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ABSTRACT  

Plates and beams are typical examples of structures that must be analyzed and understood.  

Buckling and vibration represent for such structures a potential source of fatigue and damage. 

Damage and fatigue are often caused by axial forces. The current research uses differential 

quadrature method to study the stability of viscoelastic plate subjected to follower forces in one 

hand, and the Rayleigh-Ritz method to analyze the buckling of Carbone nanotubes subjected to 

point and axial load in other hand. 

For plate, the 3D relation of viscoelastic is used to derive the equation of vibration of 

viscoelastic rectangular plate subjected to follower force. This equation is solved numerically by 

differential quadrature method, then the dynamic stability analysis is done by plotting the 

eigenvalues versus the follower force. 

 We employ the Euler Bernoulli beam theory and the nonlocal theory to derive the equation of 

equilibrium of Carbone nanotubes subjected to point and axial loads. Rayleigh-Ritz method is 

used to calculate buckling loads, and the effects of equation's parameters on that buckling loads 

are analysed properly. 

 Frequencies of vibration of  viscoelastic  plates and  critical load obtained by using differential 

quadrature method are compared to other results with good satisfaction. The same satisfaction is 

observed when the buckling load values of Carbone nanotubes obtained using the Rayleigh-Ritz 

methods  are compared to those existing in the literature.   

     The cantilever viscoelastic plate undergoes flutter instability only and the delay time appears 

to influence that instability more than other parameters.  The SFSF plate undergoes divergence 

instability only. The both types of instability are observed CSCS plate subjected to uniformly 

follower load but the flutter instability disappears in presence of triangular follower load. The 

values of the mentioned critical loads increase with triangular follower load for all boundary 

conditions. The aspect ratio has a large influence on the divergence and flutter critical load 

values and little influence on the instability quality. The laminar friction coefficient of the 

flowing fluid increases the critical fluid velocity but its effect on the stability of viscoelastic 

plate behavior is minor.  

 The nonlocal parameter appears to decrease buckling load considerably. Buckling is more 

sensitive to the magnitude of the tip load for the clamped-free boundary conditions. The 

application of the present theory to a non-uniform nanocone shows that the buckling loads 

increases with radius ratio and decreases with small scale constants. 
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                                              RESUM E (In Fr ench)  

Les plaques et les poutres sont des exemples typiques de structures qui doivent être analysées et 

comprises. Le flambement et les vibrations représentent pour de telles structures une source potentielle 

de fatigue et de dommages. Ces dommage et fatigue sont souvent causés par des forces axiales. La 

présente étude utilise la méthode de la quadrature différentielle pour étudier la stabilité de la plaque 

viscoélastique soumise à des forces axiales nonconservatives d’une part, et la méthode de Rayleigh-Ritz 

pour analyser le flambement des nanotubes de Carbone soumis à la charge ponctuelle et axiale d'autre 

part. 

Pour la plaque, la relation 3D de la  viscoélasticité est utilisée pour dériver l'équation de vibration de la 

plaque rectangulaire viscoélastique soumise à la force nonconservative. Cette équation est résolue 

numériquement par la méthode de quadrature différentielle, ensuite l'analyse de stabilité dynamique est 

étudiée en traçant l’évolution des valeurs propres de la fréquence en fonction des charges. 

       Nous utilisons la théorie des poutres d'Euler Bernoulli et la théorie non locale pour dériver l'équation 

d'équilibre des nanotubes de Carbone soumis à des charges ponctuelles et axiales. La méthode de 

Rayleigh-Ritz est utilisée pour calculer les charges de flambage et les effets des paramètres de l'équation 

sur les charges de flambage sont analysés correctement.  

   Les fréquences de vibration des plaques viscoélastiques et de la charge critique obtenues en utilisant la 

méthode de  quadrature différentielle sont comparées à d'autres résultats avec une bonne satisfaction. La 

même satisfaction est observée lorsque les valeurs de charge de flambage des nanotubes de carbone 

obtenus en utilisant les méthodes de Rayleigh-Ritz sont comparées à celles existant dans la littérature. 

     La plaque viscoélastique en porte-à-faux ne subit que l'instabilité dynamique alors que la viscosité 

semble influencer cette instabilité plus que d'autres paramètres. La plaque SFSF subit une instabilité 

divergence seulement. Les deux types d'instabilité sont observés sur la plaque CSCS  soumise à des 

forces uniformément reparties, mais l'instabilité dynamique disparaît en présence de charge 

nonconservative triangulaire. Les valeurs des charges critiques augmentent avec la charge triangulaire 

pour toutes les conditions aux limites considérées . Le rapport des dimensions de la plaque a une grande 

influence sur les charges de divergence et de charges critiques du flottement et peu d'influence sur la 

qualité de l'instabilité. Le coefficient de frottement laminaire du fluide s'écoulant augmente la vitesse 

critique du fluide mais son effet sur la stabilité du comportement de la plaque viscoélastique est mineur. 

   Le paramètre non local semble diminuer considérablement la charge de flambage. Ce flambage est plus 

sensible à l'amplitude de la charge ponctuelle pour les conditions aux limites encastre-libre. L'application 

de la présente théorie aux  nanocône non uniforme montre que les charges de flambement augmentent 

avec le rapport de rayons et diminuent avec des constantes non locales. 
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CHAPTER  1: INTRODUCTION  
1.1-Motivations and aim s 
 
In the present work the subjects studied are the dynamic stability of viscoelastic rectangular 

plates subjected to distributed follower forces, and the effect of point and axial forces on the 

buckling of uniform and nonuniform nanotubes. 

      Plate structures have been found to be very useful in many domains of modern 

technology like aeronautic, automotive, and offshore structures. During the evolution of 

science, some new materials have been discovered which can reinforce the above mentioned 

plates structures to make them more strong. These new materials are carbon nanotubes, 

considered   nowadays as the strongest material and therefore very attractive to scientists 

because of their wide usefulness even for African countries. For example nano filters 

produced with CNTs are useful for water purification which reduces many illnesses, 

increasing therefore the life expectancy of poor population. CNTs are also useful for solar 

cell production for electricity generation, very useful for villages with lack of electricity. 

      Both plate and CNT in their respective environment of existence may be subjected to 

many forces which are able to change their behaviours characteristics or even create damage. 

Among them the follower forces can be named.  Defined as forces which change with the 

deformation of structure on which they act, viz., which ''follow'' the behaviour of that 

structure, follower forces have been classified as nonconservative because their work are path 

dependant. The structures on which they act are nonconservative systems. One can found this 

kind of forces in many domain in real life. These domains include aeronautic (Engine thrust 

action on the wings of aircraft during flight), automobile industry (Force acting on rotating 

disk for automobile’s disk brake), biological system (Forces acting on lumbar spine for 

human being when standing), civil engineering (cantilever pipe conveying fluid)…etc.   Past 

researchers have demonstrated that such forces can generate vibration of system on which 

they act as well as buckling which are risky most of the time in structural engineering. 

     It is known also that the type of force, the characteristics of the structure where the forces 

act, the structure’s geometry, the support conditions highly influence their sensitivity to 

vibration and buckling, reason why  it is always important to identify the characteristics  

which influence the most the behaviour of these structures in order to optimise final products 

during the manufacturing processes.                                                                                                                                                                  
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      For nonconservative viscoelastic rectangular plate, many parameters have been identified 

to influence their instability, and among them one important has found to be boundary 

conditions. The boundary conditions have been discovered to play a crucial role as they may 

change qualitatively and /or quantitatively the type of instability which occurs. Many works 

have been presented in the past in this regard and only the combined simply supported and 

clamped boundary conditions were considered. Free boundary has not yet been studied and it 

is understandable, because here the mathematical formulation depends on two space variables 

and consequently not easy to implement numerically.  In this thesis free boundary conditions 

will be taken into account and their effect on instability will be studied in details.  The 

triangular follower force as well as fluid deducted follower force is also carry out with many 

considerations.  

      On the other hand, it has been proved that CNTs can buckle on the effect of follower 

forces or point forces.  Contrarily to other existing structures where buckling is just 

destructive, it appears to be also beneficial for CNTs as it increases their thermal 

conductivity. Many studies have been done concerning the CNTs but, only vibration has 

carry attention of researchers, contrarily to buckling which  has been very pettily drawn  their 

attention. Furthermore, the buckling of non-uniform or elastically restrained CNTs subjected 

to follower forces have not yet been studied. This research will try to break the previously 

lacks, precisely  by focussing  on the effects of combined tip forces and follower forces on 

the buckling of non-uniform and elastically restrained CNTs, as well as the influence of 

boundary conditions.     

1.2-Objectives 

The main objectives of this thesis are: 

First study the dynamic stability of viscoelastic rectangular plates subjected to distributed 

follower force and evaluate the accuracy of differential quadrature method for such problem. 

The second objective is to study the combined effect of point and axial loads on the buckling 

of CNTs, as well as accuracy of Rayleigh-Ritz method. Many steps must be followed as 

enumerated below: 

1-Implementing free boundary condition in the differential quadrature method in order to 

solve two dimensional plate instability problem. 

2-Investigate the effect of triangular follower forces on the rectangular plate and compare its 

effects with uniform follower forces. 
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3- Study in detail the role played by the flowing fluid induced follower forces as well as its 

velocity in the stability of viscoelastic rectangular plate. 

4-Analyze the effects of combined tip forces and follower forces on the buckling of CNTs 

considered as one dimensional nanobeams. 

5- Compare the accuracy of Rayleigh-Ritz method on the study of buckling of non-uniform 

CNTs with  existing results as well as the effects of elastic restrains. 

1.3-Thesis structure  

For the total comprehension about what is developed in this thesis the following structure is 

adopted:  

    Chapter1 Introduces the thesis by enlightening the motivation, objectives, aims and the 

plan of the thesis. Chapter 2  presents the literature survey. In Chapter 3, we firstly establish 

the mathematical equation governing the viscoelastic rectangular plate subjected to tangential 

follower force. Secondly, the differential quadrature's domain discretisation and 

implementation of boundary condition are explained in details.  Chapter 4 is a research 

paper1 which studies the instability analysis of nonconservative rectangular plate with free 

edges using differential quadrature method. It is followed by Chapter 5 which is research 

paper 2. In this chapter, we compare the effect of uniform and triangular follower loads on 

the vibration   behaviour of viscoelastic rectangular plate. Chapter 6 is Paper 3 presenting 

flow generated follower loads on the vibration of viscoelastic rectangular plate. 

      Chapter 7 consists firstly of the global presentation of the carbon nanotubes, followed by 

the establishment of the mathematic equations governing the buckling of Carbon nanotubes, 

considered as nanobeams, by using the nonlocal theory. Thirdly, the weak formulation 

principle is explained for the nanobeam with general boundary conditions and subjected to 

follower forces. This chapter ends with the explanation of how to solve the buckling problem 

of CNTs via Rayleigh-Ritz method.    Chapter 8 is Paper 4, devoted to the study of buckling 

of carbon nanotubes subjected to point load, uniform distributed and triangular follower 

loads. 

      Chapter 9 or Paper 5 studies the buckling of non-uniform Carbone nanotubes subjected to 

point, uniformly distributed and triangular distributed loads. This thesis ends up with Chapter 

10, where the general conclusion of the whole work as well as future prospects are presented. 

                          

 



 
 

4 

CHAPTER  2:  L ITERA TURE REVIEW  

 2.1-Follower force s 

Bolotin [1] was among one of the first authors who studied the follower forces. He 

considered them as nonconservative forces because that kind of forces have no potential. He 

extended the Euler theory of elasticity, on the study of such compressive forces applied on 

the bar, which rotate together with the end section of that bar, and remain tangential to its 

deformed axis. He left the question of existence of such ''Follower'' forces open as he 

questioned himself about their existences in real life although their completely known   

mathematical formulations. He stated that the energy supply of systems subjected to above 

mentioned forces could come from two sources: The change with time of angle between the 

deformed and initial axis of the bar, or its linear displacement. Nevertheless, Bolotin 

attributed the behaviour of some existing forces in engineering systems, the term ''follower 

forces'': These are for example the system formed the reaction of jet attached at the end of the 

bar, in case the system is undamped and when inertia effects are absent.  He carefully 

explained also that, all his assumptions about follower forces and other previous studies were 

done without any experiment, and proposed that, further, every researcher should try as soon 

as he can, to make the theory of follower forces accurately representing the existing forces in 

real practices.  He was followed by Hermann [2] who studied some mechanical models of 

one dimensional structures subjected to follower forces. Those systems include two degree of 

freedom and some models were built in order to compare their behaviours with existing 

mathematical models. This can be found also in the book written later by Leipholz [3] who 

thought that flutter instability [4] is not just present for time-dependant forces, but can be 

present also for time independent forces like follower forces. Following that approach, Smith 

and Herrmann [5], Sundararajan [6], Celep [7], Sinha and Pawlowski [8], Kim et al. [9], 

Djondjorov and Vassilev [10] investigated the stability of beams and columns subjected to 

follower forces including effects of elastic foundation  on the stability of systems.  In these 

studies, boundary conditions of beams, plates and columns play a great role in the stability. 

Among them the cantilever beams (clamped-free) was widely studied, because of its more 

practical aspects. Precisely, De Rosa and Franciosi [11] carried out research on intermediate 

support on Beck’s, Leipohlz’s, Hauger’s and Pfuger’s rods. Obtained eigenvalues were 

solved and the results obtained for critical divergence or flutter loads converge for every 

considered case with the existing one. Also flutter or divergence instability may depend on 

where the intermediate support is situated along the considered rod.   In 2007   Shvartsman 
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[12] studied the stability of spring-hinged large deflexion beams subjected to tip follower 

force, normal to the beams. He used the non-iterative method to solve a problem and 

concluded of the existence of only flutter instability on such system. He concluded in [13] 

that flutter instability appears to be the only instability type which is found on cantilevered 

beam subjected to intermediate follower forces and it is independent on the angle between the 

follower force’s angle of inclination; idea which was followed later by Mutyalarao et al. [14]. 

Stability of cracked beams [15] or nonlinear beams [16, 17] subjected to follower forces was 

also studied. 

      Although it’s worth mentioning all scientists who spent many years studying systems 

subjected to follower forces, let say that, this subject of research has not been unanimously 

accepted , creating therefore a controversy.  

      In fact  Koiter [18] in 1996 published a titled  ''unrealistic follower forces'', demonstrating 

that such forces were not existent practically and  proposed  ''elimination of the abstraction of 

follower forces as external loads from the physical and engineering literature on elastic 

stability'' while Sugiyama et al [19] replied by the paper titled ''realistic follower forces'' 

emphasizing on the existence of follower forces, and citing some physical systems where 

such forces can be observed,  after have recognised the lack of experimental on the subject. 

For example he said that the follower forces can be observed in a hose in a pool, he also 

qualified a squeezing force acting on a rotating disk as nonconservative follower forces. 

Some other systems were cited such as rocket and pipe conveying fluids or aerospace 

systems. Following the same idea, Langthjem [20] firstly emphasized that, the feasible 

system to realize follower forces is cantilever pipe conveying fluids, but recognised that 

although many theoretical and inapplicable research were carried out about the follower 

loads, many problems of structural stability found solutions through the above study. Beck’s, 

Reut’s, Leipholz's and Hauger’s columns were studied in detail, with experimental analysis 

for Beck's and Reut's columns. This analysis showed that, experimental results were close to 

the analytical ones.  He recognised Leipholz's column of being realized in an automobile 

brake system, where noise due to dynamic or parametric instability (brake squeal) is a well-

known environmental problem.  

      The above mentioned divergence between Koiter and Sugiyama permitted Elishakoff [21] 

to first remind the majority of researchers who published about follower forces, and tried his 

best to clarify each one’s results. Nevertheless, he recognised that some experiments were 

realized by Willems [22], who obtained his experimental value for Beck’s column close to 

theoretical one, only for 94% difference and said that experiment could have described a 
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theory if the experiment was carried accurately. He emphasized that  follower force may be 

considered as useful model to describe some other forces,  such as pipe conveying fluid, 

widely studied by Paidoussis et al. [23,24] . In conclusion, the author advised researchers to 

be careful in the using of some words, as ''Beck’s column'', which, for him must represent 

Euler cantilevered columns, and not follower force, because experiments have not yet give 

their proof that Beck’s columns are follower forces because, to be taken like that, there must 

be something tricky (''angel'') in the consideration which role is to show how the direction of 

force must ''follow'' structure’s deformation.  Beck’s columns for the present author has never 

been used to design structures, which doesn’t mean they are inexistent but because it is not 

representing a well-known concrete model. After all these scientific battles, the study of 

follower forces continued, because  many PhD thesis have been produced concerning the 

subject [25-27] and their effects have  even extended to two dimensional structures like 

plates. 

      About plates, Datta and Biswas [28] recognized the existence of  follower forces on  

vibrating aerospace structures like flexible wing panels subjected to jet thrust, considered 

here as plate-like structures. They added that, follower forces were nonconservative, and that 

their effect on the dynamic stability of aerostructures may depend on load direction control 

parameter, damping, or ply orientation for composites.  Before this, many theoretical studies 

had already been performed on conservative rectangular plates. They include Zuo and 

Schreyer [29] who studied the stability of nonconservative simply supported rectangular plate 

and concluded that it experienced divergence stability which depends on the aspect ratio and 

on Poisson’s coefficient. Kim and Park [30] studied the intermediate follower forces on 

rectangular plate and come out with the conclusion that, the region of application of the 

follower forces and aspect ratio had considerable influence on their stability. Adali [31] 

analytically studied the behaviour of 2D rectangular thin plate, subjected to non-conservative 

and conservative forces. He found out the existence of static and dynamic instabilities for 

both considered force’s type. In his studies it appeared that, aspect ratio has a great effect on 

stability boundaries, physically and numerically. The effect of elastic foundation was also 

studied in his research, and what came out was that, the frequency parameter increases with 

elastic modulus. Poisson’s coefficient found himself to increase, decrease or maintain the 

flutter frequency dependently on the values of aspect ratio or axial load magnitude.  Gopal 

and Struthers [32] examined the effect of aspect ratio, follower force and the boundary 

conditions on buckling mode and buckling load for orthotropic plates subject to follower 
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forces and concluded that the orthotropic coefficient affects only the magnitude of the 

buckling load and the size of the stability regions. 

      Effect of viscoelasticity on the instability of plates  subjected to follower forces was 

studied by Wang et al. [33] in details. He considered two boundary conditions: Simply 

supported and two opposite edges simply supported and two other clamped.  For the simply 

supported plate, only divergence instability was observed, and its value highly depends on 

aspect ratio. For the plate with two opposite edges simply supported and other clamped, both 

divergence and flutter instabilities appear for squared plate and for small delay-time, 

contrarily to the plate with high aspect ratio who experiences only divergence instability. 

When the viscoelastic parameter increases, it significantly affects the plate with two opposite 

edges simply supported and others clamped, than the simply supported viscoelastic plate. 

Teifouet [34] extended the result by considering the nonlinear model of Wang et al. [33] and 

examined the effect of nonlinear parameter on the stability.   

 

 2.2-The Diff erential quadrature method (DQM)  

     Like finite element method or finite difference method the differential quadrature method 

is one of the most used numerical methods nowadays for solving problems in structural 

engineering, especially those dealing with plates and beams. It is important to recall that 

DQM was created in the 1970s by Bellman and Casti [35]. Knowing that the continued 

integration can be approximated by  discrete sum, Bellman with his research team extended 

the theory for the expression of first derivative, which could therefore be expressed as linear 

sum including a so-called matrix coefficients, and then called it “differential quadrature’’ 

method. Later it was shown how this method could be suitable for solving linear and 

nonlinear partial differential equations [35-37] and, DQM rapidly became a preferred 

numerical method for solving problems involving higher order differential equations even for 

multidimensional domains [38,39]. This is why Faruk and Sliepcevich [40] published the 

paper titled ''Differential Quadrature for Multi-dimensional Problems'', where they applied 

the method to two and three dimensional problems in convection-diffusion and obtained good 

results. These results were very satisfactory after a comparison  with those existing in the 

literature. Weighting coefficients obtained in DQM were centro-symmetric or skew 

symmetric as in [41,42]. Since they are the key of the method,  their calculations need 

therefore to be done carefully.  In fact, Du et al. [43] successfully overcame the drawback of 

existing calculations of weighting coefficients by introducing the Lagrange-based 

interpolating functions. The above mentioned functions allow henceforth to use the 



 
 

8 

differential quadrature method for solving any structural problem, with any number of grid 

points which can be distributed anyhow. He consequently solved problems previously 

encountered by Bellman et al. [44], who used the Legendre interpolating functions. Boundary 

conditions also could then be implemented well for any chosen problem, but accuracy for 

some problems particularly those including clamped and free boundaries will appear later to 

have some specifications about their treatments. This is why Bert and Malik [45] and Shu and 

Du [46] overcame the situation about the method of Boundary conditions implementation for 

structural 1D and 2D problems. Application to some system by Bert and Malik [47] like heat 

diffusion in a sphere, heat conduction, cooling/heating by combined convection and radiation 

were carried out and the obtained results were close to those existing in literature. 

      After overcoming the drawbacks existing in this methods in terms of weighting 

coefficients, number of grid points, implementation of boundary conditions, the utilization of 

DQM became easier for solving problems, particularly those involving 1D and 2D structures. 

Many versions of DQM were derived and they include Krowiak [48] who used spline –based 

interpolation functions (SDQM), and the obtained results were compared with those obtained, 

using Classical DQM.  It appeared that SDQM may be more convergent when high degree 

polynomial functions are used for spline approximation. Civalek et al. [49] developed 

Harmonic differential quadrature (HDQ) where they suggested the trigonometric functions as 

approximation functions instead of polynomials and obtained good results. Global radius 

based DQ (RBS-DQ) was later proposed by Shu et al. [50] followed  by Eftekhari and Jafari 

[51] with mixed Finite element Differential Quadrature Method (FEDQ), finite difference 

differential quadrature method (FDDQ) was proposed by Zhao et al. [52] or modified 

generalized differential quadrature (MGDQ) by Hsu [53]. 

