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Abstract

The transverse mode of generally available comrmaklasers in most instances is not suitable
for desired applications. Shaping the laser bedireeiextra-cavity, that is outside the laser
resonator, or intra-cavity, which is inside theelagesonator, is required to force the laser beam
or cavity to oscillate on a selected desirablelsif@aser mode. The shaped laser beam’s spatial
intensity profile and propagation properties wotlidn be suitable for the desired application.
The crux of the work presented in this thesis imgslintra-cavity beam shaping where we
generate desirable transverse modes from insidéasiee resonator and detecting such mode

using digital holograms.

In Chapter 1 we discuss a novel technique of mddabmposition of an arbitrary optical light
field into underlying superposition of modes. Wewhhat it can be used to extract physical
properties associated with the initial light fieldch as the intensity, the phase arfd &tc. We
show that this novel modal decomposition approdelh tequires na priori knowledge of the
spatial scale of the modes which lead to an optichisiodal expansion. We tested the new
technique by decomposing arbitrary modes of a dmdaped solid-state laser to demonstrate

its versatility.

In Chapter 2 we experimentally demonstrate seleajieneration of Laguerre-Gaussian (LG)
modes of variable radial order from 0 to 5, withrae@zimuthal order. To generate these
customised LG modes from within the laser resonater show that a specialised optical
element in a form of an amplitude mask is requicelde inserted inside the laser resonator. The
amplitude mask is designed and fabricated to cord@isorbing rings which are immutably
connected to the desired LG mode. The geometrh@fabsorbing ring radii are selected to
match and coincide with the location of the sel@dt& mode zero intensity parts inside the
cavity. We show for the first time that the genedat G modes using this method are of high
mode purity and a gain mode volume similar to tesitd LG mode. The results provide a

possible alternative route to high brightness dipaleped solid state laser sources.

In Chapter 3 we show that we can overcome the disddge of the specialised optical element
being immutably connected to the selection of atigpdar mode by experimentally

demonstrating a novel digital laser capable of gativey arbitrary laser modes inside the laser
resonator. The digital laser is realised by in@msiy replacing an end-mirror of the resonator

with a rewritable holographic mirror which is areerically addressed reflective phase-only



spatial light modulator (SLM). We show that by ed#ting a new computer-generated
holographic gray-scale image on the SLM represgntire desired customized laser mode
digitally, the digital laser resonator is capabigenerating the desired laser modes on demand.

The results provide a new laser that can genewastemmized laser modes.

In Chapter 4 we show that the digital laser candetl as a test bed for conceptualizing, testing,
and proving ideas. We experimentally demonstraie by using a simple laser cavity that
contains an opaque ring which is digitally prograednon the SLM and an adjustable circular
aperture on the output coupler mirror. We show thatnanually varying the diameter of the
aperture without realignment of the laser, the getee laser modes can be tuned from a
Gaussian mode to a Flat-top mode. This opens updngital methods that can be used to test

laser beam shaping techniques.

In Chapter 5 we outline a simple laser cavity cdsipg an opaque ring and a circular aperture
that is capable of producing spatially tuneabledasodes, from a Gaussian beam to a Flat-top
beam. The tuneability is achieved by varying therrditer of the aperture and thus requires no
realignment of the cavity. We demonstrate this qgiple using a digital laser with an intra-
cavity spatial light modulator, and confirm the dirted properties of the resonator

experimentally.

In Chapter 6 we discuss the techniques used ta-datvity generate and detect LG beams with a
non-zero azimuthal index since they are known toyaarbital angular momentum (OAM), and
have been routinely created external to laserieavitVe show that the few reports of obtaining
such beams from laser cavities suffer from incosiek evidence of the real electromagnetic
field. In this Chapter we revisit this question afw that an observed doughnut beam from a
laser cavity may not be a pure Laguerre—Gaussianuézal mode but can be an incoherent sum
of petal modes, which do not carry OAM. We point the requirements for future analysis of

such fields from laser resonators.

In Chapter 7 we conclude and discuss future work.
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CHAPTER ONE

Mode Selection in Diode-Pumped Solid-State Laser

Resonators

1.1. Overview

The discovery of Maxwell's equations in 1861 by Beottish physicist James Clerk Maxwell,
predicted the existence of electromagnetic wavdh wifinite range of wavelengths. Maxwell’s
equations which are a set of partial differenti@l&ions have been shown to form the foundation of

classical physics that describe how electromagfietds are generated and propagated.

Maxwell’'s equations which describe the electromégriesld in space and time can be used to derive
the time-independent Helmholtz equation by the wethf separation of variables to reduce the
complexity of the analysis [1.1]. The solution dfet Helmholtz equation within the paraxial

approximation has been shown to produce periodigieas when appropriate boundary conditions
are used. The periodic solutions have found to bédeas or self-reproducing electromagnetic field

patterns of a resonator.

The selection of a particular set of modes insiie resonator has been shown to depend on the
boundary condition being cylindrical or Cartesiaoilinate. In the early 1960’s, many experiments
were performed involving solid-state, gas and sendactor lasers to force a resonator to select
different types of higher-order modes by using aegtilar and circular mirrors to generate modes
such as Hermite-Gaussian (HG) and Laguerre-Gaugsi@y modes [1.2-1.6]. The other more
general method of selecting a particular high-onthede has been the use of introducing optical
elements inside the laser resonator, such as ap&rtgradient lenses, phase masks and amplitude
masks. There is also a method of replacing thenegeo mirrors with gradient mirrors, deformable
mirrors [1.7] and more recently with spatial lighbdulators (SLM) that will be discussed in Chapter
4. All these optical elements have the common efiEcausing high losses on undesired laser modes
making them not to oscillate in the resonator, e/t the same time causing low losses on the desire

mode.
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Over the year's many experiments involving the gatien of high-order Laguerre-Gaussian modes

have been reported [1.8-1.20] but have not beeth tasproduce high brightness beams, B:

B= : (1.1.1)

whereP is the power in the mode add? the beam propagation factor of the mode. Mosthef t
interest over the years has been dedicated on a@mersingle fundamental Gaussian low-order
modes using many schemes such as matching the gizmpo the Gaussian beam size in order to
maximize modal overlap, to either aperturing theitgato allow only the Gaussian beam to oscillate
as the fundamental mode, all in order to forcelalser to produce high brightness beams which have
been a driving force in many applications [1.212]. 2 he brightness parameter has been shown to be
directly proportional to the power in the mode @b at the same time inversely proportional to the
beam propagation factor @Msquared. Therefore the brightness of the laskmenerally be low if
selecting a very high-order mode to oscillate i tsonator. This explains why most of the attentio
over the years has been placed on developing hightbess lasers that produced the lowest-order
fundamental Gaussian mode. This is because thestawder Gaussian mode has the lowest
propagation factor which in turn produces the hijharightness parameter. This trend has been
influenced by many applications which required tas@ams that have a high brightness parameter.
The method of generating a singular high-order mtodextract maximum power from the laser and
how the brightness of the laser is increased fraoh sa high-order mode is discussed in details in
Chapter 3.

More recently, there has been an increase in theauof publications and applications that require
customised higher-order modes to be selected atliped by diode pumped solid-state lasers [1.23].
The interest in using diode-pumped solid statersagdich first were realized as flash lamp pumped
solid state lasers, comes from the advantage thde gpumped systems have become very efficient
when compared to lamp pumped systems[l.24-1.2@jerOadvantages such as better frequency
stability, high repetition rate, reliability and mpactness have made diode pumped solid state lasers
to be laser system of choice for many applicatidimese applications involve high power solid state
lasers for industrial manufacturing applicationtsas welding, cutting and drillings of metal sheets

to applications such as remote sensing and lasapamns [1.27]. There are also applications which
prefer low power solid state laser systems suamiasomachining, optical communication and laser

surgery [1.28].
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The revived increase on developing laser resondtwas produce higher-order modes such as
Laguerre-Gaussian beams is due to the recent disctivat they possess well defined orbital angular
momentum along the optical axis for non-zero valokeazimuthal ordef, that have a helical wave
front [1.29]. Application such as optical tweezdrave been realized with high-order Laguerre-
Gaussian beams that transfer orbital angular mamernb trapping particles and induce them to
rotate around the optical axis. There are manyieatmns [1.30-1.38] that require high-order LG
beams such as material's processing, quantum coioatiom, particle traps and high resolution
microscopes. All these applications require therlas oscillate on a high-order LG beam using

holograms, spatial light modulator, diffractive iogtand many other schemes.

There is an increasing interest of generating ofign-order families of modes in geometries with
different symmetries such as rectangular, cyliradricircular and elliptical that could be used iamm
other potential applications [1.39-1.47]. These a®dan be generated inside the laser resonator and
also outside using different types of optical elataeOne of the benefits of generating these high-
order modes inside the laser cavity [1.16, 1.42]1i% that the beam’s power and energy could be
scaled up. Some of the techniques of generatifigrdrit families of high-order modes inside the lase

resonator are discussed in detail in Chapter 4.

1.2. Laser resonator modes and their selection

A laser resonator which is sometimes called a laaeity is a device that has mirrors arranged in a
manner that forms a light field standing wave. ktween the mirrors, a gain medium is usually
inserted to provide feedback of the laser lightfién the case of a solid state laser the gainiumed

is in a form of a solid, like an Nd:YAG crystal. &@lpump source which provides energy to the gain
medium for the amplification to occur can be aniaggbtpump source such as flash lamps or diode

lasers as shown in Fig. 1.2.1.
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Laser Diode
Highly (Pump source) Partially
Reflective Reflective
Nd:YAG laser crystal
(Gain medium) ’
End Output
Mirror Mirror

(Pump Source)
Laser Diode

Laser resonator (laser cavity)

Fig. 1.2.1: Laser resonator schematic diagram gsimpuwhe laser cavity mirrors, pump source and thie ga

medium.

The end-mirror of the laser resonator is usuallsigleed to be highly reflective for the laser light,
while the output mirror is partially reflective arder to allow some of the laser light to exit thger
resonator for usage. For the laser light to ext thsonator, firstly, the crystal (or active medjum
which generates the laser light should be pumpelgast that its gain factor is greater than the loss
factor which is introduced by the output couplerron. This creates a scenario where most of the
laser light is confined within the laser cavity wfiallows multiple reflections of the laser ligkeld

to occur between the mirrors. This leads to a stetate regime where the gain exactly compensates
the output coupling losses and therefore the Istset to emit the laser light continuously as shawn
Fig. 1.2.2.

Highly Partially
Reflective, Reflective,
R,=100% R, < 100%

Crystal Gain > 100%
[ |

End Output
Mirror Mirror

Fig. 1.2.2: Schematic principle of laser resonatbere the gain factor should always be greater thamutput

coupler mirror loss for every round trip.



24

The definition of an optical laser resonator in trezses includes the gain medium as we have shown
above, but an optical laser resonator can alsadweed without the active medium and such a laser
resonator is called a passive resonator. The uaepaSsive resonator is to investigate and determin
the steady state solution of the oscillating spdtedd structure inside the resonator without the
complication and challenges of nonlinear effectdl@noscillating field which are introduced by the

inclusion of the gain medium.

A stable passive laser cavity as shown in Fig3lir2most cases consists of two mirrors with ausdi
of curvatureR; andR, separated by an optical distarice nL,, whereL, is the physical distance
between the two mirrors, andthe refractive index between the two mirrors. Tasonator will be
termed stable, if the rays of light inside the redor are allowed to bounce between the mirrors
repeatedly over an infinite number of times aldmg optical axis without experiencing any diffraatio
losses. This means that in the case shown in E¢,1the wave front of an electric field that
oscillates in such a cavity matches the radiusiofature of the mirrors, for the field to experieno
losses, and for it to be reproduced at every rdtipdwithin the resonator. The self-reproducing of

such spherical waves or fields inside the resonatcalled an eigenmode or mode of the resonator.

Highly Partially
Reflective Reflective
R, 8, Ry, 81

I

) e

End Lo Output
Mirror Mirror

Fig. 1.2.3: The general optical resonator stabiltydetermined by thg-parameter of the mirrors and the

resonator length,.

The condition for a stable resonator is given l®ydiparameter of the resonator mirrors to be:

0<gig, <1

L L
where gl—l—R—1 and gz—l—R—z.
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In the resonator shown above in Fig. 1.2.3, th& @fdcurvature R and R are positive since the
mirrors are concave. The radius of curvature isatieg for convex mirrors. For stable resonators the
most fundamental eigenmode is the Gaussian beaenstability of optical resonators when different
types of mirrors are used can be determined byiret potheg,, g, coordinate plane on a g-diagram
as shown in Fig. 1.2.4. The stability region foticgl resonators is limited by the coordinate axed

the hyperbolasg, = igi. The resonators corresponding to points on thendbany of the stability
1

region do not generate Gaussian beam eigenmode,répeesent a different and unique class of
resonators. The confocal resonator is an excepsioice in this case the stability parameter=

g, = 0, and this is considered to be a stable resonator.

—

hemlspherlcal

1

(-1, 0)

|-

plane parallel

-
——

cnnfocal
(0, 0

I<l

cnncave cnnvex

l concentric ’
(-1, -1)

Fig 1.2.4: The stability diagram of optical resavatwith spherical mirrors where the shaded regidicates

stable resonators [1.53].

The electric fieldE;(x, y) eigensolution distribution inside the resonatoreach mirror such that it

reproduces itself after each round trip is desdripethe Kirchhoff integral equation as:

—lkL 2
G(x?+y2+x3+y2)-2 +
]/Ei(xz;yz) — 2L A ff E (xl’yl)engj/lo( (x1 3’1 xz J’Z) (x1x; 3’13’2))dx1dy1’

where the optical stable parametee= 2g,g, — 1, indicesi,j = 1,2 with i # j; andk =2~ Where

Ao Is the vacuum wavelength [1.22].

The solutions to the above integral equation reprethe eigenmodes of the resonator and there can

be an infinite numbers of such eigenmodes thatepast inside the resonator. The mode profile
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shapes of such eigenmodes do not change whilelabswl inside the resonator; they could only
experience a decrease in amplitude gain due toadifon losses. The loss factdy|, which
represents the fraction of the initial gain of thede that is lost after reflecting on the mirroridg

the round trip travel; could be used to select daoe eigenmode profile to oscillate inside the
resonator. This is done by increasing the los®fam all other eignemodes not supported by ther las
resonator. For an eigenmode that has zero |lpiss; 1, and for an eigenmode that experiences large
amount of lossy = 0. The favouring of one eigenmode to have zero ¢ags an infinite number of
roundtrips compared to the rest of other eigenmdties experience maximum loss is termed
resonance condition of the optical resonator, sihedll lead to a steady state in which a chosen

single mode would end up oscillating inside th@nasor as shown in the schematic Fig. 1.2.5

Ry g5 DT R1,81

ITTI1

Lo

»
L

A

Fig.1.2.5: Schematic of the electrical fidldx, y) at steady-state that reproduces itself at evargddrip inside

the resonator.

The loss factor mechanism for selecting a partiasonant eigenmode inside the resonator could be
performed by either introducing an amplitude masla phase mask to select and shape a particular
eigenmode profile to be the only mode oscillatingide the resonator. In the schematic diagram
above, the eiffractive optical element (DOE) isduse introduce a loss factor mechanism that has
maximum diffraction losses at the zero’s of a Lageigolynomial, thereby supporting a Laguerre-

Gaussian mode that matches the DOE mask. The angpliieam shaping technique is discussed in
Chapter 3 and the phase beam shaping techniquaapt€r 4, where both of these techniques are

explored using a spatial light modulator (SLM).

