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ABSTRACT

Foot and mouth disease (FMD) is a contagious animal viral infection that can spread rapidly if

the disease is not monitored and controlled. Therefore, protecting livestock and controlling foot

and mouth disease is important for preventing economic losses. Much of the global burden of

economic losses due to foot and mouth disease falls on the worlds poorest countries that mostly

depend upon the health of their livestock. In these countries, the availability of FMD also has an

impact on the overall herd fertility, modifying the herd structure and affecting the selection of

breeds. Modelling the dynamics of FMD using mathematical analysis and simulations can assist

to monitor and control the spread of the disease. In this thesis, we develop, study, and anal-

yse models of foot and mouth disease in cattle by incorporate vaccination that does not induce

rapid protection, time delays, both time and spatial spread with different control strategies. The

results show that even though vaccines may not induce rapid protection the combining of a high

rate of vaccination and low loss of vaccine protection rate may be successful in reducing the

foot and mouth burden provided critical vaccination thresholds are taken into consideration.

The results also show that control strategies play a significant role in moving the animals into

protected routes of infection than leaving more animals into the unprotected route of infection.

We also capture the effects of prophylactic vaccination, reactive vaccination, prophylactic treat-

ment, reactive culling and the effects of time delay. The results of foot and mouth disease with

two-time delays show that the burden of infection decreases significantly when unprotected an-

imals delay maximally their time to show clinical symptoms, and at the same time by increasing

the effectiveness of the control strategies. The study also explores the effects of spatial diffusion,

quarantine of clinically infected animals and shedding of foot and mouth disease virus into the

environment. Analysis of foot and mouth disease control models suggests that implementing of

an effective combination of control strategies, limiting the movement of susceptible animals and

the shedding of FMDV protects animals from foot and mouth disease burden.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

For many poor and agriculture dependent countries, a major limitation on economic growth,

poverty reduction and food security is livestock diseases [1, 2]. One of these diseases which can

damage the economy and trade is foot and mouth disease (FMD) [3, 4, 5, 6]. Foot and mouth

disease is a major threat to maintaining a healthy domestic and wildlife livestock industry [6].

FMD may quickly and suddenly spread in a country or across national boundaries, when the

FMD virus is introduced into disease-free herds, areas or countries [7]. Foot and mouth disease

is not fatal in adult animals, and although infected animals recover from foot and mouth dis-

ease, the disease leaves them weakened and causes a reduction in milk and meat production

and a loss of weight [8]. The disease also causes fever and blister-like lesions followed by ero-

sion on the tongue and lips, teats, and between the animal hooves. In the long run affected

animals develop permanent hoof damage and chronic mastitis [9]. Control of foot and mouth

disease transmission and spreading of virus from an infected animals into disease-free herds

could be achieved through measures such as restricting the movement of infected animals and

foot and mouth disease virus (FMDV), preventing movement of infected animal products or by

reducing the number of susceptibles using vaccination [6, 10, 11]. Quarantining or culling of

infected animals is also another means of controlling foot and mouth disease burden [8]. Antivi-

ral drugs may also be used to protect animals from disease and reduce the risk of transmitting

foot and mouth disease [12, 13]. An outbreak of foot-and-mouth disease could lead to severe

trade restrictions with severe economic loses on affected countries. The consequences include

reduction in productivity and restrictions in movement of livestock products [6, 14]. Under-

1



Introduction 2

standing the transmission characteristics of infectious diseases can lead to better approaches in

reducing the transmission of such diseases [15, 16]. This work builds on and is motivated by

mathematical models developed by Maidana and Yang [17] and deterministic and stochastic

models developed by Keeling [5, 10]. Maidana and Yang [17] used a partial differential equa-

tion that incorporated only the diffusion of healthy animals. Their compartmental model took

into account susceptible, subclinical infections, clinical infections and recovered subpopulations.

By adding additional compartments and necessary modifications to their model we formulate

deterministic ordinary, delay and partial differential equations to study the dynamics of the foot

and mouth disease. The studies [5, 10, 15, 16, 17] do not include important compartments

such as the exposed and vaccinated carrier animal classes and a vaccine that does not induce

rapid protection, the rate of vaccination, quarantining clinically infected animals and aerosol

atmospheric environment parameters. In this study we incorporate these compartments and

parameters in our system of equations.

1.2 Biology of Foot and Mouth Disease

Foot-and-mouth disease (FMD) or hoof-and-mouth disease (HMD) is a fatal viral disease which

affects cloven-hoofed animals such as domestic and wild bovids [14, 18, 19, 20, 21, 22]. The

disease is transmitted by viral particles in the air that are transported by the wind as well as

through direct contact with infected animals [23, 24]. The foot and mouth disease causes a

high fever followed by blisters inside the mouth and on the feet for two to six days [19, 20].

Most animals fully recover from foot and mouth disease infection after three weeks [19]. The

cause of FMD was shown to be viral by Friedrich Loeffler in 1897 [25]. The virus that causes the

foot and mouth disease is an Aphthovirus which is a member of the Picornaviridae family [6].

The word Aphthovirus comes from the Greek word Aphtha which means vesicles in the mouth

[25, 26, 27, 28, 29]. According to immunological classification, there are seven distinct types
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of FMD viruses, A,O,C, SAT1, SAT2, SAT3 and Asia1 [30, 31, 32, 33]. Research showed that

the FMD virus can survive in infectious form up to 12 years in the soil and at least for a year in a

cell culture medium [6]. FMD is commonly found in parts of Asia, Africa, the Middle East, and

South America and serotype O virus is present in all continents where FMD is reported [30]. Of

the seven serotypes, six occur in Africa ( SAT1, SAT2, SAT3, A,O and C) [31, 34, 35], four in

Asia (A,C,O,Asia1), and only three in South America (A,O,C). Serotypes SAT1 and SAT2

have been occasionally reported in the Middle East [35]. Historically, 48% of FMD outbreaks in

domestic animals in Southern Africa are caused by serotype SAT2 [31, 34]. Immunization from

the infection of one serotype does not guarantee immunity against other serotypes [32, 35].

In the American hemisphere, outbreaks of FMD epidemic were recorded in 1870 at the same

time in the United States of America (USA), Argentina and Uruguay, and later at some years in

Paraguay [35].

1.3 Mathematical Models of Foot and Mouth Disease in

Cattle Population

In this section, we present the structure of specific models that have been utilized for foot

and mouth disease research. Studies of foot and mouth disease using mathematical models

have become popular [11, 36]. In general, it is important to study infectious diseases using

mathematical models and in particular, it is also important to study foot and mouth disease.

A lot of epidemic model structures have been developed over the years to address a vari-

ety of questions on foot and mouth disease including the use of deterministic mathematical

models [10, 11, 37, 38, 39, 40], continuous-time Markov chain stochastic model, an explicit

stochastic simulation model [40], ecological models [41, 42], age-structured difference equa-

tions [43, 44, 45], matrix-based models [46, 47] and hybrid mathematical techniques [48, 49].

Although vaccination of foot and mouth disease has a positive impact to minimize the disease
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risk and reducing cumulative FMD cases when an outbreak occurs but vaccination alone may

not be sufficient to eradicate the foot and mouth disease [50, 51]. The impact of vaccination and

culling on controlling foot and mouth disease can be evaluated using mathematical modelling

[14]. Therefore, the transmission dynamics of FMD modeling is an important and interesting

topic for a lot of researchers [5, 10, 14, 52]. In a country, normally free of FMD, previous

mathematical models of foot and mouth disease from farm-to-farm transmission have explored

the impacts of control measures such as culling and vaccination during a single outbreak [53].

A few mathematical models for foot and mouth disease that incorporate time and spatial dy-

namics have however not considered the significant effects of the combined control strategies

[11, 17, 36]. Guiding to develop the control policies in UK during 2001 using mathematical

models played an important role in guiding the foot and mouth epidemic [39]. Mathematical

models that incorporate ecological interactions are an essential tool in predicting the behavior of

complex model systems. Several studies explore predator-prey interactions, resource selection,

population growth, and dynamics of disease transmission models [54]. They provide an effec-

tive way to test new management and control strategies without resorting to empirical testing

that is often costly, time-consuming, and impractical [54]. Foot and mouth disease mathemat-

ical model has been studied using by construction the animal population into the susceptible,

latent, infectious, quarantine susceptible and quarantine latent classes [40]. Recent construction

of mathematical model used a system of reaction-diffusion equations and determined the wave

speed of foot and mouth disease as a function of the diffusion coefficient [17]. We developed

the mathematical models that incorporate vaccination that does not induce rapid protection,

time and spatial diffusion effects to capture the real-life epidemics with the effects of diffusion

of FMDV and aerosol atmospheric environment using reaction-diffusion equations.
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1.4 Overview of Ordinary Differential Equation Models

In this section, we present an overview of models based on ordinary differential equations.

A differential equation that involves functions of only one independent variable and one or

more of their derivatives with respect to that variable is an ordinary differential equation (ODE)

[55, 56]. Formulation of models as ordinary differential equations are the most prevalent in

dynamical systems [55, 56]. A number of studies use ordinary differential equation models

to study the foot and mouth disease dynamics [5, 10, 50, 52]. A limitation or shortcoming

of the ODE models is that they are not able to capture the spatial spread of most infectious

diseases. Most foot and mouth disease researchers have used ordinary differential equations

that incorporate control strategies such as vaccination and culling, but do not include the use

of a vaccine that does not induce rapid protection [57]. This study includes the effects of the

vaccine that does not induce rapid protection and different control strategies using systems of

ordinary differential equations. Mushayabasa et al. [14] formulated an ODE model to study the

impact of vaccination and culling on controlling of foot and mouth disease. Using the system

of ordinary differential equation Mushayabasa et al. showed that vaccination alone may not

be sufficient to eradicate the foot and mouth disease [50]. The dynamics of foot and mouth

disease in a contaminated environment using the ordinary differential equations was studied by

Mugabi et al. [58]. There study showed that the best option of a control strategy of FMD that

involves optimal use of vaccination has to be implemented with combination of vaccination and

environmental decontamination. Hence, we study the foot and mouth disease by incorporating

different control strategies together, such as vaccinating before (prophylactic vaccination) and

vaccinating after (reactive vaccination) the endemic of the disease, treating using different drugs

and quarantining clinically infected animals.
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1.5 Overview of Delay Differential Equation Models

In this section, we provide an overview of the delay differential equation models. A delay

differential equation (DDE) involves some ordinary derivatives with of time delay terms [59,

60]. The unique solution for the ordinary differential system is determined by an initial point at

an initial time t0. For a delay differential system, one requires information on the entire interval

[t0 − τ, t0], where, t0 and τ represent as initial time and delay time respectively [60]. There are

many systems in biology, medicine, chemistry, physics, engineering, economics, whose analysis

involves time delays. Therefore, ignoring the time delay is to ignore reality [61]. A delayed

epidemic model with stage-structure and impulses was studied by Zhang et al. [62] and study

suggested that the time lag plays a very important role in the stability of system. Several models

with time delays have been used that incorporate the exposed class and/or infective classes

by Busenberg and Cooke [63], Hethcote et al. [64], and Gao [65]. A dynamical model of

hand foot and mouth disease (HFMD) become infectious studied by considering varying total

population size, saturation incidence rate and discrete-time delay [66]. The effects of time

delay on predator-prey systems were studied using systems of delay differential equations on the

dynamics of the generalized Gausetype predator-prey models [67]. Mathematical models also

used to formulate the growth of tumors incorporating time delays [68]. The impacts of delayed

detection of foot-and-mouth disease of epidemic and economic was studied by Carpenter et al.

[69]. There findings underlined that the critical importance of early effective detection in place

before an introduction of FMDV to avoid dramatic losses to both livestock and the economy.

A number of delay differential equations have been used to model other infections with one

time delay [61, 70, 71] but few studies use time delay to study foot and mouth disease. Hence,

we formulate, develop and study the foot and mouth disease control by incorporating the time

delays of susceptible and clinically infected animals and different control strategies.
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1.6 Overview of Partial Differential Equation Models

In this section, we present an overview of partial differential equation models. A differen-

tial equation that contains multi-variable functions and their derivatives is a partial differen-

tial equation (PDE). PDEs are formulations of problems involving functions of several variables

[72]. Partial differential equations have been used in the literature to model the dynamics of

epidemics. The solutions of the partial differential equations are essential in understanding

epidemiological models [73, 74]. Partial differential equations have also been used to model

different ecological phenomenon such as ecological invasion, critical patch size, dispersal of me-

diated coexistence, and diffusion that drive spatial patterning [74, 75, 76]. A reaction-diffusion

epidemic model is formulated in terms of a spatial dispersal of species depending on both time

and space [77, 78]. A lot of researchers use mathematical modelling by implementing partial

differential equations to study the control strategies of foot and mouth disease burden [17, 51].

However, they used control strategies of vaccination with culling or with the quarantine of in-

fected animals but in our studies we include combined control strategies such as prophylactic

and reactive vaccination, quarantining of clinically infected animals by including the vaccine

that does not induce rapid protection and aerosol atmospheric environment effects. Maidana

et al. [17] incorporated the spatial spread of FMD without any control strategies. The control

strategies for foot and mouth disease are of paramount importance to animal health and for this

reason, it is imperative to consider the effects of control strategies available when modelling

the dynamics of FMD. In addition, the previous studies did not capture the effects of FMDV

infection spread through aerosols. Aerosol transmission of FMDV has been found to be an im-

portant route for FMD transmission [12] and its inclusion in the models has a potential to alter

the prediction of the infection progress. In areas where there is an outbreak of FMD, quarantin-

ing of infected animals is also an effective control measure to reduce contact between infected

and healthy animals [52]. However, because quarantine animals can still shed the virus into

the atmosphere through aerosols, this group of animals, together with the subclinically infected
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animals, clinically infected animals and vaccinated carrier animals can contribute towards the

transmission of FMDV to healthy animals [12]. This, therefore, suggests that studies modelling

FMD should capture the effects of aerosol transmission by including the concentration of FMDV

in the atmospheric environment.

Using the studies [12, 17, 79, 80, 81] as building blocks, we develop a model with spatial

spread of FMD incorporating vaccination that does not induce rapid protection, quarantine and

shedding the FMDV into the atmospheric environment through aerosols.

1.7 Statement of the Problem

The management and control of the foot and mouth disease is difficult because it can be trans-

mitted through direct and indirect contact with infected animals, as well as by the atmospheric

aerosol dispersal of FMDV in the environment. As a consequence of these and other complexi-

ties surrounding the disease dynamics, the disease is a serious concern in farming communities

[9]. Studies exist investigate the effects of vaccination but the current challenge is most of these

vaccines do not induce rapid protection, which means the vaccine that does not protect the

disease as soon as the vaccination is administrated. Other studies have investigated a combi-

nation of control strategies, such as vaccination and culling, vaccination and quarantining, and

vaccination and drug treatment [14]. Vaccination as a strategy involves the use of prophylactic

and reactive vaccines which can also be use a combined strategy. Treatment of FMD infected

animals is generally not available but there is evidence of prophylactic treatment that can also

be used in combination with other control strategies [12, 13]. Most of the studies on foot and

mouth epidemics have focused mainly on time-dependence, but the dynamics of FDM are also

been influenced by spatial expansion. Therefore, focusing on the time-variable only presents a

limited view of the predictive power and projections of mathematical modeling. In addition,
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the transmission of foot and mouth disease is also promoted through contact and aerosol sprays

in the environment. Hence, the environmental contributions in the transmission of FMD may

complicate to understand the dynamics of FMD. Various mathematical models can be used to

capture the change in status of cattle over time and space. These include the use of systems

of ordinary, delay and partial differential equations to capture the dynamics of FMD at a spe-

cific point in time, a specific interval and space. These mathematical models have increasing

become available and their use can go a long way in exposing potential FMD threats and point-

ing to potential measures. This study seeks to formulate mathematical models that incorporate

vaccination that does not induce rapid protection and control strategies, such as vaccination,

culling, quarantine and treatment. Various transmission routes inclusive of the effects of aerosol

transmission of FMBV are investigated.

1.8 Objectives of the Study

The aim of this study is to formulate mathematical epidemiological models using ordinary, delay

and partial differential equation to understand the dynamics of foot and mouth disease and to

use the data to inform preventive and control decisions.

The specific objectives of this study are:

(i) To formulate dynamical models of the foot-and-mouth disease in animals and to analyze

the model capturing the effects of control parameters and loss of vaccination protection.

(ii) To evaluate the effects of prophylactic vaccination, reactive vaccination, prophylactic treat-

ment, reactive culling and the effects of time delay on foot and mouth disease. and

(iii) To highlight the impact of vaccination, quarantining of clinically infected animals and en-
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vironmental effects on the transmission of disease viruses using a reaction-diffusion model

that captures the spread of foot and mouth disease in both space and time.

1.9 Significance of the Study

Various studies have been conducted with the aim of improving the surveillance, control of foot

and mouth disease and providing more information on the complex biology of the virus. This

study uses models that incorporate time and spatial effects and evaluates the use of combined

control strategies in controlling the FMD dynamics. The study explores the role of vaccination,

using a vaccine that does not induce rapid protection, vaccinating carriers, quarantining animals

and the environmental effects in the aerosol transmission of FMDV. The findings in this study

will be useful to a variety of stakeholders, such as livestock farmers and policy-makers when

developing intervention strategies to prevent, control and eliminate foot and mouth disease.

The findings will highlight specific areas that need attention and effort if the battle against

foot and mouth disease is to be won. For example, the findings provide a guide on whether a

combination of control strategies are effective in reducing or eliminating the foot and mouth

disease.

The use of reaction-diffusion epidemiological models that incorporate the use of combined con-

trol strategies in FMD studies has not been fully explored in the literature. This study will

potentially serve as a reference for future studies that apply the reaction-diffusion equation and

combined control strategies models in FMD research. The findings and models provide valuable

information on reaction-diffusion models for many infections that spread in both time and space

in biology and ecology.
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1.10 Outline of the Thesis

This thesis contains five chapters. Chapter 1 provided the background and motivation informa-

tion on this research. We presented the biology of foot and mouth disease, objectives, statement

of the problem and purpose or significance of the study. We presented an overview of studies

that used mathematical models to study the dynamics of the foot and mouth disease in cat-

tle populations. This included an overview of ordinary, delay and partial differential equation

models used in this study.

In Chapter 2, we formulate and analyze a deterministic model for the transmission dynamics of

foot and mouth disease in a cattle population. We study the impact of vaccination that does not

induce rapid protection from the foot and mouth disease.

Chapter 3 focuses on the development and analysis of control of foot and mouth disease with

two time delays. We incorporate control strategies based on prophylactic vaccination, reac-

tive vaccination, prophylactic treatment and reactive culling of animals when there is a time

delay.

In Chapter 4, we extend the model formulated in Chapter 2 by using spatial diffusion partial

differential equations. We use a reaction-diffusion model with environmental effects to inves-

tigate the effects of vaccination, quarantining of clinically infected animals, shedding of foot

and mouth disease virus into the environment and rates of movement of animals and virus. We

generalize the formula for computing the basic reproduction number. Numerical simulations

are performed using a reaction-diffusion model incorporating environmental effects to capture

different rates.

Lastly, in Chapter 5, we present a general conclusion to the thesis. Potential areas for further

research are highlighted.
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CHAPTER 2

MODELLING THE EFFECTS OF VACCINATION THAT DOES NOT INDUCE

RAPID PROTECTION ON FOOT AND MOUTH DISEASE

In this Chapter we present a mathematical model of foot and mouth disease incorporating vac-

cination that does not induce rapid protection due to prolonged susceptibility of vaccinated

animals before the induction of the vaccine induces an adaptive immune response.
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1 Introduction:

Foot and mouth disease (FMD) is a viral disease which affects cloven-hoofed animals such as
domestic and wild bovids in Asia, Africa, Europe and North America [1, 2, 3]. The disease is
transmitted by viral particles in the air which are transported by the wind, animal bodies as
well as direct contact through primarily infected epithelial cells [4, 5].

Foot and mouth disease is not fatal in adult animals but it causes a decrease in milk and meat
products as well as a reduction in the weight of the animals. Affected animals ultimately de-
velop permanent hoof damage and chronic mastitis. Severe trade restrictions can be imposed
which have economic impacts on affected countries. FMD is a major challenge for industri-
alized countries and with agricultural export-dependent economies [3]. Understanding the
transmission dynamics of infectious diseases in communities, regions, and countries can lead
to better approaches to reducing the transmission of infectious diseases [6, 7].

Some attempts of modelling foot and mouth disease transmission which focused on airborne
transmission between farms have been done [6, 8, 9]. Foot and mouth disease airborne
transmission models were developed after the outbreak of 1966 FMD epidemic in the UK
when the airborne transmission considered the major driver of FMD spread. Hagenaars et
al. [6] reviewed various modelling approaches and discussed parameter values used and
how estimates for these parameters were obtained. The study considered a system of ordi-
nary differential equation (ODE) models by taking into account three subpopulations; the
susceptible, infected and recovery animals.

Keeling [10] reviewed the studies on foot and mouth disease focusing on the three foot-and-
mouth disease models used in 2001 for UK outbreak [10], namely the InterSpread model
[11], the Cambridge-Edinburgh model [12] and the imperial model [13]. To capture the be-
tween farms transmission, the InterSpread model applied a stochastic model to calculate the
probability of spread depending on number and type of livestock and the distance between
farms. The InterSpread model can simulate a number of models with different complexities.
The Cambridge-Edinburgh model is a spatial model which used data from all the farms in
UK and their livestock recorded at the last census and the starting criteria are the same as
InterSpread model but Cambridge-Edinburgh had more simple and transparent mechanisms
and had fewer parameters and easier parameterizations. The Imperial model was based on
the strategy of SIR differential equations incorporating the number of farms and pairs of
locally connected farms.

A study by Ortiz et al. [14] presented a model on foot and mouth disease by dividing
the animal population into the susceptible, latent, infectious, quarantine susceptible and
quarantine latent classes of the system. They used three different approaches to model the
FMD spread, which are a deterministic model, a continuous-time Markov chain stochastic
model, and an explicit stochastic simulation model. The study showed that for effective
control of foot and mouth disease, screening and quarantine of infected animals before they
affect the susceptible group of animals was essential.

Maidana and Yang proposed a PDE model which divided the population into susceptibles,
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subclinical infectives, clinical infectives and recovered subpopulations [15]. Their results
showed that direct transmission is an important route in the disease spreading due to the
high rate of direct contact by animals.

Mushayabasa et al. [3] studied the impact of vaccination and culling on controlling foot and
mouth disease by splitting the population into susceptible, vaccinated, latently infected and
infectious animals. Their result showed for essential control of FMD both vaccination and
culling should be implemented.

Ringa and Bauch [16] developed a model by dividing the animal population into susceptible,
exposed, infectious, recovered and vaccinated. Their objective was to investigate the impacts
of prophylactic and ring vaccination, vaccine waning, loss of natural immunity and disease
re-introduction from an external source. The study showed that the dependence of disease
control effectiveness on loss of natural immunity and vaccine waning are enough to model
any mathematical model of FMD transmission and control in endemic countries.

Current vaccination has limitations on foot and mouth disease control programs and the
studies revealed similar challenges affect foot and mouth disease overall efficiencies [3, 16].
The limitation are driven by factors such as establishment of high containment facilities,
contamination of the viral protein during preparation of the vaccine and susceptibility of the
vaccinated animals prior to the induction of the adaptive immune. As a result, the vaccine
will not induce rapid protection and some vaccinated animals become long term carriers
[17].

In this study we shall investigate the effects of vaccination that does not induce rapid protec-
tion on the progression of foot and mouth disease. We design a dynamical model which seeks
to reveal the extent of the damage caused by such vaccines. In the next section we formulate
the model and analyze it in section 3. In section 4, we present parameter estimation and
numerical simulations. Discussion and conclusion will be presented in section 5.

2 Model Formulation

We present a model by subdividing the total population into susceptible animals S(t), ex-
posed animals E(t), subclinical infectious animals Is(t), clinical infectious animals Ic(t), re-
covered animals R(t), vaccinated animals Vv(t) and vaccinated carrier animals Vca(t). Sus-
ceptible animals are animals which are free of foot and mouth disease virus (FMDV), exposed
animals are animals which are not yet infectious but have the virus. Infectious animals are
divided into two subgroups namely the subclinical and clinical infective animals. A subclini-
cal animal is an infectious animal that is nearly or completely asymptomatic with no signs or
symptoms of infection [18]. The clinical infective animal is an infectious animal with clini-
cally diagnosed signs or symptoms. The vaccinated animals are animals which are protected
from the disease by a vaccine and vaccinated carrier animals are animals which are vacci-
nated but get infected because the vaccine does not induce rapid and complete protection.
The removed animals are either recovered or immune to the infection. The immunity may
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wane with time and the recovered animals become susceptible again [3, 19, 20].

We use the following assumptions for our model formulation: a susceptible animal contract
FMD infection and become exposed then an exposed animal become subclinical. A subclini-
cal animal is capable of transmitting the infection. The subclinical animal later shows signs
and symptoms of FMD and become highly infectious. The clinically infected animal develops
temporary immunity and moves to the recovered class and the recovered animal by losing
immunity becomes susceptible again [21]. We split the vaccinated animals into vaccinated
and vaccinated carrier animals. The vaccinated animals’ progress to vaccinated carrier an-
imals which then progress to the recovered animals. The vaccinated animals’ progression
to the vaccinated carrier class is due to the fact that a vaccine that does not induce rapid
protection [17].

The parameter ρ is the rate of vaccination and 0 ≤ ρ ≤ 1. We assume that the recruitment
of animals is given by bN where b is the rate of recruitment of susceptible animals through
birth and immigration and N is the total population. The force of infection for susceptible
animals is given by β(Is + η1Ic + η2Vca)/N . The new infections arise by successive contacts
between susceptible and infectious animals, where the contact occurs at a rate of β. η1 > 1
is an amplification to show that Ic is more infectious than Is. η2 < 1 is an amplification to
show that Vca is less infectious compared to Is and Ic. The exposed animals E progress from
E to Is at the rate ε, Is, progress to Ic at rate of α1 and Ic develop immunity at the rate of α2.
The recovered animals R progress from R to S at the rate of ω. The vaccinated Vv progress
to Vca by the force of infection, β φ (Is + η1 Ic + η2 Vca)/N and Vca progress to R at the rate of
α3. φ is the rate of protection loss due to the vaccination and 0 ≤ φ ≤ 1. Animals die due to
natural mortality at a rate of µ and γ is the density-dependent death rate. The flow diagram
for the model is presented in Figure 1.

bN

S E Is

Ic

RVcaVv

(1
− ρ

)b
N

β (Is+η1 Ic+η2 Vca)S
N εE

α1 Is

α2 Ic

ωR

α3 Vca
β φ (Is+η1 Ic+η2 Vca)Vv

N

ρ bN
(µ+ γ N)S (µ+ γ N)E (µ+ γ N)Is

(µ+ γ N)Ic

(µ+ γ N)R(µ+ γ N)Vca(µ+ γ N)Vv

Figure 1: Flow diagram for the model
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The resultant FMD model is governed by the system of ordinary differential equations,

dS

dt
= (1− ρ) bN −

(
β (Is + η1 Ic + η2 Vca)

N
+ µ+ γN

)
S + ωR, (1)

dE

dt
=

(
β (Is + η1 Ic + η2 Vca)

N

)
S − (ε+ µ+ γN)E, (2)

dIs
dt

= εE − (α1 + µ+ γN) Is, (3)

dIc
dt

= α1 Is − (α2 + µ+ γN) Ic, (4)

dR

dt
= α2 Ic − (ω + µ+ γN)R + α3 Vca, (5)

dVv
dt

= ρ bN −
(
β φ (Is + η1 Ic + η2 Vca)

N
+ µ+ γN

)
Vv, (6)

dVca
dt

=

(
β φ (Is + η1 Ic + η2 Vca)

N

)
Vv − (α3 + µ+ γN)Vca, (7)

subject to the initial conditions

S(0) = S0 ≥ 0 E(0) = E0 ≥ 0, Is(0) = Is 0 ≥ 0, Ic(0) = Ic 0 ≥ 0,

R(0) = R0 ≥ 0, Vv(0) = Vv0 ≥ 0, Vc(0) = Vca0 ≥ 0. (8)

Our model exhibits logistic growth, which is realistic in capturing density-dependent regula-
tory mechanisms and a kind of compensating the effect of overcrowding of the population
dynamics [22]. Adding equations of the model (1)-(7), leads to a logistic differential equa-
tion.

dN

dt
= rN

(
1− N

K

)
, where K =

r

γ
, r = b− µ,

whose solution is

N (t) =
K

1 + ψe−rt
, where, ψ =

(
K

N (0)
− 1

)
and N (0) ≤ K. (9)

K is the carrying capacity of animals, r is the linear growth rate. If r < 0, then N approaches
0 as t → ∞. If r = 0, then the population becomes constant as t → ∞ but when the
parameter r > 0 then

lim
t→∞

N(t) = lim
t→∞

K

1 + ψe−rt
= K.

we henceforth assume that r > 0.

3 Model analysis

3.1 Feasible region

For the model to be biologically meaningful we require that, all the variables and parameters
be non negative values.



6 K.M.Tessema et.al.

Theorem 1. Let the system of equations (1) - (7) have initial conditions (8). Then the region Γ
defined by (10) is positively invariant and attracting.

Γ = {(S(t), E(t), Is(t), Ic(s), R(t), Vv(t), Vca(t)) ∈ <7
+ |N(t) ≤ K}, (10)

Proof. Assume for t > 0, N(0) ≥ 0, S(0) ≥ 0, E(0) ≥ 0, Is(0) ≥ 0, Ic(0) ≥ 0 R(0) ≥ 0,
Vv(0) ≥ 0 and Vca(0) ≥ 0. From equation (7) we get

d

dt
Vca (t) > −(α3 + µ+ γN (s))Vca (t) , (11)

Integrating the expression, we get

Vca(t) ≥ Vca(0)e

−


(α3 + µ ) t+

∫ t

0

γN(s)ds



≥ 0. (12)

Hence, Vca ≥ 0, this implies that at any finite time, Vca is non-negative. A similar analysis
holds for equation (1) - (6) where,

R (t) ≥ R(0)e

−


(ω + µ ) t+

∫ t

0

γN(s)ds



≥ 0,

Is(t) ≥ Is(0)e

−


(α1 + µ, ) t+

∫ t

0

γN (s) ds)



≥ 0,

Ic(t) ≥ Ic(0)e

−


(α2 + µ ) t+

∫ t

0

γN (s) ds)



≥ 0,

S (t) ≥ S(0) e
−

(∫ t

0

(
β (Is (s) + η1 Ic (s) + η2 Vca (s))

N (s)
+ γN (s)

)
ds+ µ t

)

≥ 0,

E (t) ≥ E(0)e

−


(ε+ µ ) t+

∫ t

0

γN (s) ds



≥ 0,

Vv (t) ≥ Vv(0) e
−

(∫ t

0

(
β φ (Is (s) + η1 Ic(s) + η2 Vca(s))

N(s)
+ γN(s)

)
ds+ µ t

)

≥ 0.

Therefore, the solutions of the model with non-negative initial conditions remains non-
negative for all all 0 ≤ t < ∞. Since 0 ≤ (S(t), E(t), Is(t), Ic(t), R(t), Vv(t), Vca(t)) ≤
((1− ρ)K, 0, 0, 0, 0, ρK, 0), all variables are bounded in [0, K]. This shows that for initial
conditions (8) the region Γ is positively invariant and attracting.

3.2 The control reproduction ratio for the model

The control reproduction ratio is calculated using the next-generation matrix method [23,
24]. We take only the exposed and the infected classes of the model to calculate the control
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reproduction ratio. At the disease free equilibrium point, E = Is = Ic = R = Vca = 0,
S = (1− ρ)K and Vv = ρK. The control reproduction number is given by

Rc =
β ε (α2 + b+ η1α1) (1− ρ)

(α1 + b) (ε+ b) (α2 + b)
+
β φ η2ρ

α3 + b
,

where b = (µ+ γK).

The basic reproduction number ([25]) is obtained when there is no vaccination i.e when
ρ = 0,

R0 =
β ε (α2 + b+ η1α1)

(α1 + b) (ε+ b) (α2 + b)
.

The control reproduction ratio in terms of basic reproduction number is

Rc = R0 (1− ρU) , (13)

where U is the impact of vaccination and U = 1− β φ η2
R0 (α3+b)

. The critical vaccination coverage
ρc = 1

U
(1− 1

R0
). The critical vaccinations coverage is a function of the basic reproductive rate

R0 and the vaccine impact U . The critical vaccinations coverage (ρc) is greater or equals to
the vaccination rate ρ (see [26]).

3.3 Equilibrium points and stability analysis

The equilibria of this model are calculated by setting the right-hand side of equations (1) -
(7) to zero. The disease-free equilibrium point of the system of equation is given by

E0 = (Ŝ, Ê, Îs, Îc, R̂) = ((1− ρ )K, 0, 0, 0, 0, ρK, 0) .

The force of infection at the equilibrium point is

λ∗e =
β (Is + η1 Ic + η2 Vca)

K
. (14)

The endemic equilibrium of the system is given by

E1 = (S∗, E∗, I∗s , I
∗
c , R

∗, V ∗v , V
∗
ca)
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S∗ =
K bχ ((1− ρ) ν (b+ φλ∗e) + λ∗e ω α3φ ρ)

(α3 + b) (b+ φλ∗e) (b χ (b+ ω) + Πλ∗e)
,

E∗ =
K bλ∗e (b+ α1) (b+ α2) ((1− ρ) ν (b+ φλ∗e) + λ∗eω α3φ (1− ρ) ρ)

(b+ α3) (b+ φλ∗e) (b χ (ω + b) + Πλ∗e)
,

I∗s =
K ε b λ∗e (b+ α2) ((1− ρ) ν (b+ φλ∗e) + λ∗e ω α3φ ρ)

(α3 + b) (b+ φλ∗e) (bχ (ω + b) + Πλ∗e)
,

I∗c =
K λ∗e α1ε b ((1− ρ) ν (b+ φλ∗e) + λ∗eω α3φ ρ)

(α3 + b) (b+ φλ∗e) (b χ (b+ ω) + Πλ∗e)
,

R∗ =
K bλ∗e (φα3 (λ∗e + b)χρ+ (b+ α3) (1− ρ) α2 α1ε (b+ φλ∗e))

(b+ α3) (b+ φλ∗e) (b χ (ω + b) + Πλ∗e)
,

V ∗v =
bKρ

b+ φλ∗e
, V ∗ca =

φλ∗ebKρ

(b+ α3) (b+ φλ∗e)
,

(15)

If Is, I∗c and V ∗ca are substituted into (14), we obtain the equation in terms of λ∗e:

λ∗e(Aλ
∗
e
2 +B λ∗e + C) = 0, (16)

where

Π = b (b+ ε) (b+ ω) (b+ α2 + α1) + b α1 α2 (b+ ε+ ω) ,

χ = (b+ ε) (α1 + b) (b+ α2) , ν = (α3 + b) (b+ ω) ,

A = φ (α3 + b) ((α1 + α2 + b) ε ω + (α2 + b) (α1 + b) ε+ (α2 + b) (α1 + b) (b+ ω)) ,

B = b (α3 + b) (b+ α2) (b+ α1) (b+ ω) (1− Rc) + b (α3 + b) (b+ α2) (b+ α1) ε (1− Rc)

+ b (α3 + b) (α1 + b+ α2)ω ε (1− Rc) + (α3 + b) (b+ ω) (b+ α2) (b+ α1) (ε+ b)φ

+ β b φ ρ ε (b+ α2 + η1 α1) (b+ ω + α3) +
β ε2 (b+ α2 + η1 α1)

2 (1− ρ) (α3 + b) (b+ ω)

η2 ρ (ε+ b) (b+ α1) (b+ α2)

+
β b ε2 (b+ α2 + η1 α1) (1− ρ) (b2 + b ω + b α1 + α1 ω + α1 α2 + bα2 + α2 ω)

(ε+ b) (b+ α1) (b+ α2)

+
β ε b (b+ α2 + η1 α1) (1− ρ) (b+ ω)

ε+ b
− Rc (α3 + b)2 ε (b+ α2 + η1 α1) (b+ ω)

η2 ρ
,

C = b (α3 + b) (α2 + b) (α1 + b) (b+ ω) (ε+ b) (1− Rc) .

The roots of equation (16) are λ∗e = 0 which corresponds to the disease free equilibrium point
and

λ∗e =
−B ±

√
B2 − 4AC

2A
. (17)

The condition A > 0 and C < 0 for any values of B when Rc > 1 is satisfied to ensures
positivity of λ∗e and subsequently the positivity of E1. If A > 0, B < 0, C > 0 and B2−4AC >
0 when Rc < 1, then there is a possibility of existence of two real positive solutions. Since
these two positive solutions exist when Rc < 1, then there is a possibility of existence of a
backward bifurcation.

3.4 Stability analysis

In this section we study the stability of disease-free (E0) and endemic (E1) equilibria of the
system of ordinary differential model (1)-(7) with the initial condition (8).
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Theorem 2. The disease-free equilibrium point E0 exist for all Rc and endemic equilibrium point
exists only for Rc > 1.
Theorem 3. The disease-free equilibrium point is locally asymptotically stable when Rc < 1 and
unstable when Rc > 1.

Proof. Evaluating the Jacobian matrix of equations (1) - (7) at the disease-free equilibrium
point E0, yields the eigenvalues

λ1 = −b < 0, λ2 = −(b+ ω) < 0 λ3 = −γ K < 0,

and the remaining eigenvalues are roots of

P (λ) = λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0, (18)

where

A1 =
β ε (α2 + b+ η1α1) (α3 + b) (1− ρ)

(b+ ε) (b+ α1) (α2 + b)
+ 3 b+ ε+ α2 + α1

+ (α3 + b) (1− Rc) ,

A2 =
β ε (α2 + b+ η1α1) (1− ρ) (α3 + b) (3 b+ ε+ α1 + α2)

(b+ ε) (b+ α1) (α2 + b)

+
β ρ φ η2 (b+ ε) (b+ α1) (α2 + b)

(α3 + b) (α2 + b+ η1α1)
+

(α2
2 + η1α1α2 + b2 + η1α1

2 + 2 η1α1b+ 2 bα2) ε

α2 + b+ η1α1

+
α1 (2α1b+ α2α1 + 3 b2 + 2 bα2) η1

α2 + b+ η1α1

+
(α2 + b)2 (2 b+ α1)

α2 + b+ η1α1

+ (1− Rc)

(
(α3 + b) (3 b+ ε+ α1 + α2) +

(b+ ε) (b+ α1) (α2 + b)

α2 + b+ η1α1

)
,

A3 = (1− Rc) (α3 + b)
(
α2ε+ 3 b2 + 2 bε+ 2α1b+ 2 bα2 + α1ε+ α2α1

)

+ (1− Rc) (b+ α1) (b+ ε) (α2 + b) +
β ε (1− ρ) (α3 + b) (α2 + b) (2 b+ ε+ α1)

(b+ α1) (b+ ε)

+
β ε η1 (1− ρ) (α3 + b) (α2α1ε+ 2α1ε b+ 2 bα2α1 + α1

2α2 + α1
2ε+ 3α1b

2 + 2α1
2b)

(b+ α1) (b+ ε) (α2 + b)

+
β φ η2ρ (b+ α1) (b+ ε) (α2 + b)

α3 + b
,

A4 = (α3 + b) (b+ α2) (b+ α1) (b+ ε) (1− Rc) .

We use Descartes’s rule of signs to determine the number of positive roots of equation (18)
[22].

In our case equation (18) has positive coefficients and there is no sign changes in the se-
quence of coefficients when Rc < 1 and so there are zero positive roots. If we now set
λ = −ω, the equation becomes

ω4 − A1ω
3 + A2ω

2 − A3ω + A4 = 0, (19)

A1, A2, A3 and A4 are positive for Rc < 1 and the polynomial equation (19) has four sign
changes in the sequence, and so there is at most four real positive root ω. This means, there
are either four or two or zero negative roots (see Table (1)).
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Table 1: Table for roots

1 A1 A2 A3 A4 Rc < 1 Positive roots Negative roots

ω = λ + + + + + 0 sign change 0 positive roots four negative λ
ω = −λ + - + - + 4 sign changes at most 4 positive roots ω 4 negative λ

From Table 1 we can see that the roots are real and negative roots and so the disease-free
equilibrium point is asymptotically stable for Rc < 1.

