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Abstract

Global spread of infectious disease threatens the well-being of human, domestic, and wildlife

health. A proper understanding of global distribution of these diseases is an important part of

disease management and policy making. However, data are subject to complexities by hetero-

geneity across host classes and space-time epidemic processes [Waller et al., 1997, Hosseini et al.,

2006]. The use of frequentist methods in Biostatistics and epidemiology are common and are

therefore extensively utilized in answering varied research questions. In this thesis, we proposed

the Hierarchical Bayesian approach to study the spatial and the spatio-temporal pattern of tu-

berculosis in Kenya [Knorr-Held et al., 1998, Knorr-Held, 1999, López-Quılez and Munoz, 2009,

Waller et al., 1997, Julian Besag, 1991]. Space and time interaction of risk (ψij) is an important

factor considered in this thesis. The Markov Chain Monte Carlo (MCMC) method via WinBUGS

and R packages were used for simulations [Ntzoufras, 2011, Congdon, 2010, David et al., 1995,

Gimenez et al., 2009, Brian, 2003], and the Deviance Information Criterion (DIC), proposed by

[Spiegelhalter et al., 2002], used for models comparison and selection. Variation in TB risk is

observed among Kenya counties and clustering among counties with high TB relative risk (RR).

HIV prevalence is identified as the dominant determinant of TB. We found clustering and het-

erogeneity of risk among high rate counties and the overall TB risk is slightly decreasing from

2002-2009. Interaction of TB relative risk in space and time is found to be increasing among

rural counties that share boundaries with urban counties with high TB risk. This is as a result of

the ability of models to borrow strength from neighbouring counties, such that near by counties

have similar risk. Although the approaches are less than ideal, we hope that our formulations

provide a useful stepping stone in the development of spatial and spatio-temporal methodology

for the statistical analysis of risk from TB in Kenya. 1

1Key words:Hierarchical Bayes, hot classes, heterogeneity, Deviance Information Criterion (DIC), Markov Chain

Monte Carlo (MCMC), parsimonious, spatio-temporal, spatial, host classes,and frequentist
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Chapter 1

Introduction

1.1 Background

Tuberculosis (TB) is a contagious disease caused by a germ known as “Mycobacterium tuber-

culosis” (“M. tuberculosis”). TB affects virtually every part of the body, particularly the lungs.

The infection in the lungs is referred to as pulmonary infection and is the major cause of TB

transmission from one person to another. Just like the influenza, M. tuberculosis is transmitted

when Active TB person (TB infected person) exhales the droplets of nuclei carrying the tubercle

bacilli, and a susceptible individual inhales this droplet from the air. This droplet eventually

reaches the lungs and spread throughout the body. The body’s natural defence mechanism limits

its multiplication and some remain dormant (“sleep”) but viable, creating a condition refer to as

Latent TB infection (LTBI) [CDC Training, 2000]. A person in LTBI condition has a low chance

becoming infected with TB (active TB infection (ATBI)). The most vulnerable individuals are

children under four years, HIV/AIDS patients, cancer and diabetes patients [CDC Training, 2000].

General symptoms of tuberculosis are: fever, chills, night sweats, loss of appetite, weight loss and

fatigue and significant finger clubbing. Pulmonary symptoms include chest pains and prolonged

cough producing sputum. In some instances, TB patients may cough up blood.

Generally, TB is diagnosed with microscopic examination and chest radiography and tubercle skin

test purposely for LTBI diagnosis [CDC Training, 2000, Wilce et al., 2004]. Active TB infection

is most often treated with a combination four drugs for at least six months [CDC Training,

2000]. Treatment for a person infected with both TB and HIV (co-infection ) and Multiple

Drug Resistance TB (MDR-TB) is very complicated and expensive [CDC Training, 2000, Wilce

et al., 2004]. It is recommended that those with high risk of developing active TB condition

1
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such HIV/AIDS patients and those in contact with TB patients should be tested and treated

accordingly.

Tuberculosis is a global public health threat and concern. Kenya with a population of 40 million

is one of the countries with the highest TB burden. Despite several measures by the Government

of Kenya, various TB research institutions, and National TB programmes for combating TB in

Kenya, Kenya is ranked 13th among the 22 TB high-burden countries. The pandemic in Kenya

constitutes 80% of the global TB incidence [Figueroa-Munoz et al., 2005]. A study conducted

in Kenya’s Homa Bay District hospital estimated 17% (1,122) of those who visited the TB

lab between August 2005 and 2007 of which females and males constituted 51.3% and 48.7%

respectively had TB [Emmanuel and Shitandi, 2010]. The increasing Beijing/W M.tuberculosis

genotype was identified in Kenya (Nairobi), which is highly likely to increase TB cases if it is

highly transmissible [Glynn et al., 2006].

Sub-Saharan African countries have shown noticeable decrease in HIV prevalence rate from 10%

in the late 1990s to 6.1% in 2005 [Sánchez et al., 2009]. However, more research is require

for HIV prevention to control TB since HIV and TB are epidemiologically associated [De Cock

and KM, 1999]. Observed co-dynamics suggest that the two diseases are directly related at the

population level [Lawn and Wilkinson, 2006] and also within the host [Ramkissoon, 2012].

Several factors account for TB persistence in Kenya, some of which include: cultural beliefs [Ward

et al., 1997], inadequate TB health care facilities [Ayisi et al., 2011], poverty/financial constraint

and socio-economic factors [Schwarz, 1980], unfamiliarity with TB causes and symptoms Ayisi

et al. [2011], hereditary predisposition, alcohol, smoking, witchcraft [Baliddawa et al., 2003],

HIV/AIDS [Ferreira Gonçalves et al., 2009], charcoal burning and living with domestic animals,

use of common feeding utensils [Ayisi et al., 2011], and self-administration of MDR-TB medicine

[Sinha and Tiwari, 2010]. HIV/AIDS is the main cause of TB increase in Kenya, and its epidemics

had resulted to 10-fold increase in TB cases [Marum et al., 2006]. The promising and assuring

fact is that TB is curable.

Great strides have been made in the fight against TB in Kenya. Some of the initiatives include:

the establishment of the Kenyan Medical Research Institute and Center for Disease Control and

Prevention (KEMRI/CDC) which supports Health and Demographic Surveillance System (HDSS)
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in Kenya for TB control [Hawley et al., 2003]. The Ministry of Health and APHIA II Operational

Research (OR) project which have integrated TB screening and referral services into postnatal

care in five health facilities in Kenya [Marseille et al., 2011]. Upon TB occurrence in Kenya,

the Kenya Tuberculosis Investigation Center (KTIC) was formed in the mid fifties. They work in

collaboration with the British Medical Research Council (BMRC) and WHO for TB survey and

clinical diagnosis [Schwarz, 1980]. Other bodies responsible for TB control in Kenya are: the

Kenya association for the Prevention of Tuberculosis (KAPT) [Schwarz, 1980], the Tuberculosis

and Respiratory Infection Unit (TRIU) [Schwarzer et al., 2002], and the President’s Emergency

Plan For AIDS Relief (PEPFAR) and the Global Health Initiative (GHI) in 2009 by His Excellency

President Obama’s administration [Fleischman, 2011].

1.2 Global Tuberculosis Challenge

According to WHO, despite the fact that TB is curable, more than 5,000 people died every day,

(that is 2-3 million per year) [Wilce et al., 2003]. Global TB incidence is estimated at 1.6 million

each year, with one third of the world’s population estimated to have TB infection [Wilce et al.,

2003]. TB became global concern following the emergence of MDR-TB in many parts of the

world including: Russia, Latvia, Estonia, Argentina, the Dominican Republic, and Ivory Coast,

with about 50 million people infected with MDR-TB worldwide [Wilce et al., 2003]. Globally,

WHO reported that TB is the leading Cause Of Death (COD) in people living with HIV/AIDS.

One in four deaths among people living with HIV/AIDS is as a result of TB, especially, poor

socio-economic areas.

Global views concerning TB cause and symptoms vary among countries and ethnic groups. Philip-

pines TB patients attribute TB symptoms to drinking and smoking [Auer et al., 2000], Igbo of

Nigeria TB patients attribute TB cause to eating beef and other high protein foods [Enwereji,

1999], Bostwana patients associate TB symptoms to hard work in mines, drinking and smoking

[Mazonde and Mazonde, 1999], Vietnamese refugees in the US said TB is caused by hard manual

labour, smoking, alcohol, poor nutrition, and germs [Carey et al., 1997], Malawi’s TB patients

viewed TB causes to as a result of adultery, germs, alcohol abuse, “wrong” food, stagnant water,
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and witchcraft [A et al., 2000], TB and all other disease in general was viewed to be caused by

imbalances in behaviour or diet in Ethopia [Vecchiato, 2008], and Xhosa-speaking in South Africa

attributed TB causes to lack of hygiene and witchcraft [Wilkinson et al., 1999]. The people in

rural Haiti believed that TB is caused by sorcery [Farmer et al., 1991]. Numerous factors are

common to those listed above that may hinder TB control [Mazonde and Mazonde, 1999].

Stigmatization accelerates TB’s spread and increase control difficulties. TB patients tend to

hide their status from their families [Wilce et al., 2003]. Stigma to TB was also confirmed in

Vietnamese [Carey et al., 1997], Mexico immigrants in California [Rubel and Garro, 1992], in

India [Uplekar and Rangan, 1996], in South Africa Zulus [Rubel and Garro, 1992]. There seem

to be acommon global view about the causes and symptoms of TB most of which causes their

delay in seeking health care.

Various models and TB antibiotics have been developed by almost all affected countries in con-

nection with the WHO Stop TB strategy [Raviglione, 2007] and Stop TB partnership’s Global

Plan to Stop TB [Raviglione, 2007]. In 2008, 19% (180) countries were reporting and all the 22

TB high-burden countries are implementing the DOTS component of the WHO Stop TB strat-

egy [K et al., 1999]. The implementation of standard TB diagnostic and treatment approaches

by WHO had cured 36 million people between 1995-2008, preventing up to 6 million deaths

[Lönnroth et al., 2010]. Regarding the objective of the millennium goal, TB control would have

been achieved in 2004, and even the more important long-term elimination of TB set for 2050 is

unlikely to be achieved with the current strategies [Lönnroth et al., 2010].

Globally, 46% TB patients are receiving HIV anti-viral drug and 77% have started the co-

trimozazole preventive treatment in 2010 [Organization et al., 2011]. New TB diagnostic tool

(Xpert MTB/RIF) which test for TB in 100 seconds is currently use by 26 countries since July

2011. This tool was endorsed by WHO and 145 countries are allow to purchase the kits at af-

fordable price [Organization et al., 2011]. Internal funds for TB control among affected countries

have risen to an estimated value of 85%, but most low income countries still depend on external

donors. External donors are provided 82% International TB funding for 2012.

Social researchers emphasized on the need to go beyond biomedical model for TB control [Wilce

et al., 2003]. More research is required on DOTS programme [Wilce et al., 2003]. TB is a
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global public health issue and if no tangible measures are taken, TB is likely to escalate [Porter

et al., 1999]. There are “point-of-case” test under way, 10 TB drugs on trial, and 10 vaccines

candidates for prevention of TB in phase I or phase II trials [Organization et al., 2011].

Considering the complex nature of TB, theories regarding its origin and global transition to

the current state continue to change in correspondence with new archaeological discoveries and

evolution of molecular technology [Davis and AL, 2000]. With diverse and extensive TB research

and studies, scientists have hypothesised that M.tuberculosis is associated with mycobacterium,

M. bovis, coincident with domestication of cattle by humans at approximately 15,000 years ago

[Daniel and TM, 2000]. TB was identified in Egyptian mummies dating 5,400 years ago [Thomas,

1997].

Tuberculosis was associated with romanticism during the 19th century [Ott, 1996]. The search

to understand the pathophysiological and clinical manifestation of TB begun during the 17th,

18th, and 19th centuries [Reichman and Hershfield, 2000]. Robert Koch identified the tubercle

bacilli in 1882 as the main cause of TB and established it as an infectious disease [Reichman and

Hershfield, 2000]. In the 1940s, scientist discovered that the antibiotic, streptomycin, killed M.

TB; however, the bacilli has the ability to develop resistance when only streptomycin was used.

By 1950, combined drug treatment for TB was introduced [Davis and AL, 2000].

My understanding is that treatment of TB is not a problem. Probably the problem is adherence

to TB treatment and the impact of HIV.
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1.3 Literature Review of Tuberculosis

There exist a vast amount of literature concerning the development and application of disease

mapping approaches some of which can be found in [Bernardinelli et al., 1995, Waller et al.,

1997, Wakefield et al., 2000, Lawson and Lawson, 2001, Knorr-Held, 1999]. The global spread

of infectious diseases threatens the well-being of not just the human population but that of

domestic and wild animals. Therefore, a proper understanding of the pathways and global spread

of communicable and infectious diseases is an important aspect of disease management and policy

making. However, the data collected with the object of understanding these patterns are subject

to complication brought about by heterogeneity that could be of spatial or non-spatial nature

[López-Quılez and Munoz, 2009, Currie et al., 2003]. Ignoring these complexities is likely to lead

to incorrect inference and erroneous conclusion [López-Quılez and Munoz, 2009, Currie et al.,

2003]. Disease data can be case-event data at locations affected individuals are found or counts

from non-overlapping regions. Since the data provided for this study only had county level spatial

resolution, the approach would be to analyse the data as regional or county specific count data.

Spatial and spatio-temporal distribution of a disease is often understood through application of

statistical methods to the data and creating maps that visually describes spatial and spatiotem-

poral variation of disease risk [Currie et al., 2003]. However, disease counts maps are subjected

to numerous problems. One such problem is the Modifable Areal Unit Problem (MAUP), which

occurs when inference at the areal level differs from that which is observed at the basic obser-

vational unit. This is likely to change conclusions drawn from a study of a count data. The

MAUP has variety of special cases one of which is ecological or medical bias where the problem

is whether inference can be made at the individual level from aggregate data. The question often

asked is, can we make inference from county or region level analysis to the individual level. The

MAUP can be addressed by scaling up to ensure smoothing or averaging of data and making

inference at high aggregate level than that used in the analysis. MAUP can also be addressed by

scaling down to enable inference at lower level than that used in the analysis. Multiscale Analysis

can also be used to addressed MAUP. This analysis concerns spatial units that are completely

matched when aggregated [Lawson, 2008].
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Also differences in population between regions results to differences in variance of regional esti-

mates. This problem is addressed by employing a hierarchical Bayesian model that smooths the

risk from neighbouring regions and clearly accounts for population difference by using a Poisson

distribution for outcomes.

Bayesian methods are widely used in disease mapping. Clayton and Kaldor [1987] applied the

the Empirical Bayes (EB) methods for smoothing a map of lip cancer rates. They assumed a

multivariate normal for the log relative risks and allowed for spatial correlation via conditional

autoregressive model. Their model could not be considered to be a “fully Bayesian”, since a

quadratic approximation was used for the likelihood and this did not account for the uncertainty

in the estimates of the hyperparameters.

Julian Besag [1991] is the first example of fully Bayesian disease mapping. They used the

convolution prior model described in Section 5.1 to model the log relative risk. They found

that the model shrunk extreme disease rates towards the mean and detected spatial association

that was apparent in the raw data. According to Julian Besag [1991], the fully Bayesian model

produced more accurate estimates than the EB produce of Clayton and Kaldor.

Modelling of count data in space-time has received considerable development. Bernardinelli et al.

[1995] is the first example of modelling count data in space-time. They assumed Poisson likelihood

model for the count data where the log of the relative is the focus of modelling.

Waller et al. [1997] proposed a spatio-temporal model that have several similar features as the

BYM or convolution model. This model was based on convolution prior and allowed for each

period to have separate spatial and nonspatial effect. They assumed that the covariates effects are

constant over the study period and that disease counts followed a Poisson distribution. They fitted

this model lung cancer deaths in 88 Ohio counties for the year 1968-1988. Each year was treated

as a separate time period. Some of their remarkable findings were an overall trend of increasing

lung cancer deaths and also increase in both spatial clustering and uncorrelated heterogeneity.

They related these findings to “increasing evidence of clustering among the high rate counties,

but with higher rates increasing and lower rates constant” That is increasing heterogeneity over

the study period [Norton, 2008].
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Knorr-Held et al. [1998] proposed a spatio-temporal model which included both the convolution

prior on space and also a similar prior for temporal trends. They extended the Waller et al. model

by assuming that the spatial terms were constant over the study periods. This followed after they

stated that “Waller et al. formulation in principle does allow exploration of additionally varying

risk factors within each year, but is built on the premise that temporal smoothing is unnecessary,

treating time as essentially exchangeable”. This model was applied to the same Ohio lung cancer

data, but it was not clear that it revealed additional features of the data [Norton, 2008].

Roza et al. [2012] ecological study applied Bayesian hierarchical regression model to evaluate the

urban spatial and spatio-temporal distribution of TB in Rilirão Preto, state of São Paulo, South-

east Brazil between 2006-2009 and to evaluate TB risk determinants. The study revealed that

TB rates are correlated with measures of income, education and social vulnerability. They stated

that complex relationship may exist between TB incidence and a wide range of environmental

and intrinsic factors, which need to be studied in future research.

Randremanana et al. [2010] applied both the Bayesian approach and the generalized mixed model

to produce smooth relative risk maps of TB and to model relationship between TB new cases

and national TB control program indicators. Their study discovered that high TB risk areas

were clustered and TB distribution found to be associated with the number of patients lost to

follow-up and the number house holds with more than one case.

Achcar et al. [2008] study on assessing the prevalence of TB in New York from 1970-2000 using

Bayesian analysis approach stated that decline in TB incidence could probably be as a result of

good control programmes and raised in TB prevalence could be attributed to social disruptions

such as homelessness, drug abuse, poverty, and overcrowding. Their study confirmed that increase

in TB is mainly due to HIV epidemic.

Srinivasan and Dharuman [2012] study of TB pattern in India, using the Bayesian conditional

autoregressive model revealed that north-eastern states have high risk of TB than other regions.
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1.4 Problem statement

One-third of the world’s population is infected with M. tuberculosis, leading to 3 million deaths

each year [Murphy et al., 2003]. More investigation on TB dynamics need to be explored to

establish spatial, spatio-temporal distributions and cause of TB pandemics. Disease risk often

exist in space and time and would therefore be properly understood if studied in space and time.

Statistical models are one of the tools that have been used to successfully analyse and understand

the possible trends exhibited in infectious disease. Modelling of disease risk in space and time

is quite challenging [López-Quılez and Munoz, 2009]. This type of analysis is often posed with

problems since the number of disease cases and their associated population at risk in any single

unit of space and time are too small to produce a reliable estimate of the underlying disease risk

without “borrowing information” from neighbouring regions.[Knorr-Held et al., 1998].
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1.5 The Objectives

This project is aimed at modelling and mapping TB in Kenya and to propose or suggest models

for modelling and mapping TB in Kenya.

