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Abstract

We consider the study of symmetry analysis of difference equations. The original work done by

Lie about a century ago is known to be one of the best methods of solving differential equations.

Lie’s theory of difference equations on the contrary, was only first explored about twenty years

ago. In 1984, Maeda [42] constructed the similarity methods for difference equations. Some

work has been done in the field of symmetries of difference equations for the past years. Given

an ordinary or partial differential equation (PDE), one can apply Lie algebra techniques to

analyze the problem. It is commonly known that the number of independent variables can be

reduced after the symmetries of the equation are obtained. One can determine the optimal

system of the equation in order to get a reduction of the independent variables. In addition,

using the method, one can obtain new solutions from known ones. This feature is interesting

because some differential equations have apparently useless trivial solutions, but applying Lie

symmetries to them, more interesting solutions are obtained.

The question arises when it happens that our equation contains a discrete quantity. In other

words, we aim at investigating steps to be performed when we have a difference equation. Doing

so, we find symmetries of difference equations and use them to linearize and reduce the order

of difference equations. In this work, we analyze the work done by some researchers in the field

and apply their results to some examples.

This work will focus on the topical review of symmetries of difference equations and going

through that will enable us to make some contribution to the field in the near future.
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Preface

Will there ever be a complete Universe? A Universe where there will be nothing to seek? A

Universe where everything has been discovered? Will the inhabitants of the world ever rest

from exploring? Oh how we would have wished it had been the case! Unfortunately, the infinite

dimension of the Universe brings about an infinite variety of problems.

About a century ago, a Norwegian Mathematician S Lie in his research discovered an efficient

method for solving differential equations. This theory is a very popular tool and owes its

popularity to the fact that it takes complex problems and simplifies them into easier ones

through transformations in the variables involved. Once the easier problems are solved, the

inverse transformations are carried out to achieve solution of the original ones.

After a century of application of this method to differential equations, a question only arose

decades ago as to whether this “ powerful” method could be used to solve difference equations.

As we embark on this journey of gathering the information that is already available in this field

of study, we hope to discover new things and work towards the completion of our Scientific

Universe.
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Chapter 1

Introduction

1.1 The importance of differential equations

Differential equations (DEs) arise in many areas of science and technology. In particular they

arise whenever a deterministic relationship involving quantities that change in a uniformly or

nonuniformly continuous way and their rates of change [33, 60] in space and time is known or

formulated. This is illustrated in classical mechanics, where the motion of a body is described

by its position and velocity as time varies. Newton’s laws [12] allow one to relate the position,

velocity, acceleration and various forces acting on the body and state this relation as a differ-

ential equation for the unknown position of the body as a function of time. In some cases, this

differential equation (called an equation of motion) may be solved explicitly and is given by

the equation

mẍ = F (x, ẋ, t), (1.1)

where m is the mass of the moving body, x(t) its position at each time t, F (x, ẋ, t) represents

the sum of all external forces acting on the body and the ‘ ˙ ’ represents derivative with respect

to t. Equation (1.1) is a second order ordinary differential equation (ODE).

An example of modeling a real world problem using DEs is the determination of the velocity

of a ball falling through the air, considering only gravity and air resistance. The ball’s accel-

eration towards the ground is the acceleration due to gravity minus the deceleration due to
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air resistance. Gravity is constant but air resistance may be modeled as proportional to the

ball’s velocity [12]. This means the ball’s acceleration, which is the derivative of its velocity,

depends on the velocity. Finding the velocity as a function of time involves solving a differential

equation of the same form as equation (1.1) above.

Additionally, in an ecosystem constituted by rabbits and foxes for example, we have a predator-

prey interaction between the two species - the foxes feed on the rabbits. The population r and

f of theses two species rabbits and foxes respectively at any time t can be modeled using the

Lotka-Volterra equations

ṙ = r(a− bf)

ḟ = f(c− dr), (1.2)

where a, b, c and d are the parameters of interaction between the two species. The Lotka-

Volterra model (1.2) is a system of scalar first order nonlinear ODEs in the unknowns r and

f .

It is also possible to model the diffusion of heat in a body as follows: Let t be the time it takes

for heat to diffuse to a distance x from the heat source and u(x, t) the heat at time t and at the

distance x from the source. Then, one of the well known linear partial differential equations

(PDEs) is the one-dimensional heat equation given by

ut − uxx = 0. (1.3)

Finally, let t, x and y be the independent variables which are the coordinates of the model and

u, v and φ the dependent variables, u and v are the velocity components of the flow and φ is

the preasure exerted on the fluid. Then the Navier-Stokes equations for two dimensional flows

are given by

ut + uux + vuy = −φx + uxx + uyy

vt + uvx + vvy = −φy + vxx + vyy

ux + vy = 0. (1.4)
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The first two are known as the Navier-Stokes equations and the latter is the continuity equation,

and all three of them form a system of nonlinear PDEs. This equation has been thoroughly

studied using Lie symmetry analysis.

DEs are mathematically studied from several different perspectives [34]. We are mostly con-

cerned with their solutions, i.e., the set of functions that satisfy the equation. Only the simplest

DEs admit solutions given by explicit formulas. However, some properties of solutions of a given

DE may be determined without finding their exact form. If an exact formula for the solution

is not available, the solution may be numerically approximated using computers. The theory

of dynamical systems puts emphasis on qualitative analysis of systems described by DEs, while

many numerical methods have been developed to determine solutions with a given degree of

accuracy. A century ago, the Norwegian scientist Sophus Lie developed a method that tackles

the problem of complexity in DEs. Given a complicated DE, his method allows us to transform

this into a simple DE, the solution of which is sometimes known, and the reverse transformation

leads to solution of the original problem.

1.2 Short historical background on Lie groups

Sophus Lie himself considered the winter of 1873 to 1874 as the birth date of his theory of

continuous groups. Hawkins, however, suggests that it was “Lie’s prodigious research activity

during the four-year period from the fall of 1869 to the fall of 1873” that led to the theory’s

creation [59]. Some of Lie’s early ideas were developed in collaboration with Felix Klein. Lie

met with Klein every day from October 1869 through 1872: in Berlin from the end of October

1869 to the end of February 1870, and in Paris, Göttingen and Erlangen in the subsequent two

years [59]. Lie stated that all of the principal results were obtained by 1884. However, during

the 1870s all his papers (except the very first note) were published in Norwegian journals,

which impeded recognition of the work throughout the rest of Europe [21]. In 1884 a young

German mathematician, Friedrich Engel, came to work with Lie on a systematic treatise to

expose his theory of continuous groups [59]. From this effort resulted the three-volume Theorie

der Transformationsgruppen, published in 1888, 1890, and 1893 [59]. Lie’s ideas did not stand
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in isolation from the rest of mathematics. In fact, his interest in the geometry of DEs was first

motivated by the work of Carl Gustav Jacobi, on the theory of PDEs of first order and on the

equations of classical mechanics [4]. Much of Jacobi’s work was published posthumously in the

1860s, generating enormous interest in France and Germany [21].

Lie’s idée fixée was to develop a theory of symmetries of DEs that would accomplish for them

what Evariste Galois had done for algebraic equations: namely, to classify them in terms

of group theory [59]. Additional impetus to consider continuous groups came from ideas of

Bernhard Riemann, on the foundations of geometry, and their further development in the

hands of Klein [59]. Thus three major themes in 19th century mathematics were combined by

Lie in creating his new theory: the idea of symmetry, as exemplified by Galois through the

algebraic notion of a group; geometric theory and the explicit solutions of DEs of mechanics,

worked out by Poisson and Jacobi; and the new understanding of geometry that emerged in the

works of Plücker, Möbius, Grassmann and others, and culminated in Riemann’s revolutionary

vision of the subject.

Although today Sophus Lie is rightfully recognized as the creator of the theory of continu-

ous groups, a major stride in the development of their structure theory, which was to have a

profound influence on subsequent development of mathematics, was made by Wilhelm Killing,

who in 1888 published the first paper in a series entitled Die Zusammensetzung der steti-

gen endlichen Transformationsgruppen (The composition of continuous finite transformation

groups) [21]. The work of Killing, later refined and generalized by Élie Cartan, led to classifi-

cation of semi-simple Lie algebras, Cartan’s theory of symmetric spaces, and Hermann Weyl’s

description of representations of compact and semi-simple Lie groups using highest weights [21].

Weyl brought the early period of the development of the theory of Lie groups to fruition, for

not only did he classify irreducible representations of semi-simple Lie groups and connect the

theory of groups with quantum mechanics, but he also put Lie’s theory itself on firmer footing

by clearly enunciating the distinction between Lie’s infinitesimal groups (i.e., Lie algebras) and

the Lie groups proper, and began investigations of topology of Lie groups [4] . The theory of

Lie groups was systematically reworked in modern mathematical language in a monograph by

Claude Chevalley [21].
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Lie symmetry analysis of DEs is a systematic way of finding exact solutions of ordinary and

PDEs. It permeates many mathematical models and in particular those formulated in terms of

DEs. The mathematical discipline that embodies and synthesizes symmetries of DEs is called

Lie group theory. A symmetry is a change, a transformation that leaves an object invariant or

apparently unchanged [48]. Generally, an object needs not have only one symmetry, but many

symmetries. The collection of symmetries of an object has a beautiful internal structure, it

forms a group.

Quantification of symmetry indeed turns out to be a very important aspect of Lie groups. For

instance, we know that a square has fewer symmetries than does the circle, but more than a

triangle. The formal definition of symmetry allows for quantification.

Felix Klein’s Erlangen program of 1872 pronounced that Geometry (at that time) was sym-

metry [59]. Klein is reported to have said that: “Geometrical properties are characterized by

their invariance under groups of transformation.”[4]. It was Lie who discovered the theory of

transformation groups. Moreover, he introduced groups into geometry. He tackled fundamental

problems and his first paper was on geometry. Lie’s theory of transformation groups provided

a synthesis. He said: “My theory of invariants of all continuous groups embraces all theories of

invariants hitherto noted.” [59].