Table 2: Table for roots

1 A1 A2 A3 A4 Rc > 1 roots roots λ

+ + + + - 1 sign changes 1 positive root 3 negative roots
+ + + - - 1 sign changes 1 positive root 3 negative roots
+ + - + - 3 sign changes 3 or 1 positive roots 1 or 3 negative roots
+ + - - - 1 sign changes 1 positive root 3 negative roots
+ - + + - 3 sign changes 3 or 1 positive roots 3 or 1 negative roots
+ - + - - 3 sign changes 3 or 1 positive roots 3 or 1 negative roots
+ - - + - 3 sign changes 3 or 1 positive roots 3 or 1 negative roots
+ - - - - 1 sign changes 1 positive root 3 negative roots

The case when Rc > 1 is described in Table 2 where there exists at least one positive root
of (18) when Rc > 1. This implies that the disease free equilibrium point is a saddle point
when Rc > 1 and hence is unstable.

Theorem 4. The endemic equilibrium point is locally asymptotically stable for Rc > 1 and
φ ≥ (1−ρ)b

b+ε
.

Proof. To prove this theorem we use the center manifold theory which states that the stability
of the steady state under the initial system is determined by its stability under the restriction
of the system to the center manifold [27, 28, 29]. Introducing new variables x1 = S, x2 = E,
x3 = Is, x4 = Ic, x5 = R x6 = Vv, x7 = Vca and rewriting the system of equations (1)- (7),

dx1
dt

= (1− ρ) bN∗ −
(
β (x3 + η1 x4 + η2 x7)

N∗
+ µ+ γN∗

)
x1 + ω x5 = f1, (20)

dx2
dt

=
β x1 (x3 + η1 x4 + η2 x7)

N∗
− (ε+ µ+ γN∗)x2 = f2, (21)

dx3
dt

= ε x2 − (α1 + µ+ γN∗)x3 = f3, (22)

dx4
dt

= α1 x3 − (α2 + µ+ γN∗)x4 = f4, (23)

dx5
dt

= α2 x4 − (ω + µ+ γN∗)x5 = f5, (24)

dx6
dt

= ρ bN∗ −
(
β φ (x3 + η1 x4 + η2 x7)

N∗
+ µ+ γN∗

)
x6 = f6, (25)

dx7
dt

=
β φ (x3 + η1 x4 + η2 x7)x6

N∗
− (α3 + µ+ γN∗)x7 = f7, (26)
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Choosing φ as a bifurcation parameter when Rc = 1, we get

φ = φ∗ =
(α3 + b)

β η2 ρ
− ε (α2 + b+ η1α1) (α3 + b) (1− ρ)

η2 ρ (ε+ b) (α1 + b) (α2 + b)
,

The first four eigenvalues of the Jacobian matrix obtained when Rc = 1 are λ11 = 0, λ12 = −b,
λ13 = −b−ω and λ14 = −γ K. The other three eigenvalues are calculated using the following
cubic equation:

P2 (λ1) = λ31 +B1λ
2
1 +B2λ1 +B3 = 0, (27)

where

B1 =
β ε (1− ρ) (b+ α3) (b+ α2 + η1α1)

(b+ α2) (b+ α1) (b+ ε)
+ 3 b+ ε+ α1 + α2,

B2 =
β φ∗ ρ η2 (b+ α2) ε α1

(b+ α2 + η1 α1) (b+ α3)
+

(2 b2 + η1 α2 α1 + α1
2η1 + α2

2) ε

b+ α2 + η1α1

+
(2 η1α1 + 3α2) b ε

b+ α2 + η1 α1

+ 3 b2 + 2 b α1 + 2 b α2 + α1α2 +
β α3ε

2 (b+ α2 + η1α1) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)

+
β α3 ε (α2 + α1 + 3 b) (b+ α2 + η1 α1) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)
+
β ε b η1 (3 b+ ε+ α2)α1 (1− ρ)

(b+ α2) (b+ α1) (b+ ε)

+
β ε b (α1

2η1 + 2 b2 + 3 bα2 + α2
2) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)
,

B3 =
β ε2 b α3 (1− ρ) (2 η1α1 + 2α2)

(b+ α2) (b+ α1) (b+ ε)
+

β ε2 (1− ρ) b2 η1 α1

(b+ α2) (b+ α1) (b+ ε)

+
β ε2 α3 (1− ρ) (η1 α2α1 + b2 + α2

2 + α1
2 η1)

(b+ α2) (b+ α1) (b+ ε)
+
β α3η1ε α1 (3 b2 + α2 α1) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)

+
2 β b α3 η1ε α1 (α2 + α1) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)
+
β α3ε (α2

2 + b2) (2 b+ α1) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)

+
2 β α3ε b (2 b+ α1)α2 (1− ρ)

(b+ α2) (b+ α1) (b+ ε)
+
β ε b2 (2 b+ η1α1)α2 (1− ρ)

(b+ α2) (b+ α1) (b+ ε)

+
β ε b2 (α2

2 + 2 b η1 α1 + α1
2 η1 + b2) (1− ρ)

(b+ α2) (b+ α1) (b+ ε)
+
β φ∗ ρ η2 ε α1

(
η1α2 α1 + (b+ α2)

2)

(b+ α2 + η1 α1) (b+ α3)

+
b η1 (b+ ε+ α2)α1

2

b+ α2 + η1 α1

+
b (b+ α2) (b η1 + b+ ε η1 + α2)α1

b+ α2 + η1 α1

+
b (b+ α2)

2 (b+ ε)

b+ α2 + η1 α1

.

We use Descartes’s rule of signs [22] to determine the sign of the roots of (27). There are
exactly 3 negative real roots for equation (3.24) (see Table 3). The Jacobian matrix has a

Table 3: Table for roots

1 B1 B2 B3 Rc = 1 roots roots

ω = λ + + + + 0 sign change 0 positive roots λ 3 negative roots λ
ω = −λ - + - + 3 sign changes at most 3 positive ω 3 negative roots λ

simple zero eigenvalue with corresponding right and left eigenvectors respectively given by,
(w1, w2, w3, w4, w5, w6, w7), and

(v1, v2, v3, v4, v5, v6, v7) =

(
0, 1,

b+ ε

ε
,
(α1 + b) (ε+ b) η1
(α2 + b+ η1α1) ε

, 0, 0, v7

)
,
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where,

w1 = −ω (1− ρ) β ε bη2 (b+ α2 + α1) (α1 + b)

(
Rc −

φ ρα3 (b+ α2) (α1 + b) (b+ ε)

(1− ρ) ε b (b+ α2 + α1) (α3 + b)

)

− β η2b (b+ α2) (α1 + b) (b+ ε+ ω) (1− ρ) < 0,

w2 = β η2 b (α2 + b) (b+ α1) (b+ ω) (1− ρ) > 0, w3 = β η2ε b (1− ρ) (α2 + b) (b+ ω) > 0,

w4 = β η2ε b α1 (1− ρ) (b+ ω) > 0,

w5 = bα3 (α2 + b) (α1 + b) (b+ ε)

(
Rc −

(1− ρ) β ε (α2 + b+ η1α1)

(α2 + b) (α1 + b) (b+ ε)

)

+ b ε (1− ρ)α1η2α2β > 0,

w6 = − (α3 + b) (ω + b) (α2 + b) (α1 + b) (b+ ε)

(
Rc −

(1− ρ) β ε (α2 + b+ η1α1)

(α2 + b) (α1 + b) (b+ ε)

)
< 0,

w7 = (ω + b) (α2 + b) (α1 + b) (b+ ε) b

(
Rc −

(1− ρ) β ε (α2 + b+ η1α1)

(α2 + b) (α1 + b) (b+ ε)

)
,

v7 =
(b+ α2) (b+ α1) (b+ ε) η2
(α3 + b) (α2 + α1η1 + b) ε

> 0.

The nonzero second order partial derivatives of fi in equations (20) - (24), where i =
1, 2, 3, 4, 5 are given by

∂2f2
∂x1∂x2

=
∂2f2
∂x2∂x5

=
∂2f2
∂x2∂x6

=
∂2f3
∂x3∂x1

=
∂2f3
∂x3∂x2

=
∂2f3
∂x3∂x4

=
∂2f3
∂x3∂x5

= −γ

∂2f3
∂x6∂x3

=
∂2f3
∂x7∂x3

=
∂2f4
∂x1∂x4

=
∂2f4
∂x2∂x4

=
∂2f4
∂x3∂x4

=
∂2f4
∂x5∂x4

=
∂2f4
∂x6∂x4

=
∂2f4
∂x7∂x4

= −γ,

∂2f2
∂x1∂x3

=
β ρ

K
,

∂2f2
∂x3∂x5

=
∂2f2
∂x6∂x3

= −βφ
∗ (1− ρ)

K
,

∂2f2
∂x1∂x4

=
βη1 ρ

K
,

∂2f2
∂x7∂x3

=
−β (1− ρ)(η2 + 1)

K
,

∂2f2
∂x2∂x2

=
∂2f3
∂x3∂x3

=
∂2f4
∂x4∂x4

= −2γ,

∂2f2
∂x4∂x4

=
−2βη1 (1− ρ)

K
,

∂2f2
∂x5∂x4

=
∂2f2
∂x6∂x4

=
−βη1ρ
K

,
∂2f2
∂x3∂x3

=
−2β (1− ρ)

K
,

∂2f2
∂x4∂x3

=
−β (1− ρ)(η1 + 1)

K
,

∂2f2
∂x7∂x1

=
βη2 ρ

K
,

∂2f2
∂x3∂x2

=
−β(1− ρ)

K
− γ,

∂2f2
∂x4∂x2

=
−βη1(1− ρ)

K
− γ, ∂2f2

∂x7∂x2
=
−βη2(1− ρ)

K
− γ,

∂2f2
∂x7∂x5

=
∂2f2
∂x7∂x6

=
−β(1− ρ) η2

K
,

∂2f2
∂x7∂x7

=
−2β(1− ρ) η2

K
,

∂2f7
∂x3∂x1

=
∂2f7
∂x3∂x2

=
−βφ∗ ρ
K

,
∂2f2
∂x7∂x4

=
−β(1− ρ)(η1 + η2)

K
,

∂2f7
∂x4∂x1

=
∂2f7
∂x4∂x2

=
−βφ∗ η1 ρ

K
,

∂2f7
∂x7∂x1

=
−βφ∗ η2 ρ

K
− γ,

∂2f7
∂x7∂x2

=
−βφ∗ η2 ρ

K
− γ, ∂2f7

∂x3∂x3
=
−2βφ∗ ρ

K
,

∂2f7
∂x4∂x3

=
−βφ∗ ρ(η1 + 1)

K
,

∂2f7
∂x5∂x3

=
−βφ∗ ρ
K

,
∂2f7
∂x6∂x3

=
βφ∗(1− ρ)

K
,

∂2f7
∂x7∂x3

=
−βφ∗ ρ(η2 + 1)

K
− γ,

∂2f7
∂x4∂x4

=
−2βφ∗ η1 ρ

K
,

∂2f7
∂x5∂x4

=
−βφ∗ η1 ρ

K
,

∂2f7
∂x6∂x4

=
βφ∗ η1 (1− ρ)

K
,
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∂2f7
∂x7∂x4

=
−βφ∗ (η1 + η2)ρ

K
− γ, ∂2f7

∂x7∂ φ∗
= β η2 ρ,

∂2f7
∂x3∂ φ∗

= β ρ,

∂2f7
∂x7∂x7

=
−2βφ∗ η2 ρ

K
− 2γ,

∂2f7
∂x4∂ φ∗

= β η1 ρ,
∂2f7
∂x7∂x5

=
−βφ∗ η2 ρ

K
− γ.

The expressions for a and c are given by:

a =
7∑

i, j, k=1

vk wiwj
∂2fk
∂xi∂xj

= M < 0, (28)

c =
5∑

i, k=1

vk wi
∂2fk
∂xi∂φ∗

=
(α2 + b)2 (α1 + b)2 (b+ ε)2 η2

2β b (ω + b) ρ

(α3 + b) (α2 + α1η1 + b) ε
> 0, (29)

where w1 + w2 + w3 + w4 + w5 + w6 + w7 = 0 and

M = −2 γ w2 (b+ α2) bβ η2 (b+ ε)2 φ ρα3

α3 + b

(
Rc −

(α1 + b) (b+ ω)

α3 (b+ ε)

)

−2 γ w2 (b+ ε) bβ η2 (1− ρ) ε α1α2

α1 + b
− 2w2w3β v7φ (b+ ε) ρ

(1− ρ) b

(
φ− (1− ρ) b

b+ ε

)

+
2w1w4β η1

K
+

2w1w7β η2
K

+
2w1w3β

K
+

2 v7w6w7β φ η2
K

+
2 v7w4w6β φ η1

K
< 0.

we know that w1, w6 < 0 and w2, w3, w4, w5, w7 > 0, and if φ ≥ (1−ρ)b
b+ε

, then a < 0 and
c > 0 and by Castillo-Chavez et al [28], (1)–(7) exhibits a transcritical bifurcation which is a
supercritical (forward) bifurcation. In scenario of a supercritical bifurcation, the stability ex-
change between the infected and uninfected equilibrium points guarantees that the infected
equilibrium point is locally asymptotically stable whenever Rc > 1. This suggest that, on
one hand when Rc > 1, FMD infection continues in the cattle population. On the other
hand, if the condition on Rc is reversed to Rc < 1 then the disease-free equilibrium point is
the only equilibrium point in existence [29]. A backward bifurcation happens when Rc < 1
for a small positive unstable equilibrium appears while the disease-free equilibrium and a
larger positive equilibrium are locally asymptotically stable [28]. The direction of the bifur-
cation system using (28) and (29) at Rc = 1 corresponds to a negative unstable equilibrium
becoming positive and locally asymptotically stable for Rc > 1.

4 Parameter estimation and numerical simulation

4.1 Parameter estimation

This section contains parameter estimates for the model based upon findings that are avail-
able within the relevant literature and estimating the values of the parameters. We use the
initial number of susceptible animals of 200 per km2 and one infected animal [15]. Natural
birth and immigration constant rate of b and the natural death and emigration rate µ are 0.4
and 0.0324 respectively [30]. The rate of progression from exposed to subclinically infected
animals is ε and the value is 0.5 [31]. The rate of progress from Is to Ic is α1 and the recovery



14 K.M.Tessema et.al.

rate α2 are estimated as 0.1 and 0.17 respectively [15]. η1 is the amplification constant for Ic
and it is estimated that 1.4 since η1 > 1. η2 is the amplification constant for Vc and it is esti-
mated that 0.4 since η2 must be less than one. The loss of immunity rate ω is 0.011 [21]. The
per-capita death rate γ is estimated using the carrying capacity of animal population, natural
birth and immigration rate and the natural death and emigration rate, γ = (b − µ)/200 and
it is given by γ = 0.0053. ρ is the rate of vaccination, 0 ≤ ρ ≤ 1 and β = 1.5 [32, 33].

4.2 Numerical simulations of the model

In this section, simulations are carried out to show the effects of long-term carrier resulting
from vaccination that does not induce rapid protection of foot and mouth disease. We shall
achieve this by investigating the effects of rate of protection loss by the vaccination (φ) and
the vaccination rate (ρ) on the control reproduction number (Rc), the effects of increasing
long-term vaccinated carrier on the foot and mouth disease burden, the effects of low vacci-
nation and high loss of protection due to vaccination rates, high vaccination and low loss of
protection due to vaccination rates, low vaccination and low loss of protection due to vacci-
nation rates and high vaccination and high loss of protection due to vaccination rates on the
foot and mouth disease burdens, the effect on increasing the rate of recovery of vaccination
carrier (α3), the effects of early and late vaccination, and effects of critical vaccination (ρc)
and basic reproductive ratio (R0) on the impact of vaccination (U).

Figure 2 shows the effects of the rate of protection loss by the vaccine φ and the vaccina-
tion rate ρ on the control reproduction ratio. From the graph we observe that the control
reproduction ratio Rc < 1 in region Q when φ < 0.7, ρ > 0.65 and

φ ≤
(

1− β ε (η1α1 + b+ α2) (1− ρ)

(ε+ b) (α1 + b) (α2 + b)

)(
α3 + b

β η2ρ

)
.

This means more animals should be vaccinated and the rate of loss of protection should be
reduced to maintain Rc < 1. Figure 3 shows that increasing the number of long-term vac-
cinated carriers results in the decrease of the susceptible and vaccinated groups of animals
and increasing the infectious of animals. Figure 4 shows the effects of high loss of protection
and low vaccination rate. There is a reduction in the infection classes and increase in the
vaccinated, vaccinated carrier and removed animals. This scenario leads to a high flow of an-
imals into the vaccination route of infection but the low flow of animals into the unprotected
route of infection. Figure 5 shows the effects of low loss of protection from vaccination and
high vaccination rates. There is a reduction in the infection classes, vaccinated carrier and
removed animals and an increase in vaccinated animals. This leads to high flow of animals
into the protected route of infection with more animals locked into the vaccinated class. Fig-
ure 6 presents graphs showing the effects of low loss of protection due to vaccination and
low vaccination rate. There is a reduction in the infection classes and recovered animals but
increase on the vaccinated and vaccinated carrier classes. This leads to high flow of animals
into the vaccination route of infection but low flow into the unprotected route of infection
with more animals locked in the vaccinated and vaccinated carrier compartment. Figure 7
shows the effects of high loss of protection due to vaccination and high vaccination rates.
From this graph we observe some reduction in infection classes and increase in vaccinated
animals but a slight increase in vaccinated carrier and recovered animals. This leads to high
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flow of animals into the protected route of infection but low flow into the unprotected route
of infection. Figure 8 shows that increasing the rate of recovery of vaccinated carriers results
in slight reduction of infected classes and slight increase in vaccinated but high decrease
in vaccinated carrier and increasing in recovery animals. This scenario leads more animals
going back to the susceptible class. Figure 9 shows the effects of vaccination rate when
vaccination is administered on the first day on detection and after 100 days of detection.
The results show that vaccination is more effective in decreasing the infection when it is
administered early than when administered later.

Figure 2: Graph showing the effects of rate of protection loss by the vaccination (φ) and the
vaccination rate (ρ) on the control reproduction number.

Figure 3: The phase portraits analysis showing the effects of long-term carrier resulting from
vaccination.
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Figure 4: The graphs showing the effects of low vaccination rates and high loss of protection
due to vaccination (φ = 0.8).

Figure 10 shows the proportion of critical vaccination (ρc) for eradication and impact of
vaccine (U). Vaccines with low impact have critical vaccination proportion for eradication
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Figure 5: The graphs showing the effects of high vaccination rates and low loss of protection
due to vaccination (φ = 0.2).
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Figure 6: The graphs showing the effects of low vaccination rates and low loss of protection
due to vaccination (φ = 0.2).
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Figure 7: The graphs showing the effects of high vaccination rates and high loss of protection
due to vaccination (φ = 0.8).
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Figure 8: The graphs showing the effects rate of recovery of vaccination carrier.
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Figure 9: Graph showing the effects of vaccination initiated at time t = 0 and at t = 100.

Figure 10: Proportion of critical vaccination (ρc) for eradication and impact of vaccine (U).
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beyond one. The coverage of critical vaccination that leads to eradicating the foot and mouth
disease is the function of the impact of vaccination U and the basic reproductive rate R0 see
(13). Since the vaccine under consideration does not induce rapid protection, the vaccine
impact is less than one (U < 1) and the basic reproduction ratio (R0) for the critical vacci-
nation (ρc) is greater than one (R0 > 1). Thus, this indicates that even if all the animals are
vaccinated, FMD will not be eradicated.

5 Discussion and conclusion

In this study, we presented the dynamics of the foot and mouth disease (FMD) using a system
of differential equations. We used the vaccination strategy to study the impact of vaccination
that does not induce rapid protection of foot and mouth disease. Foot and mouth disease
vaccine is important to keep livestock productivity and food security in the country. However,
the use of vaccination programs has a limitation due to a vaccine which does not induce
rapid protection of FMD. Hence, in our study, we have included the vaccination that does not
induce rapid protection of FMD. The positivity of solutions of the model and the stability of
the equilibrium were presented.

Our results showed that the disease-free equilibrium is stable when Rc < 1 and the endemic
equilibrium also locally stable when Rc > 1. We investigated the effects of the vaccination
coverage and loss of vaccination protection on both the vaccinated and unvaccinated animal
population. High vaccination rate and low loss of protection was the best strategy that
reduced the foot and mouth disease burden, followed by high vaccination rate and high loss
of protection. Low vaccination rate and low loss of protection is the least strategy to protect
the foot and mouth disease. Low vaccination rate and high loss of protection is the worst
strategy for the foot and mouth disease protection because in this strategy the flow of animals
is high into the unprotected route of infection but flow into the vaccination route of infection
is low.

Increasing the rate of recovery from vaccinated carrier Vca increases the recovered class and
the recovered animals go back to the susceptible class with a slight decrease in infectious
classes and high decrease in vaccination carrier. To decrease the foot and mouth disease
burden, it is better to introduce vaccination as soon as foot and mouth disease is detected
than to wait and administer after a few days.

As a significance, we propose that any control measure to reduce or eliminate the foot and
mouth disease suggest that even though vaccines may not induce rapid protection high rate
of vaccination and low loss of vaccine protection rate may be successful in reducing the foot
and mouth burden, provided critical vaccination thresholds are taken into consideration.
Early detection mechanisms should be in place and vaccination should be implemented as
soon as the infection is detected in the animals. Strategies targeting the vaccinated carriers
are also recommended for our results revealed that the increase in numbers of these animals
is associated with increasing the foot and mouth disease burden. Strategies that promote
increases of animals that are not vaccinated or vaccinated careers should be avoided at all
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costs this is agree with Mushayabasa et al. [3].

This study is not all encompassing and can be improved by incorporating the spread of foot
and mouth disease in both space and time. Optimization strategies need to be employed to
make the best cost-effective.
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CHAPTER 3

MODELLING FOOT AND MOUTH DISEASE INCORPORATING AN

INCOMPETENT VACCINE WITH TWO TIME DELAY

In this Chapter we develop a delay ordinary differential equation model that captures the effects

of prophylactic vaccination, reactive vaccination, prophylactic treatment and reactive culling on

the spread of foot and mouth disease with time delays.
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Abstract

We develop a delay ordinary differential equation model that captures the effects
of prophylactic vaccination, reactive vaccination, prophylactic treatment and reactive
culling on the spread of foot and mouth disease with time delays. Simulation results
from the study suggest that increasing time delay whilst increasing the control strategies
decreases the burden of foot and mouth disease. Further, the results reveal, that de-
creasing time delay whilst decreasing the control strategies increases the burden of foot
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combination can play an important role in mitigating against the foot and mouth disease
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1 Introduction:

One of the most common contagious animal viral diseases that can cause devastating eco-
nomic, social, and environmental damages is foot and mouth disease (FMD) [1]. FMD affects
cloven-hoofed animals [2, 3, 4] and is communicated through viral particles in the air trans-
ported by the wind and through direct and indirect contact. Susceptible animals that are
exposed to FMD remain exposed for 2 to 4 days and subsequently proceed to a subclinical
state. A clinically infected animal can recover by developing natural immunity [5, 6, 7] which
can wane with time making the animal susceptible again [3, 8, 9, 10]. The vaccinated ani-
mals may become carriers and transmit the infection subclinically. The animal may recover
by developing natural immunity [6, 11, 12, 13].

The spread of foot and mouth disease may be controlled by vaccination and treatment of
different animal groups. Vaccination can be administered as either a prophylactic vaccina-
tion or as a reactive vaccination strategy [12, 14, 15]. Prophylactic vaccination is carried
out before the introduction of the disease whereas reactive vaccination is carried out after
the outbreak [14, 15, 16, 17]. Vaccination alone is inadequate to completely protect the
animals from FMD [16]. Evidence available shows the occurrence of several outbreaks of
FMD in places where vaccination was administered [6, 15]. Prophylactic treatment has also
been used in the control of FMD. The treatment uses antiviral drugs to protect animals from
infection and to reduce the risk of carrier animals spreading the virus during emergency
vaccination programs [6, 18]. Reactive culling is another measure that has been used in
combination with other control measures such as reactive vaccination [14, 15]. It is admin-
istered after the outbreak of FMD. Prophylactic and reactive vaccination are to some extent,
effective in preventing FMD. However, it remains to be determined how effective the com-
bination of prophylactic and reactive vaccination is. It is also important to investigate the
effects of prophylactic vaccination, reactive vaccination, prophylactic treatment and reactive
culling.

Differential equations have been used to model the dynamics of a number of diseases [19,
20, 21]. These equations include delay differential equations that can be used to describe
epidemiological phenomena at a certain time in terms of the values of a given function at
previous times [14]. A number of delay differential equations have been used to model other
infections with one time delay [22, 23, 24].

In this study, we investigate the effects of prophylactic vaccination, reactive vaccination,
prophylactic treatment and reactive culling on the dynamics of FMD infection using a two-
time delay model. We formulate the mathematical model in section 2, provide some model
analysis in section 3, present parameter estimation and numerical simulations in section 4
and give a discussion of the results in section 5.
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2 Model incorporating two time delays

We propose a model of time delay differential equations for the spread of foot and mouth
disease in animals by subdividing the total population into susceptible animals S(t), “treated
and vaccinated” animals Tv(t), clinically infectious animals Ic(t), recovered animalsR(t), vac-
cinated animals Vv(t) and vaccinated carrier animals Vca(t). Susceptible animals are free of
the foot and mouth disease virus (FMDV), treated and vaccinated animals are animals which
are treated with prophylactic drugs and vaccinated with prophylactic reactive vaccines, the
clinically infectious animals are those with clinically diagnosed symptoms. The vaccinated
animals are protected from the disease by a prophylactic vaccine as well as prophylactic re-
active vaccines, and vaccinated carrier animals may get infected because the prophylactic
vaccine does not induce complete protection. The removed animals are either recovered or
immune to the infection. The immunity may wane with time and the recovered animals
become susceptible again [3, 8, 9, 10].

The susceptible animals are recruited at the rate bN(t) where b is the per-capita birth rate
and N(t) is the total population. A proportion of new birth is given a prophylactic vaccine
at a constant rate of ρ where 0 ≤ ρ ≤ 1, and hence, the net recruitment of the susceptible
animal is given by (1 − ρ)bN(t). Susceptible animals are given either reactive vaccines at a
constant rate ρ2 where 0 ≤ ρ2 ≤ 1 or given prophylactic treatment [18]. ρ1 is a rate of treat-
ing susceptible animals and subsequently vaccinating them so that they end up in the Tv(t)
class. Prophylactic drugs are preventive drugs that are administered to animals that are free
of infection. Prophylactic drugs have been administered successfully for other viruses and
diseases, for instance, HIV and malaria infections [25, 26]. Susceptible animals which are
given a reactive vaccine move to the vaccinated class Vv(t). Prophylactically treated suscep-
tible animals will in principle move to the treated susceptible class and when subsequently
vaccinated will move ultimately to the treated and vaccinated class Tv(t). We introduce a
time delay τ1 > 0 to replace the treated susceptible class and capture the time required to
move the treated and subsequently vaccinated animals to the treated and vaccinated class
Tv(t). However, because the treated susceptible class is not immune to infection, they may
be infected and move in principle to the sub-clinically infected animals which we replace
by the time delay τ2 > 0 and allow movement of infected animals into the clinically in-
fected animals Ic(t). We capture the force of infection in the treated susceptible animals
by β(1− ε)(Ic(t− τ2) + ηVca(t))S(t− τ1)/N(t) with ε the rate of treating susceptible animals
where 0 ≤ ε ≤ 1 and (1 − ε) capturing the treatment protection failure. The new infec-
tions through successive contacts between susceptible and infected animals occur at a rate β.
Since Vca animals are less infectious as compared to Ic we introduce an amplification factor
η < 1.

Susceptible animals which are not treated or vaccinated may get infected and move in prin-
ciple to the sub-clinically infected class and progress to the clinically infected class Ic(t). As
in the treated susceptible animals, we replace the sub-clinically infected animals by the time
delay τ2 and capture the force of infection by β(Ic(t− τ2) + ηVca(t))S(t)/N(t). Susceptible
animals are also subjected to natural death at a rate of µ. They also suffer from density-
dependent death rate that comes due to crowding and we capture the combined death rate
by the term µ + γN , where γ is the per-capita density-dependent death rate. The density-
dependent death rate has the effect of inducing the logistic growth in the total population
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which is one of the realistic ways of capturing the growth of populations.

The clinically infected class are recruited from infection of susceptible animals and from in-
fection of treated susceptible animals. They may recover naturally and move to the recovered
class R(t) at a rate α2. They are also subjected to the combined death rate above. As a con-
trol measure, we introduce culling at a rate of δ and move animals out of Ic(t) through this
control measure. We assume that Ic(t) animals cannot move to Tv(t), due to the fact that
(i) there is no known post-infection treatment for FMD and also that (ii) even if treatment
existed, they would need to be subsequently vaccinated to be able to join Tv(t) class. A vac-
cine cannot be administered to sick animals. Hence, the natural recovery and culling of sick
animals are assumed to be sufficient to capture all the dynamics of Ic(t) animals.

Vaccinated animals are recruited through prophylactic vaccination at a rate ρbN(t) and also
from reactive vaccination of susceptible animals at a rate ρ2. Since the vaccination do not
induce rapid protection [6] and is not perfect, some vaccinated animals are infected and be-
come vaccinated carriers class Vca(t) with a force of infection β φ (Ic(t− τ2) + ηVca(t))S(t)/N(t),
where φ is the rate of protection loss by the vaccination where 0 ≤ φ ≤ 1. Some vaccinated
animals can be given prophylactic treatment at a rate ε and move to the treated and vacci-
nated class Tv(t). They are also subjected to the combined death rate. The vaccinated carrier
animals are recruited from infection of vaccinated animals, they recover naturally at a rate
α3, removed through culling at a rate δ and as well as through combined death rate.

The treated and vaccinated animals are recruited from the treating of vaccinated animals
and from treated and subsequently vaccinated susceptible animals. They recover at a rate α4

and die due to combined death. The recovered animals are recruited from the recovery of
clinically infected animals, vaccinated carrier animals and, treated and vaccinated animals.
The immunity wanes at a rate ω which moves the recovered animals back to the susceptible
class otherwise the recovered animal are removed from their class through combined death.
Figure 1 shows the flow diagram for the model proposed.

The model representing the dynamics of foot and mouth and disease infection is represented
as a system of delay differential equations (DDEs) as follows:

dS(t)

dt
= (1− ρ) bN(t)− λS(t)− (1− ε) λS (t− τ1)− ρ1 S(t− τ1) (1)

− (ρ2 + µ+ γ N(t))S(t) + ωR(t),

dTv(t)

dt
= ρ1 S(t− τ1) + ε Vv(t)− (α4 + µ+ γ N(t))Tv(t), (2)

dIc(t)

dt
= λS(t) + (1− ε) λS (t− τ1)− (δ + α2 + µ+ γ N(t)) Ic(t), (3)

dR(t)

dt
= α2Ic(t)− (ω + µ+ γ N(t))R(t) + α3Vca(t) + α4 Tv(t), (4)

dVv(t)

dt
= ρ bN(t) + ρ2 S(t)− φλVv(t)− (ε+ µ+ γ N(t))Vv(t), (5)

dVca(t)

dt
= φλVv(t)− (δ + α3 + µ+ γ N(t))Vca(t), (6)
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Figure 1: Flow diagram for the FMD model with two time delay.

where λ = β (Ic (t− τ2) + η Vca(t)) /N(t) and subject to the initial conditions

S(0) = S0 ≥ 0, Tv(0) = Tv0 ≥ 0, Ic(0) = Ic 0 ≥ 0, R(0) = R0 ≥ 0,

Vv(0) = Vv0 ≥ 0, Vc(0) = Vca0 ≥ 0, t ∈ [−τi, 0], where τi is the maximum delay.
(7)

Adding equations of the model (2)-(6), leads to a logistic differential equation

dN(t)

dt
= r N(t)

(
1− γ N(t)

r

)
− δ (Ic(t) + Vca(t)) . (8)

From 8 we note that

dN(t)

dt
≤ r N(t)

(
1− N(t)

K

)
,

where K =
r

γ
is the carrying capacity and r = b− µ > 0, is the growth rate.

The solution satisfies

N(t) ≤ K

1 + ψe−rt
,

where, ψ =

(
K

N(0)
− 1

)
, N(0) ≤ K, and

lim
t→∞

N(t) ≤ lim
t→∞

K

1 + ψe−rt
= K.
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3 Model analysis

In this section, we define a feasible region for the model (2) - (6), where, Γ is positively
invariant and attracting. We also calculate the reproduction ratio and determine the equilib-
rium points and their stability.

3.1 Feasible region

All the variables and parameters are assumed to be non-negative for the model to be biolog-
ically meaningful.
Theorem 1. Let the system of equations (2) - (6) have initial conditions (7). Then, the region
Γ defined by (9) is positively invariant and attracting where

Γ = {(S(t), Tv(t), Ic(s), R(t), Vv(t), Vca(t)) ∈ <6
+ |N(t) ≤ K}. (9)

Proof. Assume for t > 0, N(0) ≥ 0, S(0) ≥ 0, Tv(0) ≥ 0, Ic(0) ≥ 0 R(0) ≥ 0, Vv(0) ≥ 0 and
Vca(0) ≥ 0. From equation (6) we get

d

dt
Vca(t) =

β φ (Ic (t− τ2) + η Vca (t))Vv(t)

N (t)
(10)

− (δ + α3 + µ+ γ N (t))Vca(t). (11)

Integrating equation (10) and using a differential inequality, we get

Vca(t) ≥ Vca(0)exp

(
−(δ + α3 + µ)t− γ

∫ t

0

N(s)ds

)
≥ 0,

Hence, Vca ≥ 0, as t → 0 and this implies that at any finite time, Vca is non-negative. A
similar analysis holds for equations (2) - (6) where,

R(t) ≥ R (0) exp

(
− (ω + µ) t− γ

∫ t

0

N (s) ds

)
≥ 0,

Ic(t) ≥ Ic (0) exp

(
− (δ + α2 + µ) t− γ

∫ t

0

N (s) ds

)
≥ 0,

Tv(t) ≥ Tv(0) exp

(
−(α4 + µ) t− γ

∫ t

0

N (s) ds

)
≥ 0,

Vv (t) ≥ Vv (0) exp

(
− (ε+ µ) t−

∫ t

0

(
β φ (Ic (s− τ1) + η Vca (s))

N (s)
+ γ N (s)

)
ds

)
≥ 0,

S (t) ≥ S(0) exp

(
− (ρ1 + ρ2 + µ) t−

∫ t

0

(
β (2− ε) Ic (s− τ1) + η Vca (s))

N (s)
+ γN (s)

)
ds

)
≥ 0.

Therefore, the solutions of the model with non-negative initial conditions remain non-negative
for all 0 ≤ t < ∞. Since 0 ≤ (S(t), Tv, Ic(t), R(t), Vv(t), Vca(t)) ≤ (S0, Tv0, 0, R0, Vv0, 0), all
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variables are bounded in [0, K],
where

S0 =
((1− ρ) (b3 + (ω + ε+ α4) b

2 + ((ω + α4) ε+ ω α4) b) + ε ω α4)K

M1

,

Tv0 =
(b+ ω)K (ε (bρ+ ρ1 + ρ2) + bρ1 (1− ρ))

M1

,

R0 =
Kα4 (ε (bρ+ ρ1 + ρ2) + bρ1 (1− ρ))

M1

,

Vv0 =
Kb (b+ ω + α4) ρ ρ1 +K (b+ α4) (b+ ω) (bρ+ ρ2)

M1

,

M1 = b3 + (ω + ε+ ρ1 + ρ2 + α4) b
2 + ((ω + ρ1 + ρ2 + α4) ε+ (ω + ρ1 + ρ2)α4 + ω (ρ1 + ρ2)) b

+ ((ω + ρ1 + ρ2)α4 + ω (ρ1 + ρ2)) ε+ ω α4ρ2.

This shows that for initial conditions (7), the region Γ is positively invariant and attracting
and therefore the region Γ is a feasible region for the model (2) - (6).

3.2 The control reproduction ratio for the model

The control reproduction ratio is calculated using the next generation matrix method [27,
28]. We take only the infected classes of the model to calculate the control reproduction
ratio. At the disease free equilibrium point, Ic = Vca = 0, S0, R0 and Vv0. The control
reproduction number is given by

Rc =
β φ η ρ b

(ε+ b) (α3 + b+ δ)
+

β (2− ε) (1− ρ) b

(b+ ρ1) (b+ δ + α2)
,

where b = (µ+ γK).

To test the parameters that significantly affect the transmission dynamics of foot and mouth
disease in cattle, sensitivity analysis on Rc was carried out through differentiating Rc with
respect to parameters of the model. The following results were obtained:

∂Rc

∂ε
= − β φ η bρ

(ε+ b)2 (α3 + b+ δ)
− β (1− ρ) b

(b+ ρ1) (b+ δ + α2)
< 0,

∂Rc

∂δ
= − β φ η bρ

(ε+ b) (α3 + b+ δ)2
− β (2− ε) (1− ρ) b

(b+ ρ1) (b+ δ + α2)
2 < 0,

∂Rc

∂ρ1
= − β (2− ε) (1− ρ) b

(b+ ρ1)
2 (b+ δ + α2)

< 0,

∂Rc

∂ρ
=

β φ η b

(ε+ b) (α3 + b+ δ)
− β (2− ε) b

(b+ ρ1) (b+ δ + α2)

=
β bη (φ− φcrit)

(ε+ b) (α3 + b+ δ)
< 0,
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where φcrit = ((2− ε) (ε+ b) (α3 + b+ δ)) / (η (b+ ρ1) (b+ δ + α2)). ∂Rc/∂ρ > 0, φ > φcrit and
∂Rc/∂ρ < 0 when φ < φcrit and ∂Rc/∂ρ = 0 when φ = φcrit . For vaccination to be effective
Rc < 1, the loss of protection from vaccination should be less than the critical value of loss
of protection from the vaccine, that is, φ < φcrit .

The sensitivity analysis showed that the derivatives of Rc with respect to the rate of vaccina-
tion, the rate of treating susceptible animals, the rate of treating vaccinated animals and the
rate of culling infected and vaccinated carrier animals are all less than zero.

Figure 2: The effects of the rate of vaccination (ρ), the rate of treating susceptible animals
(ρ1), the rate of treating vaccinated animals (ε) and the rate of culling infected and vaccinated
carrier animals (δ) on the control reproduction number.

Figure 2 shows the effects of vaccination, treating and vaccinating susceptible animals, treat-
ing vaccinated animals and culling infected and vaccinated carrier animals on Rc. Figs. 2 (a)
and (b) show that Rc is reduced and less than one as the parameters, ρ, ρ1 and δ increase.
The graph of ε versus ρ shows that increasing both ε and ρ reduces Rc to a value still above
unity in Figure 2 (c). The graph in Figure 2 (d) illustrates that Rc reduces as both ρ1 and ε
increase. In addition, we note that Rc is reduced to a value less than one as the parameters
δ, ρ1 and ε are increased as shown in Figure 2 (e) and (f). Reducing the control reproduction
number (Rc) corresponds to decreasing the number of newly infected animals leading to low
shedding of foot and mouth disease virus to other animals and subsequently decreasing the
foot and mouth disease burden.



