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Abstract

As South Africa begins its National HIV-1 treatment program, it is urgent that we collect

data that will help define the phylogenetic relationships, transmissibility and drug

responsiveness of C viruses. In this thesis, data is presented on the genetic diversity of

locally circulating drug naive subtype C strains, as an indication of their natural

susceptibility to antiretroviral drugs, prior to the national roll-out of antiretroviral therapy.

At the time this thesis was initiated, antiretroviral therapy was only available in South

Africa in a few clinical trials and in the private sector, and it was therefore difficult to

obtain large numbers of samples from treatment-experienced patients. Nevertheless,

valuable information on the prevalence and patterns of resistance mutations in subtype C

infected patients was obtained from small studies on patients receiving HAART,

concomitant HAART and TB treatment, HAART and treatment for Kaposi Sarcoma, and

single dose nevirapine for the prevention of mother-to-child transmission of HIV-1

infection.

The results show that the general antiretroviral drug naive population do not harbour any

major resistance-associated mutations to the currently available protease and reverse

transcriptase inhibitors, with no differences in genetic variation between the different

ethnic groups infected with subtype C. Phenotyping of some of these isolates showed that

they were susceptible to the available protease and reverse transcriptase inhibitors, and

hyper-susceptible to the protease inhibitor, Lopinavir. Phylogenetic analysis of recent and

retrospective subtype C isolates showed that there are multiple lineages of subtype C

viruses circulating in South Africa, indicative of multiple introductions of subtype C

across its many borders. Polymorphisms in the protease, reverse transcriptase and C2-V5

region of envelope in these drug naive samples lead to significant variation in the number,

type and location of potential phosphorylation sites. There was also variation in the

cleavage sites controlling the initiation and rate of Gag and Gag-Pol processing (p2/NC)

and the activation of protease (TFP/p6gag) suggesting that there may be important

differences in the way that B and C viruses regulate polyprocessing and virion assembly.

Similar to studies on subtype B, 10 to 18% of the patients on HAART developed drug

resistance. However, those on concomitant HAART and TB treatment developed

resistance as early as one month after starting treatment. Generally, the resistance

mutations that were seen were consistent with those seen in treatment experienced subtype

B isolates. Of note was the high level of resistance to the entire class of NNRTIs. This

could be reflective of the predominant use of NNRTI-based regimens, as well as the low



genetic barrier in this class of drugs. The NNRTI mutations included the V106M mutation

that is considered a signature mutation of EFV experienced subtype C isolates. Resistance

was high (40%) in mothers and infants 6 weeks after each received a single dose of NVP.

K103N was most common mutation in the mothers, while Y181C was most common in

the infants. Of note were the changes in functional properties caused by these mutations,

by the introduction or alteration of putative myristoylation and phosphorylation sites in the

RT.

Taken together, these data suggests that the pattern of resistance in African patients will be

similar to that observed for the treatment of subtype B infection. However, patients should

be closely monitored for viral rebound very early on in treatment. Also, given the high rate

of resistance in mothers and infants after single dose NVP, the search for safer regimens to

prevent MTCT should be intensified. Although the mechanisms are unknown, our results

indicate that several of the phosphorylation-related substitutions in the pol and env genes

of KZN and other C viruses are highly conserved and positively selected. It will be

important to determine whether these sites play an important role in the replicative

capacity and proteolytic processing of C viruses, and in viral entry. These data provide

important benefits for public health policy and planning and for future patient treatment

management.



Chapter 1

Review of the Literature



1.1 HIV-1 Discovery and Classification

The acquired immunodeficiency syndrome (AIDS) was first recognized in 1981 among

homosexual men in the United States of America. It was only in 1983 that the organism

later termed the human immunodeficiency virus (HIV) by the International Committee of

Viral Taxonomy, was isolated by Barre-Sinoussi et al (1983). Soon after the discovery of

HIV, the significant genetic variability of the virus evoked intense interest. An increase in

the number of isolates from around the world, coupled with the vaccine initiative in the

early 1990s, led to the discovery of equidistant clades (or subtypes), which have since

been classified as subtypes A, A2, B, C, D, F 1 , F2, G, H, J, and K in addition to

circulating recombinant forms (CRFs) (Novitsky et al, 2001; Janssens et al 1997; Myers et

al, 1997; Louwagie et al, 1995). These subtypes form part of Group M (Major) viruses and

are responsible for the majority of HIV-1 infections in the world. Other HIV-1 sequences

can be classified either as 0 (Outlier), and N (Non-M and Non-O) groups (Gurtler et al,

1994; Myers et al, 1997; Robertson et al, 2000; Simon et al, 1998). It is thought that HIV

entered the human population in at least seven different simian zoonosis events in West

Central Africa (Hahn, 2000). HIV-1 shares the closest phylogenetic relationship with the

SIVcpz strain found in a West Africa chimpanzee subspecies called Pan troglodytes

troglodytes (Rambaut et al, 2004). The countries in West Central Africa (Gabone,

Cameroon and Equatorial Guinea) had little contact with the outside world until after

World War II when economic changes brought more travellers to Africa. This was

probably when the disease started its slow spread around the world with the earliest

evidence of HIV-1 infection found in the Congo in 1959 (Zhu et al, 1998).

1.2 Global Subtype Distribution

HIV-1 subtype B is the most prevalent subtype in North, Central and South America along

with subtype F, B/F recombinants, and to a lesser extent -but ever increasing -, subtype C

(Figure 1) (Spira et al, 2003). In Europe, subtype B is found in the west, while Central

Europe is dominated by subtype G and A/G recombinants (Korber et al, 2000; Esu-

Williams et al, 1997; Janssens et al, 1997). In Eastern Europe, subtype A featured early in

the epidemic (1995/1996), while subtype B spread among the injecting drug users (IDUs).

Both have now re-combined into a new CRF (A/B), which is spreading eastwards in that

region (UNAIDS, 2002). The Middle East, India, China and Nepal are dominated by

subtype C, while A/E recombinants appear in China, Thailand and the Philippines. Africa

as a whole has all known HIV-1 subtypes.
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Central Africa has the largest variety of subtypes (A, D, G, F, H, A/G, A/E), which is

indicative of a long-standing epidemic. In eastern Africa, subtypes A and D predominate,

although subtype C is also spreading upward from the south and could impact on the

incidence in the east in the future (Spira et al, 2003). West Africa is dominated by subtype

A, G and more recently, A/G recombinants (over 30% of new infections), with sporadic

occurrences of subtype D. Western Africa has a less severe epidemic, with a relatively

modest presence in Senegal, Mauritania and Cape Verde. North Africa has very little HIV-

1 infection, mostly subtype B, with prevalences below 1% in Morocco, Algeria, Libya and

Egypt. Southern Africa is dominated by subtype C (Janssens et al, 1997), with sporadic

cases of subtype A, B and D.

1.3 The Spread of Subtype C

Since subtype C began its devastating spread across southern Africa in the late 1980s,

major outbreaks have now occurred in every country in this region. It is also responsible

for the rapidly expanding epidemic in India, and is increasing in frequency in China and

Brazil. In fact, of the 5 million new HIV-1 infections in 2002, subtype C accounted for

>56% of these infections (Esparza et al, 2000). This is also influenced by the fact that

most new infections are from heterosexual contact, which is the main route of

transmission of HIV-1 subtype C.

1.3.1 Africa

Earlier in the epidemic (late 1970s), HIV was not as well established in southern Africa as

it was in central and eastern Africa, with the rate of spread being most rapid in east Africa

(Hawlan, 2000). This began to change in the 1980s, when subtype C began its spread

across southern Africa, starting in Tanzania, Zambia and Zimbabwe (Figure 2). In

Tanzania, the first cases of HIV-1 were reported in 1983 (Mhalu, 1989). Early studies

reported subtypes A and D as the predominant subtypes in this country (Holm-Hansen et

al, 1996), while later reports have found equal proportions of A, C and D (Vidal et al,

2000). Since then there has been a dramatic increase in the HIV prevalence, with a

concomitant increase in the prevalence of subtype C (12.7% in 2000 to 20% in 2003),

particularly in the regions that border near Malawi and Zambia (Kapiga et al, 2002;

Hoelscher et al, 2001; Renjifo et al, 1998). The interaction between Tanzania, Zambia and

Malawi has played a role in the spread of subtype C in this region, with >93% of

infections in Zambia due to subtype C (Handema et al, 2001; Morison et al, 2001; Trask et

al, 2002). The earliest sequenced isolate of subtype C in the public database originates

from Malawi. Malawi is one of the
4
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Figure 2. HIV prevalence in Sub-Saharan Africa (UNAIDS, 2002)
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few regions that have population-based data derived from two detailed surveys carried out

in northern Malawi in 1981 to 1984 and in 1986 to 1989 as part of a study on leprosy and

other mycobacterial infections (Ponninghaus et al, 1993 and 1987). McCormack et al

(2002) were able to subtype these samples. Their findings show that in 1982 to 1984,

subtypes A, D and C were all present. Overall, subtype C accounted for 55% of the early

samples (6/11). The next wave of sampling (1986 to 1989) showed an increase in the

number of subtype C isolates, which corresponded to 90% of the cases, with non-C

subtypes being more common in the north, bordering on Tanzania. They also found four

recombinants: two AC, one AD and one DC. It is thought that the construction of a main

road during the 1980s between Malawi and Tanzania could have influenced the spread of

subtypes between the two countries (McCormack et al, 2002).

By the early to mid 1990s, the rapid expansion of the HIV-1 epidemic caused by subtype

C had reached Botswana. HIV prevalence among antenatal clinic attendees tested in the

major urban areas of Botswana (Gaborone, Francistown, and Selebi-Phikwe) increased

from 6% in 1990 to 39% in 1997 (range of 34 to 43%) (Hensle, 1998). Outside of the

major urban areas, median HIV prevalence increased from no evidence of infection in

1985 to 34% in 1997. To date, all isolates from Botswana have been identified as subtype

C (Rodenburg et al, 2001).

Along with Botswana, South Africa, Zimbabwe, Namibia, Swaziland, Mozambique and

Lesotho have also borne the brunt of the subtype C epidemic (Essex 1999; Bredell et al,

1998; Janssens et al, 1997). Prevalences have increased in Namibia from 7% in 1994 to

31% in 2000. Information on HIV prevalence among antenatal clinic attendees has shown

a dramatic increase from 3.9% in 1992 to 34.2% in 2000 for Swaziland, and from 5.1% in

1991 to 42.2% in 2000 for Lesotho (UNAIDS, 2000). Similarly, prevalences in

Mozambique have increased from less than 1% in 1988 to 13.2 % in 2000. In South

Africa, only 166 cases of AIDS had been reported between 1982 and 1988 (Sher et al,

1989). However, by 1997 there was already a dramatic increase in HIV prevalence

although at unequal rates throughout the country. The highest prevalence was found in

KwaZulu Natal (northeast region) with a prevalence of 26.92%. In contrast, the prevalence

rates in the Western Cape were much lower with a prevalence of only 6.29%. Of the

isolates circulating in South Africa, 91% were subtype C (Van Harmelen, 1999). More

recent reports from South Africa have shown the prevalence rates to be as high as 36.2%

in KwaZulu Natal, while still a moderate 8.7% in the Western Cape (Rollins et al, 2002).

There has also been an increase in the number of non-C subtypes detected in South Africa

(subtypes A, D, G and A/G), mostly in individuals from other countries, however, some of

these were found in combination with C. This could also be indicative of local
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recombination (Bredell et al, 2002). Subtype C is the predominant subtype in KZN, with

only one C/D recombinant reported (Gordon et al, 2003).

In addition to its spread across the southern parts of Africa, subtype C is also prevalent in

Ethiopia, East Africa. Subtype C has been the predominant strain in the Ethiopian

epidemic from the beginning, with 98% of samples isolated harbouring subtype C viruses

(Abebe et al, 2001; Sherefa et al, 1994). The first case of HIV-1 infection in Ethiopia was

registered in 1984 in the capital city Addis Ababa (Tsega et al, 1988; Zewdie et al, 1988).

Prevalences began to increase from 11-13% in 1991, to 18% in 1996 (Fontanet et al, 1998;

National AIDS program 1994). However, this figure is starting to decline as the

prevalence rates of 15.1% in 2001 show. There are few studies describing the

epidemiology of AIDS in Burundi, also in the east of Africa. Subtype C is also the

dominant subtype in this region with a prevalence of 89% (Koch et al, in 2001). In Kenya,

HIV-1 infection was first reported in the mid-1980s in a group of Nairobi sex workers

(Kreiss, 1986; Obel 1984). Kenya also experienced a dramatic increase in HIV-1

prevalence during the 1990s, from 8.3% among women attending antenatal clinics in

1994, to 11% in 1997. Although subtype A is the major circulating subtype in Kenya,

subtype C is also present in a significant minority (6.9% among breast-feeding women)

(Neilson et al, 1999; Yang et al, 2004).

In Uganda, the first HIV/AIDS case was identified in 1982 (UNAIDS, 2001). Uganda

originally had one of the highest prevalences of HIV-1 infection in the world. In rural

regions of southwestern Uganda, overall seroprevalence rates had been reported to be

8.2% (1989) and 13% (1991) and were even higher in urban areas: 28.1% (1989) 40.4%

(1991). However, Uganda was the first African country to have substantially decreased the

effects of the HIV pandemic, with prevalences decreasing to 11.25% in 2000 (UNAIDS,

2001). Several studies have shown subtype A and D to be in similar proportion in Uganda

and comprise the major components of the epidemic in that region (Hu et al, 1999;

Brennan et al, 1997; Rayfield et al, 1998). Subtype C is still playing only a minor role in

the epidemic in Uganda, accounting for only 3-8% of the isolates (Downing et al, 2000;

Brennan et al, 1997). D/C recombinants have recently been isolated from Uganda (Wilbe

et al, 2003).

1.3.2 Southeast Asia

The HIV-1 epidemic first appeared in Southeast Asia in the late 1980s. In India, the

epidemic appeared to begin in 1986, when six female sex workers were found positive for

HIV antibodies in Tamil Nadu, in south India. (Seth and Sharma, 1991). Since then the

epidemic has spread rapidly through every region of the country (Srikanth et al, 1997).

Early studies in India identified subtype C as the major circulating subtype among female
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sex workers and blood donors, along with the sporadic presence of subtypes A and ThaiB

among the IDUs of Manipur in the northeastern part of India (Chakrabarti et al, 2000;

Maitra et al, 1999; Gadkari et al, 1998; Jameel et al, 1995; Tsuscie et al, 1995; Baskar et

al, 1994; Grez et al, 1994). The ThaiB strain may have been introduced independently into

this region through drug-trafficking links with southeast Asian countries such as Myanmar

and Thailand (Maitra et al, 1999; Sarkar et al, 1993). It is not known exactly when subtype

C was introduced into this population of IDUs, however, there was a definite increase in

prevalence relative to the ThaiB strain (from 46% to 68%) (Mandal et al, 2002). Subtype

C probably arrived in China from India, via the over-land heroin trafficking routes (Beyrer

et al, 2000; Yu et al, 1998; Neild et al, 1997). Beyer and colleagues (2000) suggested that

subtypes B, and later C spread among the IDUs from Burma (which produces 60% of the

world's heroin) to China across its eastern border. Phylogenetic analysis by Rodenburg et

al (2001) have supported the suggestion that subtype C viruses now circulating in China

may have been introduced from India, showing that viruses from China were more closely

related to certain viruses from India (Rodenburg et al, 2001). There is now evidence that B

and C have recombined and are spreading northwards in China (UNAIDS 2002; Yu et al,

1998; Neild et al, 1997; Beyrer et al, 2000)

1.3.3 Brazil

Brazil is the largest country in South America and is one of the most affected by the HIV-

1 epidemic. The HIV-1 subtype distribution is complex when compared to other South

American countries. Subtype B is the main circulating subtype, but other subtypes such as

F, B, C and now B/C and B/F recombinants are also currently circulating (Bongertz et al,

2000; Caride et al, 2000; Couto-Fernandez et al, 1999; Brindeiro et al, 1999; Gao et al,

1998; Sabino et al, 1994; Csillag et al, 1994). Subtype C was already present in the

southern regions of Brazil from as early as 1992, although the initial incidence was small

(3%) (Bongertz et al, 2000; Brindeiro et al, 1999; Gao et al, 1998; Csillag et al, 14). More

recent studies have shown a dramatic increase from the previous figures, with a prevalence

of 30% for subtype C in the south and southeast regions, although the increase was less as

one moved further north (Soares et al, 2003a; Soares et al, 2003b). The high incidence of

subtype C in this region coupled with the equally high incidence of subtype B, facilitated a

number of recombination events demonstrated by the presence of B/C and C/B

recombinants Soares et al, 2003b).

1.4 Differences Between Subtypes B and C

At the molecular level, there are some characteristic differences between subtype B and C.

These were first noted by Johansson et al, (1995), who compared the LTR sequences from
8



the available Ethiopian HIV-1 strains with Swedish HIV-1 subtype B strains and earlier

published data. In all the Ethiopian HIV-1 subtype C strains, the first five nucleotides,

(G/A)CAGA, were different in the Swedish subtype B strains. The most striking

difference in the LTR region was the presence of putative third NF-KB site in the

Ethiopian strains located upstream of the usual sites. At the same time, the core enhancer

sequence GGGACTTTCC at site I was modified by a deletion of the A nucleotide and a

change of the first T to a G (Johansson et al, 1995). The presence of an extra NF-KB site

could be related to an increased fitness in subtype C since subtype C LTR sequences have

a higher transcriptional activation relative to subtype, B and an increased response to the

cytokine tumour necrosis factor alpha (Montano et al, 1997; Jeeninga et al, 2000; Montano

et al, 2000). However, Rodenburg et al, (2001) found that the putative third NF-KB site

frequently contained deletions or mutations that changed its consensus sequence, or were

not found in some sequences, suggesting that this site may not be functional after all.

Another difference seen between the two subtypes is the presence of acidic amino acids at

positions 11 and 25 in the V3 env sequence of subtype C viruses, which is a feature of

viruses that use the CCR5 co-receptor for cell entry (Ping et al, 1999). CXCR4 co-receptor

utilization and a syncytium-inducing phenotype are rare among subtype C isolates

(Bjorndal et al, 1999; Cecilia, 2000; Tscherning et al, 1998). A switch from CCR5 to

CXCR4 co-receptor tropism and NSI to SI phenotype has been associated with

progression to AIDS in individuals infected with subtype B viruses. This has not been the

case with most subtype C strains, which remain CCR5 tropic and NSI in primary

lymphocyte cultures (Abebe et al, 1999; Bjorndal et al, 1999; Morris et al, 2001). Studies

on animal models have suggested that there are different pathogenic sequelae for infection

with CCR5 or CXCR4 utilizing strains (Berkowitz et al, 1998 and 1999; Harouse et al,

1999). This is strong evidence to suggest that the mechanism of pathogenesis and

transmission is different in subtypes C and B. However, there have also been reports from

South Africa and Zimbabwe on co-utilization of CCR5 and CXCR4 in subtype C isolates

(Cilliers et al, 2003; Janse van Rensburg et al, 2002; Johnston et al, 2003). Janse van

Rensburg et al, (2002) reported a change in the phenotypic characteristics of recently

isolated subtype C strains, as compared to their previous study using older subtype C

samples, and suggest that this is a result of a maturing of the subtype C epidemic in South

Africa. Meanwhile, Johnston et al, (2003) suggest that antiretroviral treatment could create

an environment facilitating the emergence of CXCR4 tropism in subtype C viruses. In

their study of 28 patients from Zimbabwe, viruses from 50% of those on treatment induced

syncytium formation when cultured with MT2 cells and the majority of those viruses were

capable of using both CCR5 and CXCR4 as co-receptors for viral entry.
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It has also been suggested that subtype C viruses grow more readily in Langerhans cells

than subtype B (Soto-Ramirez et al, 1996). These cells line the cervix, vagina and foreskin

of the penis and could possibly facilitate the spread of the virus through vaginal

intercourse. This is discussed further in section 1.5. Other differences between the two

subtypes include a truncated rev protein (Gao et al, 1998; Rodenburg et al, 2001) and a

five-amino acid insertion in the vpu transmembrane in subtype C (Gao et al, 1998;

Novitsky et al, 1999).

1.5 Transmission of Subtype C

HIV is transmitted through blood, genital secretions and breast-milk. It remains uncertain

whether the existence of different subtypes has important implications for the transmission

of HIV.

1.5.1 Horizontal Transmission

Many studies have found subtype B to predominate in HIV-1 infections acquired

homosexually and by IDUs. Non-B infections are mostly seen in heterosexually acquired

HIV-1 infections, and are usually among individuals with an epidemiological link with

Africa or Asia (Herring et al, 2003; Liitsola et al, 2000; Op de Coul et al, 2001; Reinis et

al, 2001; Lukashov et al, 1995). In fact, heterosexual transmission is responsible for the

majority of new infections in southern Africa and India, a region where subtype C

predominates (Mandal et al, 2000; Tien et al, 1999). As already mentioned, subtype C may

replicate in Langerhans cells, which are found in genital mucosal epithelium and are

thought to be the cells through which vaginal infection occurs. Langerhans cells are

antigen-presenting cells found in the epidermis, and in oral and genital mucosal

epithelium. They are, however, absent from rectal mucosa (Lalvani and Shastri, 1996).

Therefore, one could argue that subtype C appears to be better adapted to penile-vaginal

transmission, while subtype B may be more efficiently transmitted through blood (Mastro

et al, 1997). Reports of subtype C transmission in China and India show that subtype C is

transmitted to a lesser extent via intravenous drug use (Saraswathy et al, 2000). The spread

of subtype C in these regions may also be influenced by heterosexual transmission from

the IDUs to their partners.

1.5.2 Mother-to-child Transmission (MTCT)

In KZN, South Africa, MTCT accounts for 34% of HIV infections (Rollins et al, 2002).

Transmission of HIV-1 from mother to infant may occur in utero, intra-partum, or

postpartum through breast-feeding. Factors associated with perinatal transmission include
10



1.6 Prevention of Mother-to-Child Transmission (pMTCT)

Preventative strategies include routine antenatal voluntary counselling and testing (VCT),

various combinations of a shortened period (3-6 months) of exclusive breast-feeding,

perinatal administration of ARVs, and provision of safe and affordable replacement feeds.

1.6.1 Use of Nevirapine (NVP) in pMTCT

Although long course anti-retrovirals (ARVs) and caesarian section substantially reduces

vertical transmission, they are not practically achievable in most developing countries. The

low cost of Nevirapine (NVP) (US$2) and simplicity of administration offers a great

advantage for its use in MTCT prevention treatments, particularly for low-income

countries (Saloojee, 2001). NVP has been widely used in adults as one of a combination of

drugs to treat established HIV infection, but is also effective when given alone as a single

dose to the mother at the beginning of labour and one dose administered to the baby within

72 hours of birth. NVP given to HIV-positive pregnant women rapidly crosses the

placenta into the fetus with its effects lasting through the first week of life. The

pharmacokinetics of NVP are characterised by rapid absorption and distribution, followed

by prolonged elimination. The primary route of NVP elimination is through metabolism

by the cytochrome P450 enzyme system. NVP elimination accelerates during long term

administration because of autoinduction of the enzymes involved in its elimination

pathway. A regimen of a single 200mg oral dose administered to the mother during labour,

and a single 2 mg/kg dose administered to the newborn at 48 to 72 hours after birth

maintains serum NVP concentrations above 100 lig/L (10 times the in vitro 50% inhibitory

concentration against wild-type HIV-1) throughout the first week of life (Mirochinick et

al, 2000). Clinical trials have confirmed the efficacy of NVP in preventing mother-to-child

transmission (MTCT) of HIV. The HIVNET 012 trial in Uganda showed that NVP was

able to reduce MTCT, with only 8.1% of infants exposed to NVP acquiring HIV at birth

(Guay et al, 1999). Almost all the babies in the trial were breast fed, resulting in ongoing

exposure to HIV. However, at 14 weeks, the rate of HIV infection was only 13%, while at

12 months the transmission rate was 15.7%, confirming that the reduction in the risk of

transmission associated with NVP prophylaxis persists for at least the first year of life,

despite the ongoing risk posed by breast-feeding (Guay et al, 1999). The Petra study

conducted in Tanzania, Uganda and South Africa using various short-course regimens,

found that Zidovudine (AZT) plus Lamivudine (3TC) given at birth and for 7 days

postpartum to both mother and babes was effective in reducing transmission (Petra Study

Team, 2002). In the South African Intrapartum NVP Trial (SAINT), 1307 mother-infant
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pairs were randomised to either NVP during labour and post-delivery, or multiple doses of

AZT/3TC during labour and for one week after delivery to mother and baby. In both

treatment arms, about 40% of infants were breast-fed. Eight weeks after birth there was no

significant difference observed between the rate of HIV infection or death across the two

treatment arms, with a rate of 12.3% in the simpler NVP arm, and 9.3% in the more

involved and expensive dual therapy arm (Moodley et al, 2003).

1.6.2 Resistance after Single Dose NVP

Evidence of drug resistance among women given NVP monotherapy during labour has

raised concerns about this intervention. Single mutations in HIV-1 RT that can cause high

level NVP resistance are likely to exist in most HIV-1 infected patients at low levels prior

to ARV drug exposure (Richman et al, 1994). This favours the emergence of NVP

resistance following NVP exposure (Eshleman et al, 2002). The emergence of NVP

resistance after only a single dose is also a consequence of the long half-life of NVP upon

initial dosing, before the induction of hepatic enzymes that speed up its metabolism

(Katzenstein, 2000). Therefore, women receiving NVP for pMTCT experience a lengthy

exposure (up to 2 weeks) of active but diminishing concentrations of NVP, creating

selective pressure similar to those associated with NVP monotherapy (Havlir et al, 1996;

Richman et al, 1994; Wei et al, 1995). The NVP-resistant viruses usually fade from

detection in women and infants over time as wildtype viruses repopulate the viral

quasispecies and become the predominant strain (Eshleman et al, 2001b). Therefore, it is

likely that, in most cases, the re-introduction of NVP at delivery during a second

pregnancy should result in the suppression of HIV replication, since most of the viral

variants would be sensitive. If resistance mutations were to re-emerge, it would likely

occur after delivery, and with the addition of two new ARVs, one would expect that HIV

replication could be maximally suppressed and transmission prevented. However, there is

growing evidence that the K103N mutation can persist as a minor population of the viral

quasispecies for many years, which can very quickly re-emerge with the reintroduction of

drug selection pressure (Little et al, 2004; Mellors et al, 2004; Palmer et al, 2004). Mellors

et al, (2004) have shown that low-frequency NNRTI—resistant variants contribute to the

failure of EFV-based regimens.

Recent reports suggest that risk of NVP resistance may depend on viral subtype (Eshleman

et al, 2001a and 2004a). Eshleman and colleagues (2004a) have shown that the emergence

of NVP resistance was higher in subtype D versus subtype A, and suggested that the rate

of NVP resistance would vary from region to region, depending on which subtypes were

prevalent. In the studies in Uganda on the emergence of resistance after single dose NVP,
13



resistance was found in 19% of women at 8 weeks post dose, with the K103N mutation

most common. The Y181C mutation occurred most commonly in the infants. Further

analysis of cloned variants showed that the Y181C mutation was detected as early as 7

days after a single dose of NVP, but faded in most women by 6-8 weeks, while the K103N

mutation was more likely detected at 6-8 weeks than 7 days (Eshleman et al, 2004b).

Eshleman and colleagues (2004b) suggested that the more rapid emergence and fading of

Y181C versus K103N mutations was linked to differences in the NVP susceptibility and

fitness of HIV-1 with these mutations.

A recent study conducted in Zimbabwe described a higher rate of NVP resistance in

subtype C infected women, with 75% of the women showing resistance at 2 weeks and

34% at 8 weeks after NVP prophylaxis (Kantor et al, 2003b). This has led to concerns

about the efficacy of NVP in South Africa and other resource-poor settings where subtype

C predominates. Even more unsettling is the report of HIV shedding of resistant virus in

the breast-milk after NVP prophylaxis, where 65% of the breast-milk samples tested

showed NVP mutations (Lee et al, 2003).

1.7 Increased Fitness of Subtype C

Viral fitness is defined as the in vivo capacity of the naturally occurring viral population to

expand in a specified ecosystem, such as human individuals, in which target cells may be

scarce, and immune responses, competing viruses, and pharmacological agents are

typically present. Within a given viral quasispecies, each clone has a fitness representative

of its viral properties (e.g. activity and stability) undergoing selection in that particular

environment. During viral replication within a defined environment, different genomes

encode viruses that replicate at high rates and mutate, but generally remain under the same

selective pressure (Domingo et al, 1999). Therefore, positive (Darwinian) selection

implies that one or more members of the quasispecies are better suited to a given

environment, while negative selection eliminates unfit variants (Domingo et al, 1999;

Domingo and Holland, 1997).

In vivo assays provide the best estimate of viral fitness, using either sequencing (De Ronde

et al, 2001; Devereux et al, 2001; Goudsmit et al, 1997; Goudsmit et al, 1996; Lukashov et

al, 2001), differential hybridization (Eastman et al, 1998; Eastman et al, 1995) or primer-

guided nucleotide incorporation assays (Frost et al, 2000). However, most in vivo fitness

studies have been performed on blood samples (Eastman et al, 1998; Goudsmit et al, 1997;

Goudsmit et al, 1996), and do not take into account the fitness of that strain in other body

compartments. Host-host comparisons are also difficult due to the differences in host
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genetics and immune response. Therefore, in vivo fitness studies are limited to the

emergence of specific quasispecies or drug resistant mutants, and cannot determine the

impact of specific substitutions on replicative capacity (Quinones-Mateu and Arts, 2002).

Multiple methods have been employed to measure HIV-1 replication capacity in vitro

(Clavel et al, 2000; Nijhuis et al, 2001). Viral fitness is best defined in this context by

replicative capacity during growth competition experiments (Quinones-Mateu and Arts,

2002; Holland et al, 1991). However, many studies have equated viral fitness with the

catalytic activity of HIV-1 enzymes (Back et al, 1996; Nijhuis et al, 1999); virus turnover

on HIV-1 infected individuals (Devereux et al, 2001; Goudsmit et al, 1997; Goudsmit et

al, 1996); virus production in monoinfected cultures (Croteau et al, 1997; Doyon et al,

1996; Martinez-Picado et al, 1999; Sharma et al, 1997); using virus particle ratios (Bleiber

et al, 2001), and an HIV-induced event in a single-cycle infection assay (Bjorndal et al,

1997; Maeda et al, 1998; Zennou et al, 1998). The replicative capacity of HIV-1 strains

can provide information on their potential impact on viral load, drug resistance, and

disease progression (Quinones-Mateu and Arts, 2002). For example, the "fittest" isolate

that survives in growth competition assays may also lead to increased virulence within the

host. However, many of these methods have shortcomings. For example, the methods of

measuring viral fitness in vitro is by its replication capacity over a single cell replication

cycle, which may not be a true representation of in vivo fitness as it is replicating under

ideal circumstances including an abundance of target cells, and the absence of inhibitors

and competitors (Mammano et al, 1998).

Differences with regard to replication capacity or fitness may exist among various HIV

subtypes (Spira et al, 2003). Some studies have found that higher rates of viraemia

coupled with lowest CD4 counts have led to a more rapid disease progression in subtype C

infected individuals (Hu et al, 1999; Nielson et al, 1999; Kanki et al, 1999; Spira et al,

2003). Recent outgrowth of subtype C in southern Africa, India, and China has fuelled

speculation that subtype C isolates may be more fit in vivo. However, Ball et al (2003)

have shown subtype C HIV-1 isolates to be significantly less fit than subtype B isolates in

vitro. Increased fitness of subtype B over subtype C was also observed in primary CD4+ T

cells and macrophages from different human donors, but not in skin-derived human

Langerhans cells. Detailed analysis of the retroviral life cycle during several B and C virus

competitions indicated that the efficiency of host cell entry may have a significant impact

on relative fitness. Furthermore, phylogenetic analyses of fitness differences suggested

that, for a recombined subtype B/C HIV-1 isolate, higher fitness mapped to the subtype B

env gene rather than the subtype C gag and pol genes. These results suggest that subtype B

and C HIV-1 may be transmitted with equal efficiency (Langerhans cell data), but that
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subtype C isolates may be less fit following initial infection (T-cell and macrophage data)

and may lead to slower disease progression (Ball et al, 2003).

Velazquez-Campoy et al (2001) reported that proteases from the C and A subtypes exhibit

higher biochemical fitness in the presence of widely prescribed protease inhibitors.

Naturally occurring amino acid polymorphisms found in proteases from the C and A

subtypes lower the binding affinities of existing clinical inhibitors up to a factor of 7.5,

which by themselves are not enough to cause drug resistance, but instead significantly

amplifies the effects of the drug-resistant mutation. By including the enzyme kinetic

properties in the analysis, the biochemical fitness of the C and A subtype drug-resistant

mutants can be up to 1000-fold higher than that of the wild-type B subtype protease in the

presence of the studied inhibitors. They concluded that this might have important

consequences on the long-term viability of current HIV-1 protease inhibitors (Velazques-

Campoy, 2002).

1.8 HIV-1 Antiretroviral Therapy

There are currently four classes of approved ARVs available. The HIV-1 reverse

transcriptase (RT) and protease (PR) enzymes are the molecular targets for 3 classes of

ARV drugs: the protease inhibitors (PIs), nucleoside/nucleotide reverse transcriptase

inhibitors (NRTIs), and non-nucleoside reverse transcriptase inhibitors (NNRTIs). The

fourth class of ARVs is the recently approved fusion inhibitor, T20.

1.8.1 HIV-1 Protease

HIV-1 protease is an aspartic protease composed of two identical, non-covalently

connected subunits, ninety-nine amino acids in length (Figure 3) (Loeb et al, 1989). The

subunits form a substrate-binding cleft that is covered with a mobile flap. The

hydrophobic substrate-binding cleft recognizes, and cleaves, the viral Gag, GagPol

polyprotein and Nef precursors to yield the structural proteins and enzymes of the virus

(Baldwin et al, 1995, Chen et al, 1995; Gulnik et al, 1995; Mahalingam et al, 2001; Olsen

et al, 1999).

1.8.1.1 Protease Cleavage

The structural and enzymatic proteins that comprise the virus core are initially translated

as part of the Gag and GagPol polyprotein precursors. Protease cleaves at 12 sites: 5 in

Gag (p17/p24, p24/p2, p2/NC, p7/p1 and p1/p6m); 6 sites in GagPol (NC/TFP, TFP/p6/" 1,

pEr i/PR, PR/RT, RT/p66 and p66/IN and a single site in Nef.
16



Figure 3. HIV-1 protease structure showing the position of resistance associated mutations.
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Accurate and ordered processing of these precursors is an essential step in the production

of infectious viral particles (Kaplan et al, 1994; Mervis et al, 1988). For the GagPol

cleavage process, the first site to be cleaved is the p2/NC site to give 2 products, one with

the MA, CA and p2 and the other with NC, TFP, p6P°/, PR, RTp51, RTp66 and IN. This is

followed by cleavage at TFP/p6P °/ to once again give two products, this time with NC and

TFP and the other product with the remaining sites. Finally, the remaining products are

cleaved to give their individual proteins. A similar process occurs for the Gag cleavages.

Firstly, the precursor is cleaved at p2/NC to give two products consisting of the MA, CA

and p2, and the second product consisting of the NC, p1 and p6g ag proteins. This is

followed by cleavage at the MA/CA site and simultaneous cleavage at pl/ p6g ag.

Finally, the remaining sites CA/p2 and NC/pl are cleaved (Cote et al, 2001; Pettit et al,

2003; De Oliveira et al, 2003). The timing of the initiation of these cleavages is regulated

such that the cleavage products remain in the virus particle, even though processing

appears to initiate while the polyprotein precursors are still cell associated (Kaplan et al,

1994; Karacostas et al, 1993).

Sequences at the protease cleavage sites have been studied to determine protease-substrate

interactions and regulation of Gag processing, particularly the amino acids immediately

upstream of the scissile bond (P1) and the amino acid immediately downstream of the

scissile bond (P1'). The initial cleavages are carried out by the precursor-associated

immature protease, including the cleavages that release the mature protease itself. The

mature protease is responsible for the later cleavages. Thus, during virus assembly, the

active dimeric enzyme originates as the result of the dimerization of two GagPol

precursors. Once the protease domain is liberated from the precursors by cleavage at its N

and C termini, a free and mature dimer, consisting of two protease monomers, is produced

(Tessmer et al, 1998). Pettit et al (2002) showed that the rate of cleavage by the viral

protease could be improved with the introduction of specific alternative amino acids at the

P1 position. Substitutions at certain sites in Gag (MA/CA, CA/p2, NC/p1) mediated

enhanced rates of cleavage, while for the other two sites (p2/NC, pl/p6); the wild-type

amino acid conferred optimal cleavage (Pettit et al, 2002). The size of the amino acid at

P1' also affected the rate of cleavage. PI resistant isolates with replication impaired Gag or

GagPol processing can partially compensate by acquiring amino acid substitutions at gag

cleavage sites (Prado et al, 2002; Mammano et al, 1998; Zennou et al, 1998). This is

supported by changes seen in the protease cleavage sites within Gag (p2/ NC, NC/pl and

NC/TFP) after PI therapy in PI resistant individuals (Cote et al, 2001).
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1.8.1.2 Protease inhibitors

There are seven FDA-approved protease inhibitors (PIs): Amprenavir (APV), Indinavir

(IDV), Lopinavir (LPV - manufactured in combination with Ritonavir as Kaletra),

Nelfinavir (NFV), Ritonavir (RTV), Saquinavir (SQV) and Atazanavir (ATZ). The

function of the PIs is to prevent Gag-Pol polyproteins from successfully entering the active

site and being cleaved. This consequently prevents the assembly of new, fully functional

HIV virions.

1.8.1.3 Resistance to Protease Inhibitors

Most PR resistance mutations prevent inhibitor binding by altering the structure of the

substrate cleft (Baldwin et al, 1995; Chen et al, 1995; Gulnik et al, 1995; Mahalingam et

al, 2001; Olsen et al, 1999). Primary resistance mutations line the substrate cleft and occur

at the following codon positions: D3ON, V32I, G48V, 150V, V82A/F/T/S, I84V and

L90M. The protease flaps (residues 33-62) extend over the substrate-binding cleft and are

flexible to allow entry and exit of the polypeptide substrates and products (Shao et al,

1997, Scott et al, 2000). The tips of the flap, residues 46-54, are mobile and are also the

site of many drug resistance mutations. As these mutations are outside of the substrate-

binding region, they do not provide measurable resistance on their own. Instead, these

mutations (at codons 46, 47, 53, and 54) either compensate for the decreased kinetics of

enzymes with active site mutations or cause resistance by altering enzyme catalysis, dimer

stability, inhibitor binding kinetics, or active site re-shaping through long-range structural

perturbations (Erickson et al, 1999). Mutations associated with resistance to the currently

available PIs are shown in Figure 4. Many PIs are now co-administered with a sub-

therapeutic dose of Ritonovir (a P450 enzyme inhibitor) to inhibit the body's drug

clearance mechanism, thereby increasing the plasma levels of the PI (Hurst et al, 2000).

Since PIs are competitive inhibitors, the increased PI concentrations relative to the normal

substrate are partly responsible for the enhanced ARV activity of these boosted PI

regimens. Boosted PI levels can overcome small reductions in susceptibility conferred by

early PI mutations, thus prolonging viral suppression (Condra et al, 2000; Kempf et al,

2001). Therefore viral rebound requires the acquisition of a greater number of mutations

that produce even greater reductions in susceptibility.

1.8.1.3.1 L24I

This mutation has been reported in patients receiving lDV and has not been shown to

confer cross-resistance to other PIs, except possibly LPV (Condra et al, 2000; Kempf et al,

2001).
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1.8.1.3.2 D3ON

D3ON only occurs in patients receiving NFV. It does not confer in vitro or clinical cross-

resistance to the other PIs on its own (Patick et al, 1996; Markowitz et al, 1998; Winters et

al, 1998a; Zolopa et al, 1999). However, cross-resistance to IDV, RTV, and SQV has been

observed in isolates that have D3ON along with mutations at protease codon positions 88

and 90 (Parkin et al, 2001).

1.8.1.3.3 V32I

The V32I mutation occurs in patients receiving IDV, RTV or APV. By itself, it appears to

cause minimal resistance to any one PI. It causes high-level resistance when present with

other PI resistance mutations M46I, I47V, V82A and I84V (Parkin et al, 2003a).

1.8.1.3.4 M46I/L

The M46L mutation has been reported in patients treated with IDV, RTV, APV and NFV

and contributes resistance to each of the PIs except SQV (Condra et al, 2000; Molla et al,

1996; Schapiro et al, 1996; Patick et al, 1998).

1.8.1.3.5 I47V

Mutations at codon 47 have been reported in patients receiving IDV, RTV, APV, and

often occur in conjunction with the V32I mutation (Markland et al, 2000; Parkin et al,

2003a).

1.8.1.3.6 G48V

This mutation occurs primarily in patients receiving SQV and rarely in patients receiving

IDV (Jacobsen et al, 1995; Patick et al, 1996; Hertogs et al 1998; Winters et al, 1998a). Its

affect on APV and LPV is not known. It often occurs with mutations at codon positions 54

and 82 and isolates with all three mutations are phenotypically resistant to each of the PIs

(Shafer et al, 1998; Palmer et al, 1999).

1.8.1.3.7 I5OV/L

The 150V mutation has been reported in patients receiving APV as their first PI (Maguire

et al 2002). It causes reduced APV susceptibility, and has been shown to cause cross-

resistance to RTV and LPV in vitro (Partaledis et al, 1995; Tisdale et al, 1995; Colonno et

al, 2000; Molla et al, 2001; Parkin et al, 2001; Prado et al, 2002). 150L occurs in patients
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receiving ATZ as their first PI (Colonno et al, 2002). In addition to causing reduced ATZ

susceptibility, it causes hypersusceptibility to each of the remaining PIs (Colonno et al,

2002).

1.8.1.3.8 F53L

This mutation has been in more than 10% of patients treated with multiple PIs and has

been associated with phenotypic resistance to LPV (Kantor et al, 2002a; Kempf et al,

2001).

1.8.1.3.9 I54V/T/L/M

Mutations at this position have been reported in patients treated with 1DV, RTV, APV,

SQV, and LPV and contribute resistance to each of the available PIs (Condra et al, 2000;

Molla et al, 1996; Schapiro et al, 1996; Patick et al, 1998).

