
Iterative Graphical Algorithms for Phase Noise Channels

Seare Haile Rezenom

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Electronic Engineering

University of KwaZulu-Natal

South Africa



As the supervisor of the candidate, I agree to the submission of this thesis.

Prof. Fambirai Takawira

Sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . December 2020

i



Declaration

I declare that

i) I am aware of the policy of the University on original work.

ii) The material presented in this thesis is my own original work.

iii) The relevant sources have been referenced explicitly.

iv) This thesis has not been submitted towards obtaining any degree, or qualification, at

any other university or tertiary institute.

Seare H. Rezenom

Sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii



Abstract

This thesis proposes algorithms based on graphical models to detect signals and charac-

terise the performance of communication systems in the presence of Wiener phase noise.

The algorithms exploit properties of phase noise and consequently use graphical models

to develop low complexity approaches of signal detection. The contributions are presented

in the form of papers.

The first paper investigates the effect of message scheduling on the performance of

graphical algorithms. A serial message scheduling is proposed for Orthogonal Frequency

Division Multiplexing (OFDM) systems in the presence of carrier frequency offset and

phase noise. The algorithm is shown to have better convergence compared to non-serial

scheduling algorithms.

The second paper introduces a concept referred to as circular random variables which

is based on exploiting the properties of phase noise. An iterative algorithm is proposed

to detect Low Density Parity Check (LDPC) codes in the presence of Wiener phase noise.

The proposed algorithm is shown to have similar performance as existing algorithms with

very low complexity.

The third paper extends the concept of circular variables to detect coherent optical

OFDM signals in the presence of residual carrier frequency offset and Wiener phase noise.

The proposed iterative algorithm shows a significant improvement in complexity compared

to existing algorithms.

The fourth paper proposes two methods based on minimising the free energy function

of graphical models. The first method combines the Belief Propagation (BP) and the

Uniformly Re-weighted BP (URWBP) algorithms. The second method combines the Mean

Field (MF) and the URWBP algorithms. The proposed methods are used to detect LDPC

codes in Wiener phase noise channels. The proposed methods show good balance between

complexity and performance compared to existing methods.

The last paper proposes parameter based computation of the information bounds of

the Wiener phase noise channel. The proposed methods compute the information lower

and upper bounds using parameters of the Gaussian probability density function. The

results show that these methods achieve similar performance as existing methods with low

complexity.
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Introduction

1 Wireless Communication Systems

The technology of wireless communication systems has shown significant advances over

the past decades. The First Generation (1G) wireless communication systems were ca-

pable of offering voice services only. The ability to transmit voice and data digitally was

possible in the Second Generation (2G) wireless communications systems which use digi-

tal modulation techniques to offer voice and limited data services. This was implemented

using technologies based on the Global System for Mobile communication (GSM) and

the Code Division Multiple Access (CDMA) system. Further advances of these technolo-

gies have been achieved using the Generalised Packet Radio Services (GPRS), Extended

Data rates for GSM Evolution (EDGE), etc. The Third Generation (3G) wireless com-

munication systems have been characterised by a significant improvement of data rates

compared to the 2G systems, and use the wide-band CDMA system as the underlying

technology. The Fourth Generation (4G) wireless communication systems have increased

the data rates using the Orthogonal Frequency Division Multiplexing (OFDM) system,

and are further evolving by including many techniques such as the multiple antennas and

carrier aggregation [1], [2]. The Fifth Generation (5G) wireless communication systems

aim to achieve very low latency, high connectivity, and very high data rates. These objec-

tives can be achieved with the use of enhanced multiple carrier techniques [3]–[5], massive

MIMO (multiple-input multiple-output) [6], millimetre wave (mmWave) frequency trans-

missions [7], and other technologies [8]. Beyond 5G wireless communication systems are

likely to be based on the non-orthogonal multiplexing access [9] and other emerging tech-

nologies that counteract the effect of the channel using smart reflecting surfaces [10], [11].

A basic wireless communication system is shown in Figure 1. The binary information

signal is encoded to counteract errors introduced by the wireless channel. The coded

information bits are then mapped using symbols selected from a predefined set. The

mapped sequences are further processed with appropriate transmitter techniques followed

by frequency up-conversion. The transmitted Radio Frequency (RF) signal encounters the

effects of a wireless channel. The received signal, which at this point includes the effects of

the Additive White Gaussian Noise (AWGN), is processed using inverse operations such

as frequency down-conversion, analogue-to-digital conversion, demapping and decoding to

recover the transmitted information bits. The received sequence is also affected by device

2
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Figure 1: A basic communication system.

uncertainties such as the carrier frequency offset, phase noise, etc. Hence, the received

signal has to be processed further using specialised algorithms to recover the transmitted

bits in the presence of these uncertainties. Therefore, the emphasis of this thesis is on the

design of receiver algorithms that counteract the effect of device uncertainties, particularly

that of the phase noise.

This chapter is organised as follows. Section 2 discusses the oscillator phase noise. In

Section 3, a brief description of an OFDM system is presented. In Section 4, the analysis

tools used in this thesis are discussed. In Section 5, the minimisation method of the free

energy function is presented. Section 6 presents the motivation of the methods proposed

in this work. Section 7 lists the contributions of this thesis. Finally, Section 8 presents

the list of publications.

2 Phase Noise

An ideal oscillator generates a waveform which has a stable frequency. In a practical

oscillator however, the generated waveform is not stable. This is due to the inherent

characteristics of oscillators which causes the period of oscillation to drift with time. The

time-domain waveform of an ideal oscillator can be written as y(t) = Ax(ω0t), where

A is the amplitude and x(·) represents a periodic waveform. In contrast, the waveform

of a practical oscillator can be described as y(t) = (1 + A(t))x(ω0t + φ(t)) where φ(t)

describes the drift in time and A(t) is the amplitude variation. In oscillatory systems, the

amplitude variation is not a significant source of phase noise [12],[13] and its effect is mostly

ignored. The frequency spectrum of an ideal oscillator is modelled as an impulse signal

centred at the frequency of oscillation. The frequency spectrum of a practical oscillator

is represented by an envelop that spreads around the carrier frequency. This frequency

spectrum is commonly referred to as phase noise. The nature of this spectrum depends

on the quality of the oscillator and the quantifying parameters of oscillator phase noise

are derived from it.
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There are various noise sources that affect the frequency characteristics of an oscillator.

These sources have been identified as the thermal noise, flicker noise, shot noise, substrate

and power-supply side noise etc., and their impact on the frequency spectrum of an os-

cillator has been studied extensively [12], [14]. Based on the impact of the noise sources,

a mathematical model for the phase noise can be developed. For a general application,

the phase noise has been modelled as a Wiener process, and this modelling is valid if the

oscillator is assumed to be affected by thermal noise only [15]. Wiener phase noise has

been used by many authors in the general study of communication systems [16]–[19]. For

specific applications that require more accuracy, the effect of other noise sources has to be

considered. A recent study [15] provides the use of a more accurate phase noise model in

communication systems.

It may be necessary to define metrics so that the designer may quantify and compare

practical oscillators. One such metric that is widely applied uses the ratio of the single

side-band power measured at a predefined offset from the oscillator carrier frequency to

the power of the carrier frequency [13]. This ratio may be described as L(∆f) =
P∆f

Pcentre
,

where ∆f represents the predefined frequency offset from the oscillator centre frequency.

Furthermore, P∆f represents the power at the predefined offset, and Pcentre is the power

of the carrier frequency. This ratio is described in units of dBc/Hz.

Another metric is obtained by analysing the time-domain dynamics of oscillators. Sim-

ilar to the drift in the frequency domain, the period of a noisy oscillator drifts as a function

of time. This implies that the period of the waveform is different for each cycle. The sta-

tistical variance of these timing variations, commonly referred to as timing jitter, is widely

used in modelling practical oscillators in time-domain. In fact, the variance can be ob-

tained by analysing the frequency spectrum of the oscillator. The reader may refer to the

work in [20], [21] for more details. The frequency characteristics of a practical oscillator

may be used to explain the mechanism by which the performance degrades as the oscillator

is used in communication systems—which uses local oscillator for the up-conversion and

down-conversion of the base-band signal.

Phase noise reduces the available signal-to-noise ratio of the communication system.

For single carrier and multi-carrier systems, it has been shown that this reduction due to

phase noise is described as 10 log(1 + σ2φγ), where σ
2
φ refers to the variance of the phase

noise and γ refers to the signal-to-noise ratio [22]. In multi-carrier systems, the shift from

the desired oscillator frequency leads to interference from nearby carriers.

In this thesis, the phase noise of an oscillator is modelled as a Wiener process. This

requires successive phase noise samples to be computed as

φ(t) = φ(t− τ) + ∆φ, (1)

where τ is the measure of the time delay, and ∆φ is a Gaussian random variable with zero
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mean and variance σ2φ. Therefore, a transmitted signal x(t) is received as

r(t) = x(t) ejφ(t) + w(t), (2)

where w(t) is an additive white Gaussian noise with zero mean and variance σ2.

3 Orthogonal Frequency Division Multiplexing System

The use of multiple carriers in a communication system increases the available data rate

when compared to single-carrier systems [23]. In multi-carrier systems, the information

signals are transmitted using different frequencies and this increase the available data rate.

Furthermore, since the transmitted signal is spread across multiple frequencies, referred to

as subcarrier frequencies, the system handles the frequency-selective fading channel better

than single carrier systems. If the spacing between successive subcarrier frequencies is

selected to be smaller than the coherence bandwidth of the channel, then each subcarrier

frequency would only experience flat fading. These two properties have made multiple

carrier systems very attractive in communication systems.

In an OFDM system, the information signal a = [a1, a2, . . . , aN ] is spread across N

subcarrier frequencies. An Inverse Discrete Fourier Transform (IDFT) operation is used to

generate the transmitted signal. In order to eliminate the effect of the multipath channel

which results in successive symbols to arrive simultaneously, the output of the IDFT is

extended by appending data sequences whose length is longer than the delay spread of the

channel. The sequence appended is referred to as guard interval and is widely implemented

in two ways. In first case, the last part of the output sequence of the IDFT is appended

to the first part of the output sequence. This is called the cyclic prefix method [23]. In

the second case, an all zeros sequence is appended to the first part of the signal from the

output of the IDFT. This is referred to as zero padding method [24]. In each case, the

objective is to prevent an inter-symbol interference in the received signal. Other guard

interval methods are discussed in [25],[26] while a comparison of these methods is discussed

in [27].

The time domain waveform at the output of the IDFT is described by

x(t) =

N−1∑

k=0

ake
j2πkt/T , (3)

where ak is the information symbol that is fed to the IDFT and T is the period of the

OFDM symbol. A cyclic prefix is then appended to x(t) to form the signal xa(t). The

received signal r(t) is described as

r(t) = xa(t) ∗ h(t) + w(t), (4)

where h(t) is the multipath channel, ∗ denotes the convolution operator and w(t) is the
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additive White Gaussian noise. After filtering and sampling, the discrete received signal

r is fed to a Discrete Fourier Transform (DFT), which results in y = F{r}. where F is

the DFT operator with entries 1√
N
exp(−j2πpq/N) where p, q ∈ [0, N − 1].

If one considers a communication system in the presence of carrier frequency offset and

phase noise, the transmitted signal can be written as

x(t) = ej2πvt/T ejφ(t)
N−1∑

k=0

ake
j2πkt/T , (5)

where v represents the carrier frequency offset normalised to the subcarrier spacing and

φ(t) is the phase noise. It has been investigated by many authors that the presence of

carrier frequency offset and phase noise seriously degrades the performance of OFDM

systems, and the estimation of these two parameters is crucial in order to realise the

advantages of the OFDM system [16], [18], [28], [29].

4 Graphical Models

The system model of a general communication system can be written in the form of

y = Ax + w where y is the received signal, A represents additional information about

the system, x is the information signal and w is the additive white Gaussian noise. The

objective may differ depending on what information is available. One objective would

be to find the transmitted signal x assuming A is known. Another objective would be

to find A assuming the receiver has knowledge of the information signal in the form of

pilots or other known sequences. The objective could also be to jointly detect the system

information A and the information signal x. Although the objective varies, the problem

is posed as an inverse mathematical problem and many techniques can be employed to

find the unknown parameters of the system.

In this thesis, the emphasis is on the use of probabilistic approaches to solve the inverse

problem. For some problems, the global probability density function of the system can

be factorised into local probability density functions. This allows one to develop a visual

framework that reveals the interaction of the parameters within the system. This visual

framework is referred to as graphical model or factor graph. A good review of graphical

models is presented in [30], [31].

To describe a given problem using graphical models, consider a problem of N variables

with a joint probability density function f(x1, x2, . . . , xN ). The following example de-

scribes the formulation of a graphical model from the global probability density function.

Assume the global probability density function f(x1, x2, . . . , xN ) can be factorised into

localised probability density functions
∏

i fi(xi), where xi represents all variables of the

local distribution function fi. Therefore, a model can be developed that shows a graphi-

cal relationship between the variable nodes. For example, if the joint probability density

6
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Figure 2: Graphical model.

function of a problem can be described as

f(x1, x2, . . . , x8) = fA(x1, x2, x5, x6)fB(x2, x3, x6, x7)fC(x3, x4, x7, x8). (6)

This probability density function is described using a graph and is shown in Figure 2. In

this case, fA, fB and fC are the local probability density functions.

The variables x1, x2, . . . , xN are referred to variable nodes and the local probability

density functions fA(·), fB(·) and fC(·) are referred to as factor nodes. The resulting

graphical model G can be represented mathematically as G = (V, E ,F), where V represents

the set of variable nodes, E represents the set of edges, and F represents the set of factor

nodes.

Once a given problem is represented using a graphical model, each variable node and

factor node is made to construct and propagate messages to nearby nodes. This process

is repeated for a defined number of iterations, or until the messages propagated from each

node show negligible variations. Such a method of propagating messages in a graphical

model has been proposed in [32] and thereafter has been widely used. The messages that

propagate in the graphical model are usually constructed using a method referred to as

the Belief Propagation (BP), or the sum-product algorithm.

For a given graphical model, the BP algorithm requires the computation of messages

from each variable node and the factor node. The message from a factor node a to a

variable node i is constructed as

ma→i(xi) =
∑

xa∼xi

f(xa)
∏

j∈N (a)∼i

mj→a(xj), (7)

where xa is used to denote the set of variable nodes connected to the factor node a, and

xa ∼ xi represents the set of variable nodes connected to factor node a with the exception

of variable node xi. Further, N (a) is used to denote any neighbouring nodes of factor

node a.

7



The message from a variable node i to a factor node a is constructed as

mi→a(xi) =
∏

b∈N (i)∼a

mb→i(xi). (8)

When all the messages are computed, the marginal belief bi(xi) of each node xi is computed

as

bi(xi) =
∏

a∈N (i)

ma→i(xi). (9)

There are other non-BP algorithms of constructing messages proposed in the existing

work [33]–[36]. These non-BP algorithms have their respective advantages and disadvan-

tages depending on the type of problem. For problems which are represented by discrete

variables, the belief propagation algorithm has been widely used with good performance.

For problems with continuous variables, non-BP based methods have been shown to pro-

vide good performance [36].

The principle behind the good performance of the belief propagation algorithm has

been difficult to explain until the authors in [33] showed an interesting insight when they

formulated it as a constrained optimisation problem. The objective function has been

selected as the free energy of the graphical model. In order to determine the free energy of

the graphical model, the authors used the principle used in statistical physics, where the

probability of a state varies inversely with its energy. By using this analogy, the objective

function has been optimised under some constraints. The insight derived from this method

shows that the solution to the optimisation problem is the belief propagation algorithm.

The resulting message propagation algorithm that optimises the objective function may

change depending on the structure of the graph and the set of constraints imposed on the

graph. This insight has proved to be very crucial to explain the underlying principle of

the belief propagation methods and to further develop algorithms depending on the actual

graphical model of the system.

Despite the established relationship between the free energy function and the belief

propagation algorithm, the convergence of belief propagation continues to be a challenge.

It has been widely established that belief propagation algorithm achieves good performance

when it converges. However, there is no guarantee that the belief propagation algorithm

always converges. It has also been shown that the belief propagation algorithm may

diverge, or oscillate between some values [37], [38]. In order to improve the convergence

properties of the belief propagation algorithm, message damping has been shown to reduce

message divergence or message oscillation [39]. However, the convergence of the belief

propagation algorithm still continues to be a challenge.
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5 Free Energy of Graphical Models

Background

In this section, we present an overview of the formulation of the free energy function of

graphical models. We use G = (V,F , E) to refer to a graphical structure G consisting of

the set of V variable nodes, the set of F factor nodes, and the set of E edges. The graphical

model M = (G, f) is used to refer to a graph G, whose factor nodes subscribe to a set of

functions fa, i.e., {fa : a ∈ F}. Further notations used are described in the table below.

Table 1: Description of Symbols.
Symbol Description

i variable node index
a factor node index
(ai) an edge connecting factor node a to variable node i
Ga a Bethe region [33]
xGa variable nodes in the graph Ga

xa a set of variable nodes connected to the factor fa
V variable nodes of a graph
bi(xi) belief of variable node i
bGa(xGa) belief of the graph Ga

N (i) neighbourhood of a variable node i
N (a) neighbourhood of factor node a
∼ excluding

Free Energy

Consider the joint probability density function fX0X1...XN−1
(x) of a multi-variable x. Using

the theoretical framework of the free energy, there can be defined an energy function for

this probability density function taking into account the average energy of the graph and

the total measure of uncertainty – entropy of the graph. The concept of free energy aims to

determine the state x∗ = {x∗0, x
∗
1, . . . , x

∗
N−1} that minimises the total free energy content

of the graph describing the factorisation of the density function.