The specific objectives of this study are:

1. To review statistical methods to handle spatial and spatio-temporal models used in disease

mapping

2. To identify appropriate Spatial models for modelling and mapping TB risk in Kenya over

the period 2002-2009 using routine surveillance data from Kenya DHS.

3. To identify appropriate spatial-temporal models for modelling and mapping TB risk in Kenya

over the period 2002-2009 using routine surveillance data from Kenya DHS.
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1.6 Thesis Structure

Chapter 2 presents a summary of the data set used in this study and explains the standardization

methodology used to compute the expected number of disease cases and standardized mortality

ratio (SMR).

In Chapter 3, we give Bayesian methodology and techniques based on which parameters are

obtained.

In Chapter 4, we present nonspatial models used in disease modelling and mapping and their

applications to Kenya TB prevalence data for 2002-2009.

In Chapter 5, we discuss the Bayesian hierarchical spatial model used in disease modelling and

mapping and their applications to Kenya TB prevalence data for 2002-2009.

In Chapter 6, we discuss some of the spatio-temporal models used in disease modelling and

mapping and their application to Kenya TB prevalence data for 2002-2009. Finally, in Chapter

7, we give the discussion and conclusions of the thesis.



Chapter 2

Preliminary Data Management and Anal-

ysis

2.1 Introduction

Kenya is located in the Eastern part of Africa and is divided into 8 provinces and 47 administrative

counties. Kenya share borders with Tanzania at the south, Uganda at the West, Ethopia at the

North, Somalia at the North-East and Southern Sudan at the North-West. According to Kenya

National Bureau of Statistics (KNBS), Kenya’s population was estimated at approximately 39.5

million in 2011. The Gross Domestic Product (GDP) in Kenya was worth 35.557 billion US

dollars in 2011/2012.

According to Daima Kenya statistics, HIV Prevalence rate in Kenya was estimated at 6.3% in

2012. Approximately 1.5 million people in Kenya are living with HIV. More then 70% of those

infected with the HIV virus live in the rural areas whiles only 30% live in the urban areas. The

number of people living with HIV in Kenya has dropped from 13% in 2000 to 6.3% in 2012.

The data used in this study is routine data from Kenya DHS. It contains records of Kenya’s

population size, tuberculosis cases, and some suspected determinants of tuberculosis for each

period from 2002-2009 and for each 67 districts. To study the risk of TB infection in each

county, the data from the 67 districts were aggregated to provide county level summarises.

Some of the determinants of TB that were recorded are:

1. HIV prevalence

2. Poverty prevalence

12
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3. Illiteracy

4. Population less then 5km to health facility

5. Firewood

6. Altitude and

7. Mean house hold size

Summaries of all variables that constitute the data are presented in the next section.

2.2 Exploratory Analysis

Table 2.1: Summary Statistics for variables in the data set

Variables No. of counties Mean SD Median Min Max 95% CI

TB Cases 47 17830 22348.07 12531 1348 149600 (7200,20560)

HIV Prevalence (%) 47 4.289 2.797 3.800 1.000 16.430 (2.950,4.700)

Proportion of poor 47 0.5196 0.184 0.5013 0.1157 0.9434 (0.3778,0.6369)

Illiteracy (%) 47 24.47 19.958 16.00 2.80 77.30 (12.10,29.80)

House hold 5km away from Hospital ( % ) 47 77.76 16.399 80.80 19.20 99.00 (72.05,86.72)

Firewood ( % ) 47 78.52 20.175 84.60 1.80 96.70 (74.95,90.65)

Altitude (m) 47 1361 602.2214 1432 151 2274 (1138,1813)

Mean House Hold Size 47 5.383 0.799 5.250 3.800 6.900 (4.775,6.050)

Table 2.1 presents summaries of some determinants of TB in Kenya. The mean and the median

estimates of TB cases and illiteracy revealed that most of their values are concentrated at the

high scale. Following the same analogy, the HIV prevalence, Proportion of poor people in the

population and the mean house hold size variables have almost equal values at the low and

high scale. These variables are almost symmetric or normally distributed. Finally, the variables,

percentage of people who are at 5km distance away from hospital and the percentage of those who

use firewood have most of their data values concentrated at the low scale. Variable distribution



Section 2.2. Exploratory Analysis Page 14

and presences of outliers are visually shown with the help of box plot shown in Figure 2.1 and

Figure 2.2.

Table 2.2: County Level Population Size Summaries for 2002-2009

Year N Mean SD Median Min Max 95% CI

2002 47 685,586 435,819.5 604,298 83,985 3,034,397 (407424,869752)

2003 47 705,776 450,910.0 625,506 86,443 2,600,859 (420676,890554)

2004 47 727,220 466,775.6 647,886 89,058 2,710,706 (434932,912918)

2005 47 747,631 481,824 669,403 91,549 2,815,838 (449244,934009)

2006 47 768,909 497,822 691,637 94,150 2,924,309 (462472,956223)

2007 47 791,147 514,520 714,590 96,851 3,034,397 (475354,979870)

2008 47 814,422 531,548 738,321 99,662 3,146,303 (490594,1005057)

2009 47 838,793 548,905 762,870 102,593 3,260,124 (506907,1031868)

Table 2.2 presents summaries of Kenya’s population size for 2002-2009. The mean county level

population size stood out to be 685, 586 (407424, 869752) in 2002 increasing to 838, 793 (506907, 1031868)

in 2009. The mean and the median showed that most of the data values for 2002-2009 are con-

centrated at the high scale. Population distributions and presence of possible outliers are visually

shown with the help of box plot shown in Figure 2.3
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Table 2.3: Summarises Statistics of County Level TB Cases From 2002-2009

Year N Mean SD Median Min Max 95% CI

2002 47 1,747 2,409.296 1,053 111.0 15,979.0 (679.5,2006.5)

2003 47 2,028 2,761.937 1,355 154.0 18,360.0 (746.5,2386.0)

2004 47 2,249 2,954.713 1,497 138.0 19,871.0 (928.5,2620.0)

2005 47 2,302 2,913.039 1,549 124.0 19,487.0 (938.5,2737.5)

2006 47 2,452 2,934.737 1,757 172 19,472 (1044,2844)

2007 47 2,416 2,836.123 1,988 177.0 18,901.0 (966.5,2786.5)

2008 47 2,291 2,790.387 1,676 223.0 18,589.0 (850.5,2623.0)

2009 47 2,346 2,843.675 1,700 249 18,984 (896,2724)

Table 2.3 presents summaries of TB cases in Kenya for 2002-2009. The mean county level

TB cases is estimated at 1, 747 (679.5, 2006.5) in 2002 and increased to 2006 at an estimated

value of 2, 452 (1044, 2844). TB cases decreased from 2007-2008 with corresponding values of

2, 416 (966.5, 2786.5) and 2, 291(850.5, 2623.0) respectively. TB cases slightly increased in 2009,

estimated at 2, 346 (896, 2, 724). The data distribution and the presence of outliers in the data

are diagnosed with the help of box plots shown in Figure 2.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Box Plots of TB Determinants of Tuberculosis in Kenya
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(a)

Figure 2.2: Box Plots of TB Determinants of Tuberculosis in Kenya

Figure 2.1 shows box plots of TB determinants. The box plot is one of the most widely used

statistical techniques to identify patterns that may be hidden in a group of numbers or data set.

The box plot uses the median (horizontal middle thick line), the quartiles (ends of the box) and

the lowest and highest data points (shown by ”tail” extended from above and below the box).

The box plot is widely used to identify extreme low or high values in a data set. These extreme

values are referred to as outliers. Visually, illiteracy variable has most of its values concentrated

at the high scale. Hence, illiteracy data are positively skewed. The HIV prevalence, Altitude,

Proportion of poor people in the population and the mean house hold size variables have almost

equal values concentrated at the low and the high scale. These variables are symmetrically or

normally distributed. Also, the variables, percentage of people who are at 5km distance away

from hospital and the percentage of those who use firewood, have most of their data values

concentrated at the low scale and are said to be negatively skewed.

Extreme points shown in Figure 2.1 are called outliers. Five high extreme outliers are observed

in the HIV prevalence variable. These outlier correspond to data values from Mombasa (11.7%),

Nairobi (10.1%), HomaBay (16.43%), Kissumu (8.9%) and Siaya (7.7%). Four low extreme

values are observed in the percentage of those who use firewood variable. These low extreme

values correspond to Mombasa (8.8%), Nairobi (1.8%), Nakuru (41.7%) and Kajiado (38.5%).

Seven High extreme values are also observed in the percentage of illiteracy variable. These

extreme values correspond to Mandera (71.6%), Garissa (57.9%), Marsabit (63.9%), Samburu
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(61.1%), Tana River (59.5%), Turkana (77.3%) and Wajir (75.2%). Finally, four low extreme

values are observed in the percentage of people who are 5km distance away from hospital variable.

These low extreme values correspond to Isiolo (48.8%), Mombasa (22.4%), Nairobi (19.2%) and

Taita Taveta (52.2%) and no outliers are observed in the mean house hold size, Altitude and

proportion of population who are poor.

Among these variables, method of variable selection was carried out on them to identify and select

variables that are significant for further analysis. Only HIV prevalence, percentage of people who

are five km distance away from health facility and percentage of people who use firewood were

identified as significant. These variables are considered for further analysis in Section 4.2 and

chapter 5

(a) (b)

Figure 2.3: Box Plots of Observed Tuberculosis Cases and Population Size of Kenya From 2002-

2009

Figure 2.3a visually presents distribution and presence of outliers in TB observed cases. Table

2.4 below shows counties that correspond to the high extreme values of TB cases for 2002-2009.



Section 2.2. Exploratory Analysis Page 19

Table 2.4: Counties With Extreme TB cases From 2002-2009

Year Nairobi Mombasa Kissumu

2002 15,979 5,889 4,753

2003 18,360 5,919 5, 581

2004 19,871 5,549 5,446

2005 19,487 5,869 5,722

2006 19,472 6,130 6,177

2007 18,901 6,157 -

2008 18,589 5,711 -

2009 18,984 5,554 -

Figure 2.3a confirmed an observed increase in TB cases from 2002-2006, decrease from 2007-2008

and a slight increase in 2009. TB cases for 2002-2009 have most of their values concentrated at

the high scale, hence, are said to be positively skewed.

Figure 2.3b shows that most of the population values for 2002-2009 are concentrated at the high

scale. Hence, are said to be positively distributed. Figure 2.3b confirms that Kenya’s population

seems to be increasing from 2002-2009. The outlier in each year corresponds to Nairobi with

corresponding values shown in Table 2.5 below.

Table 2.5: Counties With Extreme Population For 2002-2009

Year 2002 2003 2004 2005 2006 2007 2008 2009

Nairobi 2,495,170 2,600,859 2,710,706 2,815,838 2,924,309 3,034,379 3,146,303 3,260,124

We now describe risk estimation in the study population in the next section.
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2.3 Crude Estimation of Tuberculosis Risk

In this section, we describe how expected number and standardized mortality ratio (SMR) of TB

cases were obtained.

2.3.1 Estimates for Spatial Data

Suppose that the unknown risk of TB in region i is given as ϑi, i = 1, 2, . . . , n. Let yi and Ni

denote the number of TB cases and the population at risk respectively in region i. The expected

number of TB cases in region i can then be written as Ei = rNi, where r =

n∑
i=1

yi

n∑
i=1

Ni

is the overall

disease risk in the study population.

We estimate ϑi within the frequentist paradigm. We first assume that yi ∼ Poisson (Eiϑi).

Based on the sample y = {y1, . . . , yn}, the likelihood function and the corresponding log-

likelihood function are expressed as

` (ϑi) =
n∏
i=1

exp (−Eiϑi) (Eiϑi)
yi

yi!
= P (y,E | ϑϑϑ) (2.3.1)

and

ln ` (ϑi) = −
n∑
i=1

Eiϑi +
n∑
i=1

yi ln (Eiϑi)−
n∏
i=1

yi! (2.3.2)

The maximum likelihood estimator ϑ̂i of ϑi is obtained via ∂(ln `(ϑi))
∂ϑi

= 0 and is given by ϑ̂i = yi
Ei

.

This estimator, ϑ̂i is referred to as the standardized mortality ratio in region i.

The standard error of ϑ̂i is given by SE
(
ϑ̂i

)
=
√
yi
Ei

and the corresponding 100 (1− α) %

Confidence Interval (CI) for ϑ̂i is given by ϑ̂i ± Zα
2
SE

(
ϑ̂i

)
.

2.3.2 Estimates for Spatio-Temporal Data

Suppose that the unknown risk of TB in region i and period t is given as ϑit, i = 1, 2, . . . , n, t =

1, 2, . . . , T . Let yit and Nit denote the number of TB cases and the population at risk respectively
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in region i and period t. The expected number of TB cases in region i and period t can then be

written as Eit = rNit, where r =

n∑
i=1

T∑
t=1

yit

n∑
i=1

T∑
t=1

Nit

is the overall disease risk in the study population.

We estimate ϑit within the frequentist paradigm. We first assume that yit ∼ Poisson (Eitϑit).

Based on yit sample, the likelihood function and the corresponding log-likelihood function are

expressed as

` (ϑit) =
n∏
i=1

T∏
t=1

exp (−Eitϑit) (Eitϑit)
yit

yit!
= P (y,E | ϑϑϑ) (2.3.3)

and

ln ` (ϑit) = −
n∑
i=1

T∑
t=1

Eitϑit +
n∑
i=1

T∑
t=1

yit ln (Eitϑit)−
n∏
i=1

T∏
t=1

yit! (2.3.4)

The maximum likelihood estimator ϑ̂it of ϑit is obtained via ∂(ln `(ϑit))
∂ϑit

= 0 and is given by

ϑ̂it = yit
Eit

. This estimator, ϑ̂it is referred to as the standardized mortality ratio in region i and

period t.

The standard error of ϑ̂it is given by SE
(
ϑ̂it

)
=
√
yit
Eit

and the corresponding 100 (1− α) %

Confidence Interval (CI) for ϑ̂it is given by ϑ̂it ± Z−α
2
SE

(
ϑ̂it

)
.

We now present exploratory analysis of the standardized mortality ratio (SMR).

(a) (b)

Figure 2.4: Box plot of County Level TB Standardized Mortality Ratio for 2002-2009

Figure 2.4 enables us to deduce from counties that are likely to exhibit high risk of TB infection

for 2002-2009. Distribution of SMR is positively skewed over the study period with high extreme
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values and a very low extreme value in 2008. Counties that correspond to highest and lowest risk

are summarised in Table 2.6.

Table 2.6: Summary of County Level TB Standardized Mortality Ratio for 2002-2009

Year Highest Risk Second Highest Risk Lowest Risk Second Lowest Risk

2002 Mombasa 3.057(2.979,3.135) Nairobi 2.513 (2.474,2.552) Vihiga 0.3599 (0.329, 0.391) Laikipia 0.3691 (0.330, 0.408)

2003 Mombasa 2.985(2.909,3.061) Nairobi 2.770 (2.730, 2.810) Nyamira 0.349 (0.319,0,380) Laikipia 0.406 (0.366, 0.446)

2004 Nairobi 2.877 (2.837, 2.917) Mombasa 2.717 (2.643,2.791) Vihiga 0.422 (0.389,0.455) Laikipia 0.448 (0.406,0.490)

2005 Mombasa 2.795 (2.723,2.867) Nairobi 2.716 (2.678,2.754) ElgyeyoMarakwet 0.445 (0.402,0.488) Vihiga 0.450 (0.417, 0.483)

2006 Marsabit 3.208 (3.058, 3.358) Mombasa 2.831 (2.760, 2.902) Tana River 0.509 (0.450,0.568) ElgyeyoMarakwet 0.539 (0.493,0.586)

2007 Mombasa 2.772 (2.703,2.841) Nairobi 2.444 (2.409,2.479) Nandi 0.468 (0.438,0.498) Tana River 0.511 (0.452,0.569)

2008 Mombasa 2.499 (2.434,2.564) Nairobi 2.319 (2.285,2.352) Nandi 0.263 (0.241,0.285) Nyamira 0.390 (0.360, 0.421)

2009 Mombasa 2.360 (2.298,2.422) Nairobi 2.285 (2.253,2.318) Nandi 0.405 (0.378,0.432) Nyamira 0.473 (0.440,0.506)

Overall Mombasa 2.383 (2.361, 2.405) Nairobi 2.159 (2.148, 2.170) Nandi 0.403 (0.394,0.412) ElgyeyoMarakwet 0.422 (0.408, 0.446)

Table 2.6 shows counties with the highest and lowest TB SMR with their corresponding 95%

confidence interval (CI). County’s standardized mortality ratio greater than 1 is considered a high

risk county and less than 1 is considered a low risk county. Table 2.6 shows that Mombasa domi-

nates as the highest TB risk county followed by Nairobi over the study period. Their overall SMR

are estimated at 2.383(2.361, 2.405) and 2.159(2.148, 2.170) respectively. Nandi dominates as

the lowest TB risk county followed by Laikipia county over the study period. However, the overall

SMR shows that Nandi has the lowest risk followed by Elgyeyo Markwet with SMR estimates at

0.403(0.394, 0.412) and 0.422(0.408, 0.446) respectively.

Table 2.7: Summary of Period Specific TB Standardized Mortality Ratio

Year Mean SD Q1 Q2 Q3 Min Max

2002 0.9266 0.5850116 0.5305 0.7849 1.0135 0.3599 3.0573

2003 1.0396 0.6186062 0.6339 0.8910 1.2441 0.3492 2.9855

2004 1.1148 0.6064510 0.6867 0.9211 1.3547 0.4225 2.8766

2005 1.1182 0.6042379 0.6984 0.9572 1.3083 0.445 2.7952

2006 1.1818 0.6465715 0.7329 0.9590 1.2712 0.5091 3.2068

2007 1.1274 0.5638802 0.7480 0.9258 1.2627 0.4681 2.7718

2008 1.0387 0.518773 0.7575 0.8812 1.0709 0.2633 2.4985

2009 1.0214 0.498242 0.7012 0.8826 1.1496 0.4046 2.3604

Overall 0.9335 0.4880026 0.6185 0.7690 1.0540 0.4031 2.3830

Table 2.7 presents summary statistics of the standardized mortality ratio for each period, where

Q1, Q2, and Q3 represent the first quartile, median, and third quartile respectively. Low risk of TB
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prevalence is observed in 2002 but risk increased gradually from 2003-2006 and then decreased

slightly from 2007-2009. The overall risk effect is estimated at 0.93 (95% credible interval =

0.62-0.77).



