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ABSTRACT 

Chlamydia trachomatis infections are the most common bacterial sexually transmitted infections 

(STIs) in humans, worldwide. Due to asymptomatic nature of C. trachomatis, the need for 

sensitive, reliable and affordable laboratory methods for diagnosis is critical. The aim of this study 

was to ascertain if the genetic profiles of different C. trachomatis isolates associate with antibiotic 

resistance.  

 

Two hundred and sixty-five Eswab™ clinical samples were screened for Ct using Anyplex™ II 

STI-7 Detection. We have applied High Resolution Melting Analysis (HRMA) for the genotyping 

of the Ct and applied it specifically to the 14 sexually transmitted infection-related genotypes: A-

C, D-K and L1-L3. Based on the genotype of the OMP1 (Outer Membrane Protein) gene C. 

trachomatis is grouped into different serovars, which present in different clinical manifestations; 

with type A, B, Ba, and C causing trachoma, D-K cause urogenital infections and LI, LII & LIII 

associated with lymphogranuloma venereum (LGV).  We confirmed the presence of the OMP1 

gene with the conventional PCR.   HRMA was performed to identify the C. trachomatis serovars 

on a Quantstudio 5 real – time PCR instrument and CDC control strains were included in the 

analysis. HRM analysis was done on the High-Resolution Melt Softwarev3.1.  We identified the 

following serovars A, B, C, D, E, F, G, I, J, L3 and our prevalence for the above serovars were as 

follows 3.2%, 6.4%, 3.2%, 9.7%, 16.1%, 29%, 9.7%, 12.9%, 3.2% and 6.4%, respectively. None 

of the serovars: H, K, L1, L2 were observed. 

A TaqMan real time PCR assay was also performed to measure the bacterial concentration of each 

C. trachomatis positive sample to elucidate if there is  any association with the serovar type. D-K 

serovars had higher bacterial load compared to A-C and L3 serovars, (p =0.0045). We also 

performed sanger sequencing on ribosomal proteins (L4 and L22) to determine the presence of 

mutations that have been previously associated with drug resistance. The ribosomal protein L4 had 

mutations located in 7 different positions, significant mutations associated with macrolides 

resistance were observed at amino acid number 109 and 151. Ribosomal protein L22 had 21 

samples with mutation at amino acid number 24, that has not been associated with resistance 

before. Based on our study and previous studies, it is clear that macrolide resistance in C. 

trachomatis is multifactorial besides changes in the amino acids. 
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1. INTRODUCTION 
 

 

Chlamydia trachomatis (C. trachomatis) infections are the most common bacterial sexually 

transmitted infections (STIs) in humans, worldwide [1], with annually occurring new infections 

estimated to be 105,7 million [2] . In Africa, it is estimated that 92.6 million new cases of the 

curable STIs which include Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, 

and Trichomonas vaginalis, occur annually[3]. Bacterial vaginosis (BV) is also among the 

infections that increase the risk of acquiring STIs although it is not considered an STI [4] [5]. 

Bautista et al reported that BV an important risk factor to successive sexually transmitted 

infections including Chlamydia trachomatis and  Neisseria gonorrhoeae, especially in high risk 

women[5] [6]. In one study, the STI prevalence has been reported to be 13% with  the incidence 

of 20/100 women-years [7]. Similar  STI incidence has been reported by other studies done in 

South Africa [7] [8]. According to World Health Organization, 101 million chlamydial infections 

are reported annually and in 2012 the prevalence was shown to be 4.2% among women, whilst 

2.7% among men, globally [9]. STIs as a major health problem are also associated with increased 

acquisition and transmission of HIV infection, as people who are infected with STIs are vulnerable 

to HIV [10]. Up to 80% women and 50% men are asymptomatic, making it difficult to diagnose 

and treat thus enhancing transmission of STIs among their partners [9]. The chlamydial infection 

rates are higher among young women compared to men, necessitating screening programs that 

primarily target women [11]. Another study conducted in South Africa, looking at different 

communities, they reported regional differences with 42% prevalence of C. trachomatis in Cape 

Town while Soweto showed 18% [12]. Each year, about 65 million Chlamydia infections are 

estimated to occur amongst women [13]. When C. trachomatis  remains untreated, it results in 

serious sequelae [2] that include pelvic inflammatory disease (PID) leading to ectopic pregnancy, 

tubal infertility, and chronic pelvic pain [9]. Approximately 10-20% C. trachomatis  untreated 

women develop PID and 10-15% clinical PID cases result in tubal factor infertility [13].  

  

https://en.wikipedia.org/wiki/Chlamydia_infection
https://en.wikipedia.org/wiki/Sexually_transmitted_disease
https://en.wikipedia.org/wiki/Sexually_transmitted_disease
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Background 

C. trachomatis is the species that belongs to the Chlamydiaceae family, which is pathogenic to 

human or/and animals. It is a gram negative, obligate intracellular pathogen [14]. The 

Chlamydiaceae have significantly condensed genomes (1.04 Mb encoding 895 open reading 

frames for C. trachomatis) which lack metabolic enzymes, making them greatly reliable on the 

host for their metabolic processes [15].  

C. trachomatis is comprised of different serovars, which present in three distinct clinical 

syndromes; serovar A, B, Ba, and C causing trachoma, D-K serovars cause urogenital infections 

and LI, LII & LIII are associated with lymphogranuloma venereum (LGV) [16]. The trachoma 

biovar  is known to be the leading cause of non-congenital blindness in the developing nations, 

with approximately 21 million patients globally [17], while the genital tract biovar is the most 

prevalent amongst the three [15]. Serovars D, E and F are the most prevalent genotypes in the 

urogenital chlamydial infections [18]. The LGV biovar causes either invasive urogenital or 

anorectal infections [15], and it can spread all over the body leading to arthritis or inflammation 

of the lungs when left untreated [19].  

C. trachomatis has also been associated with acquisition and transmission of HIV infection, as 

people who are infected with STIs are vulnerable to HIV  [10, 20]. The risk of a C. trachomatis-

infected subject getting HIV is higher compared to the risk of a C. trachomatis-negative subject 

[21]. It has also been proposed as an independent risk factor for development of cancer of the 

cervix [22]. Common risk factors associated with C. trachomatis are adults between the age of 14-

25, recent change in sexual partner or coinfection with another STI and chlamydia positive sexual 

partner [23] [24]. 

Non-barrier contraceptive or lack of consistence in using barrier contraceptive is also the risk factor 

of C. trachomatis [25]. Clinical manifestation of chlamydial infections includes pain during sexual 

intercourse commonly known as deep dyspareunia, abnormal vaginal discharge, lower abdominal 

pain, dysuria (difficult during urination) and intermenstrual or postcoital bleeding [26] [25]. Even 

though the incubation period of C. trachomatis infection is poorly described, it is estimated to be 

7-21 days after which a person may start showing symptoms [25]. 
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Syndromic management of C. trachomatis 

The syndromic approach includes empiric treatment of  signs and symptoms of a group of 

causative pathogens instead of treating the individual disease pathogen [27]. Vaginal discharge, 

lower abdominal pain and genital ulceration are amongst the main syndromic diagnoses and are 

treated with combination therapy to treat the likely underlying infections [28]. The syndromic 

approach used in most developing countries; where there are limited resources and lack of suitable 

laboratory services; is a key tool in the control of  STIs and their sequelae [27] [29] [30]. 

Nevertheless, it is not adequate since significant pathogens such as C. trachomatis and Neisseria 

gonorrhoeae can exist without presenting with any symptoms, and therefore often go untreated 

[31]. This syndromic management approach often leads to over diagnosis and over treating thus 

wasting antibiotics [28] [31] [32]. It relies on the known  organisms that cause a cluster of signs 

or symptoms characterizing a particular clinical condition; this means individuals presenting with 

these well recognized signs and symptoms, get treated for all the known associated pathogens [28]. 

Whilst dual infections are not uncommon, assuming all symptomatic individuals are infected by 

more than one pathogen results in gross overtreatment, especially in the light of antimicrobial 

stewardship [33]. 

Syndromic management of STIs, by definition, also results in significant under treatment as the 

asymptomatic individuals, who are the majority, are not treated [28]. Due to the asymptomatic 

nature of most of the STIs, both syndromic management and laboratory testing for specific 

organisms are critical and complementary, so that the appropriate treatment can be administered 

[34] [35]. It is necessary for pregnant women to undergo screening for STIs including   C. 

trachomatis since the infection may be transmitted from mother to the child [36]. Screening for C. 

trachomatis and other STIs should be recommended for high risk populations so that the 

asymptomatic patients are identified and treated as they are the reservoirs of these infections. 