      Unfortunately none of the above mentioned DQM has been widely used as compared to 

the one employing Lagrange polynomials as approximating functions, commonly called 

DQM, because it appeared to be more accurate and simplest for problem solving [54-59] 

even those including nonuniform geometry [60], laminated plate’s problems [61,62] or 

problems including nonlinearity [34]. 

 

2.3-Carbon Nanotubes  

Since the discovery of CNTs by Iijima [63], this subject has become very  attractive for 

researchers, regarding the number of  scientific publications produced about the concern.  

This situation can be explained by the fact that experiments have revealed their exceptional 
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high Young’s modulus in the range of Terapascal, their  low density and their  high heat and 

electricity conductivity [64-66]. It was for example demonstrated that, their excellent 

mechanical and electrical characteristics make them to be very useful as nanoscale fibres in 

composite materials.  Their cylindrical graphitic structures make them to be mathematically 

modeled as one dimensional nanosize beams [67-70]. mathematical model takes into account 

nonlocal effects which means that, the stress in one point of CNTs depends on the all other 

point's strain of the structure, contrarily to local theory. Once the mechanical, geometrical 

and mathematical characteristics of such structures were well known, the study of their 

behavior when subjected to various type of load became important, as the obtained results are 

very useful for design in industries. Buckling appears as one of the most usually observable 

behavior of structures in general, and is therefore an interesting field of research. earlier 

researches on buckling  of CNTs include Reddy [71]  who revisited the existing theories of 

beams, namely Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam's theories and 

rewrote them by using Eringen-nonlocal constitutive relations. After, he employed the 

variational principle analysis [72] to analytically calculate buckling loads of CNTs 

considered as nonlocal beams. The effect of nonlocal parameter on the buckling was 

discussed in details. The nonlocal parameter appeared to decrease the buckling loads. Reddy 

results will be later confirmed and extended in [73], [74] and [75].  Using the analytical and 

experimental analysis, Jeng et al. [76] studied the buckling instability of carbon nanotubes 

probes under nano indentation. They demonstrated that the local buckling is observed for 

longer nanotubes while shorter one undergo global buckling. Angle of inclination appears 

also to play a great role in the buckling, as lower inclination angle may create global buckling   

and higher creates local buckling for nanotubes. 

      Later, Reza et al. [77] emphasized that the Timoshenko beam theory can capture correctly 

the small-scale effects on buckling stains on short CNTs for the sheet-type buckling than 

other existing theories. 

Among all the existing theories, Euler –Bernoulli nonlocal theory is mostly used to describe 

mathematically the CNTs because of its simplicity. This is observable though works of 

Peddieson et al. [78] where nonlocal differential elasticity approach were used to study the 

flexural behavior of CNTs. Many methods are currently employed to solve buckling  

problems of CNTs. These methods include Ritz method [79-83] Finite element method [84] 

or DQM [85]. 
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2.4-Rayleigh -Ritz method  

The Rayleigh-Ritz method [86, 87] has been widely used for solving problem in structural 

mechanics. These problems include vibration/buckling of beams and plates.  It is worth to 

recall that, this method is the powerful technique which can be used for calculating natural 

frequencies of vibrating beams and plates. Its aim consists on linear combination of 

mathematical forms of deflection shape which satisfies a kinematic boundary conditions of  

buckling or vibrating structures.  

      Its utilization goes back up to more than half of century, as many previous works can 

demonstrate. In fact, in 1946, Bereuter [88] used Rayleigh-Ritz method for calculating the 

fundamental frequency of oblique plates, with all edges either simply supported or clamped, 

with concentrated mass at its center. The chosen trial transverse functions were trigonometric 

or polynomial functions. Fundamental frequency of clamped plate was calculated, but he was 

not able to find the trial admissible functions for simply supported oblique plate, this is why 

he used a finite difference method to solve that case but, unfortunately the obtained results 

were not accurate, due to the problem of domain discretization. In 1954, Warburton [89] 

studied the free transverse vibration of the rectangular plate by the use of Rayleigh-Ritz 

method.  All 21 possible boundary conditions formed by free, simply supported and clamped 

were considered and all vibrating frequencies were calculated and many obtained values were 

close to those existing in the literature. 

      Later, characteristic orthogonal function as trial admissible functions of transverse 

displacement were introduced in the Rayleigh-Ritz approach, for either one dimensional [90, 

91] or two dimensional [92-97] structures. The utilization of the above-mentioned method for 

nanobeams include the works presented by Behara and Chakravarty [98], where The Euler-

Bernoulli and Timoshenko beam  theories were used. The Rayleigh-Ritz method they used  

has considered simple and orthonormal polynomials and they observed the good convergence 

of the obtained results after comparison with those existing in the literature. The small scale 

effect on the vibrating frequencies and on deflection shapes were discussed. 

      Recently, Ghannadpour et al. [99] studied the buckling of nonlocal Euler-Bernoulli beams 

by using the Rayleigh-Ritz method. Four boundary conditions were considered during the 

analysis and buckling loads calculated, at the different values of nonlocal parameter. 

Comparisons made here concerning the buckling loads show the convergence of obtained 

results with previous ones, confirming once more the capacity of this method on solving 

nanobeams problems. 
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CHAPTER 3 : BASIC  CONCE PTS FOR R ECTANGULA R PLA TES THEORY , 

VISCOELAST ICITY  AND DIFFERENTI AL QUADRATURE METHOD   
 

3.1-Introduction  
The main of the present chapter consists of firstly enlightening the different basic 

assumptions which are used to derive the equation of vibration of viscoelastic thin 

rectangular plate subjected to follower and transverse forces. After stating the Kirchhoff 

theory, displacement field will be derived followed by moments. The theory of viscoelasticty 

will be explained in details and equation of vibration of viscoelastic plate  is derived in terms 

of transverse displacement. Finally, the theory of differential quadrature used in this thesis 

will be explained in details, emphasizing on domain discretization and basic formulas of 

DQM which has helped in solving the polynomial eigenvalue problems obtained in chapters 

4, 5 and 6. 

3.2-Basic definitions 

      A plate is a structure limited by two parallel planes separated by distance h and by a 

closed surface which can be cylindrical or prismatic. The two well-known and most studied 

are rectangular plate (fig.3.1a) and circular plate. Practically, plate as a basic structure in 

mechanical and civil engineering industries, and can be observed in real life structures like 

thin retaining walls, lock gates, aircraft’s wings,  hull and desk of ship, mattress industries 

etc. A rectangular plate is considered as thin when its thickness h is small compared to length 

and width. When all those three dimensions are on the same order one may talk about thick 

plate. Taken rather plate’s thickness as comparison’s element, when the deflection ( w) is 

small compared to thickness ( 0.2w h ), the plate is said to undergo small deflection. 

Bending is the only behavior observed here as shear and uncoupled membrane actions are 

negligible. Kirchhoff (1824-1887) theory is used in this case for displacements.  This is also 

called Love-Kirchhoff theory or classical plate theory (CTP). When the deflection is greater 

or equal to thickness ( 0.2w h ) one may use Von Karman (1910) theory for writing the 

constitutive relations.  Reissner-Mindlin plate is also known as most used one, where the first 

order shear effect is taken into account when using constitutive relations. Also known as 

Mindlin theory, it’s suitable for moderately thick plates [1]. Other existing theories in the 

literature are Exact theory,  where none of the stress is neglected,  higher order composite 

theory, suitable for composite laminated plates, membrane shell theory, for extremely thin 

plates, where membrane effects are dominant (tents, parachutes, balloon walls,…). 
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     Among all cited, Kirchhoff is the most used theory for plate because of its simplicity . 

This theory will used in this thesis for the constitutive relations of rectangular plate.  

3.3-Basic assumptions  

The Kirchhoff theory on the study of the vibration of rectangle plate’s vibration has been 

widely studied. Earlier users include: Warburton [2], Leissa [3, 4] D.G Gorman[5-7], etc.  

Kinematic suppositions to be taken into account for this model are those in classical plate 

theory (CPT) and it holds: 

 Deflections of the mid-surface (geometric center of the plate) are small compared to 
the thickness of the plate, and the slope of the deflected plate is small. 
 

  Straight line perpendicular to the midsurface  (i.e., transverse normal) before deformation 

remains straight after deformation : This implies that 0zz  . 
 The transverse normal rotates such that they remain perpendicular to the mid surface after 

deformation. This implies 0xz  , 0yz  . 

 The stress zz  normal to the midplane is small compared with the other stress 

components and will be consequently not considered. 

 The in-plane plate dimensions are large compared to the thickness. 

 

3.4-Constitutive re lations and  equation of vib ration  

3.4.1-The disp lacement  and strain  

After taking into consideration the assumptions of section (3.3) in the Fig.3.1, showing the 

displacement of plate, one can use the Chasles law of vectors to determine the plate’s 

displacement field as follows: 

0 0U ui vj wk P P P M MM MP zk wk zn           
        

                                            (3.1) 

where u , v  and w are displacement components about ,x yand z axis respectively. i

, j


, 

k


 are normal vectors of these axis respectively, and n is the normal vector of the deformed  

surface. n is normal to both 1e and 2e , respectively tangent to deformed lines which are 

parallels  along  xand y respectively before the deformation. 
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Fig.3.1: Displacement and strain of rectangular plate   

Their mathematical expressions are given as follows:  

1 2,w we i k e j k
x y

 
   

 

   
 ,   1 2

1 2

e en
e e






 

 
 

                                                                (3.2) 

After the calculation of the cross product in the last term of Eq. (3.2) we finally obtain: 

1/222

1

w wi j k
x yn
w w
x y

 
  

 


    
           

 

 w wi j k
x y

 
  

 

 
   ,                                                          (3.3)                                              

considering the fact that 
22

1w w
x y

    
   

     

 . 

Inserting Eq. (3.3) into Eq. (3.1) we derive the components ( , ,u v w) of the displacement field 
as follows: 

  , , ( , , )w wu z v z w w x y t
x y

 
    

 
                                                                              (3.4)                                                  

Furthermore, the strain is also derived by applying the formula:  

h 
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
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1
2

ji
ij

j i

UU
x x


 

     
                                                                                                          (3.5) 

 where x is a generalized coordinate and U  the generalized displacement. 

 The formula (3.5) gives the following strain field, after considering Eq. (3.4):   

2

2

x
wzx




 ,  2

2

y
wzy




 ,       

yx
wzxy

xy





2

2


                                                       (3.6) 

 

3.4.2-Stress, resultant and s tre ss couples  

 

                                         

 
Fig. 3.2: Stress repartition on the plate’s slice 

In terms of strains, the stress components are given by the following expressions:    

yx
x E E


   ,  y x

y E E
 

   ,  2 2xy xy xy G                                                         (3.7) 

where 
2(1 )

EG





, E  the Young’s modulus and   the Poisson’s coefficient. 

Substituting Eq. (3.6) into Eq. (3.7) we get the stress expressions as follow: 

2 2

2 2 21x
E w wz

x y
 



   
  

   
, 

2 2

2 2 21y
E w wz

y x
 



   
  

   
,  

2

1xy
E wz

x y




 


  
                 (3.8) 
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3.4.3-Moments and  shear forces:  

 
Fig. 3.3: Moments and shear forces on a rectangular plate’s slice 

 

     The application of the third law of Newton on Fig.3.3 gives the equilibrium equations in 

terms of bending moments xM , yM  and twisting moment xyM = yxM . 

The forces summation about z  axis gives: 
2

2 0yx QQ wdxdy dxdy pdxdy h dxdy
x y t


 

   
  

                                                              (3.9)    

 From where we get: 
2

2 0yx QQ wp h
x y t


 

   
  

                                                                                              (3.10)     

Similarly, The moment summation about x and y  axis respectively gives: 

0xyx
x x

MM wQ T
x y x

 
   

  
                                                                                            (3.11) 

and  

0y xy
y

M M
Q

x y
 

  
 

                                                                                                        (3.12) 

Combining Eqs.(3.10), (3.11) and (3.12) we came out with the d’Alembert Eq.(3.13) 

representing the moment equilibrium  equation of vibration of elastic thin plate subjected to 

in distributed force ( )T x and transversal force p . 
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2 22 2 2

2 2 2 22 ( ) 0xy yx M MM w wT x p h
x x y y x t


   

     
     

                                                      (3.13) 

3.5-Equation  of Viscoelastic rectangular thin plate subjecte d to foll ower  force ( )T x  and 

transversal force  p . 

3.5.1-The viscoelasticity  

    Plate-like structures, may experience both viscous and elastic phenomena. For example 
like wood-made plates, concrete-made plates, high temperature-made plates, biological 

tissues-made plates can face such behavior.   This behavior is called viscoelasticity [8-11]. In 

opposition with elasticity, viscoelastic materials may take more time to recover after being 

deformed. Mathematically one says the stress-strain relation involves a time. During a creep, 

strain of such materials continues to increase under constant load and ultimately approaches 

an asymptote (Fig3.4a). For stress relaxation, their stress required to maintain a constant 

strain decrease as time involve (Fig 3.4b). Hysteresis phenomenon is present for viscoelastic 

materials: This is, loading and unloading curves do not coincide but form a slope (Fig 3.4c).  

Fig. 3.4: Creep response (a), relaxation response (b), hysteresis loop (c)  of viscoelastic solid 

materials 

Many viscoelasticity models exist, characterizing the mathematical relationship between 

stress and strain. These include Maxwell model (Fig. 3.5b), suitable for fluids, Kelvin-Voigt 

model for solids (Fig 3.5a).  Maxell and Kelvin-Voigt stand for basic models and can be used 

to build another models such as solid standard model (Fig 3.5c). Boltzmann model is also 

applied sometimes and uses integral equation to express stress-strain relationship.  

                                                                                   

 Fig. 3. 5: Viscoelastic models:   Kelvin-Voigt (a),  Maxwell (b),  Solid standard (c) [12] 
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3.5.2-The viscoelastic Equation  

Generally, the 3D constitutive stress-strain viscoelastic relation is given by: 

d ij d ij

s ii s ii

P s Q e
P Q 





                                                                                                                      (3.14) 

where ijs and ije  stand for deviatoric  tensor of stress and strain respectively while ii and iie

are respectively spherical tensor of stress and strain. 

1 ( )
3ij ij ijs trace    , 1 ( )

3ij ij ije trace    , 1
3ii kk ij   ,  1

3ii kk ij                       (3.15) 

The operators: 

1 1

0 0 0 0
, , ,

l rk k k kl r

d k d k s k s kk k k k
k k k k

d d d dP p Q q P p Q q
dt dt dt dt   

          ,    kp ,  kq , kp , kq  depend 

on materials  properties. 

In Laplace domain, Eq. (3.14) is written as: 

d ij d ij

s ii s ii

P s Q e

P Q 

 



                                                                                                                      (3.16) 

Following viscoelastic law, for plane stress problem, strain stress constitutive relationship in 

the Laplace domain is written as [13]:  

0 0 1

0 0 1

x x y

y x y

d xy d xy

P Q Q

P Q Q

P Q

  

  

 

  


 




                                                                                                           (3.17) 

Where       

  
0

0

1

( 2 )
(2 )
( )

d d s d s

d d s d s

d d s d s

P P P Q Q P
Q Q P Q Q P
Q Q P Q Q P

  


 


 

                                                                                                  (3.18) 

 With  , , , , ,x y xy x y xy       the Laplace transformations of  , , , , ,x y xy x y xy       

respectively and 0 0 1, , , ,d dP P Q Q Q  respectively Laplace transformations for 

0 0 1, , , ,d dP P Q Q Q . 

Recalling the expressions linking the moments to the stresses: 

2

2

h

h
x xM z dz



  ,  
2

2

h

h
y yM z dz



  ,   
2

2

h

h
xy yx xyM M z dz



                                                    (3.19) 
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we apply viscoelastic operator to the moment expressions, and take into account Eq.(3.8) and 

(3.17),  then end up with: 

2

2

2

2

2

2

2 2
2

0 0 12 2

2 2
2

0 1 02 2

2
2

( )

( )

( ) ( )
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h
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d xy d yx d

w wP M z Q Q dz
x y

w wP M z Q Q dz
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wP M P M z Q dz
x y
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       
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  

      
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   
  







                                                                                   (3.20) 

Applying the product of the Laplace transformation of viscoelastic operators 0P  and dP to the 

Laplace transformation of Eq. (3.13), we have: 
2 22 2 2

0 0 0 0 0 02 2 2 22 ( ) 0xy yx
d d d d d d

M MM w wP P P P P P P P T x P P p P P h
x x y y x t


       

                       
   (3.21)                    

where the bar on each variable is its Laplace transformation. 

   Considering the continuity of partial derivative, Eq. (3.21) becomes 
2 22 2 2

00
0 02 2 2 2

( ) ( )( )
2 ( ) 0d xy yx

d d d

P M P MP M w wP P P P P p T x h
x x y y x t


                                             

 (3.22) 

Considering that  the present plate obeys the Kelvin-Voigt law of  viscoelasticity, stress- 

strain relation is derived as [14] :  

ijijij G ees   2 2   ,   iiii K  3                                                                                      (3.23) 

From where one can find by taking inverse Laplace transformation of Eq.(3.16) 

1, 2

1, 3

d d

s s

P Q
t

P Q K




 


  

                                                                                                           (3.24) 

In Eq. (3.24), K ,  , G  are bulk modulus, viscoelastic coefficient and shear modulus, 

respectively. They can be expressed as )21(3/  EK  and )21/(  EG  in terms of E  

and  .  

After taking Eq.(3.20) into account in Eq.(3.22) and carry out the inverse Laplace 

transformation, we derive the equation of viscoelastic nonconservative plate when subjected 

to follower force ( )T x  and transversal force p as: 
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3 4 5 1 22 2 2( ) 0
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t t t x t
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        
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where 

GKA 431  ,  42 A ,  )3(43 GKGA  , )128(4 KGA   ,   2
5 4A  
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





 .                                                                                       (3.26)     

The solution of Eq. (3.25) associated to the considered boundary conditions will be given in 

chapter 4 chapter 5 and chapter 6 in details. 

3.6-Differential qu adrature me thod  

3.6.1-The form of weighting coeffi cients  

DQ method involves approximating the partial derivatives of the function ),( YXW  at a 

sample point ),( ii YX  by the weighted sum of the function jiW,  values [15].  Let the number 

of sample points denoted by N  in X  direction and M in Y  direction. The thr  order partial 

derivative with respect to X , ths  order partial derivative with respect to Y  and the thsr )(   

order mixed partial derivative of ),( YXW  with respect to both X and Y are discretely 

expressed at the point ),( ii YX  as: 
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where Ni ,...,2,1 , 1,...,2,1  Nk , Mj ,...,2,1  and 1,...,2,1  Ml . For 1 sr  the 

coefficients )(r
ikA  and )(s

jlB  are defined as [16]: 
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For 1,...,3,2  Nr  and 1,...,3,2  Ms  
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3.6.2-The choice of dis crete points:  The  -technics 

iX  and jY  are discrete points which can be taken either uniform , non-uniform,  or the mixed 

depending on the problem to be solved. Among the non-uniform discrete point forms, 

Gaubatto-Chebyshev [17] is the most used, because it generates very accurate weighting 

coefficients. For some problems, the   point may be mixed to uniform or non-uniform 

discrete points. This  -technique was proposed by Jang, Bert and Striz [18] and its aim 

consists on eliminating the difficulties in implementing two conditions at a single boundary 

point.  The Dirichlet condition ( 0w ) is applied at the boundary point itself, and derivative 

condition at its adjacent point which is at a distance   from the boundary point (Figure 3.6). 

This technics is suitable for Simply supported and Clamped boundary  conditions, as they 

have each one Dirichlet condition and one involving derivative. One should notice that, 

although this technics has been suitable to solve many problems and in finding 

eigenfrequencies, it appears to be questionable as the derivative boundary condition is not 

computed at the right place. The choice of   becomes then very important and its value 

determines the success or fail of obtaining accurate results. In fact, that value must be very 
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small 4( 10 )  . This technique is used in this thesis to implement CSCS boundary 

conditions. 

3.6.3-Treatment of boundary condi tions  
3.6.3a-Modificat ion of weighting coefficient matr ices 
This treatment is used in problems where  technics is not used in the discrete points of the 

discretized domain. Here, for one edge, just Dirichlet boundary is implemented in the 

physical domain. The derivative boundary is implemented inside the coefficient matrices. 

This approach is based on the definition of differential quadrature method, where  
1

1

( , ) ( , )n n
i j i j
n n
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[ ][ ] [ ][ ]

n
i j n
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X
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
                                                             (3.34) 

Taking for example 4n  , and supposing that the considered edge is clamped, the first 

derivative boundary weighting coefficient matrices will be modified and becomes (1)[ ]A . This 

new matrix will be used to compute the second, third and fourth derivative coefficient matrix 

as in [19]:  

(2) (1) (1)[ ] [ ][ ]A A A  , (3) (1) (3)[ ] [ ][ ]A A A  ,  (4) (1) (3)[ ] [ ][ ]A A A                                            (3.35) 

All the weighting coefficients will then be modified through this process which consist to 

zero some elements of matrices.  This technics is very simple to realise for simply supported 

and clamped edges, as they boundary conditions are homogeneous.  We used it in this thesis 

for implementing boundary conditions of completely simply supported plate (SSSS) [15]. 
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3.6.3b- Coupling boundary conditions with general Equ ation (CBCG E=general 
approach)  
 

X  

Fig. 3.6: Differential quadrature domain discretization for rectangular plate [20] 

 

 For plate containing non homogeneous boundary conditions the modification of weighting 

coefficients matrix is no more usable. To overcome that drawback, CBCGE (coupling 

boundary condition with general equation) is used.  Here, the whole domain of plate is 

divided into two (Fig. 3.6). The Boundary domain and the working domain.  The boundary 

points include the border points and their adjacent while the rest constitutes the working   

points.  This implies that the displacement field of plate is split up in dW (working domain) 

and bW (boundary domain). 
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a b s t r a c t

Dynamic stability of viscoelastic rectangular plates under a uniformly distributed tangential follower load
is studied. Two sets of boundary conditions are considered, namely, clamped in one boundary and free in
other boundaries (CFFF) and two opposite edges simply supported and other two edges free (SFSF). By
considering the Kelvin–Voigt model of viscoelasticity, the equation of motion of the plate is derived. The
differential quadrature method is employed to obtain the numerical solution and it is verified against
known results in the literature. Numerical results are given for the real and imaginary parts of the
eigenfrequencies to investigate the divergence and flutter instabilities. It is observed that the type of
stability differs for CFFF and SFSF plates indicating the strong influence of the boundary conditions on the
dynamic stability of viscoelastic plates. In particular it is found that CFFF plates undergo flutter instability
and SFSF plates divergence instability. One consequence is that SFSF plates become unstable at a load less
than the load for CFFF plates as the effects of viscoelasticity as well as the aspect ratio are found to be
minor for SFSF plates.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic stability of systems such as beams, plates, shells,
pipes conveying fluid and rockets subject to follower forces has
been studied extensively. Plate structures are of importance in
diverse fields of technology like aeronautics, automotive design
and offshore structures, and as a result substantial work has been
performed on their stability under nonconservative loads. It has
been observed by Herrmann [1] that the load parameter has a
great effect on the stability of an elastic system subjected to a
nonconservative force. By considering a cantilever plate subjected
to biaxial subtangential loading, Farshad [2] studied the effect of
load parameter on dynamic stability. Influence of aspect ratio on
the stability of a plate subjected to conservative and non-
conservative forces was studied by Adali [3]. Various effects on
dynamic stability of rectangular plates have been investigated in
Leipholz and Pfent [4], Kumar and Srivasta [5], Higuchi and Dowell
[6], Zuo and Schreyer [7], Kumar et al. [8], Kim and Park [9], Kim
and Kim [10] and in Jayaraman and Strusthers [11].