1.8.1.3.10 G73C/S/T

These mutations have been reported in patients receiving IDV, SQV or occasionally NFV

monotherapy, but usually are found in patients failing multiple PIs (Shafer et al, 1999; Wu

et al, 2003). It usually occurs in conjunction with the L9OM mutation (Kantor et al,

2002a).

1.8.1.3.11 V82A/T/F/S

V82A/T/F/S occurs in HIV-1 isolates from patients receiving lDV or RTV (Condra et al,

1996; Molla et al, 1996). V82A is the most common mutation at this position, while V82S

is the least common. Alone, these mutations confer decreased susceptibility to lDV, RTV

and LPV however, when present with other PI mutations they contribute phenotypic and

clinical resistance to each of the PIs (Shafer et al, 1998; Sham et al, 1998; Winters et al,

1998a; Falloon et al, 2000; Kempf et al, 2001). V82I occurs more frequently in untreated

individuals with non-B isolates (1% of subtype B versus 5-10% of non-B subtypes), and

confers minimal or no resistance to the available PIs (Gonzales et al, 2001; Brown et al,

2001; Descamps et al, 1998; King et al, 1995).

1.8.1.3.12 I84V/A/C

Mutations at this codon position have been reported in patients receiving only one PI

(either 1DV, RTV, SQV or APV) and cause cross-resistance to each of the PIs (Condra et

al, 1996; Molla et al, 1996; Craig et al, 1998; Hertogs et al, 2000; Sevin et al, 2000). I84V
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tends to develop in isolates that already have the L9OM mutation (Kantor et al, 2002a).

I84A and 184C occur rarely, but are also associated with resistance to multiple PIs when

present with other PI mutations (Mo et al, 2003).

1.8.1.3.13 N88D/S

Mutations at position 88 have been reported in patients receiving NFV or occasionally

IDV. Alone, these mutations cause low-level NFV resistance. When they occur in

conjunction with D30N or M46I, they cause high-level resistance to NFV (Colonno et al,

2000; Petropoulos et al, 2000; Ziermann et al, 2000). N88S causes hypersensitivity to

APV but the clinical significance of this is not known (Ziermann et al, 2000).

1.8.1.3.14 L9OM

The L9OM mutation has been reported in patients treated with SQV, NFV, IDV and RTV.

And causes cross-resistance to each of the available PIs (Lawrence et al, 1999; Zolopa et

al, 1999; Falloon et al, 2000; Hertogs et al, 2000; Para et al 2000; Dronda et al, 2001;

Kempf et al, 2001). The mechanism by which L9OM causes PI resistance is not known.

1.8.1.3.15 Polymorphisms in PR and Resistance

Amino acid variants at codons 10, 20, 36, 63, 71, 77, and 93 also make frequent

contributions to drug resistance when present with other protease mutations (Figure 4)

(Condra et al, 1995; Rose et al, 1996; Martinez-Picado et al, 1999; Nijhuis et al, 1999;

Mammano et al, 2000). Codon 63 is the most polymorphic of these sites. Mutations at

these positions increase in heavily treated patients (Wu et al, 2003; Hertogs et al, 2000;

Yahi et al, 1999). In some HIV-1 subtypes, mutations at codons 20, 36 and 93 occur at

higher rates than they do in subtype B isolates (Cornelissen et al, 1997; Shafer et al, 1999;

Pieniazek et al, 2000; Gonzales et al, 2001). It has been suggested that individuals

harbouring isolates containing multiple accessory mutations may be at a greater risk of

virologic failure during PI therapy (Perez-Alvarez et al, 2001; Perno et al, 2001).

However, most studies to date have not supported this hypothesis (Frater et al, 2001;

Perez-Alvarez et al, 2001; Perno et al, 2001; Servais et al, 2001; Kuritzkes et al, 2000;

Bossi et al, 1999; Harrigan et al, 1999). In addition, mutations at position 17, 22, 23, 45,

58, 66, 74, 75, 76, 83 and 85 in PR have recently been associated with treatment, but the

phenotypic and clinical impact of these mutations are not yet known (Parkin et al, 2003a;

Wang and Larder et al, 2003; Wu et al, 2003).
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1.8.2 HIV-1 Reverse Transcriptase (RT)

The RT enzyme is both an RNA-dependent DNA polymerase and DNA-dependent DNA

polymerase. RT is a heterodimer consisting of p66 and p51 subunits (Figure 5). The p66

subunit consists of 560 amino acids containing a polymerase domain (the DNA-binding

groove and the enzyme's active site), an RNase H subdomain and connection subdomain

(Larder and Stammers, 1999; Sarafianos et al, 1999a). The shape of the polymerase

domain of the p66 subunit can be likened to a human hand with subdomains referred to as

fingers, palm, and thumb. Most RT inhibitor resistance mutations are in the 5' polymerase

coding regions, particularly in the "fingers" and "palm" subdomains (Shafer et al, 2003).

The p51 consists of the first 440 amino acids of the p66 subunit, but displays no enzymatic

activity and functions as a scaffold for the enzymatically active p66 subunit.

1.8.2.1 Nucleoside/nucleotide RT Inhibitors (NRTIs)

There are currently seven nucleoside analogues, and one nucleotide analogue approved by

the FDA, including Zidovudine (AZT), Didanosine (ddI), Zalcitibine (ddC), Stavudine

(d4T), Lamivudine (3TC), Abacavir (ABC) and Emtricitibine (FTC) (Figure 6). Tenofovir

disoproxil fumarate (TDF) is the only FDA-approved nucleotide analogue. The NRTIs are

prodrugs that must first be phosphorylated by host cellular enzymes before they can be

used by the RT enzyme. Nucleosides must be tri-phosphorylated and nucleotides must be

di-phosphorylated. The phosphorylated NRTIs compete with natural deoxynucleoside

triphosphates (dNTPs) for incorporation into the newly synthesized DNA chains where

they cause chain termination and block further extension of the proviral DNA during RT

(Shafer et al, 2003).

1.8.2.2 NRTI Resistance

NRTI resistance can occur by two biochemical mechanisms. In the first, certain mutations

allow the RT enzyme to discriminate against NRTIs during synthesis and prevent their

addition to the growing DNA chain (Larder and Stammers, 1999; Sarafianos et al, 1999a;

Huang et al, 1998). The second mechanism is mediated by nucleotide excision mutations

(NEMs) that increase the rate of ATP-dependent hydrolytic removal of the chain-

terminating NRTI and enable continued DNA synthesis (Shafer et al, 2003; Anion et al,

2000; Meyer et al, 1999; Anion et al, 1998). This mechanism of resistance has also been

referred to as pyrophosphorolysis and primer unblocking.
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1.8.2.2.1 Nucleotide Excision Mutations (NEMs)

The nucleotide excision mutations mediate the ATP-dependent hydrolytic removal of a

dideoxy nucleotide monophosphate (ddNMP) from a terminated cDNA chain (Meyer et al,

2000; Anion et al, 1998). They were originally identified for their role in causing AZT

resistance, but several studies have since shown that the NEMs are associated with clinical

resistance to AZT, d4T, ABC, and to a lesser extent, to ddl, ddC and TDF (Miller et al,

2001; Miller and Larder, 2001; Wainberg et al, 2001) (Figure 6). The interaction of the

incoming dNTP with a ddNMP-terminated primer results in the formation of a stable

"dead-end" catalytic complex between RT, primer, template, and dNTP (Sarafianos et al,

2003; Miller et al, 2001; Lennerstrand et al, 2001; Boyer et al, 2001; Tong et al, 1997).

The formation of such a dead-end complex interferes with the ability of NEMs to facilitate

the resumption of virus DNA chain elongation. The bulky azido group of AZT may

interfere with the formation of such a dead-end catalytic complex by sterically preventing

the addition of the next dNTP (Boyer et al, 2001; Lennerstrand et al, 2001).

Various combinations of mutations at codons 41, 67, 70, 210, 215, and 219 have been

implicated in the removal of the ddNMP (Meyer et al, 2000; Anion et al, 1998; Huang et

al, 1998; Harrigan et al, 1996; Kellam et al, 1992; Larder et al, 1989). Biochemical studies

suggest that D67N and K7OR are the mutations most responsible for rescue of chain-

terminated primers (Meyer et al, 1999; Anion et al, 1998). Some studies suggest that the

T215Y/F mutations lead to increased RT processivity (Caliendo' et al, 1996, Anion et al,

1998). Mutations at positions 41 and 210 usually occur with mutations at position 215 and

appear to stabilize the interaction of 215Y/F with the dNTP binding pocket (Yahi et al,

2000; Huang et al 1998; Harrigan et al, 1996; Hooker et al, 1996). Mutations at positions

67 and 219 may occur with mutations at position 70 or with mutations at position 215,

suggesting alternate pathways for the development of resistance to the NRTIs (Shafer,

2003). In summary, the favoured pathway for the development of resistance is:

M41L/T215Y---÷M41L+T215Y—M41L+K210W+T215Y—>M41L+D67N+K210W+T215Y

with D67N/K7OR—+K219Q/E/N-A167N+K7OR/K7OR+1(219Q—T215Y+1(219Q as the

alternate pathway.

The NEMs interfere with the clinical response to AZT, d4T, ddI and ABC (Molina et al,

2003; Kozal et al, 1993). A combination of three or more NEMs with M184V results in

complete loss of ABC activity (Lanier et al, 2004; Lanier et al, 1999). M184V also

appears to reverse the effect of the NEMs on resistance to d4T and TDF (Naeger et al,

2001; Shulman et al, 2001; Miller et al, 2002; Palmer et al, 1999). Preliminary data
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suggest that TDF usually retains antiviral activity even in patients with extensive previous

NRTI therapy (Miller et al 2001; Schooley et al, 2001).

1.8.2.2.2 K65R

K65R is seen mainly in patients receiving triple NRTI regimens lacking AZT (Gallant et

al, 2003; Roge et al, 2003). It confers intermediate levels of resistance to ddl, ABC, ddC,

3TC, FTC and TDF, and low-level resistance to d4T (Parkin et al, 2003b; Miller et al,

2000; Petropoulos et al, 2000; Wainberg et al, 1999; Tisdale et al, 1997; Gu et al, 1994,

Zhang et al, 1994). However, it also causes hypersensitivty to AZT (Rhee et al, 2003).

Position 65 interacts with the y-phosphate of the bound dNTP and improves discrimination

between the dNTPs and most NRTIs (Lanier et al, 2003; Parkin et al, 2003). The K65R

mutation has been shown to increase RT replication fidelity and processivity in vitro, but

has also been associated with a decrease in replicative capacity (Miller et al, 2003; Shah et

al, 2000; Anon et al, 1996). K65R generally occurs in association with other mutations

(such as M184V and Q151M) that discriminate between the NRTIs and the natural dNTP

substrates (Gonzales et al, 2003).

1.8.2.2.3 T69D/N/SA Ins

Mutations at position 69 include T69D/N/S/A, as well as single and double amino acid

insertions. T69D has been reported in patients treated with either of the available NRTIs

(Shafer, 2003; Fitzgibbon et al, 1992). In site-directed mutagenesis studies, other

mutations at this position including T69N, T69S, and T69A have been shown to confer

resistance to AZT, ddl, ddC, and d4T (Winters et al, 2001). The 691ns occurs in

approximately 2% of heavily treated patients and when alone, causes low level resistance

to each of the NRTIs. When it occurs together with T215Y/F and other AZT-resistance

mutations it causes high-level resistance to each of the NRTIs, including a 20-fold

resistance to TDF which is the highest reported level of resistance to this drug (Masquelier

et al, 2001; Larder et al, 1999; Winters et al, 1998b; de Jong et al, 1999). It has been

suggested that this mutation may act in a similar manner to the NEMs by causing ATP-

mediated primer unblocking (Lennerstrand et al, 2001).

1.8.2.2.4 L74V/I

L74V is usually seen in patients treated with ddI or ABC monotherapy and causes

intermediate resistance to ddI and ddC and low-level resistance to ABC (Harrigan et al,

2000; Miller et al, 2000; Tisdale et al, 1997; Winters et al, 1997; Kozal et al, 1994; Shafer
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et al, 1994; St. Clair et al, 1991). It also causes hypersensitivity to AZT and TDF (Parkin

et al, 2003b; Shafer, 2003; Miller et al, 2001; St. Clair et al, 1991). L74V plays a role in

the repositioning of the template/primer complex (Sturmer et al, 2003). This mutation has

also been shown to be the cause of decreased RT processivity and decreased replication in

cell culture (Sharma et al, 1999). Recent evidence suggests that L74V causes a reduction

in the efficiency of the excision reaction associated with RT (Frankel et al, 2004). L741

causes intermediate resistance to ddI (Kantor et al, 2002a).

1.8.2.2.5 V75T/I/M/A

The V75T mutation is rarely found in vivo. It develops in isolates cultured in the presence

of increasing concentrations of d4T and causes intermediate resistance to d4T, ddI and

ddC (Lacey et al, 1994). Mutations at this position cause drug resistance through

nucleotide discrimination as well as through a non-ATP-mediated mechanism of primer

unblocking (Lennerstrand et al 2001; Selmi et al, 2003). V75I generally occurs in isolates

that also have the multinucleoside resistance mutation, Q151M. The V75M/A mutations

contribute to d4T resistance (Rhee et al, 2003; Bloor et al, 1998).

1.8.2.2.6 M184V/I

M184V sterically hinders inhibitor binding by changing the geometry of the dNTP binding

pocket by direct interaction of the altered residue with the incoming dNTP, thus leading to

a decrease in 3TC incorporation (Sarafianos et al, 1999b; Drosopoulos et al, 1998).

Several in vitro studies have shown that RT enzymes with M184V displayed increased

fidelity and decreased processivity (Drosopoulos et al, 1998; Sharma et al, 1999; Oude et

al, 1997; Wainberg et al, 1996; Boyer et al, 1995; Back et al, 1997). M184V is usually the

first mutation to develop in isolates from patients receiving incompletely suppressive 3TC-

containing regimens (Staszewski et al, 2001; Descamps et al, 2000; Havlir et al, 2000;

Maguire et al, 2000). It is also selected during therapy with ABC, ddC, ddI and FTC

(Quinn et al, 2003; Harrigan et al, 2000; Miller et al, 2000; Winters et al, 1997; Gu et al,

1992). M184V, in combination with the NEMS or in combination with mutations at

positions 65, 74, or 115 in RT, leads to both in vitro and in vivo ABC resistance (Harrigan

et al, 2000; Katlama et al, 2000; Lanier et al, 1999; Palmer et al, 1999). The M184V

mutation also reverses T215Y-mediated AZT resistance by its ability to impair the rescue

of chain-terminated DNA synthesis (Gotte et al, 2000; Shafer et al, 1998; Larder et al,

1995; Boucher et al, 1993; Tisdale et al, 1993). However, this can be overcome by the

presence of four or more AZT resistance mutations (Whitcomb et al, 2003; Shafer et al,

1998; Tisdale et al, 1993). Re-sensitisation does not appear to apply to AZT resistance
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caused by Q151M (Shafer et al, 1996). M1841 also causes high-level resistance to 3TC. It

usually develops before M184V in patients receiving 3TC because HIV-1 RT is more

prone to G to A mutations than to A to G mutations (i.e. ATG to GTA) (Keulen et al,

1997; Ji et al, 1994). However, the enzymatic efficiency of M1841 is less than that of

M184V and nearly all patients with mutations at this position eventually also develop

M184V (Frost et al, 2000).

1.8.2.2.7 Q151M

Q151 is in the B2 strand in the fingers domain of p66 subunit of HIV-RT and are in direct

contact with the incoming dNTP. Its role is to participate in the positioning of the

incoming dNTP in the HIV-RT active site (Courcambeck et al, 2002). Alone, the Q151M

mutation causes intermediate levels of resistance to AZT, ddl, ddC, d4T and ABC (Van

Laethem et al, 2000; Iversen et al, 1996; Shafer et al, 1996; Shirasaka et al, 1995). It

causes high-level resistance to each of these NRTIs and low-level resistance to 3TC and

TDF when present with mutations at positions 62, 75, 77, and 116 (Miller et al, 2000;

Palmer et al, 1999). This mutation was found to develop in up to 50% of patients who had

received dual therapy with ddI and AZT/d4T (Cowley et al, 2001; Shafer et al, 1994).

Q151M confers ability of RT to discriminate between an analogue and its natural

counterpart and has no effect on repair of analogue termination (Deval et al, 2002).

MultiNRTI resistance via the Q151M pathway is more common in non-B subtypes

(Kantor et al, 2003a).

1.8.2.3 Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

There are currently three FDA-approved NNRTIs, namely, NVP, delavirdine (DLV), and

efavirenz (EFV) (Figure 7). The NNRTIs bind to a hydrophobic pocket close to the RT

active site (Hsiou et al, 2001). They inhibit HIV-1 replication allosterically by displacing

the catalytic aspartate residues relative to the polymerase binding site (Esnouf et al, 1995;

Spence et al, 1995; Kohlstaedt et al, 1992).

1.8.2.4 NNRTI resistance

Resistance usually emerges rapidly when NNRTIs are administered as monotherapy or in

the presence of incomplete virus suppression, with a single mutation in the NNRTI-

binding pocket resulting in high-level resistance to one or more NNRTIs (Figure 7). Many

researchers suggest that this rapid appearance of resistance may be caused by the selection

of a pre-existing population of mutant viruses within an individual (Conway et al, 2001;
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Jackson et al, 2000; Havlir et al, 1996; Wei et al, 1995). NNRTI resistance mutations may

compromise virus replication by changes in the conformation of the dNTP binding pocket

and changes in RNaseH activity (Van Laethem et al, 2000; Archer et al, 2000; Kleim et al,

1994).

1.8.2.4.1 K103N/S/R/Q/T

K103N occurs more commonly than any other mutation in patients receiving NNRTIs and

causes high-level resistance to each of the available NNRTIs (Bacheler et al, 2000;

Demeter et al, 2000; Hanna et al, 2000; Conway et al, 2001; Deeks et al, 2001; Torti et al,

2001; Petropoulos et a; 2000; Huang et al, 1999; Young et al, 1995). Alone, the K103N

mutation causes resistance to each of the available NNRTIs (Casado et al, 2000; Demeter

et al, 2000; Joly et al, 2000). K103S appears to have the same effect as the K103N

mutation (Harrigan et al, 2003). K103R does not appear to cause NNRTI resistance on its

own, but can cause cross-resistance to all of the NNRTIs when present with V179D

(Petropoulos et al, 2003). The K103Q/T mutations do not appear to cause NNRTI

resistance.

Position 103 is located in the vicinity of an entrance to the binding pocket. The structure of

the RT enzyme is only minimally changed by the K103N mutation. Unliganded, it forms a

network of hydrogen bonds that are not present in the wildtype enzyme which could

stabilize the closed pocket form of the enzyme and interfere with the ability of inhibitors

to bind to the enzyme (Hsiou et al, 2001).

1.8.2.4.2 V106A/M/I

V106A causes high-level resistance to NVP, intermediate levels of resistance to DLV, and

low-level resistance to EFV (Bacheler et al, 2001; Petropoulos et a; 2000; Balzarini et al,

1998, Fujiwara et al, 1998; Young et al, 1995; Byrnes et al, 1993; Emini et al, 1993;

Larder et al, 1993). V106M is a putative subtype C specific mutation occurring in EFV

treated patients and causes high-level resistance to each of the NNRTIs but does not arise

under pressure by NVP or DLV (Brenner et al, 2003). Subtype C tends to get the V106M

rather than the V106A because of the GTG to ATG mutation at amino acid position 106.

Subtype B usually has a GTA to GCA mutation. When on EFV treatment, the V106M

mutation is followed by mutations at codons 181 and 188 (Brenner et al, 2003). V1061 is a

treatment-associated polymorphism that has a minimal effect on susceptibility to the

currently available NNRTIs (Shafer, 2003).
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1.8.2.4.3 A98G/S

A98G causes low-level resistance to each of the NNRTIs (Petropoulos et al, 2000; Young

et al, 1995; Byrnes et al, 1994). A98S is a polymorphism that does not appear to be

associated with resistance (Shafer, 2003).

1.8.2.4.4 L100I

L100I causes intermediate resistance to EFV and DLV and low-level resistance to NVP

(Petropoulos et al, 2000; Fujiwara et al, 1998; Winslow et al, 1996; Young et al, 1995;

Byrnes et al, 1994; Byrnes et al, 1993). L100I usually occurs with K103N in patients

receiving EFV (Bacheler et al, 2000).

1.8.2.4.5 K101E/R/Q/P

K101E causes low-level resistance to each of the NNRTIs (Petropoulos et al, 2000; Young

et al, 1995; Byrnes et al, 1994). K101R/Q do not appear to be associated with drug

resistance. Although K101P occurs frequently in heavily treated patients, its phenotypic

impact has not yet been reported (Shafer, 2003).

1.8.2.4.6 V1081

V1081 causes low-level resistance to each of the NNRTI (Petropoulos et al, 2000; Young

et al, 1995; Byrnes et al, 1994).

1.8.2.4.7 V179D/I

V179D causes low-level resistance to each of the NNRTIs (Winslow et al, 1996; Young et

al, 1995; Byrnes et al, 1994; Byrnes et al, 1993). V 1791 is a common polymorphism that is

not associated with drug resistance (Shafer, 2003).

1.8.2.4.8 Y181C/I

Y181C/I occurs commonly in patients treated with NVP and causes high-level resistance

to NVP and DLV and low-level resistance to EFV (Petropoulos et al, 2000; Fujiwara et al,

1998; Young et al, 1995; Byrnes et al, 1994; Byrnes et al, 1993).
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1.8.2.4.9 Y188C/L/H

Mutations at this position occur in patients treated with NVP and EFV and cause high-

level resistance to NVP and EFV and intermediate resistance to DLV (Petropoulos et al,

2000; Fujiwara et al, 1998; Young et al, 1995; Byrnes et al, 1994; Byrnes et al, 1993).

1.8.2.4.10 G190A/S/E/C/Q/V/T

The most common mutations at this position, G190A and S, cause high-level resistance to

NVP and intermediate (G190A) or high (G190S) levels of resistance to EFV (Petropoulos

et al, 2000; Fujiwara et al, 1998). The other mutations at this position are also markedly

less susceptible to NVP and EFV (Huang et al, 2003). Most G190 mutations cause

hypersusceptibility to DLV, except G190E, which causes low-level resistance to DLV

(Huang et al, 2003). Certain 190 substitutions (C, Q, V, T, and E have been shown to have

markedly reduced fitness in vitro (Huang et al, 2003; Kleim et al, 1994). This was

correlated with reduced virion-associated RT activity and incomplete PR processing of the

viral p55 (gag) polyprotein (Huang et al, 2003).

1.9 Inhibitors of HIV-1 Fusion and Entry

Since the development of resistance to any ARV treatment regimen is unavoidable, there

is a constant need for the development of new classes of drugs. T-20 (by Trimeris and

Roche) is the first agent in the new class drug called fusion inhibitors that target the entry

stage of the virus life cycle. The HIV-1 env glycoprotein consists of a surface glycoprotein

(gp120) and a transmembrane glycoprotein (gp41). During HIV-1 infection, the virus's

gp120 binds to both a CD4 and chemokine receptor on the target cells, followed by a

conformational change in gp41 that promotes the fusion of the viral and cellular

membranes (Eckert et al, 1999). For successful fusion to occur, the heptapeptide repeat

domains (HR-1 and HR-2) of gp41 must form a hairpin structure (Chan et al, 1998). T-20

is a 36-amino-acid peptide that corresponds to a part of the HR-2 region (residues 127-

162) and binds to HR1 near the fusion domain, preventing interactions with the HR-2

region and keeping the virus and cell membranes from fusing (Kilby et al, 1998). It has

been shown to be effective for patients with viruses resistant to RT and PR inhibitors when

given by means of intravenous infusion or twice-daily subcutaneous injection (Lalezari et

al, 2003; Kilby et al, 1998). It has also been shown to be effective subtype C isolates in

vitro (Cilliers et al, 2004).

In a study of treatment-experienced patients in which T-20 was added to an optimised

ARV regimen, 32% of subjects achieved either a greater than 1.0 log i n copies/ml reduction
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in plasma HIV-1 RNA levels from baseline or a viral load less than 400 copies/ml.

Thirteen percent of subjects achieved a viral load less than 50 copies/nil (Lalezari et al,

2003). In another study, a regimen of APV/RTV/ABC/EFV, with or without T-20 (at 1 of

3 doses), was evaluated in PI-experienced NNRTI-naive patients. Again, T-20 recipients

were more likely to achieve a plasma HIV-1 RNA level less than 400 copies/ml, with the

greatest reduction in viral load observed in those subjects receiving a T-20 dose of 100 mg

twice daily (Lalezari et al, 2003). However, resistance was observed to evolve in studies of

T-20 monotherapy and should therefore be used as part of a regimen consisting of several

active agents (Sista et al, 2002). Resistance is associated with changes in the HR1 region,

particularly in the GIV motif (Wei et al, 2002; Kilby et al, 2002; Hanna et al, 2002). This

motif is highly conserved among HIV-1 isolates (Hanna et al, 2002; Xu et al 2002).

1.10 HIV-1 and the Mechanisms of Drug Resistance

During uncontrolled HIV infection, the high HIV replication rate and RT-induced

mutation rate generates every possible mutation in the HIV genome each day (Richman et

al, 1994). This results in a large pool of genetically related but distinct HIV strains called

quasispecies, each of which has the potential to develop into the dominant strain. During

treatment with ARVs, the likelihood that resistant mutants will emerge is not only a

function of the fidelity of the viral RT enzyme and rate of virus replication, but is also

determined by the ability of the viral target site to mutate. For example, AZT selects for

mutations in the RT more readily in vitro and in vivo than d4T, probably because of the

relatively large 3'-azido group on AZT, making it even more different to the physiological

thymidine than d4T. Therefore, the RT molecule can more readily mutate to interact

differently with this unphysiologic sugar moiety on AZT, thus selecting for mutations

more easily than against d4T. Similarly, 3TC has a distinctive sugar moiety that probably

accounts for the rapidly emergence of resistance to this drug (Gao et al, 1993; Schinazi et

al, 1993; Tisdale et al, 1993).

Figure 8 demonstrates the development of drug resistance during incomplete viral

suppression. With increasing drug exposure, the selective pressure on the replicating virus

population increases to promote the more rapid emergence of drug-resistant mutants. As

long as significant levels of virus replication are sustained, the likelihood of such mutants

increases. As antiviral activity increases still more, the amount of virus diminishes to the

point where the likelihood of resistance emerging begins to diminish.

This likelihood becomes nil when replication is completely inhibited (Richman, 1994).

However, with continuing viral replication in the absence of completely suppressive

antiviral drug activity, the cumulative acquisition of multiple mutations can occur over
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time (Condra et al, 1995; Larder et al, 1989). The selective pressure of drug treatment

permits the outgrowth of these pre-existing mutants (Coffin et al, 1995). After the failure

of a particular regimen, it is difficult to dissect out the component of the drug regimen that

is attributable to the acquisition of drug resistance. This is possibly due to the fact that

patients who are more likely to develop drug resistance are more likely to have

confounding factors that will predispose to a poor prognosis (Richman, 1994). Also,

patients may contain mixtures of certain viruses with different susceptibilities, and these

populations may be represented differently in different organs of the patient under

treatment. Therefore the key to ensure antiviral efficacy is total viral suppression with a

potent combination ARV regimen. This is because resistant mutants do not emerge if a

regimen can prevent the outgrowth of pre-existing mutants and block ongoing replication

that permits the emergence of new mutants. A second approach is to switch to an alternate

therapy against which the population has no cross-resistance. However, when a patient

changes to a new regimen, the rate of viral replication and selection of mutations is

influenced by the extent to which the mutations selected by the previous regimen also

confer resistance to the new drugs. If the virus has some degree of cross-resistance,

mutation-generating replication events continue to occur at a rate determined by the

overall effectiveness of the new regimen, resulting in the more rapid development of

resistance.

It therefore seems that the development of drug resistance is an inevitability, and therapies

must be designed to optimise treatment in the face of resistant populations. One approach

to sustain antiretroviral drug activity is to generate plasma drug levels that exceed the

susceptibility of drug-resistant viruses (Havlir et al, 1996). Another approach is to use

multiple drugs targeted to the same viral protein (convergent therapy), whereby mutations

induced by drug 1 may sensitise the virus to drug 2, or may prevent the emergence of

viable mutants to drug 2 (Chow et al, 1993).

1.11 Rate of Selection of Resistance

Besides the effect of the potency of the drug regimen and the adherence to the regimen,

the inherent replication rate of a resistant virus also influences the rate of its emergence

(Richman, 1994). Some resistance mutations do not appear to substantially affect the viral

replication rate and will appear as the dominant quasispecies much faster, while those that

compromise viral replication may take longer to emerge, or may acquire additional

compensatory mutations that help to restore the viral replication rate. Also, some

mutations occur as single nucleotide changes (eg, NNRTIs) and will appear faster than

those that require two base changes (eg, T215Y, T69D).
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1.12 Disappearance of Resistance Mutations

The same factors that influence the development of a resistant population also affect the

"disappearance" of mutations from the dominant species (Quinones-Mateu and Arts. 2002;

Richman, 1994). An example of when this occurs is during treatment interruption, where

there is no longer any drug selection pressure and the most efficiently replicating strain

(which could be the wild-type strain) becomes the dominant quasispecies. This "reversion

to wild-type" can occur within a few weeks of therapy cessation. Although the drug

resistance mutations would no longer be detectable by conventional genotypic assays,

these strains still persist in the minority species. The minor populations can re-emerge

rapidly if selective pressure is reapplied. Similarly, resistance mutations may be "lost"

when a different drug regimen is used against a drug-resistant variant without any cross-

resistance to the new regimen. Quasispecies that carry previously selected mutations that

are no longer advantageous and may be associated with a reduced rate of replication, will

tend to be out competed by virus strains that are able to replicate more efficiently without

these mutations, and may disappear from genotypic reports (Shafer, 2003; Quinones-

Mateu and Arts. 2002).

1.13 Hypersusceptibility

This is defined as an increased susceptibility to a particular drug, i.e. virus replication is

inhibited by lower amounts of drug than those required to inhibit a reference wild-type

strain. It has been shown that a number of NRTI-resistance mutations cause

hypersensitivity to the NNRTIs (Whitcomb et al, 2002). Patients with NNRTI

hypersusceptibility have better outcomes on NNRTIs than do non-hypersusceptible

patients (Shulman et al, 2001; Haubrich et al, 2002; Hammer et al, 2002; Katzenstein et al,

2003).

1.14 Drug Resistance in Non-B Subtypes

With a growing demand for treatment and access to antiretroviral therapy in resource-

limited settings, the susceptibility and resistance patterns of non-subtype B viruses,

particularly subtype C, to antiretroviral drugs is an important question. Initial reports

suggest that non-B subtypes respond equally as well as subtype B to therapy (Turner et al,

2004; Laurent et al, 2002; Shafer et al, 1997). A study of 72 drug naive subtype C isolates

from South Africa found no naturally occurring primary RT or protease drug resistance

mutations (Gordon et al, 2003). Another study from Zimbabwe found that subtype C
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viruses were as susceptible as subtype B to commonly used nucleoside and non-nucleoside

RT inhibitors (Shafer et al, 1997). Turner et al (2004) found that although polymorphisms

in non-B subtypes reflect different patterns of codon usage, this may only rarely affect the

patterns of drug resistance-associated mutations. On the other hand, a study by Dumans et

al (2004) found that a polymorphism at position 210 in subtype F resulted in a lower

prevalence of the L210W mutation in subtype F patients from Brazil. In addition, some

studies have reported differences in the response of non-B isolates to therapy (Gonzalez et

al, 2004; Grossman et al, 2002a; Navratne et al, 2002; Loemba et al, 2002; Loveday et al,

2002). Loveday et al (2002) found a significantly inferior virologic response in subtype C

versus subtype B infected patients at 24 and 48 weeks of follow-up.

In the PR region, the D3ON appears at very low rates in NFV treated non-B isolates

(Gonzalez et al, 2004; Grossman et al, 2004; Navratne et al, 2002), while common in

subtype B isolates treated with NFV. Gonzalez et al (2004) found that the D3ON mutation

drastically reduced subtype C fitness in vitro, which could account for the lack of

prevalence of this mutation in subtype C treated isolates. Non-B isolates failing NFV

treatment more commonly developed the L9OM mutation (Gonzalez et al, 2004; Grossman

et al, 2002a; Navratne et al, 2002). The N88S mutation was more common in CRF'01_AE

strains in Japan, with D3ON and N88D not seen at all. N88S is also frequently associated

with L9OM in subtype G isolates (Camancho et al, 2004). The rate of some protease

resistance mutations was higher in subtype B sequences (positions 10, 30 and 90), while

others were higher in subtype C sequences (positions 36, 41, 89 and 93) (Auerbuck et al,

2002). Similarly, Qari et al (2004) found distinct patterns of resistance with PI treatment in

subtype F and A/G isolates. They also found that L1 0V and V771 amplified PI resistance

in their subtype F and A/G isolates. Within the RT, subtype C viruses were found to

develop the key nucleoside excision mutations (NEMS) at positions 41, 67, 70, 210, 215,

and 219, but to a lesser extent than subtype B viruses (Bollyky et al, 2002; Grossman et al,

2002b). Pillay et al (2002a) from South Africa, found that a high percentage (6/12) of

subtype C positive infants treated with ddI plus d4T developed resistance, including the

multi-drug resistant Q151M mutation. Novel mutations present at higher rates in treated

persons infected with subtype C include mutations at RT positions 20, 36, 48 53, 123, 174

and 214 (Bollyky et al, 2002; Kantor et al, 2002b). Spira et al (2003) also report a cluster

of silent mutations in subtype C isolates at amino acid positions RT 65, 138 and 161

linked to NRTIs resistance in vitro.

Differences also occur for the NNRTI class of drugs. The most notable difference is the

V106M resistance mutation seen in subtype C patients treated with EFV, which does not

arise under pressure by NVP or DLV (Brenner et al 2003). The V106M mutation is said to

confer high-level multi non-nucleoside RT inhibitors (NNRTI) resistance. This mutation
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occurs because the sequence for valine in subtype C isolates is GTG, while it is GTA in

subtype B. The change from V to M (ATG) is therefore easier in subtype C isolates as it

only requires a single nucleotide substitution, while the V to M mutation in subtype B

isolates would require two substitution events. The V106A (GTA to GCA) mutation

occurs more commonly in subtype B isolates, and causes NVP resistance without any

cross-resistance to the other NNRTIs. Eshleman et al (2004b) found that subtype

influences the selection and fading of the NVP resistance mutations K103N and Y181C.

In a study on the pattern of NNRTI resistance in non-B subtypes, Cane et al (2004) found

that the G190A mutation occurred more frequently in subtype A and C isolates than

subtype B. The impact of other signature sequences in subtype C and other non-B

subtypes on response to ARV therapy needs to be further investigated (Kantor et al,

2003a; Loemba et al, 2002; Grossman et al, 2001).

1.15 Transmission of ARV Drug Resistance

The transmission of HIV-1 viruses that are resistant to ARVs has serious implications both

for the treatment of individuals and for public health. Individuals infected with a resistant

strain of HIV often have fewer drugs from which to choose as many of the drugs are cross-

resistant and this lowers the chances of that individual benefiting from long-term therapy.

This may also have grave implications for perinatal transmission prevention programs, as

drug resistant virus circulating in these areas may cause these programs to fail. Poor

adherence because of stigma, side effects and cost, is one of the main causes of the

development of drug resistance (Little, 2001). There is a growing concern that drug-

resistant strains will spread as more people take ARVs without full viral suppression. On

the other hand, some researchers feel that while the spread of drug-resistant virus is a

threat, it is unlikely to have an impact at epidemic levels since people with resistant HIV

strains also have wild-type strains in their pool of viruses, which are possibly more

transmissible than resistant strains (Boden et al, 1999; Loveday et al, 1999). There is

emerging evidence that resistant virus is less infectious, with a recent study suggesting that

resistant virus has only a 25% capacity to infect others compared to wild-type virus (Leigh

Brown et al, 2003). However, another study has found that in individuals who were

infected with resistant viruses, all the resistant mutations detected in the index case

persisted in the infected patients, even after they had disappeared from the index case after

treatment interruption (Ravaux et al, 2003). Another study has shown that transmission-

acquired resistance does not appear to influence the rate of disease progression, as it does

in individuals that develop resistance (Pillay et al, 2002b).
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There is currently an upward trend in the transmission of drug resistance, probably as a

result of the increased use of ARV therapy. Studies from the 1990s found less than 10% of

new infections involved drug-resistant virus, but more recent studies in Europe and the US

have shown a dramatic increase of up to 27% (Wensig et al, 2003; Little et al, 2002; UK

Collaborative Group 2001). However, a Swiss study found that the transmission of drug-

resistant viruses peaked in 1997, contradicting the notion of a rise in transmission of drug-

resistant virus (Yerly et al, 2001). They suggested that better control of viremia over time

and greater attention to the need for adherence might have reduced the risk of transmission

of resistant virus (Yerly et al, 2001).

Little surveillance data exists on the prevalence of drug resistant HIV in resource-limited

settings. The only country in which resistance has been systematically studied in a

treatment naive population is Brazil. A study by Dumans et al (2002) conducted on sample

collected in 1998, after the introduction of free access to HAART in Brazil in 1996, found

that there were no primary resistance mutations in either the PR or RT region. A national

survey conducted on samples collected in 2001 found a slight increase, with around 2%

showing genotypic resistance to each of the three drug classes and 8% showing resistance

to at least one drug (Brindeiro et al, 2003). A smaller pilot survey among 71 treatment

naïve patients in Rio de Janeiro found only one case of drug resistance, associated with

3TC (Dias Tavares et al, 2003). To increase the data in these regions, the WHO and the

International AIDS Society have established a joint surveillance project to track

prevalence of genotypic resistance in treatment naïve individuals after the introduction of

HAART.

1.16 Resistance Testing

HIV drug resistance testing is an invaluable asset in HIV treatment management

(Kuritzkes, 2004; Katzenstein, 2003). It is designed to identify gene mutations or viral

growth characteristics that suggest reduced drug susceptibility. Current methods of HIV

resistance testing include in vitro genotypic assays and phenotyping (drug-susceptibility

assays) that detect mutations known to confer drug resistance. The HIV genotype refers to

the actual DNA sequence of the virus, while the phenotype reflects the physical traits

expressed by the genotype. There are limitations to both genotypic and phenotypic assays:

they are both unable to detect minor drug resistant populations and there is limited

knowledge about the clinical significance of certain combinations of mutations and of

certain levels of phenotypic drug resistance. (Hirsch et al, 2003; Vandamme et al, 2001;

Shafer et al, 2000).
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Genotypic assays are more commonly used in clinical settings because of their wider

availability, lower cost and quicker turnaround. Generally they utilize a two-step

procedure of PCR to amplify a specific region of the HIV genome (RT and PR) and a

specific mutation detection methodology that distinguishes each type of genotyping assay.

The three most prevalent mutation detection methods are DNA sequencing, gene chip

arrays and the line probe assay (Wilson, 2003). DNA sequencing has been the gold

standard genotyping technology and has the advantage of identifying potentially every

drug resistance associated mutation (Richman, 2000). There are variety of sequencing

assays available: the HIV-1 GenotypR PLUS (Specialty Laboratories); TRUGENE HIV-1

genotyping test (Visible Genetics); VircoGEN II (Virco), Viroseq HIV genotyping system

(Applied Biosystems); GeneSeq (ViroLogic), HIV-1 Mutation Analysis (Focus

Technologies), HIV ViroTYPE (Rheumatology Diagnostoc Laboratory); GenoSure

(LabCorp and Virco); and HIV-1 Genotype (Quest Diagnostics) (Tobin and Frenkel, 2002;

Wilson, 2003). The value of genotyping depends on an understanding of the relationships

between identified mutations and specific drug susceptibility, as well as viral fitness

(Wilson, 2003).

There are a number of on-line databases to assist in genotype interpretation: the Los

Alamos HIV Sequence Database (http://hiv-web.lanl.gov); the Stanford HIV RT and

Protease Sequence Database (http://hivdb.stanford.edu/hiv); the HIVResistanceWEB

(http://www.hivresistanceweb.com); and The International AIDS Society-USA

(http://www.iasusa.org).

Phenotypic tests measure virus drug susceptibility, resulting from known or unknown

resistance-related mutations and their interactions. Various biological methods have been

developed to assess the drug susceptibility of HIV-1 (Brun-Vezinet et al, 1992; Japour et

al, 1993; Larder et al, 1990). In most cases these assays require the cocultivation of patient

peripheral blood mononuclear cells (PBMCs) with donor PBMCs to obtain a viral stock.

Kellam et al, (1994) and later Maschera et al, (1995) developed an innovative method for

generating viruses for drug susceptibility testing, called the recombinant virus assay

(RVA). RVA involves the production of viable virus in vitro by homologous

recombination of RT-PCR products from plasma virus with an infectious PR or RT

deleted cloned HIV-1 provirus. The resulting recombinant viruses derive all their

biological properties from the subtype B molecular clone, except for RT and PR, which

are encoded by the genes from the patient isolates. Boucher et al (1996) improved on this

method, using the cell-killing assay described by Pauwels et al (1988), instead of the

limiting HeLa CD4+ plaque reduction assay to assess the drug susceptibility of the

viruses. The cell-killing assay measures the capacity of a virus to induce lysis of target
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Table 1. Recommendations from expert panels for resistance testing.

Presentation International AIDS US Department of Health Euro-Guidelines Group
Society-USA (Hirsch et
al, 2003)

and Human Services
(2003)

(2001)

Failure of first drug
regimens

Recommended Recommended Recommended

Failure of subsequent
drug regimen

Recommended Recommended Recommended

Primary/acute HIV-
infection

Recommended Recommended Consider testing

Established (untreated) Recommended Recommended Consider testing
HIV infection

Pregnancy Recommended Recommended Recommended

Post-exposure
prophylaxis

Recommended Recommended Recommended index
case

After discontinuation of
drugs

Not recommended

Paediatrics Recommended

43



cells. Drug susceptibility results are reported as the amount of drug required to inhibit viral

replication by 50% (IC50) or 90% (IC90). The result is reported as the fold-change in viral

susceptibility compared with a wild-type reference strain. HIV strains deemed "resistant"

to a particular drug might still be inhibited by that drug, although higher concentrations of

drug are required. Whether that concentration of drug is pharmacologically achievable in

vivo determines the efficacy of that drug against those less susceptible strains.

