
Speech Recognition

and

Blackboard Expert Systems

Guy Marchand Loureiro

Submitted in partial fulfilment of the requirements for the degree of Masters

of Science in the Department of Computer Science, University of Natal.

1992

Durban

1992

Preface

The work described in this thesis was carried out in the Department of Computer Science,

University of Natal, Durban, between January 1990 and November 1992, under the

supervision of Professor Alan G Sartori-Angus.

These studies represent original work by the author and have not been submitted in any

form t? another University. Where use has been made of the work of others it has been

duly acknowledged in the text.

ii

Acknowledgements

I am particularly grateful to my supervisor, Prof Alan G Sartori-Angus who allowed me

the freedom to explore this vast field of research and for his helpful guidance.

Many thanks to Jane Meyerowitz who, towards the end of the project monitored my last

strides, made numerous suggestions on the presentation and gave the sort of encouraging

criticism which spurs one on.

To Stuart Melville for the great discussions and the loan of your library of books on

artificial intelligence; and proofreadings of the AI related sections of this thesis - I am most

indebted to you.

Within the department, my thanks go to Hilton Goldstein who assisted me with the building

of the hardware preprocessing and to Alan Powell for the discussions and material on

neural networks as well as fellow Masters students Andrew Deighton, Dave Carson, Carl

Rautenbach and John du Preez, and Gary Nicholson and Mike Hayley of the 1991 Honours

class, all of whom have been sources of reference and encouragement.

To Murray Small, thanks for introducing me to Vygotsky, cognitive psychology and a

string of cognitive scientists involved in similar work but from a refreshingly different

perspective.

To Roland Patterson-Jones for his contributions on Prolog and problems related to natural

language processing (including the French lessons, merci beaucoup).

To my family and friends, especially those who gave up precious relaxing time to help with

voice samples - thank you for your constant support and patience, I am ever grateful.

This thesis would not have been possible without the work done by Kari. I am sure she did

not realise that two becoming one (as we did in the middle of this project) would mean

sharing the weight of a Masters degree in a field she knew (knows) nothing about. For all

the other things I should have done Which you did, thank you!

iii

Special thanks to the UNO Electrical Engineering Department for access to their journals

especially the IEEE on Acoustics, Speech, and Signal Processing which contains a wealth

of new ideas on speech and signal processing monthly. In a similar vein, I am very grateful

to the UND library staff for their assistance in retrieving information from near and wide,

and especially to Kirsty Hoile for her assistance in finding material this end.

Finally, I wish to thank the Foundation for Research Development for the much needed

financial assistance.

iv

Abstract

Spoken language is used by people to communicate naturally with one another. A simplistic

view of the communication process is as follows. Person A wishes to communicate an idea

to person B. The idea, initiated in the mindlbrain of person A is encoded into speech

signals by means of the person A's speech production mechanism, the vocal apparata in

the vocal tract. Various kinds of noise may interfere with the speech signals as they travel

to person B. The resulting signal is captured by person B's speech receiving mechanism,

the ear. It is then analysed and decoded into a meaningful message by the brain of

person B.

This thesis concerns itself with the investigation of and attempt to automate the receiving

and decoding of English sentences using a machine - that is to perform the task of

person B in the above scenario using a computer. The aim is not only to produce a

sequence of phonetic sounds, but to look at the problems of building in the 'mind of the

machine', a picture of the meanings, intentions, absurdities and realities of the spoken

message.

The various models, algorithms and techniques of speech recognition and speech

understanding systems are examined. Speech signals are captured and digitised by

hardware. The digital samples are analysed and the important distinguishing features of all

speech sounds are identified. These are then used to classify speech sounds in subsequent

spoken words. The way speech sounds are joined together to form syllables and words

introduces difficult problems to the automatic recognition process. Speech sounds are

blurred, overlapped or left out due to the effects of coarticulation. Finally, natural language

processing issues, such as the importance of syntax (the structure) and semantics (the

meaning) of sentences, are studied.

A system to control and unite all the above processing is considered. The blackboard expert

system model of the widely reported HEARSAY-II speech recognition system is reviewed

as the system with the best potential for the above tasks.

v

Contents

Chapter 1 : Introduction 1-1

1.1 General Speech Recognition Process 1-4

1.2 Broad Aims 1-5

1.3 Chapter Outline of the Thesis .. 1-5

Chapter 2 : Speech Production and Perception 2-1

2.1 Introduction. 2-1

2.2 Speech Production Mechanism 2-2

2.2.1 Lungs................................... 2-2

2.2.2 I...arynx 2-2

2.2.3 Vocal Tract . 2-3

2.3 Speech Production 2-4

2.3.1 Excitation. 2-4

2.3.2 Phonation (Voicing) 2-4

2.3.3 Whispering ~ . 2-4

2.3.4 Frication. 2-4

2.3.5 Compression 2-5

2.3.6 Nasality. 2-6

2.3.7 Oscillations. 2-6

2.4 Hearing and Perception Mechanisms 2-6

2.4.1 Physiology of the Ear . 2-7

2.4.2 Perception 0 • • • • • • • • • • • • • • • • • • • 2-8

2.4.3 Loudness Perception 2-8

2.4.4 Pitch Perception . 2-9

2.4.5 Auditory Feedback . 2-9

2.5 Phonetics. 2-9

2.5.1 Syllable 2-10

2.5.2 Segments .. 2-11

vi

2.5.3 Description of Vowels and Consonants 2-12

2.5.3.1 Consonants. .. 2-12

2.5.3.2 Vowels 2-14

2.6 Phonology. .. 2-16

2.6.1 Selection of Distinguishable Segments 2-16

2.6.2 Structural Composition of Segments

in Syllables 2-17

2.7 Broad Speech Classification using

Distinctive Features 2-18

2.8 Coarticulation. .. 2-18

2.9 Voice Characteristics and Voice Dynamics 2-19

2.9.1 wudness .. 2-20

2.9.2 Pitch. .. 2-20

2.10 Higher-levels of Speech and Language

Processing 2-20

2.11 Acoustics of Speech Production 2-21

2.12 Filter-Model of the Speech Production

Mechanism 2-22

Chapter 3 : Preprocessing Speech Signals 3-1

3.1 Hardware Preprocessing . 3-1

3.1.1 Sampling 3-1

3.1.2 Sampling Frequency, Nquist Rule and

Aliasing Error 3-1

3.1.3 Filtering, Low-Frequency Noise and High

Frequency Feedback . 3-2

3.1.4 Storage Considerations 3-3

3.2 'Short-Time' Analysis of the Speech Signal 3-3

3.2.1 Windowing............................... 3-4

3.2.2 Window Functions 3-5

3.3 Preprocessing Functions . 3-7

3.3.1 Temporal Preprocessing Functions 3-7

3.3.2 Frequency-Domain Preprocessing

Functions 3-13

vii

Chapter 4 : Segmentation and Classification •••.•..•••..•••........... 4-1

4.1 Introduction ' 4-1

4.1.1 Preprocessing Notation 4-2

4.2 Segmentation 4-3

4.2.1 The ZAPDASH Segmenter 4-4

4.3 Classification. 4-5

4.3.1 Direct Matching . 4-6

4.3.2 The Classification Problem 4-6

4.3.3 Distance Measures in the Pattern Space 4-6

4.3.4 Classification using Nearest Reference

Pattern 4-9

4.3.5 Nearest Neighbour Classification Rules 4-10

4.3.6 Classification using a Statistical

Approach 4-10

4.3.6.1 Bayes Decision Rule 4-11

4.3.6.2 Markovian Stochastic Principles 4-11

4.3.7 Problems with Statistical

4.4.3.3

4.4.3.4

4.4.3.5

4.4

4.5

Decision Theory .

4.3.8 Fuzzy Approach to Pattern Recognition .

TraInIng .

4.4.1 Introduction to Unsupervised Training .

4.4.2 k-Means Segmental Algorithm .

4.4.2.1 Vector Quantisation .

4.4.3 The Self-Organising Map .

4.4.3.1 Phase 1: Spatial Ordering of

the SOM .

4.4.3.2 Phase 2: Determining the Classes

in Map .

Phase 3: Classifier .

General Comments .

Learning Vector Quantisation

(LVQ) Techniques .

4.4.3.6 LVQ1 Algorithm .

4.4.3.7 LVQ2 Algorithm .

4.4.3.8 LVQ3 Algorithm .

Problems of Classification .

viii

4-12

4-13

4-14

4-15

4-15

4-16

4-17

4-19

4-21

4-21

4-21

4-21

4-22

4-23

4-24

4-24

Chapter 5 : Template Matching Word Recognition ..•....•......•.•.... 5-1

5.1 Introduction. 5-1

5.1.1 Role of Word Recognition Systems 5-1

5.1.2 Difference between Isolated and

Connected Word Recognition 5-2

5.1.3 Template Matching 5-3

5.1.4 The Template Matching Problem 5-4

5.2 Isolated Word Recognition 5-4

5.2.1 Linear Time Alignment . 5-4

5.2.2 Non-Linear Time Alignment 5-6

5.2.2.1 Notation. 5-6

5.2.2.2 Basic DTW Procedure 5-6

5.2.2.3 Time Warping :. 5-7

5.2.2.4 Implementation of the DTW

Algorithm 5-9

5.2.3 Review of the Literature on Isolated

Word DTW Algorithms 5-11

5.3 Template Matching in Connected Word Recognition . .. 5-12

5.3.1 Introduction to the Problem 5-12

5.3.2 A Naive Solution .. 5-12

5.3.3 Optimised Solutions 5-13

5.3.4 Notation................................ 5-13

5.3.5 The Two-Level DP Algorithm[Sak79] 5-14

5.3.6 The Level-Building DTW Algorithm[Mye81] 5-17

5.3.7 The One-Stage Dynamic Programming

(DP) Algorithm[Ney84] 5-18

5.3.8 Comparison of the CWR DTW Algorithms 5-25

5.4 Conclusion of Template Matching Techniques 5-27

Chapter 6 : Hidden Markov Modelling•..•..•.....•.....••.... 6-1

6.1 Introduction. 6-1

6.1.1 Non-Parametric vs. Parametric 6-1

6.1.2 Markov Processes 6-1

6.1.3 Chapter Overview 6-2

ix

6.1.4 Brief Literature Review 6-2

6.2 Discrete Hidden Markov Models 6-3

6.2.1 Concepts 6-3

6.2.2 Notation 6-4

6.2.3 Parameters of a HMM 6-5

6.3 HMMs in Isolated Word Recognition 6-5

6.3.1 Configuration and Number of the States 6-5

6.3.2 Discrete vs. Continuous HMMs 6-6

6.3.3 Testing Discrete HMM 6-7

6.3.4 Forward-Backward Procedure• 6-8

6.3.4.1 Forward Variable 6-8

6.3.4.2 Backward Algorithm 6-9

6.3.5 Viterbi Algorithm . 6-9

6.3.6 Training (Learning) Stage 6-11

6.3.6.1 Baum-Welsh Re-estimation. 6-12

6.3.6.2 Parameter Re-estimation Formulae 6-13

6.3.6.3 The Algorithm (Baum-Welsh

Re-estimation) 6-14

6.4 ·HMMs in Connected Word Recognition 6-15

6.4.1 Level Building using HMMs 6-15

6.5 Comparison Between Template Matching and HMM

in WR Systems .. 6-17

Chapter 7 : Implementation•........•....••...••.•..• 7-1

7.1 Chapter Outline 7-1

7.2 Hardware Considerations 7-1

7.2.1 Front-End Preprocessor 7-1

7.2.2 Postprocessor 7-4

7.3. Preprocessing Functions . 7-5

7.3.1 Temporal Functions 7-5

7.4 Segmentation Algorithm . 7-7

7.5 IWR System using the DTW Algorithm 7-8

7.6 CWR System using the "One-Stage" DTW Algorithm .. 7-10

7.7 IWR System using Left-to-Right Discrete HMMs 7-11

7.8 A Front-End Process of a CSR System 7-13

x

Chapter 8 : Natural Language Processing (NLP) . • • • • . . • 8-1

8.1 Introduction 8-1

8.1.1 Main Components in NLP 8-1

8.1.2 History of NLP 8-2

8.1.3 NLP in Text and Speech : , 8-2

8.2 Syntax of a Language 8-4

8.2.1 Notation and General Concepts 8-6

8.2.2 Transition Networks 8-11

8.2.3 Recursive Transition Networks. 8-12

8.2.4 Augmented Networks 8-14

8.2.5 Well-Formed Substring Tables and Charts 8-15

8.3 Semantics . 8-17

8.3.1 Difference between Semantics and Pragmatics 8-17

8.3.2 The Lexicon 8-19

8.3.3 Semantic Representations 8-24

8.3.4 Using Semantics to Resolve Ambiguity. 8-27

8.3.5 Inference 8-28

8.3.6 Primitives and Canonical Forms 8-29

8.4 Pragmatics. .. 8-30

8.4.1 Contextual Information in NPs 8-30

8.4.2 Given Information Restricting Referents 8-31

8.4.3 Understanding by Prediction 8-32

8.5 Conclusions 8-34

xi

Chapter 9 : Expert Systems and Speech Understanding••........ 9-1

9.1 Chapter Outline 9-1

9.1.1 The Artificial Intelligence Debate 9-2

9.2 Expert Systems 9-4

9.2.1 People involved in building Expert Systems 9-4

9.2.2 Components of an Expert System 9-6

9.2.3 An 'Expert System' for Speech Recognition 9-7

9.3 Blackboard Systems 9-7

9.3.1 The Puzzle Building Analogy 9-7

9.3.2 Blackboard Model 9-8

9.3.3 Early History of Blackboard Expert Systems 9-10

9.3.4 HEARSAY-II 9-12

9.4 Conclusion 9-16

Chapter 10 : Conclusions

xii

10-1

Chapter 1 · Introduction

"It's April 1993 (sic), and you've just purchased a top-of-the-line personal

computer from Big Apple. You open the box and begin to assemble it, but

to your surprise, you don't see a keyboard, only a special pad and pen that

resemble those in an executive portfolio. The box also contains clothing: a

body suit, a pair of gloves, and a headband. You see no monitor, only a

helmet and goggles. What's going on here? What you are about to

experience is your first taste of natural computing: making computers

interact with users in a human-like manner." [Cau92]

The above quote from BYTE magazine predicts the day (in the not too distant future) when

computers will be transformed into intelligent human-like systems. The onus will be on the

computer to understand the user's speech, gestures, mood and train of thought. At the same

time, the computer will respond and react to the user not only via graphic information on

the screen but also verbally in his (or her l
) own language.

Speech is the natural means of communication between people and it therefore is desirable

that machines should be able to understand speech and talk to the user. (Automatic) speech

recognition is the term used to describe the assimilation of speech by a machine. Speech

synthesis, although not within the scope of this thesis, is the process of getting the machine

to generate speech sounds.

The dream of a natural interface with a machine is perhaps only the surface of a deeper

goal - that of machine intelligence. Important theories in cognitive psychology maintain that

man's capacity for speech separates him from all other living creatures in terms of

intelligence. Vygotsky has shown that children outstrip the performance of apes in solving

practical tasks because of their ability to "reconstruct their perceptions" with "the help of

their speech" [Vyg78]. According to these theories, speech is the very mechanism which

allows humans to build abstract interpretations and solutions to problems. Thus, speech

might be the key to solving the problem of machine intelligence. These ideas are not the

central focus of this thesis and yet they support the need for a holistic approach to speech

recognition. That is, speech recognition should not simply be a case of identifying the

sounds of word utterances but should rather involve developing a sophisticated system that

1 The masculine is adopted without prejudice henceforth.

Chapter 1 - Introduction 1-1

can predict, associate, validate, think and understand. Chapters 8 and 9 on the higher l~vels

of speech processing highlight these necessary components in speech recognition.

Speech recognition has not had a history of instant successes. The problem has been around

since the early '50s but researchers were quickly disillusioned by the complexity of their

subject. As a result, the goal of a speaking, understanding machine was reduced to make

the goals more attainable. Several less sophisticated classes of speech recognition sys~ems

have emerged, each extending the scope of the problem or shifting the perspective or

approach of existing classes.

There are two aspects which determine the way speech recognition systems are referred to:

firstly, the unit of recognition used and secondly, the scope of the recognition problem

tackled.

The unit of recognition refers to the size of the sound used to identify speech. People

perceive several units of sound namely phonemes!, syllables and words. Speech

recognition systems using these and other 'in between' units of recognition, have been

developed. The word is the largest and the phoneme the smallest. The unit of recognition

is often included in the name describing the type of speech recognition system. For

example, word recognition systems have the word as their unit of recognition.

The second way speech recognition systems are identified is by the scope of speech they

attempt to recognise.

Isolated speech recognition (ISR) systems identify single word utterances from a dictionary

of possible words.

Continuous speech recognition2 (CSR) systems involve recognising phrases or sentences

of words spoken in continuous speech. Word spotting systems are closely related to CSR.

They attempt to detect a single word in a string of continuous speech.

1 Phonemes are defined and discussed in chapter 2.

2 CSR systems with a word unit of recognition are caned connected word recognition systems.

Chapter 1 - Introduction 1-2

Speech understanding is the ultimate goal of speech recognition research in that it attempts

to integrate higher levels of speech processing and language issues into CSR systems.

These issues include:

• the prosodics (stress, rhythm and pitch) of speech sounds

• the syntax or structure of a language

• the semantics or meanings of words and the logic and truth value of sentences

• the pragmatics or context of ideas in the sentence(s) and the intentions (vs. literal

meaning) of the speaker's words.

Speech understanding draws on ideas from artificial intelligence and expert systems are

used to attempt to embody the multiple knowledge sources.

Two topics related to speech recognition but not covered in this thesis, are speaker (or

voice) recognition [Ata76] [Sam76] and speaker verification (or authentication) [Ros76].

Both deal with the problem of identifying speakers from the sound of their voice. (For the

differences between speaker recognition and verification see [Ros76]. A summary of papers

including [Ata76] [Sam76] and [Ros76] on these topics is included in [Dix79]). A person's

voice like his thumb-print, can be used to identify him because each person's vocal

apparatus is different from anyone else's. People have the ability to perform voice

recognition which is apparent when they answer telephones. Voice recognition can be

considered an important component of speech understanding from the point of anticipating

the subject-matter and context of a speaker and following the conversation of multiple

speakers.

Chapter 1 - Introduction 1-3

1.1 General Speech Recognition Process

S eec:h
Input

Preproc:essinl

Figure 1.1 General Speech Processing System

Figure 1.1 shows the process adopted by most digital speech recognition systems. The

speech input is captured by a microphone in the form of an analogue electronic signal. This

signal is digitised and then preprocessed to extract a set of speech features characterising

it as it varies in time (chapter 3). The speech features are then classified and labelled by

matching them against a set of reference patterns in the lexicon (or dictionary). The· unit

of recognition must be specified at this stage. Word recognition systems are discussed in

chapters 5 and 6 while subword (ego phoneme) recognition systems are the focus of

chapter 4. The lexicon of any speech recognition system is made up of reference patterns

(chapter 4 and 5) or statistical models (chapter 6) representing the words in the system's

vocabulary. All speech recognition systems will require a training stage to build their

lexicons. Training is very tedious and thus ways of reducing this time consuming task are

investigated (chapter 4). Testing the system involves matching input signal patterns which

are statistically different from the set of training signals, against the reference patterns or

models in the lexicon. The best matching reference pattern is chosen as the 'winning word'.

The recognised units of speech can then be merged with neighbouring recognised speech

units until words, phrases and eventually sentences are formed. The higher levels of speech

processing (chapter 8) can be integrated with this merging process to restrict and guide it.

Chapter 1 - Introduction 1-4

1.2 Broad Aims

This thesis examines the main approaches to speech recognition. It is holistic in approach,

attempting to integrate the main ideas in speech recognition. Due to the size of the topic,

certain areas are omitted or covered briefly. Where possible, references to further research

are given. Several speech recognition systems have been implemented, the results of which

are compared with those from similar systems found in the literature.

1.3 Chapter Outline of the Thesis

Chapter 1 - Introduction

The introduction defines the field of speech recognition and outlines the aims and

objectives of this thesis.

Chapter 2 - Anatomy of the Speech Production and Perception Mechanisms

The anatomy of the speech production and perception mechanisms are investigated in order

to parallel machine recognition and synthesis with the human model. In addition, a study

of how sounds are produced provides useful insights into the recognition problem. Finally,

the source-filter model [Fan60] is described as a powerful tool for modelling speech

production. Coupled with statistical predictive analysis of speech, this model can be ,used

to develop the all-important linear predictive coding (LPC) technique which has been the

cornerstone of speech processing applications since the late '60s.

Chapter 3 - The Preprocessing Stage

This chapter deals with the problems in the first stage of the general speech recogniser (see

figure 1.1) including:

• Filtering and amplification of the signal

• Sampling or converting the analogue speech signal to a digital form

• 'Short-time' characterisation of time varying speech signals

• Various preprocessing functions for extracting characteristic features from the

speech signal in both the time- and frequency-domains.

• Linear predictive coding of the speech signals

Chapter 1 - Introduction 1-5

Chapter 4 - Segmentation and Classification

Segmentation involves splitting the signal into regions of similar acoustic content.

Classification is the process of determining to which particular sound classes the segments

of the speech signal belong. Several techniques for both problems are presented in this

chapter.

Chapter 5 - Template Matching Word Recognition

Template matching is the technique whereby an unknown input signal is matched against

a set of reference words. Several algorithms for time aligning the input signal with the

reference signal are presented. Both isolated and connected word recognition systems are

investigated using this technique.

Chapter 6 - Hidden Markov Modelling

The notion of parametric modelling of speech using stochastic hidden Markov models is

developed. Isolated and connected word recognition systems using this approach are

studied. The chapter concludes with a comparison between template matching and hidden

Markov modelling approaches.

Chapter 7 - Implementation

A description of the practical aspects of implementing several speech recognition systems

are detailed in this chapter including:

• A template matching isolated word recognition system (chapter 5)

• An isolated word recognition system using hidden Markov modelling (chapter 6)

• A template matching connected word recognition system (chapter 5)

• A continuous speech recognition system based on the classification ideas

presented in chapter 4.

A program for graphing the speech signal and various features of the signal is also

described along with a segmentation algorithm based on the ZAPDASH segmenter

discussed in chapter 4.

The results of the systems implemented in this project are presented and compared with

those of similar systems found in the literature.

Chapter 1 - Introduction 1-6

Chapter 8 - Higher Levels of Speech Processing

This chapter examines the higher levels of speech and language processing with a view to

incorporating them into the speech recognition systems.

Chapter 9 - Expert Systems

Expert systems are studied as the means for incorporating the concepts of chapter 8- into

a speech understanding system. In particular, the blackboard expert system model is seen

to have the greatest potential for expressing and integrating the higher levels of speech and

language knowledge into a speech understanding system. The HEARSAY-II blackboard

speech understanding system is discussed in detail.

Chapter 10 - Conclusions

General conclusions are drawn about the current state and future of speech recognition.

Chapter 1 - Introduction 1-7

Chapter 10 - Conclusions

In this thesis, several aspects of speech recognition have been examined:

• the way people talk and listen, the way linguists classify sounds and the

theories related to sound production, quality of voice and problems

associated with speech processing (chapter 2)

• the 'short-time' analysis of the speech signal in order to compress the large

number of speech digital samples into a condensed form (several forms were

mentioned especially using spectral information and linear predictive coding)

which carries all the important information of the signal (chapter 3)

• presegmentation of the signal into speech events ego sounds or words, was

found to be difficult while several techniques for classifying (labelling) the

speech sounds in the signal were studied as a front-end to a continuous

speech recognition system (chapters 4 and 7)

• word recognition techniques using the template-matching and hidden

Markov modelling approaches (chapters 5, 6 and 7)

• an integrated system for embodying natural language processing into the

speech recognition process using the blackboard model (chapters 8 and 9)

The aim of the thesis was to expose the most important aspects of speech recognition and

in particular, to include discussion on the natural language processing aspect of speech and

how it might be integrated in speech recognition using the blackboard expert system. It

seems likely that the current trend of speech recognition resea~ch will bend towards NLP

as the low-level pattern recognition problems are exhausted. In this regard, there are areas

in speech recognition research which need considerable development (also see [Moo92]):

•

•

prosodics or the contribution of rhythm, stress and timing to the speech

message and the speaker's mood and intentions

natural language acquisition theories ego [Ree78] can possibly give way to

more powerful NLP systems with the ability to learn a language rather than

starting with the data structures which researchers think model human

cognitive processes

Chapter 10 - Conclusions 10-1

• new technology for handling large speech data, high processing speeds but

more importantly, concurrent processing

Small-medium vocabulary «200 words) word recognisers have long been achieving

excellent recognition results. It seems that this technology has finally become available,

with user-friendly response times. Earlier on in the year, Apple MacIntosh announced that

their workstations would come with this technology and more recently (November. '92)

IBM announced that they would be introducing speech recognition technology with their

mid-range systems.

As far as speech understanding is concerned, the problem is so vast that it will probably

be many years before a reasonably 'intelligent' system is produced which performs as a

human should even if in a restricted problem domain.

Chapter 10 • Conclusions 10-2

[Abe74]

[Ab073]

[Ata71]

References

Abercrombie, D, Elements of General Phonetics, Edinburgh University Press
Edinburgh, (1974).

Abo, A V & Ullman, J D, The Theory of Parsing, Translation, and
Compiling, Vol 11: Compiling, Prentice-Hall Inc, Englewood Cliffs, New
Jersey, (1973).

Ata), B S & Hanauer, S L, Speech Analysis and Synthesis by Linear
Prediction of the Speech Wave, Journal of the Acoustic Society ofAmerica,
Vol 50, No 2 (Part 2), August (1971), p 637-655.

[Ata76] Atal, B S, Automatic Recognition of Speakers from their Voices,
Proceedings of the IEEE, Vol 64, April (1976), p 460-475.

[Ata85] Atal, B S, Computer Speech Processing, Fallside, F & Woods, W A (eds),
Prentice-Hall International, London, (1985).

[Bla85] Bladon, RAW, Acoustic Phonetics, Auditory Phonetics, Speaker Sex and
Speech Recognition : A Thread, Computer Speech Processing, Fallside, F
& Woods, W A (eds), Prentice-Hall International, London, (1985).

[Bor87] Born, R (ed), Artificial Intelligence: The Case Against, Croom & Helm,
London, (1987).

[Bra90] Bratko, I, Prolog Programming Language for Artificial Intelligence (2nd ed),
Addison-Wesley, Reading, Massachusetts, (1990).

[Br082] Brown, M K & Rabiner, L R, An Adaptive, Ordered, Graph Search
Technique for Dynamic Time Warping for Isolated Word Regognition, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-30,
No 4, August (1982), p 535-544.

[Br091] Brown, M K, McGee, M A, Rabiner, L R & Wilpon, J G, Training Set
Design for Connected Speech Recognition, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol 39, No 6, June (1991), p 1268-1281.

[Cau92] Caudill, M, Kinder, Gentler Computing, Byte (UK) , McGraw-Hill Inc.
Peterborough, April (1992).

[Cha85] Charniak, E & McDermott, D V, Introduction to Artificial Intelligence,
Addison-Wesley, Reading, Massachusetts, (1985).

[Ch068] Chomsky, N & Halle, M, The Sound Pattern of English, Harper & Row,
New York, (1968).

[Chu47] Churchill, W S, My Early Life. Odhams Press Ltd, London, (1947).

References R-l

[Coh82] Cohen, P R & Feigenbaum, E A (eds), Handbook of AI Vol 3, Addison­
Wesley, Reading, Massachusetts, (1982).

[Coh86] Cohen, D I A, Introduction to Computer Theory, John Wiley & Sons,
Toronto, (1986).

[DeM90] De Mori, R, Palakal, M J & Cosi P, Perceptual Models for Automatic
Speech Recognition, Yovits, M C (ed) Advances in Computers Vol 31,
Academic Press Inc, Boston, (1990), p 100-173.

[Dev82] Devijver, P A & Kittler, J, Pattern Recognition: A Statistical Approach,
Prentice-Hall International, London, (1982).

[Dix79] Dixon, N R & Martin, T B, (eds), Automatic Speech and Speaker
Recognition, Proceedings of the IEEE, John Wiley & Sons, New York,
(1979).

[DuP91] Du Preez, J A, Modelling Durations in Hidden Markov Models with
Application to Word Spotting, ComSig Proceedings, IEEE, August (1991).

[Eng88] Engelmore, R & Morgan, T (eds), Blackboard Systems, Addison-Wesley,
Reading, Massachusetts, (1988).

[Erm76] Erman, L D, Fennell, R D, Lesser, V R & Reddy, D R, System
Organizations for Speech Understanding: Implications of Network and
Multiprocessor Computer Architectures for AI, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol-C 25, No 4, April (1976), p
414-421.

[FaI85] Fallside, F & Woods, W A (eds), Computer Speech Processing, Prentice­
Hall International (UK), London, (1985).

[Fan60] Fant, G, Acoustic Theory of Speech Production, Mouton, The Hague,
(1960).

[For84] Forsyth, R (ed), Expert Systems - Principles and Case Studies, Chapman and
Hall, London, (1984).

[For89] Forsyth, R (ed), Machine Learning: Principles and Techniques, Chapman
and Hall Computing, London, (1989).

[Fur80] Furui, S, A Training Procedure for Isolated Word Recognition Systems,
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP­
28, No 2, April (1980), p 129-135.

[Ga090a] Gao, Y Q, Chen, Y B & Huang, T Y, A New Method for Estimation of
Hidden Markov Model Parameters, 10th International Conference on Pattern
Recognition, Vol 11, IEEE, Computer Society Press, Washington, June
(1990).

References R-2

[Ga090b] Gao, Y Q, Chen Y B & Huang T Y, The Speech Recognition System for
All the Chinese Syllables Using Hidden Markov Model, 10th International
Conference on Pattern Recognition, IEEE, Computer Society Press,
Washington, (1990).

[Gaz89a] Gazdar, G & Mellish, C, Natural Language Processing in Lisp: An
Introduction to Computational Linguistics, Addison-Wesley, Reading,
Massachusetts, (1989).

[Gaz89b] Gazdar, G & Mellish, C, Natural Language Processing in Prolog: An
Introduction to Computational Linguistics, Addison-Wesley, Reading,
Massachusetts, 1989.

[Gre78] Greene, M C L, The Voice and its Disorders, Pitman Medical, London, p
1-45, (1978).

[Har89] Hart, A, Machine induction as a form of knowledge acquisition in
knowledge engineering, Machine Learning, Forsyth, R (ed), Chapman and
Hall, London, (1989).

[Hay83] Hayes-Roth, F, Waterman, D A & Lenat, D B (eds), Building Expert
Systems, Addison-Wesley, Reading, Massachusetts, (1983).

[Hur88] Hurford, J R & Heasley, B, Semantics: A Coursebook, Cambridge
University Press, Cambridge, (1988).

[los80] Iosifescu, M, Finite Markov Processes and their Applications, John Wiley
and Sons, Bucuresti, (1980).

[Ita75] Itakura, F, Minimum Prediction Residual Principle Applied to Speech
Recognition, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol ASSP-23, February (1975), p 62-72.

[Jac89] Jackson, L B, Digital Filters and Signal Processing (2nd ed), Kluwer
Academic Publishers, Boston, (1989).

[Jak52] Jakobson, R, Fant, G & Halle, M, Preliminaries to Speech Analysis, MIT
Press, Cambridge, Massachusetts, (1952).

[Je185] Jelinek, F, The Development of an Experimental Discrete Dictation
Recognizer, Proceedings of the IEEE, Vol 73, No 11, November (1985).

[Joh76] Johnson, D E, Introduction to Filter Theory. Prentice-Hall Inc, Englewood
Cliffs, New Jersey, (1976).

[Joh88] Johnson, L & Keravnou, E T, Expert Systems and Architectures. Kogan
Page Ltd, London, (1988).

References R-3

[Jua85a]

[Jua85b]

[Jua86]

[Kla77]

[Kit82]

[Kni90]

[Koh88]

[Koh89]

[Koh90]

[Koh91]1

[Lad85]

[Lan79]

Juang, B-H, Maximum-Likelihood Estimation for Mixture Multivariate
Stochastic Observations of Markov Chains, AT&T Technical Journal, Vol
64, No 6, July-August (1985), P 1235-1249.

Juang, B-H & Rabiner, L R, Mixture Autoregressive Hidden Markov Models
for Speech Signals, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol ASSP-33 No.6, December (1985), p 1404-1413.

Juang, B-H, Levinson, S E & Sondhi M, Maximum Likelihood Estimation
for Multivariate Mixture Observations of Markov Chains, IEEE Transactions
on Information Theory, Vol IT-32, No 2, March (1986).

Klatt, D H, A review of the ARPA Speech Understanding Project, Journal
of the Accoustical Society ofAmerica, Vol 62, December (1977), p 1345­
1366.

Kittler, J, Fu K S & Pau L F (eds), Pattern Recognition Theory and
Applications, D Riedel Publishing Co, Dordrecht, Holland, (1982).

Knight, K, Connectionist ideas and algorithms, Communications ofthe ACM,
Vol 33, No 11, New York Association for Computing Machinery Inc. New
York, November (1990).

Kohonen, T, The "Neural" Phonetic Typewriter, Computer, Vol 21, No 3,
March (1988), p 11-22.

Kohonen, T, Speech Recognition based on topology-preserving neural maps,
Neural Computing Architectures : The Design of Brain-like Machines,
Aleksander, I (ed), North Oxford Academic, London, (1989).

Kohonen, T, The Self-Organizing Map, Proceedings of the IEEE, Vol 78,
No 9, September (1990), p 1464-1477.

Kohonen, T, Kangas, J, Laaksonen, J & Torkkola, K, The Learning Vector
Quantization Program Package, Version 2.0 (January 1992), Helsinki
University of Technology, Rakentajanaukio, Finland.

Ladefoged, P, The Phonetic Basis for Computer Speech Processing,
Computer Speech Processing, Fallside, F & Woods, W A (eds), Prentice­
Hall International (UK), London, (1985).

Lancaster, D, Active Filter Cookbook, Howard W Sams & Co Inc,
Indianapolis, (1979).

Can be FTP'ed from anonymous login on the machine: "cochlea.hut.fi" (or INTERNET address:
130.233.168.48). Use your own e-mail address as password and obtain files from the Ipub/1vqyak
directory.

References R-4

[Lee90a] Lee, K-F, Hon, H-W & Reddy, R, An Overview of the SPHINX Speech
Recognition System, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol 38, No 1, January (1990), p 35-45.

[Lee90b] Lee, K-F, Context-Dependent Phonetic Hidden Markov Models for Speaker­
Independent Continuous Speech Recognition, IEEE Transactions on
Acoustics, Speech, Signal Processing, Vol 38, No 4, April (1990), p 599­
609.

[Lee92] Leedham, G, Pattern Recognition and its Application to Speech, Rowden,
C (ed), McGraw-Hill International (UK), Maidenhead, (1992).

[Les75] Lesser, V R, Fennell, R D, Erman, L D & Reddy, D R, Organisation of the
HEARSAY-11 Speech Understanding System, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol ASSP-23, February (1975),
p 11-24.

[Lev85a] Levinson, S E, A Unified Theory of Composite Pattern Analysis for
Automatic Speech Recognition, Computer Speech Processing. Fallside, F &
Woods, W A (eds), Prentice-Hall International (UK), London, (1985).

[Lev85b] Levinson, S E, Structural Methods in Automatic Speech Recognition
Proceedings of the IEEE, Vol 73, No 11, November (1985), p 1625-1647.

[Lip82] Liporace, L A, Maximum Likelihood Estimation for Multivariate
Observations of Markov Sources, IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol IT-28, No 5, September (1982), p 729-734.

[Low77] Lowerre, B T, Dynamic Speaker Adaption in the Harpy Speech Recognition
System, IEEE Transactions on Acoustics, Speech, and Signal Processing,
May (1977), p 788-790.

[Mak75] Makhoul, J, Linear Prediction : A Tutorial Review, Proceedings of the
IEEE, Vol 63, No 4, April (1975), p 561-580.

[Mak85] Makhoul, J, Roucos, S & Gish, H, Vector Quantization in Speech Coding,
Proceedings of the IEEE, Vol 73, No 11, November (1985), p 1551-1585.

[McT87] McTear, M, The Articulate Computer, Basil Blackwell, Oxford, (1987).

[Mer89] Merritt, D, Building Expert Systems in Prolog, Springer-Verlag, New York,
(1989).

[Moo92] Moore, R, Recognition - the Stochastic Modelling Approach, Speech
Processing, Rowden, C (ed), McGraw-Hill International (UK), Maidenhead,
(1992).

[Mye80]

[Mye81]

[Ney84]

[Ney91]

[Nie81]

[Opp90]

[PaI82]

[PaI86]

[Pan85]

[Par86]

[Pas82]

[Pit90]

[Pou83]

References

Myers, C, Rabiner, L R & Rosenberg, A E, Performance Tradeoffs in
Dynamic Time Warping for Isolated Word Recognition, IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol ASSP-28, No 6,
December (1980), p 623-635.

Myers, C S & Rabiner, L R, A Level Building Dynamic Time Warping
Algorithm for Connected Word Recognition, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol Assp-29, No 2, April (1981),
p 284-297.

Ney, H, The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition, IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol ASSP-32, No 2, April (1984), p 263-271.

Ney, H, Dynamic Programming Parsing for Context-Free Grammars in
Continuous Speech Recognition, IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol 39, No 2, February (1991), p 336-340.

Niemann, H, Pattern Analysis, Springer-Verlag, Berlin, (1981).

Oppenheimer, A V & Schafer, R W, Discrete-Time Signal Processing,
Prentice-Hall Inc, Englewood Cliffs, New Jersey, (1990).

Pal, S K, Fuzzy Set Theoretic Approach : A Tool for Speech and Image
Recognition, Pattern Recognition Theory and Applications, Kittler, J, Fu, K
S & Pau, L F (eds), D Reidel Publishing Company, Dordrecht: Holland,
(1982).

Pal, S K & Majumder, D K, Fuzzy Mathematical Approach to Pattern
Recognition, John Wiley & Sons, New York, (1986).

Pan, K-C, Soong, F K & Rabiner, L R, A Vector-Quantization-Based
Preprocessor for Speaker-Independent Isolated Word Recognition, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-33,
No 3, June (1985), p 547-559.

Parsons, T, Voice and Speech Processing. McGraw-Hill Inc, New York,
(1986).

Passingham, R, The Human Primate, W H Freeman & Co, San Francisco,
(1982).

Pitchers, R C, A Comparative Study of Various Speech Recognition
Techniques, Master of Science in Engineering, Department of Electronic
Engineering, University of Natal, Durban, (1990).

Poulton, A S, Microcomputer Speech Synthesis and Recognition, Sigma
Technical Press, Wilmslow, Cheshire, UK, (1983).

R-6

[Pri89] Priemer, R, Introductory Signal Processing, World Scientific, Singapore,

(1989).

[Qui87] Quinlan, J R, Compton, P J, Horn, K A & Lazarus, L, Inductive Knowledge
Acquisition: A Case Study, Applications of Expert Systems, Quinlan, J R
(ed), Turing Institute Press in association with Addison Wesley, Sydney,

(1987).

[Rab76] Rabiner, L R & Sambur, M R, Some Preliminary Experiments in the
Recognition of Connected Digits, IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol ASSP-24, April (1976), p 170-182.

[Rab79] Rabiner, L R, Speaker-Independent Isolated Word Recognition for a
Moderate Size (54 Word) Vocabulary, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol ASSP-27, No 6, December (1979), p
583-587.

[Rab80] Rabiner, L R & Schmidt, C E, Application of Dynamic Time Warping to
Connected Digit Recognition, IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol ASSP-28, No 4, August (1980), P 377-388.

[Rab84] Rabiner, L R, Wilpon, J G, Quinn, A M & Terrace, S G, On the Application
of Embedded Digit Training to Speaker Independent Connected Digit
Recognition, IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-32, No 2, April (1984), p 272-279.

[Rab85a] Rabiner, L R & Levinson, S E, A Speaker-Independent, Syntax-Directed,
Connected Word Recognition System Based on Hidden Markov Models and
Level Building, IEEE Transactions on Acoustics, Speech, and Signal
Processsing, ASSP-33, No 3, June (1985), p 561-573.

[Rab85b] Rabiner, L R, Juang, B-H, Levinson, S E & M M, Sondhi, Recognition of
Isolated Digits Using Hidden Markov Models With Continuous Mixture
Densities, AT&T Technical Journal, Vol 64, July-August (1985), p 1211­
1233.

[Rab89] Rabiner, L R, A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE, Vol 77, No
2, February (1989), p 257-286.

[Ree78] Reeker, L H, Computational Study of Language Acquisition, Rubinoff, M
& Yovits, M C (eds), Advances in Computers, Vol 15, (1978), P 181-237.

[Red76] Reddy, D R, Speech Recognition by Machine: A Review, Proceedings ofthe
IEEE, Vol 64, April (1976), p 501-531.

[Rey83] Reynolds, A G & Flagg, P W, Cognitive Psychology, Little, Brown & Co.
Boston, (1983).

References R-7

[Ric91] Rich, E & Knight, K, Artificial Intelligence, McGraw-Hill Inc, New York,

(1991).

[Rob87] Roberts, R A & Mullis, C T, Digital Signal Processing, Addison-Wesley,
Reading, Massachusetts, (1987).

[Ros76] Rosenberg, A E, Automatic Speaker Verification, Proceedings of the IEEE,
Vol 64, April (1976), p 475-487.

[Row92a] Rowden, C, Analysis, Speech Processing, Rowden, C (ed), McGraw-Hill
International (UK), Maidenhead, (1992).

[Row92b] Rowden, C & Hall, S, Parametric Coding of Speech, Speech Processing,
Rowden, C (ed), McGraw-Hill International (UK), Maidenhead, (1992).

[Rum87] Rumelhart, D.E. & McClelland, J.L., Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol 1 & 2, The
Massachusetts Institute of Technology, Cambridge, Massachusetts, (1987).

[Sak78] Sakoe, H & Chiba, S, Dynamic Programming Algorithm Optimization for
Spoken Word Recognition, IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol ASSP-26, February (1978), p 43-49.

[Sak79] Sakoe, H, Two-Level DP-Matching - A Dynamic Programming-Based
Pattern Matching Algorithm for Connected Word Recognition, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-27,
No 26, December (1979), p 588-595.

[Sam76] Sambur, M R, Speaker Recognition using Orthogonal Linear Prediction,
IEEE Transactions on Acoustics, Speech, Signal Processing, Vol ASSP-24,
August (1976), P 283-289.

[Sch75] Schafer, R W & Rabiner, L R, Digital Representation of Speech Signals in
Proceedings of the IEEE, Vol 63, No 4, April (1975), p 662-677.

[Sch77] Schank, R C & Abelson, R P, Scripts, Plans, Goals and Understanding: An
Inquiry into Human Knowledge Structures, Addison-Wesley, Reading,
Massachusetts, (1977).

[Sch77] Schank, R C, Dynamic Memory and Theory of Reminding and Learning in
Computers and People, Addison-Wesley, Reading, Massachusetts, (1982).

[Sco1889] Scott, E & Liddle H, A Greek-English Lexicon, Longhams, Oxford, 1889.

[Tap78] Tappert, C C & Subrata, K D, Memory and Time Improvements in a
Dynamic Programming Algorithm for Matching Speech Patterns, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-26,
No 6, December (1978), p 583-586.

References R-8

o [Vas85] Vassiere, J, Speech Recognition: A Tutorial, Computer Speech Processing,
Fallside, F & Woods, W A (eds), Prentice-Hall International (UK), London,

(1985)

r b-t

[Toh87]

'7 [Van91]

Tohkura, Y, A Weighted Cepstral Distance Measure for Speech Recognition,
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP­
35, No 10, October (1987), p 1414-1422.

Van Wyk, G, Nel, I H & Coetzer, W, A Real Time, Speaker Independent,
Speech Recognition System, ComSig Proceedings, IEEE, August (1991).

C> [Vee88] Veeneman, D E, Speech Signal Analysis, Signal Processing Handbook,
Chen, C H (ed), Marcel Dekker Inc, New York, (1988).

[Vic87] Vich, R, Homomorphic Vector Quantisation, Electronic Letters, 23(11), May
(1987), p 561-562.

[Vyg78] Vygotsky, L S, Mind in Society, Cole, M, John-Steiner, V, Scribner, S &
Souberman, E (eds), Harvard University Press, Massachusetts, (1978).

[Wai88] Waibel, A, Prosody and Speech Recognition, Pitman, London, (1988).

• [Wai89] Waibel, A, Hanazawa, T, Hinton, G, Shikano, K & Lang, K J, Phoneme
Recognition Using Time-Delay Neural Networks, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol 37, No 3, March (1989).

• [Wat92] Waters, G, Speech Production and Perception, Speech Processing, Rowden,
C (ed), McGraw-Hill International (UK), Maidenhead, (1992).

[Wei84] Weiss, S.M. & Kulikowski, C A, A Practical Guide to Designing Expert
Systems. Chapman and Hall Ltd, London, 1984.

[Whi76a] White, G M & Neely, R B, Speech Recognition Experiments with Linear
Prediction, Bandpass Filtering, and Dynamic Programming, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-24,
April (1976), p 183-188.

[Whi76b] White, G M, Speech Recognition: A tutorial Oyerview, Computer, Vol 9,
No 5, May (1976), p 40-53.

[Wil83] Wilensky, R, Planning and Understanding: A Computational Approach to
Human Reasoning, Addison-Wesley, Reading, Massachusetts, (1983).