1.3. Lowest-order TEMyg mode solution for optical resonators

The Helmholtz paraxial wave equation (Eq. 1.3.1) & used to derive the lowest-order TM

mode solution see[1.4], since it describes thecapfield of light inside the laser resonator thas
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narrow transverse profiles, periodic propagatiothiwi the laser resonator and it electrical field is

mainly distributed along the axis of propagatioheparaxial wave equation is:
2., o, 0U _ A,
Viu—i2k 5, = 0; (2.3.2)

whereV is the transverse Laplacian operatorthe optical field of light that has low divergestd

does not vary fast along thalirection; ands is the wave vector.

The transverse Laplacian operator can be presantgdindrical coordinates to be:

vi=22(r2) +Tiz(:72) (1.3.2)

Substituting the transverse Laplacian Eqg. (1.38) the paraxial wave equation, Eq. (1.3.1) can be

represented in cylindrical symmetry as:

L2 )+ 20 - el =o0 12

The lowest-order mode is generally considered t@ ligaussian beam and the geometry of such a
lower-order mode is usually considered to be afutar symmetry; and therefore the variatiorpah

Eq. (1.3.3) equates to zero. This gives only oretiem of Eq. (1.3.1), while there are many other
solutions of Eq. (1.3.1) that are possible. Sineeane looking for the lowest-order mode the optical

field, u, will be represented ag, and Eq. (1.3.3) can be simplified as:

dugy . oug _
——(T' ?) — leE =0. (134)
The trial solution that would represent the lowaster Gaussian mode should have the smallest
divergence and when focused with a convex lenhdulsl converge to a minimum radius and then

diverges again. The trial solution which can repntsuch properties can be shown to be [1.56, 157]:

ikr?

Uy (r,z) = e P@e 2@, (1.3.5)

whereP(z) represents the longitudinal phase of the wave;@nd the Gaussian radial amplitude

distribution of the wave which is real and the ghghase which is imaginary.
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Partial differentiation ofi, with respect to z of the second term of Eq. (.24ds to:

o2 . _ikr?
dP(z) ikr e~ iP(2) o 24@ dq(z)

_ 6u0 - _ _je—iP(2) (z)
2k— = le[ ie e Zq = T30 Iy

2
_ dP(z)  kr? dq(2)] _ip(z) —lk—rz
Zk [ 2q2(z) dz ] € e @

= 2k [P'(2) - 55— q'@) | uo. (1.3.6)

22()

The second partial differentiation of with respect ta- of Eq. (1.3.4) leads to:

ikr?
0o _ _ T _ip2)y 20
ar q(2)
ik
= —% 0. (1.3.7)

When multiplying Eq. (1.3.7) with it becomes:

dug _ ikr?
"o = e Yo (1.3.8)

Taking a partial derivative of Eq. (1.3.8) with pest tor and substituting Eq. (1.3.7) and Eg. (1.3.8)

leads to:

4 (0uo _ _Ikr®f ikr], - 12kr
(T or ) T 9@ [ q(Z)] u q(z) to-
__wr ok
2@ g Mo
k?r3 , 2kr

Multiplying Eq. (1.3.9) by% leads to the first term of Eq. (1.3.4) which is:

() =[5 4135 4319

Substituting Eg. (1.3.10) and Eg. (1.3.6) into @93.4) produces:

[k 2k, @ kr? _
[q2(2)+lQ(Z)]u° 2k [P zqz(z)q(z)]uo



29

_ K212 i _ (z) _ k2r?2 B
[ + ] v = [2kP 0 5 0 @] w0 = 0
r? [ @ @ = D] uo — 2k [P'@) + 5] o = 0 (1.3.11)
q%(z) 0 q| ™70 : ..

For Eq. (1.3.11) to be true for anyalue, provided that the, does not become zero, then to equate

the coefficients inr on either side of the equation to make it zermbess:

q(z)—-1=0 => 4q'(&=1 (1.3.12)
and

-1

P S
P'(z) + 0 > P'(2) ok

== (1.3.13)

Solving forq(z) in Eq. (1.3.12) results in:

q'(z2)=1

119 dq(z) = [ dz

q(z) —qo =z

q(z) =qo+z (1.3.14)

wheregq, is the constant of integration which is given bg valueg at the focal spot of the beam at
z = 0. At the focal spot of the beam, its wavefrontssially considered to be plane, which means that
the radial part of the trial solution should beckxt to become real. This is achieved by settiggo
become imaginary. This is done by making= izz, where z; is a real parameter term with

dimensions of length, which makgé&z) in Eq. (1.3.15) to become:
q(z) =z +izp. (1.3.15)

Since the trial solution of Eq. (1.3.5), the tegiix) is given a%%. Then Eq. (1.3.15) can be written

as.
11
q(2) - z+izgp
— Z _+ 2R
T z242zp2 l22+zR2 (1316)

Where the first term in Eq. (1.3.16) would repradbe real part and the second term the imaginary

part ofﬁ. The above equation could be simplified furthemimking the real part to be equalﬁt%

and also introducing a new parametgr:) on the imaginary part, such that Eq. (1.3.16) brex
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1 1 , 2

1@ R@ ‘kwie (1.3.18)
where the radius of curvatuRgz) is,
_ z%+4zp?
R(z) = —
2
R(z) =z[1+%] (1.3.19)
and
w?(z) = é[sz + z2]
2 _ ZZR ZZ
wi(z) =28 |1+ 5 (1.3.20)
where
2
R=T (1.3.21)

The trial solution of Eq. (1.3.5) is modified fuethby substituting Eq. (1.3.18) making it to become

] ikrz(;_i 2 )
Uy = e"P@e 2 kD) kW)
ey e _ikr?
uy = e~ P@e W2@e 2R@ (R3)

T'Z
where the real terra ?@ is the Gaussian amplitude field profile alangvith widthw(z) which is

referred to as the beam radius. Whreis equal to zero, the value wf(z) is considered to be at its

minimum point and is known as the waist sizg,

The longitudinal phase fact® (z) included in the trial solution in Eq. (1.3.5) ca@ determined by
substituting Eq. (1.3.15) into Eq. (1.3.13) giving:

-

P (Z) - z+1izgp
dp(z) _  —i
Tdz  z+izg (1.3.23)

Multiplying both sides of Eq. (1.3.23) withand integrating results:
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-1

idP(z) = dz

Z+1izgp

i [7PdP2) = [

iP(z) =loge.(z+izg)+C (1.3.24)

1
z+1izg

where C is the integration constant. Since onribhédolution for the lowest-order Gaussian mode th
longitudinal phaseP(z) of the beam is assumed always to be zero at themomn waist size, i.e.
atz = 0. Therefore when:

P(z=0)=0,

the integration constant C in Eq. (1.3.24) becomes:

0=loge.(z +izg)+C
C = —log,(i zg). (1.3.25)

This means Eq. (1.3.24) can be simplified by stltstg Eq. (1.3.25) to become:

i P(z) =log.(z+izg)+ —log.(i zg)

i P(z) = log, (1 +i i) (1.3.26)

To simplify Eq. (1.3.26) we use an identity of tAegand diagram method which displays complex

numbers as follows:

. —-1(b
a+ib=(a?+b2)e W3 (1.3.27)
If we make the constant in Eq. (1.3.27) to be:
a=1andb =Z%,
ZR

and substitute this into Eq. (1.3.27) we get:

1

iz = (14 (2)) & ), (13.27)
ZR

ZR
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The longitudinal phaseP(z) of the beam in Eq. (1.3.26) can then be simplifisd substituting
Eq. (1.3.27) to become:

i P(z) = log, ((1 + (i)z)z ¢ tafl(%))
i P(z) = log, (1 + (i) )% — i tan~! (i)

. { tan1(Z
emiP@) — 1 itam (o , (1.3.28)

(+()

N

Eq. (1.3.28) can still be simplified further by stituting Eqg. (1.3.20) and Eq. (1.3.21) to make it

become:

e—iP(@) — Wo_ i ta“_l(a)_ (1.3.29)

w(z)

Eqg. (1.3.29) can now be substituted into Eq. (R)3t@ cast it into its final form:

2 iler2
, —1( z r ikr
w (),

e wX2e 2R@), (1.3.30)

Uo(r,2) = — B
The Helmholtz paraxial approximation wave equatioig. (1.3.1) that represents a mode that has a
combination of a plane wave and some transversatiaars which does not change much as the field

of the mode propagates can be represented as:
E(r,$,z) = Eq u(r, ¢,2) e ™7, (1.3.31)

whereE, is the amplitude of the field at= ¢ = z = 0. Substituting Eq. (1.3.30) into Eq. (1.3.31)

leads to the total solution for the paraxial wagaaion for the smallest-order Gaussian mode to be:

w, _r _ikr? . itan_l(i)
E(T' ¢;Z) = EO W(Z)e w2(z) e 2R(2) e—lkz e ZR ,

which when simplified becomes:

w _rr _ia? —i[kz—tan_l(i)]
E(r,$,z) =Ey — e W@ e R@ ¢ 2R/, (1.3.32)

w(2)
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2 ikr?

— . , - . —i|kz—tan"1(=)| .
e "*@ is the amplitude;e 2rR®@ the radial phase; ance L[ #-tan (ZR)] is the

Wo

whereE

w(2)
longitudinal phase part of the smallest-order Ganssiode solution. To emphasise, the propagation
of a Gaussian beam profile is governed by the beaist,w(z) the radius of curvature of the

wavefront,R(z) and the Gouy phase shit,

® = tan~? (—) (1.3.33)

ZR

wherezy is the Rayleigh range given in Eq. (1.3.21), whstlows how fast the beam diverges from
its centre poink,, where the beam waist is minimupg. When the value ofy is large, it means the

Gaussian beam is diverging slowly and when theevedismall it means the beam is diverging fast.
The electrical field intensity of a beam is given a
I(r,$,2) = [E(r, ¢, 2)|*. (1.3.34)

The electrical field intensity of the lowest-ord&aussian beam can be found by substituting
Eqg. (1.3.32) into Eqg. (1.3.34) and be shown to be:

212

2 _
1(r,¢,2) = B} () e W@, (1.3.35)

w(2)

The intensity has a Gaussian distribution, with peak occurring at, which is at the centre and

decreasing monotonically with an increase,iavident in Fig. 1.3.1 (a).

(a)

Fig. 1.3.1: (a) Cross-sectional profile and (bnswzerse profile of the intensity of the lowest-ar@&aussian

beam.

Other solutions to the paraxial form of the Helmth@quation exist such that when the equation is

solved using Cartesian coordinates a family of tearhg is obtained known as the Hermite—Gaussian
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modes and when the equation is solved in circylindrical coordinates the solutions are known as
Laguerre—Gaussian modes. For both families, thedtwrder solution describes a Gaussian beam,

while higher-order solutions describe higher-otti@nsverse modes in an optical resonator.

In the Chapters which follow, we show that Gausdiaams are just one possible solution to the
paraxial wave equation and that many other comioinatets of orthogonal solutions are possible for
modelling laser beams which can be generated ®r leesonators. In general, we see that if a
complete basis set of solutions is chosen, therreadylaser beam can be described as a superpositio
of solutions from the initial chosen set. The desifithe laser cavity in most cases determinestwhic
basis set of solutions is intended to be an outptite laser. Hermite-Gaussian modes are generally
more common since many laser systems have miatgé¢present Cartesian reflection symmetry in

the plane perpendicular to the beam's propagatrentibn.

1.4. Hermite-Gaussian beams

The Gaussian mode is not the only solution to thexpal approximation of the Helmholtz wave
equation; there are many other solutions that esgisth as the Hermite-Gaussian (HG) mode whose

electric field can be represented as [1.4]:

x%+ y2 ik(x2+ y2)

Emn(6,9,2) = By > Hy (V2 ) Hy (V2=) € W5 7 2re) eilka—omnal - (1.4.7)

w(z) ™ M w(z)

where®(m, n, z) is the Gouy phase for the HG mode and is given as:
®(mmn,z)=(m+n+1)tan?! (i) (1.4.2)
ZR

and the other parameters, such as the radius vhtoweR (z) and the beam waist(z), have been
given in Eqg. (1.3.19) and Eq. (1.3.21) as propagatiarameter of Gaussian beams. This is because
HG modes are superposition solutions of Hermitgmmiials and the Gaussian parameters which is
why they are called Hermite-Gaussian modes. ThenlierGaussian modes have polynomial indices
of m andn for x andy in Cartesian coordinates. The lowest-order Her@eissian mode has

indices equal to zerap = n = 0 which results in the lowest-order Gaussian modeEly, or HGy.
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The Hermite-Gaussian intensity profiles of Eq. (I)4vith different combination of indices andn
are shown in Fig. 1.4.1. The HG intensity profileere generated using the digital laser that is
discussed in Chapter 4. The number of nodal lingke intensity profile depends on the valuesof

and n indices. The indexn determines the number of nodal lines along thaxis, whereas

determines the nodal lines along theaxis.

Fig. 1.4.1: The transverse intensity profiles of M@&des with the corresponding indicesmofindn.
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1.5. Laguerre-Gaussian beams

The previously discussed Gaussian mode is notrihyesolution to the paraxial approximation of the
Helmholtz wave equation; there are many other goiatthat exist, such as the Laguerre-Gaussian

(LG) mode whose electric field can be represensed a

r2 ikr?

i
— 1 2p! v2r (2 r? Wiz T2R(z) p—il@(p.1,2)-1¢]
Epi(r,¢,2) = Eo s n(|l|+p)!(w(z)) Ly (WZ(z)) e W@ e H®e . (@50

where®(p, 1, z) is the Gouy phase for the Laguerre-Gaussian modésagiven by:
-1 z
o(p,,z) = (2p + 1+ Dtan~ (2), (1.5.2)
R

and the other parameters, such as the radius vhtoweR (z) and the beam waist(z), have been
defined in Eg. (1.3.19) and Eq. (1.3.21) as thepagation parameter of Gaussian beams. This is
because Laguerre-Gaussian modes are superpositigioss of Laguerre polynomials and Gaussian
parameter and that is why they are called Lagu@messian modes. The Laguerre-Gaussian modes
have indicep andl which represents radial coordinateand azimuthal anglep respectively. The
lowest-order Laguerre-Gaussian mode has indiceal égwerop = [ = 0 which results in a simple
Gaussian mode of TEdor LGy,

The Laguerre-Gaussian intensity profiles of Ecp.(). with different combination of indices pf
andl are shown in Fig. 1.5.1. The LG intensity profilesre generated using the digital laser that is
discussed in Chapter 4. The intensity profile ofjl@re-Gaussian beams has a central null #o0
and the central null diameter size increases ayvdahe ofl increases as shown in Fig. 1.5.2. The
radial beam width of Laguerre-Gaussian beams © gfi®wn to increase with an increasepair [
indices, where the value of the indpxdenotes the number of intensity concentric ringshat
Laguerre-Gaussian mode as shown by Fig. 1.5.3.ifdrease in beam width of Laguerre-Gaussian

modes from the fundamental lowest-order Gaussiatensgiven as:

Wy =Woy2p+1+1 (1.5.3)

wherew, is the beam width of the fundamental lowest-odaussian mode.
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Fig. 1.5.1: The transverse intensity profiles ofgyuarre-Gaussian modes with the corresponding iadafe

p andl.
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Fig. 1.5.3: (a) Cross-sectional profile and (bh$weerse profile of the intensity of a L.&beam.

