct remote sensing mapping of soils, indirect mapping 

methods may be an alternative. Since vegetation is, to a large extent influenced by physical and 

chemical properties of a particular soil type; its spectral reflectance can be used to classify 

different types of soils. In this case, an assumption is made that different soil types produce 

different vegetation cover. The accuracy of such indirect method relies on the existence of a 

direct relationship between natural vegetation and soil types in the area under study (Vrieling, 

2006). Very few studies have investigated the relationship between natural vegetation and soil 
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types (Rankin et al., 2007). It may be therefore necessary to establish whether a link between 

vegetation and soil types exists in the study area prior to mapping. When a strong relationship 

between the two is present, the spatial variability of erodibility will probably be better 

represented through remote sensing than when assigning erodibility values to a soil classification 

(Vrieling, 2006). Additionally, the use of remote sensing to characterize or map the chemical and 

physical properties of soil could further improve the spatial distribution and variability of the 

RUSLE erodibility factor.    

2.3.3. Topographic (LS) factor       

Slope length (L) and slope steepness (S) are the most important topographic attributes 

influencing soil susceptibility to erosion (Datta and Schack-Kirchner, 2010), and are accounted 

for by the LS-factor in the RUSLE model (Prasannakumar et al., 2012). Normally, areas with 

steep slopes tend to be more susceptible to erosion than flat or gentle sloping areas. Likewise, 

longer slope facilitates erosion, thus soil erosion increases with increasing slope length and vice-

versa. This shows the sensitivity of topographic parameters to soil loss, hence, accurate 

derivation of this factor is deemed necessary. The slope steepness alone is said to be highly 

sensitive to soil loss that a small error could result in erroneous estimation of the overall soil loss 

(Renard et al., 2011). 

Like all current spatial erosion models, RUSLE requires a digital elevation model (DEM) as an 

input parameter in order to quantitatively represent the continuous variation of topographic 

features across the landscape. Though a wide variety of sources exist including ground surveys, 

stereo photogrammetry, and laser scanning (Hutchinson and Gallant, 2000; Datta and Schack-

Kirchner, 2010), DEMs have traditionally been derived from topographical maps. This normally 

involves interpolating vectorised contour lines extracted from regional topographical maps 

(Breetzke et al., 2013; de Carvalho et al., 2014). DEMs with a spatial resolution as high as 5 m 

can be generated using 1:10 000 scale topographical maps (Wang et al., 2016). However, 

contours are not ideal for interpolating DEM as their densities tend to vary with slope gradient 

(Mashimbye et al., 2014). Hence, the reliability of interpolated DEMs becomes questionable 

particularly in gentle sloping areas where contours are often horizontally spaced far apart. To 

overcome this challenge, contours are often used in conjunction with elevation points such as 

spot heights distributed across gentle sloping areas (van Niekerk, 2014). Nonetheless, if not 
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properly executed, merging these two elevation datasets (i.e. lines and points) may itself be a 

source of error given that it requires some degree of processing and interpolation to produce a 

DEM (Fisher and Tate, 2006). Presented in Table 2.6 are some of the most commonly used 

equations to derive the LS-factor from a DEM. Remote sensing has matured as an alternative 

data source to provide topographic related information.  

Many satellite-borne DEM products now exist including Cartosat-1, ASTER GDEM, 

GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), Shuttle Radar Topography 

Mission (SRTM), GEODATA and GTOPO30. Amongst these DEMs, the ASTER Global DEM 

(GDEM) and SRTM products are the most widely used DEMs in erosion modelling possible 

because they provide datasets covering almost the entire earth’s surface at no cost (Hirt et al., 

2010). Available at 90 m and 30 m spatial resolutions, the ASTER Global DEM (GDEM) 

datasets are obtained by stereoscopic techniques (Toutin and Gray, 2000) whereas the SRTM 

DEM products are obtained by radar interferometry at 90 m and 30 m spatial resolutions (Moura-

Bueno et al., 2016). Although satellite-based DEMs are readily available, researchers also have 

an option of extracting DEMs from the stereoscopic pair of the concerned satellite imagery. For 

example, the ASTER near-infrared band 3 and the back looking band form a stereo pair that 

allows the generation of a DEM (De Vente et al., 2009). 

Attempts have been made to derive the LS-factor from space-based DEM products. For example, 

Gashaw et al. (2016) derived the slope length and slope steepness values from the ASTER 

GDEM at 30 m spatial resolution. Likewise, a study by Bahrawi et al. (2016) computed RUSLE 

topographic related parameters from ASTER-derived DEM product. Though successfully 

computed the LS-factor from satellite-based products, a shortcoming with these studies and 

many other RUSLE-related studies is that they generally do not take into consideration the 

accuracy of the DEM products they use. Furthermore, it is not always articulated in these studies 

as to why a particular DEM product is selected or preferred for deriving the LS-factor. Often, 

many erosion studies (e.g. Devatha et al., 2015; Noori et al., 2016; Tadesse et al., 2017) 

incorporate space-based DEMs into RUSLE as a given parameter without testing their suitability 

for terrain modelling at the desired scale of the study (Datta and Schack-Kirchner, 2010). Yet, 

satellite-derived DEMs, like all other digital spatial data, are subject to errors or anomalies  
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Table 2.6 Most commonly used equations for deriving the slope length (L) and steepness factors (S) collectively called LS-factor 

Equation  Reference  

𝐿𝑆 = (
ℓ

72.6
) 𝑚(65.41 sin2 𝛽 + 4.56 sin 𝛽 + 0.065) 

Where ℓ is the cumulative slope length in metres, β is the downhill slope angle, m is a slope contingent variable, 0.5 if 

the slope angle is greater than 2.86°, 0.4 on slopes of 1.72° to 2.86°, 0.3 on slopes of 0.57° to 1.72°, and 0.2 on slopes 

less than 0.57°. 

Wischmeier and Smith 

(1978) 

𝐿𝑆 = (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×
𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒

22.13
)0.4 × (

sin 𝑆𝑙𝑜𝑝𝑒

0.0896
)1.3 

Where Flow accumulation represents the contribution of an area accumulated upslope for a given cell, Cell size is the 

size of the grid cell, and the sin Slope is the slope degree value in sin. 

Moore and Burch (1986)  

𝐿𝑆 = (
𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐺𝑟𝑖𝑑 𝑠𝑖𝑧𝑒

22.1
)0.4 × (

sin (𝑠𝑙𝑜𝑝𝑒) × 0.1745

0.09
)1.4 

Where Flow accumulation is a raster of accumulated flow to each cell, Grid size is the length of a cell side, and sin 

(Slope) is the slope degree value in sin. 

Mitasova et al. (1996)  

𝐿𝑆 =
𝑋

22.1
𝑚(0.065 + 0.045𝑆 + 0.0065𝑆2) 

Where X is the slope length (m), S is the slope gradient (%), and m is a slope contingent variable. 

Bizuwerk et al. (2008)  
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(Athmania and Achour, 2014), such as voids, residual cloud patterns and stripe effects resulting 

from instrument errors or from the processing and generation of DEM from a stereo pair image 

(Fisher and Tate, 2006; Hirt et al., 2010). Knowledge of these errors and their propagation into 

the resultant LS-factor is important if meaningful information is to be obtained. Before 

attempting to extract the LS-factor from any space-borne DEM product, it is advisable to 

validate the accuracy and understand the potential and limitations of using a particular product 

for a specific area (Athmania and Achour, 2014). 

Another important consideration when generating the LS-factor is the spatial resolution of a 

DEM. Spatial resolution has a strong bearing on the accuracy of the extracted topographical 

attributes (Li, 1992; Datta and Schack-Kirchner, 2010; Hirt et al., 2010; Mashimbye et al., 2014). 

Bhattarai and Dutta (2007) compared the influence of two SRTM DEM resolutions, a native 90 

m resolution and 30 m resampled resolution, on the LS-factor. The authors observed that the 

results obtained from the 30 m DEM were much better than those derived from the 90 m DEM. 

This is to be expected because the 30 m resolution DEM is closer to the 22.4 m slope length used 

in the calculation of the LS-factor (Oliveira et al., 2013). Various studies have compared the 

SRTM to ASTER DEMs with a spatial resolution of 30 m (e.g. Athmania and Achour, 2014; 

Mashimbye et al., 2014; van Niekerk, 2014), many of which have consistently observed SRTM 

DEM to be superior to ASTER DEM. An example is De vente et al. (2009) whose study found 

that SRTM DEM provided more accurate estimates of slope gradient and upslope drainage area 

than ASTER DEM.    

Although the SRTM DEM has been observed to have a relatively high accuracy compared to the 

ASTER GDEM, these two datasets generally do not have the spatial resolution necessary to pick 

up the small concentrated flow channels commonly found at the bottom of a RUSLE hillslope 

where substantial deposition may occur (Renard et al., 2011). Consequently, these elevation 

datasets are likely to negatively impact on the RUSLE topographic derivations due to the larger 

horizontal distances applied in their calculations (Polidori et al., 2014). Good quality DEMs with 

much higher spatial resolution can be extracted from stereo satellite imagery such as SPOT, 

GeoEye, QuickBird, IKONOS, and IRS amongst others. However, in view of the high costs 

associated with the acquisition of these images, other alternatives have been explored, including 

fusing coarse resolution ASTER or SRTM data with high spatial resolution elevation lines and 
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points. Van Niekerk (2014) generated a high spatial resolution (5 m) from fusing the 30 m 

SRTM data with 5 m contours and spot heights. The study revealed that DEM quality can be 

significantly improved (especially in relatively flat areas) when these three datasets are 

combined.  

2.3.4. Cover management (C-factor)         

The C-factor is one important erosion factor that can most easily be influenced by humans to 

reduce erosion (McCool et al., 1995). Defined as the ratio of soil loss under specific cropping 

conditions to soil loss occurring in bare soil (Wischmeier and Smith, 1978; Alkharabsheh et al., 

2013), the C-factor reflects the effect of cropping and other management practices on erosion 

rates (Uddin et al., 2016). 

The information for this factor has historically been derived from field experiments. Five sub-

factors are considered for calculating the RUSLE C-factor (Renard et al., 1997). These include 

(i) prior land use; (ii) soil cover by plant canopy; (iii) soil cover by crop residues; (iv) soil 

surface roughness; and (v) soil moisture. Further discussion on these sub-factors including 

equations describing them can be found in Renard et al. (1997). The evaluation of each sub-

factor is difficult because of the many possible combinations, and the time spent with data 

acquisition and analysis (Gabriels et al., 2003; Schonbrodt et al., 2010; Dutta, 2016).  

Remote sensing-based techniques like land use/land cover (LULC) classification (Millward and 

Mersey, 1999, Reusing et al., 2000), spectral indices (Meusburger et al., 2010; Puente et al., 

2011; Vijith et al., 2017), and linear spectral unmixing (Asner and Heidebrecht, 2002; De Asis 

and Omasa, 2007) are now preferred over conventional techniques owing to their low costs, 

rapid and relative accurate data analysis (Durigon et al., 2014). Upon deriving LULC classes 

through remotely sensed imagery, corresponding C-factor values obtained from USLE guide 

tables (Wischmeier and Smith, 1978) or from the literature are assigned. Various image 

classification methods exist and can be broadly grouped into supervised and unsupervised 

classification. In Ethiopia, Gelagay and Minale (2016) performed unsupervised image 

classification on Landsat TM and produced thematic land cover maps of Koga watershed to 

which corresponding C-factor values were assigned. Using the same classification method, Li et 

al. (2010) mapped the C-factor values of the Liao watershed from the Landsat ETM+. All these 
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studies assume that the same land cover types have the same C-factor values across the entire 

study area (Panagos et al., 2015).  

The success of this approach however, depends amongst other things, on the classification 

accuracy of remotely sensed images, and the selection of suitable C-factor values for individual 

land cover classes (Panagos et al., 2015). Significant to classification accuracy, is the use of fine 

spatial resolution images especially in small catchments. On the contrary, the majority of 

RUSLE studies use coarse resolution images (e.g. Landsat, ASTER) for land cover classification 

and the details relating to the accuracy of the classified maps are often not revealed by such 

studies. An apparent limitation with this method is that, the same land cover class may have 

different C-factor estimates due to spatial variation in vegetation density within cover classes 

over large geographic locations (Wang et al., 2002; Lu et al., 2004). Also, different land uses 

with same vegetation coverage result in different C-factors (Panagos et al., 2014).        

Increasingly, of particular interest to many researchers, has been the use of spectral indices 

(Zongming et al., 2010; Puente et al., 2011; Fathizad et al., 2014; Kamaludin et al., 2013; 

Rahaman et al., 2015; Noori et al., 2016; Phinzi and Ngetar, 2017; Ostovari et al., 2017; Vijith et 

al., 2017; Tamene et al., 2017) to assess the fraction of vegetation and its influence on C-factor 

values. These include amongst others, the Normalized Difference Vegetation Index (NDVI), Soil 

Adjusted Vegetation Index (SAVI), Soil and Atmospherically Resistance Index (SARVI), 

Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Different Tillage Index 

(NDTI), Ratio Vegetation Index (RVI), Normalized Difference Senescent Vegetation Index 

(NDSVI), and Green Vegetation Index (GVI). One advantage of using spectral indices is related 

to their ability to enhance the spectral contribution of green vegetation in images while 

minimizing contributions from bare soil, atmosphere and illumination angle (Meusburger et al., 

2010). 

Several empirical relations or equations have been established to relate vegetation indices values 

to C-factor values (Table 2.7). These equations have been employed in many catchments studies 

around the world. Uddin et al. (2016) extracted the C-factor values directly from Landsat TM 

and ETM+ based NDVI images using De Jong’s (1994) regression equation (Equation 2.2). 

Using the same equation, Patil and Sharma (2013) successfully generated the C-factor map from 

an NDVI map. In their assessment of soil erosion in Kenya, Moses (2017) and Okorafor et al. 
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(2017) derived the RUSLE C-factor from NDVI based on the empirical relations (Equation 2.3) 

of Van der Knijff et al. (1999; 2000). Parveen and Kumar (2012) also generated a C-factor map 

from Landsat TM-derived NDVI using Equation 2.3. Despite the general acceptance and wide 

use of these methods, low correlations between NDVI and the C-factor have been reported for 

some regions (Tweddales et al., 2000; De Asis and Omasa, 2007; Smith et al., 2007). A possible 

explanation for this, is that these methods do not take into account the variation of climatic 

conditions for calculating the C-factor. For example, Dutta (2016) observes that under tropical 

climate conditions, the C-factor obtained through these methods (e.g. De Jong, 1994; Van der 

Knijff et al., 1999, 2000) tends to be low for the same vegetation cover. Due to these setbacks, 

Durigon et al. (2014) proposed an equation (Equation 2.4) based on NDVI rescaling. When 

compared to Van der Knijff et al. (1999; 2000) method, Durigon et al. (2014) found that the 

rescaled NDVI method was the most adequate for determining the C-factor. As can be observed 

from Table 2.7, many other vegetation index-based methods are available for assessing the C-

factor (Qi et al., 1994; Valor and Caselles, 1996; Gutman and Ignatov, 1998; Johnson et al., 

2002; Bingfeng et al., 2004; Li et al., 2010).   

Despite these successes, spectral indices like NDVI do not satisfactorily represent non-

photosynthetic vegetation such as dry or dead vegetation (De Jong, 1994), yet dry vegetation has 

a considerable impact on the C-factor as well (Puente et al., 2011). The increasing effect of the 

spatial variability of bare soil background albedo (Harris and Asner, 2003), may further 

aggravates this problem. In response to this limitation, some researchers have explored the 

possibilities of using a combination of methods (Puente et al., 2011). For example, Tamene et al. 

(2017) used different enhancement and transformation techniques like the Principal Component 

Analysis (PCA), NDVI, and SAVI to aid the spectral seperability of land cover types. Vijith et 

al. (2017) evaluated the effectiveness and suitability of cover management factors generated 

through different techniques including LULC-based arbitrary value, NDVI, and MSAVI-based 

methods. Likewise, Zhongming et al. (2010) used NDVI, MSAVI, NDTI, and NDSVI. Puente et 

al. (2011) applied thirty vegetation indices in order to establish the relation between them and C-

factor field samples. While these spectral indices have their own shortcomings, the use of 

multiple indices is recommended in mapping the C-factor because of the combined ability which 

has a potential to pinpoint areas where vegetation cover offers low protection (Vijith et al., 

2017). Other alternatives have been suggested including pixel spectral unmixing and geostatisti 
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Table 2.7 Spectral Indices-based C-factor assessment methods 

Equationª  Comment Reference  

𝐶 = 0.431 − 0.805 × 𝑁𝐷𝑉𝐼 

Where C represents the C-factor. 

[2.2] This method assumes a linear relationship between 

NDVI and RUSLE C-factor. However, this assumption 

only holds true for photosynthetic and not senescent 

vegetation. 

 

De Jong (1994) 

𝐶 = 𝑒𝑥𝑝
(−𝑎

𝑁𝐷𝑉𝐼
(𝛽−𝑁𝐷𝑉𝐼)

) 
 

Where a and β parameters determine the shape of the NDVI 

curve. 

 

[2.3] The parameters, a and β give better results in terms of 

relating NDVI to C-values for certain locations than 

assuming a linear relationship.  