The widespread use of resistance testing has led to the development of formal guidelines

by expert panels (Table 1). The International AIDS Society-USA Consensus Panel on

Resistance Testing, the Panel on Clinical Practices for Treatment of HIV infection of the

US Department of Health and Human Services (DHHS) and the EuroGuidelines Group for

HIV Resistance have all published recommendations for the appropriate use of drug

resistance testing (US Department of Health and Human Services, 2003; Hirsch et al,

2003; The EuroGuidelines Group for HIV Resistance, 2001). All three panels recommend

that information obtained through resistance testing be used in conjunction with a patient's

treatment history, viral load and immunologic status, as well as medication tolerance and

compliance. All panels also recommend drug resistance testing in first and multiple drug

treatment failures, as well as prior to starting therapy in patients with acute or established

infection (Shafer, 2003).

1.17 Objectives

The objectives of this thesis are:

To define the spectrum of naturally occurring resistance-associated polymorphisms and

mutations in RT and protease of subtype C viruses;

To determine how these polymorphisms and mutations impact on the structure-function

relationships of the RT and protease;

To determine how these genetic substitutions impact on response to antiretroviral therapy,

focusing on drug regimens that are affordable, safe and effective for use in Africa.
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Chapter 2

Sequence Analysis Methods and Bioinformatics Tools



2.1 Sequence Analysis Methods

Bioinformatics is a rapidly developing branch of biology that uses techniques and

concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics and

linguistics. Bioinformatics tools can be used to assemble sequences into a contiguous

consensus sequence (contig), perform sequence alignments, perform phylogenetic

analyses, translate DNA sequences into protein sequences, as well as predict protein

structure and function. This thesis involves extensive analysis of HIV-1 env, RT and pol

sequences using a broad usage of different bioinformatics tools.

To rule out contamination between samples before beginning any sequence analysis, each

new sequence was compared to other sequences amplified at the same time, as well as to

other sequences previously amplified in our laboratory. Newly-acquired sequences were

analysed by constructing a phylogenetic tree, and analysing the tree for extreme inter-

patient clustering or extreme intra-patient divergence. Sequences were also compared to

published sequences by performing a BLAST search (Altschul et al, 1997) at the Los

Alamos website (http://hiv-web.lanl.gov/content/hiv-db) . Blast is a program that finds

sequences with very high similarity to the query sequence, which could indicate

contamination. Sequences datasets were aligned with CLUSTALW (Thompson et al,

1994), a program for multiple sequence alignment, and manually edited based on the

codon alignment (aligning the nucleotide sequence using the amino acid code). This was

done using the GDE (Genetic Data Environment) v 2.2 (Smith et al, 1994) -based Linux

interface (De Oliveira et al, 2002) which is discussed in more detail below. Phylogenetic

trees were initially generated with the F84 model of substitution and the neighbour-joining

method (version 4.0b2a/4.0b10) of PAUP* (Phylogenetic Analysis Using Parsimony)

(Swofford, 1999) (Sinauer Associates, Sunderland, Mass.). For subtype analysis, new

sequences were compared to subtype reference strains available at the Los Alamos

subtype database (http://hiv.lanl.gov/content/hivdb/SUBTYPE  REF/align.html). For these

analyses, the phylogenetic trees were rooted with a homologous region of HIV-1 group 0

(OCM MP5180). To investigate whether the sequences were recombinant forms of HIV-

1, recombination analyses were performed with Simplot (Lole et al, 1999), a method that

uses a sliding-window approach to calculate bootstrap plots for constructing neighbor-

joining trees with the DNADIST, NEIGHBOR, or CONSENSE programs of the PHYLIP

package (Felsenstein, 1989). To further examine inter- and intra-patient relationships,

subtype C specific trees were constructed with selected reference sequences obtained from

the GeneBank and Los Alamos public databases. To ensure that the best model of

evolution was used for these analyses, the respective datasets were tested using Model
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Test v 3.0 (Posada and Crandall, 1998). This program runs within PAUP*. The best model

was then pasted into the sequence file for that particular dataset (in nexus format) and used

for subsequent analysis.

To investigate sites under positive selection, the codeml option in the PAML

(Phylogenetic Analysis by Maximum Likelihood) (Rambaut, 2000) software package was

used to calculate the ratio of nonsynonymous to synonymous amino acid substitutions

(dn/ds) or co. This value is a measure of natural selection pressure at the protein level and

provides a powerful tool for understanding the mechanisms of DNA sequence evolution.

An individual amino acid was considered to be positively selected if the dnlds ratio was

significantly greater than 1.0.

Ancestral sequences were reconstructed using the baseml application in the PAML

package. This method involved the use of maximum-likelihood methods and a nucleotide

substitution model to identify nucleotide substitutions along each branch of the tree (Yang,

2000; Yang et al, 2000). Genetic diversity was measured for individual datasets using a

Kimura 2-parameter (K2P) model implemented in the MEGA (Molecular Evolutionary

Genetics Analysis) program version 2.0 (Kumar et al, 2001) (Arizona State University,

Tempe). Nucleotide sequences were also translated and analysed for the presence of

signature patterns using VESPA (Viral Epidemiology Signature Pattern Analysis) (Korber

and Myers, 1992). Biologically important sites were predicted using PROSITE, a database

of protein families and domains, which was run in GENEDOC, a windows-based multiple

sequence alignment editor. The different software packages and their applications are

briefly discussed below.

2.1.1 Likelihood Ratio Test (Anisimova et al, 2001)

All models in the Likelihood Ratio Test (LRT) are nested i.e. all models are a special case

of the General Time Reversible (GTR) model. For example, the K2P model is a special

case of the more complex HKY85 model because HKY85 assumes that base frequencies

can vary, while the K2P model assumes equal base frequencies (see Table 2). Therefore,

the K2P model uses less parameters and is a simpler model. Simpler models are quicker to

run and have less error associated with model parameters. However, more complex

models account take additional variables into account (Table 3) and, thus are more likely

to lead to the true tree.
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Table 2. The most commonly used evolutionary models are described. The models increase in
complexity from the Jukes-Cantor (simplest) to General Time Reversible (most complex) model.

Model Substitution rate/base frequency Number of free parameters
Jukes- Cantor (JC) One rate of substitution

Equal base frequencies
No free parameters

F81 One rate of substitution
Unequal base frequencies

Three free parameters for base
frequencies

Kimura's Two Parameter (K2P) Two types of substitution (tratio)
Equal base frequencies

One free parameter for tratio

HKY85 Two types of substitution (tratio)
Unequal base frequencies

One free parameter for tratio
Three free parameters for base
frequencies

General Time Reversible (GTR) Six types of substitution
Unequal base frequencies

Five free parameters for substitution
rate matrix (rmatrix)
Three free parameters for base
frequencies

Table 3
The addition of among-site variation to the above models increases their complexity as follows: 
A proportion of sites invariant (I) One additional free parameter for pinvar

Gamma distribution (G) One additional free parameter for gamma rate parameter

Both combined (G+I) Two additional parameters

The LRT can test whether the more complex model of evolution is significantly better

than a similar, but simpler model. The most commonly used models of evolution are listed

in Table 2. The LRT uses the following formula:

LRT = 2([-lnLnull] — [-lnLalternative])

Where L is the maximum likelihood of the tree topology under the hypothesis and data.

The degrees of freedom (equal to the difference in the number of free parameters) is used

to calculate the Chi Square Critical Value, which determines whether the null hypothesis

is significantly better than the alternative model. For example, to test if the more complex

GTR model (8 free parameters) is better suited to the data than the simpler HKY85 model

(4 free paramters), the —1nL of that topology and data for each model is calculated. Eg:

GTR —1nL=1784.84185; HKY85 —1nL=1787.08478. Because HKY85 is a special case of

the GTR model, it is the null hypothesis. Therefore:

LRT = 2(1787.08478 — 1784.82185) = 4.52586

Degrees of Freedom = 8-4 = 4

Chi Square Critical Value = 9.488

Since the LRT value is less than 9.488, the null hypothesis for two types of substitution is

not significantly different to 6 types of substitution, and the simpler model can be used in

the analysis.
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2.1.2 Model Test (Posada et al, 1998)

Modeltest 3.0 evaluates 56 models of evolution/variations within the framework of a

nested hierarchical analysis. Briefly, the data file is opened in PAUP* and the control file

(modelblock3) is executed. This file contains a set of PAUP* commands that calculates a

neighbour-joining tree, evaluates the tree under the entire suite of models, and saves the

likelihood scores to a separate file. The models evaluated in this step include the simplest

(JC) to the most complex, or parameter-rich (GTR) model, with the sequential addition of

a proportion of invariant sites and gamma-distributed rates. The output (model.scores) is

then run through modeltest. This program runs a series of log-likelihood tests on nested

model comparisons using the LRT described above. Modeltest also makes another

comparison of the models, with the Akaike Information Criterion (AIC), which allows for

comparison of different models without the nested requirement. The AIC rewards models

for good fit but penalizes extra parameters. Each model gets an AIC score. Smaller

values of AIC indicate better models and the one with the best AIC score is selected.

AIC = -2 lnL + 2n where n = # of independently adjusted parameters in model

2.1.3 PAUP* (Swofford, 1999)

PAUP* is used to infer and interpret phylogenetic trees. It provides full support for tree

searching under DNA maximum-likelihood and distance-based optimality criteria (in

addition to parsimony). A wide range of DNA substitution models are available, including

the GTR model and its submodels (Jukes-Cantor, Kimura 2P, HKY85, F84 used in

DNAML and fastDNAml, Tamura-Nei). PAUP* also allows the investigator to choose the

structure of any model for likelihood, with the option of either having the program

estimate the parameters during the analysis (increased computational time), or letting the

investigator set the parameters to values obtained otherwise (for example, from

Modeltest).

2.1.4 SimPlot (Lole et al, 1999)

SimPlot identifies recombinant genomes. Although SimPlot reads most sequence file

formats, for our purposes, all files were saved in fasta format. To run the program, the

query sequence (the suspected mosaic) was aligned with a set of reference

sequences. Note that SimPlot can analyse no more than 26 groups of sequences (or

individual sequences. The program generates a graph consisting of a set of lines (or
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optionally strings of points) that reflect the similarity (or distance) of each Reference

sequence (or Group) to the query sequence. In order to generate this plot a sliding window

is passed across the alignment in small steps (the window size and step size are

selectable). For the analyses, a sliding window of 400 by and a step-size of 50 by was used

. The BootScanning option in the SimPlot software package was used to identify the

breakpoints in the recombinants (Salminen et al, 1995). To perform BootScanning, the

PHYL1P software suite (Felsenstein) is needed, which is available for download from

ftp ://evoluti on. genetic s .washington. edu/pub/phylip. In this application, a minimum

number of three reference strains are compared with the query sequence. Again, a window

size of 400 by and a step-size of 50 by was used to calculate bootstrap plots for the

construction of neighbour-joining trees with DNADIST, NEIGHBOR or CONSENSE

programs of the PHYL1P package.

2.1.5 PAML (Rambaut, 2000; Yang et al, 2000)

PAML is a package of programs for phylogenetic analyses of DNA or protein sequences

using maximum likelihood (ML). It is maintained and distributed for academic use free of

charge by Ziheng Yang. It has many capabilities including, estimating the branch lengths

in a phylogenetic tree and assessing parameters of evolution including the

transition/transversion rate ratio, the shape parameter of the gamma distribution for

variable evolutionary rates among sites, and rate parameters for different genes. It can also

be used for testing hypotheses concerning sequence evolution, such as rate constancy and

independence among nucleotide or amino acid sites, rate constancy among lineages (the

molecular clock), and homogeneity of evolutionary process in multiple genes. Finally, it

can also be used for calculating substitution rates at each site and reconstructing ancestral

nucleotide or amino acid sequences, as well as phylogenetic tree reconstruction by

maximum likelihood and Bayesian methods.

In this thesis, two different applications of the PAML software package were used —

codeml program to identify sites under positive selection, and the baseml program for

ancestral reconstruction and estimation of the mutation rate.

2.1.5.1 Baseml

Baseml can perform ML analysis of nucleotide sequences: estimation of tree topology,

branch lengths, and substitution parameters under a variety of nucleotide substitution

models (JC69, K80, F81, F84, HKY85, TN93, REV); constant or gamma rates for sites;

molecular clock (rate constancy among lineages) or no clock, among-gene and within-
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gene variation of substitution rates; models for combined analyses of multiple sequence

data sets; calculation of substitution rates at sites; reconstruction of ancestral nucleotides.

The default control file for baseml is baseml.ctl. An example and the description of each

of the parameters is shown in the appendix.

2.1.5.1.1 Estimation of Mutation Rate

The option clock=3 in the baseml.ctl file implements Andrew Rambaut's TipDate models

(Rambaut 2000). For this application, the dates are specified at the end of the sequence

names. To run this analysis, a ML tree was constructed in PAUP* using the appropriate

model of evolution. The same dataset was exported in PHYLIP v3.2 format. The file was

then edited (in a text editor) to remove the "YF" found at the beginning of the file. The

name of the sequence file and tree file were entered into the baseml.ctl control file. After

running the analysis, the mutation rate was obtained from the output "rst" file.

2.1.5.1.2 Reconstruction of Ancestral Sequences

Nucleotides of extinct ancestors can be reconstructed based on contemporary sequence

data. This was originally done using Parsimony methods based on the criterion that the

number of changes along the tree at each site is minimized. Algorithms based on this

criterion were developed by Fitch (1971) and Hartigan (1973). Baseml uses a likelihood

approach to determine the branch lengths and the substitution pattern for ancestral

reconstruction and assigns a nucleotide to an interior node at a site according to its

posterior probabilities (Yang et al, 1995). To run the reconstruction, a ML tree was

constructed in PAUP* using the appropriate model of evolution for that dataset. The same

dataset was exported in PHYLIP v3.2 format. The file was then edited (in a text editor) to

remove the "YF" found at the beginning of the file. The name of the sequence file and tree

file were entered into the ancestor.ctl control file. After running the analysis, the results

were collected in the "rst" file. The tree file was extracted from the "rst" file and viewed in

TREETOOL. The respective ancestral nodes were identified for each patient. The "rst"

file also contained the reconstructed nucleotide sequences for each ancestral node. These

were saved in fasta format and translated into the amino acid sequences in GDE. Patient

sequences were then compared to the generated ancestral sequences.

2.1.5.2 Codeml

Codeml performs ML analysis of protein-coding DNA sequences using codon substitution

models (Goldman and Yang 1994). The program allows for the calculation of the codon-

usage table; estimation of synonymous and nonsynonymous substitution rates; likelihood
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ratio test analysis of positive selection or relaxed selective constraints along lineages based

on the do/ rate ratios; identification of amino acid sites or evolutionary lineages

potentially under positive selection; reconstruction of ancestral codon sequences. The

format of the sequence files and the requirement of a ML tree from the same dataset was

the same as for baseml. The variables in the program files were also used in the same way

as the baseml.ctl file, except that the option for codon sequences was used. The number of

substitution sites (nssites) were varied according to the model for the dN/dS ratio (w)

(Nielsen and Yang, 1998; Yang et al, 2000). Nssites = m corresponds to model Mm in

Yang et al (2000). Three models were used: neutral (1), selection (2) and discrete (3). The

posterior probabilities for site classes as well as the expected w values for sites were listed

in the "rst" file, used to pinpoint sites under positive selection.

2.1.6 VESPA (Korber and Meyer, 1992)

The VESPA program detects signature patterns (distinctive amino acid or nucleotide

residues) in a set of query sequences relative to a set of reference sequences. VESPA

calculates the frequency of each amino acid (or nucleotide) at each position (column) in an

alignment for the query and the reference set, and selects the positions for which the most

common character in the query set differs from that in the background set. For this

application, nucleotide sequences were translated into amino acid sequences and exported

in NEXUS, non-interleaved format, using GDE2.2. The NEXUS file was then opened in a

text editor and all other information besides the sequence names and amino acid sequences

were removed. VESPA was run using a "query set" and a consensus subtype A, B, C or D

sequence as the "background" set. The output file was opened in a text editor to extract the

results.

2.1.7 PROSITE (Hulo et al, 2004)

PROSITE is a curated database of protein families and domains hosted by the Swiss

Institute of Bioinformatics. It is based on the observation that most proteins can be

grouped, on the basis of similarities in their sequences, into families that share functional

attributes. By analyzing the constant and variable properties of such groups of similar

sequences, it is possible to derive a signature for a protein family or domain, which

distinguishes its members from all other unrelated proteins. These protein signatures,

which are detailed in the PROSITE database and listed in Table 4, were used to assign

sequences to a specific family of proteins and consequently, function.
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Table 4. Protein signature sequences

Function Signature Sequence
N-glycosylation site N-{P}STHPI

cAMP- and cGMP-dependent protein kinase phosphorylation site [RK](2)-x-[ST]

Protein kinase C phosphorylation site [ST]-x-[RK]

Casein kinase II phosphorylation site [ST]-x(2)-[DE]

Tyrosine kinase phosphorylation site [RK]-x(2,3)-[DE]-x(2,3)-Y

N-myristoylation site G- IEDRKIIPFYWI-x(2)-[STAGCM- IP I

Amidation site x-G-[RK]-[RK]

2.1.8 SWISS-MODEL (Schwede et al, 2003)

Swiss-Model (http://www.expasy.org/swissmod/SWISS-MODEL.html)  is a site for 3D

homology modelling of protein structure. The Swiss-Model process is detailed as follows:

The software program BLASTP2 finds all similarities of the target sequence with

sequences of known structure from the ExNRL-3D database. The program SIM then

selects all templates with sequence identities above 25% and projected model size larger

than 20 residues. Input files are then generated for ProModll, which generates all the

models found in ExPDB. Gromos96 performs energy minimisation of all models. Models

can be visualised with Deep View Swiss-pdbViewer, an interface allowing the analysis of

several proteins at the same time (Guex and Peitsch, 1997).

2.1.9 PhD (Rost et al, 1994)

Secondary structure was predicted using the PhD software program via the Predict protein

server (http://www.embl-heidelberg.de/predictprotein/  predictprotein.html). PhD uses a

standard feed-forward neural network. The first network predicts the secondary structure

of the central residue in a 13-residue window. Afterwards the predicted secondary

structure is fed into the second network which also predicts the secondary structure using

the output from the first net as its input. Finally several different networks are created,

using slightly different parameters for the training and a jury network is trained using the

output from the two earlier layers. After the predictions, if a helix is greater than three

residues long, it is kept as a helix, and if it is three or less, it is changed into a loop.

Prediction of secondary structures is a step towards the prediction of the three-dimensional

structure of a protein by providing a rough estimate of structural features, and with at least

one known homologue available, the PhD method has an expected overall accuracy of

71.4% for proteins (Rost et al, 1994).
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2.1.10 HIV-1 Genetic Data Environment (GDE)-Based LINUX Interface (De Oliveira

et al, 2002)

This was another tool developed in our laboratory (De Oliveira et al, 2002), which was

available for the analysis of the sequence data. GDE is a "front-end" sequence analysis

program originally developed for Sun UNIX TM systems with an OpenView X Window

manager (Smith et al, 1994). GDE was subsequently adapted to Seqlab, a graphical user

interface (GUI) that incorporates most of the software distributed in the GCG toolset

(Womble, 2000). LINUX, a re-implementation of UNIXTM, is one of the most frequently-

used operating systems. The combined GDE-LINUX approach, GDE-L, reduces the

complexity and repetitive nature of input/output formatting and facilitates the development

of user-defined local databases that are population-, pathogen- and/or disease-specific.

New software is integrated into GDE-L by editing a unique menu file that controls the

menu appearance (.GDEmenus). This same menu file is then used to send the parameter

and input files to applications such as BLAST, CLUSTALW, PAUP* and READSEQ. All

formats supported by the READSEQ sequence conversion software are readily accepted in

GDE-L. Newly-created .GDEmenus files are then copied to a home directory. Accessory

PERL scripts permit the automatic integration of sequence and BLAST-formatted datasets

without editing the menu control file. All of the sequence-specific databases, phylogenetic

datasets and programs needed to perform these analysis have been integrated into a single

HIV-1 GDE-Linux interface. This interface was used for sequence location, (numbering

according to the HXB2 reference strain), contamination detection, multiple alignment

using CLUSTALW (Thompson, 1994), and genetic subtyping using PAUP* (Swofford,

2000).
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Chapter 3

Molecular Characteristics of Human Immunodeficiency Virus
Type 1 Subtype C Viruses from KwaZulu-Natal, South Africa:
Implications for Vaccine and Antiretroviral Control Strategies



3.1 Introduction

One of the most dramatic changes in the global AIDS pandemic has been the rapid

emergence and devastating spread of human immunodeficiency virus type 1 (HIV-1)

subtype C (De Oliveira et al, 2001; Kuiken et al, 1999; Rollins et al, 2002; Sharp et al,

1994; UNAIDS/W.H.O. Working Group on Global HIV/AIDS and STD surveillance,

2000). As a result of this rapid escalation, HIV-1 C viruses now account for more than

56% of all global infections (Esparza et al, 2000). First identified in retrospective

specimens from Ethiopia and South Africa (Johansson et al, 1995; Salminen et al, 1996;

Zacharova et al, 1997), subtype C began a devastating spread across southern Africa in the

late 1980s (De Oliveira et al, 2001). Major outbreaks have now occurred in every country

of southern Africa, with some regions reporting adult prevalence rates as high as 40%

( Department of Health/Directorate Health Systems Research; Rollins et al, 2002; Van

Harmelen et al, 1999). Recent studies suggest that subtype C is spreading northward into

the Congo, Tanzania, Burundi, and Kenya, where it is becoming increasingly predominant

relative to other subtypes (Janessens and Nkengasong, 1997; Koch et al, 2001; Rodenburg

et al, 2001). C viruses also dominate the rapidly expanding epidemic in India

(Shankarappa et al 2001) and are increasing in frequency in China (Gao et al, 1998;

Rodenburg et al, 2001; Yu et al, 1998) and Brazil (Brindeiro et al, 1999; Soares et al,

2003). C/D recombinants have been identified in several countries, including Tanzania,

Kenya, and India (Hoelscher et al, 2001; Koulinska et al, 2001; Renjifo et al 1998), and

C/B recombinants have been detected in China (Yang et al, 2002). The reasons for the

increase in HIV-1 C are not known but may be related to host, viral, or socioeconomic

factors. At the viral level, it has been suggested that an extra NF-KB binding site in the

long terminal repeat may enhance gene expression, altering the transmissibility and

pathogenesis of C viruses (Tatt et al, 2001). Others have suggested that C viruses may be

more stable and that their protease genes may have increased catalytic activity relative to

other subtypes (Velazquez-Campoy et al, 2001). Additional features of subtype C include

a five-amino-acid insertion in the transmembrane domain of Vpu (McCormick-Davis et al,

2000), a prematurely truncated second exon of rev (Gao et al, 1998; Rodenburg et al,

2001; zur Megede et al, 2002), and an increase in amino acid variation at protease

cleavage sites (de Oliveira et al, 2003). Recent advances in sequencing and bioinformatics

(De Oliveira et al, 2003; Posada and Crandall, 1998; Pybus et al, 2001; Yang et al, 2000)

make it easier to analyze full-length HIV-1 sequences and correlate the genetic

information with the immunological and biological properties of the virus. These

advances, combined with the development of promising vaccine candidates and
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simplified, more affordable drug regimens, are paving the way for enhanced prevention

and treatment efforts in southern Africa. As with HIV-1 B, it is expected that safe and

efficacious treatment of C infections will not only reduce the morbidity and premature

death associated with HIV-1 and AIDS (Garcia et al, 2002; Inter-Agency Task Team on

Mother-to-Child Transmission of HIV; Kazatchkine et al 2000; Palella et al, 1998) but

will also play a role in reducing transmission (Jackson et al, 2001). Since we are on the

brink of implementing intervention strategies in a region of the world where subtype C

infections predominate, it is urgent that we collect information that will help define the

phylogenetic relationships, transmissibility, and drug responsiveness of C viruses. In this

study, we analyzed the C2V5 and pol subgenomic regions of 72 contemporary viruses

from KwaZulu-Natal and compared the results with those for 18 retrospective C isolates

from South Africa.

3.2 Methods

3.2.1 Specimen Collection and Processing

A total of 72 treatment-naive HIV-1-infected children (n=16) and adults (n=56)

representing different ethnicities, genders, age groups, and stages of disease were selected

for study. Samples were obtained in Durban and surrounding areas, including Ulundi and

the Hlabisa region of northern Kwazulu-Natal and Tongaat and Phoenix in the coastal

region north of Durban. Participants were recruited from among symptomatic and

asymptomatic adult patients, tuberculosis patients, women and children attending district

health clinics, and children being treated for pneumonia. After obtaining informed

consent, blood samples were collected in EDTA anticoagulant tubes (most adult patients)

or as dried blood spots (most pediatric patients). Plasma was isolated within 6 h of

collection; dried blood spots were stored with desiccant at -20°C until analyzed.

3.2.2 Viral Load and CD4+ T-cell counts

RNA was extracted from plasma and dried blood spots with a guanidinium-silica method

(Nuclisens isolation kit; Organon Teknika) and an automated extractor (Organon-

Teknika). Virus levels were measured with the Nuclisens HIV-1 QT kit, an assay with a

quantitative range of 40 to >500,000 copies of HIV-1 RNA/ml of plasma. When applied to

50 of dried blood, the lower limit of detection is 1,600 HIV-1 RNA copies/ml of blood.

Specificity of the method has been previously assessed and shown to be greater than
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98.9% (Cassol et al, 1997). CD4+ cell counts in venous blood were determined according

to a standard FACSCount method.

3.2.3 Sequencing of the Envelope C2V5 Region

Sequencing of env was performed directly on a 621-bp PCR product generated from the

C2V5 region (nucleotides 7026 to 7646, relative to HXB2) (Korber et al, 1998). RNA was

extracted from plasma with the ViroSeq method (Applied Biosystems). Plasma RNA and

Nuclisens-extracted dried blood spot RNA were reverse transcribed to cDNA with

Superscript II and random hexamer primers (Invitrogen Corp., San Diego, Calif.). The

RNA template and random primers (100 ng) were heated to 70°C for 10 min, chilled on

ice, and reverse transcribed at room temperature in a 20 [il reaction volume containing 1X

reaction buffer, 10 mM dithiothreitol, 0.5 mM each deoxynucleoside triphosphate, and 200

U of Superscript reverse transcriptase (Invitrogen) at 42°C for 50 mM, followed by 15 min

at 70°C. The C2V5 env region was amplified from the cDNA with MK605 (5'-AATG

TCAGCACAGTACAATGTACAC-3'; positions 6945 to 6969) and CD4R2 (5'-

TATAATTCACTTGTCCAATTGTCC-3'; positions 7652 to 7675) as outer primers

(Cassol et al, 1996) and (M13F)-ES7 (5'-tgtaaaacgacggccagtCTGTTAAATGGCAGTC

TAGC-3'; positions 7002 to 7021) and (M13R)-ES8 (5'-caggaaacagctatgaccCA

CTTCTCCAATTGTCCCTCA-3'; positions 7648 to 7668) as inner primers. The first and

second PCR steps were carried out in final volumes of 25 ill and 50 1.11, respectively,

containing 1X PCR buffer, 2.0 mM MgC12, 0.2 mM each deoxynucleoside triphosphate,

2.5 pmol of each primer, and 1.25 U of Amplitaq Gold. The PCR conditions were 95°C

for 13 min, followed by six cycles at 95°C for 30 s, 65°C for 45 s, and 72°C for 60 s, with

a decrease of 1°C per cycle. This was followed by 29 cycles at 95°C for 30 s, 60°C for 45

s, and 72°C for 60 s, with an increase of 5 s for each extension cycle, and a final extension

of 72°C for 10 min. Amplified DNA was visually quantified by agarose gel

electrophoresis, purified on a Microcon (Amicon) spin column, and sequenced on an

automated 3100 genetic analyzer (Applied Biosystems Inc., Foster City, Calif.) with M13

sequencing primers and a Big-Dye terminator cycle sequencing kit.

3.2.4 Sequencing of Reverse Transcriptase and Protease

Sequencing of pol (nucleotides 2253 to 3485, relative to HXB2) (Korber et al, 1998) was

performed with the ViroSeq HIV-1 genotyping system (Applied Biosystems). Plasma and

dried blood spot RNAs were reverse transcribed with Moloney murine leukemia virus

reverse transcriptase. A 1.8-kb fragment containing the protease (amino acids 1 to 99) and
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reverse transcriptase (amino acids 1 to 312) regions was then amplified in a 40-cycle PCR

with Amplitaq Gold DNA polymerase and AmpErase dUTP/uracil-N-glycosidase to

minimize the risk of cross-contamination. PCR products were visually quantified by

agarose gel electrophoresis. Following purification, the products were sequenced with six

of the seven kit primers (primer D was not used) and Big-Dye terminator reagents and run

on a 3100 genetic analyzer as described above. Sequences were assembled, translated, and

analyzed for the presence of amino acid polymorphisms. A report was generated for each

sequence, with mixtures of wild-type and mutant bases being classified as mutant.

3.2.5 Genetic Subtyping and Phylogenetic Analysis

To rule out contamination between samples, each new sequence was compared to other

sequences amplified at the same time, as well as to other sequences previously amplified

in our laboratory and published sequences in the Los Alamos BLAST search database

(Altschul et al, 1997). The sequences were aligned with CLUSTAL W (Thompson et al,

1994) and manually edited with the codon alignment of the Genetic Data Environment

(GDE 2.2) program (Smith et al, 1994). New sequences were then compared to subtype

reference strains in the Los Alamos subtype database (http://hiv-web.lanl.gov/content/hiv-

db/SUBTYPE REF /align.html). Following degapping with the degapped option in

PAUP*, phylogenetic trees were generated on a Linux computer with the F84 model of

substitution and the neighbor-joining method (version 4.0b2a) of PAUP* (Swofford,

1999). Trees were rooted with a homologous region of HIV-1 group 0 (0CM_MP5180).

To examine intrasubtype relationships, each KwaZulu-Natal sequence was analyzed

against a subset of published C sequences from Zimbabwe, South Africa, Brazil,

Tanzania, Zambia, Ethiopia, Israel, and eastern India. Appropriate evolutionary models

were selected with the Akaike identification system (Akaike, 1997), implemented in

MODELTEST 3.0 (Posada and Crandall, 1998). With this method, a pairwise distance

matrix was calculated and used to construct neighbor-joining maximum likelihood trees.

Parameters of the reverse transcriptase/protease model, TVM + I + G, were: fA = 0.3986,

fc = 0.1653, fG = 0.2033, and fT = 0.2328; R matrix values, RA_,c = 2.7534, RA_,G =

10.1383, RA—>T = 0.9138, RC—,G = 1.3684, RC—,T = 13.5383, and RG--,T = 1.0000; proportion

of invariable sites = 0.4263; and heterogeneous variable site distribution (gamma) with

alpha shape = 0.8233. Parameters of the env model, GTR + I + G, were: fA = 0.3801, fc =

0.1838, fG = 0.2890, fT = 0.1472; R matrix values, RA—C = 3.3002, RA--.G = 8.3576, RA--q

= 3.7717, RC—>G = 1.9646, RC—q . = 23.3707, RG--q = 1.0000; proportion of invariable sites
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= 0.1534; and heterogeneous variable site distribution (y) with alpha shape (a) = 0.7332.

Trees were viewed with Treetool and Treeview.

3.2.6 Genetic Diversity and Intersubtype Recombination Analysis

Mean genetic distances were measured with the Kimura-2 parameter model implemented

in MEGA (Kumar et al, 2001). To investigate whether the sequences were recombinant

forms of subtype C, recombination analyses were performed with the recombination

identification program (Siepel et al, 1995), Bootscanning (Salminen et al, 1995),

recombination detection program (Robertson et al, 1995), and Simplot (Lole et al, 1999), a

method that uses a sliding-window approach to calculate bootstrap plots for constructing

neighbor-joining trees with the DNADIST, NEIGHBOR, or CONSENSE programs of the

PHYLIP package (Felsenstein, 1998).

3.2.7 Nucleotide and Amino Acid Sequence Analysis

Nucleic acid sequences were also analyzed with SNAP (http://hiv-web.lanl.gov ) (Korber

and Myers, 1992) and Codeml, a program from the PAML software package (Rambaut,

2000). Various software programs were then used to calculate the ratio of synonymous to

nonsynonymous amino acid substitutions as a measure of natural selection pressure at the

protein level. Programs included SNAP and MEGA (Kumar et al, 2001), which calculate a

synonymous-to-nonsynonymous (dsl dn) substitution ratio, and Codeml, which calculates a

w (dnI ds) value. High rates of synonymous mutation are indicative of conservation and a

strict requirement for biological function, while high rates of nonsynonymous substitution

are indicative of adaptive change, presumably in response to host selection pressure. To

identify amino acid patterns that are characteristic of Kwazulu-Natal viruses, nucleotide

sequences were translated and aligned and the consensus Kwa7u1u-Natal sequence was

analyzed by viral epidemiology signature pattern analysis (Korber and Myers, 1992).

Consensus sequences were screened for the presence of biologically important sites with

Prosite, a database of protein families and domains.

3.2.8 Identification of Resistance Mutations and Correlation with Phenotype

The Stanford HIV-SEQ and B-test programs were used to identify and assess the impact of

resistance-associated mutations and polymorphisms on phenotypic resistance. Each

reverse transcriptase and protease sequence was compared to that of a subtype B reference

strain, HXB2, in the Stanford HIV reverse transcriptase and protease sequence database

(http://hivdb.Stanford.Edu/hiv/) . Mutations associated with reduced sensitivity to
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antiretroviral drugs were assigned a drug penalty score based on genotypic-phenotypic

correlative data.

3.2.9 Nucleotide Sequence Accession Numbers

GenBank accession numbers for sequences obtained in this study including information on

the year of specimen collection and risk category are provided in Table 5.

3.3 Results

3.3.1 Study Population

Demographic and laboratory results for the 72 Kwazulu-Natal patients are summarized in

Table 6. Six specimens came from three sets of epidemiologically linked sex partners.

After recording the genotype, the male partner of each couple was excluded from further

analysis. Many adult patients had HIV-1-related symptoms; 10 had tuberculosis. Two

children were asymptomatic; the remaining 14 children had a variety of symptoms,

ranging from pneumonia to weight loss, hepatomegaly, splenomegaly, and diarrhea. All of

the children were black. To investigate genetic change over time, 18 retrospective samples

(8 from Kwazulu-Natal and 10 from Cape Town) were sequenced and included in the

analysis.

3.3.2 Genetic Divergence, Subtyping, and Phylogenetic Tree Analysis

As shown in Table 7, the average intersequence divergence among KwaZulu-Natal

sequences was significantly higher than among subtype C sequences from Brazil and

India, but comparable to values observed for Botswana and other countries in southern

Africa. There was no measurable difference in diversity between Indian and black or

between adult and pediatric subgroups. Eleven env samples carried insertions and

deletions and could not be sequenced directly from the PCR product. Overall, KwaZulu-

Natal env sequences differed from the reference sequences of subtypes A, B, and D by

30.4%, 29.3%, and 32.2%, respectively. Pol sequences differed from subtype A, B, and D

reference strains by 11.6%, 11.08%, and 11.01%, respectively. Maximum-likelihood and

neighbor-joining distance methods were used to determine subtype. As expected, 60 of 61

(98.4%) matched env-pol sequence pairs and all of the retrospective sequences grouped as

subtype C. These phylogenetic relationships were supported by bootstrap values of >95%.

One sample, ZA021p01, had different env and pol subtypes, suggesting recombination

between these two regions. Further analysis by recombination identification program,
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Table 5. GenBank accession numbers and year of sampling'

pa/ sequence name Gcnebank accession no. Yr of sampling Transmission° any sequence name` Genebank accession no.

ZA004p01 AY136957 2001 P NA

ZA005p01 AY136958 2001 A ZA005c01 AY137011

ZA006p0I AY136959 2001 P NA

ZA007p01 AY136960 2001 A ZA007c0 I AY137012

ZA008p01 AY136961 2001 A NA

ZA009p01 AY136962 2001 A ZA009e01 AY137013

ZAOI0p0I AY136963 2001 A ZA010e01 AY137014

ZA011p01 AY136964 2001 A ZA011601 AY 137015

ZA012p0 I AYI36965 2001 A NA

ZA013p0 I AY136966 2001 A ZA013c01 AY 137016

ZA014p01 AY136967 2001 A ZA014e01 AY 137017

ZA015p0 I AY136968 2001 A NA

ZA016p0I AY136969 2001 A ZA016e01 AY137018

ZA017p01 AY136970 2001 A ZA017e01 AY137019

ZA018p01 AY136971 2001 A ZA018c01 AY137020

ZA019p0I AYI36972 2001 A ZA019e01 AY137021

ZA020p0 I AY136973 2001 A ZA020e01 AY137022

ZA021p0 I AY136974 2001 A ZA021e01 AY137023

ZA022p01 AY I 36975 2001 A ZA022c01 AY137024

ZA025p01 AY136978 2001 A NA

ZA024p0I AY136977 2001 A ZA024e01 AYI 37026

ZA023p01 AY136976 2001 A ZA023e01 AY137025

ZA026p0I AYI36979 2001 P NA

ZA027p01 AY136980 2001 P ZA027c01 AY137027

ZA028p01 AY136981 2001 A ZA028e01 AY137028

ZA029p0 I AY136982 2001 A NA

ZA030p0 I AY136983 2001 A ZA030e01 AY137029

ZA031p0 I AY136984 2001 A ZA031c01 AY137030

ZA032p0 I AY136985 2001 A ZA032e01 AY137031

ZA033p01 AYI 36986 2001 P ZA033e01 AY137032

ZA034p01 AYI 36987 2001 e ZAO34eOI AYI37033

ZA035p0 I AYI 36988 2001 P ZA035c01 to be submitted

ZA036p0 I AY136989 2001 P ZA036e0I AY137034

ZA037p01 AY136990 2001 P ZA037c01 AY137035

ZA038p0 I AY 136991 2001 P ZA038e01 AY137036

ZA039p01 AY136992 2001 P ZA039e01 AY137037

ZAO4OpOI AY136993 2001 P ZA040e01 AY137038

ZA041p0I AY136994 2001 P NA

ZA042p01 AY136995 2001 P ZA042c01 AY137039

ZA043p0 I AY136996 2001 P ZA043e01 AY137040

ZA044p01 AY136997 2001 P ZA044e0I AY137041

ZA045p01 AY136998 2001 A ZA045e0I AY137042

ZA046p01 AY136999 2001 A NA

ZA047p0 I AY196498 2001 A ZA047e0I AY137043

ZA048p0I AY196499 2001 A ZA048c01 AY137044

ZA049p01 AY196500 2001 A ZA049e0 I AY137045

ZA050p01 AY196501 2001 A ZA050e01 AY137046

ZA051p01 AY196502 2001 A ZA051e01 AY137047

ZA052p01 AY196503 2001 A ZAO52eOI AY137048

ZA053p01 AY196504 2001 A ZA053e01 AY137049

ZA054p01 AY196505 2001 A ZA054e01 AY137050

ZA055p01 AY196506 2001 A ZA055c01 AY137051

ZA057p0 I AY196507 2001 A ZA057e0I AY137053

ZA058p0I AY196508 2001 A ZA058e01 AY137054

ZA059001 AY196509 2001 A ZA059e01 AY137055

ZA060p01 AY196510 2001 A ZA060e0 I AY137056

ZA061p0I AY19651 I 2001 A ZA061e01 AY137057

ZA062e01 AY196512 2001 A ZA062c01 AY 137058

ZA063p0 I AY137008 2001 A ZA063e01 AY137059

ZA064p0 I AY137006 2001 A ZA064e01 AY137060

ZA065p01 AY137007 2001 A ZA065e0 I AY137061

ZA066p01 AY137004 2001 A ZA066c01 AY137062

ZA068p01 AY 196513 2001 A ZA068e0I AY137064

ZA069p0I AY196514 2001 A ZA069601 AY137065

ZA071p02 AY137000 2001 A ZA071e01 AY137067

ZA073p01 AY196515 2001 A ZA073e0I AY137070

ZA074p01 AY196516 2001 A ZA074e0I AY13707I

Za075p01 AY196517 2001 A ZA075e0I AY137069

ZA077p02 AY137001 2001 A ZA077601 AY137073

ZA078p02 AYI37003 2001 A ZA07800e02 AY137072

ZA079p02 AY137002 2002 A ZA079GRe02 to be submitted

ZA080p0 I AY137005 2001 A NA

pol and env sequences from the same virus and individual are shown on the same line. All samples were
collected in Durban, South Africa, and surrounding regions.
h
' adult (heterosexual) transmission; P, pediatric (perinatal) transmission.
NA, not available.
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recombination detection program, Bootscanning, and Simplot confirmed that ZA021p01

was an intersubtype recombinant that typed as subtype C in env and as a C/D recombinant

in pol, with the breakpoint for recombination occurring approximately twothirds of the

way along the reverse transcriptase gene.

To investigate within-subtype clustering, trees were constructed with published C

sequences from eight different countries (Figures 9 and 10). Full-length reference

sequences were selected because these strains contained both the env and pol genes.

Unlike sequences from India, where seven out of nine (77.7%) samples grouped as a

single monophyletic group, KwaZulu-Natal sequences were widely dispersed across

multiple clusters, or sublineages. The topology of samples within these maximum-

likelihood and neighbor-joining trees was similar for both env and pol and for

retrospective specimens collected prior to 1992. As shown in Figure 9, many of the

retrospective sequences were localized internally, closer to the root of the sublineage. For

most trees, the bootstrap support for the delineated sublineages was higher than 70%.

Overall, 58 of the 69 (84.0%) KwaZulu-Natal sequences grouped within sublineages. The

number of samples within each sublineage ranged from 3 to 14 for env and from 4 to 12

for pol. One of the largest sublineages consisted of only KwaZulu-Natal sequences. The

remaining sublineages contained sequences from other countries in southern Africa

(primarily Botswana, but also Tanzania and Zambia), in addition to those from KwaZulu-

Natal. One Kwa- Zulu-Natal sample clustered with sequences from Brazil, Ethiopia,

Zambia, and Israel. Sequences from different patient groups were distributed across the

phylogenetic tree and showed no obvious evidence of geographic or subgroup clustering

based on ethnicity, age, or sex (Figure 10).