More recently dynamic stability of viscoelastic structures has
been the focus of a number of publications. Stability of viscoelastic
columns under follower forces has been studied by Langthjem and
Sugiyama [12], Darabseh and Genin [13] and Zhuo and Fen [14]. The

corresponding work for viscoelastic plates is given in Eshmatov [15]
for follower forces, in Wang et al. [16], Wang and Zhou [17] for
uniformly tangential and in Robinson and Adali [18] for triangularly
distributed tangential follower forces. Robinson [19] took non-
linearity and tangential follower forces into account for simply
supported plates, and Wang et al. [20] the effect of piezoelectric
layers for viscoelastic plates with a combination of simple and
clamped supports. Despite the increasing attention on the stability
of viscoelastic plates subject to follower forces, the boundary con-
ditions which appeared in the literature so far include only the
clamped and simply supported cases [16,17,19,20]. It is noted that
the main difference in the nonconservative stability of viscoelastic
columns and plates is that the formulations for the two-
dimensional structures lead to governing equations expressed in
the complex domain leading to complex eigenvalue problems.

A rectangular plate may experience divergence or flutter
instability depending on the boundary conditions and quite often
plates with free boundaries are employed in practice. In the pre-
sent study, the stability of rectangular viscoelastic plates subject to
a uniformly distributed tangential follower force and free bound-
ary conditions is studied using the Kelvin–Voigt model of viscoe-
lastic behavior. In particular dynamic stability of viscoelastic plates
with CFFF and SFSF boundary conditions is established where C, F
and S stand for clamped, free and simply supported boundary
conditions, respectively. Free boundary conditions are experienced
in many engineering applications indicating the importance of
studying the dynamic stability for these cases. In the present
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study, differential quadrature method [19,21] is employed to solve
the governing equation which is expressed in the complex domain
using Laplace transformation. Previously the differential quad-
rature method was applied to nonconservative stability in Marzani
et al. [22].

In Section 2, the equations governing the vibrations of non-
conservatively loaded viscoelastic plates are established using
Laplace transformation following the approach implemented in
Wang et al. [16], Wang and Zhou [17] and Wang et al. [23]. In
Section 3 the differential quadrature method is implemented to
discretize the equation of motion and the boundary conditions.
This is followed by the verification of results in Section 4 and
numerical results in Section 5. Numerical results are given to
investigate the divergence and flutter instabilities for CFFF and
SFSF plates by way of plotting the real and imaginary parts of the
eigenvalues with respect to the follower load. The effects of the
aspect ratio and viscoelastic constant on stability are also studied.
Finally, Section 6 is devoted to concluding remarks.

2. Equation of motion for viscoelastic plate

We consider a thin rectangular plate of dimensions a� b and
thickness h with Young's modulus of E, Poisson's ratio ν and
density ρ. The Cartesian coordinate system x; y; z which has its
origin at mid-thickness is shown in Fig. 1. Using the Kirchhoff plate
theory, the displacements u; v;w along x, y and z directions,
respectively, are given by

u¼ �zψ x; v¼ �zψ y; w¼wðx; y; tÞ ð1Þ

where the angles of rotation ψ x and ψ y are related to the trans-
verse displacement w through the relations

ψ x ¼
∂w
∂x

; ψ y ¼
∂w
∂y

ð2Þ

The linear strain–displacement relations are given by

εx ¼ �z
∂2w
∂x2

; εy ¼ �z
∂2w
∂y2

; εxy ¼
γxy
2

¼ �z
∂2w
∂x∂y

ð3Þ

where εx and εy are the normal strain components, and γxy is the
shear strain component.

In the present study the plate material is taken as viscoelastic
of the Kelvin–Voigt type. The constitutive equations for this case
can be written as in Refs. [16–18, 20].

sij ¼ 2G eijþ2 η _eij ð4aÞ

σii ¼ 3Kεii ð4bÞ
where K , η, G are bulk modulus, viscoelastic coefficient and shear
modulus, respectively. They can be expressed as K ¼ E=3ð1�2νÞ
and G¼ E=ð1þ2νÞ in terms of E and ν. The quantities sij and eij are,
respectively, the deviatoric tensors of stress and strain while sii
and σii stand for the spherical tensors of strain and stress. The
bending moments Mx, My and twisting moments Mxy, Myx are
given by:

Mx ¼
Z h=2

�h=2
zσxdz; My ¼

Z h=2

�h=2
zσydz ð5aÞ

Mxy ¼
Z h=2

�h=2
zσxydz; Myx ¼

Z h=2

�h=2
zσyxdz ð5bÞ

where σx and σy are the normal stress components, σxy and σyx are
the shear stress components. The plate is subject to a uniformly
distributed tangential follower force qt as shown in Fig. 1. The
equation governing the vibrations of the plate under the dis-
tributed follower force can be written as

∂2Mx

∂x2
þ2

∂2Mxy

∂x∂y
þ∂2My

∂y2
�qtða�xÞ∂

2w
∂x2

�ρh
∂2w
∂t2

¼ 0 ð6Þ

Following the methodology employed in [16] and [17], Laplace
transformations of Eqs. (4)–(6) are performed. Carrying out the
inverse Laplace transformations of the resulting equations [24],
the differential equation governing the vibration of the non-
conservative viscoelastic rectangular plate is obtained as

h3

12
A3þA4

∂
∂t
þA5

∂2

∂t2

� �
∇4wþqtða�xÞ A1þA2

∂
∂t

� �
∂2w
∂x2

þ A1þA2
∂
∂t

� �
∂2w
∂t2

¼ 0 ð7Þ

where

A1 ¼ 3Kþ4G; A2 ¼ 4η; A3 ¼ 4Gð3KþGÞ; A4 ¼ 4ηð2Gþ3KÞ;
A5 ¼ 4η2 ð8Þ
and

∇4w¼ ∂4w
∂x4

þ2
∂4w

∂x2∂y2
þ∂4w

∂y4
ð9Þ

Introducing the dimensionless variables

X ¼ x
a
; Y ¼ y

b
; w¼w

h
; λ¼ a

b
ð10aÞ

q¼ 12qta3ð1�ν2Þ
Eh3

; τ¼ th
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ρð1�ν2Þ

s
; H¼ ηh

a2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ρð1�ν2Þ

s

ð10bÞ
the governing Eq. (7) can be rewritten as

1þc1
∂
∂τ

þc2
∂2

∂τ2

� �
∇4wþqð1�XÞ 1þc3

∂
∂τ

� �
∂2w
∂X2 þ 1þc3

∂
∂τ

� �
∂2w
∂τ2

¼ 0

ð11Þ
where τ is dimensionless time, H is dimensionless delay time of
the material, and

c1 ¼
4ð2�νÞð1þνÞ

3
H; c2 ¼

4ð1�2νÞð1þνÞ2
3

H2; c3 ¼
4ð1�2νÞð1þνÞ

3ð1�νÞ H

ð12Þ
are real constants which depend on the delay time H, and

∇4w¼ ∂4w
∂X4 þ2λ2

∂4w
∂X2∂Y2þλ4

∂4w
∂Y4 ð13Þ

The solution of Eq. (11) is expressed in the form

wðX;Y ; τÞ ¼WðX;YÞexpðjωτÞ ð14Þ
where j¼

ffiffiffiffiffiffiffiffi
�1

p
and ω is the dimensionless frequency which is in

general a complex number. Substituting Eq. (14) into Eq. (11), one
obtains the differential equation

1þc1jωþc2j
2ω2

� �
∇4Wþqð1�XÞð1þc3jωÞ∂

2W

∂X2 þð1þc3jωÞj2ω2 ¼ 0

ð15Þ

z

y

xb

h
qt

a

Fig. 1. Viscoelastic plate subject to distributed tangential follower force qt .
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in terms of the space variables X and Y . The boundary conditions
considered in the present study are given next.

CSSS refers to the plate with one edge clamped and other three
edges simply supported. This case is considered for verification
purposes. For this case the boundary conditions are given by

Wð0;YÞ ¼ ∂W
∂X

����
X ¼ 0

¼ 0; Wð1;YÞ ¼ ∂2W
∂X2

����
X ¼ 1

¼ 0 for 0rYr1

ð16aÞ

WðX;0Þ ¼ ∂2W
∂Y2

����
Y ¼ 0

¼ 0; WðX;1Þ ¼ ∂2W
∂Y2

����
Y ¼ 1

¼ 0 for 0rXr1

ð16bÞ
CFFF refers to the plate with one edge clamped and other three

edges free. For this case the boundary conditions are given by

Wð0;YÞ ¼ ∂W
∂X

����
X ¼ 0

¼ 0;
∂2W
∂X2 þνλ2

∂2W
∂Y2

����
X ¼ 1

¼ 0;
∂3W
∂X3

þð2�νÞλ2 ∂3W
∂X ∂Y2

����
X ¼ 1

¼ 0 for 0rYr1 ð17aÞ

λ2
∂2W
∂Y2 þν

∂2W
∂X2

����
Y ¼ 0;1

¼ 0; λ2
∂3W
∂Y3

þð2�νÞ ∂3W
∂X2 ∂Y

����
Y ¼ 0;1

¼ 0 for 0rXr1 ð17bÞ

∂2W
∂X ∂Y

����X ¼ 1
Y ¼ 0

¼ 0;
∂2W
∂X ∂Y

����X ¼ 1
Y ¼ 1

¼ 0 ð17cÞ

SFSF refers to the plate with opposite edges simply supported
and free. For this case the boundary conditions are given by

Wð0;YÞ ¼Wð1;YÞ ¼ 0;
∂2W
∂X2

����
X ¼ 0;1

¼ 0 for 0rYr1 ð18aÞ

λ2
∂2W
∂Y2 þν

∂2W
∂X2

����
Y ¼ 0;1

¼ 0; λ2
∂3W
∂Y3

þð2�νÞ ∂3W
∂X2 ∂Y

����
Y ¼ 0;1

¼ 0 for 0rXr1 ð18bÞ

3. Differential quadrature method

Although a number of numerical schemes can be used to solve
the differential Eq. (15) subject to the boundary conditions (16)–
(18), the differential quadrature scheme is one of the most accu-
rate methods. Essentially a partial derivative of the function WðX
;YÞ at a sample point ðXi;YjÞ is considered as a weighted linear sum
of the function WðXi;YjÞ �Wij (Bert and Malik [25]). It is noted
that using differential quadrature free corners can be taken into
account easily. Let N and M be the total number of discrete points
along X and Y directions, respectively. Considering the 2D rec-
tangular plate defined on the domain 0rX;Yr1, rth order partial
derivative of WðX;YÞ with respect to X, sth order partial derivative
of WðX;YÞ with respect to Y and ðrþsÞth order mixed partial
derivative of WðX;YÞ with respect to X and Y at a given point ðXi;

YjÞ are expressed as (Bert and Malik [25]):

∂rWðXi;YjÞ
∂Xr ¼

XN
k ¼ 1

AðrÞ
ik Wkj for i¼ 1;2;…;N; j¼ 1;2;…;M

ð19Þ

∂sWðXi;YjÞ
∂Ys ¼

XM
k ¼ 1

BðsÞ
jk Wki for i¼ 1;2;…;N; j¼ 1;2;…;M ð20Þ

∂rþ sWðXi;YjÞ
∂Xr∂Ys ¼

XN
k ¼ 1

AðrÞ
ik

XM
k ¼ 1

BðsÞ
jl Wkl ð21Þ

where AðrÞ
ik and BðsÞ

jl are the weighting coefficients as defined in [26]
given by

Að1Þ
ik ¼

∏
N

μ ¼ 1;μa i

Xi�Xμ

ðXi�XkÞ ∏
N

μ ¼ 1;μak
ðXk�XμÞ

for i; k¼ 1;2; :::;N; iak

XN
μ ¼ 1;μa i

1
Xi�Xμ

for i¼ 1;2; :::;N; i¼ k

8>>>>>>>><
>>>>>>>>:

ð22Þ

Bð1Þ
jl ¼

∏
M

μ ¼ 1;μa j

Y j�Yμ

ðYj�YlÞ ∏
M

μ ¼ 1;μa l
ðYj�YμÞ

for j; l¼ 1;2;…;M; ja l

XM
μ ¼ 1;μa j

1
Yj�Yμ

for j¼ 1;2;…;M; j¼ l

8>>>>>>>><
>>>>>>>>:

ð23Þ
for r¼ s¼ 1 and

AðrÞ
ik ¼

r Aðr�1Þ
ii Að1Þ

ik � Aðr� 1Þ
ik

Xi �Xk

� �
for k¼ 1;2;…;N; iak

�
XN

μ ¼ 1;μa i

AðrÞ
iμ for i¼ 1;2;…;N; i¼ k

8>>>><
>>>>:

ð24Þ

BðsÞ
jl ¼

s Bðs�1Þ
jj Bð1Þ

jl � Bðs� 1Þ
jl

Yj �Yl

� �
for l¼ 1;2;…;M; ja l

�
XM

μ ¼ 1;μa j

BðsÞ
jμ for j¼ 1;2;…;M; j¼ l

8>>>><
>>>>:

ð25Þ

for r¼ 2;3; :::;N�1 and s¼ 2;3; :::;M�1. The distribution of the
grid points is specified based on the approach developed in [26]
and we use the Coupling Boundary Conditions with General
Equation (CBCGE) technique to implement the boundary condi-
tions [27]. Accordingly, the form of the grid points for CFFF plate is
given by

Xi ¼ 3ξ2i �2ξ3i ; Yj ¼ 3χ2
j �2χ3

j ð26Þ
where

ξi ¼
1
2

1� cos
i�1
N�1

π
� �� 	

for i¼ 1;2;…;N ð27aÞ

χj ¼
1
2

1� cos
j�1
M�1

π
� �� 	

for j¼ 1;2;…;M ð27bÞ

The forms of the grid points for CSSS and SFSF plates are taken
as

Xi ¼
1
2

1� cos
i�1
N�1

π
� �� 	

for i¼ 1;2;…;N ð28aÞ

Yj ¼
1
2

1� cos
j�1
M�1

π
� �� 	

for j¼ 1;2;…;M ð28bÞ

With the above considerations, Eq. (11) is transformed into the
following discretized form:

c1j
3Wijω3þSijω2þTijωþUijþqð1�XÞ

XN
i ¼ 1

Að2Þ
ik Wkj ¼ 0 ð29Þ

where

Sij ¼ c2j
2
XN
k ¼ 1

Að4Þ
ik Wkjþ2λ2

XM
l ¼ 1

Bð2Þ
jl

XN
k ¼ 1

Að2Þ
ik Wklþλ4

XM
l ¼ 1

Bð4Þ
jl Wil

 !
þ j2Wij
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Tij ¼ c3j
XN
k ¼ 1

Að4Þ
ik Wkjþ2λ2

XM
l ¼ 1

Bð2Þ
jl

XN
k ¼ 1

Að2Þ
ik Wklþλ4

XM
l ¼ 1

Bð4Þ
jl Wil

 !

þqð1�XÞ
XN
k ¼ 1

Að2Þ
ik Wkj

Uij ¼
XN
k ¼ 1

Að4Þ
ik Wkjþ2λ2

XM
l ¼ 1

Bð2Þ
jl

XN
k ¼ 1

Að2Þ
ik Wklþλ4

XM
l ¼ 1

Bð4Þ
jl Wil

The discretized form of boundary conditions (16) are given by

Wi;j ¼WN;j ¼Wi;1 ¼Wi;M ¼ 0 for i¼ 1;2;…;N and j¼ 1;2;…;M

ð30aÞ

XN
k ¼ 1

Að2Þ
ik Wkj ¼ 0 for i¼ 1 and j¼ 1;2;…;M ð30bÞ

XM
l ¼ 1

Bð2Þ
jl Wil ¼ 0 for i¼ 1;2;…;N and j¼ 1;M ð30cÞ

The discretized form of boundary conditions (17) is given next.
For X ¼ 0 and X ¼ 1

W1;j ¼ 0 for j¼ 1;2;…;M ð31aÞ

XN
k ¼ 1

Að1Þ
1k Wkj ¼ 0 for j¼ 2;3;…;M�1 ð31bÞ

XN
k ¼ 1

Að2Þ
Nk Wkjþνλ2

XM
l ¼ 1

Bð2Þ
jl WNl ¼ 0 for j¼ 2;3;…;M�1 ð31cÞ

XN
k ¼ 1

Að3Þ
Nk Wkjþð2�νÞλ2

XN
k ¼ 1

XM
l ¼ 1

Að1Þ
NkB

ð2Þ
jl Wkl ¼ 0 for j¼ 2;3;…;M�1

ð31dÞ
For Y ¼ 0 and Y ¼ 1

λ2
XM
l ¼ 1

Bð2Þ
1l Wilþν

XN
k ¼ 1

Að2Þ
ik WkM ¼ 0 for i¼ 2;3;…;N�1 ð32aÞ

λ2
XM
l ¼ 1

Bð3Þ
1l Wilþð2�νÞ

XN
k ¼ 1

XM
l ¼ 1

Að2Þ
ik Bð1Þ

1l Wkl ¼ 0 for i¼ 3;4;…;N�2

ð32bÞ

λ2
XM
l ¼ 1

Bð2Þ
MlWilþν

XN
k ¼ 1

Að2Þ
ik WkM ¼ 0 for i¼ 2;3;…;N�1 ð32cÞ

λ2
XM
l ¼ 1

Bð3Þ
MlWilþð2�νÞ

XN
k ¼ 1

XM
l ¼ 1

Að2Þ
ik Bð1Þ

Ml Wkl ¼ 0 for i¼ 3;4;…;N�2

ð32dÞ
At two free corners

XN
k ¼ 1

XM
l ¼ 1

Að1Þ
ik Bð1Þ

jl Wkl ¼ 0 for i¼N; j¼ 1;M ð33Þ

The discretized form of boundary conditions (18) is given next.
For X ¼ 0 and X ¼ 1

W1;j ¼ 0 for j¼ 1;2;…;M ð34aÞ

XN
k ¼ 1

Að1Þ
1k Wkj ¼ 0 for j¼ 2;3;…;M�1 ð34bÞ

WNj ¼ 0 for j¼ 1;2;…;M ð34cÞ

XN
k ¼ 1

Að2Þ
Nk Wkj ¼ 0 for j¼ 2;3;…;M�1 ð34dÞ

For Y ¼ 0 and Y ¼ 1

λ2
XM
l ¼ 1

Bð2Þ
1l Wilþν

XN
k ¼ 1

Að2Þ
ik WkM ¼ 0 for i¼ 2;3;…;N�1 ð35aÞ

λ2
XM
l ¼ 1

Bð3Þ
1l Wilþð2�νÞ

XN
k ¼ 1

XM
l ¼ 1

Að2Þ
ik Bð1Þ

1l Wkl ¼ 0 for i¼ 3; 4;…;N�2

ð35bÞ

λ2
XM
l ¼ 1

Bð2Þ
Ml Wilþν

XN
k ¼ 1

Að2Þ
ik WkM ¼ 0 for i¼ 2;3;…;N�1 ð35cÞ

Table 1
Comparison of frequencies of CFFF and SFSF elastic plates with existing results for
aspect ratios λ¼ 1:0 and λ¼ 1:5.

λ BC ω1 ω2 ω3

Present [28] Present [28] Present [28]

1.0 CFFF 3.485 3.492 8.604 8.525 21.586 21.429
SFSF 9.631 9.631 16.135 16.135 36.726 36.726

1.5 CFFF 3.481 3.477 11.748 11.676 21.630 21.618
SFSF 9.554 9.558 21.618 21.619 38.726 38.721

Table 2
Comparison of frequencies of CFFF and SFSF elastic plates with existing results for
aspect ratios λ¼ 0:5 and λ¼ 2:0.

λ BC ω1 ω2 ω3

Present [29] Present [29] Present [29]

0.5 CFFF 3.496 3.508 5.383 5.372 10.241 10.260
SFSF 9.736 9.870 11.685 11.660 17.685 17.660

2.0 CFFF 3.480 3.508 14.999 14.930 22.082 21.610
SFSF 9.539 9.870 27.548 27.520 38.521 39.480

Table 3
Comparison of frequencies of CSSS elastic plates with existing results for the aspect
ratios λ¼ 1:0, λ¼ 1:5 and λ¼ 2:0 with H¼ 0, q¼ 0.

λ ω1 ω2 ω3

Present [17] Present [17] Present [17]

0.5 17.33 – 23.64 – 35.05 –

1.0 23.64 23.64 51.67 – 58.60 58.65
1.5 35.05 35.05 69.87 69.91 100.18 –

2.0 51.67 51.67 86.13 86.13 140.84 140.84

Table 4
Comparison of flutter loads q of CSSS viscoelastic plates with existing results for the
aspect ratios λ¼ 1:0, λ¼ 1:5 and λ¼ 2:0 with H¼ 0.

