
Policy Optimisation and Generalisation for

Reinforcement Learning Agents in Sparse Reward

Navigation Environments

by

Asad Jeewa

Submitted to the School of Mathematics, Statistics and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

at the

UNIVERSITY OF KWAZULU-NATAL

January 2021

� University of KwaZulu-Natal 2021. All rights reserved.

Author .
School of Mathematics, Statistics and Computer Science

January 2021

Certified by. .
Mr Anban W. Pillay

Lecturer
Thesis Supervisor

Certified by. .
Dr Edgar Jembere

Lecturer
Thesis Supervisor

ii

Abstract

Sparse reward environments are prevalent in the real world and training reinforcement
learning agents in them remains a substantial challenge. Two particularly pertinent
problems in these environments are policy optimisation and policy generalisation.
This work is focused on the navigation task in which agents learn to navigate past
obstacles to distant targets and are rewarded on completion of the task. A novel
compound reward function, Directed Curiosity, a weighted sum of curiosity-driven ex-
ploration and distance-based shaped rewards is presented. The technique allowed for
faster convergence and enabled agents to gain more rewards than agents trained with
the distance-based shaped rewards or curiosity alone. However, it resulted in policies
that were highly optimised for the specific environment that the agents were trained
on, and therefore did not generalise well to unseen environments. A training curricu-
lum was designed for this purpose and resulted in the transfer of knowledge, when
using the policy “as-is”, to unseen testing environments. It also eliminated the need
for additional reward shaping and was shown to converge faster than curiosity-based
agents. Combining curiosity with the curriculum provided no meaningful benefits
and exhibited inferior policy generalisation.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Mr Anban Pillay, for

his continuous support, guidance and invaluable feedback throughout the completion

of this research, as well as my co-supervisor, Dr Edgar Jembere, for advising and

guiding me whenever needed. I would also like to thank my family for supporting

and inspiring me during this journey, as well as God for being a source of peace and

solace throughout my life.

Sincere thanks goes to the the Council for Scientific and Industrial Research

(CSIR) and the Department of Science and Innovation for funding this research,

as well the Centre for High Performance Computing (CHPC), for providing access

to their hardware to run these experiments. Furthermore, various members of the

Centre for Artificial Intelligence Research (CAIR) have given me additional feedback

and direction that guided this work.

v

Preface

The research contained in this dissertation was completed by the candidate while

based in the Discipline of Computer Science, School of Mathematics, Statistics and

Computer Science of the College of Agriculture, Engineering and Science, University

of KwaZulu-Natal, Westville, South Africa. The research was financially supported

by the Council for Scientific and Industrial Research (CSIR) and the Department of

Science and Innovation (DSI).

The contents of this work have not been submitted in any form to another uni-

versity and, except where the work of others is acknowledged in the text, the results

reported are due to investigations by the candidate.

vii

viii

Declaration

Declaration: Plagiarism

I, Asad Jeewa, declare that:

(i) the research reported in this dissertation, except where otherwise indicated or

acknowledged, is my original work;

(ii) this dissertation has not been submitted in full or in part for any degree or

examination to any other university;

(iii) this dissertation does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other per-

sons;

(iv) this dissertation does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

a) their words have been re-written but the general information attributed to

them has been referenced;

b) where their exact words have been used, their writing has been placed

inside quotation marks, and referenced;

(v) where I have used material for which publications followed, I have indicated in

detail my role in the work;

(vi) this dissertation is primarily a collection of material, prepared by myself, pub-

lished as journal articles or presented as a poster and oral presentations at

conferences. In some cases, additional material has been included;

(vii) this dissertation does not contain text, graphics or tables copied and pasted from

the Internet, unless specifically acknowledged, and the source being detailed in

the dissertation and in the References sections.

x

Declaration: Publications

1. Asad Jeewa, Anban Pillay, and Edgar Jembere. Learning to Generalise in

Sparse Reward Navigation Environments. In Aurona Gerber, editor,Artificial

Intelligence Research, volume 1342 of Communications in Computer and Infor-

mation Science, pages 85–100, ISBN 978-3-030-66150-2, Springer International

Publishing, 2020.

2. Asad Jeewa, Anban Pillay, and Edgar Jembere. Directed curiosity-driven ex-

ploration in hard exploration, sparse reward environments. In Marelie H. Davel

and Etienne Barnard, editors, Proceedings of the South African Forum for Ar-

tificial Intelligence Research, Cape Town, South Africa, 4-6 December, 2019,

volume 2540 of CEUR Workshop Proceedings, pages 12–24. CEUR-WS.org,

2019.

3. Asad Jeewa, Anban Pillay, and Edgar Jembere. Directed Curiosity in Sparse

Rewards Environments. Poster presented at: Postgraduate Research and Inno-

vation Symposium; 2019 Oct 17; Durban, South Africa

4. Asad Jeewa, Anban Pillay, and Edgar Jembere. Leveraging Demonstrations

in Sparse Rewards Environments Poster presented at: Deep Learning Indaba;

2019 Aug 25-30; Nairobi, Kenya

5. Asad Jeewa, Anban Pillay, and Edgar Jembere. Robust Adversarial Inverse

Reinforcement Learning. Poster presented at: Deep Learning IndabaX South

Africa; 2019 Apr 14-17; Durban, South Africa

xi

xii

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Reinforcement Learning . 1

1.1.2 Reward Engineering . 4

1.1.3 Policy Generalisation . 6

1.2 Problem Statement . 7

1.3 Aims and Objectives . 8

1.4 Methods . 9

1.5 Impact and Contributions . 9

1.6 Structure of Dissertation . 10

2 Literature Review 11

2.1 Sparse Rewards . 11

2.1.1 Reward Shaping . 12

2.1.2 Intrinsic Rewards . 14

2.2 Curriculum Learning . 18

2.2.1 Approaches to Curriculum Learning 18

2.2.2 Automatic Curriculum Learning 19

2.2.3 Hierarchical Reinforcement Learning 20

2.3 Generalisation . 21

2.3.1 Procedural Generation . 21

2.3.2 Guidelines for Generalisation 22

2.3.3 Generalisation Capabilities of Existing Approaches 22

xiii

2.4 Summary of the Literature Review 24

3 Algorithms for Policy Optimisation and Generalisation 25

3.1 Policy Optimisation: Directed Curiosity 25

3.1.1 Curiosity-Driven Exploration 26

3.1.2 Distance-Based Reward Shaping 28

3.1.3 Combining Intrinsic and Extrinsic Rewards 33

3.2 Policy Generalisation . 35

3.2.1 A Curriculum for Policy Generalisation 35

4 Methods 38

4.1 The Navigation Task . 38

4.2 Proximal Policy Optimisation . 40

4.3 Policy Optimisation . 41

4.3.1 Policy Optimisation Environments 43

4.3.2 Experimental Setup and Hyperparameter Optimisation 46

4.4 Policy Generalisation . 51

4.4.1 Policy Generalisation Environments 53

4.4.2 Experimental Setup and Hyperparameter Optimisation 57

5 Results and Discussion 62

5.1 Policy Optimisation . 62

5.1.1 Sparse Reward Agents . 65

5.1.2 Reward Shaping Agents . 66

5.1.3 Curiosity Agents . 67

5.1.4 Directed Curiosity Agents . 69

5.1.5 Summary of Optimisation Results 70

5.2 Policy Generalisation . 70

5.2.1 Training Performance . 71

5.2.2 Generalisation Performance 74

5.2.3 Trajectory Analysis . 80

xiv

5.2.4 Summary of Generalisation Results 83

6 Conclusions and Future Work 85

6.1 Conclusion . 85

6.2 Future Work . 86

A Additional Results 97

A.1 Policy Generalisation . 97

A.1.1 Standard Training Environments 97

A.1.2 Difficult Training Environments 98

A.1.3 Standard Orientation Environments 100

A.1.4 Standard New Environments 101

A.1.5 Difficult Orientation Environments 102

A.1.6 Difficult New Environments 103

B Published Paper 1 104

C Published Paper 2 120

xv

xvi

List of Figures

1-1 Reinforcement learning loop . 2

2-1 Local Optimum problem with rudimentary distance-based shaped re-

ward functions . 13

3-1 The Intrinsic Curiosity Module . 26

3-2 Generating an intrinsic reward using the Intrinsic Curiosity Module. . 27

3-3 Shaping a sparse reward function. 28

4-1 The actor-critic architecture . 41

4-2 SimpleNav environment . 44

4-3 ObstacleNav environment . 45

4-4 Maze1Nav environment . 45

4-5 Maze2Nav environment . 46

4-6 Agent and ray length relative to the environment. 53

4-7 Obstacle training environments . 54

4-8 Standard training mazes . 55

4-9 Difficult training mazes . 55

4-10 Rotating training mazes to create orientation testing environments . . 56

4-11 Standard New testing mazes . 56

4-12 Difficult New testing mazes . 57

5-1 Learning curves for SimpleNav environment. 63

5-2 Learning curves for DifficultNav environment. 63

5-3 Learning curves for ObsatcleNav environment. 64

xvii

5-4 Learning curves for Maze1Nav environment. 64

5-5 Learning curves for Maze2Nav environment. 65

5-6 Learning curves during training. 72

5-7 Average rewards against training time. 73

5-8 Average rewards in sparse versions of the training environments. . . . 75

5-9 Average rewards in the Standard New mazes. 76

5-10 Average rewards in the Standard Orientation mazes. 77

5-11 Average rewards in the Difficult Orientation mazes. 78

5-12 Average rewards in the Difficult New mazes. 79

5-13 Path comparison between a curiosity and a curriculum agent. 81

5-14 Path analysis of a curriculum agent. 81

5-15 Limitations of curriculum agents. 81

5-16 Path comparison of all algorithms for the spiral maze. 82

A-1 Standard training mazes . 97

A-2 Difficult training mazes . 98

A-3 Average rewards in sparse versions of the training environments (mag-

nified). 99

A-4 Standard Orientation testing mazes 100

A-5 Average rewards in the Standard Orientation mazes (magnified). . . . 100

A-6 Standard New testing mazes . 101

A-7 Average rewards in the Standard New mazes (magnified). 101

A-8 Difficult Orientation testing mazes 102

A-9 Average rewards in the Difficult Orientation mazes (magnified). . . . 102

A-10 Difficult New testing mazes . 103

A-11 Average rewards in the Difficult New mazes (magnified). 103

xviii

List of Tables

4.1 The baseline hyperparameters for policy optimisation in SimpleNav

environment. 49

4.2 The baseline hyperparameters for the policy generalisation experiments. 58

A.1 Results for all algorithms in sparse versions of each of the standard

training mazes. 98

A.2 Results for all algorithms in sparse versions of each of the difficult

training mazes. 98

A.3 Results for all algorithms in each of the Standard Orientation testing

mazes. 100

A.4 Results for all algorithms in each of the Standard New testing mazes. 101

A.5 Results for all algorithms in each of the Difficult Orientation testing

mazes. 102

A.6 Results for all algorithms in each of the Difficult New testing mazes. . 103

xix

xx

List of Algorithms

1 A distance-based shaped reward function 32

2 Directed curiosity-driven exploration 34

3 A manually-designed curriculum for navigation 36

xxi

Chapter 1

Introduction

Sparse reward environments are prevalent in the real world and training reinforcement

learning agents in them remains a substantial challenge [3]. This work investigated

two particularly pertinent problems for developing reinforcement learning agents in

sparse reward environments: policy optimisation and policy generalization within

the domain of navigation. The work studied curiosity based exploration for policy

optimisation and curriculum learning for policy generalisation. We report on com-

bining curiosity-based intrinsic rewards with distance-based shaped extrinsic rewards

for learning optimal policies and on a hand-crafted curriculum that was designed

for policy generalisation. This chapter provides a brief background to reinforcement

learning with a particular focus on sparse reward navigation environments. The prob-

lem statement and aims and objectives are detailed.

1.1 Background

1.1.1 Reinforcement Learning

In reinforcement learning (RL), an agent learns how to complete a task or act opti-

mally within an environment by maximising rewards that it obtains from the environ-

ment. The agent is able to observe the state of the environment and choose actions

from a set of actions. Taking actions modifies the environment and results in rewards

1

Figure 1-1: Reinforcement learning loop

that serve as positive or negative feedback. The agent seeks to maximise its rewards

by learning to make better choices of actions. The choice of actions, as a function of

environment states, is referred to as a policy. The agent initially selects actions ran-

domly but learns to adapt its policy by maximising long-term rewards. This process

is referred to as the Reinforcement Learning Loop, depicted in Figure 1-1.

The policy can either be learned directly, by optimising the policy parameters to

maximise long-term cumulative rewards, or instead, a value function can be learned

that represents the expected returns (cumulative rewards) from any given state (when

acting under a particular policy) [74]. In this case, the policy is implicitly learned

i.e. it is executed by selecting the action with the highest value, from a given state.

A hybrid approach is also possible, referred to as Actor-Critic, and was used in this

study (detailed in Section 4.2).

Reinforcement learning problems are usually framed as Markov decision processes

(MDPs). MDPs are decision frameworks defined by a tuple:

(𝑆,𝐴, 𝒯 , 𝑟, 𝛾) (1.1)

where:

� 𝑆,𝐴 are finite sets of environment states and agent actions respectively.

� 𝒯 (𝑠′|𝑎, 𝑠) is the transition distribution i.e. the dynamics of the environment
which is generally defined as the probability 𝑃 (𝑠′|𝑎, 𝑠) where 𝑠′ is the next state
and 𝑠 and 𝑎 are the current state and action respectively.

2

� 𝑟(𝑠, 𝑎) is the reward function that returns a scalar value given the environment

state and action taken by the agent (it is also possible for the reward function

to be defined as a function of state only). Since the agent learns desirable

behaviour solely through the reward function, it needs to be carefully engineered

to associate correct behaviour with maximum rewards.

� 𝛾 ∈ (0, 1) is discount factor representing the difference in importance between

present and future rewards. If (𝛾 = 0), it means the agent is short-sighted and

cares only about immediate rewards and if (𝛾 = 1), the agent is far-sighted

and equally values all future rewards. The policy is learned to maximise the

expected discounted rewards.

There are multiple variations on the standard MDP. This work focuses on Partially

Observable MDPs (POMDP), where the agent is not able to fully observe the entire

environment i.e. the environment state and agent observations are not the same. A

POMDP introduces an additional set 𝑂: the finite set of observations of an agent.

Examples of agent observations are the coordinates of its current position or the

output of a camera that allows it to view what is directly in front of it, as opposed a

top down view of the entire environment in a fully observable setting.

Furthermore, this work focuses on model-free reinforcement learning where the

agent learns a policy through trial and error, by interacting with the environment

(and receiving rewards) instead of a model-based approach that is based on planning,

given a predictive model of the environment. The transition distribution 𝑇 is therefore

not required.

In many environments, rewards are sparsely distributed, meaning that most timesteps

(a single iteration of the RL loop from Figure 1-1) do not return any positive or neg-

ative feedback. The reward signal changes sporadically and the majority or all of an

agent’s actions result in no reward, except for reaching the final goal or completing

the task. This is problematic since agents are often required to take a large number

of consecutive actions in order to complete a task and if it does not receive any infor-

mation about whether intermediate actions are good or bad, it becomes very difficult

3

to decide which action to take in any given state.

These environments, known as sparse reward environments [40, 69], do not pro-

vide sufficient feedback for meaningful learning to take place [58]. Sparse reward

environments are prevalent in the real-world [58] and training reinforcement learning

agents in them remains a challenge [3].

The sparse rewards problem is a broad problem that is well-studied in reinforce-

ment learning. The scope of this research was restricted to navigation tasks which

have wide real-world applicability and is an active research area [63].

1.1.2 Reward Engineering

1.1.2.1 Reward shaping

Reward shaping bypasses the sparse rewards problem by reshaping a reward function

to ensure that the agent receives sufficient reward feedback to learn how to complete

a task. This is possible through augmenting the reward signal with supplemental

rewards for intermediate actions that lead to success [23] and is analogous to rewarding

an agent for reaching subgoals. A reward function must not only be engineered to

reflect the task at hand; it also needs to be carefully shaped [3]. However, this is a

difficult process since the shaping function could alter the optimal policy and change

the definition of the task [53].

Since the agent crudely optimises the reward function, it learns to exploit any

loopholes that may have been unintentionally introduced. It is also common for

agents to fall into local optima [78]. There are countless possible reward functions

and the process of shaping rewards is often only possible through trial and error, even

for experienced engineers [4, 80]. Considering the long training time for RL agents,

repeatedly tweaking the reward function, after observing the behaviour of trained

agents, is infeasible. It is therefore necessary to investigate the concept of “general

reward shaping”. In the context of navigation, this refers to the process of using

general concepts such as distance measures (distance-based reward shaping) instead

of optimising the specific dynamics of any specific environment.

4

1.1.2.2 Exploration

Closely related to the rewards problem is the issue of exploration in sparse reward

environments. Exploration algorithms aim to reduce the uncertainty of an agents

understanding of its environment [7]. This is important since it is not possible for an

agent to act optimally until it has sufficiently explored the environment and identified

all opportunities for reward [75]. Agents are unable to explore large state spaces

without an intuitive exploration strategy [3] and it is likely that they will never reach

a state that returns a positive reward. Hoping to stumble into a goal state by chance

is futile for all but the simplest of environments [58].

𝜖-greedy is a simple exploration strategy where an agent either chooses to explore

by selecting a random action with probability 𝜖 or to exploit the policy by choosing

the best action (based on its current knowledge) with probability 1 − 𝜖. Balancing

exploration and exploitation is a common RL challenge [72].

Curiosity-driven exploration is a type of intrinsic reward that encourages an agent

to explore the environment and discover “novel” states [58]. Intrinsic rewards, which

are generated by the agent itself (as opposed to extrinsic rewards which are from the

environment), are particularly useful when extrinsic rewards are sparse. They can be

used to augment or even replace the reward function entirely.

Curiosity-driven exploration generates rewards from the error in an agent’s ability

to predict the consequence of its own actions [58]. During the initial stages of training,

the agent explores the environment and is able to gain an understanding of the task

by reaching states that return extrinsic rewards (which act as a definition of the task).

Over time, the agent’s curiosity decreases and it exploits the policy. The algorithm

is further detailed in Section 3.1.1. Unlike 𝜖-greedy, a curiosity agent explicitly learns

exploratory behaviour that enables it to learn how to complete a task.

An environment is referred to as a “hard exploration” environment when rudimen-

tary exploration strategies, such as 𝜖-greedy, are insufficient [7] i.e. the probability of

reaching a goal state is negligible and more complex exploration strategies such as

curiosity-driven exploration are required.

5

1.1.3 Policy Generalisation

Another fundamental challenge in RL is that of generalisation [13]. It is customary to

use the same environments for both training and testing [14]. This means that agents

often exhibit breakthrough results on very specific tasks but fail to generalise beyond

the training environment [57], even when only slight changes are made [84, 87]. The

agents often memorise sequences of actions that lead to success [87] and the notion

that agents posses a deep understanding of their environments is often misguided [83].

Policy memorisation refers to a policy that optimises the dynamics of a particular

environment by memorising actions that lead to success, resulting in poor performance

when changes are made to the environment [84].

Generalisation in RL broadly refers to the capacity of an agent to perform “well”

or transfer knowledge to related environments [23]. Furthermore, it refers to learning

policies that are robust to environment variations [57] and do not overfit to any

particular training environment [83].

This work defined generalisation in sparse reward navigation environments as the

ability of agents to navigate to targets in environments that they were not trained on

i.e. the task remained the same but the dynamics of the environment were changed

by reconfiguring the obstacles. In order to succeed, an agent needs to learn the “skill”

of finding a target rather then memorising the optimal path to the target in a specific

training environment.

Moreover, policy generalisation relates specifically to the extent to which a pol-

icy transfers to unseen environments. In this work, we placed the added condition

of evaluating policy generalisation without any additional training or fine-tuning to

specific environments (referred to as zero-shot semantic navigation in [49]). This re-

quires an agent to learn a robust policy that enables it to find a distant target in an

arbitrary navigation environment. This is a difficult task: it is somewhat counter in-

tuitive since the policy cannot optimise to any specific environments that the agents

encounter during training. Furthermore, if the agent learns to optimise for every

training environment (which is highly unlikely when there is a large number of train-

6

ing environments), it is almost certain that overfitting has occurred, resulting in poor

performance in unseen environments.

1.1.3.1 Curriculum Learning

This work evaluated curriculum learning as a means to improve policy generalisation.

A curriculum may be used to enable agents to learn difficult tasks [51] that are not

possible to learn directly [51, 73].

Curriculum Learning refers to the process of training an agent using a learning

curriculum that varies the difficulty of the task over time, thereby allowing it to

gradually increase its knowledge, by learning how to complete easier versions of the

task. The curriculum introduces structure to the training process and is largely the

manner in which humans learn [29]: for example, a student first needs to learn basic

arithmetic before advancing to algebra and then to calculus.

In this work we considered designing a curriculum to act as a means of bypass-

ing the sparse rewards problem (an environment can be made smaller so that it is

possible for the agent to reach the target and gain reward feedback to update its

policy) and also to improve policy generalisation by exposing an agent to a diverse

set of environments during training [13, 87] thereby deterring it from memorising the

dynamics of any particular training environment.

1.2 Problem Statement

It is difficult for agents to learn a task when the reward function is sparse but the

process of shaping or augmenting the reward signal is not straightforward [53, 81].

Within the domain of navigation, distance-based reward shaping is a means of in-

creasing the reward feedback but this approach causes agents to get stuck in local

optima [21, 78]. Curiosity-driven exploration is an intrinsic reward that has been suc-

cessfully applied to sparse reward environments in previous studies [11, 58] but while

the intrinsic reward function enables agents to explore the environment, it does not

incorporate any explicit information about the task. This work therefore investigated

7

combining curiosity with a distance-based shaped reward function to enable agents to

intelligently explore environments i.e. exploring the environment while always keeping

the main goal or target in mind. We term this novel compound reward function as

Directed Curiosity and investigated its effectiveness for policy optimisation in sparse

reward navigation environments.

Furthermore, RL agents often learn polices that are optimised to the environments

that they were trained on, but fail to generalise beyond the training environment even

when subtle changes are made [57]. Instead of learning a single optimal path, it is

more desirable for agents to learn a robust policy that enables them to navigate to

targets in arbitrary environments. This is a difficult task to learn directly. RL agents

often memorise sequences of actions that lead to success during training [87]. This

work investigated the effectiveness of curriculum learning as a means of improving

generalisation as well as bypassing the sparse rewards problem in navigation tasks.

