
Flexible statistical modelling
of the determinants of
childhood anaemia in
Tanzania and Angola

Qondeni Ndlangamandla (214520530)

, 2020



Flexible statistical modelling of the determinants
of childhood anaemia in Tanzania and Angola

by

Qondeni Ndlangamandla (214520530)

A thesis submitted to the

University of KwaZulu-Natal

in fulfilment of the requirements for the degree

of

MASTER OF SCIENCE

in

STATISTICS

Thesis Supervisor: Prof Shaun Ramroop

Thesis Co-supervisor: Prof Henry Mwambi

UNIVERSITY OF KWAZULU-NATAL

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

PIETERMARITZBURG CAMPUS, SOUTH AFRICA



Declaration - Plagiarism

I, Qondeni Ndlangamandla (214520530) , declare that

1. The research reported in this thesis, except where otherwise indicated, is my
original research.

2. This thesis has not been submitted for any degree or examination at any other
university.

3. This thesis does not contain other persons’ data, pictures, graphs or other in-
formation, unless specifically acknowlegded as being sourced from other per-
sons.

4. This thesis does not contain other persons’ writing, unless specifically acknowl-
edged as being sourced from other researchers. Where other written sources
have been quoted, then

(a) their words have been re-written but the general information attributed
to them has been referenced, or

(b) where their exact words have been used, then their writing has been
placed in italics and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from
the internet, unless specifically acknowledged, and the source being detailed
in the thesis and in the reference sections.

Qondeni Ndlangamandla (214520530) (Student) Date

Prof Shaun Ramroop (Supervisor) Date

Prof Henry Mwambi (Co-supervisor) Date

9 November 2020

9 November 2020

08 November 2020



Disclaimer

This document describes work undertaken as a Masters programme of study at the
University of KwaZulu-Natal (UKZN). All views and opinions expressed therein
remain the sole responsibility of the author, and do not necessarily represent those
of the institution.



Abstract

Anaemia is one of the major causes of morbidity and mortality in children aged five
or less in Africa, affecting 25% of the world’s population. In developing countries, it
accounts for more than 89% of the disease burden. Although anaemia affects all pop-
ulation groups, the more vulnerable groups are children under five years of age and
women of reproductive age (15–49 years) compared to any other age group. Accord-
ing to the World Health Organization’s 2008 report, 50% of anaemia cases in Africa
were associated with insufficient consumption of iron (iron deficiency anaemia).
This study aims to determine the factors associated with childhood anaemia in Tan-
zania and Angola.

For us to serve our aim, the Tanzania Demographics and Health Survey (TDHS)
and the Angola Demographics and Health Survey (ADHS) data sets were fitted to
several statistical models that could robustly model the response variable, anaemia,
which is binary. Survey Logistic Regression (SLR), which is under the class of Gen-
eralized Linear Models (GLM), fits because of its robustness, not only in modelling
dichotomous responses, but also in it ability to deal with data that assumes com-
plex survey designs. The SLR model was extended by a Generalized additive mixed
model (GAMM), which was fitted to relax the assumption of normality and to fit
other terms non-parametrically. Furthermore, to cater for the effect of spatial ef-
fect and spatial variability, a Spatial Generalized linear mixed model (SGLMM) was
fitted to the two data sets to help in the investigation of factors that are spatially re-
lated to childhood anaemia. The SLR and SGLMM models were fitted using the SAS
software (PROC SURVEYLOGISTIC and PROC GLIMMIX, respectively), while the
GAMM model was fitted using the statistical-R software. Moreover, smooth maps
were produced for the outcome variable using ARCGIS software for the purpose of
identifying the hot spots of childhood anaemia in the country.

Our aim for this study was successfully achieved. After the three models were fitted
into the two data sets, they revealed that the factors that were highly associated with
childhood anaemia in both countries are: the highest level of education of caretak-
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ers (mothers), child gender, age of the child and stunting status. The models also
revealed that the standard of living in Tanzania has a significant effect in childhood
anaemia

keywords:Childhood anaemia, survey logistic regression (SLR), generalized addi-
tive mixed models (GAMM), spatial generalized linear mixed models (SGLMM),
smoothing, demographic and health survey (DHS), adjusted odds ratios (aOR)
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Chapter 1

Introduction

1.1 Background

Anaemia is one of the major causes of morbidity and mortality in children in Africa
aged five or less, affecting 25% of the world’s population (McLean et al., 2009). It
accounts for more than 89% of the disease burden in developing countries (Kasse-
baum, 2016). Although the serious health problem of childhood anaemia affects
both developing and well-developed countries, it is more prevalent in developing
countries (Ewusie et al., 2014; Balarajan et al., 2011a). In general, anaemia is defined
as the condition where the body does not have a sufficient haemoglobin (Hb) level
to provide enough oxygen into the body tissues (McLean et al., 2009). In pregnant
women shortage of Hb in the body is highly associated with increased risk of ma-
ternal and perinatal mortality and small size or weight of the child at birth (Young,
2018; Stevens et al., 2013).

Maternal anaemia is amongst one of the common causes of morbidity and mortality
in both the mother and her baby; it also increases the rate of miscarriages, stillbirths,
prematurity, and low birth weight (Young, 2018; Peña-Rosas & García-Casal, 2014).
The World Health Organization’s 2011 report highlighted that maternal and neona-
tal death ranges from 2.5 million to 3.4 million per year (Stevens et al., 2013). Child-
hood anaemia can adversely affect cognitive, and motor development and results in
fatigue and low productivity (Stevens et al., 2013; Crawley, 2004), which may persist
even after treatment (Ewusie et al., 2014). According to health specialists anaemia is
caused by the imbalance production of erythrocytes and the removal of erythrocyte
(Allali et al., 2017). Furthermore, anaemia is the indicator of both poor nutrition and
poor health (Peña-Rosas & García-Casal, 2014).

Many Sub-Saharan African countries and Southeast Asian countries are at the mercy
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1.1. Background

of malnutrition and, consequentially, childhood anaemia is more prevalent in these
regions than in any other parts in the world (Peña-Rosas & García-Casal, 2014).
Anaemia affects all population groups but women of productive age and children
under five years of age (children aged 0-59 months) are identified as the most vul-
nerable among other population group in many studies (Kassebaum, 2016; Crawley,
2004; Sharmanov, 1998; Osungbade & Oladunjoye, 2012; McLean et al., 2009).
The prevalence of childhood anaemia decreases with age; children aged 6-24 months
are more likely to suffer from anaemia (Ngwira & Kazembe, 2015; Sanou & Ngnie-
Teta, 2012). The highest prevalence of childhood anaemia is in sub-Saharan African
countries where 67% of children under five years suffer from the illness and in South
East Asia, where 65.5% of young children have anaemia (Habyarimana et al., 2017).
Also, the 2011 global report showed that about 9.6 million children were found to be
severely anaemic worldwide, with a 95% confidence interval of (6.9 million to 14.1
million) (Organization et al., 2015).

A total of 4.9 million of children under five years of age (0 months to 59 months)
were from the African region. The study shows that only 0.18 million children were
from the American zone, 2.7 million were from South East Asia, 0.2 million were
from the European regions, 1.5 million were from the Eastern Mediterranean region,
and only 0.2 million out of 9.6 million children were from the Western Pacific regions
(Organization et al., 2015). Hence, more than half of the children who were found
to be severely anaemic were from the African region followed by the East Asian re-
gions. Thus this report serves as a proof that anaemia is more prevalent in these two
regions compared to other regions in the world. In both regions, under-nutrition
is one of the common health problems that contributes to mortality and morbidity
of children under five, and thus to childhood anaemia. In addition, about 90% of
the people making up the population of Africa are black, and several studies have
shown that the distribution of population haemoglobin is lower in blacks than in
whites (Johnson-Spear & Yip, 1994; Dallman et al., 1978; Balarajan et al., 2011b), con-
tributing to the high prevalence of anaemia in Africa.

The causes of anaemia are multifactorial by nature and they are interrelated in a
complex way (Peña-Rosas & García-Casal, 2014). The most common cause in young
children is low consumption and absorption of iron-rich foods (i.e, meat and meat
products). Iron-deficiency accounts for approximately 50% of the cases of anaemia
globally (Habyarimana et al., 2017; Ngwira & Kazembe, 2015; Peña-Rosas & García-
Casal, 2014). In most of these cases, young children and pregnant and post-partum
women are the most commonly and severely affected because of the high iron de-
mands for infant growth and for pregnancy; young children also need iron for growth
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1.1. Background

and development (Kassebaum, 2016; Milman, 2011). In every human body, various
nutritional deficiencies and different infections may play a role, but iron is the most
vitally important mineral and an important component of metalloproteins required
during oxygen transportation and during the process of metabolism (Milman, 2011).
A well-nourished human body contains about three to four grams of iron and the
haemoglobin protein contains oxygen of approximately two-thirds of the protein
(Milman, 2011; Balarajan et al., 2011b). According to WHO, iron deficiency anaemia
is considered as a public health problem when the prevalence of Hb concentration
is more than 5% of the population. Iron deficiency is most common in low-income
and middle-income countries (Milman, 2011), where the prevalence of anaemia is
thus high. Parasitic infections are considered to be the second most common cause
of anaemia. Studies in East Africa have shown that Plasmodium falciparum malaria
and iron deficiency account for much to childhood anaemia (Newton et al., 1997).

According to global records between one million and three million deaths, every
year in Africa are the result of malaria (Stevens et al., 2013). The species Plas-
modium falciparum is the most pathogenic and can lead to severe anaemia and
cognitive heart failure (Balarajan et al., 2011b). The mechanism of malaria-related
anaemia has evolved substantially and can be broadly characterized by a both de-
crease and increase of erythrocyte destruction. Malaria infection during pregnancy
can result in reduced birth weights and contributes to maternal infant mortality and
poor foetal development (Murphy & Breman, 2001). Many other causes of anaemia
have been studied that include genetic haemoglobin disorder, chronic thalassemia’s,
haemoglobin variants in ovalocytes, among others. Nutritional factors include de-
ficiency in iron, folic acid , vitamin A , Vitamin B12, and protein-energy malnutrition.

Folic acid is needed during the synthesis and maturation of erythrocytes. A de-
ficiency often results in megaloblastic anaemia, a condition characterized by cells
with large and ill-shaped nuclei resulting from impaired DNA synthesis. During
pregnancy, folate demands increase, and women entering pregnancy with insuffi-
cient folate usually develop megaloblastic anaemia (Kapil & Kapil). Vitamin A takes
part in the creation of red blood cells improves haemoglobin concentration and it
improves the efficacy of iron supplementation moreover vitamin A reduces suscep-
tibility to infections. Vitamin A deficiency is more common in South East Asian
region, affecting approximately 21% of children under five years of age and 6% of
pregnant women (Kapil & Kapil).
Infectious diseases that are associated with anaemia include soil-transmitted helminth
infestation, malaria, tuberculosis, human immunodefincieny virus, and AIDS. Fur-
thermore, anaemia in young children results not only from childhood events (Vita-
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1.1. Background

min A,B12 deficiency; protein energy malnutrition; etc), but also from maternal iron
deficiency and maternal anaemia, which are associated with impaired fetal develop-
ment and iron-deficient and anaemic infants (de Savigny et al., 2003).

Anaemia is a common known risk factor that causes death at both the mild and mod-
erate levels (Stoltzfus et al., 2004), but the severe anaemic level is the most common
cause of morbidity and mortality in African children (Calis et al., 2016; Koram et al.,
2000). According to WHO disease classification, severe anaemia is considered as a
health problem in the population when its prevalence exceeds 40% (Peña-Rosas &
García-Casal, 2014; Hall et al., 2001). Furthermore, the Severe anaemic stage causes
fragility and distortion of bones in young children (Vogiatzi et al., 2009). According
to the established level of anaemia by the WHO, the severe anaemic stage is when
the haemoglobin concentration is less than seven grams per decilitre (Hb≤7g/dl) in
children (Stevens et al., 2013). Although the whole world has been playing a major
role in reducing anaemia by iron supplementation, fortification and diversification
of the diet, anaemia remains a major health problem. In Tanzania, the prevalence of
the condition is high but the country has made tremendous progress in fighting and
reducing it.

Based on the most recent statistics, from the 2015-16 Tanzania Demographic and
Health Surveys (TDHS) only 58% of children under five years of age were found to
be anaemic (haemoglobin less than 11 g/dl). Twenty-seven percent were found to be
mildly anaemic, 30% of children were moderately anaemic and only 2% were found
to be severely anaemic. The prevalence of childhood anaemia in Tanzania declined
substantially between 2004 and 2005 and in 2012 it went from 72% to 59%. In sharp
contrast, there was a small decrease in anaemia among children between 2010 and
2015-2016 from 59% to 58% (Ministry of Health et al., 2016). The prevalence of child-
hood anaemia in Angola was reported at 71.70% in 1990, then the record decreased
to 51,30% in 2015, the percentagee was updated annually and it was recorded as
low in 2016 at 50.90%, averaging to 63% as the data was updated every year from
1990 to 2016 (Worldbank, 2016). In Rwanda, the prevalence of childhood anaemia
reduced from 52% to 38% between the years 2005 and 2010, and there was a negli-
gible decrease in that age group, 38% to 37% between the year 2010 and 2014-2015
(Habyarimana et al., 2017). Thus anaemia prevalence is still high in some parts of
the African continent.

According to the WHO, the established anaemia levels vary according to individ-
ual age (Stevens et al., 2013; McLean et al., 2009). Childhood anaemia is defined as
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1.2. Study objectives

haemoglobin less than 11g/dl (McLean et al., 2009). For example, children that are
6-59 months of age are considered to be non-anaemic if their haemoglobin concen-
tration is greater than 11 grams per decilitre(Hb≥ 11 g/dl); mild anaemic if their
haemoglobin concentration lies in the interval of 10.0 g/dl ≤Hb≤ 10.9 g/dl, moder-
ately anaemic if 7.0 g/dl ≤Hb≤ 9.9 g/dl and severely anaemic if their haemoglobin
concentration is less than 7.0 g/dl, while children 5 years and 11.99 years are said
to be anaemic if their haemoglobin concentration is less than 115 g/l which is the
same as 11.5 g/dl. Children between 12 and 14.99 years and non-pregnant women
aged 15 or more are both considered to be anaemic if their haemoglobin threshold
is less than 120g/l or 12.0 g/dl. Pregnant women are said to be anaemic when their
haemoglobin concentration is less than 110 grams per decilitre (110 g/l or 11.0 g/dl)
and men aged 15 or more are considered to be anaemic when their haemoglobin
threshold is less than 130g/l (13.0 g/dl) according to the WHO established cut off
levels (De Benoist et al., 2008; McLean et al., 2009).

1.2 Study objectives

1.2.1 General objectives

The main aim of this study is to investigate the socioeconomic and socio-geographic
factors that are statistically associated with childhood anaemia in children aged five
years or less from Tanzania and Angola. Current literature and research shows
that the determinants that are significantly associated with childhood anaemia in-
clude: the sex of child, the child’s age, mother’s anaemia status, wealth index, type
of place of residence, mother’s or guardian’s education level, consumption of iron-
rich food (vegetables, meat, and fruits), taking milk prior to survey, stunting, wast-
ing, child had fever in the past two weeks, child had cough in the past two weeks
before survey, weight at birth, recent diarrhoea, have a television, have a radio, hus-
band/partner’s educational level attainment, vitamin A in the six weeks before the
survey, whether children under five slept under mosquito bed nets during the last
night before the survey, place of birth delivery, size of child at birth and whether
drugs for intestinal parasites has been taken in the last six months (Habyarimana
et al., 2017; Kejo et al., 2018; Schellenberg et al., 2003; De Pee et al., 2002; Leal et al.,
2011).

1.2.2 Specific objectives

The specific objectives are:

• To identify the determinants of anaemia by fitting the appropriate statistical
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models.

• To cater for the complexity of the survey design of DHS data sets by fitting
survey logistic regression, for us to draw valid statistical inferences.

• To account for DHS data where there is a high possibility of correlation be-
tween observations (members from the same household or cluster) by fitting
the Generalized additive mixed models.

• To determine the common determinants of childhood anaemia (determining
which variables are said to be the common cause of anaemia in children).

• To fit spatial generalized linear mixed models to account for the possible effect
of spatial heterogeneity since DHS data sets are spatial in nature.

• To make recommendations to the current health policy makers by suggesting
what factors they should place strong focus on to reduce the prevalence of
anaemia in children.

1.2.3 Importance of the study

Anaemia in the population of sub-Saharan countries is the most common cause of
morbidity and mortality in children under five years of age. For instance, in its
attempts to reduce the prevalence of childhood anaemia over 26 years (1990-2016)
Tanzania achieved a reduction from its highest value of 78.20% in 1990 to its lowest
value of 55.20% in 2016 for children under five years of age (≤ 59 months). It was
71.8% in 2004-2005 (indexmodi, 2016b). For women of reproductive age, its highest
value was 50.90% in 1990 and its lowest value was 37.20% in 2015. The maximum
value in pregnant women over 26 years (1990-2016) was 55.50% and its lowest value
was 48.0% in 2016 (indexmodi, 2016b). 2016b). In Angola the prevalence of anaemia
among children aged 5 or less was 50.90% in 2016 (indexmodi, 2016a). Its high-
est value over 26 years (1990–2016) was 71.70% in 1990, while its lowest value was
50.90% in 2016 among women of reproductive age (15-49 years). In pregnant women
it highest value over 26 years (1990-2016) was 58.00% in 1990, while its lowest value
was 46.70% in 2012, and in 2016 it was 47.20% (indexmodi, 2016a; Worldbank, 2016).

Thus, anaemia is a health problem indicating that there is still much to be done by
health experts to fight the disease. Furthermore, it remains important for researchers
to continue studying the possible determinants of anaemia to help policymakers
identify the factors they should mostly focus on to reduce its prevalence in Africa
and in the world as whole.
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1.3 Literature review

A series of studies have been conducted in the field that shows childhood anaemia
as the commonest and most intractable cause of both morbidity and mortality in
pre-school children (under five years of age) in sub-Saharan countries (Organiza-
tion et al., 2008; Osungbade & Oladunjoye, 2012). Although the fight to improve the
treatment of this disease has been global, it remains common, and iron deficiency
is considered the commonest cause of anaemia in both children and adults. There
are several studies of childhood anaemia, focusing mainly on the prevalence and the
factors that are positively associated with it.

Discussed here is a brief review of earlier published work a few years ago and the
most recent studies on anaemia (childhood anaemia) in Africa as a whole and related
studies in countries on other continents. Several studies in notable published work
on anaemia show that the most common determinants of childhood anaemia are age
of the child, wealth index (standard of living), type of place of residence, level of ed-
ucation, iron supplementation, maternal anaemia, parasite infections (malaria) and
child nutritional status (stunting and/or wasting, underweight) (Sanou & Ngnie-
Teta, 2012; Ngesa & Mwambi, 2014; Habyarimana et al., 2017; Balarajan et al., 2011b;
Ngwira & Kazembe, 2015; Foote et al., 2013; Getaneh et al., 2017; Magalhães et al.,
2013). There are many other existing factors (socioeconomic and demographic) that
contribute to childhood anaemia.

School-based (or community-based or regional-based) and/or country-based stud-
ies on the prevalence and factors associated with childhood anaemia have been con-
ducted and they are indeed showing commonalities about the disease in children
under five years old. Schellenberg et al. (2003) conducted a community-based child-
hood anaemia study in southeastern Tanzania with the purpose of investigating its
prevalence. The researchers (2003) found that anaemia prevalence was high for chil-
dren aged 6-11 months, that children who were from poor homes were highly as-
sociated with severe anaemia and that children who had a history of recent illness
were more likely to be anaemic compared to those with no reported illness.

A regional study by (Kejo et al., 2018) in the Arusha district in Tanzania used a mul-
tivariable logistic regression model to investigate the factors that were significantly
associated with childhood anaemia (children under five years of age). The study
revealed that childhood anaemia was significantly associated with iron deficiency
(due to cultural behaviours), maternal factors such as employment and breastfeed-
ing and the age of the child. Children less than 24 months were more likely to be
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anaemic compared to older children, similar to the findings of the study by Schel-
lenberg et al. (2003) regarding the prevalence of anaemia in children less than 24
months of age. A similar study was later conducted in Tanzania (Simbauranga et al.,
2015) in the Mwanza district or region. This was a cross-sectional hospital-based
study of children under five years of age that found childhood anaemia was highly
associated with low iron intake, unemployment of caretakers and low level of care-
taker education. The prevalence of anaemia was also high for children living in
malaria-endemic areas in the region and for malnourished children.

Semedo et al. (2014) assessed the factors and the prevalence of anaemia on nine
islands of Cape Verde in West Africa using the multi-variable logistic regression
model. Socioeconomic, demographic and environmental factors were assessed, that
included the level of education of caretakers, sex of the child, child age, anaemia
status of the mother, household conditions, recent episodes of diarrhoea, duration
of exclusive breastfeeding, vaccination and nutritional status. It was found that
childhood anaemia was significantly associated with child age (more prevalent in
children less than two years), household conditions (poor or rich) and the recent
episodes of diarrhoea. Anaemia was more prevalent for children residing in poor
household conditions compared to children from rich households, and it was found
that children with recent episodes of diarrhoea were at a higher risk.
A study by Foote et al. (2013) in western Kenya (Nyando district) about the preva-
lence and factors associated with childhood anaemia. The study found that the
variables (iron deficiency, stunting, wasting, malaria infections and vitamin A de-
ficiency) that were thought to be highly associated with childhood anaemia were
wider spread (Foote et al., 2013). This study used a multi-variable PR (prevalence
ratios) regression model to determine factors associated with childhood anaemia
and PROC SURVEYFREG was used to account for survey design. Anaemia was sig-
nificantly and highly associated with malaria infection, child age, stunting and iron
deficiency.

Getaneh et al. (2017) conducted a study among pre-school children in Gondar town,
Ethiopia, using bivariate and multivariate binary logistic re-gression to assess the
effects of socioeconomics, sociodemographics and malaria-associated infectious dis-
eases. It was observed that there was no significant difference in the prevalence of
anaemia according to the gender of the child, which is very similar to many other
studies on childhood anaemia (Kejo et al., 2018; Semedo et al., 2014; Foote et al.,
2013). The study outcome variable of interest was binary and used the logistic re-
gression model to assess the predictors, finding that anaemia was highly associated
with stunting, and mother’s (caretaker) level of education and nutrition status. An-
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other study on anaemia prevalence was conducted with Indonesian infants aged 3-5
months (De Pee et al., 2002). This study also used logistic regression to assess the
effect of anaemia predictors, revealing that childhood anaemia was a result of ma-
ternal anaemia status, iron deficiency, stunting, maternal education level, and low
birth weight. Another similar study was conducted in a rural area in India and had
very similar results regarding the factors associated with childhood anaemia (Pas-
richa et al., 2010).

Ncogo et al. (2017) assessed the prevalence and factors of childhood anaemia in ru-
ral and urban settings of the Bata district of Equatorial Guinea. Assessed factors
included the sex of the child, type of place of residence, wealth index, the age of
the child and many common factors used in studies by many researchers. After the
poison regression model was fitted, the model revealed that the type of place of res-
idence was significantly associated with childhood anaemia in children from this
district (p-value <0.05). Anaemia was prevalent in children from urban areas who
were suffering from concomitant malaria infection, the child’s age had a significant
bearing; anaemia prevalence was high for children aged between 2 and 24 months
and also in children who were from rural areas.
Ngwira & Kazembe (2015) conducted a study using the Bayesian random effect
modelling to study the determinants of childhood anaemia in Malawi. Similar to
many findings in the literature, this study highlighted that child anaemia decreases
with child age and is positively associated with the wealth index, showing that chil-
dren from wealthy households are less likely to suffer from anaemia compared to
those from low-income families. Furthermore, there was a U shaped relationship
between maternal age and the possibility of a child being anaemic at birth (the risk
of childhood anaemia was high for mothers aged 40 and above).

Habyarimana et al. (2017) assessing the determinants of childhood anaemia in Rwanda,
carried out their analysis using the structured spatial additive quantitative regres-
sion model. They considered all the levels of anaemia as defined by both the WHO
and UNICEF. A number of variables were assessed with the model, revealing that
the sex of the child, the mother’s literature, wealth index, anaemia status, vitamin
A supplementation of the child, the duration of breastfeeding, and the nutritional
status of the child (underweight, wasting and stunting) were all significant to child-
hood anaemia (p-value < 0.05). Furthermore, the structured spatial location effects
were also found to have a significant effect on the presence of anaemia.

Almost all of these studies have common findings: child nutrition status, child age
(specifically children aged < 24 months), iron deficiency, wealth index and type of
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place of residence are highly associated with childhood anaemia in many African
countries. For instance, a study of risk factors associated with anaemia in preschool
children in Sub-Saharan African countries conducted by Sanou & Ngnie-Teta (2012)
found that about 50% of anaemia cases were iron deficiency-related. These results
are very similar to the 2008 World Health Organization report on the global preva-
lence of anaemia (McLean et al., 2009). Infectious diseases were also found to be
the second most important cause of anaemia in sub-Saharan Africa. These include
malaria, hookworm infestations, schistosomiasis, among others which are all highly
prevalent in African countries (McLean et al., 2009; Balarajan et al., 2011a).According
to the WHO report, the highest prevalence of childhood anaemia is found in malaria-
endemic areas. Reference can be made to the work of Balarajan et al. (2011a); De Benoist
et al. (2008); McLean et al. (2009); Sanou & Ngnie-Teta (2012); Magalhaes & Clements
(2011); Magalhães et al. (2013), among others.
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Chapter 2

Exploratory data analysis

2.1 Introduction

This chapter is based on the data sets as they are used in this study. The data sets
used are the 2015-2016 Tanzania demographic and health survey (TDHS) and 2015-
2016 Angola demographic and health survey (ADHS) which are found on the DHS
programme. The SPSS statistical software was used to give descriptive information
about the data sets, and the test of independence (association) between the response
variable and each predictor variable was done using a Pearson Chi-square test.

2.1.1 The data set

The two demographic and health surveys utilized produce several different data
sets ; these differ in individual surveys which are organized into three distribution
categories: survey data, HIV test results, and geographic data (Ministry of Health
et al., 2016). This study utilizes the 2015-16 ADHS and TDHS data sets. The two
DHS data sets were collected for several reasons: to provide up-to-date information
on fertility and childhood mortality, and to assess attitudes toward HIV/AIDS and
the use of family planning.

The Tanzania Demographic and Health Survey

The 2015 Tanzania Demographic and Health Survey (2015 TDHS) is the fifth of its
kind and follows those implemented in 1991/92 (TDHS), 1996 (TDHS), 2004/05
(TDHS), and 2010 (TDHS). A nationally representative sample of about 13 400 house-
holds was selected in Tanzania. All women and men aged 15-49 who were usual
residents of the selected households or who slept in the households the night before
the survey were eligible to take part. The survey resulted in about 13 000 interviews
of women aged 15-49 and 3 500 interviews of men. Similar to previous studies, the
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2015 TDHS survey’s main objectives were to provide up-to-date information on fer-
tility and childhood mortality levels; fertility preferences; awareness, approval, and
use of family planning methods; maternal and child health; and knowledge and
attitudes toward HIV/AIDS and other sexually transmitted infections (STIs) (Min-
istry of Health et al., 2016).

The 2012 Tanzania Population and Housing Census (TPHC) was used for the 2015-
2016 sampling frame. The sampling frame is a complete list of enumeration areas
(EAs) covering the country provided by the National Bureau of Statistics (NBS) of
Tanzania, the implementing agency for the 2015 TDHS. The 2015-16 TDHS sam-
ple was achieved by stratifying the 2012 census frame, samples were selected in-
dependently in each sampling stratum by a two-stage selection. Stratification was
achieved by separating each region into rural and urban areas and it resulted in 59
sampling strata. In the first stage, 608 EAs (also called clusters or primary sampling
units or enumeration areas) were selected with probability proportional to the EA
size (Ministry of Health et al., 2016). Among the 608 EAs, 108 were from urban areas
and the rest were from rural areas. At the second stage, a fixed number of 22 house-
holds was selected from each EA.

