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A B S T R A C T

The Gaussian Intrinsic Conditional Autoregressive (ICAR) spatial model, which usu-
ally has two components, namely an ICAR for spatial smoothing and standard ran-
dom effects for non-spatial heterogeneity, is used to estimate spatial distributions of
disease risks. The normality assumption in this model may not always be correct and
misspecification of the distribution of random effects could result in biased estimation
of the spatial distribution of disease risk, which could lead to misleading conclusions
and policy recommendations. Limited research studies have been done where the es-
timation of the spatial distributions of diseases under the ICAR-normal model were
compared to those obtained from fitting ICAR-nonnormal model. The results from
these studies indicated that the ICAR-nonnormal models performed better than the
ICAR-normal in terms of accuracy, efficiency and predictive capacity. However, these
efforts have not fully addressed the effect on the estimation of spatial distributions
under flexible specification of ICAR models in disease mapping.

The overall aim of this PhD thesis was to develop approaches that relax the nor-
mality assumption that is often used in modeling and fitting of ICAR models in the
estimation of spatial patterns of diseases. In particular, the thesis considered the skew-
normal and skew-Laplace distributions under the univariate, and skew-normal for the
multivariate specifications to estimate the spatial distributions of either univariable or
multivariable areal data. The thesis also considered non-parametric specification of
the multivariate spatial effects in the ICAR model, which is a novel extension of an
earlier work. The estimation of the models was done using Bayesian statistical ap-
proaches.

The performances of our suggested alternatives to the ICAR-normal model were
evaluated by simulating studies as well as with practical application to the estimation
of district-level distribution of HIV prevalence and treatment coverage using health
survey data in South Africa. Results from the simulation studies and analysis of real
data demonstrated that our approaches performed better in the prediction of spa-
tial distributions for univariable and multivariable areal data in disease mapping ap-
proaches.

This PhD has shown the limitations of relying on the ICAR-normal model for the
estimations of spatial distributions for all spatial analyses, even when the data could
be asymmetric and non-normal. In such scenarios, skewed-ICAR and nonparametric
ICAR approaches could provide better and unbiased estimation of the spatial pattern
of diseases.
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1

I N T R O D U C T I O N

1.1 background

Spatial statistics is one of the areas of statistics that is focused on the application
of statistical techniques to data that are collected over space and time (Ripley, 2005;
Haines & Thiart, 2021). In spatial statistics the major focus is modelling of the spatial
pattern/variation of the outcome variable of interest. Thus spatial analysis considers
distance, adjacency, elevation, environmental, climatic and other location information
to model spatial pattern (Sha, 2018; Manda et al., 2020). Depending on the nature of
the available data different statistical approaches are employed to model the spatial
pattern of the outcome (Blangiardo & Cameletti, 2015). For example, geostatistical
models is used for modelling a continues point referenced data, point pattern data
are modelled using poison process and aggregated areal data are modelled mostly us-
ing conditional autoregressive approach (Banerjee et al., 2003; Haines & Thiart, 2021)
which is the focus of this dissertation.

Estimation of outcomes at lower administrative level from aggregated data are one
of the most popular approaches in spatial modelling as aggregated data are widely
available and easily accessible. In addition, the demand of estimates such as health
or other indicators at local administrative level is increasing overtime as there is a
growing interest of the use of such outcomes to make informed decisions, appropri-
ately allocate resources and evaluate the impact of interventions especially in low
resource countries (Manda et al., 2020; Giorgi et al., 2018). The most commonly used
method that has been used for estimating local level outcomes is a linear mixed ef-
fect model. The random effects in a linear mixed effect model are used as surro-
gates for spatially correlated factors that are not observed as data and are known
as spatial random component (Lawson et al., 2003; Besag et al., 1991; Knorr-Held
& Best, 2001). Spatial modelling approaches are thus focused on modelling this ran-
dom component using Intrisnsic conditional autoregressive method (ICAR) citepbe-
sag1991bayesian,banerjee2003hierarchical. Thus the ICAR approach offers a mecha-
nism for borrowing information from random components of neighboring areas as
these areas tend to have similar environmental and socio-demographic factors (Besag
et al., 1991).
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introduction

The ICAR spatial model specification that are implemented in several statistical soft-
ware and geographical information systems packages are premised on the assumption
that the random effects are normally distributed. And as a result of advancement in
statistical and computational techniques a hierarchical Bayesian approach is used for
estimating the values of interest (Knorr-Held & Best, 2001; Feltbower & Manda, 2012;
Waller & Carlin, 2010). However, the ICAR spatial model specification that are imple-
mented in several statistical software and geographical information systems packages
are premised on the assumption that the random effects are normally distributed.
However, it may not be always right to assume that the random effects follow nor-
mal distribution and/or some known parametric distribution as there is a possibility
that it could follow skewed, multimodal distributions or the distribution may be un-
known at all. Misspecification of the distribution of the random effects may result in
estimates that are biased (Ghosh et al., 2007; Verbeke & Lesaffre, 1996) and could have
implications on inferences about the parameters of interest. It also becomes difficult
to determine the impact of the covariates on the scale and shape of the random effects
distribution (Heckman & Singer, 1984; Waller & Carlin, 2010).

A study by Manda et al. (2020) about the assessment of the spatial analysis ap-
proaches used by authors for analyzing health survey data in sub-Saharan Africa in-
dicated that most of the authors are focused on analyzing their data using the existing
spatial models and available statistical packages; and are short of validating, critically
assessing and interrogating the existing spatial models and developing appropriate
spatial models though the data at hand may not fit appropriately to existing methods.
Therefore, Manda et al. (2020) and Haines & Thiart (2021) suggested the need for the
development of robust and advanced spatial modelling approaches. In addition, there
is an ever-growing of national survey data such as Demographic and Health Survey,
Malaria Indicator Survey, Multiple Indicator Cluster Surveys, Antenatal Surveillance
HIV Surveys and Population HIV Impact Assessment Surveys which constitutes a
large number of indicators. The existing spatial models may not be suitable for mod-
elling some of the indicators determined from these data; thus increase in availability
of spatially reference data demands for the availability more advanced and flexible
spatial models.

In response to the issues raised in the above paragraphs a number of alternative
approaches were suggested in modelling the spatial component; for example (Manda,
2014) and (Lunn et al., 2013) proposed a double exponential and a mixture of ICAR
normal, and ICAR double exponential respectively to the spatial random component
which better capture distributions of data with wider tails and narrow distributions
at the center of the data than a normal distribution. Similarly, Nathoo & Ghosh (2013)
proposed a skew-t distribution to capture skewness and/or heavy tailedness in data.
Though these approaches are used as an alternative to normal distribution for mod-
elling the spatial component; there are quite a number of features that may not be
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1.1 background

captured by the above distributions such as data with skew-normal, skew-Laplace
and multimodal distributions. Thus, flexible approaches that allows the spatial distri-
bution to follow skew-elliptical and/or infinitely many distributions would provide
more flexibility and correct dependence of spatial data in space. Therefore, the aim of
this dissertation is to develop and validate a set of flexible parametric and nonpara-
metric spatial models in the spatial smoothing of areal data.

1.1.1 Rationale of the study

The standard spatial ICAR model assumes that the random effects are normally dis-
tributed. It may not be always right to assume that the spatial effects follow some
known parametric distribution as there is a possibility that it could follow skewed and
multimodal distributions. This study develops and validates flexible spatial model for
modelling data that drifts away from symmetry or whose distribution are unknown.
Thus, epidemiologists and practicing statisticians can use this generalized approach
for conducting spatial analysis and making appropriate decisions using the results
estimated using this method. The findings from this study will help governmental
and non-governmental originations, and the private sector to know the level of the
epidemics at lower administrative level, and thus prioritize and plan appropriate pub-
lic health programs tailored to each community and evaluate the combined impact of
national and local public health programs targeting HIV and other diseases.

1.1.2 Brief overview of Spatial models

In order to study the geographical distributions of events such as disease incidence,
mortality, and other outcomes geographically referenced data are presented in the
form of maps (Leroux et al., 2000; Besag et al., 1991; Manda, 2014). However, the pre-
sentation of data in the form of maps was minimal until recently due to shortage
of geo-referenced data and limited availability of geographically information system
software (GIS). These days geographical information are collected in most of surveys
and surveillance activities and GIS software are now widely available which increases
the presentation of data in the form of maps (Saran et al., 2020; Graham et al., 2011).
However, mapping of disease incidence, mortality rates and other outcomes of inter-
est at lower administrative level using direct estimates is complicated by the fact that
direct estimates are unstable since survey and surveillance are not powered to pro-
duce reliable estimates at lower administrative level.

There are three broad categories of spatial data though sometimes it is not easy on
how to classify geo-referenced data into these categories; as such methods used for
analyzing one class of data can be used for analyzing another class of data (Cressie,
2015). Geographically referenced data relates to its location and the information from
its neighbors (Leroux et al., 2000; Lawson et al., 2000). The three main categories of
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spatial data are point referenced (geostatistical) data, areal data of regular (lattice) or
irregular shape and point pattern data. Point referenced data is defined as a random
measure about the outcome of interest over a spatial region (D) and the spatial points
at which the measurement was taken varies continuously (Banerjee et al., 2003; Blan-
giardo & Cameletti, 2015). The spatial points are defined by a vector of latitude and
longitude. These type of data arise in problems related to climatology, environmental
monitoring, and geology (Banerjee et al., 2003; Cressie, 2015). Point pattern data is
generated if we are interested in the occurrence or nonoccurrence of the event of inter-
est in a random location. For example, one may be interested in studying the locations
of particular species of trees, animals etc. in a natural forest (Cressie, 2015). This type
of data are used for studying if the event under study is occurring at random, or show
some form of clustering, or happen in some form of pattern (Cressie, 2015; Banerjee
et al., 2003). Areal data is an aggregate value of the variable of interest over a finite
areal unit defined over a region (Blangiardo & Cameletti, 2015). The areal units can be
districts, counties, subdistricts etc. These data are used for studying proportions and
incidence in an area. In this section we widely review methods of analysis of areal
data.

Limitations associated with direct estimates of indicators determined from national
survey and surveillance data necessitated in the development of advanced statistical
models which help to produce reliable and stable estimates from these data (Manda
et al., 2015; Besag et al., 1991). These statistical models use covariate information and
borrow relevant data from surrounding regions (as closer areas may share similar
characteristics that could affect the outcome variable) in order to reduce the insta-
bility associated with scattered spatial events (Manda et al., 2015). These statistical
models smooth out the white noise in the data and display the underlying patterns of
the data and reduces the impact of administrative boundaries which are not demar-
cated in relation to the outcomes variables (Lawson et al., 2003; Manda et al., 2015).

Depending on the nature of spatial data statistical models use different approaches
to borrow information (to model spatial association) from the surrounding regions.
For point referenced data the distance between spatial locations are used for mod-
elling the spatial association (Diggle et al., 1998; Banerjee et al., 2003). Mostly an
exponential function that decays with distance is used for these type of data (Diggle
et al., 1998; Cressie, 1993). Point pattern data are modelled if the event of interest is
clustered more, or less than expected in a given region than would be expected under
a completely random situation. As this is a count of events in a region point pat-
tern data are modelled through a homogeneous Poisson process (Diggle et al., 1998;
Banerjee et al., 2003). The aggregated areal data are modelled by borrowing informa-
tion from adjust regions. In order to model the spatial association a neighborhood
structure is introduced constructed based on shared border. According to Banerjee
et al. (2003) the most commonly used modelling approaches that take into account
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the neighborhood information are the simultaneously and intrinsic conditional au-
toregressive models (SAR and ICAR). The SAR model is used for modelling areal
data using likelihood methods, whereas the ICAR model is convenient for modeling
areal data using Bayesian approach and this method is the focus of this chapter.

1.1.2.a Spatial models for disease mapping

Areal spatial models are used for generating estimates at lower administrative level
from survey data and hence used for mapping disease occurrence or other events at
lower area level. The analysis of geographical variation of health-related events and
mapping estimates of public health outcomes is used for studying the geographical
distribution of diseases, formulating hypothesis about the aetiology of disease, iden-
tify areas that have excess risk than expected under normal circumstance (Best et al.,
2005; Manda, Feltbower & Gilthorpe, 2012; Bernardinelli & Montomoli, 1992). Direct
or maximum likelihood estimates of health outcomes such as prevalence or incidence
may lead to wrong conclusions and are less important since direct estimates are likely
to be affected by random noise especially if the event under study in a small area is
rare, if the sample size is not sufficient, or the area has low population which could
result in extreme and unstable estimates (Clayton & Kaldor, 1987; Langford et al.,
1999). As a result different statistical approaches to disease mapping were suggested;
and these approaches primarily smooth out the random noises associated with the
data and try to determine the true spatial patterns of a disease under study (Manda,
Feltbower & Gilthorpe, 2012; Lawson et al., 2000).

In an effort to reduce the instability associated with direct estimates Clayton and
(Clayton & Kaldor, 1987) proposed an empirical Bayesian estimation method. In this
approach the observed number of events given the relative risk are assumed to follow
a Poisson distribution and the conditional distribution of the relative risk given the
observed number of cases are assumed to follow a gamma distribution which resulted
in the so-called Poisson-Gamma model. The empirical bayes estimates based on the
Poisson-Gamma model are thus a weighted average between direct estimate and an
estimate from the posterior information determined from prior distributions (Law-
son et al., 2000; Clayton & Kaldor, 1987). Similarly, Tsutakawa et al. (1985) assumed
a normal distribution for the logit of the relative risk. Thus, the estimates from the
empirical bayes estimates are relatively stable and reliable which could provide more
epidemiological sense. The major shortcoming with these approaches is that they fail
to incorporate the spatial and covariate information in the estimation of the relative
risk (Banerjee et al., 2003; Clayton & Kaldor, 1987; Tsutakawa, 1985). The other lim-
itation with the above empirical Bayesian approach is that unlike the full Bayesian
approach the uncertainty associated with the model hyper parameters are not taken
into account and hence the variance of the estimated relative risk is low which in turn
results narrow confidence interval and hence wrong conclusions (Manda, Feltbower
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& Gilthorpe, 2012; Tsutakawa, 1985).

The occurrence of an event or disease in an area is a countable variable and these
count data can have a Poisson or binomial distribution depending on if the disease is
rare or not. Hence the relative risk or prevalence computed from these data are mod-
elled using generalized linear models. For example, Wakefield (2007) and Gutreuter
et al. (2019) used generalized linear model, which incorporates covariates, to map inci-
dence rates of lip cancer in Scotland and district level HIV prevalence in South Africa.
The major limitation with the generalized linear models is that the spatial correlation
is not taken into consideration in the estimation of the outcome variable. As a result,
a linear mixed model was suggested to overcome the limitation associated whose gen-
eralized linear model and thus the random effect in the linear model is used to denote
the spatial effects. These spatial effects can be used as surrogates of unknown or unob-
served variables in the model (Lawson et al., 2003; Bernardinelli et al., 1995). Usually,
these models are presented in hierarchical form, in the first stage the distribution of
the data are specified and the distribution of the random effect is presented in second
stage. The simplest approach in modelling the random effects is assuming that the ran-
dom effects are independent and exchangeable (Lawson et al., 2000; Gutreuter et al.,
2019; Bernardinelli & Montomoli, 1992). Another alternative and improved approach
for modelling the random effects is by assuming that the random effects have a multi-
variate distribution, specifically multivariate normal, which enables to model the spa-
tial correlation that exist in the random effects (Lawson et al., 2003; Tsutakawa, 1985).
Multivariate normal distribution is the most commonly used distributional assump-
tion used for modelling random effects for disease mapping. The spatial correlations
are introduced through the variance-covariance matrix of the multivariate normal dis-
tribution which are based on geographical proximity. Thus, for point referenced data
the variance-covariance matrix is determined using distance-based function among
observed points whereas for areal or lattice data it is determined based on a neighbor-
hood approach or distances between centers of areas (Besag et al., 1991). For varance-
covariance matrix determined based on distance-based functions one needs to make
sure that the resulting matrix is positive definite (Ripley, 1981). And the most widely
used function for determining the variance covariance matrix is the exponential de-
cay function (Best et al., 2005). The use of this approach for diseases mapping for a
region having several hundreds of areas is computationally expensive since Markov
chain Mote Carlo algorithm needs inversion of the variance-covariance matrix at each
iteration (Best et al., 2005).

The unobserved covariates represented by the random effects in a linear mixed
model, some may show spatial pattern, and some may not thus the random effects
can be split into one that captures spatial correlation and one that do not show spa-
tial pattern and are mostly known as structured spatial random component and
unstructured spatial random components respectively (Besag et al., 1991; Breslow,
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1984; Bernardinelli & Montomoli, 1992). This type of linear mixed model is known
convolution model. The unstructured spatial random component is used to capture
the extra-Poisson variability or overdispersion in the marginal distribution of the ob-
served data (Breslow, 1984; Waller & Carlin, 2010). Mostly models of this nature are
analyzed using full Bayesian approach and Gaussian Intrinsic conditional autoregres-
sive model (ICAR) is used to model the structured spatial random component (Besag
et al., 1991). In the full Bayesian approach the variability associated with the parame-
ters in the model are accounted for which results in reasonable estimates of standard
errors which could avoid apparent significant results (Bernardinelli & Montomoli,
1992; Manda, Feltbower & Gilthorpe, 2012).

Gaussian Intrinsic conditional autoregressive model model is the most widely used
disease mapping model following a seminal work by Besag et al. (1991). In ICAR
model the conditional distribution of the spatial random effect given all the others is
a normal distribution whose mean is a weighted mean of all the other random effects,
and whose variance is a weighted value of the overall variability. A weight value of
one is assigned if two regions are neighbors and a weight of value zero is assigned
if they are not neighbors. Haining (2003) has presented a wide-range of weighting
methods that are widely used. Some of the weighting methods that are presented are
exponential function of distance, common border weight W i j = (li, j/li)

x where li, j
is the length of the common border between i and j, and li is the length of the bor-
der of i and x>=0; distance weight w(i, j) = (di, j)

−y where di, j denotes the distance
between i and j and the parameter y>=0 and Combined border and distance weight-
ing: W(i, j) = (li, j/li)

x (di, j)
y. Lu et al. (2007) used different approach for generating

spatial weights where observed socio-demographic, topological and distance based in-
formation are used for calculating weight. Thus, unlike the methods discussed above
their approach produces random weights since they model the weight in a logit link
function with covariates included. Following the work by Besag & Kooperberg (1995)
the spatial component presented by a ICAR formulation can be presented in a multi-
variate normal distribution.

In ICAR model one of the limitations is that the overall variability in the data is used
to represent the variabilities for both spatially structured and unstructured random
components (Leroux et al., 2000). As a result they suggested an alternative formula-
tion to that of Besag et al. (1991). Thus unlike the convolution model which has two
random components, they introduced a normally distributed random component in
their model that contains both the structured spatial and heterogenous information.
The variability of the random component depends on a precision matrix which also
contains a parameter, whose value is between zero and one, which controls the spatial
dependency. The parameters in the model including the one that control the spatial de-
pendency is determined using penalized quasi likelihood; on the other hand MacNab
& Dean (2000) used a parametric bootstrap approach for estimation which enables
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to test a hypothesis about the presence and absence of spatial dependence. This ap-
proach performs better than the ICAR model if the spatial association is low (Waller
& Carlin, 2010). Alternatively Green & Richardson (2002) used a Hidden Markov ran-
dom field approach to model relative risks spatially and followed an approach simi-
lar to a cluster analysis where relative risks in an area is assigned to a cluster based
on assignment variable. The assignment variable is modelled assuming it follows a
correlated spatial process. In this approach the spatial dependence parameter is not
assumed constant unlike most spatial models where the spatial component included
in the covariance matrix is fixed, and hence this approach avoids the challenge of over
smoothing which hides local variability of rates and performs better than the ICAR
model where there is higher discontinuity in the relative risks.

All the above models are used for analyzing univariate data however there could
be a situation where more than one variable could be observed and the interest could
be in modelling these variables jointly. Several authors have suggested different joint
modelling approaches when more than one disease is observed. This approach pro-
duces relatively precise estimates as it pools information from different correlated
diseases, also this approach is used to identify common risk factors of diseases by
modelling multiple outcomes together (Manda, Feltbower & Gilthorpe, 2012). The
simplest approach in joint modelling is the one suggested by Bernadinelli et al. (1997).
In their approach the prevalence/incidence of the other disease is included in the
model of the disease of interest as a covariate after controlling or smoothing its ran-
domness. Wang & Wall (2003) instead of including the other disease as a covariate
they tried to consider all diseases as outcome variables. They introduced a spatially
correlated latent factor in their model which is common for all the diseases. This
approach does not consider the fact that different disease may have different spatial
factors and so is the strength of correlation that exists among these spatial factors.