1.3 Aims and Objectives

This research had two intersecting aims. Firstly, we wished to determine the efficacy

of curiosity-driven exploration as a means to enable intelligent exploration and ex-

ploitation of sparse reward navigation environments. The second aim was to design

and evaluate curricula to enable agents to navigate to targets in previously unseen

testing environments.

The specific objectives of this study are:

� To develop a custom suite of sparse reward navigation environments for training

and testing.

� To design and implement a curiosity-driven exploration algorithm.

� To determine empirically the effectiveness of curiosity-driven exploration for

intelligent exploration and learning optimal polices in sparse reward navigation

environments.

� To design and implement a curriculum for learning navigation tasks.

8

� To evaluate the efficacy of curriculum learning as a means to improve policy

generalisation in sparse reward navigation environments.

1.4 Methods

A custom suite of sparse reward navigation environments was designed. In each

environment, an agent was required to learn to navigate from its starting point, past

obstacles, to a distant target in the shortest possible time (see Section 4.1). The

environments were carefully designed to incorporate various high-level features such

as dead-ends, bottlenecks and multiple paths to the target. The environments were

used in two sets of experiments, one for policy optimisation and the other for policy

generalisation.

In the policy optimisation experiments, we evaluated the efficacy of a novel com-

pound reward function, Directed Curiosity, against extrinsic reward shaping (Algo-

rithm 1 (Chapter 3) presents a distance-based shaped reward function) and intrinsic

rewards, specifically curiosity-driven exploration from [58]. The performance of the

agents was evaluated in a sample of five different navigation environments,as detailed

in Section 4.3, where agents were trained to learn the shortest path to the target

within that particular environment.

In the generalisation experiments, we designed and evaluated a curriculum for

sparse reward navigation environments (see Algorithm 3), by analysing its ability

to learn policies that generalise to unseen environments, against agents trained with

curiosity and a hybrid approach that combined the curriculum with curiosity. The

suite of navigation environments was therefore carefully divided into a set of training

and testing environments. Details of the experiments are given in Section 4.4.

1.5 Impact and Contributions

This work presents an empirical analysis of reward engineering in sparse reward nav-

igation environments. A novel reward function, Directed Curiosity, that combines

9

curiosity with a distance-based shaped reward function is presented. We show em-

pirically that it enabled agents to learn more robust policies more quickly. A critical

evaluation of both reward shaping and curiosity-driven exploration [58] is also pre-

sented.

Since Directed Curiosity was deliberately restricted to general reward shaping

principles in the form of distance measures, the reward function can be fine-tuned

and applied to sparse reward tasks in other domains.

This work also presents a study of curriculum learning as a policy generalisation

mechanism. A custom training curriculum is presented that resulted in an increased

transfer of knowledge to unseen testing environments than a curiosity-based approach

and a hybrid approach that combined curiosity with the curriculum. A benefit of this

approach is that it does not require any manual reward shaping. The curriculum was

designed in a way that can be applied to other RL tasks in different domains, with

minimal tweaking.

1.6 Structure of Dissertation

The remainder of this dissertation is structured as follows: Chapter 2 introduces pre-

vious related work. The algorithms: Directed Curiosity and the manually designed

training curriculum is presented in Chapter 3. The details of implementation, per-

taining to the learning environments, hyperparameter optimisation and experimental

design are contained in Chapter 4. Chapter 5 presents the results of both the optimi-

sation and generalisation experiments, as well a detailed discussion into the strength

and limitations of the presented algorithms. Chapter 6 provides concluding remarks

and proposes future work. Lastly, additional results (Appendix A) and two published

papers (Appendix B, C) are included as appendices at the end of the dissertation.

10

Chapter 2

Literature Review

This work focused on two problems in sparse reward navigation environments, viz.

policy optimisation and generalisation. This chapter discusses previous work in the

field. Two established approaches for reinforcement learning in sparse reward envi-

ronments were investigated: extrinsic reward shaping and intrinsic rewards. Further-

more, we explored the use of curriculum learning as a means of enabling agents to

learn difficult tasks, with particularly attention to generalisation in the navigation

domain. Previous work on the generalisation problem in RL is then discussed.

2.1 Sparse Rewards

The sparse rewards problem is well-studied in reinforcement learning as it applies to a

wide array of RL tasks. Sparse reward functions [50] are better suited to goal-oriented

tasks that are defined through binary reward functions that indicate whether an agent

has completed a task [2]. This is particularly common in the field of robotics [50].

Sparse rewards are also often observed in video game environments, which are com-

monly used to evaluate RL algorithms [3, 7, 32]. Additionally, the prevalence of sparse

reward environments in the real world [58, 64] has motivated various novel approaches

to the problem [3, 50]

11

2.1.1 Reward Shaping

2.1.1.1 Approaches to Reward Shaping

Reward shaping aims to ensure that agents receive sufficient reward feedback in order

to learn how to complete a task optimally. It is a means of introducing prior knowledge

to reduce the number of sub-optimal actions [15] and guides the learning process [46].

A common approach is to introduce supplemental rewards for intermediate actions

that lead to success [23] which is analogous to setting sub-goals or smaller targets for

the agent.

Similarly, the reward function can be designed to include additional rewards that

relate to different aspects of the task. For example, Lample et al. introduced addi-

tional rewards to enable agents to learn how to play a first-person shooter game [45].

A reward function that rewards agents for a kill and penalises them for dying defines

the desired behaviour that agents need to learn but is too sparse and was therefore

augmented with additional rewards for picking up objects and penalties for losing

health and ammunition.

An alternate approach to reward shaping is to manipulate the reward function to

gradually increase rewards as the agent gets “closer” to completing its task, instead of

an abrupt change from 0 to 1 when the task is completed. This approach requires the

notion of distance or progress to be defined for the task [59]. Our work focused on this

particular approach. However, a common issue with distance-based reward functions

is that they are prone to local optima [21, 78], as illustrated in a toy environment

(see Figure 2-1) defined in [78] and in navigation environments in [35]. This was

observed with a distance-based shaped reward function that penalised agents with

the euclidean distance between the goal and the agent on every timestep in [21, 78].

Trott et al. proposed a novel approach that learns an auxiliary reward shaping

function for avoiding local optima [78]. The experiments were performed in maze

environments and also explored combining shaped rewards with additional reward

signal for balancing exploration and exploitation. However the reward function was

designed to estimate local optima and encourage agents to avoid them, whereas our

12

Figure 2-1: Local Optimum problem with rudimentary distance-based shaped reward
functions

work combined the shaped rewards with curiosity-driven exploration [58] since it was

previously used as a means of enabling agents to escape local optima in [88]. In a

further attempt to circumvent the issue of local optima, we defined and evaluated

multiple different distance-based reward functions and assessed their strengths and

weaknesses.

The process of manually shaping rewards is difficult and is often only possible

through trial and error, even for experienced engineers [4, 80]. Moreover, bespoke

functions are often required for each new environment or task [15, 34]. The benefit

of the distance-based shaped reward function in this work (see Algorithm 1) is that

it is based on general principles only (distance metrics) and the shaping process does

not require configuration for each environment or any domain expertise.

An alternate approach is implicit reward shaping, that learns from demonstra-

tions of target behaviour. A potential-based reward function was recovered from

demonstrations, using state similarity in [68], through inverse reinforcement learning

methods in [69] and directly from raw pixel data in [34].

2.1.1.2 Preserving the Optimal Policy

Reward shaping can have a detrimental effect on training and change the optimal

policy or the definition of the task if the rewards are not carefully shaped [15, 53].

13

This is because the agent does not learn the task directly but rather through a proxy

function (the shaped reward function). Furthermore, since the sole purpose of RL

algorithms is to maximise cumulative long-term rewards, when the reward feedback is

too dense, the agent learns to act in a very specific and often undesired manner [46].

Moreover, a poorly shaped reward can introduce new local optima that prevents

agents from learning optimal behaviour [78].

Policy invariance is therefore required, whereby changing the reward function does

not change the optimal policy [53]. Potential-Based Reward Shaping was proven to

preserve the optimal policy of a task [15, 53] by defining the reward function in the

form:

𝐹 (𝑠, 𝑠′) = 𝛾𝜑(𝑠′)− 𝜑(𝑠) (2.1)

𝜑 is a reward function over states that introduces “artificial” shaped reward feed-

back [5]. 𝐹 is referred to as a potential function which is the difference between 𝜑 of

the next state 𝑠′ and the current state 𝑠 with 𝛾 a discount factor on 𝜑(𝑠′). The reward

function in Algorithm 1 is of this form since it is based on the relative distance to the

goal i.e. the change in distance from one state to the next.

Various studies presented extensions of potential-based reward shaping since the

restriction on the form of the reward function limits its expressiveness [46]. Potential-

Based Advice is a function defined over both states and actions [82], while a novel

Bayesian approach that augments the reward distribution with prior beliefs was pre-

sented in [46].

2.1.2 Intrinsic Rewards

An alternative to “shaping” an extrinsic reward is to supplement it with intrinsic

rewards [56], which are rewards that the agent generates on its own as opposed to

extrinsic rewards that are from the environment. This work focuses on intrinsic

rewards specifically pertaining to exploration.

14

2.1.2.1 Curiosity-based Rewards

One such intrinsic reward is curiosity: Curiosity-Driven Exploration by Self-Supervised

Prediction [58] formally defined a framework for training curious agents. The algo-

rithm is further detailed in Section 3.1.1. It empowers agents with the capability

of exploration by rewarding them for seeking “novel” states. This enables agents to

reach far away states that contain extrinsic rewards and explore environments more

efficiently. Pathak et al. evaluated curiosity on navigation tasks in [58] using the

VizDoom environment [43]: the agents were able to learn to navigate to distant tar-

gets when the curiosity reward was combined with a sparse reward function (+1 for

finding the target). However, when the distance between the agent and the target

was made sufficiently large (thereby increasing the sparsity in rewards), the agents

only succeeded on 66% of the training runs. We extended this work by combining the

curiosity with a dense distance-based shaped reward in order to encourage agents to

explore intelligently, since the dense rewards act as a definition of the task.

Much research has built upon the findings of this paper [58]. Large scale analysis

of the approach was performed in [11] where agents learned to play various Atari

Games without any extrinsic rewards.

Various studies pointed out limitations in curiosity. If the task is too difficult, and

the agent is unable to reach new environment states, the policy deteriorates since the

agent receives neither intrinsic or extrinsic rewards [58]. Burda et al [11] highlighted

the noisy-tv problem: whereby a tv that samples random images was added to a maze

and the agent was equipped with the ability to change channels. The agent learned

to maximise its curiosity by continuously changing channels and was never able to

learn to navigate to the target. This is also refereed to as the “couch-potato” effect

whereby an agent learns to game the system by finding a source of randomness in an

environment and by continuously observing it, it is able to satiate its curiosity and

loses its motivation to keep exploring [11, 64]. This is analogous to getting stuck in

a local optimum. In order to circumvent this issue, Savinov et al. used of a memory

buffer to stores experiences and then rewarded agents for “finding” states that are not

15

already in memory [64].

Previous studies combined extrinsic and intrinsic rewards for navigation [49, 88].

The work in [88] is closely related to our work. The authors explored the use of

curiosity-driven exploration for two dimensional navigation in hand-crafted mazes

and computed a reward function as a weighted sum of both intrinsic and extrinsic

rewards. A custom extrinsic reward function was defined that was also distance-

based, with additional penalties for colliding with obstacles as well as not making

any progress towards the goal and being incorrectly orientated. We argue that this

reward function is heavily fine-tuned for the specific task. Our work instead used

a more general reward function that was restricted to be solely based on distance

metrics.

The application of the study was also different in that it was focused on robotics.

Similar to our work, the agents were not given any information about the dynamics

of the environment and relied on ray observations but in order to simulate a robotics

platform, the agents were equipped with vastly more rays that were also significantly

longer. The action space was also different as the agents were able to change their

orientation by rotating themselves.

The study highlighted the benefit of entropy loss for exploration i.e. by increasing

the degree of randomness in the agents’ action choices, it avoids falling into local

optima and is able to explore the environment before converging to an optimal policy.

This was also observed in our experiments (refer to Section 4.3.2 and Section 4.4.2).

It also emphasised the importance of intrinsic rewards for improving performance in

tasks with challenging exploration requirements [88].

2.1.2.2 Alternatives to Curiosity

There are various similar approaches to curiosity-driven exploitation: Variational

Information Maximizing Exploration (VIME) [33] maximises information gain, as

opposed to minimising prediction error in [58], by encouraging agents to take actions

that result in states that they deem surprising i.e. states that cause large updates to

the dynamics model distribution. However, curiosity-driven exploration was shown

16

to perform better in [58], both in terms of convergence rate and accuracy.

Classic work in [10, 42] investigated balancing exploration and exploitation in

polynomial time and has inspired research in the area of intelligent exploration.

Count-based exploration methods generate an exploration-bonus from state visitation

counts [75] by encouraging agents to visit states that were rarely visited before [64].

Exploration bonuses encourage an agent to explore, even when the environment’s

reward is sparse [7], by optimising a reward function that is the sum of the extrin-

sic reward and an exploration bonus. It is a simple and effective approach that has

achieved promising results, notably on the notoriously difficult “Montezuma’s Re-

venge” Atari game in [7, 8].

Various studies have attempted to extend count-based approaches to large state

spaces [25, 55]. Count-based methods naturally lend itself nicely to discrete obser-

vation spaces but its extension to continuous observation spaces is non-trivial [64].

Bellemare et al. presented an observation density model for this purpose [7], which

was extended in [55]. Alternatively, a hash functions was used to discretise the obser-

vation space in [75] While the major benefit of the approach is its simplicity, it does

not perform well in visually rich 3D environments [58, 64].

It was shown in multiple studies [25, 58, 64] that curiosity-driven exploration as

defined in [58], is superior to similar methods [25, 33, 75] and is regarded as the

state of the art. It was therefore chosen as the intrinsic reward function for all the

experiments in this study.

There are various other novel approaches for exploration. These include Random

Network Distillation (RND) [12], which defines an exploration bonus as the loss when

predicting a random function of the environment states. RND achieved state of the

art performance on various sparse reward Atari games. The study highlighted the

difficulties of combining extrinsic and intrinsic rewards and modified the popular

policy gradient method PPO (also used in our experiments) by separating a value

function into an extrinsic and intrinsic stream.

Furthermore, exploration was learned through maximising empowerment in [28],

wherein the long-term goal of the agent is to maximise its control on the environ-

17

ment, by using demonstration data to learn an exploration policy in [70, 50] and by

encouraging agents to behave “diversely” and learn skills without reward functions

in [19].

2.2 Curriculum Learning

Curriculum learning is widely used in RL [27]. It imposes an order on training to

enable an agent to gradually increase its knowledge, eventually learning to perform

difficult tasks [29], that are infeasible to learn directly [73]. Fundamental work by

Bengio et al. formally defined the concept of curriculum learning in a machine learn-

ing context and performed an empirical investigation under a supervised learning

framework [9]. The authors claimed that the major benefits of using a curriculum are

faster convergence, since the learner wastes less time on examples that are too chal-

lenging, and improved generalisation [41], by guiding training towards better regions

in the parameter space. Curriculum learning was also used as a means of bypassing

the sparse rewards problem in various studies [60], as is the case in our work.

2.2.1 Approaches to Curriculum Learning

There are multiple approaches to curriculum learning. A common approach is to split

a particularly complex task into smaller, easier-to-solve sub-problems [27], ensuring

that the current task is of intermediate difficulty i.e. be neither too easy (already

solved) nor too difficult (unsolvable), thereby maximising the learning process [60].

Manually controlling this difficulty is not straightforward. A better approach is self-

paced curriculum, proposed by Jiang et al. in [36], which enables the learner to reject

examples that it regards as too difficult i.e. the curriculum updates at the pace of the

learner.

Initial work in the RL domain manually defined a curriculum by presenting learn-

ers with tasks from a sequence of predetermined subtasks [41] or through continuously

searching for the simplest unsolvable problem [65]. Narvekar et al. defined the prob-

lem as transferring knowledge learned from easier source tasks to more difficult target

18

tasks [52]. The knowledge can be transferred in different ways such as through the

policy [71], value function [52] or reward function [73]. The former approach (trans-

ferring polices) was used for this work since the task remains consistent throughout

training, meaning that the agent can build upon the knowledge learned from easier

mazes by updating an existing policy.

2.2.2 Automatic Curriculum Learning

Designing a curriculum is a difficult task since it is analogous to teaching which is not

straightforward even for humans [9]. Furthermore, manual curriculum design often

requires expert domain knowledge [73]. Various studies attempted to alleviate this

problem by automatically generating a curriculum [73, 21, 22, 47].

Automatic Curriculum Learning (ACL) refers to either automatically defining the

order with which to learn tasks [73], automatically generating tasks for the learner [21,

47] or continuously increasing the difficulty of the task instead of multiple discrete

sub-tasks [6].

The learning process does not necessarily have to be sequential: Svetlik et al.

presented a means of generating a curriculum as an acyclic graph so that multiple

tasks could be learned in parallel. Another common approach is that of a teacher

and student i.e. “the teacher proposes a task, and the student learns to do it.”, as

seen in [47] where learners were able to revisit previously learned tasks that they may

have “forgotten” and in [71] which proposed Asymmetric Self-Play, a commonly used

method that presents a teacher who proposes a task through a set of steps which the

learner must reproduce. The approach was shown to be prone to local optima in [22].

Asymmetric self-play pertains to the automatic generation of a curriculum for

exploring an environment. Similarly, curiosity-driven exploration [58] can be consid-

ered as automatically devising a learning curriculum to guide the exploration of the

state space [60]. This is because the reward function is adapted as a function of the

learning trajectory of the agent [60], i.e. the reward function changes as the agents

explores the environment and the prediction error of the next state decreases.

ACL has exhibited promising results when applied to navigation [22, 49, 71]. The

19

work of Florensa et al. is of particular interest where the authors defined a framework

for learning in “reverse” by attempting to reach a goal state made increasingly further

away or more difficult to reach [22]. The maze environments from that work was

incorporated into our experiments. Moreover, the work inspired our curriculum since

by introducing more obstacles and increasing the size of the environment, the goal

state is made more difficult to reach. However, our work focused on manually de-

signing a curriculum rather than automatically generating one and in an attempt to

bypass previous difficulties with manual curriculum design, we restricted the curricu-

lum to only general concepts (environment size and obstacle configuration). Designing

the curriculum therefore did not require significant fine-tuning and expert knowledge

since the difficulty thresholds (points at which the curriculum advances and the task

gets more difficult) were defined as a function of the environment size so that each

value did not need to be tuned separately. The work in [49] built upon this study

by training agents to find objects in the real world and the authors argued that the

approach is more efficient than those in [22, 71].

2.2.3 Hierarchical Reinforcement Learning

Curriculum Learning is closely related to hierarchical reinforcement learning, which

decomposes a RL problem into a hierarchy of sub-problems such that higher-level

tasks invoke lower-level tasks as primitive actions i.e. actions can be reused in more

difficult tasks [31]. The actions are less granular than traditional RL problems for

example, a reusable action would be “open door” as opposed to “grasp handle”, “ro-

tate hand” etc.Ṫessler et al [77] presented a framework that enabled agents to reuse

high-level actions (termed as “skills”), learned from easier sub-tasks, in difficult tasks

requiring multiple skills [76]. This enabled agents to learn complex navigations tasks

faster since they could reuse the skill of navigating to a new room. Similarly, Frans et

al [24] taught agents high-level actions that pertained to walking and moving which

allowed them to learn difficult navigation tasks faster. Though our work did not

pertain to hierarchies directly, our curriculum was designed to implicitly learn in this

manner. Since there were no obstacles in the early stages of training, the agents were

20

able to focus on learning to control themselves to move around the environment and

this knowledge was reused when obstacles were introduced and the environment was

made more difficult.

2.3 Generalisation

Generalisation remains a fundamental RL problem since agents tend to memorise

trajectories from their training environments [87] instead of learning transferable

skills [13] and classic RL benchmarks like the Arcade Learning Environment (ALE) [8]

focus on creating specialist agents that perform well in a single environment. Various

new benchmarks have therefore been proposed to focus research in the direction of

generalisation.

2.3.1 Procedural Generation

Generalisation often translates to evaluating the performance of agents across different

levels of the same game [13, 54]. The ProcGen Benchmark [13] uses procedural

generation to generate new environments for 16 unique games. The inherent diversity

in the generated environments demands that agents learn robust polices in order to

succeed. ObstacleTower is a similar benchmark that was presented in [38]. ProcGen

presents a large number heterogeneous environments while ObstacleTower is a single

complex environment with higher visual fidelity as it is based on the Unity game

engine [37]

Justesen et al. expanded on this concept by showing how adaptive difficulty can

improve both sample efficiency and generalisation [39]. They also highlighted limita-

tions of procedural generation: it is difficult to automatically scale the difficulty of

the task [39] and the distribution of the procedurally generated environments is of-

ten different to that of human-generated environments meaning that agents struggle

to generalise to the human-generated environments [39]. The work also noted that

procedurally generating environments may lead to overfitting to the distribution of

the generated environments. A novel approach that uses reinforcement learning to

21

learn how to generate environments shows promising results in [44]. In this work, all

the environments were manually generated. This allowed us to carefully study the

merits of different algorithms. Future work would entail performing larger scale anal-

ysis by procedurally generating environments and further evaluating the robustness

of polices.

2.3.2 Guidelines for Generalisation

Savinov et al. emphasised the need for separate training and testing environments

when training RL agents and also investigated generalisation in the navigation frame-

work [63]. These findings were also highlighted in [87]. Zhang et al. proposed “de-

tecting” overfitting during training by continuously providing the agent with feedback

on its generalisation performance by computing its score on the testing environments

during training. This feedback can be used to adapt the training process [86]. The

analysis of the work was performed in simple environments inspired from the classic

Gridworld task [72], while our study was performed in a diverse set of maze navigation

environments. Ye at al. [84] hypothesised that generalisation suffers due to the lack

of input representation in training and showed how simply rotating and translating

input observations can improve generalisation results. Furthermore, they highlighted

the importance of introducing a large number of different training environments so

that the agent cannot simply memorize a sequence of actions that lead to success in

a specific environment [84]. The findings of the aforementioned work, where relevant,

were incorporated into our curriculum i.e. having a diverse set of both training and

testing environments.

2.3.3 Generalisation Capabilities of Existing Approaches

Curiosity-driven exploration was shown to have strong generalisation capabilities in

previous studies [58, 88]. Pathak et al. showed that agents trained on one level of a

Mario game were able to perform relatively well in another level. However, the policy

needed to be fine-tuned and the agents struggled to generalise to environments with

22

different textures in [11, 58]. This finding is not particularly relevant to our work

since agents observations were vectors rather than visual representations.

