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Abstract

Multilevel models account for different levels of aggregation that may be

present in the data. Researchers are sometimes faced with the task of

analysing data that are collected at different levels such that attributes about

individual cases are provided as well as the attributes of groupings of these

individual cases. Data with multilevel structure is common in the social

sciences and other fields such as epidemiology. Ignoring hierarchies in data

(where they exist) can have damaging consequences to subsequent statistical

inference.

This study applied multilevel models from frequentist and Bayesian per-

spectives to the Swaziland Demographic and Health Survey (SDHS) data.

The first model fitted to the data was a Bayesian generalised linear mixed

model (GLMM) using two estimation techniques: the Integrated Laplace

Approximation (INLA) and Monte Carlo Markov Chain (MCMC) methods.

The study aimed at identifying determinants of HIV in Swaziland and as

well as comparing the different statistical models. The outcome variable of

interest in this study is HIV status and it is binary, in all the models fitted

the logit link was used.

The results of the analysis showed that the INLA estimation approach

is superior to the MCMC approach in Bayesian GLMMs in terms of com-
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putational speed. The INLA approach produced the results within seconds

compared to the many minutes taken by the MCMC methods. There were

minimal differences observed between the Bayesian multilevel model and

the frequentist multilevel model. A notable difference observed between the

Bayesian GLMMs and the the multilevel models is that of differing estimates

for cluster effects. In the Bayesian GLMM, the estimates for the cluster

effects are larger than the ones from the multilevel models. The inclusion

of cluster level variables in the multilevel models reduced the unexplained

group level variation.

In an attempt to identify key drivers of HIV in Swaziland, this study

found that age, age at first sex, marital status and the number of sexual

partners one had in the last 12 months are associated with HIV serostatus.

Weak between cluster variations were found in both men and women.
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Chapter 1

Introduction

It is estimated that thirty eight million people are living with HIV/AIDS

in the world and that over 20 million have died since the beginning of the

pandemic [19]. The Sub-Saharan Africa has the highest prevalence rate of

HIV/AIDS infection. Two thirds (64%) of the people living with the virus are

in Sub-Saharan Africa [33]. The HIV prevalence varies considerably accross

the the Sub-Saharan Africa region, with the driving forces of the disease

being varied and diverse. The variation of the epidemic has been thought

to be a product of local and social determinants among which are culture,

religion, poverty, gender, and migration. Other drivers include biological,

environmental and behavioral [33].

In Sub-Saharan Africa, the Southern African region has the highest preva-

lence rate of HIV infection. Estimates suggest that South Africa counts
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more than one thousand new infections on a daily basis, while in Botswana,

Lesotho, Namibia, Swaziland and Zimbabwe at least one in five adults has

HIV. There are multiple epidemics in Africa. The continent is home to a

number of different epidemics, each of them with its own epidemiological

and social characteristics and variations. Majority of persons infected with

HIV are living with the HIV-1 virus. HIV-2, which is rare, occurs in parts

of West Africa. In Southern Africa HIV-1 is the predominant type which is

causing serious havoc [46].

1.1 Literature Review

1.1.1 Background

Swaziland is the smallest landlocked nation in Southern Africa, bordered by

Mozambique in the east and by South Africa in the west, north and south.

Its landscape creates four distinct ecological zones ranging from the tropi-

cal lowveld to the temperate highveld. The country’s sub-tropical climate,

with summer rainfall patterns, creates risks for both drought and flooding.

The country is also divided into four administrative regions being Hhohho,

Manzini, Shiselweni and Lubombo [23]

The population of the country is around one million of which 44% are
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under the age of fifteen. Like other countries in the Southern African region,

Swaziland is affected by the HIV/AIDS pandemic. It is estimated that the

prevalence rate of HIV/AIDS in Swaziland stands at 42.6%. The highly

affected regions being Manzini (42.5%) and Lubombo (41.9%). The people

of Swaziland known as Swazis are homogeneous in their language, culture

and tradition. The majority of the residents speak SiSwati. SiSwati and

English are the country’s official languages. About 80% of the countrys

population live in rural areas and depend largely on subsistence farming for

their livelihood [30].

Prevalence of HIV in Swaziland

Swaziland has the highest prevalence rate of HIV/AIDS in the Sub-Saharan

region. The first HIV/AIDS case in Swaziland was reported in 1987. Since

that time, the virus has kept spreading in the population. By 2004 the

prevalence rate was standing at 42.6%. This has been a great concern for the

government and the general public. Results from the HIV sero-surveillance

among people attending antenatal clinics show that the overall level of HIV

infection in pregnant women increased more than 10 times, that is from 3.9%

in 1992 to 42.6% in 2004. By 2006 it however went down to 39.2% [40].
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1.1.2 Drivers of HIV Transmission

This study uses a theoretical framework proposed by Johnson et al [19].

Drivers of HIV/AIDS can be categorized into the following; behavioral, bio-

logical, socioeconomic, and demographic and residential characteristics.

Behavioral factors

Behavioral risk determinant factors associated with HIV/AIDS include con-

dom use, frequency of alcohol use, number of sexual partners the individual

had in the past (eg. past year) and exchange of sex for money.

According to SHDR[3], more than 40% of adults in Swaziland used con-

doms. It was also found that there were cases where both educated and non

educated women were forced to have sex without a condom. Among ter-

tiary students 72% reported to be using condoms, and 84.9% of secondary

school students reported condon usage. Only 49.9% of youth out of school

used condoms. In a study by Johnson et al [19] in Kenya, it was found

that sex related behavioral factors did not have a significant contribution

in explaining HIV infection. A Ugandan study by Ahmed et al [3] found

that consistent condom use provides protection against HIV/AIDS while in-

consistent or non-condom use is not protective. In their study condom use

was found to be higher among males, younger unmarried and better edu-
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cated individuals, and those reporting multiple sex partners or extramarital

relationships.

The SHDR [40] reported that among the youth, sex with non-regular

partners was as low as 15.7% for school going youths. This was not the case

with out of school youths as their rate was at 49%. Students in institutions

of higher learning had practiced this high risk behaviour of having more than

one sexual partners at a rate of about 44.1% within the last 12 months of the

survey. In a simulation study by Epstein and Morris [32], concurrent partner-

ship was found to exponentially increase the number of infected individuals

and the growth rate of the epidemic. It was also found that concurrent part-

nerships increases the speed with which the virus spreads in the population.

The regression estimates indicated that each 10% increase in average number

of concurrent partnership increase the rate of spread of the virus by about

12%. Concurrency is the case where an individual has more than one sexual

partners at the same time. According to Epstein and Morris [32] the strength

of evidence linking concurrecy to HIV epidemic severity in the southern and

eastern Africa led to the Joint United Nations Programme on HIV/AIDS and

SADC in 2006 to reach the conclusion that high rates of concurrent sexual

partnerships, combined with low rates of male circumcision and infrequent

use of condoms, are major drivers of the AIDS epidemic in Southern Africa.

In a study done by Kalichman et al [20] in Cape Town, association be-
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tween alcohol and HIV/AIDS was found. The association between alcohol

use and and sexual risk behaviour may be accounted for by sensation seeking

personality . Johnson et al [19] found that there are higher risks of HIV infec-

tion for women who have ever consumed alcohol compared with women who

report they never have. On the males side, it was found that those who took

alcohol for 11 to 19 days in the last past month were 2.5 times as likely to

be HIV positive than those who have never taken alcohol. Buseh, [8] studied

patterns of sexual behaviour among secondary school students in Swaziland.

In his study he found that less than half (43.2%) of the students indicated

that they consumed alcohol bevarages. More males (51.2%), in contrast to

females (35.7%), reported alcohol use. More urban students reported alcohol

consumption than students from rural places. Among those students who

were currently sexually active, 18% reported taking alcohol at their most

recent sexual intercourse. Male students were significantly more likely than

female students to have used alcohol at the time of last intercourse. Alcohol

and drug use with sexual intercourse increased with age.

Many women are faced with economic problems, so sex becomes a strategy

for survival, with women selling sex to meet financial obligations such as

paying of school fees and buying of food. Reward for sexual services may

range from occasional cash payments to supplementation of income with gifts

[1]. Weiser et al [44] established the association between food insufficiency
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and exchange of sex for money or gifts. In their study they found that food

insufficiency was associated with over 2 times the odds of engaging in sex

exchange. After adjusting for known covariates, food insufficiency was still

associated with nearly 2 times the odds of sex exchange. Also a dose response

relationship between alcohol use and sex exchange was observed.

Socioeconomic factors

Evidence of associations between socioeconomic status and the spread of

HIV in different settings and at various stages of the epidemic are is still

rudimentary [11]. Socioeconomic factors related to the spread of HIV/AIDS

can be categorized as follows;

In their study Gillespie et al [11] concluded that the assertion that poverty

is the main driver of HIV is too simplistic. Relative wealth appears to have

a mixed influence on HIV risk depending on an array of contextual factors.

Johnson et al [19] found that in both men and women, wealth was positively

related to HIV risk, education on the other hand did not show the same

relationship. Lopman et al [25] studied the association between wealth index

which is based on household ownership and HIV incidence, HIV mortality

and sexual behaviour. The study found that the greatest decrease in HIV

prevalence occurred in the highest wealth index tercile in both men and

women. In men HIV incidence was lowest at the top wealth index tercile.
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Contrary to the findings of Lopman et al [25], Mishra et al [31] established

that in all the eight countries they studied, adults in the wealthiest quintiles

had higher prevalence of HIV than those in the poorer quintile. However,

the positive association between wealth and HIV risk was not established in

multivariate models.

Similar to the findings of Lopman et al [25] are the results of Hangreaves

et al [18] who noted that among men, there was litte evidence that HIV

seroconversion was associated with any socioeconomic factor. For women

negative relationship was found between education and HIV. In a study by

Glynn et al [12] in four African cities, association between schooling and HIV

infection was not found in Kisumu or Ndola. Women of Yaounde and men of

Cotonou with more schooling were less likely to be HIV positive. In all the

cities studied, men and women with more education tended to report less

risky sexual behaviour. Similarly Barninghausen et al [5] established that an

increase in educational attainment by one grade reduced the hazard of HIV

seroconversion by approximately 7%.

According to Lurie et al [26], the precise manner in which migration con-

tributes to sexually transmitted diseases is complex and not well understood.

The link between mobility and the spread of HIV is determined by the struc-

ture of the migration process, the conditions under which it occurs, including

poverty, exploitation, separation from partners and families and separation
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from the sociocultural norms that guide behaviours within communities [11].

According to Gillespie et al [11], there is convincing evidence linking the

spread of HIV and mobility. In sub-Saharan Africa the risk of contracting

HIV has been found to be higher in migrants and mobile individuals like

truck drivers. In a study by Mayer [29], migrant men were found to be 26

times more likely to have been infected by an outside partner than their

own wives. Also, Lurie et al [26] found that migrant men were more likely

than non-migrant men to have at least one current casual sexual partner.

Women were reluctant to disclose information on their casual sex partners.

More sexual risk activity and an increased HIV risk were observed not only

in mobile persons, but also in partners staying behind [21].

A study by Shisana et al [41] demostrated that there is a link between

marital status and HIV infection. Married people are less likely to be in-

fected with HIV compared to unmarried people. The relationship between

HIV/AIDS and marital status is a complex one. In their study [41] the rela-

tionship diminished after controlling for other socio-demographic risk factors

for HIV. Johnson et al [19] found that marital status is a significant factor

for women, in particular those widowed or divorced.

A Malawian study by Trinitapoli et al [43] found that men belonging

to Pentecostal churches consistently reported lower levels of both HIV risk

and perceived risk. Regular attendance to religious services is linked with
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reduced odds of reporting extra marital partners with lower level of perceived

risk of infection. Interestingly Johnson et al [19] found that for both men and

women those who considered themselves to be at a low risk of contracting

HIV were infact the most likely to be HIV positive.

Biological Factors

The main biological factors that are related to HIV risk include circumcision

or lack of it, presence of an STI, and recent birth status [19].

Male circumcision is the surgical removal of the foreskin which is thought

helps to reduce the risk of HIV infection [40]. Johnson et al [19] found that

the outstanding biological factor associated with HIV risk was circumcision.

Men who were not circumcised were 4 times likely to be HIV positive than

circumcised men. It was found that circumcision in men has a protective

effect against HIV infection. Similar results were obtained by Weiss et al [45]

who established that there is compelling evidence that male circumcision has

a protective effect against HIV infection in sub-Saharan Africa, and especially

in high risk populations. The same results were achieved by other studies

[15, 4] done on male circumcision.

Fertility is greatly reduced in HIV-1 infected women compared to those

who are not HIV positive [16]. A study by Johnson et al [19] found that

women who had a birth 5 years before the survey was conducted were 30%
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less likely to be HIV positive than those who did not have a birth in the past

5 years.

There is positive association between non-HIV sexually transmitted in-

fections, particularly those that are ulcerative with HIV [19]. Strong evi-

dence indicates that both ulcerative and non-ulcerative STIs promote HIV

transmission by augmenting HIV infectiousness and HIV susceptibility via a

variety of biological mechanisms.

Demographic and Residential Factors

A study by Gouws et al [14] established that the patterns (in terms of age)

of HIV infection among SADC countries are similar. The prevalence of HIV

in these countries was found to increase after the age of 15, and more rapidly

among women than men, reaching the peak among women in their twenties

and men in their thirties. Similar results were reached by Johnson et al [19]

who found that men in the ages 35 to 44 years had the highest risk of being

HIV positive, whilst women in the ages 25 to 29 had the highest risk of being

HIV positive.

Johnson et al [19] found significant associations between region and HIV

risk in Kenya. Men and women from the province of Nyanza were signifi-

cantly at higher risk than those from Nairobi. Kleinschmidt et al [22] stud-

ied the spatial variation of HIV/AIDS in South Africa. The spatial maps
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showed pronounced variations in HIV prevalence in the provinces. Within

the Lubombo district of Swaziland, variations in the intensity of the virus

from community to community was also observed [23].

A study in India found differences in HIV prevalence in rural and urban

communities [42]. The prevalence in rural areas was reported to be 7.2% and

7.0% in urban areas. Differences in HIV prevalence were also observed in a

study by Boerma et al [6]. In the small geographic area which they studied

striking differences were seen; HIV prevalence in the trading centre was twice

that in the area surrounding it (within 2km) and three to four times than

that of rural villages 8 km away from the trading centre. Johnson et al [19]

found that, among women those living in the rural areas were 0.5 times likely

to be HIV positive than those in urban areas. In addition a clear association

between being HIV positive and the number of one’s children that died was

found. Those who experienced the death of one child were twice as likely

to be HIV positive, whilst those who experieced the death of two or more

children were even more likely to be HIV positive.

1.2 Problem Statement

The exceptionally high prevalence of HIV infection in most of the South

African countries, in particular Swaziland, has raised complex questions

12



about the factors that have contributed to the rapid spread of the virus

in the region and about the eventual prevalence the epidemic might reach

[26]. “Risk factors for the acquisition and transmission of HIV through a het-

erosexual route are well characterized, but their relative importance varies by

location, and the relationship between biological, behavioral, and social risk

are incompletely understood” [29]. In order to use intervention programmes

to curb the spread of HIV/AIDS the key drivers of the pandemic must be

clearly identified and understood.

1.3 Objectives

Majority of studies on the risk factors associated with HIV infection have

largely focused on individual risk factors. Sociological theories, however, have

long suggested that individuals health and behaviour is shaped not only by

individual risk factors but also by the structure of the environment in which

they live [27]. Statistical development has made it possible for researchers to

test these theories. These statistical models allow researchers to examine the

additive and interactive effects contextual factors that affect sociological and

health outcomes at the population and individual level. Multilevel models,

in particular, have been identified as highly appropriate.