Modelling control of foot and mouth disease with two time delays 9

3.3 Equilibrium points of the system

The disease-free equilibrium point of the system of equation is given by

E0 = (S0, Tv0, 0, R0, Vv0, 0) . (12)

where

S0 =
((1− ρ) (b3 + (ω + ε+ α4) b

2 + ((ω + α4) ε+ ω α4) b) + ε ω α4)K

M1

,

Tv0 =
(b+ ω)K (ε (bρ+ ρ1 + ρ2) + bρ1 (1− ρ))

M1

,

R0 =
Kα4 (ε (bρ+ ρ1 + ρ2) + bρ1 (1− ρ))

M1

,

Vv0 =
Kb (b+ ω + α4) ρ ρ1 +K (b+ α4) (b+ ω) (bρ+ ρ2)

M1

,

M1 = b3 + (ω + ε+ ρ1 + ρ2 + α4) b
2 + ((ω + ρ1 + ρ2 + α4) ε+ (ω + ρ1 + ρ2)α4 + ω (ρ1 + ρ2)) b

+ ((ω + ρ1 + ρ2)α4 + ω (ρ1 + ρ2)) ε+ ω α4ρ2,

The force of infection at the equilibrium point is

λ∗ =
β(I∗c + ηV ∗ca)

K
. (13)

The endemic equilibrium E1 of the model is given in terms of λ∗ and R∗ with

E1 = (S∗, T ∗v , I
∗
c , R

∗, V ∗v , V
∗
ca), (14)

where

S∗ =
(1− ρ) bK + ωR∗

(2− ε)λ∗ + b+ ρ1 + ρ2
,

T ∗v =
ρ1 ((1− ρ) bK + ωR)

A4

+
εKbρ

(b+ α4) (λ∗ φ+ b+ ε)
+
ε ρ2 ((1− ρ) bK + ωR∗)

(λ∗ φ+ b+ ε)A4

,

I∗c =
(2− ε)λ∗ ((1− ρ) bK + ωR∗)

(δ + b+ α2) ((2− ε)λ∗ + b+ ρ1 + ρ2)
,

R∗ =
1

1− A2

(
A3

(b+ ω) (δ + b+ α2)A4

+ A5

(
ρ

(b+ α4) (δ + b+ α3)
+

ρ2 (1− ρ)

(δ + b+ α3)A4

))
,

V ∗v =
Kbρ

λ∗ φ+ b+ ε
+

ρ2 ((1− ρ) bK + ωR∗)

(λ∗ φ+ b+ ε) ((2− ε)λ∗ + b+ ρ1 + ρ2)
,

V ∗ca =
λ∗ φ

δ + b+ α3

(
Kbρ

λ∗ φ+ b+ ε
+

ρ2 ((1− ρ) bK + ωR∗)

(λ∗ φ+ b+ ε) ((2− ε)λ∗ + b+ ρ1 + ρ2)

)
,
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the parameters are given by

A1 = (b+ ω) ((2− ε)λ∗ + b+ ρ1 + ρ2) ,

A2 =
ω

A1

(
α2 (2− ε)λ∗
δ + b+ α2

+
α4 (λ∗ φ ρ1 + (b+ ε) ρ1 + ε ρ2)

(b+ α4) (λ∗ φ+ b+ ε)
+

α3φλ
∗ ρ2

(δ + b+ α3) (λ∗ φ+ b+ ε)

)
,

A3 = (1− ρ) bK ((2− ε)λ∗ (b+ α4)α2 + α4ρ1 (δ + b+ α2)) ,

A4 = ((2− ε)λ∗ + b+ ρ1 + ρ2) (b+ α4) ,

A5 =
bK (α3φλ

∗ (b+ α4) + ε α4 (δ + b+ α3))

(b+ ω) (λ∗ φ+ b+ ε)
,

A6 = (b+ ε) (b+ ρ1) (α3 + b+ δ) (b+ δ + α2)K,

If I∗c and V ∗ca are substituted into (13), we obtain the equation in terms of λ∗:

λ∗(B1λ
∗2 +B2λ

∗ +B3) = 0, (15)

where

B1 = φ (2− ε) (α3 + b+ δ) (b+ δ + α2)K,

B2 = ((b+ ε) (2− ε) + φ (b+ ρ1 + ρ2)) (δ + b+ α3) (δ + b+ α2)K

− β (K b (2− ε)φ (ρ (δ + b+ α2) η + (1− ρ) (δ + b+ α3))

+R∗ (2− ε)ω φ (δ + b+ α3)) ,

B3 = (b+ ε) ρ2 (α3 + b+ δ) (b+ δ + α2)K − (b+ δ + α2)Kβ b η φ ρ2

− β ω R∗ (η φ ρ2 (b+ δ + α2) + (b+ ε) (α3 + b+ δ) (2− ε)) + A6 (1− Rc) .

The roots of equation (15) are λ∗ = 0 which corresponds to the disease free equilibrium point
and

λ∗ =
−B2 ±

√
B2

2 − 4B1B3

2B1

. (16)

The condition B1 > 0 and B3 < 0 for any values of B2 when Rc > 1 is satisfied to ensures
positivity of λ∗ and subsequently the positivity of E1. If B1 > 0, B2 < 0, B3 > 0 and
B2

2 − 4B1B3 > 0 when Rc < 1, then there is a possibility of existence of two real positive
solutions. Since these two positive solutions exist when Rc < 1, then there is a possibility of
existence of a backward bifurcation.

3.4 Stability analysis

In this section we study the stability of disease-free (E0) and endemic (E1) equilibria of the
system of delay differential model (2) - (6) with the initial condition (7).
Theorem 2. The disease-free equilibrium point E0 of system (2) - (7) is locally asymptotically
stable for Rc < 1 and unstable for Rc > 1.

Proof. The characteristic equation of the Jacobian matrix at the disease-free equilibrium E0
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of system (2) - (7) takes the form

P (λ)

(
λ2 +

1

P1

(
C4 + C5 (1− Rc) + C6 + C7

(
e−λτ2 (ε− 1)− 1

)
e−λτ1

)
λ

+
1

P1

(
C8 (1− Rc) + C9 +D1 +D2

(
e−λτ2ε− e−λτ2 − 1

)
e−λτ1

))
= 0,

(17)

where

P (λ) = (Kγ + λ)
(
λ3 + C1 λ

2 + C2 λ+ C3

)
,

P1 = (b+ ω + ρ1) (b+ ε)α4 + ρ2 (b+ ε+ ω)α4 + (b+ ρ1 + ρ2) (b+ ω) (b+ ε) ,

C1 = 3 b+ ε+ ω + α4 + ρ1 + ρ2,

C2 = (2 b+ ε+ ω + ρ1 + ρ2)α4 + (2 b+ ε+ ω) ρ2 + 3 b2 + 2 bε+ 2 bω + 2 bρ1 + ε ω + ε ρ1 + ω ρ1,

C3 = (b+ ε+ ω)α4ρ2 + (b+ ε) (b+ ω + ρ1)α4 + (b+ ω) (b+ ε) ρ2 + (b+ ρ1) (b+ ω) (b+ ε) ,

C4 = (ε+ b+ ω) (2 b+ 2 δ + α2 + α3)α4ρ2 + (b+ ω + ρ1) (ε+ b) (b+ δ + α2)α4

+ (b+ ω) (ε+ b)
(
b2 + bδ + bα2 + bρ1 + 2 bρ2 + δ ρ1 + 2 δ ρ2 + α2ρ1 + α2ρ2 + α3ρ2

)
,

C5 = (b+ α3 + δ) (ε+ b) (b+ ω) (b+ ρ1) + α4 (b+ ω + ρ1) (b+ α3 + δ) (ε+ b) ,

C6 =
(ε+ b) bβ (ε− 2) (b+ α3 + δ) (ρ− 1) (b2 + bω + bα4 + bρ1 + ω α4 + ω ρ1 + α4ρ1)

(b+ δ + α2) (b+ ρ1)

− η φ b (b+ ω) ρ2β − η φ (b+ ω) β α4ρ2,

C7 = β (b (1− ρ) (ε+ b+ ω)α4 + ε ω α4 + b (1− ρ) (b+ ω) (ε+ b)) ,

C8 = (ε+ b+ ω) (b+ α3 + δ)α4ρ2 + α4 (b+ ω + ρ1) (b+ α3 + δ) (ε+ b)

+ (b+ ρ1 + ρ2) (b+ ω) (ε+ b) (b+ α3 + δ) ,

C9 = (b+ δ + α2) (b+ α3 + δ) ρ2
(
b2 + bε+ bω + bα4 + ε ω + ε α4 + ω α4

)

+
(b+ α3 + δ) (ε+ b) (b+ ω + ρ1)α4b (1− ρ) (2− ε) β

b+ ρ1
,

D1 = (b+ α3 + δ) (ε+ b) (b+ ω) b (1− ρ) (2− ε) β − (b+ δ + α2) η φ (b+ ω) β ρ2 (α4 + b) ,

D2 = (b+ α3 + δ) (β b (1− ρ) (b+ ω + α4) (ε+ b) + β (−bω ρα4 + bω α4 + ε ω α4)) .

The characteristic equation (17) has clearly one negative real root (λ4 = −γ K,) and since
C1C2 − C3 > 0 the other three negative real valued roots are granted by Routh- Hurwitz
criterion.

The remaining roots are given by the roots of equation (18)

g (λ) ≡ λ2 +
1

P1

(
C4 + C5 (1− Rc) + C6 + C7

(
e−λτ2 (ε− 1)− 1

)
e−λτ1

)
λ

+
1

P1

(
C8 (1− Rc) + C9 +D1 +D2

(
e−λτ2ε− e−λτ2 − 1

)
e−λτ1

)
= 0.

(18)

If Rc > 1, we can get the real λ,

g (0) = E1 + E2 + E3 (1− Rc) < 0, lim
λ→∞

g(λ) = +∞.
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where

E1 =
(
b2 + bε+ bω + bα4 + ε ω + ε α4 + ω α4

)
(2 b+ 2 δ + α2 + α3) ρ2 + ω α4 (ε− ρ1) (b+ δ + α2)

+
(b+ ε) bβ (2− ε) (b+ α3 + δ) (1− ρ) (b2 + bω + bα4 + bρ1 + ω α4 + ω ρ1 + α4ρ1)

(b+ δ + α2) (b+ ρ1)
,

E2 =
(b+ δ + α2) (b+ ρ1) bη φ ρ β (b2 + bε+ bω + bα4 + ε ω + ε α4 + ω α4)

(b+ α3 + δ) (b+ ε)
,

E3 = (b+ α3 + δ) (b+ ε) (b+ ω) (b+ ρ1) + α4 (b+ ω + ρ1) (b+ α3 + δ) (b+ ε)

+ (b+ δ + α2) (b+ ρ1) (b+ ε+ ω)α4 + (b+ δ + α2) (b+ ρ1) (b+ ω) (b+ ε) ,

Therefore, equation (18) has positive real roots for Rc > 1, hence E0 of (2) - (7) is unstable
for Rc > 1.

For Rc < 1 and τ1 = τ2 = 0, equation (18) becomes

g (λ) = λ2 +
(E1 + E2 + E3 (1− Rc))λ

P1

+
E5 + E6 + E4 (1− Rc)

P1

= 0, (19)

where

E4 = (b+ α3 + δ) (b+ ε) (b+ δ + α2) (b+ ω + ρ1)α4

+ (b+ δ + α2) (b+ ρ1) (b+ α3 + δ) (b+ ε) (b+ ω)

+ (b+ ρ1) (b+ δ + α2) (b+ α3 + δ) (b+ ω + α4) (b+ ε) ,

E5 = (b+ δ + α2) (b+ α3 + δ) ρ2
(
b2 + bε+ bω + bα4 + ε ω + ε α4 + ω α4

)

+ (b+ α3 + δ) (b+ ε) (b+ ω) b (1− ρ) (2− ε) β + (b+ ρ1) (b+ δ + α2) (b+ ω + α4) bη φ ρ β,

E6 =
β (2− ε) (b+ α3 + δ)α4 (b (1− ρ) (b+ ρ1) (b+ ε) + bω ρ ρ1)

b+ ρ1
,

Equation (19) is quadratic and for Rc < 1

E1 + E2 + E3 (1− Rc) > 0, E5 + E6 + E4 (1− Rc) > 0,

Hence, by the RouthHurwitz criterion, the roots of equation (19) have negative real parts for
Rc < 1. Therefore, when τ1 = τ2 = 0, the disease-free equilibrium E0 is locally asymptotically
stable if Rc < 1 and it is unstable if Rc > 1.

For the general non zero delay values (τ1 6= 0, τ2 6= 0), we first rearrange equation (18) in
the following form

λ2 +
1

P1

(
C4 + C5 (1− Rc) + C6 + C7

(
e−λτ2 (ε− 1)− 1

)
e−λτ1

)
λ

= − 1

P1

(
C8 (1− Rc) + C9 +D1 +D2

(
e−λτ2ε− e−λτ2 − 1

)
e−λτ1

)
.

(20)

Suppose in equation (20) λ is real and denote the left hand side by L(λ) and the right hand
side by H(λ). We can see that L(0) = 0 and as λ → ∞ the value L(λ) approaches infinity,
so the left hand side of equation (20) is an increasing function. On the other hand H(λ) is a
decreasing function as the value of λ increases and

H (0) =
1

P1

(
C8 (Rc − 1) + C9 +D1 +D2

(
e−λτ2ε− e−λτ2 − 1

)
e−λτ1

)
> 0. (21)
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The two functions should intersect at a positive value λ∗ which is greater than zero. Hence,
equation (21) has a positive real root. Therefore, the disease-free equilibrium point, E0 is
unstable for Rc > 1. For Rc < 1 L(λ) is increasing and H(λ) decreasing but H(0) > 0. Thus,
equation (21) has negative real roots and therefore E0 is unstable for Rc > 1 and stable for
Rc < 1.

For positive delays (τ1 6= 0, τ2 6= 0), assume that λ = i σ without loss of generality where
σ > 0 is a root of equation (18). Substituting into equation (18) shows that

− σ2 +
1

P1

(i (C5 (1− Rc) + C7 F1 + C4 + C6)σ)

+
1

P1

(C8 (1− Rc) +D2 F2 + C9 +D1) = 0,
(22)

where

F1 = ((cos (τ2σ)− i sin (τ2σ)) (ε− 1)− 1) (cos (στ1)− i sin (στ1)) ,

F2 = ((cos (τ2σ)− i sin (τ2σ)) ε− cos (τ2σ) + i sin (τ2σ)− 1) (cos (στ1)− i sin (στ1)) ,

Separating the real and the imaginary parts of equation (22) and squaring both parts and
adding the two equations, it follows that

σ4 + F3 σ
2 + F4 = 0. (23)

where

F3 =
1

P1
2

(
2C7

2 (ε− 1) (cos (τ2σ) + 1) + (1− Rc)
2C5

2 + (2P1C8 + 2C5 (C4 + C6)) (1− Rc)
)

+
1

P1
2

(
−ε2C7

2 + (2C9 + 2D1)P1 + (C4 + C6)
2),

F4 =
1

P1
2

(
2D2

2 (ε− 1) (cos (τ2σ) + 1) + C8
2 (1−Rc)

2 + 2C8 (C9 +D1) (1− Rc)
)

− 1

P1
2

(
D2

2ε2 + (C9 +D1)
2),

and let assume that σ2 = Q and substitute into the polynomial function (23), we obtain,

Q2 + F3Q+ F4 = 0. (24)

Clearly cos (σ τ2) + 1 ≥ 0 for Rc < 1

F3 ≥
1

P1

((2C9 + 2D1)P1 + C4 + C6 + (2P1C8 + C5 + 2C5 (C4 + C6)) (1− Rc)) ≥ 0,

F4 ≥
1

P1

(C9 +D1 + (C8 + 2C8 (C9 +D1)) (1− Rc)) ≥ 0,

By RouthHurwitz criterion equation (24) has negative real roots. Hence, our assumption
σ > 0 is contradicted and (22) has no positive roots. Hence, equation (17) has negative
real roots when Rc < 1, E0 is locally asymptotically stable for all τ > 0. This proves the
theorem.

Theorem 3. The positive equilibrium (S∗, I∗c , R
∗, V ∗v , V

∗
ca) is globally asymptotically stable when

Rc > 1 .
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Proof. We use Lyapunov functions to prove the endemic equilibrium is globally asymptoti-
cally stable. Let (S, Ic, R, Vv, Vca) be a positive solution of system (2) - (6) with initial condi-
tions (7). To find the Lyapunov function we used logarithmic functions [24, 29, 30].

US(t) =
S(t)

S∗
− 1− ln

(
S(t)

S∗

)
, UTv(t) =

Tv(t)

T ∗v
− 1− ln

(
Tv(t)

T ∗v

)
,

UIc(t) =
Ic(t)

I∗c
− 1− ln

(
Ic(t)

I∗c

)
, UR(t) =

R(t)

R∗
− 1− ln

(
R(t)

R∗

)
,

UVv(t) =
Vv(t)

V ∗v
− 1− ln

(
Vv(t)

V ∗v

)
, UVca(t) =

Vca(t)

V ∗ca
− 1− ln

(
Vca(t)

V ∗ca

)
,

US+(t) =

∫ h

τ=0

(
S(t− τ1)

S∗
− 1− ln

(
S(t− τ1)

S∗

))
dτ,

UIc+(t) =

∫ h

τ=0

(
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ,

Hence, we consider the following,

U(t) = US(t) + UIc(t) + UR(t) + UVv(t) + UVca(t) + U+(t),

We calculate the derivatives of US(t), UIc(t), UR(t), UVv(t), UVca(t) and U+(t) separately
and combine to get the derivative of the desired Lyapunov function

dUS(t)

dt
=

(
1− S∗

S

)
dS(t)

dt

=

(
(1− ρ) bN − β (Ic (t− τ1) + η Vca)S

N
− (1− ε) β (Ic (t− τ1) + η Vca)S (t− τ2)

N

)(
1− S∗

S

)

− ((γ N + µ+ ρ1 + ρ2)S + ωR)

(
1− S∗

S

)
,

Using the endemic equilibrium (14) we get the,

dUS(t)

dt
=

(
1− S∗

S

)
dS(t)

dt
=

(
1− S∗

S

)(
β (η V ∗ca + I∗c )S∗

N∗2
+

(1− ε) β (η vca + I ∗c )S∗

N∗2

)

+

(
1− S∗

S

)(
(γ N∗ + µ+ ρ1 + ρ2)S

∗

N∗
− ωR∗

N∗

)
−
(

1− S∗

S

)(
β (Ic (t− τ1) + η Vca)S

N

+
(1− ε) β (Ic (t− τ1) + η Vca)S (t− τ2)

N

)
−
(

1− S∗

S

)
((γ N + µ+ ρ1 + ρ2)S + ωR) ,
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After some calculations we obtain

dUS(t)

dt
= h2S

∗N

(
2− h1S

h2S∗N
− h2S

∗N

h1S

)(
1− S∗

S

)

+ (1− ε)h2S∗N
(

2− h1S (t− τ2)
h2S∗N

− h2S
∗N

h1S (t− τ2)

)(
1− S∗

S

)

+

(
(ρ1 + ρ2 + µ)S∗N

n

(
2− SN∗

S∗N
− S∗N

SN∗

)
+ γ S∗N

(
2− S

S∗
− S∗

S

))(
1− S∗

S

)

+ ωR

(
2− rN

N∗R
− N∗R

R∗N

)(
1− S∗

S

)
− h2

2S∗2N2

h1S

(
h1S

h2S∗N
− 1− ln

(
h1S

h2S∗N

))(
1− S∗

S

)

− (1− ε)h22S∗2N2

h1S (t− τ2)

(
h1S (t− τ2)
h2S∗N

− 1− ln

(
h1S (t− τ2)
h2S∗N

))(
1− S∗

S

)

− (ρ1 + ρ2 + µ)S∗2N2

N∗2S

(
SN∗

S∗N
− 1− ln

(
SN∗

S∗N

))(
1− S∗

S

)

−
(
γ S∗2N

S

(
S

S∗
− 1− ln

(
S

S∗

))
+
ωR2N∗

R∗N

(
R∗N

N∗R
− 1− ln

(
R∗N

N∗R

)))(
1− S∗

S

)

−
(
h2

2S∗2N2

h1S
ln

(
h1S

h2S∗N

)
+

(1− ε)h22S∗2N2

h1S (t− τ2)
ln

(
h1S (t− τ2)
h2S∗N

))(
1− S∗

S

)

−
(

(ρ1 + ρ2 + µ)S∗2N2

N∗2S
ln

(
SN∗

S∗N

)
+
γ S∗2N

S
ln

(
S

S∗

)
+
ωR2N∗

rN
ln

(
rN

N∗R

))(
1− S∗

S

)
≤ 0,

where

h1 =
β (Ic (t− τ2) + η Vca)

N
, h2 =

β (I ∗c + η V ∗ca)

N∗2
, m1 =

h2 S
∗N

h1 S
,

and similarly

dUTv(t)
dt

=

(
ρ1S

(
2− S∗Tv

ST ∗v
− ST ∗v
S∗Tv

)
+ ε Vv

(
2− V ∗v Tv

VvT ∗v
− VvT

∗
v

V ∗v Tv

))(
1− T ∗v

Tv

)

+ γ n

(
2− N

N∗
− N∗

N

)
Tv

(
1− T ∗v

Tv

)
− ρ1S

2T ∗v
S∗Tv

(
S∗Tv
ST ∗v

− 1− ln

(
S∗Tv
ST ∗v

))(
1− T ∗v

Tv

)

− ρ1S
2T ∗v

S∗Tv
ln

(
S∗Tv
ST ∗v

)(
1− T ∗v

Tv

)
− ε Vv

2T ∗v
V ∗v Tv

(
V ∗v Tv
VvT ∗v

− 1

)(
1− T ∗v

Tv

)

− γ N∗2Tv
N

(
N

N∗
− 1− ln

(
N

N∗

))(
1− T ∗v

Tv

)
− γ N∗2Tv

N
ln

(
N

N∗

)(
1− T ∗v

Tv

)
,
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dUIc(t)

dt
=

(
h1S

(
2− h2S

∗N∗Ic
I ∗c h1S

− I ∗c h1S

h2S∗N∗Ic

)
+ γ N∗Ic

(
2− N

N∗
− N∗

N

))(
1− I ∗c

Ic

)

+ (1− ε)h1S (t− τ2)
(

2− h2S
∗N∗Ic

I ∗c h1S (t− τ2)
− I ∗c h1S (t− τ2)

h2S∗N∗Ic

)(
1− I ∗c

Ic

)

− h1
2S2I ∗c

h2S∗N∗Ic

(
h2S

∗N∗Ic
I ∗c h1S

− 1− ln

(
h2S

∗N∗Ic
I ∗c h1S

))(
1− I ∗c

Ic

)

− (1− ε)h12 (S (t− τ2))2 I ∗c
h2S∗N∗Ic

(
h2S

∗N∗Ic
I ∗c h1S (t− τ2)

− 1− ln

(
h2S

∗N∗Ic

I ∗c h1S (t− τ2)

))(
1− I ∗c

Ic

)

−
(
γ N∗2Ic
N

(
N

N∗
− 1− ln

(
N

N∗

))
+

h1
2S2I ∗c

h2S∗N∗Ic
ln

(
h2S

∗N∗Ic
I ∗c h1S

))(
1− I ∗c

Ic

)

− (1− ε)h12 (S (t− τ2))2 I ∗c
h2sN∗Ic

ln

(
h2sN

∗Ic
I ∗c h1S (t− τ2)

)(
1− I ∗c

Ic

)
− γ N∗2Ic

N
ln

(
N

N∗

)(
1− I ∗c

Ic

)
≤ 0,

dUR(t)

dt
= −

(
α2Ic

(
I ∗c R

Ic R∗
− 1− ln

(
I ∗c R

Ic R∗

))
+ γ N∗R

(
N

N∗
− 1− ln

(
N

N∗

)))(
1− R∗

R

)

−
(
α3Vca

(
V ∗caR

VcaR∗
− 1− ln

(
V ∗caR

VcaR∗

))
+ Tvα4

(
T ∗vR

TvR∗
− 1− ln

(
T ∗vR

TvR∗

)))(
1− r

R

)

−
(
α2Ic ln

(
I ∗c R

Ic R∗

)
+ γ N∗R ln

(
N

N∗

)
+ α3Vca ln

(
V ∗caR

VcaR∗

)
+ Tvα4 ln

(
T ∗vR

TvR∗

))(
1− R∗

R

)
,

dUVv(t)

dt
=

(
h2φV

∗
v N

(
2− h1V

∗
v

h2V ∗v N
− h2V

∗
v N

h1Vv

)
+

(ε+ µ)V ∗v N

N∗

(
2− VvN

∗

V ∗v N
− V ∗v N

VvN∗

))(
1− V ∗v

Vv

)

− h2
2φV ∗v

2N2

h1Vv

(
h1Vv
h2vvN

− 1− ln

(
h1Vv
h2V ∗v N

))(
1− V ∗v

Vv

)
− γ N (V ∗v − Vv)2

Vv

− (ε+ µ)V ∗v
2N2

N∗2Vv

(
VvN

∗

V ∗v N
− 1− ln

(
VvN

∗

V ∗v N

))(
1− V ∗v

Vv

)
− ρ2S

(
N

SN∗
− 1− ln

(
S∗N

SN∗

))(
1− V ∗v

Vv

)

−
(
h2

2φV ∗v
2N2

h1Vv
ln

(
h1Vv
h2V ∗v N

)
+

(ε+ µ)V ∗v
2N2

N∗2Vv
ln

(
VvN

∗

V ∗v N

)
+ ρ2S ln

(
S∗N

SN∗

))(
1− V ∗v

Vv

)
,

dUVca(t)

dt
= h1φVv

(
2− h2V

∗
v VcaN

∗

V ∗cah1Vv
− V ∗cah1Vv
h2V ∗v VcaN

∗

)(
1− V ∗ca

Vca

)
− γ VcaN∗ ln

(
N

N∗

)(
1− V ∗ca

Vca

)

− h1
2φVv

2V ∗ca
h2V ∗v VcaN

∗

(
h2V

∗
v VcaN

∗

V ∗cah1Vv
− 1− ln

(
h2V

∗
v VcaN

∗

V ∗cah1Vv

))(
1− V ∗ca

Vca

)

− h1
2φVv

2V ∗ca
h2V ∗v VcaN

∗ ln

(
h2V

∗
v VcaN

∗

V ∗cah1Vv

)(
1− vca

Vca

)
− γ VcaN∗

(
N

N∗
− 1− ln

(
N

N∗

))(
1− V ∗ca

Vca

)
,

dUIc+(t)

dt
=

d

dt

(∫ h

τ=0

(
Ic(t− τ1)

I∗c
− 1− ln

(
Ic(t− τ1)

I∗c

))
dτ

)

=

∫ h

τ1=0

d

dt

((
Ic(t− τ1)

I∗c
− 1− ln

(
Ic(t− τ1)

I∗c

))
dτ

)

= −
∫ ∞

τ1=0

d

d τ1

((
Ic(t− τ1)

I∗c
− 1− ln

(
Ic(t− τ1)

I∗c

))
dτ1

)
,
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dUS+(t)

dt
=

d

dt

(∫ h

τ2=0

(
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ

)

=

∫ h

τ=0

d

dt

((
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ

)

= −
∫ ∞

τ2=0

d

d τ2

((
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ2

)

The Lyapunov derivative of the function is

dU(t)

dt
=
dUS(t)

dt
+
dUTv(t)

dt
+
dUIc(t)

dt
+
dUR(t)

dt
+
dUVv(t)

dt
+
dUVca(t)

dt

+
dUs+(t)

dt
+
dUIc+(t)

dt
≤ 0,

Using arithmetic and geometric principles we establish that dU(t)
dt

is negative or dU(t)
dt

= 0 when
S = S∗, Tv = T ∗v , Ic = I∗c , R = R∗, Vv = V ∗v and Vca = V ∗ca. Thus the endemic equilibrium is
globally asymptotically stable by LaSalle’s invariant principle [31]

4 Parameter estimation and numerical simulation

In this section, we present the parameter values for the model (2)-(6) from the relevant liter-
ature. We use the parameter values for numerical simulations that will assist understanding
the model predictions. We give simulations to show the effects of time delay on the dynamics
of the foot and mouth disease. The initial number of susceptible animals is 200 animals per
km2 with one infected animal [7].

4.1 Parameter estimation

The per-capita death rate γ is estimated using the carrying capacity, natural birth rate and
the natural death rate, γ = (b − µ)/200. The amplification rate η and vaccination rate ρ are
estimated by 0 ≤ η ≤ 1 and 0 ≤ ρ ≤ 1 respectively. The minimum and maximum values of
vaccination rate are 40% and 75% [32]. All other parameter values used in the numerical
simulations are given in Table 1 with their sources. Some parameter values are taken as they
appear in literature while others are determined based on estimating the given parameters
using in literature.

4.2 Numerical simulations

In this section, we present the numerical simulations to further enhance our understanding
of the model (2)-(6) and to explore the effects of prophylactic and reactive vaccination,
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Table 1: Dimensional parameter values for the model

Parameter description symbol Units Value source
Transmission rate β Day−1 1.4 [11, 33]
birth rate b Day−1 0.3 [34]
Transforming rate
from Ic to R α2 Day−1 0.1 [5, 7, 34]
The vaccinated carrier
rate constant α3 Day−1 0.2 [6]
The recovery rate constant ω Day−1 [0.01, 0.2] [31, 35, 36]
The rate of protection loss φ Day−1 [0, 1] [35]
Delay one τ1 Day−1 [1,6] [35]
Delay two τ2 Day−1 [1, 14] [7, 35]
Natural death rate µ year−1 0.05 [34]
Treating and vaccinating
of susceptible animals ρ1 Day−1 0.5 [5, 7, 34]
Culling of clinical infective
and vaccinated carrier animals δ Day−1 [0.01, 0.5] [11, 35]
Treating of vaccinated animals ε Day−1 0.1 [31, 37]

The rate of Vaccinating susceptible animals ρ2 Day−1 0.1 Estimate

The rate recovery of treating animals α4 Day−1 0.1 Estimate

prophylactic treatment and reactive culling of infected animals. We first examine the effects
of different control strategies which are the rate of vaccination (ρ), the rate of treating and
vaccinating susceptible animals (ρ1), the rate of treating of susceptible animals (ρ2), the rate
of treating vaccinated animals (ε) and the rate of culling infected and vaccinated carrier
animals (δ). Using the least and high rates of control strategies, we investigate the effects
of prophylactic vaccination and treatment and culling of infected animals using a two-time
delay FMD model.

The effect of the rate of vaccination (ρ) on the disease dynamics is shown in Figure 3. In-
creasing the rate of vaccination leads most animals entering to the treated and vaccinated
of susceptible, and to vaccinated animal classes. The implication of the rate of treating and
vaccinating of susceptible animals on the dynamics of the disease using a system of ordinary
differential equations is shown in Figure 4. Increasing the rate of treating and vaccinating of
susceptible animals results in most animals entering the vaccinated class which is a protected
class. The effect of the rate of vaccinating susceptible animals on a system of ordinary differ-
ential equations is shown in Figure 5. The effect of the rate of treating vaccinated animals
on a system of ordinary differential equations is shown in Figure 6. Increasing the rate of
treating vaccinated animals increases the susceptible, and treated and vaccinated classes and
decreases the other classes. Figure 7 shows the increasing of the rate of culling infected and
vaccinated carrier animals decreases the infected class essential vaccinated carrier and theo-
retically increase the flow of animals into the susceptible animals, the treated and vaccinated,
and vaccinated classes.

Therefore, increasing the rate of vaccination, the rate of treating and vaccination of suscep-
tible animals, the rate of treating vaccinated animals and the rate of culling infected and



Modelling control of foot and mouth disease with two time delays 19

vaccinated carrier animals results decrease the foot and mouth disease burden.

Figure 3: The effects of the rate of vaccination (ρ) on the dynamics of the disease.

Figure 4: The effects of treating and vaccinating susceptible animals (ρ1) on the dynamics of
the disease.
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Figure 5: The effects of vaccinating susceptible animals (ρ2) on the dynamics of the disease.

Figure 6: The effects of treating vaccinated animals (ε).
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Figure 7: The effects of culling infected animals (δ) on system of solutions.

Figure 8: The effects of low (ρ = 0.3) and maximum (ρ = 0.7) rate of vaccination (ρ) on
susceptible and treated animal classes with time delays.
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Figure 9: The effects of low (ρ = 0.3) and maximum (ρ = 0.7) rate vaccination (ρ) on
clinically infected and recovery animal classes with time delays.

Figure 10: The effects of low (ρ = 0.3) and maximum (ρ = 0.7) rate of vaccination (ρ) on
vaccinated and vaccinated carrier animal classes with time delays.
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Figure 11: The effects of low (ρ1 = 0.1)and maximum (ρ1 = 0.3) rate of treating susceptible
animals (ρ1) on susceptible and treated animal classes with time delays.

Figure 12: The effects of low (ρ1 = 0.1)and maximum (ρ1 = 0.3) rate of treating susceptible
animals (ρ1) on susceptible and treated animal classes with time delays.
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Figure 13: The effects of low (ρ1 = 0.1)and maximum (ρ1 = 0.3) rate of treating susceptible
animals (ρ1) on susceptible and treated animal classes with time delays.

Figure 14: The effects of low (ρ2 = 0.1)and maximum (ρ2 = 0.3) rate of vaccinating suscep-
tible animals (ρ2) on susceptible and treated animal classes with time delays.
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Figure 15: The effects of low (ρ2 = 0.1)and maximum (ρ2 = 0.3) rate of vaccinating suscep-
tible animals (ρ2) on susceptible and treated animal classes with time delays.

Figure 16: The effects of low (ρ2 = 0.1)and maximum (ρ2 = 0.3) rate of vaccinating suscep-
tible animals (ρ2) on susceptible and treated animal classes with time delays.
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Figure 17: The effects of low (ε = 0.3) and maximum (ε = 0.7) rate of treating vaccinated
animals (ε) on susceptible and treated animal classes with time delays.

Figure 18: The effects of low (ε = 0.3) and maximum (ε = 0.7) rate of treating vaccinated
animals (ε) on clinically infected and recovery animal classes with time delays.
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Figure 19: The effects of low (ε = 0.3) and maximum (ε = 0.7) of treating vaccinated animals
(ε) on vaccinated and vaccinated carrier animal classes with time delays.

Figure 20: The effects of low (δ = 0.01 ) and maximum (δ = 0.09) rate of culling infected
animals (δ) on susceptible and treated animal classes with time delays.
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Figure 21: The effects of low (δ = 0.01 ) and maximum (δ = 0.09) rate of culling infected
animals (δ) on clinically infected and recovery animal classes with time delays.

Figure 22: The effects of low (δ = 0.01) and maximum (δ = 0.09) rate of culling infected
animals (δ) on vaccinated and vaccinated carrier animal classes with time delays.
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The scenarios of varying the two-time delays by fixing the control parameters as least or high
rates are explored in Figure 7 to Figure 22 by varying time delays we seek to investigate the
effects of timing the development of clinical symptom after the animals have contracted the
infection.

Sub-Figure (a) and (c) of Figure 8 to 19, shows that, fixing of ρ = 0.3 or ρ1 = 0.1 or ρ2 = 0.1
or ε = 0.3 and increasing τ2 increases susceptible, treated and vaccinated classes whilst
decreases the clinically infected, recovered and vaccinated carrier classes. The decrease in τ2
leads to the decrease in susceptible, treated and vaccinated, and vaccinated and increase in
clinically infected, recovered and vaccinated carrier classes. Varying of τ1 seems to have no
significant effect on the dynamic of the disease.

Sub-Figure (b) and (d) of Figure 8 to 19, shows that, fixing of ρ = 0.7 or ρ1 = 0.3 or
ρ2 = 0.3 or ε = 0.7 and increasing τ2 increases susceptible, treated and vaccinated classes
and decreases clinically infected, recovered and vaccinated carrier classes. Decreasing of
τ2 leads to decrease the susceptible, treated and vaccinated classes and increases clinically
infected, recovered and vaccinated carrier classes. Varying of τ1 does not have any significant
effect on the dynamic of the disease.

Sub-Figure (a) and (c) of Figure 20 to 22, shows that, fixing of δ = 0.01 and increasing τ2
increases susceptible, treated and vaccinated classes whilst decreases the clinically infected,
recovered and vaccinated carrier classes. The decrease in τ2 leads to the decrease in suscepti-
ble, treated and vaccinated, and vaccinated and increase in clinically infected, recovered and
vaccinated carrier classes. Varying of τ1 seems to have no significant effect on the dynamic
of the disease.

Sub-Figure (b) and (d) of Figure 20 to 22, show that, fixing of δ = 0.09, and increasing
τ2 increases susceptible, treated and vaccinated classes and decreases clinically infected, re-
covered and vaccinated carrier classes. Decreasing of τ2 leads to decrease the susceptible,
treated and vaccinated classes and increases clinically infected, recovered and vaccinated
carrier classes. Varying of τ1 does not have any significant effect on the dynamic of the
disease.

Our numerical simulation results suggest that increasing τ2 and increasing each of the control
parameters minimizes the burden of foot and mouth disease and followed by increasing
either the control or τ2 parameters. However, decreasing both the control and τ2 parameters
increases the burden of foot and mouth disease. Increasing or decreasing of τ1 in combination
with increasing or decreasing of control parameters does not show a significant effect the
dynamic of infection.

5 Discussion and results

The delay ordinary differential equation model for foot and mouth disease of cattle was pre-
sented in this paper to capture the effects of prophylactic vaccination, reactive vaccination,
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prophylactic treatment, reactive culling and the effects of time delay. Mathematical analy-
sis and numerical simulations were carried out to reveal the effects of the aforementioned
control strategies and time delay on the burden of foot and mouth disease.

Mathematical analysis revealed the effects of the control reproduction number, Rc and the
existence of two equilibria, namely the disease-free equilibrium and an endemic equilibrium.
The disease-free equilibrium was locally asymptotically stable when Rc is less than unity.
This means the FMD burden can be kept in check if the control strategies used suppress
consistently the control reproduction number below unity. In fact, there is a possibility of
eradicating the infection with such controls. However, if the control cannot reduce Rc below
unity, then there is a possibility that the FMD can spread to endemic levels. This scenario may
be characteristic of a control strategy that is either inadequately administered or less efficient.
Evidence of controls such as the rate of vaccination, the rate of treating and vaccinating
susceptible animals, the rate of treating vaccinated animals and the rate of culling infected
and vaccinated carrier animals is available where the burden of foot and mouth disease
continued to increase [6, 13, 15, 38]. In particular, there are vaccines that do not induce
rapid control [6]. The sensitivity analysis of Rc with respect to prophylactic vaccination
showed that Rc decreases only when the rate of loss of vaccination is below a critical loss
of vaccination otherwise the benefits of prophylactic vaccination alone may not be realized.
This means that prophylactic vaccination as a single strategy may not successfully eradicate
the foot and mouth disease. Simulations on Rc showed that the control reproduction number
(Rc) is less than one when the rate of treating and vaccinating of susceptible animals and
rate of culling of clinically infected and vaccinated carrier animals are high.

Numerical simulations allowed us to observe the effects of time delays, prophylactic vacci-
nation, reactive vaccination, prophylactic treatment and reactive culling parameters on foot
and mouth disease transmission in cattle. The numerical simulations suggested that increas-
ing of both time delay two and control parameters or increasing of either of the time-delay
two or control parameters decrease the burden of foot and mouth disease. But increasing
of both time-delay one and control parameters does not show a significant effect on the dy-
namics of foot and mouth disease. Hence, time delay two has a significant effect on foot
and mouth disease. Increasing time delay two means that the newly infected animals delay
maximally to show clinical symptoms leading to less shedding of foot and mouth disease
virus to other animals and subsequently the reduction of foot and mouth burden. Similarly,
increasing of control parameters such as prophylactic vaccination, reactive vaccination, pro-
phylactic treatment, and reactive culling parameters have a substantial significant effect on
the decreasing of foot and mouth disease burden. Prophylactic and reactive vaccinations
and treatment have been found to maintain immunity to FMD [17], but the high cost of
vaccines and drugs limit the use vaccination and treatment control strategies for foot and
mouth disease [15, 38, 39]. The results suggest that the strategy of decreasing time delay
two whilst increasing the degree of control parameters contributes a significant effect on
the reduction of foot and mouth disease but decreasing of both time delay two and control
parameters increases the foot and mouth disease burden. Decreasing time delay two means
that the newly infected animals fast to show clinical symptoms and leading to high shedding
of foot and mouth disease virus to other animals and subsequently the increase of foot and
mouth burden. Findings also suggest that the strategy of increasing of time delay two whilst
decreasing the control parameters may not significantly reduce the foot and mouth disease
burden. This outcome has consequences on systems that would want to reduce the costs of
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control strategies but in the end, the disease burden will continue to hamper their efforts.
Therefore, the strategy which has a significant effect on the protection of foot and mouse
disease burden is increasing both the time delay two and the control parameters.

6 Conclusion

Findings suggested that the foot and mouth disease burden is decreased significantly when
the unprotected animals delay maximally their time to show clinical symptoms and at the
same time when the effectiveness of the control strategies are increased. It is imperative that
control strategies play a significant role in moving the animals into the protected routes of
infection than leaving more animals in the unprotected route of infection. By implication,
strategies that directly protect and reduce the number of susceptible animals should be pri-
oritized and effectively enhanced as these directly divert the animal flow into the protected
route of the foot and mouth disease dynamics.

References

[1] G Ferrari, D Paton, S Duffy, C Bartels, T Knight-Jones, S Metwally, and S Münstermann.
Foot and mouth disease vaccination and post-vaccination monitoring. 2016.