The energy content of a state x is defined as [33]

E(x) = −
M∑

a=1

log fa(xa). (10)

Assume a trial probability density function b(x) can be obtained for the true joint density

function p(x), then the free energy of the approximating density function is given by [33]

F (b) = U(b)−H(b), (11)
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where U(b) is the average energy of the function b(x) and is given by

U(b) =
∑

x

b(x)E(x), (12)

and H(b) is the entropy of the function b(x) defined as

H(b) = −
∑

x

b(x) log b(x). (13)

Region Based Free Energy

There have been recent efforts that apply the region-based free energy minimisation in

graphical models which was originally observed by [33]. The region-based free energy is a

technique where the free energy of a graph G is estimated by sub-dividing the graph into

many regions. The free energies of the sub-dividedR regions are computed separately using

standard methods, and finally the individual computation of the regions are combined by

accounting for any overlap among regions.

The free energy of the sub-divided region is given by

FR(b) = UR(bR)−HR(bR), (14)

where UR(bR) is the average region energy of the function bR(xR) and is given by

UR(bR) =
∑

xR

bR(x)ER(xR), (15)

and HR(bR) is the region entropy of the function bR(xR) defined as

HR(bR) = −
∑

xR

bR(xR) log bR(xR). (16)

An important step in this process is identifying the criteria for region selection. Al-

though regions can be selected in many ways, as are stated in [33], a particular method of

region selection called the Bethe method is presented. In the Bethe method [33], regions

are classified as small and large regions. Small regions contain single variable nodes only

while a large region contains a single factor node and all the variable nodes connected to

it.

The region based free energy of the graph G can be determined by

FG(b) = UG({bGa})−HG({bGa}), (17)

where the region based average energy is given by

UG(b) =
∑

Ga∈G
cGaUGa(bGa), (18)
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Figure 3: Factor Graph.

and the region based entropy is given by

HG(b) =
∑

Ga∈G
cGaHGa(bGa), (19)

where cGa is the counting number of each region. For the Bethe method of small region

selection, the counting number is related to the degree of node ci of a variable node i as

cGa = ci. The large Bethe region has a counting number of cGa = 1.

Example

In this example we show a derivation of the free energy of the graphical model described

by the distribution

PX1...X8(x1, . . . , x8) =
1

Z

D∏

a=A

fa(xa) (20)

=
1

Z
fA(x1, x2, x4)fB(x3, x4, x6)fC(x5, x6, x8)fD(x7, x8),

which consist of variable nodes V = {x1, . . . , x8}, factor nodes F = {A,B,C,D} and

edges E = {(1A), (2A), (4A), (3B), (4B), (6B), (5C), (6C), (8C), (7D), (8D)}. Further, Z

is a normalisation constant. The graphical model M of the graph G = (V,F , E) can be

denoted as M = (G, f), where G shows the graph described and f = fa : a ∈ F . Figure 3

shows the graphical model of this distribution.

The Bethe method of region selection is shown in Figure 4, which consist of small and

large regions. The shaded regions represent the large region selection. The small regions

are represented by the respective variable nodes. The counting number of each large

region is 1. The counting numbers of the small region varies depending on the number

of overlaps. For example, the variable nodes x4, x6 and x8 have a counting number of 2.

The remaining variable nodes have a counting number of 1.
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x2 x4 x6 x8

Figure 4: Region based graphical representation.

The average energy UG({bG}) of the large region is

UG(b) =
∑

Ga∈G
cGaUGa(bGa) (21)

= −bGA
(xGA

) log fGA
(xGA

)− bGB
(xGB

) log fGB
(xGB

)− bGC
(xGC

) log fGC
(xGC

)

−bGD
(xGD

) log fGD
(xGD

).

It can be seen that the counting number cGa of each large region is 1, i.e., cGa = 1,∀Ga ∈ G.

Similarly the entropy of the large region is determined as

HG(b) =
∑

Ga∈G
cGaHGa(bGa) (22)

= −bGA
(xGA

) log bGA
(xGA

)− bGB
(xGB

) log bGB
(xGB

)− bGC
(xGC

) log bGC
(xGC

)

−bGD
(xGD

) log bGD
(xGD

).

Finally, the entropy due to the small regions is determined as

HV(b) =
∑

i∈V
Hi(bi)−

∑

i∈V
ciHi(bi) (23)

= −
∑

i∈V

∑

xi

(ci − 1)bi(xi) log(bi(xi).

Since the small Bethe region only consists of one variable node, it is valid to represent

the resulting region as the set of variable nodes of the graph. It can be noted that when

accounting for the entropy of the small regions, the number of overlapping regions should

be considered and their effect removed from the total free energy. Hence, the variable nodes

12



that cause redundancy are the ones with a counting number greater than 1. Therefore,

the free energy can be found by combining the previous three expressions as

FG(b) = −
D∑

a=A

bGa(xGa) log fGa(xGa) +

D∑

a=A

bGa(xGa) log bGa(xGa) (24)

+
∑

i∈V

∑

xi

(1− ci)bi(xi) log bi(xi).

Fixed Points and Stationary Points

An iterative algorithm A reaches convergence at a point or set of points known as fixed

points. At this set of fixed points, or at the state x∗ = {x∗0, x
∗
1, . . . , x

∗
N−1}, the Kullback-

Leibler 1 measure of divergence KL(b(x∗)||p(x∗)) is minimised. If this divergence measure

is zero, the algorithm converges and the fixed points give the exact solution. Otherwise, the

algorithm converges to an approximate solution or even diverges. Previous studies [33],[40]

have shown the relationship between the BP fixed points and stationary points of the

constrained Bethe free energy. The finding of the study is that the stationary points of

the constrained Bethe based free energy are also the belief propagation fixed point [33].

The authors in [40] further highlighted that stable fixed points of belief propagation are

the minima of the constrained Bethe free energy function.

Optimisation of the Free Energy Function

We can write the general formulation of the optimisation problem of an objective function

f(x) subject to a given set of constraints as [41]

minimise f(x), x ∈ Rn

subject to gi(x) = 0, i = 1, . . . ,m

hj(x) ≤ 0, j = 1, . . . , p (25)

where gi(x) is the equality constraint function, hi(x) represents the inequality constraint

function and R is the set of real numbers. This problem can generally be solved using the

Lagrangian method by minimising the function defined as a weighted sum of the objective

function and the set of constraint functions as [41]

L(x,λ,ρ) = f(x) +

m∑

i=1

λigi(x) +

p
∑

j=1

ρihi(x), (26)

where λi and ρj are Lagrangian multipliers that correspond to the respective constraint

functions, and {λ,ρ} represents the collection of such multipliers.

1The KL divergence measures the similarity between two distributions b(x) and p(x) by computing the

metric KL(b||p) =
∫
b(x) log b(x)

p(x)
dx.
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6 Motivation

In the previous sections, the construction of messages in the graphical model has been

discussed. Once the messages are constructed, it is necessary to define a system to prop-

agate these messages which is referred to as message scheduling. There has been various

message scheduling methods in the published work. In the context of LDPC codes, one of

the earliest is the so called flooding schedule, where the factor nodes propagate messages

to the variable nodes, and subsequently the variable nodes propagate messages to the

factor nodes [30]. Other scheduling methods serialise the propagation of messages using

either the factor nodes or the variables nodes as a reference [42]–[49]. In a broader view,

the problem of message scheduling is concerned with finding a method that activates the

edges of a graphical model in a particular sequence. In [50], a scheduling method referred

to as residual belief propagation is proposed where the nodes are activated according to

a cost function. This approach is extended to the LDPC system in [51] and is referred

to as informed dynamic scheduling. In effect, the main aspect of these approaches is to

define metrics to activate a particular factor node or variable node. A recent study sum-

marises various scheduling methods for the LDPC system [52]. It should be stated that

message scheduling is associated with the complexity of the graphical model. In contrast

to the LDPC graph, other systems may require graphical models with continuous variable

nodes. The effect of scheduling for such graphical models is not extensively studied. This

has motivated the work presented in Paper 1, where the OFDM system is considered in

the presence of carrier frequency offset and phase noise, which are continuous random

variables.

One of the problems of applying graphical models to solve communication problems is

that the belief propagation algorithm usually results in intractable integrals. In the case of

graphical models where the variables are discrete, one may compute and propagate prob-

abilities at these discrete samples. One example of this is the decoding of binary LDPC

codes where the variables constitute of two discrete samples. In fact using the logarith-

mic technique, the message at an arbitrary variable node is effectively represented using

a single probability value at each sample. However, for graphical models where the vari-

ables are continuous, the use of discrete samples to represent continuous variables leads to

high implementation complexity. There have been studies that reduce this complexity by

modelling the messages using known distributions such as Gaussian density function [53],

Tikhonov density function [19] and other parametric distributions. The use of these dis-

tribution functions have been shown to simplify the computation of the belief propagation

algorithm. This difficulty of representing messages for continuous variables has motivated

the work presented in Paper 2 which considers the detection of LDPC systems in the

presence of phase noise. The circular properties of the phase noise are exploited to rewrite

the sum-product algorithms to arrive at an efficient and low complexity algorithm for the

detection of LDPC codes in the presence of phase noise. Furthermore, the work presented

in Paper 3 considers the detection of coherent optical OFDM system in the presence of
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residual carrier frequency offset and phase noise. The circular properties of these phase

errors is exploited to derive tractable low complexity messages of the BP algorithm.

The graphical algorithms are increasingly used to model many existing and new prob-

lems in communication systems. One of the earliest uses of the belief propagation al-

gorithm in communication systems has been in the decoding of capacity-approaching

codes [54], [55]. The results obtained demonstrated that graphical models can be ap-

plied to a wide range of problems. Therefore, many authors have used graphical models to

study problems in communication systems such as channel estimation [56], [57], frequency

offset and phase noise estimation [58]–[60], cooperative localisation [61], spectrum sens-

ing [62], [63], compressed sensing [64], [65], etc. The traditional algorithm used was the

BP algorithm. However, this has advanced to include algorithms such as the Mean Field

(MF) [34], Expectation Propagation (EP) [35], Approximate Message Passing (AMP) [64],

Generalised Approximate Message Passing (GAMP) [66], Uniformly Re-weighted Belief

Propagation (URWBP) [67], etc. There have been research efforts that combine two or

more of these graphical algorithms such as the combined MF and BP [36]. This has moti-

vated the work presented in Paper 4, where two graphical algorithms have been proposed

using a combination of the BP, MF and URWBP algorithms. The performance of these

algorithms have been characterised in LDPC systems in the presence of Wiener phase

noise.

The methods of computing the mutual information bounds of communication systems

over the additive white Gaussian noise channel is widely established in the published

work. The performance bounds of this channel are also known for coded and uncoded

systems. However, computing the mutual information limits for communication systems

in the presence of phase noise, and in particular that of the Wiener phase noise, is a

challenging problem. The theoretical bounds of the Wiener phase noise channel are not as

easily computed as that of the additive white Gaussian noise channel [68], [69]. Therefore,

the work presented in Paper 5 has been motivated by efforts to develop efficient algorithms

to compute the information bounds of systems in the presence of Wiener phase noise.

7 Contributions

The contributions of this thesis are summarised as follows.

In Paper 1, various message scheduling methods are proposed for the detection of

an OFDM system in the presence of carrier frequency offset and Wiener phase noise

using graphical models. The proposed algorithms use serial and non-serial scheduling

methods. The finding indicates the serial message scheduling converges faster than non-

serial message scheduling methods.

In Paper 2, a low complexity algorithm is proposed to detect LDPC codes in strong

Wiener phase noise channels. This method is unique since it models the phase noise

variable nodes in the graph as circular random variables. This is shown to simplify the

computation of the messages in the graphical model. The findings show that the proposed
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algorithm has similar performance as the lowest complexity algorithm in the published

work [19] while it reduces the complexity even further.

In Paper 3, an algorithm based on circular random variables is proposed and its per-

formance is studied to detect coherent optical OFDM signals in the presence of residual

carrier frequency offset and Wiener phase noise. The findings show that the proposed

algorithm has significant improvement in performance and complexity when compared to

algorithms that consider the discrete representation of phase noise [60].

In Paper 4, the concept of free energy minimisation is used to propose two graphical

algorithms that combine the BP, MF and URWBP algorithms. The first algorithm com-

bines the BP and URWBP graphical models. The second algorithm combines the MF

and URWBP graphical models. The proposed algorithms have been applied to the LDPC

detection problem in the presence of Wiener phase noise. The proposed algorithms rep-

resent the phase noise as a circular random variable, and an optimal reweighting factor is

obtained which improves the performance of the non-optimised algorithms [70].

In Paper 5, low complexity methods are proposed to compute the mutual information

bounds for communication systems in the presence of Wiener phase noise. The methods

compute the lower and upper bounds of the mutual information using the parameters

of the Gaussian probability density function, which have been used to approximate the

phase noise distribution. The findings indicate that the proposed methods are effective for

strong phase noise and for different modulation schemes. Further, the proposed approach

has complexity advantages compared to existing algorithms [68], [69], [71].
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Paper 1

Fast Detection of OFDM Systems

Using Graphical Models

in Proceedings of IEEE Signal Processing Workshop, pp. 154–158, UT, USA, 2015.

Abstract

In this paper, we investigate the effect of four different message schedules on the perfor-

mance of an OFDM receiver with unknown carrier frequency and phase noise offsets. One

of the methods uses a serial schedule and the remaining three techniques use non-serial

message schedules. The serial schedule is shown to converge in only one iteration. The re-

sults also show that fast graphical estimators can be designed by using non-serial message

schedules with damping to approach the bit error rates of the serial schedule while reduc-

ing the computational time for convergence. In particular, the damped flooding message

schedule using four iterations reduces the computational time for convergence by more

than 30 % compared to the serial message schedule using one iteration for signal to noise

ratios lower than 20 dB.

I Introduction

Graphical models are becoming increasingly attractive as a research tool for inference

problems in communications receivers. The work by Gallager [1] to represent code bits

using graphs in the development of the Low Density Parity Check codes (LDPC) is the

first to introduce graphical models in communications systems. The use of graphical

models has since then showed significant improvement especially within the context of

decoding capacity approaching codes. The work of Forney [2], Tanner [3] and Wiberg

[4] contributed towards understanding the modelling of communication receivers using

graphical models. Kschischang in [5] presents a good review of graphical models in their

various manifestations - Markov random fields, factor graphs and Bayesian networks.

Graphical models have also gained research interest in other areas of communication
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receivers - joint channel estimation and decoding problems [6]–[9], decoding of LDPC

systems in the presence of phase noise [10], [11], joint carrier frequency offset and phase

noise estimation in Orthogonal Frequency Division Multiplexing (OFDM) systems [12],

cooperative wireless positioning problems [13] - to mention just a few.

Graphical models arise out of the factorisation of the probability density function of

the underlying problem. The estimates can theoretically be found by using maximum

likelihood detection, which may not be practical for complex problems. In graphical mod-

els, the inferred parameters are obtained in a distributed manner. The significance of

graphical models in communications problems is therefore largely due to the reduction in

computational complexity. To obtain the inferred parameters, message passing algorithms

are derived that minimise the Kullback-Liebler divergence of the underlying density func-

tion of the problem. One such message passing method is the belief propagation [14] and

its widely used implementation - the sum-product algorithm [15]. The link between the

belief propagation technique and the decoding of LDPC and turbo codes is demonstrated

in [16], [17].

Once the underlying graphical model has been developed, messages are constructed that

are then propagated in the graph using the belief propagation algorithm [15]. However,

since most graphical models contain cycles, the use of a message passing schedule is im-

portant. The first work to question whether message passing schedules affect performance

was Forney [18]. Several authors have developed different message passing schedules such

as the two-way schedule [5], the flooding schedule [5], probabilistic schedule [19], shuffled

belief propagation schedule [20], sequential schedule [21], [22]. The work in [22] showed

in particular that the sequential schedule converges in half the total number of iterations

compared to the flooding schedule. The main difference between these scheduling methods

is the order of message update between the variable and factor nodes of the graph. All of

these schedules have been developed and tested within the context of LDPC decoding.

However, unlike decoding capacity approaching codes whose graphical models are char-

acterised with minimal node density and discrete density functions, the effect of scheduling

on communication receivers with dense nodes and continuous probability density functions

has not been extensively studied.

In this paper, we show that the use of a simple schedule using belief propagation

algorithm converges in only one iteration when applied to the estimation problem of carrier

frequency offset and phase noise in an OFDM system [12]. We also show that other message

passing schedules can be constructed to optimise the convergence time. Optimising the

performance of the BP algorithm graphically in the manner described in this paper is

shown to provide some performance advantages.

The paper is organised as follows. Section II discusses the OFDM system and the re-

sulting graphical model. Section III presents the message construction techniques. Section

IV presents the simulation parameters and presents the results. Finally, conclusions are

drawn in Section V.

Notation: We use CN (0, σ2) to denote a complex Gaussian distribution with zero
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mean and variance σ2. For matrix operations, CN×M denotes a matrix of size N ×M

with complex entries and (·)H denotes the Hermitian transpose of a given matrix.

II System Model

A OFDM System Model

We consider an OFDM system with N subcarriers. The user signal d = {d0, d1, . . . , dN−1}

is converted to parallel and applied to the Inverse Discrete Fourier Transform (IDFT).