Van der Knijff 

et al. (1999; 

2000) 

𝐶𝑟 = (
−𝑁𝐷𝑉𝐼 + 1

2
)

 

 

Where 𝐶𝑟 is the denominated rescaled C-factor. 

 

[2.4] More realistic C-values can be obtained with this method 

especially for tropical regions.   

Durigon et al. 

(2014) 

𝑃𝑉 =
(1 − 𝑖

𝑖𝑔
⁄ )

(1 − 𝑖
𝑖𝑔

⁄ ) − 𝑘 (1 − 𝑖
𝑖𝑣

⁄ )
 

𝑘 = (𝜌2𝑣 − 𝜌1𝑣)/(𝜌2𝑔 − 𝜌1𝑔) 

Where 𝑃𝑉 is the proportion of vegetation cover, i is NDVI 

pixels,  𝑖𝑔 is pure soil NDVI pixels, 𝑖𝑣 is pure vegetation 

NDVI pixels. 𝜌2𝑣 is NIR and 𝜌1𝑣 is Red reflectance for pure 

vegetation pixels, whereas 𝜌2𝑔 is NIR and 𝜌1𝑔 is Red for 

pure soil pixels. 

   

[2.5] The method provide best estimation of the proportion of 

vegetation by separating soil pixels from vegetation 

pixels. This is particularly important in reducing the 

effects of soil background albedo at different moisture 

content levels.    

Valor and 

Caselles (1996); 

Mallick et al. 

(2014) 
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Table 2.7 (Continued) 

Equation  Comment Reference  

𝑓 =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 

Where 𝑓 represents vegetation cover, 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is best 

vegetation cover, and 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 is worst vegetation cover in 

the study area. 

 

[2.6] The method effectively distinguishes between areas of 

strong vegetation cover and poorly vegetated areas. 

Li et al. (2010) 

𝑓𝑐 =
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙)

(𝑁𝐷𝑉𝐼𝑣𝑒𝑔 − 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙)
 

Where fc is the vegetation fraction, 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙 is NDVI of a 

pure soil pixel, and 𝑁𝐷𝑉𝐼𝑣𝑒𝑔 is NDVI of a pure vegetation 

pixel. 

 

[2.7] This method relies on the assumption that a pixel 

consists of two components, viz. soil and vegetation. 

Hence, the parameters, 𝑁𝐷𝑉𝐼𝑣𝑒𝑔 and 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙 accounts 

for the influences of vegetation and soil types, 

respectively. 

   

Bingfang et al. 

(2004) 

𝐹𝑉𝐶 =
𝑉𝐼𝑖 − 𝑉𝐼𝑠

𝑉𝐼𝑣 − 𝑉𝐼𝑠
 

Where FVC is the fractional vegetation cover, 𝑉𝐼𝑖 is the VI 

of pixel i, 𝑉𝐼𝑠 is the bare soil or dead vegetation pixels, and 

𝑉𝐼𝑣 is the fully-vegetated pixels 

 

[2.8] In this method, it is assumed that senescent (dead or 

dry) vegetation is spectrally-similar to bare soil. The 

method also assumes that bare soil and vegetation pixels 

are invariant throughout the image. 

Johnson et al. 

(2012); Gutman 

and Ignatov 

(1998) 

𝐶𝑀𝑆𝐴𝑉𝐼

=
(2 × 𝑁𝐼𝑅 + 1 − √2 × (𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅))

2
 

Where 𝐶𝑀𝑆𝐴𝑉𝐼 represents the C-factor, NIR is the near-

infrared reflectance, and R is the visible red reflectance. 

  

[2.9] As a modified version of NDVI, MSAVI accounts for 

some of the pertinent factors affecting its predecessor 

such soil background albedo. Theoretically, MSAVI is 

better than NDVI.   

Qi et al. (1994); 

Vijith et al. 

(2017) 
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cal analysis (Wang et al., 2002; Gertner et al., 2002; Asner and Heidebrecht, 2002; 

Meusberger et al., 2010; Li et al., 2015; Jia et al., 2017) as discussed below.  

Pixel spectral unmixing has already been discussed in Section 2.3.2. In vegetation analysis, it 

is used to extracts vegetation coverage with linear or non-linear mixture model (Li et al., 

2015). Linear spectral mixture model is the most widely used (Bu, 1993; De Asis and Omasa, 

2007) because of its ability to detect both photosynthetic and non-photosynthetic (dry and 

dead) vegetation cover (Meusburger et al., 2010). Unlike spectral indices, linear spectral 

unmixing is not affected by the soil background albedo (Lin et al., 2017). In an effort to map 

bare soil, healthy and unhealthy vegetation cover, Asner and Heidebrecht (2002) employed 

the spectral unmixing approach to hyperspectral and multispectral data. Meusburger et al. 

(2010) assessed the applicability of NDVI, linear spectral unmixing, and mixture-tuned 

matched filtering method (MTMF) in estimating vegetation abundance. Their results 

indicated that the linear spectral unmixing outperformed other methods and successfully 

identified erosion features and areas vulnerable to erosion. Recently, Jia et al. (2017) 

evaluated three types of vegetation cover estimation models using Landsat 7 ETM+ data. 

According to their validation results, the spectral mixture analysis model achieved the best 

estimation accuracy. 

While spectral unmixing has proved superior to other C-factor estimation methods, Jones et 

al. (2009) note that this method cannot be used when vegetation completely covers the 

surface, or when the data is affected by multiple scattering. Furthermore, the selection of 

image endmembers often requires the availability of pixels comprised purely of each 

dominant cover type (Asner and Heidebrecht, 2002), thus a critical challenge in the spectral 

mixture model is how to determine the endmembers and their corresponding spectral 

responses, given the complexity of land surface (Jia et al., 2017). In addition to these 

challenges, spectral endmembers collected in one area may not be applicable to another area, 

depending on the spatial and temporal variability of vegetation, soils, rocks and other features 

(Asner and Heidebrecht, 2002).  

Another suggested method has been the use of geostatistical related analysis together with 

field data for both improving (Wang et al., 2002) and estimating the C-factor, in which case 

remote sensing is used as an ancillary data. Gartner et al. (2011) employed this method to 

map the C-factor from a joint co-simulation using multiple primary variables related to 

canopy cover, ground cover, and vegetation height. Often, the suggestion of each approach 
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discussed in this section is based on the relative advantages of that method. In general, each 

approach has its own pros and cons, hence there is no one single method that can satisfy all 

the requirements. Some previous studies including that of Jia et al. (2017) have tested 

different models and a combination strategy of individual models was proposed to improve 

the vegetation cover accuracy. The study by Tadele et al. (2017) also demonstrated that 

ground truth data, high spatial resolution Google Earth images, combined with GIS and 

remote sensing provide major advantages for not only deriving C-factor values but also 

conducting the subsequent accuracy assessment.  

2.3.5. Support Practice (P) factor                  

In general, the P-factor is related to the C-factor in that they are both meant to reflect the 

positive impact of management practices in minimizing soil erosion (Toy et al., 1999; Renard 

et al., 2011). However, the P-factor is distinguishable from the C-factor as it indicates the 

impact of management through the control of runoff, with specific reference on how the 

management practices (e.g. contour tillage, strip cropping, and terraces) reduces and alters the 

pattern, direction and speed of that runoff (Renard and Foster, 1983; Renard et al., 1997; 

Renard et al., 2011). Information on the P-factor can be derived in many ways as discussed in 

the next paragraph.  

Similar to C-factor, the most commonly used approach to obtain the P-factor information is 

through field observation and visual image interpretation. Historically, the latter has been 

dominated by the use of aerial photographs as these provide a high level of spatial detail for 

assessing agricultural management practices (Lord and McLean, 1969; Iyer, 1974; Morgan et 

al., 2010). Though not yet reported in the literature, ArcGIS Online aerial photographs and 

Google Earth images also offer sufficient spatial resolution for visual assessment of the P-

factor. Nevertheless, estimating the P-factor through visual image interpretation is tedious 

and lacks objectivity. An alternative therefore, has been to assign the P-factor values obtained 

from the literature to satellite derived LULC maps (Pelletier and Griffin, 1985; Lee, 2004). 

Prasannakumar et al. (2012) derived the P-factor map from a remote sensing-based LULC 

map. Kumar and Kushwaha (2013) classified IKONOS and IRS Resourcesat-1 LISS-IV and 

assigned P-values into relevant conservation practices present in their study area. In their 

study, Gelagay and Minale (2016) assigned the P-values suggested by Wischmeier and Smith 

(1978) to Landsat-derived LULC map based on the corresponding slope class in each LULC 

type.    



  

41 

 

However, similar to the setback related to the use of satellite imagery to determine the C-

factor, satellite images with adequate spatial resolution to detect conservation practices 

(contour ridge and terrace etc.) are not freely available. In this regard, readily available 

satellite imagery such as Landsat are commonly used (Uddin et al., 2016) despite their coarse 

spatial resolution. The use of coarse spatial resolution imagery is a cause for concern 

particularly in per-pixel classification (Cracknell, 1998), where mixed pixels are often 

categorized as one class. Subpixel-oriented classification methods such as linear spectral 

mixture analysis (see Section 2.3.4) offers a more appropriate and accurate estimation of 

LULC than per-pixel approaches (Lu and Weng, 2007). Empirical equations assist in 

estimating the P-factor though their predictive ability may be limited to those regions for 

which they were developed (De Vente and Poesen, 2005). However, despite the related 

strengths, a critical limitation with subpixel classification is the difficulty in selecting 

representative endmembers (see Section 2.3.4) and assessing accuracy (Lu and Weng, 2007). 

The P-factor information can also be directly extracted from the slope map (%) (Wener, 

1981). The accuracy of such information however depends on the quality and spatial 

resolution of the DEM used to derive the slope map.     

Often, as in the case of the C-factor, various methods are combined in order to optimally 

estimate the P-factor. Wang et al. (2016) determined the P-factor values based on aerial 

images, ground data, and the land use/land cover (LULC) map derived from satellite image 

(Pleiades-1A). In South Africa, Mhangara et al. (2012) obtained information related to the P-

factor through field observations using a Global Positioning System (GPS) in conjunction 

with protected areas maps.    

2.4. Summary and conclusions 

This review has shown how GIS and remote sensing technologies aid in estimating the 

RUSLE parameters including rainfall erosivity (R-factor), topography (LS-factor), erodibility 

(K-factor), cover and management (C-factor), and support practice (P-factor). GIS is mainly 

used for computation of individual RUSLE parameters while satellite remote sensing forms 

an increasingly important data source for all the RUSLE parameters. The contribution of 

remote sensing towards the assessment or estimation of individual RUSLE parameters varies 

considerably as summarized below. 

 R-factor – attempts have been made to derive the R-factor from satellite-borne 

precipitation data, though such have been restricted to TRMM-TMPA data. The use 
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of many other space-based precipitation products such as CFSR, CMAP, GSMap, 

HydroEstimator, MPE, NRL-Blended, and PERSIANN in estimating the R-factor has 

not been reported in the literature. Instead, comparisons have been made between 

ground-based rainfall estimates and satellite-derived rainfall estimates. Although in 

situ-based measurements are still precise and more representative of the precipitation 

events than satellite-borne rainfall measurements, satellite products can complement 

ground based measurements in remote areas where gauge stations are extremely 

limited or non-existence. Prior to their use however, such satellite products must be 

assessed for suitability of use and validated against in situ-based measurements within 

the area of interest. 

 K-factor – the RUSLE model considers the physical properties such as the primary 

particle size distribution, organic matter, soil structure, and permeability as the most 

important factors influencing the erodibility of a soil. The combination of remote 

sensing and GIS has proven helpful in determining soil erosion properties. Some soil 

properties can be determined from remote sensing spectra using statistical analysis 

while others are inferred from other properties such as soil colour. The use of remote 

sensing to map the soil chemical properties, which are not currently accounted for in 

the RUSLE K-factor equation, could improve soil erodibility estimates. In terms of 

analysis, multiple regression, geostatistics, and spectral mixture analysis are the most 

commonly used approaches to extract information from remote sensing images. 

Though the determination of soil erodibility factors has been successful using 

geostatistics and remote sensing, it is still a challenge to satisfactorily quantify 

relevant soil properties from remotely sensed data for input in the RUSLE erodibility 

equation.   

 LS-factor - various space-borne DEMs allow for direct calculation of the LS-factor. 

Amongst these, the ASTER and SRTM DEMs have been the most widely applied 

products, probably because they are freely available to the research community and 

provide near-global coverage. Of great concern, however, is that these DEM products 

are incorporated in soil erosion studies as a given parameter without testing their 

suitability for terrain modelling at the desired scale of the study. Yet, these products 

are subject to systematic errors such as voids in case of the SRTM and residual cloud 

patterns in case of ASTER GDEM. Given that soil loss is very sensitive to 

topographic parameters, it is essential to assess the accuracy of DEMs in general, 
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prior to any further analysis. The combination of elevation points or contour lines 

with satellite-derived DEMs could improve the accuracy of topographic derivatives. 

 C-factor and P-factor – remote sensing classified LULC maps, and spectral indices 

including NDVI and related indices are now preferred over conventional techniques 

owing to their objectivity, low costs, and relative accurate data analysis. Regression 

equations and statistical analysis are used to relate the C values to spectral indices. 

Landsat data has been the most frequently used sensor for deriving LULC maps and 

spectral indices from which the C-factor information is obtained. Linear spectral 

unmixing has been commonly used to separate photosynthetic vegetation from 

senescent vegetation. Similarly, the P-factor information is obtained from LULC 

maps in conjunction with field observation. However, in many RUSLE studies the 

information relating to accuracy of the classified LULC maps is not often revealed. 

Although remote sensing is preferred over traditional methods, there appears no 

satisfactory remote sensing methodology for estimating C-factor and P-factors. So far, 

comparison and testing of different remote sensing-oriented methods based on a given 

study purpose, scale, and data availability have been the panacea to obtaining 

reasonable C-factor results. 

Overall, although important challenges still remain, this paper has shown that the benefits of 

using freely available geospatial technologies in erosion modelling far outweigh the 

associated setbacks mentioned in this paper. This is reflected by the continuous increase of 

studies that incorporate remote sensing and GIS in RUSLE erosion modelling. Different 

remote sensing products and techniques have been presented and their pros and cons with 

respect to the derivation of individual RUSLE factors have been discussed. The present paper 

is expected to improve the understanding of the role of geospatial technologies in deriving 

individual RUSLE parameters despite existing challenges. Future research, however, must 

pay special attention to error assessment of remote sensing-derived RUSLE parameters. 
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CHAPTER 3 

SOIL EROSION RISK ASSESSMENT 
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Abstract 

Designing and implementing relevant soil and water conservation measures at the catchment 

level depend largely on the identification of soil erosion prone areas with sufficient detail and 

reasonable accuracy. The aim of this study was to assess soil erosion risk in the Umzintlava 

Catchment by exploring the relationship between soil loss and erosion factors as represented 

by different Revised Universal Soil Loss Equation (RUSLE) parameters. To achieve this aim, 

an integrated methodology was adopted, including the RUSLE model, remote sensing and 

Geographic Information System (GIS). Elevation data, monthly rainfall data, Systeme Pour 

l’Obsevation de la Terre (SPOT7) imagery, and soil data were analyzed using the RUSLE 

model, remote sensing or GIS to derive erosion factors, which were used to determine soil 

loss in the study area. The results indicate that the catchment suffered from unprecedented 

rates of soil loss, recording a high mean annual soil loss of 11 752 t ha t ha−1yr−1. 

Statistically, the slope length and steepness (LS-factor) was the most important factor causing 

erosion (p < 0.001 and r² = 0.954), suggesting that areas with steep slopes are the most 

vulnerable to hillslope erosion. This is corroborated by results of remotely sensed classified 

imagery, indicating that not only areas with steep slopes are vulnerable to erosion but also 

gently sloping areas suffer from erosion, mostly gully erosion. The spatial overlay of 

RUSLE-derived soil loss results and remote sensing-classified soil erosion results provided 

reasonable representation of soil erosion in the study area. The accuracy of these results 

highlights the strong potential and the role of remote sensing and GIS technologies in 

providing high quality information on soil erosion at least costs, which in turn assist in 

determining appropriate soil erosion control and management practices.  

Keywords: Soil erosion risk; Umzintlava catchment; geospatial technologies; revised 

universal soil loss equation (RUSLE)     

3.1. Introduction  

Worldwide, soil erosion is regarded as one of the most important contributors to 

environmental and socio-economic problems (Fu et al., 2006; Rahman et al., 2009; Aiello et 

al., 2015). Literature on the effects of soil erosion is vast (Oldeman et al., 1991; Singer and 

Warkentin, 1996; Lal, 2001; Morgan, 2005; Pimentel, 2006; Van Oost et al., 2007). In 

general, soil erosion negatively affects soil fertility and soil productivity. Over the last four 

decades, almost one-third (30%) of the world’s productive land has been lost to the 

consequences of soil erosion at a rate of more than 10 million hectares per year (Pimentel et 

al., 1995; Lal, 2003; Yang et al., 2003; Jahun et al., 2015). The declining soil fertility due to 
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soil erosion is a contributing factor to food insecurity in many rural parts of the world, 

particularly the developing world including South Africa, where subsistence agriculture is 

widely practiced. If food security is to be realized, especially at the household level in such 

rural areas like in South Africa, then soil erosion must be thoroughly contained and managed. 