The overall household response rate was 90% and 93.6% for urban and rural areas,
respectively (Ministry of Health et al., 2016). On average, the number of women
15-49 per household was 1.14 and 1.01 for urban and rural areas, respectively. The
women’s individual response rate was 96%, while the average number of men aged
15-49 per household was 0.94 and 0.87 for the urban and rural areas, respectively;
the men’s individual response rate was 88% and 91% for urban and rural areas,
respectively. For further reading on the sample design and calculations, readers can
refer to the (Ministry of Health et al., 2016).

The Angola Demographic and Health Surveys

In Angola, the first surveys conducted were the Demographic and Health Survey
and the fourth was a Multiple Indicator Cluster Survey, which is same to DHS. The
2015-16 Multiple Indicator and Health Survey was conducted from October 2015 to
March 2016. It was designed to provide data for monitoring the population and
health situation in Angola. The main objective was to provide the current infor-
mation regarding the demographic and health situation of women, men, and chil-
dren, including fertility levels, marriage, sexual activity, fertility preferences, family
planning methods, childhood and maternal mortality, maternal and child health,
breastfeeding practices, nutrition, malaria, HIV/AIDS, domestic violence, and child
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well-being (Angola, 2016). From the national representative sample total of 20 063;
14,379 were women aged 15-49 in 16,109 households and 5,684 were men aged 15-54
in half of the selected households who were interviewed in the 2015-16 IIMS. This
represents a response rate of 96% and 94% for women and for men, respectively.
The sample design provided estimates at the national and provincial levels for both
urban and rural areas (Angola, 2016).

In both data sets, all eligible women in all sampled households were weighed and
measured for anthropometric indicators and were asked to provide a few drops of
blood from a finger-prick for on-the-spot anaemia testing. In addition, parents or
guardians of all children aged 6-59 months living in the interviewed households
were asked for permission to test the children for anaemia and administer a rapid
test for malaria. These children were also weighed and measured for anthropometric
indicators (Angola, 2016; Ministry of Health et al., 2016).

2.2 Study Variables

Dependent variable for the study

In this study, our outcome (response) variable of interest is haemoglobin concentra-
tion level (Hb<11g/dl or Hb ≥ 11g/dl) in the blood measured in grams per decil-
itre (g/dl), or simply status of anaemia in a child (anaemic or not-anaemic). As
stated earlier, according to the WHO, anaemia has four categories, but for this study
anaemia is categorized into two, anaemic and non-anaemic. The response variable
is labelled anaemic = 1 and non-anaemic = 0.

Independent/explanatory/predictor variables for the study

A set of explanatory variables (also called predictor variables or covariates) exam-
ined in this study was studied in several others (Foote et al., 2013; Habyarimana
et al., 2017; Ewusie et al., 2014; Semedo et al., 2014; Simbauranga et al., 2015). For
this study the predictor variables were: current age of the child, sex of the child,
type of place of residence, wealth index, mother’s or guardian’s highest education
level, child’s nutritional status (stunting, wasting, underweight), whether children
under five slept under mosquito bed nets on the night before the survey, access to
the Internet, whether the child was given baby formula, region, whether child had
been given meat, child was caughing in the past two weeks before the survey, size
of child at birth, use of vitamin A supplementation, type of bed nets used, sex of
the household head, age of the household head and whether the household has a
television.
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Explaining the explanatory (independent) variables used in this study

The current age of the child as subjectively reported by the mother was categorized
as: less than one years (0 months≤ aged< 12 months), one years (12 months≤ aged
< 24 months), two years (24 months ≤ aged < 36 months), three years (36 months ≤
aged< 48 months) and be four years (48 months≤ aged< 60 months). The stunting
status was categorized as nourished, moderate and severe stunting; the wealth index
(poor, middle and rich); the highest level of education (higher, secondary, primary
and no education); internet (no access and have access to internet); sex of the child
and household head (female and male); size of the child at birth (large, average and
small), the age of the household head was treated as a continuous variable, and the
rest of variables were categorized as yes or no.

2.3 Descriptive Statistics

2.3.1 Cross-tabulation

The IBM Statistical Package for the Social Sciences (SPSS) latest version was used
to give a summary of descriptive statistics information (cross-tabulation) and in the
identification of factors that are significantly associated with anaemia in children
(Hb < 11g/dl) at 5% level of significance in both data sets (TDHS and ADHS). The
IBM SPSS uses the chi-square to test the independence technique to identify factors
that have a significant effect on the response variable.

According to WHO childhood haemoglobin concentration is grouped into several
categories, namely: Severely anaemic (Hb<7.0 g/dl); Moderately anaemic (7.0 g/dl≤Hb≤9.9
g/dl); Mildly anaemic (10.0 g/dl≤Hb≤10.9g/dl) and children with haemoglobin
concentration greater than or equal to eleven grams per decilitre (Hb≥11.0 g/dl) are
considered to be free from the diseases (as non-anaemic). In this study, the child-
hood haemoglobin concentration (outcome variable) is grouped into two categories
anaemic (Hb<11.0 g/dl) and non-anaemic (Hb≥11.0 g/dl), for the purpose of fitting
the survey logistic regression model, whereby the response variable is dichotomous
(Organization et al., 2008). Furthermore, during the process of cross-tabutions, the
system uses the chi-squared statistic to test for any association or dependence be-
tween the response variable and the explanatory variables.

The Pearson Chi-Square test of independence

The chi-square test of independence also known as the Pearson Chi-square has two
majors components,
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• Goodness of fit of the test; and

• Test for association or independence

A chi-square test can be used to test for independence or association between two
categorical variables. For instance, in this study it is used to test wealth index (cate-
gorized as either poor, middle and rich), to assess if there is any dependence between
this variable and childhood anaemia (categorized as non-anaemic and anaemic) in
Tanzania and Angola. The Pearson Chi-square test is only applicable provided the
number of expected frequencies in all cells on the contingency table is more than five;
otherwise, it fails, and a method called Fisher’s scoring is used instead (McHugh,
2013).
The null and the alternative hypothesis are given as follows:

H0: There is no association between the rows and the columns
versus

H1: There is association between the rows and the columns.

Similarly,

H0: There is no association between the predictor and the response variable.
versus

H1: There is an association between the predictor and the response variable.

Equivalently, it can be stated as the rows are independent of the columns versus the
rows are dependent on the columns.

The test statistic is given by McHugh (2013):

χ2 =

h∑
j=1

2∑
i=1

(
Yij − Yi.Y.j

n

)2
Yi.Y.j
n

=

h∑
j=1

2∑
i=1

(
Yij − Eij
Eij

)2

(2.1)

where, Eij =
Yi.Y.j
n are the expected frequencies, n represents the total sample size,

i and j are the ith raw and jth column. Yi. represents the row marginal total, Y.j
represents the column marginal total and Yij are the observed frequencies

Basically, the Pearson Chi-squared is used to test for independence between the
rows and the columns at 5% level of significance, with degrees of freedom of (row-
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1)X(column-1) and the test statistic (2.1) could be simply written as:

χ2 =
h∑
j=1

2∑
i=1

(Observed− Expected)2

Expected
(2.2)

2.3.2 Interpretation of the cross-tabulations

The cross-tabulation for each predictor variable crossed with the dependent variable
consists of the total number of children who were eligible for that specific question,
missing responses or data and the frequency for each variable at its specific level.
The Pearson Chi-squared value and the p-value provided on the tables below (cross-
tabulations results) are for the overall significance of the predictor variable and not
for a specific category.

Looking at the results of the cross-tabulations on the TDHS and the ADHS data
sets (Table 2.1 and Table 2.3) we can see that childhood anaemia was highly associ-
ated (p-values < 0.0001) with the age of the child, type of place of residence (only
in Tanzania), the highest education level of the household head, currently breast-
feeding, stunting and wasting. Furthermore, looking at the factors associated with
anaemia in children by country, in Tanzania (Table 2.1) we can observe that sex of
the child (p-value = 0.002), wealth index (p-value = 0.033), access to internet (p-value
= 0.010), whether children under five slept under mosquito bed net (p-value = 0.003)
and whether the child had a cough the last two weeks before the study (p-value =
0.015) were also positively associated with childhood anaemia. However in Angola,
the additional factors which were positively associated with childhood anaemia in-
clude: child gender (p-value = 0.009), wealth index (p-value = 0.005), availability of
television in a household (p-value = 0.009) and the size of the child at birth (p-value
= 0.002).

In total, the number of children who were eligible for the study in Tanzania and
Angola was respectively, nT=10233 and nA=14322. Out of the sample of n=10233
children in Tanzania, n=5153 were males and n=5083 were females. In Angola, there
were n=7143 males and n=7179 female children eligle for the study. Now looking at
the number of potential children for the survey by country. Starting with Tanzania,
there were n=1601 non-anaemic and n=2419 anaemic male children, n=1729 non-
anaemic female children and n=2265 anaemic female children (Table 2.1). Moreover,
out of all the eligible children in Tanzania only n=8014 participated in the study and
in Angola only a sample of n=5635 participated on the study.

16



2.3. Descriptive Statistics

Table 2.1: Cross tabulation analysis TDHS data sets

Predictor variable Non-anaemic Anaemic χ2-value P-value

Child gender

Male 1601 2419 9.89 0.002

Female 1729 2265

Child age (in months)

0-11 213 794 670.46 < 0.0001

12-23 562 1525

24-35 749 1001

36-47 882 706

48-59 924 658

Type of place of residence

Urban 816 980 14.36 < 0.0001

Rural 2514 3704

Gender household head

Male 2788 3942 0.27 0.601

Female 542 742

Wealth index

Poor 701 1132 6.80 0.033

Middle 665 1012

Rich 1351 1876

Mother highest education level

No-education 620 1151 44.51 < 0.0001

Primary 2099 2713

Secondary 574 789

Higher 37 31

Stunting

Severe 333 618 23.13 < 0.0001

Moderate 777 1132

Nourished 2207 2899

Wasting

Severe 63 158 21.38 < 0.0001

Moderate 361 579

Nourished 2901 3940
a

aThe P-values presented in the tables are not for a specific category but an overall significance of
the predictor variable
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Table 2.2: TDHS cross tabulation results continues from the previous page

Predictor variable Anaemic Non-anaemic χ2-value P-value

Underweight

Severe 19 56 15.97< 0.0001

Moderate 88 175

Nourished 3204 4416

Access to internet

No access 3134 4468 6.71 0.010

Have access 196 215

Gave child meat (Pork, lamb, beef, etc)

No 185 332 0.17 0.679

Yes 1599 2987

Children under 5 slept under mosquito bed net

No 1164 1496 8.54 0.003

Yes 2151 3181

Currently breastfeeding

No 1751 1793 161.43 < 0.0001

Yes 1579 2891

Iron supplementation

No 413 698 0.46 0.759

Yes 1654 2709

Vitamin A supplementation

No 1913 2764 1.73 0.189

Yes 1400 1904

Child had cough in the last two weeks

No 2805 3851 5.92 0.015

Yes 521 830

Household has a television

No 2636 3869 24.68 < 0.0001

Yes 584 635

Size of child at birth

Small 2598 3651 1.92 0.381

Average 445 621

Large 180 219
a

aThe P-values presented in this tables are not for a specific category but an overall significance
of the predictor variable
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Table 2.3: Cross tabulation analysis ADHS data sets

Predictor variable Non-anaemic Anaemic χ2-value P-value

Child gender

Male 960 1909 6.91 0.009

Female 1018 1748

Child age (in Months)

0-11 120 541 272.01 < 0.0001

12-23 345 1034

24-35 440 788

36-47 526 743

48-59 547 551

Type of place of residence

Urban 1102 1982 1.19 0.275

Rural 876 1675

Gender household head

Male 1320 2402 0.63 0.426

Female 658 1255

Wealth Index

Poor 1031 1917 10.43 0.005

Middle 455 949

Rich 492 791

Mother highest education level

No-education 677 1308 20.27 < 0.0001

Primary 718 1433

Secondary 530 865

Higher 53 51

Stunting

Severe 237 638 36.12 < 0.0001

Moderate 447 870

Nourished 1247 2050

Wasting

Severe 69 212 23.38 < 0.0001

Moderate 255 566

Nourished 1617 2814
a

aThe P-values presented in this tables are not for a specific category but an overall significance
of the predictor variable

19



2.3. Descriptive Statistics

Table 2.4: ADHS cross tabulation table continues from the previous page

Predictor variable Non-anaemic Anaemic χ2-value P-value

Underweight

Severe 21 39 2.62 0.270

Moderate 64 150

Nourished 1856 3403

Access to internet

No access 1819 3390 0.99 0.318

Have access 159 267

Gave child meat

No 207 462 0.21 0.646

Yes 1044 2234

Children under 5 slept under mosquito bed net

No 1253 2412 3.54 0.060

Yes 716 1235

Access to internet

No access 1819 3390 0.99 0.318

Have access 159 267

Gave child meat

No 207 462 0.21 0.646

Yes 1044 2234

Currently breastfeeding

No 958 1455 39.12 < 0.0001

Yes 1020 2202

Iron supplementation

No 291 700 2.43 0.296

Yes 712 1560

Child had cough in the last two weeks

No 1764 3263 23.79 0.067

Yes 1764 3263

Household has a television

No 1032 2005 9.47 0.009

Yes 937 1615

Size of child at birth

Small 170 331 19.23 0.002

Average 1132 2045

Large 605 1069
a

aThe P-values presented in this tables are not for a specific category but an overall significance
of the predictor variable
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The cross tabulation results for both Tanzania (Table 2.1) and Angola (Table 2.3)
show a decreasing trend in the number of anaemic children as the age of the child
(in months) increases. Looking at the cross tabulations for Tanzania only, (Table
2.1 and/or Table 2.2). Among children aged 0-11 months, n=213 were non-anaemic
and n=794 were anaemic, while of those who were aged 48-59 months, n=924 were
non-anaemic and n=658 were anaemic. Many of the children who contributed to
the study (TDHS) were from rural areas, and n=3704 and n=2514 of these children
were respectively anaemic and non-anaemic, while of children from urban areas,
there were n=980 anaemic and n=816 non-anaemic. The cross tabulations show
that most of the under five children who were born from rich families, n=1351,
were non-anaemic, and n=1876 were anaemic. From poor households, there were
n=701 non-anaemic and n=1132 anaemic children. Very few of the under five chil-
dren were anaemic born to highly educated mothers n=31, while n=1151 children
were anaemic if born to uneducated mothers. There were n=2099 non-anaemic and
n=2713 anaemic children whose mothers had primary education. Of all the eligi-
ble children in Tanzania, a total of n=333 non-anaemic and n=618 anaemic children
were severely stunting, and n=2901 and n=3940 were respectively non-anaemic and
anaemic. Many children were residing in households that had no internet access, of
which n=3134 were non-anaemic and n=4468 were anaemic.

In Angola (Table 2.3 and Table 2.4) anaemic male children were higher in number
than female children, n=1909 and n=1748 respectively. Children aged 12-23 months
were higher in number compared to all the other groups, n=345 were non-anaemic
and n=1034 were anaemic. The cross tabulations show that of the many eligible
children who were from urban areas, n=1102 were non-anaemic and n=1982 were
anaemic and of those from rich families, n=1031 were non-anaemic and n=1917 were
anaemic. A similar trend observed in the TDHS cross tabulations (Table 2.1) is ob-
served in the ADHS cross tabulations (Table 2.3) regarding the number of anaemic
children and the level of education of the mother or household head. There were
very few children with mothers who were highly educated, and of these, n=53
were non-anaemic and n=51 were anaemic. Many anaemic children had uneducated
mothers, with n=1308 who were anaemic and n=677 who were not anaemic. Further-
more, we observed a similar trend in Angola, regarding the number of children who
participated in the study, as in Tanzania. The number of anaemic children who were
severely stunted was high, with n=237 non-anaemic children and n=638 anaemic
children, in households with no television, n=1032 were non-anaemic and n=2005
were anaemic, and in households with no access to internet, n=1819 were non-
anaemic and n=3390 were anaemic. In addition, many of the children who partici-
pated in the study were not suffering (had normal status) from underweight (n=1856
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non-anaemic and n=3403 anaemic), wasting (n=1617 non-anaemic and n=2814 anaemic)
and stunting (n=1247 non- anaemic and n=2050 anaemic). Moreover, the two data
sets were represented graphically (specifically, pie charts presentations) in the next
subsection.

Graphical presentation of the two data sets

Pie charts were used to show the proportion of children per categories (not the
number of children per category) on each variable used to predict anaemia in chil-
dren. Specifically, the pie charts are only for child age , child gender, wealth index,
mother’s education level and type of place of residence. The pie charts showing the
proportions of anaemic and non-anaemic children are provided for each country.

(a) Anemia Status (Tanzania) (b) Anemia Status (Angola)

(a) Residence type (Tanzania) (b) Residence type (Angola)

(a) Wealth Index (Tanzania) (b) Wealth Index (Angola)
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(a) Child gender (Tanzania) (b) Child gender (Angola)

(a) Child age (Tanzania) (b) child age (Angola)

(a) Education Level (Tanzania) (b) Education Level (Angola)

Figure 2.4a and Figure 2.4b, show that in both countries the number of male and
female children who participated in the study were almost equal. Many children
were found to suffer from anaemia in both countries (Figure2.1a and Figure 2.1b) in
comparison to being non-anaemic. The pie chart Figure 2.5b and Figure 2.5a show
almost equal proportions of children participated in the study; regarding age as a
predictor variable. Although there was high number of children from urban areas
who participated in the TDHS study (Figure 2.2a), however in Angola (ADHS) its
vice versa (Figure 2.2b). Furthermore, the proportions of children who had highly
educated mothers look similar in both countries (Figure 2.6a and Figure 2.6b), show-
ing that there were few children in both countries in the study with educated moth-
ers. Although a higher number children had mothers with primary education. All
the conclusions drawn here, based on the size of the slice in a pie chart, show that
a similar trend can be followed to make inferences about the rest of the predictor
variables used in the study of childhood anaemia.

23



Chapter 3

Generalized Linear Models

3.1 General Linear Regression

Introduction

Regression is the study of dependence (Weisburg, 2005). Regression analysis is the
statistical methodology that is used to investigate the functional relationship be-
tween the dependent variable, Y , and the set of independent variables, x1, x2, x3 . . . , xp,
(Montgomery et al., 2012). This relationship may be expressed in the form of an
equation or a model coupling the response (dependent) variable and the predictor
variables (Mildenberger, 2012; Khuri, 2009).

Model overview and estimation of regression coefficients

The response variable is denoted by Y and the set of predictor variables are denoted
by x1, x2, x3 . . . , xp, where p is the total number of predictor variables. Mildenberger
(2012), Depending on the nature of the explanatory variable if they appear linearly
then true relationship between the response and the predictor (explanatory) vari-
ables can be approximated by the linear model

Yi = β0 +

p∑
i=1

βiXi + εi, (3.1)

Where i = 1, 2, . . . , n. x1, x2, x3 . . . , xp are the explanatory variables that represents
the levels of associated factors, and β1, β2, . . . , βp are the unknown regression param-
eters, ε is the random error term representing the deviation in the approximation.
The error is there to account for the failure of the model to fit the data exactly and is
assumed to be identically, independently and normally distributed with a mean of
zero and a variance of σ2 , ε ∼ N(0, σ2) under the homogeneous variance assump-
tion.
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x1, x2, x3 . . . , xp are commonly referred as control, input, regressor, predictor, inde-
pendent or explanatory variables. A more general expression of the linear regression
is one of the form (Khuri, 2009).,

Yi = f(xi1, xi2, xi3 . . . , xip) + εi. (3.2)

The function f(x1, x2, x3 . . . , xp) describes the relationship between the response
variable Y and the predictor variables, x1, x2, x3, . . . , xp, i = 1, 2, . . . , n.

In general, depending on the study of interest, if someone is interested in studying
the effect of a single predictor variable on the output and if the nature of the relation-
ship between the output and the predictor variable is linear, simple linear regression
would be fitted to study such relationship. For a study that involves two or more
predictor variables that study the effect of the predictor on the dependent variable,
it is referred to as the multiple linear regression model (Mildenberger, 2012).

Simple Linear regression

The simple linear regression model involves only one explanatory variable, x, and
the response variable, Y . The equation is defined as follows

Y = β0 + β1x+ ε, (3.3)

Where, β0 is the model intercept, β1 the unknown model parameter and ε is the ran-
dom error term to cater for the failure of the model to fit data exactly (Montgomery
et al., 2012).

The mean and the variance of the response variable, Y (assuming that the response
variable, X is fixed) can be given as

E(Y |X) = µxy = E(β0 + β1x1 + ε), (3.4)

and the
var(Y |X) = σ2xy = var(β0 + β1x1 + ε) = σ2. (3.5)

Estimation of the model parameters

The unknown model parameters for general linear models could be estimated by
using the well-known method of Ordinary Least Squares(OLS). In this study we do
not really focus on Linear models, thus for interested readers they can refer to the
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texts by (Montgomery et al., 2012; Mildenberger, 2012; Bingham & Fry, 2010) and
the text by Weisburg (2005) for more reading about the full theory of general linear
models.

There are other several types of regression analysis, and the table below shows the
type of regression and their conditions, specifying when each model can be applied

Type of regression

The table (Table 3.1) below summarizes some of the types of regression and gives
conditions on when they can be applied.

Type of regression Condition

Univariate regression Only one quantitative response variable

Multivariate regression Two or more quantitative response variable

Simple regression Applicable when there is only one predictor(scalar) variable

Multiple regression Applicable when there are two or more predictor variables

Linear regression Applicable when all the parameters enter the equation linearly

Nonlinear regression
When the relationship between some of the predictor and re-
sponse variable is nonlinear or when some of the parameters are
nonlinear

Analysis of variance regression
Applicable when ther are mixed predictor variables, both quali-
tative and quantitative

Logistic regression

The type of predictive model that can be used when the tar-
get(response) variable is a categorical variable with two (binary)
categories (for example the response could be: affected / not af-
fected, male or a female, yes/no etc.)

Ordinal regression model

The type of predictive model that can be used when the tar-
get(response) variable is a categorical variable with more than
two categories (for example the response could be: the disease
is either Severe, Moderate and mild)

Furthermore, general linear models are appropriate to model the relationship be-
tween the response and the explanatory variables only if the response variable is
continuous, otherwise it fails. General linear models do not hold if:

• The range of Y is restricted (e.g. binary, count); and

• If the variance depends on the mean (E(Yi) = µi).
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3.2 Generalized Linear Models

3.2.1 Introduction

The term generalized linear models (GLMs) refers to a large class of models popu-
larized by Nelder & Wedderburn (1972), and fully developed by McCullagh (1989).
Generalized linear models are a generalization of ordinary linear models. They are
applicable when the response variable Yi is assumed to follow an exponential family
distribution with a mean µi. The Exponential family distribution includes distribu-
tions such as normal distribution, poisson distribution, binomial distribution and
the gamma distribution McCullagh (1989). Generalized linear models are useful for
non-normal data, such as binary data.

These types of models accommodate response variables that violate general linear
models assumptions through two mechanisms: a link function and a variance func-
tion; it links the mean of the dependent variable Yi, which is E(Yi) = µi, to the linear
term xTi βi, for i = 1, 2, 3..., n, in such a way that the range of the non-linearly trans-
formed mean g(µi) ranges from -∞ to ∞ (Nelder & Wedderburn, 1972). Thus, a
linear equation g(µi) = xTi βi will result and an iteratively re-weighted least squares
method for maximum likelihood can be used to estimate the model parameters.
Furthermore, the asymptotic normality and constancy of variance are no longer re-
quired (Nelder & Wedderburn, 1972). There is not much difference between gener-
alized linear models and general linear models or ordinary linear models in terms of
the process of model specification, except that generalized linear models use a link
function to account for the non-continuity and possibly bounded response variable.

3.2.2 Model structure

General linear models have a set of restrictive assumptions, one of which is that the
dependent variable Y is normally distributed conditioned on the value of predic-
tors with a constant variance regardless of the predicted response value (Nelder &
Wedderburn, 1972; Olsson, 2002). The advantages of linear models include: easy to
compute, an interpretable model form and the ability to compute certain diagnostic
information about the quality of the fit. Generalized linear models relax these re-
strictions which are often violated in practice. For example, a binomial distribution
has a binary (yes/no or 0/1) responses, the variance is not the same across classes.
Furthermore, the sum of terms in a linear model can typically have large ranges en-
compassing very negative and very positive values, (McCullagh, 1989; Turner, 2008).

A generalized linear model (Dobson & Barnett, 2008; Dunteman & Ho, 2005; Turner,
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2008) is made up of a linear predictor and two more functions, namely: link function
and variance function. GLM’s are expressed in the following equation:

g(µi) = ηi = β0 +

p∑
i=j

Xijβij . (3.6)

Where the link function g(µi) describes how the mean E(Yi) = µi depends on the
linear predictor and the variance function, var(µi), describes how the variance de-
pends on the mean through the equation.

var(µi) = φV (µ)

, where the constant φ is called a dispersion parameter. g(·) is a pre-specified func-
tion called the link function, β0 is the intercept or constant term and β1, β2, . . . , βp

are the set of regression parameters.

Model assumptions

Generalized linear models are the extension of linear models with the purpose of
relaxing the assumption of normality. The following assumptions about GLMs are
based on Kutner et al. (2005); McCullagh (1989)

• The response variables Y1, Y2, . . . Yn are independently distributed.

• The response variable does not necessarily have to follow normal distribution,
but typically assumes an exponential family distribution (Poison, binomial,
etc).

• The homogeneity of variance does not need to be satisfied: var(yi) = φV (µi).

• The expectation of the error terms E(ε) = 0, hence the expectation of the re-
sponse variable Yi could be expressed as E(Y ) = E(Xβ) + E(ε) = Xβ.

These assumptions are somewhat strict for data which assume no normality. There-
fore, GLMs can be used to model such data whose distributions are from the expo-
nential family of distributions

3.2.3 Exponential family

The exponential family is a general class of distributions that is made of well-known
distributions known as the special cases (Dobson, 2002). It comprises both the dis-
crete and continuous random variables that includes a normal distribution (Olsson,
2002). Binomial, poison, gamma, multinomial and weibull distributions are also
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special cases of exponential family. It can be shown that a distribution is a class of
exponential family provided the probability distribution function of an observation
Yi for i = 1, 2, 3, . . . , n is known and can be shown to be in the form

f(yi, θi, φ) = exp

(
(yiθi − b(θi))

ai(φ)
+ (φ+ c(yi, φ))

)
, (3.7)

where ai(φ) are b(θi) are known functions and c(yi, φ) is a function of yi and φ. The
parameter θi is known as the cononical parameter, and φ is the dispersion parameter.

For all distributions that belong to the class of exponential family their general ex-
pression of the mean and variance are respectively given by, µ = E(X) = b′(θi)

and the variance is given by var(x) = a(φ)b′′(θi). The derivation of the mean and
variance are shown below: Generally, the area under a curve add up to one, if a func-
tion f(y, θ, φ) is known. Therefore the area under f can be expressed as (Dobson &
Barnett, 2008) ∫

f(y, θ, φ)dy = 1, (3.8)

where the integration is over all the possible values of y, for a discrete random vari-
able y the integration sign is substituted by the summation sign∑

y

f(y, θ, φ) = 1.

Differentiating 3.8 on both sides with respect to θ, results in

d

dθ

∫
f(y, θ, φ)dy = 0. (3.9)

Reversing the order of integration and the differentiation, results in∫
d

dθ
f(y, θ, φ)dy = 0. (3.10)

Similarly, if we differentiate 3.8 twice with respect to θ and again reverse the order
of integration and differentiation it gives,∫

d2

dθ2
f(y, θ, φ)dy = 0. (3.11)

These results can be applied for any distribution that belongs to the class of expo-
nential family. From 3.10 substituting for f(y, θ, φ)
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∫
d

dθ
f(y, θ, φ)dy = 0,∫

d

dθ
exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
dy = 0,∫ (

yθ − b′(θ)
a(φ)

)
f(y, θ, φ)dy = 0,∫ (

yf(y, θ, φ)

a(φ)

)
dy −

∫ (
b′(θ)f(y, θ, φ)

a(φ)

)
dy = 0,∫ (

yf(y, θ, φ)

a(φ)

)
dy =

∫ (
b′(θ)f(y, θ, φ)

a(φ)

)
dy.

Therefore, ∫
yf(y, θ, φ)dy =

∫
b′(θ)f(y, θ, φ).