[Wil85] Wilpon, J G & Rabiner, L R, A Modified K-Means Clustering Algorithm for
Use in Isolated Work(sic) Recognition, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol ASSP-33, No 3, June (1985), p 587-594.

References R-9

[Wil90] Wilpon, J G, Rabiner, L R, Chin-Hui, L & Goldman, E R, Automatic
Recognition of Keywords in Unconstrained Speech using Hidden Marcov
Models, IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol 38, No 11, November (1990), p 1870-1878.

[Win84] Winston, P H, Artificial Intelligence (2nd ed), Addison-Wesley, Reading,
Massachusetts, (1984).

[WoI79] Wolf, J J & Woods, W A, The HWIM Speech Understanding System,
Automatic Speech and Speaker Recognition, Dixon, N R & Martin, T B
(eds), IEEE Press, New York, (1979).

[Woo75] Woods, W A, Motivation and Overview of SPEECHLIS : An Experimental
Prototype for Speech Understanding Research, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol ASSP-23, p 2-10, February
(1975).

[Woo85] Woods, W A, Language Processing for Speech Understanding, Computer
Speech Processing, Fallside, F A & Woods, W A (eds), Prentice-Hall
International, Englewood Cliffs, New Jersey, (1985).

[Zad88] Zadeh, L A, Fuzzy Logic, Computer, April (1988), p 83-93.

[Zue85] Zue, V W, The Use of Speech Knowledge in Automatic Speech
Recognition, Proceedings of the IEEE, Vol 73, No 11, November, (1985).

References R-IO

Chapter 2 • Speech Production and Perception

2.1 Introduction

In this chapter, an overview of the anatomy of the human vocal and hearing mechanisms

is presented, followed by an examination of the production and perception of the speech

sounds.

A study of the speech production mechanism shows not only how people speak but helps

ascertain the problems and limitations as well as the potential of speech sounds, based on

the anatomical constraints. This study provides useful insights into the acoustic nature of

speech sounds.

The speech production mechanism is divided into three main categories:

• the lungs - the power supply to the system

• the larynx the main source of excitation

• the vocal tract the modulator and filter of the signal

Figure 2.1 Speech Production Mechanism adapted from [Gre78]

Chapter 2 - Speech Production and Perception 2-1

2.2 Speech Production Mechanism

2.2.1 Lungs

The speech production mechanism is driven or powered by air pressure generated when the

lungs are compressed. Generally the lungs do not contribute to the production of sound

except for pulmonic bursts of air in the form of gasps and coughs.

The primary function of the lungs is to provide a surface for oxygen to enter the

bloodstream. When people speak, they use air from the lungs thus competing directly with

the continuous inward-outward flow of air in breathing. People overcome this conflict by

speaking in "breath groups", which entails inhaling in between groups of sounds - as at the

end of words, phrases and sentences - and exhaling while speaking. The competition

between breathing and speaking is most evident when, for example, one struggles to

breathe after strenuous exercise.

The sound level or loudness of speech is predominantly determined by the force of the air

emitted from the lungs.

2.2.2 Larynx

The larynx (or glottis) is a complicated organ, comprised of cartilages and muscles which

manipulate and control the vocal chords, the primary source of excitation in the speech

production mechanism. The vocal chords are set vibrating by airstreams from the lungs like

the strings or reed of a musical instrument. This phenomenon is called voicing or

phonation. The rate at which the vocal chords vibrate determines pitch - the faster the rate,

the higher the pitch. The larynx consists of four major components: the cricoid cartilage,

thyroid cartilage, arytenoid cartilages and the vocal chords or folds .

....,1
V.ea! eord.

".,...014 NrtI....

Topofmc.ld
cartll.,.

Figure 2.2 The Larynx adapted from [Par86]

Chapter 2 - Speech Production and Perception 2-2

The cricoid and thyroid cartilages are used mainly for supporting the vocal chords. The

arytenoid cartilages control the positioning of the vocal chords, together or apart. In normal

breathing, the vocal chords must be open; when they are closed, they provide an airtight

plug between the lungs and the vocal passage. Some sounds are constructed by closing off

and building air pressure behind the glottal folds before releasing a burst sound. The glottal

stop (explained later), the "k"l sounds in Jgck and the "g" sounds in gag are made in this

way.

2.2.3 Vocal Tract

This term encompasses all the components of the speech production system from the vocal

chords to the lips including the nasal cavity. Figure 2.1 shows the location and identity of

the main parts which are divided into the following five regions:

• the laryngeal pharynx (beneath the epiglottis)

• the oral pharynx (behind the tongue, between the epiglottis and the velum)

• the nasal pharynx (above the velum, rear end of the nasal cavity)

• the oral cavity (forward of the velum and bounded by lips, tongue and palate)

• the nasal cavity (above the palate and extending from the pharynx to the nostrils)

These regions act as the acoustic resonance chambers for speech sounds. By changing their

shape, the sounds are modified and as a result the boundaries of these chambers are known

as articulators. They can obstruct or alter the shape of the vocal tract because of their

elastic nature. The primary articulator is the tongue which is the most flexible; but the lips,

teeth, nasal cavity, epiglottis, lower jaw (mandible), velum (soft palate) and hard palate are

also articulators.

The velum is an elastic muscle which controls the percentage of the vibrating air passing

into the nasal cavity. Several English sounds are specifically nasalised like "n", "m" and

"ng" sounds in !1.umbering; but some people have difficulty controlling their velum during

normal speech, resulting in 'nasalised speech'.

Double quotes "" around an alphabetic character(s) denotes a speech sound(s). An example of the sound
(highlighted by underlining) in an English word often accompanies it. The conventional phonetic or
phonemic symbols denoting the atomic speech sounds are not used because they are generally not well­
known and constant looking up in a table tends to frustrate the reader. Verbalising the word examples
accompanying the sounds will help to follow the argument. See [Par86] for two phonetic alphabets.

Chapter 2 • Speech Production and Perception 2-3

2.3 Speech Production

Production of speech sounds can be divided into two parts: sound generation (excitation)

and sound modification. Excitation occurs at the sound source whereas modification is

carried out by the articulators.

2.3.1 Excitation

Excitation is achieved in several ways, namely:

• phonation (voicing)

• whispering

• frication

• compression

• vowel-like vibration in consonants

• nasality

2.3.2 Phonation (Voicing)

Phonation is the vibration or excitation of the vocal folds when compressed air from the

lungs is forced through them. The stretched out folds are opened and closed by the

arytenoid cartilages to produce bursts or pulses of air.

Due to the low pressure level of the air coming from the lungs at the end of words or

sentences, the pulse rate is sometimes reduced to about half, or the pulses occur in pairs.

This phenomenon known as 'vocal fry' [Par86], does not audibly effect the speech sounds

but can be detected in amplitude-time graphs of the speech signal. An example of 'vocal

fry' is shown in the circled region of graph in figure 2.3.

2.3.3 Whispering

When air from the lungs rushes through a triangular opening between the arytenoid

cartilages instead of passing through the vocal chords, the turbulent, voiceless sound called

whispering is created.

2.3.4 Frication

Frication is the sound created by turbulence when air passes through a constricted opening

in the vocal tract. The nasal cavity is blocked and the vocal tract is partially obstructed by

one or more of the articulators. An example of fricative sound is the "s" sound in J.ee-J.aw,

Chapter 2 - Speech Production and Perception 2-4

c : ,tp",-_-.pt11.'Jlaw.l.1JI" 1

/
/

Two Minor Peaks
Replacing Glottal Pulse

Figure 2.3 Example of 'vocal fry' in the underlined part of the author's utterance:
How many"'!!'bjects are on the table?

in which air is forced through a narrow opening between the hard palate and a slightly

grooved tongue and then between the teeth. The "z" sound in ~.oo is produced in a similar

manner to that of the "s". The major difference between them is the additional phonation

in the "z" sound. Such phonated fricatives are called voiced fricatives. All voiceless

fricatives, in English, have a voiced equivalent. A list of these is produced in Table 2.3

later in the chapter.

2.3.5 Compression

These sounds are made up of plosives (also called bursts) and stops. Plosives occur after

a build up of air pressure behind some point of complete obstruction in the vocal tract.

When the obstruction is removed, the sound that results from the little 'burst' or

'explosion' due to the release of pressure is termed plosive. The stop, on the other hand,

occurs when the speaker suddenly closes the vocal tract at some point to form a complete

obstruction. Stops are often followed by a plosive sound. The glottal stop is a good

example to illustrate this. The British dialectal be'er and bu'er for better and butter exhibit

the glottal stop (closure of the glottis) about where the apostrophe is positioned.

Chapter 2 • Speech Production and Perception 2-5

2.3.6 Nasality

Nasality is the result of partial or complete vibration of a voiced sound resonating in the

nasal cavity. Three sounds are deliberately nasalised in English namely "m" in SU!!1 "n" in

SU!! and "ng" in sung..

2.3.7 Oscillations

These sounds are produced by relatively slow vibrations (±5-10 Hz) of the articulators (eg.

tongue or lips). The "r" sound in some languages (eg. Afrikaans) and dialects sometimes

produces such oscillations of the tongue.

2.4 Hearing and Perception Mechanisms

This section briefly describes the anatomy of the human hearing mechanism and the

perception of speech sounds. The ear can be compared with the front-end module of speech

processing systems (described in the beginning sections of chapter 3). Perception, on the

other hand, is the analysis and interpretation of the sound signals, carried out by the brain.

Speech recognition is an attempt to perceive speech sounds by means of a machine.

OUTER
EAR

External
eanal

INNER
EAR

~."'oI ••VIIy

Figure 2.4 Components of the Ear adapted from [Wat92]

Chapter 2 - Speech Production and Perception 2-6

2.4.1 Physiology of the Ear

The human ear is divided into three parts (see figure 2.4):

• the outer ear

• the middle ear

• the inner ear

The outer ear is the sound receiver, passing sounds to the tympanic membrane (or eardrum)

which separates the outer and middle ears. The tympanic membrane is very like the thin

metal plate in a dynamic microphone. In both cases, acoustic pressure causes them to

oscillate and this kinetic or mechanical energy is then translated into electrical impulses

(microphone) and chemical, liquid impulses (inner ear).

The function of the middle ear is succinctly described by Waters:

"The middle ear overcomes the air-to-liquid impedance to ensure that a

detectable signal reaches the liquid-filled cochlea, to which it interfaces

by two membranes called the oval and the round window." [Wat92]

The ossicles which translate the oscillations of the tympanic membrane to the oval window,

serve to amplify the signal by about 30dB1 [Wat92]. Again, one can see the parallel

between this amplification and that usually found in the hardware preprocessor of speech

systems.

The oval window interfaces the middle and inner ears. The vibrations of the oval window

displace the liquid in the adjoining 'snail-like' cochlea to form 'waves'. It is believed that

the cochlea performs a Fourier-type analysis of these 'waves' - the high frequencies not

travelling as deep into the cochlea as the low frequencies [Wat92]. Minute hairs attached

to the nerves of the cortex line the cochlea in order to extract the 'Fourier' information.

The cortex is an exceedingly complex biological structure. It is the interface between the

ear and the brain through which nerve impulses carrying sound information pass.

The decibel is a measure of the relative power or loudness of a signal. It is determined as ten times
the common logarithm of the ratio of the powers of two signals. Thus in this case, a 30dB
amplification means the amplified signal has 1000 times the power it had before amplification.

Chapter 2 - Speech Production and Perception 2-7

It is evident that the details of speech perception get progressively less clear moving

inwards to the cortex and, as a result, speech systems start to look different from the h~man

model, certainly as far as complexity is concerned.

2.4.2 Perception

Perception involves the interpretation of both the content message and the quality of speech

signals. It also encompasses the distinctions between non-speech and speech sounds. and

one's ability to mask off sounds which are distracting or unimportant. Although extensive

research is being undertaken, to date the brain remains a 'black-box' concealing the

mysteries of human performance.

2.4.3 Loudness Perception

The loudness of sounds is not perceived the same for different frequencies. Figure 2.5 uses

contours to illustrate similar loudness across the spectrum as perceived by the human ear.

It can be seen that at very low and high frequencies one needs a greater intensity for

sounds to be perceived. The human ear is most sensitive to loudness in the 250-5000Hz

range and, as a result, many speech systems (including telephone) only preserve the

frequencies in this range.

Pain

120

40

20

o

-20 a...---:-:J...:-_~~..L-_..L-_"'--_.J.--U...L.._...L.._...I- __

: 250 ~mo 1000 2000 4000 8000 16000
I Frequency ranle of I (Hz)

modem telephones I

Figure 2.5 Loudness Perception Contours adapted from [Wat92]

Chapter 2 - Speech Production and Perception 2-8

2.4.4 Pitch Perception

Pitch is related to the rate at which the vocal chords vibrate (the fundamental freque~cy).

The human ear has the ability to distinguish a 2Hz difference in the fundamental frequency

of a sound with 60-70 SPL at about 1000Hz [Wat92]. How is pitch important in speech

recognition and understanding? Pitch, along with loudness (intensity) and duration, is a

primary ingredient for determining prosodic cues of speech. Combining these ingredients

is a particular way makes it possible for humans to produce the effects known as rhythm

and stress (or emphasis). The importance of these speech cues has been underplayed in

speech recognition research and it seems essential that future systems address these issues.

They are not discussed in any detail in this thesis but a comprehensive study has been

undertaken by Waibel [Wai88], consolidating and expanding previous studies in this area.

The following statement is evidence of the role of pitch in determining the rhythm in

speech.

"A remarkable property of the human auditory system is that for some

complex tones, even if the fundamental pitch is not present in the source

signal, it may still be heard." [Wat92]

Pitch is thus even perceived during unvoiced sounds; the continuity gives rise to the rhythm

of the speech utterances.

2.4.5 Auditory Feedback

The ear not only receives sounds from speakers but also plays a vital role in providing

feedback to the speaker. The importance of auditory feedback is highlighted by the fact that

infants who are born totally deaf inevitably remain dumb as a result [Abe74]. Intensity or

loudness of speech is also judged by auditory feedback. A good example of this is people

tend to talk louder when they are under a hairdrier because they cannot hear themselves

talking against the background noise of the hairdrier.

2.5 Phonetics

Phonetics is the study of the production and perception of speech sounds in general,

without attention to a specific language or dialect. How speech sounds should be identified,

labelled and recorded is therefore one of the central concerns. In phonetics, the smallest

distinguishable speech sounds are called phons usually denoted by standard symbols in

Chapter 2 - Speech Production and Perception 2-9

slanted lines. The phon is language independent. Therefore /k/ is the "k" phon in the

English word fsjng, the Afrikaans word fspning (== king) and the French words flY:. ,est-ce fl!:!:.e

(== what is). Phonetic symbols and notations are continually being revised to label all the

sounds of all languages. The International Phonetic Alphabet (IPA) and the Arpabet are two

recognised standards of phonetic symbols and are listed in [Par86]. Phonemes are the

smallest distinguishable sounds ofa particular language. They are represented by the same

symbols as phons are but have square brackets around them. Therefore, the "th" phoneme

in the English word think is denoted by [8] whereas if one were broadly referring to "th"

sounds across all languages, the "th" sound would be denoted by /8/. The notation for

labelling sounds in this thesis is the non-standard but more user-friendly "<sound>"

followed by an example in which the <sound> is underlined.

In the following sections a phonetic theory is developed to understand how humans

perceive speech sounds.

2.5.1 Syllable

The syllable is a sub-word unit of speech sounds which people generally have little

difficulty recognising. Abercrombie points out that:

"writers on linguistics have nevertheless not found it at all easy to say

what a syllable is and there have been many arguments about how it

should be defined" [Abe74].

A typical school grammar lesson would reduce the syllable to a set of rules. One such rule

might state that every syllable must contain a vowel. This would not however cater for

speech sounds like "shh" (a call for silence) and "hmm" (a sound uttered during

contemplation). The rules do not explain why or how people can ordinarily distinguish the

syllable and as a result, researchers are searching for a biological explanation.

One theory proposes that during speech, the airstream from the lungs is not emitted in one

continuous flow, but as a series of short bursts of air called chest-pulses [Abe74]. The

syllable is thus determined as the unit of sound produced by each chest-pulse. Although

there are contradictions to this theory, its physiological nature makes it more plausible than

a set of grammatical 'tricks'.

Chapter 2 - Speech Production and Perception 2-10

2.5.2 Segments

During the formation of a syllable, the articulators in the vocal tract move to produce

several audibly distinct sounds. The syllable is thus comprised of smaller, distinguishable

units of speech referred to as segments. Four main problems arise when trying to determine

segments.

1. The segments are produced by the simultaneous action of several vocal organs.

2. The articulators can move fairly rapidly. For instance, the tongue can move to 12

different positions in the vocal tract in one second of normal speech [Abe74].

3. Even very slight displacements by the articulators are discernible by the human ear as

different speech sounds.

4. Speech sounds are not separated by silent intervals. They are constructed by

continuously moving articulators and sound sources which do not switch off and on

between each segment.

Speech recognition would be a simple matter if these problems did not exist. But they do.

So the describing and naming of all the possible speech sounds are the most daunting of

tasks for the phonetician.

In order to simplify matters, syllable production is divided into three stages. The first stage

involves the release of air as in a chest-pulse. Prior to such a release, there is usually some

constriction in the vocal tract which causes the pressure build up needed to power the

production of the syllable. Such conditions favour the formation of consonants.

The second stage is filled by a vowel because there is little or no obstruction in the vocal

tract allowing air to be emitted from the chest-pulse with relative ease.

The final stage, the termination of the syllable before the beginning of the next, is, usually

taken up by a consonant to mark the end of the vowel.

These three stages of syllable production are often denoted in terms of Y, C and 0 - ~here

'V' stands for vowel, CC' for consonant and '0' for omitted sound. A point'.' is used to

denote a syllable boundary. For example, the word because consists of two syllables and

can be denoted as: CYO.CYC.

The labels, vowel and consonant, have been used without precise definition. In terms of

how sounds are produced, vowels result from phonation in a relatively unconstrained vocal

tract. Consonants, on the other hand, are formed when there is some constriction in the

Chapter 2 - Speech Production and Perception 2-11

vocal tract. This is not quite true if one considers the consonants "r" (in right), "1" (in

long), "w" (in wet) and "y" (in let). These sounds exhibit the production features of vowels

but perform the role of consonants in the sentence. As a result, they are referred to as semi­

vowels or approximants (the term approximant is used because the articulators of these

sounds only approximate a constriction in the vocal tract unlike other fricatives which form

a complete constriction). Vowels and consonants are defined in terms of their roles in

syllable production. Vowels occupy the middle stage while consonants occupy the

peripheral positions. Sounds like "shh" and "hmm" are exceptions.

2.5.3 Description of Vowels and Consonants

2.5.3.1 Consonants

Consonants can be categorised physiologically according to three characteristics, namely:

• Point of articulation

•

•
Manner of articulation

Voicing (Phonation)

Point of Articulation

This category distinguishes which articulators are involved, and where they are positioned.

For example, the "b" sound in !2.i!2. involves both top and bottom lip. The "b" sound is thus

called bi-labial. Table 2.1 below lists most of the possible points of articulation.

Name Place Description

labial the lips

dental the teeth

apico- tip of tongue

gingival the gums (usuaHy behind upper teeth)

alveolar the alveolar ridge

domal the hard palate

lamino- blade of the tongue

centro- middle of tongue

dorso- back of tongue

velar the velum

pharyngeal root of tongue and pharynx

glottal between vocal chords

Table 2.1 Naming the Points of Articulation

Chapter 2 - Speech Production and Perception 2-12

Manner of Articulation

This describes the type of constriction at the point of articulation and how the sound is

produced. For example, the "b" sounds in QiQ are produced by compression and are

therefore called plosives. A list of most of the ways in which consonants are articulated is

presented in table 2.2 below.

Name Description

Plosive Closed vocal tract followed by a burst

Aspirate Closed vocal tract followed by puff of air

Affricate Closed vocal tract followed by gradual

release producing turbulence

Fricative Turbulence created at point of articulation

Lateral Closed vocal tract but open at the sides

Semivowel or Open at point of articulation and thus

Approximant without turbulence

Nasal Velum open and the vocal tract closed

Trill Oscillatory movement of the tongue

Table 2.2 Naming the Manner of Articulation

Voicing

Voicing refers to sound created by the vibration of the vocal chords. Examples of voiced

fricative phonemes are listed below, together with their unvoiced equivalents.

Voiced Sound Unvoiced Equivalent

"b" in Qat
~

"p" in I!.at

"d" in !!.ip "t" in!ip

"g" in g.oat "k" in coat

"v" in ~an "f" in[an

"j" iniew "ch" in chew

"z" in ~.oo "s" in §.ue

"dz" in lei§..ure "sh" in she

nth" in that nth" in think

Table 2.3 Voiced and Unvoiced Fricative Pairs

Chapter 2 - Speech Production and Perception 2:13

Summary of Consonant Classification

Consonants are named using the following convention. Firstly, say whether the sound is

voiced or voiceless; then, express the place of articulation as an adjective; and finally,

describe the manner of articulation as a noun. Several examples of describing consonants

are displayed in the table below.

Example Description

"p" in I!.et voiceless bilabial plosive

"s" in §.it voiceless (grooved) alveolar fricative

"v" in J!.at voiced labiodental fricative

"m" in !!!at voiced labial nasal

Table 2.4 Complete Naming of Consonants

The apparent ease with which consonants can be defined is contrasted with that of vowels

in the next section.

2.5.3.2 Vowels

Vowels are not as easy to classify physiologically as consonants are because, in most cases,

the vowel sound is different as a result of only the slightest variation in the position of the

tongue (the primary articulator). To compound this problem, the tip or blade of the tongue

often does not quite touch the sides of the vocal cavity and this makes a description of the

precise location of the articulators very difficult. Consider, for example, the initial part of

the "I" (capital i) sound in high. The tongue is positioned low in the mouth and the voiced

sound resonates in the cavity of the open mouth. Notice how vague "low in the mouth"

sounds when compared to apicoalveolar or "the tip of the tongue touching the alveolar

ridge". As a result, the following categories have been detennined for vowels:

•

•
•

•

tongue, high or low

tongue, back or front

lips, rounded or open

nasalised or not (eg. the "ar" sound in gflI.Son =boy in French)

Chapter 2 - Speech Production and Perception 2-14

Example Description

"un in cut low back tongue, lips open, not rounded

"ar" in g!!!S0n low back tongue, lips open, nasalised

"00" in sue high middle tongue, lips rounded

"en in head middle tongue, lips open

Table 2.5 Examples of Descriptions of Vowels

Vowel diagrams have been developed to illustrate the relative position of the tongue at the

time of vowel articulation.

High

Middle

Low

Front

"i" (~)

"ee" (daI)

"ay" (A5:)
"e" (t.)

"a" (A..)

"u" (1'.#)

Back

"00"

("a)

"0"(a)

"or",

Figure 2.6 Vowel Diagrams adapted from [par86]

Voiceless Vowels

These are vowels produced during whispered speech. However, several examples of

voiceless vowels do occur in normal speech. The first vowel in the word pQtato is voiceless

because of the aspiration after the "p" and the rapid movement of the articulators to the "t"

sound.

Diphthongs

Diphthongs are formed by vowel segments which are constantly changing. For example,

the "ow" vowel sound in how changes during its production as the lips are gradually

rounded. The "ay" vowel sound in df!J!. is formed by gradually raising the blade of the

tongue. Diphthongs can be thought of as two 'joined' vowels produced in one syllable. The

vowel sounds in ruin do not form a diphthong since they are produced in two separate

syllables not one.

Chapter 2 - Speech Production and Perception 2-15

Secondary Articulations

Although vowels have been described in terms of lip posture and positioning of the tongue,

there are obviously several other influencing "points of articulation" in the vocal tract. This

is in fact true of vowel and consonantal segments alike. A good example of secondary

articulation is found in the "m" sound in words like me, make and mine. The tongue

position of the vowel sound following the "m" sound, alters the "m" sound slightly in each

of these examples. The primary point of articulation of "m" is the lips. Thus, "m" is usually

referred to as a voiced labial nasal. However, sound variations in the "m"s of the above

example are due to the position of the tongue which produces a secondary articulation.

2.6 Phonology

From the study of the techniques used for naming different sounds, it is evident that people

have the ability to produce a great variety of speech sounds. However, a language typically

contains only a small number of all the possible segments from which words are formed.

In addition, certain combinations of segments are never formed while other combinations

of segments are found in some position in the word more frequently than in others.

Phonology is the study of segments and their characteristics in a particular language.

Divided into two main areas, the first deals with the selection of a set of "distinguishable

segments" for a language and the second examines the structural composition of the

segments that make up the syllables and words of a language.

2.6.1 Selection of Distinguishable Segments

Allophones are the members of a set of phonetically similar sounds accepted by speakers

of a language as being the same sound [Par86]. The sound that allophones are "accepted

as being" is called the phoneme denoted by the phonetic symbol in square brackets. For

example, consider the "k" sound in J9n and fUP. These "k" sounds exhibit a secondary

articulation determined by the vowel sounds which follow them and are therefore

technically different sounds. They are however perceived by English speakers to be the

same sound and are thus allophones of the [k] phoneme. Two more allophones of [k] are

found in f.ope (where the "k" sound is aspirated) and sfope (where it is not aspirated).

Every language contains hundreds of segments and yet relatively few phonemes. Thus most

segment sounds are allophones of the phonemes of a language. Humans, fortunately, have

the ability to identify phonemes.

Chapter 2 - Speech Production and Perception 2-16

2.6.2 Structural Composition :of Segments in Syllables

The CYC combination of segments is typical of English syllables. For example: pick, ball,

shape, house.

It is also common for the peripheral C segments to be omitted. tie, the and do all exhibit

the form CYO (where 0 denotes the omitted segment); examples of the form OYC are: up,

on and at. Single segments like a, I are of the form Oyo.

The forms discussed above are also found in multisyllabic words. Eg. the word internally

has the form OYC.CYC.CYO.CYO.

In English, it is also possible to have clusters of consonant segments in syllables. A

consonant cluster is a group of several consonant segments replacing a single C segment

in the first or last stage of syllable production. The monosyllabic word streets, denoted by

CCCYCC, illustrates this very well.

Several languages restrict the possible forms of syllable construction. A speech recognition

system of such languages can exploit these constraints to make the identification process

much easier.

One last point must be made concerning the composition of segments in syllables. It is

evident that various combinations of phonemes within syllables occur more frequently than

others in a particular language. In fact, some combinations may not be found at all.

Information of this nature is very useful to the speech recognition system as is shown by

the the following examples.

The "ps" sound combination is hardly ever found in the first syllable of an English word

(eg. J2.§.st). It is found in syllables other than the first ego synapse, and naJ2.§.ack. In fact, any

noun ending in the "p" sound (eg. turnip) will result in a "ps" sound combination for its

plural form (ie. turniJ!.§). Similarly, verbs which end in the "p" sound (eg. help) have a "ps"

sound combination for their first person singular present tense form (ie. he, she or it helJ2i).

Chapter 2 - Speech Production and Perception 2-17

2.7 Broad .Speech Classification using Distinctive Features

Jakobson proposed that speech sounds be categorised by so-called distinctive features. The

distinctive features of a phoneme are a set of broad speech production categories. By

definition, either a phoneme has an attribute or it does not. The distinctive features of a

Distinctive Feature Description

Vocalic/Nonvocalic Refers to the presence or absence of a well-defined formant structure.
(Formants are the natural resonances occurring in the vocal tract).

ConsonantaIINonconsonantal Consonantal implies a relatively small amount of total energy.

Compact/Diffuse Refers to distribution of spectral energy.

Tense/Lax Tense implies larger total energy with wider bandwidth and longer
duration.

VoicedlUnvoiced Voicing indicates the presence of low-frequency components due to the
vibration of the vocal chords.

Nasal/Oral Nasal shows a wider distribution of spectral energy resulting from
additional nasal resonances.

Discontinuous/Continuous Discontinuous phonemes show abrupt changes in spectral energy spread.

StridentIMellow Strident phonemes have stronger and more random noise components.

CheckedlUnchecked Energy in checked phonemes appears as a burst, as in plosives.

Grave/Acute Grave sounds are dominated by low-frequency resonances, acute ones by
high-frequency resonances.

FlatlPlain Difference is one of relative energy of high-frequency resonances: flat or
weaker vs. plain or stronger.

SharpIPlain Sharp phonemes show a raising in the relative frequency of
higher-frequency resonances.

Table 2.6 The Original 12 Distinctive Features

speech sound are typically represented by an array of twelve binary values (usually "+" if

the feature is exhibited, else "-", ie. "1" or "0", or "TRUE" or "FALSE"). The attributes are

listed in table 2.6 adapted from Parsons [Par86]. Revisions have been made to Jakobson's

original list of distinctive features by lakobson [Jak52] and later Chomsky and Halle

[Ch068]. The definite 'yes-or-no' character of these features has been criticised. One way

to avoid this is to assign a probability value (or a fuzzy confidence qualifier) rating the

degree of certainty of that feature being found in the speech sound.

2.8 Coarticulation

Coarticulation refers to the 'overlapping' of phonemes. This occurs when the brain

anticipates the next phoneme and the articulators, due to lethargy, begin moving into

position to articulate the next phoneme before the current phoneme has been fully

Chapter 2 - Speech Production and Perception 2-18

articulated. Commonly used words like and and the are often greatly effected by

coarticulation to such an extent that they can be left out altogether (omission is called

ellipsis) because higher-level speech processing can determine their presence in context

without actually having to 'hear' them. Up and down, for example, is reduced to up 'n

down.

2.9 Voice Characteristics and Voice Dynamics

For the purpose of speech recognition it has been of primary importance to examine speech

production and perception in terms of segmental features as this determines the actual

phonemes in a speech utterance. There are however other aspects of speech sounds which

also impart valuable information to the listener. They are voice characteristics (or quality)

and voice dynamics.

Voice characteristics are those features of speech which are present more or less all the

time that a person is talking [Abe74]. They are the speech cues which inform the listener

about the identity of the speaker. They involve all the following components: language,

dialect, gender, physical injuries to the vocal apparatus, ailments (eg. asthma) and the shape

and size of the speech production mechanisms of the speaker. A good example of this is

the similarity of voice characteristics in members of the same family. Genetically, the shape

and size of their vocal tracts are similar. In addition, a 'domestic dialect' results of their

constant interaction.

How are voice characteristics important to speech recognition? Firstly, the human speech

recognition system 'adapts' to recognise speech from different people. This is particularly

noticeable for example, when listening to a foreigner speaking English with a strong accent.

The brain quickly 'adjusts' to decipher and understand the new 'dialect'. Moreover,

knowing that the speaker is foreign will prepare the listener for semantic and syntactic

errors where the speech might be idiomatic in sense and the sentences unstructured. A

detailed discussion of the differences between male and female voice features is undertaken

by Bladon1 [Bla8S].

More important to the speech recognition problem are the feaures of voice dynamics. These

are speech feaures that are under the speaker's control and can be acquired. They include:

loudness, tempo, continuity, rhythm, tessitura, register and pitch fluctuation [Abe74]. The

most important of these are investigated in the following sections.

In chapter two of Computer Speech Processing [FaI85]

Chapter 2 - Speech Production and Perception 2-19

2.9.1 Loudness

Loudness depends on the amo~nt of compressed air supplied by the lungs and the extent

to which the vocal chords are opened. The range of loudness is quite substantial and can

be and is controlled by the speaker through the feedback from the ears. It is interesting to

note that if there is iAterference with the feedback mechanism (eg. an elderly person whose

hearing is impaired) the sPeaker tends to speak too loudly.

2.9.2 Pitch

Pitch is the rate at which the "pulses of air" generated from voicing rePeat themselves. It

is controlled primarily by the tension of the vocal folds, and is also regulated by feedback

from the speaker's hearing perception mechanism. The pitch fluctuates continually in

normal speech. These fluctuations are however by no means random and usually follow

well-defined "tunes". The pitch disappears during unvoiced sounds but humans do not

actually notice these momentary gaps. Pitch fluctuations are perceived to be continuous

across the utterance. These fluctuations generate meaning of their own to the listener.

Consider the following utterances spoken with different pitch intonations:

We have arrived? and We have arrived!

The phonemic content is identical. The difference in meaning is translated by the sound of

the utterances, that is, their pitch fluctations.

2.10 Higher-levels of Speech and Language Processing

As speech can be categorised and analysed in a number of ways using units of speech

greater than the phoneme, it is important to look briefly at these higher-levels of speech

and language processing. One such way classifies sentences of speech into grammatical

units (parts of speech) which together form the structure or syntax of the sentence. Another

approach analyses the semantics or meaning of words in the sentence. Pragmatics looks at

the speaker's intentions and the context of the sentence in the conversation. Yet another

perspective on speech is found in the rhythm, pitch and stress or emphasis of words in the

sentence. These features are called prosodics. Pitch fluctuations have already been

mentioned in this chapter. The various perspectives of speech analysis mentioned here are

referred to (in this thesis) as the higher-levels of language and speech analysis. These are

essential in the speech understanding process and are covered in more detail in chapter 8.

Chapter 2 • Speech Production and Perception 2-20

2.11 Acoustics of Speech Production

The previous analysis of speech production was from a physiological perspective. In this

section, the acoustic nature of speech is investigated and a model for speech production

developed.

Vowel Sound Example fl (Hz) (2 (Hz) f3 (Hz)

nee" beat 250 2300 2750

"in bi! 330 2500 2900

"en bet 500 .2090 2830

"er" bird 490 1660 2540

"ar" bE! 700 1210 2460

"un but 700 1370 2340

"00" (short) book 470 850 2420

"00" (long) boot 390 780 2000

"0" lot 660 1050 2500

Table 2.7 Formant Frequencies of Common Vowels

The fundamental frequency, denoted by fo' of voiced speech is the rate at which the vocal

folds vibrate, and therefore only applicable to voiced speech. According to Fourier theory,

fo determines the natural harmonics of the resulting speech sound. However, certain

frequencies (called the formants) are more susceptible to resonance than others due to the

shape and size of the resonance cavities in the vocal tract. A spectrogram can be used to

detect frequencies of greater intensity due to the formants. There can be as many as six

formants but usually the first three are the most predominant. Table 2.7 contains the first

three formants of various vowel sounds spoken by the author. As a comparison, the first

three formants of the "er" in bird by a female voice were measured and found to be:

625Hz, 1680Hz and 2850Hz. The higher frequencies are characteristic of female voices,

largely due to their smaller vocal apparata.

The formants of vowels can be used to identify them. Formant-tracking is a technique used

to trace the first three formant frequencies in order to determine the identity of the vowel

sounds. In this method, the peak amplitudes of the smoothed amplitude or power spectra

can be used to determine the formants.

The vocal tract is often modelled by a simple 'Iossless' uniformly cylindrical tube open at

the one end and with a sound source at the other. Sound is propagated along the tube and

out at the open end. Standard physics textbooks will show that resonances occur in such

a tube when the tube length is at odd multiples of a quarter of the wavelength of the sound.

Chapter 2 - Speech Production and Perception 2-21

Response

The length, f, of the vocal tract of the average man is about 17cm and the speed of

sound c is roughly 340ms·1
• Therefore the first resonant frequency can be determined as:

It
c 340ms-1

500Hz= - = =
f 4xO.17m

h-
e 340ms-1

1500Hz (2.1)= - = =
3f 4/3 xO.17m

h
c 340ms-1

2500Hz= - = =
5f 4/5 xO.17m

The lossless tube model best matches a sound produced by an unimpeded vocal tract ie.

the neutral "er" sound. Notice the similarities in the three formant frequencies of the "er"

sound in bird in table 2.7 and those of the tube model. Though an interesting analogy, the

above model is however quite different from the soft"elastic, non-uniform vocal tract.

2.12 Filter-Model of the Speech Production Mechanism

The filter-model was first derived by Fant [Fan60] as a system for producing speech

sounds. It is based on several assumptions namely that speech sounds vary slowly in time

and that the shape of the vocal tract and the source of excitation determine the sound at any

moment. Using these assumptions, speech sounds can be produced by adapting the shape

of the vocal tract and the type of excitation for short time intervals (±10-45ms long).

Moreover, the shape of the vocal tract can be modelled by the parameters of a linear filter

which acts on input sound generated either by a quasi-periodic train of pulses (emulating

the glottal source in vocalic sounds), or by random noise (emulating the turbulence in

frication), or both to produce voiced fricative sounds. The model is illustrated by figure 2.7:

Excitation

./\./'V voiced

..... random
noise

x(_n)--t..~.fi.:xV\}o-__..~1 Vocal Tract Filtn It---__y_(n_) .
r '<)I r I (LinIlU System) I ...

~ ..

G

Figure 2.7 Filter-Model of Speech Production adapted from [Fal85]

Chapter 2 - Speech Production and Perception 2-22

The filter-model is used in speech recognition by a speech processing technique called

linear predictive coding (LPC), discussed in the following chapter. Because LPC is so

widely used in speech recognition and in order to understand the filter-model, several

points are made about discrete-time signals and filters.

In the time-domain, a filter is defined as a discrete-time system which operates on an input

signal x(n) to produce an output signal yen). A special input signal b(n) called the impulse

(or unit-pulse) sequence is defined as:

n=O
otherwise

(2.2)

The filter output of an impulse sequence is called the impulse response and is usually

denoted by hen). Any discrete-time signal x(n) can be written as the sum of an infinite

number of weighted time-delayed impulse sequences ie.

•
x(n) = L x(k)~(n-k)

k=-flfI

(2.3)

The filter output yen) of a signal x(n) caQ thus be written in terms of the impulse response

hen) as:

•
yen) = L x(k) h(n -k)

k=-flfI

(2.4)

Provided the filter is a Linear Time-Invariant filter, the output yen) of a signal x(n) can be

written in terms of the convolution operator * as yen) = x(n) * hen). Determining the

response of a filter by convolution is computationally expensive, but when transformed to

the frequency-domain, the result is a single multiplication.

To transform any signal x(n) to the frequency-domain, the complex z transform is used:

•
X(z) = L x(n)z -11 (2.5)

Using equations 4 and 5 the filter can be expressed in the frequency domain in terms of

the Frequency Response as

Y(z) =H(z)X(z)

Note:

• the above equation is a single multiplication in the frequency-domain.

Chapter 2 - Speech Production and Perception

(2.6)

2-23

• H(z) is referred to as the transfer function of the filter and sometimes

A(z)=llH(z), the inverse of the transfer function is used.

If it is further assumed that the filter is Casual and that it satisfies a linear constant­

coefficient difference equation of the form

p q

L a,y(n-k)=L br(n-k)
k=O k=O

(2.7)

then H(z) will be a rational function and can be written as a ratio of two polynomials as:

Note:

H(z)= Y(z)
X(z)

q

L bJ1.-k
k=O (2.8)

• The zeroes of above equation are those values of z which result in the numerator

equating to 0 whereas the poles are the values of z which result in the

denominator equating to O.

• The resonances of the filter have been shown to be adequately described by the

poles of the filter. In fact, by including extra poles, the effects of nasality and

frication can be modelled [Mak75].

The above observations are used in the next chapter to show that it is possible to ignore

the contribution of the zeroes and use the all-pole filter to model the effects of the vocal

tract.

Chapter 2 - Speech Production and Perception 2-24

Chapter 3 - Preprocessing Speech Signals

3.1 Hardware Preprocessing

3.1.1 Sampling

Speech is transmitted through the air by sound waves. These waveforms can be represented

mathematically by functions of the form x(t), continuous in time and amplitude, called

analogue signals.

The sudden, ubiquitous use of powerful digital computers necessitated a means of capturing

and storing a digital (or discrete-time) form of these analogue signals in computer memory.

This is achieved by sampling the analogue signal at uniform time intervals and converting

them to a digital form using a process known as analogue-to-digital conversion (ADC). The

sequence of digital values (or samples) as a result of ADC are represented by the discrete

function x(n), where n is related to time by n=kT, for k = 0,1,2,... Also, the sampling

period T, is the inverse of the sampling frequency fs ie. fs=l!f.

3.1.2 Sampling Frequency, Nyquist Rule and Aliasing Error

Sampling results in a loss of information about an analogue signal due to the time intervals

between samples. Therefore, if the sampling period is "too large" (or equivalently, fs too

small), much information about the analogue signal will be lost. This phenomenon is called

undersampling or aliasing. On the other hand, if the sampling period is very small (ie. fs

is very large), the number of samples can become excessive, retarding the speed of analysis

and processing without significant improvement in the results of the system. This effect is

known as oversampling.

What therefore is the lowest sampling frequency which preserves the important

characteristics (especially the frequency information) of the original signal? The solution

lies in the well-known Nyquist rule which states that

the sampling frequency must be at least twice the highest significant frequency.

The "highest significant frequency" is called the Nyquist frequency. A sampling frequency

less than twice the Nyquist frequency is considered undersampled and therefore exhibits

Chapter 3 - Preprocessing Speech Signals 3-1

aliasing. (A more detailed investigation of the above ideas can be found in most digital

signal processing textbooks ego [Opp90]).

What value should be used for the Nyquist frequency in speech recognition systems?

Although the human ear can perceive sound in the frequency range 30Hz-20kHz, it was

shown in the previous chapter that the frequencies less than 5kHz are perceived the best.

In addition, frequencies less than 5kHz are adequate to recognise all the speech sounds

(even the high frequency fricative sounds) and most voice qualities by virtue of the fact

that the current standard of digital telephone is a sampling frequency of 8kHz and therefore

a Nyquist frequency of 4kHz [Vee88]. Consequently, most speech recognition systems have

a sampling frequency of 8-10kHz and thus a Nyquist frequency of 4-5kHz.

3.1.3 Filtering, Low Frequency Noise and High Frequency Feed-back

A filter is a system for eliminating unwanted frequencies from the signal. There are two1

important classes of filters in speech processing applications namely, the high-pass (HP)

and low-pass (LP) filters.

The ideal HP filter eliminates all the signal frequencies below some frequency (eg. 125Hz)

in order to erradicate any interfering, non-speech, low frequency noise - particularly the

50Hz mains' hum.

The ideal LP filter eliminates all the signal frequencies above the Nyquist frequency to

prevent frequency foldback ie. to prevent the interpretation of signal frequencies greater

than the Nyquist frequency as frequencies in the significant frequency range.

The passband of a filter is the range of signal frequencies untouched by the filter whereas

the stopband is the range of signal frequencies eliminated by the filter.

The above definitions describe the properties of an 'ideal filter', that is one with a perfect

cut-off at a particular frequency between the passband and stopband. In practice however,

filters gradually attenuate the signal outside the cut-off frequency. Consequently, the cut-off

frequency of a non-ideal filter is defined to be the frequency at which the power of the

signal is attenuated by -3dBs ie. is half the power of the signal in the passband.

The effect of the non-ideal LP filter poses the problem of how to prevent foldback of the

gradually attenuated, high signal frequencies in its stopband. There are two ways of

A third type of filter, the band-pass, is a combination of both HP and LP filters.

Chapter 3 - Preprocessing Speech Signals 3-2

reducing this problem. Firstly, a filter with a steep cut-off slope can be chosen ego a high­

order Chebychev filter i • Secondly, one can ensure that'the ~ignal at the Nyquist frequency

be attenuated by -30 or -40dB. The -3dB low-pass cut-off frequency would thus need to

be set slightly below the Nyquist frequency, low enough so that the attenuation at the

Nyquist frequency is less than -40dB.

3.1.4 Storage Considerations

The ADC process stores the digital samples as n-bit words. The size of n is called the

resolution of the analogue-to-digital (AD) converter. The minimum resolution of an AD

converter for speech recognition is 12-bits, requiring two byte data words to store it in a

computer [Par86]. Using a sampling frequency of 10kHz and a two byte sample word,

20 000 bytes of sample data is generated per second of speech. In normal speech, it takes

about 3 seconds to utter a sentence, thus generating 60 000 bytes of sample data. This

amount of data is too great (and 'raw') even for expert phoneticians to decipher. What is

needed, is some way of extracting the important speech characteristics from these samples.

Most digital processing systems have a front-end preprocessing stage to execute this. It is

either referred to as feature extraction or preprocessing. The preprocessing stage can also

be thought of as a speech compression process since many raw data samples are

compressed into relatively few characteristic speech features, extracted in the time- and/or

frequency-domain.

3.2 'Short-Time' Analysis of the Speech Signal

The 'short-time' analysis of speech is founded on the assumption that:

speech sounds vary relatively slowly at a rate of less than 100Hz.

As a result, it is possible to determine the characteristic information about the signal by

processing abutted or slightly overlapping short-time intervals of the speech signal called

speech frames. The characteristic information called speech features, is extracted for each

speech frame and usually comprises representative spectral (frequency) and/or temporal

(amplitude-time) metrics. The functions used to extract this information are called

preprocessing functions. The speech features of successive speech frames are often

represented as vectors, called speech feature vectors.

The different types of filters are described in most filter theory textbooks ego [Joh76] while Lancaster's
Filter Cookbook [Lan79] is an excellent practical guide to building active filters.

Chapter 3 - Preprocessing Speech Signals 3-3

~ " A 11 d 1 JM ~ JU•.
IV IV I~ I~ I~ l~ I~ [~ f\ 1\ I~ 1\ '\ I~ 1~lf~ I~VV V1 W~vvv''I''''V V

U

"n" "ee"
overlapplDI

~e&lo~

I I I I I I I I
Frate n Frllllle n+1 Fl'IIIIle n+1 Frame D+3 Fr_ nH

Figure 3.1 Overlapping speech frames.

3.2.1 Windowing

'Short-time' speech frames can be isolated from the rest of the speech signal by multiplying

the signal with a window function w(n). A window function sets all the values of the signal

outside the 'window' to zero and ~ay, in addition, apply some appropriate function to the

sample values inside the window.