3.3.3 KwaZulu-Natal and Subtype-specific Signature Motifs

The Kwazulu-Natal protease consensus sequence was identical to the consensus sequence

of subtype C at 100% of 99 amino acids, but differed from the consensus of subtypes A,

B, and D at seven, eight, and six positions, respectively (Figure 11). Compared to the B

consensus, amino acid substitutions were identified at 32 different positions. The mean

number of substitutions was nine, with 65 (94.2%) isolates having eight or more

substitutions relative to subtype B. The reverse transcriptase consensus differed from the

subtype C consensus at only one position, codon V60I. Forty-three (62.3%) of the

KwaZulu-Natal sequences had an isoleucine at reverse transcriptase codon 60 rather than

the valine residue that is typical of B and C subtypes. This polymorphism was not present

in the consensus sequence of retrospective samples. Comparison of the KwaZulu-Natal
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Table 6. Characteristics of and laboratory results for children and adults in the study

Variable All patients
(n=72)

Adults
(n=56)

Children
(n=16)

Mean age ±SD (range) 38.4 yrs 15.72 mo
Sex, no. of subjects (%)
Male 19 (34) NAa

Female 37 (66) NA
Ethnicity, no. of subjects/total (%)
Black 46/72 (64) 30/56 (54) 16/16 (100)
White 2/72 (3) 2/56 (4) 0/16 (0)
Coloured 2/72 (3) 2/56 (4) 0/16 (0)
Indian 22/72 (31) 22/56 (39) 0/16 (0)
CD4 cell count, no. of subjects/total (%)
�200 cells/mm' 12/40 (30) NA
201 to 500 cells/mm3 17/40 (43) NA

^ 501 cells/mm' 11/40 (28) NA
Average CD4 cell count cells/mm3 366 NA
Plasma HIV RNA, no. of subjects/total (%)

400 copies/ml 0/50 (0) 0/36 (0) 0/14 (0)
401 to � 104 copies/ml 7/50 (14) 7/36 (19) 0/14 (0)
>104 to � 105 copies/ml 16/50 (31) 14/36 (39) 2/14 (14)

>10 5 copies/ml 27/50 (53) 15/36 (42) 12/14 (86)

Average Plasma HIV RNA (copies/ml) 248,260 113,020 383,500
HIV-1 subtype, no. of subjects/total (%)
Subtype C 60/61 (98) 48/49 (98) 12/12(100)
D/C recombinant 1/61 (2) 1/49(2) 0/12 (0)

aNA = not available

Table 7. DNA distances between subtype C sequences from different population groups.

Country and ethnic group
(no. of viruses)

Mean % distance (SE)

pol pol 1 st	and 2nd

positions
env env

1st
	and 2"d

positions

South Africa (73 )
Indian(from KZN) (19)
Black (from KZN) (44)

Botswana (51)

India (9)

Tanzania (4)

Zambia (2)

Brazil (2)

4.93 (0.27) 2.39 (0.24)
5.07 (0.34)
4.9 (0.3)
5.92 (0.30) 2.86 (0.24)

3.44 (0.29) 2.22 (2.28)

4.86 (0.47) 2.08 (0.43)

5.16 (0.6) 2.23 (0.5)

2.65 (0.45) 1.85 (0.47)

19.18(1.0)
19.99 (1.1)
19.38 (1.1)
19.25 (0.99)

11.78 (0.84)

17.81 (1.5)

20.3 (2.0)

12.65 (1.4)

19.3 (1.1)

18.7 (1.0)

11.7 (0.9)

17.8 (1.6)

20.9 (2.4)

12.1 (1.6)
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consensus to that of subtype B revealed 19 different amino acid substitutions. Thirty-six

(52.2%) had 21 to 25 substitutions and another 33 (47.8%) had 14 to 20 substitutions

relative to HIV-1 B. The most frequent substitutions are shown in Table 8. The

characteristic GPGQ motif at the tip of the V3 loop was conserved in 98.4% of KwaZulu-

Natal samples (Figure 12). The RIGPGQTFYATG dodecapeptide (amino acids 13 to 24 of

V3), previously identified in 69.1% of V3 sequences from Calcutta, India (CIN), was

detected in only 28.6% of KwaZulu-Natal specimens. One of the most variable amino

acids was the C-terminal glycine (G). Overall, 34.9% of KwaZulu-Natal sequences had an

asparagine substitution at this position; 19% had a deletion mutation. Most (87.7%) of the

substitutions and deletions were present within the black subgroup. The deletion mutation,

present in 24.2% of Black and 5.3% of Indian sequences, caused a decrease in length of

the V3 loop from 35 to 34 amino acids. With the exception of a single D25K mutation, no

basic amino acid substitutions were detected at V3 loop positions 11, 24, or 25.

3.3.4 Amino Acid Substitutions Associated with Drug Resistance

The amino acid sequence of each Kwa Zulu-Natal sequence was compared to sequences in

the Stanford University HIV reverse transcriptase and protease sequence database in order

to identify polymorphisms and mutations previously associated with drug resistance in

HIV-1 B infections. No primary resistance mutations to protease inhibitors were detected

in any of the KwaZulu-Natal samples. However, a substantial number of accessory

(secondary) mutations were found at the following positions, in order of decreasing

frequency: I93L (97.1%), M36I (85.5%), M63P/S/UV/H (37.7%), K2OR (13.0%), V77I

(7.2%), and LlOI (1.4%). Similarly, no primary or accessory mutations to resistance

against nucleoside reverse transcriptase inhibitors were identified. However, three patients

were found to harbor resistance mutations to nonnucleoside reverse transcriptase

inhibitors: patient ZA024p01 had a K103N mutation, and her male partner, ZA023p01,

carried a G190A mutation in addition to K103N. A third patient, ZA010p01, had a single

A98G mutation. Table 9 summarizes the frequency and pattern of these mutations.

3.3.5 Amino Acid Substitution and Selection Pressure

KwaZulu-Natal sequences were then compared internally to assess the mutational

behavior of reverse transcriptase and protease in the absence of drug therapy. Analysis by

the likelihood ratio method of Yang (Yang, 2000) indicated that both genes were under

strong purifying (negative) selection pressure (dn/ds or w < 1), with >95% of sites having

wl = 0.019 and w2 = 0.395. In contrast, only 5 (5.1%) amino acids in protease (codons 12,
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Figure 9. Representative pol tree showing the relationships between retrospective and contemporary
sequences from South Africa, Botswana, and other countries affected by the subtype C epidemic. The
sequences are coded by the country of origin and year of isolation. The following sequences were included
in the analysis: 49 previously described isolates from Botswana (accession numbers AF110960, AF110963,
AF 110967, AF 110970, AF 110972, AF 110973, AF 110978, and AF443074 to AF443115), 9 sequences from
India (accession numbers AF286232, AF286223, AF286231, AB023804, AF067159, AF067155,
AF067154, AF067157, and AF067158), 4 sequences from Tanzania (accession numbers AF286234,
AF286235, AF361874, and AF361875), 2 sequences from Zambia (AF286224 and AF286225), 2 sequences
from Brazil (U52853 and AF2862228), 1 sequence from Ethiopia (U46016), 1 sequence from Israel
(AF286233), and 69 sequences from South Africa, including 5 previously described sequences (AF286227,
AY043173, AY043174, AY043175, and AY043176), 3 sequences from another study (Van Harmelen et al,
2001), and 61 sequences newly generated from this study (14 retrospective and 47 contemporary strains).
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Figure 10. Phylogenetic relationship of C2V5 envelope sequences from KwaZulu-Natal, Botswana, Zambia,
and Tanzania.
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19, 35, 37, and 63) and 15 (4.8%) amino acids in reverse transcriptase (codons 36, 39, 123,

135, 162, 166, 174, 196, 207, 211, 214, 245, 272, 277, and 286) were found to be under

strong positive Darwinian (d) selection (w = 2.055). As shown in Figure 11, these amino

acids were not randomly distributed but were located at discrete loci along the reverse

transcriptase and protease genes. Seven (35%) amino acids that were under positive

(diversifying) selection pressure (protease positions 12S and 191; reverse transcriptase

positions 36A, 39E, 123G, 211K, and 245Q) were present in both the KwaZulu-Natal and

subtype C consensus sequence but not in the consensus sequences of subtypes A, B, and

D, suggesting that these signature residues may offer a subtype-specific fitness advantage

to C viruses.

3.3.6 Impact of Substitution on Functional Motifs

Naturally occurring polymorphisms also resulted in significant variation in the number

and type of phosphorylation sites. Overall, 17 potential phosphorylation sites were

identified in the pol gene, 3 in the protease and 14 in the reverse transcriptase. Twelve of

the pol sites were conserved among KwaZulu-Natal patients and in the consensus

sequences for subtypes A, B, C, and D (Figure 11). These included the predicted protein

kinase C site at codons 12 to 14 near the N terminus of the protease and the two casein

kinase II phosphorylation motifs at the active site. Most KwaZulu-Natal sequences had an

S-X-K rather than a T-X-K motif at protease codons 12 to 14. Conserved phosphorylation

sites in reverse transcriptase included protein kinase C codons 68 to 70; tyrosine kinase

codon 49 to 56; cyclic AMP/cyclic GMP-dependent codons 65 to 67, 102 to 105, and 125

to 128; and CKII codons 3 to 6, 107 to 110, 191 to 194, 215 to 218, and 253 to 256. Two

KwaZulu-Natal patients lacked a cyclic AMP phosphorylation site at reverse transcriptase

codons 102 to 105 due to the presence of a K103N mutation. Some phosphorylation sites,

such as the CKII sites at reverse transcriptase positions 39 to 41 and 200 to 203, were

present in subtypes A, B, and D but absent from most of the Kwa Zulu-Natal and subtype

C sequences. Other differences included the absence of an internal myristoylation site

(Maurer-Stroh et al, 2002) at reverse transcriptase codons 196 to 201 in nine patients and

the presence of an amidation site at protease codons 67 to 70 in subtype A, subtype C, and

all but two of the Kwazulu-Natal sequences. With a single exception, all of the natural

reverse transcriptase mutations were embedded within cytotoxic T-lymphocyte, T-helper,

or overlapping cytotoxic T-lymphocyte/T-helper epitopes, as defined for B viruses. Of

particular interest, with respect to the env gene, was a cluster of substitutions located at or

in close proximity to the bottom of the V3 loop, a region known to play a major role in

viral tropism and coreceptor usage. This cluster included amino acid -1, immediately

68



Table 8. Frequency of the most common amino acid substitutions in the pol gene compared to subtype B.

Protein Amino acids % of strains

Protease

Reverse transcriptase

H69K/Q/Y 100
I93L 97.1
Ll9I/V/E/T/A 97.1
115V 92.8
M36I/L/T 91.3
L89M 89.8
R41K 89.8
T12S/A/P 81.2

V35 T/I/K/M/Q 100
Q207E/D/G/N/S/R/K 100
V245 Q/K/L/H 98.6
T39E/D/A/K/N 98.5
I293V 97.1
V292I 97.1
T200A/I/E 95.7
E291D 95.7
K173A/T/V/G/I 94.2
S48T/E 92.7
K122E/Q 93.2
D177E/G/N 89.9
A272P/Q/S/R 89.9
T286A/V 81.1
E36A/T/V 78.3
D123G/N/S 73.9
K277R/S 66.7
V601 62.3
R211K 56.5

Table 9. Amino acid substitutions at codons associated with drug resistance'

Patient no. Protease substitution(s) Reverse transcriptase substitution(s)
21 M36I
36, 29, 62 I93L
7, 8, 11, 13, 14, 15, 16, 19, 27, M36I, I93L
30, 31, 32, 33, 34, 37, 39, 40,
41, 42, 47, 51, 53, 54, 55, 57,
59, 61, 73, 78, 79, 80
20 V771, 193L
10 M36I, I93L A98G
35, 66, 74 L63P, I93L
49 K2OR, V77I, I93L
5, 9, 22, 38, 58, 68, 69 K2OR, M36I, 193L
12, 17, 18, 25, 26, 28, 45, 46, M36I, L63P/T/S/H, 193L
48, 50, 52, 63, 64, 65, 71, 75,
77
6 M36I, V77I, I93L
23 L63T, V771, 193L K103N*, G190A
24 L63T, V771, I93L K103N*
44 Ll OE M361, L63P, I93L
60 M36I, L63P, V77I, 193L
43 K2OR, M36I, L63V, I93L

iNN411-3,%Stiqasterlqtsuai)2PANOS-FgisAlearVcTiP girj,SRTNPR9?-niti leli6h Pfgge
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Protease 10 20 30 40 50 60 70 80 90 99

conKZN PQITLWQRPLVSIKVGGQIKEALLDTGADDTVLEEINLPGKWKPKMIGGIGGFIKVRQYDOILIEICGKKAIGTVLVGPTPVNIIGRNMLTQLGCTLEF

conA  - - - - - - - - - - - - TV-I---L  - - - - - - - - - - - - - - - - - D  - - - - - - - - - - - - - - - - - - - - - - - - - K  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I  - - - - - - 

conB  - - - - - - - - - - - - - - - - - - M R  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H  - - - - - - - - - - - - - - - - - - - - - - L---I  - - - - - - 

conC
conD  - - - - - - - - - - - - T--I---L H  - - - - - - - - - - - - - - - - - - - - - - L---I  - - - - - - 

APV  - - - - - - - - - - - - - - - - - - - - - - - - - - • • 4.. •  - - - - ••••  - - - - - - - - - • - - - - - 
SQV  - - - - - - - - - - - - - - - - - - - - - - - - - • • go •  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

RTV  - - - - - - - - - - - - - - - - - - - - - - - - - - - - • *Imo  - - - - - - - - - - - - - - - - - - - - - - •••  - - - - - - - - - • - • - - - 
NFV  - - - - - - - - - - - - - - - - - - - - - - - - - - - - • *04. - - - - - - •• - - - - - - - - - - - ••• - - - - - 
INV  - - - - - - - - - - - - - - - - - - - - - - - - - - - - • 4.11.  - - - - - - • - - - - - - - - - - - - - - - -
PR-function  - - - - - - - - - - - - - - - - - - - - - - - - - <activesite>  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PR-function  - - - - - - - - - - - - kkk  - - - - - - immmmn - - - - - - - M1=MM - - - - - - - - - - - - - - - mmmmm

PR-function  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cccc cccc  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - aaaa  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

structure SSS """""""** SS""S- -S- 
AAAAA A. * AAAAAAA sAAA. * AAAA AWAA S

- SS AA hhhh****  - - - - -

mutations  - - - - - - - P a  - - - - - - - - - - a---a  - - - - - P a a  - - - - - - - - - - PaP P Pa  - - - - - - - - - a  - - - - - - - - aa a PP aPa  - - - - - - 

epitopes <  - - - - - - - - - CTL  - - - - - >  - - - - - - - - - - < -CTL-->  - - - - - - <---CTL-->  - - - - - - - - - - - - - - - - - - - - - - - - <- -CTL-->  - - - - - - - - - - <-CTL>

epitopes <Bcell> < Bcell- >  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

dn/ds  - - - - - >d<- p >d<- p  - - - - - - - - - adpd<  - - - - - - - - p  - - - - - - - - - - - - - - - - - >d<  - - - - - - - - - - - - - - - p  - - - - - - - - - - - - - - - - - - - - - - - >

Reverse Transcriptase 10 20 30 40 50 60 70 80 90 100

conKZN PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALTAICEEMEKEGKITKIGPENPYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL
conA  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E T  - - - - - - - - - S  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

conB  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VE T  - - - - - - - - - S  - - - - - - - - - - - - V  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

conC  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

conD  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E T  - - - - - - - - - SR  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

RT-function  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - tttttttt  - - - - - - - - - 9955 - - - - - - - - - - 
RT-function --cccc  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cccc  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - kkk  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

T  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - •••• •
N

Q  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - •
E  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - •
Structure ............................................................................. hhhhhh-hhhhhhhh........................................................... SSSSSS **hhhhh  - - - - - - - - - - - - - - hhh ,...
Mutations  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P P  - - - - - - - - - - - - - - - - - - - - a P P PP PP a  - - - - - - - - - - - - - - - - - - - - - - - P P
epitopes  - - - - - <--CTL- -->  - - - - - <  - - - - - CTL  - - - - - - - - - - - >- -<--CTL-->  - - - - - - - - <- -CTL >  - - - - - - - - - - - <-CTL---
epitopes  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <  - - - - - - - - - - - - - - - - - - Th  - - - - - - - - - - - - - - - - - - - - - - - - - - - >  - - - - - - - - - - - <  - - - - - Th  - - - - - 

epitopes  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <-Bcell->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

dn/ds s p 	arippd<  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - p  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - a
110 120 130 140 150 160 170 180 190 200

conKZN KKKKSVTVLDVGDAYFSVPLDEGFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRAQNPEIVIYQYMDDLYVGSDLEIGQHRA
conA  - - - - - - - - - - - - - - - - - - - - - - - - - - S  - - - - - - - - - - - - T  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SK  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T
conB  - - - - - - - - - - - - - - - - - - - - - - - - - KD  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - K---D  - - - - - - - - - - - - - - - - - - - - - - - - - - T
conC
ConD  - - - - - - - - - - - - - - - - - - - - - - - - - - D  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - K  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T
RT- function -9999  - - - - - - - - - - - - - - - - - - - - - - 9999  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - IMIITIIIM
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Figure 11. Correlation of signature patterns with structure and function for protease and reverse
transcriptase. conKZN, KwaZulu-Natal consensus; conA, conB, conC, and conD, consensus sequences for
subtypes A, B, C, and D, respectively; APV, SQV, RTV, NFV, INV, drug binding sites for amprenavir,
saquinavir, ritonavir, nelfinavir, and indinavir, respectively; functn, RT, reverse transcriptase; CTL,
cytotoxic T-lymphocyte epitope; F, drug-binding site; k, protein kinase C phosphorylation site; c, casein
kinase phosphorylation site; m, myristoylation site; aaaa, amidation site; t, tyrosine kinase phosphorylation
site; g, cyclic AMP- and cyclic GMP-dependent protein kinase site; T, thiocarboxanilide UC-781; N,
nevirapine; Q, quinoxaline HBY 097; E, efivirenz; a, accessory mutation; P, primary mutation; caret,
extended _-strand; S, bend; star, hydrogen-bonded turn; h, helix; p, purifying selection pressure; d,
Darwinian (positive) selection pressure.
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Figure 12. Correlation of signature patterns with structure and function of V3 loop. KNZenv,
KwaZulu-Natal consensus; conA, conB, conC, and conD, consensus sequences for subtypes A, B, C, and D,
respectively; k, protein kinase C phosphorylation site; c, casein kinase phosphorylation site; n, N-linked
glycosylation site; caret, extended (3-strand; h, helix; 4, CD4+ binding site; d, Darwinian (positive) selection
pressure.
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upstream from the cysteine residue at the beginning of V3, and amino acid positions 11

and 13 within the V3 loop itself. In common with other C viruses, strains from 89.0% of

KwaZulu-Natal patients had amino acid substitutions that resulted in elimination of the N-

linked glycosylation site at position - 1 (amino acid 301 according to the numbering of

Korber at al, 1998). In 91.0% of patients, loss of glycosylation was associated with a

serine (S) substitution at position 11 and the presence of a positively charged arginine (R)

residue at V3 position 13. The resultant S-X-R motif gave rise to a second, alternative

protein kinase C site immediately adjacent to the phosphorylation site at amino acids 8 to

10. These findings suggest a potential linkage between deglycosylation and

phosphorylation in the V3 loop of C viruses. Most A variants also carried the extra protein

kinase C site at position 11 to 13 but lacked the N-linked glycan at position -1. Instead, a

more distal N-X-S glycosylation site (positions-7 to -5) was frequently absent in A

viruses. Another protein kinase C site, located downstream from the C terminus of V3 at

positions 45 to 47 (relative to V3), was missing in most KwaZulu-Natal viruses. This site

is highly conserved among subtype B viruses. In common with subtype B, KwaZulu-Natal

and other C viruses contained a highly conserved CKII site at amino acids 68 to 71.

3.4 Discussion

Despite the dramatic impact of HIV-1 and AIDS on the KwaZulu-Natal region of South

Africa, few studies have examined the genetic diversity and molecular phylogeny of

KwaZulu-Natal viruses. To date, only eight full-length South African sequences have been

published (Van Harmelen et al, 2001; zur Megede et al, 2002). The primary goals of this

study were to identify regions of high variability, characterize amino acids that are unique

to local strains, and identify sites that are highly conserved and thus likely to be important

for vaccine development and the assessment of antiretroviral therapy. Our results indicate

that C viruses in KwaZulu-Natal have a higher level of nucleotide diversity than

previously reported (Van Harmelen et al, 1999; Van Harmelen et al, 2001) and that the

epidemic, in its explosive phase, is characterized by multiple circulating sublineages in

both the Indian and black communities. The restricted distribution of subtype C viruses

from India compared to the multilineage pattern of Indian viruses from Africa indicates

that the two Indian epidemics have different origins and different evolutionary histories.

The presence of retrospective samples (collected prior to 1990) at internal (basal) branches

in three of the sublineages suggests that each lineage is derived from a different founder

variant and that these variants have been cocirculating in South Africa for at least 10
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years. Of significant note was the cosegregation and close relatedness of sequences from

Kwa-Zulu-Natal black and Indian inhabitants, not only to each other, but also to published

sequences from Botswana. This close relationship with sequences from Botswana was not

observed in a previous study (Novitsky et al, 2002), presumably because of the small

number of samples included from South Africa (n = 5). Taken together, our findings

confirm the existence of multiple HIV-1 C sublineages in southern Africa and demonstrate

that the spread of these different lineages has been substantial. The finding that C viruses

from KwaZulu-Natal are substantially more diverse than those in India and Brazil is

consistent with other studies and has been attributed to the longer duration of the AIDS

epidemic in Africa (Brindeiro et al 1999; Shankarappa et al, 2001). The overall

evolutionary rate of pol and env sequences, as measured by a dated-tip likelihood method

(Rambaut, 2000), was 35% and 68% higher than that of subtype B. Despite the high level

of diversity, KwaZulu-Natal viruses were remarkably well conserved at the amino acid

level, both within subtype C and among different individuals. This is due to the fact that a

large number of the nucleotide substitutions are silent (synonymous) mutations that cause

no change in the amino acid sequence. As a result, the consensus sequence for the

KwaZulu-Natal protease was identical to the consensus sequence for subtype C, while the

reverse transcriptase consensus sequences differed from the C consensus at a single amino

acid, codon 60. High rates of synonymous-to-nonsynonymous nucleotide change have also

been observed among subtype C isolates from Zimbabwe (Shafer et al, 1997) and Ethiopia

(Loemba et al, 2002). This inherent property of African subtype C viruses is a reflection of

the differential pressure exerted on the three positions of the amino acid code or the

KwaZulu-Natal reverse transcriptase gene, the mutation rate for the third position of the

codon was four times higher than that observed for the second position and 30 times

higher than for the first codon position (data not shown). The conservation of subtype C at

the amino acid level offers considerable promise for the development of a consensus- or

ancestor-based "supervaccine" (Novitsky et al, 2002). Recent primate studies suggest that

it may be possible to overcome diversity and achieve cross-protection against different

HIV-1 variants (Dunn et al, 1997; Shibata et al, 1997). However, it should be stressed that

the long-term impact of silent mutations on vaccine efficacy is not known. In the context

of antiretroviral therapy, one recent study found that, despite numerous naturally occurring

mutations in reverse transcriptase, C viruses from Zimbabwe were as susceptible as

subtype B viruses to commonly used nucleoside and nonnucleoside reverse transcriptase

inhibitors (Shafer et al, 1997). However, another recent study found that, although C

viruses in Ethiopia were susceptible to reverse transcriptase inhibitors, the presence of
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silent mutations led to a more rapid emergence of resistance (Loemba et al, 2002). These

data emphasize the need for carefully designed prospective trials to determine whether

existing polymorphisms influence the development of resistance in C-infected patients.

With the exception of two primary resistance mutations, K103N and G190A, which

occurred in a single husband-wife pair, none of the reverse transcriptase or protease

polymorphisms occurred at drug-binding sites or at active sites of the enzymes. Both

mutations are known to cause high-level resistance to nevirapine in persons infected with

subtype B (Raffi et al 2000). Although believed to be naturally occurring, the possibility

that these mutations represent treatment-induced changes cannot be excluded. As many as

15% of patients in the private sector in South Africa have received or are currently

receiving some form of antiretroviral therapy. Many protocols include nevirapine because

of its low cost and long half-life. Nevirapine is also being increasingly used for the

prevention of mother-to child HIV-1 transmission in KwaZulu-Natal and other regions of

Africa (Jackson et al, 2001).

All of the remaining pol polymorphisms occurred in regions involved in the three-

dimensional configuration of reverse transcriptase and protease. One such polymorphism,

which occurred in a single patient, was A98G in the reverse transcriptase. This mutation

was also detected in a treatment-naïve patient from Ethiopia (Loemba et al, 2002). In

persons infected with subtype B, A98G has been associated with low-level resistance to

nonnucleoside reverse transcriptase inhibitors. Other polymorphisms were localized within

the hinge region of protease, a region that induces conformational changes during drug

binding. A subset of these mutations, M36VR41K/H69/L89 M, has been linked to

increased catalytic activity in subtypes A and C (Velazquez-Campoy et al, 2001). Another

series of polymorphisms, at codons 12, 15, 19, and 93, occurred in >80% of Kwa7ulu-

Natal viruses and formed a KwaZulu-Natal/subtype C signature motif. The first three

amino acids of this motif are located near the N terminus of protease, in an extended J3-

strand; the fourth, 193L, is located in a hydrogen-bonded turn, immediately upstream of

the protease/reverse transcriptase cleavage site. The marked dominance of I93L among C

viruses, its close proximity to the protease/reverse transcriptase cleavage site, and its

linkage to the T12S/T15V/L19I signature warrant further investigation. Studies of HIV-1

B have reported that mutations in the protease and Gag-Pol cleavage sites contribute to

drug resistance, are specifically selected during therapy, and can lead to improved enzyme

kinetics (Cote et al, 2001; Doyon et al, 1996c These conserved codons were concentrated

within active sites and at drug-binding sites in reverse transcriptase and protease and at

nucleoside triphosphate binding sites in reverse transcriptase. The remaining 5% of amino
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acids were under strong positive selection pressure and were concentrated in regions

associated with maintaining the tertiary structure and facilitating conformational changes.

Some positively selected codons, such as protease 63 and reverse transcriptase 123 and

174, showed extensive interpatient and intersubtype variation. Other codons (such as

protease 12S and reverse transcriptase 39E, 245Q, 272P, and 277R) were highly conserved

among Kwa-Zulu-Natal and subtype C sequences and formed part of an HIV-1 C

signature sequence. The conservation of codons in the face of strong diversifying pressure

suggests that they may play an important role in the evolutionary, structural, and

phenotypic properties of C viruses. A few positively selected codons were conserved

across several subtypes, suggesting that they may contribute to the evolutionary history of

group M viruses. Although many factors contribute to the generation of new variants, one

of the most important is related to cytotoxic T lymphocytes and the role they play in

recognizing epitopes presented by major histocompatibility complex class I molecules.

With a single exception, all of the naturally occurring reverse transcriptase mutations were

embedded within cytotoxic T-lymphocyte, T-helper, or overlapping cytotoxic T-

lymphocyte/T-helper epitopes as previously defined for B viruses (Korber et al, 2000).

Several signature sequences in env also mapped to known subtype B cytotoxic T-

lymphocyte epitopes, including the heavily glycosylated regions at the bottom of V3 and

the associated protein kinase C phosphorylation site at V3 position 11. Information on

subtype C epitopes is just beginning to emerge and, when combined with novel methods

of analysis, may lead to new insights into the immune selection pressures occurring during

seroconversion and in response to therapy. By examining sites under positive selection

pressure, we may be able to identify targets of the host immune system and select

appropriate epitopes for inclusion in a subtype C vaccine. Although it is well known that

most C viruses lack a V3 glycosylation site and a basic amino acid residue at position 11,

the biological significance of these findings remains unclear. Disruption of V3

glycosylation has also been reported to occur in 52%, 34%, and 20% of subtype G, A, and

D viruses, respectively. Studies of subtype B have suggested that this N-linked glycan may

play a role in the interaction of gp120 with its coreceptors (Li et al, 2001) and in perinatal

transmission. Nakayama et al, (1998) found that absence of this V3 glycan caused a

marked reduction in CXCR4-dependent but not CCR5-dependent viral entry. Others have

suggested that the V3 glycan is not necessary for CXCR4 usage (Losman et al, 1991) and

that its absence leads to enhanced infectivity of CXCR4-expressing cells (Polzer et al,

2001). Li et al. (2001) found that multiple factors contribute to coreceptor usage and that

the effects exerted by the V3 glycan are both isolated and context dependent. Similarly,
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the absence of a basic amino acid at position 11 of V3 and at positions 24 and 25 has been

associated with a non-syncytium-inducing phenotype and CCR5 coreceptor-using

properties, while the presence of basic charge has been correlated with CXCR4 and

syncytium-inducing phenotypes (Hoffman et al, 1999; Hoffman et al, 2002; Hwang et al,

1991; Kato et al, 1999; Nakayama et al, 1998). As with deglycosylation, these correlations

have been imprecise. Our findings, showing a potential linkage between V3

deglycosylation and the presence of a serine phosphorylation site at position 11, suggest

that factors other than glycosylation and charge may have to be taken into account when

assessing the function of V3. Based on the knowledge that C viruses are almost

exclusively non-syncytium inducing and CCR5 using, it is tempting to speculate that

deglycosylation may allow better access to the CCR5 coreceptor, while phosphorylation

may alter the conformation of gp120, exposing retroviral sites that are needed for efficient

CCR5-mediated viral entry. Although highly speculative, this possibility warrants further

study given the critical importance of V3 for host cell recognition and viral entry.

Differences were also observed in the number and position of phosphorylation sites in

reverse transcriptase and protease. Phosphorylation is known to modulate the activity of

many proteins that interact with nucleic acids, including DNA and RNA polymerase. It is

also known that, in addition to reverse transcriptase and protease, several protein kinases

are incorporated into mature HIV-1 virions (Tozer et al, 1999), where they are available

not only to regulate the activity of reverse transcriptase and protease, but also to

participate in interactions with the host cell. Phosphorylation of threonine residue at

reverse transcriptase codon 215 has been shown to increase discrimination against

azidothymidine, leading to drug resistance (Lazaro et al, 2000), and phosphorylation of

protease substrates can lead to impaired proteolytic cleavage (Tozer et al, 1999). Our data

indicate that several phosphorylation sites in the pol gene of Kwazulu -Natal and subtype

C viruses are highly conserved and positively selected. It will be important to determine

whether these sites play a significant role in the replicative capacity and proteolytic

processing of C viruses.
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Chapter 4

Variability at Human Immunodeficiency Virus Type 1 Subtype
C Protease Cleavage Sites: an Indication of Viral Fitness?



4.1 Introduction

One of the most dramatic changes in the human immunodeficiency virus type 1 (HIV-1)-

AIDS epidemic has been the rapid emergence and devastating spread of subtype C viruses

(Kuiken et al, 2002; http://www.unaids.org/epidemicupdatedecOl/report /index  html).

HIV-1 C now accounts for >56% of all circulating viruses and is the most commonly

transmitted subtype worldwide (Esparza and Bhamarapravati, 2000). Subtype C

predominates in southern Africa (Gordon et al, 2003; Novitsky et al, 1999; Van Harmelen

et al, 1999) and India (Shankarappa et al, 2001) and is increasing in frequency in China

Gao et al, 1998, Rodenburg et al, 2001) and Brazil (Brindeiro et al, 1999; Gonzales et al,

2003; Soares et al, 2003). The disproportionate increase in C viruses relative to other HIV-

1 strains suggests that subtype C may be more easily transmitted or that it has a higher

level of "fitness" at the population level. One possible explanation is that founder effects

relating to the ongoing introduction of subtype C into new population groups with

different host factors, or different social and sexual practices, may be responsible for the

rapid spread. However, founder and host effects cannot account for the fact that C viruses

are overtaking preexisting virus subtypes in several different geographical regions,

including Yunnan Province in China and the southern region of Brazil (Brindeiro et al,

1999; Gao et al, 1998; Rodenburg et al, 2001; Soares et al, 2003). It is increasingly evident

that additional (non-host) viral factors are also contributing to the rapid spread of HIV-1

C. Viral studies indicate that subtype C has distinct genetic and phenotypic properties that

differentiate it from other HIV-1 subtypes. Various studies have postulated that an extra

NF-KB binding site in the long terminal repeat (Rodenburg et al, 2001), a prematurely

truncated Rev protein (Gao et al, 1998, Rodenburg et al, 2001), or a 5-amino-acid

insertion in Vpu (McCormick-Davis et al, 2000) may influence viral gene expression,

altering the transmissibility and pathogenesis of C viruses (Tatt et al, 2001). Factors

related to viral entry and pathogenesis, such as the CCR5 and non-syncytium-inducing

properties of C isolates (Ball et al, 2003; Peeters et al, 1999; Ping et al, 1999), may also

contribute to the increased spread of C viruses. One area of research that is receiving

consideration is the possibility that C viruses have a more active, catalytically efficient

protease (Velazquez-Campoy et al, 2001). The C protease is highly conserved at the amino

acid level and has a distinct signature sequence that differentiates it from those of subtypes

A, B, and D (Gordon et al, 2003; Velazquez-Campoy et al, 2001). A subset of these

signature residues, present in the hinge (M361/R411CH69K) and a-helix (L89M) of C (and

A) proteases, has been linked to increased catalytic activity (Velazquez-Campoy et al,

2001). Another signature pattern, identified in >80% of C viruses from South Africa, is
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T12S/ T15V/L191/193L (Gordon et al, 2003). The 12S, 15V, and 191 residues of this motif

are located near the N terminus of the protease in an extended r3-chain. The 93L

polymorphism is located within a hydrogen-bonded turn immediately upstream from the

protease-reverse transcriptase (RT) cleavage site, in close proximity to 12S/15V/191 and

the dimerization domain (Pettit et al, 2003; Shehu-Xhilaga et al, 2001; Swanstrom and

Wills, 1997; Tessmer et al, 1998). All of these polymorphisms lie outside the catalytic site

of the protease, in regions that would be expected to alter the enzyme's activity toward its

natural cleavage sites, leading to adaptive (compensatory) changes in the cleavage site

itself Since protease inhibitors (PIs) are currently the most active antiretroviral drugs used

for the treatment of HIV-1 (Zennou et al, 1998), it is important to collect information, not

only on the C protease but also on its drug responsiveness, substrate-inhibitor specificities,

and cleavage site characteristics. This information is needed to design PIs that are

maximally effective against C viruses and to obtain new insights into the mechanism of

drug resistance. Studies have shown that resistance mutations in the B protease are

associated with impaired proteolytic processing, decreased enzymatic activity, and a

failure to produce mature infectious virions (Croteau et al, 1997; Doyon et al, 1996;

Zennou et al, 1998). Compensatory cleavage site mutations can partially compensate for

these defects (Zybarth and Carter, 1995). In this report, we describe the natural variability

of subtype C cleavage sites in viruses from Africa, India, and Brazil and compare the

results to cleavage site patterns in representative B and group M viruses.

4.2 Methods

4.2.1 Cleavage Site Characteristics

The HIV-1 protease is a small, 99-amino-acid aspartic enzyme that mediates the cleavage

of Gag, Gag-Pol, and Nef precursor polyproteins. These reactions occur late in the viral

life cycle, during virion assembly and maturation at the cell surface. The process is highly

specific, temporally regulated, and essential for the production of infectious viral particles

(Jacks et al, 1998; Kaplan et al, 1994; Krausslich et al, 1989; Swanstrom and Wills, 1997).

As shown in Figure 13, the main structural proteins are formed by cleavage of the Pr55gag

polyprotein into matrix (MA; p17), capsid (CA; p24), nucleocapsid (NC; p7), p6gag, and

two spacer peptides, p2 and pl. The viral enzymes are formed by cleavage of Pr160gag-

pol, a fusion protein derived by ribosomal frame shifting (Jacks et al, 1998). Although

Pr160gag-pol also contains p17, p24, and p2, its C-terminal cleavage products are NC, a

transframe protein (TFP), p6pol, protease (PR), reverse transcriptase (RTp51), RNase H

(RTp66), and integrase (IN) Ikuta et al, 2000, Tessmer et al, 1998). In total, 12 proteolytic
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reactions are required to generate a mature infectious virion. Each reaction occurs at a

unique cleavage site that differs in amino acid composition (Billich et al, 1988). Some

cleavage sites contain phosphorylated Ser/Thr or Tyr residues that alter the sites'

susceptibilities to cleavage (Tozer et al, 1999). P6gag, the major phosphoprotein of HIV-

1, plays an essential role in the release of virus from the membranes of infected cells

(Muller et al, 2002).

4.2.2 Sequence Data and Construction of Cleavage Site Fragments

A total of 84 full-length nucleotide sequences were selected for analysis. These sequences

included two C isolates from South Africa, TV001 and TV002 (Zur Megede et al, 2002),

in addition to another 25 subtype C, 30 subtype B, and 27 representative group M

reference sequences (including A [n=3], B [n=4], C [n=5], D [n=3], F1 and F2 [n=4], G

[n=2], H [n=2], J [n=2], and K [n=2] subtypes) extracted from the Los Alamos database

(Table 10) (Kuiken et al, 2002). Sequences were selected based on the patient being

treatment naive. Since the prevalence of drug resistance in untreated patients has been

reported to range from 1 to 11 % (Little, 2000), sequences were also screened and excluded

from the study if they were found to contain primary resistance mutations. The majority of

the sequences were obtained by direct DNA PCR amplification and cloning of peripheral

blood mononuclear cells. Nucleotide sequences were aligned by CLUSTAL W

(Thompson et al, 1994) and manually edited with the codon alignment of the Genetic Data

Environment (GDE version 2.2) program (Smith et al, 1994). Calculation of the pairwise

distance matrix, phylogenetic inference, and tree construction were performed on a dual-

processor Linux computer by using the PAUP version 4.0b2a program (Sinauer

Associates, Sunderland, Mass.) and a GDE for Linux HIV-1 interface (De Oliveira et al,

2002). Thirty-base-pair segments, consisting of 15 nucleotides (5 amino acids) on each

side of the 12 cleavage sites, were extracted and concatenated into a 360-bp nucleotide

sequence.

4.2.3 Reconstruction of Ancestral Cleavage Site Sequences

To examine the evolutionary histories of individual cleavage sites, Phylogenetic Analysis

under Maximum Likelihood (PAML) software (Rambaut, 2000) was used to identify

amino acid and nucleotide substitutions along each branch of the tree. Branch lengths were

estimated using a nucleotide substitution model; amino acid sequences were deduced from

the reconstructed nucleotide triplets. The analyses involved the use of maximum-

likelihood methods and a time-reversible model which assume different substitution rates,
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Table 10. Sequences used for the analysis of protease cleavage sites'
Group or subtype Data set Accession no. 	Group or subtype Data set Accession no.

M

C

B

Al.KE.93.Q23-17 2

Al.UG.85.U455
Al.UG.92.92UG037
B.FR.83.HXB2
B.US.83.RF
B.US.86.JRFL
B.US.90.WEAU160
C.BR.92.92BR025
C.BW.96.96BW0502
C.ET.86.ETH2220
D.CD.83.ELI
D.CD.83.NDK
D.CD.84.84ZR085
Fl.BE.93.V1850
FLBR.93.93BR020.1
F2.CM.95.MP255
F2.CM.95.MP257
C.ZA.98.TV001c8.5
C.ZA.98.TV002c12
G.BE.96.DRCBL
G.FI.93.HH8793-12.1
H.BE.93.V1991
H.BE.93.V1997
J.SE.93.SE7887
J.SE.94.SE7022
K.CD.97.EQTB I IC
K.CM.96.MP535

B.US.84.NY5CG
B.US.-.AD8
B.CN.-.RL42
B.US.90.WEAU160
B.US.-.P896
B.GA.-.OYI
B.US.-.DH 123
B.GB.-.CAM1
B.NL.86.3202A21
B.AU.87.MBC925
B.ES.89.89SP061
B.FR.83.HXB2
B.US.83.SF2
B.US.90.WCIPR9018
B.US.84.MNCG

AF004885
M62320
U51190
K03455
M17451
U63632
U21135
U52953
AF110967
U46016
K03454
M27323
U88822
AF077336
AF005494
AJ249236
AJ249237
AY 16222
AY16224
AF084936
AF061641
AF190127
AF190128
AF082394
AF082395
AJ249235
AJ249239

M38431
AF004394
U71182
U21135
U39362
M26727
AF069140
D10112
U34604
AF042101
AJ006287
K03455
K02007
U69591
M17449

B.US.87.BC
B.TW.-.TWCYS
B.US.86.JRFL
B.AU.86.MBC200
B.DE.86.HAN
B.US.83.RF
B.US.97.ARES2
B.AU.96.MBCC98
B.KO.97.WK
B.AR.98.ARCH054
B.AR.00.ARMS008
B.AR.99.ARMA 132
B.DE.86.D31
B.US.88.WR27
B.US.86.YU2

C.ET.86.ETH2220
C.BR.92.BR025
C.IN.93.93IN999
C.IN.93.931N904
C.IN.93.93IN905
C.IN.94.941N11246
C.IN.94.94IN476
C.IN.95.95IN21068
C.BW.96.96BW01B03
C.BW.96.96BW0402
C.BW.96.96BW0502
C.BW.96.96BW1104
C.BW.96.96BW 1210
C.BW.96.96BW17B03
C.BW.96.96BW1626
C.BW.96.MJ4
C.ZM.96.ZM651
C.ZM.96.ZM751
C.ZA.97.ZA012
C.BR.98.98BR004
C.IL.98.981S002
C.IN.98.981N012
C.IN.98.98INO22
C.TZ.98.98TZ013
C.TZ.98.98TZ017
C.ZA.98.TV001c8.5
C.ZA.98.TV002c 12

L02317
AF086817
U63632
AF042100
U43141
M17451
AB078005
AF042104
AF224507
AY037268
AY037269
AY037282
U43096
AF286365
M93258

U46016
U52953
AF067154
AF067157
AF067158
AF067159
AF286223
AF067155
AF110959
AF110962
AF110967
AF110969
AF110972
AF110980
AF110978
AF321523
AF286224
AF286225
AF286227
AF286228
AF286233
AF286231
AF286232
AF286234
AF286235
AY16222
AY16224

Identification information for the sequences is in the format: subtype.country.
isolationyear.commonname. The country is represented by the two letter country code using the international
naming convention from ISO 3166
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base frequencies, and transition/transversion rate ratios (kappa) (Yang, 2000; Yang et al,

2000). Using this approach, we were able to reconstruct the ancestral sequences and

internal nodes for each of thel2 protease cleavage sites in the B, C, and M group data sets.