But
∫
yf(y, θ, φ)dy = E(y), thus

E(y) = b′(θ)

∫
f(y, θ, φ)dy

= b′.(θ)

(3.12)

And from substituting for f(y, θ, φ) in Equation 3.11∫
d2

dθ2
f(y, θ, φ)dy = 0,∫

d2

dθ2
exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
dy = 0.

(3.13)

Following the same steps as we did in deriving for the E(y), we can see that 3.13 can
be solved to its simplest form as follows∫ ((

y − b′(θ)
a(φ)

)
f(y, θ, φ)− b′′(θ)

a(φ)
f(y, θ, φ)

)
dy = 0.∫ (

y − b′(θ)
a(φ)

)2

f(y, θ, φ)dy =

∫
b′′(θ)

a(φ)
f(y, θ, φ)dy.

(3.14)

Thus,

1

a(φ)2

∫ (
y − b′(θ)

)2
f(y, θ, φ)dy =

b′′(θ)

a(φ)
. (3.15)

In general, a variance is defined as var(y) =
∫

(y − E(y))2f(y). Therefore, consider-
ing only the left side of Equation 3.15
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1

a(φ)2

∫ (
y − b′(θ)

)2
f(y, θ, φ)dy =

1

a(φ)2
var(y). (3.16)

Therefore,

1

a(φ)2
var(y) =

b′′(θ)

a(φ)
. (3.17)

Hence,

var(y) = b′′(θ)a(φ). (3.18)

The following section focuses on how to estimate the unknown parameters (β1, . . . , βp)
of the generalized linear model.

3.2.4 Parameter estimation

For generalized linear models a well-known method of maximum likelihood is theo-
retically used for parameter estimation (Dobson, 2002). Assuming that the outcomes
are random and independent variables, the maximum likelihood function is defined
as the product of the joint probability distribution (Allison, 2012). The likelihood
function can be expressed as follows, for i = 1, 2, . . . , n

L(yi, θi) =

n∏
i=1

f(yi, θi, φ)

=

n∏
i=1

exp

(
yθi − b(θi)
a(φi)

+ c(yi, φ)

)
.

(3.19)

Taking a natural log on both side of equation 3.19

l(yi, θi) =
n∑
i=1

(
yθi − b(θi)

a(φ)
+ c(yi, φ)

)
.

=

n∑
i=1

ai(φ)−1 ((yiθi − b(θi)) + c(yi, φ).

(3.20)

For a single observation i the log-likelihood function is given by

li(βi) = ai(φ)−1 ((yiθi − b(θi)) + c(yi, φ)

partially differentiating the log-likelihood function for observation i, with respect to
the regression coefficient βj for j = 0, 1, 2, . . . , p. We obtain a score vector function
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given by,
(⋃

β0
,
⋃
β1
, . . . ,

⋃
βp

)′
. Where

⋃
βj

⋃
βj

=
∂l(βj)

∂βj
,

=
∂li
∂βj

.

(3.21)

Applying chain rule to 3.21

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βi

. (3.22)

but,

∂li
∂θi

=
yi − b′(θ)
ai(φ)

. (3.23)

For E(y) = µi = b′(θ) and var(y) = a(φ)b′′(θ), therefore 3.23 becomes

∂li
∂θi

=
yi − µi
ai(φ)

. (3.24)

and

∂µi
∂θi

= b′′(θ) =
var(yi)

ai(φ)
. (3.25)

Furthermore, the link function is defined as (η),

ηi =
∑

βjXij .

Therefore,
∂ηi
∂βj

= xij

where xij is the jth element of the covariates vector xi for the ith observation. Sub-
stituting back to the score function 3.21, the score function becomes,

∂l

∂βj
=
∑ yi − µi

ai(φ)

ai(φ)

var(yi)
xij

∂µi
∂ηi

=
∑ yi − µi

var(yi)
xij

∂µi
∂ηi

. (3.26)

∂µi
∂ηi

depends on the link function for each distribution. The estimating function can
also be used to determine the asymptotic covariance matrix of β̂, the information
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matrix I(β) is given by

I(B) = −E
(

∂2l

∂βiβj

)
= E

[(
∂l

∂βi

)(
∂l

∂βi

)]
,

= E

[
yi − µi
var(yi)

xih
yi − µi
var(yi)

xij
∂µi
∂ηi

]
.

(3.27)

Which can be simplified to,

I(B) =
∑
i

n
xihxij
var(yi)

(
∂µi
∂ηi

)2

. (3.28)

If we let W be the diagonal matrix with main diagonal elements,

W =

(
∂µi
∂ηi

)2
var(yi)

,

the inverse matrix I(β) becomes

I(β) = XTWX.

and the asymptotic covariance matrix becomes,

cov(β̂) =
(
XTWX

)−1
and the score equation

⋃
βj

3.21 reduces to,

⋃
βj

=
∂l(βj)

∂βj
=

n∑
i=1

(yi − µi)Wi
∂ηi
∂µi

xij .

By equating the score function to zero, the maximum likelihood estimates β̂ can
be obtained by applying the Iterative Re-weighted Least Squares(IRLS), the New-
ton Raphson(NR) or a Fisher Scoring(FS) method (McCullagh, 1989; Olsson, 2002).
Using IRLS or FS method will give the same parameter estimate, while the FS and
NR methods give similar results. This is because FS estimated covariance matrix of
parameters may be slightly different since FS is based on the expected information
matrix while NR is based on the observed information matrix (Heeringa et al., 2017).
The method of finding the maximum likelihood estimators using FS, NR and IRSL
methods are further discussed in appendix B.

33



3.3. Model Selection and Diagnostic of Generalized Linear Models

3.3 Model Selection and Diagnostic of Generalized Linear
Models

3.3.1 Assessing the fit of GLMss

In generalized linear models, deviance and Pearson Chi-square test are two tests
used in assessing the goodness of fit of the model. During data analysis, a model
is said to be the best if it can statistically fit data well and it minimizes discrepancy
between the expected values under the model and observed values (Olsson, 2002).

The deviance

In GLMs the quality of the model fitted to data can be assessed through the deviance
and thus the goodness of fit in the nested models (Olsson, 2002), it measures the
discrepancy of fit between the maximum likelihood of the saturated model and the
log-likelihood of the fitted model. The deviance denoted by D can be defined as
follows,

D = 2l(y, φ, y)− 2l(µ̂, φ, y)

where l(y, φ, y) is the log-likelihood of the saturated model or full model (model
with n parameters) and l(µ̂, φ, y) is the log-likelihood of the reduced model and µ̂ is
the maximum likelihood estimator of the model of interest.

But for inference purposes, scaled deviance is used rather than simply deviance only.
All parameters that have scaled parameters, for example, binomial distribution, poi-
son distribution, the scaled deviance is defined as follows (Olsson, 2002),

D∗ =
Deviance

φ
=
D

φ

For binomial and poison distributions, the deviance and the scaled deviance are the
same. In addition, deviance is very important when comparing competing models
(Olsson, 2002). If the model fits data well, the deviance will asymptotically tend
towards chi-square distribution as degrees of freedom increase ( or as n increases).

The generalized Pearson Chi-square (χ2) statistic

The Pearson χ2 goodness of fit test is the alternative method used to test for the
goodness of the fit of the model and comparing competing models, which is defined
as (Allison, 2012)

χ2 =
∑ (yi − µ̂)2

v̂(µ̂)
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where v̂(µ̂) is the estimated variance function (Allison, 2012). In the case of normal
distribution v̂(µ̂) is equal to the residual sum of squares of the model. In this case,
the Pearson goodness-of-fit test statistic and the deviance coincide. However, this is
not the case with other distributions, deviance, and the Pearson χ2 test statistic have
different asymptotic properties and hence, they produce different results (Olsson,
2002; Allison, 2012).

3.3.2 Model selection and model checking

Model selection is a crucial step during statistical analysis. It involves the selection
of the best model that fits data well from amongst the other competing models. One
way to evaluate a model is to use the Information criterion(IC). In GLMs, two crite-
ria are used during the model selection process, Akaike’s information criterion(AIC)
and Schwarz criterion(SC). Schwarz criterion is also known as the Bayesian Infor-
mation Criterion (BIC)(Agresti, 2003, 2018).

Akaike’s information criterion (AIC)

Akaike (1974), proposed this criterion as a very useful statistic for comparing the
relative fit of different models, it is expressed as,

AIC = −2loglikelihood+ 2p = −2l(β) + 2p

where l(β) is the maximum likelihood function and p is the number of parameters
in the model. A model with smaller AIC is preferred (Lindsey, 2000).

The Schwarz information criteria

Schwarz et al. (1978) proposed an alternative method that is used during the model
selection process. The SC or BIC method mainly focuses on the asymptotic be-
haviour of the Bayes estimators, and it takes into account the sample size (Schwarz
et al., 1978). According to Schwarz et al. (1978) BIC or SC is expressed as

BIC = −2l(β) + plog(n)

where l(β) is the maximum likelihood function, p is the number of parameters in
the model, and n is the sample size. According to Schwarz, the smaller the BIC, the
better the overall model performance.
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3.4 The Components of Generalized Linear Models

Components of GLMs and their functions are briefly discussed below (McCullagh,
2019; Olsson, 2002; Dobson & Barnett, 2008): The logistic regression model is one
of the examples of a well-known class of models, known as GLMs. Linear regres-
sion, ANOVA, Poisson regression, are also examples of GLMs. Generalized Linear
Models are made up of three components called, the systematic component, random
component and the tink function.

• The random component
It specifies the probability distribution function of the response variable, Y .
For example, binomial distribution for Y in the binary logistic regression. If
Y is continuous then a normal distribution is used, but if Y is assuming to be
binary, the suitable distribution is binomial, and if Y is poisson or negative
binomial distribution (response variable are counts) the suitable distribution is
for non-negative counts

• The systematic component
It refers to the explanatory variables (X1 +X2 + · · ·+Xp) as a combination of
linear predictors, such that ηi = β1X1 + β2X2 + · · ·+ βpXp, for i = 1, 2, . . . , n

• The link function, η or g(µ)

It combines the systematic and the random component. If the response vari-
able Y is continuous the link function is given by

ηi = g(E(Yi)) = E(Yi) = E(Yi)

for i = 1, 2, . . . , n. but, if Y is binary the suited link function is the logit link
function given by

ηi = logit(πi) = log

(
πi

1− πi

)
where, πi is the probability bounded between 0 and 1 (0 ≤ π ≤ 1)

Looking at how the response variables depends on the explanatory variables in gen-
eral and GLMs, we begin with the following examples (Dobson & Barnett, 2008),

Example 1: Simple linear regression model

Simple linear regression models express how the mean expected value of continuous
response variable depends on a set of explanatory variables:

Y = β0 + βiXi

36



3.5. Logistic Regression Model

E(Y ) = β0 + βiXi

• Random component: Y is a response variable and follows a normal distribu-
tion. Generally the random error part is assumed to follow a normal distribu-
tion with mean zero and constant variance σ2 , i.e ε ∼ N(0, σ2).

• Systematic component: Explanatory variables X ′s can be continuous, discrete
or both and are linear in the parameter β0 + βiXi

• Link function: Identity link, η = g(E(Yi))

Example 2: Binary logistic regression

• Random component: Y follows a binomial distribution

• Systematic component: Explanatory variables X’s can be continuous, discrete
or both and are linear in the parameter β0 + β1X1 + β2X2 + β3X3 + · · ·+ βpXp

• Link function: Logit, ηi = log
(

πi
1−πi

)

3.5 Logistic Regression Model

The logistic regression model is one of the classical applications of the GLMs. Lo-
gistic regression models the relationship between the predictor and a categorical
(binary) response variable (Allison, 2012; Dobson, 2002), for example in this study
our response is defined as either a child is anaemic (Hg<11 g/dl) or non-anaemic
(Hb≥ 11 g/dl).

The purpose of logistic regression, linear regression can not be used to deal with
the categorical response variable. Many regression techniques exist in the literature
for analyzing data with a categorical response variable, including logistic regression
and discriminant analysis. Logistic regression is often used rather than discriminant
analysis when the data consist of only two variables. Logistic regression could be
easily applied in statistical soft wares rather than discriminant analysis when there
is a mixture of numerical and categorical predictor variables because procedures in-
volving dummy variables are automatically generated, with fewer assumptions and
is more statistically robust (Dobson & Barnett, 2008).

Types of logistic regression applied based on the nature of the categorical response
variable are as follows:

• Binary logistic regression: is only applicable, when the response variable is
binary(dichotomous).
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3.5. Logistic Regression Model

• Nominal logistic regression: is applied when the response variable consists of
three or more categories that have no natural ordering.

• Ordinal logistic regression: is also applicable when the response variable has
three or more categories but in this case order matters.

The logistic regression model assumptions are as follows:

• Binary logistic regression: is only applicable when the response variable is
binary (dichotomous).

• The response variable should be made of two or more categories.

• The predictor variable need not be an interval, nor normally distributed, nor
linearly related and should not necessarily be of equal variance within each
group.

• The categories (groups) must be disjoint.

• Larger sample sizes are required, unlike in linear regression because maximum
likelihood coefficients are large sample estimates. A minimum of 50 subjects is
recommended.

Simple logistic regression model

The residuals from the logistic model are assumed to have a binomial distribution
since the outcome variable of interest is binary (Nelder & Wedderburn, 1972). There-
fore, for a single predictor, the simple logistic regression model is used. The response
variable is categorical with two levels (dichotomous response variable). Y is said to
be Bernoulli distributed, where the probability distribution function is given by:

P (Y = y) = π(x)y(1− π(x))1−y

where π(x) is the probability of obtaining a success (event of interest), which is
bounded between 0 and 1, And, 1−π(x) is the probability of failure; for example, in
this study, it is a probability of finding that a child is not anaemic. In this study, our
response variable Y is binary:

Y =

 1, Child is anaemic

0, Child is not anaemic

In linear regression, the mean E(Y ) is modelled, but in logistic regression, the prob-
ability is modelled as a function of the predictor variables (Olsson, 2002). Therefore,
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with the logit transformation (link function), the logistic regression model is well
behaved, where π(x) is between 0 and 1. Unlike in linear regression, the relation-
ship between π(x) and X is non-linear. Thus, the errors can be modelled using the
binomial distribution.

Multiple logistic regression model

Similar to multiple linear regression, multiple logistic regression extend the simple
logistic regression in the same manner. It is applicable if we have more than one
predictor variable. Here, we have a set of predictors and hence a set of model pa-
rameters, given as (McCullagh, 1989):
β = (β0, β1, . . . , βp−1)

T

Xi = (1, xi1, xi2, . . . , xip−1)
T

And, XT
i β = β0 + β1xi1 + · · ·+ βpxip−1

Now we are modelling the logit function ηi against the linear predictor:

ηi = logit(π(xi)) = Xi
Tβ. (3.29)

Then solving for π(xi), it yields

π(xi) =
exp(β0 + β1xi1 + · · ·+ βpxip−1)

1 + exp(β0 + β1xi1 + · · ·+ βpxip−1)
. (3.30)

where, π(x) probability of success and 1−π(x) is the probability of failure. X1, X2, . . . , Xp

is the set of explanatory variables, β1 is the intercept constant and β1, . . . βp is the set
of unknown parameters, one for each predictor variable (X). These unknown pa-
rameters are usually estimated by the method of maximum likelihood. The errors
are no longer normally distributed; they are now binomially distributed, thus the
OLS method for estimation of the coefficients is no longer an appropriate one. The
shorthand of the multiple logistic model (3.30) is:

π(x) =
exp(XT

i β)

1 + exp(XT
i β)

. (3.31)

3.6 Estimation of Model Parameters Using Maximum Likeli-
hood

Maximum likelihood method is the procedure of obtaining one or more parame-
ters (coefficients) for a given statistic which maximizes the known likelihood dis-
tribution. It is used to estimate and draw conclusions about the parameters of the
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model. Assuming that the outcomes are random and independent variables the
maximum likelihood function is defined as the product of the joint probability dis-
tribution (Allison, 2012; Wood, 2017). For anaemia status, the response variables
Yi, for (i = 1, 2, 3, . . . n) is dichotomous and thus, follow a Bernoulli distribution
(Yi ∼ Benoulli(πi)). The probability distribution function of Yi is given by :

P (Yi = yi) = f(yi) = πyii (1− πi)1−yi

for i = 1, 2, 3, . . . , n

And since the Y ′i s are assumed to be independent, the likelihood function is defined
as

L(πi, yi) =

n∏
i=1

f(yi)

=

n∏
i=1

πyii (1− πi)1−yi .
(3.32)

taking the natural log on 3.32

l = loge(L) = loge

(
n∏
i=1

πyii (1− πi)1−yi
)
,

=

n∑
i=1

{yiln(πi) + (1− yi)ln(1− πi)}.
(3.33)

but, πi =
exp(β0+XT

ijβ)

1+exp(β0+XT
ijβ

and 1− πi = 1
1+exp(β0+XT

ijβ
.

Therefore, substituting πi back to the log-likelihood function it yields:

l = ln(πi, yi) =

n∑
i=1

[
yiln

(
exp(β0 +XT

ijβ)

1 + exp(1 +XT
ijβ)

)
+ (1− yi)ln

(
1

1 + exp(β0 +XT
ijβ)

)]
,

=

n∑
n

[
yiln

(
exp(β0 +XT

ijβ)

1 + exp(β0 +XT
ijβ)

)
+ (1− yi)ln(1 + exp(β0 +XT

ijβ))
−1
]
,

=

n∑
n

[
yiln

(
exp(β0 +XT

ijβ)

1 + exp(β0 +XT
ijβ)

)
− yiln(1 + exp(β0 +XT

ijβ))
−1

+
(

1 + exp(β0 +XT
ijβ)

−1)]
.

(3.34)

The maximum likelihood estimates can be obtained by differentiating the score func-
tion

⋃
βj

, (for j = 0, 1, 2, . . . , p) with respect to β0 and after with βj and after equate
it to a zero. Where

⋃
βj

is given by:
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⋃
=

∂l

∂βj
=

n∑
i=1

(
yixij − xij

exp(β0 +XT
ijβ)

1 + exp(β0 +XT
ijβ)

)
=

n∑
i=1

(yixij − πixij).

and
∂l

∂β0
=

∂l

∂β0

n∑
i=1

(
yi −

exp(β0 +XT
ijβ)

1 + exp(1 +XT
ijβ)

)
.

These equations can be solved iteratively using the Newton-Raphson or by the Fisher’s
scoring methods because they are non-linear likelihood equations. These algorithms
are available in statistical software such as SAS, R, and STATA. Several statistical
software, including SAS, use the Fisher scoring algorithm as a default iterative tech-
nique. Then the maximum likelihood estimators of θ = (β1β2 . . . βp). can be obtained
by solving for

⋃
(θ)β0 = 0 and

⋃
(θ)βj = 0, (Wood, 2017).

3.6.1 Hosmer and Lemeshow goodness-of-fit test

After fitting the logistic regression model we do not quickly make inferences or pre-
dict future outcomes, but we have to, check as far as possible, that the model we have
assumed is correctly specified. We want to verify if the probabilities from the output
show the true outcome of interest in the data and this is known as the goodness-of-
fit test (Hosmer et al., 1997). For binary logistic regression, it is the most popular
modelling approach. However, general linear regression use Pearson chi-squared
and deviance goodness-of-fit test to assess for the goodness of fit of the model (Hos-
mer Jr et al., 2013).

The logistic regression model, with Y as the binary response variable with covari-
ates X1, X2, . . . , Xp, assumes that for,

π(x) = P (Y = 1|X1, X2, . . . , Xp) the logit (π(x)) is given as:

logit(π(x)) = log
(

π(x)
1−pi(x)

)
= β1X1 + β2X2 + · · ·+ βpXp.

The Hosmer and Lemeshow test involves groupings (a minimum of 10 groups), and
the expected and observed number of events in each group. Specifically, the group-
ings are based on the estimated parameter values β(1), β2, . . . , βp, for each observa-
tion in the group and the probability that an event will occur is calculated , based on
each observations covariates values (Hosmer Jr et al., 2013):

π̂(x) =
β̂1X1 + β̂2X2 + · · ·+ β̂pXp

1 + β̂1X1 + β̂2X2 + · · ·+ β̂pXp

.
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The Hosmer and Lemeshow test statistic is based on the following hypothesis:

H0 : The model is satisfactory to fit the data
H1 : The model is not satisfactory to fit the data

and the test statistic is given by:

χ2
HL =

g∑
j=1

1∑
i=1

(Oij − Eij)2

Eij .
(3.35)

Equation 3.35 is chi-squared distributed with g-2 degrees of freedom. where g is the
number of groups, Oij : is the observed frequency of the outcome variable (y = 1) or
(y = 0) in the jth group, and Eij : is the expected frequency of the outcome variable
(y = 1) or (y = 0) in the jth group.

Decision rules:
According to Hosmer et al. (1997), a model is said to be the best model for the data
if the computed p-value of the test statistic with g − 2 degrees of freedom is more
than 0.05 (p>0.05); if not, the model is said to be the poor model for the data. It is
not necessarily true that if the p-value for the test statistic is large, then the mean
model fits the data well, but it implies that there is a lack of evidence to reject the
null hypothesis in favour of the alternative hypothesis (Hosmer Jr et al., 2013).

3.7 Model Interpretation and Inferencing

In logistic regression modelling, one can conclude the significance and importance
of each predictor variable in several ways. A Wald chi-square test can be used to
test for the null hypothesis that a single coefficient is equal to zero (Heeringa et al.,
2017), H0 : βj = 0, or for an even more complex hypothesis concerning multiple
parameters in the fitted model. A confidence interval can be as well used to draw
inferences concerning the significance of model predictors and to give information
on the potential magnitude and uncertainty associated with the estimated effect of
individual predictor variables.

A design based confidence interval for logistic regression (j = 0, 1, 2 . . . , p) parame-
ter is computed as follows, (Heeringa et al., 2017)

Cl1−α = β̂j ± tdf,1−αSEβj

where α = 0.05 is typically used among the design- based degrees of freedom. where
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df=number of parameters in a model minus a one. The resulting is called a 95% con-
fidence interval for the parameter. Inferences regarding the significance of predictor
variables can be performed directly for βj on the log-odds scale. When considering
only one predictor variable in a logistic regression model, an estimate of the odds
ratio corresponding to a one-unit increase in the value of the predictor variable can
be computed by exponentiation of the estimated logistic regression coefficient:

ψ̂ = exp(β̂)

If we consider the effect of only one predictor variable (i.e equation consists of only
one predictor variable), the resulting is an estimate of unadjusted odds ratio or so-
called crude odds ratio (Allison, 2012). However, if the fitted model is made up of
more than one predictor variable, that is

logit(π(x)) = ln

(
π(x)

1− π(x)

)
= β0 +

p∑
i=1

βiXi.

the resulting ψ|βk 6=j is an adjusted odds ratio (Sedgwick, 2013). In general, the ad-
justed odds ratio is the representative of the multiplicative impact of one unit in-
crease in the predictor variable Xj while all other predictors in the model are kept
constant. Furthermore, the confidence interval can be adjusted for adjusted odds
ratios. The logit model is unlike the linear regression model; the basic problem is
that the logit model assumes a nonlinear relationship between the probability and
the explanatory variables and the interpretation is not straight-forward. Logistic re-
gression is easily understandable when the coefficients are interpreted in terms of
odds or odds ratios (Allison, 2012)

Odds and odds ratios

According to Allison (Allison (2012)), to appreciate the logistic model, it is helpful for
a person to have understood the concept of odds and odds ratios (denoted by OR).
Odds ratios are widely used by professional gamblers and are defined as the chance,
or likelihood, of an event to take place. While odds are defined as the expected
number of times an event will occur to the number of times it will not occur. Odds
are defined as follows:

O =
π(x)

1− π(x)
=

probability of occurence
1− probability of occurence

Odds have a lower boundary of zero like probability, but unlike probability, odds
have no upper boundary, 0 ≤ odds <∞. When looking at odds ratios, OR >1 corre-
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sponds to a probability more than 0.5 and OR< 1 corresponds to a probability less
of than 0.5. Odds ratios are mathematically defined as the ratio of odds and given as
follows:

OR =

π1(x)
1−π1(x)
π2(x)

1−π2(x)

Hosmer Jr et al. (2013), defined the odds ratios as a measure of association which is
found to be useful especially in epidemiology, because it approximates the likeliness
or the unlikeness of the event occuring, OR=1 implies no association between the
exposure and outcome.

3.8 Survey Logistic Regression

Introduction
Statistical texts and software packages used by researchers in various fields, includ-
ing social sciences, health sciences, and other applied fields, are implemented meth-
ods of analysis based on the assumption of independent identically distributed data.
In most cases, researchers do not discuss the difficulties resulting from analyzing
data collected from complex survey designs, that is, sampling involving clustering,
stratification and unequal probability selection. However, the application of classical
statistical methods to complex survey data, without first dealing with the stratifica-
tion, clustering and the problem of unequal probability selection accordingly can
lead to false conclusions (Heeringa et al., 2017).

In particular, ignoring the design of the data can lead to a serious underestimation of
standard errors of parameter estimates and the associated confidence interval con-
vergence rates, and could also inflate test levels and result in misleading model di-
agnostics (Roberts et al., 1987; An et al., 2002; Lee et al., 2013). Thus, it is highly
advisable to take into consideration the nature of the data before any model fitting.
A Survey logistic regression model is very similar to the ordinary logistic regression
in the SAS system (Hosmer & Lemeshow, 2000). When dealing with data that is
from a complex survey design, survey logistic regression has a high capability fit-
ting such data because of its ability to take into account of complex sample surveys
(Hosmer & Lemeshow, 2000; Heeringa et al., 2017). Thus, ordinary logistic regres-
sion modelling would not be appropriate to fit the DHS data set.

Furthermore, both the models (ordinary logistic and survey logistic regression mod-
els) approaches has the same theory (Heeringa et al., 2017; Hosmer & Lemeshow,
2000; Roberts et al., 1987). The difference between the two approaches is that or-
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dinary logistic regression assumes that the data are collected using simple random
sampling while in real-life that is not necessarily true (Hosmer & Lemeshow, 2000;
Heeringa et al., 2017). Survey logistic regression and ordinary logistic regression
would be identical if the data are collected using simple random sampling. The main
advantage of stratification is that the survey is easier to administer, and parameters
can, be estimated for each stratum in which themselves can be important (Roberts
et al., 1987). Dividing the population into strata could reduce the variance of the
estimator of a population total (Heeringa et al., 2017; Hosmer & Lemeshow, 2000;
An et al., 2002). The section below discusses the methods of parameter estimation
for survey logistic regression models.

3.8.1 Estimation of survey logistic model parameters and the standard er-
rors

For a simple logistic regression the maximum likelihood method is used to estimate
the unknown regression parameters as explained in the previous sections. However,
a straightforward application of the maximum likelihood method fails when data is
collected from complex sample survey designs. The procedure is no longer possible
for several reasons (Heeringa et al., 2017). For example: Firstly, in the case of com-
plex survey data, the probability of selection and responding for the i = 1, 2, 3, . . . , n

sample observations are no longer necessarily equal. Secondly, when the assump-
tion of independence of observations which is very crucial to the standard maximum
likelihood estimation (MLE) is violated, approach to estimating the sample variances
of the model parameters and choosing a reference distribution for the likelihood ra-
tio test statistic Heeringa et al. (2017).

There are two general ways that have been developed to estimate the logistic re-
gression model unknown parameters and standard errors for a survey sample data.
The first method of estimation was developed by Grizzle et al. (1969), (Heeringa
et al., 2017). This approach is based on a weighted least squares (WLS) method of
estimation. Years after this method was proposed, Binder (1983) proposed a second
method for fitting logistic regression models and other generalized linear models
with complex survey settings. A Pseudo-maximum likelihood estimation (PLME)
was proposed as a technique for estimating the model parameters. The PMLE ap-
proach was combined with a linearised estimator of the variance-covariance matrix
for the parameter taking into account the complexity of sample design (Roberts et al.,
1987). The PMLE technique was further presented by Rao et al. (1989). To date, the
PMLE approach is the standard method for estimating parameters in logistic re-
gression models in all major software systems that support the analysis of complex
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survey data (Heeringa et al., 2017).