The superposition of two Laguerre-Gaussian mod&s @rresponds to a different allowed mode of

the resonator. The single Laguerre-Gaussian madestproduced by the laser resonator contains two

coherent Laguerre-Gaussian modes that have twosgp@zimuthal orders afl and- [ (see Chapter
6).

The electric field expression of the coherent spipsition of two Laguerre-Gaussian modes of radial

orderp with opposite azimuthal ordet! is given as:

Ep,l (T, d)l Z) = Ep,—l(r' ¢, Z) + Ep,+l(r' ¢, Z)

—r? —ikr? . z
_ [ ’n 2w (ﬁr)m] e(WZ(Z)) e(ZRkT) e(-1(2p+|l|+1)arctan(;)) (e(il(p) + e(_ild’)), (1.5.4)

(IDtw(z) \w(z)

The intensity profiles of such superposition of uage-Gaussian modes are shown Fig. 1.5.4 and
they have a central null when the indi¢es 0 and the central null diameter size increases @as th
value of+! indices increases. The radial intensity beam widtthe Laguerre-Gaussian beams is also
shown to increase with an increase to the valugs @f|l| indices. The value of the radial indgx

denotes the number of intensity concentric rings rfiode possesses, and the value of the ihdex
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denotes the number of nodal lines along the ractialrdinate. The coherent LG mode intensity

profiles in Fig. 1.5.4 were generated using théalitaser that is discussed in Chapter 4.

£t ’
| -
| -
| .
3
| .

Fig. 1.5.4: The transverse intensity profiles af Superposition of two coherent Laguerre-Gaussiades with

the corresponding indices pfand|!|.
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1.6. Conclusions

We started the Chapter with an overview of the wodvered in this thesis, followed by the
background history of mode selection in diode punpelid state laser resonators (DPSSLR). This
was followed by the theoretical implementation dife tHelmholtz equation in the paraxial
approximation to derive the lowest-order Gaussiaten Since higher laser modes in a resonator
form a basis set of the lowest-order Gaussian moges important in this thesis to show how high-
order modes of different families are generatedhsas Hermite-Gaussian modes and Laguerre-

Gaussian modes.
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CHAPTER TWO

Modal decomposition withou priori scale information

2.1. Introduction

There are a number of laser systems that produdgphauarbitrary unknown laser modes such as
multi-mode optical fibres and multi-mode high-povieser diodes. Specifically, for applications such
as fibre communication where multimode-mode opfiifaik is used, it is important to perform modal
decomposition on the emitted arbitrary multi-moéern to determine the composition amount of the
superposition of modes emitted by the fibre. Thehégue of modal decomposition has been shown
over the years [1.53, 1.54] that it can be usesktact physical properties associated with thetethi
multi-mode laser beam such as the intensity of light field, the phase and?, etc. The
overwhelming advantages provided by performing rhadlecomposition technique in systems
emitting multimode laser beams has been demondtigteseveral experiments [1.55, 2.1-2.4] that
have been performed, some with varying degree ofess. More recently the technique of modal
decomposition has been implemented using compwgrergted digital holograms to decompose
modes emitted by optical fibres [2.5-2.7]. Thesgitdl holograms have also been used to determine
laser beam properties such as the beam qualitgrf§Zi8], angular momentum density [2.9, 2.10],
wavefront and phase [2.11] have all been recentlierchined using computer generated digital

holograms.

It has been shown that the modal decompositionnoaiditrary optical field may be performed
without the knowledge of the initial basis functiscale. But this approach has been shown not to be
efficient and also not to be correctly represemgatf the underlying field since it produces a éarg
guantity of modes in the expansion, even thoughaphgoach is mathematically correct. Therefore,
accurate modal decomposition of arbitrary laser esods a technique has been shown to be
unfavourable without prior information of the sc@arameter of the basis function. Although, there
exists a unique basis function, the angular haraspmwhich requires no initial scale parameter, its
disadvantage is that it's a one dimensional (azma@uéangle) basis function, which requires a scan

over the second dimension (radial coordinate) toaekthe core information [2.12].
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In this Chapter [6.12] we demonstrate a novel mdéabmposition approach using digital holograms
that requires n@ priori knowledge of the spatial scale of the modes thitlead to an optimised
modal expansion. We show that by proposing a sirhptestep approach of first determining the
second moment size of the beam,, and the beam propagation factdf?. We can determine the
scale of the adapted set, which enables the sestepdof determining an optimal decomposition in
the adapted mode set to be possible thereby detegnthe number of modes contained in the
arbitrary optical field. We illustrate the power aiodal decomposition without a priori scale
information by successfully decomposing beams feodiode-pumped solid state laser resonator into
optimised Laguerre-Gaussian mode sets. We also ridmate that our experimental results are in

good agreement with theory which illustrates thesatlity of our approach.

2.2. Concept

The method of modal decomposition is used to clearige an optical field into superposition of basis
functions where each basis function or mode is ety with a complex expansion coefficient. The
main purpose of modal decomposition is to acqulrtha necessary information about the field so as
to determine these coefficients as a one-dimenkg®taof coefficients. This reduces the problem to
only finding the unknown modal weightg?() and phasesi¢,) so that an unknown field (r) can

be expressed as a phase dependent superposiidmidé number of modeg,, (1) [2.6]

U(r) = Xpme* ety (1) (2.2.1)

and the orthonormal property
(Ynlhm) = ffRz d? 1 PP (1) = S, (2.2.2)
of the basis is then used to determine the unkrenefficients

Cn = pp exp(iddy) = (Pu|U). (2.2.3)

To determine the modal weights?() and phasesign), an experiment would be required where an
optical setup for the inner product measurementidvoeed to be performed, as we will discuss later.
For optimal decomposition the method requires th@tedge of the scale of the basis for it to yield

the minimum number of nonzero coefficients and it be referred to as the adapted basis set. To

date there have been no reports that describénaitee to finding this adapted set.
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To illustrate the problem we consider the basisoéétaguerre-Gaussian modes J.@ith radial and

azimuthal indicep and [, which at the waist position maybe written as:

LGy (1, wp) = S — (@)Ill Lllfl (%) exp (_W—r;) exp(ilg) (2.2.4)

nwg(p+|l|)! wo

wherer = (r,¢), andLLf' is the Laguerre polynomial of ordgrand!. The basis functions have a

generally unknown intrinsic scale,, which corresponds to the Gaussian fundamentakemadius.

The arbitrary scalar optical field can now be decomposed into a Laguerre-Gaussiaf any size:
um) = Zpl ng LGpl(r: Wg) = Zpl C;l;z LGpl(r: Wp) (2.2.5)

where cgib denote the complex expansion coeffient for differbasis set sizesv, and wy,
respectively. From Eq. (2.2.5) it is clear that thedal spectrunz,; changes with the scale of the
basis set. Therefore to attain a mode set of adagite, we propose the following simple two-step
approach: (i) determine the second moment sizéebeamw and the beam propagation ratid.M
The scale of the adapted basis set can then lrecidfd 5]:

= 7= (2.2.6)
enabling the second step, (ii) an optimal decontjppsin the adapted mode set. The latter may be
used to deduce the “actual” modes constitutindfitid, and as a check of the previously determined
M? and w,. It is possible to implement the first step by d®O-compliant method [2.14], for
example, a modal decomposition [2.6, 2.15], or véthecently introduced digital approach [2.16].
The main idea is to relate the unknown scale of libsis functions directly to the size of the
embedded fundamental Gaussian moeglg[2.13]. This comes from Eg. (2.2.4), where it iserved
that the size of the Gaussian term is carried ginaw provide the scale of all the functions in the
expansion. With this observation noted, the quediecomes how to find this embedded fundamental
Gaussian size from a measurement of the arbitrgmyt ifield? We exploit the fact that since the beam
quality factor of a fundamental Gaussian beaMis= 1, and since the second moment beam size for
all beams scales as = w,V M2 [2.13], we can infer the unknown scale by meagyitire field size

and itsM?. Thus while Eq. (2.2.6) is simple to implemeng,iihpact on the ability to optimise modal

decomposition is significant, as we shall showhim €hapters to follow.
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2.3. Experimental methodology

The laser resonator used to generate the beamé wieiavere studying was a stable plano-concave
cavity which had a variable length adjustment ofwleen 300 to 400 mm, and is shown as a
schematic in Fig. 2.3.1.

Pump
(808 nm) DZ—).‘ M,

Aperture

ND PF M, Nd:YAG Mask
(1064 nm)

I S

> |

=

Vv

>
Q
&

Fig. 2.3.1: Schematic experimental setup of themmiped Nd:YAG resonator, where the output beafmls
imaged onto a camera (C@Dand a Spatial Light Modulator (SLM), whose difftian pattern is observed in
the far field with CCDR. My ,: curved R = 500 mm) and flat mirrorR = «), BS beam splitter, PF pump light

filter, ND neutral density filter, L lens, fM? meter.

The back reflector Mwas chosen to be highly reflective with a curvatof 2= 500 mm whereas the
output coupler M was flat with a reflectivity of 98%. The gain memi, a Nd:YAG crystal rod
(30 mmx 4 mm), was end-pumped by a 75 W Jenoptik multinfdzte coupled laser diode (JOLD
75 CPXF 2P W). In order to select specific transgemodes, an intra-cavity amplitude mask was
inserted near the curved end-mirror. Mhe amplitude mask used in our experiments wasoou
made and consisted of lithographically produced thiuminium absorbing rings fabricated on a
700um thick borosilicate glass with a 93% transmissivri064 nm wavelength. The mask consisted
of a 5 x 4 grid of ring structures, each desigresklect a specific LG mode by overlapping thergiro

absorbing ring structures with the nulls of theiesfields. The adjustment of the resonator length



48

(L) between mirror Mand M, which alters the Gaussian mode size, can be degea means to
vary the scale parameter of the modes, while tpe of ring structure on the mask selects the type o
modes to be generated. The fundamental Gaussiast siaé on the flat mirror satisfies; = (A

/M [L(R-L)]'2 and so each LG mode size also scales;as= wi(2p + [ + 1) [1.4]; note that the
final field may be some superposition of these rsodéus adjusting the resonator length results in a
change in the fundamental Gaussian mode size, emtkhhe positions of the zeros of the LG modes.
By selecting an appropriate ring structure foragiresonator length, the laser can be forced,te.g.
oscillate either on the first radial Laguerre Gaussnode (LGg), a coherent superposition of G
beams (petal profile) or a mixture of the 1/and LG, modes.

The resonator output at the plane of the outpupleouwas relay imaged onto a CCD camera
(Spiricon LBA USB L130) to measure the output besaire in the near field, and could be directed to
a laser beam profiler device (Photon ModeScanlitBOpeasurement of the beam quality factor. The
same relay telescope was used to image the beamtHe output coupler to the plane of the phase-
only spatial light modulator (SLM) (Holoeye HEO 1D&). The SLM, calibrated for 1064 nm
wavelength, was used for complex amplitude modaatf the light to execute an inner product
measurement with a Fourier transforming lerfs=(150 mm). The modulation achieved by the
holograms was implemented with phase-only hologremaed to achieve any desired function using
standard coding approaches. In our case, the LGesnare encoded following Eq. (2.2.4) using a
modulation technique suitable for a phase-only LM 7]. The method used to implement the inner
product measurement has been reported previously; [ut is briefly reviewed here with the aid of
Fig. 2.3.2.

(@]
O
O

Fig. 2.3.2: lllustration of the inner product measuent scheme using af2-setup. The correlation of an
incoming beam with the hologram pattern (H) resiilta correlation signal | at the optical axis lne thback focal

plane of a lens L.
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Consider the case where the unknown field incidarthe SLM is in fact a superposition of §and
LGy-4 modes (but as yet unknown). The SLM is programmid a series of match filters, each of
which is the complex conjugate of the modal fundion the chosen expansion, e.g. the LG basis
functions from Eq. (2.2.4). If the SLM (match filjds set in the front focal plane of a lens, tiethe
far-field (back focal plane) the signal on the ogkiaxis (at the origin of the detector plane) is
proportional to the modal power [1.54, 1.55]. Irr example, if the match filter was set to testtfor
modes LG3; and LG4, then the signal at the origin of the detector Maeturn zero for the former
and a strong signal for the latter, indicative lndé tveighting in the original field. In Fig. 2.3.2ew
show examples of just such holograms as well aigheseen at the plane of the CCD detector. Our
measurement scheme therefore comprises digitafjfaits as the match filters, and a monitor (CCD)
of the on-axis signal in the Fourier plane of aslefihe measured intensities return the desired
coefficientsp2, for each mode. The modal phasks, are accessible analogously by creating a
match filter, which depicts the superposition @& ttesired mode with a (previously chosen) reference

mode as detailed in [2.6].

2.4. Results

We tested our approach by using a general casehdrent superposition of Laguerre-Gaussian
modes of LG4 and LG_-4, which had nearly equal weightings, as shown ig. R.4.1(a). The
influence of the scale of the beam on the modabmahposition results is demonstrated when the scale
of the hologram functions used for the decompasiticas changed from an initial optimag =
208um, which then yield non-adapted basis sets as shligwthe results in Fig. 2.4.1(b) through to
2.4.1(d). When the relative scales are mismatctaed &n idealvy to 0.75w,, 2w, and 3v, the results
yield a concomitant increase in the number of madebke non-adapted basis sets. We observe that
only the radial modes with azimuthal ordérs +4 responds, which then makes the non-adapted set
to contain modes of L., wherep > 0. Simultaneously the power content of theoL{&Gmodes is
shown to drop from an initial 99% to 48%, 13% aft. Zhe power is shown to be dispersed among
more modes of up to 30 for a basis scale w§, Tompared to 2 for the adapted set. This is
demonstrated more clearly by the results in Fig.2Zfa) for a continuous change in the mismatch
between the basis scale and the fundamental mddesrd he theoretical prediction for the change in
LG4 power as a result of the scale mismatch (soligeus shown to be in good agreement with the
experimental data points. As noted, the modal pasvelispersed amongst a large number of radial
modes (Fig. 2.4.2(b)) and in general the greaterstale mismatch, the greater is the modal power

dispersion.
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Fig. 2.4.1: Modal decomposition into adapted anch-adapted basis sets regarding scale. (a) Modal
decomposition into L&, modes of adapted basis scalg (b) Decomposition into L., modes with scale

0.75wy, (c) 2w, and (d) 8v. Inset in (b) depicts the measured beam intensity.

The modal decompositions in Fig. 2.4.1 and 2.4& & shown to be mathematically equivalent
which emphasises the importance to decompose m@dapted set since this will have an order of
magnitude decrease in the number of significameadgy Moreover, one could argue that this is the
only set with an intuitively meaningful realizatidrehind the measurement, namely, that the beam
really does consist of a coherent superpositiotwof azimuthal modes and not a superposition of a
large number of radial modes. From these results #@lso clear that while the first step of our
suggested procedure may be performed at any scldege deviation from the adapted set scale will
result in a laborious measurement and low modalepdewels, i.e., low signal to noise, if the modal

decomposition method is used for this step too.
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Fig. 2.4.2: Influence of basis set scale on mguesum. (a) Relative powgf of mode LG .4, measured (me)
and simulated (sim), as a function of normalisednbeadiusw/w. (b) Simulated power spectrum of |G,
modes p = 0. . 20) as a function of normalised beam radiu®,. Inset in (a) depicts corresponding beam

intensity.

