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ABSTRACT 

Phosphorus is an essential element since it controls primary productivity in aquatic ecosystems and 

its excess can lead to eutrophication in receiving systems. The aim of this project was to determine 

phosphorus distribution in biotic and abiotic nutrient pools of two KwaZulu-Natal estuaries. 

 

Samples of dissolved inorganic phosphorus (DIP), particulate phosphorus (PP), phytoplankton, 

microphytobenthos, zooplankton, macrozoobenthos and sediment were collected in the temporarily 

open/closed Mpenjati (MP) and permanently open Mlalazi Estuary (ML) during May (ML), 

September (MP) and November (ML+MP) using standard methods. Chlorophyll a concentrations as 

well as species richness, abundance and biomass of zooplankton and macrozoobenthos were 

analysed. Living and non living nutrient pools were analysed for phosphorus and were compared 

between stations, sampling sessions, estuaries and taxa.  

 

Zooplankton abundance and biomass in the Mlalazi Estuary was higher during May than 

November. In the Mpenjati Estuary highest zooplankton abundance and biomass was recorded 

during September than November. No significant differences were apparent in abundance (p = 

0.217) and biomass (p = 0.974) of zooplankton between the two estuaries. Macrozoobenthos 

abundance and biomass in the Mlalazi Estuary was higher during May than November. In the 

Mpenjati Estuary macrozoobenthos abundance and biomass was higher during November than 

September. Significant differences in abundance (p = 0.003) and biomass (p = 0.020) were apparent 

between the estuaries. 

 

Sediment to a depth of 10 cm comprised the highest phosphorus biomass than any other nutrient 

pool in both Mlalazi (4871.1 mgP·m
-2 

± 5888.9 SD) and Mpenjati (2578.6 mgP·m
-2

 ± 1828.0 SD) 

estuaries followed by DIP (120.5 mgP·m
-2

 ± 177.7 SD and 5.9 mgP·m
-2 

± 6.1 SD respectively). In 

both estuaries, the lowest phosphorus biomass was contained in zooplankton with both estuaries 

containing zooplankton P biomass of 0.001 mgP·m
-2 

± 0.002 SD. Particulate phosphorus and DIP 

concentrations were higher in the upper reaches in both estuaries indicating that rivers were the 

main sources of this nutrient in these systems. The Mlalazi Estuary had higher nutrient levels than 

the Mpenjati Estuary. Such elevated nutrients can be enhanced by the continuous river flow into the 

permanently open estuary. In both estuaries, no significant differences were apparent in 

zooplankton and macrozoobenthos P content between different taxa. 
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Chapter 1 

Introduction 

1.1. Definition of an estuary and estuarine characteristics 

Estuaries are among the most productive ecosystems of the globe which are of economic and 

ecological value (McLusky 2004; Chuwen et al. 2009; Vasconcelos et al. 2010). Characteristics of 

these systems include a constantly changing mixture of salt and fresh water as well as fine and 

generally course sedimentary material received from rivers and the sea respectively. The 

distribution of sedimentary material in estuaries is controlled by the size of particles as well as 

speed of currents (Day 1981a; Levin et al. 2001; McLusky 2004). Horizontal and vertical gradients 

of salinity in estuaries are characteristic factors of most systems (McLusky 1993; Louw 2007). 

Levels of tidal mixing, local topography as well as freshwater inflow are the determinants of the 

extent of such salinity gradients (Boaden and Seed 1985; Louw 2007). Temperature regimes within 

these systems vary with depth, continental and marine climate as well as the input of water from 

adjacent systems with different temperatures (McLusky 2004). 

 

The above contribute to a highly variable environment where organisms have to deal with the 

instability of habitat (e.g. sediment composition and distribution) and physiological stress (Perillo 

1995; Mclusky 1999; Harrison and Whitfield 2006; James and Harrisson 2009). As a result, 

relatively few species have developed adaptations to live in these systems (Levin et al. 2001). 

Species richness in estuaries is therefore generally lower than the adjacent freshwater and marine 

environment, however often occur in high population densities (Levin et al. 2001; Elliott and 

McLusky 2002; McLusky 2004). 

 

Pritchard (1967) defined an estuary as, “An estuary is a semi-enclosed coastal body of water which 

has a free connection with the open sea and within which sea water is measurably diluted with fresh 

water derived from land drainage”. Smaller temporarily open/closed estuaries and lagoons were not 

taken into account in this definition as it was largely based on features of large northern hemisphere 

estuaries. Day (1980, 1981) revised Prichard’s (1967) definition to: “An estuary is a partially 

enclosed coastal body of water which is either permanently or periodically open to the sea and 

within which there is a measurable variation of salinity due to the mixture of sea water with fresh 

water derived from land drainage’’. Fairbridge (1980) also proposed a definition of an estuary as, 
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“An estuary is an inlet of the sea reaching into a river valley as far as the upper limit of tidal rise, 

usually being divisible into three sectors: (a) a marine or lower estuary, in free connection with the 

open sea; (b) a middle estuary subject to strong salt and freshwater mixing; and (c) an upper or 

fluvial estuary, characterised by freshwater but subject to strong tidal action. The limits between 

these sectors are variable and subject to constant changes in the river discharges”. 

 

Perillo (1995) and Elliott and McLusky (2002) argued that in Day’s (1980, 1981) definition, tidal 

variation was left out and emphasis was on salinity. Tides play an important role by providing 

energy for the mixing mechanism in estuaries but sometimes wind can have a considerable effect 

regarding mixing (Perillo 1995). Tidal mixing does not only influence the salinity of estuaries, it is 

also associated with processes such as erosion and circulation. In the fluvial reaches the tidal action 

brings changes to river discharge, sediment as well as pollutants transport characteristics (Perillo 

1995; Mclusky 1999). After Perillo’s (1995) argument and revision he proposed a new definition as, 

“An estuary is a semi-enclosed coastal body of water that extends to the effective limit of tidal 

influence, within which seawater entering from one or more free connections with the open sea, or 

any other saline coastal body of water, is significantly diluted with fresh water derived from land 

drainage, and can sustain euryhaline biological species for either part or the whole of their life 

cycle”. He further mentioned that this definition includes aspects which were omitted before i.e. (i) 

hierarchical estuaries that possess primary to tertiary tributaries such as the  Chesapeake Bay, (ii) 

the existence of more than one free connection, hence coastal lagoons are also included in the 

definition, (iii) the coexistence of tidal action and invasion of sea water and (iv) the inclusion of 

biological aspects where the estuary can be a habitat for species that can feature a wide range of 

salinities.  

 

The Water Framework Directive (WFD) of the  European Union regards an estuary as a habitat on 

its own but habitats like salt marsh, reedbeds, sand and mud flats are also included (Elliott and 

McLusky 2002). Romao (1996) then gave a European habitat definition of an estuary as, 

“Downstream part of a river valley, subject to the tide and extending from the limit of brackish 

waters. River estuaries are coastal inlets where, unlike ‘large shallow inlets and bays’ there is 

generally a substantial freshwater influence. The mixing of freshwater and seawater and the reduced 

current flows in the shelter of the estuary lead to the deposition of fine sediments, often forming 

extensive intertidal sand and mud flats. Where the tidal currents are faster than the flood tides, most 

sediments deposit to form a delta at the mouth of an estuary. Although the above definition is rather 
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long, Elliot and McLusky (2002) considered this definition more realistic and accurate and they 

further regarded it as closer to the definitions of Prichard (1967) and Fairbridge (1980) than any 

other succeeding definitions which have considered estuaries as the “non-tidal brackish seas” or 

“river plumes extending into open seas”. The South African National Water Act 36 of 1998 define 

an estuary as, “a partially or fully enclosed body of water - (a) which is open to the sea permanently 

or periodically; (b) within which sea water can be diluted to an extent that is measurable, with 

freshwater drained from land”. 

 

In Day’s (1980, 1981) definition, hypersaline conditions were omitted. According to Potter et al. 

(2010), formation of sandbars at the mouths of estuaries and increased salinity conditions were not 

included in the previous definition by Day (1980). Potter et al. (2010) modified Day’s (1980) 

definition to, “An estuary is a partially enclosed coastal body of water that is either permanently or 

periodically open to the sea and which receives at least periodic discharge from a river(s), and thus, 

while its salinity is typically less than that of natural sea water and varies temporally and along its 

length, it can become hypersaline in regions when evaporative water loss is high and freshwater and 

tidal inputs are negligible”. Pritchard’s (1967) and Day’s (1980) definitions have thus been 

extended to include small, temporarily open/closed estuaries (TOCEs), which are the main 

dominant type of estuaries in South Africa. 

 

1.2. Importance of estuaries and major anthropogenic impacts 

Estuarine ecosystems are of high ecological value because they provide suitable nursery grounds for 

many marine species (Potter and Hyndes 1999; Elliott and McLusky 2002; Beck et al. 2003; 

Nicolas et al. 2007; Vasconcelos et al. 2010). These species utilise the estuarine environment to 

benefit from appropriate conditions required for growth which include high food availability, 

suitable water temperature and sheltered habitat type, which contrasts with the inshore marine 

environment featuring heavy wave action, possible strong currents and lower levels of food 

availability (Pittman and McAlpine 2001; Vasconcelos et al. 2010; Wasserman and Strydom 2011). 

Such marine species remain in estuaries for part of their life or entire life cycle after which they join 

adult populations in the marine environment (Perillo 1995; Whitfield 1999b; Strydom and Whitfield 

2000; Vasconcelos et al. 2010). Since many species rely on estuaries as nursery areas, the survival 

of their early life stages is dependent on these systems (Whitfield 1999b). Furthermore, many bird 

species depend on estuaries for their diet (Hockey and Turpie 1999).  
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Estuaries also serve as filters since they trap excess nutrients received from land drainage (Scharler 

and Baird 2005; Taljaard et al. 2009; Telesh and Khlebovich 2010). Compared to rivers and marine 

environments, these systems are generally richer in nutrients and organic matter production (de 

Villiers and Hodgson 1999; Turpie et al. 2002). The trapping property of estuaries allows nutrients 

to be retained and recycled. Unlike estuaries which receive nutrients both from the sea and rivers 

(Lohrenz et al. 1999), lakes are generally deficient in nutrients and have to recycle more (Lewis 

1996). It has been stated that mixing is important for primary production in aquatic systems since it 

brings buried nutrients into the water column (Lewis 1996). Higher concentrations of nutrients in 

estuaries as well as mixing (which bring buried nutrients into the water column) enhanced by tidal 

action and river flow allow for high primary productivity in these systems compared to lakes.  

 

During  the past decades ecologists have shown that animals play a major role in nutrient cycling in 

marine and freshwater ecosystems (Armot and Vanni 1996; Vanni et al. 1997; Vanni 2002; Hall et 

al. 2003; Moslemi et al. 2012).When river flow is higher, more nutrients are transported to the 

lower reaches of estuaries and the adjacent sea (Carić et al. 2012). The sorptive capacity of fine clay 

particles allows estuarine sediments to maintain high amounts of sorbed nutrients (Carić et al. 

2012). Estuaries can contain phosphorus concentrations higher than those in rivers (Froelich 1988; 

Forsgren and Jansson 1992; Sundby et al. 1992). Clavero et al. (1999) stated that a balance exists 

between phosphorus in sediments and in the water column. During low nutrient supply, phosphorus 

is released to the water column from the pore water thus increasing nutrient concentrations in the 

overlying water. Other estuaries contribute to coastal ocean productivity through tidal exports of 

nutrients (Howarth 1988; Levin et al. 2001). 

 

Estuarine ecosystems are susceptible to external perturbations and are considered to be among the 

most threatened ecosystems by anthropogenic impacts which degrade their ecological function, 

including their ability to act as nursery grounds (McLusky 2004; Nicolas et al. 2007). Increased 

human population settling close to the estuaries makes these systems more vulnerable to human 

impacts (Thomas et al. 2005; Nicolas et al. 2007; Perissinotto et al. 2010). Anthropogenic impacts 

include effluent discharges, introduction of invasive species, nutrient enrichment, water abstraction 

and overfishing (Allanson and Read 1995). Due to human impacts, estuaries experience changes in 

hydrodynamics, composition of biological communities and shifts in species diversity (which might 

also result from increased sediments loads as well as change in river, estuarine and sea water 
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temperature as a result of global climate change causing species to change their distribution) 

(Allanson and Read 1995; Nicolas et al. 2007; James and Paterson 2011). Changes in erosion and 

siltation can bring changes to estuarine morphology (Pontee et al. 2004). Reduction in freshwater 

input causes problems to these systems as they depend on freshwater flow to open the inlet, flush 

sediment, nutrients and pollutants from the estuary. Such reduction results in alteration of estuarine 

water quality (Pontee et al. 2004). Freshwater together with tidal exchange provide turbidity 

gradients in estuaries which are essential during the nursery period of selected fish species by 

providing olfactory cues for juveniles and reducing predatory rates by impairing visibility to 

predatory fish (Blaber and Blaber 1980; Allanson and Read 1995; Whitfield 2005). Reduced fresh 

water inflow may lead to prolonged estuarine mouth closure by sand bars, which inhibits marine 

species to migrate to the estuaries and back to the sea and this may reduce population size and 

species richness in the marine environment (Mann and Pradervand 2007; James and Paterson 2011).  

 

1.3. South African estuaries 

The coast of South Africa features 258 functional estuaries (Whitfield 1999a; Whitfield 2000). 

These systems together with their percentage contribution have been  classified into five categories 

as: permanently open estuaries (POEs) (23 %), temporarily open/closed estuaries (TOCEs) (71 %), 

river mouths (5 %), estuarine lakes (3 %) and estuarine bays (2 %) (Whitfield 1992; Whitfield 

2000). 

 

1.3.1. Permanently open estuaries (POEs) 

Permanently open estuaries have a permanent connection to the sea with moderate tidal prism 

which is typical to South African estuaries (Whitfield 1992). These systems are mostly dominant in 

the northern hemisphere e.g. European and North American coasts (Perissinotto et al. 2010; Potter 

et al. 2010). Generally these systems are characterised by large catchments (> 500 km
2
) and high 

runoffs throughout the year (Whitfield 1992; Whitfield and Bate 2007). Both tidal and river flows 

are the principal drivers of the water column mixing process in these systems with mean salinities 

fluctuating between 15 and 35 (Whitfield 2005). Headwaters of these systems experience 

oligohaline conditions while the mouth regions experience euhaline conditions. If there are major 

impoundments in these systems, base flows of fresh water are reduced and tidal mixing processes 

dominate such systems (Allanson and Read 1995). Hypersalinity has been reported in the head 
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waters of few permanently open estuaries that have limited freshwater supply (Whitfield 2005) e.g. 

in the Kariega Estuary where salinities of 42 and 35 have been measured in the upper and lower 

reaches respectively (Matcher et al. 2011) and in the Kromme Estuary where the upper reaches can 

become hypersaline (Wooldridge and Callahan 2000). However, during strong river flow periods, 

oligohaline conditions can sometimes be recorded in middle and lower reaches of POEs (Whitfield 

2005). As a result of impoundments built in river catchments such events will become less common 

because most flood water (e.g. smaller to moderate floods) are captured in such structures 

(Whitfield 2005). Reduction in freshwater flow events will result in increased flood tidal deltas 

(accumulation of sediment near the inlet due to faster flood tidal currents) which narrow the lower 

reaches of an estuary and consequently reduce the tidal exchange between the sea and the estuary, 

and sediment may gradually extend further upstream (Grange et al. 2000; Cooper 2001; Whitfield 

2005). 

 

1.3.2. Temporarily open/closed estuaries (TOCEs) 

Most South African TOCEs have small (< 500 km
2
) river catchments (Whitfield 1992; Whitfield 

2005). Such estuaries also occur in Australia e.g. the  Smiths Lake, Harbord and Coorong 

estuaries (Roy et al. 2001), on the south-eastern coast of Brazil and in Uruguay (Bonilla et al. 2005) 

and on the south-western coasts of India and Sri Lanka (Ranasinghe and Pattiaratchi 1998; 

Ranasinghe and Pattiaratchi 2003). Other TOCEs are found on the south and west coast of USA e.g. 

in Texas and California (Gobler et al. 2005; Kraus et al. 2008). During dry season and low river 

inflow these systems loose connection with the sea as a result of a sand bar that forms at the mouth 

(Perissinotto et al. 2010; Whitfield et al. 2012). Following high rainfall and high river inflow, the 

estuarine water level rises and equals or exceeds the sand bar after which the estuary breaches and 

an outflow channel is formed (Whitfield 1992; Whitfield 2000; Froneman 2002b; Perissinotto et al. 

2010). Following this event the estuarine water level quickly drops and exposes large areas of the 

estuary bed which may have been colonised by rich communities of flora (e.g. macrophytes and 

microphytobenthos) and fauna (e.g. macrozoobenthos) since it has been submerged for extended 

periods (Whitfield 1992; Perissinotto et al. 2010). After an estuary empties, a short period of tidal 

exchange follows (Perissinotto et al. 2000; Froneman 2002b). The open phase ends because of re-

formation of a sand bar as a result of reduction in freshwater inflow (Perissinotto et al. 2010).  
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Closed periods can vary from days to months and years depending on freshwater inflow and it is 

this dynamic opening and closing process that determines the physico-chemical processes, 

biological structure, hydrodynamics and ecological functioning of TOCEs (Perissinotto et al. 2010). 

There has been a decline in freshwater flow in these systems as a result of damming and water 

abstraction in several South African estuaries (Grange et al. 2000). This decline plays an essential 

role in opening and closing of the estuary mouth since these events depend largely on the amount of 

runoff from the inflowing rivers. In contrast, other South African estuaries are now opening more 

frequently because of increased water supply from waste water treatment works which also 

increases nutrient supply e.g. the Mhlanga Estuary (Thomas et al. 2005; Lawrie et al. 2010). A 

decrease in freshwater inflow will result in prolonged estuarine mouth closure and shorter open 

phases which may inhibit migration of fish and invertebrates between the estuary and the sea 

(Whitfield 2005; Mann and Pradervand 2007). If the mouth permanently closes there will be a 

reduction in species richness and marine species may be locally extinct. The estuary will then be 

dominated by estuarine and freshwater species. Hypersaline conditions may also develop under 

conditions of high evaporation rates and low rainfall (Whitfield 2005). The resulting low river 

inflow reduces the amount of nutrients entering the estuary which in turn reduce nutrients 

concentrations essential for primary production which supports zooplankton (Whitfield 1995; 

Whitfield 2005). Reduction in zooplankton abundance together with periodically recorded 

hypersalinity may result in decline of species diversity and abundance of zooplanktivorous fishes 

(Whitfield 1995; Whitfield 2005). Although the TOCEs are found in coastal environments around 

the world, they have been understudied relative to permanently open estuaries but South African 

TOCEs have received considerable attention (Perissinotto et al. 2000; Froneman 2001; Nozais et al. 

2001; Froneman 2002b; Perissinotto et al. 2002; Perissinotto et al. 2003; Froneman 2004a).  

 

1.3.3. River Mouths 

River mouths in South Africa are characterized by permanently open mouths and large catchment 

areas (> 10 000 km
2
) (Whitfield 1992). However, their tidal prism is small (< 1x10

6
 m

3
) (Whitfield 

1992). Physical processes of these systems are generally controlled by the river rather than the tidal 

influence. During the events of moderate to high fresh water runoff, sea water is in general hardly 

ever recorded in the upper estuarine reaches, but a dilution of fresh and sea water is possible in the 

lower reaches during low flow periods. One characteristic of these systems is a very high silt load 

derived from the river. Regardless of high volume of water passing through river mouths, they are 
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generally shallow (< 2m deep) (Whitfield 1992) although depths of up to 15 meters can be recorded 

as a result of periodic floods (Swart et al. 1988). Water temperature of river mouths is generally 

controlled by freshwater inflow, however, the bottom water temperature in the lower reaches can 

sometimes be influenced by the sea (Whitfield 1992). Freshwater biota dominate such systems (Day 

1981b). Examples of South African river mouths are Thukela, Mvoti, Mzimvubu and Storms River 

estuaries (Whitfield 2000). 

 

1.3.4. Estuarine Bays 

One feature of these systems is the frequent substitution of estuarine water by the sea water in the 

lower part of the channel as opposed to river mouths (Whitfield 1992). These systems generally 

have large tidal prism (>10 x 10
6
 m

3
). Such systems generally receive high amounts of sea water. 

The lower reaches of these systems normally have salinity levels greater than 25, e.g. the Knysna 

system (Largier et al. 2000), but salinities below this level are recorded in the lower reaches during 

heavy river flow (Grindley 1985; Whitfield 1992). The mixing process is mostly dominated by tides 

and wind. There is also a strong salinity stratification in the upper and middle reaches (Whitfield 

1992; Largier et al. 2000). South African coast possesses estuarine bays which are natural (e.g. the 

Knysna system) and artificial (e.g. Richards Bay and Durban Bay estuarine systems) (Whitfield 

1992; Whitfield 2000).  

 

1.3.5. Estuarine lakes 

Most South African estuarine lakes display a separation from the sea by vegetated sand dune 

systems (Whitfield 1992). The South African coast features only eight of these systems and these 

are Kleinmonde, Klein, Wilderness, Swartvlei, Nhlabane, St. Lucia, Mgobezeleni and  Kosi 

estuarine system, (Whitfield 2000). Other estuarine lakes lose their estuarine character after they 

have been completely isolated from the sea for a couple of years and are then referred to as coastal 

lakes. These systems still possess remnant estuarine biota tolerant of freshwater conditions 

(Whitfield 1992). The Kosi system is one example of an estuarine lake which has a permanent 

connection to the sea while the Swartvlei is an example of an estuarine lake which has a temporal 

marine connection. Mixing of the water column is mostly driven by wind even in the deeper 

systems. During low water inflow or drought conditions, these systems can become hypersaline 

(Whitfield 1992). St Lucia is an example of an estuarine lake that can become hypersaline in the 

northern and middle reaches during drought conditions (Vivier and Cyrus 2009). Water 
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temperatures of such systems are less subjective to river flow or tidal exchange since the tidal 

prisms of such systems are generally smaller compared to their size as a result of constricted 

channels linking them to the sea. Other estuarine lakes receive about 50 % of their input from 

precipitation e.g. St. Lucia (Whitfield 1992; Vivier and Cyrus 2009). Generally, water temperatures 

of estuarine lake systems are directly influenced by solar heating (Whitfield 1992). 

 

From the five types of estuaries on the South African coast, this study focuses on a permanently 

open (Mlalazi) and a temporarily open/closed (Mpenjati) Estuary. 

 

1.4. Phosphorus as a macronutrient and its role in estuaries 

1.4.1. Importance and sources of phosphorus 

Phosphorus (P) is an essential nutrient for all life forms (Correll 1999; Elser 2012). It forms part of 

deoxyribonucleic acid (DNA) as well as ribonucleic acid (RNA) (Conley et al. 2009). Phosphorus 

also plays a significant role in cellular metabolism during the transmission of energy through the 

adenosine triphosphate (ATP) molecule (Sterner and Elser 2003). This nutrient occurs in organic 

and inorganic forms (e.g. orthophosphates, polyphosphates or metaphosphate) (Paytan and 

McLaughlin 2007). Approximately 5-10 % of P transported by rivers to coastal and estuarine waters 

is in dissolved form and the remainder is in particulate form (Froelich 1988; Follmi 1996; Fisher et 

al. 1999). In aquatic ecosystems orthophosphate (PO4
-3

) is the principal soluble inorganic form in 

which P is available and utilised by aquatic plants (Correll 1999; Paytan and McLaughlin 2007). 

 

Weathering of rocks and leaching of phosphate salts from the soil are the main sources of 

biologically available phosphorus together with decomposition of organic matter (Huanxin et al. 

1997; Paytan and McLaughlin 2007). The mobility, availability and spatial distribution of P within 

an estuary are determined by the flow regime. Higher concentrations are recorded during heavy 

rainfall and high flow events due to flushing and resuspension of the sediments (Gao et al. 2010). 

Particulate phosphorus that has entered the estuary may be deposited to the sediments after which 

microbial communities gradually consume organic components of the sediment, and sediment 

phosphorus is eventually released back to water column as orthophosphate (Correll 1999). Bottom 

sediment phosphorus can also be released back to the water column by bottom feeding fish as they 

disturb and stir up the sediment causing a release of phosphorus back to the water column 
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(Callender 1982). Dissolved organic nutrient sources in estuaries include freshwater inflow, tidal 

exchange, as well as debris and leaf litter falling from the surrounding flora. Dissolved inorganic 

nutrients in estuaries are received from the inflowing river, ground water, seepage and from marine 

waters during the open mouth phase (Callender 1982; Eyre 1998; Slomp 2011). In general higher 

amounts are received from the river compared to the adjacent sea and other sources (Callender 

1982; Eyre 1998). 

 

1.4.2. Phosphorus, primary productivity and eutrophication 

River discharge is one component contributing towards nutrient transportation into estuaries (Eyre 

and Balls 1999; Loneragan 1999). Nitrogen (N) and Phosphorus (P) exported from rivers contribute 

greatly towards primary productivity in estuaries and the adjacent marine environment (Fisher et al. 

1992; Statham 2012). Their availability largely determines the productivity of coastal environments 

(Fisher et al. 1992). These nutrients occur in varying stoichiometric ratios as a result of differences 

in the rate in which they are supplied, taken up, stored in living tissues and in non-living particulate 

and dissolved pools in the sediments and water column and made available through catabolic and 

anabolic processes (Howarth 1988; Elser and Hessen 2005). Few studies (Gobler et al. 2005; Snow 

and Adams 2007) found that TOCEs have higher macronutrient concentrations during the open 

compared to the closed phase. After a prolonged mouth closure the water column may experience 

macronutrient depletion due to persistent algal uptake (Perissinotto et al. 2010). 

