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ABSTRACT 
 

Maize moisture stress, resulting from rainfall variability, is a primary challenge in the 

production of rain-fed maize farming, especially in water-scarce regions such as southern 

Africa. Quantifying maize moisture variations throughout the growing season can support 

agricultural decision-making and prompt the rapid and robust detection of smallholder maize 

moisture stress. Unmanned Aerial Vehicles (UAVs), equipped with light-weight multispectral 

sensors, provide spatially explicit near real-time information for determining maize moisture 

content at farm scale. Therefore, this study evaluated the utility of UAV derived multispectral 

imagery in estimating maize leaf moisture content indicators on smallholder farming systems 

throughout the maize growing season. The first objective of the study was to conduct a 

comparative analysis in order to evaluate the performance of five regression techniques 

(support vector regression, random forest regression, decision trees regression, artificial neural 

network regression and the partial least squares regression) in predicting maize water content 

indicators (i.e. equivalent water thickness (EWT), fuel moisture content (FMC) and specific 

leaf area (SLA)), and determine the most suitable indicator of smallholder maize water content 

variability based on multispectral UAV data. The results illustrated that both NIR and red-edge 

derived spectral variables were critical in characterising maize moisture indicators on 

smallholder farms. Furthermore, the best models for estimating EWT, FMC and SLA were 

derived from the random forest regression algorithm with a relative root mean square error 

(rRMSE) of 3.13%, 1% and 3.48 %, respectively. Additionally, EWT and FMC yielded the 

highest predictive performance of maize leaf moisture and demonstrated the best correlation 

with remotely sensed data. The study’s second objective was to evaluate the utility of UAV-

derived multispectral imagery in estimating the temporal variability of smallholder maize 

moisture content across the maize growing season using the optimal maize moisture indicators. 

The findings illustrated that the NIR and red-edge wavelengths were influential in 

characterising maize moisture variability with the best models for estimating maize EWT and 

FMC resulting in a rRMSE of 2.27 % and 1%, respectively. Furthermore, the early reproductive 

stage was the most optimal for accurately estimating maize EWT and FMC using UAV-

proximal remote sensing. The findings of this study demonstrate the prospects of UAV- derived 

multispectral data for deriving insightful information on maize moisture availability and overall 

health conditions. This study serves as fundamental step towards the creation of an early maize 
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moisture stress detection and warning systems, and contributes towards climate change 

adaptation and resilience of smallholder maize farming. 
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CHAPTER ONE: GENERAL INTRODUCTION 
 

1.1 Introduction 
 

Maize (Zea mays L) is an essential rain-fed grain crop grown throughout Southern Africa 

(Adisa et al., 2018; Ndlovu et al., 2021a). It is the most widely produced food crop and serves 

as a primary staple food and source of carbohydrates for the majority of the region’s population  

(Adisa et al., 2019; Haarhoff et al., 2020). Furthermore, the maize industry contributes over 

R9 billion per annum to South Africa’s economy and accounts for approximately 45% of the 

agricultural sector’s gross domestic product (Adisa et al., 2019). However, in the face of 

climate variability, maize production is highly threatened by crop moisture availability (Sah et 

al., 2020). According to the Sixth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC), unprecedented changes in global climate are inevitable as current 

climate projections indicate a warmer future with an increase in drought events (Rosenstock et 

al., 2019; IPCC, 2021). Literature has confirmed that the impacts of climate change will be 

detrimental to crop production, especially in Southern Africa, where the majority of the region 

is expected to become drier, particularly under low climate change mitigation measures (Sah 

et al., 2020; Nembilwi et al., 2021). This is a serious concern as maize farming in the region 

predominantly occurs at smallholder scales that predominately depend on precipitation and 

rudimentary technological inputs (Ngoune Tandzi and Mutengwa, 2020; Rosenstock et al., 

2019). Whereas such scale of production plays an essential role in ensuring food security and 

sustaining local livelihoods, they are seriously impacted by the lack of water due to rainfall 

variability (Sah et al., 2020; Nembilwi et al., 2021). Therefore, there is need for mechanisms 

to monitor maize moisture stress through development of climate-smart agricultural practices. 

When maize crops are in water deficit, leaf photosynthetic activity and metabolism decrease, 

resulting in stunted growth and possible plant mortality or premature leaf senescence (Zhang 

et al., 2019a; Ndlovu et al., 2021a). Furthermore, water stress limits the ability of maize to 

photosynthesise and produce new dry matter leading to significant reduction in maize harvest 

(Earl and Davis, 2003). Literature has confirmed that maize crop experiences apparent 

variations in moisture content as a result of numerous factors that include soil properties, 

topographic influence, and climatic conditions such as extreme temperatures and in-season 

drought (Wang and Singh, 2017; Chivasa et al., 2020). A study by Ghooshchi et al. (2008) 

reported that the reproductive growth stages of maize are the most sensitive to moisture stress, 
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with the possibility of reducing yield by up to 42%.  Therefore, it is imperative to quantify the 

spatial distribution of maize moisture content and its temporal variation during the growing 

season as it can provide essential information on crop water availability and can be used to 

identify maize moisture-sensitive growth stages for optimising maize productivity.   

Conventionally, maize leaf moisture content is estimated directly through in-situ measurements 

of crop conditions (Avetisyan and Cvetanova, 2019; Ustin et al., 2012; Zhang and Zhou, 2019). 

However, these methods are time-consuming, labour intensive, and less feasible for continuous 

monitoring of maize fields through the growing season (Yue et al., 2018a; Kalisperakis et al., 

2015). Over the past few decades, the use of remote sensing has provided a valuable alternative 

to quantifying vegetation properties (Pasqualotto et al., 2018). Remote sensing can capture 

canopy spectra, which provide information on crop biochemical and biophysical composition 

(Sibanda et al., 2021b). The rationale of estimating leaf moisture content using remotely sensed 

data stems from the fact that reflectance in the near-infrared (750-1300 nm) and shortwave 

infrared (1300-2500 nm) regions of the electromagnetic spectrum is largely influenced by 

water and dry matter in vegetation (Colombo et al., 2008). Water produces maximum 

absorption features in the shortwave infrared (SWIR) region, centered at 1450nm, 1940nm, 

and 2500 nm, while weak water bands can be found in the near-infrared (NIR) region at 970nm 

and 1200nm (Pasqualotto et al., 2018; Zhang et al., 2017; Chemura et al., 2017). Therefore, 

with the understanding of water absorption spectra, spatial and temporal variations in maize 

leaf moisture content based on changes in reflectance can be identified and quantified (Zhang 

et al., 2017). 

Several satellite imageries have been useful in monitoring biophysical characteristics 

(Ambrosone et al., 2020; Ali et al., 2017a; Avetisyan and Cvetanova, 2019; Xu et al., 2020). 

For example, Han et al. (2019a) utilized a combination of Sentinel-2 multispectral imager (10m 

spatial resolution) and linear regression model to predict maize-above ground biomass to an 

optimal of R2 = 0.72 and RMSE of 1.06 kgm-2. Additionally, a study by Xu et al. (2020) 

estimated daily maize water levels using a fusion of optical measurements derived from the 

SWIR and NIR bands of Land Remote Sensing Satellite (Landsat) Operational Land Imager 

(OLI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to an R2 = 0.66. 

Despite such opportunities, satellite data does not fulfil the increasing need for high spatial and 

temporal resolution data which is important for estimating maize parameters, especially at a 

plot level (Psirofonia et al., 2017). Additionally, weather conditions remain a challenge for 

satellite imagery, thus limiting its applicability for the continuous monitoring of maize leaf 



Page | 3  
 

moisture content (Myers et al., 2015). Given these limitations, innovative technologies are 

necessary for the routine monitoring of crop moisture content at a field scale. 

The advent of Unmanned Aerial Vehicles (UAVs), also known as drones, has pioneered an era 

of sensing, mapping, and data analysis technologies within precision agriculture (Maes and 

Steppe, 2019; Tang et al., 2019; Sibanda et al., 2021a). Initially developed for military 

purposes, drone technology has recently gained widespread popularity in agricultural research 

(Gago et al., 2015). Unlike satellite data, UAV-derived multispectral imagery can provide data 

of exceptional spatial and temporal resolutions (Hoffmann et al., 2016). Tsouros et al. (2019) 

note that the ability of UAVs to fly at lower altitudes allows for imagery to be acquired at ultra-

high spatial resolutions with the capacity of providing spatially explicit datasets for 

characterising in-field maize moisture variation. Furthermore, aerial imagery acquired using 

drones have a relatively low acquisition cost and can provide near-real-time information on 

maize water content (Chivasa et al., 2020; Gago et al., 2015). Additionally, UAV platforms 

allow for frequent image acquisition useful for quantifying maize leaf moisture over a multi-

temporal scale (Chivasa et al., 2020). Also, UAV imagery is less susceptible to the effects of 

cloud cover and other atmospheric impurities since the flight height is below the clouds, hence 

the built-in calibration of the UAV platform allow for more viable and high resolution images 

(Myers et al., 2015). Hence, UAVs equipped with multispectral sensors could provide a viable 

option for monitoring maize moisture-related properties for the rapid analysis and early 

detection of maize moisture stress. 

Numerous biophysical indicators have been developed for characterising crop moisture content 

at a leaf level. Literature has confirmed that indicators such as equivalent water thickness 

(EWT) and fuel moisture content (FMC) are valuable indicators of crop moisture status as they 

are closely related to crop water and leaf biochemical processes such as plant metabolism, 

photosynthesis and evapotranspiration (Zhang and Zhou, 2015; Ustin et al., 2012; Pasqualotto 

et al., 2018; Ndlovu et al., 2021a). EWT is a vegetation water status metric that represents the 

total volume of water per unit leaf area (Elsherif et al., 2019; Zhang et al., 2019b; Niinemets, 

2001), while FMC is the proportion of water in dry matter per unit leaf area (Matthews, 2013; 

Qi et al., 2012; Oddi et al., 2019). In addition to being an indicator of fire susceptibility, FMC 

is widely used in drought assessment and is an essential input for modelling vegetation 

productivity (Sibanda et al., 2021b). Furthermore, studies have demonstrated the potential of 

the specific leaf area (SLA), defined as the ratio of leaf area to leaf dry mass, as an indicator of 

crop moisture content (Ali et al., 2017a; Gonzalez et al., 2009; Garnier et al., 2001). Hussain 
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et al. (2020) note that the significant relationship between SLA and water use efficiency 

permits its applicability in assessing crop water status. Although various studies have evaluated 

the utility of biophysical indicators in characterising vegetation water status (Zhang and Zhou, 

2015; Zhang and Zhou, 2019; Liu et al., 2015), there is still disagreement on which is the most 

suitable indicator of maize leaf moisture content. 

A large and growing body of literature has demonstrated the optimal performance of vegetation 

indices (VIs) in retrieving information on maize leaf moisture content (Zhang et al., 2019b; 

Pasqualotto et al., 2018; Colombo et al., 2008; QiuXiang et al., 2012). A frequently used index 

to monitor vegetation parameter is the Normalised difference Vegetation Index (NDVI) (Xue 

and Su, 2017). Even though NDVI is criticised for its high susceptibility to noise and saturation, 

it is significantly interrelated to plant water status, hence has excellent potential of 

characterising maize moisture content (Krishna et al., 2019a; Jackson et al., 2004). 

Furthermore, studies by Zhang and Zhou (2019) and Zhang and Zhou (2015) confirmed that 

maize moisture availability is associated with crop greenness and chlorophyll, therefore, 

chlorophyll indices such as the Green Chlorophyll Index (CIgreen) and the Red Edge 

Chlorophyll Index (CIred edge) could be valuable in estimating crop moisture-related elements 

(Easterday et al., 2019; Zhang and Zhou, 2015). Considering that the SWIR channel is sensitive 

to variations in vegetation water status, various moisture indices, including the Normalized 

Difference Water Index (NDWI), Moisture Stress Index (MSI) and Normalized Difference 

Infrared Index (NDII), have been developed from the SWIR region to assess crop moisture 

content (Zhang et al., 2017; Feng et al., 2013). However, the majority of UAV sensors are not 

equipped with the SWIR channel, therefore, there are prospects of evaluating other sections of 

the electromagnetic spectrum in estimating maize leaf moisture content (Sibanda et al., 2021a). 

Hence, there is a need to evaluate the performance of various VIs that are derived from UAV 

spectral channels in estimating maize leaf moisture indicators.  

Literature confirms that the integration of UAV proximal sensors, VIs and regression 

techniques allow for the estimation of vegetation functional traits at different spatiotemporal 

scales (Ali et al., 2019). In this regard, various regression algorithms have been developed to 

predict plant physiological parameters from remotely sensed data (Yue et al., 2018b; Ali et al., 

2019). For example, the partial least squares regression (PLSR) is a well-known conventional 

technique used to establish meaningful relationships between environmental parameters and 

vegetation attributes, for instance EWT, FMC and SLA (Li et al., 2014a; Zheng et al., 2018). 

In comparison, machine learning ensembles such as random forest regression (RFR), support 



Page | 5  
 

vector regression (SVR), and artificial neural networks regression (ANNR) have the potential 

to outperform conventional regression methods due to their ability to capture subtle variations 

and handle nonlinearities and complexities among environmental variables (Yue et al., 2018b; 

Wang et al., 2016a). In addition, machine learning ensembles can efficiently manage large 

datasets, handle multicollinearity, and effectively deal with over-fitting and noise (Lu and He, 

2019). However, literature indicates that regression techniques are often site-specific and rarely 

transferable to other vegetation types or data acquired from different sensors (Yue et al., 2018b; 

Ali et al., 2019). In this regard, it is necessary to validate the performance of various regression 

techniques and identify a suitable algorithm for estimating maize leaf moisture content using 

UAV-based multispectral data.  

1.2 Research aims and objectives 
 

This study aimed to evaluate the utility of UAV-derived multispectral data in estimating maize 

leaf moisture content on smallholder farming systems throughout the maize growing season. 

The following objectives were set:  

 To conduct a comparative analysis in order to evaluate the performance of five 

regression techniques in predicting maize water content, and determine the most 

suitable indicator of smallholder maize water content variability based on multispectral 

UAV data. 

 To evaluate the utility of UAV-derived multispectral imagery in estimating the spatio-

temporal variability of smallholder maize leaf EWT and FMC across the maize 

growing season. 

 

 1.3 Key research hypothesis 
 

 UAV-derived multispectral data will successfully determine the most suitable leaf 

moisture indicator to estimate maize leaf moisture content using an optimal regression 

algorithm. 