Kim et al. (2001) developed an approach which was different from those presented
above. In this approach a spatial random effect was included for each model and
a twofold CAR model was used to model the spatial correlation which enables to
share data obtained from different outcome variables. The spatial effect for a particu-
lar area is divided into three: one that denotes correlation to its neighbors of the same
outcome variable, the other one denotes correlation to its neighbors because of the
other outcome variable and the third one is the correlation between the two outcome
variables in the same area. However, this model is used for modelling two outcome
variables, difficult to extend for more than two outcomes and it is very complex. Car-
lin & Banerjee (2003) and Gelfand & Vounatsou (2003) extended the univariate CAR
model to a multivariate setting following the theoretical description of a multivariate
normal Markov Random Field by Mardia (1988). The precision matrix in the joint
formulation is a Kronecker product between the univariate form and a symmetric
positive definite matrix of the same dimension as the outcomes of interest. And they
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determined the multivariate distribution from the full conditional distributions. This
model was further extended by Jin et al. (2005) by taking into account the spatial corre-
lation that exist between a given disease in an area with those of the other diseases in
the neighboring areas. And based on multivariate normal theory they determined the
joint distribution for multivariate normal Markov Random Field from conditional and
marginal distributions. Another approach to joint modelling is the shared component
model which was developed by Knorr-Held & Best (2001) for modelling two disease,
and this approach was later extended to model more than two diseases by Held et al.
(2005). The key idea behind the formulation of the shared component model is that
most diseases share common risk factors as such these diseases have similar spatial
patterns. Therefore, the risk component of two diseases that have common risk factors
can be divided into one that is shared by both diseases, and risk factor that are specific
to each disease (Knorr-Held & Best, 2001). These shared components are used to repre-
sent the unknown spatially structured factors that affect either the risk of both or one
of the two diseases (Manda, Feltbower & Gilthorpe, 2012). Langford et al. (1999) and
Leyland et al. (2000) tried to model multiple disease jointly by presenting the spatial
model in multi-level model. The concept of multiple membership classification ap-
proach was used to account for the spatial correlation. Thus the spatial component in
a given area i is a weighted sum of random components of neighbors of area i drawn
from a normal distribution with zero mean and variance. And parameter estimation
in their model was conducted using iterative generalized least square approach.

The structured spatial random components are modelled using ICAR normal prior.
One of the main reasons for using a normal prior is because of its technical conve-
nience. However, the spatial random effects are not observed as data; hence the type of
distribution of the random components are unknown. The random components may
have a skewed distribution, multimodal distribution, Laplace distribution etc. A num-
ber of studies have tried to relax the ICAR normal assumption by using different ap-
proaches. For example, Lunn et al. (2013) used a ICAR Laplace distribution to model
structured spatial random components. In another effort to model the structured spa-
tial random components Manda (2014) used a mixture of intrinsic conditional autore-
gressive (ICAR) normal and ICAR double exponential prior for the structured spatial
random effects. This approach is a relatively flexible compared to CAR-normal dis-
tribution for modelling random effects that have longer tails. Nathoo & Ghosh (2013)
proposed a ICAR-skew-t distribution prior for modelling the spatial random effects.
They presented the ICAR-skew-t distribution as a scaled mixture of CAR normal
and standard normal distributions. They indicated that their approach is flexible for
modelling the structured spatial random effects in the presence of outliers and discon-
tinuities. A Bayesian nonparametric approach for modelling the spatially structured
random components was another flexible technique used in spatial modelling of struc-
tured spatial random effects. For example, Li et al. (2015) used the spatial-stick break-
ing approach to analyze a univariate areally-referenced data by adopting the work of
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Reich & Fuentes (2007) which were developed for modelling point referenced data.
The spatial dependence was modelled by adding additional component to the mixing
weights. This additional weight included in the stick-breaking process is modelled by
using ICAR prior. Similarly, Hossain et al. (2013) used a stick-breaking approach for
modelling spatially structured random effects for areally referenced data. In this ap-
proach the spatial dependence was introduced by defining a spatial model though the
mixing weights of the stick-breaking prior. And covariate dependent kernel function
is included in the mixing weights of the stick breaking prior in order to introduce the
spatial dependence between areas.

1.1.3 Dissertation outline

In the next chapter we presented the different existing spatial models, showed their
application using complex survey data and compared their performance in modelling
district level HIV in South Africa. Then in Chapter 3 we extend the common univariate
ICAR approach to spatial modeling to a univariate ICAR-skew elliptical modelling
approach; followed by a simulation analysis and application of our approach to a real
data. The multivariate extension of the univariate approach developed in chapter 3

was presented in chapter 4 together with a simulation analysis and its application to a
complex survey data. A Bayesian nonparametric approach developed by Li et al. (2015)
for modelling univariate areal data was extended to a multivariate setting in chapter
5 and fitted to a complex survey data to show its application. Then this dissertation
concluded in chapter 6 by presenting the conclusion, future work and limitations.
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2

C O M PA R I S O N O F B AY E S I A N S PAT I A L M O D E L S F O R H I V
M A P P I N G I N S O U T H A F R I C A

2.1 introduction

Governments in sub-Saharan Africa (SSA), in collaboration with non-governmental or-
ganizations and private sectors, design national strategic plans and policies, allocate
resources and implement programs in the fight against the HIV/AIDS epidemic (UN-
AIDS, 2015; UPsEPfA, 2021). Such efforts are designed to reduce HIV-related infection,
morbidity and mortality. As well as understanding the level of the HIV epidemic at
the national level, most governments in the region have implemented a decentral-
ized approach to governance and service provi-sion. Thus the need for reliable local
(district)-level HIV statistics to support decision making regarding the delivery of
HIV care, treatment and prevention services (Manda et al., 2015; Hallett et al., 2016).
Most of the countries in SSA rely on data obtained from national HIV surveys for
moni-toring the level of the HIV epidemic and subsequence responses. However, the
national HIV surveys are mostly empowered to produce reliable HIV estimates at
national and provincial level. Crude HIV estimates at small area level could be ex-
aggeratedly estimated due to small numbers, resulting in unstable variances (Tanser
et al., 2009; Niragire et al., 2015; Chimoyi & Musenge, 2014). Consequently, HIV pre-
vention and treatment programs tailored to small areas could be based on unreliable
evidence (Houlihan et al., 2010).

As a result, modelling approaches are used for generating local-level estimates from
survey data that are originally meant to provide reliable estimates at national and
provincial levels (Johnson, 2004) (Leyland et al., 2000). The most used approach has
been using spatial smoothing models where spatial components are incorporated in
the model as random effects. The spatial models produce reliable disease rates with
improved accuracy for small areas with few sparse observations by incorporating
information from local, spatially contiguous areas. The structured random effect in
spatial models represents clustering of diseases over geo-graphical areas, unobserved
environmental or frailty factors which are spatially correlated but are not included as
covariates in a model (Lawson et al., 2003; Knorr-Held & Best, 2001; Besag et al., 1991;
Carlin & Banerjee, 2003). Structured spatial random effects (which consider the local
effects) are mostly modelled using the intrinsic conditional au-toregressive normal
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(ICAR-normal) model (Besag et al., 1991; Carlin & Banerjee, 2003). The ICAR-normal
model offers greater flexibility for modelling the spatial correlation than the linear
mixed effects model, with only a global random effect. However, a normal spatial
distribution on the structured spatial effect could be restrictive, as there could be a
possi-bility that the normality assumption could be misspecified (Ghosh et al., 2007).
Misspecification of the distribution of the random effects may result in estimates of
diseases rates that are biased (Verbeke & Lesaffre, 1996; Lunn et al., 2013). The usual
approach is to transform the data to normality, for example by per-forming a loga-
rithm of the rates. However, if there was an appropriate theoretical model, transfor-
mation could be avoided, as it is difficult to interpret results from transformed da-ta.
In addition, the transformation could result in the loss of information (Verbeke &
Lesaffre, 1996).

A few approaches have been proposed to reduce the impact of a normal distribu-
tion assumption for spatial random components. For example, Lunn et al. (2013) and
(Manda, 2014) proposed a double exponential and a mixture of ICAR-normal and
ICAR-double expo-nential, respectively, to better capture possible wider tails for the
spatial random effects. Kim & Mallick (2004) and (Azzalini & Capitanio, 1999) consid-
ered a skew-normal spatial model for point referenced data. However, the structured
spatial skewed random fields suffer identifiability problems (since the skewness pa-
rameter may be unknown) (Genton & Zhang, 2012) and must be determined uniquely
(Gelfand & Sahu, 1999). To solve this identifiability problems, (Zhang & El-Shaarawi,
2010) defined a skewed stationary Gaussian process for spatial random effect based
on the work by Azzalini & Capitanio (1999). In addition, Allard & Naveau (2007) and
Zareifard & Khaledi (2013) introduced a skew-normal spatial random field based on
Dominguez-Molina et al. (2003) and Palacios & Steel (2006), respectively, for point
referenced data. Other skewed spatial distributions are the skew-normal by Rantini
et al. (2021) and (Fernández & Steel, 1998).

Our aim, in this study, is to model the district-level HIV prevalence in South Africa
using spatial smoothing methods. There is ample evidence of substantial small area
variation in the distribution of HIV prevalence in Sub-Saharan Africa (Dwyer-Lindgren
et al., 2019; Kim et al., 2021). Similarly evidence has also been found in South Africa by
Kim et al. (2021) and Gutreuter et al. (2019). The distribution of the district HIV preva-
lence could be skewed and non-normal. Thus, we estimated the spatial distribution of
the HIV prevalence among the districts in South Africa using the ICAR-normal (Be-
sag et al., 1991), ICAR skew-t distribution (Nathoo & Ghosh, 2013) and ICAR-Laplace
(Lunn et al., 2013) using the 2016 South African Demographic and Health Survey data.
The next section presents the description of the spatial models used and the HIV data.
Section 3 contains the results obtained from fitting the models to the data. We discuss
the results in Section 4 and conclude in Section 5.
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2.2 methods and data

2.2.1 Skew-t spatial random effects distribution

Let Yi be the number of HIV positive individuals out of a sample of size ni in district i
(i = 1, . . . , ..., 52). Both Both Yi and ni are adjusted to account for the survey design to
become the effective number of HIV cases, Y∗

i , and the effective sample size, n∗
i (Kish,

1995; Chen et al., 2014; Vandendijck et al., 2016). A three-stage Bayesian hierarchical
spatial smoothing model for a binary HIV outcome uses a binomial distribution at
stage one as:

Y∗
i /pi ∼ Binomial(n∗

i , pi) (2.1)

where i = 1, . . . , ..., 52, pi is the proportion (prevalence) of HIV in district i and is
modelled at the second stage by a logit link function using a set of district-level pre-
dictor variables, Xi, and both unstructured and spatially structured random effects,
as introduced by Besag et al. (1991).

logit(pi) =β0+X iβ+ui+vi (2.2)

where β0 is the intercept; β is a vector of regression coefficients for predictor variable
in X i; ui is the unstructured random component and it is assumed to follow a normal
distribution, vi ∼ N

(
0, σ2

v
)
; ui is the structured spatial random component for district

i.

The structured spatial random effects could be modelled using an intrinsic condi-
tional autoregressive normal (ICAR-normal) prior Besag et al. (1991),Knorr-Held &
Best (2001), and Carlin & Banerjee (2003) as,

ui/u−i ∼ ICARN(µu, σ2
u) = N

(
Σj∼iuj

mi
,

σ2
u

mi

)
(2.3)

where mi is the number of neighbours of district i. Lunn et al. (2013) suggested an al-
ternative model based on a Laplace/double exponential distribution (ICAR-Laplace),
which is given as ui/u−i ∼ ICARL(µu, σ2

u).

However, in situations where the distribution of HIV prevalence data could be non-
normal and asymmetric, alternative spatial smoothing models that are robust and
flexible could fit the data better. As a result, Nathoo & Ghosh (2013) suggested the
skew-t (ICAR-skew-t) spatial smoothing model, defined as:
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ui/u−i ∼ STv

(
Σj∼iuj

mi
,

σ2
u

mi
, δu

)
(2.4)

For easy implementation in most Bayesian statistical software, Sahu et al. (2003)
presented a suitable representation of skew-t distribution with k degrees of freedom
Suppose y ∼ skew − t(k), then it could be expressed as y=η− 1

2 (∆ |X0|+X), where
X0∼N(0, 1), X∼N(µ, σ2), ∆ is the skewness parameter and η∼gamma( k

2 , k
2). The hier-

archical set-up of this stochastic representation can be given as Y/w ∼ N(µ + ∆w, Σ
η ),

where |X0| = w ∼ N (0, Ik) I(w > 0). Thus, the ICAR-skew-t for the structured spatial
random effect can be expressed as:

ui∼N(
Σj∼isj

mi
+δuwi,

σ2
s

η∗mi
) (2.5)

where wi∼N (0, I) I(wi> 0), si/S−i∼N(
Σj∼isj

mi
, σ2

s
mi
), σ2

s and δu is the variance of si and
is the skewness parameter, respectively. The hierarchical representation of the ICAR-
skew-t model is shown in the Appendix of this chapter.

2.2.2 Methods for comparing competing models

In this study, we used the deviance information criterion (DIC) and conditional predic-
tive ordinates (CPO) for comparing models. The deviance information criterion was
developed by Spiegelhalter et al. (2002) as a method used for comparing models in a
Bayesian framework. It is a measure of a model’s goodness of fit or adequacy adjusted
for a measure of model complexity measured as effective number of parameters. Let
θ and y=y1, . . . ,y1 be the model parameter and data, then DIC is expressed as:

DIC=D+pD = 2D−D
(
θ
)

where D=Eθ/y [D (θ)] =Eθ/y[−2log p(y/)] and is the posterior mean deviance that
measures goodness of fit or adequacy pD=D−D

(
θ
)
=Eθ/y [D (θ)]−D

(
Eθ/y [θ]

)
=Eθ/y[−2log p(y/)]− [−2log p(y/θ(y)] is a measure of the effective number of pa-
rameters and measures model complexity, larger values of pD suggests higher com-
plexity of the model. It is also defined as the difference between the posterior mean
of the deviance and the deviance at the posterior means of the parameters of interest
in other words it is considered as the expected excess of the true residuals over the
estimated residuals in the data conditional on the parameter θ (Ghosh et al., 2007). Let
θ1, . . . ,θk be parameter estimates from converged Markov chain then D is estimated
as 1

k ∑k
1 D(θk)and D

(
θ
)
=D(1

k ∑k
1 θk).
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The CPO is a leave-one-out cross validation approach that measures the posterior
probability of observing yi when the model is fitted to all data excluding yi and it
measures the predictive ability of the fitted model. Let Y=Y1, Y2, . . . , Yn be the nX1
data vector, Y−i be the data vector without yi. Then the conditional predictive ordinate
for observation yi is given as:

CPOi= f (yi/y−i)=
∫

f (yi/θ)P(θ/y−i)dθ =Eθ/y

[
1

f (yi/θ)

]
where θ is the parameter vector, yi is the ith observation and y−i is the observed data
set except yi. Thus, one can estimate the value of the inverse of CPOi by averaging the
inverse probability function evaluated at yi for each θk produced from the posterior
density. And thus the CPOi values could be easily determined from the standard
MCMC output which is give as:

CPOi=

[
1
k

K

∑
k=1

1
f (yi/θk)

]−1

,

which is the harmonic mean of the probability density function evaluated at yi for
each θk, where K is the number of iterations. For discrete data, comparison of CPOi
with the relative frequency determined from data without yi ( y−i) enables to assess
the predictive capacity of the fitted model to the data. In order to compare two or more
competing models the overall CPO values of each model are assessed which is given
as, CPO=∏i CPOi and a model with higher CPO value suggests better predictive
performance than the other models and hence this model is preferred over other mod-
els. Mostly, the CPO value is close to zero thus negative of the sum of the log of the
CPOi is used as indicated by Cai et al. (2013), and is given by LScv= −∑k

i=1 logCPOi.
Thus, a model with the lowest LScv value is the best model in terms of its predictive
capacity.

2.2.3 Implementation

The model parameters were determined using a Bayesian estimation approach via
Markov Chain Monte Carlo (MCMC) as implemented in OpenBUGS (Spiegelhalter
et al., 2003). The prior dis-tributions for the regression coefficients and the unstruc-
tured random component were the same for all the three models. The prior distribu-
tion for the intercept was β0∼ uni f orm on (−∞,∞), and the prior for the regression co-
efficients was βq∼N(0, 0.00001) where q= 1, 2, 3, 4; the variance parameters σ2

u and
σ2

v were given as inverse gamma prior distributions with shape and scale parameters
set at 20 and 2000, respectively. The skewness parameters for ICAR-skew-t were as-
signed δu∼N(0, 0.01) prior. We conducted a sensitivity analysis to determine the im-
pact of the hyper-parameters of the priors on the outcome variable; for this, we chose
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the most commonly used hyper-parameters, such as IG (1000, 1000) , IG (10, 10) ,
IG (1, 10), and IG(2, 2000). Since prior distributions with larger variances are con-
sidered in the model, the estimates from this analysis are expected to be relatively
robust. Moran’s I test was conducted on the model residuals to determine the pres-
ence of spatial correlation (Moran, 1950). We ran 100,000 itera-tions for each model
to make inferences. We determined the number of initial iterations that needed to be
discarded by assessing the history plots of each model and for each pa-rameter. Simi-
larly, we also investigated the autocorrelation plots of each model and each parameter
to determine the selection intervals to avoid correlation problems in the generated
chains.

2.2.4 Data

The data analyzed were obtained from the 2016 South African Demographic and
Health Survey (SADHS 2016). The SADHS 2016 was conducted for evaluating the
country’s health programs by monitoring key milestones such as mortality, fertility,
maternal and child health, nutrition, HIV, gender-based violence, etc. The data for
measuring these indicators were collected by asking respondents relevant sociodemo-
graphic and behavioral characteristic questions and by collecting biological specimens.
The SADHS 2016 survey employed a multistage stratified cluster sampling design to
select households and/or respondents for the sample. All women between the age
of 15 and 49 and men between the ages of 15 and 59 were included in the survey.
Interview data were collected from a total of 8514 women and 3618 men and 6912

individuals were tested for HIV seropositivity. More information about SADHS 2016

can be obtained from the full study report (National Department of Health et al.,
2019).

The observed district level HIV prevalence was computed by taking the survey
design into account. The effective sample sizes in each district was determined by
dividing the observed number of sample size at each district by the design effect
(Kish, 1995); the effective number of HIV cases is thus the product of effective sample
size and the weighted prevalence. The number of HIV tests conducted in the survey
by district varied substantially, with a sample size of between 8 tests and 455 tests,
with a median sample size of 111 tests. There were some districts with zero count
of HIV positive individuals in the sample. For this, we assigned them the average of
the simulated data from a normal distribution with mean value equal to the average
of the log of prevalence in the neighboring districts and variance as the variance of
the log of the prevalence pi calculated from all the neighboring districts divided by
the number of neighbors, shown in Figure 2.1b; the map in Figure 2.1a shows the
raw data not adjusted for zero positive cases. A skewness test was conducted on the
prevalence, with and without adjusting for zero HIV prevalence, but no significant
skewness was found.
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Figure 2.1: Map of HIV prevalence by district in South Africa before and after adjusting the
data for zero positive tests in some districts

The covariates included in the models are the multidimensional poverty index con-
structed using the 2016 community survey data (Fransman & Yu, 2019), HIV preva-
lence among pregnant women obtained from the 2017 National Antenatal Sentinel
Survey report (Woldesenbet et al., 2018), population density and male condom distri-
bution coverage obtained from the 2017 district health barometer report (Massyn et al.,
2017). Previous studies indicate that these factors are associated with HIV prevalence
ecologically as well as individually (van Schalkwyk et al., 2021; Manda et al., 2015).

2.3 results

The skewness parameters for ICAR-skew-t were not significant, perhaps suggesting
that the spatial component is lighter tailed (see Table 2.1). The model with the lowest
LScv and DIC values was deemed to be the best model in its predictive performance
and goodness of fit, respectively. Thus, as can be seen in Table 2.1, the model with the
lowest LScv (170.5) is the ICAR-skew-t model, followed by the ICAR-normal model
(LScv= 172.4). The ICAR-normal model and the ICAR-Laplace model have the lowest
(291.3) and second lowest (315) DIC values, respectively. The difference in the DIC
values between these models is more than five, suggesting that there is substantial
difference between the two models in terms of goodness of fit to the data, according
Spiegelhalter et al. (2002); however, a study by De la Cruz & Branco (2009) indicated
that DIC is not appropriate for such type of complex models. Thus, based on the LScv

values, the ICAR-skew-t model was the best in terms of its predicative capacity as
compared to the other two models used in this study.

As a sensitivity analysis, we ran the analysis using different sets of hyper-parameters
for priors of the precision parameters. Thus, the mean difference in the values of the
outcome variables at different choices of hyper-parameter values was observed at the
third digit after the decimal point, which suggests the absence of a significant im-
pact on the outcome variable. The Moran’s I test statistic was significant (p-value =
0.000001), suggesting that residuals were spatially clustered. As shown in Table 2.1,
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district-level ANC prevalence is the strong predictor of district-level HIV prevalence
determined from the 2016 SADHS data, whereas the other covariates were not statis-
tically significant.