After adding a cyclic prefix of NCP and appropriate filtering operations, the signal is

transmitted. The received signal at the receiver, after removal of the cyclic prefix, can be

expressed as

y = Γ(v,φ)FHDFLh+w, (1)

where v is the carrier frequency offset and the phase noise is

φ = [φ0, φ1, . . . , φN−1]. The phase noise process is distributed according to a Gaussian

Markov process, i.e.,

φn = φn−1 +∆φ, (2)

with φn denoting the phase noise at the nth subcarrier of the OFDM symbol and

∆φ ∼ N (0, σ2φ), where σ
2
φ is the variance of the phase noise, and is computed as σ2φ = γ

N

where γ is the Wiener process variance [23]. Furthermore

Γ(v,φ) = diag(ejφ0 , ej2πv/N+jφ1 , . . . , ej2πv(N−1)/N+jφN−1), D = diag(d0, d1, . . . , dN−1),

F ∈ C
N×N is the DFT operator with entries 1√

N
exp(−j2πpq/N) and p, q ∈ [0, N − 1],

and FL ∈ C
N×L is the matrix constructed by taking the first L columns of matrix F. The

vector w represents the Additive White Gaussian Noise (AWGN) distributed according

to CN (0, σ2) where σ2 is the variance of the noise. The channel impulse response is

h = [h0, h1, . . . , hL−1] with hl representing the channel coefficients at the lth path which

are distributed according to a wide-sense stationary complex Gaussian process, i.e., hl ∼

CN (0, σh
2(l)), where σ2h(l) is the variance of path l and L is the channel length.

B Graphical Model

The main problem is finding estimates for the a posteriori probability density function

(

v̂, φ̂
)

= argmax
v,φ

p(v,φ|y,d,h). (3)

Therefore

p(v,φ|y,d,h) ∝ p(y|v,φ,d,h)p(v)p(φ), (4)
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Figure 1: Graphical model.

The data and channel frequency response are assumed to be known at the receiver. There-

fore, t = FHDFLh is known at the receiver. The density functions can be factorised as [12]

p(v,φ|y, t) ∝ p(v)p(φ0)

N−1∏

n=1

p(φn|φn−1)

N−1∏

n=0

p(yn|v, φn, tn), (5)

where p(yn|v, φn, tn) = CN (ej2πvn/N+jφntn, σ
2) and p(φn|φn−1) = N (0, σ2φ). A graphical

model can then be constructed [12] for the factorised joint probability density function

given in (5) and is shown in Figure 1.

III Message Construction

For a given graph, different message passing schedules can be defined [15]. The most

commonly used is the flooding technique [5],[15] whereby all variable and factor nodes up-

date their messages at the same time. Another message passing schedule where the nodes

sequentially update their messages is described in [22]. Other message schedules can be

defined that are a combination of these two schedules. In this work, we define four differ-

ent message passing schedules and are shown in Table 1 in detail. The flooding schedule,

denoted by ‘Schedule f’, updates the messages from the factor and variable nodes simul-

taneously. The scheme denoted by ‘Schedule s’ progressively updates the messages in one

direction, and when these updates are complete, the messages in the reverse direction are

updated. We will refer to this schedule as serial schedule owing the simultaneous update

of messages in one direction. The scheme denoted by ‘Schedule c’ computes three sets of
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messages in parallel in each iteration before formulating a belief. Similarly, the message

scheme denoted by ‘Schedule x’ alternates between the simultaneous update of messages

from the factor to variables nodes followed by the subsequent simultaneous update of the

messages from the variable nodes to the factor nodes. Therefore ‘Schedule c’ and ‘Schedule

x’ can be looked at as some combination of the serial and parallel schedules. We refer to

the ‘Schedule c’, ‘Schedule x’ and ‘Schedule f’ as non-serial schedules.

In this work, we use message damping, where a message is updated according to a

linear combination of the messages from the current and previous iterations [24]. A damp-

ing parameter α ∈ (0, 1] is used and the messages are updated according to m(t)(xi) =

αm(t)(xi)+ (1−α)m(t−1)(xi) where t indicates the iteration index and the message m(xi)

is in the logarithmic domain. All the messages shown in Figure 1 are computed using the

belief propagation algorithm [12], [15].

IV Results

The performance of the system is investigated through simulations. The number of sub-

carriers used is 256, with 31 of these set to be null subcarriers. The length of cyclic prefix

is 30. The transmitted data is modulated using QPSK. Virtual subcarriers are used at

both ends of the transmitted data in order to reduce inter-carrier interference. The chan-

nel is assumed static for the duration of the OFDM symbol and changes according to

the variance σ2(l) = 1−e−1/5

1−e−L/5 e
−l/5 with l = 0, 1, . . . , 15. The frequency offset v is selected

from a uniform distribution in the range [−0.2, 0.2] and is fixed for the duration of the

OFDM symbol. The phase noise is constructed as follows. The first phase noise sample

φ0 of every symbol is selected from a uniform distribution in the range [−π/2, π/2], and

the subsequent samples are generated according to (2). The Wiener process variance γ is

assumed to be 0.1. The bit-error rate (BER) is used as a performance metric at various

signal-to-noise ratios (SNR) shown in dBs. Perfect time synchronisation is considered at

the receiver. Therefore, after sampling, the received sequences are applied to the itera-

tive receiver, which has knowledge of the transmitted data and channel parameters. The

receiver creates a sampling space of the unknown parameters. The sampling space of

the frequency offset Qv is in [−0.5, 0.5] and that of the phase noise Qφ is in [−π, π]. In

both cases, 25 samples are used to represent the carrier frequency offset and phase noise

processes.

The max-sum implementation of the belief propagation is used in the logarithmic do-

main. Damping has been found to improve the bit error rates at high SNRs. A factor of

0.2 has been used as damping parameter for the non-serial message schedules because it

gives the lowest error rates. The serial schedule shows no improvement as a result of using

damped messages. Figure 2 compares the error rate performance of the different schedules

at SNR of 30 dB. It is interesting to note that the serial schedule converges within the first

iteration. In comparison, the error rate of ‘Schedule c’ stabilises after the fourth iteration,

while that of the ‘Schedule f’ and ‘Schedule x’ converges at the sixth iteration. Figure 3
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Figure 2: Convergence performance of different schedules at 30 dB.

shows the BER performance for various SNR values for selected number of iterations.

The serial schedule preforms consistently for all SNR levels. This difference is due to the

use of recently updated messages as an argument to the computation of the subsequent

messages within the same iterative cycle. The serial schedule, by its sequential nature,

uses the most updated information in each iterative cycle compared to other schedules. To

illustrate further, for each iteration as shown in Table 1, five of the messages in ‘Schedule

s’ use recently updated messages. In contrast, four of the messages in ‘Schedule c’ use

recent updates and only two are used in ‘Schedule x’. None of the messages in the flooding

schedule use recent message updates in the same iterative cycle. The updated messages

are only used in the subsequent iterative cycle.

The differences in error rates has practical implications. The results show that the

flooding schedule using four iterations achieves similar error rates as the serial schedule

for SNR values less than 20 dB. This dynamics can be optimised to reduce the computa-

tional time as the flooding schedule using four iterations only needs four computational

time units to achieve the same error rates as the serial one, which requires six computa-

tional time units. Under this assumption of parallelism, the flooding schedule reduces the

computational time by more than 30 % compared with the serial schedule that uses one

iteration. Similarly, for SNR values larger than 20 dB, the ‘Schedule c’ using five iterations

achieves similar error rates as the serial schedule. However, its computational time would

be more than doubled in comparison to the serial schedule. Therefore, the serial schedule

gives the best performance in terms of the computational time and error rates for SNR

values larger than 20 dB.
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Table 1: Message Construction. F{x} represents functional dependence on the message
x. The message sequencing within each iteration is denoted with ’P’. For example, P1
indicates the time slot for executing a particular message. Two messages with P1 indicate
that the messages are computed in parallel.

Schedule c Schedule f

Initialisation Initialisation

m
(t−1)
pn→v(v) = 1 m

(t−1)
x = 1, for all messages x

m
(t−1)
pn→φn

(φn) = 1

m(t−1)
FW

(φn) = 1

m(t−1)
BW

(φn) = 1

P1: m
(t)
φn→pn

= F{m(t−1)
FW

,m(t−1)
BW

} P1: m
(t)
pn→φn

(φn) = F{m
(t−1)
v→pn}

P1: m
(t)
v→pn(v) = F{m

(t−1)
pn→v} P1: m

(t)
pn→v(v) = F{m

(t−1)
φn→pn

}

P2: m
(t)
pn→φn

(φn) = F{m
(t)
v→pn} P1: m(t)

FW
(φn) = F{m

(t−1)
pn→φn

}

P2: m
(t)
pn→v(v) = F{m

(t)
φn→pn

} P1: m(t)
BW

(φn) = F{m
(t−1)
pn→φn

}

P3: m(t)
FW

(φn) = F{m
(t)
pn→φn

} P1: m
(t)
φn→pn

= F{m(t−1)
FW

,m(t−1)
BW

}

P3: m(t)
BW

(φn) = F{m
(t)
pn→φn

} P1: m
(t)
v→pn(v) = F{m

(t−1)
pn→v}

Schedule x Schedule s

Initialisation Initialisation

m
(t−1)
pn→v(v) = 1 m

(t−1)
v→pn(v) = 1

m
(t−1)
pn→φn

(φn) = 1

m(t−1)
FW

(φn) = 1

m(t−1)
BW

(φn) = 1

P1: m
(t)
φn→pn

= F{m(t−1)
FW

,m(t−1)
BW

} P1: m
(t)
pn→φn

(φn) = F{m
(t−1)
v→pn}

P1: m
(t)
v→pn(v) = F{m

(t−1)
pn→v} P2: m(t)

FW
(φn) = F{m

(t)
pn→φn

}

P2: m(t)
FW

(φn) = F{m
(t−1)
pn→φn

} P3: m(t)
BW

(φn) = F{m
(t)
pn→φn

}

P2: m(t)
BW

(φn) = F{m
(t−1)
pn→φn

} P4: m
(t)
φn→pn

= F{m(t)
FW

,m(t)
BW

}

P2: m
(t)
pn→v(v) = F{m

(t)
φn→pn

} P5: m
(t)
pn→v(v) = F{m

(t)
φn→pn

}

P2: m
(t)
pn→φn

(φn) = F{m
(t)
v→pn} P6: m

(t)
v→pn(v) = F{m

(t)
pn→v}
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Figure 3: Error rate performance versus SNR for the different schedules.

V Conclusion

In this work, we have considered the problem of joint estimation of carrier frequency offset

and phase noise in an OFDM system. We have used four different schedules using belief

propagation and found that the serial schedule converges in one iteration. The flooding

schedule is shown to converge faster than the serial schedule for signal to noise ratios lower

than 20 dB. This dynamics of message scheduling may be exploited to design efficient and

fast estimators for problems which can be represented using graphical models.
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Abstract

In this paper, we propose a low-complexity graph based iterative receiver for LDPC coded

systems in the presence of strong phase noise. The proposed receiver exploits the inherent

circular characteristics of phase noise. The graphical messages are then constructed using

complex Gaussian density functions. We show the proposed method achieves similar bit

error rate performance as the existing lowest complexity algorithm, and achieves lower

complexity for higher modulation.

I Introduction

The error performance of recent communication systems have improved dramatically. This

improvement has been made possible largely by using capacity approaching codes such as

the low density parity check codes (LDPC) [1]. However, phase noise has been known to

severely affect the performance of communication systems. Therefore, effective algorithms

have to be designed to tackle the effect of phase noise in coded communication systems.

Several authors have proposed algorithms to detect coded data in the presence of phase

noise [2]–[4].

The iterative detection of an LDPC communication system in a phase noise channel

has been presented in [2] where the authors derive a graphical model from the posterior

probability density of the system. The messages in the graph are then constructed and

propagated using the sum product algorithm [5]. The use of graphical models in communi-

cation systems has been described in detail in [5],[6]. In most cases, for continuous random
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variables, there is no explicit analytical solution to the messages constructed by the sum

product algorithm and hence many authors resort to approximations. One such approx-

imation is discussed in [2] where the continuous phase noise messages are approximated

by collecting probabilities computed at discrete samples in the phase domain. The error

performance of the discrete message based methods generally improve with the number

of samples. There is a threshold in the number of samples used, beyond which the error

rate improves minimally [7].

The computational complexity of the discrete method increases with the number of

discrete samples. In order to reduce this complexity, the authors in [2] approximated

the continuous phase noise messages using the Tikhonov probability density function.

Hence, instead of the discrete messages, the parameters of the Tikhonov probability den-

sity function are propagated in the graph. The authors show this approach reduces the

computational complexity significantly while achieving comparable performance to the

discrete messages.

In a similar work, the authors in [8] approximate the phase messages in the graph

using multiple Tikhonov probability density functions and then reduce the number of

functions using mixture reduction techniques. They show this approach improves the

error performance compared to the method in [2] under the parameters used in their

work. This approach has slightly more computational complexity than the method in [2]

but significantly lower than the discrete messages.

Existing methods have so far modelled the phase noise random variables in the linear

domain, and have not exploited the fact that phase noise is a complex random variable

defined over the unit circle. The modelling of phase noise as a circular random variable re-

quires a new framework in constructing and propagating messages in the graphical model.

In this work, we study the iterative detection of an LDPC communication system in phase

noise channels [2]. We deviate from the existing approach of restricting the phase noise

space to the linear domain. Instead, we transform the phase noise space to the complex

domain and construct all messages in the graphical model. We show that this method

achieves error performance that is comparable to the existing low-complexity algorithm,

while reducing the complexity even further.

This paper is structured as follows. Section II presents the graphical model for coded

communication systems in the presence of phase noise. Section III presents the proposed

method and the framework used to construct messages in the graphical model. Section

IV presents the simulation results and finally conclusion is presented in Section V.

II Problem Formulation

We consider a communication system where information bits bn are coded and subse-

quently mapped using symbols from a set A of size M . The coded and mapped symbols
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xn are transmitted through a Wiener phase noise channel. The received signal is

yn = xne
jφn + wn, n = 0, . . . , N − 1, (1)

where the phase process is φn = φn−1 +∆φn with the phase increment ∆φn selected from

the Gaussian density function with zero mean and variance σ2φ, with φ0 ∼ U [0, 2π). The

complex additive white Gaussian noise process wn has zero mean and variance E[|wn|
2] =

σ2.

The posterior distribution can be written as

p(b,x,φ|y) ∝ p(b) p(x|b) p(φ) p(y|x,φ) (2)

∝ p(b) I{x = ψ(b)} p(φ0) (3)

×
N−1∏

n=1

p(φn|φn−1)

N−1∏

n=0

p(yn|xn, φn),

where ψ(·) is the encoding and mapping function. The indicator function I(·) returns a

1 if a valid codeword has been found. Further, p(yn|xn, φn) =
1√
πσ2

exp
{

− |yn−xnejφn |2
σ2

}

and p(φn|φn−1) =
1

√

2πσ2
φ

exp

{

− |φn−φn−1|2
2σ2

φ

}

.

A graphical model for the joint probability density function described in (2) has been

derived in [2] and is shown in Figure 1. The resulting graph is shown to be composed of

the code graph and the phase graph with messages that propagate between these graphs.

The message passing procedure has been described in detail in [2]. Here, we briefly outline

the construction of the messages shown in the graph using the sum product algorithm [5]

as follows. The phase graph first computes the message

mpn→φn(φn) =
∑

xn∈A
mxn→pn(xn) p(yn|xn, φn). (4)

The forward message is computed as

mFW(φn) =

∫

mpn−1→φn−1(φn−1) mFW(φn−1) (5)

× p(φn|φn−1) dφn−1,

while the backward message is computed as

mBW(φn) =

∫

mpn+1→φn+1(φn+1) mBW(φn+1) (6)

× p(φn+1|φn) dφn+1.

Finally, the message to the code graph is computed as

mpn→xn(xn) =

∫

mFW(φn) mBW(φn) p(yn|xn, φn) dφn. (7)

37



Code Graph

xn−2 xn−1 xn xn+1

pn−2 pn−1 pn pn+1

φn−2 φn−1 φn φn+1

p(φn−2|φn−3) p(φn−1|φn−2) p(φn |φn−1) p(φn+1|φn )

mxn→pnmpn→xn

mpn→φn

mn
FW

mn
BW

Figure 1: The graphical model showing the code graph and the phase noise graph.

III Proposed Method

We describe the proposed method as follows. The phase noise process in the linear domain

is transformed to the complex domain as Xφn = ejφn . Similarly, the modulated symbols

are transformed to the complex domain as Xn = ej∠xn , where ∠xn denotes the angle of

the modulated symbol. This transformation is a bijection as it preserves the properties

of the random variables in the linear domain. The resulting graphical model is similar to

Figure 1 with the exception that the phase noise variable nodes φn are replaced by the

circular random variables Xφn = ejφn . Further, the factor nodes p(φn|φn−1) are replaced

by p(Xφn |Xφn−1). Since the phase noise random variables have unity magnitude, we refer

this transformation as circular random variable method. The messages are constructed as

follows using the sum product algorithm.

A Message mXn→pn(Xn)

The first step in the proposed method is to rewrite the message received from the code

graph mxn→pn(xn) using the framework of circular random variables. We convert the

linear domain message mxn→pn(xn) to the complex Gaussian message mXn→pn(Xn) =

CN (ej∠xn ; MXn→pn , VXn→pn), where MXn→pn is the mean of the message mXn→pn(Xn) and
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VXn→pn is its variance. This allows the existing discrete message of symbols xn to be

represented as a continuous complex circular distribution.