Zhelo et al. also used curiosity for generalisation (in maze environments) by com-

bining it with shaped extrinsic rewards [88]. The work also pointed out the difficulty

of assigning weights to the reward components, as was also pointed out in our exper-

iments. The findings from these studies motivated us to use curiosity as a baseline

algorithm in the policy generalisation experiments detailed in Section 4.3.

An alternative approach to curiosity is reachability, which rewards agents for new

states defined by how difficult they are to reach. This approach was shown to achieve

better generalisation than curiosity on procedurally generated mazes [64]. We there-

fore wish to investigate this approach further in future work.

Portelas et al. highlighted various studies that utilised a curriculum for improv-

ing generalisation [60]. Of particular interest is a method for automatic curriculum

learning tailored to the navigation task in [49], where agents learned policies robust

to environment changes. However the generalisation was evaluated with respect to

changing the visual appearance of the target in both simulated and real word en-

vironments. This work rather focuses on generalisation by changing the obstacle

configuration of environments.

While reward shaping has enabled agents to learn difficult tasks in various studies,

they emphasise learning specialist polices [69] and often do not focus on generalisa-

tion [13]. This is because the shaped rewards act as a definition of a specific task.

This result was also observed in our experiments. A major benefit of our curriculum

is that it does not require reward shaping.

There are various other novel algorithms for generalisation in RL. Relational Deep

Reinforcement Learning blends the generalization power of inductive logic program-

ming with reinforcement learning to enable agents to succeed in more complex versions

of the training task [85]. Progressive neural networks ensure that agents do not “for-

get” previously learned knowledge [62] and an embedding space was utilised to learn

reusable skills, particularity focused on robotics. in [30]. Alternatively, Farebrother

et al. highlighted that commonly used RL algorithms like DQN suffer from poor gen-

23

eralisation and simple approaches like dropout and regularisation, commonly used in

supervised learning, can be used to improve generalisation [20].

2.4 Summary of the Literature Review

The goal of this literature review was to investigate existing approaches for both

policy optimisation and generalisation in sparse reward environments as well as to

identify existing issues and guidelines. The sparse rewards problem is well-studied

since many tasks are naturally defined in this manner [50] and due to its real-world

relevance [64]. We explored two reward engineering approaches to the problem: ex-

trinsic reward shaping and intrinsic rewards. The review highlighted various difficul-

ties with manual reward-shaping, particular that distance-based reward shaping is

prone to local optima [21, 78]. Intrinsic rewards is a fruitful area of research: this

review focused primarily on intrinsic rewards related to exploration. Curiosity was

shown to outperform various similar algorithms, improve generalisation [88] and also

enable policies to escape local optima [88] and has therefore been incorporated into

this work (as a combined reward function with distance-based reward shaping).

Curriculum learning was used in various studies to enable agents to learn difficult

tasks and also as a means of improving generalisation [41]. However, designing a cur-

riculum is difficult and often requires expert knowledge [73]. A common solution to

this is Automatic Curriculum Learning but in this work, we opted rather for manually

designing the curriculum but restricted the curriculum to be based only on general

concepts, not optimising it for any particular environment. Furthermore, the review

highlighted that most state of the art RL algorithms memorise trajectories [87] and

suffer from poor generalisation. Various guidelines were identified and incorporated

into our experiments such as crafting separate sets of training and testing environ-

ments that are both diverse and comprehensive [84]. We have also identified various

avenues for future work such as using procedural generation to generate both training

and testing environments.

24

Chapter 3

Algorithms for Policy Optimisation

and Generalisation

This research investigated policy optimisation and generalisation in sparse reward

navigation environments. Agents were placed in two-dimensional environments that

contained obstacles blocking the path to a fixed target. The goal was to learn to

navigate to the target in the shortest possible time.

This chapter presents two algorithms: a novel reward function (Directed Curios-

ity) which is a combination of distance-based reward shaping and curiosity-driven

exploration and a manually-designed curriculum for enabling agents to find targets

in unseen environments and improve generalisation.

3.1 Policy Optimisation: Directed Curiosity

Directed Curiosity engineers a hybrid reward function composed of extrinsic and

intrinsic rewards. The intrinsic reward, curiosity-driven exploration, is from [58] and

equips the agent with an intelligent exploration strategy that enables it to reach

distant states in sparse reward environments. Instead of combining the curiosity

reward with sparse extrinsic rewards as in [58], we defined a distance-based shaped

reward function to ensure that the agent constantly receives feedback about its goal.

We theorise that this hybrid approach enables agents to explore in a more directed

25

manner.

The reward function is a weighted sum of curiosity and distance-based reward

shaping. We describe curiosity-driven exploration, as per [58] in Section 3.1.1. Sec-

tion 3.1.2 details the distance-based reward function and thereafter we formally define

Directed Curiosity in Section 3.1.3.

3.1.1 Curiosity-Driven Exploration

Curiosity is an intrinsic reward that empowers an agent with the capability of explo-

ration, enabling it to reach far away states that contain extrinsic rewards. Pathak et

al. [58] formally defined a framework for training curious agents that involves training

two separate neural-networks: a forward and an inverse model that form an Intrinsic

Curiosity Model (ICM), as depicted in Figure 3-1. The inverse model encodes the cur-

rent and next observations 𝑠𝑡 and 𝑠𝑡+1 respectively, into a feature space 𝜑 and learns

to predict the action 𝑎𝑡 that was taken between the occurrence of the two encoded

observations. The forward model is trained to predict the next encoded observation

𝜑(𝑠𝑡+1) from the current encoded observation 𝜑(𝑠𝑡) and action 𝑎𝑡.

Figure 3-1: The Intrinsic Curiosity Module

In order to generate a curiosity reward signal, the inverse and forward dynamics

models’ loss functions are jointly optimised i.e. curiosity is defined as the difference

between the predicted feature vector of the next state 𝜑(𝑠𝑡+1) (from the forward

26

model) and the real feature vector 𝜑(𝑠𝑡+1). 𝜂 is a scaling factor in Equation 3.1.

𝑟𝑡𝑖 =
𝜂

2
‖𝜑(𝑠𝑡+1)− 𝜑(𝑠𝑡+1)‖22 (3.1)

As an agent explores, it learns more about its environment. The prediction error

therefore decreases over time and the agent becomes less curious. A major benefit of

this approach is that it is robust: through jointly optimising the forward and inverse

model, the reward captures surprising states that have come about only directly as a

result of the agents actions. By encoding the observations i.e. mapping the pixels into

a feature space, the agent is not “distracted” by predicting unnecessary information:

if the agent cannot interact with something, it will not observe it.

The intrinsic reward can be used as the sole reward signal, or it can be combined

with an extrinsic reward signal that is often sparse [58]. Figure 3-2 from [58] defines

how the reward signal is generated at every timestep: the agent starts in state 𝑠𝑡 and

samples an action 𝑎𝑡 from its current policy 𝜋, which places it in a new state 𝑠𝑡+1. At

this point, the environment returns an extrinsic reward 𝑟𝑡𝑒 and the ICM (Figure 3-2)

calculates the intrinsic reward 𝑟𝑡𝑖 from (𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡). The policy updates by optimising

the sum of the two rewards i.e. 𝑟𝑡𝑒+ 𝑟𝑡𝑖 . This process continues until some termination

criteria is met.

Figure 3-2: Generating an intrinsic reward using the Intrinsic Curiosity Module.

27

3.1.2 Distance-Based Reward Shaping

The distance-based reward function described here is combined with the intrinsic

reward (curiosity) detailed in the previous section.

Reward shaping is the process of reshaping a sparse reward function to ensure

that the agent receives sufficient reward feedback to learn a policy. If the agent only

receives positive reinforcement for completing a task i.e. navigating to a target, it be-

comes difficult to judge which intermediate actions are good ones. This is problematic

when the environment is sufficiently large.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Normalised Distance

R
e
w
a
r
d

Sparse
Shaped

Figure 3-3: Shaping a sparse reward function.

Figure 3-3 illustrates the effect of reward shaping: the sparse reward function

returns no feedback to the agent except for when it reaches the target. Alternatively,

the shaped reward function returns dense feedback (on every timestep) that is directly

proportional to the distance to the target, enabling the agent to understand which

intermediate actions take it closer to the target and which take it further away. The

distance is normalised such that 1 represents the maximum possible distance away

from the target.

However, shaping rewards is a fragile process since small changes in the reward

function results in significant changes to the learned policy [81]. The agent can easily

fall into a local optimum or learn to game the system [79]. This phenomenon is re-

28

ferred to as “The Cobra Effect” wherein an attempted solution to the problem actually

makes the problem worse i.e. reward shaping introduces unintended consequences and

“pollutes” the agents motivations. This is because the agent’s goal is solely to max-

imise long-term cumulative rewards. The issue is often caused by “over-engineering”

the reward function: the reward function should not define exactly how to complete

a task but rather characteristics or features of “good” and “bad” behaviour to enable

the agent to learn how to complete a task on its own, through interacting with the

environment.

In order to circumvent the aforementioned issues, we restricted the rewards to

general principles only i.e. the rewards were shaped with distance metrics only. The

function was not optimised to any particular environment and engineering the reward

did not require any domain expertise. The basic principle is to reward an agent for

moving closer to the target and penalise it for moving further away.

Furthermore, a comprehensive analysis of various reward functions was performed:

we trained agents using different reward functions and then observed their behaviour

to highlight limitations and instances where the agents learned to game the system.

By tuning the function, to mitigate these limitations, we were able to incrementally

optimise the reward function.

The following notation is used for defining reward functions:

� 𝑅 refers to the terminal reward (for finding the target).

� 𝑃 refers to the terminal penalty.

� 𝑟 is the shaped reward in a single timestep.

� 𝑝 is the shaped penalty in a single timestep.

By definition, 𝑅, 𝑟 > 0 and 𝑃, 𝑝 < 0. Note that the terminal penalty 𝑃 in this work

was returned when agents fell off the platform, since some environments had no walls

along the boundary.

The simplest reward function returned a constant positive reward 𝑟 on every

timestep that resulted in the agent moving closer to the target. To ensure that

29

the agent’s primary goal is to find the target, the terminal reward 𝑅 needs to be

significantly larger then 𝑟. The agent was also penalised with a small existential

penalty 𝑝, on every timestep, to encourage it to find the target as quickly as possible.

The issue with this function is that the positive and negative rewards are not

balanced i.e. the agent receives either excess rewards or penalties, resulting in a

dominant policy being learned. This can controlled by tuning 𝑟 and 𝑝, though this

is not a straightforward process: when 𝑟 is too high the agent learns to game the

system by delaying reaching the target (to gain more positive rewards in an episode).

The means that agent is no longer incentivised to find the target in the shortest

possible time and its motivations are polluted. On the other hand, if 𝑝 is too high,

the agent is not encouraged to move closer to the target and it learns to game the

system by prematurely ending the episode by falling off the platform. Even though

it still receives a negative return for the episode, the penalty for falling is less than

the total negative rewards it would have received for an entire episode and the agent

therefore chooses to take the “lesser” punishment. This points to the importance of

not only tuning 𝑟 and 𝑝, but also tuning the maximum number of episode steps. This

behaviour is an example of shaped rewards altering the optimal policy of the original

task [53].

Another consideration is that at any point in time, the agent should not receive

more positive rewards for moving closer to the target, or more negative rewards

for moving further away, so as not to introduce loopholes for the agent to exploit.

This is possible through returning a constant positive reward 𝑟 for moving closer to

the target and a constant penalty 𝑝 for moving further away (or staying still) but

while this alleviates the dominance issue, the function does not consider the effect of

consecutive actions. If an agent moves closer on one timestep, and then moves closer

on the next timestep, it should receive a higher reward on the subsequent timestep

since it is closer to finding the target and in a more desirable state. The same applies

for moving further away from the target.

This can be implemented by introducing two counter variables: one that is incre-

mented for every consecutive positive step and another that incremented for every

30

consecutive negative step. The count can be reset to 0 when the agent changes

direction. The issue with this reward function is that when the environment is suffi-

ciently large, the shaped rewards spiral out of control. This is because the episodic

shaped reward becomes significantly larger than the terminal reward. This effect can

be dampened by assigning significantly smaller values to 𝑝 and 𝑟 but this does not

alleviate the problem entirely.

In order to avoid these issues, we propose the following conditions be placed on

the reward function. For every episode:

𝑟 *𝑀 < 𝑅 (3.2a)

𝑝 *𝑀 > −𝑅 (3.2b)

𝑅 ≥ |𝑃 | (3.2c)

where 𝑀 refers to the maximum number of timesteps in a single episode, 𝑅 is the

terminal reward for finding the target and 𝑃 is the penalty for falling off the platform.

These inequalities ensure that the shaped reward function does not alter the mo-

tivations of the agent by keeping its primary objective as navigating to the target:

Equation 3.2a ensures that the sum of all shaped reward feedback never exceeds that

of the terminal reward (Equation 3.2b serves the same purpose for penalties). Ad-

ditionally, Equation 3.2c expresses that the terminal reward must always dominate

the terminal penalty i.e. while it is important to avoid falling off the platform, the

primary goal is finding the target. The inequalities are defined for single objective re-

inforcement learning agents though they can be modified for multi-objective systems.

The inequalities were satisfied by defining a shaped reward function based on the

relative distance between target and agent (Algorithm 1).

There are various benefits to Algorithm 1. The agent is penalised if it stays still

and the shaped reward signal can be controlled using the reward coefficient 𝐶. This

ensures that the episodic shaped rewards can be capped such that they never exceed

terminal positive reward. Furthermore, the multiplier can be used to normalise the

rewards based on the maximum number of steps, thereby ensuring that the maximum

31

Algorithm 1 A distance-based shaped reward function

Input: Agent position 𝑃𝑎𝑔𝑒𝑛𝑡, target position 𝑃𝑡𝑎𝑟𝑔𝑒𝑡, maximum distance 𝐷𝑚𝑎𝑥
1, pre-

vious distance 𝐷𝑝𝑟𝑒𝑣, reward coefficient 𝐶
Calculate 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← distance(𝑃𝑎𝑔𝑒𝑛𝑡,𝑃𝑡𝑎𝑟𝑔𝑒𝑡)
Calculate reward signal: 𝑅 ← 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡/𝐷𝑚𝑎𝑥

if 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝐷𝑝𝑟𝑒𝑣 then

return 𝐶 · (1−𝑅)
else

return 𝐶 · (−𝑅)
end if

possible shaped rewards in an episode never exceeds the positive terminal reward, as

per Equation 3.2a.

Another benefit of Algorithm 1 is that there is a balance between positive and

negative rewards since they are both relative to the change in distance. The agent

receives the highest reward when it moves closest to the target and the highest penalty

when it moves furthest away. This means that the shaped reward function is policy

invariant i.e. it does not alter the goal of the agent to learn the optimal path to the

target.

Since the rewards are shaped exclusively based on distance metrics that do not

take into account the specific dynamics of the environment, the same function can

be used for different environments, and in general, for navigation tasks. A limitation

of this approach is that the target location needs to be known beforehand. However,

this is a deliberate decision since these experiments aimed to asses whether agents can

learn optimal paths to distant targets with limited information i.e. only its current

position and fixed destination. If the location is unknown, the definition of the task

changes from a navigation-based one to a goal-finding or search task. This is not

within the scope of this study but rather a possible area for future work.

A limitation of the shaped reward function is that it is a greedy approach, since

it rewards or penalises agents on every timestep. The approach encourages an agent

to navigate to the target in the shortest possible time but it does not incorporate

foresight. It is necessary for an agent to take “backwards” steps in order to bypass

1𝐷𝑚𝑎𝑥 refers to the largest possible distance between the agent and the target, within the envi-

ronment and was introduced to normalise the reward.

32

obstacles that block it paths to the target.

We investigated various modifications to the reward function that aimed to in-

troduce foresight in agents and encourage them to act less simplistically. This is

possible through decreasing the density of the shaped reward feedback by calculating

the change in relative position not on every timestep, but rather after fixed intervals

of 𝑛 steps. The rationale here is that the agent should still move closer to the target

but not on every timestep since it is necessary to take “backward” steps to bypass

obstacles that block its direct path to the target.

However, the behaviour of agents was observed to be almost the same and this

approach therefore was not able to bypass the limitation. The types of environments

where agents failed to navigate to the target are detailed in Section 5.1.2. Further-

more, assigning a value to 𝑛 is a difficult task: if 𝑛 is too small, the an agents acts in

an overly simplistic manner attempting to move closer to the target on every timestep

and when it is too large, the reward feedback becomes insufficient and does not result

in any meaningful learning.

An alternate approach is to define environment checkpoints that act as subgoals

and return smaller rewards. However, it is tedious and inefficient to define check-

points manually for each environment. A simple automatic checkpoint generator was

therefore implemented but this is not directly within the scope of this research and

its evaluation is left for future work.

Instead of introducing foresight directly into the reward function, we chose to

combine the reward with a curiosity signal. We argue that this encourages agents to

implicitly behave in a more flexible manner, since they are encouraged to explore the

environment, while still attempting to find the target in the shortest possible time.

3.1.3 Combining Intrinsic and Extrinsic Rewards

We propose a novel algorithm that combines the curiosity-based intrinsic reward func-

tion from [58] and the distance-based shaped reward function defined in Algorithm 1,

for training agents to navigate to distant targets in sparse reward navigation environ-

ments. Training agents with either curiosity or the shaped reward results in limited

33

behaviour: due to the nature of the shaped reward function, the agent struggles to

navigate past obstacles to find the target. This is because the shaped reward func-

tion has been designed to encourage agents to continuously move closer to the target.

Using curiosity only may cause the agent to spend too much time exploring the en-

vironment, even after the target has been found. This is exacerbated if there are no

extrinsic rewards that act as a definition of the task. Further details of the limitations

of the two approaches are discussed in Section 5.1. For example, it was often observed

that agents tended to get “trapped” in suboptimal states or local optima.

Combining the two approaches allows the agent to explore the environment while

always keeping in mind its goal of finding an optimal path to the target. Specifically,

curiosity enables the agent to learn about the dynamics of the environment through

exploration. Over time, the agent learns where the obstacles are placed and uses

this knowledge to learn how to navigate past them. It is also able to learn about

the dimensions and scale of the environment. By behaving in this manner, curiosity

enables the agent to ultimately find the target in the environment.

The shaped rewards from the environment ensure that the agent is informed about

whether it is taking steps that bring it closer to the target or further away i.e. it is

always knowledgeable about its goal. This feedback enables the agent to learn a path

to the goal. It is important to distinguish that the goal of the agent is not to find the

target, but rather to learn a optimal path to the target.

In general, this combined approach enables the agent to learn in a more directed

and intuitive manner.

Algorithm 2 Directed curiosity-driven exploration

Input: Initial policy 𝜋0, extrinsic reward weighting 𝑤𝑒, intrinsic reward weighting
𝑤𝑖, max steps 𝑇 , decision frequency 𝐷
for 𝑖 ← 0 to 𝑇 do

Run policy 𝜋𝑖 for 𝐷 timesteps
Calculate distance-based shaped reward 𝑟𝑡𝑒 with Algorithm 1
Calculate intrinsic reward 𝑟𝑡𝑖 with Equation 3.1
Compute total rewards 𝑟𝑡 = 𝑤𝑖 · 𝑟𝑡𝑖 + 𝑤𝑒 · 𝑟𝑡𝑒
Take policy step from 𝜋𝑖 to 𝜋𝑖+1 with reward function 𝑟𝑡

end for

34

Directed Curiosity (Algorithm 2) therefore simultaneously maximises two reward

signals. Since, the reward function components are somewhat conflicting, it is essen-

tial to tune the strength of each signal in order to find a balance of curiosity and

goal-driven behaviour. The agent needs sufficient time to explore the environment

and should not converge to a suboptimal policy too quickly. This is similar to the ex-

ploration vs exploitation problem in RL. The rewards can be balanced by tuning the

weights 𝑤𝑒 and 𝑤𝑖, attached to both the constituent reward signals in Algorithm 2.

The policy is updated using any optimisation/ policy gradient method.

3.2 Policy Generalisation

Instead of learning a policy that is optimised for a single training environment, it is

more desirable for an agent to learn a policy that generalises to unseen environments

i.e. it enables an agent to navigate to distant targets across multiple spare reward

navigation environments that were not encountered during training.

We present a curriculum that was manually designed in order to improve policy

generalisation in sparse reward navigation environments.

3.2.1 A Curriculum for Policy Generalisation

The task of learning a policy that generalises to unseen environments is a difficult

one since the policy cannot optimise to any specific environments that the agents en-

counter during training. Furthermore, when the environments are large, with multiple

obstacles, the reward feedback is too sparse to enable any meaningful learning.

Since it is not possible to learn the task directly, a curriculum can be used to

control the difficulty of the task. We therefore designed a curriculum to act as a

means of bypassing the sparse rewards problem and also to improve generalisation

by exposing agents to a diverse set of environments during training. The curriculum

is applicable to navigation tasks and can be fine-tuned depending on the specifics of

the task at hand.

Algorithm 3 varies environment parameters over time to control the difficulty of

35

Algorithm 3 A manually-designed curriculum for navigation

Input: Single obstacle environments 𝑂, obstacle max scale 𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒, maze environ-
ments 𝑀 , environment max scale 𝑆𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, reward threshold 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, number
consecutive episodes 𝑛𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒

for 𝑖 ← 1 to 𝑆𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 do

Reset episode count
𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0
repeat (for each episode)

𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ← average episodic reward from previous 𝑛𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 episodes
Sample an obstacle environment from 𝑂
Sample scale from {0, 1, 2, . . . ,𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒}
Sample angle from {0∘, 45∘, 90∘, 135∘, . . . , 315∘}
Sample agent and target starting positions

until 𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Reset episode count
𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0
repeat (for each episode)

𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ← average episodic reward from previous 𝑛𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 episodes
Sample a maze environment from 𝑀
Sample agent and target starting positions

until 𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

end for

the task, so that the current task is never too difficult for the agent. The first parame-

ter is the environment size (𝑆𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡): decreasing the size, while keeping the agent

size and speed the same, decreases the sparsity of rewards since the goal and target

are closer to each other in smaller environments. The second parameter is the obsta-

cle configuration, which is varied through changing the number and size of obstacles

by sampling environments that contain either a single obstacle (or none at all) from

𝑂 or sampling environments with multiple obstacles in a maze-like structure from𝑀 .