Table 2.1: Comparison of the fitted models using DIC and CPO

Covariates ICAR-normal ICAR-Laplace ICAR-Skew-t
Intercept 2.414 (-3.249,-1.52) -2.526(-3.352,-

1.677)
-2.606(-3.699,-
1.478)

Population density -0.0001(-0.0003,
0.0002)

-0.0001(-0.0003,
0.0002)

0.0001(-0.0003,
0.0002)

Male condom distri-
bution

-0.0071(-0.0197,
0.0044)

-0.0059(-0.0192,
0.0054)

-0.0071(-0.0203,
0.0047)

Multidimensional
poverty index

0.7312(-3.432, 4.84) 0.2791(-3.687,
4.34)

0.97(-3.129, 5.141)

ANC HIV preva-
lence

3.686 (1.497, 5.681) 3.964 (2.025, 5.804) 3.9 (1.767, 6.096)

σ2
u 0.0058(0.0006,

0.7974)
0.0041(0.0005,
1.0150)

0.3453(0.0282,
0.7363)

σ2
v 0.0055(0.0005,

0.2474)
0.01132(0.0011,
0.3004)

0.1584(0.0191,
0.4253)

δu 0.1265 (-0.585,
0.685)

DIC 281.9 280.7 339.4
LScv 168.5 173.2 174.1

Figure 2.2e, shows the prevalence of HIV by district in South Africa estimated us-
ing the ICAR-skew-t spatial model (best model). According to the estimates from
this model, most of the districts with high levels of HIV prevalence are located in
southeastern parts of the country, while low levels of HIV prevalence are in the south-
western parts. This pattern is the same for all the maps (Figure 2.2) produced using
estimates from different models with or without covariates. Maps (a), (c) and (e) in
Figure 2.2 are estimates of the ICAR-normal, ICAR-Laplace and skew-t models with
covariates, respectively; the spatial pattern of HIV prevalence is the same for these
models, except the estimate from the ICAR-normal model for one district in the north-
western part. Maps (b), (d) and (f) are estimates of the ICAR-normal, ICAR-Laplace
and skew-t models without covariates and the pattern of HIV prevalence by district is
the same for the estimates determined using these models. One notable differ-ence for
the pattern of estimates with and without covariates for the models is that the lev-el
of HIV prevalence is lower for estimates with covariates than those without covariates
in two districts in the western part.
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Figure 2.2: Estimated HIV prevalence by district in South Africa with Covariates (first row)
and without covariates (second row)

2.4 discussion

HIV is a leading cause of disease burden in sub-Saharan Africa. In the era of decen-
tralized approach to governance and service provision, designing effective HIV in-
tervention programs and monitoring strategies at local administrative levels requires
reliable estimates of local variation in HIV burden. Our study compared three spa-
tial smoothing models, namely, the intrinsically conditionally autoregressive normal,
Laplace and skew-t (ICAR-normal, ICAR-Laplace and ICAR-skew-t) in the estimation
of the HIV prevalence across 52 districts in South Africa. It analyzed HIV prevalence
data from the 2016 South African Demographic and Health Survey. The models were
fitted using the Markov Chain Monte Carlo method in OpenBUGS, a freely available
Bayesian statistical package. We found that the ICAR-skew-t distribution was the best
spatial smoothing model for the estimation of HIV prevalence in our study.

We found that the districts with high levels of HIV prevalence were in the south-
eastern parts of the country, while low levels of HIV prevalence corresponded to the
southwestern parts. Our findings are similar to those by Gutreuter et al. (2019) and
(Woldesenbet et al., 2018). The estimates of HIV prevalence by district in South Africa
could help governmental and non-governmental organization, as well as the private
sector, to know the level of the epidemics at lower administrative level, thus priori-
tizing and plan appropriate public health programs tailored to each community and
evaluating the combined impact of national and local public health programs.

A major weakness of our study could be that there were no HIV data in some of
the sparsely populated districts; hence, we simulated data from neighboring districts
to estimate prevalence of HIV in such districts; thus, the estimates for these districts
may not be reliable and should be interpreted with caution. In addition, a limited
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number of predictors was included in the model; hence, some important predictors
of district-level HIV prevalence might be missing.

2.5 conclusions

In conclusion, alternative spatial distributions to ICAR-normal should be considered
for modeling spatial disease outcomes. The spatial random effects could be skewed or
non-normal and misspecification of the distribution of random effects could lead to
estimates that are biased. This could lead to implications in the estimation of disease
burden, adversely impacting policy derivations. In our study, we found that the intrin-
sic conditional autoregressive skew-t (ICAR-skew-t) model was the best in predicting
district-level HIV prevalence compared to the ICAR-normal and ICAR-Laplace spa-
tial models based on an analysis of the 2016 South African Demographic and Health
Survey (2016 SADHS) data. District antennal clinic HIV prevalence was the most in-
fluential predictor of the district-level 2016 SADH HIV prevalence.

Appendix
Hierarchical representation of the disease mapping model presented in section 2.1

assuming the spatial random components follows skew-t distribution is given as fol-
lows:

Let Y∗
i = Y∗

1 , Y∗
2 , . . . , Y∗

n be a one-dimensional random variable with binomial
distribution

logit (pi) =β0+X iβ+ui+vi

vi∼N(0, σ2
v )

ui/Si, σ2
u, δu, wi,∼N(

Σj∼iuj

mi
+δuwi,

σ2
s

η∗mi
)

si/S−i∼N(
Σj∼isj

mi
,

2
s

mi
)

wi∼N (0, I) I(wi> 0),

η∼gamma(
k
2

,
k
2
)

βi ∼ N (β0,Λ), i=0,1,2, . . . , k where k is the number of covariates

σ2
v ∼ IG(Ω, v)

δu∼N(0, Γ)

σ2
s ∼ IG(Ω, u)

k∼Exp (k0) I(k> 2)
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where pi the weighted prevalence corresponding to Y∗
i i = 1, 2, . . . , 52, σ2

u and σ2
v

are variance of the spatial and the heterogeneous random component and I(wi > 0)
is an indicator function, IG is inverse gamma, Exp is exponential.

Based on the likelihood distribution and the above prior specifications the posterior
distribution of all the parameters assuming conditional independence between the
response variable and the hyper parameters is given as:

p
(

µ, β, u, v, σ2
u, σ2

v , δu, w, k, η, s/y∗
)

∝L(y/β, u, v, σ2
s , σ2

v , δu, w, s)P(β, u, v, σ2
s , σ2

v , δu, w, k, η)

=∏
i

p(y∗i /µi)∏
j
(p(β j/Λ)p(Λ))p(u/σ2

s )p(σ2
s )p(v/σ2

v )p(σ2
v )p(s/σ2

s )p(w)p(δu)p(k)p(η).
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3

S K E W E D I N T R I N S I C C O N D I T I O N A L A U T O R E G R E S S I V E
S PAT I A L M O D E L S A N D T H E I R A P P L I C AT I O N F O R D I S E A S E
M A P P I N G

3.1 introduction

Local-level estimates of indicators are increasingly being sought from data that are
originally meant to provide reliable estimates at national and regional levels (Johnson,
2004; Leyland et al., 2000). The most commonly used approach that has been used
for estimating local level estimates from national survey data is a linear mixed model
where the spatial component is incorporated as random effect. The random effects are
assumed to collectively represent covariates that are not collected/observed as data in
areas under study (and hence not considered in the modeling process as covariates)
that have some form of spatial pattern (Lawson et al., 2003; Besag et al., 1991; Knorr-
Held & Best, 2001). Thus areas that are closer to each other or neighboring areas are
likely to have similar environmental and socioeconomic conditions and hence the esti-
mates from these areas are expected to show some level of spatial consistency (Besag
et al., 1991; Feltbower & Manda, 2012).

Most disease mapping methods focus on modeling the spatially structured random
component. In disease mapping the most widely used approach for modeling the
spatially structured random component (which considers the local effects) is the in-
trinsic conditional autoregressive normal (ICAR-normal) model suggested by Besag
et al. (1991); Banerjee et al. (2003). The ICAR-normal model is a type of linear mixed
effect model with structured spatial and unstructured/heterogeneous random com-
ponents. The unstructured random component represents those unobserved factors
with no spatial structure. The structured spatial random component is assumed to
have an intrinsic conditional autoregressive normal distribution and that of the het-
erogeneous random component is assumed to follow a normal distribution because
of its technical convenience. However, it may not be always right to assume that the
random effects, both the spatial and heterogeneous component, follow some normal
distribution as there is a possibility that it could follow skewed and multimodal distri-
butions. Thus the normality assumption may not capture the distribution of the data

22



3.1 introduction

(Arellano-Valle et al., 2007).

Estimates of models may be biased if the distribution of random effects is wrongly
specified, and it could have implications on inferences about the parameters of interest
(Ghosh et al., 2007; Verbeke & Lesaffre, 1996). Also, it becomes difficult to determine
the impact of the covariates on the scale and shape of the random effect distribution
(Heckman & Singer, 1984; Laird, 1978; Walker & Mallick, 1997). Therefore, the most
widely used approach is to transform data to distributions that are simpler for mod-
elling such as normal by applying appropriate transformation methods. Data trans-
formation has its own limitations such as loss of information, a model suggested for
the original data set may no longer work to the transformed data set, individual data
transformation may not guarantee joint normality and a data transformation method
may be needed for each data set. Thus, transformation may be avoided if the distribu-
tion of the given data fits some form of theoretical distributions (Jara et al., 2008).

Consequently a double exponential, and a mixture of ICAR-normal and ICAR-
Laplace/double exponential distributions were used for the structured spatial ran-
dom components by Lunn et al. (2013) and Manda (2014) respectively in an effort to
reduce the impact of normal assumption on the models etimates. However, there are
also different types of data sets that do not follow normal, double exponential and a
mixture of normal and double exponential distributions. As a result, Nathoo & Ghosh
(2013) proposed a robust approach for modelling data with skewness and/or heavy
tail by using a skew-elliptical distribution to the structured spatial random component.
In particular they assumed that the marginal distribution of the random component
follows a skew-t distribution and implemented this distribution in semi-parametric
Bayesian approach. Still there are data sets which have got different structures than
the normal, double exponential, mixture of these two and skew-t distributions. In
this study we propose an alternative flexible approach to the ICAR-normal model
for modelling the spatial random component, in a hierarchical Bayesian framework.
More specifically we develop disease mapping models where the random effects fol-
low ICAR-skew-normal and ICAR-skew-Laplace distributions.

The family of skew-normal distribution which provide an alternative robust ap-
proach for modelling asymmetric data which are analytically tractable, accommodate
practical values of asymmetry have been introduced by Azzalini (1985, 1986); Azza-
lini & Valle (1996); Henze (1986); Azzalini & Capitanio (1999); Branco & Dey (2001)
and Sahu et al. (2003). And skew-Laplace distribution was presented by (Arslan, 2010;
Kotz et al., 2001; Kozubowski et al., 2013) and Okhli et al. (2017). The skew-normal
and skew-Laplace distributions developed by Sahu et al. (2003) and Arslan (2010) are
easier to implement in a Bayesian framework. The application of skew-normal and
skew-Laplace distributions in regression analysis for modelling random effects was
studied by Jara et al. (2008); Dagne (2013); Arellano-Valle et al. (2007); Kazemi et al.
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(2013); Sahu et al. (2003); Lachos et al. (2009); Cancho et al. (2010); Yu & Moyeed (2001);
Yavuz & Arslan (2018); Huang et al. (2016) and Galarza et al. (2017). In this study we
used the skew-normal and skew-Laplace distribution developed by Sahu et al. (2003)
and Arslan (2010) to develop ICAR-skew-normal and ICAR-skew-Laplace models.

The rest of this paper is organized as follows: the next section discusses about
skew-normal and skew-Laplace distribution followed by a presentation on extending
existing spatial models using skew-normal and skew-Laplace distribution. Then a
simulation study to show the impact of wrongly specifying the distribution of random
effects on spatial models on the estimates, and application of our proposed approach
to real data set, using the 2016 South African Demographic and Health Survey data,
are presented. The chapter concludes with a discussion, future work and limitation.

3.2 icar skew-normal and icar skew-laplace distributions for mod-
eling the structured spatial random effects and their applica-
tions for disease mapping

3.2.1 Elliptical distribution

Let Y be a k-dimensional random vector with k-dimensional location parameter µ

and a positive definite scale matrix Σk×k, following Sahu et al. (2003)) the elliptical
distribution of Y is given as:

f (y/µ, Σ, gk) = |Σ|− 1
2 gk[(y − µ)TΣ−1 (y − µ)], y ϵ Rk (3.1)

where gk (u) : R+ → R+ and defined by:

gk (u) =
Γ(k/2)

πk/2
g(u, k)∫ ∞

0 r
k
2 −1g (r, k) dr

,

and it is called the density generator of the random variable Y, where
g (u, k) : R+→R+ such that

∫ ∞
0 r

k
2 −1g (r, k) dr exists. Symbolically the above distri-

bution is given as: Y∼El(µ, Σ, gk) and the corresponding cumulative density function
is F(y/µ, Σ, gk). In addition, the function g (u, k) denotes the kernel of Y and the other
terms in gk (u) constitutes the normalizing constant for the probability density func-
tion and may depend on other parameters, for example on the degrees of freedom if
Y has a t-distribution. The two special cases of g (u, k) that results in the multivariate
normal and t-distributions are,
g (u, k) = exp(−u/2) and g (u, k, v) =(u/v)−(v+k)/2 respectively, where v> 0 and is
the degrees of freedom. Substituting g (u, k) = exp(−u/2) in the density generator
function and simplifying it results:
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gk (u) = e−u/2/(2π)k/2. Therefore, the probability density function, pdf of Y is:

f (y/µ, Σ, gk) =
1

(2π)
k
2
|Σ|−

1
2 exp[−1/2(y − µ)TΣ−1 (y − µ)], y ϵ Rk (3.2)

which results in a k-variate normal density function, denoted as Y ∼ N(µ, Σ).

3.2.1.a Skew-Elliptical distribution

Sahu et al. (2003) developed a new class of parametric skewed probability distri-
butions by adding a shape parameter for skewness from the elliptically symmetric
distributions. Thus following Sahu et al. (2003) a skew-elliptical distribution of a k-
dimensional random vector Y is given as:

f (y/µ, Σ, ∆, gk) = 2k f (y/µ, Σ + ∆2, gk)P(V > 0), (3.3)

where µ is a vector of location parameters, Σ is a covariance matrix, ∆ is a diagonal
matrix of skewness parameters with elements δ = (δ1, δ2, . . . , δk)

T,
and

V ∼ El(D
(

Σ + ∆2
)−1

(y − µ) , Ik − ∆
(

Σ + ∆2
)−1

∆; gk
q(y∗)),

gk
a(u) =

Γ(k/2)
πk/2

g(a + u, 2k)∫ ∞
0 r

k
2 −1g (a + r, 2k) dr

, a > 0 and

q (y∗) = (y − µ)T
(

Σ + ∆2
)−1

(y − µ).

This distribution is symbolically denoted as:

Y ∼ SE(µ, Σ, ∆, gk).

If k=1 then Σ = σ2, ∆ = δ and the distribution reduces to a univariate distribution.
And the density of Y is:

f
(

y/µ, σ2, δ, g1
)
=

2√
σ2 + δ2

g(1)
(y − µ)2

σ2 + δ2 F(
δ

σ

y − µ√
σ2 + δ2

/0, 1; g(1)a ),

where g1 (u) and g(1)a (u) are as defined above, and a = (y − µ)2/(σ2 + δ2). The
marginal probability density function of a subsets of Y is determined as Yi/Z > 0,
not Yi/Zi; the marginal probability density function of m1 components of Y is given
as:

f (ym1/µm1 , Σ11, ∆11 , gm1) = 2m1 f (ym1/µm1 , Σ11 + ∆11, gm1)P(V > 0).
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3.2.1.b Skew-Normal distribution

A k-dimensional random variable Y is said to have a skew-normal distribution if its
probability density function is defined as:

f (y/µ, Σ, ∆)2k|Σ + ∆2|−1/2
ϕk

{(
Σ + ∆2

)−1/2
(y − µ)

}
P(V > 0), (3.4)

where

V ∼ Nk

{
∆
(

Σ + ∆2
)−1

(y − µ) , Ik − ∆
(

Σ + ∆2
)−1

∆
}

,

and ϕk(.) is the probability density function of a k-variate standard normal distribu-
tion. This distribution is denoted as, SN(µ, Σ, ∆). An important characteristic of the
above expression is that it gives independent marginal when Σ = diag(σ2

1 , σ2
2 , . . . , σ2

k ).
And the density function is simplified as:

f (y/µ, Σ, ∆) =
k

∏
i=1

2
(

σ2
i + δ2

i

)−1/2
ϕ

 yi − µi√
σ2

i + δ2
i

Φ

 δi

σi

yi − µi√
σ2

i + δ2
i

,

where ϕ and Φ are the probability and cumulative density function of a standard
normal distribution. The mean and variance of a k-variate random variable Y with a
skew normal distribution are given as:

E (Y) = µ +
( 2

π

)1/2
∆ and cov (Y) = Σ +

(
1 − 2

π

)
∆2.

A suitable stochastic representation of a k-dimensional random vector Y having a
skew distribution as suggested by Sahu et al. (2003) and Arellano-Valle et al. (2007) is
given as:

Y = X+ ∆ |X0| (3.5)

where X and X0 are two independent random vectors and X ∼ Nk(µ, Σ) if Y follows
SN(µ, Σ, ∆) distribution. Let w = |X0|, then w has a normal distribution, w ∼
Nk(0, Ik) truncated in the space w > 0. The hierarchical set-up of the above stochastic
representation is:

Y/w ∼ Nk (µ + ∆w, Σ) ,

w ∼ Nk (0, Ik) I(w > 0) if Y has a SN(µ, Σ, ∆).

This hierarchical specification is important for modelling a skew distribution using a
Bayesian approach.
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Note: a skew normal distribution reduces to normal distribution if the value of the
skewness parameter ∆=0.

3.2.2 Skew-Laplace distribution

A random variable Y is said to have a k-dimensional skew Laplace distribution if its
density function is given by:

f (y/µ, Σ, ∆) =
|Σ|−1/2

2pπ
p−1

2 αΓ( p+1
2 )

e−α
√

(y−µ)TΣ−1(y−µ)+(y−µ)TΣ−1∆, (3.6)

where, y ϵ Rp, µ ϵ Rp is the location parameter, ∆ Rp is the skewness parameter,
Σ is the positive definite scatter parameter and α =

√
1 + ∆TΣ−1∆ . Symbolically it is

given as Y ∼ SLk(µ, Σ, ∆).

Alternatively Y can be defined by using the normal variance-mean mixture ap-
proach which introduces randomness into the parameters of normal distribution us-
ing a mixing random variable, w > 0 Arslan (2010). The normal variance-mean mix-
ture distribution introduces skewness to the scale mixture of normal distribution by
mixing the normal distribution with different means and different variances. Based
on the variance-mean mixture approach Y is defined as:

Y = µ + w∆ +
√

Σw Z, (3.7)

where Z ∼ Nk(0, Ik) and w ∼ Gamma( k+1
2 , 2). The conditional distribution of Y given

w=w is denoted as:
f (y/w, µ, Σ, ∆) ∼ Nk(µ + w∆, wΣ).

If the skewness parameter, ∆=0 then the probability density function of Y becomes
the multivariate Laplace probability density function. The mean and variance of Y are
given as µ + (k + 1)∆ and (k + 1)(Σ + 2∆∆T) respectively.

3.2.3 Skew-Normal and Skew-Laplace structured spatial random effects distribution

The commonly used method for modeling area spatial data discussed by Besag et al.
(1991), Knorr-Held & Best (2001) and Banerjee et al. (2003) have two random compo-
nents: structured spatial and unstructured spatial random effects. One of the funda-
mental assumptions in these models is that the random components are assumed to
follow a normal distribution. However, in situations where the distribution of data
drifts away from normality and/or symmetry this assumption may lack robustness
and flexibility. Therefore, in this section we relax this stringent assumption by assum-
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ing that the spatially structured random effects follow a skew elliptical distribution
specifically skew-normal and skew-Laplace distributions. Let Y = Y1, Y2, . . . , Yn be
a random variable with binomial distribution then according to Besag et al. (1991),
Knorr-Held & Best (2001) and Banerjee et al. (2003) the formulation of a spatial model
is:

log(
pi

1 − pi
) = β0 + X iβui + vi, i = 1, 2, . . . , n; (3.8)

where n is the number of regions,pi is the proportion/prevalence in the ith region,
β0 is the intercept in the regression model, βs are vector of regression coefficients,
Xs are ecological covariate risk vector, the vector of spatially structured random
component, ui follows intrinsically conditional autoregressive normal distribution,
ui ∼ ICAR(µu, σ2

u) and the vector of unstructured spatial random components follow
a normal distribution, vi ∼ N(0, σ2

v ).

The assumption on ui/u−i can be relaxed by assuming that it follows ICAR-skew-
normal distribution:

ui/u−i ∼ SN
(

Σj∼iuj

mi
,

σ2
u

mi
, δu

)
;

or ICAR-skew-Laplace distribution:

ui/u−i ∼ SLk

(
Σj∼iuj

mi
,

σ2
u

mi
, δu

)
.