B Message mpn→Xφn
(Xφn)

The message mpn→Xφn
(Xφn) is constructed as

mpn→Xφn
(Xφn) =

∫

mXn→pn(Xn) p(yn|Xn,Xφn) dXn, (8)

where p(yn|Xn,Xφn) = CN
(
yn;xne

jφn , σ2
)
is obtained from p(yn|xn, φn) using the com-

plex random variables. Therefore, we can write

mpn→Xφn
(Xφn) =

∫

CN (ej∠xn ; MXn→pn, VXn→pn) (9)

×CN
(

ej∠xn ;
yn
ejφn

, σ2
)

dej∠xn ,

where CN
(
yn;xne

jφn , σ2
)
= CN

(
ej∠xn ; yn

ejφn
, σ2
)
has been obtained using properties (A.1)

and (A.2) of the Gaussian probability density function presented in the Appendix. Further,

using property (A.4) we evaluate (9) as

mpn→Xφn
(Xφn) ∝ CN

(

ejφn ; Mpn→Xφn
, Vpn→Xφn

)

, (10)

where the mean ofmpn→Xφn
(Xφn) is Mpn→Xφn

=
(
MXn→pn

yn

)∗
and the variance is Vpn→Xφn

=

σ2+VXn→pn

|yn|2 . The conjugate shown in the mean is a result of evaluating the expression

CN (x∗;µ, σ2).

C Message mFW(e
jφn)

The forward message mFW(Xφn) is constructed as

mFW(Xφn) =

∫

mpn−1→Xφn−1
(Xφn−1) mFW(Xφn−1)

× p(Xφn |Xφn−1) dXφn−1 . (11)

Using the equivalent circular random variable distributions, we can write

mFW(Xφn) =

∫

CN (ejφn−1 ; Mpn−1→Xφn−1
, Vpn−1→Xφn−1

)

× CN (ejφn−1 ; Mn−1
FW

, Vn−1
FW

)

× CN (ej∆φn ; M∆φn
, V∆φ

) dejφn−1 , (12)

where p(Xφn |Xφn−1) ∝ CN (ej∆φn ; M∆φn
, V∆φ

) represents the circular random variable

equivalent of the distribution of the phase increment process p(φn|φn−1), with M∆φn
is

used to denote the mean of the circular random variable Wiener phase process while V∆φ
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denotes its variance. Since the mean of the Wiener phase process is zero, we can write

p(Xφn |Xφn−1) as CN
(
ejφn−1 ; ejφn , V∆φ

)
. Using the properties of the Gaussian density

functions, we obtain

mFW(Xφn) ∝ CN
(

ejφn ; Mn
FW
, Vn

FW

)

, (13)

where

Mn
FW

=
(Mpn−1→Xφn−1

)(Vpn−1→Xφn−1
)−1 + (Mn−1

FW
)(Vn−1

FW
)−1

(Vpn−1→Xφn−1
)−1 + (Vn−1

FW
)−1

, (14)

and

Vn
FW

=
1

(Vpn−1→Xφn−1
)−1 + (Vn−1

FW
)−1

+ V∆φ
, (15)

where Mn
FW

is the mean of the forward message and Vn
FW

is its variance.

D Message mBW(e
jφn)

The message mBW(Xφn) is constructed similar to the forward message. The message can

be written as

mBW(Xφn) ∝ CN
(

ejφn ; Mn
BW
, Vn

BW

)

, (16)

where

Mn
BW

=
(Mpn+1→Xφn+1

)(Vpn+1→Xφn+1
)−1 + (Mn+1

BW
)(Vn+1

BW
)−1

(Vpn+1→Xφn+1
)−1 + (Vn+1

BW
)−1

, (17)

and

Vn
BW

=
1

(Vpn+1→Xφn+1
)−1 + (Vn+1

BW
)−1

+ V∆φ
, (18)

where Mn
BW

is the mean of the backward message and Vn
BW

is its variance.

E Message mpn→Xn(e
j∠xn)

The message from the phase graph to the code graph mpn→Xn(e
j∠xn) can be formulated

as

mpn→Xn(e
j∠xn) =

∫

mXφn→pn(e
jφn) p(yn|Xn,Xφn) de

jφn , (19)

Using properties (A.1) and (A.2) stated in the Appendix, we can write p(yn|Xn,Xφn) =

CN
(
ejφn ; yn

ej∠xn
, σ2
)
. Further, the message mXφn→pn(e

jφn) can be written as

mXφn→pn = CN
(

ejφn ; Mn
FW
, Vn

FW

)

CN
(

ejφn ; Mn
BW
, Vn

BW

)

∝ CN
(

ejφn ; MXφn→pn , VXφn→pn

)

, (20)

where MXφn→pn is the mean of the message mXφn→pn(e
jφn) and VXφn→pn is the variance.

These are computed using property (A.3) as

MXφn→pn =
(Mn

FW
)(Vn

FW
)−1 + (Mn

BW
)(Vn

BW
)−1

(Vn
FW
)−1 + (Vn

BW
)−1

, (21)
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and

VXφn→pn =
1

(Vn
FW
)−1 + (Vn

BW
)−1

. (22)

Therefore, using property (A.4), we evaluate (19) as

mpn→Xn(e
j∠xn) ∝ CN

(

ej∠xn ; Mpn→Xn , Vpn→Xn

)

, (23)

where Mpn→Xn =
(
MXφn

→pn

yn

)∗
and Vpn→Xn =

σ2+VXφn
→pn

|yn|2
.

We make the following remarks. The proposed algorithm may be implemented in two

ways. In the first implementation, the algorithm computes the phase noise estimates

using the parameters of the messages mpn→Xφn
, mFW(Xφn) and mBW(Xφn). The received

data yn is then corrected for phase noise errors. In the second implementation, the mean

and variance of the message mpn→Xn are used to determine the probabilities which are

sent to the code graph.

IV Results

We characterise the performance of the proposed method using simulation. We use the

LDPC code of rate 0.5 [9]. A single pilot sequence is included in every 20 transmitted

symbols. The phase noise is modelled as Wiener process with mean zero and variance σ2φ.

In every iteration, messages are exchanged between the phase graph and the code graph.

The bit error rate (BER) that corresponds to the bit-energy-to-noise ratio Eb
No

is used as

a performance metric. For comparison, we use the Tikhonov method [2] and a receiver

where the phase noise is known. The lowest error rate is achieved using discrete messages

with large number of samples. However, as discussed in [2], the computational complexity

is high.

We also compare the computational complexity of the Tikhonov method and the pro-

posed method. For a similar comparison with existing algorithms, the computational com-

plexity is based on the exchange of symbol beliefs with the code graph. We use the total

number of elementary mathematical operations and the number of memory accesses re-

quired for each iteration as a complexity metric. The Tikhonov algorithm requires 17M+17

operations and 3M+3 memory accesses. The proposed method requires 3M+51 operations

and 2M+4 memory accesses for the first implementation, and 3M+56 operations and 2M+1

memory accesses for the second implementation. From this data, one can see that the

proposed method achieves lower complexity especially at higher modulation orders. How-

ever, it should be mentioned that the proposed algorithm has an even lower complexity if

one bases the comparison on the exchange of bit beliefs with the code graph.

Figure 2 shows the BER of the proposed method and the existing algorithms for the

severe Wiener phase noise channel with σφ = 0.1 rad/symbol. The LDPC code used is

(3, 6) of length 4000. The curve labelled as ’Known phase’ represents the case where phase
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Figure 2: Bit error rate performance for BPSK and QPSK.

noise is known at the receiver. For the BPSK modulation, the proposed method using the

circular random variables is shown to perform very closely to the Tikhonov method. For

the QPSK modulation, the proposed method is shown to achieve similar error rates as the

Tikhonov method. Figure 3 shows the BER performance of 8-PSK modulation for a code

of length 2640 and for a phase noise channel with σφ = 0.05 rad/symbol. The proposed

algorithm is shown to effectively detect the coded data despite the higher modulation

and phase noise channel. These results show that the proposed method is a competitive

alternative for communications over severe phase noise channels.
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V Conclusion

In this paper, we considered the iterative detection of LDPC codes in the presence of

severe phase noise. We proposed a method based on the circular transformation of the

random variables and presented the construction of the messages in the graphical model.

The results show that the proposed method achieves similar performance as the existing

algorithm for severe phase noise channels while reducing the computational complexity.
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Appendix

We use properties of the normal Gaussian probability density function [10] which has been

modified for complex random variables [11].

CN (x;µ, σ2) = CN (µ;x, σ2) (A.1)

CN (ax+ b;µ, σ2) = CN

(

x;
µ− b

a
,
σ2

|a|2

)

(A.2)

CN (x;µ1, σ
2
1)CN (x;µ2, σ

2
2) ∝ CN

(

x;
µ1σ

−2
1 + µ2σ

−2
2

σ−2
1 + σ−2

2

,
1

σ−2
1 + σ−2

2

)

(A.3)

∫

CN (x;µ1, σ
2
1)CN (x;µ2, σ

2
2) dx ∝ CN (µ1;µ2, σ

2
1 + σ22) (A.4)
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Abstract

We propose a low-complexity graph-based iterative algorithm for the detection of coher-

ent optical OFDM signals in the presence of residual carrier frequency offset and phase

noise. We exploit the circular properties of these phase errors to derive tractable graphical

messages using the Gaussian probability density function. The proposed algorithm shows

similar error rate performance as the existing algorithm at a much lower implementation

complexity.

I Introduction

The transmission of data with coherent optical Orthogonal Frequency Division Multiplex-

ing (CO-OFDM) has been found to be attractive for optical networks due to its tolerance

to fiber distortions such as chromatic dispersion and polarisation mode dispersion [1].

However, the longer symbol duration of the OFDM signal makes it vulnerable to phase

errors caused by carrier frequency offset and phase noise. These parameters have been

known to cause common phase error and intercarrier interference [2], [3]. If these effects

are not estimated and compensated, the performance of the system is severely affected.

Various algorithms have been proposed to detect the CO-OFDM signal in the presence

of phase errors. The existing methods can be broadly categorised as pilot based and non-

pilot based approaches. In [4], pilot sequences have been inserted in the CO-OFDM symbol

to estimate the common phase error. The performance improves with the number of pilot

sequences at the expense of the spectral efficiency. In [5], the authors improve the spectral
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efficiency using quasi-pilot sequences which can also serve as data sequences through a

systematic arrangement. In [6], a radio frequency pilot tone with amplified power is

inserted at the centre of the transmitted symbol and surrounded with null-subcarriers.

The receiver would then use low pass filters to extract the radio frequency pilot tone and

compensates for the phase errors.

There have also been other work that estimate the phase error and counteract the

resulting intercarrier interference. In [7]–[9], algorithms based on the orthogonal basis

expansion have been used. In [10], [11], linear interpolation based approaches have been

used. In [12], a time domain approach has been proposed that is based on the sub-symbol

processing. In [13], a sub-symbol based linear interpolation algorithm has been introduced.

The authors in [14] use an algorithm based on the principal component estimation and

elimination to lower the complexity of algorithms based on orthogonal basis expansion.

Extended Kalman filtering [15] has also been proposed with small number of subcarriers.

In [16],[17], algorithms based on the Gaussian basis expansion have been used which show

similar complexity compared to the orthogonal basis expansion but with better linewidth

tolerance.

Approaches that do not use pilot sequences have also been proposed in [18] based on the

maximum likelihood algorithm. In [19], a blind phase search algorithm is presented which

requires large number of test phases along with decision feedback. The work in [20], [21]

have also shown estimation approaches that do not use pilot sequences. In [22], [23], the

authors propose algorithms that estimate the phase noise based on a pre-defined cost

function and does not require decision feedback. The use of image processing approaches

have also been presented in [24]. These approaches have high implementation complexity

and this scales further with increase in the size of the system.

The algorithms discussed earlier assume that there is no carrier frequency offset in

the received signal. In practice however, there is some residual frequency offset error

in the system which results after the dedicated estimation algorithms [25], [26] and the

references therein. In [27], the authors have proposed an algorithm based on the orthogonal

basis expansion to estimate and compensate for the residual frequency offset and the

phase noise. The complexity of this approach is high since it involves multiple domain

transformations and matrix inversions. In [26], an algorithm has been proposed that

exploits the symmetry of the phase noise spectrum to estimate the residual frequency offset,

whereas the phase noise has been mitigated using the principal components estimation

algorithm [14]. The residual frequency offset is selected by testing multiple candidates that

minimise the cost function describing the spectrum symmetry. This is further averaged

over multiple symbols. Although the complexity is much lower than [27], the use of

multiple test samples to estimate the frequency offset impacts the complexity of this

approach. Furthermore, these algorithms require the use of pilot sequences which impact

on the spectral efficiency of the system.

In this work, we detect the signal in the presence of residual carrier frequency off-

set and phase noise using graphical models. In [28], the authors proposed an algorithm
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based on probabilistic graphical models [29] to detect the OFDM signal in the presence

of frequency offset and phase noise and showed that the resulting receiver outperforms

the algorithms in [30] when implemented in decision feedback system. However, its imple-

mentation complexity is high as it uses discrete samples to represent the messages of the

frequency offset and phase noise. Instead of using discrete messages, we use a different

approach to represent the messages in the graphical model.

The carrier frequency offset and phase noise are assumed to be continuous variables and

we define these over a unit circle and exploit the circular properties. A recent study [31]

has proposed a low complexity algorithm to detect low density parity check (LDPC) codes

using the circular properties of the phase noise. However, the system considers the phase

noise only, and the effect of the frequency offset is not shown. In this work, we use the

concept of circular random variables to jointly model the phase noise and residual carrier

frequency offset of the CO-OFDM system. We represent the graphical messages using

complex Gaussian probability density functions, and propagate the mean and variance of

the messages. We show that the proposed algorithm shows good performance and sig-

nificant improvement in complexity when compared to the existing algorithm that use

discrete messages. This approach can also be viewed as pilot based method for the first

symbol since we use pilots at the start of each CO-OFDM frame. However, for the subse-

quent symbols the proposed algorithm does not require the use of pilot sequences. To the

best of our knowledge there are no existing algorithms in the published work which jointly

model the residual frequency offset and phase noise in CO-OFDM systems with graphical

models by exploiting their circular properties.

This paper is organised as follows. Section II presents the coherent optical OFDM

system and the graphical model. In Section III, the proposed method is presented and

the messages are constructed using the circular random variables. Section IV presents the

results and conclusions are drawn in Section V.

Notation We use bold small case and upper case letters to denote vectors and matrices.

CN (x;µ, σ2) denotes a complex Gaussian function with mean µ and variance σ2. F is the

DFT operator with entries 1√
N
exp(−j2πpq/N) where p, q ∈ [0, N − 1]. The Hermitian

transpose is denoted as (·)H and the conjugate is (·)∗.

II System Model

The transmission system using the coherent optical OFDM is shown in Figure 1. The

input data bits are mapped with complex modulation sets, and then sent to the OFDM

modulator which performs the inverse DFT (IDFT) operation. Thereafter, a cyclic prefix

is added to mitigate the effects of the intersymbol interference. The resulting digital signal

is converted to an analogue signal with the digital-to-analogue converter (DAC) and then

sent to the optical modulator, where the real and imaginary parts of the electrical signal

are transformed to an optical signal using laser sources. The signal is then transmitted

through the optical fibers and optical amplifiers. At the coherent receiver, the optical
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Figure 1: Coherent optical OFDM system model.

signal is converted to the electrical signal using optical demodulators, which generate the

real and imaginary parts of the electrical signal. The converted signal is digitised with

the analogue-to-digital converters (ADC). After estimation of the time and frequency with

dedicated preambles, the receiver removes the cyclic prefix, performs the DFT operation

followed by symbol demodulation to recover the transmitted data.

The received signal at time sample n can be represented as [1]

yn = e
j2πnv

N ejφn [xn ∗ hn] + wn, (1)

where xn represents the OFDM signal, hn is the composite channel and ∗ denotes the

convolution operator. Further, v is the residual carrier frequency offset and φn is the

Wiener phase noise, where φn = φn−1 + ∆φ, and ∆φ has a Gaussian distribution with

zero mean and variance σ2φ. Further, σ
2
φ = 2πβT where β is the laser linewidth and T is the

sampling time interval [2], and wn represents the amplified spontaneous emission which

is modelled as additive white Gaussian noise with zero-mean and variance σ2. In (1), the

non-linear effect of the fiber transmission has been ignored since it can be compensated [32].

The received signal after ideal time estimation can be expressed as

y = Γ(v,φ)FHs+w, (2)

where y = [y0, y1, . . . , yN−1], φ = [φ0, φ1, . . . , φN−1], and s = [s0, s1, . . . , sN−1] is the

information data. Furthermore Γ is a diagonal matrix with entries given as

[ejφ0 , ej2πv/N+jφ1 , . . . , ej2πv(N−1)/N+jφN−1 ], and w = [w0, w1, . . . , wN−1] is the additive

white Gaussian noise.

The estimation problem can be formulated as

(

v̂, φ̂
)

= argmax
v,φ

p(v,φ|y,x), (3)

where p(v,φ|y,x) ∝ p(y|v,φ,x)p(v)p(φ). Assuming the known data symbols, x = FHs,
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the distribution is written as [28]

p(v,φ|y,x) ∝ p(v)p(φ0)

N−1∏

n=1

p(φn|φn−1) (4)

×
N−1∏

n=0

p(yn|v, φn, xn),

where p(yn|v, φn, xn) ∝ exp
{

− |yn−ej2πvn/N+jφnxn|2
σ2

}

and p(φn|φn−1) is a Gaussian function

with zero mean and variance σ2φ. A graphical model is constructed [28] for the factorised

distribution in (4) and is shown in Figure 2.