 UAV-derived multispectral data will successfully detect the temporal variations in 

maize leaf moisture content across the phenological cycle of the growing season. 
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1.4 Significance of the study 
 

Maize moisture stress is the most significant environmental stressor negatively affecting maize 

growth and development in smallholder farming systems. Therefore, it is critical to characterise 

the spatial and temporal variation of maize moisture content to implement scientifically proven 

measures of reducing the adverse impacts of moisture deficiency on maize yield. Such 

investigations will provide valuable information that will allow for the decreased vulnerability 

and increased resistance of these agronomic systems to rainfall variability. Furthermore, 

estimating maize moisture variations throughout the growing season will support in-field 

agricultural decision-making and prompt rapid and robust detection of smallholder maize 

moisture stress. The findings of this study will demonstrate the capacity of UAV-derived 

multispectral data for deriving insightful information on maize water availability and overall 

health conditions. Therefore, this study is beneficial to the agricultural sector as it provides 

baseline information required for developing policies and frameworks for maximising maize 

production of smallholder farming systems. Furthermore, this research will serve as a footstool 

for future studies that wish to understand the impacts of climate change on agricultural 

production in water-scarce regions such as Southern Africa, where small-scale agronomy plays 

a vital role in rural livelihoods and local food security.  

1.5 The general structure of the thesis 
 

The thesis comprises four chapters, including two research papers that address the objectives 

mentioned in section 1.2 and the research questions discussed in section 1.3. The presented 

research papers could be read independently, however, the methodology used in paper two is 

influenced by the results of the first paper. Both papers contribute to the general introduction 

and overarching research questions, hence, duplication and overlap could be present within the 

dissertation. The outline of each chapter is as follows: 

1.5.1 Chapter One: General Introduction 
 

This chapter provides a conceptualization and overview of the thesis by highlighting the 

importance of the research in precision agriculture. Furthermore, the chapter presents the 

trends, techniques and technologies for assessing crop functional traits. Finally, the research 

aim and objectives as well as the significance of the study are provided in this chapter.  
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1.5.2 Chapter Two: A comparative estimation of maize leaf moisture content on 
smallholder farming systems using Unmanned Aerial Vehicle (UAV) based proximal 
remote sensing 
 

This chapter investigates the utility of UAV-derived multispectral imagery and regression 

techniques in estimating maize moisture content on smallholder farms. Specifically, a 

comparative assessment is conducted between maize leaf EWT, FMC and SLA to determine 

the most suitable indicator of maize moisture status. Furthermore, this chapter evaluates the 

performance of multiple regression techniques to identify a robust and accurate algorithm for 

estimating maize leaf moisture content at a field scale. 

1.5.3 Chapter Three: A multi-temporal remote sensing of smallholder maize leaf equivalent 
water thickness and fuel moisture content variability using an unmanned aerial vehicle 
(UAV) derived multispectral data 
 

This chapter assesses the utility of the optimal leaf moisture indicator and regression technique 

in characterising the spatial and temporal variation in maize leaf moisture content throughout 

the growing season. This chapter further investigates the influence of rainfall variability on leaf 

moisture content at different maize growth stages.  

1.5.4 Chapter Four: Synthesis 
 

This is the final chapter of the dissertation and provides a summary of the significant finding. 

This chapter also highlights the critical conclusion of the study. Furthermore, this chapter 

highlights the implication of the research and provides recommendations for similar studies in 

future.  
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CHAPTER TWO 

A comparative estimation of maize leaf moisture content on 
smallholder farming systems using Unmanned Aerial Vehicle 

(UAV) based proximal remote sensing 
 

This chapter is based on a published paper: 

Ndlovu, H. S., Odindi, J., Sibanda, M., & Mutanga, O. 2021. A Comparative Estimation of 
Maize Leaf Water Content Using Machine Learning Techniques and Unmanned Aerial 
Vehicle (UAV)-Based Proximal and Remotely Sensed Data. Remote Sensing, 13(20), 
4091. 

 
Abstract 

Determining maize moisture conditions are necessary for crop monitoring and developing early 

warning systems to optimise agricultural production in smallholder farms. However, spatially 

explicit information on maize moisture content, particularly in Southern Africa, remains 

elementary due to the shortage of efficient and affordable primary sources of suitable spatial 

data at a local scale. Unmanned Aerial Vehicles (UAVs), equipped with light-weight 

multispectral sensors, provide spatially explicit near real-time information for determining 

maize moisture content at farm scale. Therefore, this study evaluated the utility of UAV derived 

multispectral imagery and machine learning techniques in estimating maize leaf moisture 

indicators; equivalent water thickness (EWT), fuel moisture content (FMC) and specific leaf 

area (SLA). The results illustrated that both NIR and red-edge derived spectral variables were 

critical in characterising maize moisture indicators on smallholder farms. Furthermore, the best 

models for estimating EWT, FMC and SLA were derived from the random forest regression 

(RFR) algorithm with rRMSE of 3.13%, 1% and 3.48 %, respectively. Additionally, EWT and 

FMC yielded the highest predictive performance and were the most optimal indicators of maize 

leaf moisture. The findings are critical towards developing a robust and spatially explicit 

monitoring framework of maize water status and serve as a proxy of crop health and overall 

productivity of smallholder maize farms. 

Keywords: maize moisture stress, smallholder farms, unmanned aerial vehicle, machine 

learning, precision agriculture. 

 



Page | 15  
 

2.1 Introduction 
 

Crop moisture stress is one of the most drastic limiting factors of maize crop production 

(Avetisyan and Cvetanova, 2019). Maize (Zea mays L.) is an important grain crop that is mostly 

grown under rain-fed conditions and consumed by the majority of Southern Africa’s population 

as a staple food (Ngoune Tandzi and Mutengwa, 2020). Due to high population growth and the 

increase in food and nutrition insecurities, smallholder farmers now play a critical role in maize 

production and foster food security, particularly in developing nations such as those in South 

Africa (Agbugba et al., 2020; Sibanda et al., 2019). Despite their key role, smallholder farms 

are constantly facing a challenge of intermittent water stress and drought, resulting in 

significant yield losses (Gomez y Paloma et al., 2020). More so, when stress occurs from the 

pre-flowering to late grain-filling stages, it is often difficult to detect the onset and magnitude 

of intermittent water stress (Daryanto et al., 2016). In addition, spatial and temporal crop 

management, cultivar selection, soil and topography affect its extent and impacts on maize 

yield (Daryanto et al., 2016). As such, there are no clear cut spatially explicit methods of 

quantifying its water stress near-real-time in smallholder farms of the global south with limited 

resources. It is therefore imperative to develop optimal methods for quantifying maize water 

stress in a spatially explicit manner. This provides a key pathway towards effectively 

monitoring drought impacts and deriving useful information that can be used to inform 

irrigation decisions. 

When maize crops are in a state of moisture deficit, there is a decrease in leaf photosynthesis, 

stomatal conductance, leaf expansion and transpiration, subsequently resulting in impaired 

growth (Zhang et al., 2019b). Lack of water molecules results in the loss of turgor driven cell 

expansion and primary productivity of maize crops as this has detrimental impacts on its 

growth (Pasqualotto et al., 2018; Chivasa et al., 2020). Crop water deficits result in a decline 

in the quantity and quality of maize produce (Afzal and Mousavi, 2008) and considerably 

affects the phenotype, reproductive system and seed set (Afzal and Mousavi, 2008). Strong and 

positive correlations have been observed between grain yield and leaf water content (Zhang et 

al., 2019b; Afzal and Mousavi, 2008). Therefore, knowledge on estimating maize leaf moisture 

conditions is necessary for crop monitoring and developing early warning systems to optimise 

agricultural production in exclusively rain-fed smallholder farms (Davidson et al., 2006; Zhang 

and Zhou, 2015). 
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A variety of physiological indicators have been developed to quantify crop moisture stress. 

They include equivalent water thickness (EWT), fuel moisture content (FMC) and specific leaf 

area (SLA) (Liu et al., 2015; Zhang et al., 2017; Zhou et al., 2020).  EWT is the ratio between 

a crops’ leaf area and the quantity of water per unit area (Yi et al., 2014). EWT is an 

improvement of dry matter content as it takes into account the thickness and area covered by 

the canopy. FMC represents the quantity of water per unit mass of leaf dry matter. It is an 

effective indicator of moisture stress or drought conditions and is commonly used in wildfire 

monitoring (Chivasa et al., 2020). SLA is the ratio of leaf area per unit of dry mass (Gonzalez 

et al., 2009). SLA is a fundamental indicator of crop physiology and the variability of crop’s 

photosynthetic capacity and growth rate (Ali et al., 2017b).  Although there have been various 

studies conducted in monitoring crop water status (Zhang et al., 2019b; Zhou et al., 2020), 

there is still a disagreement on the best-suited indicator for maize moisture content prediction 

at a leaf level in small fields.   

Several methods of quantifying maize moisture content indicators have been developed (Ustin 

et al., 2012; Zhang et al., 2018a; Xu et al., 2020). Conventionally, variations in crop moisture 

status is measured through conventional methods such as the visual assessment or in-situ 

measurements conducted by trained experts (Chivasa et al., 2020). However, such techniques 

are laborious, costly and comparatively time-consuming, hence not feasible for continuous and 

time-efficient crop monitoring (Yue et al., 2018a). Over the decades, the use of satellite-borne 

earth observation technologies has proven to be effective in monitoring plant water status, 

variations in the physiology of water-stressed vegetation and indicating crop water 

requirements for improved irrigation efficiency (Sibanda et al., 2021b). Xu et al. (2020) for 

instance, used multispectral data derived from Landsat-OLI and MODIS datasets to quantify 

crop moisture content with an optimal R2 of 0.78. Additionally, Sibanda et al. (2021b) utilized 

Sentinel-2 MSI to estimate canopy water content and FMC to an rRMSE of 20.8 % and 18.45 

% respectively while Krishna et al. (2019b) used the combination of hyperspectral sensors and 

partial least squares regression to estimate rice crop moisture stress with an R2 of 0.94. 

However, despite these successes, the application of satellite data in characterising moisture 

indicators at a farm scale is restricted by their relatively coarser spatial and temporal resolutions 

(Hussain et al., 2020). Although there are sensors that provide very-high-resolution (VHR) 

remotely sensed data, such as QuickBird and Worldview imagery, they are often costly and not 

ideal for monitoring maize moisture content on smallholder farms (Chivasa et al., 2020).  
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In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have received 

widespread attention in precision agriculture (Maes et al., 2018). UAVs, mounted with light-

weight multispectral sensors with the capacity of providing spatially explicit near real-time 

information are valuable for crop physiology monitoring (Hussain et al., 2020). Additionally, 

UAV proximal sensors with a sub-meter resolution deliver rapid, cost-effective and accurate 

measurements required for detecting maize water status at a plot level (Chivasa et al., 2020).  

Compared with satellite imagery, UAV-based sensors can provide datasets of exceptional high 

spatial and temporal resolutions. In addition, UAV platforms can hover over a specific area of 

interest and can acquire imagery at lower altitudes, allowing for a finer ground sampling 

distance, hence suitable for better quantification of maize moisture content at a field scale 

(Chivasa et al., 2020). Various studies have utilized UAV based proximal sensing in 

environmental applications (Castaldi et al., 2017; Wijewardana et al., 2019; Zhang et al., 

2018b). For example, Han et al. (2019b) used a DJI Spreading Wings UAV mounted with a 

RGB camera to estimate plant height of maize crops and attained a RMSE of 14.1 cm, while 

Zhang et al. (2018b) utilized a Phantom 3 UAV-based RGB image to investigate the optimal 

flight height for discriminating maize varieties. Additionally, studies have demonstrated the 

utility of UAV remote sensing approaches in maize yield prediction (Wahab et al., 2018), 

maize pest and disease detection (Castaldi et al., 2017) and crop physiology monitoring 

(Wijewardana et al., 2019).  However, these studies were conducted in controlled experimental 

plots in the global north. Very few studies have been conducted in the global south, particular 

in smallholder croplands with rain-fed maize and other crops. As a result, the potential 

application of UAVs equipped with high-resolution sensors for monitoring crop dynamics such 

as maize moisture content needs to be further investigated, especially in small, fragmented 

croplands of Southern Africa.  

The prediction of maize moisture content using proximal remote sensing approaches is derived 

from the reflectance behaviour of water molecules and dry vegetation matter  in the near-

infrared (NIR) and the shortwave infrared (SWIR) sections of the electromagnetic spectrum 

(Wijewardana et al., 2019). However, much of the available drone sensors that have been 

widely used in assessing crop moisture content and health have either covered the visible 

section of the electromagnetic spectrum or included the NIR. Very few of these studies have 

assessed the utility of drone sensors covering the red edge, NIR and the thermal sections of the 

electromagnetic spectrum in characterising crop moisture content. Furthermore, a large and 

growing body of literature has demonstrated the optimal performance of vegetation indices 
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(VIs) derived from water-sensitive sections of the electromagnetic spectrum as an instrument 

for the retrieval of crop water status (Zhang et al., 2019b; Pasqualotto et al., 2018; Colombo et 

al., 2008). For example, the Normalized Difference Water Index (NDWI), Normalised 

difference Vegetation Index (NDVI), Green Chlorophyll Index (CIgreen) and the Red Edge 

Chlorophyll Index (CIrededge) have demonstrated significant correlations to crop moisture 

indicators (Zhang and Zhou, 2019; Zhang and Zhou, 2015). It is in this regard that the 

combination of the drone derived red-edge, NIR and thermal bands in conjunction with optimal 

vegetation indices were anticipated to yield accurate estimations of maize moisture content in 

smallholder farms. 

A range of regression techniques have been proposed for the prediction of vegetation 

parameters using remotely sensed data. These may be broadly categorised into two: 

conventional regression methods and machine-learning techniques (Yue et al., 2018b). 

However, a example of conventional regression technique is the multiple linear regression 

(MLR).  A major limitation of conventional techniques, such as linear regression (MLR), is 

that they assume an explicit relationship between measured biophysical parameters and spectral 

observations, thus limiting their applicability to spatially complex datasets (Lu and He, 2019). 

Recently, machine learning regression techniques, such as support vector machines (SVM), 

random forest (RF), artificial neural network (ANN), partial least squares (PLS) and decision 

trees (DT), have gained popularity for their high performance in computing, quantifying and 

understanding complex processes in agricultural applications (Liakos et al., 2018). Jin et al. 

