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Abstract 
 

The transverse mode of generally available commercial lasers in most instances is not suitable 

for desired applications. Shaping the laser beam either extra-cavity, that is outside the laser 

resonator, or intra-cavity, which is inside the laser resonator, is required to force the laser beam 

or cavity to oscillate on a selected desirable single laser mode. The shaped laser beam’s spatial 

intensity profile and propagation properties would then be suitable for the desired application. 

The crux of the work presented in this thesis involves intra-cavity beam shaping where we 

generate desirable transverse modes from inside the laser resonator and detecting such mode 

using digital holograms. 

 

In Chapter 1 we discuss a novel technique of modal decomposition of an arbitrary optical light 

field into underlying superposition of modes. We show that it can be used to extract physical 

properties associated with the initial light field such as the intensity, the phase and M2, etc. We 

show that this novel modal decomposition approach that requires no a priori knowledge of the 

spatial scale of the modes which lead to an optimised modal expansion. We tested the new 

technique by decomposing arbitrary modes of a diode-pumped solid-state laser to demonstrate 

its versatility. 

  

In Chapter 2 we experimentally demonstrate selective generation of Laguerre-Gaussian (LG) 

modes of variable radial order from 0 to 5, with zero azimuthal order. To generate these 

customised LG modes from within the laser resonator we show that a specialised optical 

element in a form of an amplitude mask is required to be inserted inside the laser resonator. The 

amplitude mask is designed and fabricated to contain absorbing rings which are immutably 

connected to the desired LG mode. The geometry of the absorbing ring radii are selected to 

match and coincide with the location of the selected LG mode zero intensity parts inside the 

cavity. We show for the first time that the generated LG modes using this method are of high 

mode purity and a gain mode volume similar to the desired LG mode. The results provide a 

possible alternative route to high brightness diode pumped solid state laser sources. 

 

In Chapter 3 we show that we can overcome the disadvantage of the specialised optical element 

being immutably connected to the selection of a particular mode by experimentally 

demonstrating a novel digital laser capable of generating arbitrary laser modes inside the laser 

resonator. The digital laser is realised by intra-cavity replacing an end-mirror of the resonator 

with a rewritable holographic mirror which is an electrically addressed reflective phase-only 
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spatial light modulator (SLM). We show that by calculating a new computer-generated 

holographic gray-scale image on the SLM representing the desired customized laser mode 

digitally, the digital laser resonator is capable of generating the desired laser modes on demand. 

The results provide a new laser that can generate customized laser modes. 

 

In Chapter 4 we show that the digital laser can be used as a test bed for conceptualizing, testing, 

and proving ideas. We experimentally demonstrate this by using a simple laser cavity that 

contains an opaque ring which is digitally programmed on the SLM and an adjustable circular 

aperture on the output coupler mirror. We show that by manually varying the diameter of the 

aperture without realignment of the laser, the generated laser modes can be tuned from a 

Gaussian mode to a Flat-top mode. This opens up new digital methods that can be used to test 

laser beam shaping techniques. 

 

In Chapter 5 we outline a simple laser cavity comprising an opaque ring and a circular aperture 

that is capable of producing spatially tuneable laser modes, from a Gaussian beam to a Flat-top 

beam. The tuneability is achieved by varying the diameter of the aperture and thus requires no 

realignment of the cavity. We demonstrate this principle using a digital laser with an intra-

cavity spatial light modulator, and confirm the predicted properties of the resonator 

experimentally. 

 

In Chapter 6 we discuss the techniques used to intra-cavity generate and detect LG beams with a 

non-zero azimuthal index since they are known to carry orbital angular momentum (OAM), and 

have been routinely created external to laser cavities. We show that the few reports of obtaining 

such beams from laser cavities suffer from inconclusive evidence of the real electromagnetic 

field. In this Chapter we revisit this question and show that an observed doughnut beam from a 

laser cavity may not be a pure Laguerre–Gaussian azimuthal mode but can be an incoherent sum 

of petal modes, which do not carry OAM. We point out the requirements for future analysis of 

such fields from laser resonators.  

 

In Chapter 7 we conclude and discuss future work. 
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CHAPTER ONE 
 

 

Mode Selection in Diode-Pumped Solid-State Laser 

Resonators 
 
 

1.1.  Overview 
 
The discovery of Maxwell's equations in 1861 by the Scottish physicist James Clerk Maxwell, 

predicted the existence of electromagnetic waves with infinite range of wavelengths. Maxwell’s 

equations which are a set of partial differential equations have been shown to form the foundation of 

classical physics that describe how electromagnetic fields are generated and propagated. 

 

Maxwell’s equations which describe the electromagnetic field in space and time can be used to derive 

the time-independent Helmholtz equation by the method of separation of variables to reduce the 

complexity of the analysis [1.1]. The solution of the Helmholtz equation within the paraxial 

approximation has been shown to produce periodic solutions when appropriate boundary conditions 

are used. The periodic solutions have found to be modes or self-reproducing electromagnetic field 

patterns of a resonator.  

 

The selection of a particular set of modes inside the resonator has been shown to depend on the 

boundary condition being cylindrical or Cartesian coordinate. In the early 1960’s, many experiments 

were performed involving solid-state, gas and semiconductor lasers to force a resonator to select 

different types of higher-order modes by using rectangular and circular mirrors to generate modes 

such as Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) modes [1.2-1.6]. The other more 

general method of selecting a particular high-order mode has been the use of introducing optical 

elements inside the laser resonator, such as apertures, gradient lenses, phase masks and amplitude 

masks. There is also a method of replacing the resonator mirrors with gradient mirrors, deformable 

mirrors [1.7] and more recently with spatial light modulators (SLM) that will be discussed in Chapter 

4. All these optical elements have the common effect of causing high losses on undesired laser modes 

making them not to oscillate in the resonator, while at the same time causing low losses on the desired 

mode.  

 

 



21 

 

 

Over the year’s many experiments involving the generation of high-order Laguerre-Gaussian modes 

have been reported [1.8-1.20] but have not been used to produce high brightness beams, B: 

 

! = AB	C
DBEF ;      (1.1.1) 

 

where " is the power in the mode and #� the beam propagation factor of the mode. Most of the 

interest over the years has been dedicated on generating single fundamental Gaussian low-order 

modes using many schemes such as matching the pump size to the Gaussian beam size in order to 

maximize modal overlap, to either aperturing the cavity to allow only the Gaussian beam to oscillate 

as the fundamental mode, all in order to force the laser to produce high brightness beams which have 

been a driving force in many applications [1.21-1.22]. The brightness parameter has been shown to be 

directly proportional to the power in the mode and also at the same time inversely proportional to the 

beam propagation factor (M2) squared. Therefore the brightness of the laser will generally be low if 

selecting a very high-order mode to oscillate in the resonator. This explains why most of the attention 

over the years has been placed on developing high brightness lasers that produced the lowest-order 

fundamental Gaussian mode. This is because the lowest-order Gaussian mode has the lowest 

propagation factor which in turn produces the highest brightness parameter. This trend has been 

influenced by many applications which required laser beams that have a high brightness parameter. 

The method of generating a singular high-order mode to extract maximum power from the laser and 

how the brightness of the laser is increased from such a high-order mode is discussed in details in 

Chapter 3. 

 

More recently, there has been an increase in the number of publications and applications that require 

customised higher-order modes to be selected and produced by diode pumped solid-state lasers [1.23]. 

The interest in using diode-pumped solid state lasers which first were realized as flash lamp pumped 

solid state lasers, comes from the advantage that diode pumped systems have become very efficient 

when compared to lamp pumped systems[1.24-1.26]. Other advantages such as better frequency 

stability, high repetition rate, reliability and compactness have made diode pumped solid state lasers 

to be laser system of choice for many applications. These applications involve high power solid state 

lasers for industrial manufacturing application such as welding, cutting and drillings of metal sheets, 

to applications such as remote sensing and laser weapons [1.27]. There are also applications which 

prefer low power solid state laser systems such as micromachining, optical communication and laser 

surgery [1.28]. 
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The revived increase on developing laser resonators that produce higher-order modes such as 

Laguerre-Gaussian beams is due to the recent discovery that they possess well defined orbital angular 

momentum along the optical axis for non-zero values of azimuthal order l, that have a helical wave 

front [1.29]. Application such as optical tweezers have been realized with high-order Laguerre-

Gaussian beams that transfer orbital angular momentum to trapping particles and induce them to 

rotate around the optical axis. There are many applications [1.30-1.38] that require high-order LG 

beams such as material’s processing, quantum communication, particle traps and high resolution 

microscopes. All these applications require the laser to oscillate on a high-order LG beam using 

holograms, spatial light modulator, diffractive optics and many other schemes. 

 

There is an increasing interest of generating other high-order families of modes in geometries with 

different symmetries such as rectangular, cylindrical, circular and elliptical that could be used in many 

other potential applications [1.39-1.47]. These modes can be generated inside the laser resonator and 

also outside using different types of optical elements. One of the benefits of generating these high-

order modes inside the laser cavity [1.16, 1.48-1.52] is that the beam’s power and energy could be 

scaled up. Some of the techniques of generating different families of high-order modes inside the laser 

resonator are discussed in detail in Chapter 4.   

 

 

1.2.  Laser resonator modes and their selection 
 

A laser resonator which is sometimes called a laser cavity is a device that has mirrors arranged in a 

manner that forms a light field standing wave. In between the mirrors, a gain medium is usually 

inserted to provide feedback of the laser light field. In the case of a solid state laser the gain medium 

is in a form of a solid, like an Nd:YAG crystal. The pump source which provides energy to the gain 

medium for the amplification to occur can be an optical pump source such as flash lamps or diode 

lasers as shown in Fig. 1.2.1. 
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Fig. 1.2.1: Laser resonator schematic diagram showing the laser cavity mirrors, pump source and the gain 

medium. 

 

 

The end-mirror of the laser resonator is usually designed to be highly reflective for the laser light, 

while the output mirror is partially reflective in order to allow some of the laser light to exit the laser 

resonator for usage. For the laser light to exit the resonator, firstly, the crystal (or active medium) 

which generates the laser light should be pumped so hard that its gain factor is greater than the loss 

factor which is introduced by the output coupler mirror. This creates a scenario where most of the 

laser light is confined within the laser cavity which allows multiple reflections of the laser light field 

to occur between the mirrors. This leads to a steady state regime where the gain exactly compensates 

the output coupling losses and therefore the laser start to emit the laser light continuously as shown in 

Fig. 1.2.2.  

 

 
Fig. 1.2.2: Schematic principle of laser resonator where the gain factor should always be greater than the output 

coupler mirror loss for every round trip.  
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The definition of an optical laser resonator in most cases includes the gain medium as we have shown 

above, but an optical laser resonator can also be viewed without the active medium and such a laser 

resonator is called a passive resonator. The use of a passive resonator is to investigate and determine 

the steady state solution of the oscillating spatial field structure inside the resonator without the 

complication and challenges of nonlinear effects on the oscillating field which are introduced by the 

inclusion of the gain medium.  

 

A stable passive laser cavity as shown in Fig. 1.2.3 in most cases consists of two mirrors with a radius 

of curvature �G and �� separated by an optical distance	� = ���, where �� is the physical distance 

between the two mirrors, and � the refractive index between the two mirrors. The resonator will be 

termed stable, if the rays of light inside the resonator are allowed to bounce between the mirrors 

repeatedly over an infinite number of times along the optical axis without experiencing any diffraction 

losses. This means that in the case shown in Fig. 1.2.3, the wave front of an electric field that 

oscillates in such a cavity matches the radius of curvature of the mirrors, for the field to experience no 

losses, and for it to be reproduced at every round-trip within the resonator. The self-reproducing of 

such spherical waves or fields inside the resonator is called an eigenmode or mode of the resonator. 

 

  

Fig. 1.2.3: The general optical resonator stability is determined by the g-parameter of the mirrors and the 

resonator length	��. 
  

 

The condition for a stable resonator is given by the g-parameter of the resonator mirrors to be: 

                             

                                                           0 H gGg� H 1; 

 

where    gG = 1 � I
.J

  and  g� = 1 � I
.B

.   
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In the resonator shown above in Fig. 1.2.3, the radii of curvature R1 and R2 are positive since the 

mirrors are concave. The radius of curvature is negative for convex mirrors. For stable resonators the 

most fundamental eigenmode is the Gaussian beam. The stability of optical resonators when different 

types of mirrors are used can be determined by a point in the	gG,	g� coordinate plane on a g-diagram 

as shown in Fig. 1.2.4. The stability region for optical resonators is limited by the coordinate axes and 

the hyperbolas, g� = � G
KJ

. The resonators corresponding to points on the boundary of the stability 

region do not generate Gaussian beam eigenmode, they represent a different and unique class of 

resonators. The confocal resonator is an exception, since in this case the stability parameter	g� =
gG = 0, and this is considered to be a stable resonator.  

 

 

Fig 1.2.4: The stability diagram of optical resonators with spherical mirrors where the shaded region indicates 

stable resonators [1.53]. 

  

 

The electric field �L+M, N, eigensolution distribution inside the resonator on each mirror / such that it 

reproduces itself after each round trip is described by the Kirchhoff integral equation as: 

 

��L+M�, N�, � / OPLQI2�gR��S�L+MG, NG,O
TUBVWXYZ[\[]JB^_JB^]BB^_BB`P�+]J]B^_J_B,`aMGaNG, 

 

where the optical stable parameter < � 2gGg� � 1, indices /, b � 1,2 with / c b; and ' � BU
YZ, where 

��	is the vacuum wavelength [1.22].  

 

The solutions to the above integral equation represent the eigenmodes of the resonator and there can 

be an infinite numbers of such eigenmodes that can exist inside the resonator. The mode profile 
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shapes of such eigenmodes do not change while oscillating inside the resonator; they could only 

experience a decrease in amplitude gain due to diffraction losses. The loss factor, |�|, which 

represents the fraction of the initial gain of the mode that is lost after reflecting on the mirror during 

the round trip travel; could be used to select a certain eigenmode profile to oscillate inside the 

resonator. This is done by increasing the loss factor on all other eignemodes not supported by the laser 

resonator. For an eigenmode that has zero loss,	|�| = 1, and for an eigenmode that experiences large 

amount of loss,	� = 0. The favouring of one eigenmode to have zero loss over an infinite number of 

roundtrips compared to the rest of other eigenmodes that experience maximum loss is termed 

resonance condition of the optical resonator, since it will lead to a steady state in which a chosen 

single mode would end up oscillating inside the resonator as shown in the schematic Fig. 1.2.5. 

  

Fig.1.2.5: Schematic of the electrical field �+M, N, at steady-state that reproduces itself at every round trip inside 

the resonator.  

 

 

The loss factor mechanism for selecting a particular resonant eigenmode inside the resonator could be 

performed by either introducing an amplitude mask or a phase mask to select and shape a particular 

eigenmode profile to be the only mode oscillating inside the resonator. In the schematic diagram 

above, the eiffractive optical element (DOE) is used to introduce a loss factor mechanism that has 

maximum diffraction losses at the zero’s of a Laguerre polynomial, thereby supporting a Laguerre-

Gaussian mode that matches the DOE mask. The amplitude beam shaping technique is discussed in 

Chapter 3 and the phase beam shaping technique in Chapter 4, where both of these techniques are 

explored using a spatial light modulator (SLM).  

 

 

1.3.  Lowest-order TEM00 mode solution for optical resonators 

 
The Helmholtz paraxial wave equation (Eq. 1.3.1) will be used to derive the lowest-order TEM00 

mode solution see[1.4], since it describes the optical field of light inside the laser resonator that has 
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narrow transverse profiles, periodic propagation within the laser resonator and it electrical field is 

mainly distributed along the axis of propagation. The paraxial wave equation is:  

 

               ∇%�& − /2' de
df = 0;                               (1.3.1) 

 

where ∇ is the transverse Laplacian operator; & the optical field of light that has low divergent and 

does not vary fast along the ( direction; and ' is the wave vector. 