The length of the window (typically 5-45ms) is very important. If it is too large, the speech

features become 'blurred' by different acoustic events in the window; if it is too small, low

frequency spectral information may be omitted and temporal features can be

under-averaged.

An important consideration in determining the length of the window is pitch. Recall from

the previous chapter that the pitch period is the inverse of the fundamental frequency ie.

the rate of the vibrations of the vocal chords in voiced speech. Pitch is so important

because it determines the lowest speech frequency that plays an essential role in the

spectral make-up of speech sounds and in prosodics. Everyone can achieve a range of

pitches by manipulating their vocal chords. However, due to physiological constraints,

males generally have lower pitches than females and children. The highest pitch found in

baby cries and high-pitched females reaches a period of about 5ms while the deepest male

voice can approach a pitch period of 25ms.

When extracting the spectral features from part of the signal, it is necessary to include all

the frequencies making up an acoustic event, especially the fundamental frequency. In fact,

the window should contain exactly one pitch period of speech for most spectral extraction

techniques to be accurate. This is very difficult to regulate due to the large number of

variables in normal speech production. To circumvent the problem, one should choose a

window length which is just greater than the pitch period 'most of the time' and taper the

Chapter 3 - Preprocessing Speech Signals 3-4

samples within the window at the window boundaries to zero. This practice will reduce the

possibility of erroneous frequencies in the spectrum. Various window functions have been

developed to achieve this effect; the one referred to and used in this project being the

Hamming window.

3.2.2 Window Functions

The most common window functions are the rectangular wRen) and Hamming wHen)

window functions. Other window functions, like the Hanning, cosine taper, the raised

cosine and Bartlett functions, are not discussed here. Detailed investigations of these

window functions are undertaken in most digital signal processing texts l
•

Rectangular Window Function

The rectangular window function is used predominantly in temporal preprocessing

functions. It isolates a particular segment of the signal without affecting the signal values

inside the window in any way. This is mathematically expressed as [FaI85]:

o~ n ~ N-l, where N is the length of the window

otherwise

The rectangular window is unsuitable for spectral analysis because it does not cater for the

probability of discontinuities at the window boundaries as do the tapered window functions.

An example of a rectangular window is shown in figure 3.2.

Hamming Window Function

The Hamming window function is used primarily by spectral preprocessing functions. It

tapers the signal to zero at the window boundaries (see figure 3.3). In this way, the

discontinuities at the window edges are eliminated by forcing the first sample at the left

window boundary to match the last sample at the right window boundary (both equal ~ro).

The Hamming window is given as [FaI85]:

wHen) = 0.54 - 0.46 cos(2nn/(N-l»

= 0

o~ n ~ N-l, N is the window length

otherwise

Oppenheimer and Schafer [Opp90] and Priemer [Pri89] include good analyses of these functions in the
frequency domain and also examine the errors they introduce.

Chapter 3 - Preprocessing Speech Signals 3-5

Figure 3.2 Rectangular wmdow of N=450 samples

A Rectangular Window

A ~ M~ 11. ~ A

r~ !\ ~ IV
A V~ I~VIf\..J V \

~ ~ I
U

"0" "ee"

"0" , ee '
Figure 3.3 Successive Overlapping Hamming Windows of N=450 Samples

Both figure 3.2 and figure 3.3 are from the underlined part of the utterance:

How ma!1J!.. objects are on the table?

Chapter 3 . Preprocessing Speech Signals
3-6

3.3 Preprocessing Functions

Preprocessing condenses 'raw' sample data into speech features which are easier to

interpret and analyse.

3.3.1 Temporal Preprocessing Functions

Temporal preprocessing functions extract speech features directly from the speech samples

in the amplitude-time domain. They typically find the average of some amplitude-based

metric over each speech frame. The output of a temporal preprocessing function can be

graphed with respect to time to determine trends. Analysis of these trends is aided by the

smoothness of the resulting curve, which is related to the length of the speech frames. The

shorter the speech frames, the more perturbated the resulting curve tends to be and the

poorer the speech compression. On the other hand, if they are too large, although the

speech compression is greater, the speech frame can encompass several different acoustic

events resulting in blurring or over-averaging. Dips, curve shape and gradient can be used

to indicate acoustic changes and acoustic class information (eg. vocalic vs. fricative).

The temporal functions and their theory has been assimilated from various sources, the

most important of which are Veeneman [Vee88], [Row92a], Fallside [FaI85] and

Oppenheimer and Schafer [Opp90].

'Short-time' Energy Function

The total energy E of a real analogue signal, x(t), is given by:

..
E = fX(t)2 tIt

-..
(3.1)

The 'short-time' energy (also called intensity) function is defined for a portion of the

discrete signal x(n) approximating x(t) as:

..
En = E [x(m) w(n-m)f

Chapter 3 - Preprocessing Speech Signals

(3.2)

3-'

In equation (3.2), the window function is typically a rectangular window wR(n). The above

equation also shows that the window function can be thought of as a linear filter
1

with

impulse response h(n).

A short-time absolute amplitude function is computationally less expensive than the

intensity function and is therefore sometimes used in its place:

En = E Ix(m) I w(n-m)
(3.3)

The intensity function is useful for distinguishing between segments of silence and sound

in the signal since speech frames with sample amplitudes close to zero (silence) result in

a small energy. As a result, a simple energy threshold value below which the speech frame

is said to exhibit silence, can be determined by experimentation.

The 'short-time' energy function viewed graphically iQ time tends to produce a smoothed

curve similar to the amplitude-time signal. From this graph one can identify regions of

acoustic similarity or changes in acoustic events (dips in curve).

III •••• t A ,.

Figure 3.48 Amplitude-time graph of utterance: how many objects are on the table

...

Figure 3.4b Energy function of graph in figure 3.4a with a window length of lOOms

Figure 3.4c Energy function of graph in figure 3.4a using a window length of 400ms

See last sub-section of chapter 2 for introduction to linear filter. Also see [Opp90].

Chapter 3 - Preprocessing Speech Signals 3-8

The signal in figure 3.4a was sampled at 10kHz. In figure 3.4b, a window length of lOOms

was used whereas in figure 3.4c, a window length of 400ms was used. In both energy

graphs, no overlap between speech frames was used. The above examples demonstrate the

effects of averaging with respect to the size of the window length that were mentioned

previously. That is, the shorter the window length, the more 'ragged' the curve (fig. 3-4b)

while the larger window length is prone to averaging over different acoustic events though

its resulting curve is 'smooth' (fig 3-4c).

As a summary to the energy function, Waibel points out its importance in speech

processing:

"Intensity is mostly viewed as a contributing factor to stress or emphasis,

but is so far considered to contribute little to recognition. This view is

supported by perceptual studies that indicate that distortions in the amplitude

or energy contours of speech have little or no detrimental effect on

intelligibility... Indeed, DeMori et al [DeMori 76] have shown using a

syntactic pattern recognition approach to speech recognition that intensity

profiles could be used explicitly as an integral part of a recognition

strategy." [Wai88].

Short-time Zero-crossing Function

The short time zero-crossing function counts the number of times the speech signal crosses

the zero amplitude-axis (i.e. 0 volts) in a short time interval. The function is given by:

sign[x(m) wRen-m)] :I: sign[x(m +1) wR(n-m-I)]

othe~e ~.4)

where sign(k) is positive or negative

The average zero-crossing rate is therefore Ze/N. This can be used as a rough indication

of the frequency of the signal. If the signal has a sampling frequency fs then the

approximate signal frequency in the window can be calculated by:

zct. =1: x_"
11 3 N

(~.S)

The narrower the bandwidth of the signal, the more accurate the frequency estimation of

the above equation. However, even as a rough estimation of the frequency in the signal,

the zero-crossing function has proved to be useful since high frequencies are an indication

of frication. Pitchers [Pit90] reports a recognition system that achieved 92.6% recognition

Chapter 3 - Preprocessing Speech Signals 3-9

accuracy on a small lO-digit vocabulary using only zero-crossing and energy metrics. For

modest applications, this technique is very attractive owing to its computational efficiency

and real-time response.

An important precaution of the zero-crossing function is to ensure that the effective zero

amplitude of the sample data is the same as the nominal zero amplitude axis. A slight

zero-offset can destroy the performance of this function.

Another source of error for the zero-crossing function is noise ie. non-speech sounds. The

human ear has the ability to attune itself to various sounds. Speech systems have not yet

achieved this level of sophistication. Filtering reduces some sources of noise (eg. 50Hz

mains' hum). One can set up the system in a noise-free environment but this is not

practical since most systems must operate in the noisy world. One possible solution for

eliminating noise is to subtract the input from a microphone set up to monitor only the

background noise from a microphone focussed on the speaker.

Short-time "Turning Points" Function

This function determines the number of local amplitude maxima and minima in a short-time

interval. Viewed in another way, it determines the number of zero-crossings of the first

derivative of the signal. This function, like the zero-crossing function, gives an indication

of the frequency of the signal.

Mathematically, the function is described as:

TumingPoin~(m) w(n-m)]=true
otherwise

(3.6)

where TurningPoint(m) determines whether
x[m] is a turning point

Autocorrelation function

Correlation functions determine the similarity between signals. The autocorrelation of a

function x(t), as the name suggests, measures the periodicities and duration of the function.

Chapter 3 - Preprocessing Speech Signals 3-10

The autocorrelation function of an analogue signal x(t) is given by:

-
R(k) = f x(t) x(t-k)dt

--
The autocorrelation of a discrete signal x(n) can be written as:

R(k) = E x(m) x(m+k)
m=--

And, the short time autocorrelation of x(n) can be approximated by:

Rn(k) = E x(m) w(n-m) x(m+k) w(n-m+k)
m=--

Several points can be made about the autocorrelation function:

(3.7)

(3.8)

(3.9)

• In the above equations, k is called the lag.

• RiO) in equation is equivalent to the short time energy function previously

determined.

• R(k) = R(-k), in the above equations.

• If x(n) is periodic, then so is R(k) ie. R(k) = R(k+mT), where m =1,2... and T

is the same period of x(n). The same is true for an analogue signal x(t).

However, if x(t) is periodic, it does not necessarily mean that x(n) is.

Nevertheless, it can be shown by example that if x(t) is periodic (or even quasi­

periodic) though x(n) the sampled version of x(t) is not, R(k) is periodic (quasi­

periodic). This property is called the periodicity of the autocorrelation function.

It is useful for determining the pitch period of voiced speech signals.

• The short-time autocorrelation function is often used in the all-important linear

predictive coding discussed at the end of this chapter.

As already mentioned, the autocorrelation function uses the property of periodicity for pitch

detection. Speech sounds are never quite periodic. Unvoiced fricative sounds are obviously

non-periodic. Voiced sounds are not perfectly periodic and therefore termed quasi-periodic.

The periodicity of the autocorrelation function isolates the pitch period from these signals,

exhibiting a distinct peak at the pitch period. This is shown in figures 3.5a and 3.5b. The

first graph is an amplitude-time graph of the word bird spoken by the author. The second

is the output of the 'short-time' autocorrelation function (amplitude vs. lag k) of the

highlighted section of figure 3.5a. There are several local maxima and minima in the

Chapter 3 - Preprocessing Speech Signals 3-11

autocorrelation graph but the peaks at the pitch period are clearly distinguishable (aided by

the markings of the successive pitch periods).

....
used
Uon

"b "d '
Figure 3.58 Amplitude-time graph of bk.d spoken by the author.

Pitch mod
Pitch period

PItch period

Figure 3.5b AutocorreJation function (amplitude vs. Jag) of the
highlighted section of figure 3.5a

Spectral Flattening to Determine Pitch Period

The pitch period can also be determined by a technique known as spectral flattening. The

signal is first low-pass filtered with a cut-off frequency of ± 900Hz. Then a threshoJd is

used to remove most of the signal excepting the major peaks. The distance between

successive peaks (if they are a certain distance away from each other) is the pitch period.

Several pitch detection techniques have been compared and investigated, see for example

[Rab76] [Ata85] [Mak75].

Chapter 3 - Preprocessing Speech Signals 3-12

3.3.2 Frequency-Domain Preprocessing Functions

Pre-emphasis

In voiced speech there is an attenuation of -6dB per octave across the spectrum. That is,

the signal power is reduced by a factor of four for each doubling of the frequency across

the spectrum [Mak75]. See Veeneman for a detailed analysis of these effects [Vee88].

Voiced speech should therefore be enhanced by +6dB/octave prior to speech processing.

This procedure called pre-emphasis is important for reducing the variance of distance

metrics [Rab76] (discussed in chapter 4) which determine the similarities and differences

between speech sounds.

A pre-emphasis transfer function H(z) = 1 - az-1 performs the necessary enhancement across

the spectrum. In the time domain, this function can be written as: yen) =x(n) - ax(n-l),

where yen) is the enhanced signal and 0.9 sas 1.

Pre-emphasis is not necessary for fricative sounds since their constituent frequencies tend

to be spread randomly across the higher end of the spectrum due to their turbulent nature.

A useful way of negating pre-emphasis of these sounds is to define the scaling factor as

a = RnCl)/RnC0), where RnCk) is the output of the 'short-time' autocorrelation function with

lag k. In vocalic sounds Rn(l) is very close to Rn(O) and therefore Ril)/RiO) is close to 1.

In fricative sounds Rn(l) « Rn(O) and Rn(l)/RiO) is close to 0 thus negating the effect of

the enhancing scaling factor.

Fourier Analysis

Spectral information is essential for identifying the acoustic sounds in the signal. This is

supported by phoneticians being able to identify phonemes with a high percentage accuracy

using spectral information encoded in spectrograms.

How to extract spectral information from signals is the main emphasis of Fourier theory.

In digital speech processing, the most important process is the discrete Fourier transform

(DFT). Most digital signal processing textbooks contain the details of how the DFT is

derived and its derivation is therefore omitted from this thesis. In particular, Poulton

[Pou83] derives the Fourier transform (FI) for analogue periodic and aperiodic signals. A

thorough investigation of FT and DIT can be found in most texts (eg. [Opp90], [Pri89],

[Jac89] and [Rob87]). Fallside [FaI85] summarises the important results as does Rowden

[Row92a].

Chapter 3 - Preprocessing Speech Signals 3-13

Discrete Fourier Transform

The discrete Fourier transform (Off) approximates the Fourier transform of discrete-time

signals over a short-time interval. A window function is used to isolate the 'short-time'

interval of N sample points from which the OFT is determined as:

.- _J 21t km

X,,(k) = E x(m) w(n-m)e N ;

m=-'-

k =0, 1, 2, ..., N-l (3.10)

where wO is a tapered (eg. Hamming) window function

The signal x(n) can be recovered from its Off by the inverse Off (IOFf) as follows:

1 N-l J21t In

x(n) = - E X(k)e N ;
N k=O

n = 0, 1, ..., N-l (3.11)

The spectrum from the OFT is discrete in frequency variable k. It is therefore possible to

think of this discrete spectrum as a sampled version of the z- or Fourier transform of a

finite length sequence [FaI85].

Fast Discrete Fourier Transform

There are a number of ways to optimise the OFT algorithm by exploiting Fourier transform

properties given in the textbooks. A very efficient implementation of the OFT developed

by Cooley and Tukey in 1965, has given rise to a class of OFTs known as the fast Fourier

transform (FFf). Many variations of the FFT exist, the most well-known being the

common-factor algorithms (eg. radix-2, radix-4). The details of this algorithm are

investigated in most OSP textbooks ego [Jac89].

Points about the DIT and FIT:

• The OFT requires the signal be preprocessed by a tapering window function like the

Hamming window.

• Two sources of error leakage and ripple error, are introduced by windowing. A

Hamming window covering at least one pitch period seems adequate to reduce the

effects of these errors.

• The resolution of the spectrum is determined by the size of N; the greater the size

of N, the finer the frequency resolution. However if N is too large, the 'short-time'

sequence can include spectral components from different sounds (ie. blurring),

destroying its potential for identifying individual speech sounds. To achieve fine

Chapter 3 - Preprocessing Speech Signals 3-14

resolution without blurring it is possible to pad the N samples of a 'short-time'

segment of the signal with zeroes.

• By reapplying the DFf to successive speech frames, the spectral information of the

(slowly changing) speech sounds in the signal can be monitored.

• The radix-2 FIT algorithms requires that the length of the window N be a power of

2; the radix-4 algorithm requires N be a power of 4. N is typically in the range

32-1024.

• The FFf extracts the spectral composition of the signal into N/2 frequency 'bins'.

The remaining N/2 'bins' mirror the results of the first N/2 'bins'. That is, the

«N/2) - k)th 'bin' =«N/2) + k)th 'bin', for 1 ~ k ~ N/2. Each 'bin' covers an equal

part of the spectrum. The frequency resolution of the FFf is thus equal to: 1/(N/2)

* sampling frequency.

• The DFf (and therefore the FIT) is a complex transform and thus has a real and

imaginary part. When transformed by the DFf, real signals (eg. speech signals) have

an even real part and an odd imaginary part.

• The spectrum is often represented by combining the real and imaginary components

of the DFf to get the magnitude and phase in the following way:

IX(k) I = J[Re{X(k)}]2+[lm{X(k)}]2

phase angle cl» =arctan Im{X(k)}
Re{X(k)}

(3.12)

The magnitude is often expressed in dB as the log magnitude.

• Another way of expressing the spectrum is by the power spectrum (Parseval's

Theorem [Opp90]), which is the square magnitude of the DFf ie. I X(k) 1
2

•

• The power spectrum can also be determined by padding the N samples of a segment

of the signal with N zeroes and then taking the DFT of the 'short-time'

autocorrelation sequence of the combined 2N samples [Opp90].

Formant Tracking

The magnitude or power spectrum can be used to single out the formant frequencies which

exhibit greater intensity in certain regions of the spectra due to resonance in the vocal

chambers. The formants are identified by peaks in the smoothed spectra and can be

'tracked' for the duration of the speech signal by linking from the specific formant peaks

(ie. the 1st, 2nd etc.) of successive speech frames using 'short-time' analysis. Occasionally

the formants merge (eg. the 2nd and 3th may become very close together in the spectrum),

making it difficult to track them. Heuristics based on the context in which the merged

formants are found, can be used to resolve them when they merge.

Chapter 3 - Preprocessing Speech Signals 3-15

Cepstrum

The cepstrum is the spectrum of the logarithm of the frequency spectrum of a signal

[Opp90]. The cepstrum c(n) of a segment o~ speech signal x(n) can thus be evaluat~d in

the following way:

i. Calculate the short time DFf of a segment of the signal using a Hamming

window function.

ii. Log the OFf spectral components.

Hi. Take the inverse OFf (IDFf) of ii. The result is the cepstrum of the speech

frame.

The original segment of the speech signal x(n) cannot be recovered from c(n) since it

contains no separate information about the phase of x(n). A smoothed power spectrum and

the pitch period can however be evaluated from c(n).

If the segment of x(n) from which the cepstrum is calculated is quasi-periodic, the cepstrum

exhibits a distinguishable peak at the quasi-period of the signal.

The power spectrum is calculated by multiplying c(n) by a raised-cosine window (eg.

Hamming) which isolates the points in the cepstrum below the pitch peak in the cepstrum.

A OFf is then employed to these samples producing a smoothed power spectrum.

3.4 Linear Predictive Coding

3.4.1 Introduction

Linear predictive coding (LPC) is widely used in speech processing systems. Its ubiquity

can be attributed to its ability to compress sample data into a compact form (see MaKhoul

[Mak85]) and yet still characterise the acoustic content of the speech signal with excellent

results in recognition and synthesis applications.

The underlying principle in LPC analysis is embodied in the following:

the output (response) ofa system can be written as a linear combination of

the past outputs and the current and previous inputs (excitation).

Chapter 3 - Preprocessing Speech Signals 3-16

This idea has its roots in statistical prediction theoryl.

Excitation

~ voiced

..... random
Doise

u(n)

Response

Figure 3.6 Linear-filter Model of the Speech,
Production Mechanism

Figure 3.6 depicts the filter model of the speech production system introduced in the last

chapter. A source of excitation generates quasi-periodic impulses for voiced speech and/or

random white noise for unvoiced speech. The vocal tract can be modelled by a single

linear, time-varying filter. The speech produced as a result of the filtered sound source is

called the response of the system.

The input of the system is denoted by u(n). For voiced speech, u(n) is a series of impulses

ie. u(n) =b(kT), where T a constant time period and k = 0,1,2,... For unvoiced speech,.u(n)

is white (or random) noise. The response of the filter to u(n) is the output signal denoted

by x(n).

Using the filter model and the statistical prediction principle, the speech signal x(n) can be

written as:

P tI

x(n) = L ak x(n-k) + G E b. u(n-~)
1=1 .=0

(3.13)

that is, the present output is equal to the sum of the weighted past outputs and the weighted

present and past inputs, where the ak and b. are the linear coefficients of the equation and

G is the gain factor.

The z-transform
2

of equation (3.13) characterises the frequency response of the system.

Using the linearity and time-shift properties of the z-transform, equation (3.13) becomes:

Makhoul relates the history of LPC in his tutorial on LPC [Mak75].

2
The z-transform of a discrete signal is shown in equation (2.5) of chapter 2.

Chapter 3 - Preprocessing Speech Signals 3-17

p q

X(z) =E akz -kX(Z) + G E b.z -fU(Z)
k~1 .~

which can be rewritten as

X(z) [1 - t ak Z-l] = U(z) [G t b. z-']
1~1 .=0

(3.14)

(3.15)

The transfer function H(z) of a linear time invariant1 system is given by the ratio of the

z-transform of the system response to the z-transform of the system excitation. That is,

q

G bo + G E b. z-·
H(z) = X(z) = .=_1__

U(z) P
1 - E ak Z-k

1"1

(3.16)

A special case of the above is the all-pole filter2
, achieved by restricting t = 0 which

results in the transfer function being rewritten as

(3.17)

WMre bofor convenience, is often incorporated in tM gain factor, G.

In the time-domain, the all-pole model represents the output x(n) as a linear combination

of the weighted past p outputs and the present input. That is,

x(n) = at x(n-l) + a2 x(n-2) + ... + ap x(n-p) + G u(n) (3.18)

The only parameters of the all-pole system are therefore the p linear coefficients ak and the

gain factor G (with the present input (bo) included in G).

What is the effect of considering only the contribution of the poles to the system? Atal and

Hanauer [Ata71] and Atal [Ata85] have reported on the contributions of both the poles and

zeroes of the original filter model (see equation (3.17» to the spectrum of the signal. The

zeroes represent both local dips in the spectrum and changes in the spectral balance. The

poles can effectively approximate the contribution of the zeroes to the changes in the

spectral balance, though poorly represent the local dips. In speech analysis however, the

The system can be thought of as time invariant if ·short time analysis' of the speech signal is used.

2 The all-pole model is called the autoregressive model by statisticians.

Chapter 3 - Preprocessing Speech Signals 3-18

dips in the spectrum are not as important as are the peaks (which indicate the formants) and

the spectral balance, both of which can be represented by poles. Thus, the all-pole filter is

ideal for speech recognition systems.

Due to the time variant nature of speech, the parameters of the model are recalculated at

intervals (perhaps overlapping) of about 10-45ms. The gain factor is necessary to determine

the pitch period, but for simply identifying the speech sounds can be ignored.

3.4.2 Calculating the Linear Predictor Coefficients

In speech recognition (unlike speech production) the excitation source u(n) and gain factor

G are unknown. By discarding Gu(n) term from equation (3.18) it is possible to

approximate x(n) by x(n) in the following manner:

p

x(n) $:S i(n) =L ak x(n-k)
k~l

(3.19)

The prediction error £ (also called the prediction residual) is the difference between the

actual sample value x(n) and the predicted or approximated value x(n), that is

e(n) =x(n) - i(n)
p

=x(n) - L ak x(n-k)
k=l

(3.20)

It is evident that £(n) in the equation (3.20) is equal to the Gu(n) term in equation (3.18).

The total squared prediction error denoted by E, is the sum of the squared prediction

residual over the speech frame interval [no,N] ie.

N N

E = E e~ = E [x(n) - i(n)]2
n~1Io n=1Io

(3.21)

To find the p optimal linear predictive coefficients a~ which minimise the total squared

error E, the partial derivative of E with respect to each of the predictive coefficients a
k

is

equated to zero and solved, yielding

af [x<n) - ~ ak x(n-k>f
=---------~ = 0,aa,

(3.22)

Simplifying the above gives

Chapter 3 - Preprocessing Speech Signals 3-19

N P N

E x(n) x(n-I) = E ak E x(n-k) x(n-I),
n=no k=l n=no

1s.is.p (3.23)

The minimum total squared error Ep is determined by expanding equation (3.21) and

substituting (3.23) into it, resulting in the following:

N P N
Ep = E x(n)2 + E ak E x(n) x(n-k)

n=no k=l n=no
(3.24)

There are p linear equations with p unknowns (ie. the aJ expressed in equation (3.23). The

predictive coefficients ak can be evaluated by the well-known elimination or Crout

reduction method. These methods require p3/3+0(p2) operations (multiplications and

divisions) and p2 storage space [Mak75]. Two other methods, named after their inventors

Levinson and Durbin, exploit special properties of the linear equations in (3.23) which

reduce the computational effort of the traditional solutions for finding the unknowns in

linear equations.

Autocorrelation Approach

This approach derives its name from the fact that the linear equations (3.23) can be

rewritten in terms of the short time autocorrelation function described in (3.9). That is,

p

E ak R(i -k) =R(i),
k=l

1s.is.p (3.25)

Ep in equation (3.24) can be written in terms of the short time autocorrelation function and

becomes

p

Ep =R(O) + E ak R(k)
k=l

Chapter 3 - Preprocessing Speech Signals

(3.26)

3-20

Equation (3.25) can be written in expanded matrix form as

Ra ~ ~ R,-I a l RI

RI Ro RI ~-2 a2 ~

~ RI Ro R,-3 a3 ~

=
(3.27)

~-1 R,-2 R,-3

This matrix has both the Toeplitz (ie. the elements along any diagonal are equal) and

symmetric properties. This system of equations can be efficiently solved by either

Levinson's or Durbin's recursive methods.

Levinson's Method

The following are Levinson's recursive procedures adapted from [Ata85]:

where

Durbin's Method

t-I

[R(i) - ER(li-kj)ai'-I)]
1'1) k=1

at\! =---------
i-I

[R(O) - E R(k)a~i-I)]
1..1

(3.28a)

(3.28b)

This method makes use of the observation that the column vector on the right hand side

of (3.27) contains the same elements that are found in the autocorrelation matrix on the left

hand side. It is twice as fast as Levinson's method requiring 2p storage spaces and

p2+0(p) operations [Mak75].

Chapter 3 - Preprocessing Speech Signals 3-21

The following equations describe Durbin recursion (after [Mak75]):

Eo =R(O)

R(i) + Ea}'-I) R(i-J1]
k, = ~_---:J~"'_t----~

E;_t

a(i) - kt - t

(3.29a)

The above equations are solved recursively for i = 1,2,...,p. The ak are finally determined

by

(3.29b)

Covariance Approach

The covariance approach is similar to the autocorrelation except that equation (3.23) is

written in terms of the autocovariance function <p rather than the autocorrelation function

Ri), giving:

p

E ak, ki = «PQit 1~i~p
1"'1

(3.30)

The minimum total squared error Ep (see equation (3.24» can also be written in terms of

the autocovariance function <p:

p

Ep = «Poo +. E ak,Ok
k.. l

(3.31)

<p is symmetric, ie. <Pik = <pkj but not Toeplitz. It is not difficult to see that as the interval

extends to infinity, the covariance approach reduces to the autocorrelation approach. In

'short-time' analysis, the covariance matrix for each speech frame uses sample values in

the range no-psnsN to avoid problems at the left frame boundary. The autocorrelation

matrix on the other hand, sets all values outside the speech frame to zero. The system of

equations resulting from the covariance approach can be efficiently solved using Cholesky

decomposition [Mak75].

Chapter 3 - Preprocessing Speech Signals 3-22

To summarise the advantages and disadvantages of both approaches, Markhoul notes that:

"The covariance method is quite general and can be used with no

restrictions. The only problem is that of the stability of the resulting filter,

which is not a severe problem generally. In the autocorrelation method, on

the other hand, the filter is guaranteed to be stable, but problems of

parameter accuracy can arise because of the necessity of windowing

(truncating) the time signal. This is usually a problem if the signal is a

portion of an impulse response." [Mak75]

Lattice or Partial Correlation (PARCOR) Method

For completeness, the lattice or PARCOR method is given. Veeneman describes this

method in the following way (also see [Row92b)):

"In both the autocorrelation and covariance methods of LPC, the processing

has two stages: the calculation of the correlation matrix, and the solution of

the resulting set of linear equations. However, in lattice methods, the two

stages have been effectively combined into a recursive procedure for

determining the LPC parameters, where not just one but p forward and p

backward linear predictors are used and the parameters are calculated one

stage at a time." [Vee88]

A full description of how they are obtained is detailed by Makhoul [Mak75]. The PARCOR

coefficients are found to be the intermediate terms ap) in equations (3.28a) and (3.28b).

Similarly they can be derived from the intermediate terms of Durbin's recursive method

in equations (3.29a) & (3.29b). The predictor coefficients ak are therefore directly obtained

by the PARCOR coefficients.

Linear Prediction in Spectral &timation

LPC parameters can be employed to approximate the signal power spectrum P(w) by the

all-pole model approximation of the power spectrum, P(w).

P(CA» = IH(ejCa) 1
2

0 2
=---

IA(ejCa) 12

Chapter 3 - Preprocessing Speech Signals

(3.32)

3-23

The gain G is shown by Makhoul [Mak75] to be related to Ep in the following way:

P

G2 =El' =R(O) + E a/c R(k)
/C.. l

(3.33)

and can thus be easily calculated while the I A(ejW
) 1

2 term in equation (3.32) can be

determined by the magnitude squared of the Fourier transform of the sequence of predictor

coefficients {I, at, a2, ••• , ap}. By appending zeroes to the end of this sequence, the

frequency resolution can be improved.

Number of Poles

It has been shown [Ata85] that the greater the number of predictor coefficients the better

the model parameters and thus the smaller the recognition error rate. However, it was also

shown that the increase in the number of parameters P resulted in only very small

improvements of the model parameters greater than some value Po. For greater values of

p, greater processing effort is required. Atal found that at least 2 poles are required to

represent each 1kHz region in the spectrum of the signal [Ata85]. An additional 4-5 poles

are necessary for the spectral balance [Opp90]. Thus, for a signal bandwidth of 10kHz,

between 14 and 15 poles are required for the model.

Cepstral Coefficients using Linear Prediction Analysis

The cepstral coefficients can be easily determined from the linear predictor coefficients, ak•

The cepstral coefficients cn are defined by the following iterative definition [Mak75]:

n-l

c n =an - E m cm an-mt l.s;n.s;p
m..l n

(3.34)

The cepstral coefficients are a useful representation of the linear predictor coefficients since

the "distance" between two speech sounds represented by their cepstral coefficients is

computationally less expensive (because can use the Euclidean distance measure - see

chapter 4) to express and determine than their equivalent linear predictor coefficients, a
k

(which require the Itakura-Saito distance measure). These ideas are elaborated on in

chapter 4.

Chapter 3 - Preprocessing Speech Signals 3-24

Formant Tracking using Linear Prediction

Formant tracking has already been mentioned with respect to Fourier analysis. On a

spectrogram, the formants are easily identifiable as those regions on the frequency axis with

a darker, denser shade. The peaks in the approximation of the power spectrum of the

signal, given by equation (3.32), can be used to approximate the formant frequencies. The

peaks of the resulting power spectrum are the formants. If the formants merge, heuristics

can be used to resolve them from their context. See [Ata85] for further details.

Linear Prediction in Pitch Analysis

It has already been mentioned that the pitch period can be determined from the linear

predictive coefficients. The techniques to achieve this are not investigated her~ but Atal

[Ata85] reports on several different techniques using the LPC analysis.

Chapter 3 - Preprocessing Speech Signals 3-25

Chapter 4 - Segmentation and Classification

4.1 Introduction

The lower levels of speech recognition involve the following aspects:

• sampling and preprocessing (see chapter 3)

• segmentation

• classification

In this chapter the problems of segmentation and classification of speech sounds are

investigated.

Segmentation is the process of dividing the speech signal into distinct, quasi-homogeneous

acoustic regions. Looking at figure 4.1, the human eye can segment the (graphical form of

the) signal into regions of similarity with a high degree of accuracy. Classification, on the

other hand, is the process of identifying the different speech sounds in the signal.

Figure 4.1 Amplitude-time graph of utterance "Can you see the speech sounds?"

How is segmentation related to classification? There are two possibilities: one, the signal

is first segmented, and then these segments are classified into speech sounds; and two,

successive speech frames of the signal are classified as speech sounds and segmentation

occurs naturally as a result of this classification.

Chapter 4: Segmentation and Classification 4-1

In this chapter, the emphasis is on the subword speech sound unit - what it is, how to

detect and label it and how it interacts with its neighbouring sounds. These issues form the

basis for a continuous phoneme (or some other subword sound unit) recogniser. An

example of such a phoneme recogniser is presented in chapter 7. In chapters 5 and 6, two

different approaches to speech recognition are studied: template matching and stochastic

hidden Markov model recognition techniques. These techniques in essence deal with

determining larger speech units like words or groups of words ego BIGRAMS [Br091]~ For

simplification, one can think of chapter 4 as concentrating on speech sound recognition

while chapters 5 and 6 on word recognition.

4.1.1 Preprocessing Notation

The preprocessing stage condenses the large number of digital samples into representative

speech features, extracted by the temporal and/or spectral preprocessing functions discussed

in the previous chapter. Speech features are easy to analyse and manipulate and characterise

speech information like speech sounds and speaker information (gender, age, dialect, tone

etc). In order to represent the time variant nature of speech, speech features are evaluated

for successive, abutted or overlapping speech frames ('short-time' analysis technique).

The speech features of each speech frame are represented by a feature vector Uti where t

denotes the speech frame index in time and i references one of the p speech feature

measurements called speech parameters ego the LPC coefficients. By representing the

speech signal in a speech frame as a vector, the speech sound associated with that partial

signal can be thought of as being situated in the feature vector space of dimensionality p,

the number of speech parameters. The speech parameters should be chosen such that they

group speech sounds of the same speech class (eg. phoneme) in the same region of the

feature vector space. On the other hand, speech sounds from different classes should be

separated in the feature vector space. Devijver and Kittler express this idea succinctly:

"[One has to] extract from the raw data the information which is most

relevant for classification purposes, in the sense of minimizing the

within-class pattern1 variability while enhancing the between-class pattern

variability." [Dev82].

The authors of the above quotation also point out that many of the problems with

classification can be attributed to the failure to establish robust (ie. characteristic) speech

A pattern can refer to a single feature vector (as it does here) or a set of feature vectors grouped together
in a word or sentence (see chapters 5 and 6).

Chapter 4: Segmentation and Classification 4-2

parameters. The performance of a set of speech parameters can be determined either by

empirical recognition results or by measuring the variances of the within- and between-class

distances of various feature vectors. If the system results in large between-class and

relatively small within-class variances, then it is considered to have robust parameters.

The number of speech parameters depends o'n three factors, namely: time taken to compute

them, the space required to store them and the ease with which they can be implem~nted

[Nie81].

4.2 Segmentation

One can segment the speech signal in two ways, either by grouping the signal into regions

of acoustic similarity or by detecting the boundaries which separate one speech sound from

another. These approaches are comparable with region and boundary extraction in image­

processing [Nie81]. The first merges neighbouring frames which preserve the acoustic

character of the segment. The second places segment boundaries between speech frames

with significantly different speech parameters.

One can segment before or after (as a result ot) classification. By first segmenting, one

need only classify one of the possibly many speech frames in each segment, thus reducing

the time-costly task of classifying each speech frame. The efficiency of the segmentation

procedure should be as inexpensive as possible in order to make this option viable. In other

words, it is pointless performing the same costly calculations used in classification on the

speech frames when segmenting since one might as well classify each segment and perform

segmentation as a postprocess. Consequently, the computationally less expensive temporal

preprocessing functions are usually used with simple thresholding techniques to determine

the segment boundaries. There are several problems with this approach.

Firstly, segmentation is seldom 100% accurate [Wai88]. Even a human expert has difficulty

pin-pointing the segment boundaries. Two types of segmentation errors can occur: a

segment boundary could be omitted (undersegmenting) or erroneously added (over­

segmenting). Undersegmenting has catastrophic results - segments are lost forever and

speech sounds in the lost segments are subsumed into other speech sounds. The

consequences are less heinous in oversegmenting. Oversegmented parts of the signal can

be merged with their same neighbouring segments during post-processing.

Secondly, classifying a pre-segmented signal introduces the problem of which part (ie.

speech frame) of the segment to use for classification. The problem is augmented by

Chapter 4: Segmentation and Classification 4-3

coarticulation and the continual varying of the articulators in speech. As a result, a speech

sound is not constant during a segment. The middle of the segment is probably the most

representative of the speech sound, where the sound is most stable and well-formed; with

the exception of diphthongs and plosives. Diphthongs are recognised by the variation in the

sound production over the segment. Plosives, on the other hand, include a silent period

(stop) when air pressure is built up behind a point of constriction before releasing the

pressure with a burst or small 'explosion'.

Waibel describes and compares the performances of several segmenters [Wai88]. One of

these, the ZAPDASH segmenter is discussed in detail below.

4.2.1 The ZAPDASH1 Segmenter

The ZAPDASH segmenter was part of the front-end preprocessor of the Harpy2 speech

understanding system. The aim of this segmenter, according to Gill (one of the author's

of the ZAPDASH system), was not to determine phonemic boundaries but to break the

utterance into nearly uniform acoustic segments [Wai88]. The speech signal is low-pass (or

smoothed) and high-pass filtered and then preprocessed by the zero-crossing and peak-to­

peak amplitude functions. Frequency information is extracted using the zero-crossing

function whereas the peak-to-peak amplitude function gives an indication of the energy or

intensity in the speech frames of the signal. Both these temporal preprocessing functions

are computationally inexpensive, making them suitable for a segmentation procedure.

The ZAPDASH algorithm executes eight left-to-right passes of the preprocessed speech

signal in a hierarchical manner such that each pass performs a more specific segmentation

of segments determined by the previous passes in a 'divide-and-conquer' manner. For each

pass, a set of heuristic decision rules are applied to determine the segment boundaries. The

eight passes are listed below [Wai88]:

1. Separate silence from sound using thresholds on the differenced zero-crossing

and smoothed peak-to-peak amplitude functions (after this step, segments of

silence are ignored)

2. Separate non-silence segments into fricative and vocalic regions using thresholds

on speech parameters

ZAPDASH. Zero-crossing And Peak-to-peak amplitude of Difference And SmootHed data [Wai88].

2
The HARPY system is a well-known speech recognition system, developed at Camegie-MeJJon
University as part of ARPA's speech recognition project in the 1970s. See chapter 9 and [Low77].

Chapter 4: Segmentation and Classification 4-4

3. Correction rules and merging of similar regions created by oversegmenting in

steps 1 and 2

4. Detect and separate low amplitude regions (especially for determining weak

fricative sounds "f", "th" in think not that and "h")

5. Correction rules for oversegmenting in 4

6. Detect and separat~ regions of aspiration .

7. Detect nasal and liquid sounds from significant dips in the amplitude function

in vocalic regions

8. Split large segments with significant changes in speech parameters

A segmentation algorithm based on the ideas of the ZAPDASH segmenter was attempted

in this project. The performance of the segmentation algorithm is graphically demonstrated

in chapter 7. The graphical results expose the rather poor performance of the segmenter

(when compared against a human expert). This result is consistent with those of similar

systems reported in the literature. For example, Waibel [Wai88] reports that the ZAPDASH

segmenter achieves between 5-15% error rates when segmenting into broad phonetic

classes. All of the other types of segmenters reported by Waibel are also prone to poor

results although several (eg. the perceptron classifier) achieved lower average error rates

than the ZAPDASH segmenter.

4.3 Classification

This section focuses on the classification of frame-sized, preprocessed segments of speech

into speech sound units ego phonemes. Once classified, a post-processor would merge the

labelled segments into syllables, words and finally sentences. These stages group together

to form a continuous speech recognition system.

In order to classify a speech feature vector, one must have prior knowledge about the

speech sound classes, particularly information about where the sounds of each class are

situated in the feature vector space. A training or learning phase is obligatory in any

speech recognition system to 'learn' what constitutes a sound from a particular class. The

details of the training phase follow the section on classification. A good analogy of the

learning phase is found in the acquisition of language by an infant. The infant does not

automatically speak but listens, observes and practices the various sounds in a lengthy and

gradual learning period.

Classification can therefore be defined as the process of matching an unknown speech

pattern against a set of known reference speech patterns (or models - see chapter 6).

Chapter 4: Segmentation and Classification 4-5

4.3.1 Direct Matching

A naive pattern matching technique is to represent the speech pattern as an array of sample

values and match it against a set of reference speech patterns (one pattern for each sound

class) represented in the same way. The problem with this approach is that speech patterns

are highly variable. The same word, spoken by the same speaker more than once, will most

probably never be exactly the same. Even if two utterances were identical, slight time shifts

would result in a mismatch. Hence, pattern matching techniques require the preprocessing

stage where the robust parameters are used to describe the 'short-time' characteristics of

the signal and are encoded as speech feature vectors.

4.3.2 The Classification Problem

Classification of speech patterns is not straight forward for several reasons. Apart from the

noise in the signal, speaker variations and coarticulation; the speech sounds themselves are

often distinguished from one another by small adjustments in the vocal apparata, resulting

in subtle (almost negligible) differences in the acoustic make-up of the signal. In fact the

human sound classification system has been shown to be less than 100% accurate when

sounds are spoken in isolation (ie. without an acoustic context) [War83]. Humans tend to

rely heavily on the context in which the sounds are made and on information from the

higher levels of speech processing in order to determine the identity of acoustically similar

sounds. It seems as if a perfect classifier will never be achieved. Instead the classifier must

have the ability to determine the best options and moreover, must be postprocessed by a

sophisticated system which can resolve the identity of acoustically similar segments from

their context. Because of the uncertainty involved in classifying a speech sound, a statistical

or 'fuzzy' approach for determining the most likely options is used in most speech systems.

The above argument is not only true of speech classification but also to many other pattern

recognition problems in the world [Nie81] ego image processing, meteor-burst classification

etc.

4.3.3 Distance Measures in the Pattern Space

It has already been said that speech patterns from the same class should be clustered close

together in the same region of the pattern space whereas patterns from different classes

should be separated in the pattern space. Distance between patterns in the feature space is

used to determine how 'closely' they are related to each other and to which sound class

they belong. The distance between patterns of the same class should therefore be small,

Chapter 4: Segmentation and Classification 4-6

while the distance between patterns of different classes much larger. The distance measures

most frequently used in speech classification are presented below1
•

In this thesis, the notation used for any non-specific distance measure between two speech

patterns x and y is b(x,y).

A distance mea~ure is defined to have the following properties (after [Row92]):

Symmetry b(x,y) = b(y,x)

ii Triangle inequality b(x,z) ~ b(x,y) + b(y,z)

iii Positive definiteness b(x,y) > 0 for x ;I! y

= 0 for x = y

and the following properties are desirable, although not essential

iv should be computationally efficient

v should be physically meaningful ie. for speech, the distance measure should relate

to the perceptual 'distance' between sounds

The Euclidean distance measure between two vectors x and y is given as:

(4.1)

where t denotes the transpose of the column vector using matrix representation. Note that

if the speech parameters are not orthogonal, the Euclidean distance can be misleading. For

example if 15 speech parameters are used (14 LPC coefficients + the average amplitude

of the speech frame), the average amplitude value is typically greater than 1 whereas the

LPC coefficients are less than or equal to 1. A slight difference (say 5) between the

average amplitude features of the two speech feature vectors being compared will result in

a large distance, regardless of the LPC coefficients, since their contribution to the distance

is a value less than 1. One would hardly use an amplitude feature (which monitors

loudness) with spectral features though the above example does illustrate the necessity to

normalise the feature values.

Although the Euclidean distance is easily and efficiently computable (it is not necessary

to perform the costly square root of the sum of the squared differences since comparatively

they are the same), it treats all the speech feature parameters as if each carried the same

perceptual significance. Certain of the speech parameters tend to be more significant than

others and therefore a weighting factor needs to be introduced to cater for this.

A comprehensive list of the best known distance measures is given in [Dev82].

Chapter 4: Segmentation and Classification 4-7

The Mahalanobis distance measure overcomes the problem of features having different

perceptual importance by weighting each of the features differently using a scaling matrix

W-1:

~M(X,y) = (x _y)T W-1 (x -y) (4.2)

The matrix W-1 is the inverse of the auto-covariance matrix of the feature vector y. The

auto-covariance matrix is only meaningful if y is a reference feature vector since W-1 must

be constructed from a set of feature vectors representing that sound class. This matrix can

be thought of as providing an indication of the importance of the speech features with

respect to each other by means of a weighting factor. A separate matrix W-1 is required for

each reference feature vector y, but in practice often a general auto-covariance matrix is

computed of all the reference vectors. The Mahalanobis distance reduces to the Euclidean

distance if W-1 is the identity matrix.

If the speech features are LPC coefficients, either the Euclidean or Mahalanobis distance

measures can be used although another distance measure, the Itakura-Saito (a log likelihood

measure), was specifically developed for linear predictive analysis. It has proved to be

significantly better than Euclidean measures for LPC coefficient features [Ita75]. Since LPC

coefficients are used as features by many speech systems, this distance measure is widely

used ego by [Pit90] [Toh87] [Rab85a] and [Rab85b].

