
Modelling Obesity Risk
Factors among Adult Females
in South Africa via a GLMM:

Classical and Bayesian
Approaches

Telissa Pillay

December, 2016



Modelling Obesity Risk Factors among Adult
Females in South Africa via a GLMM:

Classical and Bayesian Approaches

by

Telissa Pillay

A dissertation submitted to the

University of KwaZulu-Natal

in fulfilment of the requirements

for the degree of

MASTER OF SCIENCE (STATISTICS)

SCHOOL OF MATHEMATICS, STATISTICS & COMPUTER SCIENCE

WESTVILLE CAMPUS, DURBAN, SOUTH AFRICA



Declaration - Plagiarism

I, Telissa Pillay, declare that

1. The research reported in this dissertation, except where otherwise indicated, is
my original research.

2. This dissertation has not been submitted for any degree or examination at any
other university.

3. This dissertation does not contain other persons’ data, pictures, graphs or other
information, unless specifically acknowlegded as being sourced from other
persons.

4. This dissertation does not contain other persons’ writing, unless specifically
acknowledged as being sourced from other researchers. Where other written
sources have been quoted, then

(a) their words have been re-written but the general information attributed
to them has been referenced, or

(b) where their exact words have been used, then their writing has been
placed in italics and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted
from the internet, unless specifically acknowledged, and the source being de-
tailed in the dissertation and in the reference sections.

———————————————– ——————————————–
Telissa Pillay (Student) Date

———————————————– ——————————————–
Mr. M.J. Hammujuddy (Supervisor) Date



Disclaimer

This document describes work undertaken as a Master’s programme of study at the
University of KwaZulu-Natal (UKZN). All views and opinions expressed therein
remain the sole responsibility of the author, and do not necessarily represent those
of the institution.



Abstract

Obesity has reached epidemic proportions and has emerged as a serious public

health concern in South Africa, especially among females. Obesity is a major con-

tributor to the burden of non-communicable diseases, and thus, imposes substantial

costs to the health care system as well as the economy. Therefore, understanding

the risk factors associated with obesity is imperative in informing policy and devel-

oping effective prevention strategies. The etiology of obesity arises from a multi-

level framework. In this study, a generalized linear mixed model (GLMM), which

is a model-based statistical approach suitable for handling hierarchically structured

discrete data, was employed to identify risk factors associated with obesity among

adult females in South Africa. Obesity is classified as a body mass index (BMI) ≥ 30

kg/m2. Therefore, the response variable of interest was binary, indicating whether

the female was obese or not. The GLMM was applied to a subset of the data set from

the National Income Dynamics Study (NIDS) which is the first national panel study

of individuals of all ages in South Africa. In fitting the GLMM, different classical and

Bayesian estimation methods were used and different link functions for binary data

were explored. Results were obtained using the Laplace approximation, adaptive

Gauss-Hermite quadrature, penalized quasi-likelihood (PQL), Markov chain Monte

Carlo (MCMC) and integrated nested Laplace approximation (INLA) methods. This

study confirmed that these methods differ in terms of computational speed. More-

over, in identifying the key determinants of obesity among adult females in South

Africa, this study found that age, ethnicity, marital status, education level, employ-

ment status, household income, household expenditure on food and geographical

type of residence are highly significant contributing risk factors.
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Chapter 1

Introduction

Obesity has become a global epidemic with more than 500 million obese adults

worldwide. According to the World Health Organization (2014), the prevalence of

obesity has more than doubled since 1980 and the number of obese adults is ex-

pected to rise to more than a billion by 2030. The escalating prevalence of obesity is

associated with increased morbidity and mortality from comorbidities such as car-

diovascular disease, diabetes mellitus (type 2) and various types of cancer, and thus,

imposes a significant economic burden on already strained healthcare systems (Ma-

lik et al., 2012; McCormick et al., 2012). Furthermore, obesity imposes substantial

costs to the economy, such as economic disenfranchisement, loss of productivity, re-

duction in tax revenue, and increased government expenditure on incapacity and

unemployment benefits (McCormick et al., 2012; Some et al., 2016).

Globally, the prevalence of obesity is higher among females. In regions such as

Africa and South East Asia, the prevalence among females is more than double

that among males (World Health Organization, 2014). In the past, the African con-

tinent has been grappled with undernutrition and the burden of infectious diseases

such as HIV and tuberculosis. However, in recent years, the rapid rise in the preva-

lence of obesity and associated comorbidities poses a major concern for the continent

(Micklesfield et al., 2013). In order to inform policy and develop effective prevention

strategies to reduce the prevalence of obesity, it is imperative to identify and under-

stand the risk factors associated with the epidemic (Affenito et al., 2012; Sartorius

et al., 2015).
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1.1. Background

1.1 Background

South Africa (SA) is the southernmost country on the African continent, and has an

area of 1,22 million square kilometres (Stats SA, 2012). On the south of SA lies 2 798

kilometres of coastline that stretches along the Atlantic Ocean and the Indian Ocean

(WWF-SA, 2016), to the north lies the neighbouring countries of Namibia, Botswana

and Zimbabwe, to the north east are Mozambique and Swaziland, and enclaved is

the Kingdom of Lesotho (Mofuoa, 2015). SA is made up of nine provinces which are

administratively divided into 52 district councils. The district councils consist of 8

metropolitan and 44 district municipalities, as seen in Figure 1.11.

Figure 1.1: Map of South Africa

1District municipalities are numbered according to their district codes and metropolitan municipal-
ities are abbreviated according to their names.
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1.1. Background

The population of SA is currently estimated at 54,96 million, and with a population

of 51,77 million in 2011, the annual population growth rate is estimated at 1.65%

(Stats SA, 2012, 2015). Approximately 51% of the population are females. There

are four population groups in SA: Africans, Whites, Asians/Indians and Coloureds.

Approximately 80% of the population are Africans (Stats SA, 2015).

SA is categorized as a middle-income country and has one of the largest economies

in Africa (World Bank Group, 2016). Moreover, the country is undergoing a rapid

epidemiological transition and has the highest prevalence of obesity, predominantly

among females, in the Sub-Saharan region (Goedecke et al., 2006; Micklesfield et al.,

2013). In 2008, the prevalence of obesity among South African adult females was at

33% (Ardington & Gasealahwe, 2012). A study undertaken in 2013 revealed that this

figure had risen to 42%, and was approximately three times the obesity prevalence

among males (The GBD 2013 Obesity Collaboration, 2014).

The SA government has recently taken heed to the obesity epidemic and has intro-

duced a national strategy for the prevention and control of obesity while encourag-

ing additional research in the field (Department of Health: RSA, 2015). The strategy

aims to reduce the prevalence of obesity by 10% between 2015-2020. Studies have

shown that the high obesity prevalence among females in SA is attributed to fac-

tors such as African ethnicity, urban residence (Puoane et al., 2002), being married,

lack of exercise (Alaba & Chola, 2014), high income quintiles (Case & Menendez,

2009), high household expenditure on food and crime (Sartorius et al., 2015). Other

studies (Butzlaff & Minos, 2016; Cois & Day, 2015; Malhotra et al., 2008) have found

significant associations between adult obesity prevalence and factors such as age,

education, employment status, smoking and alcohol consumption. Although these

studies have identified this wide variety of risk factors associated with obesity, there

is still a need to further investigate these factors, especially among South African

females, in order to evaluate and improve existing governmental interventions as

well as informing and developing new strategies.
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1.2. Objectives

1.2 Objectives

Obesity is a problem arising from a complex system in which individual behaviour is

influenced not only by individual factors, but also by multiple levels of socioenviron-

mental factors, such as institutions, families and neighbourhoods, social networks,

culture and the physical environment, that are heterogeneous and interdependent.

Modelling data from such a complex system requires methods that address multiple

factors and levels as well as accounting for the apparent heterogeneity in the data

(Huang et al., 2009; Lakerveld et al., 2012). Such data analysis methods include both

design-based and model-based approaches. For design-based methods, such as sur-

vey logistic regression, sampling weights are incorporated in the model to account

for the complex sampling design. This method, however, is useful when only infer-

ences on certain explanatory variables are of interest. This method also assumes the

observations are independent. When heterogeneity that is attributable to multiple

levels of sampling in the data is also of interest, a model-based approach is more

appealing (Heeringa et al., 2010). Thus, this method accounts for possible correla-

tions that may exist among the observations. Therefore, in this study, a generalized

linear mixed model (GLMM), which is a model-based statistical approach suitable

for handling hierarchically structured discrete data, was employed. The objectives

of this study were to:

• Account for heterogeneity in the distribution of obesity among females in SA

by fitting a GLMM using data from the National Income Dynamic Study (NIDS).

• Identify significant risk factors associated with obesity among females in SA.

• Examine and compare the different classical and Bayesian estimation methods

used in fitting a GLMM.
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1.3. Overview

1.3 Overview

In this chapter, we introduced some background information. In Chapter 2, the Na-

tional Income Dynamic Study (NIDS) is introduced and exploratory data analyses

are performed on the NIDS data set. Chapter 3 introduces GLMMs and some classi-

cal estimation methods are discussed, and fitted to the data set. Chapter 4 gives an

overview of the Bayesian approaches where the Markov chain Monte Carlo (MCMC)

and the integrated nested Laplace approximation (INLA) methods are discussed,

and applications thereof are illustrated. The last chapter discusses results obtained

from the different estimation methods, highlights conclusions and presents possible

areas for further study.
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Chapter 2

National Income Dynamics Study

This study analyzes data from the National Income Dynamics Study (NIDS) which

is the first national panel study of individuals of all ages in South Africa. NIDS was

established by the South African Presidency with the aim of tracking changes in the

well-being of the South African population. The NIDS surveys were conducted by

the South African Labour and Development Research Unit (SALDRU) based in the

School of Economics at the University of Cape Town where ethical approval was

granted by the Faculty of Commerce Ethics Committee (Leibbrandt et al., 2009).

2.1 Sampling procedure

The NIDS surveys were carried out in 2008 (Wave 1), 2010/2011 (Wave 2) and 2012

(Wave 3). A stratified, two-stage random cluster sample design was employed to

select households to be included in the sample at baseline. The sample was stratified

according to the 52 district councils in SA from which clusters of dwelling units were

systematically drawn. The target population was private households, residents in

workers’ hostels, convents and monasteries. Other collective living quarters were

excluded from the sampling frame (Leibbrandt et al., 2009).

At baseline, 28 226 individuals from 7 296 households were successively interviewed,

resulting in a household level response rate of 69% and an individual response rate

within households of 93%. The second and third waves of the NIDS survey provides

data on 28 551 individuals from 6 787 households and 32 633 individuals from 8 040

households, respectively (de Villiers et al., 2013). In this study, data from the third

6



2.2. Data collection

wave were used. However, the analysis was restricted to females aged ≥ 15 years

old. Females who were pregnant at the time of interview were excluded from the

sample as pregnancy influences weight. Furthermore, those with missing data en-

tries were also excluded, resulting in a complete case analysis. Thus, the final sample

in this study was made up of 10 411 females from 6 459 households.

2.2 Data collection

The selected households were visited and interviewed by trained fieldworkers. Three

questionnaires were administered: household, adult and child questionnaires. A

proxy questionnaire was also used for those individuals who were unavailable or

unable to answer their own adult questionnaire. These questionnaires were de-

signed to collect data on a wide range of information that includes basic demograph-

ics, education, employment, health (including anthropometric data), household in-

come and expenditure.

Quality controllers were employed to verify and check the completeness of the data

obtained during fieldwork. An in-field and telephonic call-back strategy were used

to validate the professionalism of fieldworkers ensuring that the correct households

were being interviewed, gaining insight on refusals to participate as well as obtain-

ing key missing data in cases that did not warrant the questionnaires being sent back

to field (Leibbrandt et al., 2009).

2.3 Variables of interest

The body mass index (BMI) is defined as an individual’s body mass (in kilograms)

divided by the square of her height (in metres). In the NIDS survey, weight and

height measurements for all individuals were taken and their individual BMIs were

computed. The response variable of interest was obesity which is classified as BMI

≥ 30 kg/m2. The independent variables were based on the paper by Sartorius et al.

(2015). The demographic variables were age, population group and marital status.

The lifestyle variables included exercise frequency, smoking, alcohol consumption,

depression and total household expenditure on food. The variables education level,

7



2.4. Exploratory data analysis

employment status and total household income were categorized as socio-economic

variables. The environmental variables were geographical type and crime.