 

The transverse Laplacian operator can be presented in cylindrical coordinates to be: 

 

∇%�	= G
g

d
dg h)	 d

dgi + G
gB h dB

dkBi.                                                  (1.3.2) 

 

Substituting the transverse Laplacian Eq. (1.3.2) into the paraxial wave equation, Eq. (1.3.1) can be 

represented in cylindrical symmetry as:  

 

G
g

d
dg h)	 de

dgi + G
gB hdBe

dkBi − /2' de
df = 0.                                        (1.3.3) 

 

The lowest-order mode is generally considered to be a Gaussian beam and the geometry of such a 

lower-order mode is usually considered to be of circular symmetry; and therefore the variation of : in 

Eq. (1.3.3) equates to zero. This gives only one solution of Eq. (1.3.1), while there are many other 

solutions of Eq. (1.3.1) that are possible. Since we are looking for the lowest-order mode the optical 

field, &, will be represented as &� and Eq. (1.3.3) can be simplified as: 

 

G
g

d
dg h)	 deZdg i − /2' deZdf = 0.                                        (1.3.4) 

 

The trial solution that would represent the lowest-order Gaussian mode should have the smallest 

divergence and when focused with a convex lens it should converge to a minimum radius and then 

diverges again. The trial solution which can represent such properties can be shown to be [1.56, 157]: 

 

             &�+), (, = OPLC+f,OP TlmBBn+o,,                                                   (1.3.5) 

 

where "+(, represents the longitudinal phase of the wave; and -+(, the Gaussian radial amplitude 

distribution of the wave which is real and the radial phase which is imaginary. 
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Partial differentiation of &� with respect to z of the second term of Eq. (1.3.4) leads to: 

  

−/2' deZdf = −/2' p−/OPLC+f,OP TlmBBn+o, qC+f,
qf + LQgB

�rB+f, OPLC+f,OP TlmBBn+o, qr+f,
qf s  

                                         = −2' tqC+f,
qf − QgB

�rB+f,
qr+f,
qf u OPLC+f,OP TlmBBn+o, 

     = −2' t"′+(, − QgB
�rB+f, -′+(,u &�.                   (1.3.6) 

 

The second partial differentiation of &� with respect to ) of Eq. (1.3.4) leads to: 

 

w&�w) = − /')-+(, OPLC+f,OP LQgB
�r+f, 

    = − LQg
r+f,&�.                                                               (1.3.7) 

 

When multiplying Eq. (1.3.7) with ) it becomes: 

 

) deZdg = − LQgB
r+f, &�.                                                       (1.3.8) 

 

Taking a partial derivative of Eq. (1.3.8) with respect to	) and substituting Eq. (1.3.7) and Eq. (1.3.8) 

leads to: 

 

q
qg h) deZdg i = − LQgB

r+f, t− LQg
r+f,u &� − L�Qg

r+f, &�.                                           

				= − QBgx
rB+f, &� − / �Qg

r+f,&�.                                                          

= −tQBgx
rB+f, + / �Qg

r+f,u &�.                                                      (1.3.9) 

 

Multiplying Eq. (1.3.9) by	Gg leads to the first term of Eq. (1.3.4) which is: 

 

G
g

q
qg h) deZdg i = − tQBgB

rB+f, + / �Q
r+f,u &�.                                          (1.3.10) 

 

Substituting Eq. (1.3.10) and Eq. (1.3.6) into Eq. (1.3.4) produces: 

 

 −tQBgB
rB+f, + / �Q

r+f,u &� − 2' t"y+f, − QgB
�rB+f, -y+(,u &� = 0                               
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    −tQBgB
rB+f, + / �Q

r+f,u &� − t2'"y+f, − QBgB
rB+f, -y+(,u &� = 0                                   

)� t QB
rB+f, +-y+(, − 1,u &� − 2' t"y+(, + L

r+f,u &� = 0.                            (1.3.11) 

 

For Eq. (1.3.11) to be true for any ) value, provided that the &� does not become zero, then to equate 

the coefficients in ) on either side of the equation to make it zero becomes: 

 

-y+(, − 1 = 0      =>      -y+(, = 1    (1.3.12) 

and  

"y+(, + L
r+f, = 0      =>    "y+(, = PL

r+f, .                 (1.3.13) 

 

Solving for -+(, in Eq. (1.3.12) results in: 

 

-y+(, = 1        

{ a-+(,r+f,rZ = { a(f|                     

-+(, − -� = (                                                                                                      

-+(, = -� + (      (1.3.14)  

 

where -� is the constant of integration which is given by the value - at the focal spot of the beam at 

( = 0. At the focal spot of the beam, its wavefront is usually considered to be plane, which means that 

the radial part of the trial solution should be forced to become real. This is achieved by setting  -� to 

become imaginary. This is done by making	-� = /(., where 	(. is a real parameter term with 

dimensions of length, which makes	-+(, in Eq. (1.3.15) to become: 

 

-+(, = ( + /(..       (1.3.15)  

 

Since the trial solution of Eq. (1.3.5), the term -+(, is given as	 Jn+o,	. Then Eq. (1.3.15) can be written 

as: 

G
r+f, = G

f^Lf}        

       = f
fB^f}B − / f}fB^f}B     (1.3.16) 

 

Where the first term in Eq. (1.3.16) would represent the real part and the second term the imaginary 

part of Jn+o,	. The above equation could be simplified further by making the real part to be equal to 	 J}+o,	 
and also introducing a new parameter 0+(, on the imaginary part, such that Eq. (1.3.16) becomes: 
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G
r+f, = G

.+f, − / �
Q	~B+f,     (1.3.18) 

 

where the radius of curvature �+(, is, 

 �+(, = fB^f}B
f         

�+(, = ( t1 + f}B
fB u     (1.3.19) 

 

and  

 

0�+(, = �
Q	f} �(.� + (��      

 0�+(, = �	f}Q t1 + fB
f}Bu     (1.3.20) 

where 

(. = A	~ZBQD       (1.3.21) 

 

The trial solution of Eq. (1.3.5) is modified further by substituting Eq. (1.3.18) making it to become: 

 

                                              &� = OPLC+f,OPTlmBB � J}+o,	PL Bl	�B+o,�                                               

 &� = OPLC+f,OP mB�B+o,OP TlmBB}+o,                                              (1.3.22) 

 

where the real term OP mB�B+o, is the Gaussian amplitude field profile along ( with width	0+(, which is 

referred to as the beam radius. When ) is equal to zero, the value of 0+(, is considered to be at its 

minimum point and is known as the waist size,	0�.  

 

The longitudinal phase factor "′+(, included in the trial solution in Eq. (1.3.5) can be determined by 

substituting Eq. (1.3.15) into Eq. (1.3.13) giving:  

 

"y+(, = PL
f	^	L	f}                    

qC+f,
qf = PL

f	^	L	f}        (1.3.23) 

 

Multiplying both sides of Eq. (1.3.23) with / and integrating results: 
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/	a"+(, = PL
f	^	L	f} a(        

/	 { a"+(,C+f,� = { G
f	^	L	f}

f� a(       

/	"+(, = log�+( + /	(., + �     (1.3.24) 

 

where C is the integration constant. Since on the trial solution for the lowest-order Gaussian mode the 

longitudinal phase, "+(,	of the beam is assumed always to be zero at the minimum waist size, i.e. 

at	( = 0. Therefore when:  

 

"+( = 0, = 0,         

 

the integration constant C in Eq. (1.3.24) becomes: 

 

0 = log�+(	 + /	(., + �       

� = − log�+/	(.,.      (1.3.25) 

 

This means Eq. (1.3.24) can be simplified by substituting Eq. (1.3.25) to become: 

 

/	"+(, = log�+( + /	(., + − log�+/	(.,        

/	"+(, = log� h1 + /	 f
f}i.      (1.3.26) 

 

To simplify Eq. (1.3.26) we use an identity of the Argand diagram method which displays complex 

numbers as follows: 

 

� + /� = +�� + ��,JB	OL	 ����Jh��i.    (1.3.27) 

 

If we make the constant in Eq. (1.3.27) to be: 

 

 � = 1	and	� = oo}	,  
 

and substitute this into Eq. (1.3.27) we get: 

 

1 + / f
f} = �1 + h f

f}i
��JB 	OL	 ����J� oo}�

.    (1.3.27) 
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The longitudinal phase, "+(,	of the beam in Eq. (1.3.26) can then be simplified by substituting 

Eq. (1.3.27) to become:  

 

/	"+(, = log� ��1 + h f
f}i

��JB 	OL	 ����J� oo}��       

/	"+(, = log� h1 + h f
f}i	i

JB − /	 tanPG h f
f}i       

OPL	C+f, = G
�G^� oo}�	�

JB 		O
L	 ����J� oo}�

.     (1.3.28) 

 

Eq. (1.3.28) can still be simplified further by substituting Eq. (1.3.20) and Eq. (1.3.21) to make it 

become: 

OPL	C+f, = ~Z~+f, 		OL	 ����J� oo}�
.     (1.3.29) 

 

Eq. (1.3.29) can now be substituted into Eq. (1.3.22) to cast it into its final form: 

 

           &�+), (, = ~Z~+f, 		OL	 ����J� oo}�OP mB�B+o,OP TlmBB}+o,.                                     (1.3.30) 

 

The Helmholtz paraxial approximation wave equation in Eq. (1.3.1) that represents a mode that has a 

combination of a plane wave and some transverse variations which does not change much as the field 

of the mode propagates can be represented as: 

 

�+), :, (, = ��	&+), :, (,	OPLQf,                                                   (1.3.31) 

 

where �� is the amplitude of the field at	) = : = ( = 0. Substituting Eq. (1.3.30) into Eq. (1.3.31) 

leads to the total solution for the paraxial wave equation for the smallest-order Gaussian mode to be: 

 

�+), :, (, = �� 	 ~Z~+f, OP mB�B+o,		OP TlmBB}+o,	OPLQf		OL	 ����J� oo}�
,                                    

 

which when simplified becomes: 

 

�+), :, (, = �� 	 ~Z~+f, OP mB�B+o,		OP TlmBB}+o,	OPL�QfP����J� oo}��
,                                  (1.3.32) 
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 where		�� 	 ~Z~+f, OP mB�B+o,		is the amplitude; OP TlmBB}+o,	the radial phase; and 	OPL�QfP����J� oo}��		is the 

longitudinal phase part of the smallest-order Gaussian mode solution. To emphasise, the propagation 

of a Gaussian beam profile is governed by the beam waist,	0+(, the radius of curvature of the 

wavefront, �+(, and the Gouy phase shift, *, 

 

* = tanPG h f
f}

i,                                     (1.3.33) 

 

where (.	is the Rayleigh range given in Eq. (1.3.21), which shows how fast the beam diverges from 

its centre point (�, where the beam waist is minimum 0�. When the value of (.	is large, it means the 

Gaussian beam is diverging slowly and when the value is small it means the beam is diverging fast. 

 

The electrical field intensity of a beam is given as: 

 

1+), :, (, � |�+), :, (,|�.                                    (1.3.34) 

 

The electrical field intensity of the lowest-order Gaussian beam can be found by substituting 

Eq. (1.3.32) into Eq. (1.3.34) and be shown to be: 

 

1+), :, (, � ��� 	h ~Z
~+f,i

� OP BmB
�B+o,.                                   (1.3.35) 

 

The intensity has a Gaussian distribution, with the peak occurring at )� which is at the centre and 

decreasing monotonically with an increase in r, evident in Fig. 1.3.1 (a).  

 

 

Fig. 1.3.1: (a) Cross-sectional profile and (b) transverse profile of the intensity of the lowest-order Gaussian 

beam.   

 

Other solutions to the paraxial form of the Helmholtz equation exist such that when the equation is 

solved using Cartesian coordinates a family of solutions is obtained known as the Hermite–Gaussian 
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modes and when the equation is solved in circular cylindrical coordinates the solutions are known as 

Laguerre–Gaussian modes. For both families, the lowest-order solution describes a Gaussian beam, 

while higher-order solutions describe higher-order transverse modes in an optical resonator. 

 

In the Chapters which follow, we show that Gaussian beams are just one possible solution to the 

paraxial wave equation and that many other combination sets of orthogonal solutions are possible for 

modelling laser beams which can be generated by laser resonators. In general, we see that if a 

complete basis set of solutions is chosen, then any real laser beam can be described as a superposition 

of solutions from the initial chosen set. The design of the laser cavity in most cases determines which 

basis set of solutions is intended to be an output of the laser. Hermite-Gaussian modes are generally 

more common since many laser systems have mirrors that represent Cartesian reflection symmetry in 

the plane perpendicular to the beam's propagation direction. 

 

 

1.4.  Hermite-Gaussian beams 
 

The Gaussian mode is not the only solution to the paraxial approximation of the Helmholtz wave 

equation; there are many other solutions that exist, such as the Hermite-Gaussian (HG) mode whose 

electric field can be represented as [1.4]: 

 

�3,4+M, N, (, = �� 	 ~Z~+f, 	23 h√2 ]
~+f,i24 h√2 ]

~+f,i	OP�B�	�B
�B+o, 		OPTl+�B�	�B,B}+o, 	OPL�QfP�+3,4,f,�,         (1.4.1) 

 

where *+�, �, (, is the Gouy phase for the HG mode and is given as: 

 

*+�, �, (, = +� + � + 1, tanPG h f
f}i    (1.4.2) 

 

and the other parameters, such as the radius of curvature �+(, and the beam waist 0+(,, have been 

given in Eq. (1.3.19) and Eq. (1.3.21) as propagation parameter of Gaussian beams. This is because 

HG modes are superposition solutions of Hermite polynomials and the Gaussian parameters which is 

why they are called Hermite-Gaussian modes. The Hermite-Gaussian modes have polynomial indices 

of � and � for M and N in Cartesian coordinates. The lowest-order Hermite-Gaussian mode has 

indices equal to zero, � = � = 0 which results in the lowest-order Gaussian mode of TEM00 or HG00.   
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The Hermite-Gaussian intensity profiles of Eq. (1.4.1) with different combination of indices � and � 

are shown in Fig. 1.4.1. The HG intensity profiles were generated using the digital laser that is 

discussed in Chapter 4. The number of nodal lines in the intensity profile depends on the values of � 

and � indices. The index � determines the number of nodal lines along the N axis, whereas � 

determines the nodal lines along the M  axis.  
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Fig. 1.4.1: The transverse intensity profiles of HG modes with the corresponding indices of �	and �. 
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  1.5.  Laguerre-Gaussian beams 
 

The previously discussed Gaussian mode is not the only solution to the paraxial approximation of the 

Helmholtz wave equation; there are many other solutions that exist, such as the Laguerre-Gaussian 

(LG) mode whose electric field can be represented as: 

 

         �5,6+), :, (, = �� 	 G
~+f,� �5!

A+|6|^5)! h√�	g
~+f,i

|6|
�5

|6| h �	gB
~B+f,i	OP mB�B+o,		OP TlmBB}+o,	OPL��+5,6,f,P6k�,        (1.5.1) 

 

where *+�, �, (, is the Gouy phase for the Laguerre-Gaussian mode and is given by: 

 

*+�, �, (, = +2� + � + 1, tanPG h f
f}i,                                          (1.5.2) 

 

and the other parameters, such as the radius of curvature �+(, and the beam waist 0+(,, have been 

defined in Eq. (1.3.19) and Eq. (1.3.21) as the propagation parameter of Gaussian beams. This is 

because Laguerre-Gaussian modes are superposition solutions of Laguerre polynomials and Gaussian 

parameter and that is why they are called Laguerre-Gaussian modes. The Laguerre-Gaussian modes 

have indices � and � which represents radial coordinate 	)	and azimuthal angle 	:	 respectively. The 

lowest-order Laguerre-Gaussian mode has indices equal to zero, � = � = 0 which results in a simple 

Gaussian mode of TEM00 or LG00. 