λ¼ 1:0 λ¼ 1:5 λ¼ 2:0

Present [17] Present [17] Present [17]

141.0 142.5 181.1 181.0 236.0 234.0
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Fig. 2. Real and imaginary components of first three frequencies of CFFF plate plotted against q with H¼ 10�5for (a) λ¼ 0:5, (b) λ¼ 1:0, (c) λ¼ 1:5, (d) λ¼ 2:0.
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Fig. 3. Real and imaginary components of first three frequencies of CFFF plate plotted against q with H¼ 10�3for (a) λ¼ 0:5, (b) λ¼ 1:0, (c) λ¼ 1:5, (d) λ¼ 2:0.
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Fig. 4. Real and imaginary components of first three frequencies of SFSF plate.
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Fig. 5. Real and imaginary components of first three frequencies of SFSF plate plotted against q with H¼ 10�3for (a) λ¼ 0:5, (b) λ¼ 1:0, (c) λ¼ 1:5, (d) λ¼ 2:0.
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λ2
XM
l ¼ 1

Bð3Þ
Ml Wilþð2�νÞ

XN
k ¼ 1

XM
l ¼ 1

Að2Þ
ik Bð1Þ

Ml Wkl ¼ 0 for i¼ 3;4;…;N�2

ð35dÞ
The discretized Eq. (29) with the boundary conditions (30)–

(35) can be rearranged and written in the following form:

ω3 C3½ �þω2 C2½ �þω C1½ �þ C0½ �
 �
Wij

 �¼ 0f g ð36Þ

where C0½ �, C1½ �, C2½ � and C3½ � are ðN�4Þ � ðM�4Þ by ðN�4Þ �
ðM�4Þ matrices [27] and depend on dimensionless parameters
such as delay time H, dimensionless follower load q, and the
aspect ratio λ. This equation may be viewed as the generalized
eigenvalue problem describing the vibration of the plate. It is
noted that Eq. (36) is equivalent to (29) where the expressions for
the corresponding matrices are given explicitly.

4. Verification

To check the accuracy of the DQ method, first three eigen-
frequencies of freely vibrating (qf ¼ 0) elastic plate (H¼ 0) are
compared with the exact results of [28] in Table 1 and with [29] in
Table 2 for CFFF and SFSF boundary conditions.

The corresponding results for CSSS boundary conditions are
given in Table 3 where the comparisons are made with the results
of Ref. [17]. Numerical values obtained by DQ method match very
closely with the results available in the literature.

Next the results for a viscoelastic plate subject to a distributed
tangential load and CSSS boundary conditions are compared with
those given in Wang and Zhou [17]. The results are shown in
Table 4 and it is observed that the present results obtained by DQ
are in good agreement with those obtained by a power series
approach in Wang and Zhou [17].

5. Numerical results and discussion

Next the viscoelastic plate subject to a distributed tangential
force is studied. Results for CFFF boundary conditions are given in
Fig. 2 for various aspect ratios with H¼ 10�5. Fig. 2 shows the real
and the imaginary parts of the frequency plotted against the
tangential load q for the aspect ratios λ¼ 0:5, λ¼ 1:0, λ¼ 1:5 and
λ¼ 2:0. It is observed that the real part of the first vibration mode
increases with the load while the third vibration mode decreases
until they form a single mode without leading to divergence
instability. Thus, there exists a threshold value qf of the load above
which the first and third modes have the same values. Imaginary
part of the frequency is zero when the load is below the threshold
value indicating that the vibration of the plate is less affected by
the presence of viscoelastic damping. When the threshold value is
exceeded, flutter instability occurs [9]. Imaginary part of the fre-
quency exhibits negative value for qZqf leading to the exponen-
tial growth of the deflection.

Corresponding results for H ¼ 10�3 are given in Fig. 3. When
the delay-time H (damping) becomes large corresponding to a
plate with a large viscoelastic coefficient, there is more dissipation
in the system. Results indicate that the plate become unstable not
by divergence instability, but through the single mode flutter
instability resulting from the negative imaginary part of the
eigenvalue of the first mode. The imaginary parts of the second
and third modes remain positive as opposed to being zero which
was the case for H ¼ 10�5 (Fig. 2).

Results for SFSF boundary conditions are given in Fig. 4 for
aspect ratios λ¼ 0:5, λ¼ 1:0, λ¼ 1:5 and λ¼ 2:0 with H¼ 10�5.
The real parts of the first three modes decrease with increasing q
until they become zero which contrasts with CFFF plates where

q40 until flutter instability occurs. Imaginary part of the fre-
quency is zero up to qcr (divergence load) which is less than the
corresponding value for CFFF plates indicating that SFSF plates are
less affected by the presence of viscoelastic damping. When the
load exceeds qcr , the real part of the mode is still zero while there
appears two branches in the imaginary part; a positive branch
which increases with the load and a negative branch which
decreases and is responsible for the growth of the deflection. This
behavior indicates the beginning of divergence instability of the
plate. Corresponding results for SFSF plates are given in Fig. 5 for
H¼ 10�3 which indicates that viscoelastic coefficient H does not
affect the divergence stability for SFSF plates. Another difference as
compared to Fig. 4 for H ¼ 10�5 is that the imaginary part of the
third mode remains positive for λ¼ 1:0, λ¼ 1:5 and λ¼ 2:0
(Fig. 5b–d).

plotted against q with H ¼ 10�5for (a) λ¼ 0:5, (b) λ¼ 1:0, (c)
λ¼ 1:5, (d) λ¼ 2:0.

6. Conclusions

Dynamic stability of a viscoelastic plate subject to a distributed
tangential follower load is studied. Two cases of boundary condi-
tions are considered, namely, clamped-free (CFFF) and simply
supported-free (SFSF). The viscoelastic constitutive relation is
taken as Kelvin–Voigt type and the equation of motion is derived
by using Laplace transformation. The numerical solution of the
problem is obtained by differential quadrature method which is
employed to transform the continuous formulation into a discrete
set of algebraic equations. The solution method is verified by using
the available results in the literature.

In the case of CFFF plates the instability occurs by flutter and
not by divergence as the real part of the first vibration mode
increases with increasing load and forms a single mode with the
third vibration mode without leading to divergence instability.
When a threshold value is exceeded, the imaginary part of the first
frequency becomes negative, leading to the exponential growth of
the vibrations. An interesting result is the observation that the
stability behavior of CFFF plates differs from that of the SFSF plates
in which case the instability occurs by divergence as the real parts
of the first three modes decrease with increasing q until they
become zero. For SFSF plates, qcr (divergence load) is less than the
critical flutter load of CFFF plates as the viscoelastic damping is not
as effective for SFSF plates. As such the boundary conditions
strongly influence the stability of the plate. Viscoelastic coefficient
was found to have little effect on the divergence instability of SFSF
plates. It was also observed that the aspect ratio has little effect on
the flutter load of CFFF plates as well as on the divergence load of
SFSF plates.
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Abstract 

 Divergence and flutter instabilities of viscoelastic rectangular plates under triangularly 

distributed tangential follower loads are studied. Two sets of boundary conditions are considered, 

namely, simply supported plates and plates with a combination of clamped and simply 

supported edges. The constitutive relations for the viscoelastic plates are of Kelvin-Voigt type 

with the effect of viscoelasticity on stability studied numerically. The method of solution is 

differential quadrature which is employed to discretize the equation of motion and the boundary 

conditions leading to a generalized eigenvalue problem. After verifying the method of solution, 

numerical results are given for the real and imaginary parts of the eigenfrequencies to 

investigate flutter and divergence characteristics and dynamic stability of the plates with respect 

to various problem parameters. 

 
Keywords: viscoelastic plates, dynamic stability, triangularly distributed follower load 

 

1. Introduction 

Dynamic stability of elastic structures subject to nonconservative loads is of practical 

importance in such fields as aerospace, mechanical, and civil engineering. As a result the subject 

has been studied extensively to quantify the behaviour of beams, plates and shells under 

follower forces. These forces can be concentrated, uniformly distributed or triangularly 

distributed depending on the specific application. They act in the tangential direction and are not 

derivable from a potential due to their nonconservative nature as presented in works by Kumar 

and Srivasta (1986), Przybylski (1999), Gajewski (2000), Krillov (2013). 

   Early work on the nonconservative instability under uniformly distributed follower loads 

mostly involved one dimensional elastic structures, namely, columns (Sugiyama and Kawagoe, 

1975; Leipholz, 1975; Chen and Ku, 1991). Stability of columns under triangularly distributed 

mailto:adali@ukzn.ac.za
mailto:armandmouafo@yahoo.fr
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loads has been studied by Leipholz and Bhalla (1977), Sugiyama and Mladenov (1983) and Ryu 

et al. (2000). More recent studies on nonconservative loading include columns subject to 

uniformly distributed follower loads by Kim (2010), Kim et al. (2008) and Kazemi-Lari et al. 

(2013) and to triangularly distributed follower loads by Kim (2011). Studies on nonconservative 

stability of two-dimensional structures mostly involved rectangular plates under follower loads 

(Culkowski and Reismann, 1977; Farshad, 1978; Adali, 1982) and under uniformly distributed 

tangential loads (Leipholz, 1978; Leipholz and Pfendt, 1982, 1983; Wang and Ji, 1992). 

   Recent work on the stability of elastic plates under nonconservative loads includes works by 

Zuo and Shreyer (1996), Kim and Park (1998), Kim and Kim (2000), and Jayaraman and 

Struthers (2005). Dynamic stability of functionally graded plates under uniformly distributed 

axial loads has been studied by Ruan et al. (2012) and shells by Torki et al. (2014a, b). These 

studies neglected the effect of viscoelasticity on the stability of the columns and plates. 

Dynamic stability of one-dimensional viscoelastic structures has been the subject of the works 

by Marzani and Potapov (1999), Langthjem and Sugiyama (2000), Darabseh and Genin (2004), 

Zhuo and Fen (2005), Ilyasov and Ilyasova (2006), and Elfelsoufi and Azrar (2006). Recently 

the dynamic stability of viscoelastic plates has been studied for a number of cases (Ilyasov and 

Aköz, 2000; Wang et al., 2007, 2009, 2013; Zhou and Wang, 2014; Robinson and Adali, 2016). 

Vibrations of a simply supported plate with nonlinear strain-displacement relations and subject 

to a uniformly distributed tangential force were studied by Robinson (2013). Dynamic stability 

of viscoelastic shells has been studied by Ilyasov (2010). 

Although the dynamic stability under triangularly distributed tangential forces have been 

studied in the case of columns (see Leipholz and Bhalla, 1977; Sugiyama and Mladenov, 1983; 

Ryu et al., 2000; Kim, 2011), dynamic stability of plates, and in particular, viscoelastic plates 

under this type of loading does not seem to be studied so far. 

Present work extends the results of Robinson and Adali (2016) which studied the 

nonconservative stability of the viscoelastic plates with free edges and under uniformly 

distributed follower loads, to the case of plates with simply supported and simply supported-

clamped plates and subject to triangularly distributed follower loads. Comparisons are given for 

the uniformly and triangularly distributed follower loads. The stability problem is solved for the 

simply supported plates and for plates with a combination of simple and clamped supports by 

differential quadrature method. Divergence and flutter loads are determined and the effect of 

viscoelasticity and the boundary conditions on dynamic stability is investigated. The method of 

solution is verified against the known results in the literature. 
 
 

http://www.researchgate.net/profile/Alessandro_Marzani
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2. Viscoelastic plate subject to triangularly distributed load 

We consider a rectangular plate of uniform thickness h  having dimensions ba  in the x  

and y  directions, respectively. It is subject to a non-uniform tangential follower force 

axqqt /0 . The material of the plate is viscoelastic which is expressed by the Kelvin-Voigt 

constitutive relations given by 

ijijij G ees   2 2                                                       (2.1) 

iiii K 3                                                             (2.2) 

where ijs  and ije  are deviatoric tensor of stress and strain, respectively, and ii  and ii  

are the spherical tensor of stress and strain with   denoting the viscoelastic coefficient. Bulk 

modulus K  and shear modulus G  can be expressed in terms of the Young’s modulus E  

and Poisson’s ratio   as )21(3/  EK  and )21/(  EG . The equation of vibration of 

the viscoelastic plate subject to a triangular follower load is first obtained in the Laplace domain 

(see Wang et al., 2007; Zhou and Wang, 2014). By inverse Laplace transformation, the 

governing equation can be expressed in the time domain as 
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where   is the density of the plate and 
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After introducing the dimensionless coefficients 
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the non-dimensional equation of motion is obtained as 

0)1(11 2

2

2

2
2

3
4

2

2

21 































































w
X

wXqgwgg               (2.7) 



  
 

4 
 

where  
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In equations (2.8), (2.9), H  is the dimensionless delay time of the material and   is 

dimensionless time defined in Eq. (2.6b). Let    

 jeYXWYXw  ),(),,(                                               (2.10) 

where 1j  and   the  dimensionless vibration frequency. Substitution of equation 

(2.10) into equation (2.7) yields the differential equation 
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in terms of the space variables X  and Y . The boundary conditions considered in the present 

work are the simply supported plates (SSSS) and plates with two opposite edges clamped and 

two others simply supported (CSCS). SSSS boundary conditions are given by 
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CSCS boundary conditions are given by 
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3. Differential quadrature (DQ) method 

DQ method involves approximating the partial derivatives of the function ),( YXW  at a sample 

point ),( ji YX  by the weighted sum of the function ijW  values (see Bert and Malik, 1996; 

Krowiak, 2008). Let the number of sample points denoted by N  in X  direction and M  in 

Y  direction. The thr  order partial derivative with respect to X , ths  order partial derivative 

with respect to Y  and the thsr )(   order mixed partial derivative of ),( YXW  with respect 

to both X  and Y  are discretely expressed at the point ),( ji YX  as: 
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where Ni ,...,2,1 , 1,...,2,1  Nk , Mj ,...,2,1  and 1,...,2,1  Ml . 
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The distribution of the grid points are taken as non-uniform and for the simply supported plate, 

the grid points are specified as    
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For the plate with two opposite edges simply supported and other two edges clamped, the   

method combined with the weighted coefficient method is adopted. Thus the grid points for 

CSCS plate are given by    
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where 1 . Using equation (3.1), the discretized form of the differential equation (2.11) can 

be expressed as 
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The discretized form of boundary conditions (2.12) are given by 

   011  iMiNjj WWWW  for Ni ,...,2,1  and Mj ,...,2,1               (3.13a) 
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The corresponding equations for the boundary conditions (2.13) are: 

011  iMiNjj WWWW  for Ni ,...,2,1  and Mj ,...,2,1                (3.14a) 
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4 . Numerical results and discussion 

Results for the viscoelastic plate subject to triangularly distributed tangential force are given in 

comparison to the results for a viscoelastic plate subject to uniformly distributed tangential force 

which was studied in Wang et al. (2007) and Zhou and Wang (2014). Results for SSSS and 

CSCS boundary conditions are given in Table 1 for 510H  (nondimensional viscoelasticity 

coefficient). Table 1 shows that the flutter load, denoted by fq , is higher in the case of the load 

having triangular distribution as expected. In Table 1, 1dq  and 2dq  denote the divergence 

loads of the 1st and 2nd modes, respectively. 

   Figs. 1-3 show the real and the imaginary parts of the first three frequencies plotted against 

the load q  for uniformly and triangularly distributed tangential loads for SSSS plates with 

510H  and 1 , 5.1  and 2 , respectively. The corresponding results for the 

imaginary part of the frequencies for 310H  are given in Figs. 4-5. It is noted that the results 

given in Figs. 1-5 for the uniformly distributed tangential load are the same as the ones given in 

Wang et al. (2007). As such they provide the verification of the method of solution outlined in 

section 3. 

  Comparisons of the loads with uniform and triangular distributions indicate that the results 

are qualitatively similar, but the magnitudes of the follower load causing divergence or flutter 

instability differ considerably. Comparisons between Figs. 1a, 2a, 3a ( 510H ) and Figs. 4a, 

4b and 5 ( 310H ) indicate that the imaginary parts of the frequencies remain positive for 
310H  up to the flutter load.  The corresponding results for CSCS plates with 510H  

are given in Figs. 6-8 with 1 , 5.1  and 2 , respectively. The results for the 

uniformly distributed tangential loads are also shown in the figures which verify the results of 
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Wang et al. (2007). In this case it is observed that the real parts of the vibration modes behave 

differently as compared to SSSS plates shown in Figs. 1-3. For the case 1  (Fig. 6a) the real 

parts of the first and the third modes join to form a single mode. For 5.1  and 2 , the 

first and the second modes join as shown in Figs. 7a and 8a, respectively. Thus, in the case of 

CSCS boundary conditions, there exists a threshold value q  above which the first mode can 

join the second or third mode to form a single mode and this value depends on the aspect ratio. 

Moreover, it is observed that for the aspect ratios of 5.1  and 2 , the plate does not 

show divergence instability and loses stability by flutter. 
 

Table 1. Comparison of flutter loads q  of viscoelastic plates 

with 510H  for various aspect ratios. 
 

Aspect 

ratio   

Boundary 
conditions 

Uniformly 
distributed 

load 
Wang et al. 

(2007) 

Triangularly 
distributed 

load 

 
 

1.0 

 
SSSS 
 
 
CSCS 
 

5.671 dq
1.1322 dq  

 
5.1431 dq
0.168fq  

1.951 dq  
1.2252 dq  

 
 

0.226fq  

 
 

1.5 

 
SSSS 
 

CSCS 

8.1361 dq
7.2242 dq  

 
8.202fq  

0.1741 dq
0.3292 dq  

 
0.270fq  

 
 

2.0 

 
SSSS 
 

CSCS 

8.2241 dq
5.3402 dq  

 
5.251fq   

04.2731 dq
2.4532 dq  

 
0.333fq  

 

   For CSCS boundary conditions with 310H , the results are given in Figs. 9-11. For this 

value of 310H , the real parts of the frequencies do not form a single mode and the 

imaginary parts remain positive until the threshold values are exceeded and the flutter instability 

occurs as shown in Figs. 9b, 10b and 11b. Imaginary parts of the frequencies exhibit negative 

values for fqq   leading to the exponential growth of the deflection.  
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Fig. 1. First three frequencies of SSSS plate vs follower force for 1 , 510H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 

  

 
 

Fig. 2. First three frequencies of SSSS plate vs follower force for 5.1 , 510H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 

 
 

 
Fig. 3. First three frequencies of SSSS plate vs follower force for 2 , 510H ,  

(1) Uniformly distributed load, (2) Triangularly distributed load 
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Fig. 4. Imaginary parts of frequencies of SSSS plate vs follower force for a) 1  and  
b) 5.1 , 310H , (1) Uniformly distributed load, (2) Triangularly distributed load 

 

Fig. 5. Imaginary part of frequency of SSSS plate vs follower force for 2 , 310H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load. 

      

Fig. 6. First three frequencies of CSCS plate vs follower force for 1 , 510H ;  
(1) Uniformly distributed load, (2) Triangularly distributed load 

)a )b
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Fig. 7. First three frequencies of CSCS plate vs follower force for 5.1 , 510H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 

 

 

Fig. 8. First three frequencies of CSCS plate vs follower force for 2 , 510H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 

 

 

Fig. 9. First three frequencies of CSCS plate vs follower force for 1 , 310H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 
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Fig. 10. First three frequencies of CSCS plate vs follower force for 5.1 , 310H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 

 

 

Fig. 11. First three frequencies of CSCS plate vs follower force for 2 , 310H ,  
(1) Uniformly distributed load, (2) Triangularly distributed load 

 
 

5. Conclusions 

   Differential quadrature method is employed to study the dynamic stability of rectangular 

viscoelastic plates subject to triangularly distributed tangential follower loads. Kelvin-Voigt 

viscoelastic model is taken as the constitutive equation of the plate. Two boundary conditions are 

investigated, namely, simple supports and a combination of simple and fixed supports. The 

solution is verified against previous results obtained for SSSS and CSCS viscoelastic plates 

subject to uniformly distributed tangential loads by Wang et al. (2007).   

   Numerical results are given to study the effects of the aspect ratio and degree of viscoelasticity 

on the real and imaginary parts of the frequencies. The effect of uniformly and triangularly 

distributed follower loads on dynamic stability is compared numerically. It is observed that in the 

case of CSCS plates, the flutter instability occurs before the divergence instability for higher 

aspect ratios. In the case of SSSS plates the degree of viscoelasticity does not affect the divergence 
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load, but this effect is more pronounced for CSCS plates. At higher levels of viscoelasticity 

(higher values of H ) the imaginary parts of the complex frequencies become positive rather than 

zero for low values of the follower load.  
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Dynamic Stability of Viscoelastic Plates under  

Axial Flow by Differential Quadrature Method 

Part 1 
 

Abstract 
Purpose – Cantilever plates subject to axial flow can lose stability by flutter and properties such as viscoelasticity 

and laminar friction affect dynamic stability. The purpose of the present study is to investigate the dynamic 

stability of viscoelastic cantilever plates subject to axial flow by using the differential quadrature method. 

Design/methodology/approach - Equation of motion of the viscoelastic plate is derived by implementing Kelvin-

Voigt model of viscoelasticity and applying inverse Laplace transformation. The differential quadrature method is 

employed to discretize the equation of motion and the boundary conditions leading to a generalized eigenvalue 

problem. The solution is verified using the existing results in the literature and numerical results are given for 

critical flow velocities.  

Findings – It is observed that higher aspect ratios lead to imaginary part of third frequency becoming negative 

and causing single-mode flutter instability. It was found that flutter instability does not occur at low aspect ratios. 

Moreover the friction coefficient is found to affect the magnitude of critical flow velocity, however, its effect on 

the stability behaviour is minor.   

Originality/value- The effects of various problem parameters on the dynamic stability of a viscoelastic plate 

subject to axial flow were established. It was shown that laminar friction coefficient of the flowing fluid increases 

the critical fluid velocity and higher aspect ratios lead to single-mode flutter instability. The effect of increasing 

damping of viscoelastic material on the flutter instability was quantified and it was found that increasing 

viscoelasticity can lead to divergence instability.  