[2] F Brown. The history of research in foot-and-mouth disease. Virus research, 91(1):3–7,
2003.

[3] S Mushayabasa, C. P Bhunu, and M Dhlamini. Impact of Vaccination and Culling on
Controlling Foot and Mouth Disease: A Mathematical Modelling Approach. World Jour-
nal of Vaccines, 1:156–161, 2011.

[4] T. C Schroeder, D. L Pendell, M. W Sanderson, and S Mcreynolds. Economic impact
of alternative FMD emergency vaccination strategies in the midwestern United States.
Journal of Agricultural and Applied Economics, 47(1):47–76, 2015.

[5] G Chowell, A. L Rivas, N. W Hengartner, and J. M Hyman. Critical response to post-
outbreak vaccination against. In Mathematical Studies on Human Disease Dynamics:
Emerging Paradigms and Challenges: AMS-IMS-SIAM Joint Summer Research Confer-
ence on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges,
July 17-21, 2005, Snowbird, Utah, volume 410, page 73. American Mathematical Soc.,
2006.

[6] M. J Grubman and B Baxt. Foot-and-mouth disease. Clinical microbiology reviews,
17(2):465–493, 2004.



32 K.M.Tessema et.al.

[7] N. A Maidana and H. M Yang. A spatial model to describe foot and mouth disease
dissemination. TEST ONLY, 12(01):11–20, 2011.

[8] F Brauer, C Castillo-Chavez, and C Castillo-Chavez. Mathematical models in population
biology and epidemiology, volume 40. Springer, 2012.

[9] W. O Kermack and A. G McKendrick. A contribution to the mathematical theory of
epidemics. In Proceedings of the Royal Society of London A: mathematical, physical and
engineering sciences, volume 115, pages 700–721. The Royal Society, 1927.

[10] B. W Mahy. Foot-and-mouth disease virus, volume 288. Springer Science & Business
Media, 2004.

[11] N Ringa and C. T Bauch. Impacts of constrained culling and vaccination on control of
foot and mouth disease in near-endemic settings: A pair approximation model. Epi-
demics, 9:18–30, 2014.

[12] R Ringa and C. T Bauch. Dynamics and control of foot-and-mouth disease in endemic
countries: A pair approximation model. Journal of theoretical biology, 357:150–159,
2014.

[13] P Sutmoller, S. S Barteling, R. C Olascoaga, and K. J Sumption. Control and eradication
of foot-and-mouth disease. Virus research, 91(1):101–144, 2003.

[14] E. B Bashier and K. C Patidar. Optimal control of an epidemiological model with multi-
ple time delays. Applied Mathematics and Computation, 292:47–56, 2017.

[15] M. J Keeling, M. E. J Woolhouse, R. M May, G Davies, and B. T Grenfell. Modelling
vaccination strategies against foot-and-mouth disease. Nature, 421(6919):136, 2003.

[16] S Parida. Vaccination against foot-and-mouth disease virus: strategies and effective-
ness. Expert review of vaccines, 8(3):347–365, 2009.

[17] D. J Paton, K. J Sumption, and B Charleston. Options for control of foot-and-mouth
disease: knowledge, capability and policy. Philosophical Transactions of the Royal Society
of London B: Biological Sciences, 364(1530):2657–2667, 2009.

[18] The Royal Society. Literature Reports of PROPHYLACTIC TREATMENT (OTHER THAN
VACCINES) for Foot and Mouth Disease. http://wildpro.twycrosszoo.org/S/00dis/
viral/Disease_FMDInfection/FMDTxCx_Prophy.htm. [Accessed:2018-06-22].

[19] F Hartung, T Krisztin, H. O Walther, and J Wu. Functional differential equations with
state-dependent delays: theory and applications. In Handbook of differential equations:
ordinary differential equations, volume 3, pages 435–545. Elsevier, 2006.



Modelling control of foot and mouth disease with two time delays 33

[20] J Medlock and M Kot. Spreading disease: integro-differential equations old and new.
Mathematical Biosciences, 184(2):201–222, 2003.

[21] H. L Smith, L. Wang, and M. Y Li. Global dynamics of an SEIR epidemic model with
vertical transmission. SIAM Journal on Applied Mathematics, 62(1):58–69, 2001.

[22] S. A Gourley, Y Kuang, and J. D Nagy. Dynamics of a delay differential equation model
of hepatitis B virus infection. Journal of Biological Dynamics, 2(2):140–153, 2008.

[23] Y Kuang. Delay differential equations: with applications in population dynamics, volume
191. Academic Press, 1993.

[24] C. C McCluskey. Complete global stability for an SIR epidemic model with delay dis-
tributed or discrete. Nonlinear Analysis: Real World Applications, 11(1):55–59, 2010.

[25] Susan P Buchbinder and Albert Liu. Pre-exposure prophylaxis and the promise of com-
bination prevention approaches. AIDS and Behavior, 15(1):72–79, 2011.

[26] Mark E Polhemus, Shon Remich, Bernhards Ogutu, John Waitumbi, Marc Lievens,
W Ripley Ballou, and D Gray Heppner. Malaria treatment with atovaquone-proguanil
in malaria-immune adults: implications for malaria intervention trials and for pre-
exposure prophylaxis of malaria. Antimicrobial agents and chemotherapy, 52(4):1493–
1495, 2008.

[27] O Diekmann, J. A. P Heesterbeek, and J. A Metz. On the definition and the computation
of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations. Journal of mathematical biology, 28(4):365–382, 1990.

[28] P Van den Driessche and J Watmough. Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission. Mathematical bio-
sciences, 180(1):29–48, 2002.

[29] C Vargas-De-León. Lyapunov functionals for global stability of Lotka–Volterra coopera-
tive systems with discrete delays. Abstraction & Application, 12:42–50, 2015.

[30] C. V de León and G. G Alcaraz. Global Stability Conditions of Delayed SIRS Epidemi-
ological Models for Vector Diseases. Foro-Red-Mat: Revista electrónica de contenido
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CHAPTER 4

ANALYSIS OF FOOT AND MOUTH DISEASE CONTROL USING A

REACTION-DIFFUSION MODEL INCORPORATING ENVIRONMENTAL

EFFECTS

In this Chapter we present a mathematical model of foot and mouth disease using a reaction-

diffusion model incorporating control strategies for foot and mouth disease spread in both space

and time.
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Abstract

Foot and mouth disease spreads rapidly from animal to animal and hence, it is vital to em-
ploy effective strategies to control the disease spread. The disease may be contracted through
contact between animals and through viruses shed into the environment. We develop a reaction-
diffusion model incorporating control strategies for foot and mouth disease spread in both space
and time. In this study, we investigate the effects of vaccination, quarantining of clinically infected
animals, shedding of foot and mouth disease virus into the environment and rates of movement of
animals and virus. Results from our study suggest that the foot and mouth disease burden is de-
creased significantly by increasing vaccination of newborn and the susceptible animals, increasing
the quarantining of clinically infected animals, restricting the movement of infected animals and
as well as decreasing the shedding and diffusion of virus particles in the environment.
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1 Introduction

Foot-and-mouth disease (FMD) is a cloven-hoofed animal infectious disease which is spreads by viral
particles through direct and indirect contact with infected animals or contaminated environments
[1]. The disease causes high morbidity rates in cattle when introduced into disease-free herds or
areas. The symptoms of the disease include fever, blisters in the mouth and feet and loss of appetite
[2]. The disease progresses rapidly through the latent and subclinical infection periods to clinical
infections period before recovery. Clinically infected animals may be quarantined before they recover
through natural immunity. Quarantined animals may also be removed through reactive culling [3].
In this study, we focus on natural recovery in quarantine, a strategy used by many subsistence farmers
[4, 5]. Clinically infected animals are isolated into the quarantined animal class and progress to
the recovered animal class through developing natural immunity [6, 7, 8, 9]. We assume that all
clinically infected animals are quarantined. This is a simplifying assumption since some clinically
infected animals may also recover directly before being quarantined [3]. The recovered animals’
immunity wanes over time and the animals become susceptible again [10, 11]. Another control for
FMD is when animals are protected from the disease through vaccination. However, the vaccine may
not induce rapid protection leading to vaccinated carrier animals transmitting the infection to healthy
animals [6, 8, 9, 12]. The infected animals shed off foot and mouth disease virus (FMDV) into the
environment through aerosol spraying. The aerosol in the atmosphere may be inhaled air that leads
to the transmission of FMDV [6].

A number of studies use ordinary differential equation (ODE) models and individual-based models
[13, 14, 15]. A disadvantage of the ODEs models is that they are not able to capture the spatial
spread of most infectious diseases. The spatial spread of the infection is a confounding factor in the
dynamics of the infection. Maidana et al.[16] incorporated the spatial spread of FMD without any
control strategies. The control strategies for foot and mouth disease are of paramount importance to
animal health and for this reason, it is imperative to consider the effects of control strategies available
when modelling the dynamics of FMD. In addition, the previous studies did not capture the effects
of FMDV infection spread through aerosols. Aerosol transmission of FMDV has been found to be an
important route for FMD transmission [6] and its inclusion in the models has a potential to alter the
prediction of the infection progress. In areas where there is an outbreak of FMD, quarantining of
infected animals is also an effective control measure to reduce contact between infected and healthy
animals [13]. However, because quarantine animals can still shed the virus into the atmosphere
through aerosols, this group of animals, together with the subclinically infected animals, clinically
infected animals and vaccinated carrier animals can contribute towards the transmission of FMDV to
healthy animals [6]. This, therefore, suggests that studies modelling FMD should capture the effects of
aerosol transmission by including the concentration of FMDV in the atmospheric environment.

Using the studies [6, 7, 8, 9, 16] as building blocks, we develop a model with spatial spread of
FMD incorporating vaccination that does not induce rapid protection, quarantine and shedding of
the FMDV into the atmospheric environment through aerosols. Our goal is to assess the effects of
diffusion, vaccination, quarantining and viral shedding rates on the prognosis of FMDV using a system
of reaction-diffusion equations. We formulate the mathematical model and give an analysis of the
model in Sections 2 and 3. Parameter estimation and numerical simulations shall be presented in
Section 4 and a discussion of the results and conclusion are given in Section 5.

2 Model incorporating spatial transmission and control

In this section, we propose a model consisting of reaction-diffusion equations for the dynamics of the
foot and mouth disease on a cattle population. The total population is subdivided into susceptible
animals S(x, t), exposed animals E(x, t), subclinically infectious animals Is(x, t), clinically infectious
animals Ic(x, t), quarantined animals Q(x, t), recovered animals R(x, t), vaccinated animals Vv(x, t)
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and vaccinated carrier animals Vca(x, t). We add another compartment which captures the concen-
tration of FMDVs in the atmospheric environment through aerosols denoted by Fv(x, t). Susceptible
animals are animals which are free of FMDV, exposed animals are animals which are not yet in-
fectious but have the virus, subclinical animals are infectious animals that are nearly or completely
asymptomatic with no signs or symptoms of infection [17] and clinically infections animals are infec-
tious animals with clinically diagnosed signs or symptoms. Quarantined animals are clinically infected
animals which are isolated from the rest of animals with restricted movement [13]. The removed an-
imals are either recovered or immune to the infection, and the immunity may wane with time and
the recovered animals become susceptible again [18, 19, 20]. The vaccinated animals are animals
which are protected from the disease by a vaccine and vaccinated carrier animals are animals which
are vaccinated but get infected because the vaccine does not induce complete protection [6].

We assume a constant recruitment rate due to birth, Π, and that the per-capita death rate of the
total population N(x, t) is µ. A proportion of the newborns is given a vaccine at a constant rate ρ,
where 0 ≤ ρ ≤ 1, and the recruitment rate of susceptible animals is given by (1 − ρ)Π. Susceptible
animals are given a vaccine at a constant rate ρ1, where 0 ≤ ρ1 ≤ 1 and move to the vaccinated class
Vv(x, t). The remaining susceptible animals go to the exposed class, E(x, t) through the force of infec-
tion, β(Ic(x, t) + η1 Is(x, t) + η2 Vca(x, t) + η3 Fv(x, t))S(x, t)/N(x, t), where β is the rate new infec-
tions arise by successive contacts between susceptible and infected animals, η1 < 1 is an amplification
to show that Ic(x, t) is more infectious than Is, η2 < 1 is an amplification to show that Vca(x, t) is less
infectious compared to clinical infective animal, Ic(x, t) and η3 < 1 is an amplification to show that
Fv(x, t) is less infectious compared to Is(x, t), Ic(x, t) and Vca(x, t). Thus, η3 < η2 < η1 < 1. Exposed
animals progress to subclinical infection class, Is(x, t) at a rate ε. Subclinical animals are capable of
transmitting the infection and later show signs and symptoms of FMD and progress to clinically in-
fected animals at a rate α1. Clinically infected animals are isolated to the quarantined class Q(x, t) at
a rate α2. Quarantined animals develop temporary immunity and move to the recovered class at a rate
α3 [13]. As stated earlier, we assume that all clinically infected animals are quarantined for simplicity.
The recovered animal becomes susceptible again by losing immunity [21] at a rate ω. The rate of re-
cruitment of vaccinated animals, Vv(x, t) is ρΠ. The vaccinated animals progress to vaccinated carrier
Vca(x, t) by the force of infection, β φ (Ic(x, t) + η1 Is(x, t) + η2 Vca(x, t) + η3 Fv(x, t))Vv(x, t)/N(x, t),
where φ is the rate of protection loss by the vaccine and 0 ≤ φ ≤ 1. Vca(x, t) animals progress to
the recovered class, R(x, t) at a rate of α4. The vaccinated animals progression to the vaccinated
carrier class is due to the fact that vaccine that does not induce rapid protection [6]. The subclini-
cally infected, clinically infected, quarantined and vaccinated carrier animals shed off FMDV into the
atmospheric environment at rates τis, τic, τq, and τvca respectively [6]. The death rate of the FMDV
in the atmospheric environment is denoted by µf . The average number of FMD viruses shedded into
the atmospheric environment by subclinically infected, clinically infected, quarantined and vaccinated
carrier animals are denoted by Nis, Nic, Nq, andNvca respectively. The spatial diffusion parameters
of susceptible, exposed, subclinically and clinically infected classes are denoted by d1, d2, d3 and d4

respectively and the spatial diffusion parameters d5, d6, d7, d8 and d9 are designed for the diffusion
parameter of quarantined, recovered, vaccinated and vaccinated carrier classes respectively. The flow
diagram for the model is presented in Figure 1.
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Figure 1: Flow diagram for the transmission dynamics of foot and mouth disease of cattle popula-
tion model. The dashed arrows represent the shedding off of foot and mouth disease virus in the
environment.

where λ = β (Ic(x, t) + η1 Is(x, t) + η2 Vca(x, t) + η3 Fv(x, t))/N(x, t).

The model described by the following reaction-diffusion system of foot and mouth disease:

∂S(x, t)

∂t
= d1

∂2S(x, t)

∂x2
+ (1− ρ) Π− (λ+ µ)S(x, t)− ρ1 S(x, t) + ωR(x, t),

∂E(x, t)

∂t
= d2

∂2E(x, t)

∂x2
+ λS(x, t)− (ε+ µ)E(x, t),

∂Is(x, t)

∂t
= d3

∂2Is(x, t)

∂x2
+ εE(x, t)− (α1 + µ) Is(x, t),

∂Ic(x, t)

∂t
= d4

∂2Ic(x, t)

∂x2
+ α1 Is(x, t)− (α2 + µ) Ic(x, t),

∂Q(x, t)

∂t
= d5

∂2Q(x, t)

∂x2
+ α2 Ic(x, t)− (α3 + µ)Q(x, t),

∂R(x, t)

∂t
= d6

∂2R(x, t)

∂x2
+ α3Q(x, t)− (ω + µ)R(x, t) + α4 Vca(x, t),

∂Vv(x, t)

∂t
= d7

∂2Vv(x, t)

∂x2
+ ρΠ− (λφ+ µ)Vv(x, t) + ρ1 S(x, t),

∂Vca(x, t)

∂t
= d8

∂2Vca(x, t)

∂x2
+ λφVv(x, t)− (α4 + µ)Vca(x, t),

∂Fv(x, t)

∂t
= d9

∂2Fv(x, t)

∂x2
+ τisNis Is(x, t) + τicNic Ic(x, t) + τqNq Q(x, t) + τvcNvc Vca(x, t)− µf Fv(x, t),

(1)
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subject to the initial conditions of

S(x, 0) = ρ1(x), E(x, 0) = ρ3(x), Is(x, 0) = ρ2(x), Ic(x, 0) = ρ4(x), Q(x, 0) = ρ5(x),

R(x, 0) = ρ6(x), Vv(x, 0) = ρ7(x), Vca(x, 0) = ρ8(x), Fv(x, 0) = ρ9(x), t ≥ 0, x ∈ Ω.
(2)

Ω in equation (2) is a bounded domain in Rn with a smooth boundary ∂Ω. The functions ρi(x, t) ∈
L = C([0, t], Y )(i = 1, 2, 3, . . . , 9) and Y is defined by,

Y =

{
S,E, Is, Ic, Q,R, Vv, Vca, Fv ∈W 2,2(Ω) :

∂S(x, t)

∂n
=
∂E(x, t)

∂n
=
∂Is(x, t)

∂n
=
∂Ic(x, t)

∂n
=
∂Q(x, t)

∂n

=
∂R(x, t)

∂n
=
∂Vv(x, t)

∂n
=
∂Vca(x, t)

∂n
=
∂Fv(x, t)

∂n
= 0, x ∈ ∂Ω

}
.

(3)

with the inner product 〈·, ·〉, where ∂
∂n denotes the outward normal derivative on ∂Ω [22], N(x, t) =

S(x, t) +E(x, t) + Is(x, t) + Ic(x, t) +Q(x, t) +R(x, t) +Vv(x, t) +Vca(x, t), summing the equations of
(1), by taking D = di where i = 1, 2, 3, . . . , 9 and leads to

∂N(x, t)

∂t
= D

∂2N(x, t)

∂x2
+ Π− µN(x, t),

∂Fv(x, t)

∂t
= D

∂2Fv(x, t)

∂x2
+ τisNis Is(x, t) + τicNic Ic(x, t) + τqNq Q(x, t) + τvcNvc Vca(x, t)− µf Fv(x, t),

Introducing the non-dimensional parameters to system (1) with the following dimensionless variables
and parameters:

x1 =
S

N
, x2 =

E

N
, x3 =

IS
N
, x4 =

Ic
N
, x5 =

Q

N
, x6 =

R

N
, x7 =

Vv
N
, x8 =

Vca
N
, x9 =

Fv
N
, τ = µ t,

π1 =
(1− ρ) Π

µN
, b1 =

1

µ
, b2 =

ρ1

µ
, c1 =

η1

µ
, c2 =

η2

µ
, c3 =

η3

µ
, c4 =

ω

µ
, c5 =

ε

µ
, m1 =

α1

µ
, m2 =

α2

µ
,

m3 =
α3

µ
, m4 =

α4

µ
, π2 =

ρΠ

µN
, x = (µN)

1
2 X, e1 =

Nisτis
µ

, e2 =
Nicτic
µ

, e3 =
Nqτq
µ

, e4 =
Nvcτvc
µ

,

e5 =
µf
µ
,

(4)

Then the corresponding non-dimensional model is becomes

∂

∂τ
x1 (X, τ) = d1

∂2

∂X2
x1 (X, τ) + π1 − (Λ + 1 + b2)x1(X, τ) + c4 x6(X, τ),

∂

∂τ
x2 (X, τ) = d2

∂2

∂X2
x2 (X, τ) + Λx1(X, τ)− (c5 + 1)x2(X, τ),

∂

∂τ
x3 (X, τ) = d3

∂2

∂X2
x3 (X, τ) + c5 x2(X, τ)− (m1 + 1)x3(X, τ),

∂

∂τ
x4 (X, τ) = d4

∂2

∂X2
x4 (X, τ) +m1 x3(X, τ) − (m2 + 1)x4(X, τ),

∂

∂τ
x5 (X, τ) = d5

∂2

∂X2
x5 (X, τ) +m2 x4(X, τ)− (m3 + 1)x5(X, τ),

∂

∂τ
x6 (X, τ) = d6

∂2

∂X2
x6 (X, τ) +m3 x5(X, τ)− (c4 + 1)x6(X, τ) +m4 x8(X, τ),

∂

∂τ
x7 (X, τ) = d7

∂2

∂X2
x7 (X, τ) + π2 − (φΛ + 1)x7(X, τ) + b2 x1(X, τ),

∂

∂τ
x8 (X, τ) = d8

∂2

∂X2
x8 (X, τ) + φΛx7(X, τ)− (m4 + 1)x8(X, τ),

∂

∂τ
x9 (X, τ) = d9

∂2

∂X2
x9 (X, τ) + e1 x3(X, τ) + e2 x4(X, τ) + e3 x5(X, τ) + e4 x8(X, τ)− e5 x9(X, τ),

(5)
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Subject to the initial conditions of

x1(X, 0) = ρ11(X), x2(X, 0) = ρ12(X), x3(X, 0) = ρ13(X), x4(X, 0) = ρ14(X),

x5(X, 0) = ρ15(X), x6(X, 0) = ρ16(X), x7(X, 0) = ρ17(X), x8(X, 0) = ρ18(X),

x9(X, 0) = ρ19(X), τ ≥ 0, X ∈ ∂Ω̃.

(6)

and with Neumann boundary conditions:

∂x1 (X, τ)

∂n
=
∂x2 (X, τ)

∂n
=
∂x3 (X, τ)

∂n
=
∂x4 (X, τ)

∂n
=
∂x5 (X, τ)

∂n
=
∂x6 (X, τ)

∂n
=
∂x7 (X, τ)

∂n

=
∂x8 (X, τ)

∂n
=
∂x9 (X, τ)

∂n
= 0, τ ≥ 0, X ∈ ∂Ω̃.

(7)

where

Λ = β (b1 x4 (X, τ) + c1 x3 (X, τ) + c2 x8 (X, τ) + c3 x9 (X, τ)) ,

2.1 The homogeneous non-dimensional model for foot and mouth disease

In this section, we analyze the homogeneous non-dimensional model. We considered the system of
ordinary differential equations of the governing equations (8).

d

dτ
x1 (τ) = π1 − (Λ + 1 + b2)x1(τ) + c4 x6(τ),

d

dτ
x2 (τ) = Λx1(τ)− (c5 + 1)x2(τ),

d

dτ
x3 (τ) = c5 x2(τ)− (m1 + 1)x3(τ),

d

dτ
x4 (τ) = m1 x3(τ)− (m2 + 1)x4(τ),

d

dτ
x5 (τ) = m2 x4(τ)− (m3 + 1)x5(τ),

d

dτ
x6 (τ) = m3 x5(τ)− (c4 + 1)x6(τ) +m4 x8(τ),

d

dτ
x7 (τ) = π2 − (φΛ + 1)x7(τ) + b2 x1(τ),

d

dτ
x8 (τ) = φΛx7(τ)− (m4 + 1)x8(τ),

d

dτ
x9 (τ) = e1 x4(τ) + e2 x3(τ) + e3 x5(τ) + e4 x8(τ)− e5 x9(τ),

(8)

Subject to the initial conditions

x1(τ) ≥ x1(0) x2(τ) ≥ x2(0), x3(τ) ≥ x3(0), x4(τ) ≥ x4(0), x5(τ) ≥ x5(0),

x6(τ) ≥ x6(0), x7(τ) ≥ x7(0), x8(τ) ≥ x8(0) x9(τ) ≥ x9(0),
(9)

2.1.1 Feasible region.

We assume that all parameters of model (8) to be non-negative for the model to be biologically
meaningful for time τ > 0.
Theorem 1. The cattle foot and mouth disease transmission model (8) with initial condition (9), will
then be analyzed in a suitable region given by

Γ = {G ∈ <9
+, N (τ) ≤ π1 + π2, x9(τ) ≤ e1 + e2 + e3 + e4

e5
}, (10)

where, G = (x1(τ), x2(τ), x3(τ), x4(τ), x5(τ), x6(τ), x7(τ), x8(τ), x9(τ))
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Proof. For model (8) to be epidemiologically useful, it is important to show that all the state variables
of the region Γ are non-negative for all time and it is positively invariant.

Let assume τ > 0, xi(0) ≥ 0, for 1 ≤ i ≤ 9. From the first equation of model (8), we get

d

dτ
x1 (τ) = π1 − (Λ (τ) + 1 + b2)x1 (τ) + c4 x6 (τ) , (11)

Integrating equation (11) and using a differential inequality, we get

x1 (τ) =

(∫ τ

0
e−

∫ τ
0 −Λ(τ)−1−b2 dτ (c4 x6 (τ) + π1) dτ + x1(0)

)
e
∫ τ
0 (−Λ(τ)−1−b2) dτ

≥ x1(0)e
∫ τ
0 (−Λ(τ)−1−b2) dτ ≥ 0,

Hence, x1(τ) ≥ 0, as τ → 0 and this implies that at any finite time, x1 is non-negative. A similar
analysis holds for the other equations of (8) where,

x3 (τ) ≥ x3 (0) e−(m1+1)τ ≥ 0, x4 (τ) ≥ x4 (0) e−(m2+1)τ ≥ 0,

x5 (τ) = x5 (0) e−(m3+1)τ ≥ 0, x6 (τ) ≥ x6 (0) e−(c4+1)τ ≥ 0,

x9 (τ) ≥ x9 (0) e−e τ ≥ 0, x2 (τ) ≥ x2 (0) e−(c5+1)τ ≥ 0,

x7 (τ) ≥ x7 (0) e
∫ τ
0 −Λ(τ)φ−1 dτ ≥ 0.

Adding the above eight equations in model (8) gives

d

dτ
N (τ) = π1 + π2 −N (τ) , (12)

where N(τ) = x1(τ) + x2(τ) + x3(τ) + x4(τ) + x5(τ) + x6(τ) + x7(τ) + x8(τ).

Solving (12) gives

N (τ) = π1 + π2 +N(0)e−τ ,

where N(0) represents the initial value of N(τ). Thus, as τ → ∞, 0 ≤ N(τ) ≤ π1 + π2. Therefore,
the solutions of the model with non-negative initial conditions remain non-negative for all 0 ≤ τ < ∞.
Since d

dτ x9 (τ) = e1 x4(τ) + e2 x3(τ) + e3 x5(τ) + e4 x8(τ)− e5 x9(τ) ≤ e1 + e2 + e3 + e4 − e5 x9(τ). Thus,
we can easily obtain that, 0 ≤ x9 (τ) ≤ e1+e2+e3+e4

e5
. Therefore, all variables are bounded. This shows

that for initial conditions (9), the region Γ is positively invariant and attracting and therefore the
region Γ is a feasible region for the model (8).

2.1.2 The control reproduction ratio for the model

The control reproduction ratio is calculated using the next generation matrix method [23, 24]. We
take only the infected classes of the model to calculate the control reproduction ratio. Using the
notation in [23], the non-negative matrix of new infections F into compartments and the M-matrix,
V , of the transition terms associated with the model (8), in and out of compartments at the disease
free equilibrium point, x2 = x3 = x4 = x5 = x6 = x8 = x10 = 0, x1 and x7 are given by:

F =




0 β c1π1
1+b2

β b1π1
1+b2

β c2π1
1+b2

β c3π1
1+b2

0 0 0 0 0

0 0 0 0 0

0 φβ c1

(
b2π1
1+b2

+ π2

)
φβ b1

(
b2π1
1+b2

+ π2

)
φβ c2

(
b2π1
1+b2

+ π2

)
φβ c3

(
b2π1
1+b2

+ π2

)

0 0 0 0 0




,
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V =




c5 + 1 0 0 0 0

−c5 m1 + 1 0 0 0

0 −m1 m2 + 1 0 0

0 0 0 m4 + 1 0

0 −e1 −e2 −e4 e5




,

so that

V −1 =




(c5 + 1)−1 0 0 0 0

c5
(m1+1)(c5+1) (m1 + 1)−1 0 0 0

c5m1
(m2+1)(m1+1)(c5+1)

m1
(m2+1)(m1+1) (m2 + 1)−1 0 0

0 0 0 (m4 + 1)−1 0

c5(e2m1+e1(m2+1))
(m2+1)(m1+1)(c5+1)e5

e2m1+e1(m2+1)
(m2+1)(m1+1)e5

e2
(m2+1)e5

e4
(m4+1)e5

e5
−1




,

Following [23], the control reproduction number of model 8 is

Rc = ρ(FV −1)

where ρ represents the spectral radius of the matrix FV −1. Rc is FMD infection control reproduction
number and it is given by

Rc =
β φ (c2e5 + c3e4) (π1b2 + π2b2 + π2)

(m4 + 1) (1 + b2) e5
+

(b1m1 + c1m2 + c1) c5π1β

(m2 + 1) (m1 + 1) (c5 + 1) (1 + b2)

+
c3 (e1m2 + e2m1 + e1) c5π1β

(m2 + 1) (m1 + 1) (c5 + 1) (1 + b2) e5
.

(13)

2.1.3 Equilibrium points of the system

The system of equations (8) has two steady states.The first one is the disease-free equilibrium point
given by

Ê0 = (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6, x̂7, x̂8, x̂9) =

(
π1

1 + b2
, 0, 0, 0, 0, 0,

π1b2
b2 + 1

+ π2, 0, 0

)
.

The second one is the endemic state E1 of the model is given in terms of λ∗ and R∗ with

E∗ = (x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6, x
∗
7, x
∗
8, x
∗
9),

where the force of infection at the equilibrium point is

Λ∗ = β (b1 x
∗
4 + c1 x

∗
3 + c2 x

∗
8 + c3 x

∗
9) , (14)



Analysis of foot and mouth disease control using a reaction–diffusion model . . . 9

and

x∗1 =
c4 x

∗
6 + π1

Λ∗ + 1 + b2
, x∗2 =

Λ∗ (c4 x
∗
6 + π1)

(Λ∗ + 1 + b2) (c5 + 1)
, x∗3 =

c5 Λ∗ (c4 x
∗
6 + π1)

(Λ∗ + 1 + b2) (c5 + 1) (m1 + 1)
,

x∗4 =
c5 Λ∗ (c4 x

∗
6 + π1)m1

(Λ∗ + 1 + b2) (c5 + 1) (m1 + 1) (m2 + 1)
,

x∗5 =
m2 c5 Λ∗ (c4 x

∗
6 + π1)m1

(Λ∗ + 1 + b2) (c5 + 1) (m1 + 1) (m2 + 1) (m3 + 1)
,

x∗6 =
m3m2m1 c5 Λ∗ π1H1

H2H3
+

m4 Λ∗ φ b2 π1H1

(Λ∗ + 1 + b2) (Λ∗ φ+ 1) (m4 + 1) (c4 + 1)H3

+
m4 Λ∗ φπ2H1

(Λ∗ φ+ 1) (m4 + 1) (c4 + 1)H3
, x∗7 =

π2

Λ∗ φ+ 1
+

b2 (c4 x
∗
6 + π1)

(Λ∗ + 1 + b2) (Λ∗ φ+ 1)
,

x∗8 =
Λ∗ φπ2

(Λ∗ φ+ 1) (m4 + 1)
+

Λ∗ φ b2 (c4 x
∗
6 + π1)

(Λ∗ + 1 + b2) (Λ∗ φ+ 1) (m4 + 1)
,

x∗9 =
e1m1 c5 Λ∗ (c4 x

∗
6 + π1)

e5 (Λ∗ + 1 + b2) (c5 + 1) (m1 + 1) (m2 + 1)
+

e2 c5 Λ∗ (c4 x
∗
6 + π1)

e5 (Λ∗ + 1 + b2) (c5 + 1) (m1 + 1)

+
e3m2m1 c5 Λ∗ (c4 x

∗
6 + π1)

e5 (Λ∗ + 1 + b2) (c5 + 1) (m1 + 1) (m2 + 1) (m3 + 1)
+

e4 Λ∗ φπ2

(Λ∗ φ+ 1) (m4 + 1) e5

+
e4 Λ∗ φ b2 (c4 x

∗
6 + π1)

(Λ∗ + 1 + b2) (Λ∗ φ+ 1) (m4 + 1) e5
,

where

H1 = (Λ∗ + 1 + b2)2 (c5 + 1) (m1 + 1) (m2 + 1) (m3 + 1) (c4 + 1)2 (Λ∗ φ+ 1) (m4 + 1) ,

H2 = (Λ∗ + 1 + b2) (c5 + 1) (m1 + 1) (m2 + 1) (m3 + 1) (c4 + 1) ,

H3 = H1 − Λ∗ c5m1m2m3 c4 (Λ∗ + 1 + b2) (Λ∗ φ+ 1) (m4 + 1) (c4 + 1)

−m4 Λ∗ φ b2 c4 (Λ∗ + 1 + b2) (c5 + 1) (m1 + 1) (m2 + 1) (m3 + 1) (c4 + 1) ,

If x∗3 , x∗4, x∗8 and x∗9 are substituted into (14), we obtain the equation in terms of Λ∗,

Λ∗(K1Λ∗2 +K2Λ∗ +K3) = 0,

where

K1 = e5 φ (m4 + 1) (m3 + 1) (m2 + 1) (m1 + 1) (c5 + 1) ,

K2 = −G1 φ c5 β (c4 x
∗
6 + π1) (m4 + 1)− K1 β π2 (c2 e5 + c3 e4)

e5 (m4 + 1)
+
K1 (b2 φ+ φ+ 1)

φ
,

K3 =
K1 (b2 + 1) (1− Rc +G2 −G4 −G5)

φ
,

G1 = (m1m3 +m1) c3 e1 + c3 ((m3 + 1) (m2 + 1) e2 + e3m1m2)

+ e5 (m3 + 1) (b1m1 + c1m2 + c1) ,

G2 =
(b1m1 + c1m2 + c1) c5π1β

(m2 + 1) (m1 + 1) (c5 + 1) (b2 + 1)
+

c3 (e1m2 + e2m1 + e1) c5π1β

(m2 + 1) (m1 + 1) (c5 + 1) (b2 + 1) e5
,

G3 =
b1 β m1 c5 (c4 x

∗
6 + π1)

(b2 + 1) (c5 + 1) (m1 + 1) (m2 + 1)
+

(c4 x
∗
6 + π1) c5 c1 β

(b2 + 1) (c5 + 1) (m1 + 1)
,

G4 =
(c2 e5 + c3 e4) b2 c4 x

∗
6 β φ

e5 (m4 + 1) (b2 + 1)
+G3,

G5 =
(c4 x

∗
6 + π1) c5 c3 β e2

(b2 + 1) e5 (m1 + 1) (c5 + 1)
+

β c3 c5 (c4 x
∗
6 + π1)m1 (e1m3 + e3m2 + e1)

e5 (m3 + 1) (m2 + 1) (m1 + 1) (c5 + 1) (b2 + 1)
.
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The roots of equation (15) are Λ∗ = 0 which corresponds to the disease free equilibrium point
and

Λ∗ =
−K2 ±

√
K2

2 − 4K1K3

2K1
.

The condition K1 > 0 and K3 < 0 for any values of K2 when Rc > 1 is satisfied to ensures positivity
of Λ∗ and subsequently the positivity of E1. If K1 > 0, K2 < 0, K3 > 0 and K2

2 − 4K1K3 > 0 when
Rc < 1, then there is a possibility of existence of two real positive solutions. Since these two positive
solutions exist when Rc < 1, then there is a possibility of existence of a backward bifurcation.

2.1.4 Stability of disease free equilibrium point

Let

F =




0 β c1x
∗
1 β b1x

∗
1 β c2x

∗
1 β c3x

∗
1

0 0 0 0 0

0 0 0 0 0

0 φβ c1x
∗
7 φβ b1x

∗
7 φβ c2x

∗
7 φβ c3x

∗
7

0 0 0 0 0




,

V =




c5 + 1 0 0 0 0

−c5 m1 + 1 0 0 0

0 −m1 m2 + 1 0 0

0 0 0 m4 + 1 0

0 −e1 −e2 −e4 e5




,

M = F − V =




−1− c5 β c1x
∗
1 β b1x

∗
1 β c2x

∗
1 β c3x

∗
1

c5 −1−m1 0 0 0

0 m1 −1−m2 0 0

0 φβ c1x
∗
7 φβ b1x

∗
7 φβ c2x

∗
7 −m4 − 1 φβ c3x

∗
7

0 e1 e2 e4 −e5




,

Define the stability modulus, s(M) = max{Reλ : λ is an eigenvale of M}, hence, the simple eigen-
value of M is s(M) with positive eigenvector [25, 26]. Using the van den Diressche and Watmough
[24] of Theorem 2, these two equivalences hold.

Rc > 0⇐⇒ s(M) > 0, Rc < 0⇐⇒ s(M) < 0,

Theorem 2. The foot and mouth disease free equilibrium point of system (8), Ê0, is locally asymptotically
stable for Rc < 1 and unstable otherwise.

Proof. To prove the local stability of disease free equilibrium of system (8), we verify the hypothesis
(A1)− (A5) in van den Diressche and Watmough [24]. F and V −1 are non-negatives, then by Lemma
(9.1) of [27], V is nonsingular M-matrix therefore, all eigenvalues of F − V have negative real parts.
Hypotheses (A1)− (A5) are easily verified, while (A5) is satisfied if all eigenvalues of the 9×9 matrix.

J |Ê0
=

[
M 0

J3 J4

]
,
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are negative real parts, where J3 = −J4. The matrix J4 is given by

J4 =




−1− b2 c4 0

0 −c4 − 1 0

b2 0 −1


 ,

The eigenvalues of J4 are given by

s(J4) = max{−1,−(c4 + 1),−(1 + b2)},

If Rc < 1, then s(M) < 0 and s(J |Ê0
) < 0, then the disease-free equilibrium Ê0 of system (8) is locally

asymptotically stable.

Theorem 3. The foot and mouth disease-free equilibrium point of system (8), E∗, is globally asymptoti-
cally stable in the region for Rc < 1 and unstable otherwise.

Proof. We consider for system (8) on the space of the first eight variables only (x1, x2, x3, x4, x5, x6, x7, x8).
It is clear that if the disease-free equilibrium for the first eight equations is globally stable, then
x9(t) → 0, and the disease-free equilibrium for the full system (8) is globally stable. Consider the
following Lyapunov function of,

U = x1

(
x̂1

x1
− 1− ln

x̂1

x1

)
+ x7

(
x̂7

x7
− 1− ln

x̂7

x7

)
+ x2 +

(c5 + 1)x3

c5
+

(c5 + 1) (m1 + 1)x4

c5m1

+
(c5 + 1) (m1 + 1) (m2 + 1)x5

c5m1m2
+

(m3 + 1) (m2 + 1) (m1 + 1) (c5 + 1)x6

c5m1m2m3
+ x8,

where x̂1 = π1
1+b2

and x̂7 = π1b2
b2+1 + π2. Notice that the function f(x) = x − 1 − lnx > 0, forx >

0, andx 6= 1. U = 0 at the disease-free equilibrium and otherwise U > 0 for other than the disease-
free equilibrium points. The derivative of U with respect to t is negative, when we differentiate with
respect to t and replace (x′1, x

′
2, x
′
3, . . . , x

′
8) with their equals from (8),

U ′ = (π1 − (Λ + 1 + b2)x1 + c4 x6)

(
1− X1

x1

)
+ (π2 − (Λφ+ 1)x7 + b2 x1)

(
1− X7

x7

)
+ Λx1

− (m3 + 1) (m2 + 1) (c4 x6 −m4 x8 + x6) (m1 + 1) (c5 + 1)

c5m1m2m3
+ Λφx7 − (m4 + 1)x8,

Rearranging the above equation, we get the following equation,

U ′ = −π1

(
x1

π1
+

π1

(1 + b2)x1
− 2

)
− c4 x6

(
π1

(1 + b2)x1
+

(1 + b2)x1

π1
− 2

)

− (π1 + π2) b2 + π2

1 + b2

(
x7

b2 x1 + π2
+
b2 x1 + π2

x7
− 2

)
− 1

x8

(
1

x8
+ x8 − 2

)
− (1− Rc) c4 x6 − Y1 c4 x6

− b2 π1 Λφ

1 + b2

(
1

Λφ
− 1− ln

(
1

Λφ

))
− Λπ1

1 + b2

(
1 + b2
Λπ1

− 1− ln

(
1 + b2
Λπ1

))
− Λπ1

1 + b2
ln

(
1 + b2
Λπ1

)

− (Λφπ2 + 1)

(
1

Λφπ2 + 1
− 1− ln

(
1

Λφπ2 + 1

))
− m4 x8

Y2
(Y2 − 1− ln (Y2))− Y3

− Y5

(
b2 x1 + x1

π1
− 1− ln

(
b2 x1 + x1

π1

))
− c4 x6 (1 + b2)x1

π1

(
1

Y4
− 1− ln

(
1

Y4

))

− c4 x6 (1 + b2)x1

π1
ln

(
1

Y4

)
− m4 x8

Y2
ln (Y2)− (Λφπ2 + 1) ln

(
1

Λφπ2 + 1

)
− b2 π1 Λφ

1 + b2
ln

(
1

Λφ

)

− Y5 ln

(
b2 x1 + x1

π1

)
− x6

Y2
− x8 − 1 + (x8 − 1)2 x8

x8
2

,
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where

Y1 =
π1b2 (c2e5 + c3e4)β φ

e5 (1 + b2) (m4 + 1)
+

β π1c5 (b1m1 + c1m2 + c1)

(m2 + 1) (m1 + 1) (c5 + 1) (1 + b2)
+

β π1c3c5 (e1m2 + e2m1 + e1)

(m2 + 1) (m1 + 1) (c5 + 1) (1 + b2) e5
,

Y2 =
c5m1m2m3

(m3 + 1) (m2 + 1) (m1 + 1) (c5 + 1)
, Y3 =

(π2b2 + π2) (c2e5 + c3e4)β φ c4 x6

e5 (1 + b2) (m4 + 1)
,

Y4 =
c5m1m2m3 (1 + b2)x1

(m3 + 1) (m2 + 1) (m1 + 1) (c5 + 1)π1
, Y5 =

x7 π1 b2
(1 + b2) (b2 x1 + π2)

,

For Rc < 1 and using arithmetic and geometric principles the derivative of the Lyapunov function
is non-positive (U ′ < 0) for all values of xi, for i = 1, 2, 3, . . . , 9 other than the disease-free equilib-
rium points. Therefore, by Lyapunovs theorem, the disease-free equilibrium is globally asymptotically
stable.