The curriculum jointly varies both these parameters over time to progressively make

it more difficult for an agent to reach the target. In the early stages of training, the

environments are small and contain a single obstacle or none at all, that varies in

terms of its orientation and scale (bounded by 𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒). This is the easiest version

of the task. The agent is able to learn how to control itself and navigate around the

environment to nearby targets. This is an implicit means of bypassing the sparse

rewards problem since the agent receives dense rewards since it is relatively easy to

36

navigate to the target.

When the reward reaches a predefined threshold 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the first adjustment is

to increase the size and number of obstacles. Thereafter, the environment is made

larger only when the agent is able to consistently find targets in all the environments

of the same size. This two-fold difficulty adjustment keeps occurring until the agent

progresses to a large environment with multiple maze-like obstacles. The agent needs

to exhibit an “understanding” of its task which is possible through setting 𝑛, the

number of consecutive episodes that the average reward exceeds a reward threshold,

to be sufficiently large.

The curriculum aims to ensure that the agent is always “optimally challenged” [37].

A single policy is updated since the objective of the agent remains the same through-

out training (to navigate past obstacles to a target or destination) i.e. knowledge

learned from easier tasks are transferred to more difficult tasks through the policy,

instead of learning new tasks from scratch, with a randomly initialised policy. The

tasks progress in a sequential manner i.e. an agent cannot learn a new task until it

has sufficiently learned its current one [51].

Inspired by various other work [40, 63, 87], the last aspect of the curriculum

attempts to bypass the sparse rewards problem by “densifying” the training environ-

ment. The starting locations of both the agent and target are randomised at the start

of every episode. This means that the target is often close to the agent, resulting in

frequent feedback that enables meaningful learning and also encourages the agent to

explore all parts of the environments.

The curriculum aims to improve generalisation though randomly sampling from a

wide array of training environments i.e. the set of training environments (𝑂 and 𝑀

in Algorithm 3) must be diverse and incorporate a wide array of obstacle configura-

tions [13] to deter agents from memorising the dynamics of any particular training

environment. This is analogous to supervised learning i.e. training on a diverse train-

ing set allows for a more generalised model that does not overfit to training data.

Here, overfitting specifically refers to a policy that memorises action sequences for the

training environments, resulting in poor performance in the testing environments.

37

Chapter 4

Methods

4.1 The Navigation Task

This work investigated the sparse rewards problem within the domain of navigation. A

suite of custom navigation environments was created for experimentation that allowed

for extensive analysis of different algorithms and enabled the control of environment

parameters

The baseline task is as follows: an agent is placed in a two-dimensional envi-

ronment with a target that it must learn to navigate to. The environments contain

obstacles that block the agents direct path to the target. The goal of the agent is to

learn to navigate from its starting point to the distant target in the shortest possible

time.

This is similar to the classic Gridworld task [72] that presents a rectangular grid:

the cells of the grid correspond to the states of the environment and at each cell, four

actions are possible. The agent starts in a predefined start state and must learn to

navigate to a predefined target state, upon which a positive reward is returned. There

are also additional terminal states that an agent must learn to avoid (analogous to

traps) which return a negative rewards to the agent.

Various amendments were made in order to increase the difficulty of the task. The

environment was made significantly larger and multiple environments were created

by introducing different configurations of obstacles. Furthermore, an agent is able to

38

move in eight directions (diagonally) in these experiments.

The task is a representation of navigation tasks wherein an agent only receives

positive feedback upon reaching its destination. This is a common theme in RL for

goal-oriented tasks where an agent receives sparse, binary, success-failure feedback

indicating whether an intended goal has been accomplished [2]. The task is also a

variation of the classic point-mass navigation task from various studies [17, 21, 26].

Various measures were taken to ensure that the custom environments were sparse

reward environments, as controlled through the size of the environment, relative to

the agent and target, and the agent speed. These parameters were carefully tuned

to ensure that agents that were trained to optimise a sparse reward function (+1

for finding the target) with an arbitrary policy gradient method (PPO) and no ex-

ploration strategy, were never able to find the target, even after a large number of

training steps [35]. This is depicted in Section 5.1 where the “sparse reward” agents

are shown to never converge to an optimal policy, when trained for the same number

of timesteps as all of the other algorithms. Furthermore, we also observed the agents

after training and noted that they were unable to make meaningful progress towards

the goal.

The maximum environment size was defined through the maximum ratio of the

agent to the environment size (floor coverage) and was fixed at 1 : 100. The agent

and the target were the same size and all environments were square environments i.e.

the length and width of the environments were the same.

The agent speed was defined by the relative amount of the total environment that

an agent can traverse in a single timestep, in the chosen direction. If it is too high,

the probability of the agent finding the target by chance (through random movement)

becomes too high and if it is too low, the task becomes too difficult and the agent may

never find the target (even when equipped with an intelligent exploration algorithm).

It was fine-tuned and fixed at 0.2% (the agent moves at a constant speed).

All environments that contain obstacles are “hard exploration” environments, as

per [7], since the probability of agents stumbling into the goal through random

𝜖−greedy exploration is negligible [58]. This means that an agent requires an in-

39

telligent exploration algorithm in order to obtain any positive feedback, as depicted

in Section 5.1.

4.2 Proximal Policy Optimisation

A standardised optimiser was required for all experiments. Policy gradient methods,

which directly optimise the policy with respect to the expected return or long-term

cumulative reward [74], were an important breakthrough in Reinforcement Learn-

ing [48]. However, many policy gradient methods are either sample inefficient [48] or

overly complicated [66]. Proximal Policy Optimisation (PPO) [67] is a simpler, sam-

ple efficient alternative that achieved strong results across a wide-range of tasks in

previous studies [37, 67]. It uses only first-order optimization, resulting in significant

performance gains. Furthermore, a common issue with traditional policy gradient

methods is that they are unstable due to policy updates that are too large. PPO

overcomes this issue by maximising an objective function defined as:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = E[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑜𝑙𝑑(𝑠, 𝑎), 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1− 𝜖, 1 + 𝜖)𝐴𝑜𝑙𝑑(𝑠, 𝑎))] (4.1)

𝜃 denotes the policy parameter, 𝑟(𝜃) =
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠)

is the probability ratio between the

old and new policies: the algorithm limits the distance between 𝜃𝑜𝑙𝑑 and 𝜃 within

[1 − 𝜖, 1 + 𝜖] to stabilise the policy updates (𝜖 represents a tunable hyperparameter,

usually 0.1 or 0.2 [67]).

Even though PPO optimises the policy directly, it is referred to as an Actor-Critic

method since it learns a value function which is in turn used to optimise the policy

i.e. there are two models (neural networks): the critic, learns the value function and

the actor learns the policy by updating its parameters in the direction suggested by

the critic [72].

At each timestep 𝑡, the current state 𝑠𝑡 is passed to both models. The environment

returns a reward 𝑟𝑡 which is passed to the critic to update the value function. This

40

is sent to the actor to update its policy. The actor then outputs an action 𝑎𝑡 from

action set 𝐴 (the final layer of the actor model is a softmax on all actions) which

places the agent in a new state 𝑠𝑡+1 and returns a new reward 𝑟𝑡+1. The training

process repeats in this manner until some termination criteria is met. The process is

depicted in Figure 4-1 where the system represents the environment [74].

In order for more stable training updates, an advantage function (𝐴𝑜𝑙𝑑 in Algo-

rithm 4.1) is calculated from the value function. This represents how good a particular

action 𝑎𝑡 is, relative to other actions. The actor therefore utilises the advantage to

update its policy rather than a traditional value function.

Figure 4-1: The actor-critic architecture

4.3 Policy Optimisation

The aim of the first set of experiments was to critically evaluate the novel reward

function, Directed Curiosity (defined in Section 3.1.3), against agents trained with a

reward function that comprises only curiosity [58], as well as agents trained with the

distance-based shaped reward from Algorithm 1. This is because Directed Curiosity

is a composite reward function that is computed by calculating a weighted sum of

41

curiosity and distance-based reward shaping. Thus, in order to assess the benefits and

drawbacks of the approach, it was necessary to compare it directly to the constituent

reward functions.

An episode is a sequence of interactions that ends when an agent reaches a terminal

state. Thereafter, the environment is reset to an initial state and training continues.

The following conditions were placed on the navigation task: At the beginning of

every episode, the agent and target were placed on opposite corners of the environment

in order to make the task as difficult as possible. The target remained fixed for the

entire duration of the episode.

For the policy optimisation experiments, there were no walls along the boundaries

of the environments and it was therefore possible for the agent to fall off the platform

(in the standard Gridworld task, any actions that moves the agent off the platform

are ignored [72]). This made the task more difficult since an agent did not only have

to learn to find the target but it also needed to implicitly learn to avoid falling off

the platform. The environment was deliberately designed in this manner since we

theorise that the agent can implicitly learn about the dimensions of the environment

and about the scale of the task by falling off the platform.

An episode terminated when the agent reached the target, fell off the platform,

or after a maximum number of steps and the agents position is reset randomly. The

maximum number of steps was carefully tuned: it was initially set at a low value, and

gradually increased through observing the training process. The steps need to be large

enough to allow the agent to sufficiently explore the environment and learn about its

task within a single episode, but also not too large since this unnecessary slows down

training as the agent repeatedly explores the same parts of the environment.

An agent interacts with the environment in discrete timesteps. At each timestep

𝑡, it observes the environment 𝑜𝑡 and then takes an action 𝑎𝑡 from a set of actions 𝐴.

The observation set 𝑂 of each agent included the coordinates of its current po-

sition and the coordinates of the target. Furthermore, the agent was not given any

information about the dynamics of the environment such as the configuration of the

obstacles and it was also not equipped with rays (that allow it to detect objects in

42

front of it). This makes the task significantly more difficult i.e. the environment is not

fully observable and the agent is given limited information in the form of coordinates.

It therefore needs to learn to find the target through exploration.

The action set 𝐴 of the agent enables the following movement:

� UpDown: the agent can move up, down or choose to remain in the same position

along the y-axis

� LeftRight: similarly, the agent can move left or right or choose to remain in the

same position along the x-axis:

Since agents were able to select more than one action at a time, they were able to

move diagonally.

The baseline reward function, before any reward shaping was introduced, was +1

reward for finding the target (there is no other positive reinforcement in an episode

of training) and −1 for falling off the platform.

4.3.1 Policy Optimisation Environments

Five different environments were defined: in every environment the task and the

agent’s speed and size remained the same. The only modification was the obstacle

configuration. The obstacles were carefully designed to make the task progressively

more difficult so that we could identify both the strengths and weaknesses of agents.

Each experiment occurred independently: an agent was trained within a single envi-

ronment only to learn the shortest path to the target within that particular environ-

ment i.e. polices are not transferred between environments in this set of experiments.

The five environments were:

1. SimpleNav

This is the simplest version of the task. The agent and target were placed

at opposite corners of the platform with no obstacles between them. Another

simplification was to decrease the environment size by a factor of five to for

an agent to floor ratio of 1:20, instead of 1:100. This environment is therefore

43

neither a sparse reward nor a hard exploration environment since it is possible

for an agent trained with the sparse reward function (+1 for finding the target,

-1 for falling off the platform) and no exploration strategy, to navigate to the

target. This was therefore be referred to as an “easy exploration” environment

as per [7]. The environment was used to establish baseline performance of the

different algorithms (when the task is not difficult). The agent is depicted (in

red) on the top left of Figure 4-2 and the target (in green) on the bottom right.

Figure 4-2: SimpleNav environment

2. DifficultNav

For this and all proceeding environments, the agent to floor ratio was fixed at

1:100 (five times larger than SimpleNav). The environments are both sparse

reward and hard exploration environments [7, 58]. DifficultNav does not con-

tain any obstacles but increasing the size of the environment makes the task

significantly more difficult than SimpleNav.

3. ObstacleNav

For all remaining environments, obstacles were introduced to block the direct

path to the goal and make navigating to the target more difficult. These envi-

ronments were designed to test the limitations of the algorithms since an agent

that acts without foresight will not be able to find the target. Rather, agents

need to learn seemingly counter-intuitive behaviour, by moving further away

from the target at the current timestep, in order to pass obstacles and reach

the target at a later timestep.

44

This particular environment has a single obstacle (depicted in black in Figure 4-

3) that was deliberately placed perpendicular to the optimal path to the target,

forcing the agent to move around the obstacle to reach the target.

Figure 4-3: ObstacleNav environment

4. Maze1Nav

The final two environments have multiple obstacles in a maze-like structure. In

this environment, there exists only one optimal path to the target, as depicted

in Figure 4-4. An agent therefore has to learn to move in a very specific manner

in order to navigate to the target.

Figure 4-4: Maze1Nav environment

5. Maze2Nav

This environment is the most difficult version of the task since it has dead-

ends and multiple possible paths to the goal (see Figure 4-5). This allowed

us to investigate the robustness of Directed Curiosity by analysing (a) whether

agents were able to navigate to the target and (b) assessing whether they learned

the optimal path. This is not a straightforward task since an agent may find

45

the target on one episode, but then get stuck behind obstacles as it attempts

to replicate it steps.

Figure 4-5: Maze2Nav environment

4.3.2 Experimental Setup and Hyperparameter Optimisation

Before training agents, the hyperparameters of each reward function were carefully

tuned for each environment. This process was not only to enable agents to learn

the task, but also to ensure that the comparison of reward functions was fair. An

extensive literature review was performed to understand both the purpose of the

different hyperparameters as well as the effect of adjusting them. This allowed for

the tuning of hyperparameters in a more directed and systematic manner. We also

selected literature that detailed similar experimentation, with a focus on curiosity and

reward shaping in sparse reward environments, in order to obtain a set of guidelines

and avoid common pitfalls.

The hyperparameters needed to be manually optimised, since the experiments

occurred in custom environments. Baseline hyperparameters were identified in the

simplest navigation environment, SimpleNav. Agents were trained with a set of hy-

perparameters which was then adjusted based on the resultant behaviour of agents.

For example, if the agent was converging to a suboptimal policy, the learning rate

was decreased, or the entropy in the system was increased to encourage the agent to

take more random actions. Importantly, we took care to change only one parameter

at a time, to ensure that it had the desired effect: when too many parameters are

changed at once, the observed behaviour changes dramatically and it becomes very

difficult to pinpoint the exact reasons for this change. These initial hyperparameters

46

were then systematically tuned as required, for each of the subsequent four environ-

ments, to cater for the increased complexities. An additional benefit of PPO is that

it is robust and does not require significant tuning once baseline hyperparameters are

identified [11].

A detailed explanation of the specific hyperparameters follows. The first set of

hyperparameters are general training parameters that are common to all the algo-

rithms:

� Maximum steps: This refers to the total number of training timesteps (in a

single timestep, an observation is collected and an action is taken). This needs

to be long enough to allow the agent to learn the desired behaviour but also

not too long such that an agent learns to memorise paths to the goal. For

each environment, the same number of timesteps was defined, regardless of the

reward signal used, to ensure consistency.

� Learning rate (𝛼): The strength of each gradient descent update step. Tuning

the learning rate allows for a significantly more stable training process. For

these experiments, we found that the learning was inversely proportional to the

difficulty of the task i.e. a smaller learning rate was necessary for more complex

tasks.

� Time horizon: The number of experiences to collect before adding it to the expe-

rience buffer. This number should be large enough to capture all the important

behaviour within a sequence of an agent’s actions.

� Buffer size: The number of experiences to collect before updating the policy.

� Batch size: The number of experiences in each iteration of gradient descent.

The buffer size is generally a multiple of the batch size and is also significantly

smaller.

The architecture of the actor and critic networks needed to be carefully tuned:

47

� Hidden layers: It is is necessary to include hidden layers in the neural network

to allow the agents to learn complex behaviour.

� Neurons: This refers to the number of units in each of the hidden layers of the

neural network. Generally, more neurons allow agents to learn more complex

behaviour but increase the training time.

The environments were implemented with the Unity game engine and the agents

were trained with the Unity ML-Agents Framework [37]. The framework acts as a

means of abstracting the training process, however, it was possible to change the

hyperparameters, as required. The swish activation function [61] was used after

hidden layers since it is robust and was shown to perform better than other activation

functions over a large number of RL tasks in [18, 61]. The function is defined as

𝑓(𝑥) = 𝑥 · 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) where 𝛽 defines an arbitrary trainable hyperparameter. Both

the actor and critic models have the same number architecture (hidden units and

neurons).

PPO-specific hyperparameters include:

� Entropy Strength (𝛽): Entropy refers to the “predictability” of the actions cho-

sen by an agent: a higher entropy results in policies that are more random,

thereby encouraging agents to explore the environment during training. En-

tropy should be high in the early stages of training and drop as the policy

converges and the agent gains confidence in its actions. It was observed that

varying this parameter had a significant impact on training.

� Epsilon (𝜖): This parameter defines the acceptable threshold of divergence be-

tween the old and new policies during the gradient descent update.

� Lambda (𝜆): Lambda influences how much an agent relies on its current knowl-

edge when updating its policy.

� The number of epochs: This parameter is closely related to the batch size

and defines the number of passes to make through the experience buffer when

performing gradient descent optimization.

48

The final set of hyperparameters refer to the strength of the extrinsic and intrinsic

reward signals (if applicable). For each reward signal, it is necessary to specify the:

� Strength: This refers to the weights attached to the reward components in

Algorithm 2.

� Discount factor (𝛾): Gamma is a standard RL parameter and defines a discount

factor for future rewards. This relates to the far-sightedness of the agent i.e.

how far into the future the agent should consider possible rewards.

The baseline hyperparameters that were defined for SimpleNav are:

Table 4.1: The baseline hyperparameters for policy optimisation in SimpleNav envi-
ronment.

Hyperparameter Value

Maximum Steps 50000

Learning Rate 𝛼 1.0× 10−5

Time Horizon 64

Buffer Size 256

Batch Size 32

Hidden Layers 2

Number Neurons 128

Beta 𝛽 0.005

Epsilon 𝜖 0.1

Lambda 𝜆 0.95

Number Epochs 3

Extrinsic Reward Strength 1.0

Intrinsic Reward Strength 0.1

Extrinsic Reward Discount Factor 𝛾 0.99

Intrinsic Reward Discount Factor 𝛾 0.99

49

The baseline parameters were adjusted for each environment: the maximum train-

ing steps were increased to 250000 in DifficultNav, 750000 inObstacleNav and 1000000

in Maze1Nav and Maze2Nav. This is to cater for the increased complexity.

Furthermore, the reward coefficient 𝐶, (from the distance-based shaped reward

function in Algorithm 1), which represents the “influence” of the shaped reward, was

also carefully tuned. If 𝐶 is too large, the agent acts too simplistically since it

attempts to find the target by continuously moving closer on every timestep, often

resulting in the policy converging to a local optimum [78]. Generally, a smaller value

is necessary in environments with obstacles and the value was therefore dampened as

the difficulty of the environment increased. In SimpleNav, 𝐶 was 0.01. This figure

was decreased by a factor of ten in DifficultNav and by a factor of 1000 in ObstacleNav

and Maze1Nav. Due to the complexities of Maze2Nav, where an agent needs to learn

to move in a very specific manner to circumvent obstacles and find the target, 𝐶 was

further dampened by a factor of ten and assigned to a value of 0.000001. Note that

𝐶 was assigned the same value for agents trained using the shaped reward only and

those trained using the directed curiosity reward. The reason for such small values

was to enable agents to explore the environment sufficiently by ensuring that the

shaped rewards did not dominate the curiosity reward signal.

After the hyperparameters were optimised, the three reward signals (directed cu-

riosity, curiosity and a distance-based shaped reward) were compared by learning a

policy using PPO (Algorithm 4.1), in each of the five environments, using euclidean

distance to calculate the distance between the agent and the target in Algorithm 1.

Five independent runs were performed and the results that are reported is the mean

learning curve with standard deviation. Another important training setting is util-

ising multiple instances of the same environment during training i.e. multiple agents

were trained concurrently and they were all controlled by a single policy. This was

introduced in order to decrease the training time since the policy could be updated

more frequently due to the increased feedback. All experiments were run on a Centre

for High Performance Computing [1] node with 24 cores.

50

4.4 Policy Generalisation

The second aim of this work was on policy generalisation. Agents needed to learn a

single policy that enabled them to find targets across different training environments,

instead of a policy that was optimised for a single environment. Agents were therefore

trained across a large number of training environments and the generalisability of the

policies was evaluated in previously unseen testing environments, without making any

changes to the learned policy. The set of testing environments included environments

that were either variations of the training environments or had with new obstacle

configurations.

Since it is difficult for an agent to learn this task directly, a manually-designed cur-

riculum was created for this purpose. The curriculum was evaluated against curiosity-

driven exploration [58] and a hybrid approach that combined the curriculum with

curiosity.

For these experiments, walls were added along the boundaries of the square envi-

ronment. This is because it was previously shown in Section 4.3 that the agents were

able to learn to avoid falling off the platform. We therefore did not wish to detract

from the focus of these experiments: the agent’s goal was to navigate to targets and

adding an additional expectation of learning to avoid falling off the platform made

training unnecessarily more difficult.

The observation set𝑂 of the agents comprised the coordinates of the agents current

position, the coordinates of the target and rays that extend in eight directions, at 45∘

intervals.

The observations were stacked to equip the agent with a memory of the immediate

past. The previous ten observations were stored at any given time and the agent was

not given any explicit information about the dynamics of the environments.

The rays, which were not part of the observation set in the policy optimisation

experiments, provide essential feedback to the agent by enabling it to detect walls

and targets that are in its vicinity. In the optimisation experiments, the agent was

trained in a single environment and the rays were therefore not necessary but in

51

the generalisation experiments, where an agent observes multiple different obstacle

configurations (across different environments), it is necessary to equip it with a means

of observing the obstacles so that the policy can be adapted accordingly. The policy

needs to be robust such that it is not optimised to one single environment but rather

enables agents to find targets in arbitrary environments.

Furthermore, the rays take on additional importance when agents are placed in

previously unseen environments. If an agent repeats memorised actions, it will move

directly into walls and never reach its destination. When an agent detects an obstacle

in its vicinity, it needs to use the ray feedback to move away from the obstacle in the

direction of an open path. If the agent was not equipped with a means of observing

the environment, it would not be possible for it to navigate in environments with

obstacle configurations that are vastly different to those observed in training.

The ray length was tuned to balance the difficulty of the task: if the rays are too

long, the agent is able to unrealistically detect objects that are very far away i.e. it is

too far-sighted. If it is too short, the agent is unable to detect anything besides that

which is immediately in front of it, causes it to move directly into obstacle, making

the task significantly more difficult. This is analogous to the field of view. It was also

observed that when the rays were too long, it became difficult for the agent to make

sense of its observations since one (or more) of the rays were being “activated” on

almost all timesteps. In order to balance the difficulty of the task, the ray length was

fixed at 10% of total width (and length) of the environment. The size of the agent

and rays are depicted in Figure 4-6 to illustrate the scale of the task.