III Proposed Receiver

The first step of the proposed receiver is to replace the linear random variables v and φn

with the circular random variables Xv = ej2πnv/N and Xφn = ejφn . The probability of the

phase increment p(φn|φn−1) is also described using the circular random variable equivalent

p(Xφn |Xφn−1). The existing graphical model shown in Figure 2 is then updated to include

the circular random variables and associated factor nodes. The second step is to use

the sum-product algorithm [29] to construct the graphical messages using the technique

of circular random variables. This requires one to rewrite the probability distribution

p(yn|v, φn, xn) as a complex Gaussian distribution CN (yn; e
j2πvn/N+jφnxn, σ

2).
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A Message mpn→Xv(Xv)

The message mpn→Xv(Xv) is computed as

mpn→Xv(Xv) =

∫

p(yn|v, φn, xn)mXφn→pn(Xφn) dXφn , (5)

and using the properties of the Gaussian density functions [33], we obtain

mpn→Xv(Xv) ≈ CN (Xv; Mpn→Xv , Vpn→Xv) , (6)

where Mpn→Xv =

(
MXφn

→pn
yn
xn

)∗
is the mean of the message and Vpn→Xv =

(
σ2

|xn|2
+VXφn

→pn
∣

∣

∣

yn
xn

∣

∣

∣

2

)

is its variance.

B Message mpn→Xφn
(ejφn)

The message mpn→Xφn
(ejφn) is formulated as

mpn→Xφn
=

∫

p(yn|v, φn, xn)mXv→pn(Xv) dXv , (7)

and using the properties [33], we write

mpn→Xφn
≈ CN

(

ejφn ; Mpn→Xφn
, Vpn→Xφn

)

, (8)

where Mpn→Xφn
=

(

MXv→pn
yn
xn

)∗
and Vpn→Xφn

=

(
σ2

|xn|2
+VXv→pn
∣

∣

∣

yn
xn

∣

∣

∣

2

)

.

C Message mFW (ejφn)

The forward message mFW (ejφn) is computed as

mFW (Xφn) =

∫

mpn−1→Xφn−1
(Xφn−1) (9)

× mFW (Xφn−1)p(X∆φn) dXφn−1 ,

where p(X∆φn
) is the distribution of the phase noise circular variable X∆φn

= XφnX
−1
φn−1

and can be approximated as CN
(

ej
φn−1

; ejφn , σ2φ

)

[31]. Hence, we evaluate (9) as

mFW (Xφn) ≈ CN
(

ejφn ; MnFW , V
n
FW

)

, (10)

where the mean of the forward message is

MnFW =

(Mpn−1→Xφn−1
)

(Vpn−1→Xφn−1
) +

(Mn−1
FW )

(Vn−1
FW )

(Vpn−1→Xφn−1
)−1 + (Vn−1

FW )−1)
, (11)
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and its variance is

VnFW =
1

(Vpn−1→Xφn−1
)−1 + (Vn−1

FW )−1
+ σ2φ. (12)

D Message mBW (ejφn)

The backward message is evaluated similar to the forward message. Hence, mBW (Xφn) ≈

CN
(
ejφn ; MnBW , V

n
BW

)
The mean and variance can be computed by substituting the vari-

ables Mpn+1→Xφn+1
, Vpn+1→Xφn+1

, Mn+1
BW , and Vn+1

BW , instead of the respective variables in

(11) and (12). The details are omitted here.

E Message mXv→pn(Xv)

The message mXv→pn(Xv) is formulated as

mXv→pn(Xv) =

N−1∏

k=0;k 6=n

mpk→Xv (13)

≈ CN (Xv; MXv→pn, VXv→pn) , (14)

where

MXv→pn =

∑N−1
k=0;k 6=nMpk→Xv (Vpk→Xv)

−1

∑N−1
k=0;k 6=n (Vpk→Xv)

−1
, (15)

and

VXv→pn =
1

∑N−1
k=0;k 6=n (Vpk→Xv)

−1
. (16)

F Message mXφn→pn(Xφn)

The message mXφn→pn(Xφn) is formulated as

mXφn→pn(Xφn) = mFW (Xφn)mBW (Xφn) (17)

≈ CN
(

ejφn ; MXφn→pn , VXφn→pn

)

,

where VXφn→pn = [(V n
FW )−1 + (V n

BW )−1]−1 and the mean is

MXφn→pn =(
Mn

FW

V n
FW

+
Mn

BW

V n
BW

)(VXφn→pn). (18)
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Figure 3: Estimation of phase errors with the graphical models.

G Beliefs p(Xv) and p(Xφn)

The belief of the carrier frequency offset is computed as

p(Xv) =
N−1∏

n=0

mpn→Xv (19)

≈ CN
(
Xv ; Mp(Xv), Vp(Xv)

)
, (20)

where the mean is

Mp(Xv) =

∑N−1
n=0 (Mpn→Xv) (Vpn→Xv)

−1

∑N−1
n=0 (Vpn→Xv)

−1
. (21)

Similarly, the belief of the phase noise is

p(Xφn) = mpn→φn(Xφn)mFW (Xφn)mBW (Xφn) (22)

≈ CN
(

ejφn ; Mp(Xφn)
, Vp(Xφn )

)

, (23)

where the mean is

Mp(Xφn )
=

Mpn→Xφn
(Vpn→Xφn

) +
Mn

FW
(V n

FW ) +
Mn

BW
(V n

BW )

(Vpn→Xφn
)−1 + (V n

FW )−1 + (V n
BW )−1

. (24)

The angle of (21) and (24) is used to estimate the carrier frequency offset and phase noise.

The received signal sequences are then compensated with these phase error estimates

as ŷn = yne
−j2πv̂n/Ne−jφ̂n . The transmitted bits can then be demodulated with the

compensated signal sequences. The estimation of the phase errors with the proposed

algorithm is summarised in Figure 3.

IV Results

We consider an OFDM symbol of 256 subcarriers, with 31 null subcarriers. A cyclic

prefix of 30 samples is inserted for each symbol. The channel is assumed to be known and

compensated at the receiver. The bit-error rate (BER) is used as a performance metric. For

comparison, we present the performance of the proposed algorithm, the discrete algorithm
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Figure 4: Error rate performance of the proposed algorithm.

[28] with equally-spaced samples of the phase errors, and an ideal algorithm with prior

knowledge of the frequency offset and phase noise.

We consider two simulation cases. In the first case, the receiver has complete knowledge

of the transmitted data, the residual carrier frequency offset is uniformly distributed in

(−0.2, 0.2) for each symbol, and the normalised laser linewidth (βT ) is 2.0 × 10−4. This

case represents the initialisation of a receiver using preamble data. In the second case, the

receiver operates in a decision feedback system where one known CO-OFDM symbol is

inserted at the start of every 20 transmitted symbols. The residual carrier frequency offset

is uniformly distributed in (−0.05, 0.05) for each symbol. The normalised laser linewidth

is 5.0× 10−6.

Figure 4 shows the uncoded BER performance of the proposed algorithm, the discrete

algorithm and the ideal algorithm for Quaternary Phase Shift Keying (QPSK) modulation.

The number of samples required by the discrete algorithm is also shown. For Case I, the

proposed algorithm performs close to the ideal algorithm. The discrete algorithm is shown

to require large message samples to approach the performance of the proposed algorithm.

It would show similar performance as the proposed algorithm for sufficiently large samples.

However, this would require the implementation complexity to be unnecessarily large. For

Case II, the proposed algorithm is shown to outperform the discrete algorithm, and closely

approaches the performance of the ideal algorithm. The discrete algorithm still requires

large number of samples and seems to show error floors at high signal-to-noise ratios.

These results show that the proposed algorithm is an effective algorithm in the presence

of frequency offset and phase noise.

The complexity of the proposed method scales as O(iN), where N is the DFT size

and i is the number of iterations. However, the complexity of the discrete algorithm
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scales as O(iNM2), where M is the number of the discrete samples that represent the

messages of the phase errors required by the algorithm. The proposed and the discrete

algorithms require about four iterations. Therefore, the proposed algorithm has very low

complexity because it only needs to compute the mean and variance of each message in

the graphical model, whereas the discrete algorithm is encumbered with processing the

messages represented by large samples of the phase errors. The number of discrete samples

required by the existing algorithm would be slightly improved with adaptive representation

of the messages [34], [35]. However, the complexity of such an approach would still be of

polynomial order. We can therefore conclude that the proposed algorithm is an attractive

low complexity algorithm for CO-OFDM systems where the unknown parameters are

circular random variables.

V Conclusion

We have presented a low-complexity iterative algorithm for the detection of coherent

optical OFDM systems in the presence of residual carrier frequency offset and phase noise.

The proposed algorithm models the carrier frequency offset and phase noise as circular

random variables, and propagates the mean and variance of the Gaussian messages. The

proposed algorithm has been shown to perform close to the ideal algorithm and it has low

complexity.
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Paper 4

Graphical Algorithms for Optical

LDPC Systems with Phase Noise

Errors

Physical Communications (to be submitted)

Abstract

In this paper, we present two graphical algorithms to detect low-density parity-check

(LDPC) codes for coherent optical systems with phase noise errors. The proposed

algorithms are based on message propagation in graphical models. The messages to be

propagated have been derived by minimising the free energy function of two combined

graphical models. First, we combine the Belief Propagation (BP) and the Uniformly

Reweighted Belief Propagation (URWBP) graphical models using the framework of free

energy minimisation and the framework of circular random variables. We implement the

algorithm using approximate and exact methods. Second, we combine the Mean Field

(MF) and the URWBP graphical models using a similar framework. The results show

the approximate implementation of the first algorithm outperforms the existing lowest

complexity algorithm, whereas the exact implementation achieves comparable performance

as the accurate and highly complex methods in the published work. Similar performance

is achieved by the second algorithm.

I Introduction

The presence of phase noise has been shown to increase the error rate of communications

systems. In optical communication systems [1], laser phase noise has been shown to be

modelled as a Wiener process [2], [3]. The effect of phase noise channels on the informa-

tion capacity has also been shown in [4]–[6]. This adverse effect on the error rate and

information capacity may be decreased, but not avoided, with high precision oscillators at
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the transmitter and receiver. This would increase the cost of the communications system.

Furthermore, the optical channel inherently introduces phase noise into the communica-

tion system. Since phase noise can not be avoided, it is necessary that effective receivers

be designed to detect data in the presence of phase noise.

The estimation of coded data in the presence of phase noise for optical systems can

be classified as graph-based, log-likelihood ratio based and code-based algorithms. The

graph-based algorithms jointly estimate the phase noise and the code with messages that

propagate between the code graph and the phase graph. The log-likelihood ratio based

algorithms modify existing metrics to include information about the phase noise [7]–[9].

These algorithms have shown improvements compared to existing approaches. The code-

based algorithms construct specialised codes to withstand the effects of the Gaussian

noise and the phase noise [10]–[13]. One category of these algorithms uses differential

encoding along with an existing code to counteract the phase noise channel. Another

category [11], [13] constructs dedicated codes that can be combined with the differential

encoding. The construction of such dedicated codes is an intensive and complex process

which requires the use of protographs and other approaches. The graph-based algorithms

are attractive over the other approaches since the construction of specialised codes is not

required. Furthermore, the graphical algorithms have low complexity compared to the

other algorithms.

There is a growing interest in the use of graphical models to estimate phase noise

in communication systems. Graphical models have been widely used in the decoding

of capacity-approaching codes. Since the work of Gallager which used graphical mod-

els to show the relationship among coded bits [14], there has been significant research

that highlighted the relationship between graphical models and probabilistic decoding.

The belief propagation (BP) algorithm [15] has been successfully used in the decoding

of capacity-approaching codes such as the Low Density Parity Check (LDPC) codes and

turbo codes [16], [17]. This success has sparked significant research interest as it has

demonstrated low-complexity decoding of capacity approaching error-correcting codes.

The belief propagation algorithm was found to give exact results in tree graphs and usu-

ally performed well in cyclic graphs [18] although strict guarantees for this performance

could not always be established. Further research effort revealed better understanding of

the behaviour of the belief propagation algorithm.

The work in [19] has established a relationship between the belief propagation algorithm

and the free energy function commonly found in statistical mechanics. The Bethe free

energy is one such system of defining the energy content of a physical system [19]. It

has been demonstrated that the fixed points of the loopy belief propagation algorithm

are equivalent to the stationary points of the constrained Bethe free energy function of

the graphical structure. Other interesting properties that relate to the stationary points

of the constrained Bethe free energy function and the fixed point equations of the belief

propagation algorithm are studied in [19],[20]. Furthermore, the work of [19] also describes

a method to construct alternate message expressions using the regions of a graphical model.
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Riegler et al. [21] exploited this principle of region selection and obtained message passing

algorithms that combine the mean field (MF) [22] and belief propagation messages, and

demonstrated its use in the joint estimation of channel parameters and decoding of an

Orthogonal Frequency Division Multiplexing (OFDM) system. This combined MF/BP

algorithm has been used in diverse set of problems [23], [24], where it has been shown to

outperform the standard BP algorithm.

The authors in [25] have proposed assigning probabilistic weights to the edges of a graph

by minimising the upper bound of the log-partition function. In [26], this approach has

been simplified to use uniform weights, resulting in an algorithm denoted as Uniformly

Re-weighted Belief Propagation (URWBP), and has been shown to outperform the BP

algorithm.

In this work, we propose iterative algorithms that combine existing graphical models

using the framework of free-energy minimisation and the framework of phase noise rep-

resentation as a circular random variable. We apply the proposed algorithms to detect

LDPC signals in the presence of phase noise. Several methods have addressed this problem

where the main aspect is to represent the phase noise belief in the graphical model with

an existing function, and subsequently propagate its parameters. In [27], the phase noise

belief is represented with the Tikhonov probability density function. In [28], the phase

noise belief is represented as a cluster of Tikhonov probability density functions. In [29],

the phase noise is represented as a circular random variable and its belief is approximated

with the complex Gaussian density function. For coded systems with moderate phase

noise variance, the Tikhonov algorithm [27] shows good performance, and the circular

random variable algorithm [29] achieves comparable performance with lower complexity.

For severe phase noise variance, the Tikhonov cluster algorithm [28] and the algorithm

in [30] achieve good performance at the cost of high implementation complexity. This work

emphasises on systems with high modulation schemes and moderate phase noise variance,

which is too complex for the method in [28].

The URWBP algorithm has been used for LDPC decoding in [26] for systems with

no phase noise. For systems with phase noise, the existing graphical algorithms for

joint estimation and decoding use the standard belief propagation to construct the mes-

sages [27]–[29]. In contrast, the proposed algorithms use messages constructed from the

combination of graphical models. Therefore, the main aspect of this paper is two fold.

First, we combine the BP and the URWBP graphical models using the concept of free

energy, and implement the optimised algorithm using the framework of circular random

variables. We implement the optimised algorithms using approximate and exact methods.

The results show that these methods outperform the existing non-optimised algorithm in

the published work [29]. Second, we combine the MF and the URWBP graphical models

using a similar framework. We show that the combined MF and BP is the minimum free

energy of the combined graphical model, and achieves comparable error rates as existing

methods. The emphasis of this work is on systems with moderate phase noise variance,

which are too complex for the method in [28].
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Code Graph
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mnqn

Figure 1: Basic description of a coded system.

The paper is organised as follows. Section II presents the background. Section III

formulates the detection problem of LDPC codes in Wiener phase noise channels. Section

IV presents the message construction using the proposed algorithms. Section VI discusses

the results and Section VII presents the conclusion.

Notation. Scalar random variables are denoted using lower case letters, while bold lower

case letters denote vectors. The expression CN (x;µ, σ2) denotes a complex Gaussian

function with mean µ and variance σ2. The conjugate operator is denoted as (·)∗.

II Background

This section presents the background on the several phase noise estimation approaches

for the optical LDPC systems. As stated in the introduction, these approaches can be

broadly classified as log-likelihood ratio based approaches, code-based approaches, and

graph-based approaches.

Assume a sequence of bit streams bn has been LDPC coded and modulated to form a

complex sequence an. The received signal is yn = xn +wn, where wn represents the noise

sequence. Figure 1 represents a basic description of this system, where the pn are factor

nodes as a function of xn and wn, and fn is the mapping function for a 16-QAM scheme.

The block shown as the “Code Graph” governs the LDPC code structure. The symbols

qn and mn represent the respective messages propagated to and from the code graph. The

message propagated from fn to the code graph can be viewed as the existing log-likelihood

ratios. The existing computation of the log-likelihood ratios take into account the received

signal, the modulation symbols, and the variance of the Gaussian noise.

Now, assume that phase noise φn is present in the system, which would modify the

received signal as yn = xne
jφn + wn. Existing approaches would still compute the log-

likelihood ratios as described earlier. However, there have been some work that modify the

log-likelihood metric to include the statistical parameters of the phase noise. In [7], this

metric is formulated by performing numerical methods on the expectation which includes

the phase noise statistics with sufficient number of samples. In [9], the authors formulate

the log-likelihood ratio with knowledge of the distribution of the Gaussian phase noise.
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Figure 2: Description of a code-based transmitter.

In [8], similar formulation of the log-likelihood ratio is exploited for the coded optical

OFDM systems, with an LDPC code of short length. Although such approaches are

scarce in the published work, some improvement of the bit-error rate has been reported.

The code-based approaches can be categorised as methods that use an existing code

followed with a differential modulator, and methods that construct dedicated codes for

the phase noise channel [11], [13] which is also followed with a differential modulator.

The first approach would be easier to implement since it uses an existing code, whereas

the second approach would be complex to implement since it requires the construction of

specialised codes to encounter the phase noise channel. Since existing codes are commonly

constructed for the Gaussian noise channel, these specialised constructions that also take

into account the phase noise channel have shown performance improvements. Figure 2

summarises the transmission process of the code-based approaches. The transmitted bits

b are encoded with an existing code or the specially constructed code. The encoded bits

c are then sent to the differential modulator which enables better handling of the phase

noise. This results in the complex sequence x which is sent through the Gaussian and the

phase noise channels. At the receiver, the process is reversed to obtain the transmitted

bits.