Keywords Dynamic stability, Viscoelastic plate, Differential quadrature method, Flutter, Critical flow velocity.  

Paper type   Research paper 
 

 
1. Introduction 

Elastic plates subject to axial flow may lose stability when the flow velocity exceeds a critical value. The mode of 

dynamic instability is flutter and the flutter amplitude grows as the flow velocity increases (Lemaitre et al., 2005). 

This kind of instability can be typically observed in a flag flapping in the wind which was first studied by Taneda 

(1968) who made an experimental study of the phenomenon. Datta and Gottenberg (1975) studied flutter of a strip 

and predicted the critical flow velocity by modelling the strip as a cantilever beam and employing slender wing 

theory to evaluate the aerodynamic loads. Other studies of one-dimensional plates in axial flow include Doaré et 

al. (2011), Favier et al. (2015) and Yadykin et al. (2001). A widely studied area is the flutter instability of flags 

and the recent work on the subject include Connell and Yue (2007), Pang et al. (2010), Eloy et al. (2012), Virot et 

al. (2013) and Chen et al. (2014a, b).  

      The subject has applications in a number of fields such as aerospace engineering involving wing flutter (Tang 

and Dowell, 2004), paper industry (Watanabe et al., 2002a, b), and medical fields (palatal snoring) (Baliant and 

Lucey, 2005; Huang, 1995a). More recently there has been extensive research on energy harvesting from 

aeroelastic flutters using piezoelectric materials (Allen and Smits, 2001; Bryant and Garcia, 2011; Perez et al., 

2015; Tang et al., 2009a; Wang and Ko, 2010). The subject of loss of stability of beams and plates by flutter has 

been studied in a number of books (Païdoussis, 2004; Axisa and Antunes, 2007; Amabili, 2008). 

      The present paper studies the fluid-induced vibrations and dynamic stability of cantilevered viscoelastic plates 

under axial flow and investigates the effect of viscoelasticity and other problem parameters on the aeroelastic 

stability. Loss of stability of elastic plates in axial flow has been the subject of a number of studies (Eloy et al., 

2007, 2008; Howell et al., 2009; Huang, 1995b; Huang and Zhang, 2013; Tang and Païdoussis, 2007; Tang et al., 

2009b; Yamaguchi et al., 2000a, b; Zhao et al., 2012) in which the critical flow velocity for plate flutter has been 

determined based on dynamic stability analysis and various parameters affecting the stability has been studied. 

Fluid-structure interactions have been studied numerically by Rossi and Oñate (2010). 

      Most of the studies on the subject involved elastic plates and the corresponding studies on viscoelastic 

structures have been few even though there are several applications of viscoelastic materials.  A recent work on 

the subject is the study of flutter stability of a flag of fractional viscoelastic material (Chen et al., 2014b). Flutter 

of one dimensional viscoelastic strips has been studied in (Potapov, 1995, 2004; Kiiko, 1996; Ilyasov and 

Ilyasova, 2006; Pokazeyev, 2008; Kiiko and Pokazeev, 2013) and the flutter of simply supported viscoelastic 

plates in (Khudayarov, 2005). Stability of elastic and viscoelastic plates in supersonic flow was studied by Vadim 

and Potapov (1995), Khudayarov (2010), and Merrett and Hilton (2010). Recent works on the dynamic stability of 

viscoelastic plates under distributed follower loads include Robinson (2013), Robinson and Adali (2016) and 

Page 1 of 16

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 

 

Robinson and Adali (under review). In most studies the effect of the coefficient of friction of the flowing fluid has 

been neglected. The present study provides a systematic study of the effects and interaction of the friction 

coefficient, aspect ratio and viscoelastic damping coefficient on the dynamic stability of a viscoelastic plate under 

axial flow. 

      The numerical solution is obtained by differential quadrature method which has been used in several studies to 

solve engineering problems due to its accuracy and efficiency (Cheng et al., 2015; De Rosa and Lippiello, 2016; 

Forouzesh and Jafari, 2015; Korkmaz and Dağ, 2013; Kumar et al., 2013, Mittal et al., 2013). Further engineering 

applications of differential quadrature method can be found in the book by Shu (2000). Present study employs 

differential the quadrature method to investigate the dynamic stability behaviour of a viscoelastic plate in axial 

flow and determines the effect of problem parameters on flutter instability. First the differential equation 

governing the dynamic stability of a rectangular viscoelastic plate subjected to a uniform air flow is derived via 

inverse Laplace transformation.  The plate is specified as a cantilevered plate with the constitutive equation 

described by Kelvin-Voigt model. The numerical solution of the problem is obtained by differential quadrature 

(DQ) method which is implemented to discretize the equation of motion and the boundary conditions. This 

discretization leads to a generalized eigenvalue problem with complex eigenvalues. The effects of aspect ratio, 

delay time, and frictional coefficient on flutter instability are studied and the real and complex eigenvalues are 

plotted with respect to flow velocity.  

 

2. Governing equation   

We consider a thin rectangular plate of dimensions ba×  and thickness h  with Young’s modulus E , Poisson’s 

ratio ν  and density ρ . The Cartesian coordinate system zyx ,,  which has its origin at mid-thickness is shown in 

Figure 1 and ( zyx ,, ) indicates the location of a point of the undeformed plate.  

 

                

                            Figure 1. 
Geometry of the cantilever 

 plate in axial flow 

 
       

Using the Kirchhoff plate theory, the displacements wvu ,,  along x , y  and z  directions, respectively, are given 

by  

xzu ψ−= ,      yzv ψ−= ,       ),,( tyxww =                                                        (1) 

where the angles of rotation xψ  and yψ  are related to w  through the relations  

 

b  

a  

U  

y  

x  
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The linear strain-displacement relations are given by  
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The plate is defined as viscoelastic of the Kelvin-Voigt type and the constitutive equations can be written as 

follows (Wang et al., 2007)  

ijijij G ees &  2 2 η+= ,            iiii K εσ  3=                                                            (4) 

where K , η , G  are bulk elastic modulus, viscoelastic coefficient and shear elastic modulus, respectively. They 

can be expressed as )21(3/ ν−= EK  and )1(2/ ν+= EG  in terms of E   and ν . The quantities ijs  and ije  are, 

respectively, the deviatoric tensors of stress and strain while iis  and iiσ  stand for the spherical tensors of strain 

and stress. The bending moments xM , yM  and twisting moments xyM , yxM  are given by  

∫−= 2/

2/

h
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h yy dzzM σ                                                            (5a) 
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2/

h

h yxyx dzzM τ                                                         (5b) 

The plate is subject to an axial fluid flow in the x  direction. When the fluid is incompressible with a uniform 

velocity U , the plate is subjected to a force per unit area )(xp  as well as the tension )(xT . The fluid force )(xp  

can be derived through the unsteady potential flow model (Lemaitre et al., 2005) and is given by  
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where the first term is the inertia force independent of the flow velocity U , the second term is a Coriolis type 

force proportional to U , and the last term stands for a stiffness force proportional to 2
U . All three terms are 

scaled by the added mass am  due to the presence of the fluid. In the following, we focus our attention in a 

hanging configuration. In this case the local tension )(xT  which takes into account the effects of friction due to 

the axial flow along the two sides of the plate is given by (Datta and Gottenberg, 1975):  

( )2/12/12/12/3    )()( xaUfxamgxT ff −+−= νρ                                          (7) 

where fν  is the viscosity of fluid, f  is the laminar friction coefficient, g  is the constant of gravity, m  is the 

mass of the plate per unit area and fρ  is the density of the fluid. 

       Equilibrium equation of the non-conservative rectangular plate can be expressed as follows:  
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By making use of the scheme described in (Wang et al., 2007), that is, combining first the Laplace transformation 

of Equations (4), (6), (7) and (8), and next carrying out the Laplace inverse transformation of the resulting 

equation, a differential equation governing the vibration of the non-conservative viscoelastic rectangular plate can 

be obtained as  
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Introducing the dimensionless variables  
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where τ  is dimensionless time, H  is dimensionless delay time of the material, and 
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Equation (13) is the dimensionless form of the differential Eq. (9) which governs the vibrations of the viscoelastic 

rectangular plate subject to an axial flow. The solution of equation (13) is taken in the form 

( )ωττ 1exp),(),,( −= YXWYXw  where ω  is the dimensionless complex frequency. 

       The boundary conditions for the CFFF plate (one edge clamped and others free) are expressed as follows:  
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3.  Differential quadrature method 

Next, differential quadrature method is implemented for the numerical solution of the problem. A partial 
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derivative of the function ),( YXw  at a sample point ),( ji YX  is expressed as a weighted linear sum of the 

function ijji wYXw =),(  values at all the sample points chosen on the solution domain of spacial variable. The 

number of sample point is specified as N  in the X  direction and M  in the Y  direction. Thus, thr  order partial 

derivative of ),( YXw  with respect to X , th
s  order partial derivative with respect to Y  and thsr )( +  order 

mixed partial derivative with respect to X  and Y  at a given point ),( ji YX  are expressed as  (Bert and Malik, 

1996, Zong and Zhang, 2009):  
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where 
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ikA  and 
)(s

jkB  are the weighting coefficients defined as (Tang and Chen, 2011)   
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for 1,...,3,2 −= Nr  and 1,...,3,2 −= Ms . The distributions of the grid points are taken following the approach 

developed in (Shu and Du, 1997) and we use the Coupling Boundary Conditions with General Equation (CBCGE) 

technique to implement the boundary conditions. Accordingly, the form of the grid points for CFFF plate is given 

by 

32 23 iiiX ξξ −= ,          
32 23 jjjY ηη −=                                                            (26) 
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where 
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With the above considerations, Equation (13) is transformed into the following discretized form:  
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The discretized form of the boundary conditions is given in the Appendix. The discretized equation (29) with the 

boundary conditions (17) (see Appendix) can be rearranged and written in the following form: 

[ ] [ ] [ ] [ ]{ }{ } { }0 012
2

3
3 =++++ ijWCCCC ωωω                                                     (31) 

where [ ]0C , [ ]1C , [ ]2C  and [ ]3C  are the matrices and depend on dimensionless parameters delay time H , 

follower load q , and the aspect ratio λ . This equation may be viewed as the generalized eigenvalue problem 

describing the vibration of the plate. 

 

4. Numerical results and discussion 

4.1. Verification 

To verify the method of solution Equation (13) is solved by DQ method for the case 0=H , 0=λ  and 0=k  

which corresponds to the problem studied in Lemaitre et al. (2005). The results are shown in Figure 2 which is the 

same as the one given Lemaitre et al. (2005) obtained by Galerkin method using 50 modes in the computation.  

 
Figure 2. 

Critical velocity vs dimensionless length with  
0=H , 0=λ , 0=k , 19.0=β  
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4.2 Influence of friction  

The effect of the friction coefficient k , defined in equation (12), on the critical velocity is investigated for an 

elastic 1D plate, i.e., for 0=H  and 0=λ , in Figure 3 by plotting the first three frequencies with respect to the 

flow velocity for various values of k . As the friction constant k  increases from 01.0=k  to 3.0=k , the critical 

velocity, the dimensionless critical velocity, as determined by the fundamental frequency 1ω  becoming zero,  

increases from 2.6=cV  to 7.9=cV . This indicates that the friction has an appreciable effect on critical velocity.  

 

 
 

 

    

Figure 3.  
First three natural frequencies vs flow velocity with 

0=H , 0=λ , 11 =a , 19.0=β , 

(a) 01.0=k , (b) 1.0=k , (c) 2.0=k , (d) 3.0=k   

 

 

       In Figure 4 the critical velocity cV  is plotted against the dimensionless length 1a  for 01.0=k , 1.0=k , and 

3.0=k  for an elastic 1D plate ( 0=H , 0=λ ). When k  increases from 0.01 to 0.3, the asymptotic value of 

critical velocity increases slightly from 2 to 2.2 indicating that as the length of the plate increases, effect of the 

friction coefficient k  decreases, and in particular, its effect on the critical asymptotic velocity is observed to be 

minor.   
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Figure 4. 

Critical velocity vs dimensionless 

length for 0=H , 0=λ , 19.0=β  

and for various values of k . 

 

 
4.3 Effect of added mass on critical velocity 

The effect of added mass for one and two-dimensional cases is studied in Figure 5 by plotting added mass 

parameter β  against the critical velocity for 1D and 2D elastic plates. It is observed that the critical velocity 

decreases with increasing added mass as expected, however the decrease is higher in the case of 2D plate as 

compared to the one-dimensional model.  

 
Figure 5. 

Effect of mass ratio β  on critical velocity using one  

dimensional model ( 0=H , 0=λ , 11 =a , 0=k )  

and two dimensional model ( 0=H , 1=λ , 11 =a , 0=k ). 
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4.4 Effect of aspect ratio and friction 

Real and imaginary parts of the first three frequencies of a viscoelastic plate are plotted against the flow velocity 

V  in Figure 6 and 7 for the aspect ratios 5.0=λ  and 1=λ , respectively, with friction coefficients 01.0=k  and 

4.0=k  with the dimensionless viscoelastic coefficient 5
10

−=H . Figures 6a, 6c, 7a and 7c show that an increase 

in the friction coefficient k  does not affect the real part of the frequency which remains the same for different k  

values. The real part of the first frequency becomes zero for 5.6=V  for 5.0=λ  (Figures 6a, 6c) and the 

imaginary parts remain positive (Figures 6b, 6d). However, the imaginary parts of the frequencies are affected by 

an increase in k  (see Figures 6b, 6d and 7b, 7d).  To assess the effect of the aspect ratio we compare Figure 6 (

5.0=λ ) and Figure 7 ( 1=λ ). An important difference is that the imaginary part of the third frequency becomes 

negative for 1=λ  (Figure 7b, d), leading to single-mode flutter instability for 5≥V . Thus instability depends on 

the aspect ratio with the high aspect ratios leading to flutter instabilities. 

  

 
 

 
 
Figure 6.   

Real and imaginary parts of first three 

frequencies ω  vs flow velocity V   

for 
5

10
−=H , 11 =a , 19.0=β , 5.0=λ ,  

(a, b) 01.0=k , (c, d) 4.0=k . 
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Dynamic Stability of Viscoelastic Plates under  

Axial Flow by Differential Quadrature Method 

Part 2 
 

 

 

 

 
 

 

Figure 7.  

Real and imaginary parts of first three 

 frequencies ω  vs flow velocity V  for 
510−=H , 

   11 =a , 19.0=β , 1=λ ,  

(a, b) 01.0=k , (c, d) 4.0=k . 
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for 5.0=λ  (Figures 8a, c), but does not become zero. As the imaginary parts of the frequencies remain positive, 

the plate stays stable due to increased damping of the viscoelastic material. For 1=λ , the real parts of the first and 

second frequencies become zero for flow velocity 7>V , however the imaginary part of the third frequency 
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the case for 510−=H  in Figure 7. Thus the aspect ratio has a direct effect on the stability of viscoelastic plates 

and the friction coefficient k  affects the magnitude of the critical velocity.  

 

         
 

 
 
Figure 8.  

Real and imaginary parts of first three 

frequencies ω  vs. flow velocity V  for 
3

10
−=H ,  

11 =a , 19.0=β , 5.0=λ ,  

(a, b) 01.0=k , (c, d) 4.0=k . 
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Figure 9. 

Real and imaginary parts of first three 

 frequencies ω  vs flow velocity V  for  

3
10

−=H , 11 =a , 19.0=β , 1=λ , 

 (a, b) 01.0=k , (c, d) 4.0=k . 

 

 

 

5. Conclusions 

Dynamic stability of a cantilever viscoelastic plate subject to axial flow is studied using the differential quadrature 

method for numerical solutions. The viscoelastic material is defined as Kelvin-Voigt type and the equation of 

motion is derived by using inverse Laplace transformation. The method of solution is verified by applying it to a 

known solution in the literature. 

      It is observed that the aspect ratio and the viscoelastic coefficient directly affect the stability of the plate in 

axial flow. At low aspect ratios and viscoelastic coefficients, flutter instability does not occur as the real parts of 

the frequencies decrease with increasing flow velocity until they become zero while the imaginary parts remain 

positive (Figure 6). However, high aspect ratios cause the plate to lose stability by undergoing flutter as can be 

observed from Figures 7 and 9. Another observation is that increased viscoelasticity at low aspect ratios convert 

divergence stability to a simple stability and the plate remains stable (see Figures 8a, c). 

       An interesting phenomenon is the fact that the flutter instability at high aspect ratios is caused by the 

imaginary part of the third frequency becoming negative for high enough flow velocities rather than the first 

frequency (see Figures 7b, d, 9b, d).  Numerical results indicate that the effect of laminar friction coefficient of the 

flowing fluid on the stability behaviour is minor, however, increasing friction leads to higher critical velocity for 

flutter instability.    
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Appendix 

For 0=X  and 1=X , discretized form of boundary conditions (17) are given by  
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For 0=Y  and 1=Y , the corresponding equations are   

 

0
1 1

1
)2()2(

1
2 =+∑ ∑

= =

M

l

N

k
kikill  WAν WBλ          for 1,...,3,2 −= Ni  

∑ ∑ ∑
= = =

=−+
M

l

N

k

M

l
kllikill  WBAν WB

1 1 1

)1(
1

)2()3(
1

2 0)2(λ         for 2,...,4,3 −= Ni  

0
1 1

)2()2(2 =+∑ ∑
= =

M

l

N

k
kMikilMl  WAν WBλ                for 1,...,3,2 −= Ni  

∑ ∑ ∑
= = =

=−+
M

l

N

k

M

l
klMlikilMl  WBAν WB

1 1 1

)1()2()3(2 0)2(λ   for 2,...,4,3 −= Ni  

 
At two free corners  

∑ ∑
= =

=
N

k

M

l
kljlik  WBA

1 1

)1()1(
0   for Ni = , Mj ,1=  

        

References 

Allen, J.J. and Smits, A. J. (2001), “Energy harvesting eel”, Journal of Fluids and Structures”, Vol. 15, pp. 629-640. 

Amabili, M. (2008), “Nonlinear Vibrations and Stability of Shells and Plates”, Cambridge University Press, Cambridge, UK. 

Axisa, F. and Antunes J. (2007), “Modelling of Mechanical Systems-Fluid Structure Interaction”, Vol. 3, Elsevier, Oxford, 

UK. 

Baliant, T. and Lucey, A. D. (2005), “Instability of a cantilevered flexible plate in viscous channel flow”, Journal of Fluids 

and Structures, Vol. 20, pp. 893–912. 

Bert, C. W. and Malik M. (1996), “Implementing multiple boundary conditions in the DQ solution of higher-order PDE’s: 

Application to free vibration of plates”, International Journal for Numerical Methods in Engineering, Vol. 39, 1237-

1258. 

Bryant, M. and Garcia, E. (2011), “Modeling and testing of a novel aeroelastic flutter energy harvester”, Journal of Vibration 

and Acoustics, Vol. 133, pp. 1–11. 

Chen, M., Jia L., Wu, Y., Yin, X. and Ma Y. (2014a),”Bifurcation and chaos of a flag in an inviscid flow”, Journal of Fluids 
and Structures, Vol. 45, pp. 124–137. 

Chen, M., Jia L.-B., Chen X.-P. and Yin X.-Z. (2014b), “Flutter analysis of a flag of fractional viscoelastic material”, Journal 

of Sound and Vibration, Vol. 333, pp. 7183–7197. 

Cheng, Z.B., Xu, Y.G. and Zhang, L.L. (2015), “Analysis of flexural wave bandgaps in periodic plate structures using 

differential quadrature element method, International Journal of Mechanical Sciences, Vol. 100, pp. 112-125. 

Connell, B.S.H. and Yue D.K.P. (2006), “Flapping dynamics of a flag in a uniform stream”, Journal of Fluid Mechanics, Vol. 
581, pp. 33–68. 

Page 13 of 16

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14 

 

Datta, S.K. and Gottenberg, W. G, (2007), “Instability of an elastic strip hanging in an airstream”, ASME Journal of Applied 

Mechanics, Vol. 42, pp. 195-198. 

De Rosa, M.A. and Lippiello, M. (2016), “Nonlocal frequency analysis of embedded single-walled carbon nanotube using the 
differential quadrature method”, Composites Part B: Engineering, Vol. 84, pp. 41-51. 

Doaré, O., Sauzade M. and Eloy C. (2011), “Flutter of an elastic plate in a channel flow: Confinement and finite-size effects”, 

Journal of Fluids and Structures, Vol. 27, pp.76-88. 

Eloy, C., Kofman N. and Schouveiler, L. (2012), “The origin of hysteresis in the flag instability”, Journal of Fluid Mechanics, 

Vol. 691, pp. 583-593. 

Eloy, C., Lagrange, R., Souilliez, C. and Schouveiler, L. (2008), “Aeroelastic instability of cantilevered flexible plates in 
uniform flow”, Journal of Fluid Mechanics, Vol. 611, pp. 97–106. 

Eloy, C., Souilliez, C. and Schouveiler, L. (2007), “Flutter of a rectangular plate”, Journal of Fluids and Structures, Vol. 23, 

pp. 904-919. 

Favier, J., Revell, A. and Pinelli, A. (2015), “Numerical study of flapping filaments in a uniform fluid flow”, Journal of Fluids 

and Structures, Vol. 53, pp. 26-35. 

Forouzesh, F. and Jafari, A.A. (2015), “Radial vibration analysis of pseudoelastic shape memory alloy thin cylindrical shells 

by the differential quadrature method”, Thin-Walled Structures, Vol. 93, pp. 158-168. 

Howell, R.M., Lucey, A.D., Carpenter, P.W. and Pitman, M.W. (2009), “Interaction between a cantilevered-free flexible plate 

and ideal flow”, Journal of Fluids and Structures, Vol. 25, pp. 544-566. 

Huang, L. (1995), “Mechanical modelling of palatal snoring”, Journal of the Acoustical Society of America, Vol. 97, pp. 3642–

3648. 

Huang, L. (1995), “Flutter of cantilevered plates in axial flow”, Journal of Fluids and Structures, Vol. 9, pp. 127–147.  

Huang, L. and Zhang, C. (2013) “Modal analysis of cantilever plate flutter”, Journal of Fluids and Structures, Vol. 38, pp. 