The action set 𝐴 is the same as in Section 4.3 i.e. the agent can move up and

down along the y-axis, left and right along the x-axis, diagonally or remain still.

By default, before any training modifications were made, all the environments

were sparse reward environments since an agent only received a +1 reward for finding

the target. The starting positions of the agent and the target were at opposite ends of

the environment. The agents did not receive any intermediate rewards and incurred a

small penalty on every timestep to encourage them to find the target in the shortest

possible time. The penalty was normalised to ensure that it never dominated the

52

Figure 4-6: Agent and ray length relative to the environment.

terminal reward. On every episode, an agent received a penalty of 1/𝑚, where 𝑚 is

the maximum number of episode steps, which in this instance is 20000.

4.4.1 Policy Generalisation Environments

There were multiple environments and each varied in terms of the configuration of

walls and obstacles. This was to deter agents from learning an optimal policy in

a single environment. Rather, agents needed to learn the “skill” of finding a target

that can be transferred to an arbitrary navigation environment. The predefined en-

vironments were carefully designed to represent high-level features or environment

characteristics such as dead-ends and multiple paths to the target. Each environment

characteristic aimed to teach an agent a particular type of behaviour or skill. For

example, in an environment with a dead-end, the agent needed to learn to backtrack

and try a different path. In some environments, it needed to learn to move away from

the target for a large number of consecutive steps in order to bypass an obstacle. The

rationale is therefore to equip the agent with enough of these “skills”, so that it may

succeed in unknown environments with similar or new characteristics i.e. it is neces-

sary to introduce agents to numerous environment features in training so that they

53

may learn a flexible policy that enables them to find targets when similar features

are found in new environments.

The sizes of the environment, agent and target, as well as the agent speed remained

the same as in the experiments from Section 4.3.

We defined a separate set of training and testing environments. This was necessary

in order to evaluate the generalisability of the policies.

4.4.1.1 Training Environments for Policy Generalisation Experiments

The training environments were partitioned into 2 categories: Obstacle environments

and Maze environments.

Obstacle Training Environments These environments contained only a single

obstacle that varied in terms of size and orientation. The size ranged from a scale

of between 0 and 3 and the orientation was defined by an angle from 0∘, in 45∘

increments. Obstacles are depicted in white in Figure 4-7.

Figure 4-7: Obstacle training environments

Maze Training Environments Maze environments are more complex since they

contain multiple obstacles. They were subdivided based on difficulty. Standard mazes

are shown in Figure 4-8 andDifficult mazes in Figure 4-9. Difficult mazes had multiple

obstacles that spanned more than half the width of the entire environment. They also

included more complex versions of some of the Standard mazes, by manipulating the

size of each obstacle in an environment. Another metric for difficulty is the number

of “counter-intuitive” or backward moves that agents need to make to navigate to

the target i.e. movement that places an agent further away from the target in order

to navigate past an obstacle. A difficult environment requires agents to make more

54

“counter-intuitive” moves.

A popular maze structure, known as the “u-maze” [17, 21, 78], due to the shape

of the obstacles, was incorporated into the standard mazes. Standard RL algorithms

failed to solve this task in [17], highlighting the difficulty of this task.

Figure 4-8: Standard training mazes

Figure 4-9: Difficult training mazes

4.4.1.2 Testing Environments

The testing environments were used to assess the extent to which the learned policies

have generalised. They were divided into two categories:

1. Orientation Testing Environments

An orientation testing environment is created by rotating a maze training en-

vironment by a fixed angle, (either 90∘ or 180∘ depending on whether an envi-

ronment is symmetrical), as depicted in Figure 4-10. Even though the shape of

the obstacles remains the same, rotating the obstacles changes the path to the

goal significantly. This means that an agent will only be able to navigate to the

destination if its policy is robust and adaptable. The Standard Orientation and

Difficult Orientation mazes were created by rotating the standard (Figure 4-8)

and difficult training mazes (Figure 4-9) respectively. All of the orientation

mazes are depicted in appendix A in Figure A-4 and Figure A-8.

55

Figure 4-10: Rotating training mazes to create orientation testing environments

2. New Testing Environments

New environments contain different obstacle configurations to the training en-

vironments. Previously unseen features or environment characteristics (bot-

tlenecks, repeated symmetric obstacles and a large number of small scattered

obstacles) were incorporated into this group. This allowed us to analyse whether

the agents were able to learn advanced skills and further assess the extent of

the generalisation.

Both these categories were further subdivided into Standard and Difficult sub-

categories, as per the definition used for the training environments.

Both the Standard New and Difficult New groups, depicted in Figure 4-11

and Figure 4-12 respectively, contained 3 mazes each. The Multi-Path Maze

(Figure 4-11b) and Spiral Maze (Figure 4-12a), as seen in previous work [21],

was incorporated into the standard and difficult categories respectively. The dif-

ficult mazes were deliberately designed to test the boundaries of the algorithms

and to identify their limitations.

(a) H maze (b) Multi-Path maze (c) Slim maze

Figure 4-11: Standard New testing mazes

56

(a) Spiral maze (b) X maze (c) Overlap maze

Figure 4-12: Difficult New testing mazes

Even though the testing environment categories were carefully designed to include

a diverse set of mazes, the sample sizes of the groups are fairly small. In future work,

we wish to increase the size of the groups and investigate whether the same principles

and results hold. However, while it was possible to generate or design more mazes, the

focus of this work was rather on the comparison between different training algorithms.

Consistency in the training and testing environments was therefore more important. If

there were too many environments, it would have been difficult to identify limitations

of the algorithms. We therefore restricted the environments so that each environment

represented a distinct feature.

4.4.2 Experimental Setup and Hyperparameter Optimisation

Agents were trained in the training environments defined in Section 4.4.1.1 under three

different training settings: using the curriculum detailed in Algorithm 3, curiosity-

driven exploration [58] and a hybrid “curiosity-curriculum” approach.

A policy is represented by a neural network. Under all three training settings,

PPO [67] was again used to learn policies (for the reasons detailed in Section 4.3.2).

The hyperparameters were therefore tuned in a similar manner as well. We defined

baseline hyperparameters by training agents in the easiest version of the task and

then carefully tuned and optimised these values by observing the training process

and optimising the relevant parameter as required. The optimised hyperparameters

from Section 4.3.2 were also used as a baseline.

The specific hyperparameters are given in Table 4.2 :

57

Table 4.2: The baseline hyperparameters for the policy generalisation experiments.

Hyperparameter Value

Maximum Steps 2.0× 107

Learning Rate 𝛼 3.0× 10−4

Time Horizon 64

Buffer Size 5120

Batch Size 256

Hidden Layers 2

Number Neurons 256

Beta 𝛽 0.01

Epsilon 𝜖 0.1

Lambda 𝜆 0.95

Number Epochs 3

Extrinsic Reward Strength 1.0

Intrinsic Reward Strength 0.01

Extrinsic Reward Discount Factor 𝛾 0.99

Intrinsic Reward Discount Factor 𝛾 0.99

Both the actor and critic models have two hidden layers (each with 256 units).

The swish activation function [61] was once again used due to its robustness and also

since it was shown to perform better then other activation functions across various

RL tasks [18].

All agents were trained for twenty million training steps. The number of steps

was carefully tuned to ensure that the agents had sufficient time to learn the task.

However, we observed an interesting phenomenon whereby agents overfitted to the

training environments, resulting in weak policy generalisation in the testing environ-

ments, when the number of training steps was too high. This observation was also

made in [87].

58

Due to the increased complexity of the task, the maximum number of training

steps and the number of neurons in the hidden layers needed to be drastically in-

creased, when compared to the optimisation experiments. The entropy coefficient

was also increased: this was to equip the agents with versatility such that there is

more randomness introduced into the policy so that agents may explore the different

training environments with vastly different obstacle configurations. This also resulted

in stable training: when the entropy was too low, the policy did not converge since

the agents tended to get stuck in local optima. The learning rate was decreased to

deter agents from overfitting and also to speed up training. To ensure that neither

the extrinsic or intrinsic reward signal dominated, the strengths of each of the reward

signals were carefully tuned. This is a difficult task [12]: decreasing the curiosity

strength resulted in shorter training times though there is a trade-off since the cu-

riosity signal must be large enough to equip the agents with sufficient exploration

capabilities.

Since the environment changes at the beginning of every episode, the agent ob-

servations are vastly different. It was therefore necessary to increase the batch and

buffer size to allow the agent to gather more experience and capture a larger window

of information, before updating its policy.

Both the algorithm used to train agents as well as the process of hyperparameter

optimisation are essential. This is because subtle changes to a single hyperparameter

can alter the results of the experiments drastically and ultimately be the difference

between agents succeeding and failing.

4.4.2.1 Curriculum Parameters

The curriculum from Section 3.2.1 was used in the following manner in these exper-

iments: the obstacle environments in Figure 4-7 were assigned to 𝑂 in Algorithm 3,

with a maximum obstacle scale (𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒) of three. The set of maze environment 𝑀

was represented by the union of the standard and difficult mazes from Figure 4-8

and Figure 4-9. The maximum environment scale (𝑆𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) was fixed at five to

ensure that the largest environment is a sparse reward environment.

59

The curriculum threshold was fixed at 5000 i.e. the task changed when the average

reward from the previous 5000 episodes (𝑛𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒) reached a predefined threshold,

𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This was to ensure that the agent had sufficiently learned to complete a

task i.e. it consistently found the target across all the training environments. The

reward threshold 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was gradually decreased as the curriculum advanced, since

agents obtained lower episodic rewards in larger environments with multiple obstacles

because more steps were necessary to navigate to the target. 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was fixed at

0.995 for the easiest task (this was tuned such that it was marginally lower than the

average reward that an agent obtains when navigating to the target in the shortest

possible time).

When the task was made more difficult by sampling maze environments instead

of single obstacle environments (without increasing the environment size), the reward

threshold was decreased by 0.0025. Thereafter, when the environment size was in-

creased, the threshold was decreased by 0.005. This means that 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was 0.965

in the final version of the task.

4.4.2.2 Baseline Algorithms

The performance of the curriculum was compared to curiosity-driven exploration

(see Equation 3.1) defined by Pathak et al. in [58] since it showed promising generali-

sation capabilities in previous studies [11, 58]. This equips the agent with an intrinsic

reward that allows it to explore the training environments by seeking “novel” states,

thereby gaining an understand of the dynamics of the various training environments.

The final approach combined the curiosity reward with the hand-crafted curricu-

lum which we term “Hybrid”: agents were trained using the curriculum from Sec-

tion 3.2.1 and a reward function augmented with a curiosity signal. Both algorithms

were shown to improve generalisation individually in previous work [12, 22, 11], it

was therefore necessary to investigate if there were any merits to combining them.

Directed Curiosity from Section 3.1.3 was not included as a baseline algorithm due

to the difficulties of reward shaping when there are multiple environments i.e. when we

trained agents using the technique, we found that it resulted in poor generalisation.

60

This is referred to as the Reward Engineering Principle [16], whereby the more general

the RL system is required to be, the more difficult it is to design reward functions to

enable agents to behave specifically as required. The limitations of the shaped reward

are discussed in more detail in Section 5.2.2.5.

After tuning the parameters independently for each algorithm, the agents were

trained on a node, from the Centre for High Performance Computing [1], with 24

cores. The Unity ML-Agents platform [37] was used to train agents, as well as to

design and implement the task and environments.

The codebase for these experiments can be accessed at: https://github.com/

AsadJeewa/Learning-to-Generalise-in-Sparse-Reward-Navigation-Environments.

As was the case in the previous set of experiments, training was performed on five

independent runs (for each algorithm) and the mean result with standard deviation is

depicted. The best performing policy, for each algorithm, was selected and evaluated

in each of the different testing environment groups, to assess the extent to which the

policy transferred to the unseen environments. The evaluation process is detailed

further in Section 5.2.

61

Chapter 5

Results and Discussion

This work investigated both policy optimisation and generalisation in a set of custom

sparse reward navigation environments. We present a novel reward function, called

Directed Curiosity, that combines curiosity-driven exploration [58] with distance-

based shaped rewards from Algorithm 1. The aim of the experiments was to enable

an agent to learn an optimal path within the single environment it was trained in.

Furthermore, we present a curriculum (Algorithm 3) that attempts to bypass the

sparse rewards problem as well as improve policy generalisation. Instead of learning

polices that optimise to a specific environment, we attempted to train agents to learn

the “skill” of finding a target in arbitrary environments and then analysed the extent

to which policies generalised by evaluating agents in unseen testing environments.

5.1 Policy Optimisation

Directed Curiosity was evaluated against agents trained using a reward function made

up exclusively of (a) the distance-based shaped reward function and (b) the curiosity

reward signal [58], across the five different sparse reward navigation environments.

A third baseline is also depicted: a sparse reward function that returns a terminal

reward of +1 for finding the target and -1 for falling off the platform.

Figure 5-1 to Figure 5-5 compares the algorithms in each of the five environments:

the extrinsic rewards from a single episode is depicted as a function of steps i.e. a

62

single iteration of the RL loop (see Figure 1-1). The rewards were normalised between

0 and 1 to allow for the algorithms to be compared directly to each other.

Figure 5-1: Learning curves for SimpleNav environment.

Figure 5-2: Learning curves for DifficultNav environment.

63

Figure 5-3: Learning curves for ObsatcleNav environment.

Figure 5-4: Learning curves for Maze1Nav environment.

64

Figure 5-5: Learning curves for Maze2Nav environment.

Each algorithm was run five times in each of the five environments and the shaded

area represents the standard deviation of the curves (as is customary in RL) [3, 63].

This is an important metric for various reasons. Firstly, the standard deviation of

all algorithms increases proportionally to the difficulty of the task: the agents do not

always converge to an optimal policy in difficult environments i.e. if an agent fails to

find the target, it does not receive the terminal reward and hence its episodic rewards

are significantly lower. Also, since PPO learns a stochastic policy, the algorithms

converge at different times, even on successful runs. Furthermore, the agent explores

differently on every run and therefore visits states in a different order.

5.1.1 Sparse Reward Agents

SimpleNav was the only environment wherein the sparse reward agents were able to

navigate to the target. They did not perform consistently in this environment, only

finding the target and learning an optimal policy on some runs. This is the reason

for the high variance in Figure 5-1.

65

In all of the subsequent environments, the agents were unable to navigate to the

target on all five runs and therefore received no positive rewards during training.

The small changes in reward are as a result of the negative feedback that the agent

received when it fell off the platform. This feedback was frequent since falling off the

platform was a common occurrence and the agents were able to use this to learn to

remain on the platform for the entire duration of an episode. This is a local optimum

and not the behaviour that the agents were required to learn. These results therefore

verify that the environments are sparse reward environments. They also highlight the

need for an exploration strategy when rewards are sparse.

5.1.2 Reward Shaping Agents

The reward shaping agent performed well in SimpleNav. This is because the shaped

rewards act as a definition of the task when there are no obstacles blocking the

direct path to the target. Selecting an action that moves the agent closer to the

target on every timestep leads it directly to the goal in the shortest possible time.

In DifficultNav, the agents were able to learn an optimal policy significantly faster

than all other reward functions, for the same reasons. The rewards converged almost

immediately: this highlights that reward shaping can be very effective when the

desired behaviour of an agent can be easily defined. However, this environment is

not practical and the agent is required to move in a more complex manner in more

realistic environments.

The deficiencies of the shaped reward function began to surface when obsta-

cles were introduced and the difficulty of the task was increased (see Figure 5-3

and Figure 5-4). The agents failed to find the target on all runs in ObstacleNav and

Maze1Nav, and got stuck behind obstacles in the early stages of training. This is

because the shaped reward function is a greedy approach and the agents were not

equipped with the foresight to learn to move around the obstacles. An agent is unable

to learn to move further away from the target at the current time, in order to reach

the target at a later stage. This is generally a common problem with distance-based

shaped reward functions [78].

66

The same problem was still observed even when the agents were initialised with

higher entropy i.e. encouraging the agents to take actions more randomly. As dis-

cussed in Section 3.1.2, we did attempt to address this issue by making the reward

function more flexible, by calculating the change in position every 𝑛 steps but this

did not have a significant effect on training and the agents still failed to navigate to

the target.

It is interesting to note that the agents were able to find the target on two of the five

runs in Maze2Nav (see Figure 5-5). Even though there are multiple obstacles in the

environment and the task is generally a difficult one, the optimal path to the target is

more straightforward than Maze1Nav and ObstacleNav. The path is not a direct line

though the there are fewer “backward” steps necessary. The agents therefore “ignored”

the obstacles and avoided dead-ends by acting simplistically, eventually finding their

way to the target. However the approach is not robust since the agent was unable to

converge to an optimal policy on any of the runs.

Overall, the results indicate that distance-based reward shaping provided the

agents with some important feedback that enabled them to succeed in simple en-

vironments. However, due to the greedy nature of the reward function and the lack

of an intuitive exploration strategy, the agents were unable to learn to move past

obstacles that block its path to the target.

5.1.3 Curiosity Agents

The curiosity agents were able to consistently learn an optimal policy in the environ-

ments without obstacles. However, Figure 5-1 shows that the curiosity agents took

longer to converge to an optimal policy in SimpleNav. This highlights that curiosity

is not necessary in environments that are not “hard exploration” or when the reward

feedback is not sparse. A similar pattern was observed in DifficultNav (see Figure 5-

2), where the curiosity agents learned an optimal policy significantly slower than

agents trained with the shaped reward function.

The necessity of the curiosity signal was highlighted when obstacles were intro-

duced. Curiosity enables agents to not only find distant targets, but also to implicitly

67

learns about the dynamics of the environment. As agents explore an environment,

they observe new states and begins to build an understanding of the location and

dimensions of the walls and obstacles, even though none of this information is given

to it explicitly. The agents use this knowledge to learn how to control themselves to

move around obstacles and find an optimal path to the target.

In ObstacleNav (see Figure 5-3), the agents were able to learn an optimal policy

on three of the five runs, unlike the Directed Curiosity agents which were successful

on all five runs. The performance was less successful in Maze1Nav (see Figure 5-4)

and Maze2Nav (see Figure 5-5), where the agents were only successful on two of the

five runs. This highlights the difficulties of these environments and of the task: even

if an agent reaches the target in an episode, it does not guarantee that the policy will

converge i.e consistency is key and the task of learning the optimal path to a target

is significantly more difficult than simply finding the target.

It was observed that the curious agents seemed to keep exploring after initially

finding the target and got stuck behind obstacles and in dead-ends, eventually con-

verging to an unsuccessful policy, without being able to reach the target again. This

highlights the insufficiencies with the curiosity signal, since it does not equip agents

with the knowledge it needs to “guide” it back to the target and learn a path to the

destination. This is the reason for the increase of the average reward in the early

stages of training and the subsequent drop thereafter in Figure 5-5.

A similar effect was observed in [58]: when the task becomes too difficult for the

agent, it is unable to reach new environment states, and therefore hits a curiosity

blockade. Naturally, without any intrinsic and extrinsic feedback, the policy deteri-

orates. The authors likened this to boredom whereby the agent no longer has any

motivation to explore the environment.

Generally, the results indicate that curiosity equips an agent with the ability to find

a target in hard exploration environments that contain obstacles. However, the agent

requires additional feedback to learn a path from the start point to the destination

that enables it to navigate to the target consistently.

68

5.1.4 Directed Curiosity Agents

The Directed Curiosity agent is shown to be the most robust technique. Figure 5-1

and Figure 5-2 show that the agents learned optimal policies on all runs in SimpleNav

and DifficultNav. The inclusion of the shaped reward function enabled agents to con-

verge to a solution faster, after a smaller number of training steps than the curiosity

agents, in DifficultNav.

The hard exploration environments further highlight the benefits of the technique.

Directed Curiosity is the only technique that converged to an optimal solution on all

runs in ObstacleNav (see Figure 5-3). The results indicate that the curiosity signal

enables the agents to find the target and move past the obstacles, while the shaped

reward signal provides additional feedback that allows the agent to learn an optimal

path to the target, once it has been found. In this way, it combines the strengths of

the two separate techniques, resulting in training that is more reliable and ultimately

more successful.

Maze1Nav (see Figure 5-4) and Maze2Nav (see Figure 5-5) exhibit promising

results since the Directed Curiosity agents learned an optimal policy on more runs

than any other technique i.e. on three of the five runs. The training process was also

more stable than the curiosity agent. While the agents did find the target on all five

runs, they were unable to consistently learn an optimal policy, though this effect was

observed on fewer runs than was observed for the curiosity agents. A major reason

is due to the limitations that we have previously highlighted with the shaped reward

function.

In future work, we wish to investigate a more intuitive reward function that in-

corporates foresight in a more intelligent manner than the approach discussed in Sec-

tion 5.1.2. One interesting avenue is to investigate automatically learning a reward

function through inverse reinforcement learning techniques.

The maze environments were deliberately designed to be challenging to solve so

that we could identify limitations in Directed Curiosity. It was therefore expected

that the agents would not be able to learn an optimal policy on all runs.

69

The results indicate that the reward feedback is not sufficient to guide the agent

out of dead-ends back to the target. However, these results indicate that the two

components of Directed Curiosity, when balanced correctly, allow the agent to learn

in a more directed and intuitive manner.

5.1.5 Summary of Optimisation Results

The results of the sparse reward agents verify that the environments are sparse reward

environments, since they failed in all of the environments. It also highlights the need

for an exploration strategy in sparse reward hard exploration environments. The

distance-based shaped reward function provided agents with important feedback that

enabled them to succeed in simple environments, but the limitations of the function

was exposed in environments with obstacles: due to the greedy nature of the reward

function and the lack of an intuitive exploration strategy, the reward shaping agents

were unable to learn to moves past obstacles that block its path to the target. The

curiosity agents were more successful: curiosity equips agents with the ability to reach

distant targets in the maze environments. However, the agents often failed to converge

to optimal polices since they are not given any reward feedback to “guide” them back

to the target and the agents often got stuck in local optima. The Directed Curiosity

agents were the more successful: not only did they converge to optimal polices after

a smaller number of training steps, the results also indicate that the two components

of the reward function, when balanced correctly, allow the agent to learn in a more

directed and intuitive manner, since agents are able to learn optimal polices the most

often, in the difficult maze environments.

5.2 Policy Generalisation

Experiments in policy optimisation highlighted the merits of using Directed Curiosity

to learn an optimal path within a single environment. However, the experiments

also highlighted limitations in the shaped reward function and when agents were

trained to find targets across multiple environments, policy generalisation was poor.