As discussed in sections 3.2.1.B and 3.2.2 ICAR-skew-normal and ICAR-skew-Laplace
distributions can be represented by means of transformation and conditioning using

suitable positive random vector. Thus ui/u−i∼SN
(

Σj∼iuj
mi

, σ2
u

mi
, δu

)
is alternatively ex-

pressed as:

ui/u−i, σ2
u, δu, wi∼N

(
Σj∼isj

mi
+δuwi,

σ2
s

mi

)
, (3.9)

where wi∼N (0, I) I(wi> 0); and for ICAR-skew-Laplace ui/u−i∼SLk

(
Σj∼iuj

mi
, σ2

u
mi

, δu

)
can also be given as:

ui/u−i, σ2
u, δu, wi,∼N

(
Σj∼isj

mi
+wiδu, wi

σ2
s

mi

)
(3.10)

where wi∼Gamma(1, 2), si/S−i∼N(
Σj∼isj

mi
, σ2

s
mi
), σ2

s is the variance of si and δu is the
skewness parameter.
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A Bayesian estimation approach is used to determine the unknown parameters
from the above disease mapping model. We follow the above hierarchical set-up of a
stochastic representation of a skew random variable in order to implement the Markov
Chain Monte Carlo (MCMC) parameter estimation procedure. Therefore, the hierar-
chical representation of the above disease mapping model assuming the random com-
ponents follows a skew-normal distribution is given as follows:
let Y = Y1, Y2, . . . , Yn be a one-dimensional random variable with binomial distribu-
tion

logit(pi) = β0 + X iβ + ui + vi

vi ∼ N(0, σ2
v )

ui/u−i, σ2
u, δu, wi,∼ N

(
Σj∼isj

mi
+ δuwi,

σ2
s

mi

)
ui/u−i, σ2

u, δu, wi,∼N
(

Σj∼isj
mi

+wiδu, wi
σ2

s
mi

)
if ui/u−i has skew-Laplace distribution

wi ∼ N (0, I)I(wi > 0), or w ∼ Gamma(1, 2) if ui/u−i has skew-Laplace distribution

si/S−i∼N(
Σj∼isj

mi
,

σ2
s

mi
)

βi ∼ N (β0,Λ), i=0,1,2, . . . , k where k is the number of covariates

σ2
v ∼ IG(Ω, v)

δu ∼ N(0, Γ)

σ2
u ∼ IG(Ω, u)

where i = 1, 2, . . . , n, σ2
u and σ2

v are variance of the spatial and the heterogeneous
random component and I(wi > 0) is an indicator function, IG is inverse gamma.

3.2.4 Posterior distribution

Based on the likelihood distribution and the above priors specification the joint pos-
terior distribution of all the parameters assuming conditional independence between
the response variable and the hyper parameters is given as:

p
(

µ, β, u, {v, σ2
u, σ2

v , δu, w/y
)

∝ L(y/β, u, v, σ2
u, σ2

v , δu, w)P(β, u, v, σ2
u, σ2

v , δu, w)

= ∏
i

p(yi/µi)∏
j
(p(β j/Λ)p(Λ))p(u/σ2

u)p(σ2
u)p(v/σ2

v )p(σ2
v )p(w)p(δu).

However, it is difficult to determine the joint posterior distribution and the marginal
posterior distribution for the parameters of interest from the above expression. Thus
estimating the parameters of interest will be quite complicated, as a result one needs
to follow MCMC approaches in this case. The full conditional posterior distributions
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are needed for the required parameters to implement the MCMC approaches and the
Gibbs sampling algorithm is used in our case since the posterior conditional distribu-
tions are known and are in a closed form. The conditional posterior distributions are
given as:

βi/ µi, σ2
v , δu, Y ∼ N(A−1

β aβ, A−1
β )

where A−1
β = Λ−1 + σ−2

v XTX and aβ = Λ−1β0 + XT(µ − u)/σ2
v

ui/u−i, σ2
u, δu, wi, σ2

v , σ2
u, µi, β = N

(
γv (µ − Xβ)+ γu

(
Σj∼iωi j

(
sj + δuwi

))
σ−2

v + γumi
,

1
σ−2

v + γumi

)

where γu = 1
σ2

u
, γv = 1

σ2
v
, ωi j is the weight matric of between area i and j

vi/σ2
u, σ2

v , µi, β = N

(
γu (µ − Xβ)

σ−2
v + γumi

,
1

σ−2
v + γumi

)
wi/ui, δ2

u, δu = N(A−1
w aw, A−1

w ) I(wi > 0)

where Aw = δ2
uγumi + 1 and aw = δuγuui or

wi/ui, δ2
u, δu ∼ G(1 + (µi−X iβ−vi)

2

2 , 2 + n
2 ) if ui/u−i has skew-Laplace distribution

δu/ui, σ2
u, wi ∼ N(A−1

δu
aδu , A−1

δu
) where Aδu = Γ−1 + ∑n

i=1
w2

i
σ2

u
and aδu = ∑n

i=1
wiui
σ2

u

σ2
v /µi, βi, ui,Y ∼ IG(Ω +

n
2

, v +
∑n

i=1 (µi − X iβ − ui)
2

2
)

σ2
u/µi, βi, ui,Y ∼ IG(Ω +

n
2

, u +
∑1≤i≤j≤n wij

(
ui − uj

)2

2
)

3.3 simulation

In order to show the impact on the estimates of spatial models as a result of using sym-
metric distribution on structured spatial random effects that are skewed and to better
understand the advantages and benefits of the models we proposed over the ICAR-
normal and ICAR-Laplace (CAR.L1) we present a simulation study. In this section
we simulated spatially structured random components that have ICAR-normal and
ICAR-t distributions with outlying observation which results in data having ICAR-
skew-normal and ICAR-skew-t distributions respectively. We fit all the four models;
ICAR-normal, ICAR-Laplace, ICAR-skew-normal and ICAR-skew-t, to these simu-
lated data sets and determine the best model that least violates the assumptions.
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Without loss of generality, we assume that there are no covariates in the models. The
spatially structured random components are simulated on the municipal area of South
Africa and hence the local municipal neighborhood and weight matrix is used for sim-
ulating the data. The spatially structured random component with ICAR-normal dis-
tribution is generated from a conditionally autoregressive, CAR-normal distribution
which is given as, s ∼ N(0, Σ ), with Σ= M(I − ρW)−1, M = diag(σ2

1 , σ2
2 , . . . , σ2

234),
W is the neighborhood (weight) matrix reflecting the local spatial effect determined
from the municipal map of South Africa (Banerjee et al., 2003). The CAR distribution
is well defined if Σ symmetric and positive definite which entails

wij

σ2
i
=

wji

σ2
j

and ρ is a pa-

rameter included to enrich the spatial model and grossly indicates the global strength
of the spatial effect, ρ is between (1/λ234, 1/λ1) where λ1<λ2< · · · <λ234 are the
eigenvalues of W (Banerjee et al., 2003; Gelfand & Vounatsou, 2003). The smallest and
largest eigen values of W are -3.042195 and 5.957226 respectively thus ρ is within (-
0.32871, 0.1678634); here we use 0.1678633 as a value of ρ to mimic ICAR prior. A value
of 2 is used for σis, thus M=diag(4). Therefore, we simulate a spatial random compo-
nent si from a multivariate normal distribution with mean value zero and variance-
covariance matrix, Σ= 4(I−0.1678633W)−1. The R package CAR.simWmat was used
to generate the structured spatial random component (Sha, 2018). A t-distribution
can be presented as a scale mixture of normal distribution (Mallows, 1974; Choy &
Smith, 1997), thus a spatial random component with a t-distribution is determined
by dividing a random variable si drawn from CAR-normal distribution by V, where
V ∼ Γ( ν

2 , ν
2 ) and V is independent. For this exercise we used 5 as a value for ν.

The spatially structured random components generated using the above procedures
are ordered into increasing order and the largest 20 observations were multiplied by 3

to introduce outliers and/or to skew the data (Nathoo & Ghosh, 2013). And for the un-
structured spatial random component a data set with 234 (number of municipalities
in South Africa) observations were simulated from a standard normal distribution,
v ∼ N(0, 1). Assuming a binomial distribution for the count of disease in each mu-
nicipality; we use the logit model to generate the odds and hence the prevalence from
the simulated random components. The number of infected individuals is simulated
using the prevalence generated above and the number of individuals in each munici-
pality which is sampled randomly between 300 and 600.

Using the above procedures we generated a 100 data sets with 234 observations. As
an example, some selected bar graphs (Figure 3.1) and (Figure 3.2) and maps (Fig-
ure 3.3) and (Figure 3.4) of the spatially structured random components having ICAR-
skew-t and ICAR-skew-normal distributions on the local municipal map of South
Africa are shown below. As can be seen the map of the ICAR-skew-t spatial random
component (Figure 3.3) and map of the ICAR-skew-normal spatial random compo-
nent (Figure 3.4) show some form of clustering and spatial correlation. And the bar
graph of the ICAR-skew-t spatial random component (Figure 3.1) and bar graph of
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the ICAR-skew-normal spatial random component (Figure 3.2) indicate that the struc-
tured spatial components have some outlying observations and/or are skewed. As
can be seen the bar graphs the spatial random components are skewed to the right,
which is what we have expected since the largest 20 simulated observations were mul-
tiplied by 3.

Figure 3.1: Bar graph of spatially structured random effects simulated from municipal map
of South Africa using ICAR-t distribution with outliers

Figure 3.2: Bar graph of spatially structured random effects simulated from municipal map
of South Africa using ICAR-normal distribution with outliers

Figure 3.3: Map of spatially structured random effects simulated from municipal map of
South Africa using ICAR-t distribution with outliers

The simulated data were analyzed in a hierarchical Bayesian framework. The spa-
tially structured data simulated using ICAR-skew-t and ICAR-skew-normal distribu-
tions were analyzed using ICAR-normal model assuming that the structured random
effects are normally distributed, ICAR-Laplace model assuming double exponential
(Laplace) distribution for the spatially structured random components and using the
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Figure 3.4: Map of spatially structured random effects simulated from municipal map of
South Africa using ICAR-normal distribution with outliers

method we proposed assuming that the structured spatial components were drawn
from ICAR-skew-normal and ICAR-skew-Laplace distributions. A standard normal
distribution was assigned as a prior for the unstructured random component. The
data analysis was conducted using OpenBUGS 3.2 statistical package.

The root mean squared error (RMSE) between the estimated prevalence and the
true prevalence values (simulated following the above procedures) were computed
to compare the impact of wrongly specifying the distribution of random effects on
spatial models on the accuracy of the estimates. Thus, for 100 data sets the average of
the root mean square error is given as:

ARMSE =
1

100

100

∑
1

√√√√(
1

234

234

∑
1
( p̂ij − pij)

2)

 (3.11)

where i = 1, 2, . . . , 234 and j = 1, 2, . . . , 100. A model with small values of ARMSE
provides more accurate results. The average root mean square error of the estimates
determined using models that assume the structured spatial random components
are drawn from ICAR-normal, ICAR-Laplace, ICAR-skew-normal and ICAR-skew-
Laplace distributions while the structured spatial random component were drawn
from skew-t distribution is 0.00153, 0.00182, 0.00154 and 0.00157 respectively as shown
in Table 3.1 below. Similarly, the mean square error of estimates generated using mod-
els that assume the structured spatial random components are drawn from ICAR-
normal, ICAR-Laplace, ICAR-skew-normal and ICAR-skew-Laplace distributions while
the simulated structured spatial random component were drawn from ICAR-skew-
normal is 0.00144, 0.00146, 0.00147 and 0.00150 respectively. For both data sets the
difference in root mean square error among the model estimates were observed at the
fourth decimal point, and hence the difference among these errors is very small and
hence can be ignored; thus on average all the models produce quite identical results.
The skewness parameters are positive for both data sets suggesting that both data sets
are skewed to the right and hence presense of outliers Table 3.1.
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Table 3.1: Estimated values of parameters of models for structured spatial random effects
simulated from ICAR-normal and ICAR-t distributions with outliers

Parameter ICAR-Normal ICAR-skew-Normal ICAR-Laplace ICAR-skew-Laplace
Estimates of parameters for structured spatial random effects simulated from ICAR-normal distribution with outliers
Average RMSE 0.00144 0.00146 0.00147 0.00150

Percent of times
LScv is lower
compared to
other models

12% 31% 39% 18%

σ2
v 0.524 1.597 0.671 6.594

σ2
u 8.338 9.500 2.186 7.674

δu 0.352 0.632

Estimates of parameters for structured spatial random effects simulated from ICAR-t distribution with outliers
Average RMSE 0.00153 0.00154 0.00182 0.00157

Percent of times
LScv is lower
compared to
other models

10% 20% 26% 44%

σ2
v 3.026 0.485 0.562 2.113

σ2
u 53.569 61.090 49.553 55.386

δu 0.258 0.508

The other approach used for comparing a model that assume a normal distribution
and a skewed distribution for the spatial random components is done using condi-
tional predictive ordinates (CPO). In this study we have determined the LScv values
using the data simulated based on procedures presented above for each competing
models. And the LScv values of models that assumed ICAR-normal, ICAR-Laplace,
ICAR-skew-normal and ICAR-skew-Laplace distributions for structured spatial ran-
dom components that were simulated from ICAR-normal distribution with outliers
were lower than the rest in 12%, 39%, 31% and 18% of the time respectively. Thus
the models that assumed ICAR-Laplace and ICAR-skew-normal distributions for the
structured spatial random components that are simulated from ICAR-normal distribu-
tion with outliers observation are the best and second best model in terms of its predic-
tive performance. And the LScv values of models that assumed ICAR-normal, ICAR-
Laplace, ICAR-skew-normal and ICAR-skew-Laplace distributions for the structured
spatial random components that were simulated from ICAR-t distribution with out-
lying observation were lower than the rest of the models in 10%, 26%, 20% and 44%
of the time respectively. This indicates that models that assumed ICAR-skew-Laplace
and ICAR-Laplace distributions for the structured spatial random components are the
best and second-best models in capturing the underlying features of the ICAR-skew-t
data.

A sensitivity analysis was conducted to determine the impact of the choice of pa-
rameters on the gamma distribution, that was used in the scale mixture on normal dis-
tribution to determine a t-distribution, on the accuracy and predictive capacity of the
competing models. We used 50, 20, 10, 5 and 2 as a value for v. According to the sen-
sitivity analysis the ARMSE of the ICAR-normal, ICAR-Laplace, ICAR-skew-normal
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and ICAR-skew-Laplace were 0.00155, 0.00157, 0.00156 and 0.00160 respectively. Sim-
ilarly, the LScv values were less than 40%, 30%, 20% and 10% of the time compared
to the rest of the models for ICAR-skew-Laplace, ICAR-Laplace, ICAR-skew-normal
and ICAR-normal models respectively. This suggests that the choice parameters on
the gamma distribution may not have impact on the choice of models in terms of
accuracy and predictive capacity.

3.4 mapping district hiv prevalence in south africa

The models presented in the above section are illustrated by applying district level
HIV prevalence determined from complex survey data in South Africa and the best
model that fits the data is used as the final model, and used for generating estimates
of HIV prevalence at district level. Data obtained from the 2016 South African De-
mographic and Health Survey (SADHS2016) are used for this purpose. The SADHS
2016 was conducted for evaluating the country’s health programmes by monitor-
ing key milestones such as mortality, fertility, maternal and child health, nutrition,
HIV, gender-based violence etc. The data for measuring these indicators are collected
by asking respondents relevant sociodemographic and behavioral characteristic ques-
tions and by collecting biological specimens.

The SADHS 2016 survey employed multistage stratified cluster sampling design
to select households and/or respondents for the sample. Stratification was done by
dividing each province into urban, rural and farm areas. The master sampling frame
prepared by Statistics South Africa for the Census 2011 was used as primary sampling
units (PSUs) and each master sampling frame could be an enumeration area (EA), a
group of small EAs or part of a large EA. In the first stage 750 primary sampling units
were selected and the number of PSUs selected from each stratum was determined
based on probability proportional to PSU size. In the second stage equal number (20)
of dwelling units were selected from each selected primary sampling units. In order
to obtain a nationally representative sample, 15 000 dwelling units were selected from
the master sampling frame.

All households in the selected dwelling units are included in the survey. All women
between the ages of 15 and 49 were asked to collect relevant sociodemographic and
behavioral characteristic information from all sampled households. In every second
dwelling unit relevant sociodemographic and behavioral characteristic information
were also collected among all men between the ages of 15-59 in all households, in ad-
dition biological specimens and relevant health information were collected among all
adults above the age of 14 years residing in the households from these dwelling units.
Overall interview data were collected from a total of 8514 women and 3618 men, and
HIV test was conducted among 6912 individuals. More information about SADHS
2016 can be obtained from the full study report (National Department of Health et al.,
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2019).

Direct estimates of HIV prevalence by district was computed from this survey data
by taking the survey characteristics into account; and then the effective sample sizes
in each district were determined which are needed in modelling using OpenBUGS.
And thus the effective sample sizes and corresponding number of HIV positive cases
for each district was determined based on the method explained in Chapter 2 (Kish,
1995). In this survey there were districts with zero HIV positive cases due to small
sample size; and we followed a similar procedure as in Chapter 2 to resolve the issue
of zero HIV positive cases.

The covariates included in the models are the multidimensional poverty index con-
structed using the 2016 community survey data (Fransman & Yu, 2019), HIV preva-
lence among pregnant women obtained from the 2017 National Antenatal Sentinel
Survey report (Woldesenbet et al., 2018), population density and male condom dis-
tribution coverage obtained from the 2017 district health barometer report (Massyn
et al., 2017).

We fitted the ICAR-normal model, models that assume the spatial random compo-
nent have ICAR-skew-normal, ICAR-Laplace/double exponential (car.l1) and ICAR-
skew-Laplace to the data. And these models are defined respectively as follows:

logit (pi) = β0 + β1X1 + β2X2 + β3X3 + β4X4 + u1 + v1; (3.12)

ui/u_i ∼ N(
Σj∼iuj

mi
, σ2

u
mi
) for ICAR-normal model; for ICAR-skew-normal model the

prior distribution of the structured spatial component is replaced by:

ui/u_i ∼ SN(
Σj∼iuj

mi
,

σ2
u

mi
, δu);

for ICAR-Laplace-model it is replaced by:

ui/u_i ∼ L(
Σj∼iuj

mi
,

σ2
u

mi
);

and for skew-Laplace model it is assigned with:

ui/u−i ∼ SLk

(
Σj∼iuj

mi
,

σ2
u

mi
, δu

)
,

and vi ∼ N(0, σ2
v ) for all the models; where pi is the prevalence of HIV at district i and

βis are the regression coefficients, ui is the structured spatial random component and
vi is the unstructured spatial random component. The model parameters were deter-
mined using a Bayesian estimation approach. Prior distributions were assigned to the
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model parameters and random components. The prior distributions for the regression
coefficients and unstructured spatial random component were the same for all the four
models. The prior distribution for the intercept is β0∼uni f orm on (−∞, ∞), the prior
for the rest of the regression coefficients is βi∼N(0, 0.00001) where i = 1, 2, 3, 4;
for σ2

u and σ2
v the prior was inverse gamma distribution with shape parameter set to

be 20 and scale parameter equal to 2000 and prior for the skewness parameters is
δu ∼ (0, 0.01). Since prior distribution with larger variances are considered in the
model, the estimates from this analysis is expected to be relatively robust. The anal-
ysis was conducted using OpenBUGS 3.2 statistical package. We run 100,000 Markov
Chain Monte Carlo (MCMC) iterations for each model to make inferences. We de-
termined the number of initial iterations that need to be discarded by assessing the
history plots of each model and for each parameter. Similarly, we also investigated the
autocorrelation plots of each model and each parameter to determine the selection in-
tervals to avoid correlation problems in the generated chains.

The LScv and DIC values were used to compare the models. The skewness param-
eters for both ICAR-skew-normal and ICAR-skew-Laplace models are not significant;
perhaps suggesting that the spatial component is lighter tailed (see Table 3.2). The
DIC values of the ICAR-normal and the ICAR-skew-Laplace models were the lowest
(288.8) and second lowest (295) respectively. The difference in the DIC values between
these two models is greater than 5 suggesting the ICAR-normal model is the best
model in terms of fitting the data (Spieglhalter et al., 2002). The ICAR-skew-normal
model has the lowest LScv value (170) followed by the LScv value of ICAR-normal
model suggesting that the ICAR-skew-normal model is the best model in terms of its
predictive capacity. However, De la Cruz & Branco (2009) indicated that DIC is not ap-
propriate for comparing such type of complex models. Thus, based on the LScv values
the ICAR-skew-normal model is the best model as compared to the other competing
models included in this study.