Chapter 3

The Bayesian Hierarchical Modelling

This chapter introduces the Bayesian methods and the computational methodologies based on

which parameter estimates in this study are obtained. The development of Bayesian inference

has the data likelihood as a fundamental concept [Lawson, 2008]. According to Lawson [2008],

the likelihood principle, by which observations come to play through the likelihood function, is a

fundamental part of the Bayesian paradigm. This implies that information concerning the data

is entirely expressed by the likelihood function [Lawson, 2008].

3.1 The Likelihood Function

Let yi, i = 1, . . . , n be a random variable with probability density function P (yi | ϑϑϑ), where

ϑϑϑ = (ϑ1, . . . , ϑp) is a vector of relative risk parameters. The likelihood function of yi is defined

as

P (y | ϑϑϑ) =
n∏
i=1

P (yi | ϑϑϑ) . (3.1.1)

Equation (3.1.1) is based on the assumption that the sample values of y = (y1, . . . , yn)′ given the

parameters ϑϑϑ are independent [Lawson, 2008]. This independence assumption makes it possible

for us to express the likelihood function as a product of the individual contributions of P (yi | ϑϑϑ)

in (3.1.1). Hence, the data is said to be conditionally independent [Lawson, 2008].

In the next section, we discuss prior information about the parameters of interest.

24
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3.2 The Prior Distribution

Bayesian methods are based on prior belief about the parameters of interest. This belief about a

parameter is captured in a density function referred to as a prior distribution. The linking of the

prior information with data as given in the likelihood leads to posterior inference. We discussed

posterior distribution in section 3.3.

A prior distribution is a distribution assigned to the parameter ϑϑϑ before the data yi are observed

[Lawson, 2008]. All parameters within the Bayesian models are stochastic and assigned appro-

priate prior distribution [Lawson, 2008]. According to Lawson [2008], prior distributions provide

additional “data” for a problem, hence can be used to enhance estimation of parameters.

Given a single parameter, ϑ, the the prior distribution is denoted as P (ϑ), while for a parameter

vector, ϑϑϑ, the joint prior distribution is denoted as P (ϑϑϑ). Let us now consider some properties

or types of prior distributions.

3.2.1 The Propriety

Inpropriety of prior distribution is the condition where integration of the prior distribution of a

random variable ϑϑϑ over its range Ω is infinity [Lawson, 2008]. That is,∫
Ω

P (ϑϑϑ) dϑϑϑ =∞. (3.2.1)

A prior distribution is proper if its normalizing constant (See Section 3.3) is infinite [Lawson,

2008]. Lawson [2008] noted that, though impropriety is a limitation of any prior distribution, it

is not necessarily the case that an improper prior will lead to impropriety in the posterior.

3.2.2 Conjugate Priors

Sometimes, a particular combination of the prior distributions and the likelihood function lead

to the same distribution family in the posterior, where the posterior distribution has distribution
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family as that of the prior (See Section 3.3). This type of priors are referred to as the conjugate

priors. Conjugates are useful when evaluating complex distributions.

Specifically, for Poisson likelihood with parameter ϑ and the Gamma prior distribution for ϑ, the

posterior distribution of ϑ is also Gamma distribution (See Section 3.3, Equation (3.3.5)). Bino-

mial likelihood and beta distribution for the parameter ϑ lead to beta distribution in the posterior

[Lawson, 2008]. Similar results hold for normal data likelihood and normal prior distribution.

Conjugacy can be identified by examining the kernel of the prior-likelihood product. The prior-

likelihood (unnormalised kernel) should be in a similar form to the prior distribution. According

to Lawson [2008], conjugacy guarantees a proper posterior distribution.

3.2.3 Noninformative Priors

Noninformative prior is a type of prior distribution that do not make strong preference over the

observed values [Lawson, 2008]. Noninformative prior distributions are sometimes referred to us

vague or flat prior distribution. Choosing a noninformative prior distribution for the parameters

tends to mean that in any posterior analysis, the prior distribution(s) will have little influence

compared to the likelihood of the data.

According to Lawson [2008], the choice of noninformative prior can be made with some general

understanding of the range and behaviour of the variables. For instance, variance parameters

must have prior distributions on the positive real line. Noninformative priors in this range are

often the in the gamma, inverse gamma, or uniform families.

3.2.4 Jeffery’s Priors

In Bayesian probability, the Jefferys prior is a non-informative prior distribution on parameter

space ϑϑϑ that is proportional to the square root of the determinant of the Fisher information
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I (ϑϑϑ). Therefore, Jefferys prior for a single parameter ϑ is defined by

P (ϑ) ∝
√
I (ϑ), where I (ϑ) = −E

[
d2 lnP (y | ϑ)

dϑ2

]
. (3.2.2)

Hence, the Jefferys prior can alternatively be defined as

P (ϑ) ∝
√
I (ϑ) =

√√√√[( d

dϑ
lnP (y | ϑ)

)2
]
. (3.2.3)

Jeffery’s priors were developed in an attempt to find such vague or flat prior for a given distribution

[Lawson, 2008].

Following equation (3.2.3), the Jeffry’s prior for Poissson mean ϑ of the positive real value y is

defined by

P (ϑ) =

√√√√+∞∑
x=0

P (y | ϑ)

(
y − ϑ
ϑ

)2

=
1√
ϑ

(3.2.4)

This prior is improper and not noninformative [Lawson, 2008].

Also, Jeffrys prior for the normal distribution of the positive real value X with fixed mean ϑ is

P (ϑ) =

√√√√√ +∞∫
−∞

P (y | ϑ)

(
y − ϑ
σ2

)2

dy =

√
σ2

σ4
∝ 1. (3.2.5)

This prior does not depend upon ϑ. The Jeffrys prior for the normal distribution of the positive

real value y with standard deviation, σ > 0 is

P (σ) =

√√√√√ +∞∫
−∞

P (y | ϑ)

(
(y − ϑ)2 − σ2

σ3

)2

dy =

√
2

σ2
∝ 1

σ
(3.2.6)

Again, using equation (3.2.3), Jeffrys prior for binomial likelihood with parameter ϑ and sample

size n is

P (ϑ) =

√
n

ϑ (1− ϑ)
= n1/2ϑ−1/2 (1− ϑ)−1/2 . (3.2.7)

The Equation (3.2.7) can be written as P (ϑ) ∝ ϑ−1/2 (1− ϑ)−1/2, where ϑ ∼ Beta
(

1
2
, 1

2

)
.
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The form of the data likelihood helps to determine the prior (3.2.2) but not the actual observed

data since we are averaging over yyy in equation (3.2.2).

It is should be noted that it is sometimes imperative to be more informative with the prior distri-

butions if the likelihood function has little information about the identification of the parameters

Lawson [2008]. Then, identification can only come from the prior specification [Lawson, 2008]. In

this instance, Lawson [2008] defined identifiability as an issue relating to the ability to distinguish

between parameters with a parametric model.

3.3 The Posterior Distribution

3.3.1 The General Case

The posterior distribution is a probability distribution of the parameters given the data. The

posterior distribution which is proportional to the product of the likelihood function and the prior

distribution is defined as

P (ϑϑϑ | y) =
P (y | ϑϑϑ)P (ϑϑϑ)∫

p

L (y | ϑϑϑ)P (ϑϑϑ) dϑϑϑ

, (3.3.1)

where

∫
p

L (y | ϑϑϑ)P (ϑϑϑ) dϑϑϑ is called the normalizing constant.

3.3.2 The Poisson-Gamma Distribution for TB incidence Data

Let yi and Ei, i = 1, . . . , En, denote the observed and expected number of TB cases in county

i respectively. We assume that yi ∼ Poisson (Eiϑ), where ϑ is the unknown relative risk. That

is, the likelihood function for yi is given by

P (y | Eiϑ) =
(Eiϑ)yi exp (−Eiϑ)

yi!
, yi, i, . . . , n. (3.3.2)
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We assume that ϑ ∼ Gamma (a, b) as a prior distribution, P (ϑ) for ϑ defined alternatively by

P (ϑ | a, b) =
(ϑ)a−1

Γ (a) ba
exp (−ϑb) , ϑ, a, b > 0. (3.3.3)

Therefore, the posterior distribution for ϑ is given by

P (ϑ | y) =

N∏
i=1

(Eiϑ)yi exp(−Eiϑ)
yi!

(ϑ)a−1

Γ(a)ba
exp (−ϑb)∫ N∏

i=1

(Eiϑ)yi exp (−Eiϑ)

yi!

(ϑ)a−1

Γ (a) ba
exp (−ϑb) dϑ

, ϑ > 0, a > 0, b > 0. (3.3.4)

This model specification here is referred to as first level hierarchical model. The posterior distri-

bution can be simplified as

P (ϑ∗ | Ei, a∗, b∗,y) =
b∗a
∗

Γ (a∗)
ϑa
∗−1 exp (−ϑb∗) , (3.3.5)

where a∗ =
n∑
i=1

yi + a and b∗ =
n∑
i=1

Ei + b. Therefore, the posterior mean of the Poisson-Gamma

model given

E (ϑ∗ | Ei, a∗, b∗,y) =

n∑
i=1

Xi + a(
n∑
i=1

Ei + b

) (3.3.6)

and the posterior variance is given by

var (ϑ∗ | Ei, a∗, b∗,y) =

n∑
i=1

yi + a(
n∑
i=1

Ei + b

)2 (3.3.7)

The posterior mean (3.3.6) can be alternatively expressed as

E (ϑ∗ | yi, a∗, b∗) =
yi + a

Ei + b
= (1−Ri) ϑ̂i +Ri

a

b
, where Ri =

b

(Ei + b)
(3.3.8)

The above description of estimation of parameters is referred to us the Empirical Baye Estimation

(EBE).

In this study, we employed hierarchical Bayes approach to estimate parameters of interest discussed

in Section 4.1. We used Markov Chain Monte Carlo method for simulation of parameters from

their respective distributions via Gibbs Sampling discussed in the next section.
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3.4 Bayesian Markov Chain Monte Carlo (MCMC) Method.

In this section, we will provide the elementary notion of MCMC algorithm used to carry out

posterior inference in the case where the product of the likelihood and the prior are analytically

intractable.

Ntzoufras [2011] stated that MCMC methods enabled quantitative researchers to use highly

complicated models to estimate the corresponding posterior distribution with accuracy. The

development of modern MCMC has greatly contributed to the development of and propagation

of Bayesian theory [Ntzoufras, 2011].

The MCMC methods involve construction of a Markov Chain (MC) that eventually “converges”

to the target (stationary) distribution [Ntzoufras, 2011]. The target distribution in this thesis is

the Posterior distribution P (ϑϑϑ | y). In the next Section, we explain how MCMC algorithms work.

3.4.1 Markov Chain Monte Carlo Algorithm

Let ϑϑϑ(1),ϑϑϑ(2), . . . ,ϑϑϑ(G) be a sample of size G from the posterior distribution P (ϑϑϑ | y). A Markov

Chain is a stochastic process defined by {ϑϑϑ(1),ϑϑϑ(2), . . . ,ϑϑϑ(G)} such that P
(
ϑϑϑ(g+1) | ϑϑϑ(g), . . . ,ϑϑϑ(1)

)
=

P
(
ϑϑϑ(g+1) | ϑϑϑ(g)

)
. That is, the distribution of ϑϑϑ at time g+ 1 given all the preceding ϑϑϑ values (for

g, g − 1, . . . , 1) depends only on the value ϑϑϑ(g) of the previous sequence g.

As g →∞, the distribution ϑϑϑ(g) converges to its equilibrium, which is independent of the initial

value of the chain ϑϑϑ(0) [Ntzoufras, 2011]. This condition occurs when the MC is irreducible,

aperiodic, and positive-recurrent [Nummelin, 2004].

We describe an MCMC algorithm for which this property holds. The standard approach to

Bayesian inference using MCMC is as follows:

1. Select an initial value ϑϑϑ(0).

2. Generate G values until the equilibrium distribution is reached.

3. Monitor the converge of the algorithm using the convergence diagnostic. If convergence
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diagnostics fail, we generate more samples.

4. Cut off the first B observations. This is referred to as the Burn-in period. Here, the first B

iterations are eliminated from the sample to avoid the influence of initial values. Ntzoufras

[2011] stated that if the sample generated is large enough, burn-in period’s effect on the

calculation of the posterior is minimal.

5. Consider {ϑϑϑ(B+1),ϑϑϑ(B+2), . . . ,ϑϑϑ(G)} as the sample for the posterior analysis.

6. Plot the posterior distribution.

7. Finally, obtain summaries of the posterior distributions.

It is items 6 − 7 in the list above that we refer to the convergence diagnostics. Convergence

diagnostics is used to identify cases where convergence is not achieved.

The MCMC output provides us with a random sample of the form {ϑϑϑ(1),ϑϑϑ(2), . . . ,ϑϑϑ(G′)}. From

this sample, for any function M (ϑϑϑ) of parameters ϑϑϑ of interest, we can obtain a sample of

the desire parameter M (ϑϑϑ) by considering M
(
ϑϑϑ(1)
)
,M

(
ϑϑϑ(2)
)
, . . . ,M

(
ϑϑϑ(G′)

)
. We can also

obtain any posterior summary of M (ϑϑϑ) from the sample distribution using the traditional sample

estimates [Ntzoufras, 2011]. Thus we can estimate the posterior mean Ê (M (ϑϑϑ) | y) by

Ê (M (ϑϑϑ) | y) =
1

G′

G′∑
g=1

M (ϑϑϑg) (3.4.1)

and the posterior standard deviation ŜD by

ŜD (M (ϑϑϑ) | y) =
1

G′

G′−1∑
g=1

[
M (ϑϑϑg)− Ê (M (ϑϑϑ) | y)

]2

(3.4.2)

Other measures of interest such as the posterior median or quantiles can be obtained in similar

fashion [Ntzoufras, 2011].

According to Ntzoufras [2011], the two most popular MCMC methods are the Metropolis-Hasting

algorithm (Metropolis et al 1953; Hastings, 1970) and the Gibbs sampler (Geman and Geman

1984). Other MCMC algorithms that appeared in recent MCMC literature are the slice sampler
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(Higdon, 1998; Damien et al., 1999; Neal, 2003), the reversible jump MCM (RJMCMC) algorithm

(Green, 1995) and the perfect sampling (Propp and Wilson, 1996; Merller, 1999 ) [Ntzoufras,

2011].

In the next section, we focus on the Gibbs sampler as it is the MCMC implemented in WinBUGS.

3.4.2 The Gibbs Sampler (GS)

The Gibbs sampler was introduced by Geman and Geman (1984) as an MCMC algorithm for

simulating samples from the posterior distribution [Ntzoufras, 2011]. Algorithm of Gibbs sampling

is summarized below:

1. Set initial values ϑϑϑ(0).

2. For g = 1, 2, . . . , G, repeat the steps below:

• Set ϑϑϑ = ϑϑϑ(g−1).

• For r = 1, . . . , d, update ϑr from ϑr ∼ P
(
ϑr | ϑϑϑ /r,y

)
, where

ϑϑϑ /r = (ϑ1, . . . , ϑr−1, ϑr+1, . . . , ϑd) . (3.4.3)

• Set ϑϑϑ(g) = ϑϑϑ and save it as generated set of values at g+ 1 iteration of the algorithm.

Hence, given a particular state of the chain ϑϑϑ(g), we generate new values by

ϑ
(g)
1 from P

(
ϑ1 | ϑ(g−1)

2 , . . . , ϑ
(g−1)
i ,y

)
ϑ

(g)
2 from P

(
ϑ2 | ϑ(g)

1 , ϑ
(g−1)
3 , . . . , ϑ

(g−1)
i ,y

)
ϑ

(g)
3 from P

(
ϑ3 | ϑ(g)

1 , ϑ
(g)
2 , ϑ

(g−1)
4 , . . . , ϑ

(g−1)
i ,y

)
...

...
...

ϑ
(g)
r from P

(
ϑr | ϑ(g)

1 , ϑ
(g)
2 , . . . , ϑ

(g)
r−1, ϑ

(g−1)
r+1 , . . . , ϑ

(g−1)
i ,y

)
...

...
...

ϑ
(g)
i from P

(
ϑi | ϑ(g)

1 , ϑ
(g)
2 , . . . , ϑ

(g)
i−1,y

)
.



Section 3.4. Bayesian Markov Chain Monte Carlo (MCMC) Method. Page 33

Ntzoufras [2011] noted that generating values from

P
(
ϑr | ϑϑϑ /r,y

)
= P

(
ϑr | ϑ(g)

1 , . . . , ϑ
(g)
r−1, ϑ

(g−1)
r+1 , . . . , ϑ

(g−1)
i ,y

)′
(3.4.4)

is relatively easy since it is a univariate distribution and can be written as P
(
ϑr | ϑϑϑ /r,y

)
∝

P (ϑϑϑ | y), where all the variables except ϑr are kept constant at their given values.

3.4.3 Assessing and Improving Markov Chain Monte Carlo Conver-

gence

It is important to decide how many iterations to use to represent the posterior density and to

ensure that the Markov chain converged. It should be noted that convergence of a model does

not necessarily imply a good model. It is just the beginning of model assessment.

• Autocorrelation Function (ACF) PlotsAutocorrelation Function (ACF) PlotsAutocorrelation Function (ACF) Plots: Congdon [2010] stated that nonvanishing autocor-

relation at high lags indicates less information about the posterior is provided by each

iterate and a high sample size is required to cover the parameter space. Autocorrelation is

a situation where parameters in the chain are correlated. Autocorrelation can be reduced by

“thinning”. Thinning involves storing of samples from every kth iteration, where k > 1 is

the value of the field thinned [Congdon, 2010]. Thinning reduces MCMC error and storage

requirements especially when long runs are being carried out [Lawson et al., 2003].

Another way of reducing correlation within the chain is the use of “over-relax” algorithm.

This generates multiple samples at each iteration and then select one that is negatively

correlated to the current value [Lawson et al., 2003].

• Kernel Density PlotsKernel Density PlotsKernel Density Plots: A more satisfactory density plot for a converged chain would look

more bell-shaped or parameters whose marginal posterior densities are approximately normal

[Lawson et al., 2003].

• Gelman and Rubin Multiple Chain ConvergenceGelman and Rubin Multiple Chain ConvergenceGelman and Rubin Multiple Chain Convergence: Gelman and Rubin multiple chain conver-

gence diagnostics is based on using two or more parallel chain with divers starting values

[Lawson et al., 2003]. Lawson et al. [2003] stated that multiple chain convergence diag-

nostics provide evidence for the robustness of convergence across different subspace.
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Convergence of a Markov Chain can be improved by standardizing covariates and the unstructured

random effect (See Section 4.2) [Congdon, 2010].

3.4.4 Criteria for Model Selection

In this section, we describe one of the methods used to select the best fitting model from a set

candidate models. Though technology to fit complex models through the Bayesian hierarchical

models is widely available, there is no clear criteria to compare models and select best models.