70

In general, Directed Curiosity is a useful technique for learning specialist policies, that

are optimised for a specific environment, but it is not suited for policy generalisation.

The task of learning to navigate in an arbitrary environment is significantly more

difficult. Instead of attempting to learn the task directly, we designed a training

curriculum for this purpose, defined in Section 3.2.1

The curriculum was evaluated against an agent trained using curiosity [58] and

a hybrid of the two approaches. Analysis was performed in three stages: the first

stage compares the training performance of each algorithm, both in terms of average

episodic reward and training time, in Section 5.2.1.

The agents were trained under a dense reward setting where the spawn positions

of both the target and agents randomised at the start of each episode. Since the focus

of the work is on sparse reward navigation environments and it is therefore important

to evaluate the algorithms under a sparse reward setting (the default setting of the

environments). This was achieved by positioning the agent and target at distant

locations in every training environment. The locations were fixed at points that made

the task as difficult as possible. We term this as soft-generalisation (Section 5.2.2.1).

A critical evaluation of the generalisability of each algorithm in the unseen test-

ing environments from Section 4.4.1.2 was performed. This is referred to as hard-

generalisation in Section 5.2.2.2.

Finally, in Section 5.2.3, we performed trajectory analysis by assessing the move-

ment paths of the trained agents. This allowed us to understand the strengths and

limitations of each algorithm by understanding the intricacies of how agents move

within different environments.

5.2.1 Training Performance

The training curves i.e. the average episodic reward of the agents over time (for each

algorithm) are depicted in Figure 5-6. As is the norm in RL [58, 63, 87] and for

consistency with the experiments in Section 5.1, we performed five independent runs

of each algorithm and report on the average learning curve. The standard deviation

is also highlighted. Twenty independent instances of the environments were used for

71

more efficient data collection during training.

The dashed line in Figure 5-6 depicts the point at which both the curriculum

and hybrid agents progressed to the final lesson, which corresponds to the training

environments that the curiosity agent was trained in.

Figure 5-6: Learning curves during training.

A smoothing factor of 0.2 is applied for all algorithms in Figure 5-6. The curves

highlight the benefits of using the curriculum. The blue curriculum curve never drops

significantly since an agents’ task is never too difficult. The curriculum advances

quickly in the early stages of training when the task is easier i.e. the sudden drops

in reward are indicative of points at which the task is made more difficult but the

fact that the curve peaks very quickly thereafter, indicates that knowledge is being

transferred between tasks.

The curiosity curve is a more traditional learning curve with rewards slowly in-

creasing over time, since the task is difficult for the agents in the early stages of

training and it receives minimal rewards.

The hybrid training curve is very similar to the curriculum agent. Even when

the curiosity strength was varied, the curves still followed a similar pattern. This

72

indicates that the curiosity rewards had little effect on the training process when

coupled with the curriculum.

Figure 5-7: Average rewards against training time.

Figure 5-7 depicts the average episodic rewards as a function of training time.

Since the hybrid and curriculum agents have training curves that are very similar,

only the curriculum curve is depicted. A smoothing factor of 0.05 is applied. In all

runs, it was noted that the curriculum agent converged significantly faster than the

curiosity agent. Even though both algorithms ran for twenty million training steps,

the curriculum agents trained for roughly 15% less time (almost 1 hour). This is

attributed to the fact that the episodes were very long in the early stages of training,

when the task was too difficult for the curiosity agent i.e. the episodes terminated

only upon reaching the maximum number of steps.

There is also a clear gap between the rewards obtained, with the curriculum

agents achieving significantly more rewards, especially in the early stages on training.

Focusing on the most difficult version of the task, beyond the dashed line in Figure 5-

7, the curriculum agents’ rewards stabilised 22% faster (roughly 1.5 hours) than the

curiosity agent. To further test this theory, we trained the curriculum agent for half

73

the number of steps and noted that it still converged on all runs while the curiosity

agent was unable to do so on any of the runs.

5.2.2 Generalisation Performance

The algorithms were compared as follows: The best performing training run from Sec-

tion 5.2.1 was selected for each algorithm since all the algorithms converged during

training and the variance between different runs was low after convergence. Fur-

thermore, all the results are reported using a confidence interval of 95%, as depicted

through error bars.

The average episodic reward was then calculated and analysed for each of the

separate environment groups defined in Section 4.4.1. Each algorithm was run for

1000 episodes, with a random testing environment being sampled at the start of

the episode, from the corresponding group. This is necessary due to the stochastic

nature of the policies: the agents sometimes succeed and fail within the same testing

environments. This results in vastly different episodic rewards, meaning that a large

number of episodes is necessary to stabilise the average rewards.

The average episodic rewards are in the range [−1, 1). A successful run is one

in which agents are able to navigate to the target. The faster an agent finds the

target, the higher the reward it receives. An average reward approaching one therefore

indicates that the agent successfully found the target on all runs. A score less than

one indicates that on most runs, the agents were unable to find the target, across

all environments, with zero representing an inflection point. Magnified results (that

highlight precise differences between each algorithm) can be found in Appendix A.

5.2.2.1 Soft-Generalisation

Figure 5-8 illustrates that, for all algorithms, the agents were able to efficiently

find the target in all training environments, under the sparse reward setting. All

algorithms have an average reward that approaches a maximum possible reward of

+1, with negligible difference between them (refer to Figure A-3).

74

Figure 5-8: Average rewards in sparse versions of the training environments.

These results act as a validation of each algorithm since it indicates that all agents

obtained sufficient knowledge of the task and were able to find targets across a diverse

set of mazes. This allowed us to perform a fair comparison of the hard-generalisation

capabilities of each algorithm, in the testing environments.

5.2.2.2 Hard-Generalisation

When analysing the hard-generalisation results, there are certain important consid-

erations that need to be made: the task is not trivial since it as analogous to placing

a human or vehicle in a new environment and only equipping them with information

about its current location, destination and the ability to “see” what’s around it. It

does not have any knowledge of the dynamics of the environment that it is placed in.

This means that some “exploration” is necessary and it is expected that agents will

move into obstacles as they try to advance towards the goal. In other words, it is not

possible to solve the generalisation problem completely: it was not expected that the

agents would obtain expert performance in the testing environments. The goal was

rather to transfer some knowledge that could be reused in the environments.

The policies were used “as-is” and there was no fine-tuning for any of the testing

environments, as is the case in other studies [58]. It is possible to improve the results

75

in each testing environment by fine-tuning the policy though that was not the aim

of this study. This work instead investigated the flexibility of the learned policy by

analysing the extent to which it was able to generalise to unseen environments.

The performance of each algorithm is often different i.e. agents do not succeed and

fail within the same testing environments. There were instances when one algorithm

enabled agents to navigate to the target in a short time, but another resulted in

agents only finding the target after a large number of episode steps or never at all, in

the same environment. We wish to perform further analysis of this phenomenon, in

order to discover any inherent environment characteristics that cause this divergence.

The gap between training and testing performance translates to the extent to

which the policies have overfitted to the training environments [14]. As expected,

there is a gap in performance though the results indicate that some generalisation

has taken place.

5.2.2.3 Standard Mazes

Figure 5-9: Average rewards in the Standard New mazes.

All the algorithms performed well in the standard mazes. Figure 5-9 depicts

similar performance in the Standard New environments. Notably, all the agents were

able to consistently navigate to the target in all three environments, indicating that all

76

algorithms generalise well to these environments. This is a promising result, since the

obstacle configurations are different to those in the training environments, meaning

that the policies are robust. The agents were able to utilise the ray feedback to adapt

their policies to move around obstacles, while the stacked observations enabled them

it to keep advancing towards the target. The difference in results comes from the

episode length: on average, the hybrid agents found the targets marginally faster.

The Standard Orientation results in Figure 5-10 depict that all algorithms were

able to succeed on most runs. The curriculum and hybrid agents performed marginally

better than those trained with curiosity, across the six environments. Even though

the environments are variations of training environments, the paths to the target are

vastly different. This is one reason why the agents do not succeed in some environ-

ments.

Figure 5-10: Average rewards in the Standard Orientation mazes.

In order to increase generalisability, there are other avenues that we wish to explore

specifically with regards to optimising the curriculum. One such way is through

fine-tuning the definition of the training environments, to include more environment

characteristics. Instead of manually adding environments, a more efficient avenue

would be to procedurally generate them, as explored in Section 2.3. The limitations

of the curriculum are further analysed through trajectory analysis in Section 5.2.3.

77

5.2.2.4 Difficult Mazes

Generalisability is shown to decrease for all algorithms, as the difficulty of the envi-

ronments was increased. However, unlike the standard mazes where all algorithms

performed similarly, the benefits of the curriculum are highlighted in the difficult

mazes. The agents that were trained using the curriculum were able to find the

targets in more environments than the other two algorithms.

Figure 5-11: Average rewards in the Difficult Orientation mazes.

The Difficult Orientation results in Figure 5-11 indicate that, for all algorithms,

the agents were not able to find the target on most runs, however, some transfer

has taken place. The curriculum obtained the highest average reward and the error

bars indicate that the difference is statistically significant under a 95% confidence

interval. The performance of the curiosity agent showed limited transfer to the testing

environments, with agents only succeeding in a single environment. Even though

both the curriculum and hybrid agents succeeded in two of the five environments, the

hybrid agents took significantly longer to find the targets. This resulted in the hybrid

algorithm performing the most poorly.

The Difficult New environments show the least transfer (see Figure 5-12) though

as per previous environment groups, the curriculum agents were the most successful.

Due to the difficulty of the environments in this group, agents were not able to find

78

Figure 5-12: Average rewards in the Difficult New mazes.

the targets consistently i.e. they succeed on some runs and fail on others, even in the

same environment.

The most promising result is that the curriculum agents were the only agents that

succeeded in the Spiral maze depicted in Figure 4-12a. The curriculum agents were

also able to navigate to the target fairly efficiently.

Even though all of the algorithms succeeded on some runs in the Overlap Maze,

the performance was poor since the number of steps to find the target was almost at

the maximum number of steps of 20000.

None of the algorithms succeeded in the X Maze (Figure 4-12b). We regard this

environment as the most difficult. Even though the agent and the target are both

positioned very close to each other, they are separated by obstacles and the agent

has to immediately take a large number of consecutive steps away form the target, to

navigate past the obstacle i.e. this environment requires the most “counter-intuitive”

moves, as defined in Section 4.4.1.1. Furthermore, the shortness of the rays increase

the difficulty of the task since the agents often detect the walls only after they have

positioned themselves in one of the “crossings” of the “X”. Increasing the memory

capacity of the agents will likely improve performance.

79

5.2.2.5 Reward Shaping

A further benefit of the curriculum is that it does not require any reward shaping.

This is due to the manner in which the curriculum was designed that ensures that

the agents always receive sufficient reward feedback during training. We performed

an empirical investigation into various different shaped rewards and found no perfor-

mance improvements. Rather, the motivations of the agents became polluted [15, 53].

For example, when an agent was rewarded for moving closer to the target, it lacked

the foresight to move past obstacles as previously observed in Section 5.1.2.

Shaping rewards also resulted in poor generalisation performance i.e. it resulted

in specialist policies that worked well in some environments, but poorly in others.

We theorise that this is possibly because the agent was receiving too much feedback

which made it difficult to generalise a policy across all the environments. While the

rewards were deliberately designed to promote general behaviour (move closer to the

target where possible), the paths to the goal across the different environments are

vastly different. The agents tend to learn better when they are left to explore on

their own.

Reward shaping may also require additional information which may not be avail-

able in the real-world: it may not be possible for an agent to evaluate whether a

single action has moved the agent closer or further away from the target.

5.2.3 Trajectory Analysis

We performed trajectory analysis by analysing the movement patterns of the trained

agents across the different environments, as per [63].

It was often observed that the curriculum agents tended to move in a more di-

rected manner than the curiosity agents i.e. the paths were smoother and with fewer

“vibrations”. The curriculum agents also tended to “stick” to the walls for longer

periods of time. Since the walls are fixed, they acted as reference points for the cur-

riculum agents and were used as a guide for finding a path to the target. An example

of this is depicted in Figure 5-13. The trail of a curiosity agent is shown in red and

80

(a) Curiosity (b) Curriculum

Figure 5-13: Path comparison between a curiosity and a curriculum agent.

that of a curriculum agent in blue. There is further proof of this in Figure 5-14.

Figure 5-14: Path analysis of a curriculum agent.

Figure 5-14 highlights a behaviour pattern that is often observed for curriculum

agents: they initially attempt to move directly towards the goal, along the shortest

possible path, but when the agents detect an obstacle, they adapt to move around

it, and then continue to attempt to move along the fastest route. This highlights the

robustness of the policy.

(a) Repetitive movement (b) Local optimum (c) Too difficult

Figure 5-15: Limitations of curriculum agents.

A limitation of all algorithms is that it was sometimes observed that the agents

repeatedly move along a similar path and only make slight advancements towards

the target over a long period of time i.e. the agents tend to make a lot of redundant

moves. However, the agents often find their way to the target eventually, as shown

81

in Figure 5-15a. This, therefore, does not point to deficiencies in the curriculum, but

rather in the observations and capacity of the agents. In future work, we wish to

explore different methods for increasing the “memory” of the agents, to alleviate this

problem. One such way is to increase the number of stacked observations so that

agents can “remember” more of their previous failures and avoid repeating the same

actions. An alternative approach is to use recurrent architectures.

Understanding the limitations of the curriculum is important: Figure 5-15b and Fig-

ure 5-15c highlight examples of environments in which the curriculum agents failed

to find the target. In Figure 5-15b, as the agent was progressing towards the target,

it got stuck in a local optimum and then continuously repeated a similar sequence of

actions, until the maximum episode steps was reached. Furthermore, even though it

is possible that the agent would eventually have still found its way to the target, this

points to a level of memorisation in the policy.

In some cases, as depicted in Figure 5-15c, the environment is simply too difficult

and the agent does not have enough knowledge to be able to navigate to the target.

When this environment was incorporated into the training set, the agent learned how

to navigate to the target. We therefore theorise that introducing a larger number of

training environments would mitigate this issue, as well as increasing the memory of

the agents.

(a) Curiosity (b) Curriculum (c) Hybrid

Figure 5-16: Path comparison of all algorithms for the spiral maze.

The most promising result is shown in Figure 5-16. The spiral maze is difficult

because the agent needs to learn a very specific trajectory in order to find the target.

The curriculum agent was the only agent that succeeded in this environment. This

further highlights the robustness of the algorithm: it was able to continuously adapt

its actions as it observed the environment. The curiosity and hybrid agents both got

82

stuck in local optima, far away from the target. It was observed that once the agents

were parallel to the target, they repeatedly attempted to move directly towards it,

moving directly into the obstacle. The agents then attempted to adapt their policies

but due to the difficulty of the task, eventually fell into the same movement pattern.

5.2.4 Summary of Generalisation Results

The generalisation experiments highlighted the benefits of using the training curricu-

lum. By ensuring that the task is never too difficult for the agent, as well as enabling

agents to transfer skills learned in simple environments to difficult ones, the agents

are able to converge to an optimal policy (in the training environments) faster than

agents trained with a curiosity [58]. Furthermore, the curriculum acts as a means of

bypassing the sparse rewards problems, since agents trained with the curriculum, in a

dense setting of the training environments, are able to find targets in sparse versions

of the same environments.

Training with the curriculum resulted in policies that generalised better to unseen

testing environments: it was able to navigate to the target across the most environ-

ments. The experiments also highlighted that there were no significant benefits to

combining the curriculum with curiosity and it was actually shown to decrease the

generalisation capabilities of agents. Detailed results for each environment can be

found in Appendix A. A further benefit is that the curriculum removes the need for

any manual reward shaping: a task which is not straightforward when trying to learn

general policies that are not optimised to a single environment.

We performed trajectory analysis to identify limitations of the curriculum. This

highlighted a memory issue whereby agents were found to continuously move in a

repeating pattern and also sometimes got stuck in local optima. We propose increas-

ing the memory of agents through stacking more observations together or by using

recurrent architectures. However, this is not a limitation of the curriculum but rather

a general training limitation. While the results indicate that there is a transfer of

knowledge to unseen environment, there is still a considerable gap between training

and testing performance. We proposed various areas for improving and fine-tuning

83

the curriculum in order to increase the generalisation capabilities of agents, such as

procedurally generating environments to introduce more diversity in training.

84

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This work investigated both policy optimisation and generalisation in sparse reward

environments within the domain of navigation. A custom suite of sparse reward

navigation environments was designed where an agent needs to learn to navigate

from its starting point, past obstacles, to a distant target in the shortest possible

time.

A novel approach, Directed Curiosity was presented that engineers a reward func-

tion through computing a weighted sum of curiosity-driven exploration [58] and

distance-based reward-shaping. In the policy optimisation experiments, where agents

attempted to learn the optimal path to a target in five different environments, Di-

rected Curiosity was evaluated against agents trained with a reward function of only

curiosity and only distance-based shaped rewards. Due to the greedy nature of the

shaped rewards, the agents that were trained with the function were unable to nav-

igate to targets in the environments with obstacles. The curiosity agents exhibited

improved results but in the three environments with obstacles, they failed to converge

to optimal polices on all runs, due to the lack of reward feedback to direct agents to

the target. Directed Curiosity enabled agents to navigate to targets more often and

also resulted in shorter training times.

Directed Curiosity is therefore useful for learning specialist policies that are opti-

85

mised for a specific environment, however, it is not suited for policy generalisation.

This is due to the limitations with the shaped reward function. Furthermore, engi-

neering a shaped reward function is very challenging when there are multiple envi-

ronments since optimising to a particular environment leads to poor performance in

other environments.

A manually-designed training curriculum was designed to improve policy general-

isation in sparse reward navigation environments i.e. to learn the more difficult task

of finding targets in previously unseen environments with different obstacle configura-

tions. The curriculum was evaluated against agents trained using a curiosity reward

function and a hybrid approach that combined curiosity with the curriculum. The

results of the experiments highlighted showed generalisation: the curriculum enables

agents to find targets in more testing environments, including some with completely

new environment characteristics.

Even though the curiosity agents performed better than the curriculum agents in a

few environments, their performance was more erratic i.e. they sometimes performed

optimally and sometimes poorly within the same environments. The curriculum al-

lowed for more robust policies while also decreasing training times and eliminating

the need for manual reward shaping.

Combining curiosity with the curriculum provided no meaningful benefits: the

training performance was very similar to the curriculum agent but it resulted in

inferior policy generalisation.

6.2 Future Work

In future work, we wish to investigate more flexible reward shaping methods to bypass

the limitations of the current greedy approach, as well as a more intuitive means of

combining intrinsic and extrinsic rewards such as automatically adapting the reward

strengths as required.

Since Directed Curiosity is based on intelligent exploration, it would be interesting

to apply the algorithm in domains other than navigation, by investigating alternative

86

shaped reward signals and exploration strategies. Another interesting direction is to

adapt the algorithm to difficult settings such as environments with multiple targets

agents.

Trajectory analysis (assessing the movement paths of the trained agents) was

used to identify limitations in the algorithms and highlighted a memory issue whereby

agents were found to continuously move in a repeating pattern and also sometimes got

stuck in local optimums. In order to address these limitations, we wish to investigate

a means of increasing the memory of the agents such as stacking more observations

together or by introducing a recurrent architecture. Another interesting direction is to

perform further large scale analysis by increasing the number of testing environments,

either manually or by procedurally generating them [13].

87

Bibliography

[1] Centre for high performance computing. https://www.chpc.ac.za/.

[2] Rishabh Agarwal, Chen Liang, Dale Schuurmans, and Mohammad Norouzi.
Learning to Generalize from Sparse and Underspecified Rewards. In Interna-
tional Conference on Machine Learning, pages 130–140. PMLR, May 2019. ISSN:
2640-3498.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[4] Saurabh Arora and Prashant Doshi. A Survey of Inverse Reinforcement Learn-
ing: Challenges, Methods and Progress. arXiv:1806.06877 [cs, stat], June 2018.
arXiv: 1806.06877.

[5] Babak Badnava and Nasser Mozayani. A new Potential-Based Reward Shaping
for Reinforcement Learning Agent. arXiv:1902.06239 [cs], May 2019. arXiv:
1902.06239.

[6] Andrea Bassich and Daniel Kudenko. Continuous Curriculum Learning for Rein-
forcement Learning. In Proceedings of the 2nd Scaling-Up Reinforcement Learn-
ing (SURL) Workshop, page 7, 2019.

[7] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,
and Remi Munos. Unifying count-based exploration and intrinsic motivation. In
Advances in Neural Information Processing Systems, pages 1471–1479, 2016.

[8] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09, pages 41–48, Montreal, Quebec, Canada, June
2009. Association for Computing Machinery.

88

[10] Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A General Polynomial
Time Algorithm for Near-Optimal Reinforcement Learning. Journal of Machine
Learning Research, 3(Oct):213–231, 2002.

[11] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A. Efros. Large-Scale Study of Curiosity-Driven Learning. In International
Conference on Learning Representations, 2019.

[12] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration
by random network distillation. In 7th International Conference on Learning
Representations (ICLR 2019), pages 1–17, May 2019.

[13] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging Proce-
dural Generation to Benchmark Reinforcement Learning. In International Con-
ference on Machine Learning, pages 2048–2056. PMLR, November 2020. ISSN:
2640-3498.

[14] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman.
Quantifying Generalization in Reinforcement Learning. In International Con-
ference on Machine Learning, pages 1282–1289. PMLR, May 2019. ISSN: 2640-
3498.

[15] Sam Devlin and Daniel Kudenko. Dynamic potential-based reward shaping.
In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems - Volume 1, AAMAS ’12, pages 433–440, Richland, SC, June
2012. International Foundation for Autonomous Agents and Multiagent Systems.

[16] Daniel Dewey. Reinforcement learning and the reward engineering principle. In
2014 AAAI Spring Symposium Series, 2014.

[17] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking Deep Reinforcement Learning for Continuous Control. In International
Conference on Machine Learning, pages 1329–1338, June 2016. ISSN: 1938-7228
Section: Machine Learning.

[18] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning. Neural
Networks, 107:3–11, November 2018.

[19] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is All You Need: Learning Skills without a Reward Function. In International
Conference on Machine Learning, 2019.

[20] Jesse Farebrother, Marlos C. Machado, and Michael Bowling. Generalization
and Regularization in DQN. arXiv:1810.00123 [cs, stat], January 2020. arXiv:
1810.00123.

89

[21] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic
Goal Generation for Reinforcement Learning Agents. In International Conference
on Machine Learning, pages 1515–1528, July 2018. ISSN: 1938-7228 Section:
Machine Learning.