 

Phytoplankton chlorophyll a concentrations recorded in POEs can be lower than those recorded in 

TOCEs within the same biogeographic region (Adams and Bate 1999). For example, chlorophyll a 

concentration measured in the Great Brak Estuary (a TOCE in the warm temperate region) was 13 

µg·l
-1

 while chlorophyll a concentration measured in the Gourits Estuary (a POE in the warm 

temperate region) was less than 1 µg·l
-1

 during 1992 (Adams and Bate 1999). Higher concentrations 

of microphytobenthic chlorophyll a has been measured in TOCEs compared to the POEs (Adams 

and Bate 1999). These high concentrations are often associated with low turbidity leading to 

increased light availability, calm current flow and high macronutrient concentrations in sediments 

(Froneman 2002b).  

 

Although phosphorus loading is known to be a good predictor of primary production in estuaries, 

there is an argument whether nitrogen or phosphorus is the limiting nutrient in these systems 



11 

 

 

 

(Howarth and Marino 2006; Conley et al. 2009). Increasing number of studies concludes that there 

are limiting nutrients in marine ecosystems other than nitrogen (Herbland et al. 1998). Phosphorus 

limitation has been reported in marine, estuarine and nearshore systems such as the Chesapeake Bay 

(Taft and Taylor 1976), Pearl and Changjiang estuaries (Yin et al. 2000; Duan et al. 2008), Huanghe 

River Estuary (Liu et al. 2003), Mediterranean Sea (Krom et al. 1991), Xiamen Bay (Harrison et al. 

1990), South Carolina salt marsh (Sundareshwar et al. 2003), estuaries along the north-eastern 

margin of the Gulf of Mexico (Myers and Iverson 1981) and few western Australian estuaries 

(McComb et al. 1981).  

 

Phosphorus has been widely reported to control the degree of eutrophication in aquatic systems 

(Redfield 1958; Herbland et al. 1998; Wang et al. 2003; Wepener 2007; Lukkari et al. 2008).  

An increase in human population settling near coastal areas has raised the amount of new 

anthropogenic nutrient inputs into catchments and estuaries (Puigserver et al. 2002; Paerl 2006). As 

a result, these aquatic systems receive large amounts of land based nutrients and other pollutants 

entering via surface run off (e.g. agricultural runoff), atmospheric deposition and outflows from 

waste water treatment works (Paerl 2006). Such conditions may lead to formation of algal blooms 

followed by depletion of oxygen in the estuarine water which may lead to invertebrate and fish kills 

(Whitfield 1995; Adams and Bate 1999). 

 

In productive estuaries which sometimes experience phytoplankton blooms, a decline in 

phytoplankton concentration may result from cell shading through cell abundance which inhibits 

light penetration to the entire phytoplankton community e.g. in the Mhlanga and Mdloti estuaries 

(Thomas et al. 2005). High chlorophyll a concentrations exceeding 20 mg chl a·m
-3 

have been 

recorded in permanently open estuaries of the South African coast (Bate and Adams 2000). 

Chlorophyll a concentrations higher than 100 mg chl a·m
-3

 have also been measured in few South 

African POEs e.g. in the Sundays and Gamtoos estuaries (Hilmer and Bate 1990; Bate and Adams 

2000; Snow et al. 2000). Phytoplankton bloom is defined as chlorophyll a concentration greater 

than 20 µg·l
-1 

(Adams and Bate 1999), although Fielding et al. (1991) reported phytoplankton 

bloom in the St. Lucia Estuary with mean chlorophyll a concentration of 16 µg·l
-1

. No dense algal 

blooms have been apparent in South African TOCEs (Perissinotto et al. 2000; Nozais et al. 2001; 

Perissinotto et al. 2003). 
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1.4.3. Phosphorus and zooplankton 

Studies have confirmed that freshwater zooplankton display differences in P content between 

species, and these interspecific differences are higher for P compared to nitrogen  and carbon 

(Andersen and Hessen 1991; Hassett et al. 1997; Vrede et al. 1999). Vrede et al. (1999) examined 

the distribution of phosphorus in three zooplankton species (Daphnia magna, D. galeata and 

Eudiaptomus gracilis) collected from Norwegian cultures, Lake Erken and Lake Norrviken 

respectively, where P content of Daphnia magna (1.5 %) and D. Galeata (1.4 %) were three-fold 

higher than that of E gracilis (0.5 %). Their results showed no variation in phosphorus:dry weight 

ratio across the size range for D. magna and E. gracilis but in D. Galeata they reported an increase 

in P content with an increase in body size. Their study also confirmed the low intraspecific 

variability in P:DW ratio in zooplankton. Interspecific and intraspecific (e.g. Arcatia spp) 

differences between zooplankton P content have also been reported in marine ecosystems such as 

the Baltic Sea (Walve and Larsson 1999). It was proposed that the variation in P content between 

Arcatia spp was due to developmental stages and seasons (Walve and Larsson 1999). Body P 

content (%) of organisms can vary among size classes with smaller organisms having higher P 

content (%) due to higher growth rate and higher P demands when compared to larger ones (Cross 

et al. 2003). 

 

1.4.4. Phosphorus and macrozoobenthos 

Phosphorus has been measured in macrozoobenthos from 35streams in Indiana-Michigan and 

central Wisconsin (USA), and  it was reported that P varies with taxon and site (Evans-White et al. 

2005). It has been reported that body size of benthic organisms can generally explain very little 

variation in % P content of organisms and in addition, variability is generally higher for % P content 

than for % C and % N (Evans-White et al. 2005; Martinson et al. 2008). 

 

Crustaceans have been reported to have higher % P content compared to molluscs and insects 

(Evans-White et al. 2005). In support of crustaceans being richer in P than nitrogen and carbon 

relative to molluscs and insects, concentrations of crustaceans (P = 0.9 %, C = 35 %, N = 7.4 %); 

insects (P = 0.6 %, C = 48 %, N = 10 %) and molluscs (without shell) (P = 0.8 %, C = 42 %, N = 

9.6 %) have been recorded for 35 streams in the United States of America (Evans-White et al. 

2005). This higher P content in crustaceans may perhaps be due to higher rRNA content in 

crustaceans compared to molluscs and insects (Evans-White et al. 2005). Another explanation may 
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be that P is associated with calcium in benthic crustacean carapaces (for moulting and growth 

processes) and this may account for higher % P and lower C:P and N:P ratios of crustaceans 

compared to molluscs and insects (Evans-White et al. 2005). A study conducted by Frost et al. 

(2003) in eight Canadian lakes revealed that there was a significant variation in % P content of 

benthic macroinvertebrates compared to % N and % C content. Body P content for all nine taxa 

varied 10-fold from 0.1% to 1.4 %, body N content varied 2-fold from 5.8 % to 13.6 % while body 

C content was less variable, ranging from 32.5 to 53.5 % (Frost et al. 2003). Significant variation in 

P content between taxonomic groups was apparent with little variation across the eight lakes (Frost 

et al. 2003).  

 

Variations in % P content as well as C:P ratio between macrozoobenthic species have been reported 

in several lakes in Canada located in different regions i.e. central Alberta and north western Ontario, 

as well as in Lake Erkenin, Sweden (Frost et al. 2003; Evans-White et al. 2005; Liess and 

Hillebrand 2005). Phosphorus has been measured in six benthic species of Antarctic marine system 

where phosphorus content varied two-fold from 0.7 to 1.3 % while C and N content were less 

variable from 49 to 60 % and 10 to 14 % respectively. The growth rate hypothesis (which states that 

growth related demands essential for generation of organism’s ribosomal RNA are determined by 

the organisms body P content) was generally not true for such system with low temperature because 

organisms body P contents were relatively higher despite the very slow growth rate experienced by 

polar marine macrozoobenthos (Clarke 2008). 

 

1.4.5. Phosphorus and fish 

It has been documented that fish and fisheries management can play an essential role in freshwater 

nutrient dynamics but information is scarce for marine ecosystems (Hjerne and Hansson 2002). Fish 

contribution to the recycling of phosphorus in lakes have been documented (Griffiths 2006). 

Phosphorus content (%) in fish has been measured in Lake Superior coastal wetland in North 

America (Tanner et al. 2000), Experimental Lakes area in northwest Ontario, Canada (Sterner and 

George 2000) and in Utrata River, Poland (Penczak 1985) where variation in P content (%) between 

species, size classes as well as sampling sites was reported. Fish body P content (%) has been 

reported to vary more among fish families than among species within families (Vanni et al. 2002).  
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1.4.6. Role of organisms in nutrient cycling 

The degree of consumption and release of nutrients by organisms can determine if an organism is a 

nutrient net source or net sink in a given time (Vanni 2002). Estuarine fauna play an important role 

in recycling of nutrients in estuaries and in addition they excrete nutrients in remineralised form 

ready to be used by primary producers (Nalepa et al. 1991; Vanni 2002). The rate at which these 

estuarine organisms excrete nutrients are important for primary production and the ratio at which 

these nutrients are excreted can determine the degree of either nitrogen or phosphorus limitation in 

aquatic ecosystems (Vanni 2002). Longer lived animals with bigger body size can sequester large 

amounts of nutrients in their bodies and they serve as nutrient pools and consequently as a nutrient 

source to their predators or during decomposition (Vaughn and Hakenkamp 2001; Vanni 2002). 

Unlike in zooplankton and macrozoobenthos where more P is stored in ribosomes and other 

repositories, more phosphorus in fish is stored in bones (Vanni and Findlay 1990; Sterner and Elser 

2002). 

 

The phosphorus amount excreted by fish per body size can be higher than that excreted by 

zooplankton e.g. in the Lake 221 in north-western Ontario (Vanni and Findlay 1990). Sediment 

feeding fish populations of Lake Gjersjoen in Norway have been reported to contribute to 

phosphorus supply twice as high that of external loading (Brabrand et al. 1990). It has been argued 

that P amount released by fish is lower than the phytoplankton demands e.g. in the Lake 

Memphremagog situated between Canada and United States (Nakashima and Leggett 1980) while 

others argue that P excretion by fish is sufficient to support primary production e.g. in the Union 

Lake in USA and in few experiments conducted in tanks (Lamara 1975; Reinertsen et al. 1986; 

Threlkeld 1988). A scenario of a decrease in dissolved P concentration following a decline in 

abundance of benthivorous/planktivorous fish has been reported in Lake Vaeng, Denmark 

(Sondergaard et al. 1990). In this case, it is likely that the fish community can have an impact on 

primary production through control of the nutrient supply (Sondergaard et al. 1990). Benthic 

invertebrates waste can be an important nutrient source for benthic algae (Evans-White and 

Lamberti 2005). 

 

1.4.7. Phosphorus balance between organisms and their food sources 

Organisms can serve as nutrient sinks for elements in greatest shortage (Walve and Larsson 1999; 

Vanni 2002; Park et al. 2003). The growth of most freshwater and marine zooplankton has been 
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shown to be restricted by phosphorus (Hessen 1992; Park et al. 2003). It has been mentioned that 

zooplankton (Sterner 1997) and macrozoobenthos (Frost and Elser 2002; Elser et al. 2005) growth 

rates are related to concentrations of phosphorus within the algal food base. A balance must be kept 

between the intake of carbon and phosphorus with respect to the grazer’s body demands in order for 

the grazer to maintain a homeostatic C:P ratio (Anderson et al. 1978). 

 

Zooplankton have supported the growth rate hypothesis where it was found that 75-90 % of P 

content was contained in RNA, this explains that zooplankton invest very little P (as opposed to N) 

in biochemicals other than RNA (Elser 2012). Aquatic herbivores like zooplankton and 

macrozoobenthos are known to have low C:P ratio compared to that normally found in their food 

(Cross et al. 2005). This mismatch can alter food web dynamics by affecting nutrient release (e.g. 

excretion of nutrients of high C:P ratio), growth and reproduction of organisms (Andersen and 

Hessen 1991; Andersen 1997; Sterner and Elser 2002; Urabe et al. 2002). Zooplankton species like 

Daphnia spp. display a constraint in growth when they are fed on autotrophs with low P content 

(Sterner and Elser 2003). The high C:P ratio in algae that results from the blooms can cause a drop 

in zooplankton population abundance (e.g. in Lake Berryessa in California) (Park et al. 2002; Park 

et al. 2003). 

 

The ambient P levels and photosynthetic active radiation (PAR) contribute to shifts in cellular C:P 

ratio of phytoplankton (Urabe and Sterner 1996; Andersen et al. 2007). High photosynthetic rate 

enhanced by high amount of PAR results in accumulation of C-rich macromolecules. This in turn 

leads to increased C:P ratio of autotroph biomass. Such condition is greatly enhanced when there is 

low P supply (Andersen et al. 2007). When light is limiting but P is saturated, autotroph biomass 

will be lower although algal cells will contain high P:C ratio which depicts high food quality for 

herbivores. Shifts in food quality versus quantity may cause changes in herbivores growth rate 

along the light gradient (Urabe and Sterner 1996). The herbivore growth rate is expected to increase 

along the gradient of increasing light with constant total P and it reaches maximum at an optimum 

light: nutrient balance. Finally the growth rate declines as a result of high light:P, and a decrease in 

food P:C ratio which depicts a low food quality (Urabe and Sterner 1996; Andersen et al. 2007). 

This relationship between food quantity and food quality limitation is essential for assessments of 

ecosystem productivity (Andersen et al. 2007). 
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1.4.8. Phosphorus and chemical processes in sediment 

Understanding the transportation of P from terrestrial environment to coastal and marine 

environment is very important for quantifying global P cycling and to overcome problems 

associated with eutrophication (Follmi 1996). In lakes and estuaries, sediments are the principal 

drivers in regeneration of phosphate (Sundby et al. 1992; Anschutz et al. 1998). After the dissolved 

and particulate inputs of P has reached the receiving systems, the particles may release phosphate to 

the water column and P compounds get hydrolyzed either chemically or enzymically to form 

orthophosphate during periods of low river flow and low nutrient input (Sundby et al. 1992). 

Microbial communities in the sediments utilise much of the sediment organic material and they 

release it back to the water column as orthophosphate which in turn is utilised by the primary 

producers (Sundby et al. 1992; Hartzell and Jordan 2010). This process (named phosphate buffer 

mechanism) maintains a constant dissolved phosphate concentration in the water column through 

the influence of sediments regardless of biological removal and input effects (Pomeroy et al. 1965; 

Froelich 1988). 

 

In estuarine ecosystems, short term and spatial shifts in limitation of nutrients can exist (Anschutz et 

al. 1998; Fisher et al. 1999). Phosphorus sorption in sediments can change with salinity gradients 

and this is explained by metal oxides carrying a net negative charge at seawater pH and a net 

positive charge at freshwater pH (Barrow et al. 1980; Sundareshwar and Morris 1999; Dunne et al. 

2005). It is this change in salinity and pH that alter phosphorus binding potential along the estuary 

salinity gradient (Anschutz et al. 1998; Sundareshwar and Morris 1999). The inverse relationship 

between the salinity and phosphorus sorption potential may be due to a decrease in iron hydroxide 

content of sediment with increasing salinity (Sundareshwar and Morris 1999). 

 

Phosphorus concentration in sediments has been measured in few estuarine systems e.g. in the 

Richmond River Estuary in Australia and Palmones River Estuary in Spain where concentrations of 

PO4
-3

 adsorbed in sediment was increasing from the mouth towards the upper reaches (Clavero et al. 

1999; Mckee et al. 2000). 
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1.5. Phosphorus dynamics in estuaries of South Africa and other parts of the 

world 

Many estuaries along South African coast rely on river-derived nutrients for stimulation of primary 

production (Snow et al. 2000; Taljaard et al. 2009). Dissolved inorganic nutrient (e.g. dissolved 

inorganic phosphorus) concentrations during freshwater dominated states in estuaries are greatly 

determined by physical processes which involve the extent of mixing of freshwater and sea water 

(Taljaard et al. 2009). During freshwater dominated states in estuaries, nutrients like phosphorus 

entering the estuary are flushed into the adjacent sea without considerable transformation and 

utilisation leading to a very low primary production (Snow and Taljaard 2007; Taljaard et al. 2009). 

 

Conditions prevailing during closed phase (e.g. limited water exchange and stable sediments) of 

South African TOCEs introduce favourable conditions for biochemical and biological processes to 

control nutrient cycling and transformation (Snow and Taljaard 2007; Taljaard et al. 2009). 

Supporting this statement, in the Great Brak Estuary the phosphorus concentrations were near-

depleted after 80 days of mouth closure in 2007 indicating its considerable removal and utilisation 

from the water column (Taljaard et al. 2009). This event has also been apparent in the Mdloti 

Estuary where low phosphorus concentrations were measured during events of prolonged mouth 

closure (Perissinotto et al. 2004). Such low concentrations during closed phases give evidence that 

small and shallow South African TOCEs cannot support substantial primary production in the water 

column once the nutrients in the overlying waters are depleted, although significant benthic 

production can be apparent (Perissinotto et al. 2004). 

 

When the TOCEs are in their semi-closed state with the outflow present but no tidal exchange, they 

receive a continuous riverine input of phosphorus and other nutrients. Although these may be in low 

supply in pristine catchments, they can be retained adequately long for stimulation of water column 

primary production (Snow and Taljaard 2007). When South African TOCEs reach their closed state, 

phosphorus and other nutrients may be received from the nutrient richer coastal waters through 

overwash, although this is limited to areas near the mouth (Snow and Taljaard 2007; Taljaard et al. 

2009). High nutrient availability as well as adequate residence time near the mouth areas can 

stimulate phytoplankton blooms in the lower reaches (Snow and Taljaard 2007; Taljaard et al. 

2009). Gama et al. (2005) reported a peak in phytoplankton production after an overwash event in 

the Van Stadens Estuary in the Eastern Cape. During a closed phase where there is very little or no 
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river flow, the estuary may rely on ground water and remineralisation as inputs of dissolved 

inorganic phosphorus (Snow and Taljaard 2007). 

 

Dissolved inorganic phosphorus has been measured in many estuaries on the coast of South Africa 

e.g. in the Kariega, Swartkops, Kromme, Sundays, Knysna, Mdloti, Mhlanga and Mpenjati estuaries 

(Emmerson 1985; Allanson 1999; Allanson et al. 2000; Scharler and Baird 2003a; Thomas et al. 

2005). In South African estuarine systems phosphate concentrations have been reported to be 

generally higher in the upper reaches decreasing towards the mouth, as in the Kariega and Great 

Fish estuaries (Bate et al. 2002). Scharler and Baird (2003) pointed out that the upper reaches of 

other South African estuaries are seen as nutrient sinks for inorganic dissolved nutrients. However, 

during the events of severe droughts where reverse salinity gradients prevail, phosphorus 

concentrations can be higher near the mouth (e.g. in the Kariega River Estuary in the Eastern Cape 

(Allanson 1999). 

 

Phosphorus exchange is mostly influenced by the redox potential of the environment (Winter 1999). 

During anaerobic conditions in estuarine sediments, phosphorus release rate from the particulate 

matter has been reported to be higher when compared to aerobic conditions e.g. in the Swartvlei 

Estuary (Silberbauer 1982; Chambers et al. 1995). Macrophytes have been reported to play a vital 

role in phosphorus exchange through foliar release (McRoy et al. 1972; Winter 1999). Liptrot 

(1978) reported Zostera capensis beds of the Swartvlei Estuary as an active agent in the uptake and 

excretion of phosphorus. He also highlighted that the algal mat (Enteromorpha spp.) is among the 

compartments to which the phosphorus excreted by Zostera is transferred during the closed phase of 

the Swartvlei Estuary. 

 

Dissolved inorganic phosphorus (DIP) has been reported to increase from the upper towards the 

lower reaches during the low river flow in few Australian estuaries e.g. in the Jardine, Annan and 

Daintree estuaries and in few estuaries in United Kingdom e.g.in the Inverness, Cromarty and 

Dornoch Firths estuaries (Eyre and Balls 1999). This pattern depicts their pristine condition (Eyre 

and Balls 1999). In the Scheldt Estuary, Europe, particulate organic phosphorus (POP), particulate 

inorganic phosphorus (PIP) as well as dissolved organic phosphorus (DOP) concentrations have 

been reported to decrease from the upper towards the lower reaches (van der Zee et al. 2007). 
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1.6. Aim 

Phosphorus, an important macronutrient for all life forms has been measured in estuaries of South 

Africa in the form of dissolved inorganic phosphorus e.g. (Emmerson 1985; Allanson et al. 2000; 

Scharler and Baird 2003a; Thomas et al. 2005). In South African estuaries, no information is 

available on phosphorus content in biotic (e.g. phytoplankton, zooplankton and macrozoobenthos) 

and abiotic (e.g. sediment) components to highlight how this nutrient is distributed through 

estuarine food webs. Therefore the aim of this project was to determine phosphorus distribution in 

living and non-living nutrient pools of two KwaZulu-Natal estuaries. 

 

1.7. Objectives 

Looking at variations between low river flow (May and September in the Mlalazi and Mpenjati 

Estuary respectively) and high river flow period (November for both estuaries), objectives were the 

following. 

 

To determine: 

 

• Changes in abundance and biomass of the zooplankton and macrozoobenthos between the 

low (May and September for the Mlalazi and Mpenjati Estuary respectively) and high 

(November for both estuaries) river flow periods, stations and between the estuaries. 

• Changes in standing stocks of all living and non-living nutrient pools in terms of 

phosphorus (P) by measuring the P content of biotic and abiotic nutrient pools including 

macrozoobenthos, zooplankton, total suspended solids and detritus, where 

macrozoobenthos and zooplankton were divided into various taxa. 

• Shifts in P distribution among different taxa and along the estuarine salinity gradient. 

 

1.8. Hypotheses 

As outlined in the introduction, biogeochemical processes in estuaries are controlled by freshwater 

inflow and differing river flow patterns can cause changes in composition of biological 

communities and their distribution (Powell et al. 2002). It was hypothesised that the abundance and 

biomass of biotic (zooplankton, macrozoobenthos and phytoplankton) and abiotic (TSS) 
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components will change in low (May and September) and high (November) river flow and along the 

estuary length. 

 

Phosphorus concentrations in estuaries were expected to vary with time as a result of changes in 

river flow patterns with higher concentrations expected during high river flow events due to higher 

nutrient supply from the elevated riverine inflow and resuspension from sediment (Gao et al. 2010). 

Since phosphorus is derived from the river, higher concentrations were expected in the upper 

reaches. It was therefore hypothesised that phosphorus standing stocks in abiotic (DIP, PP and 

sediment P) and biotic (phytoplankton) components will change with low (May and September) and 

high (November) river flow periods and/or along the estuary length. 

 

Organism P content (%) can vary among size classes with smaller organisms having higher P 

content (%) due to higher growth rate and higher P demands when compared to larger organisms 

(Cross et al. 2003). In this study it was expected that the larger zooplankton species (i.e.  

Pseudodiaptomus hessei) will have higher P content than the smaller Arcatia natalensis. P content 

was also expected to differ between benthic taxa because crustaceans are known to have higher % P 

content compared to other macrozoobenthos groups because P is associated with calcium in benthic 

crustacean carapaces (Evans-White et al. 2005).  It was then hypothesised that phosphorus standing 

stocks in biotic components (zooplankton and macrozoobenthos) will vary between taxa. 
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Chapter 2 

Materials and Methods 

 

Two estuaries (Mlalazi and Mpenjati) were sampled during May and September respectively and 

again in November 2011. Mlalazi was sampled in May (for the low river flow period). Sampling 

session representing low river flow period for the temporarily open/closed Mpenjati Estuary was 

supposed to be conducted when the mouth was closed, however, as a result of high precipitation in 

2011, the inlet only closed in September and sampling had to be postponed until then. Sampling 

representing high river inflow period was conducted in November for both estuaries. In order to 

determine P distribution in biotic and abiotic nutrient pools in each estuary the following was 

sampled: Subsurface water for determination of dissolved inorganic nutrients, total suspended solids 

(TSS) and phytoplankton chlorophyll a. Sediment was sampled for determination of 

microphytobenthos chlorophyll a and sediment P content. Zooplankton and macrozoobenthos were 

also sampled. Living organisms were identified to species (zooplankton) and family 

(macrozoobenthos) level and enumerated. Wet and dry weight of animals was measured and 

animals were ground to powder. The TSS filters, sediment and animal tissue were digested to get 

the P content in these nutrient pools. Details of all methods are listed below. 

 

2.1. Study areas 

2.1.1. Mlalazi Estuary 

The Mlalazi Estuary (28
o 
57’ S; 31

o 
48’ E) is a permanently open estuary (POE) on the north eastern 

coast of South Africa (Whitfield 2000) (Figure 2.1). The length of the Mlalazi River is 

approximately 54 km with a catchment area of approximately 415 km
2 

(Day 1981b). The Mlalazi 

Estuary is 1-3 m deep and 100 m wide for most of its length but can extend to 200 m near the mouth 

(Day 1981b). The bottom substrate is sandy mud but consists of clay in the upper reaches (Day 

1981b). According to Day (1951) subdivision of the Mlalazi Estuary, both banks of the upper (lake 

area and narrow section above it) and middle (channel stretching up to the southern tip of the lake) 

reaches of the estuary are fringed by mangrove forests dominated by two species; Avicennia 

officinalis and Bruguieria gymnorhiza (Hill 1966; Papadopoulos et al. 2002). Behind mangrove 

forest in the lake region is Hibiscus tiliceus forest (Hill 1966). The mouth region of the Mlalazi is 

covered by sand dune which is 10 m high and supporting small Casuarina forest at the mouth side 
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(Hill 1966). Mangroves started to colonize the estuary in the early 1950s. Since 1952 prolonged dry 

periods have been experienced intermittently and the mouth has been periodically closing (Hill 

1966). The catchment land cover of the Mlalazi Estuary is not considered degraded, 53 % of it is 

natural and approximately 46 % of it is used for agricultural farming e.g. for sugarcane (Harrison et 

al. 2001). There are two bridges crossing the estuary in the upper reaches, the first one is part of the 

national road (N2) and the second one is the railway bridge (Figure 2.1). 

