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ABSTRACT 

Scrapter is a southern African endemic pollen-collecting genus consisting of 43 described 

species with 13 species also occurring in neighbouring countries such as Lesotho, Mozambique, 

Namibia and Zimbabwe.  Classification of Scrapter has been partially investigated using only 

morphological data set. In this study I reassess previous classification and describe a putative 

new species which has never been described before, Scrapter leovalis sp. nov. This study aimed 

at reassessing previous classification of Scrapter using 46 morphological characters and provide 

a new classification based molecular data; 28SrRNA, EF-1α and Opsin gene. Using phylogenetic 

methods such as parsimony analysis, maximum likelihood and bayesian analysis classification of 

Scrapter was possible. However, analyses of morphological characters only did not produce 

reliable phylogenies due to low branch supports (bootstrap and posterior support). Molecular 

data was analyzed individually and in supermatrix analyses which produced phylogenetic trees 

with high branch supports. To see how the morphological and molecular data complemented 

each other a simultaneous analysis of 28SrRNA EF-1α, Opsin and morphological characters was 

carried out. Simultaneous analysis produced phylogenetic trees resembling supermatrix trees 

obtained in the simultaneous analysis of the three genes alone. It was then concluded that 

morphological characters chosen for this study were not phylogenetically informative.  
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Chapter 1: Introduction 

Angiosperms and bees 

Angiosperms have an estimated 250,000-260,000 species (Soltis and Soltis, 2004). Bees are the 

most crucial pollinators of angiosperms (Danforth et al., 2006a) and as such they provide a major 

ecological service and contribute significantly towards the agricultural sector of most countries 

(Buchmann and Nabhan, 1996; Johannsmeier, 2001; Losey and Vaughan, 2006). There are 

currently over 19,000 described bee species globally (Michener, 2007; Bartomeus et al., 2011; 

Ascher and Pickering, 2012) and most are dependent on close associations with angiosperm host 

plants (Danforth et al., 2006a). This close relationship is best illustrated by the morphological 

specializations many bee species have which are specifically adapted for collecting, carrying, 

storing and using pollen and other plant products (Thorp, 1979, 2000). Bees are dependent on 

plant hosts for adult and larval nutrition, pollen, nectar and floral oils (Neff and Simpson, 1981; 

Buchmann, 1987; Wcislo and Cane, 1996), floral waxes and perfumes serving as sexual 

attractants (Dressler, 1982) as well as resins which are used to build nests (Armbruster, 1984). 

Many bee species specialize on one or a few closely related host plants (Wcislo and Cane, 1996). 

The recent decline in pollinators (including bees) is a worldwide threat for the pollination of 

many plant communities (Kevan and Phillips, 2001; Ashman et al., 2004). 

The bee genus Scrapter 

Scrapter (Lepeletier and Serville, 1828) is a southern African endemic bee genus consisting of 

morphologically diverse bee species (Davies et al., 2005). Approximately 40% of the species in 

the genus are distributed within the winter rainfall region of the Succulent Karoo Biome in the 

Western and Northern Cape provinces of South Africa (Davies et al., 2005). The Succulent 

Karoo is an arid region which is exceedingly rich in endemic flora and fauna (Cowling and 

Hilton-Taylor, 1994; Milton et al., 1997; Van Wyk and Smith, 2001; Smit et al., 2008). 

The Scrapter genus has been taxonomically placed within Colletinae (Michener, 2007). This 

family has recently been sub-divided based on morphology into three tribes; Paracolletini, 

Colletini and Scraptrini (Melo and Gonçalves, 2005); with the genus Scrapter placed within the 

tribe Scraptrini (Michener, 2007).  
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Eardley (1996) provided the first comprehensive taxonomic review of Scrapter.  In this study he 

recognized 31 species in the genus and described 11 new species. A more recent study by Davies 

et al. (2005) provided another taxonomic revision of Scrapter, and recognized eight new species. 

In the following year, a further three new species were added to the genus (Davies and Brothers, 

2006). Scrapter currently includes 43 described species (Eardley and Urban, 2010).  

Vegetation 

The floral preferences of Scrapter species have not been widely studied but members of six plant 

families (Aizoceae, Asteraceae, Neuradeceae, Proteaceae, Oxalidaceae and Zygophyllaceae) are 

considered to be pollinated by Scrapter species (Gess and Gess, 1993; Davies, 2006). The type 

species for the group, S. bicolor Lepeletier Saint-Fargeau & Audinet-Serville, has been collected 

in large numbers exclusively on Herrea species (Aizoceae). This shows the species is oligolectic 

to Herrea. However, there have been cases where other Scrapter species has been collected on 

Aizoceae flowers but those are rare occurrences (Davies, 2006).  The Oxalis genus belongs to the 

Oxalidaceae family and is native to southern Africa and South America (Leistner, 2000). Oxalis 

comprises about 700 species world-wide (Leistner, 2000). Approximately 270 species occur in 

southern Africa. Some species are widespread, but the majority of taxa are confined to the winter 

rainfall Fynbos Biome in the Western Cape of South Africa (Leistner, 2000). Another plant 

known to be pollinated by Scrapter species is Cotula barbata DC, which belongs to the 

Asteraceae family. Asteraceae is the most frequented family with 11 Scrapter species recorded 

feeding on various composite genera (Davies, 2006).  Cotula barbata  is a South African 

endemic plant and mostly confined to the Northern Cape and Western Cape (Raimondo et al., 

2009).  

Scrapter chloris, Scrapter luridus, Scrapter whiteheadi and Scrapter avius have been observed to 

frequent Grielum (Neuradaceae). Proteceae family is rarely visited by bees in southern Africa but 

two Scrapter species; Scrapter erubescens and Scrapter fulginatus forage exclusively on 

Leucadendron and Paranomus species (Davies, 2006). Species of Zygophyllum belonging to 

Zygophyllaceae are perennials and sometimes herbaceous annuals found mainly in the deserts 

and semi-deserts of the world (White, 1983). In Africa they are found in the arid and semi-arid 

areas in the southern part of the Eastern Cape, Western Cape and Northern Cape Provinces of 

South Africa, Namibia, southwestern Botswana and as far north as southern Angola (Low, 
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1998). Given that there is such a strong association between pollinators and the plants they 

pollinate, the distribution and evolutionary history of Scrapter is closely linked with the flora 

they pollinate (Davies et al., 2005). 

Utility of molecular data 

The taxonomic classification of Scrapter based on morphology alone can be problematic because 

of the overlap of plesiomorphic morphological characters within members of the family 

Colletidae (Michener, 2007). Scrapter can be morphologically aligned with several other bee 

genera; and species belonging to Scrapter have been incorrectly assigned to other tribes and even 

subfamilies. For example, Scrapter has been placed into Paracolletini, a tribe sister to Colletini 

(Michener, 1944). McGinley (1981) provided evidence suggesting Scrapter should be sister to 

Euryglossinae, an Australian subfamily. The evidence presented in the latter study was based on 

three larval characters (relation of hypostomal ridge to head capsule; orientation of maxillary 

palpus; structure of salivary lips). However, these findings by McGinley (1981) were not 

supported by geological evidence as Africa and Australia have not been in contact for about 130 

Million years (Early Cretaceous) and this date is much older than the origin of bees as a group 

~125 Ma (Engel, 2001), so the proposed hypothesis seems unlikely.  

Based on morphology, Melo and Gonçalves (2005) and Michener (2007) placed Scrapter in the 

tribe Scraptrini. Michener (2007) noted some distinguishing characters (a foveate prementum, 

reduced galeal comb and female basitibial plate being margined by a series of broken carinae), 

which can be used to separate Scrapter from most other hairy colletids. These characters suggest 

a relationship with the Euryglossinae instead of the Colletinae. In some species of Scrapter and 

Euryglossinae, the continuous carina forming an ordinary basitibial plate shows Scrapter to be 

related to Euryglossinae instead of Colletinae (Michener, 2007).  Employing only morphological 

characters to understand the relationship between Scrapter to other colletids may not be useful as 

some characters are plesiomorphic; inherited from ancestor and not phylogenetically useful for 

resolving relationship among ingroup taxa. For instance, the narrow grooves like facial foveae 

are not only observed in Scrapter but this character is also present in some Hylaeinae, 

Euryglossinae and other Colletinae species (Michener, 2007). Consequently, the possession of 

the fovea on the prementun sometimes resolves Scrapter as the basal branch of the Hylaeine 
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clade, and not a member of Colletine in the study of short tongue bee families by Alexander and 

Michener (1995).   

The morphological diversity observed among Scrapter species has led to different taxonomic 

treatments of the group. Eardley (1996) divided Scrapter into eight species-groups, which were 

convenient in describing the species but had no taxonomic relevance, whereas Michener (2000) 

in a subsequent study suggested two main groups within this genus. Michener (2000) considered 

species which have the following characteristics to belong to a group: (a) broad facial foveae of 

the female; (b) basitibial plate of the female with marginal carinae (or at least lower one) 

tuberculate or lobed; (c) propodeal triangle finely roughened; (d) thoracic sculpturing not 

especially coarse; (e) claws of female cleft or simple; and (f) body commonly larger and robust, 

with pale metasomal hair bands. Members of the second group are characterized by: (a) narrow 

facial foveae of the female; (b) basitibial plate of the female with simple marginal carinae; (c) 

propodeal triangle with striate dorsal surface separated from rest of the propodeum by pitted 

lines; (d) thoracic sculpturing of extremely coarse punctures, midline and notatauli deeply 

impressed on anterior end of scutum; (e) claws of female simple; and (f) body is small, slender, 

without metasomal hair bands.     

Considering the confusion presented by the morphological classification of Scrapter the 

inclusion of molecular markers may shed some more light on the phylogenetic relationships 

within the genus. Given the previous findings relating to the traditional taxonomical 

classification of the Scrapter this study aims to test these previous morphological classifications 

of Scrapter through combined analysis of molecular sequences and morphological data within a 

phylogenetic framework. In the second chapter of this thesis all morphological data currently 

available for Scrapter is combined and analyzed. Using the morphological data a new species is 

described. In the third chapter molecular data from three genes is collected and used to construct 

a phylogeny. Lastly, the two types of data sets will be analyzed simultaneously to build a 

supermatrix phylogeny.  

 

 

 



5 
 

Chapter 2: Morphological analysis of Scrapter and description of a 

new species 

Introduction 

Scrapter Lepeletier & Serville, 1828 is a South African endemic bee genus belonging to the 

family Colletidae, subfamily Colletinae, and tribe Scraptrini (Eardley and Urban, 2010; 

Michener, 2007). Scrapter is a pollen-collecting genus with 43 described species, with members 

primarily distributed in South Africa; 13 species also occur in neighbouring countries such as 

Namibia, Mozambique, Zimbabwe and Lesotho (Eardley and Urban, 2010). This genus can be 

easily differentiated morphologically from the other Colletinae genera by five key features: the 

body is elongate, there are two submarginal cells in the fore wing (Davies and Brothers, 2006; 

Davies et al., 2005; Eardley, 1996; Michener, 2000), the clypeus and paraocular areas lack 

yellow maculation (Davies and Brothers, 2006); the maxillary palpi are six-segmented and differ 

in length (Davies and Brothers, 2006); and facial foveae are observed in both sexes of all taxa 

(Davies and Brothers, 2006).  

There have been conflicting viewpoints concerning the classification of species within Scrapter. 