[22] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. Reverse Curriculum Generation for Reinforcement Learning. In Con-
ference on Robot Learning, Proceedings of Machine Learning Research, pages
482–495. PMLR, October 2017. ISSN: 2640-3498.

[23] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and
Joelle Pineau. An Introduction to Deep Reinforcement Learning. Foundations
and Trends� in Machine Learning, 11(3-4):219–354, December 2018. Publisher:
Now Publishers, Inc.

[24] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. META
LEARNING SHARED HIERARCHIES. In International Conference on Learn-
ing Representations, February 2018.

[25] Justin Fu, John D. Co-Reyes, and Sergey Levine. EX2: Exploration with Ex-
emplar Models for Deep Reinforcement Learning. arXiv:1703.01260 [cs], May
2017. arXiv: 1703.01260.

[26] Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lill-
icrap, Sergey Levine, Hugo Larochelle, and Yoshua Bengio. Recall Traces: Back-
tracking Models for Efficient Reinforcement Learning. In International Confer-
ence on Machine Learning, September 2018.

[27] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray
Kavukcuoglu. Automated curriculum learning for neural networks. In Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pages 1311–1320, Sydney, NSW, Australia, August 2017. JMLR.org.

[28] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic
control. arXiv preprint arXiv:1611.07507, 2016.

[29] Guy Hacohen and Daphna Weinshall. On The Power of Curriculum Learning
in Training Deep Networks. In International Conference on Machine Learning,
pages 2535–2544. PMLR, May 2019. ISSN: 2640-3498.

[30] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Mar-
tin Riedmiller. Learning an Embedding Space for Transferable Robot Skills.
February 2018.

[31] Bernhard Hengst. Hierarchical Reinforcement Learning. In Claude Sammut and
Geoffrey I. Webb, editors, Encyclopedia of Machine Learning, pages 495–502.
Springer US, Boston, MA, 2010.

90

[32] Ionel-Alexandru Hosu and Traian Rebedea. Playing Atari Games with Deep
Reinforcement Learning and Human Checkpoint Replay. arXiv:1607.05077 [cs],
July 2016. arXiv: 1607.05077.

[33] Rein Houthooft, Xi Chen, Xi Chen, Yan Duan, John Schulman, Filip De Turck,
and Pieter Abbeel. VIME: Variational Information Maximizing Exploration.
Advances in Neural Information Processing Systems, 29:1109–1117, 2016.

[34] Ahmed Hussein, Eyad Elyan, Mohamed Medhat Gaber, and Chrisina Jayne.
Deep reward shaping from demonstrations. In 2017 International Joint Confer-
ence on Neural Networks (IJCNN), pages 510–517. IEEE, 2017.

[35] Asad Jeewa, Anban Pillay, and Edgar Jembere. Directed curiosity-driven explo-
ration in hard exploration, sparse reward environments. In Marelie H. Davel and
Etienne Barnard, editors, Proceedings of the South African Forum for Artificial
Intelligence Research, Cape Town, South Africa, 4-6 December, 2019, volume
2540 of CEUR Workshop Proceedings, pages 12–24. CEUR-WS.org, 2019.

[36] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Haupt-
mann. Self-Paced Curriculum Learning. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, February 2015.

[37] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. Unity: A General Platform for Intelligent
Agents. arXiv:1809.02627 [cs, stat], September 2018. arXiv: 1809.02627.

[38] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin
Teng, Hunter Henry, Adam Crespi, Julian Togelius, and Danny Lange. Obsta-
cle Tower: A Generalization Challenge in Vision, Control, and Planning. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, pages 2684–2691, Macao, China, August 2019. International Joint
Conferences on Artificial Intelligence Organization.

[39] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa,
Julian Togelius, and Sebastian Risi. Illuminating Generalization in Deep Rein-
forcement Learning through Procedural Level Generation. arXiv:1806.10729 [cs,
stat], November 2018. arXiv: 1806.10729.

[40] Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy Optimization with Demonstra-
tions. In International Conference on Machine Learning, pages 2469–2478, July
2018.

[41] Andrej Karpathy and Michiel van de Panne. Curriculum Learning for Mo-
tor Skills. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Klein-
berg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Leila Kosseim, and Diana Inkpen, ed-
itors, Advances in Artificial Intelligence, volume 7310, pages 325–330. Springer

91

Berlin Heidelberg, Berlin, Heidelberg, 2012. Series Title: Lecture Notes in Com-
puter Science.

[42] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in
polynomial time. Machine learning, 49(2-3):209–232, 2002.

[43] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. ViZDoom:
A Doom-based AI research platform for visual reinforcement learning. In 2016
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8,
September 2016. ISSN: 2325-4289.

[44] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. PCGRL:
Procedural Content Generation via Reinforcement Learning. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, 16(1):95–101, October 2020. Number: 1.

[45] Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep
reinforcement learning. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI’17, pages 2140–2146, San Francisco, California,
USA, February 2017. AAAI Press.

[46] Ofir Marom and Benjamin Rosman. Belief reward shaping in reinforcement
learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[47] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-
Student Curriculum Learning. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–9, 2019. Conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

[48] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

[49] Steven D. Morad, Roberto Mecca, Rudra P. K. Poudel, Stephan Liwicki, and
Roberto Cipolla. Embodied Visual Navigation with Automatic Curriculum
Learning in Real Environments. arXiv:2009.05429 [cs], September 2020. arXiv:
2009.05429.

[50] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and
P. Abbeel. Overcoming Exploration in Reinforcement Learning with Demon-
strations. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 6292–6299, May 2018. ISSN: 2577-087X.

[51] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor,
and Peter Stone. Curriculum Learning for Reinforcement Learning Domains:

92

A Framework and Survey. arXiv:2003.04960 [cs, stat], March 2020. arXiv:
2003.04960.

[52] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source
Task Creation for Curriculum Learning. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, AAMAS ’16, pages
566–574, Richland, SC, May 2016. International Foundation for Autonomous
Agents and Multiagent Systems.

[53] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In ICML,
volume 99, pages 278–287, 1999.

[54] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control
of Memory, Active Perception, and Action in Minecraft. In Proceedings of The
33rd International Conference on Machine Learning, Proceedings of Machine
Learning Research, pages 2790–2799, New York, New York, USA, June 2016.
PMLR.

[55] Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos.
Count-based exploration with neural density models. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ICML’17, pages
2721–2730, Sydney, NSW, Australia, August 2017. JMLR.org.

[56] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? A
typology of computational approaches. Frontiers in neurorobotics, 1:6, 2009.

[57] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun,
and Dawn Song. Assessing Generalization in Deep Reinforcement Learning.
arXiv:1810.12282 [cs, stat], March 2019. arXiv: 1810.12282.

[58] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-
Driven Exploration by Self-Supervised Prediction. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 488–489,
Honolulu, HI, USA, July 2017. IEEE.

[59] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-
Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin
Riedmiller. Data-efficient Deep Reinforcement Learning for Dexterous Manipu-
lation. arXiv:1704.03073 [cs], April 2017. arXiv: 1704.03073.

[60] Rémy Portelas, Cédric Colas, Pierre-Yves Oudeyer, Katja Hofmann, and Lilian
Weng. Automatic Curriculum Learning For Deep RL: A Short Survey. volume 5,
pages 4819–4825, July 2020. ISSN: 1045-0823.

[61] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation
Functions. arXiv:1710.05941 [cs], October 2017. arXiv: 1710.05941.

93

[62] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
Neural Networks. arXiv:1606.04671 [cs], September 2016. arXiv: 1606.04671.

[63] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topo-
logical memory for navigation. In International Conference on Machine Learning,
February 2018.

[64] Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc
Pollefeys, Timothy Lillicrap, and Sylvain Gelly. Episodic Curiosity through
Reachability. In International Conference on Machine Learning, September 2018.

[65] Jürgen Schmidhuber. PowerPlay: Training an Increasingly General Problem
Solver by Continually Searching for the Simplest Still Unsolvable Problem. Fron-
tiers in Psychology, 4, June 2013.

[66] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust Region Policy Optimization. In International Conference on Ma-
chine Learning, pages 1889–1897. PMLR, June 2015. ISSN: 1938-7228.

[67] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs], July 2017.
arXiv: 1707.06347.

[68] Halit Bener Suay, Tim Brys, Matthew E. Taylor, and Sonia Chernova. Reward
Shaping by Demonstration. In Proceedings of the Multi-Disciplinary Conference
on Reinforcement Learning and Decision Making (RLDM), 2015.

[69] Halit Bener Suay, Tim Brys, Matthew E. Taylor, and Sonia Chernova. Learn-
ing from Demonstration for Shaping through Inverse Reinforcement Learning.
In Proceedings of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, AAMAS ’16, pages 429–437, Richland, SC, May 2016. In-
ternational Foundation for Autonomous Agents and Multiagent Systems.

[70] Kaushik Subramanian, Charles L. Isbell Jr, and Andrea L. Thomaz. Exploration
from demonstration for interactive reinforcement learning. In Proceedings of the
2016 International Conference on Autonomous Agents & Multiagent Systems,
pages 447–456. International Foundation for Autonomous Agents and Multiagent
Systems, 2016.

[71] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur
Szlam, and Rob Fergus. Intrinsic Motivation and Automatic Curricula via Asym-
metric Self-Play. February 2018.

[72] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, second
edition: An Introduction. MIT Press, November 2018. Google-Books-ID:
uWV0DwAAQBAJ.

94

[73] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and
Peter Stone. Automatic Curriculum Graph Generation for Reinforcement Learn-
ing Agents. In Thirty-First AAAI Conference on Artificial Intelligence, February
2017.

[74] Csaba Szepesvári. Algorithms for Reinforcement Learning, volume 4. January
2010. Journal Abbreviation: Synthesis Lectures on Artificial Intelligence and
Machine Learning Publication Title: Synthesis Lectures on Artificial Intelligence
and Machine Learning.

[75] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen,
Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration:
A Study of Count-Based Exploration for Deep Reinforcement Learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 2753–2762. Curran Associates, Inc., 2017.

[76] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie
Mannor. A Deep Hierarchical Approach to Lifelong Learning in Minecraft.
arXiv:1604.07255 [cs], November 2016. arXiv: 1604.07255.

[77] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Man-
nor. A deep hierarchical approach to lifelong learning in minecraft. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pages
1553–1561, San Francisco, California, USA, February 2017. AAAI Press.

[78] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keep-
ing Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped
Rewards. pages 10376–10386, 2019.

[79] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keep-
ing Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped
Rewards. In Advances in Neural Information Processing Systems, pages 10376–
10386, 2019.

[80] Aaron Tucker, Adam Gleave, and Stuart Russell. Inverse reinforcement learning
for video games. arXiv:1810.10593 [cs, stat], October 2018. arXiv: 1810.10593.

[81] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal
Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Prob-
lems with Sparse Rewards. arXiv:1707.08817 [cs], July 2017. arXiv: 1707.08817.

[82] Eric Wiewiora, Garrison W. Cottrell, and Charles Elkan. Principled methods for
advising reinforcement learning agents. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 792–799, 2003.

95

[83] SamWitty. Measuring and Characterizing Generalization in Deep Reinforcement
Learning. CoRR, abs/1812.02868, 2018.

[84] Chang Ye, Ahmed Khalifa, Phillip Bontrager, and Julian Togelius. Rotation,
Translation, and Cropping for Zero-Shot Generalization. In 2020 IEEE Confer-
ence on Games (CoG), pages 57–64, August 2020. ISSN: 2325-4289.

[85] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick,
Oriol Vinyals, and Peter Battaglia. Relational Deep Reinforcement Learning.
arXiv:1806.01830 [cs, stat], June 2018. arXiv: 1806.01830.

[86] Amy Zhang, Nicolas Ballas, and Joelle Pineau. A Dissection of Overfitting and
Generalization in Continuous Reinforcement Learning. arXiv:1806.07937 [cs,
stat], June 2018. arXiv: 1806.07937.

[87] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A Study on
Overfitting in Deep Reinforcement Learning. arXiv:1804.06893 [cs, stat], April
2018. arXiv: 1804.06893.

[88] Oleksii Zhelo, Jingwei Zhang, Lei Tai, Ming Liu, and Wolfram Burgard.
Curiosity-driven Exploration for Mapless Navigation with Deep Reinforcement
Learning. arXiv:1804.00456 [cs], May 2018. arXiv: 1804.00456.

96

Appendix A

Additional Results

A.1 Policy Generalisation

This chapter depicts detailed results of the policy generalisation experiments defined

in Section 4.4. The mean reward and the standard deviation is depicted for each

algorithm (curiosity, curriculum and a hybrid of both) in each individual environment.

“Maze 1” refers to the left-most image within a specific category of environments.

A.1.1 Standard Training Environments

Figure A-1: Standard training mazes

97

Table A.1: Results for all algorithms in sparse versions of each of the standard training
mazes.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

Maze 1 (Figure A-1) 0.962 ± 0.002 0.964 ± 0.001 0.958 ± 0.001

Maze 2 0.954 ± 0.003 0.957 ± 0.003 0.955 ± 0.000

Maze 3 0.976 ± 0.000 0.975 ± 0.000 0.975 ± 0.000

Maze 4 0.977 ± 0.002 0.979 ± 0.000 0.978 ± 0.001

Maze 5 0.974 ± 0.000 0.974 ± 0.000 0.974 ± 0.000

Maze 6 0.963 ± 0.000 0.963 ± 0.000 0.961 ± 0.001

A.1.2 Difficult Training Environments

Figure A-2: Difficult training mazes

Table A.2: Results for all algorithms in sparse versions of each of the difficult training
mazes.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

Maze 1 (Figure A-2) 0.934 ± 0.062 0.969 ± 0.000 0.952 ± 0.017

Maze 2 0.937 ± 0.001 0.935 ± 0.005 0.935 ± 0.001

Maze 3 0.911 ± 0.004 0.910 ± 0.017 0.918 ± 0.007

Maze 4 0.975 ± 0.000 0.974 ± 0.000 0.975 ± 0.001

Continued on next page

98

Table A.2 – Continued from previous page
❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

Maze 5 0.954 ± 0.001 0.955 ± 0.00 0.954 ± 0.000

Figure A-3: Average rewards in sparse versions of the training environments (magni-
fied).

99

A.1.3 Standard Orientation Environments

Figure A-4: Standard Orientation testing mazes

Table A.3: Results for all algorithms in each of the Standard Orientation testing
mazes.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

Maze 1(Figure A-4) 0.920 ± 0.040 0.930 ± 0.035 -0.962 ± 0.008

Maze 2 -0.961 ± 0.008 -0.965 ± 0.007 -0.925 ± 0.221

Maze 3 0.973 ± 0.001 0.954 ± 0.022 0.976 ± 0.000

Maze 4 0.161 ± 0.953 0.955 ± 0.011 0.973 ± 0.002

Maze 5 -0.962 ± 0.009 -0.964 ± 0.007 0.894 ± 0.072

Maze 6 0.962 ± 0.001 0.952 ± 0.020 0.954 ± 0.019

Figure A-5: Average rewards in the Standard Orientation mazes (magnified).

100

A.1.4 Standard New Environments

(a) H Maze (b) Multi-Path Maze (c) Slim Maze

Figure A-6: Standard New testing mazes

Table A.4: Results for all algorithms in each of the Standard New testing mazes.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

H Maze (Figure A-6a) 0.970 ± 0.009 0.929 ± 0.044 0.854 ± 0.108

Multi-Path Maze 0.928 ± 0.022 0.938 ± 0.015 0.958 ± 0.001

Slim Maze 0.496 ± 0.752 0.964 ± 0.006 0.779 ± 0.239

Figure A-7: Average rewards in the Standard New mazes (magnified).

101

A.1.5 Difficult Orientation Environments

Figure A-8: Difficult Orientation testing mazes

Table A.5: Results for all algorithms in each of the Difficult Orientation testing mazes.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

Maze 1 (Figure A-8) -0.818 ± 0.452 -0.961 ± 0.010 -0.967 ± 0.009

Maze 2 -0.962 ± 0.008 -0.961 ± 0.008 -0.967 ± 0.008

Maze 3 -0.963 ± 0.008 -0.558 ± 0.787 0.853 ± 0.130

Maze 4 -0.962 ± 0.009 -0.961 ± 0.009 0.953 ± 0.003

Maze 5 0.900 ± 0.046 -0.298 ± 0.774 -0.968 ± 0.006

Maze 6 -0.962 ± 0.008 -0.960 ± 0.008 -0.967 ± 0.008

Figure A-9: Average rewards in the Difficult Orientation mazes (magnified).

102

A.1.6 Difficult New Environments

(a) Spiral Maze (b) X Maze (c) Overlap Maze

Figure A-10: Difficult New testing mazes

Table A.6: Results for all algorithms in each of the Difficult New testing mazes.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Environment

Algorithm
Curiosity Hybrid Curriculum

Spiral Maze (Figure A-10a) -0.965 ± 0.009 -0.966 ± 0.008 0.794 ± 0.138
X Maze -0.966 ± 0.007 -0.965 ± 0.008 -0.963 ± 0.009

Overlap Maze -0.500 ± 0.759 -0.745 ± 0.540 -0.923 ± 0.254

Figure A-11: Average rewards in the Difficult New mazes (magnified).

103

Appendix B

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Directed curiosity-driven exploration in hard
exploration, sparse reward environments

Asad Jeewa[0000−0003−4329−8137], Anban Pillay[0000−0001−7160−6972], and Edgar
Jembere[0000−0003−1776−1925]

University of KwaZulu-Natal, Westville 4000, South Africa
asad.jeewa@gmail.com

{pillayw4,jemberee}@ukzn.ac.za

Abstract. Training agents in hard exploration, sparse reward environ-
ments is a difficult task since the reward feedback is insufficient for mean-
ingful learning. In this work, we propose a new technique, called Directed
Curiosity, that is a hybrid of Curiosity-Driven Exploration and distance-
based reward shaping. The technique is evaluated in a custom navigation
task where an agent tries to learn the shortest path to a distant target, in
environments of varying difficulty. The technique is compared to agents
trained with only a shaped reward signal, a curiosity signal as well as
a sparse reward signal. It is shown that directed curiosity is the most
successful in hard exploration environments, with the benefits of the ap-
proach being highlighted in environments with numerous obstacles and
decision points. The limitations of the shaped reward function are also
discussed.

Keywords: Sparse Rewards � Hard Exploration � Curiosity � Reward
Shaping � Navigation.

1 Introduction

A reinforcement learning agent learns how to behave based on rewards and pun-
ishments it receives through interactions with an environment [18]. The reward
signal is the only learning signal that the agent receives [2]. Many environ-
ments have extrinsic rewards that are sparsely distributed, meaning that most
timesteps do not return any positive or negative feedback. These environments,
known as sparse reward environments [12,21], do not provide sufficient feedback
for meaningful learning to take place [17]. The most difficult sparse reward envi-
ronments are those where an agent only receives a reward for completing a task
or reaching a goal, meaning that all intermediate steps do not receive rewards.
These are referred to as terminal reward environments [7].

Closely related to the sparse rewards problem is the issue of exploration. Ex-
ploration algorithms aim to reduce the uncertainty of an agents understanding
of its environment [4]. It is not possible for an agent to act optimally until it has
sufficiently explored the environment and identified all of the opportunities for
reward [24]. An agent may never obtain positive rewards without an intuitive

Appendix C

120

2 A. Jeewa et al.

exploration strategy when rewards are sparse. Hard exploration environments
are environments where local exploration strategies such as �-greedy are insuffi-
cient [4]. In these environments, the probability of reaching a goal state through
local exploration is negligible.

These types of environments are prevalent in the real-world [17] and training
reinforcement learning (RL) agents in them forms one of the biggest challenges
in the field [1]. This research focuses on learning in hard exploration, terminal
reward environments.

A popular approach to learning in these environments is reward shaping,
which guides the learning process by augmenting the reward signal with supple-
mental rewards for intermediate actions that lead to success [15]. This ensures
that the agent receives sufficient feedback for learning.

Intrinsic rewards that replace or augment extrinsic rewards is another area
of research that has exhibited promising results [4,7,17]. Instead of relying on
feedback from the environment, an agent engineers its own rewards. Curiosity is
a type of intrinsic reward that encourages an agent to find “novel” states [17].

In this research, we present Directed Curiosity : a new technique that hy-
bridises reward shaping and Curiosity-Driven Exploration [17] to allow agents
to explore intelligently. The algorithm is defined in Section 3 and the custom
navigation environments used for evaluation are described in Section 4. The
performance of the algorithm is evaluated by comparing it to its constituent al-
gorithms i.e. agents trained with only the shaped reward and only the curiosity
reward. Directed Curiosity is shown to be the most robust technique in Section 5.
The environment characteristics that are suited to this technique are highlighted
and the limitations of the shaped reward function are also discussed.

2 Related Work

Learning in hard exploration, sparse reward environments is a well-studied area
in reinforcement learning. Reward shaping is a popular approach that augments
the reward signal with additional rewards to enable learning in sparse reward
environments. It is a means of introducing prior knowledge to reduce the number
of suboptimal actions [9] and guide the learning process [14]. A concern is that
when reward shaping is used incorrectly, it can have a detrimental effect and
change the optimal policy or the definition of the task [9,15].

Potential-Based Reward Shaping has been proven to preserve the optimal
policy of a task [9,15]. It defines φ, a reward function over states that introduces
“artificial” shaped reward feedback [3]. The potential function F is defined as
a difference between φ of the next state s� and the current state s with γ as a
discount factor on φ(s�).

The restriction on the form of the reward shaping signal limits its expressive-
ness [14]. Potential-Based Advice is a similar framework that introduces actions
in the potential function [26]. A novel Bayesian approach that augments the
reward distribution with prior beliefs is presented in [14].

121

Directed curiosity in hard exploration, sparse reward environments 3

It is difficult to manually engineer reward functions for each new environ-
ment [9,11]. Implicit reward shaping is an alternate approach that learns from
demonstrations of target behaviour. A potential-based reward function is re-
covered from demonstrations using state similarity in [22] and through inverse
reinforcement learning methods in [21]. The shaped reward function is learnt
directly from raw pixel data in [11].

An alternative to “shaping” an extrinsic reward is to supplement it with
intrinsic rewards [16] such as curiosity. Curiosity-Driven Exploration by Self-
Supervised Prediction [17] is a fundamental paper that defined a framework for
training curious agents. Curiosity empowers the agent by giving it the capability
of exploration, enabling it to reach far away states that contain extrinsic rewards.
Much research has built upon the findings of this paper. Large scale analysis of
the approach is performed in [7] where agents learned to play various Atari
Games using intrinsic rewards alone. A limitation of the approach is that it
struggles to learn in stochastic environments [7].