Table 3.2: Comparison of the fitted models using DIC and CPO/LScv
Covariates ICAR-Normal ICAR-skew-Normal ICAR-Laplace ICAR-skew-t
Intercept -2.473 (-3.285, -1.658) -2.58 (-3.72, -1.453) -2.531 (-3.319, -1.703) -2.514 (-3.541, -1.548)
Population den-
sity

-0.0001 (-0.0003, 0.0002) 0.0001 (-0.0003, 0.0002) -0.0001 (-0.0003, 0.0002) -0.0001 (-0.0003, 0.0002)

Male condom dis-
tribution

-0.0070 (-0.0180, 0.0038) -0.0067 (-0.0178, 0.0037) -0.0064 (-0.0175, 0.0038) -0.0069 (-0.0177, 0.0030)

Multidimensional
poverty index

0.9253 (-2.964, 4.912) 0.7788 (-2.106, 4.81) 0.544 (-3.118, 4.339) 0.8523 (-2.19, 4.558)

ANC HIV preva-
lence

3.768 (1.79, 5.822) 3.848 (1.884, 5.583) 3.954 (2.024, 5.731) 3.897 (1.861, 5.909)

σ2
v 0.0069 (0.0007 0.2232) 0.0028 (0.0004, 0.1676) 0.0010 (0.0009, 0.2433) 0.0042 (0.0005, 0.1900)

σ2
u 0.0057 (0.0005, 0.6748) 0.0066 (0.0007, 0.5841) 0.0062 (0.0006, 0.9443) 0.0062 (0.0006, 1.4747)

δu 0.0987 (-0.6748, 7472) 0.05 (-0.6, 0.62)
DIC 288.8 314 315 295

LScv 172 170 172.2 176.8
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Figure 3.5 shows the prevalence of HIV by district in South Africa estimated using the
ICAR-skew-normal spatial model. According to the estimates from this model most
of the districts with the highest level of HIV prevalence are located in KwaZulu Natal,
Gauteng and Mpumalanga; whereas the districts with the lowest level of HIV preva-
lence are located in the provinces of Northern Cape and Western Cape.

Figure 3.5: HIV prevalence by district in South Africa using 2016 SADHS data

3.5 discussion

Spatial disease mapping models have spatial random components that are often as-
sumed to follow normal distributions for analytical tractability (Banerjee et al., 2003;
Besag et al., 1991; Knorr-Held & Best, 2001). Besag et al. (1991), however, suggested
that alternative distributional assumptions for the random effects could be consid-
ered. This has been the case in several research papers on spatial disease mapping
models and application (Manda, 2014; Lunn et al., 2013). Mixtures of ICAR-normal
and ICAR-double exponential and ICAR-Laplace distributions have been used. Kottas
et al. (2008); Li et al. (2015); Hossain et al. (2013); Gelfand et al. (2005) and Gelfand
et al. (2007) used a Bayesian nonparametric approach for modelling the structured
spatial random component.

In this study we present alternative approaches to those presented above by as-
suming the structured spatial random components are assumed to have ICAR-skew-
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normal and ICAR-skew-Laplace distributions. These approaches are more general
and very flexible as compared to the standard approaches as the skew-normal and
skew-Laplace distribution tends to normal and Laplace/double exponential distribu-
tions as the skewness parameter approaches zero; and are important for modelling
data that drifts away from symmetry (Arellano-Valle et al., 2007; Sahu et al., 2003).

The proposed approaches are fitted using Markov Chain Monte Carlo methods. The
skew-normal distribution presented by Sahu et al. (2003) and the skew-Laplace dis-
tribution suggested by Arslan (2010) were used in our approach as these approaches
are computationally simple and easy to conduct the analysis in a Bayesian frame-
work using OpenBUGS statistical package (Spiegelhalter et al., 2003). Conditioning
and transformation of the Skew-normal and the skew-Laplace distribution made it
possible to do the analysis using OpenBUGS as skew distributions are not standard
form of distributions in OpenBUGS (Arellano-Valle et al., 2007). And analyzing using
OpenBUGS (Freely available statistical package) makes our approach powerful and
accessible to practicing statisticians and epidemiologists.

We conducted a simulation study to determine the impact of wrongly specifying
the distribution of random components on the precision of the estimates and the
predictive capacity of models by comparing the mean square errors of the estimates
and CPO values respectively among competing models. According to the simulation
analysis we found that the ARMSE values among competing models were very small
for both data sets simulated using ICAR-skew-t and ICAR-skew-normal distributions
suggesting that the models included in this study produced almost identical results on
average. Based on the values of LScv we found that the The ICAR-skew-Laplace and
ICAR-Laplace models are the best models as they showed a better predictive capacity
in 44% and 39% of the time as compared to models considered in this study for data
sets generated using ICAR-t and ICAR-normal distributions with outlier observations
respectively. Therefore, ICAR-skew-Laplace and ICAR-Laplace distributions assump-
tion for the structured spatial random effect are robust approach for modelling when
the spatial random component has ICAR-skew-t and ICAR-skew-normal destructions
respectively.

The ICAR-skew-normal and ICAR-skew-Laplace distributions were fitted to the
2016 SADHS data to illustrate the applications of these models to real data set. Com-
parison of these models with the standard ICAR-normal and ICAR double exponen-
tial/Laplace models using DIC and CPO values indicates that the model that assumed
ICAR-skew-normal distribution is the best model in terms of its predictive capacity.
And a similar study that used Fernandez–Steel skew normal (FSSN) CAR model also
suggested better predictive performance as compared to its CAR-normal counterpart
(Rantini et al., 2021). This model is used for generating the final estimates of HIV
prevalence by district in South Africa. The outputs from this model help governmen-

39



skewed intrinsic conditional autoregressive spatial models and their

application to disease mapping

tal and non-governmental originations, and the private sector to know the level of the
epidemics at lower administrative level, and thus prioritize and plan appropriate pub-
lic health programs tailored to each community and evaluate the combined impact of
national and local public health programs.

These models are used for modeling the structured spatial random component that
are drawn from ICAR-skew-normal and ICAR-skew-Laplace distributions and may
not be used for modelling data that are drawn from distributions that have low and
high peaked distributions relative to normal distributions and heavy tailed distribu-
tions. Our approaches may not also be used for modeling data with multimodal dis-
tributions. In this study we assumed that the unstructured spatial components are
drawn from a normal distribution and hence our approaches can be extended by as-
suming the heterogenous random component have skew-normal and skew-Laplace
distributions; and a more flexible approach can also be developed for modeling ran-
dom components drawn from multimodal distributions.
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S K E W- N O R M A L M U LT I VA R I AT E I N T R I N S I C C O N D I T I O N A L
A U T O R E G R E S S I V E S PAT I A L M O D E L A N D I T S A P P L I C AT I O N
F O R D I S E A S E M A P P I N G

4.1 introduction

Most of the time more than one outcome/disease can be observed in a single geo-
graphical area. These diseases may have common environmental and frailty factors
and hence may show some form spatial pattern (Lawson, 2008). For example, a num-
ber of studies have indicated that HIV/AIDS is fueling the TB epidemic, and viral and
bacterial STIs are increasing the likelihood of HIV acquisition and transmission dur-
ing sexual intercourse (Adeiza et al., 2014; Hagan et al., 2010; Middelkoop et al., 2015;
Simon et al., 2006; Anderson & Maher, 2001) as such these diseases may have similar
spatial patterns. The simplest and most common approach to model these diseases
is to fit a univariate spatial model for each disease and include the other diseases as
covariates in the model. However, the univariate spatial model doesn’t take into ac-
count the association that exists among diseases. An estimation process that ignores
correlations that exist among diseases may result estimates that are biased, distort re-
gression coefficients and could lead to wrong parameter inferences (Congdon, 2007).

Consequently, in order to overcome the above problems diseases that are associated
are modelled jointly (Leyland et al., 2000). Joint spatial modelling unlike univariate
modeling takes into consideration the correlation that exists among diseases in the es-
timation process by borrowing information from other correlated diseases (Assunção
& de Castro, 2004; Liu & Zhu, 2017). The joint spatial modeling of public health and
epidemiological data enables to understand disease aetiology and the ability to ex-
plore shared and divergent trends in disease risk as well as increased in precision of
the estimates in each collection of disease risks as it utilizes the information obtained
from all other correlated diseases (Assunção & de Castro, 2004). If the interest lies in
estimating the prevalence of rare disease or prevalence at lower administrative level a
joint model helps to produce relatively precise and stable estimates by incorporating
information from a relatively common and related diseases (Knorr-Held & Best, 2001;
Manda, Feltbower & Gilthorpe, 2012). A number of joint disease mapping approaches
have been proposed for example see Carlin & Banerjee (2003); Dabney & Wakefield
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(2005); Knorr-Held & Best (2001); Langford et al. (1999). The shared component and
multivariate spatial methods are the two most common approaches used in joint spa-
tial modelling.

The key idea behind the formulation of the shared component model is that the risk
component of diseases that have common risk factors can be divided into one that is
shared by all diseases, and a risk factor that are specific to each disease (Knorr-Held
& Best, 2001). These shared components are used to represent the unknown spatially
structured factors that affect the risk of all of the diseases (Manda, Lombard & Mos-
ala, 2012). This approach allows one to observe joint and specific patterns of different
disease risks over geographical areas (Dabney & Wakefield, 2005; Manda, Feltbower
& Gilthorpe, 2012). The multivariate spatial modelling approach accounts the corre-
lation among disease in the modelling process by introducing a covariance matrix to
the structured spatial components. The multivariate spatial model considers that the
structured spatial components have a multivariate conditionally autoregressive distri-
bution (MCAR). The MCAR model is based on the assumption of normality and this
model may lack robustness and flexibility when the data drifts away from normality;
as a result in the previous chapter we proposed a more flexible framework for mod-
elling the spatial component for a single disease.

In this chapter we extend our approach presented in the previous chapter to a more
generalized form for modelling diseases in a multivariate setting. Therefore, the struc-
tured spatial components in multivariate spatial model are assumed to have multivari-
ate skew distribution specifically multivariate ICAR-skew-normal distribution with a
corresponding covariance matrix to take into account the correlation among diseases.
We conducted a simulation analysis to show the impact of wrongly specifying the
distribution of random effects on the predictive capacity and accuracy of estimates of
multivariate spatial models. In addition in order to illustrate the application of our
approach to real data, we analyzed the proportion of HIV positive pregnant women
who know their HIV positive status and the proportion on ART among these women
by using the 2017 National Antenatal Sentinel HIV Survey data to show the applica-
tion of the models we proposed.

This chapter is organized as follows: in section 2 we reviewed the methods of mul-
tivariate conditional autoregressive model. In section 3 we discussed about extending
the standard multivariate spatial model to a spatial model with multivariate skew-
normal distribution for the structured spatial components. A simulation study with
its procedures and results were presented in section 4. An illustration of our approach
to real data set were presented in section 5. In section 6 this chapter concluded with
discussion, limitation and future work.
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4.2 multivariate conditional autoregressive (mcar)

Mardia (1988) extended the theoretical explanations of a univariate CAR models
presented by Besag (1974) to a multivariate setting. The theoretical development of
MCAR by Mardia was further clarified and simplified by Gelfand & Vounatsou (2003)
and Carlin & Banerjee (2003). Consider a vector ϕT = (ϕT

1 , ϕT
2 , . . . , ϕT

n ), each ϕi is
a px1 vector and hence ϕ is an npx1 vector. Assuming the ϕis follow a normal distri-
bution, the density of ϕ with mean zero and a npXnp precision parameter B is given
as:

p (ϕ) =(2π)−np/2|B|1/2exp(
1
2

ϕTBϕ). (4.1)

One needs to consider a conditional distribution from the above multivariate dis-
tribution as CAR distribution is a conditional distribution. Based on the theory of
normal distribution the full conditional distribution of ϕi is defined as:

p(ϕi/ϕ−i) α exp

(
−1

2

(
ϕi − B−1

ii ∑
i ̸=j

(−Bij

)
ϕj

)T

B−1
ii

(
−1

2

(
ϕi − Bii ∑

i ̸=j
(−Bij

)
ϕj

)
.

(4.2)

This explanation is the same as p(ϕi/ϕ−i) ∼ N(∑i ̸=j
Bij
Bii

ϕj, B−1
ii ). Visualizing B as

a nxn block matrix with pxp block we can consider Bij as pxp matrix. The simplest
way to understand the density of the full conditional distribution p(ϕi/ϕ−i) is, the
quadratic form ϕTBϕ can be presented as ∑n

i=1 ϕT
i Biiϕi + ∑n

i=1 ∑i ̸=j ϕT
i Bijϕj, and con-

sidering only the terms that contains ϕi and since B is symmetric, ϕT
i Bijϕj is equal to

ϕT
j Bij

Tϕi, therefore the density of p(ϕi/ϕ−i) exp(−1
2

(
ϕT

i Biiϕi + 2 ∑i ̸=j ϕT
i Bijϕj

)
);

by completing the square for the quadratic form one can get the above expression.
And the full conditional distribution results in a unique joint distribution as shown by
Besag (1974) using Brook’s Lemma. Let Cij =

−Bij
Bii

, B−1
ii = Σi where each Cij is a pxp

matrix, as each Σis are positive definite and denotes the variance-covariance matrix
of the conditional distribution, Cii = 0pxp and Σ is a block diagonal matrix with Σis
as blocks. Then the precision matrix, B = Σ−1(I − C) where I is the identity matrix
and C is a partitioned matrix with blocks Cij. Thus the unique joint distribution deter-
mined from the conditional distribution, p(ϕi/ϕ−i, j ̸= i, Σi) = Np(∑j ̸=i Cijϕj, Σi)

is N(0, (I − C)−1
Σ). The requirement from the (I − C)−1

Σ matrix is that it needs to
be symmetric. The symmetric condition is satisfied if CijΣj = ΣiCT

ji . As the matrix C
is modelled directly in the modelling process, Σ needs to be specified appropriately
to ensure symmetry in (I − C)−1

Σ.
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According to Besag (1974) the most widely used CAR model for the analysis of
areal data is based on neighborhood approach. The matrix C is therefore denoted as
cii = 0 and cij = 1/miif area j is neighbor to i and zero if not neighbors, where mi is
the number of neighbors of area i. The values of a neighborhood matrix, W is defined
as wij = 1 if area i and j are neighbors and 0 otherwise, as area i can’t be a neighbor
to itself the value of wii = 0, then C = Ws where Ws = diag (1/mi)W . Based on
the above expression the precision matrix B can be defined as B = λ(diag (mi)− W)

thus Bii = λmi and Bij = −λ. A unique joint distribution is determined from the con-
ditional distribution with parameters C and Σ only if the expression (I − C)−1

Σ is
positive definite/nonsingular. Most of the time this positive definiteness assumption
is not satisfied as singularity arises due to the fact that diag (mi)− W = 0 or Ws1 = 1
(the row sum of Ws all add up to 1). For practical purpose the ϕi are sampled from
the full conditional distribution with a linear constraint imposed on it and hence the
singularity problem is immaterial.

Cressie (1993) added a parameter α to the expected value of the conditional dis-
tribution, E(ϕi/ϕ−i) = α ∑ Cijϕj to rectify the singularity problem. Therefore, the

covariance matrix is given as (I − αC)−1
Σ and it is positive definite if α lies in the

interval (λ−1
i min, λ−1

i max) which are the smallest and largest eigenvalues of C. And
this distribution is denoted as MCAR = ( α, Σ). Alternatively, according to Carlin &
Banerjee (2003) the B = Σ−1(I − αC) matrix is diagonally dominant and symmetric
if |α| < 1; according to Harville (1998) symmetric and diagonally dominant matrices
are positive definite. The value of α needs to be close to 1 for the prior to show spatial
clustering; which brings back the issue of impropriety. Some suggested a beta prior
distribution, beta(18, 2) for α though this approach is criticized by others.

4.3 multivariate icar-skew-normal random effects distribution for

modelling the structured spatial random effects

In this section we relax the multivariate ICAR-normal assumptions used for the struc-
tured spatial random effects in multivariate intrinsic conditionally autoregressive
(MICAR) model by assuming that these random effects follow ICAR-skew elliptical
distributions, specifically ICAR-skew-normal. Let Y i = Yi1, Yi2, . . . , Yik be a k di-
mensional random variable with binomial distribution, then according to Besag et al.
(1991); Knorr-Held & Best (2001) and Carlin & Banerjee (2003) the standard formula-
tion of a spatial model is:

logit(pij) = β0 + X iβ + ui + vi, (4.3)

where i= 1, 2, . . . ,n and j= 1, 2, . . . ,k; n and k are the number of regions and diseases
respectively, pij is the proportion of disease j in area i, β0s are vector of intercepts
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in the regression model, βs are vector of regression coefficients, Xs are ecological
covariate risk vector, the vector of structured spatial random component ui follow a
multivariate intrinsically conditional autoregressive distribution, ui∼MICAR(µi, Σu)

and the vector of heterogeneous random components follow a multivariate normal
distribution, vi∼MVN(0, Σv).

As discussed in the previous chapter the assumption on ui/u−i can be relaxed as-
suming that it follows a k-variate skew-normal distribution, ui/u−i∼SNk

(
Σj∼iui

mi
, Σu

mi
, ∆u

)
.

After transformation and conditioning using a suitable positive random vector as dis-
cussed in the previous chapter; ui/u−i∼SNk

(
Σj∼iui

mi
, Σu

mi
, ∆u

)
can be represented as:

ui/u−i, Σu, ∆u, wiu,∼Nk(
Σj∼isj

mi
+∆uwiu,

Σs

mi
), (4.4)

where wiu∼Nk (0, Ik) I(wiu> 0). As discussed in the above section Σu is the covari-
ance matrix and ∆u is a diagonal matrix of skewness parameters with elements
∆u=(δ1, δ2, . . . ,δk)

T and si/S−i∼N(
Σj∼isj

mi
, Σs

mi
).

A Bayesian estimation approach is used to estimate the unknown parameters in the
above disease mapping models. We follow the above hierarchical set-up of a stochastic
representation of a multivariate skew-normal random variable in order to implement
the Markov Chain Monte Carlo (MCMC) parameter estimation procedure. Therefore,
the hierarchical representation of the above disease mapping models assuming the
random components follow the above skew elliptical distribution is given as follows:
let Y i = Yi1, Yi2, . . . , Yik be a k dimensional random variable with binomial distribu-
tion

µi = β0 + X iβ + ui + vi

vi ∼ MVN(0, Σv)

wiu ∼ Nk (0, Ik) I(wiu > 0) if ui/u−i has a skew-normal distribution

ui/u−i, Σu, ∆u, wi ∼ Nk,(
Σj∼isi

mi
+ ∆uwiu, Σs

mi
) if ui/u−i has a skew-normal distribution

si/S−i∼N(
Σj∼isj

mi
,

Σs

mi
)

βi ∼ N
(

β0,Λ
)

,

Σv ∼ IW(Ω, h)

∆u ∼ N(0, Γ)

Σu ∼ IW(D, h)
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where i = 1, 2, . . . , n, Σu and Σv are covariances of the spatial and the heterogeneous
random components and I(wiu > 0) is an indicator function, IW is inverse Wishart.

4.3.1 Posterior distribution

In Bayesian estimation posterior distributions are required to estimate and make in-
ferences about the parameters of interest. The prior distribution is combined with the
data generating process (likelihood function) to determine the posterior distribution,
and it is the distribution of the parameters after observing the data (Lesaffre & Law-
son, 2012). Assuming conditional independence the response variable and the hyper
parameters the joint posterior distribution is defined as:

p (µi, βi, ui, vi, Σu, Σv, δu, wiu/yi) ∝ L(yi/ µi, βi, ui, vi, Σu, Σv, ∆u, wiu)P(βi, ui, vi, Σu, Σv, ∆u, wiu)

= ∏
i

p(yi/µi)∏
j
(p(βj/Λ)p(Λ))p(ui/Σu)p(Σu)p(vi/Σv)p(Σv)p(wiu)p(∆u).

Estimation of parameters is done using the MCMC approach and the full conditional
distributions are required for this purpose. Thus, the conditional distributions of the
parameters are presented below:

βi/ µi, Σu, Σv, yi ∼ N(A−1
β aβ, A−1

β )

where A−1
β = Λ−1 + ΣvXTX and aβ = Λ−1β0 + XT(µ − µi)/Σv

ui/u−i, Σu, ∆u, wiu, Σv, µi, βi = N

(
γv (µi − Xβi)+ γu

(
Σj∼iωi j

(
sj + ∆uwiu

))
Σ−1

v + γumi
,

1
Σ−1

v + γumi

)

where γu = Σ−1
u

vi/Σu, Σv, µi, βi = N

(
γu (µi − Xβi)

Σ−1
v + γumi

,
1

Σ−1
v + γumi

)

wiu/ui, Σu, ∆u = N(A−1
w aw, A−1

w ) I(wi > 0)

where Aw = Σuγumi + 1 and aw = ∆uγuui

∆u/ui, Σu, wiu ∼ N(A−1
∆u

a∆u , A−1
∆u

) where A∆u = Γ−1 + ∑n
i=1

w2
iu

Σu
and aδu = ∑n

i=1
wiuui

Σu

Σv/µi, βi, ui, µi = IW

(
Ω +

n

∑
i=1

(µi − ui − Xβi)(µi − ui − Xβi)
T, h + n

)
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Σu/µi, βi, ui, µi = IW(D + u
′
(Dw − W) u, k + n), where Dw is a diagonal matrix

whose elements are the sum of neighbors of a region and W is the spatial proximity
matrix.
And the Gibbs sampling algorithm is used in our case since the posterior conditional
distributions are known and are in a closed form.