Another short coming about syndromic management is that it is not easy to find and treat sexual 

partners appropriately, hence the need for expedited partner therapy (EPT) already implemented 

in other countries such as the USA [37]. Our country should consider moving from syndromic 

management to diagnostic management of STIs. Therefore, the importance of developing or 

improving the diagnostic method for C. trachomatis and other major STIs should be a priority 

[37]. 
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Immunization against C. trachomatis 

It has been difficult to successfully develop and approve C. trachomatis vaccines in the past years 

[38]. In the past, after isolation of the causative agent of trachoma vaccine studies were initiated 

[39]. Children were vaccinated with formalin-fixed chlamydial elementary bodies (EBs), which 

provided short-lived and  partial serovar specific immunity. Efforts put on the studies of  

chlamydial vaccine over the past three decades led to discovery of numerous protective antigens 

[40]. Development of vaccine for genital chlamydial infection has been in the preclinical phase of 

testing for a while, but the first Phase I trials of chlamydial vaccine candidates are underway, and 

scientific developments  promise for additional candidates to enter clinical evaluation in the 

coming years [13]. The existence of serologically distinct strains or serovars of C. trachomatis 

mandates a vaccine that will provide protection against multiple serovars [41].  

Scientists at McMaster University have conducted a study that looks at a protective vaccine against 

the most common species of chlamydia commonly known as C. trachomatis [41].The findings 

from their study suggested that highly conserved proteins of the chlamydial type III secretion 

system (T3SS) may signify good candidates for a Chlamydia vaccine. Presently, no certified 

vaccine exists for C. trachomatis, but indication from animal models and human studies give 

suggestions that a vaccine is feasible [13]. Hafner et al reported development of protective vaccine 

against C. trachomatis and other genital tract infections is promiscuous and  they believe there is 

a genetic toolbox for manipulating this obligate intracellular and infective agent [42]. Finding 

effective immunization for C. trachomatis infection is therefore well underway and with successful 

studies, approved vaccines may become available. 

Diagnosis of C. trachomatis 

Whilst C. trachomatis can be cultured, the culture method requires trained personnel, high 

maintenance and is labour intensive for routine purposes. Hence, the use of molecular methods is 

of high priority as they do not require live culture but the genetic content of the organism [43]. 

Possible methods to use for screening include GeneXpertR CT/NG assay.  This is one of the 

methods that was used in the recent study by Garrett et al where they screened women visiting the 

STI clinic, Durban, South Africa [37]. This assay screens for both C. trachomatis and N. gonorrhea 

and the results found were compared with the ones found through screening with the Anyplex™ 
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II STI-7 Detection, which detects 7 different STIs (C. trachomatis, N. gonorrhoeae, M. genitalium, 

U. urealyticum U parvum, M. hominis and T. vaginalis ) [44] [45]. The results found correlated 

well. Other studies used serological diagnostic assays, which they found not to be reliable as they 

lack specificity and sensitivity, and cross-reactivity of antibodies with other chlamydia species is 

observed [46]. Another study done by Brabin et al they used a laboratory method known as Roche 

COBAS TaqMan CT test to screen for C. trachomatis positive samples in which they confirmed 

positive patients using Artus C. trachomatis plus PCR kit [47]. All the above-mentioned methods 

are molecular based indicating that the Nucleic acid amplification tests (NAATs) approach for 

diagnosis of C. trachomatis is the current diagnostic as demonstrated by their improved specificity 

and sensitivity compared to cell culture [48]. Therefore, a need for molecular based diagnostic 

methods should be considered in clinics and healthcare facilities not only for C. trachomatis but 

also the other major STIs causative agents. 

Treatment and Management 

According to the Centers for Disease Control and Prevention (CDC)- 2015 Sexually Transmitted 

Diseases Treatment Guidelines  - recommended treatment regimens are azithromycin 1 g orally in 

a single dose OR doxycycline 100 mg orally twice daily for 7 days [25]. Alternatively, 

erythromycin and fluoroquinolones can be given to individuals who cannot tolerate the preferred 

regime, and amoxicillin is recommended for pregnant women as per South African Health 

guidelines, 2018 [49]. LGV is also considered in the regime, but, with extended treatment plan 

[50] [51].  

As much as C. trachomatis infection is cured with antibiotics, people on treatment should take 

precautions such as not engaging to sexual activities during treatment phase, thus preventing the 

spread to sexual partner(s) and sharing of medication is strictly prohibited since the person infected 

should finish the whole regime to ensure cure [52] [53]. Treatment of the sexual partner is also 

important in the course of treating the infected person to avoid things such as re-infections or 

persistence of the C. trachomatis infection [54] [55]. Avoiding treatment or not following orders 

in taking medication may end up resulting in the serious sequelae such as ectopic pregnancy and 

pelvic inflammatory disease in women [56]. 

 

https://www.cdc.gov/std/tg2015/default.htm
https://www.cdc.gov/std/tg2015/default.htm
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Class and Mode of action of treatment Antibiotics 

Azithromycin belongs to azalides class of macrolides antibiotics, containing nitrogen in the 

macrolide ring [57]. It is one of the antibiotics used in bacterial infections such as sexually 

transmitted infections including chlamydia and gonorrhea infections. Typically, these infections 

are susceptible to azithromycin, but the drug is broadly used as combination therapy due to a low 

barrier to development of resistance[58]. Azithromycin has relatively broad but shallow 

antibacterial activity[59]. It inhibits some Gram-positive and Gram-negative bacteria, and many 

uncommon bacteria. Azithromycin prevents bacterial from growing by distracting protein 

synthesis. It binds to the 50S subunit of the bacterial ribosome and therefore inhibits translation of 

mRNA[57]. 

Erythromycin as previously mentioned is an alternative for treatment of chlamydia infections in 

patients who cannot tolerate the preferred regime. It belongs to group of drugs known as macrolide 

antibiotics and also a pregnancy category B drug, meaning it is generally safe to use by pregnant 

women[25]. Erythromycin has less effective mechanism compared to azithromycin [25]. 

Erythromycin inhibits growth of bacteria, by binding to the 50s subunit of the bacterial rRNA 

complex, resulting in inhibition of  protein synthesis and subsequent structure and function 

processes critical for life [60]. It interferes with aminoacyl translocation, preventing the transfer 

of the tRNA bound at the A site of the rRNA complex to the P site of the rRNA complex. Without 

this translocation, the A site remains occupied, thus the addition of an incoming tRNA and its 

attached amino acid to the emerging polypeptide chain is inhibited. 

Doxycycline is an antibiotic that is used in the treatment of infections caused by bacteria such as 

chlamydial infections and presumptive Treatment of Chlamydial Infection in Gonorrhea Patients. 

It belongs to tetracycline group of drugs [61]. Doxycycline is not recommended in the second and 

third trimesters of pregnancy as it may cause serious consequence, therefore alternative drugs are 

prescribed. It inhibits the synthesis of bacterial proteins by binding to the 30S ribosomal subunit, 

which is only found in bacteria [62]. This prevents the binding of transfer RNA to messenger RNA 

at the ribosomal subunit therefore amino acids cannot be added to polypeptide chains and new 

proteins cannot be synthesized. This inhibits bacterial growth allowing the immune system time 

to kill and remove the bacteria [62].  
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Amoxicillin is in the beta-lactam family of antibiotics and is used to treat a variety of bacterial 

infections including chlamydial infection. It is no longer recommended for some infection due to 

development of resistance [63]. This medication is a penicillin-type antibiotic. It is a recommended 

antibiotic for pregnant women as per South African Health guidelines [63]. It stops the growth of 

bacteria by inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a 

major component of the bacterial cell wall [64]. 

Ofloxacin and levoflacin are antibiotics belong to fluoroquinolone family of medications, a large 

group of broad-spectrum bactericides that share a bicyclic core structure related to the compound 

4-quinolone [65]. These are alternative drugs other than effective azithromycin recommended by 

CDC for treatment of C. trachomatis [25].  works by interfering with the bacterium's DNA. 

Increasing emergence of fluoroquinolone resistance in bacteria resulted in the limits usefulness of 

the drugs for infections [66]. Quinolones apply their antibacterial effect by preventing bacterial 

DNA from unwinding and duplicating [67]. Precisely, they obstruct the ligase activity of the type 

II topoisomerases, gyrase and topoisomerase IV which cut DNA in order to introduce supercoiling 

and with their ligase activity disrupted release DNA with single and double strand breaks which 

lead to the bacterial cell death [67]. 