Using morphological characters alone, Eardley (1996) divided Scrapter into eight conglomerate 

groupings, namely the nitidus (Scrapter nitidus (Friese), Scrapter ruficornis (Cockerell) and 

Scrapter opacus (Friese)), basutorum (Scrapter basutorum (Cockerell), Scrapter flavipes (Friese) 

and Scrapter pallidipennis (Cockerell)), flavostictus (Scrapter flavostictus (Cockerell), Scrapter 

albitarsis (Friese), Scrapter absonus (Eardley), Scrapter avius (Eardley), Scrapter calx 

(Eardley), Scrapter caesariatus (Eardley) and Scrapter aureiferus (Cockerell)), bicolor (Scrapter 

bicolor (Lepeltier and Serville), Scrapter whiteheadi (Eardley)¸ Scrapter niger (Lepeltier and 

Serville), Scrapter leonis  (Eardley), Scrapter thoracicus (Friese), Scrapter tomentum, Scrapter 

algoensis (Friese), Scrapter albifumus (Eardley), Scrapter chloris (Eardley) and Scrapter luridus 

(Eardley)), striatus (Scrapter striatus (Smith) and Scrapter capensis (Friese)),  armatipes 

(Scrapter armatipes (Friese) and Scrapter amplitarsus (Friese)) and erubescens (Scrapter 

erubescens (Friese), Scrapter fuliginatus (Eardley) and Scrapter amplispinatus (Eardley)) 

species groups. The heterodoxus species-group (Scrapter heterodoxus (Cockerell)) is monotypic, 

with specimens of this species characterized by quite unique morphological characters including 
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a unique shape and coloration of the vestiture. These groupings were based on few characters 

shared between species in each grouping and will for the whole dissertation be referred to as 

“Eardley’s groupings” to facilitate communication.  

In a subsequent study, Michener (2000) proposed that Scrapter can be divided into two major 

groups based on facial foveae, basitibial plate and pretarsal claws of the female, propodeal 

triangle sculpturing, thoracic sculpturing, and difference in body sizes. The first group consists of 

S. erubescens, S. fuliginatus, S. chloris, S. amplispinatus, S. striatus, S. capensis, S. carysomus, 

S. catoxys, S. eremanthedon, S. tomentum, S. algoensis, S. basutorum, S. pallidipennis, S. 

flavostictus, S. albitarsis, S. absonus, S. calx, S. caesariatus, S. aureiferus, S. heterodoxus, S. 

bicolor, S. whiteheadi, S. leonis, S. thoracicus, S. niger, S. amplitarsus and S. armatipes. The 

second group consists of S. pyretus, S. sittybon, S. viciniger, S. acanthophorus, S. chrysomastes, 

S. glarea, S. nitidus, S. ruficornis and S. opacus. However, in a few species these morphological 

characters are not consistent, i.e., some species show characteristics of both groups (e.g. S. 

flavipes, S. avius, S. rufescens (Friese), S. luridus and S. albifumus), and assignment to these two 

groupings is often unclear (Michener, 2000). The other two Scrapter species making a total of 43 

species were not included in Michener’s (2000) groupings. 

Davies (2006) conducted a cladistic analysis using 25 morphological characters and 42 species to 

evaluate the conflicting viewpoints. In this study he observed three highly supported clades: 

nitidus (S. ruficornis, S. opacus, S. nitidus, S. pallidipennis and S. flavipes), erubescens (S. 

erubescens, S. fuliginatus and S. amplispinatus) and chloris (S. chloris, S. luridus and S. 

whiteheadi) clades. The rest of the relationships within the genus were not well supported. The 

results only provided partial support for the divisions proposed by Eardley (1996) and Michener 

(2000). 

In this chapter I aim to extend the morphological character sampling used by previous authors 

Eardley (1996), Michener (2000) and Davies (2006), and reanalyze the morphological data to 

provide clarification on the classification of the Scrapter species.  

Materials and methods 

In total 46 morphological characters were analysed for 38 species (35 described Scrapter species, 

one putative new species and two outgroups, Leioproctus irroratus and Leioproctus plumosus 
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representing Paracolletinae). Due to a limited sampling period and not having access to all the 

dried material, seven species were missing from the analysis (Scrapter acanthophorus, Scrapter 

carysomus, Scrapter fulginatus, Scrapter glarea, Scrapter rufescens, Scrapter sittybon and 

Scrapter viciniger). Specimen information was obtained through examination of fresh collected 

material, archival material from the South African National Collection of Insects (SANC) 

reference collection or sourced from the literature (details below).  

Sample collection 

Qiniso Mthethwa with the help of Dr. Connal Eardley collected 87 Scrapter specimens 

representing 17 species (S. algoensis, S. amplispinatus, S. armatipes, S. bicolor, S. caesariatus, 

S. catoxys, S. chloris, S. eremanthedon, S. erubescens, S. flavipes, S. luridus, S. niger, S. nitidus, 

S. opacus, S. ruficornis, S. tomentum and S. whiteheadi) in the Northern Cape, Western Cape and 

KwaZulu-Natal provinces (Figure 1). Localities in the Northern Cape and Western Cape were 

visited in September – October 2012, while localities in KwaZulu-Natal region in January 2013. 

In addition to field collected specimens, 31 museum specimens were examined (Table 1). The 

collection localities for specimens which have associated GPS co-ordinates are also shown on 

Figure 1. Seven museum records did not have GPS coordinates and are therefore not shown in 

Figure 1. Morphological characters for S. pruinosus and S. pyretus were coded from literature.  

Specimens caught in the field were collected using sweep nets and killed with cyanide. 

Representative specimens for each of the identified species listed above were stored in 99.99% 

ethanol in the -20oC freezer for DNA extraction later, whereas the rest of the collected specimens 

were pinned for museum storage and deposited in the South African National Collection of 

Insects (SANC). Species identification was done in collaboration with Dr Connal Eardley using 

the reference collection housed at the SANC in Pretoria, South Africa. The putative new species 

Scrapter leovalis sp. nov was borrowed from the KwaZulu-Natal Museum in Pietermaritzburg, 

South Africa. This putative new species has not been formally described in previous studies. 

Specimen belonging to 25 Scrapter species were borrowed from the SANC collection (Table 1). 

Two specimens of each species (male and female, where possible) were included in the analyses. 

The specimens collected in the present study (noted by * in Table 1) have not received the 

database numbers, thus not available (N/A) as shown in Table 1. 

  



 
 

Table 1. The names and collection localities of the specimens used for coding morphological characters in this study. Accession 

numbers (Accession No.) refer to the identification number for each specimen placed in the SANC. F = female, M = male, Nam = 

Namibia, S.A = South Africa, NCP = Northern Cape Province, O.F.S. = Orange Free State, WCP = Western Cape Province, E = East, 

S = South, NE= North East, Nat = Nature, Nati= National, Res = Reserve, SANC = South African National Collection of Insects, N/A 

= information not available. Asterisk (*) indicate specimen collected in the present study. Need to add in two extra columns listing 

collection date and collector following examiners comments. 

Sp. Name & Sex  Locality and Date GPS 

Coordinates 

Museum Accession No. Collector  

Outgroups      

L. irroratus, M+F Australia. NSW, Hilltop. 2.xii.1999  N/A N/A Leir705 N/A 

L. plumosus Australia. Victoria, Torquay. 19.xi.1999 N/A N/A Lepl706 N/A 

Ingroups      

S. absonus, M+F S.A. Langjan Nat. Res.10.iii.1990 22.52S, 29.14E SANC Pretoria HYMA04059 C.D. Eardley 

S. albifumus, M+F S.A. NCP, Richtersveld Nati. Park.12.ix.2001 28.18S, 16.58E SANC Pretoria HYMA08484 C.D. Eardley 

S. albitarsis, M S.A. Namaqualand.5.vi.1985 N/A SANC Pretoria HYMA08495 M. Stuck 

S. albitarsis, F S.A. WCP, 4m S Elands Bay.18.ix.2005 32.25S, 18.20E  SANC Pretoria HYMA08507 C.D. Eardley 

S. algoensis*, M+F S.A. NCP, Springbok.11.ix.2012 29.34S, 18.01E SANC Pretoria N/A Q.M. Mthethwa 

S. amplispinatus*, M S.A. NCP, Springbok.12.ix.2012 29.34S, 18.01E SANC Pretoria N/A  Q.M. Mthethwa 

S. amplispinatus, F Not labeled  N/A SANC Pretoria N/A   

S. amplitarsus, M S.A. NCP, Springbok, Goegap Nat. Res.13.viii.1993 N/A SANC Pretoria HYMA04077 V.B. Whitehead 

S. amplitarsus, F S.A. Namaqualand.04.ix.1985 N/A SANC Pretoria HYMA04080 M. Stuck 

S. armatipes*, M+F S.A. NCP, Springbok.11.ix.2012 29.34S, 18.01E SANC Pretoria N/A N/A 

S. aureiferus, M S.A. WCP, Sauer, 26 km Piketberg.21.x.2008 32.50S, 18.33E SANC Pretoria N/A C.D. Eardley 

S. aureiferus, F S.A. NCP, Wallekraal.x.1950 N/A SANC Pretoria HYMA04069 N/A 

S. avius, M S.A, NCP, Richtersveld Nati. Park.23.viii.2006 28.03S, 17.03E SANC Pretoria HYMA08496 C.D. Eardley 

S. avius, F Nam. Boom river Canyon, 4km of Orange 

river.25.x.1996 

28.00S, 17.03E SANC Pretoria HYMA08501 N/A 

S. bicolor*, M+F S.A. NCP, Springbok.11.ix.2012 29.34S, 18.01E SANC Pretoria N/A Q.M. Mthethwa 

S. basutorum, M+F S.A. O.F.S. Adullam Farm near Clarens 28.34S, 28.28E SANC Pretoria HYMA08515 N/A 

S. caesariatus*, M+F S.A. NCP, Garies.14.ix.2012 30.13S, 18.07E SANC Pretoria N/A Q.M. Mthethwa 

S. calx, M S.A. Cape Agulhas.27.ix.2001 34.50S, 20.01E SANC Pretoria HYMA08696 C.D. Eardley 

S. calx, F S.A. WCP, Vanrhysdorp.06.ix.2007 28.23S, 18.40E SANC Pretoria HYMA08685 C.D. Eardley 

S. catoxys* M+F S.A. NCP, Springbok.12.ix.2012 29.34S, 18.01 E SANC Pretoria N/A Q.M. Mthethwa 

S. capensis, M+F S.A. Namaqualand.05.vi.1985 N/A SANC Pretoria HYMA04098 M. Stuck 

S. chloris*, M+F S.A. NCP, Garies.14.ix.2012 30.12S, 18.07 E SANC Pretoria N/A Q.M. Mthethwa 

S. chrysomastes, M S.A, NCP, Richtersveld Nati. Park.23.viii.2006 28.03S, 17.03E SANC Pretoria HYMA08530 C.D. Eardley 
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Table 2. (Continued) 

Sp. Name & Sex  Locality GPS 

Coordinates 

Museum Database No.  

