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Abstract

Faulty insulators may compromise the electrical and mechanical integrity

of a power delivery system, leading to leakage currents flowing through line

supports. This poses a risk to human safety and increases electrical losses

and voltage drop in the power grid. Therefore, it is necessary to monitor

and inspect insulators for damages that could be caused by degradation or

any accident on the power system infrastructure. However, the traditional

method of inspection is inadequate in meeting the growth and development

of the present power grid, hence automated systems based on computer

vision method are presently being explored as a means to solve this problem

speedily, economically and accurately.

This thesis proposes a method to distinguish between defectuous and non-

defectuous insulators from two approaches; structural inspection to detect

broken parts and a study of hydrophobicity of insulators under wet condi-

tions. For the structural inspection of insulators, an active contour model

is used to segment the insulator from the image context, and thereafter

the insulator region of interest is extracted. Then, different feature extrac-

tion methods such as local binary pattern, scale invariant feature transform

and grey-level co-occurrence matrix are used to extract features from the

extracted insulator region of interest image and then fed into classifiers,

such as a support vector machine and K-nearest neighbour for insulator

condition classification. For the hydrophobicity study of the insulator, an

active contour model is used to segment water droplets on the insulator,

and thereafter the geometrical characteristics of the water droplets are ex-

tracted. The extracted geometrical features are then fed into a classifier to

assess the insulator condition based on the hydrophobicity levels.

Experiments performed in this research work show that the proposed meth-

ods outperformed some existing state-of-the-art methods.
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Chapter 1

General Introduction

1.1 Introduction

The Electric Power System (EPS) plays a very important role around the world, such

as feeding homes and all areas of an establishment with a constant supply of electricity.

The EPS is an interconnected network that is used to transport power from suppliers

to consumers. It is made up of generation centres, distribution stations and diverse

infrastructures. The generating centre is the source that produces electrical power

which is then send to the distribution station via the transmission lines and finally

to the demand centre [11]. Some of the most important components of transmission

lines are insulators, conductors, spacers, dampers and bushings. One major component

that can cause a great damage to the EPS if malfunctioning is the insulator. A faulty

insulator can cause a change of voltage and electric current [12], which may lead to a

great impact on the transmission and distribution of electricity. It is therefore important

to monitor the insulators’ degradation or deterioration in order to prevent failure and

reduce outages and maintain or increase the performance of the power grid. Figure

1.1 shows insulators that are used to mechanically attach conductors to transmission

towers/pylons and Figure 1.2 shows an insulator.
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1.1 Introduction

Figure 1.1: Pylon Insulators are used to mechanically attach conductors to transmission

towers/pylons
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1.2 Problem Description and Motivation

Figure 1.2: An Insulator

1.2 Problem Description and Motivation

A power-line insulator inspection is usually done manually (Figure 1.3), either directly

on the lines or indirectly from the ground or air using a vehicle or helicopter respec-

tively. When an inspection of a power-line insulator is done directly, it endangers

the inspector since power-lines environment are polluted and dangerous with a high

potential difference between the lines generating an electric and magnetic field in the

vicinity of lines at normal condition and higher in the presence of defects [13]. Hence,

it makes the on-site inspection of insulator condition using the traditional method very

dangerous and unsafe to humans, but becomes an impractical task when monitoring

and inspecting long lines spanning long distances with difficult terrain.

Figure 1.3: Climbing Inspector [1]
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1.2 Problem Description and Motivation

In aerial surveillance such as the helicopter assisted inspection (Figure 1.4), the

helicopter is flown around the power-lines and a trained inspector uses a camera to

track and film the power-line insulator for further analysis. This method is tedious,

expensive and dangerous to the pilot and trained inspectors when the helicopter is too

close to the power-lines. The constant vibration and translational movement of the

helicopter can affect the sight control of the camera and as a result leads to image

blurring [13], [14].

Figure 1.4: Helicopter inspection for insulators [2]

The advent of a digital camera system has reduced the number of inspectors for

inspecting the insulators. Instead, inspectors are replaced by several cameras that

are monitored by a single inspector through a computer aided system. This reduces

the need for a large number of inspectors but is still prone to human error. This is

because a single inspector needs to stay alert at all times in order to identify and

track the insulator condition. However, the inspector can get tired and overlook some

small defect on an insulator. This has necessitated having an automated system that

can carefully detect the condition of insulators. Unmanned Aerial Vehicle (UAVs)

(Figure 1.5) are also employed for insulator condition inspections. UAV employs the
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1.2 Problem Description and Motivation

Figure 1.5: Drone inspection for insulators [3]

Figure 1.6: Robot inspection for insulators [4]
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1.3 Aims and Objectives

principle of the helicopter because of its ability to fly around power-lines. Some of

the problems with UAVs are similar to those of helicopter-assisted inspection, such

as proximity and position control. An alternative approach to power-line inspection

is a robot (Figure 1.6) which can move along the conductor, with its design capable

of overcoming obstacles on the power-lines. The main advantage of the robot is its

inspection accuracy due to close proximity to the power-lines and its low vibration

increases the quality of image acquisition. The computer vision method has been

identified as one of the robust solutions to identify and analyze insulators condition

safely, speedily and accurately [15] and has been the subject of intense research in

recent times. Image processing and computer vision methods are less expensive due

to the advent of new technologies in the domain of digital imaging and the availability

of low cost cameras. Therefore, incorporating computer vision into the robot gives a

complete and robust automation system that can interpret the captured images.

1.3 Aims and Objectives

The main aim of this research is to design models for the classification of power-line

insulator conditions. The specific objectives are:

• To develop an automated model for segmenting and extracting an insulator region

of interest;

• To develop an automated model for the classification of insulator condition;

• To determine an optimized feature extraction model for insulator classification;

and

• To develop an automated model for the hydrophobicity classification of insulators.

1.4 Contributions to Knowledge

The major contributions to knowledge of this thesis include:

• The development of an algorithm for the extraction of an insulator region of in-

terest. The model uses the active contour method in combination with morpho-

logical operations to segment an insulator and further extract an insulator region
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1.5 Publications

of interest. Extracting the region of interest helps optimize the classification of

insulator condition (non-defectuous or defectuous).

• The design and implementation of a model for insulator condition. The model

extracts an insulator region of interest and then uses feature extraction methods

to extract features from the insulator image or series of insulator images while also

attempting to reduce the extraction of features that are not stable or constant in

an insulator image. These features are used to train a classifier and the classifier

is used to determine the condition of any new insulator.

• The investigation of feature extraction method such as Grey Level Co-occurrence

Matrix (GLCM), Local Binary Pattern (LBP) and Scale Invariant Features Trans-

form (SIFT) in order to determine their suitability for the classification of insu-

lator condition.

• The development of a model for insulator hydrophobicity classification based on

geometric parameters. The proposed model uses a geodesic active contour ap-

proach in combination with morphological operation to segment water droplets

on an insulator and then uses the geometric parameters to classify insulator con-

dition.

1.5 Publications

1. U Iruansi, J R Tapamo, I E Davidson and M Khan, “Insulator Region of Interest

using Active Contour Model and Speeded Up Robust Features”. In Proceedings

of the 2nd Eskom Power Plant Engineering Institute (EPPEI) Student Workshop,

Eskom Academy of Learning, Midrand, South Africa, June 8-9, 2015.

2. U Iruansi, J R Tapamo and I E Davidson, “An Active Contour Approach to In-

sulator Segmentation”. In Proceeding of the 12th IEEE AFRICON International

Conference, Addis Ababa, Ethiopia, September 14-16, 2015, pp. 556-560.

3. U Iruansi, J R Tapamo and I E Davidson, “An Active Contour Approach to

Water Droplets Segmentation from Insulators”. In Proceedings of the IEEE In-

ternational Conference on Industrial Technology (ICIT2016), March 14-17, 2016,

Taipei, Taiwan, pp.737-741.
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4. U Iruansi, J R Tapamo, I E Davidson and M Khan, “Polymeric Insulator Con-

dition Analysis Based on Hydrophobicity”. In Proceedings of the 3rd Eskom

Power Plant Engineering Institute (EPPEI) Student Workshop, Eskom Academy

of Learning, Midrand, South Africa, July 11-12, 2016.

5. U Iruansi, J R Tapamo and I E Davidson, “Insulator Condition using Local Binary

Patterns Combined with Support Vector Machines”. Manuscript accepted in 13th

IEEE AFRICON International Conference, Cape Town, South Africa, September

18-20, 2017.

6. U Iruansi, J R Tapamo and I E Davidson, “Hydrophobicity Classification of

Insulators Based on Geometric Parameters”. Manuscript under review in Journal

of computers (JOC)(Taiwan).

7. U Iruansi, J R Tapamo and I E Davidson, “Classification of Insulator Condi-

tion using Local Binary Patterns with Support Vector Machines”. Manuscript

submitted to IAENG International Journal of Computer Science, (IJCS)

8. U Iruansi, J R Tapamo and I E Davidson, “Power-line Insulator Condition Clas-

sification”. Manuscript submitted to International Journal of Engineering and

Technology Innovation (IJETI).

1.6 Thesis Outline

This thesis contains seven chapters. The current chapter discusses the general intro-

duction of the thesis, where the research context is given and problem description and

motivation, aims and objectives, contribution to knowledge, thesis outline and conclu-

sion are discussed. The rest of the thesis is organized as follows:

Chapter 2 describes the theory and background of the subject matter, such as

the function of an insulator and its acquisitions, pre- and post-processing techniques,

segmentation methods, feature extraction methods and classification. In addition, the

advantages and disadvantages of these methods are highlighted and then reviews of

previous researches in the related areas are discussed.

Chapter 3 discusses Active Contour Models (ACMs), such as the Active Contour

Without Edges (ACWE) and Geodesic Active Contour (GAC). It proposes the im-

plementation of ACM by Chan-Vese for insulator segmentation and the extraction of
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1.7 Conclusion

insulator ROI. Also, comparison of ACWE and other segmentation method are carried

out.

Chapter 4 introduces an automated method for the classification of power-line in-

sulator condition using Local Binary Patterns and Support Vector Machines.

Chapter 5 describes an automated method for the classification of power-line insu-

lator condition using Scale Invariant Feature Transform and K-Nearest Neighbour.

Chapter 6 proposes an automated method for the hydrophobicity classification of

insulators using geometric parameter such as area and circularity.

Chapter 7 concludes the thesis and outlines future works.

1.7 Conclusion

This chapter has discussed the background of insulator condition monitoring, chal-

lenges faced, and motivation. It also highlighted the aims, objectives, contribution to

knowledge and thesis outline.
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Chapter 2

Insulator Condition based on

Image Processing and Computer

Vision

2.1 Introduction

This chapter presents an introduction to power-line insulators and its acquisition. It

discusses the different stages involved in a complete design of understanding and analy-

sis for insulator condition in the context of image processing and computer vision. The

steps involved are image pre-processing, feature extraction and classification. In ad-

dition, related and previous research in insulator detection, insulator fault recognition

and classification are discussed.

2.2 Insulators and their Acquisitions

Insulators are used to mechanically attach conductors to structures (such as pylons,

towers, and poles); they provide an electrical insulation between an energized conductor

and the grounded structure [16]. This makes the insulator an important component in

the EPS, both in the distribution and transmission systems.

There are different types of insulating materials used for manufacturing insulators

namely porcelain, glass and polymers; all of them possess the same characteristics of

having a repetitive circular shape. Transmission line insulators can be categorized into
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2.3 Image Pre- and Post-processing

ceramic insulators and polymer insulators [16]. This thesis is based on polymer in-

sulators. Polymer insulators may also be called polymeric, composite or non-ceramic

insulators. They are characterized by being light-weight, compared to porcelain and

glass insulator; the flexibility of its sheds minimizing breakage; the low cost of installa-

tion; less load to the supporting structure due to its light-weight, high-tensile strength

compared to porcelain; high performance in polluted areas; and less cleaning due to its

hydrophobicity. Hence, polymer insulators are most popular for outdoor high-voltage

insulation [17], [18], [19].

A defect in an insulator defies its function, thereby causing great damage to the

EPS. There are different types of insulator defects that are described by the Electric

Power Research Institute [16], but this thesis focuses on insulator defect analyzed from

two perspectives; physical defect such as split, torn or animal damaged as one set of

defects and hydrophobicity as the other set of defects. Hydrophobicity (or hydrophobic)

and hydrophicity (or hydrophilic) are terms used to describe the wetting properties of

a surface by water [20]. A hydrophobic surface is water-repellent while a surface that

attracts water is hydrophilic [21]. Hydrophobicity is not physically noticeable, but can

be determined by hydrophobicity measure.

The technique for image acquisition in the first set (physical defect) is to use a

digital camera to capture images of insulators. In the second set (hydrophobicity),

insulator surfaces are sprayed with distilled water and digital camera is used to capture

images of water droplets on the insulator surface from a fixed distance as water droplets

approach a steady state.

2.3 Image Pre- and Post-processing

During image acquisition and after image analysis, noises may be introduced. These

noises may affect the actual object of interest by creating unwanted effects such as

unrealistic edges, lines, corners, artifact and blurring. To remove or minimize these

effects pre- and post-processing need to be carried out. Pre-processing such as median

filtering, Gaussian filtering and morphological operation, are mostly filtering operations.

Post-processing at some stages of image analysis is needed to correct some anomalies

introduced. The following post-processing methods are often used: dilation can be

used to fill some gaps, erosion can be used to erode undesirable pixels, and opening
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2.3 Image Pre- and Post-processing

and closing are combinations of the two previous preprocessing operations. Before the

pre-processing stage, captured images are usually converted from colour or RGB (colour

Red, Green and Blue) format to other formats such as grey-scale or HSI (Hue Saturation

and Intensity) which are usually convenient in most computer vision applications.

2.3.1 Median Filtering

Median filters are non-linear methods used in smoothing images while preserving edges

or reducing edge blurring. It is used in image filtering and very useful for removing the

salt and pepper kind of noise [22]. The median is computed by replacing the centre

pixel of a nxn mask defined in an image with the median of all sorted pixel values of

the n × n mask [23]. Figure 2.1 shows an example of the application of 3 × 3 median

filter on a pixel.

Figure 2.1: Application of the median filter

2.3.2 Gaussian Filtering

The Gaussian filter is a non-uniform low pass filter that is used in smoothing an image;

it normally blurs the image. The operation of a Gaussian filter is to convolve a given

image with a defined Gaussian kernel and the output is a smoothed version of the

original image. The kernel is rotationally symmetric with no directional bias and its

coefficients decrease with an increasing distance from the kernel center. Central pixels

have a higher weighting than those at the edges. Gaussian filter has been used in [24]

and [25] and it is stated in [25] that when an inappropriate variance is chosen, it has a

significant impact on image smoothing, which may cause edge deletion.
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2.3 Image Pre- and Post-processing

2.3.3 Morphological Operation

Morphological operation is used in image processing to modify the spatial form or

structure of objects within an image [26]. The main morphological operations are:

erosion, dilation, opening, closing, top-hat and bottom-hat filters. Before any of these

morphological operations are applied to a given image which may be either binary or

grey-scale, it is necessary to define a structuring element. A structuring element is a

shape or pattern which is used to interact with a given image, resulting in how the

shape fits or misses the object in the image.

For morphological operations, dilation is when an object (foreground) in the image

expands uniformly in spatial extent, whereas erosion is when a foreground in the image

shrinks uniformly. Closing can be used to remove holes (background pixels) from the

foreground and opening can be used to remove stray foreground pixels from image

background. Top-hat and bottom-hat filters are good in correcting uneven illumination

on a varying background. They are also used to extract small elements and details from

a given image. Top-hat is the difference between the input image and its opening by a

structuring element while the bottom-hat is the difference between the input image and

the dilation with a structuring element. Top-hat preserves sharp peaks and improves

contrast, while bottom-hat preserves sharp bottoms and improves contrast [27], [28],

[29]. These morphological operations have been used in several studies, morphological

pre-processing [30], image processing and quantitative shape analysis [31], background

detection and illumination normalization [32], detection of cracked regions in ferrite

[33] and image restoration [34].

A typical example of the implementation of morphological operation using the dila-

tion operation is shown in Figure 2.2. The zero-values shown in Figure 2.2(a) represent

the background and the one-values represent the foreground (the rectangular object

in Figure 2.2(a)). Figure 2.2(b) is a structuring element with a three-pixel diagonal

arrangement. The origin of the structuring element is represented with the rectangular

border in Figure 2.2(b) which can be used to dilate the original image in Figure 2.2(a)

by translating the structural element into several locations (at every one-value) in the

original image. This increases the size of the object specified with the asterisk in Figure

2.2(c) and the final output in Figure 2.2(d).
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2.4 Segmentation

Figure 2.2: (a) Original image, (b) structuring element with three-pixel diagonal ar-

rangement and the origin of the structuring element represented by a rectangular border;

(c) structuring element translated into several locations on the original image and (d) final

output. The zero-values and one-values represents background and foreground respectively.

2.4 Segmentation

Image segmentation is the process of partitioning an image into different sub-regions of

foreground (object) and background based on desired features [27]. The segmentation

helps to define the Region of Interest (ROI) of an object for further analysis. For exam-

ple, to extract features from an insulator, it needs to be segmented in order to reveal

the insulator ROI. There are different methods of segmentation, which can be catego-

rized into edge-based and region-based segmentation depending on the implementation

scheme.

2.4.1 Edge-based Segmentation

The Edge-based segmentation method identifies sudden changes in the intensity of an

image, resulting in the connectivity of edges around the object of interest. Most edge-

based techniques are based on the computation of a local derivative operator. The

computation of the local derivative operation is by convolving an image with kernels

such as Sobel, Prewith and Robert gradient. A critical disadvantage of the gradient

operation is its sensitivity to noise. Therefore, a noise smoothing operation is required
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before detecting edges in order not to include isolated pixels which may compromise the

efficiency of edge detection [35]. A better option is convolving an image with Laplacian

of Gaussian function which produces smooth edges as the Gaussian filter provides a

smoothing effect [36]. The edge-based segmentation is extremely valuable in images

with sharp edges or intensity transitions and generally low noise. The computational

time is moderately lower than other segmentation techniques because the calculation

depends on a local filtering operation.

2.4.1.1 Canny Operator

Canny operator [37] is computed by first smoothing the image using the Gaussian

filter, then finding the intensity gradient of the smoothed image by computing the

finite difference of the first order partial derivatives both in horizontal and vertical

directions. Thereafter, the non-maximum suppression is applied in order to minimize

th response to false edges. A double threshold is then applied to determine possible

edges and finally, edge tracking by suppressing all the other edges that are weak and

non-connected to strong edges.

The drawbacks of the canny operator is that the smoothing of the image may cause

excessive smoothness leading to edge loss [38]. Furthermore, the dual thresholds are

not self-adaptive, rather the values are set artificially. Therefore, threshold value set

too high may lead to edge losses while threshold value that is too low may lead to

excessive thickness of the edges. However, the canny operator is widely used in edge

detection [39], [40].

2.4.1.2 Edge-based Active Contour

The first Active Contour Model (ACM) which is known as “snakes” was proposed

by Kass et al. [41]. The principle of operation of the snakes is to use a gradient

descent technique to deform a parametric curve drawn manually around the object in

the image until the object region of interest is defined [42]. The snake has been used

for object segmentation in [43], [44], [45] with promising results. The drawback of

the snake method is that the curve is parameterized and cannot split and thereafter

merge in order to identify more than one object in the image. Figure 2.3(a) shows an

illustration with two circular objects. The red rectangle is the contour or curve and as
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Figure 2.3: The inability for snakes to deal with changes in topology; (a) original curve,

(b) final curve

the curve deforms to the boundary of the objects in Figure 2.3(b), it is not able to split

in order to have two separate objects.