2.1.5 Global stability of the endemic equilibrium point

In this section, we show the global stability of the endemic equilibrium of E∗ of system (8).
Theorem 4. The foot and mouth disease endemic equilibrium point of system (8), E∗, is globally asymp-
totically stable in the region for Rc < 1 and unstable for Rc > 1.

Proof. Let V1 = x1 − x∗1 − x∗1 ln
x1

x∗1
+ x2 − x∗2 − x∗2 ln

x2

x∗2
+ x3 − x∗3 − x∗3 ln

x3

x∗3
,

V2 = x4 − x∗4 − x∗4 ln
x4

x∗4
+ x5 − x∗5 − x∗5 ln

x5

x∗5
+ x6 − x∗6 − x∗6 ln

x6

x∗6
and

V3 = x7 − x∗7 − x∗7 ln
x7

x∗7
+ x8 − x∗8 − x∗8 ln

x8

x∗8
+ x9 − x∗9 − x∗9 ln

x9

x∗9
,

differentiating the given values using the equilibrium equations give

d

dτ
V1 (τ) = x′1

(
1− x∗1

x1

)
+ x′2

(
1− x∗2

x2

)
+ x′3

(
1− x∗3

x3

)

= (π1 − (Λ + 1 + b2)x1 + c4 x6)

(
1− x∗1

x1

)
+ (x1 Λ− (c5 + 1)x2)

(
1− x∗2

x2

)

+ (c5 x2 − (m1 + 1)x3)

(
1− x∗3

x3

)

= x∗1 (b2 + 1 + Λ∗)
(

2− x1

x∗1
− x∗1
x1

)
+ Λx∗1

(
2− x2

x∗2
− x∗2
x2

)
+ c5 x2

(
2− x∗3

x3
− x3

x∗3

)

+ Λ∗ x∗1

(
Λ

Λ∗
− 1

)(
1− x1

x∗1

)
+ c4 x

∗
6

(
1− x∗1

x1

)(
x6

x∗6
− 1

)
+ Λx∗1

(
1− x∗2

x2

)(
x1

x∗1
− 1

)

− c5 x2 x3

x∗3

(
x∗3
x3
− 1

)
− x∗3 (m1 + 1)

(
x3

x∗3
− 1

)
.

(15)
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Finally, equation (15) can be further simplify to give

d

dτ
V1 (τ) = x∗1 (b2 + 1 + Λ∗)

(
2− x1

x∗1
− x∗1
x1

)
+ Λx∗1

(
2− x2

x∗2
− x∗2
x2

)
+ c5 x2

(
2− x∗3

x3
− x3

x∗3

)

− x∗1 Λ

(
Λ∗

Λ
− 1− ln

(
Λ∗

Λ

))
− Λ∗ x1

(
Λ

Λ∗
− 1− ln

(
Λ

Λ∗

))
− c4 x6

(
x∗6
x6
− 1− ln

(
x∗6
x6

))

− c4 x
∗
6 x
∗
1

x1

(
x6

x∗6
− 1− ln

(
x6

x∗6

))
− Λx1

(
x∗1
x1
− 1− ln

(
x∗1
x1

))
− Λx∗1 x

∗
2

x2

(
x1

x∗1
− 1− ln

(
x1

x∗1

))

− c5 x2 x3

x∗3

(
x∗3
x3
− 1− ln

(
x∗3
x3

))
− x∗3 (m1 + 1)

(
x3

x∗3
− 1− ln

(
x3

x∗3

))
− x∗1 Λ ln

(
Λ∗

Λ

)

− x1 Λ∗ ln

(
Λ

Λ∗

)
− c4 x6 ln

(
x∗6
x6

)
− c4 x

∗
6 x
∗
1

x1
ln

(
x6

x∗6

)
− Λx1 ln

(
x∗1
x1

)
− Λx∗1 x

∗
2

x2
ln

(
x1

x∗1

)

− c5 x2 x3

x∗3
ln

(
x∗3
x3

)
− x∗3 (m1 + 1) ln

(
x3

x∗3

)
.

Similarly, we can obtain

d

dτ
V2 (τ) = x3m1

(
2− x∗4

x4
− x4

x∗4

)
+m2 x4

(
2− x∗5

x5
− x5

x∗5

)
+ (m3 x5 +m4 x8)

(
2− x∗6

x6
− x6

x∗6

)

− x3m1 x4

x∗4

(
x∗4
x4
− 1− ln

(
x∗4
x4

))
− x∗3m1

(
x4

x∗4
− 1− ln

(
x4

x∗4

))
− m2 x4 x5

x∗5

(
x∗5
x5
− 1− ln

(
x∗5
x5

))

−m2 x
∗
4

(
x5

x∗5
− 1− ln

(
x5

x∗5

))
− (m3 x5 +m4 x8)x6

x∗6

(
x∗6
x6
− 1− ln

(
x∗6
x6

))

− (x∗5m3 + x∗8m4)x6

x∗6

(
1− x∗6

x6
− ln

(
x∗6
x6

))
− x3m1 x4

x∗4
ln

(
x∗4
x4

)
− x∗3m1 ln

(
x4

x∗4

)

− m2 x4 x5

X5
ln

(
x∗5
x5

)
−m2 x

∗
4 ln

(
x5

x∗5

)
− (m3 x5 +m4 x8)x6

x∗6
ln

(
x∗6
x6

)
− (x∗5m3 + x∗8m4)x6

x∗6
ln

(
x∗6
x6

)
,

d

dτ
V3 (τ) = Λ∗ x∗7 φ

(
2− Λx7

Λ∗ x∗7
− Λ∗ x∗7

Λx7

)
+ x∗7

(
2− x7

x∗7
− x∗7
x7

)
+
b2 x

∗
1 x
∗
7

x7

(
2− x7

x∗7
− x∗7
x7

)

+ Λx7

(
2− x8 x

∗
7

x∗8 x7
− x∗8 x7

x8 x∗7

)
+ (e1 x3 + e2 x4 + e3 x5 + e4 x8)

(
2− x∗9

x9
− x9

x∗9

)

− Λ∗2x∗7
2φ

Λx7

(
Λ

Λ∗
− 1− ln

(
Λ

Λ∗

))
− x∗7 φΛ

(
Λ∗

Λ
− 1− ln

(
Λ∗

Λ

))

− b2 x
∗
1 x
∗
7

2

x7
2

(
x7

x∗7
− 1− ln

(
x7

x∗7

))
− b2 x1

(
x∗7
x7
− 1− ln

(
x∗7
x7

))

− Λx7
2X8

x8 x∗7

(
x8 x

∗
7

x∗8 x7
− 1− ln

(
x8 x

∗
7

x∗8 x7

))
− Λx∗7

(
x∗8 x7

x8 x∗7
− 1− ln

(
x∗8 x7

x8 x∗7

))

− (e1 x3 + e2 x4 + e3 x5 + e4 x8)x9

x∗9

(
x∗9
x9
− 1− ln

(
x∗9
x9

))
− e5 x

∗
9

(
x9

x∗9
− 1− ln

(
x9

x∗9

))

− Λ1
2x∗7

2φ

Λx7
ln

(
Λ

Λ∗

)
− x∗7 φΛ ln

(
Λ∗

Λ

)
− b2 x

∗
1 x
∗
7

2

x7
2

ln

(
x7

x∗7

)
− b2 x1 ln

(
x∗7
x7

)

− Λx7
2x∗8

x8 x∗7
ln

(
x8 x

∗
7

x∗8 x7

)
− Λx∗7 ln

(
x∗8 x7

x8 x∗7

)
− (e1 x3 + e2 x4 + e3 x5 + e4 x8)x9

x∗9
ln

(
x∗9
x9

)

− e5 x
∗
9 ln

(
x9

x∗9

)
.

Define the Lyapunov function

V (x1, x2...x9) = V1(x1, x2...x9) + V2(x1, x2...x9) + V3(x1, x2...x9),
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It follows that the Lyapunov function

d

dτ
V (τ) =

d

dτ
V1 (τ) +

d

dτ
V2 (τ) +

d

dτ
V3 (τ) ,

Notice that the function f(x) = x − 1 − lnx ≥ 0, forx > 0. Since the arithmetic mean exceeds the
geometric mean, it follows that

2− x1

x∗1
− x∗1
x1
≤ 0, 2− x2

x∗2
− x∗2
x2
≤ 0, 2− x3

x∗3
− x∗3
x3
≤ 0, 2− x4

x∗4
− x∗4
x4
≤ 0, 2− x5

x∗5
− x∗5
x5
≤ 0,

2− x6

x∗6
− x∗6
x6
≤ 0, 2− x7

x∗7
− x∗7
x76
≤ 0, 2− x8

x∗8
− x∗8
x8
≤ 0, 2− x9

x∗9
− x∗9
x9
≤ 0, 2− x8 x

∗
7

x∗8 x7
− x∗8 x7

x8 x∗7
,

2− Λx7

Λ∗ x∗7
− Λ∗ x∗7

Λx7
.

Using arithmetic and geometric principles we establish that d
dτ V (τ) is negative or d

dτ V (τ) = 0 when
x1 = x∗1, x2 = x∗2, x3 = x∗3, x4 = x∗4, x5 = x∗5, x6 = x∗6, x7 = x∗7, x7 = x∗7, x8 = x∗8 and x9 = x∗9. Thus
the endemic equilibrium is globally asymptotically stable by LaSalle’s invariant principle [28].

3 Existence of Travelling Waves

In this section, we investigated the existence of travelling wave solutions for the system of equations
(5). The method of the proofs is to use the Schauders fixed point theorem by applying method of
upper–lower solutions and its associated cross-iteration scheme [29].

Let

x̃1(X, τ) = x10 − x1(X, τ), x̃2(X, τ) = x2(X, τ), x̃3(X, τ) = x3(X, τ),

x̃4(X, τ) = x4(X, τ), x̃6(X, τ) = x6(X, τ), x̃7(X, τ) = x70 − x7(X, τ),

x̃8(X, τ) = x8(X, τ), x̃9(X, τ) = x9(X, τ),

then system (5) is transformed into system of equations (16) by omitting tilde for simplicity

∂

∂τ
x1 (X, τ) = d1

∂2

∂X2
x1 (X, τ)− π1 + (Λ + 1 + b2) (x10 − x1 (X, τ))− c4 x6 (X, τ) ,

∂

∂τ
x2 (X, τ) = d2

∂2

∂X2
x2 (X, τ) + Λx1 (X, τ)− (c5 + 1)x2 (X, τ) ,

∂

∂τ
x3 (X, τ) = d3

∂2

∂X2
x3 (X, τ) + c5 x2 (X, τ)− (m1 + 1)x3 (X, τ) ,

∂

∂τ
x4 (X, τ) = d4

∂2

∂X2
x4 (X, τ) +m1 x3 (X, τ)− (m2 + 1)x4 (X, τ) ,

∂

∂τ
x5 (X, τ) = d5

∂2

∂X2
x5 (X, τ) +m2 x4 (X, τ)− (m3 + 1)x5 (X, τ) ,

∂

∂τ
x6 (X, τ) = d6

∂2

∂X2
x6 (X, τ) +m3 x5 (X, τ)− (c4 + 1)x6 (X, τ) +m4 x8 (X, τ) ,

∂

∂τ
x7 (X, τ) = d7

∂2

∂X2
x7 (X, τ)− π2 + (Λφ+ 1) (x70 − x7 (X, τ))− b2 (x10 − x1 (X, τ)) ,

∂

∂τ
x8 (X, τ) = d8

∂2

∂X2
x8 (X, τ) + φΛx7 (X, τ)− (m4 + 1)x8 (X, τ) ,

∂

∂τ
x9 (X, τ) = d9

∂2

∂X2
x9 (X, τ) + e1 x3 (X, τ) + e2 x4 (X, τ) + e3 x5 (X, τ) + e4 x8 (X, τ)− e5 x9 (X, τ) .

(16)

We now look for travelling wave solutions to analyze the local stability of our transformed system of
equations (16),
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The usual form of travelling wave is the following.

x1(X, τ) = u1(z), x2(X, τ) = u2(z), x3(X, τ) = u3(z), x4(X, τ) = u4(z), x5(X, τ) = u5(z),

x6(X, τ) = u6(z), x7(X, τ) = u7(z), x8(X, τ) = u8(z), x9(X, τ) = u9(z),
(17)

where u1, u2, u3, . . . , u9 ∈ C2(R,R), z = X − cτ is a new variable of the moving coordinate and c is a
positive constant which corresponding to the speed of the wave to the right direction in the X-plane
[30, 31]. Then we have ∂u

∂τ = −c dudz and ∂u
∂X = du

dz and substituting into to the system of equations (5).
The partial differential equations in X and τ are transformed into second degree ordinary differential
equations in z.

To analyze the system of equations (16), we assume that by taking D = di ,where i = 1, 2, 3, . . . , 9
and denoting the traveling wave X − cτ by t, we derive the system of equations, (18)

Du′′1(t) + c u′1(t) + fc1 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′2(t) + c u′2(t) + fc2 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′3(t) + c u′3(t) + fc3 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′4(t) + c u′4(t) + fc4 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′5(t) + c u′5(t) + fc5 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′6(t) + c u′6(t) + fc6 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′7(t) + c u′7(t) + fc7 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′8(t) + c u′8(t) + fc8 (u1t, u2t, u3t, . . . , u9t) = 0,

Du′′9(t) + c u′9(t) + fc9 (u1t, u2t, u3t, . . . , u9t) = 0,

(18)

where,

fc1 (u1t, u2t, u3t, . . . , u9t) = −π1 + (Λ2 + 1 + b2) (x10 − u1(t))− c4 u6(t),

fc2 (u1t, u2t, u3t, . . . , u9t) = Λ2 u1(t)− (c5 + 1)u2(t),

fc3 (u1t, u2t, u3t, . . . , u9t) = c5 u2(t)− (m1 + 1)u3(t),

fc4 (u1t, u2t, u3t, . . . , u9t) = m1 u3(t)− (m2 + 1)u4(t),

fc5 (u1t, u2t, u3t, . . . , u9t) = m2 u4(t)− (m3 + 1)u5(t),

fc6 (u1t, u2t, u3t, . . . , u9t) = m3 u5(t)− (c4 + 1)u6(t) +m4 u8(t),

fc7 (u1t, u2t, u3t, . . . , u9t) = −π2 + (Λ2 φ+ 1) (x70 − x7(t))− b2 (x10 − x1(t)) ,

fc8 (u1t, u2t, u3t, . . . , u9t) = φΛ2 (x70 − u7 (t))− (m4 + 1)u8 (t) ,

fc9 (u1t, u2t, u3t, . . . , u9t) = e1 u4(t) + e2 u3(t) + e3 u5(t) + e4 u8 (t) ,

Λ2 = β (b1 u4 (t) + c1 u3 (t) + c2 u8 (t) + c3 u9 (t)) ,

(19)

Equation (18) will be solved subject to the following boundary value condition.

lim
t→−∞

(u1(t), u2(t), u3(t), . . . , u9(t)) = (0, 0, 0, 0, 0, 0, 0, 0, 0),

lim
t→∞

(u1(t), u2(t), u3(t), . . . , u9(t)) = (k1, k2, k3, . . . , k9) , (x∗1, x
∗
2, x
∗
3, . . . , x

∗
9) .

(20)

We define the upper and lower solutions of system (3.1)
Definition 3.1. A pair of continuous function Φ = (u1, u2, u3, . . . , u9) and Φ = (u1, u2, u3, . . . , u9) are
called the upper–lower solutions of the systems of of system (18) if Φ and Φ are twice differentiable almost
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everywhere in R and they are essentially bounded on R,there hold the following properties,

Du′′1(t) + c u′1(t) + fc1 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′2(t) + c u′2(t) + fc2 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′3(t) + c u′3(t) + fc3 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′4(t) + c u′4(t) + fc4 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′5(t) + c u′5(t) + fc5 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′6(t) + c u′6(t) + fc6 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′7(t) + c u′7(t) + fc7 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′8(t) + c u′8(t) + fc8 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,
Du′′9(t) + c u′9(t) + fc9 (u1t, u2t, u3t, . . . , u9t) ≥ 0, a. e. in R,

and

Du′′1(t) + c u′1(t) + fc1 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′2(t) + c u′2(t) + fc2 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′3(t) + c u′3(t) + fc3 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′4(t) + c u′4(t) + fc4 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′5(t) + c u′5(t) + fc5 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′6(t) + c u′6(t) + fc6 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′7(t) + c u′7(t) + fc7 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′8(t) + c u′8(t) + fc8 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,
Du′′9(t) + c u′9(t) + fc9 (u1t, u2t, u3t, . . . , u9t) ≤ 0, a. e. in R,

We use the values of fc1, fc2, fc3, . . . , fc8 and fc9 as (19).

Corresponding to (20) by using [32], [22] we assume that

(A1) f(0̃) = f(K̃) = 0 with 0 ≤ K = (k1, k2, k3, . . . , k9) and ũ is a constant function of [0, t) → R
taking the value of u for all t ∈ [0, t).

(PQMC) Partial quasi-monotonicity conditions (PQMC): There exist nine non-negative constants βi >
0, j = 1, 2, 3, . . . , 9 such that

fc1 (u12, u22, u32, . . . , u92)− fc1 (u11, u21, u31, . . . , u91) + β1[u12 (0)− u11 (0)] ≥ 0,

fc2 (u12, u22, u32, . . . , u92)− fc2 (u11, u21, u31, . . . , u91) + β2[u22 (0)− u21 (0)] ≥ 0,

fc2 (u12, u21, u31, u41, u51, u61, u71, u91)− fc2 (u11, u21, u31, . . . , u91) ≤ 0,

fc3 (u12, u22, u32, . . . , u92)− fc3 (u11, u21, u31, . . . , u91) + β3[u32 (0)− u31 (0)] ≥ 0,

fc4 (u12, u22, u32, . . . , u92)− fc4 (u11, u21, u31, . . . , u91) + β4[u42 (0)− u41 (0)] ≥ 0,

fc5 (u12, u22, u32, . . . , u92)− fc5 (u11, u21, u31, . . . , u91) + β5[u52 (0)− u51 (0)] ≥ 0,

fc6 (u12, u22, u32, . . . , u92)− fc6 (u11, u21, u31, . . . , u91) + β6[u62 (0)− u61 (0)] ≥ 0,

fc7 (u12, u22, u32, . . . , u92)− fc7 (u11, u21, u31, . . . , u91) + β7[u72 (0)− u71 (0)] ≥ 0,

fc8 (u12, u22, u32, . . . , u92)− fc8 (u11, u21, u31, . . . , u91) + β8[u82 (0)− u81 (0)] ≥ 0,

fc9 (u12, u22, u32, . . . , u92)− fc9 (u11, u21, u31, . . . , u91) + β9[u82 (0)− u81 (0)] ≥ 0,

where

u1i, u2i, u3i, . . . , u9i,∈ C([0, t],R), i = 1, 2 with, (0, 0, 0, 0, 0, 0, 0, 0, 0) ≤ (u11, u21, u31, . . . , u91)(s)

≤ (u12, u22, u32, . . . , u92)(s) ≤ (M1,M2,M3, . . . ,M9) > (k1, k2, k3, . . . , k9), where s ∈ [0, t], Mj ,

and kj , j = 1, 2, . . . , 9 are positive constants.

Corresponding to the boundary condition (20), we can make the following lemma,
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Lemma 1. fcj , j = 1, 2, . . . , 9 of system (18) satisfy the partial quasi-monotonicity conditions (PQMC).

Proof.

fc1 (u12, u22, . . . , u92)− fc1 (u11, u21, u31, . . . , u91) = −(u12 (0) Λ22 − u11 (0) Λ21) + x10 (Λ22 − Λ21)

− (1 + b2) (u12 (0)− u11 (0))− c4 (u62 (0)− u61 (0)) ≥ − (1 + b2) (u12 (0)− u11 (0)) ,

fc2 (u12, u22, . . . , u92)− fc2 (u11, u21, u31, . . . , u91) = Λ22 u12 (0)− Λ21 u11 (0)− (c5 + 1)u22 (0)

+ (c5 + 1)u21 (0) ≥ − (c5 + 1) (u22 (0)− u21 (0)) ,

fc2 (u12, u21, u31, . . . , u91)− fc2 (u11, u21, u31, . . . , u91) = −Λ2 (u12 (0)− u11 (0)) ≤ 0,

fc3 (u12, u22, u32, . . . , u92)− fc3 (u11, u21, . . . , u91) = u22 (0) c5 − (m1 + 1)u32 (0)− u21 (0) c5

+ (m1 + 1)u31 (0) ≥ − (m1 + 1) (u32 (0)− u31 (0)) ,

fc4 (u12, u22, . . . , u92)− fc4 (u11, u21, u31, . . . , u91) = u32 (0)m1 − (m2 + 1)u42 (0)− u31 (0)m1

+ (m2 + 1)u41 (0) ≥ − (m2 + 1) (u42 (0)− u41 (0)) ,

fc5 (u12, u22, u32, . . . , u92)− fc5 (u11, u21, u31, . . . , u91) = u42 (0)m2 − (m3 + 1)u52 (0)− u41 (0)m2

+ (m3 + 1)u51 (0) ≥ − (m3 + 1) (u52 (0)− u51 (0)) ,

fc6 (u12, u22, u32, . . . , u92)− fc6 (u11, u21, . . . , u91) = u52 (0)m3 − (c4 + 1)u62 (0) +m4 u82 (0)− u51 (0)m3

+ (c4 + 1)u61 (0)−m4 u81 (0) ≥ − (c4 + 1) (u62 (0)− u61 (0)) ,

fc7 (u12, u22, u32, . . . , u92)− fc7 (u11, u21, u31, . . . , u91) = (Λ22 φ+ 1) (x70 − u72 (0))− b2 (x10 − u12 (0))

− (Λ21 φ+ 1) (x70 − u71 (0)) + b2 (x10 − u11 (0)) ≥ −(u72(0)− u71(0)),

fc8 (u12, u22, u32, . . . , u92)− fc8 (u11, u21, u31, . . . , u91) = Λ22 φ (x70 − u72 (0))− b2 (x10 − u12 (0))

− Λ21 φ (x70 − u71 (0)) + b2 (x10 − u11 (0)) ≥ − (m4 + 1) (u82 (0)− u81 (0)) ,

fc9 (u12, u22, u32, . . . , u92)− fc9 (u11, u21, u31, . . . , u91) ≥ −e5 (u92 (0)− u91 (0)) ,

where Λ21 = β (b1 u41 + c1 u31 + c2 u81 + c3 u91) and Λ22 = β (b1 u42 + c1 u32 + c2 u82 + c3 u92).

Let β1 = b2 + 1, β2 = c5 + 1, β3 = m1 + 1, β4 = m2 + 1, β5 = m3 + 1, β6 = c4 + 1, β7 = 1,
β8 = m4 + 1 and β9 = e5 then the proof is completed.

For the constants β1, β2, β3, β4 β5, β6, β7, β8 and β9; H : C(R,R9)→ C(R,R9) and then

H1(u1, u2, u3, . . . , u9)(t) = fc1(u1, u2, u3, . . . , u9) + β1 u1(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H2(u1, u2, u3, . . . , u9)(t) = fc2(u1, u2, u3, . . . , u9) + β2 u2(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H3(u1, u2, u3, . . . , u9)(t) = fc3(u1, u2, u3, . . . , u9) + β3 u3(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H4(u1, u2, u3, . . . , u9)(t) = fc4(u1, u2, u3, . . . , u9) + β4 u4(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H5(u1, u2, u3, . . . , u9)(t) = fc5(u1, u2, u3, . . . , u9) + β5 u5(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H6(u1, u2, u3, . . . , u9)(t) = fc6(u1, u2, u3, . . . , u9) + β6 u2(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H7(u1, u2, u3, . . . , u9)(t) = fc7(u1, u2, u3, . . . , u9) + β7 u7(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H8(u1, u2, u3, . . . , u9)(t) = fc8(u1, u2, u3, . . . , u9) + β8 u8(t), for u1, u2, u3, . . . , u9 ∈ C(R,R),

H9(u1, u2, u3, . . . , u9)(t) = fc9(u1, u2, u3, . . . , u9) + β9 u9(t), for u1, u2, u3, . . . , u9 ∈ C(R,R).

(21)
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Equation (18) can be rewritten by substituting equation (21) as

Du′′1(t) + c u′1 (t)− β1 u1(t) +H1(u1, u2, u3, . . . , u9)(t) = 0,

Du′′2(t) + c u′2 (t)− β2 u2(t) +H3(u1, u2, u3, . . . , u9)(t) = 0,

Du′′3(t) + c u′3 (t)− β3 u3(t) +H3(u1, u2, u3, . . . , u9)(t) = 0,

Du′′4(t) + c u′4 (t)− β4 u4(t) +H4(u1, u2, u3, . . . , u9)(t) = 0,

Du′′5(t) + c u′5 (t)− β5 u5(t) +H5(u1, u2, u3, . . . , u9)(t) = 0,

Du′′6(t) + c u′6 (t)− β6 u6(t) +H6(u1, u2, u3, . . . , u9)(t) = 0,

Du′′7(t) + c u′7 (t)− β7 u7(t) +H7(u1, u2, u3, . . . , u9)(t) = 0,

Du′′8(t) + c u′8 (t)− β8 u8(t) +H8(u1, u2, u3, . . . , u9)(t) = 0,

Du′′9(t) + c u′9 (t)− β9 u9(t) +H9(u1, u2, u3, . . . , u9)(t) = 0,

(22)

and define

CK(R,R9) =
{

(u1, u2, u3, . . . , u9) ∈ CK(R,R9) : (0, 0, 0, 0, 0, 0, 0, 0, 0)

≤ (u1, u2, u3, . . . , u9) ≤ (k1, k2, k3, . . . , k9)} ,
and define Fi = (F1, F2, F3, . . . , F9) : CK(R,R9)→ C(R,R9) by

Fi(u1, u2, u3, . . . , u9)(t) =
1

D (λ2i − λ1i)

[∫ t

−∞
eλ1i(t−s)Hi(u1, u2, u3, . . . , u9)(s) ds

. +

∫ ∞

t
eλ2i(t−s)Hi(u1, u2, u3, . . . , u9)(s) ds

]
,

where,

(0, 0, 0, 0, 0, 0, 0, 0, 0) ≤ (u1, u2, u3, . . . , u9) ≤ (k1, k2, k3, . . . , k9) and

λ1i =
c−

√
c2 + 4βiD

2D
< 0, λ2i =

c+
√
c2 + 4βiD

2D
> 0, i = 1, 2, . . . , 9,

for (u1, u2, u3, . . . , u9) ∈ CK(R,R9). we can see that F : CK(R,R9) → C(R,R9) is well defined, and
for any (u1, u2, u3, . . . , u9) ∈ CK(R,R9)(u1, u2, u3, . . . , u9), then, F1(u1, u2, u3, . . . , u9),
F2(u1, u2, u3, . . . , u9), ..., F9(u1, u2, u3, . . . , u9), i = 1, 2, . . . , 9 satisfy

DF ′′i (u1, u2, u3, . . . , u9) + cF ′i (u1, u2, u3, . . . , u9)− βiFi(u1, u2, u3, . . . , u9)

+Hi(u1, u2, u3, . . . , u9) = 0, i = 1, 2, . . . , 9,
(23)

Thus, if F (u1, u2, u3, . . . , u9) = (F1(u1, u2, u3, . . . , u9), F2(u1, u2, u3, . . . , u9), . . . , F9(u1, u2, u3, . . . , u9)) =
(u1, u2, u3, . . . , u9), i = 1, 2, . . . , 9, i.e., (u1, u2, u3, . . . , u9) is a fixed point of F , (23) reduce to (22),
it mean that (22) has a solution (u1, u2, u3, . . . , u9). Then if this the solution further satisfies the
boundary condition (20), then it gives a traveling wave solutions.

Therefore, there exists a traveling wave solutions of system (18) satisfying (PQMC) and there is a
pair of upper and lower solutions of

(
u1(t), u2(t), . . . , u9(t)

)
and (u1(t), u2(t), u3(t), . . . , u9(t)), which

satisfying the following conditions:

(C1) (0, 0, 0, 0, 0, 0, 0, 0, 0) ≤
(
u1(t), u2(t), . . . , u9(t)

)
≤ (u1(t), u2(t), u3(t), . . . , u9(t))

≤ (M1,M2,M3, . . . ,M9), t ∈ R
(C2) lim

t→−∞

(
u1(t), u2(t), . . . , u9(t)

)
= (0, 0, 0, 0, 0, 0, 0, 0, 0),

lim
t→∞

(u1(t), u2(t), u3(t), . . . , u9(t)) = (k1, k2, k3, . . . , k9),

(24)

Φ = (u1, u2, u3, . . . , u9) is a the function which has upper and lower value of Φ = (u1, u2, u3, . . . , u9)
and Φ = (u1, u2, u3, . . . , u9) then we define the profile for

Γ
(
Φ,Φ

)
= {Φ ∈ C(R,R9) | Φ ≤ Φ ≤ Φ}.

From ( [22], [32]) we have the following Lemmas (2) and (3)
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Lemma 2. Assume that (PQM) hold then F (Γ(Φ,Φ)) ⊂ Γ(Φ,Φ), where F = Fi, i = 1, 2, 3, ..., 9.
Lemma 3. F : (Γ(Φ,Φ))→ Γ(Φ,Φ), is compact.

Now, to construct and prove the upperlower solutions, note that Rc > 1 can be written in the
form

∆1 = −π1 + (β (c2M8 +W1) + 1 + b2) (x10 − k1)− c4M6 > 0,

∆2 = β (c2M8 +W1) (x10 −M1)− (c5 + 1) k2 > 0, ∆3 = c5M2 − (m1 + 1) k3 > 0,

∆4 = M3m1 − (m2 + 1) k4 > 0, ∆5 = m2M4 − (m3 + 1) k5 > 0,

∆6 = m3M5 +m4M8 − (c4 + 1) k6 > 0,

∆7 = −π2 + (β φ (c2M8 +W1) + 1) (x70 − k7)− b2 (x10 −M1) > 0,

∆8 = β φ (c2 k8 +W1) (x70 −M7)− (m4 + 1) k8 > 0,

∆9 = M3 e2 +M4 e1 +M5 e3 +M8 e4 − e5 k9 > 0,

where W1 = M3 c1 +M4 b1 +M9 c3. Using Wang and Xu [22, 33] assumption,

c > c∗ , max
{

2
√
D∆1, 2

√
D∆2, 2

√
D∆3, 2

√
D∆4, 2

√
D∆6, 2

√
D∆7, 2

√
D∆8, 2

√
D∆9,

}

then there exists λ1, λ2, λ3, λ4, λ5 λ6, λ7, λ8, and λ9, such that

Dλ1
2 + cλ1 −

π1

k1
+

(β (M8 c2 +W1) + 1 + b2) (x10 − k1)

k1
− c4M6

k1
= 0,

Dλ2
2 + cλ2 +

β (M8 c2 +W1) (x10 −M1)

k2
− c5 − 1 = 0,

Dλ3
2 + cλ3 +

c5M2

k3
−m1 − 1 = 0,

Dλ4
2 + cλ4 +

M3m1

k4
−m2 − 1 = 0,

Dλ5
2 + cλ5 +

m2M4

k5
−m3 − 1 = 0,

Dλ6
2 + cλ6 +

m3M5

k6
+
m4M8

k6
− c4 − 1 = 0,

Dλ7
2 + cλ7 −

π2

k7
+

(β φ (M8 c2 +W1) + 1) (x70 − k7)

k7
− b2 (x10 −M1)

k7
= 0,

Dλ8
2 + cλ8 +

φβ (c2 k8 +W1) (x70 −M7)

k8
−m4 − 1 = 0,

Dλ9
2 + cλ9 +

M3 e2 +M4 e1 +M5 e3 +M8 e4

k9
− e5 = 0,

There exists a pair of upper and lower solutions (u1, u2, u3, . . . , u9), and
(
u1, u2, u3, . . . , u9

)
of (18)

respectively, satisfying the partial quasi-monotonicity conditions (C1). Assuming that Rc > 1, and
m4 > m2,m3, there exist εi > 0, (i = 1, 2, 3, . . . , 18) where ε1, ε2 ∈ (0, k1), ε3, ε4 ∈ (0, k2), ε5, ε6 ∈
(0, k3), ε7, ε8 ∈ (0, k4), ε9, ε10 ∈ (0, k5) ε11, ε12 ∈ (0, k6), ε13, ε14 ∈ (0, k7), ε15, ε16 ∈ (0, k8), ε17, ε18 ∈
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(0, k9) such that

π1 − (β R1 + b2 + 1) (x10 − k1 + ε1) + c4 (k6 − ε11) < 0, −β R1 (x10 − k1 − ε2) + (c5 + 1) (k2 − ε3) < 0,

− c5 (k2 − ε3) + (m1 + 1) (k3 − ε5) < 0, − (k3 − ε5)m1 + (m2 + 1) (k4 − ε7) < 0,

m2 (k4 − ε7)− (m3 + 1) (k5 − ε9) < 0, −m3 (k5 − ε9) + (c4 + 1) (k6 − ε11)−m4 (k8 − ε15) < 0,

π2 − (β φR1 + 1) (x70 − k7 + ε13) + b2 (x10 − k1 + ε1) < 0,

− β φR1 (x70 − k7 + ε13) + (m4 + 1) (k8 − ε15) < 0,

(k9 − ε17) e5 + (ε7 − k4) e1 + (ε5 − k3) e2 + e3 (ε9 − k5) + e4 (ε15 − k8) < 0,

− π1 + (β R2 + b2 + 1) (x10 − k1 − ε2)− c4 (k6 + ε12) < 0,

β R2 (x10 − k1 + ε1)− (c5 + 1) (k2 + ε4) < 0, c5 (k2 + ε4)− (m1 + 1) (k3 + ε6) < 0,

(k3 + ε6)m1 − (m2 + 1) (k4 + ε8) < 0, m2 (k4 + ε8)− (m3 + 1) (k5 + ε10) < 0,

m3 (k5 + ε10)− (c4 + 1) (k6 + ε12) +m4 (k8 + ε16) < 0,

− π2 + (β R2 φ+ 1) (x70 − k7 − ε14)− b2 (x10 − k1 − ε2) < 0,

β φR2 (x70 − k7 − ε14)− (m4 + 1) (k8 + ε16) < 0 < 0,

e1 (k4 + ε8) + e2 (k3 + ε6) + e3 (k5 + ε10) + e4 (k8 + ε16)− e5 (k9 + ε18) < 0,

(25)

where

R1 = b1 (k4 − ε7) + c1 (k3 − ε5) + c2 (k8 − ε15) + c3 (k9 − ε17) ,

R2 = b1 (k4 + ε8) + c1 (k3 + ε6) + c2 (k8 + ε16) + c3 (k9 + ε18) ,

F1 = e1 (k4 − ε7) + e2 (k3 − ε5) + e3 (k5 − ε9) + e4 (k8 − ε15) ,

F2 = e1 (k4 + ε8) + e2 (k3 + ε6) + e3 (k5 + ε10) + e4 (k8 + ε16) .

Then we can find that εi > 0, (i = 1, 2, 3, . . . , 18) which satisfying the above 18 equations. Assume
that

x10 −
c4 k6 + π1

R1 β + b2 + 1
= k1, x10 −

c4 k6 + π1

R2 β + b2 + 1
= k1,

For ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3), ε9, ε10 ∈ (0, k5) we can find ε1, ε2 ∈ (0, k1) such that

k1 > ε1 >
c4 ε11

R1 β + b2 + 1
> − c4 ε11

R1 β + b2 + 1
= − c4 (ε11 + k6)

R1 β + b2 + 1
−
(
x10 −

π1

R1 β + b2 + 1
− k1

)
,

k1 > ε2 >
c4 ε12

R2 β + b2 + 1
> − c4 ε12

R2 β + b2 + 1
= − c4 (ε12 + k6)

R2 β + b2 + 1
+

(
x10 −

π1

R2 β + b2 + 1
− k1

)
,

which give

π1 − (β R1 + b2 + 1) (x10 − k1 + ε1) + c4 (k6 − ε11) < 0,

− π1 + (β R2 + b2 + 1) (x10 − k1 − ε2)− c4 (k6 + ε12) < 0.

Assume that
β R1 (x10 − k1)

c5 + 1
= k2 and

β R2 (x10 − k1)

c5 + 1
= k2. For ε1, ε2 ∈ (0, k1), ε3, ε4 ∈ (0, k2),

ε9, ε10 ∈ (0, k5) there exist ε3, ε4 ∈ (0, k2) such that

ε3 >
β R1 ε2
c5 + 1

, ε3 >
β ε2
c5 + 1

, ε4 >
β R2 ε1
c5 + 1

, ε4 >
β ε1
c5 + 1

,

k2 > ε3 >
β R1 ε2
c5 + 1

=
β R1 (ε2 + k1)

c5 + 1
−
(
β R1 x10

c5 + 1
− k2

)
,

k2 > ε4 >
β R2 ε1
c5 + 1

=
β R2 (ε1 − k1)

c5 + 1
+

(
β R2 x10

c5 + 1
− k2

)
,
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which give

− β (x10 − k1 − ε2)R1 + (c5 + 1) (k2 − ε3) < 0, , β (x10 + ε1 − k1)R2 − (c5 + 1) (k2 + ε4) < 0.

For k3 = c5 k2/(m1 + 1), ε1, ε2 ∈ (0, k1), ε3, ε4 ∈ (0, k2), ε9, ε10 ∈ (0, k5) there exist ε5, ε6 ∈ (0, k3) such
that

k3 > ε5 >
c5 ε3
m1 + 1

=
c5 (ε3 − k2)

m1 + 1
+ k3, k3 > ε6 >

c5 ε4
m1 + 1

=
c5 (ε4 + k2)

m1 + 1
− k3,

which give

− c5 (k2 − ε3) + (m1 + 1) (k3 − ε5) < 0, c5 (k2 + ε4)− (m1 + 1) (k3 + ε6) < 0.

For k4 = k3m1/(m2 + 1), ε1, ε2 ∈ (0, k1), ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3),
ε5, ε6 ∈ (0, k3), ε9, ε10 ∈ (0, k5) there exist ε7, ε8 ∈ (0, k4) such that

k4 > ε7 >
ε5m1

m2 + 1
=
m1 (ε5 − k3)

m2 + 1
+ k4, k4 > ε8 >

ε6m1

m2 + 1
=
m1 (ε6 + k3)

m2 + 1
− k4,

which give

− (k3 − ε5)m1 + (m2 + 1) (k4 − ε7) < 0, (k3 + ε6)m1 − (m2 + 1) (k4 + ε8) < 0.