The most widely used criteria is how to measure and appropriately penalized the complexity of a

hierarchical model.

The most commonly and widely used criteria for comparing hierarchical models is the Deviance

Information Criterion proposed by Spiegelhalter et al. [2002]. The DIC works in a similar manner

like that Bayesian Information Criterion (BIC) [Schwarz, 1978]. The DIC includes terms for both

the fit and the complexity of a model. The BIC is defined as

BIC = D (ϑϑϑ) + p log n, (3.4.5)

where p is the number of parameters, n is the number of observations and

D (ϑϑϑ) = −2 logP (y | ϑϑϑ) is the deviance with parameter vector ϑϑϑ. (3.4.6)

The D (ϑϑϑ) ignores the standardization term which does not affect the model comparison. The

deviance is approximated using the plug-in estimate of the parameter vector ϑϑϑ. One similar

criterion for models comparison is the Akaike Information Criterion Akaike [1981], defined as

AIC = D (ϑϑϑ) + 2p. (3.4.7)

It should be noted that the researcher is interested in the change of AIC or BIC between two

models. These criteria are linear functions of p and D. Limitation of the AIC and the BIC is that

they cannot be applied directly to hierarchical models since it is not clear how to defined p in the

model.

Spiegelhalter et al. [2002] proposed to estimate p. Given the likelihood function, P (y | ϑϑϑ),

the deviance is usually defined as D (ϑϑϑ) = −2 lnP (y | ϑϑϑ) and the posterior average deviance
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Eϑϑϑ|y(D) or D̄ is defined as D̄ = − 2
G

G∑
g=1

P (y | ϑϑϑg), where ϑϑϑg is a sample parameter value. The

deviance of the posterior expected parameter estimate, ϑϑϑ is defined as D̂
(
ϑ̂ϑϑ
)

= −2 lnP
(
y | ϑ̂ϑϑ

)
.

That is, given any sample parameter value ϑϑϑg, the deviance of the posterior expected parameter

estimate is defined as D̂ (ϑϑϑg) = −2 lnP (y | ϑϑϑg). Spiegelhalter et al. [2002] therefore defined the

effective number of parameters, pD identified by a model as

pD = D̄ −D
(
ϑ̂ϑϑ
)
, (3.4.8)

where D
(
ϑ̂ϑϑ
)

is the deviance evaluated at the posterior mean of the parameters. Hence, the

Deviance Information Criterion (DIC) is defined as

DIC = pD + D̂ or DIC = 2D̄ (ϑϑϑ)−D
(
ϑ̄ϑϑ
)
. (3.4.9)

For non-hierarchical models, the DIC is seen as a generalization of the Akaike’s Criterion (AIC),

where DIC ≈ AIC [Best, 2011]. The DIC balances the requirement between models fit and low

complexities; models fit improves as more parameters are added to the model [Gimenez et al.,

2009].

Considering a hierarchical analysis of variance model (ANOVA) model; yi | µi ∼ N (µi, σ
−1) , µi ∼

N (ξ, ζ−1) , i = 1, . . . , p, Spiegelhalter and Coworkers showed that pD =
∑
i

τi
τi+ζ

. They also

defined defined pD alternatively as pD =
∑
i

Υi, where Υi is the intraclass correlation coefficient

for group i. They noted that if τi >> ζ for all groups; that is Υi ≈ 1, then pD ≈ p.

As discussed above, the DIC proposed by Spiegelhalter et al. [2002] posed numerous criticisms.

One limitation of the DIC is that it depends on the parameterization of ϑϑϑ. Their original paper

showed that the degree of DIC dependence on ϑϑϑ varies according to the model. Another limitation

of the DIC is the one noted by Spiegelhalter et al. [2002], “Given the number of approximations

and assumptions that are required to obtained the DIC, it can only really be used as a broad

brush technique for discriminations between obviously disparate models, in much the same way

any of the alternative information criterion suggested by BIC and AIC might be used”

Utmost care must be taken when computing pD since it can be negative due to D
(
ϑ̂ϑϑ
)
> D̄.

Instability in the estimate p̂D of pD can results in limited use of this DIC. This situation most
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often occurs in mixture models, models with multiple modes due to over dispersion, inappropriate

choice of hyper-parameters for the variance parameters in the hierarchical models, and also non-

linear transformation [Lawson et al., 2003].

Having identified the best fitting model using the DIC and pD, it is necessary to investigate the

presence of clustering of risk among regions or counties.

The next section presents a brief description of clustering and clusters of risk and clustering and

clusters detection methods.
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3.5 Disease Cluster Detection

This section presents information about clustering and clusters of disease. The section also

discussed methods used in disease mapping to detect elevated risk. Cluster detection is focused

on local features of risk surface where elevated or depressed risk of disease occur [Lawson, 2008].

According to Pfeiffer et al. [2008], the term “clustering” is use to describe spatial aggregation

of disease events and Wakefield and Waller [2000] stated that a disease is said to be clustered

if there is “residual spatial variation in risk after covariate influences have been accounted for

[Lawson, 2008]. There exist a variety of cluster and clustering definitions. However, care must

be taken when defining cluster and clustering since any difference in their definitions will lead to

difference in the ability to detect clusters and clustering detection [Lawson, 2008].

Besag and Newell [1991] classified two different methods of analysing clusters as either “global”

or “local”. Typical example of global clustering is the correlated heterogeneity term in the

Bessag York Model (See Section 5.2) [Lawson, 2008]. They referred to global clustering methods

as methods used to assess whether clustering is apparent throughout the study region. Local

clustering methods define the locations and extend of clustering [Pfeiffer et al., 2008]. It should

be noted that the term clustering is applied to the global clustering methods of cluster analysis,

while cluster detection refers to the local methods [Pfeiffer et al., 2008].

Clustering of disease can occur due to various reasons such as: the infectious spread of disease,

the occurrence of disease vector in a specific locations and the existence of potential health

hazards such as localized pollution sources scattered throughout the region. Each of this creates

an increased of risk of disease in its immediate vicinity [Pfeiffer et al., 2008].

Lawson [2008] noted that relative risk (RR) should not be taken for cluster detection since RR

estimation concerns the global smoothing of risk and estimation of true underlying risk level.

However, the difference between cluster detection and RR is likely to be blurred since methods

that are used for RR estimation can be extended to allow for certain types clustering detection

(as in Section 5.2).

Having understood the nature of clustering and clusters that may occur in disease mapping, we
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present one of the methods used for cluster detection that uses the posterior P (ϑϑϑ | y) measures.

3.5.1 Exceedence Probability

The exceedence probability is one of the cluster detection methods that relies on the posterior

P (ϑϑϑ | y) measures for cluster detection [Lawson, 2008]. Whenever the tendency of clustering in

risk is suspected in these estimates, we examine their posterior sample behaviour [Lawson et al.,

2003].

The most commonly criteria for cluster detection method is the exceedence probability in relation

with the relative estimates for individual areas or counties [Wakefield and Waller, 2000]. The

exceedence probability is defined as the probability that the relative risk ϑϑϑ exceeds some threshold

level k, defined by P (ϑϑϑ > k). Exceedence probability is computed from the posterior sample

values {ϑϑϑgi }{g = 1, 2 . . . , G} through P̂ (ϑϑϑi > k) = 1
G

G∑
g=1

I (ϑϑϑgi > k), where

I (ϑϑϑgi > k) =

1 if ϑϑϑgi > k

0 Otherwise.

(3.5.1)

In evaluating P (ϑϑϑi > k), k and the threshold probability must be chosen such that P (ϑϑϑi > k) >

k. By convention, k can take the values of 0.95, 0.975, 0.99, etc. [Lawson et al., 2003].

According to Lawson [2008], exceedence probability is only capable of detecting hot spot clus-

ter and does not consider any other information concerning possible forms of cluster or even

neighbourhood information. Lawson [2008] defined Hot spot as any area displaying “excess” or

“unusual” risk.

According Lawson [2008], Hossain and Lawson have some attempts to enhance the exceedence

probability by inclusion of neighbourhoods. They stated that, for the neighbourhood of the ith

area defined as ai and the number of neighbours as ni, then

Āi =

ni∑
j∗=0

Aij∗

(ni + 1)
where Aij∗ = P (ϑϑϑj∗ > k) ∀j∗ ∈ ai and Ai0 = P (ϑϑϑi > k) (3.5.2)
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These measures can be used to detect different forms of clustering [Lawson, 2008]. However, the

usefulness of the execeedence probability depends on the model that has been fitted to the data

and that any poorly fitting model will not demonstrate exceedence relate to clustering [Lawson,

2008].

In the next chapter, we present nonspatial models used in disease mapping.



Chapter 4

Uncorrelated Heterogeneity Methods for

Relative Risk Estimation

This chapter presents two nonspatial models used in disease modelling and mapping. These are

the Poisson-Gamma and the Poisson Log-Normal models. These models are often used to model

small area count data and are appropriate when there is relatively low count of disease and the

target population is relatively large in each small area.

4.1 The Poisson-Gamma Model (PG)

The Poisson-Gamma model for relative risk estimation is a gamma prior distribution for the

relative risk combines with the Poisson likelihood function for the disease counts to give a gamma

posterior distribution for the relative risk. The Poisson-Gamma model is widely used in disease

mapping to account for extra variability in the data through the prior distribution [Lawson et al.,

2003].

4.1.1 Model Description

Let yi and Ei, i = 1, . . . , n, denote the observed and expected number of TB cases in county i.

We assume that yi ∼ Poisson (Eiϑ), where ϑ is the unknown relative risk and Poisson mean µ

is µi = Eiϑ. We assume that ϑ ∼ Gamma (a, b). The likelihood function for yi is denoted by

` (ϑ) =
N∏
i=1

(Eiϑ)yi exp (−Eiϑ)

yi!
= P (y,E | ϑ) . (4.1.1)

40
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and prior distribution for ϑ denoted by

P (ϑ | a, b) =
(ϑ)a−1

Γ (a) ba
exp (−ϑb) , ϑ, a, b > 0. (4.1.2)

4.1.2 Parameter Estimation

We used Bayesian hierarchical methods for parameters estimation in the Poisson-Gamma model.

That is, if in addition, a and b are given prior distributions such that a | ω ∼ P (a | ω) and b |

φφφ ∼ P (b | φφφ), where P (a | ω) and P (b | φφφ) are the hyperprior distribution with hyperparameters

ω and (φa, φb) ∈ φφφ for a and b respectively, then we can obtain parameters using Bayesian

hierarchical methods. This is a second stage hierarchical modelling using the Poisson-Gamma

model.

In this thesis, we defined P (a | ω) = ω exp (−ωa) (as exponential distribution) and P (b | φa, φb)

as a gamma distribution.

Therefore, the posterior distribution is given by

P (ϑ, a, b, | y,E) ∝ P (y,E | ϑ, a, b, )P (ϑ)P (a | ω)P (b | φφφ) . (4.1.3)

Parameters estimation of the Poisson-Gamma model was carried out using MCMC via Gibbs

Sampling. Convergence of the Chain occurs at 40,000 iterations after a burnin period of 1,000

sample and thinning of every 30th element of the sample. Figure 4.1 presents the MCMC’s

convergence diagnostics plots.
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4.1.3 Markov Chain Monte Carlo Diagnosis

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Poisson-Gamma Model: Convergence Diagnosis of Markov Chain Monte Carlo.

Figure 4.1 presents Gelman and Rubin convergence diagnostics of the Poisson-Gamma model:

Column-wise from the top left, Figure 4.1 (a)-(j) are trace plots for a, b, the mean and variance

respectively. Figure 4.1 (b)-(k) are posterior marginal density plots for b, a, the mean and the

variance respectively. Figure 4.1 (c)-(l) are autocorrelation plots for b, a, the mean and the

variance respectively.

The Gelman and Rubin trace plots show the convergence of the two parallel chains (Chains with

different initial values). “Vanishing” autocorrelation function (ACF) plots show that there is low
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correlation among parameters that constitute the chain. More satisfactory kernel density plots

for parameters of interest would more bell-shaped or symmetric. Hence, the density plots for the

parameters show that convergence of the chain has reached.

We now present posterior statistics of the Poisson-Gamma model in Table 4.1.

4.1.4 Results of the Poisson-Gamma Model

We now present the results for fitting the Poisson-Gamma model to Kenya TB data. Table 4.1

presents a summary of the Poisson-Gamma model fitted.

Table 4.1: Posterior Statistics of the Poisson-Gamma Model.

Parameters Posterior Means Credible Region

a 4.717 (3.089, 6.707)

b 5.046 (3.21, 7.29)

mean 0.933 (0.8192, 1.075)

variance 0.1955 (0.122, 0.3142)

D̄ 575,755 -

pD 46.946 -

DIC 622.701 -

From Table 4.1, the mean of the posterior relative risk is 0.93(95% credible interval = 0.82-1.08).

The posterior mean is approximately the same as the mean of the standardized mortality ratio

0.93 (95% credible interval=0.62-1.05) in Section 2.3. The standard deviation of the relative

risk, 0.42 (95% credible interval = 0,35-0,56), is lower than the standardized mortality ratio’s

standard deviation 0.49 (95% credible interval = 0.62-1.05). Thus their standard deviation has

been reduced by 82% by the Poisson-Gamma model. The significance of the variance indicates

variation in risk among counties. In a situation of rare cases, standard deviation of the Poisson-

Gamma model is expected to be much lower than that of the standardized mortality ratio [Lawson
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et al., 2003].

(a) (b) (c)

(d)

Figure 4.2: Kenya county level Standardized Mortality Ratio’s maps: (4.2a) The mean of the

SMR and its 2.5% quantile (4.2b), median (4.2c) and 97.5% quantile (4.2d).

Figure 4.2 shows standardized mortality ratio for TB prevalence in the counties of Kenya for

2002-2009. The SMRs vary around their mean, 0.93 with standard deviation, 0.49 (as discussed

in Table 4.1). There is some suggestion of high TB prevalence in the North, West, North-West

and Central counties of Kenya and low TB prevalence in the South-East counties except Mombasa

(SMR> 2.0).
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(a) (b) (c)

(d)

Figure 4.3: Kenya county level Poisson-Gamma posterior mean relative risk maps: (4.3a) The

mean of the posterior relative risk and its 2.5% quantile (4.3b), median (4.3c) and 97.5% quantile

(4.3d).

From Figure 4.3, we observed high risk of TB prevalence in the North, West, North-west and

Central counties of Kenya and low risk in the South-East counties except Mombasa. Nairobi

and Mombasa have the highest relative risk (RR>2.0) and Laikipia, Nandi, Narok, Nyamira, and

Vihiga have the lowest risk (RR<0.5). The mean of the posterior relative risk and the SMR are

the same. The range of the posterior relative risk of the Poisson-Gamma remains the same as the

SMR, each having lowest relative risk estimated at 0.40 and the highest risk at 2.38. Variability

in risk remains the same due to abundant of information or data.
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(a) (b) (c)

(d)

Figure 4.4: Poisson-Gamma posterior relative risk exceedence probability map: Row-wise from

the top left Figure: (4.4a) the posterior mean relative risk exceedence probability and its 4.4b

2.5% quantile for relative risk, (4.4c) median for the relative risk and (4.4d) 97.5% quantile for

the relative risk.

The map of the exceedence probability in Figure: 4.4 above revealed 13 counties that exhibit high

risk of TB above the national risk (RR> 1). These counties are: Nairobi, Mombasa, Kisumu,

Turkan, Migori, Homa bay, Uasin Gishu, Isiolo, Marsabit, Siaya, Tharaka-Nithi, Mandera, and

Embu. This map confirms with Figure 4.3 concerning high and low TB prevalence areas.

Despite the fact that assigning a gamma prior distribution for ϑi is mathematically convenient,

it is likely to be restrictive since covariate adjustment is difficult and there is no possibility for

allowing spatial correlation between risk in nearby areas [Lawson et al., 2003]. We therefore

present models that nullify theses limitations in the next sections.
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4.2 Poisson-Log-Normal Model

We now present a model which allows for flexibility of covariates adjustments or incorporation.

Lawson et al. [2003] noted that in disease mapping, the log-normal model is important as it

provides a specification that allows for incorporation of covariates.

4.2.1 Model Description

Let yi and Ei be the observed number and the expected number of disease counts in region

i, i = 1, 2, . . . , n respectively. Further let ϑi be the relative risk of disease in region i.

We first consider a situation of a Poisson Log-Normal model with no area-specific random effect ui

and covariate. As stated in the previous section, yi ∼ Poisson (Ei exp (ηi)), where ϑi = exp (ηi)

is the exponential of the linear link function and µi = Ei exp (ηi) is the Poisson mean. Fitting a

generalized linear model with a log-link function, we have log (µi) = log (Ei) + ηi. By Bayesian

paradigm, we assumed that ηi ∼ N (µ, τ 2) and its hyperparameters, µ ∼ N (0, 1× 10−6) and

τ 2 ∼ Gamma (0.5, 0.05).

Parameter estimation was carried out using Bayesin Markov Chain Monte Carlo via Gibbs Sampling

(See Section 3.4). Convergence of the MCMC was reached at 11000 iteration after a burnin period

of 10,000 sample and thinning of every 30th element of the chain. Convergence diagnosis plots

are presented in Figure 4.5 and posterior statistics of parameters presented in Table 4.2.

We now consider a Poisson Log-Normal model with area-specific random effect or uncorrelated

heterogeneity (UH) effect ui and c covariate(s) for region i denoted by Xic . Let X represents

the covariates matrix. The Poisson-Lognormal non-spatial model is given by

yi | Ei, Xic, ηi
ind∼ Poisson (Ei exp (ηi)) , (4.2.1)

where ηi = β0 +
P∑
p=1

βpXic + ui is the linear link function, ui are the residual random effects that

capture the residual unexplained log relative risk in region i and τ 2
u is the precision variance. This
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implies that

log (ϑi) = ηi = β0 +
P∑
p=1

βpXic + ui. (4.2.2)

From equation (4.2.2), we can write the relative risk as

ϑi = exp

(
β0 +

P∑
p=1

βpXic

)
, (4.2.3)

where ϑi are the relative risk of region i, βββ = (β0, . . . , βp)
′ are regression parameters and β0

is the intercept or the overall risk effect. Here, the mean µi of the Poisson distribution is

µi = Ei exp (ηi) = Ei exp

(
β0 +

P∑
p=1

βpXic

)
. Fitting a generalized linear model with a log-link

function, we have

log (µi) = log (Ei) + β0 +
P∑
p=1

βpXic. (4.2.4)

4.2.2 Parameter Estimation

Since yi ∼ Poisson (Ei exp (ηi)), the likelihood function of yi is defined by

` (ϑϑϑ,β, uβ, uβ, u) =
n∏
i=1

(Ei exp(ηi))
yi exp (−Ei exp(ηi))

yi!
= P (y,E | βββ,ϑ, uϑ, uϑ, u) , i = 1, 2, . . . , n. (4.2.5)

We would need the prior distributions for βββ and uuu to obtain the posterior distribution for the

parameters of interest.