 

The Laguerre-Gaussian intensity profiles of Eq. (1.5.1) with different combination of indices of � 

and	� are shown in Fig. 1.5.1. The LG intensity profiles were generated using the digital laser that is 

discussed in Chapter 4. The intensity profile of Laguerre-Gaussian beams has a central null for	� ≠ 0 

and the central null diameter size increases as the value of � increases as shown in Fig. 1.5.2. The 

radial beam width of Laguerre-Gaussian beams is also shown to increase with an increase of �	or	� 
indices, where the value of the index � denotes the number of intensity concentric rings of that 

Laguerre-Gaussian mode as shown by Fig. 1.5.3. The increase in beam width of Laguerre-Gaussian 

modes from the fundamental lowest-order Gaussian mode is given as: 

 

05,6 = 0��2� + � + 1      (1.5.3) 

 

where 0� is the beam width of the fundamental lowest-order Gaussian mode.  
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Fig. 1.5.1: The transverse intensity profiles of Laguerre-Gaussian modes with the corresponding indices of 

�	and	�. 
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Fig. 1.5.2: (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG0,1 beam.   

 

 
Fig. 1.5.3: (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG1,2 beam.   

 

 

The superposition of two Laguerre-Gaussian modes also corresponds to a different allowed mode of 

the resonator. The single Laguerre-Gaussian mode that is produced by the laser resonator contains two 

coherent Laguerre-Gaussian modes that have two opposite azimuthal orders of	+� and	– � (see Chapter 

6).  

 

The electric field expression of the coherent superposition of two Laguerre-Gaussian modes of radial 

order � with opposite azimuthal order ±� is given as: 

 

                     �5,6+), :, (, � �5,P6+), :, (, j �5,^6+), :, (, 
 

          � p� �
A+|6|,!

~Z
~+f, h √�g~+f,i

|6|s		O� �mB
�B+o,�	O��Tlm

B
B}+o,�	OhPL+�5^|6|^G,� ¡���h oomii [O+L6k, j O+PL6k,`,      (1.5.4) 

 

The intensity profiles of such superposition of Laguerre-Gaussian modes are shown Fig. 1.5.4 and 

they have a central null when the indices	� c 0 and the central null diameter size increases as the 

value of �� indices increases. The radial intensity beam width of the Laguerre-Gaussian beams is also 

shown to increase with an increase to the values of		�	or	|�| indices. The value of the radial index � 

denotes the number of intensity concentric rings the mode possesses, and the value of the index � 
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denotes the number of nodal lines along the radial coordinate. The coherent LG mode intensity 

profiles in Fig. 1.5.4 were generated using the digital laser that is discussed in Chapter 4. 
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Fig. 1.5.4: The transverse intensity profiles of the superposition of two coherent Laguerre-Gaussian modes with 

the corresponding indices of �	and	|�|. 
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1.6.  Conclusions  
 

We started the Chapter with an overview of the work covered in this thesis, followed by the 

background history of mode selection in diode pumped solid state laser resonators (DPSSLR). This 

was followed by the theoretical implementation of the Helmholtz equation in the paraxial 

approximation to derive the lowest-order Gaussian mode. Since higher laser modes in a resonator 

form a basis set of the lowest-order Gaussian mode, it was important in this thesis to show how high-

order modes of different families are generated, such as Hermite-Gaussian modes and Laguerre-

Gaussian modes.  
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CHAPTER TWO 
 

 

Modal decomposition without a priori scale information  
 

 

2.1.  Introduction 
 

There are a number of laser systems that produce multiple arbitrary unknown laser modes such as 

multi-mode optical fibres and multi-mode high-power laser diodes. Specifically, for applications such 

as fibre communication where multimode-mode optical fibre is used, it is important to perform modal 

decomposition on the emitted arbitrary multi-mode beam to determine the composition amount of the 

superposition of modes emitted by the fibre. The technique of modal decomposition has been shown 

over the years [1.53, 1.54] that it can be used to extract physical properties associated with the emitted 

multi-mode laser beam such as the intensity of the light field, the phase and	#�, etc. The 

overwhelming advantages provided by performing modal decomposition technique in systems 

emitting multimode laser beams has been demonstrated by several experiments [1.55, 2.1–2.4] that 

have been performed, some with varying degree of success. More recently the technique of modal 

decomposition has been implemented using computer generated digital holograms to decompose 

modes emitted by optical fibres [2.5-2.7]. These digital holograms have also been used to determine 

laser beam properties such as the beam quality factor [2.8], angular momentum density [2.9, 2.10], 

wavefront and phase [2.11] have all been recently determined using computer generated digital 

holograms. 

 

It has been shown that the modal decomposition of an arbitrary optical field may be performed 

without the knowledge of the initial basis function scale. But this approach has been shown not to be 

efficient and also not to be correctly representative of the underlying field since it produces a large 

quantity of modes in the expansion, even though the approach is mathematically correct. Therefore, 

accurate modal decomposition of arbitrary laser modes as a technique has been shown to be 

unfavourable without prior information of the scale parameter of the basis function. Although, there 

exists a unique basis function, the angular harmonics, which requires no initial scale parameter, its 

disadvantage is that it’s a one dimensional (azimuthal angle) basis function, which requires a scan 

over the second dimension (radial coordinate) to extract the core information [2.12]. 
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In this Chapter [6.12] we demonstrate a novel modal decomposition approach using digital holograms 

that requires no a priori knowledge of the spatial scale of the modes that will lead to an optimised 

modal expansion. We show that by proposing a simple two-step approach of first determining the 

second moment size of the beam,		0�, and the beam propagation factor, #�. We can determine the 

scale of the adapted set, which enables the second step of determining an optimal decomposition in 

the adapted mode set to be possible thereby determining the number of modes contained in the 

arbitrary optical field. We illustrate the power of modal decomposition without a priori scale 

information by successfully decomposing beams from a diode-pumped solid state laser resonator into 

optimised Laguerre-Gaussian mode sets. We also demonstrate that our experimental results are in 

good agreement with theory which illustrates the versatility of our approach. 

 

 

2.2. Concept 
 

The method of modal decomposition is used to characterise an optical field into superposition of basis 

functions where each basis function or mode is weighted with a complex expansion coefficient. The 

main purpose of modal decomposition is to acquire all the necessary information about the field so as 

to determine these coefficients as a one-dimensional set of coefficients. This reduces the problem to 

only finding the unknown modal weights (
4� ) and phases (9:4) so that an unknown field ¢+£, can 

be expressed as a phase dependent superposition of a finite number of modes, 74+£, [2.6]  

 

¢+£, = ∑ 8474+£,4¥��4¦G      (2.2.1) 

 
and the orthonormal property 

 
     §74|73¨ 	= 	∬ a�	.B )	74∗+),73+), = «43,    (2.2.2) 

 
of the basis is then used to determine the unknown coefficients 
 

   84 = 
4	OM�+/9:4, 	= §	74|¢¨.     (2.2.3) 

 

To determine the modal weights (
4� ) and phases (9:�), an experiment would be required where an 

optical setup for the inner product measurement would need to be performed, as we will discuss later. 

For optimal decomposition the method requires the knowledge of the scale of the basis for it to yield 

the minimum number of nonzero coefficients and this will be referred to as the adapted basis set. To 

date there have been no reports that describe a technique to finding this adapted set. 
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To illustrate the problem we consider the basis set of Laguerre-Gaussian modes LGpl with radial and 

azimuthal indices � and		�, which at the waist position maybe written as: 

 

�<56+£, 0�, = � �5!
A~ZB+5^|6|)! 	h√�	g

~Z i|6|
�5

|6| h�gB

~ZB
i 	OM� hP	g�

~ZB i OM�+/�:	,    (2.2.4) 

 

where £ = +), ¬	,, and �5|6| is the Laguerre polynomial of order � and �. The basis functions have a 

generally unknown intrinsic scale,	0�, which corresponds to the Gaussian fundamental mode radius. 

The arbitrary scalar optical field ¢ can now be decomposed into a Laguerre-Gaussian set of any size: 

 

¢+£, = ∑ 856�56 LG56+£, 0�, 	= ∑ 856;56 LG56+£, 0;,  (2.2.5)	
 

where 856�,; denote the complex expansion coeffient for different basis set sizes 0� and 0;, 

respectively. From Eq. (2.2.5) it is clear that the modal spectrum 856 changes with the scale of the 

basis set. Therefore to attain a mode set of adapted size, we propose the following simple two-step 

approach: (i) determine the second moment size of the beam w and the beam propagation ratio M2. 

The scale of the adapted basis set can then be inferred [15]: 

 

0� 	= 	 ~
√EB	,       (2.2.6) 

 

enabling the second step, (ii) an optimal decomposition in the adapted mode set. The latter may be 

used to deduce the “actual” modes constituting the field, and as a check of the previously determined 

M2 and 0�. It is possible to implement the first step by any ISO-compliant method [2.14], for 

example, a modal decomposition [2.6, 2.15], or with a recently introduced digital approach [2.16]. 

The main idea is to relate the unknown scale of the basis functions directly to the size of the 

embedded fundamental Gaussian mode, 0� [2.13]. This comes from Eq. (2.2.4), where it is observed 

that the size of the Gaussian term is carried through to provide the scale of all the functions in the 

expansion. With this observation noted, the question becomes how to find this embedded fundamental 

Gaussian size from a measurement of the arbitrary input field? We exploit the fact that since the beam 

quality factor of a fundamental Gaussian beam is #� = 1, and since the second moment beam size for 

all beams scales as 0	 = 	0�√	#� [2.13], we can infer the unknown scale by measuring the field size 

and its #�. Thus while Eq. (2.2.6) is simple to implement, its impact on the ability to optimise modal 

decomposition is significant, as we shall show in the Chapters to follow. 
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2.3. Experimental methodology 
 

The laser resonator used to generate the beams which we were studying was a stable plano-concave 

cavity which had a variable length adjustment of between 300 to 400 mm, and is shown as a 

schematic in Fig. 2.3.1. 

 

 

 

Fig. 2.3.1: Schematic experimental setup of the end-pumped Nd:YAG resonator, where the output beam is 1:1 

imaged onto a camera (CCD1) and a Spatial Light Modulator (SLM), whose diffraction pattern is observed in 

the far field with CCD2. M1,2: curved (R = 500 mm) and flat mirror (R = ∞), BS beam splitter, PF pump light 

filter, ND neutral density filter, L lens, M2: M2 meter. 

 

 

The back reflector M1 was chosen to be highly reflective with a curvature of R = 500 mm whereas the 

output coupler M2 was flat with a reflectivity of 98%. The gain medium, a Nd:YAG crystal rod 

(30 mm × 4 mm), was end-pumped by a 75 W Jenoptik multimode fibre coupled laser diode (JOLD 

75 CPXF 2P W). In order to select specific transverse modes, an intra-cavity amplitude mask was 

inserted near the curved end-mirror M1. The amplitude mask used in our experiments was custom-

made and consisted of lithographically produced thin aluminium absorbing rings fabricated on a 

700 µm thick borosilicate glass with a 93% transmission at 1064 nm wavelength. The mask consisted 

of a 5 x 4 grid of ring structures, each designed to select a specific LG mode by overlapping the strong 

absorbing ring structures with the nulls of the desired fields. The adjustment of the resonator length 
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(L) between mirror M1 and M2, which alters the Gaussian mode size, can be viewed as a means to 

vary the scale parameter of the modes, while the type of ring structure on the mask selects the type of 

modes to be generated. The fundamental Gaussian waist size on the flat mirror satisfies 0�� = +λ 
/π)[L+R�L)]1/2 and so each LG mode size also scales as 05,6� � 0��+2� + � + 1, [1.4]; note that the 

final field may be some superposition of these modes. Thus adjusting the resonator length results in a 

change in the fundamental Gaussian mode size, and hence the positions of the zeros of the LG modes. 

By selecting an appropriate ring structure for a given resonator length, the laser can be forced, e.g., to 

oscillate either on the first radial Laguerre Gaussian mode (LG1,0), a coherent superposition of LG0,±4 

beams (petal profile) or a mixture of the LG1,0 and LG0,±4 modes.  

 

The resonator output at the plane of the output coupler was relay imaged onto a CCD camera 

(Spiricon LBA USB L130) to measure the output beam size in the near field, and could be directed to 

a laser beam profiler device (Photon ModeScan1780) for measurement of the beam quality factor. The 

same relay telescope was used to image the beam from the output coupler to the plane of the phase-

only spatial light modulator (SLM) (Holoeye HEO 1080 P). The SLM, calibrated for 1064 nm 

wavelength, was used for complex amplitude modulation of the light to execute an inner product 

measurement with a Fourier transforming lens ( f = 150 mm). The modulation achieved by the 

holograms was implemented with phase-only holograms coded to achieve any desired function using 

standard coding approaches. In our case, the LG modes were encoded following Eq. (2.2.4) using a 

modulation technique suitable for a phase-only SLM [1.17]. The method used to implement the inner 

product measurement has been reported previously [1.7], but is briefly reviewed here with the aid of 

Fig. 2.3.2. 

 

Fig. 2.3.2: Illustration of the inner product measurement scheme using a 2 f -setup. The correlation of an 

incoming beam with the hologram pattern (H) results in a correlation signal I at the optical axis in the back focal 

plane of a lens L. 
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Consider the case where the unknown field incident on the SLM is in fact a superposition of LG0,4 and 

LG0,−4 modes (but as yet unknown). The SLM is programmed with a series of match filters, each of 

which is the complex conjugate of the modal functions in the chosen expansion, e.g. the LG basis 

functions from Eq. (2.2.4). If the SLM (match filter) is set in the front focal plane of a lens, then in the 

far-field (back focal plane) the signal on the optical axis (at the origin of the detector plane) is 

proportional to the modal power [1.54, 1.55]. In our example, if the match filter was set to test for the 

modes LG0,3 and LG0,4, then the signal at the origin of the detector would return zero for the former 

and a strong signal for the latter, indicative of the weighting in the original field. In Fig. 2.3.2 we 

show examples of just such holograms as well as the light seen at the plane of the CCD detector. Our 

measurement scheme therefore comprises digital holograms as the match filters, and a monitor (CCD) 

of the on-axis signal in the Fourier plane of a lens. The measured intensities return the desired 

coefficients,	
4�, for each mode. The modal phases 9:4 are accessible analogously by creating a 

match filter, which depicts the superposition of the desired mode with a (previously chosen) reference 

mode as detailed in [2.6]. 

 

 

2.4. Results 
 

We tested our approach by using a general case of coherent superposition of Laguerre-Gaussian 

modes of LG0,4 and LG0,−4, which had nearly equal weightings, as shown in Fig. 2.4.1(a). The 

influence of the scale of the beam on the modal decomposition results is demonstrated when the scale 

of the hologram functions used for the decomposition was changed from an initial optimal w0 = 

208 µm, which then yield non-adapted basis sets as shown by the results in Fig. 2.4.1(b) through to 

2.4.1(d). When the relative scales are mismatched from an ideal w0 to 0.75w0, 2w0 and 3w0, the results 

yield a concomitant increase in the number of modes in the non-adapted basis sets. We observe that 

only the radial modes with azimuthal orders � = ±4 responds, which then makes the non-adapted set 

to contain modes of LGp,±4 where �	 ≥ 	0. Simultaneously the power content of the LG0,±4 modes is 

shown to drop from an initial 99% to 48%, 13% and 2%. The power is shown to be dispersed among 

more modes of up to 30 for a basis scale of 3w0, compared to 2 for the adapted set. This is 

demonstrated more clearly by the results in Fig. 2.4.2(a) for a continuous change in the mismatch 

between the basis scale and the fundamental mode radius. The theoretical prediction for the change in 

LG0,±4 power as a result of the scale mismatch (solid curve) is shown to be in good agreement with the 

experimental data points. As noted, the modal power is dispersed amongst a large number of radial 

modes (Fig. 2.4.2(b)) and in general the greater the scale mismatch, the greater is the modal power 

dispersion.   
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Fig. 2.4.1: Modal decomposition into adapted and non-adapted basis sets regarding scale. (a) Modal 

decomposition into LGp,±4 modes of adapted basis scale w0. (b) Decomposition into LGp,±4 modes with scale 

0.75w0, (c) 2w0, and (d) 3w0. Inset in (b) depicts the measured beam intensity. 