1.3 Difference equations and applications

Mathematical computations are frequently based on equations that allow us to compute the

value of a function recursively from a given set of values. Such an equation is called “difference

equation” (∆Es) or “recurrence equation”. Problems that involve discrete variables often lead to

mathematical models involving ∆Es [19]. In economics for example, some financial information

(such as savings, national income, government spending, interest rate movements) are only

available on a quarterly, semi-annually, or yearly basis. Models that will best describe variations

in such variables will have to be designed in terms of ∆Es, since the time variable is discrete.

The study of ∆Es has received significant attention in the past few decades [38–42]. This is

due to their many applications in real-life problems. ∆Es have many areas of application such
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as in mathematics, physics, chemistry, astrophysics, economics, finance and social sciences,

(see for example [45]) just to mention a few. The construction of models with discrete time

dependence appeals to ∆Es. Many phenomenon are well modeled by use of ∆Es. Population

modeling cannot receive a realistic investigation unless models are designed in terms of ∆Es:

When modeling the population of a species, one can only have a whole number of participants

in the population. This is one of the several applications of ∆Es.

In economics, the national income, is modeled by use of the expression

Yt = Ct + It +Gt, (1.5)

where Yt is the amount of the gross domestic product or national income at time t, Ct the

monetary value of the consumer expenditure on consumption goods and services, It the mon-

etary value of the aggregate spending on long term investment and Gt the monetary value of

the total government spending. Each component is modeled separately and the final model is

given by the second order non-homogeneous ordinary difference equation (O∆E)

Y (t+ 2)− Y (t+ 1) + βY (t) = 1, (1.6)

where β is known as the marginal propensity to consume, i.e., the slope of the consumption

function [19]. The general approach used to solve this equation has always assumed that the

time variable t is continuous, which is unrealistic because in general, all the components of the

national income are recorded every quarter, or each year. The time variable must be treated

as a discrete variable if one needs to construct a model that reflects the real situation.

Additionally, consider the heat transfer in a room which is only accessible once a day. A rod

is placed in the room to measure the heat from the heat source to the door. It is obvious that

our data will give us a daily temperature t (discrete) on the distance x (continuous) from the

source. This scenario can be modeled using the system

∆tu− uxx = 0, (1.7)

where

∆tu =
u(t+ h)− u(t)

h
. (1.8)
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Such an equation is called differential-difference equation (D∆E).

In finance, the first order O∆E

Ak+1 − (1 + i)Ak + (k + 1)R = 0 (1.9)

models the amount of an annuity that pays an amount of kR after a time interval of k years at

an interest rate i. It is easy to show that the accumulated amount will be given by the formula

[45]

Ak =
R

i
[(1 + i)Ski − k], (1.10)

where Ski = (1+i)k−1
i

is the accumulated amount of 1 unit invested for k years at i. Furthermore,

in economics and finance, simple and compound interest are modeled by use of ∆Es. We are

able to determine the value an amount of money place under a fixed interest into a bank after

a period by use of ∆Es. The simple interest law is written in the following O∆E

Dk+1 −Dk − rD0 = 0, (1.11)

where Dk is the amount available at time k years, D0 is the initial available amount and r is the

interest rate [45]. This equation is classified as a linear first-order non-homogeneous O∆E with

constant coefficients. Solutions to such can be easily found using recurrence relations. In labor

management, the dynamical equations that describe the negotiating process between labor and

management are given by

Mk+1 = Mk + α(Lk −Mk)

Lk+1 = Lk − β(Lk −Mk), (1.12)

where Mk and Lk denote the management offer and labor demand respectively [5, 45]. This

is a system of O∆Es and direct methods can be used to solve them explicitly. In biological

modeling we observe that single species populations are modeled by the O∆E [45]

Nk+1 = fNk, (1.13)

where Nk is the population size at time k and f the reproduction rate, while a red blood cell

production model can be described by the equation [45]

Rk+2 − (1− f)Rk+1 − γRk = 0, (1.14)
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where Rk is the number of white blood cells produced at time k, f is the fraction of red blood

cell removed by the spleen, and γ the production constant. This equation will allow us to know

how many red blood cells are produced each day.

∆Es also find applications in physics. For instance, models of systems in physical sciences

provide important insight into the working of the natural world. The construction of the

associated discrete models in general relies on the discrete nature and how the various properties

of these systems are both measured and analyzed. Hence, the discrete mathematical formulation

of the problem is often an exact reflection of the actual experimental procedures used to define

the system of interest, which is that of the various time-scales that occur in the experimental

analysis and mathematical formulation of physical systems. These results are then applied to

the development of Newton’s law of cooling.

Considering a compact object, such as a glass of hot water, located in a “quiet” room. We are

interested in determining how the temperature of the object changes as time evolves.

Let:

T0 = initial temperature of the object;

TR = temperature of the room;

∆t =time between temperature increments;

Ts = time-constant of the system;

Tk = temperature of the body at time tk = k(∆t).

Then the rate of cooling is found to be proportional to the difference between the temperature

of the object and the temperature of the room [45], i.e.,

Tk+1 − Tk
∆t

∝ (Tk − TR). (1.15)

In mathematical physics, one may discretize the Navier-Stokes DEs to seek numerical solutions.

An example would be the consideration of the numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface. The normal strategic first step to attempt to

solving this problem would be the Navier-Stokes equations. In continuous-time, this system is
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given by (1.4). The method of finite-difference provides a system of ∆Es

um,n,p+1 − um,n,p
∆t

+ um,n,p
um+1,n,p − um,n,p

∆x
+ vm,n,p

um,n+1,p − um,n,p
∆y

= −φm+1,n,p − φm,n,p
∆x

+
um+2,n,p − 2um+1,n,p + um,n,p

(∆x)2

+
um,n+2,p − 2um,n+1,p + um,n,p

(∆y)2

vm,n,p+1 − vm,n,p
∆t

+ um,n,p
vm+1,n,p − vm,n,p

∆x
+ vm,n,p

vm,n+1,p − vm,n,p
∆y

= −φm,n+1,p − φm,n,p
∆y

+
vm+2,n,p − 2vm+1,n,p + vm,n,p

(∆x)2

+
vm,n+2,p − 2vm,n+1,p + vm,n,p

(∆y)2

um+1,n,p − um,n,p
∆x

+
vm,n+1,p − vm,n,p

∆y
= 0, (1.16)

which need be solved.

1.4 Outline

We wish to study Lie’s theory of extended groups applied to ∆Es. This method could provide

a great tool to solve nonlinear problems when applied to ∆Es. We will review the work done

on continuous symmetries of ∆Es, both ordinary and partial difference equations. Thereafter

we will apply this method to some interesting equations. We wish to illustrate the usefulness

of Lie analysis in ∆Es as it has proved its efficiency for DEs. After defining the key concepts in

this field, we solve some equations of interest using Lie symmetry analysis. We first deal with

the known field of Lie symmetry analysis of DEs in Chapter 2. Secondly, we investigate the

work done in continuous symmetries of O∆Es in Chapter 3. Thirdly, we apply Lie’s theory to

(P∆Es) in Chapter 4. In Chapter 5 we summarize our work and discuss some open problems

in the field.
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Chapter 2

Symmetries of Differential Equations

2.1 Introduction

Once the symmetries of a system are obtained, one can deduce new solutions from known ones

using these symmetries. Additionally, we can classify the families of equations into equivalence

classes. This is achieved via the construction of types of equations that admit a prescribed

group of transformations. We can also linearize equations by invertible transformations. In the

case of ODEs, we can reduce the order using the admitted symmetries. Once the symmetries

of a PDE are obtained, reduction of the PDE via a combination of the number of independent

variables is possible. Finally, solutions via Lie’s theory constitutes a benchmark for testing

numerical algorithms.

Conserved quantities are very important in mathematical physics. They provide information

on the properties of the solutions of differential equations [30]. Conservation of momentum,

energy and mass play a crucial role in the analysis of solutions of PDEs and the application of

symmetries of differential equations to determine these quantities is very important.

Definition 2.1.1 An equivalence transformation of a function is a reversible transformation of

independent, dependent or both variables that preserves its form . We say that such functions are

invariants [48]. �
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Example 2.1.2 Consider the differential equation given by

y′′ =
y′

x
+

4

x3
y2. (2.1)

The transformation

x̄ =
1

x
, ȳ =

y

x2
(2.2)

leaves (2.1) invariant, and so is an equivalence transformation of (2.1). The same is true of

x̄ = ax ȳ = ay, (2.3)

where a is a real constant. �

Example 2.1.3 An equation of the form

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0 (2.4)

was discovered by Laplace [31, 37] to have

h = at + ab− c, k = bx + ab− c (2.5)

as invariants. These are called the Laplace invariants. They are invariant under linear homo-

geneous transformations of the dependent variable

ū = σ(t, x)u, σ(t, x) 6= 0. (2.6)

The equations

utx − ut + ux − u = 0 (2.7)

and

ūt̄x̄ = 0 (2.8)

have the same Laplace invariant h = 0 = k. They can therefore be transformed into each other

[44]. In fact, the transformation

t̄ = t

x̄ = x

ū = u exp(t− x) (2.9)

transforms (2.7) into (2.8). �
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Definition 2.1.4 A symmetry is a change, a transformation, that leaves an object invariant or

apparently unchanged [48]. �

Definition 2.1.5 A family G of transformations [48]

Ta : x̄i = f i(x, u, a); ūα = φα(x, u, a), i = 1, ..., n; α = 1, ...,m (2.10)

where a is a real parameter which continuously ranges in values from a neighborhood D ⊂ R of

a = 0 and f i, φα are differentiable functions, is a continuous one-parameter (local) Lie group

of transformations if the following properties are satisfied:

• Closure: If Ta, Tb ∈ G, and a, b ∈ D′ ⊂ D, then

TaTb = Tc ∈ G, c = φ(a, b) ∈ D (2.11)