(2017) for instance, applied the SVM model to estimate the leaf moisture content of maiden 

grass and achieved an exceptional model accuracy (R2 = 0.98). Sibanda et al. (2021b) 

implemented the RF ensemble to predict the canopy moisture content of grasslands obtaining 

an R2 of 0.98 and RMSE of 9.8 gm-2, while, Yue et al. (2018a) applied machine learning 

techniques including DT, PLS and ANN in estimating the above ground biomass of winter 

wheat. The above studies illustrate the robustness and prediction capabilities associated with 

machine learning regression ensembles based on remotely sensed data. Although there are 

other algorithms that have been used in remote sensing applications, a large and growing body 

of literature shows that SVM, RF, ANN, PLS and DT are the most widely adopted. This is 

attributed to their ease of implementation, robustness especially in dealing with small sample 

sizes, optimal feature selection abilities as well as the high accuracies they yield. However, 

literature indicates that there is no specific algorithm that is suited for a specific context. There 

is, therefore, a need to assess and identify the most efficient algorithm that could accurately 
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estimate maize foliar moisture content using UAV derived data in the context of smallholder 

croplands.  

Although UAV based proximal sensing has become a powerful tool for estimating 

physiochemical variations in vegetation, only a few studies have been conducted on identifying 

the best method as well as the best moisture indicators to evaluate maize crop moisture stress 

at a farm scale. Therefore, operational and robust regression algorithms must be identified, 

tested and validated for their performance in predicting smallholder maize functional traits, 

such as moisture content. In this regard, this study sought to investigate the potential of UAV 

derived multispectral imagery and machine learning techniques in the remote estimation of 

smallholder maize moisture content. The objectives of this study were to conduct a comparative 

analysis to: (1) evaluate the performance of five regression techniques in predicting maize 

moisture content, and (2) determine the most suitable indicator of smallholder maize moisture 

content. The anticipated results will help provide a technical approach for the quick and 

accurate monitoring of changes in either EWT, FMC or SLA, as a result of moisture variability, 

to inform irrigation decisions and planning of smallholder maize crops. 

 
2.2 Materials and Methods 
 

2.2.1 Description of the study area 
 

This study was conducted at Swayimane (29° 52’ S, 30° 69’ E), a communal area located within 

the uMshwathi Municipality, north-east of the city of Pietermaritzburg, South Africa (Figure 

2.1). Swayimane is situated within the moist midlands mistbelt bioresource area, characterized 

by an average temperature ranging between 11.8 ℃ and 24 ℃, and a mean annual temperature 

of 17 ℃. The climate in the area is relatively hot with wet cool summers and dry winters. The 

area receives an annual rainfall that varies between 600-1100mm. Swayimane experienced an 

average air temperature of 23.94 ℃ and an average rainfall of 25 mm during the maize growing 

season 2020-2021 (Table 2.1). Swayimane is distinguished by arable clay loam soils and is 

ranked within the top 2% of the high-potential land in South Africa. Subsequently, such 

environmental conditions support the production of various grain and legume crops. Common 

crops produced within the study area are beans, sweet potato, sugarcane, spinach and maize. 

Swayimane is dominated by smallholder maize farms cultivated by the local community. Maize 

farmers in the area depend primarily on traditional methods of farming such as manual labour 
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and livestock manure for fertilizer. Maize in Swayimane is cultivated both at a subsistence 

scale and for additional income generation. Moreover, Swayimane is a good example of a rural 

setup where organic farming is conducted on a semi-subsistence scale. This highlights the 

success of utilizing organic farming methods for optimizing maize yield at a minimal cost. 

Plot-level maize growth experiments were conducted in summer, which is the optimal maize 

growing season. The maize plot covered a spatial extent of 250 m2 and was primarily rain-fed. 

The maize crop was sown in mid-November 2020. At the time the project commenced, the 

crop was 86 days’ old, termed the reproductive phase of the growth cycle.  Specifically, the 

maize seedlings were at an intermediate between the kernel blister stage (growth stage R2) and 

kernel milk stage (growth stage R3). This stage was selected because literature confirms that 

the early reproductive stages of maize are highly influenced by moisture and are most sensitive 

to water deficits (Ghooshchi et al., 2008; Mi et al., 2018).  

  

Figure 2. 1: (a) Location of the study area and (b) maize crop field in Swayimane, South 
Africa 
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Table 2. 1: Bioclimatic conditions of Swayimane during the maize growing season 

Bioclimatic variable Data 

Total rainfall 25 mm 

Average Air temperature 23.94 ℃ 

Average wind speed 1.68 m/s 

Average vapour pressure 2.55 kPa 

Average atmospheric pressure 917.64 mbar 
Source: On-site automatic weather station  

2.2.2 Field Sampling and moisture content measurements 
 

Field data collection was conducted on the 11th of February 2021 at the study site. An automatic 

weather station (AWS) was installed in proximity to the maize fields to acquire maize crop 

bioclimatic data. The AWS measured air temperature, relative humidity and wind speed. Wind 

direction sensors and a raingauge measured the daily wind direction and rainfall within the 

experimental plot. A stratified random sampling approach was used to generate a total 104 

random sample points within the maize field. This technique was selected as it can provide a 

representative sample of the study area. A Trimble handheld Global Positioning System (GPS) 

with a sub-meter accuracy was used to navigate to the randomly generated sample points within 

the field. Sampling fully developed leaves from the top of the maize canopy ensures reliable 

measurements of plant physiological characteristics, especially since these leaves receive direct 

sunlight and have maximum spectral reflectance (Mulla, 2013). Sampling of young emerging 

leaves is not suitable for plant analysis as it can exacerbate plant stress leading to plant mortality 

(Zhang et al., 2019a; Wahbi and Avery, 2018). In this regard, the first fully developed leaf 

(first leaf below whorl) was collected from the top of the maize canopy at each sample point to 

measure leaf moisture content indicators. A LI-3000C Portable Area Meter combined with a 

LI-3050C Transparent Belt Conveyer Accessory with one mm2 resolution was used to measure 

the leaf area (A) of sampled maize leaves (Li-Cor, USA). The fresh weight (FW) of sampled 

maize leaves were obtained using a calibrated scale with a 0.5 g measurement error. Field 

measurements were conducted between 12:00 noon and 14:00 as this is the most optimal period 

of the day for crop photosynthetic activity (Sade et al., 2015a). The sampled maize leaves were 

then dried in an oven at 70° C until a constant dry weight (DW) was reached (approximately 

48 hours). The A, FW and DW were then used as input variables to compute maize leaf 

moisture indicators using the following equations: 
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EWTleaf = (FW – DW) / A     units: gm-2………………….eq.1 

FMCleaf = (FW – DW) / DW x 100 %  units: %.................................eq.2 

SLAleaf = A/ DW     units: g-1 m2………………...eq.3 

The computed data for each crop moisture indicator was integrated with the GPS location and 

converted into a point map that was overlaid with the UAV multispectral images of the study 

area. 

2.2.3 The UAV platform, image acquisition and processing 
 

The DJI Matrice 300 series (M300) and the MicaSense Altum imaging sensors were used to 

acquire images covering the maize field considered in this study (Figure 2.2 (a)). The M300 

UAV specifications are further detailed in table 2.2. The Altum camera integrates a 

radiometrically calibrated thermal sensor with five spectral channels that measure reflectance 

in the visible to the non-visible light spectrum (i.e. blue (475 nm), green (560 nm), red (668 

nm), red-edge (717 nm), NIR (840 nm) and thermal (8000-14000 nm)) at a ground sampling 

distance of 9.6 cm per pixel (Figure 2.2 (b)). The main advantage of this imaging platform is 

its ability to capture synchronised thermal and multispectral data simultaneously in an 

automated manner. A shapefile of the study area was created in Google Earth Pro and exported 

into the M300’s handheld console to develop a UAV flight plan (Figure 2.2 (c)). Before and 

post-flight, an automatic calibrated reflectance panel was used to compensate for incident light 

conditions by using known reflectance values across the spectrum to radiometrically calibrate 

the Altum sensor (Figure 2.2 (d)). An automated flight mission was conducted at a flight height 

of 100m with an image overlap of 80%. The imagery derived from the imaging platform were 

orthomoisaced and pre-processed to enhance image features in Pix4D Fields photogrammetry 

software. 
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Figure 2. 2: a) Matrice 300 UAV integrated with the Altum sensor to form the imaging 
platform used in this study, b) Altum camera, c) flight plan of the study image and d) the 
calibrated reflectance panel 

Table 2. 2: DJI M300 UAV specifications 

Parameter Specification 
UAV type Rotary wing 
Weight Approx. 4.53 kg 
Size 887 (width)× 880 (length)× 378 (height) mm 
Flight duration 55 min 
Maximum speed 27 m/s 
Maximum altitude 7000m 
Maximum payload capacity 2.7 kg 
Maximum take-off weight 6.14kg 
Maximum flight range 7 km 
Operating Temperature -20° to 50° C 

 

2.2.4 Model development and statistical analysis 
 

The UAV imaging platform used in this study measures reflectance in the visible, red-edge and 

NIR regions of the spectrum, hence we sought to evaluate all possible combinations of UAV 

spectral bands to accurately predict crop leaf moisture indicators. In this study, the reflectance 

data obtained from the Altum multispectral and thermal bands were used to derive VIs. Table 

2.3 shows a list of VIs that were selected for this study based on their direct and indirect 

correlation with plant water status indicators. As aforementioned, the prepared spectral data 

were then overlaid with the point data associated with measured maize moisture indicators to 

derive data that was used for the statistical prediction of maize moisture content.  
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Table 2. 3: List of vegetation indices (VIs) used in the modelling of crop moisture content and 
related source references 

 
2.2.5 Spatial analysis 

 

The sampled data were randomly split into training (70%) and validation data (30 %). The 

former was used to develop the model and the latter for assessing the accuracy of predictive 

models. A comparative analysis was conducted between the support vector regression, random 

forest regression, decision trees regression, artificial neural network regression and the partial 

least squares regression algorithms in predicting leaf moisture content indicators (i.e. EWT, 

FMC and SLA). According to Lary et al. (2016) RF SVM, DT, ANN, and PLS are the most 

widely used machine learning algorithms in geosciences. These non-parametric algorithms are 

robust, efficient and can be parameterised and implemented with ease (Yue et al., 2018b; 

Liakos et al., 2018). Above all, these algorithms have been used in literature and are renowned 

for their accuracy, which is facilitated by their ability to optimally select spectral features for 

accurate predictions (Lary et al., 2016; Wang and Singh, 2017). It is in this regard that these 

algorithms were chosen for this study. Then, the variable selection was performed for each 

prediction model to identify variables that are most influential in the prediction of the named 

indicators. Variable selection reduces issues associated with variable redundancy and 

Index  Full Name Formula Reference 

Direct water-sensitive spectral VI   

NDWI 
Normalised Difference 
Water Index Green - NIR / Green + NIR (Ozelkan, 2020) 

Indirect water-sensitive spectral VIs   

NDVI 
Normalized Difference 
Vegetation Index NIR - Red / NIR + Red (Ali et al., 2017b) 

NGRDI 
Normalized Difference 
Green/Red Index Green - Red / Green + Red  (Hoffmann et al., 2016) 

NDRE 
Normalized Difference Red-
Edge Index 

NIR - Rededge / NIR + 
Rededge (Zhang and Zhou, 2019) 

NDVIrededge 
Red-Edge Normalised 
Difference Vegetation Index 

Rededge - Red / Rededge + 
red (Zhang and Zhou, 2019) 

CIgreen Green Chlorophyll Index (NIR/Green) -1 (Zhang and Zhou, 2015) 

CIrededge Red-edge chlorophyll index (NIR/Rededge) -1 (Zhang and Zhou, 2019) 
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multicollinearity, which affect the performance of regression models (Chivasa et al., 2021). 

Details on how each algorithm was used in this study are provided below. 

Support vector regression (SVR): initially developed for classification problems, it has 

proven to be an effective tool in regression problems (Wang et al., 2016b). As an intensive 

supervised learning technique, SVR is less sensitive to noisy inputs thus there are minimal 

estimation errors making the model more robust (Fan et al., 2021). The greatest advantage of 

SVR is its robustness to outliers and its capacity to perform well in high dimensional datasets. 

Selecting the optimal hyperparameter settings of SVR is critical for optimising the model’s 

predictive power (Bae et al., 2019).  Three parameters were tuned for the SVR model, 

specifically, penalty parameter (C), precision parameter (ε) and kernel parameter (γ). In this 

study, the grid search and 10-fold cross validation method, recommended by Shafiee et al. 

(2021), was performed on the training data and the SVR model was performed optimally at a 

C value of 8, ε equal to 0.5 and the γ kept at a default of 1. 

Random forest regression (RFR): is a machine learning ensemble that uses bootstrap 

aggregation and binary recursive partitioning to grow a number of independent regression trees 

(Abdel-Rahman et al., 2013). The strength of RFR lies in its ability to use bootstrap aggregation 

to build regression trees that are grown to their maximum sizes, with the results being combined 

by unweighted averaging to make predictions (Jeong et al., 2016). The RFR algorithm is 

renowned for its ability to produce high prediction accuracies while it is easy and simple to 

implement (Sibanda et al., 2021b). The quality of the RFR model depends on the proper setting 

of the RFR hyperparameters. The RFR model is generally optimized based on two parameters, 

namely Ntree which is the number of decision trees to be generated and Mtry, the number of 

predictor variables tested for the best split when growing the trees (Belgiu and Dragut, 2016). 

The Ntree and Mtry values were not set at the default, rather were derived after multiple 

iterations to determine the most optimal Ntree and Mtry parameters for the prediction of  maize 

leaf moisture content (Mutanga et al., 2012; Adam et al., 2012). The optimal hyperparameter 

values for predicting maize moisture content in the study was determined to Ntree equal to 500 

and a Mtry of 11.  

Decision tree regression (DTR): uses tree structures to build a regression model based on the 

structural patterns of the input data (Liang et al., 2018). The DTR formally creates decision 

rules that guide the prediction of the relationship between the objective variable and the 

predictor variables. The greatest advantage of the DTR model is its ability to avoid over-fitting, 
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overcome missing data in explanatory and response variables and simplicity implementation 

(Pekel, 2020). In DTR, the hyperparameters were tuned using a pre-pruning technique, which 

stops the generation of a tree before it is fully constructed, to achieve optimal model 

performance (Bae et al., 2019; Furuya et al., 2020). In this study, the fine-tuning process of the 

DTR algorithm was performed until no improvements were observed and the model parameters 

were specified as follows; the minimum split, which is the minimum number of values that 

must exist at a node before the split is attempted (Furuya et al., 2020), was fixed at 20 

(Williams, 2011). The maximum depth of which the tree is allowed to grow was set to 30. 