Mandatory in this endeavor, is the availability of qualitative and quantitative information on 

the spatial distribution of soil erosion risk. 

The identification of soil erosion prone areas with sufficient detail and accuracy is now 

deemed a prerequisite for designing and implementing relevant soil and water conservation 

measures at the catchment level (Lane et al., 2000; Shi et al., 2004; Prasannakumar et al., 

2012). A variety of models on the spatial distribution of soil erosion exists and many have 

been summarized in Merritt et al. (2003). Among these, the Universal Soil Loss Equation 

(USLE) proposed by Wischmeier and Smith (1978) and revised by Renard et al. (1997) is the 

most commonly used model worldwide. Although the revised USLE (RUSLE) has its own 

shortcomings, it is currently at the core of soil erosion assessment throughout the world, 

because it still represents a reasonable compromise between accuracy and ease of application 

(Risse et al., 1993). 

RUSLE was originally designed to assess soil loss from rill and interill erosion on 

agricultural fields (Wischmeier and Smith, 1978; Renard et al., 1997; Karydas et al., 2009), 

and does not account for soil loss from gully erosion (Poesen et al., 2003). Yet, gullies 

represent an important source of sediment entering the stream because of their high delivery 

ratios especially when well connected to streams (Wasson et al., 1996). For this reason, many 

investigators including among others Onyando et al. (2004), Lim et al. (2005), Duraes, de 

Mello, and Beskow (2016), and Tamene et al. (2017), have coupled RUSLE with sediment 

delivery models in an attempt to determine aggregate soil loss from catchment areas. Besides 

assisting in quantitative estimates of soil loss, sediment yield calculation may also provide 

useful information pertaining to the spatial representation of ephemeral and classical gully 

erosion processes. Sadly, the paucity of validation data often makes sediment yield 

assessment rather difficult to achieve (De Vente and Poesen, 2005).  

Progress in the application of geospatial tools, particularly Geographic Information System 

(GIS) and remote sensing has improved the efficiency and cost-effectiveness in soil erosion 

assessment using the RUSLE model than it has historically been the case. However, despite 

the continuous use of these geospatial tools in RUSLE erosion assessment at catchment level 
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(Noori et al., 2016); relatively few studies have attempted to combine RUSLE-estimated soil 

loss with remote sensing-classified soil erosion results to analyze the spatial pattern of this 

problem. This study is an attempt to integrate the RUSLE model and soil erosion features 

extracted from remotely sensed imagery in a GIS environment to analyze soil erosion risk at 

the catchment level using the case of the Umzintlava Catchment in South Africa. The 

objectives are (1) to assess soil erosion vulnerability of the Umzintlava Catchment, and (2) to 

explore the relationship, if any, between soil loss and different erosion factors as represented 

by RUSLE parameters. 

3.2. Materials and methods  

3.2.1. Study area 

The study area is confined to a small catchment (T32E) drained by the Umzintlava River and 

its tributaries. The catchment is predominantly rural with the majority of its inhabitants 

involved in subsistence agriculture. Extending from 30º36'55" S and 29º32'34" E to 30º49'28" 

S and 29º14'26" E, the catchment covers an approximate surface area of 382km² and occupies 

the eastern section of Umzimvubu Local Municipality. A highly uneven topography with an 

elevation of approximately 890m for low lying areas and 2015m for elevated areas 

characterises the catchment. Three major vegetation types are found in the study area with the 

Highland Sourveld and Dohne Sourveld widely distributed across the elevated areas while the 

Southern Tall Grassveld, as well as the Valley Bushveld typically occupy areas of low 

elevation (Acocks, 1988). The climate of the study area falls under that of Umzimvubu 

Municipality and can be classified as semi-arid with warm and rainy summer months 

(November to January) as well as dry and cold winter months (May to July) (Boardman et al., 

2003). The average minimum temperatures range from 7 ºC to 10 ºC in winter and 18 ºC to 

30 ºC in summer with the annual rainfall of 671mm. The study area is covered by six broad 

soil types, namely: Fa, Ac, Aa, Ab, Ea, and Ib soils (Table 3.1 and Appendix B). Subsequent 

sections detail the methodology employed in this study. Figure 3.1 provides a summary of 

such methodology in the form of a flow chart diagram.  

3.2.2. Data and pre-processing 

The Systeme Pour l’Obsevation de la Terre (SPOT7) image with 12168 columns and 12060 

rows was obtained from the South African National Space Agency (SANSA) free of charge. 

Acquired on 16 April 2016 at 07:41:11 AM, the image consists of four multispectral bands 

(Blue, Green, Red, and Infrared) with a spatial resolution of 5.5m, and a panchromatic band 
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Figure 3.1 Methodology flow chart for this study. 
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with a spatial resolution of 1.5m. The SPOT7 image product was already orthorectified by the 

suppliers, hence no further geometric corrections were necessary. Only radiometric 

normalisation was conducted, using the ‘Apparent Reflectance’ function located within the 

Image Analysis module in ArcGIS 10.4 to convert the SPOT image digital numbers (DNs) to 

top of atmosphere reflectance. 

Other data used in this study include rainfall data, digital elevation model (DEM), and soil 

data. The monthly rainfall data spanning a period of 46 years (1970-2016) was obtained from 

the South African Weather Services (SAWS). A 1-arc second (approximately 30m) Shuttle 

Radar Topography Mission (SRTM) Void Filled DEM was downloaded from the United 

States Geological Survey (USGS) at no cost. Twenty four soil samples representing major 

soil types in the study area were collected from the top soil (between 0 and 30cm). Given that 

the data are obtained from multiple sources, efforts were made to improve the spatial 

accuracy by co-registering all the spatial data to a common coordinate system, comprising the 

Universal Traverse Mercator (UTM) projection, zone 35 South and World Geodetic System 

1984 (WGS84) datum. 

3.2.3. Image classification and error assessment 

The Normalised Difference Vegetation Index (NDVI) was developed in the 1970s by Rouse 

et al. (1974), and since then has become a useful tool for feature extraction from remotely 

sensed data (e.g. Bhandari et al., 2012; Phinzi and Ngetar, 2017). One advantage of using 

spectral vegetation indices like NDVI is their ability to highlight spatial objects in an image 

while minimizing atmospheric and illumination angle effects (Meusburger et al., 2010). In 

the present study, NDVI (Equation 3.1) derived from SPOT7 was used to extract information 

on both land use/land cover (LULC) and soil erosion features with the help of different NDVI 

classification thresholds (Tables 3.1 and 3.2, respectively). These thresholds were determined 

on a trial and error basis in ArcMap 10.4 using Map Algebra. The rationale for selecting the 

best thresholds was based on the overall and kappa statistics results of the derived LULC and 

soil erosion features (Phinzi and Ngetar, 2017).    

                                                            𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                       [3.1] 

Where NIR is the near-infrared (Band 4) reflectance, and Red is the visible red (Band 3) 

reflectance. NDVI was generated in ERDAS IMAGINE 2016 software using an in-built 

NDVI module. NDVI-classified LULC and soil erosion results were subjected to error 
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assessment through the confusion matrix. For LULC, 180 randomly selected points were 

generated in ArcMap 10.4 using the ‘Create Accuracy Assessment Points’ tool within which 

the ‘Equalized Stratified Random’ option was selected as a sampling strategy to ensure that 

each LULC class was assigned the same number of points, viz. 30 points per class. Using the 

same procedure, 60 random points (30 points per class) were generated to assess the soil 

erosion results. 

Table 3.1 NDVI classification thresholds for various LULC classes 

LULC Description NDVI threshold 

Water Bodies Rivers, dams, and lakes 0 ≤ 

 

Built-up Areas 

Residential areas including roads, and other impervious 

surface features 

0 – 0.10 

Barren Land Areas with no vegetation cover such as bare soil, exposed 

rocks and sand 

0.11 – 0.28 

Agricultural 

Land 

Uncultivated agricultural areas with minimal or sparse 

vegetation cover. 

0.29 – 0.33 

Rangeland Grassland areas including shrub lands. 0.34 – 0.44 

Forest Photosynthetic, and dense vegetation cover such as trees. 0.45 – > 0.70 

 

Table 3.2 NDVI classification thresholds for soil erosion and non-erosion features 

Feature Description NDVI threshold 

Erosion Gully (i.e. ephemeral and permanent), and stream erosion 

features. 

0.03 –  0.20  

Non-erosion Any feature other than erosion feature. 0 ≤ , < 0.03, and       

> 0.20 

 

The SPOT7 panchromatic band with a high spatial resolution, together with Google Earth 

(Phinzi and Ngetar, 2017; Tadele et al., 2017) were used for ground truth after which 

randomly selected points were updated for both LULC and soil erosion results using the 

‘Update Accuracy Assessment Points’ tool. Thereafter, the ‘Compute Confusion Matrix’ tool 

was used to generate error matrices.                 

3.3. Determination of RUSLE parameters  

The RUSLE model estimates annual soil loss based on five input parameters (Wischmeier 

and Smith, 1978; Renard et al., 1997) using the equation: 

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃                                                     [3.2] 
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Where A represents the mean annual soil loss rate (t ha−1yr−1)5, R is the rainfall erosivity 

(MJ mm. ha−1h−1yr−1)5 K is the soil erodibility factor  (t J−1mm−1)5, LS is slope length 

and slope steepness factor (dimensionless), C is the cover and management factor 

(dimensionless); and P is the support practice factor (dimensionless). All the RUSLE 

parameters were determined and integrated within the ArcMap 10.4 environment following a 

grid-based approach (Thomas et al., 2017). A standard output cell value of 5m was used in 

the computation of each parameter so as to ensure consistency and accuracy. The methods 

used to determine each parameter are briefly described in the subsections that follow. 

3.3.1. Rainfall erosivity (R-factor) 

Rainfall is one important natural factor influencing water-borne erosion. Rainfall-runoff 

erosivity (R) refers to the ability of raindrops and overland flow to cause soil erosion 

(Morgan, 2005). Traditionally, the RUSLE R-factor is calculated based on the product of 

rainfall kinetic energy (E) and the maximum 30 minute rainfall intensity (I30 ) (Wischmeier 

and Smith, 1978). An important setback with this method however, is the difficulty to reflect 

continuous records of rainfall data (Wang et al., 2016). In addition, the method requires high 

resolution pluviograph data of at least 20 years (Renard et al., 1997) which is difficult to 

obtain for many parts of the world (Bonilla and Vidal, 2011), including the study area. An 

alternative to overcome this constraint has been to establish a relationship between readily 

available daily, monthly, or annual rainfall data and rainfall erosivity (Da Silva, 2004; Fu et 

al., 2006; Salako, 2010). Using Wischmeier and Smith’s (1978) empirical equation, the 

monthly rainfall data (1972-2016) from three meteorological stations adjacent to Umzintlava 

Catchment were used to calculate the R-factor [3.3]: 

𝑅 =  ∑ 1.735 𝑥 

12

𝑖=1

10
(1.5𝑙𝑜𝑔

𝑝𝑖
2

𝑝
−0.8188)

                                                    [3.3] 

Where R represents the rainfall erosivity (R-factor) (MJ mm. ha−1h−1yr−1), 𝑝𝑖 represents the 

total monthly precipitation (mm), and p is the mean annual precipitation (mm). Upon 

obtaining the R values for each station, the Inverse Distance Weighted (IDW) interpolation 

technique available in ArcMap 10.4 was employed to compute the spatial variability of the R-

factor throughout the catchment.  

                                                 
5 Note: These abbreviations have been described in Chapter 2, Section 2.2.   
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3.3.2. Soil erodibility (K-factor) 

Some soils are much more susceptible to erosion than others due to inherent soil properties 

(Renard and Foster, 1983). Thus, soil erodibility (K-factor) represents the degree to which a 

particular soil is resistant or susceptible to detachment by rainfall in the form of plash and 

runoff due to overland flow. A commonly used and accepted method for deriving the K-

factor values is the soil erodibility nomograph (Wischmeier et al., 1971). Algebraic 

expressions that approximate the monographic-derived K-values are available (e.g. 

Wischmeier and Smith, 1978; Foster et al., 1981; Rosewell, 1993). In this study, Rosewell’s 

(1993) numeric expression which provides the K-factor estimates in international system of 

units (SI units) was used as given by equations [3.4] and [3.5]. Compared to other RUSLE 

erodibility equations, this equation is relatively simple and recent, hence preferred in this 

study.   

     𝐾 = 2.77 × 10−7(12 − 𝑂𝑀)𝑀1.14 + 4.28 × 10−3(𝑠 − 2) + 3.29 × 10−3(𝑝 − 3)      [3.4] 

      𝑀 = [(𝑆𝑖𝑙 + 𝑣𝐹𝑆𝑎) × (100 − 𝐶𝑙𝑎)]             [3.5] 

Where K is the soil erodibility factor (t h MJ−1mm−1), OM is the soil organic matter content 

(%), Sil is the silt fraction (%), vFSa is the very fine sand fraction (%), Cla is the clay fraction 

(%), S is a soil structure code, and P is a permeability class (Appendix D). Twenty-four soil 

samples representative of six major soil types found within the study area were collected 

from the first 30cm of the topsoil (A horizon) (Table 3.3). In each soil type, the sampling 

locations were selected on the basis of soil colour and land use. The Garmin-eTrex 10 

handheld Global Positioning System (GPS) receiver was used to capture the sampling 

locations. Prior to preparation, the soil samples were air-dried at ambient temperature of 21 

ºC – 23 ºC as recommended by the U.S. Environmental Protection Agency-EPA (2008). 

Following standard laboratory procedures outlined in Rowell (1994), the above-mentioned 

physical and chemical properties of soil such as the cations exchange capacity (CEC), and 

soil pH were determined. Since the RUSLE erodibility (K-factor) expression only considers 

physical properties, CEC and soil pH were indirectly incorporated as ancillary data in order 

to enhance soil erodibility estimation. According to Wang et al. (2016), soil chemical and 

physical properties work cumulatively to determine soil erodibility. 
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Table 3.3 Distribution of soil samples on major soil types (After ARC-ISCW, 2006) 

Soil type٭ Description Area (km²) Samples 

Aa Freely drained, red and yellow apedal soils with humic 

topsoils comprise >40% of the land Type. 

34 1 

Ab Freely drained, red and yellow, dystrophic/mesotrophic, 

apedal soils comprise >40% of the land type (yellow soils 

<10%). 

16 2 

Ac Freely drained, red and yellow, dystrophic/mesotrophic, 

apedal soils comprise >40% of the land type (red and 

yellow soils each >10%). 

55 5 

Ea Black or red clays comprise >50% of land type. 13 3 

Fa Shallow soils (Mispah and Glenrosa forms) predominate; 

little or no lime in landscape. 

254 12 

Ib Rock outcrops comprise >60% of land type. 10 1 

 Note: Contained in this column are the broad soil pattern codes representing the dominant grouping of soil٭

forms as suggested by ARC-ISCW (2006). 

3.3.3. Slope length and steepness (LS-factor)         

The slope length and slope steepness (LS-factor) represent the overall contribution of 

topography to soil loss (Tanyaş et al., 2015). Cateris Paribas, areas with steep and lengthy 

slopes tend to suffer more erosion than flat or gentle sloping areas (Morgan, 2005). A 30m 

SRTM Void Filled DEM product downloaded from the USGS website was used to compute 

the LS-factor. Prior to its use, the DEM was hydrologically corrected using the “Sink” tool 

located within the hydrology toolset of ArchMap 10.4. Various well-established methods 

exist for deriving the LS-factor from a DEM (e.g. McCool et al., 1989; Moore and Wilson, 

1992; Desmet and Govers, 1996). For this study, the LS-factor was directly computed from 

the 30m DEM based on Moore and Burch (1986): 

                    𝐿𝑆 = (
𝐴

22.13
)𝑚 × (

𝑠𝑖𝑛𝛽

0.0896
)𝑛 𝐴 = (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)           [3.6] 

Where LS is the slope length and slope steepness (dimensionless), A is the upslope 

contributing area per unit cell (m), m (0.4) is a variable slope length exponent, n (1.3) is a 

slope steepness exponent. By substituting equation [3.6], the LS-factor becomes [3.7]: 

𝐿𝑆 = {𝑝𝑜𝑤𝑒𝑟((("FlowAcc"*30)/22.13),0.4)*power((sin("𝑆𝑙𝑜𝑝𝑒" ∗ 0.01745)/ 

                                                                0.0896),1.3)}                                                       [3.7]   
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3.3.4. Cover and management factor (C-factor) 

Ranging from 0 to 1, the C-factor relates to the ratio of soil loss under specific cropping 

conditions to soil loss occurring in bare soil (Wischmeier and Smith, 1978). If the land use 

completely prevents erosion, then the C-factor becomes 0; if there is no land use that acts as a 

protection against erosion, then the C-factor becomes 1 and for the rest of the conditions, it is 

lower than 1 (Tanyaş et al., 2015). In this study, the NDVI map [Equation 3.1] was used to 

derive the C-factor values as given by equation [8] (Van der Knijff et al., 1999, 2000). The 

calculation of this factor was done in ArcMap 10.4 using Raster Calculator.                                                         

                                                           𝐶 = 𝑒𝑥𝑝
(−𝑎

𝑁𝐷𝑉𝐼

(𝛽−𝑁𝐷𝑉𝐼)
) 

                                                  [3.8] 

Where C represents the cover and management factor (dimensionless), a and β are the 

parameters that determine the shape of the NDVI curve. In the present work, the values of 2 

and 1 were applied for a and β parameters respectively, since such values are said to produce 

reasonable results (Van der Knijff et al., 2000; Gitas et al., 2009; Kouli et al., 2009; Heung et 

al., 2013; Bhat et al., 2017). 