3.8.2 The Pseudo maximum likelihood estimate method for estimating
the unknown model parameters

For Y , the binary dependent variable (Heeringa et al., 2017), the population likeli-
hood can be defined as

L(β|x) =

n∏
i=1

πyii (1− πi)1−yi

where π(xi) under a logit link it is evaluated using the logistic CDF and the param-
eters, specifying the logistic regression model.
The estimate of the finite population regression parameters is obtained by maxi-
mizing population likelihood that follows, which is the function of the weighted
observed sample data and the π(xi) values:

N∏
i=1

πyii (1− πi)1−yi (3.36)

The pseudo maximum likelihood estimators can be solved by the application of ei-
ther the Fisher scoring algorithm or the Newton-Raphson algorithm, available in
SAS statistical software. Variances of the regression parameters and odds ratios are
computed the using Taylor series expansion approximation, (Binder, 1983; Morel,
1989). A PROC SURVEYLOGISTIC regression method available in the SAS and the
R-software would be used instead of simply the PROC LOGISTIC method. An ad-
vantage of PROC SURVEY LOGISTIC over PROC LOGISTIC method, it allows one
to specify class variables as explanatory in the model by using the same syntax for
main effect and interaction. The PROC SURVEYLOGISTIC method was designed to
handle complex sample survey data with unequal weights, clustering and stratifica-
tion.

Similar to the ordinary logistic regression model, where data is assumed to be col-
lected using simple random sampling. For Y , the binary dependent variable and
binomial data likelihood, the maximization of the pseudo-likelihood approach to
the logistic regression parameters and their variance-covariance matrix requires the
solution to the vector of estimating equations that follows (Heeringa et al., 2017),

S(β) =
∑
h

∑
α

∑
i

WhαiD
′
hαi [(πhαi(β)) (1− πhαi(β))]−1 . (3.37)
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where, Dhαi is the vector of partial derivatives,

∂(πhαi(β))

∂(βj)

, and j = 0, 1, 2 . . . , p. h, is a stratum index. α, is a cluster (SECU) index within stra-
tum h and i is an index for individual observations within cluster α. πhαi(β) is the
probability that the outcome variable is equal to 1 as a function of the parameter es-
timate and observed data according to the stratified logistic model (Heeringa et al.,
2017). Whαi(β),is the sampling weight for observation i.

For Y , logistic regression model of binary variable these results to a system of p + 1

equations. Where p is the number of predictor variables and there is one additional
parameter corresponding to the intercept,

S(β)logistic =
∑
h

∑
α

∑
i

Whαi (yhαi − πhαi(β))x′hαi = 0, (3.38)

where, xhαi is a column vector of p+1 design matrix elements for case i = [1, x1,hαi, . . . xp,hαi]
′.

For the probit regression model the estimating equations reduces to,

S(β)logistic =
∑
h

∑
α

∑
i

Whαi (yhαiπhαi(β))φx′hαiβ ∗ x′hαi
(πhαi(β)) (1− πhαi(β))

, (3.39)

where φhαi is the standard normal probability density function evaluated at x′hαiβ.
The weighted parameter estimates are computed by using the Newton-Raphson
method to derive a solution for S(β) = 0 (Sloane & Morgan, 1996). The vector of
weighted parameter estimates based on the pseudo-maximum likelihood estimate
is consistent for β even when the sample design is complex. Thus the bias of the
estimator is of the order 1

n , such that, as the sample size increases (which is the often
the case for survey data), the bias of the estimator approaches zero.

3.8.3 Maximization of the pseudo- likelihood function

According to Heeringa et al. (2017), if we let πkjih = p(ykjih = 1) denote the prob-
ability that an event will occur on hth individual within ith household, within jth

primary sample units nested within kth stratum. Thus, 1− πkjih = p(ykjih = 0) will
denote the probability of non-occurrence of the event on the hth individual within
ith household, within jth primary sample units nested within kth stratum. Therefore
the likelihood will be the product of individual contributions (Hosmer & Lemeshow,
2000). For a contribution of a single observation, a pseudo-maximum likelihood is
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defined as,
π
WkjihYkjih
kjih (1− πkjih)1−WkjihYkjih

Thus a pseudo-likelihood function is given by

L(β, Y ) =
k∏
k=1

mk∏
j=1

nkj∏
i=1

Hkji∏
h=1

π
WkjihYkjih
kjih (1− πkjih)1−WkjihYkjih . (3.40)

Applying a natural log-function to the log-pseudo-maximum likelihood function
will be given as follows:

l(β, Y ) =

k∑
k=1

mk∑
j=1

nkj∑
i=1

Hkji∑
h=1

WkjihYkjihlog

(
πkjih

1− πkjih

)
− log

(
1

1− πkjih

)
. (3.41)

Differentiating l(β, Y ) with respect to unknown regression coefficients, we obtain
p+ 1 vector score equations which can be written as

X ′W (y − π) = 0 (3.42)

where, X is the n × (p + 1) matrix of covariates, W is a n × n diagonal matrix
containing weights, Y is the n × 1 vector of observed outcome values, and π =

[π1111; . . . ;πkmknkjHkji]
′ is the n× 1 vector of logistic probabilities. The survey logis-

tic regression model is given by

logit(πkjih) = log

(
πkjih

1− πkjih

)
= X ′kjihβ (3.43)

Xkjih is the vector that correspond to the characteristic of the hth individual within
ith household, within jth primary sample units nested with kth stratum and β is the
vector of the unknown regression coefficients.

Variance estimation

For data with unequal weights, clustering and stratification (complex survey sample
design), the computation of standard error of parameter estimates used in the con-
struction of confidence interval and performing statistical test is very complicated. A
solution to this problem was proposed by Binder (1983), who applied a multivariate
version of the Taylor series expansion (TSL). The result is a sandwitch-type variance
estimator of the form

V ar(β̂) = J−1var
[
S(β̂)

]
J. (3.44)
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where J is a matrix of the second derivative with respect to β̂j of the pseudo-log-
likelihood, and var[s(β̂)] is the variance-covariance matrix for the sample totals of
weighted score functions for each observation to fit the model (Heeringa et al., 2017).
The application of the Binder linearized variance estimation, var[s(β̂)], can be found
in Appendix 6.

3.9 Assessing the Model

Goodness-of-fit

In an ordinary logistic regression model, the responses (observations) are assumed
to be independent and identically distributed. However, in complex survey design
( e.g. survey logistic regression models) that is not really the case, there are higher
chances that observations that are from the same cluster are more correlated com-
pared to observations from different clusters. Thus, the goodness of fit test should
be considered regarding the design of the study. The Hosmer and Lemeshow good-
ness of fit test was originally proposed for ordinary logistic regression, but Archer
& Lemeshow (2006) and Archer et al. (2007) extended it to avoid possible problems
associated with the asymptotic distribution of the chi-square tests. The method is
based on grouping the observations in ”deciles of risk” (Roberts & Matthews, 2016),
where the observations are partitioned into ten equal-sized groups based on their
ordered estimated probabilities, π̂i. The Hosmer-Lemeshow test statistic is given by

Ĉ =
10∑
l=1

(Ol − El)

El

(
1− El

nl

) , (3.45)

where,nl is the number of observations in the lth. and Ol =
∑

i yi and El =
∑

i π̂ are
respectively the observed and expected number of cases in the lth decile.

The test statistics (3.45) follows a chi-square distribution (Hosmer & Lemesbow,
1980). The extension of this method Archer & Lemeshow (2006) is called the F-
adjusted mean residual test, which is asometimes called the Archer and Lemeshow
goodness-of-fit test ad it can be estimated as follows.

Suppose the study is designed such that there are m PSUs (clusters) each contain-
ing a total of ni observations. Using a fitted survey logistic regression model, the
residual for the jth observation in theith PSU is calculated as follows:

r̂ = yij − x̂ij (3.46)
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This grouping strategy was proposde by Graubard et al. (1997) the observations
are grouped into deciles of risk according to their residuals and weights (Archer &
Lemeshow, 2006). The size of the first decile group will be equal to number of obser-
vations with the smallest residuals such that the sum of the corresponding weights
represent one tenth of the total weights of all the observations. In a similar manner,
the size of the rest of the decile groups can be calculated. The mean residuals by
decile of risk M̂ ′ = (M̂1, M̂2, . . . , M̂10) are obtained where

M̂g =

∑
i

∑
j wij r̂ij∑

i

∑
j wij

(3.47)

is the mean residual for the gth percentile of the weighted residual values for g =

1, . . . , 10 and wij is the sampling weight associated with observation yij .

The Wald test statistic for testing g categories is given by

Ŵ = m̂′[ ˆvar ˆ(M)]−1M̂. (3.48)

Where ˆvar ˆ(M) is the variance-covariance matrix of M̂ obtained using linearization
(Archer et al., 2007). This test statistic is approximately chi-squared distributed with
g − 1 = 9 degrees of freedom, since g = 10 in this case. However, this chi-square
test has been found to be not an appropriate reference distribution. Therefore, the f-
corrected Wald test statistic has been suggested instead (Archer & Lemeshow, 2006).
This test is given by

F =
(f − g + 2)

fg
W (3.49)

is approximately F-distributed with g−1 numerator degrees of freedom and f−g+2

denominator degrees of freedom, where f is the number of clusters in the sample
minus the number of strata and g is the number of categories. Therefore, based on
this test statistic, the F-adjusted mean residual test statistic is

Q̂m =
f − 8

10f
M̂ ′[ ˆvar ˆ(M)]−1M̂ (3.50)

as g = 10 deciles of risk. For further reading on the goodness of fit test for complex
survey design refer to work by Archer & Lemeshow (2006) and Archer et al. (2007).

Model selection

The ordinary logistic regression (PROC LOGISTIC) model uses the forward; back-
ward elimination and stepwise selection procedures to select the variables that fit
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the data set in the SAS environment. Unfortunately, for complex survey designs,
these steps are not yet implemented in the PROC SURVEY LOGISTIC. However, for
complex survey designs Hosmer & Lemesbow (1980) suggested the following three
steps that could be used for model selection.

• Perform univariate analysis between the dependent variable and the indepen-
dent variables one at a time. This can be done through a contingency table of
the outcome and the nominal or ordinal predictor variable or through fitting a
univariate survey logistic regression.

• Discard non-significant variables and consider only significant ones in the mul-
tivariate survey logistic regression, in addition to the other variables known
from the literature to be important when modelling certain outcome.

• Include the relevant predictors in the multivariate survey logistic regression
analysis, one at a time.

The importance of each variable is verified through the Wald chi-square statistic
and also by comparing it to the estimated coefficient with the one from the uni-
variate analysis. This is repeated until only the significant variables are left in the
model. Furthermore, interaction terms are then included amongst the variables in
the model. In addition, the AIC and the BIC discussed in Section 3.3.2 are also im-
portant measures that can be used to compare two nested models when determining
the better one that describes the data set.

3.10 Survey Logistic Regression Applied to TDHS and ADHS
Data Sets

In this thesis, SAS 9.4 was used to fit SLR model into the two data sets (TDHS and
ADHS) using PROC SURVEYLOGISTIC. By default, the PROC SURVEYLOGISTIC
method in SAS uses the Taylor series expansion to estimate the variance of the SLR
model.

The study variables as discussed in Chapter 2 Section 2.2 were used to model the
outcome variable (anaemia status). The sampling weights were adjusted for non-
response and to represent only those households included in the data set used in
this thesis, where only the households that had children under the age of five years
old tested for anaemia were included in the sample. The two data sets (TDHS and
ADHS) were fitted separately and a two-way interaction term was considered. How-
ever, none of the possible two-way interaction was found to have a significant effect;
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hence, it was discarded.

After performing all the steps discussed in Section 3.9 the following tables (Table
3.1 and Table 3.3) are the results for univariate analysis. These tables consist of the
p-values from (type 3 analysis, SAS output), the unadjusted odds ratios and 95%
confidence interval which was used to determine the significance of the variable
and if the variable would be considered for multivariate analysis.
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Table 3.1: Unadjusted odds ratios (OR) from the univariate survey logistic regression anal-
ysis (TDHS)

Variable P-value Odds ratio (95% CI)

Child’s age(in months) < 0.0001

0 - 11 5.20(4.22,6.42)

11-23 3.81(3.23,4.50)

24-35 1.83(1.56,2.15)

36-47 1.08(0.90,1.29)

Gender 0.0104

Female 0.88(0.79,0.97)

Type of place of residence 0.0033

Rural 1.23(1.07,1.42)

Highest education level <0.0001

No education vs secondary 1.58(1.29,1.92)

Primary vs secondary 1.05(0.89,1.23)

Higher vs secondary 0.66(0.40,1.11)

Wealth index 0.0006

Middle vs rich 1.22(1.03,1.44)

Poor vs rich 1.35(1.56,1.58)

stunting <0.0001

Moderate vs severe 0.79(0.634,0.98)

Normal vs severe 0.67(0.55,0.82)

Internet 0.0002

Have access to internet vs no access 0.61(0.47,0.80)

Under five slept under mosquito bed next last night 0.1865

No ve yes 0.92(0.80,1.03)

Gave child meat(Pork,beef,lamb, etc) 0.6955

No vs yes 0.95(0.73,1.24)

Had cough the last two weeks prior to survey 0.0958

No vs yes 0.89 (0.77,1.02)

Iron supplementation during pregnancy 0.2414

No vs yes 1.06 (0.90,1.26)

Size of child at birth 0.9530

Average vs small 0.99 (0.85,1.15)

Large vs small 0.97 (0.77,1.21) 53
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Table 3.2: TDHS univariate continues from the previous page

Variable p-value Odds ratio (95% CI)

Age of the household head 0.0370 1.004 (1.000, 1.008)

Currently breast feeding <0.0001

No vs yes 0.51 (0.46,0.57)

Type of mosquito bed nets 0.0097

No nets vs only untreated nets 1.15 (0.91,1.45)

only treated nets vs only untreated nets 1.34 (1.07,1.68)

Wasting 0.0009

moderate vs severe 0.53 (0.35,0.81)

normal vs onlysevere 0.48 (0.33,0.72)

Underweight 0.0071

moderate vs severe 0.53 (0.35,0.81)

normal vs onlysevere 0.48 (0.33,0.72)

Vitamin A supplementation 0.0271

No vs yes 1.14 (1.01,1.28)

Sex of the household head 0.7578

Female vs male 1.02(0.88,1.19)

Household has a television 0.0009

no vs yes 1.35 (1.15,1.58)
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Table 3.3: unadjusted odds ratios (OR) from the univariate survey logistic regression anal-
ysis (ADHS)

Variable p-value Odds ratio (95% CI)

Child’s age (in months) < 0.0001

0-11 4.40 (3.21 6.04)

12-23 3.02( 2.41 3.79)

24-35 1.70( 1.36 2.11)

36-47 1.34 (1.05 1.70)

Gender 0.0370

Female 0.84( 0.72 0.99)

Type of place of residence 0.0033

Rural 1.23(1.07,1.42)

Highest education level (0.1444)

No education vs secondary 1.21(0.94, 1.54 )

Primary vs secondary 1.18(0.89,1.23)

Higher vs secondary 0.69(0.37, 1.28 )

Wealth index 0.3400

Middle vs rich 1.20( 0.92 ,1.56)

Poor vs rich 1.02 (0.81, 1.28)

stunting <0.0001

Moderate vs severe 0.65 (0.49, 0.84)

Normal vs severe 0.58 (0.46, 0.73)

Internet 0.9430

Have access to internet vs no access 1.01 (0.73, 1.39)

Under five slept under mosquito bed next last night 0.1865

No ve yes 0.92(0.80,1.03)

Gave child meat(Pork,beef,lamb, etc) 0.9856

No vs yes 1.00 (0.76 1.32)

Had cough the last two weeks prior to survey <0.0001

No vs yes 0.89 (0.77,1.02)

Iron supplementation during pregnancy <.0001

No vs yes 1.14( 0.90, 1.45)

Size of child at birth 0.9530

Avarage vs small 0.99 (0.85,1.15)

Large vs small 0.97 (0.77,1.21) 55
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Table 3.4: ADHS univariate analysis continues from the previous page

Variable p-value Odds ratio (95% CI)

Age of the household head 0.4672 0.99(0.99, 1.00)

Currently breast feeding(ref=yes) <0.0001

No 0.71 (0.62, 0.83)

Type of mosquito bed nets (ref=only untreated nets) 0.0097

No nets 1.19( 0.83 1.72)

Only treated nets 1.06 (0.71 ,1.56)

Wasting (ref=severe) 0.0012

Moderate 0.67 (0.40,1.12)

Normal 0.54 (0.35 0.82)

Underweight(ref=severe) 0.1848

Moderate 1.74(0.83 ,3.62)

Normal 1.18 (0.65,2.13)

Vitamin A supplementation(ref=yes) 0.0271

No 1.14 (1.01,1.28)

Sex of the household head(ref= male) 0.6550

Female 0.959 (0.80, 1.15)

Household has a television(ref=yes) 0.0009

No 1.13 (0.93, 1.38)

All variables that were found to be significantly associated with childhood anaemia
(p-value < 0.05) from the univariate analysis were considered for multivariate anal-
ysis. From the above tables we can observe that child age, type of place of residence,
gender (sex of the child), stunting, , currently breastfeeding, type of mosquito bed
nets, wasting, and household has a television were commonly significantly associ-
ated with childhood anaemia in both countries and hence were considered for mul-
tivariate analysis. However,variables named: highest education level, wealth index,
age of household head, sex of household head, iron supplementation during preg-
nancy and gave child meat (pork, beef, lamb, etc) were not commonly significantly
associated with anaemia but because of their importance when modelling anaemia
they were considered for multivariate analysis. Thus, the final model fitted is as
follows:
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g(µ) = β0 + β1(child gender) + β2(residence type) + β3(Region) + β4(Wealth

index) + β5(Currently breasfeeding) + β6(Stunting) + β7(Television)

+ β8(Education Level) + β9(Child age) + β10(household head age) + εi.

(3.51)

The final multivariate survey logistic regression (SLR) analysis

The tables below (Table 3.5, Table 3.6 and Table 3.7) are the outputs from the final
multivariate survey logistic regression analysis. The variable named, age of house-
hold head, was fitted as a continuous variable, whereas the rest of the variables are
categorical. Table 3.5 is the type 3 analysis of effect; Table 3.6 and Table 3.7 are the
combination of analysis of maximum likelihood estimates and odds ratio estimates
tables from the SAS system.
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Table 3.5: Type 3 Analysis of Effects (TDHS and ADHS)

Tanzania

Effect DF Chi-square value p-value

Gender 1 4.34 0.0373

Child age(in months) 4 378.29 <.0001

Type of place of residence 1 1.25 0.2637

Wealth index 2 5.80 0.0550

Age of household head 1 0.26 0.6120

Currently breastfeeding 1 11.32 0.0008

Stunting 2 22.79 <.0001

Region 29 192.41 <.0001

Mother’s highest education level 3 22.47 <.0001

Household has a television 2 0.91 0.6351

Angola

Gender 1 2.75 0.0971

Child age(in months) 4 147.58 <.0001

Type of place of residence 1 0.24 0.6274

Wealth index 2 11.56 0.0031

Age of household head 1 0.068 0.8037

Currently breastfeeding 1 0.60 0.4386

Stunting 2 23.87 <.0001

Region 17 86.07 <.0001

Mother’s highest education level 3 6.99 0.0721

Household has a television 2 13.68 0.0011

Table 3.5 above shows the final survey logistic regression model after being fitted
to the two data sets. The model reveals that the predictor variables, age of the
child (in months), stunting and the region were the common determinants of child-
hood anaemia in both countries. Their p-values in both countries were all < 0.0001.
Looking at each country, in Tanzania, sex of the child (p-value = 0.0373), currently
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breastfeeding (p-value = 0.0008) and the mother’s or guardian highest education
level (p-value < 0.0001) predictors were also found to be significantly associated
with childhood anaemia at 5% level of significance. However, in Angola, there were
two additional variables that were significantly associated with childhood anaemia,
the standard of living or so-called wealth index (p-value = 0.0031) and the variable
household has a television (p-value = 0.0011)
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Table 3.6: Adjusted odds ratios from the final survey logistic regression model for the
TDHS data set

Parameter Estimate
Standard
error

t-value P-value aOR(95% CI)

Intercept 0.5293 0.4221 1.25 0.2104

Gender (ref=male) -0.1232 0.0592 -2.08 0.0378 0.884(0.787, 0.993)

Child’s age (in months) (ref = 48-59)

0-11 1.6563 0.1259 13.16 <0001 5.240 (4.092, 6.710)

12-23 1.2567 0.0933 13.47 <0001 3.514 (2.925, 4.220)

24-35 0.5595 0.0908 6.16 <0001 1.750 (1.464,2.091)

36-47 0.0325 0.0954 0.34 0.7338 1.033 (0.856, 1.246)

Age of household
head

0.00122 0.00240 0.51 0.6122 1.001 (0.997, 1.006)

Mother’s highest education level (ref =No education)

Higher -2.5850 1.1026 -2.34 0.0194 0.075 (0.009, 0.658)

Primary -0.3729 0.0894 -4.17 <.0001 0.689 (0.578, 0.821)

Secondary -0.4248 0.1592 -2.67 0.0079 0.654(0.478,0.894)

Wealth Index (ref = rich)

Middle 0.1108 0.0913 1.21 0.2259 1.117 (0.934,1.337)

Poor 0.2182 0.0906 2.41 0.0164 1.244 (1.041,1.486)

Residence type (ref = urban)

Rural 0.1252 0.1120 1.12 0.2642 1.133 (0.909, 1.412)

Stunting (ref =severe)

Moderate -0.2114 0.1212 -1.74 0.0817 0.809 (0.638, 1.027 )

Nourished -0.4707 0.1131 -4.16 <.0001 0.625 (0.50,0 0.780 )

Currently breast-feeding (ref=yes)

No -0.2473 0.0735 -3.36 0.0008 0.781 (0.676, 0.902 )

Household has televison (ref=yes)

No -0.1374 0.1984 -0.69 0.4889 0.872 (0.590, 1.287)
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Table 3.7: Adjusted odds ratios from the final survey logistic regression model for ADHS
data set

Parameter Estimate
Standard
error

t-value P-value aOR(95% CI)

Intercept 1.0759 0.3337 3.22 0.0013

Gender (ref=male) -0.1442 0.0869 -1.66 0.0976 0.866(0.730,1.027 )

Child’s age (in months) (ref = 48-59)

0-11 1.4986 0.1683 8.91 <.0001 4.475 (3.216,6.228)

24-35 1.1316 0.1206 9.39 <.0001 3.101 (2.447,3.929)

36-47 0.5088 0.1143 4.45 <.0001 1.663 (1.329,2.082)

48-59 0.2532 0.1269 1.99 0.0466 1.288 (1.004,1.653)

Age of household
head

-0.000769 0.00396 0.19 0.8462 0.999 (0.993,1.005)

Mother highest education level (ref = No education)

Higher -0.5422 0.3354 -1.62 0.1065 0.581 (0.301,1.124)

Primary -0.0607 0.1057 -0.57 0.5662 0.941 (0.765 1.158)

Secondary -0.3289 0.1451 -2.27 0.0238 0.720 (0.541, 0.957)

Residence type (ref = urban)

Rural 0.0675 0.1391 0.49 0.6276 1.070 (0.814,1.406)

Wealth index (ref = rich)

Middle -0.00564 0.1697 -0.03 0.9735 0.994 (0.713,1.388)

Poor -0.5305 0.2130 -2.49 0.0131 0.588 (0.387,0.894)

Stunting (ref =severe)

Moderate -0.4142 0.1395 -2.97 0.0031 0.661 (0.502,0.869)

Nourished -0.5528 0.1150 -4.81 <.0001 0.575 (0.459,0.721)

Currently breast feading (ref = Yes)

No -0.0661 0.0853 -0.77 0.4389 0.936 (0.792,1.107)

Household has television (ref = Yes)

No 0.3425 0.1305 2.63 0.0089 1.409 (1.090,1.820)
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From Table 3.6 and Table 3.7 the model reveals that children who were aged 0-11
months (< 1 year) had higher chances of being anaemic compared to all other age
groups and that the chances of a child being anaemic decreases with the increase in
age. Children aged less than one from Tanzania and Angola were respectively, 5.2
(OR = 5.24, 95% CI (4.09;6.71)) and 4.48 (OR = 4.475, 95% CI (3.22;6.23)) times more
likely to be anaemic than children aged four. Those who were aged 12-23 months (<
2 years) in Tanzania and Angola were respectively, 3.51(OR=3.514, 95% CI(2.93;4.22))
and 3.10 (OR = 3.101, 95% CI (2.45;3.93)) times more likely to be anaemic compared
to children aged 4 years. Childhood anaemia was significantly higher for children
aged two compared to those aged four in Tanzania OR = 1.75, 95% CI (1.46,2.09)
and in Angola OR = 1.663, 95% CI (1.33;2.08). Children who were aged three were
3.3% (OR = 1.033, 95% CI (0.86;1.25)) more likely to be anaemic in comparison to
children aged four in Tanzania and in Angola they were 28.8% (OR = 1.288, 95%
CI (1.004;1.65)) more likely to be anaemic compared to those aged four. Childhood
anaemia was significantly low for female children in Tanzania (OR = 0.884, 95% CI
(0.79;0.99)) compared to male children, but gender was not significantly associated
(p-value = 0.055) with childhood anaemia in Angola according to to the magnitude
of the p-value but looking at other effect sizes such as the odds ratios, we can tell
that female children were also less likely to be anaemic compared to male children
(OR = 0.866, 95% CI (0.73;1.03)),with an OR of less than one.

Severely stunted children were more likely to suffer from childhood anaemia com-
pared to nourished (non-stunted) and moderately stunted children in both coun-
tries. In Tanzania, moderately stunted children had reduced odds of being anaemic
by 19.1% (OR = 0.809) with a 95% CI (0.64;1.03) and nourished children had re-
duced by 37.5% (OR = 0.625, 95% CI (0.5;0.78)) in comparison to severely stunted
children. In Angola, moderately stunted children were 33.9% (OR=0.661, 95% CI
(0.50;0.87)) less likely to be anaemic and normal children were 42.5% (OR = 57.5,
95% CL (0.46;0.72)) less likely to be anaemic than severely stunted children. Chil-
dren who were born in middle class and rich families in Angola had reduced odds
by, 0.16% (OR = 0.994, 95% CI (0.713;1.39)) and 41.2% (OR=0.588, 95% CI (0.38;0.89))
respectively, compared to children from poor families. In Tanzania, wealth index
was not significantly associated with anaemia (p-value = 0.055) but looking at the
results, we can see that children from poor families are still more likely to be anaemic
than children from moderate (OR=1.12, 95% CI (0.93;1.34)) and rich (OR = 1.24, 95%
CI (1.04;1.49)) families. Furthermore, the level of education was also found to be a
significantly associated with childhood anaemia in Tanzania, where, children who
had educated mothers were less likely to be anaemic compared to those who had
uneducated mothers; OR = 0.08 (95% CI (0.009;0.66)) for highly educated mothers;
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OR = 0.65 (95% CI (0.480.89)) for mothers with secondary education and OR=0.69
(95% CI (0.58;0.82)) for mothers with primary education.

3.11 Summary and Discussion

In this chapter we covered generalized linear models, survey logistic regression was
fitted to our data sets. GLMs are parametric regression models with underlying as-
sumption of normality. At first, a univariate analysis was performed for each data
set, and then significant effects were passed into the SLR model. The backward and
forward variables selection steps for logistic regression were applied as suggested by
Hosmer & Lemesbow (1980) and a final SLR model resulted as represented above.

The findings from this thesis are not much different from many other similar studies
existing in the literature (Habyarimana et al., 2017; Allali et al., 2017; Foote et al.,
2013; Schellenberg et al., 2003). As discussed above, the SLR model revealed that the
explanatory variables, as listed: stunting, child age, and region were the common
determinants (in both countries) of childhood anaemia. Children at a young age
have a poor immune system, and hence they are easily affected by diseases (De Pee
et al., 2002; Leal et al., 2011; Sanou & Ngnie-Teta, 2012). As we can observe from the
two tables of the final SLR models, the odds for a child being anaemic decreas with
the increase in age; children less than two years are seemingly to have very high
odds of being anaemic compared to older children. These results are very similar to
many studies conducted about predictors and prevalence of anaemia in Africa (Hab-
yarimana et al., 2017; Allali et al., 2017; Foote et al., 2013; Schellenberg et al., 2003;
de Savigny et al., 2003). Several studies have shown that children with educated
mothers or caretakers are less likely suffer from curable diseases, such as: anaemia,
fever, diarrhea, malaria infections, etc Habyarimana et al. (2017).