General Mechanisms of antibiotic resistance 

The major public health threat affecting humans around the world is the emergence of resistance 

among the most important bacterial pathogens [68]. Multidrug-resistant organisms have emerged 

not only in the hospital environment but often identified in community settings too, signifying that 

pools of antibiotic-resistant bacteria are present outside the hospitals [69]. There are different 

mechanisms that are generally used by bacteria to escape antimicrobial attack to avoid death and 

encourages spread. 

Mutational Resistance  

Many bacterial cells derived from susceptible population develop mutations in the genes affecting 

the activity of antimicrobial drug, thus resulting in the cell being able to survive in the presence of 

drug [69] [70]. Once a resistant mutant emerges, the antibiotics eradicate the susceptible 

population, leaving the resistant bacteria to predominate [69]. In many cases, change in the gene 

resulting in mutation that leads to resistance costs the cell by decreasing its homeostasis. 
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Horizontal Gene Transfer 

This is the transfer of genetic material between unicellular or multicellular organisms other than 

by the transmission of DNA from parent to offspring (reproduction) [71] [72]. This mechanism is 

one of the most important factors in evolution of bacteria and commonly accountable for 

development drug resistance [69]. Antimicrobial agents used in medical practice are mostly 

derived or found in the environment (mainly soil), there bacteria sharing the environment with 

these agents carry the intrinsic genetic elements of resistance[73]. There is strong evidence 

suggesting that such interaction is a prolific source for the acquisition of antibiotic resistance genes 

in clinically relatable bacteria [74] [73] 

Chemical alterations or destruction of the antibiotic molecule 

Both gram negative and positive bacteria can produce enzymes responsible for introducing 

chemical change to the microbial molecule thus causing antimicrobial resistance [75]. This is 

commonly known as mechanism of acquired antibiotic resistance [76]. It is remarkable that most 

of the antibiotics affected by these enzymatic adjustments exert their mechanism of action by 

obstructing protein synthesis at the ribosome level [69]. The main mechanism of β-lactam 

resistance is depend on  the destruction of these compounds by the action of β- lactamases [77]. 

These enzymes work by destroying the amide bond of the β-lactam ring, resulting in the 

antimicrobial ineffective.  

Decreased permeability 

Many antimicrobial agents depend on the channels of the organism to get inside the cell [78] [79] 

. These channels are known as porins and they have different characteristics in terms of size, charge 

and number [78]. Hydrophilic antibiotics cross the outer membrane by diffusing through outer 

membrane porins. When the size of these porins reduce, antimicrobial agents have difficulties in 

gain access to the inside of the cell [74]. Reducing  porin expression significantly, cause the 

reduction of so the concentration of antimicrobial in the cell  thus contributing to resistance [80].  

Efflux Pumps 

Some of the bacteria escape antimicrobial drugs by producing of complex bacterial machineries 

capable of extruding the drugs out of the cell [81] [82]. This mechanism of resistance disturbs 
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variety of antimicrobial classes including protein synthesis inhibitors, fluoroquinolones, β-lactams, 

carbapenems and polymyxins [83] . These efflux systems may be substrate-specific or with broad 

substrate specificity[69]. 

Modification of the target site 

This is the most common mechanism antibiotic resistance used by bacterial pathogens to escape 

nearly all antimicrobial agents [69] [81]. It also affecting almost all families of antimicrobial 

compounds. The target site is substituted or changes so that the normal organism functions 

continue as normal while the antimicrobial agent is unable to bind to and continue with its activity. 

As a result of antibiotic pressure, the target modification can also arise by a slow process of 

evolution. Another modification of the target site is methylation of the ribosome by certain 

enzymes [69]. These enzymes are responsible for erythromycin ribosomal methylation of V 

domain of 50S ribosomal unit of 23S rRNA, resulting in impairment of the target binding site. 

Resistance Due to Global Cell Adaptations 

In order to survive the most unreceptive environment such as human body the bacteria have 

established sophisticated coping mechanisms to withstand environmental pressure and stressors 

[84] [85]. Bacteria must contend for survival in terms of nutrients and avoiding the attack of 

molecules produced by other rival organisms, to successfully live [86]. Within the host, bacteria 

are continuously attacked by the host’s immune system, so it is important to adapt and cope with 

these stressful conditions[84]. Hence, they have developed a very complex mechanisms to escape 

the interruption of essential cellular process like membrane homeostasis and cell wall synthesis 

[69]. 

Drug resistance and Mutations of C. trachomatis 

Resistance to antibiotics treating chlamydial infections has been described and it is often associated 

with mutations in ribosomal protein genes, principally in L4 and L22, and with mutations in the 

peptidyl transferase region of the 23S rRNA gene [87]. The macrolide resistant strains that had 

mutations in the 23s rRNA were primarily reported in 2004 [88].  

Besides resistant genes of C. trachomatis, resistance to antibiotics is also associated with 

developmental cycle as it consists of two stages: extracellular elementary body (infectious non-
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replicative phase) and intracellular reticulate body (non-infectious replication phase) [89] [90].  

Elementary bodies enter epithelial cells of the host via the process called endocytosis and 

transform into reticulate bodies in a membrane bound compartment, which multiply rapidly [91] 

[92]. Reticulate bodies are expert in replication and providing nutrients, and they have high protein 

reservoirs that are involved in transportation of nutrients, synthesis of proteins and ATP generation 

[15]. During this stage the cross-linked complexes in the elementary bodies are reduced, providing 

the membrane with fluids which is essential for replication [93]. The Reticulate bodies re-

differentiate back into elementary bodies and are released from the host cell, ready to infect 

neighboring cells [15] (figure 1). The epithelial mucosa is the initial site of infection of C. 

trachomatis [26]. This bacterium targets epithelia that are often composed of a single layer of 

columnar cells or those found in the transformation zone in closeness with a stratified 

nonkeratinizing squamous epithelium, which includes the genital tract, the anorectum, and non-

genital sites [94].  

The elementary bodies are capable of binding into receptors on host cells and prompt uptake by the 

infected cell [95] [96]. They have the nature of withstanding harsh extracellular environment 

because they possess a spore-like cell wall made of the network of proteins that are crosslinked by 

disulfide bonds, known as outer membrane complex [96]. This type of cell wall provides the C. 

trachomatis  with resistance character towards osmotic stress and physical stress [15].  

During treatment C. trachomatis may convert to  elementary bodies which are non-replicative, 

infectious and antibiotic resistant, and that may result in persistent infection [97]. Even though the 

elementary bodies of C. trachomatis are known to be metabolically inactive, the studies have 

shown that they have high biosynthetic and metabolic processes and use D-glucose-phosphate as 

an energy source [98]. A quantitative proteomics show that the elementary bodies are rich in 

proteins which are required for glucose catabolism and central metabolism which maybe be used 

for a burst of metabolic activity during entry on host cell and initiate differentiation into reticulate 

bodies [99]. 
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Figure 1: Life cycle of C. trachomatis in the Human body [19]. 

Not only is the resistance to macrolides affected by developmental stage of C. trachomatis but also 

associated with mutations in ribosomal protein genes, principally in L4 and L22, and with 

mutations in the peptidyl transferase region of the 23S rRNA gene [100]. According to Misyurina 

et al they proved that mutation on the peptidyl transferase loop in the position 2611 and 2058 

results in the isolate being resistant to azithromycin, with A2058 mutations, which supposedly 

confer the highest levels of resistance [45] [88]. Beside these two position, 2057 and 2059 in the 

same 23s rRNA region are also associated with drug resistance against  macrolides [88].  

This region of the 23s rRNA gene plays a role in interaction of the macrolide and the C. 

trachomatis during treatment [88] [81]. 23s rRNA has two segments which are major elements for 

binding of the antibiotics i.e. loop of hairpin 25 in domain II and domain V [101] [102]. Macrolides 

binds to the domains of the 23s rRNA of  the larger subunit (50S) of the C. trachomatis ribosome 

and therefore inhibiting the translation of mRNA [103] . Many macrolides have an extensive 

interaction in this rRNA region, which is unquestionably associated with the respective manner in 

which these antibiotics interfere with protein synthesis, as aforementioned . But the macrolides-

resistant strains may not have mutation in the 23s rRNA gene, which means there may be some 

other mechanisms responsible for resistance [88].  

Other resistant mechanisms may include endogenous efflux system and macrolides 

inactivation[104] and all the previously mentioned mechanisms. Point mutations in ribosomal 
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proteins  genes L4 (rplD) and L22 (rplV) give rise to resistance of the bacteria against macrolides 

[105]. These proteins bind primarily to the domain I of 23s rRNA but mutation on them changes 

the conformation in the domains II, III, V thus affecting the action of the macrolides [88] [106].  