For m2 k4/(m3 + 1) = k5, ε1, ε2 ∈ (0, k1) , ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3) there exist ε9, ε10 ∈ (0, k5)
such that

k5 > ε9 <
m2 ε7
m3 + 1

=
m2 (ε7 − k4)

m3 + 1
+ k5), k5 > ε10 <

m2 ε8
m3 + 1

=
m2 (ε8 + k4)

m3 + 1
− k5,

which give

m2 (k4 − ε7)− (m3 + 1) (k5 − ε9) < 0, m2 (k4 + ε8)− (m3 + 1) (k5 + ε10) < 0.

For (m3 k5 +m4 k8)/(c4 + 1) = k6, ε1, ε2 ∈ (0, k1) , ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3) there exist ε11, ε12 ∈
(0, k6) such that

k6 > ε11 >
2m3 ε9
c4 + 1

=
m3 (2 ε9 − k5)

c4 + 1
−
(
k8m4

c4 + 1
− k6

)
,

k6 > ε11 >
2m4 ε15

c4 + 1
=
m4 (2 ε15 − k8)

c4 + 1
−
(
m3 k5

c4 + 1
− k6

)
,

k6 > ε12 >
2m3 ε10

c4 + 1
=
m3 (2 ε10 − k5)

c4 + 1
−
(
k8m4

c4 + 1
− k6

)
,

k6 > ε12 >
2m4 ε16

c4 + 1
=
m4 (2 ε16 − k8)

c4 + 1
−
(
m3 k5

c4 + 1
− k6

)
,

which give

−m3 (k5 − ε9) + (c4 + 1) (k6 − ε11)−m4 (k8 − ε15) < 0,

m3 (k5 + ε10)− (c4 + 1) (k6 + ε12) +m4 (k8 + ε16) < 0.

For x70 −
π2 + b2 (x10 − k1)

R1 β φ+ 1
= k7 and x70 −

π2 + b2 (x10 − k1)

R2 β φ+ 1
= k7, ε1, ε2 ∈ (0, k1) , ε3, ε4 ∈ (0, k2),

ε5, ε6 ∈ (0, k3) there exist ε13, ε14 ∈ (0, k7) such that

k7 > ε13 >
b2 ε1

R1 β φ+ 1
=
b2 (ε1 − k1)

R1 β φ+ 1
−
(
x70 −

π2 + b2 x10

R1 β φ+ 1
− k7

)
,

k7 > ε14 >
b2 ε2

R2 β φ+ 1
=
b2 (ε2 + k1)

R2 β φ+ 1
+

(
x70 −

π2 + b2 x10

R2 β φ+ 1
− k7

)
,
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which give

π2 − (R1 β φ+ 1) (x70 − k7 + ε13) + b2 (x10 − k1 + ε1) < 0,

− π2 + (R2 β φ+ 1) (x70 − k7 − ε14)− b2 (x10 − k1 − ε2) < 0.

For
β φR1 (x70 − k7)

m4 + 1
− k8 and

β φR2 (x70 − k7)

m4 + 1
− k8 , ε1, ε2 ∈ (0, k1) , ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3)

there exist ε15, ε16 ∈ (0, k8) such that

k8 > ε15 >
β φ ε13

m4 + 1
> −β φR1 ε13

m4 + 1
= −β φR1 (ε13 + k7)

m4 + 1
−
(
β φR1 x70

m4 + 1
− k8

)
,

k8 > ε16 >
β φ ε14

m4 + 1
> −β φR2 ε14

m4 + 1
= −β φR2 (ε14 − k7)

m4 + 1
+

(
β φR2 x70

m4 + 1
− k8

)
,

which give

− β φR1 (x70 − k7 + ε13) + (m4 + 1) (k8 − ε15) < 0, β φR2 (x70 − k7 − ε14)− (m4 + 1) (k8 + ε16) < 0.

For
e1 k4 + e2 k3 + e3 k5 + e4 k8

e5
= k9, ε1, ε2 ∈ (0, k1) , ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3) there exist

ε17, ε18 ∈ (0, k9) such that

k9 > ε17 >
4 e2 ε5
e5

=
e2 (4 ε5 − k3)

e5
−
(
e1 k4 + e3 k5 + e4 k8

e5
− k9

)
,

k9 > ε17 >
4 e1 ε7
e5

=
e1 (4 ε7 − k4)

e5
−
(
e2 k3 + e3 k5 + e4 k8

e5
− k9

)
,

k9 > ε17 >
4 e3 ε9
e5

=
e3 (4 ε9 − k5)

e5
−
(
e1 k4 + e2 k3 + e4 k8

e5
− k9

)
,

k9 > ε17 >
4 e4 ε15

e5
=
e4 (4 ε15 − k8)

e5
−
(
e1 k4 + e2 k3 + e3 k5

e5
− k9

)
,

k9 > ε18 >
4 e2 ε6
e5

=
e2 (4 ε6 + k3)

e5
+

(
e1 k4 + e3 k5 + e4 k8

e5
− k9

)
,

k9 > ε18 >
4 e1 ε8
e5

=
e1 (4 ε8 + k4)

e5
+

(
e2 k3 + e3 k5 + e4 k8

e5
− k9

)
,

k9 > ε18 >
4 e3 ε10

e5
=
e3 (4 ε10 + k5)

e5
+

(
e1 k4 + e2 k3 + e4 k8

e5
− k9

)
,

k9 > ε18 >
4 e4 ε16

e5
=
e4 (4 ε16 + k8)

e5
+

(
e1 k4 + e2 k3 + e3 k5

e5
− k9

)
,

which give

(k9 − ε17) e5 + (ε7 − k4) e1 + (ε5 − k3) e2 + e3 (ε9 − k5) + e4 (ε15 − k8) < 0,

e1 (k4 + ε8) + e2 (k3 + ε6) + e3 (k5 + ε10) + e4 (k8 + ε16)− e5 (k9 + ε18) < 0.

Furthermore, we can choose ε1, ε2 ∈ (0, k1), ε3, ε4 ∈ (0, k2), ε5, ε6 ∈ (0, k3), ε7, ε8 ∈ (0, k4), ε9, ε10 ∈
(0, k5), ε11, ε12 ∈ (0, k6), ε13, ε14 ∈ (0, k7), ε15, ε16 ∈ (0, k8) and ε17, ε18 ∈ (0, k9) satisfying 28 (see from
the Appendix)

Let εi > 0 be defined as in (25) and λi for i = 1, 2, . . . , 18, we can define the continuous functions
Φ =

(
u1, u2, u3, . . . , u9

)
and Φ = (u1, u2, u3, . . . , u9) as follows:

u1(t) =

{
0 t ≤ t1
k1 − ε1 e−λt t > t1

, u1(t) =

{
k1 e

λ1t t ≤ t10

k1 + ε2 e
−λt t > t10

,
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u2(t) =

{
0 t ≤ t2
k2 − ε3 e−λt t > t2

, u2(t) =

{
k2 e

λ2t t ≤ t11

k2 + ε4 e
−λt t > t11

,

u3(t) =

{
0 t ≤ t3
k3 − ε5 e−λt t > t3

, u3(t) =

{
k3 e

λ3t t ≤ t12

k3 + ε6 e
−λt t > t12

,

u4(t) =

{
0 t ≤ t4
k4 − ε7 e−λt t > t4

, u4(t) =

{
k4 e

λ4t t ≤ t13

k4 + ε8 e
−λt t > t13

,

u5(t) =

{
0 t ≤ t5
k5 − ε9 e−λt t > t5

, u5(t) =

{
k5 e

λ5t t ≤ t14

k5 + ε10 e
−λt t > t14

,

u6(t) =

{
0 t ≤ t6
k2 − ε11 e

−λt t > t6
, u6(t) =

{
k2 e

λ6t t ≤ t15

k2 + ε12 e
−λt t > t15

,

u7(t) =

{
0 t ≤ t7
k3 − ε13 e

−λt t > t7
, u7(t) =

{
k3 e

λ7t t ≤ t16

k3 + ε14 e
−λt t > t16

,

u8(t) =

{
0 t ≤ t8
k4 − ε15 e

−λt t > t8
, u8(t) =

{
k4 e

λ8t t ≤ t17

k4 + ε16 e
−λt t > t17

,

u9(t) =

{
0 t ≤ t9
k5 − ε17 e

−λt t > t9
, u9(t) =

{
k5 e

λ9t t ≤ t18

k5 + ε18 e
−λt t > t18

.

We can see that ki < supt∈R Φ = Mi, Φ and Φ satisfy (C1) and (C2), (i = 1, 2, . . . , 9).
Lemma 4. Let Rc > 1, then the function Φ(t) = (u1(t), u2(t), . . . , u9(t)) defines the lower solution of
system (18).

Proof.

Q1(t) = Du′′1(t) + c u′1(t) + fc1
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q2(t) = Du′′2(t) + c u′2(t) + fc2
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q3(t) = Du′′3(t) + c u′3(t) + fc3
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q4(t) = Du′′4(t) + c u′4(t) + fc4
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q5(t) = Du′′5(t) + c u′5(t) + fc5
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q6(t) = Du′′6(t) + c u′6(t) + fc6
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q7(t) = Du′′7(t) + c u′7(t) + fc7
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q8(t) = Du′′8(t) + c u′8(t) + fc8
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
,

Q9(t) = Du′′9(t) + c u′9(t) + fc9
(
u1(t), u2(t), u3(t), . . . , u9(t)

)
.

(26)

If t ≤ t1, u1 (t) = 0 and ui (t) ≥ 0, where i = 2...9, then Q1(t) = −π1 +(Λ2 + b2 + 1)x10 +c4 u6 (t) ≥ 0.

If t > t1, u1 (t) = k1 − ε2e−λ t, ui(t) ≥ k2 − εje−λ (t), where i = 2, 3, ..., 9 and j = 4, 6, ...18,

Q1(t) ≥ −ε1e−λ t
(
Dλ2 + cλ+

π1

ε1e−λ t
− (β R2 + 1 + b2)

(
x10 − k1 + ε1e−λ t

)

ε1e−λ t
+
c4

(
k6 − ε11e−λ t

)

ε1e−λ t

)

≥ −ε1e−λ t
(
Dλ2 + cλ+ π1 −

(β R1 + 1 + b2) (x10 − k1 + ε1)

ε1
+
c4 (k6 − ε11)

ε1

)
,
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where R2 = b1
(
k4 − ε7e−λ t

)
+ c1

(
k3 − ε5e−λ t

)
+ c2

(
k8 − ε15e−λ t

)
+ c3

(
k9 − ε17e−λ t

)
,

Note that π1−(R1 + 1 + b2) (x10 − k1 + ε1)+c4 (k6 − ε11) < 0 such that Q1(λ) > 0 for all λ ∈ (0, λ∗10).

If t ≤ t2, u2 (t) = 0, u1 (t) = k1 − ε2e−λ t, and ui (t) ≥ 0, where i = 1, 3, ..., 9, then Q2(t) =
Λ2 (x10 − u1 (t)) ≥ 0.

If t > t2, u2(t) = k2 − ε3e−λ t, ui(t) ≥ k2 − εje−λ (t), where i = 1, 3, ..., 9 and j = 2, 6, ..., 18.

Q2(t) ≥ −e−λ tε3

(
Dλ2 + cλ− β R3

(
x10 − k1 − ε2e−λ t

)

ε3e−λ t
+

(c5 + 1)
(
k2 − ε3e−λ t

)

ε3e−λ t

)

≥ −e−λ tε3

(
Dλ2 + cλ− β R1 (x10 − k1 − ε2)

ε3
+

(c5 + 1) (k2 − ε3)

ε3

)
= Q2(λ),

Since Q2(0) = −β R3 (x10 − k1 − ε2) + (c5 + 1) (k2 − ε3) < 0, then there exists a λ∗2 > 0 such that
Q2 > 0 for all λ ∈ (0, λ∗2).

If t ≤ t3, u3(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 4, ..., 9, then Q3(t) = c5 u2 (t) ≥ 0.

If t > t3, u3(t) = k3 − ε5e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 2, 4, ..., 9 and j = 2, 6, ..., 18,

Q3(t) ≥ −e−λ tε5

(
Dλ2 + cλ− c5

(
k2 − ε3e−λ t

)

ε5e−λ t
+

(m1 + 1)
(
k3 − ε5e−λ t

)

ε5e−λ t

)

≥ −e−λ tε5

(
Dλ2 + cλ− c5 (k2 − ε3)

ε5
+

(m1 + 1) (k3 − ε5)

ε5

)
,

Note that −c5 (k2 − ε4) + (m1 + 1) (k3 − ε5) < 0, then there exists a λ∗3 > 0 such that Q1(λ) > 0 for
all λ ∈ (0, λ∗3).

If t ≤ t4, u4(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 3, 5, ..., 9, then Q4(t) = u3(t)m1 ≥ 0.

If t > t4, u4(t) = k4 − ε7e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 3, ...9 and j = 2, 6, ..., 18,

Q4(t) ≥ −e−λ tε7

(
Dλ2 + cλ−

(
k3 − ε5e−λ t

)
m1

ε7e−λ t
+

(m2 + 1)
(
k4 − ε7e−λ t

)

ε7e−λ t

)

≥ −e−λ tε7

(
Dλ2 + cλ− (k3 − ε5)m1

ε7
+

(m2 + 1) (k4 − ε7)

ε7

)
,

Note that − (k3 − ε5)m1 + (m2 + 1) (k4 − ε7) < 0, then there exists a λ∗4 > 0 such that Q4(λ) > 0 for
all λ ∈ (0, λ∗4).

If t ≤ t5, u5(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 3, 5, ..., 9, then Q5(t) = m2 u4 (t) ≥ 0.

If t > t5, u5(t) = k5 − ε9e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 3, ...9 and j = 2, 6, ..., 18,

Q5(t) ≥ ε9e−λ t
(
Dλ2 + cλ+

m2

(
k4 − ε7e−λ t

)

ε9e−λ t
− (m3 + 1)

(
k5 − ε9e−λ t

)

ε9e−λ t

)

≥ ε9e−λ t
(
Dλ2 + cλ+

m2 (k4 − ε7)

ε9
− (m3 + 1) (k5 − ε9)

ε9

)
,

Note that m2 (k4 − ε7)− (m3 + 1) (k5 − ε9) < 0, then there exists a λ∗5 > 0 such that Q5(λ) > 0 for all
λ ∈ (0, λ∗5).

If t ≤ t6, u6(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 3, 5, ..., 9, then Q6(t) = m3 u5 (t) +m4 u8 (t) ≥ 0.

If t > t6, u6(t) = k6 − ε11e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 3, ..., 9 and j = 2, 6, ..., 18,

Q6(t) ≥ −e−λ tε11

(
Dλ2 + cλ− m3

(
k5 − ε9e−λ t

)

ε11e−λ t
+

(c4 + 1)
(
k6 − ε11e−λ t

)

ε11e−λ t
− m4

(
k8 − ε15e−λ t

)

ε11e−λ t

)

≥ −e−λ tε11

(
Dλ2 + cλ− m3 (k5 − ε9)

ε11
+

(c4 + 1) (k6 − ε11)

ε11
− m4 (k8 − ε15)

ε11

)
,
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Note that −m3 (k5 − ε9) + (c4 + 1) (k6 − ε11)−m4 (k8 − ε15) < 0, then there exists a λ∗6 > 0 such that
Q6(λ) > 0 for all λ ∈ (0, λ∗6).

If t ≤ t7, u7(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 3, 5...9, then Q7(t) = −π2 + (Λ2 φ+ 1)x70 −
b2 (x10 − u1 (t)) ≥ 0.

If t > t7, u7(t) = k7 − ε14e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 3, ..., 9 and j = 2, 6, ..., 18,

Q7(t) ≥ −e−λ tε13

(
Dλ2 + cλ+

π2

ε13e−λ t
− (β φR2 + 1)

(
x70 − k7 + ε13e−λ t

)

ε13e−λ t

+
b2
(
x10 − k1 + ε1e−λ t

)

ε13e−λ t

)

≥ −e−λ tε13

(
Dλ2 + cλ+

π2

ε13
− (β φR1 + 1) (x70 − k7 + ε13)

ε13
+
b2 (x10 − k1 + ε1)

ε13

)
,

Note that π2 − (β φR1 + 1) (x70 − k7 + ε13) + b2 (x10 − k1 + ε1) < 0, then there exists a λ∗7 > 0 such
that Q7(λ) > 0 for all λ ∈ (0, λ∗7).

If t ≤ t8, u8(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 3, 5, ..., 9, then Q8(t) = φΛ2 (x70 − u7 (t)) ≥ 0.

If t > t8, u8(t) = k8 − ε16e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 3, ..., 9 and j = 2, 6, ..., 18,

Q8(t) ≥ −e−λ tε15

(
Dλ2 + cλ− β φR2

(
x70 − k7 + ε13e−λ t

)

ε15e−λ t
+

(m4 + 1)
(
k8 − ε15e−λ t

)

ε15e−λ t

)

≥ −e−λ tε15

(
Dλ2 + cλ− β φR1 (x70 − k7 + ε13)

ε15
+

(m4 + 1) (k8 − ε15)

ε15

)
,

Note that −β φR1 (x70 − k7 + ε13) + (m4 + 1) (k8 − ε15) < 0, then there exists a λ∗8 > 0 such that
Q8(λ) > 0 for all λ ∈ (0, λ∗8).

If t ≤ t9, u9(t) = 0 and ui (t) ≥ 0, where i = 1, 2, 3, 5...9, then Q9(t) = e1 u4 (t) + e2 u3 (t) + e3 u5 (t) +
e4 u8 (t) ≥ 0.

If t > t9, u9(t) = k9 − ε18e−λ t, ui(t) ≥ ki − εje−λ (t), where i = 1, 3, ..., 9 and j = 2, 6, ..., 18,

Q9(t) ≥ −e−λ tε17

(
Dλ2 + cλ− F2

ε17e−λ t
+
e5

(
k9 − ε17e−λ t

)

ε17e−λ t

)

≥ −e−λ tε17

(
Dλ2 + cλ− F1

ε17
+
e5 (k9 − ε17)

ε17

)
,

where F2 = e1

(
k4 − ε7e−λ t

)
+ e2

(
k3 − ε5e−λ t

)
+ e3

(
k5 − ε9e−λ t

)
+ e4

(
k8 − ε15e−λ t

)
.

Note that −F1 + e5 (k9 − ε17) < 0, then there exists a λ∗18 > 0 such that Q9(λ) > 0 for all λ ∈ (0, λ∗9).

Hence, by taking λ ∈ (0,minλ∗i , i = 1, 2, . . . , 9), we can see that Φ(t) is a lower solutions of system
(18).

Lemma 5. Let Rc > 1, then Φ(t) = (u1(t), u2(t), . . . , u9(t)) defines the upper solution of system (18).



26 K.M.Tessema et.al.

Proof.

P1(t) = Du′′1(t) + c u′1(t) + fc1 (u1, u2(t), u3(t), . . . , u9(t)) ,

P2(t) = Du′′2(t) + c u′2(t) + fc2 (u1(t), u2, u3(t), . . . , u9(t)) ,

P3(t) = Du′′3(t) + c u′3(t) + fc3 (u1(t), u2, u3(t), . . . , u9(t)) ,

P4(t) = Du′′4(t) + c u′4(t) + fc4 (u1(t), u2, u3(t), . . . , u9(t)) ,

P5(t) = Du′′5(t) + c u′5(t) + fc5 (u1(t), u2, u3(t), . . . , u9(t)) ,

P6(t) = Du′′6(t) + c u′6(t) + fc6 (u1(t), u2, u3(t), . . . , u9(t)) ,

P7(t) = Du′′7(t) + c u′7(t) + fc7 (u1(t), u2, u3(t), . . . , u9(t)) ,

P8(t) = Du′′8(t) + c u′8(t) + fc8 (u1(t), u2, u3(t), . . . , u9(t)) ,

P9(t) = Du′′9(t) + c u′9(t) + fc9 (u1(t), u2, u3(t), . . . , u9(t)) .

(27)

If t ≤ t10, u1(tt) = k1 eλ1 t, ui(t) ≤ ki eλi t where i = 2, 3, ..., 9,

P1(t) ≤ eλ1tk1

(
Dλ1

2 + cλ1 −
π1

k1eλ1t
+

(
β
(
W2 + c2 k8eλ8t

)
+ 1 + b2

) (
x10 − k1eλ1t

)

k1eλ1t
− c4 k6eλ6t

k1eλ1t

)

≤ eλ1tk1

(
Dλ1

2 + cλ1 −
π1

k1
+

(β (M8 c2 +W1) + 1 + b2) (x10 − k1)

k1
− c4M6

k1

)
= 0,

If t ≥ t10, u1(t) ≤ k1 − ε1 eλ t, u1(t) = k1 + ε2 eλ t, ui(t) ≤ ki + εj eλ t, where i = 2, 3, ..., 9 and
j = 1, 3, 5, 7, ..., 17,

P1(t) ≤ ε2e−λ t
(
Dλ2 + cλ− π1

ε2e−λ t
+

(β R4 + b2 + 1)
(
x10 − k1 − ε2e−λ t

)

ε2e−λ t
− c4

(
k6 − ε11e−λ t

)

ε2e−λ t

)

≤ ε2e−λ t
(
Dλ2 + cλ− π1

ε2
+

(β R2 + b2 + 1) (x10 − k1 − ε2)

ε2
− c4 (k6 + ε12)

ε2

)
,

where where R4 = b1
(
k4 + ε8e−λ t

)
+ c1

(
k3 + ε6e−λ t

)
+ c2

(
k8 + ε16e−λ t

)
+ c3

(
k9 + ε18e−λ t

)
.

Since −π1 + (β R2 + b2 + 1) (x10 − k1 − ε2) − c4 (k6 + ε12) < 0, then there exists a λ∗10 > 0 such that
P1(t) < 0 for all λ ∈ (0, λ∗10).

If t ≤ t11, u2(t) = k2 eλ2 t, ui(t) ≤ ki eλi t where i = 1, 3, 4, ..., 9,

P2(t) ≤ eλ2tk2

(
Dλ2

2 + cλ2 +
β
(
W2 + c2 k8eλ8t

)
(x10 − k1eλ1t)

k2eλ2t
− c5 − 1

)

≤ eλ2tk2

(
Dλ2

2 + cλ2 +
β (M8 c2 +W1) (x10 −M1)

k2
− c5 − 1

)
= 0,

If t > t11, u2(t) = k2 + ε4 eλ t, ui(t) ≤ ki + εj eλ t, where i = 1, 3, ..., 9 and j = 1, 5, 7, ..., 17,

P2(t) ≤ e−λ tε4

(
Dλ2 + cλ+

β R4

(
x10 − k1 − ε2e−λ t

)

ε4e−λ t
− (c5 + 1)

(
k2 + ε4e−λ t

)

ε4e−λ t

)

≤ e−λ tε4

(
Dλ2 + cλ+

β R2 (x10 − k1 + ε1)

ε4
− (c5 + 1) (k2 + ε4)

ε4

)
= P2(λ),

Since P2 (0) ≤ β R2 (k10 − k1 + ε1) − (c5 + 1) (k2 + ε4) < 0, then there exists a λ∗11 > 0 such that
P2(t) < 0 for all λ ∈ (0, λ∗11).
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If t ≤ t12, u3(t) = k3 eλ3 t, ui(t) ≤ ki eλi t where i = 1, 3, 4, ..., 9,

P3 (t) ≤ eλ3 tk3

(
Dλ3

2 + cλ3 +
c5 k2eλ2 t

k3eλ3 t
−m1 − 1

)

≤ eλ3 tk3

(
Dλ3

2 + cλ3 +
c5M2

k3
−m1 − 1

)
= 0,

If t > t12, u3(t) = k3 + ε6 eλ t, ui(t) ≤ ki + εj eλ t, where i = 1, 2, 4, ..., 9 and j = 1, 3, 7, 9, ..., 17,

P3 (t) ε6e−λ t
(
Dλ2 + cλ+

c5

(
k2 + ε4e−λ t

)

ε6e−λ t
− (m1 + 1)

(
k3 + ε6e−λ t

)

ε6e−λ t

)

≤ ε6e−λ t
(
Dλ2 + cλ+

c5 (k2 + ε4)

ε6
− (m1 + 1) (k3 + ε6)

ε6

)
,

Note that c5 (k2 + ε4)− (m1 + 1) (k3 + ε6) < 0, then there exists a λ∗12 > 0 such that P3(t) < 0 for all
λ ∈ (0, λ∗12).

If t ≤ t13, u4(t) = k4 eλ4 t, ui(t) ≤ ki eλi t where i = 1, 2, 3, 5, ..., 9,

P4(t) ≤ eλ4tk4

(
Dλ4

2 + cλ4 +
k3eλ3tm1

k4eλ4t
−m2 − 1

)

≤ eλ4tk4

(
Dλ4

2 + cλ4 +
M3m1

k4
−m2 − 1

)
= 0,

If t > t13, u4(t) = k4 + ε8 eλ t, ui(t) ≤ ki + εj eλ t, where i = 1, 2, 3, 5, ..., 9 and j = 1, 3, 5, 9, 11, ..., 17,

P4(t) ≤ e−λ tε8

(
Dλ2 + cλ+

(
k3 + ε6e−λ t

)
m1

ε8e−λ t
− (m2 + 1)

(
k4 + ε8e−λ t

)

ε8e−λ t

)

≤ e−λ tε8

(
Dλ2 + cλ+

(k3 + ε6)m1

ε8
− (m2 + 1) (k4 + ε8)

ε8

)
,

Note that (k3 + ε6)m1 − (m2 + 1) (k4 + ε8) < 0 for all λ ∈ (0, λ∗4).

If t ≤ t14, ϑ(t) = k5e−λ5t, ϕ(t) = k5e−λ5t, θ(t) ≤ k4e−λ5t and ϕ(t) ≤ k2e−λ2t,

P5(t) ≤ k5eλ5z
(
Dλ2

5 + cλ5 +
m2 k4eλ4z

k5eλ5z
−m3 − 1

)
≤ k5eλ5z

(
Dλ2

5 + cλ5 +
m2M4

k5
−m3 − 1

)
= 0,

If t > t14, u5(t) = k5 + ε10 eλ t, ui(t) ≤ ki+ εj eλ t, where i = 1, 2, 3, 4, 6, ..., 9 and j = 1, 3, 5, 7, 11, ..., 17,

P5 (t) ≤ e−λ tε10

(
Dλ2 + cλ+

m2

(
k4 + ε8e−λ t

)

ε10e−λ t
− (m3 + 1)

(
k5 + ε10e−λ t

)

ε10e−λ t

)

≤ e−λ tε10

(
Dλ2 + cλ+

m2 (k4 + ε8)

ε10
− (m3 + 1) (k5 + ε10)

ε10

)
,

Note that m2 (k4 + ε8) − (m3 + 1) (k5 + ε10) < 0, then there exists a λ∗14 > 0 such that P5(t) < 0 for
all λ ∈ (0, λ∗14).

If t ≤ t15, u6(t) = k6 eλ6 t, ui(t) ≤ ki eλi t where i = 1, 2, ...5, 7, ..., 9,

P6(t) ≤ eλ6tk6

(
Dλ6

2 + cλ6 +
m3 k5eλ5t

k6eλ6t
+
m4 k8eλ8t

k6eλ6t
− c4 − 1

)

≤ eλ6tk6

(
Dλ6

2 + cλ6 +
m3M5

k6
+
m4M8

k6
− c4 − 1

)
= 0,
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If t > t15, u6(t) = k6+ε12 eλ t, ui(t) ≤ ki+εj eλ t, where i = 1, 2, ..., 5, 7, ..., 9 and j = 1, 3, 5, 7, 9, 13, ..., 17,

P6 (t) ≤ ε12e−λ t
(
Dλ2 + cλ+

m3

(
k5 + ε10e−λ t

)

ε12e−λ t
− (c4 + 1)

(
k6 + ε12e−λ t

)

ε12e−λ t

+
m4

(
k8 + ε16e−λ t

)

ε12e−λ t

)

≤ ε12e−λ t
(
Dλ2 + cλ+

m3 (k5 + ε10)

ε12
− (c4 + 1) (k6 + ε12)

ε12
+
m4 (k8 + ε16)

ε12

)
,

Note that m3 (k5 + ε10)− (c4 + 1) (k6 + ε12) +m4 (k8 + ε16) < 0, then there exists a λ∗15 > 0 such that
P6(t) < 0 for all λ ∈ (0, λ∗15).

If t ≤ t16, u7(t) = k7 eλ7 t, ui(t) ≤ ki eλi t where i = 1, 2, ...6, 8, 9,

P7(t) ≤ eλ7tk7

(
Dλ7

2 + cλ7 −
π2

k7eλ7t
+

(
β
(
W2 + c2 k8eλ8t

)
φ+ 1

) (
x70 − k7eλ7t

)

k7eλ7t

− b2
(
x10 − k1eλ1t

)

k7eλ7t

)

≤ eλ7tk7

(
Dλ7

2 + cλ7 −
π2

k7
+

(β φ (M8 c2 +W1) + 1) (x70 − k7)

k7

− b2 (x10 −M1)

k7

)
= 0,

where W2 = b1 k4eλ4t + c1 k3eλ3t + c3 k9eλ9t.

If t > t16, u7(t) = k7 + ε14 eλ t, ui(t) ≤ ki + εj eλ t, where i = 1, 2, ..., 6, 8, 9 and j = 1, 3, 5...11, 15, 17,

P7 (t) ≤ e−λ tε14

(
Dλ2 + cλ− π2

ε14e−λ t
+

(β R4 φ+ 1)
(
x70 − k7 − ε14e−λ t

)

ε14e−λ t

− b2
(
x10 − k1 − ε2e−λ t

)

ε14e−λ t

)

≤ e−λ tε14

(
Dλ2 + cλ− π2

ε14
+

(R3 β φ+ 1) (x70 − k7 − ε14)

ε14
− b2 (x10 − k1 − ε2)

ε14

)
,

Note that −π2 +(R2 β φ+ 1) (x70 − k7 − ε14)− b2 (x10 − k1 − ε2) < 0, then there exists a λ∗16 > 0 such
that P7(t) < 0 for all λ ∈ (0, λ∗16).

If t ≤ t17, u8(t) = k8 eλ8 t, ui(t) ≤ ki eλi t where i = 1, 2, ..., 7, 9,

P8(t) ≤ eλ8tk8

(
Dλ8

2 + cλ8 +
φβ

(
W2 + c2 k8eλ8t

) (
x70 − k7eλ7t

)

k8eλ8t
−m4 − 1

)

≤ eλ8tk8

(
Dλ8

2 + cλ8 +
φβ (c2 k8 +W1) (x70 −M7)

k8
−m4 − 1

)
= 0,

If t > t17, u8(t) = k8 + ε16 eλ t, ui(t) ≤ ki + εj eλ t, where i = 1, 2, .., 7, 9 and j = 1, 3, ..., 13, 17,

P8 (t) ≤ ε16e−λ t
(
Dλ2 + cλ+

φβ R4

(
x70 − k7 − ε14e−λ t

)

ε16e−λ t
− (m4 + 1)

(
k8 + ε16e−λ t

)

ε16e−λ t

)

≤ ε16e−λ t
(
Dλ2 + cλ+

φβ R2 (x70 − k7 − ε14)

ε16
− (m4 + 1) (k8 + ε16)

ε16

)
,



Analysis of foot and mouth disease control using a reaction–diffusion model . . . 29

Note that φβ R2 (x70 − k7 − ε14) − (m4 + 1) (k8 + ε16) < 0, then there exists a λ∗17 > 0 such that
P8(t) < 0 for all λ ∈ (0, λ∗17).

If t ≤ t18, u9(t) = k9 eλ9 t, ui(t) ≤ ki eλi t where i = 1, 2, ..., 8,

P9(t) ≤ eλ9zk9

(
Dλ9

2 + cλ9 +
F4

k9eλ9z
− e5

)

≤ eλ9zk9

(
Dλ9

2 + cλ9 +
M3 e2 +M4 e1 +M5 e3 +M8 e4

k9
− e5

)
= 0,

where F4 = e1 k4eλ4t + e2 k3eλ3t + e3 k5eλ5t + e4 k8eλ8t,

If t > t18, u9(t) = k9 + ε18 eλ t, ui(t) ≤ ki + εj eλ t, where i = 1, 2, ..., 8 and j = 1, 3, ..., 15,

P9 (t) ≤ ε18e−λ t
(
Dλ2 + cλ+

F5

ε18e−λ t
− e5

(
k9 + ε18e−λ t

)

ε18e−λ t

)

≤ ε18e−λ t
(
Dλ2 + cλ+

F2

ε18
− e5 (k9 + ε18)

ε18

)
,

where F5 = e1

(
k4 + ε8e−λ t

)
+ e2

(
k3 + ε6e−λ t

)
+ e3

(
k5 + ε10e−λ t

)
+ e4

(
k8 + ε16e−λ t

)
,

Note that F2 − e5 (k9 + ε18) < 0, then there exists a λ∗19 > 0 such that P9(t) < 0 for all λ ∈ (0, λ∗19).

Hence, for all λ ∈ (0,min{λi, i = 1, 2, . . . , 9}), Pi(t) < 0(i = 1, 2, . . . , 9). This completes the proof.

By combining the Schauders fixed point theorem and lemmas (1- 5), we know that there exists a
fixed point (u∗1(t), u∗2(t), . . . , u∗9(t)) for F in Γ(u1(t), u2(t), u3(t), . . . , u9(t)), which gives the solutions
of system (18). Moreover, from C2 (24), we can find that

lim
t→−∞

(u∗1(t), u∗2(t), . . . , u∗9(t)) = (0, 0, 0, 0, 0, 0, 0, 0, 0), lim
t→+∞

(u∗1(t), u∗2(t), . . . , u∗9(t)) = (k1, k2, . . . , k9)

This shows that the fixed point satisfies the asymptotic boundary conditions (7). Consequently, there
exists a traveling wave solution for system (18) connecting the steady state (0, 0, 0, 0, 0, 0, 0, 0, 0) and
(k1, k2, k3, . . . , k9), hence, we have the following result:
Theorem 5. Assume that d1 = d2 = d3 = d4 = d5 = d6 = d8 = d9 = D, Rc > 1 then for every c > c∗,
system (1) has a traveling wave solution with speed c connecting the disease-free steady state Ê0 and the
endemic steady state E∗.

4 Parameter estimation and numerical simulation

In this section, we present the parameter values for the model (1) from the relevant literature to
carry out numerical simulations that enhance further understanding of the model predictions. The
simulations show the effects of vaccination, diffusion and shedding of foot and mouth disease virus
on the dynamics of the foot and mouth disease.

4.1 Parameter estimation
The amplification rates ηi, where i = 1, 2, 3 are estimated to be between 0 and 1 satisfying η3 < η2 <
η1 < 1. The vaccination rates ρ and ρ1 are also estimated to be between 0 and 1. The average number
of FMD viruses shedded into the atmospheric environment are estimated as Nis = 800, Nic = 3000,
Nq = 3000, and Nvca = 500. We use d1 = d6 = d7, these are diffusion constants associated with
healthy animals namely, susceptible, recovered and vaccinated animals. The movement of these
animals is expected to more than that of infected animals. We assume that the diffusion of clinically
infected and the vaccinated carrier animals are equal (d2 = d8), since the movement of uninfected
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animals are active and cover a wide area as compared to subclinically and clinically infected animals.
We also use d3 > d4 since the subclinically infected animals are active and cover a wide area compared
to clinically infected animals class. The movement of quarantining clinical animals is restricted and
the diffusion rate of quarantining the clinical animals estimated as d5 = 0. We use Figure 2 as baseline
simulations of FMD dynamics and compare it to the rest of the Figures (see Figure 3, 4,..., 14) as we
vary the parameters. All parameter values used in the numerical simulations are given in Table 1
with their sources. Some parameter values are taken as they appear in literature while others are
determined based on estimating the given parameters.

Table 1: Dimensional parameter values for the model

symbol Units Value source

Π Day−1 0.13 Calculated
β Day−1 0.3 [8, 34, 35]
µ year−1 0.05 [36]
η1 Day−1 [0, 1] estimated
η2 Day−1 [0, 1] estimated
η3 Day−1 [0, 1] estimated
ε Day−1 0.6 [16, 36, 37]
α1 Day−1 0.3 [16, 36, 37]
α2 Day−1 0.3 [16, 36, 37]
α3 Day−1 0.4 [36, 37]
ω Day−1 [0.01, 0.2] [13, 21, 28, 38]

symbol Units Value source

α4 Day−1 0.3 [6, 34, 38]
ρ Day−1 [0, 1] [34]
ρ1 Day−1 [0, 1] [34]
φ Day−1 0.2 [13]
τis, τic, τq, τvc Day−1 [0, 1] estimated
d1, d2, d3, d4, d5,
d6, d7, d8, d9 Day−1 [0, 1] [16, 34, 39]
Nis Day−1 800 estimated
Nic Day−1 3000 estimated
Nq Day−1 3000 estimated
Nvc Day−1 500 estimated

4.2 Numerical simulations

In this section, we present numerical simulations to enrich our understanding of the model (1) and to
explore the effects of spatial diffusion, vaccination and shedding off of foot and mouth disease virus
into the environment. In particular, we investigate the effects of control parameters for vaccination
(ρ, ρ1), quarantining clinical infected animals (α2), the viral shedding rates (τis, τic, τq, τvca) and
diffusion rates (d1, d2, d3, d4, d6, d7, d8, d9).

Even though simulations of all the state variables were performed, the effects of each of the afore-
mentioned parameters are alternatively interesting on how they affect infected animal classes in the
dynamics of infection. We therefore deliberately show only the simulation outputs for the infectious
animal classes Is, Ic, Q, Vca and Fv as they are the drivers of infection.
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Figure 2: The graph on the dynamics of the disease with parameters: Π = 0.13, β = 0.3, η1 =
0.4, η2 = 0.3, η3 = 0.08, µ = 0.0013, ε = 0.6, α1 = 0.3, α2 = 0.3, α3 = 0.4, ω = 0.1, α4 = 0.3, ρ =
0.2, ρ1 = 0.0001, φ = 0.2, τis = τis = τic = τq = τvc = 0.1, d5 = 0, d1 = d6 = d7 = 0.8, d1 = d6 =
d7 = 0.5, d2 = d8 = 0.3, d9 = 0.6, d3 = 0.2, d4 = 0.1, Nis = 800, Nic = Nq = 3000, Nvc = 500.

4.2.1 Effects of vaccination parameters (ρ and ρ1)

In this section, we investigate the effects of the rate of vaccination parameters (ρ and ρ1). The effects
of the rate of vaccination new born animals on FMD are shown in Figure 3 by varying ρ = 0.2 to
ρ = 0.7 keeping the other parameters as in Figure 2. Figure 3 shows increasing the rate of new born
animals vaccination (ρ) is associated with the increase in vaccinated carrier animals and decrease on
the other infected animals, as well as a decrease in the quantity of the FMD virus in the environment.
This suggests that more animals are protected and move to the protected routs but the increase in
vaccinated carrier animals may pass as the threat to the control efforts applied. The effects of the rate
of vaccination of susceptible animals (ρ1) on the dynamics of the disease are shown in Figure 4 where
ρ1 is vaccine from 0.0001 to 0.0008 whilst keeping the other parameters as in Figure 2. Increasing the
rate of vaccination of susceptible animals increases the vaccinated carrier animal classes and decrease
the other infected animal classes and the quantity of the FMD virus in the environment.

4.2.2 Effects of quarantining the clinically infected animals parameter (α2)

In this section, we investigate the effects of the rate of quarantining clinical infected animal (α2) by
varying (α2) from 0.2 to 0.7 whilst keeping the other parameters as in Figure 2. An increase in the rate
of quarantining clinically infected animals (α2) is associated with the decrease in all infected animals,
as well as a decrease in the quantity of the FMD virus in the environment.

4.2.3 Effects of FMDV shedding rates into the environment (τis , τic, τq , τvc)

In this section, we investigate the effects of parameters varying the parameter τj , where j = is, ic, q, vc
from 0.1 to 0.5 in Figures 6 to 9 while keeping the rest of the parameters as in Figure 2. Figure 6 shows
the effects of the rate of FMDV shedding from subclinically infected animals (τis). Increasing the rate
of FMDV shedding from subclinically infected animals increases all the infected animal classes as well
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Figure 3: The effects of the rate of vaccination on the dynamics of the disease by increasing the rate
of vaccination from ρ = 0.2 to ρ = 0.7 and keeping the other parameters as in Figure 2.