4.2.3 The Likelihood Function of a Regression With Gaussian Random

Effect

Consider a response random variable y ∼ N (0,ΣΣΣ), where ΣΣΣ is the variance-covariance matrix.

The linear regression function of yi on Xic is defined by yi = β0 +
P∑
p=1

βpXic + ui. Therefore, the

Gaussian Process of regression density or likelihood function for yi is given by

p(y|X,βββ) =
1

(2π)
N
2 |ΣΣΣ|1/2

exp

(
−1

2
(y −Xβββ)

′
Σ−1(y −Xβββ)

)
= N (0,ΣΣΣ) , (4.2.6)
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where XXX is a design matrix of the covariates. Just to simplify analytic calculation, we can

alternatively write the Gaussian linear model equation (4.2.6) as

P (y | βββ) =
1

(2π)
N
2 |ΣΣΣ|1/2

exp

[
−1

2
(zzz −Mβββ)

′
(zzz −Mβββ)

]
, (4.2.7)

where zi = yi
σ2
i

, Mci = Xci
σ2
i

, and σ2
i are the diagonal covariance matrix Σ = {σ2

1, σ
2
2, . . . , σ

2
n} with

the standard model: y = Xβββ. Consider a general likelihood function, `(βββ) and let us take a

second order Taylor expansion of the log -likelihood ln `(βββ) around its maximum, then we have

ln `(βββ) = ln `(βββML) +
∂ ln `(βββ)

∂βββ
|βββML

(βββ − βββML) +
1

2

∂2 ln `(βββ)

∂βββ2
|βββML

(β − ββ − ββ − βML)2 , (4.2.8)

where βββML is the maximum likelihood estimator of βββ. Letting Ω = 1

(2π)
N
2 |ΣΣΣ|1/2

and taking log of

equation (4.2.7), we have

lnP (y | βββ) = ln Ω− 1

2
(zzz
′
zzz − 2zzz

′
Mβββ + βββ

′
M
′
Mβββ) (4.2.9)

Finding the derivative of equation (4.2.9), it follows that

∂lnP (y | βββ)

∂βββ
= zzz

′
M− βββ ′M′

M = 0 (4.2.10)

Solving equation (4.2.10), we have

βββML =(M
′
M)−1M

′
zzz. (4.2.11)

Now finding the second derivative of equation (4.2.13), we have:

∂2lnP (y | βββ)

∂βββ2 = −∂(βββ
′
M
′
M)

∂βββ
= −M

′
M = H. (4.2.12)

Hence we can rewrite equation (4.2.10) as

βββML =(M
′
M)−1M

′
zzz = H−1M

′
zzz. (4.2.13)

From the Taylor’s expansion in equation (4.2.8), and by the Maximum Likelihood Principle (MLP)

that

(βββ − βββML)
∂lnP (y | βββ)

∂βββ
|
βββML

= 0,
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it follows that

lnP (y | βββ) = lnP (y | βββM)− 1

2
(βββ − βββML)

′
H(βββ − βββML) |

βββML
(4.2.14)

Taking exponent on both side of equation (4.2.14), we have

P (y | βββ) = P (y | βββML) exp

[
−1

2
(βββ − βββML)

′
H(βββ − βββML)

]
(4.2.15)

or

P (y | βββ) = `ML exp

[
−1

2
(βββ − βββML)

′
H(βββ − βββML)

]
, (4.2.16)

where

`ML =
1

(2π)
N
2 |Σ|1/2

exp

[
−1

2
(zzz −MβββML)

′
(zzz −MβββML)

]
. (4.2.17)

4.2.4 Posterior Function Of Gaussian Process Regression

Assuming that the prior distribution of βββ is

p (βββ) ∝ exp

(
−1

2
βββ
′
Σ−1
β βββ

)
. (4.2.18)

Then writing only the terms from the likelihood and prior which depend on the weights, and

“completing the squares” for Multiple parameters model, the posterior function is defined as

P (βββ|X,y) ∝ exp

[
−1

2

(
y −X

′
βββ
)′

Σ−1
(
y −X

′
βββ
)]

exp

(
−1

2
βββ
′
Σ−1
β βββ

)
(4.2.19)

Simplifying equation (4.2.19), it follows that

P (βββ|X,y) ∝ exp

[
−1

2

(
y
′
νy − 2βββ

′
XXX
′
νy + βββ

′
(
XXX
′
νXXX + κI

)
βββ
)]

, (4.2.20)

where ν = Σ−1 and κ = Σ−1
p are the covariance of the likelihood function and the prior function

respectively.

The equation (4.2.20) above is indeed Gaussian with the constant term y
′
y

In “completing the squares”, we are given a quadratic form defining the exponent terms in a

Gaussian distribution, and we need to determine the corresponding mean and covariance. To
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avoid computational complexity with “completing of squares”, we sort to using “kernel’s trick”

[Gill, 2002]. The exponent of a general Gaussian distribution defined as (y − µ)
′
Λ (y − µ) ,

where Λ is the precision matrix can be expressed as

(y − µ)t Λ (y − µ) =
[
y
′
Λy − 2y

′
Λµ+ µ

′
Λµ
]

= y
′
Λy − 2y

′
Λµ+ constant. (4.2.21)

Comparing equation (4.2.20) with equation (4.2.21) , we have

Λ = X
′
νX + κI, µ = νΛ−1X

′
y (4.2.22)

That is P (βββ | y,X) ∼ N (βββ | µ,Λ−1). Note that Λ−1 must be invertible, that is | Λ |6= 0.

The maximiser of the likelihood is the mean µ which is again the mode of the likelihood. Therefore,

the Maximum Posterior (MAP) is given by

MAP = ν
(
νX

′
X + κI

)−1

X
′
y = Σ−1

(
Σ−1X

′
X + Σ−1

β I
)−1

X
′
y. (4.2.23)

In fact the MAP is similar to the maximum likelihood value βββML = (M
′
M)−1M

′
zzz. Therefore,

the posterior mean and Covariance are respectively defined by

β̂ββ = Σ−1
(

Σ−1X
′
X + Σ−1

β I
)−1

X
′
y and Λ−1 =

(
Σ−1X

′
X + Σ−1

β I
)−1

(4.2.24)

It follows that the posterior distribution for βββ is also Gaussian defined by

P (βββ|y,X) ∝ exp

(
−1

2
(βββ − β̂ββ)

′
Λ−1(βββ − β̂ββ)

)
. (4.2.25)

Therefore, the prior distribution of βββ is assumed to be normally distributed as

P (βββ) =

(
1

2π

)P/2(
1

τβ

)P
exp

(
−1

2

P∑
p=0

β2
p

τ 2
β

)
(4.2.26)

and the prior distribution for the area-specific random effect defined by

P (uuu) =

(
1

2π

)n/2(
1

τu

)n
exp

(
−

n∑
i=1

u2
i

2τ 2
u

)
. (4.2.27)

Therefore, the posterior distribution is defined as

P
(
β, uβ, uβ, u, τ 2

β , τ
2
u | y,E, ϑ

)
∝ P (y,E | ϑ, β, uϑ, β, uϑ, β, u)P (βββ)P (uuu) (4.2.28)
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Hence,

P
(
β,u, τ 2

β , τ
2
u | X,E, ϑ

)
=

n∏
i=1

(Ei exp(ηi))
yi exp (−Ei exp(ηi))

yi!
× (4.2.29)

(
1

2π

)P/2(
1

τ 2
β

)P

exp

(
−1

2

P∑
p=0

β2
p

τ 2
β

)
×

(
τ 2
u

2π

)1/2

exp

(
−

n∑
i=1

u2
i

2τ 2
u

)
.

The prior distribution for the linear regression coefficients are is given by βββ ∼ N
(
0, τ 2

β

)
. The

corresponding conjugate prior distribution for τ 2
β is the inverse-gamma defined by [Gill, 2002,

Ntzoufras, 2011]

P
(
τ 2
β | ω, φ

)
=

φω

Γ(ω)

(
τ 2
β

)−(ω+1)
exp

(
− φ

τ 2
β

)
, τ 2
β , ω, φ > 0. (4.2.30)

The equation (4.2.30) is the hyperprior distribution for τ 2
β with hyperparameters (ω, φ). We

defined τ 2
β ∼ Gamma (0.05, 0.005) and modelled the random effect ui ∼ N (0, τ 2

u) and hyperprior

distribution for the precision parameter τ 2
u ∼ Gamma (0.05, 0.005).

Parameter estimation was carried out using Bayesin Markov Chain Monte Carlo via Gibbs Sampling

(See Section 3.4). MCMC convergence was reached at 100,000 iterations after a burnin period of

10,000 sample and thinning of every 30th element in the sample. Figure 4.5 presents convergence

diagnostics plots of this model.
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4.2.5 Markov Chain Monte Carlo Diagnosis

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Poisson Log-Normal Model: Convergence Diagnosis of Markov Chain Monte Carlo

Figure 4.5 presents Gelman and Rubin convergence diagnostics of the Poisson Log-Normal model

without covariate and random effect: Column-wise from the top left, Figure 4.5 (a)-(g) are trace

plots for the mean, precision, and the standard deviation respectively. Figure 4.5 (b)-(h) are

posterior marginal density plots for the mean, precision, and the standard deviation respectively.

Figure 4.5 (c)-(i) are autocorrelation plots for the mean, precision, and the standard deviation

respectively.

The Gelman and Rubin trace plots show the convergence of the two parallel chains (Chains with

different initial values). “Vanishing” autocorrelation function (ACF) plots show that there is low

correlation among parameters that constitute the chain. More satisfactory kernel density plots

for parameters of interest would more bell-shaped or symmetric. Hence, the density plots for the

parameters show that convergence of the chain has reached.
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Posterior statistics of this model fitted to Kenya TB data is presented in Table 4.2.

4.2.6 Results of the Poisson Log-Normal Model Without Covariate and

Random Effect

This section presents the results for fitting the Poisson Log-Normal model to Kenya TB data.

Table 4.2 presents a summary of the Poisson Log-Normal model fitted.

Table 4.2: Posterior Statistics of the Poisson Log-Normal Model.

Parameters Posterior Means Credible Region

µ -0.17 (-0.3093, -0.04605)

τ 2 5.012 (3.182, 7.235)

σ 0.4558 (0.3719, 0.5608)

D̄ 575,821 -

pD 47.013 -

DIC 622.834 -

Table 4.2, revealed that the overall mean of the posterior relative risk is -0.17 (95% credible

interval = (-0.31, -0.046 ). This indicates that the overall TB risk effect in Kenya estimated by

the Poisson Log-Normal model decreases keeping all other determinants of TB constants. The

standard deviation of the relative risk is 0.46 (95% credible interval = 0.37-0.56) with precision

variation τ 2 = 5.01 (95% credible interval = 3.18-7.24) indicating significance of variability of

TB risk among counties. In a situation of rare TB cases, standard deviation of the Log-Normal

model is expected to be much lower than that of the standardized mortality ratio 0.49 [Lawson

et al., 2003].
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(a) (b) (c)

(d)

Figure 4.6: Kenya County Level TB Prevalence Counts: Poisson Log-Normal model Without

covariate and random effect. (4.6a) The posterior relative risk map and its 2.5% quantile (4.6b),

median (4.6c) and 97.5% quantile (4.6d).

Figure 4.6, revealed that TB risk is expected to be high in the North,West, North-West and

Central counties of Kenya and low risk in the South-West counties. According to this model,

Nairobi and Mombasa are expected to have the highest TB risk (RR>2.0) and Nandi, Narok,

Nyamira, Vihiga, and laikipia are expected to have the lowest TB risk (RR<0.5). Counties with

relative risk above the national risk (RR=1) are apparent from Figure: 4.7 below. Again, due

to abundant of data or information, the range of the posterior relative risk of the Poisson Log-

Normal remains the same to that of the SMR. The lowest estimated risk is 0.40 and highest

estimated risk is 2.38. There is no reduction of relative risk range compare to SMR’s risk as

would be expected in a case of rare information or data.
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(a) (b) (c)

(d)

Figure 4.7: Kenya County Level TB Prevalence Counts: Poisson Log-Normal model Without

covariate and random effect. (4.7a) The posterior relative risk exceedence probability map and

its 2.5% quantile (4.7b), median (4.7c) and 97.5% quantile (4.7d).

The exceedence probability map Figure 4.7 of the Poisson Log-Normal model also confirmed

with the Poisson-Gamma model that 13 counties have their TB risk above the national risk.

These counties are: Nairobi, Mombasa, Kisumu, Turkan, Migori, Homa bay, Uasin Gishu, Isiolo,

Marsabit, Siaya, Tharaka-Nithi, Mandera, and Embu. Figure 4.7 confirms with Figure 4.6 that

high risk of TB prevalence is observed in the North, West, North-West and Central counties and

low risk in the South-East counties except Mombasa.

We also present the MCMC convergence diagnostics test of the UH model in the next section.
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4.2.7 Markov Chain Monte Carlo Diagnostics

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Poisson Log-Normal Model with Uncorrelated Heterogeneity (UH) Effect: Conver-

gence Diagnosis of Markov Chain Monte Carlo

Figure 4.8 presents Gelman and Rubin convergence diagnostics of the Poisson Log-Normal model

without covariate and random effect: Column-wise from the top left, Figure 4.8 (a)-(j) are trace

plots for the intercept, the HIV covariate parameter, the precision, and the standard deviation

respectively. Figure 4.8 (b)-(k) are posterior marginal density plots for the intercept, the HIV

covariate parameter, the precision, and the standard deviation respectively. Figure 4.8 (c)-(l) are
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autocorrelation plots for for the intercept, the HIV covariate parameter, the precision, and the

standard deviation respectively.

The Gelman and Rubin trace plots show the convergence of the two parallel chains (Chains with

different initial values). “Vanishing” autocorrelation function (ACF) plots show that there is low

correlation among parameters that constitute the chain. More satisfactory kernel density plots

for parameters of interest would more bell-shaped or symmetric. Hence, the density plots for the

parameters show that convergence of the chain has reached.

4.2.8 Application of the Poisson-Log-Normal with UH Effect and Co-

variates

This section presents the results for fitting the Poisson Log-Normal model with county level UH

effects to Kenya TB data.

Table 4.3: Posterior Statistics of the Poisson Log-Normal Model with UH Effect.

Model indicators UH

β0 -0.1765(-0.2957,-0.05936)

HIV 1.198 (0.4928,2.571)

Firewood 0.2735(-2.215,2.144)

five kilometer distance -1.317(-3.423,1.437)

σu 0.4409(0.359,0.5466 )

τ 2
u 5.324(3.347,7.757)

D̄ 575,779

pD 46.973

DIC 622.753

Table 4.3 revealed that the overall level of relative risk effect estimated is β0 = -0.18(95% credible

interval = (-0.30,-0.06)). The overall risk effect is significantly different from zero and negative.
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This indicates that overall TB risk effect would be decreasing keeping all other determinants

of TB constants. Among the covariates considered as TB determinants, only HIV parameters

is significantly different from zero 1.20(95% credible interval = 0.50-2.60) but positive. This

indicates that TB risk increases with increasing HIV prevalence. Lawson et al. [2003] noted that,

the higher the τ 2
u , the higher the variability of TB risk among counties and and the lower it is the

lower the variability. This means that, a very small τ 2
u will indicate possibility of risk similarity

between neighbouring counties. The precision for the UH τ 2
u = 5.32 (95% credible interval =

3.35-7.76) is significant, indicating that there exist variation in risk among counties. The UH

revealed high variability of relative risk compare to the Poisson Log-Normal without random and

covariate effects τ 2 = 5.01 (95% credible interval = 3.18-7.24).

(a) (b) (c)

(d)

Figure 4.9: Kenya County Level TB Prevalence Counts: UH smooth relative risk map (4.9a) and

its 2.5% quantile (4.9b), median (4.9c) and 97.5% quantile (4.9d).

The Figure 4.9 also confirmed that out of the 47 counties in Kenya, 13 exhibit TB relative risk

higher than the national risk (RR=1). Table 4.4 presents counties in groups according to their
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relative risk level. High TB risk can again be observed that in the North, West, North-West and

Central counties of Kenya and low TB risk in the South-East counties except Mombasa.

Table 4.4: UH results indicating counties with high and low TB risk.

RR> 2.0 RR:1.5− 2.0 RR:1.0− 1.5 RR< 0.5

Nairobi, 2.159(2.145, 2.174) Homa bay ,1.721(1.702, 1.74) Embu, 1.199(1.18, 1.219) Lakaipia, 0.458(0.4449, 0.4714)

Mombasa, 2.383(2.36, 2.407) Isiolo, 1.957(1.906, 2.01) Mandera, 1.044(1.02, 1.067) Nandi, 0.4033(0.3941, 0.4127)

- Kisumu, 1.975(1.955, 1.995) Migori, 1.374(1.357, 1.392) Narok, 0.482(0.4715, 0.4928)

- Marsabit, 1.969(1.93, 2.008) Siaya, 1.401(1.384, 1.419) Nyamira (Kisii North), 0.4533(0.4422, 0.4646)

- - Tharaka-Nithi, 1.064(1.042, 1.086) Vihiga, 0.469(0.4581, 0.4801)

- - Turkan, 1.068(1.051, 1.086) -

- - Uasin Gishu, 1.182(1.166, 1.198) -

Table 4.4 presents the results of the UH model with counties categorised according to their range

of relative risk. The results showed that 14 counties have their relative risk above 1 and the

lowest risk counties are 5. The exceedence probability map in Figure 4.10 below visually presents

counties with risk above 1.
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(a) (b) (c)

(d)

Figure 4.10: Kenya County Level TB Prevalence Counts: UH smooth relative risk exceedence

probability map (4.10a) and its 2.5% quantile (4.10b), median (4.10c) and 97.5% quantile

(4.10d).

The Figure 4.10 shows 14 counties having elevated risk of TB. These maps again confirmed high

TB risk in the North, West, North-West and central counties of Kenya and low risk in South-East

counties of Kenya except Mombasa.
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(a) (b) (c)

(d)

Figure 4.11: Area-Specific Random Effect: The posterior map (4.11a) and its 2.5% quantile

(4.11b), median (4.11c) and 97.5% quantile (4.11d).

Figure 4.11 is the maps of the area-specific random effect (ui), which shows variation of risk

among counties in Kenya. This map captures and displays true TB excess risk surface after

covariates and confounding factors are considered [Lawson et al., 2003]. Excess risk of TB is

observed in Marsbit, Embu, Migori and Kisumu.