S. eremanthedon* M+F  S.A, NCP, North Eksteenfontein.13.ix.2012 28.49S, 23.10 E SANC Pretoria N/A Q.M. Mthethwa 

S. erubescens*, M+F S.A. NCP, Garies.14.ix.2012 30.11S, 18.10E SANC Pretoria N/A Q.M. Mthethwa 

S. flavipes*, M+F S.A. NCP, Springbok.11.ix.2012 29.34S, 18.01E SANC Pretoria N/A Q.M. Mthethwa 

S. flavostictus, M+F S.A. Natal Cathedral Peak Area.28.iii.1985 28.59S, 29.14E SANC Pretoria HYMA04111 C.D. Eardley 

S. heterodoxus, M S.A. WCP, Hermanus.29.ix.2001 34.14S, 18.26E SANC Pretoria HYMA08537 C.D. Eardley 

S. heterodoxus, F S.A. WCP, Citrusdal.07.ix.2001 32.36S, 18.53E SANC Pretoria HYMA08539 C.D. Eardley 

S. leonis, F S.A. Capland Wllowmore.15.viii.1921 N/A SANC Pretoria HYMA04126 H.  Brauns 

S. leovalis sp. nov, M+F S.A. WCP, Nieuwoudtville, Farm Glen Lyon, 

Renosterveld.11.ix.2003 

31.24S, 19.08E KwaZulu-Natal 

Museum (PMB) 

N/A M. Kuhlman 

S. luridus*, M+F S.A. NCP, Garies.14.ix.2012 30.27S, 17.41E SANC Pretoria N/A Q.M. Mthethwa 

S. niger*, M+F S.A. NCP, Garies.14.ix.2012 30.27S, 17.41E SANC Pretoria N/A  Q.M. Mthethwa 

S. nitidus*, M+F S.A. NCP, Garies.14.ix.2012 30.27S, 17.41E SANC Pretoria N/A Q.M. Mthethwa 

S. opacus*, M+F S.A. NCP, Springbok .11.ix.2012 29.34S, 18.01E SANC Pretoria N/A Q.M. Mthethwa 

S. pallidipennis, M S.A. NE kleinmond.29.ix.2001 34.20S, 19.05E SANC Pretoria HYMA08595 C.D. Eardley 

S. pallidipennis, F S.A. Dassiefontein Farm 30.09S, 17.59E SANC Pretoria N/A  

S. pruinosus, M+F Nam. Lüderitz.7.xii.1994 26.35S, 15.07E SANC Pretoria N/A M. Kuhlmann 

S. pyretus, M+F Nam. Swakop River.19.iii.1997 22.41S, 14.35E SANC Pretoria N/A S.K. Gess 

S. ruficornis*, M+F S.A. NCP, Springbok .11.ix.2012 29.34S, 18.01E SANC Pretoria N/A Q.M. Mthethwa 

S. striatus, M Not labeled  N/A SANC Pretoria N/A   

S. striatus, F S.A. WCP, Villiesdorp.20.ix.2001 33.58S, 19.16E SANC Pretoria HYMA08604 C.D. Eardley 

S. thoracicus, M S.A. Namaqualand, Hester Nalan.26.vi.1985 N/A SANC Pretoria HYMA04181 M. Stuck 

S. tomentum*, M+F S.A. NCP, Garies.13.ix.2012 30.27S, 17.41E SANC Pretoria N/A Q.M. Mthethwa 

S. whiteheadi*, F S.A. NCP, North Eksteenfontein.13.ix.2012 28.54S, 16.44E 

16.44S, 28.54E 

SANC Pretoria N/A Q.M. Mthethwa 
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Figure 1. Geographic distribution of Scrapter specimens examined for morphological data analysis. The putative new 

species is written in red on the map. GPS coordinates for S. pruinosus and S. pyretus were taken from the literature.  

Morphological data 

There was a total of 38 species available for morphological character coding and analyses. Four species (S. 

chrysomastes, S. leonis, S. thoracicus, and S. whiteheadi) had >50% missing data. To test the impact of missing 

data on the analyses, two data sets were constructed; the first data set (Appendix 2; Table 3) contained data 

from all 38 species including the species with missing data. The second data set (Appendix 2; Table 4) excluded 

the four species with missing data and included only 34 species. 

The study included a total of 46 characters (listed and described in Appendix 1), 40 which have been used in 

previous studies (Eardley, 1996; Michener, 1944, 2007; Engel, 2001; Davies and Brothers, 2006) and  6 new 

characters were added. New characters included; mandible colour, antennal scape colour, fovea on the second 

tergum (T2), fore tibia colour in male specimens, gonocoxa structure and basitibial plate in female specimens. 

The chosen morphological characters have been used in distinguishing certain groupings within the genus 

(Eardley, 1995; Michener, 2000), and could be phylogenetic informative. The morphological characters 
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showing high intraspecific variation (e.g. body length or color variation within single species) were avoided for 

this study. Diagrams of morphological characters used in the present study are shown in Appendix 1 with 

character states description. These were adopted for the present study from characters used in previous studies 

(Eardley, 1995; Davies et al., 2005; Davies and Brothers, 2006). 

Where specimens were in good condition, two specimens of each sex were examined. Eighteen characters were 

coded on both sexes, fourteen characters were coded only in male specimens and sixteen characters were coded 

only in females. In some cases reference material was not available and morphological information was sourced 

from the literature for two species (S. pruinosus and S. pyretus; Davies, 2006). Where specimens were damaged 

and characters could not be coded, those characters were treated as missing data (?) in the analysis. 

Phylogenetic analyses 

The two data sets were analyzed using parsimony, maximum likelihood (ML) and Bayesian optimality criteria. 

The parsimony analysis was carried out in TNT program (Goloboff et al., 2000). The analysis was conducted 

out using a traditional search with 1000 replicates and 10 starting trees per replicate. Tree bisection algorithm 

(TBR) swapping algorithm was used, saving 10 trees per replication. Equally parsimonious trees were used to 

create consensus trees by selecting the “estimate consensus” option. ML analysis was carried out in GARLI 

v2.0 (Zwickl, 2006) using the Markov variable (Mkv) model as implemented by Lewis (2001). Model-fit was 

improved by dividing data into subsets based on the number of states e.g. two-state characters were analyzed in 

the same partition. Two runs for each data set (38 species and 34 species) were conducted. The first run was 

conducted with five replicate searches without bootstrap replicates to find the most likely tree. The second run 

was conducted consisting of 100 bootstrap replicates. 

Bayesian inference (BI) was performed in MrBayes v3.2 (Huelsenbeck and Ronquist, 2003). Morphological 

data sets can be tricky to analyze in the MrBayes program as model selection is difficult. Four evolutionary 

models were tested (Table 2) and compared using Bayes factors in Tracer v1.5 (Rambaut and Drummond, 

2009). The Bayes factor (BF) is a statistical Bayesian alternative to frequentist hypothesis testing that is often 

used for multiple model comparison (Rouder and Morey, 2012). The model implemented in MrBayes allows for 

a gamma shaped rate variation and variable coding. The models tested were based on this model, changing only 

two parameters; rates and coding.  Interpretation of model support by Bayes factor was based on the guide lines 

described in Jeffreys (1961). Model 1 was selected as the best fit model using Bayes factors for both datasets 

(see Table 2) and was used in all BI runs. 

Four separate runs were performed for each data set to verify that the resulting tree topologies were not biased 

due to the different starting points (Danforth et al., 2006b) and to check the consistency of the obtained 
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topologies. Each analysis consisted of running four simultaneous chains for 2 million generations, sampling 

every 1000th generation. After each Bayesian run, convergence was assessed using Tracer v1.5 (Rambaut and 

Drummond, 2009) by observing the trace plots, density curves and effective sample size (ESS: Kass et al., 

1998). The first 2500 trees were removed as burnin from the tree files. Consensus trees were generated using 

the Consense module in the PHYLIP package (Felsenstein, 2004). Phylogenetic trees were visualized in FigTree 

v1.3.1 (Rambaut, 2009). All phylogenetic trees were rooted using L. irroratus and L. plumosus. 

 

Table 3. Models compared using Bayes factors.  

Model  Parameters 34 taxa 38 taxa 

Among site rate 

heterogeneity 

Coding Bayes factor (log10) Bayes factor (log10) 

Model 1 Gamma Variable 259.165 257.154 

Model 2 Gamma All 0.835 0.810 

Model 3 Equal  Variable  1.198 1.080 

Model 4 Equal All  0.001 0.001 

 

Results 

Generally, trees recovered by all three optimality criteria (parsimony, ML and BI) were poorly supported 

(Figure 2, 3 and 4). In parsimony and ML trees bootstrap support values less than 50% and Bayesian posterior 

probability values less than 0.80 are not shown on the trees. The ML and BI recovered similar topologies, while 

the topology recovered by the parsimony analysis was unresolved (Figure 2). The analysis of 38 and 34 taxa did 

not change the phylogenies recovered by any of three analyses. 

Parsimony analysis 

Parsimony analysis of the 38 taxa data set recovered 10 most parsimonious trees (tree length 233, CI = 0.27 and 

RI = 0.49). The consensus tree was not resolved with no branches supported by >70%.. Parsimony analysis of 

the truncated data set (34 taxa) resulted in four most parsimonious trees (tree length 215, CI = 0.30 and RI = 

0.49) and the consensus tree was again not resolved (Figure 2b). Excluding taxa with missing data in the 

analysis did not have a significant effect on the parsimony analysis as the there were no resolved clades in the 

phylogeny Figure 2b. 

Maximum likelihood analysis 

Model-based analysis also resulted in a poorly resolved tree (Figure 3). Some associations were, however, 

supported. S. opacus was placed at the base of the tree with 65% and 95% (Figures 3a and b), followed by S. 

caesariatus and S. eremanthedon branch (52% in Figure 3a and 50% in Figure 3b) in the S. nitidus clade 
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consisting of S. nitidus, S. caesariatus and S. eremanthedon.  The S. whiteheadi and S. leonis branch was well 

supported with 82% bootstrap support (Figure 3a). However, these taxa had more than 50% missing data. 

Analysis of the truncated data set (Figure 3b) did not produce a better or a unique tree, however, the placement 

of S. opacus at the base of the tree received rather improved 95% bootstrap support and the association of S. 

pruinosus and S. pyretus also showed an increased 86% bootstrap support. The placement of S. leovalis sp. nov 

is consistent in Figures 3a and b. The clade of S. eremanthedon and S. caesariatus remained poorly supported 

(50% and 52%) in both 38 and 34 taxa analyses unlike the S. pyretus + S. pruinosus clade showed improvement 

in Figure 3b with 86% bootstrap support.   
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Figure 2. (a) Strict consensus phylogeny showing results of parsimony analysis of the 38 taxa. (b) Strict consensus phylogeny showing results of parsimony 

analysis of the 34 taxa. No bootstrap values above 50% were recovered.  
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Figure 3. Maximum likelihood analyses of the (a) 38 taxa matrix and (b) 34 taxa matrix. Bootstrap support values are shown above the branches. However, 

bootstrap support values below (50%) are not shown.

b) 

a) 
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Bayesian analysis 

Phylogenetic trees recovered from the Bayesian analysis did not receive high posterior 

probability support values (Figure 4, values less than 0.80 posterior probability are not shown on 

the trees). Only the S. pruinosus and S. pyretus branch received posterior probability support of 

0.92 and 0.96 in Figure 4a and b respectively. The association of S. pyretus and S. pruinosus was 

consistent in ML and BI analyses with acceptable bootstrap support in ML (Figure 3) and 

acceptable posterior probability support in BI (Figure 4). The position of the undescribed species 

S. leovalis sp. nov was consistent in Figures 4a and 4b as it was in Figures 3a and b. The 

relationship of several species was consistent regardless of the poor posterior probability support 

(not shown), i.e. the S. bicolor clade (S. bicolor, S. calx and S. erubescens) were constantly 

grouped together albeit with no support. Other branches that were consistent in Figures 4a and b 

include the S. eremanthedon and S. caesariatus; S. algoensis clade (S. algoensis, S. striatus and 

S. pallidipennis). Generally, Figure 4a and 4b displayed the same taxonomic classification of the 

species within the Scrapter genus.  
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Figure 4. Bayesian consensus phylogeny of Scrapter species and outgroup analyzed in this study, a) 38 taxa and b) 34 taxa data sets. Posterior 

probabilities are indicated for each node when > 0.80. 

 

a) b) 
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Discussion 

Any heritable characters can be used to infer phylogeny. Traditionally morphological characters 

have played a large role in the taxonomy of the southern African bee genus Scrapter (Eardley, 

1996; Davies, 2006; Michener, 2007). In this chapter I present a comprehensive reanalysis of 46 

morphological characters using a phylogenetic approach. In total 46 morphological characters 

were scored for 38 taxa. In general the phylogenies presented were poorly resolved with most 

associations not well supported. The addition of missing data had no significant effect on the 

phylogenetic reconstruction although in some cases branch support declined see Figure 3a, b and 

Figure 4a and b.   All three methods of phylogenetic reconstruction (parsimony, maximum 

likelihood and Bayesian inference) resulted in largely unresolved phylogenies. The model-based 

methods did, however, provide some clarification.  