 

2.1.2 Mpenjati Estuary 

The Mpenjati Estuary (30
o
 58′ S and 30

o
 17′ E) is a temporarily open/closed system on the south 

coast of KwaZulu-Natal (KZN) (Whitfield 2000) situated approximately 165 km south west of 

Durban (Begg 1978) (Figure 2.1). The system has a catchment area of approximately 101 km
2
 and it 

occupies an area of 11.6 ha with an axial length of 1.1 km (Begg 1978). The Mpenjati River is 

approximately 18 km long (Begg 1978). The bed of the estuary is composed of stones in the upper 

reaches and muddy substrata in the middle reaches while the substrata at the lower reaches is 

mainly sandy (Kibirige and Perissinotto 2003). In terms of anthropogenic impacts when compared 

to other estuaries, the Mpenjati Estuary is moderately impacted (Whitfield 2000). There are two 

road bridges crossing this system. The old bridge is located in the upper reaches and is part of a 

regional road (Louis Botha Ave). The second bridge is in the middle reaches and is part of a 

National Road (R 61) (Figure 2.1). The mouth of the Mpenjati Estuary is generally closed for over 

65 % of the year (Perissinotto et al. 2002). The estuary mouth is closed by the formation of a sand 

bar during the period of either low or no rainfall which is usually May to September (dry season). 

The estuary gains its connection to the sea as a result of heavy rainfall which usually takes place 

from October to April (wet season) (Kibirige et al. 2002; Perissinotto et al. 2003). During the open 

phase of the estuary, hydrodynamics of the water column are greatly subjective to tidal and riverine 

input but during the closed phase hydrodynamics are mainly influenced by wind (Perissinotto et al. 

2002; Whitfield 1992). The nearby catchment and the upper reaches of the Mpenjati Estuary are 

fringed by the agricultural plantations with sugar cane and banana being the predominant crops. 

There is Palm Beach Waste Water Treatment Works in the upper reaches discharging treated waste 

water into the estuary.  
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Figure 2.1: Map of the Mlalazi (A) and Mpenjati (B) estuaries with sampling stations. 

 

 

 

 

 

(A) Mlalazi Estuary (B) Mpenjati Estuary 
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2.2. Field work 

Biological and environmental samples were collected from the Mlalazi (permanently open estuary) 

and Mpenjati (temporarily open/closed estuary) during the study period. Four stations were sampled 

in the Mlalazi (ML) and three stations in the Mpenjati Estuary (MP) (Figure 2.1). The first sampling 

session was conducted in May 2011 for the Mlalazi Estuary and September 2011 for the Mpenjati 

Estuary. The second sampling session was conducted in November 2011for both estuaries. 

Biological and environmental samples were collected from both estuaries at all stations. 

 

2.2.1. Environmental parameters 

Physico-chemical parameters were measured in both estuaries at each station during each sampling 

period. Salinity, dissolved oxygen (mg·l
-1

), pH, temperature (
o
C), conductivity (mS·cm

-1
) and 

oxidation reduction potential (ORP) (mV) were measured near the surface and bottom of the water 

column using YSI 556 MPS multiprobe system. Water depth was recorded at each station in both 

estuaries during each sampling session. The Mthunzini and Mzimkhulu rainfall gauges nearest to 

the Mlalazi and Mpenjati estuaries respectively were used to infer rainfall levels in these estuarine 

systems during the study period.  

 

2.2.2. Abiotic samples 

Water samples for dissolved inorganic nutrients, total suspended solids (TSS), and particulate 

phosphorus (PP) were collected from the sub-surface using 100 ml (for dissolved inorganic 

nutrients) and 1000 ml (for TSS and PP) acid washed polyethylene bottles. Three replicates were 

collected at all stations in both estuaries and kept in a cooler box with ice. For TSS and PP samples, 

depending on the amount of silt in each replicate, a volume between 600 and 1000 ml was filtered 

through a pre-combusted and weighed GF/F Whatman filter (0.7 µm pore size and 47 mm 

diameter). Filters were wrapped in foil and stored in the fridge over night for further analysis in the 

laboratory. Dissolved inorganic nutrient samples were obtained from each replicate filtrate and then 

stored in 100 ml bottles which were refrigerated overnight until they were taken back to the 

laboratory. All the filtration was done in the field. Three replicates of sediment samples for 

determination of phosphorus content were collected from each station in both estuaries. Sediment 

was collected using a 20 mm internal diameter corer. The first top 2.5 centimetres of the sediment 
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was cut off and stored in polyethylene bottles. Sediment samples were refrigerated overnight until 

they were oven dried at 60 
o
C in the laboratory. 

2.2.3. Biotic samples 

Three replicates for chlorophyll a, microphytobenthos and macrozoobenthos were collected at each 

station in both estuaries. Two replicates were collected for zooplankton at each station in both 

estuaries. Water samples for phytoplankton chlorophyll a determination were collected using acid 

washed 250 ml polyethylene bottles. Each replicate was filtered through 20, 2 and 0.7 micron filters 

to retain microplankton (> 20 µm), nanoplankton (2-20 µm) and picoplankton (< 2 µm) 

respectively. Filters were stored in polyethylene vials with 10 ml of 90 % acetone for extraction of 

pigments. Sediment samples for microphytobenthic chlorophyll a determination were collected 

using a 20 mm internal diameter corer. The first top centimeter of the sediment was cut off and 

stored in 100 ml polyethylene bottle with 10 ml of 90 % acetone for extraction of pigments. 

Phytoplankton and microphytobenthic chlorophyll a samples were stored in the dark and were 

refrigerated for 24 hours prior to analysis. 

 

Macrozoobenthos samples were collected using a van Veen 12.110 grab (250 cm
2 

in area, depth 

sampled down to 10 cm). Each replicate was stirred in a bucket and decanted five times through a 

500 µm sieve to extract organisms. All organisms were stored in honey jars and preserved in 10 % 

formalin containing Rose Bengal dye to aid sorting in the laboratory. Grab samplers (e.g. van Veen 

grab) are generally used in standard protocols to collect soft bottom macrozoobenthos (Klemm et al. 

1990; EPA 2001). This sampling tool samples up to 10 cm depth (Flach and Heip 1996). Therefore 

deep burrowing animals like Callichirus kraussi and Upogebia africana were under represented if 

this method alone was used. To account for deep burrowing prawns, data for abundance and 

biomass generated by the third year students who were involved in marine biology research project 

(BIOL 391) was used. All prawn samples were collected in the lower and middle reaches of the 

Mpenjati Estuary in March (2013) using the prawn pump (Ndaba and Joseph 2013). Fifteen stations 

(three transects) were sampled in the intertidal region of the lower reaches and five stations were 

sampled in the middle reaches. Some of the dried prawns obtained from the third year students were 

then analysed for phosphorus to get the idea of phosphorus content in these organisms. Zooplankton 

samples were collected during daytime using a 200 µm mesh plankton net attached to a 

hyperbenthic sled which was towed for 20 meters. Samples were stored in honey jars and preserved 

in 10 % formalin containing Rose Bengal dye to aid sorting in the laboratory. 
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2.3. Lab work 

2.3.1. Abiotic samples 

In the lab all water samples for dissolved inorganic nutrients were stored in the freezer until they 

were analysed for dissolved inorganic phosphorus (DIP as orthophosphate) and dissolved inorganic 

nitrogen (DIN) which included nitrate, nitrite and ammonia. Filters for TSS and PP were oven dried 

at 60 
o
C for 24 hours. All dried filters were weighed to obtain weights of suspended solids. Dry 

filters were kept in airtight plastic bags until they were analysed for P content. 

 

2.3.2. Biotic samples 

In the lab, phytoplankton and microphytobenthic chlorophyll a and phaeopigment concentrations 

were measured using a Turner Designs fluorometer (acidification method). Prior to running samples 

on the fluorometer, the instrument was calibrated using a pure chlorophyll a standard protocol 

already installed on the instrument. For determination of chlorophyll a and phaeopigment 

concentrations, the instrument was set to take into account the volume of solvent (extract volume) 

as well as the volume of water filtered so that the reading could represent chlorophyll a 

concentration in µg·l
-1

 of estuarine water. 

 

All macrozoobenthos and zooplankton samples were washed with the purpose of removing formalin 

and mud from the samples. Macrozoobenthos and zooplankton samples were washed through a 500 

µm and 63 µm sieves respectively. Plant material in the samples was carefully removed by hand 

and all organisms that clung on plant material were carefully removed. Macrozoobenthos samples 

were poured into a petri dish where they were classified into major groups (polychaetes, crustaceans 

and molluscs) under a dissecting microscope. Each major group was identified to family level using 

Day (1974), Day (1967), Griffiths (1976), Kensley(1978) and Steyn and Lussi (1998) as a guide. 

Identified organisms were counted, stored in eppendorf tubes and preserved in 10 % formalin. 

Organisms were weighed to obtain wet and dry weights. To obtain wet weight, all formalin was 

drained out of the eppendorf tubes and organisms were rinsed with distilled water after which they 

were blotted dry with a paper towel (except for polychaetes of very small body size). Wet 

organisms were then weighed on a 5 decimal digital balance (Shimadzu, AUW220D). After 

recording wet weights for each replicate, organisms were re-stored in eppendorf tubes and were 
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oven dried at 60 
o
C for 24 hours. Dry organisms were weighed on a 5 decimal digital balance 

(Shimadzu, AUW220D) to obtain dry weights for each replicate. 

 

Organisms that were not blotted dry were weighed with eppendorf tubes. Excess water was 

carefully removed using a narrow glass pipette. After drying, organisms were weighed without 

eppendorf tubes to get dry weights. After recording dry weights for each replicate, each empty 

eppendorf tube in which organisms were kept was weighed and its value was subtracted from the 

initial wet weight to get the actual wet weight for the organisms in each replicate. All dry organisms 

were ground in an eppendorf tube using a glass rod and they were kept in eppendorf tubes for 

further analysis of phosphorus content. 

 

Zooplankton samples were diluted in freshwater of 1 litre volume. Organisms were brought to 

suspension by a thorough stirring of the sample. Three subsamples were withdrawn from each 

sample using a 20 ml plastic scoop tied to a rod. The withdrawal of subsamples was done while 

stirring continuously to avoid settlement of organisms (Perissinotto and Wooldridge 1989; Jerling 

and Wooldridge 1995). Organisms in each subsample were identified to species level and 

enumerated under a dissecting microscope using Day (1974) as an identification guide. The 

coefficient of variation between subsamples was always below 10 %. Identified organisms were 

stored in eppendorf tubes and preserved in 10 % formalin. The most dominant taxa were weighed to 

obtain wet and dry weight. To obtain wet weight, all formalin was drained out of the eppendorf 

tubes and organisms were rinsed with distilled water. Zooplankton samples were not blotted dry due 

to their very small body size which made it difficult to remove them from and return to the tube. 

Excess water was then carefully removed using a narrow glass pipette. Wet organisms were 

weighed on a 5 decimal digital balance (Shimadzu, AUW220D) with eppendorf tubes. After wet 

weights were recorded, organisms were oven dried at 60 
o
C for 24 hours and dry organisms were 

weighed on a 5 decimal digital balance (Shimadzu, AUW220D) without eppendorf tubes. After 

recording dry weights for each replicate, each empty eppendorf tube in which organisms were kept 

was weighed and its value was subtracted from the initial wet weight to get the actual wet weight 

value for each replicate. Dry organisms were ground in an eppendorf tube using a glass rod and 

were kept in eppendorf tubes for further analysis of phosphorus content. 
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2.4. Phosphorus analysis 

Water samples for dissolved inorganic nutrients were thawed overnight and were analysed for DIP 

as orthophosphate as reported by Gales et al. (1966). Filters (PP), sediment, zooplankton and 

macrozoobenthos samples were analysed for total phosphorus. Phytoplankton and 

microphytobenthos P content was estimated using conversion factors explained below. All filters, 

water and sediment samples were analysed. Fourteen samples of zooplankton were analysed for 

phosphorus in the Mlalazi Estuary from the May sampling session and eleven samples were 

analysed for phosphorus in the Mpenjati Estuary from the September sampling session. A total of 

37 and 31 macrozoobenthos samples were analysed for phosphorus in the Mlalazi Estuary during 

May and November respectively while a total of 23 and 22 samples were analysed in the Mpenjati 

Estuary during September and November respectively. Samples were analysed for phosphorus 

content using the persulphate digestion method (Raimbault et al. 1999). Prior to digestion an 

oxidising reagent was prepared as follows: 21.6 g of disodium tetraborate (Merck) and 10.8 g 

potassium peroxodisulfate (Merck) were dissolved in 180 ml distilled water preheated at 60 
o
C and 

rapidly stirring using a glass rod. Since disodium tetraborate crystallizes in a few minutes when 

exposed to ambient temperature, only a specific quantity needed for one batch of samples was 

prepared at a time to avoid crystallisation.  

 

Digestion was carried out using 40 ml Teflon autoclave bottles pre-washed in 10 % hydrochloric 

acid. Weight of ground organisms not exceeding 8 mg for macrozoobenthos, 5 mg for zooplankton 

and 30 mg for sediment was measured out using a 5 decimal digital balance (Shimadzu, 

AUW220D). After each sample had been weighed it was poured directly into the autoclave bottle. 

Pre weighed PP filters were directly inserted into autoclave bottles. Following weighing, the 

oxidising reagent was prepared and 4 ml was added into each bottle and 30 ml of distilled water was 

added. Autoclave bottles were closed until one screw less that tight and autoclaved for 30 minutes at 

120 
o
C. Digested samples were poured into 100 ml volumetric flasks and distilled water was added 

to fill the flasks up to 100 ml. Undigested water samples as well as digested filters, sediment and 

animal samples were sent to the CSIR (Durban) for phosphorus (as orthophosphate) analysis. 

 

The P concentrations from the CSIR laboratory were given in a form of PO4
-3 

(mg·l
-1

) as P. 

Considering that all the digested samples were filled up to 100 ml before they were sent for P 

analysis, all the concentrations were multiplied by 0.1 L (a dilution volume) to have them in 
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mgP·100 ml. Phosphorus concentrations of zooplankton, macrozoobenthos, sediment as well as the 

biomass of the total suspended solids (TSS) expressed as particulate phosphorus (PP) were then 

divided by the digested sample weight to get mgP·mg sample. This quotient value (mgP·mg 

sample) was multiplied by 100 to get the percentage P content in animals, sediment and PP. To get 

the animals (zooplankton and macrozoobenthos) phosphorus biomass per area (per m
2
), the P 

biomass (mgP·mg sample) for digested animals was multiplied by the total biomass (dry weight) of 

animals in the whole area sampled. To calculate the sediment phosphorus mass per core, sediment P 

mass (mgP·mg sample) was multiplied by the total sediment dry weight per core. Following this 

conversion, P mass (mgP·core) was divided by the core area of 0.00031·m
-2 

to get the sediment P 

mass per area sampled. For determination of DIP mass, the P concentrations in mgP·l
-1 

were 

converted to mgP·m
-3 

by multiplying by 1000. These concentrations were then multiplied by the 

station depth (which was measured at every station during all the sampling sessions to account for 

tidal influence) to have them in mgP·m
-2

. The same conversions from mg·l
-1

 to mg·m
-2

 was applied 

on phytoplankton P biomass estimation. For determination of particulate P biomass, the volume 

filtered through the GFF (in ml) was converted to m
3
 by multiplying by 1000000 after which it was 

multiplied by the station depth (which was measured at every station during all the sampling 

sessions to account for tidal influence) to have it in m
2
. The particulate phosphorus biomass 

(mgP·mg sample) was then divided by the calculated area (m
2
) to get PP per area (mgP·m

-2
). 

 

Phytoplankton and microphytobenthos phosphorus content was estimated following a C: 

chlorophyll a ratio of 100:1 (Brown et al. 1991) after which a P:C ratio of 1:106 (Redfield 1958) 

was applied. The C:chlorophyll a ratio has been reported to vary widely between different 

ecosystems (Banse 1977) ranging from 30:1 for vigorous ecosystems e.g. (Lenz 1974) and several 

hundred to 1 for senescent ecosystems. This ratio does not vary randomly but it is greatly regulated 

in response to irradiance, nutrients levels and temperature (Cloern et al. 1995; Geider et al. 1997). 

As it is difficult to use individual ratio for each data point, the C:chlorophyll a ratio of 100:1 was 

chosen because it is considered by Brown et al. (1991) as the optimal ratio for estimating carbon 

biomass from chlorophyll a concentrations. 
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2.5. Data analysis 

Univariate analyses were conducted using SPSS 19 for Windows. Data which did not satisfy the 

assumptions of a parametric test (i.e. normality and even distribution of residuals) were normalized 

using log (x+1) transformation, after which assumptions were satisfied. Two way analysis of 

variance (ANOVA) was applied to test for spatial and temporal differences in macrozoobenthos and 

zooplankton abundance as well as biomass within each estuary. Two way ANOVA was also applied 

to test for spatial and temporal differences in phytoplankton and microphytobenthic chlorophyll a as 

well as TSS concentrations within each estuary. Rather than performing three way ANOVA to 

detect differences between stations, sampling sessions and estuaries, one way ANOVA was 

performed to compare zooplankton and macrozoobenthos abundance and biomass as well as 

phytoplankton and microphytobenthos chlorophyll a and TSS concentrations between the two 

estuaries. One way ANOVA was performed to get simple differences between ML and MP and this 

was not added as a third factor because it could not provide valuable effect on the interaction 

output. Also, Underwood (1997) stated that any tests of hypothesis about the main effects can be 

violated by the higher order interaction.  

 

Multivariate analysis was performed due to its ability to take into account multiple response 

variables (abundance and species composition) simultaneously unlike in univariate ANOVAs. This 

analysis helps in detecting levels of similarities and dissimilarities in species composition within 

and between sampling stations. Group differences on response variables considered simultaneously 

were determined. Multivariate analysis was conducted using PRIMER (Plymouth Routines In 

Multivariate Ecological Research) statistical package, version 6 (Clarke and Gorley 2006). Analysis 

was performed on abundance data and all data were square root transformed. Similarity of stations 

was calculated using Bray-Curtis similarity. Similarity Profile (SIMPROF) analysis was performed 

to determine groups of stations in a dendrogram that could not be significantly differentiated from 

each other. 

 

Two way ANOVA was applied to test for differences in zooplankton P content between species and 

stations (note: only samples from May (ML) and September (MP) sampling sessions could be 

analysed for P, not enough material for P analysis was obtained during the November sampling 

session). One way ANOVA was performed to test for differences in zooplankton P content between 

estuaries. Three way ANOVA to test for differences in P content between species, stations and 
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estuaries was not performed because of the reasons stated above. Differences in phytoplankton P 

content between stations and sampling sessions within each estuary were also tested using the two 

way ANOVA.  

 

Macrozoobenthos P content data of the Mlalazi Estuary could not satisfy the normality assumption 

even after several transformations. A non parametric two way ANOVA was then performed to test 

for differences in P content between macrozoobenthos groups and sampling sessions within the 

estuary. Macrozoobenthos P content data of the Mpenjati Estuary were square root transformed 

after which the assumptions were satisfied. Two way ANOVA was then performed to test for 

differences in macrozoobenthos P content between macrozoobenthos groups and sampling sessions 

within the estuary. Some macrozoobenthos families and groups were missing in some stations in 

both ML and MP, therefore three way ANOVA could not be performed to test for differences in 

macrozoobenthos P content between macrozoobenthos groups, stations and sampling sessions 

within each estuary because there was no full data points for all factors to be analysed. Non 

parametric One way ANOVA (Kruskal –Wallis Test) was then performed to get simple differences 

in macrozoobenthos P content between the two estuaries.    
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Chapter 3 

Results 

 

Physico-chemical data were compared along the salinity gradient and between the sampling 

sessions for both Mlalazi and Mpenjati estuaries. Biological data including chlorophyll a, 

macrozoobenthos and zooplankton were analysed and their concentration, abundance and biomass 

was compared along the salinity gradient, between sampling sessions and between estuaries. 

Because of the prawn (Callichirus kraussi) big body size, the data for the abundance-biomass as 

well as phosphorus content for these organisms were presented separately and not combined with 

other benthic crustaceans as this was going to mask the biomass of other benthic groups. Nutrient 

concentrations analysed as dissolved inorganic phosphorus, particulate phosphorus, phosphorus in 

sediment and biota were compared along the salinity gradient and between sampling sessions and 

estuaries. Phosphorus content in biota was also compared between taxa, stations, sampling sessions 

and estuaries.  

 

3.1. Physico-chemical characteristics 

Selected physico-chemical parameters measured in the Mlalazi and Mpenjati estuaries are presented 

in Table 3.1 and 3.2 respectively. Temperatures measured in the Mlalazi Estuary were higher during 

the November sampling when compared to the May sampling session (Table 3.1). Bottom 

temperatures of the Mlalazi estuary were generally higher (22.1 to 25.0 
o
C) than the surface 

temperatures (21.3 to 23.0 
o
C) during the May sampling session. During the November sampling 

session bottom temperatures were about the same (24.6 to 25.5 
o
C) as those of the surface (25.2 to 

26.4 
o
C) (Table 3.1).  

 

Temperatures measured in the Mpenjati Estuary were generally lower during the November 

sampling when compared to the September sampling session (Table 3.2). Bottom water 

temperatures recorded in the Mpenjati Estuary during the November sampling session were about 

the same (20.1 to 21.3 
o
C) as those recorded from the surface (20.2 to 20.9 

o
C). During the 

September sampling session, bottom temperatures were generally higher than the surface 

temperatures (Table 3.2). 
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In the Mlalazi Estuary, salinity values were higher during the May sampling when compared to the 

November sampling session (Table 3.1). During the May sampling session, salinities measured 

from the bottom waters (23.4 to 33.4) were higher than those measured from the surface (17 to 28) 

(Table 3.1). During the November sampling session of the Mlalazi Estuary, strong river flow 

resulted in salinities ranging from 0.1 to 0.2 throughout the estuary (Table 3.1). An estuarine 

salinity gradient was observed during May sampling sessions with salinity values increasing 

gradually from the upper towards the lower reaches (Table 3.1). 

 

In the Mpenjati Estuary salinity values were higher during the September when compared to the 

November sampling session. Salinities measured during the September sampling session were 

higher in the bottom (31.2 to 31.4) when compared to the surface waters (4.4 to 25.8) (Table 3.2). 

Salinities recorded during the November sampling session were generally higher in the bottom 

when compared to the surface waters. During the November sampling session of the Mpenjati 

Estuary, strong river flow resulted in salinities ranging from 0.1 to 0.6 throughout the estuary. An 

estuarine salinity gradient was observed during both September and November sampling sessions 

with salinities increasing from the upper towards the lower reaches (Table 3.2). 
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Table 3.1: Surface and bottom measurements of temperature and salinity during May and 

November (2011) sampling sessions in the Mlalazi Estuary. 

 

 

 

 

 

Table 3.2: Surface and bottom measurements of temperature and salinity during September and 

November (2011) sampling sessions in the Mpenjati Estuary. 

 

 
 

Estuary Sampling session Station Parameter Unit measurement Surface Bottom

ML May upper temperature
o
C 23.0 25.0

ML May middle temperature
o
C 21.3 23.3

ML May middle temperature
o
C 21.8 22.8

ML May lower temperature
o
C 22.5 22.1

ML November upper temperature
o
C 25.2 25.0

ML November middle temperature
o
C 25.4 25.2

ML November middle temperature
o
C 26.4 25.5

ML November lower temperature
o
C 26.0 24.6

ML May upper salinity 17.0 23.4

ML May middle salinity 17.1 28.0

ML May middle salinity 21.9 31.2

ML May lower salinity 27.9 33.4

ML November upper salinity 0.1 0.1

ML November middle salinity 0.2 0.2

ML November middle salinity 0.2 0.2

ML November lower salinity 0.2 0.2

Estuary Season Station Parameter Unit measurement Surface Bottom

MP September upper temperature
o
C 21.7 21.5

MP September middle temperature
o
C 21.4 22.0

MP September lower temperature
o
C 22.3 22.6

MP November upper temperature
o
C 20.2 20.3

MP November middle temperature
o
C 20.4 20.1

MP November lower temperature
o
C 21.0 21.3

MP September upper salinity 4.4 31.2

MP September middle salinity 10.3 31.2

MP September lower salinity 25.8 31.4

MP November upper salinity 0.1 0.1

MP November middle salinity 0.1 1.1

MP November lower salinity 0.6 0.6
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3.2. Rainfall patterns 

Rainfall levels in the Mlalazi Estuary as inferred from the Mthunzini gauging station were 22.0 mm 

during May and 241.8 mm during November. Rainfall levels in the Mpenjati Estuary as inferred 

from the Mzimkhulu gauging station were 16.2 mm during September and 302.6 mm during 

November (Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Rainfall pattern for the Mlalazi and Mpenjati Estuary during 2011. Data were obtained 

from www.sasa.org.za. Months in which sampling was conducted are underlined. 

 

3.3. Total Suspended Solids (TSS) 

In the Mlalazi Estuary, TSS concentrations were higher during November (48.9 mg·l
-1

 ± 44.3 SD) 

than May (29.3 mg·l
-1 

± 0.9 SD) (Figure 3.2 A). Concentrations of TSS showed no significant 

differences between stations (p = 0.413) and between sampling sessions (p = 0.098) (Table 3.7). 

During both May and November sampling sessions, TSS concentrations showed a general increase 

from the upper to the lower reaches.  

 

In the Mpenjati Estuary, TSS concentrations were higher during November (28.1 mg·l
-1 

± 2.8 SD) 

than September (24.8 mg·l
-1 

± 2.9 SD) (Figure 3.2 B). Total suspended solids concentrations 

showed significant differences between stations (p < 0.0005), and between sampling sessions (p = 

0.020) (Table 3.7). Total suspended solids concentrations recorded in the Mpenjati Estuary during 

both November and September sampling sessions showed a general increase from the upper to the 
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lower reaches (Figure 3.2 B). Total suspended solids concentrations showed significant differences 

between the Mlalazi and Mpenjati estuaries (p = 0.038) (Table 3.7), with the Mlalazi Estuary having 

higher TSS concentrations (range = 8.9 - 100.0 mg·l
-1

) than the Mpenjati Estuary (range = 11.4 - 

31.0 mg·l
-1

) (Figure 3.2). 

 

 

Figure 3.2: Total suspended solids (TSS) recorded in the Mlalazi (A) and Mpenjati (B) Estuary 

during May, September and November sampling sessions. Data represent mean (± SD, 

n = 3). 