Finally, the termination criteria for the regression tree was specified at 0.01 (Losing et al., 

2018). The hyperparameters of the DTR parameters are kept to their default values, except for 

the maximum depth which is a fixed parameter for all the models (Hu et al., 2020; Williams, 

2011). 

Artificial neural network (ANNR): has been widely applied in the development of regression 

models. The quality of the ANNR model depends largely on the selection of the network 

structure, proper assignment of weights as well as the training dataset of the model (Wang et 

al., 2016b). The robustness of the ANNR is derived from the algorithms ability to imitate the 

human neural system which allows it to detect complex trends and patterns often unnoticed by 

other regression models (Yuan et al., 2017). Furthermore, the ANNR entails one or more 

hidden layers, in addition to the input and output layer, and discovers prominent features in the 

input data (Yeganefar et al., 2019). As such, the hyperparameters of the optimal ANN model 

was determined to be 10 nodes and 2 hidden layers. 

Partial least squares regression (PLSR): is a multivariate statistical technique that is 

characterised by its robust information recognition and modelling capabilities (Yue et al., 

2018b). The algorithm combines the theory of multiple linear regression with the theory of 

principal component analysis to effectively analyse the datasets with high dimensional and 

collinear predictors (Zhang et al., 2018a). The PLSR is renowned as a powerful modelling 

technique, particularly in models with a large number of predictor variables and a high level of 

collinearity (Li et al., 2014b). 

To optimize the outputs of the above models, the variable importance scores were used to 

determine the most influential bands and indices for estimating leaf moisture content indicators 

(Ambrosone et al., 2020). The least important predictor variables were progressively removed 
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and the model re-developed (Bois et al., 2020; Ambrosone et al., 2020). The Caret Package 

was used to develop the regression models in RStudio software version 1.4.1564. 

2.2.6 Accuracy assessment of derived maize moisture content models 
 

An accuracy assessment was conducted to evaluate the performance of regression models in 

predicting leaf moisture content indicators. The coefficient of determination (R2), the root mean 

square error (RMSE) and the relative root mean square error (rRMSE) were used to compare 

the accuracy of different models. Specifically, the R2 was used to measure the variation 

between measured and predicted maize leaf moisture content and RMSE was used to assess 

the magnitude of error between the field measurements and the modelled moisture content. The 

rRMSE was used to compare the performance of regression models across different algorithms 

and maize moisture indicators. To compute rRMSE, the RMSEs from each model were 

normalised using the mean of each variable and then expressed as a percentage (Li et al., 2021). 

The rRMSE has been widely used in literature to compare different variable predictions 

(Wocher et al., 2018; Sibanda et al., 2021b), hence it was adopted in this study.  The optimal 

model for predicting leaf moisture content indicators was characterised by lower RMSE and 

RRMSE, and a high R2 value. Additionally, the most suitable indicator of maize moisture 

content was estimated by comparing the R2, RMSE and RRMSE. Similarly, the indicator that 

produces the highest R2 and the lowest RMSE and RRMSE, will indicate a higher precision 

and accuracy in predicting maize moisture content. 

2.3 Results 
2.3.1 Descriptive analysis of maize crop moisture indicators and measured 
biophysical variables  

 

A wide range of variations was recorded in both biophysical variables and crop moisture 

indicators of maize crops. Table 2.4 represents the descriptive statistics of leaf FW, DW, Leaf 

area, EWT, FMC, and SLA. Averages for FW, DW, and Leaf area were 37.06 g, 6.94 g and 

0.09 m2, correspondingly, while the averages for crop moisture indicators, particularly EWTleaf, 

FMCleaf and SLAleaf were 356.52 gm-2, 81.27 %, 29.86 gm-2 and 0.01 m2g-1, respectively. A 

Kolmogorov-Smirnov normality test revealed that all crop moisture indicators did not deviate 

significantly from the normal distribution curve. 
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Table 2. 4: Descriptive statistics of crop moisture indicators and biophysical variables 

Parameter Range Mean Median Std. CV % SEM 
(min-max) 

Biophysical variables 
FW (g) 31.02 - 45.52 37.06 36.73 3.82 10.31 0.53 

DW (g) 3.22 - 8.76 6.94 6.95 1.02 14.69 0.14 

Leaf area (m2) 0.06 - 0.10 0.09 0.09 0.01 10.53 0.00 

Crop water indicators 

EWTleaf (gm-2) 290.91 – 473.18 356.52 344.14 42.42 11.90 5.88 

FMCleaf (%) 77.84 – 91.39 81.27 81.24 1.89 2.33 0.26 

SLAleaf (m2g-1) 0.0009 – 0.025 0.01 0.01 0.00 18.16 0.00 
SEM is the standard error of the mean, Std. is the standard deviation and CV is the coefficient 
of variation 

 

2.3.2 Evaluation of maize moisture indicators and optimized regression models 
 

Table 2.5 illustrates the model accuracies obtained in predicting leaf EWT, FMC and SLA 

based on the RFR, DTR, ANNR, PLSR and SVR regression techniques. The accuracies of the 

prediction models varied greatly for the crop moisture indicators.  

For example, when estimating EWTleaf, the DTR yielded the poorest model accuracy, with an 

RMSE of 25.16 gm-2 and R2 of 0.73. The accuracy in predicting EWTleaf improved slightly for 

the PLSR model (RMSE = 17.1 gm-2 and R2 =0.74). Similarly, the SVR and the ANNR models 

predicted EWTleaf at an improved accuracy of RMSE = 15.05 gm-2, R = 0.76 and RMSE =14.29 

gm-2, R2 = 0.84, respectively. The optimal algorithm in estimating EWTleaf was derived from 

the RFR model with an RMSE of 10.28 gm-2 and R2 of 0.89 (Table 2.5).  

Similarly, the ANNR model exhibited the lowest prediction accuracy in estimating FMCleaf 

(RMSE = 1.54 % and R2 = 0.34). This was followed by the PLSR with a RMSE of 0.48 % and 

R2 of 0.45. The prediction accuracy increased significantly with the DTR and the SVR models 

with a R2 =0.65 and R2 = 0.69, correspondingly. The RFR model optimally predicted FMCleaf 

with the highest model accuracy of RMSE = 0.45 % and R2 = 0.76 (Table 2.5). 
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When predicting SLAleaf, the lowest RMSE of 0.0008 g-1 m2 and R2 of 0.6 was obtained using 

the PLSR model. The ANNR model improved the prediction by a magnitude of 8, i.e., R2 = 

0.68. The accuracy derived from the DTR and SVR in predicting SLA differed slightly with an 

RMSE = 0.0009 m2 g-1 and R2 = 0.7, and RMSE = 0.0005 g-1 m2 and R2 = 0.71. The optimal 

model for estimating SLAleaf exhibited a RMSE of 0.0004 g-1 m2 and R2 of 0.73 (Table 2.5). 

Table 2. 5: Prediction accuracies of EWTleaf, FMCleaf and SLAleaf were derived using optimal 
models based on the RFR, DTR, ANNR, PLSR and SVR regression models 

 

2.3.3 Optimal models for estimating maize moisture content indicators 
 

Figure 2.3 illustrates the results obtained when all maize moisture content indicators were 

estimated based on the optimal regression models. The EWT leaf performed optimally as an 

indicator of maize moisture content with an rRMSE of 3.13 % and an R2 of 0.89. The most 

optimal variables that were selected in estimating EWT leaf were NDVI, NIR, NDWI, CIgreen, 

NDVIrededge, Red, CIrededge, NDRE and NGRDI, in order of importance (Figure 2.3 (a)).  

Meanwhile, the FMCleaf based on the PLSR model performed better than EWT leaf by 2.53 % 

with an rRMSE of 0.6 %. The most suitable predictor variables included NDRE, NIR, NDWI, 

CIrededge, NDVIrededge, red-edge, CIgreen, blue, thermal, NDVI, red and the green band (Figure 3 

(b)). Additionally, the FMCleaf SVR model produced a relatively high rRMSE of 0.89 %. 

However, although the rRMSE of these FMCleaf models were high, there was a high variation 

between the measured and estimated FMCleaf values with an R2 of 0.45 and 0.69, respectively. 

Model EWTleaf (gm-2) FMCleaf (%) SLAleaf (m2 g-1) 

R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE 

RFR 0.89 1028 3.13 0.76 0.45 1.00 0.73 0.0004 3.48 

DTR 0.73 25.16 7.67 0.65 1.08 1.35 0.7 0.0009 8.16 

ANNR 0.84 14.29 4.35 0,34 1.54 1.92 0.68 0.0007 6.60 

PLSR 0.74 17.1 5.15 0.45 0.48 0.60 0.6 0.0008 19.33 

SVR 0.78 15.05 4.76 0.69 0.70 0.89 0.71 0.0005 18.82 
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In comparison, the FMCleaf based on the RFR model exhibited an optimally high R2 of 0.76 and 

an acceptable rRMSE of 1%, making it the optimal FMCleaf model. 

The optimal model in predicting maize SLAleaf exhibited an rRMSE of 3.48 % and R2 = 0.73. 

The variables that had the highest influence in the SLA model were the NDVI, Thermal, NIR, 

NDRE, CIgreen, red-edge, NDVIrededge, CIrededge, NGRDI and the NDWI, in order of descending 

importance (Figure 2.3 (c)).  

The results revealed that the optimal indicators of maize moisture content based on the RFR 

models were FMCleaf and EWTleaf, followed by SLAleaf. Additionally, the UAV multispectral 

bands and derived VIs were successful in predicting all maize moisture content indicators.  
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Figure 2. 3: Relationship between the predicted and observed (a) EWTleaf, (b) FMCleaf and (c) 
SLAleaf of maize derived using optimal predictor variables and the model variable importance 
scores 
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2.3.4. Mapping the spatial distribution of maize leaf moisture content indicators 
 

The spatial distribution of leaf EWT, FMC, and SLA was estimated based on the optimal 

models. Figure 2.4 illustrates the spatial distribution of maize moisture content indicators. It 

can be observed that the moisture content of maize is relatively high throughout maize fields 

and seem to decrease towards the edge of the maize plot, with exception of the FMC, which 

revealed small patches of lower maize moisture content within maize fields. 

 

Figure 2. 4: Spatial distribution of (a) EWTleaf, (b) FMCleaf, and (c) SLAleaf of smallholder 
maize crops 
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2.4 Discussion 
 

Smallholder farmers are frequently faced with the need to optimize maize production, 

therefore, an assessment of maize water status through monitoring EWT, FMC and SLA could 

provide essential information for improving crop water use efficiency and enhancing maize 

productivity under water-limited conditions (El-Hendawy et al., 2019). The essence of this 

study was to assess and identify a suitable indicator for maize moisture content and evaluate 

the predictive performance of robust algorithms in predicting maize moisture status. Thus, this 

study sought to investigate the use of UAV-derived remotely sensed data and machine learning 

techniques in estimating maize EWT, FMC and SLA. 

2.4.1 Estimating maize moisture content indicators 
 

Results in this study indicate that when estimating maize equivalent water thickness, an optimal 

estimation accuracy (rRMSE =3.13 % and R2 =0.89) can be obtained based on spectral 

variables derived from the NIR section of the electromagnetic spectrum (NDVI, NIR, NDWI, 

and NDRE). Literature confirms that the quantity of water in crop leaves is statistically 

correlated with leaf reflectance across the spectrum (Mobasheri and Fatemi, 2013; 

Wijewardana et al., 2019; El-Hendawy et al., 2019). Specifically, the variation in water 

molecules present in the leaf cell strongly reflects solar radiation in the NIR region, hence, this 

section of the spectrum is commonly used to quantity leaf water status (Pasqualotto et al., 2018; 

El-Hendawy et al., 2019). Leaves which are characterised by high moisture status reflect highly 

in the NIR region due to multiple scattering within the leaf cell, which is primarily controlled 

by leaf cuticles, mesophyll thickness and intercellular air spaces and is directly linked to leaf 

moisture content (Sibanda et al., 2021b; Romero-Trigueros et al., 2017). Furthermore, the NIR 

section has widely proven to be related to the leaf water absorption zone, hence its optimal 

influence in estimating the leaf EWT of maize in smallholder farms. Correspondingly, studies 

by Mobasheri and Fatemi (2013) and Riaño et al. (2005) successfully illustrated the use of leaf 

optical reflectance in the NIR  section  of the electromagnetic spectrum in optimally predicting 

EWT with a R2 of 0.95 and 0.75, respectively. EWT also displayed high sensitivity to 

chlorophyll-based indices, especially, CIgreen and CIrededge. This could be explained by the 

fact that changes in the level of chlorophyll in leaves, which alters crop greenness and leaf 

pigmentation, is closely related to water status (Jurdao et al., 2013; Zhang and Zhou, 2015) As 
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in this study, Zhang and Zhou (2019) noted that these chlorophyll based indices presented a 

higher sensitivity to crop water indicators.  

Fuel moisture content (FMC) was optimally predicted to a model accuracy of rRMSE of 1 % 

and R2 = 0.76. The results of this study show that FMC is particularly sensitive to the red-edge 

waveband and associated derivatives of these spectral channels. For instance, there was a 

significant influence of the red-edge, NDRE, NDVIrededge and CIrededge in the prediction of maize 

FMC. Such sensitivity of the red-edge band in predicting FMC can be explained by its positive 

association with crop biomass as well as chlorophyll content, which is also positively correlated 

with FMC (Sibanda et al., 2021b). Generally, the variations in crop moisture content are largely 

associated with chlorophyll activity and leaf area index, which influence the reflectance of leaf 

tissue in the red-edge section of the electromagnetic spectrum (García et al., 2008). This was 

the case in studies by Bar-Massada and Sviri (2020) and Cao and Wang (2017) that confirmed 

a variation in the reflectance of green leaves under water-stressed conditions in the red-edge 

band, making this wavelength a significant predictor of FMC. 

Furthermore, NDWI, which is primarily derived from the NIR band, has a significant influence 

in the prediction of FMC. This VI is particularly important in predicting moisture content as it 

is sensitive to the variations of leaf reflectance induced by water molecules and dry matter 

content, hence, strongly correlates to plant water stress (Zhang and Zhou, 2015). A study by 

Sow et al. (2013) demonstrated the importance of the NDWI in predicting FMC by achieving 

an R2 of 0.85. In this regard, the literature supports the relationship between FMC and the red-

edge as well as the NIR sections of the electromagnetic spectrum (García et al., 2008; Sibanda 

et al., 2021b).  