In next part we apply our two-step approach ofifigothe adapted set by assuming that we do not
know the scale parameter of the beam. For thediegt we decompose our beam into a non-adapted
basis set, and use the result to find the beamedeaamand beam propagation factor [2.15]. The modal
decomposition results are reconstructed (Recon&in)cand compared to the measured values
(Measurement) using the ISO standard approacha@sgummarised in Table 2.4.1. The results from

both approaches show that they are of very gooekagent.

Table 2.4.1: Diameter andMf measured and reconstructed intensity.

2
2w (um) M? T (m)
Measurement 945.7 5.2 414.7
Reconstruction 913.6 5.0 408.6

This first step returns the “unknown” scale paranetith an average value wf = 414+ 2 um which
compares well with the theoretical value of 4i6 which is based on the ABCD matrix theory of the
known resonator parameters. The second step et the modal decomposition with the correct
scale and the results are shown in Fig. 2.4.3. mbkasurement of amplitudes and phases of the
correctly scaled modes shown in Fig. 2.4.3(a) add3th) enables the reconstruction of the optical
field in the adapted basis. As expected, the mddabmposition returns the two original azimuthal
modes. Using the modal decomposition results, titensity of the field is reconstructed and
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compared with the measured intensity of Fig. 2&3.3(nd 2.4.3(d). Both are in good agreement,
proving the decomposition to be correct.

Intensity (Me) max
Qp 00
\"J
“0o
0
Intensity (Re) max
aﬁ %
Q
o 00
(d) .

Fig. 2.4.3: Reconstruction of the beam by modalodgmsition into LG, modes of previously determined
scale. (a) Modal power spectrum (total power noisedl to one). (b) Modal phases. (c) Measured iitiens

(Me). (d) Reconstructed intensity (Re).

The same two-step approach was applied to a beasistiog of only the radial order Laguerre
Gaussian mode [2.18], L as shown in Fig. 2.4.4(a), and of a superposiioie LG, and LG .4
modes, as depicted in Fig. 2.4.4(b).

It is important to note that if the first step betprocedure is executed with the recently mooigitht!
approach taM? measurements [18], then the entire technique eaimiplemented with a single
spatial light modulator necessitating only a chaggiligital hologram. As holograms are easy to
create and may be refreshed at high rates, theegmmticedure can be made all-digital and effegtivel

real-time.
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Fig. 2.4.4: Modal decomposition after determinatidrcorrect basis set scale of (a) a Laguerre-Gawd<s, o
beam, and (b) of a superposition of an 8-petal baach a LG, beam. Insets depict corresponding beam

intensities.

2.5. Conclusions

In conclusion we have demonstrated a new appraadhdé modal decomposition of an arbitrary field

that requires no a priori scale information on Ifasis functions. Our approach makes use of digital
holograms written to a spatial light modulator, aexbloits the relationship between the scale
parameters within the basis and the beam propagttator of the beam. We have demonstrated the
approach on LG modes and have successfully recatestt the modes and their sizes. This new
approach may readily be extended to other based hmoadvance of our method will be of relevance
to studies of resonator perturbations, e.g. thereffdcts and aberrations, and in the study of

multimode fibre lasers.
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CHAPTER THREE

Exciting higher-order radial Laguerre—Gaussian rsadea
diode-pumped solid-state laser resonator

3.1. Introduction

The operation of solid-state lasers in a multi-moegime has been shown to be the simplest method
of extracting most of the energy in the gain mediwhich then allows these lasers to be used in a
large number of applications since they can prodhggh power multi-mode laser beams.
Applications such as ultrafast spectroscopy, LIDA&Ser material processing, laser ranging and in
military applications [1.27] currently employ higlower solid-state lasers. Solid-state lasers which
are mostly used in these applications are curreditigle-pumped solid-state lasers while earlier
applications used flash lamp-pumped solid-stateréas The progress towards the use of diode-
pumped solid-state lasers is due the advantaggoffexr compared to flash lamp pumped solid state
lasers such as higher efficiency, better frequest@pility, higher brightness than diode lasers
themselves, and a more compact design due to lgegdbling geometries [1.24]. Most of the recent
high-power solid-state lasers often use fiber cedigliode pumping schemes which create multimode
oscillation within the laser cavity which in genlera not desirable for most of the applications
mentioned above. This is shown by the significdfdrethe scientific community is putting to create
geometries to ensure fundamental Gaussian beaiffatsns in laser cavities. There are a very large
number of schemes which are also too diverse toaldgtsummarize adequately but most of the
schemes involve either matching the pump sized¢d3aussian beam size in order to maximize modal
overlap, or simply aperturing the cavity to allomlp the Gaussian beam to oscillate as the
fundamental mode [1.21-1.23].

Laser resonators that produce high-order Lagueaws&an modes that have zero radial order and
higher azimuthal orders have received a renewededst in the scientific community since they were
discovered to possess well defined orbital angalamentum along the optical axis for non-zero
values of azimuthal ordel,[1.29]. Laser systems that produce Laguerre-Ganssiodes that have
high azimuthal order only have been experimentalymonstrated in a wide variety of laser
resonators of many classes [1.8-1.19], while Iagstems that purely emit Laguerre-Gaussian modes

that have high radial order have received litthergton of late [1.20], in fact predominately high
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radial order Laguerre-Gaussian modes have only Ipgeduced in combination with Laguerre-
Gaussian modes that have azimuthal orders [1.10}-1Sblid-state laser resonators that emit
Laguerre-Gaussian modes with high radial order draye received little interest in the scientific
community and this has been attributed to the mitgea many laser applications for high brightness
laser beams, a parameter that encapsulates boplowes in the modéP) and the beam propagation

factor of the moday?, through:

(3.1.1)

Since, in general, the power in the mode and ig8rbpropagation factor increase in a concomitant
manner, much attention has been placed on incgedlsen power in low-order modes. A different
approach of increasing the brightness of the laserdd be to consider a method of how to select a
particular high-radial-order Laguerre-Gaussian mdde maximum power extraction and then
consider outside the cavity approaches of improwvimg beam quality factor of such a higher-
radial-order Laguerre-Gaussian mode. In an efforattain high laser brightness at the output it is
preferable to pump as much of the gain volume a&siple to achieve maximum energy extraction.
This in turn increases the mode order within theitgaand for the selection of a desired mode,
methods such as pump-shaping [3.1], intra-cavignbshaping [3.2—3.5], and even Talbot imaging
of periodic obstacles [3.6] may be employed. Thep#ést intra-cavity method in selecting higher
order modes and in particular, circular symmetriodes, is through the use of an “aperturing”
element with circular symmetry. Usually one asdesissuch a mode selecting element with higher
losses than high transmission phase-only diffracoptical elements (DOEs), but this has recently

been shown not to be true in general [3.7].

In this Chapter [2.18] we demonstrate and outlingnaple method of intra-cavity generating pure
high-radial-order Laguerre Gaussian modes in arclbetl manner. The experimentally generated
modes show high mode purity up to radial order 8 ae consider the mode volume, losses, and
energy extraction of such modes. We demonstratestizdn high radial order modes maybe an option

in designing high brightness diode-pumped solitedtser resonator.
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3.2. Laguerre—Gaussian Modes

Laguerre—Gaussian, LG modes, where is the radial order and is the azimuthal order, are
solutions to the wave equation in circular symneeggeometries, and are analogous to the Hermite—
Gaussian modes in rectangular symmetry. We refgatl the electric field of an Lgmode may be

written (see Eq. 1.5.1) as:

— 2p! 1 (V2r It 1| (272 %—% —ip+l+1)tan (= i
up'l(r’d)’z)_w/n(|l|+p)!w(z)(w(z)) Ly (wz_(z))e( @ ))e( Getas (3.2.1)

wherer and¢ are the radial and azimuthal coordinates, respayti andL'zﬁI is the generalized

Laguerre polynomial. Here the Gaussian beam pasamétave their usual meaning, with the
propagation distance, the Rayleigh range, ariRl, andw(z) are the radius of curvature and beam
radius of the embedded Gaussian beam, respectindlyis section, we will be particularly interegte
in symmetrical Laguerre—-Gauss modes of zero aziahwttter, which we will denote as L& The

Laguerre polynomials, (X) follow the expressions given in Table 1.

Table 3.2.1: Laguerre Polynomials.
p L,(X)
1
1-X
X72 - 2X +1
-X¥6 +3X72 -3X +1
X724 - 2)X83 +3X2 - 4X + 1

—X7120 + 5X24 - 5X/3 + 5X° - 5X + 1

gl b W N | O

Let us recall that a L¢ beam is made up of a central lobe surrounded &ynpentric rings of light
and p concentric dark rings. It is important toentitat the spot siz&#(z) has a simple physical
interpretation only for the fundamental mode (b @hich is Gaussian in shape. The higher-order
Laguerre—Gauss L beams are characterized by intensity patternssipraiad widely from the axis
as the mode ordegr increases. This lateral spread associated witsa heam can be described by

the width,lW,, based on the second moment radius:

W, =w(p)y2p+1 (3.2.3)
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Another quantity which summarizes the propagationperties of a LG beam is its beam

propagation factor, given by:
Mj=2p+1 (3.2.4)

The spreading of a Lgbeam can be described by the far-field divergearagied,, which can be

expressed as a function of the Gaussian beam éiveed, :

0, = Oo/2D + 1 (3.2.5)

Another important property of Ligbeams is that they are characterized by the sanaie intensity
independent of the mode order This differs from the usual scale law which stathat beam
spreading results in an on-axis intensity reductiorthe following, we focus our attention on fargi
the fundamental mode TEjylof a laser cavity to be L&in shape. For that we impose the position of
the p zeros of intensity by setting an absorbing maskngaa geometry which follows closely the

location of the Laguerre polynomial zeros giveTable 3.2.2.

Table 3.2.2: Roots of Laguerre Polynomials.

p Values of Ratid! for the Zeros of Intensity of Lig Mode

1 0.707106

2 0.541195 1.306562

3 0.455946 1.071046 1.773407

4 0.401589 0.934280 1.506090 2.167379

5 0.363015 0.840041 1.340975 1.882260 2.51040

Before proceeding it is worthwhile to note the idistion between the family of symmetrical
Laguerre—Gauss modes, denoted,d.@nd the symmetrical eigenmodes, TgMf the cavity. In
general when the cavity has apertures and amplinaiks the fundamental mode of the cavity is not
the lowest order mode in the Laguerre—Gauss bRsither, the fundamental mode of the cavity,
denoted TEMN, is the mode having the lowest losses and consdlgue the one appearing at the
laser oscillation threshold [3.7]. This fundamentadde (TEMg) can be engineered to be a 4G

with p > 0 depending on the inserted intra-cavity mask, disb@ishown later.
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3.3. Concept and Experimental Setup

In our approach to producing L§&modes we consider a plano-concave solid-state tasenator that

is end-pumped with a multi-mode fibre coupled dicaled with an intra-cavity amplitude mask at one
end. The amplitude mask consists of lithographicgitoduced thin aluminium absorbing rings
fabricated on a 700m thick borosilicate glass with a 93% transmissibri064 nm wavelength. The
mask consisted of a 5 x 4 grid of ring structuesch of the 5 columns corresponding to concentric
rings for modesp = 1 — 5 (for a Gaussian width ofr, ~ 184um), with each row corresponding to a
ring width of h = 10, 15, 20, and 2am. A schematic of the experimental setup is preskin
Fig. 3.3.1. The gain medium, a Nd:YAG rod crystdlrtm x 25 mm) had a 1.1% neodymium
concentration and was antireflection coated for @®3to minimize pump reflections. The laser
crystal was mounted inside a 19°C water-cooled epgpock. The pump diode laser (Jenoptic,
JOLD-75-CPXF-2P) had a maximum output power of 7&\én emission wavelength of 808 nm (at
an operating temperature of 25°C). The pump diaderloutput was coupled into a fibre with a core
diameter of 40@um and was fast-axis collimated and lens coupleentbpump the Nd:YAG crystal
by using a 25.4 and 150 mm focal length spheraxadés, respectively. A gain area with a diameter of

2 mm was then excited within the centre of the Md3Yrod crystal.

The plano-concave cavity comprises a plane mirridn & reflectivity of 98% and a curved mirror

with a 300 mm radius of curvature and reflectivfy99%. The resonator was formed in a z-shape (in
order to avoid illuminating the mask with the rest pump light) by including two 45° mirrors

within the cavity that were highly reflective fof@84 nm and highly transmissive for 808 nm. The
resonator length was 260 mm and the Nd:YAG crystatre was positioned 75 mm from the plane
mirror. The aperture was placed as close as peskilthe curved mirror while the mask was placed
as close as possible to the flat mirror. Both therture and the mask were individually mounted on

3-axis translation stages for easy alignment.
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Fig. 3.3.1: Diode-pumped Nd:YAG laser resonatorhwinternal mask (DOE). Resonator mirrors were
configured such that the output beam could be obsgefrom both ends with various beam diagnostidstoo

Inset shows the actual setup in the laboratory.

The laser beam could be out-coupled from both @fdke resonator for measurement. The output
through the mask (plane mirror) was measured witmear field CCD camera (Photon Inc.
USBeamPro) by relay imaging the output coupler @ltmthe camera by alltelescope system of
two 150 mm focal length spherical lenses. The bgaality factor M2 from the flat mirror output
was measured by directing and focusing the beamgusio 50% transmissive flat mirrors and a
200 mm focal length spherical lens into the PhdftmdeScan Meter. Simultaneously, the laser beam
profile from the curved mirror output wasllimaged using a telescope system of two 125 mal foc
length spherical lenses and measured using a sé6bdcamera (Spiricon, LBA-USB). The beam
quality factor M? from the curved mirror output was measured by diimgcand focusing the beam
using three flat mirrors (one highly reflective atwlo 50% transmissive) and three focal length
spherical lenses (125, 200, and 250 mm) into tledPhModeScan Meter. The resulting fields could
also be directed to a spatial light modulator (SLfAploeye HEO 1080P) for executing a modal
decomposition into the Laguerre—Gaussian basis 839%. Measurement of the signal at the origin of
the Fourier plane (at the focal plane of a lensréfie SLM) returned the intensity of the coeffitge

of the modal expansion [3.9].
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3.4. Numerical Study

We perform a numerical calculation of the fundarakntode of the resonator with the intra-cavity
mask. The simulation is based on the expansiohefésonant field on the basis of the eigen-modes
of the bare cavity (without any diffracting object)his method is not given here since it has been
already described elsewhere for the case of a lanocave cavity including an absorbing ring on the
plane mirror [3.10]. The modelling given in [3.1€4n be easily adapted to the case of a mask made
up of concentric absorbing rings just by evaluating overlapping integral (Eg. A10 of Ref. [3.10])
upon all the regions of transparency of the magsk.eXample of the mask for the= 4 mode is
shown in Fig. 3.4.1: the high-loss regions of theskn(four absorbing rings) coincide with the nudls
intensity of the mode, while the rest of the maskransparent. The four absorbing rings lead to

the p = 4 mode having the lowest overall loss (similarly fioe other modes).