The Itakura-Saito distance measure is given as

where:

(4.3)

•

•

•

•

(a i
) is a column vector of the set of linear predictive coefficients of the ph

frame of the test input pattern x,

(aj
) is a column vector of the set of linear predictive coefficients of the jth

frame of the reference pattern y,

Ri is the autocorrelation matrix of the ith frame of the input pattern x

(depicted in equation (3.27) in chapter 3)

T denotes the transpose of the column vectors

Notes on the implementation of this distance measure can be found in [Ita75] and [Pit90].

A major disadvantage of this measure is that it is computationally expensive. It has been

shown that minimising the Euclidean distance in the cepstral domain is equivalent to

minimising the Itakura-Saito distance in the frequency domain [Vic87]. In addition, the

Chapter 4: Segmentation and Classification 4-8

cepstral coefficients are derived with little extra overhead from the LPC coefficients (see

chapter 3). Empirical results ego [Rab89] [Toh8?] show that cepstral analysis using the

Euclidean distance measure is computationally less expensive and produces only marginally

poorer results than LPC analysis using the Itakura-Saito measure. As a result, the cepstral

coefficients, or variations of them (see [Rab89] and [Toh8?]), are also a popular choice of

speech features [Ney92] [Ken90] [Shi86].

4.3.4 Classification using Nearest Reference Pattern

Consider a set of sound classes C j l~i~L, where L is the total number of sound classes in

the feature space. During training, one can calculate a reference vector r j associated with

each class C j situated in the feature vector space.

Classification of an unknown speech vector x is undertaken by choosing the class Cj with

the minimum distance between x and its reference vector rj for l~i~L. This is written

mathematically as

W(I) =argmin ~(x,rj)', (4.4)

where the argmin function returns the value of the argument which results in a minimum

distance between x and one of the rjs.

Each reference pattern rj can be determined by finding the mean vector of an independent

set of training vectors categorising a particular class Cj ie.

(4.5)

where nj is the number of training vectors for class Cj.

The problem with this method is that the training vectors can be quite spread out in a

particular region of the feature vector space especially if the set of training vectors is made

up from a group of speakers. The mean vector may not necessarily be a good reference

point for a particular input vector. One solution is to establish several smaller clusters of

vectors within a class and use the mean vectors of these clusters as reference points for

classifying an input vector. Another solution, requiring greater computational effort, is to

use all the training vectors as reference vectors and then to apply a nearest neighbour

classification rule described in the next section.

Chapter 4: Segmenta~ion and Classification 4-9

4.3.5 Nearest Neighbour Classification Rules

The nearest neighbour rule (abbreviated l-NNR) states that an unknown pattern x can be

classified according to the class of the training pattern y closest to it in the feature space,

populated with correctly classified training patterns. "Closeness" is determined by a

distance measure b(x,y). The l-NNR is prone to incorrect classification if the closest

training vector happens to be an outlier found in the region of another class. To combat this

problem, the k-nearest neighbour rule (k-NNR) determines the class of an unknown

pattern x by choosing the class of the majority of its k nearest neighbours Yl' ..., Yk' A

threshold value can be set to determine the percentage majority of the k nearest neighbours

that must belong to the same class in order to result in a class matching. This results in a

more robust classification system but will require heuristic decisions to resolve the case

where a majority is not obtained.

An algorithm to classify patterns using the k-NNR rule is as follows:

1. Gather a training set of T correctly classified patterns Y = {Yil l:s:i:s:T}.

2. Generate another (statistically independent) set of patterns from which to select the

test pattern x.

3. Determine the k patterns (from Y) closest to the pattern x (ie. the k Yi E Y which

result in the smallest distances b(x,YJ between themselves and x.

4. The class membership of x is determined by choosing the class with the most

"votes"l from the k nearest patterns selected in step 3. A threshold percentage

majority of "votes" Qbelow which x will not be classified by this method and will

require further heuristics for its classification, can be incorporated to provide a more

robust classifier.

4.3.6 Classification using a Statistical Approach

The classification problem can be stated in the following way:

Given a set of L mutually exclusive classes Ci l:s:i:s:L, an unknown input pattern x

belongs to the class Ck if the probability of x being in Ck is greater than the

probability of x being in any other class Ci ijll!k.

Each of the k patterns "votes" for the class to which it belongs. Consequently the class with the most
"votes" (the "winner") determines the class of the test pattern .!.

Chapter 4: Segmentation and Classification 4·10

4.3.6.1 Bayes Decision Rule

Bayes decision theory can be used to determine the probability that x is in some class Cj

by the following:

P(C, Ix) =
P(x IC,) Pi

L

Ep(xICJ) PJ
J=1

(4.6)

where pj is the a priori probability that pattern x belongs to class Cj. The denominator term

in equation (4.6) is called the unconditional probability density function which determines

the distribution of pattern x in the feature space. The major drawback of the Bayes rule is

that it relies on prior knowledge, both the a priori probabilities and prior knowledge of the

probability density function of the test pattern x. As a result, other techniques are

introduced in this chapter to approximate the Bayesian decision surface1 and to introduce

contextual information into the decision making process.

4.3.6.2 Markovian Stochastic Principles

When people listen, they use contextual information to predict and later to verify speech

events (eg. sounds, words and even ideas) from the current and previous speech events.

Contextual information can be interpreted statistically by Markov models. Markovian-based

word recognisers are investigated in chapter 6. In this section, the general Markovian

principles are presented with respect to the classification problem.

A Markov model is a network of states linked to other states by arcs. There are two ways

of interpreting such a model. The first and traditional method is to consider the states as

physical (speech) events while the arcs represent the probability of traversing from one

event to another, joined by the arc. In the second method, the arcs themselves represent the

events. The latter method is not considered further, yet it is worth noting that the IBM

continuous speech recogniser using a maximum likelihood approach used this model

[JeI83].

An ergodic model is one in which every state can be reached from every other state. A

simple example of an ergodic model is one which is fully connected; that is, where every

state is connected to every other state [los80].

A decision surface is a plane in the p dimensional feature vector space, separating one sound class from another.

Chapter 4: Segmentation and Classification 4-11

The order of the Markov model determines how many of the previous events influence the

current event. A first order Markov model is said to exhibit the Markov property which

simply stated, means that the current event can be determined by the previous event. First

order Markov models are often used because they are less complex to manipulate [los80].

The context of speech sounds is dependent on time. For example, the "n" sound (in !!un)

is seldom if ever followed by "z" (in ~oo) at the beginning of a word. At the end of the

word however, "n" followed by "z" is common due to plurality of nouns ending in "n" (eg.

balloo!1§) and the third person singular "z" suffix of verbs ending in "n" (eg. he ru!1§). This

complicates matters considerable with the result that Markov models are generally only

used if the application is independent of time. If the model is time independent, only one

set of transition probabilities (ie. the set of probabilities of traversing between any two

states in the network) need be determined.

By knowing the state transition probabilities, the Markov model can be used to predict or

verify a sequence of events and thus be used as a classifier.

The above description of Markov models should be seen as an overview and introduction

to a more detailed analysis developed in chapter 6. Because speech sounds do vary with

time, the model presented above is not sufficient to describe the contextual dependencies

between speech sounds. Therefore in chapter 6, the hidden Markov model is described to

overcome this problem. The Markovian principles presented above can be used for syntax

modelling where the parts of speech are related to one another without being dependent on

time.

4.3.7 Problems with Statistical Decision Theory

The main problem with the Bayes rule and the Markovian statistical classifiers is that the

a priori probabilities are assumed to be known beforehand (as the Latin indicates), as are

the underlying probability distributions. Unfortunately in real applications like speech

classification, they are not generally known. As a result, statistical sampling ie.

approximating these unknowns from a large number of known and correctly classified

patterns, is used to determine these probability values. Most speech classifiers use

information from statistical sampling gathered in a training phase. It is essential that the

training phase should use a set of data which is statistically independent of the testing data.

The training phase is discussed later.

Chapter 4: Segmentation and Classification 4-12

4.3.8 Fuzzy Approach to Pattern Recognition

There is strong motivation fo~ a fuzzy approach to speech recognition. Its strength is

highlighted by the following argument. Speech patterns are not so difficult to classify

because of random noise in the speech signal, but rather as a result of the intrinsic

vagueness or fuzziness of speech due to a kaleidoscope of factors like the speaker's identity

(age, sex, genetics, environment), the speaker's physiological and psychological status

(health, natural or temporary impediments and emotions) and the mood, context and

intentions of the speaker.

Pal and Dutta Majumder differentiate between the fuzzy membership function and the

probability density function in the following way:

"Probability is about how frequently a sample occurs in a population while

fuzzy membership value means how closely or how accurately a sample

resembles an ideal element (including its contextual informational sense) of

a population." [PaI86]

From the above, the fuzzy approach seems well suited to the speech recognition domain.

Pal used a fuzzy-approach to classify Telegu (an Indian language) vowels into ten vowel

classes [PaI82]. The system used only the first three formants as speech features.

Classification accuracies of about 72-75% were reported. The comparatively poor results

can probably be attributed to the small number of non-robust features used.

The fuzzy approach to pattern recognition is beyond the scope of this thesis. The interested

reader should see Zadeh [Zad88] for an introduction to the concepts of fuzzy logic, and

[PaI82] and [PaI86] with respect to speech recognition.

4.3.9 Connectionist Classifiers

The human brain has for many years been the model and inspiration for building

'intelligent' systems. Expert systems for example draw on the organisational and rational

models that the human mind exhibits. In a more direct way the human brain has inspired

research in the field of neural networks or more correctly, connectionist architectures.

Connectionist architectures aspire to constructing an artificial brain using a computer by

simulating (what is thought to be) the neurons of the human brain.

The motivation for using a "neurological" model is expressed perfectly by Knight:

Chapter 4: Segmentation and Classification 4-13

"Another thing people seem to do better than, computers is handle fuzzy

situations. We have very large memories of visual, auditory, and

problem-solving episodes, and one key operation in solving new problems

is finding closest matches to old solutions. Inexact matching is something

brain-style models seem to be good at, because of the diffuse and fluid way

in which knowledge is represented." [Kni90]

This matches quite closely the nature of the speech classification problem. The neural

classification approach is not examined in this thesis though these techniques have great

potential in speech sound classification applications. Rumelhart and McClelland [Rum87]

provide a useful introduction to the field of neural networks. The results of several neural­

based speech recognition systems are summarised as an indication of their importance in

the general study of speech recognition.

The neural-inspired "phonetic typewriter" uses self-organising feature maps discussed later

in the chapter, to segment (Finnish and Japanese) speech into a string of phonemes. The

system is the first commercially available complete speech recogniser that employs neural

networks. Kohonen reports impressive classification accuracies of between 96% and 98%

[Koh88]. Its outstanding feature is its ability to reduce the system's dependency on a

human phonetic expert using "self-organising maps" [Koh90].

Waibel et al [Wai89] used a neural network to tackle the problem of distinguishing between

the notoriously confusable [b], [d] and [g] phonemes. They reported recognition accuracies

greater than 80%.

In another project, DeMori et al [DeM90] have developed a neural network using the

backpropagation learning algorithm to distinguish between ten vowel classes. Excellent

results of 99.4% accuracy inspired them to extend the scope of the classifier to determine

the broad distinctive features (see chapter 2) of vowels. The reported error rates of this

application were between 2.5% and 10.5%.

4.4 Training

The training stage is often the bottle-neck in the development of the classifier because the

patterns have to be manually and correctly labelled - a tedious task. A number of training

techniques have been developed, the choice of which depends on the nature of the

classification problem.

Chapter 4: Segmentation and Classification 4·14

The goal of the training procedure is to determine the set of reference patterns which

represent the classes in the feature space. In the following sections, two different training

approaches are presented, the "supervised" and "unsupervised".

The difference between supervised and unsupervised training is in the content of the set of

training patterns. If both the training patterns together with their correctly identified class

information are given in the training set, then the training routine (which uses the known

class information) is termed supervised. If the class information is not used or known

during (the initial part ot) classification, the technique is referred to as unsupervised

training or clustering. Unsupervised techniques are used as far as possible in order to

reduce the human effort in the training operation. In the next section, two unsupervised

training algorithms are presented. Supervised training techniques, ego linear discriminant

functions and the least mean-squared-error procedure, can be found in [Dev82].

4.4.1 Introduction to Unsupervised Training

The training phase causes a bottle-neck in the development of the classifier because it

typically requires many (in the order of thousands) patterns to be manually classified. It

would be ideal if this task could be automated. But if this were the case, the classification

problem would already be solved. Unsupervised training is a technique which eliminates

as much of the tedious manual labelling component of training stage as possible. It will be

seen however, that some (though substantially less) manual classification of training

patterns is necessary. Two unsupervised training algorithms are presented here: the k-means

segmental algorithm and the Self-Organising Map (SOM).

4.4.2 k-Means Segmental Algorithm

This algorithm is used in several of the systems developed in this thesis. The algorithm

partitions the training patterns into L clusters Cj where l~j~L. The distortion or distance

between any two training patterns x and y in any cluster Ck is determined by one of the

distance measure b(x,y) described previously. The average distortion Dj between patterns

within each cluster Cj is given by:

(4.7)

where ~ is the size of the subset of training patterns Xj ={x: x E Cj} in cluster Cj, and

mj is the centroid of cluster Cj. The centroid of a cluster Cj is the feature vector mj which

minimises the average distortion of Cj. It can be shown [Mak85] that for the Euclidean

Chapter 4: Segmentation and Classification 4-15

distance measure, the centroid' mj is the mean vector of the training feature vectors in

cluster Cj given by

1m=-
'j L

'j

(4.8)

Clusters defined in this way are known as nearest neighbour clusters, Voronoi cells or

Dirichlet regions [Rab89]. The k-means segmental algorithm as presented below is adapted

from [Dev82], [Mak85] and [Rab89].

k-Means Segmental Algorithm:

1. Time index t is initialised to o. The time index determines which training cycle

(steps 2-4 represent 1 training cycle) is currently being executed. The set of T

training patterns X = {Xi I lsisT} is partitioned into L clusters, either

arbitrarily or based on some previous partitioning of training patterns. The

centroid vectors mj(t) of each cluster Cj are the~ calculated.

2. Use the distance measure l)(xi,m/t» to reclassify the training patterns Xi using

the centroids mj(t) as reference vectors and applying a nearest neighbour rule

(l-NNR) for reclassification ie. each Xi is a member of the cluster Cj whose

centroid mj is closest to it. Stated formally

(4.9)

3. Increment the time index ie. t = t + 1 and redetermine the centroids mj(t) of all

the newly-grouped clusters Cj.

4. If no change was made to the centroids in step 3 then terminate, else goto step

2 and redo steps 2-4 using the updated centroids.

This algorithm cannot be guaranteed to terminate, although in all the tested cases,

termination did occur.

4.4.2.1 Vector Quantisation

The k-means segmental algorithm is the cornerstone of a speech compression or coding

technique called vector quantisation (VQ) [Mak85]. In VQ, frame-sized segments of the

speech signal (preprocessed using ego LPC coefficients) are coded as one of L code vectors

stored in a codebook. The code vectors do not correspond to specific sound categories (eg.

phonemes) but are arbitrarily determined by the k-means segmental algorithm using a

suitable set of training speech signals. Typically L is greater than 32 and can be as large

as 256, compared with the approximately 40 phoneme classes in standard English. Each

codevector thus represents a class of sounds from the set of training speech signals. If the

training set is representative of all the sounds in the language being modelled, then these

Chapter 4: Segmentation and Classification 4-16

codevectors can act as 'phonemes' for the recognition system. Therefore, VQ is often used

as a preprocess to speech recognition systems (eg. [Rab89]), mapping the speech feature

vectors of successive speech frames onto the codewords of the codevectors which are

closest to them in the speech feature space. The procedure used in VQ is sketched below

in order to highlight the unsupervised character of the k-means segmental algorithm.

VQ Procedure:

1. Construct the codebook of code vectors using the k-means segmental algorithm.

• A set of training speech feature vectors (independent of those used in the

actual execution of the speech coding application) is gathered from which the

code vectors will be constructed.

• Decide on the size of the codebook L. The size of the codebook is typically

a power of 2 ego 32, 64, 128 or 256 because speech coding requires maximum

usage of the code word which is comprised of a prespecified number of bits.

• Use the k-means segmental algorithm to determine the L code vectors based

on the set of training speech feature vectors.

2. Encoding

• A new speech feature vector is encoded as an integer between 1 and L by

determining to which of the L code vectors it is closest (ie. using a distance

measure bO).

3. Decoding

• In order to decode the coded sequence of speech, one must have a copy of the

codebook. The codebook contains the code vector number (between 1 and L)

and the speech feature vector (eg. the LPC coefficients) associated with it.

The reason for including the VQ process was primarily to introduce the idea that one might

be able to circumvent the need for manually classifying each speech feature vector in the

training set when constructing a set of reference feature vectors.

Note also that if the training set of speech feature vectors represents all the sounds· of a

language (as it should), the code vectors should roughly align themselves with the

phonemic classes of the language. Obviously there will be some duplication in that several

code vectors might map onto one phoneme class but there should not be any omissions.

4.4.3 The Self-Organising Map

The Self-Organising Map (SOM) is a clustering unsupervised learning algorithm developed

by Kohonen [Koh90].

Chapter 4: Segmentation and Classification 4-17

The fundamental idea of the SOM is to construct a two-dimensional spatial ordering of the

p dimensional feature vector space. The two-dimensional spatial ordering is called the map

which is comprised of G cells or units representing speech sounds in a similar way that the

code vectors represented speech sounds in the k-means segmental algorithm. The SOM

algorithm organises the speech sounds associated with the cells such that similar sounds

are clustered together while dissimilar ones are separated from each other in the two­

dimensional map.

The SOM can be interpreted as a competitive learning, unsupervised neural network. In

competitive learning, "neurons" compete against each other by means of

"mutual lateral interactions and develop adaptively into specific detectors of

different signal patterns" [Koh90].

The similarities of the SOM and competitive learning neural networks are beyond the scope

of this thesis but can be found in [Koh90]. The "spatial" component of the SOM has not

been a feature of "neural" algorithms excluding the SOM but Kohonen demonstrates that

the brain may exhibit a "spatial" character analogous to that found in the SOM [Koh90].

The map is a two-dimensional, single layer of cells arranged in some topological

configuration, typically a rectangle, square or hexagon. Each cell represents a 'sound' (at

some time t) by a weight speech feature vector, mi(t). The cells are not connected to each

other as they are in most neural networks. Instead their connectivity is intrinsically

modelled by their proximity to other cells in their neighbourhood of the map. A large

amount of speech input (eg. LPC coefficients of frame-sized speech signals) is used to

configure the weight feature vectors associated with the cells. During each stepl in the

training stage, an input speech feature vector stimulates or excites the cell closest to it

('closeness' is determined by the shortest distance between the input vector and one of the

weight vectors). The 'closest' cell to the input vector in a training step is called the centre

cell with weight vector mk(t). All the cells within a specified radius Nk of the centre cell

(this region is called the 'bubble' [Koh88]) are stimulated in a similar way that the centre

cell was stimulated. 'Stimulation' is formally defined in the algorithm below, but it can be

thought of as scaling or influencing the weight vectors of those cells in the 'bubble' closer

to the input feature vector. The radius of the 'bubble' decreases monotonically as the time

index (ie. the training step number) increases. To begin with the radius of the 'bubble' is

large to ensure that the map is globally well-ordered. Towards the end of training, the

'bubble' should have a radius covering only the centre cell and its immediate neighbours.

1 A step refers to an iteration of the outer loop of the SOM algorithm.

Chapter 4: Segmentation and Classification 4-18

•

•

This has the effect of finely attuning the weight vectors to represent the various sound

classes of the language.

At the end of the training phase, if the input feature vectors were representative of all the

speech sounds of the language, the weight vectors of the cells should roughly characterise

the sound classes of that language. One needs only gather a single, manually labelled

feature vector for each sound class (ego phoneme) to determine the position of the sound

class in the map.

An input speech feature vector x is thought to be connected in parallel to every cell C j in

the network so that the distance between the input and each weight vector can be

determined. A weight vector mj(t) is associated with each cell C j lsisG at time t. The

weight vectors can be thought of as representing various regions in the pattern feature

space. A distance metric (as previously discussed) is used to match an input feature vector

x with the m j •

The SOM algorithm consists of an ordering and a labelling stage. The ordering stage

creates the spatial ordering of the map as described above. The labelling stage determines

the speech class labels corresponding to the various cells in the map.

The SOM algorithm described below is adapted from [Koh88] and [Koh90].

4.4.3.1 Phase 1: Spatial Ordering of the SOM

List of variables used in the algorithm:

• t is the time index

• x is the input feature vector

• m j is the weight feature vector associated with each cell C.
I

Nk is the radius of the excitatory "bubble" with centre cell C
k

o(t) is the "adaptation gain" at time t which scales the amount by which the

weight feature vectors will change if they are in the radius of influence

Chapter 4: Segmentation and Classification 4-19

1. Let t = O. Initialise the weight feature vectors, mj(O), by choosing arbitrary values as

their speech parameters. It is also necessary that mj ;I! mj for l~i;l!j~G where G is the

number of cells in the map.

2. Get the next training input feature vector x from a set of training input feature

vectors.

3. Determine the centre cell Ck which results in the best (ie. 'closest') matching weight

vector mj(t) with x using some distance measure b(x,mj(t». This is mathematically

expressed by the following:

k =argmin {~(x,mi(t»}
l

(4.10)

where argmin{bO} returns the value of argument i which results in a minimum

distance bOo

4. Update all the weight vectors of the cells contained in Nk according to the following

rule:

_ { ml(t) + u(t) [x(t) - m,(t)]
m,(t+l) - ml(t)

where O~a(t)~l is the "adaptation gain".

5. Let t = t + 1. If not finished then goto step 2.

if i E N,,(t) (4.11)
if i f N,,(t)

The radius of the 'bubble' Nk around the centre cell Ck is initially set very large, typically

greater than half the diameter of the network. Starting with a large radius ensures a global

ordering of the map. For the initial 1000 training steps the radius is allowed to decrease

monotonically (eg. linearly) with time. Thereafter it maintains a radius of one cell ie. the

centre cell Ck and its nearest neighbours.

The "gain adaptation" factor a(t) = 0.9(1 - t/1000) for the initial 1000 steps and then for

the remaining steps was set to a small value in the order of 0.01. These values were

determined by empirical results of several test experiments conducted by Kohonen [Koh90].

The number of training steps should be relatively large. A good "rule of thumb" is 500

times the number of cells in the map [Koh90]. The map can over-learn if too many steps

are used. Over-learning occurs when the weight vectors learn to recognise the training

patterns themselves and thus to lose its ability to generalise as a classifier. On the other

hand if too few steps are used, the map can be under-trained which will result in poor

classification results.

Chapter 4: Segmentation and Classification 4-20

Finally it is emphasised that the map is trained in an unsupervised manner ie. the feature

vectors need not be labelled.

4.4.3.2 Phase 2: Determining the Classes in Map

The second phase, determining the classes corresponding to the cells in the map, requires

a set of manually labelled training feature vectors. A single, labelled feature vector per

speech sound (of the language) will determine which cells (or set of cells) correspond with

which speech classes.

4.4.3.3 Phase 3: Classifier

The results from phase 2 are sufficient to build the classifier which consists of the list of

the weight feature vectors and their respective sound class labels. A new input speech

feature vector can be classified simply by returning the sound class label of the closest

weight feature vector to it.

4.4.3.4 General Comments

The main advantage of unsupervised training is that the phonetic expert does not have the

tedious task of manually labelling thousands of training feature vectors.

Unfortunately, the SOM classifier does not generate good results since it provides a very

rough approximation of the Bayesian classifier [Koh90]. Consequently, Kohonen and a

team of researchers have developed a set of techniques called the Learning Vector

Quantisation (LVQ) algorithms1 to improve these results.

4.4.3.5 Learning Vector Quantisation (LVQ) Techniques

The need for the LVQ techniques are described by Kohonen in the following way:

"If the Self-Organizing Map is to be used as a pattern classifier in which the

cells or their responses are grouped into subsets, each of which corresponds to

a discrete class of patterns, then the problem becomes a decision process and

must be handled differently. The original Map, like any classical Vector

Quantization (VQ) method is mainly intended to approximate input signal

Kohonen's team at the Helsinki University of Technology have developed LVQ_PAK, the LVQ program
PAcKage, to perform the LVQ algorithms. LVQ_PAK can be obtained by anonymous ftp (see [Koh91]).

Chapter 4: Segmentation and Classification 4-21

values, or their probability density functions, by quantized "codebook" vectors

that are localized in the input space to minimize a quantization error functional.

On the other hand, if the signal sets are to be classified into a finite number of

categories, then several codebook vectors are usually made to represent each

class, and their identity within the classes is no longer important. In fact, only

decisions made at class borders count. It is then possible, as shown below [by

the LVQ algorithms] to define effective values for the codebook vectors such

that they directly define near-optimal decision borders between the classes,

even in the sense of classical Bayesian decision theory." [Koh90]

The LVQ algorithms are briefly described below because of their importance in the

classification process. The LVQ1/2/3 algorithms is based on the notation used in the vector

quantisation (VQ) and SOM algorithms.

4.4.3.6 LVQ1 Algorithm

The LVQl algorithm is a technique which finely tunes the rough approximation of the class

clusters determined by either a vector quantisation (eg. k-means segmental) or SOM

algorithm. The tuning process aims to move the decision surfaces between two classes

towards the Bayesian limit; in this way approximating the optimal solution.

The LVQl training algorithm begins where the codebook or weight vectors mi(T) (T is the

final training step number) have already been determined by either a k-means segmental

or SOM algorithm. A set of training feature vectors X = {(x,c)}, where each training

feature vector x has a speech class c associated with it, is used by all the LVQ algorithms.

The LVQl algorithm aims at moving the codebook vectors from the class decision

boundaries towards the 'centre' of the class [Koh90]. The following equations achieve this

end by updating the codebook vectors mi(t) for each new training feature vector from X.

mc(t+ 1) = mc(t) + «(t) [x(t) - mc(t)],

mc(t+ 1) = mc(t) - «(t) [x(t) - mc(t)],

mc(t+ 1) = mc(t),

if x is classifiedcorrectly (4.12)
if x is misclassified

Vi*" c

The value of aCt) is small (±0.02) to begin with because it is a fine tuning technique. It

reduces monotonicaIIy to zero in about 100 000 steps. This does not mean that a large

number of manually labelled training feature vectors are necessary. Three feature vectors

per sound class (ie. ±150 labelled training feature vectors) is sufficient though they must

be repeatedly (and randomly) applied to make up the ±100 000 training steps.

Chapter 4: Segmentation and Classification 4-22

How does one interpret these equations? If training vector x is classified correctly using

a 1-NNR (ie. the 1-NNR classification is the same as the sound class label of x), the

equations become identical to those of the SOM algorithm. On the other hand if x is

misclassified (ie. the 1-NNR classification is different from the sound class according to

manual labelling1), the minus sign in the second equation can be thought of as removing

the contributions of the interfering (overlapping) neighbouring class probability density

function from that of the me.

It can be shown that the LVQ1 method approximates in a piecewise linear manner the

Bayes decision surface [Koh90].

4.4.3.7 LVQ2 Algorithm

This algorithm is a modification of the LVQl. It can result in a better approximation of the

Bayes decision surface.

Assume that m j and mj are two closest neighbour codebook vectors which belong to

different classes C j and Cj • Suppose also that m j and mj are not optimally positioned in the

feature space (ie. they are near the Bayesian decision boundary). Define a symmetric

window of width W about the midplane, where the width W is typically 10-20% of the

shortest distance between m j and mj • Under these conditions the LVQ2 algorithm is given

by the following:

m,(t+1) =m,(t) - a(t)[x - m,(t)]

mJt+1) = mJ.t) + a(t)[x - mJt)] I
if Cl is the nearest class to x,
but x E Cl ". C, where CJ is
the next nearest class to x and, (4.13)
x is in the window W

in all other cases

Relatively few steps (± 10 000) should be used with a(t) starting at 0.02 and decreasing

monotonically to zero. The smaller number of steps is due to that observation that after

many steps the m j "drift away" from the Bayesian limit [Koh90].

In a high dimensional feature space x is determined to be in the window if

min {b(x,mJ/b(x,mj), b(x,mj), b(x,m j)} > (1-V)/(1+V)

where the min{} function returns the smallest result of the functions in its list and V is the

shortest distance between m j and mj •

1 The labels detennined manually are assumed to be correct (else the results are ruined).

Chapter 4: Segmentation and Classification 4-23

4.4.3.8 LVQ3 Algorithm

The LVQ3 algorithm tackles two problems inherent in LVQ2. The first problem is that

corrections to m i and mj in LVQ2 result in monotonically decreasing shortest distances

between m i and mj • How is this so? The correction of mj in the correct class is greater "than

the correction of mi in the incorrect class since mj is further away from x than mi. To

rectify this problem, the condition of equation (4.13) is changed quite subtly in equation

(4.14) to allow either m i or mj be closest to input vector x in the window W.

The second change in LVQ3 compensates for the possibility that if LVQ2 is continued for

"too long", mi may "drift away" from its optimal position in the feature space. This is

remedied by introducing a further equation which ensures that the mi continue

approximating the class distributions [Koh90].

The equations are given as,

mi(t+1) = mi(t) - aCt) [x - mi(t)]

mJ.t+1) = mJ.t) + aCt) [x - mJ.t)] 1
if mi and mJ are the two closest vectors to
and x and mj E Cp' while m, f Cp .
and x is in the window W

for k E fiJI, if x, ml and mJ E er
(4.14)

The value of e is dependent on the size of the window though experiments have s~own

values between 0.1 and 0.5 to be best [Koh90]. The number of steps is not restricted as it

was in LVQ2 since the drifting away problems are catered for by this algorithm.

Both the k-means segmental and SOM (along with the LVQ) algorithms have been

implemented in this project.

4.5 Problems of Classification

The failure of speech recognition systems to a large extent, can be attributed to the failure

of their segmentation and classification processes [Nie81][Dev82]. Vaissiere emphasises

this point:

"It becomes more and more evident that progress in continuous speech

recognition essentially will depend on a better bottom-up analysis of the speech

signal" [Vas85].

Chapter 4: Segmentation and Classification 4-24

What is the reason for these poor results and how can they be improved? Firstly, better

feature selection and extraction techniques (ie. preprocessing functions) are needed. Work

has been conducted with cognitive psychologists and linguists to determine what

preprocessing is performed by the brain. DeMori et al [DeM90] have shown that their

classifier modelled on the human ear model, achieves significantly better results than

spectral information used directly from the OFf of the signal.

Even if one only has spectral information of the speech signal, Vaissiere points out:

"The score obtained in sentence spectrogram reading (15% of errors in

phoneme identification for expert readers) demonstrates that enough

information is present to decrease the present error rate [±30-40%] by at least

haIr' [Vas85]

Ask the phonetic expert to explain how he decodes the sPectrogram and he will usually

struggle to explain this. The same is true of a human listener when asked to explain how

he heard and interpreted a speech sound or word. This type of problem lends itself to

solution by artificial neural networks (ANNs). ANNs also find it difficult to 'explain' how

they achieve a result since the information is encoded in the configuration of the network.

(There is work being done on ANNs that can explain themselves but the researchers

acknowledge this underlying difficulty). The best results in speech sound classification have

been achieved by ANNs. The SOM with tailoring from the LVQ algorithms appears to be

the most successful "phoneme-typewriter" to date.

One final point that underlies the ideas in this chapter, is that the ultimate success of a

continuous recognition system will be determined by the contribution and interaction of the

higher level speech and language processing ie. the syntax, semantics and pragmatics of

a language, examined in chapter 8.

Chapter 4: Segmentation and Classification 4-25

Chapter 5 - Template Matching Word Recognition

5.1 Introduction

In this and the next chapter two important approaches to word recognition are investigated,

namely:
• template matching (the so-called non-parametric approach) and

• hidden Markov modelling (the parametric approach).

The two approaches are covered in separate chapters because of their unique approaches

to the recognition problem. A comparison is undertaken at the end of chapter 6 which

summarises their differences.

This chapter is divided into two main parts. The first deals with template matching in

isolated word recognition while the second extends the template matching theory to handle

connected word recognition.

5.1.1 Role of Word Recognition Systems

Word and speech recognition systems were defined in the introductory chapter. At this

point it seems appropriate to recall and highlight their differences and roles in the overall

speech recognition problem.

The general speech recognition process involves the following stages (see figure 1.1 in

chapter 1):

•
•

•
•

digitising the analogue speech signal

feature extraction or preprocessing

classification

post-processing with integrated higher-level language processing

The difference between word and speech recognition is the unit of recognition, a word in

the case of word recognition and a subword type (eg. a phoneme) in the case of speech

recognition. The process of extracting the words and therefore the meaning from the speech

signal is therefore handled differently in these different types of systems. In word

recognition, sequences of speech feature vectors (or statistical models, see chapter 6)

represent words and are used to (pattern) match against other sequences of speech feature

Chapter 5 ~ Template Matching Word Recognition 5-1

vectors. In subword recognition system, a single speech feature vector is classified as one

of a set of atomic speech sounds.

In other words, in speech reco~nition systems, classification using one of the techniques

in chapter 4, results in each input frame being labelled as a subword speech class (eg.

phoneme). Thereafter, adjacent frame with identical classes are merged together by a post­

processing routine to form larger sound segments (like syllables), words, phrases and finally

sentences.

In word recognition systems, the speech input is matched against a set of reference words

(or models in chapter 6) representing each word in the system's vocabulary. Therefore,

'classification' or matching occurs directly in terms of words.

Why do word recognisers exist when one can build words from recognised strings of

subword sounds? Firstly, the word unit is easily identified by the human speech recognition

system. Secondly, they developed as a result of research in the restricted area of isolated

speech recognition, producing good recognition results with reasonable response times for

small «200 word) vocabularies [Red76].

5.1.2 Difference between Isolated and Connected Word Recognition

Isolated word recognition (IWR) is a simpler task than connected word recognition (CWR)

because the start- and end-point of an isolated word is easily segmented from the

surrounding silence, whereas the boundaries of connected words are very difficult to

determine without actually recognising the entire sequence of words. In addition to this,

connected words suffer from the effects of coarticulation due to 'sloppiness' in colloquial

speech.

The term end-point detection is used in IWR to describe the task of detecting the start- and

end-points of a word utterance. Usually a simple threshold of the intensity function

performed on the speech signal is sufficient to· determine where silence becomes sound

(start-point) and sound becomes silence (end-point) at the end of the word utterance. Care

must be taken of the possibility of a period of silence in the word due to a stop followed

by a plosive sound ego the t in the word eigh!. It is also advisable to monitor the

'frequency' of the signal using the zero-crossing or turning points function to detect low

energy (amplitude) fricative or aspirated sounds at the word boundaries. If the system is

operating in real-time and the start of a word has been detected, the end of word can be

decided by a silence period of greater than some duration, typically 150ms [Lee92].

Detailed studies of end-point detection are undertaken by [pit90], [Red76], [Rab76] and [Lee92].

Chapter 5 - Template Matching Word Recognition 5-2

In CWR it is more difficult (often impossible) to determine the word boundaries since

adjacent words often "run into one another" due to coarticulation. Rabiner and Sambur tried

with some success, to implement a preprocessing module which determined the word

boundaries of connected digits l [Rab76]. This technique was however tailored to the

connected digit recognition problem with little prospect of generalisation to other problems.

As a result, connected word recognition systems generally do not presegment the speech

signal but rather attempt to 'spot' words in the speech signal without knowing their start-

and end-points beforehand.

5.1.3 Template Matching

In template matching word recognition systems, a word is represented by a sequence of n

frame-sized, speech feature vectors Xl' ••• , Xn and is sometimes referred to as a (word)

pattern2• Template matching in IWR is the process of matching a single unknown word

pattern against a set of reference word patterns which constitute the system's dictionary

called a lexicon.

Several ways of using template matching in CWR are discussed later in this chapter.

Temporarily one can think of this problem as matching several connected word patterns

(possibly with repetition of any word) against a concatenated sequence of reference word

patterns from the lexicon.

Template matching word recognition systems are often speaker dependent with a relatively

small-sized lexicons and achieve an impressive rate of correct matches, typically between

88.6-99% for IWR (see summary of results in [Red76]). The small size of the vocabulary

is influenced by the need for a real-time response and an expedient training stage to adapt

the speaker dependent system for a different speaker. If the system is speaker dependent,

a new set of reference patterns is needed for each new user of the system. This requires

saying each word at least once during the training stage - the duration of which is

dependent on the number of words in the lexicon and the system's processing power since

it has to generate the reference pattern feature vectors for each spoken word. Speaker­

independent template matching systems have also been built. See, for example, [Rab79],

[Rab84] and [Pan8S]. Generally, these systems first preprocess the speech signal by

labelling frame-sized speech segments in terms of codewords from a codebook constructed

using the vector quantisation (VQ) technique described in chapter 4. Template matching

The spoken digits 0-9 are a widely used vocabulary set in word recognition systems.

2 N.B. A pattern which referred to a single feature vector in the previous chapter, now refers to the
sequence of feature vectors making up a word.

Chapter 5 - Template Matching Word Recognition 5-3

then takes place using the codevectors associated with the codewords rather than the speech

feature vectors for the particular spoken utterance itself. The results of independent-speaker

template matching systems tend to be slightly poorer than for otherwise equivalent speaker­

dependent systems because of the additional VQ classification step which is not very

robust.

5.1.4 The Template Matching Problem

Template matching would be trivial if the duration of a speech sound in various utterances

of the same word were constant. This is never the case because of the many variables

which influence speech including the speaker's dialect, intentions and mood; and the

context of the word in the sentence. As a result, several approaches to normalise time

variations in the utterance of a word have been developed.

5.2 Isolated Word Recognition

5.2.1 Linear Time Alignment

Absolute Time Alignment

Absolute pattern matching is the simplest method of matching two patterns. This method

directly compares an unknown word pattern l X = Xl' •••, XN with each of the reference

word patterns, Rs = r1(s), ••• , r1S(s), l~s~W in a lexicon of W words. This is done by

determining the minimum total distance D(X,Rs) between the unknown pattern X and one

of the reference pattern Rs• The total distance D(X,RJ between X and the kth reference

pattern is determined as the sum of the local distances between their (time aligned) feature

vectors beginning with the first feature vector of each ie. Xl and r1(k) (and ignoring the

feature vectors at the end of the longer pattern). That is,

min{N,JJ}

D(X,Rj) = E ~(x"r,U»
1=1

(5.1)

The "winning match" is the kth word in the lexicon whose reference pattern results in a

minimum total distance with the input pattern X. Or, put mathematically,

The terms unknown pattern, input pattern and test pattern are synonymous.

Chapter 5 - Template Matching Word Recognition 5-4

nrln{N,.1j}

k = argmin D(X,Rj) = argmin E tJ(xl'r/
j », ls:j s:W

j j t=l

where argmin is the index of Rj (ie.k) which results
J

in a minimum distance between X and any Rj

(5.2)

The problem with this method is that it does not take into consideration that utterances of

the same word can have varying durations. It aligns the first feature vector of the reference

patterns with that of the unknown pattern and compares only the overlapping regions of the

patterns. It is probable that some region at the end of either reference or input pattern is

not part of the matching procedure.

The best absolute time alignment algorithm [DeM90] is an improvement of the above

absolute time alignment approach. It involves computing the absolute time alignment

repeatedly, where each repetition aligns the first feature vector of the shorter of either the

input and reference patterns with successive feature vectors (starting at the first) of the

larger, before performing the total distance measure. This process terminates when the ends

of the two patterns (ie. XN and rJs(s» are time aligned. The best absolute time alignment of

any input-reference pattern pair is the minimum distance obtained by the best alignment

of that pattern pair. The "winning match" is determined as the word in the lexicon which

results in the minimum best absolute time alignment with the input pattern. Although this

algorithm results in an improved performance over the previous, it requires far greater

computational effort. In addition, it does not solve the problem of varying durations in

utterances of the same word. It simply finds the best absolute match between patterns.

Linear Time-Normalisation

Linear time-normalisation treats the time variations in utterances as linear with respect to

time. That is, the time variations are thought to be uniform over all parts of the utterance.

Linear time-normalisation can be achieved in two ways. Either all patterns (input and

reference) are uniformly stretched or compressed to a fixed pattern length, or the reference

patterns are uniformly stretched or compressed to the length of the unknown pattern. Slight

time shifting has also been experimented with to improve the results of the linear time­

normalisation procedure [Whi76].

The results of a comparison between the linear and non-linear (discussed shortly)

time-normalisation by White and Neely [Whi76] expose the weakness of the linear

approach. As can be seen from Table 5.1, the linear time-normalised results were

Chapter 5 - Template Matching Word Recognition 5-5

comparable for the Alpha-Digit vocabulary set (the spoken alphabetic capitals "A-Z" and

digits "0-9") while significantly poorer for the vocabulary of North American State names.

This is attributed to non-linear time variations found in multisyllabic words ego North

American State names. The utterances of the Alpha-Digit vocabulary on the other hand, are

almost all monosyllabic which are generally too short to exhibit non-linear time variations.

Time Normalisation Method Alpha-Digit North American States

Linear 98 90

Non-Linear 98 99.6

Table 5.1 Comparison of Linear and Non-linear Time Alignment Techniques [Whi76]

A commercial linear time-normalisation system VRM with a small 10-30 word vocabulary

has been built [DeM90]. Its performance depends heavily on the choice of words in the

vocabulary, the number of the speakers and their cooperation.

5.2.2 Non-linear Time Alignment

Non-linear time normalisation is the ability to align utterances of the same word taking into

consideration local, non-uniform variations. The non-linear variations can be thought of as

insertions, deletions or substitutions of feature vectors of the input pattern with respect to

the matching reference pattern.

The dynamic time warping (DTW) algorithm is a well-known method for solving the

problem of non-linear time normalisation in isolated and connected word recognition

systems.

5.2.2.1 Notation

An unknown pattern X is comprised of a sequence of N feature vectors X = Xl' ..., XN• The

lexicon is made up of W reference patterns Rs lsssW. The k th reference pattern is stored

as a sequence of feature vectors Rk = rl(k), ..., rJt(k), where r/k) is the ith feature vector and

Jk is the number of feature vectors in the sequence.

5.2.2.2 Basic DTW Procedure

The set of reference patterns is constructed in a training stage, where the speaker is

prompted to utter each word in the vocabulary once. Several refinements in the training

Chapter 5 - Template Matching Word Recognition 5-6

phase have been suggested, ego [Rab84]. Pitchers [Pit90] suggests a simple refinement in

adding reference patterns of those words which the system recognises badly. This improves

the recognition accuracy by about 5%.

When testing or using the system, the speaker utters a test pattern X which is matched

against all the reference patterns in the lexicon to find the best matching word. The input

pattern X and each reference pattern Rs are first non-linearly time aligned (warped) before

determining D(X,RJ, the distance between them. The best matching reference pattern is the

one that results in a minimum distance with X.

5.2.2.3 Time Warping

The optimal, non-linear time alignment of the input pattern X and reference pattern Rs can

be determined by a warping [unction w(k)=(i(k),j(k» where k=1,2,...K. The i(k)s and j(k)s

determine which input pattern feature vector is aligned with which reference pattern feature

m

s

o
n

Figure 5.1 Warping function w(k) time aligning X and Ra adapted from [1ta75]

vector and therefore, l:si(k):sN and l:sj(k):sJs• The warping function illustrated in figure 5.1,

is the sequence of points w(l), w(2), ..., w(K) which depict the optimal alignment between

the Xi(k) vectors of the input pattern X with the rj(k)(s) vectors of the reference pattern Rs•

Once the optimal warping path is determined, the distance between X and Rs' D(X,Rs), can

be calculated as the sum of the local distances between the feature vectors of X and R ats

each point along the warping path. The optimal warping path must comply with the

following conditions1 adapted from [Sak78]:

I. Boundary conditions:

w(l) = (1,1) and

w(K) = (I,JJ

That is, the optimal path aligns the first and last feature vectors of X and Rs.

See [lta75] for a slightly different set of conditions.

Chapter 5 - Template Matching Word Recognition 5-7

11. Monotonicity:

i(k+1) ~ i(k) and

j(k+1) ~ j(k), 1:sk:sK-1

Ill. Continuity:

i(k+1) - i(k) :s 1 and

j(k+1) - j(k) :s 1, 1:sk:sK-1

and as a result, the point w(k+1) on the warping path can be reached from one of

the following three points only:

I(i(k) +1,j(k))
w(k+1) = (i(k) +1 ,j(k) +1)

(i(k) ,j(k) +1)

(5.3)

IV. Adjustment window of length h:

I i(k) - j(k) I :s h, where h ~ 0 is a suitable window length.

The adjustment window condition ensures that the warping path does not err too far

from the "diagonal" 1.

V. Slope condition:

The "effective intensity of the slope" of the warping function is the ratio of the

number of consecutive diagonal moves n to the number of consecutive vertical or

horizontal (but not both) moves m where the m+n moves are consecutive. It is

conveniently called the slope constraint and is denoted by P = n/m. It is evident

that the greater the slope constraint, the more the warping function is restricted to

the diagonal. In the extreme case where P -+ 00 (ie. n -+ 00 and m -+ 0), the path

lies exactly along the "diagonal". This is ju~t the degenerate case of the linear time

alignment of the input pattern with the reference pattern. When P -+ 0, there are

no restrictions on the warping function. The optimum slope constraint (in terms of

generating the best results) has been shown to be P = 1, while P = 0 and P =00

require the least computational effort [Sak78]. In this project, a slope constraint of

owas used since the difference in performance between P = 0 and P = 1 (which is

less than 1%2 [Sak78]) does not warrant the extra computational effort.