LGV biovar requires extended antibiotic treatment, unlike other biovars that have a short treatment 

plan. In this case that is why, genotyping is imperative for laboratory diagnosis of LGV [107]. Due 

to asymptomatic nature of C. trachomatis, the need for sensitive and reliable laboratory methods 

is arising [108]. 

Classification of C. trachomatis 

In order to study C. trachomatis, it is better to work directly with the clinical samples because 

chlamydia is difficult to culture. This organism is an obligate cellular pathogen and required 

special cell lines (i.e. McCoy) for culture. Diagnosis of chlamydia relies mostly on nucleic acid 

amplification tests (NAATs) of specimens collected by vaginal or cervical swabs in women or as 

urine collection in men and women [13]. Many researchers have explored using short DNA 

sequencing for genotyping C. trachomatis using different methodological strategies. Recently, 

Kese et al used the pyrosequencing-based method which also targets the variable regions of the 

OMP1 gene [18]. 

In this study, we have used the genotyping method called High Resolution Melt Analysis (HRMA). 

It is one of the  techniques, originally introduced by Wittwer et al 2003, and has been shown to be 

sensitive, simple with low cost closed-tube approach for DNA analysis [109]. This method has 

been used widely and successfully for genotyping clinically important bacteria and viruses [109]. 

It is a real time nested PCR method, targeting the variable segment 2 (VS2) region of OMP1 for 

genotyping of C trachomatis [110]. The OMP1 is made up of 5 conserved regions and 4 variable 

regions (VS1, VS2, VS3 & VS4), and the variable regions are VS1 and VS2 are more distinct 

compare to other thus allowing construction of the specific synthetic oligonucleotides of the 

different serovars [110]. The OMP1 genotype examination is more sensitive [111] compared to 

other methods. The previous methods that have been used include RFLP, oligonucleotides array, 

sequencing, reverse line blot hybridization; and, fluorescence-labelled probe genotyping of C. 

trachomatis  which only focuses on LGV serovars and excludes the other serovars of C. 

trachomatis [110]. Various techniques for classification of C. trachomatis have been used but they 

have disadvantages such as labor, easy contamination and time consumption. 
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Characterization of C. trachomatis strains can give imperative information regarding different 

serotypes circulating in the community and having better knowledge about the epidemiology of C. 

trachomatis may provide more effective efforts against its spread.  

1.1 Rationale 

There is little or no information on antibiotic resistance in our current local population. Since C. 

trachomatis is difficult to grow we adopted resistance gene sequencing as a surrogate marker of 

resistance. Also, different serovar types react differently to treatment outcomes and disease 

severity. To our knowledge this is the first study performed in this district to both look at serovars 

distributed, and mutations in L22 and L4. We also optimized an assay to sequence directly from 

patient samples. 

1.2 Hypothesis 

The genetic profile of different C. trachomatis isolates associates with antibiotic resistance 

markers. 

1.3 Aim 

 In this study we confirmed the presence of C. trachomatis in previously screened CT 

positive samples from the stored vaginal Eswabs samples.  

 We performed genotyping of C. trachomatis with emphasis on OMP1 gene which codes 

for Major Outer Membrane Protein (MOMP) and compare the genetic profiles of the 

isolates amongst one another or/and with the reference strains to determine significant 

genetic variations (serovars) in community in KZN. 

 We compared the bacterial load of each clinical sample and observe their differences based 

on their serovar types.  

 We also amplified macrolides resistant genes: L4, and  L22 and sequenced them to 

evaluate if there are any previously described mutations associated with drug resistance 

found in our cohort of samples. 

 

1.4  Objectives 

 Amplify the OMP1 (VS1-VS2) gene using conventional PCR 
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 Specifically amplify the OMP1 (VS2) gene for different serovars using Real-Time Nested 

PCR and evaluate High Resolution Melt curves (HRM) for detection of specific serovars 

 Determine the association between serovar typing and bacterial load. 

 To determine mutations in the following genes; Ribosomal protein L4 and L22; conferring 

drug resistance in C trachomatis using Sanger sequencing 
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2. METHODS 

 

2.1 Strains and Clinical samples 

Two hundred and sixty-five stored clinical samples collected by CAPRISA (083 Study) using 

EswabTM from HIV negative women aged 18-40 presenting for STI care at Prince Cyril Zulu 

Communicable Diseases Clinic in Durban, KZN were used in this study. Ethical approval for the 

‘parent’ study was from the Biomedical Research Ethics Committee of the University of KwaZulu-

Natal (BFC410/15), and permission to perform the study was granted by the eThekwini 

Municipality. The ethical approval for this study was also obtained from Biomedical Research 

Ethics Committee of the University of KwaZulu-Natal (REF: BE526/16). 

 The collected samples were screened for C. trachomatis using real time PCR, Anyplex™ II STI-

7 Detection (Seegene). The OMP1 gene of the CT positive isolates were amplified using the 

conventional PCR and the products were ran on the electrophoresis gel to confirm all positive C. 

trachomatis samples. The reference strains A, B, C, C2, D, E, F, G, H, I, J, K, L1, L2, L3, DNA 

lysate, were kindly donated by the Centre for Disease Control and Prevention, Atlanta. 

2.2 Extraction of the genomic DNA 

Bacterial genomic DNA from the clinical swabs was extracted using crude DNA extraction method 

[112]. Briefly; 200µl of the specimen from the transport media of Eswabs was aliquoted into the 

eppendorf tube, span down in the centrifuge at 12388 x g for 5 minutes. The supernatant was 

discarded, the pellet was resuspended into 200µl of dH20 and 10µl of internal control was added. 

The suspension was heated in the water bath at 55°C for 15 minutes and sonicated in the water 

bath sonicator for 15 minutes at 40Khz. It was then centrifuged for 5 minutes at 12388 x g and the 

supernatant was transferred into a new tube and store at -20°C. The concentration of the DNA was 

measured using a Nano-drop (Thermo Fisher Scientific). The reference strains from CDC were 

provided as DNA lysates. 
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2.3 Serovar Typing using HRMA 

The HRMA method has been used widely and successfully for genotyping clinically important 

bacteria and viruses [109]. It is a real time nested PCR method, targeting the variable segment 2 

(VS2) region of OMP1 for genotyping of C. trachomatis [111]. The OMP1 is made up of 5 

conserved regions and 4 variable regions (VS1, VS2, VS3 & VS4), and the variable regions are 

VS1 and VS2 are more distinct compare to other thus allowing construction of the specific 

synthetic oligonucleotides of the different serovars [111]. 

2.3.1 Amplification of the OMP1 gene 

The OMP1 gene of the positive C. trachomatis was amplified on a SimpliAmpTM Thermal Cycler 

(Thermo Fisher Scientific) using CT1 and CT2 primers (Table 1 & Figure 2). Briefly; two micro 

litres of genomic DNA were added into a 20µl reaction mixture consisting of 11,4µl H20, 4µl (5X) 

High Fidelity buffer, 0.16µl (25MM), Deoxynucleotide Triphosphate, 0.5µl of each forward and 

reverse primers (20 micromolar), 0.2µl (5U/ul) Phusion high fidelity Polymerase and 1.2µl MgCl2, 

(50MM), (Thermo Fisher Scientific). The PCR conditions were as follows: 98oC for 30s, 98oC for 

10s, 55oC for 1min and 72oC for 1 minute for 35 cycles followed by a final extension at 72oC for 

5min. The presence and the size of the gene were confirmed by running the PCR product on the 

electrophoresis gel (1%) together with the DNA Molecular Weight Marker VIII 19 – 1114bp 

(Roche). Known controls for the serovars were also included, which were A, B, C, D, E, F, G, H, 

I, J, K, L1, L2 and L3.  

2.3.2 Genotyping of C. trachomatis by High Resolution Melt Analysis (HRMA) 

Amplification for HRM genotyping was performed to identify the C. trachomatis serovars on a 

Quantstudio 5 qPCR instrument (Thermo Fisher Scientific) and CDC controls were included in 

the analysis, using MeltdoctorTM HRM kit (4425557, Thermo Fisher Scientific).  