A lineage including S. pyretus and S. pruinosus was well supported by moderate ML bootstrap 

support (72% in Fig 3a and 86% in Fig 3b) and posterior probability support (0.92 in Fig 4a and 

0.96 in Fig 4b). This association was also noted by Davies (2006) who described several 

synapomorphic characters for these taxa, for example, antennae which are brownish dorsally and 

yellow ventrally, mandibles which are distally black and basally yellow and a clypeus which is 

mostly densely punctate with smooth and shiny interspaces and without a medio-longitudinal 

sulcus. In addition, the propodeum is angulate and the pygidial plate is absent in the males, while 

the female specimens have different vestiture appearances but their integument colour is similar, 

being black. The S. bicolor, S. erubescens and S. chloris clade was also consistent in ML and BI 

analytical methods. Morphologically these taxa also supported by the presence of fovea in the 

second tergum, shiny facial fovea and a largely reddish metasoma.  

The effects of missing data have been debated in previous investigations (Novacek, 1992; 

Wilkinson, 1995; Wiens, 2003) and in this study the inclusion of missing data had no impact on 

the resolution of the phylogenies, particularly the parsimony and maximum likelihood 

phylogenies. Missing morphological data was considered misleading when reconstructing 

phylogenetic relationships (Anderson, 2001; Donoghue et al., 1989; Huelsenbeck, 1991; Wiens, 

2003) and in combined data sets (e.g. genes and morphology) that do not include identical taxa 

(Wiens and Reeder, 1995; Sanderson et al., 1998). It can lead to an increased number of shorter 

trees and decreased resolution (Wiens and Reeder, 1995). Huelsenbeck (1991) reported that 
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highly incomplete taxa sampling can decrease phylogenetic accuracy because missing data 

increase the percentage of equivocally resolved ancestral characters, which leads to decreased 

resolution and thus to decreased phylogenetic accuracy. However, subsequent studies by Wiens 

(2003) and Wiens and Morrill (2011) provided evidence that data sets with up to 90% missing 

data for a few particular taxa can be correctly and efficiently used to provide substantial support 

for analyses. Although missing data is certainly a factor in this study, I do not believe that the 

presence of missing data biases phylogenetic estimation as removing the taxa with missing data 

had very little impact on the resolution in the trees. 

 The poor support observed in the phylogenies constructed using morphological characters alone 

is probably due to a lack of data, i.e., a limited number of morphological characters coded, low 

characters/taxa ratios and the missing data in the matrix. It cannot be concluded that 

morphological data alone can or cannot fully resolve the evolutionary history of this group, 

rather, from the results of the three analyses it can be concluded that the morphological 

characters sampled in this study were not sufficient for phylogenetic analyses. In the next chapter 

molecular data will be used to complement these results.   

The morphological data does, however, provide evidence for a new species. The new species, 

Scrapter leovalis sp. nov, is described below. Additional analyses will need to be conducted to 

clarify the position of the taxon within Scrapter. 

 

 

Taxonomy 

Description of Scrapter leovalis sp. nov  

Specimens belonging to the putative new species used in this paper are the property of the 

KwaZulu-Natal Museum, South Africa. Samples were examined and measured under a stereo 

microscope in UKZN Electron Microscope department, South Africa. The terminology follows 

that of Michener (2007). Bilaterally symmetrical structures are described in the singular. 

Abbreviations used: F- flagellomere, T- metasomal tergum and S- metasomal sternum. The term 
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carinulate in describing surface sculpture refers to largely parallel, raised, longitudinal ridges that 

are fairly densely packed together. 

Species Diagnosis 

Both female and male specimens of the species can be recognized by white sparse vestiture, 

ventrally yellow antennal flagellum, metasoma brownish, no apical hair bands on tergum 1-4 , 

stigma wide, propodeum strongly angulate, mesoscutum with sparse punctation, head and 

mesosoma shiny black, propodeal triangle forming an approximately equilateral triangle. 

Antennal flagellum is brownish to yellow ventrally. There is sparse punctation on the 

mesoscutum of both female and male specimens. And the species has no clypeal 

mediolongitudinal sulcus. 

Description 

Female: 

3 Paratypes: South Africa, Nieuwoudtville Farm Glen Lyon, Renosterveld S31.24.03 E19.08.34 

700m M. Kuhlmann leg. 11. ix. 2003  

Measurements (n= 3): head length 1.90-2.30 mm, head width 1.15-1.72 mm, length of clypeus 

0.4-0.6 mm, lower interocular distance 1.00-1.20 mm, upper interocular distance 1.15-1.28 mm, 

length of eye 1.00- 1.20 mm, interantennal distance 0.40-0.50 mm, antennocellar distance 0.38-

0.41 mm, antennocular  distance 0.30-0.40 mm, length or malar area  0.10-0.12 mm, 

mesoscutum length 1.00-1.20 mm, mesosoma length 1.80-2.00 mm, length of stigma 0.80-1.00 

mm, width of stigma 0.16-0.20 mm, length of marginal cell beyond stigma 0.75-0.80 mm, length 

of marginal cell 1.00-1.30 mm, length of free part of marginal cell 0.72-0.80 mm.  

Head: clypeus slightly convex, integument between punctures glabrous, sparse punctures about 

two to three puncture diameter apart, no clypeal mediolongitudinal sulcus. Mandible black with 

reddish apex, ventral side with sparse vestiture. Supraclypeal area glabrous between punctures, 

greatly convex, sparse punctation two-puncture diameter apart. Scape black, sparse white 

vestiture. Vertex seen from front, weakly convex to almost flat, almost the same level with 

summit of eyes. Frontal line carinate. Compound eyes parallel ventrally. Gena area finely 

sculptured, shiny, white sparse vestiture. Mouth parts not exposed. Frons sparse punctation about 

two puncture diameter apart. Facial foveae sulcus-like, shiny. F1-F11 yellow ventrally, dorsally 
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black. Mesosoma: pronotum shiny. Mesocutum and scutellum with finely reticulate sculpture. 

Mesoscutum with sparse punctation approximately two to three puncture diameter apart, sparse 

white vestiture. Propodeum strongly angulate, basal area roughly sculptured to carinate, naked. 

Pronotal lobe brownish to black. Metasoma: T1-T3 brownish, T4 brownish anteriorly, black 

posteriorly. T5-T6 black. T1-T3 graduli discs shiny, reticulate sculpture. Legs: fore tibia mostly 

brown to black with yellow spot dorsally. Mid and hind tibia brown to black. All tarsi brown to 

black. Metabasitibial plate not entire. 

 

 

Figure 5. Lateral view (a) and dorsal view (b) of Scrapter leovalis sp. nov female 

b) 

a) 
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Male:  

Holotype: South Africa, Nieuwoudtville Farm Glen Lyon garden on Chrysanthemum spec. 

S31.23.50 E19.08.28 700m. M. Kuhlmann. 27.viii 2003.  

2 Paratypes: South Africa, Nieuwoudtville Farm Glen Lyon, Renosterveld S31.24.03 E19.08.34 

700m M. Kuhlmann leg. 10. ix. 2003  

Measurements (n = 3, 1 holotype and 2 paratypes): head length 1.40-1.60 mm, head width 1.60-

1.92 mm, length of clypeus 0.30-0.50 mm, lower interocular distance 1.00-1.30 mm, upper 

interocular distance 1.00-1.20 mm, length of eye 1.00-1.30 mm, interantennal distance 0.30-0.50 

mm, antennocellar distance 0.40-0.60 mm, antennocular distance 0.32-0.40 mm, length or malar 

area 0.10-0.30 mm, mesoscutum length 1.10-1.30 mm, mesosoma length 2.10-2.43 mm, length 

of stigma 0.84-0.96 mm, width of stigma 0.20-0.40 mm, length of marginal cell beyond stigma 

1.00-1.20 mm, length of marginal cell 1.20-1.30mm, length of free part of marginal cell 0.80-

0.95 mm. 

Head: White, long, sparse vestiture on face, light brownish or cream white above antenna. 

Clypeus glabrous, moderate punctation about one puncture diameter apart, no clypeal 

mediolongitudinal sulcus. Supraclypeus as in female.  Scape black, sparse white vestiture. 

Paraocular area and frons carinate. Facial foveae narrow, sulcus-like. F1-F8 yellow ventrally. F9-

F11 brown to black. Eyes converging below. Mandibles as in female. Mesosoma: Mesoscutum 

finely reticulate, shiny, sparse punctation about two to three puncture diameter apart. Scutellum 

fine reticulate sculptured. Propodeum strongly angulate, basal area roughly sculptured. Pronotal 

lobe brownish to black. Metasoma: T1-T3 brownish, T4-T5 black. T3 and T4 covered in short 

white vestiture. Foveae on T2. Legs: fore tibia and tarsus yellow dorsally. Mesotibia with a 

yellow spot where joining femur. Metabasitibial plate entire. Genitalia: Apex of gonostylus 

hairy, curved inwards.  
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Figure 6. Lateral view (a) and dorsal view (b) of Scrapter leovalis sp. nov male 

 

 

 

 

 

b) 

a) 



 

24 
 

Appendix1 

Character description 

Female and male imago 

1. Mandible: (0) all black; (1) basally yellowish to brownish, apically brownish to reddish; 

(2) basally black, apically brownish to reddish.  

2. Frontal line: (0) distinct or easily discernible; (1) indistinct,  not easily discernible 

3. Compound eyes: (0) converging below; (1) parallel. 

4. Vertex seen from front (Michez et al., 2009): (0) flat or weakly convex; (1) convex and 

elevated well above summits of eyes; (2) concave. 

5. Clypeus: (0) greatly convex; (1) weakly convex to flat. 

6. Frons: (0) densely to moderately punctate; (1) roughened, almost carinulate. 

7. Last flagellar segment (Eardley, 1996): (0) round apically (1) elongate and tapering to 

acute point. 

 

Figure 7. Antenna diagram showing (a) round apical last flagellar segment and (b) elongate and tapering last 

flagellar segment. 

8. Antennal scape (Eardley, 1996): (0) black ; (1) yellow anteriorly and black posteriorly. 

9. Paraocular area (Davies and Brothers, 2006): (0) dense to moderate punctation, smooth 

interspaces, (1) shagreened, near-carinulate sculpture; (2) sparse punctation smooth 

interspaces. 

10. Pronotal lobe (Eardley, 1996): (0) black to red-brown; (1) yellow to cream-white. 

11. Propodeal triangle shape (Eardley, 1996): (0) not modified, forming a roughly equilateral 

triangle, see Fig. 8b (Davies et al., 2005); (1) greatly modified with central area much 

reduced, triangle forming three acute points, see Fig. 8a (Davies et al., 2005). 

a) 

b) 
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Figure 8. Different propodeal triangle shapes 

12. Propodeal triangle sculpture (Eardley, 1996): (0) rough with reticulate sculpture 

medially; (1) smooth and shiny medially. 

13. Propodeum structure: (0) declivitous, see Fig. 9a (Davies et al., 2005); (1) weakly to 

strongly angulate, see Fig. 9b (Davies et al., 2005). 

 

Figure 9. Diagram showing propodeum structures 

14. Mesoscutum (Eardley, 1996): (0) densely to moderately hairy; (1) sparsely hairy to 

naked. 

15. Fore wing, stigma (Michez et al., 2009): (0) shorter than first submarginal cell; (1) as 

long as first submarginal cell. 

16. Fore wing, submarginal cells: (0) two, first longer than second; (1) two, first and second 

of equal length; (2) two, second longer than first. 

17. Foveae on the second segment of tergum (T2): (0) present; (1) absent. 

18. Claws (Eardley, 1996): (0) basal tooth, see Fig 10a, (1) simple, see Fig10b. 

a) b) 

a) b) 
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Figure 10. Different claw structures 

 

Male imago 

19. Clypeus shape (Eardley, 1996): (0) unmodified, see Fig. 9a (Davies et al., 2005); (1) 

somewhat reduced, see Fig. 11c (Eardley, 1996); (1) concave ventrally, see Fig. 11b 

(Davies et al., 2005). 

 

Figure 11. Diagram showing different clypeus structures. 