Finally, the results in this study show that SLA could be estimated to an rRMSE of 3.48 %. R2 

of 0.73 and SLA was particularly sensitive to the UAV derived thermal, NIR and red-edge 

wavelengths. When crops are in a state of water deficit, there is an overall increase in crop 

surface temperature due to the closure of leaf stoma which decreases the evaporation cooling 

effect (Gerhards et al., 2019).  In this regard, the literature notes the fact that the thermal band 

has been well established as a key wavelength for early plant moisture stress detection 

(Gerhards et al., 2019; Mangus et al., 2016). Again, NDVI was the most influential predictor 

of maize SLA in this study. This could be explained by the fact that NDVI is proportional to 

chlorophyll content which is sensitive to the changes in crop moisture content (Wang et al., 

2016b). Furthermore, when crops are water-stressed, there is a decrease in absorption of 
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chlorophyll at the red wavelength and a decrease in reflectance at the NIR region due to the 

shrinkage of leaf thickness during the wilting process (Lim et al., 2020). In a similar study, Ali 

et al. (2017a) noted that NDVI was very effective in optimally estimating SLA (R2 = 0.73 and 

RMSE = 4.68%). Wijewardana et al. (2019) confirmed that the combination of both the NIR 

and red wavelengths allows NDVI to be an invaluable predictor of photosynthetic activity and 

long-term water stress.  Additionally, SLA was sensitive to the NDRE, NDVIredege as well as 

chlorophyll based VIs. The influence of these red-edge based VIs in predicting SLA stems 

from the fact that the variations in leaf thickness and area, as well as leaf pigmentation due to 

moisture stress, is promptly detected at the red-edge section (Easterday et al., 2019). In this 

regard, the variations in leaf photosynthetic capacity provide essential information pertaining 

to maize leaf water vapour and moisture content (Ali et al., 2017a). 

Furthermore, results illustrate that all maize leaf moisture content indicators were optimally 

predicted using UAV-derived data. Accordingly, FMC and EWT yielded the highest predictive 

power of moisture content, while SLA was effectively estimated. In comparison, the FMC and 

EWT are the most ideal crop water indicators for monitoring moisture stress using field 

spectroscopy techniques (Liu et al., 2015; Yi et al., 2014).  

2.4.2 The performance of machine learning algorithms in predicting maize 
moisture content indicators 

 

Results in this study show that the RFR approach is the most suitable explorative tool to predict 

all maize moisture content indicators. For instance, RFR optimally predicted FMC, EWT and 

SLA, producing the highest prediction accuracy (rRMSE = 1%, 3.13 % and 3.48 %). The RFR 

algorithm can effectively establish the relationship between leaf reflectance and maize moisture 

at a farm scale. The strength of RFR could be explained by the fact that the algorithm is not 

highly affected by noise in the data, hence there is a reduced risk of producing overfitting 

models (Abdel-Rahman et al., 2013; Zhu et al., 2017). In a similar study, Sibanda et al. (2021b) 

confirmed the robustness of the RFR model in modelling moisture content elements, 

particularly FMC by achieving optimal R2s as high as 1 and an RMSE of 16.4 %.  

The SVR approach was also optimal in predicting maize leaf EWT, FMC and SLA. The 

strength of the SVR lies in its ability to circumvent outliers and exhibit a high generalization 

capacity to handle unseen patterns (Liang et al., 2018). The results in this study reveal that the 

SVR is similar to the RFR in predictive power. This could be explained by the fact that the 

SVR and RFR ensembles optimally operate with a relatively small number of training samples, 
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which is often the case for data acquired at a field scale after avoiding spatial autocorrelation 

(Zhu et al., 2017; Wang et al., 2016b). Research has indicated that the presence of spatial 

autocorrelation, defined as the systematic spatial variation of the mapped variable, could result 

in biased and statistically invalid results (Sinha et al., 2019; Zhu et al., 2017; Liang et al., 

2018). Therefore, the results of this study demonstrate that the model properties of RFR and 

SVR are well suited for the estimation of smallholder maize moisture content. Generally, DTR 

did not perform well in predicting maize moisture indicators. This could be explained by the 

fact that DTR does not have features such as the bootstrapping in RFR and hyperplanes in SVR 

for effectively encompassing all the samples during the prediction procedure (Liang et al., 

2018). This can result in the DTR algorithm being conservative in its prediction procedure, 

hence exhibiting lower prediction accuracies. In this regard, there are very few studies that 

have evaluated its predictive performance in the context of canopy and leaf moisture content. 

In comparison, the ANN and PLSR exhibited a poorer performance in predicting maize 

moisture content. This could be due to the fact that both the ANN and PLSR are best suited for 

a large training dataset to produce credible results (Wang et al., 2016b; Yuan et al., 2017). As 

such, this study prompts future studies to investigate the optimal sample size required to 

produce accurate predictions of smallholder maize moisture content when using a combination 

of UAV imagery and machine learning techniques. Additionally, there are prospects to evaluate 

the ability of other empirical models and deep learning methods in accurately modelling maize 

water variability. 

2.5 Conclusion 
 

The present study tested the utility of UAV-based multispectral data in a comparative approach 

of estimating moisture content using RFR, SVR, DTR, ANNR and PLSR machine learning 

techniques and EWT, FMC and SLA of maize crops in smallholder farms. Based on the 

findings of the study, it can be concluded that:  

• EWT, FMC and SLA moisture content indicators of maize could be optimally predicted 

using NIR and red-edge derived spectral variables  

• The RFR and SVR modelling techniques have a more robust capacity of predicting 

moisture content indicators of maize in comparison to the DTR, ANNR and PLSR  

• FMC and EWT, in concert with the RFR approach, exhibited the highest predictive 

performance, therefore, are valid indicators of maize moisture content 
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This study demonstrates that UAV-derived multispectral data is capable of predicting maize 

moisture variations of smallholder farms with exceptional accuracy, hence can complement 

and inform farms drought-related water stress. However, there are research gaps that demand 

further inquiry, particularly on smallholder maize farms. Future studies should aim to evaluate 

the utility of UAV derived data and the optimal moisture indicators in characterising the 

variation of maize moisture content across different phenological stages. Furthermore, a key 

limitation of this study is the lack of the SWIR spectrum which would be valuable as it is an 

essential water absorption band. Therefore, additional studies are necessary to evaluate whether 

UAV sensors that measure spectral reflectance along the SWIR section of the electromagnetic 

spectrum improve the prediction of smallholder maize moisture content. Finally, this study was 

site and crop-specific, therefore, studies conducted across various climates, different 

smallholder crops and at a multi-temporal scale should be assessed to draw broad conclusions 

in characterising crop moisture stress. 
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CHAPTER THREE 

A multi-temporal remote sensing of smallholder maize leaf 
equivalent water thickness and fuel moisture content variability 
using an unmanned aerial vehicle (UAV) derived multispectral 

data 
Abstract 

Maize moisture stress, arising from rainfall variability, is a key challenge in the production of 

rain-fed maize farming, especially in water-scarce regions such as Southern Africa. 

Quantifying maize moisture variations throughout the growing season is valuable in supporting 

agricultural decision-making and rapid and robust detection of smallholder maize moisture 

stress. The emergence of unmanned aerial vehicles (UAV) equipped with multispectral sensors 

offer a unique opportunity for robust and rapid solution for continuously monitoring maize 

moisture content and stress. UAV proximal remote sensing offer near-real-time spatially 

explicit information on maize moisture variability at an exceptionally high temporal resolution. 

Furthermore, the use of physiological indicators such as equivalent water thickness (EWT) and 

fuel moisture content (FMC) provide a viable option for quantifying maize moisture content 

and detecting moisture stress in smallholder farming systems. Hence, this study evaluated the 

utility of UAV-based multispectral datasets for quantifying maize EWT and FMC throughout 

the phenological growth cycle of maize. Specifically, maize foliar moisture content indicators 

were measured at five different phenological periods from the early vegetative to the late 

reproductive growth stages. The random forest (RF) regression algorithm was used to predict 

maize leaf moisture content indicators at the different phenological growth stages of the 

growing season. The findings illustrated that the NIR and red-edge wavelengths were 

influential in characterising maize moisture variability with the best models for estimating 

maize EWT and FMC resulting in a rRMSE of 2.27 % and 1%, respectively. Furthermore, the 

early reproductive stage was the most optimal for accurately estimating maize EWT and FMC 

using UAV-proximal remote sensing. The findings in this study serve as a fundamental step 

towards the creation of an early maize moisture stress detection and warning system, and 

contribute towards climate change adaptation and resilience of smallholder maize farming. 

Keywords: unmanned aerial vehicles, maize moisture, temporal variability, precision farming 
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3.1 Introduction 
 

Maize (Zea mays L.) is an important and eminent food security crop that also serves as a 

valuable source of animal fodder, bio-energy and raw industrial material (Ge et al., 2012; Sah 

et al., 2020). However, maize moisture stress, arising from rainfall scarcity and variability, is 

a serious abiotic threat to maize production (Ge et al., 2012; Ndlovu et al., 2021a). Literature 

shows that maize is commonly grown in regions that receive annual average precipitation of 

300-500mm, which is below the critical level of water supply for achieving a good maize yield 

(Sah et al., 2020). This is a serious concern, particularly in Southern Africa, which is a water-

scarce region that only receives an average and seasonal precipitation of 450 mm per annum 

(Nembilwi et al., 2021; DAFF, 2017). Despite enduring a semi-arid climate, more than 85% of 

Southern Africa’s smallholder maize farms are rain-fed (Ngoune Tandzi and Mutengwa, 2020). 

According to Sah et al. (2020), climatic conditions, specifically seasonal rainfall variability, is 

a significant limiting factor of maize moisture status, which ultimately regulates maize 

production. Therefore, there is a need for innovative and sustainable approaches of monitoring 

maize moisture status throughout the growing season for developing early detection and 

warning systems of moisture stress for the adoption of relevant mitigation measures. 

Maize moisture stress results in numerous physiological and biochemical changes, including a 

reduction in crop metabolism, increase in stomatal closure and a decrease in dry matter 

production and leaf area (Song et al., 2019; Zhang et al., 2019b). Subsequently, water deficit 

negatively impacts maize productivity, impairs crop growth and development, which in turn 

significantly reduces yield (Ghooshchi et al., 2008; Ge et al., 2012). A study by Ge et al. (2012) 

and Avetisyan and Cvetanova (2019) noted that crop water status varies with crop development 

stages as well as response of environmental conditions, metabolic activity and hydraulic 

adaptations (Okunlola et al., 2017). Ghooshchi et al. (2008) indicated that the maize tasselling 

and silking growth stages are most sensitive to impacts of moisture variability while Sah et al. 

(2020) noted that the earlier phenological stages of maize are less subjected to water stress due 

to favourable climatic conditions. Therefore, the quantitative assessment of maize moisture 

content throughout the growth cycle offer valuable knowledge of maize growth and 

development and is a key pathway towards developing adaptive strategies for increasing 

smallholder maize resilience to water stress. 

The most widely used physiological indicators of maize moisture content are equivalent water 

thickness (EWT) and fuel moisture content (FMC) (Ndlovu et al., 2021a; Mobasheri and 
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Fatemi, 2013; Yi et al., 2014; Elsherif et al., 2019). EWT is a leaf water status metric that is 

defined as the ratio between the quantity of water and leaf area (Elsherif et al., 2019; Niinemets, 

2001). Zhang and Zhou (2019) stated that EWT is closely associated with plant biochemical 

processes such as photosynthesis, plant metabolism and crop evapotranspiration, hence it is a 

suitable indicator of moisture stress. FMC is defined as the proportion of water to dry matter 

(Yi et al., 2014; Matthews, 2013), and has been widely used for plant water stress, drought 

monitoring and as a measure of ignition and fire propagation potential (Sibanda et al., 2021b; 

Yi et al., 2014; Ndlovu et al., 2021a). A study by Ndlovu et al. (2021a) confirm that EWT and 

FMC are valuable indicators of the maize water content of smallholder farming systems as 

these indicators demonstrated the highest correlation with spectral data. Therefore, quantifying 

maize leaf EWT and FMC can provide valuable information for the early detection of maize 

moisture stress and monitoring of maize physiology throughout the growth period to inform 

small-scale agricultural decision making.  

Conventionally, variations in maize EWT and FMC relied on direct measurements and the 

visual assessment of maize physiology conducted by trained experts (Chivasa et al., 2020).   

However, these methods are extremely time-consuming, tedious, subject to human error and 

cannot sufficiently reflect spatial and temporal variability in maize moisture status (Zhang et 

al., 2012; Jin et al., 2017; Mobasheri and Fatemi, 2013). Furthermore, field data collection 

requires continuous measurements throughout the maize growth cycle, hence, making 

implementation marginally feasible (Yue et al., 2018a; Chivasa et al., 2020). Meanwhile, a 

large body of literature has explored the potential of satellite remote sensing techniques in 

quantifying crop productivity, health and water status (Pasqualotto et al., 2018; El-Hendawy 

et al., 2019; Krishna et al., 2019a). For example, a study by Kamali and Nazari (2018) 

estimated maize water requirement using Landsat-8 data to a rRMSE of 0.73 mm/day, while 

Ambrosone et al. (2020) quantified soil moisture content of rain-fed and irrigated fields using 

Sentinel-2 multispectral imagery and achieved an optimal R2 of 0.80 and RMSE of 0.06 cm3cm-

3. However, multispectral satellite sensors are restricted in their ability to accurately monitor 

variations in maize moisture content throughout the growing season as they are limited by 

coarse spatial resolution and a longer revisit time for plot-level maize observations (Chivasa et 

al., 2020; Krishna et al., 2019a). On the contrary, high-resolution multispectral sensors such as 

WorldView and new generation hyperspectral datasets such as QuickBird provide viable 

options for continuous water stress detection of maize crops at field scale (Chemura et al., 

2017; Easterday et al., 2019). Nonetheless, these datasets are limited by the high image 
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acquisition cost and operational complexity for application in smallholder maize crops 

(Chivasa et al., 2020). Consequently, there is need for methods that can provide spatially 

explicit datasets with a high temporal resolution to monitor changes in smallholder maize leaf 

moisture content throughout the growth period.  