3.3.5. Support practice factor (P-factor) 

The support practice (P) factor indicates the impact of management through the control of 

runoff, with specific reference to how the management reduces and alters the pattern, 

direction and speed of that runoff (Renard and Foster, 1983; Renard et al., 2011). It 

represents the ratio of soil loss after a specific conservation practice to the corresponding soil 

loss after upward and downward cultivation (Renard et al., 1997). The P-factor values lie in 

the range of 0 – 1, with 0 representing areas with strong protective measures whereas 1 

represents the areas with no support practice (Wang et al., 2016). In this study, the P-factor 

information was extracted from the slope layer using Wener’s (1981) algebraic formula [3.9]. 

The calculations were carried out in Raster Calculator of ArcMap 10.4.  

𝑃 = 0.2 + 0.03 × 𝑆                                                  [3.9] 

Where P is the support practice factor (dimensionless), and S is the slope (%). Wener’s 

(1981) equation was preferred because of its fairly objectivity and simplicity. 

3.4. Statistical analysis 

A total of 45 randomly created sample points across the entire study area (Appendix E), were 

used to extract the mean annual soil loss values from the soil loss map as well as the R, K, 
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LS, C, and P values from respective GIS-derived RUSLE parameters. These were 

accomplished using the “Extract Values by Points” tool available in ArcMap 10.4 software. 

These random sample points were later used in the correlation analysis between soil loss and 

each RUSLE parameter. The Statistical Package for the Social Sciences (SPSS) version 25 

software was used for statistical analysis.  

Prior to any further statistical analysis, sample points representing soil loss and RUSLE 

parameter values were subjected to a One-Sample Kolmogorov-Smirnov (1-Sample K-S) 

normal distribution test. Given that the data for some variables were not normally distributed, 

the data for all variables were transformed to normalise them. Thereafter, a parametric 

correlation analysis, i.e. Pearson’s correlation, was used to quantitatively assess the 

relationship between soil loss and RUSLE parameters. Not only does it correlates RUSLE 

parameters to soil loss, the Pearson’s correlation also conveniently allows for the examination 

of the relationship amongst the parameters themselves. Further to this correlation analysis, 

scatter plots with different lines of best fit such as linear, quadratic, and cubic fit were applied 

to the results to visualise the nature of the relationship between soil loss and RUSLE 

parameters. Amongst these lines of best fit, the cubic line best described the relationship, 

hence it was chosen in this study.   

3.5. Results 

3.5.1. LULC and soil erosion features mapping 

Figure 3.2a illustrates the spatial distribution of six major LULC types identified in this 

study. These include water bodies, built-up areas, barren land, agricultural land, rangeland, 

and forest. A significant portion of the study area is covered by Barren Land (34.79%) 

closely followed by Rangeland (34.31%). Given the apparent limitation of the RUSLE model 

to account for soil loss from gully erosion, an attempt was made in the present study to 

extract gully erosion including rill erosion features. The spatial distribution of these erosion 

features is presented in Figure 3.2b, while Figure3.3c shows photographs of some gully 

erosion features observed in the study area during field observation. Erosion features, 

particularly gullies, mostly occur in the central part of the catchment (Figure 3.2b) where the 

LULC is predominantly barren land and agricultural land (Figure 3.2a) in relatively low 

elevations.  

Accuracy assessments of NDVI-classified LULC results (Figure 3.2a) and soil erosion results 

(Figure 3.2b) is provided in the confusion matrices (Tables 3.4 and 3.5, respectively). While       
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Figure 3.2 (a) LULC types, (b) soil erosion distribution, and (c) field photos of gully erosion observed in the study area. 
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several indices on accuracy assessments are provided in the confusion matrix, the overall 

accuracy together with kappa coefficient are considered the most important indices in judging 

the performance of the classification method under consideration (Lillesand and Kiefer, 

2000), in this case, the NDVI threshold technique. Tables 3.4 shows that the LULC results 

achieved an overall accuracy of 0.75 (75%) and a kappa coefficient of 0.79 (75%), whereas 

Table 3.5 shows that soil erosion classification results recorded an overall accuracy and 

kappa coefficient of 0.73 (73%) and 0.87 (87%), respectively. 

Table 3.4 Confusion matrix of NDVI-derived LULC results 

Class 

Value* 

C1 

 

C2 

 

C3 

 

C4 

 

C5 

 

C6 

 

Total 

 

UA 

 

Kappa 

 

OA 

C1 28 2 0 0 0 0 30 93% - - 

C2 7 6 15 0 2 0 30 20% - - 

C3 0 1 27 2 0 0 30 90% - - 

C4 0 0 2 27 1 0 30 90% - - 

C5 0 0 0 2 28 0 30 93% - - 

C6 0 0 0 0 3 27 30 90% - - 

Total 35 9 44 31 34 27 180 - - - 

PA 80% 67% 61% 87% 82% 100% - - - - 

Kappa - - - - - - - - 0.75 - 

OA - - - - - - - - 

 

79% 

*C1 = Water Bodies, C2 = Built-up Areas, C3 = Barren Land, C4 = Agricultural Land, C5 = Rangeland, C6 =         

Forest, UA = User’s Accuracy, PA = Producer’s Accuracy, and OA = Overall Accuracy.  

Table 3.5 Confusion matrix of NDVI-derived soil erosion results 

Feature 

 

 

Non-

erosion 

 

Soil 

erosion 

 

Total 

 

 

UA 

 

 

Kappa 

 

 

OA 

 

 

Non-erosion 29 1 30 97% -                           - 

Soil erosion 7 23 30 77% -                           - 

Total 36 24 60 - -                           - 

PA 81% 96% - - -                           - 

Kappa  - - - - 0.73                           - 

OA                  -                 -           -                      -           - 87% 

 

3.5.2. Soil erosion factors  

Figures 3.3 shows the spatial distribution of the (a) R-factor, (b) K-factor, and (c) LS-factor 

while Figure 3.4 presents (a) NDVI, (b) C-factor, and (c) P-factor in the study area. 

Quantitative information on the R-factor, K-factor, and C-factor is presented in Tables 3.6, 

3.7, and 3.8, respectively. The R-factor for the 1972-2016 period ranges from 814 to 1060 

MJ mm. ha−1h−1yr−1 with the latter mostly distributed across the south-western parts  
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Figure 3.3 (a) R-factor, (b) K-factor, and (c) LS-factor. 
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Figure 3.4 (a) NDVI, (b) C-factor, and (c) P-factor. 
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whereas low R values are found in the northern section of the catchment (Figure 3.3a). Of the 

three meteorological stations, the Hillendale station recorded the least average annual rainfall 

erosivity (814 MJ mm. ha−1h−1yr−1), relating to the lowest average annual rainfall (804 mm) 

from 1972-2016 (Table 3.6). On the contrary, the Fort Donald station located at highest 

altitude (1440 m) with a relatively high average annual rainfall amount (946 mm), produced 

low rainfall erosivity of 913 MJ mm. ha−1h−1yr−1, reflecting a rather weak relationship 

between average rainfall amount and rainfall erosivity at this station. With an average annual 

rainfall of 898 mm and an altitude of 1138 m, the Insizwa station recorded the highest 

average erosivity of 1060 MJ mm. ha−1h−1yr−1.  

Table 3.6 Mean annual rainfall erosivity in relation to altitude and mean annual rainfall over 

the period of 44 years (1972-2016) 

Station 

name 

Latitude Longitude Altitude 

(m) 

Annual 

rainfall (mm) 

Mean R-factor 

(𝐌𝐉 𝐦𝐦. 𝐡𝐚−𝟏𝐡−𝟏𝐲𝐫−𝟏) 

Hillendale 30.6181 29.3178 1402 804 814 

Fort Donald 30.7916 29.5215 1440 946 913 

Insizwa 30.8202 29.2609 1138 898 1060 

Soil erodibility (K-factor) values lie in the range of 0.021 - 0.086 t h MJ−1mm−1 for the 

study area (Figure 3.3b). Low K values (0.021 – 0.043 t h MJ−1mm−1) are found in the 

western parts whereas high values, ranging from 0.054 – 0.086 t h MJ−1mm−1 mostly cover 

the northern, central, and some southern and south-eastern parts of the study area. Using the 

zonal statistics tool available in ArcMap 10.4 software, mean values of various physio-

chemical soil attributes including K-factor were extracted to different soil types in the study 

area (Table 3.7). The extraction of these mean values revealed that the mean soil erodibility 

values range from 0.048 – 0.066 t h MJ−1mm−1.  

Of all soil types presented in Table 3.7, the Ea soil type occupying about 3.6% of the total 

surface area of the catchment is the most potentially highly erodible soil type with the mean 

K-factor of 0.066 t h MJ−1mm−1 (Schulze, 2007; Parwada and Van Tol, 2017). This soil type 

also recorded the highest cations exchange capacity (CEC), viz. 20.2 cmol_c/kg. A high CEC 

contributes to soil erodibility since it indicates the presence of certain dispersive clay 

minerals (Gerber and Harmse, 1987; Rienks et al., 2000). Besides a high CEC value for the 

Ea soil type, high soil pH (8.6) (Wishchmeier and Mannering, 1969) and particle size 

distribution including high sand content (87.1%), and low soil organic matter (SOM) content 

(5.6%) (Wang et al., 2016), and clay content (7.6%) (Wishchmeier and Mannering, 1969) 

may have  
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Table 3.7 Mean values of physio-chemical properties of soil with corresponding K values 

Soil 

type 

Area 

(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

SOM٭ 

(%) 

pH٭ CEC٭ 

𝐜𝐦𝐨𝐥𝐜/𝐤𝐠 

K-factor 

(𝐭 𝐡 𝐌𝐉−𝟏𝐦𝐦−𝟏) 

Ac 14.4 81.2 7.5 11.3 6.1 7.6 7.8 0.048 

Ib 2.6 78.3 8.3 13.4 6.4 7.9 12.8 0.048 

Aa 8.9 75.9 10.5 13.6 6.3 7.5 11.2 0.051 

Ab 4.2 74.9 11.1 14.0 6.0 7.6 10.6 0.053 

Fa 66.5 79.2 8.7 12.1 5.7 7.8 10.7 0.054 

Ea 3.4 87.1 5.3 7.6 5.6 8.6 20.2 0.066 
*SOM = soil organic matter, pH = potential of hydrogen, and CEC = cations exchange capacity. 

contributed to high soil erodibility of this soil type. These relationships however were not 

always consistent for all soil types in the study area. For instance, the Fa soil type which 

covers more than 65% of the catchment recorded a CEC of 10.7 cmol_c/kg and pH of 7.8 

with a mean K-factor of 0.054 t h MJ−1mm−1 compared to the Ib soil type covering about 

2.6% of the catchment which recorded the least mean K-factor (0.048 t h MJ−1mm−1) but 

higher CEC (12.8 cmol_c/kg) and pH (7.9). The other soil types including Ac, Aa, and Ab 

have mean K values of ≤ 0.053. The pH which ranges from 7.5 – 8.6 and SOM which ranges 

from 5.6 – 6.4 varied the least amongst all soil types. The results further showed that the pH 

and SOM covary for most soil types (Table 3.7). For example, high pH values were 

associated with low SOM values for most soil types, and therefore high soil erodibility. 

The LS-factor (Figure 3.3c) varies from 0 to 1253 with a significant portion, especially in the 

central part of the study area varying from of 0 – 29. High LS-factor values of 437 to 1252 

occupy steep sloping lands (Mhangara et al., 2012), particularly the north-western, northern, 

and north-eastern parts of the catchment (Figure 3.3c).  

The NDVI generally ranges from -1 to 1, and distinguishes between vegetated and non-

vegetated areas (Rouse et al., 1974). In this study, NDVI values range from -0.45 to 0.70 with 

negative values representing non-vegetative features such as water and shadows, whereas 

positive values represent features like built-up areas, rangeland, barren land, and forest 

(Figure 3.4a). The highest value, 0.70 corresponds to dense and photosynthetic vegetation 

cover.  

Figure 3.4 (b) and (c) respectively shows the spatial distribution of the C-factor varying from 

0.21 to 0.84 and the P-factor values ranging from 0.002 to 0.774 across the study area. Low C 

values which represent strong vegetation cover are generally found in elevated areas covered 

by forests, most notable the western, south-western, northern as well as the eastern parts of 
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the study area (Figure 3.4b). High C values occur in some central parts of the study area 

where barren land and built-up areas are found. High C values can also be observed in 

mountainous areas in the western and northern parts of the study area. In these mountainous 

areas, high C values are associated with shadows and water bodies occurring in mountain 

valleys. Lower P values (0.002 – 0.044) are generally found in the central parts whilst high 

values (0.205 – 0.774) are found in the south-western, western and northern parts of the study 

area (Figure 3.4c).  

The mean NDVI, C, and P values for individual LULC classes are reported in Table 3.8. Low 

C values are found in vegetated areas with forest recording the lowest mean C value of 0.21, 

followed by rangeland and agricultural land with mean C values of 0.33 and 0.42, 

respectively. The lowest mean P value, 0.066, can be observed in agricultural land (Table 

3.8). This may be due to the effects of support practices such as contouring that are currently 

in place (Laker, 2004; Renard et al., 2011). As expected, high P values of 0.118 and 0.075 are 

found in built-up areas and barren land, respectively (Table 3.8).  

Table 3.8 LULC classes and their respective mean NDVI, C-factor and P-factor values 

LULC Mean NDVI Mean C value Mean P value 

Water Bodies -0.12 0 0 

Agricultural Land 0.30 0.42 0.066 

Rangeland 0.36 0.33 0.068 

Forest 0.44 0.21 0.069 

Barren Land 0.22 0.57 0.075 

Built-up Areas 0.08 0.84 0.118 

 

3.5.3. Soil loss rates and its relation to RUSLE parameters 

The average annual soil loss in the Umzintlava Catchment is 11 752 t ha−1yr−1. Figure 3.5 

shows that a considerable proportion covering approximately 90.19% of the catchment area 

experiences very low soil loss rates viz. 0 – 5 t ha−1yr−1. The areas falling within this soil 

loss category (0 – 5 t ha−1yr−1) are found at lower altitudes characterised by gentle sloping 

to nearly flat surfaces. About 8.86% and 0.79% portions of the catchment are respectively 

subject to low (5 – 12 t ha−1yr−1) and moderate (12 – 25 t ha−1yr−1) soil erosion rates. The 

remainder of the catchment, namely, 0.95% experiences, high (25 – 60 t ha−1yr−1), very 

high (60 – 150 t ha−1yr−1), and extremely high (> 150 t ha−1yr−1) rates of soil loss. Figure 

3.5 (graph insert) further reports annual average soil loss rates on a ward by ward basis, with 

ward 6 experiencing the least soil loss rate, namely 5.48 t ha−1yr−1 while ward 5 records the 
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highest mean soil loss (28.68 t ha−1yr−1), closely followed by Ward 2 with 28.32 

t ha−1yr−1. The rates of soil loss in the last two Wards exceed the reported provincial soil 

loss rate of 25 t ha−1yr−1 (Le Roux et al., 2008). The soil erosion risk map (Figure 3.6) is an 

overlay of the RUSLE soil loss estimates (Figure 3.5) and the NDVI-extracted soil erosion 

features (Figure 3.2b). This soil erosion risk map (Figure 3.6) shows that the entire catchment 

suffers from or is vulnerable to soil erosion with elevated areas being more vulnerable to 

hillslope erosion due to relatively steep slopes. Gently sloping areas in the study area have 

suffered severe gully erosion for reasons discussed in the next section.  
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Figure 3.5 Spatial distribution map of soil loss for the Umzintlava Catchment. The graph shows the mean annual soil loss rates by different 

wards with a ±5% standard error indicated by the sign (I) for each ward. 
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Figure 3.6 Soil erosion risk map for the study area. (Note: this map combines both NDVI-derived soil erosion and RUSLE-estimated soil loss). 
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3.6. Discussion 

Results derived from the integrated use of RUSLE, remote sensing and GIS to determine 

water-borne soil erosion vulnerability and risk in the Umzintlava Catchment indicate that the 

catchment suffers from unprecedented rates of soil loss as high as 11 752 t ha−1yr−1, with 

some areas recording soil losses varying from 12 to >150 t ha−1yr−1, far beyond the soil loss 

tolerance rates proposed for South Africa (McPhee and Smithen, 1984), namely; 3 

t ha−1yr−1 for shallow soils and 10 t ha−1yr−1 for deep alluvial soils. Such areas exceeding 

soil loss tolerances are generally located on steep slopes. This observation is consistent with 

findings from previous studies including Kamaludin et al. (2013), Gashaw et al. (2016), and 

Gelagay and Minale (2016) amongst other studies.  