The independent variables that were not categorical were recoded. These include

age, total household expenditure on food and total household income. Physical ex-

ercise was coded 0 if the female exercised less than once a week, 1 if exercised one

to two times a week, and 2 if exercised more than twice a week. Out of the five

smoking-related questions in the adult questionnaire, current smoking status was

used. Alcohol consumption was dichotomous and coded 0 if the female never or

no longer drinks alcohol, and 1 if not. The 10-item Center for Epidemiologic Stud-

ies Depression Scale (CES-D) was used in screening for depressive symptoms. A

total score of 10 or higher suggests the presence of significant depressive symptoms

(Zhang et al., 2012). Geographical type was categorized into urban, traditional and

farm areas. Urban areas are defined as built-up areas established through cities,

towns and suburbs. Traditional areas are communally-owned land under the juris-

diction of traditional leaders, and farms are land used for commercial farming. The

variable crime was dichotomous and based on whether or not the individual per-

ceived crime (burglaries, muggings or thefts) to be common in their neighborhood

or not. In the following section, we explore the NIDS data set descriptively.

2.4 Exploratory data analysis

Of the 10 411 females in the sample, 3 601 had a BMI of 30 kg/m2 or greater, result-

ing in an observed obesity prevalence of 34.6%. Table 2.1 displays the distribution

of females in the sample according to the different independent variables. The per-

centage of females in the sample ranged from 9.9% between the ages of 65 years

and older to 28.0% between the ages of 15 and 24 years. Figure 2.1 shows that the

observed prevalence of obesity peaked at 50.3% in the age group 55 to 64 years.

Furthermore, there was an increase in the observed prevalence of obesity as age in-

creased, followed by a decline after the age of 65 years.

8



2.4. Exploratory data analysis

Table 2.1: Percentage of females according to the different explanatory variables

Variable Percentage

Age

15-24 28.0

25-34 20.2

35-44 16.2

45-54 14.7

55-64 11.0

65+ 9.9

Population group

African 82.9

Coloured 13.5

Asian/Indian 1.0

White 2.6

Marital status

Married 23.8

Living with partner 6.3

Widow 11.5

Divorced or separated 2.5

Never married 55.9

Exercise frequency

Less than once a week 87.3

1 to 2 times a week 6.4

More than twice a week 6.2

Current smoker

No 92.6

Yes 7.4

Alcohol consumption

No 86.8

Yes 13.2

Depression

No 73.6

Yes 26.4

Continued on next page
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2.4. Exploratory data analysis

Table 2.1 – Continued from previous page

Variable Percentage

Household expenditure on food

Quartile I 25.0

Quartile II 26.5

Quartile III 24.1

Quartile IV 24.4

Education

No schooling 12.1

Primary 21.5

Secondary 64.7

Tertiary 1.7

Employment status

Unemployed 70.7

Employed 29.3

Household income quintile

I 21.2

II 20.9

III 19.8

IV 19.6

V 18.5

Geographical type

Urban 45.5

Traditional 46.6

Farms 7.9

Crime

No 54.3

Yes 45.7

The majority of the females were African, making up more than eighty percent of

the sample. Only 1.0% of the females were Asian/Indian. Figure 2.2 shows the

observed prevalence of obesity corresponding to the different population groups

in the study. The observed prevalence according to population group ranged from

26.9% to 41.7%, with the observed prevalence among African and Coloured females

not differing much. Although the observed prevalence of obesity was highest among

white females, this group only made up 2.6% of the sample.
10



2.4. Exploratory data analysis

Figure 2.1: Observed prevalence of obesity according to the different age groups

Figure 2.2: Observed prevalence of obesity according to the different population groups

More than half of the females in the sample (55.9%) reported never being married,

followed by married (23.8%) and widowed (11.5%). Figure 2.3 shows that those

married had the highest observed obesity prevalence at 52.7%, followed by those

11



2.4. Exploratory data analysis

divorced or separated with an observed prevalence of 46.3%. Those reported never

being married had the lowest observed prevalence at 25.6%. Only a small proportion

of the females in the sample (12.6%) reported having exercised at least once a week,

with the majority (87.3%) having exercised less than once a week. Of those who

exercised less than once a week, 35.2% had a BMI ≥ 30 kg/m2, as seen in Figure

2.4. The observed prevalence among those females who exercised one to two times

a week (28.9%) and those who exercised more than twice a week (31.4%) was not

much different.

Figure 2.3: Observed prevalence of obesity according to marital status

Figure 2.4: Observed prevalence of obesity according to exercise frequency

12



2.4. Exploratory data analysis

Table 2.1 shows that 7.4% of the female study sample were smokers and 13.2% con-

sumed alcohol. Figure 2.5 shows the observed prevalence of obesity according to

these two lifestyle choices. The observed prevalence among non-smokers (35.1%)

was slightly higher compared to smokers (28.2%). Similarly, the observed prevalence

among those who did not consume alcohol (35.3%) was slightly higher than those

who did (29.9%). More than a quarter of the females in the sample (26.4%) were clas-

sified as suffering from depression according to the CES-D. Figure 2.6 reveals that

the observed prevalence of obesity among those classified as suffering from depres-

sion (35.6%) and those not classified as suffering from depression (34.2%) was not

much different.

Figure 2.5: Observed prevalence of obesity according to smoking status and alcohol con-
sumption

13



2.4. Exploratory data analysis

Figure 2.6: Observed prevalence of obesity according to depression

The percentage of females in the sample with a total household expenditure on food

within the different quartiles ranged from 24.1% to 26.5%. The observed prevalence

of obesity according to the different quartiles ranged from 30.0% to 39.6%, as seen

in Figure 2.7. Those females with a total household expenditure on food within the

highest quartile had the highest observed prevalence, with the observed prevalence

among those with a total expenditure on food within the second and third quartiles

not differing by much.

Figure 2.7: Observed prevalence of obesity according to household expenditure on food

14



2.4. Exploratory data analysis

Most of the females in the sample (64.7%) reported having received up to secondary

education followed by primary education (21.5%). As seen in Figure 2.8, those

females with secondary education had the lowest observed obesity prevalence at

32.4%. In contrast, those having received tertiary education had the highest ob-

served prevalence at 47.8%. However, this group only made up 1.7% of the sample.

A total of 70.7% of the females in the sample reported being unemployed. Figure

2.9 shows the observed prevalence of obesity according to employment status. Out

of the females who were unemployed, 31.1% were classified as obese. The observed

prevalence among those females who were employed was slightly higher at 42.9%.

Figure 2.8: Observed prevalence of obesity according to education level

The percentage of females in the sample according to the different household income

quintiles ranged from 18.5% to 21.2%. Females belonging to the highest household

income quintile had the highest observed obesity prevalence at 43.3% as seen in

Figure 2.10. The observed prevalence among those females belonging to the first

and second household income quintile, and those belonging to the third and fourth

household income quintile were not much different.
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2.4. Exploratory data analysis

Figure 2.9: Observed prevalence of obesity according to employment status

Figure 2.10: Observed prevalence of obesity according to household income

Females who lived in urban and traditional areas made up 45.5% and 46.6% of the

sample, respectively. Only 7.9% of the female study sample lived on farms. Figure

2.11 shows that the observed prevalence of obesity was highest among those liv-
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2.4. Exploratory data analysis

ing in traditional areas (38.7%) followed by farms (31.8%). However, the observed

prevalence among those living in farms and those in urban areas was not much dif-

ferent. Out of the total number of females in the sample, 54.3% reported living in

areas where crime was common. Figure 2.12 shows that the observed prevalence

among this group was 34.4%, and the observed prevalence among those reported

living in areas where crime was not common was 34.8%. This suggests that crime is

not a significant determinant of obesity in females in SA.

Figure 2.11: Observed prevalence of obesity according to geographical type

Figure 2.12: Observed prevalence of obesity according to crime
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2.4. Exploratory data analysis

2.4.1 Test of Association

A chi-square test was used to test for associations between the explanatory variables

and obesity among females in the NIDS data. The results of this test, summarized in

Table 2.2, show that there is a positive association between obesity among females

and age, population group, marital status, smoking status, alcohol consumption,

household expenditure on food, education level, employment status, household in-

come and geographical type of residence (all p-values<0.05). No association was

found between obesity among females and exercise frequency (p-value=0.1053), de-

pression (p-value=0.1780) and crime (p-value=0.6787).

Table 2.2: Cross tabulation of obesity status and explanatory variables

Effect Numerator DF F-Value P-Value

Age 5 1040.96 <0.0001

Population group 3 9.40 0.0245

Marital status 4 611.73 <0.0001

Exercise frequency 2 14.21 0.1053

Current smoker 1 15.08 <0.0001

Alcohol consumption 1 15.44 <0.0001

Depression 1 1.81 0.1780

Household expenditure on food 3 52.79 <0.0001

Education 3 52.19 <0.0001

Employment status 1 132.40 <0.0001

Household income quintile 4 98.94 <0.0001

Geographical type 2 69.33 <0.0001

Crime 1 0.17 0.6787

To further explore the relationship between obesity among females and the demo-

graphic, lifestyle, socioeconomic and environmental variables, a survey logistic model

was fitted to the NIDS data. The procedure and results of this analysis are presented

in Appendix D. This method, however, is design-based, and thus does not account

for possible correlations in the observations. In the case of obesity it is necessary to

account for the effects of clustering since individuals from the same cluster tend to be

more homogeneous compared to those from different clusters (Huang et al., 2009).

Therefore, the next two chapters focuses on GLMMs. Both classical and Bayesian

estimation methods are discussed, and applications thereof are illustrated.
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Chapter 3

Generalized Linear Mixed Models:
The Classical Approach

3.1 Introduction

The simplest statistical model is the classical linear model (LM) where responses

are assumed to be independently Gaussian distributed with constant variance and

where the mean of the response variable is a linear combination of explanatory vari-

ables. Although LMs are versatile and robust, they are not suitable for modelling

discrete data (Rencher & Schaalje, 2008). The analysis of discrete data can be per-

formed within the framework of generalized linear models (GLMs). This class of

models, introduced by Nelder & Wedderburn (1972), are an extension of LMs. In

GLMs, the assumption of independence among responses is maintained but their

distribution belong to the exponential family. Furthermore, a suitable transforma-

tion of the mean results in a linear combination of explanatory variables and the

variance is a function of the mean (McCullagh & Nelder, 1989). The linear combina-

tion forms the linear predictor and is referred to as the systematic component, while the

response variable is known as the random component (Agresti, 2015).

Another extension of the LM is the linear mixed model (LMM). In LMs, explanatory

variables may be continuous or categorical. The categorical variables, commonly

known as factors, usually comprise of several fixed levels, and may be crossed or

nested (Searle et al., 2006). In a statistical analysis, the focus is essentially on the

fixed effects of these levels on the response variable. By contrast, an LMM contains

19



3.2. GLMM

random effects as well as fixed effects. Random effects are due to an infinite set of

levels of a factor from which only a random sample of those levels are considered to

be present in the data (McCulloch et al., 2008). LMMs are often used in the modelling

of hierarchical or multilevel data (Ker, 2014) where observations are obtained within

clusters. Moreover, observations within the same cluster tend to be correlated. Thus,

in LMMs, the assumption of independence among observations is relaxed. The cor-

relation structure of the observations is accounted for by the inclusion of random

effects in the model (Hedeker, 2005).

The generalized linear mixed model (GLMM) is a combination of the aforemen-

tioned extensions of the LM: The GLM and LMM (Breslow, 2003). In GLMMs, an un-

observed vector of random effects is introduced into the linear predictor of a GLM.

Moreover, the observations are assumed to be conditionally independent given the

random effects (Breslow & Clayton, 1993). In this chapter, we present an overview

of GLMMs from a classical perspective.

3.2 GLMM

Let yk = (yk1, . . . , yknk
)′ denote a vector of responses where yki represents the ith

response from the kth cluster; i = 1, . . . , nk and k = 1, . . . ,K. Let γk = (γk1, . . . , γkc)′

denote a q-vector of random effects, where γkj (j = 1, . . . , c) is the jth random ef-

fect associated with cluster k, having qj levels such that q =
∑c

j=1 qj . The random

effects are assumed to be independently Gaussian distributed with E(γk) = 0 and

V ar(γk) = G(ϕ); that is, γk ∼ N(0,G), where G ≡ G(ϕ) with ϕ being a c×1 vector

of variance components (Lin & Breslow, 1996; Zhang & Lin, 2008).