A further extension of the edge-based ACM is known as the Geodesic Active Contour

(GAC). It was proposed by Caselles et al. [46], [47] in two separate studies. Caselles et

al. [46], [47] introduced an additional term known as the stopping function, to the speed

function. The GAC was the first level set implemented ACM for image segmentation.

The level set theory for implementing active contours was first proposed by Osher and

Sethian [48], and Sethian [49]. These researchers described a contour implicitly with a

two-dimensional Lipschitz-continuous function characterized on the image plane. The

Lipschitz-continuous function is known as the level set function. Other researchers

however proposed a similar ACM in [50], [51], [52].

The active contour problem is proportionate to finding a path of minimal distance,

called geodesic curve [36]. Advantages of the geometric approach over the parametric

approach are that their representation does not require a choice of parameters and the

topology of the curve is not fixed and can jump curves. This allows for the detec-

tion of any number of objects in the image, without knowing their correct number(s).

This is accomplished with the presentation of a level set numerical algorithm for curve

evolution, developed by Osher and Sethian [48]. The GAC has been used for object

segmentation with promising results in [53], [54], [55], [56].

All ACM approaches that rely on edge function to stop contour evolution detect

only objects characterized by gradient [7]. Therefore in practice, the discrete gradients
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are bounded, the stopping function is never zero on the boundaries or edges of the

object and the curve may pass through the boundary especially for the models in [46],

[50], [57], [58]. The disadvantages of GAC may includes the fact that its output is

affected in a noisy background in an image, that the application of a strong Gaussian

smoothing to a noisy image also smooths the edges of the object and that GAC is

relatively slow when compared to other conventional methods of segmentation [59].

2.4.2 Region-based Segmentation

Region-based segmentation utilizes information, such as colour, texture, intensity, or

probability density function in guiding the motion of the curve [60], [61]. The advantage

of the region-based segmentation over the edge-based approach is that it considers

region areas rather than the local properties such as gradient. Region-based methods

are thresholding and Active Contour Without Edges (ACWE).

2.4.2.1 Thresholding

Thresholding is the simplest method of segmentation. An intensity value known as the

threshold is used to partition pixels in an image into foreground from its background

based on their level of distribution. Thresholding produces a binary image from a

grey scale image by making all pixels equal or below some threshold to zero and above

to one. There are different types of thresholding techniques, namely, global or fixed

thresholding, local or regional thresholding and adaptive or dynamic thresholding. In

a global thresholding technique, a single threshold value is used which is a function of

only the entire image [62]. In a local thresholding technique, the threshold value is a

function of both the image and the local properties [62]. In an adaptive thresholding

technique, a different threshold value is used for different regions in the image [63].

There are several ways of selecting threshold value; either manually or automatically

by the use of a threshold algorithm. In the computation of the automatic threshold

value, the mean or median is used but performs poorly in a noisy image [63]. A better

technique is to create a histogram of the image pixel intensities and use the valley

point as the threshold. However, the image histograms may not have well defined

valley points which may lead to difficulty in threshold selection. Thresholding has been

used for several object segmentations, medical imaging [62], insulator recognition [12],

insulator hydrophobicity classification [10] and robust object segmentation [64].
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Figure 2.4: The level set function, φ evolution from its zero level set and curve, C

propagation

2.4.2.2 Region-based Active Contour

The region-based method is strictly based on level set theory. In the implementation

of the level set function on image segmentation, the zero level set is used to define the

contour in order to have a border between a negative area and a positive area, so that

the contour can be defined using the sign of the level set. As the level set function

increases from its initial state, the contour propagates towards the inside or outside

depending on the implementation (Figure 2.4). Thus, it can be stated that the level

set function is equivalent to the evolution of the contour.

A different ACM without the utilization of an edge/stopping function to stop the

contour/curve evolution was proposed by Chan and Vese [7]. It is a region-based

method that is known as Active Contour Without Edges (ACWE) and it is based on

Mumford-Shah [65] techniques. ACWE consists of the regularity part, which decides

the smooth shape of contours and the energy minimization part, which searches for

the consistency of a coveted feature inside a subset instead of searching edges during

contour deformation. ACWE approximates the length of the curve by a function of the

level set. This model relies on global properties such as intensities, texture and region

areas, rather than considering the local properties such as gradient. The advantage of

ACWE, is that it is able to segment an image that has smooth boundaries. This is

possible because the evolution of the curve does not depend on gradient information,
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Figure 2.5: The level set function φ evolution from its zero level set with topology changes

and curve propagation from initial C to a point of curve merging to form a single curve

therefore weak edges do not affect the final segmentation [66].

The advantage of the level set method is that contours can be separated into part or

join together as the topology of the level set function changes (Figure 2.5). Therefore,

more than one object can be detected in an image using level set methods and multiple

initial contour can be used. One of the primary downsides of the level-set method is

that it has high computational time due to the computation on an indistinguishable

measurement from the image plane and furthermore on the grounds that partial differ-

ential equations have to be worked out [67]. High computational time can be minimized

by utilizing more than one contour as initial contours for quick interaction with contour

neighbours, thereby leading to fast convergence [36], [68]. However, the convergence

speed of the level set approach is relatively slower than other methods of segmentation

[36]. ACMs with level set technique have been used in various objects’ segmentation

[7], [35], [36], [60], [69], [70] [71], [72].

2.5 Feature Extraction

Feature extraction is very essential in image analysis and computer vision because it

helps to describe relevant information contained in an object or pattern in order to
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ease the task of object or pattern classification [73]. Feature extraction is also used

for dimensionality reduction. When large amount of a data is being processed without

much information, it is completely changed into a reduced arrangement of features also

known as feature vector. The complete change of the input data into an arrangement

of features is known as feature extraction. For well selected features (good features),

a higher accuracy will be achieved for classification instead of using weak or poorly

selected features (bad features) that will not properly describe the object and the use

of the full size image. However, features can be described as information on region in

an image that can be unambiguously recognized when seen in another image of the

same scene possibly taken from a different view. There are different feature extraction

methods, some of which are Grey Level Co-occurrence Matrix (GLCM), Local Binary

Pattern (LBP) and Scale Invariant Features Transform (SIFT).

2.5.1 Grey Level Co-occurrence Matrix

GLCM [74], [75] is a statistical method proposed by Haralick for feature extraction.

It is created by computing how regularly a pixel with an intensity value exists in a

particular spatial relationship to another pixel with an intensity value in an image.

The direction is often taken as (0o, 45o, 90o, 135o). For example, considering Figure

2.6(a) as an image matrix and assuming that the position operator is one pixel on the

horizontal to the right, the frequency of pair pixel is obtained by counting the number

of times the pair pixel occurred in the original image. The pair pixels (0, 0) in the red

ellipse or circle in Figure 2.6(a) occurs twice and is represented as value 2 in the red

circle in Figure 2.6(b). Similarly, the pair pixels (2, 1) in the blue rectangle in Figure

2.6(a) occurs twice and represented as value 2 in the blue rectangle in Figure 2.6(b).

This is applicable to all other pair pixels in Figure 2.6 in obtaining the output in Figure

2.6(b). However, the computed GLCM output will have a matrix that is equal to the

number of distinct intensity values in the original image which is four (0, 1, 2, 3). From

Figure 2.6(b), the co-occurrence matrix is computed. This is the division of all the

considerable number of elements in the matrix by the sum of all elements in the same

matrix.
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Figure 2.6: (a) Original image and (b) GLCM of original image in the horizontal direction

(0o) at a distance of one pixel

Once the GLCM is defined in a certain direction, it is normalized in order to en-

sure that the features are not influenced by the region’s limitation. Fourteen GLCM

features are also known as Haralick features and are: angular second moment (energy),

contrast, sum of squares (variance), correlation, inverse difference moment (homogene-

ity), sum variance, sum average, entropy, sum entropy, difference variance, difference

entropy, maximum correlation coefficient, information measure of correlation 1, and

information measure of correlation 2. The Haralick features are defined in [74]. How-

ever, features with better performance are always selected from the fourteen Haralick

features when carrying out an experiment. GLCMs have been used in different areas of

image processing and computer vision namely, segmentation, object detection, recog-

nition, fault detection, and classifications; insulator detection [8]; discriminate lungs

abnormalities [76]; and brain tumour classification [77]. One main drawback of GLCM

is that it is not rotation invariant.

2.5.2 Local Binary Pattern

LBP is a feature extraction method that is non-parametric. It is a grey-scale imple-

mentation, rotation invariant and defines the spatial structure of the local texture of

an image [78]. In recent years, its application has increased in image processing and

computer vision due to its computational simplicity and tolerance in monotonic illumi-

nation changes [79]. It has been used in numerous applications, such as defect detection

[80], [81], visual inspection [82] and biometrics [83].
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The principle of the original version of LBP [84] is used to create labels by using

the centre value as a threshold for its neighbouring pixels and the results are binary

numbers. For example, the value 4 inside the red circle in the image fragment in Figure

2.7 is used as the threshold for its neighbouring pixels, and the results is in binary which

is read clockwise starting from the 0 inside the red circle. The resulting histogram is

used as a texture descriptor. The restriction of the original version of LBP operator

is that features computed in a local area of a 3 × 3 neighbourhood fail to capture the

main features of some textures in large scale structures. As a result, it was modified to

use neighbourhoods of various sizes [5].

Figure 2.7: Basic LBP operator computation

The extended LBP uses circular neighbourhoods and bi-linearly interpolates values

at non-integer pixels coordinates which allow for any radius and number of pixels in

the neighbourhood. For example, in Figure 2.8(a), gc represents the centre pixel with

value 4 and the differences between g0 and gc are presented in Figure 2.8(b) in the same

position of g0, with value −1, likewise g1 to g7, and any value from the difference that is

equal or greater than the value 0 is represented as 1 otherwise is 0 (Figure 2.8(c)). This

gives a binary representation. In the circular neighbourhood, a local neighbourhood is

referred to a set of sampling points P that are equally distributed on a circle of radius R

which is focused at the pixels to be labelled, and the P that is not inside the pixels are

inserted using bilinear interpolation, which considers any radius and any number of P

in the neighbourhood. Figure 2.9 demonstrates a few cases of circular neighbourhood

for different sampling points P and radius R defined as (P,R).

The LBP operator produces different output values that conform to different bi-

nary patterns produced from the neighbouring pixels. In the event that the image is
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Figure 2.8: Circular neighbourhood LBP operator computation

Figure 2.9: Different sampling points P and radius P , defined as (P,R) [5]

rotated, each closely encircling pixel in the neighbourhood will move accordingly along

the border of the circle subsequently bringing about a different LBP value, except for

patterns with 0s and 1s which also remain constant at all rotation angles. However,

Ojala et al. [5] stated that the rotation-invariant LBP does not give very good discrim-

ination because of the following two reasons namely, a great variation in the frequency

of the 36 individual patterns and the unpolished quantization of the angular space at

45o intervals.

A further extension to the original LBP operator uses a fundamental pattern called

“Uniform” since they have a uniform circular structure that contains not very many

spatial transitions [5]. Figure 2.10 describes the uniform pattern which functions as a

template for micro-structures such as bright spot (0), edges of varying negative and pos-

itive curvature (1−7) and flat area or dark spots (8). Figure 2.11 shows a non-uniform

pattern. LBP is described as a uniform pattern if the binary pattern has at most two

bitwise transitions from 0 to 1 or 1 to 0 when the bit pattern is traversed circularly (see

Figure 2.10). For example, the patterns 00100000 and 00000001 have 2-transitions and

1-transition respectively for uniform patterns. This is because the patterns contain at
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most two, 0-1 and 1-0 transitions. On the other hand, the pattern 10001000 is consid-

ered a non-uniform pattern since it has 3-transitions. This LBP operator proposed by

Ojala et al. is a grey scale and rotation-invariant texture descriptor.

Figure 2.10: Uniform patterns with the number of transitions less or equal to 2 (≤ 2) and

the numbers inside them correspond to their unique codes. The white and black circles

denotes bit values of 1 and 0 in the 8-bit output of the operator [5].

Figure 2.11: Non-uniform patterns with the number of transitions greater than 2 (> 2).

The use of uniform patterns has produced better recognition in many computer

vision applications [85]. This is because research has shown that most natural images

contains uniform patterns [5]. Also, there is reduction in the length of the feature

vector and it is rotation invariant.
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2.5.3 Scale Invariant Feature Transform

SIFT was proposed by David Lowe [6] and it is a popular algorithm for extracting

features in images. The SIFT algorithm transforms an image into a set of feature

vectors that are invariant to scale, rotation, affine distortion, changes in 3D viewpoint,

noise and illumination changes. SIFT is used in many applications such as insulator

recognition [86], [87], image classification [88], [89], [90] and facial recognition and

detection [91], [92], [93], all with promising results. The main drawback of SIFT is

that it is computationally expensive because of the high dimensionality of vectors (128-

dimensional vectors) used to describe keypoints. The SIFT operation can be categorized

into four stages which are used to identify image features. These four stages are, scale-

space extrema detection, keypoint localization, orientation assignment and keypoint

descriptor.

Scale-space extrema detection: The scale-space extrema detection is the first

stage of the SIFT algorithm which searches an image over various scales and octaves in

order to isolate extrema points of the image that are different from their neighbourhood.

These extrema points are potential candidates for image features. SIFT is implemented

by first rescaling the given image of each octave of scale-space by convolving more

than once with a Gaussian convolution kernel into a set of scale-space images of lower

resolutions (see images shown on the left of Figure 2.12) and then adjacent Gaussian

images of the same scale are subtracted to produce DoG images (see the right part

of the image in Figure 2.12). After each octave, the Gaussian image is down-sampled

and the process repeated. Then to detect potential keypoints which are considered

as the local maxima and minima in the DoG images that occurred on different scales

(such as the one marked “X” in Figure 2.13), each pixel is compared with its eight

(8) neighbours in the same or current DoG image and their nine (9) neighbours of the

adjacent scales (marked with circles in Figure 2.13).

Keypoint localization: Once keypoints have been found, they are unstable which

means that a lot of potential keypoints are generated with some along the edges, or

have poor contrast (sensitive to noise). Thus, a refinement is required for more useful

results. For discarding keypoints along the edges, the algorithm computes the principal

curvatures from the Hessian matrix and it is used to threshold the points located along

the edges, if the curvature that is perpendicular to the edge is large and the other along
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Figure 2.12: Rescaling the initial image of each octave of scale-space by repeatedly

convolving with a Gaussian convolution kernel into a set of scale-space images (left images)

and then adjacent Gaussian images of the same scale are subtracted to produce DoG images

(right images). After each octave, the Gaussian image is down-sampled by a factor of s,

and the process repeated [6].

Figure 2.13: Potential keypoints which are considered as the local maxima and minima

in the DoG images that occurred on different scales (marked “X”); each pixel is compared

with its eight (8) neighbours in the same DoG image and their nine (9) neighbours of the

adjacent scales (marked with circles) [6].
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the border is small, the keypoint is discarded. If both curvatures are above a certain

threshold, the keypoint is considered to be in a corner, and is kept. If both curvatures

are small, the keypoint is located on a flat region and is also kept. For a poor contrast

keypoint, if the magnitude of the intensity at the current pixel in the DoG image is less

than a threshold, it is discarded. With this, a set of stable keypoints that are invariant

to scale is achieved.

Orientation assignment: The next step is to allocate a standard orientation to

the keypoints in view of the most dominant direction of the gradients in the local image

properties. This step is important for achieving invariance to image rotation. In this

process, the algorithm takes around each keypoint a neighbourhood whose size depends

on the scale on which it was detected (higher scale, larger regions), and then calculates

the magnitude and direction of the gradient at each pixel, to finally build an orientation

histogram with 36 bins covering 360 degrees. The most prominent bin is taken as the

gradient of the keypoint. For any other bin exceeding 80% of the most prominent bin, a

new keypoint is created and its gradient is computed. For example, different keypoints

can be created with the same location and scale, but with distinct orientations. At this

point, it can be said that a set of keypoints invariant to scale with assigned orientation

has been created.

Figure 2.14: A keypoint descriptor creation

Keypoint descriptor: The last stage is to determine the keypoint descriptor,

which is generated with 16× 8 = 128 values from the SIFT feature vector forming the
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keypoint descriptor that is invariant to scale, rotation and translations. Considering

Figure 2.14 as an example, the left image of Figure 2.14 represents the keypoint de-

scriptor generated by computing the gradient magnitude and orientation of every image

sample point in an area around the keypoint location. These are then weighted by a

Gaussian window, shown by the overlaid circle in Figure 2.14. The samples are then

gathered into orientation histograms summarizing the contents over 4× 4 sub-regions,

as illustrated on the middle image of Figure 2.14, with the length of each arrow corre-

sponding to the sum of the gradient magnitudes near that direction within the region,

as shown in the right side of Figure 2.14.

Finally, the feature vector is modified to reduce the effects of illumination change

by normalizing the vector’s length.

2.5.4 Geometric Parameters

The geometric parameters are the geometric features of an object. These features are

numerical values computable from pixel or values in a region. The properties of these

features are that they are easy to compute, and not affected by scaling, translation

and rotation. An example of these features is the size of the object which is the total

number of pixels in that object or region. The region in a binary image is equal to a

2D-distribution of foreground pixels within the discrete plane. Some of these geometric

parameters are: perimeter, area, compactness, roundness or circularity, bounding box,

convex hull and moments. These geometrical parameters have been used in [94] and

[95] for determination of pharmaceutical ingredients.

Figure 2.15: Computing the area and perimeter of an object
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To obtain the area of an object, the pixels in the object are counted while the

perimeter is the total length of the object boundary. For example, let the black rect-

angle boxes in Figure 2.15 represent pixels of an object, then the area is the total

number of the rectangular boxes of the object which is 38 for both Figure 2.15(a) and

Figure 2.15(b). For the perimeter computation, the horizontal and vertical movement

is counted as 1 and the diagonal movement is counted as
√

2. Thus, the perimeter for

Figure 2.15(a) is (16 ∗ 1 + 6 ∗
√

2 ≈ 24.49) and Figure 2.15(b) is 28. The area and the

perimeter is the basis in computing other parameters.

For a particle that is irregularly shaped or non-spherical, the use of image analysis

to determine the shape and size of an object is guaranteed [94]. However, more details

of geometric parameters are discussed in Chapter ??.

2.6 Classification

Image classification is a decision-making approach used to organize numerical proper-

ties of different image features into a few exclusive classes. The classes may be explicitly

stated with a priori knowledge by a user (known as supervised classification) or auto-

matically clustered (known as unsupervised classification) into a set of typical classes,

where the user simply specifies the number of desired categories. The classification

process involves training and testing phases. The training phase is the first phase of

the classification process, where training classes are defined based on the description of

the characteristic properties of image features. The testing phase is the second phase of

the classification process and classifies image features based on feature space partitions.

There are different classification techniques and some of which are Decision Trees (DT),

Support Vector Machines (SVM) and K-Nearest Neighbour (KNN). These techniques

are described in the following subsections.

2.6.1 Decision Tree

A decision tree (DT) is a machine learning method that is represented as a tree-like

graph or model of decision-making and their possible outcomes [96]. The outcome of

each test corresponds to a branch emanating from the node to another node representing

a new test and recursively partitions the tree to the leaf node (final node), which

provides the classification of the instance space [96], [97]. For example, Figure 2.16
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shows a graphical representation of a basic DT classifier with three attributes (insulator

present, insulator type and insulator disc). At the root node (left side of Figure 2.16),

the tree may branch right or left relying upon whether the insulator is present or not

(yes or no). The branches from each node may lead to a child node which may test the

same attribute, or a different attribute or combination of attributes. The path from the

root node to a leaf corresponds to a single classification rule. DT can also be linearized

into decision rules [98], such as “if condition-1 and condition-2 then outcome” where

the outcome is the contents of the leaf node, and the conditions along the path form a

conjunction in the “if clause”.