Different factors contribute to soil erosion in the Umzintlava Catchment. The LS-factor 

which represents the overall effect of topography on soil erosion, appears to be the most 

important soil erosion factor. This is attested by the significant positive correlation (p < 

0.001, r² = 0.954, and r² cubic = 0.928) between soil loss and the LS-factor (Table 3.9 and 

Figure 3.7). The P-factor which represents the impact of soil management practices on 

erosion through the control of runoff also showed a significant correlation (p < 0.001 and r² = 

0.951 and r² cubic = 0.920) to soil loss, indicating that there are either weak or no erosion 

control measures in those areas associated with high soil loss rates. These areas include 

communally held grazing lands and some abandoned agricultural lands. The only erosion 

control measure widely used in the study area is contouring, commonly practiced in 

agricultural fields. A statistically significant (p < 0.001) relationship was observed between 

the C- factor and soil loss, however, the correlation coefficient (r² = 0.533 and r² cubic = 

0.459) revealed a rather weak relationship between the two. Statistically, there was no 

significant relationship between soil loss and other RUSLE parameters like the K-factor (p = 

0.903) and R-factor (p = 0.230). These parameters, respectively recorded negative correlation 

coefficients of r² -0.019 and r² = -0.182 (Table 3.9), suggesting that they are not causative 

factors to soil erosion in the study area.  

One objective of this study was to assess soil erosion risk and vulnerability of the Umzintlava 

Catchment. The rates of soil loss reported in this study certainly highlight the need for 

prioritisation of the affected areas in the catchment. However, prior to using the RUSLE 

model as a guide for identifying priority areas, the RUSLE-estimated soil loss results ought to 

be interpreted with extreme care. In the present study, RUSLE appears to have only 
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Table 3.9 Pearson’s correlations for spatial autocorrelation between RUSLE parameters and soil loss 

Variable Pearson’s 

correlations 

Soil loss C-factor K-factor LS-factor P-factor R-factor 

Soil loss Correlation 

coefficient 

1 0.533 -0.019 0.954 0.951 -0.182 

 p-value  0.001 0.903 0.001 0.001 0.230 

 

C-factor 

 

Correlation 

coefficient 

  

1 

 

0.256 

 

0.320 

 

0.336 

 

-0.106 

 p-value   0.090 0.032 0.024 0.489 

 

K-factor 

 

Correlation 

coefficient 

   

1 

 

-0.153 

 

-0.114 

 

-0.509 

 p-value    0.316 0.455 0.001 

 

LS-factor 

 

Correlation 

coefficient 

    

1 

 

0.917 

 

-0.145 

 p-value     0.001 0.343 

 

P-factor 

 

Correlation 

coefficient 

     

1 

 

-0.170 

 p-value      0.266 

 

R-factor 

 

Correlation 

coefficient 

      

1 

N = 45        
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Figure 3.7 Relationship between soil loss and RUSLE parameters: (a) LS-factor, (b) P-factor, (c) C-

factor, (d) K-factor, and (e) R-factor. 
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considered hillslope erosion, giving the impression that erosion-prone areas are restricted to 

steep gradients. However, field observation together with qualitative assessment of the spatial 

distribution of soil erosion features (Figure 3.6), indicate that areas located on low gradients 

also suffer considerable soil erosion in the form of gully. Most of these areas are dominated 

by shallow soils such as Mispah and Glenrosa soil forms with mean and maximum soil 

erodibility of 0.054 and 0.071 t h MJ−1mm−1, respectively. These potentially erodible soils 

(Weaver, 1991), combined with poor or no vegetation cover are possibly the main 

contributing factors to erosion, particularly in communal settlements.  

In their study conducted in a different catchment in Eastern Cape, Mhangara et al. (2012) also 

observed that communal settlements were predisposed to considerable levels of soil erosion 

due to overgrazing and wood harvesting. However, since slope steepness proved to be the 

overriding factor of soil loss in this study, it is apparent that the RUSLE model 

underestimated soil loss in certain parts of the catchment where for example soil erosion, 

particularly rill and interill erosion occur over flat and gentle sloping areas. Such 

underestimations of soil loss may also be related to the fact, whereas RUSLE considers soil 

loss related to top soil properties (Hartmann et al., 1989), gully erosion which to a 

considerable extent is influenced by unstable subsoil, is a dominant erosion form in the 

Umzintlava Catchment (Phinzi and Ngetar, 2017). It is probably for this reason that the K-

factor values obtained in this study poorly correlated (p = 0.903 and r² -0.019) to soil loss 

values.  

It must also be acknowledged however that, the weak relationship (p = 0.230 and r² = -0.182) 

exhibited between the R-factor and soil loss in this study was least expected given the 

predominant view that soil erosion increases with rainfall erosivity (Stocking and Elwell, 

1976; Garland, 1995; Morgan, 2005; Angulo-Martínez and Beguería, 2009). Apparently, this 

view does not hold in the present study. Although higher rainfall amounts may lead to higher 

rainfall erosivity (Laker, 2004), there is also a positive aspect about high rainfall which 

should also be considered in the analysis of rainfall erosivity-soil loss relationship. This 

relates to the fact that higher rainfall can also lead to more vegetative cover, thus leading to 

less soil loss (Laker, 1990; Laker, 2004). This conceptual and practical though probably 

explains the paradoxically weak relationship between the R-factor and soil loss in this study, 

which suggests that higher rainfall in the study area may have contributed to healthy 

vegetation and soil stability.               
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Clearly, as this discussion reveals, RUSLE alone cannot be used for soil erosion risk 

assessment at least in the case of Umzintlava Catchment and Eastern Cape in general where 

gully erosion is a major contributor to soil loss. It is for this reason that in the present study, 

RUSLE-derived soil loss estimates and soil erosion features extracted from NDVI (Figure 

3.2b) were used to assess soil erosion risk in the Umzintlava Catchment. Despite the 

debatable results obtained from this study, the spatial overlay of RUSLE-derived soil loss 

results and remote sensing-classified soil erosion results represent a more accurate method to 

assess soil erosion in the catchment. Based on this approach (Figure 3.6), the areas requiring 

urgent intervention in the catchment are ward 2, 5, 4, 3, 26, 8, 1, and 6, respectively. It must 

be borne in mind that the rates of soil loss derived from the RUSLE model are mere estimates 

as opposed to absolute values of soil loss (Le Roux et al., 2008), hence must be treated with 

considerable caution. Overall, the approach employed in the present study was sufficient for 

identifying the spatial distribution of erosion prone areas in the study area.  

3.7. Conclusion 

The objectives of this study were (1) to assess soil erosion vulnerability of the Umzintlava 

Catchment, and (2) to explore the relationship, if any, between soil loss and different erosion 

factors viz. RUSLE parameters. Though not without challenges, the study successfully 

delineated soil erosion-prone areas in the Umzintlava Catchment. Approximately 11 752 

t ha−1yr−1 average annual soil loss has been estimated for the entire catchment. Based on the 

visual interpretation of the soil loss results which are corroborated by results of statistical 

analysis, topography (LS-factor) is the most responsible factor for soil erosion and soil loss in 

the study area. This is also true with the P-factor which also exhibited a very strong 

correlation to soil loss due to inadequate or non-existence of soil erosion protection measures. 

Other RUSLE parameters including the C-factor, R-factor, and K-factor weakly correlated to 

soil loss, suggesting that they do not significantly contribute to soil loss in the study area. 

However, despite the statistical poor correlation of these factors to soil loss, field observation 

supports the conclusion that the K-factor is also an important contributor to soil loss in the 

study area due to the existence of gullies and numerous erosion pipes, providing evidence of 

erodible subsoil horizons.  

Overall, this study demonstrated that the application of the empirical RUSLE model 

combined with remote sensing-derived soil erosion results adequately identify areas suffering 

from soil loss or prone to erosion. These in turn can guide the application of appropriate soil 

conservation and erosion control practices. The methodology proposed in this study could be 
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adopted by future studies integrating the RUSLE model, remote sensing and GIS in the 

assessment of soil erosion in catchments with similar conditions. Additionally, the 

methodology is both cost-effective and time-efficient and therefore useful in countries where 

there are financial resource constraints. This study also provides a simple framework that can 

easily be implemented in data-poor locations in South Africa and elsewhere in the world, 

particularly in rural areas where there is much reliance on subsistence agriculture, limited 

financial resources and are vulnerable to soil erosion. 
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CHAPTER 4 

LAND USE/LAND COVER CHANGE AND SOIL EROSION 
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Phinzi, K. and Ngetar, N.S. (In Review). The impact of land use/land cover change on soil 

erosion in the Umzintlava Catchment (T32E), Eastern Cape, South Africa. Geoderma 
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Abstract 

Land use/land cover (LULC) change is often recognized as one of the most sensitive 

indicators of the interaction between human and natural environment contributing to soil 

erosion. Assessing the impact of LULC change on soil erosion is imperative for soil 

conservation planning. The main objective of this paper was to assess the impact of LULC 

change on soil erosion in the Umzintlava Catchment from the period 1989-2017 (28 years). 

To achieve this objective, multi-temporal Landsat data together with the Revised Universal 

Soil Loss Equation (RUSLE) model were used. Six LULC classes including water bodies, 

badlands, bare soil and built-up area, agriculture, grassland, and forest were derived for the 

years 1989, 2001, and 2017. A post-classification change detection analysis showed that 

water bodies, agriculture, and grassland decreased by 0.04%, 1.80%, and 13.42%, 

respectively, whereas the areas covered by forest, badlands, and bare soil and built-up area 

increased by 3.73%, 1.78%, and 9.74% respectively, during the study period. The mean 

annual soil loss in the study area declined from 1027.36 t ha−1yr−1 in 1989 to 769.62 

t ha−1yr−1 in 2001 and then further to 138.71 t ha−1yr−1 in 2017. Despite this consistent 

decline in mean annual soil loss, the analysis of soil loss results by different LULC classes 

revealed that all LULC classes, except badlands, experienced an increase in mean annual soil 

loss rates during the last 28 years. Overall, this study provided relevant knowledge on the 

relationship between LULC change and soil erosion, highlighting the necessity and 

importance of integrating remote sensing and soil loss models in spatio-temporal soil erosion 

assessment at the catchment level.         

Keywords: Land use/land cover (LULC) change; Soil erosion; Revised Universal Soil Loss 

Equation (RUSLE); Multi-temporal remote sensing; Umzintlava Catchment       

4.1. Introduction  

Water-borne erosion is an important factor causing land degradation (Flanagan, 2002), and is 

increasingly becoming a serious threat to the sustainability of non-renewable natural 

resources including soil around the world (Wang et al., 2016). Due to this apparent threat, 

soil erosion by water has attracted considerable attention in the past few years (Singer and 

Shainberg, 2004; Jin et al., 2008; Phinzi and Ngetar, 2017). Various factors affect soil erosion 

and can be broadly grouped into natural factors (rainfall, vegetation, soil type, and 

topography) and anthropogenic activities (livestock rearing, deforestation, agriculture, and 

impervious surfaces, etc.). These natural and anthropogenic factors vary both spatially and 

temporally, making soil erosion a complex and dynamic phenomenon, hence difficult to 
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assess. Despite the existence of this complexity, many models have been developed to assess 

water-borne erosion, one of which is the Revised Universal Soil Loss Equation – RUSLE 

(Renard et al., 1991; Renard et al., 1997). This model is the most widely applied worldwide 

(Alexekis et al., 2013; Xiao et al., 2015) because of its simplicity and compatibility with 

geospatial technologies like geographic information system (GIS) and remote sensing.  

RUSLE quantifies soil loss as a direct product of five erosion factors including rainfall 

erosivity (R-factor), soil erodibility (K-factor), slope length and steepness (LS-factor), 

vegetation cover and management (C-factor), and support practice (P-factor) (Renard et al., 

1997). Land use/land cover (LULC) change is recognised as one of the most sensitive 

indicators of the interactions between human and natural environment (Alkharabsheh et al., 

2013). It directly and indirectly impacts on each of the above RUSLE parameters. Amongst 

these parameters, the C-factor is by far the most important parameter which can easily be 

influenced by LULC change as it measures the combined effect of all interrelated cover and 

management variables (Benkobi et al., 1994; Toy et al., 1999) through human intervention.  

Holding other RUSLE parameters constant, an increase or decrease in C-factor due to LULC 

change can result in an increase or decrease in soil erosion, respectively. Hence, assessing the 

response of soil erosion to LULC change is imperative for soil conservation planning (Xiao et 

al., 2015). Due to its dynamic nature, remotely sensed data combined with RUSLE is 

increasingly recognized as one of the most rapid, credible, and effective methods (Yin et al., 

2007; Sylla et al., 2012; Yang, 2014) for assessing the LULC-soil erosion nexus in space and 

time. Many studies have used the RUSLE model in conjunction with remote sensing to assess 

the impact of LULC change on soil erosion in different catchments around the world 

(Geberesamual et al., 2010; Paiboonvorachat and Oyana, 2011; Alkharabsheh et al., 2013; 

Mallick et al., 2014; Wang et al., 2016; Kavian et al., 2017; Tadesse et al., 2017). However, 

in other parts of the world like South Africa, the impacts of LULC dynamics on soil erosion 

have been given little attention. Yet, like any other developing country, South Africa has 

undergone serious land cover modifications over the last few decades. The main purpose of 

this study is to assess the impact of LULC change on soil erosion in the Umzintlava 

Catchment in Eastern Cape, South Africa from the period 1989-2017, using multi-temporal 

remotely sensed data together with the RUSLE model.  
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4.2. Materials and methods 

4.2.1. Study area 

The study was conducted in the Umzintlava Catchment (T32E) which occupies a surface area 

of about 382km², in the Eastern Cape, one of the most severely eroded provinces in South 

Africa. The catchment is situated between latitudes 30º36'55" S and 30º49'28" S and 

longitudes 29º32'34" E and 29º14'26" E. The elevation of the catchment varies approximately 

from 890m – 2015m above sea level. The climate is semi-arid with warm and rainy summer 

months (November to January) as well as dry and cold winter months (May to July). The 

average minimum temperatures for the catchment lie in the range of 7 ºC – 10 ºC in winter 

and 18 ºC – 30 ºC in summer with an average annual rainfall of about 671mm. The catchment 

is characterised by three major vegetation types, namely: Highland Sourveld and Dohne 

Sourveld, Southern Tall Grassveld, as well as Valley Bushveld. The Highland and Dohne 

Sourveld type typically occupies the elevated areas while other vegetation types are 

commonly found in areas of low elevation. Like in most rural catchments in the country, the 

majority of inhabitants in the Umzintlava Catchment are involved in subsistence agriculture.  

4.2.2. Datasets 

To achieve the aim of the study, multi-source datasets including satellite images, climate 

data, digital elevation model (DEM), and soil data were obtained from various sources. 

Remote sensing data included three Landsat images from 1989 to 2017 (Table 4.1), 

downloaded from the United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov/). Landsat images are particularly preferred in this study 

because of their free availability in addition to providing the oldest archive of images, 

permitting the analysis of historical LULC changes and their impact on soil erosion. A 1-arc 

second (approximately 30m) Shuttle Radar Topography Mission (SRTM) Void Filled DEM 

was also downloaded from the USGS website. Like Landsat data, the SRTM DEM was also 

chosen because of its free availability. Both the DEM and satellite images were obtained 

already projected to the Universal Traverse Mercator (UTM), zone 35 South (S), and 

referenced to the World Geodetic System 1984 (WGS84) datum. Monthly rainfall data 

spanning a period of 46 years (1970-2016) was obtained from the South African Weather 

Services (SAWS) and was used for computing the erosivity index. To compute the soil 

erodibility index, twenty four soil samples were collected from the top soil layer (between 0 - 

30cm). The sampling points were selected in Google Earth so as to represent the spatial 

heterogeneity of major soil types and land use in the catchment. 

https://earthexplorer.usgs.gov/
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Table 4.1 Landsat images and their characteristics 

Sensor Name٭ Acquisition 

Date 

Scene ID Path, Row Spatial Resolution 

(m) 

Number of MS 

bands٭ 

Cloud Cover 

(%) 

 

Landsat 5 TM 

 

1989/03/09 

 

ETP169R81_5T19890309 

 

169, 081 

 

30 

 

6 

 

5 

 

Landsat 7 ETM+ 

 

2001/03/02 

 

ELP169R081_7T20010302 

 

169, 081 

 

30 

 

6 

 

0 

 

Landsat 8 OLI 

 

2017/03/22 

 

LC81690812017081LGN00 

 

169, 081 

 

30 

 

8 

 

0 
 .TM = Thematic Mapper, ETM+ = Enhanced Thematic Mapper plus, OLI = Operational Land Imager, MS = Multispectral٭
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4.2.3. Image pre-processing 

Traditionally, an important step prior to any further analysis of remotely sensed imagery is 

image pre-processing. Image pre-processing relates to operations that precede the actual 

image analysis (Campbell and Wynne, 2011). Such operations improve the interpretability of 

the image while ensuring that the image is close to the true radiant energy and spatial 

characteristics at the time of its acquisition (Taruvinga, 2008). In this study, each Landsat 

scene was subjected to absolute atmospheric correction where their digital numbers (DNs) 

were converted to surface reflectance (Song et al., 2001). This was achieved by means of the 

‘Apparent Reflectance’ function located in the Image Analysis module in ArcMap 10.4. All 

Landsat scenes were acquired already projected to the desired coordinate system, namely, 

WGS84 UTM 35 S, necessitating no further geometric corrections.   