• Identity: ∀ a ∈ D′ ⊂ D and Ta ∈ G,∃ T0 ∈ G such that

T0Ta = TaT0 = Ta ∈ G (2.12)

• Inverses: For Ta ∈ G, a ∈ D′ ⊂ D, ∃ T−1
a = Ta−1 ∈ G, a−1 ∈ D such that

TaT
−1
a = T−1

a Ta = T0. (2.13)

The associative property follows from the first property. �

Consider the DE

Eσ(x, u, u(1), ..., u(n)) = 0, σ = 1, ...,m, (2.14)

where u(j) is the jth derivative of the dependent variable u. If a family of transformations

satisfying definition 2.1.5 of a group G are symmetries of the equation (2.14), then G is called

a symmetry group of (2.14) and (2.14) is said to admit or possess G as a group [48]. According

to Lie’s theory, the construction of a one-parameter group G is equivalent to the determination

of the first order approximation of the corresponding infinitesimal transformations

x̄i ≈ xi + aξi(x, u), ūα ≈ uα + aηi(x, u), (2.15)
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where the “≈” stands for the approximation due to the truncation of the Taylor expansions of

the transformations (2.10) and

ξi(x, u) =
∂f i(x, u, a)

∂a

∣∣∣∣
a=0

, ηα(x, u) =
∂φα(x, u, a)

∂a

∣∣∣∣
a=0

. (2.16)

If X is the symbol for the infinitesimal transformations, then equation (2.15) is generated by

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
. (2.17)

X is known as the infinitesimal operator or generator of the group G of symmetries. In what

follows, we write the functions ξ and η and all the coefficients of the infinitesimal generator

without their arguments. The generator X tells us how the variables xi and uα transform.

An interest in the transformation of the derivatives of the uα’s is also of importance. This

transformation is given by the the generator of the prolonged group G(n), where n is the highest

order of derivative of uα of interest. This prolongation is given by

X [n] = ξi
∂

∂xi
+ ηα

∂

∂uα
+ ζαxi

∂

∂uαxi
+ · · ·+ ζαxixj ...xn

∂

∂uαx1...xn

(2.18)

The coefficients of the summation are calculated using the total derivative operator [29]

Dxi =
∂

∂xi
+ uαxi

∂

∂uα
+ · · · (2.19)

Hence the recursive formulas are:

ζαxi = Dxiη
α −

(
Dxiξ

j
)
uαxj ,

ζαxixk = Dxkζ
α
xi
−
(
Dxkξ

j
)
uαxixj ,

ζαxixkxl = Dxlζ
α
xixk
− (Dxkξ

j)uαxixkxj (2.20)

and so on, where we have used the Einstein summation convention over repeated indexes.

Definition 2.1.6 A function F is said to be invariant under the symmetry X if [48]

XF = 0. (2.21)

�
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Note: If F depends on derivatives, then we need to act on F with the nth extension of X,

where n is the highest derivative in F .

Theorem 2.1.7 Equation (2.14) admits X as symmetry iff [48]

X [n]E
∣∣
E=0

= 0, (2.22)

where X [n] is the nth prolonged operator of the generator X and n the order of the DE. �

2.2 Calculation of symmetries of differential equations

Example 2.2.1 Consider the second order ODE

y′′ +
y′

x
+ exp(y) = 0. (2.23)

We work out the generator of symmetry

X = ξ
∂

∂x
+ η

∂

∂y
, (2.24)

if any, admitted by (2.23). The second prolongation of X is

X [2] = ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
, (2.25)

where

ζx = ηx + y′ηy − y′ξx − y′2ξy (2.26)

and

ζxx|(y′′=− y′
x
−exp(y)

) = ηxx + 2y′ηxy + y′2ηyy −
(
y′

x
+ exp(y)

)
ηy − y′ξxx

− 2y′2ξxy − y′3ξyy + 2

(
y′

x
+ exp(y)

)
(ξx + ξyy

′)−
(
y′

x
+ exp(y)

)
ξy − y′ηy. (2.27)

The invariance condition is

X [2]

(
y′′ +

y′

x
+ exp(y)

)∣∣∣∣(
y′′=− y′

x
−exp(y)

) = 0. (2.28)
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This gives

ζxx|(y′′=− y′
x
−exp(y)

) +
1

x
ζx + exp(y)η − y′

x2
ξ = 0. (2.29)

After expansion of the ζs and replacement of y′′ by −y′

x
− exp(y), we get

ηxx + 2y′ηxy + y′2ηyy −
(
y′

x
+ exp(y)

)
ηy − y′ξxx

− 2y′2ξxy − y′3ξyy + 2

(
y′

x
+ exp(y)

)
(ξx + ξyy

′)−
(
y′

x
+ exp(y)

)
ξy

+
1

x

(
ηx + y′ηy − y′ηy − y′ξx − y′2ξy

)
+ η exp(y)− 1

x2
y′ξ = 0. (2.30)

Splitting this equation via the coefficients of powers of y′ gives rise to the system

y′3 : ξyy = 0,

y′2 : η − 2ξxy +
2

x
ξy = 0,

y′ : 2ηxy + 3 exp(y)ξy − ξxx +
1

x
ξx −

1

x2
ξ = 0,

y′0 : ηxx − exp(y)ηy + 2 exp(y)ξx +
1

x
ηx + exp(y)η = 0.

(2.31)

From this we get the coefficients of the symmetry generators

ξ = C2x log x− C2x+
1

2
C1x, η = −2C2 log x− C1, (2.32)

where C1 and C2 are constants.

This gives rise to the two symmetry generators

X1 =
1

2
x
∂

∂x
− ∂

∂y
, X2 = (x log x− x)

∂

∂x
− 2 log x

∂

∂y
, (2.33)

for appropriate choice of the constants. �

Example 2.2.2 The following system may arise from the study of three interacting and co-

habiting species [14]:

x′′ +M
x(t)√

(x(t)2 + y(t)2 + z(t)2)3
= 0

y′′ +M
x(t)√

(x(t)2 + y(t)2 + z(t)2)3
= 0

z′′ +M
x(t)√

(x(t)2 + y(t)2 + z(t)2)3
= 0. (2.34)
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This system is very unwieldy and too complicated for us to calculate the symmetries by hand. We

make use of Sym [13, 14] to obtain the following results for the coefficients of the infinitesimal

transformations

ξ(t, x, y, z) = C4 + tC5

η1(t, x, y, z) = −yC1 − zC2 +
2xC5

3

η2(t, x, y, z) = xC1 − zC3 +
2yC5

3

η2(t, x, y, z) = xC2 + yC3 +
2zC5

3
, (2.35)

where

X = ξ
∂

∂t
+ η1

∂

∂x
+ η2

∂

∂y
+ η3

∂

∂z
(2.36)

is the symmetry of the system and the Ci’s are arbitrary constants. �

This is not the only method for finding symmetries of differential equations. There are several

techniques that yield different types of symmetries. Among others, we distinguish the evolu-

tionary symmetry method [48].

Consider equation (2.14). For an evolutionary symmetry, we assume the form

Xe = Q
∂

∂u
, (2.37)

where the characteristic Q = η − τ ∂u
∂t
− ξ ∂u

∂x
. The nth prolongation of Xe is given by

X [n]
e = Σn

k=0DkQ
∂

∂uk
, (2.38)

where Dk denotes the kth total derivative of the characteristic Q and uk, the kth partial

derivative of u. The overdetermined system of determining equations that allows us to find the

characteristic Q is given by imposing the symmetry condition

X [n]
e E

∣∣
E=0

= 0. (2.39)

Once the the system is solved, the characteristic Q is obtained and hence the symmetries of

the equation.
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Example 2.2.3 Consider the one-dimensional heat equation given by

ut − uxx = 0, (2.40)

with evolutionary symmetry generator of the form

Xe = Q
∂

∂u
. (2.41)

The second prolongation formula of Xe is given by

X [2]
e = DjQ

∂

∂uj
, (2.42)

with summation over the dummy index j.

We therefore get

DtQ−DxxQ|uxx=ut
= 0. (2.43)

After expanding, we obtain

ηt + utηu − utτt + 2u2
t τu − 2uttτ − uxξt − uxutξu − 2ξutx

− ηxx − 2uxηux − utηu − u2
xηuu − utτxx

− 2utuxτux − u2
t τu − ut − u2

xτuu − 2utxτx − 2utxuxτu − uttτ

− uxξxx − 2utuxξux − uxutξu − u3
xξuu − utxξ − 2utξx − 3utuxξu = 0. (2.44)

Separating with respect to the powers of the derivatives of u, we get:

uxutx : τu = 0

utx : τx = 0

u2
t : τu = 0

u2
xut : τuu = 0

utux : τux + ξu = 0

ut : τt − τxx − ξx = 0

u3
x : ξuu + ξt − 2ηux = 0

1 : ηt = ηxx

(2.45)

17



Solving this overdetermined system gives us

ξ = α1 + α2x+ α3t+ 4α5xt, (2.46)

τ = (α5 − α4x− 2α5t− α5x
2)u+ p(x, t) (2.47)

η = (α5 − α4x− 2α5t− α5x
2)u+ p(x, t) (2.48)

where αi, βj, are arbitrary constants and p(x, t) an arbitrary solution of the heat equation. This

gives rise to the six symmetries of the heat equation

Xe =
(
(α5 − α4x− 2α5t− α5x

2)u+ p(x, t)− (α5 − α4x− 2α5t− α5x
2)uut − p(x, t)ut

− (α1 + α2x+ α3t+ 4α5xt)ux)
∂

∂u
. (2.49)

Writing this in the traditional way, we obtain

X1 =
∂

∂x
(2.50)

X2 =
∂

∂t
(2.51)

X3 = u
∂

∂u
(2.52)

X4 = x
∂

∂x
+ 2t

∂

∂t
(2.53)

X5 = 2t
∂

∂x
− xu ∂

∂u
(2.54)

X6 = 4tx
∂

∂x
+ 4t2

∂

∂t
− (x2 + 2t)u

∂

∂u
(2.55)

plus the infinite-dimensional symmetry

Xp = p(x, t)
∂

∂u
, (2.56)

which exists because the equation is linear. The commutation table of the above symmetries is

given in Table 2.1 below:
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Table 2.1: Lie bracket of the admitted symmetry algebra

[Xi, Xj] X1 X2 X3 X4 X5 X6

X1 0 0 0 X1 −X3 2X5

X2 0 0 0 2X2 2X1 4X4 − 2X3

X3 0 0 0 0 0 0

X4 −X1 −2X2 0 0 X5 2X6

X5 X3 −2X1 0 −X5 0 0

X6 −2X5 2X3 − 4X4 0 −2X6 0 0

where [Xi, Xj] = XiXj −XjXi, for i = 1, ..., 6. �

2.3 Uses of symmetries of differential equations

2.3.1 Reduction of order

The main idea is that one can apply a symmetry to the equation to reduce the order of equation

from order n, say, to order n − 1. It is well known that one can then apply the symmetries

successively to the equation to reduce the equation, hopefully from order n to n− 1, then n− 2

down to order 0, and this gives, by reversing the transformation into the original variable the

general solution of the ODE.