Given the vector γk, the responses yki are assumed to be conditionally independent

with density belonging to the exponential family of distributions which, in its canon-

ical form (McCulloch et al., 2008), is given by

f(yki|θki, φ) = exp
{

yki θki − b(θki)
aki(φ)

+ c(yki, φ)
}

(3.1)

where θki is called the natural parameter, φ is referred to as the dispersion or scale pa-
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3.2. GLMM

rameter and aki(φ), b(θki) and c(yki, φ) are known functions. The function aki(φ) has

the form aki(φ) = φ/τki, where τki is a known weight associated with yki (Agresti,

2015). It can be shown that the conditional mean and conditional variance of yki are,

respectively, given by

E( yki|γk) = µ
γk

ki (3.2)

and

V ar( yki|γk) = φ τ−1
ki V ( µ

γk
ki ) (3.3)

where V ( µ
γk

ki ) is known as the (conditional) variance function. For binary data, the

response yki takes on the value 1 if the outcome is a success, and 0 otherwise. Thus,

yki follows a Bernoulli distribution with conditional mean given by Equation 3.2 and

conditional variance

V ar( yki|γk) = φ τ−1
ki µ

γk
ki (1− µ

γk
ki )

In GLMs, a monotone and twice differentiable function g (Wedderburn, 1976) is used

to transform the mean of the response in order to achieve a linear relationship be-

tween the mean and the systematic component (McCullagh & Nelder, 1989). Simi-

larly, in GLMMs, the conditional mean of yki is transformed such that

g( µ
γk

ki ) = η
γk

ki = x′
ki β + z′

kiγk (3.4)

Or, more compactly, as

g(µ γk
k ) = η

γk
k = X′

k β + Z′
kγk (3.5)

where

• µ
γk

k is an nk×1 conditional mean vector, with g(µ γk
k ) = (g(µ γk

k1 ), . . . , g(µ γk
knk

))′.

• Xk is an nk×p design matrix associated with fixed effects vector β = (β1, . . . , βp)′.

• Zk = [Zk1, . . . ,Zkc], is an nk × q design matrix associated with the q-vector γk,

where Zkj is an nk × qj design matrix for the jth random effect.

The function g is called the link function and η
γk

k is known as the linear predictor.
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3.2. GLMM

Equation 3.5 can also be written as

g(µ γk
k ) = η

γk
k = X′

k β +
c∑

j=1

Z′
kjγkj (3.6)

The model described herein is a GLMM suited to hierarchical data1. A more gen-

eral form of GLMMs uses general design matrices for both the fixed and random

components (Zhao et al., 2006).

When there is a direct relationship between the natural parameter and the linear

predictor, then g(·) is referred to as the canonical link function (Agresti, 2002). In the

case of binary data, the canonical link function is given by

g(µ
γk

ki ) = logit(µ
γk

ki ) = ln

(
µ

γk
ki

1− µ
γk

ki

)
= x′

ki β + z′
kiγk (3.7)

which is referred to as the (conditional) logit link. This logit transformation ensures

that E( yki|γk) is bounded between 0 and 1 (Rencher & Schaalje, 2008). From Equa-

tion 3.7, we obtain

µ
γk

ki =
exp(x′

ki β + z′
kiγk)

1 + exp(x′
ki β + z′

kiγk)
(3.8)

In matrix notational form, we have

logit(µ γk
ki ) = X′

k β + Z′
kγk (3.9)

This is commonly referred to as the random effects logistic regression model which

is a class of the GLMM with a logit link (Kuss, 2002).

Other non-canonical link functions for binary data, which also bounds E( yki|γk)

between 0 and 1, are the probit link and and the complementary log-log link. The

GLMM with a probit link is given by

probit(µ γk
ki ) = Φ−1(µ γk

ki ) = x′
ki β + z′

kiγk (3.10)

or equivalently

µ
γk

ki = Φ(x′
ki β + z′

kiγk) (3.11)

1The notation for higher-order GLMMs is straightforward.
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3.3. Maximum likelihood estimation

where the probit link Φ is the standard Normal cumulative distribution function

(Finney, 1971). The GLMM with a complementary log-log link has the form

log[−log(1− µ
γk

ki )] = x′
ki β + z′

kiγk (3.12)

or equivalently

µ
γk

ki = 1− exp[−exp(x′
ki β + z′

kiγk)] (3.13)

This model is based on the extreme value distribution, known as the Gumbel distri-

bution, which is asymmetric (Agresti, 2002). In contrast, the logit and probit links

both approach 0 and 1 symmetrically and asymptotically. Therefore, these two links

often produce similar results (Cox & Snell, 1989; Finney, 1971).

3.3 Maximum likelihood estimation

The method of maximum likelihood is a standard method of estimation in para-

metric models where parameter estimates maximize the likelihood function of the

observed data (Searle et al., 2006). In GLMMs, the marginal likelihood function,

which is obtained by integrating over the distribution of the random effects, is max-

imized (Molenberghs & Verbeke, 2005). Let the contribution of the kth cluster to the

marginal likelihood be

fk(yki |β,G, φ) =
∫

Rq

nk∏
i=1

fki(yki |γk,β, φ)f(γk |G) dγk (3.14)

where f(γk |G) is the distribution of the random effects, then the likelihood function

of β,G and φ is given jointly by

L(β,G, φ) =
K∏

k=1

fk(yki |β,G, φ)

=
K∏

k=1

∫
Rq

nk∏
i=1

fki(yki |γk,β, φ)f(γk |G) dγk (3.15)

(Molenberghs & Verbeke, 2005). Maximization of Equation 3.15 requires the evalua-

tion of q-dimensional integrals which, except in the case of normality assumptions,
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3.3. Maximum likelihood estimation

are analytically intractable. Thus, closed form expressions for the likelihood function

of a GLMM are typically unavailable (Jiang, 2007). Several numerical approximation

methods have been proposed to circumvent the computational difficulties associated

with the likelihood function in Equation 3.15. These methods involve either approx-

imations of the integrand, approximations of the integral or approximations of the

data (Molenberghs & Verbeke, 2005).

3.3.1 Laplace approximation

The Laplace approximation method is used to approximate integrals of the form

∫
eQ(t)dt (3.16)

where Q(t) is a known unimodal function and t is a q-dimensional vector of vari-

ables (Tuerlinckx et al., 2006). Let t̂ be the value of t for which the function Q is

maximized. Then, Q(t) can be approximated by the second-order Taylor series ex-

pansion about t̂; that is,

Q(t) ≈ Q(t̂) +
1
2
(t− t̂)′Q̈(t̂)(t− t̂) (3.17)

where Q̈(t̂) is the Hessian matrix of Q with entries
∂2Q(t)
∂t ∂t′

evaluated at t̂ (Molen-

berghs & Verbeke, 2005). When Q(t) in Equation 3.16 is replaced by its approxima-

tion given in Equation 3.17, the resultant integrand resembles a multivariate Gaus-

sian distribution with mean vector t̂ and variance-covariance matrix [−E(Q̈(t̂))]−1.

Therefore, the Laplace approximation to the integral in Equation 3.16 is given by

∫
eQ(t)dt ≈ (2π)

q
2 | − Q̈(t̂)|−

1
2 eQ(t̂) (3.18)

Since γk ∼ N(0,G), the integrals in the likelihood function in Equation 3.15 can be

expressed in the form of the integral given in Equation 3.16, where the function Q
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3.3. Maximum likelihood estimation

becomes

Q(γk) = φ−1 τki

nk∑
i=1

[
yki(x′

kiβ + z′
kiγk)− b(x′

kiβ + z′
kiγk)

]
− 1

2
γ ′

kGγk (3.19)

so that the Laplace approximation method can be applied. The accuracy of the

Laplace approximation can be improved by including higher-order terms in the Tay-

lor series expansion (Raudenbush et al., 2000). However, this method works well

provided that the sample size of the clusters nk are sufficiently large (Tuerlinckx

et al., 2006).

3.3.2 Gaussian quadrature

The Gauss-Hermite quadrature and the adaptive Gauss-Hermite quadrature, be-

cause of their relation to Gaussian densities, are used to approximate integrals of

the form ∫
h(t)e−t2dt (3.20)

where h is a known and smooth function (Liu & Pierce, 1994). Suppose that a stan-

dardization of the random effects γk is given by

δk = G−1
2 γk

such that δk follows a Gaussian distribution with mean 0 and variance-covariance

matrix I , where I represents an identity matrix. The linear predictor then has the

form θki = x′
kiβ+z′

ki G
1
2 δk, where the variance components in G are included. The

likelihood contribution of the kth cluster in Equation 3.14 is then

fk(yki |β,G, φ) =
∫ nk∏

i=1

fki(yki |γk,β, φ)f(γk |G) dγk (3.21)

=
∫ nk∏

i=1

fki(yki |δk,β,G, φ)f(δk)dδk, (3.22)

which is proportional to the form of the integral given in Equation 3.20. Therefore,

approximations to this integral can be obtained using the Gauss-Hermite quadrature
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3.3. Maximum likelihood estimation

or the adaptive Gauss-Hermite quadrature.

In the Gauss-Hermite quadrature, the integral in Equation 3.20 is approximated by

∫
h(t)e−t2dt ≈

J∑
j=1

wj h(tj) (3.23)

where the nodes or quadrature points tj are solutions to the J th order Hermite poly-

nomial and wj are the corresponding quadrature weights. The values of tj and wj ,

for j = 1, . . . , 20, can be obtained from tables reported by Abramowitz & Stegun

(1974). Alternatively, these values may be computed via an algorithm for any value

of J (McCulloch et al., 2008). If h(t) is a polynomial of degree (2J − 1), then with

J quadrature points, the Gauss-Hermite quadrature yields exact solutions. A ma-

jor disadvantage with this method is that, due to the quadrature points tj being

selected independently of the function h(t), tj may not lie within the region of inter-

est (Molenberghs & Verbeke, 2005). Furthermore, factors such as large sample sizes

within clusters and large variances associated with random effects have a negative

influence on the accuracy of the approximations. Increasing the number of quadra-

ture points can improve the accuracy of the approximations. However, this also

increases the computational complexity (Capanu et al., 2013).

An improved version of the Gauss-Hermite quadrature, known as the adaptive

Gauss-Hermite quadrature, addresses the problems mentioned above by centering

the quadrature points with respect to the mode of the integrand for each cluster

and scaling them according to the estimated curvature at that mode (Tutz, 2012).

As a result, more quadrature points lie within the region of interest. This approx-

imation method uses a significantly lower number of quadrature points to achieve

the same level of accuracy as the Gauss-Hermite quadrature. However, both these

methods become computationally infeasible when the number of random effects is

large. The adaptive Gauss-Hermite quadrature is also much more time consuming

as it requires the mode and curvature for each cluster to be computed (Capanu et al.,

2013; Tuerlinckx et al., 2006). When J = 1, the adaptive Gauss-Hermite quadra-

ture is equivalent to approximating the integrand using the Laplace approximation

method (Molenberghs & Verbeke, 2005).
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3.3. Maximum likelihood estimation

3.3.3 Penalized quasi-likelihood

The concept of quasi-likelihood (QL) was introduced by Wedderburn (1974) for pa-

rameter estimation when the distributional form of the observations is not known.
The definition of a QL depends only on the specification of a mean-variance relation-

ship for the observations. This concept is exploited in the penalized quasi-likelihood

(PQL) approach. Consider a decomposition of the data into the mean, which is a

non-linear function of the linear predictor conditional on the random effects, and an

error term, such that

Yki = µ
γk

ki + εki

= h(x′
kiβ + z′

ki γk) + εki (3.24)

where h(·) = g−1(·) is the inverse of the link function and εki are error terms assumed

to follow a distribution with mean zero and variance V ar(Yki|γk) = φ τ−1
ki V (µ γk

ki ).