20. Clypeus surface: (0) shiny; (1) dull. 

21. Supraclypeal area (Davies and Brothers, 2006): (0) weakly elevated (flattish) with dense 

punctation, (1) gently to strongly convex with sparse to moderate punctation. 

22. Antenna (Eardley, 1996): (0) all or ventrally yellow and black dorsally; (1) all black to 

dark orange-brown; (2) ventrally yellow except for black apical part of F9 and F10-11. 

23. Facial foveae size : (0) narrow; (1) wide. 

24. Mesoscutum surface: (0) smooth between punctures; (1) finely reticulate or shagreened 

between punctures, matt-like in appearance. 

25. Mesoscutum structure: (0) generally densely punctate (punctures mostly less than a 

puncture diameter apart), (1) moderately to sparsely punctate (punctures mostly more 

than puncture diameter apart). 

26. Basitibial plate: (0) entire, see Fig 12a, (1) reduced to a tubercle or absent, see Fig 12b. 

a) b) 

a) b) 

c) 
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Figure 12. Basitibial plate structures 
 

27. Metatibia (Eardley, 1996): (0) simple, see Fig 13b; (1) tuberculate apically, see Fig 13a. 

 

Figure 13. Metatibia structure 

28. Fore tibia: (0) all black; (1) yellow anteriorly; (2) all yellow to light orange. 

29. Metabasitarsus: (0) flat or slightly swollen, Fig 14b; (1) inflated, Fig 14a. 

 

Figure 14. Metabasitarsus structures 

 

30. Mid-tarsus: (0) strongly swollen; (1) not swollen, flat. 

31. Gonocoxa: (0) broad and incurved posteriorly; (1) broad posterior end curving outwards; 

(2) broad narrow posterior end  approximately parallel sided.  

a) 

b) 

b) 

a) 

a) b) 
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Figure 15. Different claw structures 

Female imago 

32. Clypeus mediolongitudinal sulcus (Eardley, 1996): (0) absent, Fig 16b; (1) present, Fig 

16a. 

 

Figure 16. Clypeus with mediolongitudinal sulcus (a) and clypeus lacking mediolongitudinal sulcus  

33. Clypeus sculpture: (0) dense punctation; (1) moderately to sparsely punctate; (2) rough 

almost carinulate sculpture. 

34. Facial foveae: (0) shiny; (1) dull. 

35. Female mesoscutum surface: (0) smooth between punctures; (1) finely reticulate between 

punctures, matt-like in appearance. 

36. Female mesoscutum structure: (0) generally densely punctate (punctures mostly less than 

a puncture diameter apart), (1) moderately to sparsely punctate (punctures mostly more 

than puncture diameter apart). 

37. Metasoma colour (Eardley, 1996): (0) largely reddish: (1) black or largely blackish.  

38. Metasoma: (0) hairy with clearly visible basal tomentum; (1) largely naked without 

visible basal tomentum. 

39. Wings (Eardley, 1996): (0) infuscated; (1) hyaline. 

40. Mid-tibia: (0) black; (1) all yellow or with yellow markings. 

41. Mid-tibial spur (Michez et al., 2009): (0) slender; (1) robust, enlarged at base. 

42. Basitibial plate: (0) well developed; (1) poorly developed or absent. 

a) b) 

b) a) 
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43. Scopa (Michez et al., 2009): (0) unicolour; (1) bicolour. 

44. Metabasitarsus (Michez et al., 2009): (0) simple; (1) apically divided. 

45. Anterior (outer) metatibial spur (Davies et al., 2005): (0) strongly swollen; (1) flat. 

46. Prepygidial fimbria (Davies et al., 2005): (0) white or whitish; (1) black. 
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Appendix 2 
Table 3 Data matrix of 46 morphological characters examined on both male and female specimens in 38 taxa including 2 outgroup, 1 

putative new species (S. leovalis sp. nov) and 35 other Scrapter species.  

Taxa Character codes 
 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

3

1 

3

2 

3

3 

3

4 

3

5 

3

6 

3

7 

3

8 

3

9 

4

0 

4

1 

4

2 

4

3 

4

4 

4

5 

4

6 

L. irroratus 1 1 0 1 1 1 ? ? 2 0 0 1 1 1 ? ? ? 0 0 0 1 ? 0 0 1 0 0 0 0 1 2 0 1 0 0 1 1 0 ? 0 0 0 1 ? 1 1 

L. plumosus 1 1 0 1 1 1 ? ? 2 0 0 1 1 1 ? ? ? 0 0 0 1 ? 0 0 1 0 0 2 0 1 2 0 1 0 0 1 1 0 ? 0 0 0 1 ? 1 1 

S. absonus 1 1 0 2 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 

S. albifumus 2 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 2 0 1 1 0 0 2 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 

S. albitarsis 2 0 0 0 1 0 0 0 2 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 2 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 

S. algoensis 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 

S. amplispinatus 2 0 0 0 0 0 0 0 0 0 ? ? 1 0 0 1 ? 1 0 0 0 1 0 1 0 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
S. amplitarsus 2 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 

S. armatipes 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 

S. aureiferus 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 ? 0 0 0 1 0 1 2 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 

S. avius 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 2 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 0 

S. basutorum 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 

S. bicolor 2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 2 0 1 3 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 

S. caesariatus 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 2 0 1 0 0 1 1 0 0 0 0 1 3 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 

S. calx 2 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 

S. capensis 2 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 

S. catoxys 2 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 2 0 1 ? 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 

S. chloris 2 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 2 1 0 0 0 1 0 0 0 0 0 1 2 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 

S. chrysomastes ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 2 2 2 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
S. eremanthedon 0 0 ? ? 0 1 0 0 1 0 0 0 1 1 ? ? 0 0 ? 0 1 1 1 0 0 0 0 0 0 1 ? 0 0 0 1 1 1 1 ? 0 0 1 1 0 1 1 

S. erubescens 2 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 

S. flavipes 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 2 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 

S. flavostictus 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 2 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 

S. heterodoxus 2 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 

S. leonis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 0 0 0 1 1 1 1 1 1 1 

S. leovalis 2 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 

S. luridus 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 2 0 1 1 0 2 1 0 0 0 1 0 1 0 0 0 0 1 0 

S. niger 2 0 0 2 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 3 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 

S. nitidus 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 

S. opacus 2 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 2 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 

S. pallidipennis 2 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 

S. pyretus 1 0 0 ? ? 0 0 1 0 1 1 0 1 0 ? ? 0 0 ? 0 0 0 0 0 0 1 0 2 0 1 0 0 1 ? 0 0 0 0 ? 1 0 1 0 0 ? 0 

S. pruinosus 1 ? ? ? ? 0 0 0 0 0 0 0 1 0 ? ? 0 0 ? 0 0 0 0 0 0 ? 0 2 0 1 0 0 0 0 0 0 0 0 ? 1 0 1 0 ? 1 0 

S. ruficornis 2 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 

S. striatus 2 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 2 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 

S. thoracicus 2 ? ? 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 1 1 1 0 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
S. tomentum 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 

S. whiteheadi ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 2 2 0 0 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 1 0 0 0 1 1 1 1 1 1 1 
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Table 4. Data matrix showing outgroup taxa and 4 species with more than 50% missing data which were excluded in the 34 taxa 

phylogenetic analyses.  

Taxa Character codes 
 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

3

1 

3

2 

3

3 

3

4 

3

5 

3

6 

3

7 

3

8 

3

9 

4

0 

4

1 

4

2 

4

3 

4

4 

4

5 

4

6 

L. irroratus 1 1 0 1 1 1 ? ? 2 0 0 1 1 1 ? ? ? 0 0 0 1 ? 0 0 1 0 0 0 0 1 2 0 1 0 0 1 1 0 ? 0 0 0 1 ? 1 1 

L. plumosus 1 1 0 1 1 1 ? ? 2 0 0 1 1 1 ? ? ? 0 0 0 1 ? 0 0 1 0 0 2 0 1 2 0 1 0 0 1 1 0 ? 0 0 0 1 ? 1 1 

S. chrysomastes ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 2 2 2 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
S. leonis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 0 0 0 1 1 1 1 1 1 1 

S. thoracicus 2 ? ? 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 1 1 1 0 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
S. whiteheadi ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 2 2 0 0 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 1 0 0 0 1 1 1 1 1 1 1 
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Chapter 3: Molecular phylogeny of Scrapter 

Introduction 

Bees are the largest and most important pollinator group of angiosperms (Danforth et al., 2006a; 

Danforth et al., 2013). Bees also contribute considerably towards agriculture and the world’s 

economy. One-third of the human diet is derived from fruits, vegetables and nuts which depend 

on animal-mediated pollination, mostly bee pollination (Klein et al., 2007; Danforth et al., 

2013). Having such a crucial contribution ecologically and economically, it is essential we have 

a clear understanding of bee biodiversity, phylogeny, evolution and diversification (Danforth et 

al., 2013).  

Availability of molecular data and development of new phylogenetic methods have improved 

understanding of the bee phylogeny in the last fifteen years (Danforth et al., 2013). The use of 

molecular data is expected to produce highly resolved phylogenies due to the fact that DNA 

sequences provide far more character-state data than traditional morphological comparisons 

(Danforth et al., 2013). Therefore, statistically, as more data are examined, a close 

approximation of patterns of phylogenetic relationships should emerge (Cracraft and Helm-

Bychowski, 1991; Miyamoto and Cracraft, 1991; Danforth et al., 2006a; Danforth et al., 2013). 

Also, because DNA stores all inherited attributes of organismal history, direct comparison of 

DNA data provides the most basic of all data for phylogenetic reconstruction (Cracraft and 

Helm-Bychowski, 1991). In addition, the congruence among multi-gene data sets is arguably the 

most reliable indicator of phylogenetic accuracy (Cracraft and Helm-Bychowski, 1991; 

Miyamoto and Cracraft, 1991; Miyamoto and Fitch, 1995). As part of this study three nuclear 

protein-coding nDNA loci were examined to reconstruct the phylogenetic history of Scrapter.    

Nuclear genes have a slower rate of mutation than mitochondrial genes (Springer et al., 2011) 

and are often used in molecular-based phylogenetic analysis of groups of insects because of their 

large effective sample size (Danforth et al., 1999; 2006a; 2006b; Almeida et al., 2008; Almeida 

and Danforth, 2009; Springer et al., 2011). In many previous studies (e.g. Danforth et al., 1999; 

2006a; 2006b; Wiegmann et al., 2000) nuclear genes have been successfully used to recover 

deep relationships among bee families i.e. to recover  Cretaceous-age divergences. For the 

present study three markers were chosen: Elongation factor F2 copy (EF-1α F2:  Hovemann et 
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al., 1998; Almeida et al., 2008); large subunit ribosomal RNA (28SrRNA: Danforth, 2002; 

Danforth et al., 2004; Michez et al., 2009); and Long wavelength Rhodopsin (Opsin: Sidow, 

1992; Mardulyn and Cameron, 1999; Schubert et al., 2000; Michez et al., 2009). The selected 

molecular markers have been used successfully in the phylogenetic investigations of the family 

Melittidae (Michez et al., 2009) and Colletidae  (Almeida and Danforth, 2009). They have also 

shown potential in resolving divergences in other insects and arthropods: EF-1α (Danforth and 

Ji, 1998), 28SrRNA (Cameron and Mardulyn, 2001) and Opsin (Mardulyn and Cameron, 1999).  

Previous investigations of the Scrapter genus (Eardley, 1996; Davies, 2006; Davies and 

Brothers, 2006) all used morphological data sets, but morphological data alone could not fully 

resolve Scrapter phylogeny (see Chapter 2). The use of molecular data in this study is expected 

to shed more light on the classification of Scrapter species within the genus and to provide the 

first phylogeny of this genus based on molecular data. The aim of this chapter is to re-assess the 

previous morphology-based classification of Scrapter using the combined analysis of three 

molecular data sets and to provide molecular phylogenies of the Scrapter. 