The number of proximal ancestors for each data set was n - 1, which translated into 29

ancestral sequences for subtype B, 26 sequences for subtype C, and 26 sequences for the

group M viruses. The most recent common ancestor (MRCA) nucleotide sequence for

each virus in the three data sets was saved and translated into its corresponding amino

acids.

4.2.4 Diversity and Cleavage Site Polymorphisms

Nucleotide diversity at cleavage sites was measured using a Kimura 2-parameter model

with a distance matrix implemented in the MEGA program version 2.0 (Arizona State

University, Tempe). Amino acid diversity was measured using a Poisson distribution

method implemented in the same MEGA package. P values for diversity measurements

were calculated by applying the t test to the distance matrix of each data set. To determine

whether the sequences had evolved over time, amino acid profiles for individual Gag,

Gag-Pol, and Nef cleavage sites were compared to the inferred MRCA for that site.

4.2.5 Assessment of Positive Selection Pressure

Nucleotide sequences were also analyzed with Codeml, a program from the PAML

software package (Rambaut, 2000). The likelihood ratio test (Anisimova et al, 2001) and

recently developed codon-based models (Yang, 2000, Yang et al, 2000) were used to

assess natural selection and adaptive evolution at the amino acid level. These selection

models use maximum-likelihood scores to account for variation in the dnlds

(nonsynonymous/synonymous) ratio (6)) at individual codons along the length of the

sequence. High rates of synonymous mutation are indicative of conservation and a strict

requirement for biological function, while high rates of nonsynonymous substitution are

indicative of adaptive change in response to host selection pressure. An individual amino

acid was considered to be positively selected if the dnlds ratio was significantly greater

than 1.0.

4.3 Results

4.3.1 Viral Characteristics

No primary RT- or PI-resistant mutations were detected among the 84 full-length

sequences selected for study. Although attempts were made to include only sequences
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amplified directly from HIV-1 proviral DNA and to match these sequences based on

duration of infection, plasma viral load, and CD4 count, this proved difficult. A

surprisingly small amount of full-length sequence data was available from treatment-naive

patients infected with subtype B, and when available, it was often poorly annotated.

Despite these limitations, the frequency and pattern of naturally occurring polymorphisms

observed in this study were remarkably similar to those reported for a control group of

subtype B infections treated with nucleoside reverse transcriptase inhibitors but not with

PIs or nonnucleoside reverse transcriptase inhibitors (Cote et al, 2001). Most of the non-C

sequences came from regions of the world where treatment is not yet readily available.

4.3.2 Genetic Diversity and Patterns of Amino Acid Variability at Individual

Cleavage Sites

Variation at the 12 cleavage sites of subtypes B and C and group M is shown in Table 11.

Seven (58.3%) sites (p17/p24, p24/p2, NC/pl, NC/TFP, PR/RT, RT/p66, and p66/IN)

were found to be relatively well conserved, both over time and between subtypes, with a

mean intrasubtype distance ranging from 0.40 (0.20%) to 7.49 (5.62%). The remaining

live (41.7%) sites exhibited moderate (pl/p6gag) to extensive (p2/NC, TFP/p6pol,

p6pol/PR, and Nef) variation, with mean intrasubtype diversities reaching levels as high as

42.42 (15.16%). For the purposes of this study, we have referred to these three patterns as

conserved, moderately variable, and variable. Polymorphisms were more common among

C than B viruses (P=0.0001). Overall, six cleavage sites (p17/p24, p2/NC, NC/pl, PR/RT,

RT/p66, and Nef) had significantly higher levels of diversity among C viruses

(P=0.0001); five sites (p24/p2, pl/p6gag, NC/TFP, p6pol/PR, and p66/IN) had similar

levels of diversity in both subtypes, and one site, TFP/p6pol, was highly variable among B

and group M viruses (mean distances, 16.7 and 24.7%, respectively) but relatively

conserved in C viruses (mean distance, 7.6%) (P=0.0001). Compared to the M data set,

the level of polymorphism at C cleavage sites was as wide ranging as that observed for the

entire M group, a data set containing nine different HIV-1 subtypes. One cleavage

site, p17/p24, was significantly more diverse in subtype C (mean divergence, 5.15%) than

in group M (mean divergence, 2.23%) and subtype B (mean divergence, 2.31%) viruses

(0.0001 for both comparisons). Seven sites (p24/p2, p2/NC, NC/pl, p6poi/PR, RT/p66,

p66/IN, and Nef) exhibited similar levels of diversity in both data sets (P=0.004-0.961).

Only four group M cleavage sites (pl/p6gag, NC/TFP, TFP/p6pol, and PR/RT) had mean

diversities that were significantly greater than that observed for subtype C (P=0.0001).

For >50% of the sites, the variability of B viruses was significantly lower than that
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observed for subtype C or group M (P=0.0001), despite the fact that the B viruses covered

a broader time frame. The observed polymorphisms were not randomly distributed across

the variable cleavage sites but were confined to specific amino acids, most of which were

positively selected in C but not in B viruses (Figure 15). The least variable residues were

the P1 positions of pl/p6gag, TFP/p6pol, and Nef and the P1' positions of p6pol/PR and

Nef. As shown, these positions flank the scissile bond, with P1 located immediately

upstream and P1' located immediately downstream of the cleavage junction. The most

variable positions were the P1, P3, P4, P5, P3', and P5'residues of p2/NC; the P3' residue

of pl/p6gag; the P1' and P4' residues of TFP/p6pol; the P1 to P4 residues of p6pol/PR;

and the P3 to P5 and P2' residues of Nef.

4.3.3 Subtyping and Phylogenetic-tree Analysis

When subjected to phylogenetic analysis (Figure 14), the concatenated 360-bp fragments

of the group M data set fell into eight subtype-specific clusters representing subtypes A, B

and D, C, F, G, H, J, and K, with the cleavage sequences for subtypes B and D segregating

together in the same subcluster. This pattern was supported by high bootstrap values, by

high-score maximum-likelihood trees, and by phylogenetic analysis of the deduced amino

acids. These findings reveal the subtype-specific nature of protease cleavage sites and

suggest that the evolution of cleavage sites parallels that of the full-length genome. With

the exception of C.981NO22, B.AROO.ARMS008, and B.US.P896, all of the cleavage site

fragments in the B and C data sets segregated into two distinct monophyletic groups

representing either subtype B or subtype C viruses (data not shown). The longer branch

lengths in the C subcluster were reflective of the increased diversity of C viruses relative

to subtype B.

4.3.4 Identification and Dating of Common Ancestors

Maximum likelihood methods were next used to reconstruct the internal nodes of the

phylogenetic tree and to estimate the times of divergence of individual sequences from

their MRCA. These estimates were determined by measuring the number of substitutions

along each branch of the tree. MRCAs for the B, C, and group M data sets are shown in

Figure 15. Two different patterns were observed based on the relationship between a given

sequence and its MRCA. Conserved (n=7) and moderately variable (n=1) cleavage sites

shared the same (identical) MRCA among all three data sets. The proximal location of the

MRCA relative to the root of the tree suggests that, for these sequences, cleavage site
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C-TV001c8.5-ZA B-JRFL
B-HXB2

Al-Q23-17

A1-92UG037

A1-U455

J-SE7887

G-HH879311

H-V1991

F2-M P255

G-DRCBL

H -V1997

J-SE7022

99

K-MP535

F2-M P257

F1-93B R020.1

Fl -V1850

79

B-WEAU160

C-96BW0502

C-92BR025

C-TV002-ZA 
C-ETH22200.01

D-NDK D-ELI

88

82

K-EQTB11C

D-84ZR085

B-RF

Table 11. Inter- and intra-subtype diversity at 12 cleavage sites, expressed as amino acid distances
between sequences

Mean % distance P value
Protease site Subtype B Subtype C Group M B vs C B vs M C vs M

p17 - p24 2.31 5.15 2.23 <0.0001 0.806 <0.0001

p24 - p2 2.41 3.07 2.67 0.077 0.454 0.267

p2 - p7 18.66 42.42 39.22 <0.0001 <0.0001 0.062
p7 - p1 0.40 5.42 5.22 <0.0001 <0.0001 0.7244

pl - p6gag 8.93 9.81 14.47 0.318 <0.0001 <0.0001

NC-TFN 5.30 3.90 6.30 0.0012 0.0215 <0.0001

TFN-P6" 1 16.69 7.60 24.70 <0.0001 <0.0001 <0.0001

p6° ° ' PR 17.66 16.28 15.55 0.15 0.019 0.365

PR - RT 0.70 1.56 2.93 <0.0001 <0.0001 <0.0001

RT - p66 0.81 7.49 6.03 <0.0001 <0.0001 0.004

p66 - IN 2.44 2.22 2.24 0.524 0.61 0.961
Nef 11.89 24.52 25.68 <0.0001 <0.0001 0.33

Gag (501 aa) 6.99 9.75 15.72 <0.001 <0.001 <0.001
Pol (1004 aa) 6.02 5.83 5.89 0.376 0.419 0.875
Nef (207 aa) 14.66 16.50 18.50 0.07 <0.001 <0.001
12 protease sites 4.80 10.10 12.10 <0.001 <0.001 <0.001
(360 by -120 aa)

aamino acids, aa

Figure 14. Phylogenetic relationships of the South African Tygerberg virology (TV) cleavage site
sequences relative to other subtypes in the group M data set. This representative maximum-likelihood
tree is based on concatenation and analysis of the 12 protease site nucleotide sequences as a single
segment of 360 bp. An indication of the degree of sequence dissimilarity is given by the distance from
the central node. The percentage of bootstrap trees out of 1,000 replications supporting a particular
phylogenetic group is shown alongside the node considered.
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Figure 15. Amino acid polymorphisms at Gag, Gag-Pol, and Nef cleavage sites. The letters refer to the amino acid
substitutions; the numbers in parentheses refer to the number of times the substitution was observed. Each
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amino acids are marked with asterisks. Dots represent amino acids that are identical to those in the M MRCA.
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diversification occurred after subtype divergence. In contrast, variable cleavage sites

(n=4) showed a high degree of divergence both from their subtypespecific MRCA and

from the group M MRCA. Ancestral nodes for the variable sites were located closer to the

tips of the tree (data available upon request).

4.3.5 Variability of Cleavage Sites Relative to Other Regions of the HIV-1 Genome

For C viruses, the average intersequence divergence among the concatenated cleavage site

fragments was higher (10.1%) than those observed for the Gag (9.8%) and Pol (5.8%)

proteins but lower (16.5%) than that observed for Nef. In contrast, B cleavage sites were

significantly less diverse (4.8%; P=0.0001) than those of the Gag (7.0%), Pol (6.0%), and

Nef (14.7%) proteins of subtype B. Among group M viruses, cleavage site diversity was

significantly higher (12.1%) than that calculated for Pol (5.9%) but lower than that

determined for Gag (15.7%) and Nef (18.5%). These results are presented in more detail in

Table 11.

4.3.6 Physical-chemical Properties of Amino Acids at P1-P1'Cleavage Junctions

Overall, excluding the highly conserved asparagine (N) residue at the P1 position of

NC/p1 and NC/TFP, >97.0% of P1-Pr amino acids in group M were nonpolar. Of these,

77.8% were hydrophobic, 21.5% were small amino acids (78.9% proline, 20.8% alanine,

and 0.3% glycine), 0.3% were polar uncharged (one serine and three glutamine), 0.2%

were polar charged (one arginine and one aspartic acid), and 0.3% were ungrouped

(cysteine) residues. These amino acids were localized at specific positions within the

cleavage sequence. The small amino acids were localized primarily to the P1' position of

p17/p24, p24/p2, TFP/p6po1, p6po1/PR, and PR/RT. Hydrophobic amino acids were

concentrated at the P1-P1' junction. As previously reported for HIV-1 B (23), the P1-P1'

amino acids of subtype C fell into two different patterns defined by the size of the P1'

amino acid: type I, represented by p2/NC and pl/p6gag, and type II, represented by

p17/p24 and p24/p2. Both types carried large nonpolar, hydrophobic amino acids (leucine,

tyrosine, phenylalanine, and methionine) at position P1 and either a large (type I) or small

(type II) hydrophobic amino acid (proline, alanine, or glycine) at P1'.

4.3.7 MRCAs and Subtype-specific Signature Patterns

A summary of amino acid signature patterns relative to the subtype B and C and group M

MRCAs is shown in Tables 12 and 13. Mutations at cleavage sites defining the enzymatic

(PR/RT, RT/p66, and p66/IN) and structural (p17/24, p24/p2, and NC/p1) components of
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HIV-1 were relatively uncommon and, when detected, were found at greater frequencies

among C versus B viruses. In total, only 1.2, 0.8, and 1.1% of the 840 amino acids at each

of the PR/RT, p66/IN, and p24/p2 cleavage sites carried substitutions. As a result, the

majority of sequences at conserved sites (81.5 to 96.7%) were identical to both the

subtype-specific MRCA and the common ancestor of the group M viruses. Several

cleavage sites involved in the regulation of polyprotein processing and protease activation,

p2/NC, TFP/p6po1, and p6pol/PR, were highly variable and differed significantly from

both the subtype-specific and group M MRCAs. With the exception of the TFP/p6pol site,

which was more variable in subtype B, divergence from the MRCA was greatest for C and

M viruses. None of the p2/NC and p6pol/PR sequences in the group M data set was

identical to the M MRCA signatures for p2/NC and p6pol/PR, STAIM/MQKGN and

TSFSF/PQITC, respectively.

4.3.8 Positive Selection of Amino Acids at Protease Cleavage Sites

The concatenated 360-bp cleavage site fragments were next compared internally to assess

the mutational behavior of P1-P5 and P1'-P5' sites in the absence of drug therapy. As

described in Materials and Methods, the analyses were performed using codon-based

maximum-likelihood methods that test for the variation in selection pressure (dn/ds) at

individual amino acids along the length of the sequence. Application of the likelihood

ratio test indicated that the best-fit model for subtype C and group M sequences was the

positive-selection (discrete) model (x 2 = 54.47; P < 0.0001 and 62.34 and P < 0.0001,

respectively), while for B viruses the neutral model performed as well as the positive

model (x2 = 1.2; P > 0.05). Overall, when analyzed as a single concatenated fragment, all

three datasets were found to be under negative (purifying) selection, with dnlds (w) values

ranging from 0.26 to 0.31 for all sites. Only 20 (16.6%) of the 120 amino acids within the

12 cleavage sites of subtype C were found to be under positive selection, with a w3 value

of 1.7. Group M and subtype B cleavage sites had fewer positively selected amino acids:

11.1 and 6.7%, respectively (Figure 15).

4.4 Discussion

The presence of polymorphisms in the protease of subtype C would be expected to result

in adaptive (compensatory) changes in the natural cleavage sites that are recognized and

cleaved by the C enzyme. To test this hypothesis, we examined the prevalences and

patterns of cleavage site mutations in the Gag, Gag-Pol, and Nef proteins of subtype C

compared to those of non-C viruses. Using phylogenetic and ancestral reconstruction
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methods, we identified two groups of natural cleavage site sequences. The first group

consisted of eight sequences, seven of which were highly conserved in all HIV-1 subtypes,

and an eighth sequence which was moderately variable. Mutations at these sites were

uncommon and, when present, were observed at relatively equivalent frequencies among

different subtypes. These cleavage sites, which defined the main structural (MA, CA, and

NC) and enzymatic (RT, RNase H, and integrase) proteins of HIV-1, were under strong

negative (purifying) selection pressure, had a common ancestor, and showed little genetic

evolution over time. The second group consisted of five cleavage sites that were under

positive (diversifying) selection pressure, exhibited extensive inter- and intrasubtypc

variability, and showed little (or no) resemblance to the common ancestor of group M or

to the subtype-specific MRCA. Our data showing that the majority (58.3%) of cleavage

sites are highly conserved in all subtypes was not unexpected, given the narrow specificity

of the HIV-1 protease relative to cellular proteases, such as pepsin (Ridky et al, 1996). The

strong purifying selection pressure exerted on these sites is presumably a reflection of the

need to maintain the spatial configuration of the enzyme-substrate complex, conserve the

hydrophobic nature of the scissile bond, and retain the biological activity of functionally

important sites, such as the P1' proline of p17/p24 and the P1 and P 1 '-P5' residues of

NC/p 1. Cleavage of the p17/p24 site is known to play an important role in virion

maturation, while processing of NC/pl is required for ribosomal frame shifting and Gag-

Pol expression (Ericson-Viitanen et al, 1989, Jacks et al, 1998; Kaplan et al, 1994;

Krausslich et al, 1989, Pettit et al, 1994). In B viruses, cleavage of p17/24, p24/p2, and

NC/pl has been shown to be suboptimal, with the NC/p 1 site being rate limiting (Pettit et

al, 2002). It has been suggested that the slow, regulated cleavage of these structural

proteins may represent a common strategy to ensure that the assembled virions have the

full complement of proteins needed to bud from the cell surface, bind to a new cell, and

initiate a new round of viral replication (Tessmer et al, 1998). The carboxyl terminus of

NC is particularly interesting. Unlike other cleavage sites, which carry an aromatic amino

acid at P1 and either a leucine or proline residue at P1', the C termini of NC/p1 and

NC/TFP carry an asparagine (N) residue at P1 opposite a phenylalanine (F) residue at P1'

(Cote et al, 2001, Pettit et al, 2003; Pettit et al, 2002; Pettit et al, 1994). In this study of 84

untreated patients, no mutations were detected at the P2 or P1 '-P3' positions of NC/pi or

NC/TFP and only a single N3C mutation was detected at P1. Taken together, these

findings underscore the unique nature and limited mutability of the NC/pl and NC/TFP

cleavage junctions. Although these sites were strongly conserved in natural infection,

recent studies have shown that an A3V substitution at the P2 positions of NC/p 1 and
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NC/TFP is a common adaptive change, occurring in 29% of PI-resistant patients taking

indinavir, saquinavir, and/or ritonavir for the treatment of subtype B (Cote et al, 2001;

Doyon et al, 1996; Zennou et al, 1998; Zhang et al, 1997). This valine substitution is

frequently associated with an M46 I or L mutation (and possibly a V82 mutation) in the

protease and leads to altered polyprocessing and improved growth of protease-mutated

viruses. Whether similar "second locus" mutations will be observed during the treatment

of non-B subtypes remains to be established. The identification of common patterns may

facilitate the development of broad based inhibitors with increased specificity and

i mproved binding to the mutated protease. These secondary inhibitors might preempt (or

delay) the emergence of resistance. Our analyses also revealed important differences

among HIV-1 subtypes. Particularly intriguing was the identification of five cleavage sites

that exhibited extensive variability across all subtypes, with C viruses being significantly

more variable than subtype B. Variation was restricted to a few specific amino acids, most

of which were positively selected in C but not in B viruses. In contrast to conserved sites,

variable cleavage sites tended to be those with regulatory rather than structural or

enzymatic functions. At least four of the variable sites (p2/NC, pl/p6gag, TFP/p6pol, and

p6pol/PR) are known to play major roles in the regulation of polyprotein processing and,

in the case of TFP/p6pol, in the activation of the protease enzyme (Pettit et al, 2003; Pettit

et al, 2002; Pettit et al, 1994; Ridky et al, 1996; Shehu-Xhilaga et al, 2001). Studies of

subtype B have shown that p2/NC is the initial and most rapidly processed cleavage site,

controlling both the rate and the order of Gag and Gag-Pol polyprocessing (Shehu-Xhilaga

et al, 2001). Our results indicate that p2/NC is by far the most variable cleavage site, with

intrasubtype diversity ranging from 18.7% in subtype B to levels of 42.4% in subtype C.

The pl/p6gag cleavage product, p6gag, is a major phosphoprotein that is critical to the

release of mature, infectious virions (Muller et al, 2002). Although not well studied,

phosphorylation of Gag and Gag-Pol sequences has been shown to alter susceptibility to

cleavage, attenuating or even preventing the proteolytic process (Tomasselli and

Heinrickson, 1994). The TFP/p6pol cleavage site, defining the N terminus of p6pol, was

the only site to have a significantly higher level of diversity among B than among C

viruses. TFP/p6pol is a novel cleavage site located 8 amino acids downstream from NC in

the TFP domain of Gag-Pol (Pettit et al, 2003, Tessmer et al, 1998). Although TFP/p6pol

lies outside (and upstream) of the protease, the EDL tripeptide of this cleavage site (ENL

in the case of C viruses) has been postulated to have a major influence on protease

activation and on the timing and specificity of Gag-Pol cleavage, delaying the release of

the protease until after the viral particle has budded from the cell membrane. Such a
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mechanism may protect the cell from the cytotoxic effects of proteolysis (Thomas et al,

1996; Tomasselli and Heinrickson, 1994). The observed subtype variation in the cleavage

sites controlling the initiation and rate of Gag and Gag-Pol processing (p2/NC) and the

activation of protease (TFP/p6gag) suggests that there may be important differences in the

way that B and C viruses regulate polyprocessing and virion assembly. Subtle cleavage

site differences could, over time, have a major differential impact on the pathogenesis of

HIV-1 subtypes and on response to therapy. Early treatment studies suggest that C viruses

give an excellent initial response to highly active antiretroviral therapy but that the

duration of the response may be less than that reported for B viruses.

In summary, our results point to important inter- and intrasubtype differences in protease

cleavage sites, especially in the p2/NC, TFP/p6pol, and p6pol/PR sites. The main

limitations of our study relate to the cross-sectional nature of the data sets and the limited

availability of well-matched pretreatment controls for use in the B data set. Despite these

limitations, the potential impact of our findings on HIV-1 disease progression and

response to therapy wan -ants further investigation, both at the patient level and in vitro

using site-directed mutagenesis. The separate monophyletic clustering of B and C

cleavage sites suggests that cleavage sites have evolved in a subtype-specific manner. The

divergence between ancestral and contemporary sequences in the C data set and the

location of an ancestral node distal to the group M MRCA suggest that variation in C

cleavage sites began early, prior to the diversification of HIV-1 subtypes. A more detailed

investigation of C cleavage sites, both over time and in response to therapy, is in progress.

The present study forms the baseline for these ongoing studies.
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Chapter 5

Molecular Characteristics of Retrospective South African Drug
Naive Samples



5.1 Introduction

The history of Southern African HIV infection dates back to 1982, when the first South

African AIDS cases were reported among the homosexual population (Sher et al, 1989).

Until 1987, HIV-1 diagnosis was almost completely limited to the male portion of the

population. In 1988, Martin et al reported a HIV-1 prevalence of 20% among homosexual

men and 1% among heterosexual men attending a STD clinic in Johannesburg. The same

clinic found al.2% and 0.8% HIV prevalence among black females and males

respectively. In 1989, Sher presented data from a number of surveillance studies on the

prevalence of HIV infection in South Africa that showed an increase in the number of

AIDS cases among the black population, through the heterosexual route of transmission. It

was later shown that two HIV-1 epidemics were present in South Africa, a smaller

epidemic among the homosexual and bisexual men associated with subtype B and a few

subtype D infections, and a subtype C epidemic among the heterosexual population

(Williamson et al, 1995; Van Harmelen et al, 1997). By 1992, the reported cases in women

roughly equalled those in men. Another study in rural KZN found the prevalence in

women to be three times higher in females than in males (Abdool Karim et al, 1992). The

prevalence of HIV-1 continued to increase, with 16% of pregnant women attending

antenatal clinics testing seropositive in 1997 (Van Harmelen et al, 1999). Van Harmelen

noted geographical variation in the extent of the epidemic within South Africa. KZN had

the highest prevalence in the country with 26.92%, while the Western Cape had a

prevalence of only 6.29% (Van Harmelen et al, 1999). This increased to 36.2% in KZN

and 8.7% in the Western Cape by 2002 (Zur Megede et al, 2002). In 2002, Bredell et al

reported that while subtype C was still predominant, there was an increase in the number

of non-C subtypes detected. Other subtypes were probably introduced independently into

different regions of South Africa by immigrants from other African countries (Van

Harmelen et al, 1999; Bredell et al, 2002).

Between 1984 and 1990, serum was routinely collected and virus isolated from patients in

the Western Cape diagnosed with AIDS and AIDS related conditions (Engelbrecht et al,

1995). To our knowledge, these samples represent the only properly stored archival

specimen bank in SA, and thus may serve as an important source of information on

relating to the evolutionary history of HIV-1 in South Africa. Accurate surveillance of

HIV-1 prevalence and incidence, and systematic monitoring of the genetic diversity,

distribution and spread of HIV-1 variants is critical not only to the design of effective
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vaccines and intervention strategies, but also to formulate policy and predict the future

directions of the global AIDS pandemic. An understanding of the extent of genetic

diversity in different geographic regions, and of its changing dynamics over time is also

needed to ensure that diagnostic assays are sensitive and appropriate for the population

being studied, and that they remain sensitive and specific over time.

As discussed in Chapter 3, recent sequencing in our laboratory has indicated the

HIV/AIDS epidemic is still primarily subtype C restricted, while in Cape Town, the

epidemic is still diverse, but becoming more subtype C dominated (Bredell et al, 2002;

Engelbrecht et al, 2001). To search for underlying genetic differences between these two

regional epidemics, we have conducted a collaborative study with colleagues from

Tygerberg Hospital, University of Stellenbosch, Cape Town. The study involved

comparative sequencing of the RT and PR, as well as env in a subset of samples, of

representative archival and contemporary sequences from Cape Town, and representative

currently circulating and archival HIV-1 strains from Durban and the surrounding areas.

The results of this study provide a baseline for examining the impact of specific amino

acid substitutions on the structure, function and biological properties of HIV-1 C viruses

and the relationships between genetic variation, resistance and response to therapy.

5.2 Methods

5.2.1 Samples

Thirty archival samples and nine contemporary samples (2002) were obtained from

colleagues at Tygerberg Hospital, Western Cape. Although these samples were randomly

chosen from the archival specimen bank to span from the earliest samples in 1984 to 1992,

there is a potential sampling bias, as surveillance in the earlier days of the epidemic was

not systematic. The samples from the Western Cape were compared with 8 archival

samples (1996-1998) collected as part of the national seroprevalence survey, and 46

contemporary (2002) samples from KwaZulu-Natal, a subset of the samples described in

Chapter 3.

5.2.2 RNA Extraction and Resistance Genotyping

HIV-1 RNA was extracted and sequenced using the VirosegTM system (Applied

Biosystems) according to the manufacturer's protocol and as described in Chapter 3.2.4.

Sequences were analysed for resistance as described in Chapter 3.2.5. Signature patterns

(VESPA), biologically significant sites (PROS1TE, selection pressure (PAML) and the

Molecular clock were estimated as described in Chapter 2.1.
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5.3 Results

HIV-1 subtypes circulating in CT between 1984 and 1992 included subtypes B, C and D,

with a predominance of subtype B infections (Table 14). This appears to have changed

over time, with subtype C becoming the predominant subtype, although the other subtypes

are still present. This is in sharp contrast to KZN, where subtype C appears to have

dominated from the onset of the local epidemic (Figure 16). Comparative phylogenetic

analysis revealed few genetic changes in biological important sequences, or in signature

patterns. However, a number of signature mutations occurred at polymorphic sites, namely

the absence of the RT 211K polymorphism found in the subtype C recent isolates (Table

15). This amino acid is under strong positive (diversifying) selection pressure and may

offer a fitness advantage to C viruses. When analysed using models that discriminate

positive, neutral, and purifying selection pressure at different positions along the length of

the protein, the protease and RT were found to be under strong purifying selection with

more than 97 % of sites having a co value < 0.5). Positions under positive selection

included 37N and 63P in protease and positions 123D, 174Q, 211K, 245Q and 277R in

reverse transcriptase.

The evolutionary rates of the South African HIV-1 C pol and env genes were 35% and

68% higher than for subtype B, respectively. The mutation rates for pol were

approximately 0.001 and 0.00189 sites per year for subtypes B and C respectively, while

the env mutation rate was 0.002 for subtype B and 0.003 for subtype C (Table 16), values

that are similar to other previously published rates (Korber et al, 2000). The molecular

clock hypothesis was only accepted for the pol gene for subtypes B and C.

The relatively high nucleotide mutation rate of the pol gene was not reflected in the amino

acid sequence. Most mutations were silent (synonymous), a reflection of the non-

homogeneous distribution of nucleotide substitutions in the three different codon

positions. The mutation rate in the third position was four times higher than in the second

position, and 30 times higher than in the first codon position. Substitutions at the third

codon position is responsible for many synonymous mutations (Table 17).

Likelihood and genetic distance trees of HIV-1 C polymerase (RT and PR) sequences

from South Africa revealed the presence of multiple scattered lineages. The lineages

probably arose from different introductions of founder strains. The presence of HIV-1

isolates collected prior to 1992 at internal (basal) branches in three of these lineages

suggests that these sequences may represent founder strains that have existed for at least

10 years (see Figure 9 in Chapter 3).
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5.4 Discussion

South Africa continues to have at least two distinct HIV-1 epidemics characterized by the

presence of different genetic subtypes, epidemic timing and HIV-1 prevalence values

(Bredell et al, 2002; Zur Megede et al, 2002). The impact of these genetic differences on

the transmission dynamics and biological properties of HIV-1 are unknown. Our studies

suggest that there are no primary resistance mutations in the protease and RT of drug naive

subtype C isolates, as well as no major changes in signature sequences of biologically

important sites. However, variation at polymorphic sites may alter the conformation of

RT, PR and env and lead to indirect changes in replicative capacity, ability to cleave Gag-

Pol polyproteins and changes in tropism.

In this study, differences between retrospective and recent sequences from subtype B and

C viruses from the Western Cape and KZN were examined in an attempt to identify codon

positions that were selected over time and could potentially offer a fitness advantage to C

viruses. A few differences were identified, including the RT R211K mutation, that is

under strong positive (diversifying) selection pressure in contemporary subtype C isolates

but absent in subtype B sequences and Western Cape retrospective subtype C isolates.

This mutation, when present with L214F and/or H208Y, has been shown to cause a 2.4- or

8-fold increase in AZT resistance (Sturmer et al, 2003). Another mutation, V601, was

present only in the KZN signature patterns. Both of these mutations do not occur at

functional sites and their potential role in viral fitness needs to be further investigated in

vitro, with site directed mutagenesis and replication assays.

Correlation of subtype distribution with HIV-1 prevalence, suggests that subtype C is

outgrowing other subtypes in Cape Town, while remaining predominant in KwaZulu-

Natal. This is similar to other regions such as the Congo, Tanzania, Burundi, Kenya, China

and Brazil where subtype C is becoming predominant relative to existing subtypes (Soares

et al, 2003; Koch et al, 2001; Rodenburg et al, 2001; Brindeiro et al, 1999; Gao et al,

1998; Yu et al, 1998; Janessens and Nkengasong, 1997). Although subtype B has been

repeatedly introduced in different parts of the world, it doesn't seem to take off in the

same manner as subtype C. Differences in host genetics, socio-economic factors, presence

of other pathogens, as wells as differences in tropism and replicative capacity could

account for the different outcomes.

Taken together, these findings suggest the diversity and distribution of HIV-1 subtypes in

South Africa has changed since the beginning of the local epidemic 22 years ago. Major

changes relate to the increasing prevalence of multiple subtypes, and the rapid ongoing
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spread of subtype C viruses. Evidence of multiple co-circulating subtypes in the Western

Cape emphasizes the need to carefully monitor for the emergence of recombinants. A

number of studies have suggested that subtypes A and C may be more fit in vitro, and

possibly in vivo, at the population level, but the evidence is far from conclusive

(Velazques-Campoy et al, 2001; Velazques-Campoy et al, 2002; Arts et al, 2001; Ball et

al, 2003). For example, the study by Ball et al (2003) found that while subtypes B and C

displayed equal fitness in Langerhans cells, subtype B was more fit in T-cells and

macrophages. They suggest that subtype C was less fit following initial infection and this

could lead to slower disease progression (Ball et al, 2003). This slower disease progression

could in turn allow for an increased time for transmission (Quinones-Mateu et al, 2000).

Continued, ongoing studies such as those described in this thesis, detailing the genetic

changes in subtype C in different population groups over time may shed some light on this

complex issue. Studies will be most informative if conducted in a geographic region where

multiple subtypes co-exist concurrently. This will allow for better comparisons with the

least number of variables. The comparison of the Western Cape versus KwaZulu-Natal is

an ideal situation.
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Chapter 6

Emergence and Patterns of Resistance in HIV-1 subtype C
Isolates from Treated Patients in KZN, South Africa



6 Introduction

The introduction of HAART for the treatment of HIV-1 has greatly reduced the morbidity

and mortality associated with this disease (Palella et al, 1998). However, these benefits

have mainly been felt in developed countries such as North America and Europe.

Subtype C is one of the most prevalent subtypes worldwide and is especially common in

sub-Saharan Africa where the prevalence is estimated to be up to 36% (UNAIDS/WHO:

Report, 2000). However, most data on the response of HIV-1 to ARV therapy has been

from studies using subtype B. These studies have shown that in previously untreated

individuals with drug-susceptible HIV-1 strains, combinations of three or more drugs from

two drug classes can lead to prolonged virus suppression and immunological

reconstitution (Richman, 1994). However, the drug-induced emergence of resistance

mutations can impact on the patient's current and future therapeutic options. The risk of

developing resistance is dependent on the level of residual viral replication, the ease of

acquisition of a particular mutation, and how this impacts on drug susceptibility and virus

fitness (Shafer et al, 2000).

There is a paucity of data relating to non-B subtypes and ARV therapy (subtype C in

particular), largely because these viruses are prevalent in resource poor settings, where

there is little or no access to ARV therapy (Shafer et al, 1997). Initial reports have shown

that non-B subtypes are as susceptible as wild-type subtype B isolates to ARVs and that

the drugs are safe and effective when applied to C infections (Pillay et al, 2002b; Frater et

al, 2001; Shafer 1997). Drug susceptibility testing, using a recombinant phenotypic assay,

has suggested that C viruses may be hypersensitive to Lopinavir (Gonzales et al, 2003).

However, the efficacy of ARV therapy for the treatment of subtype C, in an African

context (where opportunistic infections and malnutrition are rife), is unproven. Also, drug

resistance may evolve differently in people infected with subtype C (Pillay et al, 2002b).

There is increasing evidence that some HIV subtypes may follow different distinct

pathways during the development of resistance, although many key resistance mutations

occur in both non-B and B subtypes which are exposed to antiretroviral drugs (Palmer et

al, 2001; Weidle et al, 2001). Studies from Israel and other African countries have shown

that some naturally-occurring polymorphisms in subtype C viruses occur at sites known to

cause drug resistance in subtype B (Grossman et al, 2001). Other studies have described

natural polymorphisms in the pol gene of C viruses that may lead to a more rapid

emergence of resistance to NRTIs and NNRTIs, and a reduced in vitro responsiveness to

PIs (Loveday et al, 2002; Perno et al, 2001). Therefore, there remains the possibility that

subtype-specific resistance patterns may emerge in patients failing therapy and that this
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may have an impact on the rate or level of drug resistance (Loemba 2002; Kantor et al,

2003). Key PI-associated mutations such as D3ON and L9OM are significantly less

common in subtype C versus subtype B virus following treatment, as are some RT-

associated mutations including D67N, K103N and T215Y (Grossman et al, 2001; Cane et

al, 2004).

In Chapter 3, we described the naturally-occurring polymorphisms and resistance

mutations in a representative subset of pre-treatment adult and paediatric patients from

KwaZulu-Natal. In this chapter, we investigate the emergence and pattern of resistance in

vivo in patients infected with subtype C. At the time, ARV drugs were not freely available

in South Africa, except in a few controlled studies and in the private sector. We were

fortunate enough to have access to some of these studies that included cohorts from HIV-1

patients co-infected with TB and Karposi Sarcoma (KS) and mothers and babies that

participated in a pMTCT study in the Hlabisa district of Northern Natal. Although the

numbers are small, these studies provide valuable information on the emergence and

pattern of resistance in C-viruses and the interpretation and clinical significance of ARV

resistance in the context of a rapidly expanding subtype C epidemic.
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6.1 Resistance patterns in patients on concomitant TB/HAART and HAART alone

6.1.1 Introduction

The use of ARV drugs in South Africa has mostly been limited to the prevention of MTCT

(Rollins et al, 2002; Morris et al, 2001) and to patients treated in private-practice. There is

a paucity of published reports on the response of South African patients treated with

HAART. In addition, there is limited data on the concomitant administration of HAART

and TB treatment in subtype C infected patients. TB is also one of the world's major

pandemics, and as is the case with HIV, the brunt of the pandemic falls on sub-Saharan

Africa (Grange and Zumla, 2002). Despite efforts to control the spread of TB in this area,

it continues to be a problem, most likely because of the high HIV prevalence. It has

therefore been suggested that strategies to control both TB and HIV simultaneously need

to be developed. However, the application of HIV-1 treatment during TB treatment is a

controversial issue, as many physicians prefer to delay HAART in patients presenting with

TB because of pill burden, drug/drug interactions and toxicity (Mukadi et al, 2001; Dean

et al, 2002).

Little is known about evolution of subtype C in the presence of antiretroviral drugs and the

impact this will have on response to therapy. Further to that, the implications for second-

line and salvage therapy choices are yet to be established. In this section, we present

results on the emergence of resistance in patients failing therapy from two separate

treatment studies conducted in South Africa. One was conducted in the informal

settlement of Khayalitsha, Cape Town, in collaboration with clinicians called the Mêdecin

San Frontiere (MSF), where 287 treatment naive adults were followed for a median

duration of 13.9 months after starting therapy of two NRTIs and one NNRTI. We

investigated the first 50 treated patients to reach study end. The other was a pilot study

(called the START study) conducted in Durban, KZN on patients dually infected with TB

and HIV-1, where concomitant TB/HAART was prescribed.

6.1.2 Selection of patients and samples

Plasma samples were collected from 26 HIV-1/TB co-infected patients at baseline and at

monthly intervals after commencement of concomitant TB and HIV-1 ARV therapy.

Seven patients defaulted and of the 19 remaining patients, sequences were obtained from

16 patients at baseline and at monthly intervals for the two patients failing therapy

(START 4 and 11). In addition, we obtained plasma samples from three of five patients

failing ARV therapy from the MSF study.
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6.1.3 Patient treatment history

The patients on TB/HAART received single daily doses of Rifampicin (600 mg), 3TC,

ddI and EFV until study end (6 months after starting treatment). The MSF patients were

started on a standard regimen of AZT, 3TC and NVP, but two of the patients (MSFCK and

MSFED) changed treatment due to a combination of virologic failure, adverse events

and/or intolerance. Patient MSFCK stopped therapy at 9 months due to an adverse event,

as well as virologic failure. Treatment was recommenced one month later with ddI, d4T

and NFV. At 13 months, the NFV had to be changed (to EFV) when the patient developed

extra-pulmonary TB. Patient MSFED had two short stops and restarted shortly after

commencing treatment, due to AZT intolerance, and had to switch to d4T (before 3

months). All three MSF patients had a clinical history of prior TB (were on cotrimoxizole

before and during treatment) and were late stage (stage 3 or 4) AIDS patients. Sequences

were obtained from three time points after commencement of therapy for each of the

patients.

6.1.4 Methods

6.1.4.1 Viral load assays

Plasma was isolated from EDTA blood tubes by spinning at 1000 rpm for 10 minutes. After

separation, plasma was stored in 1.0m1 aliquots at —80 °C until RNA isolation. RNA was

extracted using a guanidinium-silica method (Nuclisens Isolation Kit from BioMerieux Inc.,

formerly Organon Teknika) and an automated extractor (BioMerieux) with no modifications

to the protocol. Refer to the 9.0m1 lysis buffer protocol in the Nuclisens Isolation Kit package

insert. After isolations, HIV-1 RNA levels were measured using the Nuclisens HIV-1 QT

Amplification and Detection kit, also with no modifications to the protocol. As 1.0m1 of

plasma was used for all viral load determination, the lower limit of detection was 40-50 copies

per ml; the highest was >5000 000 copies per ml. Reproducibility and accuracy of the viral

load assay was assessed every six months through participation in the VQA quality assurance

panel.

6.1.4.2 Determination of CD4+ and CD8+ T-cell Subsets

T-cell counts and percentages were determined using a murine monoclonal antibody cocktail

of anti-human CD45, CD3, CD4 and CD8 antibodies (TetraOne, Beckman Coulter). Ten

microlitres of the antibody cocktail were added to 100 ul of patients' peripheral blood

collected in an EDTA container. After ten minutes of incubation, the sample was placed in the

TQ-Prep (Beckman Coulter) in order to lyse the red blood cells and fix the leukocytes.
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Absolute counts and percentages were determined using a single platform protocol and 100 ul

of Flow Count Beads (Beckman Coulter) on the Epics XL-MCL flow cytometer (Beckman

Coulter). The CD4+ and CD8+ cell count protocol was designed based on the manufacturer's

specifications for TetraOne (Beckman Coulter) analysis. The initial voltages were set using an

unstained sample and then a sample with known CD45, CD3, CD4 and CD8 counts and

percentages. Colour compensation was conducted to prevent over-estimations in cell counts

and percentages by eliminating fluorescent emission overlap from analysis. The

reproducibility and accuracy of the T-cell counts were also assessed every three months

through participation in the UK NEQUAS quality control panel.

6.1.4.3 Resistance genotyping

Resistance genotyping was performed using the Viroseq kit (Abbott Diagnostics). Briefly,

HIV-1 RNA was extracted from plasma using the Sample Prep module from the Viroseq

kit, according to the manufacturers protocol. The RNA was reverse transcribed with

Moloney murine leukemia virus reverse transcriptase. A 1.8-kb fragment containing the

protease (amino acids 1 to 99) and reverse transcriptase (amino acids 1 to 335) regions

was then amplified in a 40-cycle PCR with Amplitaq Gold DNA polymerase and

AmpErase dUTP/uracil-N-glycosidase to minimize the risk of cross-contamination. PCR

products were visually quantified by agarose gel electrophoresis. Following purification,

the products were sequenced with six of the seven kit primers (primer D was not used) and

Big-Dye terminator reagents and run on a 3100 genetic analyzer (Applied Biosystems).