Two nested PCRs for (C3and C4) and (GP-L and GP-U) where performed from a 1:10 dilution 

original PCR product (C1 and C2).  Briefly; 1µl of diluted PCR product was added into a 4µl 

reaction mixture consisting of 2.5µl HRM mix, 0.5µl (20pmol) of each primer (CT3 and CT4) or 

(GP-L and GP-U) and 1µl H20.  The conditions were as follows: 98oC for 30s, 98oC for 10s, 55oC 

for 1min and 72oC for 1 minute for 35 cycles followed by a final extension at 72oC for 5 minutes. 
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Amplification was performed on a Quant Studio 5 real time PCR machine; (Thermo Fisher 

Scientific).  The experiment data was analysed using High-Resolution Melt Software v3.1 

(Thermo Fisher Scientific).  The unknown samples where matched to the control samples to 

determine the genotype. All assays where performed in duplicate.  The primer sequences are listed 

below (Table 1). 

Table 1: Primer sets for the amplification of OMP1 and Serovar typing. 

Target genes Primer sets 

Set 1: 

Primary primers for VS1 and VS2 PCR 

CT1: TGAACCAAGCCTTATGATCGACGGA  

CT2: CGGAATTGTGCATTTACGTGAG 

Set 2: 

 Nested primers for VS1 and VS2, and 

primary primers for VS2 PCR for HRMA 

CT3: ACTTTGTTTTCGACCGTGTTTTG  

CT4: GATTGAGCGTATTGGAAAGAAGC 

Set 3: 

Nested primers for VS2 PCR for HRMA 

GP-U: TCHGCWTCYTTCAAYTTAGT  

GC-L: CAYTCCCASARAGCTGC 

The primer sets for serovar typing were taken from J-H Li et al [109] 

 

Figure 2: The primary and nested primer sets used for the whole OMP1 gene amplification and 

VS1&VS2 region for HRMA are CT1&CT2 and CT4&CT4, respectively. GP-U and GP-L as 

nested primers for nested VS2 PCR for HRMA [109]. 
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2.3.3 Measurement of bacterial load of C. trachomatis  

We also performed a TaqMan  based real time PCR assay using Thermo Fisher Scientific Woman’s 

Health Panel Kit (Ba04646249_s1) to measure the bacterial concentration of each C. trachomatis 

positive sample to look for any association with serovar typing and observed the trend. Briefly; 

reagents for 1 reaction were as follows; nuclease free water 1.5µl, Probe Primer mix 0.25µl (20X) 

and TaqMan 1.25µl(4X), and then 2µl of the DNA was added into the tube. The conditions were 

as follows: 98oC for 30s, 98oC for 10s, 55oC for 1 minute and 72oC for 1 minute for 35 cycles 

followed by a final extension at 72oC for 5 minutes. 

2.4 Mutation Detection 

2.4.1 Amplification and sequencing of L4 and L22 genes 

PCR amplification and sequencing were done to identify if there are any mutations on the genes 

which are associated with macrolides resistance when mutated. To detect changes on these genes; 

L4 & L22 primer sets (Table 3) were used to amplify L4 and L22 genes, respectively. All the PCRs 

were subjected to 98oC for 30s, 98oC for 10s, 65oC for 1 minute and final extension at 72oC for 5 

minutes, for 35 cycles. The PCR products were ran on a 2% agarose gel to confirm the product 

size. 

All the PCR products and the same primer sets were sent for sequencing by Inqaba Biotech. They 

confirmed the PCR products through electrophoresis gel followed by purification, sequencing, 

clean up and analysis, briefly:  

2.4.2 Purification of the PCR products 

Two volumes of Binding Buffer were added into 1 volume of PCR products and vortexed (i.e.: 

if 4 µl was run on the gel then add 92µl of Binding Buffer to each tube). The products were 

then applied into the column and centrifuged for 1 minute at 3824 x g. The flow was discarded, 

and the volume of PCR products was transferred into new tubes. Six hundred and fifty 

microlitres of Wash Buffer was added into the column and centrifuged for 60 seconds at 

15040g flow discarded, and the column was moved into a new collection tube. Column was 

transferred into a new Eppendorf tube. Thirty microlitres of Elution buffer was added and 

incubated at room temperature for 1 minute. The tubes were centrifuged for 1 minute at 15040 
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x g  to elute the DNA and the column was discarded. The yield of extracted PCR amplicons 

was quantified using the Nano Drop spectrophotometer and the concentrations ranged between 

10- 15ng/µl.  

 

2.4.3 Sequencing reaction preparation and conditions 

Master Mix was prepared and aliquoted into the respective wells; 14µl of template (PCR 

product), primers (20pmol) and water, 4µl big dye terminator and 5X big dye terminator 

dilution buffer. The primer sets used and cycling conditions are outlined in Table 2 and 3, 

respectively.  

 

Table 2: The Cycling Conditions for sequencing of L4 and L22 of C. trachomatis. 

 

Temperature and Time  Number of Cycles  

96°C for 2 min  1  

96°C for 10 secs  

50°C for 5 secs  

60°C for 4 mins  

30  

4°C  Hold  

 

 

2.4.4 Sequence product Clean Up 

After thermal cycling the plate was to equilibrate at room temperature and 75μL of 0.2mM MgSO4 

Ethanol solution was added into each well with sequence products. This volume applies to 

sequencing reactions between 10 – 20μL in total volume. Mixed thoroughly by vortexing and 

allowed to sit at room temperature for 15 minutes to allow precipitation of the labelled products. 

Span at room temperature for a minimum of 15 minutes at a maximum speed (longer incubation 

and spinning times will increase the precipitation of labelled products but may also precipitate un-

incorporated dyes). Products were removed from the centrifuge and the plate was gently inverted 

over the paper towel for 1-2 minutes and 100μL of 70% EtOH was added into each well to wash 

the pellet, and re-span for 15 minutes using the same conditions as the first spin. The plate was 
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removed from the centrifuge and gently inverted over paper towels for 1-2 minutes. They were 

allowed to air dry. Then, they were analyzed on ABI 3500XL Genetic Analyzer (Inqaba Biotec). 

 

Table 3: Primer sets for C. trachomatis L4 and L22 genes amplification and sequencing for 

mutation detection. 

 

Ribosomal genes Primer sequences 

ribosomal protein L4 

 

L4-F 5’ACGTTCTTGCGGAGTAG 3’  

L4-R 5’GCCTTCTCGGTCACATAATGTC3’

   

ribosomal protein L22 

 

l22-f, 5’ AGCTGCAGGATTGATGAGAAA3’ 

 l22-r, 5’ GTTAGATGACTCGTGCGCTTC3’ 

The primer sets for mutation detection were taken from Misyurina, O.Y., et al [113] 

2.5 Sequence alignment 

Sequences were aligned using ClustalW software using the default parameters. The aligned file 

was then imported into BioEdit and converted into the corresponding amino acid sequence. The 

amino acid sequence was used to generate a consensus neighbor joining phylogenetic tree using 

PAUP software. The tree was generated using 1000 boostrap replications to create the consensus 

tree.  

2.6 Statistical analysis 

Graph Pad prism 5 was used for graphing and statistical analysis. Predictive value (p) less or equal 

to 0.05 was considered statistical significant.  
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3.  RESULTS 

As aforementioned, this was a subset study, where we used stored samples previously collected by 

CAPRISA for their main study (083 STUDY). The demographic information from which the 

samples were taken has been previously published by Garrett al, 2018 [37]. In summary 267 

women, median age 23 (IQR 21–26), were recruited and 88.4% (236/267) reported genital 

symptoms. STI prevalence was CT 18.4% (95%CI 13.7–23.0), NG 5.2% (95%CI 2.6–7.9) and TV 

3.0% (95%CI 1.0–5.0). Out of hundred and sixty-five clinical samples used in our study, a total of 

34 were screened positive for C. trachomatis by Anyplex™ II STI-7 Detection. All possessed an 

OMP1 gene, which is the unique gene for C. trachomatis isolates (Figure 3).  

3.1 Amplification of OMP1 gene of C. trachomatis    

The OMP1 gene is the unique gene in all C. trachomatis.  It was amplified in all 34 (13%) samples 

that were found to be chlamydia positive during screening with Anyplex™ II STI-7 Detection, and 

CDC reference genotypes. The omp1 gene, approximately 1020 bp in length, was PCR amplified 

with CT1 and CT2 primers.  