The "diagonal" is approximated since the N x Js matrix need not be square.

2
Performances were comparable for Japanese digits but ±1%different for SO Japanese geographical names.

Chapter 5 - Template Matching Word Recognition 5-8

5.2.2.4 Implementation of the DTW Algorithm

The implementation of the DTW algorithm can be divided into two parts. The first stage

involves constructing an NxJs distance matrix called Dist(i,j), which stores the distances

between the feature vectors Xi and r/5
) for 1~i~N and 1~j~Js ie. Dist(i,j) = b(~,r/s».

Figure 5.2 adapted from Moore's illustrations [DeM90], depicts a small example of this

matrix where the input pattern X is of the same word though different utterance as the

reference pattern Rk and, as a result, the distances (ie. the values not in brackets) stored in

the matrix close to the "diagonal" tend to be relatively small while those further away from

the "diagonal" are relatively large.

11 ..' '.','.'I',','I,','

DE]
D

........
§
l:;d

',',',......',',',.,',',',.... '.
7 10 10 11 20

(17) (27) (38) (58)

16 1 5 8 19
(23) (8) (13) (21) (40)

20 11 11 12 7
(43) (19) (19) (25) (28)

23 18 16 15 2
(66) (37) (35) (34) (27)

Figure 5.2 The Distance Matrix Dist(i,j) of X and Rk with the values for the Accumulated Distance
Matrix AccDist(i,j) stored in brackets in the equivalent cell [Dem90].

The second stage involves finding the optimal warping path through the distance matrix1

by determining the lowest accumulated distance along any path through Dist(i,j) adhering

to all the warping path conditions I-V. This is achieved by constructing an accumulated

distance matrix AccDist(i,j), also depicted in figure 5.2, which stores the accumulated

distance along the best path to every point (i,j) in the warping grid. This is often written

in the literature as a dynamic programming (DP) equation:

For slope constraint P = 1, the DP equation is given as:

~
(i,j) + g(i,j -1),]

g(i,j) =min 2b(i,j) + g(i-1,j -1),
b(i, j) + g(i -1 , j)

(5.4)

Starting from the top left element and ending at the bottom right element in order to satisfy the boundary
conditions (see constraint I above) of warping functions.

Chapter 5 - Template Matching Word Recognition 5-9

For slope constraint P =0, the OP equation is:

~
(i ,j) + g(i -1 ,j),]

g(i, j) = min b(i, j) + g(i -1 ,j -1),
b(i, j) + g(i, j -1)

(5.S)

The recursive function gO in the OP equation (5.5)1 can be modified and used to evaluate

the accumulated distance matrix iteratively in the following way:

Algorithm:

For i := 1 to N do

For j := 1 to Js do

AccDist(i,j) := Dist(Xt,rt») + Min{AccDist(i-l,j), AccDist(i-l,j-l), AccDist(i,j-l)}

EndFor U}

EndFor {i}

where • ~ and rr> are the feature vectors of the input and reference patterns respectively and,

• Dist(xl,rt») is the value of element (i,j) of the Dist matrix defined above ie. the distance

measure ()(xl,rr») and,

• Min{a,b,c} is a function returning the argument a, b or c with the smallest value and,

• AccDist(O,u) and AccDist(v,O) which will be accessed by the above algorithm when i=l and/or j=l,

are therefore initialised to 00 for lsu:sJs and l:sv:sN and AccDist(O,O) = 0.

If the adjustment window condition (IV) is applied, the above algorithm must set to 00

those elements in AccOist which do not satisfy the condition j-h s i :s; j+h (where h is a

suitable adjustment window).

It is evident that the actual warping path through the warping grid is not stored or returned

from the above algorithm. In fact, the optimal warping path does not need to be preserved

in isolated word recognition because the minimum accumulated distance of all the input­

reference pattern matchings determines the best matching reference pattern (and therefore

the "winning" word in the lexicon).

The optimal warping path is important in connected word recognition where the between­

word links must be monitored to determine the sequence of connected words. The optimal

path through the grid can be determined by tracing back through the accumulated distance

matrix, starting from the bottom right cell (N,JJ and recursively, until cell (0,0) is reached,

determining the cell from which the current cell was reached in order to achieve a

minimum accumulated distance at that position in the grid.

1 As previously mentioned, a slope constraint of P=O was used for computational ease.

Chapter 5 - Template Matching Word Recognition 5-10

Determining the Warping Path

A more efficient manner (in terms of speed but not space) of determining the warping path

can be achieved by storing a matrix of "from cells", ie. the previous position from which

each cell in the grid would be reached if it were on the optimal warping path. The "from

cell" for each cell in the grid can be determined in the Min{} function of the above

algorithm by saving the i and j indices of the argument (of Min{}) with the smallest

distance value. The new matrix FromCell(i,j) is established to store the best local path

decisions at every point (i,j) in the NxJs grid in the following way:

let a = AccDist(i -1 ,J)
let b = AccDist(i-I,j-I)
let c =AccDist(i ,j-1)

{

(i-l ,j)
FromCell(i,j) = (i-l,j-l)

(i,j-l)

if a =Min(a,b,c)
if b = Min(a,b,c)
if c = Min(a,b,c)

(5.6)

The warping path can thus be determined by backtracking along the best local path

decisions starting at FromCell[N,Js] for reference pattern Rs and stopping at (0,0). The

warping path is (in reverse order):

{(N,Js)' FromCell(N,JJ, FromCell(FromCell(N,Js»' ..., (1,1)}

A simple postfix recursive procedure will produce the warping path in the correct order.

5.2.3 Review of the Literature on Isolated Word DTW Algorithms

Sakoe and Chiba have compared the recognition results of different slope constraints and

compared the results of different hybrid DTW algorithms developed in the '70s [Sak78].

Rabiner et al investigate the performance of an isolated DTW word recognition system with

respect to the various parameters of the system [Rab78] as do Myers et al [Mye80] and

[Tap78] with respect to memory and time savings in the DTW algorithm. Itakura developed

a DTW isolated word recognition system using the maximum log likelihood ratio

(described in the previous chapter). This system (200 word lexicon) matched words spoken

over a telephone system with a reported accuracy of 97.3% and had a response time about

22 times greater than real time [Ita75]. A good overview and clearly presented DTW

algorithm is contained in DeMori et al [DeM90] and Leedham [Lee92] while Levinson

compares the template matching and hidden Markov model approaches in a holistic study

of word recognition systems [Lev85a]. An algorithm called the order graph search

developed by Brown and Rabiner [Br082] uses ordered tree and graph searching techniques

to reduce the distance computation threefold with no loss in recognition accuracy. Pitchers

has described and implemented this algorithm [Pit90].

Chapter 5 - Template Matching Word Recognition 5-11

5.3 Template Matching in Connected Word Recognition

5.3.1 Introduction to the Problem

Recognising words in normal speech l is difficult because coarticulation is drastically

increased in normal speech and as a result, there are very few definite cues in the speech

signal to mark the between-word boundaries. However, it turns out that the non-linear time

normalisation mechanism of the DTW algorithm is a suitable tool for overcoming these

difficulties.

The connected word recognition problem using template matching can be formulated as

follows:

The input consists of a sequence of connected word patterns of normal speech

chosen from a predefined vocabulary. The reference patterns are constructed and

stored as they are for isolated word recognition. The recognition problem is to

determine the sequence of concatenated reference patterns which best match the

input pattern. The concatenation of reference patterns is often referred to as a super

reference pattern.

The input pattern differs from the super reference pattern of the same sequence of words

in that sounds appear to be omitted, blurred and/or compressed. The reason for this is that

the reference word patterns are produced from isolated utterances of the words and are

therefore generally "well-formed" and less succeptible to coarticulation than the words

generated in normal speech. (Coarticulation is more pronounced in normal speech because

the rapidity or tempo of normal speech is far greater than it is in isolated word utterances.

As a result, the articulators often fail to reach the exact point of articulation in their haste

to produce the subsequent sounds in the sentence). These differences of the input and super

reference patterns of the same sequence of words (ie. the omissions, blurrings and

deletions) can be overcome by the non-linear time alignment mechanism of the DTW

algorithm. In fact this mechanism is the very reason for extending the use of the template

matching approach to connected word recognition.

5.3.2 A Naive Solution

A naive solution of the template matching CWR problem is to generate all possible super

reference patterns, comparing each with the input pattern using the DTW algorithm. This

Normal speech is the term used to describe continuous, colloquial spe~ch.

Chapter 5 - Template Matching Word Recognition 5-12

solution is non-tractable since the number of words in the input pattern is unknown and an

infinite number of super reference patterns could thus be generated for matching with the

input pattern. Even if the exact number of words in the input pattern were known (say k),

the total number of executions of the DTW algorithm1 for a vocabulary of V words is Vk

which grows exponentially in k. In comparison, the number of executions of the DTW

algorithm in isolated word recognition is V (ie. one for each reference pattern in the

lexicon).

5.3.3 Optimised Solutions

Several algorithms using the DTW technique have been developed to improve the naive

solution offered above, namely:

• the two-level algorithm [Sak79]

• the "sampled" algorithm [Rab80]

• the level-building algorithm [Mye81]

• the one-stage algorithm [Ney84]

The last algorithm which Ney revised from the earlier but "overlooked" works of Vintsyuk

1971 and Bridle and Brown in 1979, has been shown to be the best of the four algorithms

in terms of simplicity in approach, computational efficiency and storage costs [Ney84]. The

"sampled" algorithm by Rabiner and Schmidt [Rab80] looks at ways of optimising the word

recognition algorithms and provides some useful insights to the problem of connected word

recognition (CWR) as a whole. The other two algorithms are outlined to highlight their

different approaches to the problem.

A standard notation based on that used by the DTW algorithm in isolated word recognition,

is presented at the outset to make the task of comparing the different algorithms easier.

5.3.4 Notation

The reference patterns stored in the lexicon are represented as they were previously. That

is, the sth reference pattern in the lexicon is written as Rs = r1(5) r2(s) ... rJs(s) where r/s) is the

jth feature vector of the sth reference pattern.

That is, the total number of orderings of the reference word patterns (with repetition) in a k-Iength
super reference pattern.

Chapter 5 - Template Matching Word Recognition 5-13

The notation for the input pattern is more complex than the one used previously in order

to depict that it is composed of several joined word utterances. An input pattern X with

k word utterances is represented as:

X -x (sI) X (sI) X (sI) X (s2) X (s2) X (k) X (k) X (sk)- I 2 ... NsI I ... Ns2 ... I 2 ••• Nk

where ~/c} is the ith speech feature of the cth word utterance. xNc(c) is the last feature vector

of the cth word utterance which is followed (if c<k) by Xl(c+l) or the first feature vector of

the (c+ l)th word pattern. Although the word boundaries are indicated in the above notation,

they are not known beforehand and are very difficult to determine. Therefore the input

pattern is also represented as a single pattern: X = Xl' x2 ••• xN·

5.3.5 The Two-Level DP Algorithm [Sak79]

The two-level DP algorithm was developed as a result of the efforts of Sakoe and Chiba

and Nakatsu and Kohda [Sak79]. The main ideas of the algorithm are presented in this

section while a detailed account can be found in [Sak79]. The algorithm uses two stages

to recognise the words in a continuous speech signal (as the name suggests).

Stage 1: Word Level Matching

The first stage is called word level matching. The DTW algorithm is used to determine the

best matching reference pattern Rk lsksW of every possible partial sequence of the input

pattern. That is, the minimum accumulated distance and the reference word (ie. its index)

associated with the minimum accumulated distance is evaluated and stored for every partial

sequence of input pattern [x.;xm], Ism. The minimum accumulated distance of the partial

sequence [x.;xml is stored in a matrix AccDist(l,m) and the matching reference word

index k which resulted in the minimum accumulated distance is stored in a matrix

WdHyp(l,m). The matrix WdHyp(l,m) embodies a word hypothesis and can be expressed

in words as: the partial sequence of the input pattern starting at the lib and ending at the

mth input feature vector is thought (hypothesised) to be the kth reference word in the

lexicon.

For a lexicon size of V words, an input pattern of length M frames and ignoring the DTW

constraints, the number of times the DTW algorithm is executed, is given as:

M [M+l] V
2

Chapter 5 - Template Matching Word Recognition

(5.7)

5-14

The word level matching stage involves the bulk of the computation and therefore any

opportunity of limiting the number of DTW matches should be taken. For example, the

adjustment window h (DTW condition IV) can limit the possible matching sequences.

Stage 2: Phrase Level Matching

The second stage attempts to concatenate adjacent word hypotheses (evaluated above) in

the best way in order to determine the optimal, hypothesised connected sequence of words

in the input pattern. All potential concatenations of word hypotheses must extend over the

entire input pattern. That is, the starting frame of the first word hypothesis is 1 and the

ending frame of the last word hypothesis in the concatenated sequence of word hypotheses

is N. The word hypotheses in the concatenated sequence are abutted in that the starting

frame of the (c+ l)th word hypothesis is one frame greater than the ending frame of the c
th

word hypothesis. The optimal concatenation of word hypotheses (obeying the above

conditions) is the one which results in the smallest sum of the minimum accumulated

distances of the word hypotheses in a concatenated sequence. That is, the "winning"

concatenation of word hypotheses is the one whose sum of the accumulated distances of

its intermediatep-l word hypotheses, AccDist(l,w t)+AccDist(wt+1,w2)+···+AccDist(wp,N),

is less than that of any other.

To solve the phrase level matching problem, two new matrices T(x,m) and L(x,m) are

introduced:

•

•

T(x,m) stores the smallest sum of the accumulated distances of x word hypotheses

ending at input frame m - ie.

T(x,m) = AccDist(l,w t) + AccDist(w t+l,w2) + ... + AccDist(wx_t+l,wx)

where W i is the last frame of the jlh word hypothesis and wx = m.

L(x,m) stores the reference word index associated with the AccDist(wx-t+1,wx)

which results in the smallest value for T(x,m).

T(x,m) and L(x,m) are determined for the best word sequences of K or fewer words

(ie. l~x~K). K is the predetermined maximum number of words allowed in the input

utterance. Once these matrices have been populated, the best sequence of connected words

can be found. This is achieved in two steps: by firstly determining the best number of

words (V) in the input sequence (VsK) using T(x,N) and then using L(V,N) to backtrack

to the previous word boundaries in the optimal connected word sequence. The best word

hypotheses associated with each adjacent set of word boundaries (a,b) can then be found

in WdHyp(a,b).

Chapter 5 - Template Matching Word Recognition 5-15

The complete two-level algorithm is presented below in a form adapted from [Sak79] so

that it can easily be implemented by computer software.

Two-level Algorithm:

Word Level Matching Stage

Get input pattern X

Initialise matrix AccDist(I,m) to 00 and WdHyp(I,m) to 0 V I,m

For refwdno := 1 to W do { W is the number of reference words in the lexicon }

GetDistMatrix(Dist(» { GetDistMatrix() is a procedure to calculate the distance matrix

Dist(i,j) := ()(~,r/refwdnO»), Vi,j }

For I := 1 to (N-Jrefwdno+h) do { constant h is the adjustment window constraint}

For m := (I+Jrefwdno-h) to (I+Jrefwdno+h) do

acc_dist := CalcAccDist(I,m)

If (acc_dist < AccDist(I,m)) then

AccDist(I,m) := acc_dist

WdHyp(I,m) := refwdno

EndIf

EndFor {m }

EndFor { '}

EndFor { refwdno }

Phrase Level Matching Stage

T(x,m) := 0, for l~m~N and l~x~K

Determine the values of T(x,m) and L(x,m) by the following:

For x := 1 to K do {ie. for every possible number of words in the input sequence }

For m := 1 to N do

MinDist := 00

largmin:= 0

For I from max{1,(m-Jmu-h)} to (m-Jmln+h) do

TempDist := AccDist(l,m) + T(x-l,l-l)

If (TempDist < MinDist) then

MinDist := TempDist

largmin := 1-1

EndIf

EndFor { I}

T(x,m) := MinDist + T(x-l,Iargmin)

L(x,m) := largmin

EndFor { m }

EndFor { x }

{ where Jmu = max(JJ

and Jmln = min(Jn), Vn l~~W }

Chapter 5 - Template Matching Word Recognition 5-16

Two-level Algorithm (cont'd):

Determine the number of words (V) in the optimum sequence of words:

MinDist := 00

V:=O

For x := 1 to K do

If (T(x,N) < MinDist) then

MinDist := T(x,N)

V:= x

EndIf

EndFor { x }

The position of the word boundaries WB(O) =1, WB(1), ..., WB(V-1), WB(V) =N of the optimum sequence

are thus determined (in reverse order):

WB(V) =N, WB(V-1) =Lv.l(WB(V)) =Lv.l(N), WB(V-2) =Lv.2(WB(V-1)) =~.2~'1(N)), ... , WB(O) =0

Fina))y, the best concatenated word hypothesis sequence is:

WdHyp(l,WB(l)), WdHyp(WB(1)+1,WB(2)), ..., WdHyp(WB(V-l)+l,N)

5.3.6 The Level-Building DTW Algorithm [Mye81]

The level-building1 DTW algorithm is an efficient implementation of the two-level

algorithm. The paper by Myers and Rabiner [Mye81] covers in great detail, the

implementation of and comparison between this algorithm and the two-level algorithm. The

details are not regenerated here, but several of the most important observations are

highlighted.

The major difference between the level building and two-level algorithms is the order in

which the ideas of the algorithm are carried out. In the two-level algorithm, the first stage

(ie. word level matching) involves generating all the best word hypotheses for all possible

partial sequences of the input pattern. The second stage (ie. phrase level matching) pieces

together word hypotheses in order to determine the best sequence of connected word

hypotheses making up the sequence of words in the input pattern.

In the level-building algorithm, on the other hand, the phrase matching stage is incorporated

in the word matching stage. The "levels" correspond to the word hypotheses. Optimal paths

are generated for every possible number of levels less than some maximum number of

levels. That is, all possible first word hypotheses are determined for the first level, then all

1 This algorithm is a special case of the stack algorithm developed by Bahl and Jelinek [Bah75]. 6.

Chapter 5 - Template Matching Word Recognition 5-17

possible second word hypotheses, beginning at the end of the best first level word

hypotheses, are generated and so on. Back pointers are used to store the input pattern frame

number of the last position of the best path of the previous level from which the word

hypothesis of the current level originated. The optimal warping path can therefore be

recovered at the end level processing by using the back pointers to trace back along the

best path. The reference word number corresponding to the best matching path at the

various levels is also stored so that ultimately, the matching connected word sequence can

be recovered.

A necessary parameter of this algorithm is the constant determining the maximum number

of levels, that is the maximum possible number of words in the connected word utterance.

Once all word hypotheses are determined for all possible number of levels (s maximum

number of levels), the best sequence is decided firstly by determining the best number of

levels or the number of words in the test utterance, called L. This is done by choosing the

level number whose best path ends at the last frame of the test pattern, and whose

accumulated distance at that point is a minimum (ie. smaller than the best hypotheses at

any other level number). A backtracking technique is used to uncover the word boundaries

and the corresponding reference words associated with the decisions to place the word

boundaries in that position. This stage is similar to the backtracking stage described in the

following section.

Myers and Rabiner improved the efficiency of the level building algorithm further by

introducing certain "range reduction techniques" [Mye81l. The idea behind these techniques

is to reduce the number of DTW matches which are the most costly operation in the

algorithm. The improved algorithm developed by Myers and Rabiner was called the

"reduced level building" algorithm. It was been shown to be approximated 20 times more

efficient than the two-level building algorithm while the "reduced level building" algorithm

30 times more efficient [Mye81].

5.3.7 The One-Stage Dynamic Programming (DP) Algorithm [Ney84]

The one-stage DP algorithm was devised by Vintsyuk in 1971 and later developed by

Bridle and Brown in 1979 [Ney84]. It was overshadowed by the two-level and level

building algorithms until Ney revised it and drew attention to its merits. It has been shown

to be both more efficient and less complicated than the previous algorithms. In the

following section, an adapted version of Ney's one-stage algorithm is presented.

A set of grid points (i,j,k) is constructed in 2-dimensions as depicted in figure 5.3.· The

horizontal axis is calibrated by the input frame index i ie. the ph feature vector of the input

Chapter 5 - Template Matching Word Recognition 5-18

pattern. The vertical axis is referenced by two variables, a "base pointer" k determining the

first feature vector of the kth reference pattern Rk and an "offset index" j marking the jth

feature vector of the base (kth) reference pattern. Jk is the last frame or feature vector of the

JCh refe~ence pattern and is followed by the first feature vector U=1) of the k+ lth reference

pattern (l:sk~W, where W is the number of wor~s in the lexicon).

Rs

R.1

l) l-_.....--4-----'4----+---t------1
1

R2

Input Feature Vecton

Figure 5.3 The "Grid" of the One-stage Algorithm adapted from [Ney84]

Similar to the case of isolated word recognition (IWR), the local distance b(xi,r/k» (ie. the

distance between Xi and rj(k» is stored for each grid position (i,j,k) in a matrix called

Dist(i,j,k). The one-stage algorithm is based on finding the best path through the grid points

(i,j,k). The distinguishing feature of this CWR algorithm (as opposed to the previous ones)

is that the best path is determined by a time warping function parameterised by a single

index (with suitable continuity rules). The idea is simple since it is based directly on the

DTW algorithm used for IWR and has been shown to perform as well as the previous

algorithms with savings in computational effort and storage space.

The warping path {w(1), w(2), ..., w(~), ..., w(L)} through the grid is determined by the

warping function:

w(~) = (i(~),j(~),k(~», where ~ is the path index of the ordered set of path elements.

The continuity of the warping path is specified by two continuity rules called transition

rules in order to describe the more complex nature of connected speech (where only one

continuity rule was required for the IWR case). From figure 5.3 it is evident that the

warping path within a reference pattern obeys the same rules of continuity as those defined

for IWR. At the word boundaries however, a different rule is needed to cater for the

vertical "jumps" to the start of different reference patterns.

Chapter 5 - Template Matching Word Recognition 5-19

The within-word transition rule therefore states that the point (i,j,k) for j>1 can be reached

from one of only three points:

{ (i-l,j,k), (i-l,j-l,k), (i,j-l,k) }

The between-word transition rule deals with the problem of 'joining' the final sound of one

reference pattern with the first sound of the next. Formally the rule is written as:

if w(Q) = (i,l,k) then

w(Q-l) E { (i-l,l,k); (i-l,Jk*,k*) } where lsk*:sW

Notice that the between-word transition rule does not exclude the possibility of the same

word being immediately repeated in the input pattern (ie. the last frame of a reference

pattern 'joining up' with its own first frame as the start of the next word). In addition,

syntactic information can be introduced at this point, to restrict the choice of reference

patterns k* to those which, according to some finite state syntax, are allowed to follow the

kth reference pattern.

The minimum accumulated distance at each grid position (i,j,k) is determined in a similar

way that it was in the IWR case but takes into account the new transition rule and the

slightly different grid structure. The values in the minimum accumulated distance array

AccDist(i,j,k) are governed by the following dynamic programming (DP) relations:

Within-word relation (ie. j>l):

AccDist(i,j,k) = Dist(i,j,k) + min { AccDist(i-l,j,k), AccDist(i-l,j-l,k), AccDist(i,j-l,k) }

Between-word relation (ie. j=l):

AccDist(i,l,k) = Dist(i,l,k) + min { AccDist(i-l,l,k); AccDist(i-l,Jko,k*): k*=l, ..., W }

(OP1)

(OP2)

The AccDist(i,j,k) matrix must be initialised to 00 for the boundary conditions ie. for all

matrix entries where i = °or j = 0, except where i = j = °when AccDist(O,O,k) = 0.

The algorithm for determining the best warping path follows that of the IWR case but uses

the new ideas introduced above:

Chapter 5 - Template Matching Word Recognition 5-20

Algorithm:

1. Calculate the local distances for each point (ij,k) in the grid:

For i := t to N do

For k := t to W do

For j := t to Jk do

Dist(i,j,k) := b(xt,rr»

EndFor {j }

EndFor { k }

EndFor { i }

{ N = # feature vectors in the input pattern }

{W = # reference words in the lexicon }

{ Jk = # feature vectors in the kth reference pattern }

{bO = a distance function (eg. Euclidean) }

2. Initialise the boundary conditions of the accumulated distance matrix:

For k := t to W do

AccDist(O,O,k) := °
For i := 1 to N do

AccDist(i,O,k) := 00

EndFor { i }

For j := t to Jk do

AccDist(O,j,k) := 00

EndFor {j }

EndFor { k }

3. Calculate accumulated distance matrix AccDist(ij,k) at every grid point (ij,k) using DP1 and DP2:

For i := 1 to N do

For k := t to W do

AccDist(i,l,k) := Dist(i,t,k) + min [AccDist(i-t,t,k); AccDist(i-t,Jk.,f): k
e
=l,...W]

FromCell(i,t,k) := the grid position which resulted in a minimum AccDist() in the above min[] function

For j := 2 to Jk do

AccDist(i,j,k) := Dist(i,j,k) + min [AccDist(i-t,j,k), AccDist(i-t,j-t,k), AccDist(i,j-t,k)]

FromCel1(i,j,k) := the grid position which resulted in a min. AccDist in the above min[] function

EndFor {j }

EndFor { k }

EndFor { i }

The min[] functions in the above algorithm determine the course of the warping path. The

previous point (ix,jy,kJ on the best path to the point (i,j,k), whose minimum accumulated

distance is chosen by the min[] functions, is stored in FromCell(i,j,k) to avoid having to

redetermine the previous point in the best path to each point (i,j,k). That is,

FromCell(i,j,k) = (ix,jy,kJ. Notice however that each element in FromCellO stores three data

words of memory for every position in the grid ie. a value to reference each of the indices

i, j and k. This is expensive when one considers that only the best path is ultimately

required. To avoid this expense, a new system for extracting the ultimate sequence of

Chapter 5 - Template Matching Word Recognition 5-21

words in the input pattern will shortly be devised. First, the above algorithm is completed

using the FromCellO array to extract the best path.

In order to determine the best warping path, one must first find the grid point (N,Jk,k)l

with the smallest minimum accumulated distance - that is, the grid point (N,Jko'ko) for some

reference pattern ko that has a minimum accumulated distance smaller than that of any

other point (N,Jk,k) for all k ~ ko. This grid point (N,Jko,ko) is the last frame of the best path

which 'unlocks' the entire optimal path sequence through the grid (and therefore the

connected word sequence) using the backtracking method similar to that described in the

IWR case.

Algorithm to find Warping Path: (continues where the algorithm above left oft)

Smallest := 00

ko:= 0

For k := 1 to W do

If (AccDist(N,Jk,k) < Smallest) then

Smallest := AccDist(N,Jk,k)

ko:= k

EndIf

EndFor { k }

The warping path is thus the set of points:

{ (N,JkO'ko), FromCell(N,JkIDko), FromCell(FromCell(N,Jko'ko)), ..., (l,Jkz,kJ} where l~z~W

The connected sequence of words can be determined from the reference pattern indices k in the above set of

warping path points.

There are several weaknesses with the one-stage algorithm in its fonn above:

• The matrices Dist() and AccDist() are large storage structures whose elements (i,j,k)

are only accessed or used for a very short duration of the total time of the algorithm.

It is evident that in order to determine the minimum accumulated distance

AccDist(i,j,k), one needs only the current (jth) and previous (i-l th) columns of

AccDist() and the current (ith) column of Dist().

• The matrix FromCell(i,j,k) has already been shown to be wasteful of space and a new

backpointer system should be introduced to overcome this weakness.

Thus, the minimum accumulated distance array AccDist(i,j,k) is replaced by two column

arrays CurrAccDist(j,k) and PrevAccDist(j,k) representing the current (ith) and previous (i-

1 That is, a grid point in the last frame of the input pattern, in the last frame of one of the reference patterns.

Chapter 5 - Template Matching Word Recognition 5-22

1th) input frame columns in the grid. These arrays operate in the following way: once all

the minimum accumulated distances of say the ith column have been evaluated and stored

in the entries of the CurrAccDist(j,k) array, the entries in the CurrAccDist(j,k) array are

copied over to the PrevAccDist(j,k) array and the CurrAccDist() array is reinitialised for

evaluating the minimum accumulated distances of the i+1th column. In this way, only the

necessary minimum accumulated distances are available for evaluating every minimum

accumulated distance at any point in the grid.

The second point which needs addressing is the backtracking procedure. The reason for

storing the backpointers FromCell(i,j,k) was to avoid the task of reevaluating the path

decision during backtracking. This structure however requires a large amount of storage

space. In addition, it stores the backpointers of every possible path through the grid where

only the backpointers of the best path are necessary to solve the problem of finding the

sequence of words in the input pattern. Therefore, backpointers for each position (i,j,k) are

set up to store the input frame index of the last frame of the previous word in the best path

reaching point (i,j,k). The backpointers are stored in two structures PrevBPG,k) and

CurrBPU,k) like those for determining the minimum accumulated distances for each point.

As a result, two other structures, a "From Template" Ff(i) and a "From Frame" FF(i) are

needed to remember the previous 'best path' word boundary frames and the reference

patterns associated with them to maintain a backtracking mechanism for extracting the best

sequence of words.

The "From Template" array thus evaluates and stores for every input frame i, the template

or reference pattern ko with the smallest minimum accumulated distance in its last frame

ie. it stores the template index ko which results in CurrAccDist(Jko,ko) ~ CurrAccDist(Jk,k)

for all k ;lI! ko• At the same time, the backpointer CurrBP(Jko,ko) (to the last frame in the

previous word in the path 'joined to' (Jko'ko» is stored in the "From Frame" FF(i).

Once the values Ff(N) and FF(N) (where N is the last input frame) have been evaluated,

the word boundaries of the unknown sequence of words are determined as:

{ N, FF(N), FF(FF(N», ..., 0 }

The words associated with these word boundaries (ie. the ultimate sequence of words of

the unknown input pattern) can easily be 'looked up' in the "From Template" array and are

written (in reverse order) as:

{ Ff(N), Ff(FF(N», Ff(FF(FF(N»), ... }

Chapter 5 - Template Matching Word Recognition 5-23

The Revised Algorithm:

Initialise all the entries in PreyAccDist() to 00 except PreyAccDist(O,k) = 0 for all k

Initialise CurrAccDist(O,k) = 00 for all k

Initialise all the entries in PrevBP() and CurrBP() to 0

For i := 1 to N do

For k := 1 to W do

CurrAccDist(l,k) := Dist(l,k) + min [PrevAccDist(l,k); PrevAccDist(Jk"k"): k'=l,...W]

If (argument of the result of the above 'min' function was PrevAccDist(l,k)) then

CurrBP(l,k) := PrevBP(l,k)

Else

CurrBP(l,k) := i - 1

EndIf

For j := 2 to Jk do

CurrAccDist(j,k) := Dist(j,k) + min [a:PrevAccDist(j,k), b:PrevAccDist(j-l,k), c:CurrAccDist(j-l,k)]

Case (argument of the result of above 'min' function)

a: CurrBP(j,k) := PrevBP(j,k)

b: CurrBP(j,k) := PrevBP(j-l,k)

c: CurrBP(j,k) := CurrBP(j-l,k)

EndCase

EndFor { j }

EndFor { k }

smallest := 00

bestk := 0

For k := 1 to W do

If (CurrAccDist(Jk,k) < smallest) then

smallest := CurrAccDist(Jk,k)

bestk := k

EndIf

EndFor { k }

Ff(i) := bestk

FF(i) := CurrBP(Jbestk,bestk)

EndFor { i }

Chapter 5 - Template Matching Word Recognition 5-24

Then the word boundaries of the ultimate sequenre of words

can be generated by a recursive proredure ego

Def WordBoundaries(WdBorder)

If (WdBorder > 0) then

WordBoundaries(FF(WdBorder))

EndIf

Output(WdBorder)

EndDef

which generates the word boundaries in left-right order ie.

{ 0, ..., FF(FF(FF(N»), FF(FF(N», FF(N), N }

And the sequence of words in the input pattern can also be

generated by a recursive procedure:

Def ~nerateWords(WdBorder)

If (WdBorder > 0) then

GenerateWords(FF(WdBorder))

Output FT(WdBorder)

EndIf

EndDef

which generates the sequence of words in left-right order ie.

{ ..., FT(FF(FF(FF{N»», FT(FF(FF(N»), FT(FF{N», FT{N) }

5.3.8 Comparison of the CWR DTW Algorithms

In the second half of this chapter, three connected word recognition (CWR) dynamic time

warping (DTW) algorithms were studied namely:

• the two-level algorithm

• the level building algorithm

• the one-stage algorithm

The recognition accuracy of the three algorithms is comparable since they are in many

ways similar to each other. Their computational efficiency, storage requirements and

. specific problem-strategies however differ considerably.

The two-level algorithm solves the problem in two stages: firstly, finding all the best word

hypotheses for every partial sequence of the input pattern (the word level) and secondly,

Chapter 5 - Template Matching Word Recognition 5-25

joining adjacent word hypotheses (the phrase level) in order to determine the best overall

concatenation of word hypotheses across the entire input pattern.

The level building algorithm reorders the steps in the two-level algorithm to produce a

substantially more efficient solution. This algorithm incorporates some of the 'phrase level'

processing (ie. concatenation of word hypotheses) into the word level stage with the result

that the number of possible word hypotheses and the number of ways of combining them

is greatly reduced.

Finally, the one-stage algorithm sets up the reference patterns and the input pattern in such

a way that the time alignment problem can be treated in a manner very similar to that used

for the isolated word recognition DTW algorithm. This solution is considerably less

complicated than, and results in increased efficiency and storage reduction over the

previous two. The results of a comparison between the computational efficiency and storage

requirements in the above algorithms (and the improved version of the level building

algorithm, the reduced level building algorithm) based on Ney's detailed comparisons

[Ney84] are presented to support these claims.

Two-Level Level Building Reduced Level One-Stage

Algorithm Algorithm Building Algorithm Algorithm

Computational Cost 100 16 3 4

Storage Cost 100 72 72 8

Table 5.1 Relative Computational and Storage Costs of the CWR DTW algorithms

Chapter 5 - Template Matching Word Recognition 5-26

5.4 Conclusion of Template Matching Techniques

In summary, template matching is the process of matching an unknown input pattern

against a set of reference patterns (or templates) in the system's lexicon or dictionary.

Three broad techniques for template matching were examined: absolute matching, linear

time alignment and non-linear time alignment (DTW).

The first two template matching techniques fail to address the effects of coarticulation and

variability in speech utterances and as a result, do not perform effectively. The non-linear

time alignment template matching technique on the other hand, achieves good results and

was discussed in further detail with respect to: isolated word recognition (IWR), connected

word recognition (CWR).

Template matching techniques appear to be well suited for recognition systems with small

vocabularies because:

• the training stage involves building one reference word for each word in the

dictionary and thus, the smaller the vocabulary, the less tedious the training stage.

• response times are linked to the number of words in the lexicon since template

matching involves matching the input with each reference pattern

Finally, two weaknesses in the template matching approach are mentioned:

• As has already been mentioned, template matching systems are limited to small­

sized vocabularies.

• Secondly, and perhaps more importantly, template matching uses a word unit of

recognition which, although it results in a relatively easy training stage, can be

limiting for the recogniser. For example, a person can hear the (sound) parts of in

word, say "be..." in "because" or "before", and use them to predict and verify other

sounds in their proximity. Although the warping path in the DTW technique can

give an indication of the sounds within the input pattern, extracting this information

is difficult. It is also difficult to determine sections of the warping path without first

generating the entire minimum accumulated distance array of every possible point

in the grid, by which stage the within-pattern information may be of no use anyway.

In short, template matching matches at the word level and therefore lacks the

human-like ability to recognise sub-word segments of speech and use them to

improve the search for and verification of sounds in their surrounding context.

Chapter 5 - Template Matching Word Recognition 5-27

Chapter 6 - Hidden Markov Modelling

6.1 Introduction

6.1.1 Non-Parametric vs. Parametric

The non-parametric or template matching approach discussed in the previous chapter

matches the actual speech feature vectors (made up of LPC coefficients for example) of the

input pattern with those of the reference patterns.

In this chapter, a parametric stochastic approach1 to word recognition is examined as

implemented by hidden Markov models. Stochastic models characterise the statistical

properties of the system. Markov (introduced in chapter 4) and hidden Markov processes

are examples of statistical models.

An approach is said to be parametric if the parameters of the model, determined during a

training stage, are used to measure the probability that some set of· events would be

generated by or match those of the model during testing.

The underlying assumption of parametric stochastic modelling of speech is that:

"the speech signal can be represented as a random process and that the

parameters of this process can be estimated in a well-defined and precise

manner" [Rab89].

6.1.2 Markov Processes

In speech processing, contextual knowledge can often be used (and is certainly used by

humans) to recognise, predict and verify speech events. For example, if a recognition

system has recognised the first word of a sentence as "the ... ", the next word will most

probably be a noun. As a result, the recogniser can focus on the nouns in the dictionary in

order to 'narrow' the search for matching the next part of the signal. Consider another

example, this time concerning a within-word context. If a recogniser (identifying sub-word

units) has correctly recognised the sounds "th i ng ..." (with more sounds to come), the

The terms statistic, stochastic and random are synonymous.

Chapter 6 - Hidden Markov Modelling 6-1

probability that the next sound is a "b" is very small though high for sounds like "s" (for

thing§) and "k" (for thinfs).

6.1.3 Chapter Overview

In chapter 4, the Markov process was shown to be able to model the context of events. In

this chapter, Markov processes are extended to overcome the problems presented by time

dependent systems (eg. speech), using hidden Markov models. The chapter is divided into

two sections: the first focusing on isolated word recognition (IWR) and the second on

connected word recognition, as was done in the previous chapter. Several different types

or forms of hidden Markov models are studied though much of the detail is omitted from

this study. References to the (omitted) details are given where necessary. The chapter is

concluded with a brief summary of the differences between the parametric and non­

parametric approaches and a comparison of their performances.

6.1.4 Brief Literature Review

The best introductory texts on hidden Markov modelling are the 'tutorial' by Rabiner

[Rab89], the chapter in Speech Processing by Moore [Mo092] and the contents of a lecture

on the comparison of parametric and non-parametric techniques by Levinson [Lev85a]. An

integrated, more detailed analysis is found in [Lev85b]. Liporace [Lip82] and Juang [Jua86]

discuss continuous density (as opposed to discrete) HMMs in rigorous detail. Furthermore,

new methods for estimating the HMM parameters are described in [Ga090a]. Several

papers covering diverse applications of HMMs and their analyses are to be found ego

Rabiner et al [Rab85b] present an isolated digit recogniser using continuous mixture

densities while Wilpon et al [Wil90] have developed a word spotting, continuous speech

system. Rabiner and Levinson [Rab85a] improve the performance of a level-building

algorithm for connected word recognition using HMMs. De Mori et al [DeM90]

implements and compares a HMM system to classify vowels with the results obtained from

a neural network built for the same purpose. Lee et al [Lee90a] discuss their SPHINX

continuous speech recognition system which uses HMM methodologies. Lee [Lee90b]

covers the details on the technique using 'context-dependent phons' (HMM-like) to

implement a stochastic, continuous speech recognition system.

Chapter 6 - Hidden Markov Modelling 6-2

6.2 Discrete Hidden Markov Models

6.2.1 Concepts

In discrete Markov processes described in chapter 4, each state is related to a physically

observable event. It was shown that Markov processes have difficulty expressing systems

that are time dependent.

Hidden Markov models (HMMs) solve the time dependency problem of Markov processes

by introducing a probability function assigned to every state to determine the probability

of any physically observable event (observation) being generated by or chosen for that

state. A consequence of this probability function is that the observable events are no longer

related to a particular state in the model. In order to explain the nature of HMMs, the

classical analogy of a HMM1 is presented in the following game of choosing coloured

balls from urns, reported in both [Rab89] and [Lev85a].

'Genie Game' Analogy:

Suppose there are N large urns, each filled with a fixed but unknown number of

coloured balls. The total number of different colours is K. The game is controlled

by a genie who hides the urns from view using a screen. The genie then chooses

a coloured ball and shows it to the player. The player observes the colour of the

ball and keeps a record of it. The genie then places that ball back in the urn from

which he chose it and repeatedly chooses a coloured ball and shows it to the player

in the manner described above. The point of the game becomes apparent when the

genie asks the player to determine the probabilities of drawing any particular

coloured ball (of K colours) from any of the N urns. The player must also

determine which ball came from which urn. The task as described is obviously

impossible. However the genie gives the player his rules for selecting from which

urn the ball must be chosen. There is one further precondition for selecting the urn

by which the genie must comply: the rule for selecting the next urn depends

probabilistically on only the previous urn selected. This precondition is just the

Markov property described in chapter 4. The game as it is now described, is a

hidden Markov process.

Why are HMM 'hidden'? Consider the "game" analogy. The probabilistic selection of the

urns does not directly correspond with an observed event (as it does in a Markov process).

Ascribed to Jack Ferguson and his colleagues in lectures on HMM theory [Rab89].

Chapter 6 - Hidden Markov Modelling 6-3

Instead the observation is determined by a second (the first determining which state to

belong to) probabilistic function. In the 'genie game', this function determines the colour

of the ball to be extracted. Therefore a hidden Markov model can be thought of as:

"a doubly embedded stochastic process with an underlying stochastic process

that is not observable (it is hidden), but can only be observed through

another set of stochastic processes that produce the sequence of

observations." [Rab89]

6.2.2 Notation

A HMM 'looks' very like a discrete Markov process. It has the following similar features:

•

•

•

a set of N states { Si' S2' ..., SN }

qt represents the state in which the system is, at time t1
• Thus qt = Si means

that the system is in state Si at time t.

a state transition probability matrix A such that aij represents the probability

of transitting from states Si to Sj'

In addition to the above, it contains:

•

•

a column vector :Tt which stores the initial probability of being in each of the

states; i is thus the probability of being in state Si at time t=1.

a probability distribution matrix B (of size NXK) stores the probabilities of

observing each event at each state, ie. the result of the observation symbol

probability distribution function which for state Si is blk) l:si~N and l~k~K

where K is the total number of distinct observation symbols (or the alphabet

size). The observation sequence X is the list of T observation symbols:

The t variable is the discrete time index.

Chapter 6 - Hidden Markov Modelling 6-4

6.2.3 Parameters of a HMM

A HMM is specified by its parameters namely: the probability distributions A, Band n.

The primary issue of constructing a HMM is that of determining the optimal values of the

parameters. The parameters of the model are usually denoted by M = (A,B,n).

The configuration of the model, the number of states N and the size of the alphabet K must

be decided before building HMMs.

6.3 HMMs in Isolated Word Recognition

In isolated word recognition (IWR), each word w is represented by a HMM Mw l~w~W

where W is the number of words in the lexicon. Estimating the optimal parameters for each

HMM Mw is called the training or learning procedure. The testing procedure determines

the probability that an unknown word input pattern (ie. a sequence of speech feature

vectors == the observations) is generated by or is the outcome of each of the HMM Mw' The

"winning" word is thus the one whose HMM results in the highest probability of all the

other MwS for that sequence of observations. The training and testing procedures for

discrete HMMs are presented in the next sections followed by those for continuous HMMs.

Before doing so, several implementational notes are made to give insight into the nature

of HMMs and their use in isolated word recognition.

6.3.1 Configuration and Number of the States

Many configurations of HMMs have been investigated for different applications. In word

recognition systems however a left-right or Bakis configuration is the standard. Left-right

HMMs characterise the time variant nature of speech by only allowing the system to

traverse to a state greater than the one its in (or to remain in the current state). That is,

every state S•. in the model is linked to itself and the subsequent states I'e. S. S. 1 S. 2I' 1+' 1+' .,.

The configuration is practically determined by setting the transition state probabilities aij

where j<i to O. In this way, the successive states in the HMMs representing words can be

thought of as describing and characterising the statistical probabilities of the different

'sections' of the word, The number of states will determine the number of 'sections' in the

word.

Chapter 6 - Hidden Markov Modelling 6-5

Figure 6.1 The Left-Right Markov Model Configuration

Bakis chose to set the number of states roughly equal to the number of frames (speech

feature vectors) in the training pattern of the word being modelled. This has several side­

effects, for example catering for training patterns of different length and building routines

that can handle a variable number of states for different word HMMs. Another option

which avoids these problems is to fix the number of states for all the word models in the

lexicon to be equal to the average number of speech sounds in the words in the lexicon.

The reasoning for this choice is to try and match the 'sections' of the word characterising

the states in the model with the speech sounds in the word. It would be ideal if each state

would be responsible for one of the observed sounds in the word. Notice that the speech

sounds are not precisely defined since an exact alignment of states to specific sound classes

is practically impossible for an entire vocabulary. In practice, the number of states tends

to be between 5 and 9 [Rab89].

6.3.2 Discrete vs. Continuous HMMs

In the formal definition (under notation) of the HMM, an alphabet of K observation

symbols was mentioned. With respect to speech recognition, these K observation symbols

are representative of 'speech sounds' and bi(k) l~k~K is the probability of the kth 'speech

sound' resulting in the ith state. Obviously these 'speech sounds' are not phonetic classes

ego phonemes (or else the hardest part of the recognition problem would be accomplished).

In fact the K 'speech sounds' are the codewords determined by the vector quantisation

Chapter 6 - Hidden Markov Modelling 6-6

technique presented in chapter 4. That is, K is the size of the codebook of pretrained

codevectors which are encoded as codewords. The codevectors can be thought of as single

speech feature vectors describing a particular 'speech sound'.