Figure 2.16: A simple decision tree classifier

DT has been used in [99], [100] with promising results. The advantages of DT are

that they are easy to understand and interpret, possess value with little hard data,

and allow the addition of a new possible sequence of events. The disadvantages are;

mutual information from the DTs are biased in favour of those attributes with so many

levels [101] and computation becomes difficult or complex particularly when there are

uncertainties when many of the outcomes are linked.
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2.6.2 K-Nearest Neighbour

The Nearest Neighbour (NN) algorithm for classification was developed and first intro-

duced as a non-parametric method by Fix and Hodges [102] and has become known as

K-Nearest Neighbour (KNN). This non-parametric classification is based on the “dis-

tance” between points or distributions. Later, Cover and Hart [103] introduced some

of the formal properties of KNN which were investigated and established, such as new

rejection approaches, refinements with respect to Bayes error rate, distance weighted

approaches, and soft computing methods. In KNN classification, an object is classified

into a class with a majority vote within the k-nearest neighbour [104]. For example,

Figure 2.17 shows a set of samples divided into 2 classes. The test sample is represented

as the black circle, that should be classified into the first class (blue rectangles) or to

the second class (red triangles). For k = 1 represented as the solid line circle, the test

sample (black circle) is classified into the first class (blue rectangles) because there are

more rectangles inside the solid line circle than the triangles (rectangle = 3 and triangle

= 2). For k = 2 represented as the dash line circle, the test sample is classified into the

second class (red triangles) because there are more triangles inside the dash line circle

than the rectangles (rectangle = 6 and triangle = 7). Note that k is an integer with a

small value.

Figure 2.17: A KNN classification, with the test sample represented as the black circle,

first class represented as the blue rectangles and second class represented as red triangles.

k = 1 is the solid circle and k = 2 is the dash circle.
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KNN has been applied in various domains such as recognition of insulators [86],

recognition of faces [105], object tracking [106], prediction of economic events [104],

forecasting the in-fluent characteristics of waste-water treatment plants [107] and clas-

sification for glasses [108] and hyperspectral image [109]. KNN performance is mainly

dictated by the decision of k and the distance metric used [104], [110]. The advantages

of KNN are its competitive classification performance in various domains, its robust-

ness to high signal to noise ratio in the training set and its efficiency for a large training

set [104]. Despite the advantages of the KNN classifier, it also has some disadvantages

[111], [112], [113]: it has poor run-time performance for a large training set because

of the computation of the distance of each query instance to all training samples and

secondly, it is very sensitive to redundant or irrelevant features because all features

contribute to the similarity and hence to the classification. However, careful feature

selection or weighting can be used to avoid sensitivity to redundant features.

2.6.3 Support Vector Machines

SVM [114] is a supervised learning approach that has gained popularity due to its per-

formance in the classification of noisy and high dimensional data. Some applications of

SVM are in insulator condition analysis [115], insulator condition monitoring [116], the

location of transmission line fault [117], fault diagnosis for power transmission system

[118], [119], fault classification on transmission line [120], the diagnosis of skin illnesses

[121], face recognition [122] and facial expression recognition [123]. SVM algorithm

finds a decision boundary or a hyperplane that best classifies or separates data points

over a vector space into different classes (see Hpa and Hpb in Figure 2.18). Considering

Figure 2.18 as an example, let the rectangle data points belong to one class and the

triangle data points belong to another class, the function of the SVM algorithm is to

find a hyperplane Hpa or Hpb that best describes the separation of the two classes based

on the maximum margin hyperplane. In Figure 2.18, both Hpa and Hpb separate data

points. Dashed lines parallel to the solid lines indicate the amount one can move the

choice limit (decision boundary) without causing misclassification of the data, but the

distance (or margin) of hyperplanes Ha1 and Ha2 that pass through the nearest data

point and parallel to the hyperplane Hpa is larger than the distance of hyperplanes Hb1

and Hb2 from Hpb. Therefore Hpa tends to perform better than Hpb for classification
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Figure 2.18: A linearly separable SVM classifier with the first class represented as the

blue rectangles and second class represented as red triangles. Hpa or Hpb represented as

the hyperplane or decision boundary, while Ha1 and Ha2 or Hb1 and Hb2 represented as

the distance (margin) of the hyperplane.

of unknown samples due to its larger margin. Thus, the larger the distance or margin

of the hyperplanes, the less the generalization error for the classification of unknown

samples. Therefore, the conclusion can be drawn that Hpa performance is better than

Hpb.

There are two types of SVMs namely, linearly separable SVM (Figure 2.18) and non-

linearly separable SVM (Figure 2.19). For a complex dataset for which it is difficult to

use linear SVM, non-linear SVMs are employed. The concept of non-linear SVM is to

either introduce soft margin hyperplanes, or by transforming the original data vectors to

a higher dimensional space where the data can be linearly separable. The main problem

in the mapping of the data into higher dimensional space, is that the classifier becomes

complex and the mapping function is not known. In order to overcome this problem,

a concept known as the kernel trick is employed in the transformation process. There
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Figure 2.19: A non-linearly separable SVM classifier

are different kernels for SVM: linear, polynomial, radial basis function and sigmoid

[124]. The main advantage of SVM over other classifiers is that the choice of the

decision boundary is resolved only with the data points which have exactly the same

distance from the decision plane [125]. These data points are known as the support

vectors, which are the main compelling components in the training set in light of the

fact that, if every single other data points are taken out, the algorithm will learn the

same decision function [125]. This concept makes the SVM exceptionally one of a kind

over other methods of classification that utilizes the entire data points in the training

set for optimizing the decision function.

2.7 Previous Works

This section deals with the discussion of previous works relating to this research study.

The first area describes the structural inspection to defects on insulators such as cracks

and broken parts. The second area deals with hydrophobicity of an insulator under wet

conditions. This defect can be identified by spraying distilled water on the insulator and

then water droplets distribution and size are used as artefacts for insulator condition

analysis. More importantly, there have been few research studies documented in the

area of insulator condition based on image processing and computer vision.
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2.7.1 Insulator Physical Conditions

Presently, there are research works on the inspection of power grids using infra-red and

ultraviolet methods [8]. This study focuses on the use of texture features for insulator

condition evaluation. There are few studies on the application of image processing and

computer vision to insulator conditions (defect and non-defect). The last decade has

necessitated the need for research incursion into the application of image processing

and computer vision in various areas. Power-line insulator condition is an important

area that comes to mind.

Gu and collaborators [126] proposed insulator fault detection. The fault detected is

snow or ice coverage on an insulator. It is assumed that the fault is only accumulated

on top or along the side of insulator caps. The fault is said to change the size of the

disc edges and boundaries of the insulator which is said to be fixed and known. This

is quite different from the fault proposed in this study which is based on cracks and

broken parts of insulators.

Insulator fault detection were proposed by Mei et al. [127] and Ge et al. [128]. The

fault detected is dirt on insulator surfaces. In [127], watershed algorithm is used for

segmentation before the application of the HSI (hue, saturation and intensity) colour

model. Also, in [128], the values of the R,G,B (red, green and blue) colour model

were sampled and thereafter, judging based on fuzzy algorithm. The colour model is

not a robust method for the detection of cracks and broken parts. Also, images were

captured at a very close range showing just a single cap of an insulator, unlike the

proposed images of this study showing the full insulator.

Li and co-workers [129] and Zhang et al. [130] computed edge descriptors on a

dense grid. This creates a high number of false positives detections, which is not

discriminatory enough when applied in a cluttered environment.

A simple method is proposed by Xinye et al. [12] using colour thresholding in

insulator recognition. This method is not robust because it needs a well adjusted

threshold parameter which may limit the method. Xinye and collaborators further

proposed the detection of missing caps in [8]. The method proposed an accurate binary

segmentation of the insulator using colour thresholding, then texture feature sequence

extraction using GLCM, thereafter there was a further splitting of the insulator into ten

parts. The method is limited by the choice of the threshold and the static partitioning
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does not incorporate differently sized insulators or partially visible insulators. GLCM is

also not rotation invariant and needs just one direction parameter during computation.

Therefore, Xinye and collaborators applied Hough transform for insulator tilt correction

since tilt affects insulator defect detection and morphological operation for enhancing

the grey level distribution.

Discrete wavelet transform was used for feature extraction with SVM and Hidden

Markov model for classification by Murthy and collaborators in [115] and [131] respec-

tively. Both methods presented promising results. The Hidden Markov model outper-

formed SVM. Then Reddy and co-workers in [116] and [15] used discrete orthogonal

Stockwell transform for feature extraction and adaptive neuro-fuzzy inference system

and SVM for classification respectively. Discrete orthogonal Stockwell transform com-

bined with SVM outperformed discrete orthogonal Stockwell transform combined with

adaptive neuro-fuzzy inference system. Also, discrete orthogonal Stockwell transform

with SVM outperformed discrete wavelet transform combined with SVM. This is be-

cause the discrete orthogonal Stockwell transform has an advantage of maintaining the

phase properties of Stockwell and Fourier transforms, retaining the ability to go back

to the Fourier domain.

Prasad and Rao [14] used a combination of LBP with histogram Fourier as an in-

novative approach to extract the rotation-invariant image feature which is computed

by obtaining the discrete Fourier transforms of LBP histograms [132]. The features

obtained are fed to SVM for classification purpose. It was shown that the combination

of the LBP with histogram Fourier and its extensions outperformed non-invariant and

earlier versions of the rotation invariant LBP in the rotation-invariant texture classifi-

cation [5].

In the analysis of the physical condition of an insulator, uniform LBP and SIFT

were adopted for feature extraction and compared with the GLCM method proposed in

[8]. Uniform LBP is robust to monotonic grey-scale changes caused from illumination

and a very efficient texture operator [133]. With its computational simplicity and dis-

criminative power, it has gained popularity in various applications (see [79] for various

applications of LBP). Also, SIFT is rotation, scale and translational invariant which

makes it very robust, more stable and less prone to noise. These feature extraction

methods are used in combination with SVM and KNN classifiers.
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2.7.2 Insulator Hydrophobicity

To our knowledge, there are few research investigations on the application of image

processing and computer vision to the analysis of hydrophobicity of insulator surfaces.

Berg et al. [134] proposed hydrophobicity classification method for water droplets on

insulators. This method is based on a function known as average of normalized entropies

and its variants. Average of normalized entropy is implemented by calculating and

analysing the distribution of the gray-level differences of nearest-neighbouring pixels

in the horizontal direction. Shannon information entropy of the distribution is then

utilized to determine the hydrophobicity of the specimen. However, because different

HC levels may be identified in different sections of the insulator, the monotonic function

is weak in this case [135]. Chen et al. [136] also used an improved average of normalized

entropies with three other algorithms namely, seed point statistics, frequent magnitude

analysis and shape factor for estimating the level of hydrophobicity online. It is stated in

[136] that the improved shape factor is the best among all the methods being compared.

But the drawback in this method of estimation of hydrophobicity level is that an

operator is required to capture images online.

Tokoro and co-workers [137] described the aging process of silicone rubber (polymer)

insulators using the effect of the shape of water droplets, but no method of water droplet

detection was mentioned. Li et al. [138] mentioned estimating HC levels using the area

ratio of the water droplet to the whole image and shape factor. Good results were

achieved, but detection of water droplets was not considered.

Qiuxia and collaborators [139] applied a fuzzy means clustering approach to segment

water droplets in a grey-scale channel. Images used in this work were taken indoors with

multiple lightings but since it is rarely possible to have such illumination in outdoor

scenarios, the performance of the algorithm should be investigated with images acquired

from field tests [135].

Fractal dimension as a parameter has also been used to quantify the textures of

insulator surfaces for classification by Thomazini et al. [140], but the texture of the im-

ages was sprayed with a mixture of isopropyl and water in different proportions. Also,

Jarrar et. al [141] prepared samples using a mixture of distilled water and surgical spirit

(a composition of methyl alcohol and ethyl alcohol). In [141], several feature extraction

and selection techniques were used to extract statistical and textural features. These
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feature extraction techniques namely, grey-scale co-ocurrence matrices, wavelet trans-

form, discrete cosine transform, contourlet transform, radon transform and stepwise

regression, were used with various classifiers, k-nearest neighbour, neural networks and

support vector machines. Good results were achieved, but with a higher recognition

rate in the use of fused features selected by a stepwise regression in combination with

a neural network classifier. In most of these research works, the droplets are obtained

using distilled water. Khalayli et al. [142] also used grey-level co-occurence matrices

for feature extraction after segmentation of the water droplet on insulator using Sobel

edge detection filter and then classification with a polynomial network or classifier.

Good results were achieved, but the Sobel method is not robust because it needs a

well-adjusted threshold parameter which may limit this method. Also, samples of HC

level were classified into three groups namely, good (HC1-HC2), fair (HC3-HC4) and

bad (HC5-HC6).

However, the method proposed in this thesis is an automated method that will be

able to detect water droplets on insulators and classify insulators based on the geometric

parameters of the water droplets.

2.8 Conclusion

This chapter discussed insulator acquisition, introductory theory to different methods

used in insulator pre- and post-processing, segmentation, region of interest extraction,

feature extraction techniques and classification methods. Finally, previous techniques

for insulator defect detection, classification and insulator hydrophobicity were explored

and discussed.
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Chapter 3

An Active Contour Approach to

Insulator Segmentation and

Region of Interest Extraction

3.1 Introduction

The principle goal of this chapter is to determine and extract the ROI of insulator for

further analysis. Before insulator ROI extraction, the insulator needs to be segmented.

An active contour approach is used for the segmentation of the insulator from the

background. Performance of the active contour model is evaluated by comparing it

with other methods of insulator segmentation.

3.2 Active Contour Model

There are two major mathematical approaches of implementing ACM: the snakes and

level sets. The snakes explicitly move predefined snake points using an energy mini-

mization scheme, while the level set approach move contour implicitly as a particular

level of a function. There are two approaches to image segmentation using ACM:

edge-based and region-based. Edge-based active contours utilize an edge detector, to

find the boundaries of objects in an image based on image gradient and then pull the

contours to the detected boundaries. Region-based active contours use the statistical

information of image intensity within each subset as opposed to seeking geometrical

boundaries [143].
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3.2.1 Snakes

The basic snake model is a parameterised spline guided in the image by a number of

forces to a desirable position. These forces consist of internal forces or the internal

energy of the contour, external constraint forces and image forces. The internal forces

enforce a piecewise smoothness constraint. The image forces guide the snake curve

towards desirable locations (such as edges, lines and subjective contours). The external

forces pull the snake close to the coveted local minimum. These forces are imposed on

the curve in the form of an energy function that measures the fitness of the snake and

the energy function is minimised for desirable snake position and behaviour. These

forces can be derived from the user interface, automatic attentional mechanisms or

high level interpretations [41].

Given the position of a snake or contour parametrically is C(s) = (x(s), y(s)) then,

the energy function is defined as:

Esnake =

∫ 1

0
[Eint(C(s)) + Eimg(C(s)) + Econ(C(s))]ds (3.1)

where Eint represents the internal energy of the contour due to bending, Eimg is the

image forces and Econ is the external constraint forces.

The internal contour energy is derived as:

Eint = (α(s)|C ′(s)|2 + β(s)|C ′′(s)|2)/2 (3.2)

where α(s) and β(s) are the user defined weights for controlling the tension or stretch

or continuity of the contour and the rigidity or curvature of the contour respectively.

The internal energy of the contour is made out of a first order term that is controlled

by a weight α(s) and a second order term that is controlled by a weight β(s). In practice,

the use of a large weight α(s) for the continuity term imposes a penalty on the changes

in distances between points in the contour, while the use of a large weight β(s) for the

smoothness term imposes a penalty on the oscillations in the contour and will make

the contour behave like a thin plate [144].

General formulation of image energy for an image I(x, y) with the presence of lines,

edges and termination, is defined as :
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Eimg = wlEl + weEe + wtEt (3.3)

where wl, we and wt are the weights of the lines, edges and termination. With higher

weights, these salient features will have a larger contribution to the image force [144].

The line energy El can be represented as image intensity I(x, y) at a particular

point and the sign of El determines whether the line will be attracted to either bright

or dark lines. The edge energy Ee, can be computed by the application of an edge

detection operator, such that Ee = −|∇I(x, y)|2. In order to avoid local minimal, a

scale space continuation is used and the energy function is defined as Ee = −|∇(Gα ∗
I(x, y))|2, where Gα is the Gaussian smoothing filter with the standard deviation α.

The termination energy Et, is computed by considering a slightly smoothed image

S(x, y) with gradient angle θ = arctan(S(y)/S(x)), unit vector along the gradient

direction as n̂ and a unit vector perpendicular to the gradient direction as n̂⊥. Hence,

Et is defined as:

Et =
∂θ

∂n̂⊥
=
∂2S/∂2n̂⊥
∂S/∂n̂

=
SyyS

2
x − 2SxySxSy + SxxS

2
y

(1 + S2
x + S2

y)3/2
(3.4)

In the classic snake and other ACMs, the edge energy (edge detector) is regularly

utilized relying upon the gradient of the image I(x, y) to stop the deforming or evolving

contour on the boundary of the desired object, but the line energy can still find its

application [28]. In some systems, the user is allowed to interactively guide the contour,

both in the initial placement and also in their energy terms. Therefore, the constraint

energy Econ is used to interactively guide the contour towards or far from the lines and

edges.

3.2.2 Level Set Methods

Level set methods essentially find the shape without parameterizing the contour, so

the contour description is represented implicitly rather than explicitly via a Lipschitz

continuous function ϕ(x, y): Ω→ < defined on an image plane, Ω. The level set function

is denoted as ϕ(x, y). The zero level of the level set function, ϕ(x, y), is defined as the

contour, C, such that;
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C = {(x, y) : ϕ(x, y) = 0}∀(x, y) ∈ Ω (3.5)

Formulation of contour evolution using the magnitude of the gradient was initially

proposed by Osher and Sethian [48] and it is defined as:

∂ϕ(x, y)

∂t
= |∇ϕ(x, y)|(v + εκ(ϕ(x, y))) (3.6)

where v represents the speed in normal direction that tends to attract the contour to the

object, the ε controls the balance between the regularity and robustness of the contour

evolution and κ(.) is the mean curvature of the level set function ϕ(x, y) derived as:

κ(ϕ(x, y)) = div

(
∇ϕ
‖∇ϕ‖

)
=
ϕyyϕ

2
x − 2ϕxyϕxϕy + ϕxxϕ

2
y

(1 + ϕ2
x + ϕ2

y)
3/2

(3.7)

where ϕx and ϕxx represent the the first and second order partial derivatives of ϕ(x, y)

with respect to x, while ϕy and ϕyy denote first and second order partial derivatives of

ϕ(x, y) with respect to y. The curvature term κ controls the regularity of the contours

in same way as the internal energy Eint in the classic snakes model.

3.2.2.1 Edge-based Active Contour Model

An extension of the edge based ACM was proposed by Caselles et al. [46] called

the geometric active contour (GAC) model, by adding an additional term called the

stopping function %(I(x, y)) to the speed function in Equation 3.6 and is given as;

∂ϕ(x, y)

∂t
= %(I(x, y))|∇ϕ(x, y)|κ+ %(I(x, y))v|ϕ(x, y)|

= %(I(x, y))(κ+ v)|∇ϕ(x, y)| (3.8)

This was the first level set that implemented ACM for image segmentation. The

main goal of the stopping function %(I(x, y)), is to stop the contour when it gets to

the object boundaries. The stopping function %(I(x, y)) used in Caselles et al. [46] and

Malladi et al. [57], [58] is defined as:
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%(I(x, y)) =
1

1 + |∇(Gα ∗ I(x, y))|n
(3.9)

where (Gα ∗ I(x, y)) is the smoothed version of the image I(x, y), and n is equal to

1 or 2 depending on the implementation. The contour moves in the normal direction

with a speed of %(I(x, y))((κϕ(x, y)) + v) and therefore stops on the object boundary

or edges, where %(.) vanishes.