 

Materials and methods 

Taxon sampling 

Molecular data were analyzed from 30 specimens representing 24 species (22 Scrapter species 

and the outgroup taxa Leioproctus irroratus and Leioproctus plumosus representing Paracolletini 

a sister group to Scrapterini; Table 5). All 8 morphological species-groups of Scrapter (Eardley, 

1996) are represented in the molecular data (Table 5).  Where possible multiple representative 

specimens from each species were examined and sequence data from Genbank (Table 5, 

indicated by *) were combined with the data generated in the present study to verify species 

identification where morphological characterization was not certain. In two cases (Scrapter_sp1-

2013 and Scrapter_sp2-2013; Table 5) species designation was not clear. These specimens 

resembled none of the known species but possessed key features of Scrapter species: the body is 

elongate, there are two submarginal cells in the fore wing (Davies and Brothers, 2006; Davies et al., 

2005; Eardley, 1996; Michener, 2000), the clypeus and paraocular areas lack yellow maculation (Davies 

and Brothers, 2006). In total, 28 specimens (some species had multiple representatives) were 
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analyzed for 28SrRNA, 22 taxa for EF-1α and 21 taxa for Opsin. The GenBank accession 

numbers of the species sourced from GenBank database are listed in Table 5. 
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Table 5. Taxonomic sampling used in the current study. Species group follows description of Eardley (1996). Species data downloaded from 

GenBank are indicated by * with accession numbers provided. Sequence data generated in present study are indicated by +, missing data are 

indicated by -. NCP = Northen Cape Province, WCP = Western Cape Province, N/A = Not applicable. 

Species names Species 

group 

Locality (Provinces) Coordinates 28SrRNA EF-1α Opsin 

Outgroup       

L. irroratus* Not classified Australia. NSW, Hilltop. 2.xii.1999  Not available DQ872765 AY585132 DQ115555 

L. plumosus* Not classified Australia. Victoria, Torquay. 19.xi.1999 Not available DQ872766 AY585133 DQ115556 

Ingroup       

S. algoensis* Bicolor NCP. 90 km ENE Springbok. 10.ix.2001 Not available DQ872771.1  EF032901.1 EF032904.1 

S. algoensis Bicolor NCP, Springbok.11.ix.2012 29.34 38.2 S, 18.01 10.9 E + + + 

S. amplispinatus Erubescens NCP, Springbok.12.ix.2012 29.34 38.2 S, 18.01 10.9 E - + + 

S. armatipes Armatipes NCP, Springbok.11.ix.2012 29.34 38.2 S, 18.01 10.9 E + - + 

S. bicolor* Bicolor WCP, Pakhuis pass. 8.ix.2001 Not available JN566241.1 JN566287.1 - 

S. bicolor Bicolor NCP, Springbok.11.ix.2012 29.34 38.2 S, 18.01 10.9 E + - + 

S. caesariatus Flavostictus NCP, Garies.14.ix.2012 30.13 01.4 S, 18.07 04.6 E + + + 

S. catoxys Not classified NCP, Springbok.12.ix.2012 29.34 38.2 S, 18.01 10.9 E + + + 

S. chloris Bicolor NCP, Springbok14.ix.2012 29.34 38.2 S, 18.01 10.9 E + + + 

S. chloris* Bicolor Not available Not available JN603391.1 JN603456.1 - 

S. eremanthedon Not classified NCP.13.ix.2012 28.49 33.6 S, 17.14 21.6 E + + + 

S. erubescens Erubescens NCP, Garies.14.ix.2012 30.11 10.9 S, 18.10 04.3 E + + + 

S. flavipes Basutorum NCP, Springbok.14.ix.2012 29.34 38.2 S, 18.01 10.9 E - - + 

S. heterodoxus* Heterodoxus WCP. 31 km S Clanwillian. 7.ix.2001 Not available DQ872773.1 AY585136.1 DQ115559.1 

S. luridus Bicolor NCP, Garies.14.ix.2012 30.27 58.9 S, 17.41 45.2 E + + - 

S. niger1 Bicolor NCP, Garies.14.ix.2012 30.11 10.9 S, 18.10 04.3 E + + + 

S. niger2 Bicolor NCP, Springbok.11.ikx.2012 29.34 38.2 S, 18.01 10.9 E + - + 

S. niger* Bicolor WCP. 21 km N Hermanus. 28.ix.2001 Not available DQ872774.1 - DQ115560.1 

S. nitidus* Nitidus Not available Not available JN603392.1 JN603457.1 - 

S. opacus Nitidus NCP, Springbok.14.ix.2012 29.34 38.2 S, 18.01 10.9 E + - + 
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Table 5. (Continued)      

Species names Species 

group 

Locality (Provinces) Coordinates 28SrRNA EF-1α Opsin 

S. opacus Nitidus NCP, Springbok12.ix.2012 29.34 38.2 S, 18.01 10.9 E + + + 

S. ruficornis Nitidus NCP, Springbok.12.ix.2012 29.34 38.2 S, 18.01 10.9 E + + + 

Scrapter sp.1-

2013 

Unknown NCP, Springbok.12.ix.2012 29.34 38.2 S, 18.01 10.9 E + - - 

Scrapter sp. 2-

2013 

Nitidus NCP, Garies.14.ix.2012 30.11 10.9 S, 18.10 04.3 E + - + 

Scrapter sp. 1 PK 

2012 

Unknown Not available Not available JN603394.1 JN603458.1 - 

S. striatus* Striatus Not available Not available JN603393.1 JN603459.1 - 

S. tomentum Bicolor NCP, Garies.14.ix.2012 30.13 01.4 S, 18.07 04.6 E + - - 

S. whiteheadi Bicolor NCP, Springbok.12.ix.2012 29.34 38.2 S, 18.01 10.9 E + + - 
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DNA extraction, PCR and sequencing 

DNA extraction was performed using a Quick-gDNATM MiniPrep kit (Zymo Research: The 

Epigenetics Company). The DNA concentrations were measured using a Thermo scientific 

Nanodrop 2000 spectrophotometer. The 25µl PCR reactions contained 2µl of 10X DreamTaqTM 

Buffer, 0.5µl dNTP mix - 2mM each, 0.5µl of each primer (Table 6), 0.1µl DreamTaqTM 

enzyme, 19.4µl nuclease free water and 2µl DNA (10-35ng/µl). The DreamTaq Green DNA 

polymerase (Thermo Scientific) comes with a 10X DreamTaq Green Buffer which contains 

MgCl2 at a concentration of 20 mM. PCR was then performed following the conditions listed in 

Table 7. To successfully amplify the Opsin and EF-1α gene segments using primers designed in 

this study an additional 2µl of MgCl2 at concentration of 25mM, was added to PCR reactions. 

The water volume was adjusted to make up a total volume of 25µl per reaction. PCR products 

were visualised under UV light in 1.5% agarose gel. The PCR products were run against a 100bp 

molecular weight marker XIV (Roche). Desired bands were excised from the agarose gel where 

multiple bands were observed. The bands were chosen based on the expected size of each gene 

amplified. The excised bands were cleaned using a PCR Clean-up Gel Extraction Kit 

(NucleoSpin Extract II) and ZymocleanTM Gel DNA Recovery Kit (Zymo Research: The 

Epigenetics Company). PCR products were sequenced at the Central Analytical Facilities (CAF) 

at Stellenbosch University using BigDye chemistry (Version 3.1, Applied Biosystems) and 

analyzed on a 3100 ABI automated sequencer (Applied Biosystems). To check the accuracy of 

the sequence data and the sequence identity of each amplified fragment, the sequence data were 

checked by GenBank BlastN searches. All heterozygous sites in the gene sequences were coded 

using the IUPAC-IUB code. 

Table 6. Primer sequences used during the present study. 

Primers Sequences from 5’ to 3’ References  

28S   

Bel28SFor 5’-AGAGAGAGTTCAAGAGTACGTG-3’ (Belshaw and Quicke, 1997) 

A28SFor 5’-CCCCCTGAATTTAAGCATAT-3’ (Ward and Brady, 2003) 

Mar28SRev 5’-TAGTTCACCATCTTTCGGGTCCC-3’ (Mardulyn and Whitfield, 1999) 

28SD4Rev 5’-GTTACACACTCCTTAGCGGA-3’ (Danforth et al., 2006b) 

EF-1α   

HaF2For1 5’-GGGYAAAGGWTCCTTCAARTATGC-3’ (Danforth et al., 1999) 

F2rev1 5’-AATCAGCAGCACCTTTAGGTGG-3’ (Danforth et al., 1999) 

EF-F 5’-NCANCTGGGCACAGAGAT-3’ Designed in this study 

EF-R 5’-ATGTGACGATCATACCCGG-3’ Designed in this study 
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Table 6. (Continued)  

Primers Sequences from 5’ to 3’ References 

Opsin    

OpsinF3mod 5’-TTCGAYAGATACAACGTRATCGTNAARGG-3’ (Danforth et al., 2004) 

OpsinRevmod 5’-ATANGGNGTCCANGCCATGAACCA-3’ (Danforth et al., 2004) 

Ops-F 5’-ATCTGCTAAGCCACTG-3’ Designed in this study 

Ops-R 5’-CGATGGGAATWTCTGG-3 Designed in this study 

 

Table 7. Polymerase chain reaction conditions for each primer pairs used during the present 

study. 

Primer pair  PCR Conditions (35 cycles)  

28S    

A28SFor/Mar28SRev 94oC/ 1:30 94oC/ 1:00 ; 58oC/1:00; 72oC/1:00  72oC/10:00 

D2BF/D3AR 95oC/ 3:00 95oC/ 0:30 ; 58oC/ 0:30; 72oC/1:30  72oC/10:00 

EF-1α    

HaF2For1/F2rev1 94oC/ 1:30 94oC/ 1:00 ; 54-6oC/1:00; 72oC/1:00  72oC/7:00 

Elo F-F/Elo F-R 94oC/ 1:30 94oC/ 1:00 ; 55oC/1:00; 72oC/1:00  72oC/7:00 

Opsin    

OpsinF3mod/OpsinRevmod 94oC/ 2:00 94oC/ 1:00 52-4oC/1:00; 72oC/1:00  72oC/7:00 

Ops-F/Ops-R 94oC/ 1:30 94oC/ 1:00; 52-6oC/1:00; 72oC/1:00  72oC/7:00 

 

Phylogenetic methods 

Gene sequences were analyzed separately and combined for the supermatrix analysis using 

parsimony, maximum likelihood and Bayesian analyses. Sequence alignments were generated 

using ClustalX 2.1 (Larkin et al., 2007) and edited in BioEdit Sequence Alignment Editor 

package (Hall, 1999). Unweighted parsimony analyses were conducted using Tree Bisection 

Reconnection (TBR) in MEGA v5 (Tamura et al., 2011). I performed 1000 bootstrap replicates 

with 10 random additions per replicate. 

Using the Akaike information criteria (AIC: Akaike, 1974) in jModelTest v2.1.4 (Darriba et al., 

2012) the best-fit model for each gene was estimated. The Hasegawa substitution model 

(Hasegawa et al., 1985)with gamma distributed rates (HKY+G) was indicated to best fit the 

opsin gene data set, the Tamura-Nei (TrN+G) model (Tamura and Nei, 1993) was indicated to be 

suitable for the EF-1α data set and the Transition (TIM3+G) model (Posada, 2003) was indicated 

to best fit the 28SrRNA data set (Table 8). For each gene data set two maximum likelihood 

analyses were performed in GARLI v0.951 (Zwickl, 2006) using the best-fit models estimated 

(Table 8). The first run consisted of five replicate searches without bootstrap replicates to obtain 
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the most likely tree and the second run was performed with 100 bootstrap replicates to examine 

branch support. A 50% majority rule consensus tree was constructed using the Consense 

program in the PHYLIP package (Felsenstein, 2004). 

Bayesian inference (BI) was carried out using MrBayes v3.2 (Huelsenbeck and Ronquist, 2003). 