4.3 Summary of the Nonspatial Models

Though the Poisson-Gamma model provides good information about the TB prevalence in Kenya,

one of its shortcomings is that it is unable to handle problem of spatial correlation and incorpora-

tion of covariates [Lawson et al., 2003]. The Poisson Log-Normal model provides specifications

that allow for incorporation of covariates. The Poisson Log-Normal model also enable us to cap-
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ture the area random effect and to explain the extend of risk variability among counties through

the unstructured random effect term ui.

Though thinning reduces the speed of the MC but it significantly reduces the number of iterations

and solves the issue of autocorrelation among parameters that form the chain. Thinning reduces

storage demand while preserving the integrity of the MC process [Gill, 2002]. Gill [2002] noted

that the value of every kth element to be sampled is determined by the researcher and out most

care must be taken since extremely large k value may results in lost of potentially an important

information.

The lower the chain to converge, the more careful one should be about the burn-in period. How-

ever, it should be noted that there is no standard, systematic or guaranteed way of determining

the length of the burn-in period [Gill, 2002]. Nevertheless, considerable work on convergence

diagnostics has been done to make specific recommendations and identify tests [Gill, 2002].

HIV is identified as significant among the covariates considered. Reason being that HIV patients

have their immune system weakened or destroyed by the HIV virus rendering the body natural

defence incapable of carrying out its function of protecting the body against other diseases.

Since HIV has this capacity to weaken the immune system, it also implies that it has the effect

of re-activating latent TB to active TB in individuals who are latently infected.

Models that allow for handling spatial correlation are discussed in chapter 5.



Chapter 5

Bayesian Hierarchical Spatial Model for

Use in Disease Mapping.

This chapter presents spatial models used to identify and detect clustering of disease risk in the

study area of interest. Spatial data are directly or indirectly referenced to a location on the surface

of the earth. These models would allow for borrowing of strength between neighbouring counties

such that neighbouring counties shall have similar risk whiles distant counties are expected to

show variation in risk.

The idea of spatial autocorrelation in spatial data analysis is that values of variables in near-by

locations are more similar or related than those far apart. Waldo Tobler’s first law of spatial

analysis states that “everything is related to everything else but near-by things are more related

than distant things” Miller [2004].

In particular, we investigate the statistical properties of the Conditional autoregressive (CAR)

model and the Julian Besag [1991] models.

5.1 Conditional Autoregressive (CAR) Model

Though conditional autoregressive models where introduced decades ago by Julian Besag [1991],

they were not widely used until the 1990s. Since they are defined conditionally, they are particu-

larly suited for use with the Gibbs sampler [Geman and Geman, 1984].

The conditional autoregressive (CAR) models have been used extensively to identify and detect

clustering in diseases risk. In these models, risks of disease at any given area is affected by the

risk in the neighbouring areas. These models have been referred to as the structured model or

64
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the Correlated Heterogeneity (CH) models. That is, estimation of risk in any given area depends

on risk at neighbouring areas [Lawson et al., 2003]. The distances or boundaries between the

regions are often used in determine neighbourhood properties within CAR models [Kyung and

Ghosh, 2009].

Generally, the CAR model is a continuous Markov random field with a conditional probability

density function characterization and designed to model spatial phenomena that are highly related

to a specific local context [Besag, 1974, Cressie, 1993]. Application of CAR models can found in

[Besag, 1974, Smith and R. L, 2001, Mariella and Tarantino, 2010].

Let S = {1, 2, . . . , n} represents the area to be studied. Let Ni = {j ∈ S : i ∈ j} denote the

set of all regions that are neighbouring region i. Let vi, i ∈ S be a random variable. We define

the corresponding random field vvv as the vector vvv = (v1, v2, . . . , vn)′.

In the Gaussian CAR model, we often assume that each observation of the outcome variable vi

has a conditional distribution defined by

vi | vj 6=i ∼ N

(∑
i 6=j

Φijvj, τ
2
i

)
. (5.1.1)

These are full conditionals where Φij is the weight of each observation on the mean of vi and also

denotes the spatial dependence parameter. The Φij is non zero only if j ∈ S. Conventionally,

we set Φij = 0 since we do not want to regress any observation on itself. Hence no region is a

neighbour of itself. The vj denotes a vector of all observation except vi. Note that vi depends

only on a set neighbours vj only if location j is a neighbourhood set Ni of vi. The τ 2
i is a

potential unique variance for vi. For instance, if state i has M neighbours and Φij = 1
M

for every

state that is a neighbour, and Φij = 0 otherwise, then the conditional expectation of a state’s

observation is the mean of all neighbours observations [Mariella and Tarantino, 2010].

The Gaussian processes are specified by their mean and covariance function [Waller and Gotway,

2004]. Assuming that each conditional distribution is Gaussian, we will need the mean and

the variance-covariance to define the CAR model. The mean and the variance-covariance are

respectively defined as

E [vi | vj 6=i] = µi +
∑
j∈Ni

Φij [vj − µi] and var (vi | vj) = τ 2
i . (5.1.2)
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Therefore, conditional probability density function of a CAR random variable vi is has the form

[Mariella and Tarantino, 2010]

f (vi | vj 6=i ∈ S) =

√
1

2πτ 2
i

exp


−

[
(vi − µi)− ρ

∑
j∈Ni

Φij (vj − µj)

]2

2τ 2
i


, (5.1.3)

where µi =∈ R, τ 2
i ∈ R+, | ρ |< 1, Φ(ij) ∈ R,Φ(ij) = Φ(ji), Φ(ii) = 0.

The conditional joint probability density function of all the observations is

f (vi | vj 6=i) =
1

(2π)n/2 det (B−1ΣD)1/2
exp

[
−(vvv − µµµ)′Σ−1D B (vvv − µµµ)

2

]
, (5.1.4)

where µµµ ∈ Rn×1 (n - dimensional vector), µµµ = (µ1, µ2, . . . , µn)′, B ∈ Rn×n invertible matrix

defined as

B = (I− ρΦΦΦ) with B(ij) =


1 if i = j

−ρΦ(ij) if j ∈ Ni

0 otherwise

, (5.1.5)

ΣD ∈ R+n×n diagonal matrix; ΣD = diag (τ 2
1 , . . . , τ

2
n) = τ 2

i such that ΣD is symmetric. It

follows that the joint multivariate Gaussian distribution for vi with µ = 0 has covariance matrix

ΣDv = Σ−1D B = B−1ΣD which is symmetric such that Φ(ij)τ
2
j = Φ(ji)τ

2
i , i, j ∈ S.

Thus, a conditional autoregressive model vvv in (5.1.3) has a probability density function defined

as

vi | vj 6=i ∼ N

[
µi + ρ

∑
j∈Ni

Φ(ij) (vj − µj) , τ 2
i

]
, i ∈ S (5.1.6)

and the joint probability density function in (5.1.4) becomes

vvv ∼ N
(
µ,B−1ΣD

)
. (5.1.7)

The necessary and sufficient condition for (5.1.7) to be a valid joint probability density function

is that its covariance matrix should not only be symmetric, but also positive definite (that is, its
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eigenvalues λi > 0, i, . . . , n) [Mariella and Tarantino, 2010]. For vi to be a Gaussian random

variable, we need to show that ΣD is symmetric.

To show that ΣD is symmetric, we defined a symmetric weighted adjacency matrix W, where

W =
(
w(ij)

)
with w(ij) =


1 if j = i

ϕ (i, j) with j ∈ Ni : ∀i, j ∈ S,w(ij) = w(ji)

0 otherwise,

(5.1.8)

where ϕ (i, j) is a measure that quantifies the proximity between region i and region j; if ϕ (i, j) =

1, then i and j share a common boundary (neighbours). The ϕ (i, j) could be the distance between

the centroids of region i and j. Also, if ϕ (i, j) = 1, then j is one of the h nearest neighbours of

i. Let WD be the diagonal of the adjacency matrix W. The adjacency matrix of normalization

or standardization WD is defined as

WD = diag
(
w(1+), w(2+), . . . , w(n+)

)
. (5.1.9)

Suppose

w(i+) =
∑
j∈Ni

w(ij), i, j ∈ S, (5.1.10)

then we define a matrix of interaction, ΘΘΘ to be a normalized adjacency matrix defined as

ΘΘΘ = W−1
D W with Θ(ij) =

w(ij)

w(i+)

, where Θ(ij)τ
2
j = Θ(ji)τ

2
i , i, j ∈ S. (5.1.11)

Suppose again that the matrix WD corresponding to a constant diagonal matrix normalized as

(5.1.11), then we have

WD = τ 2W−1
D with τ 2

i =
τ 2

w(i+)

, i ∈ S, τ 2 ∈ R+. (5.1.12)

It follows that the conditional joint probability density function can be rewritten as

P (v1, . . . , vn) ∝ exp{− 1

2τ 2
ΨΨΨ′ (ΣDw −W)−1 ΣDΨΨΨ}, (5.1.13)

where ΨΨΨ = (vvv − µµµ) and B = (ΣDw −W).
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Hence, the CAR model structure for vi is defined as

vi | vj 6=i ∼ N

(∑
j

wij
wi+

vj,
τ 2
v

wi+

)
, (5.1.14)

and the equa tion (5.1.7) can be alternatively defined as

vvv ∼

(
µµµ,

[
1

τv2
(WD − ρW)

]−1
)
. (5.1.15)

The τ 2
v controls the overall variability of vi, while ρ represents the overall effect of spatial depen-

dence. The value of ρ is should be chosen appropriately [Mariella and Tarantino, 2010].

The row stochasticity of Ŵ = diag
(

1
wi+

)
W indicates that the distribution is improper. This

impropriety can be fixed by the parameter ρ. Redefining Σ−1Dv
= (ΣDw − ρW)−1 and choose

ρ such that Σ−1Dv
is non singular, preferably with ρ ∈

(
1
λ1
, 1
λn

)
, where λ1 < . . . < λn are the

ordered eigenvalues of Σ
−1/2
Dw

WΣ
−1/2
Dw

. Simplifying the bounds, we replace W by Ŵ. It follows

that

Σ−1Dv
= ΣDw

(
I− ρŴ

)
. (5.1.16)

If | ρ |< 1, then ΣDw

(
I− ρŴ

)
is non singular. Non singularity is guaranteed if ρ ∈

(
1
λ1
, 1
)

where λ1 is the minimum eigenvalue of Σ
−1/2
Dw

WΣ
−1/2
Dw

. The bound mostly preferred is ρ ∈ (0, 1).

This is a proper Intrinsic Autoregressive model which add parametric flexibility and ρ = 0 is an

indication of independence. ρ is the additional parameter which makes vi independent when it is

equal to zero. An improper choice of ρ = 1 may enable wider scope for posterior spatial pattern

and may be preferable [Banerjee, 2009].

5.1.1 Parameter Estimation

In this study, we estimate parameters in the CAR model using Bayesian hierarchical methods. In

disease mapping, we assumed that disease counts

yi ∼ Poisson (Ei exp (ηi)) , were µi = Ei exp (ηi) is the mean of Poisson distribution.

(5.1.17)
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The relative risk is defined as

ϑi = exp (ηi) , where ηi = X′βββ + vi, and vi has a CAR structure. (5.1.18)

Fitting the generalized linear model with a log-link function, we have log (µi) = log (Ei)+XXX ′βββ+vi

Under the Bayesian method, given the likelihood function of ϑϑϑ defined as

` (β,v) =
n∏
i=1

(Ei exp(ηi))
yi exp (−Ei exp(ηi))

yi!
= P (y,E, ϑ | β, vβ, vβ, v) , (5.1.19)

the prior distribution for βββ is

P (βββ) =

(
1

2π

)P/2(
1

τβ

)P
exp

(
−1

2

P∑
p=0

β2
p

τ 2
β

)
(5.1.20)

and the prior distribution for the CAR random effect is defined by

P (vvv) =
[
vi | vj 6=i, τ 2

v

]
∼ N

(∑
j 6=i

wij
wij

vj,
τ 2
v

wij

)
∼ CAR

(
0, τ 2

v

)
. (5.1.21)

The posterior distribution is defined as

P
(
β, vβ, vβ, v, τ 2

β , τ
2
v | y,E,ϑϑϑ

)
∝ P

(
X,E,ϑϑϑ | β, vβ, vβ, vβ, vβ, vβ, vβ, vβ, vβ, v, τ 2

β , τ
2
v

)
P (βββ)P (vvv) . (5.1.22)

Therefore,

P
(
β, vβ, vβ, v, τ 2

β , τ
2
v | y,E,ϑϑϑ

)
=

n∏
i=1

(Ei exp(ηi))
yi exp (−Ei exp(ηi))

yi!
× (5.1.23)

(
1

2π

)P/2(
1

τβ

)P
exp

(
−1

2

P∑
p=0

β2
p

τ 2
β

)
×(∑

j 6=i

wij
wij

vj,
τ 2
v

wij

)
.

The hyperperprior distribution for the precision parameters τ 2
v and τ 2

β are τ 2
v ∼ Gamma (0.05, 0.005)

and τ 2
β ∼ Ggamma (0.5, 0.05) respectively. The linear regression coefficient distribution is de-

fined by βββ ∼ N
(
0, τ 2

β

)
.

Parameter estimation was carried out using Bayesin Markov Chain Monte Carlo via Gibbs Sampling

(See Section 3.4). Convergence of the MCMC was reached at 11000 iteration after a burnin period

of 10,000 sample and thinning of every 30th element of the chain. Convergence diagnosis plots

are presented in Figure 5.1 and posterior statistics of parameters presented in Table 5.1.
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5.2 The Besag, York and Mollié (BYM) Model

Among the models proposed for performing risk smoothing which have appeared in literature,

the Julian Besag [1991] model has found most extensive application. The BMY model is divided

into two components: the CAR model component, vi and the UH component, ui (as already

discussed in Section 5.1 and Section 4.2 respectively).

BYM model was introduced by Clayton and Kaldor [1987] and latter developed by Julian Besag

[1991]. The BYM or convolution model is defines as

ηi = µ+ ui + vi (5.2.1)

As noted earlier, assume

yi ∼ Poisson (Ei exp (ηi)) , where µi = Ei exp (ηi) is the mean of the Poisson distribution.

(5.2.2)

The linear link function ηi = X′βββ + ui + vi. The log relative risk log (ϑi) = ηi. Therefore, the

relative risk for the i area is defined by

ϑi = exp(X′βββ + ui + vi). (5.2.3)

Finding a generalized linear model with-link function, we have

log (µi) = log (Ei) + exp (X′βββ + ui + vi) (5.2.4)

Where y,βββ,E and ϑϑϑ are vectors of the covariate, the associated parameters, the expected number

of cases, and the relative risks of TB prevalence respectively. The ui is the county level random

effect capturing the residual log RR of disease in county i. The ui (UH) is sometime thought

of as a latent variable which captures the effect of unknown or unmeasured area level covariates

and vi has a CAR model structure.

5.2.1 Parameter Estimation

Defined the likelihood function as

` (β, u, vβ, u, vβ, u, v) =
n∏
i=1

(Ei exp(ηi))
yi exp (−Ei exp(ηi))

yi!
= P (y,E, ϑ | β, u, vβ, u, vβ, u, v) . (5.2.5)
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The prior distribution for βββ is

P (βββ) =

(
1

2π

)P/2(
1

τβ

)P
exp

(
−1

2

P∑
p=0

β2
p

τ 2
β

)
, (5.2.6)

prior distribution for the area-specific random effect ui is defined by

P (uuu) =

(
1

2π

)n/2(
1

τu

)n
exp

(
−

n∑
i=1

u2
i

2τ 2
u

)
, (5.2.7)

and prior distribution for the CAR structure viis

P (vvv) =
[
vi | vj 6=i, τ 2

v

]
∼ N

(∑
j 6=i

wij
wij

vj,
τ 2
v

wij

)
∼ CAR

(
0, τ 2

v

)
. (5.2.8)

The posterior distribution is defined as

P
(
β, u, vβ, u, vβ, u, v, τ 2

β , τ
2
u , τ

2
v | y,E,ϑϑϑ

)
∝ P

(
y,E, ϑ | β, u, vβ, u, vβ, u, v, τ 2

β , τ
2
u , τ

2
v

)
P (βββ)P (uuu)P (vvv) . (5.2.9)

Therefore,

P
(
β, u, vβ, u, vβ, u, v, τ 2

β , τ
2
u , τ

2
v | y,E, ϑ

)
=

n∏
i=1

(Ei exp(ηi))
yi exp (−Ei exp(ηi))

yi!
× (5.2.10)

(
1

2π

)P/2(
1

τβ

)P
exp

(
−1

2

P∑
p=0

β2
p

τ 2
β

)
×

(
1

2π

)n/2(
1

τu

)n
exp

(
−

n∑
i=1

u2
i

2τ 2
u

)
×(∑

j 6=i

vjwij
wij

,
τ 2
v

wij

)
.

The hyperprior disribution for the precision parameters τ 2
u , τ 2

v and τ 2
β are τ 2

u ∼ Gamma (0.5, 0.005),

τ 2
v ∼ Gamma (0.5, 0.005) and τ 2

β ∼ Gamma (0.5, 0.01) respectively. The linear regression co-

efficient are assumed to have normal distribution defined by βββ ∼ N
(
0, τ 2

β

)
. The τ 2

u reflects the

amount of extra-poisson variation in the data [Lawson et al., 2003]. The precision variances τ 2
u

and τ 2
v control the variability of uuu and vvv respectively.

Parameter estimation was carried out using Bayesin Markov Chain Monte Carlo via Gibbs Sampling

(See Section 3.4). Convergence of the MCMC was reached at 11000 iteration after a burn-in

period of 10,000 sample and thinning of every 90th element of the chain. Posterior statistics of

the CAR and the BYM model are presented in Table 5.1.
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5.3 Application of CAR and BYM Models to the TB Data

This section presents the results for fitting the CAR model and the BYM model to Kenya TB

prevalence data.

Table 5.1: Posterior Statistics of the CAR and BYM Models

Model indicators CAR BYM

β0 -0.1774(-0.1805,-0.1743) -0.179(-0.267,-0.0908)

HIV 1.812(0.7735,2.758) 1.41(0.488,2.34)

Firewood 0.2764(-2.44,2.822) -0.28(-1.29,0.793)

five kilometer distance -1.505(-4.19,1.18) -0.852(-1.81,0.124)

σv 0.8298 (0.6751,1.03) 0.372(0.156,0.678)

τ 2
v 1.559 (0.9432,2.194) 11.3(2.18,40.8)

σu - 0.298(0.158,0.416)

τ 2
u - 13.4(5.79 ,40)

D̄ 578,018 50.969

pD 49.191 77,062

DIC 627.209 630.758

Table 5.1 revealed that the estimated overall relative risk effect of the CAR model is β0 = -

0.177(95% credible interval = (-0.180,-0.174)) and BYM model β0 = -0.179(95% credible interval

= (-0.267,-0.0908)). Each model’s overall risk effect is significantly different from zero and

negative. These models confirmed with the UH model that overall TB risk would be decreasing

keeping all determinants of TB constant. Again, only the HIV variable is significant and positive

for the CAR model and the BYM model with parameter estimates 1.812(95% credible interval

= 0.7735-2.758) and 1.41(95% = 0.488-2.34) respectively. We therefore infer that the relative

risks of TB increases as HIV prevalence increases.