The constant v, acts as a correction term that is chosen so that the quantity (κ+v)

remains a positive value. The constant v, is the force pushing the curve towards the

object, when the curvature κ becomes negative or null and also maintains the contour

evolution by minimizing the enclosed area of the contour. Another ACM on level set

that uses the image gradient to stop the curve was proposed by Malladi et al. [50] and

it is defined as:

∂ϕ(x, y)

∂t
= ∇ϕ(x, y)

(
− v +

v

(M1−M2)
(|∇(Gα ∗ I(x, y))| −M2)

)
(3.10)

where M1 and M2 are the maximum and minimum values of the magnitude of the

image gradient |∇(Gα ∗ I(x, y))| and v is a constant. The speed of the evolving contour

becomes zero on the points with highest gradients and stops the contour evolution at

the boundary defined by strong gradients.

3.2.2.2 Region-based Active Contour Model

A different ACM without the use of edge-function to stop the contour evolution is the

Mumford-Shah [65] segmentation techniques. The Mumford-Shah model can detect

contours both with or without gradient. For example, objects with very smooth edges

or with discontinuous edges. In addition, the model is based on level set formulation

and the interior contours are automatically detected. The formulation of the Active

Contour Without Edges (ACWE) model [7] is related to the Mumford-Shah segmenta-

tion techniques and the ACWE model proposed to minimize the energy Ecv = E1 +E2,

where E1 and E2 are defined as:

E1 + E2 =

∫
Ω1
|I(x, y)− h1|2dxdy +

∫
Ω2
|I(x, y)− h2|2dxdy (3.11)
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Figure 3.1: All possible cases in the position of the contour (a) E1 > 0 and E2 ≈ 0, (b)

E1 ≈ 0 and E2 > 0, (c) E1 > 0 and E2 > 0 and (d) E1 ≈ 0 and E2 ≈ 0. The fitting term

is minimized only when the curve is on the boundary of the object.

where Ω1 = {(x, y) : ϕ(x, y) > 0} and Ω2 = {(x, y) : ϕ(x, y) < 0}, h1 and h2 are

the average intensities inside and outside the evolving contour respectively, which are

recalculated for each iteration of the contour evolution. The ACWE model has extra

terms that minimized the length of the zero level set. The energy is at its minimum

when the contour separates the foreground or object from the background. That is,

if the contour is outside the object to be segmented, then E1 > 0 and E2 ≈ 0, if the

contour is inside the object to be segmented, then E1 ≈ 0 and E2 > 0, if the contour is

both inside and outside the object to be segmented, then E1 > 0 and E2 > 0 and only

when the contour is on the object boundary that E1 ≈ 0 and E2 ≈ 0 (see Figure 3.1).

The ACWE model minimizes the fitting term and will also add some regularizing

terms, such as the length of the contour C, and/or the area of the region inside the

contour C. Therefore, the energy functional Ecv(h1, h2, C) of the ACWE can be defined

as:

Ecv(h1, h2, C) = (3.12)

µ · L(C) + ν ·A(Ω1) + λ1

∫
Ω1
|I(x, y)− h1|2dxdy + λ2

∫
Ω2
|I(x, y)− h2|2dxdy

where L(C) is the length of the C, A(Ω1) is the area of the region inside C, and ν, µ,

λ1, λ2 are fixed parameters. ACWE Model in terms of level set function ϕ [7] is defined

as:
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Figure 3.2: Contour or curve propagating in the normal direction with ϕ > 0 inside the

contour, ϕ < 0 outside the contour and ϕ = 0 on the boundary of the contour [7]

E(h1, h2, ϕ) = µ

∫
Ω
δ(ϕ(x, y))| 5 ϕ(x, y)|dxdy + ν

∫
Ω
|H(ϕ(x, y))|dxdy (3.13)

+λ1

∫
Ω

(I(x, y)− h1)2H(ϕ(x, y))dxdy

+λ2

∫
Ω

(I(x, y)− h2)2(1−H(ϕ(x, y))dxdy

where h1, h2, H (Heaviside step function) and δ (one-dimensional Dirac measure) are

defined as:

h1(ϕ) =

∫
Ω I(x, y)H(ϕ(x, y))dxdy∫

ΩH(ϕ(x, y))dxdy
(3.14)

h2(ϕ) =

∫
Ω I(x, y)(1−H(ϕ(x, y)))dxdy∫

Ω(1−H(ϕ(x, y)))dxdy
(3.15)

H(ϕ) =

{
1, if ϕ ≥ 0

0, if ϕ < 0
(3.16)

δ(ϕ) =
d

dϕ
H(ϕ) (3.17)
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Thus, the gradient decent equation for the evolution of ϕ is derived as:

∂ϕ

∂t
= δ(ϕ)

[
µ∇.

(
∇ϕ
|∇ϕ|

)
− ν − λ1(I − h1)2 + λ2(I − h2)2

]
(3.18)

where ∇.(∇ϕ/|∇ϕ|) is the curvature of the curve, that provides smoothing constraints

during curve evolution thereby minimizing the total curvature of the contour.

3.3 Insulator Segmentation and Region of Interest Ex-

traction

The insulator segmentation model presented in this thesis is based on active contour

without edges proposed by Chan and Vese [7] and deals with balancing energy on both

sides of the contour. It relies on global properties rather than taking into account the

local properties. Due to the nature of the polymer insulator with rust, dirt, illumination

and high signal to noise ratio, a preprocessing phase is required to improve the quality

of images before the insulator segmentation and a post-processing phase is also required

to further polish the final results [145].

3.3.1 Preprocessing

Captured images are normally in colour or RGB (Red, Green, Blue) format that are

not suitable in some image applications such as insulator segmentation. However, a

RGB image is converted into a HSI (Hue, Saturation and Intensity) image (Figure 3.3)

using the following equations [27]:

HH =

{
α, if BB ≤ GG
360− α, if BB > GG

(3.19)

where HH represents Hue, BB represents Blue colour, GG represents Green colour and

α is derived as:

α = cos−1

[ 1
2 [(RR −GG) + (RR −GG)]

[(RR −GG)2 + (RR −BB)(GG −BB))]1/2

]
(3.20)

where RR which represents Red colour, saturation SS and intensity II are given as:
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SS = 1−
[

3[min(RR, GG, BB)]

RR +GG +BB
(3.21)

II =
1

3
(RR +GG +BB) (3.22)

Figure 3.3: Image conversion. (a) RGB image and (b) HSI image

3.3.2 Insulator Segmentation

Considering the properties of an insulator which has a rigid form with repetitive geomet-

ric structure and a distinctive circular shape of each cap, a region-based segmentation

technique is required for insulator segmentation since uniformity of within sub-region

is of main interest [146], [145]. Therefore, a region-based ACM known as ACWE based

on Equation 3.13 is used for insulator segmentation. Fixed parameters are set to the

following settings: µ = 1, ν = 0, λ1 = λ2 = 1 and then the mean intensities h1 and

h2, and the Heaviside step function H, are defined using Equations 3.14, 3.15 and 3.16

respectively.

From Equation 3.13, the first term is the penalty on the total length of the edge

contour for the segmentation, the second term is the penalty on the total area of the

foreground (insulator) region found by the segmentation, the third term is proportional

to the variance of the image grey levels in the foreground region and measures the

uniformity of the region in terms of pixel intensity and the fourth term does the same

for the background region. Minimizing the sum of the third and fourth terms leads to

a segmentation into insulator (foreground) and background region that are uniform.
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Thus, to segment insulator from the background image, Equation 3.13 is minimized

with respect to h1, h2 and ϕ. With ϕ fixed, the average grey values of h1 and h2 are

computed with Equations 3.14 and 3.15 respectively. Also, with h1 and h2 fixed, the

evolution of ϕ is derived with Equation 3.18.

Figure 3.4: (a) Application of ACWE on Figure3.3(b), (b) Segmented image of (a) and

(c) Post-processed image of (b) in order to remove the white spot on the background and

the black spot inside the insulator in (b)

3.3.3 Region of Interest

The insulator region of interest (ROI) is extracted by first obtaining the coordinates

and size of the foreground pixels (insulator) from the segmented image, then with the

same size of segmented image and the original grey scale image, the coordinates and

the segmented image size are mapped into the original grey scale image for placing

a minimum bounding box over the entire insulator. Thereafter the insulator ROI is

extracted.

Figure 3.5: (a) Identification of insulator ROI and (b) Insulator ROI extraction
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3.3.4 Algorithm for Insulator Segmentation and Region of Interest

Extraction

Algorithm 1 presents the steps required for insulator segmentation and ROI extraction.

Algorithm 1 Insulator Segmentation and ROI extraction

Require: I . Source Image

Ensure: E . Extracted Insulator ROI Image

1: Convert the RGB image I into HSI and Save result as g

2: Initialize a level set function ϕ

3: for n = 1 to maximum value of n do

4: Compute h1(ϕ) and h1(ϕ) using equation 3.14 and 3.15 respectively

5: Compute ϕn+1 by the discretization and linearization of equation 3.18

6: Check whether curve is stationary

7: if curve is stationary then

8: Escape from the for-loop

9: end if

10: end for

11: Save segmented image as sIm

12: BbIm = regionprops (sIm,“BoundingBox”) . Extract coordinates of the ROI

from sIm using regionprops to

compute bounding box index
13: lefttop = BbIm(1).BoundingBox(1)

14: rightbot = BbIm(1).BoundingBox(2)

15: width = BbIm(1).BoundingBox(3)

16: height = BbIm(1).BoundingBox(4)

17: rectangle (“position”, [lefttop, rightbot, width, height]) . Map the coordinates from sIm

on g by defining a bounding box

around the insulator
18: cropIm = imcrop(g,[lefttop, rightbot, width, height]) . Extract insulator ROI from g

19: Save extracted insulator ROI as E

20: End

3.3.5 Experimental Results and Discussion

3.3.5.1 Dataset

To our knowledge, there is presently no publicly available dataset for insulator studies.

Hence, the experiment and evaluation are based on the dataset of this research study.

The dataset used contains insulator images on plain and fairly complex background.

Twelve ground-truth insulator images were used for qualitative and quantitative per-

formance analysis.
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3.3.5.2 Evaluation

Figure 3.6 shows the results for the application of the proposed method. Figures

3.6(a),(d),(g) and (j) are the original images in RGB format, Figures 3.6(b),(e),(h) and

(k) are the preprocessed images in the HSI format, Figures 3.6(c),(f),(i) and (l) show

the results obtained after the application of ACWE and Figures 3.7(a),(d),(g) and (j)

are the segmented images. Figures 3.7(b),(e),(h) and (k) are the post-processed images

and Figures 3.7(c),(f),(i) and (l) are the ground-truth images used for evaluation.

Figure 3.6: Insulation segmentation using the proposed method. Column one (a,d,g,j)

represents the original images, column two (b,e,h,k) represents the pre-processed images

and column three (c,f,i,l) represents the result of application of ACWE. Best viewed in

colour
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Figure 3.7: Insulator segmentation using proposed method and the ground-truth images.

Column one (a,d,g,j) represents segmented images, column two (b,e,h,k) represents post-

processed images and column three (c,f,i,l) represents ground-truth images
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3.3 Insulator Segmentation and Region of Interest Extraction

Figure 3.8: Insulator segmentation using Xinye’s et al method. (a,c,e,g) represents seg-

mented images and (b,d,f,h) represents the post-processed images of a,c,e,g respectively.

.

.

Also, Figure 3.8 shows the segmented images and post-processed images when the

Xinye et al. [8] method is applied to Figures 3.6(a),(d),(g) and (j). The Xinye et al.

[8] method for insulator segmentation is based on binary and morphology erosion, and

thereafter the extraction of connected components and thresholding, which is based on

the mean value.

Comparing the proposed method (Figure 3.7) to the Xinye et al. [8] method (Figure

3.8) qualitatively, it is obvious that the proposed method is more robust than Xinye

et al.’s [8] method. However, images are post-processed in order to enhance the seg-

mentation performance, such as in Figures 3.7(a) and (d) where background pixels are

present in the foreground and in Figure 3.7(j), where foreground pixels are present in

the background. It can be observed that the boundaries of insulators in Figure 3.8 are

not as defined as the original image unlike the ACM approach with better boundaries.

Also, the Xinye et al. [8] method has high signal to noise ratio after segmentation unlike

the ACM approach. Also in comparing Figures 3.8 (a), (c), (e), and (g) to Figures 3.7

(a), (d), (g), and (j), there is a higher under-segmentation rate using the Xinye et al.
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[8] method when compared to the proposed method.

Figure 3.9 shows the identification of insulator region of interest from the original

images in Figure 3.6(a), (d), (g), and (j) using the proposed model. Figure 3.10 shows

insulator ROI extraction. Both methods were able to identify and extract the ROI

of the insulators. However, after the post-processing of the results of both methods

on Figure 3.6(a), it is observed that the proposed method used a minimum bounding

rectangle compared to the Xinye et al. [8] method in extracting the ROI of the insulator,

which means that a good segmentation defines a better ROI.

Figure 3.9: Identification of ROI using proposed method. Best viewed in colour

Figure 3.10: Extraction of ROI from Figure 3.9

Figure 3.11: Identification of insulator ROI using Xinye et al. [8] method. Best viewed

in colour

To further evaluate the effectiveness of the proposed model, the performance of the
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proposed model of segmentation is quantitatively compared with the Xinye et al. [8]

model based on the ground-truth of the insulators using different statistical criteria

which are sensitivity Se, specificity Sp, precision Pr, accuracy Ac and F1-score Fs.

These statistical criteria are defined as:

Se =
TPv

TPv + FNv
(3.23)

Sp =
TNv

TNv + FPv
(3.24)

Pr =
TPv

TPv + FPv
(3.25)

Ac =
TPv + TNv

TPv + TNv + FPv + FNv
(3.26)

Fs =
2TPv

2TPv + FPv + FNv
(3.27)

where the True Positive TPv represents the total number of foreground (insulator)

pixels in the segmented image that overlaps the foreground (insulator) pixels in the

ground-truth. True Negative TNv defines the total number of background pixels in the

segmented image that overlaps background pixels in the ground-truth. False Positive

FPv represents the total number of foreground pixels in the segmented image that are

background pixels in the ground-truth. False Negative FNv are the total number of

background pixels in the segmented image that are foreground pixels in the ground-

truth.

In Table 3.1, it is observed that the proposed method has higher average perfor-

mance rates in all statistical criteria over Xinye et al. method, denoting a better

performance. Furthermore, the accuracy of the segmentation models are used to inves-

tigate the significance of the difference over both methods of segmentation. The mean

and standard deviation of the accuracy for the statistical criteria are computed and
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shown in Figure 3.12. The blue bars (standard error bars) at the middle of each bar

plot (mean bars) represent the standard deviation. It is observed that both standard

error bars overlap, which means that the difference between the two means of accuracy

is not statistically significant.

Table 3.1: Performance analysis, with values of sensitivity, specificity, precision, accuracy

and f1-score in percentage (%). P = Proposed method and X = Xinye et al. [8] method

Sensitivity Specificity Precision Accuracy F1-score

P X P X P X P X P X

Average 85.60 75.86 98.12 96.97 96.02 91.49 94.86 90.85 90.09 81.73

Figure 3.12: Mean and standard deviation of the proposed method of segmentation and

Xinye et al. [8] method. Best viewed in colour
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3.3.5.3 Test of Accuracy

To further investigate the significance difference of both segmentation methods, the

t-test is employed. The t-test is a statistical hypothesis test used to confirm if there

is a significant difference between two models Further, the t-test would be used to

determine whether there is a significant difference between the mean accuracy value of

the proposed method and the mean accuracy value of the Xinye et al. [8] method for

insulator segmentation. The t-value formula is defined as:

tvalue = |m̄1 − m̄2|(
√

((Sd1)2/n1) + ((Sd2)2/n2) (3.28)

where m̄1 and m̄2 are the absolute mean values of the accuracy for the proposed method

and Xinye et al. [8] method respectively, n1 and n2 are the numbers of insulator images

for the proposed method and Xinye et al. [8] method respectively, Sd1 and Sd2 are the

standard deviation of the accuracy for the proposed method and Xinye et al. [8] method

respectively. The t-value parameters are presented in Table 3.2. Thus, substituting the

values of the parameters in Table 3.2 into equation 3.28 gives the t-value (tvalue = 2.05).

Table 3.2: t-value parameters for the dataset

Method Number of Images Mean Standard Deviation

Proposed 12 94.86 4.12

Xinye et al. [8] 12 90.85 5.35

The degree of freedom (DoF) is computed as (n1 + n2) − 2 = (12 + 12) − 2 = 22.

Generally in scientific analysis, to test for the statistical significance, a probability, P

of α = 0.05 is used. This probability value means that if the experiment is carried out

100 times, it means that 95% of the times, it will reject the null hypothesis Ho (where

Ho means, there is no statistically significant difference between the proposed method

and Xinye et al. [8] method) and 5% of the times, it will not reject the null hypothesis

Ho. The critical value to determine Ho is to find the point at which the P value

(P = 0.05) along the column of the t-table [147] for a two tail test that is independent

(unpaired sample) intersect with the dof value (DoF = 22) along the row of the t-table

[147]. Thus, a critical value of 2.074 is obtained. Since the t-value (tvalue = 2.05) is

not greater than the critical value 2.074, it means that the null hypothesis Ho is not
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rejected, which indicates that there is no statistically significant difference between the

proposed and Xinye et al. [8] methods. However, this actually depends on the size of

the dataset used in an experiment.

3.3.6 Conclusion

In this chapter, insulator segmentation from plain and complex backgrounds using

an active contour model and the extraction of insulator region of interest from the

image context, has been presented. Also, it has been shown that the ACM method

for insulator segmentation has well defined boundaries when compared to the Xinye

et al. [8] method qualitatively. The proposed method has a higher accuracy over the

Xinye et al. [8] method, but with the t-test analysis on accuracy, there is no statistical

significant difference between the two methods. However, this actually depends on the

size of the dataset used in an experiment.
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Chapter 4

Classification of Insulator

Condition using Local Binary

Patterns with Support Vector

Machines

4.1 Introduction

This chapter introduces an automated method for the classification of power-line in-

sulator condition using Local Binary Patterns (LBP) with Support Vector Machines

(SVM). The LBP operator is used to extract features from insulators and then fed into

SVM to determine the condition of insulators. The traditional technique of insulator

inspection is directly carried out on the power lines or indirectly from the ground or

air, both of which put the life of the inspector at risk since the power-line environment

constitutes high electric and magnetic fields. The manual technique is time consuming,

expensive and becomes labour intensive in long distance with different and difficult

terrains. The aim is to develop an automated model based on computer vision that

will be able to identify and analyze insulators’ condition safely, speedily and accurately.

As a result, it will further minimize the failure caused by insulator defects which have

major impacts on the transmission and distribution of electricity. Such impacts include:

voltage drop, flow of leakage currents and losses to the power system [8], [146].

The flowchart of the proposed method for the classification of insulator condition
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using LBP with SVM is shown in Figure 4.1.

Figure 4.1: Flowchart of the proposed method using LBP with SVM
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4.2 Proposed Method

4.2.1 Pre-processing

In order to reduce noise and improve the quality of images, pre-processing and post-

processing steps are required. Colour images in Red, Green and Blue (RGB) format

are converted into grey scale images (Figure 4.2). This conversion is done by forming a

weighted sum of the RR, GG, and BB components, such that the grey scale is derived

as: 0.299 ∗RR + 0.587 ∗GG + 0.114 ∗BB. Then, morphological operation is applied to

the grey scale images, for image enhancement.