This study has the following specific objectives:
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• To account for heterogeneity in the distribution of HIV in Swaziland

by fitting a Bayesian generalised linear mixed model (GLMM) and

Multilevel models.

• To identify the key determinants of HIV in Swaziland.

• To compare the results of the different statistical models used to analyse

the data.

• To compare the results of the estimation techniques in fitting Bayesian

GLMMs namely, Markov Chain Monte Carlo (MCMC) methods and

the Integrated Nested Laplace Approximation (INLA) approach.

1.4 Organization of the study

In this chapter, we have introduced some background information about the

study. A review of literature on the determinants of HIV has been done and

the objectives have been outlined. The rest of the thesis will organised as

follows.

In Chapter 2 we introduce the SDHS data to be used in this study. The

manner in which the data was collected is described. An exploratory data

analysis is performed to identify potential covariates of HIV infection. The

chapter ends with some cross tabulation of HIV serostatus with some po-
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tential covariates. Statistically significant covariates are later used in the

modeling of HIV in Swaziland.

Bayesian generalised linear mixed models are fit to the data in Chapter

3. In this chapter, two estimation procedures, namely the Markov Chain

Monte Carlo (MCMC) and the Itegrated Laplace Approximation (INLA)

are considered. The two estimation techniques results are compared.

In Chapter 4, multilevel models are discussed. The frequentist multilevel

model and the Bayesian multilevel models are considered. The two models

are fit to the data and their results compared. We also discuss multilevel

modeling using the idea of pooling and as a result a complete pooling model

is also fit. The last chapter focuses on discussing the results from the different

models and give a summary of the key determinants identified and possible

interventions. Future research areas are also highlighted.
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Chapter 2

Data

In this chapter, we introduce the data set used in this thesis: the Swaziland

Demographic and Health Survey (SDHS). Also, we perform some simple

descriptive statistics to explore the relationships that exist between the vari-

ables. A χ2 test of association is used to identify possible covariates related

to HIV status.

2.1 Background

This study used data from the 2006-7 Swaziland Health and Demographic

Survey (SDHS). The survey was designed to provide health estimates and

demographic indicators at the national level, for urban and rural places across

the four regions of Swaziland. A two-stage sample design was used. Sample

16



points were selected from a sample frame of enumerating areas (EAs) defined

in the 1997 Swaziland Population and Housing Census from the Central

Statistics Office (CSO). In total, 275 clusters were drawn from the list, 111

clusters were from urban areas and 164 from rural places.

Households from the selected clusters were listed and a systematic sample

of households was drawn for a total of 5500 households. From these house-

holds, eligible men and women aged 15-49 were identified and interviewed.

For HIV testing, all eligible men and women from the selected households

were asked for their consent to be anonymously tested for the virus. Samples

for testing were obtained by collecting blood drops from a sterile fingerprint

onto a filter paper card [39].

2.1.1 The Data Sets

The 2006 DHS was the first to have included voluntary testing of HIV in

Swaziland. Prior to this survey, HIV prevalence has been primarily derived

from sentinel surveillance of pregnant women. The national sentinel surveil-

lance system consists of 17 sites in government and mission health facilities

which are selected to represent the differrent groups, regions, rural and urban

populations.

While the rate of HIV infection in pregnant women has been shown to
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be a reasonable proxy for the HIV prevalence in the combined male and

female adult population, it has several limitations. The first limitation is that

antenatal clinics data does not capture any information on HIV prevalence

in non-pregnant women and from those women who do not attend clinic

for pregnancy care or receive antenatal care at facilities not represented in

the surveillance system. Pregnant women are more at risk of HIV infection

than women who may be avoiding both HIV and pregnancy through the use

of condoms. Also, there may be biases in the antenatal clinics surveillance

data because HIV infection reduces fertility in women and knowledge of HIV

status may influence fertility choices.

The SDHS data comprised of three data sets; for males (4675), for fe-

males (5301) and the third one for HIV for both males and females. The

HIV data set was merged with the male and the female data sets. In both

data sets, cases where HIV test results were missing were deleted. Thus our

analysis uses complete case analysis. Out of the 5301 eligible women only

4987 were tested for HIV and 4156 of the 4675 men were tested for HIV.

HIV results were missing for individuals who refused to be tested and who

were absent at the time of the blood collection. Variables of interest that

were not categorical were recoded. These include age at first sex, number of

ttimes away from home in the last 12 months, number of sexual partners in

the last 12 months and number of births in the past 5 years. The variable
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religion had more than 10 categories. To reduce the number of categories it

was recoded into 5 categories. The key outcome variable of interest is HIV

status and a summary of the individual level variables is given below.

• Demographic and residential characteristics: current age, region, and

type of place of residence.

• Social factors: wealth index, educational level, number of trips in the

last 12 months, current marital status and religion.

• Biological factors: circumcision, recent birth status, and recent experi-

ence with STI.

• Behavioural factors: number of sexual partners, alcohol use, and con-

dom use.

Cluster level variables are not directly available from the SDHS data

set. We constructed cluster level variables by aggregating individual char-

acteristics at the cluster level. Cluster level variables are either averages

or proportions depending on the nature of the variable being created, for

instance we have cluster level average wealth and cluster level proportion

HIV positive. The cluster level variables were created in SPSS and Mi-

crosoft Access was used to merge the individual level and the cluster level

data sets. Cluster level variables used in the study are cluster level aver-
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age wealth(cwealth.full), cluster level average age(cage.full) and cluster level

proportion HIV positive(chiv.full).

2.2 Exploratory Data Analysis (EDA)

A fundamental initial step in data analysis is to perform an exploratory

analysis. EDA provides a better understanding of the relationships or asso-

ciations that exist between the variables in the data set and also highlights

any anomalities therein. In doing the exploratory data analysis, we used the

svy function in STATA to compute weighted prevalence rates for selected

covariates determined from the literature review.

Table 2.1 presents the results of cross classifying HIV status with selected

covariates. The results suggest that the overall prevalence rate in males is at

19.5% compared to 31.4% among females. The difference is huge hence the

need to model the two data sets separately. The overall HIV prevalence in

the Swazi adult population is at 26%.
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Table 2.1: Weighted HIV Prevalence by Selected Covariates
Males Females

Variable Percent N Percent N
Age
15-19 1.9 20 10.0 121
20-24 12.4 91 38.4 365
25-29 27.7 141 49.1 325
30-34 43.7 154 45.0 256
35-39 44.6 142 37.6 174
40-44 40.9 92 27.7 117
44-49 28.0 64 21.5 80
Region
Hhohho 23.0 192 33.5 374
Manzini 18.2 181 30.3 410
Shiselweni 16.0 123 29.0 309
Lubombo 20.8 208 31.0 345
Residence type
urban 25.6 289 36.8 488
rural 17.4 415 29.1 950

Marital status
never married 9.8 233 25.7 596
married 33.1 275 28.0 406
living together 48.2 100 46.8 212
widowed 68.5 33 55.9 146
divorced 51.2 13 47.1 8
not living together 55.0 50 51.5 70
Educational level
no education 31.1 88 39.0 161
primary 17.9 237 33.6 528
secondary 18.4 318 28.7 668
Higher 23.1 61 25.5 81
Wealth
poorest 19.8 104 31.5 237
poorer 19.8 114 31.9 263
middle 16.9 122 31.3 287
richer 20.8 161 31.5 313
richest 20.2 203 29.2 338
Age at first sex
never had sex 2.1 22 5.2 42
14 or less 14.5 19 38.6 149
15-17 28.8 231 36.5 644
18+ 28.4 432 36.2 603
Had an STI in last 12 months
no 17.7 601 29.7 1301
yes 48.6 98 57.5 134
don’t know 1 25.1 7.3 1
Number of sexual partners
no partner 5.0 68 19.5 1301
1 partner 27.9 461 35.7 134
2+ partners 36.1 175 52.4 1
Condom Use
no 31.5 94 45.7 202
Yes 26.7 198 44.0 324
Any births
none - - 25.8 688
Yes - - 37.8 750
Overall prevalence 19.5 703 31.4 1439
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HIV prevalence peaks at 49.1% for women in the age group 25-29. For

men, HIV prevalence peaks at 44.6% in the age group 35-39 as also shown

in Figure 2.1.

Figure 2.1: HIV Prevalence by Age

For both males and females the prevalence rate is low at the lower age

groups but it then increases sharply (especially for women) which is then

followed by a decline. HIV prevalence is higher in urban areas than in rural

areas for both men and women. The HIV prevalence rate is at 25.6% for

males and 36.8% for women in urban areas compared to 17.4% for males and
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29.1% for females in rural areas.

However, there is no much regional variation in the prevalence rate. Hho-

hho has the highest prevalence rate at 23.0% for males and 33.5% for females

followed by the Lubombo region at 20.8% for males and 31.0% for females.

The Shiselweni region has the lowest HIV prevalence rate at 16.0% among

males and 29.0% among females as shown in Table 2.1.

Females who started having sex at the age of 14 or less have HIV preva-

lence rate at 38.6% while males on the same category have prevalence rate at

14.5%. Similarly, for the category 15–17 years, among the females the HIV

prevalence rate is at 36.5% compared to 28.8% among males. Regardless of

the age first sex was encountered females have higher HIV prevalence accross

all ages of first sex as summarised by Figure 2.2 below.
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Figure 2.2: HIV Prevalence by Age at First Sex

Now coming to current marital status, for both males and females the

highest prevalence rate (68.5% and 55.9% respectively) is in the widowed

category. Most probably their spouses died of HIV/AIDS. Note worthy is

the result in the statuses; never married and married which have the lowest

HIV prevalence rates compared to the rest.

HIV prevalence is higher among women with no education (39.0%) and

with primary education (33.6%). On the other hand, men in the higher

education (23.1%) category have the second highest prevalence rate. In both
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men and women the first category, no education, has the highest prevalence

rate. For both males and females there seems to be no much variation in the

prevalence of HIV over the different economic categories.

The prevalence rate for men who reported condom use every time they

had sex with the last sex partner (last 12 months) was 26.7%. This is lower

than the prevalence rate for those who reported non-condom use (31.5%).

Similar results were obtained from the women, where those who reported

non-condon use had high HIV prevalence rate (45.7%) compared to those

who were consistently using condoms. In both males and females, those who

reported to have had an STI in the last 12 months had the highest HIV

prevalence. Women who had a birth have HIV prevalence rate at 37.8%

compared to 25.8% for those who had no birth in the last 5 years.
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Figure 2.3: HIV Prevalence by Number of Sexual partners

From Figure 2.3, it is evident that the prevalence rate of HIV increases

with an increase in the number of sexual partners in the last 12 months in

both males and females. The HIV prevalence rate for men and women who

had one or no sexual partner is low compared to those had two or more sexual

partners.
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2.3 Test of Association

In this section we present the results of the χ2 test performed on the male

and the female data sets. The results presented in Table 2.2 show that there

is a positive association between HIV status and age (χ2: 621.3, p-value:

< 0.001 and χ2: 451.0, p-value: < 0.001) for both men and women. As-

sociation between HIV and region (χ2: 15.3, p-value: 0.033) was found in

male population. There was however no association found between HIV sta-

tus and region(χ2: 5.6, p-value: 0.291) in women. No significant association

was found between HIV status and wealth in both men and women whilst

significant association was established between HIV status and type of place

of residence and highest educational level. Circumcision, a medical practice

done in men, was not associated with HIV status (χ2: 0.33, p-value: 0.556).

In this test, HIV status and number of births (χ2: 76.0, p-value: < 0.001)

were found to be related.

For both males and females, association between HIV status and the

number of partners in the last 12 months was found, but no relationship was

found between HIV status and condom use. Table 2.2 summarises the results

of the crosstabulation.
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Table 2.2: Crosstabulation of HIV Status with Selected Covariates

Males Females

Variable χ2 df p-value χ2 df p-value

Age 621.3 6 < 0.001 451.0 6 < 0.001

Region 15.3 3 0.033 5.6 3 0.291

Type of place residence 29.5 1 < 0.001 23.3 1 < 0.001

Highest educational level 29.4 3 < 0.001 34.0 3 < 0.001

Wealth index 4.4 4 0.526 2.15 4 0.764

Current marital status 425.2 5 < 0.001 191.7 5 < 0.001

Age at first sex 345.4 3 < 0.001 308.5 3 < 0.001

Religion 6.7 4 0.154 1.4 4 0.843

Circumcision status 0.33 1 0.566 - - -

Had any STI in last 12 months 121.6 2 < 0.001 82.8 2 < 0.001

Condom use 1.6 1 0.203 1.3 1 0.549

Alcohol consumption 7.0 4 0.135 9.9 4 0.143

Number of sexual partners 357.5 3 < 0.001 145.9 3 < 0.001

Frequency of times away from home 46.2 4 < 0.001 16.1 4 0.03

Any births - - - 76.0 1 < 0.001
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2.4 Summary

In this chapter, we have introduced the data set used in the study. Ex-

ploratory data analysis was also done on the data. The HIV prevalence rate

between males and females differs significantly hence in further analysis the

two data sets (males and females) were analysed separately. Covariates found

to be associated with HIV status were used in further analysis. The variable

‘region’ was found to be statistically significantly associated with HIV status

in males but was statistically insignificant in females. Since it was found to

be significant in males, it was used in further analysis.
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Chapter 3

Bayesian Generalised Linear

Mixed Models

In this chapter, we discuss the Bayesian genealised mixed model (GLMM).

The SDHS data is clustered according to enumerating areas and to account

for this heterogeneity we use GLMMs which are an extension of generalised

linear models (GLMs). The chapter is divided into six sections. The first sec-

tion is basically a brief review of the Bayesian inference. The second section

focuses on the Bayesian generalised linear mixed model and prior distribu-

tions commonly used in the Bayesian GLMMs. The subsequent sections deals

with estimation of parameters and the application of the model on the SDHS

data. Two estimation methods are considered; the Monte Carlo Markov

Chain (MCMC) and Integrated Laplace Approximation (INLA) methods,
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and both methods are applied on the data in the last section.

3.1 Introduction

In this section we introduce general concepts behind Bayesian inference.

These general concepts are the basis for Bayesian inference and are extended

to more specific Bayesian models.

Let y be the data following an assumed parametric distribution with

probability density function f(y|θ), where θ is a vector of unknown parame-

ters. In the Bayesian paradigm, parameters are regarded as random variables,

that is, the parameters have a probability density function f(θ) = f(θ|θ0)

known as a prior distribution. In the prior distribution, the parameters θ0

are referred to as hyperparameters, and are assumed known. These hyper-

parameters maybe chosen based on expert opinion, similar previous studies

or even non-informative (in the absence of prior information).

In Bayesian modeling, inference is based on the posterior distribution

f(θ|y). Given a prior distribution f(θ), the posterior distribution is obtained

via the Bayes Theorem:

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

∝ f(y|θ)f(θ). (3.1)

In words we say that the Posterior is proportional to the Likelihood times

the Prior.
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3.2 The Model

Bayesian generalised linear mixed models are an extention of the Bayesian

linear mixed model (LME). The Bayesian GLMMs differ from the Bayesian

LMEs in the following ways:

• There is a non linear relationship between the response, the parameters

and the random effects.

• The response does not follow a normal distribution but instead a dis-

tribution in the exponential family.

Suppose that the responses {yi1, yi2, . . . , yini
} in the ith cluster are con-

ditionally independent given the mean parameters β and the random effects

ui. Let yi = (yi1, yi2, . . . , yini
)T . A full Bayesian generalised linear mixed

model (GLMM) can be stated as;

E(yi|β,ui) = g(X iβ +Ziui), i = 1, . . . ni, (3.2)

ui ∼ N(0,Ω),

β ∼ N(β0,Σ0),

Ω ∼ W−1
q (η,Ψ),

where g(.) is a known inverse link function (e.g. the inverse logit link) and

X i (ni × p) and Zi (ni × q) are known design matrices, W−1
q (η,Ψ) is the
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inverse Wishart distribution with parameters η and Ψ, and ui(1 × q) are

random effects. We assume that the hyperparameters β0 and Σ0 are known.