 

3.4. Nutrients 

Nutrients concentrations (mg·l
-1

) were calculated into mg·m
-3

and were multiplied by the depth of 

each station to have them in mg·m
-2

. In the Mlalazi Estuary the dissolved inorganic phosphorus 

(DIP) concentrations were higher during May sampling (1696.1 mgP·m
-2 

± 273.2 SD) when 

compared to the November sampling session (62.0 mgP·m
-2 

± 2.0 SD) (Figure 3.3 A). The highest 

DIP concentrations were recorded from the upper reaches during the May sampling (mean of 

1696.1 mgP·m
-2

 ± 273.2 SD), although a clear trend in DIP concentrations along the salinity 

gradient during both May and November sampling sessions was not observed. There were 

significant differences in DIP concentrations between stations (p < 0.0005) and sampling sessions 

(p < 0.0005) (Table 3.8).  

 

In the Mpenjati Estuary DIP concentrations were higher during the September sampling (52.3 

mgP·m
-2

 ± 2·9 SD) when compared to the November sampling session (6.0 mgP·m
-2 

± 0.9 SD) 

(Figure 3.3 B). During the November sampling session DIP concentrations were increasing from the 

upper towards the lower reaches while there was no clear trend in DIP concentrations along the 
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salinity gradient during the September sampling session (Figure 3.3 B). There were significant 

differences in DIP concentrations between sampling stations (p < 0.010) and sampling sessions (p < 

0.0005) (Table 3.8). There were significant differences in DIP concentrations between the Mlalazi 

and Mpenjati estuaries (p < 0.009), with the Mlalazi Estuary having higher (range = 24.0 –2005.7 

mgP·m
-2

) DIP concentrations than the Mpenjati Estuary (range = below detection limit – 62.0) 

(Table 3.8). 

 

Concentrations of nitrate + nitrite combined recorded during the November sampling session in the 

Mlalazi Estuary were generally higher (1103.3 mg·m
-2 

± 46.7 SD) than those recorded during the 

May sampling session (752 mg·m
-2 

± 150.4 SD) (Figure 3.3. C). There was no clear trend in nitrate 

+ nitrite concentrations along the salinity gradient during both sampling sessions but the highest 

concentration was recorded from the upper reaches during the May sampling session (Figure 3.3. 

C). There were significant differences in nitrate + nitrite concentrations between stations (p < 

0.0005) and sampling sessions (p < 0.0005) (Table 3.8). 

 

Concentrations of nitrate + nitrite were generally higher during September (310 mg·m
-2 

± 119.2 SD) 

when compared to November sampling session (207 mg·m
-2 

± 41.0 SD) in the Mpenjati Estuary 

(Figure 3.3 D). Highest concentrations were recorded in the middle reaches during both September 

and November sampling sessions (Figure 3.3 D). There were significant differences between 

sampling stations (p < 0.0005) but there were no significant differences between sampling sessions 

(p = 0.210) (Table 3.8). There were significant differences in nitrate + nitrite concentrations 

between the Mlalazi and Mpenjati estuaries (p < 0.0005), with the Mlalazi Estuary having higher 

concentrations (range = 34.9 - 1190.0 mg·m
-2

) than the Mpenjati Estuary (range = below detection 

limit – 421.0 mg·m
-2

) (Table 3.8). 

 

Ammonia concentrations recorded in the Mlalazi Estuary during May sampling (1696.1 mg·m
-2

 ± 

273.2 SD) were higher than those concentrations recorded during the November sampling session 

(291.3 mg·m
-2 

± 42.6 SD) (Figure 3.3 E). Although there was no clear trend in ammonia 

concentrations in the Mlalazi Estuary along the estuary length during both May and November 

sampling sessions, highest ammonia concentrations were recorded from the upper reaches. There 

were significant differences in ammonia concentrations between stations (p = 0.009) and sampling 

sessions (p = 0.003) (Table 3.8). 
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Ammonia concentrations in the Mpenjati Estuary were generally higher during September (61.5 

mg·m
-2 

± 57.5 SD) when compared to November sampling session (46.7 mg·m
-2

 ± 18.4 SD) (Figure 

3.3 F). There was no clear trend in ammonia concentrations along the salinity gradient during both 

September and November sampling sessions (Figure 3.3 F). There were no significant differences in 

ammonia concentrations between the Mpenjati sampling stations (p = 0.969) as well as sampling 

sessions (p = 0.523) (Table 3.8). There were significant differences in ammonia concentrations 

between the Mlalazi and Mpenjati estuaries (p < 0.0005), with the Mlalazi Estuary having higher 

ammonia concentrations (range = 126.0 – 1489.0 mg·m
-2

) than the Mpenjati Estuary (range = below 

detection limit - 70.5 mg·m
-2

) (Table 3.8). 

 

In the Mlalazi Estuary the P biomass of the total suspended solids (TSS) expressed as particulate 

phosphorus (PP) was higher during the November sampling (1.4 mg·m
-2 

± 0.1 SD) when compared 

to May sampling session (0.9 mg·m
-2 

± 0.1 SD) (Figure 3.4 A). Particulate phosphorus 

concentrations recorded during May and November sampling sessions of the Mlalazi Estuary were 

generally decreasing from the upper towards the lower reaches (Figure 3.4. A). There were 

significant differences in PP biomass between stations (p < 0.0005) and sampling sessions (p < 

0.0005) (Table 3.8). Phosphorus content (%) in TSS was higher during May (0.1 % ± 0.02 SD) 

when compared to November (0.05 % ± 0.005 SD) (Figure 3.4 C). The percentage P content was 

decreasing from the upper to the lower reaches during May while the opposite was observed during 

November (Figure 3.4 C). 

 

Particulate phosphorus concentrations recorded in the Mpenjati Estuary was generally higher during 

the November sampling (1.8 mg·m
-2 

± 0.5 SD) when compared to the September sampling session 

(0.8 mg·m
-2 

± 0.03 SD) (Figure 3.4 B). There was no clear trend in PP concentrations along the 

salinity gradient during both September and November sampling sessions. There were significant 

differences in PP concentrations between stations (p = 0.030) as well as sampling sessions (p < 

0.0005) (Table 3.8). There were no significant differences in PP concentrations between the Mlalazi 

and Mpenjati estuaries (p = 0.460) (Table 3. 8). Percentage phosphorus content was generally 

higher during September (0.08 % ± 0.003 SD) than November (0.07 % ± 0.02 SD). During 

November, phosphorus content (%) was decreasing from the upper to the lower reaches with no 

clear trend in TSS P content during September (Figure 3.4 D). 
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Figure 3.3: Dissolved inorganic phosphorus (DIP), NO2 + NO3 and ammonia concentrations 

recorded in the Mlalazi (ML) and Mpenjati (MP) estuaries during May, September and 

November sampling sessions of 2011. Data represent mean (± SD, n = 3). 

 

 

upper middle middle lower
0

500

1000

1500

2000

2500

May

November

ML

Station

D
IP

 (
m

g
P

⋅⋅ ⋅⋅m
-2

)
A

upper middle lower
0

20

40

60

80

September

 November

MP

Station

D
IP

 (
m

g
P

⋅⋅ ⋅⋅m
-2

)

B

upper middle middle lower
0

500

1000

1500

2000

2500

 May

November

ML

Station

A
m

m
o

n
ia

 (
m

g
⋅⋅ ⋅⋅m

-2
)

E

upper middle lower
0

50

100

150

 September

November

MP

Station

A
m

m
o
n
ia

 (
m

g
⋅⋅ ⋅⋅m

-2
)

F

upper middle middle lower
0

500

1000

1500

 May

 November

a a
a a

b b b b

ML

Station

N
O

3
+

N
O

2
 (

m
g

⋅⋅ ⋅⋅m
-2

)

C

upper middle lower
0

100

200

300

400

500

September

 November

a

a

b b
a a

MP

Station

N
O

2
+

N
O

3
 (

m
g

⋅⋅ ⋅⋅m
-2

)

D



40 

 

 

 

 

Figure 3.4: Particulate phosphorus (PP) concentrations ( A and B) and percentage phosphorus 

content (C and D) measured in the water column of the Mlalazi (ML) and Mpenjati 

(MP) estuaries during May, September and November sampling sessions of 2011. In A 

and B, data represent mean (± SD, n = 3). 

 

3.5. Phytoplankton and microphytobenthos 

In the Mlalazi Estuary higher phytoplankton chlorophyll a concentrations were recorded during the 

May sampling (1.1 µg·l
-1

 ± 0.1 SD) when compared to the November sampling session (0.3 µg·l
-1

 ± 

0.1 SD) (Figure 3.5 A). During November, the phytoplankton chlorophyll a concentration was 

generally increasing from the upper towards the lower reaches, however, there was no clear trend in 

phytoplankton chlorophyll a concentration along the salinity gradient during the May sampling 

session (Figure 3.5. A). There were significant differences in phytoplankton chlorophyll a 

concentrations of the Mlalazi Estuary between stations (p < 0.0005) and sampling sessions (p < 

0.0005) (Table 3.7). 
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In the Mpenjati Estuary higher phytoplankton chlorophyll a concentrations were recorded during 

the September sampling (0.8 µg·l
-1

 ± 0.1 SD) when compared to the November sampling session 

(0.03 µg·l
-1

 ± 0.06 SD) (Figure 3.5. B). There was no clear trend in phytoplankton chlorophyll a 

concentration along the salinity gradient during both September and November sampling sessions. 

There were significant differences in phytoplankton chlorophyll a concentration between stations (p 

= 0.004) and sampling sessions (p < 0.0005) (Table 3.7). There were no significant differences in 

phytoplankton chlorophyll a concentrations between the Mlalazi and Mpenjati estuaries (p = 0.304). 

 

In the Mlalazi Estuary higher microphytobenthic chlorophyll a concentrations were recorded during 

the November sampling when compared to the May sampling session (Figure 3.5 C). During the 

November sampling, microphytobenthic chlorophyll a concentrations in the upper reaches were 

below the detection limit. There were significant differences in the microphytobenthic chlorophyll a 

concentrations of the Mlalazi Estuary between sampling sessions (p = 0.002) (Table 3.7). 

Comparisons between the stations were not performed since data from the upper reaches were 

missing (Table 3.7).  

 

In the Mpenjati Estuary, higher microphytobenthic chlorophyll a concentrations were recorded 

during the November sampling when compared to the September sampling session (Figure 3.5 D). 

During the November sampling, microphytobenthic chlorophyll a concentrations in the lower 

reaches were below the detection limit. There were significant differences in microphytobenthic 

chlorophyll a concentrations between sampling sessions (p = 0.001). Comparisons between the 

stations were not performed since data from the lower reaches were missing. There were no 

significant differences in microphytobenthic chlorophyll a concentrations between the Mlalazi and 

Mpenjati estuaries (p = 0.875) (Table 3.7). 
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Figure 3.5: Chlorophyll a concentrations for phytoplankton (A and B) and microphytobenthos (C 

and D) in the Mlalazi (ML) and Mpenjati (MP) estuaries during May, September and 

November sampling sessions of 2011. Data represent mean (± SD, n = 3). 
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Mesopodopsis africana, Gastrosaccus psammodytes, nauplii and jelly fish. Taxa recorded during 

November were A. natalensis, P. hessei and zoea larvae. No clear trend in number of taxa along the 

salinity gradient was apparent during both sampling sessions (Figure 3.6 A). 
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the September sampling session, taxa in the Mpenjati Estuary were found throughout the estuarine 

system except for M. Africana which was recorded only in the upper reaches. The number of taxa 

was decreasing from the upper towards the lower reaches during September while the opposite was 

observed during November (Figure 3.6 B). Two taxa that numerically dominated the zooplankton 

community of the Mlalazi and Mpenjati estuaries during May, September and November sampling 

sessions were the copepods A. Natalensis and P. hessei. Combined, these two taxa contributed more 

than 90% of the total abundance from all stations in both estuaries. 

 

In the Mlalazi Estuary zooplankton abundance was significantly higher during May (23718.1 

individuals·m
-3 

± 15689.6 SD) than November (1041.4 individuals·m
-3 

± 506.4 SD) (Figure 3.6 C). 

Zooplankton mean abundance of the Mlalazi Estuary was generally increasing from the upper 

towards the lower reaches (Figure 3.6 C). No significant differences were observed in zooplankton 

abundance of the Mlalazi Estuary between stations (p = 0.151) but there were significant differences 

in abundance between sampling sessions (p = 0.003) (Table 3.7). 

 

In the Mpenjati Estuary zooplankton mean abundance was higher during September (8890.7 

individuals·m
-3 

± 1769.6 SD) than November (1786.4 individuals·m
-3 

± 366.7 SD) (Figure 3.6 D). 

During both September and November sampling sessions, highest mean abundances were recorded 

from the middle reaches (Figure 3.6 D). There were significant differences in zooplankton 

abundance in the Mpenjati Estuary between stations (p = 0.007) and sampling sessions (p = 0.002) 

(Table 3.7). There were no significant differences in zooplankton abundance between the Mlalazi 

and Mpenjati Estuary (p = 0.217) (Table 3.7). 
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Figure 3.6: Number of taxa (A and B) and abundance (C and D) for zooplankton in the Mlalazi 

(ML) and Mpenjati (MP) estuaries during May, September and November sampling 

sessions of 2011. Data represent mean (± SD, n = 2). 

 

3.6.2. Biomass 

In the Mlalazi Estuary higher biomass was recorded in May (8.2 mg dry weight·m
-3 

± 2.3 SD) than 

November (0.2 mg dry weight·m
-3

 ± 0.1 SD) (Figure 3.7 A). Zooplankton biomass was decreasing 

from the upper towards the lower reaches during the May sampling session (Figure 3.7 A). There 

were significant differences in zooplankton biomass of the Mlalazi Estuary between stations (p = 

0.034) as well as sampling sessions (p < 0.0005) (Table 3.7). 

 

 In the Mpenjati Estuary higher zooplankton biomass was recorded during September (8.9 mg dry 

weight·m
-3

 ± 1.5 SD) than November (0.4 mg dry weight·m
-3

 ± 0.01 SD) (Figure 3.7 B). There were 

no significant differences in zooplankton biomass between stations (p = 0.052), however, there were 

significant differences in zooplankton biomass between sampling sessions (p = 0.003) (Table 3.7). 
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There were no significant differences in zooplankton biomass between the Mlalazi and Mpenjati 

estuaries (p = 0.974) (Table 3.7). 

 

 

Figure 3.7: Zooplankton biomass (dry weight) of the Mlalazi (A) and Mpenjati (B) estuaries during 

May, September and November sampling sessions of 2011. Data represent mean (± SD, 

n = 2). 

 

3.6.3. Abundance biomass relationship 

In both Mlalazi and Mpenjati estuaries, zooplankton biomass was concurrently decreasing with 

abundance during May, September and November sampling sessions (Figure 3.8 and 3.9 A and B). 

Relatively low biomass was measured during November which was associated with low abundance 

recorded during this sampling session in both estuaries (Figure 3.8 and 3.9 A and B). Mysid 

Mesopodopsis Africana showed very low abundance with a significantly higher biomass in the 

Mlalazi Estuary during May (Figure 3.8 A). In the Mpenjati Estuary, biomass and abundance 

showed a similar pattern (Figure 3.6 and 3.7). In the Mlalazi Estuary, however, biomass and 

abundance showed an opposite pattern (Figure 3.6 and 3.7). 
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Figure 3.8: Relationship between zooplankton abundance and biomass in the Mlalazi Estuary during 

May (A) and November (B) sampling sessions of 2011. 

 

                  

 

Figure 3.9: Relationship between zooplankton abundance and biomass in the Mpenjati Estuary 

during September (A) and November (B) sampling sessions of 2011. 
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3.7. Macrozoobenthos community analysis 

3.7.1 .Community composition, abundance and community assemblage patterns 

A total of 19 and 21 families were recorded in the Mlalazi Estuary out of 10563 and 3241 

individuals during May and November sampling sessions respectively (Table 3.3 and 3.4). The 

most abundant orders during May were Polychaeta, Tanaidacea and Gastropoda contributing 67 %, 

19 % and 9 % respectively while Amphipoda, Bivalvia and Polychaeta were the most dominant 

groups during November contributing 34 %, 29 % and 27 % respectively (Figure 3.10 A and B). 

The number of families was generally increasing from the upper towards the lower reaches during 

both May and November sampling sessions (Figure 3.11 A).  

 

In the Mpenjati Estuary a total of 13 families were recorded out of 7862 and 10008 individuals 

during September and November sampling sessions respectively (Table 3.5 and 3.6). The most 

dominant orders during the September sampling session were Polychaeta, Amphipoda and Isopoda 

contributing 94 %, 3 % and 2 % respectively while the November sampling session was dominated 

by Polychaeta, Amphipoda and Isopoda contributing 76 %, 20 % and 3 % respectively (Figure 3.11 

C and D). The number of families was generally decreasing from the upper towards the lower 

reaches of the estuary (Figure 3.11 B).  

 

Macrozoobenthos taxa abundance was generally higher during the May sampling when compared to 

the November sampling session in the Mlalazi estuary (Figure 3.11 C). Mean abundance showed no 

significant difference between stations (p = 0.615), however, there was a significant difference 

between May and November sampling sessions (p < 0.0005) (Table 3.7). 

 

In the Mpenjati Estuary, abundance of taxa was generally higher during the November sampling 

when compared to the September sampling session. There were no significant differences in 

abundance between the stations (p = 0.683) but there were significant differences between sampling 

sessions (p = 0.0333) (Table 3.7). During the September sampling session abundance was 

increasing from the upper towards the lower reaches while the opposite trend was apparent during 

the November sampling session (Figure 3.11 D). There was a significant difference (p = 0.003) in 

abundance between the Mlalazi and Mpenjati estuaries (Table 3.7). Mpenjati Estuary generally had 

a higher overall abundance than the Mlalazi Estuary during all sampling sessions (Figure 3.11 C 

and D). 
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The macrozoobenthos community of the Mlalazi Estuary separated into five groups after cluster 

analysis (Figure 3.12). Generally, there was a seasonal separation in the Mlalazi stations (Figure 

3.12). Assemblages in the upper and middle reaches were closely clustered in May (Figure 12). 

During the May sampling session, average similarity within stations ranged from 59 - 80 %, with 

the upper reaches displaying highest similarity. Average dissimilarity between stations ranged from 

43 - 74 %. Stations in the upper reaches had the lowest dissimilarity (43 %) while the highest 

dissimilarity was observed between stations in the upper and lower reaches. During the November 

sampling session, average similarity within stations ranged from 46 - 66 % with lower reaches 

displaying the highest similarity. Average dissimilarity between stations ranged between 58 – 86 %. 

Lowest average dissimilarity was observed from stations in the upper reaches while the highest 

dissimilarity was observed between stations in the upper and lower reaches. 

 

The macrozoobenthos community of the Mpenjati Estuary separated into five groups after cluster 

analysis, with one outlier (Figure 3.13). There was a seasonal separation in all the groups identified 

(Figure 3.13). Average similarity within the stations ranged from 62 - 81 % during September, with 

the lower reaches having the highest similarity. Average dissimilarity between the stations was low, 

ranging from 35 - 40 %. The middle and lower reaches had the lowest dissimilarity while the upper 

and lower reaches had the highest dissimilarity. During November, average similarity within the 

stations ranged from 67 - 85 %, with the middle reaches having the highest similarity. Average 

dissimilarity between the stations ranged from 42 - 59 %. The upper and middles reaches had the 

lowest dissimilarity while the middle and lower reaches displayed the highest dissimilarity. 

 

The multivariate analysis results did not differ from the ANOVA results in a sense that both 

analyses showed differences between the sampling sessions with ANOVA results showing 

significant differences between sampling sessions and the dendrogram showing seasonal separation 

in all groups identified from both the Mlalazi and Mpenjati estuaries. 

 

3.7.2. Biomass 

In the Mlalazi Estuary biomass was higher during May compared to November (Figure 3.14. A). 

There was no clear trend in biomass along the salinity gradient during both May and November. 

There were significant differences in biomass between stations (p = 0.026) but there was no 

significant difference between sampling sessions (p = 0.68) (Table 3.7). 
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In the Mpenjati Estuary biomass was higher during November than September (Figure 3.14. B). 

There was an increase in biomass from the upper towards the lower reaches during both September 

and November sampling sessions (Figure 3.14. B). There were significant differences in biomass 

between stations (p = 0.003) and sampling sessions (p = 0.017) (Table 3.7). There was a significant 

difference in biomass between the Mlalazi and Mpenjati estuaries (p = 0.020) (Table 3.7). 

 

3.7.3. Abundance-biomass relationship 

Abundance and biomass of selected macrozoobenthos families in the Mlalazi and Mpenjati 

estuaries is presented in Figure 3.15 (A, B, C and D). Other families had very high abundance with 

low biomass in terms of dry weight. For example, Spionidae in the Mlalazi Estuary during the May 

sampling session had a mean abundance of 1274.0 individuals·m
-2 

± 1224.0 SD with the mean 

biomass of 1.4 mg dry weight·m
-2 

± 0.9 SD (Figure 3.15). Other families had low abundance but 

contributed high biomass in terms of dry weight, e.g. Tellinidae in the Mlalazi Estuary during the 

May sampling session had the abundance of 13.0 individuals·m
-2 

± 17.9 SD with mean biomass of 

10.5 mg dry weight·m
-2

 ± 20.1 SD without shell (Figure 3.17). The polychaetes and molluscs 

generally contributed higher biomass than the crustaceans during both May and November 

sampling sessions of the Mlalazi Estuary (Figure 3.15 A and B) and during the November sampling 

session in the Mpenjati Estuary (Figure 3.15 D). Data generated by the third year students revealed 

that abundance and biomass of Callichirus kraussi prawns of the Mpenjati Estuary was higher at the 

lower when compared to the middle reaches (Figure 3.33 A) although there were no statistically 

significant differences in both abundance (p = 0.077) and biomass (p = 0.239) between the reaches. 

Overall, the prawn biomass obtained from the third year students data was 500 fold higher than that 

of other benthic groups combined (data of the present study) in this system. 
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Figure 3.10: Dominant orders recorded in the Mlalazi and Mpenjati estuaries during the May, 

September and November sampling sessions of 2011. All taxa which contributed less 

than 2 % of the total abundance were grouped together as “Other”. 

 

 

Figure 3.11: Number of taxa (A and B) and abundances (C and D) for macrozoobenthos of the 

Mlalazi (ML) and Mpenjati (MP) estuaries during May, September and November 

sampling sessions. Data represent mean (± SD, n = 3). 
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Figure 3.12: A classification (cluster) dendrogram showing five groups identified by a SIMPROF 

test in the Mlalazi Estuary during May and November sampling sessions. Letters (A, 

B, C, D and E) indicate stations that could not be significantly differentiated from 

each other (p < 0.05). Codes in the x-axis depict the estuary (ML), sampling session 

(D = May, W = November) and sampling station (1-3 = station one, replicate 3). 
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Figure 3.13: A classification (cluster) dendrogram showing five groups identified by a SIMPROF 

test in the Mpenjati Estuary during September and November sampling sessions. 

Letters (A, B, C, D and E) indicate stations that could not be significantly 

differentiated from each other (p < 0.05). Codes in the x-axis depict the estuary (MP), 

sampling session (D = September, W = November) and sampling station (1-3 = 

station one, replicate 3). 

 

 

Figure 3.14: Macrozoobenthos biomass (dry weight) of Mlalazi (A) and Mpenjati (B) estuaries 

during May, September and November sampling sessions of 2011. 
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Figure 3.15: Abundance and biomass of macrozoobenthos of selected families (with dry weights 

which could be detected by the balance) in the Mlalazi (A and B) and Mpenjati (C and 

D) estuaries during May, September and November sampling sessions of 2011. 
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Table 3.3: Mean abundance (No·m
-2

 ± SD, n = 3) of the benthic taxa recorded at four stations in the 

Mlalazi Estuary during May 2011. Five most abundant taxa in percentage are shown in 

bold. 

 

 

 

 

 

 

ML ML

Abundance SD Abundance SD Abundance SD Abundance SD TOTAL %contrib.

TAXA

POLYCHATA

Spionidae 1120.0 669.9 3048.9 882.1 751.1 189.2 177.8 90.8 5097.8 48.3

Sabellidae 57.8 60.1 142.2 136.8 62.2 3.8 262.2 2.5

Nereididae 57.8 27.8 435.6 7.7 57.8 42.9 4.4 7.7 555.6 5.3

Glyceridae 226.7 294.8 608.9 480.1 222.2 362.1 35.6 27.8 1093.3 10.3

Cirratulidae 40.0 35.3 31.1 53.9 71.1 0.7

Lumbrineridae 4.4 7.7 22.2 27.8 26.7 0.3

Capitellidae 40.0 40.0 40.0 0.4

Syllidae 13.3 23.1 13.3 0.1

 TANAIDACEA

Apseudidae 248.9 385.1 26.7 23.1 48.9 7.7 1724.4 610.2 2048.9 19.4

AMPHIPODA

Corophiidae 4.4 7.7 4.4 0.0

DECAPODA

Callichirus kraussi 4.4 7.7 4.4 0.0

BIVALVIA

Mytilidae 226.7 313.5 226.7 2.1

Tellinidae 26.7 23.1 26.7 13.3 53.3 0.5

Solenidae 4.4 7.7 4.4 7.7 8.9 0.1

Mactridae 40.0 23.1 31.1 31.1 71.1 0.7

Veneridae 4.4 7.7 4.4 0.0

Donacidae 4.4 7.7 4.4 0.0

GASTROPODA

Assimineidae 924.4 162.9 48.1 48.1 972.5 9.2

Nassariidae 4.4 7.7 4.4 0.0

TOTAL 1937.8 4297.8 2160.0 2168.1 10563.6

NO OF TAXA 6.0 8.0 11.0 14.0 19.0

ML 3 ML 4ML 1 ML 2
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Table 3.4: Mean abundance (No·m
-2

 ± SD, n = 3) of the benthic taxa recorded at four stations in the 

Mlalazi Estuary during November 2011. The five most abundant taxa in percentage are 

shown in bold. 