4.4 simulation

We conducted a simulation study to show the performance of our proposed approach
for modeling multivariate spatially structured random components that have outlier-
s/wider tails, and its performance is compared against the common modeling ap-
proaches such as MICAR. In this section we considered two scenarios where in the
first case data are simulated by assuming that the structured spatial random compo-
nents are generated from a bivariate ICAR-normal distribution with outliers and in
the second case assuming that the spatially structured random components are drawn
from a bivariate ICAR-t distribution with outliers with spatial pattern. In both scenar-
ios without loss of generality we assume that there are no covariates in the models.

We used the formulation by Gelfand & Vounatsou (2003) and Banerjee et al. (2003)
about MCAR to simulate the spatially structured random effects. Therefore, let ST =

s1,s2, . . . , sn where each si is pX1 vector; then ST is said to have MCAR distribution if
its density function is given as S ∼ N(0, (Dw − ρW)−1⊗ ∑) ; where Dw is a diagonal
matrix whose elements are the sum of neighbors of region i (wi+), W is the neighbor-
hood/spatial proximity matrix and whose value is 1 if i and j are neighbors and 0

otherwise, ∑ is a variance covariance matrix of S with pXp dimension, ρ is a value in-
cluded to overcome singularity problem in ∑−1 since (Dw − W) 1 = 0 and it measures
spatial association; ρ ∈ (λ−1

max, λ−1
min) where λmin and λmax are the minimum and max-

imum eigenvalues of D−1
w W, λmax = 1 and λmin < 0. The weight matrix is determined

from the municipal map of South Africa, ρ = 0.99 to mimic the MICAR prior, and

∑ =

(
1 0.8

0.8 1

)
. The R package MVS.CARleroux was used with slight change to

generate S. The bivariate spatially structured random components with t-distribution
were determined from S using the approach presented in the previous chapter section
3. The bivariate spatially structured components with normal and t-distributions were
ordered into increasing order and the largest 20 observation were multiplied by 3 to
generate spatially structured bivariate normal and t-distributed random components
with outliers.

Since a convolution model is used, the bivariate unstructured random components
are drawn from a bivariate normal distribution. Assuming a binomial distribution
for the count of each disease in each municipality of South Africa; we use the logit
model to generate the odds and hence the prevalence from the simulated random
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components. The number of infected individuals by each disease is simulated using
the prevalence generated above and the number of individuals in each municipality
which is sampled randomly between 400 and 700.

Using the above procedures we generated a bivariate 100 data sets with 234 obser-
vations for each variable. To have a visual inspection of the data the figures below
show bar graphs and maps for some spatially structured random components simu-
lated using ICAR-Skew-normal and ICAR-skew-t distributions (each row of graphs
and maps represents a set of joint observations). As can be seen in the bar graphs
the spatially structured random components are skewed to the right, and these ran-
dom components exhibit some form of spatial clustering and joint associations, see
Figure 4.1 and Figure 4.2.

Figure 4.1: Bar graph of spatially structured random effects simulated from multivariate
ICAR-t distribution with outliers

Figure 4.2: Bar graph of structured spatial random effects simulated from multivariate
ICAR-normal distribution with outliers
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Figure 4.3: Map of structured spatial random effects simulated from multivariate ICAR-t
distribution with outliers

Figure 4.4: Map of structured spatial random effects simulated from multivariate
ICAR-normal distribution with outliers

We analyzed the simulated data using a Bayesian approach. The simulated spatially
structured random components generated using the above procedures were analyzed
using areal spatial models. The MICAR-normal model that assumes the structured
spatial random components are drawn from multivariate normal distribution and our
proposed approach that assumes the random components are drawn from multivari-

49



skew-normal multivariate intrinsic conditional autoregressive spatial

model and its application for disease mapping

ate skew-normal (MICAR-skew-normal) distribution were fitted to the data. And the
nonspatial random components were assumed to be drawn from a bivariate normal
distribution. Non-informative priors are used for all parameters used in the model.
The statistical package used for data analysis is OpenBUGS 3.2.

Table 4.1: Estimated values of parameters of models for structured spatial random effects
simulated from multivariate ICAR-normal and ICAR-t distributions with outliers

Parameter MICAR-Normal model MICAR-skew-Normal model
Estimates of parameters for structured spatial random effects simulated from MICAR-normal distribution with outliers
Average RMSE 0.00176 0.00177

Percent of times
LScv is lower
compared to
other models

42% 58%

Σu11 8.694 9.242

Σu12 -9.254 -9.876

Σu21 -9.254 -9.876

Σu22 12.046 12.785

Σv11 12.432 101.982

Σv12 -11.972 -4.119

Σv21 -11.972 -4.119

Σv22 12.379 85.631

δu1 0.361

δu2 0.359

Estimates of parameters for structured spatial random effects simulated from MICAR-t distribution with outliers
Average RMSE 0.00190 0.00191

Percent of times
LScv is lower
compared to
other models

31% 69%

Σu11 84.862 86.357

Σu12 -48.389 -44.654

Σu21 -48.389 -44.654

Σu22 99.132 102.628

Σv11 1.924 20.738

Σv12 -1.585 0.837

Σv21 -1.585 0.837

Σv22 1.856 24.486

δu1 0.317

δu2 0.348

As discussed in section 3 from the previous chapter, the root mean square error
(RMSE) and negative of log of conditional predictive ordinate (LCsv) methods were
used for comparing the methods we proposed fitting for multivariate skewed spatially
structured random components with existing approaches. As shown in Table 4.1, the
value of ARMSE for the MICAR-normal model and the MICAR-skew-normal model
fitted to the simulated data drawn from the MICAR-t distribution with outliers were
0.00190 and 0.00191 respectively. And the ARMSE value calculated from the MICAR-
normal model and the MICAR-skew-normal model fitted to the simulated data drawn
from the MICAR-normal distribution with outliers were 0.00176 and 0.00177 respec-
tively. As we can see in Table 4.1 the ARMSE values are the same until the 4

th digit
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after the decimal point for both data sets and these differences are small enough and
hence can be ignored. Thus this suggests that overall there is no difference between
the two models in terms accuracy.

The LScv values of MICAR-skew-normal model fitted to the simulated structured
spatial data drawn from the MICAR-normal distribution with outliers is lower than
the LScv values of the MICAR-normal model fitted to the same data set 58% of the
time, see Table 4.1. Similarly, LScv values were lower 69% of the time when structured
spatial random components simulated from MICAR-skew-t distribution with outliers
were fitted to the MICAR-skew-normal model than the MICAR-normal model. Thus,
the MICAR-skew-normal model is better in terms of its predictive capacity as com-
pred the MICAR-normal model.

4.5 mapping district hiv prevalence and proportion on art among

hiv positive pregnant women who know their hiv status in south

africa

In order to illustrate the application of the spatial models discussed in the above sec-
tion to a real data we modelled direct survey estimates of proportion of pregnant
women who know their HIV positive status and proportion of pregnant women who
know their HIV positive status and are on ART in South Africa. The best model that
fits these data are used as the final model and used for generating knowledge of HIV
positive status among pregnant women and proportion of pregnant women on ART
at district level. Direct estimates of proportion of pregnant women who know their
HIV positive status and proportion pregnant women who know their status and are
on ART at district level is computed from the 2017 National Antenatal Sentinel HIV
survey data. This survey was conducted among pregnant women attending public
antenatal clinics for measuring the distribution of HIV infection, to monitor trends of
HIV prevalence, to provide scientific evidence to monitor development goals, to eval-
uate HIV prevention and treatment programs targeting pregnant women, for strategic
response and planning, and data source for modelling HIV epidemic etc. The data col-
lection procedure for measuring these indicators are through a brief interview, medi-
cal chart review and blood specimen collection.

The 2017 National Antenatal Sentinel HIV Survey is a cross-sectional survey of
pregnant women attending antenatal services from public health facilities in South
Africa. The survey selected a representative sample of 32,716 pregnant women from
1595 sentinel clinics distributed in all the 52 districts of South Africa. The study de-
sign of this survey is stratified cluster sampling design, taking districts as strata and
sentinel clinics as clusters. The sample size in the survey was determined to estimate
HIV prevalence by district at a level of precision of 3-5%, 10% error rate and a de-
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sign effect of 1.5%. In order to ensure representativeness of the sample the facilities in
each district were stratified by urban, rural and size (small, medium and large). The
selected facilities were proportionally allocated to each stratum based on number of
facilities.

Public health facilities that offer pregnancy testing and antenatal care services at
least for 20 pregnant women attending the service for the first time per month, rou-
tinely collects blood among ANC clients and have facilities to store sera at four de-
gree Celsius and able to transport collected blood specimens to the nearest laboratory
within 24 hours are included in the study. Inclusion is also based on if staff in the
facility have the capacity to conduct the study and willingness of the facility to be
included in the study. All pregnant women between the ages of 15-49 accessing the
ANC service in these facilities are invited to participate in the study regardless of
whether this visit to the facility is first time or follow-up. The required data for the
study are collected from consenting pregnant women attending the service consecu-
tively and data collection continues until the sample size assigned to each clinic is
achieved or until the end of the study period. Please refer the study report for more
information about the 2017 ANC survey (Woldesenbet et al., 2018).

The survey data are weighted by taking the survey characteristics and response
rates at each stratum into account in order to reduce bias in the direct district level es-
timates computed from the survey data. The effective sample sizes for each outcome
variables are determined from the weighted direct estimates as they are required for
modelling proportions in a Bayesian framework using OpenBUGS.

The multidimensional poverty index determined from the 2016 community survey
data (Fransman & Yu, 2019), HIV prevalence among pregnant women obtained from
the 2017 National Antenatal Sentinel Survey report (Woldesenbet et al., 2018), popu-
lation density and male condom distribution coverage obtained from the 2017 district
health barometer report (Massyn et al., 2017) are the factors included in the spatial
model.

The spatial models fitted to the data are MICAR-normal and MICAR-skew-normal
that assume a multivariate normal and multivariate skew-normal distributions for
the structured spatial random components respectively. These models are defined
respectively as:

logit
(

pij
)
= β10 + β11X1 + β12X2 + β13X3 + β14X4 + u1i + v1i,

where u1i/u−1i ∼ Nk

(
Σj∼iu1i

mi
, Σu

mi

)
and vi ∼ Nk(0, Σv);
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logit
(

pij
)
= β20 + β21X1 + β22X2 + β23X3 + β24X4 + u2i + v2i,

where u2i/u−2i ∼ SNk

(
Σj∼iu2i

mi
, Σu

mi
, ∆u

)
, vi ∼ Nk(0, Σv),

and i = 1, . . . , 52, j = 1, 2; i and j denotes number of districts and outcome variables
respectively, pij is the proportion of pregnant women who know their HIV positive
status and proportion of pregnant women who know their HIV status and are on
ART at district i and βkqs are vector of regression coefficients and k is the num-
ber of alternative models to be fitted to the data, βk0s are vector of intercepts , uki
is the vector of structured spatial random component and vki is the vector of un-
structured spatial random component for knowledge of HIV status and proportion of
pregnant women on ART. The model parameters were determined using a Bayesian
estimation approach. Prior distributions were assigned to the model parameters and
random components. The prior distributions for the regression coefficients and non-
spatial random component were the same for all the models. The prior distribution
for the intercept is βk0 ∼ d f lat(), the prior for the rest of the regression coefficients
is βkq ∼ N(0, 100000) where q = 1, 2, 3, 4; and for the precision parameters of
the structured spatial and unstructured spatial random components the priors are

Σu ∼ IW(D, v) and Σv ∼ IW(Ω, v) respectively; where D = Ω =

(
0.01 0

0 0.01

)
is the scale matrix and v = 2 is the degrees of freedom. The prior for the skewness
parameter is δuk ∼ N(0, 100). The analysis was done using OpenBUGS 3.2 statisti-
cal package. We run 100,000 Markov Chain Monte Carlo (MCMC) iterations for each
model to make inferences. We determined the number of initial iterations that need
to be discarded by assessing the history plots of each model, and for each parame-
ter and outcome variables. Similarly, we also investigated the autocorrelation plots of
each output to determine the selection intervals to avoid correlation problems in the
generated chains. The above models were compared using the LCsv and DIC values.

Based on the results of the analysis the value of the skewness parameters for the
MICAR-skew-normal model are close to zero and insignificant which may suggest
that the spatial components are lighter tailed. The model that fits the data best is
the one with the lowest LCsv and DIC values. As shown in Table 4.2 the values of
the LCsv for the multivariate ICAR-normal model is 286.9 and for the MICAR-skew-
normal the value is 282.2 suggesting that the MICAR-skew-normal performs relatively
better in terms of its predictive capacity as compared to the multivariate ICAR-normal.
In addition, the DIC values for the MICAR-skew-normal model and MICAR-normal
model are 487.1 and 508.8 respectively. The difference in the DIC values between the
MICAR-normal model and the MICAR-skew-normal model is greater than 10 which
is a strong evidence that the earlier model fits the data better than the earlier. Accord-
ing to Lunn et al. (2013) and Stone & Zhu (2015) DIC may not be used for comparing
models if the posterior density reflects extreme skewness or multimodality. In our
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study an assessment of the posterior density plots of the outputs of the analysis do
not indicate presence of extreme skewness and multimodality. In general, we suggest
that the model that assumes MICAR-skew-normal distribution for the structured spa-
tial component is an adequate model to capture the underlying features of the data.
The posterior estimates of the fixed effect parameters across all the models are closer
as shown in Table 4.2 with corresponding confidence intervals.

Table 4.2: Posterior mean and 95% HPD intervals for the parameters of interest, and DIC and
CPO/LScv values for the different models in this study

Covariates MICAR-normal MICAR-skew-normal
Proportion of preg-
nant women who
know their HIV
status

ART coverage
among pregnant
women

Proportion of preg-
nant women who
know their HIV
status

ART cover-
age among
pregnant
women

Intercept 2.037(1.06, 2.96) 2.345(1.285, 3.461) 1.851(0.6982,
2.8780)

2.35(1.077,
3.716)

Population density -0.00005(-0.0003,
0.0002)

-0.0002(-0.0005,
0.0002)

-0.00003(-0.0003,
0.0002)

-0.0002(-
0.0005,
0.0002)

Male condom dis-
tribution

-0.0062(-0.0174,
0.0051)

-0.0058(-0.0194,
0.0081)

-0.0052(-0.0163,
0.0061)

-0.0045(-
0.0188,
0.0108)

Multidimensional
poverty index

-0.4082(-4.802,
4.199)

-3.417(-8.550,
1.834)

-0.6929(-5.466,
3.920)

-2.734(-
8.806, 3.91)

ANC HIV preva-
lence

2.821(0.351, 5.319) 5.746(3.344, 8.223) 3.108(0.6273,
5.4380)

6.035(3.269,
8.798)

Σu11 56.76 (2.311, 261.3) 69.39 (2.513, 363.2)
Σu12 -77.26 (-357.5, 103.6) -65.04 (-355.1, 146.4)
Σu21 -77.26 (-357.5, 103.6) -65.04 (-355.1, 146.4)
Σu22 244.8 (16.96, 793) 252.3 (16.48, 774.2)
Σv11 225 (10.15, 769.6) 200.3 (9.396, 765.8)
Σv12 -8.09 (-262.3, 246.8) -3.864 (-271.2, 255.8)
Σv21 -8.09 ((-262.3, 246.8) -3.864 (-271.2, 255.8)
Σv22 57.94 (3.855, 364.2) 166.1 (6.369, 638.7)
Skewness param-
eter for prop.
Knowledge of HIV
status, δu1

0.09313 (-0.5774, 0.8614)

Skewness parame-
ter for prop. ART
coverage, δu2

-0.2094 (-1.091, 1.032)

DIC 286.9 282.2
LScv 508.8 487.1

Figure 4.5 below indicates maps of proportion of HIV positive pregnant women
who know their HIV positive status (a) and proportion on ART among those who
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know their HIV positive status (b) by district in 2017 South Africa, generated based on
the best model that fits the underlying features of the data. According to the estimates
using this model knowledge of HIV positive status among pregnant women is above
95% in all districts in KwaZulu Natal, and in a few districts in Gauteng and Free state
provinces. The districts with the highest proportion of pregnant women who know
they HIV positive status are Ugu (97.6%), Umzinyathi (96.7%) and iLembe (96.5%) and
those districts with the lowest proportion are Vhembe (76.4%), Central Karoo (81.9%)
and Ngaka Modiri Molema (83.5%). A higher percentage of districts in South Africa
(71.2%) have proportion of pregnant women who know their HIV positive status less
than the target set by UNAIDS to achieve the HIV Epidemic control by 2030. The
proportion of HIV positive pregnant women who know their HIV positive status and
are on ART is above 90% in all the districts except Central Karoo (81.9%). Almost 80%
of districts in South Africa have proportion of pregnant women who know their HIV
positive status above the target (95%) set by UNAIDS to achieve the HIV Epidemic
control by 2030.

Figure 4.5: Map of proportion of pregnant women who know they HIV status and the
proportion on ART among these women by district in 2017, South Africa.

4.6 discussion

In the previous chapter we presented a univariate spatial modelling approach assum-
ing that the structured spatial components are drawn from a symmetric and skewed
distribution. If more than one outcome is observed across each district univariate ap-
proach does not take into account the association that exist between outcomes. In
this chapter we presented joint modelling of outcomes as this approach considers
the association that exists between outcomes in the modelling process (Assunção &
de Castro, 2004; Liu & Zhu, 2017). And the estimates based on this approach are rela-
tively precise and stable in particular if the outcome under study is rare and if there
is no sufficient sample size to generate reliable estimates (Feltbower & Manda, 2012;
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Congdon, 2007).

We reviewed the common methods of joint spatial modelling of Knorr-Held & Best
(2001) and Carlin & Banerjee (2003). The standard joint spatial methods assume the
random components are normally distributed. This assumption may not be always
right since in real world problem we could come across with data which have got
multimodal and skewed distributions (Ghosh et al., 2007; Verbeke & Lesaffre, 1996).
Thus, we suggested alternative generalized parametric approaches for modelling the
spatial random components. Our approach is specifically used for modeling multi-
variate skewed-normal spatially structured random components. This approach is a
generalization to the standard (symmetric) assumption as multivariate skew-normal
distribution reduces to multivariate normal when the skewness parameter tends to
zero.

In order to formulate our approaches to a spatial model we adopted a class of mul-
tivariate skew-elliptical distribution developed by Sahu et al. (2003) which is based
on conditioning and transformation. In addition to the parameters that measures lo-
cation and scatteredness, like symmetric distribution, the skew-normal distribution
has additional parameter that controls skewness of the distribution. The skew-normal
distribution used in this study is simple and convenient to formulate in a Bayesian
framework and conduct the analysis using OpenBUGS statistical package.

Using a simulation analysis we have investigated the impact of wrongly specifying
the distribution of multivariate structured spatial random effects in spatial models;
and compared the performance of the MICAR-skew-normal model against MICAR-
normal model in terms of accuracy and predictive capacity by evaluating their RM-
SEs and CPOs. Assessment of the CPO values suggest that the MICAR-skew-normal
model that assumes multivariate skew-normal distribution for the structured spatial
random components that are drawn from multivariate ICAR-skew-normal distribu-
tion or multivariate ICAR-skew-t distribution has a better predictive capacity as com-
pared to MICAR-normal model that assumes a normal distribution for these random
components.

The ARMSE values of the MICAR-skew-normal model that assumes multivari-
ate skew-normal distribution for the structured spatial random components simu-
lated from multivariate ICAR-skew-t and multivariate ICAR-skew-normal distribu-
tions were determined and compared with that of MICAR-normal model that as-
sumes a multivariate normal distribution for these random effects. The difference in
the ARMSE values between these models for both data sets simulated from multivari-
ate ICAR-skew-normal and multivariate ICAR-skew-t distributions were very small
and can be ignored. Thus, there is no difference between the MICAR-normal model
and the MICAR-skew-normal model in terms of accuracy. And perhaps suggesting
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that using normal distribution assumption for spatially structured random compo-
nents that are skewed may not have negative impact on the accuracy of estimates as
compared to the other model considered in this study. Similarly a simulation study
conducted by Kim & Mallick (2004) for point referenced data indicated that a model
that assumed skew-normal distribution to random effects that are drawn from skewed
distribution has a better predictive performance as compared to a model that assumed
normal for the random effects.

We have also illustrated the use and feasibility of our approaches for modelling
real data. As an example, we model ART use and knowledge of HIV status among
pregnant women by district using the 2017 ANC survey data assuming the spatially
structured components have a multivariate skew-normal distribution using Bayesian
smoothing techniques. We have investigated and compared the performance of MICAR-
skew-normal and MICAR-normal spatial models using DIC and CPO values. Ac-
cording to the values of these indicators the spatial model (MICAR-skew-normal)
that assumes the structured spatial components are drawn from multivariate skew-
normal distribution appears to perform better than the MICAR-normal model; sug-
gesting that the MICAR-skew-normal model has a better predictive capacity and fits
the district ART coverage and knowledge of HIV status data better as compared to
the MICAR-normal model. The posterior estimates of the fixed effect parameters be-
tween the two spatial models are relatively closer; which is also the case in other
linear mixed models (Ghidey et al., 2004; Jara et al., 2008; Zhang & Davidian, 2001).
The estimates of the MICAR-skew-normal are used for generating the maps shown
in section 5, and hence relevant stakeholders can use these results to determine the
level of the epidemic among pregnant women, monitor and evaluate the impact of
different HIV interventions at district level in South Africa and design appropriate
HIV intervention programme tailored to each community.