 

 

The modal decompositions in Fig. 2.4.1 and 2.4.2 are all shown to be mathematically equivalent 

which emphasises the importance to decompose into an adapted set since this will have an order of 

magnitude decrease in the number of significant signals. Moreover, one could argue that this is the 

only set with an intuitively meaningful realization behind the measurement, namely, that the beam 

really does consist of a coherent superposition of two azimuthal modes and not a superposition of a 

large number of radial modes. From these results it is also clear that while the first step of our 

suggested procedure may be performed at any scale, a large deviation from the adapted set scale will 

result in a laborious measurement and low modal power levels, i.e., low signal to noise, if the modal 

decomposition method is used for this step too.  
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Fig. 2.4.2:  Influence of basis set scale on mode spectrum. (a) Relative power 
� of mode LG0,±4, measured (me) 

and simulated (sim), as a function of normalised beam radius w/w0. (b) Simulated power spectrum of LGp,±4 

modes (� = 0. . .20) as a function of normalised beam radius w/w0. Inset in (a) depicts corresponding beam 

intensity. 

 

 

In next part we apply our two-step approach of finding the adapted set by assuming that we do not 

know the scale parameter of the beam. For the first step we decompose our beam into a non-adapted 

basis set, and use the result to find the beam diameter and beam propagation factor [2.15]. The modal 

decomposition results are reconstructed (Reconstruction) and compared to the measured values 

(Measurement) using the ISO standard approach, and are summarised in Table 2.4.1. The results from 

both approaches show that they are of very good agreement. 

 

Table 2.4.1: Diameter and M2 of measured and reconstructed intensity. 

 20 (µm) #� �~
�EB  (µm) 

Measurement 945.7 5.2 414.7 

Reconstruction 913.6 5.0 408.6 

 

 

This first step returns the “unknown” scale parameter with an average value of w0 = 414 ± 2 µm which 

compares well with the theoretical value of 416 µm which is based on the ABCD matrix theory of the 

known resonator parameters. The second step is to execute the modal decomposition with the correct 

scale and the results are shown in Fig. 2.4.3. The measurement of amplitudes and phases of the 

correctly scaled modes shown in Fig. 2.4.3(a) and 2.4.3(b) enables the reconstruction of the optical 

field in the adapted basis. As expected, the modal decomposition returns the two original azimuthal 

modes. Using the modal decomposition results, the intensity of the field is reconstructed and 
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compared with the measured intensity of Fig. 2.4.3(c) and 2.4.3(d). Both are in good agreement, 

proving the decomposition to be correct. 

 

 
Fig. 2.4.3: Reconstruction of the beam by modal decomposition into LGp,l modes of previously determined 

scale. (a) Modal power spectrum (total power normalised to one). (b) Modal phases. (c) Measured intensity 

(Me). (d) Reconstructed intensity (Re). 

 

 

The same two-step approach was applied to a beam consisting of only the radial order Laguerre 

Gaussian mode [2.18], LG1,0 as shown in Fig. 2.4.4(a), and of a superposition of the LG1,0 and LG0,±4 

modes, as depicted in Fig. 2.4.4(b).  

 

It is important to note that if the first step of the procedure is executed with the recently mooted digital 

approach to #� measurements [18], then the entire technique can be implemented with a single 

spatial light modulator necessitating only a changing digital hologram. As holograms are easy to 

create and may be refreshed at high rates, the entire procedure can be made all-digital and effectively 

real-time. 
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Fig. 2.4.4: Modal decomposition after determination of correct basis set scale of (a) a Laguerre-Gaussian LG1,0 

beam, and (b) of a superposition of an 8-petal beam and a LG1,0 beam. Insets depict corresponding beam 

intensities. 

 

 

2.5. Conclusions 
 

In conclusion we have demonstrated a new approach for the modal decomposition of an arbitrary field 

that requires no a priori scale information on the basis functions. Our approach makes use of digital 

holograms written to a spatial light modulator, and exploits the relationship between the scale 

parameters within the basis and the beam propagation factor of the beam. We have demonstrated the 

approach on LG modes and have successfully reconstructed the modes and their sizes. This new 

approach may readily be extended to other bases too. The advance of our method will be of relevance 

to studies of resonator perturbations, e.g. thermal effects and aberrations, and in the study of 

multimode fibre lasers. 
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CHAPTER THREE 
 

 

Exciting higher-order radial Laguerre–Gaussian modes in a 
diode-pumped solid-state laser resonator 

 

 

3.1. Introduction 
 

The operation of solid-state lasers in a multi-mode regime has been shown to be the simplest method 

of extracting most of the energy in the gain medium, which then allows these lasers to be used in a 

large number of applications since they can produce high power multi-mode laser beams. 

Applications such as ultrafast spectroscopy, LIDAR, laser material processing, laser ranging and in 

military applications [1.27] currently employ high-power solid-state lasers. Solid-state lasers which 

are mostly used in these applications are currently diode-pumped solid-state lasers while earlier 

applications used flash lamp-pumped solid-state lasers.  The progress towards the use of diode-

pumped solid-state lasers is due the advantages they offer compared to flash lamp pumped solid state 

lasers such as higher efficiency, better frequency stability, higher brightness than diode lasers 

themselves, and a more compact design due to flexible cooling geometries [1.24]. Most of the recent 

high-power solid-state lasers often use fiber coupled diode pumping schemes which create multimode 

oscillation within the laser cavity which in general is not desirable for most of the applications 

mentioned above. This is shown by the significant effort the scientific community is putting to create 

geometries to ensure fundamental Gaussian beam oscillations in laser cavities. There are a very large 

number of schemes which are also too diverse to actually summarize adequately but most of the 

schemes involve either matching the pump size to the Gaussian beam size in order to maximize modal 

overlap, or simply aperturing the cavity to allow only the Gaussian beam to oscillate as the 

fundamental mode [1.21–1.23]. 

 

Laser resonators that produce high-order Laguerre-Gaussian modes that have zero radial order and 

higher azimuthal orders have received a renewed interest in the scientific community since they were 

discovered to possess well defined orbital angular momentum along the optical axis for non-zero 

values of azimuthal order, l [1.29]. Laser systems that produce Laguerre-Gaussian modes that have 

high azimuthal order only have been experimentally demonstrated in a wide variety of laser 

resonators of many classes [1.8-1.19], while laser systems that purely emit Laguerre-Gaussian modes 

that have high radial order have received little attention of late [1.20], in fact predominately high 
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radial order Laguerre-Gaussian modes have only been produced in combination with Laguerre-

Gaussian modes that have azimuthal orders [1.17–1.20]. Solid-state laser resonators that emit 

Laguerre-Gaussian modes with high radial order only have received little interest in the scientific 

community and this has been attributed to the necessity in many laser applications for high brightness 

laser beams, a parameter that encapsulates both the power in the mode +", and the beam propagation 

factor of the mode,	#�, through: 

 

           ! =	 AB	C
DBEF                      (3.1.1) 

 

Since, in general, the power in the mode and its beam propagation factor increase in a concomitant 

manner, much attention has been placed on increasing the power in low-order modes. A different 

approach of increasing the brightness of the laser would be to consider a method of how to select a 

particular high-radial-order Laguerre-Gaussian mode for maximum power extraction and then 

consider outside the cavity approaches of improving the beam quality factor of such a higher-

radial-order Laguerre-Gaussian mode. In an effort to attain high laser brightness at the output it is 

preferable to pump as much of the gain volume as possible to achieve maximum energy extraction. 

This in turn increases the mode order within the cavity and for the selection of a desired mode, 

methods such as pump-shaping [3.1], intra-cavity beam shaping [3.2–3.5], and even Talbot imaging 

of periodic obstacles [3.6] may be employed. The simplest intra-cavity method in selecting higher 

order modes and in particular, circular symmetric modes, is through the use of an “aperturing” 

element with circular symmetry. Usually one associates such a mode selecting element with higher 

losses than high transmission phase-only diffractive optical elements (DOEs), but this has recently 

been shown not to be true in general [3.7]. 

 

In this Chapter [2.18] we demonstrate and outline a simple method of intra-cavity generating pure 

high-radial-order Laguerre Gaussian modes in a controlled manner. The experimentally generated 

modes show high mode purity up to radial order 5 and we consider the mode volume, losses, and 

energy extraction of such modes. We demonstrate that such high radial order modes maybe an option 

in designing high brightness diode-pumped solid-state laser resonator.  
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3.2. Laguerre–Gaussian Modes 
 

Laguerre–Gaussian, LGpl, modes, where �	 is the radial order and �	 is the azimuthal order, are 

solutions to the wave equation in circular symmetric geometries, and are analogous to the Hermite–

Gaussian modes in rectangular symmetry. We recall that the electric field of an LGpl mode may be 

written (see Eq. 1.5.1) as: 

 

&5,6+), :, (, = � �5!
A+|6|^5)!

G
~+f) h√�	g

~+f,i
|6|

�5
|6| h �	gB

~B+f,i O� �mB�B+o,	P	 TlmBB}+o,�	OhPL+�5^6^G, ����Jh oo}iiO+L6k,				(3.2.1) 

 

where )	 and :	 are the radial and azimuthal coordinates, respectively, and �5|6|	is the generalized 

Laguerre polynomial. Here the Gaussian beam parameters have their usual meaning, with (	 the 

propagation distance, (.	 the Rayleigh range, and �f	 and 0+(,	 are the radius of curvature and beam 

radius of the embedded Gaussian beam, respectively. In this section, we will be particularly interested 

in symmetrical Laguerre–Gauss modes of zero azimuthal order, which we will denote as LGp0. The 

Laguerre polynomials �5+´,	 follow the expressions given in Table 1.  

 

Table 3.2.1: Laguerre Polynomials. 

� ��+´, 
0 1 

1 1 – X 

2 X2
⁄2 − 2X +1 

3 −X3
⁄6 + 3X2

⁄2 − 3X + 1 

4 X4
⁄24 − 2X3

⁄3 + 3X2 − 4X + 1 

5 −X5
⁄120 + 5X4

⁄24 − 5X3
⁄3 + 5X2 − 5X + 1 

 

 

Let us recall that a LGp0 beam is made up of a central lobe surrounded by p concentric rings of light 

and p concentric dark rings. It is important to note that the spot size 0+(,	 has a simple physical 

interpretation only for the fundamental mode LG00 which is Gaussian in shape. The higher-order 

Laguerre–Gauss LGp0 beams are characterized by intensity patterns that spread widely from the axis 

as the mode order �	 increases. This lateral spread associated with a LGp0 beam can be described by 

the width,	µ5, based on the second moment radius: 

 

µ5 = 0+�,�2� + 1	      (3.2.3) 
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Another quantity which summarizes the propagation properties of a LGp0 beam is its beam 

propagation factor, given by: 

 

#5� = 2� + 1            (3.2.4) 

 

The spreading of a LGp0 beam can be described by the far-field divergence angle ¶5 which can be 

expressed as a function of the Gaussian beam divergence	¶�	: 
 

	¶5 = 	¶��2� + 1	      (3.2.5) 

 

Another important property of LGp0 beams is that they are characterized by the same on-axis intensity 

independent of the mode order		�. This differs from the usual scale law which states that beam 

spreading results in an on-axis intensity reduction. In the following, we focus our attention on forcing 

the fundamental mode TEM00 of a laser cavity to be LGp0 in shape. For that we impose the position of 

the		�	 zeros of intensity by setting an absorbing mask having a geometry which follows closely the 

location of the Laguerre polynomial zeros given in Table 3.2.2.  

 

Table 3.2.2: Roots of Laguerre Polynomials. 

		� Values of Ratio	mT�	 for the Zeros of Intensity of LGp0 Mode 

1 0.707106     

2 0.541195 1.306562    

3 0.455946 1.071046 1.773407   

4 0.401589 0.934280 1.506090 2.167379  

5 0.363015 0.840041 1.340975 1.882260 2.51040 

 

 

Before proceeding it is worthwhile to note the distinction between the family of symmetrical 

Laguerre–Gauss modes, denoted LGp0, and the symmetrical eigenmodes, TEMp0, of the cavity. In 

general when the cavity has apertures and amplitude masks the fundamental mode of the cavity is not 

the lowest order mode in the Laguerre–Gauss basis. Rather, the fundamental mode of the cavity, 

denoted TEM00, is the mode having the lowest losses and consequently is the one appearing at the 

laser oscillation threshold [3.7]. This fundamental mode (TEM00) can be engineered to be a LGp0 

with		� > 0 depending on the inserted intra-cavity mask, as will be shown later. 
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3.3. Concept and Experimental Setup 
 

In our approach to producing LGp0 modes we consider a plano-concave solid-state laser resonator that 

is end-pumped with a multi-mode fibre coupled diode, and with an intra-cavity amplitude mask at one 

end. The amplitude mask consists of lithographically produced thin aluminium absorbing rings 

fabricated on a 700 µm thick borosilicate glass with a 93% transmission at 1064 nm wavelength. The 

mask consisted of a 5 × 4 grid of ring structures: each of the 5 columns corresponding to concentric 

rings for modes		� = 1 − 5 (for a Gaussian width of		0� ∼ 184 µm), with each row corresponding to a 

ring width of		ℎ = 10, 15, 20, and 25 µm. A schematic of the experimental setup is presented in 

Fig. 3.3.1. The gain medium, a Nd:YAG rod crystal (4 mm × 25 mm) had a 1.1% neodymium 

concentration and was antireflection coated for 808 nm to minimize pump reflections. The laser 

crystal was mounted inside a 19°C water-cooled copper block. The pump diode laser (Jenoptic, 

JOLD-75-CPXF-2P) had a maximum output power of 75W at an emission wavelength of 808 nm (at 

an operating temperature of 25°C). The pump diode laser output was coupled into a fibre with a core 

diameter of 400 µm and was fast-axis collimated and lens coupled to end-pump the Nd:YAG crystal 

by using a 25.4 and 150 mm focal length spherical lenses, respectively. A gain area with a diameter of 

2 mm was then excited within the centre of the Nd:YAG rod crystal. 

 

The plano-concave cavity comprises a plane mirror with a reflectivity of 98% and a curved mirror 

with a 300 mm radius of curvature and reflectivity of 99%. The resonator was formed in a z-shape (in 

order to avoid illuminating the mask with the residual pump light) by including two 45° mirrors 

within the cavity that were highly reflective for 1064 nm and highly transmissive for 808 nm. The 

resonator length was 260 mm and the Nd:YAG crystal centre was positioned 75 mm from the plane 

mirror. The aperture was placed as close as possible to the curved mirror while the mask was placed 

as close as possible to the flat mirror. Both the aperture and the mask were individually mounted on 

3-axis translation stages for easy alignment.  
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Fig. 3.3.1: Diode-pumped Nd:YAG laser resonator with internal mask (DOE). Resonator mirrors were 

configured such that the output beam could be observed from both ends with various beam diagnostic tools. 

Inset shows the actual setup in the laboratory. 

 

 

The laser beam could be out-coupled from both ends of the resonator for measurement. The output 

through the mask (plane mirror) was measured with a near field CCD camera (Photon Inc. 

USBeamPro) by relay imaging the output coupler plane to the camera by a 1∶1 telescope system of 

two 150 mm focal length spherical lenses. The beam quality factor		#�	from the flat mirror output 

was measured by directing and focusing the beam using two 50% transmissive flat mirrors and a 

200 mm focal length spherical lens into the Photon ModeScan Meter. Simultaneously, the laser beam 

profile from the curved mirror output was 1∶1 imaged using a telescope system of two 125 mm focal 

length spherical lenses and measured using a second CCD camera (Spiricon, LBA-USB). The beam 

quality factor		#�	from the curved mirror output was measured by directing and focusing the beam 

using three flat mirrors (one highly reflective and two 50% transmissive) and three focal length 

spherical lenses (125, 200, and 250 mm) into the Photon ModeScan Meter. The resulting fields could 

also be directed to a spatial light modulator (SLM) (Holoeye HEO 1080P) for executing a modal 

decomposition into the Laguerre–Gaussian basis [3.8, 3.9]. Measurement of the signal at the origin of 

the Fourier plane (at the focal plane of a lens after the SLM) returned the intensity of the coefficients 

of the modal expansion [3.9]. 