As noted previously, the smaller the precision variance τ 2
v , the risk in any given area is similar
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to that in the neighbouring areas. The CAR model’s precision variance,τ 2
v = 1.56 (95% credible

interval = 0.94-2.19) indicates high similarities of TB relative risk between neighbouring counties

than the BYM model’s precision variance, τ 2
v = 11.3 (95% credible interval = 2.18-40.80). High

variation of TB risk exhibited by τ 2
v in the BYM model could be due to the presence of the ui

term with precision variation τ 2
u = 13.4 (95% credible interval = 5.79-40.00).

Although the CAR model and BYM model each provides important information about TB relative

risk behaviour, we recommend the CAR model as the best fitting spatial model to Kenya TB data

since it yields lower DIC (627.21) and lower pD (49.19) than the BYM model with DIC (630.76)

and pD (50.97).

The BYM model, though robust, but its robustness as a spatial model is lost a in situation where

there is over-fitting [Aurélien et al., 2007]. That is, adding spatially structured extra-variability

to the data when such variability doe not actually exit conditionally on the covariates included in

the model leads to over-fitting, and may bias the estimations of the medical association between

covariates and relative risk towards the hypothesis that it has no significant effect. In other words,

not accounting for an actual spatial variability may lead to major biases but if spatially variability

of health indicators is completely explained by that of the socio-economic and environmental

factors taken into consideration, regression residuals could results to a biased estimate of the

medical association.

We therefore presents detailed results of the CAR model in the next section and its convergence

diagnostics in Figure 5.1. Convergence diagnostics of the BYM model can be found in Appendix

7.
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5.3.1 Markov Chain Monte Carlo Diagnostics

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.1: Poisson Log-Normal Model with CAR Model: Convergence Diagnosis of Markov

Chain Monte Carlo

Figure 5.1 presents Gelman and Rubin convergence diagnostics of the CAR model: Column-wise

from the top left, Figure 5.1 (a)-(j) are trace plots for the intercept, the HIV covariate parameter,

the precision, and the standard deviation respectively. Figure 5.1 (b)-(k) are posterior marginal

density plots for the intercept, the HIV covariate parameter, the precision, and the standard

deviation respectively. Figure 5.1 (c)-(l) are autocorrelation plots for for the intercept, the HIV

covariate parameter, the precision, and the standard deviation respectively.
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The Gelman and Rubin trace plots show the convergence of the two parallel chains (Chains with

different initial values). “Vanishing” autocorrelation function (ACF) plots show that there is low

correlation among parameters that constitute the chain. More satisfactory kernel density plots

for parameters of interest would more bell-shaped or symmetric. Hence, the density plots for the

parameters show that convergence of the chain has reached.
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(a) (b) (c)

(d)

Figure 5.2: Kenya county level TB prevalence counts: The CAR model’s posterior mean of the

relative risk map (5.2a) and its 2.5% quantile (5.2b), median (5.2c) and 97.5% quantile (5.2d).

The Figure 5.2 also shows that out of the 47 counties in Kenya, 13 exhibit TB relative risk higher

than the national risk (RR=1). Table 5.2 grouped counties according to their respective relative

risk ranges. The pattern of risk behaviour is similar to that reported in the previous models. High

TB risk occurs in the North, West, North-West and Central counties of Kenya and low risk in

the South-East counties except Mombasa.
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Table 5.2: Poisson Log-Normal model with CAR Model results indicating counties with high and

low TB risk.

RR> 2.0 RR:1.5− 2.0 RR:1.0− 1.5 RR< 0.5

Nairobi, 2.159(2.145, 2.174) Homa bay ,1.721(1.702, 1.74) Embu, 1.199(1.18, 1.219) Lakaipia, 0.458(0.4449, 0.4714)

Mombasa, 2.383(2.36, 2.407) Isiolo, 1.957(1.906, 2.01) Mandera, 1.044(1.02, 1.067) Nandi, 0.4033(0.3941, 0.4127)

Marsabit, 1.969(1.93, 2.008) Kisumu, 1.975(1.955, 1.995) Migori, 1.374(1.357, 1.392) Narok, 0.482(0.4715, 0.4928)

- - Siaya, 1.401(1.384, 1.419) Nyamira (Kisii North), 0.4533(0.4422, 0.4646)

- - Tharaka-Nithi, 1.064(1.042, 1.086) Vihiga, 0.469(0.4581, 0.4801)

- - Turkan, 1.068(1.051, 1.086) -

- - Uasin Gishu, 1.182(1.166, 1.198) -

Table 5.2 shows 4 counties (Nairobi, Mombasa, Isiolo, and Marsabit) having highest relative risk

(RR > 2.0). Out of the 47 counties, 13 counties show high relative risk above 1. Counties with

high TB relative risk are visually shown by the exceedence probability map Figure 5.3 below.
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(a) (b) (c)

(d)

Figure 5.3: Kenya county level TB prevalence counts: The CAR model posterior mean of the

relative risk exceedence probability map (5.3a) and its 2.5% quantile (5.3b), median (5.3c) and

97.5% quantile (5.3d).

Figure 5.3 confirms with the UH model’s results that there are 13 counties elevated risk (RR>1).

These counties exhibiting high relative risk are: Nairobi, Mombasa, Kisumu, Turkan, Migori,

Homa bay, Uasin Gishu, Isiolo, Marsabit, Siaya, Tharaka-Nithi, Mandera, and Embu.

Again, it can be observed that North, West, North-West and Central counties of Kenya exhibit

high TB prevalence and low prevalence in the South-West counties except Mombasa.
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(a) (b) (c)

(d)

Figure 5.4: The Correlated Heterogeneity effect’s posterior map (5.4a) and its 2.5% quantile

(5.4b), median (5.4c) and 97.5% quantile (5.4d).

The Figure 5.4 is used to capture areas with potential clusters of disease risk. Clusters of TB

risk is suspected in Marsabit, Embu, Migori and Kisumu.

5.4 Summary of the Spatial Models

The CAR and the BYM models are used to capture clustering or clusters information about

disease risk. Each model identified HIV as a major cause of high TB prevalence in Kenya. Each

model revealed significance of risk similarities between neighbouring counties. Local clusters of

TB risk occurs in neighbouring counties with high TB relative risk. Though each of the CAR

model and the BYM provides interesting information when fitted with Kenya’s TB data, but CAR

model seems to provide best fit since it yields lower DIC (49.19) and lower pD (627.21) than the



Section 5.4. Summary of the Spatial Models Page 80

BYM model with DIC (50.97) and pD (630.76).



Chapter 6

Spatio-Temporal Modelling

This chapter presents models used for modelling risk in space and time. Many disease mapping

models are restricted to identification of spatial heterogeneity and clustering of diseases risk which

are in fact constrained to a single time period. However, most data in public health are often in

the form of time window for several years. Therefore, there is the need to consider analysis of

disease maps which have a temporal dimension. Several methods have been proposed to handle

spatial and spatio-temporal dimensions of disease risk [Bernardinelli et al., 1995, Waller et al.,

1997, Knorr-Held et al., 1998, Julian Besag, 1991].

Spatio-temporal models fall in the broad class of Structured Additive Regression (STAR) models.

There are a number of approaches that can be used to handle START models but we used a

Bayesian approach where all unknown functions and parameters are handled as a unified general

framework by assigning an appropriate prior distribution within the same general structure but

different forms and degree of smoothness [López-Quılez and Munoz, 2009].

Spatio-temporal models are categorised into three distinct categories according to the temporal

evolution of the relative risk in each study region. They can be identified as parametric models,

temporal independent models (estimate risk for each period independently of those from the

previous periods), and smooth temporal evolution models [López-Quılez and Munoz, 2009]. Under

this chapter, we identify and fit a suitable model from each category of spatio-temporal models and

map TB prevalence in Kenya for 2002-2009. However, before we embark on model specification

and fitting, we look at the general frame work for spatio-temporal modelling.

81
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6.1 Methodology

Consider the case where a given region of interest is divided into N areas (regions, districts,

counties or municipalities) indexed by i = 1, 2, . . . , n. Let the temporal dimension be indexed

by t = 1, 2, . . . , T , representing each period of time under study. Let nit be the number of

persons-times at risk in region i at period t and yit be the corresponding observed cases which

are counts [López-Quılez and Munoz, 2009]. Therefore, the best candidate distribution for such

a variable is the Poisson distribution.

In this study, we assumed observations yit in region i and period t to be conditionally independent

random variables from the exponential family. The observed data Yit depends on Nit, the number

of people at risk in region i and period t in the study population observed. Let N s
it be the number

of people at risk in the standard population, ysit be the observed TB cases in the standard

population and Cs
it be the crude rate of TB cases in the standard population. Therefore, the

crude rate for region i and period t Cs
it is defined by Cs

it =
ysit
Ns
it

. It follows that the number

of TB cases expected in region i and period t, Eit is defined by Eit = Cs
itNit =

ysit
Ns
it
Nit. We

used Eit as an offset when modelling the TB cases. Therefore, the overall crude rate of TB

cases is defined by C =
n∑
i

T∑
t

ysit
Ns
it

and the overall number of expected TB cases is defined by

E =
N∑
i

T∑
t

Cs
itNit =

N∑
i

T∑
t

ysit
Ns
it
Nit. We assumed that yit follows the Poisson distribution with

expectation E (yit) = µit = Eitϑit, where ϑit denotes the disease risk in region i, at period t.

We assumed that yit ∼ Poisson (Eit exp (ηit)) , where ηit = µ + Zi + At + ZAit + uit is a

linear predictor, µ denotes the grand mean, Zi the main effect of region i, At the temporal trend

effect in period t, ZAit is interaction of risk in space and time and uit is the unstructured random

effect.

The contribution of a given term may serve to increase or decrease the risk of disease. The

intercept or µ gives a background amount of risk shared by all regions and periods.

Most often, an unstructured extra variability term uit is included in the model so as to capture

the overall effect of the other unaccounted and unobserved effects. This is often implemented as
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a white noise random effect defined as

ue | τ 2
u
iid∼ N

(
0, τ 2

u

)
, e ∈ {i, t, it, } (6.1.1)

Most of the time, smooth and flexible evolutions is preferred for the temporal effect At. This

term is often modelled as a structured random effect, ensuring that contiguous periods are likely

to be similar, but allowing for flexible shape in the evolution curve, particularly when long periods

of time are being considered [López-Quılez and Munoz, 2009].

In the following section, we discuss the Bernardinelli et al. [1995] parametric model’s approach,

Waller et al. [1997] temporally independent spatial model’s approach, and the [Knorr-Held, 1999]

smooth temporal evolution model’s approach. Markov Chain Monte Carlo via Gibbs sampling

was used to obtain parameters of interest in each model.

6.2 Bernardinelli et al. (1995) Approach

This is a kind of parametric model in which the log risk in a given region is considered as a

linear or quadratic function of time. The function coefficients are region-specific and are spatially

structured so that neighbouring regions have similar evolution [López-Quılez and Munoz, 2009].

This model incorporates spatio-temporal interaction where temporal trend in risk may differ for

spatial locations and may even have a spatial structure [Lawson et al., 2003]. All temporal trends

are assumed to be linear and information is shared in both space and time [Lawson et al., 2003].

To investigate statistical linear rise in the reported TB prevalence in Kenya from 2002 to 2009,

we used the Bernardinelli et al. [1995] model.

Assume that yit ∼ Poisson (Eit exp (ηit)). According to Bernardinelli et al. [1995], the linear

predictor ηit is defined by ηit = µ + ui + vi + ($ + δi) × =t, where ui + vi follows the BYM

specifications [Julian Besag, 1991] (See Section 5.2) and $=t linear trend in time =t, δi is the

interaction random effect between region and time and $ is the overall linear time trend. The

log relative risk for area i and period t is log (ϑit) = ηit. Therefore the relative risk of disease is
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given by

ϑit = exp (ηit) = exp (µ+ ui + vi + ($ + δi)×=t) . (6.2.1)

The log of the Poisson mean µit = Eit exp (µ+ ui + vi + ($ + δi)×=t) is therefore given by

log (µit) = log (Eit) + µ+ ui + vi + ($ + δi)×=t (6.2.2)

6.2.1 Parameter Estimation

Given that yit ∼ Poisson (Eit exp (ηit)) with likelihood function denoted by

P
(
y,E,ϑϑϑ | u, v, δu, v, δu, v, δ,$, τ 2

u , τ
2
v , τ

2
δ

)
, (6.2.3)

the prior distribution P (uuu) of uuu follows a normal distribution (See chapter 4) and prior distribution

P (vvv) of vvv has CAR structure (See chapter 5). Also, δi is modelled as a CAR structure with prior

distribution denoted by P (δδδ) and $ ∼ N (0, 0.005) with prior distribution P ($). The overall

mean was defined as µ ∼ N (0, 0.01). Therefore, the posterior distribution is defined as

P
(
u, v, δv, δv, δ,$, τ 2

u , τ
2
v , τ

2
δ | y,E,ϑϑϑ

)
∝ P

(
y,E,ϑϑϑ | u, v, δu, v, δu, v, δ,$, τ 2

u , τ
2
v , τ

2
δ

)
P (uuu)P (vvv)P (δδδ)P ($) .

(6.2.4)

One limitation of the Bernardinelli et al [1995] model is the assumption of a linear time trend in

each region. This limitation is resolve by Knorr-Held [2000] model.

Parameters estimation from equation (6.2.4) was carried out using MCMC via Gibbs sampling.

6.3 Waller et al. (1997) approach

This is a type of temporal independent spatial model where spatial effects are simply seen as

a set of spatial models, one for each period of time, with almost no relation between them,

except possibly for some restriction in their precision parameters. Here temporal evolution is not

restricted to any shape and also information is shared in space [López-Quılez and Munoz, 2009].

In this model, the hierarchical specification is applied to each time point separately [Lawson et al.,
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2003, Julian Besag, 1991]. This model does not have a single spatial main effect and does allow

spatial pattern at each time point to be completely different [Lawson et al., 2003, López-Quılez

and Munoz, 2009].

Assume that yit ∼ Poisson (Eit exp (ηit)) ,where ηit = u
(t)
i + v

(t)
i and µit = Eit exp (ηit) is

the Poisson mean.

The log relative risk for area i and period t is log (ϑit) = ηit. Therefore relative risk of disease is

given by

ϑit = exp (ηit) = exp
(
u

(t)
i + v

(t)
i

)
, (6.3.1)

where for each period t, the model term u
(t)
i + v

(t)
i follows the BYM specification (See Section

5.2) with different precision parameter τ
(t)
u and τ

(t)
v for each period of time. The log of the

Poisson mean µit = Eit exp (uti + vti) is therefore given by

log (µit) = log (Eit) + uti + vti (6.3.2)

The u
(t)
i and v

(t)
i are respectively uncorrelated and correlated heterogeneity terms which may vary

with time. This approach results in spatio-temporal model where the spatial dimension is nested

within time; thus in effect a spatial model is fitted for each period. The spatial model is not in

any way tied or bound to its temporal neighbours, therefore, allowing for free evolution, but not

sharing information in time.

This model is used to study the spatial pattern of TB prevalence at each time point in Kenya for

2002− 2009.

6.3.1 Parameter Estimation

Given that yit ∼ Poisson (Eit exp (ηit)) with likelihood function P (y,E, ϑ | u, vu, vu, v, τ 2
u , τ

2
v ), the

prior distribution P (uuu) of uuu follows a normal distribution (See chapter 4) and prior distribution

P (vvv) of vvv has CAR structure (See chapter 5). Therefore, the posterior distribution is defined as

P
(
u, vu, vu, v, τ 2

u , τ
2
v | y,E,ϑϑϑ

)
∝ P

(
y,E,ϑϑϑ | u, vu, vu, v, τ 2

u , τ
2
v

)
P (uuu)P (vvv) . (6.3.3)



Section 6.4. Knorr-Held and Rasser, 2000 Page 86

Estimation of parameters from equation (6.3.3) was achieved through Bayesian MCMC via Gibbs

sampling.

6.4 Knorr-Held and Rasser, 2000

This is a type of smooth temporal evolution model where the evolution of the estimated risk in

each region is a smooth function of time. Knorr-Held [1999] proposed this model to overcome

the limitation suffered by the Bernardinelli et al. [1995] model.

Assume that yit ∼ Poisson (Eit exp (ηit)). Knorr-Held [1999] defined the linear predictor ηij of

a nonparametric, additive model as

ηit = µ+ ui + vi + =t + ψit, (6.4.1)

where the model term ui + vi follows the BYM specification. The parameter =t represents an

unstructured or structured temporal effect and the parameter ψit is the space-time interaction.

The log relative risk for area i and period t is log (ϑit) = ηit. Therefore the relative risk of disease

is given by

ϑit = exp (µ+ ui + vi + =t + ψit) . (6.4.2)

The log of the Poisson mean µit = Eit exp (µ+ ui + vi + =t + ψit) is therefore given by

log (µit) = log (Eit) + µ+ ui + vi + =t + ψit. (6.4.3)

It should be noted that uuu,vvv and === are the main effects whiles ψψψ is the space-time interaction

term.

This model is used to study smooth temporal evolution of the estimated relative risk of TB

prevalence in Kenya in each region at given point in time.
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6.4.1 Parameter Estimation

Given that yit ∼ Poisson (Eit exp (ηit)) with likelihood function

P
(
y,E,ϑϑϑ | u, v, ψ,=u, v, ψ,=u, v, ψ,=, τ 2

u , τ
2
v , τ

2
ψ, τ

2
=
)
, (6.4.4)

the prior distribution P (uuu) of uuu has a normal distribution (See chapter 4) and prior distribution

P (vvv) of vvv has CAR structure (See chapter 5). According to Knorr-Held [1999], if the main

temporal random effect =t assumes unstructured random effect, then its prior distribution would

be =t | τ 2
= ∼ N (0, τ 2

=) and if it assumes structured random effect, then its prior density follows

a first order random walk defined by

P
(
=== | τ 2

=
)
∝ exp

[
−τ
−2
=
2

T∑
t=2

(=t −=t−1)2

]
. (6.4.5)

The second-order random walk is also possible.