Figure 4.2: Greyscale image

Figure 4.3: Top-hat filtering on grey scale image in (Figure 4.2)

Insulator images are enhanced using the top-hat filter [29] (Figure 4.3) which is very

good in correcting uneven illumination on a varying background. It is used to extract

small elements and details from the given insulator. It is defined as the difference

between the input insulator image and its opening using a disk shaped structuring

element. The top-hat is defined as:

T (I) = I − (I o S) (4.1)
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where I is the insulator image in grey-scale and S is the structuring element which is

an open disk of radius 10. The opening operation o is the dilation of the erosion of a

set M by a structuring element S, and the opening operation is defined as [M o S =

(M 	 S) ⊕ S]. The symbols 	 and ⊕ denotes erosion and dilation respectively.

The grey scale image obtained is further enhanced by the application of a morpho-

logical operation [27] known as dilation (Figure 4.4). The dilation of grey scale images

is the replacement of grey level values at any point with the maximum intensity value

covered by the structuring element. This can be defined as:

(Id ⊕ S)(x, y) = max[Id(x− x′, y − y′)− S(x′, y′)|(x′, y′) ∈ DS (4.2)

where Id is the image and DS is the domain of the structuring element S, and (x, y)

are pixel coordinates.

Figure 4.4: Grey-scale morphological dilation on insulator image in Figure 4.3

The output image of the dilated image is subtracted from the original grey scale

insulator image for further analysis on insulator segmentation (Figure 4.5). The sub-

tracted image is defined as:

Is = I − Id (4.3)
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4.2 Proposed Method

Figure 4.5: Subtraction of dilated image (Figure 4.4) from the original grey-scale image

(Figure 4.2)

4.2.2 Insulator Segmentation

The region-based ACWE by Chan-Vese is used for insulator segmentation and it is

based on Equation 3.13 in Chapter 3. The fixed parameters are set to the following

settings: µ = 1, ν = 0, λ1 = λ2 = 1 and then the mean intensities h1 and h2, and the

Heaviside step function H, are defined using Equations 3.14, 3.15 and 3.16 respectively.

Thus, to segment the insulator from an image, Equation 3.13 is minimized with

respect to h1, h2 and ϕ. With ϕ fixed, the average grey values of h1 and h2 are

computed with Equations 3.14 and 3.15 respectively. Also, with h1 and h2 fixed, the

evolution of ϕ is derived using Equation 3.18.

Figure 4.6 shows the initial curve ϕ in an image I, where h1 and h2 are the average

intensities values inside and outside ϕ respectively and the length of the edge contour is

evolved in order to fit the boundary of the insulator such as in Figure 4.7. At this point,

the curve becomes stationary, the interclass variance is minimized and the segmented

image is achieved as shown in Figure 4.8.

Figure 4.6: The initial curve C on the implementation of ACM on Figure 4.5. Best

viewed in colour.
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Figure 4.7: The result of the implementation of ACM on Figure 4.5 with curve on

insulator boundary. Best viewed in colour.

Figure 4.8: The segmented image of Figure 4.7

4.2.3 Region of Interest

The insulator region of interest is extracted by first obtaining the coordinates and size

of the foreground pixels (insulator) from the segmented image, then with same size of

segmented image and the original grey scale image, the coordinates and size from the

segmented image is mapped into the original grey scale image for placing a minimum

bounding box over the entire insulator. Thereafter the insulator ROI is extracted.

Figure 4.9: Identification of insulator ROI from Figure 4.2. Best viewed in colour.
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Figure 4.10: Extracted insulator ROI from Figure 4.9

4.2.4 Algorithm of Insulator Segmentation and Region of Interest Ex-

traction

Algorithm 2 gives the steps for insulator segmentation and insulator ROI extraction.

Algorithm 2 Insulator Segmentation and ROI Extraction

Require: I . Source Image

Ensure: E . Extracted Insulator ROI Image

1: Convert the RGB image I into grey scale and Save result as g

2: Define a disk structuring element s

3: Apply Equation 4.1 on g and Save result as T

4: Apply Equation 4.2 on T and Save result as Td

5: Apply Equation 4.3 and Save result as Is

6: Initialize a level set function ϕ

7: for n = 1 to maximum value of n do

8: Compute h1(ϕ) and h2(ϕ) using Equations 3.14 and 3.15 respectively

9: Compute ϕn+1 by the discretization and linearization of Equation 3.18

10: Check whether curve is stationary

11: if curve is stationary then

12: Escape from the for loop

13: end if

14: end for

15: Save segmented image as sIm

16: Extract coordinates of the ROI from sIm

17: Map the coordinates from sIm on g

18: Extract insulator ROI from g and save as E

19: End

4.2.5 Feature Extraction using Local Binary Patterns

LBP presented by Ojala et al. [84] is a texture descriptor for a simple and effective way

of texture classification. The LBP operator is defined as [5]:

LBP(P,R) =
P−1∑
P=0

ε(np − cp) ∗ 2p (4.4)
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where np is the grey values of the circularly symmetric neighbourhood np(p = 0, ..., P −
1), cp is the grey value of the center pixel and ε(x) is defined as:

ε(x) =

{
1, if x ≥ 0

0, if x < 0
(4.5)

In Equation 4.4, the LBP operator produces different 2p output values which con-

form to different 2p binary patterns produced from the neighbouring P pixels. If the

image is rotated, each surrounding pixel in the neighbourhood will move accordingly

along the perimeter of the circle, thereby resulting in a different LBP value, except for

patterns with 0s and 1s which remain constant at all rotation angles. To remove the

effect of rotation, a rotation-invariant LBP is defined as:

LBP ri(P,R) = min{ROR(LBP(P,R),i)|i = 0, 1, ..., P − 1} (4.6)

where ROR is the abbreviation of rotate right. In Equation 4.6, a P -bit number is

rotated i times and the minimum value between the resulting numbers for i from 0 to

P1 is selected. For the modified version of the LBP operator by Ojala et al. [5], a

uniformity measure, U , is first of all defined. This is the number of spatial transitions

between 1s and 0s in the pattern. Then patterns that have uniformity measure less

than U are defined as uniform patterns. The modified LBP operator for a grey scale

and rotation-invariant texture descriptor is defined as:

LBP riU(P,R) =

{∑P−1
P=0 ε(np − cp) ∗ 2p, if U(LBP(P,R))

P + 1, Otherwise
(4.7)

where ε(x) is same as in equation 4.5 and U(LBP(P,R)) is defined as:

U(LBP(P,R)) = |ε(np−1 − cp)− ε(n0 − cp)|+
P−1∑
P=0

|ε(np − cp)− ε(np−1 − cp)| (4.8)

To compute the LBP histogram using uniform patterns, the LBP histogram accu-

mulates all non-uniform patterns with more than 2 transitions into bin 0, and all other

bins of uniform patterns are accumulated in a dedicated bin (see Table 4.1 for simplic-

ity). With the use of (8, 1) neighbourhood, it gives a total of 256 patterns, 58 of which
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are uniform, which gives 59 different labels (see Table 4.1) [5]. Then the frequency of

occurrence of each number is used to generate a histogram and thereafter normalized.

The histogram of all cells are concatenated and gives the feature vector that will be fed

into the classifier.

Table 4.1: Computation of uniform LBP labels and the final 59-bin histogram, with “xx”

representing the non-uniform patterns

Decimal Binary No of Transition Histogram

xx xx > 2 0

0 00000000 0 1

1 00000001 1 2

2 00000010 2 3

. . . .

. . . .

. . . .

254 11111110 1 57

255 11111111 0 58

4.2.6 Classification using Support Vector Machines

The extracted feature vectors are fed into a SVM classifier [114] in order to classify

insulators as defectuous and non-defectuous.

Thus, for a labelled set of Z training samples (xi, yi) where xi ∈ RN and yi is the

associated label (yi ∈ (−1,+1)), a SVM classifier finds the optimal hyperplane that

correctly separates the training data while maximizing the margin. Then, the training

data is required to satisfy the following conditions:

$ · xi + b ≥ +1 yi = +1

$ · xi + b ≤ −1 yi = −1 (4.9)

This is equivalent to:

yi[$ · xi + b] ≥ +1 ∀i = 1, 2, ..., n (4.10)

66



4.2 Proposed Method

where $ is the normal to the hyperplane (weight vector) (Figure 4.11) and b is the bias

(scalar). Then the optimal hyperplane is defined as H : $ · xi + b = 0 which separates

the training data with the maximum margin (Figure 4.11). Also, the points for which

the equality in Equation (4.9) holds lie on the plane of which Ha1 : $ ·xi + b ≥ +1 and

Ha2 : $ · xi + b ≤ −1 (Figure 4.11). The margin between both hyperplanes (Ha1 and

Ha2) equals 2/(||$||2) and ||$|| is the Euclidean norm of $. The margin 2/(||$||2) is

to be maximized or minimized 1
2 ||$||

2 subject to the constraints in Equation (4.10).

Figure 4.11: Decision boundary or hyperplane and margin of SVM classifier that is

linearly separable

Most real life classifications are linearly non separable [148] or contain noise in the

dataset [121]. Hence, the application of a soft margin to finding the weight vector

using slack variable ζ helps to reduce misclassification. Then, the primal optimization

problem is defined as:
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minimize

1

2
||$||2 + C

n∑
i=1

ζi (4.11)

subject to

yi[$ · xi + b] ≥ 1− ζi, ζi ≥ 0 ∀i

where C is a parameter that controls the effect of the margin width and classification

error. The primal problem is converted into a dual problem which is a simplified

problem [148] and is defined as:

maximize

f(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiαiΓ(xi · xj)yjαj , (4.12)

subject to
n∑
j=1

yiαi = 0, and αi ≥ 0, ∀i

Equation (4.12) problem is a quadratic function of the αi subject to linear constraints,

which is conveniently solvable by quadratic programming algorithms. The variable αi

is defined such that:

$ =

n∑
i=1

αiyixi (4.13)

where the vector $ determines the optimal hyperplane and can be written as a linear

combination of training vectors. Then, Γ(xixj) ≡ φ(xi)
Tφ(xj) is the kernel. Thus,

the training vectors xi are transformed into a higher dimensional space by a function

φ. There are different kernel functions, these kernels satisfy Mercer’s condition which

are positive semi definite (it has no non-negative eigenvalues), thus a global optimum

is achieved. However, different kernels of SVM were analyzed to determine the best

suited for classification. Some of these kernels are: linear kernels of Γ(xi, xj) = xTi , xj ,

and the Radial Basis Function (RBF) kernel of Γ(xi, xj) = exp(−γ||xi − xj ||, where γ
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is the spread of a Gaussian cluster and γ > 0. With the use of the kernel function, the

final SVM classifier becomes:

f(α) = sign

( n∑
i=1

yiαiΓ(xi, xj) + b

)
(4.14)

4.2.7 Algorithm for the classification of power-line insulator condition

Algorithm 3 gives the steps involved in the classification of power-line insulator condi-

tion based on the combination of LBP feature extraction and SVM as a classifier.

Algorithm 3 Classification of power-line insulator condition using LBP and SVM

Require: Dataset . Training and test set

Ensure: Output . Indicates insulator condition

1: for each image I in the training set do

2: Convert each RGB image I into grey scale and save result as g

3: Apply LBP operator to g and save result as L

4: Compute LBP histogram from L and save result as H

5: Use the H to generate the feature vector M

6: end for

7: Feed extracted features M into SVM classifier for training

8: for image T from the test set images do

9: Apply algorithm 2 to each image T and save result as g

10: Partition image g into four parts and save them into Ip, Ip = {Ip1, Ip2, Ip3, Ip4}
11: for n = 1 to n = 4 do

12: Apply LBP operator on each image save into Ip and save result as Lp(n)

13: Compute LBP histogram from Lp(n) and save result as Hp(n)

14: Use the Hp(n) to generate the feature vector N(n)

15: Compare extracted features of partitioned images N(n) to the trained set M if it matches

16: if any label of N(n), has a label that is defectuous then

17: Output image T is defectuous

18: else

19: Output image T is non-defectuous

20: end if

21: end for

22: end for
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4.3 Experimental Results and Discussion

4.3.1 Dataset

To our knowledge, there is presently no publicly available dataset for insulator studies.

Hence, the experiment and evaluation are based on the experimental dataset of this

research study. The experiment was conducted on a polymeric insulator. The dataset

contains 600 insulator images of both defectuous and non-defectuous insulators. The

training set is made up of 200 defectuous and 200 non-defectuous insulator images

(Figure 4.12). The training set is used to train the extracted features for the model.

Also, a validation process is required in addition to the training process. The validation

process is implemented in order to avoid over-fitting when the classification parameter

needs to be tuned. However, a 10-fold Cross Validation (CV) is applied. The test set

is made of 200 insulator images with 100 defectuous and 100 non-defectuous insulator

images that are not partitioned. The test set is used to determine the performance

characteristics such as the accuracy of the model.

Figure 4.12: Dataset of (a) non-defectious and (b) defectious insulators
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4.3.2 Pre-processing

Due to noises (such as shadows and illumination) in the captured images during insu-

lator image acquisition, all insulator images are preprocessed before further analysis.

However, in some cases such as in Figure 4.14, it is observed that the insulator bright-

ness is not uniform along the insulator (not a single connected component). Therefore,

morphological dilation is applied to Figure 4.14 in order to enhance the brightness of

the foreground pixels (insulator) or to have a single connected component as shown

in Figure 4.15. Figure 4.16(a) shows the original insulator images and Figure 4.16(b)

shows the final processed results after the implementation of morphological top-hat

filtering, dilation and image subtraction.

Figure 4.13: Grey-scale image of an insulator

Figure 4.14: Result of morphological top-hat filtering on Figure 4.13
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Figure 4.15: Enhanced result on morphological dilation

Figure 4.16: (a) Original image and (b) Final processed results; after the implementation

of top-hat filtering, dilation and image subtraction on (a).
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4.3.3 Segmentation

Some of the final output of the segmented insulator images are shown in Figure 4.17.

It is observed that the ACM curve fits on the boundary of the insulators in Figure

4.17(a) and the segmented images are shown in Figure 4.17(b). In Figure 4.17, it is

observed that some background pixels are inside the insulator (foreground), as a result

post-processing is employed to fill up the holes as shown in Figure 4.18.

Figure 4.17: (a) Result of the implementation of ACM on Figure 4.16(b) with curve on

insulator boundaries and (b) the segmented image of (a). Best viewed in colour.
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Figure 4.18: Result of post-processing of (a) Figure 4.17 on row 3 column 2 and (b) row

4 column 2.

Figure 4.19: Some ground-truth images

In order to evaluate the proposed segmentation method, segmented insulator im-

ages created by experts were used (some ground-truth samples are presented in Figure
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4.19). Since interest is on the ROI of the insulator, the minimum bounding box over

the insulator is required. Therefore, the ground-truth bounding box over the insulator

(foreground) is considered as the relevant object and the bounding box of the proposed

segmented insulator region is considered as the selected object. Based on this explana-

tion, statistical criteria are employed for performance analysis. The statistical criteria

are sensitivity, precision, accuracy and F1-score [149], [150] and are defined as stated in

chapter 3; sensitivity also known as recall (Equation 3.23), precision (Equation 3.25),

accuracy (Equation 3.26) and F1-score (Equation 3.27). The foreground represents the

pixels inside the bounding box or ROI and the background represents the pixels outside

the ROI in both segmented images and ground-truth images. All images are in binary

for computation. True Positive TPv is the foreground in the segmented image that

overlaps the foreground in the ground-truth image. True Negative TNv is the back-

ground in the segmented image that truly overlaps the background in the ground-truth

image. False Positive FPv is the foreground in the segmented image that are detected

as background in the ground-truth image. False negative FNv is the background in the

segmented image that are defined as the foreground in the ground-truth image. Table

4.2 shows the result of the performance analysis.

Table 4.2: Performance analysis

Method Precision Recall F1-Score Accuracy

Proposed method 87.6% 99.6% 93.0% 94.1%

4.3.4 Insulator Region of Interest Extraction

The extracted coordinate, length and width of the insulator (foreground) image in the

segmented image is used to define the insulator ROI in the grey-scale image (Figure

4.20 and 4.21). The red bounding box represents the insulator ROI using the proposed

method of segmentation and green bounding box represents the ground-truth. It is

observed in Figure 4.20 that both the proposed method of segmentation and the ground-

truth overlap each other, while in Figure 4.21, the area of the proposed method is

more than the ground-truth. This is due to the under-segmentation caused by the

strong edge boundary from the insulator shadow. This reduces the performance of
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segmentation. Furthermore, the extracted coordinate, length and width are used to

extract the insulator ROI (Figure 4.22) from the original grey-scale image.

Figure 4.20: Minimum bounding box identified as ROI. The red bounding box represents

proposed method of segmentation and green bounding box represents ground-truth. Best

viewed in colour

Figure 4.21: Insulator ROI. The red bounding box represents proposed method of seg-

mentation and green bounding box represents ground-truth. Best viewed in colour

Figure 4.22: ROI extracted from Figure 4.13 using the bounding box coordinates obtained

from insulator segmentation.

4.3.5 Feature Extraction

Due to the length of each insulator, it will be difficult to capture some smaller regions

that are defectuous, therefore each insulator image is partitioned into smaller segments

to enhance classification performance. Figure 4.23 shows an insulator image that has

been partitioned.
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Figure 4.23: Insulator partitioning of Figure 4.22.

The effectiveness of the proposed model is evaluated by comparing it with the

GLCM feature extraction implemented in [8]. GLCM is created by computing how

often a pixel with the intensity value i, occurs in a specific spatial relationship to a

pixel with the intensity value j in an image with number of grey level represented

as Gn at a particular displacement distance d and at a specific angle θ. The matrix

element p(i, j|d, θ) contains the second order statistical probability values for changes

between intensity values at d and at θ [151]. Let g(i, j) be the (i, j)th entry in the

normalized GLCM. The fourteen Haralick features are defined as [152]:

Angular Second Moment (ASM) =
∑
i=0

∑
j=0

g(i, j)2 (4.15)

Entropy (ENT ) = −
∑
i=0

∑
j=0

g(i, j)log(g(i, j)) (4.16)

Contrast (CON) =

Gn−1∑
n=0

n2

{ Gn∑
i=1

Gn∑
j=1

g(i, j)

}
, |i− j| = n (4.17)

Correlation : (COR) =

∑Gn−1
i=0

∑Gn−1
j=0 p(i, j)− µxµy
σxσy

(4.18)

where µx, µy, σx and σy are the means and standard deviations of the partial probability

functions, gx and gy.

Sum of Squares : V ariance (V AR) =
∑
i=0

∑
j=0

(i− µ)2g(i, j) (4.19)
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Sum Average : (SAV ) =

2Gn−2∑
i=2

(i)(gx+y(i)) (4.20)

where x and y are the coordinates along the row and column of the co-occurence matrix

and gx+y(i) is the probability of co-occurence matrix coordinates adding to x+ y.

Sum Entropy : (SEN) = −
2Gn−2∑
i=2

gx+y(i)log{gx+y(i)} (4.21)

Sum V ariance : (SV A) =

2Gn−2∑
i=2

(1− f)2(gx+y(i)) (4.22)

where f is equal to the equation of sum entropy (Equation 4.21.

Inverse Difference Moment : (IDM) =
∑
i=0

∑
j=0

1

1 + (i− j)2
g(i, j) (4.23)

Difference V ariance : (DV A) =

Gn−1∑
i=0

i2gx−y(i) (4.24)

Difference Entropy : (DEN) = −
Gn−1∑
i=0

gx−y(i)log{gx−y} (4.25)

Information Measure of Correlation 1 : (IMC1) =
AXY −AXY 1

max{AX,AY }
(4.26)

where, AX and AY are entropies of gx and gy,

AXY =
∑
i=0

−
∑
j=0

g(i, j)log(g(i, j))

AXY 1 =
∑
i=0

−
∑
j=0

g(i, j)log{gx(i)gy(j)}
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Information Measure of Correlation 2 : (IMC2) =

(1− exp[−2(AXY 2−AXY )])1/2 (4.27)

where,

AXY 1 =
∑
i=0

−
∑
j=0

gx(i)gy(j)log{gx(i)gy(j)}

Maximum Correlation Coefficient : (MCC) =

Square root of the largest eigenvalue of Q (4.28)

where,

Q(i, j) =
∑
k

g(i, k)g(j, k)

gx(i)gy(k)

4.3.6 Classification

Tables 4.3 and 4.4 show the condition of insulators based on 10-fold cross validation

for the proposed model and GLCM [8] respectively. Tables 4.5 and 4.6 show the per-

formance of insulator condition using the proposed model and GLCM [8] respectively

based on the images in the test set.