273–289. 

Ilyasov, M. and Ilyasova, N. (2006), “Flutter of viscoelastic strips”, Mechanics of Time-Dependent Materials, Vol. 10, pp. 201-

213. 

Khudayarov, B. A. (2005), “Numerical analysis of the nonlinear flutter of viscoelastic plates”, International Journal of Applied 
Mechanics, Vol. 41, pp. 538-542. 

Khudayarov, B.A. (2010), “Flutter of a viscoelastic plate in a supersonic gas flow”, International Journal of Applied 

Mechanics, Vol. 46, pp. 455-460. 

Kiiko, I.A. (1996), “Flutter of a viscoelastic plate”, Journal of Applied Mathematics and Mechanics, Vol. 60, pp. 167-170. 

Kiiko, I. A. and Pokazeev, V.V. (2013), “Flutter of a viscoelastic strip”, Moscow University Mechanics Bulletin, Vol. 68, pp. 

25-27.  

Korkmaz, A. and Dağ, I. (2013), “Cubic B‐spline differential quadrature methods and stability for Burgers' equation”, 

Engineering Computations, Vol. 30, pp. 320-344. 

Kumar, V., Jiwari, R. and Gupta, R.K. (2013), "Numerical simulation of two dimensional quasilinear hyperbolic equations by 

polynomial differential quadrature method", Engineering Computations, Vol. 30, pp.892 – 909. 

Lemaitre, C., Hémon, P. and Delangre, E. (2005), “Instability of long ribbon in axial flow”, Journal of Fluids and Structures, 
Vol. 20, pp. 913-925. 

Merrett, C.G. and Hilton, H.H. (2010), “Elastic and viscoelastic panel flutter in incompressible, subsonic and supersonic 

flows”, ASD Journal, Vol. 2, pp. 53-80. 

Mittal, R.C., Jiwari, R. and Sharma, K.K. (2013), “A numerical scheme based on differential quadrature method to solve time 

dependent Burgers' equation”, Engineering Computations, Vol. 30, pp. 117-131. 

Païdoussis, M.P. (2004), “Fluid–Structure Interactions: Slender Structures and Axial Flow”, Elsevier, Academic Press, 

London, Vol. 2. 

Pang, Z., Jia, L.B. and Yin, X. Z. (2010), “Flutter instability of rectangle and trapezoid flags in uniform flow”, Physics of 

Fluids, Vol. 22, No. 121701. 

Perez, M., Boisseau, S., Gasnier, P., Willemin, J. and Reboud, J.L. (2015), “An electret-based aeroelastic flutter energy 

harvester”, Smart Materials and Structures, Vol. 24, No. 035004.  

Pokazeyev, V. (2008), “Flutter of a cantilevered elastic and viscoelastic strip”, Journal of Applied Mathematics and 

Mechanics, Vol. 72, pp. 446-451. 

Potapov, V.D. (1995), “Stability of viscoelastic plates in supersonic flow under random loading”, AIAA Journal, Vol. 33, pp. 

712-715. 

Page 14 of 16

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 

 

Potapov, V.D. (2004), “Stability of elastic and viscoelastic plates in a gas flow taking into account shear strains”, Journal of 

Sound and Vibration, Vol. 276, pp. 615–626. 

Robinson, M.T.A. ( 2013), “Nonlinear vibration of 2d viscoelastic plates subjected to tangential follower force”, Engineering 
Mechanics, Vol. 20, No. 1, pp 59–74  

Robinson, M.T.A. and Adali, S. (2016), “Nonconservative stability of viscoelastic rectangular plates with free edges under 

uniformly distributed follower force”, International Journal of Mechanical Sciences, Vol. 107, pp. 150-159. 

Robinson, M.T.A. and Adali, S.  (Under review)  “Dynamic stability of viscoelastic rectangular plates subjected to triangular 

tangential follower loads”, Submitted to Journal of Mechanical Science and Technology. 

Rossi, R., Oñate, E. (2010), “Analysis of some partitioned algorithms for fluid-structure interaction”, Engineering 
Computations, Vol. 27, pp. 20-56. 

Shu, C. (2000), Differential Quadrature and Its Applications in Engineering, Springer-Verlag, London. 

Shu, C. and Du, H. (1997), “A generalized approach for implementing general boundary conditions in the GDQ free vibration 

analysis of plates”, International. Journal of Solids Structures, Vol. 34, pp. 837-846. 

Taneda, S. (1968), “Waving motions of flags”, Journal Physical Society of Japan, Vol. 24, pp. 392-401. 

Tang, D.M. and Dowell, E. H. (2004), “Effects of geometric structural nonlinearity of flutter and limit cycle oscillations of 

high-aspect-ratio wings”, Journal of Fluids and Structures. Vol. 19, pp. 291-306. 

Tang, L. and Païdoussis, M.P. (2007), “On the stability and the post-critical behaviour of two-dimensional cantilevered flexible 

plates in axial flow”, Journal of Sound and Vibration, Vol. 305, pp. 97-115. 

Tang, L., Païdoussis, M.P. and Jiang, J. (2009), “Cantilevered flexible plates in axial flow: Energy transfer and the concept of 

flutter-mill”, Journal of Sound and Vibration, Vol. 326, pp. 263-276. 

Tang, L., Païdoussis, M.P. and Jiang, J. (2009), “The dynamics of variants of two-dimensional cantilevered flexible plates in 

axial flow”, Journal of Sound and Vibration, Vol. 323, pp. 214–231.  

Tang, Y.-Q. and Chen, L.-Q. (2011), “Nonlinear free transverse vibration of in-plane moving plate: Without and with internal 

resonances”, Journal of Sound and Vibration, Vol. 330, pp. 110-126.  

Vadim, D. and Potapov, V.D. (1995), “Stability of viscoelastic plates in supersonic flow under random loading”, AIAA 

Journal, Vol. 33, pp. 712-715. 

Virot, E., Amandolese, X. and Hémon, P. (2013), “Fluttering flags: an experimental study of fluid forces”, Journal of Fluids 

and Structures, Vol. 43, pp. 385–401. 

Wang, D.-A and. Ko, H.-H. (2010), “Piezoelectric energy harvesting from flow-induced vibration”, Journal of 

Micromechanics and Microengineering, Vol. 20, No. 025019. 

Wang, Z.-M., Zhou, Y.-F. and Wang Y. (2007), “Dynamic stability of non-conservative viscoelastic rectangular plate”, 

Journal of Sound and Vibration, Vol. 307,  pp. 250-264. 

Watanabe, Y., Suzuki, S., Sugihara, M. and Sueoka, Y. (2002a), “An experimental study of paper flutter”, Journal of Fluids 

and Structures, Vol. 16, pp. 529–542.  

Watanabe, Y., Isogai, K., Suzuki, S. and Sugihara, M. (2002b), “A theoretical study of paper flutter”, Journal of Fluids and 

Structures, Vol. 16, pp. 543–560. 

Yamaguchi, N., Yokota, K. and Tsujimoto, Y. (2000a), “Flutter limits and behaviour of a flexible thin sheet in high-speed 
flow-I: Analytical method for prediction of the sheet behaviour”, ASME Journal of Fluids Engineering, Vol.122, pp. 

65-73. 

Yamaguchi, N., Sekiguchi Y., Yokota, K. and Tsujimoto, Y. (2000b), “Flutter limits and behaviours of a flexible thin sheet in 

high-speed flow-II: Experimental results and predicted behaviours for low mass ratios”, ASME Journal of Fluids 

Engineering, Vol. 122, pp. 74-83. 

Yadykin, Y., Tenetov V. and Levin D. (2001), “The flow-induced vibration of a flexible strip hanging vertically in a parallel 

flow part 1: Temporal aeroelastic instability”, Journal of Fluids and Structures', Vol. 15, pp. 1167–1185. 

Zhao, W., Païdoussis M.P., Tang, L., Liu, M. and Jiang, J. (2012), ''Theoretical and experimental investigations of the 

dynamics of cantilevered flexible plates subjected to axial flow'', Journal of Sound and Vibration, Vol. 331, pp. 575–

587.  

Zhi Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, Chapman & Hall/CRC, Boca Raton, FL. 

 

 

 
 

Page 15 of 16

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 

 

 
 

 

 

 

LIST OF FIGURE CAPTIONS 

 
Fig. 1. Geometry of the cantilever plate in axial flow 

 

Fig. 2. Critical velocity vs dimensionless length with 0=H , 0=λ , 0=k , 19.0=β  

 

Fig. 3. First three natural frequencies vs flow velocity with 0=H , 0=λ , 11 =a , 19.0=β , 

           (a) 01.0=k , (b) 1.0=k , (c) 2.0=k , (d) 3.0=k   

 

Fig. 4. Critical velocity vs. dimensionless length for 0=H , 0=λ , 19.0=β  for various values of k . 

 

Fig. 5. Effect of mass ratio β  on critical velocity using one dimensional model ( 0=H , 0=λ , 11 =a , 0=k ) 

and two dimensional model ( 0=H , 1=λ , 11 =a , 0=k ). 

 

Fig. 6.  Real and imaginary parts of first three frequencies ω  vs flow velocity V  for 5
10

−=H , 11 =a , 

19.0=β , 5.0=λ , (a, b) 01.0=k , (c, d) 4.0=k . 

 

Fig. 7. Real and imaginary parts of first three frequencies ω  vs flow velocity V  for 5
10

−=H , 11 =a , 

19.0=β , 1=λ , (a, b) 01.0=k , (c, d) 4.0=k . 

 

Fig. 8. Real and imaginary parts of first three frequencies ω  vs. flow velocity V  for 3
10

−=H , 11 =a , 

19.0=β , 5.0=λ , (a, b) 01.0=k , (c, d) 4.0=k . 

 

Fig. 9. Real and imaginary parts of first three frequencies ω  vs. flow velocity V  for 3
10

−=H ,  11 =a , 

19.0=β , 1=λ , (a, b) 01.0=k , (c, d) 4.0=k . 
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CHAPTER 7 :  BUCKLING OF NON LOCAL NAN OBEAM S 

7.1-Intro duction  
This chapter is devoted to study on Carbon Nanotubes (CNT) from basic definitions to the 

formulation of the buckling of nanotubes including its synthesis. To carry on the task, the 

author first define the basic concepts around CNTs, then gives the reasons for its modelling 

as a nanobeam. The establishment of the governing equation for the CNT considered as an 

Euler-Bernoulli nanobeam and subjected to distributed forces and point loads are performed. 

Weak formulation and the Rayleigh-Ritz method are explained in detail in order to 

understand the method of solution employed in the solutions of the problems in 

chapters 8 and 9. 

 

7.2-The basic def initions and origin of Carbon nanotubes  
The term Nanotechnology was introduced firstly by Japanese researcher Norio Taniguchi, in 

1974, but, only became popular later in 1986 with Eric Drexler, an American engineer from 

MIT (Massachusetts Institute of Technology) through his famous book titled: ''Engines of 

Creation: The Coming Era of Nanotechnology'' [1]. In fact, the nanoparticles have always 

been present in the composition of some natural materials. They can’t be then considered as 

invented by human beings. The terminology “nanotechnology” itself became more popular 

after the discovery of a particular nano structure, called Carbon Nanotubes in 1991 by 

Japanese researcher S. Iijima. They are defined as Cylindrical tubes, generally made of 

carbon with diameters on nanometer scale (one fifty thousandth of human hair‘s thickness). 

Their length can be as much as a few centimeters.  They physically exist in two principal 

categories, namely, Single walled nanotube (SWNT) and Multi-walled nanotube (MWNT) as 

presented in Figure 7.1 .  

                                       

 

Fig 7.1: Schematic diagrams of (a) single-wall nanotube (SWNT) and (b) multi-wall 
nanotube (MWNT) [2] 

(a) (b) 
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Many methods have been developed for synthesis of CNTs [3, 4]. Among them, one can 

name Chemical vapour deposition (CVD), Arc discharge, Laser ablation, Flame pyrolysis, 

Bottom-up organic approach. After the synthesis, it is very important to be able to 

characterize mechanically the carbon nanotubes as well as their material responses. Two 

methods have been developed in this regards, which are experimental, and theoretical 

methods. Experiments have shown that CNTs have very high Young’s modulus, a 

characteristic which makes them strong materials. Other experiments have demonstrated their 

excellent thermal and electrical conductivity, comparing to existing well known conductors 

(Table1). 

 

Tab.  7.1. Comparison of thermal and electrical conductivity of CNT with some materials [5]  
 

Mate rial  Therm al Condu ctivity (W/m.k)  Electr ical Condu ctivity  

Carbon Nanotubes  > 3000  106 - 107  

Copper  400  6 x 107  

Carbon Fiber  - Pitch  1000  2 - 8.5 x 106  

Carbon Fiber  - PAN  8 - 105  6.5 - 14 x 106  

  

 All these great characteristics made CNTs very useful in many technological domains. These 

domains include: Electronics, optics or material sciences. For example, because they are very 

reactive and interact with their surrounding milieu, they have been demonstrated to be very 

useful for water purification.  Precisely, nano filters have ceramic nano pores which are used 

for water filtration and eliminate bacteria and virus from water. Nano filters can then be an 

alternative way of water purification as Chlorine.  Carbone nanotubes can be used to create 

reinforced steel or concrete for civil and mechanical engineering. The obtained composite 

materials will be more stiff, and resistant.  These composites are very useful in automobile 

industry (production of composites trunks, car bodies…), aerospace industry, sport industry 

(cyclists using bicycle whose frame is a composite material containing nanotubes, tennis 

players using carbon nanotube racket,  hockey players using sticks doped carbon nanotubes). 

CNTs are also very important in Nanoelectromechanical systems, for manufacturing devices 

such as RAM (random access memory), TV and computer screens. 

      Facing the difficulties of implementing and controlling experiments at nanoscale, 

theoretical approach is widely developed. These theoretical methods include atomistic 
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approach and continuum mechanic analysis. Due to being computationally expensive, 

especially for large-scale carbon nanotubes with high number of walls, the atomistic 

approach is used less in preference to continuum mechanic which is preferred, especially by 

large number of researchers who use the existing continuum mechanics beam theory or shell 

theory to model the CNTs .  

     In fact, beams are one dimensional bar structures, capable of carrying loads in bending.   

Beam theory was also extensively used to model the behavior of many existing structures 

such as pipes, columns, wood-made posts, concrete-made posts, long bridges,…etc.   

    Mathematically, beams behavior can be modelled by many theories. The first one is Euler-

Bernoulli theory. Sometimes called Bernoulli (1700-1782) theory or Euler theory (1707-

1783), it is the simplest beam theory as shear and rotary effects are not taken into account in 

the constitutive relationship. Only membrane and displacement effect are considered.  To 

include the above cited effects neglected in Bernoulli theory, Rayleigh beam theory (1877) 

takes the rotary effect into account in their constitutive relation while Timoshenko theory 

includes shear and rotary effects. Other theories include Reddy beam theory, Hu-Thai-Tai 

theory... etc.  

     The utilization of beam theory on the modelling of carbon nanotubes is widely nowadays, 

following the shell theory, formerly used for mathematical modeling of CNTs. The reason is 

that, in classical continuum theory, size effect plays an important role in the modeling of 

small size devices because, if they are not taken into account, the behavior of such materials 

could be overestimated or underestimated. The beam theory has shown its capacity of 

producing high precision results compared to shell theory.  Many size-based beam theories 

have been developed in this regard. Those theories include couple stress theory, strain 

gradient theory and nonlocal theory.  Eringen Nonlocal theory will be used in this thesis to 

model CNT as it appears to be the best mathematical model for studying vibration, bending 

and buckling.  

     The term “buckling” means a deformation process in which a structure subjected to high 

stress undergoes a sudden change in morphology at a critical load [6]. Also known as static 

reaction of a structure, when subjected to compressive-type forces like follower forces, and 

considered in the design of structural members, such as bridges and machineries, buckling 

appears to be also very important at nanoscale. It can be created on CNT’s by bending, 

torsional deformation, thermal deformation, and also due to their long and hollow tube-like 
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form. Buckling can appear during their preparation processes, and has been discovered not to 

be only noxious but sometimes also very important as it may increase the thermal 

conductivity of the obtained CNTs [7]. The buckling may also depend of other parameters 

such as Chirality. 

7.3-Equ ation of buckling of the CNT s considered as a nanobeam  

In this section the equation governing the buckling of CNTs as nanobeam will be established 
by using the free body diagram. 

7.3.1-Displacement and stress distribution  on the beam  

The figure  below shows a free body diagram of the on nanobeam. 

 Fig. 7.2: Free body diagram of nanobeam  
7.3.1a-The disp lacement  

The displacement field of nanobeam in this study  is the one adopted by Euler-Bernoulli  

                          , 0, ( )wu z v w w x
x


   


                                                                       (7.1) 

Here, u  and w are axial (along x) and transverse displacement (along w) axis, respectively.         
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 7.3.1b-The stress of nanobeam  

The nonlocal theory was developed by Eringen et al [8-11] to overcome the drawbacks of 

local theory of elasticity.  Based on atomic theory of lattice dynamics and experimental 

observations on phonon dispersion, this approach assumes that the nonlocal stress tensor at a 

point within  one or multidimensional domain of structure is not only affected by the strain at 

that local point,  but also by strains at all other points of the entire domain in an integral 

manner. This consideration takes into account the size effect, which is not taken into 

consideration by local theory and consequently, the local Hooke’s law constitutive relation is 

replaced by integration. Mathematically it’s written as: 

, 0ij i jf                                                                                                                           (7.2) 
 
with  
                     

( ) ( , ) ( ) ( )ij ij
V

x x x x dV x                                                                                           (7.3)      

where 

( ) ( ) 2 ( )ij L kk ij L ijx e x e x                                                                                                   (7.4) 

and  

( )( )1( )
2

ji
ij

i j

u xu xe x
x x

 
       

                                                                                              (7.5) 

( )ij x , jf , iu ,  stand, respectively, for nonlocal stress tensor, body force density, mass 

density, and displacement vector at the reference point x  in the body V , , 1, 2 3i j or  

depending on chosen dimension. L  and L  are Lame parameters . The weight is specified 

by nonlocal Kernel function ( , )x x   which depends on a dimensionless length 

nanoscale 

 0e a
L

                                                                                                                                  (7.6) 

where 0e  stands for a material constant, wich can be determined either experimentally by 

using vibration or buckling load measurements, or by the use of atomic dispersion relation. 

The constant a  represents an internal characteristics length such as granular distance, lattice 

parameter while L  is an external characteristic lengths. The nonlocal parameter can be 
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determined by conducting experiments and a comparison of dispersion curves from nonlocal 

continuum mechanics and molecular dynamics simulations as suggested by [12,13].  In 

general, a conservative estimate of nonlocal parameter is 0 2e a nm  for SWCNT [13].  Its 

value depends on many parameters such as boundary conditions, chirality, mode shape, 

number of walls and type of motion [14]. 

In a macroscopic analysis when the effects of nanoscale becomes infinitely insignificant in 

the limit 0  , the effects of strains at points x x are negligible, the nonlocal modulus 

approaches the Dirac delta function and hence ( ) ( )ij ijx x    . Consequently, the classical 

elasticity for continuum mechanics should be recovered in the limit of vanishing nonlocal 

nanoscale. Eq.(7.2) is an integro-partial differential equation and it is extremely difficult 

mathematically to obtain the solutions in terms of displacement field in nonlocal elasticity 

due to the presence of spatial derivatives inside the integral. However, by using Green’s 

function with certain approximation error, Eringen [8] transformed the integro-partial 

differential equation to the following form: 

2 2
0( )e a                                                                                                                     (7.7) 

where 
2

2
2x


 


 is a Laplacian operator helping on writing the nonlocal stress-strain relation 

of nanobeams as: 
2

2
0 2( ) xx

xx xx
de a E
dx


                                                                                                         (7.8) 

where the strain is given by  
2

2

( )
xx

d w xz
dx

                                                                                                                      (7.9) 

 

7.4-Equ ilibrium  equa tion for axially loaded  nanobeam  

By applying the Newton’s third law on Fig. 7.2, one can obtain the equilibrium equation of 

the beam, relating forces and moments as follow: 

0 :zF                0dV
dx

                                                                                                        (7.10) 

0 :M                 0dMNdw Vdx dx
x

  


                                                                            (7.11) 

Differentiating Eq.(7.11) with respect to x and introducing it into Eq.(7.10), one obtains: 
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2

2 0d M d dwN
dx dx dx

 
  

 
                                                                                                                 (7.12) 

and 

dM dwV N
dx dx

                                                                                                                             (7.13) 

By using the definition of bending moment given by: 

A
M z dA                                                                                                                        (7.14) 
  
we could get from Eq.(7.12) the bending moment equation for the nonlocal beam as: 
 

2 2
2

0 2 2( ) 0d M d wM e a EI
dx dx

                                                                                              (7.15) 

 
where  

2
2

02( ) ( )d w d dwM x EI e a N
dx dx dx

 
    

 
                                                                                        (7.16)                                                                    

Combining the previous equations, viz. (7.16) into (7.15), we get: 

4 2
2

04 2( ) 0d w d dw d d dwEI N e a N
dx dx dx dx dx dx

    
      

    
                                                               (7.17) 

 

7.5-Weak form  derivati on for axially loaded elastically restr ained nan obeam  

The Eq. (7.17) is called a strong formulation of the buckling of nanobeam. In other to 

transform to a form which can be solved using the weighted residual method, a weak 

formulation must be used.  The weak formulation of differential equation of problem is a 

weighted-integral form that is equivalent to both the governing differential equation as well 

as the associated natural boundary conditions.  The first step consists on multiplying Eq. 