Let ui = (u1, u2, . . . , uq). Let us further assume that the prior distributions

are independent, that is;

f(β,Ω) = f(β)f(Ω).

Then it follows that the posterior distribution of all parameters can be written

as

f(β,Ω,u|y) ∝

[
n∏
i=1

ni∏
j=1

f(yij|β,ui)f(β)

][
n∏
i=1

f(ui|Ω)f(Ω)

]
. (3.3)

The full conditionals for Bayesian inference are then given by

f(β|Ω,u,y) ∝
n∏
i=1

ni∏
j=1

f(yij|β,ui)f(β),

f(u|β,Ω,y) ∝
n∏
i=1

ni∏
j=1

f(yij|β,ui)f(ui|Ω),

f(Ω|β,u,y) ∝
n∏
i=1

f(ui|Ω)f(Ω),

where

[Ω|β,u,y] ∼ W−1
q (η + n/2,Ψ +

n∑
i=1

uiu
T
i /2)

3.2.1 Prior Distributions

In Bayesian inference the choice of prior distributions is of paramount im-

portance. Much of the controversy surrounding the use of Bayesian methods
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revolves around prior distributions. The choice of a prior f(θ) may affect

Bayesian estimation. A strong prior may have an influence on Bayesian infer-

ence. In the absence of any prior information, one may use a non-informative

prior: f(θ) ∝ 1. Recall that the likelihood L(θ|y) = f(y|θ). So we have

f(θ|y) ∝ L(θ|y)f(θ).

This therefore, shows the link between Bayesian and likelihood based meth-

ods, in particular when a non-informative prior is used, Bayesian inference

reduces to likelihood inference.

In choosing a prior distribution, if there is no inherent reason to prefer one

prior distribution over another, for simplicity a conjugate prior is chosen. A

conjugate prior is a prior distribution that when used the resulting posterior

distribution also belongs to the same family of distributions. Since Bayesian

inference depends on the posterior distribution this is important. The prior

distribution f(θ) is said to be conjugate to f(y|θ) if the posterior distribution

f(θ|y) is in the same family as the prior distribution f(θ). For instance, the

normal (Gaussian family) is conjugate to itself, that is to say if a normal

prior distribution is used, the resulting posterior distribution is also normal.

All members of the exponential family have conjugate priors.

In regression models, the multivariate normal distribution is typically cho-

sen as a prior distribution for the mean parameters β, that is we assume that
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β ∼ N(β0,Σ0) where β0 and Σ0 are hyper-parameters. Hyper-parameters

may also be assumed unknown and may lead to adding another hierarchy in

the model specification, however, in practice this is often the last stage. If a

non-informative prior is desired, we can choose Σ−10 ≈ 0 or β0 ∼ U(−∞,∞).

Typically, for the variance-covariance matrices the Wishart distribution is

used as a prior distribution.

The Wishart distribution is a generalisation of two distributions, namely

the χ2 distribution and the gamma distribution to multiple dimensions. The

Wishart distribution is useful in the estimation of covariance matrices. Let

Z be a n×p matrix, with the ith row zi ∼ Np(0,V ) independently, where V

is a p× p covariance matrix which is positive definite. Then, the probability

distribution of

W = ZTZ (3.4)

has a Wishart distribution with degrees of freedom n, denoted by Wp(V , n)

and whose density function is given by

f(W ) =
|W |(n−p−1)/2

2np/2|V |n/2Γp(n2 )
exp

(
−1

2
tr(V −1W )

)
, (3.5)

whereW > 0 (positive definite) and Γp(.) is the multivariate gamma function

defined as

Γp

(n
2

)
= πp(p−1)/4

p∏
j=1

Γ((n+ 1− j)/2). (3.6)
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The Wishart distribution Wp(V , n) has mean nV and mode (n−p−1)V

for n ≥ p + 1. In the case when p = 1 and V = 1, the Wishart distribution

Wp(V , n) coincide with the univariate χ2 distribution. The Wishart distri-

bution is the distribution of the maximum likelihood estimate (MLE) for the

covariance matrix in a multivariate normal distribution.

A conjugate prior for the covariance matrix of a multivariate normal dis-

tribution is the inverse Wishart distribution which is defined below. Suppose

that a p × p random matrix A ∼ Wp(V , n), then B = A−1 has an inverse

Wishart distribution denoted by W−1
p (V −1, n) or IWp(V

−1, n) whose prob-

ability density function is give as;

f(B) =
|V |−n/2|B|−(n+p+1)/2exp

(
−tr(V −1B−1)/2

)
2np/2Γp(

n
2
)

. (3.7)

The mean of W−1
p (V −1, n) is given by

E(B) = V −1/(n− p− 1).

Let X = (x1 . . .xn), with xi ∼ Np(0,Σ). If we assume a prior distribu-

tion Σ ∼ W−1
p (Φ,m), then the posterior distribution is given by

Σ|X ∼ W−1
p (XXT + Φ,m+ n).

When p = 1, the inverse Wishart distribution reduces to an inverse gamma

distribution.
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3.3 Estimation of Parameters: MCMC Meth-

ods

The two most popular MCMC algorithms are the Metropolis Hastings and

the Gibbs samplers. These two algorithms have many variants and extensions

that have been developed. These forms and extensions are more advanced

and sometimes more specific to some problems. In this section we discuss in

detail the Metropolis Hastings and the Gibbs samplers together with their

invariants and extensions.

3.3.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm was developed from the Metropolis algo-

rithm by Hastings in 1970. Let x be the vector of parameters and also let

f(x) be the target distribution from which we wish to generate a sample size

T (x can be replaced with the parameter of interest say θ). We can describe

the metropolis-Hastings algorithm in the following iterative steps:

• Set initial values of x(0).

• For t = 1, 2, . . . , T repeat the following steps;

a. Set x = x(t−1).

b. Generate new candidate values x′ from a proposal distribution
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q(x→ x′) = q(x′|x)

c. Calculate

α = min

(
1,
f(x′)q(x|x′)
f(x)q(x′|x)

)
(3.8)

d. Update x(t) = x′ with probability α and x(t) = x(t−1) with proba-

bility 1− α.

Regardless of the proposal distribution chosen, the Metropolis-Hastings

algorithm will converge to the target distribution. In practice, however, the

proposal distribution should be chosen with care as poor choices may delay

convergence to the target distribution.

In the Bayesian framework the above algorithm can be implemented by

replacing x with the parameters of interest θ and the target distribution

by the posterior distribution f(θ|y.) In terms of θ and f(θ|y) the above

algorithm can be given as;

• Set initial values of θ(0).

• For t = 1, 2, . . . , T repeat the following steps;

a. Set θ = θ(t−1).

b. Generate new candidate values θ′ from a proposal distribution

q(θ′|θ)

c. Calculate

α = min

(
1,
f(θ′|y)q(θ|θ′)
f(θ|y)q(θ′|θ)

)
(3.9)

38



d. Update θ(t) = θ′ with probability α and θ(t) = θ(t−1) with probabil-

ity 1− α.

A notable characteristics of this algorithm is that there is no need to

evaluate the normalising constant f(y) involved in f(θ|y) since it cancels

out in the α.

3.3.1.1 The Random-Walk Metropolis

The original Metropolis algorithm considered only symmetric proposals of the

type q(θ|θ′). The random walk Metropolis is a special case with q(θ′|θ) =

q(|θ′ − θ|). Both the original Metropolis algorithm and the random walk

Metropolis result in an acceptance probability that depends only on the pos-

terior or target distribution

α = min

(
1,
f(θ′|y)

f(θ|y)

)
= min

(
1,
f(y|θ′)f(θ′)

f(y|θ)f(θ)

)
(3.10)

A usual proposal of this type is a multivariate normal q(θ′|θ) ∼ Nd(θ,C),

where d is the dimension of θ. The covariance matrix C controls the conver-

gence speed of the algorithm.

3.3.2 The Gibbs Sampler

This sampler is a special case of the Metropolis-Hastings algorithm using as

proposal density q(θ′|θ(t)) the full conditional posterior distribution f(θj|θ−j,y),
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where θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd)
T . These proposal distributions result

in acceptance probability α = 1, making the proposed move to be accepted

in all iterations. Despite being a special case of the Metropolis-Hastings algo-

rithm, the Gibbs sampler is usually cited as a separate simulation technique

because of its popularity and convenience. In each step in a Gibbs sam-

pler, random values must be generated from unidimensional distributions for

which a variety of computational tools exist. In most cases these conditional

distributions have a known form hence random numbers can easily be simu-

lated using standard functions in statistical and computing software such as

BUGS. The Gibbs sampler always move to new values and does not require

specification of proposal distribution. Its disadvantage is its ineffectiveness

when the parameter space is complicated or when the parameters are highly

correlated.

The Gibbs algorithm can be summarised as follows:

1. Set initial values θ(0).

2. For t = 1, 2, . . . , T repeat the following steps;

• Set θ = θ(t−1).

• For j = 1, 2, . . . , d, update θj from θj ∼ f(θj|θ−j,y).

• Set θ(t) = θ and save it as the generated set of values at t+ 1 iteration
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of the algorithm.

Therefore, given a particular state of the chain θ(t), we generate the pa-

rameter values by

θ
(t)
1 from f(θ1|θ(t−1)2 , θ

(t−1)
3 , . . . , θ

(t−1)
p ,y)

θ
(t)
2 from f(θ2|θ(t)1 , θ

(t−1)
3 , . . . , θ

(t−1)
p ,y)

θ
(t)
3 from f(θ3|θ(t)1 , θ

(t)
2 , θ

(t−1)
4 , . . . , θ

(t−1)
p ,y)

...

θ
(t)
j from f(θj|θ(t)1 , θ

(t)
2 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 . . . , θ

(t−1)
p ,y)

...

θ
(t)
p from f(θp|θ(t)1 , θ

(t)
2 , . . . , θ

(t)
p−1,y)

Generating values from θ
(t)
j from f(θj|θ(t)1 , θ

(t)
2 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 . . . , θ

(t−1)
p ,y)

is not complicated since it is a univariate distribution and can be written as

f(θj|θ−j,y) ∝ f(θ|y), where all the variables except θj are held constant at

their given values [34].

The Slice Gibbs Sampler

This sampler is based on Gibbs sampling. When the conditional posterior

distribution do not have a convenient form the slice sampler is used. This

method augments the parameter space by adding a set of convenient random
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variables known as auxiliary variables that retain the marginal posterior dis-

tribution of interest unchanged but convert all conditionals to distributions

of standard form. After the augmentation has been performed, then the

Gibbs sampler can be applied. Due to the fact that this method uses auxil-

iary variables, it is often referred to as auxiliary variables method. The idea

behind this method is summarised as follows. Consider a target distribution

g(x) that is difficult to generate from. Introduce a new variable u with the

conditional f(u|x), then the joint distribution can be written as

f(u, x) = f(u|x)g(x), (3.11)

while the marginal distribution is equal to the marginal target distribution

g(x) since

f(x) =

∫
f(u, x)du =

∫
f(u|x)g(x)du = g(x). (3.12)

The Gibbs sampler can be used which generates values from the joint

distribution f(u, x) and the corresponding marginals f(u) and f(x):

1. Generate u ∼ f(u|x).

2. Generate x ∼ f(u|x)g(x).

Since f(u|x) is involved in both steps, then it must be specified in a way that

both f(u|x) and f(u|x)g(x) are convenient in terms of simulation. Common

practice is to use the uniform distribution U(0, g(x)) for f(u|x)

f(u, x) =
1

g(x)
g(x)I(0 < u < g(x)) = I(0 < u < g(x)), (3.13)
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and

f(x) =

∫
I(0 < u < g(x))du =

∫ g(x)

0

du = [u]
g(x)
0 = g(x), (3.14)

where I(x) is the indicator function taking value equal to one if x is true and

zero otherwise. Then the Gibbs steps above becomes

1. Generate u(t) ∼ U(0, g(x(t−1))).

2. Generate x(t) ∼ U(x : 0 ≤ u ≤ g(x)).

It usual practice in the Bayesian context to facilitate u = (u1, . . . , un)

auxiliary variables coming from the uniform distribution defined within the

interval zero to the likelihood ordinate f(yi|θ). Hence the joint distribution

will be given by

f(θ,u|y) ∝

{
n∏
i=1

I(0 ≤ ui ≤ f(yi|θ))

}
f(θ),

resulting in a Gibbs sampler of the type;

1. Set θ = θ(t−1).

2. For i = 1, . . . , n, generate u(t) ∼ U(0, f(yi|θ)).

3. For j = 1, . . . , d, update θj ∼ f(θj)
∏n

i=1 I(0 ≤ u
(t)
i ≤ f(yi|θ))).

4. Set θ(t) = θ.

The above scheme can easily be implemented in a wide range of popular

statistical models including generalised linear models. This sampler avoids
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the specification of the proposal densities embedded in Metropolis-Hastings

algorithm. The main advantage of this scheme is that once the appropriate

augmenting scheme has been found, the algorithm becomes directly applica-

ble in all data sets without computational difficulties. Its setback is that the

resulting chain is usually highly autocorrelated.

Metropolis Within Gibbs

Many available computational tools for generating random values from uni-

variate distributions allow us to implement Gibbs sampling in a variety of

cases, even when the resulting posterior is cumbersome. It is convenient, on

some instances, to use the Metropolis-Hastings steps to generate from these

univariate conditional posterior distributions. This approach is known as the

Metropolis within Gibbs algorithm. This approach, however, is equivalent

to a componentwise Metropolis-Hastings algorithm where some components

of the parameter vector are directly generated from the corresponding full

conditional posterior distribution.

The Componentwise Metropolis Algorithm

This sampler involves dividing the parameter vector θ into subvectors which

are updated sequencially using the Metroplis-Hastings algorithm. The Gibbs

sampler is a special case of this algorithm hence this algorithm is often re-
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ferred to as the Metropolis within Gibbs. When univariate components are

updated sequencially, the method is called a single component Metropolis-

Hastings algorithm.

We can summarise the algorithm as follows;

a. Set initial values θ(0).

b. For t = 1, . . . , T repeat the following steps:

• Set θ = θ(t−1).

• For j = 1, . . . , d,

1. Generate new candidate values for θ
′
j for the jth component of vector

θ
′

j from the proposal distribution q(θ
′
j|θ).

2. Calculate

α = min

(
1,
f(θ

′
j|θ−j,y)q(θj|θ

′
j,θ−j)

f(θj|θ−j,y)q(θj|θj,θ−j)

)
= min

(
1,
f(y|θ′j,θ−j)f(θ

′
j,θ−j)q(θj|θ

′
j,θ−j)

f(y|θ′j,θ−j)f(θ
′
j,θ−j)q(θ

′
j|θj,θ−j)

)
,

(3.15)

where θ−j is the vector θ excluding the jth component.

3. update θj = θ
′
j with probability α.

• Set θ(t) = θ.

One generated observation θ(t) is obtained after updating all components

of the parameter vector. The sequential updating of the elements of θ does
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not influence the convergence of the algorithm. To ensure randomness, ran-

dom selection of the updating sequence may also be used, this is referred to

as a random scan.

The main advantage of this MCMC scheme is that the sampler is de-

composed into several univariate steps in which random number generation

is usually straightforward. Its disadvantage is that convergence cannot be

accelerated by using multivariate densities with appropriate correlation struc-

tures. Parameter blocking can be used to speed up convergence. In parame-

ter blocking, the parameter vector is divided into subvectors with correlated

elements called blocks and each block is updated in a separate Metropolis

step.