For the canonical link function, the variance function has the form

V (µ γk
ki ) = ḣ(x′

kiβ + z′
ki γk)

where ḣ denotes the derivative of h with respect to µ
γk

ki (Molenberghs & Verbeke,

2005). Let β̂ and γ̂k denote the current estimates of the fixed and random effects,

respectively. Then, the PQL method approximates the mean in Equation 3.24, and

hence the parameters, by a linear Taylor series expansion about β̂ and γ̂k. This yields

Yki ≈ h(x′
kiβ̂ + z′

ki γ̂k)

+ ḣ(x′
kiβ̂ + z′

ki γ̂k) x′
ki (β − β̂)

+ ḣ(x′
kiβ̂ + z′

ki γ̂k) z′
ki (γk − γ̂k) + εki

= µ̂
γk

ki + V (µ̂ γk
ki ) x′

ki (β − β̂) + V (µ̂ γk
ki ) z′

ki (γk − γ̂k) + εki (3.25)

where µ̂
γk

ki = h(x′
kiβ̂ + z′

ki γ̂k) is the current predictor for the conditional mean

E(Yki|γk) and conditional variance V (µ̂ γk
ki ) = ḣ(x′

ijβ̂ + z′
ki γ̂k). Equation 3.25 can

be rewritten more compactly as

yk ≈ µ̂
γk

k + V̂ k Xk (β − β̂) + V̂ k Zk (γk − γ̂k) + εk (3.26)
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where Xk and Zk are appropriate design matrices and V̂ k is a diagonal matrix with

elements V (µ̂ γk
ki ) on the main diagonal. Multiplying Equation 3.26 by V̂

−1

k and

rearranging the terms yields

y∗
k ≡ V̂

−1

k (yk − µ̂
γk

k ) + Xk β̂ + Zk γ̂k ≈ Xk β + Zk γk + ε∗k (3.27)

where ε∗k = V̂
−1

k εk has mean zero and variance Γk ≡ V ar(ε∗k) ≈ φ τ−1
k V (µ γk

k )

(Tuerlinckx et al., 2006). Thus, the mean and variance of y∗
k are given by

E(y∗
k) ≈ E(Xk β + Zk γk + ε∗k)

= Xk β (3.28)

and

V ar(y∗
k) ≈ V ar(Xk β + Zk γk + ε∗k)

≈ Zk V ar(γk) Z ′
k + Γk

= ZkGZ ′
k + Γk

= Ψ (3.29)

respectively. In the context GLMs, the vector y∗
k is known as the adjusted or working

dependent variable. Breslow & Clayton (1993) have shown that the same results are

obtained when the working dependent variable is defined directly as a linearized

form of the link function g(·) applied to the data; that is,

y∗
k ≡ g(µ̂ γk

k ) + ġ(µ̂ γk
k )(y∗

k − µ̂
γk

k )

Equation 3.27 can be viewed as a linear mixed model (LMM) with y∗
k as the response

vector. Therefore, estimation methods developed for LMMs can be employed to

obtain updated estimates for the fixed and random effects (Molenberghs & Verbeke,

2005). According to Harville (1977), the estimates of the fixed effects parameter β

and the random effects γk are given by

β̂ = (X ′
kΨ̂

−1
Xk)−1X ′

kΨ̂
−1

y∗
k (3.30)
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3.3. Maximum likelihood estimation

and

γ̂k = GZ ′
kΨ̂

−1
(y∗

k −Xkβ̂)

= GZ ′
kP̂ y∗

k (3.31)

where Ψ̂ is the estimated variance of y∗
k and P̂ = Ψ̂

−1
−Ψ̂

−1
Xk(X ′

kΨ̂
−1

Xk)−1X ′
kΨ̂.

−1

These parameter estimates are then used to update y∗
k which in turn is used to up-

date the parameter estimates. This iteration process continues until convergence is

achieved (Tuerlinckx et al., 2006). The resulting estimates are called penalized quasi-

likelihood (PQL) estimates. The standard implementation of PQL holds φ fixed at

unity but Wolfinger & O’Connell (1993) showed that, if desired, φ can be estimated

from the data.

3.3.4 Marginal quasi-likelihood

Similar to the PQL approach, the marginal quasi-likelihood (MQL) method approx-

imates the mean in Equation 3.24 by a linear Taylor series expansion. However, this

is done about the current estimates β̂ for the fixed effects and about γ̂k = 0 for the

random effects (Molenberghs & Verbeke, 2005). Thus, the current predictor for the

conditional mean has the form µ̂
γk

ki = h(x′
kiβ̂). The working dependent variable y∗

k

is then given by

y∗
k ≡ V̂

−1

k (yk − µ̂
γk

k ) + Xk β̂ ≈ Xk β + Zk γk + ε∗k (3.32)

which again approximates an LMM. Therefore, the parameter estimates can be ob-

tained using the same procedure as for the PQL approach. However, the resulting

estimates are referred to as marginal quasi-likelihood estimates (Breslow & Clayton,

1993). The PQL and MQL methods are more flexible and computationally faster than

the Laplace approximation and the Gaussian quadratures. However, both methods

tend to produce estimates that are biased towards zero, especially in the case of bi-

nary data when the sample sizes within clusters are relatively small and when the

variance components are relatively large (Tuerlinckx et al., 2006).
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3.4 Model assessment

Once the parameter estimates are obtained, inferences about model parameters can

be made. When testing the significance of the fixed effects parameters in a GLMM,

the null hypothesis to be tested is of the form H0 : Cβ = 0, where C is a matrix

of constants of full row rank d (Tuerlinckx et al., 2006). Such a hypothesis can be

tested using the likelihood ratio test, the Wald test or the score test. These tests are

asymptotically equivalent under the null hypothesis and follow a χ2-distribution

with d degrees of freedom. These statistics can also be used to test the significance

of the random effects in a GLMM. Testing whether certain random effects should be

included in the model is equivalent to testing whether the corresponding variance

components in G are statistically zero. Thus, the null hypothesis involves testing

whether the variance parameters lie on the boundary of the model parameter space.

In such case, the test statistics do not have the traditional χ2-distribution, but rather

follow a mixture of χ2-distributions (Self & Liang, 1987; Stram & Lee, 1994; Zhang &

Lin, 2008). The likelihood ratio and score tests are based on likelihood theory. Both

the PQL and MQL methods are not likelihood-based (Hedeker, 2005). Therefore,

these tests cannot be used for model selection when the estimates are obtained using

these methods. The Wald test, however, can still be used to test the significance of

the model parameters (Bolker et al., 2009).

Another commonly used model selection tool is the Akaike Information Criterion

(AIC). AIC is defined as

AIC = −2ln(L) + 2p (3.33)

where L is the likelihood of the fitted model maximized over p parameters (Akaike,

1987). AIC is evaluated for each model in a competing set, and the model with the

smallest AIC value is selected as the best-fitting model.
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3.5 Application

The analysis in this section was performed using SAS (SAS Intitute Inc., 2013), ver-

sion 9.4, where the procedure PROC GLIMMIX was used to fit a GLMM to the NIDS

data. All demographic, lifestyle, socio-economic and environmental variables, dis-

cussed in Chapter 2, were selected for inclusion in the model. An intercept, varying

across clusters, was also included. This random intercept was used to account for

heterogeneity among clusters, and thereby, account for possible correlation among

observations within the same cluster. The model was first fitted using the Laplace

approximation method. All three link functions for binary data were fitted. How-

ever, the logit link produced the lowest AIC value and was therefore selected. Model

diagnostics are provided in Appendix C. To confirm the need for the random inter-

cept in the model, the COVTEST statement in SAS, which produces likelihood ratio

tests for covariance parameters, was used. The result of this test, given in Table 3.1,

indicated that the covariance parameter was highly significant (p-value < 0.0001),

and thereby confirmed the necessity of including the random cluster effect in the

model.

Table 3.1: Test of covariance parameters based on the likelihood

Label DF -2Log Likelihood χ2 P-value

No G - side effects 1 11912 31.91 <0.0001

For valid inference, an appropriate covariance structure for the data needs to be

selected, thus the model was fitted using various covariance structures. Table 3.2

gives the different covariance structures fitted and their corresponding AIC values.

Table 3.2: AIC Goodness-of-Fit Statistic for GLMM

Covariance Structure AIC

Variance components (VC) 11 946.57

Autoregressive (AR(1)) 11 948.57

Compound symmetry (CS) 11 948.57

Heterogeneous compound symmetry (CSH) 11 948.57

Unstructured (UN) 11 947.57
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The best suited covariance structure was VC, as this produced the lowest AIC value.

Model selection of the fixed effects was achieved using a backward selection proce-

dure. Based on the p-values obtained in the type III analysis of fixed effects, insignif-

icant fixed effects were removed from the model one at a time until only significant

fixed effects were left. Furthermore, all two-way and higher-order interaction terms

were explored, however, none were found to be significant. The resulting model

with one variance component, denoted by GLMM(1), is presented in Table 3.3.

Table 3.3: Type III analysis of fixed effects for GLMM(1)

Effect Numerator DF F-Value P-Value

Age 5 112.26 <0.0001

Population group 3 12.60 <0.0001

Marital status 4 23.03 <0.0001

Current smoker 1 32.65 <0.0001

Alcohol consumption 1 9.77 0.0018

Household expenditure on food 3 3.26 0.0206

Education 3 10.90 <0.0001

Employment status 1 3.73 0.0494

Household income quintile 4 5.29 0.0003

Geographical type 2 18.11 <0.0001

Age, ethnicity, marital status, smoking status, alcohol consumption, household ex-

penditure on food, education level, employment status, household income and geo-

graphical type of residence were all found to be significantly associated with obesity

among females. This was consistent with the results obtained with the chi-square

test of association in Section 2.4.1. The Pearson chi-square statistic over its degrees

of freedom, which is a measure of variability in the marginal distribution of the data,

was 1. This indicates that the variability in the data was properly modelled and,

hence there was no residual overdispersion. The estimated variance component for

cluster effect was 0.0367 with a standard error of 0.0125. The parameter estimates,

odds ratios (OR) with their 95% confidence intervals and p-values for GLMM(1) are

given in Table 3.4. The results were obtained after approximately 25 seconds.
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Table 3.4: Estimates and OR with 95% confidence intervals for GLMM(1)

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Intercept -2.1868 0.1314 <0.001

Age

15-24 ref . . . 1 . . .

25-34 1.167 0.076 3.213 (2.766, 3.732) <0.001

35-44 1.709 0.083 5.521 (4.689, 6.500) <0.001

45-54 1.881 0.091 6.561 (5.494, 7.836) <0.001

55-64 1.981 0.101 7.246 (5.947, 8.830) <0.001

65+ 1.600 0.112 4.954 (3.977, 6.170) <0.001

Population group

African ref . . . 1 . . .

Coloured -0.205 0.091 0.814 (0.681, 0.974) 0.024

Asian/Indian -1.201 0.248 0.301 (0.185, 0.589) <0.001

White -0.619 0.152 0.538 (0.400, 0.724) <0.001

Marital status

Married ref . . . 1 . . .

Living with partner -0.599 0.103 0.549 (0.449, 0.672) <0.001

Widow -0.397 0.081 0.672 (0.574, 0.787) <0.001

Divorced or separated -0.364 0.137 0.695 (0.531, 0.910) 0.008

Never married -0.548 0.061 0.578 (0.513, 0.651) <0.001

Current smoker

No ref . . . 1 . . .

Yes -0.579 0.101 0.561 (0.460, 0.684) <0.001

Alcohol consumption

No ref . . . 1 . . .

Yes -0.228 0.073 0.796 (0.690, 0.918) 0.002

Household expenditure on food

Quartile I ref . . . 1 . . .

Quartile II 0.163 0.064 1.177 (1.037, 1.335) 0.011

Quartile III 0.151 0.069 1.163 (1.016, 1.331) 0.029

Quartile IV 0.219 0.077 1.245 (1.071, 1.447) 0.004

Education

No schooling ref . . . 1 . . .

Primary 0.273 0.080 1.313 (1.123, 1.536) 0.001

Secondary 0.460 0.084 1.584 (1.344, 1.868) <0.001

Tertiary 0.176 0.184 1.193 (0.832, 1.711) 0.337

Continued on next page
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Table 3.4 – Continued from previous page

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Employment status

Unemployed ref . . . 1 . . .

Employed 0.102 0.053 1.108 (1.001, 1.229) 0.048

Household income quintile

I ref . . . 1 . . .

II -0.061 0.072 0.941 (0.818, 1.083) 0.396

III 0.082 0.074 1.086 (0.939, 1.255) 0.267

IV 0.073 0.078 1.075 (0.924, 1.252) 0.349

V 0.313 0.088 1.367 (1.151, 1.623) <0.001

Geographical type

Urban ref . . . 1 . . .

Traditional 0.352 0.063 1.422 (1.257, 1.607) <0.001

Farms 0.029 0.097 1.030 (0.851, 1.245) 0.763

The results revealed an increase in odds as age increased followed by a decline after

the age of 65 years. Compared to females aged 15-24 years, females aged 55-64 years

had the highest odds (OR = 7.246; 95% CI: 5.947-8.830), followed by those aged 45-54

years (OR = 6.561; 95% CI: 5.494-7.836). Females aged 65+ years were approximately

five times more likely to be obese compared to those aged 15-24 years (OR = 4.954;

95% CI: 3.977-6.170). White (OR = 0.538; 95% CI: 0.400-0.724), Coloured (OR = 0.814;

95% CI: 0.681-0.974) and Asian/Indian (OR = 0.301; 95% CI: 0.185-0.589) females

were less likely to be obese compared to African females. Females living with their

partners, widowed, divorced or separated, or never married, were associated with

a lower risk of obesity compared to those who are married, with the odds ranging

from 0.549 to 0.695.