 

Figure 3: The amplification of OMP1 gene VS1-VS4 of C. trachomatis. M is a Molecular 

marker and Lane 1-5 represent the PCR products of the clinical strains and 6 is control, 

CDC laboratory strain (F). 
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3.2 Typing of C. trachomatis positive samples 

Out of 35 a total of 31 strains were successfully characterized into different serovars in comparison 

with the 15 CDC reference serovars. The isolates that belong to the same serovar-type have closer 

Melting temperature (Tm) as observe on the aligned melt curve (Figure 4). Different serovars (A-

C, D-K and L1-L3) were clearly differentiated from each other since they had distinguishable melt 

peak and visualization (Figure 4D). The following serovars A, B, C, D, E, F, G, I, J and L3 were 

characterized and their prevalence were 3.2%, 6.4%, 3.2%, 9.7%, 16.1%, 29%, 9.7%, 12.9%, 3.2% 

and 6.4%, respectively (Figure 5). None of these serovars: H, K, L1, L2 were presented. 
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Figure 4: The HRMA strategy was employed to determine serovars within the OMP1 gene 

using a Real Time PCR. The combinations of C3 and C4, and GP-U and GC-L primers were 

used for this assay. QuantStudioTM Design & Analysis software v1.4.3 and High-Resolution 

Melt software v3.1 were used for designing and analysis of these graphs. 

The raw melt curves(A): raw data showing the amplification of different samples. The OMP1 for 

clinical samples and respective controls were successfully amplified. The fluorescence of different 

colours representing different serovars was observed. The aligned melt curve(B): The isolates that 

share similar or closer melting temperature are grouped together, allowing for visualisation of 

different variants, the unknown samples were grouped according the melting peaks of the controls 

(A, B, C, C2, D, E, F, G, H, I, J, K, L1, L2 and L3). The different colours exhibited represent the 

serovars of the same type. The derivative melt curves(C): different serovars distinguished from 

A B 

C D 
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each other by melt peak, again by visualization. Different serovars with similar or closer melt peak 

and same fluorescence are distinguishable from each other. The different plot curves(D): separate 

curves of the same variants from each other, this allow curves that could not be distinguished by 

melt peak to be now clearly separated from each other. This graph distinctly separate different 

serovars of the same type.   

 

Figure 5: Graphic representation of prevalence of C. trachomatis serovars.  

Detection of C. trachomatis was performed using a set of primers. Primers were specifically 

designed from highly conserved regions of genetic sequences of C. trachomatis, OMP1. The 

following serovars were identified: A, B, C, D, E, F, G, I, J and L3 and their prevalence were 3.2%, 

6.4%, 3.2%, 9.7%, 16.1%, 29%, 9.7%, 12.9%, 3.2% and 6.4%, respectively. Serovar H, K, L1 and 

L2 were absent in this cohort. 
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3.3 Association between bacterial load and C. trachomatis serovars 

The aim of this was to evaluate if there is any association between serovar types and bacterial load. 

Bacterial concentrations of each C. trachomatis positive sample were measured and compared 

against different serovar groups. The bacterial loads of different serovars obtained during 

evaluation are represented in the graphs below (Figure 6 & 7). 

 

Figure 6: Graphic representation  of C. trachomatis serovars found in our cohort and their 

association with bacterial load. Detection of C. trachomatis was performed using a set of 

primers and TaqMan probe that was specifically designed from highly conserved regions of 

genetic sequences of C. trachomatis for the following gene Translocated actin-recruiting 

phosphoprotein, (Ba04646249_s1) which is part of the Thermo Fisher from existing 

Woman’s Health panels that screen 33 pathogens 

The overall range of the bacterial load of the serovars was 1.214 - 51023900. The mean (SD) for 

the different serovars represented in figure 5B is as follows; A: 28.52, B:  20.04(26.62), C: 4.319, 

D: 5074(85102), E: 156.1(123), F: 6611000(17960000), G: 8594(9306), I: 8382(7257), J: 9790 

and L3: 15.2. Varying bacterial loads were noticed for different serovars. The limit of detection 

for this assay was one copy.  
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Figure 7: The bacterial concentration of C. trachomatis in different serovars, i.e. D-K 

serovars, and A-C and L3 serovars. Unpaired t-test was performed to look at the different 

groups of serovars, a p-value < 0.05 was considered significant. 

We grouped the serovar-groups based on the different expression of bacterial load i.e. highly (D-

K) and least (A-C&L3) expressed, to evaluate the statistical significance. Differences between two 

groups of serovars, i.e. group D-K vs A-C and L3, was evaluated using an unpaired t-test. D-K 

group has significantly higher mean values i.e. mean(SD): 2793000(11690000) compare to A-C 

and L3 grouped together 17.62(15.98), p = 00045. 

 

 

 

Chlamydia trachomatis serovars 
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3.4 Amplification of chlamydial ribosomal protein L4 and L22 gene 

The aim of this was to amplify L4 and L22 genes of C. trachomatis to get enough products for 

sequencing. Sequencing of  these genes was done to detect changes in their sequences that maybe 

be associated with macrolides resistance. Amplification of these genes was done and confirmed 

on an electrophoresis gel with fragments:  769bp and 230bp, respectively (Figure 8 & 9). 

 

   

Figure 8:  Gel electrophoresis of  L4 gene of C. trachomatis (Size 769bp).  

The genes were amplified using conventional PCR and the size was confirmed by running the 

samples on a electrophoresis gel, and sent for sequencing at Iqaba biotech to scan for any kind of 

mutation present. M is a Molecular marker and Lane 1-16 represent the PCR product of the 

amplified gene. 
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Figure 9:  Gel electrophoresis of L22 gene of C. trachomatis (Size 230 bp)  

The genes were amplified using conventional PCR. The size was confirmed by running the 

samples on a electrophoresis gel, and sent for sequencing at Iqaba biotech to scan for any kind of 

mutation present. M is a Molecular marker and Lane 1-11 represent the PCR products of the 

amplifiied L22 gene of the clinical isolates. 

 

3.5 Sequencing results of chlamydial ribosomal protein L4 and L22 genes 

Successfully amplified L4 and L22 genes (28) were sequenced by Inqaba Biotech. Ribosomal 

protein L4 had mutations was observed in 7 different positions and significant mutations associated 

with macrolides resistance were observed at amino acid number 109 and 151 (Figure 10). Table 4 

shows the change in the amino acids of the wildtype giving rise to mutants in both ribosomal 

protein genes; L4 and L22. 

Ribosomal protein L22 had 21 samples with mutation at amino acid number 24 (Figure 11) but it 

is not associated with mutations that were previous identified as the cause of macrolides resistance 

in C. trachomatis. Phylogenetic trees for L4 and L22 genes were generated using a PAUP software 

to compare relatedness of samples with the reference strain’s sequence (Figure 12 and 13). 
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Table 4: Amino Acids change in the wild type resulting in the mutants in both ribosomal 

protein L4 and L22 after amplification and sequencing. 

 

Genes (Amino acid 

Positions) 

Wild Type 

(Amino 

Acid) 

Mutants (Amino 

Acid) 

Wild Type 

Percentage  

 

Mutant 

Percentage 

 

n = 28 

Ribosomal Protein L4 

76 S N 27 (96.4%) 1 (3.6%) 

87 D N 1 (3.7%) 26 (96.3%) 

109 P L 8 (29.6%) 19 (70.4%) 

134 S P 24 (85.7%) 4 (14.3%) 

151 P A 9 (32.1) 19 (67.9%) 

189 F S 27 (96.4%) 1 (3.6%) 

194 H Y 24 (85.7%) 4 (14.3%) 

Ribosomal Protein L22 

24 D G 3(12%) 21(84%) 

NB: L4 - total number of amino acid 87 and 109 is 27 (1 amino acid excluded), and L22 - total 

number of amino acids 24 is 25 (3 excluded). 
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Figure 10: Graphical representation of amino acid alignment of L4 gene sequences. 

Sequences were aligned using ClustalW software using the default parameters. The aligned 

file was then imported into BioEdit and converted into the corresponding amino acid 

sequence. 

Significant mutations associated with macrolides resistance were observed at amino acid number 

109 and 151, proline (P) to leucine (L) and proline (P) to Adenine (A), respectively. These two 

mutations were observed in 22 samples and they co-exist, and besides these mutations there were 

additional that were present, but these have not been associated with susceptibility of C. 

trachomatis to antimicrobials. 

 

. 

. 
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Figure 11: Graphic view of amino acid alignment of L22 gene sequences. . Sequences were 

aligned using ClustalW software using the default parameters. The aligned file was then 

imported into BioEdit and converted into the corresponding amino acid sequence. 

Mutation at amino acid number 24 is observed but it is not associated with mutation that were 

previous identified as the cause of macrolides resistance in C. trachomatis. No mutation was 

present in amino acid number 77 and 55 known to cause resistance 
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Figure 12: Phylogenetic analysis of the study samples for L4 gene of C. trachomatis. The 

amino acid sequence was used to generate a consensus neighbor joining phylogenetic tree 

using PAUP software. The tree was generated using 1000 bootstrap replications to create the 

consensus tree.  