In general, if

X = ξ
∂

∂x
+ η

∂

∂y
(2.57)

is a symmetry, then the reduction variables associated with (2.57) are obtained by solving the

corresponding Lagrange system
dx

ξ
=
dy

η
=
dy′

ζx
. (2.58)

Theorem 2.3.1 If equation (2.14) admits symmetries X1 and X2 with

[X1, X2] = λX1, (2.59)

then reduction via X1 will result in X2 (transformed) being a symmetry of the reduced equation

[48]. �
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Example 2.3.2 The symmetries of (2.23) were previously calculated and given in (2.33). We

observe that

[X1, X2] = X1 ∈ {X1, X2}, (2.60)

and so, we reduce the order of our ODE using X1. The first prolongation of X1 is

X
[1]
1 =

1

2
x
∂

∂x
− ∂

∂y
− 1

2
y′
∂

∂y′
. (2.61)

The Lagrange characteristic system is given by

2
dx

x
= −dy

1
= −2

dy′

y′
(2.62)

and hence the invariants are

u = x2 exp(y) (2.63)

v = xy′. (2.64)

A second order invariant can be expressed in terms of u, v, and dv/du and our ODE (2.23)

becomes the first order ODE
dv

du
=
−1

2 + v
. (2.65)

The latter equation admits

X2 = (u log u− u)
∂

∂u
− 2 log u

∂

∂v
. (2.66)

The solution of (2.65) can easily be found to be

2v +
1

2
v2 + u = A, (2.67)

where A is a constant. Writing the latter equation in terms of original variables gives the

reduced first order ODE

2xy′ +
1

2
x2y′2 + x2ey = A. (2.68)

To simplify this equation further, one may again use z = x2ey. We notice that

y′ =
z′x− 2z

zx
. (2.69)
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Substituting y′ into (2.68) gives

(xz′)2 = −2z3 + 4z2 + 2z2A, (2.70)

which is of separable form. In fact, separating the variables in this equation and solving yields

x =

√
2 + A− z −

√
2 + A√

2 + A− z +
√

2 + A
exp

(
1√

4 + 2A

)
, 2 + A− z ≥ 0, (2.71)

and

x = exp

(√
−2

2 + A
arctan

√
z − 2− A

2 + A

)
, z − 2− A > 0. (2.72)

�

2.3.2 First integrals of ordinary differential equations

Let the equation

E(x, y, y′, y′′) = 0 (2.73)

have the symmetry

X = ξ
∂

∂x
+ η

∂

∂y
. (2.74)

Definition 2.3.3 A first integral of E is a function I = f(x, y, y′) (where f depends on y′

nontrivially) such that [48]
dI

dx

∣∣∣∣
E=0

= 0. (2.75)

�

We can extend the definition to an nth order equation in an obvious manner.

To find a first integral of E admitting (2.74), we also invoke Definition 2.1.6:

X [1]f = 0. (2.76)

This is equivalent to

ξ
∂f

∂x
+ η

∂f

∂y
+ ζx

∂f

∂y′
= 0, (2.77)
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where ζx is defined in (2.20). In practice, we impose (2.76) and then (2.75). The associated

Lagrange system is given by
dx

ξ
=
dy

η
=
dy′

ζx

(
=
df

0

)
. (2.78)

This system yields two characteristics namely α and ρ such that

I = f(x, y, y′) = g(α, ρ). (2.79)

The function f satisfies (2.75) if
dI

dx

∣∣∣∣
E=0

= 0, (2.80)

implying that

α′
∂g

∂α
+ ρ′

∂g

∂ρ
= 0. (2.81)

This admits the Lagrange system

dα

α′
=
dρ

ρ′

(
=
dg

0

)
. (2.82)

We have the characteristic p and

I = f(x, y, y′) = h(p), (2.83)

where h is an arbitrary function, usually chosen to be the identity mapping.

Example 2.3.4 The first order prolongation of symmetry X1 of equation (2.23) is given by

X
[1]
1 =

1

2
x
∂

∂x
− ∂

∂y
− 1

2
y′
∂

∂y′
. (2.84)

We impose (2.76) and obtain

1

2
x
∂f

∂x
− ∂f

∂y
− 1

2
y′
∂f

∂y′
= 0. (2.85)

This implies that

2
dx

x
=
dy

−1
= 2

dy′

y′
, (2.86)

and gives rise to the characteristics

α = x2 exp(y), β = xy′. (2.87)
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Therefore

I = f(x, y, y′) = g(α, β). (2.88)

Imposing (2.75), we have
∂g

∂α
− (2 + β)

∂g

∂β
= 0 (2.89)

and the corresponding Lagrange system is

dα

1
=

gβ

−(2 + β)
. (2.90)

The characteristic is

p = α + 2β +
1

2
β2. (2.91)

Thus the function h is given by

h(p) = h(x2 exp(y) + 2xy′ +
1

2
(xy′)2). (2.92)

Hence a first integral of (2.23) is taken to be

f(x, y, y′) =
1

2
(xy′)2 + 2xy′ + x2 exp(y). (2.93)

�

Since these determining equations are linear and homogeneous, their solutions form a vector

field L [3, 48].

2.3.3 Transformation of equations

It is a well known established result that given an ODE, it is possible to transform this equation

into a simpler one, e.g., an equation for which the solution is known. Firstly, both equations

must admit the same Lie algebra of symmetries. Indeed the symmetries must conform to the

same realization of the admitted Lie algebra.

Definition 2.3.5 If

X1 = ξi1
∂

∂xi
+ ηα1

∂

∂uα
(2.94)
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and

X2 = ξi2
∂

∂xi
+ ηα2

∂

∂uα
(2.95)

satisfy (2.22) then their commutator is given by

[X1, X2] = X1X2 −X2X1

= (X1(ξi2)−X2(ξi1))
∂

∂xi
+ (X1(ηα2 )−X2(ηα1 ))

∂

∂uα
(2.96)

and satisfies the following properties:

• Bilinearity. If X1, X2, X3 ∈ L, then

[αX1 + βX2, X3] = α[X1, X3] + β[X2, X3], (2.97)

where α, β are scalars.

• Skew-symmetry. If X1, X2 ∈ L then

[X1, X2] = −[X2, X1]. (2.98)

• Jacobi Identity. If X1, X2, X3 ∈ L, then

[[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] = 0. (2.99)

Hence we say that the vector space L of all solutions of the determining equations forms a Lie al-

gebra which generates a multi-parameter group admitted by (2.14). By multi-parameter or more

precisely r-parameter, we mean a group generated by transformations Ta as above where a =

(a1, a2, ..., ar). �

Example 2.3.6 The free particle equation

Y ′′ = 0 (2.100)

has eight symmetries which form the Lie algebra s`(3,<), as does the equation

y′′ − 2y′ + y = 0. (2.101)
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Since s`(3,<) has only one realization, these two equations belong to the same equivalence

class. Moreover, these Lie algebras have the same dimensions and their elements have a direct

correspondence. It is well known that this can be used to find a transformation of (2.101) into

(2.100). In fact, (2.101) possesses the symmetry

V =
∂

∂x
+ y

∂

∂y
(2.102)

and (2.100) possesses

U =
∂

∂Y
. (2.103)

We wish to find a transformation

X = F (x, y), Y = G(x, y) (2.104)

to transform (2.101) into (2.100). Operating on (2.104) with (2.102) yields

(Fx +Gx)
∂

∂X
+ (Fy +Gy)

∂

∂Y
=

∂

∂Y
. (2.105)

We obtain the system of PDEs

Fx +Gx = 0

Fy +Gy = 1 (2.106)

and hence the solution

F = f(y exp(−x)), G = x+ g(y exp(−x)) (2.107)

for the functions F and G. We take f(y exp(−x)) = y exp(−x) and g = 0 to obtain the simplest

transformation. This transformation takes (2.101) into (2.100). �

In general, all linear second order ODEs have eight symmetries and admit the Lie algebra

s`(3,<). They can therefore be transformed into the free particle ODE by a point transfor-

mation. We can also linearize any second order ODE that has eight symmetries by point

transformations. In 1883, Lie stated a compatibility condition for the problem of linearization

map for two connected symmetries. Later in 1987 the issue was revised by Sarlet, Mahomed
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and Leach [56] and in 1989 for linearizable ODEs admitting two unconnected generators of

symmetry by Mahomed and Leach [28]. In 1990, Mahomed and Leach showed that an nth

order ODE is linearizable via a point transformation if and only if it admits an n-dimensional

Abelian Lie algebra [43].