The odds of the child being anaemic decrease with the increase of the mother’s
(caretaker) level of education; children with uneducated mothers or with primary
education are highly likely to be anaemic compared to others. These findings are
consistency to many other existing studies in literature (Getaneh et al., 2017; Foote
et al., 2013; Pektaş et al., 2015; Mehta, 2004). Level of education plays a major role
in child health, nutrition, growth, and development. A caretaker lacking education
may easily fail to understand the nutritional requirements and the recommended
feeding practices. Another factor that is highly associated with childhood anaemia
is stunting. Stunting (height for age) is defined as impaired growth and develop-
ment that children experience from poor nutrition, repeated infection, and inade-
quate psychosocial stimulation. Although it globally affect children, there is high
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prevalent in Africa (Habyarimana et al., 2017). In this study, stunting was found to
be a common determinant of anaemia in both countries with severely stunted chil-
dren having higher odds of being anaemic compared to moderately and non-stunted
children.

Furthermore, the standard of living in a household was found to be significantly as-
sociated with childhood anaemia in Angola with children from poor homes being
more likely to be anaemic compared to those from rich homes. This may be associ-
ated with the fact that rich children are more likely to have quality education and
their parents can afford nutritious food to feed their children and maintain a healthy
lifestyle. In both countries, the type of place of residence (rural/urban) is not signifi-
cantly associated with childhood anaemia. Although this is the case, this study does
show higher odds of being anaemic for children from rural compared to urban areas.
This may be because most people residing in urban areas are wealthier, can afford a
quality education and they can easily access hospitals for child health; hence, their
children will have reduced odds of being anaemic. The next chapter focuses more
on non-parametric (semi-parametric) models, as they are believed to be more precise
compared to parametric models.
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Chapter 4

Semi-Parametric Regression
Models

4.1 Introduction

Thus far, we considered GLMs (ordinary logistic and survey logistic regression model
approaches) which are known to be parametric. Generalized linear model regression
approaches are used to linearly describe the effect of the covariates on the outcome
variable of interest. Unlike non-parametric models, in parametric regression models,
the functional form of the model is known in advance. For this reason, the results
produced might be biased or misleading, thus non-parametric models that assume
no functional form of the model prior to modelling would be more useful (Hastie,
1990).

We now consider the non-parametric regression that relaxes the assumption of lin-
earity between the covariates and the response variable. The non-parametric (or
semi-parametric) approach, specifically generalized additive mixed models (GAMM)
were used to investigate the relationship between the effect of explanatory variables
on childhood anaemia. Non-parametric regression models are the flexible statisti-
cal approaches for modelling non-linear forms of the data that have no functional
forms prior to being defined (Zhang & Lin, 2003). Although parametric regression
models are easy to compute and interpret, they are too restrictive compared to non-
parametric regression approaches. Instead of using one of the two methods, the
combination would be even more powerful, as would combining the two methods
results in so-called semi-parametric additive mixed models (SAMMs) (Härdle et al.,
2012; Zhang & Lin, 2003), which are a special case of GAMMs.
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4.1.1 Model structure

Supposing we have a pair of n random data points Silverman (1985), {xi,yi} for
i = 1, 2...n, a semi-parametric model is given as,

Yi = g(xi) + εi. (4.1)

As usual Yi, is a vector of the response variable. g is the unknown regression func-
tion, which can be estimated by the roughness penalty method, as suggested by
Green & Silverman (1993). In the literature there exist a number of non-parametric
regression models and smoothing for dependent data; for example, kernel estima-
tors, smoothing splines, running mean line smoothers, bin smoothers, wavelets and
local weighted scatter plot smoothing (LOWESS) (Hastie, 1990; Härdle & Kneip,
1999; Green & Silverman, 1993). One such model is called a project pursuit regres-
sion model as suggested by Friedman & Stuetzle (1981). It fits the model of the form,

Y =

p∑
j=1

Sj(α̂jX) + ε. (4.2)

where α̂jX is a one-dimension projection of the vector X , Sj is the arbitrary smooth
function and ε is the error term which is assumed to be identical and independent
normally distributed with mean 0 and a constant variance σ2. For large p, these
models are difficult to interpret, although they are a parsimonious smooth surface
(Hastie and Tibshirani, 1990).

Breiman & Friedman (1985) suggested an alternative conditional expectation which
is also a non-parametric approach for estimating nonlinear regression, of the form,

Y =

p∑
j=1

Sj(xj). (4.3)

where Sj is an unspecified (arbitrary) non-parametric smooth function. The response
variable Y is estimated as the transformation of the form θ(Y ). Readers can find
intensive literature about non-parametric regression approaches in the work by (Sil-
verman, 1985; Izenman, 1991; Faraway, 2016).

Although the non-parametric regression approach is highly recommended, in cases
of high dimensional data it becomes difficult to deal with and often results in biased
estimators and unreliable interpretations of the fitted model. Thus, semi-parametric
models were developed which combine the properties of both the regression ap-
proaches, non-parametric and parametric (Härdle et al., 2012; Faraway, 2016; Zeger
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& Diggle, 1994).
Unlike parametric regression models, semiparametric regression models fit the data
without prior specifying of the functional form of the model and the fitted mod-
els are not necessarily linear. This chapter focuses more on such a regression ap-
proach using generalized additive models and generalized additive mixed models
(GAMMs). Specifically, GAMMs was used to fit the data to help in investigating
the factors that are significantly associated with childhood anaemia in Tanzania and
Angola. However, beforehand, a discussion of additive models in general and its
generalization is a necessity.

4.2 Additive Regression Model

The additive models were suggested by Friedman & Stuetzle (1981). The term addi-
tive is self-explanatory, it is simply the sum of the terms in the model. The additive
model is the generalization of the ordinary linear regression models after consid-
ering problems associated with the estimation and interpretation of fully general
regression surfaces (Hastie, 1990). Additive models are more flexible and more in-
terpretable in comparison to the ordinary regression models (Hastie, 1990). For the
moment, we restrict our attention to the standard multiple regression problem given
in the form

Y = α+ β1X1 + β2X2 + ...+ βpXp + ε. (4.4)

where α is the model intercept, X1, X2, ...Xp is the set of explanatory variables, Y is
the response variable and ε is the error term, ε ∼ (0, σ2). The main goal is to model
the dependence of the response variable Y onX for certain reasons which include in-
ference, description and prediction. The dependence of E(Y ) on X is assumed to be
linear, unlike in additive models. Standard regression can be generalized in several
ways: one class is surface smoothing, which is well discussed in the book by Hastie
(1990) among others. A standard regression (non-additive) approach assumes that
the response variable is linearly correlated to the covariates while in additive models
that is not necessarily the case.

In additive modelling, the response is modelled as the sum of the smooth functions,
for example

E(Y |U, V,W ) = f1(U) + f2(W ) + f3(W )

For the three covariates U , V and W , the function f(·) are unspecified in form and
are commonly estimated using linear smoothers in an iterative method algorithm
known as “back-lifting”.
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4.2.1 Model overview

Supposing we have n observations of random variable Y and p dimensional design
values denoted by Y = (y1, y2, ..., yn)T , X = (x1, x2, ..., xn)T , respectively, the addi-
tive models as suggested by Friedman & Stuetzle (1981), take the form

Yi = α+

p∑
j=1

fi(xij) + εi. (4.5)

Thus,

E(Yi|xi1, xi2, . . . , xip) = α+

p∑
j=1

fi(xij). (4.6)

for E(εi) = 0 and var(εi) = σ2. The εi′s are independent of the Xij
′s, the predictor

variables, Yi is the response variable andfi(·) are unknown arbitrary univariate func-
tions for each covariate Xij . The arbitrary function fi(·) is commonly estimated us-
ing linear smoothers by the use of the iterative method known as back-lifting. How-
ever, there are alternative methods proposed for estimation, such as the marginal
integration estimation methods (Linton & Nielsen, 1995), the Fourier series approx-
imation (Sardy & Tseng, 2004), The linear wavelets method of estimation (Sardy &
Tseng, 2004). The back-lifting method is well discussed in the work of (Buja et al.,
1989; Hastie, 1990).
The additive model is a special type of project pursuit regression (PPR) model sug-
gested by Friedman & Stuetzle (1981). The main goal in additive modelling is to esti-
mate the unknown functions fi(·), which are said to be smooth and non-parametric
to obtain the best fit model for our data. The smoothing process involves two steps:
firstly, identifying the smoothing technique, and secondly, determining the smooth-
ing parameter that controls the trade-off between underestimating and overestimat-
ing (Wood et al., 2013). The following section focuses on some of the smoothing
techniques for estimating the unknown functions fi(·).

4.3 Smoothing Techniques

A smoother is a tool for summarizing the behaviour of a response measurement Y ,
as a function of one or more predictor variables x1, x2, . . . , xp. Smoothers produce
an estimate of the trend that is less variable than the response measurements, Y
itself (Hastie, 1990). One important property of a smoother is that, they assume no
distribution in advance, and are thus non-parametric. Smoothers have two main
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uses: (1) For data description purposes and (2) to estimates the dependence of the
mean on Y , on the set of predictor variables x1, x2, . . . , xp. There are a number of
smoothing approaches that exist in the literature, and few of them are discussed
below.

4.3.1 Linear smoothers

Supposing we have n response measurements (Y = y1, y2, . . . , yn)Tdefined at de-
sign points X = (x1, x2, . . . , xp)

T . In standard regression if the design points xi′s are
univariate real values, one can assume that the dependence of the response variable
on the covariates is smooth, correspondingly, non-parametric regression approaches
are often called scatter plot smoothers (Buja et al., 1989). In scatter plot smoothing
the assumption is, each of y and x represents measurements of variables Y and X .
By definition, scatter plot smoothing is a function of X and Y , that results in a
smooth function S which is independent of Y , S has the same domain as the val-
ues in X , where S = S(X|Y ). Examples of linear smoothers are running mean,
locally weighted running lines, kernel smoothing, smoothing splines, bin smoothers
and the least-squares line (Buja et al., 1989).

Running-mean and running line smoothers

A running mean smoother produces a fit at each point xi by averaging the data
points in a neighbourhood Ni around xi, thus commonly uses neighbourhoods that
are symmetric nearest neighborhoods. Buja et al. (1989) defined a running mean
smoother as follows

S(xi) = avejεNs(xi)(yi). (4.7)

The symmetric nearest neighbourhoods method works by choosing k points to the
left and right of point xi that are closest in X-value to xi. N s(xi) denote the indices
points. Failing to choose k points to the left and right of point xi, results to choosing
as many points as possible. The symmetric nearest neighbourhoods method can be
formally defined as

N s(xi) = {max(i+ k, 1), . . . ,min(i+ k, n)} (4.8)

In nature running mean smoothers are simple to execute and fast, which sometimes
produces wiggly functions and are biased at the endpoints (Buja et al., 1989).

Running line smoother, fit a line by least squares to the data points in the symmet-
ric neighbourhood Ni around each design point xi. They are considered to be better
than the average smoothers because the estimated smooth at each x is a value around
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the fitted line at xi, a process that is done at each point xi, Thus, line smoothers re-
duces the bias near endpoints.

Bin smoothers

A bin smoother is similar to a running mean smoother, the difference being that the
average is computed in a non-overlapping neighbourhoods. In bin smoothing, we
choose cut-points ζ0 < ζ1 < ζ2, . . . , < ζk, where ζ0 = −∞ andζk = ∞. Rk = {i, ζk ≤
xi ≤ ζk+1} for k = 0, 1, . . . , n − 1 is defined as the indices of the data points in each
region. Hastie (1990) defined a bin smoother as follows:

S(xi) = avejεRky(xi). (4.9)

Kernel Smoother

A kernel smoother uses a set of weights explicitly defined by kernels to produce the
estimate at each large value (Hastie, 1990). Usually, the weights are given to the
jthpoint producing the estimate at xi and are defined by

Sij =
ζ0
λ
d

(
|xi − xj |

λ

)
(4.10)

where Sij are equal to weights, the parameter λ is known as the window-width
(bandwidth) parameter and ζ0 is usually chosen such that the weights, Sij ′s sum to
unity (Hastie & Tibshirani, 1987). Kernel smoothers decrease in a smooth fashion as
one moves away from the targeted value X , and d(t) is an even function decreasing
in |t| The value of d is chosen in such a manner that the kernel function is optimal
(Härdle, 1990). A commonly used function is the parabolic function,

d(t) =

 0.75(1− t2) for |t|

0 elsewhere

Härdle (1990) defined the kernel smoother referring to the shape of it function as
a kernel K that is continuous, bounded and symmetrically real and it integrates to
one. ∫

k(u)du = 1. (4.11)

Furthermore, the weight sequence defined as {Wni(x)}ni=1described in the shape
function of weight {Wni(x)} are the weights sequence for kernel smoothers (for one-
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dimensional x). The weights sequence is defined by

Wni(x) =
Khn(x−Xi)

f̂hn(x)
(4.12)

where,

f̂hn(x) = n−1
n∑
i=1

Khn(x− xi) (4.13)

and where

Khn(u) = h−1n K

(
u

hn

)
is the kernel scale factor hn. The function f̂hn(·) is the Rosenblatt–Parzenkernel den-
sity estimator of the marginal density of X (Härdle, 1990).

Locally weighted running line smoother (LOWESS)

Cleveland (1979)implemented the locally weighted running line smoother (LOWESS),
so-called LOESS), which is more powerful because it combines both the strict nature
of local running lines and the smooth kernel weight smoother. It is easy to compute,
involving three steps (Buja et al., 1989)

• Find the symmetric nearest neighbourhood (N(xi)) of xi,

• It calculates the distance to the kth nearest neighbour denoted by di, and

• It assigns a tri-cube weight function to each point in N(xi):

Hastie (1990) defined the LOWESS function as follows

Wij =

(
1− |xj − xi

di
|
3
)
. (4.14)

Because of the robustness of LOWESS, it automatically down weights outlying re-
sponses during the smoothing process, which causes it to be a non-linear smoother if
it is used. On a subtler note, LOWESS uses nearest neighbours, whereas the running
means and lines described earlier use symmetric nearest neighbours.

The function S(xi) in 4.3.1 is a regression function fitted at point xi obtained by
fitting the weighted least squares line. The smooth function S(xi) can also be esti-
mated using splines, as they are briefly described in the following section.
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4.4 Spline Smoothing

A spline is defined as a joint function (piecewise) from a polynomial function, for
example a sequence of knots defined by ξ0 ≤ ξ1 ≤ . . . ≤ ξk that join smoothly (Buja
et al., 1989). Smoothing splines are assumed to have no pre-specified function, thus,
they are a flexible approach for estimating regression curves with observed values
of xi at the knots (Wood, 2017; Hastie, 1990; Härdle, 1990).
A common measure of fidelity of the data (smoothness of data) for a curve fitted in
the data is the residual sum of squares (Härdle, 1990), which can be written in the
form,

n∑
i=1

(yi − g(xi))
2

where, g is any curve of unrestricted function form, that interpolates the data such
that the distance reduces to zero. However, using any curve g (non-unique), is not
recommended because can be is too wiggly for unstructured-orientation interpola-
tion(Härdle, 1990). For this reason, the spline smoothing approach was developed
and used instead to avoid the questionable interpolation of the data. The main aim
of smoothing is to produce a good fit for the data and to produce a curve with less
local variation. There are several ways to avoid local variation one of which is defin-
ing the roughness based, for example, on a first derivative, second derivative and so
on. The fitted curve g to the data, for analysis the integrated second derivative is the
most convenient, that is roughness penalty(Härdle, 1990)∫ (

g
′′
(x)
)2
dx

is used to avoid local variation.

4.4.1 Natural cubic splines

Supposing we have n collected data points {Wni(x)}ni=1 (Härdle, 1990), the regres-
sion relationship can be modelled as:

Yi = g(xi) + εi. (4.15)

where g(·) is a non-parametric regression function and εi is the random error term,
ε ∼ (0, σ2). g(xi) is defined as the regression between Yi and Xi. On this setting
(Härdle, 1990) an optimal solution to this problem will be attained by minimization
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of the penalized sum of squares (PSS), given by

Sλ(g) =
n∑
i=1

(yi − g(xi))
2 + λ

∫ ∞
−∞

(
g
′′
(x)
)2
. (4.16)

where λ is a smoothing parameter that controls the trade-off between the smoother
of the curve and it proximity to the response values, yi. Larger values of λ produces
smoother curve while smaller values of λ produces more wiggly curves. Equiv-
alently, when λ→∞, the penalty term dominates, it force g

′′
(x) = 0 everywhere

and the solution is standard least squares, but when λ→0 the solution interpolates
a twice-differentiable function. The solution to Sλ(·) is a cubic polynomial whose
derivations are continuous at the boundary points say x(?) and x(??) (Härdle, 1990).

4.4.2 Regression splines

Regression spline is the projection method for fitting the splines, (Buja et al., 1989).
Regression spline uses fewer number of knots compared to others smoothers, specif-
ically, natural cubic spline. If ξ0 ≤ ξ1 ≤ . . . ≤ ξk denote the set of knots and β1(z), β2(z), ·, βk(z)
set of basis functions, then the smooth function g(x) in 4.16 can be estimated as

g(x) ≈
k∑
i=1

βk(z)αk. (4.17)

where αTk is a vector which can be estimated by fitting a parametric model via ordi-
nary least squares regression, of the form

g(x) =

k∑
i=1

βk(z)αk + εi. (4.18)

4.4.3 P-Splines

P-Splines or penalized spline regression was introduced by Eilers & Marx (1996),
while the concept of using fixed a spline basis combined with a penalty for mod-
elling complexity was first introduced by Silverman (1985) and was elaborated by
O’Sullivan et al. (1986). Penalized splines smoothing are widely used in practice
(Ruppert et al., 2003) because of it advantage of being less computer intensive espe-
cially in large sample sizes.
In spline smoothing choosing the smoothing parameter well is very important (Här-
dle, 1990; Zhang et al., 1998). There are indeed several methods for selecting smooth-
ing parameter featured in literature. To ensure effectiveness during selection of the
smoothing parameter there are selection criteria’s that needs to be considered (Ay-

73



4.4. Spline Smoothing

dın et al., 2013), these include:an improved version of the AIC criterion; a robustified
cross-validation method (RCV); an average predictive square error (PSE); a paral-
lel of the AIC criterion (GFAIC); a generalized cross-validation (GCV); and cross-
validation (CV), among others.
In the following subsection a discussion of few on the criterion or methods for choos-
ing a smoothing parameter are discussed below.

The predictive squared error (PSE) criterion

During the process of choosing smoothing parameter, it is not really important to
minimize the mean square error at each point, but instead the focus should be shifted
to global measures such as the PSE (Aydın et al., 2013).

PSE(λ) =

{
1 +

tr(SλS
T
λ )

n

}
σ2 +

‖(I − Sλ)f‖2

n
. (4.19)

where f = f(x1), · · · , f(xn) is the vector of knot points x1, x2, x3, · · · , xn , tr(SλSTλ )

is the trace of matrix (SλS
T
λ ) and ‖(I−Sλ)‖ is the norm of matrix (I−Sλ). In practice,

if σ2 is not known,an estimate is used, given by

σ̂2 =
RSS(λ∗)

{n− tr(2Sλ∗STλ∗)}
=

‖(I − Sλ)y‖2

{n− tr(2Sλ∗STλ∗)}
. (4.20)

whereRSS(λ∗) is the residual sum of squares from a smooth Sλ∗y and λ∗ is the pilot
λ selected by using any of methods discussed by Aydın et al. (2013).

Cross validation (CV) criterion

The basic idea in the cross validation (CV) method is to exclude one data point
(xi, yi) during the process of choosing λ, (Zeger & Diggle, 1994; Rice & Silverman,
1991). The smoothing parameter that minimizes the residual sum of squares is∑n

i=1 (yi − g(xi))
2. Thus, estimation of the squared residual for a smooth function at

xi is based on the remaining (n− 1) points. The CV score is given by

CV (λ) = n−1
n∑
i=1

{yi − ĝ−1λ (xi)} ≡ n−1
n∑
i=1

{
(yi − ĝλ)2

1− (Sλ)ii

}
. (4.21)

where, ĝλ is the fit (spline smoother) for the n points {xi, yi}ni=1 with smoothing
parameter λ, ĝ−1λ is the smoothing spline calculated from the (n−1) remaining points
and (Sλ)ii is the ith diagonal element of smoother matrixSλ.
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Generalized cross validation (GCV) Criterion

Generalized cross validatio is the generalization of a cross validation selection method
for choosing the smoothing parameter (λ),and is thus more advanced than CV (Craven
& Wahba, 1978). The GCV score function which is constructed by analogy of ordi-
nary cross-validation can be written in the form

GCV (λ) = n−1
∑n

i=1{yi − ĝλ(xi)}
{1− n−1tr(Sλ)}2

=
n−1‖1− Sλ‖2

{n−1tr(I − Sλ)}2
. (4.22)

There is intensive theory in the work by Hastie (1990) about the value of λ that
optimizes the function by minimizing the function Sλ(g) in 4.16. The curve g is
continuous on the interval [a,b]. If ĝ is a cubic spline with knots in each xi we obtain
a smoothing matrix. (

y −
p∑
i=1

)T (
y −

p∑
i=1

)
+

n∑
i=1

λig
T
λKigi

.
The K ′is are the penalty matrices. For further information, readers can refer to (Ay-
dın et al., 2013; Buja et al., 1989; Hastie & Tibshirani, 1987; Hastie, 1990).

4.5 Generalized Additive Regression

As the class of generalized linear models is described in detail by Nelder & Wedder-
burn (1972) and fully developed by McCullagh (1989) and, Hastie (1990) extended
generalized linear models to generalized additive models (GAMs) in the same man-
ner of development of GLM from ordinary linear regression. Unlike generalized
linear models, GAMs are data driven rather than model driven (Yee & Mitchell,
1991). Additive models extend ordinary linear models by replacing the linear form
α+

∑
j Xjβj with the additive form α+

∑
j f(Xj)βj , thus generalized additive mod-

els (Chen, 2000). For example, a logistic regression model is a special case of GLM
where the response variable is binary, and has the form

log

(
π

1− π

)
= α+

p∑
j=1

βjXj . (4.23)

Alternatively, a generalized additive logistic regression model is of the form

log

(
π

1− π

)
= α+

p∑
j=1

fj(Xj). (4.24)
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where π = p(y = 1) as discussed in the previous chapter on GLMs, and Y is the in-
dicator variable denoting the occurrence of an event of interest. The non-parametric
functionf(·) makes the generalized additive logistic regression model more flexible.
Suppose that a random variable Yi is a response variable with a distribution amongst
of the exponential distributions is, the general form of GAM is as follows,

g(ui) = Xi
∗θ +

∑
j

fj(xj). (4.25)

where g(u) is a monotonic, invertible and a differentiable link function, .Xi
∗θ is an es-

timate of X∗ that can be parametrically estimated and fj(·)′s are the non-parametric
smooth function to be estimated.

4.5.1 Estimating the generalized additive model

Estimation of GAM is a two-step process first is, estimation of the smoothing param-
eters and secondly, finding the model coefficients of the maximum penalized like-
lihood function. Therefore, correctly choosing the basis function and the smooth-
ing parameter in GAM is central (Zhang et al., 1998), where penalized regression
smoothers are the common choice of basis that is based on smoothing splines. Thus,
smooth terms can be represented as a linear combination of the basis functions, bjk
and the unknown regression parameter, βjk such that

fj(xj) =

qk∑
j=i

βjkbjk(xj)

And substituting each smooth term in 4.25 by their basis will result in Equation 4.26

g(ui) = Xiβ. (4.26)

where Xi contains the columns of Xi
∗and the columns containing the spline basis

are evaluated at each covariate, xi, and β is the column vector that contains θ∗ and
all the other smooth coefficients vectors of β. Now we can relate 4.26 to a GLM class
fitted by using iterative re-weighted least squares procedures; however due to the
additive structure in GAM that is not really the case; instead, the penalized likeli-
hood function is maximized using a penalized iterative re-weighted least squares
method (P-IRLS). Furthermore, the optimization problem can be achieved by maxi-
mizing 4.27
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||W k(Zk −Xβ)||2 +
∑
j

λjβ
TSjβ. (4.27)

where K is a constant representing the iteration index and λj is the smoothing pa-
rameter. W is a diagonal matrix of weights,where Wi

k = W 0.5
(
V (uki )

−0.5

(g′(ui))k

)
,V (ui) =

φ−1var(yi) and Zk = Xβk +Gk(y−uk). Gk is a diagonal matrix such that the diago-
nal elements Gkrr = g′(uk). A broad theory on iterative methods can be found on the
work by (Keen & Engel, 1997)

4.6 Generalized Additive Mixed Moddels(GAMMs)

The generalized linear mixed models (GLMMs) of Breslow & Clayton (1993) pro-
vided an intensive framework for parametric regression of overdispersed and corre-
lated outcomes. Overdispersed and correlated outcomes data frequently arise from
longitudinal studies, survey sampling studies, clinical trials and disease mapping
(Lin & Zhang, 1999). Although GLMMs (Breslow & Clayton, 1993) are powerful in
handling such data, they have that one limiting factor,that is the assumption of the
parametric mean function used to model covariate effects (Zhang & Lin, 2003). For
this reason, (Lin & Zhang, 1999) proposed GAMMs as an extension of GLMMs to
deal with over dispersed and correlated data with complex covariate effects. Gen-
eralized additive mixed models uses an additive non-parametric functions to model
covariate effects, while accounting for overdispersion and correlation by adding ran-
dom effects to the additive linear predictor (Lin & Zhang, 1999).

4.6.1 Model overview

Suppose y = (y1, . . . , yn)T is the set of independent outcome (response) variables
and xi = (xi1, . . . , xin)T are the covariates associated with the fixed effects and Zi is
a q× 1 covariate vector associated with the random effect, provided a q× 1 vector of
random effect b is known (or given), a general form of GAMM as proposed by Lin &
Zhang (1999) is given as

g(ui
b) = β0 +

p∑
j=1

fj(xi) +

q∑
k=1

zkbk. (4.28)

where g(·) is a monotonic differentiable link function, fj(·) is a centred twice differ-
entiable smooth function, the vector of random effect b is assumed to be normally
distributed, b ∼ (0, D(γ)), where γ is a q × 1 variance component vector. The out-
comes variables, y′is, are conditionally independent with means E(yi|b) = ubi and
variance, var(yi|b) = φmiv(ubi), φ is a dispersion parameter and v(·) is a prior known
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variance function and mi is a weight that is also prior known. One key fixture of
GAMM, is the ability of the additive non-parametric functions to model covariate
effects and the correlation between observations is modelled by the random effects
(Lin & Zhang, 1999) . Therefore, 4.28 can be expressed in a matrix form (Lin & Zhang,
1999) and it simplifies to

g(ub) = 1β0 +

p∑
j=1

Njfj + Zb. (4.29)

where 1 is an n × 1 vector of ones, Nj is an n × rj incidence matrix with the ith

component Njfj defined by fj(xj). ub = (u1
b . . . , un

b) , g(ub) = {g
(
u1
b . . . , un

b
)
}T

and Z = (z1, z2, . . . , zn)T A comprehensive literature of GAMM can be found in the
work by Lin & Zhang (1999).

4.7 Estimating the Generalized Additive Mixed Model

It can be seen that GAMM extends GAM by means of adding the random effect term
to account for correlated outcomes, thus GAMMs are estimated to be very similar
to GAMs, except that GAMM further considers the inferencing of the variance com-
ponent, γ. The infinite dimensional unknown parameters, f(·), are to be estimated
using a cubic smoothing spline as they are discussed in the previous section. The
smoothing parameter, λ and the variance component, γ, are jointly estimated by the
marginal quasi-likelihood (Lin & Zhang, 1999)
Suppose the values of γ and λ are known, the natural cubic smoothing spline esti-
mator of f(·) maximize the penalized log-quasi likelihood(Lin & Zhang, 1999)

l{y, β0, f1(·), . . . , fp(·), γ}−0.5

p∑
j=1

λj

∫ tj

sj

fj
′′(x2)dx = l{y, β0, f1(·), . . . , fp(·), γ}−0.5

p∑
j=1

λjf j
Tkjfj

(4.30)
where the jth covariate is defined over a range of (sj , tj), the vector λ = (λ1, . . . , λp)

T

is a smoothing parameter that controls the trade-off between goodness of fit and the
smoothness of the estimated function. The roughness penalty of the penalized sum
of squares

∑p
j=1 λj

∫ tj
sj
fj
′′(x2) can be estimated by

∫ T
j kjfj .