Sample 10 and L3 cluster together with the reference strain sequence. The rest of the samples were 

clustered in different groups hence showing their distant relatedness to the reference sequence. 

Majority of the samples belonged to one distinct group 
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Figure 13: Phylogenetic analysis of the study samples for L22 gene of C. trachomatis.The 

amino acid sequence was used to generate a consensus neighbor joining phylogenetic tree 

using PAUP software. The tree was generated using 1000 bootstrap replications to create the 

consensus tree.  

Sample 17 aligned together with the reference strain sequence. The rest of the samples were 

clustered in different groups hence showing their distant relatedness to the reference sequence. 

Sample number 38, 229 and 181 have a closer relationship to reference sequence. 
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4. DISCUSSION 

To our knowledge there is little or no information on antibiotic resistance of C. trachomatis 

infection in our current local population. Since C. trachomatis is difficult to grow we adopted 

resistance gene sequencing as a surrogate marker of resistance. The aim of the study was to 

characterize C. trachomatis isolates within our cohort and look at their resistance pattern by 

sequencing genes associated with macrolides resistance. C. trachomatis is one the problematic 

sexual transmitted infection in the world [114]. If left untreated it may cause serious sequelae in 

infected people [115]. Majority of people infected with C. trachomatis are asymptomatic, hence 

diagnosis and treatment are difficult [116]. This enhances transmission of STIs among their sexual 

partners, unknowingly. In this study we successfully applied HRMA for genotyping of C. 

trachomatis based on genetic variation of OMP1 gene. The amplification of OMP1 gene was 

successful directly from material obtained from vaginal swabs of clinical samples in all the 

chlamydia positive samples screened. The gene is made up of the 4 variable regions (VS1-4) 

interspaced by 5 highly conserved regions [117] [118]. The Variable regions of OMP1 gene allow 

characterization of different genotypes of C. trachomatis [118]. Genotyping of C. trachomatis is 

significant globally in epidemiological studies, and in local cases when questions of infection 

transmission or recurrence arise [18]. We selected VS2 as the target region of HRMA because it 

is shorter, and it has greater sequence variation thus giving distinct identification of each serovar 

present in a sample. 

As part of our aim to screen for C. trachomatis positive samples from the stored vaginal samples, 

we successfully screened our samples, using Anyplex™ II STI-7 Detection. The OMP1 gene of 

the positive C. trachomatis was successfully amplified in all samples (Figure 3).  Out of 265 

samples, 34 (12.8%) were screened positive for C trachomatis, the leading score compared to other 

STIs found in our sample size - which is in concordance with the studies that found out C. 

trachomatis is the most common bacterial STI in humans, worldwide [1]. Studies done in India 

showed a CT prevalence ranging from 2.7% to 23% [16–19] with variation largely explained by 

age and the highest rates reported among younger women [2]. Prevalence of genital C. trachomatis 

in parts of Africa differs significantly ranging from 3.78% in Cameroon to as high as 68.25% in 

female sex workers in Niger Republic [22]. Data from African countries suggest that prevalence 

is on the rise and may exceed that reported in developed countries [22]. 

https://en.wikipedia.org/wiki/Chlamydia_infection
https://en.wikipedia.org/wiki/Chlamydia_infection
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Another possible method to use for screening is GeneXpertR CT/NG assay, this is one of the 

methods that was use in the recent study by Garrett et al where women visiting the STI clinic were 

screened on site in Durban, South Africa [37]. This assay screens for both C. trachomatis and N. 

gonorrhea. The results found were comparable with the ours, found through screening with the 

Anyplex™ II STI-7 Detection, since we were using the same cohort. Anyplex™ II STI-7 Detection 

detects 7 major STI causative pathogens including C. trachomatis, Neisseria gonorrhoeae, 

Trichomonas vaginalis, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum, 

and Ureaplasma parvum in a single real-time PCR reaction [119]. The results they found correlate 

well with ours. Other studies used different approach for screening of C. trachomatis such as 

serological diagnostic assays which they found not reliable since lack specificity and sensitivity, 

and cross-reactivity of antibodies with other chlamydia species is also the problem [46]. Brabin et 

al used another laboratory method known as Roche COBAS TaqMan CT test for screening of C. 

trachomatis samples and they confirmed positive patients using Artus C. trachomatis plus PCR 

kit [47]. The above-mentioned methods are molecular based indicating that the Nucleic acid 

amplification tests (NAATs) approach for diagnosis of C. trachomatis is the current diagnostic 

compared to cell culture [48]. Thus, clinics and healthcare facilities need to consider molecular 

based diagnostic methods not only for C. trachomatis but also the other major STIs causative 

agents. 

Thirty-one positive C. trachomatis clinical samples were successfully classified to different 

genotypes (Figure 4). Three samples were excluded from the characterization because 

amplification failed, and this was most likely due to low DNA concentration. Serovars from D-K 

had 80.6% prevalence with F being the most prevalent (29%) amongst all followed by E (16.1%) 

(Figure 5). All other detected serovars had low frequency and none of these serovars; H, K, L1, 

L2 were present. Based on the Zheng et al study, they found serovar H to be amongst the most 

prevalent serovars [110] but prevalence of this serovar is found to be very low compared to other 

[120], however in our study none of the sample was associated with this serovar.     

According to Motamedi et al, the most prevalent serovars globally are D, E and F [121] which 

corresponds with our findings, except they find serovar E to be most prevalent. We found F to be 

the most prevalent serovar and this is in concordance with the study by Bandea et al. (2001) on 

pregnant Thai women, serovar F was found to be dominant by 25% and E was only the fifth most 
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common genotype at 9.3%. Despite the difference in the most prevalent genotype found in a 

different study group, all studies including our own agree that serovars E, and F are the most 

common genotypes in urogenital chlamydial infections. Serovars from D-K are associated with 

urogenital infection, which is the most common infection of C. trachomatis, worldwide[122]. We 

also observed the presence of A-C serovars which belongs to trachoma biovars, this was also 

reported by Dean et al, where there was a Ba strain in the genital tract [110]. The  trachoma serovars 

(A-C) can and do cause genital infections but it is rare [123]. With serovar typing, a patient can be 

co-infected with either two or more serovars [120] but that was not observed in this study. 

Using only short DNA sequences for genotyping C. trachomatis has been possibly explored by 

other authors, using different methodological strategies. As previously mentioned the methods 

include Reverse Line Blot analysis, Oligonucleotide arrays, real-time PCR with genotype specific 

TaqMan probe, Microsphere Suspension arrays, and Multiplex Broad-Spectrum PCR-DNA 

Enzyme Immunoassay coupled with Reverse Hybridization assay [18]. They used only portions 

of the OMP1 gene to type C. trachomatis which increases specificity. Although new techniques 

for the discrimination of C. trachomatis isolates have been successfully developed, the OMP1-

based genotyping is still the most widely used method for obtaining information on C. trachomatis 

genetic variations [120]. Classification of C. trachomatis is epidemiological important since some 

of the serovars requires prolonged treatment plan. LGV requires treatment plan of 21 days while 

others (Trachoma and Urogenital infections) are treated with single dose [124]. No correlation 

between OMP1 variation and disease severity has been established but despite that previous 

researches have shown that there is a clear differentiation across the globe with ethnically groups 

including Africa, Europe, Russia and America [125]. Many techniques for classification of C. 

trachomatis have been used but they have their own disadvantages such as labor, easy 

contamination and time consumption thus HRMA was the method of choice for this study, because 

of several advantages such as cost, sensitivity and ease of use, which has direct implications on 

clinical samples.   

More studies should extend this investigation by relating trends in a larger population, both inside 

and outside of the Durban region to clarify some aspects for the definite application of C. 

trachomatis genotype analysis for disease control, using both male and female cohorts. 
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Association between serovars and bacterial load was observed. Serovars from D-K had high 

bacterial load compared to A-C and L3 serovars which had low bacterial load (figure 6). A p-value 

≤ 0.05 (p = 0.0045) showed a significant difference between the bacterial concentration of C. 

trachomatis serovars (figure 7) and this could be associated with the fact that D-K serovars are the 

most common and prevalent [24]. Walker et al reported higher bacterial load for serovar D 

followed by E, which is within the D-K serovar-group [126]. Other studies reported bacterial load 

observed in different serovars but had no comment on statistical significance of bacterial load 

[127] [128]. Interconnection of serovars with bacterial load in diagnostic samples has been 

investigated to evaluate infection severeness [24]. 