2.3.4 Group-invariant solutions of differential equations

Definition 2.3.7 Let G be a transformation group acting on a manifold M . An invariant of

G is a real-valued function [48]

I : M → R (2.108)

which satisfies

I(g − x) = I(x) (2.109)

for all transformations g. �

After calculating the symmetries of the equations, one may use any linear combination of these

to reduce the number of independent or dependent variables of the equation. Consider the

system (2.14) admitting G as symmetry group. If G has a complete set of invariants

yi = ηi(x, u) and wj = ζj(x, u), (2.110)

where the yis are the new independent variables and the wjs the new dependent variables.

These invariants can be used to reduce the PDE by reducing the number of variables by one.

We explain the method below.

Consider the symmetry

X = ξi
∂

∂xi
+ ηα

∂

∂uα
(2.111)

say, for which we compute the invariants by the method of characteristics. We have

dxi

ξi
=
duα

ηα
. (2.112)

Then once the characteristics or invariants yi and wj are obtained, these must satisfy the

condition that w must be a solution whenever u is. This condition gives rise to a differential
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equation in w. The later has one variable less than the original equation. We explain this in

an example.

Example 2.3.8 Consider the combination of translation operators of the heat equation (2.40)

∂

∂t
+ C

∂

∂x
. (2.113)

The characteristic system is
dt

1
=
dx

C
=
du

0
. (2.114)

This gives rise to the invariants

γ = x− Ct, and α = u. (2.115)

Hence

u = h(x− Ct), (2.116)

where h satisfies the second order ODE

h′′ + Ch′ = 0. (2.117)

Equation (2.117) admits

h(γ) = C1 exp(−Cγ) + C2 (2.118)

as solution. We therefore write the solution for the heat equation by inverting (2.116) to obtain

u(x, t) = C1 exp(−C(x− Ct)) + C2, (2.119)

which is commonly known as the traveling wave solution. �

The solution (2.119) was obtained by just taking a linear combination of the symmetries of

the equation. However, one can choose a minimal combination, which yields transformations

such that any other linear combination will be isomorphic to the set of such minimal linear

combinations. Such a set is called an optimal system [47, 48]. The optimal system is obtained

by a series of adjoint maps. Since we do not utilize optimal systems in this thesis, we do not

discuss this any further.
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2.3.5 Conservation laws

There are several methods for finding conservation laws for differential equations. We investi-

gate some of these method and apply them to some well known examples.

Consider the nth order DE of k independent variables and N dependent variables (2.14) which

can be assumed to have maximum rank and can be solved locally.

Definition 2.3.9 A conserved vector of (2.14) is an n-tuple T = (T 1, T 2, ..., T n) such that

DiT
i = 0 (2.120)

for all solution of (2.14) [48]. �

Note: i) We call local conservation laws those that are free from integral terms.

ii) There are also trivial conservation laws. The first kind is the one for which the vector T

vanishes for all solutions of (2.14). For example, Naz et al [46] established that

T 1 =
√
Cu cos(

√
Cu)[vx − u]

T 2 = C sin(
√
Cu)[vx − u] +

√
Cu cos(

√
Cu)[Cxu− 1

us
uxvx − vt] (2.121)

forms a trivial conservation law for the system

vx = u

vt =

(
1

u

)
x

+ Cxu,C ≥ 0, (2.122)

since T 1 and T 2 vanish for all solutions of the system. The second kind of trivial conservation

law is the one that vanishes identically for arbitrary functions, not only for solutions of the

system (2.14). For example,

Dt(ux) +Dx(ut) = 0. (2.123)

holds for all smooth functions u = g(x, t) satisfying [46]

utx = 0. (2.124)

We seek non-trivial conservation laws.
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Direct method

This method consists of deriving the determining equations given by

DiT
i |Eα=0= 0, (2.125)

where T = (T 1, ..., T n), n being the dimension of the problem. This method is reported to

originate from Laplace in the 1790’s [46] and is able to determine all the local conservation laws

of the equation.

Example 2.3.10 We seek the conservation laws for the Maxwellian distribution, given by

utx + u2 = 0 (2.126)

using the direct method. The determining equations are given by considering the condition

(DtT
1 +DxT

2)
∣∣
utx=−u2 = 0, (2.127)

which expands to

(
T 1
t + T 1

uut + T 1
ututt + T 1

uxutx + T 2
x + T 2

uux + T 2
uxuxx + T 2

ututx
)∣∣
utx+u2=0

= 0. (2.128)

We now substitute utx = −u2 into equation (2.128). Furthermore, for simplicity, we assume

the forms

T 1 = a(t, x, u)
u2
x

2
+ b(t, x, u), T 2 = c(t, x, u)

u2
t

2
+ d(t, x, u). (2.129)

Then

1

2
cuu

2
tux +

1

2
auutu

2
x +

1

2
cxu

2
t +

1

2
atu

2
x + (bu− cu2)ut + (du− au2)ux + (du− au2)ux + bt + dx = 0.

(2.130)
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Splitting this with respect to the derivatives of u leads to

uxu
2
t : cu = 0

utu
2
x : au = 0

u2
t : cx = 0

u2
x : at = 0

ut : bu − cu2 = 0

ux : bu − au2 = 0

1 : bt + dx = 0.

(2.131)

This gives rise to the conservation laws

T 1 = −1

2
xu2

x +
1

3
tu3, T 2 =

1

2
tu2
t −

1

3
xu3

T 1 =
1

3
u3, T 2 =

1

2
u2
t , (2.132)

T 1 =
1

2
u2
x, T

2 =
1

3
u3.

�

Noether’s approach

In this approach, the conservation laws are computed by use of Noether’s theorem [48].

Definition 2.3.11 Euler’s operator [30] is defined as

δ

δuα
=

∂

∂uα
+ Σs≥1(−1)sDi1 ...Dis

∂

∂uαi1...is
, (2.133)

where D is defined as in (2.19). �

Definition 2.3.12 The Noether operators associated with the Lie-Bäcklund operator X are

N i = ξi +Wα δ

δuαi
+ Σs≥1(−1)sDi1 ...Dis(W

α)
δ

δuαi1...is
, i = 1, ..., n (2.134)

with Wα = ηα − ξiuα. �

30



Definition 2.3.13 Suppose there exists a function L(x, u, u(1), ..., u(s)) such that (2.14) is equiv-

alent to
δL

δuα
= 0, α = 1, 2, ..., N. (2.135)

Then L is called a Lagrangian of equation (2.14), and (2.135) are the corresponding Euler-

Lagrange differential equations [35] . �

Definition 2.3.14 A Lie-Bäcklund operator X is a Noether symmetry generator associated

with a given Lagrangian L of (2.135) if there is a vector B = (B1, ..., Bn), such that

X(L) + LDi(ξ
i) = Di(B

i) (2.136)

is satisfied [48]. �

Definition 2.3.15 The Noether conservation vector is given by [35]

T i = Bi −N iL

= Bi − ξiL−Wα δL

δuαi
Σs≥1Di1,...,is(W

α)
δL

δuαi1,...,is
, (2.137)

which is the conserved vector for the Euler-Lagrange equation (2.135). �

In this approach, we compute L and substitute in equation (2.136) to find the Noether symmetry

generators. Thereafter, we use equation (2.137) to generate the conserved vector T . The

characteristics Wα of the symmetry generator are then the characteristics of the conservation

law.

Another variational method is the characteristic method [48]. Here we need to solve

DiT
i = QαEα, (2.138)

where Qα are the characteristics which are also called the multipliers which make the equation

exact. This approach involves the variational derivative of (2.138):

δ

δuβ
(QαEα) = 0, (2.139)
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for arbitrary functions u(x1, x2, . . . , xn). All the multipliers can be calculated using (2.139) for

which the equation can be expressed as a local conservation law. In the variational approach

on space of solutions of the DE, the variational derivative of (2.138) is computed on the space

of solutions of the DE, i.e.,
δ

δuβ
(QαEα) |Eα=0= 0. (2.140)

This approach does not necessarily lead to a conservation law, but to adjoint symmetries. Given

a Lie-Bäcklund operator, a conservation vector T is obtained from the relation

X(T i) +Dk(ξ
k)T i −Dk(ξ

i)T k = 0. (2.141)

It is also possible to construct conserved vectors directly by using the multiplier, which is locally

expressed in a standard Cauchy-Kovalevskaya form [48].

2.4 Summary

In conclusion, Lie symmetry analysis of DEs is indeed a great tool in the hands of the scientist

seeking exact solutions for complex problems. We have reviewed the work on symmetry analysis

in DEs. The physical interpretation of the theoretical models is important when transformations

are made on equations. With conservation laws, some physical quantities such as mass, energy,

and others are taken care of while solutions are being found. We are now in a position to

investigate the use of Lie groups in ∆Es.
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Chapter 3

Symmetries of Differential-Difference

and Ordinary Difference Equations

3.1 Introduction

We now investigate the construction of symmetries of difference equations. By studying the

local structure of the set of solutions, we derive the method to systematically determine one-

parameter groups of symmetries in closed form. We wish to use these groups to achieve suc-

cessive reductions of order and calculate first integrals and conservation laws for difference

equations much as we achieved for differential equations.

3.2 Notation and definitions

Definition 3.2.1 A shift operator Sσ is any function that satisfies [19]

Sσu(t) = u(t+ σ). (3.1)

�

Definition 3.2.2 Let q ∈ N. The function u is said to be q-periodic if [19]

u(t+ q) = u(t) (3.2)
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for a given q ∈ N. �

Definition 3.2.3 A function uσ is said to be totally unit periodic on Q if [19]

∀σ ∈ Q, u(t+ σ) = u(t). (3.3)

�

Definition 3.2.4 An equation of the form

E(l, xi, u(l+j)xmi
), j = 0, 1, 2, . . . , m = 0, 1, 2, . . . , (3.4)

where l is the discrete independent variable, xi are the continuous independent variables and

u(l+j)xmi
represents the simultaneous j shifts of the dependent variable ul and its mth derivatives

with respect to the continuous variable xi is a D∆E. �

Definition 3.2.5 A functional relation that takes on the values of u : Z×Z −→ C at different

points of the discrete independent variable n may be written in the following form

E(n, un, un+1, un+2, . . .) = 0, (3.5)

where n is the discrete independent variable and un+j the jth shift of the dependent variable un

(alternatively, the value of u at point (n+ j)) and is called an O∆E [40]. �

Note

i. We assume that all grid points are a normalized distance of one apart.

ii. For DEs and D∆Es, n refers to the highest derivative. However, for purely ∆Es, n is the

discrete independent variable and k refers to the highest shift.