Sequences were assembled, translated, and analyzed for the presence of amino acid

polymorphisms. A report was generated for each sequence, with mixtures of wild-type and

mutant bases being classified as mutant.

6.1.4.4 Sequence analysis

Sequences were analysed as described in Chapter 2. Briefly, sequences were subtyped by

phylogenetic analysis using PAUP* and an appropriate model of evolution. Sequences

were analysed for positive selection using the codeml program of the PAML software

package (Rambaut, 2000). An individual amino acid was considered to be positively

selected if the dnlds ratio was significantly greater than 1.0. The most recent common

ancestors were reconstructed using the baseml option of the PAML software package and

codon models selected by the LRT method. Reconstructed ancestral sequences were saved

and used to construct a Maximum-likelihood tree with all sequences available for each

patient and other subtype C sequences obtained from GenBank (Rambaut, 2000; Yang,
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2000; Yang et al, 2000). The tree was rooted with a homologous region from the HXB2

reference strain. Sequences were screened for the presence of biologically important sites

using Prosite, a database of protein families and domains.

6.1.4.5 Prediction of tertiary and secondary structure

RT nucleotide sequences were translated and submitted to Swiss-Model, a site for 3D

homology modelling of protein structure (http://www.expasy.org/swissmod/SWISS-

MODEL.html), to determine the impact of novel, positively selected sites on the structure

of the RT enzyme Models were visualised with Deep View Swiss-pdbViewer, an interface

allowing the analysis of several proteins at the same time (Guex and Peitsch, 1997).

Secondary structure was predicted using the PhD software program via the Predict protein

server (http ://www. embl-heidelberg.de/predictprotein/predictprotein.htme

Prediction of secondary structures is a step towards the prediction of the three-dimensional

structure of a protein by providing a rough estimate of structural features, and with at least

one known homologue available, the PhD method has an expected overall accuracy of

71.4% for proteins (Rost et al, 1994).

6.1.5 Results

6.1.5.1 Mutations associated with resistance to RT inhibitors

Patients failing therapy displayed a variety of drug resistance mutations (Figure 17). In

START 4, the V106M, Y181C and K219N mutations were detected from one month after

starting treatment and were the only amino acids detected at those positions. The L74V,

K101E and M184V mutations occurred as quasispecies with the wildtype from two

months after starting treatment, but by the fourth month, they were the only amino acids

detected at those positions. For START 11, we did not detect any resistance mutations

until the second month and these mutations (K65R, V106M and G190A) were the only

amino acids detected at those positions. Patient MSFCK displayed the M184V and G190A

mutations at the first time point, with the addition of T215F in the second. The third time

point showed the addition of the K103N, and the loss of the M184V mutations. This

corresponded with a change to d4T, ddI and EFV. Patient MSFED had the D67N, M184V

and G190S mutations in the first two time points. The third time point showed the

accumulation of the mutations associated with multi nucleoside RT inhibitor (NRTI)

resistance (F116Y and Q151M) in addition to the D67N, M184V and G190S mutations.

Patient MSFSD did not have any resistance mutations in the first time point, but acquired

the K103N and M184V mutations in the second and then losing the M184V again in the
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third. Figure 17 shows the pattern of emerging primary drug resistance in these five

individual patients in relationship to changes in CD4 T-cell counts and plasma viral load.

6.1.5.2 Frequency of polymorphisms before and after treatment

Figure 18a illustrates the frequency of polymorphisms in the RT, before and after

treatment for the five patients. Primary resistance mutations were only found after

treatment, with the M 184V as the highest frequency. Polymorphisms not previously

associated with resistance that were detected only after treatment included: K21I, K32N,

K49R, V90I, I135M, E203K, K281R and K311Q. Other polymorphisms increased (V36A)

or decreased (R123G/S and R277K) in frequency. Although patients were on different

drug regimens, this graph highlights the development of polymorphisms in response to

ARV treatment.

6.1.5.3 Correlation of mutations with alterations in functional properties of RT.

A few differences were observed at sites important for function between drug naïve and

those failing treatment. At least three treatment induced genetic changes would be

expected to have a significant impact on the functional properties. The first of these was

the loss of the cAMP, cGMP dependant PK site at RT 102 to 105, and the gain of a

myristoylation site at RT 99 to 104 and a N-glycosylation site at RT 105 to 106 due to the

K103N mutation. This is consistent with results from our previous study (Gordon et al,

2003). Another difference was the loss of a MSFCK M7 site at RT 215 to 218 caused by a

T215F mutation in the second and third time points from patient MSFCK. A third

difference noted involved the TKP site at position 174-181 in RT, which spans the active

site of the RT enzyme. This region was highly conserved in our retrospective subtype B

and D sequences (data not shown), but variable in C. Loss of the site is caused either by

the loss of a K or Rat RT 173 or 174, the loss of a D or Eat RT 177, or the loss of a Y at

RT 181. There was no consistent pattern seen in those isolates that lost this TKP site.

Lastly, a PKC site at RT 123 to125 was found in 10/16 (62.5%) of the START baselines,

which is a great increase compared to our previous study of around 25% (Gordon et al,

2003). This was not found in the MSF isolates, or our retrospective B and D isolates.

6.1.5.4 Positively selected sites in the RT

We analysed the selection pressure exerted on the treated isolates in different subgroups:

START 4 and 11 samples together; START 4 and START 11 separately; all the MSF
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Figure 17. Longitudinal analysis showing the changes in resistance patterns, viral load and CD4+
counts in five patients who developed drug resistance during the first 8 to 15 months of therapy. These
patients were: START 4 (a), START11 (b), and MSFCK (c), MSFED (d) and MSFSD (e)

samples together as well as separately (Table 18). As expected, codons under strong

positive selection pressure were at sites known to cause primary (confers resistance on

their own) or secondary (confers resistance when occurring with other mutations) drug

resistance in subtype B. These were: RT 65, 74, 101, 106, 181, 184, 190, 219 and 334.

Interestingly, other codons under positive selection in the START 4 and 11 subgroup

included codon 123 which codes for a PKC phosphorylation site in 62.5% of the baselines

and in START 11 before and after treatment. Also, codons 173 and 174 were both under

positive selection in the START treated samples and foim part of a TKP site with codon

181. This TKP site is found in 6/16 (37.5%) of the START baselines (including START 4,

but not START 11). This site is lost in START 4 due to the Y181C mutation. The 123,

173 and 174 codons were not under positive selection when START 4 and START 11

were analysed separately.

In START 11, eight mutations caused amino acid change and all were positively selected.

Three of the eight (K65R, V106M and G190A) were at sites associated with resistance in

sub-B, while mutations at codons 274, 275, 278, 281 and 292 were at sites not previously

associated with drug resistance. There were interesting changes observed at these

positions, namely, at codon 274, there is a change from V to I in months 2 to 7, but

changes at codons 275, 278 and 281 occur at months one and two, but revert to the .
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baseline sequence from month 3 to month seven. If one takes the ancestral sequences into

account, it appears that the mutations at codons 275 and 278 (present in the ancestral

sequence) were lost during viral evolution, but regained during therapy (as a result of drug

selection pressure) and was lost again, probably because the original sequence had more of

a fitness advantage. I292V was only present at month four, which could possibly correlate

with a rapid increase in viral load to 240 000 after it had come down to 9200. In START4,

11 mutations resulted in amino acid change. All of those at positions associated with drug

resistance were also positively selected, as well as V21I, V202I, E203K and E207A that

were positively selected sites, but not previously associated with resistance. V211 and

E203K are detected from month two onwards, and could be compensatory mutations in

response to the L74V, K101E and M184V drug resistance mutations. In a similar fashion

to the mutations seen in START 4, V2021 and E207A occur from months one to four and

then revert back to the baseline sequence in month six. When the START 4 and 11

baseline samples were removed from their respective subgroups, there were no longer any

codons under positive selection, suggesting that the resistance mutations had become fixed

very early on.

The MSF samples had fewer codons under positive selection, with eight in the RT. These

included codons 103, 151, 184, 190 and 215, also codons known to cause drug resistance

to RT inhibitors. Novel codons included RT 135, RT 162 and RT 177. In patient MSFED,

seven sites were positively selected, six of these at positions associated with drug

resistance. Codon 123 was the only site not previously associated with drug resistance. In

patient MSFCK, four of the 13 mutations that resulted in amino acid change were at sites

associated with drug resistance (103, 184, 190 and 215) and were positively selected. Of

the remaining nine amino acids, five (102, 113, 123, 135 and 196) were also positively

selected. Finally, for patient MSFSD, three mutations resulted in amino acid change

(K103N, 1135M and M184V).

6.1.5.5 Subtyping and Phylogenetic analysis

All START and MSF isolates were classified as subtype C. All isolates from each patient

clustered together and were supported by bootstrap values above 90%. As can be seen

from the phylogenetic tree (Figure 18b), the branch lengths for the START 4 and 11 time

points were very short, indicating a rapid evolutionary rate. This could be interpreted as a

rapid evolution to their resistant genotype, followed by very little genetic evolution

subsequently. This could also be seen, but to a lesser extent, for the MSF samples.
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Table 18. Positively selected sites in the PR and RT (excluding primary resistance mutations). Samples
were analysed together (START baselines and START 4 and 11) and individually.

START baseline START 4 and 11 START 4 START 11 MSF ED CK

PR 12

14 14 14

15

19 19

20 20 20

35 35

61

63 63 63

RT 6

21 21

48

102

113

122

123 123 123 123

135 135

142 142

162 162

173 173

174 174

177

178

196 196

202 202

203 203

207 207 207

211

214

232 232

245

272

274 274

275 275

277

278 278 278

281 281

286 286

292 292

311 311

334 334 334 334

335

36

39

60
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Figure 18b. Subtype C specific Maximum-likelihood tree of all available START and MSF sequences
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and Zimbabwe (ZM). The tree was rooted with HXB2.
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6.1.5.7 Changes in predicted tertiary and secondary structure

Primary resistance mutations are either associated with excision of the incorporated

ddNTP (eg T215Y), improved discrimination between the NRTI and the natural dNTPs

(eg K65R) or changes in conformation of the dNTP-binding pocket (eg K103N) (Parkin et

al, 2003; Lennerstrand et al, 2001; Van Laethem et al, 2000). Accessory mutations that

compensate for any loss of fitness caused by the drug-induced resistance mutations are

usually involved in stabilizing the 3D structure (Courcambeck et al, 2000). 3D homology

models generated using Swiss-model (Figure 19) show changes in structure over time at

codons that are under strong positive selection, as well as changes at site associated with

primary resistance for START 11 (Figure 19a), START 4 (Figure 19b), MSFCK (Figure

19c), MSFED (Figure 19d), MSFSD (Figure 19e). Of note was the K65R mutation,

located in the "fingers" domain of RT that caused a marked change in the orientation of

that side chain in START 11 from month 2 onwards (Figure 19a). Some positively

selected sites in START 4 were at external residues (RT 21, 202, 203, 207 and 311) and

probably served to stabilize RT (Figure 19b). Changes at codon 102, which lies in the

palm domain of HIV-1 RT and is very close to the NNRTI binding sites, is noted at the

same time as the acquisition of the K103N mutation in MSFMSFCK_M14 (Figure 19c).

The close proximity of codons 116 and 151 are shown in Figure 19d. Mutations at these

positions occurred in MSFED, causing multi NRTI resistance. The position of codon 67

near the opening of the binding groove suggests a possible interaction with the template

primer complex (Figure 19d). The I to M mutation at codon 135 in MSFSD appeared to be

linked to the appearance, and subsequent disappearance, of the M184V mutation (Figure

19e).

6.1.6 Discussion

Antiretroviral therapy can prolong the lives and improve the health of patients with HIV-1

infection. However, the emergence of mutations that cause resistance to ARV drugs can

li mit the efficacy of ARV treatment regimens. These mutations are often in complex

patterns and the interpretation of these genotypic changes and their clinical implication

presents a challenge (Shafer et al, 2000; VanDamme, 2001). To compound that, there is a

paucity of data available on the efficacy of ARV drugs and the emergence of drug

resistance among non-B subtypes, particularly subtype C. Recent reports suggest that

subtype C will respond equally as well as subtype B to therapy, but that the impact of

signature subtype C sequences on therapy needs to be further investigated (Kantor et al,

2003; Grossman et al, 2001; Loemba et al, 2002).
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Figure 19a. The predicted tertiary structures for STARTII. Sidechains are coloured as follows: RT 65
(blue); 106 (bright green); 181 (red); 190 (orange); 274 (yellow); 275 (pink); 278 (purple); 281
(burgundy); 292 (dark green); 334 (turquoise). The Lysine at RT65 occurs in the "fingers" domain of
RT and usually comes into contact with the template-primer complex during normal RT activity. The
change to an Arginine at month 2 causes a marked change in the orientation of the side chain. The
changes that occur at the positively selected sites are more complex and are located mainly in the
"thumb" domain of the RT. At months 1 and 2, it appears that the side chain at RT281 curls upward,
with a corresponding downward movement of RT275. The normal orientation is resumed from month
3. The V to I mutation at RT274 from month 2 onwards does not appear to have a dramatic impact on
the RT structure.
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Month 6

71

Figure 19b.The predicted tertiary structures for START4. Sidechains are coloured as followes: RT
21 (dusky pink); 74 (sky blue); 101 (teal); 106 (bright green); 181 (red); 190 (orange); 184 (dark
blue); 202 (blue); 203 (green); 207 (brown); 232 (turquoise); 219 (black); 311 (burnt orange).
Mutations at RT202, 203 and 207 were positively selected. Although very closely situated to each
other, RT203 is more external than the other two residues. Other positively selected residues, RT
311 and RT21 are also situated on the surface of the RT enzyme. Mutations at these locations
probably serve to stabilize the enzyme.
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Baseline

Figure 19c.The predicted tertiary structures for MSFCK. Sidechains are coloured as followes: RT 102
(dark green); 103 (pink); 113 (light blue); 123 (bright blue); 135 (grey); 184 (dark blue); 190 (orange);
196 (bright pink); 215 (cream). Changes in conformation for condons 196, 135 and 123 all occur from
MSFCK_M6 onwards. Codon 102 lies in the palm domain of HIV-1 RT and is very close to the
NNRTI binding sites, and its change in conformation is noted at the same time as the acquisition of the
K103N mutation in MSFCK_M14.
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Month 12

Figure 19d. The predicted tertiary structures for MSFED. Sidechains are coloured as followes: RT 67
(dusky pink); 101 (teal); 123 (bright blue); 184 (dark blue); 190 (orange); 116 (grey-green); 151 (pink);
334 (lime). Perhaps most important is the close association between codons 116 and 151 in
MSFED_M12, which causes multi NRTI resistance. Codon 67 is situated near the opening of the
binding groove and is in a good position to interact with template primer complex.
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Month 6

Figure 19e.The predicted tertiary structures for MSFSD. The only change in MSFSD occur at codons
103 (pink), 135 (grey-green) and 184 (dark blue). Codon 135 appears to change from an I to M in
association with the M184V mutation and reverts back to the wild type in conjunction with the
reversion to wildtype at codon 184.
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START4_BL
10 20 30 40 50 60 70 80 90 100

PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALTAICEEMEKEGKISKIGPENPYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIP
HPAGL

PHD_Sec ....... EEE ............ HHHHHHHHHHHHHHHH .EE EEEEEE ...... EHHHHHHHHHHHHHHHH ..........

START4_Ml
PHD_Sec ...... EEEE ............ HHHHHHHHHHHHHHHH . SE EEEEEE ..... EEHHHHHHHHIPH.HH.H

START4_M2 I V

PHD_sec ...... EEEE ............ HHHHHHHHHHHHHHHH.. .EE ...... EEEEEE ...... EHHHHHHHHHHHHHHHHH .........

START4_M3 I V

PHD_sec ...... EEEE ............ HHHHHHHHHHHHHHHH. 	E EEEEEE ...... EHHHHHHHHHHHHHHHH ..........

START4_M4 I V

PHD_sec ...... EEEE ............ H.H.H.HHHPH.H.H. E EEEEEE ....... EHHHHHHHHHHHHHHHH ...........

START4_M6 I... V

PHD_sec ...... EEEE ............ HHHHHHHHHHHHHHHH 	E EEEEEE ...... EHHHHHHHHHHHHHHHH ..........

START11_BL PISPIDTVPVKLKPGMDGPKVKQWPLTEEKIKALTAICEEMEKEGKITKIGPENPYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL

PHD_sec ....... EEE ............ HHHHHHHHHHHHHHHH.. . EE ...... EEEEEE ...... EHHHHHHHHHHHHHHHH ..........

START1121 .......................
PHD_sec ....... EEE ............ H.W1HHHHHHHHHHHH . EE EEEEEE ...... EHHHHHHHHHHHHHHHHH .........

Startll_M2 R

PHD_sec ....... EEE ............ HPHHHHHHHHHHHHHF 	E EEEEEE ..... HHHHHHHHHHHHHHHHHHH .........

START11213 R

PHD_sec ....... EEE ............ H.HHHHHHHHHHHHHH 	E EEEEEE HHHHHHHHHHHHHHHHHHH

START11_144 R

PHD_sec ....... EEE ............ HI- HHHHHHHHHHHHHH 	E EEEEEE 1 HHHHHHHHHHHHHHHHFH

START11_M5 12

PHD_sec ....... EEE ............ HuHHHHHHHHHHHHHH 	E EEEEEE IFIHHHHHHHHHHHHHHHull

MSKCK_BL PISPIETVPVKLKPGMDGPKVKQWPLTBEKIKALTEICDEMEKEGKITKIGPDNPYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL

PHD_sec ....... EEE ............ HHHHHHHHHHHHHHHH.. .EE ...... EEEEEE EHHHHHHHHHHHHHHHHH .........

MSECK_M6 G R

PHD_sec ....... EEE ............ HHH.HHHHH.HHHHHH EE EEEEEE ...... EHHHHHHHHHHHHHHHHH ..........

MSFCK_M7 N G 12 I

PHD sec ....... EEE ............ H.HHHHHHHHHHHHHH. .EE EEEEEE HHHHHHHHH.HHH.HHI.H

MSECK214 N G 12

PHD_sec ...... EEEE ............ HHHHHHHHHHHHHHHH. .EE ...... EEEEEE ...... EHHHHHHHHHHHHHHHH ..........

MSFED_BL PT SP IS VPVKLKPGMDGP KQWPLTEEKIKALTEICESMSKEGKITKIGPENPYNTPVFAIKKKDSTKWRKLFSELNTQDFWEVQLGI PNPAGL

PHD_sec ....... EEE ............ HHHHHHHHHHHHHHHH... EE ...... EEEEEE ....... EHHHHHHHHHHHHHHHHH ..........

MSFED_M6 N

PHD_sec ....... EEE ............ HHHHHHHHHHHHHHHP .EE EEEEEE ..... HHHHHHHHHHHHHHHHHHH .........

MSFED_M7 N

PHD_sec ....... EEE ............ HHHHHHHHHHHHHHHH.. .EE ...... EEEEE HHHHHHHHHHHHHHHHH—H

MSFED_M13 N

PHD_sec ....... EEE ............ H.H"HHHHHHHHHHHE .EE EEEEEE ..... HHHHHHHHHHHHHHHHHHH..........

MSFSD_M6 PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALTAICEEMEKEGKITKIGPENPYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL

PHD_Sec ....... EEE ............ HHHHHHHHHHHHHHHF .EE EEEEEE H.HHHHHHHHHHHHHH.H

MSFSD_M10
PHD_Sec ....... EEE ............ II HFHHHHHHHHHHHH. .EE EEEEEE ...... EHHHHHHHHHFHHHHHH ..........

MSFSD_M12
PHD sec ....... EEE ............ HHHHHHHHHHHHHHHH.. .EE ...... EEEEEE ...... EHHHHHHHHHHHHHHHP...........

START4_BL
110 120 130 140 150 160 170 180 190 200

KKKKSVTVLDVGDAYFSVPLDKDFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPERTKNPEIVIYQYMDDLYVGSDLEIGQHRA

PHD_sec .... EEEEE ... EE ....... EEEEE ......... EEEEEE ..... HHHHHHHHHHHHHHHH....EEEEEEE....E ...... HHHHH

START4_M1 M C

PHD_sec .... EEEEE ... EE ....... EEEEE ......... EEEEEE ..... HHHHHHHHHHHHHHHHH...EEEEEEE....E ......HHHHH

START422 F M C V

PHD_sec .... EEEEE ... EE ....... EEEEE ......... EEEEEE ..... HHHHHHHHHHHHHHHH....EEEEEEE....E ...... HHHHH

START4273 F M C V

PHD_sec .... EEEEE ... EE ....... EEEEE ......... EEEEEE ......... HHHHHHHHHHHHHHHH....EEEEEEE....E ...... HHHHH

START424 E 	M C V

PHD_sec .... EEEEE ... EE ....... EEEEE ........ EEEEEE ..... HPHHHHHHHHHHHHHH....EEEEEEE....E ...... HHHHH

START426 R 	M C V

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHH. .EEEEEE 	E 	HHHHH

START11_BL KKKKSVTVLDVGDAYFSVPLDESFRKYTAFTIPSINNETPGVRYQYNVLPQGWKGSPAIFQSSMTKILEPFRAQNPEIVIYQYMDDLYVGSDLEIGQHRA
PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHHH. .EEEEEE ........... HHHHH

START11211 V 
PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... H-HHHHHHHHHHHHHHH. .EEEEEE HHHHH

START1122 M A

PHD_sec ....EEEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHH.HHHH .EEEEEE ........... HHHHH

START1123 M A

PHD_sec ....EEEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHH. ...EEEEEE HHHHH

START11_M4 M A

PHD_sec ....EEEEEE .. EE ....... EEEEE ........ EEEEEE ..... H.HHHHHHHHHHHHHHH. .EEEEEE IFIHHH

START1125 M A

PHD_sec ....EEEEEE .. EE ....... EEEEE ........ EEEEEE ..... H.HHHHHHHHHHHHHv EEEEEE ........... HHHHH

MSECK_BL KKKKSVTVLDVGDAYFSVPLDEGFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQHSMTKILEPFRAQNPGIVIYQYMDDLYVGSDLEIEQHRA

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHH . EEEEEE HHHHHH

MSECK_M6 M V A G

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHH. .EEEEEE uHHHHH

MSECK_M7 M V A G

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHH. EEEEEE HHHHH

MUCK_M14 .QN ......... M G

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHFHHHHHHHHHHHH EEEEEE HHHHH

MSFED_BL KKKKSVTVLDVGDAYFSVPLDESFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRAQNPNIVIYQYMDDLYVGSDLEIGQHRA

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... IFHHHHHHHHHHHHHHH. .EEEEEE HHHHH

MSFed_M6 0 ......................... G V S

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHH.M. EEEEEE HHHHH

MSFED_M7 Q .................................. G V S

PHD_sec ....EEEEEE .. EE ....... EEEEE ........ EEEEEE ..... H , HHHHHHHHHHHHHH. .EEEEEE ........... HHHHH

MSFED212 Q ........... Y G M S

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHHH. . EEEEEE H4HHH

MSFSD_M6 KKKKSVTVLDVGDAYFSVPLDEGFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRAQNPEIVIYQYMDDLYVGSDLEIGQHRA
PHD_sec ....EEEEEE .. ES ....... EEEEE ........ EEEEEE ..... HHHHHHHHHHHHHHHHH. .EEEEEE HHHHH

MSFSD_M10 N M V

PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... H—HHHHHHHHHHHHHH. .EEEEEEE HvHHH

MSFSD_M12 N 
PHD_sec .... EEEEE .. EE ....... EEEEE ........ EEEEEE ..... friHHHHHHHHHHRHHHH. .EEEEEE HYHPH
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START4_HL
210 220 230 240 250 260 270 280 290 300

KVEELREHLLKWGETTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVNDIQKLVGKLNWASQIYPGIKVKQLCKLLRGVKALTDIVPLTE
EAE

PHD_sec HHHHHHHHHH EEEEEEE EEE ......... HHHHHHHHH. HHHHHHHH ............ HHHHHHHF.......................... E..HHHHH

START4_M1 .I 	A N H

PHD_sec HHHHHHHH.H”H EEEEEEE EEE ......... .HHHHHHHH.HHHHHHHH HHHHHHHH ............... HHHHH. HHHHH

START4_M2 .IK 	A N 

PHD_sec HHHHHHHHHHHH ............ EEEEEEE ...... EEE ........ PHHHHH.HH.HHHHHHHH HHHHHHHH .................. HHHH.HHHHH

START4_M3 .I 	A N 
PHD_sec HHHHHHHHHHHH EEEEEEE  .......EEE ........ HHHHHHHHH.HHHH.H.H HHHHH.HH HHHHH

START4244 .I N 
PHD_sec HHHHHHHHHHHH ............ EEEEEEE  .......EEE ........ HHHHHHHHH. HHHHHHHH .. . HHHHHHHH HHHHH

START4_M6 K N 
PHD_sec HHHHHHHH7HH ..................................... EEEE.EE EEE ........ HHHHHHHHH.HHHHHHH HHHHHHHH HHHHH

START11_BL KIEELREHLLKWGFTTPDKKBQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVNDIQKLVGKLNWASQIYPGVQVKNLCKLLRGAKALTDIVPLTEEAE

PHD_sec HHHHHHHHHH”H EEEE.EE E HHHHHHHHH.HHHHHHHH HHHHHHHH	E 	HHHHH

START11_M1 K H R

PHD_sec HHHHHHHHHHHH ............... EEEE.EE E HHHHHHHHHH. HHHHHHHH .... HHHHHHH —............................. HHHH..HHHHH

START11_M2 IK 	H R 

PHD_sec HHHHHHHHHHHH EEEEEEE E H.HHH4HHH4 HH.HHHHH H.HHH.HHH HHHP H.HRH

START11_M3 I

PHD_sec HHHHHHHHHHHH ........... EEEEEEE E HHHHHHHHHH.HHHHHHHH H.HHHHHHH ............ HHHH. .HHHHH

START11_M4 I V

PHD_sec HHHHHHHHHHHH ............... EEEEEEE E HPHHHHHHHH .H.HHHHH HHH.HHHIMI E HHHHH

START11215 I

PHD_sec HHFH.H.HHH.H EEEEEEE E HHHHHHHHHH.HHHHHHHH ............ HHHHHHHHH ..... HHHH..HHHHH

MSFCK_M7 KIEELREHLLKWGETTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVNDIQKLVGKLNWASQIYPGIKVKQLCKLLRGAKALTDIVPLTEEAE

PHD_sec HHHHHHHHHHHH ........... EEEE. EE HH.HHHHHH HHHHHHHH  HHHHHHHH E HHH.H

MSFCK_M6
PHD_sec HHHHHHHH.HHH EEEE EE E H.H.HHHHHH HHHH.H.H ............ HHHHH.HHI 1 HH. HHHH

MSFCK_M7 F 
PHD_sec HHHHHHHHHHHH ........... EEEEEEE E HHHHHHHHHH. HHHHHHHH 1- HHHHHHFH HHHH..HHHHH

MSFCK_M14 F.........
PHD_sec HHHHHHHHHHHH EEEE.EE E H.HHHHHHHH.HHHHHHHH HPHHHHHFH HHHE..HHHHH

MSFED_BL KIEELREHLLKWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVNDIQKLVGKLNWASQIYAGIKVKQLCKLLRGAKALTDIVPLTERAE

PHD_sec HHHHHHHHHiHR EEEEEEE E .H.HHHHHH.HHHHHHHH HHHHHHHH E HHHHH

MSFED_M6
PHD_sec rill.H"H.HHHT EEEE. EH E HH.HHHPHF .HHH.HHH HHH.HHH. 	E 	HHH.H

MSFED_M7
PHD_sec HHHHHH.H—H.H EEEEEEE E -HHHHHHHH. HHHHHHHH HHHHHHHHH ........ E...HHHH

MSFED_M12
PHD_sec HHHHHHHHHHHH EEEE EE E .HHH.HHHH HHHHFHPH HHHHHHHH .........E.. HHHHH

MSFSD_M6 KIFELREHLLKWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVNDIQKLVGKLNWASQIYPGIKVRQLCKLLRGAKALTDIVPLTEEAE

PHD_sec HHHHHHHHHHHH .................................. EEEE.EE E HHHHHHHHH.HHHHHHH................. HHHMHHHH 	E HHHHH

MSFSD_M10
PHD_sec HHHHHHHHHHHH EEEE.EE E HHHHHHHHH.HHHHHHHH . . . ..HHHHHHHH . E..HHHHH

MSFSD_M12
PHD sec HHHHHHHHHHHH .................................. EEEE.EE E FHHHHHHHH.HHHHHHHH . . . ..HHHHHHHH....................  .. E..HHHHH

310 320 330 335

START4M1 LELAENREILKEPVHGVYYDPSKDLIAEIQKQGND
PHD_sec HHHHHHHHHHHHHH ...................... HHHHHHHHHH...

START4_Ml
PHD_sec HHHHHHHHHHHH,,  ... .HhHHHHHHH...

START422
PHD_sec HHHHHHHHHHHHH ......................... HHHHHHHHHH...

START4_M3
PHD_sec HHHHHHHHHHHHH ......................... HHHHHHHHHH...

START4_M4
PHD_sec HHHHHHHHHHHHH.. EE ............ HHHHHHHHHH...

START4_M6
PHD_sec HHHHHHHHHHHHHH ...................... HHHHHHHHHH...

START11_BL LELAENREILKEPVHGVYYDPSKDLIAEIQKQGND
PHD_sec HHHHHHHHHHHHH. . EE —HHHHHHHHH...

START1l_Ml
PHD_sec HHHHHHHHHHHHH.. EE .. HHHHHHHHH...

START11_M2
PHD_sec HHHHHHHHHHHHH..EE ..... HHHHHHHHHH...
START1l_M3
PHD_sec HHHHHHHHHHHHH HHHHHHHHHH...
START1l_M4
PHD_sec HHHHHHHHHHHH — 	HHHHHHHHHH...

START11_M5
PHD_sec HHHHHHHHHHHHH ......... HHHHHHHHHH...

MSFCK_M7 LELAENREILKEPVHGVYYDPSKELIAEIQKQGDD
PHD_sec HHHHHHHHHHHHH...E ..... HHHHHHHHHH...

MSECK_M6
PHD_sec HHHHHHHHHHHHH ............................FHHHHHHHHH...

MSFCK_M7
PHD_sec HHHHHHHHHHHHH. EE .. HHHHHHHHH...

MSFCK_M14
PHD_sec HHHHHHHHHHHHH ......... HHHHHHHHHH...

MSFED_HL LELAENRE ILKEPVHGVYYDPSKDLIAE IQKQGLD
PHD_sec HHHHHHHHHHHHH .EE .... PHMHHHHHHH...

MSFed_M6 A 

PHD_sec HHHHHHHHHHHHH.. EE .... HHHHHHHHHH...

MSFED_M7 A 

PHD sec HHHHHHHHHHHHH..EE 'HHHHHHHHH...

MSFED_M12 A 
PHD_sec HHHHHHHHHHHH. . EE PHHHFHHHHH...

MSFSD_M6 LELAENREILKEPVHGVYYDPSKDLIAEIQKQGDD
PHD_sec HHFHHHHHHHHHH..EE ............. HHHHHHHHHH...

MSFSD_M10
PHD_sec HHHHHHHHHHHHH.. EE ............ HHHHHHHHHH...

MSFSD_M12
PHD sec HHHHHHHHHHHHH. . EE ............ HHHHHHHHHH...
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Figure 20. Comparison of the predicted secondary structures for the 5 patients. Beta sheets are
represented by an "E" and helixes are represented by an "H". The time points are given after the
sample name and an underscore (eg START11_M1 represents the structure for the month one sample.
K65R and D67N appear to cause lengthening of the helix in START11 and MSFED respectively. The
V901 mutation in MSFCK_M7 appears to have the same effect. L74V does not appear to change the
secondary structure in that region. The secondary structure at RT101-200 appeared to be conserved,
with only slight variability at RT189, but this could be an artifact of the software. The length of the
helix at RT 290-300 appeared to be very variable, but the pattern was not consistent, nor was it
directly related to a mutation in that region. A predicted sheet was conserved at RT315-316 in
MSFED and MSFSD, but was variable in the other isolates. Resistance mutations generally did not
occur in sheets or helices, except the following mutations: K65R (sheet), L74V (helix), V106M (sheet),
Y181C and M184V (sheet).

This is one of the few reports from South Africa on the response of subtype C to HAART

outside of the prevention of mother to child transmission trials, and these preliminary

results augur well for the use of RT inhibitors in the treatment of subtype C. Overall the

patients responded well to treatment with an accumulative figure of 7/69 patients failing to

achieve suppression of viral replication up to 13 months after starting treatment. These

data not only increase the information on the response of C viruses to treatment, but also

increases the information on the concurrent use of TB and HIV treatment.

Generally, the resistance mutations seen in our isolates were consistent with those seen in

subtype B, with the exception of the V106M mutation seen in the two patients on EFV.

This mutation has recently been accepted as signature mutation in subtype C patients

treated with EFV (Brenner et al, 2003). The V106M (GTG to ATG) mutation is said to

confer high-level multi non-nucleoside RT inhibitors (NNRTI) resistance, while the

V106A (GTA to GCA) mutation, which occurs more commonly in subtype B isolates,

only causes NVP resistance without any cross-resistance to the other NNRTIs. The rapid

development of EFV resistance in these patients is consistent with sub optimal treatment

that most likely occurred as a result of non-adherence and to a lesser extent, drug/drug

interactions of the TB drugs and EFV. Because EFV is one of the drugs of choice in

resource poor settings, (it is inexpensive and easily administered as a single daily dose), its

use in these settings needs to be closely monitored.

With the exception of START 11, which had already acquired its resistance mutations at

the second month and did not alter after that time point, the patients displayed a

progressive accumulation of mutations. Multi NRTI resistance was only found in one of

the patients (MSFED), who developed mutations at Q151M and F116Y. The Q151M

complex confers the ability of RT to discriminate between an analogue and its natural

counterpart (Deval et al, 2002). It has been suggested that multi NRTI resistance via
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Q151M is more common in non-B subtypes (Kantor et al, 2003). All the MSF samples had

developed the M184V mutation, which confers 3TC resistance. This is common, as the

M814V is usually the first mutation to appear due to its low genetic barrier. However, this

mutation was lost again in 2 of the 3 patients by the third time point. It has been observed

that the M184V mutation disappears as rapidly as it appears once the drug selection

pressure exerted by the 3TC is removed (Van Laethem, personal communication). This

correlates with the change in treatment of MSFCK, but not in MSFSD. Also, the M184V

mutation did not appear in START11 at all. Therefore, an alternate explanation could be

proposed, since the M184V mutation occurs in the highly conserved YMDD motive of the

active site of RT and it is possible that the loss of fitness caused by this mutation is not

well tolerated by subtype C viruses. In these 2 patients, it appeared that the K103N

mutation emerged as M184V disappeared. However, as we only performed population

sequencing and did not clone any of our isolates, we cannot rule out the possibility that the

M184V mutation was still present in a minority population. Perhaps it could be said that

subtype C viruses do not use the preferred pathways that are seen in the development of

subtype B resistance, e.g. the use of the alternate D67N pathway for AZT resistance as

seen in patient MSFED.

The drug resistance mutations in the START patients became fixed as early as one month

after starting treatment, with very little evolution in subsequent time points. This correlates

well with our results on selection pressure which show that these mutations were

positively selected for very early on, followed by strong purifying selection at subsequent

time points (i.e. a reluctance to change from the resistant genotype).

The amino acids under positive selection in RT included codons that are known to cause

drug resistance to RT inhibitors in subtype B, as well as other polymorphisms that have

not been associated with drug resistance (e.g. RT 21, 202, 203, 207 and 232 in START 4

and RT 274, 275, 277, 280, and 291 in START 11).

Most of the resistance mutations, such as K65R, K103N, M184V, G190A/S have been

reported to cause decreased replication capacity in subtype B isolates (Bloor et al, 2003;

White et al, 2002; Huang et al, 2003), while compensatory mutations are usually involved

in stabilizing the 3D structure (Wrobel et al, 1998; Courcambeck et al, 2000). It has been

suggested that some combinations of mutations give the virus a selective advantage in the

presence of various drug combinations (Shafer R et al, 2000; Sturmer et al, 2003;

Courcambeck et al, 2000), and therefore screening for positively selected codons could
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potentially be useful for identifying novel drug resistance mutations that are peculiar to

subtype C, or mutations that compensate for any lack of fitness caused by the resistance

mutations. One such mutation is RT 202 which is involved in the stabilization of the 3D

structure of RT (Wrobel et al, 1998) and could also be involved in the compensation of

any loss of fitness, in a similar way that the RT 208, RT 211 and RT 214 mutations

stabilize the 3D structure in response to the 215 resistance mutation (Sturmer et a, 2003).

Interestingly, mutations at 3 external residues (K101, K103 and V106) are involved in

drug resistance (Wrobel et al, 1998). Most of these external residues are hydrophilic, with

the exception of V 106, 1142 and 1195. V106 has a high variability although it is more

buried than the other external residues. In a paper by Kantor et al, (2002), RT 207 was

reported as a subtype C polymorphism that occurred more commonly in treated than in

untreated subtype B isolates and RT 203 was reported to be a treatment related mutation.

In the same paper, RT 174 was present at higher rates in treated persons infected with

subtype C, suggesting an association with drug resistance in this subtype (Kantor et al,

2002). RT 174, which is under positive selection in the START samples, forms part of a

TKP site with codon 181 (a drug resistance site) and is located in the region associated

with the template-primer complex interaction (Gonzales et al, 2001). Many of the

positions associated with NRTI drug resistance interact with the incoming dNTP or

template primer complex during strand synthesis. K65 and Q151 in RT form part of the

loop between the P2 and P3 strands in the fingers of HIV-1 and make contact with the

incoming dNTP, positioning it in the active site (Courcambeck 2002; Sturmer et al, 2003).

Changes in the geometry of the dNTP binding pocket are brought about by the direct

interaction of the altered residue with the incoming dNTP (Drosopoulos et al, 1998). Our

preliminary results on the structural interactions of novel, positively selected mutations

have shown a definite relationship between structural changes at those sites and the

development of resistance. These interactions are complex and requires much deeper

analysis.

Unfortunately, nearly all the patients developed multi NNRTI resistance, with only one

patient (MSFED) still able to use DLV. These patients would have to change to a PI

inclusive regimen, which is limited to RTV or Kaletra in those patients on TB/HAART. It

would be prudent to make TDF available in South Africa in the future, as it has a higher

genetic barrier and would be essential for patients that have limited therapeutic options.

In conclusion, treatment of HIV/AIDS in South Africa is just beginning, and these initial

results suggest that the response to ARVs will be the same as seen in Europe and North
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America. However, these patients should be closely monitored for viral rebound very early

on in treatment (i.e. follow up visits should be scheduled earlier than 6 months). With

therapeutic drug monitoring (TDM), one could monitor the drug levels in each patient, and

in this way ensure that sufficient levels are reached for optimal treatment. Also, until

more is learned about the phenotypic impact of these mutations on subtype C viruses, we

cannot rule out the possibility that C viruses can rapidly compensate for the loss of fitness

caused by resistance mutations, causing them to become fixed very early after starting

treatment.
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6.2 Characterization of Resistance Patterns in Mother-infant Pairs 6 Weeks After

Single Dose NVP

6.2.1. Introduction

It has been shown that administration of NVP to HIV-1-infected pregnant women at the

onset of delivery, and to the infant during the first 72 hours after birth, decreases

transmission of HIV-1 infection from mother-to-infant by nearly 50% (Becker-Pergola et

al, 2000; Eshleman et al, 2001a). This regimen is extremely cost-effective (approximately

$4 per mother-infant pair), making it the drug of choice to prevent MTCT in developing

countries (Saloojee, 2001). However, there are ongoing concerns about the development

of drug resistance and its potential impact on subsequent treatment. Resistance to NVP

after just a single dose is thought to develop because of the long half-life of the drug in the

body. Women receiving a single dose experienced an exposure of 1-2 weeks of active, but

diminishing concentrations of NVP, creating selection pressures similar to those

experienced during NNRTI monotherapy. Early studies have already demonstrated the

rapid emergence of drug-resistant virus during monotherapy with NVP (Havlir et al, 1996;

Richman et al, 1994). Mutations present as minor variants within the viral quasispecies are

selected for during therapy when other drugs are not present to completely and rapidly

suppress replication.

There have been reports stating that viruses carrying the NVP-resistant mutations are less

fit than wild-type viruses (Collins et al, 2004). Therefore, these viruses should be quickly

overgrown with wild-type virus in the absence of drug selection pressure. A recent study

by Kantor et al, (2003b) found that there appeared to be rapid reversion to wild type

occurring by eight and 24 weeks after receiving a single dose of NVP. However, there is

growing evidence that the K103N mutation can persist as a minor population of the viral

quasispecies for many years, which can very quickly re-emerge with the reintroduction of

drug selection pressure (Little et al, 2004; Mellors et al, 2004; Palmer et al, 2004). The

persistence of such mutations, even at undetectable levels, can influence future therapy

options. Current recommendations are that NVP should be made available to women

treated with NVP for the prevention of MTCT as a viable prophylactic agent during future

pregnancies as well as for future therapy (Wainberg, 2000).

There is little information on whether different HIV-1 subtypes develop resistance to NVP

at the same rate and as a result of the same mutations. Recent reports show that while the

pattern of resistance is the same in A and D subtypes, the rate of NVP resistance was

higher in subtype D isolates (Eshleman et al, 2004a). In a study by Kantor et al (2003b) in
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women with subtype C viruses, an alarming 75% of samples had resistance mutations at

two weeks after receiving NVP. This report has renewed the debate over the longer-term

consequences of NVP resistance in women receiving pMTCT prophylaxis, and could have

serious implications for policy in resource-poor settings, where single-dose NVP is

administered at delivery. In this study, the pattern of resistance mutations in both the

mothers and the infants, 6 weeks after receiving single dose NVP, was investigated. We

also used codon-based substitution models and maximum-likelihood methods to better

understand the role of pre-treatment polymorphisms on the emergence of NVP resistance,

and to assess the biological consequences of genotypic resistance, as defined by changes

in the phosphorylation and myristylation domains of the RT enzyme.