Figure 4: The effects of the rate of vaccination of susceptible animals on the dynamics of the disease by
increasing the rate of vaccination from ρ1 = 0.0001 to ρ2 = 0.0008 and keeping the other parameters
as in Figure 2.
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as FMDV in the environment. Figures 7 shows the effects of the rate of FMDV shedding from the clin-
ically infected animals (τic). Increasing the rate of FMDV shedding from clinically infected animals
increase all the infected animal classes and the FMD in the environment. Figures 8 shows the effects
of the rate of FMDV shedding from the quarantined clinically infected animals (τq). Increasing the
rate of FMDV shedding from quarantined clinically infected animals increase all the infected animal
classes and the FMD in the environment. Figures 9 shows the effects of the rate of FMDV shedding
from the vaccinated carrier animals (τvc). Increasing the rate of FMDV shedding from vaccinated
carrier animals increase all the infected animal classes and the FMD in the environment.

Overall, our simulations suggest that increasing any shedding rate increases the FMD burden. In
particular, using the parameters estimates in the current simulations, more damage seen to come
from shedding from, followed in that order. Thus, strategies should target environmental shedding
rates of FMDV.

4.2.4 Effects of diffusion parameters (d1, d2, d3, d4, d6, d7, d8, d9)

In this section, we investigate the effects of diffusion parameters (d1, d2, d3, d4, d6, d7, d8, d9). The
parameters d1 = d6 = d7 shall be varied from 0.5 to 0.8, d2 = d8 varied from 0.3 to 0.4, d3 from 0.3
to 0.4, d3 from 0.3 to 0.4 and d9 from 0.6 to 0.9 in Figure 10 to 14. We shall vary these parameters
and compare the outcomes from the ones on Figure 2. Figure 10 shows the impact of the rate of
diffusion on the dynamics of the disease by increasing the rates of diffusion d1 = d6 = d7 by varying
from 0.5 to 0.8 Increasing the rates of diffusion d1 = d6 = d7 increase all the infected animal classes
as well as FMDV in the environment. Figure 11 shows the impact of the rate of diffusion parameter
d2 = d8 on the dynamics of the disease by varying d2 = d8 from 0.3 to 0.4. Increasing the rates
of diffusion d2 = d8 decreases all the infected animal classes as well as FMDV in the environment.
Figure 12 shows the impact of the rate of diffusion parameter d3 on the dynamics of the disease by
varying d3 from 0.2 to 0.4. Increasing the rates of diffusion d3 decrease all the infected animal classes
as well as FMDV in the environment. Figure 13 shows the impact of the rate of diffusion parameter
d4 on the dynamics of the disease by varying d4 from 0.1 to 0.2. Increasing the rates of diffusion d4

decrease all the infected animal classes as well as FMDV in the environment. Figure 14 shows the
impact of the rate of diffusion parameter d9 on the dynamics of the disease by varying d9 from 0.6
to 0.9. Increasing the rates of diffusion d9 decrease all the infected animal classes as well as FMDV
in the environment. Our simulations suggest that when the movement of health animals is low and
increasing the movement of unhealthy animals may increase the burden of foot and mouth disease
and may not eradicate the infection either.

5 Discussion and results

The reaction-diffusion equations model for foot and mouth disease of cattle was presented in this
paper to capture the effects of the rate of vaccination, spatial diffusion, quarantining of clinically
infected animals and shedding of foot and mouth disease virus into the environment. Mathematical
analysis and numerical simulations were carried out to reveal the effects of the above-mentioned
control strategies on the foot and mouth disease burden.

Our mathematical analysis revealed the existence of the disease-free and endemic equilibrium points.
When the control reproduction number, Rc is less than unity, the system has a unique disease-free
steady state which is locally asymptotically stable. This suggests that foot and mouth disease burden
can be kept in check when control reproduction number is below unity. However, when the control
can not reduce Rc below unity, there is a possibility that the foot and mouth disease can spread to
endemic levels. Evidence of controls such as the rate of vaccination and the rate of quarantining of
clinically infected animals parameters on foot and mouth disease transmission in cattle is available
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Figure 5: The effects of the rate of quarantining clinical infected class on the dynamics of the disease
by increasing the rate of quarantining from α2 = 0.3 to α2 = 0.8 and keeping the other parameters as
in Figure 2.

Figure 6: The effects of the rate of FMDV on the dynamics of the disease by increasing the rate
of subclinically infected animals shed off FMDV fromτis = 0.1 to τis = 0.5 and keeping the other
parameters as in Figure 2.
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Figure 7: The effects of the rate of FMDV on the dynamics of the disease by increasing the rate of
clinically infected animals shed off FMDV from τic = 0.1 to τic = 0.5 and keeping the other parameters
as in Figure 2.

Figure 8: The effects of the rate of FMDV on the dynamics of the disease by increasing the rate of
quarantining animals shed off FMDV from τq = 0.1 to τq = 0.5 and keeping the other parameters as
in Figure 2.
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Figure 9: The effects of the rate of FMDV on the dynamics of the disease by increasing the rate
of vaccinated carrier animals shed off FMDV from τvc = 0.1 to τvc = 0.5 and keeping the other
parameters as in Figure 2.

Figure 10: The effects of the rate of diffusion on the dynamics of the disease by increasing the rate
of diffusion from d1 = d6 = d7 = 0.5 to d1 = d6 = d7 = 0.8 and keeping the other parameters as in
Figure 2.
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Figure 11: The effects of the rate of diffusion on the dynamics of the disease by increasing the rate of
diffusion from d2 = d8 = 0.4 to d2 = d8 = 0.5 and keeping the other parameters as in Figure 2.

Figure 12: The effects of the rate of diffusion on the dynamics of the disease by increasing the rate of
diffusion from d3 = 0.2 to d3 = 0.4 and keeping the other parameters as in Figure 2.
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Figure 13: The effects of the rate of diffusion on the dynamics of the disease by increasing the rate of
diffusion from d4 = 0.1 to d4 = 0.2 and keeping the other parameters as in Figure 2.

Figure 14: The effects of the rate of diffusion on the dynamics of the disease by increasing the rate of
diffusion from d9 = 0.6 to d9 = 0.9 and keeping the other parameters as in Figure 2.
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where the burden of foot and mouth disease continues to increase [6, 9, 15]. Such scenarios may be
sources of development of resistance especially on controls associated with drugs and vaccines. The
mathematical analysis also showed the existence of a travelling wave solution connecting the disease-
free steady state and the endemic steady state by using the technique of upper and lower solutions
and Schauders fixed point theorem. This shows that the spatial dynamics of the infection contributes
towards the progression of infection in cattle [22, 29, 40]. Models that do not capture the spatial
dynamics of foot and mouth disease are therefore limited in terms of explaining the factors that drive
the foot and mouth disease infection [6, 9, 15].

Numerical simulations allowed us to observe the effects of the rate of vaccination, quarantining of
clinically infected animals, foot and mouth disease virus shedding to the atmospheric environment
and diffusion parameters on foot and mouth disease transmission in cattle. The results suggested
that increasing either the rate of vaccination of newborn or susceptible animals would channel the
movement of animals into the protected route of disease dynamics, that increase the vaccinated an-
imal population and at the same time reduced the spread of foot and mouth disease virus into the
environment. The benefits of vaccination through mass vaccination have been recorded in model
M. J. Keeling et al.[15] which did not capture the spatial dynamics and environmental transmission.
The inclusion of the spatial dynamics and environmental transmission may affect the estimates of the
quantum of mass vaccinations. Increasing the rate of quarantining clinically infected animals was
associated with the decrease in the infectious animals’ classes as well as the virus in the environment.
The quarantined animals have no contact with other healthy animals and so findings suggest that the
environmental transmission alone may not be effective in as far as the increase in foot and mouth
disease burden is concerned. Some studies did not capture the spatial spread of foot and mouth dis-
ease [41] showed that the quarantine of affected animals only reduced the spread of the disease in
animals. However, since the subclinically infected and vaccinated carrier animals are still mixing with
the healthy animals and the fact that there is shedding of the virus into the environment, the effects
of quarantining may not effectively reduce the burden. Control strategies that also target the less
infectious animals, as well as the virus in the environment, are needed in order to effectively control
foot and mouth disease when one considers time and spatial spread of foot and mouth disease. Such
controls should be optimized enough to consistently suppress if not eradicate foot and mouth disease.
Our results also showed that increasing the rate of shedding from subclinically, clinically, quarantine
clinically infected animals and the vaccinated carrier is associated with the increase in foot and mouth
disease burden in cattle. Control strategies that target the reduction of shedding of the virus into the
atmospheric environment need to be implemented effectively but this may not work alone if the other
avenues of transmission are not taken of in the control strategy [6, 42, 43]. Spatial diffusion of ani-
mals was implemented in Maidana and Yang [16] without including the shedding and diffusion of the
virus into the atmospheric environment. Their study only checked the existence of travelling wave
solutions and determined the wave speed as a function of diffusion but fell short of testing the effects
of the rate of diffusion and other parameters. Therefore, increasing the rate of movement of healthy
animals when there is a low rate of movement of infectious animals decreases the burden of foot and
mouth disease, but increasing the rate of movement of subclinically, clinically and vaccinated carrier
animals and decreasing the diffusion rate of foot and mouth disease virus is associated with the in-
crease in foot and mouth disease burden in cattle. Thus, reducing the movement of infected animals
reduces the burden on foot and mouth disease.

A combination of control strategies that protects healthy animals and significantly reducing the in-
fectious animals and as well as the shedding and diffusion rates of the virus in the environment is
needed. Our study exposed the potential drivers of foot and mouth disease in cattle and the use
of single strategies may not yield a desirable effect of eradicating the disease. As a consequence of
this, it is important to implement an effective combination of rates of control, movement of animals,
shedding rate and diffusion rate of the virus in the environment. This is consistent with the study by
Mugabi et al. [44] and Bani-Yaghoub et al. [45], where it was found out that by applying environmen-
tal decontamination in combination with other control measures eliminate an endemic equilibrium of
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the disease.

The models formulated in this study only focus on the cattle population, but we can extend this study
by incorporating multi-transmission routes, such as using cattle and Sheep or other animal groups. We
can improve this study in the future by incorporating quarantining all infected animal classes or study
using optimizing the combination of control strategies using optimal control in partial differential
equations. We can also study this partial differential equation using stochastic processes.
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4 e3

e5
+

2m3

c4 + 1

)
ε9 =

(
4 e3

e5
+

2m3

c4 + 1

)
ε9 −

(
m3 k5 + k8m4

c4 + 1
− k6

)

−
(
e1 k4 + e2 k3 + e3 k5 + e4 k8

e5
− k9

)
,

(
e3

e5
+

2m3

c4 + 1

)
ε10 =

(
e3

e5
+

2m3

c4 + 1

)
ε10 +

(
m3 k5 + k8m4

c4 + 1
− k6

)

+

(
e1 k4 + e2 k3 + e3 k5 + e4 k8

e5
− k9

)
,

(
4 e4

e5
+

2m4

c4 + 1

)
ε15 =

(
4 e4

e5
+

2m4

c4 + 1

)
ε15 −

(
m3 k5 + k8m4

c4 + 1
− k6

)

−
(
e1 k4 + e2 k3 + e3 k5 + e4 k8

e5
− k9

)
,

(
e4

e5
+

2m4

c4 + 1

)
ε16 =

(
2m3 ε16

c4 + 1
+
e4

e5

)
ε16 +

(
m3 k5 + k8m4

c4 + 1
− k6

)

+

(
e1 k4 + e2 k3 + e3 k5 + e4 k8

e5
− k9

)
,
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

Foot and mouth disease is a livestock diseases that limits economic growth, increases poverty

among subsistence farmers and reduces food security [1, 2]. The application of mathematical

models is essential in studies of the dynamics of the foot and mouth disease [5, 10, 18]. How-

ever, most prior models are often included isolated control strategies without combining control

strategies and a consideration of reaction-diffusion effects [17]. This thesis focused on devel-

oping epidemiological mathematical models of the spread of the foot and mouth disease that

sought to improve understanding of the transmission dynamics in cattle populations. We de-

veloped and analyzed mathematical models for the control strategies of foot and mouth disease

(FMD) by considering the environmental causes of infection, incorporating the effects of prophy-

lactic vaccination, reactive vaccination, prophylactic treatment, reactive culling, quarantining of

clinically infected classes and the effects of time delay.

Chapter 1 gave a detailed background and motivation for research on the dynamics of the foot

and mouth disease. Important aspects of the disease highlighted included the biology of foot and

mouth virus and mathematical models previously used, such as ordinary differential equations,

delay differential equations and partial differential equations.

In Chapter 2, we investigated the transmission dynamics of the foot and mouth disease using a

system of differential equations. The purpose of this chapter is to show the effect of vaccination

that does not induce rapid protection on disease dynamics. Livestock productivity and food se-

curity are improved through vaccination programs. However, there is a limitation to vaccination
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as this does not induce rapid protection. The results suggested that even though vaccines may

not induce rapid protection using a high rate of vaccination and low loss of vaccine protection

rate may be successful in reducing the foot and mouth burden provided critical vaccination

thresholds are taken into consideration. Stability analysis showed that the disease-free equilib-

rium is stable when Rc < 1 and the endemic equilibrium is also locally stable when Rc > 1. We

investigated the effects of the vaccination coverage and loss of vaccination protection on both

the vaccinated and unvaccinated animal populations. The findings show that a high vaccination

rate and low loss of protection is the best strategy to reduce the foot and mouth disease burden,

followed by high vaccination rate and high loss of protection. However, low vaccination rate

and low loss of protection is the least strategy to protect the foot and mouth disease. On the

other hand, a low vaccination and high loss of protection rates are the worst strategies for foot

and mouth disease because in this strategy the flow of animals is high into the unprotected route

of infection but flow into the vaccination route of infection is low.

The study further suggests that increasing the rate of recovery in vaccinated carrier class in-

creases the recovered class. The recovered animals return to the susceptible class with a slight

decrease in infectious classes and high decrease in vaccination carrier class. Hence, this strategy

reduces the foot and mouth disease burden. Moreover, if infections occur in the population,

the vaccination should be implemented as soon as possible. The study is not all encompassing,

and can be improved by incorporating the spread of foot and mouth disease in both space and

time.

In Chapter 3, we developed a delay ordinary differential equation model of the foot and mouth

disease. The goals were to investigate the effects of prophylactic vaccination, reactive vaccina-

tion, prophylactic treatment and reactive culling on the spread of foot and mouth disease with

two-time delays. We determined the control reproduction number, Rc and the existence of a

disease-free equilibrium and an endemic equilibrium using mathematical analysis. The disease-

free equilibrium was locally asymptotically stable when Rc is less than unity. In this case the
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FMD can be kept in check if the control strategies used consistently reduce the reproduction

number below unity. In fact, there is a possibility of eradicating the infection with such controls.

However, if controls cannot reduce Rc below unity, then there is a possibility that the FMD can

spread to endemic levels. This scenario may be characteristic of a control strategy that is either

inadequately administered or less efficient. Evidence of controls such as the rate of vaccination,

the rate of treating and vaccinating susceptible animals, the rate of treating vaccinated animals

and the rate of culling infected and vaccinated carrier animals is available where the burden of

foot and mouth disease continued to increase [1, 10, 12, 81]. In particular, there are vaccines

that do not induce rapid control [12]. The sensitivity analysis of Rc with respect to prophylactic

vaccination showed thatRc decreases only when the rate of loss of vaccination is below a critical

level of vaccination otherwise the benefits of prophylactic vaccination alone may not be realized.

This means that prophylactic vaccination as a single strategy may not successfully eradicate the

foot and mouth disease. Simulations showed that the control reproduction number (Rc) is less

than one when the rate of treating and vaccinating susceptible animals and rate of culling of

clinically infected and vaccinated carrier animals are high. The numerical simulations suggest

that increasing of both time delay two and control parameters or increasing either of the time

delay two or control parameters reduces the burden of foot and mouth disease. On the other

hand, increasing of both time delay one and control parameters does not show a significant

effect on the dynamics of foot and mouth disease. Therefore, time delay two has a significant

effect on foot and mouth disease. The result also showed that newly infected animals are sig-

nificantly delayed in showing clinical symptoms leading to lower shedding of foot and mouth

disease virus in the environment and subsequently a reduction in the foot and mouth burden

due to increasing time delay two. Similarly, increasing control parameters such as prophylactic

vaccination, reactive vaccination, prophylactic treatment, and reactive culling parameters has

a significant effect on the decreasing of foot and mouth disease burden. The results suggest

that the strategy of decreasing time delay two whilst increasing the degree of control param-

eters contributes to the reduction of foot and mouth disease but reducing of both time delay

two and control parameters increases the foot and mouth disease burden. Reducing time delay
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two means that the newly infected animals fast to show clinical symptoms and leading to high

shedding of foot and mouth disease virus to other animals and subsequently the increase of foot

and mouth burden. The findings also suggest that the strategy of increasing of time delay two

whilst reducing the control parameters may not significantly reduce the foot and mouth disease

burden. This finding has consequences when the intention is to reduce the costs of control

strategies but inadvertently, the disease burden continues to spread. The strategy with a signifi-

cant effect on the protection from the foot and mouse disease involves both the time delay two

and control parameters.

In Chapter 4, we extended the model in Chapter 2 to a reaction-diffusion model. The purpose

was to investigate the effects of vaccination, quarantining clinically infected animals, shedding

of foot and mouth disease virus into the environment and rates of movement of animals and

virus. The mathematical analysis showed the existence of a travelling wave solution connecting

the disease-free steady state and the endemic steady state. Here used the technique of upper

and lower solutions and Schauders fixed point theorem.

The numerical results suggested that increasing either the rate of vaccination of newborn or

susceptible animals would channel the movement of animals into the protected route of disease

dynamics, that is, the vaccinated animal population and at the same time reduced the spread of

foot and mouth disease virus into the environment. The results also showed that increasing the

rate of quarantining clinically infected animals was associated with a decrease in the infectious

animals’ classes as well as the virus in the environment. The quarantined animals have no

contact with other healthy animals and findings suggest that the environmental transmission

alone may not be effective in increasing the foot and mouth disease virus. However, since the

subclinically infected and vaccinated carrier animals are still able to mix with healthy animals

and there is shedding of the virus into the environment, quarantining may not effectively reduce

the burden. Control strategies that also target the less infectious animals, as well as the virus

in the environment, are needed in order to effectively control foot and mouth disease when one
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considers time and spatial spread of the virus. Such controls should be optimized to consistently

suppress and eradicate foot and mouth disease. The findings show that increasing the rate of

shedding from subclinically, clinically, quarantine clinically infected animals and the vaccinated

carrier is associated with an increase in foot and mouth disease in cattle. Control strategies

that target the reduction of shedding of the virus into the atmospheric environment need to be

implemented effectively but this may not work alone if the other avenues of transmission are not

taken of in the control strategy [12, 82, 83]. Increasing the rate of movement of healthy animals

when there is a low rate of movement of infectious animals decreases the burden of foot and

mouth disease, but increasing the rate of movement of subclinically, clinically and vaccinated

carrier animals and decreasing the diffusion rate of foot and mouth disease virus is associated

with the increase in foot and mouth disease burden in cattle. Thus, reducing the movement of

infected animals reduces the burden of the foot and mouth disease. A combination of control

strategies that protects healthy animals and significantly reduces the infectious animals and as

well as the shedding and diffusion rates of the virus in the environment is needed. The study

exposed the potential drivers of foot and mouth disease in cattle and suggests that the use

of single control strategies may not yield the desirable effect of eradicating the disease. As a

consequence, it is important to implement an effective combination of control, movement of

animals, shedding rate and diffusion rates of the virus in the environment.

5.1.1 Summary of Recommendations

The findings in this study have important implications for foot and mouth disease control man-

agement. Hence, We summarize the recommendations in this study as follows:

(a) Vaccines may not induce rapid protection but taking a combination of high rates of vacci-

nation and low loss of vaccine protection rate is the best strategy in reducing the foot and

mouth burden but taking a low vaccination with a high loss of protection rates is the worst
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strategy for foot and mouth disease protection.

(b) Reducing time delay in removing clinically infected animals and increasing the control pa-

rameters contributes significantly to the reduction of foot and mouth disease burden.

(c) Prophylactic vaccination as a single strategy may not successfully eradicate the foot and

mouth disease but if combined with prophylactic and reactive vaccinations or other control

strategies such as reactive culling is useful to eradicate foot and mouth disease burden.

(d) Increasing either the rate of vaccination of newborn or susceptible animals moves the an-

imals into the protected route, this reduces the shedding of foot and mouth virus into the

environment.

(e) Increasing the rate of shedding from subclinically, clinically, quarantine clinically infected

animals and the vaccinated carrier is associated with an increase in foot and mouth disease

burden in cattle.

(f) Restricting the movement of infected animals reduces the burden on foot and mouth dis-

ease.

5.2 Future Directions

This study has added some insights into FMD dynamics and highlighted specific areas that re-

quire attention if efforts to contain the disease are to be successful. Nevertheless, there are

other aspects not considered in this study that could provide additional insights pertaining to

FMDs.
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(a) Considering multi-transmission routes such as cattle and sheep or wild animals.

(b) The model in Chapter 3 could be improved by incorporating time delay to the reaction-

diffusion equations to provide more insights into the dynamics of FMD in cattle population.

(c) Incorporating age-structure using the partial differential equation to study the foot and

mouth disease in animals.

(d) Combining stochastic and partial differential equations to study the foot and mouth disease

of animals.
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APPENDICES

This article is about the Modelling control of foot and mouth disease with two time delays. It

has been described in Chapter 3 in this thesis. This paper was published in International Journal

of Biomathematics, https://doi.org/10.1142/S179352451930001X.
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We develop a delay ordinary differential equation model that captures the effects of pro-
phylactic vaccination, reactive vaccination, prophylactic treatment and reactive culling
on the spread of foot and mouth disease (FMD) with time delays. Simulation results
from the study suggest that increasing time delay while increasing the control strategies
decreases the burden of FMD. Further, the results reveal, that decreasing time delay
while decreasing the control strategies increases the burden of FMD. The intermediate
scenarios of either (i) increasing time delay while decreasing control or (ii) decreasing
time delay while increasing control have intermediate effects on burden reduction. Thus,
the implementation of effective control strategies combination can play an important

role in mitigating against the FMD burden.
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1. Introduction:

One of the most common contagious animal viral diseases that can cause devastating

economic, social, and environmental damages is foot and mouth disease (FMD)

[24]. FMD affects cloven-hoofed animals [4, 25, 34] and is communicated through

viral particles in the air transported by the wind and through direct and indirect

contact. Susceptible animals that are exposed to FMD remain exposed for 2 to 4

days and subsequently proceed to a subclinical state. A clinically infected animal

can recover by developing natural immunity [6, 9, 21] which can wane with time

∗Corresponding author.
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making the animal susceptible again [3, 16, 20, 25]. The vaccinated animals may

become carriers and transmit the infection subclinically. The animal may recover

by developing natural immunity [9, 32, 33, 36].

The spread of FMD may be controlled by vaccination and treatment of different

animal groups. Vaccination can be administered as either a prophylactic vaccina-

tion or as a reactive vaccination strategy [2, 15, 33]. Prophylactic vaccination is

carried out before the introduction of the disease whereas reactive vaccination is

carried out after the outbreak [2, 15, 27, 28]. Vaccination alone is inadequate to

completely protect the animals from FMD [27]. Evidence available shows the occur-

rence of several outbreaks of FMD in places where vaccination was administered

[9, 15]. Prophylactic treatment has also been used in the control of FMD. The

treatment uses antiviral drugs to protect animals from infection and to reduce the

risk of carrier animals spreading the virus during emergency vaccination programs

[1, 9]. Reactive culling is another measure that has been used in combination with

other control measures such as reactive vaccination [2, 15]. It is administered after

the outbreak of FMD. Prophylactic and reactive vaccination are to some extent,

effective in preventing FMD. However, it remains to be determined how effective

the combination of prophylactic and reactive vaccination is. It is also important to

investigate the effects of prophylactic vaccination, reactive vaccination, prophylactic

treatment and reactive culling.

Differential equations have been used to model the dynamics of a number of

diseases [10, 23, 35]. These equations include delay differential equations that can

be used to describe epidemiological phenomena at a certain time in terms of the

values of a given function at previous times [2]. A number of delay differential

equations have been used to model other infections with one time delay [8, 18, 22].

In this study, we investigate the effects of prophylactic vaccination, reactive

vaccination, prophylactic treatment and reactive culling on the dynamics of FMD

infection using a two-time delay model. We formulate the mathematical model in

Sec. 2, provide some model analysis in Sec. 3, present parameter estimation and

numerical simulations in Sec. 4 and give a discussion of the results in Sec. 5.

2. Model Incorporating Two Time Delays

We propose a model of time delay differential equations for the spread of FMD in

animals by subdividing the total population into susceptible animals S(t), “treated

and vaccinated” animals Tv(t), clinically infectious animals Ic(t), recovered animals

R(t), vaccinated animals Vv(t) and vaccinated carrier animals Vca(t). Susceptible

animals are free of the foot and mouth disease virus (FMDV), treated and vac-

cinated animals are animals which are treated with prophylactic drugs and vacci-

nated with prophylactic reactive vaccines, the clinically infectious animals are those

with clinically diagnosed symptoms. The vaccinated animals are protected from the

disease by a prophylactic vaccine as well as prophylactic reactive vaccines, and vac-

cinated carrier animals may get infected because the prophylactic vaccine does not

1930001-2
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induce complete protection. The removed animals are either recovered or immune

to the infection. The immunity may wane with time and the recovered animals

become susceptible again [3, 16, 20, 25].

The susceptible animals are recruited at the rate bN(t) where b is the per-capita

birth rate and N(t) is the total population. A proportion of new birth is given a

prophylactic vaccine at a constant rate of ρ where 0 ≤ ρ ≤ 1, and hence, the net

recruitment of the susceptible animal is given by (1 − ρ)bN(t). Susceptible ani-

mals are given either reactive vaccines at a constant rate ρ2 where 0 ≤ ρ2 ≤ 1 or

given prophylactic treatment [1]. ρ1 is a rate of treating susceptible animals and

subsequently vaccinating them so that they end up in the Tv(t) class. Prophylac-

tic drugs are preventive drugs that are administered to animals that are free of

infection. Prophylactic drugs have been administered successfully for other viruses

and diseases, for instance, HIV and malaria infections [5, 31]. Susceptible animals

which are given a reactive vaccine move to the vaccinated class Vv(t). Prophylac-

tically treated susceptible animals will in principle move to the treated susceptible

class and when subsequently vaccinated will move ultimately to the treated and

vaccinated class Tv(t). We introduce a time delay τ1 > 0 to replace the treated sus-

ceptible class and capture the time required to move the treated and subsequently

vaccinated animals to the treated and vaccinated class Tv(t). However, because

the treated susceptible class is not immune to infection, they may be infected and

move in principle to the sub-clinically infected animals which we replace by the time

delay τ2 > 0 and allow movement of infected animals into the clinically infected

animals Ic(t). We capture the force of infection in the treated susceptible animals

by β(1− ε)(Ic(t−τ2)+ηVca(t))S(t−τ1)/N(t) with ε the rate of treating susceptible

animals where 0 ≤ ε ≤ 1 and (1 − ε) capturing the treatment protection failure.

The new infections through successive contacts between susceptible and infected

animals occur at a rate β. Since Vca animals are less infectious as compared to Ic
we introduce an amplification factor η < 1.

Susceptible animals which are not treated or vaccinated may get infected and

move in principle to the sub-clinically infected class and progress to the clinically

infected class Ic(t). As in the treated susceptible animals, we replace the sub-

clinically infected animals by the time delay τ2 and capture the force of infection by

β(Ic(t− τ2) + ηVca(t))S(t)/N(t). Susceptible animals are also subjected to natural

death at a rate of µ. They also suffer from density-dependent death rate that comes

due to crowding and we capture the combined death rate by the term µ+γN , where

γ is the per-capita density-dependent death rate. The density-dependent death rate

has the effect of inducing the logistic growth in the total population which is one

of the realistic ways of capturing the growth of populations.

The clinically infected class are recruited from infection of susceptible animals

and from infection of treated susceptible animals. They may recover naturally and

move to the recovered class R(t) at a rate α2. They are also subjected to the

combined death rate above. As a control measure, we introduce culling at a rate

of δ and move animals out of Ic(t) through this control measure. We assume that
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Ic(t) animals cannot move to Tv(t), due to the fact that (i) there is no known

post-infection treatment for FMD and also that (ii) even if treatment existed, they

would need to be subsequently vaccinated to be able to join to Tv(t) class. A

vaccine cannot be administered to sick animals. Hence, the natural recovery and

culling of sick animals are assumed to be sufficient to capture all the dynamics of

Ic(t) animals.

Vaccinated animals are recruited through prophylactic vaccination at a rate

ρbN(t) and also from reactive vaccination of susceptible animals at a rate ρ2. Since

the vaccination do not induce rapid protection [9] and is not perfect, some vacci-

nated animals are infected and become vaccinated carriers class Vca(t) with a force

of infection βφ(Ic(t − τ2) + ηVca(t))S(t)/N(t), where φ is the rate of protection

loss by the vaccination where 0 ≤ φ ≤ 1. Some vaccinated animals can be given

prophylactic treatment at a rate ε and move to the treated and vaccinated class

Tv(t). They are also subjected to the combined death rate. The vaccinated carrier

animals are recruited from infection of vaccinated animals, they recover naturally

at a rate α3, removed through culling at a rate δ and as well as through combined

death rate.

The treated and vaccinated animals are recruited from the treating of vaccinated

animals and from treated and subsequently vaccinated susceptible animals. They

recover at a rate α4 and die due to combined death. The recovered animals are

recruited from the recovery of clinically infected animals, vaccinated carrier animals

and, treated and vaccinated animals. The immunity wanes at a rate ω which moves

the recovered animals back to the susceptible class otherwise the recovered animal

are removed from their class through combined death. Figure 1 shows the flow

diagram for the model proposed.

The model representing the dynamics of FMD infection is represented as a

system of delay differential equations (DDEs) as follows:

dS(t)

dt
= (1 − ρ)bN(t)− λS(t)− (1 − ε)λS(t− τ1)− ρ1S(t− τ1)

− (ρ2 + µ+ γN(t))S(t) + ωR(t), (2.1)

dTv(t)

dt
= ρ1S(t− τ1) + εVv(t)− (α4 + µ+ γN(t))Tv(t), (2.2)

dIc(t)

dt
= λS(t) + (1 − ε)λS(t− τ1)− (δ + α2 + µ+ γN(t))Ic(t), (2.3)

dR(t)

dt
= α2Ic(t)− (ω + µ+ γN(t))R(t) + α3Vca(t) + α4Tv(t), (2.4)

dVv(t)

dt
= ρbN(t) + ρ2S(t)− φλVv(t)− (ε+ µ+ γN(t))Vv(t), (2.5)

dVca(t)

dt
= φλVv(t)− (δ + α3 + µ+ γN(t))Vca(t), (2.6)
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Fig. 1. Flow diagram for the FMD model with two time delay.

where λ = β(Ic(t− τ2) + ηVca(t))/N(t) and subject to the initial conditions

S(0) = S0 ≥ 0, Tv(0) = Tv0 ≥ 0, Ic(0) = Ic0 ≥ 0,

R(0) = R0 ≥ 0, Vv(0) = Vv0 ≥ 0, Vc(0) = Vca0 ≥ 0,

t ∈ [−τi, 0], where τi is the maximum delay.

(2.7)

Adding equations of the model (2.1)–(2.6), leads to a logistic differential

equation

dN(t)

dt
= rN(t)

(
1− γN(t)

r

)
− δ(Ic(t) + Vca(t)). (2.8)

From (2.8), we note that

dN(t)

dt
≤ rN(t)

(
1− N(t)

K

)
, where K =

r

γ
is the carrying capacity and

r = b− µ > 0, is the growth rate.

The solution satisfies

N(t) ≤ K

1 + ψe−rt
, where ψ =

(
K

N(0)
− 1

)
, N(0) ≤ K, and

lim
t→∞

N(t) ≤ lim
t→∞

K

1 + ψe−rt
= K.
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3. Model Analysis

In this section, we define a feasible region for the model (2.1)–(2.6), where Γ is

positively invariant and attracting. We also calculate the reproduction ratio and

determine the equilibrium points and their stability.

3.1. Feasible region

All the variables and parameters are assumed to be non-negative for the model to

be biologically meaningful.

Theorem 3.1. Let the system of equations (2.1)–(2.6) have initial conditions (2.7).

Then, the region Γ defined by (3.1) is positively invariant and attracting where

Γ = {(S(t), Tv(t), Ic(s), R(t), Vv(t), Vca(t)) ∈ �6
+ |N(t) ≤ K}. (3.1)

Proof. Assume for t > 0, N(0) ≥ 0, S(0) ≥ 0, Tv(0) ≥ 0, Ic(0) ≥ 0 R(0) ≥ 0,

Vv(0) ≥ 0 and Vca(0) ≥ 0. From Eq. (2.6), we get

d

dt
Vca(t) =

βφ(Ic(t− τ2) + ηVca(t))Vv(t)

N(t)
(3.2)

− (δ + α3 + µ+ γN(t))Vca(t). (3.3)

Integrating equation (3.2) and using a differential inequality, we get

Vca(t) ≥ Vca(0) exp

(
−(δ + α3 + µ)t− γ

∫ t

0

N(s)ds

)
≥ 0.

So Vca(t) → Vca(0) as t → 0 hence Vca ≥ 0. This implies that at any finite time,

Vca is positive. A similar analysis holds for Eqs. (2.1)–(2.6), where

R(t) ≥ R(0) exp

(
−(ω + µ)t− γ

∫ t

0

N(s)ds

)
≥ 0,

Ic(t) ≥ Ic(0) exp

(
−(δ + α2 + µ)t− γ

∫ t

0

N(s)ds

)
≥ 0,

Tv(t) ≥ Tv(0) exp

(
−(α4 + µ)t− γ

∫ t

0

N(s)ds

)
≥ 0,

Vv(t) ≥ Vv(0) exp

(
−(ε+ µ)t−

∫ t

0

(
βφ(Ic(s− τ1) + ηVca(s))

N(s)
+ γN(s)

)
ds

)
≥ 0,

S(t) ≥ S(0) exp

(
−(ρ1 + ρ2 + µ)t

−
∫ t

0

(
β(2 − ε)Ic(s− τ1) + ηVca(s))

N(s)
+ γN(s)

)
ds

)
≥ 0.
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Therefore, the solutions of the model with non-negative initial conditions remain

non-negative for all 0 ≤ t < ∞. Since 0 ≤ S(t), Tv, Ic(t), R(t), Vv(t), Vca(t) ≤ K,

all variables are bounded in [0,K]. This shows that for initial conditions (2.7), the

region Γ is positively invariant and attracting and therefore the region Γ is a feasible

region for the model (2.1)–(2.6).

3.2. The control reproduction ratio for the model

The control reproduction ratio is calculated using the next generation matrix

method [7, 37]. We take only the infected classes of the model to calculate the

control reproduction ratio. At the disease free equilibrium point, Ic = Vca = 0, S0,

R0 and Vv0. The control reproduction number is given by

Rc =
βφηρb

(ε+ b)(α3 + b+ δ)
+

β(2 − ε)(1− ρ)b

(b+ ρ1)(b + δ + α2)
,

where b = (µ+ γK).

To test the parameters that significantly affect the transmission dynamics of

FMD in cattle, sensitivity analysis on Rc was carried out through differentiating

Rc with respect to parameters of the model. The following results were obtained:

∂Rc

∂ε
= − βφηbρ

(ε+ b)2(α3 + b+ δ)
− β(1 − ρ)b

(b+ ρ1)(b+ δ + α2)
< 0,

∂Rc

∂δ
= − βφηbρ

(ε+ b)(α3 + b+ δ)2
− β(2 − ε)(1− ρ)b

(b+ ρ1)(b+ δ + α2)2
< 0,

∂Rc

∂ρ1
= − β(2 − ε)(1− ρ)b

(b+ ρ1)2(b+ δ + α2)
< 0,

∂Rc

∂ρ
=

βφηb

(ε+ b)(α3 + b+ δ)
− β(2− ε)b

(b + ρ1)(b+ δ + α2)

=
βbη(φ− φcrit)

(ε+ b)(α3 + b+ δ)
< 0,

where φcrit = ((2 − ε)(ε + b)(α3 + b + δ))/(η(b + ρ1)(b + δ + α2)). ∂Rc/∂ρ > 0,

φ > φcrit and ∂Rc/∂ρ < 0 when φ < φcrit and ∂Rc/∂ρ = 0 when φ = φcrit. For

vaccination to be effective Rc < 1, the loss of protection from vaccination should be

less than the critical value of loss of protection from the vaccine, that is, φ < φcrit.

The sensitivity analysis showed that the derivatives of Rc with respect to the

rate of vaccination, the rate of treating susceptible animals, the rate of treating

vaccinated animals and the rate of culling infected and vaccinated carrier animals

are all less than zero.

Figure 2 shows the effects of vaccination, treating and vaccinating susceptible

animals, treating vaccinated animals and culling infected and vaccinated carrier

animals on Rc. Figures 2(a) and 2(b) show that Rc is reduced and less than one

as the parameters, ρ, ρ1 and δ increase. The graph of ε vs. ρ shows that increasing
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both ε and ρ reduces Rc to a value still above unity in Fig. 2(c). The graph in

Fig. 2(d) illustrates that Rc reduces as both ρ1 and ε increase. In addition, we

note that Rc is reduced to a value less than one as the parameters δ, ρ1 and ε are

increased as shown in Figs. 2(e) and 2(f). Reducing the control reproduction number

(Rc) corresponds to decreasing the number of newly infected animals leading to

low shedding of FMDV to other animals and subsequently decreasing the FMD

burden.

3.3. Equilibrium points of the system

The disease-free equilibrium point of the system of equation is given by

E0 = (S0, Tv0, 0, R0, Vv0, 0), (3.4)

where

S0 =
((1 − ρ)(b3 + (ω + ε+ α4)b

2 + ((ω + α4)ε+ ωα4)b) + εωα4)K

M1
,

Tv0 =
(b + ω)K(ε(bρ+ ρ1 + ρ2) + bρ1(1− ρ))

M1
,

R0 =
Kα4(ε(bρ+ ρ1 + ρ2) + bρ1(1− ρ))

M1
,

Vv0 =
Kb(b+ ω + α4)ρρ1 +K(b+ α4)(b + ω)(bρ+ ρ2)

M1
,

M1 = b3 + (ω + ε+ ρ1 + ρ2 + α4)b
2 + ((ω + ρ1 + ρ2 + α4)ε+ (ω + ρ1 + ρ2)α4

+ω(ρ1 + ρ2))b+ ((ω + ρ1 + ρ2)α4 + ω(ρ1 + ρ2))ε+ ωα4ρ2.

The force of infection at the equilibrium point is

λ∗ =
β(I∗c + ηV ∗

ca)

K
. (3.5)

The endemic equilibrium E1 of the model is given in terms of λ∗ and R∗ with

E1 = (S∗, T ∗
v , I

∗
c , R

∗, V ∗
v , V

∗
ca), (3.6)

where

S∗ =
(1− ρ)bK + ωR∗

(2− ε)λ∗ + b+ ρ1 + ρ2
,

T ∗
v =

ρ1((1− ρ)bK + ωR)

A4
+

εKbρ

(b + α4)(λ∗φ+ b+ ε)
+
ερ2((1 − ρ)bK + ωR∗)

(λ∗φ+ b+ ε)A4
,

I∗c =
(2 − ε)λ∗((1 − ρ)bK + ωR∗)

(δ + b + α2)((2 − ε)λ∗ + b+ ρ1 + ρ2)
,
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R∗ =
1

1−A2

(
A3

(b+ ω)(δ + b+ α2)A4

+A5

(
ρ

(b+ α4)(δ + b+ α3)
+

ρ2(1 − ρ)

(δ + b+ α3)A4

))
,

V ∗
v =

Kbρ

λ∗φ+ b+ ε
+

ρ2((1 − ρ)bK + ωR∗)
(λ∗φ+ b+ ε)((2− ε)λ∗ + b + ρ1 + ρ2)

,

V ∗
ca =

λ∗φ

δ + b+ α3

(
Kbρ

λ∗φ+ b+ ε
+

ρ2((1 − ρ)bK + ωR∗)

(λ∗φ+ b+ ε)((2− ε)λ∗ + b+ ρ1 + ρ2)

)

the parameters are given by

A1 = (b+ ω)((2 − ε)λ∗ + b+ ρ1 + ρ2),

A2 =
ω

A1

(
α2(2− ε)λ∗

δ + b+ α2
+
α4(λ

∗φρ1 + (b+ ε)ρ1 + ερ2)

(b+ α4)(λ∗φ+ b+ ε)

+
α3φλ

∗ρ2
(δ + b+ α3)(λ∗φ+ b+ ε)

)
,

A3 = (1− ρ)bK((2− ε)λ∗(b+ α4)α2 + α4ρ1(δ + b+ α2)),

A4 = ((2− ε)λ∗ + b + ρ1 + ρ2)(b + α4),

A5 =
bK(α3φλ

∗(b+ α4) + εα4(δ + b+ α3))

(b + ω)(λ∗φ+ b+ ε)
,

A6 = (b+ ε)(b + ρ1)(α3 + b+ δ)(b + δ + α2)K.