Substitution models for different genes were applied (Table 8). Analyses consisted of running 

four simultaneous chains for 10 million generations with trees sampled every 1000th generation. 

Convergence was assessed using the average standard deviation of split frequencies and 

inspection of trace plots, density curves and effective sample sizes using Tracer v1.5 (Rambaut 

and Drummond, 2009). Effective sample size values (ESS: Kass et al., 1998) give a general idea 

of the balance between the length of the chain and the posterior sampling frequency during the 

run. An ESS of 200 and above means that sufficient sampling has occurred (Rambaut and 

Drummond, 2009). The first 2500 trees were removed as burnin from tree files. Four separate 

runs were performed to verify that the resulting tree topologies were not biased by different 

starting points. A 50% majority rule consensus tree was constructed using the Consense program 

in the PHYLIP package. For both Bayesian and maximum likelihood analyses data were 

partitioned by gene and for each gene partition the appropriate substitution model was applied 

(Table 8) and analyzed simultaneously. 

Table 8. Substitution models estimated in jModelTest v2.1.4 using Akaike information criteria (AIC) 

which were used for the three nuclear markers. 

Gene Model name Lset Rates  Rate matrix State frequencies 

28SrRNA TIM3+I+G, (Posada, 2003) nst=6 Gamma (0 1 2 2 3 0) Estimate 

EF-1α  TrN+G, (Tamura and Nei, 1993) nst=6 Gamma (0 1 0 0 2 0) Estimate  

Opsin HKY+G (Hasegawa et al., 1985) nst=2 Invgamma 2rate Equal 

 

Results 

The final combined data set consisted of 2269 aligned nucleotide sites. The 28S data included 29 

taxa which amounted to 970 aligned nucleotide sites with 103 parsimony informative sites. The 

EF-1α data had 21 taxa and 593 aligned nucleotide sites which produced 74 parsimony 

informative sites. And the Opsin data included 22 taxa and 706 aligned nucleotide sites which 

showed 223 parsimony informative sites. The summarized information about the number of 
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aligned nucleotides, number of parsimony informative characters and measure of data fit 

(consistency and retention index) is listed in Table 9. Of the three nuclear genes used the Opsin 

gene appeared to be most rapidly evolving with 46% variable sites compared to EF-1α, 20% and 

28SrRNA, 16% (Table 9). The 28SrRNA gene was the most conserved marker out of three 

nuclear markers with 82.5% conserved sites in the sequence. And EF-1α gene was also 

conservative with 79% constant characters in the alignment; Table 9. 

 

Phylogenetic analyses  

Bootstrap consensus trees were constructed for the parsimony analysis of each gene and are 

shown below (Figure 17). Measure of fit was estimated in MEGA v5 (Tamura et al., 2011) and 

all three nuclear markers showed high consistency (CI) and retention indexes (RI) values; 

(28SrRNA showed CI=0.796 and RI=0.859), EF-1α showed CI=0.795 and RI=0.856 and lastly 

Opsin had CI= 0.872 and RI= 0.879). These values indicate that the alignment analyzed contain 

few homoplasious characters (Farris 1969). 

  

Table 9. Details of the three molecular markers included in the present study. Measure of data fit 

(consistency index and retention index) were estimated in MEGA v5.  

 28SrRNA EF-1α Opsin Supermatrix 

No. of aligned sites 970 593 706 2269 

No. of conserved sites 800 468 379 1647 

No. of variable sites 156 119 322 597 

No. of parsimony informative  sites 103 74 223 407 

No. of most parsimonious trees 5 5 4 2 

Tree length 147 88 218 902 

Consistency index 0.796 0.795 0.872 0.829 

Retention index 0.859 0.856 0.879 0.819 

Parsimony informative  consistency index 0.737 0.739 0.827 0.750 

Parsimony informative  retention index 0.859 0.856 0.879 0.819 

Parsimony informative composite index 0.663 0.633 0.728 0.610 

 

Maximum likelihood trees (not shown) were identical to trees obtained in Bayesian analyses, 

therefore maximum likelihood bootstrap values were then incorporated on the Bayesian trees. 
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Posterior probability values less than 0.80 and bootstrap values less than 50% are not shown on 

branches in Figures 17, and 18. The number of nodes resolved by each gene independently 

differed with the Opsin gene data recovering the most resolved and well-supported phylogeny 

(Figures 17c and 18c) presumably because of the high number of variable and parsimony-

informative sites (Table 9) compared to other genes analyzed. 

The high bootstrap support observed in the parsimony (Figure 17a) and maximum likelihood 

(Figure 18a) results and the high posterior probabilities (Figure 18a) of the 28SrRNA are 

attributable to most species having multiple representatives which make relationship between the 

two branches of the same species moderately well supported e.g. S. niger cluster (three S. niger 

specimens received 72% parsimony bootstrap support; 73% maximum likelihood bootstrap 

support and 1.00 Bayesian posterior probability support). There was support for a consistent 

close relationship between S. caesariatus and S. striatus in Figure 17a (99%) and Figure 18a 

(97% maximum likelihood bootstrap and 1.00 Bayesian posterior probability).  
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Figure 17 The unweighted parsimony bootstrap consensus trees of (a) 28SrRNA, CI=0.796, RI=0.859; 

(b) EF-1α, CI=0.795, RI=0.856; (c) Opsin gene, CI=0.872; RI=0.879 and (d) supermatrix analysis, 

CI=0.829, RI=0.819. The values above the branches are bootstrap support values.  
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1 
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a) 
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Figure 18. Bayesian trees with Bayesian posterior probability values and maximum likelihood bootstrap 

values annotated onto the trees; (a) 28SrRNA; (b) EF-1α; (c) Opsin and (d) supermatrix analysis. Values 

on the right side of the solidus (/) are posterior probabilities from the Bayesian analysis and on the left 

side are the bootstrap values from the maximum likelihood analysis. 
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1 
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The combined analyses of all available molecular data produced improved nodal posterior 

probability support of the phylogeny (Figure18d). The total of 28 sequences representing 24 

species were included in the supermatrix analysis and the tree was well resolved with accepted 

bootstrap and posterior probability support values at many nodes (Figure 18d). In the maximum 

likelihood and Bayesian supermatrix topology, S. erubescens (1.00 posterior probability and 50% 

bootstrap support) is placed at the base of Scrapter. The S. caesariatus + S. striatus clade 

received 99% bootstrap support (Figure 17d), 97% bootstrap and 1.00 posterior probability 

(Figure 18d). The S. chloris + S. algoensis clade received 99% bootstrap support (Figure 17d), 

64% bootstrap and 1.00 posterior probability (Figure 18d). The S. striatus + S. caesariatus clade 

received 100% bootstrap support (Figure 17d), 65% bootstrap support and 1.00 posterior 

probability (Figure 18d). The S. niger + S. tomentum clade received 95% bootstrap support 

(Figure 17d), 63% bootstrap support and 1.00 posterior probability (Figure 18d). 

Discussion 

Previous classifications of Scrapter  relied heavily on morphological characters (Davies, 2006; 

Eardley, 1996; Michener, 2007); this study presents the results of the analysis of sequence data 

from three nuclear markers. The molecular data does provide some support for the recognition of 

some of the associations suggested by Eardley (1996) and Michener (2007). Based on 

morphological data the bicolor group consists of ten species (S. bicolor, S. whiteheadi, S. niger, 

S. leonis, S. thoracicus, S. tomentum, S. algoensis, S. albifumus, S. chloris and S. luridus). In this 

study, seven of these species were included in the molecular analyses and formed a group in 

Figures 17a, c, d and Figures 18a and d. There was a close relationship between this group 

(“bicolor species group”) and the S. caesariatus and S. striatus clades. The S. caesariatus falls 

under the S. flavostictus-group and S. striatus under the S. striatus-group (Eardley, 1996). 

Morphologically, these three species-groups closely resemble each other and are characterized 

by several morphological characters including the posteromedially pointed male S7 and the lack 

of a distinct mediolongitudinal clypeal sulcus (Eardley, 1996). Two species (S. nitidus and S. 

ruficornis) belonging to the nitidus-group (Eardley, 1996) were also recovered in one clade 

Figure 17b and 18b.  Michener’s (2007) classification is mostly based on female specimens 

which may not be accurate, for example the S. flavipes female has a wide facial foveae 

(Michener 2007) which would cluster this species in Group 1 but the facial foveae of the male is 

narrow which is a trait diagnostic for Group 2 species. This creates confusion among species 
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groupings based on morphology. Another example is S. albifumus male which has narrow facial 

foveae (thus assigned to Group 2) but the thoracic sculpturing is finely reticulate and the 

basitibial plate forms two carinae. The latter two traits are observed in the Group 1 (Michener, 

2007). 

As this study was the first to examine the evolution of the Scrapter genus using molecular data, it 

can be used as a reference study in future studies investigating Scrapter. Further molecular work 

on the phylogeny and species identification, using molecular barcodes, is still needed to 

contribute additionally to our understanding of Scrapter taxonomy and phylogeny, as there were 

limited number of species in the current study.. Additional species sampling and molecular 

character sampling (mitochondrial DNA) are needed to revise the taxonomy of the group. 

Nonetheless, the phylogenetic trees based on the molecular data (Figures 17 and 18) presented in 

the present study suggest that the chosen morphological characters alone are not adequate for 

resolving classification of Scrapter. 
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Chapter 4: Supermatrix Analysis: combining morphological and 

molecular data 

Introduction 

Depending on the available data, large phylogenetic trees could be constructed using many 

independent data sets such as molecular sequences, morphology, behaviour, genomic 

arrangements and other traits (De Queiroz and Gatesy, 2006). These separate data sets can be 

combined and analyzed to produce a single phylogenetic hypothesis. Two methods have been 

proposed to achieve this: the supertree and the supermatrix (De Queiroz and Gatesy, 2006). The 

supertree method involves analyzing different data sets independently. The trees inferred from 

each data set are then used as input in a second analysis which produces the final supertree 

phylogeny (De Queiroz and Gatesy, 2006). However, some character information is lost when 

analyzing trees instead of analyzing the data directly (De Queiroz and Gatesy, 2006). 

In the supermatrix method all data sets are combined into a single data matrix and analyzed 

simultaneously (De Queiroz and Gatesy, 2006). Using a supermatrix approach is advantageous, 

over the supertree method, for several reasons. First, in a supermatrix analysis character evidence 

is used more fully in estimating the tree (De Queiroz and Gatesy, 2006). An important aspect of 

this full, direct use of data is that the phylogenetic signal in a supermatrix can be greatly 

improved from that which is apparent in the trees from separate analyses, presumably because 

the combined analysis in the supermatrix enables the signal to assert itself more strongly over 

noise (Barrett et al., 1991). In contrast, including data which is not phylogenetically informative 

(i.e. which is convergent, homoplasy), may increase noise and actually reduce resolution in the 

supermatrix (Barrett et al., 1991). Combining different datasets (such as morphological and 

molecular) will  most likely produce more reliable end results and allow for close scrutiny of 

conflicts between different datasets (e.g. Simonsen et al., 2006; Warren et al., 2009). In the 

present study we evaluated the utility of the supermatrix analysis by simultaneously analyzing 

the molecular data from three nuclear markers (EF-1α, Opsin and 28SrRNA; Chapter 3) and 

morphological data set including 46 characters (Chapter 2). Because phylogenetic resolution can 

be reduced by including characters that are not tracing the phylogenetic history of the group, I 

also examined where morphological and molecular evidence agree and where they seem to be in 

conflict. 
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Materials and methods 

Supermatrix analyses can recover hidden support, that is high support for a clade in a combined 

analysis relative to that recovered by separate analyses of the individual data sets (Barrett et al., 

1991; De Queiroz and Gatesy, 2006). But extensive missing data can bias parameters that are 

based on summations of all characters, for example branch lengths, nucleotide composition 

biases and corrected distances between taxa (Gatesy et al., 2002). This is relevant because 

several species analyzed in Chapter 2 were not available for the molecular study. To limit the 

levels of bias through missing data, species had to have at least one gene data set and 

morphological data to be included in this analysis as shown in Table 10. Therefore only 21 

species were included in this study.  