 

 



61 

 

3.4. Numerical Study 
 

We perform a numerical calculation of the fundamental mode of the resonator with the intra-cavity 

mask. The simulation is based on the expansion of the resonant field on the basis of the eigen-modes 

of the bare cavity (without any diffracting object). This method is not given here since it has been 

already described elsewhere for the case of a plano-concave cavity including an absorbing ring on the 

plane mirror [3.10]. The modelling given in [3.10] can be easily adapted to the case of a mask made 

up of concentric absorbing rings just by evaluating the overlapping integral (Eq. A10 of Ref. [3.10]) 

upon all the regions of transparency of the mask. An example of the mask for the		� = 4 mode is 

shown in Fig. 3.4.1: the high-loss regions of the mask (four absorbing rings) coincide with the nulls in 

intensity of the mode, while the rest of the mask is transparent. The four absorbing rings lead to 

the		� = 4	 mode having the lowest overall loss (similarly for the other modes).  

 

 

Fig. 3.4.1: Numerically simulated lowest-loss eigenmodes, shown as intensity cross-sections, for		� = 1 � 5, 

when the appropriate mask with		� rings is placed inside the cavity. Such a mask example is shown for the		� �
4, with the high-loss rings of the mask coinciding with the intensity nulls of the		� � 4	 Laguerre–Gaussian 

mode. 
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The main quantities deduced from the numerical modelling which characterize the fundamental mode 

are the power losses per round trip LFM due to diffraction upon the absorbing		� rings, the intensity 

profile of the lowest loss mode, and the beam propagation factor		#� of the output beam. We find that 

the fundamental mode TEM00 of the cavity including an amplitude mask made up of		� rings of radii 

given by Table 3.2.2 is a pure LGp0 mode, shown in Fig. 3.4.1: the mode purity was confirmed 

quantitatively through a numerical calculation of the 		#� of each mode, and found to be 3.02, 5.01, 

7.01, 9.01, and 10.99 for		� = 1 � 5, respectively, in agreement with the theoretical beam propagation 

factor of		#� � 2� j 1. The variable parameter is the width of the absorbing rings: the simulations 

shown in Fig. 3.4.1 are for 		� � 20 µm, but similar results are found for the other width values. The 

variations of the fundamental mode losses LFM as a function of the mode order, with the width 	� of 

the rings as a parameter, are shown in Fig. 3.4.2. 

 

 
Fig. 3.4.2:   Variations of the fundamental mode losses as a function of p the number of absorbing rings which is 

at the same time the order of the LG mode. 

 

 

3.5. Experimental Results 
 

3.5.1.  Mode Purity 
 

The results of the mode selection by the cavity and mask adjustments are summarized in Fig. 3.5.1. In 

this section we restrict our summaries to the DOE setting with		� � 20 µm, and we consider the 

impact of changing this in Chapter 3.4. Since the LGp modes are solutions to the Helmholtz equation, 
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we expect that their near and far field intensity profiles should be identical except for a scale factor. 

This is clearly evident in Fig. 3.5.1, suggesting (but not yet confirming) that indeed these are the 

desired single modes of orders 0–5. 

 

 

Fig. 3.5.1: Near-field (left column) and far-field (right column) intensity patterns for modes		� = 0 � 5 (top to 

bottom rows). 
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What is evident from Fig. 3.5.1 is that the modes become less radially symmetric as the order 

increases, most likely due to aberrations inside the laser and the fine misalignment of the DOE. Since 

the resonator is stable and we are considering single modes, the mode sizes and beam propagation 

factors are known analytically and can be compared to experiment. The results are summarized in 

Fig. 3.5.2. 

 

Fig. 3.5.2: (a) Beam width at the output coupler end as a function of mode order. (b) Beam propagation factor as 

a function of mode order. Solid line in both cases is the theoretical prediction from Eqs. (3) and (4), 

respectively. 

 

 

Clearly the cavity is selecting the modes as desired, with the modal properties in good agreement with 

the theory. This suggests that the slight imperfections noted in the intensity patterns do not 

significantly affect the properties of the modes. Finally we execute a modal decomposition of the 

output fields to determine the modal purity of the higher-order modes. As shown in Fig. 3.5.3, the 

mode purity is >95% for modes		� = 1 � 4, dropping to 85% for		� = 5. The remaining modal power 

is in adjacent lower order modes. 
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Fig. 3.5.3: Modal decomposition results for modes	� = 1 � 5. Correlation between the desired mode (plaser) and 

the measured mode (pdecomposition) is very high, degrading slightly at high values of		�. 

 

 

3.5.2. Mode Variance Due to Perturbations  
 

We confirm, first, that thermal lensing and thermal aberrations are not significant in our system. The 

beam size and beam quality factor were monitored as a function of input pump power for each radial 

order, with some results for the		� � 0, and		� � 5 modes shown in Fig. 3.5.4. It is well known that 

thermal lensing increases approximately linearly with pump power and inversely with pump size. 

Within the range shown (corresponding to the range for all tests reported in this manuscript) we find 

that there is a flat response to our mode properties, as seen in Figs. 3.5.4(a) and 3.5.4(b), suggesting 

that thermal lensing is not a significant factor in our experiments. The main reason for that is the use 

of a large pump beam size in order to sustain the laser oscillation up to mode	� � 5. 
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Fig. 3.5.4: (a) Change in beam radius as a function of a changing pump power, for the		� = 0 mode, measured at 

both ends of the cavity, and the solid line is the theoretical solution. (b) Change in beam radius as a function of a 

changing pump power, for the		� = 5 mode, measured at flat mirror and the solid line is the theoretical solution. 

 

 

Next we changed the DOE position to select various ring widths, from		� �10 to 25 µm, for 

each		�	value. The results for		� � 1 are shown in Figs. 3.5.5(a) and 3.5.5(b). There is very little 

impact on the mode size and quality factor within this range of ring widths. This is expected from 

simulations of the transmission for these widths, where little influence is noted. We point out though 

that as the width increases, so the losses increase and eventually the mode purity would be adversely 

affected once the ring width exceeds the nominal width of the “zero” regions (see illustration in 

Fig. 3.4.1). 

 

 

Fig. 3.5.5: (a) Beam radius and (b) beam quality factor changes for mode		� � 1		when the ring thickness of the 

DOE is changed. 
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3.5.3.  Mode Volume, Energy Extraction, and Loss 
 

We recall that the output power from a laser is linearly proportional to the mode volume,		?5, where 

the volume of the		�th radial mode is found from: 

 

?5 = { ¹µ�+(,a(6Z� = +2� j 1,¹0��� h1 j 6ZBºfmBi    
    

  ?5 � #�?� h1 j 6ZBºf}Bi	                                         (3.5.1) 

  

where �� is the length of the gain medium and ?� is the mode volume of the � � 0 (Gaussian) mode. 

In the limit that the length of the crystal is much smaller than the Rayleigh range of the beam, 

�� ≪ (. , then Eq. (3.5.1) simplifies to	?5 ¼ #�?�. 
 

From Eq. (3.5.1) it is clear that the mode volume is proportional to the #�	factor associated with the 

mode. The output power is also inversely proportional to the round-trip losses. This suggests that the 

higher-order radial modes have an output power that may be expressed as: 

 

C½
CZ � +2� j 1, ¾Z¾½                  (3.5.2) 

 

where the subscripts � and 0 refer to the radial mode orders and the round trip losses are denoted by δ. 

Measurements of the threshold and slope efficiency of the generated modes are shown in Fig. 3.5.6. 

 

 

Fig. 3.5.6: (a) Threshold and (b) slope efficiency as a function of the mode order	�. Both increase approximately 

linearly with mode index. 
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Equation (3.5.2) suggests that it is possible to have a larger power extraction from a higher-order 

mode if the losses increase at a slower rate than the mode volume. This is the case with our scheme 

for selecting the higher-order modes. Making the assumption that the ratio of the losses,	¿� ¿5⁄ , can 

be approximated as the ratio of the threshold values [Fig. 3.5.7 (a)], we calculate the ratio of "Á "�⁄  to 

be ∼5, whereas the slope efficiencies have a measured ratio of ∼4 [Fig. 3.5.7 (b)]. The extraction of 

power from the laser therefore has a critical point where the higher-order mode becomes more 

beneficial as compared to the lower order mode: although the losses increase with mode order, so 

does the mode volume and hence the gain. In the case of the radial LGp modes, there is a point where 

the extra gain compensates for the extra loss. This scenario is illustrated for the	� = 0, and � = 5	 
modes in Fig. 3.5.7: at a pump power of just greater than 35 W the power extracted from the � � 5	 
mode exceeds that of the � � 0 mode, despite its higher losses. 

 

 

Fig. 3.5.7: Above a certain critical pump power, the higher-order mode extracts more power (compared to the 

� � 0 mode) due to its significantly increased mode volume, as shown here for the � � 5 mode. 

 

 

3.6. Discussion 
 

During the experimental work the laser cavity was optimised for the study of several modes under the 

same cavity conditions and in most occasions the laser was operated close to a threshold. The 

experimental laser design configuration was optimized for mode purity and not necessarily for power 

extraction. This is further shown in Fig. 3.3.1, the cavity was designed to have two output couplers 
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emitting laser light from both ends, each with a low transmission. For maximum power extraction of a 

given mode the construction of a laser resonator would require judicious choice of output coupler 

reflectivity, crystal length, doping concentration, and a very good mode-pump overlap. It is therefore 

clear that the overall power extraction efficiency of such an end-pumped solid-state laser could be 

improved to much higher values just by reconfiguring the laser resonator design, which indeed would 

be required if one were to construct a high-brightness laser. In this Chapter we are interested in the 

relative modal improvement of the Laguerre-Gaussian high-radial-order modes by comparing the 

ratios of the losses and the slope efficiencies, which follow Eq. (3.5.2). In this sense the slope 

efficiency has been improved by 400% for the � = 5		mode relative to the Gaussian mode. Finally, we 

point out that the quoted pump power represents the pump power as measured from the source and not 

the pump power absorbed by the crystal. The actual absorbed pump power was typically 50% of the 

quoted value.  

 

The results in Chapter 3 demonstrate that with our simple controlled mode selection approach we can 

select a single higher-order Laguerre-Gaussian mode of very high purity (Fig. 3.5.3) and also ensure 

that it has a higher relative energy extraction (Fig. 3.5.7) from the laser cavity compared to a Gaussian 

mode. In order to increase the brightness of the single higher-order Laguerre-Gaussian mode, it would 

be necessary to improve the mode quality factor #� through a technique such as field mapping 

process, which would change the single higher-order Laguerre-Gaussian mode to a lowest order 

Gaussian mode. It is well known that any coherent field may readily be reshaped to any other 

coherent field, like the Laguerre-Gaussian mode of radial order � = 5		can be shaped to a lowest order 

Gaussian mode of � = 0		using known procedures, such as interferometric beam combining [30], 

geometrical transformations [3.12], complex amplitude modulation [3.13], or refractive or diffractive 

beam shaping [3.14]. These procedures may induce losses if complex amplitude modulation is used, 

but lossless procedures have been demonstrated also [3.14, 3.15] and in most cases with two optical 

elements, the first optical element is usually used to transform the intensity and the second to 

transform the phase. That the beam quality can be improved by such optical transformations has been 

demonstrated experimentally [3.11, 3.16], and is in fact evident from the reciprocity nature of light’s 

propagation: for example, the ubiquitous Gaussian to flattop beam shapers in reverse would 

substantially improve the beam quality factor of the beam. 

 

Our results therefore suggest a route to high brightness lasers through the selective excitation of 

higher-order laser modes and the subsequent conversion of these modes to lower #�-valued beams. 
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3.7. Conclusions 
 

We have demonstrated that it is possible to achieve selective excitation of higher-radial-order 

Laguerre–Gaussian modes inside a solid-state laser resonator with only an amplitude mask in a 

controlled manner. The generated high-radial-order Laguerre-Gaussian modes were shown to be of 

very high mode purity and that the method used to generate them was unaffected by the resonator 

perturbations. The significant importance of these results is the verification that indeed the power 

extraction from single high-order Laguerre Gaussian modes may exceed that of the lowest order 

Gaussian mode at a critical pump value of the resonator; which is determined by the relative cavity 

round-trip of the modes with reference to the Gaussian mode. For instance with a “lossy” amplitude 

mask that was utilised we achieved a 400% increase for the Laguerre-Gaussian mode of radial order 

� = 5		relative to the lowest Gaussian mode of order	� = 0. These results suggest a route to high-

brightness lasers through the selective excitation of higher-order laser modes above this critical input 

power, and the subsequent reshaping of the output field to a lower divergence mode. 
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CHAPTER FOUR 
 

 

A digital laser for the selection of on-demand laser modes  
 

 

4.1. Introduction 
 

The operation of a laser generally produces a multi-mode laser beam profile with its shape changing 

arbitrarily as the power of the laser is increased. A laser that generates such arbitrary dynamic beam 

shape profiles is generally not useful in many specialized applications that require specific beam 

shapes such as direct laser paint stripping or thin film ablation, precision laser drilling, fiber and free 

space communication, and many other applications. Laser beam-shaping techniques [3.14] to control 

the beam profile emitted by lasers have been developed over the years to allow for extra-cavity 

reshaping of the laser beam to any desired transverse profile using a variety of methods such as 

diffractive optical elements, free-form optics and more recently by digital holograms written to a 

spatial light modulator (SLM). Nonetheless intra-cavity beam shaping possesses some advantages 

over extra-cavity beam shaping such as laser system efficiency and compactness.  

 

Intra-cavity beam shaping has been the subject of interest for a number of years [1.22, 4.1, 4.2], with 

various laser cavity design techniques [3.4, 4.3-4.7] being executed successfully such as using a phase 

only [4.8-4.11], amplitude-only [1.15, 3.9] and phase–amplitude combination [4.12] optical elements 

for spatial mode selection. All of the above techniques have been demonstrated to require specialised 

and customised optics; in some cases like the technique used by Bourderionnet. et al. [4.12] required 

additional external beam-shaping optics, a wavefront sensor and an optimization algorithm routine to 

iterate towards the desired phase profile. There also have been other efforts at achieving controlled 

dynamic intra-cavity beam shaping using deformable mirrors [4.13-4.18], but such mirrors have been 

shown to have a finite stroke, which has caused them to have limited number of phase profiles that 

they can perform, and that is why deformable mirrors have found a small number of applications in 

laser mode shaping. Deformable mirrors have rather been extensively applied in high-power 

applications such as correcting mode distortions due to thermal loads or in maximizing energy 

extraction and optimization of laser brightness [4.15-4.18]. Until now, there has been no technique 

that has been demonstrated that shows real-time on-demand selection of arbitrary laser modes.   
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In this Chapter [4.22] we succeed in overcoming the previously mentioned restriction by using intra-

cavity digital holograms, which are applied to a phase-only reflective SLM, to construct a rewritable 

holographic mirror by replacing a standard laser cavity end-mirror to form a digital laser. This enables 

on-demand laser mode selection to occur with high resolution and with very broad dynamic range of 

phase values. This method of using intra-cavity digital holograms makes the task of intra-cavity beam 

shaping very easy since it reduces the time to test concepts and supposedly only creates the ability to 

generate appropriate grey-scale images. To put it differently, the creation of customised laser modes 

has been minimized to that of only creating appropriate digital hologram pictures of the mode of 

interest; and the techniques to create such pictures is very well established as shown by the wide 

variety of literature on shaping light using digital holograms. This approach is very simple compared 

to the others techniques and its advantage is that it only requires a commercially available SLM in an 

otherwise standard laser cavity. Furthermore, the digital laser allows all the recognised techniques of 

intra-cavity beam selection to be performed. We demonstrate that the digital laser can mimic a 

conventional stable cavity and verify on-demand mode selection by dynamically changing the mirror 

hologram to output a variety of laser modes in real-time. We accomplish this feat by ‘playing a video’ 

[4.22] inside a laser cavity, requiring a shift in our thinking of mode control in laser resonators.   