To maximize the function 4.30, numerical integration methods, as discussed by Bres-
low & Clayton (1993), need to be applied. Lin & Zhang (1999) proposed an ap-
proximation of 4.30 using a double penalized quasi-likelihood (D-PQL) within the
framework of generalized linear mixed models (GLMMs) to obtain the cubic spline
smoothers.
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4.7.1 Double penalized quasi-likelihood method

The double penalized quasi-likelihood method is defined as (Lin & Zhang, 1999)

ldpql = −0.5

n∑
i=1

di(yi, ui
b)− 0.5

n∑
i=1

bTD−1b− 0.5

r∑
j=1

λjf j
Tkjfj . (4.31)

where the penalty term
∑n

i=1 b
TD−1b results from approximation of the integrated

log-quasi likelihood based on the Laplace method, λjf jTkjfj is the penalty term that
determines the smoothness of the function f(·) that depends on the estimates of the
smoothing parameter,λj
Since the centred vector fj can be re-parametrized in terms of the basis function such
that fj = Xjβj + βjaj , the maximization of 4.31 with respect to (βj ; f1 . . . , fp) and b

to obtain the cubic spline smoothers, 4.31 becomes

l∗dpql = −0.5

n∑
i=1

di(yi, ui
b)− 0.5bTD−1b− 0.5aT∧−1a. (4.32)

where xj is an rj×1 vector centred at rj distinct values of xij , while βj = Lj(Lj
TLj)

−1

with the rj×(rj−2) full rank matrixLj , which meets the conditionLjLjT , andLjTXj

results from the identity fj
Tkjfj in the parametrized DPQL. For a = (aT1 , . . . , a

T
p ).

The vector ∧ = diag(τ1I, . . . , τpI) with τ = 1
λj

, thus, the matrix equation of GAMM
4.29 can be generalized to

g(ub) = Xβ +Ba+ Zb. (4.33)

where aT and bT are the random vector effects and are both multi-normally dis-
tributed with mean zero and variance ∧ and D, respectively. β = (β1, . . . , βn)T

is a (p + 1) × 1 vector of the model coefficients, X = (1, N1X1, . . . , NpXp)
T and

B = (N1B1, . . . , NpBp)
T , 4.33 is simply a GLMM and fj ′s can be obtained by fitting

the model.
The maximization of 4.33 with respect to β, a and b results to the normal Equations
4.34 that can be solved by applying the iterative methods such as Fisher’s scoring
algorithm


XTWX XTWB XTWZ

BTWX BTWB + ∧−1 BTWZ

ZTWX ZTWB ZTWZ +D−1




β

a

b

 =


XTWY

BTWY

ZTWY

 (4.34)

to obtain estimators f̂j and â and b̂ the random effect estimators.
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When comparing the covariance matrix of f̂j , it is more convenient to calculate the
values of β and a by using XTR−1X XTR−1B

BTR−1X BTR−1B + ∧−1

 β

a

 =

 XTR−1Y

BTR−1Y

 (4.35)

where R = W−1 + ZDZT . Denoting the left hand-side vector of 4.35 by Hand
H0 = (X,B)TR−1(X,B), therefore, the approximate covariance matrix of â and b̂

random estimators is
cov(β̂, â) = H−1H0H. (4.36)

Thus, the covariance matrix of f̂ can be written as

cov(f̂) = (Xj ;βj)cov(β̂j âj)(Xj ;βj)
T . (4.37)

Here, we assume that the non-parametric functions fj(·)′s are fixed in calculating
the estimates f̂j . Furthermore, when estimating fj(·) it is equally important to also
estimate the smoothing parameter λ and the unknown vector of fixed regression pa-
rameters. To ensure that f̂j performs well, the choice of the smoothing parameter λ̂
has to be good.

In addition, on the estimation of the smoothing parameter, λ and the variance com-
ponent γ there exist a number of method for approximation. One of the famous
data-driven method is the cross-validation (CV) method discussed in Section 4.4.3
(Rice & Silverman, 1991; Zeger & Diggle, 1994). Zeger & Diggle (1994) pointed out
that the CV is often expensive and takes too much time for variance component
approximation. The second method of approximation, generalized maximum like-
lihood (GLM) was proposed by Wahba et al. (1985) under the non-parametric mod-
elling of independent data (Zhang et al., 1998). Robinson et al. (1991) found that a
GLM estimator of say τ = 1

λ is equal to a REML estimator of τ under linear mixed
models. The REML is another well-known and yet one of the most recommended
(Harville, 1977) methods for estimation of λ and γ. It performs better than many
methods of approximation that exist in the literature (Kohn et al., 1991) that include
CV and GCV methods as discussed in section 4.4.3. For a comprehensive theory
about the approximation of the smoothing parameter and the variance component,
readers can refer to (Lin & Zhang, 1999; Zhang et al., 1998), among others.
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4.8 Advantages and Disadvantages of GAMMs in R statisti-
cal Software

Generalized additive mixed models (GAMMs) extend generalized linear mixed mod-
els (GLMMs) by allowing the predictor variables to depend linear to the unknown
smooth function of some covariates (Lin & Zhang, 1999). For this reason, GAMMs
are non-parametric (or semi-parametric) because the unknown functions are mod-
elled without any distribution specification in advance. Like GLMMs, GAMMs are
not considered as the best model to fit binary response data, as they may produce
unreliable results and are possibly misleading (Wood, 2017). Instead, for binary re-
sponse and low mean count data GAMM must be fitted using gamm4 package in
R instead of gamm, gamm4 is more preferable because of its numerical robustness.
gamm4 is based on gamm from package mgcv in the statistical R-software, gamm4
uses lme4 rather than nlme as the underlying fitting engine via a trick due to Fabian
Scheipl. Furthermore, gamm4 performs even better when PQL is avoided (Wood,
2017). As preferable as it might be, it cannot deal with multi-penalty smooths and it
has no facility to accommodate for nlme style correlation structure, thus this remains
its main disadvantage. When fitting GAM without the random effects, gam would
perform much than gamm4 or gamm, whereas gamm4 would produce worse MSE
than gam with REML smoothness selection (Wood et al., 2013). For large data sets,
fitting GAMMs with modest numbers, gam is much faster (or better) than gamm4
when the random effects are identically and independent distributed (i.e i.i.d). Thus
gamm4 is most useful when the random effects are not i.i.d or when there are large
numbers of random coefficients (more than several hundred), each applying to only
a small proportion of the response data. Furthermore, GAMMs are more computer-
intensive compared to GLMMs (Zhang & Lin, 2003).

4.9 Application of GAMM to the TDHS and ADHS data sets

4.9.1 Introduction

As mentioned earlier, the survey logistic model under the GLM class is a parametric
model and, hence, it has a number of assumptions, as discussed in 3.5; as powerful
and as easy as it is to deal with complex survey data, it cannot deal with correlated
data. For these two reasons a GAMM was fitted to handle the issue of possibly cor-
related outcomes from these two data sets with complex survey designs. A GAMM
was fitted over a GLMM because of its statistical robustness and the fact that it is
one of the non-parametric (semi-parametric) mixed models, which are said to be
non-parametric. Thus, it has fewer assumptions compared to GLMM or SLR mod-
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els, which made it a more preferable model to be fitted into the two data sets (TDHS
and ADHS) to help the study’s investigation of the factors that are said to be signifi-
cantly associated with childhood anaemia.

4.9.2 Model fitting and interpretation of the results

The response variable is anaemia status, which is binary (anaemic or not-anaemic).
The associated covariates are: age of the child, gender of the child, wealth index,
highest education level mother, sex of the household head, age of the household
head, stunting status, household has television, type of place of residence and the
respective regions in each country. The age of the child and the age of the household
head were modelled non-parametrically; hence the age of the child is no longer cat-
egorically for us to me the necessary requirements of fitting non-parametric terms.
While, all the other covariates were modelled parametrically in this study. Non-
parametrically terms are continous variables,the child age is no longer treated as a
categorical variable. The same variables that were used in the final survey logistic
regression model were used here, with an addition of two variables, with the pur-
pose of comparing which of the two models do better when fitting the two data sets.

A gamm formula available in the mgcv package in R-statistical software was used
to fit the GAMM model. The mgcv package has several options for estimations of
the smooth terms, and as discussed earlier, for more details on smoothing refer to
(Ruppert et al., 2003; Green & Silverman, 1993; Härdle & Kneip, 1999; Hastie, 1990).
By default mgcv uses the shrinkage smoothers, which have several advantages. One
of them is that: shrinkage smoothers circumvent knots placement. Furthermore,
this method is constructed in such a way that it smoothes any number of covariates
(Wood, 2017). However, the shrinkage smoothers are very slow and use a large
amount of memory, specifically, for large data sets. For this reason, in this study the
cubic splines “cr” were used to estimate the smooth terms in GAMM. In the gamm
formula, the distribution was specified (binomial) and the link function (logit link)
was used when fitting the model. The random effect variable (clusters) was also
specified on the “random= ()” statement. Both backward and forward methods were
used for variable selection, non-significant variables (p-value> 0.05) were discarded
from the model and the changes on the AIC were observed. Therefore, the final
GAMM model is as follows:
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g(µi) = β0+β1(child gender)+β2(type of place of residence)+β3(Region)

+ β4(Wealth index) + β5(Stunting) + β6(Household has television)+

β7(Motherhighest education)+s(child age)+s(age of the household head)+b0j .

(4.38)

where g(µi) is the logit link function, β’s are parametric regression coefficients, sj ’s
are centred smooth functions and b0j is the random effect distributed as N(0, D(γ)).
The common widely used methods for estimating additive models are: cubic smooth-
ing splines, locally-weighted running line smoothers, and kernel smoothers (Rup-
pert et al., 2003; Green & Silverman, 1993; Härdle & Kneip, 1999; Hastie, 1990) as
discussed in section 4.3.

Looking at the overall significance for each effect in childhood anaemia after fitting
GAMM to the TDHS and ADHS data set, we can observe from the ANOVA Table 4.1
that the variable that was found to be commonly significantly associated with child-
hood anaemia in both countries, when the two data sets were fitted on an SLR model,
have changed. There are two more additional variables, the highest education level
of the mother and the gender of the child, (while the SLR model showed only three
variables, child age, regions, and the stunting covariate) that had a significant effect
on anaemia. Looking at the significant factors (p-value< 0.05) by country, we can ob-
serve that in Tanzania, the model suggests that childhood anaemia was significantly
associated with child gender (p-value = 0.0387), mother’s highest education level
(p-value < 0.0001), stunting (p-value < 0.0001), region (p-value < 0.0001) and child
age, modelled non-parametrically (continuous variable), p-value < 0.0001. In An-
gola, GAMM reveals that childhood anaemia was significantly associated with child
gender (p-value = 0.0178), household has television (p-value = 0.00014), mother’s
highest education level (p-value = 0.0003), stunting (p-value < 0.0001), wealth in-
dex (p-value = 0.0043), region (p-value = 0.0041), the age of the child and the age of
household head, which were modelled non-parametrically (continuous variables)
with their respective p-values of, < 0.0001 and < 0.0001.
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Table 4.1: ANOVA results (TDHS and ADHS) for the parametric terms

Tanzania

Effect DF F-value p-value

Gender 1 5.62 0.03878

Child’s age(in months) 5.10 99.35 <0.0001

Type of place of residence 1 1.10 0.294

Wealth index 2 1.59 0.204

Stunting 2 18.77 <0.0001

Region 29 3.831 <0.0001

Mother’s highest education level 3 8.45 <0.0001

Household has a television 2 0.36 0.699

Angola

Gender 12 5.62 0.0178

Child age(in months) 2.62 91.55 <0.0001

Type of place of residence 1 0.207 0.649

Wealth index 2 5.46 0.0043

Stuntinng 2 21.053 <0.0001

Region 17 2.15 0.0041

Mother highest education level 3 6.322 0.0003

Household has a television 2 8.87 0.0014
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Table 4.2: Final GAMM model fitted to TDHS data set

Parameter Estimate
Standard
error

t-value p-value aOR(95%CI)

Intercept 0.664 0.223 2.991 0.0028 ** 1.943(1.258; 3.006)

Gender
(ref=male)

-0.116 0.0557 -2.068 0.0387 * 0.890(0.799;0.994)

Mother’s highest education level (ref =No education)

Primary -0.342 0.071 -4.800 <0.0001 *** 0.710(0.618; 0.817)

Secondary -0.443 0.129 -3.447 0.0006 *** 0.642(0.499;0.826)

Higher -2.053 2.554 -0.803 0.422 0.128(0.001; 19.191)

Residence type (ref = urban)

Rural 0.117 0.112 1.049 0.2944 1.124(0.903;1.399)

Wealth Index (ref = Poor)

Middle -0.055 0.081 -0.685 0.493 0.946(0.808;1.108)

Rich -0.142 0.081 -1.757 0.0789 0.868(0.739;1.016)

Stunting (ref =severe)

Moderate -0.233 0.095 -2.454 0.0141 * 0.792(0.658;0.954)

Nourished -0.493 0.088 -5.604 <0.0001 *** 0.611(0.513;0.725)

Household has television (ref = yes)

No 0.005 0.159 0.030 0.9757 1.005(0.735;1.373)

Approximate significance of smooth terms

Parameter edf f-value P-value

S(Child’s age ) 5.102 99.355 <0.0001 ***

S(Age of the
household head)

1.501 2.091 0.231
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Table 4.3: Final GAMM model fitted to ADHS data set

Parameter Estimate
Standard
error

t-Value P-value aOR(95%CI)

Intercept 1.363 0.300 4.540 <0.0001 *** 3.91(2.142;6.903)

Gender
(ref=male)

-0.154 0.065 -2.371 0.0178 * 0.847(0.755; 0.974)

Mother highest education level (ref =No education)

Primary -0.070 0.089 -0.783 0.4337 0.932(0.783;1.113)

Secondary -0.389 0.114 -3.420 0.0006 *** 0.678(0.540;0.844)

Higher -0.726 0.231 -3.142 0.0017 ** 0.483(0.307; 0.759)

Residence type (ref = urban)

Rural 0.0601 0.134 0.455 0.6488 1.062(0.823; 1.388)

Wealth Index (ref = rich)

Middle 0.449 0.134 3.218 0.0013 ** 1.567(1.194;2.063)

Poor 0.504 0.173 2.910 0.004** 1.655(1.183;2.33)

Stunting (ref =severe)

Moderate -0.482 0.110 -4.380 <0.0001 *** 0.618(0.497; 0.765)

Nourished -0.659 0.102 -6.478 <0.0001 *** 0.517(0.424; 0.632)

Household has a television (ref = yes)

No -0.342 0.112 -3.065 0.0022 ** 0.710(0.574; 0.888)

Approximate significance of smooth terms

Parameter edf f-value P-value

S(Child’s age ) 2.616 91.55 <0.0001 ***

S(Age of the
household head)

1.00 20.64 <0.0001 ***

a

aNote: The odds ratios as shown on the above tables (4.2 and 4.3) are adjusted for the regions in
each country

From the above two tables (4.2 and 4.3) we can observe that in both countries the
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effect of education level is significantly associated with childhood anaemia, chil-
dren whose mothers (or household head/caretaker) had no education had higher
odds of being anaemic compared to other children whose mothers ( or household
head/caretaker) had primary education (OR=0.932, 95% CI (0.783;1.113)), secondary
(OR=0.678, 95% CI (0.540;0.844)) and higher education (OR = 0.483, 95% CI (0.307;0.759)),
in Angola and in Tanzania, we observe the very similar trend, mothers with pri-
mary education (OR=0.710, 95% CI (0.618;0.817)), secondary (OR=0.642, 95% CI
(0.499;0.826)) and higher (OR=0.128, 95% CI (0.001;0.19.191)) education had less chances
of having anaemic children compared to uneducated mothers. Male children from
both countries were more likely to be anaemic compared to female children, OR=

1
0.847 = 1.18 (95% CI( 0.755;1.113))in Angola and OR = 1

0.890 = 1.12 (95% CI (0.799;0.994))in
Tanzania.

The odds of children from both countries (Angola and Tanzania) not suffering from
stunting (normal stunting status) were reduced by 48.3% (OR = 0.517, 95% CI (0.424;0.632))
in Angola and by 38.9% (OR=0.611, 95% CI (0.513;0.725)) in Tanzania compared
to children who were severely stunted. In Angola, children who were moderately
stunted also had reduced odds of being anaemic compared to severely stunted chil-
dren, OR = 0.618, 95% CI (0.497;0.765), while children with normal stunting status
were 48.3% less likely to be anaemic compared to severely anaemic children. Fur-
thermore, in Angola, the availability of television in the household (OR = 0.710, 95%
CI (0.574;0.888)) and wealth index predictors were also found to have a significant ef-
fect on childhood anaemia. Children who were from poor and middle families were
respectively, 56.7% and 65.53% more likely to be anaemic in comparison to children
from rich families (Angola).

The effect of child age and household head or caretaker’s age was fitted non-parametrically.
Only the child age effect (p-value < 0.0001) was found to be significantly associated
with childhood anaemia in Tanzania (edf=5.102), while in Angola both the child age
(edf=2.616) and age of the caretaker (edf=1.00) had a significant effect, with p-values
for both < 0.0001.

The plots for smooth effects are presented in the figures below, HW1- is the child age
and V012-is the caretakers age:
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Figure 4.1 – Smoothing components for anaemia with Child age and household head age
(TDHS data set)

Figure 4.2 – Smoothing components for anaemia with Child age and household head age
(ADHS data set)

The two figures presented above are smoothing components of childhood anaemia
with child age and household head. In each panel, the smooth line is the estimated
trend from a generalized additive mixed model. The y-axis represents the effect of
the age (child and household age) term, where s is a smoother term and the number
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in parentheses is the estimated degrees of freedom (edf). We can observe in Figure
4.1, and 4.2 specifically, for HW1 (child age) there is a decreasing trend as the x-axis
(age of the child in months) increases; children at a young age had higher chances
of being anaemic. The test statistic was respectively, 99.35 and 91.55 in TDHS and
ADHS with p-values both less than 0.0001.

4.10 Summary and Discussion

In this section, a generalized additive mixed model (semi-parametric mixed model)
was fitted to the two data sets for the purpose of investigating the demographic and
socioeconomic factors that are significantly associated with childhood anaemia. The
GAMM is a flexible statistical approach because of its ability to fit both the non-
parametric and parametric terms simultaneously. There are a number of statistical
models that could have been used to analyse these data sets (for example, gener-
alized estimating equation, generalized linear mixed models, etc.), but because of
the robustness of GAMM in dealing with data that assumes complex survey designs
(data that involves stratification, clustering and with unequal weights), it was rec-
ommended for this thesis.

Looking at the two models fitted on the data sets (SLR and GAMM), we can iden-
tify a huge difference in the way they fit the data. One of the most notable differ-
ences is that SLR is a fully parametric model that fitted the data sets assuming that
there was a linear relationship between the predictor variables and the response
variable, while GAMM relaxes that assumption. Secondly, other variables were fit-
ted non-parametrically. The two models agree on the factors that are said to have a
significant effect on childhood anaemia in both countries; however, GAMM further
revealed that the mother’s highest education level and the child gender are in fact
also significantly associated with childhood anaemia (p-values < 0.05 in both coun-
tries).

The model highlights that, in both countries, severely stunted children and children
with highly educated mothers (higher education, e.g. attended university) were less
likely to be anaemic compared to non-stunted and children with mothers who had
no education, respectively. Although the model shows non-significant effect of the
type of place of residence and the standard of living in the household in Tanza-
nia, considering other effect sizes besides the p-value, we can tell that children from
poor homes were more likely to suffer from anaemia compared to children from
rich families; children from rural areas were also more likely to be anaemic com-
pared to children from urban areas. Furthermore, the effect of child age (fitted non-
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parametrically) is the common cause of childhood anaemia in both countries. More-
over, the age of the child was fitted non-parametrically, with an effective degrees of
freedom in both results not equal to one (edf 6= 1), this simply means the relation-
ship between childhood aneamia and the child age is not linear. The edf = 1.00 for
caretaker age in Angola, suggests that there was a linear relationship between child-
hood anaemia and the age of the caretaker in Angola, while in Tanzania that is not
the case. In the next chapter, our focus is shifted, the data sets were analysed using
spatial regression.
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Chapter 5

Spatial Regression Analysis

5.1 Introduction

Thus far we have fitted generalized linear models, specifically, survey logistic regres-
sion (SLR) and generalized additive mixed models (GAMMs). However, none of
these modelling techniques take into account the effect of spatial variability. Hence,
this chapter was added to investigate if there is an effect of spatiality and further
to produce maps illustrating the predicted (interpolated) prevalence of childhood
anaemia in different regions in each country.

Similar to the general linear regression, spatial regression is a broad class of statis-
tical modelling that focuses on space. Generally, statistical analysis describes the
cause and effect relationship between a dependent variable and one or more inde-
pendent variables. One kind of data set used for analysis is a cross-sectional data set
which is sometimes referred to as spatial or area data (Zurnila et al., 2019). Unlike
other data sets, cross-sectional data sets state the observation and its location, that is,
where the subject resides. Hence, there are high chances that subjects are spatially
dependent, meaning that observations in a region could be related to observations
from other areas. All things are related , but something adjacent is more influential
(Tobler, 1979). Hence, in this thesis spatial regression analysis was included because
DHS data sets are a type of cross-sectional (spatial) data.

Spatial data can be divided into three methods (Schabenberger & Gotway, 2005).
These are point pattern analysis, point referenced data and areal data. Point pattern
analysis is defined as the methods for lattice data and geostatistics, point referenced
data is often called geocoded or geostatistical data set and aerial data is also called
lattice data (Schabenberger & Gotway, 2005). On rare occasions, you find that a data
set that features both point and areal-level data. Most of the time in point pattern
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data, the response occurrence of an event is fixed and only the areas (location) where
it occurs are thought of as random. In epidemiological analysis, the geostatistical
approach is said to be the most relevant and is conducted at the landscape scale and
based on remote sensing (Goovaerts et al., 2005, 1997; Allard, 2013). In this study,
since we are working with cross-sectional data sets, the point referenced method is
the most appropriate to apply.

5.2 Model Structure

A common way to deal with spatially correlated data with random effect and con-
tinue with maximum likelihood estimation approaches for covariate estimation and
covariogram parameters is based on the theory of generalized linear mixed mod-
els of Breslow & Clayton (1993). Generalized linear mixed models have the form
(Schabenberger & Gotway, 2005)

g(u) = Xβ + Zb+ ε

whereX and Z are the design matrices of fixed (withN×p dimensions) and random
effect (with N × q), respectively. β is a p× 1 vector coefficients of fixed effects and b
is a q × 1 vector of random effects. In spatial problems, b, is assumed to be normally
distributed with a mean = 0 and a variance =

∑
b (θ) (b ∼ N(0,

∑
b (θ))) and the

random error terms are also Gaussian distributed with mean of zero and variance
of σ2 × I , ε ∼ N(0, σ2εI), where I is an identity matrix. The spatial correlation is
parametrized by θ in

∑
b (θ). To incorporate the location si, we assume that y(si|b)

is conditionally independent for any location with a mean E(y(si|b)) = µ(si). The
parameter b is used to define the distribution of s (Schabenberger & Gotway, 2005).
Similar to the classical generalized linear models, g(u) is a classical link function
which is normally the a function of the location parameter.

Basically, non-normal (non-Gaussian problem) spatial problems can be analysed in
the context of generalized linear mixed models. Supposing Y (si) is a spatial random
variable at location si for i = 1, 2, ..., n and assuming that, Y = (Y (s1), . . . , Y (sn))T

are conditionally independent given the latent variable δ(si) with probability den-
sity function (Hosseini Shojaei et al., 2018)

f(y(si), η(si), ψ(si)) = exp

(
y(si)η(si)− b(η(si))

a(ψ(si))

)
+ c (y(si), ψ(y(si))) . (5.1)

for some specific function a(·),b(·) and c(·). where η(si) and ψ(si) are canonical and
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scale parameters, respectively. for X(si) = (x(s1), x(s2), . . . , x(sn))T , with x(si) = 1

a spatial generalized linear mixed model (SGLM model) can be defined as follows
(Hosseini Shojaei et al., 2018)

g(E(Y (si))) = βTX(si) + ϕ(si). (5.2)

where g(·) is a link function and β ∈ Rp are the unknown regression parameters.
The latent variables δ(si) = (δ(s1), . . . , δ(sn))T are assumed to be multi normally dis-
tributed in SGLM with mean zero and a covariance matrix

∑
θ = σ2R(ψ), where R is

the correlation matrix with elements Rij = ρ(si − sj , ψ) and ψ(·, ψ) is a valid spatial
correlation function on R2 is indexed by a parameter ψ. The parameters θ = (σ2, ψ)

are sometimes called the partial sill and range, respectively. Furthermore, specifica-
tion of the likelihood of the random effect y(s) is required.

In the literature, there exist several functions that could be used to study spatial de-
pendence. For the study of spatial correlation, there are three major functions used
in geostatistics. These functions are correlogram, the covariance and the semivari-
ogram (also called variogram). In geostatistics, the variogram is the main function
that is used to fit a model for spatial correlation in the data. By definition (Sherman,
2011), a variogram is given by

2γ(h) =
1

N(h)

N(h)∑
i=1

{Z(si)− Z(si + h)}2. (5.3)

where 2γ(h) is a variogram which represents the average variance between obser-
vations separated by distance h, for h = si − sj , γ(h) is the semivariogram, Z(si)

is the measurement at location si and N(h) is the number of sampled data points
of distance (lag) of length h. The shape of a semivariogram has the form which is
presented in Figure 5.1 (Ayele, 2013).

Figure 5.1 – Idealized form of variogram function, illustrating the nugget, sill and range
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The model found in the variogram is used in kriging estimation. Moreover, vari-
ogram models are used to understand the maximum distances of spatial autocorrela-
tion which can be further used in the construction of search parameters for different
interpretation techniques (Ayele, 2013). A variogram represents both the structural
and the random aspects of the data. Moreover, a variogram has certain criterias to
meet, for instance, to develop a variogram µ(s) is assumed to constant (Sherman,
2011) and define

V ar(Z(s1)− Z(s2)) = 2γ(s1 − s2)

the variance of s1 and s2 is through their difference s1 − s2 and the process which
satisfies the property is called intrinsically stationary (IS). If γ(h) depends only on its
vector argument h through its height ||h|| then the process is called isotropic. How-
ever, the process that is said to be both intrinsically stationary and isotropic is known
as homogeneous process (Sherman, 2011; Schabenberger & Gotway, 2005). For some
function, γ0(h) = γ(h), it is more convenient to deal with isotropic processes because
there are a number of widely used parametric funtions for γ0(h). A semivariogram
increases monotonically to reach a peak (called sill) and range (r) with spatial vari-
ance called partial sill σ2, and a non-random variance starting at h > 0 referred to as
nugget, as shown in Figure 5.1. Several examples are shown as follows:

1. Linear

γ0(h) =

 0, if |h| = 0

C0 + C1h, if |h| > 1

(5.4)

Where C0 and C1 are positive constants. As t → ∞, γ0(h) → ∞. Thus, the assump-
tion of stationary is not satisfied. h is the lag distance interval.

2. Spherical

γ0(h) =


0, if |h| = 0

C0 + C1h
(
3
2
h
R − 0.5

(
h
R

)3)
, if 0 < |h| ≤ R

C0 + C1h if |h| ≥ R

(5.5)

This is valid in (Rd, for d = 1, 2, 3). The spherical function reaches the sill at
|h| = R. The model is almost linear at small lags. In practice, spherical models
are commonly used variogram structures (Schabenberger & Gotway, 2005), particu-
larly for modelling spatial correlation that decreases with an increase in |h| which is
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simply the spatial distance.

3. Exponential

γ0(h) =

 0, if |h| = 0

C0 + C1(1− exp(− h
R)) if |h| ≥ 1

(5.6)

This is simpler in functional form compared to the spherical case. Exponentials cases
are valid for all d. However, it reaches the sill asymptotically as |h| → ∞.