Fig. 3.4.1: Numerically simulated lowest-loss eig@ues, shown as intensity cross-sections,pfer 1 — 5,

when the appropriate mask withrings is placed inside the cavity. Such a maskmgta is shown for the =
4, with the high-loss rings of the mask coincidinghathe intensity nulls of theg = 4 Laguerre—Gaussian

mode.
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The main quantities deduced from the numerical niodevhich characterize the fundamental mode
are the power losses per round trip LFM due taatition upon the absorbing rings, the intensity
profile of the lowest loss mode, and the beam pyapan factorM? of the output beam. We find that
the fundamental mode TEjylof the cavity including an amplitude mask madeobip rings of radii
given by Table 3.2.2 is a pure jGmode, shown in Fig. 3.4.1: the mode purity wasficoed
quantitatively througta numerical calculation of theV/? of each mode, and found to be 3.02, 5.01,
7.01, 9.01, and 10.99 fgr = 1 — 5, respectively, in agreement with the theoretiearh propagation
factor of M2 = 2p + 1. The variable parameter is the width of the akisgriings: the simulations
shown in Fig. 3.4.1 are folh = 20um, but similar results are found for the other wigtlues. The
variations of the fundamental mode losses LFM amation of the mode order, with the width of

the rings as a parameter, are shown in Fig. 3.4.2.

L., (%) | v ® :

v h=25um
= h=20um
® h=15um
®  h=10um

0.1

1 2 3 4 5
P

Fig. 3.4.2: Variations of the fundamental modgsks as a function of p the number of absorbirggnivhich is

at the same time the order of the LG mode.

3.5. Experimental Results

3.5.1. Mode Purity

The results of the mode selection by the cavitymadk adjustments are summarized in Fig. 3.5.1. In
this section we restrict our summaries to the D@Hirgy with h = 20 um, and we consider the

impact of changing this in Chapter 3Since the LG modes are solutions to the Helmholtz equation,
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we expect that their near and far field intensitgfites should be identical except for a scaledact
This is clearly evident in Fig. 3.5.1, suggestihgit(not yet confirming) that indeed these are the
desired single modes of orders 0-5.

800
600
400
200

Fig. 3.5.1: Near-field (left column) and far-fie{dght column) intensity patterns for modes= 0 — 5 (top to

bottom rows).
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What is evident from Fig. 3.5.1 is that the modesdme less radially symmetric as the order

increases, most likely due to aberrations insiédldser and the fine misalignment of the DOE. Since

the resonator is stable and we are considerindesmgdes, the mode sizes and beam propagation
factors are known analytically and can be compaoedxperiment. The results are summarized in

Fig. 3.5.2.

(@) b
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Fig. 3.5.2: (a) Beam width at the output couplet as a function of mode order. (b) Beam propagdtotor as
a function of mode order. Solid line in both casesthe theoretical prediction from Egs. (3) and, (4)

respectively.

Clearly the cavity is selecting the modes as désiréith the modal properties in good agreement with
the theory. This suggests that the slight impeidast noted in the intensity patterns do not
significantly affect the properties of the modemally we execute a modal decomposition of the
output fields to determine the modal purity of thigher-order modes. As shown in Fig. 3.5.3, the
mode purity is >95% for modes = 1 — 4, dropping to 85% fop = 5. The remaining modal power

is in adjacent lower order modes.
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Fig. 3.5.3: Modal decomposition results for mogles 1 — 5. Correlation between the desired moggd) and

the measured modpdtcomposiiop iS Very high, degrading slightly at high valudspo

3.5.2. Mode Variance Due to Perturbations

We confirm, first, that thermal lensing and therrabérrations are not significant in our system. The
beam size and beam quality factor were monitoredl fasiction of input pump power for each radial
order, with some results for the= 0, andp = 5 modes shown in Fig. 3.5.4. It is well known that
thermal lensingncreases approximately linearly with pump powed @&mversely with pump size.
Within the range shown (corresponding to the rdiogeall tests reported in this manuscript) we find
that there is a flat response to our mode proeréie seen in Figs. 3.5.4(a) and 3.5.4(b), suggesti
that thermal lensing is not a significant factoour experiments. The main reason for that is #e u

of a large pump beam size in order to sustainaberloscillation up to moge= 5.
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Fig. 3.5.4: (a) Change in beam radius as a funafanchanging pump power, for the= 0 mode, measured at
both ends of the cavity, and the solid line isttheoretical solution. (b) Change in beam radiua isction of a

changing pump power, for the = 5 mode, measured at flat mirror and the solid Isthe theoretical solution.

Next we changed the DOE position to select variong widths, fromh =10 to 25um, for
eachp value. The results fop =1 are shown in Figs. 3.5.5(a) and 3.5.5(b). Thereeiy little
impact on the mode size and quality factor wittirs range of ring widths. This is expected from
simulations of the transmission for these widthisexe little influence is noted. We point out though
that as the width increases, so the losses incerabeventually the mode purity would be adversely
affected once the ring width exceeds the nominaltiwof the “zero” regions (see illustration in
Fig. 3.4.1).
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Fig. 3.5.5: (a) Beam radius and (b) beam qualitydiachanges for modg = 1 when the ring thickness of the
DOE is changed.
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3.5.3. Mode Volume, Energy Extraction, and Loss

We recall that the output power from a laser igdiy proportional to the mode volumig,, where

the volume of thepth radial mode is found from:

l 13
V, = [,"ntW?(2)dz = (2p + D)mw,ly (1 + é)
lz
V= M2V, (1 + E) (3.5.1)

wherel, is the length of the gain medium aWgis the mode volume of the= 0 (Gaussian) mode.
In the limit that the length of the crystal is mushaller than the Rayleigh range of the beam,

ly < zg, then Eq. (3.5.1) simplifies 1, ~ M2V,

From Eg. (3.5.1) it is clear that the mode volus@rioportional to thé/? factor associated with the
mode. The output power is also inversely propodida the round-trip losses. This suggests that the

higher-order radial modes have an output powerrtteat be expressed as:
=p+1 (3.5.2)
Py &p

where the subscriptsand 0 refer to the radial mode orders and theddrip losses are denoted &y

Measurements of the threshold and slope efficiefitlze generated modes are shown in Fig. 3.5.6.
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Fig. 3.5.6: (a) Threshold and (b) slope efficieasya function of the mode orgerBoth increase approximately

linearly with mode index.
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Equation (3.5.2) suggests that it is possible teeha larger power extraction from a higher-order
mode if the losses increase at a slower rate thembde volume. This is the case with our scheme
for selecting the higher-order modes. Making theuagption that the ratio of the loss&g/é,, can

be approximated as the ratio of the threshold &lE®. 3.5.7 (a)], we calculate the ratioR3f/ P, to

be ~5, whereas the slope efficiencies have a measatedaf ~4 [Fig. 3.5.7 (b)]. The extraction of
power from the laser therefore has a critical poultere the higher-order mode becomes more
beneficial as compared to the lower order modéroaljh the losses increase with mode order, so
does the mode volume and hence the gain. In tleeafabe radial LG modes, there is a point where
the extra gain compensates for the extra loss. g¢esario is illustrated for the= 0, andp =5
modes in Fig. 3.5.7: at a pump power of just gretitan 35 W the power extracted from the= 5

mode exceeds that of tpe= 0 mode, despite its higher losses.
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Fig. 3.5.7: Above a certain critical pump powes thigher-order mode extracts more power (comparetet

p = 0 mode) due to its significantly increased mode r@yuas shown here for tipe= 5 mode.

3.6. Discussion

During the experimental work the laser cavity wpsmnised for the study of several modes under the
same cavity conditions and in most occasions tkerlavas operated close to a threshold. The
experimental laser design configuration was op#aifor mode purity and not necessarily for power

extraction. This is further shown in Fig. 3.3.1e ttavity was designed to have two output couplers



69

emitting laser light from both ends, each with & lbansmission. For maximum power extraction of a
given mode the construction of a laser resonatanladveequire judicious choice of output coupler
reflectivity, crystal length, doping concentrati@md a very good mode-pump overlap. It is therefore
clear that the overall power extraction efficierafysuch an end-pumped solid-state laser could be
improved to much higher values just by reconfiggrihe laser resonator design, which indeed would
be required if one were to construct a high-brigetnlaser. In this Chapter we are interested in the
relative modal improvement of the Laguerre-Gaussimi-radial-order modes by comparing the
ratios of the losses and the slope efficienciesiclwtiollow Eg. (3.5.2). In this sense the slope
efficiency has been improved by 400% for the 5 mode relative to the Gaussian mode. Finally, we
point out that the quoted pump power representpuing power as measured from the source and not
the pump power absorbed by the crystal. The aetosbrbed pump power was typically 50% of the

guoted value.

The results in Chapter 3 demonstrate that withstaple controlled mode selection approach we can
select a single higher-order Laguerre-Gaussian médery high purity (Fig. 3.5.3) and also ensure
that it has a higher relative energy extractio(Bi5.7) from the laser cavity compared to a Gaunss
mode. In order to increase the brightness of thgleihigher-order Laguerre-Gaussian mode, it would
be necessary to improve the mode quality fastdr through a technique such as field mapping
process, which would change the single higher-otdeguerre-Gaussian mode to a lowest order
Gaussian mode. It is well known that any coherégltd fmay readily be reshaped to any other
coherent field, like the Laguerre-Gaussian modedfal orderp = 5 can be shaped to a lowest order
Gaussian mode gé = 0 using known procedures, such as interferometrianbeambining [30],
geometrical transformations [3.12], complex ampl@unodulation [3.13], or refractive or diffractive
beam shaping [3.14]. These procedures may indusedoif complex amplitude modulation is used,
but lossless procedures have been demonstratefBalde 3.15] and in most cases with two optical
elements, the first optical element is usually usedransform the intensity and the second to
transform the phase. That the beam quality camipeaved by such optical transformations has been
demonstrated experimentally [3.11, 3.16], and &gt evident from the reciprocity nature of light’
propagation: for example, the ubiquitous Gaussianflattop beam shapers in reverse would

substantially improve the beam quality factor &f beam.

Our results therefore suggest a route to high bregs lasers through the selective excitation of

higher-order laser modes and the subsequent camwearfsthese modes to lowsf?-valued beams.



70

3.7. Conclusions

We have demonstrated that it is possible to achielective excitation of higher-radial-order
Laguerre—Gaussian modes inside a solid-state lesenator with only an amplitude mask in a
controlled manner. The generated high-radial-otdeyuerre-Gaussian modes were shown to be of
very high mode purity and that the method usedetoegate them was unaffected by the resonator
perturbations. The significant importance of thessults is the verification that indeed the power
extraction from single high-order Laguerre Gaussiaomdes may exceed that of the lowest order
Gaussian mode at a critical pump value of the rm®onwhich is determined by the relative cavity
round-trip of the modes with reference to the Gamsmode. For instance with a “lossy” amplitude
mask that was utilised we achieved a 400% incréasine Laguerre-Gaussian mode of radial order
p =5 relative to the lowest Gaussian mode of opder 0. These results suggest a route to high-
brightness lasers through the selective excitatfdnigher-order laser modes above this criticaliinp

power, and the subsequent reshaping of the ougddttd a lower divergence mode.
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CHAPTER FOUR

A digital laser for the selection of on-demand fasedes

4.1. Introduction

The operation of a laser generally produces a rmdile laser beam profile with its shape changing
arbitrarily as the power of the laser is increagedaser that generates such arbitrary dynamic beam
shape profiles is generally not useful in many Ezed applications that require specific beam
shapes such as direct laser paint stripping orfitlnmablation, precision laser drilling, fiber arficce
space communication, and many other applicatioaset.beam-shaping techniques [3.14] to control
the beam profile emitted by lasers have been dpedimver the years to allow for extra-cavity
reshaping of the laser beam to any desired tragsverofile using a variety of methods such as
diffractive optical elements, free-form optics amre recently by digital holograms written to a
spatial light modulator (SLM). Nonetheless intraita beam shaping possesses some advantages

over extra-cavity beam shaping such as laser sysfiiciency and compactness.

Intra-cavity beam shaping has been the subjecttefast for a number of years [1.22, 4.1, 4.2]hwit
various laser cavity design techniques [3.4, 473-deing executed successfully such as using aephas
only [4.8-4.11], amplitude-only [1.15, 3.9] and ghaamplitude combination [4.12] optical elements
for spatial mode selection. All of the above tequeis have been demonstrated to require specialised
and customised optics; in some cases like the igebrused by Bourderionnet. et al. [4.12] required
additional external beam-shaping optics, a wavéfsensor and an optimization algorithm routine to
iterate towards the desired phase profile. These have been other efforts at achieving controlled
dynamic intra-cavity beam shaping using deformafileors [4.13-4.18], but such mirrors have been
shown to have a finite stroke, which has causethttiehave limited number of phase profiles that
they can perform, and that is why deformable mé&reave found a small number of applications in
laser mode shaping. Deformable mirrors have rathezn extensively applied in high-power
applications such as correcting mode distortione thu thermal loads or in maximizing energy
extraction and optimization of laser brightnesd$44.18]. Until now, there has been no technique

that has been demonstrated that shows real-tintkeorand selection of arbitrary laser modes.
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In this Chapter [4.22] we succeed in overcomingpiteyviously mentioned restriction by using intra-
cavity digital holograms, which are applied to agdronly reflective SLM, to construct a rewritable
holographic mirror by replacing a standard laseitgand-mirror to form a digital laser. This enabl
on-demand laser mode selection to occur with higgolution and with very broad dynamic range of
phase values. This method of using intra-cavitytalignolograms makes the task of intra-cavity beam
shaping very easy since it reduces the time tocwmstepts and supposedly only creates the ability t
generate appropriate grey-scale images. To putférently, the creation of customised laser modes
has been minimized to that of only creating appaderdigital hologram pictures of the mode of
interest; and the techniques to create such pitisrerery well established as shown by the wide
variety of literature on shaping light using digiteolograms. This approach is very simple compared
to the others techniques and its advantage isttbaty requires a commercially available SLM in an
otherwise standard laser cavity. Furthermore, theadl laser allows all the recognised techniques o
intra-cavity beam selection to be performed. We algstrate that the digital laser can mimic a
conventional stable cavity and verify on-demand ensdlection by dynamically changing the mirror
hologram to output a variety of laser modes in-timaé. We accomplish this feat by ‘playing a video’

[4.22] inside a laser cavity, requiring a shifioar thinking of mode control in laser resonators.

4.2. Methods

4.2.1. Laser cavity and SLM.

Several SLMs were used in the testing of the didétser, and finally a Hamamatsu (LCOS-SLM
X110468E) series device was selected. Previous véth other SLMs failed mainly because of the
phase—amplitude coupling that becomes pronouncedgdintra-cavity operation. The gain medium
was a 1% doped Nd:YAG crystal rod with dimension36fmm (length) by 4 mm (diameter). The
crystal was end-pumped with a 75-W Jenoptik (JOBECPXF 2P W) multimode fibre-coupled laser
diode operating at 808 nm. The OC (flat curvatiwag) a reflectivity of 60%, whereas the SLM had a
measured reflectivity of 91% at the desired po#dion (vertical) and 93% at the undesired
polarization (horizontal). To force the cavity tasé on the vertical polarization, an intra-cavity
Brewster plate was used. On this polarization peation tests on the SLM reveal typical efficierscie
of ~86% into the first order and ~1% into the zRrotder. In the intra-cavity configuration, thisde
difference results in suppression of the zerotreottecause of the significantly higher round trip
losses, and thus the SLM could be operated at narmoiaence and without a grating. The SLM

efficiency had a standard deviation of ~0.4% acatisgrey levels, that is, minimal amplitude effect
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during phase modulation. The nominal length ofdheity was ~390 mm but was determined to have
an effective length of 373 mm to compensate forsthall thermal lensing due to pump absorption in
the crystal as well as the refractive index of tmgstal. The effective length was used in all
calculations for the mode sizes. The resonatorubuas 1:1 imaged onto a Spiricon CCD camera
using a telescope of two identical mirrors for ity measurements, and could also be directed to a

second SLM for modal decomposition studies. Foffitdd tests, the first lens of the telescope was

removed.
4.3. Results
4.3.1. Realizing a digital laser.