According to Knorr-Held [1999], prior specification for the interaction term ψψψ depends on the

spatial and temporal main effect which are assumed to interact. Different types interactions

ψit were classified by Knorr-Held [1999] with prior distribution denoted by P (ψψψ) and precision

variance denoted by τ 2
ψ. Therefore, the posterior distribution for the relative risk ϑϑϑ is defined by

P
(
u, v, ψ,=u, v, ψ,=u, v, ψ,=, τ 2

u , τ
2
v , τ

2
ψ, τ

2
= | y,E,ϑϑϑ

)
∝ P

(
y,E,ϑϑϑ | u, v, ψ,=u, v, ψ,=u, v, ψ,=τ 2

u , τ
2
v , τ

2
ψ, τ

2
=
)
× (6.4.6)

P (uuu)P (vvv)P (ψψψ)P (===) . (6.4.7)

The interaction type depends on which of the two possible type of temporal effects (unstructured

or structured) interacts with the two main effects (ui and vi). Each of the four type of interactions

has different prior interrelationships involving the interaction term ψit [Knorr-Held, 1999].

1. Interaction type IInteraction type IInteraction type I: If the unstructured main effects (=t and ui) are expected to interact,

then the distribution of the interaction parameter ψit is defined as

P (ψ | τψ) ∝ exp

[
−τψ

2

n∑
i=1

T∑
t=1

(ψit)
2

]
. (6.4.8)

This may be considered as an independent unobserved covariate for each combination of

region and period (i, t), thus without any structure [Knorr-Held, 1999, López-Quılez and
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Munoz, 2009]. On the other hand, if spatial and temporal main effects are present in the

model, then the interaction effect only denote independence in the deviations from them.

The main effects can cause contribution to risk in neighbouring regions or in consecutive

period of time to be highly correlated. This is a global space-time heterogeneity effect and

it is often modelled as white noise defined as ψit ∼ N
(
0, τ 2

ψ

)
. This interaction type has

independent prior with no structure in space-time interaction [Knorr-Held, 1999, López-

Quılez and Munoz, 2009].

2. Interaction type IIInteraction type IIInteraction type II: Knorr-Held et al. [1998] noted that this interaction effect is distributed

as a random walk independently of other counties if we modelled =t as a random walk.

The prior distribution for this interaction is defined by [Knorr-Held et al., 1998, Knorr-Held,

1999, Lawson, 2008]

[ψ | τψ] ∝ exp

[
−τψ

2

n∑
i=1

T∑
t=2

(ψit − ψi,t−1)2

]
(6.4.9)

This type of interactions has no structure in space [Knorr-Held et al., 1998]. This im-

plies that each region has a specific evolution structure that is independent of that in the

neighbouring region [López-Quılez and Munoz, 2009, Knorr-Held, 1999].

3. Interaction type IIIInteraction type IIIInteraction type III: If we assumed that the unstructured temporal main effect (=t) and the

spatially correlated or structured main effect (vi) interact, then the interaction effect pa-

rameter ψt = (ψ1t, . . . , ψnT )′ , t = 1, . . . , T follows an independent Intrinsic autoregressive

distribution defined as [Knorr-Held, 1999, Knorr-Held et al., 1998, Lawson, 2008]

[ψ | τψ] ∝ exp

[
−τψ

2

T∑
t=1

∑
i∼`

(ψit − δlt)2

]
(6.4.10)

This interaction is assumed to have a spatial structure for each period, independent of

adjacent periods (its neighbours in time). This interaction type is analogous to the clus-

tering effect, which is often modelled as a CAR distribution (section 5.1) for each period

[López-Quılez and Munoz, 2009, Knorr-Held et al., 1998]. Here we implicitly assumed that

each specific region may have a slight deviation from the global trend, but that this devi-

ation is likely to be identical to that in the neighbouring regions, while at the same time,



Section 6.4. Knorr-Held and Rasser, 2000 Page 89

independent of that in that in the previous period of time [López-Quılez and Munoz, 2009,

Knorr-Held, 1999].

4. Interaction type IVInteraction type IVInteraction type IV: Type IV is completely dependence over space and time theoretically

[López-Quılez and Munoz, 2009, Knorr-Held et al., 1998]. Hence the effect can no longer be

factorized into independent blocks if =t is modelled as a random walk allowing interaction

with the structured main effect (vi). Knorr-Held [1999] defined type IV interaction as

[ψ | τψ] ∝ exp

[
−τψ

2

T∑
t=2

∑
i∼`

(ψit − ψlt − ψi,t−1 + ψl,t−1)2

]
(6.4.11)

Knorr-Held [1999] stated that, type IV is the most interesting type of interaction that

occurs when deviation from the global trends are highly correlated with their neighbours,

both in space and time. Here, hidden factors whose effects exceed the limits of one or more

regions and also persistent for one or more period of time can be modelled. This is also

an efficient way of obtaining information from data, particularly in the case of rare diseases

or less populated regions, since the risk estimation for the region-period is not performed

on the basis of only locally observed data but also on that in the neighbouring regions and

periods [López-Quılez and Munoz, 2009].

The hyperprior distribution for τ 2
= and τ 2

ψ are modelled as gamma distribution. Knorr-Held (2000)

fitted four different types of interaction effects to the 21 years Ohio respiratory cancer dataset

and found that interaction type II was appropriate; offering lowest deviance [Lawson et al., 2003].

Depending on the data you are dealing with, any of the four interaction types can yield best fit

for the data [Knorr-Held, 1999]. Spatio-temporal Parametrisation of log relative risk can take a

variety of forms and it is not clear yet which form is most appropriate [Lawson et al., 2003].

Estimation of all parameters was achieved with Bayesian MCMC via Gibbs sampling.
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6.5 Application of Spatio-Temporal Models

Best fitting spatio-temporal model to Kenya TB data was selected from the above candidate

models based on their respective model’s DICs and pDs presented in Table 6.5

Table 6.1 the presents results of fitting the spatio-temporal models to Kenya TB data. Note that

these values are subject to Monte Carlo error, which is difficult to quantify. We have therefore

chosen a very long run of which convergence was reached at 1,200,200 after a burn-in period of

100,000 and thinning of every 30th element of the chain for each model.

Table 6.1: Spatio-Temporal models Deviance Summaries

Model indicators Bernardinelli et al., 1995 Waller et al.,1997 Knorr-Held et al., 20000

D̄ 135492 4039.320 3818.720

pD 487.536 594.296 375.306

DIC 135979 4633.62 4194.03

From Table 6.2, D̄ is the mean of the posterior deviance, pD is the effective number of parameters

and DIC = D̄+ pD proposed by Spiegelhalter et al. [2002].

Among the spatio-temporal models presented in Table 6.1, the model with the lowest DIC

(4194.30) and lowest pD (375.306) is the Knorr-Held et al [2000] model, equation (6.4.3). We

therefore recommend equation (6.4.3) model as the best fitting space-time model to Kenya TB

data for 2002− 2009.

We now evaluate all the four possible types of interactions discussed in Section 6.1. Table 6.2

summaries our effort to identify a best fitting model.

Table 6.2 presents deviance summary of the interaction types after MC convergence at 1,200,000

and a burn-in period of 100,000 for each model. The model fit with interaction type III and IV

fit the data well but type IV seems better than type III since it yields the lowest pD (362.494)

and DIC (419.410). We now provide a more detailed look at the results of the type IV model as

it gives best fit with less posterior deviance.
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Table 6.2: Interaction Types Deviance Summaries

Model indicators Type I Type II Type III Type IV

D̄ 3820.060 3818.600 3827.920 3826.910

pD 376.637 374.377 363.510 362.494

DIC 4196.700 4192.970 4191.430 4189.410

Table 6.3: Interaction Type IV Posterior Statistics

Model indicators estimates 95% Credible Interval

µ -0.22 (-0.54,0.70)

τ 2
v 10.8 (1.39,50.10)

τ 2
u 9.17 (3.57,28.60)

τ 2
ψ 11.3 (9.55,13.20)

In Table 6.3, the overall mean relative risk µ is insignificant and the precision variance parameters

τ 2
v and τ 2

u indicates significance of clustering and heterogeneity of relative over the studied period

respectively. The precision variance parameter indicates significance of TB relative risk interaction

in space-time. We now present maps of the interaction type IV in section 6.5.1
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6.5.1 Type IV interaction Model

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.1: Type IV interaction posterior mean of the relative risk maps for 2002-2009.

Figure 6.1 displays the spatial distribution of the posterior relative risk for 2002-2009. Generally,

the spatial pattern does not change much over the study period. However, some counties have

interesting time trends, for instance, the two adjacent counties (Nairobi and Kiambu) in the
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central part of Kenya where opposite trend in disease risk can be detected (See Figure 6.2). This

may be due to the fact that type IV interaction borrows strength from neighbouring counties,

hence, the decreasing trend in Nairobi county causes the estimated increase in Kiambu which is

less populated than Nairobi, to be less pronounced. Again, high risk of TB prevalence is observed

in the North, West, North-West and the Central counties and low risk in the South-East counties

for 2002-2009.

(a) (b)

(c) (d)

Figure 6.2: Type IV interaction temporal trend Posterior mean of the relative risk 2002-2009

Figure 6.2 displays decreasing temporal trend of posterior relative parameters for some highly

urbanized counties such as Mombasa and Nairobi. In contrast, pronounced increasing trends

were observed for most rural counties such as Nandi and Kiambu. More information on temporal

trend behaviour of posterior relative risk for the rest of the counties can be found in Appendix 7.
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(a) (b)

(c) (d)

Figure 6.3: Type IV interaction trend of TB prevalence rate in Kenya from 2002-2009

Figure 6.3 displays decreasing temporal trend of interaction parameters for some highly urbanized

counties such as Mombasa and Nairobi. For both counties, 95% simultaneous credible regions

for ψij shows significance of interaction. In contrast, pronounced increasing trends were observed

for most rural counties such as Nandi and Kiambu. More interaction trend behaviour of risk in

the rest of the counties can be found in Appendix 7.

(a) (b)

Figure 6.4: Type IV temporal trend and area posterior mean relative risk.

Figure 6.4a displays a slight increasing temporal trend from 200-2004, slight decrease from 2004-

2005, increase in 2006, a slight decrease in 2007-2008 and slight increase in 2009. The temporal

trend effect does not change much for 2002-2009. Figure 6.4b displays area relative risk of the
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type IV interaction. Again high risk of TB is observed in the North, West, North-West and

Central counties of Kenya and low risk in the South-East counties.

Interaction type IV was identified by Schrödle and Held [2011] as the best fitting spatio-temporal

model for modelling and mapping salmonellosis counts in cattle in Switzerland, 1991-2008.

6.6 Summary of Spatio-Temporal Models

All spatio-temporal models were applied to Kenya TB data during the years 2002-2009. Using the

DIC, the best model was chosen and conclusion concerning the pattern of TB prevalence in Kenya

drawn. Knorr-Held [1999] parametric model was selected as the best fitting model to Kenya TB

data since it yields the lowest DIC. Knorr-Held [1999] parametric model with interaction type IV

provides best fit for Kenya TB data.

Interaction of TB relative in space and time is decreasing in most urban counties and increasing in

most rural counties. This is due to the fact that type IV model borrow strength from neighbouring

counties such that these have similar risk as observed between Nairobi and Kiambu and between

Mombasa and Kwale. The temporal trend effect does not change much for 2002-2009
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Discussion and Conclusion

This thesis provides a framework for non-spatial, spatial and spatio-temporal models used in

disease modelling and mapping. Table 7.1 presents comparison of the Non-spatial and Spatial

Models used in this study.

Table 7.1: Posterior Statistics of Non-spatial and Spatial Models

Model indicators PG LN UH CAR BYM

β0 - - -0.177(-0.296,-0.060) -0.177(-0.181,-0.174) -0.179(-0.267,-0.091)

a 4.72(3.10, 6.71) - - - -

b 5.046(3.21, 7.29) - - - -

mean 0.94(0.82, 1.10) -0.17(-0.31, -0.046) - - -

variance 0.20(0.12, 0.31) - - - -

HIV - - 1.198(0.493,2.571) 1.812(0.774,2.758) 1.41(0.488,2.34)

Firewood - - 0.274(-2.215,2.144) 0.276(-2.44,2.822) -0.28(-1.29,0.793)

five kilometer distance - - -1.317(-3.423,1.437) -1.505(-4.19,1.18) -0.852(-1.81,0.124)

τ 2 - 5.012(3.20, 7.24) - - -

σ - 0.46(0.37, 0.56) - - -

σv - - - 0.8298 (0.675,1.03) 0.372(0.156,0.678)

τ 2
v - - - 1.559 (0.943,2.194) 11.3(2.18,40.8)

σu - - 0.441(0.359,0.547 ) - 0.298(0.158,0.416)

τ 2
u - - 5.324(3.347,7.757) - 13.4(5.79 ,40)

pD 46.95 47.013 46.973 49.191 50.969

DIC 622.70 622.83 622.753 627.209 630.758

Table 7.1 presents overall posterior statistics of the non-spatial and spatial models.

Though the Poisson-Gamma (PG) model yields the lowest DIC, it does not allow for incorporation

of spatial structure. The overall relative risk estimated by the PG is 0.94(95% credible interval =

0.82-1.10). The Log-Normal (LN) provides specifications that can be extended to include spatial

96
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structures. The UH, CAR, and BYM models confirmed that with all determinants of TB kept

constant, overall relative risk of TB would be decreasing. Also, the UH, CAR, and BYM confirmed

HIV as a major TB determinant and that TB prevalence in Kenya increases with increasing HIV.

The UH model captures and displays variability of relative in the study area through the area-

specific random effect whiles the CAR model and the BYM model provide evidence of risk simi-

larities between neighbouring counties. Among the LN, the UH, the CAR and the BYM models,

the UH model yields the lowest DIC (622.75), hence considered as the best fitting model when

fitted to Kenya TB data for 2002-2009.

However, using the acceptable criteria that a DIC difference between two models greater than 10

implies significant difference while a DIC less than 5 implies a negligible difference [Best, 2011],

one can use any of the nonspatial and spatial models for fitting Kenya TB data for 2002-2009

depending on the issue at hand.

We have considered several formulations for analysis of spatial and spatio-temporal disease data.

The spatial models provide an over view of risk behaviour in space whiles the spatio-temporal

models provide an over view of risk behaviour in both space and time. We have also considered

several formulations of spatio-temporal disease models in the presence of space-time interaction.

In spatio-temporal models, the main effects are combined with interaction parameters. Models

can be simplified if interaction turn out to be negligible, else, we examine the posterior distribution

of the parameters so as to identify pattern of disease variation which cannot be attributed to the

main effects. The Bayesian credible interval for the interaction parameters have been useful to

identify those counties which do not follow the overall temporal trend.

These models were fitted with Kenya’s TB prevalence data for 2002-2009. Markov Chain Monte

Carlo via Gibbs sampling was used for simulation of parameters from posterior distributions. Rubin

and Gelman convergence diagnostics test was used to confirm convergence of the Markov Chain.

Thinning the Markov Chain and the over-relax algorithm though slow the speed of the MCMC

but significantly reduces autocorrelation and number of iterations. Long-run MCMC iterations

and high thinning sample size k is require for spatio-temporal models used in fitting Kenya’s TB

data.
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The DIC of each model were compared to select the best model from the set of candidate models

used in fitting Kenya’s TB prevalence data.

Among the determinants considered, HIV is identified as a major determinant of TB. This finding

is consistent with the expectation of increases in HIV prevalence with increases in TB prevalence.

Variation in TB risk is observed among Kenya counties and clustering among counties with high

TB relative risk. Risk of tuberculosis doe not changes significantly over the study period.

Interaction of TB relative risk in space and time is decreasing in most urban counties and in-

creasing in most rural counties. This is due to the fact that type IV model borrows strength from

neighbouring counties such that neighbouring counties have similar risk as observed between.

Unknown or unobserved factors are presumably described by the space and time interaction term

ψij. The interaction component of the spatio-temporal models is an important aspect in modelling

disease risk in space and time.

Generally clustering of risk and elevated risk is observed in the North, West, North-West and the

central counties of Kenya and low clustering and elevated risk in the South-West counties.

We have discovered an interesting association between temporal trends of interaction parameters

and urbanization in Kenya, which might set a framework for further epidemiological research.

Modelling of risk in space and time is quite a challenging task. Although these approaches are less

than ideal, we hope that our formulations provide a useful stepping stone into the development

of spatial and spatio-temporal methodology for modelling and mapping Kenya’s TB prevalence

data.

We are satisfied that the models selected in this thesis are from an appropriate class that led to

the analysis of the Kenya’s TB data for 2002-2009.

Further research is required for a standard or acceptable distribution type for space-time interac-

tion ψij to be identified since comparing posterior Deviance from interaction type that assumed

tj to be modelled as structured or structure could cause one or more deficiencies to a given

interaction type.

The limitation of the study is the specification of the adjacency matrix W with 0 and 1 in
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the CAR model is not internally consistent in a case in which the number of neighbours varies

(occurs with most irregular lattices). In the CAR model, when ρ is fixed at 1, the CAR models’

specification becomes an “intrinsic” CAR model ( which is prevalent in empirical studies), and

require less computation time but presents theoretical and conceptual issues that undermines

its validity [Wang and Kockelman, 2013]. For instance, the precision parameter τ 2τ 2τ 2 is unknown

(which is always the case), the functional from of the joint distribution of the spatial random

effects (vvv), are not identifiable under the “intrinsic” CAR specification. Thus one cannot be

confident that his/her estimates, nor convergence of the parameters draws, due to potentially

improper distributional assumptions. Conceptually, not including ρ in the model blurs one’s

estimates and can lead to counter-intuitive interpretation [Wang and Kockelman, 2013].
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Appendix I: Convergence Diagnostics of the BYM model

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 7.1: BYM Model: Rubin and Gelman Convergence Diagnostics
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.2: BYM model: Rubin and Gelman Convergence Diagnostics
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Appendix II: The Interaction Type IV Model’s Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.3: Type IV posterior mean relative risk temporal trend of TB prevalence rate in Kenya

from 2002-2009
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.4: Type IV posterior mean relative risk temporal trend of TB prevalence rate in Kenya

from 2002-2009 continue
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.5: Type IV posterior mean relative risk temporal trend of TB prevalence rate in Kenya

from 2002-2009 continue
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 7.6: Type IV posterior mean relative risk temporal trend of TB prevalence rate in Kenya

from 2002-2009 continue
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.7: Type IV interaction temporal trend of TB prevalence rate in Kenya from 2002-2009
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.8: Type IV interaction temporal trend of TB prevalence rate in Kenya from 2002-2009

continue
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.9: Type IV interaction temporal trend of TB prevalence rate in Kenya from 2002-2009

continue
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(a) (b) (c)

(d) (e) (f)

Figure 7.10: Type IV interaction temporal trend of TB prevalence rate in Kenya from 2002-2009

continue
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