Classic work in [6,13] investigated balancing exploration and exploitation
in polynomial time and has inspired much research in the area of intelligent
exploration. Count-based exploration methods generate an exploration-bonus
from state visitation counts [24]. It has been shown to achieve good results on
the notoriously difficult “Montezuma’s Revenge” Atari game in [4,5]. Exploration
bonuses encourage an agent to explore, even when the environment’s reward is
sparse [4], by optimising a reward function that is the sum of the extrinsic reward
and exploration bonus.

Approximating these counts in large state spaces is a difficult task [24]. Hash
functions were used in [24] to extend the method to high-dimensional, continu-
ous state spaces. Random Network Distillation (RND) [8] is a novel technique
that consists of a fixed randomly initialised target network and a prediction net-
work. The target network outputs a random function of the environment states
which the prediction network learns to predict. An intrinsic reward is defined as
the loss of the prediction network. It achieved state of the art performance on
“Montezuma’s Revenge” [5] in 2018.

Other methods of exploration include maximising empowerment [10], wherein
the long-term goal of the agent aims to maximise its control on the environment,
using the prediction error in the feature space of an auto-encoder as a measure
of interesting states to explore, and using demonstration data to learn an explo-
ration policy [23].

3 Directed Curiosity

We propose a new reward function that is made up of two constituents: a
distance-based shaped extrinsic reward and a curiosity-based intrinsic reward.

3.1 Distance-Based Reward Shaping

Shaping rewards is a fragile process since small changes in the reward function
result in significant changes to the learned policy [25].

122

4 A. Jeewa et al.

Various functions were engineered and compared. It is essential that the
positive and negative rewards are balanced. In an episode, the agent should not
receive more positive rewards for moving closer to the target, or more negative
rewards for moving further away, so as not to introduce loopholes for the agent
to exploit. If the weighting of positive rewards is too high, the agent learns to
game the system by delaying reaching the target to gain more positive rewards
in an episode. If the weighting of the negative rewards is too high, the agent
does not receive sufficient positive reinforcement to find the target. This means
that the shaped rewards alter the optimal policy of the original task [15].

The shaped reward should encourage the agent to keep advancing towards
the target by favouring consecutive positive moves and punishing consecutive
negative ones. It must not dominate the terminal reward such that the agent is
no longer incentivised to find the target and its motivations become polluted.
To overcome these issues, a shaped reward function based on relative distance
between target and agent is used.

Algorithm 1 Distance-based shaped reward function

Input: Agent position Pagent, target position Ptarget, maximum distance Dmax,
previous distance Dprev, reward coefficient C
Calculate distance Dcurrent ← distance(Pagent, Ptarget)
Calculate reward signal: R ← Dcurrent/Dmax

if Dcurrent < Dprev then
return C · (1−R)

else
return C · (−R)

end if

There are various benefits to Algorithm 1. The agent is penalised if it stays
still and the shaped reward signal can be controlled using the reward coefficient
C. This ensures that the episodic shaped rewards cannot exceed terminal positive
reward. There is a balance between positive and negative rewards since they are
both relative to the change in distance. The agent receives the highest reward
when it moves closest to the target and the highest penalty when it moves
furthest away. This means that the shaped reward function is policy invariant
i.e. it does not alter the goal of the agent to learn the optimal path to the target.

Since the rewards are shaped exclusively based on distance metrics that do
not take into account the specific dynamics of the environment, the same function
can be used across different environments, and in general, for navigation tasks.
A limitation of this approach is that the target location needs to be known.
We have investigated using ray casts to find the location of the target if it is
unknown, however, the scope of this research is to teach an agent to navigate
past obstacles and find an optimal path, given a starting point and a destination.
The definition of the task changes drastically, from a navigation-based one to

123

Directed curiosity in hard exploration, sparse reward environments 5

a goal-finding or search task, when the location is unknown. This is a possible
area for future work.

3.2 Curiosity-Driven Exploration

Pathak et al. [17] formally defined a framework for training curious agents that
involves training two separate neural-networks: a forward and an inverse model
that form an Intrinsic Curiosity Model (ICM). The inverse model encodes the
current and next observation into a feature space φ and learns to predict the
action ât that was taken between the occurrence of the two encoded observations.
The forward model is trained to take the current encoded observation and action
and predict the next encoded observation.

rti =
η

2
‖φ̂(st+1)− φ(st+1)‖22 (1)

In order to generate a curiosity reward signal, the inverse and forward dy-
namics models’ loss functions are jointly optimised i.e. curiosity is defined as the
difference between the predicted feature vector of the next state and the real
feature vector of the next state. η is a scaling factor.

As an agents explores, it learns more about its environment and becomes less
curious. A major benefit of this approach is that it is robust: by combining the
two models, the reward only captures surprising states that have come about
directly as a result of the agents actions.

3.3 Intelligent Exploration

We propose hybridising curiosity [17] and distance-based reward shaping. Using
reward shaping alone is flawed since the agent cannot navigate past obstacles
to find a target. Using curiosity alone may cause the agent to spend too much
time exploring, after the target has been found, and get trapped in a suboptimal
state. By combining the two approaches the agent is able to explore and learn
about the dynamics of the environment, while always keeping in mind its goal
of finding an optimal path to the target. The agent learns in a more directed
and intuitive manner. Curiosity enables the agent to find the target, while the
shaped rewards provide feedback to the agent that enables it to learn a path to
the goal.

Directed Curiosity simultaneously maximises two reward signals. The reward
function components are somewhat conflicting so it is essential to find a balance
between them. The agent needs sufficient time to explore the environment, while
also ensuring that it does not converge to a suboptimal policy too quickly. This
is similar to the exploration vs exploitation Problem in RL. We balance the
reward by manually tuning weights attached to both the constituent reward
signals. In future work, we wish to find a means of dynamically weighting the
reward signals during training. We also wish to investigate alternative means of
combining them.

124

6 A. Jeewa et al.

Algorithm 2 Directed Curiosity-Driven Exploration

Input: Initial policy π0, extrinsic reward weighting we, intrinsic reward weighting wi,
max steps T , decision frequency D
for i ← 0 to T do

Run policy πi for D timesteps
Calculate distance-based shaped reward rte (Algorithm 1)
Calculate intrinsic reward rti (Equation 1)
Compute total rewards rt = wi · rti + we · rte
Take policy step from πi to πi+1, using PPO [20] with reward function rt

end for

PPO [19] is a popular policy gradient method that is robust and simpler than
alternative approaches. Our algorithm is trained using PPO though an arbitrary
policy gradient method can be used.

4 Methodology

4.1 Learning Environment

A custom testing environment was created to analyse the performance of our
technique, based on the principal of pathfinding. It consists of a ball and a
target. The ball is an agent that must learn to navigate to the target, in the
shortest possible time (see Fig. 1). The agent is penalised every time it falls off
the platform, since there are no walls along the boundaries and it receives a
positive reward upon reaching the target. An episode terminates upon falling off
the platform, reaching the target, or after a maximum number of steps.

The benefit of this environment is that it defines a simple base task of finding
an optimal path to a target. This allows us to perform thorough analysis of the
algorithm by continuously increasing the difficulty of the task. In this way, we
are able to identify its limitations and strengths. The environment represents
a generalisation for navigation tasks wherein an agent only receives positive
feedback upon reaching its destination.

The agent is equipped with a set of discrete actions. Action 1 defines for-
ward and backward movement while action 2 defines left and right movement.
Simultaneously choosing the actions allows the agent to move diagonally. The
agent’s observations are vectors representing its current position and the target
position. It is not given any information about the dynamics of the environment.
The agent must learn an optimal policy that finds the shortest path to the target.

The baseline reward function was carefully tuned: a +100 reward is received
for finding the target, -100 penalty for falling off the platform and -0.01 penalty
every timestep. The reasoning behind the selected values is to remove bias from
the experiments. An agent cannot fall into a local optimum by favouring a single
suboptimal policy. This is because a policy that immediately falls off the platform
and a policy that learns to remain on the platform for the entire episode, without

125

Directed curiosity in hard exploration, sparse reward environments 7

finding the goal, will both return roughly the same episodic reward. This function
was used as a baseline that was tuned for each new environment.

(a) BasicNav (b) HardNav (c) ObstacleNav (d) MazeNav1 (e) MazeNav2

Fig. 1: Learning Environments. The agent is shown in the top left in red and the
target is shown in the bottom right in green.

For the simplest version of the task, the agent and target are placed at fixed
locations, on the opposite sides of the platform, without any obstacles between
them. We term this an easy exploration task since it is possible for an agent
trained with only the sparse reward function to find the target. This is achieved
by tuning the floor to agent ratio and agent speed. The shaped reward coefficient
C in Algorithm 1 was amplified to 0.1 due to the simplicity of the environment.
This is referred to as BasicNav (see Fig. 1a).

The next environment, termed HardNav (see Fig. 1b), is significantly larger.
It is a hard exploration environment [17], since an agent trained with a sparse
reward function is never able to find the target. Due to the increased number of
episode steps, the shaped reward coefficient C in Algorithm 1 was dampened to
0.001.

We also perform testing in environments with walls that block the direct
path to the goal and make finding the target more difficult. ObstacleNav (see
Fig. 1c) has a single obstacle that is deliberately placed perpendicular to the
optimal path to the target, forcing the agent to have to learn to move around the
obstacle. The agent is never explicitly given any information about the obstacle.
This environment was designed to test the limitations of Directed Curiosity since
shaping the reward to minimise the distance to goal is counter-intuitive because
it leads the agent directly into the obstacle. The coefficient C in Algorithm 1
was dampened to 0.001.

The remaining set of environments contain multiple walls and obstacles in
a maze-like structure. These environments were designed to investigate if the
agent can learn to move further away from the target at the current timestep,
in order to pass obstacles and reach the target at a later timestep i.e. it needs
foresight to succeed. We term the first maze as MazeNav1 (see Fig. 1d).

The last environment is the most difficult version of the task since it has dead-
ends and multiple possible paths to the goal. This allows us to investigate the
robustness of Directed Curiosity. Even after finding the target, it is difficult to
generalise a path from the starting point to the destination since it is easy for the

126

8 A. Jeewa et al.

agent to get stuck in dead-ends or behind obstacles. We term this environment as
MazeNav2 (see Fig. 1e). Due to the increased complexities, the terminal reward
was increased to +1000 and the shaped reward coefficient C in Algorithm 1 was
dampened to 0.000001.

4.2 Hyperparameter Optimisation

It is important to carefully tune the hyperparameters for each environment. The
success of the algorithms hinge on these values. Although literature guided this
process, the hyperparameters were manually optimised, since the experiments
were performed in custom environments. The base hyperparameters were found
in BasicNav and then fine-tuned for all other environments, in order to cater
for the increased complexities. PPO is a robust learning algorithm that did not
require significant tuning [7], once the base hyperparameters were identified and
this is a major reason for its selection.

Hyperparameter tuning was essential in ensuring that the algorithms were
able to perform meaningful learning. By attempting to tune the parameters to
the best possible values, we were able to perform a fair comparison. The notable
parameters are a batch size of 32, experience buffer size of 256 and a learning
rate of 1.0e − 5. The strength of the entropy regularization β is 5.0e − 3 and
the discount factor γ for both the curiosity and extrinsic reward is 0.99. The
extrinsic reward weighting is 1.0 and the curiosity weighting is 0.1. The network
has 2 hidden layers with 128 units. The baseline parameters were adjusted for
each environment: the maximum training steps is 50000 in BasicNav, 250000 in
HardNav, 750000 in ObstacleNav and 1000000 in MazeNav1 and MazeNav2.

5 Results

Each algorithm was run five times in every environment. 30 parallel instances of
the same environment are used for data collection during training.

(a) BasicNav (b) HardNav

127

Directed curiosity in hard exploration, sparse reward environments 9

(c) ObstacleNav

(d) MazeNav1 (e) MazeNav2

Fig. 2: Learning curves for all environments. The average curve from the five
runs is shown.

The sparse rewards agent does not perform consistently in BasicNav. The
agent is able to find the target and learn an optimal policy on some runs only.
This is the reason for the high variance in Fig. 2a. In the hard exploration
environments, the agent learns to avoid falling off the platform but is unable to
find the target on all runs and therefore receives no positive rewards in training.
This highlights the need for an exploration strategy.

The reward shaping agent performs well in BasicNav. This is because the
shaped rewards act as a definition of the task since there are no obstacles blocking
the direct path to the goal. Continuously moving closer to the target on every
timestep leads the agent to the goal in the shortest time. Even in HardNav, the
agent is able to learn an optimal policy very quickly, for the same reasons.

The deficiencies of using the shaped reward only are exposed when obstacles
are introduced (see Fig. 2c, Fig. 2d). The agent fails to find the target on all runs
in ObstacleNav and MazeNav1 and gets stuck behind obstacles. This is because
the shaped reward function is a greedy approach and the agent is not equipped
with the foresight to learn to move around the obstacles. It cannot learn to move

128

10 A. Jeewa et al.

further away from the target at the current time, in order to reach the target at
a later stage.

In MazeNav2 (see Fig. 2e), the agent was able to find the target on two
runs. Even though there are multiple obstacles, the optimal path to the goal in
MazeNav2 is similar to that in HardNav. The agent “ignores” the obstacles and
avoids dead-ends by acting simplistically. By the end of training, however, the
agent was unable to converge to an optimal policy on any of the runs.

These results show that distance-based reward shaping provides the agent
with some valuable feedback, but without an intuitive exploration strategy, the
agent lacks the foresight needed to moves past obstacles that block it’s path to
the target.

The curiosity agent was able to consistently learn an optimal policy in the
environments without obstacles. However, Fig. 2a shows that the curiosity agent
takes longer to converge to an optimal policy in BasicNav. This highlights that
curiosity is not necessary in environments that are not hard exploration. In
HardNav (see Fig. 2b), the curiosity agent is still able to find an optimal policy
on all runs, but it is significantly slower than the shaped reward function.

The necessity of the curiosity signal is highlighted when obstacles are in-
troduced. Not only does it enable the agent to find the distant target, it also
implicitly learns about the dynamics of the environment, allowing the agent to
learn how to move past multiple obstacles.

In ObstacleNav (see Fig. 2c), the agent is still able to learn an optimal policy
on most runs. The performance of the agent is not as successful in MazeNav1
(see Fig. 2d) and MazeNav2 (see Fig. 2e).The agent successfully learns an opti-
mal policy on two of the runs. In these environments, it is difficult to converge
to an optimal policy, once the target has been found. One reason for this is that
the agent keeps exploring after initially finding the target and gets stuck behind
obstacles and in dead-ends, eventually converging to an unsuccessful policy, with-
out being able to reach the target again. The curiosity signal is insufficient to
direct the agent back to the target and learn a path to the destination. This is
the reason for the increase of the average reward in the early stages of training
and the subsequent drop thereafter in Fig. 2e.

These results indicate that curiosity equips an agent with the ability to find
a target in hard exploration environments with obstacles, but the agent requires
additional feedback to consistently learn a path from the start point to the
destination.

The Directed Curiosity agent is shown to be the most robust technique.
Fig. 2a and Fig. 2b show that Directed Curiosity always finds an optimal policy
in BasicNav and HardNav. It converges to a solution faster than the curiosity
agent in HardNav, due to the additional shaped reward feedback.

The hard exploration environments highlight the benefits of the technique.
It is the only technique that converges to an optimal solution on all runs in
ObstacleNav (see Fig. 2c). Curiosity enables the agent to find the target and
move past the obstacle, while the shaped rewards provide additional feedback

129

Directed curiosity in hard exploration, sparse reward environments 11

that allows the agent to learn an optimal path to the target, once it has been
found.

MazeNav1 (see Fig. 2d) and MazeNav2 (see Fig. 2e) exhibit promising results
since the Directed Curiosity agent learns an optimal policy on more runs than
any other technique i.e. on three of the five runs. Training is more stable than
the Curiosity agent. The agent always finds the target during training, however,
it is unable to consistently find an optimal policy on all runs. A major reason
is due to the limitations we have highlighted with the shaped reward function.
In future work, we wish to investigate a more intuitive reward function that
has foresight. Another reason is due to the complexities we have introduced in
these environments. The reward feedback is not sufficient to guide the agent out
of dead-ends back to the target. However, these results indicate that the two
components of Directed Curiosity, when balanced correctly, allow the agent to
learn in a more directed and intuitive manner.

For all algorithms, the variance of the results increase with the difficulty of
the task since the agents do not always converge to an optimal policy i.e. when
the agent does not learn a path to the target, it does not receive the terminal
reward and hence its episodic rewards are significantly lower. PPO learns a
stochastic policy, hence, even on the successful runs, the algorithms converge
at different times. Due to the inherent randomness in the algorithm, the agent
explores differently on every run and thus visits states in a different order.

6 Conclusions and Future Work

A new approach to learning in hard exploration, sparse reward environments,
that maximises a reward signal made up of a hybrid of Curiosity-Driven Explo-
ration [17] and distance-based reward-shaping, is presented. This algorithm is
compared to baseline algorithms in a custom pathfinding environment and it is
shown that the technique enables agents to learn in a more directed and intuitive
manner.

The Directed Curiosity agent was the most robust technique. It was able
to consistently learn an optimal policy in hard exploration environments with a
single obstacle, and learned optimal polices more often then the other techniques,
in hard exploration environments with multiple obstacles and dead-ends.

In future work, we wish to investigate alternative reward functions that are
more flexible than the current greedy approach. We would like to perform fur-
ther testing in existing benchmarked environments and in domains other than
navigation. This requires further research into “intelligent exploration”, through
hybridising different shaped reward signals and exploration strategies. Another
interesting direction is to create environments with multiple targets and agents.

References

1. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., Mc-
Grew, B., Tobin, J., Abbeel, O.P., Zaremba, W.: Hindsight experience replay. In:
Advances in Neural Information Processing Systems. pp. 5048–5058 (2017)

130

12 A. Jeewa et al.

2. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep Rein-
forcement Learning: A Brief Survey. IEEE Signal Processing Magazine 34(6), 26–
38 (Nov 2017). https://doi.org/10.1109/MSP.2017.2743240, http://ieeexplore.ieee.
org/document/8103164/

3. Badnava, B., Mozayani, N.: A new Potential-Based Reward Shaping for Reinforce-
ment Learning Agent. arXiv:1902.06239 [cs] (May 2019), http://arxiv.org/abs/
1902.06239, arXiv: 1902.06239

4. Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.:
Unifying count-based exploration and intrinsic motivation. In: Advances in Neural
Information Processing Systems. pp. 1471–1479 (2016)

5. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 253–279 (2013)

6. Brafman, R.I., Tennenholtz, M.: R-MAX - A General Polynomial Time Algorithm
for Near-Optimal Reinforcement Learning. Journal of Machine Learning Research
3(Oct), 213–231 (2002), http://www.jmlr.org/papers/v3/brafman02a.html

7. Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., Efros, A.A.: Large-
Scale Study of Curiosity-Driven Learning. In: International Conference on Learning
Representations (2019), https://openreview.net/forum?id=rJNwDjAqYX

8. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network
distillation. arXiv preprint arXiv:1810.12894 (2018)

9. Devlin, S.M., Kudenko, D.: Dynamic Potential-Based Reward Shaping (Jun 2012),
http://eprints.whiterose.ac.uk/75121/

10. Gregor, K., Rezende, D.J., Wierstra, D.: Variational intrinsic control. arXiv
preprint arXiv:1611.07507 (2016)

11. Hussein, A., Elyan, E., Gaber, M.M., Jayne, C.: Deep reward shaping from demon-
strations. In: 2017 International Joint Conference on Neural Networks (IJCNN).
pp. 510–517. IEEE (2017)

12. Kang, B., Jie, Z., Feng, J.: Policy Optimization with Demonstrations p. 10 (2018)
13. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time.

Machine learning 49(2-3), 209–232 (2002)
14. Marom, O., Rosman, B.: Belief reward shaping in reinforcement learning. In:

Thirty-Second AAAI Conference on Artificial Intelligence (2018)
15. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:

Theory and application to reward shaping. In: ICML. vol. 99, pp. 278–287 (1999)
16. Oudeyer, P.Y., Kaplan, F.: What is intrinsic motivation? A typology of computa-

tional approaches. Frontiers in neurorobotics 1, 6 (2009)
17. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-Driven Exploration

by Self-Supervised Prediction. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). pp. 488–489. IEEE, Honolulu, HI, USA
(Jul 2017). https://doi.org/10.1109/CVPRW.2017.70, http://ieeexplore.ieee.org/
document/8014804/

18. Ravishankar, N.R., Vijayakumar, M.V.: Reinforcement Learning Algorithms: Sur-
vey and Classification. Indian Journal of Science and Technology 10(1) (Jan
2017). https://doi.org/10.17485/ijst/2017/v10i1/109385, http://www.indjst.org/
index.php/indjst/article/view/109385

19. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

20. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs] (Jul 2017), http://arxiv.org/abs/
1707.06347, arXiv: 1707.06347

131

Directed curiosity in hard exploration, sparse reward environments 13

21. Suay, H.B., Brys, T.: Learning from Demonstration for Shaping through Inverse
Reinforcement Learning p. 9 (2016)

22. Suay, H.B., Brys, T., Taylor, M.E., Chernova, S.: Reward Shaping by Demon-
stration. In: Proceedings of the Multi-Disciplinary Conference on Reinforcement
Learning and Decision Making (RLDM) (2015)

23. Subramanian, K., Isbell Jr, C.L., Thomaz, A.L.: Exploration from demonstration
for interactive reinforcement learning. In: Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems. pp. 447–456. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (2016)

24. Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O., Duan,
Y., Schulman, J., DeTurck, F., Abbeel, P.: #Exploration: A Study of
Count-Based Exploration for Deep Reinforcement Learning. In: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 30,
pp. 2753–2762. Curran Associates, Inc. (2017), http://papers.nips.cc/paper/
6868-exploration-a-study-of-count-based-exploration-for-deep-reinforcement-learning.
pdf

25. Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N.,
Rothörl, T., Lampe, T., Riedmiller, M.: Leveraging Demonstrations for Deep Rein-
forcement Learning on Robotics Problems with Sparse Rewards. arXiv:1707.08817
[cs] (Jul 2017), http://arxiv.org/abs/1707.08817, arXiv: 1707.08817

26. Wiewiora, E., Cottrell, G.W., Elkan, C.: Principled methods for advising rein-
forcement learning agents. In: Proceedings of the 20th International Conference on
Machine Learning (ICML-03). pp. 792–799 (2003)

132