If I∗c and V ∗
ca are substituted into (3.5), we obtain the equation in terms of λ∗:

λ∗e(B1λ
∗
e
2 +B2λ

∗
e +B3) = 0, (3.7)

where

B1 = φ(2 − ε)(α3 + b+ δ)(b + δ + α2)K,

B2 = ((b + ε)(2− ε) + φ(b+ ρ1 + ρ2))(δ + b+ α3)(δ + b+ α2)K

− β(Kb(2− ε)φ(ρ(δ + b+ α2)η + (1− ρ)(δ + b+ α3))

+R∗(2− ε)ωφ(δ + b+ α3)),

B3 = (b + ε)ρ2(α3 + b+ δ)(b + δ + α2)K − (b+ δ + α2)Kβbηφρ2

− βωR∗(ηφρ2(b+ δ + α2) + (b+ ε)(α3 + b+ δ)(2 − ε)) +A6(1−Rc).

The roots of equation (3.7) are λ∗ = 0 which corresponds to the disease free equi-

librium point and

λ∗e =
−B2 +

√
B2

2 − 4B1B3

2B1
> 0, when B3 < 0. (3.8)
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The condition B3 < 0 is satisfied when Rc > 1 which ensures positivity of λ∗e and

subsequently the positivity of E1.

3.4. Stability analysis

In this section, we study the stability of disease-free (E0) and endemic (E1) equi-

libria of the system of delay differential model (2.1)–(2.6) with the initial condi-

tion (2.7).

Theorem 3.2. The disease-free equilibrium point E0 of system (2.1)–(2.7) is locally

asymptotically stable for Rc < 1 and unstable for Rc > 1.

Proof. The characteristic equation of the Jacobian matrix at the disease-free equi-

librium E0 of system (2.1)–(2.7) takes the form

P (λ)

(
λ2 +

1

P1
(C4 + C5(1 −Rc) + C6 + C7(e

−λτ2(ε− 1)− 1)e−λτ1)λ

+
1

P1
(C8(1−Rc) + C9 +D1 +D2(e

−λτ2ε− e−λτ2 − 1)e−λτ1)

)
= 0, (3.9)

where

P (λ) = (Kγ + λ)(λ3 + C1λ
2 + C2λ+ C3),

P1 = (b+ ω + ρ1)(b+ ε)α4 + ρ2(b + ε+ ω)α4 + (b+ ρ1 + ρ2)(b+ ω)(b + ε),

C1 = 3b+ ε+ ω + α4 + ρ1 + ρ2,

C2 = (2b+ ε+ ω + ρ1 + ρ2)α4 + (2b+ ε+ ω)ρ2 + 3b2 + 2bε+ 2bω

+2bρ1 + εω + ερ1 + ωρ1,

C3 = (b+ ε+ ω)α4ρ2 + (b + ε)(b+ ω + ρ1)α4 + (b+ ω)(b+ ε)ρ2

+(b+ ρ1)(b + ω)(b+ ε),

C4 = (ε+ b+ ω)(2b+ 2δ + α2 + α3)α4ρ2 + (b+ ω + ρ1)(ε+ b)(b + δ + α2)α4

+(b+ ω)(ε+ b)(b2 + bδ + bα2 + bρ1 + 2bρ2 + δρ1 + 2δρ2 + α2ρ1

+α2ρ2 + α3ρ2),

C5 = (b+ α3 + δ)(ε+ b)(b+ ω)(b + ρ1) + α4(b+ ω + ρ1)(b+ α3 + δ)(ε+ b),

C6 =
(ε+ b)bβ(ε− 2)(b+α3 + δ)(ρ− 1)(b2+ bω+ bα4 + bρ1+ωα4+ωρ1 +α4ρ1)

(b+ δ+α2)(b+ ρ1)

− ηφb(b+ ω)ρ2β − ηφ(b + ω)βα4ρ2,

C7 = β(b(1− ρ)(ε+ b+ ω)α4 + εωα4 + b(1− ρ)(b + ω)(ε+ b)),
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C8 = (ε+ b+ ω)(b+ α3 + δ)α4ρ2 + α4(b+ ω + ρ1)(b+ α3 + δ)(ε+ b)

+ (b+ ρ1 + ρ2)(b + ω)(ε+ b)(b+ α3 + δ),

C9 = (b+ δ + α2)(b+ α3 + δ)ρ2(b
2 + bε+ bω + bα4 + εω + εα4 + ωα4)

+
(b+ α3 + δ)(ε+ b)(b+ ω + ρ1)α4b(1− ρ)(2− ε)β

b+ ρ1
,

D1 = (b+ α3 + δ)(ε+ b)(b+ ω)b(1− ρ)(2− ε)β

− (b+ δ + α2)ηφ(b + ω)βρ2(α4 + b),

D2 = (b+ α3 + δ)(βb(1 − ρ)(b+ ω + α4)(ε+ b) + β(−bωρα4 + bωα4 + εωα4)).

The characteristic equation (3.9) has clearly one negative real root (λ4 = −γK,)
and since C1C2 −C3 > 0 the other three negative real valued roots are granted by

Routh–Hurwitz criterion.

The remaining roots are given by the roots of equation (3.10)

g(λ) ≡ λ2 +
1

P1
(C4 + C5(1 −Rc) + C6 + C7(e

−λτ2(ε− 1)− 1)e−λτ1)λ

+
1

P1
(C8(1−Rc) + C9 +D1 +D2(e

−λτ2ε− e−λτ2 − 1)e−λτ1) = 0.

(3.10)

If Rc > 1, we can get the real λ,

g(0) = E1 + E2 + E3(1−Rc) < 0, lim
λ→∞

g(λ) = +∞,

where

E1 = (b2 + bε+ bω + bα4 + εω + εα4 + ωα4)(2b+ 2δ + α2 + α3)ρ2

+ωα4(ε− ρ1)(b + δ + α2)

+
(b+ ε)bβ(2− ε)(b+α3 + δ)(1− ρ)(b2 + bω+ bα4 + bρ1 +ωα4 +ωρ1+α4ρ1)

(b+ δ+α2)(b+ ρ1)
,

E2 =
(b + δ + α2)(b+ ρ1)bηφρβ(b

2 + bε+ bω + bα4 + εω + εα4 + ωα4)

(b+ α3 + δ)(b + ε)
,

E3 = (b + α3 + δ)(b+ ε)(b + ω)(b+ ρ1) + α4(b + ω + ρ1)(b + α3 + δ)(b + ε)

+ (b+ δ + α2)(b + ρ1)(b+ ε+ ω)α4 + (b + δ + α2)(b+ ρ1)(b+ ω)(b+ ε).

Therefore, Eq. (3.10) has positive real roots for Rc > 1, hence E0 of (2.1)–(2.7) is

unstable for Rc > 1.
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For Rc < 1 and τ1 = τ2 = 0, Eq. (3.10) becomes

g(λ) = λ2 +
(E1 + E2 + E3(1−Rc))λ

P1
+
E5 + E6 + E4(1−Rc)

P1
= 0, (3.11)

where

E4 = (b + α3 + δ)(b+ ε)(b + δ + α2)(b+ ω + ρ1)α4

+(b+ δ + α2)(b + ρ1)(b + α3 + δ)(b + ε)(b+ ω)

+ (b+ ρ1)(b + δ + α2)(b + α3 + δ)(b + ω + α4)(b+ ε),

E5 = (b + δ + α2)(b+ α3 + δ)ρ2(b
2 + bε+ bω + bα4 + εω + εα4 + ωα4)

+ (b+ α3 + δ)(b + ε)(b+ ω)b(1− ρ)(2− ε)β

+(b+ ρ1)(b + δ + α2)(b + ω + α4)bηφρβ,

E6 =
β(2 − ε)(b+ α3 + δ)α4(b(1− ρ)(b + ρ1)(b+ ε) + bωρρ1)

b+ ρ1
.

Equation (3.11) is quadratic and for Rc < 1

E1 + E2 + E3(1−Rc) > 0, E5 + E6 + E4(1 −Rc) > 0.

Hence, by the Routh–Hurwitz criterion, the roots of equation (3.11) have negative

real parts for Rc < 1. Therefore, when τ1 = τ2 = 0, the disease-free equilibrium E0

is locally asymptotically stable if Rc < 1 and it is unstable if Rc > 1.

For the general nonzero delay values (τ1 �= 0, τ2 �= 0), we first rearrange

Eq. (3.10) in the following form:

λ2 +
1

P1
(C4 + C5(1−Rc) + C6 + C7(e

−λτ2(ε− 1)− 1)e−λτ1)λ

= − 1

P1
(C8(1−Rc) + C9 +D1 +D2(e

−λτ2ε− e−λτ2 − 1)e−λτ1). (3.12)

Suppose in Eq. (3.12) λ is a real and denote the left-hand side by L(λ) and the

right-hand side by H(λ). We can see that L(0) = 0 and as λ → ∞ the value

L(λ) approaches infinity, so the left-hand side of Eq. (3.12) is an increasing func-

tion. On the other hand, H(λ) is a decreasing function as the value of λ increases

and

H(0) =
1

P1
(C8(Rc − 1) + C9 +D1 +D2(e

−λτ2ε− e−λτ2 − 1)e−λτ1) > 0. (3.13)

The two functions should intersect at a positive value λ∗ which is greater than

zero. Hence, Eq. (3.13) has a positive real root. Therefore, the disease-free equilib-

rium point, E0 is unstable for Rc > 1. For Rc < 1 L(λ) is increasing and H(λ)

decreasing but H(0) > 0. Thus, Eq. (3.13) has negative real roots and therefore E0

is unstable for Rc > 1 and stable for Rc < 1.
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For positive delays (τ1 �= 0, τ2 �= 0), assume that λ = iσ without loss of

generality, where σ > 0 is a root of equation (3.10). Substituting into Eq. (3.10)

shows that

−σ2 +
1

P1
(i(C5(1 −Rc) + C7F1 + C4 + C6)σ)

+
1

P1
(C8(1−Rc) +D2F2 + C9 +D1) = 0, (3.14)

where

F1 = ((cos(τ2σ)− i sin(τ2σ))(ε− 1)− 1)(cos(στ1)− i sin(στ1)),

F2 = ((cos(τ2σ)− i sin(τ2σ))ε− cos(τ2σ) + i sin(τ2σ)− 1)(cos(στ1)− i sin(στ1)).

Separating the real and the imaginary parts of equation (3.14) and squaring both

parts and adding the two equations, it follows that

σ4 + F3σ
2 + F4 = 0, (3.15)

where

F3 =
1

P1
2 (2C7

2(ε− 1)(cos(τ2σ) + 1) + (1−Rc)
2C5

2

+(2P1C8 + 2C5(C4 + C6))(1 −Rc))

+
1

P1
2 (−ε2C7

2 + (2C9 + 2D1)P1 + (C4 + C6)
2),

F4 =
1

P1
2 (2D2

2(ε− 1)(cos(τ2σ) + 1) + C8
2(1−Rc)

2

+2C8(C9 +D1)(1 −Rc))−
1

P1
2 (D2

2ε2 + (C9 +D1)
2),

and let assume that σ2 = Q and substitute into the polynomial function (3.15), we

obtain

Q2 + F3Q+ F4 = 0. (3.16)

Clearly cos(στ2) + 1 ≥ 0 for Rc < 1

F3 ≥ 1

P1
((2C9 + 2D1)P1 + C4 + C6 + (2P1C8 + C5

+2C5(C4 + C6))(1 −Rc)) ≥ 0,

F4 ≥ 1

P1
(C9 +D1 + (C8 + 2C8(C9 +D1))(1 −Rc)) ≥ 0.

By Routh–Hurwitz criterion Eq. (3.16) has negative real roots. Hence, our assump-

tion σ > 0 is contradicted and (3.14) has no positive roots. Hence, Eq. (3.9) has

negative real roots when Rc < 1, E0 is locally asymptotically stable for all τ > 0.

This proves the theorem.
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Theorem 3.3. The positive equilibrium (S∗, I∗c , R
∗, V ∗

v , V
∗
ca) is globally asymptoti-

cally stable when Rc > 1.

Proof. We use Lyapunov functions to prove the endemic equilibrium is globally

asymptotically stable. Let (S, Ic, R, Vv, Vca) be a positive solution of system (2.1)–

(2.6) with initial conditions (2.7). To find the Lyapunov function, we used logarith-

mic functions [22, 38, 39].

US(t) =
S(t)

S∗ − 1− ln

(
S(t)

S∗

)
, UTv (t) =

Tv(t)

T ∗
v

− 1− ln

(
Tv(t)

T ∗
v

)
,

UIc(t) =
Ic(t)

I∗c
− 1− ln

(
Ic(t)

I∗c

)
, UR(t) =

R(t)

R∗ − 1− ln

(
R(t)

R∗

)
,

UVv(t) =
Vv(t)

V ∗
v

− 1− ln

(
Vv(t)

V ∗
v

)
, UVca(t) =

Vca(t)

V ∗
ca

− 1− ln

(
Vca(t)

V ∗
ca

)
,

US+(t) =

∫ h

τ=0

(
S(t− τ1)

S∗ − 1− ln

(
S(t− τ1)

S∗

))
dτ,

UIc+(t) =

∫ h

τ=0

(
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ.

Hence, we consider the following:

U(t) = US(t) + UIc(t) + UR(t) + UVv(t) + UVca(t) + U+(t).

We calculate the derivatives of US(t), UIc(t), UR(t), UVv(t), UVca(t) and U+(t) sepa-

rately and combine to get the derivative of the desired Lyapunov function

dUS(t)

dt
=

(
1− S∗

S

)
dS(t)

dt

=

(
(1− ρ)bN − β(Ic(t− τ1) + ηVca)S

N

− (1− ε)β(Ic(t− τ1) + ηVca)S(t− τ2)

N

)(
1− S∗

S

)

− ((γN + µ+ ρ1 + ρ2)S + ωR)

(
1− S∗

S

)
.

Using the endemic equilibrium (3.6), we get the

dUS(t)

dt
=

(
1− S∗

S

)
dS(t)

dt

=

(
1− S∗

S

)(
β(ηV ∗

ca + I∗c t)S
∗

N∗2 +
(1− ε)β(ηvca + I∗c )S

∗

N∗2

)

+

(
1− S∗

S

)(
(γN∗ + µ+ ρ1 + ρ2)S

∗

N∗ − ωR∗

N∗

)
−
(
1− S∗

S

)

1930001-15



May 24, 2019 12:37 WSPC S1793-5245 242-IJB 1930001

K. M. Tessema, F. Chirove & P. Sibanda

×
(
β(Ic(t− τ1) + ηVca)S

N
+

(1 − ε)β(Ic(t− τ1) + ηVca)S(t− τ2)

N

)

−
(
1− S∗

S

)
((γN + µ+ ρ1 + ρ2)S + ωR).

After some calculations, we obtain

dUS(t)

dt
= h2S

∗N

(
2− h1S

h2S∗N
− h2S

∗N
h1S

)(
1− S∗

S

)

+(1− ε)h2S
∗N

(
2− h1S(t− τ2)

h2S∗N
− h2S

∗N
h1S(t− τ2)

)(
1− S∗

S

)

+

(
(ρ1 + ρ2 + µ)S∗N

n

(
2− SN∗

S∗N
− S∗N
SN∗

)
+ γS∗N

(
2− S

S∗ − S∗

S

))

×
(
1− S∗

S

)
+ ωR

(
2− rN

N∗R
− N∗R
R∗N

)(
1− S∗

S

)

− h2
2S∗2N2

h1S

(
h1S

h2S∗N
− 1− ln

(
h1S

h2S∗N

))(
1− S∗

S

)

− (1− ε)h2
2S∗2N2

h1S (t− τ2)

(
h1S(t− τ2)

h2S∗N
− 1− ln

(
h1S(t− τ2)

h2S∗N

))(
1− S∗

S

)

− (ρ1 + ρ2 + µ)S∗2N2

N∗2S

(
SN ∗

S∗N
− 1− ln

(
SN ∗

S∗N

))(
1− S∗

S

)

−
(
γS∗2N
S

(
S

S∗ − 1− ln

(
S

S∗

))
+
ωR2N∗

R∗N

(
R∗N
N∗R

− 1− ln

(
R∗N
N∗R

)))

×
(
1− S∗

S

)
−
(
h2

2S∗2N2

h1S
ln

(
h1S

h2S∗N

)
+

(1− ε)h2
2S∗2N2

h1S (t− τ2)

× ln

(
h1S(t− τ2)

h2S∗N

))(
1− S∗

S

)
−
(
(ρ1 + ρ2 + µ)S∗2N2

N∗2S
ln

(
SN ∗

S∗N

)

+
γS∗2N
S

ln

(
S

S∗

)
+
ωR2N∗

rN
ln

(
rN

N∗R

))(
1− S∗

S

)
≤ 0,

where

h1 =
β(Ic(t− τ2) + ηVca)

N
, h2 =

β(I∗c + ηV ∗
ca)

N∗2 , m1 =
h2S

∗N
h1S

,

and similarly

dUTv(t)

dt
=

(
ρ1S

(
2− S∗Tv

ST ∗
v

− ST ∗
v

S∗Tv

)
+ εVv

(
2− V ∗

v Tv
VvT ∗

v

− VvT
∗
v

V ∗
v Tv

))(
1− T ∗

v

Tv

)

+ γn

(
2− N

N∗ − N∗

N

)
Tv

(
1− T ∗

v

Tv

)
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− ρ1S
2T ∗

v

S∗Tv

(
S∗Tv
ST ∗

v

− 1− ln

(
S∗Tv
ST ∗

v

))(
1− T ∗

v

Tv

)

− ρ1S
2T ∗

v

S∗Tv
ln

(
S∗Tv
ST ∗

v

)(
1− T ∗

v

Tv

)
− εVv

2T ∗
v

V ∗
v Tv

(
V ∗
v Tv
VvT ∗

v

− 1

)(
1− T ∗

v

Tv

)

− γN∗2Tv
N

(
N

N∗ − 1− ln

(
N

N∗

))(
1− T ∗

v

Tv

)

− γN∗2Tv
N

ln

(
N

N∗

)(
1− T ∗

v

Tv

)
,

dUIc(t)

dt
=

(
h1S

(
2− h2S

∗N∗Ic
I∗c h1S

− I ∗c h1S
h2S∗N∗Ic

)

+ γN∗Ic

(
2− N

N∗ − N∗

N

))(
1− I∗c

Ic

)
+ (1− ε)h1S(t− τ2)

×
(
2− h2S

∗N∗Ic
I∗c h1S(t− τ2)

− I∗c h1S(t− τ2)

h2S∗N∗Ic

)(
1− I∗c

Ic

)

− h1
2S2I∗c

h2S∗N∗Ic

(
h2S

∗N∗Ic
I ∗c h1S

− 1− ln

(
h2S

∗N∗Ic
I∗c h1S

))(
1− I∗c

Ic

)

− (1− ε)h1
2(S(t− τ2))

2I∗c
h2S∗N∗Ic

(
h2S

∗N∗Ic
I∗c h1S(t− τ2)

− 1

− ln

(
h2S

∗N∗Ic
I∗c h1S(t− τ2)

))(
1− I∗c

Ic

)
−
(
γN∗2Ic
N

(
N

N∗ − 1− ln

(
N

N∗

))

+
h1

2S2I∗c
h2S∗N∗Ic

ln

(
h2S

∗N∗Ic
I∗c h1S

))(
1− I ∗c

Ic

)
− (1 − ε)h1

2(S(t− τ2))
2I∗c

h2sN∗Ic

× ln

(
h2sN

∗Ic
I∗c h1S(t− τ2)

)(
1− I∗c

Ic

)
− γN∗2Ic

N
ln

(
N

N∗

)(
1− I∗c

Ic

)
≤ 0,

dUR(t)

dt
= −

(
α2Ic

(
I∗cR
IcR∗ − 1− ln

(
I ∗c R
IcR∗

))
+ γN∗R

(
N

N∗ − 1− ln

(
N

N∗

)))

×
(
1− R∗

R

)
−
(
α3Vca

(
V ∗
caR

VcaR∗ − 1− ln

(
V ∗
caR

VcaR∗

))

+Tvα4

(
T ∗
vR

TvR∗ − 1− ln

(
T ∗
vR

TvR∗

)))(
1− r

R

)

−
(
α2Ic ln

(
I∗cR
IcR∗

)
+ γN∗R ln

(
N

N∗

)
+ α3Vca ln

(
V ∗
caR

VcaR∗

)

+Tvα4 ln

(
T ∗
vR

TvR∗

))(
1− R∗

R

)
,
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dUVv (t)

dt
=

(
h2φV

∗
v N

(
2− h1V

∗
v

h2V ∗
v N

− h2V
∗
v N

h1Vv

)

+
(ε+ µ)V ∗

v N

N∗

(
2− VvN

∗

V ∗
v N

− V ∗
v N

VvN∗

))(
1− V ∗

v

Vv

)

− h2
2φV ∗

v
2N2

h1Vv

(
h1Vv
h2vvN

− 1− ln

(
h1Vv
h2V ∗

v N

))(
1− V ∗

v

Vv

)

− γN(V ∗
v − Vv)

2

Vv
− (ε+ µ)V ∗

v
2N2

N∗2Vv

(
VvN

∗

V ∗
v N

− 1− ln

(
VvN

∗

V ∗
v N

))

×
(
1− V ∗

v

Vv

)
− ρ2S

(
N

SN ∗ − 1− ln

(
S∗N
SN ∗

))(
1− V ∗

v

Vv

)

−
(
h2

2φV ∗
v
2N2

h1Vv
ln

(
h1Vv
h2V ∗

v N

)
+

(ε+ µ)V ∗
v
2N2

N∗2Vv
ln

(
VvN

∗

V ∗
v N

)

+ ρ2S ln

(
S∗N
SN ∗

))(
1− V ∗

v

Vv

)
,

dUVca(t)

dt
= h1φVv

(
2− h2V

∗
v VcaN

∗

V ∗
cah1Vv

− V ∗
cah1Vv

h2V ∗
v VcaN

∗

)(
1− V ∗

ca

Vca

)

− γVcaN
∗ ln

(
N

N∗

)(
1− V ∗

ca

Vca

)
− h1

2φVv
2V ∗

ca

h2V ∗
v VcaN

∗

(
h2V

∗
v VcaN

∗

V ∗
cah1Vv

− 1

− ln

(
h2V

∗
v VcaN

∗

V ∗
cah1Vv

))(
1− V ∗

ca

Vca

)
− h1

2φVv
2V ∗

ca

h2V ∗
v VcaN

∗ ln

(
h2V

∗
v VcaN

∗

V ∗
cah1Vv

)

×
(
1− vca

Vca

)
− γVcaN

∗
(
N

N∗ − 1− ln

(
N

N∗

))(
1− V ∗

ca

Vca

)
,

dUIc+(t)

dt
=

d

dt

(∫ h

τ=0

(
Ic(t− τ1)

I∗c
− 1− ln

(
Ic(t− τ1)

I∗c

))
dτ

)

=

∫ h

τ1=0

d

dt

((
Ic(t− τ1)

I∗c
− 1− ln

(
Ic(t− τ1)

I∗c

))
dτ

)

= −
∫ ∞

τ1=0

d

dτ1

((
Ic(t− τ1)

I∗c
− 1− ln

(
Ic(t− τ1)

I∗c

))
dτ1

)
,

dUS+(t)

dt
=

d

dt

(∫ h

τ2=0

(
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ

)

=

∫ h

τ=0

d

dt

((
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ

)

= −
∫ ∞

τ2=0

d

dτ2

((
Ic(t− τ2)

I∗c
− 1− ln

(
Ic(t− τ2)

I∗c

))
dτ2

)
.
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The Lyapunov derivative of the function is

dU(t)

dt
=
dUS(t)

dt
+
dUTv (t)

dt
+
dUIc(t)

dt
+
dUR(t)

dt
+
dUVv (t)

dt
+
dUVca(t)

dt

+
dUs+(t)

dt
+
dUIc+(t)

dt
≤ 0.

Using arithmetic and geometric principles, we establish that dU(t)
dt is negative or

dU(t)
dt = 0 when S = S∗, Tv = T ∗

v , Ic = I∗c , R = R∗, Vv = V ∗
v and Vca = V ∗

ca. Thus,

the endemic equilibrium is globally asymptotically stable by LaSalle’s invariant

principle [19].

4. Parameter Estimation and Numerical Simulation

In this section, we present the parameter values for the model (2.1)–(2.6) from

the relevant literature. We use the parameter values for numerical simulations that

will assist understanding the model predictions. We give simulations to show the

effects of time delay on the dynamics of the FMD. The initial number of susceptible

animals is 200 animals per km2 with one infected animal [21].

4.1. Parameter estimation

The per-capita death rate γ is estimated using the carrying capacity, natural birth

rate and the natural death rate, γ = (b − µ)/200. The amplification rate η and

vaccination rate ρ are estimated by 0 ≤ η ≤ 1 to be 0 ≤ ρ ≤ 1, respectively. The

minimum and maximum values of vaccination rate are 40% and 75% [14]. All other

parameter values used in the numerical simulations are given in Table 1 with their

Table 1. Dimensional parameter values for model.

Parameter description Symbol Units Value Source

Transmission rate β Day−1 1.4 [26, 32]
Birth rate b Day−1 0.3 [40]
Transforming rate
from Is to R α2 Day−1 0.1 [6, 21, 40]
The vaccinated carrier rate constant α3 Day−1 0.2 [9]
The recovery rate constant ω Day−1 [0.01, 0.2] [13, 19, 30]
The rate of protection loss φ Day−1 [0, 1] [13]
Delay one τ1 Day−1 [1,6] [13]
Delay two τ2 Day−1 [1, 14] [13, 21]
Natural death rate µ Day−1 0.0324 [40]
Treating and vaccinating

of susceptible animals ρ1 Day−1 0.5 [6, 21, 40]
Culling of clinical infective

and vaccinated carrier animals δ Day−1 [0.01, 0.5] [12, 13, 32]
Treating of vaccinated animals ε Day−1 0.1 [19, 29]
The rate of Vaccinating susceptible animals ρ2 Day−1 0.1 Estimate
The rate recovery of treating animals α4 Day−1 0.1 Estimate
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sources. Some parameter values are taken as they appear in literature while others

are determined based on estimating the given parameters using in literature.

4.2. Numerical simulations

In this section, we present the numerical simulations to further enhance our under-

standing of the model (2.1)–(2.6) and to explore the effects of prophylactic and

reactive vaccination, prophylactic treatment and reactive culling of infected ani-

mals. We first examine the effects of different control strategies which are the rate

of vaccination (ρ), the rate of treating and vaccinating susceptible animals (ρ1), the

rate of treating of susceptible animals (ρ2), the rate of treating vaccinated animals

(ε) and the rate of culling infected and vaccinated carrier animals (δ). Using the

least and high rates of control strategies, we investigate the effects of prophylactic

vaccination and treatment and culling of infected animals using a two-time delay

FMD model.

The effect of the rate of vaccination (ρ) on the disease dynamics is shown in

Fig. 3. Increasing the rate of vaccination leads most animals entering to the treated

and vaccinated of susceptible, and to vaccinated animal classes. The implication

of the rate of treating and vaccinating of susceptible animals on the dynamics of

the disease using a system of ordinary differential equations is shown in Fig. 4.

Increasing the rate of treating and vaccinating of susceptible animals results in

most animals entering the vaccinated class which is a protected class. The effect

of the rate of vaccinating susceptible animals on a system of ordinary differential

equations is shown in Fig. 5. The effect of the rate of treating vaccinated animals on

a system of ordinary differential equations is shown in Fig. 6. Increasing the rate of

treating vaccinated animals increases the susceptible, and treated and vaccinated

classes and decreases the other classes. Figure 7 shows the increasing of the rate of

culling infected and vaccinated carrier animals decreases the infected class essential

vaccinated carrier and theoretically increase the flow of animals into the susceptible

animals, the treated and vaccinated, and vaccinated classes.

Therefore, increasing the rate of vaccination, the rate of treating and vacci-

nation of susceptible animals, the rate of treating vaccinated animals and the

rate of culling infected and vaccinated carrier animals results decrease the FMD

burden.

The scenarios of varying the two-time delays by fixing the control parameters

as least or high rates are explored in Figs. 7–22 by varying time delays we seek

to investigate the effects of timing the development of clinical symptom after the

animals have contracted the infection.

Subfigures (a) and (c) of Figs. 8–19, shows that, fixing of ρ = 0.3 or ρ1 =

0.1 or ρ2 = 0.1 or ε = 0.3 and increasing τ2 increases susceptible, treated and

vaccinated classes while decreases the clinically infected, recovered and vaccinated

carrier classes. The decrease in τ2 leads to the decrease in susceptible, treated

and vaccinated, and vaccinated and increase in clinically infected, recovered and
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vaccinated carrier classes. Varying of τ1 seems to have no significant effect on the

dynamic of the disease.

Subfigures (b) and (d) of Figs. 8–19, shows that, fixing of ρ = 0.7 or ρ1 = 0.3 or

ρ2 = 0.3 or ε = 0.7 and increasing τ2 increases susceptible, treated and vaccinated

classes and decreases clinically infected, recovered and vaccinated carrier classes.

Decreasing of τ2 leads to decrease the susceptible, treated and vaccinated classes

and increases clinically infected, recovered and vaccinated carrier classes. Varying

of τ1 does not have any significant effect on the dynamic of the disease.

Subfigures (a) and (c) of Figs. 20–22, shows that, fixing of δ = 0.01 and increas-

ing τ2 increases susceptible, treated and vaccinated classes while decreases the clin-

ically infected, recovered and vaccinated carrier classes. The decrease in τ2 leads to

the decrease in susceptible, treated and vaccinated, and vaccinated and increase in

clinically infected, recovered and vaccinated carrier classes. Varying of τ1 seems to

have no significant effect on the dynamic of the disease.

Subfigures (b) and (d) of Figs. 20–22, show that, fixing of δ = 0.09, and increas-

ing τ2 increases susceptible, treated and vaccinated classes and decreases clinically

infected, recovered and vaccinated carrier classes. Decreasing of τ2 leads to decrease

the susceptible, treated and vaccinated classes and increases clinically infected,

recovered and vaccinated carrier classes. Varying of τ1 does not have any signifi-

cant effect on the dynamic of the disease.

(a) (b)

(c) (d)

Fig. 8. The effects of low (ρ = 0.3) and maximum (ρ = 0.7) rate of vaccination (ρ) on susceptible

and treated animal classes with time delays. (a) and (c) Low vaccinatin rate (ρ) for time delay.
(b) and (d) High vaccinatin rate (ρ) for time delay.
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(a) (b)

(c) (d)

Fig. 9. The effects of low (ρ = 0.3) and maximum (ρ = 0.7) rate vaccination (ρ) on clinically
infected and recovery animal classes with time delays. (a) and (c) Low vaccinatin rate (ρ) for time
delay. (b) and (d) High vaccinatin rate (ρ) for time delay.

(a) (b)

(c) (d)

Fig. 10. The effects of low (ρ = 0.3) and maximum (ρ = 0.7) rate of vaccination (ρ) on vaccinated
and vaccinated carrier animal classes with time delays. (a) and (c) Low vaccinatin rate (ρ) for
time delay. (b) and (d) High vaccinatin rate (ρ) for time delay.
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(a) (b)

(c) (d)

Fig. 11. The effects of low (ρ1 = 0.1) and maximum (ρ1 = 0.3) rate of treating susceptible
animals (ρ1) on susceptible and treated animal classes with time delays. (a) and (c) Low treating
and vaccinating susceptible animals (ρ1). (b) and (d) High treating and vaccinating susceptible
animals (ρ1).

(a) (b)

(c) (d)

Fig. 12. The effects of low (ρ1 = 0.1) and maximum (ρ1 = 0.3) rate of treating susceptible
animals (ρ1) on susceptible and treated animal classes with time delays. (a) and (c) Low treating
and vaccinating susceptible animals (ρ1). (b) and (d) High treating and vaccinating susceptible
animals (ρ1).
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(a) (b)

(c) (d)

Fig. 13. The effects of low (ρ1 = 0.1) and maximum (ρ1 = 0.3) rate of treating susceptible
animals (ρ1) on susceptible and treated animal classes with time delays. (a) and (c) Low treating
and vaccinating susceptible animals (ρ1). (b) and (d) High treating and vaccinating susceptible
animals (ρ1).

(a) (b)

(c) (d)

Fig. 14. The effects of low (ρ2 = 0.1) and maximum (ρ22 = 0.3) rate of vaccinating suscep-
tible animals (ρ2) on susceptible and treated animal classes with time delays. (a) and (c) Low
vaccinating susceptible animals (ρ2). (b) and (d) High vaccinating susceptible animals (ρ2).
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(a) (b)

(c) (d)

Fig. 15. The effects of low (ρ2 = 0.1) and maximum (ρ22 = 0.3) rate of vaccinating suscep-
tible animals (ρ2) on susceptible and treated animal classes with time delays. (a) and (c) Low
vaccinating susceptible animals (ρ2). (b) and (d) High vaccinating susceptible animals (ρ2).

(a) (b)

(c) (d)

Fig. 16. The effects of low (ρ2 = 0.1) and maximum (ρ2 = 0.3) rate of vaccinating suscep-
tible animals (ρ2) on susceptible and treated animal classes with time delays. (a) and (c) Low
vaccinating susceptible animals (ρ2). (b) and (d) High vaccinating susceptible animals (ρ2).
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(a) (b)

(c) (d)

Fig. 17. The effects of low (ε = 0.3) and maximum (ε = 0.7) rate of treating vaccinated animals
(ε) on susceptible and treated animal classes with time delays. (a) and (c) Low treating vaccinated
animals (ε) for time delay. (b) and (d) High treating vaccinated animals (ε) for time delay.

(a) (b)

(c) (d)

Fig. 18. The effects of low (ε = 0.3) and maximum (ε = 0.7) rate of treating vaccinated animals
(ε) on clinically infected and recovery animal classes with time delays. (a) and (c) Low treating
vaccinated animals (ε) for time delay. (b) and (d) High treating vaccinated animals (ε) for time
delay.
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(a) (b)

(c) (d)

Fig. 19. The effects of low (ε = 0.3) and maximum (ε = 0.7) of treating vaccinated animals (ε)
on vaccinated and vaccinated carrier animal classes with time delays. (a) and (c) Low treating
vaccinated animals (ε) for time delay. (b) and (d) High treating vaccinated animals (ε) for time
delay.

(a) (b)

(c) (d)

Fig. 20. The effects of low (δ = 0.01) and maximum (δ = 0.09) rate of culling infected animals
(δ) on susceptible and treated animal classes with time delays. (a) and (c) Low culling infected
animals (δ) for time delay. (b) and (d) High culling infected animals (δ) for time delay.
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(a) (b)

(c) (d)

Fig. 21. The effects of low (δ = 0.01) and maximum (δ = 0.09) rate of culling infected animals
(δ) on clinically infected and recovery animal classes with time delays. (a) and (c) Low culling
infected animals (δ) for time delay. (b) and (d) High culling infected animals (δ) for time delay..

(a) (b)

(c) (d)

Fig. 22. The effects of low (δ = 0.01) and maximum (δ = 0.09) rate of culling infected animals
(δ) on vaccinated and vaccinated carrier animal classes with time delays. (a) and (c) Low culling
infected animals (δ) for time delay. (b) and (d) High culling infected animals (δ) for time delay.
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Our numerical simulation results seem to suggest that increasing τ2 and increas-

ing each of the control parameters minimizes the burden of FMD and followed by

increasing either the control or τ2 parameters. However, decreasing both the control

and τ2 parameters increases the burden of FMD. Increasing or decreasing of τ1 in

combination with increasing or decreasing of control parameters does not show a

significant effect the dynamic of infection.

5. Discussion and Results

The delay ordinary differential equation model for FMD of cattle was presented in

this paper to capture the effects of prophylactic vaccination, reactive vaccination,

prophylactic treatment, reactive culling and the effects of time delay. Mathematical

analysis and numerical simulations were carried out to reveal the effects of the

aforementioned control strategies and time delay on the burden of FMD.

Mathematical analysis revealed the effects of the control reproduction number,

Rc and the existence of two equilibria, namely the disease-free equilibrium and

an endemic equilibrium. The disease-free equilibrium was locally asymptotically

stable when Rc is less than unity. This means the FMD burden can be kept in

check if the control strategies used suppress consistently the control reproduction

number below unity. In fact, there is a possibility of eradicating the infection with

such controls. However, if the control cannot reduce Rc below unity, then there

is a possibility that the FMD can spread to endemic levels. This scenario may be

characteristic of a control strategy that is either inadequately administered or less

efficient. Evidence of controls such as the rate of vaccination, the rate of treating

and vaccinating susceptible animals, the rate of treating vaccinated animals and

the rate of culling infected and vaccinated carrier animals is available where the

burden of FMD continued to increase [9, 15, 17, 36]. In particular, there are vaccines

that do not induce rapid control [9]. The sensitivity analysis of Rc with respect to

prophylactic vaccination showed thatRc decreases only when the rate of loss of vac-

cination is below a critical loss of vaccination otherwise the benefits of prophylactic

vaccination alone may not be realized. This means that prophylactic vaccination

as a single strategy may not successfully eradicate the FMD. Simulations on Rc

showed that the control reproduction number (Rc) is less than one when the rate

of treating and vaccinating of susceptible animals and rate of culling of clinically

infected and vaccinated carrier animals are high.

Numerical simulations allowed us to observe the effects of time delays, prophy-

lactic vaccination, reactive vaccination, prophylactic treatment and reactive culling

parameters on FMD transmission in cattle. The numerical simulations suggested

that increasing of both time delay two and control parameters or increasing of

either of the time delay two or control parameters decrease the burden of FMD.

But increasing of both time delay one and control parameters does not show a

significant effect on the dynamics of FMD. Hence, time delay two has a significant

effect on FMD. Increasing time delay two means that the newly infected animals
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delay maximally to show clinical symptoms leading to less shedding of FMDV to

other animals and subsequently the reduction of foot and mouth burden. Similarly

increasing of control parameters such as prophylactic vaccination, reactive vacci-

nation, prophylactic treatment, and reactive culling parameters have a substantial

significant effect on the decreasing of FMD burden. Prophylactic and reactive vac-

cinations and treatment have been found to maintain immunity to FMD [28], but

the high cost of vaccines and drugs limit the use vaccination and treatment control

strategies for FMD [11, 15, 17]. The results suggest that the strategy of decreas-

ing time delay two while increasing the degree of control parameters contributes

a significant effect on the reduction of FMD but decreasing of both time delay

two and control parameters increases the FMD burden. Decreasing time delay two

means that the newly infected animals fast to show clinical symptoms and lead-

ing to high shedding of FMDV to other animals and subsequently the increase of

FMB. Our results also suggest that the strategy of increasing of time delay two

while decreasing the control parameters may not significantly reduce the FMD

burden. This outcome has consequences on systems that would want to reduce

the costs of control strategies but in the end, the disease burden will continue to

hamper their efforts. Therefore, the strategy which has a significant effect on the

protection of FMD burden is increasing both the time delay two and the control

parameters.

6. Conclusion

Our result suggested that the FMD burden is decreased significantly when the

unprotected animals delay maximally their time to show clinical symptoms and

at the same time when the effectiveness of the control strategies are increased. It

is imperative that control strategies play a significant role in moving the animals

into the protected routes of infection than leaving more animals in the unprotected

route of infection. By implication, strategies that directly protect and reduce the

number of susceptible animals should be prioritized and effectively enhanced as

these directly divert the animal flow into the protected route of the FMD dynamics.
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