Female smokers were associated with a lower risk of obesity compared to non-

smokers (OR = 0.561; 95% CI: 0.460-0.684). Similarly, females who consumed alcohol

were significantly less likely to be obese (OR = 0.796; 95% CI: 0.690-0.918). Although

the odds of obesity for females with a total household expenditure on food within

the highest quartile was only 1.245 (95% CI: 1.071-1.447), they were most at risk for

obesity compared to those with a total household expenditure on food within the

first quartile. Those with a total household expenditure on food within the second

and third quartiles were also more likely to be obese compared to those with a total

household expenditure on food within the first quartile (OR = 1.177; 95% CI: 1.037-

1.335 and OR = 1.163; 95% CI: 1.016-1.331). 34
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Females with a primary or secondary education were associated with a higher risk

of obesity compared to those with no schooling (OR = 1.313; 95% CI: 1.123-1.536 and

OR = 1.584; 95% CI: 1.344-1.868, respectively). Although the odds of obesity for those

with a tertiary education was higher, they were not significantly different compared

to those with no schooling (p-value = 0.337). Females who were employed were

at a higher risk of obesity compared to their unemployed counterparts (OR = 1.108;

95% CI: 1.001-1.229). Those belonging to the highest household income quintile were

more likely to be obese compared to those belonging to the lowest household income

quintile (OR = 1.367; 95% CI: 1.151-1.623). All other household income quintiles

were not significantly different to the lowest household income quintile. Females

in traditional areas were more likely to be obese compared to those living in urban

areas (OR = 1.422; 95% CI: 1.257-1.607). There was no significant difference between

those living in farms and those living in urban areas (p-value = 0.763).

Individuals living in the same household often display similar lifestyle and socio-

economic patterns, and thus, may be more homogeneous than individuals from dif-

ferent households, even those within the same cluster. In the NIDS data set, there

are up to 14 females living in the same household, with a mean of 1.61 females per

household. Therefore, in order to account for possible correlation within house-

holds, households nested within clusters were included as an additional random

effect in the model. The test of covariance parameters for this model, given in Table

3.5, produced a significant result with a p-value < 0.0001. Thus suggesting that both

the heterogeneity among clusters and the heterogeneity among households nested

within clusters have a significant effect on obesity among females. Furthermore,

the model with both variance components, denoted by GLMM(2), produced a lower

AIC value than that of GLMM(1).

Table 3.5: Test of covariance parameters based on the likelihood

Label DF -2Log Likelihood χ2 P-value

No G - side effects 2 11916 85.39 <0.0001

Model selection of the fixed effects was carried out for this model using the same

procedure mentioned above. The resulting model, given in Table 3.6, was the same

as GLMM(1).
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Table 3.6: Type III analysis of fixed effects for GLMM(2)

Effect Numerator DF F-Value P-Value

Age 5 102.98 <0.0001

Population group 3 12.09 <0.0001

Marital status 4 22.57 <0.0001

Current smoker 1 31.81 <0.0001

Alcohol consumption 1 9.55 0.0020

Household expenditure on food 3 3.40 0.0171

Education 3 10.35 <0.0001

Employment status 1 4.26 0.0390

Household income quintile 4 4.94 0.0006

Geographical type 2 18.19 <0.0001

The Pearson chi-square statistic over its degrees of freedom was 0.79, which once

again indicated that there was no residual overdispersion. The estimated variance

components for cluster effect and household by cluster effect are given in Table 3.7.

Table 3.7: Covariance parameter estimates for GLMM(2)

Covariance Parameter Subject Estimate Standard Error

Intercept Cluster 0.0375 0.0140

Intercept Household(Cluster) 0.5164 0.0892

Table 3.8 presents the results of the fixed effects for GLMM(2). These results were

obtained within 10 minutes. Compared to GLMM(1), GLMM(2) produced slightly

higher standard errors, and hence, wider confidence intervals. This was expected

due to the additional source of variation in the model. However, both models pro-

duced similar parameter estimates and therefore, similar conclusions can be drawn.
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Table 3.8: Estimates and OR with 95% confidence intervals for GLMM(2)

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Intercept -2.392 0.149 <0.001

Age

15-24 ref . . . 1 . . .

25-34 1.258 0.084 3.518 (2.985, 4.145) <0.001

35-44 1.870 0.094 6.489 (5.396, 7.804) <0.001

45-54 2.065 0.103 7.886 (6.441, 9.656) <0.001

55-64 2.170 0.115 8.762 (6.993, 10.978) <0.001

65+ 1.748 0.125 5.740 (4.489, 7.341) <0.001

Population group

African ref . . . 1 . . .

Coloured -0.224 0.101 0.800 (0.656, 0.975) 0.027

Asian/Indian -1.328 0.282 0.265 (0.153, 0.461) <0.001

White -0.695 0.170 0.499 (0.357, 0.697) <0.001

Marital status

Married ref . . . 1 . . .

Living with partner -0.679 0.114 0.507 (0.405, 0.634) <0.001

Widow -0.454 0.090 0.635 (0.532, 0.758) <0.001

Divorced or separated -0.397 0.153 0.673 (0.498, 0.908) 0.010

Never married -0.610 0.069 0.543 (0.475, 0.622) <0.001

Current smoker

No ref . . . 1 . . .

Yes -0.631 0.112 0.532 (0.427, 0.663) <0.001

Alcohol consumption

No ref . . . 1 . . .

Yes -0.250 0.081 0.779 (0.665, 0.913) 0.002

Household expenditure on food

Quartile I ref . . . 1 . . .

Quartile II 0.190 0.073 1.209 (1.048, 1.396) 0.010

Quartile III 0.169 0.079 1.184 (1.015, 1.382) 0.032

Quartile IV 0.256 0.088 1.292 (1.087, 1.535) 0.004

Education

No schooling ref . . . 1 . . .

Primary 0.299 0.089 1.349 (1.134, 1.605) 0.001

Secondary 0.497 0.094 1.643 (1.368, 1.974) <0.001

Tertiary 0.157 0.205 1.170 (0.783, 1.747) 0.444

Continued on next page
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Table 3.8 – Continued from previous page

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Employment status

Unemployed ref . . . 1 . . .

Employed 0.121 0.059 1.129 (1.006, 1.267) 0.039

Household income quintile

I ref . . . 1 . . .

II -0.070 0.081 0.932 (0.795, 1.092) 0.385

III 0.088 0.084 1.092 (0.926, 1.288) 0.296

IV 0.081 0.089 1.085 (0.912, 1.291) 0.359

V 0.347 0.101 1.415 (1.162, 1.723) 0.001

Geographical type

Urban ref . . . 1 . . .

Traditional 0.398 0.071 1.488 (1.296, 1.709) <0.001

Farms 0.033 0.110 1.034 (0.833, 1.283) 0.762

The analysis was also carried out using the adaptive Gauss-Hermite quadrature and

PQL estimation methods. The procedure PROC GLIMMIX was used once again. To

explore the impact of different numbers of quadrature points on parameter estima-

tion using the adaptive Gauss-Hermite quadrature, different numbers of quadrature

points (J = 3, 5, 10, 20) were used. However, this led to negligible differences in

parameter estimation with no differences between parameter estimates for quadra-

ture points 10 and 20. Both the adaptive Gauss-Hermite quadrature and PQL meth-

ods produced results very similar to that obtained using the Laplace approximation

method. However, these methods differed in terms of computational speed, with

the adaptive Gauss-Hermite quadrature with 20 quadrature points taking up to 25

minutes to run GLMM(1) and up to 60 minutes to run GLMM(2).

38



Chapter 4

Bayesian Analysis of the NIDS
Data Set

The Bayesian approach is more appealing than the classical approach for inference

in GLMMs as it takes into account the ease with which uncertainty in parame-

ters is estimated (Zhao et al., 2006). A Bayesian analysis is often performed us-

ing Markov chain Monte Carlo (MCMC) methods. However, the integrated nested

Laplace approximation (INLA) is becoming a computationally convenient alterna-

tive to MCMC (Fong et al., 2010). INLA may be regarded as a novel numerical

inferential procedure which renders MCMC sampling redundant as it approximates

posterior distributions in a fully automated way (Roos & Held, 2011). This chapter

outlines the Bayesian approach to GLMMs and presents results obtained using both

the MCMC and INLA methods in the analysis of the NIDS data set.

4.1 Bayesian inference

Bayesian inference is an approach to statistical inference that exploits Bayes theorem

where all unknown parameters are treated as random variables and all forms of un-

certainty are expressed in terms of probability statements (Gelman et al., 2014). Let

ϑ be a vector of unknown parameters. The joint probability density of the observed

data y and the unknown parameters has the form

f(ϑ,y) = f(ϑ) f(y|ϑ) (4.1)

where f(ϑ) is the prior distribution of ϑ and f(y|ϑ) is the sampling distribution of
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y|ϑ. The prior distribution represents an assumption about the nature of the pa-

rameters before observing the data while the sampling distribution reflects informa-

tion about the parameters contained in the data (Wade, 2000). The parameters of

the prior distribution are usually referred to as hyperparameters and can be chosen

based on previous studies with similar data and/or expert opinion. They can also

be non-informative when no prior knowledge about the unknown parameters exists

(Glickman & van Dyk, 2007).

In the Bayesian paradigm, all inference is based on the posterior distribution f(ϑ|y).

According to Bayes theorem, the posterior distribution is

f(ϑ|y) =
f(ϑ,y)
f(y)

=
f(ϑ) f(y|ϑ)

f(y)
(4.2)

where f(y) is the marginal probability density of y such that f(y) =
∫
y f(ϑ) f(y|ϑ)dϑ.

Moreover, f(y) does not depend on ϑ and, is thus, considered to be a normalizing

constant; that is, a constant which ensures that the posterior distribution integrates

to one. Therefore, an equivalent form of Bayes theorem is given by

f(ϑ|y) ∝ f(y|ϑ) f(ϑ) (4.3)

When the sampling distribution is regarded as a function of ϑ, for given y, it is called

the likelihood function and is denoted by l(ϑ|y) (Box & Tiao, 1992). Thus, Equation

4.3 becomes
f(ϑ|y) ∝ l(ϑ|y) f(ϑ) (4.4)

Thus, the posterior distribution is proportional to the product of the likelihood func-

tion and the prior distribution of the parameters.

All statistical inference can be deduced from appropriate summaries of the posterior

distribution. These summaries are typically expressed in terms of posterior expecta-

tions of functions of ϑ and are of the form

I =
∫

g(ϑ) f(ϑ|y)dϑ (4.5)

where g(ϑ) is some function of ϑ (Gilks et al., 1996). I in Equation 4.5 is typically

high-dimensional and is analytically intractable. Evaluation of such integrals re-

quires computational methods such as the Markov chain Monte Carlo methods.
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4.2 Markov chain Monte Carlo methods

The Markov chain Monte Carlo (MCMC) method is a general computational method

based on sampling directly from the posterior distribution and then using those sam-

ples to estimate the quantities of interest (Brooks, 1998). The samples are drawn

sequentially from a target distribution with each sample depending only on the pre-

vious sample drawn. Hence, the samples form a Markov chain. A Markov chain

is a sequence of random variables ϑ(0), ϑ(1), . . . , where the random variable ϑ(t)

depends only on the previous state of the chain ϑ(t−1) (Gilks et al., 1996). Monte

Carlo integration then uses the Markov chain samples to approximate the posterior

expectation in Equation 4.5. This gives

Î =
1

T −B

T∑
t=B+1

g(ϑ(t)) (4.6)

where Î is called an ergodic average, T is the sample size generated from the target

distribution and B indicates the amount of burn-in; that is, the number of initial

samples that are discarded in order to minimize the effect of the initial values on

the posterior inference (Craiu & Rosenthal, 2014). If the Markov chain has the target

distribution as a stationary (or invariant) distribution, then under certain conditions,

Î will converge to the target distribution (Craiu & Rosenthal, 2014; Roberts, 1996).

Several MCMC methods have been proposed in the literature. However, the most

commonly used are the Metropolis-Hastings algorithm and the Gibbs sampler. These

two methods are outlined in the following sections.