4.2.4. Classification and accuracy assessment 

An important step in determining the impact of LULC change on soil erosion is LULC 

classification. A semi-automatic image classification method was employed using different 

Normalised Difference Vegetation Index (NDVI) thresholds (Table 4.2) to derive different 

LULC classes in the study. Firstly, the ‘Band Arithmetic Function’ tool available in ArcMap, 

was used to compute the NDVI for 1989, 2001, and 2017, after which suitable NDVI 

classification thresholds were determined for individual LULC classes (Table 4.2).        

Table 4.2 LULC classes and their respective NDVI classification thresholds 

LULC class Description NDVI threshold 

 

Water Bodies 

 

Rivers, dams, and lakes 

 

0 ≤ 

 

Badlands 

 

Severely eroded areas with no agricultural potential.  

 

0 – 0.40 

 

Bare soil and Built-up 

area 

 

Areas with no vegetation cover such as bare soil, 

exposed rocks and sand. Residential areas including 

roads, and other impervious surface features 

 

0.40 – 0.52 

 

Agriculture 

 

Uncultivated agricultural areas with minimal or 

sparse vegetation cover. 

 

0.52 – 0.60 

 

Grassland 

 

Grassland areas including shrub lands. 

 

0.60 – 0.70 

 

Forest 

 

Photosynthetic, and dense vegetation cover such as 

trees. 

 

> 0.70 
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To assess changes in LULC during the period of study, image post-classification comparison 

was used. One advantage of this approach is that the classification, rather than the original 

band-by-band DN values, is used for comparison, thus minimizing atmospheric, sensor, and 

environmental differences between the images (Peneva-Reed, 2014). This was followed by 

accuracy assessment. The simplest and widely accepted way of assessing the accuracy is to 

compare the classified image to reference data using the confusion matrix (Story and 

Congalton, 1986; Lillesand and Kiefer, 2000). A total of 180 random points were generated 

and each LULC class was assigned 30 points. Confusion matrices for different years (1989, 

2001, and 2017) were computed in the ArcMap environment. 

4.2.5. Calculation of RUSLE parameters 

The determination of soil loss using the RUSLE model was imperative for the LULC change 

versus soil erosion comparison. RUSLE quantifies soil loss as a function of five parameters 

and can be computed by Equation [4.1] (Wischmeier and Smith, 1978; Renard et al., 1997). 

Table 4.3 shows different empirical equations that were used in this study to derive individual 

RUSLE parameters. To determine the annual soil loss for different years, namely 1989, 2001, 

and 2017, all RUSLE parameters were held constant except the C-factor. The C-factor is the 

most important RUSLE parameter that influence soil erosion, following the LS-factor.  

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃                                                     [4.1] 

Where:  

A = mean annual soil loss (t ha−1yr−1)6. 

R = rainfall erosivity (MJ mm. ha−1h−1yr−1)6. This factor relates to the potential ability of 

the rainfall and runoff to cause soil erosion (Morgan, 2005). The monthly rainfall data (1972-

2016) of three meteorological stations, viz. Hillendale, Fort Donald, and Insizwa stations 

located around the study area, were used to derive R values. To compute the erosivity index, 

the derived R values were interpolated using the Inverse Distance Weighted (IDW) technique 

located in the Spatial Analyst extension of ArcMap 10.4. 

K = soil erodibility (t J−1mm−1)6. Whether or not a particular soil is susceptible to erosion, 

depends on a range of soil properties. RUSLE considers physical properties such as the soil 

organic matter, particle size, soil structure, and soil permeability as key factors affecting the  

                                                 
6 Note: These abbreviations have been described in Chapter 2, Section 2.2.  
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Table 4.3 Empirical equations used to derive RUSLE parameters in this study 

RUSLE parameter Formula Reference 

R 

𝑅 =  ∑ 1.735 𝑥 

12

𝑖=1

10
(1.5𝑙𝑜𝑔

𝑝𝑖
2

𝑝
−0.8188)

 

Where 𝑝𝑖 represents the total monthly precipitation (mm), and p is the mean annual 

precipitation (mm). 

 

Wischmeier and Smith (1978) 

K 𝐾 = 2.77 × 10−7(12 − 𝑂𝑀)𝑀1.14 + 4.28 × 10−3(𝑠 − 2) + 3.29 × 10−3(𝑝 − 3) 

𝑀 = [(𝑆𝑖𝑙 + 𝑣𝐹𝑆𝑎) × (100 − 𝐶𝑙𝑎)] 
 

Where K is the soil erodibility factor (t h MJ−1mm−1), OM is the soil organic 

matter content (%), Sil is the silt fraction (%), vFSa is the very fine sand fraction 

(%), Cla is the clay fraction (%), S is a soil structure code, P is a permeability class. 

 

Rosewell (1993) 

LS 𝐿𝑆 = (
𝐴

22.13
)𝑚 × (

𝑠𝑖𝑛𝛽

0.0896
)𝑛 𝐴 = (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒) 

 

Where LS is the slope length and slope steepness (dimensionless), A is the upslope 

contributing area per unit cell (m), m (0.4) is a variable slope length exponent, n 

(1.3) is a slope steepness exponent. 

     

Moore and Burch (1986)  

C 
𝐶 = 𝑒𝑥𝑝

(−𝑎
𝑁𝐷𝑉𝐼

(𝛽−𝑁𝐷𝑉𝐼)
) 

 

Where C represents the cover and management factor (dimensionless), a and β are 

the parameters that determine the shape of the NDVI curve. 

  

Van der Knijff et al., 1999, 

2000 

P 𝑃 = 0.2 + 0.03 × 𝑆 
Where P is the support practice factor (dimensionless), and S is the slope (%). 

Wener’s (1981) 
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erodibility of a particular soil. In this study, these soil properties were determined in a 

laboratory following standard laboratory procedures (Rowell, 1994), after which K values 

were calculated (Rosewell, 1993) and interpolated using the IDW interpolation to create the 

erodibility index. 

LS = slope length and slope steepness factor (dimensionless). This parameter represents the 

overall contribution of topography to soil erosion. Prior to deriving the LS-factor and related 

parameters such as slope, flow direction, and flow accumulation, the SRTM DEM was 

hydrologically corrected using the ‘Sink’ tool found in the hydrology toolset of ArcMap 10.4 

environment. Thereafter, the LS-factor was computed from the corrected DEM using the 

method proposed by Moore and Burch (1986). 

C = cover and management factor (dimensionless). The C-factor which indicates the effect of 

cropping and other management practices on soil erosion (Uddin et al., 2016), was 

empirically derived from the NDVI map using the equation of Van der Knijff et al. (1999, 

2000).  

P = support practice factor (dimensionless). The P-factor relates to the impact of management 

practices like contouring and strip cropping which alters and reduce the pattern, direction, 

and speed of runoff (Renard and Foster, 1983; Renard et al., 2011). The information on this 

factor was derived from the slope map based on the empirical relation of Wener (1981).   

4.3. Results 

4.3.1. LULC classification    

Figure 4.1 shows the spatial distribution of six LULC classes (water bodies, badlands, bare 

soil and built-up area, agriculture, grassland, and forest) for the three time periods, (a) 1989, 

(b) 2001, and (c) 2017. During all the years, badlands occurred in the central parts whereas 

forests occurred in the northwestern, northern and northeastern parts of the study area. A 

considerable part of the catchment surface area is occupied by bare soil and built-up area, and 

agricultural land. These LULC classes, i.e. bare soil and built-up area, and agricultural land, 

combined contributed about 61.19% in 1989, 58.55% in 2001, and 61.18% in 2017 of the 

total surface area (382 km²) of the Umzintlava Catchment (Figure 4.2). Forest and water 

bodies occupied a comparatively small proportion of the catchment. Specifically, water 

bodies covered a surface area of approximately 0.04% in 1989, 0.01% in 2001, and 0.001%  
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Figure 4.1 LULC for different years: (a) 1989, (b) 2001, and (c) 2017. 
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Figure 4.2 LULC surface area: (a) 1989, (b) 2001, and (c) 2017.  
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in 2017 whereas forest occupied 3.35% in 1989, 4.71% in 2001, and 13.09% in 2017 (Figure 

4.2). Over the years covering the study period, there was a consistent increase in the surface 

area covered by badlands, bare soil and built-up area, and forest (Figure 4.2). On the contrary, 

the surface area covered by water bodies, and grassland declined whereas agricultural land 

fluctuated over the years (Figure 4.2). 

4.3.2. Accuracy assessment    

Tables 4.4, 4.5, and 4.6 respectively present the classification accuracies for the years 1989, 

2001, and 2017. While various accuracy indices are presented in these tables including 

producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and kappa 

coefficient (Story and Congalton, 1986), the foci of the analysis in this section is on OA and 

kappa coefficient. The 1989 LULC (Table 4.4) and 2001 LULC (Table 4.5) classifications 

recorded the same accuracies in relation to the OA (0.79) and kappa coefficient (0.75). On the 

contrary, the 2017 LULC classification results yielded a comparatively low OA of 0.74 and 

0.69 kappa coefficient (Table 4.6). These results show relative accuracies of individual years 

but not the accuracy of the change detection itself. To obtain the accuracy of change detection 

for a specific period (1989-2001, 2001-2017, 1989-2017), the OAs of the two classifications 

were multiplied (Singh, 1989). The periods 1989-2001 and 2001-2017 recorded the same 

change detection accuracy of 0.58 (0.79 * 0.74) whereas the entire period (1989-2017) 

achieved an accuracy of 0.62 (0.79 * 0.79).            

4.3.3. Temporal trends of soil loss and rainfall 

The integration of RUSLE results and GIS (Figure 4.3) show that the mean annual soil loss 

decreased during the study period from 1027.36 t ha−1yr−1 in 1989, 769.62 t ha−1yr−1 in 

2001, to 138.71 t ha−1yr−1 in 2017. Between 1989 and 2001, soil loss decreased by 

approximately 257.74 t ha−1yr−1 (14.34%) while the period 2001-2017 experienced an even 

higher decrease of about 630.91 t ha−1yr−1 (69.46%). Such consistent decline in mean 

annual soil loss could partly be due to temporal trends in the mean annual rainfall during the 

study period. The mean annual rainfall fluctuated over the years with the year 2000 recording 

the highest (>300 mm) and 2015 recording the least (<150 mm) rainfall (Figure 4.4). The 

years 1989, 1997, 1998, 2006, and 2012 recorded a mean annual rainfall of >250 mm 

whereas the remaining other years recorded below 250 mm. The trend line (red) shows that 

the catchment experienced a decrease in mean annual rainfall during the study period (Figure 
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4.4), which probably explains the continuous decrease in the mean annual soil loss over the 

years.  

Although there was a consistent decrease in the mean annual soil loss during the study period 

(from 1027.36 t ha−1yr−1 in 1989 to 138.71 t ha−1yr−1 in 2017), some areas experienced 

increased rates of soil loss. For example, the proportion of the study area experiencing 

moderate to extremely high rates of soil loss consistently increased during the same period 

(Table 4.7). This observation can also be confirmed by a visual assessment which shows 

consistency in erosion intensity or severity (areas in orange and red colours), commonly 

occurring in elevated areas over the years (Figure 4.3). The results show that highlands with 

steep slopes are increasingly subjected to alarming rates of soil loss than areas with gentle 

slopes (Table 4.7). Such findings are comparable to other RUSLE-related studies conducted 

elsewhere around the world. For example, in Saudi Arabia, Mallick et al. (2014) found that 

the erosion risk was low in areas with flat or almost flat slopes but increased with increasing 

gradient. Similar findings were reported by Khosrokhani and Pradhan (2014) in Malaysia, 

among other studies.  

In 1989, an estimated 99.968% (99.542 + 0.426) of the study area experienced ‘Very low (0 – 

5 t ha−1yr−1)’ to ‘Low (5 – 12 t ha−1yr−1)’ levels of soil loss (Table 4.7). The area slightly 

decreased to 99.923% (99.149 + 0.774) in 2001 and 97.387% (77.430 + 19.957) in 2017. 

Conversely, the areas experiencing ‘Moderate (12 – 25 t ha−1yr−1)’ rates of soil loss 

increased from 0.026% in 1989, to 0.068% in 2001, and 2.252% in 2017. Similarly, the area 

with ‘High (25 – 60 t ha−1yr−1)’ to ‘Extremely high (>150 t ha−1yr−1)’ soil losses increased 

consistently over the years, from 0.006% (0.004 + 0.001 + 0.001) in 1989 to 0.010% (0.006 + 

0.003 + 0.001) in 2001, and 0.362% (0.330 + 0.030 + 0.002) in 2017 (Table 4.7).   



  

85 

 

Table 4.4 Confusion matrix for 1989 LULC 

LULC⃰ C1 C2 C3 C4 C5 C6 Total UA OA Kappa 

C1 24 5 0 1 0 0 30 80% - - 

C2 0 24 6 0 0 0 30 80% - - 

C3 0 2 21 6 1 0 30 70% - - 

C4 0 0 2 23 5 0 30 77% - - 

C5 0 0 0 2 24 4 30 80% - - 

C6 0 0 1 0 3 26 30 87% - - 

Total 24 31 30 32 33 30 180 - - - 

PA 100% 77% 70% 72% 73% 87% - -                     - - 

OA  - -           - - - - - - 79%                     - 

Kappa -                  -                  - - - - - - -  0.75 
*C1 = Water Bodies, C2 = Built-up Areas, C3 = Barren Land, C4 = Agricultural Land, C5 = Rangeland, C6 = Forest, UA = User’s Accuracy, PA = Producer’s Accuracy, and 

OA = Overall Accuracy.   

Table 4.5 Confusion matrix for 2001 LULC 

LULC⃰ C1 C2 C3 C4 C5 C6 Total UA OA Kappa 

C1 19 7 4 0 0 0 30 63% -  - 

C2 0 20 9 1 0 0 30 67% -  - 

C3 0 4 24 2 0 0 30 80% -  - 

C4 0 0 2 24 4 0 30 80% -  - 

C5 0 0 0 7 22 1 30 73% -  - 

C6 0 0 0 0 6 24 30 80% -  - 

Total 19 31 39 34 32 25 180 - -  - 

PA 100% 65% 62% 71% 69% 96% -  - -  - 

OA -     -  - - - - - - 74%  - 

Kappa - - - - - - - - - 0.69 
*C1 = Water Bodies, C2 = Built-up Areas, C3 = Barren Land, C4 = Agricultural Land, C5 = Rangeland, C6 = Forest, UA = User’s Accuracy, PA = Producer’s Accuracy, and 

OA = Overall Accuracy.   
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Table 4.6 Confusion matrix for 2017 LULC 

LULC⃰ C1 C2 C3 C4 C5 C6 Total UA OA Kappa 

C1 22 3 5 0 0 0 30 73% -    - 

C2 0 27 2 1 0 0 30 90% -  - 

C3 0 2 23 1 1 3 30 77% -  - 

C4 0 3 3 24 0 0 30 80% -  - 

C5 0 5 3 0 20 2 30 67% -  - 

C6 0 0 0 2 2 26 30 87% -  - 

Total 22 40 36 28 23 31 180 - -  - 

PA 100% 68% 64% 86% 87% 84% - - -  - 

OA -  - - - - - - - 79%  - 

Kappa - - - - - - - - -  0.75 
*C1 = Water Bodies, C2 = Built-up Areas, C3 = Barren Land, C4 = Agricultural Land, C5 = Rangeland, C6 = Forest, UA = User’s Accuracy, PA = Producer’s Accuracy, and 

OA = Overall Accuracy. 
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Figure 4.3 Mean annual soil loss: (a) 1989, (b) 2001, and (c) 2017. 
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Figure 4.4 Mean annual rainfall (1989 – 2016) from three meteorological stations adjacent to Umzintlava Catchment with a ±5% standard error 

indicated by the sign (I) for each year. 

Table 4.7 Annual soil loss rates with corresponding severity classes and area covered in each year 

Mean soil loss (𝐭 𝐡𝐚−𝟏𝐲𝐫−𝟏) Severity class Area 1989 (%) Area 2001 (%) Area 2017 (%) 

0 – 5  Very low 99,542 99,149 77,430 

5 – 12  Low 0,426 0,774 19,957 

12 – 25  Moderate 0,026 0,068 2,252 

25 – 60  High 0,004 0,006 0,330 

60 – 150  Very high 0,001 0,003 0,030 

>150  Extremely high 0,001 0,001 0,002 
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4.3.4. LULC change, cover management, and soil loss trends 

Figure 4.5 illustrates the overall LULC change with corresponding mean annual soil loss over 

the last 28 years (1989-2017) of study period. During this period, water bodies, agriculture, 

and grassland areas declined by 0.04%, 1.80%, and 13.42%, respectively (Figure 4.5). On the 

contrary, badlands, bare soil and built-up area, and forest increased. In terms of soil loss over 

the past 28 years, it can be observed from Figure 4.5 that all LULC classes, with the 

exception of badlands, experienced an increase. With a soil loss of 0.054 t ha−1yr−1, the bare 

soil and built-up area recorded the highest soil loss, followed by agriculture, forest with 0.036 

t ha−1yr−1 and grassland with 0.031 t ha−1yr−1. Bare soil and built-up area recorded the 

least LULC increase (1.78%), but the highest soil loss (0.054 t ha−1yr−1). Conversely, 

grassland recorded the highest LULC decrease of 13.42% but the least soil loss of 0.031 

t ha−1yr−1.  