3.3 Determination of symmetries of differential-difference

equations

To find the symmetries of D∆Es, we consider a symmetry generator of the form

X = ξi(l, xi, ul)
∂

∂xi
+ η(l, xi, ul)

∂

∂ul
. (3.6)
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We do not consider continuous derivatives operating on the discrete variable l and on the shifts

of ul. As for DEs the condition for (3.4) to admit a symmetry is

X [n]E
∣∣
E=0

= 0 (3.7)

and we proceed as in the case of DEs.

Example 3.3.1 Consider the Toda system [38]

∆l = ulxt − eul−1−ul + eul−ul+1 = 0. (3.8)

In this equation, x and t are the continuous independent variables. The symmetry generator

(3.6) then becomes

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂ul
. (3.9)

The second prolonged group generator, taking into account only those terms that do not vanish

is given by

X [2] = η
∂

∂ul
+ ζtx

∂

∂ultx
(3.10)

and the invariance condition is given by

X [2]∆l

∣∣
∆l=0

= 0, (3.11)

which implies

ζtx + η (eul−1−ul − eul−ul+1)
∣∣
∆l=0

= 0, (3.12)

where

ζtx = ηtx + ultηulx + ultxηul + ulxηult + ulxultηulul − ulttτx

−ulttulxτul − ultτtx − u2
ltτulx

−ultultxτul − ulxu2
ltτulul − ultxξx

−ultxulxξul − ulx(ξtx + ultξulx

+ultxξul + ulxξult + ultulxξulul)

−ultτt − u2
ltτulul − ulxxξt − ulxxultξul (3.13)
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which leads to

ηtx + ultηulx + ultxηul + ulxηult

+ ulxultηulul − ulttτx − ulttulxτul

− ultτtx − u2
ltτulx − ultultxτul

− ulxu2
ltτulul − ultxξx − ultxulxξul

− ulx(ξtx + ultξulx + ultxξul + ulxξult

+ ultulxξulul)− ultτt − u2
ltτulul

− ulxxξt − ulxxultξul + η
(
eul−1−ul + eul−ul+1

)
= 0. (3.14)

Separating with respect to the derivatives ultxult, ulttulx, ulxx,ultt, ulxult, ulx and ult gives the

over-determined system

ulxxult : ξul = 0,

ulttulx : τul = 0,

ulxx : ξt = 0,

ultt : τx = 0,

ulxult : ηulul = 0,

ulx : ηult = 0,

ult : ηulx − τt = 0,

(3.15)

giving

ξ = ξ(x), τ = A(l)t+K(l), η = A(l)xul + C(l) +B(l, t, x). (3.16)

The remaining terms constitute

Btx(l, t, x) + (A(l)ulx+ C(l) +B(l, t, x))

× (eul−1−ul + eul−ul+1) = 0 (3.17)
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Equation (3.17) is solved and we obtain the symmetry algebra

X1(f) = f(t)
∂

∂t
+ f ′(t)l

∂

∂ul
,

X2(g) = g(x)
∂

∂x
+ g′(x)

∂

∂ul
,

X3(k) = k(t)
∂

∂ul
,

X4(h) = h(x)
∂

∂ul
, (3.18)

where the functions h, f, g and k are arbitrary C∞ functions. This corresponds to the results in

[38]. �

3.4 Symmetry reduction of differential-difference equa-

tions

In addition to the above symmetries, D∆Es also possess discrete symmetries. We determined

continuous symmetries above. They constitute the continuous subgroup of the entire group of

symmetries, which consists of the continuous and discrete symmetries. We focus here only on

continuous symmetries. However, we note that when we use a continuous symmetry to reduce

the order of D∆Es, we obtain purely ∆Es, and when we use discrete subgroups on our D∆Es,

they yield purely DEs [38].

Example 3.4.1 Consider the symmetry

X1(f) = f(t)
∂

∂t
+ ḟ l

∂

∂ul
(3.19)

with the invariants u− l log f(t) and x. Therefore we have

ul(x, t) = ūl(x) + l log f(t). (3.20)

Equation (3.8) becomes

ūl−1(, x)− ūl(x) = ūl(x)− ūl+1(x) (3.21)
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with solution

ūl = a(x)l + b(x), (3.22)

where a and b are arbitrary functions of x [38]. Thus

u = a(x)l + b(x) + l log f(t) (3.23)

is a solution to (3.8). �

3.5 Determination of symmetries of ordinary difference

equations

Contrary to the case of differential equations where we could define a symmetry vector field X

as

X = ξi
∂

∂xi
+ ηα

∂

∂uαn
, (3.24)

our independent variable is discrete and therefore, we cannot apply the continuous derivative

operator to it. We redefine our vector field as

X = Q(n, un)
∂

∂un
. (3.25)

We treat the independent variable n in the equation as a parameter for our symmetry calcu-

lation. Hydon [24] proposes a method that enables us to find symmetries using the so-called

local symmetry condition [24]. Consider an O∆E of the form

un+k = ω(n, un, un+1, . . . , un+k−1),
∂ω

∂un
6= 0. (3.26)

Lemma 3.5.1 If k ∈ Z, the transformation generated by the kth shift Sk is a trivial symmetry

of a general O∆E. �

Note that if k is negative, then [24]

Sk = (S−1)−k. (3.27)
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Lemma 3.5.2 Every order-preserving symmetry is equivalent to a vertical symmetry [24],

Γ̃ : (n, φ1, . . . , φk) 7−→ (n, φ̃1, . . . , φ̃k), (3.28)

where the φis represent the first integrals of the equation. �

The proof of this lemma is easy and straightforward as it is based on the fact that the unique

construction of Γ̃ is

Γ̃ = Sn−n̂(n)Γ. (3.29)

Given Lemma 3.5.2, we only consider vertical symmetries henceforth. Accordingly, we seek

symmetries Γ with n = n̂(n). In terms of the original variables,

Γ : (n, un, . . . , un+k−1) −→ (n, ûn, . . . , ûn+k−1). (3.30)

The action of Γ on un+k is determined by its action on un. Suppose

ûn = g(n, un, . . . , un+k−1) = G(n, φ1, . . . , φk). (3.31)

Then the set of solutions of the O∆E (3.26) is

ûn+k = G(n+ k, φ1, . . . , φk) = Skûn, k = 1, . . . , n. (3.32)

These conditions are similar to the prolongation formula for the so-called dynamical symmetries

of ODEs, which reflect the necessity of contact conditions to be satisfied on the set of solutions.

The symmetry condition for equation (3.26) is

ûn+k = ω(n, ûn, . . . , ûn+k−1) (3.33)

whenever (3.26) holds.

We need to linearize the symmetry condition about the identity. In doing so, we seek one

parameter (local) transformation of the form

ûn = un + εQ(n, un, . . . , un+k−1) +O(ε2). (3.34)

Q is called the characteristic of the resulting one-parameter group. From the prolongation

formula (3.32), we obtain

ûn+h = un+h + εShQ+O(ε2), h = 1, . . . , k. (3.35)
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Expanding un+h to first order in ε results in what is known as the Local Symmetry Condition

(LSC) [24]

SkQ−Xω = 0, (3.36)

where

X = Q
∂

∂un
+ SQ

∂

∂un+1

+ · · ·+ Sk−1Q
∂

∂un+k−1

. (3.37)

Note: When these symmetry generators X are written in terms of first integrals they exhibit

the form

X = F 1(φ1, . . . , φk)
∂

∂φ1
+ · · ·+ F k(φ1, . . . , φk)

∂

∂φk
, (3.38)

since each φi is a function of Φ(φ1, . . . , φk) only. From equations (3.38) and (3.37), it is easy

to see that X and S commute as operators on functions. In fact, given any sufficiently smooth

function

g(n, un, . . . , un+k−1) = G(n,Φ), (3.39)

(3.38) implies that

S(XG) = S

(
F i(Φ)

∂G

∂φi
(n,Φ)

)
= F i(Φ)

∂G

∂φi
(n+ 1,Φ) = X(SG). (3.40)

Therefore,

S(Xg) = X(Sg). (3.41)

We will use (3.41) to derive symmetry reduction for O∆Es.

Example 3.5.3 Consider the O∆E [24]

un+2 =
unun+1

2un − un+1

. (3.42)

This is a second order ordinary difference equation. We seek point symmetries, whose charac-

teristics are of the form Q = Q(n, un). The LSC becomes

S2Q−X
(

unun+1

2un − un+1

)
= 0 (3.43)

i.e.