The graph-based approaches exploit the structure of the statistical properties of the

phase noise. This statistical representation is captured and included in the graphical

model of the estimation process. Figure 3 shows the modification of the system with

the inclusion of the statistical graphical description of the phase noise, which we denote

as “Phase Graph”. The messages are then propagated between the code graph and the

phase graph until convergence is achieved. The messages propagated from the code graph

are depicted as mxn→pn, whereas the message that propagate from the phase graph are

depicted as mpn→xn . This approach is followed in this paper.

III System Model

We consider the detection of coded optical systems in the presence of phase noise. The

binary information signal bn is encoded and modulated using symbols from a set A of size

M to form a complex symbol xn. The received signal is

yn = xne
jφn + wn, n = 0 . . . N − 1 (1)

where φn is a Wiener phase noise random variable generated as φn = φn−1 + ∆φ, where

∆φ has a Gaussian distribution with zero mean and variance σ2φ = 2πβTs. Further, β

denotes the laser linewidth and Ts denotes the sampling time interval. The additive white
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Code Graph

xn−2 xn−1 xn xn+1

pn−2 pn−1 pn pn+1

phase Graph

mxn→pnmpn→xn

Figure 3: Systemic description of graph-based algorithm.

Gaussian noise wn has zero mean and variance E[|wn|
2] = σ2.

The aim is to estimate x and φ that minimises the joint probability distribution

p(x,φ|y) ∝ p(y|φ,x) p(φ)p(x), (2)

where p(y|φ,x) ∝
∏N−1

i=0 p(yn|xn, φn) and p(yn|xn, φn) ∝ exp
(
−|yn−xnejφn |2

σ2

)

. The dis-

tribution of the phase noise is p(φ) ∝ p(φ0)
∏N−1

i=1 p(φn|φn−1), where p(φ0) is a uniform

distribution of the initial phase noise sample φ0 and p(φn|φn−1) is a Gaussian function

with zero mean and variance σ2φ.

Figure 4 shows the graphical model that describes the estimation problem [27], [28]

in (2) where the phase noise samples are replaced with the circular random variables

Xφn = ejφn , and the distribution of the successive phase noise samples is represented as

p(Xφn |Xφn−1). Further, pn represents the distribution p(yn|xn, φn). The figure also shows

the messages that propagate in the graphical model.

IV Proposed Algorithms

In this section, we present the proposed algorithms which are based on the minimisation

of the free energy of the graphical model and on the representation of the phase noise as

a circular random variable. For the first algorithm, we combine the belief propagation

and the uniformly reweighted belief propagation, and refer to it as the combined BP

and URWBP algorithm, For the second algorithm, we combine the mean field and the

uniformly reweighted belief propagation, and refer to it as the combined MF and URWBP

algorithm.

In Appendix A, the derivation of a generic reweighted belief propagation algorithm is

presented, where the messages are summarised using expressions (A.9), (A.11), and (A.12).

These expressions are used to formulate the messages of the combined BP and URWBP

algorithm. In Appendix B, the derivation of the combined MF and a generic reweighted
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Figure 4: Graphical model of (2).

BP algorithm is presented, where the messages are constructed using expressions (B.4),

(B.6), (B.7), (B.8), and (B.9). These expressions are used to formulate the messages of the

combined MF and BP, and the combined MF and URWBP algorithms. In the following

sections, we present the message construction of the proposed algorithms on the graph

shown in Figure 4.

A Combined BP and URWBP Algorithm

This algorithm uses the BP graph to model the factor node p(yn|xn, φn) and its neigh-

bouring variable nodes xn and Xφn , and the URWBP graph to model the factor node

p(Xφn |Xφn−1) and its neighbouring variable nodes Xφn and Xφn−1 . The message con-

struction is based on [26], where for the BP factor nodes, a reweighting factor of ρa = 1 is

used. For the URWBP factor nodes, a uniform reweighting factor of ρa = ρ is used. The

messages are constructed as follows.

Constructing the message mpn→Xφn
(Xφn)

The message mpn→Xφn
(Xφn) is formulated as (A.11)

mpn→Xφn
(Xφn) =

∫

mxn→pn(xn)p(yn|xn,Xφn) dxn, (3)

where mxn→pn(xn) ≈ CN (xn;Mxn→pn , Vxn→pn) has mean Mxn→pn and variance Vxn→pn .

Further, we write p(yn|xn,Xφn) = CN (xn;
yn

ejφn
, σ2) and evaluate (3) as [29]

mpn→Xφn
(Xφn) ≈ CN (ejφn ;Mpn→Xφn

, Vpn→Xφn
), (4)

where Mpn→Xφn
=
(

yn
Mxn→pn

)

and Vpn→Xφn
=
(
Vxn→pn+σ2

|Mxn→pn |2
)

.
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Constructing the forward message mFW(Xφn)

The forward message is formulated (A.11) as

mFW(Xφn) =

∫
p(Xφn−1)

mBW(Xφn−1)
(p(Xφn |Xφn−1))

1
ρ dXφn−1 , (5)

where the belief p(Xφn−1) is formulated (A.9) as

p(Xφn−1) = mpn−1→Xφn−1
(Xφn−1)

× (mFW(Xφn−1))
ρ (mBW(Xφn−1))

ρ. (6)

We use the complex Gaussian representation of messagesmpn−1→Xφn−1
(Xφn−1),mFW(Xφn−1),

andmBW(Xφn−1) with respective mean and variances ofMpn−1→Xφn−1
, Vpn−1→Xφn−1

,Mn−1
FW

,

V n−1
FW

, Mn−1
BW

and V n−1
BW

. Further, the distribution of the phase noise increment is also rep-

resented using the complex Gaussian function as p(Xφn |Xφn−1) ≈ CN (ejφn−1 ; ejφn , σ2φ).

We can then write the forward message as a Gaussian function

mFW(Xφn) ≈ CN (ejφn ;Mn
FW
, V n

FW
), (7)

with variance

V n
FW

=An
FW

+ ρσ2φ, (8)

where

An
FW

=

(

1

Vpn−1→Xφn−1

+
ρ

V n−1
FW

+
ρ− 1

V n−1
BW

)−1

, (9)

and with mean

Mn
FW

= ((Mpn−1→Xφn−1
)(Vpn−1→Xφn−1

)−1

+ (Mn−1
FW

)(V n−1
FW

/ρ)−1

+ (Mn−1
BW

)(V n−1
BW

/ρ− 1)−1)(An
FW
). (10)

Constructing the backward message mBW(Xφn)

The backward message is formulated using (A.11)

mBW(Xφn) =

∫
p(Xφn+1)

mFW(Xφn+1)
(p(Xφn+1 |Xφn))

1
ρ dXφn+1 , (11)

where p(Xφn+1), mFW(Xφn+1), and p(Xφn+1 |Xφn) represent the distributions at sample

n+1. Since the derivation of backward message is similar to the forward message, we use

the complex Gaussian representation of messages mpn+1→Xφn+1
(Xφn+1), mFW(Xφn+1), and
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mBW(Xφn+1) with respective mean and variances of Mpn+1→Xφn+1
, Vpn+1→Xφn+1

, Mn+1
FW

,

V n+1
FW

, Mn+1
BW

and V n+1
BW

. We express the message as mBW(Xφn) ≈ CN (ejφn ;Mn
BW
, V n

BW
) with

variance

V n
BW

=An
BW

+ ρσ2φ, (12)

where

An
BW

=

(

1

Vpn+1→Xφn+1

+
ρ

V n+1
BW

+
ρ− 1

V n+1
FW

)−1

, (13)

and mean

Mn
BW

= ((Mpn+1→Xφn+1
)(Vpn+1→Xφn+1

)−1

+ (Mn+1
BW

)(V n+1
BW

/ρ)−1

+ (Mn+1
FW

)(V n+1
FW

/ρ− 1)−1)(An
BW
). (14)

Constructing the phase noise belief p(Xφn)

The phase noise belief is formulated as (A.9)

p(Xφn) = mpn→Xφn
(Xφn)(mFW(Xφn))

ρ(mBW(Xφn))
ρ, (15)

and is computed as p(Xφn) ≈ CN (ejφn ;MXφn
, VXφn

), where VXφn
denotes the variance of

the phase noise and is computed as

VXφn
=

1

(Vpn→Xφn
)−1 + (V n

FW
/ρ)−1 + (V n

BW
/ρ)−1

, (16)

and MXφn
denotes the mean of the phase noise and is computed as

MXφn
= ((Mpn→Xφn

)(Vpn→Xφn
)−1 + (Mn

FW
)(V n

FW
/ρ)−1

+ (Mn
BW
)(V n

BW
/ρ)−1)(VXφn

). (17)

The estimate of the phase noise is then computed from the argument ∠MXφn
. The

message to the code graph is obtained with standard demapping approaches which rotate

the received signal with the phase noise estimates.

B Combined MF and URWBP Algorithm

In this section, we present the message construction of the combined MF and URWBP

algorithm. The MF algorithm models the factor node p(yn|xn,Xφn) and its neighbouring

variables nodes, while the URWBP algorithm models the factor node p(Xφn ,Xφn−1) and

its neighbouring variable nodes. The message construction is based on [21], [26], where we

use the URWBP algorithm instead of the BP algorithm. Hence, the URWBP factor nodes
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are modelled using a uniform reweighting factor ρa = ρ. The combined MF and BP is a

special formulation where ρ = 1. The messages are constructed as follows.

Constructing the message mMF

pn→Xφn
(Xφn)

The mean field message mMF

pn→Xφn
(Xφn) is formulated as (B.8)

mMF

pn→Xφn
(Xφn) = exp

(
∑

xn∈A
p(xn) log p(yn|xn,Xφn)

)

, (18)

where p(xn) is the belief of the symbol xn. Therefore

mMF

pn→φn
(Xφn) ∝ exp

(

−
∑

xn∈A
p(xn)

|yn − xne
jφn |2

σ2

)

(19)

∝ CN (ejφn ;MMF

pn→φn
, V MF

pn→φn
),

where MMF

pn→Xφn
= E[|xn|2]

y∗nE[xn]
and V MF

pn→Xφn
= σ2E[|xn|2]

|yn|2|E[xn]|2 . E[·] denotes the expectation

operator.

Constructing the forward message mFW(Xφn)

The forward message is constructed as (B.6)

mFW(Xφn) =

∫
p(Xφn−1)

mBW(Xφn−1)
(p(Xφn |Xφn−1))

1
ρ dXφn−1 , (20)

where we use (B.4) to write

p(Xφn−1) = mMF

pn−1→Xφn−1
(Xφn−1)

× (mFW(Xφn−1))
ρ (mBW(Xφn−1))

ρ. (21)

We then write the forward message as mFW(Xφn) ≈ CN (ejφn ;Mn
FW
, V n

FW
). The mean and

variance are similar in form to (10) and (8), and are not included here to avoid repetition.

Constructing the backward message mBW(Xφn)

The backward messages are constructed in a similar method as the forward messages and

can be evaluated to give a Gaussian function mBW(Xφn) ≈ CN (ejφn ;Mn
BW
, V n

BW
) with mean

and variance that are similar in form to (14) and (12).

Constructing the phase noise belief p(Xφn)

The phase noise belief is formulated as

p(Xφn) = mMF

pn→Xφn
(Xφn)(mFW(Xφn))

ρ(mBW(Xφn))
ρ, (22)
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and is computed as p(Xφn) ≈ CN (ejφn ;MXφn
, VXφn

), where VXφn
denotes the variance of

the phase noise and is computed as

VXφn
=

1

(V MF

pn→Xφn
)−1 + (V n

FW
/ρ)−1 + (V n

BW
/ρ)−1

, (23)

and MXφn
denotes the mean of the phase noise and is computed as

MXφn
= ((MMF

pn→Xφn
)(Vpn→Xφn

)−1 + (Mn
FW
)(V n

FW
/ρ)−1

+ (Mn
BW
)(V n

BW
/ρ)−1)(VXφn

). (24)

The argument of the mean is used as the phase noise estimate. The message to the code

graph is computed as discussed in the previous subsection.

V Complexity

The complexity of the proposed algorithms is presented relative to the existing circular

random variable algorithm [29], where the number of extra multiplication operators is used

as metric. Assume the variable a represents the number of extra multiplication operators

required to compute the third term of the mean of the forward and backward messages.

This requires two extra scalar-complex multiplications and six scalar-scalar multiplica-

tions. The complexity of the approximate Proposed Algorithm I with optimal ρ would

require about O(a) extra multiplication operations, whereas the exact Proposed Algo-

rithm I with optimal ρ and the Proposed Algorithm II would require about O(6M + a)

extra multiplication operations, where M is the size of the modulation scheme. The com-

plexity of the algorithm in [28] is extremely high in comparison to the proposed algorithms,

and is only used here because of its best performance.

VI Results

We characterise the performance of the proposed algorithms to detect optical LDPC sys-

tems in Wiener phase noise channels. The LDPC code is of length 2640 and rate 0.5 [31].

A single known symbol is inserted every 20 transmitted symbols to aid the estimation

process. The sampling rate is 25 GS/s and the normalised laser linewidth (βTs) is 0.0004.

The bit-error rate (BER) is evaluated at each optical signal-to-noise ratio (OSNR) [32].

We compare the performance of the proposed algorithms with the circular random variable

algorithm [29], the Tikhonov cluster algorithm with a divergence measure of ǫ = 15 and

unlimited components [28], and the algorithm with no phase noise.

In this section, the combined BP and URWBP algorithm is referred to as “Proposed

Algorithm I” whereas the combined MF and URWBP algorithm is referred to as “Proposed

Algorithm II”. Further, we represent the message from the code graph using exact and

approximate methods. In the exact method, we compute the mean and variance of the
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message using the complete modulation symbols. In the approximate method, we use only

one symbol to compute these parameters.

Figure 5 shows the effect of the reweighting factors on the error rate of the proposed

algorithms for 16-QAM at OSNR of 10.6 dB. The error rate of the exact and approximate

methods of the Proposed Algorithm I is shown to be minimised at ρ ≈ 0.9. This shows

that the existing BP only algorithm is not the minimum free energy point of the graphical

model, and the performance could be optimised further. The Proposed Algorithm II shows

minimum error rate at ρ = 1, and the error rate increases for low ρ. This shows that the

Proposed Algorithm II has minimum free energy at ρ = 1, which is the combined MF and

BP algorithm.

Figure 6 shows the BER performance of the proposed algorithms for 16-QAM. The

approximate Proposed Algorithm I with ρ = 0.89 is shown to outperform the circular

random variable algorithm. It has to be stated the circular random variable algorithm

is equivalent to the approximate Proposed Algorithm I with ρ = 1. The results also

show that the optimised approximate Proposed Algorithm I improves the performance

of the circular random variable algorithm with minimal increase in complexity. This

performance is shown to be comparable to the accurate and computationally complex

Tikhonov cluster algorithm. Furthermore, the exact Proposed Algorithm I with ρ = 0.9

shows close performance compared to the Tikhonov cluster algorithm. This shows there is

minimal performance gain in using the exact method for moderate phase noise variance.

The results of the Proposed Algorithm II show similar performance as the optimised

approximate Proposed Algorithm I and the exact Proposed Algorithm I. This is because

the algorithm also uses an exact method to compute the mean and variance of the messages

from the code graph.

Figure 7 shows the performance of the proposed algorithms as a variation of the nor-

malised laser linewidth (βTs) for OSNR of 10.6 dB. The approximate Proposed Algorithm I

with ρ = 0.89 is shown to improve the performance of the non-optimised algorithm. Fur-

ther, the exact Proposed Algorithm I with ρ = 0.9 shows similar performance as the

Tikhonov cluster algorithm. The exact Proposed Algorithm II with ρ = 1.0 also shows

similar performance for moderate values of the phase noise variance. This also shows the

good balance between performance and complexity of the optimised proposed algorithm I

in comparison to the other algorithms.

In summary, the results show optimising graphical models improves performance. In

the broader sense, the proposed algorithms show alternative options of achieving compa-

rable performance to the best algorithms in the published work for moderate phase noise

channels. In view of complexity and performance, the approximate proposed algorithm

improves the performance of existing low complexity methods at a slight implementation

cost. From the point of view of free energy, the optimised BP graph has lower free energy

compared to the optimised MF graph, at least for the graphical model of the phase noise

estimation problem of coded systems.
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VII Conclusion

In this paper, we have proposed two combined graphical algorithms to detect LDPC codes

for coherent optical systems with phase noise errors. These algorithms are based on the

minimisation of the free energy of the graphical model combined with an implementation

of the phase noise as a circular random variable. The first proposed algorithm exploits

messages obtained from the combined BP and URWBP algorithms. The second proposed

algorithm exploits messages obtained from the combined URWBP and MF algorithms.

These algorithms have been implemented with the exact and approximate approaches.

The first proposed algorithm with the approximate implementation has shown improved

performance compared to an existing low complexity algorithm with slight increase in

complexity. The exact implementation has shown improved performance compared to

the non-optimised algorithm of similar complexity. Further, the use of circular random

variables have maintained the complexity advantage of existing algorithms. In general, the

results have shown the advantages of constructing messages derived from the minimised

free energy function of graphical models.
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Appendix A

Derivation of a Reweighted BP Algorithm

Notation A graphical model G is represented by the set of variable nodes V, a set of

factor nodes F and a set of edges connecting these nodes E . The mini-graph Ga is the

smallest graph constructed according to [19], and consists of a single factor node and a

set of variable nodes xGa . The graph GBP represents a graph composed entirely of BP

mini-graphs. The graph GMF represents a graph composed entirely of MF mini-graphs.