3.3.3 Convergence Diagnostics

These are checks used to determine whether the algorithm has reached its

equilibrium or target distribution. There are several ways used to monitor

convergence. The simplest way is to monitor the Monte Carlo (MC) error.

Small values of the MC error indicate that the quantity of interest has been

calculated with precision.

There are two common ways used to estimate the MC error; the batch

mean method and the window estimator method. The first is simple to
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implement and is widely used, the second is hard to implement but precise.

Suppose that we have T iterations and after discarding (burn in) some we

remain with T
′
. The MC error using the batch mean method is calculated

by first partitioning the resulting output into K batches, usually K = 30

or K = 50. Both the number of batches and the sample size v = T
′
/K

must be sufficiently large so as to enable consistence in estimation and also

to eliminate autocorrelations. In calculating the MC error of the posterior

mean G(x) we begin by calculating batch means denoted by G(x)b;

G(x)b =
1

v

bv∑
t=(b−1)v+1

G(x(t)) (3.16)

for each batch b = 1, 2, . . . , K and the overall sample mean given by

G(x) =
1

K

K∑
b=1

G(x)b, (3.17)

assuming that we keep x1, . . . ,xT
′

observations. Then the MC error is given

by

MCE[G(x)] = SE[G(x)] =

√√√√ 1

K(K − 1)

K∑
b=1

(G(x)−G(x)b)2. (3.18)

The window estimator method is based on the expression of variance in

autocorrelated samples

MCE[G(x)] =
SD[G(x)]√

T ′

√√√√1 + 2
∞∑
k=1

ρ̂k[G(x)], (3.19)

where ρ̂k[G(x)] is the estimated autocorrelation of lag k. For large values of

k, the autocorrelation cannot be reliably estimated due to the small number

47



of remaining observations. In practice, however, the autocorrelations will be

close to zero for sufficiently large k. In this method we identify a window w

after which autocorrelations are considerably low and discard ρk with k > w

from the preceding MC error estimate. Hence (3.19) is modified as

MCE[G(x)] =
SD[G(x)]√

T ′

√√√√1 + 2
w∑
k=1

ρ̂k[G(x)]. (3.20)

The Raftery and Lewis Diagnostic

Suppose we want to measure some posterior quantile of interest. Let q denote

the quantile of interest we want to measure, r be the acceptance tolerance

and s be the probability of being within the acceptance tolerance, then the

Raftery and Lewis diagnostic calculates the number of iterations N necessary

to satisfy the specified conditions. This diagnostic tool was designed to test

the number of iterations and burn-in needed by first running and taking a

shorter pilot chain. In practice, we can also just test our normal chain to see

if it satisfies the results that the diagnostic suggests.

This diagnostic involves the following steps;

• Select a posterior quantile of interest q (eg. the 0.025 quantile ).

• Select an acceptable tolerance r for this quantile, for example, r = 0.005

which means we want to measure the 0.025 quantile with an accuracy

of ±0.005.
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• Select a probability s, which is the desired probability of being within

(q − r, q + r).

• Run a pilot sample to generate a Markov chain of minimum length by

rounding up

nmin =

[
Φ−1

(
s+ 1

2

) √
q(1− q)
r

]2
,

where Φ−1 is the inverse of the normal CDF.

Other than using the MC error and the Raftery and Lewis diagnostics,

graphical diagnostic methods (virtual inspection) can be used to monitor

convergence. Trace plots can be used. These are plots of the iterations

against the generated values. If all values are within a zone without strong

periodicities and tendencies then we assume convergence. Other graphical

methods include the plot of autocorrelations and ergodic mean[34].

3.4 Integrated Laplace Approximation (INLA)

INLA is a computational tool for Bayesian inference which has been intro-

duced by Rue and Martino [37] and Rue et al [38]. This recently introduced

approach does Bayesian inference in the broad class of latent Gaussian mod-

els. The Gaussian models are models of an outcome variable yi that assume

independence conditional on some undelying latent field ξ and a vector of
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hyperparameters θ. INLA is an alternative estimation method to the widely

used Markov Chain Monte Carlo (MCMC) methods. This approach directly

approximates the posteriors of interest with a close form expression unlike

the MCMC methods which samples from the posterior distribution.

The main aim of INLA approach is to approximate the marginal posteri-

ors for the latent variables as well as for the hyperparameters of the Gaussian

latent model given by

f(ξi|y) =

∫
f(ξi|θ,y)f(θ|y)dθ (3.21)

f(θj|y) =

∫
f(θ|y)dθ (3.22)

The basis of this approximation is on the combination of Laplace approx-

imation to the full conditional f(θ|y) and f(ξi|θ,y), for i = 1, 2, . . . , n and

numerical integration routines to integrate out the hyperparameters θ. To ob-

tain the marginal posteriors in (3.21) and (3.22), the approximation involves

three steps. The first step is to approximate the full posterior f(θ|y). To do

this, we approximate f(ξ|y,θ) by a multivariate Gaussian density f̃G(ξ|y,θ)

evaluated at its mode. Then the posterior density of θ is approximated by

using the Laplace approximation

f(θ|y) ∝ f(ξ,θ,y)

f̃G(ξ|θ,y)
|ξ=ξ∗(θ), (3.23)

where ξ∗(θ) is the mode of the full conditional of ξ for a given θ. There
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is no close form solution available of ξ∗(θ), a numerical procedure like the

Newton-Raphson algorithm can be used.

In the second step, we compute the Laplace approximation of the full

conditionals f(ξi|y,θ) for selected values of θ. These selected values of θ must

be chosen carefully as they will be used as evaluation points in the numerical

integration applied to obtain the posterior marginals of ξi in (3.21) and (3.22).

The density f(ξi|y,θ) is approximated using Laplace approximation defined

by;

fLA(ξi|θ,y) ∝ f(ξ,θ,y)

f̃G(ξ−i|ξi,θ,y)
|ξ−i=ξ

∗
−i(ξi,θ)

, (3.24)

where ξ−1 denotes the vector ξ with the ith component omitted, f̃G(ξ−i|ξi,θ,y)

is the Gaussian approximation of f(ξ−i|ξi,θ,y), treating ξi as fixed and

ξ∗−i(ξi,θ) is the mode of f(ξ−1|ξi,θ,y).

The third step involves combining the two full posteriors obtained in the

previous steps and the marginal densities of ξi and θj obtained by integrating

out the relevant terms. The approximation for the marginal of the latent

variables can be obtained by the expression

f(ξi|y) =

∫
f(ξi|y,θ)f(θ|y)dθ ≈

∑
k

f̃(ξi|θk,y)f̃(θk|y)∆k (3.25)

which is evaluated using numerical integration on a set of grid points for θ,

with area weights ∆k for k = 1, 2, . . . , K.
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3.5 Application

3.5.1 Results - MCMC

In analysing the SDHS data using the Bayesian GLMMs, separate analyses

were done for the males and females data sets. This was done since the

HIV prevalence rates in the two groups differ significantly. In analysing the

data R for windows software was used. In R, the MCMCglmm package [17]

was used. This package uses the Gibbs sampler. A total number of 60000

iterations were run in both groups. Before the 60000 iterations were used,

the Raftery and Lewis diagnostic was performed on a shorter pilot chain.

The results of the diagnostic were that about 20000 iterations will be needed

for convergence for both males and females. In both males and females,

the specified conditions were p = 0.025, r = 0.005 and s = 0.95. Several

values far bigger than the one given by the Raftery and Lewis diagnostic

were tried while monitoring the trace trace plots and finally 60000 iterations

were chosen.

As discussed in previous sections, in Bayesian inference we use prior dis-

tributions for parameters. In this analysis, the multivariate prior distribution

was used for the mean parameters (fixed effects) and an inverse Wishart prior

distribution with a Cauchy parameter expansion was used for the variances of

random effects. Since in GLMMs, the residual variance cannot be estimated
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from the data, we fixed the residual variance at some value ( we used 1). In

fitting this model, the logit link function was used for the response variable

and random effects or errors at cluster level were fitted. Model (MCMC)

convergence was monitored using trace plots. The results of the analysis are

shown in Table 3.1.
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Table 3.1: Bayesian GLMM results for HIV prevalence
Males Females

Variable OR (SE) 95%CI OR (SE) 95%CI
Age
15-19 1.00 ref 1.00 ref
20-24 4.51 (0.30) 2.51 -8.13 4.75 (0.16) 3.53 -6.51
25-29 10.43 (0.30) 5.72 -18.74 8.21 (0.17) 5.87 -11.51
30-34 25.01 (0.34) 12.81 -48.40 6.13 (0.19) 4.34 -8.92
35-39 29.23 (0.34) 15.30 -56.08 3.82 (0.18) 2.59 -5.60
40-44 21.30 (0.36) 10.30 -42.27 2.10 (0.21) 1.42 -3.21
44-49 11.02 (0.36) 5.38 -22.22 1.05 (0.21) 0.67 -1.66
Region
Hhohho 1.00 ref 1.00 ref
Manzini 0.76 (0.17) 0.54 -1.05 0.88 (0.12) 0.68 -1.12
Shiselweni 0.78 (0.19) 0.54 -1.14 0.94 (0.13) 0.73 -1.22
Lubombo 0.76 (0.17) 0.54 -1.06 0.89 (0.13) 0.69 -1.15
Residence type
urban 1.00 ref 1.00 ref
rural 0.87 (0.13) 0.67 -1.13 0.75 (0.10) 0.61 -0.92
Marital status
never married 1.00 ref 1.00 ref
married 1.18 (0.18) 0.83 -1.66 0.54 (0.12) 0.43 -0.68
living together 2.80 (0.22) 1.82 -4.27 1.22 (0.14) 0.91 -1.64
widowed 8.78 (0.42) 3.92 -20.02 3.50 (0.20) 2.34 -5.20
divorced 2.10 (0.50) 0.78 -5.56 2.85 (0.66) 0.79 -10.46
not living together 3.45 (0.29) 1.96 -6.20 2.08 (0.24) 1.30 -3.37
Educational level
no education 1.00 ref 1.00 ref
primary 1.10 (0.21) 0.73 -1.66 0.98 (0.15) 0.73 -1.33
secondary 0.89 (0.20) 0.60 -1.32 0.64 (0.16) 0.47 -0.88
Higher 0.48 (0.27) 0.29 -0.82 0.36 (0.23) 0.23 -0.56
Age at first sex
never had sex 1.00 ref 1.00 ref
14 or less 1.06 (0.45) 0.43 -2.58 6.96 (0.27) 4.05 -11.73
15-17 2.18 (0.35) 1.10 -4.34 6.16 (0.24) 3.85 -9.80
18+ 1.45 (0.35) 0.74 -2.95 5.45 (0.24) 3.35 -8.70
Had an STI in last 12 months
no 1.00 ref 1.00 ref
yes 2.88 (0.20) 1.98 -4.28 2.34 (0.18) 1.66 -3.32
dont know 1.04 (0.71) 0.25 -4.15 0.22 (0.77) 0.04 -0.85
Number of sexual partners
no partner 1.00 ref 1.00 ref
1 partner 1.58 (0.23) 1.02 -2.53 1.16 (0.37) 0.88 -1.52
2+ partners 2.89 (0.25) 1.78 -4.66 1.85 (0.35) 0.93 -3.58
Number of times away from home
none 1.00 ref 1.00 ref
1-5 times 1.12 (0.16) 0.82 -1.55 0.83 (0.11) 0.67 -1.03
6-10 times 1.54 (0.18) 1.07 -2.23 0.94 (0.14) 0.72 -1.22
11-15 times 1.16 (0.21) 0.76 -1.74 0.87 (0.15) 0.65 -1.18
16+ times 0.82 (0.18) 0.58 -1.17 1.12 (0.14) 0.85 -1.47
Any births
no 1.00 ref
Yes 0.80(0.10) 0.66-0.96

Random effects
σcluster 0.39(0.10) 0.30(0.05)

In both men and women, significant association was found between HIV
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serostatus and age. Women aged 20-24 years are at a significantly higher

probability (OR: 8.21; 95% CI: 5.87-11.51) of being HIV positive than women

in the reference category 15-19 years. Men at higher probability (OR: 29.23;

95% CI: 15.30-56.08) of being HIV positive are those in the age group 35-39.

For both men and women, there is an increase in prevalence odds as the age

increases, then followed by a decline. No significant association was found

between region and HIV serostatus for the two gender groups. There were

no significant differences found between men in the rural and urban areas

as regards to HIV serostatus. Women in the rural areas are less likely to be

HIV positive (OR: 0.75; 95% CI: 0.61-0.92) than those in urban areas.

Significant association between HIV and highest educational level was

found in both males and females for those in the higher education category.

Also, for women, significant association was found between HIV serostatus

and those classified as having secondary level of education (OR: 0.64; 95%

CI: 0.47-0.88). Although the prevalence odds of HIV for those with primary

level education is higher in both males and females, they are not significantly

different than those with no education.

Men who are widowed were found to be almost 9 times more likely to be

HIV infected than those who were never married, similarly, women who are

widowed were found to be 3.5 times more likely to be HIV positive. Being

widowed, in both gender groups increases the odds of HIV infection. Being
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married reduces the odds of HIV infection in females. Also, the category

“not living together” was found to be associated with a higher probability of

being HIV positive in both groups compared to those never married. There

is a higher probability of HIV infection (OR: 6.96; 95% CI: 4.05-11.73) for

women who started having sex at the age of 14 or less than those who had

never had sex. The association between HIV serostatus and age at first sex

was found to be strong in women compared to men.

The number of sexual partners in the past year have a significant rela-

tionship with HIV serostatus in men. The odds of infection increases with

an increase in the number of partners. Those who had 1 partner in the past

year were 1.58 times more likely to be HIV positive than those with none

while those who had two or more partners in the past year were 2.89 times

more likely to be infected with HIV than those who had no sexual partners

in the past year. Men who had an STI in the past 12 months were more

likely (OR: 2.88; 95% CI: 1.98-4.28) to be HIV postive than those who had

no STI. Similar results were obtained for the females. Not knowing if one

had an STI in the past 12 months was found to be significanltly associated

with HIV risk in women but it was not the case with men. The number of

sexual partners and exposure to STIs play a significant role in the generation

of new infections or incidences.

Weak association between the number of times away from home in the last
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12 months and HIV serostatus was found in both men and women. Among

women, reporting a birth in the past 5 years was found to be significantly

related to ones HIV serostatus (OR: 0.80; 95% CI: 0.66-0.96). In interpreting

the estimates of the random effects we use the divide by 4 rule from Gelman

and Hill [10]. For males, the cluster level has an estimated standard error of

0.15 on the logit scale. The differences between clusters with regards to HIV

serostatus is approximately ±3.7% on the probability scale, that is, over and

above the differences explained by the other covariates. Similar interpretation

holds for the females. The differences among clusters are approximately

±2.3% on the probability scale for the females.

3.5.2 Results - INLA

Table 3.2 shows the results produced by the INLA approach to full Bayesian

inference. In this analysis, we used similar priors to the ones used in the

MCMCglmm.