Q(n+ 2, ω)−

[
Q

∂

∂un
+ SQ

∂

∂un+1

](
unun+1

2un − un+1

)
= 0. (3.44)

40



Simplifying this equation gives rise to

Q(n+ 2, ω)− 2u2
n

(2un − un+1)2
Q(n+ 1, un+1) +

u2
n+1

(2un − un+1)2
Q(n, un) = 0. (3.45)

The problem with (3.45) lies in the fact that Q takes three separate pairs of arguments. However,

taking un+1 as a function of n, un and ω, we observe that

∂un+1

∂un
= −

∂ω
∂un
∂ω

∂un+1

=
u2
n+1

2u2
n

. (3.46)

We therefore apply the operator

L =
∂

∂un
+
u2
n+1

2u2
n

∂

∂un+1

(3.47)

to (3.45) and obtain the expression

−
u2
n+1

(2un − un+1)2
Q′(n+ 1, un+1) +

2un+1

(2un − un+1)2
Q(n+ 1, un+1)

+
u2
n+1

(2un − un+1)2
Q′(n, un)−

2u2
n+1

un(2un − un+1)2
Q(n, un) = 0, (3.48)

where the ′ denotes the derivative with respect to the continuous variable argument. We therefore

get

−Q′(n+ 1, un+1) +
2

un+1

Q(n+ 1, un+1) +Q′(n, un)− 2

un
Q(n, un) = 0. (3.49)

By isolating the terms in un, we get

d

dun
(Q′(n, un)− 2

un
Q(n, un)) = 0, (3.50)

where n is just a parameter. Integrating once yields

Q′(n, un)− 2

un
Q(n, un) = A(n), (3.51)

while a second integration gives

Q(n, un) = A(n)un +B(n)u2
n. (3.52)

When we substitute (3.52) into (3.49), the terms involving B(n) and B(n + 1) all vanish and

we are left with

A(n+ 1) = A(n). (3.53)
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The solution to this O∆E is

A(n) = C1. (3.54)

B(n) is obtained by substituting (3.52) into (3.45). After simplification, we obtain the O∆E

B(n+ 2)− 2B(n+ 1) +B(n) = 0, (3.55)

which admits the solution

B(n) = C2n+ C3. (3.56)

The general expression for the characteristic Q(n, un) is thus

Q(n, un) = C1un + (C2n+ C3)u2
n. (3.57)

In summary, (3.42) admits the three symmetry generators

X1 = un
∂

∂uu

X2 = nu2
n

∂

∂un

X3 = u2
n

∂

∂un
. (3.58)

�

This method is successfully used to determine the symmetries of a general form of O∆Es.

3.6 Uses of symmetries of ordinary difference equations

We can use the symmetries of O∆Es to compute the first integrals of the equation, reduce

its order, derive physically important solutions from known trivial ones, or linearize nonlinear

O∆Es. We tackle these applications in turn.

3.6.1 First integrals of ordinary difference equations

Consider the O∆E

un+k = ω(un, un+1, . . . , un+k−1). (3.59)
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Suppose this equation admits the symmetry generator (3.25). A first integral of (3.59) admitting

(3.25) is obtained by solving

X [k−1]f = 0, (3.60)

where X [k−1] represents the (k − 1)th prolonged operator and f represents a first integral of

(3.59). Unlike in the case of ODEs where we had to invoke definition 2.1.6, the discrete analogue

for O∆Es is

In+1 = In|un+k=ω . (3.61)

Solving (3.61) is no longer as easy as in the case of ODEs. We illustrate this via an example.

Example 3.6.1 Consider the free particle O∆E

un+2 − 2un+1 + un = 0. (3.62)

Here, we wish to find “autonomous” first integrals only. As a result, we take f to be f(un, un+1)

and we do not impose (3.60), but rather go directly to (3.61). This means that we now have

f(un, un+1) = f(un+1, un+2). (3.63)

To avoid confusion, we will set g(un+1, un+2) = f(un+1, un+2) in our subsequent calculations.

We also set

un+2 = 2un+1 − un = α (3.64)

for convenience and so

f(un, un+1) = g(un+1, α). (3.65)

Differentiating (3.65) separately with respect to un and un+1 gives

∂f

∂un
= − ∂g

∂α
(3.66)

and
∂f

∂un+1

=
∂g

∂un+1

+ 2
∂g

∂α
(3.67)

respectively. Hence
∂2g

∂α2
= 0, (3.68)
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giving

g(un+1, α) = g0(un+1) + g1(un+1)α (3.69)

and so,
∂f

∂un
= −g1. (3.70)

Thus

f(un, un+1) = −g1(un+1)un + f0(un+1). (3.71)

Equation (3.67) now becomes

∂f

∂un+1

=
dg0

dun+1

+ α
dg1

dun+1

+ 2g1

= − dg1

dun+1

un +
df0

dun+1

. (3.72)

This leads to
d (f0 − g0)

dun+1

= (un + α)
dg1

dun+1

+ 2g1, (3.73)

implying that
dg1

dun+1

= 0 (3.74)

and so

g1 = C1, (3.75)

a constant. Integrating (3.73) now yields

f0(un+1) = 2C1un+1 + g0 + C2, (3.76)

where C2 is an arbitrary constant and so we have

f(un, un+1) = −C1un + 2C1un+1 + g0 (3.77)

and

g(un+1, un+2) = g0 + C1un+2, (3.78)

where we have ignored the additive constant C2. Substituting back in (3.65) and recalling that

g(un+1, un+2) = f(un+1, un+2) requires

g0(un+1) = −C1un+1. (3.79)
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Therefore,

f(un, un+1) = C1(un+1 − un). (3.80)

We conclude that a first integral of (3.62) is

I = un+1 − un, (3.81)

or any function of I. �

Thus one can use symmetries of O∆Es to obtain first integrals much like the case of ODEs.

3.6.2 Reduction of order of ordinary difference equations

Consider the system of q coupled “first-order” difference equations

ui(n+ 1) = Fi(n, u1(n), u2(n), . . . , uq(n)), i = 1, . . . , q. (3.82)

Theorem 3.6.2 Assume that this system is invariant under the one-parameter infinitesimal

evolutionary point transformation [50]

n∗ = n

u∗i (n) = ui(n) + εv(n, u(n)), i = 1, . . . , q (3.83)

where u = (u1, . . . , uq). Then (3.82) reduces to q − 1 O∆Es. �

The proof of this theorem is analogous to that of reduction of order by canonical coordinates

for ODEs. Firstly, any infinitesimal point symmetry generator

Xe = Qi(n, u
i
n)

∂

∂uin
(3.84)

can be transformed into

y∗ = y

w∗i (y
∗) = wi(y), i = 1, . . . , q − 1

w∗i (y
∗) = wq(y) + ε, (3.85)
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by introducing a canonical variable

y = η(n, u), w = ζ(n, u). (3.86)

For ODEs, the above condition is sufficient to prove reduction of order (see for example [48]), as

any transformation of (3.86) takes an ODE into another ODE. An O∆E however is not always

transformed into another O∆E by a general transformation as given in (3.86). A sufficient

condition for this to happen is that the transformation must be of the form [48]

y = n, w = ζ(n, u). (3.87)

In other words, the symmetry needs to be a point evolutionary symmetry transformation since

(3.83) yields (3.86). We then know that in terms of n and w, (3.82) takes the form

wi(n+ 1) = Hi(n,w1(n), . . . , wq−1(n)), i = 1, 2, . . . , q (3.88)

wq(n) = Hq(n,w1(n), . . . , wq−1(n)). (3.89)

Note that (3.89) is decoupled from (3.88) and can be trivially solved for wq in terms of

n,w1(n), . . . , wq−1(n). Note that successive reduction of the number of equations by one re-

sults in the resolution of the entire system.

Corollary 3.6.3 A system that possesses one evolutionary symmetry generator possesses in-

finitely many such generators [42]. That is because (3.88) and (3.89) are invariant under the

infinite-dimensional symmetry group generated by the infinitesimal transformations

n∗ = n,

w∗i (n) = wi(n), i = 1, 2, . . . , q − 1

w∗q(n) = wq(n) + ελ(n), (3.90)

where λ is an arbitrary unit periodic function. �

This also explains why the above reduction of order will not necessarily work for ordinary

differential-difference equations or for difference equations with incommensurate spans.

46



Example 3.6.4 We found the characteristics of symmetry generators of (3.42) to be linear

combinations of

Q1 = un, Q2 = nu2
n, Q3 = u2

n. (3.91)

Consider the symmetry

X = un
∂

∂un
. (3.92)

The resulting first order prolongation is

X [1] = un
∂

∂un
+ un+1

∂

∂un+1

. (3.93)

This gives the invariant

vn =
un+1

un
. (3.94)

Substituting in (3.42) gives the condition for v, namely

vn+1 =
2

1− 2vn
, (3.95)

which has order one. Therefore the order of the equation has been reduced by one. Note that

from any given starting value v0, one can find the value of vk for any k. �

3.6.3 Linearization of ordinary difference equations

Theorem 3.6.5 A nonlinear O∆E is linearizable iff it admits a factorisable symmetry of the

form [9]

X = A(n)G(un)
∂

∂un
. (3.96)

�

We prove this result for the family of second order O∆Es of the form

un+2 = F ([u]), (3.97)

where

F ([u]) = F (un, un+1). (3.98)
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If X is a symmetry of (3.97), then

X [2](un+2 − F ([u])) |un+2=F ([u])= 0. (3.99)

We assume a symmetry generator of the form

X = A(n)G(un)
∂

∂un
. (3.100)

Then (3.99) becomes

A(n+ 2)G(F ([u])) = A(n+ 1)G(un+1)
∂F ([u])

∂un+1

+ A(n)G(un)
∂F ([u])

∂un
. (3.101)

Assuming A 6= 0, we separate (3.101) into

G(un)
∂F ([u])

∂un
= −A(n+ 1)

A(n)
G(un+1)

∂F ([u])

∂un+1

+
A(n+ 2)

A(n)
G(F ([u])). (3.102)

Differentiating with respect to n we obtain(
A(n+ 1)

A(n)

)′
G(un+1)

∂F ([u])

∂un+1

=

(
A(n+ 2)

A(n)

)′
G(F ([u])). (3.103)

If A is not unit-periodic, we have(
A(n+2)
A(n)

)′
(
A(n+1)
A(n)

)′ =
G(un+1)

G(F ([u]))

∂F ([u])

∂un+1

= Γ1, (3.104)

where Γ1 is a separation constant. Rearranging the second equation, we obtain

∂F ([un])
∂un+1

G(F ([u]))
=

Γ1

G(un+1)
. (3.105)

Hence, integrating with respect to un+1 gives∫ F ([u]) dς

G(ς)
= Γ1

∫ un+1 dς

G(ς)
+ g(un). (3.106)

Replacing G(un+1)∂F ([un])
∂un+1

via (3.105) in (3.102), separating and integrating, we obtain (taking

(3.106)) into account)∫ F ([u]) dς

G(ς)
= Γ1

∫ un+1 dς

G(ς)
+ Γ2

∫ un dς

G(ς)
+ Γ3, (3.107)
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where Γ2 and Γ3 are also constants. If we let

wn =

∫ un dς

G(ς)
, (3.108)

then (3.107) reduces to

wn+2 = Γ1wn+1 + Γ2wn + Γ3, (3.109)

which is linear.