4. Gaussian

γ0(h) =

 0, if |h| = 0

C0 + C1(1− exp(− h2

R2 )) if |h| > 1

(5.7)

Similar to the exponential case, Gaussian cases are also valid for all dimension. The
Gaussian model reaches the sill asymptotically. Moreover, they are applicable if the
data is continuous at a short lag distance. Equivalently, they are applicable when
spatial correlation nearby points are very high.
5. Exponential Power form

γ0(h) =

 0, if |h| = 0

C0 + C1h(1− exp(−| hR |
p)) if |h| ≥ 1

(5.8)

where < p ≥ lies in the interval. Note: Gaussian and exponential forms are special
cases of the exponential power form.
6. Relation quadratic

γ0(h) =

 0, if |h| = 0

C0 + C1h(1− exp(h
2

R )) if |h| > 1

(5.9)

7. Wave forms

γ0(h) =

 0, if |h| = 0

C0 + C1h(1− R
h sin( hR)) if |h| ≥ 1

(5.10)

Generally, the wave or hole forms are used when there is presence of periodicity in
the data resulting in a hole effect.
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8. Power law

γ0(h) =

 0, if |h| = 0

C0 + C1h
λ if |h| ≥ 1

(5.11)

The power laws forms are valid for all dimensions, but the power does not reach the
sill. Non-positive definiteness requires 0 ≤ λ < 2, which is an example of a semi-
variogram that does not correspond to the stationary process Ayele (2013).

9. The Matern class
This method was proposed by Matérn (1960), which was neglected in favour of the
simple analytic forms. Handcock & Stein (1993); Handcock & Wallis (1994), demon-
strated the flexibility of this method in handling several spatial data sets. The class
is best defined in terms of isotropic covariance. Therefore,

C0(t) =
1

2θ2−1γ(θ2)

(
2
√
θ2t

θ1

)θ2
Kθ2

(
2
√
θ2t

θ1

)
. (5.12)

where θ1 is the spatial scale parameter and θ2 is the shape parameter, both θ1 and
θ2 are greater than zero.γ(·) is a gamma function and Ktheta2 is the modified Bessel
function. For further theory, readers can refer to Schabenberger & Gotway (2005)
and Sherman (2011).

The other problem to deal with in the spatial process is that of anisotropic processes,
there are several ways for direct generalization. The simplest of them all is the geo-
metric anisotropy. A semivariogram with the form of geometric anisotropy is given
by

γ(h) = γ0(||Ah||)

where γ0 is an isotropic semivariogram and A is a d× d matrix representing a linear
transformation of Rd. If matrix A is the identity matrix this reduces to an isotropic
case; the process is isotropic in some linearly transformed space. Moreover, if A is
positive definite, the contours of equal variance are ellipses and not circles. To gen-
eralize anisotropy (Ayele, 2013), let the simple independent intrinsically stationary
process be Z1, . . . , Zp. Therefore we can define

Z = Z1 + · · ·+ Zp

which is also intrinsically stationary. Thus, the corresponding semivariogram is
given by
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γ(h) = γ1(h) + · · ·+ γp(h)

where γ1(h), . . . , γp(h) are the semivariograms of Z1, . . . , Zp, respectively. Hence

γ(h) =

p∑
i=1

γ0(Aih). (5.13)

γ0 is an isotropic semivariogram and A1, . . . , Ap are matrices.

5.2.1 Valid Covariance and Semivariogram Functions

Consider isotropic models for the covariance function and semivariogram of spatial
process. Let C(h) be isotropic covariance of second order stationary (SoS) field and
γ(h) be the isotropic semivariogram of second order stationary or intrinsically sta-
tionary (IS) field (Sherman, 2011). Therefore, a valid covariance C(h) is a positive
definite function given as:

m∑
i=1

m∑
j=1

aiajC(Si − Sj) ≥ 0. (5.14)

For any finite configuration of spatial location (s1, s2, . . . , sm) and all for all real num-
bers (a1, a2, . . . , am). According to the Bochner’s equation 5.14 can be represented in
spectral form ∫ ∞

−∞
. . .

∫ ∞
−∞

exp(iw′h)dS(w). (5.15)

for S(w) = S(w)dw integrated over Rd and S is a positive bounded spectral measure
(Schabenberger & Gotway, 2005).

C(h) =

∫ d

0
φd(hw)dH(w)

and

φd =

(
2

t

)v
r(
d

2
)Jv(t)

Where φd is commonly known as the basis function of the covariance model in Rd

and V = d
2 − 1, Jv is known as a Bessel function of the first kind of order V and H is

a non-decreasing function on [0 ,∞ ) interval, with
∫∞
0 dH(w) < ∞. Furthermore,

there is a corresponding theory for variogram that we can refer on by Schabenberger
& Gotway (2005) to check the model validity. For SoS process of semivariogram γ(·),
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if (a1, a2, . . . , am) are constants with
∑
ai = 0, therefore

m∑
i=1

m∑
j=1

aiajC(Si − Sj) ≤ 0. (5.16)

A semivariogram as in the case of covariance has also a spectral representation of
the following form (Schabenberger & Gotway, 2005):

γ(h) =
1

2

∫ ∞
0

w−1 (1− φd(wh)) dH(w). (5.17)

with
∫∞
0 (1 + w2)−1dH(w) <∞. For γ(h) to be a valid semivariogram, 2γ(h) should

grow slowly than ||h||2 which is often referred to as the intrinsic hypothesis (Sch-
abenberger & Gotway, 2005).

5.3 Estimation

In the previous section we looked at and defined the concept of spatial covariance
and variogram, now the main goal is to find a valid variogram that as a measure of
spatiality (Schabenberger & Gotway, 2005), it is the closest to the spatial dependence
present in the data Z(s1), . . . , Z(sn).
To estimate a variogram, there are several methods that exist in the literature. These
methods are: Matheron’s (method of moments) estimator, the Cressie-Hawkins ro-
bust estimator, and estimators based on order statistics and quantiles. For variogram
estimation, the method of moments is known as the simplest estimator.

Let Z(s1), . . . , Z(sn) be a set of spatial data, where one can plot the squared differ-
ence (Z(si) − Z(sj))

2 against the lag distance h and the resulting graph is know as
the semivariogram cloud (Schabenberger & Gotway, 2005). However, the squared
difference (Z(si)−Z(sj))

2 unbiased estimation of the variogram at lag h, h = si− sj
provided the mean of the random field is assumed to be constant. A more useful es-
timator is obtained by summarizing the squared differences. The moment estimator
or sample variogram is given by (Sherman, 2011)

γ̂(h) =
1

2|N(h)|
∑
N(h)

(Z(si)− Z(sj))
2. (5.18)

where N(h) = (si, sj): ||si − sj || = ||h||. The set of all location separated by vector
h and |N(h)| is the number of all districts in N(h). This assumes that for lag vectors
h of interest, there are sufficient pairs of points separated by vector h. The estimator
γ̂(h) in γ̂(h) is well known as the classical Matheron estimator (Habyarimana, 2016)
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For sparse data set, it is highly advisable to group the distances into bins according to
distance lag and lag tolerance (Cressie & Hawkins, 1980). Hence, the corresponding
average squared is (Z(si)−Z(sj))2

2 in each bin which is referred to as a semivariogram
estimate for the distance lag. The lag tolerance must be chosen such that adequate
spatial resolution and stability are retained. Furthermore, the lag distance tolerance
must be chosen such that at least 30 location-to- location pairs wall with each bin
(Journel & Huijbregts, 1978).

Cressie & Hawkins (1980) proposed an estimator that alleviates the non-negative
impact of the underlying observations by eliminating squared differences from the
evaluation. This estimator is known as the robust semivariogram estimator the
Cressie Hawking (CH) estimator.

Robust estimation of semivariogram

The moment estimator is the average of the squared differences and thus can be
greatly influenced by small number aberrant values (Sherman, 2011). It is advis-
able to consider the robust estimator, to lessen the importance of any large squared
differences. Cressie & Hawkins (1980) proposed the following estimator

γ̄(h) =
1

|2(h)|

∑
N(h){(Z(si)− Z(sj))

1
2 }4

0.457 + 0.494
N(h)

. (5.19)

This estimator (5.19) is robust in the sense that it is resistant to contaminated normal
distributions and outliers resulting from skewed distributions (Sherman, 2011).
Another case that should be taken into consideration when estimating a variogram
(semivariogram) is when the data are unequally spaced. Often, there are no pairs of
points separated by any particular spatial lag h. Thus to obtain such an estimate in
these cases some amount of smoothing is necessary (Sherman, 2011).

The Kernel smoothing in estimation of semivariogram

Let w(u) be a non-negative symmetric bivariate density function centred at 0, with∫
w(u) = 1. The kernel estimator of γ(h) is given by (Sherman, 2011)

γ̂δ(h) =

∑
i,j{Z(si)− Z(sj)}2wδ(h− hij)∑

i,j wδ(h− hij)
. (5.20)

where hij = si − sj is the observed spatial lag between i and j, δ is the bandwidth
parameter that determines the amount of averaging that goes into the estimate at
each lag h and wδ(u) = 1

δw(uδ ).
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Both the Cressie Hwakins (CH) and the Matheron estimators (5.18 and 5.19) have
unbounded influence functions and a breakdown point of 0%. The influential func-
tion of an estimator measures the effect off infinitesimal contamination of the data
on the statistical properties of the estimator (Hampel et al., 2011) and the point is the
percentage of the data that can be replaced by arbitrary values without explosion of
the estimator. Rousseeuw & Croux (1993) proposed the median absolute deviation
(MAD), a robust estimator scale with a 50% breakdown point and smooth influence
function. For a set of numbers {x1, . . . , xn}, the MAD is given by

MAD = d mediani(||xi −medianj(xj)||). (5.21)

where the medianj(xj) is the median of the xj and d is chosen such that its produces
approximately and consistently. Furthermore, Genton (1998, 2001) proposed a mod-
ified version of 5.20 and 5.21 to develop a robust estimator of the variogram based on
Qn.TheirQn estimator is given by the kth order statistic of the n(n+1)

2 inter-points dis-

tance. Assigning h = n
2 + 1 and k =

 h

2

, therefore Qn would be defined as Qn =

c{||xi−xj || : i < j}k. Let N(h) denote pairwise difference, Ti = Z(si)−Z(si +h) for
i = 1, 2, 3, . . . , n(n−1)2 ) for observed spatial data {Z(s1), . . . , Z(sn)}. After, calculate
Q||N(H)|| for Ti and return the semivariogram estimator at lag h

γ̄(h) =
1

2
Q2
|N(h)|. (5.22)

Thus γ(h) also has 50% breakdown points since Qn has 50% breakdown points, but
not necessary in terms of Z(si).

The empirical semivariogram estimator could alternatively be robustly estimated
using quantiles of the distribution squared differences (Z(si)−Z(sj))

2, equivalently,
|Z(si) − Z(sj)|, instead of considering the arithmetic averages (Schabenberger &
Gotway, 2005). Let (Z(si), Z(si + h))′ denote a bivariate Gaussian with common
mean, therefore

1

2
{Z(si), Z(si + h)}2 ∼ γ(h)χ2

1

1

2
|Z(si), Z(si + h)|2 ∼

√
γ(h)

2
|U |, U ∼ G(0, 1).

Let qp|N(h)| denote the pth quantile, therefore
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γ̂(h) = qp|N(h)|{
1

2
(Z(si)− Z(si + h))2}. (5.23)

estimates γ(h) ∼ χ2
p,1. If p = 50%, then 5.23 reduces to median estimator as:

γ̂(h) =
1

2
median|N(h)|

{12(Z(si)− Z(si + h))2}
0.455

,

=
1

2

(
median|N(h)|

1
2(Z(si)− Z(si + h))

1
2

)4
0.455

.

(5.24)

then qp|N(h)| reduces the median-based estimator. These methods provide estimates
at a finite set of lags or lag classes. In order to obtain estimates of γ(h) at any ar-
bitrary lag, the empirical semivariogram must be smoothed and, hence, the kernel
smoothing estimator could be used as discussed (Schabenberger & Gotway, 2005).

The properties of the semivariogram estimates γ̂(h), γ̄(h) have been extensively
studied, but on far single value h, as a function of over all h. The chances are, these
estimators may not be appropriate to meet the condition of non-positive definite-
ness,and, as such, they lack a very important condition (Sherman, 2011). Thus, spa-
tial predictions derived from such estimators might have negative variances. Fur-
thermore, such problems could be avoided by replacing the empirical γ(h) with
some parametric form which is known to be conditionally non-positive definite.
Hence, there is a necessity to seek a parametric family that adequately models the
observed data (Sherman, 2011; Schabenberger & Gotway, 2005; Ayele, 2013). Gen-
erally, there are three methods used to estimate the empirical semivariogram γ(h)

parametrically: Least-squares estimation, maximum likelihood or restricted maxi-
mum likelihood and the Bayesian estimation. For this thesis, only the least-squares
method, maximum likelihood and/or the restricted maximum likelihood method
are discussed.

Least squares estimation

Suppose that a semivariogram γ(h) has been estimated at a finite value of h and
we desire to fit a model with a priori-defined form with function γ(h, θ) in terms of
finite parameter θ. Assume that the method of moments and let is applied and let
γ̂ denotes the vector of estimates, γ(θ) the vector of model values at the same vec-
tor of h values. In the literature there are three versions of non-linear least squares
estimators: ordinary least squares (OLS), generalized least squares (GLS) and the
generalized weighted least squares (WLS) (Cressie, 1985). In OLS, the parameter
θ can be minimized using {γ̂ − γ(θ)}′{γ̂ − γ(θ)} . In GLS, θ can be minimized as
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{γ̂ − γ(θ)}′V (θ)−1{γ̂ − γ(θ)}, where V (θ) is the variance matrix of γ̂ . The GLS es-
timates depend on the unknown parameter θ, because the problem is not linear.
Lastly, the parameter theta in WLS can be minimized by {γ̂ − γ(θ)}′W (θ){γ̂ − γ(θ)},
whereW (θ) is a diagonal matrix whose entries are the variance of the matrix γ̂. Both
OLS and GLS allow for use of variance and covariance of γ̂ while GLS allows only
the variance of γ̂(Cressie, 1985).

Furthermore, these three estimators (OLS, GLS, and WLS) are expected to be in in-
creasing order of efficiency, but in decreasing order of convenience to use (Habya-
rimana, 2016). However, it turns out that OLS is the most convenient estimator for
non-linear least-squares procedure. While, the other two methods, GLS and WLS
require specification of the matrices V (θ) and W (θ). Assuming a Gaussian process,
the following expression is given (Ayele, 2013)

var{(Z(s+ h)− Z(s))2} = {2γ(h)}2. (5.25)

cov
(
{Z(s1 + h1)− Z(s1)}2, {Z(s2 + h2)− Z(s2)}2

)
,

=
(γ(s1 − s2 + h1) + γ(s1 − s2 − h2)− γ(s1 − s2 + h1 + h2)− γ(s1 − s2))2

4γ(h1)γ(h2)
.

(5.26)

This equation can be useful in evaluation of the matrices V (θ) and W (θ). As one
of the least-squares estimator, it is not guaranteed that the resulting minimization
problem has a unique solution (Schabenberger & Gotway, 2005).

Cressie (1985) proposed the WLS criterion to solve this complication. Suppose γ̂ is
evaluated at a finite set of values of {hj} and choose θ to minimize

∑
j

|N(hj)|{
γ̂(h)

γ(hj , θ)
}
2

. (5.27)

then WLS can be derived under the approximation of Equation 5.27 and can be given
as

var(|N(hj)|) ≈
8γ̂(h)

|N(h)|
. (5.28)

where Equation 5.28 follows from Equation 5.27, assuming that Z(si)−Z(sj) are in-
dividual independent terms. Although this assumption is not satisfied this remains
a reasonable estimate. Moreover, if the pairs (si, sj) lying in N(h) are widely spread
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from one another over a sample space, then the assumption of independence would
be a reasonable approximation (Schabenberger & Gotway, 2005). Therefore Equa-
tion 5.27 is not difficult to implement to OLS.

Maximum likelihood estimation (MLE)

The idea of maximum likelihood estimation of spatial data was first introduced by
Kitanidis (1983). This method is only applicable for Gaussian distributed data under
the assumption of Z(s) ∼ N(X(s)β,

∑
(θ)), where

∑
= αV (θ). α is a scale param-

eter, θ is an unknown parameter and V (θ) is a vector of standard covariance. The
maximum likelihood (ML) method estimates the mean and the covariance param-
eters altogether at one time. The ML estimates are a solution to the simultaneous
solution to the problem of minimizing negative twice the Gaussian log likelihood
given by (Schabenberger & Gotway, 2005) as:

ϕ(β, θ, Z(s)) = ln(|
∑

(θ)|) + nln(2π) + (Z(s)−X(s)β)
′∑

(θ)−1 (Z(s)−X(s)β) .

(5.29)
The estimate of β can be obtained by differentiating 5.29 with respect to β and solve.
This results in generalized least squares (GLS) estimator

β̂ =
(
X ′(s)

∑
(θ)
−1
X(s)

)−1
X(s)′

∑
(θ)Z(s). (5.30)

Equation 5.29 and 5.30 yields an objective function for minimization of β̂ given by

ϕβ(θ, Z(s)) = ln(|σ2
∑

(θ∗)|) + nln(2π) + σ−2r
∑

(θ∗)−1r. (5.31)

for

r = Z(s)−
(
X(s)′

∑
(θ)−1X(s)−1

)−1
X(s)′

∑
(θ)−1Z(s)

where r is the GLS residual.σ2 can be estimated from 5.31 , note that its MLE is

σ̂2 =
1

2
r′
∑

(θ∗)−1r.

Thus, substituting again yields the negative of twice the profiled log likelihood as
(Schabenberger & Gotway, 2005)

ϕβ,σ(θ∗, Z(s)) = ln
(
|
∑

(θ∗)|
)

+ n (ln(2π)− 1) . (5.32)

Therefore, minimizing Equation 5.32 is an optimization with only (q − 1) param-
eters. One of the disadvantages of likelihood estimation is the ability to estimate
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the variance-covariance matrix of the parameter estimates based on the observed or
expected information matrix.

Restricted maximum likelihood estimation (REML)

This method of estimation was originally introduced by Patterson & Thompson
(1971), specifically for estimating variance-covariance parameters from data that fol-
low the Gaussian linear model. The REML estimates are frequently preferred over
maximum likelihood estimates. Since the latter, they have exhibited a greater nega-
tive bias for estimates of covariance parameters. In the case of the spatial process:

Z(s) ∼ N(X(s)β,
∑

(θ)),

The adjusted REML consists of performing maximum likelihood estimation not for
Z(s), but for KZ(s), where K is a K matrix ((n − k) × n), is chosen such that the
mean of KZ(s) is zero E(KZ(s)) = 0. The rank of K = n − k, K matrix is called
error constant. An object around θ is given as follows

ϕ(θ,KZ(s)) = ln
(
|K
∑

(θ)K ′|
)

+ (n− k)ln(2π) + Z(s)′K ′
(∑

(θ)K ′
)−1

Z(s)K.

(5.33)
and

β̂reml =
(
X ′
∑

(θ̂reml)
−1)

X ′
∑

(θ̂reml)
−1
Z(s). (5.34)

For E(KZ(s) = 0 implies that KZ(s) = 0 and if
∑

(θ) is positive definite, then
Equation 5.33 can be reduced to equation 5.35 (Searle et al., 2009)

K ′
(∑

(θ)K ′
)−1

K =
∑

(θ)−1. (5.35)

where
∑

(θ) =
(
X(s)′

∑
(θ)−1X(s)

)−1
and

∑
X(s)′

∑
(θ)−1Z(s) = β̂., thus,

Z(s)′K ′ (K
∑

(θ)K ′)KZ(s) = r′
∑

(θ)−1r. where in GLS residuals

r = Z(s)−
(
X(s)′

∑
(θ)−1X(s)−1

)−1
X(s)−1

∑
(θ)−1Z(s).

based on the identities as follows

KK ′ = I −X(s)
(
X(s)′X(s)

)
−1X(s)′

and

KK ′ = I
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reduces Equation 5.33 reduces the minus twice the log-likelihood of K(Z) to

ϕR(θ,KZ(s)) = ln
(
|
∑

(θ)|+ ln|K
∑

(θ)K ′|
)

+ (n− k)ln(2π)+

Z(s)′K ′
(
K
∑

(θ)K
)−1

Z(s)K − ln(|X(s)′X(s)|)− r′
∑

(θ)−1r + (n− k)ln(2π).

(5.36)

It was also pointed out that (n − k) × n rows of IX(s)(X(s)′X(s))−1 will meet a
REML objective function that differs by a constant which is independent of θ and β

(Harville, 1974). The REML objective for minimization is given as

ϕR(θ,KZ(s)) = ln
(
|
∑

(θ)|+ ln|K
∑

(θ)K ′|
)

+ (n− k)ln(2π) + Z(s)

′K ′
(
K
∑

(θ)K
)−1

Z(s)K + r′
∑

(θ)−1r + (n− k)ln(2π).
(5.37)

Equation 5.37 differs by the terms ln(|X(s)′
∑

(θ)−1X(s)|) and kln(2π) from the
REM log likelihood. Similar to the maximum likelihood estimation, a scale param-
eter can be profiled from

∑
(θ) and the REML estimator of this parameter is given

by

σ̂reml =
1

n− k
r′
∑

(θ∗)−1r

and upon substitution, this will result in minus twice the profile REML log likeli-
hood as follows

ϕR(θ,KZ(s)) = ln
(
|
∑

(θ∗)|+ ln|K
∑

(θ∗)K ′|
)

+ (n− k)ln(θ̂2) + (n− k)(ln(2π)− 1).

(5.38)

Minimum norm quadratic estimation

An alternative method of estimation was proposed by Rao (1979), called the mini-
mum norm quadratic estimation (MINQ). When this method is compared to others,
it is shown to be restricted in scope. Despite this limitation, it remains competitive
(Kitanidis, 1983).

This method is for special cases, where the variance matrix of the data is linear in its
parameters, is given by

∑
(θ) = θ1

∑
1 + · · ·+ θm

∑
m
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where θ̂ = W ′FjW , for W = A′Z, and this is used to find the estimator of θj .The
minimum norm estimator can be obtained by minimizing E(θ̂ − θ). Generally, it is
subjected to unbiased or variance restriction. This method is appropriate for vari-
ance component models; however, in spatial settings, the

∑
(θ) might be a non-linear

function of the small scale variation parameter θ.

Moreover, although this method might be easily applicable it is less motivated com-
pared to general procedures of estimation such as maximum likelihood and re-
stricted maximum likelihood (Stein, 1987).

5.4 Measures of Spatial Autocorrelation

There are two measures of spatial autocorrelation existing in literature, namely, Moran’s
I and Geary’s C. These methods are used to investigate if there exist any spatial cor-
relation in the data.

Moran’s I

Moran (1950) proposed this method to test for global spatial autocorrelation. Moran’s
I autocorrelation coefficient is similar to a Pearson correlation coefficient and it quan-
tifies the similarity of response variance among areas that are spatially related (Hab-
yarimana, 2016). The Moran’s I test is based on the cross-products of the deviations
from the mean. Suppose the deviation is calculated for n observations on variable x
at location i, j, then Moran’s I coefficient is defined as

I =
n
∑

i

∑
jWij(xi − x̄)(xj − x̄)∑

i

∑
jWij

∑
i(xi − x̄)

. (5.39)

where
∑

i

∑
jWij is the sum of weights of the elements of the weight matrix. Wij

are the elements of the weight matrix and x̄ is the mean of variable x. The method
is approximately normally distributed with a mean of 1

N−1 , where N equals to the
number of observations within that specific region. Moreover, Moran’s I values lies
between −1 and 1, including −1 and 1. When the Moran’s I value is zero that in-
dicates the null hypothesis of no clustering, whereas, positive and negative values,
respectively, indicate positive (clustering of areas of similar attribute values) spatial
correlation and negative (neighboring areas with no similar attribute values) spatial
correlation.

Geary’s C

Geary (1954) proposed an alternative method for measuring spatial autocorrelation.
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This method is based on deviations in responses of each observation with one an-
other and is given by (Ayele, 2013)

C =
(n− 1)

∑
i

∑
jWij(xi − xj)2

2
(∑n

i=1 (xi − x̄)2
)∑n

i=1

∑n
j=1Wij

. (5.40)

where n is the number of polygons in the study area of interest. Geary’s C method
focuses on the similarities between two pairs of regions and the value C varies be-
tween 0 and 2. For C = 0, it indicates the highest value of positive autocorrelation
and C = 2 indicates a strong negative autocorrelation.

Moran’s I method of measuring spatial autocorrelation is a more global measure-
ment and more sensitive to outlier values of x. While Geary’s C is more sensitive to
the differences in small neighbourhoods (Ayele, 2013). Generally, both approaches
converge to similar conclusions. However, Moran’s I is the more preferred compared
to Geary’s C method (Ayele, 2013).

5.5 Application of Spatial Modelling into the Data Sets

We now apply the spatial generalized linear mxed model into our data sets. Our
model can be written as follows:

g(E(Y (si))) = g(µk) = Child age×β1+Child gender×β2+Level of education×β3
+ Stunting × β4 +Wealth Index× β5 +Household has a television× β6

+ Type of place of residence× β7 +Regions× β8 + V itamin A× β9+

Age of the household head× β10 + δ(si). (5.41)

In this model (5.41), the variables included for analysis are all those that were found
to have a significant effect on childhood anaemia when the univariate analysis was
performed.

5.5.1 Data Analysis Using Spatial statistics Approach

Our data sets were analysed by fitting generalized linear mixed models using SAS
PROC GLIMMIX procedure. There are many covariance structures that were consid-
eredduring the analysis; for example: SP(EXP) (Exponential); SP(EXPA) (Anisotropic
Exponential); SP(EXPGA) (2D Exponential), Geometric Anisotropic; SP(GAU) (Gaus-
sian); SP(GAUGA) (2D Gaussian, Geometrically Anisotropic); SP(SPH) (Spherical );
SP(LIN) (Linear); SP(LINL) (Linear Log); SP(Matern) (Matron) and SP(SPHGA) (2D
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Spherical; Geometrically Anisotropic); and SP(MATHSW) (Matrn(Handcoks-Stein-
Wallis)). Furthermore, smooth maps for the prevalence of anaemia in each country
made up of regions (provinces), were produced using ArcGIS.

5.5.2 Result interpretations

The scatter plots presented in Figure 5.2 and Figure 5.3 are observed data from Tan-
zania and Angola, respectively.