(7.17) with a test function   as follows 

4 2
2

04 2
0

( ) 0
L d w d dw d d dwEI N e a N dx

dx dx dx dx dx dx


     
       

     
                                            (7.18) 

 

That test function must be smooth enough and must satisfy the homogeneous essential 

boundary conditions.  After this, an integration by part is done on Eq.(7.18), producing 

therefore the weak form of Eq. (7.17) and the associated boundary conditions as: 
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 
2 2 2 2 2

2
02 2 2 2 2 0

00

( ) 0
LL

Ld d w d dw dN d dw d d w dEI N e a N dx V M
dx dx dx dx dx dx dx dx dx dx
    


    

            
    (7.19) 

     

7.6-The Rayleigh -Ritz method for solvin g the buckling p roblem                                                

The Ritz method have been widely used to solve buckling problems. It is employed for 

obtaining the solutions of structural problems governed by differential equations by the use of 

principle of minimum potential energy. It assumes a shape function W(x, y) for the solution in 

the form of a series which can be expressed as 

1
( ) ( )

n

j j
j

W x C x


                                                                                                               

(7.20)                                       

where n  is the number of terms needed in the displacement function to reach the desired 

accuracy.  

Functions ( )j x  are the approximating functions which should satisfy the geometric 

boundary conditions. These functions have to be orthogonal [15] or transformed to an 

orthogonal function set by the use of Gram-Schmidt process [16,17]. The unknowns 

( 1,2,..., )jC j n  are obtained by minimizing the Rayleigh quotient [18]. 

     The above described process transforms a Rayleigh quotient to a set of inhomogeneous 

linear equations expressed in terms of the coefficients jC . In this way, the problem can be 

reduced to solving the eigenvalue equation: 

 ([K] [F]) 0q C                                                                                                              (7.21) 

where  K  and [ ]F  are n n  order coefficient matrices, q  is the unknown buckling load and 

   1 2 ... T
nC C C C  is a vector of unknown constants to be determined. 
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In the present study buckling loads are computed for carbon nanotubes subject to a combination of con-
centrated and axially distributed loads. Distributed axial loads are taken as uniformly distributed and tri-
angularly distributed. Carbon nanotubes are modeled as nonlocal Euler–Bernoulli beams. Variational
formulation of the problem is derived and variationally consistent boundary conditions are obtained.
The Rayleigh quotients for the distributed axial loads are formulated. Numerical solutions are obtained
by Rayleigh–Ritz method and employing orthogonal Chebyshev polynomials. Results are given in the
form of counter plots for a combination of simply supported, clamped and free boundary conditions. It
is observed that the sensitivity of the buckling loads to small scale parameter depends on the specific
boundary conditions.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced properties of carbon nanotubes (CNT) such as high
stiffness to weight ratio, large failure strain, to name a few, make
them materials of choice in a large number of technologically
advanced applications [1,2]. An expanding area of application for
their use is as reinforcing materials in polymer matrix composites
leading to the development of nano-composites with superior
properties [3–5]. One limiting factor in the use of CNTs is their
low buckling strength due to their slenderness. Buckling of CNTs
is also of interest in a number of applications such as nano-
mechanical devices and drug delivery. The modeling approach
often employed in the study of carbon nanotubes is nonlocal con-
tinuum mechanics [6] to take into account the nano-scale effects
[7–9]. Recent studies provide further elaboration of the nonlocal
models [10] and employ the integral formulation of the nonlocal
elasticity [11]. Due to the importance of the subject, buckling of
carbon nanotubes has been studied extensively and the reviews
of the subject can be found in [12–14]. Recent studies on the buck-
ling of single-walled nanotubes involving a concentrated tip load
include [15–19]. In a number of nano applications, the stability
of a nanotube under its own weight becomes important and the
problem has been studied in [20,21].

The present study is directed to investigating the buckling char-
acteristics of single-walled nanotubes via nonlocal Euler beam the-
ory with the compressive loads taken as a combination of
concentrated and distributed axial loads. In particular, two types
of distributed axial loads are considered, namely, uniformly dis-
tributed load which corresponds to self-weight and triangularly
distributed load. Stability under triangularly distributed axial loads
has not been studied for nanotubes although it was studied exten-
sively for columns based on local elastic theory. In particular, col-
umns under conservative triangularly distributed axial loads were
studied in [22–29]. Corresponding studies involving the buckling
of columns subject to non-conservative triangularly distributed
loads were given in [30–32].

In the present study, first the variational formulation of the
problem is derived and variationally consistent boundary condi-
tions are obtained. The Rayleigh quotients are obtained from the
variational formulations. Variational formulation of a local column
under distributed loads is given in [33]. Variational formulations
for carbon nanotubes subject to buckling loads have been obtained
for a number of cases [34–38].

The numerical solutions are given for various boundary condi-
tions employing Rayleigh–Ritz approximation and using orthogo-
nal Chebyshev polynomials. It is observed that the sensitivity of
the buckling load to small scale parameter depends on the specific
boundary conditions with highest sensitivity displaced by the
clamped-simply supported and clamped–clamped boundary con-
ditions and the lowest by clamped-free boundary condition.

http://dx.doi.org/10.1016/j.compstruct.2016.01.026
0263-8223/� 2016 Elsevier Ltd. All rights reserved.
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2. Variational formulation

We consider a single-walled carbon nanotube of length L sub-
ject to a concentrated load P and a distributed axial load qðxÞ as
shown in Fig. 1. Both uniformly distributed axial load given by
q1ðxÞ ¼ Q1ðL� xÞ (Fig. 1a) and triangularly distributed axial load
given by q2ðxÞ ¼ 1

2Q2ðL2 � x2Þ (Fig. 1b) are studied. In the case of
a column subject to its own weight, q1 represents the weight per
unit length of the column. The axial load can be expressed as

N ¼ P þ qðxÞ; 0 6 x 6 L ð1Þ
The equation governing the buckling of a nanotube is given in

terms of moment MðxÞ and deflection wðxÞ as
d2M

dx2
� d
dx

N
dw
dx

� �
¼ 0 ð2Þ

The constitutive relation based on the nonlocal theory of elas-
ticity can be expressed as

M � ðe0aÞ2 d
2M

dx2
¼ �EI

d2w

dx2
ð3Þ

where e0a is the small scale parameter, E is the Young’s modulus
and I is the moment of inertia of the cross-section. The expression
for MðxÞ is obtained from Eqs. (2) and (3) as

MðxÞ ¼ �EI
d2w

dx2
þ ðe0aÞ2 � d

dx
N
dw
dx

� �� �
ð4Þ

Substituting Eq. (4) into Eq. (2), the differential equation
governing the buckling of a nanotube is obtained as

DðwÞ ¼ EI
d4w

dx4
þ d
dx

N
dw
dx

� �

� ðe0aÞ2 d2

dx2
dN
dx

dw
dx

� �"
þ d2

dx2
N
d2w

dx2

 !#
¼ 0 ð5Þ

Noting thatZ L

0
DðwÞwdx ¼ 0 ð6Þ

we proceed to obtain the variational formulation for the problem.
Let

UðwÞ ¼
X4
i¼1

UiðwÞ ð7Þ

where

U1ðwÞ ¼
Z L

0
EI

d4w

dx4
wdx; U2ðwÞ ¼

Z L

0

d
dx

N
dw
dx

� �
wdx ð8Þ

U3ðwÞ ¼ �ðe0aÞ2
Z L

0

d2

dx2
dN
dx

dw
dx

� �
wdx;

U4ðwÞ ¼ �ðe0aÞ2
Z L

0

d2

dx2
N
d2w

dx2

 !
wdx ð9Þ

Thus Eq. (6) can be expressed as

X4
i¼1

UiðwÞ ¼ 0 ð10Þ

By integration by parts, the following relations can be obtained

U1ðwÞ ¼
Z L

0
EI

d2w

dx2

 !2

dxþ EI
d3w

dx3
w� d2w

dx2
dw
dx

 !x¼L

x¼0

ð11Þ

U2ðwÞ ¼ �
Z L

0
N

dw
dx

� �2

dxþ N
dw
dx

w
����
x¼L

x¼0
ð12Þ

U3ðwÞ ¼ �ðe0aÞ2
Z L

0

dN
dx

dw
dx

d2w

dx2
dx

� ðe0aÞ2 d
dx

dN
dx

dw
dx

� �
w� dN

dx
dw
dx

� �2
" #x¼L

x¼0

ð13Þ

U4ðwÞ ¼ �ðe0aÞ2
Z L

0
N

d2w

dx2

 !2

dx

� ðe0aÞ2 d
dx

N
d2w

dx2

 !
w� N

d2w

dx2
dw
dx

" #x¼L

x¼0

ð14Þ

Let

VðxÞ ¼ EI
d3w

dx3
þ N

dw
dx

� ðe0aÞ2 d
dx

dN
dx

dw
dx

� �
þ d
dx

N
d2w

dx2

 !" #
ð15Þ

Fig. 1. Nanocolumn under concentrated and distributed axial loads, (a) uniform, (b) triangular.
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Then Eq. (10) can be expressed asZ L

0
EI

d2w

dx2

 !2

� N
dw
dx

� �2

� ðe0aÞ2 dN
dx

dw
dx

d2w

dx2
þ N

d2w

dx2

 !2
2
4

3
5

8<
:

9=
;dx

þ VðxÞwþMðxÞ dw
dx

� �x¼L

x¼0
¼ 0 ð16Þ

where MðxÞ is given by Eq. (4) and VðxÞ by Eq. (15). Eq. (16) corre-
sponds to the weak formulation of the problem. Next the boundary
conditions are given for various cases.

Simply supported boundary conditions:

wð0Þ ¼ 0; Mð0Þ ¼ 0; wðLÞ ¼ 0; MðLÞ ¼ 0 ð17Þ
Clamped–clamped boundary conditions:

wð0Þ ¼ 0;
dw
dx

����
x¼0

¼ 0; wðLÞ ¼ 0;
dw
dx

����
x¼L

¼ 0 ð18Þ

Clamped-simply supported boundary conditions:

wð0Þ ¼ 0;
dw
dx

����
x¼0

¼ 0; wðLÞ ¼ 0; MðLÞ ¼ 0 ð19Þ

Clamped-free supported boundary conditions:

wð0Þ ¼ 0;
dw
dx

����
x¼0

¼ 0; MðLÞ ¼ 0; VðLÞ ¼ 0 ð20Þ

3. Rayleigh quotients

First the Rayleigh quotient is derived for a nanotube subject to a
concentrated axial load N ¼ P only and qðxÞ ¼ 0. In this case

MðxÞ ¼ �EI
d2w

dx2
þ Pðe0aÞ2 d

2w

dx2
;

VðxÞ ¼ EI
d3w

dx3
þ P

dw
dx

þ ðe0aÞ2 d
3w

dx3

 !
ð21Þ

Eq. (16) can be written as

Z L

0
EI

d2w

dx2

 !2

� P
dw
dx

� �2

þ ðe0aÞ2 d2w

dx2

 !2
2
4

3
5

8<
:

9=
;dx

þ ½b0ðxÞ þ Pb1ðxÞ�jx¼L
x¼0 ¼ 0 ð22Þ

where

b0ðxÞ ¼ EI
d3w

dx3
w� d2w

dx2
dw
dx

 !
;

b1ðxÞ ¼ dw
dx

w� ðe0aÞ2 d3w

dx3
w� d2w

dx2
dw
dx

 !
ð23Þ

Thus the Rayleigh quotient follows from Eq. (22) as

P ¼ u1 þ b0ðLÞ � b0ð0Þ
u2 � b1ðLÞ þ b1ð0Þ ð24Þ

where

u1 ¼
Z L

0
EI

d2w

dx2

 !2

dx; u2 ¼
Z L

0

dw
dx

� �2

þðe0aÞ2 d2w

dx2

 !2
2
4

3
5dx ð25Þ

Next the Rayleigh quotients for the distributed loads are
derived. Let

N ¼ P þ qðxÞ ¼ P þ QiSiðxÞ ð26Þ
where S1ðxÞ ¼ L� x for a uniformly distributed load and
S2ðxÞ ¼ 1

2 ðL� xÞ2 for a triangularly distributed load. We express
MðxÞ and VðxÞ given by Eqs. (4) and (15) in the following form

MðxÞ ¼ m0ðxÞ þ QimiðxÞ; VðxÞ ¼ v0ðxÞ þ Qiv iðxÞ ð27Þ
where

m0ðxÞ ¼ �EI
d2w

dx2
þ Pðe0aÞ2 d

2w

dx2
;

v0ðxÞ ¼ EI
d3w

dx3
þ P

dw
dx

� ðe0aÞ2 d
3w

dx3

 !
ð28Þ

miðxÞ ¼ ðe0aÞ2 dSi
dx

dw
dx

þ SiðxÞd
2w

dx2

 !
; i ¼ 1;2 ð29Þ

v iðxÞ ¼ Si
dw
dx

� ðe0aÞ2 d2Si
dx2

dw
dx

þ 2
dSi
dx

d2w

dx2
þ Si

d3w

dx3

 !
; i ¼ 1;2

ð30Þ
From Eqs. (16), (27)–(30), the buckling load parameter Qi can be

expressed in the form of a Rayleigh quotient as

Qi ¼
u3 þ m0ðxÞ dw

dx þ v0ðxÞw
� �x¼L

x¼0

u4 þ �miðxÞ dw
dx þ v iðxÞw

� �x¼L

x¼0

ð31Þ

where

u3 ¼
Z L

0
EI

d2w

dx2

 !2

� P
dw
dx

� �2

� Pðe0aÞ2 d2w

dx2

 !2
2
4

3
5dx ð32Þ

u4 ¼
Z L

0
SiðxÞ dw

dx

� �2

þ ðe0aÞ2 dSiðxÞ
dx

dw
dx

d2w

dx2
þ SiðxÞ d2w

dx2

 !2
2
4

3
5

8<
:

9=
;dx

ð33Þ
Non-dimensional form of the formulation can be obtained by

introducing dimensionless variables

X ¼ x
L
; W ¼ w

L
; l ¼ e0a

L
; p ¼ PL2

EI
; qi ¼

QiL
2þi

EI
ð34Þ

Non-dimensional forms of the Rayleigh quotients (24) and (31)
are given in the Appendix A.

4. Method of solution

The numerical solution of the problem is obtained by Rayleigh–
Ritz method [39]. Deflection functionWðXÞ is expressed in terms of
Chebyshev polynomials multiplied by a function to satisfy the geo-
metric boundary conditions [40–43]. Thus the essential boundary
conditions are satisfied and the Chebyshev polynomials provide a
complete and orthogonal set leading to a relatively fast conver-
gence. The deflection function WðXÞ is defined as

WðXÞ ¼ Xrð1� XÞs
XN
j¼1

cjf j�1ðXÞ ð35Þ

where r and s take the values 0, 1 or 2 for free, simply supported and
clamped boundaries, respectively, and cj is determined to minimize
the Rayleigh quotient. Thus for a simply supported column r ¼ s ¼ 1
and for a clamped-free column r ¼ 2 and s ¼ 0. Minimization of the
Rayleigh quotient with respect to cj leads to a generalized eigen-
value problem and the buckling load corresponds to the minimum
eigenvalue of this problem. By taking the number of terms N suffi-
ciently large, an accurate solution of the problem is obtained. In
Eq. (35), f jðXÞ is the jth Chebyshev polynomial with f 0ðXÞ ¼ 1 and
f 1ðXÞ ¼ X. The remaining terms are obtained by using the following
recursive relationship:
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f jþ1ðXÞ ¼ 2XfjðXÞ � f j�1ðXÞ ð36Þ
which are Chebyshev orthogonal polynomials of the first kind
[44,45].

Method of solution is first applied to buckling problems avail-
able in the literature to verify its accuracy. The first problem is
the buckling of a nonlocal nanotube subject to a concentrated axial
load only, i.e., p > 0 and qðxÞ ¼ 0. The results are given in Table 1. It
is observed that the present method implemented by using Cheby-
shev polynomials give accurate results. Next the method is applied
to columns subject to distributed axial loads and he results are
shown in Table 2. The present method is observed to be accurate
also in the case of buckling with distributed axial loads.

The convergence of the present method is studied in Table 3
which gives the buckling load for the case of a uniformly dis-
tributed axial load and l ¼ 0:4 with the convergence reached with
10 trial functions. When l ¼ 1:0, convergence is observed to be
slower as demonstrated in Table 4.

5. Numerical results

Numerical results are given for the four boundary conditions of
SS, CS, CC and CF which are given by Eqs. (17)–(20). The range of
the small scale parameter l is taken as 0 6 l 6 0:4. The contour
plots of the buckling loads q1 and q2 with respect to p and l are
shown in Fig. 2 for a simply supported nanotube. It is observed that
the buckling load decreases as the small-scale parameter increases.
The corresponding results for the clamped-simply supported nan-
otubes are shown in Fig. 3. In this case the effect of the small-scale
parameter is more pronounced, indicating that boundary

Table 1
Comparison of buckling loads p (qðxÞ ¼ 0) with existing results for four boundary conditions.

l ¼ 0 l ¼ 0:2 l ¼ 1

BC Present Reference [40] Reference [46] Present Reference [40] Present Reference [40] Reference [46]

SS 9.870 9.870 9.870 7.076 7.076 0.895 0.908 0.908
CS 20.191 20.191 20.191 11.170 11.170 0.921 0.953 0.953
CC 39.478 39.478 39.478 15.307 15.307 0.975 0.975 0.975
CF 2.467 2.467 2.465 2.246 2.246 0.712 0.712 0.712

Table 2
Comparison of buckling loads q1 and q2 (p ¼ 0) with existing results for l ¼ 0 (local
theory).

q1 q2=2

BC Present Reference [47] Reference [48] Present Reference [23]

SS 18.569 18.569 18.58 23.239 23.239
CS 52.504 52.501 53.91 78.983 78.983
CC 74.643 74.629 78.96 107.823 107.823
CF 7.837 7.837 7.84 16.101 16.101

Table 3
Convergence of buckling load q1 (p ¼ 0) with the number of trial functions for l ¼ 0:4.

Number of polynomials (N) SS CS CC CF

2 5.4864 8.9957 7.7170 4.9348
4 5.6558 6.8480 6.7589 4.6922
6 5.6909 6.5772 6.5416 4.6619
8 5.6925 6.4059 6.4442 4.6962
10 5.6925 6.4059 6.4442 4.6962

Table 4
Convergence of buckling load q1 (p ¼ 0) with the number of trial functions for l ¼ 1:0.

Number of polynomials (N) SS CS CC CF

2 1.0595 1.6665 1.3328 1.6167
4 1.0071 1.1574 1.1131 1.1574
6 1.0028 1.0742 1.0590 1.0803
8 1.0015 1.0439 1.0367 1.0485
10 1.0009 1.0292 1.0251 1.0323
12 1.0006 1.0207 1.0182 1.0285
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conditions affect the sensitivity of the buckling load to the small
scale parameter for distributed axial loads.

The contour plots for clamped–clamped nanotubes are shown
in Fig. 4 which shows increased sensitivity of the buckling load
to the small scale parameter. Contour plots for clamped-free nan-
otubes are shown in Fig. 5. In this case the buckling loads are more
sensitive to the tip load p and less sensitive to l. In Fig. 5, the sta-
bility boundary between the tip load p and the distributed loads
can be observed, i.e., the line on which q1 ¼ 0 (Fig. 5a) and q2 ¼ 0
(Fig. 5b). Above these lines the distributed load q becomes tensile
indicated by negative numbers.

6. Conclusions

The buckling loads for carbon nanotubes were obtained with
the axial loads taken as a combination of concentrated tip load

and distributed axial loads. Two types of distributed loads were
investigated, namely, uniformly distributed axial load which can
model the own weight of the nanotube and triangularly distributed
axial load. The results were obtained by Rayleigh–Ritz method
employing Chebyshev polynomials of first kind as the approximat-
ing functions. The variational formulation of the problem based on
nonlocal Euler–Bernoulli beam theory was derived and the corre-
sponding Rayleigh quotients for the tip load and the distributed
axial loads were obtained. Variationally consistent boundary con-
ditions were derived for various boundary conditions and the
numerical results were given for a combination of simple, clamped
and free supports.

The effect of the small-scale parameter on the buckling loads
was investigated by means of contour plots of the distributed loads
with respect to the tip load and the small scale parameter. These
plots indicate the sensitivity of the buckling load and it was
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observed that buckling load becomes sensitive to the magnitude of
the small scale parameter for the clamped-simply supported and
clamped–clamped boundary conditions. On the other hand buck-
ling load is more sensitive to the magnitude of the tip load for
the clamped-free boundary conditions.
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Appendix A

Nondimensional form of the Rayleigh quotient for the case of a
nanotube subject to a concentrated axial load p only with qðxÞ ¼ 0
is given by

p ¼
R 1
0 W

002dX þ B0ð1Þ � B0ð0ÞR 1
0 ðW 02 þ l2W 002ÞdX � B1ð1Þ þ B1ð0Þ

ðA1Þ

where

W 0 ¼ dW
dX

;W 00 ¼ d2W

dX2 ;W 000 ¼ d3W

dX3 ðA2Þ

B0ðXÞ ¼ W 000W �W 00W 0;B1ðxÞ ¼ W 0W � l2ðW 000W �W 00W 0Þ ðA3Þ

Nondimensional form of the Rayleigh quotient for the case of a
nanotube subject to a uniformly distributed axial load q1ð1� XÞ
and tip load p is given by

where

M1ðXÞ ¼ W 00ð�1þ pl2Þ;M2ðXÞ ¼ l2ð�W 0 þ ð1� XÞW 00Þ ðA5Þ

V1ðXÞ ¼ W 000 þ pðW 0 � l2W 000Þ;
V2ðXÞ ¼ ð1� XÞW 0 þ l2ð2W 00 � ð1� XÞW 000Þ ðA6Þ

Nondimensional form of the Rayleigh quotient for the case of a
nanotube subject to a triangularly distributed axial load
1
2q2ð1� XÞ2 and tip load p is given by

where

FðXÞ ¼ 1
2
ð1� XÞ2;M3ðXÞ ¼ l2½�ð1� XÞW0 þ FðXÞW 00� ðA8Þ

V3ðXÞ ¼ FðXÞW 0 � l2ðW 0 � 2ð1� XÞW 00 þ FðXÞW 000Þ: ðA9Þ
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Abstract 

Buckling of nonuniform carbon nanotubes are studied with the axial load taken as a combination of concentrated and axially distributed loads. 
Distributed axial loads are specified as uniformly distributed and triangularly distributed. Nonlocal continuum modelling of the carbon 
nanotubes is implemented to obtain the governing equations. The solution is obtained by employing a weak formulation of the problem and the 
Rayleigh-Ritz method which is implemented using orthogonal Chebyshev polynomials. Counter plots are given of the buckling loads for a 
combination of simply supported, clamped and free boundary conditions.  