Recent advances in technology, particularly the Unmanned Aerial Vehicle (UAV) has heralded 

a new era in remote sensing, mapping and data analytics within precision agriculture (Maes 

and Steppe, 2019; Hoffmann et al., 2016; Tang et al., 2019). The use of light weight 

multispectral sensors mounted on UAVs offer great possibilities for continuous near-real-time 

crop monitoring at a farm level (Chivasa et al., 2020). UAVs are unique in that they can provide 

high-quality remote sensing data at unprecedented spatial, spectral and temporal resolutions 

(Maes and Steppe, 2019; Ndlovu et al., 2021a). In addition, UAVs mounted sensors capture 

imagery at low altitudes and can hover over areas of interest, making them a desirable tool for 

monitoring changes in maize moisture content at different phenological stages (Tsouros et al., 

2019). Furthermore, UAVs provide a cost-effective option to obtain frequent imagery at an 

ultra-high spatial resolution, often in centimetres, which is necessary for the monitoring of crop 

physiology at a plot level (Maes and Steppe, 2019). For example, in a comparative study 

between UAV-based data and satellite imagery, Matese et al. (2015) confirmed that UAV-

derived datasets are capable of detecting even the most subtle variations in crop physiological 

characteristics; a challenge even for high-resolution satellite imagery such as RapidEye. A 

study by Tang et al. (2019) demonstrated the value of UAV-derived multispectral data in 

predicting maize evapotranspiration with an R2 of 0.81 and RMSE of 0.95 mm/day. 

Nonetheless, the ability of UAV imagery to adequately discriminate maize moisture content 

variability across the growing season remains untested. Therefore, the potential application of 

UAVs, equipped with multispectral sensors in characterising smallholder maize moisture status 

at different growth stages still requires investigation.  

Considering that moisture content in leaf tissue is a critical influencer of crop survival, 

accurately monitoring crop water status using spectral reflectance measurements has been a 

key objective in environmental research (Pasqualotto et al., 2018). The rationality of estimating 

maize moisture content stems from the fact that literature confirms the existence of a strong 

relationship between foliar water concentration and spectral absorption at specific near-infrared 

(NIR) and the shortwave infrared (SWIR) wavelengths of the electromagnetic spectrum 

(Chemura et al., 2017). For instance, water molecules in leaf tissue produce maximum 

absorption features along the NIR (750-1300 nm) section of the spectrum as a result of a 
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decrease in leaf reflectance (Pasqualotto et al., 2018; Wijewardana et al., 2019; Krishna et al., 

2019a). Furthermore, there are secondary effects of water absorption in the visible region of 

the electromagnetic spectrum (blue, green and red) which are influenced by leaf internal 

structure and water transmissivity (Chemura et al., 2017; Mobasheri and Fatemi, 2013). This 

makes these sections of the spectrum sensitive to changes in water content and therefore a 

plausible proxy for crop water stress detection. To enhance the spectral characteristics of crop 

leaf reflectance, several studies have demonstrated the utilization of empirical models and 

vegetation indices (VIs) to predict crop moisture content (Pasqualotto et al., 2018; Xue and Su, 

2017). For example, studies have reported the Normalised Difference Water Index (NDWI) as 

a water content-sensitive index that can be used to predict crop moisture throughout the 

growing season (Xu et al., 2020; Zhang and Zhou, 2015). Krishna et al. (2019a) noted that 

even though the Normalised Difference Vegetation Index (NDVI) is optimal for crop 

chlorophyll content estimations, the index is highly correlated to the plant water status, hence, 

is also a valuable predictor of maize moisture content. Therefore, with the understanding of 

crop leaf reflectance across the electromagnetic spectrum, UAV-derived spectral datasets 

provide a viable approach to quantifying intra-species moisture content variability of 

smallholder maize crops throughout the growth cycle.  

Considering that limited studies have evaluated the feasibility of using UAV-based proximal 

remotely sensed data in accurately monitoring maize moisture content across all phenological 

stages (Zhang and Zhou, 2019), there is a need to assess the value of UAV-derived data in 

mapping crop moisture content variability. This study, therefore, sought to evaluate the utility 

of UAV-derived multispectral imagery in estimating the spatio-temporal variability of 

smallholder maize leaf EWT and FMC across the maize growing season.  

 
3.2 Materials and Methods 
 

3.2.1 Study site description 
 

This study was conducted in Swayimane (29° 31’ S, 30° 41’ E), uMshwati Municipality, 

KwaZulu-Natal, South Africa (Figure 3.1). The study area experiences a sub-tropical climate, 

with a mean annual rainfall of 500-800 mm per annum and an average air temperature between 

11.8 ℃ and 24 ℃ (Basdew et al., 2017). Swayimane is located at an altitude of 886 m above 

sea level and is characterised by a relatively flat topography. The soil of the study area is 
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classified as deep and dark clay loam soils, which indicate high organic matter and soil fertility 

(Ndlovu et al., 2021b). The land in Swayimane is predominantly used for commercial and 

small-scale subsistence agriculture, with the cultivation of several crops including taro, sweet 

potatoes, spinach, beans, sugarcane and maize (Ndlovu et al., 2021b). The study area is situated 

within the moist midlands mistbelt bioclimatic region prone to berg winds, extreme clouds, 

flash floods, seasonal hail and occasional periods of drought (Mahomed et al., 2021). The area 

has been identified by the Umgeni Resillience Project as a climate change hot-spot region 

(Keen and Winkler, 2020). Climate projections of the area indicate an increase in temperature 

and unpredictable variations in annual precipitation resulting in an increased risk of climate-

driven events, including an increase of drought (Mahomed et al., 2021). As such, it is an area 

of interest to climatologists and agronomists studying means of combating the impacts of 

climate variability on smallholder agricultural systems.  

 

Figure 3. 1: Location of the study area in Swayimane, South Africa 

3.2.2 Experimental design and crop management 

 

The maize moisture content was continuously monitored through the maize phenological 

stages. Field measurements were conducted at two-week intervals for five growth stages: 8th 
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leaf collar – 10th leaf collar (V8-V10), 14th leaf collar – tasselling (V14-Vt), silking – blister 

(R1-R2), blister – milk (R2-R3) and dough – dent (R3-R4). Figure 3.2 illustrates the 

biophysical condition of maize at the various phenological growth stages. The experimental 

plot was 50 m long and 30 m wide and occupied a gentle topography. Maize crops were sown 

on the 8th February 2021 and corn kernels harvested on the 17th May 2021. Cow urea and 

manure were applied as crop fertilizer before sowing and a combination of manual hand 

weeding and herbicide application conducted when the maize crops were 21 days old. The 

experimental plot relied primarily on precipitation for water supply. The study plots were not 

irrigated nor fertilizer applied during the entire growing season. Figure 3.3 presents the 

bioclimatic conditions of the study plot during the maize growing period; derived from an 

automatic weather station, located approximately 860 m from the experimental plot.  

 

Figure 3. 2: Biophysical conditions of maize across the phenological growth period 
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Figure 3. 3: Bioclimatic condition of maize across the phenological growth period 

 

3.2.3 UAV platform, imagery acquisition and processing 
 

The Altum MicaSense multispectral camera and a DJI Matrice 300 series UAV platform were 

used to acquire spectral images of maize at the five phenological growth stages of the season 

(Figure 3.4). The main advantage of this UAV platform is its ability to acquire imagery in a 

range of environmental conditions at a high speed (one capture per second) and to provide 

imagery with high geolocational accuracy. The UAV platform has a built-in Global Positioning 

System (GPS) unit which receives positional information for subsequent image georeferencing. 

The Micasense sensor consists of six spectral bands that capture spectral reflectance in the blue, 

green, red, rededge, NIR and thermal regions of the electromagnetic spectrum (Figure 3.4 (b)). 

A flight plan was coordinated on Google Earth Pro using a shapefile of the study site and 

exported to the UAV handheld console for navigation. A calibrated reflectance panel was used 

to radiometrically calibrate the UAV sensor and improve image accuracy. The flight was then 

carried out autonomously at a flight height of 100 m, a ground sampling distance of 9.6 cm and 

an 80 % image overlap.  The raw multispectral data, consisting of approximately 3400 images, 

were mosaicked to form a single image of the study area using Pix4D Fields photogrammetry 

software. The image was further georeferenced in QGIS 3.4.0 to optimise geolocation 

accuracy.  
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Figure 3. 4: a) UAV imaging platform and b) MicaSense multispectral camera used in this 
study 

3.2.4 Field survey and measurements of maize moisture content 
 

Field measurements were conducted on the 18th March (V8-V10), 31st March (V14-Vt), 12th 

April (R1-R2), 28th April (R2-R3) and 14th May (R3-R4) in 2021. A stratified random sampling 

procedure was used to generate a total of 65 random sampling points within the experimental 

plot. This method is optimal for acquiring an unbiased representative sample of the 

experimental maize plot. A Trimble handheld GPS with a sub-meter accuracy was used to 

navigate to these sampling points at each stage of the maize growth period. At each sample 

point, the third fully developed maize leaf from the top of the stalk was sampled. Literature 

states that to obtain reliable maize physiological measurements, fully developed leaf samples 

should be taken from the top of the canopy as there is maximum reflectance of light energy. 

Meanwhile, the sampling of young crops can lead to plant stress, which can ultimately cease 

crop growth (Mulla, 2013; Wahbi and Avery, 2018). In this regard, maize leaf sampling was 

not conducted during the emergence stages, specifically from germination to the 5th leaf collar 

growth stage. Crop moisture content measurements were conducted under near-cloud free 

conditions between 12:00 noon and 14:000 as this is the most optimal photosynthetic period of 

the day with radiation at maximum  (Sade et al., 2015b). A portable leaf area meter (LI-3000C) 

with one mm2 resolution was used to measure the leaf area (A) of sampled leaves. A calibrated 

scale was used to obtain the fresh weight (FW) of maize leaf samples, which were then dried 

in an oven at 70° C until a constant dry weight (DW) was reached (± 48 hours). The leaf 

equivalent water thickness (EWTleaf in gm-2) and fuel moisture content (FMCleaf in %) were 

then computed using the FW, DW and A of maize leaves based on the formula. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = FW−DW
A

            Units: gm-2 ………….………………….eq.1         
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = FW−DW
DW

𝑥𝑥 100     Units: %………….………………….eq.2         

Where FW is the fresh weight, DW is the dry weight and A is the leaf area. The computed 

EWTleaf and FMCleaf were recorded in an excel spreadsheet against the coordinate of each 

sampling point, which was later converted into a point map in ArcMap version 10.3.1.  

3.2.5 Selection of vegetation indices 
 

The six UAV-derived spectral bands were used to estimate maize EWTleaf and FMCleaf. These 

bands were also used to compute vegetation indices (VIs) used to estimate maize moisture 

indicators. Studies have confirmed the ability of the visible and NIR channels of the 

electromagnetic spectrum to detect subtle variations in vegetation water characteristics 

(Chemura et al., 2017; Pasqualotto et al., 2018). Based on exisiting literature, a total of ten 

moisture content related VIs were computed based on their correlation with maize moisture 

content indicators. Table 3.1 includes further details on the VI used to estimate maize moisture 

content. 

Table 3. 1: Selected vegetation indices (VIs) used for maize moisture content estimations  

Vegetation Index Equation Reference 

NDWI (Green - NIR / Green + NIR) (Miller et al., 2020) 
NDVI (NIR - Red / NIR + Red) (Krishna et al., 2019a) 

NGRDI (Green - Red / Green + Red) (Hoffmann et al., 2016) 
NDRE (NIR - Rededge / NIR + Rededge) (Zhang et al., 2019b) 

NDVIrededge (Rededge - Red / Rededge + Red) (Zhang et al., 2019b) 
CIgreen ((NIR/Green) -1) (Zhang and Zhou, 2015) 

CIrededge ((NIR/Rededge) -1) (Zhang and Zhou, 2015) 
SR (NIR/Red) (Xue and Su, 2017) 

OSAVI ((NIR - Red)/(NIR + Red + 0,16)) (Xue and Su, 2017) 
 

3.2.6 Model development and statistical analysis 
 

The random forest (RF) regression provides a reliable and efficient method for performing 

complex and multi-dimensional environmental data analysis that would naturally be time-

consuming to observe (Lu and He, 2019). In this study, RF regression algorithm was used to 

predict maize leaf moisture content indicators (EWTleaf and FMCleaf) at different phenological 

growth stages of maize crops because of its simplicity and robustness (Sibanda et al., 2021b). 
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The RF ensemble is a machine learning technique that uses bootstrap aggregation and binary 

recursive partitioning to construct several independent trees using a random subset derived 

from the training data (Lu and He, 2019). The robustness of RF originates from the capacity of 

the algorithm to use bootstrap aggregation to build regression trees that are grown to their 

maximum sizes, which are then used to allocate an input variable (spectral bands and VIs) to a 

response variable (EWTleaf or FMCleaf) using unweighted averaging (Jeong et al., 2016). 

Additionally, the out-of-bag samples, which are samples that have been excluded from the 

bootstrap aggregation, are used by RF ensemble to evaluate the generated regression model 

(Abdel-Rahman et al., 2013). However, a common challenge with regression models is 

multicollinearity which results from a high level of correlation between two or more predictor 

variables (Chivasa et al., 2021). As such, it is advisable to use only the most suitable predictor 

variables in building regression models (Jeong et al., 2016). Variable importance selection was 

adopted to resolve any potential collinearity and select the best and the fewest predictor 

variables for the RF model. RF can compute Gini impurity scores that are used to identify 

predictor variables that are most influential in prediction (Sibanda et al., 2021b). Therefore, 

the most important predictor variable was identified by a higher Gini impurity score. The best 

predictor variables were then used to develop the final RF model of maize moisture content at 

each growth stage. Before the analysis, the dataset of randomly split into training data (70%:46 

samples) and validation data (30 %:19 samples). The former was used to develop the regression 

model and the latter to evaluate the predictive performance of the model. 

 
3.2.7 Accuracy assessment and model validation 

 

The prediction accuracy of the derived RF models was assessed based on the coefficient of 

determination (R2), the root mean square error (RMSE) and the relative root mean square error 

(rRMSE). The R2 is a statistical measure of the variation between measured and predicted output. 

It also measures how well the response variable fits into the regression line. Additionally, the 

RMSE assesses the magnitude of error between field measurements and the modelled maize 

moisture content. Meanwhile, the rRMSE was used as a metric to compare the performance of 

EWTleaf to FMCleaf at the different maize growth stages. The optimal model for estimating maize 

moisture content indicators at different phenological stages was determined based on the highest 

R2 and the lowest RMSE and rRMSE.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)2

𝑛𝑛
     ………….………………….eq.1         
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

× 100     ………….………………….eq.2         

where predicted is the modelled variables and actual is the measured variables. Lastly, a map 

illustrating the spatial and temporal distribution of the predicted maize EWTleaf or FMCleaf at every 

growth stage was generated. The RMSE and the rRMSE were calculated based on the above 

formulas. 