The performance analysis of the proposed method is measured using Equation 3.26.

The accuracy of the proposed method and GLCM [8] method using the testing set

images are 85.5% and 80.0% respectively (Table 4.7). Hence, a better performance

is obtained when LBP features are extracted and fed into SVM classifier over GLCM

features fed into SVM.

Table 4.3: Confusion matrix for the CV using LBP with SVM

Defectuous Non-defectuous

Defectuous 200 0

Non-defectuous 0 200
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Table 4.4: Confusion matrix for the CV using GLCM [8] with SVM

Defectuous Non-defectuous

Defectuous 188 12

Non-defectuous 9 191

Table 4.5: Confusion matrix of the test set using LBP with SVM

Defectuous Non-defectuous

Defectuous 94 6

Non-defectuous 23 77

Table 4.6: Confusion matrix of the test set using GLCM [8] with SVM

Defectuous Non-defectuous

Defectuous 87 13

Non-defectuous 27 73

Table 4.7: Accuracy of GLCM [8] and LBP with same SVM classifier (%)

10-fold validation ACC (%) Testing ACC (%)

GLCM [8] 94.8% 80.0%

Proposed method 100% 85.5%

It can be observed from Tables 4.3 and 4.4, that LBP fed into SVM outperformed

GLCM features fed into SVM in the application of 10-fold cross validation using the

training set. With the application of test images, the accuracy of both methods

dropped. The LBP has a better performance over GLCM. This is because the LBP is

rotation invariant unlike the GLCM. Moreover it is just one direction parameter during

computation.

In the classification phase, SVM with radial basis function kernel was used. A

Cross Validation (CV) process was performed in order to predict or optimize the model

parameter (such as the regularization parameter and kernel width) to fit the training

set. A k-fold cross-validation randomly partitions the training set into k-equal sized

subsets, whereby a single subset is retained as a test set and all other subsets are used as

the training set. Then the cross-validation process is repeated, based on the number of

fold (k) times, with the k subset used once as the validation set and thereafter averaging
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the k results of all folds to obtain a single result. However, the number of fold is varied

from 2 to 10 and the accuracy is computed using Equation 3.26. The result is shown

in Figure 4.24.

Figure 4.24: Accuracy on cross-validation using SVM

In Figure 4.24, the accuracy of both methods increases from k = 2 to k = 10.

However, if 5% is considered as the threshold of the error rate (1-accuracy(%)), then

it can be stated that a better fitting model to the training set is achieved from k = 8

to 10 for both methods. There is an increase in both methods because of the principle

of k-fold CV. For example, at k = 2, it partitions the training set into 2 equal sizes,

50:50, which means that it trains with one part of the 50 and test with the other part

of 50. For k = 10, it partitions the training set into 10 equal sizes, 20:80, and used the

80 for training while the 20 for testing. Comparing both cases of k = 2 and k = 10, it

means that more images will be used for training for k = 10 than k = 2, as a result

having a better chance to be able to identify unknown image(s).

Figure 4.25 shows the overall accuracy when the training set is varied from 100,

200, 300, 400, along side the test set from 500, 400, 300, 200 respectively for an SVM

classifier using LBP and GLCM feature extraction methods. Each pair (training set

and test set) amount to 600 images in all cases of varying the size of the dataset. The
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Figure 4.25: Accuracy on test set using SVM

increasing training set size increases the accuracy and decreases the error rate. It can

be observed in Figure 4.25, that there is a sharp rise in the training set when increased

from 100 to 300. This is because the training set is not large enough. When the training

set is increased above 300, a gradual increase is noticed. At this point forward, there

is also a reduced error rate which may be approximately the same within this region

and the model performs best at this region.

4.4 Statistical Test

In order to validate the accuracy of the methods, the McNemar’s test introduced by

Quinn McNemar in 1947 is used. The McNemar’s test is a statistical test used on

paired (matched) data on a dichotomous item [153], [154]. Let A be the combination of

GLCM with SVM algorithm and B be the combination of LBP with SVM algorithm.

Given the following number of cases, Table 4.8 shows that:

• Number of insulators estimated defectuous for A and defectuous for B = a

• Number of insulators estimated non-defectuous for A and defectuous for B = b

• Number of insulators estimated defectuous for A and non-defectuous for B = c
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• Number of insulators estimated non-defectuous for A and non-defectuous for B

= d

Table 4.8: Contingency table

A

Defectuous Non-defectuous

B
Defectuous a b

Non-defectuous c d

A contingency table is generated from Tables 4.5 and 4.6 based on [154] and it is

shown in Table 4.9.

Table 4.9: Contingency table

A

Defectuous Non-defectuous

B
Defectuous 181 19 t1 = 200

Non-defectuous 50 150 t2 = 200

t3 = 231 t4 = 169 T = 400

The McNemar’s test uses data from the two discordant entries b and c [153] from

Table 4.8, where n is the total number of matched pairs (n = a + b + c + d). The

McNemar’s test is used to determine whether the null hypothesis Ho is accepted or re-

jected. The Ho states that there is no significant difference between the two algorithms

and alternative hypothesis Ha states that there is a significant difference between both

algorithms. The McNemar’s test is computed using Equation 4.22 [154].

χ2 =
(|b− c| − 1)2

b+ c
(4.29)

where χ2 is chi-squared distribution with one degree of freedom (DoF).

Therefore, the computed chi-square value (χ2) using Equation 4.29 is 13.04. By

convention, scientists often use a P value of 0.05 (5%) for deviation of significant test.

However, if it is greater, then the null hypothesis Ho is rejected. The P value of 0.05

for 1 DoF in the chi-square (χ2) distribution table is 3.841 [155]. Since the computed
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χ2 > 3.841, Ho is rejected. Therefore, it means that the accuracy of the two algorithms

(A and B) are statistically different.

4.5 Conclusion

The classification of power-line insulator condition has been investigated and presented.

The segmentation method was evaluated using manually created ground-truth by ex-

perts. The comparison of LBP and GLCM feature extraction methods has also been

presented. It is shown that LBP outperformed GLCM when both features are fed into

a SVM classifier while considering their accuracy rates. From the experiment, it is

evident that the LBP is statistically robust, more stable and less prone to noise. It is

also observed that variation in the training set size resulted in increased accuracy with

a reduced error rate. It is observed from the McNemar’s test, that there is significant

difference between LBP and GLCM using the same SVM classifier.
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Chapter 5

Classification of Insulator

Condition using Scale Invariant

Feature Transform with

K-Nearest Neighbour

5.1 Introduction

This chapter introduces an automated method for the classification of power-line insu-

lator condition using SIFT with KNN. Before the application of the SIFT algorithm for

the extraction of features, the insulator region of interest is extracted from the image.

The extraction of the insulator is done using the active contour model, followed by

the extraction of the insulator ROI. The SIFT algorithm is used to extract features

that are stable and invariant by translation, rotation, scale and stable to changes in

the illumination. This is then fed into a KNN classifier to determine the condition of

insulators. The SIFT algorithm discussed in this chapter is organized into four major

phases namely, scale space extrema detection, keypoint localization, orientation assign-

ment and keypoint descriptor generation. The developed automated model based on

computer vision will be able to identify and analyze insulators condition safely, speed-

ily and accurately-better than the manual or traditional method. Also, the proposed

method will be able to minimize the failure caused by insulator defect which has a

major impact on the transmission and distribution of electricity.
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The flowchart of the proposed method of classification of insulator condition using

SIFT with KNN is shown in Figure 5.1.

Figure 5.1: Flowchart of SIFT and KNN
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5.2 Proposed Method

5.2.1 Insulator Segmentation and Region of Interest Extraction

This section is based on the same principle employed in pre-processing, insulator seg-

mentation and region of interest extraction presented in Chapter 4. In order to reduce

noise and improve the quality of images, pre-processing and post-processing steps are

required. RGB images are converted into grey scale images. Then, morphological op-

eration is applied to the grey scale images for the purpose of image enhancement (see

Section 4.2.1 in Chapter 4). Insulator images are enhanced using the top-hat filter.

Then, the result obtained from the application of top-hat filtering is further enhanced

using the morphological operation known as dilation. The output image of the morpho-

logical dilated image is then subtracted from the original grey level insulator image for

further analysis on insulator segmentation (see Section 4.2.1 in Chapter 4 for detailed

illustration).

The region-based ACWE by Chan-Vese is used for insulator segmentation and it is

based on Equation 3.13 in Chapter 3 with the same parameter settings and principle

of operation.

Insulator region of interest is extracted by first obtaining the coordinates and size

of the foreground pixels (insulator) from the segmented image. With the same size of

segmented image and the original grey scale image, the coordinates and size from the

segmented image are mapped into the original grey scale image for placing a minimum

bounding box over the entire insulator; thereafter is the extraction of the insulator

ROI.

5.2.2 Algorithm of Insulator Segmentation

Algorithm 4 gives the steps for insulator segmentation and ROI extraction.
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Algorithm 4 Insulator Segmentation and ROI Extraction

Require: I . Source Image

Ensure: E . Extracted Insulator ROI Image

1: Convert the RGB image I into grey scale and Save result as g

2: Define a disk structuring element s

3: Apply Equation 4.1 on g and Save result as T

4: Apply Equation 4.2 on T and Save result as Td

5: Apply Equation 4.3 and Save result as Is

6: Initialize a level set function ϕ

7: for n = 1 to maximum value of n do

8: Compute h1(ϕ) and h2(ϕ) using Equations 3.14 and 3.15 respectively

9: Compute ϕn+1 by the discretization and linearization of Equation 3.18

10: Check whether curve is stationary

11: if curve is stationary then

12: Escape from the for loop

13: end if

14: end for

15: Save segmented image as sIm

16: Extract coordinates of the ROI from sIm

17: Map the coordinates from sIm on g

18: Extract insulator ROI from g and save as E

19: End

5.2.3 Feature Extraction using Scale Invariant Feature Transform

This section discusses the extraction of the local keypoints descriptor using the SIFT

algorithm. The features are less sensitive to scale, translation, and rotation. Figure 5.2

describes the data flow of the SIFT algorithm traversing from one stage to another. The

stages of the SIFT algorithm are outlined and described in the following subsections.

5.2.3.1 Scale Space Extrema Detection

The proper identification of a real world object depends on the scale representation of

the object. The scale space is the first stage of the SIFT algorithm which searches all

scales over several octaves of image. It is implemented by using Difference of Gaussian

(DoG) to identify potential keypoints that are invariant to scale and image rotation.

In the scale space extrema detection phase, the SIFT algorithm computes the “scale”,

“DoG”, and “extrema” over several “octaves”. The computation of scale space is

defined as:
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Figure 5.2: SIFT algorithm for data flow

S(x, y, σ) = Gα(x, y, σ) ∗ I(x, y) (5.1)

where I(x, y) is the image, ∗ denotes convolution operator for two-dimensional at point

x, y and Gα(x, y, σ) represents the Gaussian function for image blurring and it is defined

as Gα(x, y, σ) = Ke−ρ, where K = 1/(2πσ2) and ρ = (x2 + y2)/(2σ2).

In general, the kth scale of the image, for k ≥ 1 is defined using Equation 5.1.

Therefore, computing the scale for each image point I(x, y), a scalar product is applied
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between the pixel I(x, y) and a Gaussian weighted window gxg is placed over that point.

The SIFT algorithm repeatedly computes the scale of the image and then produces a

sequence of scales known as octave [156]. In the next step, all these octaves are used

to generate the DoG images. The DoG can be computed by subtracting each adjacent

image with a multiplication factor of m and it is derived as:

D(x, y, σ) = (Gα(x, y,mσ)−Gα(x, y, σ)) ∗ I(x, y)

= S(x, y,mσ)− S(x, y, σ) (5.2)

For example, Let S0
0 = I represents the original image, so that Sij represents

sequences of scales (octave), the superscript j represents the level of octave (where

“n” octave, 0 < j ≤ n − 1) and subscript i represents the sequence of scales (where

0 ≤ i < k + 3, and k ≥ 1 is an integer). Therefore, for an image I(x, y), Si+i0 (x, y) =

Gα(x, y, σi) ∗ Si0(x, y), where 0 ≤ i < k + 3, the algorithm computes the scale as:

S0
0 .Gα → S0

1 .Gα1 → S0
2 · · · S0

k .Gαk
→ S0

k+1.Gαk+1
→ S0

k+2.Gαk+2
→ S0

k+3 (5.3)

The sequence of scales in Equation 5.3 is referred to as an octave. For the next

octave, a reduction in image resolution is required. The resolution of an image can be

reduced by a factor of 2 in each dimension by sampling every other pixel of the image.

Then the next octave (second octave) similar to the first octave (octave zero) (Equation

5.3) can be defined as:

S1
0 .Gα → S1

1 .Gα1 → S1
2 · · · S1

k .Gαk
→ S1

k+1.Gαk+1
→ S1

k+2.Gαk+2
→ S1

k+3 (5.4)

For “n” octaves with a reduction in each dimension by a factor of 2, it is defined as:

Sj0.Gα → Sj1.Gα1 → Sj2 · · · S
j
k.Gαk

→ Sjk+1.Gαk+1
→ Sjk+2.Gαk+2

→ Sjk+3 (5.5)

Then the DoG can be computed over the fixed octave “j” and for 0 ≤ i < k+ 3 as:

Sj1 − S
j
0, Sj2 − S

j
1, · · · S

j
k+2 − S

j
k+1, Sjk+3 − S

j
k+2 (5.6)
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where the difference is for each pair of corresponding pixels Sji+1 and Sji . This can be

written for an ith DoG as:

Dj
i = Sji+1 − S

j
i (5.7)

Figure 5.3: Extrema detection [6].

For an extrema detection, lets consider three sets of adjacent DoG images as Dj
i−1,

Dj
i and Dj

i+1 in an octave j (Figure 5.3). Let element Dj
i (x, y) represents the “X”

mark in Figure 5.3 with 26 neighbouring pixel shown in green circle in Figure 5.3.

Thus, element Dj
i (x, y) is regarded as an extremum if the pixel value is larger than all

the neighbouring pixels or if it is smaller than it neighbouring pixels.

5.2.3.2 Keypoint Localization

After the comparison of a pixel with its neighbouring pixels to obtain keypoint candi-

date (extrema), the next step is to perform an interpolation of nearby data for location,

scale, and ratio of principal curvatures. This information allows points to be rejected

which have low contrast or that are poorly localized along an edge. The interpolation

is performed using the quadratic Taylor expansion of the DoG scale-space function,

D(x, y, σ) with the keypoint candidate as the origin. This Taylor expansion is defined

as:

D(χ) = D +
∂DT

∂χ
χ+

1

2
χT

∂2D

∂χ2
χ (5.8)
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where D and its derivatives are evaluated at the keypoint candidate and χ = (x, y, σ)T

is the offset from this point. The location of the extremum, χ̃ is determined by taking

the derivative of this function with respect to χ and setting it to zero, giving χ̃ =

−∂2D−1

∂χ2
∂D
∂χ . Then, if the offset χ̃ is larger than a threshold in any dimension, then it

indicates that the extremum lies closer to a different keypoint candidate. Therefore the

keypoint candidate is changed and the interpolation is carried out about that point,

otherwise the offset χ̃ is added to its keypoint candidate to get the interpolated estimate

for the location of the extremum.

To reject low contrast points, the function value at the extremum D(χ̃), is used to

discard all extrema with a value of |D(χ̃)| less than a threshold value, and it is defined

as:

D(χ̃) = D +
1

2

∂DT

∂χ
χ (5.9)

In order to increase stability, since rejection of keypoints with low contrast is not a

sufficient means, keypoints are eliminated with poorly determined locations but with

high edge responses. Thus, to detect the extrema on edges, the principal curvature is

used which is computed from a 2x2 Hessian matrix, H, at the location and scale of the

keypoint. The 2x2 Hessian matrix is defined as:

H =

[
Dxx Dxy

Dxy Dyy

]
(5.10)

Then, the trace and determinant of H are computed for the generation of the ratio

of principal curvature. This quantity is compared with a threshold value to determine

if an extremum is to be discarded or not. After the elimination of extrema points, the

remaining points are called keypoints.

5.2.3.3 Orientation Assignment

At this stage, the main aim is to achieve invariance to image rotation. The magnitude

m(x, y) and rotation θ(x, y) for each pixel in a neighbouring region around the keypoint

in the Gaussian smoothed image S(x, y) at this scale, can be computed as:
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m(x, y) =
√

(S(x+ 1, y)− S(x− 1, y))2 + (S(x, y + 1)− S(x, y − 1))2 (5.11)

θ(x, y) = tan−1((S(x, y + 1)− S(x, y − 1))/(S(x+ 1, y)− S(x− 1, y))) (5.12)

Then an orientation histogram is generated that has 36 bins covering a 360 degree

range of orientations. The peaks in the histogram correspond to the pre-eminent ori-

entations of local gradient and the orientation is detected as the highest peak in the

histogram. For any other local peak that is within 80% of the highest peak, a keypoint

is created with that orientation.

5.2.3.4 Keypoint Descriptor Generation

In this stage, a descriptor vector is computed for each keypoint such that the descrip-

tor is highly distinctive and partially invariant to illumination and 3D viewpoint. The

descriptor vector is computed as a set of orientation histograms on 4x4 pixel neighbour-

hoods with 8-bins. These histograms are computed from the magnitude and orientation

values of a 16x16 region around the keypoint, with each histogram having a 4x4 sub-

region of the original region. The magnitudes are further weighted using a Gaussian

function and the width of the descriptor window is based on the value of sigma in the

Gaussian function. With a 4x4 = 16 histogram, with each histogram having 8-bins,

the vector has 128 elements. Thus, for invariance to affine changes in illumination, the

vector is normalized to a unit length.

5.2.4 Classification using K-Nearest Neighbour

The extracted feature vectors are fed into a KNN classifier in order to classify insulators

as defectuous and non-defectuous. Typically, KNN is used to train a set of feature

vectors or attribute vectors with a given corresponding class label in order to predict

a class of an unknown instance x. An instance x relates to a point in a n-dimensional

space and can be represented by an attribute vector [v1(x), v2(x), ..., vn(x)], where n is

the number of attributes. In our case, KNN uses the Euclidean distance to measure

the distance between instance xi and xj . The Euclidean distance is defined in [111],

[112], [113] as:
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d(xi, xj) =

√√√√ n∑
m=1

(vm(xi)− vm(xj))2 (5.13)

Given a new instance y, KNN uses the k-nearest instance in the training set i.e.

x1, x2, ..., xk, thereby returning the result of classifying y as defined in equation 5.14.

c(y) ← arg max
c∈C

k∑
r=1

δ(c, c(xi)) (5.14)

where c(y) is the class of the instance y, k is the number of neighbours, C and c

represents the class variable and δ(c, c(xi)) is equal to 1, if c is equal to c(xi) and 0

otherwise.