The two Bayesian estimation approaches lead to the same inference. Vari-

ables that are not statistically significant in the MCMC approach are also

not significant with the INLA approach. However, estimates from these two

methods of estimation are not exactly the same. The two approaches differ

in the following ways. The first outstanding difference between the two ap-
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proaches is computational speed. In running the model in INLA, the results

were obtained in less than a minute whilst with the MCMC the results were

obtained after more than 20 minutes. Negligible differences were observed in

standard errors.
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Table 3.2: Bayesian GLMM results using INLA for HIV prevalence
Males Females

Variable OR (SE) 95%CI OR (SE) 95%CI
Age
15-19 1.00 ref 1.00 ref
20-24 4.21 (0.29) 2.44-7.59 3.91 (0.13) 3.01-5.11
25-29 8.85 (0.30) 5.02-16.32 6.22 (0.15) 4.66-8.35
30-34 19.29 (0.31) 10.70-36.31 4.86 (0.16) 3.59-6.62
35-39 22.20 (0.32) 12.10-42.41 3.20 (0.17) 2.32-4.45
40-44 16.53 (0.33) 8.72-32.52 1.94 (0.18) 1.37-2.76
45-49 9.53 (0.34) 4.95-18.96 1.06 (0.20) 0.72-1.57
Region
Hhohho 1.00 ref 1.00 ref
Manzini 0.77 (0.16) 0.56-1.05 0.89 (0.12) 0.70-1.11
Shiselweni 0.81 (0.18) 0.57-1.14 0.95 (0.13) 0.74-1.22
Lubombo 0.78 (0.16) 0.57-1.08 0.90 (0.12) 0.71-1.15
Residence type
urban 1.00 ref 1.00 ref
rural 0.90 (0.13) 0.70-1.15 0.78 (0.10) 0.65-0.95
Marital status
never married 1.00 ref 1.00 ref
married 1.12 (0.15) 0.84-1.49 0.59 (0.10) 0.49-0.72
living together 2.41 (0.18) 1.68-3.46 1.19 (0.12) 0.93-1.52
widowed 6.28 (0.36) 3.16-13.10 2.93 (0.17) 2.11-4.10
divorced 1.96 (0.43) 0.84-4.53 2.38 (0.55) 0.81-7.00
not living together 2.82 (0.25) 1.73-4.61 1.85 (0.21) 1.24-2.78
Educational level
no education 1.00 ref 1.00 ref
primary 1.10 (0.17) 0.79-1.54 0.98 (0.13) 0.76-1.27
secondary 0.93 (0.17) 0.66-1.30 0.69 (0.13) 0.53-0.90
higher 0.56 (0.23) 0.36-0.87 0.42 (0.19) 0.29-0.61
Age at first sex
never had sex 1.00 ref 1.00 ref
14 yrs or less 1.14 (0.41) 0.50-2.53 5.60 (0.23) 3.56-8.91
15-17 yrs 2.08 (0.32) 1.11-3.97 5.07 (0.21) 3.38-7.72
18+ yrs 1.45 (0.32) 0.78-2.77 4.53 (0.21) 3.01-6.94
Had an STI in last 12 months
no 1.00 ref 1.00 ref
yes 2.50 (0.17) 1.79-3.50 2.04 (0.15) 1.53-2.74
don’t know 1.14 (0.59) 0.33-3.40 0.27 (0.65) 0.06-0.84
Number of sexual partners
no partner 1.00 ref 1.00 ref
1 partner 1.52 (0.20) 1.03-2.30 1.13 (0.12) 0.90-1.41
2+partners 2.50 (0.22) 1.63-3.91 1.69 (0.28) 0.97-2.96
Number of times away from home
none 1.00 ref 1.00 ref
1-5 times 1.09 (0.14) 0.83-1.43 0.86 (0.09) 0.71-1.03
6-10 times 1.44 (0.15) 1.06-1.95 0.94 (0.11) 0.75-1.18
11-15 times 1.13 (0.18) 0.79-1.61 0.89 (0.13) 0.68-1.15
16+ times 0.84 (0.15) 0.62-1.13 1.09 (0.12) 0.86-1.37
Any births
no 1.00 ref
Yes 0.83 (0.08) 0.70-0.97

Random effects
σcluster 0.37(0.09) 0.29(0.06)
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3.6 Summary and Discussion

In this chapter, we have investigated the relationship between HIV serosta-

tus and various explanatory variables using the SDHS data. In doing this,

a Bayesian generalised linear mixed model was fitted to the data. Two esti-

mation techniques are considered in this chapter; the MCMC methods and

INLA. The results obtained in this analysis are discussed below.

Age proved to be a significant risk factor in both males and females. The

odds of HIV infection increases with age in both groups, and later decreases

after reaching the peak. This result is consistent with findings from other

studies [14, 19, 27]. Contrary to the findings of [27, 19], this study found

no relationship between region and the probability of HIV infection. Being

widowed in both men and women was found to increase the odds of HIV

infection. In this category the odds of HIV infection was higher in males

than in females. This finding is in line with findings of previous studies

[27, 33, 41]. Weak association was found between type of place of residence

and HIV serostatus.

Though some studies [28, 46] have found some association between wealth

and HIV risk, this study found wealth to be insignificant in explaining HIV

serostatus. In both males and females, no significant relationship was found

between wealth and the risk of HIV infection at the cross tabulation. Men
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and women in the higher level of education are less likely to be HIV positive.

This result is in line with the results of Johnson and Way [19].

Strong association between age at first sex and HIV risk was found in both

males and females. The odds of HIV infection are higher in females than in

males for the age category 14 years or less. This suggest that females start

having sex at an earlier age than males. Starting having sexual intercourse

early in females increases their vulnerability to HIV infection since in earlier

ages their reproductive organs are not yet fully developed. Relationship

between number of partners and the HIV risk was found only in males. The

Swazi culture encourages or allows men to have multiple relationships, but

on the contrary discourages women to have multiple relationships [40] hence

the result is not surprising.

Among the biological factors, presence of an STI in the last 12 months

was found to be significantly associated with the risk of HIV infection. This

finding is in line with findings from previous studies [19, 3].

The two estimation methods namely the MCMC and INLA produced

similar results. The differences between parameter estimates are minimal. In

fact both methods lead to the same inference. The main advantage of INLA

over the MCMC method is computational speed. As the INLA approach is

still being developed, it promises to provide a good alternative to the widely

used MCMC methods.
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Chapter 4

Multilevel Models

In this chapter, we discuss multilevel models. Multilevel models are powerful

and flexible extension to conventional regression frameworks. They extend

the linear model and the generalised linear model by incorporating levels

directlty into the model statement and by so doing account for aggregation

present in the data. All of the familiar model forms for linear, dichotomous,

count, restricted range, ordered categorical, and unordered outcomes are sup-

plemented by adding a structural component. This structure classifies cases

into known groups which may have their own set of explanatory variables

at group level. Multilevel models allow the researcher to have group level

explanatory variables and as well as individual level covariates in the same

model.
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4.1 Multilevel Data Structures

In the medical, social and biological sciences multilevel data structures are

the norm and they are also encountered in many other application areas.

A clear example of a multilevel data structure is school education where

individuals (pupils) are subject to influences of grouping. In this example,

pupils are nested in classes, classes are nested in schools, and schools are

nested within school boards. A typical multilevel model in this case will

assign pupils to level 1, classes to level 2, schools to level 3 and lastly school

boards to level 4.

In a household survey, the level 1 units are individuals, level 2 units are

households and the level 3 units are clusters. Such a hierarchy is often de-

scribed in terms of clusters of level 1 units within each level 2 unit and also

within each level 3 unit and this is commonly known as a clustered multi-

level population. Other examples of multilevel structures include repeated

measurement studies and medical trials. In medical trials, medical centres

can be regarded as level 2 units and the individuals studied in each centre

as level 1 units. In longitudinal studies, the individual from which the mea-

surements are taken is regarded as the level 2 unit, and the measurements

as level 1 units. Multilevel also permits estimation of effects at each level of

the hierarchy.
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4.1.1 Consequences of Ignoring Multilevel Structure

In all the above examples, elements in a cluster share common characteris-

tics, that is observations from the same cluster tend to be more alike than

observations from a different cluster. Observations from the same cluster

are correlated. The heterogeneity between clusters introduces an additional

source of variation, and as a result complicates the analysis. If the analysis is

carried out without accounting for the heterogeneity induced by clustering,

erroneous estimation of the variability of parameter estimates may occur.

The point of multilevel modeling is that a statistical model should explicitly

recognize a hierarchical structure when such a feature is present in the data

[35].

Non-multilevel methods of analysing nested data are available. A com-

mon procedure with a two level data structure is to aggregate the micro level

data to the macro level. The simplest way to do this is to work with averages

for each single macro level unit. In cases where the research focuses on macro

level propositions, there is nothing wrong with aggregation, but it should be

borne in mind that the reliability of an aggregated variable depends, among

other things, on the number of micro level units. In cases where the re-

searcher is interested in micro level propositions aggregation may result in

gross error. In other words, if the analysis is done at the macro level unit
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then inferences cannot be made at the micro level unit. The major problem

with aggregation is that it does not exploit all the within group information.

Potential errors arise in aggregation. The first potential error is the shift

of meaning, that is, a variable that is aggregated to the second level refers to

the level 2 units and not directly to the level 1 units. The second potential

error is known as ecological fallacy. Correlation between level 2 variables

cannot be used to make assertions about level 1 relations. The third potential

error is the neglect of the original data structure, especially when some kind

of covariance analysis is to be made.

The other non-multilevel analysis is to disaggregate all higher order vari-

ables to level 1. The drawback with disaggregation is that we cannot use the

assumption of independence of observations [36]. We have to account for the

correlation of lower level units within a higher level unit.

4.1.2 Complete Pooling, Partial Pooling and No Pool-

ing

Multilevel models are thought as sitting between two extremes that are avail-

able to researchers dealing with data with some groupings. These extremes

are complete pooling and no pooling. The fully pooled model ignores the

groupings in the data and it fits a model treating the group level variables
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as individual level covariates. For a model with one explanatory variable

at the individual level (X1) and one measured at the group level (X2) with

complete pooling the model can be written as;

Yi = β0 +X1iβ1 +X2iβ2 + εi. (4.1)

In this model, the assertion is that group distinctions do not matter

and that cases should be treated homogeneously, ignoring possible variations

between groups. On the other hand is a set of models in which we treat each

group as a separate dataset and model them separately. Such a model can

be written as;

Yij = β0j +Xijβ1j + εij; (4.2)

for j = 1, . . . , J .

In this model, the group level predictor X2 is not included since X2iβ2 is

constant within a group and therefore subsumed into the intercept term. The

no pooling approach is the opposite of the fully pooled approach as it asserts

that the groups are so completely different that it does not make sense to

associate them in the same model. Such separate regression models clearly

overstate the variation between groups, making them look more different than

they really should be. Between these two extremes lies multilevel models. A

multilevel model compromises between full distinction of groups and full

ignoring of groups. This approach (multilevel model) can be regarded as
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partial pooling or semi pooling in the sense that the groups are collected

together into a single model, but their distinctiveness is preserved.

4.2 Frequentist Multilevel Model

In this section we discuss the non Bayesian multilevel model. To gain a deeper

understanding of the non-linear multilevel model which is later applied to the

SDHS data, we begin by reviewing the linear multilevel model.

4.2.1 The Multilevel Linear Model

In this section, we briefly discuss multilevel models for normally distributed

response variables. Keeping an eye on the SDHS data as described in Chapter

2, we consider a three level hierarchical model. From the data, we assign

clusters to level 3, households to level 2 and individuals to level 1.

Suppose we have a sample consisting of K clusters, with Jk households

within the kth cluster (k = 1, . . . , K) and Njk individuals within the j th

household from the kth cluster (j = 1, . . . , Jk, k = 1, . . . , K). Let yijk denote

the value of the response variable from the ith individual within the j th

household from the kth cluster. We now define the standard linear three

level model as follows;

yijk = xTijkβ + zT3,ijku
(3)
k + zT2,ijku

(2)
jk + εijk, (4.3)
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where xijk is a vector of covariates having fixed effects β, z3,ijk is a vector of

covariates having random effects u
(3)
k at the cluster level, z2,ijk is a vector of

covariates having random effects u
(2)
jk at the household level and εijk is vector

of error term. The random terms are assumed to be mutually independent

and distributed, that is,

u
(3)
k ∼ N(0,Ω(3))

u
(2)
jk ∼ N(0,Ω(2))

εijk ∼ N(0, σ2
e)

The vectors of covariates z3,ijk and z2,ijk will usually be a subset of the fixed

effect covariates xijk, although they need not be. The associated random

effects are used to account for variation in the data that is attributable to

clustering at the corresponding levels of hierarchy. The vector u
(2)
jk represent

the effect of the j th household in the kth cluster on the covariates z2,ijk and

is characteristic of between household variability. Similarly u
(3)
k represents

the effect of the kth cluster on the covariates z3,ijk, and is characteristic of

between cluster variability.

In model (4.3), we assume that the residual variance is constant (ho-

moscedasticity). This assumption can be relaxed by allowing dependence on

specific covariates, that is replacing εijk by zT1,ijkεijk, where z1,ijk are specific

covariates of interest. This results in in complex variability in level one that
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includes subgroup variability and heterogeneity.

Model (4.3) can be written in matrix form as a special case of the general

linear mixed model as follows;

y = Xβ + Zu + ε, (4.4)

where y is a vector of responses, X is a design matrix for the fixed effects, u

is a vector of random effects obtained by stacking u
(2)
jk on top of the cluster

effects u
(3)
k , β is a vector of fixed effects, Z is a design matrix for the random

effects, and ε are error terms obtained by stacking εijk.

4.2.1.1 Parameter Estimation

In the multilevel model, parameter estimation can be done by maximising

the likelihood function. Direct maximazation using the Newton Raphson or

the expectation maximisation algorithm can be performed. Equivalently, an

Iterative Generalised Least Squares (IGLS) procedure can be performed, and

this was proposed by Golstein [13]. IGLS iterates between the estimation

of the fixed and the random parameters using standardised least squares

principles. Its advantage over the direct maximisation is its computational

efficiency. It can also be modified to obtain residual or restricted maximum

likelihood (REML) which are unbiased for random parameters, and in this

case the procedure is referred to as RIGLS.
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4.2.2 Non-Linear Multilevel Models

In this section, we restrict our attention to binary response cases, although

the discussion can generally be applied to models of binomial and Poisson

data. Using the same notation as in the previous section, we define a non-

linear multilevel as;

g(πijk) = xTijkβ + zT3,ijku
(3)
k + zT2,ijku

(2)
jk , (4.5)

where πijk = P [yijk = 1|u(3)
k ,u

(2)
jk ] and g(.) is a link function which may be

the logit, probit or log-log functions. In matrix form model (4.5) can be

written as;

g(π) = Xβ + Zu, (4.6)

where π is the vector of response probabilities πijk. As in the linear model,

we shall assume that all components of vector u are mutually independent

and normally distributed. A further assumption is that conditional on u,

the binary response yijk are independent which is known as the conditional

independence assumption.

The difference between model (4.6) and the linear multilevel model is that

level one variability is not directly comparable to the variability at higher

levels. This is because the link function g(.) is in general different from

the identity link, random disturbances from level 2 and above appear on a

transformed scale such as the logit, whereas the level 1 variance characterises
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binomial variation.

Estimation: Maximum Marginal Likelihood

In this section, for notational simplicity, we consider a two level model;

g(πij) = xTijβ + zTijuj, (4.7)

where πij = P [yij = 1|uj],(j = 1, . . . , J ; i = 1, . . . , nj) and uj ∼ N(0,Ω).

By the local independence assumption, the conditional likelihood of unit

j (level 2) takes the binomial form, its contribution to the log marginal

likelihood, obtained by integrating over the random effects can be written

as;

`j(β,Ω) = log

∫ nj∏
i=1

π
yij
ij (1− πij)1−yijφ(uj,Ω)duj, (4.8)

with φ(uj,Ω) being the normal density function N(0,Ω). The log marginal

likelihood

`(β,Ω) =
n∑
j=1

`j(β,Ω) (4.9)

can be maximised to obtain the estimates of β and Ω using any standard

optimisation methods. Unfortunately (4.8) is intractable hence the need

to do numerical integration. The Gauss-Hermite quadrature can be used

to evaluate the integral. This technique works well when the dimension of

integration is small.
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Several approaches have been proposed to ease the computational burden

caused by the need for numerical integration. These techniques include the

penalised quasi likelihood (PQL) and the marginal quasi likelihood (MQL).