 

 

 

 

 

ML ML

Abundance SD Abundance SD Abundance SD Abundance SD TOTAL % cntrib.

TAXA

POLYCHATA

Spionidae 8.9 15.4 200.0 186.7 208.9 6.4

Sabellidae 4.4 7.7 4.4 0.1

Nereididae 222.2 192.9 137.8 129.5 13.3 13.3 373.3 11.5

Glyceridae 120.0 81.1 120.0 3.7

Cirratulidae 8.9 15.4 8.9 0.3

Lumbrineridae 13.3 13.3 0.0 13.3 0.4

Syllidae 4.4 7.7 0.0 4.4 0.1

 TANAIDACEA

Apseudidae 26.7 46.2 542.2 116.5 568.9 17.6

AMPHIPODA

Corophiidae 724.4 643.0 155.6 136.8 40.0 23.1 4.4 7.7 924.4 28.5

ISOPODA

Cirolanidae 4.4 7.7 4.4 7.7 8.9 0.3

Anthuridae 22.2 20.4 22.2 0.7

DECAPODA

Hymenosomatidae 8.9 15.4 8.9 0.3

Palaemonidae 4.4 7.7 4.4 0.1

Goneplacidae 4.4 7.7 4.4 0.1

 MYSIDA

Mesopodopsis africana 4.4 7.7 4.4 0.1

BIVALVIA

Mytilidae 75.6 73.4 293.3 257.2 248.9 431.1 617.8 19.1

Tellinidae 8.9 15.4 4.4 7.7 48.9 20.4 62.2 1.9

Veneridae 4.4 7.7 48.9 7.7 8.9 7.7 62.2 1.9

Lucinidae 8.9 15.4 17.8 15.4 31.1 42.9 57.8 1.8

GASTROPODA

Nassariidae 4.4 7.7 22.2 20.4 54.7 1.7

Littorinidae 13.3 23.1 75.6 20.4 17.8 15.4 106.7 3.3

TOTAL 1080.0 657.8 466.7 1008.9 3241.4

NO. OF TAXA 6.0 12.0 9.0 13.0 21.0

ML 1 ML 2 ML 3 ML 4
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Table 3.5: Mean abundance (No·m
-2

 ± SD, n = 3) of the benthic taxa recorded at three stations in 

the Mpenjati Estuary during September 2011. The five most abundant taxa in percentage 

are shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

MP MP

TAXA Abundance SD Abundance SD Abundance SD TOTAL % contrib.

POLYCHATA

Spionidae 880.0 74.2 1226.7 773.0 1480.0 220.3 3586.7 45.7

Sabellidae 31.1 15.4 160.0 167.1 248.9 215.5 440.0 5.6

Nereididae 177.8 393.1 604.4 393.1 662.2 303.3 1444.4 18.4

Lumbrineridae 88.9 27.8 240.0 70.6 1613.3 406.0 1942.2 24.7

AMPHIPODA

Corophiidae 4.4 7.7 160.0 186.7 8.9 15.4 173.3 2.2

Urothoidae 4.4 7.7 4.4 0.1

Lysianassidae 4.4 7.7 4.4 0.1

ISOPODA

Cirolanidae 22.2 38.5 146.7 161.7 8.9 15.4 177.8 2.3

DECAPODA

Callichirus kraussi 8.9 15.4 22.2 38.5 31.1 0.4

Hymenosomatidae 8.9 15.4 8.9 0.1

 MYSIDA

Gastrosaccus psammodytes 17.8 7.7 8.9 7.7 26.7 0.3

BIVALVIA

Tellinidae 4.4 7.7 4.4 7.7 8.9 0.1

Donacidae 4.4 7.7 4.4 0.1

TOTAL 1217.8 2577.8 4057.8 7853.3

NO OF TAXA 9.0 11.0 10.0 13.0

MP 1 MP 2 MP 3
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Table 3.6: Mean abundance (No·m
-2

 ± SD, n = 3) of the benthic taxa recorded at three stations in 

the Mpenjati Estuary during November 2011. The five most abundant taxa in percentage 

are shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

MP MP

TAXA Abundance SD Abundance SD Abundance SD TOTAL % contrib.

POLYCHATA

Spionidae 2555.6 2738.3 2462.2 316.7 293.3 185.2 5311.1 53.3

Sabellidae 93.3 81.1 751.1 250.3 53.3 92.4 897.8 9.0

Nereididae 457.8 141.3 146.7 58.1 773.3 188.1 1377.8 13.8

Lumbrineridae 13.3 13.3 13.3 0.1

 TANAIDACEA

Apseudidae 57.8 27.8 57.8 0.6

AMPHIPODA

Corophiidae 511.1 343.9 35.6 20.4 93.3 53.3 640.0 6.4

Urothoidae 1262.2 384.9 1262.2 12.7

 CUMACEA

Nannastacidae 4.4 7.7 4.4 0.0

ISOPODA

Cirolanidae 13.3 13.3 164.4 108.6 44.4 20.4 222.2 2.2

Anthuridae 111.1 60.1 13.3 23.1 124.4 1.2

Idoteidae 8.9 7.7 8.9 0.1

BIVALVIA

Mytilidae 13.3 23.1 13.3 0.1

Tellinidae 4.4 7.7 22.2 7.7 26.7 0.3

TOTAL 3831.1 3608.9 2520.0 9960.0

NO OF TAXA 12.0 9.0 7.0 13.0

MP 1 MP 2 MP 3
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Table 3.7: Summary of the results of analysis of variance (ANOVA) for total suspended solids 

(TSS), chlorophyll a concentrations as well as macrozoobenthos and zooplankton 

abundance and biomass in the Mlalazi and Mpenjati estuaries. All p values representing 

significant differences are highlighted in grey. 

 

 

 

Variable Comparisons F p df

Total suspended solids (TSS) (mg·l
-1

) Stations - ML 1.01 0.413 3

Sampling sessions - ML 3.08 0.098 1

Stations -MP 77.98 < 0.0005 2

Sampling sessions - MP 7.23 0.020 1

Estuaries (ML and MP) 4.68 0.038 1

Chlorophyll a (µg·l
-1

) Stations - ML 50.93 < 0.0005 3

Sampling sessions - ML 57.03 < 0.0005 1

Stations - MP 8.81 0.004 2

Sampling sessions - MP 177.92 < 0.0005 1

Estuaries (ML and MP) 1.09 0.304 1

Microphytobenthos (µg·m
-2

) Sampling sessions - ML 13.48 0.002 1

Sampling sessions - MP 19.19 0.001 1

Estuaries (ML and MP) 0.03 0.875 1

Zooplankton abundance (no·m
-3

) Stations - ML 12.24 0.151 3

Sampling sessions - ML 17.24 0.003 1

Stations - MP 12.68 0.007 2

Sampling sessions - MP 27.53 0.002 1

Estauries - (ML and MP) 1.62 0.217 1

Zooplankton biomass (mg dry weight·m
-3

) Stations - ML 4.76 0.034 3

Sampling sessions - ML 59.92 < 0.0005 1

Stations - MP 5.01 0.052 2

Sampling sessions - MP 22.06 0.003 1

Estuaries (ML and MP) 0.00 0.974 1

Macrozoobenthos abundance (no·m
-2

) Stations - ML 0.62 0.615 3

Sampling sessions - ML 21.48 < 0.0005 1

Stations - MP 0.39 0.683 3

Sampling sessions - MP 1.02 0.333 1

Estuaries (ML and MP) 12.54 0.003 1

Macrozoobenthos biomass (mg·m
-2

) Stations - ML 4.03 0.026 3

Sampling sessions - ML 3.84 0.086 1

Stations - MP 9.62 0.003 3

Station - MP 7.74 0.017 1

Estuaries (ML and MP) 5.94 0.020 1
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Table 3.8: Summary of the results of analysis of variance (ANOVA) for dissolved inorganic 

nutrients, particulate phosphorus and phosphorus content (%) in biota for the Mlalazi and 

Mpenjati estuaries. All p values representing significant differences are highlighted in 

grey. 

n  

Variable Comparisons F p df

Dissolved inorganic phosphorus (DIP) (mg·m
-2

) Stations - ML 55.69 < 0.0005 3

Sampling sessions - ML 212.13 < 0.0005 1

Stations - MP 6.49 0.010 2

Sampling sessions - MP 42.16 < 0.0005 1

Estuaries (ML and MP) 7.43 0.009 1

Nitrate + Nitrite (mg·m
-2

) Stations - ML 12.99 < 0.0005 3

Sampling sessions - ML 41.85 < 0.0005 1

Stations - MP 20.02 < 0.0005 2

Sampling sessions - MP 1.75 0.210 1

Estuaries (ML and MP) 37.98 < 0.0005 1

Ammonia (mg·m
-2

) Stations - ML 5.11 0.009 3

Sampling sessions - ML 11.64 0.003 1

Stations - MP 0.32 0.969 2

Sampling sessions - MP 0.43 0.523 1

Estuaries (ML and MP) 133.67 < 0.0005 1

Particulate phosphorus (mg·m
-2

) Stations - ML 24.42 < 0.0005 3

Sampling sessions - ML 319.48 < 0.0005 1

Stations - MP 4.75 0.030 2

Sampling sessions - MP 60.90 < 0.0005 1

Estuaries (ML and MP) 0.56 0.460 1

Phytoplankton phosphorus content  (mg·m
-2

) Stations - ML 45.60 < 0.0005 2

Sampling sessions - ML 60.25 < 0.0005 1

Stations - MP 3.34 0.073 2

Sampling sessions - MP 80.60 < 0.0005 2

Phosphorus content (%) in zooplankton Taxa - ML 1.70 0.236 2

Stations - ML 3.52 0.062 3

Taxa - MP 0.29 0.610 1

Stations - MP 0.960 0.445 2

Estuaries (ML and MP) 1.96 0.174 1

Phosphorus content (%) in macrozoobenthos Taxa - ML 0.89 0.415 2

Sampling sessions - ML 0.04 0.852 1

Taxa - MP 2.83 0.660 2

Sampling sessions - MP 2.73 0.104 1

Kruskal Wallis Test (N = 124 for ML, N = 69 for MP) Estuaries (ML and MP) 0.001 1
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3.8. Phosphorus distribution in biota and sediment 

Macrozoobenthos, zooplankton and sediment phosphorus content was compared between different 

groups (macrozoobenthos), species (zooplankton), and stations (sediment, zooplankton and 

phytoplankton). Comparisons between sampling sessions and estuaries were also performed. 

 

3.8.1. Phytoplankton 

Phytoplankton phosphorus content roughly estimated from the Redfield ratio (C:P = 106:1) was 

higher during May (1.7 mg·m
-2 

± 0.1 SD) than November (0.1 mg·m
-2 

± 0.2 SD) in the Mlalazi 

Estuary (Figure 3.16 A). The phytoplankton P content was generally increasing from the upper 

towards the lower reaches during both May and November sampling sessions (Figure 3.16 A). 

There were significant differences in phytoplankton P content between stations (p < 0.0005) and 

sampling sessions (p < 0.0005) of the Mlalazi Estuary (Table 3.8). 

 

In the Mpenjati Estuary, estimates of phytoplankton P content were higher during September (0.7 

mg·m
-2 

± 0.2 SD) when compared to the November sampling session (0.04 mg·m
-2 

± 0.01 SD) 

(Figure 3.16 B). During the September sampling session, phytoplankton P content was decreasing 

from the upper towards the lower reaches with no clear trend in phytoplankton P content along the 

estuary length during the November sampling session (figure 3.16 B). There were no significant 

differences in phytoplankton P content between stations (p = 0.073) but there were significant 

differences between the sampling sessions (p < 0.0005) (Table 3.8). There were significant 

differences in phytoplankton P content between the Mlalazi and Mpenjati estuaries (p = 0.042) 

(Table 3.8). 

 

In the Mlalazi Estuary estimates of microphytobenthos P content estimated from the Redfield ratio 

(C:P = 106:1) were higher during November (0.9 mg·m
-2 

± 0.6 SD) than May (0.01 mg·m
-2 

± 0.001 

SD) (Figure 3.17 A). Microphytobenthos P content of the Mlalazi Estuary was generally decreasing 

from the upper towards the lower reaches during November but there was no clear trend along the 

estuary length during May (Figure 3.17 A). 

 

Estimates of microphytobenthos P content of the Mpenjati Estuary were higher during November 

(1.7 mg·m
-2 

± 0.9 SD) than September (0.001 mg·m
-2 

± 0.001 SD) (Figure 3.17 B). 

Microphytobenthos P content was generally decreasing from the upper towards the lower reaches 
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during November but there was no clear trend along the salinity gradient during September (Figure 

3.17 B). There was a significant difference in microphytobenthos P content between the Mlalazi and 

Mpenjati estuaries (p = 0.022) and between sampling sessions (p < 0.0005) (Table 3.8). 

 

 

Figure 3.16: Phytoplankton phosphorus content estimated from the Redfield ratio for the Mlalazi 

(A) and Mpenjati (B) estuaries during May, September and November sampling 

sessions of 2011. Data represent mean (± SD, n = 3). 

 

 

Figure 3.17: Microphytobenthos phosphorus content estimated from the Redfield ratio for the 

Mlalazi (A) and Mpenjati (B) estuaries during May, September and November 

sampling sessions of 2011. Data represent mean (± SD, n = 3).  
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3.8.2. Zooplankton 

The copepod A. Natalensis comprised the highest mean percentage phosphorus content (1.7 %) of 

all zooplankton taxa in the Mlalazi Estuary during May (Figure 3.18 A). The copepod P.hessei had 

comparatively high biomass in terms of dry weight but displayed lower P biomass (Figure 3.19 A 

and B). There were no significant differences in zooplankton P content between taxa (p = 0.236) 

and stations (p = 0.062) (Table 3.8). Phosphorus content for zooplankton could not be measured 

during November sampling in both estuaries due to low zooplankton biomasses which lead to 

insufficient material for digestion. Consequently, P content could not be compared between 

different sampling sessions. 

 

Pseudodiaptomus hessei comprised the highest mean percentage phosphorus content (0.6 %) of all 

taxa in the Mpenjati Estuary during September (Figure 3.18 B). Pseudodiaptomus hessei had the 

highest biomass in terms of dry weight and comprised the highest phosphorus biomass of all 

zooplankton taxa in the Mpenjati Estuary during September (Figure 3.20 A and B). There were no 

significant differences in P content between different zooplankton taxa (p = 0. 610) and stations (p 

= 0.445) (Table 3.8). No significant differences were observed in zooplankton phosphorus content 

between the two estuaries (p = 0.174) (Table 3.8). In general, the percentage phosphorus content of 

zooplankton measured in the Mlalazi Estuary (range = 0.1-1.7 %) were higher than those measured 

in the Mpenjati Estuary (range = 0.2 - 0.6 %). 

 

 

Figure 3.18: Phosphorus content (%) in different zooplankton taxa in the Mlalazi (A) and Mpenjati 

(B) estuaries during May and September. 
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Figure 3.19: Phosphorus biomass and biomass in terms of dry weight in different zooplankton taxa 

in the Mlalazi Estuary during May. 

 

 

Figure 3.20: Phosphorus biomass and biomass in terms of dry weight in different zooplankton taxa 

in the Mpenjati Estuary during September. 

 

3.8.3. Macrozoobenthos 

In the Mlalazi Estuary, polychaetes comprised the highest mean percentage phosphorus content (0.4 

%) of all macrozoobenthos taxa during May while molluscs (0.4 %) comprised the highest mean 
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November (Figure 3.21 A and B). Overall, macrozoobenthos mean phosphorus content was higher 
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was observed in molluscs during November (Figure 3.23 A and B). There were no significant 

differences in % P content between different taxa (p = 0.415) and sampling sessions (p = 0.852) 

(Table 3.8). 

 

 

Figure 3.21: Phosphorus content (%) in different groups of macrozoobenthos in the Mlalazi Estuary 

during May and November. 

 

 

Figure 3.22: Phosphorus biomass and biomass in terms of dry weight in different groups of 

macrozoobenthos in the Mlalazi Estuary during May. 
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Figure 3.23: Phosphorus biomass and biomass in terms of dry weight in different groups of 

macrozoobenthos in the Mlalazi Estuary during November. 

 

In the Mpenjati Estuary, polychaetes comprised the highest mean percentage phosphorus content of 

all macrozoobenthic taxa during September and November (1.2 and 0.3 % respectively) (Figure 

3.24 A and B). No molluscs were caught in the Mpenjati Estuary during September. In November, 

molluscs comprised the lowest mean phosphorus content (0.2 %) (Figure 3.24 B). During 

September, polychaetes generally had high mean phosphorus biomass and high biomass in terms of 

dry weight except for the middle reaches where polychaetes had negligible biomass in terms of dry 

weight but displayed significantly high phosphorus biomass (Figure 3.25 A and B).  

 

During November, molluscs in the Mpenjati Estuary  showed relatively higher biomass in terms of 

dry weight but displayed lower P biomass (Figure 3.26 A and B). There were no molluscs recorded 

in the lower reaches of the Mpenjati Estuary during November. In the middle reaches, polychaetes 

had lower biomass in terms of dry weight but displayed relatively higher mean P biomass (Figure 

3.26 A and B). There were no significant differences in P biomass between different benthic taxa (p 

= 0.660) and between sampling sessions (p = 0.104) (Table 3.8). There were significant differences 

in macrozoobenthos P biomass between the two estuaries (p = 0.001) (Table 3.8). Phosphorus 

biomass as well as percentage phosphorus content of Callichirus kraussi in the Mpenjati Estuary 

was higher in the lower when compared to the middle reaches (Figure 3.33 B). However no 

statistically significant differences were observed in P biomass (p = 0.129) and percentage P content 

(p = 0.327) of these prawns between the reaches. Although the percentage phosphorus content of 

the prawns was within the range of other benthic groups, the phosphorus biomass (mgP·m
-2

) was 

generally higher when compared to P biomass of other benthic groups (Figure 3.33 B). 
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Figure 3.24: Phosphorus content (%) in different groups of macrozoobenthos in the Mpenjati 

Estuary during September (A) and November (B). 

 

 

Figure 3.25: Phosphorus biomass and biomass in terms of dry weight in different groups of 

macrozoobenthos in the Mpenjati Estuary during September. 
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Figure 3.26: Phosphorus biomass and biomass in terms of dry weight in different groups of 

macrozoobenthos in the Mpenjati Estuary during November. 

 

3.8.4. Sediment 

In the Mlalazi Estuary, phosphorus concentrations in sediment (10 cm depth) were generally higher 

during May (63943.7 mgP·m
-2 

± 38859.1 SD) than November (15233.7 mgP·m
-2

 ± 1297.8 SD) 

(Figure 3.27 A). During May, phosphorus mass in sediment of the Mlalazi Estuary was generally 

decreasing from the upper to the lower reaches while no clear pattern was observed during 

November (Figure 3.27 A). 

 

In the Mpenjati Estuary phosphorus mass in sediment was higher during September (17724.4 

mgP·m
-2

 ± 3836.3 SD) than November (7080.5 mgP·m
-2

 ± 0.00 SD) (Figure 3.27 B). During 

September P mass in sediment was decreasing from the upper towards the lower reaches with no 

clear trend during November (Figure 3.27 B). Overall, phosphorus mass in sediment was higher in 

the Mlalazi (range = 3226.0 – 95315.3 mgP·m
-2

) than the Mpenjati Estuary (range = 1378.7 – 

21758.7 mgP·m
-2

) (Figure 3.27 A and B). 

 

In the Mlalazi Estuary, sediment P content in percentage was generally higher during November 

than May except for the upper reaches (Figure 3.28 A). Phosphorus content (%) in the Mlalazi 

Estuary was generally decreasing from the upper towards the lower reaches during May with no 

clear trend in P content along the estuary length during November (Figure 3.28 A). 
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In the Mpenjati Estuary higher percentage P content was recorded during September than 

November (Figure 3.28 B). During September, sediment percentage P content was generally 

decreasing from the upper to the lower reaches but there was no clear trend in sediment P content 

along the salinity gradient during November (Figure 3.28 B). Overall, percentage phosphorus 

content was higher in the Mlalazi (range = 0.003 – 0.1 %) than the Mpenjati Estuary (range = 0.001 

– 0.02 %) (Figure 3.28 A and B). 

 

 

Figure 3.27: Phosphorus mass in sediment (for 10 cm depth) in the Mlalazi (A) and Mpenjati (B) 

estuaries during May, September and November sampling sessions. Data represent 

mean (± SD, n = 3). 

 

 

Figure 3.28: Phosphorus content (%) in sediment (for 10 cm depth) in the Mlalazi (A) and Mpenjati 

(B) estuaries during May, September and November. Data represent mean (± SD, n = 

3). 
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3.8.5. Overall phosphorus distribution in Mlalazi and Mpenjati estuaries 

In the Mlalazi estuary, sediment comprised the highest phosphorus mass (18.1 gP·m
-2 

± 5.9 SD) 

than any other nutrient pool where P was measured (Figure 3.29). Zooplankton (0.01 mgP·m
-2

 ± 

0.01 SD) and macrozoobenthos (0.01 mgP·m
-2 

± 0.03 SD) comprised the lowest P biomass in the 

Mlalazi Estuary (Figure 3.19). 

 

Sediment (7.9 gP·m
-2

±5.6 SD) comprised the highest P mass in the Mpenjati Estuary with the 

lowest P biomass being measured in zooplankton (0.01 mgP·m
-2 

± 0.01) and macrozoobenthos (0.01 

mgP·m
-2

 ± 0.01 SD) (Figure 3.20).  

 

Overall, abiotic components had higher phosphorus mass when compared to biotic in both Mlalazi 

and Mpenjati estuaries (Figure 3.31). Phosphorus biomass for biotic components was about the 

same in both estuaries, however, overall phosphorus mass in abiotic components in the Mlalazi was 

higher than that of the Mpenjati Estuary (Figure 3.31). In both Mlalazi and Mpenjati estuaries 

overall phosphorus biomass in pelagic biota was higher than that measured in benthic biota (Figure 

3.32).  

 

Figure 3.29: Overall distribution of phosphorus in living and non living nutrient pools of the 

Mlalazi Estuary. Phosphorus biomass is presented in mgP·m
-2

except for the sediment 

and dissolved inorganic phosphorus (DIP) where P is presented in gP·m
-2
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Figure 3.30: Overall distribution of phosphorus in living and non living nutrient pools of the 

Mpenjati Estuary. Phosphorus biomass is presented in mgP·m
-2

 except for the 

sediment where P is presented in gP·m
-2

. 

 

 

Figure 3.31: Overall phosphorus distribution in biotic and abiotic components of the Mlalazi and 

Mpenjati estuaries. Phosphorus biomass of the biotic components is presented on the 

left Y axes and phosphorus mass of the abiotic components is presented on the right 

Y axes. 
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Figure 3.32: Overall phosphorus distribution in the pelagic biotic and benthic biotic components of 

the Mlalazi and Mpenjati estuaries. 

 

 

Figure 3.33: Abundance and biomass (dry weight) (A) as well as phosphorus biomass and 

percentage phosphorus content (B) of the Callichirus kraussi in the Mpenjati Estuary. 
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Chapter 4 

Discussion 

 

In this study, phosphorus content in living and non-living nutrient pools of the permanently open 

Mlalazi (ML) and temporarily open/closed Mpenjati (MP) Estuary was measured to give an insight 

of how P distribution changes with sampling sessions and along the estuarine salinity gradients. 

Prior to phosphorus determination, biological data including chlorophyll a, macrozoobenthos and 

zooplankton were analysed for concentrations, abundance and biomass. Values of abundance and 

biomass were compared along the salinity gradient and between sampling sessions and estuaries. 

Phosphorus content in biota was compared between species (zooplankton), families 

(macrozoobenthos) and stations (zooplankton and macrozoobenthos). Dissolved inorganic 

phosphorus, particulate phosphorus and phosphorus in sediment were also compared between 

stations, sampling sessions and between estuaries. 

4.1. Physico – chemical characteristics 

There was a clear evidence of change in temperature and salinity between May, September and 

November sampling sessions in the Mpenjati and Mlalazi estuaries. Whereas temperatures were 

higher during November as compared to May in the Mlalazi Estuary, they were lower during 

November in the Mpenjati Estuary when compared to the September sampling session. During the 

open phase of the Mpenjati Estuary, the efficient flushing by the tidal inflow of colder sea water 

could have resulted in a decreased water temperature in this system, a similar case has been reported 

for the Kasouga Estuary (Froneman 2002a). These results are contrary to previous records of the 

Mpenjati Estuary system (Kibirige and Perissinotto 2003; Anandraj et al. 2007). 

 

Salinities were higher during May and September when compared to November in the Mlalazi and 

Mpenjati Estuary respectively. Rainfall levels recorded during November in both Mlalazi and 

Mpenjati estuaries were higher than those recorded during May and September in these estuaries 

(www.sasa.org.za). High rainfall during November lead to a decrease in salinity levels throughout 

the whole Mlalazi and Mpenjati estuarine systems. Similar to the Mlalazi and Mpenjati estuaries 

during the present study period, a decrease in salinity throughout the estuary following high rainfall 

has been generally apparent in most South African TOCEs and POEs (Froneman 2002b; Froneman 

2002a; Kibirige and Perissinotto 2003; Thomas et al. 2005; Kibirige et al. 2006). Rainfall levels 
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during the present study period were similar to those previously reported by Perissinotto et al. 

(2002) in the Mpenjati Estuary where highest rainfall was recorded during December while the 

lowest was recorded during August. 

 

4.2. Total suspended solids 

Total suspended solids (TSS) concentrations were higher in November than May and September in 

both Mlalazi and Mpenjati estuaries. There was a general increase in TSS concentrations from the 

upper towards the lower reaches of both Mlalazi and Mpenjati estuaries during the present study. 