 

3.3 Results  
3.3.1 Descriptive statistics and temporal variation in EWTleaf and FMCleaf during 
the maize phenological cycle 

 

Figure 3.5 illustrates the temporal variation of measured EWTleaf and FMCleaf throughout the 

maize growing season. As expected, there was a variation in maize EWTleaf and FMCleaf 

measured across the maize phenological season. Both maize EWTleaf and FMCleaf displayed a 

decreasing trend in moisture content as the growing season progressed. The lowest mean 

EWTleaf were observed at the late reproductive stages of maize development, particularly 

during the R2-R3 stage (96.45 ± 62.15 gm-2) while, the highest EWTleaf was at the V8-V10 

growth stages (274.45 ± 43.25 gm-2) (Table 3.2). The R2-R3 growth stage had the lowest mean 

FMCleaf (48.59 ± 14.66 %) while the greatest mean FMCleaf was observed at the R1-R2 maize 

growth stage (84.48±2.23 %) (Table 3.2). The results of a Kolmogorov-Smirnov normality test 

indicated that the distribution of the measured maize EWTleaf and FMCleaf were not significantly 

deviating from a normal distribution curve, hence a Pearson correlation was conducted to 

examine the relationship between maize EWTleaf and FMCleaf, and rainfall. Based on the 

Pearson correlation test, there was a statistically significant correlation between maize EWTleaf 

and rainfall (R2 = 0.97, r= 0.90, p < 0.05). Similarly, a correlation test between maize FMCleaf 

and rainfall indicated a statistically significant (R2 of 0.77, r= 0.81, p < 0.05).  
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Figure 3. 5: Temporal variation of maize EWTleaf and FMCleaf during the maize growing 
season 

 

Table 3. 2: Descriptive statistics of EWTleaf and FMCleaf at the different phenological stages  

Maize 
growth 
stage 

Variable Range (min-
max)  Mean Median Std. CV % SEM 

V8 - V10 
EWT (gm-2) 169.35 - 462.73 274.45 270.47 43.25 15.76 5.45 

FMC (%) 73.72 - 90.91 81.72 81.63 2.32 2.84 0.29 

V14 - Vt 
EWT (gm-2) 154.76 - 329.33 228.57 229.13 49.67 21.73 6.26 

FMC (%) 69.93 - 86.05 79.17 79.01 2.89 3.65 0.36 

R1 - R2 EWT (gm-2) 159.86 - 249.66 209.38 211.34 17 8.12 2.14 

FMC (%) 77.78 - 91.59 84.48 84.23 2.73 3.24 0.34 

R2 - R3 
EWT (gm-2) 11.66 - 448.71 96.48 91.9 62.15 64.41 7.83 

FMC (%) 8.11 - 85.98 48.59 50 14.66 30.18 1.85 

R3 - R4 
EWT (gm-2) 25.33 - 360.21 135.7 121.01 62.66 46.17 7.89 

FMC (%) 59.52 - 82.14 69.72 69.77 4.04 5.79 0.51 
 

3.3.2 Estimating maize EWTleaf and FMCleaf throughout the maize growing season 

 

Table 3.3 illustrates the accuracies obtained in estimating maize EWTleaf and FMCleaf 

throughout the growing season based on UAV bands only, vegetation indices (VIs) as well as 
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the combination of UAV bands and VIs. Generally, UAV bands resulted in relatively lower 

model accuracies at all maize growth stages. For example, when estimating EWTleaf, UAV 

bands exhibited the lowest accuracy at the V14-Vt and R1-R2 growth stages yielding a RMSE 

of 47.58 gm-2 and R2 of 0.53, and RMSE of 13.13 gm-2 and R2 of 0.59, respectively. Similarly, 

in estimating maize FMCleaf, the lowest RMSEs were obtained when using UAV bands at the 

R1-R2, R2-R3 and R3-R4 maize growth stage with RMSE of 1.13 gm-2 and R2 of 0.59, RMSE 

of 11.05 gm-2 and R2 of 0.53, and RMSE of 3.05 gm-2 and R2 of 0.57, respectively. 

The use of VIs improved model accuracies of maize EWTleaf and FMCleaf. For example, the 

EWTleaf model slightly improved by a magnitude of 6.43 from a RMSE of 47.58 gm-2 to 41.15 

gm-2 at the V14-Vt maize growth stage. Again, in estimating FMCleaf, the use of VIs improved 

the model accuracy from 11.05 gm-2 to 7.94 gm-2 at the R2-R3 growth stage. 
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Table 3. 3: Estimation accuracies of EWTleaf and FMCleaf derived using UAV bands, vegetation indices and the combination of both 

Maize growth stage Predictor variables EWTleaf FMCleaf 

R2 RMSE rRMSE R2 RMSE rRMSE 

V8-V10 UAV bands 0.52 14.38 4.89 0.42 2.22 2.69 
Vegetation indices 0.6 14.98 4.91 0.44 2.35 2.85 

V14-Vt UAV bands 0.53 47.58 23.01 0.52 1.93 1.98 
Vegetation indices 0.7 41.15 19.9 0.56 2.15 2.76 

R1-R2 UAV bands 0.59 13.13 6.46 0.59 1.13 1.34 

Vegetation indices 0.78 11.17 5.5 0.76 0.9 1.09 

R2-R3 UAV bands 0.63 16.71 17.73 0.53 11.05 26.72 
Vegetation indices 0.7 37.21 50.67 0.73 7.94 18.71 

R3-R4 UAV bands 0.58 24.49 18.71 0.57 3.05 4.47 
Vegetation indices 0.66 40.39 32.95 0.67 2.68 3.94 
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The optimal models for predicting maize EWTleaf and FMCleaf at all growth stages were 

determined by combining UAV bands and VIs. For example, when estimating maize EWTleaf, 

the combined datasets exhibited the highest model accuracies with a RMSE of 5.31 gm-2 and 

R2 of 0.88 at the R1-R2 growth stage, and a RMSE of 10.28 gm-2 and R2 of 0.89 at the R2-R3 

growth stage. Similarly, when estimating FMCleaf, the highest model accuracies were obtained 

when UAV bands and VIs were used (RMSE of 0.88 gm-2 and 0.45 gm-2 at the R1-R2 and R2-

R3 stages, respectively). 

Figure 3.6 illustrates the optimal models obtained for estimating maize EWTleaf at each maize 

growth stage. During the early vegetation growth stages, maize EWTleaf at the V8-V10 

phenological stage was predicted to a RMSE of 13.03 gm-2 and R2 of 0.69. The top-most 

suitable predictor variables in estimating EWTleaf at this stage were NDVIrededge, thermal, 

rededge, NGRDI, CIrededge, NDVI, OSAVI, NDRE, NIR, red, NDWI, CIgreen and SR, in order 

of importance (Figure 3.6 (a)). The V14-Vt exhibited the poorest prediction accuracy of maize 

EWTleaf during the vegetative stages (RMSE = 23.99 gm-2 and R2 of 0.76) using NDVI, 

CIrededge, red-edge, NDRE, NDWI, CIgreen, NIR, thermal, blue, NDVIrededge, NGRDI, green and 

red, in descending order of importance (Figure 3.6 (b)).The most optimal maize growth stage 

for estimating EWTleaf was observed in the early reproductive R1-R2 growth stage, which 

yielded the highest model accuracy across all phenological stages (RMSE of 5.31 gm-2 and R2 

of 0.88) based on NDVIrededge, rededge, NIR, NDVI, NDRE, NGRDI, blue, CIrededge, NDWI, 

and CIgreen, red, thermal and green, in order of importance (Figure 3.6 (c)). Hereafter, a 

decrease in EWTleaf model accuracy was observed in all later stages of maize growth. For 

example, the estimation accuracy of EWTleaf decreased by 4.97 gm-2 to an RMSE of 10.28 gm-

2 in the R2-R3 maize growth stage, in comparison to 5.31 gm-2 from the R1-R2 stage. 

Nonetheless, an R2 of 0.89 was attained from predicting maize EWTleaf during the R2-R3 

growth stage. The influential predictor variables on that model included NDVI, NIR, NDWI, 

CIgreen, NDVIrededge, red, CIrededge, NDRE and NGRDI, accordingly (Figure 3.6 (d)). 

Furthermore, the maize EWTleaf model accuracy depreciated at the R3-R4 growth stage 

yielding a RMSE of 12.66 gm-2 and R2 of 0.77). The optimal from this model were NDVI, 

NIR, NDWI, CIgreen, NDVIrededge, and red, CIrededge, NDRE and NGRDI, in order of descending 

importance (Figure 3.6 (e)). 
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Figure 3. 6: Relationship between the predicted and observed maize EWTleaf at (a), V8 - V10, 
(b) V14 – Vt, (c) R1-R2, (d) R2-R3 and (e) R3-R4 phenological growth stage and the optimal 
model variable importance scores 
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Figure 3.7 illustrates the optimal models attained in estimating maize FMCleaf across all growth 

stages. The estimation of maize FMCleaf at the V8-V10 growth stage yielded a moderate RMSE 

of 1.13 %, however, it exhibited a low R2 of 0.66 based on NDVI, NDVIrededge, thermal, red, 

SR, rededge, NGRDI, green, NDWI, NIR, NDRE, OSAVI, CIrededge, CIgreen and blue, in order 

of importance (Figure 3.7 (a)). Meanwhile, at the V14-Vt growth stage, the maize FMCleaf ‘s 

yielded a RMSE = 1.44 % and an optimal R2 = 0.73. The most suitable predictor variables 

included NDRE, rededge, CIgreen, NIR, NDWI, CIrededge, NDVI, NDVIrededge, thermal, green, 

blue, NGRDI and red, in order of decreasing importance (Figure 3.7 (b)). 

Meanwhile, the maize FMCleaf prediction accuracy significantly increased in the early 

reproductive stages of the maize growing season. For example, the R1-R2 maize growth stage 

yielded a RMSE of 0.88 % and a R2 of 0.87 using NDVI, rededge, NDVIrededge, NIR, NDRE, 

CIrededge, blue, NGRDI and red, in order of importance (Figure 3.7 (c)). The optimal 

phenological growth stage for optimally estimating maize FMCleaf was the R2-R3 growth stage, 

which yielded the highest model accuracy with a RMSE = 0.45 % and R2 of 0.76. This optimal 

maize FMCleaf model was derived based on the NDRE, NIR, NDWI, CIrededge, NDVIrededge, 

rededge, CIgreen, blue, thermal, NDVI, red and green predictor variables. (Figure 3.7 (d)). 

Meanwhile, the later reproductive growth stages demonstrated the lowest FMCleaf prediction 

accuracies. Maize FMCleaf at the R3-R4 growth stage yielded the poorest prediction accuracy 

with a RMSE of 1.54 % and R2 of 0.72. Finally, the most optimal variables that were selected 

in estimating maize FMCleaf at this growth stage were NDVIrededge, CIrededge, NDRE, NDWI, 

CIgreen, NDVI, red, green, NIR, NGRDI, red-edge, thermal and blue, in order of importance 

(Figure 3.7 (e)). 



Page | 63  
 

 

Figure 3. 7: Relationship between the predicted and observed maize FMCleaf at (a), V8 - V10, 
(b) V14 – Vt, (c) R1-R2, (d) R2-R3 and (e) R3-R4 phenological growth stage and the optimal 
model variable importance scores 
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In comparison, the results illustrate that the prediction accuracy of maize EWTleaf and FMCleaf 

vary for each phenological stage across the growing season. For example, the maize FMCleaf 

outperformed EWTleaf with an rRMSE of 1.38 % as opposed to rRMSE of 4.79% (Figure 3.6 

and 3.7 (a)). Similarly, the prediction accuracy of maize FMCleaf (rRMSE = 1.88%) was 

significantly higher than that of maize EWTleaf (13.29 %) by a magnitude of 11.41 % (Figure 

3.6 and 3.7 (b)). Again, at the R1-R2 maize growth stage, EWTleaf exhibited an rRMSE of 2.72 

% while FMCleaf of maize had a higher prediction accuracy with rRMSE of 1.08 % (Figure 3.6 

and 3.7 (c)). Similarly, model accuracies for predicting maize FMCleaf were marginally higher 

than EWTleaf at the R2-R3 growth stage, with an rRMSE = 1% and 3.13 % respectively. 

Nonetheless, EWTleaf at this stage produced the highest R2 of 0.89 in comparison to FMCleaf 

which yielded a R2 of 0.76 (Figure 3.6 and 3.7 (d)). Finally, FMCleaf produced an rRMSE of 

1.91 % at the R3-R4 maize growth stage, as compared to the rRMSE of 3.79 % which was 

exhibited by the maize EWTleaf model (Figure 3.6 and 3.7 (e)). 

Figure 3.8 and Figure 3.9 illustrate the spatial distribution of maize EWTleaf and FMCleaf across 

the five maize phenological growth stages. It can be observed that maize EWTleaf and FMCleaf 

was higher in the eastern region and decreases towards the western section of the experimental 

maize plot.  
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Figure 3. 8: Spatial distribution of modelled maize EWTleaf across the different stages of the growing season 
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Figure 3. 9: Spatial distribution of modelled maize FMCleaf across the different stages of the growing season
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3.4 Discussion 
 

The emergence of UAV-derived data with high spatial and temporal resolution, presents a 

valuable tool for monitoring maize moisture content variability throughout the growing season 

(Chivasa et al., 2020). Reliable determination of spatio-temporal variations in maize moisture 

is necessary for the early detection of moisture stress and identification of moisture-sensitive 

growth stages, necessary for the development of precision agricultural management practices 

(Zhang and Zhou, 2015; Wang et al., 2016b; Ghooshchi et al., 2008).  

3.4.1 The influence of precipitation on maize moisture content variability 
 

The findings of this study revealed a decreasing trend between precipitation and maize EWTleaf 

and FMCleaf across the growing season. The reduction of maize moisture content across the 

growing season along with the reduction in precipitation received in the study area implies that 

a decrease in precipitation results in a reduction in the amount of water available to maize crops 

(Zhang et al., 2019b; Geneti, 2019). This finding is supported by a large and growing body of 

literature suggesting that climatic variables, such as rainfall, influence the amount of foliar 

moisture and ultimately crop growth and development (Zhang et al., 2018a; Bois et al., 2020; 

Geneti, 2019).  Xu et al. (2012) argued that moisture availability is a serious challenge for rain-

fed maize crops. The findings of this study are in agreement with those of Mumo et al. (2018) 

who confirmed that a substantial decrease in rainfall resulted in maize moisture deficiency 

which drastically reduced rain-fed maize yield by 67.53 %. Furthermore, the variation in maize 

moisture, specifically the decrease of maize EWTleaf following the course of crop development, 

can be due to the reduction in leaf area as a result of moisture stress (Zhang et al., 2018a). 