4.2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, proposed by Hastings (1970), is a generalization

of the Metropolis algorithm. Suppose ϑ(t) is the tth sample, t = 1, . . . , T , from the

target distribution f(ϑ|y). With the Metropolis-Hastings algorithm, ϑ(t) is chosen

by first sampling a candidate value ϑ∗ from a proposal distribution q(ϑ∗|ϑ(t−1)).
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The candidate value ϑ∗ is then accepted with probability α where

α = min

(
1 ,

f(ϑ∗|y) q(ϑ(t−1)|ϑ∗)
f(ϑ(t−1)|y) q(ϑ∗|ϑ(t−1))

)
(4.7)

If ϑ∗ is accepted, the algorithm is repeated with ϑ∗ as the starting value. If ϑ∗ is

rejected, the starting value remains unchanged. The Metropolis-Hastings algorithm

can be summarized as follows:

Step 1: Choose an initial value ϑ(0).

Step 2: Set t = 1.

Step 3: Generate ϑ∗ from q(ϑ∗|ϑ(t−1)).

Step 4: Compute α.

Step 5: Set

ϑ(t) =

 ϑ∗ with probability α

ϑ(t−1) otherwise.

Step 6: If t < T , set t = t + 1 and return to step 3.

Else, end iteration.

The Metropolis-Hastings algorithm will eventually converge to the target distribu-

tion. However, the rate of convergence depends on the form of the proposal distri-

bution (Roberts, 1996; Tierney, 1996).

4.2.2 The Gibbs sampler

A special case of the Metropolis-Hastings algorithm is the Gibbs sampler which uses

the full conditional posterior distribution f(ϑj |ϑ−j ,y) as the proposal distribution

where ϑ−j = (ϑ1, . . . , ϑj−1, ϑj+1, . . . , ϑk)′. This distribution leads to an acceptance

probability α = 1. Thus, the proposed value is accepted at every iteration (Gelman

et al., 2014; Gilks et al., 1996). The Gibbs sampler can be summarized as follows:

Step 1: Choose an initial value ϑ(0).

Step 2: Set t = 1.
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Step 3: Generate each component of ϑ(t) as follows:

• ϑ
(t)
1 from f(ϑ1|ϑ(t−1)

2 , ϑ
(t−1)
3 , . . . , ϑ

(t−1)
k ,y)

• ϑ
(t)
2 from f(ϑ2|ϑ(t)

1 , ϑ
(t−1)
3 , . . . , ϑ

(t−1)
k ,y)

• ϑ
(t)
3 from f(ϑ3|ϑ(t)

1 , ϑ
(t)
2 , ϑ

(t−1)
4 , . . . , ϑ

(t−1)
k ,y)

...

• ϑ
(t)
j from f(ϑj |ϑ(t)

1 , ϑ
(t)
2 , . . . , ϑ

(t)
j−1, ϑ

(t−1)
j+1 , . . . ,y)

...

• ϑ
(t)
k from f(ϑk|ϑ

(t)
1 , ϑ

(t)
2 , . . . , ϑ

(t)
k−1,y)

Step 4: If t < T , set t = t + 1 and return to step 3.

Else, end iteration.

Gibbs sampling is often appealing and works well when the full conditional poste-

rior distributions are easy to sample from (SAS Intitute Inc., 2008).

4.2.3 Assessing convergence

Convergence diagnostics are tools used to determine whether the MCMC algorithm

has reached its stationary or target distribution. Various convergence diagnostics

have been proposed. However, these diagnostics test for conditions that are only

necessary, but not sufficient, for convergence. Therefore, Cowles & Carlin (1996)

recommend using a variety of diagnostics rather than relying on a single statistic

or plot. A commonly used statistical diagnostic is the Gelman-Rubin criterion, first

proposed by Gelman & Rubin (1992). This diagnostic involves running multiple

MCMC chains and then comparing the variances within each chain and between

chains. For M parallel MCMC chains, let ϑt, t = 1, . . . , n, be the set of a single

Markov chain output and let ϑt
m denote the simulations for each ϑt, m = 1, . . . ,M .

Then, the between-chain variance B is given by

B =
n

M − 1

M∑
m=1

(ϑ̄·
m − ϑ̄

·
·)

2 (4.8)
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where ϑ̄
·
m =

1
n

n∑
t=1

ϑt
m and ϑ̄

·
· =

1
M

M∑
m=1

ϑ̄
·
m, and the within-chain variance W is

computed from

W =
1
M

M∑
m=1

s2
m (4.9)

where s2
m =

1
n− 1

n∑
t=1

(ϑt
m − ϑ̄

·
m)2 (SAS Intitute Inc., 2008). The estimated posterior

marginal variance of ϑt is a weighted average of B and W , and is given by

V̂ ar(ϑt|y) =
n− 1

n
W +

1
n

B (4.10)

Assuming that the starting points in each chain are appropriately overdispersed, this

quantity will overestimate the true variance V ar(ϑt|y). In contrast, W will underes-

timate V ar(ϑt|y) early in the sampling run as the individual chains would not have

had the time to range over all of the stationary distribution (Gelman et al., 2014).

However, when n → ∞, both V̂ ar(ϑt|y) and W will converge to the true variance.

Therefore, the Gelman-Rubin diagnostic monitors convergence from

R̂ =

√
V̂ ar(ϑt|y)

W
(4.11)

This is known as the potential scale reduction. This quantity declines to 1 as n →∞.

Therefore, values of R̂ close to 1, usually less than 1.1, suggest that convergence

has occurred (Gelman et al., 2014). Graphical diagnostic methods are also useful

in monitoring convergence. Trace plots are commonly used. These are plots of the

iterations against the simulated values. If all of the values lie within a region without

any strong periodicities and tendencies, then convergence can be assumed. Other

graphical methods involve plots of autocorrelations and ergodic means (Ntzoufras,

2009; SAS Intitute Inc., 2008).
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4.3 Integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA) is a computationally conve-

nient alternative to MCMC methods. It approximates the posterior marginal distri-

butions more accurately in a fully automated way. The INLA approach was intro-

duced by Rue et al. (2009) for Bayesian inference on the broad class of latent Gaussian

models. These models assume that the response variable yi is conditionally indepen-

dent given some underlying latent field ξ and a vector of hyperparameters ϑ. INLA

approximates the posterior marginal distributions of the latent variables as well as

those of the hyperparameters of the latent Gaussian model. The posterior marginal

distributions of interest are given by

f(ξi|y) =
∫

f(ξi|ϑ,y) f(ϑ|y) dϑ (4.12)

and

f(ϑj |y) =
∫

f(ϑ|y) dϑ−j (4.13)

for i = 1, . . . , n and j = 1, . . . , k. The INLA approach consists of three steps. The

first step approximates the full posterior marginal distributions of the hyperparam-

eters f(ϑ|y). This is done by first approximating f(ξ|ϑ,y), the full conditional of

ξ, by a multivariate Gaussian density f̃G(ξ|ϑ,y) evaluated at its mode, and then

approximating f(ϑ|y) using the Laplace approximation

f̃(ϑ|y) ∝ f(ξ,ϑ,y)
f̃G(ξ|ϑ,y)

∣∣∣∣∣
ξ=ξ∗(ϑ)

(4.14)

where ξ∗(ϑ) is the mode of the full conditional for ξ, for a given ϑ (Martins et al.,

2013). According to Rue & Martino (2007), this approximation is particularly accu-

rate; even long MCMC runs are unable to detect any error in it.

The second step approximates the full conditional posterior marginal distribution

for the latent variables f(ξi|ϑ,y). For this approximation, three options are avail-

able. These options vary in terms of computational speed and accuracy. The fastest

option uses the marginals of the Gaussian approximation f̃G(ξ|ϑ,y) computed in the
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4.3. Integrated nested Laplace approximation

previous step. This often leads to reasonable results. However, there can be errors

in the location of the posterior mean and/or errors that are due to lack of skewness

(Rue & Martino, 2007). One way to improve on the Gaussian approximation is to

use the Laplace approximation which is given by

f̃LA(ξi|ϑ,y) ∝ f(ξ,ϑ,y)
f̃G(ξ−i|ξi,ϑ,y)

∣∣∣∣∣
ξ−i=ξ∗−i(ξi,ϑ)

(4.15)

where ξ−i denotes the vector ξ with the ith component excluded, f̃G(ξ−i|ξi,ϑ,y)

is the Gaussian approximation of f(ξ−i|ξi,ϑ,y) and ξ∗−i(ξi,ϑ) is the modal config-

uration (Martins et al., 2013). The Laplace approximation is the most accurate of

the three options. However, its computation can be very time consuming. The

third option is derived from a Taylor series expansion of the Laplace approximation

f̃LA(ξi|ϑ,y), up to third order. This is known as the simplified Laplace approxima-

tion. This option corrects the Gaussian approximation for location and skewness,

but with a lower computational cost than the Laplace approximation.

In the third step, the full posterior marginal distributions computed in the previous

steps are combined, and the posterior marginal distributions of interest are obtained

by integrating out the relevant terms. The approximation for the posterior marginal

distribution of the latent variables are obtained using the expression

f̃(ξi|y) =
∫

f̃(ξi|ϑ,y) f̃(ϑ|y) dϑ ≈
B∑

b=1

f̃(ξi|ϑb,y) f̃(ϑb|y) ∆b (4.16)

which is evaluated using numerical integration on selected values of ϑ with area

weights ∆b, b = 1, . . . , B. In a similar manner, the approximation for the posterior

marginal distribution of the hyperparameters f̃(ϑj |y) can be obtained. Rue et al.

(2009) discuss two strategies for the selection of the integration points ϑb, namely

the GRID strategy and the central composite design (CCD) strategy. The latter strat-

egy is computationally less demanding and accurate enough for the computation of

f̃(ξi|y). However, when interest is on obtaining a more accurate estimate of f̃(ϑj |y),

the GRID strategy may be necessary (Martino & Rue, 2010).
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4.4 Model selection

The deviance information criterion (DIC) is a popular Bayesian model selection cri-

terion designed to compare complex hierarchical models (Spiegelhalter et al., 2002).

The DIC is a measure of model fit and complexity, and is defined as

DIC = D̄ + pD (4.17)

where D̄ is the posterior mean of the deviance of the model and pD is the effective

number of parameters. Smaller values of the DIC indicate a better trade-off between

model fit and model complexity. Thus, the model with the smallest value of DIC

will be the optimal model (Adrion & Mansmann, 2012). Another useful quantity

for comparing models from a Bayesian approach is the marginal likelihood (Rue

et al., 2009). The marginal likelihood is the normalizing constant of the posterior

distribution and for a certain model M is given by

f(y|M) =
∫

L(y|ϑ,M) f(ϑ|M) dϑ (4.18)

which is the average of the likelihood over the prior distribution. Hence, the value of

the marginal likelihood will be larger when both the prior distribution and the likeli-

hood are concentrated over the same parameter space, and the value will be smaller

when the prior distribution emphasizes regions of the parameter space where the

likelihood is low (Xie et al., 2011). Therefore, the larger the value of the marginal

likelihood, the better the model fit (Roos & Held, 2011).

For the GLMM described in Section 3.2, and using Equation 4.4, the posterior distri-

bution is then given by

f(β, γk, ϕ|y) ∝ f(β, γk|ϕ) f(ϕ)
K∏

k=1

f(yk|β, γk, ϕ)

∝ f(ϕ) f(β)|G(ϕ)|−
1
2 exp

{
−1

2
γ ′

kG(ϕ)−1γk +
K∑

k=1

ln f(yk|β, γk)

}
(4.19)

The parameters in Equation 4.19 can be estimated using the methods described

above.
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4.5 Application

4.5.1 MCMC

Bayesian analysis of the NIDS data was performed using the R software for Win-

dows (R Core Team, 2016). In R, the package MCMCglmm allows for a GLMM to be

fitted using the Gibbs sampler (Hadfield, 2010). This package, however, only allows

for the default logit link function to be fitted for binary data. In Bayesian analysis,

prior distributions for the parameters need to be specified. Fong et al. (2010) pro-

posed a prior specification based on the Gamma distribution Γ(0.5, 0.0164) for the

variance components in a GLMM. This specification was derived using a classical

Lemma which states that if γk follows a Gaussian distribution with zero mean and

Gamma precision, that is G−1 ∼ Γ(α1, α2), then the marginal posterior distribution

of γk is a Student-t distribution with 2α1 degrees of freedom, location 0 and scale√
α2/α1 (Grilli et al., 2014). Thus, by selecting a marginal Student-t distribution

with one degree of freedom for γk and imposing expγk ∈ [0.1, 10] with probabil-

ity 0.95, the hyperparameters α1 = 0.5 and α2 = 0.0164 are obtained. Grilli et al.