Our laser which is shown in Fig. 4.3.1.1, consdta normal folded plano-concave resonator design
with an Nd:YAG laser crystal as the gain medium tioe system. The extra-ordinary part of the
resonator is the utilisation of a phase-only reflecSLM as the end-mirror of the laser cavity. The
main function of the SLM is to display computer-geated holograms which are programmed as
pixelated grey-scale images also known as digitéddrams. The SLM is programmed to allow for a
full phase cycle of 0 tor2which is portrayed graphically as grey-scale cdaanging from white to
black in 256 levels encoded as 8-bit images. Fonstance, a sharp linear increase in colour levels
from white to black would represent a linear inseaf the phase from 0 tar2and this would
normally represent a diffraction grating. The SLMtwally allows any desired phase values to be
programmed as grey-scale digital hologram imadds.dlear to observe that the colour change from
the SLM can be seen to represent an equivalenh ddgatnge in a normal diffractive optical mirror
and that it is where the advantage lies with SLiis Irather simple and easier to make different
colours in an image than to spend a lot of timale€ating depth changes in a diffractive optical
element. Since the SLM is used as an end-mirroratsulto display a digital hologram to intra-cavity
change the phase of the reflected light inside rdsonator, it will be referred to as a digitally
addressed holographic mirror and in short as agnafihic mirror. The key properties required of the
SLM for this application have been shown to be higgolution, high efficiency, high reflectivity at
the appropriately desired polarization, small phasgplitude crosstalk, reasonable damage threshold

and a large phase shift at the chosen laser wagtblen



75

(a)

LD 45°HR Nd:YAG oC

Fig. 4.3.1.1: Concept and experimental realizatibthe digital laser. (a) Schematic of the diglteder concept
showing the SLM, Brewster window (BW), high refleity (HR) mirror at an angle of 45Nd:YAG gain
medium pumped by an external laser diode (LD) soantd the output coupler (OC). (b) Photograph ef th
experimental set-up.

The digital laser shown in Fig. 4.3.1.1 was ophicplmped by a high-power 808 nm laser diode that
was fibre coupled into the cavity through a foldmgror that was coated for high transmission at th
diode wavelength and high reflectance at the lasiagelength of 1064 nm. The resonator was
designed to form an L-shaped cavity using thisifgdnirror so that the high-power diode beam will
not be absorbed by the SLM and thus avoiding damagether important feature of the cavity was
the inclusion of an intra-cavity Brewster windowattwas used to force the laser to oscillate in the
desired polarization for the SLM which in our cagss vertical. The output coupler (OC) was used to

emit the laser light out of the laser resonator.

In an experiment to prove the principle of our @gh of dynamic intra-cavity beam shaping using
an SLM, we programmed the holographic mirror tatd@td a conventional concave end-mirror with a
radius of curvature, R, which was chosen to entheeaesonator formed a stable cavity as shown in
Fig. 4.3.1.2 (a). The SLM will then be programmegtoduce a holographic image that will represent
a lens with a focal length = R, so that the hologram mimics the curvature ofeéhd-mirror. The

minimum beam radius which is the waist size onfthtoutput coupler of the Gaussian beam that

oscillates in such a resonator can be describextdtieal as [1.22]:

wg = (3) LR - D)2 (4.3.1.1)
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where L is the effective length of the resonatat as the laser wavelength. Before the digital laser
was tested, two physical concave mirrors were iadegis an end-mirror at separate occasions in the
same experimental set-up in place of the SLM, Aed3aussian beam size was recorded at the output
coupler. The experimental results for the two cadessing two physical end-mirror wittk = 400

and 500 mm, are shown in Fig. 4.3.1.2 (b) and @ibih Fig. 4.3.1.2 (c) together with the theordtica
solid curve follow Eq. (4.3.1.1). An equivalenttte$ radius of curvature scenarios was programmed
digitally using the SLM and are shown alongsideghgsical mirror measurements in Fig. 4.3.1.2 (b).
From a mode selection perspective, the laser pasfadentically in the two configurations. Another
observed scenario was that as the digital hologramdgrammed radius of curvature was changed as
shown in Fig. 4.3.1.2 (c), the measured Gaussiamlradius size on the flat output coupler changed
in accordance with Eqg. (4.3.1.1). This proves thatdigital laser behaves as a standard stable lase
cavity and it is also clear from the results tigt LM mimics the stable cavity with high fidelity.
addition to confirming the desired behaviour of tligital laser, this experiment also brings to fitre
another practical advantage over using physicaiomsir It is a commonplace to possess a limited and
discrete selection of physical mirrors, while witte digital approach virtually any mirror curvature
can be created, on demand, by simply changing teg-sgale image representing the digital

hologram, and it is limited only by the resolutiofithe SLM that will be used in the resonator.

The high loss properties of the SLM resulted tol#ser resonator having a high lasing threshold as
demonstrated in Fig. 4.3.1.2 (d). The resonatesde are due to the overall diffraction efficieaog

fill factor of the SLM. These two loss effects aaontribute to the SLM having a reduced reflectivity
of between 15- 20 %.
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Fig. 4.3.1.2: Comparison of the digital laser toemuivalent plano-concave laser. (a) Schematihefstable
plano-concave resonator with a waist plane at tedC. (b) Measured intensity profiles for two cature
cases R = 400 and 500 mm), comparing the digital laser ou{BLM) with that of physical mirrors (Mirror).
(c) The change in measured beam size with digifallyosed curvature matches the theoretical cun)eTke
threshold of the digital laser is higher than thiathe conventional laser owing to the additiomaises from the

SLM shown here for th® = 400 mm case. The black lines are fits to the datherror bars are s.d.

4.3.2. On-demand laser modes.

In the following demonstration we used the dididaler to select and produce the well-known Hermit-
Gaussian, Laguerre-Gaussian, super-Gaussian whiahflat-top and Airy beams. The digital laser
can either be programmed to implement amplitudg;ophase-only or amplitude and phase
modulation by simply changing the digital hologrgney-scale image that is displayed on the SLM
screen. The SLM that is used in this experimeabis to implement phase-only changes on the field
while a large number of the desired holograms regooth the amplitude and phase changes on the
field. We achieve this by making use of the welblum method of complex amplitude modulation

[3.13, 4.19, 4.20], because it is easy and suitablee implemented on the SLM. There are several
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means by which to implement this (see Arrizon efa&ll3, 4.20] and references therein), and for the
benefit of the reader we briefly outline one apptoased in the creation of our modes. Consider for
example a desired field(x, y) = uyexp(i¢), with u, the real amplitude ang the phase of the
desired beam. To encode the amplitude term, weduatre high spatial frequency modulation in the
form of a checkerboard pattern with alternating ggisabetween two values. The two phases are
chosen so that their average value is equal tdébged complex value. For example, if the two phas
values are given by = exp(i¢ + ia) andB = exp(i¢ — ia), then the desired amplitudg may be
expressed ag, = cosa. This checkerboard may be varied spatially to tereabitrary amplitude
modulation as a function of position. A graphicaterpretation of the process is shown in Fig.
4.3.2.1 (a), where the modulation between two ploasevalues 4 andB) gives an average return of
C, which is no longer on the unit circle in the cdexpplane, that is, amplitude modulation of the
input field. The checkerboard corresponding to tisisshown in Fig. 4.3.2.1 (b). This can be
understood from basic diffraction theory: somehaf incoming light is diffracted by the checkerboard
grating into higher diffraction orders, so that tlesulting light in the desired order is now lesant
before. In this sense, the desired light has bewlimude modulated, although the pattern on the SLM

is phase-only.
(a) Im n/ZB (b)
|/
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Fig. 4.3.2.1: Complex amplitude modulation concéa}. Schematic of the complex plane showing twospha
only values, A and B, lies on the unit circle (uaimplitude). The average of these is vector C,esgnting
amplitude modulation as it is not on the unit @rgfb) Example of a checkerboard pattern of the vase
values A and B. (c) Zoomed out image of b showhmgy dcomplete annular ring created with this chechanth

pattern to result in zero transmission in the aantihg.

Thus, although our SLM is calibrated for a phask-esasponse from 0 which is represented as a
black colour image all the way tar2vhich is represented as white colour, approphiategrams can
result in amplitude variations from 0 to 1. An exdenof a high-loss annular ring is shown in Fig.
4.3.2.1 (c), with the zoomed-in checkerboard showfig. 4.3.2.1 (b).
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The selection of the Hermite-Gaussian and Lagu8aessian modes shown in Fig. 4.3.2.2 exploited
the use of complex amplitude modulation methodnpléement an amplitude modulation on the
phase-only SLM [3.13, 4.19, 4.20]. This means th®$an be used to create customized apertures,
for example, just like the fine wires or loss-linesed in the past for Hermite-Gaussian mode selecti
[1.22, 4.1]. The digital hologram for the creatiointhe radial ordemp = 1, Laguerre-Gaussian beam
with zero azimuthal ordet,= 0, comprised of a high-loss annular aperture togetfith a phase-only
radius of curvature. In this case, the checkerboarsisted of the two phase values, 0 andor a
resultant of zero amplitude inside an annular riftgs low-loss ring was positioned at the zerohaf t
first radial Laguerre-Gaussian function to selbetpure LGy, mode shown in Fig. 4.3.2.2. The radius
of curvature was used to select and control theensizk, following Eq. (4.3.1.1). Many techniques
exist for the design of intra-cavity diffractive tays [3.4, 4.3—4.7] for particular mode selectiah,of
which may readily be applied to the digital lad#fe illustrate this in Fig. 4.3.2.2 where an Airyabe
[4.21] and flat-top beam [4.5] are created by pkadg digital holograms.

e %
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Fig. 4.3.2.2: Customized spatial modes by amplitaidie phase modulation. By complex amplitude modhriat
a customized set of high-loss regions create a HerfAaussian beam (= 3, m = 0) and a superposition of
Laguerre—Gaussian beams=t 0,1 = +4) as the laser output. By phase-only modulatiofiatatop beam and
Airy beam are created as the stable modes of tigyc&€ombining amplitude and phase effects alldorsthe

selection of a Laguerre—Gaussian bears (1,1 = 0) of a chosen size.

Finally, we observed that switching from one modemnother required nothing more than changing
the digital holographic grey-scale image that ispliiyed on the SLM which resulted in no
realignment and also no additional optical eleméeisng required. Traditionally, to generate the lis
of modes shown in Fig. 4.3.2.2 would have requisederal laser resonator set-ups with each

resonator requiring customised and expensive dpéileanents. We exploit the versatility of the
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digital laser by operating the laser in ‘video’ moevhich allowed the fundamental mode that
oscillates in the resonator to be changed in read-by dynamically changing the digital hologram at
an equivalent video refresh rate time. The mowseraideo is shown in [4.22] and it is the firshéi
this has ever been done in a laser and it repieaesiift in the thinking about laser resonators.

Fig. 4.3.2.3: Higher-order Laguerre—Gaussian mofleexample range of modes created with the ditatsr.

To illustrate this technique’s applicability fortim-cavity mode control with the digital laser, we
consider the generation of high-order modes and whger-positions in the laser cavity using
complex amplitude modulation. In Fig. 4.3.2.3, Westrate higher-order modes from the Laguerre—
Gaussian basis, and in Fig. 3.3.2.4 we show a ligty superposition state of the Laguerre—Gaussian
modes with azimuthal indices of= +25 and —25, creating a petal-like structure with 50 lobes.
This is the highest pure azimuthal combination te@én a laser that we are aware of. It is cleamfr

these examples that a myriad of modes may be dredtiein the laser cavity using our approach.
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Fig. 4.3.2.4: A super-position of two high-ordeinaathal modes. Two Laguerre—Gaussian modes of djgpos
but equal azimuthal index, and of azimuthal ofdler= 25, are combined coherently in the digital laser to

produce this high-order superposition.

4.4. Discussion

All the generated laser beam shapes shown herepassible because the holograms fell well within
the resolution of the SLM. At 800600 pixels with a 20 pm pitch, the resolution ign#icantly
higher than that of an adaptive mirror but subsdntiower than that of a typical diffractive opéil
element. As the number of pixels decreases for paelse ramp 00-2m, so does the diffraction
efficiency, as well as the functionality of the bdgtam, since for an example the resulting beam
profile is degraded by the Moire” patterns. Newaldhs, for a wide range of typical generated beam
shapes, the standard SLM is more than sufficiefiteteised and moreover the current manufactures

can produce SLM with much higher resolutions lately

We have observed from our results that two comstwill have to be simultaneously satisfied for the
digital laser to function properly. The gain of tleser must be sufficiently high to overcome the
losses and at the same time the intra-cavity @atmg intensity must not exceed the damage thrdshol
of the SLM. We managed this by virtue of using ghipower diode pump source and an L-shaped
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cavity design, but there are several other valigr@gches (for example, increasing the doping
concentration of the crystal). When these conditiare balanced, the digital laser will function as

designed.

We also outline that all of the beam shaping temieé we used in designing the holograms for mode
selection were standard and well known, that isyew tools will be required to implement the dibita
laser approach. We have emphasised this pointdgting modes traditionally generated by phase-
only diffractive optical elements like the Airy lreaamplitude-only filters like the Hermite—Gaussian
beams and the combinations of the two methodsadyme the high-order Laguerre—Gaussian beams.
What is very important about all the modes thathege shown here is that they required only a
change to a picture to generate them and no naasaptd no additional alignment of the laser cavity
was needed. It is the simplicity of our approacht ttmakes this digital laser so powerful. In that it
offers a direct and easy means to control modeddribe resonator with suitable standard laser beam
shaping tools and without any special optics beiagded, just only a commercial SLM, which we
can assume many researchers are familiar with awe laccess to. This makes our approach

accessible to all.