The mini-graph Ga has a reweighting factor ρa, where 0 < ρa ≤ 1. A value of ρa = 1

indicates a BP graph.

The free energy of a reweighted belief propagation graph can be formulated as

F =−
∑

Ga∈GBP

∑

xGa

bGa(xGa) log fGa(xGa)

+
∑

Ga∈GBP

ρa
∑

xGa

bGa(xGa) log bGa(xGa)

+
∑

i∈V

∑

xi

bi(xi) log bi(xi)

−
∑

Ga∈GBP

ρa
∑

xGa

bGa(xGa) log
∏

i∈N (a)

bi(xi), (A.1)

where bGa(xGa) denotes the belief of the mini-graph Ga and bi(xi) denotes the belief of

each variable node i. The constraints are

∑

xi

bi(xi)− 1 = 0, ∀i ∈ V, (A.2)

∑

xGa

bGa(xGa)− 1 = 0, ∀Ga ∈ GBP , (A.3)

∑

xGa∼xi

bGa(xGa)− bi(xi) = 0, ∀Ga ∈ GBP , (A.4)

bi(xi) ≥ 0, (A.5)

bGa(xGa) ≥ 0, ∀Ga ∈ GBP . (A.6)

The Lagrangian L can be written as

L = F +
∑

i∈V
λi

(
∑

xi

bi(xi)− 1

)

+
∑

Ga∈GBP

γa




∑

xGa

bGa(xGa)− 1





+
∑

(ai)∈EBP

ηai(xi)




∑

xGa∼xi

bGa(xGa)− bi(xi)



 , (A.7)
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where λi, γa and ηai are the respective Lagrange multipliers of the constraint functions.

The belief bi(xi) is obtained by setting the ∂L
∂bi(xi)

= 0 as

bi(xi) = exp




∑

(ai)∈EBP

ηai(xi)



 . (A.8)

If we set ηai(xi) = log (ma→i(xi))
ρa , we obtain

bi(xi) =
∏

a∈N (i)

(ma→i(xi))
ρa . (A.9)

Similarly, the belief bGa(xGa) is obtained by setting ∂L
∂bGa (xGa )

= 0 as

bGa(xGa) = (fGa(xGa))
1/ρa

∏

i∈N (a)

bi(xi)

ma→i(xi)
. (A.10)

The message passing rules can be obtained by using the consistency constraints bi(xi) =
∑

xGa∼xi
bGa(xGa). Hence, we obtain

ma→i(xi) =
∑

xGa∼xi

(fGa(xGa))
1/ρa

∏

j∈N (a)∼i

bj(xj)

ma→j(xj)
. (A.11)

Further, we can set mj→a(xj) =
bj(xj)

ma→j(xj)
and evaluate as

mj→a(xj) = (ma→j(xj))
ρa−1

∏

b∈N (j)∼a

(mb→j(xj))
ρb . (A.12)
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Appendix B

Derivation of the Combined MF and Reweighted BP Algo-

rithm

The free energy function of the combined MF and reweighted BP graph can be formulated

as

F =−
∑

Ga∈GBP

∑

xGa

bGa(xGa) log fGa(xGa)

−
∑

Ga∈GMF

∑

xGa

∏

xi∈xGa

bi(xi) log fGa(xGa)

+
∑

Ga∈GBP

ρa
∑

xGa

bGa(xGa) log bGa(xGa)

+
∑

i∈V

∑

xi

bi(xi) log bi(xi)

−
∑

Ga∈GBP

ρa
∑

xGa

bGa(xGa) log
∏

xi∈xGa

bi(xi). (B.1)

The Lagrangian can be written as

L = F +
∑

i∈V
λi

(
∑

xi

bi(xi)− 1

)

+
∑

Ga∈GBP

γa




∑

xGa

bGa(xGa)− 1





+
∑

(ai)∈EBP

ηai(xi)




∑

xGa∼xi

bGa(xGa)− bi(xi)



 , (B.2)

where λi, γa and ηai are the respective Lagrangian multipliers for the variable nodes, factor

nodes and edges of the graphical model. The belief of each variable node is obtained by
∂L

∂bi(xi)
= 0 as

bi(xi) = exp
∑

a∈NMF (i)

∏

j∈N (a)∼i

bj(xj) log fGa(xGa)

︸ ︷︷ ︸

logma→i(xi)

+
∑

a∈NBP (i)

ηai(xi)
︸ ︷︷ ︸

log(ma→i(xi))ρa

. (B.3)

Using the definition logma→i(xi) =
∏

j∈N (a)∼i bj(xj) log fGa(xGa) and log(ma→i(xi))
ρa =

ηai(xi), the belief bi(xi) is further evaluated as

bi(xi) =
∏

a∈NMF (i)

ma→i(xi)
∏

a∈NBP (i)

log(ma→i(xi))
ρa . (B.4)
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The belief bGa(xGa) is similarly obtained using ∂L
∂bGa (xGa )

= 0 as

bGa(xGa) =(fGa(xGa))
1/ρa

∏

i∈N (a)

bi(xi)

ma→i(xi)
. (B.5)

Using the constraint
∑

xGa∼xi
bGa(xGa) = bi(xi), we obtain the message from the URWBP

factor node, i.e., a ∈ GBP , as

ma→i(xi) =
∑

xGa∼xi

(fGa(xGa))
1/ρa

∏

j∈N (a)∼i

bj(xj)

ma→j(xj)
. (B.6)

The message from a variable node to the URWBP factor node can be evaluated as

mj→a(xj) = (ma→j(xj))
ρa−1

∏

b∈NMF (j)∼a

mb→j(xj)
∏

b∈NBP (j)∼a

(mb→j(xj))
ρb . (B.7)

In order to obtain the messages from a MF factor node, i.e., a ∈ GMF , we use

ma→i(xi) = exp




∑

xGa∼xi

∏

j∈N (a)∼i

bj(xj) log fGa(xGa)



 . (B.8)

Similarly, we can write the expressions for a message from a variable node to a MF factor

node, i.e., a ∈ GMF

mj→a(xj) =
∏

b∈NMF (j)∼a

mb→j(xj)
∏

b∈NBP (j)∼a

(mb→j(xi))
ρb . (B.9)

76



References

[1] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity

limits of optical fiber networks,” Journal of Lightwave Technology, vol. 28, no. 4, pp.

662–701, 2010.

[2] M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Em-

pirical modeling and simulation of phase noise in long-haul coherent optical trans-

mission systems,” Optics Express, vol. 19, no. 23, pp. 22 455–22 461, 2011.

[3] G. J. Foschini and G. Vannucci, “Characterizing filtered light waves corrupted by

phase noise,” IEEE Transactions on Information Theory, vol. 34, no. 6, pp. 1437–

1448, 1988.

[4] L. Barletta, M. Magarini, and A. Spalvieri, “The information rate transferred through

the discrete-time Wiener’s phase noise channel,” Journal of Lightwave Technology,

vol. 30, no. 10, pp. 1480–1486, 2012.

[5] L. Barletta, M. Magarini, S. Pecorino, and A. Spalvieri, “Upper and lower bounds

to the information rate transferred through first-order Markov channels with free-

running continuous state,” IEEE Transactions on Information Theory, vol. 60, no. 7,

pp. 3834–3844, 2014.

[6] A. Barbieri and G. Colavolpe, “On the information rate and repeat-accumulate code

design for phase noise channels,” IEEE Transactions on Communications, vol. 59,

no. 12, pp. 3223–3228, 2011.

[7] I. B. Djordjevic and T. Wang, “On the LDPC-coded modulation for ultra-high-speed

optical transport in the presence of phase noise,” in IEEE Optical Fiber Communica-

tion Conference and Exposition and the National Fiber Optic Engineers Conference

(OFC/NFOEC), 2013, pp. 1–3.

[8] S. Cao, P.-Y. Kam, C. Yu, and X. Cheng, “Pilot-tone assisted log-likelihood ratio

for LDPC coded CO-OFDM system,” IEEE Photonics Technology Letters, vol. 26,

no. 15, pp. 1577–1580, 2014.

[9] T. Koike-Akino, D. S. Millar, K. Kojima, and K. Parsons, “Phase noise-robust

LLR calculation with linear/bilinear transform for LDPC-coded coherent commu-

nications,” in CLEO: Science and Innovations. Optical Society of America, 2015,

pp. SW1M–3.

[10] F. Yu, N. Stojanovic, F. Hauske, D. Chang, Z. Xiao, G. Bauch, D. Pflueger, C. Xie,

Y. Zhao, L. Jin et al., “Soft-decision LDPC turbo decoding for DQPSK modulation

in coherent optical receivers,” in European Conference and Exposition on Optical

Communications. Optical Society of America, 2011, pp. We–10.

77



[11] B. Matuz, G. Liva, E. Paolini, M. Chiani, and G. Bauch, “Low-rate non-binary LDPC

codes for coherent and blockwise non-coherent AWGN channels,” IEEE Transactions

on Ccommunications, vol. 61, no. 10, pp. 4096–4107, 2013.

[12] S. Bellini, M. Ferrari, A. Tomasoni, C. Costantini, L. Razzetti, and G. Gavioli, “LDPC

design for block differential modulation in optical communications,” IEEE Journal of

Lightwave Technology, vol. 33, no. 1, pp. 78–88, 2015.

[13] T. Ninacs, B. Matuz, G. Liva, and G. Colavolpe, “Short non-binary low-density

parity-check codes for phase noise channels,” IEEE Transactions on Communications,

vol. 67, no. 7, pp. 4575–4584, 2019.

[14] R. Gallager, “Low-density parity-check codes,” MIT Press, 1963.

[15] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, 1988.

[16] D. J. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity

check codes,” Electronics letters, vol. 32, no. 18, pp. 1645–1646, 1996.

[17] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an instance

of Pearl’s “belief propagation” algorithm,” IEEE Journal on Selected Areas in Com-

munications, vol. 16, no. 2, pp. 140–152, 1998.

[18] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approxi-

mate inference: An empirical study,” in Proceedings of the Fifteenth conference on

Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1999, pp.

467–475.

[19] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy approxima-

tions and generalized belief propagation algorithms,” IEEE Transactions on Infor-

mation Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[20] T. Heskes et al., “Stable fixed points of loopy belief propagation are minima of the

Bethe free energy,” Advances in neural information processing systems, vol. 15, pp.

359–366, 2003.

[21] E. Riegler, G. E. Kirkelund, C. N. Manchón, M.-A. Badiu, and B. H. Fleury, “Merging

belief propagation and the mean field approximation: A free energy approach,” IEEE

Transactions on Information Theory, vol. 59, no. 1, pp. 588–602, 2013.

[22] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential families, and

variational inference,” Foundations and Trends in Machine Learning, vol. 1, no. 1–2,

pp. 1–305, 2008.

78



[23] Z. Yuan, C. Zhang, Z. Wang, Q. Guo, S. Wu, and X. Wang, “A low-complexity

receiver using combined BP–MF for joint channel estimation and decoding in OFDM

systems,” arXiv preprint, 2016.

[24] D. J. Jakubisin, R. M. Buehrer, and C. R. da Silva, “Probabilistic receiver ar-

chitecture combining BP, MF, and EP for multi-signal detection,” arXiv preprint

arXiv:1604.04834, 2016.

[25] M. Wainwright, T. Jaakkola, and A. Willsky, “A new class of upper bounds on the

log partition function,” IEEE Transactions on Information Theory, vol. 51, no. 7, pp.

2313–2335, 2005.

[26] H. Wymeersch, F. Penna, and V. Savic, “Uniformly reweighted belief propagation

for estimation and detection in wireless networks,” Wireless Communications, IEEE

Transactions on, vol. 11, no. 4, pp. 1587–1595, 2012.

[27] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative decoding in the

presence of strong phase noise,” IEEE Journal on Selected Areas in Communications,

vol. 23, no. 9, pp. 1748–1757, 2005.

[28] S. Shayovitz and D. Raphaeli, “Message passing algorithms for phase noise tracking

using Tikhonov mixtures,” IEEE Transactions on Communications, vol. 64, no. 1,

pp. 387–401, 2016.

[29] S. H. Rezenom and F. Takawira, “Iterative low complexity algorithm for LDPC sys-

tems in the presence of phase noise,” IEEE Wireless Communication Letters, vol. 6,

no. 6, pp. 794–797, 2017.

[30] A. Kreimer and D. Raphaeli, “Efficient low-complexity phase noise resistant iterative

joint phase estimation and decoding algorithm,” IEEE Transactions on Communica-

tions, vol. 66, no. 9, pp. 4199–4210, 2018.

[31] D. MacKay, “D. Mackay’s Gallager code resources,” in available at

http://www.inference.phy.cam.ac.uk/mackay/.

[32] A. Leven and L. Schmalen, “Status and recent advances on forward error correction

technologies for lightwave systems,” Journal of lightwave technology, vol. 32, no. 16,

pp. 2735–2750, 2014.

79



Paper 5

Parameter Based Computation of

Information Bounds for Wiener

Phase Noise Channels

IEEE Communications Letters (to be submitted)

Abstract

In this paper, we propose parameter based methods to compute the mutual information

bounds of the Wiener phase noise channel. The proposed methods represent the phase

noise distributions as Gaussian probability density functions of circular random variables,

and compute the information bounds using parameters of the Gaussian function. The

results are accurate at low-to-moderate signal-to-noise ratios, and closely approach the

exact mutual information at high signal-to-noise ratios. Furthermore, the complexity of

the proposed methods is significantly lower than the most accurate approach of computing

the mutual information.

I Introduction

There is a significant interest to develop methods that increase the information transferred

through an optical fiber. The general characteristics of the optical fiber have been discussed

in [1]. One aspect of the optical fiber is the presence of phase noise which results from

the inaccuracies of laser sources and other non-linear sources. It has been shown that

the effect of the laser linewidth can be modelled as a Wiener phase noise process [2], [3],

which is similar to the modelling of an oscillator phase noise in wired and wireless systems.

Since phase noise has been known to negatively affect a communication system, this has

motivated efforts that characterise the performance of the optical fiber channel in the

presence of phase noise.

80



The authors in [4] propose simulation-based methods to compute the upper and lower

bounds of the mutual information. These methods have been used in subsequent works

to compute the mutual information bounds of the Wiener phase noise channel. In [5], a

method is proposed to compute the information lower bound of the Wiener phase noise

channel by taking discrete samples of the phase noise. In [6],[7], the discrete phase method

is proposed to compute the information upper bound. In [8], the information lower bound

is computed with phase noise distributions formed with particle filters. The accuracy of

these discrete phase methods improves with the number of phase noise samples, which

leads to high implementation complexity. However, there are few existing low complexity

approaches of computing the mutual information bounds. In [9], a method based on

the Kalman filter is proposed to compute the information lower bound. In [10], the

information upper bound is computed by approximating the phase noise distributions

with the Tikhonov probability density function and the exponential Fourier series. In [11],

the information lower bound is computed by approximating the phase noise distribution

with multiple Tikhonov probability density functions for systems with low phase noise

variance and large modulation sets.

In this work, we emphasise on parameter based methods to compute the informa-

tion bounds of the Wiener phase noise channel. In [12], a framework of circular random

variables is proposed for the iterative detection of coded systems in Wiener phase noise

systems. Hence, we exploit this framework and propose parameter based methods to com-

pute the mutual information bounds of the Wiener phase noise channel by approximating

the phase noise distributions as Gaussian probability density functions. The results are

shown to be accurate for practical values of the information rate. To compute the mutual

information bounds, the proposed methods only require the parameters of the Gaussian

function. Therefore, the complexity of the proposed methods is significantly lower than

the discrete phase method which has the most accurate information bounds at the cost of

very high complexity.

This paper is organised as follows. Section II formulates the problem of computing the

mutual information bounds. Section III presents the proposed parameter based method to

compute the mutual information lower bound. Section IV presents the proposed parameter

based method to compute the mutual information upper bound. The results are presented

in Section V and the conclusion is discussed in Section VI.

Notation The probability density function of a complex Gaussian random variable x

with mean µ and variance σ2 is denoted as CN (x;µ, σ2). The vector (x1, x2, . . . , xn)

is denoted as xn1 , or simply as X. For a given probability density function p(X), its

information measure is denoted as H(X). Further, H(X) denotes an upper bound on

H(X) while H(X) denotes a lower bound.
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II Problem Formulation

The system model is described as yn = xne
jθn + wn for n = 1, . . . ,M , where each input

sequence xn is selected from a constrained complex modulation set A with a uniform

distribution. The Wiener phase noise sequence is generated as θn = θn−1 + ∆, where ∆

is a Gaussian parameter with zero mean and variance σ2θ . The additive white Gaussian

noise sequence wn has zero mean and variance E[|wn|
2] = σ2. The mutual information

between the input sequences X = [x1, . . . , xM ] and output sequences Y = [y1, . . . , yM ] is

computed as

I(X;Y ) =
∑

X,Y

p(X,Y ) log2
p(X,Y )

p(X)p(Y )
, (1)

where p(X,Y ) denotes the joint distribution, whereas p(X) and p(Y ) denote the respective

distributions of X and Y . Since the expression in (1) could not be computed precisely , one

would have to compute its upper and lower bounds. Therefore, the problem is to establish

the mutual information bounds as I(X;Y ) ≤ I(X;Y ) ≤ I(X;Y ) where I(X;Y ) denotes

the mutual information lower bound and I(X;Y ) denotes the upper bound. These bounds

are computed using a general framework which we briefly discuss. The lower bound can

be formulated as [4]

I(X;Y ) = E[log2
q(Y |X)

q(Y )
] (2)

≈
1

n
log2 q(y

n
1 |x

n
1 )−

1

n
log2 q(y

n
1 ), (3)

where E[·] denotes the expectation operator with respect to p(X,Y ), and the approxima-

tion follows from the asymptotic equipartition property [13] for sufficiently large number of

sequences. The distribution q(Y |X) is an auxiliary channel [4] that approximates the exact

distribution p(Y |X), and q(Y ) =
∫
q(Y |X)p(X) dX is a distribution that approximates

p(Y ). The upper bound can be formulated as [4]

I(X;Y ) = E[log2
p(Y |X)

q(Y )
] (4)

≈
1

n
log2 p(y

n
1 |x

n
1 )−

1

n
log2 q(y

n
1 ). (5)

In contrast to the lower bound, the computation of the upper bound requires exact knowl-

edge of the channel model p(Y |X).