(2014) compared this prior specification with two other commonly used specifica-

tions for variance components in GLMMs with binary outcomes and concluded that

the Γ(0.5, 0.0164) specification was the best of the three considered. Therefore, for

estimation of the variance components in the analysis of the NIDS data set, we use

the aforementioned prior specification. For the regression coefficients, the default

multivariate Normal distribution with zero mean vector, and variance-covariance

matrix with variances 1e + 10, was used. The Gelman-Rubin diagnostic, together

with trace plots, were used to monitor model convergence. For GLMM(1), 60000

iterations were used. This led to a potential scale reduction R̂ = 1 for all parameters.

Results were obtained within 30 minutes. For GLMM(2), 90000 iterations were used

in order to obtain R̂ < 1.1 for all parameters. Results for this model were obtained

in approximately 80 minutes. The DIC values for GLMM(1) and GLMM(2) were

11 884.8 and 11 393.7, respectively. Thus, as with the classical estimation methods,

GLMM(2) provides a better fit to the data. Therefore, only results obtained for this

model are presented in this section. The results for GLMM(1), however, were very

similar to those obtained using the classical methods. The results for GLMM(2) are

given in Table 4.1.
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Table 4.1: MCMC estimates and OR with 95% confidence intervals for GLMM(2)

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Intercept -3.064 0.200 <0.001

Age

15-24 ref . . . 1 . . .

25-34 1.598 0.108 4.943 (4.003, 6.086) <0.001

35-44 2.398 0.126 11.001 (8.525, 14.069) <0.001

45-54 2.655 0.139 14.225 (10.859, 18.671) <0.001

55-64 2.785 0.151 16.200 (12.025, 21.737) <0.001

65+ 2.242 0.166 9.412 (6.848, 13.040) <0.001

Population group

African ref . . . 1 . . .

Coloured -0.299 0.134 0.742 (0.575, 0.968) 0.024

Asian/Indian -1.716 0.373 0.180 (0.086, 0.368) <0.001

White -0.921 0.225 0.398 (0.257, 0.621) <0.001

Marital status

Married ref . . . 1 . . .

Living with partner -0.899 0.149 0.407 (0.308, 0.552) <0.001

Widow -0.598 0.118 0.550 (0.440, 0.699) <0.001

Divorced or separated -0.504 0.199 0.604 (0.409, 0.883) 0.009

Never married -0.793 0.091 0.452 (0.377, 0.535) <0.001

Current smoker

No ref . . . 1 . . .

Yes -0.799 0.144 0.450 (0.340, 0.599) <0.001

Alcohol consumption

No ref . . . 1 . . .

Yes -0.306 0.103 0.736 (0.605, 0.908) 0.003

Household expenditure on food

Quartile I ref . . . 1 . . .

Quartile II 0.251 0.099 1.285 (1.060, 1.554) 0.010

Quartile III 0.220 0.104 1.246 (1.016, 1.523) 0.035

Quartile IV 0.341 0.116 1.406 (1.119, 1.758) 0.003

Education

No schooling ref . . . 1 . . .

Primary 0.377 0.113 1.458 (1.169, 1.822) <0.001

Secondary 0.628 0.123 1.874 (1.456, 2.361) <0.001

Tertiary 0.162 0.267 1.306 (0.698, 1.984) 0.544

Continued on next page
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Table 4.1 – Continued from previous page

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Employment status

Unemployed ref . . . 1 . . .

Employed 0.164 0.077 1.178 (1.016, 1.372) 0.031

Household income quintile

I ref . . . 1 . . .

II -0.096 0.104 0.908 (0.742, 1.114) 0.364

III 0.109 0.111 1.115 (0.890, 1.379) 0.329

IV 0.099 0.117 1.104 (0.870, 1.380) 0.400

V 0.447 0.134 1.564 (1.217, 2.054) <0.001

Geographical type

Urban ref . . . 1 . . .

Traditional 0.519 0.095 1.680 (1.395, 2.026) <0.001

Farms 0.040 0.147 1.041 (0.779, 1.385) 0.780

For GLMM(2), the MCMC method produced slightly different parameter estimates

to those obtained using the classical estimation methods. In terms of standard er-

rors and confidence intervals, MCMC produced slightly larger standard errors and,

therefore, wider confidence intervals. However, the MCMC method led to the same

inferences as the classical methods and hence, similar conclusions can be drawn.

The estimated variance components for GLMM(2) using MCMC are given in Table

4.2. These estimates were inflated compared to those obtained using the classical

methods.

Table 4.2: Variance component estimates for GLMM(2) using MCMC

Variance component Estimate Std.
Error

95% C.I.

Cluster 0.0713 0.0280 0.0227-0.1268

Household within cluster 1.7283 0.2693 1.273-2.2220
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4.5.2 INLA

In implementing the INLA method, the R package INLA was used. The prior distri-

butions specified in the previous section were also employed in this analysis of the

NIDS data set. GLMM(1) and GLMM(2) were fitted using all three link functions de-

scribed in Section 3.2. The DIC and log-marginal likelihood (LML) values for these

models are given in Table 4.3.

Table 4.3: DIC and LML for GLMM(1) and GLMM(2) with different link functions

Education Level
GLMM(1) GLMM(2)

logit probit cloglog logit probit cloglog

DIC 11 923.6 11 927.5 11 924.1 11 762.9 11 772.3 1.124e+278

LML -6 108.7 -6.115.4 -6 113.9 -6 087.6 -6 090.2 -6 089.0

For both GLMM(1) and GLMM(2), the logit link function provides the best fit. In

comparing these two models, GLMM(2) has a lower DIC and higher LML, and is,

therefore, the better model. Results for this model, given in Table 4.4, were obtained

within 15 minutes.

Table 4.4: INLA estimates and OR with 95% confidence intervals for GLMM(2)

Parameter Estimate
Std.

OR (95% C.I.)
Error

Intercept -2.362 0.142

Age

15-24 ref . . . 1

25-34 1.247 0.080 3.480 (2.974, 4.080)

35-44 1.847 0.089 6.341 (5.323, 7.561)

45-54 2.038 0.098 7.675 (6.341, 9.309)

55-64 2.143 0.109 8.525 (6.890, 10.559)

65+ 1.728 0.119 5.629 (4.459, 6.828)

Population group

African ref . . . 1

Coloured -0.223 0.097 0.800 (0.660, 0.968)

Asian/Indian -1.310 0.267 0.270 (0.158, 0.452)

White -0.684 0.161 0.505 (0.368, 0.691)

Continued on next page
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Table 4.4 – Continued from previous page

Parameter Estimate
Std.

OR (95% C.I.)
Error

Marital status

Married ref . . . 1

Living with partner -0.664 0.108 0.515 (0.416, 0.636)

Widow -0.444 0.085 0.641 (0.543, 0.758)

Divorced or separated -0.390 0.145 0.677 (0.509, 0.899)

Never married -0.599 0.065 0.549 (0.484, 0.624)

Current smoker

No ref . . . 1

Yes -0.623 0.106 0.536 (0.435, 0.660)

Alcohol consumption

No ref . . . 1

Yes -0.246 0.077 0.782 (0.672, 0.908)

Household expenditure on food

Quartile I ref . . . 1

Quartile II 0.185 0.069 1.203 (1.050, 1.380)

Quartile III 0.165 0.075 1.179 (1.018, 1.365)

Quartile IV 0.249 0.083 1.283 (1.090, 1.511)

Education

No schooling ref . . . 1

Primary 0.294 0.084 1.342 (1.139, 1.582)

Secondary 0.491 0.089 1.634 (1.373, 1.944)

Tertiary 0.160 0.194 1.174 (0.802, 1.716)

Employment status

Unemployed ref . . . 1

Employed 0.118 0.056 1.125 (1.009, 1.255)

Household income quintile

I ref . . . 1

II -0.069 0.077 0.933 (0.803, 1.084)

III 0.086 0.080 1.090 (0.931, 1.274)

IV 0.079 0.084 1.082 (0.918, 1.276)

V 0.342 0.095 1.408 (1.168, 1.697)

Geographical type

Urban ref . . . 1

Traditional 0.389 0.068 1.476 (1.290, 1.685)

Farms 0.030 0.105 1.030 (0.838, 1.265)
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For GLMM(2), the results obtained using the INLA method were very similar to

those obtained using the classical methods and, therefore, lead to similar conclu-

sions. The estimated variance components for GLMM(2) using INLA are given in

Table 4.5. Furthermore, these estimates are consistent with those obtained using the

classical methods.

Table 4.5: Variance component estimates for GLMM(2) using INLA

Variance component Estimate Std.
Error

95% C.I.

Cluster 0.2037 0.036 0.1397-0.2769

Household within cluster 0.6487 0.059 0.5346-0.7618
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Chapter 5

Discussions and Conclusions

In this study, a GLMM was used to investigate the relationship between obesity

among females in SA and selected demographic, lifestyle, socioeconomic and envi-

ronmental variables, and to identify significant risk factors associated with obesity.

A survey logistic model (Appendix A) was used as an alternative method to achieve

this purpose. However, this method is design-based, which assumes the observa-

tions are independent. Therefore, the GLMM was fitted to the NIDS data set, first

to account for possible heterogeneity among clusters only (GLMM(1)), and then ex-

tended to account for possible heterogeneity among households nested within clus-

ters (GLMM(2)). One of the objectives of this study was to examine and compare

the different classical and Bayesian methods used in fitting a GLMM. For the clas-

sical approach, results were obtained using the Laplace approximation, adaptive

Gauss-Hermite quadrature and PQL methods. The Bayesian approach was demon-

strated via MCMC and INLA. For all estimation methods, the best fitting model

was GLMM(2). Even though only the logit link could be explored under MCMC,

this link function provided the best fit under all other estimation methods. These

methods produced very similar results, except for MCMC, which produced slightly

inflated parameter estimates for both the fixed effects and variance components.

All methods differed significantly in terms of computational speed. The classical

methods had shorter run-times compared to the Bayesian methods, which is one of

the advantages of the classical approach over the Bayesian approach (Hall, 2012).

However, with the adaptive Gauss-Hermite quadrature, the computational time in-

creased considerably as the number of quadrature points were increased. For the

Bayesian methods, the run-times for INLA was considerably shorter compared to

MCMC.
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With the GLMM, the variables age, population group, marital status, smoking status,

alcohol consumption, household expenditure on food, education level, employment

status, household income and geographical type were all found to be significantly

associated with obesity among females. In contrast, the survey logistic model found

employment status to be insignificant. Furthermore, this model found significant

two-way interactions between population group and education level, population

group and geographical type as well as education level and alcohol consumption.

This may be an effect of taking sampling weights into consideration. Despite these

differences and the slight differences in parameter estimates, the same conclusions

can be drawn. Older females were associated with a higher risk of obesity, with

those between the ages of 55 and 64 years old being most at risk. African females

and those married were at significantly elevated risk of obesity which is consistent

with the findings of Malhotra et al. (2008), Puoane et al. (2002) and Sartorius et al.

(2015). Conversely, female smokers and those who consumed alcohol were associ-

ated with a lower risk of obesity. Total household expenditure on food was shown to

be significantly associated with risk of obesity, with females with a total household

expenditure on food within the highest quartile having the highest risk. Similar to

the study by Puoane et al. (2002), females with a tertiary education, or those with no

schooling, were associated with a lower risk of obesity. Compared to females who

were unemployed, those who were employed were at a higher risk. Furthermore,

females belonging to the highest household income quintile were also at a higher

risk of obesity. This suggests that higher socioeconomic status is associated with

increased risk of obesity. These results are in agreement with those found by Case

& Menendez (2009), Kruger et al. (2012) and Sartorius et al. (2015). Compared to

urban areas, a female’s risk of obesity was greater in traditional areas and farms,

which is in contrast to the findings of Puoane et al. (2002) and Sartorius et al. (2015).

However, urbanization is associated with the adoption of a Westernized lifestyle, in

particular changes in diet, and a study by Bourne et al. (2002) has shown that these

changes are occurring in non-urban areas as well. A study by Yu & Lippert (2016)

indicates that neighbourhood crime was associated with decreased physical activity

and increased obesity. However, in this study, crime was found to be insignificant.

Furthermore, exercise frequency was found to be insignificant which is consistent

with the findings by Malhotra et al. (2008), but in contradiction to those by Alaba &
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Chola (2014), Butzlaff & Minos (2016) and Cois & Day (2015). Depression was also

found to be insignificant, with the distribution of obesity prevalence being almost

the same for females classified as suffering from depression, and those who are not.