4.5. Conclusions

In conclusion, we have demonstrated a novel digitdr that allows arbitrary intra-cavity laser tnea
shaping to be executed on-demand and also on an r8frkh rate. This is substantially different
from other intra-cavity laser beam shaping appreadince only a grey-scale image is needed to be
changed to select a laser mode. We have also démumas that the digital laser can produce
conventional stable resonator modes as well agomidaser resonators that produce more exotic
laser modes. The digital laser is at present lianitethe power that it can output, but this may be
overcome with careful engineering of bespoke ligoigstals for high power applications. Just as
SLMs external to the laser cavity have proved acekent means for testing high-power beam
shaping elements before fabrication, and have énpfocess opened up many avenues for low-
average-power applications of structured light sastholographic optical tweezers, the digital laser
may well become a robust, easy-to-implement, te=mi Bor intra-cavity beam-shaping ideas.
Moreover, as the digital laser is rewritable ipals for dynamic intra-cavity beam shaping, as we
have shown [4.22] by ‘playing a video’ inside adasor the first time. Applications of this would
range from controlling thermal lensing and abeoratiin real-time to real-time mode control and

switching. Customized laser modes are now onlyctupe away.
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CHAPTER FIVE

Tuneable Gaussian to flat-top resonator by amm@itueam
shaping

5.1. Introduction

Commercially available lasers generally produce ausSian beam profile which is a convenient
spatial laser beam profile since it has been shtownaintain its spatial distribution when propaggti
over a long distance and also being very good aising to a diffraction limited spot. The major
disadvantage of the Gaussian beam is that whersddcthe spot area is limited by a beam diameter
of 1/& level which contains only 86.5% of the energy loé {aser beam and the intensity at the
boundary edges is only 13.5% of the peak inten§igrtain applications have attempted to use a
Gaussian beam profile such as laser material psowe$or ablation or drilling holes and it has been
shown that the energy on the boundary edges orsmhguch a beam is either lost or causes major
damage to the surrounding material even the cehigatlintensity peak would cause damage to the
substrate for ablation processes. Laser matengibcations such laser ablation have been shown to
require specific laser beam threshold power oveergain area and this make the use of Gaussian
beam profile to be not favourable. The majoritylasfer material processing applications have been
demonstrated to require uniform beam intensityifgaiver a certain limited area with sharp edges on
the boundary of the beam. The laser beam with tmifatensity distribution over the cross-section of

the working plane is called a flat-top beam or somes a top-hat beam.

Laser systems that produce flat-top beams areatddss for many applications [5.1] such as laser
welding, laser micro-fabrication, laser radar, fas@mnning and optical processing applicationsrdhe

are many extra-cavity techniques that have beermdsimated for the creation of flat-top beams [3.14,
4.5, 5.2, 5.3], and most of them have low loss d@hengh their optical delivery system is associated
with some complexity which require careful alignmheamd fixed input beam parameters to the
shaping elements. There are a number of advantageaving a flat-top beam profile as a direct

output from a laser resonator such as obtainingnigegd energy extraction from the gain medium.
However the methods of obtaining the flat-top bgamofiles as the laser eigenmodes are mostly
complicated and often required expensive customemdiffractive optical elements, aspheric

elements, graded phase mirrors and deformable mif8a2, 3.4, 4.5, 4.8-4.11, 4.14, 4.16, 5.4, 5.5].
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In addition to that almost all solutions currenitigve been designed for a single mode and are not

tuneable in the mode selection.

In this Chapter [6.10] we offer a different approdo the techniques for obtaining a Flat-Top (FT)
beam as the fundamental oscillating mode that istennfrom a laser cavity. The technique that we
propose requires only an intra-cavity opaque risgaa amplitude filter in combination with a
standard circular aperture in a traditional lasesity. We demonstrate that by carefully choosind) we
thought out resonator parameters, such a lasetyczam be made to emit a FT beam or a Gaussian
beam by merely adjusting the circular aperture. ddgty becomes mode tuneable in an easy manner
to implement, which require no new optic or reatiggmt of the resonator. In addition to that the FT
beam is found in the near field and most imporjaatso in the far field which then significantly
simplifies the delivery optics since no relay inragis required. This approach is different fromesth
previously reported FT resonators where the FT bsameated only in the near field. We verify our
concept and theoretical predictions using a “didaaer” [4.23] comprising an intra-cavity spatial

light modulator as a rewritable holographic mirror.

5.2. Concept and simulation

Our concept is based on the mode selective pregenfi a cavity comprising both an aperture and a
ring obstruction, as illustrated in Fig. 5.2.1. \Mfeow that the desired beams can be obtained by
careful selection of the normalized radiys = p,/w, of the opaque ring of width, and the
normalised radiu§,. = p./w, of the circular aperture; hene, andw, are the beam radii of the
Gaussian beam in the bare cavity (without the dhgadiusp, and aperture of radiys.) at the flat

and curved mirror, respectively. Single pass stuffie/, 3.10] on the transmission of radial Lageerr
Gaussian beams through each component (sepattadely)indicated that when the aperture is “open”
(Y, > 2) all the radial modes have similar losses, wlslé & closed so the Gaussian mode dominates

with the lowest loss; in the latter scenario theneo radial mode selectivity by this element.
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Fig. 5.2.1: A schematic representation of the cphc&n absorbing ring (2) is placed at the planpdid of a
plano-concave cavity. A standard circular aper{@jes placed at the opposite end, and the mottansmitted

through the output coupler (4).

This is depicted through simulation in Fig. 5.2a2 (The opaque ring on the other hand can be highly
mode selective, and does not exhibit the monottwicaviour of the aperture. Rather, there are
normalised radii where the losses are invertedHerradial modes (lower radial modes have higher
losses), and other radii where the losses for aevadial modes would be the same or similar, aa se
through simulation in Fig. 5.2.2 (b).
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Fig. 5.2.2: (a) Single pass losses for radial Lagu&aussian modes through an aperture, (b) Spage losses
for radial Laguerre-Gaussian modes through an apaigg, (c) Predicted modal spectrum of radigl thodes
for Y, = 1.55 andY, = 2.5, and (d) Predicted output modes from thetgdwi the far field showing a quasi-
GaussianY, = 2) and flat top bean¥{ = 2.5). The simulations were performed with a ndiged ring radius of
Y, = 1.55 and a ring width df = 20 um. The parameters of the cavity were selected tiwhrihe experiment,

namely,R = 500 mm and. = 252 mm forg ~0.5 at a wavelength df= 1064 nm.

This suggests a simple approach to tuneabilityh& normalized ring radius is chosen to allow
particular Laguerre-Gaussian radial modes to lasal&neously, then they will do so incoherentfy. |

the aperture is open, so that the ring is the nuetermining element, then our Fox-Li analysis
predicts a flat-top beam as the output. As thetapelis steadily closed, so it becomes the mode
determining element and the Gaussian mode is sdletiased on substantially lower round trip

losses. Hence only the aperture opening needsatmelto control the mode.

Our simulation results, shown in Fig. 5.2.2, sugigkat forY, =~ 1.5 the cavity eigenmode is a FT

beam, the purity of which can be adjusted by vayyin We find optimal settings df, = 2.5 for a
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high quality FT beam, which can be approximatedhape by a super-Gaussian beam of order ~ 5.
The incoherent modal spectrum, comprising threeafrddaguerre-Gaussian modes, is shown in
Fig. 5.2.2 (c). Furthermore we predict that the B€am can be transformed into a quasi-Gaussian
beam by simply adjusting the circular apertur&te 2.0, while keeping,. Since the FT beam is a
incoherent sum of radial modes the shape remaitasiamt during propagation. The results are shown
in the far field in Fig. 5.2.2 (d) for both beantfsthe circular aperture is opened further moretiexo

modes are found, for example, a donut modé at2.6.

5.3. Experimental setup and results

In order to test the simulated results we usedaser set—up shown in Fig. 5.3.1 (a). The cavitg wa
arranged in a Z-shape to allow the high power p@&{8 nm) to pass through the gain medium
(Nd:YAG) without interference from the aperture aimdy mask. The stable plano-concave cavity had
an effective length of 252 mm, with the circularegtpre placed directly in front of the curved
(R =500 mm) output coupler of reflectivity 80%. Thatput mode could be measured in both the
near field and far field with imaging or Fourieamisforming optics. Care was taken to separate the

lasing wavelength (1064 nm) from the pump lightg®0n) with suitable filters.
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Fig. 5.3.1: (a) Schematic setup of an intra-caBtyM with diagnostic and control equipment. The High
Reflectors (HR) were used to reflect the 808 nrhi@B4 nm wavelengths. (b) SLM phase screen actadlas

end mirror containing an opaque ring of 106 width.

An additional novel aspect of this experiment wesuse of a “digital laser” [4.23]. One of the dgvi

mirrors in the digital laser setup is a rewritaplese-only spatial light modulator (SLM), forming a
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holographic end-mirror. The SLM was programmed \sittligital hologram representing both the flat
mirror and the opaque ring, as shown in Fig. 5(8)1The digital laser allowed for easy optimisatio

of the ring radius as well as the ring thickness. vary these parameters with lithographically
produced rings of varying thickness and radii woblkl time consuming, and would require a
realignment of the cavity for each setting. In thgital laser, a new ring could be created by merel
changing an image on the control PC representimg désired digital hologram, without any
realignment. The amplitude modulation employed ¢alise the ring was achieved by complex
amplitude modulation [3.13, 4.21] using high sgaffaquency gratings in the form of so-called

“checker boxes”.

On the other side of the cavity we had a variableutar aperture which was controlled manually in
order to find the optimal value df.. This standard aperture provided the tuneabilithe mode. The
output from the digital laser is shown in Fig. 2,3where the near field and the far field intensity
profiles of the quasi-Gaussian (a) and Flat-topbggms are shown. In the first four panels (a-b) we
have the results for a 20m width ring, while in the last four panels (c-dg wave the results for a
100 um width ring. We note that the spatial intensitgtdbutions are in good agreement with the
simulated Fox-Li results in Fig. 5.2.2 (d). Moregvas predicted by theory, the desired shapes are
found in the far field too. The field patterns aso found at values df, andY, close to those
predicted by theory, differing by less than 10%e ®mall deviation can be attributed to minor mode

size errors, e.g., due to small thermal lensingfractive index errors.
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Fig. 5.3.2: Experimentally obtained near field dadfield images of the Gaussian beam and Flategrbfor
ring width settings of (a-b): 20m and (c-d): 10@um. Gaussian beam (a and a*) and Flat-top beamdtb¥n
for Y, = 1.4, a ring width of 2@m, andY, = 2.0 (Gaussian) and 2.3 (FT). Gaussian beam (c’yrahd Flat-top
beam (d and d*) fo¥, = 1.4, a ring width of 10@m, andY, = 2.0 (Gaussian), 2.3 (FT). These values are in

good agreement with theory.

Slope efficiency measurements, Fig. 5.3.3, reveatlthe FT beam has the highest slop efficiency but
also the highest threshold as compared to the -Gimsssian beam selected by the ring cavity. The FT
beam slope efficiency is approximately 2 times tifathe quasi-Gaussian. This can be explained by
the fact that the FT beam has a much larger gdimethan the quasi-Gaussian mode and is better

matched to the pump beam in size and shape. Fgpar@on the data for a Gaussian beam without
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any ring is also shown; this was achieved with pague ring programmed on the SLM and a
normalized circular aperture set ¥y = 2.0 on the curve mirror (i.e., the standard apgpnoto
Gaussian mode selection). The quasi- Gaussian andsian mode show little difference when the
ring width is small (2Qum), indicating that indeed the perturbation frore ting is minimal in the
case of selecting the quasi-Gaussian, and thusytindeed be considered as a Gaussian mode, in
agreement with the theoretical prediction. It hasrbsuggested previously [3.7] that in some cases
amplitude masks do not lead to higher losses, lisccould be the situation here too. When the ring
width increases the guasi-Gaussian departs fuftiben the ideal Gaussian mode and the lasing

threshold increases.
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Fig. 5.3.3: The slope efficiencies of the FT begomgsi Gaussian beam and Gaussian beam for (ain2énd
(b) 100um ring width.

Finally we point out that while we have used thgitdi laser to prove the principle, one would ns¢ u
the intra-cavity SLM approach in a high power syst®ather, one would make use of custom optical
elements to implement the ring aperture, therebyeamsing the damage threshold and lowering the

losses, to produce a more efficient and practigstiesn.

5.4. Conclusion

The conclusion is that we have created and denadedtrfor the first time a new laser cavity that is
mode tuneable. We have established that by simgjiysang the diameter of a standard circular

aperture inside the cavity, the mode that is enhitte the laser can be selected from the ubiquitous



93

Gaussian to a Flat-top beam. The opaque ring maskimplemented on an SLM as an intra-cavity
holographic end-mirror for the advantage that dliews in testing the design parameters. For the
construction of a similar high-power resonator whiwill be optimised for maximum power
extraction by using standard optics and lithograpinocessed optical elements, will eliminate the us

of an SLM and its associated losses.
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CHAPTER SIX

Doughnut laser beam as an incoherent superposition

two petal beams

6.1. Introduction

Laguerre-Gaussian beams are a well-known solutionhé Helmholtz equation in the paraxial
approximation under conditions of cylindrical syninge and they have become a standard topic in
many laser textbooks. In the scientific communitgglerre-Gaussian modes that have azimuthal
order,l , have of lately attracted renewed attention bexthusy carry orbital angular momentumibf

per photon [1.29, 6.1, 6.2]. There are many teaesghat have been demonstrated for extra-cavity
generation of such beams such as using spatidl nigidulators [6.3], spiral phase elements [6.4],
cylindrical lens mode converters [6.5], etc. Théwaes been a significant effort in the scientific
community in creating such beams inside the lagsomator with appropriate intra-cavity optical
elements. The techniques that have been used evactuch modes include the thermally induced
focusing [6.6, 6.7], spatially variable retardatjgates [6.8], and ring-shaped pumps [6.9, 1.204ll

the above mentioned scenarios, an intensity pattétim a doughnut shape was observed being
emitted from the laser cavity. Paradoxically thiaymot be indicative of the presence of a pure

azimuthal Laguerre-Gaussian mode.

In this Chapter [6.14] we revisit the generationl aletection of pure azimuthal Laguerre-Gaussian
modes. We demonstrate a laser resonator that gesexadoughnut-shaped mode profile and show
through a number of experiments that it is not aepluaguerre-Gaussian mode but rather an
incoherent sum of petal-like modes. We illustréiat the conventional tools for mode analysis, such
as beam propagation aMf measurements, intensity, and second moment measntg, would not
have been conclusive in determining the correct enstlucture. Our results bring into question
previous claims of Laguerre-Gaussian mode generatial outline the required analysis to overcome
this ambiguity in future studies. Such structurghaf doughnut mode may be in contradiction to the
current experimental procedures of implementatespecially in areas such as optical tweezing of
nanoparticles and atoms and angular momentum leegetiments where it is necessary to know the

real field structure and not only the intensitytted field.
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6.2. Experimental setup and laser performance

The selection of a doughnut-shaped mode is implédetinrough the use of an end-pumped solid-
state laser resonator with a plano-concave cordtgur which is shown in Fig. 6.2.1. An additional
novelty is the use of a spatial light modulator ¥§Las a concave high reflector end-mirror of the

resonator, thus forming the so-called “digital l&$4.22] as show in Chapter 4.

oc (a)
45°HR Nd:YAG

(b)

Fig. 6.2.1: (a) Schematic of the digital laser @pidor the generation of a doughnut mode showhiegspatial
light modulator (SLM), Brewster window (BW), higkftectivity (HR) mirror at an angle of 45°, Nd:YAGain
medium pumped by an external laser diode (P) spued the output coupler (OC). (b) Schematic of the

experimental setup of the modal decomposition tiegln

The gain medium of the laser was a 1% Nd:YAG ciysid of 30 mm length and a diameter of 4
mm. The resonator configuration allowed for thestal to be end pumped with a 75 W Jenoptik
(JOLD 75 CPXF 2PW) multimode fibre-coupled lasarddi operated at 808 nm. The laser mode size
was selected for maximizing mode purity by avoidapgerture effects and not for maximising output
power. Therefore the digital laser was operatedeclto a threshold and consequently the laser
operation was achieved at an absorbed pump povagprbximately 14 W with a slope efficiency of

only 0.5% as shown in Fig. 6.2.2.