 

 

4.2. Methods 
 

4.2.1. Laser cavity and SLM.  
 

Several SLMs were used in the testing of the digital laser, and finally a Hamamatsu (LCOS-SLM 

X110468E) series device was selected. Previous tests with other SLMs failed mainly because of the 

phase–amplitude coupling that becomes pronounced during intra-cavity operation. The gain medium 

was a 1% doped Nd:YAG crystal rod with dimension of 30 mm (length) by 4 mm (diameter). The 

crystal was end-pumped with a 75-W Jenoptik (JOLD 75 CPXF 2P W) multimode fibre-coupled laser 

diode operating at 808 nm. The OC (flat curvature) had a reflectivity of 60%, whereas the SLM had a 

measured reflectivity of 91% at the desired polarization (vertical) and 93% at the undesired 

polarization (horizontal). To force the cavity to lase on the vertical polarization, an intra-cavity 

Brewster plate was used. On this polarization, calibration tests on the SLM reveal typical efficiencies 

of ~86% into the first order and ~1% into the zeroth order. In the intra-cavity configuration, this large 

difference results in suppression of the zeroth order because of the significantly higher round trip 

losses, and thus the SLM could be operated at normal incidence and without a grating. The SLM 

efficiency had a standard deviation of ~0.4% across all grey levels, that is, minimal amplitude effects 
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during phase modulation. The nominal length of the cavity was ~390 mm but was determined to have 

an effective length of 373 mm to compensate for the small thermal lensing due to pump absorption in 

the crystal as well as the refractive index of the crystal. The effective length was used in all 

calculations for the mode sizes. The resonator output was 1:1 imaged onto a Spiricon CCD camera 

using a telescope of two identical mirrors for intensity measurements, and could also be directed to a 

second SLM for modal decomposition studies. For far-field tests, the first lens of the telescope was 

removed. 

 

 

4.3. Results 
 

4.3.1. Realizing a digital laser.  
 

Our laser which is shown in Fig. 4.3.1.1, consists of a normal folded plano-concave resonator design 

with an Nd:YAG laser crystal as the gain medium for the system. The extra-ordinary part of the 

resonator is the utilisation of a phase-only reflective SLM as the end-mirror of the laser cavity. The 

main function of the SLM is to display computer-generated holograms which are programmed as 

pixelated grey-scale images also known as digital holograms. The SLM is programmed to allow for a 

full phase cycle of 0 to 2¹ which is portrayed graphically as grey-scale colours ranging from white to 

black in 256 levels encoded as 8-bit images. For an instance, a sharp linear increase in colour levels 

from white to black would represent a linear increase of the phase from 0 to 2¹ and this would 

normally represent a diffraction grating. The SLM virtually allows any desired phase values to be 

programmed as grey-scale digital hologram images. It is clear to observe that the colour change from 

the SLM can be seen to represent an equivalent depth change in a normal diffractive optical mirror 

and that it is where the advantage lies with SLM. It is rather simple and easier to make different 

colours in an image than to spend a lot of time refabricating depth changes in a diffractive optical 

element. Since the SLM is used as an end-mirror and also to display a digital hologram to intra-cavity 

change the phase of the reflected light inside the resonator, it will be referred to as a digitally 

addressed holographic mirror and in short as a holographic mirror. The key properties required of the 

SLM for this application have been shown to be high resolution, high efficiency, high reflectivity at 

the appropriately desired polarization, small phase–amplitude crosstalk, reasonable damage threshold 

and a large phase shift at the chosen laser wavelength. 
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Fig. 4.3.1.1: Concept and experimental realization of the digital laser. (a) Schematic of the digital laser concept 

showing the SLM, Brewster window (BW), high reflectivity (HR) mirror at an angle of 450, Nd:YAG gain 

medium pumped by an external laser diode (LD) source and the output coupler (OC). (b) Photograph of the 

experimental set-up. 

 

 

The digital laser shown in Fig. 4.3.1.1 was optically pumped by a high-power 808 nm laser diode that 

was fibre coupled into the cavity through a folding mirror that was coated for high transmission at the 

diode wavelength and high reflectance at the lasing wavelength of 1064 nm. The resonator was 

designed to form an L-shaped cavity using this folding mirror so that the high-power diode beam will 

not be absorbed by the SLM and thus avoiding damage. Another important feature of the cavity was 

the inclusion of an intra-cavity Brewster window that was used to force the laser to oscillate in the 

desired polarization for the SLM which in our case was vertical. The output coupler (OC) was used to 

emit the laser light out of the laser resonator.  

 

In an experiment to prove the principle of our approach of dynamic intra-cavity beam shaping using 

an SLM, we programmed the holographic mirror to imitate a conventional concave end-mirror with a 

radius of curvature, R, which was chosen to ensure the resonator formed a stable cavity as shown in 

Fig. 4.3.1.2 (a). The SLM will then be programmed to produce a holographic image that will represent 

a lens with a focal length	Â = �, so that the hologram mimics the curvature of the end-mirror. The 

minimum beam radius which is the waist size on the flat output coupler of the Gaussian beam that 

oscillates in such a resonator can be described theoretical as [1.22]:  

 

0�� = hD
Ai ��+� − �,�JB     (4.3.1.1) 
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where L is the effective length of the resonator and λ is the laser wavelength. Before the digital laser 

was tested, two physical concave mirrors were inserted as an end-mirror at separate occasions in the 

same experimental set-up in place of the SLM, and the Gaussian beam size was recorded at the output 

coupler. The experimental results for the two cases of using two physical end-mirror with, �	= 400 

and 500 mm, are shown in Fig. 4.3.1.2 (b) and plotted in Fig. 4.3.1.2 (c) together with the theoretical 

solid curve follow Eq. (4.3.1.1). An equivalent test of radius of curvature scenarios was programmed 

digitally using the SLM and are shown alongside the physical mirror measurements in Fig. 4.3.1.2 (b). 

From a mode selection perspective, the laser performs identically in the two configurations. Another 

observed scenario was that as the digital hologram’s programmed radius of curvature was changed as 

shown in Fig. 4.3.1.2 (c), the measured Gaussian beam radius size on the flat output coupler changed 

in accordance with Eq. (4.3.1.1). This proves that the digital laser behaves as a standard stable laser 

cavity and it is also clear from the results that the SLM mimics the stable cavity with high fidelity. In 

addition to confirming the desired behaviour of the digital laser, this experiment also brings to the fore 

another practical advantage over using physical mirrors. It is a commonplace to possess a limited and 

discrete selection of physical mirrors, while with the digital approach virtually any mirror curvature 

can be created, on demand, by simply changing the grey-scale image representing the digital 

hologram, and it is limited only by the resolution of the SLM that will be used in the resonator. 

 

The high loss properties of the SLM resulted to the laser resonator having a high lasing threshold as 

demonstrated in Fig. 4.3.1.2 (d).  The resonator losses are due to the overall diffraction efficiency and 

fill factor of the SLM. These two loss effects can contribute to the SLM having a reduced reflectivity 

of between 15- 20 %.  
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Fig. 4.3.1.2: Comparison of the digital laser to an equivalent plano-concave laser. (a) Schematic of the stable 

plano-concave resonator with a waist plane at the flat OC. (b) Measured intensity profiles for two curvature 

cases (�	= 400 and 500 mm), comparing the digital laser output (SLM) with that of physical mirrors (Mirror). 

(c) The change in measured beam size with digitally imposed curvature matches the theoretical curve. (d) The 

threshold of the digital laser is higher than that of the conventional laser owing to the additional losses from the 

SLM shown here for the �	= 400 mm case. The black lines are fits to the data and error bars are s.d. 

 

 

4.3.2. On-demand laser modes.  
 

In the following demonstration we used the digital laser to select and produce the well-known Hermit-

Gaussian, Laguerre-Gaussian, super-Gaussian which is a flat-top and Airy beams. The digital laser 

can either be programmed to implement amplitude-only, phase-only or amplitude and phase 

modulation by simply changing the digital hologram grey-scale image that is displayed on the SLM 

screen. The SLM that is used in this experiment is able to implement phase-only changes on the field 

while a large number of the desired holograms require both the amplitude and phase changes on the 

field. We achieve this by making use of the well-known method of complex amplitude modulation 

[3.13, 4.19, 4.20], because it is easy and suitable to be implemented on the SLM. There are several 
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means by which to implement this (see Arrizon et al. [3.13, 4.20] and references therein), and for the 

benefit of the reader we briefly outline one approach used in the creation of our modes. Consider for 

example a desired field	&+M, N, � &�OM�+/:,, with &� the real amplitude and : the phase of the 

desired beam. To encode the amplitude term, we introduce high spatial frequency modulation in the 

form of a checkerboard pattern with alternating phases between two values. The two phases are 

chosen so that their average value is equal to the desired complex value. For example, if the two phase 

values are given by	Ã � OM�+/: j /Ä, and ! � OM�+/: � /Ä,, then the desired amplitude &� may be 

expressed as	&� � cosÄ. This checkerboard may be varied spatially to create arbitrary amplitude 

modulation as a function of position. A graphical interpretation of the process is shown in Fig. 

4.3.2.1 (a), where the modulation between two phase-only values (Ã and !) gives an average return of 

�, which is no longer on the unit circle in the complex plane, that is, amplitude modulation of the 

input field. The checkerboard corresponding to this is shown in Fig. 4.3.2.1 (b). This can be 

understood from basic diffraction theory: some of the incoming light is diffracted by the checkerboard 

grating into higher diffraction orders, so that the resulting light in the desired order is now less than 

before. In this sense, the desired light has been amplitude modulated, although the pattern on the SLM 

is phase-only. 

 

 
Fig. 4.3.2.1: Complex amplitude modulation concept. (a) Schematic of the complex plane showing two phase-

only values, A and B, lies on the unit circle (unit amplitude). The average of these is vector C, representing 

amplitude modulation as it is not on the unit circle. (b) Example of a checkerboard pattern of the two phase 

values A and B. (c) Zoomed out image of b showing the complete annular ring created with this checkerboard 

pattern to result in zero transmission in the annular ring. 

 

 

Thus, although our SLM is calibrated for a phase-only response from 0 which is represented as a 

black colour image all the way to 2¹ which is represented as white colour, appropriate holograms can 

result in amplitude variations from 0 to 1. An example of a high-loss annular ring is shown in Fig. 

4.3.2.1 (c), with the zoomed-in checkerboard shown in Fig. 4.3.2.1 (b). 
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The selection of the Hermite-Gaussian and Laguerre-Gaussian modes shown in Fig. 4.3.2.2 exploited 

the use of complex amplitude modulation method to implement an amplitude modulation on the 

phase-only SLM [3.13, 4.19, 4.20]. This means the SLM can be used to create customized apertures, 

for example, just like the fine wires or loss-lines used in the past for Hermite-Gaussian mode selection 

[1.22, 4.1]. The digital hologram for the creation of the radial order,	� = 1, Laguerre-Gaussian beam  

with zero azimuthal order,	� = 0, comprised of a high-loss annular aperture together with a phase-only 

radius of curvature. In this case, the checkerboard consisted of the two phase values, 0 and		¹, for a 

resultant of zero amplitude inside an annular ring. This low-loss ring was positioned at the zero of the 

first radial Laguerre-Gaussian function to select the pure LG10 mode shown in Fig. 4.3.2.2. The radius 

of curvature was used to select and control the mode size, following Eq. (4.3.1.1). Many techniques 

exist for the design of intra-cavity diffractive optics [3.4, 4.3–4.7] for particular mode selection, all of 

which may readily be applied to the digital laser. We illustrate this in Fig. 4.3.2.2 where an Airy beam 

[4.21] and flat-top beam [4.5] are created by phase-only digital holograms. 

 

 

Fig. 4.3.2.2: Customized spatial modes by amplitude and phase modulation. By complex amplitude modulation, 

a customized set of high-loss regions create a Hermite–Gaussian beam (� = 3, � � 0) and a superposition of 

Laguerre–Gaussian beams (� � 0, � � �4) as the laser output. By phase-only modulation, a flat-top beam and 

Airy beam are created as the stable modes of the cavity. Combining amplitude and phase effects allows for the 

selection of a Laguerre–Gaussian beam (� � 1, � � 0) of a chosen size. 

 

 

Finally, we observed that switching from one mode to another required nothing more than changing 

the digital holographic grey-scale image that is displayed on the SLM which resulted in no 

realignment and also no additional optical elements being required. Traditionally, to generate the list 

of modes shown in Fig. 4.3.2.2 would have required several laser resonator set-ups with each 

resonator requiring customised and expensive optical elements. We exploit the versatility of the 
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digital laser by operating the laser in ‘video’ mode which allowed the fundamental mode that 

oscillates in the resonator to be changed in real-time by dynamically changing the digital hologram at 

an equivalent video refresh rate time. The movie laser video is shown in [4.22] and it is the first time 

this has ever been done in a laser and it represents a shift in the thinking about laser resonators. 

 

 
Fig. 4.3.2.3: Higher-order Laguerre–Gaussian modes. An example range of modes created with the digital laser. 

 

 

To illustrate this technique’s applicability for intra-cavity mode control with the digital laser, we 

consider the generation of high-order modes and their super-positions in the laser cavity using 

complex amplitude modulation. In Fig. 4.3.2.3, we illustrate higher-order modes from the Laguerre–

Gaussian basis, and in Fig. 3.3.2.4 we show a very high superposition state of the Laguerre–Gaussian 

modes with azimuthal indices of � = 	+25 and		�25, creating a petal-like structure with 50 lobes. 

This is the highest pure azimuthal combination created in a laser that we are aware of. It is clear from 

these examples that a myriad of modes may be created within the laser cavity using our approach. 
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Fig. 4.3.2.4: A super-position of two high-order azimuthal modes. Two Laguerre–Gaussian modes of opposite 

but equal azimuthal index, and of azimuthal order	|�| = 25, are combined coherently in the digital laser to 

produce this high-order superposition. 

 

 

4.4. Discussion 
 

All the generated laser beam shapes shown here were possible because the holograms fell well within 

the resolution of the SLM. At 800	Ç	600 pixels with a 20 µm pitch, the resolution is significantly 

higher than that of an adaptive mirror but substantially lower than that of a typical diffractive optical 

element. As the number of pixels decreases for each phase ramp of		0– 2¹, so does the diffraction 

efficiency, as well as the functionality of the hologram, since for an example the resulting beam 

profile is degraded by the Moire´ patterns. Nevertheless, for a wide range of typical generated beam 

shapes, the standard SLM is more than sufficient to be used and moreover the current manufactures 

can produce SLM with much higher resolutions lately. 

 

We have observed from our results that two conditions will have to be simultaneously satisfied for the 

digital laser to function properly. The gain of the laser must be sufficiently high to overcome the 

losses and at the same time the intra-cavity circulating intensity must not exceed the damage threshold 

of the SLM. We managed this by virtue of using a high-power diode pump source and an L-shaped 
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cavity design, but there are several other valid approaches (for example, increasing the doping 

concentration of the crystal). When these conditions are balanced, the digital laser will function as 

designed. 

 

We also outline that all of the beam shaping techniques we used in designing the holograms for mode 

selection were standard and well known, that is, no new tools will be required to implement the digital 

laser approach. We have emphasised this point by creating modes traditionally generated by phase-

only diffractive optical elements like the Airy beam, amplitude-only filters like the Hermite–Gaussian 

beams and the combinations of the two methods to produce the high-order Laguerre–Gaussian beams. 

What is very important about all the modes that we have shown here is that they required only a 

change to a picture to generate them and no new optics and no additional alignment of the laser cavity 

was needed. It is the simplicity of our approach that makes this digital laser so powerful. In that it 

offers a direct and easy means to control modes inside the resonator with suitable standard laser beam 

shaping tools and without any special optics being needed, just only a commercial SLM, which we 

can assume many researchers are familiar with and have access to. This makes our approach 

accessible to all. 

 

 

4.5. Conclusions 
 

In conclusion, we have demonstrated a novel digital laser that allows arbitrary intra-cavity laser beam 

shaping to be executed on-demand and also on an SLM refresh rate. This is substantially different 

from other intra-cavity laser beam shaping approaches since only a grey-scale image is needed to be 

changed to select a laser mode. We have also demonstrated that the digital laser can produce 

conventional stable resonator modes as well as ‘custom’ laser resonators that produce more exotic 

laser modes. The digital laser is at present limited in the power that it can output, but this may be 

overcome with careful engineering of bespoke liquid crystals for high power applications. Just as 

SLMs external to the laser cavity have proved an excellent means for testing high-power beam 

shaping elements before fabrication, and have in the process opened up many avenues for low-

average-power applications of structured light such as holographic optical tweezers, the digital laser 

may well become a robust, easy-to-implement, test bed for intra-cavity beam-shaping ideas. 