Table 10. The list of taxa and different data sets incorporated in the supermatrix analysis. (+) = data 

present for that particular data set; (-) = data absent for that particular data set. Taxa shaded in blue only 

have morphological data. 

Taxa  28SrRNA Ef-1α Opsin Morphology 

L. irroratus + + + + 

L. plumosus + + + + 

S. algoensis + + + + 

S. amplispinatus - + + + 

S. armatipes + - + + 

S. bicolor + + + + 

S. caesariatus + + + + 

S. catoxys + + + + 

S. chloris + + + + 

S. eremanthedon + + + + 

S. erubescens + + + + 

S. flavipes - - + + 

S. heterodoxus + + + + 

S. luridus + + - + 

S. niger + + + + 

S. nitidus + + + + 
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Table 10. (Continued)     

Taxa  28SrRNA Ef-1α Opsin Morphology 

S. opacus + + + + 

S. ruficornis + + + + 

S. striatus + + - + 

S. tomentum + - - + 

S. whiteheadi + + - + 

 

The supermatrix analysis was conducted using Bayesian and maximum likelihood methods. 

Parsimony analysis was not conducted for this chapter for the following reason. Parsimony is not 

a model based analyses unlike Bayesian and maximum likelihood analyses. With model based 

analyses one is able to partition data sets accordingly, therefore enabling in-depth analysis of the 

different data sets by applying different evolutionary models on each data set. The Bayesian 

analyses were conducted in MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2003). A partitioned 

approach was taken with each nuclear gene and the molecular data assigned to a different 

partition. Models applied for each gene partition are the same as those in Table 8 (Chapter 3) and 

the Mkv model (Chapter 2) was applied to the morphological data partition. Analyses consisted 

of running four simultaneous chains for 10 million generations. Four separate runs were 

performed to verify that the resulting tree topologies were not biased due to different starting 

points of the MCMC (Markov chain Monte Carlo) chain (Danforth et al., 2006a). Trees were 

sampled every 1000th generation. After each Bayesian run, convergence was assessed in Tracer 

v1.5 (Rambaut and Drummond, 2009). The stationary state of the MrBayes run was evaluated by 

inspecting the trace plots, density curves and the effective sample size values (ESS: Kass et al., 

1998). 

For maximum likelihood analysis I used Garli v0.951 (Zwickl, 2006) with two runs. The first run 

consisted of five searches without bootstrap replicates. In the second run 100 bootstrap replicates 

were constructed to assess branch support. Bayesian and maximum likelihood consensus trees 

were constructed using the Consense programme in the PHYLIP package (Felsenstein, 2004). 

Phylogenies were visualized and edited in FigTree v1.3.1 (Rambaut, 2009). 
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To examine if the morphological characters were tracing the molecular phylogeny Consistency 

Index (CI) values were calculated in Mesquite (Maddison and Maddison, 2001) for each 

character using the molecular phylogeny. A graph was plotted showing CI for each 

morphological character in Figure 12. Each morphological character was traced on to the 

molecular phylogeny (combined analysis of all three nuclear genes Chapter 3, Figure 18d). The 

CI values (Farris 1969) range from 0 to 1 and provide a measure of how data fits a phylogeny. 

Values close to zero indicate high levels of homoplasy and in this study would suggest that a 

morphological character was in conflict with the molecular phylogeny. In contrast CI values 

close to one suggest that a morphological character is in agreement with the molecular 

phylogeny.  

Results and discussion 

Bayesian analysis recovered a well supported phylogenetic tree showing most branches with 

posterior probability support above 0.90 (Figure 19). A combined analysis of three genes and 

morphological characters recovered the same species classification within Scrapter as have been 

shown in Figure 18d, only with higher posterior probability support.  

 

Figure 19. Bayesian combined analysis of the 28SrRNA gene, EF-1α gene, Opsin gene and 

morphological characters of 21 Scrapter species.  Branch support is measured by posterior probabilities 

and posterior probability < 0.80 is not shown.  
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The (S. caesariatus + S. striatus) clade received high (1.00) posterior probability support (Figure 

19) and bootstrap support (99%) bootstrap in Figure 20. This relationship was also supported by 

separate datasets in molecular analysis (Chapter 3, Figures 17 and 18) but when only the 

morphological data set was analyzed (Chapter 2; Figures 3 and 4) these species did not form a 

monophyletic lineage; in Figure 2 the phylogenies were not resolved. 

When only morphological data set (Figures 3 and 4 in Chapter 2) was analyzed both S. 

eremanthedon and S. ruficornis were recovered in different positions in the phylogenies. 

However, in the bayesian and maximum likelihood combined analyses S. eremanthedon and S. 

ruficornis association was highly supported in Figures 19 and 20 with 1.00 posterior probability 

and 100% bootstrap support, respectively.  

 

Figure 20. Maximum likelihood analyses of the combined data viz. 28SrRNA gene, EF-1α gene, opsin 

gene and morphological charaters of 21 Scrapter species. Bootstrap support values less than 50% are not 

shown. 

The combined data analysis generally supported relationships that were recovered by the analysis 

of molecular data in Chapter 3. This was expected given that the majority of characters in the 

supermatrix are molecular and the phylogenetic signal of larger data can overwhelm that of 
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smaller data sets (46 morphological characters) in a combined analysis (Miyamoto, 1985). 

Several authors (Lamboy, 1994; Hedges and Maxson, 1996; Givinish and Systma, 1997) have 

disapproved the utility of morphological data on the basis that they are more prone to 

convergence than molecular data and therefore likely to provide misleading results. 

Interpretation of the supermatrix results requires ultimate caution due to uncertainty of the 

balance between the separate data sets used. The observed results could be because of the hidden 

support factor explained by De Queiroz and Gatesy (2006) i.e. the high branch support observed 

in the supermatrix analysis relative to that observed in individual data set separate analyses; the 

alternative would be the molecular data biasing the analysis because of the larger number of 

characters contained in the molecular data compared to the morphological data.  

Out of 46 morphological characters examined only 7 morphological characters had a consistency 

index of one (CI = 1) as shown in Figure 21. These characters are, (i) character 7 = shape of the 

last flagellomere in both sexes, (ii) character 8 = color of the antennal scape in both sexes, (iii) 

character 10 = colour of the pronotal lobe in both sexes, (iv) character 11 = shape of the 

propodeal triangle in both sexes, (v) character 29 = structure of the male metabasitarsus, (vi) 

character 30 = structure of the male mid-tarsus and (vii) character 45 = shape of the female 

metatibial spur. 

 

Figure 21. Phylogenetic signal present in the morphological characters estimated by CI values. 

Characters 7, 8, 10, 11, 29 and 30 are autapomorphic characters and although diagnostic for 

specific species they provide no information on the evolutionary relationships among species. 

Results based on molecular data in this study best define species relationship of Scrapter. 

Molecular analysis of individual data sets and combined data sets produced highly supported 
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phylogenies with moderately high consistency index 0.83 and retention index 0.87 compared to 

phylogenies produced from the analysis of morphological data set. From the Figure 21 we can 

conclude that molecular data examined better estimates the Scrapter classification compared to 

the morphological characters that were included in this investigation.  
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Chapter 5: General discussion and conclusion 

The genus Scrapter is a group of bees endemic to the southern African region. Previous cladistic 

investigations of Scrapter have relied only on the analysis of morphological characters (Davies, 

2006; Michener, 2007). These studies selected different suites of characters. This study aimed to 

test previous morphological classifications of Scrapter through combined analysis of molecular 

sequences and morphological data within a phylogenetic framework. In Chapter 2 I reexamined 

the morphological characters used in previous studies and analyzed a matrix including 46 

morphological characters from 38 and 34 ingroup taxa. This was done to observe if the missing 

data could negatively affect the phylogenetic assumption of Scrapter classification. The 38 taxa 

data set consisted of four species (S. whiteheadi, S. thoracicus, S. leonis and S. chrysomastes) 

with more than 50% missing data. These four species were excluded in the 34 taxa data set. The 

effect of missing data was not witnessed as the phylogenies in Chapter 2 did not vary in branch 

support or clade resolution, rather the limited number and poor fitness of morphological 

characters coded contributed to poor resolution of phylogenies in Figures 2 and poor branch 

support in Figures 3 and 4. 

The phylogenetic trees constructed using parsimony had low consistency and retention indexes, 

which suggest that the morphological characters have a high level of homoplasy and that the 

phylogenies based on these morphological characters alone may not be reliable. The analysis of 

morphological characters by model-based analysis is controversial because it is not clear how 

model fit will affect the final topology (Givnish and Sytsma, 1997), and in some cases the 

positions of the clades in the maximum likelihood and the Bayesian inference trees recovered in 

my study varied. Despite these limitations, the model-based analyses did recover similar clades. 

The S. nitidus clade comprising of S. nitidus, S. opacus, S. eremanthedon and S. caesariatus was 

observed in all three analyses. The most significantly supported nodes, the S. pruinosus and S. 

pyretus clade and S. eremanthedon and S. caesariatus clade were also well supported in all three 

analyses. My analysis was also able to confirm the specific status of S. leovalis sp. nov although 

the position of this taxon within Scrapter was unresolved. The poor bootstrap and posterior 

probability support observed in the morphological topology is partially because of the limited 

number of morphological characters chosen and the susceptibility to homoplasy of 

morphological characters (Lamboy, 1994; Hedges and Maxson, 1996; Givnish and Sytsma, 
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1997). Given the high levels of homoplasy and the low support for the branches observed in the 

morphology-based phylogeny, in Chapter 3 I used sequence data sets from three nuclear genes 

which were the Elongation factor (EF-1α), large subunit ribosomal RNA (28SrRNA) and Long 

wavelength Rhodopsin (Opsin) to produce for the first time molecular phylogenies looking at 

species classification among Scrapter genus. Molecular data recovered clades with high 

bootstrap and posterior probability support compared to the morphological data analyses. The 

recovery of S. bicolor group was consistent among the three genes examined and among three 

phylogenetic analysis carried out which were parsimony, maximum likelihood and bayesian. 

With an acceptable success of molecular data analyses over the morphological data analyses it 

was concluded that molecular data best classified Scrapter species. 

 

Simultaneous analyses of molecular and morphological data 

Supermatrix approaches are not only popular for producing robust phylogenies but also for easily 

accommodating different classes of data sensibly (De Queiroz and Gatesy, 2006). In Chapter 4 I 

evaluated an analysis of combined morphological and molecular data sets. This simultaneous 

analysis (Chapter 4 Figures 19 and 20) recovered well supported trees. It also yielded highly 

incongruent results compared to the morphological results, but showed similarities in comparison 

to the molecular data results in Chapter 3 as most identical clades were recovered and highly 

supported. Molecular data sets are known to have greater potential for conveying phylogenetic 

information than morphological data sets because of the number of characters taken into 

consideration when conducting a phylogenetic analysis (De Queiroz and Gatesy, 2006).  

The conflict between the morphology and molecular data observed in this study is not new, it has 

also been observed in other studies (e.g. Danforth et al,. 2006b combining five genes with 109 

morphological characters;  Michez et al., 2009  using five genes and 68 morphological 

characters; and Koch, 2010 combining morphological measurements with the COI gene). In 

conclusion the study successfully classified Scrapter species with the aid of simultaneous 

analysis of morphological and molecular data. The coded morphological data alone did not 

produce reliable phylogenies as they suffered from low consistency and retention indices, poor 

bootstrap and posterior probability supports and also poor resolution in the parsimony analysis. 

To overcome these factors in future studies, it is recommended to increase the amount of 
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morphological characters and include as many Scrapter species as possible in the investigation. 

This study provided a platform for future coming studies investigating classification of Scrapter 

species, as such, the outcome of this study is essential to understanding evolutionary history of 

the Scrapter genus. 
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