© 2016 The Authors. Published by Elsevier Ltd. 

Keywords: Nonuniform nanotubes, Buckling of nanotubes; Distributed axial loads; Nonlocal model .

1.  Introduction 

      Superior properties of carbon nanotubes (CNT) led to 
their use in a number of technologically advanced fields such 
as biotechnology, nanocomposites and nanoelectronics.  Even 
though CNTs have high stiffness and large failure strain, they 
are prone to buckling under compressive loads due to their 
slenderness which results in limiting their use in applications 
involving compressive axial loads. Thus, in many applications 
of CNTs, buckling is of primary interest as this could be the 
dominant failure mode. Such applications include nano-
mechanical devices, drug delivery and nanocomposites. This 
resulted in buckling of CNTs being an active area of research 
for a number of years and the subject has been investigated 
extensively due to its importance [1-3]. Recent works on the 
buckling of CNTs with uniform cross-sections include [4-8]. 
In particular, stability of CNTs under its own weight has been 
studied in [9-11] and under distributed axial loads in [12]. 
Nonuniform CNTs are employed in the design of 
nanostructures such as nanoscale sensors and actuators and 
their vibration characteristics have been studied in [13-16]. 
Studies on the buckling of nonuniform nanotubes seem to 
have been restricted to nanocones which are of interest in 

atomic force microscopy and electroanalysis [17, 18] as the 
tip structure of nanocones can be used to achieve mechanical 
properties which cannot be obtained by uniform nanotubes. A 
number of studies have been directed to elucidating the 
mechanical and physical properties of nanocones [19, 20]. 
Buckling and post-buckling behaviors of nanocones have 
been studied in [21, 22]. Molecular mechanics was employed 
in [23] to investigate the buckling behavior of nanocones and 
a computational approach was used in [24] to compute the 
buckling loads of nanocones. Buckling of nanocones under 
self weight and concentrated loads have been studied in [25]. 
      Present study involves the buckling of nonuniform 
nanotubes under variable axial loads employing a nonlocal 
continuum model and extends the results of [12] to nonunifom 
nanotubes. Axial loads acting on the nanotube are a 
combination of concentrated and distributed loads. Distributed 
loads can be uniform corresponding to self-weight or 
triangular. The method of solution involves the weak 
variational formulation of the problem and employing the 
Rayleigh-Ritz method using orthogonal Chebyshev 
polynomials. Numerical results are given for various 
combination of boundary conditions to study the effect of 
small-scale parameter on buckling. 
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2. Problem formulation 

      We consider a nonuniform single-walled carbon nanotube 
of length L  and cross sectional area )(xA . A combination of 
compressive axial loads P (concentrated load) and )(xq  
(distributed load) act on the nanotube as shown in Fig. 1.  
 

 
 
Fig. 1. Columns under tip loads distributed axial loads 
 
Distributed loads can be uniformly distributed given by 

)()( 11 xLqxQ   (Fig. 1a) or triangularly distributed given 

by 2
22 )(

2
1)( xLqxQ   (Fig. 1b). The axial load can be 

expressed as  

)()( xQPxN ii  ,          Lx 0                                       (1)                             

The equation governing the buckling of a nanotube is in terms 
of moment )(xM  and deflection )(xw  can be expressed as 

  0)(  wxNM i                                                               (2) 

where a prime denotes differentiation with respect to x . The 
constitutive relation based on nonlocal Euler-Bernoulli theory 
is given by  

wxEIMaeM  )()( 2
0                                                   (3) 

where ae0  is the small scale parameter, E  is the Young’s 
modulus and )(xI  is the moment of inertia of the nonuniform 
cross-section. Combining Eqs. (2) and (3), we obtain )(xM  
as 

   wxNaewxEIM i )()()( 2
0                                       (4) 

From Eqs. (2) and (4), the differential equation governing the 
buckling of a nonuniform nanotube can be obtained as                                   

      0  )( )()( 2
0  wNwNaewNwxEIwD iii            (5)                       

where )(xNN ii   and dxdNN ii / . The weak form of Eq. 
(5) can be derived by noting that 

  
L

dxwwD
0

0  )(                                                               (6) 

Eq. (6) is expressed as 

0)(
4

1


i
i wU                                                                         (7) 

where   

  
L

dxwwxEIwU
0

1   )()( ,        
L

i dxwwNwU
0

2    )(       (8)  

   
L

i dxwwNaewU
0

2
03   )()(                                          (9a) 

  
L

i dxwwNaewU
0

2
04   )()(                                          (9b) 

Expressions for )(wUi  are transformed to integral and 
boundary terms by integration by parts, viz., 
 

     Lx

x

L
wwxEIwwxEIdxwxEIwU




 

00

2
1 )()( )()( (10) 
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0
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2 )(                                   (11) 

 

   Lx
xii

L
i wNwwNaedxwwNaewU


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xii
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22
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                                     (13) 
The moment expression is given by Eq. (4) and the shear 
force by 

       wNwNaewNwxEIxV iii   )( )()( 2
0      (14) 

Then Eq. (7) can be expressed as 

  
  0)()(

   )( -)(

0

0

22
0

22










Lx
x

L
iii

wxMwxV

dxwNwwNaewNwxEI
       (15) 

where )(xM  and )(xV  are defined by Eqs. (4) and (14), 
respectively. Boundary conditions for various cases can be 
expressed as follows: 
 
Simply supported boundary conditions:  

0)0( w ,     0)0( M ,     0)( Lw ,     0)( LM            (17) 

Clamped-clamped boundary conditions: 

0)0( w ,     0
0


xdx
dw ,   0)( Lw ,     0

Lxdx
dw        (18) 

Clamped-simply supported boundary conditions:   

0)0( w ,     0
0


xdx
dw ,     0)( Lw ,     0)( LM        (19) 

 Clamped-free supported boundary conditions:   
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0)0( w ,     0
0


xdx
dw ,     0)( LM ,     0)( LV        (20) 

Let )()( 0 xgIxI   where 0I  is a dimensional reference 
constant and )(xg  is a nondimensional function of x . Non-
dimensional form of the formulation can be obtained by 
introducing the dimensionless variables defined as 

L
xX         

L
wW         

L
ae0        

0

2

EI
PLp   

0

2

EI
Lqq

i
i

i


         
0

2

EI
LNn i

i                                                (21) 

Nondimensional form of eq. (16) can be expressed as 
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  0)()(
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0
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2222
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X
X
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WXmWXv
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where 

  WnWXgM
EI
LXm i

2

0
)()(                            (23)  

 

 
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WW

WWXgxV
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2
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2




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2
22 )1(

2
1)( XqpXn  ,       )1()( 11 XqpXn         (25) 

 
3. Method of solution  

      To obtain the solution by Rayleigh-Ritz method as 
outlined in [26], Chebyshev polynomials are introduced to 
approximate the deflection )(XW . Geometric boundary 
conditions are satisfied by multiplying the polynomials by 
suitable functions [27-30] and )(XW  is expressed as 

)()1()( 1
1

XfcXXXW j
N

j
j

sr



                                      (26) 

where  r  and s  take the values 0, 1 or 2 for free, simply 
supported and clamped boundaries, respectively. Parameters 

jc  are determined as part of the solution of an eigenvalue 
problem which yields the buckling load as the minimum 
eigenvalue.  In eq. (26), )(Xf j  is the thj  Chebyshev 

polynomial with 1)(0 Xf  and XXf )(1 . The remaining 
terms are obtained from 

)()( 2)( 11 XfXfXXf jjj                                          (27) 

      To verify the accuracy of the present method, it was 
applied to the buckling of a nonuniform column subject to a 
tip load only, i.e., 0p  and 0)( xq , as given in [32]. The 
column has a square cross-section and its stiffness is given by 

) 1()( 4
0 xEIxEI   [32]. The results are given in Table 1. 

It is observed that the present method implemented by using 
Chebyshev polynomials give accurate results. Next the 
method is applied to columns subject to distributed axial loads 
and he results are shown in Table 2. The present method is 
observed to be accurate also in the case of buckling with 
distributed axial loads. 
 
Table 1: Comparison of buckling loads p  ( 0)( xq ) with existing 

results for four boundary conditions with ) 1()( 4
0 xEIxEI   

and 0  (local beam). 
         S-S           C-S          C-C          C-F  


 

Present 
Ref. 

[32] 
Present 

Ref. 

[32] 
Present 

Ref. 

[32] 
Present 

Ref. 

[32] 

0.0 9.869 9.870 20.191 20.191 39.478 39.478 2.467 2.467 

0.2 6.317 6.317 12.922 12.922 25.266 25.266 1.883 1.884 

0.4 3.553 3.553 7.269 7.269 14.212 14.212 1.309 1.309 

0.6 1.579 1.579 3.231 3.230 6.317 6.316 0.7567 0.757 

0.8 0.398 0.395 0.815 0.807 1.583 1.547 0.265 0.265 

 
 

4. Numerical results 

      Numerical results are given for the boundary conditions 
SS, CS, CC and CF which are given by Eqs. (17)-(20). The 
range of the small scale parameter   is taken as 4.00   . 
The cross-section is specified as a square and the moment of 
inertia is taken as ) 1()( 4

0 xIxI  . The contour plots of 
the buckling load p  with respect to   and   are shown in 
Fig. 2 for simply supported and clamped-hinged 
nanocolumns. It is observed that the buckling load decreases 
as the small-scale parameter increases. The corresponding 
results for uniformly distributed axial load and triangularly 
distributed axial load are shown in Fig. 3 and Fig. 4, 
respectively. It is observed that, the effect of the non-
uniformity parameter   on the buckling load is more 
pronounced for the concentrated load p . 
      Next the buckling under the combined axial loads of a 
concentrated load p  and a distributed load is investigated. 
Contour plots for the buckling load 1q  corresponding to the 
uniformly distributed axial load are given in Fig. 5 with 
respect to p  and   for simply supported and clamped-
hinged nanocolumns and in Fig. 6 for clamped-clamped and 
clamped-free nanocolumns with 1.0 . Corresponding 
results for 2q  (triangularly distributed axial load) are given in 
Figs. 7 and 8. Figs. 5-8 show the numerical differences in the 
buckling loads in the case of uniformly and triangularly 
distributed axial loads for nonuniform nanocolumns. The 
effect of the boundary conditions on the buckling loads can be 
observed from these figures. Buckling parameters 1q  and 2q  
are least affected by the change in the stiffness )(xEI  as 
indicated by   in the case of clamped-free columns (Figs. 6b 
and 8b) and most affected in the case of clamped-clamped 
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columns (Figs. 6a and 8a). Similarly, the buckling loads 1q  
and 2q  decrease most by an increase in the tip load p  in the 
case of clamped-free columns as expected (Figs. 6b and 8b). 
In fact 1q  and 2q  become negative, i.e., change from 

compression to tension, above a certain value of  p  (Figs. 6b 
and 8b). 
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             Fig. 2. Contour plot of p  with respect to   and  , a) SS, b) CS 
 

            

2

2

2

4

4
4

6

6
6

6

8

8

8
10

10
12

12
14

14
1618





0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

                              
Fig. 3. Contour plot of 1q  with respect to   and  , a) SS, b) CS 
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                                               Fig. 4. Contour plot of 2q  with respect to   and  , a) SS, b) CS 
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Fig. 5. Contour plot of 1q  with respect to   and p  with 1.0 , a) SS, b) CS 
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Fig. 6.  Contour plot of 1q  with respect to   and p  with 1.0 , a) CC, b) CF 
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Fig. 7.  Contour plot of 2q  with respect to   and p  with 1.0 , a) SS, b) CS 
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4.1. Application to horn-shaped nanotubes 

      Cross-sectional shape of a horn-shaped nanotube of 
constant wall thickness   is defined as a circle with radius r  
which varies linearly from 0r  to Lr . Thus the moment of 
inertia of the nanohorn is given by )(0 XgII   where )(Xg  
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and LrrXr  00 . This nonuniform cross-section is 
the same as the cross-section of the nanohorn studied in [33]. 
Numerical results are given for nm 8.00 r  and nm 34.0  
for concentrated and uniformly distributed axial loads. 
Buckling loads for simply supported nanotubes are plotted 

against 0/ rrL  in Fig. 9 for various values of the small scale 
parameter  .  Corresponding results for clamped-simply 
supported nanotubes are given in Fig. 10. It is observed that 
the increase in the buckling load is steeper in the case of the 
concentrated tip load p  as 0/ rrL  increases (Figs. 9a and 
10a) as compared to the increase in the buckling parameter 1q  
of the distributed load indicating higher sensitivity of p  to 
non-uniformity of the cross-section. The effect of the small 
scale parameter on the buckling load is shown in Fig. 11 for 
simply supported nanotubes for various values of 0/ rrL . The 
corresponding results for clamped-simply supported 
nanotubes are given in Fig. 12. It is observed that small scale 
parameter   reduces the buckling load but its effect tapers 
off as   becomes larger. Buckling load due to p  is observed 
to be more sensitive to small scale parameter  . 
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Fig. 9.  Buckling loads plotted against the ratio of radii for SS nanotubes for different values of  , a) tip load p , b) uniformly 

distributed load 1q   
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Fig. 10. Buckling loads plotted against the ratio of radii for CS nanotubes for different values of  , a) tip load p , b) uniformly 

distributed load 1q  
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Fig. 11. Buckling loads plotted against the small scale parameter for SS nanotubes for different ratios of radii, a) tip load p , b) 

uniformly distributed load 1q  
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Fig. 12. Buckling loads plotted against the small scale parameter for CS nanotubes for different ratios of radii, a) tip load p , b) 

uniformly distributed load 1q  
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5. Conclusions  

      Buckling of nonuniform nanotubes subject to concentrated 
and variable axial loads was studied. In particular, uniformly 
distributed and triangularly distributed axial loads and 
nonuniform shapes with moment of inertia proportional to 

4)1( X  were investigated. The results are obtained by 
Rayleigh-Ritz method employing Chebyshev polynomials of 
first kind as the approximating functions for a combination of 
simply supported, clamped and free boundary conditions. The 
accuracy of the method was verified by comparing the 
solutions with available results in the literature. 
      The effects of non-uniformity of the cross-section and the 
small-scale parameter on the buckling loads were investigated 
by means of contour plots. These plots indicate the sensitivity 
of the buckling loads to problem parameters and it was 
observed that buckling load under concentrated tip load is 
more sensitive to the change in the cross-section. On the other 
hand buckling load is more sensitive to the magnitude of the 
tip load for the clamped-free boundary conditions.     
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CHAPTER 10 :  CONCLUSION AND  FUTURE PR OSPECTS  

10.1-Conclusion  

The main aim of the present work was to study the effect of distributed follower forces on the 

dynamic stability of viscoelastic rectangular plates and the effect of axial  and point loads on 

the buckling of carbon nanotubes modelled as nonlocal nanobeams.  For  plate, differential 

quadrature method was employed whereas for the study of the buckling of nanobeams, 

Rayleigh-Ritz method was used. For both cases the obtained results were compared with 

those available in the literature with  good satisfaction. The present chapter presents firstly 

the main results  obtained in  each paper and secondly the resulting prospective research 

topics.  

 

In paper 1, the nonconservative stability of viscoelastic rectangular plate under uniform 

follower force was studied. Kelvin-Voigt model for viscoelastic materials was used for the 

stress-strain relation of the plate. The constitutive equation of  vibration of the viscoelastic 

rectangular plate was determined, and it depends on several parameters such as plate 

dimensions, Young’s modulus, Poisson’s coefficient, transverse displacement and 

viscoelastic coefficient. The assumption that the plate was undergoing harmonic vibrations 

permitted  the elimination of the time in the final equation. The space and frequency 

dependent equation was solved by the method of differential quadrature.  Here the considered 

boundary conditions of the plate was one edge clamped and three others free (CFFF), two 

opposite edges free and two others simply supported (SFSF) and one edge clamped and three 

others simply supported (CSSS). The method of coupling boundary conditions with general 

equation (CBCGE) was used to introduce the boundary conditions into the problem’s solution 

while the delta-technics was for discretization. The obtained generalized eigenvalues 

equation was solve with high precision.   The critical loads values obtained agreed well with 

those calculated by others after comparisons. The graphs of frequencies versus loads were 

plotted for both CFFF and SFSF boundaries.  The CFFF plate presented only the coupled 

mode flutter instability which disappears when the delay time increases while the SFSF 

presented the static instability. The aspect ratio appeared to qualitatively increase the critical 

values of loads without changing the nature of the instability. 

Remar k: The results presented in this paper were original as, no works was  done previously,  

concerning the differential quadrature  discretization of viscoelastic rectangular plate with 
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free edges. The results obtained here agreed well when compared to the existing ones. This is 

the reason why the same numerical  method was used in the Papers 2 and 3  

In paper 2, the stability of nonconservative viscoelastic rectangular plates subjected to 

triangularly distributed tangential follower loads was studied, extending the results of paper 

1.  The boundary conditions were simply supported (SSSS) and two opposite edges clamped 

and others simply supported (CSCS).  After the derivation of the equation of vibration 

exactly as it was done in the paper 1, DQM is used to solve the generalized eigenvalue 

equation and the main observations were that, the simply supported plate presented 

divergence instability while the plate with two opposite edges simply supported and others 

clamped underwent  flutter instability.  For SSSS plate, delay time slightly changes the 

imaginary part of frequency without modifying qualitatively the instability. For the CSCS 

plate, the increase of aspect ratio increases the value of flutter load. Also, the increase of 

delay time nullifies the instability apart from the aspect ratio.  

 
Remar k:  The values of the critical loads obtained for the triangular follower force are higher 

than those obtained for the uniform follower loads. Also the increase of aspect ratio doesn’t 

change the instability type. It was observed for CSCS plate that, for square plate, only flutter 

instability occurs when triangular follower force acts contrarily  of mixed (flutter+dynamic) 

instability observed for uniform follower forces. 

 

Paper  3 investigated the dynamic stability of viscoelastic plates under axial flow by 

differential quadrature method. The forces to which the plate was subjected include the fluid 

force and the local tensile force. The same procedure used in paper 1 and paper 2 was utilized 

to derive the final equation of the plate considered as a cantilever.  Firstly the verification of 

the differential quadrature method is done for 1D problem by zeroing  the aspect ratio. The 

results obtained were in good agreement with those available in previous works. Secondly, 

the effect of  friction coefficient on the frequency of 1D plate was shown in details, proving 

that it cannot be neglected, especially when it goes up to 0.3.  Finally, the instability of 2D 

plate was studied, by plotting the evolution of vibrating frequency vs flow velocity. For low 

aspect ratio, dynamic instability did not occur when the delay time was lower or equal to 510  

and for the first three modes of vibration. The instability appeared for high aspect ratio and 

only on third mode of vibration as its imaginary frequency branch was negative. When the 
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delay increases, the instability disappears for small aspect ratio while it is still present when 

the aspect ratio is greater than one.  

 

Remar k: It was shown that, laminar friction coefficient of the flowing fluid increases the 

critical fluid velocity, but its effect on the instability behavior is minor. Higher aspect ratios 

lead to single-mode flutter instability. It was found that increasing viscoelasticity can lead to 

divergence instability, especially for square plate.  

 

Paper 4  investigated variational solution for the buckling of nonlocal carbon nanotubes under 

uniformly and triangularly distributed axial loads. The Euler-Bernoulli beam theory was used 

to derive the displacement field of CNTs, and Eringen nonlocal theory was employed to 

determine the stress-strain constitutive equations.  The forces acting on the nanobeams  were 

tip load and uniformly distributed or triangular distributed forces. The variational principle 

was used to derive the weak formulation of the differential equation, followed by the 

Rayleigh quotients and the derivation of the boundary conditions. Using the Rayleigh-Ritz 

method, based on the Chebyshev polynomials, characteristic equation was derived and the 

values of buckling loads were obtained for all three types of forces. The comparison of the 

obtained results and those existing in the literature was done with good satisfaction. It was 

observed that the increase of the nonlocal small scale parameter decreases the buckling load.  

 

Remar k:  The contour plots of the distributed loads with respect to the tip load and the small 

scale parameter was shown. It was observed that buckling was more sensitive to the 

magnitude of the tip load for the clamped-free boundary conditions. 

  

Paper 5 studied the buckling of nonuniform carbon nanotubes under concentrated and 

distributed axial loads with application to nanocones were carried out. we considered a 

nonuniform carbon nanotube with varying cross sectional area. The inertia was taken as 

fourth order linear polynomial and the results obtained were compared with those found in 

the literature. Contour plots of tip, uniformly distributed and triangularly distributed loads 

were plotted with respect to small scale parameter and the non-uniformity parameter for SS 

and CS boundary conditions.  The effect of non-uniform parameter appeared to be more 

pronounced for the concentrated load, especially when the nanobeam is simply supported. 

Secondly the contour plots of distributed loads with respect to tip load and non-uniformity 

parameter was shown for a nanobeam with fixed nonlocal parameter. The sensitivity here was 
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more observable for clamped-clamped column. Moreover, buckling values for uniform and 

triangular loads decreased the most when the tip load increased in the case of clamped-free 

columns.     

 

Remar k.   The application of the present theory to a nanocone permittted the plotting of the 

axial forces vs radius ratio. The results showed that the buckling loads increase with the 

radius ratio and decreases with increasing small scale constant. 

 

 

10.2-Futur e prospect s 

The Love-Kirchhoff theory was used in order to derive the equations of plates in this thesis, 

although there exist many other theories. These theories include von Karman or Mindlin 

models of rectangular plate, which can be explored for future research. Also, composite 

rectangular plate subjected to follower forces have not yet been studied and could therefore 

be considered as potential extension of the present work.  Nonlocal theory could be applied in 

order to derive the equation of a nanoplate under nonuniformly distributed axial loads and the 

same analysis can be applied to compute the buckling loads following exactly the same 

procedure utilized in this dissertation.  

      Carbon nanotubes were considered as nanobeams in the present work. The work can be 

extended to nanorods which are modelled as cylindrical shells.  The study of nonlinear 

viscoelastic CNTs could also represent a very good and interesting prospect, as this work 

could be used as starting point. 
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