Figure 5.2 – Scatter Plot Anaemia Prevalence (Tanzania)
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Figure 5.3 – Scatter Plot Anaemia Prevalence (Angola)

As we can observe from both figures, the plots suggest that the distribution is not
uniform. Hence, there are direct inferences that can be made about the existence of
a surface trend in the data. However, the distributions indicate a random spread
response. The spatial autocorrelation is an inferential statistic tool, which is impor-
tant to test for randomness. Thus, the results of the analysis are always interpreted
within the context of its null hypothesis of a random occurrence of events, which can
be stated as follows: The attribute being analysed is randomly distributed among the
features in the study area. Alternatively, the null can be stated in this way: The spa-
tial processes promoting the observed pattern of values is random chance (Ayele,
2013). For the randomness test, Moran’s I and Geary’s C tests can be used. Further-
more, The results from these tests of spatial autocorrelation are shown in the tables
below.
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Table 5.1: Autocorrelation Statistics (Moran’s I and Geary’s C)

Autocorrelation Statistics (Tanzania)

Assumption Coefficient Observed Expected
Std Devia-
tion

Z-
value

Pr>|Z|

Normality Moran’s I 0.0044 -0.0001 0.00011 39.58 < 0.0001

Normality Geary’s C 0.9939 1.00 0.0022 -2.79 0.0052

Autocorrelation Statistics (Angola)

Assumption Coefficient Observed Expected
Std Devia-
tion

Z-
value

Pr>|Z|

Normality Moran’s I 0.0023 -0.0002 0.00016 15.27 < 0.0001

Normality Geary’s C 1.001 1.00 0.0034 0.412 0.680

According to the results in both data sets, for the Moran’s I test statistics, the p-values
are very small (p-value< 0.001), which suggests a very strong autocorrelation. Thus,
we can reject the null hypothesis of no autocorrelation. The Moran’s I Z-values are
positive (Z=39.58 in Tanzania and Z=15.27 in Angola), implying that we reject the
null hypothesis and conclude that the spatial distribution of high values and/or
low values in our data sets is more spatially clustered than would be expected if
the underlying spatial process was random (Ayele, 2013). Among all the covariance
structures used here for analysis, the Gaussian covariance structure was found to
perform better than all the others (AIC=32.035 TDHS and AIC=28.11 in ADHS) in
both data sets (Tanzania and Angola). However, inferences can also be drawn based
on plotting the corresponding semivariogram. For instance, a graphical presentation
of the semivariogram corresponding to the TDHS data is presented in the following
diagram (Figure5.4).
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Figure 5.4 – Graphical presentation of the different semivariograms fitted for Anaemia
TDHS data set

Now looking at the covariate used in fitting the model, at first, all the covariates
fitted on the other SLR and GAMM models were fitted here and later were discarded
because they had no significant effect on the outcome variable. The fitted model for
both data sets (containing only the significant covariates) is expressed as follows:

g(µk) = Child age× β1 + Child gender × β2 + Level of education× β3
+ Stunting × β4 +Wealth Index× β5 + δ(si). (5.42)

When taking into consideration the possibility of spatial dependence effect, child
age, level of education, stunting and sex of the child are the significant predictors
of childhood anaemia in both countries (p-values < 0.05), as can be seen in Table
5.2. Furthermore, the wealth index has a significant effect (p-value < 0.0001) on
childhood anaemia in Tanzania after taking into account the spatial effect. However,
in Angola, the standard of living was not found to have any significant effect on
childhood anaemia.
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Table 5.2: Type III Tests of fixed effects for the GLMM with spatial effect

Tanzania

Effect Num DF F Values P-value

Gender 1 13.26 0.0003

Child age 4 166.9 <0.0001

Level of education 3 5.46 0.001

Stunting 2 13.48 <0.0001

Wealth Index 4 1.67 <0.0001

Region 29 6.52 <0.0001

Angola

Gender 1 4.44 0.035

Child’s age 4 65.11 <0.0001

Level of education 3 5.30 0.0012

Stunting 2 19.97 <0.0001

Wealth index 4 1.67 0.155

Region 17 4.13 <0.0001
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Table 5.3: Solution For fixed effects and the odds ratios (Tanzania)

Parameter Estimate
Standard
error

t-Value P-value aOR(95%CI)

Intercept -0.574 0.218 -2.63 0.0088**

Gender
(ref=male)

-0.182 0.050 -3.64 0.0003 *** 0.847(0.754; 0.919)

Child’s age in months (ref = 48-59 moths)

0-11 1.83 -0.098 18.65 <0.0001*** 6.21(5.13;7.53)

12-23 1.42 0.075 18.86 <0.0001*** 4.14(3.57;4.80)

24-35 0.63 0.074 8.47 <0.0001*** 1.88(1.62; 2.17)

36-47 0.092 0.076 1.22 0.2232 1.09(0.95;1.27)

Mother highest education level (ref =No education)

Primary -0.230 0.0672 -3.42 0.0006*** 0.932(0.69;0.91)

Secondary -0.296 0.097 -3.06 0.0022 ** 0.678(0.615;0.89)

Higher -0.730 0.291 -2.51 0.0012 ** 0.482(0.27; 0.85)

Wealth index (ref = richest)

Poorer 0542 0.109 4.79 <0.0001*** 1.72(1.39;2.13)

Poorest 0.603 0.112 5.41 <0.0001*** 1.83(1.47;2.28)

Middle 0.544 0.106 5.14 <0.0001*** 1.72(1.40;2.12)

Richer 0.290 0.096 3.00 0.0027** 1.34(1.11;1.61)

Stunting (ref =severe)

Moderate -0.176 0.090 -1.94 <0.0521 0.84(0.70; 1.00)

Nourished -0.385 0.083 -4.63 <0.0001 *** 0.68(0.58; 0.80)
a

aNote: The odds ratios as shown on the above Table (5.3) are adjusted for the regions

With reference to male children, in both countries the odds of positive anaemia for
female children were lower, OR=0.847, with 95% CI (0.754;0.919) in Tanzania and
OR=0.88 and 95%(0.78,0.99) in Angola. Children aged 0-23 months, that is children
aged less than 2 years had much higher odds of being anaemic compared to chil-
dren aged four (48-59 months) in both countries. In Angola, the results were OR
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=4.95 and a 95% CI (3.86;6.33) for children aged 0-11 months (or less than 1 year),
OR=3.15 , 95% CI (2.62,3.79) for those aged 12-23 months. In Tanzania, we can ob-
serve a very similar trend, the OR for children aged 0-11 months and 12-23 months
are respectively, OR=6.21, 95% CI (5.13;7.53) and OR=4.14, 95% CI (3.57;4.80). The
model reveals that there were higher odds of being anaemic for children who had
a mothers with no education compared to children who had mothers with primary,
secondary and higher education. In Tanzania, children who had mothers with pri-
mary, secondary and higher education had reduced odds of being anaemic respec-
tively by, 7.8% (OR=0.932, 95% CI (0.69;0.91)), 32.2% (OR=0.678, 95% CI (0.615;0.89))
and 51.8% (OR=0.482, 95% CI (0.27;0.85)). In Angola the odds for children with
mothers with secondary and higher education were respectively reduced by, 28%
(OR=0.78, 95% CI (0.64;0.95)) and 47% (OR=0.53, 95% CI (1.15;1.63)).
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Table 5.4: Solution for fixed effects and the odds ratios (Angola)

Parameter Estimate
Standard
error

t-value P-value aOR(95%CI)

Intercept 0.864 0.261 3.31 0.0010**

Gender
(ref=male)

-0.131 0.062 -2.11 0.035 * 0.88(0.78; 0.99)

Child’s age in months (ref = 48-59 months)

0-11 1.599 0.126 12.68 <0.0001*** 4.95(3.86;6.33)

12-23 1.148 0.094 12.25 <0.0001*** 3.15(2.62;3.79)

24-35 0.573 0.092 6.20 <0.0001*** 1.77(1.48; 2.13)

36-47 0.313 0.090 3.46 0.0005 1.37(1.15;1.63)

Mother’s highest education level (ref =no education)

Primary 0.060 0.079 0.76 0.446 1.06(0.91;1.24)

Secondary -0.249 0.101 -2.46 0.0022 ** 0.78(0.64;0.95)

Higher -0.637 0.251 -2.54 0.011* 0.53(032; 0.87)

Wealth index (ref = richest)

Poorer -0.115 0.156 -0.74 <0.459 0.89(0.66;1.21)

Poorest 0.022 0.167 0.13 <0.895 1.02(0.74;1.42)

Middle 0.114 0.144 0.79 <0.428 1.12(0.85;1.49)

Richer -0.038 0.141 -0.27 0.786 0.96(0.73;1.27)

Stunting (ref =severe)

Moderate -343 0.104 -3.29 <0.0010** 0.710(0.58;0.87)

Nourished -0.580 0.094 -6.14 <0.0001 *** 0.560(0.47; 0.67)
a

aNote: The odds ratios as shown on the above Table (5.4) are adjusted for the regions

Moreover, we can observe from these two tables (5.3 and 5.4) that children from very
rich families were much less likely to be anaemic in comparison to children from the
poorest families in both countries. In Angola, the children were 1.02 (OR=1.02, 95%
CI (0.74;1.42)) times more likely to be anaemic compared to children from rich fami-
lies and in Tanzania, they were 1.83 (OR =1.83, 95% CI (1.47;2.28)) times more likely
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to be anaemic. Furthermore, severely stunted children had greater chance of being
anaemic compared to non-stunted and moderately stunted children and this is sim-
ilar in both countries. In Tanzania, The odds for moderate and non-stunting (nour-
ished) children were respectively reduced by 16% (OR=0.84 , 95% CI (0.70;1.00))
and 32% (OR=0.68, 95% CI (0.58,0.80)). In Angola, the odds were reduced by 29%
(OR=0.71 ,95% CI (0.58;0.87)) and 44% (OR=0.56, 95% CI (0.47;0.67)), respectively.

Spatial prediction

The purpose of modelling spatial data is not only to investigate the significant co-
variates, but also to produce smooth maps of the outcome by predicting at unsam-
pled locations (Si, fori = 1, . . . , n). Spatial prediction is usually referred to as krig-
ing(Ayele et al., 2013). Generally, spatial interpolation (prediction) is defined as the
process of manipulating spatial information to extract new information and meaning
from the original data. Usually, spatial analysis is carried out with a geographic in-
formation system (GIS). Generally, GIS provides spatial analysis tools for calculating
feature statistics and carrying out geoprocessing activities such as data interpolation
(Tim Sutton & Mthombeni, 2017; Mitas & Mitasova, 1999). Kriging is an optimal in-
terpolation based on regression against observed values of surrounding data points,
weighted according to spatial covariance values. It has many advantages (Ayele,
2013) such as: helping to compensate for the effects of data clustering, assigning
individual points within a cluster less weight than isolated data points, giving an
estimate of estimation error (kriging variance), along with estimate of the variables,
ensuring availability of estimation error which provides a basis for stochasticity and
its also allows simulation of possible realization. The maps for the outcome variable
(anaemia) that resulted from the kriging interpolation process are presented below.
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Figure 5.5 – Prevalence of childhood Anaemia in Tazania
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Figure 5.6 – Prevalence of childhood Anaemia in Angola

As we can observe from the above two figures (5.5 and 5.6), the results relate to
the first law of geography by Tobler (1979), which states that: everything is related
everything, but something adjacent is more influential. The prevalence of anaemia
differs by area or region in both countries. After kriging interpolation, the method
reveals that individuals who are very close to one another are very likely to be-
have similarly regarding anaemia status, unlike individuals who are far apart. The
prevalence of anaemia was high, medium and low in different areas in the same
region; for instance, looking at Tanzania, 5.5, focusing specifically in the Ruvuma
region, we can observe three different colours in one region. The same occurs in
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Tanga, Kigoma, Tabora, Dodoma, Geita, Mara, Shinyanga, and Manyara regions,
but in Angola, only two regions show all the colours (Cunene and Benguela regions).
These results correspond strongly to Tobler (1979). Moreover, drawing conclusions
in terms of mean prevalence in each region, by inspection, in Tanzania the Ruvuma,
Mara, Mwanza, Manyara Simuyu, Kigoma, Geita, Simuyu, Mwanza and Tanga re-
gions show high prevalence of childhood anaemia, while the Mtwara, Iringa, Mo-
rogoro, Pwani, Mbeya, Tabora, Dar- es-Salaam and Katavi regions have a moderate
prevalence of anaemia and the rest have low prevalence, which are the Lindi, Katavi,
Singida, Arusha, Rukwa Kagera region, etc. These conclusions are drawn regarding
the dominating colour(s) in each region. However, in Angola (Figure 5.4), we can
conclude that the overall prevalence of anaemia in children in the country at the
time of the study was low or moderate. There are only two regions (the Cunene
and the Benguela regions) that show a high prevalence, with regard to the domi-
nant colours in that region. Most of the regions are dominated by green and lime
green, which, according to our legends, show low prevalence. For instance, we can
see that the overall prevalence of childhood anaemia in the Lunda Norte, Guanza
Norte, Namibe and Hambo regions were found to be very low, as green is domi-
nant. While Lunda Sul, Moxico, Cuanza Sul, Bie, Malanje, and Cuonda Cubango
had a moderate prevalence of childhood anaemia. The same trend of interpretation
could be followed to draw a conclusion for the remaining regions.
Furthermore, maps for the stunting prevalence were produced to verify the signifi-
cance of this factor to childhood anaemia. They are presented in the figure 5.7 below.
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Figure 5.7 – Stunting Prevalence in Children under five in Tanzania and Angola

Following the same style of interpretation anaemia prevalence, we can see that in
Tanzania the Tabora, Kigoma, Kagera, Ruvuma, Mtwara, Arusha, Mara, Katavi, Kil-
imanjaro and Lindi regions are dominated by green and lime green, which implies
that there was a high prevalence of stunting there. It was found to be moderate
in the Njombe, Geita, Mwanza, Singida, Dodoma, Morogoro, Tanga, Kaskazini Un-
guja and Kusini Uguja regions, and low in the Rukwa region and Mwanza region.
In Angola, most of the regions are dominated by yellow, which implies a moder-
ate prevalence of anaemia. Regions with a high prevalence of stunting are Cunene,
Bengo and Lunda regions.
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5.6 Summary and Discussion

In this chapter, a spatial model was fitted in the context of generalized linear mixed
models as discussed in Section 5.2. A GLIMMIX procedure available in SAS 9.4
was used to analyze the data sets taking into account the different spatial covari-
ance structures. The best covariance structure was confirmed by plotting the corre-
sponding semivariogram rather than considering only the AIC’s. There were small
differences in the AIC’s of exponential and Gaussian covariance structures; hence,
the corresponding semivariogram was plotted. Non-significant terms in the model
were discarded one at a time which resulted in the final model containing only six
predictor variables.

The results from this chapter are consistent with the other results from the two pre-
vious chapters, the variables: age of the child, child gender, stunting and level of
education of the mother are significantly associated with childhood anaemia. The
trend remains unchanged for the age of the child, stunting, and level of education,
for children aged less than 24 months (2 years) are still showing higher chances of
having anaemia compared to children aged four (48-59 months). Moreover, we note
from these results that the chances of a child being anaemic were inversely propor-
tional to the child’s age. As the child’s age increases, the chances of being anaemic
decreases, which can be confirmed by looking at the trend of the OR in both Tables
(5.3 and 5.4) which decreases when child age increases. Children who were severely
stunted are more likely to be anaemic compared to non-stunted children. Moreover,
children with mothers who had no education had a higher chance of being anaemic
compared to children born of mothers with primary, secondary and(or) higher ed-
ucation. We can note that the type of place of residence has no significant effect on
children anaemia, but the standard of living of a child had a significant effect. The
children residing in the poorest families were more likely to be anaemic, and it could
be due to their poor dietary guidelines among many other factors.

Moreover, the results presented in the maps (Figure 5.7,) show strong agreement
with the findings we obtained about the stunting factor when fitting SLR, GAMM,
and SGLMM models. The two maps in Figure 5.7 are consistent with the two maps of
anaemia prevalence Figure 5.6 and Figure 5.5. They are consistent in that the regions
on the country that show a high prevalence of stunting, also have high prevalence
anaemia. This result was highly expected, since stunting was found to be one of the
highly significant factors of childhood anaemia. For instance, focusing in Tanzania
in both maps, Figure 5.5 and Figure 5.7, we can see that the Ruvuma region, Tabora,
Mwanza and Kigoma regions had a high prevalence of childhood anaemia and also
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appear to have a high prevalence of stunting. Thus, this strongly emphasizes that
children who were suffering from stunting had high chances of being anaemic com-
pared to those who were free from anaemia. Very similar inferences can be drawn
in Angola.
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Chapter 6

Discussion and Conclusion

The main objective of this study was to flexibly fit statistical models to investigate
the demographic and socio-economic factors which are significantly associated with
childhood anaemia, in two African countries, Tanzania and Angola. The study is
flexible in that we can fit any statistical model that can allow us to model a dichoto-
mous response variable. Furthermore, we wanted to identify the common determi-
nants of childhood anaemia in both countries, and our models successfully fitted the
data sets and shown significant factors. The identification of the common causes of
childhood anaemia is important in that it will help governments and policymakers
in the African countries and other developing countries to know the factors they
should focus on in order reduce the prevalence of childhood anaemia and meet the
2025 global targets. A guideline released by WHO for countries to reduce the preva-
lence of anaemia stated that the goal is to reduce the prevalence of anemia by 50%
by 2025. However, the diversity of each country’s charecteristics requires targeted
handling. The baseline prevalence data in 2012 indicates that it requires continuous
monitoring evry year (Rakanita et al., 2020).

To fulfil our objective, three different statistical models were fitted into our data sets:
survey logistic regression (SLR) from the class of generalized linear models (GLMs),
generalized additive mixed models (GAMMs) and a spatial generalized linear mixed
models (SGLMMs). The SGLMMs were fitted to check if there is an effect of spa-
tialiality on the results that were already found in SLR and GAMM and, in addition,
to produce maps. The maps will help policymakers to understand the associated
factor(s) that are high contributors to childhood anaemia in a specific region in a
country and, hence, they will better able to deal with that specific region accordingly.

As explained in previous chapters, the DHS data set has a complex sampling design.
Thus, an ordinary logistic regression would not be appropriate in fitting such data
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since ordinary logistic regression suggests that data are collected using a simple ran-
dom sampling method. Since, the DHS data sampling methods involve: clustering,
unequal weighing, and stratification, thus survey logistic regression is a convenient
model to fit the data from the class of generalized linear models. The data was fur-
ther fitted to model the response using a generalized additive mixed model, a more
flexible model, compared to GLM, and even if it compared to generalized linear
mixed models (GLMMs). GAMM is non-parametric semi-parametric modelling ap-
proach, which allow some terms to be fitted non-parametrically. Furthermore, the
functional form of the model is not specified prior to model fitting, thus making the
model to be even more flexible (Lin & Zhang, 1999).

Similar to GLMM, GAMM explores the idea of a statistical model that incorporates
random factors into generalized linear models. It adds a random effect or correlation
among observations arising from a distribution that is from an exponential family.
In addition, the use of GAMM also allows random effects to be properly specified
and computed and errors can be correlated. Thus, GAMM exhibits non-constant
variability, while simultaneously allowing more than one source of variation. Since
the model allows other terms to be fitted non-parametrically (smooth terms), it ul-
timately more robust in modelling the dependent variable compared to SLR and
GLMM. Moreover, because DHS data set is a spatial one, thus, observations closer
to one another are more likely to have similar attributes compared to observations
which are distant apart (Tobler, 1979). Hence, a spatial generalized linear mixed
model was fitted to take into account of the effect of spatiality in the investigation
of the predictors of childhood anaemia. The spatial generalized linear mixed model
is a powerful model to fit when dealing with data assuming complex survey design
and if the aim is to fit that data in a frequentist approach.

According to this study, the key determinants of anaemia in Tanzania and Angola
are child age (in months), child gender, the highest education obtained by the mother
or guardian and the level of stunting. The effect of the standard of living was also
found to be significantly associated with childhood anaemia,in Tanania, whereas
in Angola it was found to have no effect throughout all the models fitted. All the
models show higher odds for children aged 0-23 months compared to all other age
groups, with the odds of a child being anaemic decreasing with an increase in age.
The likelihood of a child being anaemic was found to be high for severely stunted
children in comparison to non-stunting children in both countries. The models fur-
ther reveal that children with illiterate mothers had higher odds of being anaemic
compared to those with literate mothers or guardians. Furthermore, male children
had higher odds of being anaemic compared to female children. These findings are
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similar to studies of Habyarimana et al. (2017); Ewusie et al. (2014); Villamor et al.
(2000); Oliveira et al. (2015) and Foote et al. (2013). According to the results there
was no significant effect found for lack of vitamin supplementation, size of the child
at birth, currently breastfeeding and availability of a television in a household.

Assuming that children aged less than 2 years have much higher odds of being
anaemic compared to all the other age groups would be hihly reasonable. Children
after birth, especially those aged 0-11 months, have a very weak immune system that
cannot fight viruses or bacteria, and thus they would be easily affected in an out-
break of a certain virus or bacteria at a particular time or place. Baring in mind that
the immune system in a human body plays a crucial role, with a non-functional im-
mune system even minor infections can hold and prove fatal (Parham, 2014). Many
studies exist in the literature showing that stunting is one of the common causes of
childhood anaemia (Habyarimana et al., 2017; Oliveira et al., 2015; Foote et al., 2013).
Stunting is a long-term indicator of poor nutrition, and in severely stunted child can
suffer from severe irreversible physical and cognitive damage. In this study, severely
stunted children were more likely to develop anaemia compared to the non-stunted
and moderalately stunted children. Since anaemia and malnutrition share common
causes; thus, stunting is associated with anaemia (Dey et al., 2013; Khan et al., 2016).
Another important determinant of anaemia, which was found to be a key determi-
nant was the level of education of the mother or a guardian. To fight infectious
diseases, education is a weapon that highly highly recommended. Children with
mothers who lack education are more likely to suffer from infectious diseases. This
can be further related to the UN sustainable development goals, specificall goal 2
and goal 3.

Giving a quality education to the parents or guardians could slow down the preva-
lence of childhood anaemia and it can also help the UN in attaining it long term
goals which states as follows, goal 2: End hunger by achievin good food security
and improve nutrition and promote sustainable agriculture; goal 3: Ensre healthy
lives and promote well-being for all at all ages. This can be attained by the gov-
ernment giving quality education about the importance of food security and agri-
culture. The lack of good nutrient intake causes malnutrition, which further causes
diseases like anaemia. Thus, it is of high importance that the government give ed-
ucation to caretakers or parents about nutritional interventions, infecious diseases
and how they can be treated at early stages and that could ensure healthy lives and
promote well being for all people at all ages, which is one ultimate UN sustanable
developments goals to be attained by 2030. People should be given education about
food preservation , for it to last longer thus that will reduce hunger promote sustain-
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able agriculture. Furthermore, the government should consider distributing food
and medicine with high nutrients to help strengthening the immune systems, thus
fight anaemia.

In conclusion, the main objective of this study was successfully achieved. The three
models fitted into our data sets did show consistency in the investigation of the
factors associated with childhood anaemia in both Tanzania and Angola. Further-
more, since we were working with Demographic and Health Survey data sets, as
cross-sectional data sets, they do not have information over a period of time, but are
instead once-off observational studies. Thus, we could not determine the cause and
effect; hence, a longitudinal data set would be recommended for future studies.
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Appendix A

Taylor Series Expansion of V ar(β̂).

Demnati & Rao (2004), Binder’s linearised variance estimator,V ar(β̂) is the default
variance estimator in most software packages for complex survey data analysis,
up to date. Jackknife repeated replication (JRR) or Balanced repeated replication
method are also used to estimate the variance covariance matrix,V ar(β̂), for the es-
timated model coefficients (Heeringa et al., 2017).

The J matrix of the second derivative is used in the computation of the variance
estimators for the pseudo-maximum likelihood estimates of finite population pa-
rameters in the logistic regression model. The J matrix defined as follows,

J =

[
∂2βPL(β)

∂2β

]
|β = β̂

=
∑
h

∑
α

∑
i

X ′hαiXhαiWhαiπ̂hαi(β) (1− π̂hαi(β))
(6.1)

Where, h, is a stratum index. α, is a cluster(SECU) index within stratum h and i is
an index for individual observations within cluster α.
Because of the complex survey sample data analysis, J−1 is not equivalent to variance-
covariance matrix of the pseudo-maximum likelihood parameter estimates as in the
case of simple random sample setting. Instead a different matrix for J is used to
incorporate for the variance estimator, that matrix is said to be a Sandwich-type
variance, expressed as,

V ar(β̂) = J−1var
[
S(β̂)

]
J−1 (6.2)

var(S(β̂)) is a symmetric variance-covariance of p+1 estimating equations. Whereby
each of these p + 1 estimating equations is a summation over strata, clusters and
elements of the individual scores for the n survey respondents.
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Thus, variance and covariance of the estimating p + 1 is given by (Heeringa et al.,
2017),

V ar(S(β̂)) =
n− 1

n− (p+ 1)

H∑
h=1

ah
ah−1

ah∑
a=1

(Shα − S̄h)′(Shα − S̄h) (6.3)

A standard formula for stratified sampling of ultimate clusters was applied because
each estimating equation is a sample of total respondent.

For a very large sample sizes (large n),the var(S(β̂))

V ar(S(β̂)) =
H∑
h=1

ah
ah−1

ah∑
a=1

(Shα − S̄h)′(Shα − S̄h) (6.4)

where,

Shα =

nα∑
i=1

Shαi =

na∑
i=1

Whαi (Yhαi − π̂hαi(β))X ′hαi

And

S̄h =
1

an

ah∑
a=1

Shα

For interested readers, a detailed theory about the Taylor series estimation of var(β̂)can
be found on the book by (Heeringa et al., 2017)
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The method of Iterative Reweighted Least Squares, Newton Raphson and Fisher
Scoring are discussed below. As discussed, maximum likelihood estimates can be
obtained by applying the IRLS, NR or a FS method to the score function

∂l(βj)

∂βj
=

n∑
i=1

(yi − µi)Wi
∂ηi
∂µi

xij (6.5)

The Taylor expansion is generally given written as follows

f(x0) + (x1 − x0)f ′(x0) +
(x1 − x0)2

2!
f ′′(x0) +

(x1 − x0)3

3!
f ′′′(x0)

The Newton Raphson method is an iterative method whose derivation is based on
the second term of the Taylor series expansion of the log likelihood function.
Assuming that the law of higher order terms is negligible and considering the first
two terms of the Taylor expansion, we have

f(x0) + (x1 − x0)f ′(x0)

That is equivalent to,

f(x0) = −(x1 − x0)f ′(x0)

Simplifying for x1,

x1 = x0 −
f(x0)

f ′(x0)

That is the basis for the iterative updating equation in the Newton Raphson estima-
tion algorithm.

Following the above process, using the score function of the log-likelihood as the
basis for parameter estimation, the Newton Raphson method yield the following

βr = βr−1 −
(
∂l(βr−1)

∂β

)(
∂2β

∂2l(βr−1)

)
(6.6)
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If we let S(βr−1) = ∂l(βr−1)
∂β and S′(βr−1) = ∂2β

∂2l(βr−1)
, Therefore 6.6 becomes

βr = βr−1 − S(βr−1) [S(βr−1)]
−1 (6.7)

S(βr−1) is the partial derivative of the score equation with respect to β, evaluated at
(βr−1) and is referred to as Hessian matrix.

The Fisher-Scoring Method and Iterative Re-weighted Least Squares method

Fisher’s Scoring method is used as an alternative method to solve for the unknown
parameters in the log-likelihood estimating equation. It is similar to method by
Newton Raphson, the only difference FS method uses the expected value of the Hes-
sian matrix based on the information matrix. By some complicated procedures it can
be shown that the inverse I(β) is

I(β) = E

(
∂2l

∂βiβj

)
= E

(
∂l

∂βi

)(
∂l

∂βj

)
(6.8)

There are advantages of using the expected Hessian rather than Hessian itself (Heeringa
et al., 2017)

The Iterative Re-weighted Least Squares method make use of the Fisher Scoring
method to find the unknown maximum likelihood estimates. Fishers-Scoring method
at each step can be regarded as kind of the weighted least squares procedure. In the
context of generalized linear models, Fishers coring method is also called an Iterative
re-weighted least squares method.
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The following are the SAS and R codes used in this study.

The final Survey logistic regression model :

Tanzania DHS
proc surveylogistic data=tdhsdata;
cluster V001;
weight V0055;
strata V023/list;
class b4 b8 V404A stunting v025 v101 v106(ref="No education") v190ab v121 /param=glm;
model HW577A(event=’anemic’)= b4 b8 V404A stunting v025 v101 v106 v152 v190ab
v121;
output out=pred p=phat lower=lcl upper=ucl predprob=(individual crossvalidate);
ods output Association=Association;
run;

ANGOLA DHS

proc surveylogistic data=adhsdata;
cluster V001;
weight V0055;
strata V023/list;
class b4 b8 V404 stunting v025 v101 v106(ref="No education") v190bb v121 /param=glm;
model HW577b(event=’anemic’)=b4 b8 V404 stunting v025 v101 v106 v190bb v121
v152; run;

GAMM model Fitted in both Angola and Tanzania data sets

Anemia∼ Gender+Residence Type+Television+Breastfeeding+Education
Level+Gender Household head age+stunting+V024+Wealth index+s(Child
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age,bs="cr")+s(V012,bs="cr"),random= (1|V001),weights=NULL,na.action=na.omit,
family = binomial(link=logit), data = datas1,subset=NULL,knots=NULL,
REML=TRUE,verbose=0L,drop.unused.levels=TRUE)
SGLMM model Fitted in both Angola and Tanzania data sets using SAS

proc glimmix data=gpst ;
class v024 B4 V025 b8 V106 V151 Stunting V190;
model hw577a (event=’anemic’) = v024 B4 V025 b8 V106 V151 Stunting V190 /solu-
tion dist=binary link=logit oddsratio (at msesc = .5 unit msesc =.1);
random int/type=SP(GAU)(latnum longnum) sub=v001;
run;
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