Therefore a speech feature vector of an input word pattern is first encoded by the codeword

of its nearest matching codevector k in the codebook; and then this codeword represents

it in the various HMM algorithms. The codeword is thus a discrete representation of the

speech feature vector and as a result, HMMs using this approach are called discrete and

bj(k) is a discrete probability density function. There is obviously a danger in this technique

for greater error in matching due to the loss in 'resolution' of the speech feature vector

(observed input) being modelled. The way to avoid these problems is using continuous

HMMs ie. that have continuous observation densities. Such systems are not investigated

further but the interested reader should begin with [Rab89] or [Rab85b] and follow with

[Jua85a], [Lip82] and [Jua86]1 .

For completeness, there is another class of HMMs called autoregressive models but they

are not studied further. See [Rab89] or [Jua85b] for an introductory investigation of these

types of models.

In the next sections, the algorithms for testing and training HMMs in an isolated word

recognition system are presented.

6.3.3 Testing Discrete HMM

Assume that an input pattern X = Xl x2 ••• xT is the observation sequence. The probability

of observing X from one of the hidden Markov models Mw in the lexicon (assume training

has already taken place) can be written as:

Consequently, the best matching word Wo can be determined by:

Wo =argmax P(X IMw)

where argmax determines the value Wo of argument w which results in P(X IMw) being a

maximum.

[Lip82] and [Jua86] are complex articles and are thus difficult to read though they are historically
important as a pioneering papers in this area.

2
P(X IY) 'reads' as it does traditiona]]y in statistics; ie. the probability of X given Y.

Chapter 6 - Hidden Markov Modelling 6-7

The problem of finding P(X IM) for a hidden Markov model M simplistically reduces to

the problem of finding the sum (over all state paths) of the joint probabilities that every

state path through the HMM exhibits the observation sequence X = Xl'" XT• The solution

of this problem is of exponential order (NT
) since it is based on the problem of generating

every state path through the model which can be achieved recursively by traversing (until

t = T) from the current state to all N other states. The details of this are covered in

[Rab89].

6.3.4 Forward-Backward Procedure

The so-called forward-backward procedure l offers a more efficient method of evaluating

P(X IM) than the previous. Only the 'forward' part of the procedure is needed to determine

P(X IM). Because the 'backward' part is used in subsequent algorithms, it is also presented

in this section. The forward and backward parts of the forward-backward procedure are

represented by the variables 0t(i) and Pt(i) respectively.

The forward variable 0t(i) is written as:

which measures the probability that the system is in state Si at time t and generates the

feature vector xt after the model M has previously generated the partial sequence of feature

vectors Xl X2 ••• xt (regardless of the sequence of states).

The backward variable Pt(i) is similarly defined as:

X THrj IS
Pli) = P(Xt+l ••• Xn qt = Si I M)

W«ON G.

(5/-100/.,1> C-oo..J9I-r 7 --'

which determines the probability that the system is in state Si at time t and generates the

feature vector Xt and a partial sequence of feature vectors xt+l ••• XT in the future (regardless

of the sequence of states).

6.3.4.1 Forward Variable

The forward part of the forward-backward procedure is given by the following inductive

definition:

Developed by Baum and his colleagues of statistical background [Rab89].

Chapter 6 - Hidden Markov Modelling 6-8

Initialisation:
"l(i) = 1t, hi (Xl)

Induction:

"t+1U) =[f, "t(i) aiJ] bj (xt +1)
'=1

l~t~T-l

l~j~N

(6.1)

Finding the probability that an obselVation sequence X1",XTis described by a model M can

thus easily be determined by:

P(XIM) = P(x1 x2 ••• xTIM)
N

=L aT(i)
1=1

6.3.4.2 Backward Algorithm

(6.2)

Calculating the backward variable is similar to that of the forward variable given above.

The backward variable is the probability that the sequence xt+l""xT follows from being in

state Si at time t given model M. This can be written as:

Initialisation:
'pT(i) = 1

Recursion:
N

.Pt (;) = L a'j bj (x t + 1) .Pt +1(j)
j=1

6.3.5 Viterbi Algorithm

T-l, T-2, ... 1

(6.3)

\

The Viterbi algorithm is a dynamic programming procedure that determines the best state

sequence for a given obselVation sequence of feature vectors. It is not possible to know a

priori the best number of states N or the correct sequence of states ql q2 ... qT since states

are not linked to physically obselVable events (eg. speech classes) in HMMs as they are

in Markov processes. Moreover, the correct state sequence cannot be determined because

of this. A best state sequence can be found as the state sequence which results in the

highest probability of producing the required observed output. The probability associated

with traversing the best state sequence is evaluated in the Viterbi algorithm. It can also be

Chapter 6 • Hidden Markov Modelling 6-9

used to determine the best matching word HMM of the speech input pattern X. That is, the

word Wo whose HMM M
wO

results in a maximum probability is chosen as the 'winner':

P(Qwo'X IMwJ ~ P(Qw,X IMw) 'cl w~wo and Qwis the best sequence of states

{ql ... qT} through Mw·
See p f-1.

So~ -<:J '~
Knowing the best state sequence is useful for analysing the nature of the states and later J

will be used to uncover the word boundaries in continuous s eech recognition. An

interesting application is being undertaken by Van der Merwe and Du Preez [Van91l. They

are attempting to align the phonetic labels of a phonetic transcription (known a prion) of

an utterance with the phonetic event in the utterance using state sequence information. The

idea of this project is to automate the tedious task of segmenting the speech signal.

A delta variable bt(i) is defined for the Viterbi algorithm by the following expression:

~,(i) = max P(QlQ2··· qt-l' Qt=SI' x1···x,IM)
flf2 ..·ft-l

(6.4)

The delta variable Ot(i) measures the probability of having traversed the best state sequence

to time t-1 observing the feature vectors Xl•••Xt_l and at time t choosing state Si to be the

best state. The delta variable is very similar to the alpha (forward) variable except that the

'sum' operator is replaced by a 'maximum' operator to determine the best path sequence

up to the previous time slot. The delta variable bt(i) is determined by the following

inductive expression:

(6.5)

The object of the Viterbi algorithm is to determine the best state sequence which is

achieved by storing the i indices which maximise the [bt(i)aij] term in equation (6.5) for all

lstsT and lsjsN. A two-dimensional array 'VtG) is used to store these previous values of

i. The best state sequence can then be extracted by a dynamic programming procedure

using the information stored in the 'VtG) array.

Chapter 6 - Hidden Markov Modelling 6-10

The complete Viterbi algorithm is given below as:

Initialisation:
~l(i) = 1t, b,(x1)

lIJ 1(i) =0

Induction:
~tU) = max [~t-l (i) aij] bj(xt)

1SoIs.N

.tU) = argmax [~t-l (i) aij]
hiSoN

2!at!aT

1!aj!aN (6.6)

Termination:
P(QlQ2 ••• Qr t X = x1••• xr lM) = max [~r(i)]

1SoiSoN

Q; =argmax [~r(i)]
ls.iSoN

The final state sequence can be determined starting with state q*, by recursively

determining the previous best state using the following algorithm:

t = T-l, T-2, ..., 1 (6.7)

That is, the best state sequence in reverse order is given as:

{ qT*' qT-l* ='V-r<qT*)' 'VT.l(qT·l*) ='VT.l('V~qT*»' ... }

6.3.6 Training (Learning) Stage

The training stage in template matching systems (chapter 5) is a simple procedure that

involves constructing a single reference pattern for each word in the system's vocabulary

for a new speaker. The reference pattern is therefore a representative sequence of speech

feature vectors of that word.

On the other hand, a HMM is constructed to represent each word in the lexicon in the

stochastic approach. In fact, because the values for N (ie. the number of states) and K (the..
number of observations symbols) are usually fixed for a particular IWR system, the lexicon

need only store the parameters (A,B,n) of each particular word. The training stage of a

system using HMMs is therefore concerned with determining the best parameters of each

HMM representing a particular word. More than one training pattern is used to train the

reference HMMs in the lexicon. This is because in the left-right model, the number of

observations that occur in any state in the HMM before traversing to the next state is

statistically too small to result in reliable estimates of the HMM parameters. By using

several training patterns, this problem can be averted. As a result of the ability to use more

Chapter 6 - Hidden Markov Modelling 6-11

than one training pattern, training patterns from more than one speaker can be used to

produce a speaker independent set of HMM reference parameters.

Training then determines the optimal set of HMM parameters for each word in the lexicon.

This is achieved by maximising the probability of generating (or recognising) the training

patterns in each HMM. The problem of determining whether a probability P(X IMw) is

optimal is very difficult and in fact, the problem of finding the optimal model parameters

of a HMM is not analytically possible. Nor is it even possible to estimate the optimal

parameters given a finite set of training observations [Rab89]. It is however possible to

build an algorithm which iterates towards a local optimum set of model parameters. This

optimising process is achieved by re-estimating the model parameters (A,B,n) using the

Baum-Welsh re-estimation algorithm l
•

6.3.6.1 Baum-We s Re-estimation

The re-estimation algorithm iteratively updates randomly initialised values for the model

parameters (A,B,n) - ie. ni' aij and bj(k) for lsi,jsN and lsk~K - of some word model M.

Mter each iteration, the forward and backward variables must be recalculated since they

are dependent on the re-estimated parameters. In addition, because the training procedure

requires several training patterns in left-right models, it is necessary to consider when to

introduce a new training pattern in the re-estimation cycle and when to terminate the entire

procedure (ie. when the local optimum set of model parameters is found).

The re-estimation algorithm is dependent on the gamma variable defined as:

Yt(i) =P(qt =Si IX,M)

or the probability of being in state Si at time t given the observation sequence

X = Xl X2 ••• XT and the hidden Markov model M. The gamma variable can then be

expressed in terms of the forward and backward variables in the following way:

Other techniques include the expectation-modification method [Den92] and gradient techniques [Rab89].

Chapter 6 - Hidden Markov Modelling 6-12

l,(i) = P(q,=S~ Ix, M)

P(X1 •.• X" q, =S, IM) P(X'~l",XTIq, =S" M)
=--------~-------

P(X IM)

CI,(i) 'p,(i)
=

N

E CIt(i) 'pt(i)
' .. I

(6.8)

The forward variable ali) accounts for the 'first part' of the partial observation sequence

Xl ... xt while ~t(i) for the remainder xt+l ... xT• The denominator P(X IM) ensures that the

gamma variable is normalised to a probability value ie.

N

E It(i) = 1
'''I

(6.9)

The second variable needed for the re-estimation algorithm is ~t(i,j). This variable stores

the probability of being in state Si at time t and state Sj in the next time slot t+1 given the

observation sequence Xl ... xT and the hidden Markov model M. The variable ;t(i,j) can also

be written in terms of the alpha and beta variables and it turns out that Yt(i) can be written

in terms of ;t(i,j). To see the link with the gamma variable, ;t(i,j) must cater for the

transition from Si to Sj as well as the probability of being in state Si at time t and state Sj

at time t+1, given the observation sequence xl...xp Thus, ;t(i) is defined as:

~,(i,j) =P(q, =Sp q'+1 =SJ IX, M)

= CI,(i) a'J bj(x'+I) .P'~I (j)

P(X I M)

=__CI_,(_i)_a_~~J--,bj<.-(_x_,+l_)_fJ_,_+I_(J_·)_
N N

:E E "t(i) aij bj(xt+1) .Pt +1(j)
' ..I j:1

(6.10)

The denominator in the equation (6.10) again acts to ensure the result is a normalised

probability. In addition, the gamma variable Yt(i) can be written as the sum of the ;t(i,j)

terms over all j for l~j~N. That is,

N

It(i) =E et(iJ)
j:l

Having determined its variables, the re-estimation procedure is now presented.

Chapter 6 - Hidden Markov Modelling

(6.11)

6-13

6.3.6.2 Parameter Re-estimation Formulae

The Baum-Welsh re-estimation procedure incrementally updates the values of the

parameters of the hidden Markov model M. The initial values for 3t, A and B are discussed
r

later. The updated values of specified below:

1t1 = expected number of times in state S, at time t =1
= y 1(1)

(6.12)

=----

-a =IJ

expected number of transitions from Si to SJ

expected number of transitions from Si
T-l

E ~,(iJ)
1=1

T-l

E y,(i)
'''1

(6.13)

bJ.k)
expected number of times in Si' observing etk

=----------------
expected number of times in SJ

T

E Y,(J)
,..I

ob,..."" I,
=-----

T

Ey,v)
'=1

(6.14)

Chapter 6 - Hidden Markov Modelling 6-14

6.3.6.3 The Algorithm (Baum-Welsh Re-estimation)

The following algorithm performs the re-estimation of the parameters of a set of HMM

{Mw: 1sw~W} representing the W words in the system's lexicon.

Algorithm:

For w := 1 to W do

Initialise Mw {=(A,B,n:)}

Initialise Mw {=Mw=(A,B,n:)}

For ~ := 1 to NumTrainingPatterns do

Repeat

{ W is the number of words in the lexicon }

{ To cater for the first time in Repeat loop }

Mw - Mw { Copy the new set of parameters M over old M }

Calculate at(i) and ~t(i) for all t, biit~T and all i, l~isN

Calculate St(i,j) and Yt(i) for all t, i and j

1t - re-estimated initial state distribution n:

A- re-estimated transition matrix A

B- re-estimated observation probability distribution B

Mw - (n, A, B)

Until (P(X IMw) <= P(X IMw))

EndFor { tw }

EndFor {w }

Scaling Requirements

Since probability values are in the range 0 to 1, it is necessary to be aware of the

possibility of underflow. Underflow occurs when the values in the probability variables

become too small for the precision of the variable type (eg. real or double) due to excessive

multiplication. One way to solve the problem is to increase the precision range of the

probability variables. This however increases the size of the machine word needed to store

them and will require addition and multiplication routines to process them. These overheads

will seriously degrade the execution times of the HMM algorithms. By scaling, the problem

of underflow and machine constraints can be circumvented. The details of scaling are

contained in [Rab89].

-I

Chapter 6 - Hidden Markov Modelling 6-15

6.4 HMMs in Connected Word Recognition

A level building algorithm similar to the one mentioned in chapter 5, is one approach for

solving connected word recognition using HMMs. The algorithm is very similar to the level

building algorithm used by the template matching approach. The only difference is that

maximum statistical probabilities are used in place of minimum accumulated distances, and

the reference words in the lexicon are word HMMs with parameters describing each word

instead of the reference word patterns found in template matching.

Figure 6.2 Connected Word Recognition using HMMs

6.4.1 Level Building using HMMs

The CWR problem using HMMs is that of determining the state path (where the next state

in the path can be the current state, a subsequent state in the current word model or another

state in another model) which maximises the probability of observing the sequence of

feature vectors of the input pattern.

The level building algorithm incrementally (starting from level 1) constructs 'levels' which

determine the number of words considered to be in the input pattern at that level. At each

level, the best state path in every state and at every time slot is determined by starting new

paths from the best state at every time of the previous level in order to determine all

subsequent best paths using the Viterbi search with the reference models in the lexicon.

The level building algorithm is presented below in a form easy to implement in software.

Chapter 6 - Hidden Markov Modelling 6-16

{ MNL is the maximum number of levels - ie. for all other levels}
{ MNW is the maximum number of words in the lexicon }

Algorithm

For ~ := 1 to MNL do
For w := 1 to MNW do

If (~ = 1) then
b

1
(1) := blW(Xl) { Initialisation for ~ = 1; the w superscript denotes word model}

For i := 2 to N do { N is the constant number of states in the HMMs)

bl(i) := 0
EndFor { i }

Else
bl (1) := 0
For t := 2 to T do

If (LevelProb(~-1,t-1)> (bl_l(1)*all)) then
bl(l) := LevelProb(~-1,t-1)*bt(xJ

a l(l) := t-l { a here is a temporary backpointer and not the
forward variable }

Else
bl(1) := blol(1)*allw
a.(1) := a lol(1)

EndIf
EndFor { i }

EndIf
For t := 2 to T do { T is the # feature vectors in the input pattern }

For j := 1 to N do
maxtemp := bl_l(1)*a1t
argmaxtemp := 1

For i := 2 to N do
If ((blol(i)*a1t) > maxtemp) then

maxtemp := blol(i)*a1t
argmaxtemp := i

EndIf
EndFor { i }

b.(j) := maxtemp * bt(~)

a.(j) := a.ol(argmaxtemp)
EndFor {j }

EndFor { t }

For t := 1 to T do
Prob(~,t,w) := bl(N)
BP(~,t,w) := 0

EndFor { t }
EndFor {w }

{ BP array stores the backpointers }

For t := 1 to T do
tempmaxprob := Prob(~,t,1)

argmaxprob := 1
For w := 2 to MNW do

If (Prob(~,t,w) > tempmaxprob) then
tempmaxprob := Prob(~,t,w)

argmaxprob := w
EndIf

EndFor { w }
LevelProb(~,t) := tempmaxprob
LevelBP(~,t) := BP(~,t,argmaxprob)

LevelWd(~,t) := argmaxprob
EndFor { t }

EndFor { ~}

Chapter 6 - Hidden Markov Modelling 6-17

{ Determine the optimum number of levels and the best ending word's state}

bestlevel := 0
tempmax := -0.1
For R:= 1 to MNL do

If (LevelProb(I,1) > tempmax) then
tempmax := LevelProb(I,1)
bestlevel := I

EndIf
EndFor { D}

{ To generate best sequence of words, call function BestWordsO as follows: }

BestWords(T,BestLevel)

{ Dynamic Programming BackTracking Routine}

Def BestWords(time, level)
If (level > 0) then

BestWords(LeveIBP(level,time),level-1)
Output(LevelWd(level,time))

EndIf
EndDef

6.5 Comparison Between Template Matching and HMM in WR Systems

Chapter 5 and 6 are similar in that they study word recognition techniques which use the

word as the smallest distinguishable unit of speech. The techniques are very different in

other respects.

Firstly, the template matching techniques match the input pattern (ie. its feature vectors)

directly against reference patterns in the lexicon. The match is on real values representing

the patterns in time. HMMs on the other hand, use statistical information about the input

pattern. This information is embedded in the parameters of the HMMs of each word in the

lexicon. Thus the parameters of each word model can be thought of as the reference

"patterns" in this approach. The reference set of parameters which result in the highest

probability of the input pattern being generated by it, is the "winning" word in this system.

Secondly, a further point of departure of the two systems is succinctly expressed by De

Mori et al (following Moore's argument):

"However, from a computational point of view the Markov models require

an order of magnitude less storage and execution time; where the DTW

based techniques have a very simple training phase (only data collection)

and a very complicated recognition phase, Markov models are just the

reverse. It has been overwhelmingly agreed that Markov models provide the

correct balance for any practical system (Moore, 1984)." [DeM90]

Chapter 6 - Hidden Markov Modelling 6-18

Chapter 7 - Implementation

7.1 Chapter Outline

Several approaches to speech recognition described in the previous chapters were

implemented in this project. In this chapter, the practical aspects and results of the

following topics are presented:

1. The hardware used to sample, amplify and filter the speech signal.

2. The preprocessing functions used to extract features from the speech signal (see

chapter 3) are analysed using graphical representations of the functions. The graphs

help one to familiarise oneself with the acoustic nature of the speech sounds.

3. A ZAPDASH-type segmenter (see chapter 4).

4. A speaker-dependent, isolated word recognition system using the DTW algorithm

(see chapter 5).

5. A connected word recognition system using the one-stage DTW algorithm (see

chapter 5).

6. A speaker-independent, isolated word recognition system using left-to-right discrete

HMM for the words in the lexicon (see chapter 6).

7. The front-end of a continuous speech recognition system using the self-ordering

map to classify frame-sized segments of the speech signal (see chapter 4).

7.2 Hardware Considerations

The hardware can be divided into three main parts:

• the front-end preprocessor

• the digital computer controlling the digital speech processing applications

• the postprocessor providing audio-feedback.

7.2.1 Front-End Preprocessor

The front-end preprocessor consists of the following hardware components (see chapter 3):

• a dynamic microphone

• a preamplifier

• a low- and high-pass filter

• an I/O card which performs analogue-to-digital (AD) conversion and

interfaces with the digital computer

Chapter 7 - Implementation 7-1

A microphone should be mounted on a stand to avoid noise generated when it is shaken.

The best signals are generated when the speaker talks into the microphone at close range.

This removes much of the background (office) noise. It will however make the system

vulnerable to 'noise' generated from the opening and closing of the lips and 'puffs' of air

at the end of words by being so close to the microphone. This must be monitored and can

often be eliminated moving slightly further away from the microphone.

The pre-amplifier and filters are connected in series to 'correct' the input signals coming

from the dynamic microphone. The pre-amplifier amplifies the input signal (of the order

of 10 millivolt) to a value typically in the range -10 to +10 volts. The range is determine

by the range accepted by the AD converter. If the voltage is over-amplified so that it

exceeds the range accepted by the AD converter, the result is amplitude clipping. On the

other hand, if the voltages received by the AD converter are small, the effective resolution

of the AD converter is reduced. For example, if the maximum voltage received by an AD

converter with 12-bit resolution and -10 to +10V range were 3V, then the effective

resolution is reduced by 70%. To cater for this, a variable resistor of discrete steps allows

one to select several amplification gains (xl00 - xl0000) to ensure maximum usage of the

allowable range of voltages.

The amplified signal passes through a low-pass filter (6th order Chebychev with a slight

dip in bandpass) with cut-off frequency fe at 3.4kHz. The attenuation of the power in the

signal at 5kHz is about -50dBs which is regarded as 'silence'. A sampling frequency of

10kHz could therefore be used so that the Nyquist rule was adhered to and there was little

chance of high-frequency foldback. A discussion of these consideration was undertaken in

chapter 3. A high-pass filter was used to eliminate the frequencies less than 75Hz using a

4th order Butterworth filter with fe at 175Hz. The main aim of the high-pass filter was to

eliminate the low-frequency noise especially the "mains' hum".

The preamplified and filtered (analogue) input signal. then feeds into the PC-30

Input/Output interface card which is inserted into an expansion slot of a 12MHz-AT

personal computer. The card contains the AD 574 analogue-to-digital conversion (ADC)

chip, an 8253 timer chip and an 8255 parallel peripheral interface (PPI) chip for performing

the AD conversion of the analogue signal.

There are two methods of sampling using the PC-30 hardware namely, software clock

sampling (SCS) and interrupt controlled sampling (ICS). In both cases, the AD 574 chip

is interfaced through the PPI.

Chapter 7 - Implementation 7-2

Software Clock Sampling (SCS)

In SCS, the AD conversion of the signal is controlled by software. Below are the steps

taken by the sampling routine and the Pascal code associated with them:

O. Initialise sample_count to 1 to mark the first AD conversion

1. Initialise the PPI to basic I/O mode (see appendix B for other modes)

Port[$703] := $92

2. Use PPI Port C ($702) for channel selection and to clear bit Co

Port[$702] := (channel SHL 4) + 2

3. Use PPI Port C ($702) for channel selection and to set bit Co

Port[$702] := (channel SHL 4) + 3

Step 2 followed by 3, ie. the clearing and setting of bit Co, causes a positive edge trigger

to initiate the start of AD conversion controlled by software.

4. Wait ±40ps till the end of AD conversion. This is achieved by a delay loop. The

results of the AD conversion can be read from port A ($700) and B ($701) of the

PPI at the end of conversion.

5. Combine the converted digital values stored in port A (least significant bits or

LSBs) and port B (most significant bits or MSBs) of the PPI in the following way:

i. mask off the four most significant bits (MSB) of port B because the

resolution of the ADC is only accurate to 12-bits.

ii. Shift the result computed in i. to the left by 8 bits, thus positioning the most

significant 4 bits of the 12-bit word.

Hi. Add the 8 LSBs stored in port A to the result of ii. and store the entire

sample in an array of consecutive samples.

That is,

Samplersample_count] := «Port[$701] and $OF) SHL 8)+Port[$700]

6. Increment sample_count by 1 and goto step 2 until the required number of samples

have been taken.

Chapter 7 - Implementation 7-3

The delay loop determines the frequency at which sampling takes place. An obligatory

minimum delay of 40,us is needed for the AD conversion to be accomplished. This implies

that the maximum sampling frequency (using this ADC chip) is fmax ~ 1/40,us = 25kHz.

Sampling any faster will result in starting the conversion of a new sample before the old

sample has been converted to its digital value.

Determining the sampling frequency requires much effort using the SCS method. Both the

number of machine instructions and the time ('clock ticks') taken to execute each machine

instruction needs to be accurately determined in order to evaluate the precise sampling

frequency. The ICS method allows one to set and control the sampling frequency and was

therefore adopted in this project.

Interrupt Controlled Sampling (ICS)

The ICS triggers AD conversions at precisely determined time intervals using the 8253

programmable timer (on the PC-30 board. The sampling rate can be selected by the user

and remains constant throughout sampling unlike SCS.

A 'start conversion' is triggered by the timer clock counter terminating and issuing a pulse

which the PPI uses to trigger the AD 574. When the AD conversion is finished, the

AD 574 generates an interrupt request (IRQ 5) to the processor. An interrupt service

routine was developed to stores the converted digital value, increment the sample counter

(the sample_count above) and then can be used to perform other tasks. The next 'start

conversion' cycle begins with the timer counter reaching its terminal value. This procedure

is terminated (when the number of samples required has been met) by disabling the

ICS mode.

7.2.2 Postprocessor .

A simple 'no frills' postprocessor was developed to play-back the digitised speech samples

stored in the memory of the controlling PC. The output of one (of the three) digital-to­

analogue chips on the PC-30 board was connected through an amplifer to a speaker. A

simple ICS routine was designed to control the output of the digital samples at the same

frequency at which they were initially sampled. A graphical module was developed to

highlight regions of the (graphical form of the) speech signal, explode the selected region

and output the samples of the region as feedback to the postprocessor. It was found very

useful when learning how to associate parts of the graphical signals with the acoustic sound

it represents.

Chapter 7 - Implementation 7-4

7.3 Preprocessing Functions

All the preprocessing functions described in chapter 3 were experimented with and studied

for possible use in speech recognition systems. A series of graphical representations of

these functions is presented in this section highlighting the main observations. The results

are divided into the two types of preprocessing functions: temporal or amplitude-time

functions and spectral or frequency-time functions.

7.3.1 Temporal Functions

The following 'short-time' temporal functions are discussed in this section:

•
•
•

•

Energy (or intensity) function

Peak-amplitude function (maximum absolute amplitude in each frame)

Zero-crossing function

Turning-points function

A diagonistic signal graphing system was constructed to analyse digitised speech signals.

It has the following features:

•

•
•

Graph the output of the preprocessing functions

Zoom in on any portion of the signal

PIay-back a portion of the signal to the user through the postprocessor

The graphing utilities are useful aids for the person performing the tedious task of manually

labelling frame-sized training segments of speech. The user interface of this graphics

package is shown in figure 7.1. The following options (see box options at the base of the

interface) are available:

• Get File

• TakeSamples -

• Play Back

• Sig. Stats

Chapter 7 - Implementation

Select an old sample file from disk

Capture a new speech signal using the microphone

Play back the portion of the speech sound in the

Explode Signal window

Used to display the results of several temporal

preprocessing functions. They are displayed on a full

screen as depicted in figure 7.2.

7-5

Figure 7.1 Graphics Interface of the Analysis Package

Generally, the amplitude functions are used for broad segmentation into regions of vocalic

sounds and to distinguish between sound and silence. The zero-crossing and turning-points

functions measure the number of oscillations in the signal and therefore distinguish regions

of noisy (high frequency) sounds. See the "h", "j", "ks", "t" sounds in the utterance HOW

many obieft§. are on the table? in figure 7.2.

..Ja....ow....m.. "n" "0" "j" '"It.. "u" "t" "A" '\"
"e" "ee" "e· ·s· "0" "u· "1'.·z·

Figure 7.2 Graphs of the Preprocessing Functions

Chapter 7 • Implementation 7-6

7.4 Segmentation Algorithm

A segmentation algorithm based on the ZAPDASH segmenter discussed in chapter 4 was

attempted. The results however were not encouraging. The major difficulty in building a

robust segmenter is determining the thresholds on the output of the temporal preprocessing

functions. Broad heuristics to achieve this are presented in the decision tree in figure 7.3.

,
Medium-High

Energy
Very Low

Energy

(mgrf!)!.
(iow-pass"Jr/ter)

I .hate I
~
~

~
/' "Silence Sound

~
!ftlatift ~nelJll "'-

ignore """
. Fricative

VocaliC O-crossing

/

TP-fimction

I..r :~t':'M.1

Difficult Sounds
"b" lid" "g"

/
Voiced
" Z" "j" "V "

"dz"

others

" S" " sh" " eh"
"t" "p"

Figure 7.3 Segmenter Decision Tree

The graphical results of the segmenter based on the decisions above are presented in figure

7.4. Examples of undersegmentation and oversegmentation are highlighted by circles in the

figure. The circle on the left shows undersegmentation due to too large a choice of

threshold value in the convex deficiency procedure. The circle on the right demonstrates

oversegmentation because of too small a threshold value on the zero-crossing function.

The convex deficiency procedure is used to distinguish dips in large segments of vowel-like

resonant regions of the signal. It is discussed by Waibel [Wai88].

Chapter 7 - Implementation 7-7

Figure 7.4 Graph of Segmentation of the utterance:
How many objects are on the table?

7.5 IWR System using the DTW Algorithm

An isolated word recognition (IWR) system was implemented using a standard dynamic

time warping (DTW) algorithm [DeM90] to align the input patterns of isolated words with

reference word patterns. The DTW algorithm used a slope constraint of zero which exhibits

marginally poorer results compared with a slope constraint of one [Sak78] but is quicker.

The IWR DTW system was tested using several subjects, including: two male adults, two

female adults and two young females (±13 years old). The results are presented below in

two forms. In the first case, the five best accumulated distances for test word patterns

matched with the reference word patterns of a lexicon of spoken digits (with the word

"AY" in sW, is tabled to show the relative scores of the competing reference patterns. In

the second case, general statistics are tabled regarding the performance of the system.

The tables 7.1 and 7.2 are interesting in so far as to highlight potential mismatches of the

speakers in subsequent testing sessions. For example, speaker KLL's utterance of "three"

results in a best match with the reference pattern "three" (accumulated distance =14.75),

closely followed by second best matching "two" (accumulated distance of 14.91). The

same, although not as close, may be said of KLL's "nine" with reference patterns "nine"

and "five" potentially being confused. Speaker GML's "nine" is potentially confused with

"one". The reason for the 'closeness' between the accumulated distances in each of the

above instances can be attributed to the 'closeness' in the sounds of the 'confused' words.

Chapter 7 - Implementation 7-8

Take for example GML's "nine". If the first "n" sound were said quickly, 'running into'

the following "I" sound, the result is acoustically quite similar to "w u n" (ie. one) since

the "w" is usually a short sound and the "u" sound is quite similar to the "I" sound except

in duration. The DTW algorithm has the ability to non-linearly time align sounds,

overcoming duration problems and hence the close matching of "one" for "nine".

Input Word Time taken 1st Word 2nd Word 3rd Word

"zero" 62s "0":22.78 "2":25.32 "7":34.18

"one" 53s "1":15.93 "7":24.27 "3":26.26

"two" 52s "2":18.59 "7":23.41 "1":28.23

"three 525 "3":17.33 "2":24.24 "7":25.23

"four" 61s "4":21.87 "2":30.90 "7":33.51

"five" 78s "5":22.04 "1":28.46 "9":28.72

"six" 39s "6":14.30 "8":18.93 "7":29.17

"seven" 525 "7":13.65 "2":21.82 "1":24.74

"eight" 51s "8":14.39 "6":25.08 "7":31.97

"nine" 66s "9":24.98 "1":25.38 "3":28.15

Table 7.1 Male Speaker (GML) Results of Best 3 Matching Reference Words
and their Minimum Accumulated Distances

Input Word Time taken 1st Word 2nd Word 3rd Word

"zero" 45s "0":16.12 "1":27.19 "7":27.77

"one" 39s "1": 11.38 "7":20.05 "5":20.11

"two" 33s "2":10.42 "8":14.59 "6":17.28

"three" 35s "3":14.75 "2":14.91 "8":17.95

"four" 2Ss "4": 6.81 "8":13.06 "6":14.20

"five" 38s "5":12.65 "1":22.14 "4":24.40

"six" l1s "6": 3.47 "8": 8.11 "4":13.12

"seven" 43s "7":11.21 "2":18.78 "1":20.51

"eight" 17s "8": 5.13 "6": 9.22 "4":15.00

"nine" 59s "9":21.45 "5":22.84 "1":25.65

Table 7.2 Female Speaker (KLL) Results of Best 3 Matching Reference Words
and their Minimum Accumulated Distances

Chapter 7 - Implementation 7-9

Speakers 11 word 28 word 120 word
lexicon lexicon lexicon

GML (male) 99.4 94.6 91.6

NKA (male) 99.6 95.4 -

ABM (female) 99.6 93.6 -
KLL (female) 99.1 94.3 89.2

CAK (young female) 97.0 87.5 -

LLL (young female) 99.4 92.5 -
Average rerognition time ±205 ± 1 min 205 ± 8 min

Table 7.3 Recognition Accuracy using different sized Lexicons

The above table (7.3) of results shows that the DTW isolated word recognition algorithm

is fairly robust both in terms of the size of the vocabulary and for people of different ages

and sexes. The results compare favourably with those of Pitchers [Pit90] whose system

achieved 'close to 100%' (10 words), 93.6% (30 words) and 87.0% (120 words) recognition

accuracy [Pit90]. He also suggests ways of reducing the errors which tend to occur for

relatively few, frequently confused words. By determining these confusable words, one can

introduce other reference patterns for them in the lexicon in order to reduce the error rates.

One important difference between Pitchers' results and these, is the time taken to recognise

words. He uses the ordered graph search [Br082] which has a three to one saving in the

number of dynamic time warpings performed by the algorithm over the standard algorithm

implemented in this project. His 120 word recogniser achieves recognition times of 27

seconds compared with 8 minutes by this system. Another important reason for the

discrepancies in time are that his system was aided by a maths coprocessor (80287)

whereas the system used in this project did not have one.

7.6 CWR System using the "One-Stage" DTW Algorithm

A connected word recognition (CWR) "One-stage" dynamic time warping (DTW) algorithm

was developed with a view to recognising connected strings of spoken digits. A typical

application for such a system is an automatic audio-dial telephone.

The results of this system were generally poor (except for recognising single words which

achieved accuracies similar to the isolated word DTW recognition system) for overall

sentence recognition. It managed to 'spot' most of the words in their correct positions in

the sentence but would often omit one or two words, or include other words which were

Chapter 7 - Implementation 7-10

not spoken. For example, the author uttered the following digit sequence "842819" and the

system matched this with "84626819". Another interesting result of the CWR DTW system

was found with the introduction of the reference word pattern "ay" (in sf!i) in the lexicon

to reduce a class of errors involving recurring 'over-detection' of the digit "eight". The

"eight" reference word pattern typically contains an initial vocalic region (the start of the

"ay" vowel sound), followed by silence to form the stop and finally the plosive "t". It was

found that the recogniser would match an "eight" if there was ever a silence period between

two connected digits where the silence period was preceded by a vocalic sound and

followed with a fricative sound ego "one...two.. .three" was recognised as "1-8-2-8-3". This

class of errors was reduced by adding the "ay" sound into the lexicon.

The reason for poor sentence recognition rate is due to the fact that the algorithm uses a

slope constraint of zero which allows unrestricted non-linear time alignment. This results

in a 'freedom' to align very small parts of the input pattern with entire reference words ego

the recurring "6" in the example described above. By adding further constraint such as a

slope constraint of one and an adjustment window, it is thought the results of overall

sentence recognition would improve closer to the >99% accuracies reported by [Sak79].

The other algorithms by [Mye81] and [Ney84], report similar results to those of [Sak79].

A major consideration in the connected digit recogniser is the slow response time. To

recognise a string of six spoken digits typically required between two and three minutes.

Again, it is mentioned that the PC-AT (80286) used to execute the speech algorithms

described here, did not have a maths coprocessor which would reduce recognition times

considerably. In addition, algorithmic methods of reducing the number of DTW matches

can be found in Myers and Rabiner [Mye81] and Rabiner and Schmidt [Rab80].

7.7 IWR System using Left·to.Right Discrete HMMs

An isolated word recognition (IWR) system was implemented using stochastic, discrete

hidden Markov models for each word.

Because discrete HMMs are used, a preprocessing stage (performing the k-means segmental

algorithm) was required to determine a set of discrete codevectors representing the speech

sounds in the language. The representative codevectors closest to each speech feature vector

in the observed signal were used instead of the actual vectors of the signal. The observation

symbol probability distribution {bj(k): 1~j~N and l~k~M, N is the number of states in the

HMM and M is the number of codewords in the codebook} for each word was determined

in terms of these codevectors, xk•

Chapter 7 - Implementation 7-11

A left-to-right model configuration was used for the word models. The word models were

trained by a procedure based on the Baum-Welsh training algorithm described in chapter

6 but adapted for the left-right model. The Baum-Welsh re-estimation algorithm involves

determining the word model parameters (ie. the state transition probabilities aij and the

observation symbol probabilities b/k». In the left-right model, the initial probabilities of

being in any state but the first are zero. That is, :7t1 = 1 while :7tj =0 for j ;I! 1. It is also

important to ensure that the observation symbol probabilities b/k) are greater than zero at

all times in the algorithm (which requires checking after each iteration of the re-estimation

algorithm) and that the following statistical conditions are adhered to:

N

L aij = 1 lsJs.N
1=1
N

L bj(k) = 1 ls.ks.M
j=1

(7.1)

where M is the size of the codebook.

Input Word Time taken 1st Word 2nd Word 3rd Word

"zero" 101s "0":-185 "1":-276 "AY":-280

"one" 81s "1":-87 "7":-130 "9":-138

"two" 91s "2":-65 "AY":-117 "3":-119

"three 93s "3":-106 "8":-178 "0":-195

"four" 75s "4":-167 "0":-209 "5":-221

"five" 103s "5":-173 "3":-270 "1":-281

"six" 35s "6":-71 "4":-88 "8":-92

"seven" 61s "7":-130 "1":-132 "0":-141

"eight" 66s "8":-89 "4":-158 "AY":-167

"nine" 106s "9":-124 "1":-196 "7":-205

"AY" 68s "AY":-80 "8":-103 "1":-118

Table 7.5 Male Speaker (GML) Results of Best 3 Matching Word HMMs
and their Accumulated log Probabilities from the Viterbi Search

Table 7.5 shows a set of results determined by the Viterbi search on 11 reference digit

HMMs. The negative scores are a result of working with the log of the probabilities of the

variables in the algorithm. This was done to avoid having to scale the probability values,

which are vulnerable to underflow as a result of excessive multiplication. Any probability

with a value of zero was forced to be 1/104 (since log a for a <= 0, is undefined).

Chapter 7 - Implementation 7-12

The overall recognition accuracy of the isolated discrete HMM recognition system for three

speakers on the 11 word (the digits "0"-"9" and "AY") dictionary, was fairly poor: 86%

(GML), 74% (KLL) and 59% (RPJ). Rabiner [Rab89], for example, reports a recognition

error rate of only 3.7% for a similar system (though with additional features). The poor

results are attributed to the following reasons:

• 100 discrete codevectors (from vector quantisation using the k-means

segmental algorithm - see chapter 4) were constructed from a training set of

speech feature vectors made up predominantly from GML's (male) and to

a lesser extent KLL's (female) speech signals. This is perhaps the reason for

the significantly poorer results of RPJ and, to a lesser extent, KLL.

• only one signal per word was used to train the HMMs. More than one

training signal are recommended by Rabiner to ensure enough statistical

information is obtained for each word model [Rab89].

• Rabiner's system was trained by 100 utterances for each digit, each

utterance by a different speaker. His system also used enhanced speech

features and it is not clear (but quite likely) whether he also used duration

probabilities to improve the performance of the system.

Considering the above restrictions, the results of this system are as expected. Further results

were not obtained due to time constraints.

7.8 A Front-End Process of a CSR System

Two continuous phoneme recognisers were implemented.

The first algorithm used the k-means segmental algorithm to categorise speech sounds as

anyone of 100 codevectors. These vectors were then mapped onto phoneme-type classes.

This is achieved by gathering a set of manually pre-classified feature vectors and labelling

the codevectors to which they are closest with these class labels. A Euclidean distance

measure was used to determine the 'closeness' between vectors made up of cepstral

coefficients. Because there are only about 45 phonemes, several codevectors may be

mapped onto a particular phoneme class. One must ensure that the converse is not true, ie.

a codevector is not labelled by several phoneme classes. Classification is performed by

reading in a string of input feature vectors (of the input word or sentence), then matching

each feature vector with its closest codevector and assuming the codevector's class label

as the class label of the input feature vector.

Chapter 7 - Implementation 7-13

The second phoneme recogniser ·was based on Kohonen's self-organising map algorithm.

In addition, the LVQl algorithm was used to attune the class boundaries to a better

approximation of the Bayesian decision surface.

The first algorithm provides a very rough estimation of the class boundaries as does the

self-organising map without the fine-tuning due to one of the LVQ algorithms. The

recognition results of the first algorithm are thus expected to be poorer than those of the

second using the LVQl algorithm.

The k-means segmental algorithm achieved recognition results ranging from 63-72%

accuracy in different sentences spoken by the author. The system generates several

interesting errors but due to time constraints, ways to avert these were not examined. The

self-ordering map with the LVQl algorithm achieved phoneme recognition accuracies

ranging from 85-93%. Kohonen reports accuracies of between 96-98% for the integrated

continuous speech recogniser with a self-ordering map as a front-end preprocessor [Koh88].

This system appears to have excellent potential as a continuous speech recognition system

because it is both simple to implement, has excellent (real-time) response and good

recognition potential.

Chapter 7 - Implementation 7-14

Chapter 8 - Natural Language Processing (NLP)

8.1 Introduction

Natural Language Processing (NLP) is the term used to describe the higher-level processes

of speech and language in communication. NLP research has historically dealt with text

rather than speech communication because speech has so many problems of its own (eg.

noise, coarticulation, uncertainty of speech units) that it tends to distract from the focus of

NLP. In this chapter, speech-specific problems are therefore ignored while chapter 9 on

expert systems and speech understanding deals specifically with the implementation and

integration of NLP in speech recognition systems. In fact, the integration of NLP in a

speech recognition system is considered to be the point of departure from a mechanical

pattern recognition system to an 'intelligent' speech understanding system.

Much of the research of NLP is inspired by the way humans understand language. Thus,

the psycholinguists, cognitive psychologists and more recently the cognitive scientists have

been important in the development of NLP theories. At the same time, computer scientists

with their 'high-level programming languages' and 'artificial intelligence' have also played

an important role in developing this field.

The argument for including NLP in speech recognition systems is supported by empirical

evidence. For example, the HARPY system (detailed in chapter 9) improved its results

dramatically from 42% sentence recognition accuracy when relying on phonetic knowledge

alone to 97% when knowledge about the syntax, semantics and pragmatics of the language

(ie. NLP) was included [McT87]. In addition, a number of psychology experiments on

human subjects have shown that the results of the human recognition system degrade

significantly without the aid of language cues (eg. see [War83]).

8.1.1 Main Components in NLP

The main components in NLP are divided into three categories. These are:

• the syntax ie. the grammar or structure of a language

• the semantics ie. the notion of truth and the meaning of sentences

• the pragmatics ie. the intentions or meaning of the speaker in context

Chapter 8 - Natural Language Processing 8-1

Rich and Knight [Ric91] list five components of NLP, dividing pragmatics into discourse

integration and pragmatic analysis. They introduce morphological analysis as a separate

component but in this chapter it is discussed under semantics.

The aim of this chapter is to examine the main issues in NLP and see how they might be

incorporated or modelled in a NLP system.

8.1.2 History of NLP

The development of high-level computer languages, at almost the same time that

psycholinguists like Chomsky introduced revolutionary theories on grammars, represents

the real beginnings of NLP.

The landmark in its history was Winograd's SHRDLU1 program [Gaz89a] developed in

1971. SHRDLU was a one-armed robot that manipulated blocks of different shapes and

sizes when commanded to do so by a commander using English sentences (text not speech).

The robot's world was restricted to a BLOCKWORLD (the blocks on a table) which

reduced the complexity of the NLP domain. Although the robot was never built, its actions

were simulated by a program written in LISP. SHRDLU achieved good results in

understanding a subset of English commands and queries entered from the keyboard. The

most important result of the program was to show that NLP could be 'solved' even though

for a restricted language-domain.

SHRDLU's main achievements were:

•

•
•
•
•

interpreting questions, statements and commands

drawing inferences

explaining its actions

learning new words

handling ellipsis (omissions in text) and pronouns

8.1.3 NLP in Text and Speech

There are several cases where ambiguities are found in the speech but not in the textual

form of a sentence and vice versa. Two examples are given below to highlight this.

'SHRDLU' is derived from the last 6 letters of the 12 most frequently occurring letters in English.

Chapter 8 - Natural Language Processing 8-2

Consider the following example [McT87]:

He gave the boy plants to water.

He gave the house plants to charity.

Example Direct Object Indirect Object Other

8.1 plants boy to water (infinitive form of verb)

8.2 house plants charity -

Table 8.1 Roles of Words in Sentence

8.1

8.2

The above table shows the role (part of speech) played by the relevant words in sentence.