The PQL uses Laplace’s integral approximation. PQL and MQL can be

regarded as iterative procedures that requires fitting linear multilevel models

based on the first order Tylor expansion of the mean function about the

current fixed part predictor (MQL) or the current predicted value (PQL).

Although these approximate procedures are computationally efficient than

ML methods they are not without defect. When the number of simulations

is quite large, these procedures may be seriously biased [35].

The Laplace Approximation

Consider the model given in (4.6) with u ∼ N(0,Ω(θ)), where Ω is the

q × q variance-covariance matrix. Although Ω is a very large matrix, it is

determined by a parameter vector, θ, whose dimension is typically small.

Interest here is on finding the estimates of β̂ and θ̂ that maximises the

likelihood of the parameters β and θ, given the data y. This likelihood is

numerically equivalent to the marginal density of y, given β and θ;

f(y|β,θ) =

∫
u

p(y|β,u)f(u|Ω(θ))dθ, (4.10)
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where f(y|β,θ) is the probability mass function of y, given β and u, and

f(u|Ω) is the Gaussian probability density at u and p(y|β,u) is the condi-

tional density of y.

When p(y|β,u) is binomial, the above integral does not have a close

form solution and one way to find its solution is to approximate it using a

Laplace approximation. To obtain a Laplace’s approximation to the likeli-

hood L(β,θ|y) we replace the logarithm of the integrand in (4.10) by its

second-order Taylor series at conditional maximum, u(β, θ). On the scale of

the deviance, that is, negative twice the log-likelihood, the approximation is

given by;

−2`(β,θ|y) = −2log

{∫
u

p(y|β, u)f(u|Ω(θ))du

}
(4.11)

≈ 2log

∫
u

exp

{
−1

2
[d(β, ũ,y) + ũTΩ−1ũ+ log|Ω|+ uTD−1u]

}
= d(β, ũ,y) + ũTΩ−1ũ+ log|Ω|+ log|D|;

where d(β, ũ,y) is the deviance function from the linear predictor only;

d(β,u,y) = −log p(y|β,u). This quantity can be evaluated as the sum

of deviance residuals.
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4.2.3 Model Diagnostics and Selection

4.2.3.1 The Deviance

This is one of the statistics used in assessing goodness of fit and is defined

as follows;

D2 = 2
{
ln[Ls(β̂)]− ln[Lm(β̂)]

}
, (4.12)

where lnLs(β̂) is the maximised log-likelihood of the fitted model and ln[Lm(β̂)]

is the maximised log-likelihood of the saturated model.

This quantity compares the values predicted by the fitted model and

those predicted by the most complete model we could possibly fit. Evidence

of lack of fit is shown by large value of D2. Under specific regularity conditions

D2 converges asymptotically to a χ2 distribution with p degrees of freedom:

D2 ∼ χ2
(p), where p is the difference between the number of parameters

in the saturated model and the number of parameters in the model being

considered. The saturated model represents the largest possible model we

can fit and leads to perfect prediction of the outcome of interest.

4.2.3.2 Akaike’s Infomation Criterion (AIC)

This is the widely used method of model selection. The idea behind the AIC

is to select the model that minimises the negative likelihood penalised by the
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number of parameters. Mathematically, the AIC can be written as;

AIC = −2log(L) + 2p, (4.13)

where L is the likelihood under the fitted model and p is the number of

parameters in the model. The AIC aims at finding the best approximating

model to the unknown true data generating process [2].

4.2.4 Application

In this section, we present the results of the multilevel model as fitted in R

using the Laplace approximation in the lme4 package. For initial analysis,

we ignored the nested structure that exist in the data. We analysed the

data using a logistic regression model. This analysis is referred to as com-

plete pooling, that is, cluster level variables were treated as individual level

covariates and a logistic regression model was run. The following section

presents the results of the fully pooled model which is immediately followed

by a section presenting results of the multilevel analysis.

The Fully Pooled Model

In fitting this model, the lmer function in lme4 in R was used. The cluster

level variables included in the analysis are cluster average wealth, cluster

average age and cluster proportion HIV positive . These were selected after
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having run the model with all the cluster level variables, and the best model

was chosen using the information criteria. The response variable is HIV

status and its binary, that is, its either 1 for positive and 0 for negative. The

outcome variable can be modeled as Yi|pi ∼ Bern(pi) and;

log

(
pi

1− pi

)
= X iβ, (4.14)

where X i is the vector of covariates for the ith individual, and β is a vector

of coefficients to be estimated.

Table 4.1 shows the results of the initial analysis using a logistic regres-

sion where the multilevel structure that exist in the data set is ignored. The

results of the analysis show age in both males and females to be a significant

predictor for HIV serostatus, with the exception of the last category in fe-

males. No association was found between HIV serostatus and region in both

males and females. The results also show that there is no significant associ-

ation between HIV serostatus and type of place of residence in both males

(OR: 1.22, 95% CI: 0.89–1.67) and females (OR: 1.24, 95% CI: 0.98–1.57).

Being widowed in men is associated with a high probability of being HIV

infected (OR: 4.93, 95% CI: 2.43–10.46). Similar results were also found in

women (OR: 2.93, 95%CI: 1.98–3.81). Women who are married (OR: 0.62,

95% CI: 0.51–0.76) are less likely to be HIV infected than those who are

never married
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Women (OR: 0.50, 95% CI: 0.34–0.74) with higher level of education

are less likely to be HIV infected than their counterparts with no education

whilst no significant association was found between higher level of education

(OR: 0.80, 95% CI: 0.51–1.27) in males and HIV status. Strong association

between HIV risk and age at first sex was found in women, with those who

started having sex at 14 years or less being 5.14 times more likely to be

HIV positive. Men who reported to have had an STI in the last 12 months

are more likely to be HIV positive than those who had no STI in the last

12 months (OR: 2.41, 95% CI: 1.70–3.40). Strong association between HIV

serostatus and number of sexual partners was found in males, where both

categories are statistically significant at α = 5%.

No significant association was found between number of sexual partners

in the last 12 months and HIV serostatus in women. Also, weak association

was found between the number of times one is away from home and HIV

serostatus in both males and females. Women who had had a birth in the

last 5 years are less likely to be HIV positive than those who had no birth

(OR: 0.83, 95% CI: 0.71–0.98).

Among the cluster level variables, in the males cluster average age and

cluster proportion HIV positive were found to be statistically significant, and

for the females, only cluster proportion HIV was found to be statistically

significant.
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Table 4.1: Fully Pooled Model Results
Males Females

Variable OR (SE) 95%CI OR (SE) 95%CI
Age
15-19 1.00 ref 1.00 ref
20-24 4.59 (0.30) 2.62 -8.38 3.79 (0.14) 2.90 -4.97
25-29 10.10 (0.31) 5.62 -18.88 6.06 (0.15) 4.51 -8.17
30-34 24.06 (0.32) 13.05 -46.06 4.79 (0.16) 3.51 -6.57
35-39 28.39 (0.33) 15.10 -55.30 3.11 (0.17) 2.23 -4.35
40-44 20.70 (0.35) 10.63 -41.61 1.98 (0.18) 1.38 -2.83
45-49 13.74 (0.35) 6.94 -27.99 1.09 (0.20) 0.73 -1.63
Region
Hhohho 1.00 ref 1.00 ref
Manzini 0.96 (0.14) 0.72 -1.27 0.97 (0.10) 0.80 -1.18
Shiselweni 0.94 (0.16) 0.68 -1.29 0.98 (0.11) 0.79 -1.22
Lubombo 0.95 (0.14) 0.72 -1.26 0.93 (0.11) 0.76 -1.15
Residence type
urban 1.00 ref 1.00 ref
rural 1.22 (0.16) 0.89 -1.67 1.24 (0.12) 0.98 -1.57
Marital status
never married 1.00 ref 1.00 ref
married 1.00 (0.15) 0.74 -1.35 0.62 (0.10) 0.51 -0.76
living together 2.17 (0.19) 1.48 -3.17 1.17 (0.13) 0.91 -1.50
widowed 4.93 (0.37) 2.43 -10.46 2.93 (0.17) 2.09 -4.12
divorced 1.69 (0.45) 0.69 -4.07 1.89 (0.57) 0.61 -5.93
not living together 2.49 (0.26) 1.49 -4.15 1.84 (0.21) 1.22 -2.78
Educational level
no education 1.00 ref 1.00 ref
primary 1.15 (0.18) 0.81 -1.63 0.99 (0.13) 0.77 -1.29
secondary 1.04 (0.18) 0.73 -1.47 0.73 (0.14) 0.56 -0.96
higher 0.80 (0.23) 0.51 -1.27 0.50 (0.20) 0.34 -0.74
Age at first sex
never had sex 1.00 ref 1.00 ref
14 yrs or less 1.18 (0.43) 0.50 -2.70 5.14 (0.24) 3.25 -8.23
15-17 1.99 (0.33) 1.05 -3.85 4.76 (0.21) 3.15 -7.29
18+yrs 1.36 (0.33) 0.71 -2.63 4.33 (0.22) 2.85 -6.67
Had an STI in last 12 months
no 1.00 ref 1.00 ref
yes 2.41 (0.18) 1.70 -3.40 1.95 (0.15) 1.45 -2.65
don’t know 1.59 (0.61) 0.44 -4.87 0.23 (0.67) 0.05 -0.76
Number of sexual partners
no partner 1.00 ref 1.00 ref
1 partner 1.38 (0.21) 0.92 -2.11 1.07 (0.12) 0.85 -1.35
2+ partners 2.13 (0.23) 1.36 -3.37 1.62 (0.29) 0.92 -2.87
Number of times away from home
none 1.00 ref 1.00 ref
1-5 times 1.10 (0.14) 0.83 -1.45 0.86 (0.10) 0.71 -1.04
6-10 times 1.36 (0.16) 0.99 -1.86 0.93 (0.12) 0.74 -1.16
11-15 times 1.06 (0.19) 0.73 -1.54 0.89 (0.14) 0.68 -1.16
16+times 0.86 (0.16) 0.64 -1.17 1.07 (0.12) 0.85 -1.36
Any births
no 1.00 ref
Yes 0.83 (0.08) 0.71 -0.98

Cluster level variables (not odds ratios)
cwealth.full 0.03 (0.07) (-0.11) -0.16 0.02 (0.05) (-0.07) -0.12
chiv.full 6.60 (0.44) 5.75 -7.48 4.88 (0.31) 4.29 -5.49
cage.full -0.47 (0.09) (-0.65) -(-0.28) -0.11 (0.07) (-0.26) -0.03
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4.2.4.1 Multilevel Model

In this section we present the results of the multilevel model fitted using

frequentist methods. The model was fitted in R using the Laplace approxi-

mation in the package lme4. The way the SDHS data was collected is such

that it has three levels; individuals are nested within households and house-

holds are nested within clusters. In this analysis, households were ignored.

This is because in some of the households there are very few individuals, in

some there is only one individual making it difficult to get good estimates of

household variability. Also in presenting these results, cluster level variables

(though in the same table) are not given as odds ratios but just estimates.

The results of the multilevel model are shown in Table 4.2.

The results show that age is an important predictor of HIV risk. The

odds of infection are at peak in the age group 35-39 in males and in the age

group 25-29 in females. Men in the age group 35-39 are 20 times more likely

to be HIV infected than those in the age group 15-19. Women in the age

group 25-29 are almost 6 times more likely to HIV positive than those at the

age group 15-19. No significant association was found between region and

HIV serostatus in both males and females. Residence type was found to be

statistically significant in females. Men (OR: 0.90, 95% CI: 0.72–1.12) and

women (OR: 0.78, 95% CI: 0.66–0.93) in the rural places are less likely to be
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HIV positive than those in urban areas.

Strong association between being widowed persons and HIV serostatus

in both males and females was found. Men who are widowed are 6.11 times

more likely to be HIV positive than those who are never married. Women

who are widowed are almost 3 times more likely to be HIV positive than

those who are never married. Being married (OR: 0.59, 95% CI: 0.49–0.72)

in women reduces the probability of being HIV positive. Women who are

divorced are 2.41 times more likely to be HIV infected than those who are

in the never married category. On the other hand, men who are divorced

are almost 2 times more likely to be HIV positive than those who are never

married.

Men having primary level of education (OR: 1.08, 95% CI: 0.77–1.51) were

found to be more likely to be HIV positive than those in the no education

category. In both males (OR: 0.54, 95% CI: 0.35–0.83) and females (OR:

0.42, 95% CI: 0.29–0.62) having higher level of education is associated with

lower probability being HIV positive. Concerning age at first sex and HIV

serostatus, strong association was found among the females. Females who

begun having sex encounters at age 14 or less (OR: 5.49, 95% CI: 3.48–

8.68) are more likely to be HIV positive than those who had never had sex.

Also, women who started having sex between the age of 15 and 17 are 4.99

times more likely to be HIV positive than those who never had sex. Weak
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association between age at first sex and HIV serostatus was found among

males.

Among males, an increase in the number of sexual partners one had in

the past 12 months increases the probability of HIV infection. No significant

associations were found between the number of sexual partners and HIV

serostatus in females. Men who were away from home for 6-10 times (OR:

1.45, 95% CI: 1.07–1.95) are more likely to be HIV positive than those who

never slept away from home in the past 12 months. No significant association

was found between the number of times away from home and HIV serostatus

in females.

The cluster level errors for males have an estimated standard deviation

of 0.29 on the logit scale. Dividing this figure by 4 tells us that the clusters

differed by approximately ±7% on the probability scale over and above the

differences explained by the other covariates. A similar interpretation holds

for the females. Dividing 0.25 by 4 tells that with regards to HIV serosta-

tus,the clusters differed by approximately ±6% on the probability scale over

and above the differences explained by the other covariates.
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Table 4.2: Multilevel Model Results
Males Females

Variable OR (SE) 95%CI OR (SE) 95%CI
Age
15-19 1.00 ref 1.00 ref
20-24 4.09 (0.29) 2.31 -7.26 3.82 (0.13) 2.94 -4.97
25-29 8.42 (0.30) 4.66 -15.23 5.99 (0.15) 4.49 -8.01
30-34 17.79 (0.31) 9.64 -32.85 4.73 (0.16) 3.49 -6.41
35-39 20.35 (0.32) 10.86 -38.11 3.17 (0.17) 2.29 -4.39
40-44 15.53 (0.34) 8.03 -30.04 1.92 (0.18) 1.35 -2.72
45-49 8.91 (0.34) 4.54 -17.46 1.07 (0.20) 0.73 -1.58
Region
Hhohho 1.00 ref 1.00 ref
Manzini 0.80 (0.14) 0.60 -1.06 0.89 (0.10) 0.72 -1.09
Shiselweni 0.80 (0.16) 0.58 -1.11 0.95 (0.12) 0.76 -1.19
Lubombo 0.81 (0.14) 0.61 -1.08 0.91 (0.11) 0.73 -1.13
Residence type
urban 1.00 ref 1.00 ref
rural 0.90 (0.11) 0.72 -1.12 0.78 (0.09) 0.66 -0.93
Marital status
never married 1.00 ref 1.00 ref
married 1.13 (0.14) 0.85 -1.51 0.59 (0.10) 0.49 -0.72
living together 2.29 (0.18) 1.61 -3.27 1.17 (0.12) 0.92 -1.49
widowed 6.11 (0.36) 3.02 -12.37 2.84 (0.17) 2.04 -3.95
divorced 1.79 (0.42) 0.78 -4.10 2.41 (0.55) 0.83 -7.04
not living together 2.75 (0.25) 1.69 -4.47 1.82 (0.20) 1.22 -2.71
Educational level
no education 1.00 ref 1.00 ref
primary 1.08 (0.17) 0.77 -1.51 0.99 (0.13) 0.76 -1.28
secondary 0.90 (0.17) 0.64 -1.25 0.69 (0.13) 0.53 -0.90
higher 0.54 (0.22) 0.35 -0.83 0.42 (0.19) 0.29 -0.62
Age at first sex
never had sex 1.00 ref 1.00 ref
14 yrs or less 1.19 (0.42) 0.52-2.68 5.49 (0.23) 3.48-8.68
15-17 2.10 (0.33) 1.11-3.97 4.99 (0.21) 3.30-7.54
18+yrs 1.49 (0.33) 0.78-2.76 4.49 (0.21) 2.96-6.83
Had an STI in last 12 months
no 1.00 ref 1.00 ref
yes 2.47 (0.17) 1.77 -3.44 2.03 (0.15) 1.52 -2.71
don’t know 1.04 (0.58) 0.33 -3.26 0.28 (0.66) 0.08 -1.00
Number of sexual partners
no partner 1.00 ref 1.00 ref
1 partner 1.50 (0.20) 1.01 -2.24 1.13 (0.11) 0.91 -1.42
2+ partners 2.47 (0.22) 1.59 -3.81 1.68 (0.28) 0.96 -2.92
Number of times away from home
none 1.00 ref 1.00 ref
1-5 times 1.09 (0.14) 0.83 -1.42 0.86 (0.09) 0.72 -1.04
6-10 times 1.45 (0.15) 1.07 -1.95 0.95 (0.11) 0.76 -1.18
11-15 times 1.14 (0.18) 0.80 -1.63 0.89 (0.13) 0.69 -1.15
16+times 0.85 (0.15) 0.64 -1.14 1.10 (0.12) 0.87 -1.38
Any births
no 1.00 ref
yes 0.83 (0.08) 0.71 -0.97

Cluster level variables (not odds ratios)
cwealth.full 0.15 (0.05) 0.04 -0.26 0.02 (0.03) (-0.03) -0.08
chiv.full 0.02 (0.35) (-0.66) -0.70 0.04 (0.26) (-0.47) -0.55
cage.full -0.14 (0.08) (-0.29) -0.02 0.06 (0.10) (-0.13) -0.24
σcluster 0.29 0.25
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4.3 Bayesian Multilevel Models

In this section we consider Bayesian Multilevel models. The discussion begins

with the normal linear multilevel model followed by multilevel generalised

linear models. This approach is followed so that the distinction between the

two types of models is clarified.