In this chapter we have considered extending multivariate ICAR-normal distribu-
tion assumptions in spatial model to multivariate ICAR-skew-normal distributions.
These approaches may not be used for modelling spatially structured components
that are drawn from data that have high and low peaked distributions as well as
heavy tailed distribution. Moreover, our approach may not be used for modelling ran-
dom components drawn from multimodal and mixture distributions. Therefore, our
approach can be extended for modelling structured spatial random components that
have mixture distributions and high or low picked distributions; and it can also be
extended for modelling the unstructured spatial random component. In addition the
simulation study was conducted by generation data using positive skewness param-
eter; and thus our approach can be tested and verified by simulating data that have
negative skewness or opposite skewness.
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5

M U LT I VA R I AT E B AY E S I A N N O N PA R A M E T R I C D I S E A S E
M A P P I N G U S I N G A R E A L S T I C K - B R E A K I N G P R I O R S

5.1 introduction

Data are becoming increasingly available as rates, summary of counts aggregated over
different geographical areas such as census tracts, post or zip codes, districts, or coun-
ties etc. in order to protect patient confidentiality (Li et al., 2015). These data sets show
some form of spatial pattern, and modeling of these data needs to take this spatial
pattern into account. The most common form of modelling for such data is to intro-
duce the structured spatial component as random effect, and mostly the estimation is
done in a hierarchical Bayesian framework (Gelfand et al., 2005; Manda, Feltbower &
Gilthorpe, 2012). In Bayesian hierarchical spatial modeling the spatially structured ran-
dom effects are assumed to follow exchangeable prior distributions which are taken
from a specific family of parametric distributions mostly normal, Gamma, Beta etc.
(Jara et al., 2009; Walker & Mallick, 1997).

However, it is difficult to determine the accuracy of this assumption since the ran-
dom effects are not measurable and hence most of the time the distribution of the
random effects are unknown (Jara et al., 2009; Müller & Quintana, 2004). The reason
for assuming a particular parametric distribution to the structured spatial random
effects is because of its technical convenience (Jara et al., 2009; Müller et al., 2015).
Therefore, it may not be always right to assume that the spatially structured random
effects follow some known parametric distribution as there is a possibility that it could
follow multimodal distributions perhaps unknown number of modes.

Consequently, mixture distributions were suggested for the structured spatial ran-
dom effects in an effort to reduce the impact of parametric/distributional assumption
on the estimates of parameters in a spatial model. For example, in an effort to relax
the above restrictive assumption; (Manda, 2014) assumed a mixture of conditionally
autoregressive (CAR) normal and CAR double exponential for the spatially structured
random effects. Similarly, Langford et al. (1999); Moraga & Lawson (2012) assumed
that the structured spatial random effects are drawn from weighted normal distri-
butions. However, the limitation with the above approaches is that it is difficult to
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determine the number and type of mixture distributions used for modelling the struc-
tured spatial random component (Manda, 2014).

Thus a more flexible approach that reduce the impact of misspecification of the dis-
tribution of structured spatial random effects on the estimates is Bayesian nonparamet-
ric modelling of spatial random effects (Gelfand et al., 2005; Heckman & Singer, 1984;
Manda, 2011). In Bayesian nonparametric modelling the random effects are assumed
to follow some unknow distributions (Müller & Quintana, 2004). In other words it
is assumed that the random effects can best be described by an infinite dimensional
parametric family; and hence the prior becomes a probability model on the infinite
dimensional space which could capture different possible distributions (DeYoreo &
Kottas, 2015). For example if θi is the random effect then its distribution is given
as θi/G ∼iid G , with a Bayesian nonparametric prior for the unknown G; and unlike
the parametric case the distribution of the random effects becomes an unknown dis-
tribution. The Bayesian nonparametric prior for G is: G/η ∼ π(./η) , where η is the
hyper-parameter matrix. Mostly the Dirichlet process is used as a prior for the family
of distributions of G which involves a baseline distribution, H and a concentration
parameter, α and it is denoted as G ∼ DP(α, H) (Ferguson, 1973; Kottas et al., 2008;
Gelfand et al., 2005).

Duan et al. (2007); Griffin & Steel (2006) and Gelfand et al. (2005) applied Bayesian
nonparametric model with Dirichlet process prior to model spatially referenced data.
In Gelfand et al. (2005) spatial dependency was introduced through the zero mean
Gaussian base distribution from which the mixing components are drawn. Duan et al.
(2007) generalizes that of Gelfand et al. (2005) assuming that the spatially referenced
data and hence the spatially structured random effects are coming from a variety of
surfaces (and hence different weights) instead that they are coming from a randomly
selected single surface (common weight). Whereas Griffin & Steel (2006) introduced
spatial dependence though mixing weights using order based stick-breaking prior.
They determined the ordering assuming that distributions of similar covariate values
have similar ordering. Hossain et al. (2013) used a Bayesian nonparametric method
for modelling areal data by using stick-breaking prior, which is one of the representa-
tions of the Dirichlet process and it is discussed in the sections below. They introduced
the spatial dependence by defining a spatial model though the mixing weights of the
stick-breaking prior. A covariate dependent kernel function is included in the mixing
weights of the stick breaking prior in order to introduce the spatial dependence be-
tween areas. Li et al. (2015) also used stick-breaking priors for modelling a univariate
areally-referenced data. They introduced the spatial dependence by including a con-
ditionally autoregressive prior on the weight function of the stick-breaking process.
In this study we extend this model to a multivariate setting.
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The work in this chapter is structured as follows: section 2 briefly defines Dirichlet
distribution and explains Dirichlet process including Dirichlet process mixture dis-
tribution. Multivariate disease mapping using areally referencing stick-breaking ap-
proach is presented in section 3. A posterior distribution about the model parameters
and a discussion about truncated Dirichlet process were discussed in section 4 and 5.
Application of the method we proposed to a real data followed by discussion of re-
sults was presented in section 7 and 8 respectively; and finally the chapter concluded
with a discussion in section 9.

5.2 dirichlet process mixture

5.2.1 Dirichlet distribution

Dirichlet distribution is a distribution over n-1 dimensional simplex and is considered
as a multivariate generalization of a beta distribution (Kotz et al., 2004). Let p =

p1, p2, . . . , pk be a k dimensional random variables such that pi ≥ 0 and ∑k
i=1 pi = 1 ,

and let (α1, α2, . . . , αk) be a k dimensional parameter vector, αi ≥ 0 ∀ k and ∑k
i=1 αi >

0, then the Dirichlet distribution of p is given as,

p = (p1, p2, . . . , pk) ∼ Dirchlet (α1, α2, . . . , αk) = ∏k
i=1 Γ(αk)

Γ(∑k
i=1 αk)

∏k
i=1 pαi−1

i and is de-

noted as:
p ∼ Dirchlet (α1, α2, . . . , αk) .

Mixture distributions are used for modeling clustered data with multimodal distri-
butions, and Dirichlet distribution prior is used for modelling the weights in a mixture
model. Therefore, we consider the following scheme which provides a basis to define
a suitable prior; let’s consider a two-component symmetric Dirichlet distribution and
hence the scaling parameter α is divided equally between the two components:

p2 =
(

p(2)1 , p(2)2

)
∼ Dirichlet(

α

2
,

α

2
).

According to the expansion rule the components are divided as:

θ
(2)
1 , θ

(2)
2 ∼ Beta(

α

2
× 1

2
,

α

2
× 1

2
)

p4 = ( θ
(2)
1 p(2)1 ,

(
1 − θ

(2)
1

)
p(2)1 , θ

(2)
2 p(2)2 ,

(
1 − θ

(2)
2

)
p(2)2 ∼ Dirichlet (

α

4
,

α

4
,

α

4
,

α

4
).

Thus for k-components we get, pk ∼ Dirichlet( α
k , . . . , α

k ); similarly a prior over an
infinite space of distribution is determined as k → ∞.

60



5.2 dirichlet process mixture

5.2.2 Dirichlet process

Dirichlet process is defined using two parameters, H which denotes the central/base-
line distribution over some space that defines the expectation of the process and α

which is defined as a concentration/precision parameter. The Dirichlet process is de-
noted as G ∼ DP(α, H) and thus α measures the variability of G around the base
measure H. Larger values of α implies that G is closer to the base distribution H.
Based on the above scheme, let p ∼ limK→∞Dirichlet( α

k , . . . , α
k ) ; for each point in

this Dirichlet distribution, randomly select values, θk from the base distribution, i.e.
θk ∼ H for k = 1, . . . , ∞; thus alternatively G is defined as, G = ∑∞

k=1 pkδθk ,which
is an infinite discrete distribution over the base distribution, H which is continues;
where θ′ks are atoms drawn from the base distribution, δθk is the Dirac measure (point
mass) associated with θk.

The most important representation of the Dirichlet Process is the stick-breaking
construction defined by (Sethuraman, 1994). In this construction the weights are deter-
mined using a Beta distribution with parameters 1 and α. Thus from the discrete rep-
resentation of the Dirichlet Process,G = ∑∞

k=1 pkδθk , the value of p1 = V1 and for any
k > 1, pk = Vk ∏k−1

l=1 (1 − Vl) with Vl ∼ iid Beta(1, α). The weights are generated as,
break a stick of unit length randomly according to a Beta distribution, Beta(1, α) and
assign length of the break part V1 to p1, again breaking the remaining part of the stick,
1−V1 randomly according to a beta distribution Beta(1, α) and assign p2 = V2(1−V1)

etc. and this process shows that the value of pk approaches zero at a higher rate. As a
result, most of the time the infinite sum is replaced by a sum of the first m terms after
which the value of Vl = 1 and hence the value pk is zero. The number of terms, m is
determined as number that results some empty components when MCMC is running
or by examining the size of the last weight under the prior.

Since the base distribution is continues one may assume the Dirichlet process as
a continues process, however, the Dirichlet Process generates discrete distributions
that are mixtures of point masses whose values are drawn randomly from the base
distribution and whose weights are determined using the stick-breaking process with
probability one (Duan et al., 2007; Fuentes & Reich, 2013; Gelfand et al., 2005; Kottas
et al., 2008). Dirichlet process prior could result in estimates that are inconsistent if
it is used for modelling continues distribution in some hierarchical models (Diaconis
& Freedman, 1986). This unattractive property makes the Dirichlet Process difficult to
use as a prior for continues distributions. This limitation can be resolved by convolv-
ing the Dirichlet Process with some continues kernel, or more generally, by using a
Dirichlet Process to define a mixture distribution. This is known as a Dirichlet process
(DP) mixture (Jara et al., 2009; Müller et al., 2015; Phadia, 2013). And it is defined as:

Yi ∼ p(./θi), θi ∼ G, G ∼ DP(αH), where p(./θi) is some parametric distribution.
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Based on the stick-breaking representation it is also given as: Yi ∼ p(./θi), θi ∼
∑∞

k=1 πkδθ∗k
, where θ∗k ∼ H and πk is determined using a stick-breaking construction.

Thus as an example; let Yi ∼ N(µi, σ2
i ),
(
µi, σ2

i
)
∼ ∑∞

k=1 πkδ(µ∗
k , σ2∗

k ), where the base

distribution H is: µ∗
k / σ2∗

∼ N(mk, s2∗
k ) and σ2∗

k ∼ IG(ck, dk). It can also be rewritten
as: Yi ∼ ∑∞

k=1 πkN(µ∗
k σ2∗

k ) since each (µi, σ2
i ) must be equal (µ∗

k σ2∗
k ) for some k in

clustering.

5.3 multivariate disease mapping using areally-referenced spatial

stick-breaking prior

Reich & Fuentes (2007) developed a Bayesian nonparametric model using a Dirichlet
process mixture prior which was based on a stick-breaking construction for analyz-
ing geostatistical data. As discussed in the above section they assigned unknown
spatially smoothed prior distributions for modelling the structured spatial random
effects. Using a kernel function they extended the stick-breaking construction for
modelling spatial data by adding a spatial component through the mixing weights
of the stick-breaking construction. Thus, let u(s) be the spatially structured random
effect assigned a prior distribution, u (s) ∼ F(s). Based on stick-breaking representa-
tion the prior for u (s) is given as, F (s) ∼ ∑m

k=1 pk (s) δθk , where p1(s) = V1(s), and
pk (s) = Vk (s)∏k−1

l=1 (1−Vl(s)) for k>1, and Vk (s) = wk (s)V(k). The spatially de-
pendent kernel function wk (s) lies between [0, 1] and is distributed with mean, and
variance which depends on the spatial location of the observations.

Li et al. (2015) adopted the above spatial stick-breaking approach to analyze a
univariate areally-referenced data whose spatial patterns are determined based on
neighborhood approaches of regions. Similarly, they modelled the spatial dependence
of areal data by adding additional component in the mixing weights of the stick-
breaking process which has conditional autoregressive, CAR priors. Therefore, in this
section we extend the work of Li et al. (2015) to a multivariate ICAR setting. Let
Y i = Yi1, Yi2, . . . , Yih be h dimensional random variable with binomial distribution
(For example number of cases of diseases); then the areally-referenced stick-breaking
model of the occurrence of diseases of interest in region i truncated at m terms is
given as:

logit(pi) = β0 + βXT
i + ui + vi ,

where i = 1, 2, . . . , n and n is the total number of regions, ui = ui1, ui2, . . . , uih and
are the spatially structured components, pi is the prevalence of disease j, where j =
1, . . . , h (number of diseases) in region i, vi = vi1, vi2, . . . , vih and are the spatially
unstructured components having the following prior distribution,

vi ∼ MVN(0, Σv),
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5.4 posterior distribution

ui ∼ G(i), where G(i) = ∑m
k=1 pikδθk and is the stick-breaking prior for the spatial

random effect.
Zi1 , . . . , Zim ∼ categorical(pi1, . . . , pim) , where Zik s are clustering or classification
variables

θk ∼ MVN(0, Σθ),

pi1 = V1wi1, pik = Vkwik ∏k−1
l=1 (1−Vlwil) f or k>1, thus the mixing weights depend

not only on the Vks but also on the wik which are the “location” weight parameters
and wik = wik1, wik2, . . . , wikh. Since the ICAR distribution has the support over
the entire real line, the location weight parameter is transformed into a logit scale,
logit (wik) = ZCik and the ZCiks are assumed to have as multivariate ICAR-normal
prior distribution, and Vk ∼ iid Beta(1, α). For the sake of completing the Bayesian
model, the priors for the other parameters are β ∼ N

(
µ0,Λ

)
, Σθ ∼ IW(Ωθ, v).

5.4 posterior distribution

Posterior inferences about the parameter of interest are based on MCMC approach
and hence the full conditional posterior distributions are needed to implement this
approach. The blocked Gibbs sampler developed by Ishwaran & James (2001) which
directly samples from the posterior of the random measure is used for sampling from
the posterior. Thus, let Z∗

1 , . . . , Z∗
N be the set of N unique values of Z; the blocked Gibbs

sampling is used to simulate the parameters of interest from the following conditional
posterior distributions: for Zj ∈ Z − {Z∗

1 , . . . , Z∗
N} simulate θj ∼ MVN(0, Σθ) and

draw θZ∗
j

from the density

f (θZ∗
j
/Y , Z, Σθ ) ∼ N

(
θZ∗

j
;0, Σθ

)
∏(

i: Zi=Z∗
j

) p(yi/θZ∗
j
)

∼ N(µ∗
θ , Σ∗

θ) where µθ = (∑{i:Zi=Z∗
j

} 1
Σ2

e
+ 1

Σθ
)
−1

∑{i:Zi=Z∗
j

} (yi − (β0 + βXT
i ))

and

Σ∗
θ = ( ∑{

i:Zi=Z∗
j

} 1
Σ2

e
+

1
Σθ

)
−1

.

The conditional for Zi is given as:
(Zi/θ, y) ∼ ∑m

k=1 pk,iδθk where i = 1, 2, . . . , n
where (p1,i, p2,i, . . . , pm,i)α (p1i p(yi/θ1, β0, β), p2i p(yi/θ2, β0, β), . . . ,pmi p(yi/θm, β0, β))

p1i = V∗
1 w1i, pki = V∗

k w1i

k−1

∏
l=1

(1−V∗
l wil) , k = 2, 3, . . . , m − 1, i = 1, 2, . . . , n,
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conditional for logit (wik) = ZCik is:

ZCik ∼
m

∑
l=1

pik ∏
(s<l)

pil)exp(−
niτZC

2 (ZCis−ZCis)
2
)

Conditional for τZC is: τZC ∼ Gamma(ak +
nm
2 , ak +

1
2 ∑m

l ∑i∼j (ZCil − ZCil)
2

V∗
k ∼ Beta(1 + rk, α + ∑m

l=k+1 rl), for k = 1, 2, . . . , m − 1 and rk records the number
of Zi values which equals k.
The conditional posterior distribution for the remaining coefficients were the same as
those presented in the previous chapters.

5.5 truncated dirichlet process

Having infinite number of clusters is computationally expensive and is a challenge to
generate practical Markov Chain Monte Carlo algorithms (Ishwaran & Zarepour, 2000;
Reich & Fuentes, 2007). As a result, the infinite Dirichlet process mixture is approx-
imated by a finite Dirichlet process mixture that truncates at m. Thus ∑∞

k=1 πkδθk =

∑m
k=1 πkδθk for Dirichlet process, and ∑∞

k=1 πk p(./θi) = ∑m
k=1 πk p(./θi) for Dirichlet

process mixture. In order to have a proper probability distribution the sum of the
weights, p1 + p2 + · · ·+ pm = 1 in other words pm = 1 − ∑m−1

k=1 pi; thus to ensure this
property the value of Vm = 1. A Dirichlet process is truncated at m if the difference
between the expected value of pm and p∞ is small enough to be ignored. Thus, Ish-
waran & James (2001) and Ishwaran & James (2002) presented a method that relates
the sample size with the number of clusters and investigated the absolute difference
between the expected value of pm and p∞ by taking different values of sample size

(n), and α. And their method is defined as; |E (pm − p∞)| ≤ 4
(

1 − E
⌊(

∑m−1
k=1 pk

)n⌋)
this is simplified as,

|E (pm − p∞)| ∼ 4n exp(−(m − 1)/α). (5.1)

Similarly, Ohlssen et al. (2007) suggested an approach that approximates the num-
ber of cluster in a Dirichlet process; in this approach the basic idea is to set m which
results in a small E(pm); thus E (pm) = E(1 − ∑m−1

k=1 pk) ≈ ε. And, E
(

1 − ∑m−1
k=1 pk

)
=(

α
α+1

)m−1 ≈ ε, after rearranging and simplifying we get;

m ≈ 1 +
logε

log[α/(1 + α)]
. (5.2)

Fixing ε to a certain constant value the relationship between α and m is almost
linear; since log[α/(1 + α)] is approximated as -1/α for moderate value of α, thus
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m ≈ 1 − αlogε . For example after setting ε = 0.01, a conservative approximation to
the number of clusters needed to approximate Dirichlet process is, m = 5α + 2 ac-
cording to Ohlssen et al. (2007). A value of α close to zero suggests that the data has
only one cluster which is modelled by using a common mean model whereas a large
value, α → ∞ indicates each data set (random effect if used it for modelling random
component) may represent a separate cluster. The challenge is in determining the
value of α and identify if it is large or small for modelling a given data set (Ohlssen
et al., 2007). Perhaps a flexible approach may be to specify a prior for α which al-
lows it to adapt to the data. Thus Ohlssen et al. (2007) suggested a uniform prior for
α ∼ Uni f rom (0.3, 10). The upper bound 10 results in a reasonably large value of m
and a lower bound of 0.3 is chosen to overcome computational issues due to small
value for pk. A study by Liu (1996) showed a relationship between α and number of
occupied clusters k, thus the conditional expectation of k is, E(k/α, M) ≈ α ln( α+M

α )

and its standard deviation is, SD (k/α, M) ≈
√

α(ln
(

α+M
α

)
− 1) ; where M is the

number of random components. For example, if α = 5 and M=100, E (k/α, M) ≈ 15
and SD (k/α, M) ≈ 3.2. In this study we use this expression to determine the number
of occupied clusters.

5.6 data

In order to show the application of the multivariate Bayesian nonparametric approach
for spatial modelling presented in section 5.3 we use data obtained from the 2017

South African National HIV Prevalence, Incidence, Behavior and Communication Sur-
vey. The 2017 South African National HIV Prevalence, Incidence, Behavior and Com-
munication Survey was conducted primarily to measure HIV prevalence, incidence,
proportion of males who are circumcised, proportion of HIV positive individuals who
are on ART, to measure if the country is on track to achieve the 90%-90%-90% targets
set by UNAIDS, risk factors of HIV infection etc. The data for measuring these indi-
cators were collected by asking respondents related questions and collecting blood
specimens from respondents. The survey interviewed a total of 36, 609 individuals of
which 22368 agreed to provide dried blood spots for HIV testing. The survey was pow-
ered (80% power) to measure a five percent change in HIV prevalence overtime by sex,
age group, race, locality type and province with a precision level of less than ±5% and
a design effect of 2. Moreover 16 districts were oversampled to estimate HIV preva-
lence in these districts. The survey employed a multistage stratified cluster sampling
design to select households and/or respondents. A sample of 1000 primary stage unit-
s/census enumeration areas, EAs were selected from a list of 84,907 small area layers
(SALs) and these selected enumeration areas were stratified by province and locality
type in order to ensure representativeness of the sample population. The SALs were
disproportionately assigned to strata that were determined based on province and
geography type to get sufficient sample for the white, colored and Indian community.
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From the selected SALs a systematic random sample of 15 visiting points/households
were selected and person of all ages living in the selected households were invited
to participate in the survey. More information about the 2017 South African National
HIV Prevalence, Incidence, Behaviour and Communication Survey can obtained from
the full study report (Simbayi et al., 2019).