Field-based evidence of LULC and soil erosion relations in the Umzintlava Catchment is 

shown in Figure 4.6. Human and animal pathways contribute to the development of rill 

erosion (Figure 4.6a) through the removal of vegetative cover. Overgrazing also contributes 

to the susceptibility of some parts of the study area to erosion. Built-up areas such as 

dirty/gravel roads with poorly constructed drainage systems facilitate gully erosion (Figure 

4.6b) which in turn threatens agricultural activities like maize cultivation (Figure 4.6c).         

Table 4.8 presents the mean C values together with the mean annual soil loss by LULC class 

over different years. In general, C values vary from 0 to 1 (Wischmeier and Smith, 1978; 

Wang et al., 2016). The LULC class that completely prevents soil erosion has a C value of 0, 

whereas the one that do not act as a protection against erosion has a C value of 1, and for the 

rest of the conditions the C value is lower than 1 (Tanyaş et al., 2015). Over the years, the 

mean annual soil loss in grassland areas increased consistently from 0.141 t ha−1yr−1 in 

1989 to 0.142 t ha−1yr−1 in 2001, and 0.172 t ha−1yr−1 in 2017. These soil loss increases 

are corroborated by increases in C values from 0.030 in 1989 and 2001 to 0.039 in 2017 

(Table 4.8).  

In forested areas, soil loss slightly decreased between 1989 and 2001 from 0.033 to 0.032 

t ha−1yr−1 as C values remained constant at 0.005 during this period, but increased between 

2001 and 2017 from 0.005 in 2001 to 0.016 in 2017, resulting in a corresponding increase in 

soil loss from 0.032 to 0.070 t ha−1yr−1. Badlands recorded a C value of 0.386 in 1989,  
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Water bodies Badlands
Bare soil &

built-up area
Agriculture Grassland Forest

LULC change -0,04 3,73 1,78 -1,80 -13,42 9,74

Soil loss change -0,08 0,05 0,04 0,03 0,04

-0,04

3,73

1,78

-1,80

-13,42

9,74

-0,08

0,05

0,04
0,03

0,04

-0,10

-0,08

-0,06

-0,04

-0,02

0,00

0,02

0,04

0,06

0,08

-15

-10

-5

0

5

10

15

M
ea

n
 s

o
il

 l
o

ss
 (

t/
h

a.
y
r)

L
U

L
C

 c
h
an

g
e 

(%
)

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Overall LULC change with corresponding change in the mean annual soil loss from 1989 – 2017. 

 

 



  

91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Field photos of soil erosion observed in the study area: (a) initiation of rill erosion, (b) gully erosion next to the road, and (c) classical 

gully system. 
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Table 4.8 Mean C values and average annual soil loss (t ha−1yr−1) by LULC class for different years 

  1989 2001 2017 

LULC Area (%) C value Soil loss Area (%) C value Soil loss Area (%) C value Soil loss 

Water bodies 0,04 - - 0,01 - - 0,001 - - 

Badlands 9,46 0,386 1,089 12,73 0,400 0,899 13,19 0,402 1,010 

Bare soil and 

built-up area 

28,60 0,170 0,645 28,68 0,173 0,610 30,38 0,171 0,699 

Agriculture 32,59 0,079 0,339 29,87 0,079 0,371 30,80 0,080 0,376 

Grassland 25,97 0,030 0,141 23,99 0,030 0,142 12,55 0,039 0,172 

Forest 3,35 0,005 0,033 4,71 0,005 0,032 13,09 0,016 0,070 
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0.400 in 2001, and 0.402 in 2017, whereas soil loss decreased from 1.089 t ha−1yr−1 in 1989 

to 0.099 t ha−1yr−1 in 2001 and increased again to 1,010 t ha−1yr−1 in 2017. For the bare 

soil and built-up area category, the C values were 0.170 in 1989 and increased to 0.173 in 

2001 and decreased to 0.171 in 2017. The mean annual soil loss also followed exactly the 

same trend exhibited by the C values for this LULC category. During the years 1989 and 

2001, the C values remained constant at 0.079 for agriculture with a slight increase to 0.080 

in 2017 whereas soil loss increased continuously in all the years. 

 4.4. Discussion 

The results of this study indicate that the catchment has experienced a sharp decline in soil 

loss from 1027.36 t ha−1yr−1 in 1989 to 769.62 t ha−1yr−1 in 2001, and then further to 

138.71 t ha−1yr−1 in 2017 (Figure 4.3). Such consistent decrease in soil loss in the study area 

could be attributed to two possible factors, including (a) rainfall and (b) cover management. 

Although there were variations in the temporal distribution of mean annual rainfall between 

different years, the overall rainfall trend (as indicated by a red dotted trend line) during the 

study period (1989 – 2017) shows a consistent decline in rainfall (Figure 4.4). The ability of 

rainfall to cause erosion, also referred to as rainfall erosivity (Morgan, 2005), depends largely 

on the amount of rainfall among other factors. For this reason, it could be reasonably 

presumed that the general decrease in rainfall might have contributed, to some extent, to the 

decline in soil loss in the study area.  

Another possible factor responsible for the decrease of soil loss during the study period could 

be the improvement in cover and management in terms of forest plantation. Between 1989 

and 2017, the proportion of the study area covered by forest increased by 9.74% (Figure 4.5). 

The majority of the forests within the study area occur naturally. Like all plants, trees 

strongly depend on the availability of water for growth (Toledo et al., 2011). Accordingly, 

tree growth increases with increasing rainfall (Dauber et al., 2005) and decreases with 

drought (Nath et al., 2006). In this study however, the area covered by forest increased 

irrespective of the continuous decline in mean annual rainfall. This means that such decline in 

rainfall was not significant enough to influence temporal variations of forest distribution. 

Perhaps, the increase in forest area may be due to other factors like the presence of soil 

nutrients which are independent of rainfall (Malhi et al., 2004). Additionally, although most 

forests occur naturally in the study area, the possibility exists that the increased forested area 

may have resulted from forest plantations during the 28 years study period. An example is the 
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plantation of exotic species resistant to low rainfall like eucalyptus trees, grown 

predominantly for timber (Spatial Development Framework – SDF, 2011). In addition to their 

resistance to low rainfall, eucalypts are particularly preferred for afforestation due to their 

fast-growing rates (7 – 10 years) and because none of the indigenous tree species which yield 

useful timber grow at rates considered profitable (Albaugh et al., 2013).          

Although the mean annual soil loss decreased on an overall basis, close examination of soil 

loss results in different LULC classes revealed that all LULC classes, except badlands, 

experienced an increase in mean annual soil loss rates (Figure 4.5).  The bare soil and built-

up area class recorded the least change (1.78%) but the highest soil loss of about 0.054 

t ha−1yr−1. Soil erosion occurring within this LULC category in the study area is a direct 

consequence of the removal or lack of vegetative cover. For instance, the construction of 

dirty or gravel roads often results in the removal of vegetation cover, leaving the area 

exposed to soil erosion (Figure 4.6b). In some cases, poorly constructed road drainage 

networks further compounds the problem of soil erosion (Addisu, 2009; Seutloali et al., 

2016).  

Forest recorded the lowest C values throughout the study period (Table 4.8), making it the 

most effective LULC category in providing protection against soil erosion in the study area. 

However, an improvement of 9.74% in forest cover resulted to an increase of 0.04 

t ha−1yr−1 in soil loss (Figure 4.5). The occurrence of soil erosion in forested areas makes 

sense considering that most of the forests in the study area occur naturally and are generally 

distributed in elevated areas with steep slopes. The topography therefore may be the strongest 

driver of soil erosion in natural forests, especially when not well protected. This 

interpretation is supported by previous studies (Lufafa et al., 2003; Pimentel, 2006). 

Karamage et al. (2016) reported soil loss rates of 11 t ha−1yr−1 in moderate natural forest 

and 10.6 t ha−1yr−1 in dense natural forest located in highland areas with steep topography. 

Harvesting of trees for fuel wood and as building materials may be another possible cause of 

soil erosion in forested areas in the study area.  

Similar to forest area, the area under agriculture experienced an increase of 0.04 t ha−1yr−1 

of soil loss following a decline of 1.80% in aerial cover. The decline in agricultural land 

accompanied by increasing rates of soil loss is becoming an issue of serious concern given 

that most households derive their livelihoods from agriculture at a subsistence level in the 

study area and Umzimvubu Municipality at large (Phinzi and Ngetar, 2017). Further to this 
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concern of soil erosion in agricultural land, is the decline in both the quality and quantity of 

water resources. The results of this study indicate that the surface area covered by water 

bodies in the Umzintlava Catchment has declined by 0.04% between 1989 and 2017 (Figure 

4.5) and this could be either due to soil erosion or climate, namely, decreased rainfall (Figure 

4.4). Within the agriculture category, cropland is generally the most susceptible land to soil 

erosion due to poor farming and lack of effective erosion control and support practices 

(Pimentel et al., 1995).          

Between 1989 and 2017, grassland decreased by 13.42%, resulting in a soil loss change of 

0.031 t ha−1yr−1. The decline in grassland is a direct consequence of increase in human 

population (Karamage et al., 2016), putting a severe strain on these natural ecosystems which 

in turn results in the conversion of such ecosystems to other LULC types. An increase of 

1.78% and 9.74% in bare soil and built-up area, and forests (Figure 4.5), respectively, attest 

to this observation. Soil loss rates in the natural grassland areas are due to livestock 

overgrazing (Maetens et al., 2012). This was especially evident in this study (Figure 4.6a), 

particularly in communally-held grazing land where there are no clear policies governing 

access or use of grassland ecosystems for grazing of livestock (Mhangara, 2011). 

In order to determine whether the rates of soil loss experienced in each LULC presents a 

potential risk for soil productivity loss or land degradation, soil loss tolerance rates ought to 

be considered (Alewell et al., 2015). In South Africa, the proposed soil loss tolerance values 

(McPhee and Smithen 1984) lie between 3 t ha−1yr−1 for shallow soils and 10 t ha−1yr−1 

for deep alluvial soils. Although the aforementioned LULC classes (forest, bare soil and 

built-up area, agriculture, and grassland) experienced increased soil loss rates during the 

study period (Figure 4.5), such soil loss rates are within acceptable or tolerable levels of soil 

loss as per McPhee and Smithen’s (1984) proposed soil loss rates. Contrary to Chapter 3 

(Section 3.6) which presents soil loss above tolerable limits, the estimated soil loss rates in 

this chapter are within tolerable limits. The discrepancy in these results could be explained by 

the differences in the spatial resolution of SPOT (5m * 5m) and Landsat (30m * 30m) images 

used in chapters 3 and 4 respectively (discussed further in Chapter 5, Section 5.5). Despite 

these low rates of soil loss, it is still necessary and important to avoid practices that increase 

soil erosion. According to Pimentel (2006), even low rates of erosion sustained over billions 

of years, result in the displacement of enormous quantities of top soil whilst adversely 

impacting on soil fertility.                 
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Unexpected however, is the decrease in soil loss (0.079 t ha−1yr−1) occurring on badlands 

given that this LULC class has a relatively poor protective cover, namely a C value of 0.400.  

Such underestimates of soil loss by RUSLE could partly be due to the fact that badlands are 

characterized by extensively rilled and gullied areas occurring on less steep sloping lands 

(Boardman et al., 2003). It must be borne in mind that RUSLE was originally developed for 

assessing sheet and rill erosion but not gully erosion (Wischmeier and Smith, 1978; Renard et 

al., 1997).  Apart from this limitation, another possible cause for underestimates of soil loss 

in badlands in this study relates to the coarser spatial resolution (30m*30m) of the SRTM 

DEM used to derive topographic parameters (LS-factor). High spatial resolution DEMs such 

as those from stereo SPOT images are expensive and not readily available, hence the SRTM 

DEM was used instead. Considering the sensitivity of topography particularly slope steepness 

to soil loss (Renard et al., 2011), it is evident from the results that the coarser spatial 

resolution of the SRTM DEM has had a strong bearing on the overall estimates and 

distribution of soil loss in the study area. This interpretation is supported by Renard et al. 

(2011) who maintain that low spatial resolution can lead to the erroneous exclusion of small 

concentrated flow channels commonly found at the bottom of a RUSLE hillslope where 

substantial deposition takes place.  

Another aspect of this study worth discussing relates to LULC classification method since it 

affects the quality and reliability of LULC change detection results. The success of any post-

image classification change detection depends on the method of image classification 

employed (Singh, 1989; Lu and Wang, 2007). In turn, whether or not the image classification 

method was successful depends upon many considerations including data availability, the 

purpose and scale of the study, among other things (Lu et al., 2004). One objective way to 

assess the success of an image classification method is the accuracy of the derived LULC 

results. Such accuracy is based on the level (statistics) of agreement between classification 

results and reference data summarized in the form of kappa coefficient (Congalton and Mead, 

1983; Foody, 2002). Kappa coefficient ranges from 0 to 1, with values >0.80 representing 

strong agreement, 0.40-0.80 representing moderate agreement, and values <0.40 representing 

poor agreement (Lands and Koch, 1977).  

In this study, the kappa coefficients for all the years fell within the moderate agreement 

category (0.40-0.80), suggesting a successful image classification (Phinzi and Ngetar, 2017). 

For instance, LULC maps classified from the 1989 and 2017 images recorded the same kappa 

coefficient (0.75) whereas the 2001 LULC classification results produced a kappa coefficient 
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of 0.74. The overall change detection (1989-2017) however, recorded comparatively low 

accuracy of 0.62 though this still fell within the moderate agreement category. Overall, such 

findings show that the NDVI-image classification method, used in this study was successful 

although there were some complications including the difficulty to spectrally discriminate 

between the bare soil and built-up area.  Due to this limitation, the pixels belonging to these 

two LULC classes were grouped together based on their spectral homogeneity to form one 

class called ‘bare soil and built-up area’.                                         

4.5. Conclusion  

This study assessed the impact of LULC change on soil erosion in the Umzintlava Catchment 

over a 28 year period (1989 – 2017), using multi-temporal Landsat data and RUSLE. A post-

classification change detection comparison showed that water bodies, agriculture, and 

grassland areas have decreased, whereas the area covered by forests, badlands, and bare soil 

and built-up area increased during the study period. The results indicated that the catchment 

experienced a consistent decline in the mean annual soil loss, from 1027.36 t ha−1yr−1 in 

1989, to 769.62 t ha−1yr−1 in 2001, and then further to 138.71 t ha−1yr−1 in 2017. Despite 

the decreasing trend of soil loss rates on an overall catchment basis, further analysis of soil 

loss in different LULC classes suggested that most LULC classes experienced increased rates 

of soil loss. The bare soil and built-up area, followed by agriculture and forest categories, 

recorded the highest rates of soil loss whereas grasslands experienced the least rates of soil 

loss. Contrary to other LULC categories, badlands experienced decreased rates of soil loss 

contributing to the overall reduction in erosion, an error not captured through the formation 

of gullies.  

From a theoretical and methodological point of view, the NDVI-based image classification 

technique combined with RUSLE modeling resulted in a semi-objective approach with 

reasonable accuracy and can be adopted in future studies related to LULC changes versus soil 

erosion. Such a semi-objective approach simplifies the complexity and dynamic relationship 

between LULC change and soil erosion and at a practical level will facilitate efforts towards 

LULC planning and soil conservation in the Umzintlava Catchment and the Eastern Cape at 

large. 

Admittedly, however, the approach suffered a couple of setbacks arising mainly from the lack 

of data with sufficient spatial resolution for the scale of the study, viz. catchment scale. 

Taking this and the accuracy achieved in this study into consideration, it is apparent that there 



  

98 

 

is still a room for improvement, for example using SPOT imagery, which have reasonable 

spatial resolution. 
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CHAPTER 5 

SYNTHESIS AND RECOMMENDATIONS 
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5.1. Introduction 

Soil erosion by water is no doubt a worst form of land degradation with serious 

environmental and socio-economic ramifications (Chapter 1 and Chapter 2). In response to 

this, many empirical erosion models have been developed in different parts of the world for 

soil erosion assessment. Because of its simplicity and more importantly its consideration for 

many important erosion factors, the RUSLE model is presently the most widely used model 

with great successes worldwide. Despite these successes, an important limitation with 

RUSLE is that it is inherently restricted to plot scale or small catchments and does not 

consider gully erosion.  

Despite these setbacks however, the advent of geospatial technologies like GIS and remote 

sensing, is now making it possible to circumvent these RUSLE limitations and still achieve 

reasonable accuracies in cost-effective and time-efficient way. As a result, interest in the 

assessment of soil erosion using the RUSLE model coupled with these geospatial 

technologies is growing. However, in other parts of the world like South Africa, little 

attention has been paid to the spatial and temporal patterns of soil erosion and its relation to 

constantly changing LULC. As a developing country, South Africa has undergone 

tremendous LULC changes. Remote sensing, and in particular, readily available imageries 

from optical sensors such as Landsat and SPOT, permits rapid assessment of not only LULC 

changes but also soil erosion on a spatial and temporal basis with reasonable accuracies. 

Thus, the objectives of this study were: 

1) To review recent developments on the use of GIS and remote sensing technologies 

in assessing and deriving soil erosion factors as represented by RULSE parameters. 

2) To assess soil erosion vulnerability of the Umzintlava Catchment using geospatial 

driven RUSLE model.  

3) To assess the impact of LULC change on soil erosion in the Umzintlava Catchment 

during the period 1989 – 2017. 