4.3.1 The Linear Multilevel Model

A multilevel model typically assumes observations to be independent condi-

tional on fixed regression and random effects defined at one or more levels of

the data hierarchy. With continuous outcomes, the two level random effects

model have been widely used for nested data and is given as;

yij = xTijβ + zTijuj + εij, (4.15)

where yij is the response for the ith observation (i = 1, 2, . . . , nj) in cluster j

(j = 1, 2, . . . ,m), xij is a p× 1 vector of covariates associated with response

variable, β is a column vector of regression coefficients that are of scientific

interest, zij is a q×1 vector of random coefficients, uj and εij denote cluster

and observation level random effects. The vector xij includes the intercept.

With N =
∑m

j=1 nj, the total number of observations, the nested form of the

model is

y = Xβ +Zu+ ε, (4.16)
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where y is aN×1 vector,X =


X1

. . .

Xm

 isN×p withXj = (x1j, . . . ,xnj
)T of

dimension nj×p, Z is N×mq block diagonal matrix with m diagonal blocks,

Zi = (z1j, . . . ,zjnj
)T of dimension nj × q, β is a p× 1 vector of population

parameters and uj = (u1j, . . . , uqj)
T is q × 1 vector of zero mean cluster

specific deviations around those population parameters, with uj assumed

random. Thus u = (uT1 ,u
T
2 , . . . ,u

T
m) is a mq × 1 vector.

The conjugate linear normal model with random cluster effects assumes

multivariate normality for these effects as well as the observational level errors

that is

uj = (u1j, . . . , uqj)
T ∼ Nq(0,Ω).

Assuming a prior εj ∼ Nnj
(0,Hj), where Hj is the within-cluster dis-

persion matrix. The stacked form of the linear mixed model at cluster level,

namely  yj
uj

 ∼ Nnj+q


 Xjβ

0

 ,
 ZjΩZ

T
j +Hj ZjΩ

ΩZj Ω




or as

yj ∼ Nnj

(
Xjβ,ZjΩZ

T
j +Hj

)
in marginal form.
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For priors, the conjugate model takes inverse gamma and the inverse

Wishart for σ2 and Ω respectively. Common practice is to assign proper pri-

ors such as σ2 ∼ IG(ε, ε) with ε small. Alternative priors for the observation

level variance is to use the uniform prior or the half t prior [9]. For β we use

the multivariate normal distribution as a prior, that is, β ∼ Np(β0,Σ0).

4.3.1.1 The Lindley-Smith Model Format

This is an alternative way of representing the normal linear multilevel model

and is based on the scheme of Lindley and Smith [24]. In this scheme, it is

assumed that all the effects of a level 1 predictor vary randomly over clusters

with their variability explained by cluster predictors

W j = (w1j, w2j, . . . , wrj)
T .

Based on this scheme, the two level model can be written as;

yj = Zjβj + εj, (4.17)

βj = κW j + uj;

where yij = (yj1, . . . , yjnj
)T is an nj×1, κ is q×r, Zj is nj×q, βj is a vector

of random cluster regression parameters, and the errors εj = (ε1j, . . . , εnjj)
T

have a prior εij ∼ N(0, σ2). The level 2 regression for βj involves a fixed

effect parameters, κ, and the errors uj = (u1j, . . . , uqj)
T having a prior uj ∼
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N(0,T u). When the second equation is substituted in the first equation we

get

yj = ZjκW j +Zjuj + εj. (4.18)

The model can be reformulated as a mixed model in order to constrain

the effect of one or more level 1 predictors to have an identical effect across

clusters.

For this model one may assume a uniform prior for κ, gamma and Wishart

priors for σ and T u, that is, 1/σ2 ∼ G(aε, bε) and T u ∼ W (Su, υu). Let rij =

yij−Zijβj, β̂j = (ZT
j Zj)

−1Zjyj, Ṽ j = (σ−2ZT
j Zj +T u)

−1, V j = σ2ZT
j Zj,

Λj = (V −1j + T u)V
−1
j , U j = (βj − κWj) and G = [

∑
W T

j T uWj]
−1, then

the full conditionals for Gibbs sampling are

1/σ2 ∼ G

(
0.5(aε,m), 0.5(bε +

m∑
j=1

nj∑
i=1

r2ij)

)
,

βj ∼ Nq(Λjβ̂j + (I −Λj)κW j, Ṽ j),

T u ∼ W

(
Su +

m∑
j=1

U jU
T
j ,m+ υu

)
,

κ ∼ Nr

(
G

m∑
j=1

W jT uβj,G

)
.

4.3.2 Multilevel Model for Discrete Data

The linear normal model discussed thus far can be extended to discrete out-

comes. Consider a univariate, yij, with repetitions i nested in cluster j, that
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is conditional on cluster effects uj, follow an exponential density,

f(yij|uj) ∝ exp

{
yijθij − d(θij)

φij
+ c(yij, φij)

}
; (4.19)

where θij is the canonical parameter, and φij is the scale parameter. Fur-

thermore, E(yij|θij) = d′(θij) and var(yij|θij, φij) = d′′(θij)φij. In the Pois-

son model, for instance, d(u) = exp(u) and for the binomial case d(u) =

log(1 + eu).

Let ηij = g(θij), where g(.) is a link function such that ηj = (η1j, . . . , ηnjj)
T ,now

the observation level model is given by

ηij = xTijβ + zTijuj, (4.20)

uj = κW j + ε;

where β and uj are of dimension p and q, respectively.

To model overdispersion, for example in the Poisson model, it is common

to include observation level residual term so that

ηij = xTijβ + zTijuj + εij. (4.21)

It is also possible to have observational level predictors, say gij of dimension

s with varying effects at observational level. In such a case (4.21) becomes

ηij = xTijβ + zTijuj + gTijεij. (4.22)
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For priors, we assume β ∼ Np(β0,R), ui ∼ N(0,Ωu), ε ∼ Nr(0,Ωε),

Ωu ∼ IW (υu, Su), Ωε ∼ IW (υε, Sε), then the full conditional for each uj

vector is given by

p(uj|u[j],β,u,Ωu,Ωε) ∝ exp

{
−0.5uTj Ω−1u uj +

nj∑
i=1

yijθij − d(θij)

φij

}
,

while the full conditional for each ε vector is

p(εij|εij,u,β, ε,Ωu,Ωε) ∝ exp

{
−0.5εTijΩ

−1
ε εij +

yijθij − d(θij)

φij

}
.

Also, the covariance matrices have inverse Wishart full conditionals, namely,

Ωu ∼ IW

(
υu +m,Su +

m∑
j=1

uju
T
j

)

Ωε ∼ IW

(
υε +

m∑
j=1

nj, Su +
∑
i,j

εijε
T
ij

)
.

This approach can be extended to multinomial observations.

4.3.3 Application

Table 4.3 shows the results of fitting the Bayesian multilevel model to the

SDHS data. The model was fitted using the following prior distributions. For

the unmodeled parameters the multivariate normal distribution (essentially

uninformative) was used, and for the variance-covariabce matrix we used the

inverse Wishart prior distibution (weakily informative). In the multilevel

logistic model the level 1 error varriance is fixed and cannot be estimated
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from the data, therefore in fitting this model we fixed the level 1 varriance

at 1. The model was fitted in MCMCglmm using 60 000 iterations with a

thinning rate of 10. The Raftery and Lewis diagnostic was used in coming up

with the number of iterations to be run, that is a shorter pilot chain was first

run. Convergence of the chain was monitored using diagnostic plots which

are found in the appendix.

The results of the Bayesian multilevel model shows that age is a strong

predictor of HIV infection, with males having the highest odds ratios. Men

in the age categories 30-34 (OR: 26.67 , 95% CI: 13.73–53.26), 35-39 (OR:

31.55, 95% CI: 15.89–64.74) and 40-44 (OR: 22.51, 95% CI: 11.12–49.36) are

more likely to be HIV positive than those aged 15-19. Women aged 25-29

(OR: 8.29, 95% CI: 5.97–11.54) are more likely to be HIV infected than those

in the reference category. Also, women in the age group 30-34 are 6.19 times

more likely to be HIV positive than those aged 15-19. The last age category

in the females is not statistically significant as the confidence interval does

contain 1.

In both males and females, region was found to be statistically insignif-

icant. It it worth noting that there is no variability in the odds ratios for

the different regions in both males and females. The probability of being

HIV infected does not seem to vary from region to region in both groups.

Women (OR: 0.74, 95% CI: 0.61–0.91) in the rural areas are less likely to
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be HIV infected than those in the urban areas. For Men (OR: 0.88, 95%

CI: 0.68–1.16), no significant association was found between HIV serostatus

and the type of place of residence. Strong association between marital status

and HIV serostatus was found. Women who are married (OR: 0.54, 95% CI:

0.43–0.68) are less likely to be HIV positive while those who are widowed

(OR: 3.54, 95% CI: 2.39–5.18) and divorced (OR: 2.87, 95% CI: 0.78–10.45)

are more likely to be HIV positive than those in the never married category.

Similarly, men who are divorcrd (OR: 8.87, 95% CI: 3.92–20.30) and those

not living together (OR: 3.43, 95% CI: 1.89–6.14) with their partners are

more likely to be HIV positive than those who are never married.

Men with higher level (OR: 0.47, 95% CI: 0.28–0.77) of education are

less likely to be HIV positive compared those with no education. Similarly,

women with secondary level (OR: 0.65, 95% CI: 0.47–0.88) and higher level

(OR: 0.36, 95% CI: 0.23–0.56) of education have a lower probability of being

HIV infected. Age at first sex proved to be stronglty related to HIV serostatus

in women. Women who started having sexual intercourse at the age of 14

or less (OR: 6.99, 95% CI: 4.17–11.64) and those who started having sex

in the age group 15-17 (OR: 6.15, 95% CI: 3.82–9.84) are more likely to

be HIV positive than those who never had sex. Weak association between

age at first sex was found among the males. On the other hand, however,

strong association was found between the number of sexual partners and HIV
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serostatus in males. Men with two or more sexual partners (OR: 2.85, 95%

CI: 1.75–4.73) are more likely to be HIV positive than those who had no

sexual partner in the last 12 months. Weak association between the number

of sexual partners and HIV serostatus in women.

Weak association was found between the number of times one is away

from home and HIV serostatus in both men and women. Women who had

a birth (OR: 0.80, 95% CI: 0.66–0.97) in the last 5 years are less likely to

be HIV positive compared to those had a birth. Among the cluster level

variables, only cluster average wealth was stistically significant in males.

The cluster level errors for men have an estimated standard deviation of

0.30 on the logit scale. Upon diving by 4 tells us that the clusters differed by

approximately ±7.5% on the probability scale over and above the differences

explained by the other covariates. For the females, the cluster level errors

are estimated at 0.29. Over and above the differences explained by the other

covariates, the clusters differed by approximately ±7.3% with regards to HIV

serostatus on the probability scale.
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Table 4.3: Bayesian Multilevel Model Results
Males Females

Variable OR (SE) 95%CI OR (SE) 95%CI
Age
15-19 1.00 ref 1.00 ref
20-24 4.79(0.32) 2.54 -8.95 4.84 (0.15) 3.59 -6.54
25-29 10.97(0.33) 6.05 -21.53 8.29 (0.17) 5.97 -11.54
30-34 26.67(0.35) 13.73 -53.26 6.19 (0.18) 4.37 -8.94
35-39 31.55(0.36) 15.89 -64.74 3.87 (0.19) 2.69 -5.62
40-44 22.51(0.38) 11.12 -49.36 2.15 (0.21) 1.43 -3.27
45-49 11.53(0.38) 5.62 -25.37 1.07 (0.23) 0.68 -1.65
Region
Hhohho 1.00 ref 1.00 ref
Manzini 0.78(0.17) 0.55 -1.07 0.88 (0.13) 0.68 -1.12
Shiselweni 0.78(0.19) 0.53 -1.13 0.95 (0.14) 0.73 -1.24
Lubombo 0.79(0.17) 0.57 -1.10 0.90 (0.13) 0.69 -1.16
Residence type
urban 1.00 ref 1.00 ref
rural 0.88(0.14) 0.68 -1.16 0.74 (0.10) 0.61 -0.91
Marital status
never married 1.00 ref 1.00 ref
married 1.17(0.17) 0.84 -1.62 0.54 (0.12) 0.43 -0.68
living together 2.72(0.22) 1.79 -4.14 1.21 (0.15) 0.90 -1.63
widowed 8.87(0.43) 3.92 -20.30 3.54 (0.20) 2.39 -5.18
divorced 1.99(0.52) 0.71 -5.34 2.87 (0.65) 0.78 -10.45
not living together 3.43(0.30) 1.89 -6.14 2.09 (0.24) 1.28 -3.32
Educational level
no education 1.00 ref 1.00 ref
primary 1.10(0.20) 0.75 -1.61 0.99 (0.16) 0.72 -1.34
secondary 0.87(0.20) 0.59 -1.28 0.65 (0.16) 0.47 -0.88
higher 0.47(0.26) 0.28 -0.77 0.36 (0.23) 0.23 -0.56
Age at first sex
never had sex 1.00 ref 1.00 ref
14 yrs or less 1.06(0.45) 0.44 -2.53 6.99 (0.27) 4.17 -11.64
15-17yrs 2.13(0.35) 1.04 -4.19 6.15 (0.24) 3.82 -9.84
18+yrs 1.43(0.35) 0.71 -2.82 5.42 (0.24) 3.37 -8.74
Had an STI in last 12 months
no 1.00 ref 1.00 ref
yes 2.92(0.20) 1.99 -4.35 2.35 (0.17) 1.69 -3.30
don’t know 1.02(0.70) 0.24 -3.82 0.21 (0.77) 0.04 -0.84
Number of sexual partners
no partner 1.00 ref 1.00 ref
1 partner 1.57(0.23) 1.00 -2.50 1.16 (0.14) 0.88 -1.53
2+ partners 2.85(0.25) 1.75 -4.73 1.85 (0.34) 0.95 -3.57
Number of times away from home
none 1.00 ref 1.00 ref
1-5 times 1.13(0.16) 0.82 -1.55 0.84 (0.11) 0.67 -1.05
6-10 times 1.58(0.18) 1.12 -2.25 0.94 (0.14) 0.71 -1.21
11-15 times 1.17(0.22) 0.78 -1.80 0.87 (0.16) 0.64 -1.19
16+times 0.84(0.17) 0.59 -1.17 1.12 (0.14) 0.84 -1.47
Any births
no 1.00 ref
yes 0.80 (0.10) 0.66 0.97

Cluster level variables (not odds ratios)
cwealth.full 0.18(0.06) 0.05 -0.30 0.03 (0.03) (-0.04) -0.10
chiv.full 0.00(0.40) (-0.80) -0.80 0.05 (0.31) (-0.55) -0.68
cage.full -0.16(0.10) (-0.35) -0.03 0.07 (0.11) (-0.16) -0.30
σcluster 0.30(0.10) 0.29(0.06)
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4.3.4 Summary

In this chapter, we have analysed the SDHS data using multilevel models.