Moreover, as the digital laser is rewritable it allows for dynamic intra-cavity beam shaping, as we 

have shown [4.22] by ‘playing a video’ inside a laser for the first time. Applications of this would 

range from controlling thermal lensing and aberrations in real-time to real-time mode control and 

switching. Customized laser modes are now only a picture away. 
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CHAPTER FIVE 
 

 

Tuneable Gaussian to flat-top resonator by amplitude beam 
shaping  

 

 

5.1. Introduction 
 

Commercially available lasers generally produce a Gaussian beam profile which is a convenient 

spatial laser beam profile since it has been shown to maintain its spatial distribution when propagating 

over a long distance and also being very good at focusing to a diffraction limited spot. The major 

disadvantage of the Gaussian beam is that when focused the spot area is limited by a beam diameter 

of 1/e2 level which contains only 86.5% of the energy of the laser beam and the intensity at the 

boundary edges is only 13.5% of the peak intensity. Certain applications have attempted to use a 

Gaussian beam profile such as laser material processing for ablation or drilling holes and it has been 

shown that the energy on the boundary edges or wings of such a beam is either lost or causes major 

damage to the surrounding material even the central high-intensity peak would cause damage to the 

substrate for ablation processes. Laser materials applications such laser ablation have been shown to 

require specific laser beam threshold power over a certain area and this make the use of Gaussian 

beam profile to be not favourable. The majority of laser material processing applications have been 

demonstrated to require uniform beam intensity profile over a certain limited area with sharp edges on 

the boundary of the beam. The laser beam with uniform intensity distribution over the cross-section of 

the working plane is called a flat-top beam or sometimes a top-hat beam.  

 

Laser systems that produce flat-top beams are desirables for many applications [5.1] such as laser 

welding, laser micro-fabrication, laser radar, laser scanning and optical processing applications. There 

are many extra-cavity techniques that have been demonstrated for the creation of flat-top beams [3.14, 

4.5, 5.2, 5.3], and most of them have low loss even though their optical delivery system is associated 

with some complexity which require careful alignment and fixed input beam parameters to the 

shaping elements. There are a number of advantages to having a flat-top beam profile as a direct 

output from a laser resonator such as obtaining optimised energy extraction from the gain medium. 

However the methods of obtaining the flat-top beam profiles as the laser eigenmodes are mostly 

complicated and often required expensive custom made diffractive optical elements, aspheric 

elements, graded phase mirrors and deformable mirrors [3.2, 3.4, 4.5, 4.8–4.11, 4.14, 4.16, 5.4, 5.5]. 
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In addition to that almost all solutions currently have been designed for a single mode and are not 

tuneable in the mode selection. 

 

In this Chapter [6.10] we offer a different approach to the techniques for obtaining a Flat-Top (FT) 

beam as the fundamental oscillating mode that is emitted from a laser cavity. The technique that we 

propose requires only an intra-cavity opaque ring as an amplitude filter in combination with a 

standard circular aperture in a traditional laser cavity. We demonstrate that by carefully choosing well 

thought out resonator parameters, such a laser cavity can be made to emit a FT beam or a Gaussian 

beam by merely adjusting the circular aperture. The cavity becomes mode tuneable in an easy manner 

to implement, which require no new optic or realignment of the resonator. In addition to that the FT 

beam is found in the near field and most importantly also in the far field which then significantly 

simplifies the delivery optics since no relay imaging is required. This approach is different from other 

previously reported FT resonators where the FT beam is created only in the near field. We verify our 

concept and theoretical predictions using a “digital laser” [4.23] comprising an intra-cavity spatial 

light modulator as a rewritable holographic mirror. 

 

 

5.2. Concept and simulation 
 

Our concept is based on the mode selective properties of a cavity comprising both an aperture and a 

ring obstruction, as illustrated in Fig. 5.2.1. We show that the desired beams can be obtained by 

careful selection of the normalized radius �� 	= 	
� 0�⁄  of the opaque ring of width	ℎ, and the 

normalised radius �� 	= 	 
� 0�⁄  of the circular aperture; here 0� and 0� are the beam radii of the 

Gaussian beam in the bare cavity (without the ring of radius 
� and aperture of radius	
�) at the flat 

and curved mirror, respectively. Single pass studies [3.7, 3.10] on the transmission of radial Laguerre-

Gaussian beams through each component (separately) have indicated that when the aperture is “open” 

(�� > 2) all the radial modes have similar losses, while as it is closed so the Gaussian mode dominates 

with the lowest loss; in the latter scenario there is no radial mode selectivity by this element. 



87 

 

 
Fig. 5.2.1: A schematic representation of the concept. An absorbing ring (2) is placed at the plano (1) end of a 

plano-concave cavity. A standard circular aperture (3) is placed at the opposite end, and the mode is transmitted 

through the output coupler (4). 

 

 

This is depicted through simulation in Fig. 5.2.2 (a). The opaque ring on the other hand can be highly 

mode selective, and does not exhibit the monotonic behaviour of the aperture. Rather, there are 

normalised radii where the losses are inverted for the radial modes (lower radial modes have higher 

losses), and other radii where the losses for several radial modes would be the same or similar, as seen 

through simulation in Fig. 5.2.2 (b). 
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Fig. 5.2.2: (a) Single pass losses for radial Laguerre-Gaussian modes through an aperture, (b) Single pass losses 

for radial Laguerre-Gaussian modes through an opaque ring, (c) Predicted modal spectrum of radial (�) modes 

for �� = 1.55 and �� = 2.5, and (d) Predicted output modes from the cavity in the far field showing a quasi-

Gaussian (�� = 2) and flat top beam (�� = 2.5). The simulations were performed with a normalised ring radius of 

�� = 1.55 and a ring width of ℎ = 20 µm. The parameters of the cavity were selected to match the experiment, 

namely, � = 500 mm and � = 252 mm for � ~0.5 at a wavelength of � = 1064 nm. 

 

 

This suggests a simple approach to tuneability: if the normalized ring radius is chosen to allow 

particular Laguerre-Gaussian radial modes to lase simultaneously, then they will do so incoherently. If 

the aperture is open, so that the ring is the mode determining element, then our Fox-Li analysis 

predicts a flat-top beam as the output. As the aperture is steadily closed, so it becomes the mode 

determining element and the Gaussian mode is selected, based on substantially lower round trip 

losses. Hence only the aperture opening needs to change to control the mode. 

 

Our simulation results, shown in Fig. 5.2.2, suggest that for �� ≈ 1.5 the cavity eigenmode is a FT 

beam, the purity of which can be adjusted by varying	��. We find optimal settings of �� = 2.5 for a 
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high quality FT beam, which can be approximated in shape by a super-Gaussian beam of order ~ 5. 

The incoherent modal spectrum, comprising three radial Laguerre-Gaussian modes, is shown in 

Fig. 5.2.2 (c). Furthermore we predict that the FT beam can be transformed into a quasi-Gaussian 

beam by simply adjusting the circular aperture to �� = 2.0, while keeping	��. Since the FT beam is a 

incoherent sum of radial modes the shape remains invariant during propagation. The results are shown 

in the far field in Fig. 5.2.2 (d) for both beams. If the circular aperture is opened further more exotic 

modes are found, for example, a donut mode at �� = 2.6. 

 

 

5.3. Experimental setup and results 
 

In order to test the simulated results we used the laser set–up shown in Fig. 5.3.1 (a). The cavity was 

arranged in a Z-shape to allow the high power pump (808 nm) to pass through the gain medium 

(Nd:YAG) without interference from the aperture and ring mask. The stable plano-concave cavity had 

an effective length of 252 mm, with the circular aperture placed directly in front of the curved 

(� = 500 mm) output coupler of reflectivity 80%. The output mode could be measured in both the 

near field and far field with imaging or Fourier transforming optics. Care was taken to separate the 

lasing wavelength (1064 nm) from the pump light (808 nm) with suitable filters.  

 

 

Fig. 5.3.1: (a) Schematic setup of an intra-cavity SLM with diagnostic and control equipment. The High 

Reflectors (HR) were used to reflect the 808 nm or 1064 nm wavelengths. (b) SLM phase screen acted as a flat-

end mirror containing an opaque ring of 100 µm width.  

 

 

An additional novel aspect of this experiment was the use of a “digital laser” [4.23]. One of the cavity 

mirrors in the digital laser setup is a rewritable phase-only spatial light modulator (SLM), forming a 
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holographic end-mirror. The SLM was programmed with a digital hologram representing both the flat 

mirror and the opaque ring, as shown in Fig. 5.3.1 (b). The digital laser allowed for easy optimisation 

of the ring radius as well as the ring thickness. To vary these parameters with lithographically 

produced rings of varying thickness and radii would be time consuming, and would require a 

realignment of the cavity for each setting. In the digital laser, a new ring could be created by merely 

changing an image on the control PC representing the desired digital hologram, without any 

realignment. The amplitude modulation employed to realise the ring was achieved by complex 

amplitude modulation [3.13, 4.21] using high spatial frequency gratings in the form of so-called 

“checker boxes”.  

 

On the other side of the cavity we had a variable circular aperture which was controlled manually in 

order to find the optimal value of		��. This standard aperture provided the tuneability of the mode. The 

output from the digital laser is shown in Fig. 5.3.2, where the near field and the far field intensity 

profiles of the quasi-Gaussian (a) and Flat-top (b) beams are shown. In the first four panels (a-b) we 

have the results for a 20 µm width ring, while in the last four panels (c-d) we have the results for a 

100 µm width ring. We note that the spatial intensity distributions are in good agreement with the 

simulated Fox-Li results in Fig. 5.2.2 (d). Moreover, as predicted by theory, the desired shapes are 

found in the far field too. The field patterns are also found at values of �� and �� close to those 

predicted by theory, differing by less than 10%. The small deviation can be attributed to minor mode 

size errors, e.g., due to small thermal lensing or refractive index errors.  
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Fig. 5.3.2: Experimentally obtained near field and far field images of the Gaussian beam and Flattop beam for 

ring width settings of (a-b): 20 µm and (c-d): 100 µm. Gaussian beam (a and a*) and Flat-top beam (b and b*) 

for �� = 1.4, a ring width of 20 µm, and �� = 2.0 (Gaussian) and 2.3 (FT). Gaussian beam (c and c*) and Flat-top 

beam (d and d*) for �� = 1.4, a ring width of 100 µm, and ��  = 2.0 (Gaussian), 2.3 (FT). These values are in 

good agreement with theory. 

 

 

Slope efficiency measurements, Fig. 5.3.3, reveal that the FT beam has the highest slop efficiency but 

also the highest threshold as compared to the quasi-Gaussian beam selected by the ring cavity. The FT 

beam slope efficiency is approximately 2 times that of the quasi-Gaussian. This can be explained by 

the fact that the FT beam has a much larger gain volume than the quasi-Gaussian mode and is better 

matched to the pump beam in size and shape. For comparison the data for a Gaussian beam without 
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any ring is also shown; this was achieved with no opaque ring programmed on the SLM and a 

normalized circular aperture set to �� = 2.0 on the curve mirror (i.e., the standard approach to 

Gaussian mode selection). The quasi- Gaussian and Gaussian mode show little difference when the 

ring width is small (20 µm), indicating that indeed the perturbation from the ring is minimal in the 

case of selecting the quasi-Gaussian, and thus it may indeed be considered as a Gaussian mode, in 

agreement with the theoretical prediction. It has been suggested previously [3.7] that in some cases 

amplitude masks do not lead to higher losses, and this could be the situation here too. When the ring 

width increases the quasi-Gaussian departs further from the ideal Gaussian mode and the lasing 

threshold increases. 

 

Fig. 5.3.3: The slope efficiencies of the FT beam, quasi Gaussian beam and Gaussian beam for (a) 20 µm and 

(b) 100 µm ring width. 

 

 

Finally we point out that while we have used the digital laser to prove the principle, one would not use 

the intra-cavity SLM approach in a high power system. Rather, one would make use of custom optical 

elements to implement the ring aperture, thereby increasing the damage threshold and lowering the 

losses, to produce a more efficient and practical system. 

 

 

5.4. Conclusion 
 

The conclusion is that we have created and demonstrated for the first time a new laser cavity that is 

mode tuneable. We have established that by simply adjusting the diameter of a standard circular 

aperture inside the cavity, the mode that is emitted by the laser can be selected from the ubiquitous 
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Gaussian to a Flat-top beam. The opaque ring mask was implemented on an SLM as an intra-cavity 

holographic end-mirror for the advantage that this allows in testing the design parameters. For the 

construction of a similar high-power resonator which will be optimised for maximum power 

extraction by using standard optics and lithographic processed optical elements, will eliminate the use 

of an SLM and its associated losses.  
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CHAPTER SIX 
 

 

 Doughnut laser beam as an incoherent superposition of       

two petal beams 
 

 

6.1. Introduction  
 

Laguerre-Gaussian beams are a well-known solution to the Helmholtz equation in the paraxial 

approximation under conditions of cylindrical symmetry, and they have become a standard topic in 

many laser textbooks. In the scientific community Laguerre-Gaussian modes that have azimuthal 

order,	�	, have of lately attracted renewed attention because they carry orbital angular momentum of �ℏ 

per photon [1.29, 6.1, 6.2]. There are many techniques that have been demonstrated for extra-cavity 

generation of such beams such as using spatial light modulators [6.3], spiral phase elements [6.4], 

cylindrical lens mode converters [6.5], etc. There has been a significant effort in the scientific 

community in creating such beams inside the laser resonator with appropriate intra-cavity optical 

elements. The techniques that have been used to achieve such modes include the thermally induced 

focusing [6.6, 6.7], spatially variable retardation plates [6.8], and ring-shaped pumps [6.9, 1.20]. In all 

the above mentioned scenarios, an intensity pattern with a doughnut shape was observed being 

emitted from the laser cavity. Paradoxically this may not be indicative of the presence of a pure 

azimuthal Laguerre-Gaussian mode. 

 

In this Chapter [6.14] we revisit the generation and detection of pure azimuthal Laguerre-Gaussian 

modes. We demonstrate a laser resonator that generates a doughnut-shaped mode profile and show 

through a number of experiments that it is not a pure Laguerre-Gaussian mode but rather an 

incoherent sum of petal-like modes. We illustrate that the conventional tools for mode analysis, such 

as beam propagation and #� measurements, intensity, and second moment measurements, would not 

have been conclusive in determining the correct mode structure. Our results bring into question 

previous claims of Laguerre-Gaussian mode generation and outline the required analysis to overcome 

this ambiguity in future studies. Such structure of the doughnut mode may be in contradiction to the 

current experimental procedures of implementation, especially in areas such as optical tweezing of 

nanoparticles and atoms and angular momentum based experiments where it is necessary to know the 

real field structure and not only the intensity of the field.   
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 6.2. Experimental setup and laser performance 
 

The selection of a doughnut-shaped mode is implemented through the use of an end-pumped solid-

state laser resonator with a plano-concave configuration which is shown in Fig. 6.2.1. An additional 

novelty is the use of a spatial light modulator (SLM) as a concave high reflector end-mirror of the 

resonator, thus forming the so-called “digital laser” [4.22] as show in Chapter 4.  

 

 
Fig. 6.2.1: (a) Schematic of the digital laser concept for the generation of a doughnut mode showing the spatial 

light modulator (SLM), Brewster window (BW), high reflectivity (HR) mirror at an angle of 45°, Nd:YAG gain 

medium pumped by an external laser diode (P) source, and the output coupler (OC). (b) Schematic of the 

experimental setup of the modal decomposition technique. 

 

 

The gain medium of the laser was a 1% Nd:YAG crystal rod of 30 mm length and a diameter of 4 

mm. The resonator configuration allowed for the crystal to be end pumped with a 75 W Jenoptik 

(JOLD 75 CPXF 2PW) multimode fibre-coupled laser diode operated at 808 nm. The laser mode size 

was selected for maximizing mode purity by avoiding aperture effects and not for maximising output 

power. Therefore the digital laser was operated close to a threshold and consequently the laser 

operation was achieved at an absorbed pump power of approximately 14 W with a slope efficiency of 

only 0.5% as shown in Fig. 6.2.2. 
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Fig. 6.2.2: Slope efficiency graph for generation of the doughnut mode by the digital laser setup. 