5.2. Objective 1: Recent developments in the integrated use of GIS and remote sensing 

for assessing and deriving RUSLE parameters 

Soil erosion results from the complex interactions between natural and anthropogenic factors 

which vary over space and time. The RUSLE model provides a simple and yet 

comprehensive framework for soil erosion assessment. Specifically, RUSLE calculates soil 

loss as a function of six soil erosion factors or parameters including rainfall (R), topography 
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(LS), soil erodibility (K), cover management (C), and support practice (P). Increasingly, 

advances in GIS and remote sensing technologies play an integral role in deriving RUSLE 

parameters. The main objective of this chapter (Chapter 2) was to provide an overview of 

recent developments in the integrated use of GIS and remote sensing in deriving individual 

RUSLE parameters, placing an emphasis on related successes and challenges. The literature 

revealed that GIS is mainly used for computation of individual RUSLE parameters while 

satellite remote sensing forms an important data source for deriving RUSLE parameters.   

Successes have been achieved in estimating the rainfall erosivity (R-factor) from satellite-

borne precipitation products like the TRMM-TMPA data (Section 2.3.1). The use of other 

space-based precipitation products like CFSR, CMAP, HydroEstimator, MPE, NRL-blended, 

and PERSIANN in deriving the R-factor has not yet been reported in the literature. An 

important challenge however with such satellite-borne precipitation products is the 

quantitative determination of rainfall which often requires complex algorithms.  

Physical soil properties such as the primary particle size distribution, soil organic matter 

content, soil structure, and permeability contribute to soil erodibility (K-factor). The 

combination of GIS, remote sensing and statistical models has proven helpful in determining 

some of these soil properties (Section 2.3.2). The literature showed that multiple regression, 

geostatistics, and spectral mixture are the most commonly used approaches for extracting soil 

attributes information from remotely sensed data. Though successes have been achieved in 

relating soil properties to remote sensing spectra, it still remains a challenge to satisfactorily 

quantify each soil property from remotely sensed data for input in the RUSLE erodibility 

equation. 

In terms of deriving topographical attributes (LS-factor), detailed literature survey indicated 

that the ASTER and SRTM DEMs have been the most widely applied products worldwide 

probably because they provide near-global coverage, in addition to their free availability to 

the research community (Section 2.3.3). Most RUSLE studies use these DEM products as a 

given parameter without first pre-processing them and assessing their suitability for terrain 

modelling at the desired scale of study. Yet, these DEMs are subject to errors such as voids, 

residual cloud patterns and strip effects.  

Remote sensing classified LULC maps and spectral indices are increasingly preferred over 

conventional techniques due to their objectivity, low costs, and relative accurate data 

analysis. The literature showed that regression equations and statistical analysis are used to 
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relate the C values to spectral indices mostly derived from Landsat data (Section 2.3.4). 

NDVI was the most widely used vegetation index for deriving the C-factor information 

(Section 2.3.4). Similar to C-factor, the most commonly used approach to obtain the P-factor 

information is through field observation and visual image interpretation in which case high 

resolution aerial photographs are used. An increasing number of studies assign the P-factor 

values obtained from literature to satellite derived-LULC maps whereas some studies derive 

the P-factor values from the slope map (%). The unavailability of satellite data (e.g. images 

and DEM) presents an important challenge to the determination of both C-factor and P-factor 

information from satellite data. 

Despite the challenges associated with deriving individual RUSLE parameters from the 

integrated use of GIS and remote sensing, this chapter (Chapter 2) has shown that GIS and 

remote sensing technologies are still far more beneficial compared to traditional methods 

which are relatively costly and time-consuming. This is reflected by the continuous increase 

of studies that use these technologies in RUSLE erosion modelling.                        

5.3. Objective 2: Soil erosion vulnerability assessment 

A necessary step towards designing and implementing relevant soil and water conservation 

measures at catchment level is the assessment of erosion distribution and erosion prone areas 

in a geographic context with adequate accuracy. In order to achieve this, the study employed 

the RUSLE model in combination with GIS and remotely sensed data, namely SPOT data 

(Chapter 3). More specifically, the objectives were (1) to assess soil erosion risk in the 

Umzintlava Catchment, and (2) to explore the relationship, if any, between soil loss and 

different erosion factors as represented by RUSLE parameters including R-factor, K-factor, 

LS-factor, C-factor, and P-factor. 

The study showed that the Umzintlava Catchment experiences an average annual soil loss of 

11 752 t ha−1yr−1, with approximately 90.19% of the catchment experiencing very low soil 

loss rates viz. 0 – 5 t ha−1yr−1 (Chapter 3). About 8.86% and 0.79% of the study area 

catchment are subject to low (5 – 12 t ha−1yr−1) and moderate (12 – 25 t ha−1yr−1) soil 

erosion rates respectively, whereas the remainder of the catchment, namely, 0.95% 

experiences, high (25 – 60 t ha−1yr−1), very high (60 – 150 t ha−1yr−1), and extremely high 

(> 150 t ha−1yr−1) rates of soil loss. The study further revealed that highland areas with 

steep slopes and poor vegetation cover are more prone to high rates of soil loss than areas 

with gentle slopes, while areas with gentle or flat slopes are also susceptible to soil erosion in 
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form of gullies. This is evident in low-lying areas, especially the central parts of the 

catchment. The spatial integration of RUSLE-derived soil loss and remote sensing-classified 

soil erosion indicated that the entire catchment is at risk of soil erosion. Different factors 

including rainfall (R), soil erodibility (K), topography (LS), cover management (C), and 

support practice (P) are responsible for soil erosion in the Umzintlava Catchment.   

Statistically, the LS-factor representing topographic attributes and P-factor representing 

support practice, appeared to be overriding factors influencing soil erosion in the Umzintlava 

Catchment, with the P-factor indicating the existence of either weak or no erosion control 

measures in those areas associated with high soil loss rates (Chapter 3, Section 3.6). This was 

further compounded by poor vegetative cover as represented by high C-factor values. Both 

the climate and soil erodibility as represented by the R-factor and K-factor, poorly correlated 

to soil loss. The study revealed that such poor correlation between the R-factor and soil loss 

was due to higher rainfall leading to more stable soils and vegetation cover which in turn 

overshadowed the effects of rainfall erosivity. Statistically, the K-factor weakly correlated to 

soil loss. However, qualitative analysis of remote sensing-derived erosion results combined 

with field observations revealed a strong relationship between the two especially in gully-

affected areas. The results from this chapter highlight the need and importance of spatial 

integration RULSE and remote sensing-derived soil erosion information.     

5.4. Objective 3: LULC change and soil erosion 

In order to proactively conserve soil and water resources, it is often appropriate to understand 

the dynamics of soil erosion as related to LULC changes. Freely available optical sensors like 

Landsat are capable of providing information on historical LULC changes on a time-efficient 

basis. In Chapter 4 of this study, the use of Landsat multi-temporal data together with the 

RUSLE model assisted in assessing the impact of LULC changes on soil erosion in the 

Umzintlava Catchment from 1989-2017 period.  

The results indicated that the catchment has undergone significant changes in LULC over the 

past 28 years (1989-2017). Water bodies, agriculture, and grassland areas declined by 0.04%, 

1.80%, and 13.42%, respectively whereas the aerial coverage of forest increased by 3.73%, 

badlands by 1.78%, and bare soil and built-up area by 9.74% (Chapter 4). The catchment 

recorded about 1027.36 t ha−1yr−1 of soil loss in 1989, declining to 769.62 t ha−1yr−1 in 

2001, and 138.71 t ha−1yr−1 in 2017. Notwithstanding the overall decline of soil loss, close 

examination of soil loss in different LULC classes suggested that all LULC classes have 
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experienced increased rates of soil loss during the observed period, with the exception of 

badlands (Chapter 4, Section 4.3.4), which are characterized by gullies. 

The bare soil and built-up area class recorded the least change (1.78%) but the highest soil 

loss of about 0.054 t ha−1yr−1. Forest increased by 9.74% resulting in an increase of 0.036 

t ha−1yr−1 in soil loss. Similarly, the area under agriculture experienced an increase of 0.036 

t ha−1yr−1 in soil loss following a decline of 1.80% in aerial cover. Grassland areas 

decreased by 13.42%, resulting in soil loss increase of 0.031 t ha−1yr−1. These results show 

that changes in different LULC classes impact on soil erosion rates, with some LULC classes 

resulting to more soil loss than others. The information on LULC changes and soil erosion 

provide in Chapter 4 is important to both LULC planning and soil conservation at catchment 

level.      

5.5. Limitations 

Although successful, this study suffered from a few setbacks arising mainly from the lack of 

data with sufficient spatial resolution for the scale of the study, viz. catchment. The 

unavailability of SPOT image scenes for 1989 and 2001 periods for instance influenced the 

decision to use Landsat imagery (a coarser spatial resolution sensor) for these periods, and 

even for 2017 period. As a result, LULC classes derived from a 2016 SPOT imagery 

(Chapter 3) differ from those classified from Landsat images (Chapter 4). With a spatial 

resolution of 5m * 5m, SPOT permitted classification of six LULC classes (including water 

bodies, built-up areas, barren land, agricultural land, rangeland, and forest) in the study area. 

On the contrary, only five LULC classes were classified from Landsat at a spatial resolution 

of 30m * 30m. With this spatial resolution, it was difficult to spectrally discriminate between 

bare soil and built-up area; hence a decision was made to merge these two classes into one 

class called ‘Bare soil and built-up area’. 

Image spatial resolution did not only affect LULC classification but also impacted on soil 

loss estimates. The mean annual soil loss was estimated at approximately 11 752 t ha−1yr−1 

using a 5m * 5m SPOT image grid-based approach (Chapter 3), whereas soil loss estimates at 

30m * 30m spatial resolution ranged from 1027.36 t ha−1yr−1 - 138.71 t ha−1yr−1  (Chapter 

4). Further to the issue of spatial resolution and soil loss discussed in Chapter 3 (Section 3.6), 

the estimated soil loss rates in different Wards exceed the proposed (McPhee and Smithen, 

1984) tolerable rates of soil loss. This is likely because the SPOT images used with a spatial 

resolution of 5m * 5m were able to pick-up more areas with soil losses. On the contrary, in 
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Chapter 4 (Section 4.3.4), Landsat-based estimated soil loss rates in different LULC class are 

below tolerable levels possible due to coarser Landsat spatial resolution (30m * 30m). 

Although the estimated soil loss rates in Chapter 4 are within tolerable levels, such soil loss 

rates continuously increased during the study period and may pose a greater threat to both 

soil quantity and quality in the long-run (Chapter 4, Section 4.4). This discrepancy reveal that 

the use of high spatial resolution satellite images and DEMs (which were not available for the 

present study) could have improved the results of this study.      

5.6. Conclusions 

The main aim of this study was to assess the spatial and temporal patterns of water-borne 

erosion in the Umzintlava Catchment, Eastern Cape, using the RULSE model in conjunction 

with geospatial technologies related to GIS and remote sensing. Based on research findings 

reported in this thesis (Chapter 3 and 4), the following major conclusions can be drawn: 

1) The Umzintlava Catchment is subject to considerable levels of soil erosion, pointing 

to the need for counter measures, especially in locations where soil is continuously 

lost at rates far exceeding tolerable rates proposed for South Africa.   

2) The topography as represented by RUSLE LS-factor is the main driving force behind 

hillslope erosion including rill and sheet erosion. In gully-dominated areas however, 

the topography has little influence, but soil types as represented by K-factor is the 

overriding factor.   

3) The impact of LULC change on soil erosion is a cause for concern in the Umzintlava 

Catchment and Eastern Cape at large. Natural grasslands in particular are 

increasingly converted to built-environment in addition to being used for animal 

grazing, leading to increased susceptibility of an area to erosion by water.  

4) Throughout the observed period (1989-2017), soil loss by different LULC classes 

consistently increased and may continue if proactive measures are not taken to 

control or manage soil erosion in the catchment.     

Overall, from a theoretical and methodological point of view, the integration of the RUSLE 

model with GIS and remote sensing has proven not only reasonably accurate and time-

efficient in identifying erosion prone areas in both spatial and temporal terms, but also cost-

effective alternative to traditional field-based methods. Taking the setbacks or limitations 

(Section 5.4) encountered into consideration and research gaps identified in this study 
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(Chapters 2, 3, and 4), it is apparent that there is still some room for improvements, hence the 

following recommendations and directions for future research are provided.     

5.7. Recommendations and directions for future research 

5.7.1. Recommendations 

1) Due to poor spatial resolution provided by Landsat imagery, it is recommended that 

future studies use SPOT imagery in LULC change detection given its high spatial 

resolution and its free availability in South Africa.  

2) The use of high spatial resolution commercial sensors like QuickBird, WorldView, 

IKONOS, and GeoEye is also recommended although these may be costly.   

3) Given that there are currently no policies governing access to or use of communal 

land for livestock grazing (SDF, 2011), local authorities including municipal 

government and traditional leaders must enact policies on the use of communally-held 

lands for livestock grazing. 

4) In order to bridge the gap between theory and practice, there must be on-going soil 

erosion workshops among various stakeholders including communities actively 

involved in agriculture, policy-makers, land development, and soil erosion experts. 

These workshops should disseminate information on soil erosion causes, processes, 

management and soil conservation practices.     

5) More vegetation cover must be planted in areas of concern such as elevated areas with 

steep slopes and poor vegetative cover. In addition to this, the existing natural or 

indigenous forests must be well-protected, as these in turn provide best protection 

(e.g. low C values) of soil against erosion.    

5.7.2. Directions for future research 

1) Further research should investigate the impact of spatial resolution on RUSLE-

estimated soil loss. This includes comparing free multispectral sensors like SPOT, 

Sentinel, and Landsat, amongst others. 

2) More research, especially in the South African context, is required to determine the 

most important factors influencing soil erosion, taking into account variations in local 

environmental conditions. 

3) More research is needed on the impacts of soil erosion on agriculture, livestock 

farming and food security.  
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4) Research on policies relating to the use of communal land for grazing livestock is 

needed. The use of fire in communal grazing land should be investigated. 

5) Future research should also focus on developing innovative and/or improving existing 

soil erosion control measures. 
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APPENDICES 

Appendix A: Elevation of the study area. 
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Appendix B: Major vegetation types in the Umzintlava Catchment.  
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Appendix C: Spatial distribution of six major soil types in the Umzintlava Catchment. 
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Appendix D: Physical properties of soil used to calculate soil erodibility. 

 

Soil sample Height (m) Latitude Longitude vFSa (%) Sil (%) Cla (%) OM (%) S code P class K-factor 

Aa 1655 -30.73653 29.27728 64.86 14.74 20.40 8.66 2 5 0.027 

Ab1 1014 -30.76044 29.32833 86.93 5.94 7.13 6.36 2 5 0.054 

Ab2 1011 -3075922 29.32581 64.25 16.68 19.06 4.75 4 6 0.063 

Ac1 1415 -30.77781 29.45381 83.21 7.84 8.96 6.48 2 4 0.048 

Ac2 1364 -30.77781 29.45097 89.15 1.21 9.65 7.93 3 4 0.040 

Ac3  1391 -30.77711 29.45236 84.73 4.17 11.11 8.54 2 5 0.033 

Ac4  1445 -30.77433 29.45350 67.95 1.19 30.86 8.83 3 4 0.021 

Ac5 1425 -30.77506 29.45256 91.50 3.64 4.86 7.28 3 2 0.043 

Ea1 1241 -30.81289 29.40217 88.46 4.62 6.92 3.34 1 6 0.080 

Ea3 1083 -30.65972 29.38178 95.40 2.30 2.30 6.90 4 6 0.067 

Ea4 1123 -30.67342 29.39900 82.89 6.42 10.70 3.30 4 6 0.086 

Fa1 1167 -30.70431 29.44333 58.15 19.76 22.09 3.34 1 2 0.042 

Fa2 1167 -30.70464 29.44422 81.56 10.54 7.90 4.10 2 4 0.069 

Fa3 1160 -30.70506 29.44428 82.14 10.99 6.87 3.41 1 3 0.069 

Fa4 1177 -30.70508 29.44508 76.69 14.72 8.59 7.74 1 2 0.027 

Fa5 1172 -30.70556 29.44450 78.16 7.28 14.56 6.13 1 2 0.034 

Fa6 1233 -30.71250 29.45336 93.43 2.19 4.38 6.02 1 5 0.057 

Fa7 1244 -30.71450 29.45422 89.02 1.57 9.41 7.28 1 4 0.037 

Fa8 1248 -30.71517 29.45419 85.29 6.54 8.17 6.08 1 5 0.051 
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Appendix D: continued.  

Soil sample Height (m) Latitude Longitude vFSa (%) Sil (%) Cla (%) OM (%) S code P class K-factor 

Fa9 1352 -30.71622 29.46003 95.22 2.39 2.39 8.39 3 4 0.042 

Fa10 1213 -30.72175 29.45219 88.80 3.20 8.00 5.90 4 5 0.066 

Fa11 1204 -30.72153 29.45767 86.62 4.46 8.92 4.94 3 2 0.058 

Fa12 1203 -30.72164 29.44000 65.83 9.20 24.97 1.92 4 6 0.071 

Ib 1337 -30.81939 29.40581 70.20 12.42 17.39 7.74 2 3 0.028 
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Appendix E: Spatial distribution of random points that were used to extract values 

from soil loss map and individual RUSLE parameters for statistical analysis. 

 

 