5.2.5 Algorithm for the classification of power-line insulator condition

Algorithm 5 gives the steps involved in the classification of power-line insulator condi-

tion using SIFT with KNN.
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Algorithm 5 Classification of power-line insulator condition using SIFT and KNN

Require: Dataset . Training and test set

Ensure: Output . Indicates insulator condition

1: for each image I in the training set do

2: Convert each RGB image I into grey scale and save result as g

3: Generate a scale space from g using Equation 5.1

4: Find key-points or interest points using Equation 5.2

5: Reject low contrast and bad key-points using Equations 5.9 and 5.10

6: Assign orientation to the key-points using Equations 5.11 and 5.12

7: Generate SIFT key-point descriptor as D

8: end for

9: Feed extracted features D into KNN classifier for training

10: for image T from the test set images do

11: Apply algorithm 4 to each image T and save result as g

12: Partition image g into four parts and save them into Ip, Ip = {Ip1, Ip2, Ip3, Ip4}
13: for n = 1 to n = 4 do

14: Generate a scale space from each image saved into Ip using Equation 5.1

15: Find key-points or interest points using Equation 5.2

16: Reject low contrast and bad key-points using Equations 5.9 and 5.10

17: Assign orientation to the key-points using Equations 5.11 and 5.12

18: Generate SIFT key-point descriptor as D

19: Save each D from Ip result as Sp(n)

20: Use the Sp(n) to generate the feature vector N(n)

21: Compare extracted features of partitioned images N(n) to the trained set M if it matches

22: if any label of N(n), has a label that is defectuous then

23: Output image T is defectuous

24: else

25: Output image T is non-defectuous

26: end if

27: end for

28: end for

5.3 Experimental Results and Discussion

5.3.1 Dataset

To our knowledge, there is presently no publicly available dataset for insulator studies

and therefore the dataset used in this chapter is the same as presented in Chapter 4.

5.3.2 Pre-processing

Due to a high signal to noise ratio such as shadows and illumination in the captured

images, all insulator images were pre-processed before further analysis. Figure 5.4(a)
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shows the original grey-scale images; Figures 5.4(b) - (d) show the results of the pre-

processed stages.

Figure 5.4: (a) Greyscale image, (b) Top-hat Filtering (c) Morphological dilation (d)

Image subtraction (e) ACM (f) Segmented image (g) ROI (h) ROI extraction (i) Partitioned

image. Best viewed in colour

5.3.3 Segmentation

Figure 5.4(e) shows the result of the application of ACM, where a line is drawn on

the boundary of the insulators and the segmented image as shown in Figure 5.4(f). In
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cases were there are some background pixels inside the insulator (foreground), post-

processing is employed to fill up the holes.

5.3.4 Region of Interest Extraction

Figure 5.4(g) shows the identification of insulator ROI. This is obtained by extracting

the coordinates, length and width that are used to define a minimum bounding box

over the insulator from Figure 5.4(f), followed by the extraction of the insulator ROI

from the image in Figure 5.4(a). The output is shown in Figure 5.4(h).

Due to the length of each insulator, it will be difficult to detect some smaller regions

that are defectuous, therefore each insulator image is partitioned into smaller segments

to enhance classification performance. Figure 5.4(i) shows an insulator image that has

been partitioned.

5.3.5 Feature Extraction

SIFT is used for feature extraction in this chapter and its effectiveness has been com-

pared with other feature methods used in Chapter 4 such as GLCM and LBP. The

extracted features are fed into the KNN and SVM classifiers for insulator condition

prediction.

5.3.6 Classification

Tables 5.1 - 5.8 show the condition of insulators based on 10-fold cross validation

(CV) and test set implementation outputs respectively, while Tables 5.9 and 5.10 show

the accuracy of GLCM, LBP and SIFT feature extraction methods with KNN and

SVM classifiers. The performance analysis of the proposed method is measured using

Equation 3.26.

Table 5.1: Confusion matrix for the cross-validation using SIFT with KNN

Defectuous Non-defectuous

Defectuous 200 0

Non-defectuous 0 200
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Table 5.2: Confusion matrix of the test set using SIFT with KNN

Defectuous Non-defectuous

Defectuous 95 5

Non-defectuous 21 79

Table 5.3: Confusion matrix for the cross-validation using LBP with KNN

Defectuous Non-defectuous

Defectuous 200 0

Non-defectuous 0 200

Table 5.4: Confusion matrix of the test set using LBP with KNN

Defectuous Non-defectuous

Defectuous 94 6

Non-defectuous 24 76

Table 5.5: Confusion matrix for the cross-validation using GLCM with KNN

Defectuous Non-defectuous

Defectuous 190 10

Non-defectuous 10 190

Table 5.6: Confusion matrix of the test set using GLCM with KNN

Defectuous Non-defectuous

Defectuous 88 12

Non-defectuous 30 70

Table 5.7: Confusion matrix for the cross-validation using SIFT with SVM

Defectuous Non-defectuous

Defectuous 200 0

Non-defectuous 0 200

.
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Table 5.8: Confusion matrix of the test set using SIFT with SVM

Defectuous Non-defectuous

Defectuous 93 7

Non-defectuous 18 82

Table 5.9: Accuracy of GLCM, LBP and SIFT using SVM

10-fold validation ACC (%) Testing ACC (%)

GLCM+SVM 94.8% 80.0%

LBP+SVM 100% 85.5%

SIFT+SVM 100% 87.5%

Table 5.10: Accuracy of GLCM, LBP and SIFT using KNN

10-fold validation ACC (%) Testing ACC (%)

GLCM+KNN 95% 79.0%

LBP+KNN 100% 85.0%

SIFT+KNN 100% 87.0%

Figure 5.5: Accuracy in varying the training set size using SVM
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Figure 5.6: Accuracy in varying the training set size using KNN

Figures 5.5 and 5.6 show the variation of the training set size along side the test

set size using SVM and KNN respectively. Increasing the training set size, increases

the accuracy of insulator classification. When the training set is increased above 300,

a gradual increase is noticed. From this point forward, there is a reduced error rate

which may stay approximately the same within this region. The model performs best

at this region.

5.4 Statistical Test

In order to validate the accuracy of the methods, such as LBP and SIFT using SVM,

and LBP and SIFT using KNN, the McNemar’s test is used. Let B be LBP with SVM,

C be SIFT with SVM, D be LBP with KNN, and E be SIFT with KNN algorithm.

Given the following number of cases, Table 5.11 is proposed.

• Number of insulators estimated defectuous for B and defectuous for C = a

• Number of insulators estimated non-defectuous for B and defectuous for C = b

• Number of insulators estimated defectuous for B and non-defectuous for C = c
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• Number of insulators estimated non-defectuous for B and non-defectuous for C

= d

Table 5.11: Contingency table

B

Defectuous Non-defectuous

C
Defectuous a b

Non-defectuous c d

A contingency table is generated using algorithm B and C based on [154] and it is

shown in Table 5.12.

Table 5.12: Contingency table. LBP and SIFT using SVM classifier

B

Defectuous Non-defectuous

C
Defectuous 187 13 t1 = 200

Non-defectuous 41 159 t2 = 200

t3 = 228 t4 = 172 T = 400

The McNemar’s test uses data from the two discordant entries b and c [153] from

Table 5.11, where n is the total number of matched pairs (n = a+b+c+d). The McNe-

mar’s test is used to determine whether the null hypothesis Ho is accepted or rejected.

The Ho states that there is no significant difference between the performances of the

two algorithms and the alternative hypothesis Ha states that there is significant differ-

ence between the performances of both algorithms. The McNemar’s test is computed

using Equation 5.15 [154].

χ2 =
(|b− c| − 1)2

b+ c
(5.15)

where χ2 is chi-squared distribution with one degree of freedom (DoF).

Therefore, the computed chi-square value (χ2) using Equation 5.15 is 13.5. By

convention, scientists often use P value of 0.05 (5%) for deviation of significant test.

However, if it is greater, then the null hypothesis Ho is rejected. The P value of 0.05 for
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1 Degree of Freedom in the chi-square (χ2) distribution table is 3.841 [155]. Since the

computed χ2 > 3.841, Ho is rejected. Therefore, it means that the two algorithms (B

and C) are statistically different using the same test set. However, the same procedure

is applied for algorithm D and E to have a computed χ2 value of 19.45 (Table 5.13).

The Ho is rejected. Then for the classification comparison of KNN and SVM, where

the SIFT feature extraction method is used only due to its accuracy rate over LBP and

GLCM, the computed χ2 value is 8.65 (Table 5.14). The Ho is rejected, meaning there

is a significant difference.

Table 5.13: Contingency table. LBP and SIFT using KNN classifier

D

Defectuous Non-defectuous

E
Defectuous 189 11 t1 = 200

Non-defectuous 45 155 t2 = 200

t3 = 234 t4 = 166 T = 400

Table 5.14: Contingency table. SIFT using SVM and KNN classifiers

C

Defectuous Non-defectuous

E
Defectuous 188 12 t1 = 200

Non-defectous 39 161 t2 = 200

t3 = 227 t4 = 173 T = 400

5.5 Conclusion

In this chapter, the classification of power-line insulator condition has been investi-

gated and presented. The segmentation method was evaluated using manually created

ground-truth by experts. Also the comparison of SIFT and LBP feature extraction

method with KNN classifier was presented. It is shown that SIFT outperformed LBP

with the use of KNN and SVM classifiers using the accuracy rates. It is also observed

that variation in the training set size resulted in increased accuracy or reduced error

rate. From the experiment, it is evident that the SIFT is robust, more stable and
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less prone to noise. Also, based on the McNemar’s test, it is observed that there is

significant difference in their comparison.
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Chapter 6

Hydrophobicity Classification of

Insulator using Geometric

Parameters

6.1 Introduction

This chapter discusses the condition of a polymeric insulator based on its hydrophobic-

ity using geometric parameters. A polymeric insulator is high in hydrophobicity when

newly installed and gradually degrades after a short time due to some factors, such as

build-up of pollution layers, surface oxidation, and ageing of the polymeric insulator.

These factors reduce the hydrophobicity of an insulator. Thus, in order to guarantee

safety and optimal performance of the power line system, it is crucial to periodically

estimate the status of insulators’ hydrophobicity using an automated system such as a

computer vision method instead of a manual method.

Also, this chapter describes the experimental procedure of water droplets on insu-

lator surfaces, template preparation and its parameters, water droplet segmentation

on the insulator and the extraction of geometric features. In addition, analysis and

discussion of the experimental results are presented. One main approach to insulator

hydrophobicity is the Swedish Transmission Research Institute (STRI) method.

104



6.2 The Swedish Transmission Research Institute Classification Method

6.2 The Swedish Transmission Research Institute Classi-

fication Method

The most accurate method of measurement is the use of stationary devices in the labo-

ratory instead of field inspection which is usually limited to visual signs of degradation,

such as cracks and de-colouration [134]. Hydrophobicity can be estimated when the

surface of an insulator is sprayed with distilled water. This is the basis of the STRI

classification method and it is based on a manual estimation of hydrophobicity clas-

sification (HC) for an insulator in the field. The STRI method is based on two key

features: the receding angle and the area covered by the water (completely wet area).

Table 6.1: Reference table from STRI guide (HC1 to HC7), r = receding angle [9]

HC Description

1 Only discrete droplets are formed. θr = 80o or larger

for the majority of droplets.

2 Only discrete droplets are formed. 50 < θr < 80o for

the majority of droplets.

3 Only discrete droplets are formed. 20 < θr < 50o.

Usually they are no longer circular.

4 Both discrete droplets and wetted traces from the wa-

ter runnels are observed (i.e θr = 0o). Completely

wetted areas < 2cm2. Together they cover < 90% of

the tested area.

5 Some completely wetted areas > 2cm2, which cover

< 90% of the tested area.

6 Wetted areas cover > 90%, i.e small, unwetted areas

(spots/traces) are still observed.

7 Continuous water film over the whole tested area

The HC process commences with the use of a spray bottle to spray distilled water

on an insulator surface and then the receding contact angle is determined. This is the

angle between the water droplets and the insulator surface. An inspector then specifies

the HC level of the insulator surface image. As a guide, the inspector has templates

of insulator surface images with wet patterns for each HC level [157], [158], [159]. The
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criteria for the HC are given in Table 6.1 and the typical STRI HCs from HC1 to HC6

are shown in Figure 6.1.

From Figure 6.1, HC1 to HC3 are hydrophobic since only water droplets are present,

whereas HC4 to HC6 are partially hydrophilic since both wet areas and water droplets

are present and HC7 is hydrophilic since the insulator surface is completely wet.

Figure 6.1: Reference images from STRI guide (HC1 to HC6) [9]

6.3 Experimental Procedure

6.3.1 Experiment

The experiment relies on the STRI guide [9]. A spray bottle is used to spray distilled

water on a fixed insulator surface image. Then, a digital camera is used to capture

images of water droplets on the insulator surface from a set distance as it gets to a

stable state. The procedure above is applied on all considered image samples. The

configuration parameter of the inclination angle is not provided in the STRI guide,

which may result in different patterns of the water droplets under the same wetting

conditions. However, this is not applicable to this experiment since the contact angle

is not considered.

Firstly, captured images are converted from colour to greyscale, then the segmen-

tation of water droplets on insulators and finally the classification of the insulator into

different hydrophobicity levels. In this research work, the edge-based segmentation is
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used instead of region-based segmentation because water is colourless and transpar-

ent, therefore has an effect upon the colour property, and secondly, pollutants on the

insulator surface have an effect on the texture property [138]. Hence, the colour and

texture properties of the water droplets are similar to the background which makes the

edge-based approach is useful for indicating the water droplets on insulator surfaces.

In [9], the receding angle and the area covered are the two criteria to determine the

HC levels of an insulator. HC1 to HC3 are estimated with the receding angle while

HC4 to HC7 are estimated with the area covered by the water droplets. However,

this experiment considers the shape (circularity) and the area covered by the water

droplets since the receding angles cannot be computed from a digital image. Instead of

the receding angle for HC1 to HC3, the circularity of the water droplets is introduced

since it is stated in Table 6.1 that at HC3 level, “the majority of the water droplets

are no longer circular”. It is clearly stated in Table 6.1 that “only discrete droplets

are formed” from HC1 to HC3, which means that no wet areas can be identified at

these levels. In this experiment, the target object is the water droplet and can be

characterized by colour, texture and geometric parameter [138]. The colour and texture

parameters are hard to use in the classification of HC levels because water is colourless.

Fortunately, the geometric parameter of the target object is independent of the water-

sprayed pollutants on the insulator surface and the natural pollutants on the insulator

surface: therefore the geometric parameters are useful for HC.

6.3.2 Template Preparation and its Parameters

In our experiments, images (see Figure 6.1) of size 330 x 256 pixels from the STRI

guide are used. The edges of individual water droplets in images of different HC levels

are well traced out by experts (see Figure 6.2) in order to have standard templates

with a binary image to estimate and extract circularity threshold (TCD), area cover

threshold (TAC) and the threshold of minimum area of wet trace (TACW ). (TCD) is

the maximum circularity threshold of water droplets extracted for each HC class from

HC1 to HC3 in Figure 6.2. TAD is the area threshold of water droplets extracted for

each HC class from HC1 to HC7 in Figure 6.2. TAC is the area cover threshold of

water droplets extracted for each HC class from HC1 to HC7 in Figure 6.2. TACW is

the threshold of minimum area of wet trace from a range greater than maximum area
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Figure 6.2: Reference images from STRI guide (HC1 to HC6), binarized by expert

Figure 6.3: Magnified images of HC1, HC3 and HC4 in Figure 2 with few water droplets

of HC3 and less than maximum area of HC4 in Figure 6.2. The extracted and defined

threshold range serves as a reference to classify other images (test images) with their

extracted circularity CD, area AD, area cover AC and area of wet trace ACW values

into different HC levels.

Figure 6.3 shows a set of magnified images of HC1, HC3 and HC4 in Figure 6.2

with some water droplets in HC1 and maximum water droplets in HC3 and HC4 for the

purpose of template parameter explanation. Let D represent the connected components

of the pixels; AD represents the area of individual water droplets (1, 2, 3...10) in HC1

of Figure 6.3, therefore the area cover threshold TAC is (TAC = AD(1) + AD(2) +

AD(3) + ... + AD(10)). In Table 6.1, wet traces are observed in HC4, therefore TACW

is a threshold area greater than the maximum area of HC3, AD(3), but less than the
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maximum area of HC4, AD(4) in Figure 6.3. In other words, this can be defined as

(AD(3) > TACW < AD(4)). TACW is set as a minimum threshold for classification

from HC4 to HC7. Considering HC1 in Figure 6.3, let Mj represent the major axis

and Mn represent the minor axis of each water droplet (1, 2, 3...10). The circularity

threshold TCD is the maximum difference between Mj and Mn in individual water

droplets in an image of each HC level. Considering HC1 in Figure 6.3, TCD(HC1) is

max[(Mj1 −Mn1), (Mj2 −Mn2), ..., (Mj10 −Mn10)]. This is applicable to HC2 and

HC3 where circularity plays a vital role.

6.4 Water Droplet Segmentation

6.4.1 Image Pre-processing

Captured images are mostly in RGB form. The RGB model is often not suitable in

many computer vision applications, hence it is often converted into other models such

as the greyscale. In this work, greyscale images are used. A series of morphological

operations [27], [28], such as dilation, erosion and closing operation; are used to remove

noise and further enhance the images.

6.4.2 Water Droplet Segmentation using Geodesic Active Contour

The model presented in this research work for water droplet segmentation on insulator

surface images is based on [47], [21], [160]. Geodesic Active Contour (GAC) is expressed

as:

∂Γ(t)

∂t
= v(m)κR− (∇v •R)R (6.1)

where R is the unit normal vector of the curve Γ, κ is the Euclidean curvature, v(m) is

the stopping function and ∇v is the gradient of the potential edge indication function

v expressed as:

v =
1

1 + |∇(θσ ? m)|c
(6.2)

where m is the image given, θσ is the Gaussian filter, (θσ ?m) is the smoothed version

of m and c is a constant which is 2 in this experiments.
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Figure 6.4: Image transformation (a) Original image and (b) Output of edge indicator

Figure 6.5: Geodesic transformation (a) Initial curve at the border of insulator image (b)

Final curve at the edges of the water droplets (best viewed in colour)

Equation 6.2 is applied to the original image in greyscale, m, in Figure 6.4(a). m

is smoothed with a Gaussian filter θσ. Then, very small values of v define the local

edges (see image transformation in Figure 6.4(b) for the curve to travel through. Then,

Equation 6.1 is applied onto Figure 6.5(a) with an initial curve Γ at the boundary of

image, and v(m) provides a constant speed for the curve evolution in order to accelerate

the convergence. The value of ∇v pushes the curve to the edges of the water droplets

and stops when v(m) = 0 at the boundary of the water droplets (see Figure 6.5(b)).

Algorithm 6 presents the steps involved in water droplet segmentation on polymeric

insulators based on GAC.
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Algorithm 6 Water Droplets Segmentation

Require: m . Source Image

Ensure: segIm . Segmented Image

1: Convert the RGB image m into grayscale and Save as gm

2: Apply Equation 6.2 to gm and Save as gm

3: Define a structuring element S of size 2 by 3

4: Apply S to dilate gm, and Save as d

5: Apply Equation 6.1 to d and Save as Igac

6: Apply S to erode Igac, and Save as e

7: Apply morphological closing operation to e

8: Save the segmented image e as segIm

9: End

6.5 Extraction of Geometric Features

The segmented image, segIm, of water droplets on the insulator, contains pixel values

0 and 1 representing background and foreground respectively. In other words, segIm

is defined as:

segIm(r, c) =

{
0 the pixel belongs to the background

1 the pixel belongs to the foreground

However, the interest is based on geometric parameters which are shape and area

of water droplet. These parameters are used in estimating HC level.

6.5.1 Area of Individual Water Droplet Region

To obtain the area of individual water droplet region, it is necessary to transverse

through each pixel in the insulator surface image from left to right and top to bottom

until the last location or position in the image is reached [161]. When moving across

pixels, if any pixel that is equal to the foreground value is encountered, it checks its

neighbouring pixels using 8-connected component and label this connected component.

In this work, an 8-connected component is used instead of a 4-connected component

because the 8-connected component considers the adjacent and diagonals of the parent

pixel, thereby having a better description of the water droplet region for classification,

unlike the 4-connected component which considers the adjacent pixels only.