 

Despite the correlation between the C. trachomatis typing the relationship based on the virulence 

has also been looked at by other studies where they found that the serovars E, F and D (belonging 

to D-K group) are the most abundant among the urogenital strains [129]. Compared to L serovars, 

these serovars were found to be less [130] but they are highly prevalent and therefore a substantial 

factor in human health [129]. The number of chlamydia organisms present may also be associated 

with transmission and clinical manifestation (determined by the type of serovar present) [131]. 

There is no much information about determinant of C. trachomatis bacterial load and how it 

improves during an infection [132]. It has been reported that C. trachomatis bacterial load differs 

greatly based on the immunological status, age, hormonal status of the patient, type of the sample 

and quantification methodology [132] [133].  

 

From the genes that we screened and sequenced we observed some mutations. Some of the 

mutations found are linked to the mutations identified before and known to cause macrolides 

resistance of C. trachomatis. Mutations at positions 2057, 2058, 2059 and 2611 (E. coli 

numbering) in the peptidyl transferase region of 23S rRNA are considered to be important in the 

development of drug resistance against macrolides [88]. Many macrolides have an extensive 

interaction in this rRNA region, which is undeniably associated with the respective way these 

antibiotics interfere with protein synthesis, as aforementioned. Point mutations in ribosomal 

proteins  genes L4 (rplD) and L22 (rplV) may result to resistance of the bacteria against macrolides 

[105]. These proteins bind mainly to domain I of 23s rRNA but mutation on them changes the 

conformation in the domains II, III, V thus affecting the action of the macrolides [88]. 23s rRNA 
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is one of the components of the large 50S subunit of bacterial ribosome[134]. The activity of the 

ribosomal peptidyl transferase is in the V domain of the 23s rRNA. The V domain of 23S rRNA 

is the most common site for binding of the antibiotics that inhibits translation, thus disturbing the 

whole process of protein synthesis[135]. Reports of clinical failures associated with true genotypic 

resistance due to chromosomal mutations are infrequent. Regardless of appropriate drug therapy, 

chlamydial infections are mostly likely to occur again [88].  Furthermost, clinical failures occur 

because of reinfection or relapse following phenotype alteration of the bacteria to persistent, 

non‑ replicating types that are antibiotic resistant but can return to the typical reticulate body 

phenotype when treatment is complete [136] (Figure 1). 

 

Ribosomal proteins L4 and L22 were successfully amplified and ran on an electrophoresis gel to 

confirm the sizes: 769bp and 230bp, respectively (Figure 8 and 9). Out of the 28 samples that were 

amplified and sent for sequencing 7 were observed to have mutation for the ribosomal protein L4, 

resulting in the change of the amino acids (Table 2). Mutation in the L4 gene that have been 

previously identified are 109 CCG (proline) → CTG (leucine) and 151 CCG (proline) →GCC 

(alanine) [87] and these are positions at which mutations are significant for developing drug 

resistance to macrolides. These changes were also observed in our study with about 70.4% and 

67.9% (Table 4) of C. trachomatis isolates had double mutation on the amino acid 109 and 151, 

respectively (Figure 10). The mutations in the conserved regions of protein L4 affect the 

conformational change of the 23S rRNA in domains II, III and V, resulting into disruption of 

translational activity of ribosomes and, thus, deteriorated action of the antibiotic in the peptidyl 

transferase center [137]. Despite, these mutations being present it doesn’t imply that all these 

isolates are resistant to macrolide because the mutation maybe be present without altering the drug 

susceptibility. This has also been observed on the study done by Jiang et al where they found out 

patients with persistent infection had isolates with mutation and again there were other wild-type 

resistant strains that had no mutation [88], hence other molecular mechanisms are responsible for 

resistance. Most samples (96.3%) had mutation at the amino acid 87 where aspartic acid (D) 

changed to asparagine (N). The ribosomal protein L22 had one mutation at amino acid number 24 

where aspartic acid (D) changed to glycine G (84% of the isolates) and these mutations are not 

associated with any of the previously defined macrolides resistance in C. trachomatis (Figure 11). 

Mutations associated with macrolides resistance in L22 are GGC (gly) → AGC (ser), CGT (arg) 
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→ TGT (cys) and GTC (val) → GCC (ala)[113]. CAPRISA (083 study) did a follow up on the 

same cohort after conservative time intervals (2nd & 3rd visits), 2nd visit was after 6 weeks and the 

3rd visit was at week 12. On the second visit four patients were C. trachomatis positive and on the 

third visit 2 reinfections were observed [37]. One patient was C. trachomatis positive on the first 

and third visit, second visit she was negative, and this could be that the infection was present but 

undetectable. Speculations are these isolates are resistant to macrolides hence the infection did not 

clear out. 

Resistance of C. trachomatis to macrolides is not only due to mutation on the certain gene but also 

the biphasic development cycle it undergoes characterized by an infectious cell type known as an 

elementary body (EB) and an intracellular replicative form called a reticulate body (RB) [138]. EB 

is an electron‑ dense, infectious structure that, following host cell infection, differentiates into a 

non-infectious replicative form known as RB [139]. Because of rigid outer membrane of the 

elementary body of C. trachomatis, the chlamydia prevents the fusion of the lysosome and the 

endosome, hence resist intracellular killing [140].  

We also compared the correlation of the samples through phylogenic analysis of both L4 and L22 

genes, in relation to the reference sequence strain (Figure 12 and 13). For L4 gene: Sample 10 and 

L3 were clustered together with the reference sequence while the rest of the samples were gathered 

in different groups, thus, showing their distant relatedness to the reference sequence. Majority of 

the samples fitted into one distinct group. Sample 17 aligned together with the reference sequence 

and sample number 38, 229 and 181 showed a closer relationship to reference sequence. The rest 

of the samples were clustered in different groups hence showing their distant relatedness to the 

reference sequence.  

To improve these data, culture and susceptibility testing on live culture should be considered to 

link any found changes on the bases or amino acids to the MICs (sensitivity and resistance) but 

this approach difficult to apply on routine bases [141], this was one of our limitation in this study. 

Another limitation was the small number of the C. trachomatis isolates available for classification 

and bacterial load analysis. C. trachomatis is not easy to culture and requires cell line hence cell 

culture and manual drug susceptibility could not be performed. That is why more reliable 

molecular based assays for detection of mutations and drug susceptibility are so much needed. 

Furthermore, whole genome sequencing of C. trachomatis can be added to future work. This 
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molecular assay determines the complete sequence of the DNA within the organism all at once 

[142]. It has been used mostly as a research technique but currently established for clinical use 

[143]. For future purposes genome sequencing data may an imperative tool to control medical 

intervention [144]. It may also lay the foundation for foreseeing disease drug response and 

susceptibility [144]. 
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5. CONCLUSION 

 

In our population there is a scanty information regarding different serovars. Therefore, we decided 

to perform serovar typing from the 35 (12%) specimens screened positive for C. trachomatis and 

grouped them into different serovars based on their OMP1 gene. Serovars from D-K group were 

dominant (80.6%) compared to A-C and L1-L3 groups, with F being the most prevalent followed 

by E. After serovar typing, we then looked at the association of these serovars with bacterial load 

and found that D-K serovars had high bacterial load (P = 0.0045) compared to other serovars. 

 Our method of choice, HRMA showed the practicability of typing C. trachomatis directly from 

the clinical specimen which is advantageous since this organism is hard, costly and labor to culture. 

From the same specimens; we amplified and sequenced L4 and L22 genes that have been 

previously associated with macrolides resistance of C. trachomatis when they are mutated. 

Mutations were observed on the L4 gene, resulting in the change of the amino acids: 109 CCG 

(proline) → CTG (leucine) (70.4%) and 151 CCG (proline) →GCC (alanine) (67.9%). These 

mutations were also observed to co-exist in our study.  

The ribosomal protein L22 had one mutation at amino acid number 24 where aspartic acid (D) 

changed to glycine G (84%) and these mutations are not significantly linked with any of the 

previously defined macrolides resistance of C. trachomatis. Even though our data represent only 

the cohort in Durban region, but we observed C. trachomatis prevalence and its relative serovars 

which may extend these findings by looking at the trends in larger population, both inside and 

outside region of Durban, KZN and to clarify some features for the concrete application of C 

trachomatis genotype analysis for disease control and prevention. Regarding mutation, macrolide 

resistance of C. trachomatis is not only influenced by the change in amino acids, but other 

mechanisms may contribute too, and to understand this requires further studies. 
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