The models fitted in this chapter are the Bayesian and the frequentist mul-

tilevel models. Before fitting the frequentist multilevel model, we first fitted

a complete pooling model to the data. In this section, we shall first discuss

the performance of the models on the data and then the results obtained by

fitting these models.

The first two models fitted to the data are the complete pooling model

and the frequentist multilevel model. Both models were fitted in R. The

fully pooled model was fitted using the glm function whilst for the frequen-

tist multilevel model lmer function was used. There are notable differences

between the results of the two methods. One of the differences is that of

standard errors. The standard errors obtained from the fully pooled model

are bigger compared to the ones obtained from the multilevel model. The

second difference concerns confidence intervals. Confidence intervals from

the fully pooled model are generally wider than the ones from the frequentist

multilevel model. There are cases where these two methods lead to different

inferences. In the males, the higher level of education is not statistically

significant in the fully pooled model but it is statistically significant in the

multilevel model. Also, in the variable “number of sexual partners” one
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category is not statistically significant in the males whilst it is statistically

significant in the frequentist multilevel model. The complete pooling analysis

ignores any variation in the HIV serostatus between the clusters and hence

this can lead to misleading inference [10].

Now in comparing the results of the Bayesian multilevel model and the

frequentist multilevel model, the following differences were observed. The

parameter estimates are similar for both models with the exception for the

variable age. For the variable age, the Bayesian multilevel model produced

larger odds ratios than the ones estimated using likelihood based methods.

In both methods same inference can be reached, that is to say, variables that

are statistically significant in the Bayesian multilevel model are also statisti-

cally significant in the frequentist multilevel model. The standard errors for

the Bayesian multilevel model are larger than the ones from the frequentist

multilevel model. Since the standard errors are used for the computation of

estimates of confidence intervals, the confidence intervals from the Bayesian

multilevel model are generally wider than the ones from the frequentist mul-

tilevel model though the difference is minimal.

Browne and Draper [7] in their paper “A comparison of Bayesian and

likelihood-based methods for fitting multilevel model”, in two examples that

they did, find that the variance components estimates obtained using Bayesian

methods (MCMC) are bigger than the variance components estimates ob-
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tained using the likelihood based approaches. In this study, similar results

were found. The estimates of the variance components σ2
cluster are larger for

the Bayesian multilevel model compared to the ones from the frequentist

multilevel model. As stated above that both methods of estimation lead to

the same inference, in choosing which method to use one has to consider fac-

tors such as computational speed, flexibility, informativeness of the output.

Bayesian outputs generally carry more information. From a Bayesian out-

put one can choose between reporting the mean or the median. Flexibility

in building the model by incorporating prior information is also an inherent

feature embedded in Bayesian methods. The major drawback of Bayesian

methods (MCMC) is computational speed.

Strong association was found between age and HIV serostatus. The odds

of infection are quite higher for males than for females. Similar studies

[14, 19] found similar results between age and serostatus. Contrary to the

findings of Way and Johson [19] and Magadi and Desta [27], this study

found no relationship between region and HIV serostatus in both males and

females. Women in rural areas were found to be less likely to be HIV infected.

This result is in line with the findings of Boerma et al [6] with regards to

women but contrary to the findings of Solomon et al [42] who found that

HIV prevalence was higher in rural areas than in urban areas.

Women classified as widowed or divorced were found to be more likely
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to be HIV positive. For the widowed, it maybe that their husbands died of

HIV. This result is in line with the findings of Johnson and Way [19]. This

study also found that men and women with higher levels of education are less

likely to be HIV positive. This result is in line with the findings of Johnson

and Way [19] on the other hand contrary to the findings of Glynn et al [12].

Strong relationship between age at first sex and HIV serostatus was found

among females but weak association was found among males. Among women,

the odds of infection are higher for those who begun having sexual intercourse

at the age of 14 or less or from 15–17 years. Starting having sexual intercourse

at an early age in women increases thier vulnerability to HIV infection. Eco-

nomic hardships and challenges sometimes force young girls and older women

to engage in sexual practices for survival [44].

The number of sexual partners one had in the last 12 months was found to

be a strong predictor of HIV risk among men but weak association was found

among women. This result is in line with results of Morris and Kretzshmar

[32] who found that concurrent parterships increase the number of infected

individuals and the growth rate of the epidemic. Contrary to the findings of

Gillespie et al [11] who found convincing evidence linking the spread of HIV

and the number of times away from home, this study found non convincing

evidence linking the two.

This study found that for both males and females, with regards to HIV
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seropositivity, the clusters differed by less than 10%. The cluster HIV serop-

sitivity variation accounted for less than 10% of the total variability over and

above the differences explained by the other covariates.
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Chapter 5

Conclusion

In this study, we have modeled HIV in Swaziland using Bayesian GLMMs

and both frequentist and Bayesian multilevel models to ascertain the extent

to which HIV serostatus is related to various explanatory variables. One of

the objectives of this study was to compare performance of these models on

the SDHS data. The SDHS data was collected through multistage sampling,

hence the data has some groupings or levels. The nesting in the data is such

that individuals are nested within households and households are nested in

clusters. We restricted this study to two levels, level 1 being individuals and

level two being clusters, that is, we ignored households as a level since in

some households there are few individuals. Since the outcome variable in

this study is binary, and due to the presence of random effects or levels, the

GLMMs and multilevel models were deemed appropriate in analysing the
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data. Multilevel models differ from ordinary GLMMs in the sense that they

add predictors at individual and group level reducing unexplained variation

in each level [10].

In chapter 3, we fitted the Bayesian generalised linear mixed model. In

fitting this model, we used two estimation techniques namely MCMC method

and INLA. The INLA approach is superior to the MCMC methods in terms of

computational speed. Though INLA is still under development, it promises

to be a better alternative to the widely used MCMC methods for full Bayesian

inference.

In chapter 4, we fitted the multilevel models from a frequentist and the

Bayesian perspectives. Before fitting the frequentist multilevel model, we

fitted as a preliminary analysis a complete pooling model ignoring the group-

ings in the data. Differences between the frequentist multilevel model and

the complete pooling model were observed. Multilevel models are regarded

as a compromise between complete pooling and no pooling. In this study,

we observed that the frequentist multilevel model produces estimates with

smaller standard errors than complete pooling. When the between group

variation is neglible that is σcluster → 0, we expect that the results from

complete pooling and multilevel model to be very similar.

Both the frequentist and the Bayesian multilevel models yielded similar

results. There were some differences in standard errors and estimates of
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variance components but both methods lead to same inference. Differences

were observed between the results of the multilevel models and the Bayesian

GLMMs of Chapter 3. One of the pronounced difference between between the

results is that of differing estimates of cluster effects. In the Bayesian GLMM,

the estimates of the cluster effect are larger than the ones from the multilevel

models. The Bayesian GLMM was run without the inclusion of cluster level

variables. Group level predictors play a crucial role in multilevel modeling by

reducing unexplained group level variation and in the event reducing group

level standard deviation [10]. The superiority of the multilevel models come

from the fact they are able to account for the unexplained variability than

the GLMMs.

In an attempt to identify key drivers of HIV in Swaziland, this study

found that age, age at first sex, marital status and the number of sexual

partners one had in the last 12 months are associated with HIV serostatus.

In addition, exposure to STIs also seems to put one at higher risk of being

HIV infected than an individual who is not exposed to STIs. Weak between

cluster variations were found in both men an women.
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5.1 Implications

In an attempt to curb the spread of HIV/AIDS in Swaziland, efforts should

be directed at discouraging females from engaging in sexual intercourse early

in their lives as this increases their chances of contracting HIV. The factors

that make females to engage in sex early in their lives should be identified

since it is possible that some are forced into sexual practices because of eco-

nomic difficulties. Secondly, the issue of concurrent partnerships should be

discouraged among men. Some of the cultural norms should be revisited,

multiple sexual partnerships among males are encouraged by the Swazi cul-

ture. Young men with many girlfriends are regarded as heroes in the Swazi

culture.

5.2 Further Work

As much as this study put into consideration the way the data was collected

in the analysis, further work can be done on sensitivity of the Bayesian

estimates to priors and also on missing data as this study used complete case

analysis. Finally, further work should also be done on the contribution of

culture in the spread of HIV/AIDS in Swaziland.
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Appendix

Code for Bayesian GLMM Using MCMCs

males=read.csv(“males.csv”)

attach(males)

males

library(MCMCglmm)

MC1 = MCMCglmm(hiv∼ 1+factor(age)+factor(region)+factor(residence)+factor(edulevel)

+factor(marital)+factor(asex)+factor(sti)+factor(partners)+factor(away),random=cluster,

data=males,family=“categorical”,prior=list(R=list(V=1,

fix=1), G=list(G1=list(V=1, nu=0.001))),nitt=60000,slice=F,thin=10)

summary(MC1$VCV) # prints the random effects

summary(MC1$Sol) # prints the fixed effects

plot(MC1)

summary(MC1)
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females=read.csv(“females.csv”)

attach(females)

females

library(MCMCglmm)

MC1 = MCMCglmm(hiv∼ 1+factor(age)+factor(region)+factor(residence)+factor(edulevel)

+factor(marital)+factor(asex)+factor(sti)+factor(partners)+factor(away)+factor(birth),

random = cluster,data=females,

family=“categorical”,prior=list(R=list(V=1,

fix=1), G=list(G1=list(V=1, nu=0.001))),nitt=60000,slice=F,thin=10)

summary(MC1$VCV) # prints the random effects

summary(MC1$Sol) # prints the fixed effects

plot(MC1)

summary(MC1)

Code for Bayesian GLMM Using INLA

males=read.csv(“males.csv”)

attach(males)

library(INLA)
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names(males)

fit=inla(hiv ∼ factor(age)+ factor(region)+factor(residence)+

factor(edulevel) + factor(marital) +factor(asex) + factor(sti) +

factor(partners) + factor(away)+factor(birth) +

f(cluster, model=”iid”,param=c(0.001,1)),data=males,

family=“binomial”,Ntrials=1)

summary(fit)

plot(fit)

females=read.csv(“females.csv”)

attach(females)

library(INLA)

names(females)

fit=inla(hiv ∼ factor(age)+ factor(region)+factor(residence)+

factor(edulevel) + factor(marital) +factor(asex) + factor(sti) +

factor(partners) + factor(away)+factor(birth)

+ f(cluster, model=“iid”,param=c(0.001,1)),

data=females, family=“binomial”,Ntrials=1)

summary(fit)

plot(fit)
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Code for Complete Pooling Model

males=read.csv(“males.csv”)

attach(males)

males

names(males)

library(multilevel)

library(lattice)

library(lme4)

fit=glm(formula = hiv ∼ factor(age)+factor(region)+

factor(residence)+factor(edulevel)+factor(marital)

+factor(asex)+factor(sti)+factor(partners)+factor(away)+ cwealth+

chiv+cage, family = binomial(link = “logit”))

summary(fit)

confint(fit)

BIC(fit)

females=read.csv(“females.csv”)

attach(females)

females

names(females)
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library(multilevel)

library(lattice)

library(lme4)

fit=glm(formula = hiv ∼ factor(age)+factor(region)+

factor(residence)+factor(edulevel)+factor(marital)

+factor(asex)+factor(sti)+factor(partners)+factor(away)+

factor(birth) + cwealth+chiv+cage,

family = binomial(link = “logit”))

summary(fit)

confint(fit)

Code for the Frequentist Multilevel Model

males=read.csv(“males.csv”)

attach(males)

males

names(males)

library(multilevel)

library(lattice)

library(lme4)

115



cwealth.full=cwealth[cluster]

chiv.full=chiv[cluster]

cage.full=cage[cluster]

fit=lmer(formula = hiv ∼ factor(age)+factor(region)+

factor(residence)+factor(edulevel)+factor(marital)

+factor(asex)+factor(sti)+factor(partners)+factor(away)+

cwealth.full+chiv.full+cage.full + (1—cluster)

,family = binomial(link = “logit”))

summary(fit)

females=read.csv(“females.csv”)

attach(females)

females

names(males)

library(multilevel)

library(lattice)

library(lme4)

cwealth.full=cwealth[cluster]

chiv.full=chiv[cluster]

cage.full=cage[cluster]

fit11=lmer(formula = hiv ∼ factor(age)+factor(region)+
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factor(residence)+factor(edulevel)+factor(marital)

+factor(asex)+factor(sti)+factor(partners)+factor(away)+

factor(birth) + cwealth.full+chiv.full+cage.full + (1—cluster)

, family = binomial(link = “logit”), data= females)

summary(fit11)

Code for the Bayesian Multilevel Model

cwealth.full=cwealth[cluster]

chiv.full=chiv[cluster]

cage.full=cage[cluster]

M1=MCMCglmm(hiv ∼ 1+factor(age)+factor(region)+

factor(residence)+factor(edulevel)+factor(marital)

+factor(asex)+factor(sti)+factor(partners)+factor(away)+

factor(birth)+cwealth.full+

chiv.full+cage.full,random=cluster,data=females,

family=”categorical”,prior=list(R=list(V=1,fix=1),

G=list(G1=list(V=1, nu=0.001))),nitt=60000,slice=F,thin=10)

summary(M1$VCV)

summary(M1$Sol)
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plot(M1)

summary(M1)

males=read.csv(“males.csv”)

attach(males)

males

library(MCMCglmm)

cwealth.full=cwealth[cluster]

chiv.full=chiv[cluster]

cage.full=cage[cluster]

MC1=MCMCglmm(hiv ∼1+factor(age)+factor(region)+

factor(residence)+factor(edulevel)+factor(marital)+factor(asex)+

factor(sti)+factor(partners)+factor(away)+cwealth.full+

chiv.full+cage.full ,random=cluster,data=males,

family=“categorical”,prior=list(R=list(V=1,fix=1),

G=list(G1=list(V=1, nu=0.001))),nitt=60000,slice=F,thin=10)

summary(MC1$VCV)

summary(MC1$Sol)

plot(MC1)

summary(MC1)
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Trace Plots

In this section we present a sample of the trace plots for the two Bayesian

models.

Bayesian GLMM Trace Plots for Females
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Bayesian GLMM Trace Plots for Males
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Bayesian Multilevel Model Trace Plots for Males
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Bayesian Multilevel Model Trace Plots for Females
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