For this study we computed direct estimates of district level observed HIV preva-
lence and proportion of HIV positive individuals who are on ART using data from
this survey by taking the survey design and response rates into account.

5.7 mapping district hiv prevalence and proportion on art among

hiv positive individuals in south africa

The application of the model discussed in the above section is demonstrated by ap-
plying it to direct estimates of district level HIV prevalence and ART coverage among
HIV positive individuals in South Africa. The covariates included in the model are the
multidimensional poverty index constructed using the 2016 community survey data
(Fransman & Yu, 2019), HIV prevalence among pregnant women obtained from the
2017 National Antenatal Sentinel Survey report (Woldesenbet et al., 2018), population
density and male condom distribution coverage obtained from the 2017 district health
barometer report (Massyn et al., 2017).

The model fitted to the district level HIV prevalence and ART coverage data is given
as:

logit (pi) = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ui + vi

where pij is the proportion of HIV positive individuals and proportion of HIV pos-
itive individuals who are on ART at district i, j = 1, 2 and denotes the outcome
variables, βq is vector of regression coefficients; where q = 1, 2, 3, 4, β0 is vector
of intercepts, ui is vector of structured spatial random component and vi is vector
of unstructured spatial random component. Estimation of model parameters is done
using Bayesian approach, via Markov Chain Monte Carlo procedure. Thus prior dis-
tribution for the random components and the model parameters need to be defined.
The prior destruction for the intercept is β0∼ uni f orm on (−∞,∞) the prior for the
rest of the regression coefficients is βq∼N(0, 0.00001) where q= 1, 2, 3, 4; prior for
the precision matrices Σθ

−1∼Wishart(v, Ωθ) and Σv
−1∼Wishart(v, Ωv) with v= 2 de-

grees of freedom and Ωθ=Ωv=

(
0.01 0

0 0.01

)
, prior for α∼ uni f orm(0.3, 10). And

priors for the remaining parameters is the same as that presented in section 3. The
analysis was done using OpenBUGS 3.2 statistical package. We run 50,000 MCMC
iterations to estimate the required vales and hence to make inferences. We discarded
7000 initial iterations as a burn in samples by assessing the the history plots of each
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model and for each parameter. And we also investigated the autocorrelation plots of
each parameter to determine the selection intervals to avoid correlation problems in
the generated chains. The correlation plots of the precision parameters are very high
suggesting wider selected interval; thus we selected every 30

th values which resulted
in lower autocorrelation.

5.8 results

Table 5.1 shows estimates of parameters of the Bayesian nonparametric model. As
can be seen in this table the ANC HIV prevalence computed from the 2017 National
Antenatal Sentinel HIV survey data is a significant predictor of district level HIV
prevalence and ART coverage in South Africa whereas the other covariates included
in the model are not significant predictors of the outcome variables. And the covari-
ance of the random components are significantly different from zero suggesting the
presence of significant association between the corresponding random components
included in each model.

Table 5.1: Estimates of parameters with their 95% confidence interval for the Bayesian
nonparametric model.

Covariates HIV-prevalence ART-coverage
Intercept -2.838 (-3.433, -2.273) -0.3652 (-1.314, 0.5121)
Population density -0.00006(-0.00025,

0.00017)
-0.00001(-0.00026,
0.00028)

Male condom distri-
bution

-0.00369 (-0.01200,
0.00483)

-0.003105(-0.01519,
0.00992)

Multidimensional
poverty index

1.775 (-1.01, 4.62) 3.126(-1.256, 7.568)

ANC HIV prevalence 3.211 (2.046, 4.459) 2.424 (0.4742, 4.32)
Σv11 149.1 (9.007, 603.9)
Σv12 3.984 (-293, 302.3)
Σv21 3.984 (-293, 302.3)
Σv22 138.1 (5.345, 622.7)
Σθk11 178.2 (7.919, 637)
Σθk12 -22.33 (-322.3, 278.6)
Σθk21 -22.33 (-322.3, 278.6)
Σθk22 115.8 (2.691, 521)
α 6 (1, 10)
k 14 (8, 20)
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As shown in map (a) and (b), Figure 5.1 the HIV prevalence and ART coverage
among HIV positive individuals is higher among districts located in the Eastern
Cape, Free State, Mpumalanga, KwaZulu Natal province followed by districts in Gaut-
eng, Limpopo, North West and Western Cape provinces. Thus, this suggests that HIV
prevalence and ART coverage are strongly associated justifying modelling these two
variables jointly.

Figure 5.1: Map of HIV prevance by distict (a) and proportion of ART coverage among HIV
positive individuals in South Africa, 2017

The estimated value of α is 6 and thus the infinite Dirichlet process mixture model
is approximated by a finite Dirichlet process mixture model that truncates at m= 32.
And the number of occupied clusters determined based on the expression given by
Liu (1996) is k= 14. The sum of the mixing weight estimates, (pis) is approximately
close to 1, which is one of the requirements of the truncated Dirichlet process mixture
model. All these indicate that an assumption of a normal distribution to the struc-
tured spatial random component may not be appropriate, suggesting a mixture of
distributions (a nonparametric approach) as a prior for the structured spatial com-
ponent. In addition, the LScv value of the multivariate nonparametric ICAR (384.5)
model is less than that of the multivariate ICAR-normal model (388.1) suggesting the
nonparametric ICAR model is better in terms of its predicative capacity as compared
to the multivariate ICAR-normal.

5.9 discussion

In this study we have presented a flexible nonparametric approach for modelling
multivariate spatial structured random effects by extending the univariate approach
presented by Li et al. (2015). Thus, in this approach prior uncertainty for the struc-
tured random effects is specified at the level of distribution function (Manda, 2011).
The nonparametric approach discussed in this chapter used a mixture Dirichlet pro-
cess prior with a stick-breaking process. The dependency for the multivariate spatial
structured random effect was introduced thought the mixing weights by using areal
spatial stick breaking process. We have illustrated this model by jointly modelling HIV
prevalence and ATR coverage using data determined from the 2017 South African Na-
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tional HIV Prevalence, Incidence, Behavior and Communication Survey. The models
were fitted using the Markov Chain Monte Carlo method and computation was car-
ried out using OpenBUGS, a freely available Bayesian statistical package.

According to estimates of the outcome variables using this model, district level HIV
prevalence and ART coverage are higher among districts located in the Southeastern
parts of the country, whereas districts located in the Southwestern part of South Africa
has low level of ART coverage and HIV prevalence. And the findings of this study are
similar to our previous work Ayalew et al. (2021), those of Gutreuter et al. (2019) and
(Woldesenbet et al., 2018). This suggests that HIV prevalence and ART coverage have
got similar spatial pattern and hence modelling them using joint spatial model is a
plausible approach.

We used the pragmatic approach proposed by Ohlssen et al. (2007) to determine the
number of truncation for the mixture Dirichlet process prior as the infinite Dirichlet
process prior is computationally infeasible. Thus, according to the estimates based on
this method the Dirichlet process is truncated at m= 32. And the sum of the first m−1
mass points is close to 1 which is a requirement to ensure proper mixture Dirichlet
distribution (Ohlssen et al., 2007). Accordingly the number of occupied clusters was
14 as estimated by the method proposed by (Liu, 1996).

Significant predictors of the outcome variables are the same for both the nonpara-
metric model and the parametric model (ICAR-normal and ICAR-skew-normal) and
estimates of the regression coefficients and their 95% confidence intervals are also
similar in both nonparametric and parametric scenarios. Thus, one may argue the ra-
tionale behind the use of more complex model over the relatively easier parametric
model, however when we do not have prior information to believe that parametric
MICAR-normal and MICAR-skew-normal distributions are adequate to describe the
distribution of the structured spatial random effects the argument may be irrelevant
(Manda, 2011; Hjort et al., 2010). Thus, if the spatial random effects had arbitrary
distributions the MICAR-skew-normal and MICAR-normal model might not be ade-
quate to model the structured spatial random effects.

One of the limitations of this study is that it may not be appropriate to model
infinite mixture Dirichlet process distribution as the method we proposed is a trun-
cated/finite mixture Dirichlet process distribution. The other limitation of this study
is that the number of predictor variables included in the model were few and hence
some relevant variables important for predicting the outcome variables may be miss-
ing. The model presented in this study can be extended by modelling the spatially
unstructured spatial random component or in the spatio-temporal component which
we are busy at the moment.
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6.1 conclusion and future work

Intrinsic conditional autoregressive (ICAR) model is used for estimating outcomes at
lower administrative level. ICAR model is based on the assumption that the struc-
tured spatial random effects are normally distributed. However, the type of distribu-
tion for structured spatial random effects may be unknown since random effects are
not observed as data and thus the reasonableness of the normality assumption may
be in question. The normality assumption is used because of its computational conve-
nience. Therefore, Besag et al. (1991) (developers of the ICAR model) suggested that
other forms of distributions can be used in ICAR model for modelling the structured
spatial random effects. Estimates may be biased and inferences may be misleading if
erroneous distributions of random effects are used in modeling process. Mostly data
transformation is used so that the transformed data resembles that of normality; due
to limitation associated with modeling transformed data, transformation should be
avoided if there is a theoretical distribution. Therefore, the aim of this study is to de-
velop and validate flexible spatial model specifically for modelling multimodal and
skewed spatially structured random effects. Thus, in this dissertation we reviewed
and investigated alternative flexible and nonparametric spatial models, conducted
simulation analysis to investigate the impact of wrongly specifying the distribution
of random effect and compared the performance of our suggested models against the
existing ones and applied the model we proposed to district level HIV burden and
ART coverage obtained from national survey data in South Africa.

This dissertation begins by presenting a literature review of spatial models start-
ing from the basic ones to the most complex and commonly used spatial models. In
addition, it also presents a brief overview of developments for extending the exist-
ing spatial models so that these approaches can be used as an alternative to normal
assumption in ICAR spatial modeling. In chapter 2, we briefly presented the exist-
ing modelling approaches to spatial data that assume ICAR-normal, ICAR-Laplace
and ICAR-skew-t for the structured spatial random effects. And we tried to show the
application of these models using the 2016 Demographic and health survey data con-
ducted in South Africa and estimated the district level HIV prevalence in the country.
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In order to identify the best model that captures the underlying features of the data
we used CPO and DIC. Estimation of model parameters were conducted in a Bayesian
framework and OpenBUGS statistical package was used for conducting the analysis.
As DIC was less appropriate for evaluating complex models such as skewed spatial
models (De la Cruz & Branco, 2009) we used CPO values as the main criteria for evalu-
ating the performance of these models for modelling the district level HIV prevalence
obtained from the 2016 SADHS survey data. Thus, according to the CPO values the
skew-t spatial model is the best model in predicting the district level HIV prevalence
data as compared to the ICAR-normal and ICAR-Laplace model.

In chapter 3 we developed and validated alternative flexible approaches that re-
lax the symmetric distributional assumption, ICAR-normal and ICAR-Laplace dis-
tributions, for modelling structured spatial random effects. In this chapter we used
ICAR-skew-normal and ICAR-skew-Laplace distributions for modelling the spatially
structured random effects in spatial models. These distributions tend to ICAR-normal
and ICAR-Laplace when the skewness parameter approaches to zero. Our approach
is suitable for handling data that are skewed and/or contains outlying observations.
We simulated two spatially structured random effects from ICAR-t and ICAR-normal
distributions with outlier observations on the municipal map of South Africa to show
the impact of wrongly specifying the distribution of the spatially structured random
effects in spatial models, and hence the performance of our model against the existing
ones. We fitted the ICAR-normal, ICAR-skew-normal, ICAR-Laplace and ICAR-skew-
Laplace models to each of the simulated data sets and the analysis was done using a
Bayesian approach. The mean square error (MSE) and CPO were used to compare the
performance of these competing models. The MSE seems to suggest that there is no
difference among competing models in terms of precision for both data sets. Whereas
the CPO values indicated that the ICAR-Laplace and ICAR-skew-Laplace model are
the best models for predicting the outcome variables for structured spatial random
effects that are drawn from ICAR-normal and ICAR-t distributions with outlier ob-
servations, respectively. Also, we presented the application of our approach to a real
data set by modelling the HIV burden by district in South Africa. Analysis of district
level HIV burden data obtained from the 2016 SADHS data using our approach and
existing methods indicated that the ICAR-skew-normal model seems to better capture
the underlying features of the data as compared to the other models.

Two or more outcome variables could be observed in a given area and these vari-
ables may show some form of spatial consistency over the entire region; and hence
modeling these outcomes jointly improves the precision of the outcome of interest
and helps to explore shared and specific trends in disease risks. Thus the univariate
ICAR-skew-normal approach that we developed in chapter 3 was extended to model
two or more variables in chapter 4. As in chapter 3 we simulated spatially structured
random effects from multivariate ICAR-normal and multivariate ICAR-t distributions
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with outlier observations on the municipal map of South Africa. We analyzed these
simulated data in a Bayesian framework to show that our approach (Multivariate
ICAR-skew-normal) has performed better than the multivariate ICAR-normal if the
data has skewed and/or outlying observations. Comparison of these models using
the CPO values suggested that the multivariate ICAR-skew-normal model is the best
model in predicting the values of the outcome variable for both data sets simulated
from multivariate ICAR-normal and multivariate ICAR-t distributions with outlier
observations. There was no difference between the two models in terms of precision
for both data sets as per MSE values. To show the application of the multivariate
ICAR-skew-normal approach to a real data set we modelled knowledge of HIV status
among pregnant women and proportion of pregnant women who know their HIV
status and are on ART by district in South Africa. The MICAR-skew-normal model
performs relatively better then the MICAR-normal in terms of predicting the values
of the outcome variable according to the CPO values.

The approaches we developed and presented in chapter 3 and 4 are suitable for
modelling data with unimodal distributions. In addition, the commonly used mod-
elling approaches and those we developed assumed that the random effects follow
some form of parametric distributions. However, there could be instances where data
are multimodal or even the distribution of data may be unknow thus in such scenarios
our approaches may not be appropriate for modeling such data. One could use multi-
modal distributions in such situation, but it may be difficult to determine the number
of mixtures especially for modeling random components since random components
are not observed as data. Such situation motivates the need to use Bayesian nonpara-
metric approach in spatial model for modelling the structured spatial random effects.
Therefore, in chapter 5 we extended the univariate Bayesian nonparametric approach
for modelling areal spatial data developed by Li et al. (2015) to a multivariate setting.
Areal stick-breaking representation was used to develop our approach in a Bayesian
nonparametric framework. To show its application to a real data set we fitted this
model to a district level HIV prevalence and proportion of HIV positive individual
who are on ART determined from the 2017 South African National HIV Prevalence, In-
cidence, Behaviour and Communication Survey. According to the estimates produced
using this model HIV prevalence and ART coverage are higher in districts located in
the eastern and central parts of the country.

Studies recommended that sampling weights in complex survey need to be taken
into account in spatial modelling as it adjusts over/lower representation of sampling
units (Vandendijck et al., 2016; Chen et al., 2014; Watjou et al., 2017). Failure to ac-
count sampling weights in spatial modelling could result in biased estimates (Chen
et al., 2014; Mercer et al., 2014; Cassy et al., 2022). Spatial modelling approaches that
considers sampling weights produce stable estimates with narrow confidence interval
(Cassy et al., 2022; Mercer et al., 2014). In this dissertation we used complex survey
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data to show the application of our approach to a real data set. Thus we took into ac-
count the survey design and sampling weights which takes into account non response
at each stage of sampling units in determining the direct estimates of the outcomes
(HIV prevalence and ART coverage) at district level which is in turn used for calcu-
lating weighted sample size and weighted cases in each district which are needed for
modelling prevalence/proportion using Bayesian approaches in OpenBugs statistical
package.

6.2 future work and limitations

Application of our approaches were demonstrated by modeling district level data of
South Africa and hence may not show variations at lower granular level such as at
sub-district level. Thus further study can be conducted using our approaches to model
spatial data at finer geographical level such as sub-district level in the case of South
Africa. We used health survey data (specifically data about HIV) to show the applica-
tion of our approach to a real data set as these data are readily available to us, and
hence didn’t show the application of our approach using non-health data. Therefore,
a study can be conducted to show the application of our approach outside of health
data. Our approaches are focused on modeling data with outlying/skewed observa-
tions and multimodal distributions and hence are not by no means exhaustive as the
approach we developed may not be suitable for modelling leptokurtic and platykur-
tic distributions. Thus, future research can be conducted in modelling spatially struc-
tured random effects using these distributional approaches both in the univariate and
multivariate settings. We used our approach for modelling the structured spatial ran-
dom components in spatial model and assumed that the unstructured spatial random
components are normally distributed. Thus, future work can be done by using our ap-
proaches for modelling the unstructured spatial random components. Moreover, our
approaches both parametric and nonparametric are developed and tested for mod-
elling the structured spatial random component; hence our methods can be extended
for modelling the structured temporal component in spatiotemporal modelling ap-
proaches (currently we are busy modelling the temporal using Bayesian nonparamet-
ric approach). As a limitation, the Bayesian nonparametric approach we proposed is
appropriate for modelling truncated Dirichlet process and it may not be suitable for
modeling infinite Dirichlet process. And the explanatory variables included in our
model are few and thus some variables important for explaining the variability of the
model may be missing; so, this may have an impact on the accuracy of the estimates
generated by models.
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A P P E N D I X : R C O D E S F O R S I M U L AT I N G I C A R - N O R M A L W I T H
O U T L I E R S A N D W I N B U G S C O D E F O R A N A LY Z I N G T H E
S I M U L AT E D D ATA F O R C H A P T E R 3

R Codes for simulating ICAR-skew-normal structured spatial effect
# Packages required
library(maps)
library(maptools)
library(spdep)
library(rgdal)
sf_use_s2(FALSE)
library(mclcar)
library(dplyr)
library("writexl")
shape <- readOGR(dsn = "C:/Users/ylo8/Desktop/Data for GIS/SA Demarcation
Board Shapefiles/Local Munics1", layer = "LocalMunicipalities2011")
W.nb <- poly2nb(shape)
W<- nb2mat(W.nb, style="B")
e<-eigen(W)
max_e<-max(e$value)
rho<-1/max_e
s1<- CAR.simWmat(rho = 0.1678633, prec = 1/2, W = W)
s<-(s1-mean(s1))/sqrt(var(s1)) #standardised to avoid errors & warnings in generating
data from rbinom
y<-1:234

m<-data.frame(y,s)
k<-m[with(m,order(s)),] # sort s from largest to smallest

for (i in 214:234){
k$s[i] < −k$s[i] ∗ 3}
#thenmergetherandome f f ectsusingthebelowcodes.

df1= m %>% inner _join(k,by="y")
u<-df1$s.y

nu<-rnorm(234) # the nonspatial structured effect
nu1<-(nu-mean(nu))/sqrt(var(nu)) #standardised to avoid errors warnings in gener-
ating data from rbinom
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p1<-exp(u+nu1)
p2<-1+exp(u+nu1)
p<-p1/p2

n<-0
for (i in 1:234){
n[i] < −sample(300 : 600, 1, replace = FALSE)
}
x < −0
f or(i in 1 : 234){
x[i] < −rbinom(1, n[i], p[i])
}
ux < −data. f rame(u, nu1, x, n, p)
write_xlsx(ux, ”C : /Users/ylo8/Desktop/ f ilename.xlsx”)

WinBUGS Codes for ICAR-skew-normal model
model {
f or(i in 1 : 234){
y[i] ∼ dbin(p[i], n[i])
logit(p[i]) < −u[i] + v[i]
v[i] ∼ dnorm(0, tau.v)
wu[i] ∼ dnorm(0, 1)I(0, )
u[i] < −m[i] + deltau ∗ wu[i]
LL[i] < −log f act(n[i])− (log f act(y[i])+ log f act(n[i]− y[i]))+ y[i] ∗ log(p[i])+ (n[i]−
y[i]) ∗ log(1 − p[i])
ppo[i] < −exp(LL[i])
icpo[i] < −(1/ppo[i])
cpo[i] < −1/icpo[i]
}
m[1 : 234] ∼ car.normal(adj[], weights[], num[], tau.u)
f or(kin1 : sumNumNeigh)weights[k] < −1
tau.v ∼ dgamma(0.05, 0.0005)
tau.u ∼ dgamma(0.05, 0.0005)
sigma.v < −sqrt(1/tau.v)
sigma.u < −sqrt(1/tau.u)
deltau ∼ dnorm(0, 0.01)
}
#data
#INITIALS
list(tau.u = 1, tau.v = 1, deltau = 0, . . . )
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