96

-
o
1

(o]
1

Y=5.231X-73.35

Output Power [mW]

0 L
14.0 14.5 15.0 15.5 16.0

Absorbed Power [W]
Fig. 6.2.2: Slope efficiency graph for generatiéthe doughnut mode by the digital laser setup.

We noted that the output power could be improveshtich higher values by excluding the SLM and
redesigning the cavity for maximizing output powBut this was not the aim of the present study.
The experimental results were taken just abovethingshold value where there were minimal thermal
effects. Any disturbance to the stability of thedasystem caused by induced thermal lensing was
compensated by the curvature on the intra-cavitiy Siolographic end-mirror and cavity length
adjustment. The plane mirror was used as an ootpygler with a reflectivity of 60% and the cavity
length was approximately 373 mm. The radius of atume of the concave holographic end-mirror
was digitally programmed to &= 500 mm, which gives rise to a resonator stgbiif parameter of
0.25, which is within the stability boundary of << 1. The mode profile of the generated doughnut
mode is shown in Fig. 6.2.3. It was intra-cavitlested by spot defecting the concave mirror, with a
opaque disk of radius a = 0.5 mm, where the curgafphase) and opaque disk (amplitude) were
encoded using complex amplitude modulation on thd §1.20].
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Fig. 6.2.3: Doughnut beam obtained by programmimgné&ra-cavity circular aperture on a digital halaghic

end-mirror of a digital laser.

The optimum functionality of the digital laser réea fulfilment of several key properties of the
SLM to be met, such as high resolution, high efficiy at the desired polarization, minimal phase-
amplitude cross-talk, reasonable damage threshaoldi,a large phase shift at the laser wavelength.
The suitable SLM that fulfilled these parameters waHamamatsu, LCOSSLM X110468E that had
an 800 x 600 pixel arrays with a gt pitch, a manufacture quoted efficiency of 95%hvei damage
threshold of 25 W/cfand a phase shift of more tham More details of the operation of the digital
laser can be found in [4.22, 6.10] or in Chaptef this document.

6.3. Analysis of the results

We performed a Fox-Li analysis of the cavity uding parameters previously specified to identify the
modal structure of the modes with the lowest rotrimiiosses. The intensity of the resulting modes

with the highest eigenvalue, which correspondé¢dawest losses, is illustrated in Fig. 6.3.1.
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Fig. 6.3.1: Intensities of the modes with the higheigenvalue, equivalent to 0.987, which were iobth

through the Fox—Li method.

We know from [3.9] that the obtained petal modesctvtare shown in Fig. 6.3.1 are a superposition
of two Laguerre-Gaussian modes of zero radial ofpler0) and azimuthal ordérand with different
intermodal phase shift, namely,

Ubpen (3 @; 2) = LG,(1; ¢; 2) [e(_il¢) + e(il¢)], (6.3.1)

Ubaa(r; @; 2) = i LGy (15 ¢; 2) [eTHD) — (D], (6.3.2)

where

I
_ 2 V2 r —-r2 , r?
LGl(r’ Z (l)) - «’nw(z)zlll! (W_O) exp (W_g + iko 2R(2)

where®(z) = arctan(z/z,.), w(z) = woy 1+ (2/2)?, R(2) = z(1 + (zx/2)?, z, = TWE /A, wy is

the beam width, andthe wavelength.

) exp(i(1+ 1D @(2)), (6.3.3)

Based on the Fox-Li simulation and the experimergallts that were obtained, we can assume that
the obtained doughnut beam profile that is showidn 6.2.3 is the superposition of two petal beams
that are shown in Fig. 6.3.1. Theoretically using 6.3.4) and (6.3.5), such a doughnut superpositi
mode can be generated by a coherent or incoharenokthe petal beams as shown in Fig. 6.3.2:
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Fig. 6.3.2: Doughnut beam produced by a coherent aticaherent superposition of the two petal beams.

DL(r; 2) = [ubaa(r; ¢ 2)|? + |ubpen(r5 &5 2)|2, (6.3.4)

DL(r; z) = iubgq(r; 5 2) + Ubpen(Ts @5 2), (6.3.5)

where 0.) is the coherent superposition adg)(is the incoherent superposition.

Both the coherent and incoherent superposition hélve the same final intensity distribution.
However, we see that the final solution for theegamagnetic field of the coherent superposition as
shown in Eq. (6.3.5) isDL(r; z) = LG,(r; z; ¢) exp(ilg), is in fact the field of a Laguerre-Gaussian
mode [6.16]. This result is markedly different fran incoherent superposition where the two petal
modes are treated independently, as all comporageta superposition of two Laguerre-Gaussian
modes of opposite azimuthal order as shown Eqg.46.Based on this difference we are able to detect
the correct solution for the superposition by apmlyan azimuthal modal decomposition technique
which is shown in Fig. 6.2.1 (b). The modal decosifian was achieved by executing an optical
inner product of the output beam with an azimuthalkch filter [2.12]. The output beam from the
laser was relay imaged using A #inaging system and directed onto SL&% shown in Fig. 6.2.1 (b)
to which the azimuthal match filter was addressHoe phase structure of the filter was set to
exp(ilg) for variousl values. To identify the full set of azimuthal medmntained in the doughnut
beam that is emitted from the digital laser resonain optical Fourier transform was performed of
the resultant beam with the aid of a thin lens @&l the relative modal weightings were determined

from the on-axis intensity [2.12, 6.12].

The results in Fig. 6.3.3 demonstrate the experialignobtained modal decomposition of the
doughnut mode. We observed two peaks for the quoreing azimuthal mode numbers -3 and 3.
This result is in contradiction to a coherent sppsition as described in Eq. (6.3.5) as only alsing

peak is expected. We do, however, see that the IMedamposition is in perfect agreement with an
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incoherent superposition as described by Eq. (6.®dcause the petal modes are treated

independently and, thus, each mode would presenpeaks [3.9, 6.13].

normalized intensity, [arb. units]

0.4

0.3

0.2

0.1

| |
4 -3 =2 =1 0 1 2

Fig. 6.3.3: Azimuthal modal decomposition of theigbnut mode.

To verify that the doughnut mode derives from agzohrerent superposition we have performed the
following interference experiment as shown in lBg.4. We directed and aligned the doughnut beam
to pass through a plate that consists of two pa#olhe position of the two pinholes corresponds to
the position of the two petal lobes that comprise $uperposition as shown in Fig. 6.3.4 (c). The
specific positions that we selected and their gpoading numbers are illustrated in Fig. 6.3.4 (b).
We thereafter directed the segments of the dougbheatn that passes through the pinholes to

interfere at some position along the propagatios ax shown in Fig. 6.3.4 (a), (d), and (e).
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Fig. 6.3.4: Interference of the field produced l®jesting two portions of the doughnut beam throtigh
pinholes (b). The pinholes correspond to the laffebe superimposed field (c), where we interfatbes two
lobes of the same petal beam [1 and 3, (a)] orlokes with one from each petal beam [1 and 2, (@)].

Schematic of the interference experiment.

The two petal fields that comprise the superpasitior the doughnut beam are illustrated in

Fig. 6.3.4 (c) and they are represented as gregmesh We expect that if we interfere lobes 1 and 2

we should observe no interference fringes. HoweNelgbes 1 and 3 are interfered, then strong
fringes will be present. This hypothesis was protehe accurate as is evident from the experimental
results shown in Fig. 6.3.4 (a) and (d) where rgtatable interference lines are present.

6.4. Discussion

The rigorous tests provided by the azimuthal matsomposition and interference experiment are
evidence enough to conclude that the doughnut ni®da incoherent superposition of two petal
modes. To understand the process occurring inakigycduring the modal build-up we have to take
into account the area of the laser crystal thaguisped. Because of typical perturbations, it is not

trivial to reach ideal symmetry from a custom lasavity and there exists a degree of asymmetry.
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The asymmetry can be introduced through the gegroétthe custom cavity or spatial distribution of
the gain and presents a minimal difference in fgersralues of the two lowest loss modes, which
were theoretically previously identical as petalde® as shown in Fig. 6.3.1. The lowest loss mode of
the two will preferentially oscillate; however, thesidual gain in the pumped medium will assist in
the oscillation of the mode with the higher rourig-tosses. In the case of substantial asymmeigy, t
oscillation of the mode with higher losses becoimgsossible and the output of the laser is a petal
beam, which has previously been investigated iailddt 15, 3.9]. One may also understand this from
a degeneracy perspective: since there is no physiceess to distinguish the handedness of the pure
azimuthal modes (positive or negativevalues), and since they have the same phase tyekoui

frequency, superposition modes are easily formetl as the well-known petal modes.

6.5. Conclusion

In conclusion, we have implemented the use of ahdigital laser capable of on-demand laser
modes to output a doughnut mode. We have demoedtthat, by using well-known traditional
techniques for characterizing the mode, we arrtvanabiguous conclusions. Contrary to previously
reported studies, we have performed a modal decsitigto on our doughnut field that reveals it is
not a pure Laguerre-Gaussian mode, but rather @harent mix of petal modes. Our theoretical
analysis also showed that doughnut-shaped modesengyoduced by either coherent or incoherent
mixing of odd and even petal-like modes, and that dare must be exercised to distinguish between
the two cases. Our results bring into question iptevreports on the generation of pure azimuthal
Laguerre-Gaussian beams from such cavities, aditi@at procedure for unambiguous predictions of

such modes.
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CHAPTER SEVEN

Conclusions and future study

7.1. Conclusions

A literature review of the different methods of gesting many types of modes from the laser
resonator was discussed in Chapter 1. The lowest-@aussian mode solution was derived from the
Helmholtz paraxial wave equation and also many rofaenilies of high-order Gaussian mode

solutions such as Hermite-Gaussian modes and LisgGaussian modes were discussed.

In Chapter 2 we demonstrated a novel approach adrdposing customised high-order modes that
required noa priori knowledge of the spatial scale of the modes whaetul Ito an optimised modal
expansion. We proposed a simple two-step autonuag@d! approach of first determining the second

moment size of the beam and the beam propagation ralitf; and we showed that this led to the

scalew, (w, = w/VM?) of the adapted set to be determined. We showattttis enabled the
second step of determining an optimal decompositidghe adapted mode set to be possible whereby
we determined the number of modes contained ithirary optical field. The new proposed modal
decomposition technique that we have demonstrailéewery useful in applications such as optical
communication where it can be used as a decodimgeland also in beam shaping techniques or

application as a test for purity of the generatedies.

The novel generation of radial high-order Lagudbaaissian modes using an intra-cavity amplitude
mask containing absorbing rings that match theszefahe Laguerre polynomial was discussed in
Chapter 3. In this Chapter we demonstrated thattet generation of higher-order modes using a
fixed optical mask that was specially manufactueadnatch the mode that was being generated is
possible. The intra-cavity generated higher-ordeguerre-Gaussian modes were shown to be of high
mode purity and that the highest-order modes eapeei very low intra-cavity perturbation. The
significance of this Chapter is that it demonstiateat high-radial-order Laguerre-Gaussian modes of
p =5 extracted more power from the resonator compavethé lowest-ordep = 0 fundamental

mode. These results were shown to provide a nete tothigh brightness lasers, where a single high-
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order mode could be intra-cavity generated to ek@th the power from the resonator; and then extra

cavity be shaped to the lowest-order fundamentdM gEnode to increase the brightness of the laser.

The generation of high-order Gaussian modes usimgingra-cavity phase-only Spatial Light
Modulator (SLM) was discussed in Chapter 4. Irs tBhapter we demonstrated that any arbitrary
mode could be generated on-demand when using dtableroptical device such as the SLM. We
showed that the SLM could be used as an intraycagitriteable end-mirror that could be used to
load digital holograms that would match the modat thvas being generated. We showed that the
generated modes corresponded to the expected randdbat the experimental results were in very
good agreement with the theoretically expected offee significance of this Chapter was to

demonstrate a novel digital laser that allowed @emand arbitrary intra-cavity laser mode generation.

In Chapter 5 we demonstrated a novel laser resoti@bwas tuneable to produce either a Gaussian
mode or a Flat-top beam from the laser resonatdhd resonator an intra-cavity opaque ring close t
the end-mirror of the cavity was included in thariof a digital hologram which was programmed on
a phase-only Spatial Light Modulator. The otheesd the laser resonator was also shown to contain
an adjustable circular aperture closer to the dutmupler. We demonstrated that varying the
diameter of the aperture the laser resonator ceithér generate a Gaussian mode or Flat-top mode.
The results of the Chapter showed the practicalitg the convenience of using a digital laser to
program and test different design parameters idstdathe old, expensive and time consuming
laborious lithographic technique of manufacturing bpaque rings as an optical element of the laser

resonator.

In Chapter 6 we demonstrated a method of detedtiaguerre-Gaussian beams with nonzero
azimuthal order since they are routinely createttreal to laser cavities. We showed that at face
value such similar modes that are generated irsideanding wave laser cavity may not be pure
Laguerre-Gaussian modes with nonzero azimuthalroti# can be an incoherent sum of petal
modes, which do not carry any orbital angular mawonen We used a doughnut mode that was
generated using a digital laser to make a numbéesté such as modal decomposition using digital
holograms to prove that such an intra-cavity geledranode using a standing wave resonator will

contain an incoherent sum of petals.
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7.2. Future study

The selective excitation of a very pure single kigtier radial Laguerre-Gaussian modes from a
diode-end-pumped solid-state laser resonator ttest @iscussed in Chapter 2 showed that it is
possible to extract maximum power from an intraiyagscillating high-order mode of very high
purity such that it exceed that of the lowest-orfdedamental TEN, mode at critical values that are
determined by the relative round-trip losses of ltgh-order mode. This demonstration is very
important for future work of increasing the brigbsés of the laser beams since it firstly proves that
high power extraction from high-order modes is paesand secondly very pure high-order modes
with very little perturbation could be generatedhivi the laser mode. These results provide a plassib
route to future work of increasing the brightnegshe laser beam. The future work would include
extra-cavity improving the brightness of the beaynréducing the propagation constant bf the
high-order Laguerre-Gaussian mode to that of thedd-order TEN, Gaussian mode. The reduction
of M? could be achieved by many techniques such as rfigping, interferometric beam combing,
geometrical transformations, complex amplitude ntaiiton, refractive or diffractive beam shaping

and so on.

The novel digital laser for on-demand laser modes was discussed in Chapter 4 has opened up a
paradigm shift in the scientific community on homsér modes can be generated inside the laser
resonator. The simplicity and the robustness atkbiistomised laser modes can be generated by just
creating a gray-scale image that represents yosirede mode will hopefully make this a future
technique of choice for intra-cavity beam-shapidgas and tests. An added advantage to this
technique is that the digital laser allows for dymarewritable gray-scale holographic images to be
loaded on the SLM for real-time dynamic generatidrcustomised modes to be produced by the
laser. These advantages will prove to be signifidan many applications that we would be
investigating on the usability of the digital laséom controlling thermal lensing and aberration i
real-time, to real-time mode controlling and switgh for application such as ranging, thin film

deposition processes and optical communications.

The novel modal decomposition technique that wasodhstrated in Chapter 2 in combination with
the digital laser of Chapter 3 would be a very geodplimentary tool in optical communication;
where the digital laser will be used as generatiegce of on-demand modes which will be injected
on communication fibre cables while the modal deposition device could be used as decoding
device to determine the modes exiting the fibrelecabhis type of application where the two

techniques will be utilised will still be an ongginesearch that we will be partaking in future.