How does one then decide that boy plants is not a composite noun or that house plants is

not an indirect-direct object pair l ? If the sentence is in text form, all possible readings

must be considered and the one which makes the most sense is then accepted. Checking

all possible options can be tedious. In spoken English, it rarely seems necessary to test all

possible options. Slight timing and rhythmical features (the prosodic features) support one

syntactic form of the sentence in favour of others. For instance in the spoken versiqn of

8.1, one naturally inserts a slight but detectable pause between boy and plants to indicate

that they are separate parts of speech. On the contrary, the words house and plants are

spoken together (without a detectable pause) in example 8.2, reinforcing their role as a

composite noun.

The importance of the duration of detectable silence and other prosodic features has

generally been neglected in speech recognition research. This is probably because of the

difficulty of expressing ideas like a 'slight pause' and the sensory effects of various types

of rhythms. Waibel [Wai88] has covered some ground investigating these prosodic cues in

speech but this is certainly an area for extensive development.

The previous examples show how the spoken form of the sentence can reduce the number

of possible structural forms it can assume. The following example (from [Lad85])

demonstrates how the textual form of the words clarifies the meaning of the sentence where

it is unclear in its spoken form.

The sun's rays meet.

The sons raise meat.

Compound noun interpretation problems are discussed in detail by Jones pon85].

Chapter 8 • Natural Language Processing

8.3

8.4

8-3

Thus the meaning of the similar sounding (differently spelt or not) words must be resolved

from the context of the conversation or the structure of the sentence.

8.2 Syntax of a Language

Formal language theory as described by [Coh86] and [Ah073] offers important theoretical

grounding in the structure or grammars of formal (ie. mathematically contrived) languages.

The details are not included here as, despite being lengthy and rigorously defined, they are

not adequate for describing the nuances of natural languages. Rich and Knight explain:

"Grammar formalisms ... provide the basis for many natural language understanding

systems.... We should point out here that there is general agreement that pure,

context-free grammars are not effective for describing natural languages. As a

result, natural language processing systems have less in common with computer

language processing systems (such as compilers) than you might expect." [Ric91]

Thus, instead of concentrating on the strict formalisms, a more practical approach is

adopted using examples to explain the theories.

Informally, syntax is the structure of a language (in formal language theory, the syntax is

called the grammar of a language). It is important for controlling the flow of thoughts and

ideas in language communication. Without it, listeners or readers (called addressees l

henceforth) would have great difficulty understanding each other because there are so many

possible combinations of putting the words of a language together.

For example, try and decipher:

dog house man the the kicked the of out

for

the man kicked the dog out of the house

From the above example, it is clear that syntax is a language tool which limits the possible

combinations of words by specifying the logical order according to their relationship with

the other words in the sentence. The parts of speech and their ordering and context in the

sentence therefore carry much meaning themselves. The addressees can use knowledge of

the grammar to predict or at worst limit the choice of subsequent words, which helps

significantly in speeding up the recognition process.

And the speaker or author is the addresser.

Chapter 8 - Natural Language Processing 8-4

On the other hand, syntactical well-formed sentences are often not necessary in natural

languages. Omitting some of the syntactic details can sometimes enhance the meaning.

Consider the following breathless tale of a scout to his general (it does not even have a

verb):

thousands of them ... cannons ... horses ... chariots ... millions ...

The wounded and dying hero will certainly not use flowing, syntactically well-formed

sentences in his last words but he is understood nonetheless. These examples show that the

meaning of the message is ultimately what is important. The addresser uses various

language tools to convey the meaning to the addressee in the best way possible. The syntax

or structural form of the language is a tool but not all important.

Because the rules of syntax are common to both addresser and addressee, the addresser

uses them to order his thoughts while the addressee uses them to verify and predict the

addresser's thoughts and words. In speech recognition, predicting from the syntax of the

sentence reduces the number of possible sentences. This enhances the recognition problem

by limiting the search through the lexicon to the words of particular parts of speech. At

first glance, prediction seems redundant (since one still has to verify what was predicted)

but its importance is emphasised by the fact that prediction is naturally performed by

people when they read or speak. One only has to read or speak a sentence, stopping short

of the end, to prove that addressees constantly predict future ideas, words and even sounds.

They will be able to complete (fairly accurately) the rest of the sentence and even get the

gist of the rest of the paragraph or conversation. It seems as if the predicted options are

stored in easy-to-get-at memory which speeds up the verification process and thus the

overall recognition. What about the time taken to predict? People have the ability to

process many things concurrently (eg. walking and talking) and in addition speech produces

new symbols (ideas, words and sounds in increasing rates) at a relatively slow rate.

Therefore the brain has time enough to predict future events from the lowest level (sounds)

to the highest (themes).

Finally, Atkinson et al [Atk84] in their chapter on natural language acquisition show that

the syntax of a language is assimilated naturally (almost unknowingly) by humans in

infancy. It is therefore remarkable that students in schools struggle to grasp and conquer

'grammar' taught at school. The reason for this may become apparent later in this chapter

after studying the role of semantics and its relationship with syntax. What one should see

is that these components (syntax, semantics etc) of a language are intricately related and

are often very difficult to separate. For teaching purposes separate analysis is considered

Chapter 8 - Natural Language Processing 8-5

desirable because it results in fewer side-effects, but for people processing language this

is not easily done.

8.2.1 Notation and General Concepts

A structured sentence in a language is made up of clauses ie. sentences, in which complete

ideas are expressed, joined together by conjunctions. The clauses are made up of phrases

which are groups of words expressing partial ideas contributing to the main idea of their

clauses. Every word is associated with an atomic part of speech called a terminal ego boy

is a noun, the is a determiner and with is a preposition. A structured sentence therefore can

be divided hierarchically into sentences, clauses, phrases (ie. non-terminals) and terminals.

This division (or synthesis if processed bottom-up) process is called parsing the sentence.

An example of a parsed sentence is shown in figure 8.1. The leaf nodes in the parse tree

are the words in the sentence and one up from them are the terminals. The root node in the

tree is the start symbol or sentence (S) in natural languages.

The parse tree is determined by the grammar of the language. The rules of the grammar

are expressed by production rules of the form:

S

NP

S conj S I NP VP I VP

det noun

The sentence (S) consists of either (I) two sentences joined

by a conjunction (conj) or a noun phrase (NP) followed by

a verb phrase (VP) or simply a VP on its own.

An NP consists of a determiner (det) and a noun.Production Rule 2:

The production rules have a rule head (on the left hand side (LHS) of the arrow) and rule

body (on the RHS of the arrow) and are interpreted as follows (see the production rules.

above):

Production Rule 1:

The terminals or atomic parts of speech (eg. noun, verb etc) are typically written in small

case while the non-terminals in capitals and small (eg. PP == Preposition Phrase and AdvP

== Adverbial Phrase).

Chapter 8 - Natural Language Processing 8-6

s
I~----I~-----I

NP VP
I

NP

verb ~
det noun det noun

~ ~ Isawl ~ Janl

pp

I
NP

prep I I I-I- det nO,un
~ rilieJ [telescopeI

Figure 8.1 Parse Tree Diagram of the sentence: the boy saw the man with the telescope

s
1---1--1

NP VP

I

verb

det

~
Figure 8.2 An Alternate Parse Tree to that of Fig. 8.1

Chapter 8 - Natural Language Processing 8-7

Several classes of grammars1 are defined in formal grammar theory which determine the

form of the production rules and thus limit the types of sentences that can be found in a

language.

There are three important considerations associated with parsing; the parsing strategy, the

search strategy and structural ambiguity.

Parsing Strategy

The parsing strategy refers to whether a top-down or bottom-up approach is used. In the

top-down approach, the parser starts at the root node and builds the parse tree by

successive refinement (divide-and-conquer) of the non-terminals at each level in the tree

until the terminal nodes matching the parts of speech of the words in the sentence are

reached. The bottom-up approach starts by looking up the parts of speech of the words in

the sentence (ie. finding the terminals). The consecutive parts of speech are then merged

into the phrases they belong to hierarchically up the tree until the start symbol (S) at the

root of the tree is reached.

Searching Strategy

A searching strategy is necessary to resolve potential path decision problems that arise

when two or more production rules can be applied at some point in the parse. The

searching strategy thus determines how the production rules are implemented during

parsing. There are two well-known searching strategies, depth- and breadth-first (although

several others do exist ego the beam search and the iterative deepening technique). The

main search strategies are explained by the following example.

le. the Chomsky classes of grammars - Regular, Context-Free, Context-Sensitive and Unrestricted.

Chapter 8 • Natural Language Processing
•

8-8

Example: the cat bit the rat

Using the following production rules:

S -+ NP VP (Pi)

NP -+ det noun (P2)

VP -+ v~ ~~

VP -+ v~NP ~~

1. Using top-down, depth-first search:

1.1 S

1.2 NP VP

1.3 det noun VP

1.4 det noun verb

1.5 det noun verb NP

1.6 det noun verb det noun

2. Using top-down, breadth-first search:

2.1 S

2.2 NP VP

2.3 det noun verb

2.4 det noun verb NP

2.5 det noun verb det noun

3. Using bottom-up, depth-first search:

3.1 det

3.2 det noun

3.3 NP

3.4 NP verb

3.5 NP VP

3.6 S

3.7 NP verb det

3.8 NP verb det noun

3.9 NP verb NP

3.10 NP VP

3.11 S

4. Using bottom-up, breadth-first search:

4.1 det noun verb det noun

4.2 NP VP NP

4.3 SNP

4.4 NP verb NP

4.5 NP VP

4.6 S

Start with start symbol

Expand S by (Pl)

Expand NP by (P2)

Expand VP by (P3). Done? No, more words to parse :. redo 1.4

Expand VP by (P4).

Done? Yes. Stop.

Start with start symbol

Expand S by (Pl)

Expand NP by (P2) and VP by (P3). Done? No, more words to

parse :. redo 2.3

Expand NP by (P2) and VP by (P4).

Expand NP by (P2). Done? Yes. Stop.

Look up speech category (LUSC) for the

LUSC for cat

Synthesise (synth) 3.2 by (P2)

LUSC for bit

Synth verb by (P3)

Synth 3.5 by (Pl). Done? No, more words to parse :. redo 3.5

LUSC for the

LUSC for rat

Synth NP in 3.8 by (P2)

Synth verb NP in 3.9 by (P4)

Done? Yes. Stop.

LUSCs for each word in the cat bit the rat

Synth 1st and 2nd det noun by (P2) and verb by (P3) in 4.1

Synth NP VP in 4.2 by (Pl). Problem. Redo 4.2.

Synth 1st and 2nd det noun in 4.1 by (P2)

Synth verb NP in 4.4 by (P4)

Synth NP VP in 4.5 by (Pl). Done? Yes. Stop.

Chapter 8 - Natural Language Processing 8-9

From the above examples of the different combinations of searching and parsing strategies,

the top-down depth-first (TDDF) and bottom-up breadth-first (BUBF) strategies seem to

be the best performers. The TO parsing strategy decides early on what the structure of the

sentence ought to look like. Therefore, in order to reduce the chance of an early incorrect

prediction of the structure, the OF searching strategy is used to try and align the 'umbrella'

structure with the actual parts of speech of the observed words in the sentence as early as

possible.

On the other hand, the BU approach has the attribute that it can correctly determine all the

terminals at the leaf nodes and therefore has the attribute of being able to predict the local

best phrase matches of any local substring of consecutive terminals in some part of the

sentence. Thus, the BU approach prefers the BF searching technique, which works laterally

across the sentence. Good analyses of these and other searching techniques (with respect

to general artificial intelligence problems) can be found in [Ric91], [Cha85] and [Win84].

Ambiguity

A sentence exhibits structural ambiguity if it has two or more possible parse trees

(assuming the grammars are the same) ie. if there are several different ways of parsing the

same sentence using the same set of grammar rules. Different parses alter the meaning of

the sentence because words in different phrases perform different roles in the sentence.

Compare the two possible parses of the sentence illustrated in figures 8.1 and 8.2:

the boy saw the man with the telescope l

In figure 8.1, the boy, while looking through the telescope saw the man whereas in

figure 8.2 the boy saw the man who was holding or who owned a telescope. The meanings

are clearly different.

Parsing is thus the process of extracting the structure of the- sentence. It relies on the

grammar rules, the parse and the search strategy.

Two processes related to parsing are recognising and generating. A recogniser is a system

which determines whether or not a sentence is made up of the correct sequence of words

determined by the grammar. A generator is a system which produces a correct sequence

of words determined by the grammar. In formal language theory textbooks, recognisers and

A variation of the 'more ambiguous' sentence the silly robot saw the red pyramid on the hill with a
telescope [Win84].

Chapter 8 - Natural Language Processing 8-10

generators are studied to introduce the concepts of grammars. The classes of systems used

to recognise, generate or extract the structure of the sentence are:

• syntax recogniser - returns only whether the sentence was correctly

recognised or not. It can therefore be used to verify the

structure of a sentence but the "YES" or "NO" type

answer it returns is not particularly useful to systems that

are trying to uncover the meaning of the sentence.

• syntax generator - generates allowable sequences of words but is prone to

combinatorial explosion if there are many options to

choose from in the production rules. It is also

characteristically a 'mindless' generation based on the

production rules and search strategy and thus results in

the prediction of 'silly' sentences.

• syntax parser - divides the sentence into its grammatical parts of speech

in such a way as to 'understand' the structure of the

sentence by building an abstract representation of it in

memory.

Of the above three systems, the parser is the most flexible and' intelligent'. It has both the

ability to verify the correctness of a sentence (or phrase) and to predict possible parts of

speech from the current state of the system.

There are several other methodologies for analysing the structure of sentences including

statistical Markovian systems which use maximum likelihood probabilities to predict and

verify the grammatical structure of sentences. They are a natural extension of the work

discussed in chapter 4 and 6 and are not pursued further in this' section. + references ****

8.2.2 Transition Networks

A transition network (TN, also called a graph [Coh86]) is a set of states joined together in

some configuration by transition arcs. It has three components:

•
•

A network name

A list of declarations about initial states (denoted by *) and final states (denoted

by +)

Chapter 8 - Natural Language Processing 8-11

• A set of 3-tuples where the elements are:

• the "from state"

• the "to state" and

• the "action" as a result of traversing the arc from the "from state"

to the "to state"

TNs are limited in that they cannot have two arcs with the same "actions" leaving from the

same node and are prone to redundancy (eg. the repeated det -+ noun subgraphs in

figure 8.3).

Consider a very simple English grammar G1 which only allows sentences of the form:

S -+ det noun verb det noun

Eg. The sentence the cow jumped the moon is valid in this grammar.

The TN of G1 looks as follows:

Gl

Figure 8.3 Transition Network for grammar Gl

8.2.3 Recursive Transition Networks

Recursive transition networks (RTNs) allow recurring subgraphs in the network to be

replaced by a single abbreviated node representing the subgraph to reduce redundancy

found in transition networks.

Chapter 8 - Natural Language Processing 8-12

For example, in grammar Gl the recurring "det -. noun" subgraph can be replaced by a

named subnetwork called NP. That is, Gl can be rewritten to form grammar G2:

s -.
NP -.

VP -.

NPVP

det noun

verb NP

RTNs also have the ability (through recursion) to handle non-detenninistic networks. Non­

determinism is introduced to the network if there exists more than one path with the same

"action" from the same state. The decision of which path to choose in these situations is

resolved by the searching strategy (eg. depth-first, breadth-first etc) of the recursion

algorithm.

For example, consider production rules and diagrams of the subgraphs of grammar G3

below:

s -. NPVP

NP -. det noun

VP -. verb pp I verb NP I verb

pp -. prep NP

G3

VP

NP FeD def <Dnoun~~ ..

9

pp [@prep@NP~

Figure 8.4 Subgraphs of Grammar G3

The VP subgraph has three arcs emanating from its first node, each with a verb "action"

and thus requires a decision regarding which path to take. The decision strategy is not

usually determined locally (it can be by looking ahead and down each path and choosing

Chapter 8 • Natural Language Processing 8-13

the best path) but is globally fixed for the entire recognising process. The paths are often

chosen as they appear in the production rules. The paths are executed in turn according to

the decision strategy and processed until either a successful parse occurs or it cannot parse

any further. In the event of not being able to parse any further, the parser must return to

the point of the last decision and select the next path option. This procedure is continued

recursively until a successful parse is found or every path has been explored without

success. For example, using G3 to parse the sentence the dog barked with a top-down

depth-first strategy will result in the following order of the production rules being applied:

1. S

2. NPVP

3. det noun VP

4. det noun verb pp

5. det noun verb prep NP

6. det noun verb NP

7. det noun verb det noun

8. det noun verb

Start with start symbol

Expand S

Expand NP

Expand VP in 3 with 1st prod. rule option.

Expand pp in 4. Mismatch of prep. Redo 3.

Expand VP in 3 with 2nd prod. rule option.

Expand NP in 6. Mismatch of del. Redo 3.

Expand VP in 3 with 3rd prod. rule option. Done? Yes. Stop.

8.2.4 Augmented Transition Networks

Augmented transition networks (ATNs) are RTNs with procedures for checking the

consistency of the sentence with respect to tense, number, person etc. in related phrases in

the sentence. For example, in order to verify that the number (singular or plural) of the

subject (NP) of the sentence matches the number of the verb associated with it, the number

of the NP of the subject must first be determined (in a procedure attached to the NP). The

result is then passed to the VP where it is matched in another procedure to the number of

the verb of that VP.

Person Singular Plural

First I We

Second You (sg) You (PI)

Third He, she or it They

Table 8.1 Person and Number

For example: •

•

the phrase a boys has a number conflict within the NP. It should either

read the boys or a boy.

In the sentence Now he kick the ball, the subject NP (he) is 3rd person

singular. The verb kick must therefore have a matching third person

Chapter 8 • Natural Language Processing 8-14

singular ending. Moreover, the tense of the VP must be present due to

the present tense set by temporal adverbial phrase Now. Extracting this

information and passing it between the relevant nodes in the ATN

results in a mismatch - kick must either be kicks or the person altered

to some other than 3rd
•

A detailed description of the processing steps of an AlN can be found in [Ric91l. It should

also be noted that AlNs are necessarily top-down parsers.

8.2.5 Well-Formed Substring Tables and Charts

One of the major problems with parsing is how to avoid redundant reparsing of phrases in

the sentence. Reparsing is a direct result of 'blind' recursive implementations of non­

deterministic grammars. Such parsers try all possible parses of a sentence. When one fails,

they try another until they either succeed, complete all possible parses or continue

searching forever because of a cycle in the production rules (ie. A -+ Band B -+ A). In

order to eliminate reparsing sections of the sentence, it seems appropriate to store partial

parsing solutions. Two mechanism for storing intermediate parsing results are well-formed

substring tables (WFSTs) and charts (which are an extension of WFSTs).

Well-Formed Substring Tables (WFSTs)

A WFST is a data structure which keeps a record of parsing solutions it has already found

so that it can avoid looking for them again [Gaz89]. A chart is an extension of a WFST

which stores both the phrase structure information of parsed strings and the hypotheses that

they parsed successfully.

An expensive way of keeping a record of all parses would be to store a set of partial parse

trees. A WFST achieves the desired effect without storing the partial parse trees.

Method:

1. Number the string 0 to n (n is the number of words in the string) where 0 is placed

before the start of the string and n is placed after the last word in the string.

2. The gaps between the words in the string are numbered 1 to n-1.

3. A WFST stores the starting and final position of a partially parsed string and the part

of speech categorising (speech category) it.

Chapter 8 - Natural Language Processing 8-15

A WFST is described as a set of 3-tuples (Start,Finish,Label) where

Start is the i th node in the sentence

Finish is the jth node in the sentence, (°~ i < j ~ n)

Label is some category (e.g. S or VP)

For example:

o the 1 cat 2 sat 3 on 4 the 5 mat 6

(O,l,det) (1,2,noun) (2,3,sat) (3,4,prep)

(0,2,NP)

(4,5,det) (5,6,noun)

(4,6,NP)

(3,6,PP)

(2,6,VP)

(0,6,S)

The above 3-tuples are the main ones used to build the parse structure of the example

sentence but others do exist and are dealt with in the parsing process (eg. (2,3,VP)

and (0,3,S».

WFSTs inform the parser of correct parses of parts of the sentence. They fail however to

inform what phrases and terminals make up those successful parses and as a result, force

the parser to reparse those sections of the string. Charts extend the structure of WFSTs to

include this information.

Charts

A chart is a WFST which incorporates information about what has been parsed and what

is to be parsed. Where a WFST stored the speech category of a substring, a chart stores

hypotheses about the rules the parser has tried to parse. A ".it delimiter called dot in a

hypothesis indicates to what extent the parser has completed parsing that rule. For example,

S -+ NP.VP means that the parser has successfully parsed a NP in an attempt to parse the

production rule: a sentence is made up of a NP and a VP but has not parsed the VP. A

chart thus has two additional fields (ie. is a 5-tuple) namely Found and ToFind:

•

•

Found is the list of parts of speech already parsed by the parser (ie. the NP in

S -+ NP.VP

ToFind is the list of parts of speech still to be parsed (ie. the VP in S -+ NP.VP)

Chapter 8 - Natural Language Processing 8-16

For example: Using the previous WFST example, the initial entry into the chart using

a top-down strategy is (0,6,S, ,NP VP) which transcribes as: trying to parse

the sentence S, have not started thus have found nothing but hope to find

a NP followed by a VP.

The details for implementing a WFST or chart parser (using any combination of the parsing

and search strategies) are contained in [Gaz89a] (LISP implementations of these structures

are given) and [Gaz89b] (Prolog implementations are given). Charts have great potential

in speech recognition systems because of their flexibility and capacity to embody all the

information about partial parses of the sentence. Speech understanding systems, discussed

in the next chapter, tend to produce better results using the 'island-generation' technique

which pieces together 'islands' of well-recognised parts of the speech signal. The chart

accommodates this kind of approach. They are also efficient in that they eliminate

redundancy from the parsing process. They can act both as a predictor and verifier of the

structure of a sentence. The predictor can use the information from the ToFind fields along

with a suitable parsing and search strategy to predict the structure of the rest of the

sentence.

8.3 Semantics

8.3.1 Difference between Semantics and Pragmatics

The meaning of sentences can be divided into two parts: semantics and pragmatics.

Semantics has been studied since the days of Plato and Aristotle whereas pragmatics,

originally part of semantics, has only recently been made into a separate field. Semantics

deals with the 'on-the-surface' truth value of the sentence. Pragmatics, on the other hand,

deals with contextual issues and the speaker's intentions.

The following example illustrates the difference between these types of meaning.

I love ice-cream

Said listing "a few of your favourite things" to a friend, the meaning is clearly a truth

statement about your world. This is an example of semantics.

On the other hand, if you loudly exclaimed the statement "I love ice-cream" as your friend

walked towards you licking an ice-cream, the meaning is much more than the statement of

Chapter 8 - Natural Language Processing 8-17

truth about your fondness of ice-cream. Your intention (and therefore your meaning) is to

be offered some of the ice-cream. This type of meaning is called pragmatics.

Some introductory points and definitions are made about semantics [Hur88]:

•

•

•

•

•

•

•

•

•

It is important to distinguish between the literal meaning of words and sentences

and the meaning intended by the addresser.

The meaning of words and sentences are best understood by the people who

speak that language.

A proposition is a syntactically well-formed sentence which makes a factual

assertion and thus can be TRUE or FALSE

ego the house is yellow or all cats are cleverer than dogs.

To be understood, speakers continually use references to things in the world to

indicate what is being talked about ego My dog chased your cat up the old oak

tree in Dairy Lane. All the underlined parts of the sentence are called referents.

The sense of a sentence is what is meant by it. It is often very difficult to explain

and is sometimes expressed in terms of opposites, synonyms, descriptions or

examples.

A predicate is a structure/function for describing the state of a referent or the

relationship between referents ego in red(house), redO is the predicate and the

house the referent argument while in chased(my dog,your cat,up the tree),

chasedO is a predicate with three referent arguments.

Of great importance in semantics is the notion of the 'world' or universe of

discourse in which sentences are made. For example, as mentioned at the start of

the chapter, SHRDLU's 'world' is a table full of blocks called BLOCKWORLD.

If SHRDLU were asked about anything outside its BLOCKWORLD (eg. how

many planets are there in the solar system), it would not be able to answer or at

best would respond, "I don't know what you mean by 'planets' and 'solar

system '''. If a NLP or speech recognition system is going to be able to

communicate with speakers in the real world, certain- boundaries must be set to

determine the universe of discourse between it and the people communicating

with it.

There are three levels of context in a conversation: the universe of discourse, the

context of a particular conversation and the immediate situation of an utterance

in the conversation.

A stereotype is an abstract specification of an object. A prototype is a particular

object which best matches the stereotype. For example, a stereotype of a bird

might be a smallish, non-descript, feathered, beaked, eyed and winged creature

that can fly. A prototype may be a dove-like or robin-like bird but it would rarely

Chapter 8 - Natural Language Processing 8-18

be an ostrich- or penguin-like bird (unless you were an eskimo). These form part

of the set of all birds but are 'exceptions' rather than 'the rules'. Stereotypes and

prototypes are useful starting points from which to express or build meanings.

A NLP system must be able to understand what. is being stated, what has been stated

previously, what is implied by the addresser and what can possibly enter the conversation

through the context. It must therefore have the following ingredients [Ric91] [Gaz89a]:

• a parser which provides a knowledge of the structure of the sentence

• a lexicon of words and their meanings

• a way of representing knowledge as it is used and exists in the system's 'world'.

This should include stereotypical knowledge about procedures which are common

to the users of the system, associative links between related knowledge and

human-like, structured organisation of information. The system should also

contain information about itself (metaknowledge), especially to restrict implausible

facts that may be generated by the inference engine (the mechanism which

deduces new facts from the database of facts.

• a mechanism for inferring new facts from the existing knowledge and data inputs

to the system and for managing formal logic

• an interface between the system and the users which should be as natural as

possible answering questions asked by the users and explaining or giving reasons

for the deductions it makes

8.3.2 The Lexicon

The basis of any natural language is the set of meanings of 'things' in the 'world'.

Everyone's 'world' is different because not everyone knows the same 'things' and people

seem to see 'things' differently. An important question is how are these 'things' to be

stored in a NLP system? This question is answered in the artificial intelligence textbooks

under the heading of knowledge representation.

Consider the simple knowledge base of an infant learning his mother tongue. He begins by

labelling objects in his small 'world'. First "mamma" is associated with mother, then

"dadda" with father and so on and his 'world' gradually develops. In a simple system such

as this, one manages to describe the 'world' by labelling every entity in that 'world'.

Simple (mamma=image of mother) relations would suffice. But mothers usually mean more

to their babies than just that. Mother carries a bottle which feeds and satisfies baby and

mother comforts baby when baby is disturbed by something. So the simple entities in the

child's database also contain relations or associations with other entities or ideas. Later still,

Chapter 8 - Natural Language Processing 8-19

the child will be able to distinguish between birds and bees for example, even though both

birds and bees have wings and can fly.

Representing knowledge in the lexicon has important implications for the sense of the

words in sentences and the meaning of the sentence is represented. The knowledge in the

lexicon defines, describes and labels the objects in the 'world' whereas the 'semantic

picture ' (meaning of the sentence) dynamically evolves with the construction of the ideas

of the sentence, representing the way the entities interact with each other in the sentence

and in the course of the dialogue. The dynamic knowledge changes considerably during the

course of conversation whereas the knowledge in the lexicon usually remains unaltered or

alters very gradually.

Knowledge Representation

There are three basic data structures used for storing the meanings of words in the

lexicon l
:

•
•
•

attribute-value pairs

records

objects

An attribute-value pair (AVP) is a 2-tuple which describes an entity and can be represented

as: (Attribute,Value). Eg. A block may have the AVP (colour,green) and a man the AVP

(has_a,beard).

A record is an extension of the attribute-value pair. It consists of an entity name and a

group or set of attribute-value pairs.

Eg. Record block

(colour,green)

(madeof,wood)

(size,smaII)

End Record

Objects on the other hand are records which can be linked to other objects in a hierarchical

manner so that redundant information about entities in the 'world' can be eliminated.

Objects are linked to other objects by relation arcs, two special ones being the lS a

1 In fact, these form the basis of most artificial inteJJigent systems.

Chapter 8 - Natural Language Processing 8-20

(expressing class inclusion) and instance_of (expressing class membership) relations. The

resulting system of arcs and objects between objects is called a semantic network (also

called a set of frames or a slot-and-filler system [Ric91D. Eg. "Tweety" is an instance of

a canary which is a bird which is a flying object. Thus objects encode class knowledge.

Their ability to reduce redundant information is shown in the following example. It is a

waste of effort and space to store the same general information about birds and canaries

when a canary is a bird and naturally inherits all the relevant information that makes it a

bird (eg. can fly, got 2 legs, whistle etc). Objects use inheritance of information from

encumbent classes to eliminate this redundant information.

Semantic networks are depicted as follows:

• network nodes store the object classes and members

• network arcs are labelled with an appropriate object attribute relation

There are several rules for objects:

•

•

•

•

No is_a arc cycles are allowed. Eg. object A is an object B which is an object A

is not allowed.

If a specific class or member does not have the attributes of the class of which

it is a member, that attribute must be redefined by that object. Eg. a penguin is

a bird but it cannot inherit the (can_fly, yes) attribute of bird. Therefore the object

penguin must redefine this attribute as (can_fly, no).

Whenever there is a pair of entities, neither being a descendant of the other but

with a descendant in common, there is no attribute that both entities specify a

value for.

An entity can only have one value for an attribute-value pair defined locally.

It is worth noting that these objects are similar to the object data structures that have

recently become popular. The knowledge that can be represented by attribute-value pairs

or records is clearly not as sophisticated as that represented by a network of objects. These

networks give the system an opportunity to express the associative links that seem to exist

in the human mind. The mind's capacity for associations is far more sophisticated. For

example, humans tasting wine will often associate the smell of the wine with the smell of

some food or (for the more daring tasters) with an experience ego walking through the

Chapter 8 - Natural Language Processing 8-21

woods just before sunset. Networks give the system the potential for making associations

between entities, be they ideas, feelings or simply other entities.

Several other ways for representing knowledge in the system exist including: frames

consisting of predefined slots which must be filled to complete the sense of the sentence

and predicates which have already been mentioned. The details of these structures are

contained in most artificial intelligence textbooks (eg. [Ric91] [Bra90]). The popularity of

predicates has increased because of the complementary structure of the Prolog programming

language.

Another way of representing knowledge is defined in the section on pragmatics. This caters

for stereotypical information which follows a chronological order and is called a script.

Morphemes

At first glance, it seems that by storing all the words in the system's 'world', together with

their meanings (including relation arcs), the lexicon will be complete. It turns out that

semanticians define a unit slightly smaller than the word as the unit of knowledge in the

lexicon, namely the morpheme.

Morpheme literally (from the Greek) means the 'minimal meaningful unit' [Sco1889].

Words in a language usually consist of a root form with different prefixes, suffixes and

other slight transformations to alter the base meaning. To illustrate this point, several

examples are listed below:

Root Fonn Changed Form Type of Change Difference in Meaning

monkey monkeys suffix plural

man men transformation plural

happy unhappy prefix negated (opposite)

eat has been eaten transformation + suffix passive past

count recount prefix compound ("re...." • again)

black blacken suffix adj-verb ("en" • to make)

black blackness suffix adj-noun ("....ness" • a state)

Table 8.2 Morphological Transformations

Chapter 8 - Natural Language Processing 8-22

In English, the most important and frequently used of all the transformations are those to

determine the plurality of nouns and the person, tense, voice and mood of verbs. English

lacks the rich, morphological structure found in Latin or Greek (and many of the romantic

languages derived from Latin). It is informative to examine very briefly the structure of

nouns and verbs of Latin.

All Latin nouns belong to one of five declensions. Each declension has a set of rules

defining various suffix endings to alter the meaning of the noun. Take for example

(Winston Churchill's favourite [Chu47]) the noun mensa (=table) of the first declension:

Latin Form Approximate English meaning Latin Form Approximate English

(singular) (plural) Meaning

mensa the table (subject of the sentence) mensae the tables (subject)

mensa o table (addressing the table) mensae o tables

mensam the table (object of the sentence) mensas the tables (object)

mensae of the table, or table's mensarum of the tables or tables'

mensae to or for the table mensis to or for the tables

mensa by, with or from the table mensis by, with or from the

tables

Table 8.3 Example of the Form of Latin's First Declension

The root mens- is the morpheme while the declension endings serve to guide the addressee

both syntactically and semantically.

Latin (or French) verbs have conjugations or sets of rules for verb endings which determine

the verbs':

•

•
•

•

•

the person (1 st, 2nd
, 3rd

)

number (singular or plural)

tense (present, future, past etc.)

voice (active or passive) and

mood, mood (indicative, subjunctive etc.), and voice variations of the

verb. English does have several suffix endings but on the whole is

inflectional ie. has augment verbs to determine the variations in the

form of the verb.

Chapter 8 - Natural Language Processing 8-23

Latin Form English Equivalent Description

amo I love or am loving 1st person singular, present tense, indicative mood, active

voice

amat He, she or it loves 3rd person singular else same as previous

amavi I loved or have loved 1st person singular past (perfect) tense else same as

previous

amem I may love present tense, subjunctive mood else same as previous

amor I am loved indicative mood, passive voice else same as previous

amamur We are loved 1st person plural else same as previous

Table 8.4 Examples mustrating Latin's morphologicaHy rich Verb Forms

From the table above, it is clear that Latin-like languages would conserve space in the

lexicon. All they need store are the root of the word and the class (conjugation or

declension) to which it belongs.

In English, nouns have suffix ending transformations to handle plurality (exceptions like

ox++oxen must be taken care ot). Verbs in English are inflectional because auxiliary words

are used to alter the meaning to describe different moods, voices and some of the tenses

(as is seen from the other table of English equivalents to the Latin forms). With inflectional

languages, the verb can be split up across the sentence - a phenomenon which can be

hazardous for the parser ego Have you been that badly punished? (verb underlined). Despite

English's inflectional nature, rules can still be defined for the various forms of the verbs

in English and stored as a code (except for the exceptions to the rules which must be stored

in full).

8.3.3 Semantic Representations

Several mechanism for embodying and constructing the meaning of sentences have evolved,

these being:

•
•

•

•

Semantic grammars

Case grammars

Conceptual dependencies

Compositional semantics

Chapter 8 - Natural Language Processing 8-24

Semantic Grammars

Semantic grammars are very structural in appearance and the grammatical production rules

are expressed in terms of both syntax and semantic markers. That is, semantics plays a role

in determining how sentences are parsed. Semantic Grammars tend to require many rules

because every semantic option for a word must be expressed in a rule. They are useful for

reducing the structural ambiguity discussed earlier. For more about these grammars see

[Ric91].

Case Grammars

Case grammars determine the semantic roles of the parts of speech related to the central

verb of the sentence. Eg. (open (agent Jim)(object door)(instrument hand» for John opened

the door with his hand or the door was opened by John with his hand. Several roles for the

parts of speech have been determined including [Ric91] (examples are the underlined

words):

•

•
•

•
•

•

•
•

•

(A)gent - initiator of the action (the subject of active verbs) ego he runs

(I)nstrument - cause of the event ego he shot him with a .22

(D)ative - Entity affected by the action ego Jim died

(F)actitive - object or being resulting from the event ego He made Eve

(L)ocative - Place of the event ego He hid in the house

(S)ource - Place from which something moves ego From Cape Town to Cairo ...

(G)oal - Place to which something moves ego he went to town

(B)eneficiary - on whose behalf the event occurred ego We did it for him

(T)ime - the time at which an event took place ego at sunrise, the cock crowed

The above abbreviations in brackets are used to describe the entities making up the case

grammars. The case grammars are expressed as generally as possible with brackets

denoting parts of speech which are omitted ego only the object is necessary for the open

case grammar since sentences like the door opened are grammatical. This example is thus

expressed as open L _0 (I) (A)] which transcribes as: open has an object (obligatory) and

also possibly has an instrument and an agent. The values for the (I) and (A) although often

omitted from the sentence, are sometimes implied and can and should be determined by a

'smart' system to complete the meaning.

Eg. The wind was blowing hard ... The door swung open.

(A) is the wind and (I) is the force of the wind

Chapter 8 - Natural Language Processing 8-25

Notice that the roles describe the relationships between the parts of speech in the sentences.

They can be effectively implemented using frame slots which must be filled with the

relevant parts of speech to construct the meaning of the sentence.

Conceptual Parsing

Conceptual parsing is a technique which uses a specific knowledge representation called

the conceptual dependency representation [Sch82]. This knowledge representation is

language independent, expressing knowledge about the events found in sentences of any

language. It is made up of conceptual primitives which are atomic verbs describing the

basic actions expressed in any language. The set of these primitive actions are defined

below as presented in Schank and Abelson [Sch77]:

• ATRANS Transfer of an abstract (eg. give)

• PTRANS Transfer of the physical location of an object (eg. go)

• PROPEL Application of physical force to an object (eg. push)

• MOVE Movement of a body part by its owner (eg. kick)

• GRASP Grasping of an object by an actor (eg. clutch)

• INGEST Ingestion of an object by an animal (eg. eat)

• EXPEL Expulsion of something from the body by an animal (eg. cry)

• MTRANS Transfer of mental information (eg. tell)

• MBUILD Building new information out of old (eg. decide)

• SPEAK Production of sounds (eg. say)

• ATTEND Focusing of a sense organ towards a stimulus (eg. listen)

For example, INGEST is the action of taking anything into the mouth including drinking,

eating, breathing, smoking. The atomic verbs are linked to the rest of the words in the

sentence by the following symbols:

•
•

•
•
•

Arrows denote the dependency between entities

Cases are denoted by labels above the arrows (eg. 0 = object, I = instrument see

case grammars for others)

Double arrows denote a mutual link between the actor and action

Tense is denoted above the double arrows (p E past tense)

Primitive actions as defined above are written in capitals

Chapter 8 - Natural Language Processing 8-26

reference
past tense

object "- to
p/ ..J£bOOk4

from :

man

I <=> ATRANS
I

I aave the book to the man

Figure 8.S Conceptual Dependency Diagram adapted from [Ric91]

Compositional Semantics

The principle of compositionalityl proposes that the meaning of the whole is

a function of the meanings of the parts.

In terms of NLP, the meaning of the sentence can be developed by determining the

meaning of the morphemes and words, then combining them to build the meaning of the

phrases and clauses until these combine at the top level to form the sentence. One can go

even further to describe the meaning of the paragraph from the meaning of the sentences.

The principle of compositionality provides an agenda or framework for constructing a

semantic picture. It also requires contemporaneous knowledge of the syntactic structure of

the sentence (ie. phrases and clauses which are the parts) since the meaning is built up o'n

increasing levels of these classes. The details of how to implement this type of semantic

representation is contained in [Gaz89b].

8.3.4 Using Semantics to Resolve Ambiguity

Earlier in the chapter, it was shown that structurally ambiguous sentences were a result of

being able to parse them in more than one way. Ideally one would like to resolve this

problem as early as possible since other parts of the sentence or communication may rely

on it. Semantics is one of the tools that can be used to resolve the ambiguity in a sentence.

For example consider the following sentences:

rolling balls is fun.

rolling balls are fun.

The former is the contracted form of the sentence the act of rolling balls is fun. The

number of the verb (is) is singular thus compelling the subject NP of the sentence to be

1 The principle of compositionality is attributed to Frege, a mathematician and philosopher (circa 1900).

Chapter 8 - Natural Language Processing 8-27

singular. If rolling balls is read as a composite noun, its plurality causes a number conflict

with the verb is. The system can thus use this semantic clue to read the sentence as (the

act ot) rolling balls is fun (ie. the grammatical identity of rolling is the gerund). The

second example requires the opposite (ie. reading it as a compound noun). Clearly semantic

information can be used to guide the parser to optimise its decisions in finding the best

parse of the sentence. It therefore seems obvious to incorporate semantic checking with

parsing to reduce the effort of the parser. There are however instances where the work done

by the semantic analyser is redundant or unimportant and therefore has the reverse effect.

8.3.5 Inference

Humans continually infer things from conversations. Consider the following story:

A shot rang out. The lady slumped to the floor ...

One would most likely infer or deduce that the shot which rang out, was a gun-shot and

the bullet of which hit the lady causing her to slump to the floor.

Inference is important in NLP for the following reasons:

•

•

•

•

•

to infer answers (or facts) about the 'world' which do not exist in the database

in the desired form.

to make predictions about possible future inputs (ie. to track the addresser's 'train

of thought')

to assimilate new information into the database of existing facts

to solve problems about how the world does or might behave

to detect that two statements are semantically equivalent or that a statement is

anomalous.

In order to make inferences, the NLP system needs an inference engine. The inference

engine uses rules and some logic system for inferring new facts or interpretations from the

existing ones and perhaps new input to the system. Charniak and McDermott [Cha85]

highlight three roles of the inference engine: to assert new fact in the database, to retract

or discard facts from the database and to query the database in an attempt to produce new

facts.

When new facts are asserted, this may lead to more facts being generated by certain rules

that exist in the database. An important issue is when to check for possible new facts being

generated from these facts. One obvious moment is when new facts are first generated. This

Chapter 8 - Natural Language Processing 8-28

is sometimes referred to as an event-driven strategy which uses a well-known technique

called forward-chaining. For example, if a fact p is asserted and the rule (if p then q)

exists, then p triggers the assertion of q according to the forward-chaining technique.

Another strategy is to wait until a query arises from the user or system and then work

backwards from the desired query to the axiomatic facts. This strategy is called backward­

chaining. For example, suppose the system had a single fact p in the database and two rules

(if p then q) and (if q then r). The query "Is r true?" can be determined by inspecting the

then parts of the if-rules and producing a set of subgoals which will result either in the

axioms (basic facts) of the database being reached or not. Therefore, the goal "is r true?"

becomes "is q true?" which becomes "is p true?" and because p is true (a fact), the other

subgoals are also true and so is the result of the query.

There are advantages and disadvantages to both these strategies. Forward-chaining can lead

to an explosion of new facts generating further facts themselves but they respond to new

data which is important for example when new parts of speech are found in the sentence.

Backward-chaining on the other hand responds well when handling problems that are best

solved by a top-down, divide-and-conquer technique ego an NLP system answering a

question posed by the user. Cyclical deductions and pursuing 'red herrings' are potential

problems in backward-chaining. Further details of the inference engine can be found in

[Cha85] and [Win84].

8.3.6 Primitives and Canonical Forms

One of the greatest problems with knowledge is its granularity or base form. The idea is

not to store the same information twice. Consider the following example using a predicate

knowledge representation (which was mentioned before but not detailed):

on(ball,block)

supports(block,ball)

ie. the ball is on the block

ie. the block supports the ball

Only one of the above predicates need be stored if the following rules are included in the

database.

on(X,y) if supports(Y,X)

supports(X,Y) if on(Y,X)

Having two predicates on and support to describe (almost) the same idea is not only

wasteful of space but creates potential hazards for maintaining the accuracy of the database.

Chapter 8 - Natural Language Processing 8-29

If, for example, the ball is removed from the block, there are two places where the database

must be changed instead of just one.

8.4 Pragmatics

As has already been mentioned, pragmatics is closely related to semantics and seems to

include everything which does not quite fit under semantics. In this section, several of the

most important issues in pragmatics will be discussed; the contextual information of NPs,

given versus new information (from the context), prediction, focusing and planning and

methods for handling stereotypical events and information.

8.4.1 Contextual Information in NPs

Noun phrases (NPs) on the whole, deal with objects (and abstracts) in the 'world' ie. they

contain the 'things' that are interacting with each other in the sentence. In addition, they

play another more subtle and yet equally important role in giving the addressee extra

information about these 'things'. This information helps the addressee (better) understand

which 'things' the addresser is communicating about since they are typically numerous.

NPs without any modifiers can play one of two roles in the sentence.

For example: SHRDLU picks up blocks.

The robot picks up blocks.

There are two NPs in each of the above sentences. In the first, SHRDLU refers to a specific

'thing'. Such NPs are called definite. Definite noun phrases (when they are not proper

nouns) are usually supplied with the definite article (determiner), the. Definite NPs are used

by the speaker when the addressee is already familiar with the object in the NP. That is,

if the addressee did not know who or what SHRDLU was, the first sentence would be

meaningless. Proper nouns are obviously definite (since a specific object is being referred

to) while common nouns require special attention by the system. For example, in the

second sentence, the robot is definite (ie. is known to the addressee) because if it has not

previously been mentioned, seen or explained to the addressee, the statement carries no

purposeful meaning.

The main point about definite NPs is that they imply that the addressee has already been

introduced to or can identify the object from the context of the sentence in the rest of the

conversation or from the surrounding environment.

Chapter 8 • Natural Language Processing 8·30

The second noun phrases (NPs) ie. blocks in both of the example sentences, are examples

of indefinite noun phrases. That is, they stand for the generic class of objects and not any

in particular. The indefinite article a is often an indication of an indefinite (singular) NP.

Given vs. New Information

The primary function of declarative statements (or assertions) is to present the addressee

with new information. The new information is based on ideas and facts already known to

the addressee1
• That is, the addressee's knowledge is added to incrementally by new facts,

predominantly in the form of declarative sentences.

For example: The block I put on the table is green.

The new information is the colour of the block. The block must be definite in order that

the addressee can incorporate the new information into his database. Therefore, in the

above example, the referent clause I put on the table is included to resolve any possible

ambiguity.

For example: I have placed an object on the table.

The yellow block supports this red plastic ball.

The this in the second sentence refers to the new block of the first sentence. The second

sentence tells the addressee about the locality and several attributes of the new object.

8.4.2 Given Information Restricting Referents

Given information can be used to restrict the possible number of referents for noun phrases.

In the previous example if the yellow block does not exist, there is a contradiction.

Likewise if there is already something else on the yellow block with no space for another

object, there is a contradiction. Restricting referents of this sort can be used to resolve the

identity of pronouns.