Similar to the Mpenjati Estuary, TSS concentrations of the Kasouga (Froneman 2002b) were higher 

during the open than the closed phase. An increase in TSS generally takes place following rainfall 

which results in sediment disturbance (Froneman 2002b). Such patterns have been observed in 

South African estuaries such as Kariega, Great Fish and Kasouga estuaries (Grange and Allanson 

1995; Grange et al. 2000; Froneman 2002b; Froneman 2002a). 

 

4.3. Nutrients 

Dissolved inorganic phosphorus (DIP) concentrations were higher during May and September than 

November in the Mlalazi and Mpenjati estuaries respectively. In the Mlalazi Estuary, concentrations 

of nitrate + nitrite were higher during November than May but in the Mpenjati Estuary the opposite 

was observed with high concentrations recorded during September. Ammonia concentrations were 

higher in May and September than November in both Mlalazi and Mpenjati estuaries. 

 

Increased DIP and nitrate + nitrite concentrations in the Mlalazi and Mpenjati estuaries during May 

and September respectively contradicts with the DIP and nitrate + nitrite concentrations previously 

recorded in most South African estuaries where elevated concentrations were experienced during 

high rainfall e.g. (Allanson and Read 1995; Nozais et al. 2001; Froneman 2002b; Scharler and Baird 

2003a; Gama et al. 2005; Kibirige et al. 2006). Elevated nutrient concentrations (nitrate, nitrite and 

ammonia) in winter (August) sampling have been reported in the Mlalazi Estuary, except for DIP 

concentrations which were higher during summer (February) (Mabaso 2002). Following a strong 

river inflow, lower nutrient concentrations were recorded in Maitland Estuary in the Eastern Cape 

(Gama et al. 2005). It was suggested that nutrient retention was reduced together with low retention 

of water within the estuary as some water was flushed out of the estuary rapidly (Gama et al. 2005). 
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During the present study, it was suggested that the reduced concentrations of DIP and nitrate + 

nitrite in the Mpenjati Estuary and reduced concentrations of DIP in the Mlalazi Estuary during 

November were as a result of high rainfall which diluted these nutrients in the river. 

 

The land cover at the head (above the railway bridge) of the Mlalazi Estuary is used for agricultural 

farming, e.g. for sugarcane. Higher nitrate + nitrite concentrations in the Mlalazi Estuary during the 

November sampling session were likely to have come from agricultural runoff. Compared to the 

Mpenjati Estuary, the Mlalazi Estuary had higher nutrient concentrations which are associated with 

the regular freshwater inflow which frequently brings in nutrients to this estuary. During May, all 

measured nutrients (DIP, nitrate + nitrite and ammonia) were highest in the upper reaches in the 

Mlalazi Estuary, a case reported for the Swartkops, Kromme and Sundays estuaries (Emmerson 

1985; Scharler and Baird 2003a). This gives support that most of the nutrients in these estuaries are 

probably derived from their rivers as highest concentrations are recorded at their upper reaches. In 

the Mpenjati Estuary highest nutrient concentrations were generally recorded in the middle reaches 

during both sampling sessions. Although Perissinotto et al. (2002) stated that river flow together 

with Palm Beach waste water treatment discharge are major sources of DIN (dissolved inorganic 

nitrogen) and DIP in this system, higher nutrient concentrations would be expected from the upper 

reaches since the Palm Beach WWTW is located further upstream of national road bridge R61. 

 

Particulate phosphorus concentrations were higher in November than in May and September in both 

Mlalazi and Mpenjati estuaries respectively. In the Mlalazi Estuary PP concentrations were 

generally decreasing from the upper towards the lower reaches of the estuary during both sampling 

sessions. Contrary to the Gamtoos Estuary, the Mlalazi Estuary had elevated PP concentrations 

during period of high river inflow while the Gamtoos Estuary displayed decreased PP 

concentrations during high river flow period (Scharler and Baird 2003b). In few South African 

POEs, PP concentrations have been reported to decrease from the upper towards the lower reaches 

e.g. in the Gamtoos Estuary (Scharler et al. 2002; Scharler and Baird 2003b), Kariega and Great 

Fish Estuary (Bate et al. 2002). The permanently open Mlalazi showed the similar pattern to that 

previously reported for other South African POEs with PP concentrations decreasing from the upper 

towards the lower reaches. This also gives evidence of a river being the main source of particulate 

phosphorus to the estuary. High concentrations of PP during November were suggested to be 

attributed from the efficient mixing from the river and tidal currents during November which could 

potentially disturb sediment, bringing the buried particulate phosphorus into the water column. 
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4.4. Phytoplankton and microphytobenthos 

Phytoplankton chlorophyll a concentrations were higher during May and September than November 

sampling session in both Mlalazi and Mpenjati estuaries. In general, higher chlorophyll a 

concentrations during May and September in the Mlalazi and Mpenjati Estuary were associated 

with higher nutrients concentrations recorded in these systems during these sampling sessions.  

 

Chlorophyll a concentrations recorded in the Mpenjati Estuary during the present study were lower 

than those previously recorded in this system e.g. (Perissinotto et al. 2003). Similar to the Mpenjati 

Estuary during the present study, few South African TOCEs have displayed high chlorophyll a 

concentrations during the closed when compared to the open phase, e.g. in the Mdloti, Mhlanga, 

Nyara, Maitland and Van Stadens Estuary (Perissinotto et al. 2003; Gama et al. 2005; Thomas et al. 

2005). Contrary to the Mpenjati Estuary during the present study, high chlorophyll a concentrations 

during high river inflow have been reported in the Kasouga estuary (Froneman 2002b; Froneman 

2002a). Generally, mean phytoplankton chlorophyll a concentrations recorded in the Mpenjati 

Estuary were lower than those recorded in other few South African TOCEs, e.g. in the Mdloti, 

Nyara, Mhlanga, Kasouga , Great Brak, Van Stadens and Maitland Estuary (Nozais et al. 2001; 

Froneman 2002b; Perissinotto et al. 2003; Gama et al. 2005; Thomas et al. 2005). 

 

Mean phytoplankton chlorophyll a concentrations recorded in the Mlalazi Estuary during the 

present study were lower than those previously recorded in this system (Mabaso 2002). Similar to 

the Mlalazi Estuary during the November sampling, the Berg Estuary chlorophyll a concentrations 

were highest in the lower reaches (Adams and Bate 1999). However, these results contradicts with 

those previously reported for the Gamtoos, Sundays, Kromme and Swartkops Estuary where 

chlorophyll a concentrations were highest in the upper reaches decreasing down the estuary towards 

the mouth (Snow et al. 2000; Bate et al. 2002; Scharler and Baird 2003a). Generally chlorophyll a 

concentrations recorded in the Mlalazi Estuary during the study period were lower than the 

concentrations previously recorded in other South African permanently open estuaries e.g. in the 

Kromme, Sundays, Great Fish, Gamtoos and Berg estuaries (Snow et al. 2000; Bate et al. 2002; 

Scharler and Baird 2003a). Similar to the Mlalazi Estuary, very low (< 1 µg· l
-1

) chlorophyll a 

concentrations have been recorded in other South African permanently open estuaries including 

Palmiet and Gourits Estuary (Adams and Bate 1999). 
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The permanently open Mlalazi had higher chlorophyll a concentrations than the Mpenjati Estuary. 

This is in agreement with the reported higher chlorophyll a concentrations in POEs compared to 

TOCEs of South Africa as a result of continuous water inflow in the POEs which brings along 

nutrients in these systems. Consequently, these higher levels of nutrients in POEs promote 

phytoplankton production (Allanson and Read 1995; Grange and Allanson 1995; Froneman 2002b; 

Perissinotto et al. 2003). The low pelagic chlorophyll a concentrations in both Mlalazi and Mpenjati 

estuaries during high river inflow in November were suggested to have been caused by estuarine 

flushing which washed phytoplankton to the adjacent sea. It is also suggested that strong river flow 

during November caused a reduction in water residence time which is essential for nutrient 

utilisation for primary producers, hence phytoplankton was unable to trap the nutrients efficiently 

resulting in low chlorophyll a concentrations. It was suggested that higher chlorophyll a 

concentrations during May and September in both Mlalazi and Mpenjati estuaries were enhanced by 

the higher nutrient levels during these sampling sessions. Adams and Bate (1999) reported that 

nutrient availability regulates phytoplankton biomass in estuaries.   

 

In the Mlalazi and Mpenjati estuaries the microphytobenthic chlorophyll a concentrations were 

higher during November when compared to May and September sampling sessions. 

Microphytobenthic chlorophyll a concentrations measured in the Mpenjati Estuary during the 

current study were higher than those previously recorded in this system (Perissinotto et al. 2002) 

and other South African TOCEs such as the Great Brak, Nyara and Mdloti estuaries (Adams and 

Bate 1999). Contrary to the present study, lower microphytobenthic chlorophyll a concentrations 

have been previously measured during the open phase of the Mpenjati Estuary compared to the 

closed phase (Perissinotto et al. 2002). Such pattern have been also apparent in Van Stadens and 

Maitland Estuary (Gama et al. 2005). Few South African TOCEs have shown a similar pattern to 

that of the present study where higher microphytobenthic chlorophyll a concentrations were 

recorded during the open compared to the closed phase e.g. in the Mdloti and Kasouga estuaries 

(Nozais et al. 2001; Froneman 2002b; Froneman 2002a). Microphytobenthic chlorophyll a 

concentrations recorded in the Mlalazi Estuary during the present study were lower than those 

previously recorded in few South African POEs such as the Berg, Goukou, Gourits, Gamtoos and 

Sundays estuaries (Adams and Bate 1999). 
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Chlorophyll a concentrations measured for microphytobenthos were higher than those of 

phytoplankton during the present study as reported for several South African estuaries (Froneman 

2002b; Froneman 2002a). The temporarily open/closed Mpenjati had higher microphytobenthic 

chlorophyll a than the permanently open Mlalazi system. Supporting this, Adams and Bate (1999) 

and Perissinotto et al. (2003) stated that the adequate fresh water inflow in permanently open 

estuaries supports high biomass of phytoplankton, playing a minor role in controlling benthic 

microalgae. It has been reported that these TOCEs support high microphytobenthic biomass as a 

results of the suitable conditions existing in these systems which include low turbidity and low 

current speed, more stable sediment and high nutrient concentrations in the substratum (Perissinotto 

et al. 2003).  

 

Highest benthic chlorophyll a concentrations recorded in November during this study were 

unexpected. According to Perissinotto et al. (2003), during periods of high rainfall which carries 

suspensoids into the estuary, most phytoplankton cells below the euphotic zone suffer from light 

limitation which inhibits their photosynthetic machinery. It has also been reported that increased 

fine sediment in shallow waters can lead to reduced microalgal production (Cahoon et al. 1999).  

 

From the current study, it was speculated that nutrient concentrations in the water column are not 

the most important factor controlling microphytobenthic chlorophyll a concentration. Elevated 

November microphytobenthic chlorophyll a concentrations should have been made possible by 

nutrients buried in the sediment which escape to water column during nutrient recycling.  

 

4.5. Zooplankton 

4.5.1. Abundance 

Zooplankton mean abundance was higher in May and September than November in both Mlalazi 

and Mpenjati estuaries respectively. During all sampling sessions copepods A. natalensis and P. 

hessei combined comprised more than 90 % of the zooplankton abundance in both Mlalazi and 

Mpenjati estuaries, a typical phenomenon for South African estuaries (Wooldridge 1999; Jerling 

2005). In the Mlalazi Estuary, abundance was generally increasing from the upper towards the 

lower reaches during the May and November sampling sessions. In the Mpenjati Estuary the highest 
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mean abundance was recorded from the middle reaches. Highest abundance in the middle reaches of 

this system has also been reported by Kibirige and Perissinotto (2003).  

 

Very low zooplankton abundance recorded during the high river inflow in both Mlalazi (salinity 

range of 0.1 - 0.2) and Mpenjati (salinity range of 0.1 - 0.6) estuaries could be a result of the 

outflow of estuarine water together with zooplankton into the marine environment. Temporal 

patterns of zooplankton abundance during two sampling sessions of the Mlalazi and Mpenjati 

Estuary were similar to those of Mhlathuze Estuary where very low abundances were recorded 

during strong fresh water inflow (Jerling 2008). Similar to the Mpenjati Estuary during the present 

study, higher zooplankton mean abundance during the closed phase has been previously reported in 

this system (Kibirige and Perissinotto 2003). 

 

A different spatial distribution pattern to other South African POEs was apparent in the Mlalazi 

Estuary with lower abundance at the upper reaches. Abundance of copepods was highest in the 

upper reaches decreasing down the salinity gradient in the Olifants, Great Berg, Breede, 

Heuningnes, Goukou and Kromme estuaries (Wooldridge and Callahan 2000; Montoya-Maya and 

Strydom 2009). Zooplankton mean abundance recorded in the Mlalazi Estuary (23718 

individuals·m
-3  

± 15689 SD) during the present study was higher than those previously recorded in 

other South African permanently open estuaries e.g. in the Goukou (mean = 6175 individuals·m
-3

), 

Breede (mean = 4049 individuals·m
-3

), Heuningnes (mean = 3877 individuals·m
-3

), Great Berg 

(mean = 6841 individuals·m
-3

) and Olifants Estuary (6269 individuals·m
-3

) (Montoya-Maya and 

Strydom 2009). Mean zooplankton abundance recorded in the Mpenjati Estuary (8890 

individuals·m
-3

 ± 1769 SD) during the present study was three-fold higher than that previously 

reported for this system, two-fold higher than that previously recorded in the Diep Estuary and six-

fold higher than that previously reported in the Mhlanga Estuary (Kibirige and Perissinotto 2003; 

Montoya-Maya and Strydom 2009). However, the Mpenjati zooplankton abundance of the present 

study was 28-fold lower than that previously reported in the Mdloti Estuary (Kibirige et al. 2006) 

and it was generally lower than that of Van Stadens Estuary (mean = 9278 individuals·m
-3

) (Gama 

et al. 2005). 

 

The permanently open Mlalazi had higher zooplankton abundance compared to the temporarily 

open/closed Mpenjati Estuary. High zooplankton abundance in the POE is likely to be influenced by 

the constant freshwater inflow which constantly bring nutrients which promote phytoplankton 
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biomass (on which zooplankton graze) as reported by Grange et al. (2000) and Wooldridge (1999). 

Generally, zooplankton abundance was concurrently increasing with the phytoplankton chlorophyll 

a concentrations during all sampling sessions in both Mlalazi and Mpenjati estuaries. This 

relationship suggested that zooplankton abundance is controlled by phytoplankton. Such a pattern 

has been apparent in the permanently open Kariega, Great Fish and Sundays Estuary (Wooldridge 

and Bailey 1982; Jerling and Wooldridge 1991; Grange et al. 2000) and in a temporarily 

open/closed Kasouga Estuary (Froneman 2002b; Froneman 2004a).  

 

Although the abundances recorded in the Mlalazi Estuary were higher than those previously 

recorded in other South African permanently open estuaries, it is in contrast with the statement 

made by Wooldridge (1999) that most South African estuaries exhibit minimum abundances during 

low river inflow and maximum abundances during high river inflow. Similar to the Mpenjati 

Estuary, few South African TOCEs attain their maximum abundance during the closed phase of the 

estuary (Kibirige and Perissinotto 2003; Montoya-Maya and Strydom 2009). It has been reported 

that this elevated abundance level is related to stability of an estuary during this period as a result of 

less freshwater inflow and limited exchange with the sea water (Perissinotto et al. 2003). 

 

4.5.2. Biomass 

Zooplankton biomass was higher during May and September compared to November in both 

Mlalazi and Mpenjati estuaries. The temporal zooplankton biomass pattern of the Mpenjati Estuary 

during the present study was similar to that previously reported for this system where highest 

biomass was recorded during the closed phase of the estuary (Kibirige and Perissinotto 2003). High 

zooplankton biomass values during the closed phase have also been reported in the Mhlanga and 

Mdloti estuaries (Whitfield 1980; Perissinotto et al. 2003; Kibirige et al. 2006). Contrary to the 

Mlalazi and Mpenjati Estuary during the current study, higher biomass has been recorded during 

high river inflow in the Kasouga, Kariega and Great Fish Estuary (Allanson and Read 1995; Grange 

et al. 2000; Froneman 2001; Froneman 2002a; Froneman 2004b).  

 

It has been reported that zooplankton biomass is often higher in the upper reaches (Grindley 1981). 

This is in agreement with the zooplankton biomass values recorded in the Mlalazi Estuary during 

May. In the Mpenjati Estuary highest biomass was recorded in the middle reaches and the lowest 

was recorded from the upper reaches, a spatial pattern previously reported for the Nyara Estuary 
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(Perissinotto et al. 2000). This pattern was directly related to the zooplankton abundance which was 

highest in the middle reaches and lowest in the upper reaches. Mysid Mesopodopsis africana 

recorded in the Mlalazi Estuary had low abundance (11.8 individuals·m
-3

) than the copepods (11115 

individuals·m
-3

) but it attained higher biomass in terms of dry weight which suggests that this 

species contribute more biomass within the system despite its low abundance. Mysids can therefore 

be a good food source for the secondary consumers which would ingest and accumulate more 

biomass from these organisms even if their abundance is low. 

 

 Zooplankton biomass values recorded in the Mpenjati Estuary (8.9 mg dryweight·m
-3

) during the 

present study were lower than those previously recorded in this system (280 mg dry weight·m
-3

) and 

other TOCEs of South Africa such as Nyara (150 mg dry weight·m
-3

), Kasouga (103.5 mg dry 

weigh·m
-3

), Mhlanga (51.6 mg dry weight·m
-3

) and Mdloti (126.5 mg dry weight·m
-3

) estuaries 

(Perissinotto et al. 2000; Froneman 2004a; Kibirige et al. 2006). Zooplankton biomass values 

recorded in the Mlalazi Estuary (8.2 mg dry weight·m
-3

) were lower than those previously recorded 

in few South African POEs such as the Swartkops (90 mg dry weight·m
-3

), Kariega (47 mg dry 

weight·m
-3

) and Great Fish estuaries (4253 mg dry weight·m
-3

) (Grindley 1981; Wooldridge 1999; 

Grange et al. 2000). Higher biomass in these POEs are likely to be attributed from the higher 

chlorophyll a concentrations reported in these systems, which depicts higher phytoplankton biomass 

to support higher zooplankton biomass.  

 

4.6. Macrozoobenthos 

4.6.1. Species richness and abundance 

The number of taxa recorded in the Mlalazi estuary (21) during the study period was lower than that 

previously recorded in this system (28) (Mabaso 2002) and other South African POEs e.g. Gamtoos 

Estuary (35) (Schlacher and Wooldridge 1996), Swartkops (28) (Hanekom et al. 1989) and Great 

Berg Estuary (44) (Wooldridge and Deyzel 2009b). However, the number of taxa recorded in the 

Mlalazi Estuary during the current study was generally higher than that previously recorded in the 

Mfolozi-Msunduzi Estuary (17) (Ngqulana et al. 2010). In the Mlalazi Estuary number of taxa was 

increasing from the upper towards the lower reaches. This trend has been previously reported for 

South African POEs (Schlacher and Wooldridge 1996). 
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 The numerically dominant group in the Mlalazi Estuary during May were polychaetes (67 %). 

From the study conducted by Mabaso (2002) in the Mlalazi Estuary, polychaetes also dominated 

this system during all sampling sessions of the study period. Contrary to the Mlalazi Estuary during 

the present study polychaetes dominated the Mfolozi-Msunduzi and Gamtoos estuaries during high 

river flow periods (Ngqulana et al. 2010). The November sampling session of the Mlalazi Estuary 

was mostly dominated by the amphipods (29 %), contradicting with the Gamtoos Estuary where 

amphipods dominated the system during low river flow period (Schlacher and Wooldridge 1996). 

Such change in dominant groups with river flow conditions has been reported in South African 

estuaries and has been explained as the dynamic nature of community change in the benthos 

(Wooldridge and Deyzel 2009b). 

 

In the Mpenjati Estuary the most numerically dominant groups were polychaetes during September 

(94 %) and November (76 %) sampling sessions, a similar pattern previously reported for many 

South African TOCEs e.g. in the Zinkwasi (83 %), Mhlanga (62 %), Isipingo (81 %), Kandandlovu 

(67 %), Manzimtoti (87 %), Zotsha (67 %) and Uvuzana (82 %) estuaries (Stow 2011). 

 

Mean abundance of macrozoobenthos was higher during May (3287 individuals·m
-2 

± 1735 SD) 

than November (1102 individuals·m
-2 

± 897 SD) in the Mlalazi Estuary while abundance was higher 

during November than September in the Mpenjati Estuary. Macrozoobenthos abundance recorded 

in the Mlalazi Estuary during the current study was 44-fold lower than that previously recorded in 

this system (Mabaso 2002). Macrozoobenthos abundance in the Mlalazi Estuary during the present 

study was 3-fold lower than that reported in the Gamtoos and Great Berg estuaries (Wooldridge and 

Deyzel 2009a). Contrary to the present study, Mlalazi lower macrozoobenthos abundances have 

been reported during period of low river flow (Mabaso 2002). Similar to the Mlalazi Estuary, low 

macrozoobenthos abundances have been reported during high river inflow in the Great Berg and 

Gamtoos estuaries (Wooldridge and Deyzel 2009a).  

 

Mean macrozoobenthos abundance recorded in the Mpenjati Estuary during the current study was 

two-fold lower than that previously recorded in the Siyaya, Zinkwazi, Kandandlovu, and Zotsha 

estuaries and was 4-fold lower than that recorded in the Mhlanga, Isipingo, Manzimtoti, and 

Uvuzana estuaries (MacKay 1996; Stow 2011). Contrary to the Mpenjati estuary during the current 

study, highest abundance in the Siyaya Estuary was recorded during low river inflow (MacKay 

1996). In both Mlalazi and Mpenjati estuaries, abundance was generally increasing from the upper 
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towards the lower reaches during May and September respectively, a case which has been reported 

for few South African estuaries (Schlacher and Wooldridge 1996).  

 

4.6.2. Biomass 

Information is scarce regarding the biomass of macrozoobenthos in South African estuaries. Most 

of the studies conducted in South African estuaries investigate more about macrozoobenthos 

abundance and community structure and very little attention has been given to biomass.  In the 

Mlalazi Estuary macrozoobenthos biomass was higher during May (57.6 mg dry weight·m
-2

 ± 38.5 

SD) compared to November (28.9 mg dry weight·m
-2

 ± 7.7 SD) while in the Mpenjati Estuary 

higher biomass was recorded during November (19.0 mg dry weight·m
-2

 ±2.6 SD) compared to 

September (16.0 mg dry weight·m
-2

 ± 5.5 SD). Highest macrozoobenthos biomass during May in 

the Mlalazi Estuary and during November in the Mpenjati Estuary was associated with the highest 

abundance during these sampling sessions in these two estuaries. 

 

The macrozoobenthos biomass recorded in the Mlalazi Estuary during the present study was 362-

fold lower than that previously recorded in the Swartkops Estuary (Hanekom et al. 1989). The 

highest contribution of molluscs (49 %) to the macrozoobenthic biomass (although with the lowest 

abundance) of the Mlalazi Estuary contradicted with that of the Swartkops Estuary where 

crustaceans, mainly Upogebia africana (85 %) and Callichirus kraussi (10 %) contributed highest 

biomass (Hanekom et al. 1989). Overall, the macrozoobenthos biomass of the Mpenjati estuary was 

4-fold lower than that of the permanently open Mlalazi Estuary during the current study and it was 

1105-fold lower than that of the Swartkops Estuary. However the biomass per m
2
 of the Callichirus 

kraussi of the temporarily open/closed Mpenjati Estuary was 1600 fold lower than that recorded for 

the permanently open Swartkops Estuary (Hanekom et al. 1989). 

 

4.7. Phosphorus content of biota and sediment 

4.7.1. Phytoplankton 

There is scarce published information on the phytoplankton phosphorus content in South African 

estuaries. Few South African studies have estimated phytoplankton carbon content on few marine 

systems (Schleyer 1981; Brown et al. 1991). Phytoplankton P content (mgP·m
-2

) was higher during 

May and September when compared to November sampling session for both Mlalazi and Mpenjati 
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estuaries. The co-variation in phytoplankton chlorophyll a and phosphorus biomass was expected 

because same ratios were used for chlorophyll a to phosphorus conversion. 

 

4.7.2. Zooplankton 

During May, copepod A. Natalensis comprised the highest phosphorus content (1.7 %) of all 

zooplankton taxa in the Mlalazi Estuary. During September copepod P. hessei comprised the 

highest phosphorus content (0.6 %) of all zooplankton taxa in the Mpenjati Estuary. No other 

studies have been conducted in South African estuaries to examine P content of zooplankton. 

 

Zooplankton P content has been examined in other parts of the world and most of these studies were 

conducted in lakes (Sterner 1990; Andersen and Hessen 1991; Hassett et al. 1997; Vrede et al. 

1999; Dobberfuhl and Elser 2000). Phosphorus content measured in zooplankton of the Mlalazi 

Estuary during May was generally higher than that measured in zooplankton of Lake Erken in 

Sweden (1.4 %). Zooplankton P content in the Mpenjati Estuary was 4-fold lower than that of Lake 

Erken in Sweden. Differing food quality between these systems can explain such variation. 

 

There were no significant differences in P content between zooplankton taxa in both Mlalazi and 

Mpenjati estuaries. Similar to the current study, Vrede et al. (1999) reported no significant 

variations in P content between three zooplankton taxa collected in different lakes. In contrast to the 

present study, interspecific and intraspecific differences in species P content was reported in Baltic 

Sea although it was stated that P content variation within species i.e. Acartia sp. was due to 

developmental stage (Walve and Larsson 1999). 

 

4.7.3. Macrozoobenthos 

Polychaetes comprised the highest phosphorus content of all macrozoobenthic taxa in the Mlalazi 

Estuary during May (0.4 %) and Molluscs comprised the highest P during November (0.4 %) 

sampling session. This elemental P content in molluscs for this study represents only soft tissue of 

the organisms. Shells were excluded because Evans-White et al. (2005) reported that the high 

calcium carbonate in molluscs shells reduces the overall content of P in these organisms. 