6.2.2 Methods

6.2.2.1 Sample Information

NVP resistance patterns were examined in 30 mother-infant pairs (including a set of twins)

infected with HIV-1 subtype C, who had participated in a pMTCT program. In this

program, women received 1 dose of oral NVP intra-partum (200 mg) and the newborn

received 1 dose as well (2 mg/kg) within 72 hours of birth. The baseline samples from 11

of the mothers were also analysed.

6.2.2.2 RNA Extraction, RTPCR and Resistance Genotyping

HIV-1 RNA was extracted from 6 week post-partum dried blood spots using the NASBA

system (Nuclisens Isolation Kit, Organon Teknika, Boxtel, NL), according to the kit

protocol. HIV-1 RNA was amplified and sequenced using the VirosegTM system (Applied

Biosystems) according to the manufacturer's protocol and as described in Chapter 3.2.4.

Sequences were analysed for resistance as described in Chapter 3.2.5.

6.2.2.3 Nucleic Acid Sequence Analysis

The codeml program of the PAML software package (Rambaut, 2000) was used to

identify prositively selected sites in 12 maternal baseline sequences and 30 mother and

infant 6 week samples. All sequences were screened for the presence of biologically

important sites using PROSITE, a database of protein families and domains. Mean inter-

and intra-patient genetic distances were measured using the Kimura 2-u parameter model

with a distance matrix implemented in the MEGA 2.0 package (Kumar et al, 2001).
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6.2.2.4 Subtyping and Phylogenetic Analysis

Subtyping was performed by phylogenetic tree analysis using PAUP* (Swofford, 1999),

as described in Chapter 2.1.3. The relationship between resistant and non-resistant mothers

and infants were investigated in using neighbour joining and maximum likelihood

methods and the GTR I+G evolutionary model that was selected using MODELTEST

3.0A (Posada and Crandall, 1998). The tree was rooted with a homologous region of the

consensus subtype C reference strain obtained from the Los Alamos database

(http://hiv.lanl.gov/content/hivdb/SUBTYPE  REF/align.html). Trees were viewed with

Treetool and Treeview.

6.2.3 Results

6.2.3.1 Resistance Associated Mutations

No primary resistance mutations to NNRTI or protease inhibitors were detected in any of

the pre-treatment (baseline) sequences. A single mother-infant pair was found to carry the

NRTI mutation, G333E, which facilitates dual resistance to AZT and 3TC when present in

association with M184V and standard AZT resistance mutations. Six week after the

administration of single dose NVP, 11 of 30 (37%) mothers had primary mutations

associated with NVP resistance. K103N was the most common mutation found alone

(63.6%), or in combination with Y188C (9.0%), Y181C and Y188C (9.0%), or V106M,

Y181C, Y188C and G 190A (9.0%). Of the 31 children tested (including a set of twins),

11 (35.5%) had primary resistance six weeks post-NVP. Among infants, Y181C was the

most frequent mutation, occurring alone (72.7%) or in combination with K103N (18.2%),

or V106M (9.0%) (Table 19).

Study No. Mutations Study No. Mutations
mZAl29 V106M, Y181C cZAl29 -
mZA133 K103N cZA133 Y181C
mZA134 K103N cZA134 Y181C
mZA135 K103N cZA135 V106M, Y181C
mZA136 K103N, VIO6M, Y181C, Y188C, G190A cZA136 K103N, Y181C
mZA137 - cZA137 YI81C
mZA140 K103N cZA140 K103N, Y181C
mZA145 G333E cZA145 G333E
mZA146 K103N, Y181C, Y188C cZA146 Y181C
mZA151 K103N cZA151 -
mZA152 K103N, Y188C cZA152 Y181C
mZA154 - c i ZA154

c2ZA154 Y181C
mZA155 K103N cZA155 Y181C
mZA157 K103N cZA157 Y181C

Table 19. Resistance mutations seen in the mothers and infants. The study numbers beginning with
"m" denotes the mother and those beginning with "c" denotes the infant. "c 2 " indicates one of the twin
pairs.
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6.2.3.2 Positively Selected Sites and Genetic Diversity

Sites that became positively selected in the mothers after single dose NVP treatment

included RT207 and RT272. Some sites were only positively selected in the non-resistant

samples (mothers and infants) including RT162, RT214 and RT286, while RT277 was

only positively selected in the mothers and not in the infants. RT123 and RT245 were the

only codons under positive selection in RT in the resistant infants (Table 20).

The nucleotide distances from the mother-child transmission pairs are shown in Table 21.

The mean inter-host diversity among maternal samples collected at baseline, and at 6

weeks post NVP, was 5.1% (±0.3) and 5.1% (±0.3), respectively. These distances are

comparable to those previously reported for HIV-1-infected adults in KwaZulu-Natal

(KZN), South Africa (4.9% ±0.27) (Gordon et al, 2003). The mean inter-host diversity

among neonatal samples collected at 6 weeks post-NVP was 5.5% (±0.3). Within host

variation between maternal samples collected at baseline and 6 weeks ranged from 0.1%

(±0.1) to 1.2% (10.3) (mean, 0.35% [±0.17]).

The overall mean genetic diversity between the mothers and infants was 5.1% ± 0.003.

The highest genetic diversity was seen between the resistant and non-resistant mothers

(5.7% ± 0.003) and between the resistant and non-resistant infants (5.6% ± 0.004).

From Figure 21, sequences from matched mother-infant pairs were more closely related to

each other than from sequences obtained from unrelated mothers and infants. There was

no clustering of samples that harboured resistant mutations. This was also the case in the

tree drawn with all 30 mother-infant pairs (Figure 22). A low genetic diversity

(represented by short branch lengths) in some of the mother's baseline and respective 6

week sample suggests that the strains circulating in the mother had undergone very little

genetic evolution between the baseline and 6 week sampling time. This was usually not

the case in the respective infant sample, which generally had longer branch lengths. These

observations were supported by the genetic distances estimated using MEGA (Table 21).

A possible explanation could be that the transmitted variants were either from another

compartment such as the vagina, or minor variants in the mothers. Unfortunately, because

there were only 3 sequences in total from each matched pair, not much more can be said

about the variants that were transmitted. More time points are needed to obtain better

resolution in the tree.

6.2.3.3 Analysis of Functional Changes using Prosite

Functional sites in the RT from baseline sequences of 11 mothers, as well as 6 week

samples from the mothers and infants were compared. Ten of the resistant mothers
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Table 20. Sites under positive selection in mothers and infants before and after single dose NVP.
RT207 and 272 were only positively selected in the mothers after single dose NVP, while RT277 was
only positively selected in the mothers and not in the infants. RT123 and 245 were the only codons
under positive selection in RT in the resistant infants and RT162, 214 and RT286 were only positively
selected in the non-resistant samples (mothers and infants).

Mothers Before NVP

(n=11)

Mothers After NVP (6wk) Infants After NVP (6wk)

Nonresistant (n=18) Resistant (n=12) Nonresistant (n=19) Resistant (n=12)

19

20 20 20 20

35 35 35 35
PR 60 60

61
63 63 63 63

64

20

35

40

102

123 123 123 123 123

162 162

166

173 173 173 173

178

207 207 207

211 211 211 211
RT

214 214 214

245 245 245 245 245

248

272 272 272
274

277 277 277

278

281

286 286 286

324

334 334 334 334

335 335

Table 21. Pairwise genetic distance between mother-infant pairs + the standard error
(SE), using the Kimura-2 parameter model as implemented in MEGA.

% Diversity ± SE

Intra-host Variation Distance between linked transmission pairs Inter-host Variation

Maternal evolution
(n=11)

0.35%(±0.17)

Mom-baseline
vs infant 6W

(n=42)

0.76%(±0.23)

Mom-6W
vs infant 6W

(n=61)

0.79%(±0.31)

Moms pre-
NVP

(n=11)

5.1%(±0.3)

Moms post-
NVP

(n=30)

5.1%(±0.3)

Infants post-
NVP

(n=31)

5.5%(±0.3)

Cohort
Variation

(n=87)

5.1%(±0.3)
n = number of sequences analyzed
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replaced a cAMP, cGMP protein kinase phosphorylation (PK) site with a myristoylation

and glycosylation site at positions 99-104 and 103-106, respectively (Figure 23). In turn,

all resistant infants harboured strains that lacked a tyrosine kinase phosphorylation (TKP)

motif (KNPEIVIY) immediately upstream from the polymerase active site, at codons 174

to 181. Viruses containing a Lysine (K) at codon 174 had a TKP site, while viruses

containing the 174Q substitution lacked this TKP site. Interestingly, this same

phosphorylation motif is also affected by the primary resistance mutation, Y181C, a

mutation which replaces the C-terminal tyrosine with a cytosine residue. Prior to NVP,

174K and 174Q substitutions were present at approximately equal frequencies, 55.6% and

44.4%, respectively. Post-NVP, the frequency of 174Q increased to a level of 83.3%

among mothers and infants who developed K103N and (or) Y181C resistance mutations.

Among women and children who did not develop resistance, the 174Q allele was detected

in only 31.6% and 44.4% of cases, respectively.
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Figure 21. Neighbour-joining tree of sequences derived from a subset of 11 matched mother-infant
pairs. Maternal sequences obtained at baselines and 6 weeks post delivery are denoted by the prefixes
"b" and "m" respectively. The infant sequences obtained at 6 weeks, are labelled with the prefix "c".
The time from delivery (in weeks) is noted after the letter "p", with negative values representing
baseline samples taken before delivery. Bootstrap re-sampling values of >90% are represented by an
(*). As expected, sequences from matched mother-infant pairs were more closely related to each other,
than from sequences obtained from unrelated mothers and infants.
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Figure 23. Comparison of functional sites in selected mothers' baseline samples (a); non-resistant
mothers (b) vs resistant mothers (c); and non-resistant infants (d) vs resistant infants (e). The K103N
mutation resulted in the loss of a cAMP, cGMP dependant protein kinase phosphorylation site at
codons 102 to 105 in RT. This was replaced with a myristoylation site at codons 99 to104 and a
glycosylation site at codons 103 to 106. All resistant infants lacked a tyrosine kinase phosphorylation
site at codons 174 to 181, near the RT active site.
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6.2.4 Discussion

The HIVNET006 and 012 trials account for the majority of the research done on the use of

NVP in the prevention of mother to child transmission in developing countries. In these

studies, NVP resistance was detected at 6-8 weeks post-partum in approximately 20% of

the women who had received NVP as part of their pMTCT program (Musoke et al, 1999;

Eshleman et al, 2001b; Eshleman et al, 2002). These results are mainly from subtype A

and D viruses. More recent reports from Kantor et al (2003b) have shown an even higher

rate of resistance mutations in subtype C infected mothers, with 75% at two weeks and

34% at 6 weeks post partum. This is consistent with the data presented here, where 40% of

the mothers and infants tested harboured resistance mutations at six weeks after receiving

NVP.

Prior to the introduction of NVP, extensive polymorphism was observed at several amino

acid positions associated with maintaining the tertiary structure and facilitating

conformational changes in the RT enzyme. Of particular interest for this study, was the

identification of four highly variable residues that could accommodate from three to seven

different amino acid substitutions at each position. Some of the most common naturally-

occurring polymorphisms at these positions, relative to subtype B, were D123G/S,

K173A/T/I, Q207E/D and V245E/K, changes which altered the charge of the subtype C

RT enzyme. Analysis using codon-based ML substitutions models, indicated that all of

these polymorphic sites were under positive selection pressure. There was a strong

correlation between the development of resistance and the presence of specific amino

acids at positions 173, 207 and 211, in close proximity to the polymerise active site

(YMDD), and at several more distal codons, located at positions 123 and 286. Of

considerable intrigue, was the finding that variation at position 173 was often linked to

changes in the adjacent amino acid at position 174.

In the HIVNET studies, K103N was the most common mutation seen in the mothers and

the Y181C mutation was most commonly seen in the infants, which is also consistent with

the findings in this chapter. These mutations (K103N and Y181C) occur at positions that

introduce or alter putative myristoylation and phosphorylation sites in the RT. Of note, the

K103N mutation results in a change from a cAMP, cGMP dependant PK phosphorylation

site to a myristoylation and N-glycosylation site. Not much is known about the role of this

myristoylation site in RT, although they usually play a role in transportation of Gag and

GagPol virus particles to the cell membrane, as well as the increased expression of IL2, a

T-cell activator. The most common resistant mutation seen in the infants, Y181C, was

linked to the absence of a TKP site in that position. The presence of a Lysine (K) or
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Glutamine (Q) at position 174 influenced the presence or absence of the TKP site,

respectively. While K174Q substitutions were present at approximately equal frequencies

in isolates prior to NVP, the frequency of 174Q increased to a level of 83.3% among

mothers and infants who developed K103N and (or) Y181C resistance mutations. It could

be possible that the dual combination of 174Q and Y181C, may make it more difficult to

re-instate this TKP site following the clearance of NVP. This 174Q/181C combination

occurred in 81.8% of children and 36.4% of mothers with primary resistance to NVP.

Phosphorylation modulates the activity of many proteins that interact with nucleic acids

including DNA and RNA polymerases (Idriss et al, 1999).

In the wildtype RT enzyme, 2 beta sheets form a hydrophobic pocket where NVP binds,

blocking further polymerization (Zhang et al, 1996). The NVP makes contact with the side

chain of the residues of Tyrosine 181 and 188 in the p66 subunit (Spence et al 1995). The

Y181C mutation induces conformational change, and consequently decreases the drug

binding affinity. Surprisingly, the amino acid at 181 is internal in the RT protein, and

therefore would not necessarily play a role in phosphorylation. However, reports of

reduced incorporation and high efficiency of phosphorylytic removal of d4T in isolates

with the Y181C mutation certainly suggests a role in the biochemical polymerization

reaction of RT. Differences in myristoylation and phosphorylation sites have been noted

between subtypes (De Oliveira et al, 2004). However, the impact of these changes remains

to be established.

One of the key questions is whether resistance was transmitted from mother to infant, or

whether the resistance developed independently in the infant. Phylogenetic analysis of 12

mother-infant pairs for which the baseline sequences were available, showed longer

branch lengths and greater genetic diversity in most of the infant sequences. Also,

resistance was only detected in one of the twin infants and in two mother-infant pairs,

resistance was only detected in the infant and not in the mother. This, coupled with the

predominance of the Y181C as opposed to the K103N mutation in the infant, supports the

independent evolution of resistance in the infant. The studies by Eshleman et al (2004b)

and Kantor et al (2003b) report a change in the prevalence of mutations over time, with the

Y181C mutations appearing earlier (7 days to 2 weeks) and the K103N mutation later (6-8

weeks). They attribute this difference to a difference in NVP susceptibility and fitness of

HIV-1 with these mutations. Therefore, there is a possibility that the burst of viral

replication after primary infection in the baby preferentially selects for the Y181C

mutation (Krivine et al, 1997). Of course one cannot rule out the possibility that a resistant

minor maternal variant could have been transmitted to the infant via the breastmilk.
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Transmission by breastfeeding is estimated at 0.5-2% per month (Lee et al, 2003). There

have been recent reports of breastmilk shedding of HIV-1 virus in Zimbabwean patients,

with up to 65% of samples tested harbouring resistant virus. In these cases, however, the

K103N mutation was the most frequent mutation in the breastmilk and one would assume

that this mutation would then be more frequent in the infants as well (Lee et al, 2003).

In the studies by Eshleman et al (2001b and 2004b), as well as Kantor et al (2003b), the

K103N and Y181C mutations went to undetectable levels in the plasma over time.

However, these resistance mutations may still be archived as proviral DNA. Therefore, the

critical issue would be whether there are longer-term consequences of briefly selecting out

these resistant viruses, such as compromising future treatment efficacy. Some theorise that

i f NVP was reintroduction at delivery during a second pregnancy, mutants were only

likely to reappear after delivery. This coupled with a low rate of resistance, such as that

seen in North America (11% to 20%) would be a negligible risk when compared to the

benefit of the use of NVP. Unfortunately, it appears that the situation is not the same for

subtype C infected mothers, where the rate of resistance mutations is higher. As subtype C

is found predominantly in resource-poor settings where NNRTIs would be included in a

first-line treatment regimen, the consequences of the development of resistance after a

single dose of NVP needs to be carefully considered. These findings, together with data

from other studies, reinforce the view that although NVP is effective, affordable and

simple to administer, the search for safer regimens to prevent MTCT should be intensified.

At the very least, use of NVP for prevention of MTCT needs to be optimised.
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6.3 Development of ARV Drug Resistance in Plasma and Peripheral Blood

Mononuclear Cells (PBMCs) in KS Patients

6.3.1 Introduction

Potent combination ARV therapy can reduce plasma HIV levels to below the limit of

detection for up to two years or more (Gulick et al, 2000). However, it has been shown

that HIV-1 persists in cells and tissues long after HAART has suppressed plasma HIV-1

RNA levels below 50 copies per ml (Wong et al, 1997; Chun et al, 1998). The problem is

that ongoing viral replication is often accompanied by the acquisition of resistance

mutations (Gunthard et al, 1999; Zhang et al, 1999). Several studies have shown that

mutations can develop separately in the different cellular reservoirs (Blankson et al, 2002;

Gunthard et al, 2001; Eron et al, 1998). Resistant viruses with mutations different to those

seen in the blood have been isolated from the brain, vagina and male genital tract (Solas et

al, 2003; Eron et al, 1998). Strain et al (2003) have reported that the emergence of drug

resistant variants was delayed in the PBMC DNA, indicating that only a small minority of

PBMC are productively infected, despite high levels of viral replication in lymphoid

tissue. However, once viral variants that are able to replicate for a certain period enter the

latent reservoir, they remain archived for a very long period (Verhofstede et al, 2004).

This has serious implications for long-term treatment efficacy.

Kaposi's sarcoma (KS) is usually found in HIV-1 positive patients with late stage disease.

KS is a cancer-like disease that usually shows up as spots on the skin (lesions) that look

red or purple on white skin, and bluish, brownish or black on dark skin. It is also seen in

the linings of the mouth, nose, or eye, but can also spread to the lungs, liver, stomach and

intestines, and lymph nodes. Between 1988 and 1996, the incidence of KS in South Africa

rose at least threefold and continues to increase as the HIV epidemic grows (Sitas et al,

2001). In many people, HAART can stop the growth or even clear up skin lesions. In

addition to HAART, KS treatments include freezing with liquid nitrogen, radiation,

surgery and chemotherapy. In this study, the resistance patterns in HIV-1 positive patients

presenting with KS and treated with HAART and chemotherapy or HAART alone are

investigated, with particular attention to the difference in viral populations present in the

plasma and the PBMCs.

6.3.2 Methods

6.3.2.1 Sample information

Venous samples were obtained at enrolment (baseline), day 1, 3, 7, 14, 28, month 3 and

month 6, from HIV-1 positive patients with Karposi Sarcoma attending the dermatology
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clinic at King Edward VIII Hospital, Durban, South Africa. In total, 20 patients were

enrolled in an ARV program to treat KS patients and were given AZT, 3TC and EFV,

either in combination with chemotherapy or HAART alone. Buffy coat and cell free

plasma were separated by centrifugation. PBMCs were isolated from the buffy coat by

Ficoll-Histopaque separation according to the manufacturers protocol. PBMCs were

counted and stored as dry pellets at approximately 1X10 6 cells per aliquot. Plasma and

PBMCs were stored at —80°C until used. Resistance genotyping was performed

prospectively on samples showing viral rebound. Earlier time-points from those patients

were sequenced retrospectively.

6.3.2.2 RNA Extraction, RTPCR and Resistance Genotyping

Samples were tested for viral load and CD4+ counts as described in Chapter 3.2.2. HIV-1

RNA was extracted, amplified by RTPCR and sequenced using the VirosegTM system

(Applied Biosystems) according to the manufacturer's protocol and as described in

Chapter 3.2.4. Sequences were analysed for resistance as described in Chapter 3.2.8.

6.3.2.3 Subtyping and Phylogenetic Analysis

Subtyping was performed by phylogenetic tree analysis using PAUP* Swofford, 1999), as

described in Chapter 2.1.3. Briefly, sequences were compared to subtype reference strains

in the Los Alamos subtype database (http://hiv-web.lanl.gov/content/hiv-

db/SUBTYPE REF/align.html). Following degapping with the degapped option in

PAUP*, phylogenetic trees were generated on a Linux computer with the F84 model of

substitution and the neighbor-joining method (version 4.0b2a) of PAUP* (Swofford,

1999). Trees were rooted with a homologous region of HIV-1 group 0 (OCM_MP5180).

The subtype C and B sequences were examined separately in trees rooted with a subtype C

and B reference strain, respectively. Trees were viewed with Treetool and Treeview.

6.3.3 Results

6.3.3.1 Comparison of Resistance Mutations in Plasma and PBMCs

Four patients showed signs of increase in plasma viral load and were genotyped, two were

from the HAART/Chemotherapy arm (KAR05 and KARI 1), and two were on HAART

alone (KAR01 and KAR09). The plasma and PBMC viral load for the four patients were

compared and these results are shown in Figure 24. KAR01 and KAR05 were tested for

resistance at month 6. KAR01 developed the V108I, Y181C and M184V mutations and

KAR05 developed the K103N and Y188C mutations. KAR09 and KAR11 were tested at
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month 3, with KAR09 showing the V1061 and Y181C mutations. No drug resistance

mutations were detected in KAR11. Sequences from the plasma and PBMC samples

obtained at 6 months were compared for both KAR01 and KAR05. No resistance

mutations were found in the PBMC sample for KAR01. For KAR05, the PBMC sequence

developed the V106M mutation in addition to the mutations found in the plasma.

6.3.3.2 Evolution of Resistance

Analysis of the baseline plasma samples from these patients showed that KAR09 had

already harboured the resistance mutations before starting the treatment. The other patients

did not display any resistance mutations at baseline.

Although no resistance mutations were detected in the PBMCs of KAR01, there were

differences identified between plasma and PBMC sequences at codons 32, 53, and 169 in

the RT (Figure 25). The V32I mutation was seen in the month 6 plasma sample and a

V32K mutation in the PBMC sample from the same time point. An E53D mutation was

only seen in the month 6 plasma sample and a D169E mutation was only found in the

PBMC sample. The E219D and K300E mutations were in both the plasma and PBMC

month-6 samples.

For KAR05, an additional plasma sample was sequenced from Day28. No resistance

mutations were detected at this time point. Polymorphisms at RT 36, 72, 128, 158 and 277

were only fount in the Day28 sample. Differences at sites not related to resistance were

also seen between the plasma and PBMC samples, namely at codons 207, 281 and 292.

The Q207V and K281R mutations were seen only in the month 6 plasma sample and the

I292L mutation was only seen in the PBMC sample. Overall, there did not appear to be a

pattern of an accumulation of mutations in either of the resistant isolates.

We also examined additional plasma and PBMCs sequences at baseline and Day3 for

KAR11, the patient that did not appear to develop resistance. In this patient, 16

polymorphisms were seen in the RT region, all of which were in the month 3 plasma

sample. The amino acid sequence was very conserved in the other time points.

Finally, additional sequences were obtained at Day3 and Day28 for KAR09.

Polymorphisms were seen at 5 sites in the RT region, 58, 215, 245, 326 and 334. The

T215A mutation was seen in the Day3 plasma sample, but was not seen again at later time

points. Also, the E334D mutation was seen in the Day3 PBMC sample and was not seen at

later time points. V245E was seen in the Day28 plasma sample, but was also not seen at

month 3. T58P and I326L were only seen in the month 3 sample. Again, there did not

appear to be an accumulation of mutations over time.
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KFUR01
KARO1D4p1a 1 PISPIETVPVKLKPGMDGPKVKQWPLTEEKIVALTEICKEMEKEGKITKIGPENPYNTPIFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL
KARO1M6p1a 1 	I D
KARO1M6pe1 1

KARO1D4p1a 101 KKKKSVTVLDVGDAYFSVPLDESFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILDPFRAKNPDIVIYQYMDDLYVGSDLEIGQHRA
KARO1M6p1a 101 	I C  V................
KARO1M6pe1 101 ...................................................................................................

KARO1D4pla 201 KIEELREHLLAWGLTTPEKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVNDIQKLVGKLNWASQIYSGIKVROLCKLLRGAKALTDIVTLTEEAK
KARO1M6pla 201 	D 	E
KARO1M6pe1 201 	D 	E

KARO1D4pla 301 LELAETREIL
KARO1M6pla 301 .........
KARO1M6pe1 301 .........

RA1105
KARO5DOpla 1 PISPIETVPVQLKPGMDGPKVKQWPLTEEKIKALTEICEEMEKEGKITKIGPENPYNTPIFAIKKKDGTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL

A 

KARO5DOpla 101 KKKKSVTVLDVGDAYFSVPLYEGFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTRILEPFRAQNPDIVIYQYMDDLYVGSDLEIGQHRA
KARO5D28p1a 101 	A T 
KARO5M6p1a 101 	N C
KARO5M6pe1 101 	N M C 

KARO5DOpla 201 KIEELRQHLLKWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVNDIQKLVGKLNWASQIYPGIKVRQLCKLIRGVKALTDIVPLTEEAE
KARO5D28p1a 201 K 
KARO5M6p1a 201 	V R 
KARO5M6pe1 201 L 

KAR05D0p1a 301 LELAENREILKEPVHGVYYDPSKDLIAEIQKQGDD
KARO5D28p1a 301 ..................................
KARO5M6pOa 301 ..................................
KARO5M6pe1 301 ...................

KAR11
KAR11DOp1a 1 PISPIETIPVKLKPGMDGPKVKQWPLTEEKIKALTAICEEMEKEGKITKIGPENPYNTPVFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL
KAR11DOpe1 1
KAR11D3p1a 1
KAR11D3pe1 1
KAR011M3p1a 1 	V Q D I 

KAR11DOpla 101 KKKKSVTVLDVGDAYFSVPLDEGFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTRILEPFRAQNPEIVIYQYMDDLYVGSDLEIGQHRA
KAR11DOpe1 101 ...................................................................................................
KAR11D3p1a 101 ...................................................................................................
KAR11D3pe1 101 ...................................................................................................
KAR011M3p1a 101 Y V K K

KAR11DOp1a 201 KIEELREHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWSVNDIQKLVGKLNWASQIYPGIKVRQLCKLLRGAKALTDIVPLTEEAE

KAR11D0pe1 201 ...................................................................................................
KAR11D3p1a 201 ...................................................................................................
KAR11D3pe1 201 ...................................................................................................
KARO11M3pOa 201 K H N T K V

KAR11DOp1a 301 LELAENREILKEPVHGVYYDPSKDLIAEIQKQGNE
KAR11DOpe1 301 ..................................
KAR11D3p1a 301 ..................................
KAR11D3pe1 301 ..................................
KAR011M3p1a 301 ................................ QG

EAR09
KAR9DOp1a 1 PISPIETVPVKLKPGMDGPKVKQWPLTEEKINALIEICTEMEKEGKISKIGPENPYNTPVFAIKKKDGTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGL
KARO9D3p1a 1
KARO9D3pe1 1
KARO9D28pOa 1
KARO9M3p1a 1

KAR9DOpla
KARO9D3pOa
KARO9D3pe1
KARO9D28p1a
KARO9M3p1a

101 KKKKSVTVLDVGDAYKSVPLDKEFRKYTAFTIPSTNNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRKQNPEIVI YMDDLYVGSDLEIGQHRT
101 ...................................................................................................
101 ...............................................................................
101 ...............................................................................
101 ...................................................................................................

KAR9DOpla 201 KIEELRQHLLQWGFTTPDKKYQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVNDIQKLVGKLNWASQIYAGIKVKQLCKLLKGTKALTEVVPLTEEAE

KARO9D3p1a 201 A
KARO9D3pe1 201 ...................................................................................................
KARO9D28p1a 201 ...................................................................................................
KARO9M3p1a 201 ...................................................................................................

KAR9DOpla 301 LELAENRE ILKEPVHGVYYDPSKDLIAELQKQGEG
KARO9D3pOa 301 ..................................
KARO9D3pe1 301 ..................................
KARO9D28pOa 301 ..................................
KARO9M3p1a 301 1
Figure 25. Comparison of RT sequences in the plasma and PBMCs for all patients. Resistance
mutations are shaded in yellow.

KARO5D28pOa 1
KARO5M6pOa 1
KARO5M6pe1 1
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  KARO9D3pel
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Figure 26. Neighbour-joining tree of the resistant isolates and subtype reference strains. Bootstrap
values >90% are represented by a "*". KAR09 isolates clearly clustered with the subtype B reference
strains, while KAR01, KAR05 and KAR11 fell within the subtype C cluster. As expected, sequences
from each isolate clustered together.

*
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6.3.3.3 Subtyping and Phylogenetic Analysis

Three of the four patients were infected with subtype C strains (KAROL KAR05 and

KAR11) and one with subtype B (KAR09) (Figure 26). Figure 27 shows the relationship

between the patient isolates (plasma and PBMC) obtained from different time points.

KAR09 showed very little genetic evolution between the different time points,

characterised by very short branch lengths. The PBMC sequence was dispersed within the

sequences obtained from the different plasma time points. KAR01 and KAR05 also did

not show any clustering of plasma or PBMC sequences. Interestingly, there did appear to

be some separation of plasma and PBMC sequences of the earlier isolates from KAR11.

6.3.4 Discussion

During HIV infection, virus may persist as latent reservoirs, where virus replication is

restricted, but there is also the potential to rekindle productive viral infection when

treatment is interrupted (Neuman et al, 1999; Davey et al, 1999). It may also persist at

sites with low drug penetration, where there is ongoing viral replication. This replication

may then lead to drug resistance in those cells or tissues (Gunthard et al, 2001). In this

study, the development of resistance in plasma and PBMCs was investigated in patients

failing therapy, using sequential samples with detectable viral load. Resistant virus was

detected in three patients, two were classified as subtype C and the third as subtype B.

Resistance was not related to the presence or absence of chemotherapy in the treatment

regimen. In the two patients infected with subtype C, resistance was detected in the

PBMCs of only one of the two, with the pattern of resistance different in the plasma and

the PBMCs. Interestingly, the PBMCs had a greater number of resistance-associated

mutations. However, the isolates were not cloned, and some mutations may have been

missed by population sequencing. Future work will include cloning all isolates (plasma

and PBMC), as well as tissue biopsies, so that the evolution of resistance in these patients

can be more fully elucidated.

Although PBMCs have the potential to harbour a small latent reservoir of infectious virus

under HAART, the baseline plasma sample from KAR05 did not appear to have

resistance, so it is unlikely that the PBMCs were initially infected with resistant virus

(Zhang et al, 1999). It has been shown that the PBMCs can be dynamically replenished

during ongoing viral replication (Gunthard et al, 2001). Therefore, it is more likely that the

PBMCs were seeded with resistant virus from another reservoir or compartment,

potentially the macrophages or KS lesion. KS is known to stimulate the HIV-1 trans-

activating regulatory gene (tat), which in turn activates transcription of the HIV-1 provirus
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Figure 27(a) An HXB2 rooted neighbour-joining tree using sequences from all the KAR09 (subtype B)
available time points (represented by purple squares and circles). There was no clustering of PBMCs
or plasma sequences, with very little genetic diversity between the sequences obtained for this patient.
(b) Neighbour-joining tree using sequences from all the time points available for KAR01 (blue),
KAR05 (red) and KARI 1 (green) (subtype C isolates). The tree was rooted with a subtype C consensus
sequence. Coloured squares represent plasma sequences and coloured circles represent PBMC
sequences.
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(Vogel et al, 1998). The PBMCs do not usually contribute to the majority of rebounding

virus in the plasma and an alternate reservoir could possibly be contributing to the

resistance seen in the plasma, particularly since one of the resistant patients did not have

detectable resistance mutations in the PBMCs. Unfortunately there were no other

sequences available from earlier time points for the PBMCs or from the KS lesions for

comparison. The difference in the evolution of resistance in the two subtype C infected

patients could also suggest that host-specific factors are also contributing to the evolution

of the virus in vivo, as has been shown by Anastassopoulou et al (2003).

Interestingly, no resistance was found in the plasma or PBMCs of KARL 1. This increase

in viremia could have been related to a burst of residual viral replication in that patient

(Gunthard et al, 1999; Havlir et al, 2000). Of course, it is possible that a minor resistant

population exists in this patient, which was missed by population-based sequencing. The

patient infected with subtype B had detectable NNRTI resistance mutations at baseline.

This highlights the importance of performing routine resistance testing at baseline. Also,

this also highlights the problem that resistance mutations can develop in the PBMCs and

once they are archived, they remain a concern for the efficacy of future therapy in those

patients.
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6.4 Surveillance of ARV Drug Resistance in a HIV Clinic in KZN, South Africa

6.4.1 Introduction

Antiretroviral therapy can prolong the lives and improve the health of patients with HIV-1

infection. However, resource-poor countries have been slow to provide access to ARV

drugs. This is in the process of changing as the availability of generic ARV drugs

increases. The planned treatment of large numbers of HIV-1-infected persons in South

Africa has underscored the urgent need to develop simple, standardized once-daily drug

dosing regimens that are inexpensive, specific, and appropriate for use in Africa.

Unfortunately, the emergence of mutations that cause resistance to ARV drugs can limit

the efficacy of treatment regimens. Therefore it is of paramount importance that effective

and affordable tools are developed for monitoring treatment responses, not only in

individual patients, but also at the population level. Although South Africa has only

recently implemented its national ARV program, there are patients who have already been

treated in the private sector, prior to the establishment of the official National Guidelines

for ARV therapy. As a result, some patients may have received sub-optimal regimens.

Equally as important, these patients may have received little or no formal adherence

training. In light of this, the screening for drug resistance is important to ensure that each

patient receives optimal therapy and avoids the use of ineffective drugs. This section

focuses on the surveillance of drug resistance in a single HIV clinic. It provides

information on the prevalence and pattern of resistance mutations in a treatment

experienced subtype C population.

6.4.2 Study Population

Samples were obtained from HIV-1 positive adults and children attending the

Sinikithemba clinic at McCords Hospital. McCords is a state subsidised, independent, not

for profit, hospital in Durban, KZN. The first 100 patients on treatment presenting at the

clinic were included in the analysis. These consisted of 96 adults (46% females and 54%

males) and 4 children (75% males and 25% females); see Table 22. Some patients had

already been treated at other centres, including the private sector, before coming to the

Sinikithemba HIV Clinic. Most of these patients had been on treatment for a longer

period and this was reflected in their treatment histories that included mono and dual

therapy. Patients started on treatment at the Sinikithemba Clinic were all given HAART.

In some cases, patients were changed from ddl, d4T and EFV to CBV and EFV because

CBV was cheaper and more easily administered. A list of the various treatment regimens

for the entire cohort are shown in Table 23.
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Table 22. Characteristics of and laboratory results for patients in the study

# males

# females

# heterosexual

#homosexual

Ethnicity Black
Indian
White

Coloured

All Patients (n=100)

53/98* (54%)

45/98* (46%)

82/83* (99%)

1/83* (1%)

90/100 (90%)
4/100 (4%)
4/100 (4%)
2/100 (2%)

Adults (n=96)

50/94 (54%)

44/94 (46%)

82/83 (99%)

1/83 (1%)

86/100 (86%)
4/100 (4%)
4/100 (4%)
2/100 (2%)

Children (n=4)

3/4 (75%)

1/4 (25%)

N/A

N/A

4 (4%)
0 (0%)
0 (0%)
0 (0%)

Average age (years) 33.5 35.3 7

Average Viral Load 26396 26423 N/A

Average CD4 count 194 183 515

Average stage of Disease (WHO) Stage 1 2/85* (2%) 2/83 (2%) 0/2 (0%)
Stage2 7/85* (8%) 7/83 (8%) 0/2 (0%)
Stage3 59/85* (69%) 58/83 (70%) 1/2 (50%)
Stage4 17/85* (20%) 16/83 (19%) 1/2 (50%)

Patients currently on treatment 86/100 (86%) 82/100 (82%) 4/100 (4%)

Patient not currently on treatment 14/100 (14%) 14/100 (14%) 0/100 (0%)

Average time on treatment (months) 7.31 6.92 17

* Total number of patients for which the information was available
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6.4.3 RNA Extraction and RTPCR and Resistance Genotyping

Samples were tested for viral load and CD4+ counts as described in Chapter 3.2.2. HIV-1

RNA was extracted, amplified by RTPCR and sequenced using the VirosegTM system

(Applied Biosystems) according to the manufacturer's protocol and as described in

Chapter 3.2.4. Sequences were analysed for resistance as described in Chapter 3.2.8.

6.4.4 Subtyping and Phylogenetic Analysis

Subtyping was performed by phylogenetic tree analysis using PAUP* Swofford, 1999), as

described in Chapter 2.1.3 and Chapter 3.2.5. Sequences were analysed for recombination

using SimPlot as described in Chapter 2.1.4.

6.4.4 Results

A total of 23 isolates with detectable viral load were sequenced. Of these, 21 isolates

(91%) were classified as subtype C. The remaining two isolates were classified as an A/G

recombinant (Figure 28) and subtype A (Figure 29). The breakpoint in the A/G

recombinant was midpoint in the PR, with all of RT being classified as subtype A (Figure

28). Eighteen (18%) of the patients that were enrolled displayed drug resistance mutations.

Their resistance profiles and treatment histories are shown in Table 24. Of particular

importance was the finding that all but one of the resistant patients that had been on a

NNRTI inclusive regimen had lost the NNRTI class of drugs, with >90% of the resistant

isolates harbouring viruses resistant to NNRTIs (Figure 30a) and >70% of those

harbouring multi-NNRTI resistant viruses (Figure 30b). The most common NNRTI drug

resistance mutations that were seen were the K103N/S (33%) and V106M (27.7%)

mutations. The V106M mutation occurred in 4 of 6 patients currently receiving EFV,

(MCO27, MCO35, MC089 and MC177). This mutation also occurred in an isolate from a

patient receiving a NVP-containing regimen. Of the 5 patients currently receiving NVP

mutations at codon 103 were most common (K103N=2 and K103S=1). Other common

NVP related drug resistance mutations seen were the Y188L/C (27.7%), G190A (22.2%),

A98G (11.1%), V179D (11.1%), K101E/Q (11.1%), V106A (5.5%), Y181C (5.5%),

P225H (5.5%) and F227L (5.5%) mutations. The F227L mutation occurred in conjunction

with the V106A mutation, which is said to augment NVP resistance (Shafer, 2003). The

most common NRTI mutation was the M184V mutation (38.8%), which occurred in 88%

of the resistant isolates that were currently on 3TC. Other NRTI mutations were the

Thymidine analogue mutations (TAMS) [D67N/G (27.75%), K7OR/E (16.6%), L215F/Y,
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Table 23. Treatment data of patients in the study.

Patients currently receiving dual-NRTI regimens Months 
No of Patients 5
Average duration of treatment 15
Different dual-NRTI regimens Average duration of regimen
ddl, d4T (2) 9
3TC, AZT (2) 23
CBV (1) 12

Patients currently receiving HAART, first line 
No of patients 47
Different HAART regimens: Average duration of regimen
CBV, EFV (19) 4
ddl, d4T, EFV (17) 4
d4T, 3TC, EFV (3) 3
ddl, d4T, NVP (5) 8
CBV, NVP (2) 9
RTV, CBV (1) 2

Patients currently receiving HAART, not first line
No of patients 33
No of patients with previous mono-NRTI regimens 2
Different mono-NRTI regimens: Average duration of treatments
RTV (1) 1
d4T (1) 1
No of patients with previous dual-NRTI regimens 11
Different dual-NRTI regimens: Average duration of treatments
ddI, d4T (6) 8
d4T, 3TC (1) 1
3TC ,AZT (2) 10
SQV, RTV (1) 1
CBV (3) 2

No of patients with previous HAART regimens 22
Different HAART regimens Average duration of treatments
ddl, d4T, EFV (12) 6
ddl, d4T, NVP (8) 5
ddl, AZT, NVP (1) 18
ABC, ddl, d4T (1) 8

Current HAART regimens: Average duration of treatments
CBV, EFV (19) 3
ddl, d4T, EFV (3) 6
d4T, 3TC, EFV (3) 3
ddl, d4T, NVP (1) 6
CBV, NVP (3) 4
ddl, AZT, EFV (1) 2
LPV/r, ddl, d4T (1) 7
IDV, RTV, d4T, 3TC (1) 3

No of patients changed treatment > once 5

Patients not currently on treatment 15
No of patients with previous mono-NRTI regimens 3
No of patients with previous dual-NRTI regimens 1
No of patients with previous HAART regimens 11
Number of different HAART regimens Average duration of treatments
3TC, AZT, NVP (1) -
d4T, 3TC, NVP (1) 13
ddl, d4T, EFV (6) 9
ddl, d4T, NVP (2) 4
CBV, EFV (1) 1

No of patients currently receiving the following drugs:
3TC 10
AZT 3
ddl 29
d4T 36
CBV 44
NVP 11
EFV 66
RTV 2
IDV 1
SQV 1
LPV/r 1
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T69N/A (11.1%), L210W/S (11.1%), K219Q/E (11.1%), G333E (5.5%) and V75I/L

(5.5%)]. While these mutations develop as a result of the selection pressure exerted by the

drugs in the patient's regimen, like the NNRTIs, they may also cause cross-resistance to

other drugs in that class (Figure 31), and thereby limiting the patient's future treatment

options.

Some mutations that were seen have rarely been reported in the literature. These include

the T691 and K7OE mutations, which have rarely been found in treated subtype B isolates

and have not previously been reported for subtype C. The K103S has only recently been

characterized as conferring resistance to all the NNRTIs and at the time of writing this

manuscript, there were no reported subtype C isolates with this mutation. Five patients

were currently receiving dual therapy. Sequences were obtained for four of the patients,

however only 2 of the isolates showed drug resistance mutations (MC109 and MC242).

These patients were both receiving AZT and 3TC, both of whom were children. Common

to both isolates was the M184V mutation, which causes resistance to 3TC. The other

mutations were a variety of TAMs, which are associated with resistance to AZT. In

addition, patient MC242 developed the A98G mutation, which is associated with reduced

susceptibility to the NNRTIs. Seventy-five of the patients were WHO stage 3 or 4, with 60

of the patients having experienced recent co-infections. Almost half of these infections

were mycobacterial. Comparison of the frequency of polymorphisms in the RT between

treated patients with and without resistance mutations are shown in Figure32. While

polymorphisms at RT positions 35, 173, 200, 207, 245, 293 occurred at equal frequencies

in resistant and non-resistant isolates, the R211K mutation was found more frequently in

resistant isolates. Polymorphisms at codons 135, 138 and 324 occurred only in resistant

isolates (>40%).