III Proposed Lower Bound

The mutual information lower bound is computed with the approximate distributions

of the terms shown in (2). We approximate these distributions using the framework of

circular random variables and compute their bounds.
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A Compute q(Y |X)

We express the distribution p(yn1 |x
n
1 ) as

p(yn1 |x
n
1 ) =

∫

p(yn1 |x
n
1 , e

jθn) dejθn , (6)

where

p(yn1 |x
n
1 , e

jθn) =

∫

p(yn−1
1 |xn−1

1 , ejθn−1)

× p(yn|xn, e
jθn)p(ejθn |ejθn−1) dejθn−1 . (7)

Hence, we approximate with circular random variables as

q(yn1 |x
n
1 , e

jθn) ≈

∫

CN (ejθn−1 ; Ṁn−1, V̇n−1)

× CN (yn;xne
jθn , σ2)CN (ejθn−1 ; ejθn , σ2θ ) de

jθn−1 (8)

= anCN (ejθn ; Ṁn, V̇n), (9)

where the properties of Gaussian distributions have been exploited to obtain (9), where

an = CN (yn;xnṀn−1, σ
2 + |xn|

2V̇n−1 + |xn|
2σ2θ). (10)

The mean is computed as

Ṁn =
( ynxn

)( σ2

|xn|2 )
−1 + (Ṁn−1)(V̇n−1 + σ2θ)

−1

( σ2

|xn|2 )
−1 + (V̇n−1 + σ2θ)

−1
, (11)

and the variance as

V̇n =
1

( σ2

|xn|2 )
−1 + (V̇n−1 + σ2θ)

−1
. (12)

Therefore, we compute the bound on q(yn1 |x
n
1 ) by averaging over log2

1
an
.

B Compute q(Y )

This is computed by approximating q(yn1 ) as

q(yn1 ) ≈

∫

q(yn1 |e
jθn) dejθn , (13)
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where q(yn1 |e
jθn) is approximated from (8) as

q(yn1 |e
jθn) ≈

∑

xn∈A
p(xn)

∫

CN (ejθn−1 ; Ṁn−1, V̇n−1)

× CN (ejθn−1 ; ejθn , σ2θ )CN (yn;xne
jθn , σ2) dejθn−1 (14)

(a)
=
∑

xn∈A
αn(xn)CN (ejθn ; Ṁn(xn), V̇n(xn)), (15)

where (a) follows from the properties of Gaussian distributions [14], and

αn(xn) = p(xn)CN (xnṀn−1; yn, σ
2 + |xn|

2V̇n−1 + |xn|
2σ2θ). (16)

Further, Ṁn(xn) describes the mean which is calculated as

Ṁn(xn) =
( ynxn

)( σ2

|xn|2 )
−1 + (Ṁn−1)(V̇n−1 + σ2θ)

−1

( σ2

|xn|2 )
−1 + (V̇n−1 + σ2θ)

−1
, (17)

and V̇n(xn) describes the variance computed as

V̇n(xn) =
1

( σ2

|xn|2 )
−1 + (V̇n−1 + σ2θ)

−1
. (18)

Therefore, we compute the bound on q(yn1 ) by averaging over log2
1

∑

xn∈A αn(xn)
.

IV Proposed Upper Bound

The upper bound of the mutual information can be expressed as [6]

I(X;Y ) = H(θ|Y,X) +H(Y )−H(Y |X, θ)−H(θ). (19)

In this section, we compute H(θ|Y,X) and H(Y ) with the framework of circular random

variables.

A Compute H(θ|Y,X)

This upper bound is computed using the chain property of the information measure and

the asymptotic equipartition property as [6]

H(θ|Y,X) ≈
1

M

M∑

n=1

log2
1

q(θn|xn1 , y
n
1 , θn+1)

, (20)

where q(·) is a distribution that approximates p(·), which is computed as

p(ejθn |yn1 , x
n
1 , e

jθn+1) = λnp(e
jθn |yn1 , x

n
1 )p(e

jθn+1 |ejθn), (21)
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where λn is a constant factor such that the result is a probability density function. The

details of computing p(ejθn |yn1 , x
n
1 ) is deferred to the end of this subsection. It suffices to

state here that we approximate it as q(ejθn |yn1 , x
n
1 ) ≈ CN (ejθn ;Mn, Vn), and evaluate (21)

as

p(ejθn |yn1 , x
n
1 , e

jθn+1) ≈ CN (ejθn ; M̂n, V̂n), (22)

where the mean is

M̂n =
(Mn)(Vn)

−1 + (ejθn+1)(σ2θ)
−1

(Vn)−1 + (σ2θ)
−1

, (23)

and the variance is

V̂n =
1

(Vn)−1 + (σ2θ)
−1
. (24)

Hence, we compute the upper bound of H(θ|X,Y ) using (22) in (20).

The details of computing q(ejθn |yn1 , x
n
1 ) is presented next. The distribution p(ejθn |xn1 , y

n
1 )

is formulated as

p(ejθn |yn1 , x
n
1 ) ∝ p(ejθn |yn−1

1 , xn−1
1 )p(yn|xn, e

jθn)p(xn), (25)

where p(ejθn |yn−1
1 , xn−1

1 ) is formulated as

p(ejθn |yn−1
1 , xn−1

1 ) =

∫

p(ejθn−1 |xn−1
1 , yn−1

1 )

× p(ejθn |ejθn−1) dejθn−1 . (26)

Hence

q(ejθn |yn1 , x
n
1 ) ∝ CN (ejθn ; M̄n, V̄n)CN (yn;xne

jθn , σ2)p(xn), (27)

where q(ejθn |yn−1
1 , xn−1

1 ) ≈ CN (ejθn ; M̄n, V̄n). Further, we use the properties of Gaussian

functions [14] to write q(ejθn |yn1 , x
n
1 ) ≈ CN (ejθn ;Mn, Vn), where the mean is

Mn =
(M̄n)(V̄n)

−1 + ( ynxn
)( σ2

|xn|2 )
−1

(V̄n)−1 + ( σ2

|xn|2 )
−1

, (28)

and the variance is

Vn =
1

(V̄n)−1 + ( σ2

|xn|2 )
−1
. (29)

Further, we can approximate (26) as q(ejθn |yn−1
1 , xn−1

1 ) ≈ CN (ejθn ; M̄n, V̄n), where M̄n =

Mn−1 and V̄n = Vn−1 + σ2θ .
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B Compute q(Y )

Here, we compute q(Y ) based on the distribution [10] which we write with the framework

of circular variables as

p(ejθn |yn1 ) =
p(ejθn |yn−1

1 )p(yn|e
jθn)

∫
p(ejθn |yn−1

1 )p(yn|ejθn) dejθn
, (30)

where the denominator is evaluated as q(yn|y
n−1
1 ). Further,

p(ejθn |yn−1
1 ) =

∫

p(ejθn−1 |yn−1
1 )p(ejθn |ejθn−1) dejθn−1 , (31)

and p(yn|e
jθn) =

∑

xn∈A p(xn)p(yn|xn, e
jθn). We approximate p(ejθn−1 |yn−1

1 ) in (31) as

CN (ejθn−1 ; Ṁn−1, V̇n−1), and then compute p(ejθn |yn−1
1 ) as

q(ejθn |yn−1
1 ) ≈

∫

CN (ejθn−1 ; Ṁn−1, V̇n−1)

× CN (ejθn−1 ; ejθn , σ2θ) de
jθn−1 (32)

≈ CN (ejθn ;Mn, Vn), (33)

where Mn = Ṁn−1 and Vn = V̇n−1 + σ2θ . The distribution in (30) is computed as

q(ejθn |yn1 ) ∝ CN (ejθn ;Mn, Vn)
∑

xn∈A
p(xn)p(yn|xn, e

jθn) (34)

(a)
∝
∑

xn∈A
αn(xn)CN (ejθn ; Ṁn(xn), V̇n(xn)), (35)

where (a) follows from the properties of Gaussian distributions [14], and

αn(xn) = p(xn)CN (yn;xnMn, σ
2 + |xn|

2Vn). (36)

Further, Ṁn(xn) describes the mean which is calculated as

Ṁn(xn) =
( ynxn

)( σ2

|xn|2 )
−1 + (Mn)(Vn)

−1

( σ2

|xn|2 )
−1 + (Vn)−1

, (37)

and V̇n(xn) describes the variance computed as

V̇n(xn) =
1

( σ2

|xn|2 )
−1 + (Vn)−1

. (38)

The distribution shown in (35) is composed of multiple Gaussian functions and we use the

clustering method [15] and approximate it as q(ejθn |yn1 ) ≈ CN (ejθn ; Ṁn, V̇n) with mean

Ṁn = 1
βn

∑

xn∈A αn(xn)Ṁn(xn) and variance V̇n = 1
βn

∑

xn∈A αn(xn)(V̇n(xn)+(Ṁn(xn)−

Ṁn)
2). Further, βn =

∑

xn∈A αn(xn) is the normalising factor. Therefore, we compute
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upper bound as H(yM1 ) ≈ 1
M

∑M
n=1 log2

1
∑

xn∈A αn(xn)
.

C Compute H(Y |X, θ) and H(θ)

The H(Y |X, θ) is due to the Gaussian noise and hence is computed as log2(πeσ
2). Simi-

larly, we compute H(θ) as log2(πeσ
2
θ ).

V Results

The performance of the proposed methods is obtained with simulations. The informa-

tion bounds are computed at each signal-to-noise ratio (SNR) using sequences of size 105.

The transmitted sequences are selected from uniformly distributed Quadrature Amplitude

Modulated (QAM) sets. The Wiener phase noise varies as σθ = 0.125. For comparison,

we use the discrete phase method [5], the Tikhonov-Fourier method [10], and the Kalman

method [9]. Furthermore, we include the mutual information of the additive white Gaus-

sian noise channel for constrained and Gaussian inputs. The constrained input refers to

the mutual information obtained with discrete input sequences of the modulation format,

whereas the Gaussian input refers to sequences which have Gaussian distribution.

Figure 1 shows the performance of the proposed methods for 4-QAM. The proposed

parametric lower and upper bounds are denoted as ‘Proposed LB’ and ‘Proposed UB’

accordingly. The proposed lower and upper bounds show similar results as the discrete

phase method, which serves as an exact information bound of the channel. The proposed

lower bound also shows similar result as the method based on the Kalman filter. Fur-

thermore, the proposed upper bound is shown to be accurate compared to the discrete

phase method and the Tikhonov-Fourier method. Figure 2 shows the performance of the

proposed methods for 16-QAM. The lower and upper bounds of the proposed methods are

shown to be accurate at low-to-moderate SNR compared to the discrete phase method.

The accuracy of the upper bound at high SNRs is slightly lower compared to the accuracy

at low-to-moderate values of SNR. The upper bound has been approximated based on

multiple Gaussian functions which are clustered into one distribution. This clustering of

distributions causes the upper bound to be slightly higher than the exact bounds. This

would improve with clustering the multiple Gaussian functions in two or more distribu-

tions.

In summary, the proposed parameter based methods have shown accurate informa-

tion bounds at low-to-moderate SNR, whereas very close information bounds have been

obtained at high SNR. However, for codes which are commonly used in practice, the pro-

posed algorithms have shown accurate bounds. Since the information bounds only require

the mean and variance of the Gaussian function, the proposed methods have significantly

lower complexity than the discrete based method. The computation of the information

rates for higher modulation formats, such as the 32-QAM and 64-QAM, follows a similar

approach as the one presented in this work. The discrete method would require more
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Figure 1: Information bounds of the proposed methods 4-QAM.
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Figure 2: Information bounds of the proposed methods 16-QAM.
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sampled values than the 16-QAM. The proposed lower bound would compute the infor-

mation rates at much lower complexity than the discrete method. The upper bound would

require two or more clusters of Gaussian functions to achieve good accuracy. In general,

the complexity of this process is much lower than the discrete method. This makes the

proposed methods an attractive choice to characterise the performance of communication

systems based on Wiener phase noise channels.

VI Conclusion

In this paper, we have proposed parameter based methods to compute the information

bounds of the Wiener phase noise channel. The methods represent the phase noise as

a circular random variable and compute the information bounds based on parameters

of the Gaussian distribution. Accurate results have been obtained at low-to-moderate

signal-to-noise ratios, whereas very close information bounds have been shown at high

signal-to-noise ratios.
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Conclusion



Conclusion and Future work

1 Conclusion

In this thesis, various graphical algorithms have been proposed to detect signals in the

presence of device uncertainties such as carrier frequency offset and Wiener phase noise.

In Paper 1, the effect of message scheduling has been studied in the detection of OFDM

signals affected by carrier frequency offset and Wiener phase noise. The proposed schedul-

ing algorithm has been shown to converge faster than the existing scheduling methods.

In Paper 2, the circular characteristics of phase noise has been exploited to propose

an algorithm that computes the belief propagation algorithm using approximate closed-

form expressions based on parametric message representation. The proposed algorithm

has been used to detect LDPC signals in the presence of Wiener phase noise. The results

show that the proposed algorithm achieves similar performance as the existing algorithm

with the lowest complexity. Further, the proposed algorithm has improved the complexity

of the existing algorithm.

In Paper 3, an algorithm based on the circular random variables has been proposed

to detect OFDM signals in the presence of frequency offset and Wiener phase noise. The

proposed algorithm has shown bit-error rate performance close to the ideal algorithm.

Further, the complexity the proposed algorithm has been shown to be significantly lower

than the existing algorithm.

In Paper 4, algorithms based on minimising the free-energy function have been proposed

to detect LDPC codes in the presence of Wiener phase noise. The free energy function

of the proposed algorithms have been formulated using the combined BP and URWBP

algorithm, and the combined MF and URWBP algorithm. The finding highlights the

importance of combining two or more graphical algorithms to outperform the performance

of existing algorithms.

In Paper 5, efficient low complexity methods have been proposed to compute the lower

and upper mutual information bounds of the Wiener phase noise channel. The proposed

methods have exploited the phase noise distributions to be expressed with the circular

random variables. The lower and upper mutual information bounds have been obtained

using parameters of the Gaussian density functions. The results have shown similar per-

formance as the existing high complexity methods at a significantly low implementation

complexity.
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2 Future work

The proposed algorithm using circular random variables has very low complexity, and this

advantage over existing algorithms has a direct impact on the Digital Video Broadcasting

(DVB) standards for satellite communications [1]–[3]. The proposed algorithm can be

extended to use the system setup described in these standards such as higher modulation

formats and longer length of the LDPC codes.

The algorithms based on the free energy function and the circular random variables

can also be extended to other problems in communication systems such as the cooperative

wireless localisation problem [4]. The algorithm can model the wireless nodes depending

on the degree of connectivity to neighbouring nodes. The combined BP and URWBP

algorithm can be used to solve this problem where the BP would be used for low-degree

nodes and the URWBP can be used for high-degree nodes. Another aspect could model the

position information using the circular random variables instead of existing approaches.

The algorithms that minimise the energy functions could also be used for this purpose.

The aim will be to establish whether these approaches improve the complexity of existing

algorithms [4]–[7].

The applications envisioned for next generation wireless communication systems require

very short latency, better spectral efficiency, and extremely high data rates compared

with the existing systems [8]. The connection of many interconnected devices, and their

potential applications, creates a need for new functionality in communication systems [9].

These requirements could not be met using the existing technologies in their present

form. Therefore, these factors are motivating many researchers to experiment with new

modulation methods that increase the data rates significantly, lower the latency, support

many interconnected devices, and improve spectral efficiency [10], [11].

There have been various approaches to achieve these requirements. Some of these

approaches improve upon the existing communication systems based on the OFDM system,

which has disadvantages such as longer symbol duration, strong out-of-band frequency

spectrum and low spectral efficiency due to the cyclic prefix. These disadvantages have

been counteracted using techniques such as the Filter Bank Multi-Carrier (FBMC) [12],

Generalised Frequency Division Multiplexing (GFDM) [13], [14], Universal Filter Multi-

Carrier (UFMC) [15], etc. Each of these techniques has been shown to improve the

weaknesses of existing OFDM systems and are considered to be candidates for future

generation wireless communication systems.

To satisfy the requirements of significantly high data rates, there have been proposals

to use the Extremely High Frequency (EHF) band, also referred to as the mm-Wave

band [16]. The use of this frequency band for communication systems has gained research

attention and modulation techniques are being developed. Further, the use of large number

of antennas at the base station has been proposed to increase the available data rates [17].

There is an increasing research interest on non-orthogonal multiple access techniques where

the radio resource is shared among many users [18]–[20].
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These advances bring new type of system models which are still affected by carrier

frequency offset and phase noise. In fact, the high frequency band makes the effect of

frequency offset and phase noise more significant compared to the existing systems, and

there are very few studies that have proposed algorithms for these systems. Hence, the

graphical algorithms developed in this thesis could be modified to the system model of

future communications systems.
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