 

 

We noted that the output power could be improved to much higher values by excluding the SLM and 

redesigning the cavity for maximizing output power. But this was not the aim of the present study. 

The experimental results were taken just above this threshold value where there were minimal thermal 

effects. Any disturbance to the stability of the laser system caused by induced thermal lensing was 

compensated by the curvature on the intra-cavity SLM holographic end-mirror and cavity length 

adjustment. The plane mirror was used as an output coupler with a reflectivity of 60% and the cavity 

length was approximately 373 mm. The radius of curvature of the concave holographic end-mirror 

was digitally programmed to be � = 500 mm, which gives rise to a resonator stability,	�, parameter of 

0.25, which is within the stability boundary of 0 < � < 1. The mode profile of the generated doughnut 

mode is shown in Fig. 6.2.3. It was intra-cavity selected by spot defecting the concave mirror, with an 

opaque disk of radius a = 0.5 mm, where the curvature (phase) and opaque disk (amplitude) were 

encoded using complex amplitude modulation on the SLM [4.20]. 
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Fig. 6.2.3: Doughnut beam obtained by programming an intra-cavity circular aperture on a digital holographic 

end-mirror of a digital laser.  

 

 

The optimum functionality of the digital laser required fulfilment of several key properties of the 

SLM to be met, such as high resolution, high efficiency at the desired polarization, minimal phase-

amplitude cross-talk, reasonable damage threshold, and a large phase shift at the laser wavelength. 

The suitable SLM that fulfilled these parameters was a Hamamatsu, LCOSSLM X110468E that had 

an 800 × 600 pixel arrays with a 20 µm pitch, a manufacture quoted efficiency of 95%, with a damage 

threshold of 25 W/cm2 and a phase shift of more than 2π. More details of the operation of the digital 

laser can be found in [4.22, 6.10] or in Chapter 4 of this document.  

 

 

6.3. Analysis of the results 
 

We performed a Fox-Li analysis of the cavity using the parameters previously specified to identify the 

modal structure of the modes with the lowest round-trip losses. The intensity of the resulting modes 

with the highest eigenvalue, which corresponds to the lowest losses, is illustrated in Fig. 6.3.1.  
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Fig. 6.3.1: Intensities of the modes with the highest eigenvalue, equivalent to 0.987, which were obtained 

through the Fox–Li method. 

 

 

We know from [3.9] that the obtained petal modes which are shown in Fig. 6.3.1 are a superposition 

of two Laguerre-Gaussian modes of zero radial order (� = 0) and azimuthal order � and with different 

intermodal phase shift, namely, 

 

&�É�46 +); 	:; 	(, = LG6+); 	:; 	(,	ËO+PL6k, j O+L6k,Ì,    (6.3.1) 

  

&Íqq6 +); 	:; 	(, � /	LG6+); 	:; 	(,	ËO+PL6k, � O+L6k,Ì,    (6.3.2) 

 

where 

 

�<6+), (, :, � � �
A	~+f,B|6|! 	h√�	g~Z i

|6| 	OM� hP	g�~ZB j /'�
gB

�.+f,i OM�+/+1 j |�|,*+(,,,  (6.3.3) 

 

where	*+(, � arctan+( (g⁄ ,, 0+(, � 0��1j +( (.⁄ ,�, �+(, � (+1 j +(./(,�, (g � ¹0��/�, 0� is 

the beam width, and λ the wavelength. 

 

Based on the Fox-Li simulation and the experimental results that were obtained, we can assume that 

the obtained doughnut beam profile that is shown in Fig. 6.2.3 is the superposition of two petal beams 

that are shown in Fig. 6.3.1. Theoretically using Eq. (6.3.4) and (6.3.5), such a doughnut superposition 

mode can be generated by a coherent or incoherent sum of the petal beams as shown in Fig. 6.3.2: 

 

 



99 

 

 

Fig. 6.3.2: Doughnut beam produced by a coherent and an incoherent superposition of the two petal beams. 

 

 

@L6+); 	(, = |&Íqq
6 +); 	:; 	(,|� j |&�É�46 +); 	:; 	(,|�,     (6.3.4) 

 

@�6+); 	(, = /	&Íqq6 +); 	:; 	(, + &�É�46 +); 	:; 	(,,     (6.3.5) 

 

where (@�) is the coherent superposition and (@�) is the incoherent superposition.  

 

Both the coherent and incoherent superposition will have the same final intensity distribution. 

However, we see that the final solution for the electromagnetic field of the coherent superposition as 

shown in Eq. (6.3.5) is			@�6+); 	(, = �<6+); 	(; 	:,	exp	+/�:,, is in fact the field of a Laguerre-Gaussian 

mode [6.16]. This result is markedly different from an incoherent superposition where the two petal 

modes are treated independently, as all components are a superposition of two Laguerre-Gaussian 

modes of opposite azimuthal order as shown Eq. (6.3.4). Based on this difference we are able to detect 

the correct solution for the superposition by applying an azimuthal modal decomposition technique 

which is shown in Fig. 6.2.1 (b). The modal decomposition was achieved by executing an optical 

inner product of the output beam with an azimuthal match filter [2.12]. The output beam from the 

laser was relay imaged using a 4Â imaging system and directed onto SLM1 as shown in Fig. 6.2.1 (b) 

to which the azimuthal match filter was addressed. The phase structure of the filter was set to 

OM�+/�:, for various � values. To identify the full set of azimuthal modes contained in the doughnut 

beam that is emitted from the digital laser resonator, an optical Fourier transform was performed of 

the resultant beam with the aid of a thin lens (L0) and the relative modal weightings were determined 

from the on-axis intensity [2.12, 6.12].  

 

The results in Fig. 6.3.3 demonstrate the experimentally obtained modal decomposition of the 

doughnut mode. We observed two peaks for the corresponding azimuthal mode numbers -3 and 3. 

This result is in contradiction to a coherent superposition as described in Eq. (6.3.5) as only a single 

peak is expected. We do, however, see that the modal decomposition is in perfect agreement with an 
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incoherent superposition as described by Eq. (6.3.4) because the petal modes are treated 

independently and, thus, each mode would present two peaks [3.9, 6.13].  

 

 

Fig. 6.3.3: Azimuthal modal decomposition of the doughnut mode. 

 

 

To verify that the doughnut mode derives from an incoherent superposition we have performed the 

following interference experiment as shown in Fig. 6.3.4. We directed and aligned the doughnut beam 

to pass through a plate that consists of two pinholes. The position of the two pinholes corresponds to 

the position of the two petal lobes that comprise the superposition as shown in Fig. 6.3.4 (c). The 

specific positions that we selected and their corresponding numbers are illustrated in Fig. 6.3.4 (b). 

We thereafter directed the segments of the doughnut beam that passes through the pinholes to 

interfere at some position along the propagation axis as shown in Fig. 6.3.4 (a), (d), and (e).  
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Fig. 6.3.4: Interference of the field produced by selecting two portions of the doughnut beam through two 

pinholes (b). The pinholes correspond to the lobes of the superimposed field (c), where we interfere either two 

lobes of the same petal beam [1 and 3, (a)] or two lobes with one from each petal beam [1 and 2, (d)]. (e) 

Schematic of the interference experiment. 

 

 

The two petal fields that comprise the superposition for the doughnut beam are illustrated in 

Fig. 6.3.4 (c) and they are represented as green and red. We expect that if we interfere lobes 1 and 2, 

we should observe no interference fringes. However, if lobes 1 and 3 are interfered, then strong 

fringes will be present. This hypothesis was proven to be accurate as is evident from the experimental 

results shown in Fig. 6.3.4 (a) and (d) where notably stable interference lines are present.  

 

 

6.4. Discussion  

 

The rigorous tests provided by the azimuthal modal decomposition and interference experiment are 

evidence enough to conclude that the doughnut mode is an incoherent superposition of two petal 

modes. To understand the process occurring in the cavity during the modal build-up we have to take 

into account the area of the laser crystal that is pumped. Because of typical perturbations, it is not 

trivial to reach ideal symmetry from a custom laser cavity and there exists a degree of asymmetry. 
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The asymmetry can be introduced through the geometry of the custom cavity or spatial distribution of 

the gain and presents a minimal difference in the eigenvalues of the two lowest loss modes, which 

were theoretically previously identical as petal modes as shown in Fig. 6.3.1. The lowest loss mode of 

the two will preferentially oscillate; however, the residual gain in the pumped medium will assist in 

the oscillation of the mode with the higher round-trip losses. In the case of substantial asymmetry, the 

oscillation of the mode with higher losses becomes impossible and the output of the laser is a petal 

beam, which has previously been investigated in detail [1.15, 3.9]. One may also understand this from 

a degeneracy perspective: since there is no physical process to distinguish the handedness of the pure 

azimuthal modes (positive or negative � values), and since they have the same phase velocity and 

frequency, superposition modes are easily formed such as the well-known petal modes.  

 

 

6.5.  Conclusion  
 

In conclusion, we have implemented the use of a novel digital laser capable of on-demand laser 

modes to output a doughnut mode. We have demonstrated that, by using well-known traditional 

techniques for characterizing the mode, we arrive at ambiguous conclusions. Contrary to previously 

reported studies, we have performed a modal decomposition on our doughnut field that reveals it is 

not a pure Laguerre-Gaussian mode, but rather an incoherent mix of petal modes. Our theoretical 

analysis also showed that doughnut-shaped modes may be produced by either coherent or incoherent 

mixing of odd and even petal-like modes, and that due care must be exercised to distinguish between 

the two cases. Our results bring into question previous reports on the generation of pure azimuthal 

Laguerre-Gaussian beams from such cavities, and outline a procedure for unambiguous predictions of 

such modes. 
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CHAPTER SEVEN 

 

 

Conclusions and future study 

 

 

7.1. Conclusions 
 

A literature review of the different methods of generating many types of modes from the laser 

resonator was discussed in Chapter 1. The lowest-order Gaussian mode solution was derived from the 

Helmholtz paraxial wave equation and also many other families of high-order Gaussian mode 

solutions such as Hermite-Gaussian modes and Laguerre-Gaussian modes were discussed. 

 

In Chapter 2 we demonstrated a novel approach of decomposing customised high-order modes that 

required no a priori knowledge of the spatial scale of the modes which lead to an optimised modal 

expansion. We proposed a simple two-step automated digital approach of first determining the second 

moment size of the beam 0 and the beam propagation ratio #�; and we showed that this led to the 

scale 0�	+0� = 	0/√#�) of the adapted set to be determined. We showed that this enabled the 

second step of determining an optimal decomposition in the adapted mode set to be possible whereby 

we determined the number of modes contained in the arbitrary optical field.  The new proposed modal 

decomposition technique that we have demonstrated will be very useful in applications such as optical 

communication where it can be used as a decoding device and also in beam shaping techniques or 

application as a test for purity of the generated modes. 

 

The novel generation of radial high-order Laguerre-Gaussian modes using an intra-cavity amplitude 

mask containing absorbing rings that match the zeros of the Laguerre polynomial was discussed in 

Chapter 3. In this Chapter we demonstrated that selective generation of higher-order modes using a 

fixed optical mask that was specially manufactured to match the mode that was being generated is 

possible. The intra-cavity generated higher-order Laguerre-Gaussian modes were shown to be of high 

mode purity and that the highest-order modes experience very low intra-cavity perturbation. The 

significance of this Chapter is that it demonstrated that high-radial-order Laguerre-Gaussian modes of 

� = 5 extracted more power from the resonator compared to the lowest-order � = 0 fundamental 

mode. These results were shown to provide a new route to high brightness lasers, where a single high-
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order mode could be intra-cavity generated to extract all the power from the resonator; and then extra-

cavity be shaped to the lowest-order fundamental TEM00 mode to increase the brightness of the laser. 

 

The generation of high-order Gaussian modes using an intra-cavity phase-only Spatial Light 

Modulator (SLM) was discussed in Chapter 4.  In this Chapter we demonstrated that any arbitrary 

mode could be generated on-demand when using a rewritable optical device such as the SLM. We 

showed that the SLM could be used as an intra-cavity rewriteable end-mirror that could be used to 

load digital holograms that would match the mode that was being generated. We showed that the 

generated modes corresponded to the expected modes and that the experimental results were in very 

good agreement with the theoretically expected one. The significance of this Chapter was to 

demonstrate a novel digital laser that allowed on demand arbitrary intra-cavity laser mode generation. 

 

In Chapter 5 we demonstrated a novel laser resonator that was tuneable to produce either a Gaussian 

mode or a Flat-top beam from the laser resonator. In the resonator an intra-cavity opaque ring close to 

the end-mirror of the cavity was included in the form of a digital hologram which was programmed on 

a phase-only Spatial Light Modulator. The other side of the laser resonator was also shown to contain 

an adjustable circular aperture closer to the output coupler. We demonstrated that varying the 

diameter of the aperture the laser resonator could either generate a Gaussian mode or Flat-top mode. 

The results of the Chapter showed the practicality and the convenience of using a digital laser to 

program and test different design parameters instead of the old, expensive and time consuming 

laborious lithographic technique of manufacturing the opaque rings as an optical element of the laser 

resonator.   

 

In Chapter 6 we demonstrated a method of detecting Laguerre-Gaussian beams with nonzero 

azimuthal order since they are routinely created external to laser cavities. We showed that at face 

value such similar modes that are generated inside a standing wave laser cavity may not be pure 

Laguerre-Gaussian modes with nonzero azimuthal order, but can be an incoherent sum of petal 

modes, which do not carry any orbital angular momentum. We used a doughnut mode that was 

generated using a digital laser to make a number of tests such as modal decomposition using digital 

holograms to prove that such an intra-cavity generated mode using a standing wave resonator will 

contain an incoherent sum of petals. 
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7.2. Future study 
 

The selective excitation of a very pure single high-order radial Laguerre-Gaussian modes from a 

diode-end-pumped solid-state laser resonator that was discussed in Chapter 2 showed that it is 

possible to extract maximum power from an intra-cavity oscillating high-order mode of very high 

purity such that it exceed that of the lowest-order fundamental TEM00 mode at critical values that are 

determined by the relative round-trip losses of the high-order mode. This demonstration is very 

important for future work of increasing the brightness of the laser beams since it firstly proves that 

high power extraction from high-order modes is possible and secondly very pure high-order modes 

with very little perturbation could be generated within the laser mode. These results provide a possible 

route to future work of increasing the brightness of the laser beam. The future work would include 

extra-cavity improving the brightness of the beam by reducing the propagation constant M2 of the 

high-order Laguerre-Gaussian mode to that of the lowest-order TEM00 Gaussian mode. The reduction 

of M2 could be achieved by many techniques such as field mapping, interferometric beam combing, 

geometrical transformations, complex amplitude modulation, refractive or diffractive beam shaping 

and so on.    

 

The novel digital laser for on-demand laser modes that was discussed in Chapter 4 has opened up a 

paradigm shift in the scientific community on how laser modes can be generated inside the laser 

resonator. The simplicity and the robustness at which customised laser modes can be generated by just 

creating a gray-scale image that represents your desired mode will hopefully make this a future 

technique of choice for intra-cavity beam-shaping ideas and tests. An added advantage to this 

technique is that the digital laser allows for dynamic rewritable gray-scale holographic images to be 

loaded on the SLM for real-time dynamic generation of customised modes to be produced by the 

laser. These advantages will prove to be significant for many applications that we would be 

investigating on the usability of the digital laser, from controlling thermal lensing and aberration in 

real-time, to real-time mode controlling and switching for application such as ranging, thin film 

deposition processes and optical communications. 

 

The novel modal decomposition technique that was demonstrated in Chapter 2 in combination with 

the digital laser of Chapter 3 would be a very good complimentary tool in optical communication; 

where the digital laser will be used as generating device of on-demand modes which will be injected 

on communication fibre cables while the modal decomposition device could be used as decoding 

device to determine the modes exiting the fibre cable. This type of application where the two 

techniques will be utilised will still be an ongoing research that we will be partaking in future. 