The etiology of obesity is one that is multifaceted. It can change over time and differ

across regions. A study that takes these two factors into account through spatiotem-

poral modelling would be highly recommended. Furthermore, the prior distribu-

tions used in this study were based on those proposed by Fong et al. (2010). Even

though Grilli et al. (2014) have shown that these prior specifications work well, fur-

ther studies should investigate the sensitivity of these prior specifications. Finally,

this study used a complete case analysis. Further studies should take missing data

into consideration.
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Appendix A

Survey Logistic Model Analysis

With the aim of accounting for the sampling design of the NIDS survey, a survey

logistic model was fitted to the NIDS data. This was done using the SAS proce-

dure PROC SURVEYLOGISTIC, which allows sampling weights to be specified in

the analysis. The usual model selection procedures (stepwise, forward and back-

ward) have not yet been included in SAS version 9.4 for PROC SURVEYLOGISTIC.

Therefore, model selection was performed using similar steps to those suggested by

(Hosmer & Lemeshow, 2000). In the first step, bivariate analyses of the relation-

ship of obesity and all demographic, lifestyle, socio-economic and environmental

variables were performed one at a time. The variables age, population group, mar-

ital status, current smoker, alcohol consumption, household expenditure on food,

education level, employment status, household income quintile, and geographical

type had a bivariate association with obesity at p-values less than 0.1. These vari-

ables were then selected for inclusion into a multivariate survey logistic model. To

determine the final model, a backward selection procedure was performed and in-

significant variables, based on the type III analysis of effects, were removed from

the model one at a time until only significant variables were left. The remaining

variables were age, population group, marital status, current smoker, alcohol con-

sumption, household expenditure on food, education, household income quintile,

and geographical type. Only employment status was found to be insignificant when

included in the multivariate model. All interaction terms of the remaining variables

were explored. The interaction terms that led to a large decrease in the deviance

were selected. The final model, given in the following table, included three two-way

interaction terms.
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Type III analysis of effects for the final SLR model

Effect DF Chi-Square P-Value

Age 5 97.51 <0.0001

Population group 3 35.67 <0.0001

Marital status 4 4.78 0.0030

Current smoker 1 7.87 0.0075

Alcohol consumption 1 13.41 0.0007

Household expenditure on food 3 3.42 0.0259

Education 3 19.25 <0.0001

Household income quintile 4 1.11 0.0363

Geographical type 2 17.78 <0.0001

Population group ∗ Education 8 14.87 <0.0001

Population group ∗ geographical type 5 16.97 <0.0001

Alcohol consumption ∗ Education 3 3.56 0.0224

For variance estimation of the model, the Taylor series approximation method, which

is the default in SAS PROC SURVEYLOGISTIC was used. The predictive accuracy of

the model was found to be in an acceptable range, with a concordance index (c) of

0.721, indicating that, in predicting the probability of a positive obesity result, 72.1%

of the cases were predicted correctly. The parameter estimates, adjusted odds ratios

(aOR) with their 95% confidence intervals, and the p-values are given in the table

that follows. Compared to the GLMM fitted in this study, the survey logistic model

produced slightly different results. With the survey logistic model, employment sta-

tus was found to be insignificant. Furthermore, the two-way interactions between

population group and education level, population group and geographical type, as

well as education level and alcohol consumption were found to be significant. The

relationship between population group and education level is presented in the fig-

ure on page 70. This figure reveals that African females who reported receiving up

to a tertiary education were most at risk of being obese. For all levels of education,

Asian/Indian females had the lowest risk of obesity. For White females, the risk of

obesity increased as the level of education increased, but decreased at tertiary level.
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Estimates and aOR with 95% confidence intervals for the survey logistic model

Parameter Estimate
Std.

aOR (95% C.I.) p-value
Error

Intercept -2.4884 0.1592 <0.001

Age

15-24 ref . . . 1 . . .

25-34 1.245 0.097 3.472 (2.853, 4.225) <0.001

35-44 1.735 0.105 5.669 (4.587, 7.007) <0.001

45-54 1.977 0.118 7.223 (5.693, 9.165) <0.001

55-64 2.116 0.109 8.299 (6.668, 10.328) <0.001

65+ 1.585 0.175 4.878 (3.428, 6.943) <0.001

Population group

African ref . . . 1 . . .

Coloured -0.195 0.109 0.823 (0.507, 0.904) 0.024

Asian/Indian -1.352 0.329 0.259 (0.225, 0.712) <0.001

White -0.689 0.234 0.502 (0.178, 0.668) <0.001

Marital status

Married ref . . . 1 . . .

Living with partner -0.489 0.188 0.613 (0.420, 0.895) 0.012

Widow -0.270 0.152 0.763 (0.561, 0.963) 0.048

Divorced or separated -0.184 0.188 0.831 (0.569, 0.910) 0.033

Never married -0.385 0.101 0.680 (0.555, 0.834) <0.001

Current smoker

No ref . . . 1 . . .

Yes -0.386 0.138 0.680 (0.515, 0.897) 0.008

Alcohol consumption

No ref . . . 1 . . .

Yes -0.607 0.126 0.545 (0.283, 0.950) 0.006

Household expenditure on food

Quartile I ref . . . 1 . . .

Quartile II 0.155 0.092 1.168 (1.030, 1.405) 0.009

Quartile III 0.184 0.101 1.202 (1.020, 1.474) 0.008

Quartile IV 0.439 0.141 1.551 (1.167, 2.061) 0.003

Education

No schooling ref . . . 1 . . .

Primary 0.323 0.075 1.381 (1.189, 1.606) <0.001

Secondary 0.535 0.111 1.707 (1.365, 2.136) <0.001

Tertiary 0.884 0.251 2.421 (0.685, 3.629) 0.100

Continued on next page
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Continued from previous page

Parameter Estimate
Std.

OR (95% C.I.) p-value
Error

Household income quintile

I ref . . . 1 . . .

II -0.001 0.113 0.999 (0.795, 1.256) 0.995

III 0.147 0.080 1.159 (0.986, 1.362) 0.072

IV 0.102 0.107 1.107 (0.892, 1.374) 0.346

V 0.206 0.176 1.229 (1.161, 1.752) <0.001

Geographical type

Urban ref . . . 1 . . .

Traditional 0.314 0.097 1.369 (1.126, 1.662) <0.001

Farms 0.076 0.178 1.079 (0.647, 1.328) 0.674

Population group ∗ Education

African and No schooling ref . . . 1 . . .

Coloured and Primary 0.481 0.250 1.618 (0.976, 2.678) 0.061

Coloured and Secondary -0.380 0.291 0.634 (0.381, 1.230) 0.198

Coloured and Tertiary -0.354 0.090 0.702 (0.115, 4.293) 0.696

Asian/Indian and Primary 1.532 0.486 4.627 (1.738, 12.33) 0.003

Asian/Indian and Secondary 0.412 0.190 1.510 (1.029, 2.217) 0.036

Asian/Indian and Tertiary 1.548 0.087 4.702 (0.811, 3.696) 0.083

White and Secondary -0.415 0.104 0.660 (0.533, 0.824) <0.001

White and Tertiary -0.521 0.113 0.594 (0.433, 0.820) <0.001

Population group ∗ geographical type

African and Urban ref . . . 1 . . .

Coloured and Traditional -1.064 0.078 0.345 (0.071, 1.669) 0.180

Coloured and Farms -0.776 0.082 0.460 (0.087, 2.425) 0.351

Asian/Indian and Traditional 1.782 0.145 5.941 (4.531, 8.406) <0.001

Asian/Indian and Farms 2.105 0.103 8.207 (3.397, 10.580) <0.001

White and Traditional 1.105 0.318 3.019 (0.845, 10.794) 0.087

Alcohol consumption ∗ Education

No and No schooling ref . . . 1 . . .

Yes and Primary -0.147 0.145 0.863 (0.352, 2.115) 0.742

Yes and Secondary 0.588 0.103 1.800 (0.294, 4.059) 0.152

Yes and Tertiary -1.063 0.168 0.345 (0.049, 0.533) 0.008
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Estimated probability of obesity associated with the interaction of population group and
education level

The first figure on the next page shows the estimated probability of obesity asso-

ciated with population group and geographical type. Females living in urban or

traditional areas had a higher risk of obesity compared to those living on farms,

however excluding Asian/ Indian females who instead, had a higher risk living on

farms than in urban or traditional areas. The estimated probability of obesity asso-

ciated with education level and alcohol consumption, given in the second figure on

page 71, indicates that females who received up to a tertiary education and did not

consume alcohol were most at risk of being obese. The risk of obesity was low for

females who consumed alcohol across all levels of education. For all other variables,

the results obtained with the survey logistic model were similar to those obtained

with the GLMM and therefore similar conclusions can be drawn.
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Estimated probability of obesity associated with the interaction of population group and
geographical type

Estimated probability of obesity associated with the interaction of education level and alco-
hol consumption
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SAS codes

The following SAS codes were used to fit the final survey logistic model to the NIDS

data:

proc surveylogistic data = dataF;

stratum DC / list;

cluster cluster;

class X1 X3 X4 X8 X9 X11 X12 X14 X15 / param=glm;

model BMI (descending) = X1 X3 X4 X8 X9 X11 X12 X14 X15 X3*X12

X3*X15 X9*X12/ clparm;

weight weights; run;

##############################################################

where X1 = age of female; X3 = population group; X4 = marital status; X8 = current smoking

status; X9 = alcohol consumption; X11 = total household expenditure on food; X12 = education;

X14 = total household income; X15 = geographical type
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Codes

The SAS codes used in the analysis of the NIDS data are given below:

GLMM(1)

proc glimmix data=dataF method=laplace

plots=studentpanel(conditional);

class X1 X3 X4 X8 X9 X11 X12 X13 X14 X15

cluster; model BMI(descending) = X1 X3 X4 X8 X9 X11 X12 X13 X14 X15/

link=logit dist=binary oddsratio solution;

random intercept/subject=cluster type=VC;

covtest zerog;

run;

GLMM(2)

proc glimmix data=dataF method=laplace

plots=studentpanel(conditional);

class X1 X3 X4 X8 X9 X11 X12 X13 X14 X15 cluster hhid;

model BMI (descending) = X1 X3 X4 X8 X9 X11 X12 X13 X14 X15/

link=logit dist=binary oddsratio solution;

random intercept/ subject=cluster;

random intercept/ subject=hhid(cluster);

covtest zerog;

run;
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The R codes in the Bayesian analysis of the NIDS data is given below:

MCMC method

#####################################################

library(MCMCglmm)

####GLMM(2)

mc3 <- MCMCglmm(Yf ˜ X1 + X3 + X4 + X8 + X9 + X11 + X12

+ X13 + X14 + X15,

random=˜cluster + cluster:hhid, data=dataF,

family="categorical", prior=list(R=list(V=1, fix=1),

G=list(G1=list(V=0.0164, nu=0.5),

G2=list(V=0.0164, nu=0.5))),

nitt=90000, slice=F)

summary(mc3$VCV) summary(mc3$Sol) plot(mc3) summary(mc3)

mc4 <- MCMCglmm(Yf ˜ X1 + X3 + X4 + X8 + X9 + X11 + X12

+ X13 + X14 + X15,

random=˜cluster + cluster:hhid, data=dataF,

family="categorical", prior=list(R=list(V=1, fix=1),

G=list(G1=list(V=0.0164, nu=0.5),

G2=list(V=0.0164, nu=0.5))),

nitt=90000, slice=F)

mcmc2 <- mcmc.list(mc3, mc4) gelman.diag(mcmc2)

###############################################
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INLA method

#####################################################

library(INLA)

####GLMM(2)

dataF.inla.fit.2 = inla(Yf ˜ X1 + X3 + X4 + X8 + X9 + X11

+ X12 + X13 + X14 + X15

+ f(cluster, model="iid", param=c(0.5,.0164))

+ f(cluster:hhid, model="iid", param=c(0.5,.0164)),

data=dataF, family="binomial",

control.compute=list(dic=TRUE))

dataF.hyperpar.2 = inla.hyperpar(dataF.inla.fit.2)

summary(dataF.inla.fit.2) F2 = inla.contrib.sd(dataF.inla.fit.2)

F2$hyper plot(dataF.inla.fit.2)

###############################################

where X1 = age of female; X3 = population group; X4 = marital status; X8 = current smoking

status; X9 = alcohol consumption; X11 = total household expenditure on food; X12 = education;

X13 = employment; X14 = total household income; X15 = geographical type
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The model diagnostic plots obtained using the Laplace approximation method are

given below:

GLMM(1)
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GLMM(2)
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The plots obtained using the Bayesian estimation methods for GLMM(2) are given

below:

B.1 MCMC method

78



Appendix D

79



Appendix D

80



Appendix D

81



Appendix D

82



Appendix D

83



Appendix D

B.2 INLA method
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