Example

The commander placed a block on the table.

It was green.

Poses the interesting psychologicaJlphilosophical question about a person's first thought - the inheritance
vs. environment issue.

Chapter 8 - Natural Language Processing ·8-31

The it refers to a block (a new block). Knowing the colour attributes of the commander and

the table, can help to eliminate possible references for it. This is not even necessary, since

owing to its recent entry onto the scene, the new block is the centre of focus of the

communication at that point in time.

Example:

There are two objects, a ball and a box.

The one contains the other.

The lexicon should contain the fact that a box can contain something. This predetermined

knowledge is restrictive in the above example since it reduces (and in most senses,

eliminates) the possibility that the ball contains the box.

8.4.3 Understanding by Prediction

Till now understanding has been a passive affair, where the addressee compares what is

communicated with what already exists in the database. The human addressee however is

generally not passive. He is continually predicting the outcome and intentions of

conversations, sentences, phrases and even sounds in words. Prediction is based on the

understanding of the past and present. Validation is the process of checking the consistency

of the predictions with the actual interpretations of the messages.

How does one predict events? Prediction is not prophecy. Prediction involves identifying

the initial parts of ideas, types of problems and themes that seem to recur naturally. The

recurrence of such events is noted through experience. This does not mean that prediction

is simply a matter of remembering and matching a sequence of events. It can be this, or

it can mean associating a process or strategy used perhaps in different circumstances to

solve a problem. It may also involve a statistical element similar to that described in

chapters 4 and 6.

Prediction and validation are costly processes since every prediction must be stored and

later validated and removed from memory. This gives rise to potential storage space

problems and issues like when to delete predictions from memory. The focus of the

communication is vital for maintaining the predictions. Another tool for controlling

prediction is the use of stereotypical information.

Chapter 8 - Natural Language Processing 8-32

Stereotypical Information

One important way of controlling the explosion of predictions is to represent stereotypical

information in predefined data structures called scripts (or schemata). Scripts store

knowledge of recurrent chronological events. The order of the entries in scripts is therefore

vital and enables the addressee to predict and follow the flow of chronologically predictable

messages. Another important feature of scripts is that they embody the details in a compact

way and will often embody more (taken-for-granted) information than what would normally

be communicated by the addresser.

A script contains a name and several fields. The ordering of the fields is vital since they

represent the sequence of events which determine the script. The most popular example of

a script depicts the order of events carried out when dining at a restaurant [Sch82].

Script: Dining at restaurant

• Arrive at restaurant

• Request table

• Sit at table

• Receive menus

• Order from menus

• Receive drink and food

• Drink and eat

• Ask for bill

• Receive bill

• Pay bill

• Leave restaurant

End Script

The importance of the sequential nature of scripts is illustrated by the following example.

If a conversation began: we paid the bill for the dinner at Mike's Kitchen ... , one would

not expect the speaker to continue with the details of the restaurant experience from when

they arrived. In this way, scripts are able to focus and order the attention of the addressee.

Implementing Scripts

New ideas, shifts in the focus of the argument and tangents to a story create problems for

scripts. There are two implementation issues to consider: one, when to open the script and

two, when to close the script. They both lead to the potential problem of a multitude of

Chapter ~ - Natural Language Processing 8-33

open scripts which results in too much detail to follow and confusion between similar

events in different scripts.

For example, the restaurant script might be initiated when the addresser mentions

something about dining at a restaurant. The addresser might however have mentioned this

as a peripheral point in the argument. In such a case, it would be optimal not to open the ­

script and at worst, to close it immediately one is certain that the emphasis of the

conversation is elsewhere. On the other hand, it is important to be able to determine when

the focus is no longer on the events of the script in which case it must be closed.

Focusing
The focus of the conversation is important not only for prediction of message events but

also to resolve potential problems with pronouns and ellipsis of obvious words or ideas.

Several tools or mechanisms can aid in focusing the system's attention, for example:

• The way knowledge is represented (eg. scripts and even conceptual dependencies)

• Goal planning - the idea being that by understanding the goals of the addresser,

one can follow his train of thought (see [Wil83])

8.5 Conclusions

The importance of this chapter cannot be overemphasised. The incorporation of natural

language processing in speech recognition systems is vital for building' intelligent' speech

systems with powers beyond merely pattern matching speech signals.

From this chapter, two important observations can be made.

•

•

Firstly, the contributions of the main NLP components (ie. syntax, semantics and

pragmatics) are each important for constructing the sense of the communication.

Secondly, these components are usually contained in separate units in systems for

ease of implementation but will probably need to be integrated into one

interdependent system to achieve real success in the field. The problem with

integration is that systems becomes very complex and difficult to update or

modify as a result.

In the next chapter, a system for integrating NLP with a low-level speech pattern

recognition system is investigated.

Chapter 8 - Natural Language Processing 8-34

Chapter 9 - Expert Systems and Speech Understanding

9.1 Chapter Outline

This chapter examines speech understanding systems (SUSs), featuring in particular

blackboard expert systems as a means for modelling and ultimately implementing an SUS.

Designing and implementing an SUs is a major undertaking which can take a team of

researchers several years to complete. Very few have been built and even fewer have been

successful. How are SUSs different from the other speech recognition systems discussed

in the earlier chapters of the thesis and where do they fit into the field of speech

recognition?

SUSs typically utilise a front-end phoneme1 pattern recognition system to recognise the

basic speech sounds in the signal. The accuracy of phoneme pattern recognition techniques

was shown in chapter 4 to be vulnerable to misclassification because of the similarity of

certain sounds (eg. the vowels). Misclassification at an early stage in word or sentence

recognition can ruin the chances of the overall recognition result. To reduce the chance of

a misclassification, several of the best possible speech sounds are usually stored for each

frame of the speech signal [Red76]. Continuous speech recognisers (CSRs) would then use

a set of rules to merge equivalent neighbouring sounds hierarchically to form syllables,

words, phrases and even sentences. SUSs differ from CSRs in the following ways:

•

•

•

•

they embody large amounts of information about natural language and

speech processing

they make decisions about the most likely sequence of words using many

different sources of knowledge

they exhibit structures modelled on those thought to control the human

cognitive processes

they build an abstract representation of the meaning (semantic and

pragmatic) in the sentence and conversation

SUSs therefore differ from CSRs in that they integrate and embody the concepts and

mechanisms discussed in chapter 8 on natural language processing (NLP). Ideally they

should exhibit their 'understanding' by functioning 'normally' (if in a restricted 'world')

as a person might.

Or ,an equivalent subword sound class ego demi-syllable

Chapter 9 - Expert Systems and Speech Understanding 9-1

The work covered in this chapter draws on natural language processing (NLP), artificial

intelligence (AI) and expert systems. Some of the concepts have already been presented in

chapter 8 where NLP was investigated from a theoretical perspective. The major part and

emphasis of this chapter is centred on expert systems, especially blackboard expert systems

which are seen to be well-suited for implementing SUSs. Finally, a case study of the

HEARSAY-II system is undertaken as a model SUS.

9.1.1 The Artificial Intelligence Debate

There is a great difference between a speech recognition machine that can recognise verbal

commands and one that can hold a meaningful conversation with a person. The latter

might be described as being more 'intelligent' than the former. But what is intelligence?

"Intelligence is far easier to recognise than to define, and so AI researchers

often concentrate on trying to produce what they consider to be 'intelligent'

behaviour in machines, rather than defining intelligence or knowledge."

[Har89]

Hart highlights the problem of defining intelligence and the way AI researchers have side­

stepped the issue. The definition of intelligence has long been debated by philosophers and

psychologists and has yet to be precisely determined. AI research (influenced by computer

people who generally prefer to implement systems rather than discuss their philosophical

nature and worth) has continued without over-careful attention to the philosophers'

concerns and as a result, philosophers have become very critical of what is being done in

the name of 'intelligence' [Bor87]. Instead of focusing on the semantics of this debate, this

chapter concentrates on what has been done to date in AI and the related field of expert

systems.

Cohen and Feigenbaum define AI in the following way:

"Artificial intelligence is the part of computer science concerned with

designing intelligent computer systems, that is, systems that exhibit the

characteristics we associate with intelligence in human behaviour ­

understanding language, learning, reasoning, solving problems, and so on."

[Coh82]

This definition is more forgiving than the well-known Turing test of AI. That is, if there

are two rooms, one with a human inside it and the other with the 'intelligent' computer

Chapter 9 - Expert Systems and Speech Understanding 9-2

system, the computer system achieves 'intelligence' when a human questioner cannot

distinguish the computer's answers from the human's [Tur50].

AI systems are thus measured according to human behaviour, which has several important

implications when considered in the light of the following arguments by Vygotsky:

"The most significant moment in the course of intellectual development, which

gives birth to the purely human forms of practical and abstract intelligence, occurs

when speech and practical activity, two previously completely independent lines of

development, converge. ... Now speech guides, determines, and dominates the

course of action; the planning function of speech comes into being in addition to

the already existing function of language to reflect the external world." [Vyg78]

In the above, Vygotsky relates his conclusions to experiments comparing the problem­

solving strategies and abilities of children with those of primates. The children l achieved

far superior results solving the simple tasks because of their ability to 'talk through' their

strategies. Primates on the other hand showed no inclination to abstract the problem at hand

and tended to utilise whatever was in their field of focus to solve the problem using a

'brute force' (ie. 'try every possibility') approach. From his conclusions, Vygotsky is

suggesting that speech is the major ingredient in elevating human behaviour from the ranks

of animal behaviour and is what ultimately makes humans intelligent. These ideas add

tremendous weight to the importance of the study of NLP and speech recognition.

In terms of speech recognition, the isolated word, connected word and even continuous

speech recognisers do not exhibit 'intelligent' qualities. It is only when mechanisms are

introduced into these systems to model the cognitive processes found in humans that they

can begin to be considered' intelligent' systems. Among the most important aspects of the

cognitive model are [Rey83]:

•
•
•

•

the ability to store large amounts of information

the structures which organise and retain this knowledge

the ability to deduce things from and about this knowledge

the ability to learn new facts about the system's 'world'

Only those over a certain age, infants tended to act as the primates did.

Chapter 9 - Expert Systems and Speech Understanding 9-3

9.2 Expert Systems

One of the major characteristics of speech is that it embodies a large amount of redundant

information in order to improve the recognition of the difficult-to-distinguish speech

sounds. This redundant information is comprised of syntactic, semantic, prosodic and

pragmatic knowledge as well as information about the speaker (eg. dialect, voice qualities

etc.). Speech recognition systems which attempt to encapsulate and utilise this diverse

information are classed as knowledge-based systems. Systems which attempt to behave as

human experts in a restricted, knowledge-intense problem-domain, are known as expert

systems1. No speech recognition system can theoretically be classed as an expert system

because speech is not restricted to certain human experts but is naturally assimilated by all.

However, several of the mechanisms and methodologies applied by expert systems are

equally applicable to knowledge-based systems and therefore discussed here.

The ubiquity of 'expert systems' in today's society, coupled with some impressive results

from these systems has attracted much attention (and some hype). Like their human expert

models, they embody a large amount of knowledge with problem-solving strategies to

exploit this knowledge in order to find solutions to the domain problems. Examples of

expert systems include those handling problems such as: diagnosis and remedy, analysis

and prediction, game-playing, planning, design and monitoring. An interesting study of the

more important and successful expert systems is undertaken by Johnson and Keravnou

[1oh88]. Among these are MYCIN, a medical diagnosis and remedy system and

PROSPECTOR, a geological analyser and predictor of locations for mineral deposits.

9.2.1 People involved in building Expert Systems

There are three identifiable roles in building an expert system. The first is that of the

domain expert. He is the best available person (preferably several people) with training and

experience in the problem-domain (subject area) of the expert system. His knowledge

typically has a theoretical or textbook foundation accompanied ~ith practical 'know-how'.

The 'know-how' is often more useful than textbook knowledge because its form is usually

more flexible, less formal and easier to represent in the system. As a result the expert

system's representation of the knowledge often assumes a similar character to that of the

human expert's. It is often quite difficult to extract the 'know-how' knowledge from the

domain expert. For example, consider how difficult it is for humans (who can be thought

of as experts in speech recognition) to describe the prosodic cues they use to determine the

QuinJan points out that: "without a doubt, some current activity that goes under the banner of expert
systems does not belong there, being just an attempt to cash in on a fashionable buzzword" [Qui87].

Chapter 9 - Expert Systems and Speech Understanding 9-4

tone or mood of the speaker. Even when a person has understood the jargon, he will still

struggle to explain what he does so naturally.

The second and perhaps most important role is that of the knowledge engineer. The

knowledge engineer's task is to extract, unravel and assimilate the knowledge for the

system from every possible source (textbooks and the domain experts) into a symbolic

form, by which it may be represented in the expert system. This stage in the development

of the expert system is referred to as the 'bottle-neck' (eg. in [Hay83] and [For84]) because

it involves all the major design issues and the time consuming role of extracting the

knowledge. The domain knowledge is' extracted from two main sources: published

textbooks full of theoretical definitions, facts and details and experiential knowledge

acquired by 'picking the brains' of the best domain experts in that field. Experiential

knowledge such as this, is usually full of what is termed heuristics, rules-of-thumb or

educated guess-work. This type of knowledge is the most difficult to extract because the

domain experts often struggle to put into words what is so natural to them. The task of

acquiring the domain knowledge is usually delegated to a separate member of the team of

designers who is known as the knowledge engineer. A detailed description of the

knowledge acquisition process (and a case study) is presented in Hayes..,Roth et al [Hay83].

In a speech recognition project, defining knowledge about natural language and speech

processes may seem trivial because of the argument that speaking is 'natural to humans'

but as is shown by scholars' lack of affinity with classroom grammar, the abstraction of

this information is very difficult. The knowledge engineer will therefore have to rely on

knowledge from linguists, psychologists and cognitive scientists. It should also be pointed

out that because of the diversity of the types of knowledge in speech recognition and

natural language processing, the problem of building a speech understanding system is

usually divided into modules each with a separate knowledge engineering component.

In addition, it is interesting (if obvious) to note that the knowledge engineer becomes quite

an expert in the problem-domain by the end of the project. This is useful for the designing

stage of the system when the domain expert is often not always on hand to answer for the

design decisions made.

The third role is that of the programmer. It is his task to encode the knowledge assimilated

by the knowledge engineer. Another function of his role is to create the user interface

which provides feedback of the system's decisions to the user. If an expert system shell (a

package or utility program for building expert systems) is used, the role of the programmer

may be eliminated.

Chapter 9 • Expert Systems and Speech Understanding 9-5

9.2.2 Components of an Expert System

An expert system is comprised of four basic components [Eng88]:

• a knowledge base

• an inference engine

• a working storage

• a user interface

Working
Storage

Inference
Engine

Program

Knowledge
Base

Figure 9.1 The Components of a Typical Expert System

The first two components have been discussed in some detail in the previous chapter with

respect to NLP. The knowledge base is the database of facts required by the system to

solve the domain problems. The most important issue concerning the knowledge base is

how to represent the knowledge. The inference engine, on the other hand, has been c~lled

the 'gate-keeper' (by [Cha85]) in that it services the queries from the system (perhaps from

the user) by searching through the database for answers and then submits the answers and

possible explanations back to the system. The forward- and backward chaining problem­

solving strategies relate to the inference engine were also mentioned in Chapter 8. The

working storage contains the internal representation of the current state of the solution as

determined by the system.

The user interface is that part of the expert system which communicates with the user. It

performs the vital roles of providing response, feedback and explanations of the decisions

taken by the expert system to the user. Explanations are given to show the user the

"thinking steps" taken and inferences made by the expert system to reach its conclusions.

Chapter 9 - Expert Systems and Speech Understanding 9-6

In the case of an expert speech understanding system, explanations about how decisions are

made at the lower levels of phoneme recognition say, would not be understood by the user.

Such explanations may be useful during the developmental stage of the system to the

designers qualified to understand them. In human conversation, audible feedback and

non-speech gestures (body language) play an important role in 'getting the message across'

and acknowledging that the message has been received. Ultimately, speech recognition

systems will need to incorporate these human-like interfacing techniques for effective

conversation to result. The ultimate system is a seeing, gesturing computer as prophesied

by the quotation from Byte magazine in chapter 1.

9.2.3 An 'Expert System' for Speech Recognition

It has been mentioned on several occasions that speech contains much redundant, encoded

information about the speaker and the speech message. Information about the speaker can

help recognition for instance by preparing the listener to adjust to a foreign accent or a high

pitched voice. Speech sound units have been shown to be difficult to extract from the

speech signal without the aid and integration of higher level language tools. This syntactic,

semantic, pragmatic and prosodic knowledge available in the speech signal is also used by

humans to perfect the otherwise vulnerable pattern recognition performed by the ear. The

classical expert system model described above is too limiting for the diversity of this

speech and language knowledge and as a result the more powerful blackboard expert

system model was developed.

9.3 Blackboard Systems

Blackboard systems are complex integrated expert systems with the ability to handle

multiple knowledge sources. The term blackboard was coined to describe a system with

a global problem-solving area on which the partial solutions and ultimately the final

solution can be viewed and updated by any of a number of problem-solving expert systems

called knowledge sources. A 'puzzle building' analogy (eg. in [Red76]) is often used to

describe the blackboard system and how it operates.

9.3.1 The Puzzle Building Analogy

In the analogy, the blackboard is the area where the partial solutions of the puzzle are

placed. The knowledge-sources are the puzzle-builders gathered in a classroom with a

blackboard onto which the over-sized pieces of puzzle (with a sticky backing) are placed.

The 'most promising' pieces of puzzle are placed by the puzzle-builders on the blackboard.

Chapter 9 - Expert Systems and Speech Understanding 9-7

The other' intelligent' puzzle-builders match their pieces against those on the blackboard

to see if they can contribute to the solution. In order to prevent congestion around the

blackboard, a controller or supervisor is introduced to monitor which and when builders

are allowed to update the pieces on the blackboard. The builders indicate to the supervisor

whenever they see they have a piece to contribute. The supervisor makes a note of them

and then (according to some scheduling plan) commands them to approach and update the

blackboard one at a time. The analogy can be extended even further if the builders are

given separate parts of the puzzle to work on. For example, one builder may be given all

the edge pieces and a high priority for placing his pieces on the blackboard. Another

builder may be in charge of dividing all the pieces of puzzle into colour coordinated

regions and then sharing out these regions to the other builders. The skills required by the

different kinds of builders can thus be very different. This illustrates the need to have

separate knowledge sources for specific tasks in a blackboard system. The puzzle solution

can be carried out concurrently with several builders approaching the blackboard at once

(though physically the blackboard can become congested). With a more elaborate,

physically less taxing system, concurrency can be achieved. The key points in the analogy

that are applicable to blackboard systems are:

•
•

•

•

the central blackboard solution space

the individual knowledge sources (puzzle-builders) with different skills and

functions in working to the solution

the knowledge sources solving the problem from their perspective of the

blackboard. That is, problem-solving is distributed and can thus be

implemented concurrently.

the supervisor or controller which controls the updating of the blackboard

by the knowledge sources, scheduling their update requests and ·thus

controlling the global problem-solving strategy.

9.3.2 Blackboard Model

The blackboard model describes the problem-solving strategy and the design of the

knowledge structures in a blackboard system. The model illustrated in figure 9.2, can be

compared with that of the classical expert system depicted in figure 9.1.

The classical expert system was seen to be comprised of: a single knowledge base, the

database of the system facts and an inference engine to handle queries and infer new facts

and solutions from the old ones. It also has a working memory which stores the status of

the partial solutions and an up to date internal representation of the semantics of the

Chapter 9 • Expert Systems and Speech Understanding 9-8

working system. Finally, these systems often have a user interface which allows them to

communicate with users from the real world, ideally in a natural way.

Level k

Level 3

Level 2

Levell

Key:
c...._~) Program Modules

1 1 Databases

~-.,

I
I
I

\
-"'1

I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I

---------~

---a Data Flow

----~ Control Flow

Figure 9.2 The Blackboard System Model adapted from [Eng88]

The blackboard system on the contrary consists of several knowledge sources, each

comprised of its own knowledge base and inference engine; a global work-space called the

blackboard, a blackboard controller and a user interface.

In the classical expert system, the most common problem-solving strategies used by the

inference engine are the forward- or backward-chaining techniques. The blackboard system

on the other hand, uses a distributed problem-solving approach where several knowledge

sources are asynchronously and possibly concurrently involved in solving the problem.

Knowledge sources are stimulated (triggered) when they 'see'. they have something new

to offer the solution and thus the problem-solving strategy is termed opportunistic.

In the practical implementation of the blackboard model, some central control is required

to keep the solutions on the blackboard consistent for all the knowledge sources at all

times. As a result, it is the controller's role to schedule (according to some optimal

strategy) the knowledge sources that have indicated they have something to offer the

solution. It is important to note that the central controller does not dictate how and when

the knowledge sources do their 'viewing' and 'thinking' on the issues on the blackboard.

Chapter 9 - Expert Systems and Speech Understanding 9-9

In this respect, the problem-solving strategy is distributed and can be implemented

concurrently.

The knowledge sources are usually separated into independent units, all of which have

access to the common solution information on the blackboard. For example, in the speech

recognition problem, different knowledge sources might be built for solving the different

parts of the recognition problem, like building words from sounds ('word builder') or

constructing the internal 'semantic picture' of the sentence ('semantics generator'). In

addition, both the 'word builder' and 'semantics generator' knowledge sources would be

able to view the word hypotheses generated on the blackboard. The 'word generator' might

use the knowledge of the previous words to restrict the probabilities of the next word while

the 'semantics generator' would use the recognition of each new word to construc~ the

'meaning picture' of the sentence. The independence of the knowledge sources is achieved

by each having a separate knowledge base specific to its perspective of the overall problem,

together with an inference engine designed to query and manipulate its knowledge base.

The inference engines can be forward- or backward-chaining according to the nature of its

knowledge and the angle from which it approaches the problem.

Additional control of the blackboard is ensured by standardising the routines that read and

write data to the blackboard. Consideration must be given to when to lock records in the

blackboard data structure so that the different knowledge sources (Kss) do not have access

to different results at the same time. (That is, KS1 accesses record A on the blackboard,

a moment later KS2 updates record A which is then overwritten by a new value determined

by KS1). The standard blackboard maintenance routines (reading and writing) also simplify

the communication between the different knowledge sources through the blackboard, thus

limiting the possibility of inconsistent information in the system. Some systems have

partitioned blackboards to allow knowledge sources access to only certain parts of the

solution relevant to them. This is another form of control that can be introduced to ensure

consistency of the information.

9.3.3 Early History of Blackboard Expert Systems

The early development of blackboard systems is centred on one (the HEARSAY-11 system)

of the three projects commissioned by DARPA1 to build a speech understanding system

in 1971. The beginnings of the concepts of the blackboard had been thought out by Newell

several years earlier:

Defense Advanced Research Projects Agency

Chapter 9 - Expert Systems and Speech Understanding 9·10

"Metaphorically we can think of a set of workers, all looking at the same

blackboard: each is able to read everything that is on it, and to judge when

he has something worthwhile to add to it. This conception is just that of

Selfridge's Pandemonium (Selfridge, 1959): a set of demons, each

independently looking at the total situation and shrieking in proportion to

what they see that fits their natures ..." [New62] quoted in [Eng88]

Practical work using blackboard ideas was begun before the DARPA project by Reddy with

his HEARSAY-I system [Red76], the fore-runner of HEARSAY-II (see [Erm76] and

[Eng88]). Since then the scope of problems tackled by the blackboard system model has

diversified. A complete history of the development of the field is contained in a

comprehensive book on blackboard systems by Engelmore et al [Eng88].

DARPA Speech Understanding Project

DARPA commissioned three organisations: Carnegie-Mellon University (CMU)l; Bolt,

Beranek and Newman (BBN)2 and System Development Corporation with Stanford

Research Institute (SDC/SRI) in 1971 to build speech understanding systems with the

following requirements:

•
•
•

•
•

vocabulary of >1000 words

95% accuracy rate in sentence translation

speaker-independent but cooperative

within S years

the system understands in real-time

A comprehensive review of the DARPA (sometimes referred to as ARPA ie. without the

D for Defense) project is covered by [Kla77]. Little is mentioned of the SDC/SRI system

in the main discussions on speech understanding (eg. see [Whi76b]) while the HWIM and

especially the HEARSAY systems have had much written about them. The best sources for.

the HWIM system are penned by Woods in various articles including [Wo07S] [Wo085]

and (with Wolf) in [WoI79]. The HWIM system which attempted to control "travel budget

management" [Wo179] (ie. to act as a travel agent) was never fully completed and thus the

results were fairly poor (44-49%) sentence recognition. Another reason for these results (in

comparison with those of the HEARSAY-11 system) was the greater scope of allowable

Actually two systems were produced by eMU, the HARPY and HEARSAY-IT systems.

2
The BBN system was caJled HWIM, an acronym for Hear What I Mean.

Chapter 9 - Expert Systems and Speech Understanding 9-11

sentences in order to function in the real world as a travel agent. The details of the HWIM

system are beyond the scope of this chapter which focuses on blackboard systems. The

HEARSAY-II speech understanding system was the first practical system to employ the

blackboard system model. Much has been written about this system because it performed

the best of the three in the DARPA project and also because of the interest in its

blackboard structure. Its authors Erman and Lesser under the supervision of Reddy (and a

team of other researchers) have written much about their system. A good overview is found

in [Les75] while [Red73] contains the details of the predecessor HEARSAY-I system used

to understand spoken chess moves. The details ofHEARSAY-II's blackboard system design

are admirably dealt with in [Eng88].

The HEARSAY-II speech understanding system was completed by 1976 and came close

to reaching the goals specified by ARPA. A compiled version of HEARSAY-11 called

HARPY (see [Low77]) achieved the best results of all the systems, actually accomplishing

the requirements set by DARPA. Unfortunately, the implementation of the HARPY system

was 'hard-wired' for predefined speech knowledge and was not easily updated or extended.

For example if new words were included in the lexicon, the entire program had to be

recompiled, a 13 hour (!) process [Eng88]. HEARSAY-II on the other hand, achieved only

90% accuracy with response times several orders slower than real-time. This system was

based on the blackboard model which, owing to its modularity, allowed for extension to

the knowledge bases without recompiling the entire system. The concluding sections of this

chapter examine the HEARSAY-II system as described by its designers in [Eng88].

9.3.4 HEARSAY-II

The various processes in the HEARSAY-II system are summarised to begin with.

Firstly, the speech signal is sampled and preprocessed to obtain characteristic speech

feature vectors. The ZAPDASH segmenter (see chapter 4) is used to segment the signal

into broad phonetic categories distinguishing regions of silence, frication, sonorance (vowel­

like), voicing etc. These segments are then labelled by a vector quantization procedure (see

chapter 4) with the codewords associated with the codevectors which best match the speech

feature vectors extracted for each time frame. In fact, the best few codewords (and a

confidence factor associated with each) are stored for each time frame so that the

possibility of missing a phoneme at this early stage of processing" through poor pattern

matching is negligible.

Next, combinations of labelled phoneme segments are synthesised hierarchically into

syllable, word, phrase and finally sentence hypotheses. At various stages of processing,

Chapter 9 - Expert Systems and Speech Understanding 9-12

predictions are made about possible strings of syllables, words, phrases occurring in the

future (based on what has already been processed). These predictions are later verified by

post-processing once the actual hypotheses have been generated from the bottom-up

synthesis process. At the same time, a 'semantic picture' of the sentence l is developed to

eliminate certain possibilities and focus the recogniser on the subject-matter of the sentence.

In the next section, the basic features of the HEARSAY-II system are discussed including

the blackboard structure, the knowledge sources and the scheduler.

The Blackboard

The basic strategy behind any speech understanding system is to reduce the uncertainty of

the low-level phoneme-based (or equivalent subword sound unit) pattern recognition 'ear'

using higher-level speech and language knowledge. This can be achieved by storing on the

blackboard the best few phoneme matches for each time frame and then predicting strings

of phonemes as syllables, words, phrases and finally sentences in a hierarchical manner (ie.

in levels). The system assigns to every hypothesis at every level a confidence factor

measuring its credibility. Hypotheses in the same (or overlapping) time frames at the same

level are considered to be competitive while those in the same time frame at different levels

are said to be cooperative. The best options are thus determined by the confidence factors

of the hypotheses at any time frame of the signal. Links are kept between levels (eg.

word -+ phrase) describing the cooperative relationships between hypotheses at different

levels. In addition, competitive links are kept between hypotheses competing for the same

time frame at a particular level.

The blackboard is structured hierarchically with phoneme hypotheses at the lowest level

and sentence hypotheses and semantic abstractions at the top levels. This allows the

solution to be tackled in a top-down and bottom-up manner. The hypotheses corresponding

to recognised sound events at the lowest level are used to synthesise information up the

hierarchical structure. At the same time, decisions about the sentence structure and meaning

made globally are refined (using the divide-and-conquer strategy) until the hypotheses

lower down are met and matched.

Also, for every new hypothesis on every level, there are usually repercussions for the

hypotheses on the same level and the ones above. For example, if a new phoneme

hypothesis is determined, it will trigger interest from the syllable and word levels which

will need to use the new phoneme to update their evolving syllables and words. The levels

which predict speech events in advance will require verification of their predictions when

Including pragmatic information

Chapter 9 - Expert Systems and Speech Understanding 9-13

the actual events are later determined. The system uses a prediction and verification

strategy to optimise the search for the global solution. This approach was shown to model

the way humans listen or read in chapter 8.

LEVELS

DATABASE
INTERFACE

PHRASE

WORD-SEQ

WORD

SYLLABLE

SEGMENT

PARAMETER

KNOWLEDGE SOURCES

STOP
~

WOAO..sEQ.CTL

~

WOAD-C'Tl

~ APOL

Figure 9.3 The Levels of the Solution adapted from [Eng88]

Figure 9.3 shows the various levels of solution and the interIevel processes associated with

each level.

The Knowledge Sources

The knowledge sources have two main components: a precondition and an action.

The precondition of a particular knowledge source is the set of events or actions that must

take place on the blackboard in order for that knowledge source to be able to contribute

to the (partial) solution of the problem. This set of prerequisite events or actions matching

the knowledge source's precondition is called the stimulus frame. Once the precondition

has been met, the knowledge source sends the stimulus frame and a standard report1 to

the scheduler of what the knowledge source hopes to achieve and the time taken to perform

this if it were allowed to update the blackboard. This message to the scheduler is known

as the response frame.

The action component of a knowledge source is a set of procedures which the knowledge

source carries out when the scheduler grants it permission to update the blackboard

according to its request (submitted by the response frame). The steps carried out by the

It is standard because the format of the report is set for all knowledge sources.

Chapter 9 - Expert Systems and Speech Understanding 9-14

•

•

•

•

action of some knowledge source typically generates stimulus frames triggering the

preconditions of other knowledge sources. Thus changes in the blackboard create requests

for more changes to the blackboard in an opportunistic manner.

The HEARSAY-I system used a polling system where the controller would poll each

knowledge source to check the blackboard to see whether its precondition was met. This

technique was rejected due to its inefficiency. Instead the primitive changes in the

blackboard associated with each precondition, is given to the blackboard controller. When

these primitive changes to the blackboard take place, the controller triggers the relevant

knowledge sources in an interrupt-driven manner.

A summary of the various knowledge sources of the HEARSAY-II system is presented

below [Eng88]:

Signal acquisition, parameter
• SEG: digitizes the signal, measures parameters and produces a labelled

segmentation
• MOW: creates word hypotheses from syllable classes
• WORD-CTL: controls the number of word hypotheses that MOW creates

Phrase-island generation
• WORD-SEQ: creates word-sequence hypotheses that represent potential phrases

from word hypotheses and weak grammatical knowledge
• WORD-SEQ-CTL: controls the number of hypotheses that WORD-SEQ creates
• PARSE: attempts to parse a word sequence and, if successful creates a phrase

hypothesis from it

Phrase extending
• PREDICT: predicts all possible words that might syntactically precede or follow

a given phrase
VERIFY: rates the consistency between segmented hypotheses and a contiguous
word-phrase pair
CONCAT: creates a phrase hypothesis from a verified contiguous word-pair

Rating, halting and interpretation
• RPOL: rates the credibility of each new or modified hypothesis using information

placed on the hypothesis by other Kss
STOP: decides to halt processing (detects a complete sentence with a sufficiently
high rating, or notes the system has exhausted its available resources) and selects
the best phrase hypothesis or set of complementary phrase hypotheses as the output
SEMANT: generates an unambiguous interpretation for the information-retrieval
system which the user has queried

Chapter 9 - Expert Systems and Speech Understanding 9-15

The Scheduler

The task of the scheduler is to determine when to execute the pending tasks described by

the response frames. The priority of the various pending tasks is predominantly determined

by the usefulness of their execution to the overall solution. This is measured by checking

the stimulus and response frames of the pending tasks and other general blackboard

information ego time since the hypothesis was generated. There are several potential hazards

with scheduling, the most important being the possibility of an explosion in the number of

pending knowledge sources waiting to update the blackboard. This problem can be averted

by increasing the power of the scheduler to remove requests by various knowledge sources

to update the blackboard if it deems that their contributions are ineffectual.

9.4 Conclusion

This chapter showed the need for an integrated knowledge-based system to improve the

relatively poor pattern recognition results of phoneme-based speech recognition systems.

The blackboard expert system based on problem-solving strategies of expert systems was

studied as the most successful system to date for solving this task.

Building a speech understanding system is a sizeable ask. The HEARSAY-11 speech

project, for example, needed 40 man-years to implement [Eng88]. Hayes-Roth implies the

same thing when he rather pessimistically reviews the speech understanding problem,

saying that it will take a small Apollo project team three years to build a speech recogniser

with a 1000-word vocabulary with a very restricted grammar and universe of discourse

[Hay83].

The blackboard appears to have the structure and design flexibility to undertake this

enormous task. What is lacking at the moment, is hardware technology and algorithms to

solve the speech recognition problem using concurrent and distributed processing.

Finally, it is interesting to note that since the DARPA project, there seems to have been

no further systems attempting to solve speech understanding. Researchers have possibly

grown despondent with the small rewards gained from such undertakings and prefer to take

on and solve smaller parts of the bigger picture.

Chapter 9 - Expert Systems and Speech Understanding 9-16

	Loureiro_G_M_1992.front.p001
	Loureiro_G_M_1992.front.p002
	Loureiro_G_M_1992.front.p003
	Loureiro_G_M_1992.front.p004
	Loureiro_G_M_1992.front.p005
	Loureiro_G_M_1992.front.p006
	Loureiro_G_M_1992.front.p007
	Loureiro_G_M_1992.front.p008
	Loureiro_G_M_1992.front.p009
	Loureiro_G_M_1992.front.p010
	Loureiro_G_M_1992.front.p011
	Loureiro_G_M_1992.front.p012
	Loureiro_G_M_1992_Chp1.p001
	Loureiro_G_M_1992_Chp1.p002
	Loureiro_G_M_1992_Chp1.p003
	Loureiro_G_M_1992_Chp1.p004
	Loureiro_G_M_1992_Chp1.p005
	Loureiro_G_M_1992_Chp1.p006
	Loureiro_G_M_1992_Chp1.p007
	Loureiro_G_M_1992_Chp10.p001
	Loureiro_G_M_1992_Chp10.p002
	Loureiro_G_M_1992_Chp10.p003_Reference
	Loureiro_G_M_1992_Chp10.p004_Reference
	Loureiro_G_M_1992_Chp10.p005_Reference
	Loureiro_G_M_1992_Chp10.p006_Reference
	Loureiro_G_M_1992_Chp10.p007_Reference
	Loureiro_G_M_1992_Chp10.p008_Reference
	Loureiro_G_M_1992_Chp10.p009_Reference
	Loureiro_G_M_1992_Chp10.p010_Reference
	Loureiro_G_M_1992_Chp10.p011_Reference
	Loureiro_G_M_1992_Chp10.p012_Reference
	Loureiro_G_M_1992_Chp2.p001
	Loureiro_G_M_1992_Chp2.p002
	Loureiro_G_M_1992_Chp2.p003
	Loureiro_G_M_1992_Chp2.p004
	Loureiro_G_M_1992_Chp2.p005
	Loureiro_G_M_1992_Chp2.p006
	Loureiro_G_M_1992_Chp2.p007
	Loureiro_G_M_1992_Chp2.p008
	Loureiro_G_M_1992_Chp2.p009
	Loureiro_G_M_1992_Chp2.p010
	Loureiro_G_M_1992_Chp2.p011
	Loureiro_G_M_1992_Chp2.p012
	Loureiro_G_M_1992_Chp2.p013
	Loureiro_G_M_1992_Chp2.p014
	Loureiro_G_M_1992_Chp2.p015
	Loureiro_G_M_1992_Chp2.p016
	Loureiro_G_M_1992_Chp2.p017
	Loureiro_G_M_1992_Chp2.p018
	Loureiro_G_M_1992_Chp2.p019
	Loureiro_G_M_1992_Chp2.p020
	Loureiro_G_M_1992_Chp2.p021
	Loureiro_G_M_1992_Chp2.p022
	Loureiro_G_M_1992_Chp2.p023
	Loureiro_G_M_1992_Chp2.p024
	Loureiro_G_M_1992_Chp3.p001
	Loureiro_G_M_1992_Chp3.p002
	Loureiro_G_M_1992_Chp3.p003
	Loureiro_G_M_1992_Chp3.p004
	Loureiro_G_M_1992_Chp3.p005
	Loureiro_G_M_1992_Chp3.p006
	Loureiro_G_M_1992_Chp3.p007
	Loureiro_G_M_1992_Chp3.p008
	Loureiro_G_M_1992_Chp3.p009
	Loureiro_G_M_1992_Chp3.p010
	Loureiro_G_M_1992_Chp3.p011
	Loureiro_G_M_1992_Chp3.p012
	Loureiro_G_M_1992_Chp3.p013
	Loureiro_G_M_1992_Chp3.p014
	Loureiro_G_M_1992_Chp3.p015
	Loureiro_G_M_1992_Chp3.p016
	Loureiro_G_M_1992_Chp3.p017
	Loureiro_G_M_1992_Chp3.p018
	Loureiro_G_M_1992_Chp3.p019
	Loureiro_G_M_1992_Chp3.p020
	Loureiro_G_M_1992_Chp3.p021
	Loureiro_G_M_1992_Chp3.p022
	Loureiro_G_M_1992_Chp3.p023
	Loureiro_G_M_1992_Chp3.p024
	Loureiro_G_M_1992_Chp3.p025
	Loureiro_G_M_1992_Chp4.p001
	Loureiro_G_M_1992_Chp4.p002
	Loureiro_G_M_1992_Chp4.p003
	Loureiro_G_M_1992_Chp4.p004
	Loureiro_G_M_1992_Chp4.p005
	Loureiro_G_M_1992_Chp4.p006
	Loureiro_G_M_1992_Chp4.p007
	Loureiro_G_M_1992_Chp4.p008
	Loureiro_G_M_1992_Chp4.p009
	Loureiro_G_M_1992_Chp4.p010
	Loureiro_G_M_1992_Chp4.p011
	Loureiro_G_M_1992_Chp4.p012
	Loureiro_G_M_1992_Chp4.p013
	Loureiro_G_M_1992_Chp4.p014
	Loureiro_G_M_1992_Chp4.p015
	Loureiro_G_M_1992_Chp4.p016
	Loureiro_G_M_1992_Chp4.p017
	Loureiro_G_M_1992_Chp4.p018
	Loureiro_G_M_1992_Chp4.p019
	Loureiro_G_M_1992_Chp4.p020
	Loureiro_G_M_1992_Chp4.p021
	Loureiro_G_M_1992_Chp4.p022
	Loureiro_G_M_1992_Chp4.p023
	Loureiro_G_M_1992_Chp4.p024
	Loureiro_G_M_1992_Chp4.p025
	Loureiro_G_M_1992_Chp5.p001
	Loureiro_G_M_1992_Chp5.p002
	Loureiro_G_M_1992_Chp5.p003
	Loureiro_G_M_1992_Chp5.p004
	Loureiro_G_M_1992_Chp5.p005
	Loureiro_G_M_1992_Chp5.p006
	Loureiro_G_M_1992_Chp5.p007
	Loureiro_G_M_1992_Chp5.p008
	Loureiro_G_M_1992_Chp5.p009
	Loureiro_G_M_1992_Chp5.p010
	Loureiro_G_M_1992_Chp5.p011
	Loureiro_G_M_1992_Chp5.p012
	Loureiro_G_M_1992_Chp5.p013
	Loureiro_G_M_1992_Chp5.p014
	Loureiro_G_M_1992_Chp5.p015
	Loureiro_G_M_1992_Chp5.p016
	Loureiro_G_M_1992_Chp5.p017
	Loureiro_G_M_1992_Chp5.p018
	Loureiro_G_M_1992_Chp5.p019
	Loureiro_G_M_1992_Chp5.p020
	Loureiro_G_M_1992_Chp5.p021
	Loureiro_G_M_1992_Chp5.p022
	Loureiro_G_M_1992_Chp5.p023
	Loureiro_G_M_1992_Chp5.p024
	Loureiro_G_M_1992_Chp5.p025
	Loureiro_G_M_1992_Chp5.p026
	Loureiro_G_M_1992_Chp5.p027
	Loureiro_G_M_1992_Chp6.p001
	Loureiro_G_M_1992_Chp6.p002
	Loureiro_G_M_1992_Chp6.p003
	Loureiro_G_M_1992_Chp6.p004
	Loureiro_G_M_1992_Chp6.p005
	Loureiro_G_M_1992_Chp6.p006
	Loureiro_G_M_1992_Chp6.p007
	Loureiro_G_M_1992_Chp6.p008
	Loureiro_G_M_1992_Chp6.p009
	Loureiro_G_M_1992_Chp6.p010
	Loureiro_G_M_1992_Chp6.p011
	Loureiro_G_M_1992_Chp6.p012
	Loureiro_G_M_1992_Chp6.p013
	Loureiro_G_M_1992_Chp6.p014
	Loureiro_G_M_1992_Chp6.p015
	Loureiro_G_M_1992_Chp6.p016
	Loureiro_G_M_1992_Chp6.p017
	Loureiro_G_M_1992_Chp6.p018
	Loureiro_G_M_1992_Chp7.p001
	Loureiro_G_M_1992_Chp7.p002
	Loureiro_G_M_1992_Chp7.p003
	Loureiro_G_M_1992_Chp7.p004
	Loureiro_G_M_1992_Chp7.p005
	Loureiro_G_M_1992_Chp7.p006
	Loureiro_G_M_1992_Chp7.p007
	Loureiro_G_M_1992_Chp7.p008
	Loureiro_G_M_1992_Chp7.p009
	Loureiro_G_M_1992_Chp7.p010
	Loureiro_G_M_1992_Chp7.p011
	Loureiro_G_M_1992_Chp7.p012
	Loureiro_G_M_1992_Chp7.p013
	Loureiro_G_M_1992_Chp7.p014
	Loureiro_G_M_1992_Chp8.p001
	Loureiro_G_M_1992_Chp8.p002
	Loureiro_G_M_1992_Chp8.p003
	Loureiro_G_M_1992_Chp8.p004
	Loureiro_G_M_1992_Chp8.p005
	Loureiro_G_M_1992_Chp8.p006
	Loureiro_G_M_1992_Chp8.p007
	Loureiro_G_M_1992_Chp8.p008
	Loureiro_G_M_1992_Chp8.p009
	Loureiro_G_M_1992_Chp8.p010
	Loureiro_G_M_1992_Chp8.p011
	Loureiro_G_M_1992_Chp8.p012
	Loureiro_G_M_1992_Chp8.p013
	Loureiro_G_M_1992_Chp8.p014
	Loureiro_G_M_1992_Chp8.p015
	Loureiro_G_M_1992_Chp8.p016
	Loureiro_G_M_1992_Chp8.p017
	Loureiro_G_M_1992_Chp8.p018
	Loureiro_G_M_1992_Chp8.p019
	Loureiro_G_M_1992_Chp8.p020
	Loureiro_G_M_1992_Chp8.p021
	Loureiro_G_M_1992_Chp8.p022
	Loureiro_G_M_1992_Chp8.p023
	Loureiro_G_M_1992_Chp8.p024
	Loureiro_G_M_1992_Chp8.p025
	Loureiro_G_M_1992_Chp8.p026
	Loureiro_G_M_1992_Chp8.p027
	Loureiro_G_M_1992_Chp8.p028
	Loureiro_G_M_1992_Chp8.p029
	Loureiro_G_M_1992_Chp8.p030
	Loureiro_G_M_1992_Chp8.p031
	Loureiro_G_M_1992_Chp8.p032
	Loureiro_G_M_1992_Chp8.p033
	Loureiro_G_M_1992_Chp8.p034
	Loureiro_G_M_1992_Chp9.p001
	Loureiro_G_M_1992_Chp9.p002
	Loureiro_G_M_1992_Chp9.p003
	Loureiro_G_M_1992_Chp9.p004
	Loureiro_G_M_1992_Chp9.p005
	Loureiro_G_M_1992_Chp9.p006
	Loureiro_G_M_1992_Chp9.p007
	Loureiro_G_M_1992_Chp9.p008
	Loureiro_G_M_1992_Chp9.p009
	Loureiro_G_M_1992_Chp9.p010
	Loureiro_G_M_1992_Chp9.p011
	Loureiro_G_M_1992_Chp9.p012
	Loureiro_G_M_1992_Chp9.p013
	Loureiro_G_M_1992_Chp9.p014
	Loureiro_G_M_1992_Chp9.p015
	Loureiro_G_M_1992_Chp9.p016