Polychaetes comprised the highest phosphorus content of all macrozoobenthic taxa in the Mpenjati 

Estuary during September (1.2 %) and November (0.4 %). There have been no studies examining 

macrozoobenthos phosphorus content in South African estuaries. However, macrozoobenthos P 
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content has been measured in other parts of the world in freshwater and marine systems (Frost et al. 

2003; Cross et al. 2005; Evans-White et al. 2005; Martinson et al. 2008).  

 

Contrary to the Mlalazi Estuary during the present study, higher P content (%) in crustaceans than 

molluscs was reported for few lakes in Canada and few streams in North America (Frost et al. 2003; 

Evans-White et al. 2005). Evans-White (2005) stated that higher P content (%) in crustaceans is 

associated with calcium in carapaces of benthic crustaceans. The highest P content (%) of molluscs 

in the Mlalazi Estuary was recorded during November. This high P content was suggested to be 

related to the high PP concentrations measured during this sampling session, which elevated 

phosphorus nutrient levels for filter feeding bivalves of this system. Contrary to the current study, 

significant variations in P content (%) among different benthic taxa have been reported in few 

streams of North America (Evans-White et al. 2005; Liess and Hillebrand 2005). Molluscs 

phosphorus content measured in the Mlalazi Estuary was two-fold higher than that recorded in 35 

streams in North America (Evans-White et al. 2005). It is speculated that the elevated P content in 

molluscs of Mlalazi Estuary was subject to relatively higher phosphorus concentrations in the 

estuaries than the fast flowing streams. Overall, the P content of the macrozoobenthos of the 

Mlalazi Estuary was similar to that of eight Canadian lakes where highest P content of 1.6 % was 

reported out of 9 taxa combined from all lakes investigated (Frost et al. 2003). Contrary to the 

present study, variations in P content within and between species have been reported in marine 

systems (Clarke 2008). High phosphorus biomass in the prawns during the current study was 

suggested to be a result of high biomass (dry weight) of these organisms. 
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Chapter 5 

Summary and conclusions 

This study aimed at determining phosphorus distribution in biotic and abiotic nutrient pools of the 

permanently open Mlalazi and temporarily open/closed Mpenjati estuaries. Biological data 

including chlorophyll a, macrozoobenthos and zooplankton were analysed and their abundance and 

biomass (zooplankton and macrozoobenthos) as well as concentration (chlorophyll a) was compared 

along the estuarine salinity gradients, between sampling sessions and between estuaries. It was 

hypothesised that the abundance and biomass of the fauna will change with stations, different river 

inflows (sampling sessions) and along the estuarine salinity gradient. It was also hypothesized that 

standing stocks of living and non living nutrient pools in terms of phosphorus content change with 

low (May and September for Mlalazi and Mpenjati Estuary respectively) and high (November for 

both estuaries) river flow and along the length of the two KZN estuaries. The current study was the 

first to examine phosphorus content of biota in South African estuaries. 

 

Dissolved inorganic phosphorus concentrations were higher during May and September than 

November in the Mlalazi and Mpenjati Estuary respectively. In the Mlalazi and Mpenjati estuaries, 

there were significant differences in DIP concentrations between sampling sessions and between 

stations. Particulate phosphorus concentrations were higher during November than May and 

September in both estuaries with highest concentrations recorded from the upper reaches. 

Significant differences in PP concentrations between sampling sessions and stations were apparent 

in both estuaries. 

 

Phytoplankton chlorophyll a concentrations were higher during May and September than November 

in both Mlalazi and Mpenjati Estuary respectively. Contrary to phytoplankton chlorophyll a 

concentrations, microphytobenthos chlorophyll a concentrations were higher during November 

when compared to May and September. Chlorophyll a temporal patterns observed in the Mpenjati 

Estuary were similar to those of few South African estuaries e.g. (Perissinotto et al. 2003; Gama et 

al. 2005; Thomas et al. 2005) where high chlorophyll a concentrations were recorded during the 

closed compared to the open phase. Distribution of phytoplankton chlorophyll a concentrations 

along the Mlalazi Estuary length during November was dissimilar to that of few South African 

POEs where concentrations were decreasing from the upper towards the lower reaches e.g. (Snow et 

al. 2000; Bate et al. 2002; Scharler and Baird 2003a). 
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Zooplankton abundance was higher during May and September when compared to the November 

sampling session in both Mlalazi and Mpenjati estuaries respectively. Spatial distribution of 

zooplankton abundance in the Mlalazi Estuary with the increasing abundance from the upper to the 

lower reaches differed from that of other South African estuaries e.g.(Wooldridge and Callahan 

2000; Montoya-Maya and Strydom 2009). Zooplankton biomass in this system showed a different 

trend from that of abundance with the biomass decreasing from the upper towards the lower 

reaches. 

 

Macrozoobenthos abundance of the Mlalazi estuary was higher during May than November while 

abundance in the Mpenjati Estuary was higher during November than September. Macrozoobenthos 

abundance from the Mlalazi Estuary during the present study was similar to those of other South 

African POEs e.g. (Wooldridge and Deyzel 2009a). Macrozoobenthos biomass in the Mpenjati 

Estuary during September was concurrently increasing with the abundance. However, in November, 

biomass was increasing with a decrease in abundance, indicating that species recorded during 

November had low abundance with relatively high biomass. 

 

In zooplankton, copepod A. Natalensis comprised the highest phosphorus content in the Mlalazi 

Estuary while copepod P. hessei comprised the highest P content in the Mpenjati Estuary. In 

macrozoobenthos of the Mlalazi Estuary, polychaetes comprised the highest P content during May 

and molluscs comprised the highest P content in November. Polychaetes comprised the highest P 

content in the Mpenjati Estuary during both sampling sessions. The current study demonstrated that 

phosphorus biomass does not always correlate with biomass in terms of dry weight, although P. 

hessei in the Mpenjati Estuary and M. africana in the Mlalazi Estuary showed similar levels of 

phosphorus biomass to those of biomass in terms of dry weight. During November, Molluscs 

displayed highest P biomass as well as highest biomass in terms of dry weight in the Mlalazi 

Estuary. Other benthic groups (e.g. polychaetes) had higher biomass in terms of dry weight but 

displayed relatively low P biomass. Overall, macrozoobenthos showed no significant differences in 

P content between taxa, sampling sessions and between estuaries. Zooplankton also showed no 

significant differences between taxa, stations and between the two estuaries. 

 

Overall, the highest phosphorus biomass was contained in sediment in both Mlalazi and Mpenjati 

estuaries. Although the percentage P levels in sediment were more or less similar to those of the 

biota and PP, the ubiquity of sediment contributed to high P biomass. Following sediment, higher P 
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content was in the form of dissolved inorganic phosphorus. In both estuaries the lowest phosphorus 

was contained in zooplankton. Phytoplankton P biomass was higher than that of microphytobenthos 

in the Mlalazi Estuary while the opposite was observed in the Mpenjati Estuary. 

 

The shortcomings of the study lied on sampling (sampling months/sessions). The sampling months 

of the Mlalazi and Mpenjati Estuary were different for representation of the low river flow, 

although this was only determined by the levels of rainfall to choose a proper sampling month for 

the temporarily open/closed Mpenjati. This led to two different months (May and September) to be 

compared for the two estuaries unlike the period of high river flow represented by November for 

both estuaries. Additionally, increasing the size of the sample i.e. the number of sampling sessions 

in both Mlalazi and Mpenjati would greatly enhance comparability between estuaries and sampling 

sessions. However, this attribute was limited by the length of the study period. In the future it is 

recommended that more components e.g. fish, meiofauna and bacteria are included to get a better 

understanding of phosphorus distribution in estuarine food webs. Classification of macrozoobenthos 

to feeding guilds may also give a better resolution to the P content comparison for the future studies 

to see if the diet of certain groups brings any changes to organisms P content. 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

 

 

Chapter 6 

References 

 

Adams J, Bate G (1999) Primary producers-estuarine microalgae. In: Allanson BR, Baird D 

(eds) Estuaries of South Africa. Cambridge University Press, Cambridge, pp 91-100 

Allanson B (1999) Chemistry: The primary chemical structure. In: Allanson BR, Baird D 

(eds) Estuaries of South Africa. Cambridge University Press, Cambridge, pp 53-70 

Allanson BR, Maree B, Grange N (2000) An introduction to the chemistry of the water 

column of the Knysna Estuary with particular reference to nutrients and suspended 

solids. Transactions of the Royal Society of South Africa 55: 141–162. 

Allanson BR, Read GHL (1995) Further comment on the response of the Estern Cape 

provinces estuaries to variable freshwater inflow. South African Journal of aquatic 

Science 21: 56-70 

Anandraj A, Perissinotto R, Nozais C (2007) A comparative study of microalgal production 

in marine versus a river-dominated temporarily open/closed estuary, South Africa. 

Estuarine, Coastal and Shelf Science 73: 768-780 

Andersen T (1997) Pelagic nutrient cycle: Herbivores as nutrient sources and sinks. 

Limnology and Oceanography 43: 1401-1402 

Andersen T, Faroving PJ, Hessen DO (2007) Growth rate versus biomass accumulation: 

Different roles of food quality and quantity for consumers. Limnology and 

Oceanography 52: 2128-2134 

Andersen T, Hessen DO (1991) Carbon, nitrogen and phosphorus content of freshwater 

zooplankton. Limnology and Oceanography 36: 807-814 

Anderson G, Berggren H, Cronbetg G, Gelin C (1978) Effects of planktivorous and 

benthivorous fish on organisms and water chemistry in eutrophic lakes. 

Hydrobiologica 59: 9-15 

Anschutz P, Zhong S, Sundby B (1998) Burial efficiency of phosphorus and the 

geochemistry of iron in continental margin sediments. Limnology and 

Oceanography 43: 53-64 

Armot DL, Vanni MJ (1996) Nitrogen and phosphorus recycling by the zebra mussel 

(Dreissena polymorpha) in the western basin of Lake Erie. Canadian Journal of 

Fisheries and Aquatic Sciences 53: 646-659 

Banse K (1977) Determining the carbon-to-chlorophyll ratio of natural phytoplankton. 

Marine Biology 41: 191-212 

Barrow NJ, Bowden JW, Posner AM, Quirk JP (1980) Describing the effects of electrolyte 

on adsorption of phosphate by a variable charge surface. Soil Research 18: 395-404 

Bate GC, Adams JB (2000) The effects of a single freshwater release into the Kromme 

Estuary. Overview and interpretation for the future. Water SA 26: 329-332 

Bate GC, Whitfield AK, Adams JB, Huizinga P, Wooldridge TH (2002) The importance of 

the river-estuary interface (REI) zone in estuaries. Water SA 28: 271-280 

Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern BS, 

Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2003) The 



89 

 

 

 

role of nearshore ecosystems as fish and shellfish nurseries. Issues in Ecology 11: 1-

12 

Begg GW (1978) The estuaries of Natal. Natal town and regional planning commission, 

Pietermaritzburg 

Blaber SJM, Blaber TJ (1980) Facors affecting the distribution of juvenile estuarine and 

inshore fish. Journal of Fish Biology 17: 143-162 

Boaden PJC, Seed R (1985) An introduction to Coastal Ecology. Glasgow Blackie, 

Chapman and Hall, New York 

Bonilla S, Conde D, Aubriot L, Pérez M (2005) Influence of hydrology on phytoplankton 

species composition and life strategies in a subtropical coastal lagoon periodically 

connected with the Atlantic Ocean. Estuaries 28: 884-895 

Brabrand A, Faafeng BA, Nilssen JPM (1990) Relative importance of phosphorus supply to 

phytoplankton production:fish excretion versus external loading. Canadian Journal 

of Fisheries and Aquatic Sciences 47: 364-372 

Brown PC, Painting SJ, Cochrane KL (1991) Estimates of phytoplankton and bacterial 

biomass and production in the northern and southern Benguela ecosystems. South 

African Journal of Science 11: 537-564 

Cahoon LB, Nearhoof JE, Tilton CL (1999) Sediment grain size effect on benthic 

microalgal biomass in shallow aquatic ecosystems. Estuaries 22: 735-741 

Callender E (1982) Benthic phosphorus regeneration in the Potomac River Estuary. 

Hydrobiologia 92: 431-446 

Carić M, Jasprica N, Kršinić F, Vilibić I, Batistić M (2012) Hydrography, nutrients, and 

plankton along the longitudinal section of the Ombla Estuary (south-eastern 

Adriatic). Journal of the Marine Biological Association of the United Kingdom 92: 

1227-1242 

Chambers RM, Fourqurean JW, Hollibaugh JT, Vink SM (1995) Importance of terrestrially 

derived, particulate phosphorus to phosphorus dynamics in a west coast estuary. 

Estuaries 18: 518-526 

Chuwen BM, Hoeksema SD, Potter CI (2009) The divergent environmental characteristics 

of permanently-open, seasonally-open and normally-closed estuaries of south-

western Australia. Estuarine, Coastal and Shelf Science 85: 12–21 

Clarke A (2008) Ecological stoichiometry in six species of Antarctic marine benthos. 

Marine Ecology Progress Series 369: 25-37 

Clarke KR, Gorley RN (2006) PRIMER (Plymouth Routines In Multivariate Ecological 

Research) Version 6:User manual/Tutorial, PRIMER-E,Plymouth UK.  

Clavero V, Izquierdoa J, Palomoa L, Fernandez LA, Niella FX (1999) Water management 

and climate changes increases the phosphorus accumulation in the small shallow 

estuary of the Palmones River (southern Spain). The Science of the Total 

Environment 228: 193-202 

Cloern JE, Grenz C, Vidergar-Lucas L (1995) An empirical model of the phytoplankton 

chlorophyll : carbon ratio --the conversion factor between productivity and growth 

rate. Limnology and Oceanography 40: 1313-1321 

Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, 

Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 

323: 1014-1015 



90 

 

 

 

Cooper JAG (2001) Geomorphological variability among microtidal estuaries from the 

wave-dominated South African coast. Geomorphology 40: 99-122 

Correll DL (1999) Phosphorus: A rate limiting nutrient in surface waters. Poultry Science 

78: 674–682 

Cross FC, Benstead P, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater 

benthic systems: recent progress and perspectives. Freshwater Biology 50: 1895-

1912 

Cross WF, Benstead JP, Rosemond AD, Wallace JB (2003) Consumer-resource 

stoichiometry in detritus-based streams. University of Georgia, Georgia 

Day JH (1951) The Ecology of South African Estuaries. Part I. Review of Estuarine 

Conditions in General. Transactions of the Royal Society of South Africa 33: 53-91 

Day JH (1967) A monograph on the polychaetes of southern Africa, Part I and II. Trustees 

of the British Museum (Natural History), London 

Day JH (1974) A guide to marine life on South African shores. A.A. Balkema, Cape Town 

Day JH (1981a) The nature, origin and classification of estuaries In: Day JH (ed) Estuarine 

ecology: with particular reference to Southern Africa. Balkema, Rotterdam, pp 1-6 

Day JH (1981b) Summaries of current knowledge of 43 estuaries in the southern Africa. In: 

Day JH (ed) Estuarine ecology with particular reference to southern Africa. A.A. 

Balkema, Cape Town, pp 251-329 

de Villiers CJ, Hodgson A (1999) Studies on estuarine macroinvertebrates. In: Allanson 

BR, Baird D (eds) Estuaries of South Africa. Cambridge University Press, 

Cambridge, pp 167-207 

Dobberfuhl DR, Elser JJ (2000) Elemental stoichiometry of lower food web components in 

arctic and temperate lakes. Journal of Plankton Research 22: 1341–1354 

Duan S, Liang T, Zhang S, Wang L, Zhang X, Chen X (2008) Seasonal changes in nitrogen 

and phosphorus transport in the lower Changjiang River before the construction of 

the Three Gorges Dam. Estuarine, Coastal and Shelf Science 79: 239-250 

Dunne E, Culleton N, Donovan GO, Harrington R (2005) Phosphorus retention and 

sorption by constructed wetland soils. Johnstown Castle Research Centre, Wexford, 

Johnstown 

Elliott M, McLusky DS (2002) The Need for Definitions in Understanding Estuaries. 

Estuarine, Coastal and Shelf Science 55: 815–827 

Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Current Opinion in 

Biotechnology 23: 1-6 

Elser JJ, Hessen DO (2005) Biosimplicity via stoichiometry : the evolution of food-web 

structure and processes. In: Belgrano A, Scharler UM, Dunne JA, Ulanowicz RE 

(eds) Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, 

pp 7-18 

Elser JJ, Schampel JH, Garcia-Pichel F, Wade BD, Souza V, Eguiarte L, Escalante A, 

Farmer JD (2005) Effects of phosphorus enrichment and grazing snails on modern 

stromatolitic microbial communities. Freshwater Biology 50: 1808–1825 

Emmerson WD (1985) The nutrient status of the Swartkops River estuary, Eastern Cape. 

Water SA 11: 189-198 



91 

 

 

 

EPA US (2001) Methods for Collection, Storage and Manipulation of Sediments for 

Chemical and Toxicological Analyses: Technical Manual. United States 

Environmental Protection Agency, Washington, DC. 

Evans-White MA, Lamberti GA (2005) Grazer species effects on epilithon nutrient 

composition. Freshwater Biology 50: 1853–1863 

Evans-White MA, Stelzer RS, Lamber GA (2005) Taxonomic and regional patterns in 

benthic macroinvertebrate elemental composition in streams. Freshwater Biology 

50: 1786–1799 

Eyre B (1998) Transport, retention and transformation of material in Australian estuaries. 

Estuaries 21: 540-551 

Eyre B, Balls P (1999) A Comparative Study of Nutrient Behavior along the Salinity 

Gradient of Tropical and Temperate Estuaries. Estuaries 22: 313-326 

Fairbridge RW (1980) The estuary: its definition and geodynamic cycle. In: Olausson E, 

Cato I (eds) Chemistry and Biogeochemistry of Estuaries. Wiley, Nwe York, pp 1-

35 

Fisher T, Peele ER, Ammerman JW, Harding LW (1992) Nutrient limitation of 

phytoplankton in Chesapeake Bay. Marine Ecology Progress Series 82: 51-63 

Fisher TR, Gustafson AB, Sellner K, Lacouture R, Haas LW, Wetzel RL, Magnien R, 

Everitt D, Michaels B, Karrh R (1999) Spatial and temporal variation of resource 

limitation in Chesapeake Bay. Marine Biology 133: 763-778 

Flach E, Heip C (1996) Vertical distribution of macrozoobenthos within the sediment on 

the continental slope of the Goban Spur area (NE Atlantic). Marine Ecology 

Progress Series 141: 55-66 

Follmi KB (1996) The phosphorus cycle, phosphogenesis and marine phosphate-rich 

deposits. Earth-Science Reviews 40: 55-124 

Forsgren G, Jansson M (1992) The turnover of river-transported iron, phosphorus and 

organic carbon in the Ore estuary, northern Sweden. Hydrobiologia 235: 85-596 

Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: A 

primer on the phosphate buffer mechanism. Limnology and Oceanography 33: 649-

668 

Froneman PW (2001) Seasonal changes in zooplankton biomass and grazing in a temperate 

estuary, South Africa. Estuarine, Coastal and Shelf Science 52: 543–553 

Froneman PW (2002a) Response of the Plankton to Three Different Hydrological Phases of 

the Temporarily Open/closed Kasouga Estuary, South Africa. Estuarine, Coastal 

and Shelf Science 55: 535-546 

Froneman PW (2002b) Seasonal changes in selected physico-chemical and biological 

variables in the temporarily open/closed Kasouga estuary, Eastern Cape, South 

Africa. African Journal of Aquatic Science 27: 117–123 

Froneman PW (2004a) Food web dynamics in a temperate temporarily open/closed estuary 

(South Africa). Estuarine, Coastal and Shelf Science 59: 87-95 

Froneman PW (2004b) Zooplankton community structure and biomass in a southern 

African temporarily open/closed estuary. Estuarine Coastal and Shelf Science 60: 

125-132 

Frost PC, Elser JJ (2002) Growth responses of littoral mayflies to the phosphorus content of 

their food. Ecology Letters 5: 232–240 



92 

 

 

 

Frost PC, Tank SE, Turner MA, Elser JJ (2003) Elemental Composition of Littoral 

Invertebrates from Oligotrophic and Eutrophic Canadian Lakes. Journal of the 

North American Benthological Society 22: 51-62 

Gales ME, Julian EC, Kroner RC (1966) Method for quantitative determination of total 

phosphorus in water. American Water Works Association 58: 1363-1368 

Gama PT, Adams J, Schael DM, Skinner T (2005) Phytoplankton chlorophyll a 

concentration and community structure of two temporarily open closed estuaries. 

Water Research Commission, Port Elizabeth 

Gao Y, Zhu B, Wang.T, Tang J, Zhou P, Miao C (2010) Bioavailable phosphorus transport 

from a hillslope cropland of purple soil under natural and simulated rainfall. 

Environmental Monitoring and Assessment 171: 539–550 

Geider RJ, MacIntyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and 

acclimation: responses of the balanced growth rate and the chlorophyll a:carbon 

ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 

148: 187-200 

Gobler CJ, Cullison LE, Koch F, Harder TM, Krause JW (2005) Influence of freshwater 

flow, ocean exchange, and seasonal cycles on phytoplankton – nutrient dynamics in 

a temporarily open estuary. Estuarine, Coastal and Shelf Science 65: 275-288 

Grange N, Allanson BR (1995) The Influence of Freshwater Inflow on the Nature, Amount 

and Distribution of Seston in Estuaries of the Eastern Cape, South Africa. Estuarine 

Coastal and Shelf Science 40: 403–420 

Grange N, Whitfield AK, De Villiers CJ, Allanson BR (2000) The response of two South 

African east coast estuaries to altered river flow regimes. Aquatic Conservation: 

Marine and Freshwater Ecosystems 10: 155-177 

Griffiths C (1976) Guide to the benthic marine amphipods of southern Africa. Trustees of 

the South African Museum, Cape Town 

Griffiths D (2006) The direct contribution of fish to lake phosphorus cycles. Ecology of 

Freshwater Fish 15: 86–95 

Grindley JR (1981) Estuarine plankton. In: Day JH (ed) Estuarine ecology with particular 

reference to southern Africa. A.A. Balkema, Cape Town, pp 117-146 

Grindley JR (1985) Report No. 30: Knysna (CMS 13). CSIR, Stellenbosch 

Hall RO, Tank JL, Dybdahl M (2003) Exotic snails dominate nitrogen and carbon cycling 

in a highly productive stream. The Ecological Society of America 1: 407-411 

Hanekom N, Baird D, Erasmus T (1989) A quantitative study to asses standing biomasses 

of macrobenthos in soft substrata of the Swartkops Estuary, South Africa. South 

African Journal of Science 6: 163-174 

Harrison PJ, Hu MJ, Yang YP, Lu X (1990) Phosphate limitation in estuarine and coastal 

waters of China. Journal of Experimental Marine Biology and Ecology 140: 79-87 

Harrison TD, Hohls DR, Meara TP, Webster MS (2001) South Afican estuaries: Catchment 

land-cover Department of Environmental Affairs & Tourism AND CSIR, Pretoria  

Harrison TD, Whitfield AK (2006) Temperature and salinity as primary determinants 

influencing the biogeography of fishes in South African estuaries. Estuarine, 

Coastal and Shelf Science 66: 335-345 



93 

 

 

 

Hartzell JL, Jordan TE (2010) Shifts in the relative availability of phosphorus and nitrogen 

along estuarine salinity gradients. Biogeochemistry DOI: 10.1007/s10533-010-

9548-9 

Hassett RP, Cardinale B, Stabler LB, Elser JJ (1997) Ecoloical stoichiometry of N and P in 

pelagic ecosystems: Comparison of lakes and oceans with emphasis on the 

zooplankton-phytoplankton interaction. Limnology and Oceanography 42: 648-662 

Herbland A, Delmas D, Laborde P, Sautour B, Artigas F (1998) Phytoplankton spring 

bloom of the Gironde plume waters in the Bay of Biscay: early phosphorus 

limitatio:n and food-web consequences. Oceanologica Acta 21: 279-291 

Hessen DO (1992) Nutrient element limitation of zooplankton production. The American 

Scientist 140 

Hill BJ (1966) A contribution to the ecology of the Mlalazi estuary. Zoologica Africana 2: 

1-24 

Hilmer T, Bate CG (1990) Covariance analysis of chlorophyll distribution in the Sundays 

River Estuary, Eastern Cape. Southern African Journal of Aquatic Sciences 16: 37-

59 

Hjerne O, Hansson S (2002) The role of fish and fisheries in Baltic Sea nutrient dynamics. 

Limnology and Oceanography 47: 1023-1032 

Hockey P, Turpie J (1999) Estuarine birds in South Africa. In: Allanson BR, Baird D (eds) 

Estuaries of South Africa. Cambridge University Press, Cambridge, pp 235-268 

Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. 

Annual Review of Ecology, Evolution and Systematics 19: 89-110 

Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in 

coastal marine ecosystems: Evolving views over three decades. Limnology & 

Oceanography 51: 364–376 

Huanxin W, Presley BJ, Velinsky DJ (1997) Distribution and sources of phosphorus in tidal 

river sediments in the Washington, DC, Area. Environmental Geology 30: 224-230 

James NC, Harrisson TD (2009) A preliminary survey of the estuaries on the south coast of 

South Africa, Robberg Peninsula – Cape St Francis, with particular reference to the 

fish fauna. Transactions of the Royal Society of South Africa 64: 14-31 

James NC, Paterson AW (2011) Estuaries and global change with emphasis to ichthyofauna 

Environmental change in South Africa, pp 183-185 

Jerling HL (2005) Zooplankton community changes in Nhlabane estuary, South Africa, 

induced by man-made structures and drought. African Journal of Aquatic Science 

30: 29-35 

Jerling HL (2008) The zooplankton community of Richards Bay Harbour and adjacent 

Mhlathuze Estuary, South Africa. African Journal of Aquatic Science 30: 55-62 

Jerling HL, Wooldridge TH (1991) Population dynamics and estimates of production for 

the calanoid copepod Pseudodiaptomus hessei in a warm temperate estuary. 