6.4.5 Discussion

HAART is just becoming available in South Africa, with just a few ARV clinics

operational. The high cost and complexity of treatment and monitoring has been a major

hurdle in the quest to make treatment available for all HIV-1 infected South Africans. The

availability of affordable generic drugs is now making the access to ARVs more

attainable. However, coupled with this increased access to ARVs is the increased

possibility for the emergence and/or transmission of ARV resistant viruses. Resistance is

the result of sub-optimal or inconsistent regimens often due to poor counselling or

interrupted drug supply (Richman, 1994). Inadequate infrastructure to ensure high quality

patient monitoring may further exacerbate the problem. Avoiding resistance is even more
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Table 24. Genotypic profiles of viral isolates for each patient
Sample Stage Subtype Drugs used in therapy
ID

MC017 3 C CBV, ddl, d4T, NVP

MCO27 3 C ddl, d4T, EFV

MCO28 - C ddl, d4T, NVP

MCO35 3 C ddl, d4T, EFV

MCO37 B C ddl, 3TC, NVP

MC043 3 C DdI

MC077 4 A/G CBV, ddl, d4T, EFV

MC181 C d4T, 3TC, EFV

MC106 2 C ddl, d4T, NVP

MC109 - C 3TC, AZT

MC89 3-4 C ddl, d4T, EFV, NVP

MC177 3 C ddl, d4T, EFV

MC179 4 A RTV, CBV

MC197 4 C d4T, 3TC, EFV,

CBV, NVP

MC217 3 C CBV, NVP

MC210 - C 3TC, AZT, NVP

MC242 4 C 3TC, AZT

MC244 3 C 3TC, AZT, NVP

MC010 3 C ddl, d4T, EFV

MCO56 3 C ddl, d4T

MC071 4 C ddl, d4T, NVP

MC087 3 C ddl, d4T

MC092 3 C ddl, d4T, CBV, EFV

* Not currently on treatment

Viral load Time on
treatment

Co-infections PR resistance
mutations

RT resistance mutations

1 400 26 peripheral
neuropathy

M36I, V82I, I93L D67N, KIOIQ, M184V, G190A

4 400 12 chronic diarrhea;
vomiting

M361, I93L VI 06M

910 5 peripheral
neuropathy

M36I, L63V, I93L K70E, V I 06A, V1181, G190A,
F227L

11 000 17 - K2OR, M36I,
L63P, I93L

K65R, T69I, K103N, V106M

8 700 16 pneumonia; mild oral
thrush

K2OR, M361,
D60E, L63P, 193L

K101E, GI90A

12 000 0.5 TB M361, D60E, I93L A98G, K103N, V179D, Y188L

1 500 22 * Osophageal candida L101, M36I, L63T V179D

440 000 L101, M36I M184V, Y188L, P225H

4 300 10 M36I, L63V, I93L Y181C

24 000 9 pneumonia; oral
candida, occ diahroea

M361, 193L D67N, K7OR, M184V, K219E

5 300 6 Taxoplasmosis M36I, D60E,
L63P, I93L

V75I, K103N, V106M, Y188C

3 000 7 M36I, L63Q, 193L D67G, T69A, V106M, Y188L

12 000 2 K2OR, M36I,
L63V, I93L

GI90A

84 000 1 PTB M361, L63A, I93L T69N, K103N

4 800 16 M36I, D60E,
L63P, 193L

D67N, K7OR, M184V, Y188L,
T215F, K219E

310000 3 L101, M36V,
L63V, I93L

K103N, M 184V

4500 36 M361, L63P, 193L M41L, E44D, A98G, M184V,
L210W, T215Y

15000 36 M36I, 193L M41L, F.44A, D67N, K103S,
VIO6M, M184V, L210S,
T215Y, G333E

890 3 herpes simplex, oral
candida; otitis media

M361, L63P, 193L none

8 200 8 on TB Rx K2OR, M36I, I93L none

90 000 6 neuropathy;
myelopathy; bacterial

K2OR, M36I, I93L none

Infection

1300 9 TB M36I, 193L none

69000 3 peripheral
neuropathy

LI OM, M36I,
L63I, 193L

none
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i mportant in countries where first line and second line treatment options are limited. Thus,

surveillance coupled with intense program monitoring is needed to maintain program

effectiveness. This study was conducted to monitor the prevalence of resistance in a local

HIV clinic as well as to increases the data on the response of subtype C viruses to therapy.

Interestingly, one of the resistant isolates were classified an A/G recombinant by

phylogenetic analysis. This is the first report of an A/G recombinant isolated from

KwaZulu Natal. Other non-C isolates have previously been reported in Cape Town with

one C/D recombinant reported for KwaZulu-Natal (Gordon et al, 2003).

From those included in the study, resistance mutations were detected in 18 (18%). This

figure is better than the estimated prevalence of 36% resistant virus among Ugandan

patients and 40-57% resistance among patients from Cote d'Ivoire on HAART (Vergne et

al, 2003). The high prevalence of resistance in these countries is thought to be a

consequence of the inappropriate use of mono and dual therapy with NRTIs. This could

also explain some of the resistance seen in the patients in this study. Although treatment

in this setting was under controlled conditions, some of the patients had come from the

private sector prior to the establishment of the National Guidelines for ARV treatment and

where there was not the same level of control. Consequently, some of the patients were

treated with sub-optimal regimens.

Most of the resistance mutations that were seen are known to cause resistance to the

NNRTIs. This is probably due to the low genetic barrier to resistance in this class of drugs.

Of particular interest is the V106M mutation seen in two patients, which is a putative

subtype C signature mutation in EFV experienced patients (Brenner et al, 2003). From the

previous study (Chapter 6.1), I have found that the V106M mutation emerges as early as

one month after starting treatment. The resistance profile of MCO28 was very interesting

because, although the patient had stopped treatment, there were a host of mutations

present, some causing primary resistance to the NNRTIs, while others such as K7OE and

F227L are not known to cause resistance to any current RT inhibitors. It is possible that

the K7OE mutation is an intermediate mutation before the development of the K7OR

variant (a known TAM). Most of the polymorphisms found in the RT that are not

associated with resistance in the context of subtype B, were equally prevalent in isolates

with and without resistance. Two polymorphisms were peculiar to isolates without

resistance: mutations at codon 122 occurred in 80% of patients while mutations at codon

334 occurred in 60% without resistance. There were also a few polymorphisms that only

occurred in resistant isolates: mutations at codons 135 occurred in 56% of resistant

isolates, while mutations at codons 138 and 324 occurred in 44% of resistant isolates; and

158



Fr

1.111-4ECID
16ZCI
31/ZCO
VLLCA

0121E3

NUN
Nan
V/1.46Zcl
ACM
1Z6ZA
01623

A/V98E1
1C8Z1

===. Bea

 EILLD1
   EIRSIGLZA

J cIELZV

   30520
cam!

	Mtn

® ALZ21-1

   )1LIZE1
   V/3LOZLI

==mb4O23
	WEIRIM II AZOV

 VOOZ1
391610

cm= 111A8LI1
 31110

=====EMME 141.1b

••• 11•111111" 89901
 10911

1C91S
flig1181010011111111111 	 V1313Z919

S9S1V
AZ4LI

NBCI3
======

iSIDEZIO

 Amp

kili01>1

S9GV

'•1 1!!

1m•41. 1:149)1
==:!!!!!!!!!!!!!!!!!!!!!!!!!!! 109A

 1845
cm= 0043

   1011366.1.
19E1E!!!!!!!!!!!!!!!EEE V9C3

 INA.ILLGCA
   3201

 oen
1111"1111 SLZ/

 ILZA

iEngg VILN
 V93

	Poo1110

gl
 H1S4d

o N O gig g 0 0 040
CJ a, CO I, - CO DC, •d• n CM

aulua3za d

(A •
04 '1)

GO 4.

(1.)

vs .5,

4.)
6
0 CD
C.) 0
C..) Cr
0 cv

6 6.
.0 0a E
0

-5 4

cj
lz
IE

0.)

i.

.6

0

745,

* R'

C11 s
----
ei 4nn

N .6.6
0 44

;"
0.

cv o
"
e•iN

G>
t

4 er
.0 '-' AO

°c.

„..
E 4;1 C141;

49)
're

0 0
E 0

0 cc
0.

0 73 ..!,N
ci„) en

0
re)

* 1Z o
ect C o
a ti o5
0 cd

Cs..)

(.4 '4 w)
c

M -4-, 0ce)
5

6,
013

D n



mutations at codons K275 and P294 occurred in 33% of resistant isolates. Similarly,

polymorphisms in the PR were common to resistant and wild-type isolates, with no

particular mutations occurring more frequently in either group.

Most of the patients included in the study were in the late stages of the disease (stage 3

and 4), and with an average CD4 count of 194. This is not surprising, as most people in

South Africa do not know their HIV status until very late in the infection, when they

begin to show symptoms of AIDS. As a result, most of these patients (60%) had

experienced recent co-infections which further complicated patient management,

particularly TB, which limits the drugs that can be administered to these patients as well

as co-infections such as oesophageal candidiasis which have been associated with a more

rapid progression to death (Morgan et al, 2002) There have also been reports of a more

rapid progression to AIDS if HAART is initiated after CD4 counts fall below 200

cells/ml, than if initiated at counts between 200 to 350 (Chan et al, 2002). However, there

is still some benefit in treating late stage AIDS patients, as adults and children with

advanced AIDS who rarely survive more than two years, are increasing their survival

time as well as quality of life. (Morgan et al, 2002).

A major problem for most HIV-1 positive patients contemplating starting ARV treatment

is cost of the ARVs and monitoring (CD4s and viral loads). Those that can afford the

drugs, may not be able to afford the monitoring. Sometimes the patients start treatment,

but later find that they can no longer afford the ARVs due to a change in financial

circumstances, and stop treatment until they can purchase them at a later date. Twenty

five (25%) of the patients in the study had stopped taking their drugs at some point in

their treatment. Eight of these developed resistance.

Some researchers feel that, particularly in resource poor setting where the choice of drugs

for salvage therapy would be even more limited, the choice of first ARV regimen is of

greatest importance, and therefore should be well tolerated, have a relatively low pill

burden and ease of administration, and have a high genetic barrier to resistance in the

event of less than perfect adherence (Palella et al, 2002; Bartlett et al, 2001). Based on

ease of administration and relative tolerability, the preferred "backbone" NRTI

combination is AZT and 3TC (now available as CBV), with d4T and 3TC or AZT and

ddi as alternatives (Staszewsk et al, 2001). Many researchers have found that EFV with 2
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NRTIs is as effective as 2 NRTIs with a PI such as NFV and INV (Bartlett et al, 2001;

Albrechts et al, 2001).

Finally, although a high level of multi-NNRTI resistance was seen in the patients, all the

resistant patients were still susceptible to the PI class of drugs. As South Africa is limited

in the drug options that are available for salvage therapy, first line regimens need to be

chosen wisely, and it is equally important to have effective second line regimens in place,

given that some level of resistance is inevitable. Resistance genotyping will aid clinicians

who are currently working blindly, ignorant of the resistance status of patients who are

clinically failing treatment. This is particularly true where the patient cannot produce a

complete clinical history. It is hoped that these data will assist in patient treatment

management, and facilitate public health policy and planning.
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Chapter 7

In Vitro Antiretroviral Drug Susceptibility of Subtype C Strains



7.1 Phenotyping of HIV-1 isolates from South Africa

7.1.1 Introduction

HIV replication is markedly inhibited by highly active antiretroviral therapy (HAART).

However, the development of drug resistance is an important factor limiting the

effectiveness of ARV treatment. Mutations associated with resistance to RTIs and PIs

have been extensively characterized (Hirsch et al, 2000; Schinazi et al, 2000). Guidelines

by expert panels have recommended the routine use of drug resistance testing in the

treatment of HIV-1 infected patients (US Dept Health; Hirsh et al, 2000). Current methods

of HIV resistance testing include in vitro phenotyping (drug-susceptibility assays) and

genotypic assays that detect mutations known to confer drug resistance. Genotypic tests

are more commonly used in clinical settings because of their wider availability, lower cost

and quicker turnaround, although phenotypic tests are a more direct measurement of HIV-

1 susceptibility. However, there are limitations to both of these tests. They are both unable

to detect minor drug resistant populations and there is limited knowledge about the clinical

significance of certain combinations of mutations and of certain levels of phenotypic drug

resistance. Most HIV drug susceptibility studies have involved subtype B strains, although

non-B subtypes cause most of the infections worldwide. In a study conducted by Vergne et

al, (2000) on naturally occurring polymorphisms in non-B subtypes, they found the

prevalence of major mutations associated with resistance to NRTIs, NNRTIs and PIs very

low. However they found many accessory mutations related to resistance to NRTIs and

PIs. A significant number of amino acid polymorphisms exist among subtype A, B and C

sequences (Brennan et al, 1997; Becker-Pergola et al, 2000). The high prevalence of the

L1 0I, K2OR, M36I, and L89M mutations in non-subtype B strains is largely known

(Pieniazek et al, 2000; Tanuri et al, 1999). Velazquez-Campoy (2001) have shown that

subtypes A and C proteases have a higher biochemical fitness than subtype B proteases

against the currently available PIs. However, this does not necessarily reflect a lower in

vivo efficacy, because other factors may also be important in antiviral potency (Klabe et

al, 1998).

The recombinant virus assay (RVA). is an innovative method for generating viruses for

drug susceptibility testing (Boucher et al, 1996; Maschera et al, 1995; Kellam et al, 1994).

RVA involves the production of viable virus in vitro by homologous recombination of RT-

PCR products from plasma virus with an infectious PR or RT deleted subtype B cloned

HIV-1 provirus. The resulting recombinant viruses derive all their biological properties

from the molecular clone, except for RT and PR, which are encoded by the genes from the

patient isolates. The drug susceptibility of the viruses is measured using a MTT cell-
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killing assay (Pauwels et al, 1988). Living cells convert MTT (3-(4,5-dimethylthiazol-2-

y1)-2,5-diphenyltetrazolium bromide) into a blue product (formazan), and therefore the

amount of formazan reflects the number of cells protected by the drug against killing by

the virus. The production of formazan can be quantified spectrophotometrically, and this

coupled with the possibility of performing the test with microtiter plates, facilitates testing

of large numbers of viral isolates. The biochemical and phenotypic roles of the natural

polymorphisms found in the PRs of C viruses are poorly understood. In this chapter, we

characterize the drug susceptibility of subtype C isolates from South Africa to the

currently available PR and RT inhibitors. The phenotyping was done in collaboration with

colleagues from Brazil.

7.2 Methods

7.2.1 Samples

10 patient samples were phenotyped (Table25). The majority (8/10) were drug naive,

while two were known to have had prior treatment with d4T, 3TC and NVP. Seven of the

isolates were classified as subtype C. For comparison, the D/C recombinant described in

chapter 3 was included, as well as a retrospective subtype B isolate from Cape Town. One

of the treated isolates was also classified as subtype B.

7.2.2 Preparation of PCR products for transfection

Viroseq RT PCR products were lyophilized and transported to the Molecular Virology

Laboratory in the Genetics Department at the University of Rio de Janeiro, Brazil. The

products were reconstituted with 40u1 sterile filtered water and the protease and RT

regions were amplified separately using the primers described by Maschera et al, 1995

(protease) and Boucher et al, 1996 (RT). Briefly, primers 5'GGG AAG ATC TGG CCT

TCC TAC AAG GG 3' (forward) and 5' GGC AAA TAC TGG AGT ATT GTA TGG 3'

(reverse), 200uM dNTPs, 1.5mM Mg2+ , 250 nM primer and 0.75U AmpliTaq Gold

(Applied Biosystems) were used to amplify the protease regions under the following

conditions: 35 cycles of 94 °C for 30 seconds, 55 °C for 55 seconds and 72 °C for 1 minute,

after an initial denaturation of 94 °C for 12 minutes. The following primers were used to

amplify the RT region with the same conditions: RT 5' GGA CAT AAA GCT ATA GGT

ACA G 3' (forward) 5'CTG CCA GTT CTA GCT CTG CTT C3' (reverse). The vectors

used were: pGEMT3APR, which carries defective HIV HXB2 genomic cDNA that lacks

the gene for PR (APR) (Maschera et al, 1995) and ART which lacks the first 290 by of RT.
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The vectors were prepared by overnight digestion with either Bstell (APR) or Smal

(ART). Each PCR product was co-precipitated with the respective vector (i.e. PR

products with the protease vector). Briefly, 1 ug of the PCR product and 1 ug of the

vector was precipitated with 3 times the volume of ethanol and 10% of a 3M sodium

acetate solution and centrifuged at 12000 rpm for 20 minutes. The supernatant was

aspirated and the pellet washed with 70% ethanol. The supernatant was aspirated

again and the pellet was dried on a heating block for 5 minutes.

7.2.3 Cell Electroporation

Two days before performing the transfection, cell cultures were prepared with 2.5 X

105 MT2 cells/ml. At DayO, cells were counted and spun at 2000 rpm for 8 minutes

and resupended at 2 X 10
7 

cells/ml in RPMI with 20% FBS. Cells were left on ice for

10 minutes. Each PCR product/vector precipitate was resuspended with 25 ul sterile

water. 250 ul of cells and each resuspended PCR product/vector were added to

separate cuvettes and electroporated with a BioRad Gene Pulser (900 I.LF capacitance;

high ohms; 250 V). 125 ul RPMI was added to the cuvette to gently wash the cells

away from the sides of the cuvette and clumps were gently resuspended. The

electroporated cells were transferred to a flask with 5 ml RPMI and 25 ul fresh cells

(2 X 10 7cells/m1) were added to the flasks. Cell cultures were incubated at 37°C and

monitored daily for syncytium formation. Fresh medium was added to maintain an

optimal cell concentration of approximately 0.2 X 10 6 cells/ml. Viral supernatants

were harvested by centrifugation (1000 x g for 10 minutes) when the culture

contained 100% full blown syncytia, which indicated that nearly all the cells in the

culture were involved in giant cell formation. Viral stocks were stored at —70°C for

subsequent titration and sensitivity testing. Homologous recombination led to the

generation of a chimeric virus containing PR or RT sequences derived from patient

viruses. A chimeric virus containing the NL4-3 PR (HXB2/NL4-3-PR) was also

generated as a subtype B control virus to obtain the reference IC50 during the

phenotypic assay.

7.2.4 Determining the virus TCID50

The virus culture to be tested was thawed and serially diluted (1 in 10) up to e.
A 0.2 X 10 6 concentration of cells was prepared and infected with the different virus

dilutions by spinning at 1200 x g for 2 hrs in a process called "spinoculation".
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Figure 33. Template of the plate layout for determining the virus TCID 50 •

A B C D E F
1
2

Number of Total
3 Number of Uninfected Number Total Number % Total

4 Dilutions Infected Wells Wells Infected Uninfected Infected

5 1.00E-05 12 =B10-B5 =SUM( B5. B8) =SUM(C5: C5) -D5/(D5+E5)

6 1.00E-06 8 =B10-B6 =SUM( 86: B8) =SUM(C5: C6) =D6/(D6+E6)

7 1.00E-07 1 =B10-B7 =SUM(B7: B8) =SUM(C5:C7) =D7/(D7+E7)

8 1.00E-08 0 =B10-B8 =SUM(B8_ B8) =SUM(C5:C8) =D8/(D8+E8)

9
10 Num Wells 12

1 1 mls/well 0 01

12
13 Prop.Dist =(H10-.05)/(H10-110)

14 Log TCID =110-B13

15 TCID50 =10^B14

16 irroDso =1/BI5

17 TCID50/m1 =B16/B11

18
19 pfu/ml =B17*0.69

G H I J
1
2
3 Log Dilution Above

4 Above 50% % Above 50% % Below 50% 50%

5 =IF(F5>0.5,"TRUE","FALSE") -1F(AND(G5="TRUE",66-"FALSE"),F5,0) AF(AND(G4="TRUE",G5-"FALSE"),F5,0) =IF( H5>O,LOG(A5),0)

6 -IF(F6, 0.5,"TRUE","FALSE") =IF(AND(G6="TRUE",G7-"FALSE"),F6,0) -1F(AND(G5-"TRUE",G6="FALSE"),F6,0) -11 , (116>O,LOG(A6),0)

7 -IF(F7, 0.5,-TRUE","FALSE") -IF(AND(G7="TRUE",G8="FALSE"),F7,0) =IF(AND(G6--TRUE",G7="FALSE"),F7,0) =IF(117>0,LOG(A7),0)

8 -IF(F8>0.5, -TRUE","FALSE") =IF(AND(G8-"TRUE",G9-"FALSE"),F8.0) -IF(AND(G7-"TRUE".G8-"FALSE"),F8,0) =1F(1-18>O,LOG(A8),0)

9

10 =SUM(H5: H8) =SUM(I5.18) SUM(J5.18)

1 1

12

13

14

15

16

17

Figure 34. Template of the Excel spreadsheet for the calculation of the virus TCID 50 •
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After the spinoculation, the cells were resuspended in 3 ml of RPM! and added to the

plate in duplicate as shown in Figure 33. Plates were incubated in a CO2 incubator at

37°C and developed on the 6
th
 or 7 th  day by adding 40 ul MTT (7mg/m1) to each well

and incubating at 37 °C for 30 min to 2 hrs. One hundred microlitres of lysis solution

was added to each well (0.4% HC1 + 2% Trition X 100 up to 100 ml with

isopropanol) and mixed by pipetting until all crystals had dissolved. Plates were read

at 490 and 640 nm. The TCID50 was determined as shown in Figure 34. All statistical

treatments for calculation of the IC50s for the isolates were performed by using the

Analyze-it program (version 1.62) for Microsoft Excel statistics package and

Sigmaplot software.

7.2.5 Performing the Phenotyping

Cells were infected with the virus to be phenotyped (using the virus' TC 11)50), in

conjunction with a wildtype reference strain (pNL4-3) and a "mock infection" of cells

without virus (Figure 35). The reference strain was included on each plate. The

required volumes of filtered drugs were added and serially diluted (in duplicate),

leaving the last row without the drug (just virus and cells) and an equal volume of

cells was added to each of the wells. Plates were incubated in a CO 2 incubator at 37 °C

and developed on the 6 th or 7
th

 day in the same way as described above.

7.2.6 Calculation of drug susceptibility

Susceptibilities of chimeric virus to Amprenavir, Indinavir, Lopinavir, Ritonavir,

Saquinavir, and Nelfinavir were determined by 3-(4,5-dimethylthiazol-2y1)-2,5-

diphenyltetrazolium bromide (MTT)-based cell viability assays, each of which was

performed in duplicate, as described previously (Hertogs et al, 1998). The percentage

of viable cells obtained by the MTT assay after seven days of infection was plotted

semi-logarithmically against the concentrations of the drugs tested. A Hill's three-

parameter nonlinear regression was performed to obtain the sigmoid curve of viable

cells and the IC50 for each virus tested. The fold-change of resistance was calculated

by comparing the isolate's IC50 with the IC50 for the drug susceptibility wild-type

reference strain (Figure 36).

7.3 Results

Attempts to obtain a recombinant clone for the PR region of ZA012 and ZA024, as
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Figure 35. Template of the plate layout for determining the virus drug susceptibility. The drugs
were serially diluted in duplicate, with 2 drugs per plate. Each plate contained the reference
strain pNL4-3.

100 Wild type (pNL43)

50

Patient s train   

D. Drug concentration  

Figure 36. Calculation of fold change. The fold change was calculated by dividing the patient
strain IC50 by the reference strain ICso.
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well as the RT region for ZA010, were unsuccessful. As a result, the response of these

isolates to the drugs targeting these regions could not be determined. Phenotypic

resistance to one or more drugs was detected in samples ZA024, R555, PT01 and

PT02 (Table 26). ZA024, a drug naive isolate harbouring the K103N mutation,

showed a greater than 100 fold resistance to EFV, and a 16-fold resistance to NVP.

The two treatment experienced isolates, PT01 and PT02, both showed resistance to

the NNRTI drugs tested. In addition, PT02 had a >100-fold resistance to 3TC, while

PT01 only showed a 20-fold resistance to 3TC when compared to pNL4.3, even

though both patients had a similar clinical history. ZA023 did not show phenotypic

resistance, possibly because the K103N mutation was present as a minority strain and

was not detected by the phenotyping assay. Most of the isolates showed

hypersusceptibility to Lopinavir, with the IC5os for those isolates being up to 16.2

times lower than that for the reference strain HXB2/NL4-3-PR. There were no other

observable differences in drug susceptibility to the commercially available PIs tested.

7.4 Discussion

HIV-1 sequences vary widely around the world, but mutations that potentially

contribute to resistance to drug targeting the PR and RT of HIV-1 occur in both B and

non-B subtypes. In spite of this, very little information is available on the drug

susceptibility of non-B subtypes, particularly subtype C. Although HIV-1 subtype C

does not appear to have any primary mutations in its signature PR and RT sequence, it

does has several accessory mutations that are associated with resistance in the context

of subtype B (Grossman et al, 2000; Vergne et al, 2000). Since

accessory/compensatory mutations are often associated with the restoration of viral

fitness in the presence of crippling primary mutations (Hirsch et al, 2000; Schinazi et

al, 2000) the impact of the mutations seen in subtype C on the long-term efficacy of

ARVs is not known.

In this chapter, samples from drug naive subtype C, B and D/C isolates and 2 drug

experienced isolates (one subtype C and one subtype B), were phenotyped using the

recombinant virus assay described by Hertogs et al, (1998). The drug naive subtype C

isolates showed a similar response to the RT inhibitors as the wild type strain.

However, the drug experienced subtype C isolate, which harboured the M184V
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mutation, showed a greater fold-resistance when compared to the wild-type strain than

the subtype B isolate with the same resistance mutation. However the significance of

this is unknown, as the M184V mutation usually confers high-level (>100 fold)

resistance to 3TC (Havlir et al, 2000; Descamps et al, 2000). As resistance mutations

often occur in complex patterns, it is likely that the effect of the other mutations

present in each isolate is influencing the response to 3TC.

The impact of the accessory mutations in PR on drug susceptibility was minimal, even

with up to 3 accessory mutations in a single isolate. Unfortunately, the vector used in

this assay did not incorporate the 3' end of gag, which included sites that have been

linked to PI resistance, which could influence the susceptibility of the virus.

The assay is also limited in that a subtype B backbone was used as the vector for the

recombination, and whether the responses will be the same with a subtype C

backbone is yet to be determined. The assay did not detect resistance to the K103N

mutation in ZA023, probably because the mutation was present as a minor population

in that sample, which is another of the limitations of the assay.

The retrospective subtype B isolate was resistant to both AZT and 3TC in vitro.

Although this patient was said to be drug naive, it is very possible that the patient had

received treatment. At that time (around 1991), the most likely treatment would have

been dual therapy with AZT and 3TC. The public health importance of this finding is

that drug resistant HIV-1 was present in South Africa more than a decade ago.

Although our studies have shown minimal resistance in the general drug naive

population in KwaZulu-Natal, this result suggests that the population in the Cape had

greater access to treatment in the past than patients in KwaZulu-Natal and could

consequently result in the transmission of resistant strains. This emphasises the urgent

need for screening for resistance in drug naive patients in this region.

Interestingly, the subtype C isolates showed a hyper-susceptibility (a lower IC 50) to

Lopinavir which was not seen in the wild-type strain. Further analysis by Gonzales et

al (2003) using site-directed mutagenesis showed that this hyper-susceptibility was

linked to the presence of the I93L mutation found in most subtype C isolates.

Although other studies have also reported no difference in the IC5Os for subtype B

and subtype C strains when the other PIs were tested, they did not included Lopinavir

among the antiretroviral compounds tested in their phenotyping assays (Harrigan et al,

2001; Velazquez-Campoy et al, 2001). It has been reported that hyper-susceptibility

can influence the clinical outcome in patients on Amprenavir treatment, whose
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isolates carry the N88S mutation (Velazquez-Campoy et al, 2001). Gonzales et al

(2003) suggest that the in vitro phenotypic hyper-susceptibility of subtype C isolates

with the 193L mutation could result in different clinical outcomes, but caution that

these findings need to be further tested in controlled clinical trials comparing the

virological responses of patients infected with subtype B HIV isolates and those

infected with subtype C HIV isolates receiving Lopinavir.
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Chapter 8

General Discussion



Since subtype C began its spread across southern Africa in the late 1980s, major outbreaks

have now occurred in every country in this region. Zimbabwe, Botswana and South Africa

have been most severely hit by the outbreak of HIV-1 subtype C infections. Despite this,

few studies have examined the genetic diversity and molecular phylogeny of subtype C

viruses in South Africa, and particularly in Kwazulu-Natal where the HIV-1 prevalence is

highest (Rollins et al, 2002). One of the main objectives of this thesis was therefore to

define the spectrum of naturally occurring resistance-associated polymorphisms and

mutations in RT and protease of subtype C viruses in KwaZulu-Natal, as South Africa

begins its national ARV roll-out.

With the exception of two primary resistance mutations, K103N and G190A, which

occurred in a single husband-wife pair, no other major resistance-associated mutations to

the available PIs and RTIs were found in a cohort of 72 drug naive isolates from

KwaZulu-Natal. However, similar to other studies from Zimbabwe and Botswana,

signature subtype C polymorphisms were found in these isolates, particularly in the PR

region, that have been linked to increased catalytic activity in subtypes A and C (Kantor et

al, 2002; Velazquez-Campoy et al, 2001). A few of these isolates were phenotyped and

were found to be as susceptible as wild-type subtype B to the available PIs and RTIs

(similar to a study by Harrigan et al, 2001). Interestingly, the isolates were also found to

be hypersusceptible to LPV, possibly linked to the 193L signature subtype C mutation in

the PR (Gonzalez et al, 2003). To better understand the mechanisms of resistance and viral

pathogenesis, sites under positive selection were identified using the methods proposed by

Yang (2000). Most of the codons in the PR and RT genes (>95%) were under strong

purifying (negative) selection pressure, particularly at sites related to viral structure and

function. The remaining 5% of amino acids were under strong diversifying (positive)

selection pressure. Seven of these amino acids (PR 12S and 191; RT 36A, 39E, 123G,

211K, and 245Q) were present in both the KwaZulu-Natal and subtype C consensus

sequence but not in the consensus sequences of subtypes A, B, and D, suggesting that

these signature residues may offer a subtype-specific fitness advantage to C viruses.

Soares et al (2003a) have shown an association between ARV treatment and the D/G123S

mutation in subtype C isolates from Brazil. The R211K signature mutation in the RT was

absent from retrospective subtype C isolates from the Western Cape and KwaZulu-Natal.

R211K has been associated with resistance in the RT in subtype B isolates suggesting that

the evolution from an Arginine to a Lysine at that position could confer over time a fitness

advantage in the presence of drug selection pressure. The V601 mutation, which occurs as

a signature in our isolates (although also prevalent in other subtype C viruses), was not

under positive selection, and did not occur at a site related to function. Whether this
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mutation plays a role in viral fitness has yet to be determined. Naturally occurring

polymorphisms also resulted in significant variation in the number and type of

phosphorylation sites in both the pol and env genes. Of note was the loss of a

glycosylation site at the beginning of the V3 loop in env which was associated with the

presence of a serine PKC phosphorylation site at position 11-13 in the V3. This suggests a

potential linkage between deglycosylation and phosphorylation in the V3 loop of C viruses

related to tropism in C viruses.

Some of these isolates were phenotyped using the RVA, in collaboration with our

colleagues in Brazil, and showed similar responses to the RT inhibitors as the wild type

subtype B strain. Interestingly, the subtype C isolates showed a hyper-susceptibility (a

lower IC50) to Lopinavir which was not seen in the wild-type strain. Further analysis by

Gonzales et al (2003) using site-directed mutagenesis showed that this hyper-susceptibility

was linked to the presence of the I93L mutation found in most subtype C isolates. This

could influence the clinical outcome of patients infected with subtype C and treated with

Lopinavir, but requires further investigation. Also, a subtype B backbone was used as the

vector for the recombination, and whether the responses will be the same with a subtype C

backbone is yet to be determined.

Phylogenetic analysis of the drug naive isolates showed that the epidemic in KwaZulu

Natal is characterized by multiple circulating HIV-1 subtype C sublineages in both the

Indian and Black communities, characteristic of multiple introductions of subtype C into

South Africa from across its many borders. The presence of HIV-1 isolates collected prior

to 1992 at internal branches of the phylogenetic tree suggests that these sequences may

represent founder strains that have existed in Kwazulu-Natal for at least 10 years. The

increased prevalence of multiple subtypes, including subtype C, in the Western Cape

highlights the change in diversity and distribution of HIV-1 subtypes in South Africa since

the beginning of the epidemic. Archival material available from the Western Cape may

serve as an important source of information on the evolutionary history of HIV-1 in South

Africa and is being investigated further by colleagues from the Western Cape.

The effect of signature subtype C polymorphisms in protease on the 12 protease cleavage

sites showed that seven sites (those with structural or enzymatic functions) are highly

conserved in all subtypes and that they are under strong purifying selection pressure (De

Oliveira et al, 2003; Ericson-Viitanen et al, 1989; Kaplan et al, 1994; Krausslich et al,

1989; Pettit et al, 1994). The remaining five cleavage sites exhibited extensive variability

across all subtypes, with C viruses being significantly more variable than subtype B at all

sites except TFP/p6pol, which is responsible for protease activation. p2/NC was the most

variable cleavage site in subtype C (42.4%). This site controls the rate of Gag and Gag-Pol

processing. The variation in cleavage sites between subtypes suggests that there may be
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important differences in the way that B and C viruses regulate polyprocessing and virion

assembly (De Oliveira et al., 2004; Petit et al, 2003; Petit et al, 2002). These differences

could have a major impact on the pathogenesis of HIV-1 subtypes and on response to

therapy.

A second objective was to determine the impact of naturally-occurring polymorphisms in

subtype C viruses on response to ARV therapy in an African setting (i.e. using PI-

exclusive regimens). Overall the patients responded well to treatment with only 10-18% of

patients on HAART-based regimens developing drug resistance. Generally, the resistance

mutations seen in our isolates were consistent with those seen in treatment experienced

subtype B isolates. Of note was the high level of resistance to the entire class of NNRTIs

seen in all the cohorts. This could be reflective of the predominant use of NNRTI-based

regimens, as well as the low genetic barrier in this class of drugs. Other possible

explanations for the high rate of NNRTI resistance were non-adherence in patients due to

stigma or lack of funds, as well as the use of sub-optimal regimens in patients treated in

the private sector prior to release of the national guidelines for ARV therapy. Comparison

of resistance mutations in the PBMCs and plasma of patients presenting with KS showed

that resistance could evolve separately at both sites, but this was not consistent, and was

probably influenced by host genetic and immunologic factors. Resistance was high (40%)

in matched subtype C infected mother and infant pairs, 6 weeks after receiving a single

dose of NVP to prevent mother-to-child-transmission. The pattern of resistance differed,

with K103N most common in the mothers and Y181C most common in the infants,

consistent with reports from Eshleman et al (2003b) and Kantor et al (2003a). Of note

were the changes in functional properties caused by these mutations, by the introduction or

alteration of putative myristoylation and phosphorylation sites in the RT. The exact role of

these alterations need to be further investigated.

Screening for positively selected sites could be useful for identifying novel drug

resistance-associated or compensatory mutations. Novel mutations that occurred in one or

more patients after therapy and were positively selected included: RT 21, 102, 123, 135,

162, 196, 202, 203, 207, 232, 245, 272, 274, 275, 278, 281, 292, 311 and 334. Some of

these have recently been reported as treatment associated mutations, namely RT 135, 202

and 207, and could be acting as compensatory mutations (Kantor et al, 2002).

Resistance mutations are often accompanied by structural changes that either change the

conformation of the RT binding pocket or stabilize the 3D structure of the enzyme

(Sturmer et al, 2003; Gonzales et al, 2001; Wrobel et al, 1998). Our results on the

structural interactions of novel, positively selected mutations have shown a definite

relationship between structural changes at those sites and the development of resistance.

However, these interactions are complex and require more in-depth analysis.
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These data not only increase the information on the response of C viruses to treatment, but

also increases the information on HIV treatment in the context of co-infections with other

pathogens. TB and other opportunistic infections are a problem in resource-poor settings

and the concomitant use of HAART and TB treatment could have great public health

benefits. However, the rapid development of resistance to EFV with the V106M mutation

in TB patients who fail therapy suggests that the use of this drug needs to be closely

monitored. Therapeutic drug monitoring is one of the methods that can be used to ensure

that sufficient drug levels are achieved in each patient. The high percentage of multi-

NNRTI resistance in the surveillance study has serious implications for the treatment

management of patients in resource poor settings, particularly because of the use of

NNRTI-base drug regimens in these regions.

Recent reports on the prevalence of resistance mutations in mothers and infants after just a

single dose of NVP have increased reluctance on the part of the government to use it in its

pMTCT program. Although the K103N and Y181C mutations associated with NVP

resistance have been reported to disappear from the plasma over time (Eshleman et al,

2001; Eshleman et al, 2003; Kantor et al, 2003), there is the possibility, however, that they

are archived as proviral DNA and could conceivably compromise future treatment

efficacy. Given the high prevalence of HIV-1 infection in South African pregnant women,

the potential risk of developing multi-NNRTI resistance in these patients cannot be taken

lightly (Rollins et al, 2002). Therefore, while NVP is cheap and effective in preventing

MTCT, efforts should increase to find a safer alternative. Mothers going onto ARV

therapy after receiving NVP in the past should be closely monitored for resistance.

Perhaps these patients should go straight on to a PI inclusive regimen, which is also

inherently more potent. Kaletra (LPV/r) is currently being used as part of the second-line

drug regimen in patients failing therapy, and although subtype C isolates have shown

hypersensitivity to LPV in vitro, its efficacy in salvage therapy with a compromised

regimen has yet to be determined (Gonzalez et al, 2003). The rapid development of high

level NNRTI resistance could compromise the effectiveness of the national drug program

unless potent salvage therapies are prescribed, including more potent NRTIs such as TDF.

In South Africa, resistance testing is not provided as "standard-of-care" for patient

treatment management as it is in North America and Europe. Although expensive,

resistance testing provides extensive insight into the presence of drug resistant variants in

the population of viruses within an individual and prevents the use of ineffective drugs in a

drug regimen (Van Laethem et al 1999; Shafer et al 2000). Prospective controlled studies
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have shown that patients and physicians who have access to genotypic resistance data

respond better than those who do not have access to these assays (Durant et al, 1999;

Baxter et al, 2000; Cohen et al, 2000). As a result, expert panels have recommended the

use of resistance testing in the treatment of HIV-1 infected patients (US Dept Health;

Hirsch et al, 2003). Phenotypic resistance tests are a more direct measurement of HIV-1

susceptibility, as the effect of multiple mutations can be taken into account, although it is

much more expensive and time-consuming. Also, RVA phenotypic tests use a subtype B

backbone as the vector for the recombination, which may not give a true reflection of

susceptibility of non-B subtypes to the currently available ARVs. Genotypic tests are more

commonly used in clinical settings because of their wider availability, lower cost and

quicker turnaround. The Viroseq resistance genotyping kit has been successfully used in

both research and diagnostic settings. It has proven to be reliable for use with non-B

subtypes and is a rapid convenient method for determining resistance genotypes

(Eshleman et al, 2004). Unfortunately, the presence complex patterns of resistance

mutations in an isolate may make the genotype difficult to interpret. A limitation of both

the genotypic and phenotypic tests is that they are unable to detect minor drug resistant

populations. This is why it is not recommended to perform resistance testing on patients

who are not currently taking their ARVs.

In the future, the impact on of positively selected phosphorylation sites on viral replicative

capacity and the role of variable subtype C cleavage sites on response to treatment with

Pis needs to be investigated, both at the patient level, and in vitro using site-directed

mutagenesis. The role of novel, positively selected resistance mutations in the

development of resistance, whether conferring resistance on their own, or in combination

with mutations at other sites, needs further investigation.

Conclusion

In conclusion, these initial results suggest that local circulating subtype C strains will be as

susceptible to ARV therapy as subtype B isolates from Europe and North America.

However, the long-term efficacy of HAART on subtype C has yet to be determined.

Changes in phosphorylation sites and the development of novel, positively selected

mutations under drug selection pressure, suggests that subtype C can rapidly compensate

for any loss of fitness caused by drug resistance mutations.
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Appendix A

The control files are described below.

• Seqfile, outfile and treefile specifies the names of the sequence data file, main result file, and

the tre structure file respectively.

• Noisy controls how much output you want on the screen

• Verbose controls how much output is in the result file

• Runmode = 0 means evaluation of the tree topologies specified in the trees structure file.

Runmode = 1 or 2 means heirustic tree search by the star-decomposition algorithm etc.

• Model specifies the model of nucleotide substitution

• Mgene is used for combined analysis of data from multiple genes or the three codon positions.

• Fix kappa specifies whether k in K80, F84 or HKY85 is given at a fixed value or is to be

estimated by iteration from the data.

• Fix_alpha and alpha work in a similar way, where alpha refers to the shape parameter a of the

gamma distribution for variable substitution rates across sites (Yang, 1994)

• Fix rho and rho work in a similar way and concern independence or correlation of rates at

adjacent sites, where rho is the correlation parameter of the auto-discrete gamma model (Yang,

1995).

• NparK specifies nonparametric models for variable and Markov-dependent rates across sites:

npark=1 or 2 means several categories of independent rates for sites, while npark=3 or 4 means

the rates are Markov-dependent at adjacent sites.

• Clock specifies models concerning rate constancy among lineages.

• Nhomo is for baseml only and concerns the frequency parameters in the F81, F84, HKY85,

TN93 or REV models.

• GetSE indicates whether we wnat estimates of the standard errors of estimated parameters.

• RateAncestor=l works with runmode=0. Rates are calculated for sites along the sequence

(output in rates file) and performs marginal ancestral reconstruction (output in rst file)

• Small_Diff is a small value used in the difference approxiamtion of derivatives.

• Cleandata = 1 means sites involving ambiguity characters or alignment gaps are removed from

all sequences. This leads to faster calculation.

• Method: this variable controls the iteration algorithm for estimating branch lengths under a

model of no clock. method = 0 implements the old algorithm in PAML, which updates all

parameters including branch lengths simultanwously.Method = 1 specifies an algorithm which

updates branch lengths one by one. Method=1 does not work under the clock models.

• Ndata: specifies the number of separate data sets in the file.
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