Literature has confirmed that when crops are in a state of water deficit, transpiration of the leaf 

surface is minimised by reducing leaf area expansion in order to maintain sufficient moisture 

levels (Song et al., 2019; Gomez-del-Campo et al., 2002). This finding supports the rationale 

of utilising EWTleaf and FMCleaf as a surrogate measure of crop water stress. 

3.4.2 Estimation of maize moisture indicators from UAV-derived spectral 
reflectance 

 

Results of this study showed that optimal estimation of EWTleaf can be obtained at the silking 

– blister (R1-R2) growth stage of maize (R2 = 0.88, RMSE = 5.31 gm-2 and rRMSE = 2.72 %) 

while for FMCleaf was the blister to milk (R2-R3) stage with a R2 = 0.76 and RMSE = 0.45 % 

(rRMSE = 1 %). Literature confirms that the early reproductive growth stages are best suited 
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for the detection of physiological characteristics, such as leaf moisture content using proximal 

remote sensing techniques (Prudnikova et al., 2019; Daughtry et al., 2000). This is because the 

transmittance spectra of the fully developed leaves and the canopy have minimal effects of soil 

background and maximum reflectance of leaf properties (Prudnikova et al., 2019; Daughtry et 

al., 2000). Furthermore, Prudnikova et al. (2019) argued that estimating crop physiology at the 

early seedling and emergence vegetative growth stages is not optimum because sparse 

vegetation cover increases the interference of open soil surface reflectance, hence reducing 

prediction accuracy.  

The findings of this study illustrate that vegetation indices (VIs) were the most optimal 

predictor variables of maize moisture content indicators, in comparison to raw UAV-

multispectral bands. This is not surprising since a large and growing body of literature has 

proven that the use of VIs derived from water-sensitive sections of the electromagnetic 

spectrum improves prediction accuracies and outperforms conventional bands in estimating 

crop moisture content indicators (Pasqualotto et al., 2018; Zhang et al., 2019b; Zhang and 

Zhou, 2015). This is explained by the fact that VIs are derived from a combination of spectral 

channels which measure reflectance at different wavelengths of the spectrum with different 

strengths, hence their optimal performance in comparison to bands-only model (Sibanda et al., 

2021b). Furthermore, VIs tend to enhance leaf reflectance while minimising the influence of 

solar irradiance, atmospheric noise, topology and soil background effects (Prudnikova et al., 

2019; Sibanda et al., 2021b; Xue and Su, 2017). This makes them more robust and sensitive to 

moisture and other plant foliar physiochemical elements. 

The results in this study demonstrated that maize moisture indicators were sensitive to VIs 

derived from the NIR and red-edge wavebands of the electromagnetic spectrum. For example, 

the estimation of maize EWTleaf was greatly influenced by NDVIrededge, rededge, NIR, NDVI, 

while, NDRE, NIR and NDWI had the highest predictive power in optimally estimating 

FMCleaf of smallholder maize crop. The influence of NIR based indices stems from the fact that 

this section of the electromagnetic spectrum is highly correlated to the quantity of water in leaf 

cells (Pasqualotto et al., 2018). Literature confirms that the variation in leaf reflectance of 

turgid vegetation along the NIR wavelength, as a result of the changes in water transmissivity, 

and leaf internal structure, can be used to quantify crop moisture content and detect plants that 

are in a state of water deficit (Chemura et al., 2017; Mobasheri and Fatemi, 2013). Additionally, 

the sensitivity of the red-edge band in maize moisture prediction can be explained by the fact 

that the red-edge is closely related to leaf chlorophyll composition and when crops are 
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experiencing moisture stress, there are declines in crop physiochemical characteristics such as 

foliar pigmentation and leaf area, which are directly linked to leaf water status (Sibanda et al., 

2021b; Easterday et al., 2019). A reduction in moisture content results in the deceleration of 

the photosynthetic activity, which in turn reduces the chlorophyll concentrations as the leaf 

halts its stomatal activities while losing turgidity and pigment (Liu et al., 2015; Zhang and 

Zhou, 2015). These transitions are then detected from the rededge spectrum which tends to 

shift towards the long-wavelength section (Sibanda et al., 2021b; Ndlovu et al., 2021a). The 

results of this study are in agreement with Liu et al. (2016) who found that the changes in the 

vegetation moisture content were spectrally discernible in the NIR spectral reflectance section. 

In a similar study, Zhang and Zhou (2015) combined the NIR and rededge bands to form the 

NDRE, which became the most sensitive index to variations in maize moisture content (R2 = 

0.75). Furthermore, the results of this study concur with Sow et al. (2013) who used NDWI to 

predict vegetation FMC to an optimal accuracy of R2 = 0.85. 

Finally, the results of this study also revealed that chlorophyll-based indices such as CIgreen and 

CIrededge were important predictors of maize moisture content as they were also among the most 

influential spectral variables on V14 - Vt and R3 – R4 stages when estimating maize EWTleaf 

and FMCleaf. Again, this can be explained by the positive correlation between leaf chlorophyll 

content and water status, as prolonged moisture stress ultimately reduces chlorophyll 

pigmentation of maize leaves, thus changing leaf absorbance and reflectance characteristics 

(Zhang et al., 2019b; Liu et al., 2015; Ndlovu et al., 2021a). In a similar study, Zhang et al. 

(2019b) concluded CIgreen and CIrededge to be among the most influential predictors of maize 

EWT and FMC as they are highly sensitive to crop water variation. Despite the apparent 

limitations of NDVI as stated in literature (Jackson et al., 2004; Xue and Su, 2017), this index 

was an important predictor of maize moisture indicators in this study. This is explained by the 

fact that the NDVI is an effective indicator of leaf photosynthetic capacity which is correlated 

to leaf greenness and water status (Wijewardana et al., 2019; Ndlovu et al., 2021a). The results 

in this study concur with those of Wang et al. (2016b) who successfully used NDVI to monitor 

maze water variability using a seasonal NDVI time series analysis, while, Easterday et al. 

(2019) noted that the NDVI could discriminate variations in vegetation moisture stress and 

accurately predict leaf water content to an R2 of 0.89.   
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3.5 Implications of the findings 
 

UAVs are fast becoming a key component of precision agriculture as they provide 

opportunities for mainstreaming climate-smart agricultural practices into smallholder farming 

systems for improved crop health monitoring and water resource management. Understanding 

the spatio-temporal variation in maize moisture can support smallholder agricultural decision-

making to facilitate the development of crop-specific management plans to increase maize 

resilience and reduce the susceptibility of smallholder maize farming systems to the future 

impacts of climate change. Furthermore, the methods used in this study could be adapted for 

monitoring the moisture content of other crops within smallholder farming systems. Future 

studies should assess maize moisture variability across various climates and evaluate the 

influence of other agronomical factors such as soil structure and topographic effects on leaf 

moisture status. 

 

3.6 Conclusion 
 

This study sought to test the utility of UAV-based multispectral data in estimating leaf EWT 

and FMC of smallholder maize crops across the growing season. The results showed that the 

UAV-derived multispectral data can be useful in quantifying maize moisture variability at a 

high spatial and temporal resolution. Therefore, it can be concluded that: 

• UAV-derived multispectral data can optimally characterise maize EWT and FMC, 

foliar moisture, variations using the NIR and red-edge wavelengths of the 

electromagnetic spectrum which demonstrated great sensitivity to the variation in maize 

moisture content 

• The phases between silking and milk reproductive growth stage are the most optimal 

growth stages for predicting maize moisture content using UAV-derived data 

This study demonstrates the potential of UAV-based proximal remote sensing techniques in 

providing near-real time and spatially explicit information on maize moisture variability across 

the growing season. Finally, this study will serve as a proxy towards accomplishing sustainable 

development goal 15, life on land, that seeks to ensure sustainable food security, thus enhancing 

livelihoods and wellbeing.  
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CHAPTER FOUR: SYNTHESIS AND CONCLUSIONS 

 
4.1 Introduction 

 
Smallholder farmers are frequently faced with the need to optimize maize production. With the 

rapid increase in climate change related-stress, population growth as well as the increasing 

demand for food, sufficient production of maize is essential for food and nutrition security. 

However, water stress often challenges maize productivity due to prolonged drought conditions 

resulting from climate variability (Ndlovu et al., 2021a; Sibanda et al., 2021b). Therefore, 

assessing maize water status through monitoring equivalent water thickness (EWT), fuel 

moisture content (FMC) and specific leaf area (SLA) can provide essential information for 

enhancing maize productivity under water-limited conditions (El-Hendawy et al., 2019). The 

advent of remote sensing technologies, including unmanned aerial vehicle (UAV)-derived data, 

characterised by a rich spatial and temporal resolution, presents a stepping stone towards 

achieving spatially explicit and multi-temporal information on maize moisture conditions 

(Chivasa et al., 2021; Zhang et al., 2019b; Sibanda et al., 2021a). In this regard, this study 

sought to evaluate the utility of UAV-based proximal remote sensing in estimating maize leaf 

moisture content on smallholder farming systems throughout the growing season. The key 

objectives of this study were, (1) to conduct a comparative analysis to evaluate the performance 

of five regression techniques in predicting four maize moisture content elements, and determine 

the most suitable moisture content indicator of smallholder maize water content variability 

based on multispectral UAV data and, (2) to evaluate the utility of UAV-derived multispectral 

imagery in estimating the spatio-temporal variability of smallholder maize leaf EWT and FMC 

across the maize growing season. This chapter provides a reflection of the research aims and 

objectives established in the introduction (chapter one) and highlights the main conclusions 

and recommendations for future studies. 

4.2 Objectives review 
 

4.2.1 A comparative estimation of maize leaf moisture content on smallholder 
farming systems using Unmanned Aerial Vehicle (UAV) based proximal remote 
sensing 

 

The essence of this component of the study was to assess and identify a suitable indicator of 

maize moisture content and evaluate the predictive performance of robust algorithms in 
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predicting maize moisture status. Based on the findings of the component of the study, it was 

concluded that EWT and FMC are valid indicators of maize moisture content and can be 

optimally estimated using the near-infrared and red-edge derived spectral variables. This can 

be associated with the close correlation between crop water transmissivity, leaf chlorophyll 

composition and leaf reflectance along the near-infrared and red-edge sections of the 

electromagnetic spectrum (Sibanda et al., 2021b). Furthermore, the results from this study 

demonstrated the robust capabilities of the random forest regression algorithm in predicting all 

maize moisture content indicators in comparison to other regression techniques. The 

performance of the random forest regression can be attributed to the fact that the algorithm is 

not subjected to over-fitting and can optimally operate with a relatively small number of 

training samples, which is often the case for data acquired at a field scale after avoiding spatial 

autocorrelation (Zhu et al., 2017). Based on these research findings, it can be concluded UAV-

based multispectral data can be optimally used to estimate maize leaf EWT and FMC using the 

random forest regression algorithm. Subsequently, the random forest algorithm along with the 

EWT and FMC were then selected based on their optimal accuracies to conduct the second 

component of the study. 

4.2.2 A multi-temporal remote sensing of smallholder maize leaf equivalent water 
thickness and fuel moisture content variability using an unmanned aerial vehicle 
(UAV)-derived multispectral data 

 

This section of the study focused on the utility of UAV-derived imagery in estimating the 

spatio-temporal variation in maize leaf EWT and FMC across the maize growing season. 

Specifically, the accuracies of EWT and FMC random forest models derived using spectral 

data from different maize phenological stages were compared.  The findings from this 

component of the study demonstrated a positive relationship between precipitation and maize 

leaf moisture content throughout the phenological cycle, which can be attributed to biomass 

accumulation and productivity across the growing season (Zhang et al., 2018a). The results of 

this study also highlight the prospects of using a combination of UAV-spectral bands and 

vegetation indices to estimate maize moisture content as this enhances leaf reflectance and 

minimises the influence of soil-background effects at different stages of the maize growth cycle 

(Xue and Su, 2017). Grounded on the findings of this study, it was concluded that the phases 

between silking and milk reproductive growth stage are the most optimal growth stages for 

predicting maize moisture content using UAV-derived data. The suitability of these stages can 

be attributed to the fact that the maize canopy has fully developed; hence there is maximum 
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reflectance of leaf properties in comparison to the earlier maize growth stages, which are 

subject to the interference of open soil surface reflectance (Prudnikova et al., 2019). The 

findings from this study provide evidence on the capability of UAV-derived multispectral data 

in quantifying maize moisture variability at a high spatial and temporal resolution across the 

growing season of maize smallholder farms. 

 

4.3 General Conclusion 
 

The overall aim of this research was to evaluate the utility of UAV-based multispectral imagery 

in estimating maize leaf moisture content on smallholder farming systems throughout the maize 

growing season as a proxy for crop water stress characterisation. Based on the findings of this 

study, it is concluded that: UAV-based data can accurately provide invaluable information on 

maize leaf moisture content across various stages of the growing season. UAV-derived 

multispectral data can successfully determine the most suitable leaf moisture indicator to 

estimate maize leaf moisture content using an optimal regression algorithm. Furthermore, the 

EWT and FMC, in concert with the random forest regression, provide a valuation option for 

accurately estimating maize moisture content of smallholder farming systems.  

Based on these findings, UAV-derived multispectral data can optimally predict the maize 

moisture content of smallholder farms with exceptional accuracy, hence can complement and 

inform farms drought-related water stress. This illustrates the critical role of UAVs and drone 

technologies in monitoring maize moisture availability and its prospects for other precision 

agriculture applications. This research provides a pathway towards the rapid and robust 

detection of maize moisture stress and can proxy overall maize health. These findings confirm 

the need to adopt long-term maize moisture content monitoring systems that are crop-specific 

and site-specific, especially with the current climate change projections.  

4.4 Recommendations for future research 
 

The current study investigated the spectral capacity of UAV-derived imagery equipped with 

six multispectral channels covering the visible, near-infrared and thermal spectrums. 

Additional studies are necessary to assess the spectral ability of UAVs with different spectral 

characteristics. Valuable research would be to evaluate whether UAV sensors that measure 

spectral reflectance along the SWIR section of the electromagnetic spectrum improve the 

prediction of smallholder maize moisture content. Furthermore, future studies should assess 
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the influence of variability of various factors such as climate and evaluate other agronomical 

factors such as soil moisture, temperature, soil structure and topographic effects on leaf 

moisture status. Finally, this study was site and crop-specific; therefore, there is a need for 

similar studies to be conducted across various climates, different smallholder crops and at a 

multi-temporal scale to draw broad conclusions about crop moisture availability. 
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