Estuarine, Coastal and Shelf Science 33: 121-135 

Jerling HL, Wooldridge TH (1995) Plankton distribution and abundance in the Sundays 

River estuary, South Africa, with comments on potential feeding interactions South 

African Journal of Marine Science 15: 169-184 

Kensley B (1978) Guide to the marine isopods of southern Africa. Trustees of the South 

African Museum, Cape Town, pp 1-173 



94 

 

 

 

Kibirige I, Perissinotto R (2003) The zooplankton community of the Mpenjati Estuary, a 

South African temporarily open/closed system. Estuarine, Coastal and Shelf Science 

58: 727-741 

Kibirige I, Perissinotto R, Nozais C (2002) Alternate food sources of zooplankton in a 

temporarily-open estuary: evidence from 13C and 15N. Journal of Plankton 

Research 24: 1089-1095 

Kibirige I, Perissinotto R, Thwala X (2006) A comparative study of zooplankton dynamics 

in two subtropical temporarily open/closed estuaries, South Africa. Marine Biology 

148: 1307–1324 

Klemm DJ, Lewis PA, Fulk F, Lazorchak JM (1990) Macroinvertebrate Field and 

Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. US 

Environmental Protection Agency,, Cincinnati, OH 

Kraus NC, Patsch KK, Munger S (2008) Barrier beach breaching from the lagoon side, 

with reference to Northern California. Shore & Beach 76: 33-43 

Krom MD, kress N, Brenner S (1991) Phosphorus limitation of primary productivity in the 

eastern Mediterranean Sea. Limnology and Oceanography 36: 424-432 

Lamara VA (1975) Digestive activities of carp as a major contributor to the nutrient loading 

of lakes. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 

Verhandlungen 19: 2461-2468 

Largier JL, Attwood C, Hartcourt-Baldwin JL (2000) The hydrographic character of the 

Knysna Estuary. Transactions of the Royal Society of South Africa 55: 107-122 

Lawrie RA, Stretch DD, Perissinotto R (2010) The effects of wastewater discharges on the 

functioning of a small temporarily open/closed estuary. Estuarine and Coastal 

Marine Science 87: 237-245 

Lenz J (1974) On the amount and size distribution of suspended organic matter in the Kiel 

Bight. J. Ber. Wiss. Kommn. Meeresforsch 23: 200-225 

Levin LA, Boesch DF, Covich A, Dahm C, Erseus C, Ewel KC, Kneib RT, Moldenke A, 

Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine 

critical transition zones and the importance of sediment biodiversity. Ecosystems 4: 

430–451 

Lewis WM (1996) Tropical lakes: how latitude makes a difference. Perspectives in  

Tropical limnology 43-64 

Liess A, Hillebrand H (2005) Stoichiometric variation in C:N, C:P, and N:P ratios of 

littoral benthic invertebrates. Journal of the North American Benthological Society 

24: 256–269 

Liptrot MRN (1978) Community metabolism and phosphorus dynamics in a seasonally 

closed South African estuary, Grahamstown 

Liu SM, Zhang J, Chen SZ, Chen HT, Hong GH, Wei H, Wu QM (2003) Inventory of 

nutrient compounds in the Yellow Sea. Continental Shelf Research 23: 1161-1174 

Lohrenz SE, Fahnenstiel GL, Redalje DG, Lang GA, Dagg MJ, Whitledge TE, Dortch Q 

(1999) Nutrients, irradiance, and mixing as factors regulating primary production in 

coastal waters impacted by the Mississippi River plume. Continental Shelf Research 

19: 1113-1141 



95 

 

 

 

Loneragan NR (1999) River flows and estuarine ecosystems: Implications for coastal 

fisheries from a review and a case study of the Logan River, southeast Queensland. 

Australian Journal of Ecology 24: 431-440 

Louw L (2007) The zooplankton of Mngazana estuary. Faculty of Science, Port Elizabeth 

Lukkari K, Leivuori M, Hartikainen H (2008) Vertical distribution and chemical character 

of sediment phosphorus in two shallow estuaries in the Baltic Sea. Biogeochemistry 

90: 171-191 

Mabaso SH (2002) The macrobenthos of Mlalazi Estuary, KwaZulu-Natal. Department of 

Zoology, Mpangeni 

MacKay CF (1996) The benthos of the Siyaya Estuary: species composition, density and 

distribution. Department of zoology, Mpangeni 

Mann BQ, Pradervand P (2007) Declining catch per unit effort of an estuarine-dependent 

fish, Rhabdosargus sarba (Teleostei: Sparidae), in the marine environment 

following closure of the St Lucia Estuarine System, South Africa. African Journal 

of Aquatic Science 32: 133–138 

Martinson HM, Schneider K, Gilbert J, Hines JE, Hamback PA, Fagan WF (2008) 

Detritivory: stoichiometry of a neglected trophic level. Ecological Resarch 23: 487-

491 

Matcher GF, Dorrington RA, Henninger TO, Froneman PW (2011) Insights into the 

bacterial diversity in a freshwater-deprived permanently open Eastern Cape estuary, 

using 16S rRNA pyrosequencing analysis. Water SA Vol 37: 381-390 

McComb AJ, Atkins RP, Birch PB, Gordon DM, Lukatelich RJ (1981) Eutrophication in 

the Peel-Harvey estuarine system, Western Australia  In: Neilson BJ, Cronin LE 

(eds) Estuaries and nutrients. Humana Press, Clifton, NJ, pp 323-342 

Mckee LJ, Bradley DE, Hossain S (2000) Transport and retention of nitrogen and 

phosphorus in the sub-tropical Richmond River estuary, Australia - A budget 

approach. Biogeochemistry 50: 241-278 

McLusky DS (1993) Marine and estuarine gradients - an overview. Netherlands Journal of 

Aquatic Ecology 27: 489-493 

Mclusky  DS (1999) Estuarine benthic ecology: A European perspective. Australian Journal 

of Ecology 24: 302-311 

McLusky DS (2004) The estuarine ecosysytem: ecology, threats and management. Oxford 

University press 

McRoy CP, Barsdale RJ, Nebert M (1972) Phosphorus cycling in an eelgrass (Zostera 

marina L.) ecosystem. Limnology and Oceanography 17: 58-67 

Montoya-Maya PH, Strydom NA (2009) Zooplankton composition, abundance and 

distribution in selected south and west coast estuaries in South Africa. African 

Journal of Aquatic Science 34: 147-157 

Moslemi JM, Snider SB, MacNeill k, Gilliam JF, Flecke AS (2012) Impacts of an Invasive 

Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of 

Riparian Deforestation in Trinidad, West Indies. Plos ONE 7: 1-9 

Myers VB, Iverson RI (1981) Phosphorus and nitrogen limited phytoplankton productivity 

in north-eastern Gulf of Mexico coastal estuaries. In: Neilson BJ, Cronin LE (eds) 

Estuaries and nutrients. Humana Press, New Jersey 



96 

 

 

 

Nakashima BS, Leggett WC (1980) The role of fishes in the regulation of phosphorus 

availability in lakes. Canadian Journal of Fisheries and Aquatic Sciences 37: 1540-

1549 

Nalepa TF, Gardner WS, Malczyk JM (1991) Phosphorus cycling by mussels (Unionidae : 

Bivalvia) in Lake St. Clair. Hydrobiologia 219: 239-250 

Ndaba S, Joseph C (2013) Abundance and biomass of the sand prawn Callichirus kraussi in 

the Mpenjati estuary, KwaZulu-Natal, South Africa. School of Life Sciences, 

Durban 

Ngqulana SG, Owen RK, Vivier L, Cyrus DP (2010) Benthic faunal distribution and 

abundance in the Mfolozi-Msunduzi estuarine system, KwaZulu-Natal, South 

Africa. African Journal of Aquatic Science 35: 123–133 

Nicolas D, Le Loc'h F, Désaunay Y, Hamond D, Blanchet A, Le Pape O (2007) 

Relationships between benthic macrofauna and habitat suitability for juvenile 

common sole (Solea solea, L.) in the Vilaine estuary (Bay of Biscay, France) 

nursery ground. Estuarine, Coastal and Shelf Science 73: 639-650 

Nozais C, Perissinotto R, Mundree S (2001) Annual cycle of microalgal biomass in a South 

African temporarily-open estuary: nutrient versus light limitation. Marine Ecology 

Progress Series 223: 39–48 

Paerl HW (2006) Assessing and managing nutrient-enhanced eutrophication in estuarine 

and coastal waters: Interactive effects of human and climatic perturbations. 

Ecological Engineering 26: 40-54 

Papadopoulos I, Wooldridge TH, Newman BK (2002) Larval life history strategies of sub-

tropical southern African estuarine brachyuran crabs and implications for tidal inlet 

management. Wetlands Ecology and Management 10: 249–256 

Park S, Brett MT, Muller-Navarra DC, Goldman CR (2002) Essential fatty acid content and 

the phosphorus to carbon ratio in cultured algae as indicators of food quality for 

Daphnia. Freshwater Biology 47: 1377-1390 

Park S, Müller-Navarra DC, Goldman CR (2003) Seston essential fatty acids and carbon to 

phosphorus ratios as predictors for Daphnia pulex dynamics in a large reservoir, 

Lake Berryessa. Hydrobiologia 505: 171–178 

Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chemical Reviews 107: 

563-576 

Perillo GME (1995) Geomorphology and Sedimentology of Estuaries: An introduction. In: 

G.M.E. P (ed) Geomorphology and Sedimentology of estuaries. Elsevier Science, 

Amsterdam, pp 471 

Perissinotto R, Blair A, Connell A, Demetriades NT, Forbes AT, Harrison TD, Lyer K, 

Joubert M, Kibirige I, Mundree S, Simpson H, Stretch DD, Thomas C, Thwala X, 

Zietsman I (2004) Contributions to information requirements for the 

implementation of Resource Directed Measures for estuaries. Water Research 

Commission 1247/2/04, Pretoria 

Perissinotto R, Nozais C, Kibirige I (2002) Spatio-temporal dynamics of phytoplankton and 

microphytobenthos in a South African temporarily-open estuary. Estuarine, Coastal 

and Shelf Science 55: 47-58 



97 

 

 

 

Perissinotto R, Nozais C, Kibirige I, Akash A (2003) Planktonic food webs and benthic-

pelagic coupling in three South African temporarily-open estuaries. Acta 

Oecologica 24, Supplement 1: S307-S316 

Perissinotto R, Stretch DD, Whitfield AK, Adams JB, Forbes AT, Demetriades NT (2010) 

Ecosystem functioning of temporarily open/closed estuaries in South Africa. In: 

Crane JR, Solomon AE (eds) Estuaries: types, movement patterns and climatical 

impacts. Nova Science publishers, Michigan, pp 1-69 

Perissinotto R, Walker DR, Webb P, Wooldridge TH, Bally R (2000) Relationships 

between zoo- and phytoplankton in a warm-temperate, semi-permanently closed 

estuary, South Africa. Estuarine, Coastal and Shelf Science 51: 1–11 

Perissinotto R, Wooldridge TH (1989) Short-term thermal effects of a power-generating 

plant on zooplankton in the Swartkops Estuary, South Africa. Marine Ecology 10: 

205-219 

Pittman SJ, McAlpine CA (2001) Movements of Marine Fish and Decapod Crustaceans: 

Process, Theory and Application. Advances in Marine Biology 44: 206-294 

Pomeroy LR, Smith EE, Grant CM (1965) The exchange of phosphate between estuarine 

water and sediments. Limnology and Oceanography x: 167-172 

Pontee NI, Whitehead PA, Hayes CM (2004) The effect of freshwater flow on siltation in 

the Humber Estuary, north east UK. Estuarine, Coastal and Shelf Science 60: 

241e249 

Potter CI, Chuwen BM, Hoeksema SD, Elliott M (2010) The concept of an estuary: A 

definition that incorporates systems which can become closed to the ocean and 

hypersaline. Estuarine, Coastal and Shelf Science 87: 497-500 

Potter IC, Hyndes GA (1999) Characteristics of the ichthyofaunas of south western 

Australian estuaries, including comparisons with holarctic estuaries elsewhere in 

temperate Australia: A review. Australian Journal of Ecology 24: 395-421 

Powell GL, Matsumoto J, Brock DA (2002) Methods for determining minimum freshwater 

inflow needs of Texas bays and estuaries. Estuaries 25: 1262-1274 

Pritchard RW (1967) What is an estuary? Physical viewpoint. In: Lauff GH (ed) Estuaries. 

American Association for the Advancement of Science, Washington, pp 3–5 

Puigserver M, Ramon G, Moya G, Mart´ınez-Taberner A (2002) Planktonic chlorophyll a 

and eutrophication in two Mediterranean littoral systems (Mallorca Island, Spain). 

Hydrobiologia 475: 493-504 

Raimbault P, Diaz F, Pouvesle W, Boudjellal B (1999) Simultaneous determination of 

particulate organic carbon, nitrogen and phosphorus collected on filters, using a 

semi-automatic wet-oxidation method. Marine Ecology Progress Series 180: 289-

295 

Ranasinghe R, Pattiaratchi C (1998) Flushing Characteristics of a Seasonally-Open Tidal 

Inlet: A Numerical Study. Journal of Coastal Research 14: 1405-1421 

Ranasinghe R, Pattiaratchi C (2003) The seasonal closure of tidal inlets: causes and effects. 

Coastal Engineering Journal 45: 601-627 

Redfield AC (1958) The biological control of chemical factors in the environment. 

American Scientist 46: 205-221 



98 

 

 

 

Reinertsen H, Jensen A, Langeland A, Olsen Y (1986) Algal competition for phosphorus: 

the influence of zooplankton and fish. Canadian Journal of Fisheries and Aquatic 

Sciences 43: 1135-1141 

Romao C (1996) Interpretation manual of European Union habitats, version EUR15. 

European Commission, DGXI (Environment, Nuclear Security and Civil 

Protection), Brussels 

Roy PS, Williams RJ, Jones AR, Yassini I, Gibbs PJ, Coates B, West RJ, Scanes PR, 

Hudson JP, Nichol S (2001) Structure and Function of South-east Australian 

Estuaries. Estuarine, Coastal and Shelf Science 53: 351-384 

Scharler UM, Baird D (2003a) The influence of catchment management on salinity, 

nutrient stochiometry and phytoplankton biomass of Eastern Cape estuaries, South 

Africa. Estuarine Coastal and Shelf Science 56: 735-748 

Scharler UM, Baird D (2003b) The nutrient status of the agriculturally impacted Gamtoos 

Estuary, South Africa, with special reference to the river-estuarine interface region 

(REI). Aquatic Conservation: Marine and Freshwater Ecosystems 13: 99-119 

Scharler UM, Baird D (2005) The filtering capacity of selected Eastern Cape estuaries, 

South Africa. Water SA 31: 483-490 

Scharler UM, Baird D, Astill H, Adams J (2002) Water column and benthic nutrient status 

in and around the river-estuary interface (REI) zone of the Gamtoos Estuary. In: 

Whitfield AK, Wood AD (eds) Studies on the River-Estuary Interface Region of 

Selected Eastern Cape Estuaries. Water Research Commission Report No 756/2/02. 

314 pp 

Schlacher TA, Wooldridge TH (1996) Axial zonation patterns of subtidal macrozoobenthos 

in the Gamtoos Estuary, South Africa. Estuaries 19: 680-696 

Schleyer MH (1981) Microorganisms and detritus in the water column of a subtidal reef of 

Natal. Marine Ecology Progress Series 4: 307-320 

Silberbauer MJ (1982) Phosphorus dynamics in the monimolimnion of Swartvlei. Journal 

of the Limnological Society of Southern Africa 8: 54-60 

Slomp CP (2011) Phosphorus Cycling in the Estuarine and Coastal Zones: Sources, Sinks, 

and Transformations. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and 

Coastal Science. Academic Press, Waltham, pp 201–229 

Snow GC, Adams JB (2007) Relating microalgal spatial patterns to flow, mouth and 

nutrient status in the temporarily open/closed Mngazi estuary, South Africa. Marine 

and Freshwater Research 58: 1032-1043 

Snow GC, Adams JB, Bate GC (2000) Effect of River Flow on Estuarine Microalgal 

Biomass and Distribution. Estuarine, Coastal and Shelf Science 51: 255-266 

Snow GC, Taljaard S (2007) Water quality in South African temporarily open/closed 

estuaries: a conceptual model. African Journal of Aquatic Science 32: 99-111 

Sondergaard M, Jeppesen E, Mortensen E, Dall E, Kristensen P, Sortkjaer O (1990) 

Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, 

eutrophic lake: a combined effect of reduced internal P-loading and increased 

zooplankton grazing. Hydrobiologia 200: 229-240 

Statham PJ (2012) Nutrients in estuaries — An overview and the potential impacts of 

climate change. Science of The Total Environment 434: 213-227 



99 

 

 

 

Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by 

herbivores:zooplankton and the algal competitive arena 

 

The American Naturalist 236: 209-229 

Sterner RW (1997) Modelling interactions of food quality and quantity in homeostatic 

consumers. Freshwater Biology 38: 473-481 

Sterner RW, Elser JJ (2002) Ecological stoichiometry: The biology of elements from 

molecule to the biosphere Princeton University press, Princeton 

Sterner RW, Elser JJ (2003) Biological chemistry: Building cells from elements. In: Sterner 

RW, Elser JJ (eds) Ecological stoicheometry. Princeton University Press, Princeton, 

pp 44-79 

Steyn DG, Lussi M (1998) Marine Shells of South Africa. Ekogilde Publishers, 

Hartebeespoort 

Stow CA (2011) Spatial and temporal variations in macrozoobenthic communities in 

KwaZulu-Natal temporarily open/closed estuaries. Faculty of Science and 

Agriculture, Durban 

Strydom NA, Whitfield AK (2000) The effects of a single freshwater release into the 

Kromme Estuary. 4: Larval fish response. Water SA 26: 319-328 

Sundareshwar PV, Morris JT (1999) Phosphorus sorption characteristics of intertidal marsh 

sediments along an estuarine salinity gradient. Limnology and Oceanography 44: 

1693-1701 

Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus Limitation of 

Coastal Ecosystem Processes. Science 299: 563-565 

Sundby B, Gobeil C, Silverberg N, Mucci A (1992) The phosphorus cycle in coastal marine 

sediments. Limnology and Oceanography 37: 1129-1145 

Swart DH, Morant PD, Moller JP, Crowley JP, De Wet A (1988) A record of events at the 

Orange River mouth during the March 1988 flood. South African Journal of Science 

84: 881-924 

Taft JL, Taylor WR (1976) Phosphorus dynamics in some coastal plain estuaries. In: Wiley 

M (ed) Estuarine processes. Academic press, inc., New York, pp 75-87 

Taljaard S, van Niekerk L, Joubert W (2009) Extension of a qualitatative model on nutrient 

cycling and transformation to include microtidal estuaries on the wave-dominated 

coasts: Southern hemisphere perspective. Estuarine, Coastal and Shelf Science 85: 

407-421 

Telesh IV, Khlebovich VV (2010) Principal proceses within the estuarine salinity gradient: 

A review. Marine Pollution Bulletin 61: 149-155 

Thomas CM, Perissinotto R, Kibirige I (2005) Phytoplankton biomass and size structure in 

two South African eutrophic, temporarily open/closed estuaries. Estuarine, Coastal 

and Shelf Science 65: 223-238 

Threlkeld ST (1988) Planktivory and Planktivore Biomass Effects on Zooplankton, 

Phytoplankton, and the Trophic Cascade. Limnology and Oceanography 33: 1362-

1375 

Turpie JK, Adams JB, Joubert A, Harrison TD, Colloty BM, Maree R, Whitfield AK, 

Wooldridge TH, Lamberth S, Taljaard S, Van Niekerk L (2002) Assessment of the 



100 

 

 

 

conservation priority status of South African estuaries for use in management and 

water allocation. Water SA 28: 191-206 

Underwood AJ (1997) Experiments in Ecology. Cambridge University Press, Cambridge 

Urabe J, Kyle M, Makino W, Yoshida T, Andersen T, Elser JJ (2002) Reduced light 

increases herbivore production due to stoichiometric effects of light/nutrient balance 

Ecology 83: 619–627 

Urabe J, Sterner RW (1996) Regulation of herbivore growth by the balance of light and 

nutrients. Proceedings of the National Academy of Sciences of the United States of 

America 93: 8465-8469 

van der Zee C, Roevros N, Chou L (2007) Phosphorus speciation, transformation and 

retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater 

tidal limits to the North Sea. Marine Chemistry 106: 76–91 

Vanni MJ (2002) Nutrient Cycling by Animals in Freshwater Ecosystems. Annual Review 

of Ecology and Systematics 33: 341-370 

Vanni MJ, Findlay DL (1990) Trophic cascades and phytoplankton community structure. 

Ecology 71: 921-937 

Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002) Stoichiometry of nutrient recycling 

by vertebrates in a tropical stream: linking species identity and ecosystem processes. 

Ecology Letters 5: 285–293 

Vanni MJ, Layne CD, Arnott SE (1997) "Top-down" trophic interactions in lakes: effects 

of fish on plankton and nutrient dyanamics. Ecology 78: 1-20 

Vasconcelos RP, Reis-Santos P, Maia A, Fonseca V, França S, Wouters N, Costa MJ, 

Cabral HN (2010) Nursery use patterns of commercially important marine fish 

species in estuarine systems along the Portuguese coast. Estuarine, Coastal and 

Shelf Science 86: 613–624 

Vaughn CC, Hakenkamp CC (2001) The functional role of burrowing bivalves in 

freshwater ecosystems. Freshwater Biology 46: 1431-1446 

Vivier L, Cyrus DP (2009) Alternative nursery habitat for estuarine associated marine fish 

during prolonged closure of the St Lucia estuary, South Africa. Estuarine, Coastal 

and Shelf Science 85: 118–125 

Vrede T, Andersen T, Hessen DO (1999) Phosphorus distribution in three crustacean 

zooplankton species. Limnology and Oceanography 44: 225–229 

Walve J, Larsson U (1999) Carbon, nitrogen and phosphorus stoichiometry of crustacean 

zooplankton in the Baltic Sea: implications for nutrient recycling. Journal of 

Plankton Research 21: .2309–2321 

Wang H, Appan A, Gulliver JS (2003) Modeling of phosphorus dynamics in aquatic 

sediments: I—model development. Water Research 37: 3928–3938 

Wasserman RJ, Strydom NA (2011) The importance of estuary head waters as nursery 

areas for young estuary- and marine-spawned fishes in temperate South Africa. 

Estuarine, Coastal and Shelf Science 94 94: 56-67 

Wepener V (2007) Carbon, nitrogen and phosphorus fluxes in four sub-tropical estuaries of 

northern KwaZulu-Natal: Case studies in the application of a mass balance 

approach. Water SA 33: 203-214 



101 

 

 

 

Whitfield AK (1980) A quantitative study of the trophic relationships within the fish 

community of the Mhlanga estuary, South Africa. Estuarine and Coastal Marine 

Science 10: 417-435 

Whitfield AK (1992) A charesterization of southern African estuarine systems. South 

African Journal of aquatic Science 18: 89-103 

Whitfield AK (1995) Threatened fishes of the world: Syngnathus watermeyeri Smith, 1963 

(Syngnathidae). Environmental Biology of Fishes 43: 152 

Whitfield AK (1999a) Ichthyofaunal assemblages in estuaries: A South African case study. 

Reviews in Fish Biology and Fisheries 9: 151–186 

Whitfield AK (1999b) Ichthyoplankton diversity, recruitment and dynamics. In: Allanson 

BR, Baird D (eds) Estuaries of South Africa. Cambridge University Press, 

Cambridge, pp 209-218 

Whitfield AK (2000) Available scientific information on individual southern African 

estuarine systems. Water Research Commission Report 577/3/00: 1-217 

Whitfield AK (2005) Fishes and freshwater in southern African estuaries – A review. 

Aquat. Living Resour. 18: 275–289 

Whitfield AK, Bate GC (2007) A review of information on temporarily open/closed 

estuaries in the warm and cool temperate biogeographic regions of south africa, 

with particular emphasis on the influence of river flow on these systems. South 

African Institute for Aquatic Biodiversity, Nelson Mandela Metropolitan University 

and University of KwaZulu-Natal 

Whitfield AK, Bate GC, Adams JB, Cowley PD, Froneman PW, Gama PT, Strydom NA, 

Taljaard S, Theron AK, Turpie JK, van Niekerk L, Wooldridge TH (2012) A review 

of the ecology and management of temporarily open/closed estuaries in South 

Africa, with particular emphasis on river flow and mouth state as primary drivers of 

these systems. African Journal of Marine Science 34: 163–180 

Winter D (1999) Chemistry: Biogeochemical processes. In: Allanson B, Baird D (eds) 

Estuaries of South Africa. Cambridge University Press, Cambridge, pp 70-76 

Wooldridge TH (1999) Estuarine zooplankton community structure and dynamics. In: 

Allanson BR, Baird D (eds) Estuaries of South Africa. Cambridge University Press, 

Cambridge, pp 141-166 

Wooldridge TH, Bailey C (1982) Euryhaline zooplankton of the Sundays estuary and notes 

on the trophic relationships. South African Journal of Science 17: 151-163 

Wooldridge TH, Callahan R (2000) The effects of a single freshwater release into the 

Kromme Estuary. 3: Estuarine zooplankton response. Water SA 26: 311-318 

Wooldridge TH, Deyzel SHP (2009a) The subtidal macrozoobenthos of the river-

dominated Great Berg Estuary. Transactions of the Royal Society of South Africa 

64: 204-218 

Wooldridge TH, Deyzel SHP (2009b) Temperature and salinity as abiotic drivers of 

zooplankton community dynamics in the Great Berg Estuary. Transactions of the 

Royal Society of South Africa 64: 219–237 

www.sasa.org.za  

Yin K, Qian P, Chen JC, Hsieh DPH, Harrison PJ (2000) Dynamics of nutrients and 

phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong 



102 

 

 

 

Kong during summer: preliminary evidence for phosphorus and silicon limitation. 

Marine Ecology Progress Series 194: 295-305 

 
 

 

 

 