The area of individual water droplet region, AD, is the sum of the pixels, Dp, in the

connected component representing this droplet. In other words, the area is defined as
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AD =
∑

Dp (6.3)

6.5.2 Area Cover

The area cover is one of the important characteristic parameters used in the STRI

guide (see Table 6.1) for deciding hydrophobicity of insulators and represents the overall

hydrophobicity of the insulator surface image. The area cover can also be referred to as

the density of water distribution on an insulator surface image. The area cover (AC) is

the summation of all the individual water droplets in an insulator surface image. The

area cover of a segmented insulator surface image is defined as:

AC =
n∑
i=1

|ADi| (6.4)

where AC is the area cover of all the individual water droplets, and AD is the area of

individual droplets region in the segmented image segIm.

ACW is the summation of all the individual areas of water droplets greater than

the threshold set as TACW . TACW is greater than the maximum area in HC3 and less

than maximum area of HC4.

6.5.3 Circularity of Individual Water Droplet

Circularity is a measure of the extent to which the water droplet is similar to a circle

[94]. There are different measures to define the shape of an object. In this work, the

circularity of the water droplet is based on the ellipse major and minor axis lengths

(in pixels). The major and minor axes pass through the centre of mass of the water

droplet. The minor axis is perpendicular to the major axis. Water droplets are circular

when the difference between the major and minor axis length is equal and tends to be

elliptical or irregular when the major axis length increases farther away from the minor

axis length. The circularity is defined as:

CD = max[(Mj(1) −Mn(1)), (Mj(2) −Mn(2)), ..., (Mj(n) −Mn(n))] (6.5)
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where CD is the circularity of the individual water droplet region, Mj is the major axis,

Mn is the minor axis and 1, 2, ..., n are individual droplets in segIm.

6.5.4 Criteria for Evaluating HCs

Table 6.2 shows the criteria for evaluating HC. From the HC1 to HC3 evaluation, both

CD and AC are used since it is stated in Table 6.1 that the water droplets are circular

from HC1 to HC2 until HC3 where the majority are no longer circular. Circularity is

used in HC3 since it is the only way to distinguish it from other classes. Also from

HC1 to HC3 classes, there is no area greater than ACW . The criteria for evaluating

HC4 to HC6 in Table 6.2 are the same as in Table 6.1. In these classes, the circularity

is of no use. Instead AC and ACW are used. HC4 is based on AC and the ACW . AC

covers less than 90% of the tested area and ACW is the summation of areas greater

than the threshold set as TACW . For HC5, AC only covers less than 90% of the tested

area. For HC6, AC only covers more than 90% of the tested area. Then, AC is equal

to 100% of the tested area, meaning that the entire surface of the tested area is wet.

If no water droplet is present or identified on the tested insulator surface image, it is

identified to be in HC7 class. With this, a decision-making classifier using an “if-else”

statement is used for the evaluation of the HC levels.

Table 6.2: Criteria for evaluating HCs

HCs Description

HC1 CD and AC

HC2 CD and AC

HC3 CD and AC

HC4 AC and ACW covers < 90% of the tested area

HC5 AC and only ACW covers < 90% of the tested area

HC6 AC and only ACW covers > 90% of the tested area

HC7 AC = 100% of the tested area

6.5.5 Algorithm for Hydrophobicity Classification of Insulators

Algorithm 7 gives the steps involved in hydrophobicity classification of polymeric insu-

lators based on geometric parameters. Let m denotes maximum value of the threshold
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Algorithm 7 Hydrophobicity Classification of Insulators

Require: segIm . Segmented Image

Ensure: HCLevel . HC Level

1: (D1, D2, ..., Dncc) ←− Find connected component (SegIm)

2: for i = 1 to cc do

3: Compute ADi using Equation 6.3

4: Compute AC using Equation 6.4

5: Find and Sum all AD > TACW and save as ACW

6: Compute CD using Equation 6.5

7: end for

8: if (CD < TCD) then

9: if (CD ≤ TCD(2)m) then

10: if (AC > 0) &&(AC ≤ TAC(1)m) then

11: Display HC1

12: else

13: Display HC2

14: end if

15: end if

16: if (CD > TCD(2)m) &&(CD ≤ TCD(3)m) then

17: if (AC > 0) &&(AC ≤ TAC(3)m) then

18: Display HC3

19: end if

20: end if

21: else

22: if (ACW > 0) &&(ACW < T90) then

23: if ((AC > TAC(3)m) &&(AC ≤ TAC(4)m)) || ((ACW > TACW ) &&(ACW ≤ TACW (4)m))

then

24: Display HC4

25: else

26: if ((AC > TAC(4)m) && (AC ≤ TAC(5)m)) || ((ACW > TACW (4)m) &&(ACW < T90))

then

27: Display HC5

28: end if

29: if (ACW > T90) &&(ACW < T100) then

30: Display HC6

31: end if

32: if (ACW == T100) then

33: Display HC7

34: end if

35: end if

36: end if

37: end if

38: End
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parameters, real numbers 1, 2, 3...7 represent HC1, HC2,...HC7 respectively, T90 and

T100 represent 90% and 100% of the tested images respectively.

6.6 Experimental Results and Discussion

6.6.1 Dataset

A dataset of 90 polymeric insulator surface images are used in this experiment. From

the literature survey, there is presently no publicly available dataset for insulator studies

on hydrophobicity. Hence, the experiment on insulator hydrophobicity is based on the

dataset of this experiment.

6.6.2 Performance Analysis

The performance analysis of the proposed method is measured using some statistical

criteria and confusion matrix for visualization. The statistical criteria are sensitivity

(Se), specificity (Sp), precision (Pr), accuracy (Ac) and F1-Score (Fs) [149, 150].

These statistical criteria are defined in Chapter 3 as Se (Equation 3.23), Sp (Equation

3.24), Pr (Equation 3.25), Ac (Equation 3.26) and Fs (Equation 3.27).

6.6.3 Results Analysis

In this experiment, the expansion weight, time step and number of iteration for the

GAC are set to −1, 2 and 500 respectively. The negative sign for the expansion weight

denotes the case of curve deformation.

Figure 6.6 shows the comparison of the proposed method with [10] and [135] meth-

ods. In addition, only the performance of the proposed method and the Dong et al.

[10] method are qualitatively evaluated. The Dong et al. [10] method of segmentation

is based on the combination of two methods namely adaptive-threshold and canny op-

erator. In the Liang et al. [135] method, Canny edge detector is used to detect edges

separately in the saturation and brightness channels of the HSV (Hue, Saturation and

Brightness). Thereafter, a threshold is applied to eliminate noise, then edges in both

channels are combined.

In Figure 6.6, the edges of the water droplets in column c of the proposed method

are better outlined as the ground-truth and original images than in columns d and
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Figure 6.6: Result of water droplet segmentation on insulator. Best viewed in colour

e. The Liang et al. [135] method has poor performance because of the sensitivity of

Canny operator to noise. Poor performance is observed in e5 and e6 because there are

no closed edges in the water droplets. Few water droplets are observed in e1 and e4

because of the method used to eliminate edges greater than a certain threshold. This

method is appropriate when there is continuity in the edges of the water droplets such

as e1 to e5. The segmentation method for the Dong et al. [10] method is not robust

due to the fact that the valley in the bimodal histogram vanishes in noisy images, and

as a result making it hard to compute and have a well-defined threshold parameter.

Therefore, it limits this method to a great extent. There is reduced performance in

segmentation on d1 and d6 due to the variation in the texture of the original image.
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Also, there is reduced performance in c1 to c6 because of edge discontinuity of all water

droplets at the borders of each polymeric insulator surface image (cut-out portions of

the water droplets at the image borders).

Table 6.3: Performance analysis on water droplet segmentation, with values of sensitivity,

specificity, precision, accuracy and f1-score in percentage (%). P = Proposed method and

D = Dong et al. [10] method

Sensitivity Specificity Precision Accuracy F1-score

P D P D P D P D P D

Average 83.84 70.74 79.25 71.66 76.15 68.05 82.26 70.22 79.15 67.42

Furthermore, the segmentation approach of both the proposed method and the

Dong et al. [10] method using the ground-truth of the insulator surface images, is

quantitatively evaluated with the following statistical criteria (see Equations 3.23, 3.24,

3.25, 3.26 and 3.27 in chapter 3): Se, Sp, Pr, Ac and Fs. Table 6.3 shows the average

of the performance metric on water droplet segmentation. The proposed method has a

higher values over Dong’s method with the following performance metrics Se, Sp, Pr,

Ac and Fs. Considering the accuracy (Ac) of the statistical criteria in Table 6.3, the

proposed method has an accuracy (Ac) of 82.26% to Dong’s method with an accuracy

(Ac) of 70.22%. This shows that the proposed method is an improvement of water

droplet segmentation on insulator surfaces images.

Table 6.4: Confusion matrix showing the performance of the proposed method on hy-

drophobicity

HC1 HC2 HC3 HC4 HC5 HC6 HC7

HC1 9 2 0 0 0 0 0

HC2 1 21 2 0 0 0 0

HC3 0 0 9 1 0 0 0

HC4 0 0 3 10 1 0 0

HC5 0 0 0 2 21 2 0

HC6 0 0 0 0 0 2 2

HC7 0 0 0 0 0 0 2
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Table 6.5: Confusion matrix showing the performance of the Dong et al. [10] method on

hydrophobicity

HC1 HC2 HC3 HC4 HC5 HC6 HC7

HC1 7 2 2 0 0 0 0

HC2 1 18 4 1 0 0 0

HC3 0 0 8 1 1 0 0

HC4 0 0 1 12 1 0 0

HC5 0 0 0 1 23 1 0

HC6 0 0 0 0 1 2 1

HC7 0 0 0 0 0 0 2

Tables 6.4 and 6.5 show the confusion matrices performance of the proposed method

and the Dong et al. [10] method respectively. Tables 6.6 and 6.7 show the performance

analysis of HC level based on Se, Sp, Pr, Ac and Fs. Tables 6.4 and 6.5 are multi-

class classification, the one against all approach is used to estimate the True Positive

TPv, True Negative TNv, False Positive FPv and False Negative FNv. The seven

diagonal cells show the number of correct classifications and the ones outside the di-

agonal cells are misclassified. For example in Table 6.4, the diagonal cells value are

(9, 21, 9, 10, 21, 2, 2) and considering these values as a pivot point, all values along the

horizontal axis of the pivot point, excluding the pivot point is considered as misclassi-

fied. The value 21 from the diagonal cell values in Table 6.4 is the number of correctly

classified images into HC2 out of a total number of 24 images as HC2 while a total

number of 1 and 2 images are misclassified into HC1 and HC3 respectively, with total

number of misclassified images as 3. Considering HC2 in Table 6.5, the number of im-

ages that are correctly classified into HC2 is 18 out of a total of 24 images as HC2 while

a total number of 1 and 4 images are misclassified into HC1 and HC3 respectively, with

total number of misclassified images as 5. This misclassification reduces the accuracy

of the performance. In Tables 6.6 and 6.7, the accuracy value for the proposed method

and Dong’s methods are 93.67% and 90.00% for HC2 classification respectively. There

is a reduced percentage value for HC2 classification in Dong’s method over the pro-

posed method because more images are misclassified with Dong’s method. The same

principle is applicable to other HC levels. However, there is an accuracy drop due to

misclassification from one HC level to another HC level resulting in a false negative. It
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is observed that the proposed method has more images classified into HC1, HC2, HC3

and less number of images into HC4, and HC5 over Dong’s method. The same number

of images are classified into HC6 and HC7 for both methods. Tables 6.6 and 6.7 show

the overall average accuracy of 82.22% and 80.00% for the proposed method and the

Dong et al. [10] methods respectively.

Table 6.6: Performance analysis of proposed method on hydrophobicity. All parameters

are in percentages (%)

HC1 HC2 HC3 HC4 HC5 HC6 HC7 Average Overall

Average

Ac (%) 96.10 93.67 92.50 91.36 93.67 94.87 97.37 94.22 82.22

Pr (%) 90.00 91.30 64.29 76.92 95.45 50.00 50.00 74.00

Se (%) 81.82 87.50 90.00 71.43 84.00 50.00 100.00 80.68

Sp (%) 98.48 96.36 92.86 95.52 98.15 97.30 97.30 96.57

Fs (%) 85.71 89.36 75.00 74.07 89.36 50.00 66.67 75.74

Table 6.7: Performance Analysis of Dong et al. [10] method on hydrophobicity. All

parameters are in percentages (%)

HC1 HC2 HC3 HC4 HC5 HC6 HC7 Average Overall

Average

Ac (%) 93.51 90.00 88.89 93.51 93.51 96.00 98.63 93.43 80.00

Pr (%) 87.50 90.00 53.33 80.00 88.46 66.67 66.67 76.09

Se (%) 63.64 75.00 80.00 85.71 92.00 50.00 100.00 78.05

Sp (%) 98.48 96.43 90.14 95.24 94.23 98.59 98.59 95.96

Fs (%) 73.68 81.82 64.00 82.76 90.20 57.14 80.00 75.66

Furthermore, the accuracy of HC1 to HC7 are used to investigate the significance

of the difference over both methods of hydrophobicity classification. The mean and

standard deviation of the accuracy for the statistical criteria are computed and used

to plot the bar graph shown in Figure 6.7. The blue bars (standard error bars) at the

middle of each bar plot (mean bars) represent the standard deviation. It is observed

that both standard error bars overlap, which means that the difference between the

two means of accuracy is not statistically significant.
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Figure 6.7: Mean and standard deviation of the proposed method and Dong et al. [10]

method of hydrophobicity classification . Best viewed in colour

The area of the water droplets is affected by under- and over-segmentation. This

means that the area is either too large or too small, resulting in misclassification of

HC levels. Under-segmentation and over-segmentation are experienced due to poorly

defined edges of water droplets. For uniform and non-uniform illumination images, the

proposed method has better segmentation results over the Dong et al. [10] method

when tested on our dataset (see Figure 6.6). This is because water is transparent and

colourless and therefore there is only a slight difference between water droplets and

background except at the edges. Also, the performance is reduced in some cases where

part of the water droplet is outside the entire insulator surface image boundaries, such

as c1 to c5 in Figure 6.6 .

Even after segmentation, there is good performance in the proposed method and the

Dong et al. [10] method because the classification method also considers the density of
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the water droplet region. This means that some areas with over- or under-segmentation

in the polymeric insulator surface image can be compensated by another area where

there is under- or over-segmentation, or even areas where there is an illumination

problem, especially in the case of the Dong et al. [10] method (see Figure 6.6) d1 to d6

therefore have about same total cover area.

Liang and collaborators’ [135] method experiences more over-segmentation because

of its method of application, therefore have a reduced performance compared to other

methods.

When water droplets are touching or are very close to each other, it becomes difficult

to segment them. This affects the circularity of the water droplet, which reduces the

performance and misclassification occurs.

6.7 Conclusion

Hydrophobicity is a way to monitor and inspect insulators before failure. Computer

vision is adopted to replace manual inspection of HC. GAC has been used to segment

the water droplets from the insulator surface image, which is very important in the

classification stage. Then, different geometric parameters such as the area, area cover

and circularity have been extracted for classification. Experimental results show that

the proposed method in this thesis can effectively perform the HC of an insulator. A

model to segment water droplets on an insulator and classify their state into different

HC levels has been proposed. The main limitation of the proposed model is when edges

are very weak, not regular or discontinued.
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Chapter 7

Conclusion and Future Work

7.1 Thesis Conclusion

In this thesis, a frame work for the modelling and implementation of power-line insulator

condition has been presented based on the experimental dataset since there is presently

no publicly available dataset for insulator studies.

Power-line insulators are used in dangerous environments with a high potential

difference between the lines generating an electric and magnetic field. The challenges

of on-site inspection of insulator condition using the traditional or manual method is

very dangerous and unsafe to humans and becomes an impractical task when inspecting

long lines spanning through a long distance with difficult terrain. Therefore the manual

method is not able to produced satisfying results. In order to overcome this problem,

robust automated systems have been developed that can be used to identify and analyse

insulator condition safely, speedily and accurately. Insulator condition described in this

thesis is the structural inspection of defects on insulators such as cracks and broken

parts and the hydrophobicity of an insulator under wet conditions.

An automated model has been developed for the physical condition of power-line

insulators and composes of segmentation, feature extraction and classification. The

algorithm for segmenting and extracting an insulator region of interest has been devel-

oped. The algorithm is used to segment the insulator, then to identify the insulator

ROI, followed by the extraction of the insulator ROI. Segmentation plays a vital role

in order to be able to extract features from the insulator for training purposes. The

segmentation of an insulator was carried out using ACM. The mathematical imple-
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mentation of the proposed ACM is accomplished using the level set method. ACM

presents contours as a level of a topological function, that can merge or split, providing

a good flexibility in the use of ACMs. ACM considers the uniformity of sub-regions,

and therefore they can produce more reasonable segmentation results than traditional

segmentation methods, and consequently improve the final results of image analysis.

The effectiveness was evaluated using an accuracy rate with a higher accuracy value for

the proposed method of segmentation over the existing method. T-test was used for

accuracy and to further determine the statistical significance of the proposed method

in this thesis over the existing method of segmentation. It was observed that there is

no statistical significant difference. However, this actually depends on the size of the

dataset used in an experiment.

Different feature extraction algorithms such as GLCM, LBP and SIFT were used

and comparisons were carried out on the performance of these feature extraction meth-

ods in combination with different classifiers, KNN and SVM. It was observed that LBP

outperformed GLCM with the use of the same SVM classifier considering the accuracy

rate. It is evident that the LBP combined with SVM is robust, more stable and less

prone to noise. It was also observed that variation in the training set size resulted in

increased accuracy or reduced error rate. Furthermore, the McNemar’s test, showed

that there is a significant difference between LBP and GLCM using SVM classifier. A

comparison of SIFT and LBP feature extraction methods was explored. SIFT outper-

formed LBP with the use of the same KNN classifier using the accuracy rate. It was

also observed that there is a statistically significant difference between both algorithms

using the McNemar’s test.

In addition, an automated system has been developed for the hydrophobicity of

insulators under wet conditions. The model is used for segmenting water droplets on

the insulator surface image, followed by the extraction of geometric parameters such as

the area of individual water droplet region, area cover and the circularity of individual

water droplets, for the classification of an insulator into different hydrophobicity levels.

Geodesic active contour was used for segmentation of the water droplets on insula-

tor surface images because the texture properties of the water droplets are similar to

the background which makes the edge-based segmentation useful over region-based ap-

proach for indicating the water droplets on insulator surfaces. The experiment showed
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that the proposed model effectively performed the classification of insulators into dif-

ferent hydrophobicity level.

7.2 Limitation of the Automated System/Computer vi-

sion Method

The following are some limitations identified during the course of this study:

• The dataset for the work is restricted to a specific type of insulator known as the

polymer insulators.

• The kind of defect defined in the dataset can be categorized as physical defects.

Therefore, the identification of internal defects on insulators will not be possible

using this method.

• Cracks and broken parts that are so tiny and almost unnoticeable affect the

classification performance.

• The geometric parameter used as a template is based on images in the STRI

guide and the template parameter can vary from one institution to another due

to different experts defining the ground-truth.

• Very weak edges, or non-regular or discontinued edges affect water droplets seg-

mentation.

7.3 Recommendation for Future Work

The following is a list of recommendations for future work:

• There is a need to create and make publicly available an insulator dataset in order

to serve as a bench mark and for the purpose of comparison.

• Further investigation on other feature extraction and classification methods should

be implemented.

• A liquid different from the insulator colour should be used to spray the insulator

for hydrophobicity classification. This will help to define the edges properly. Also,

a region-based method could therefore be used for segmentation.
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• Internal defects in insulators should be considered. The use of computer vision

combined with infra-red techniques for automated systems could be employed.
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