Example 3.6.6 Equation (3.42) was shown in example 3.5.3 to possess the symmetry

X2 = nu2
n

∂

∂un
(3.110)

which is factorisable with A = n and G = u2
n.

The homogenizing variable w is given by setting

wn =

∫ un dς

ς2
= − 1

un
(3.111)

in (3.108). Equation (3.42) now becomes

wn+2 − 2wn+1 + wn = 0 (3.112)

with solution

wn = nδn + λn. (3.113)

Thus

un = − 1

nδn + λn
, (3.114)

where δ and λ are unit periodic functions, is the general solution of (3.42). �

Note that for this example, some authors have used an alternate method of finding symmetries

by taking the Laurent series expansions (see for example [54]). Such a method, (repeated in

[50]) is particularly limited as it is not always obvious to recognize the pattern when we expand

the Laurent series. One could rather find all the point symmetries of the equation using the

LSC [24] and choose the evolutionary and factorisable ones to perform linearization.

We realize that linearization of O∆Es is possible when we apply conditions given in the literature

[9, 50, 54]. We have also applied Lie groups to reduce the order of O∆Es. It would be interesting

to investigate the applicability of this linearization technique in P∆Es in detail.
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Chapter 4

Symmetries of Partial Difference

Equations

4.1 Introduction

Integrable systems are those that, although highly nontrivial and nonlinear, are amenable to

exact and rigorous techniques for their solvability. They can take many shapes or forms:

nonlinear evolution equations, PDEs and ODEs and ∆Es, Hamiltonian many-body systems,

quantum systems and spin models in statistical mechanics. A large number of mathematical

techniques have been developed to disentangle the rich structures behind these systems [26]. In

this chapter we confine ourselves to integrable P∆Es. They have been classified in terms of the

Adler-Bobenko-Suris (ABS) series. The discrete potential Korteweg-de Vries (dKdV) equation

is a popular example of such a system. We will investigate its symmetries in detail later.
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4.2 Determination of symmetries of partial difference

equations

4.2.1 Method

Consider the equation

ω(m,n, u00, u10, u01, u11) = 0, (4.1)

where m and n are the independent variables, u00 is the dependent variable denoting umn and

the uij’s denote the forward shifts i times in the m direction and j times in the n direction, i.e.,

uij = u(m + i, n + j) = SimS
j
nu00. We use the method of the LSC (see section 3.3) for P∆Es.

We consider the symmetry in the form

X = Q(m,n, u−10, u0−1, u00, u10, u01)
∂

∂u00

. (4.2)

We require

X [2]ω
∣∣
ω=0

= 0, (4.3)

with

X [2] = Q
∂

∂u00

+ (SmQ)
∂

∂u10

+ (SnQ)
∂

∂u01

+ (SmSnQ)
∂

∂u11

. (4.4)

Lie point symmetries of ∆Es restrict the arguments of Q to Q = Q(m,n, u00). However,

considering higher symmetries is more interesting [41]. We assume symmetries that depend

upon the values of m and n on a square centered at u00 as shown in Figure 4.1 [52].

With this representation, we can use Q as in (4.2). Such a symmetry is termed a five-point

symmetry [52]. The LSC (4.4) becomes

Qωu00 + SmQωu10 + SnQωu01 + SmSnQωu11 = 0. (4.5)

Let ūij be the result of solving (4.1) for uij. Then (4.5) can be written as

Q(ū00(u00, u−11, u01), ū00(u1−1, u00, u10), u00, u10, u01)ωu00

+Q(u00, u1−1, u10, u20, u11)ωu10 +Q(u−11, u00, u01, u11, u02)ωu01

+Q(u01, u10, u11, ū11(u10, u20, u11), ū11(u01, u11, u02))ωu1,1 = 0, (4.6)
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Figure 4.1: Form of a five-point symmetry.

where we have suppressed the m and n dependencies. As before (in section 3.5), Q has varied

arguments. To make progress we differentiate (4.6) with respect to u−11 and u1−1 and obtain

∂2

∂u−11∂u1−1

Q(ū00(u00, u−11, u01), ū00(u1−1, u00, u10), u00, u10, u01) = 0. (4.7)

Integrating yields Q as a sum of functions in a simpler form, i.e.,

Q(m,n, u−10, u0−1, u00, u10, u01) = Qm(m,n, u−10, u00, u10) +Qn(m,n, u0−1, u00, u01), (4.8)

where Qm is the contribution from the m direction and Qn from the n direction of the two

dimensional map. Substituting Q in (4.6) we obtain

(Qm(ū00(u00, u−11, u01), u00, u10) +Qn(ū00(u−11, u00, u01), u00, u01))ωu00

+ (Qm(u00, u10, u20) +Qn(u1−1, u01, u11))ωu10

+ (Qm(u−11, u01, u11) +Qn(u00, u01, u02))ωu01

+ (Qm(u01, u11, ū11(u10, u20, u11)) +Qn(u10, u11, ū11(u01, u11, u02)))ωu11 = 0. (4.9)

Differentiating with respect to u20 we obtain

ωu10

∂

∂u20

Qm(u00, u10, u20) + ωu11

∂

∂u20

Qm(u01, u11, ū11(u10, u20, u11)) = 0. (4.10)

The arguments of Qm are still varied. We divide (4.10) by ωu10 and differentiate the resulting

equation with respect to u01 to obtain

∂

∂u01

(
ωu11

ωu10

∂

∂u20

Qm(u01, u11, ū11(u10, u20, u11))

)
= 0. (4.11)
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Differentiation of (4.9) with respect to u02 gives rise to the expression

ωu01

∂

∂u20

Qn(u00, u01, u02) + ωu11

∂

∂u02

Qn(u10, u11, ū11(u01, u11, u02)) = 0. (4.12)

We divide (4.12) by ωu01 and differentiate with respect to u10 to obtain

∂

∂u10

(
ωu11

ωu01

∂

∂u02

Qn(u10, u11, ū11(u01, u11, u02))

)
= 0. (4.13)

We need to solve (4.11) and (4.13) for Qm and Qn respectively. Note that so far, we have

differentiated the determining equations (4.9) twice. This has created a hierarchy of functional-

differential equations that every five-point symmetry must satisfy. The unknown functions Qm

and Qn can be found completely by going up the hierarchy, a step at a time, to determine more

constraints. As the constraints are solved sequentially, further information is gained about these

functions. At the highest stage, the determining equation is satisfied and the only remaining

unknowns are the constants that multiply each symmetry component.

In the case of the dKdV equation [1]

ω = (u11 − u00)(u10 − u01) + β − α, (4.14)

this method gives rise to the symmetries [52]:

X1 =
∂

∂α
+

∂

∂β

X2 =
∂

∂u00

X3 = (−1)m+n ∂

∂u00

X4 = u00
∂

∂u00

+ 2α
∂

∂α
+ 2β

∂

∂β

X5 = (−1)m+nu00
∂

∂u00

X6 =
1

u10 − u−10

∂

∂u00

X7 =
1

u01 − u0−1

∂

∂u00

X8 =
m

u10 − u−10

∂

∂u00

− ∂

∂α

X9 =
n

u01 − u0−1

∂

∂u00

− ∂

∂β
. (4.15)

It is a simple matter to verify that they satisfy (4.9).
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4.3 Uses of symmetries of partial difference equations

Given a system and its symmetries, we hope to be able to use these symmetries to analyze the

equation. We state and prove the liearization theorem for P∆Es.

Definition 4.3.1 A function u : Ck → C is totally periodic on P if

u(α) = u ∀α ∈ P (4.16)

�

Definition 4.3.2 A function F : E → C has a maximum rank if there is a generator X of

symmetry on E such that [48]

X(F ) |F=0= 0. (4.17)

�

We are now in a position to state and prove the linearization theorem.

Theorem 4.3.3 Assume that an autonomous, meromorphic P∆E of maximum rank is given

by

F ([u])|P = 0, (4.18)

where F : JP∆(E)→ C and JP∆(E) is the discrete P -jet space on the manifold M(C). If (4.18)

has a factorizable evolutionary symmetry generator

X(n, u) = A(x)G(u)
∂

∂u
(4.19)

with A ∈M(C) minimally P -periodic defined on the manifold M and n = (n1, n2, . . . , nk), then

in the coordinates (m,w) given by

m(n) = n

w(n, u) =

∫ u dζ

G(ζ)
, (4.20)

the P∆E is linear with constant coefficients [50]. �
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Proof

The equation under consideration is of P th order and so, the P th prolongation of X is given

by

XP = ΣM−1
j=0 G(u(α(j)))

∂

∂u(α(j))

. (4.21)

Imposing the invariance condition yields

ΣM−1
j=0 A(n+ α)G(u(α))

∂F [u]

∂u(α)

∣∣∣∣
F ([u])=0

= 0. (4.22)

Assume that ∂F ([u])
∂u(α(M−1))

6= 0. (We could always choose P in such a way that this is possible

together with maximum rank.) Equation (4.22) becomes

ΣM−1
k=0 A(n+ α(k))G(u(α(k)))

∂F ([u])

∂u(α(k))

∣∣∣∣
F ([u])=0

= 0. (4.23)

Splitting the first term and dividing it by A(n + α(1)) 6= 0 makes the left hand side of (4.23)

independent of n. We have

−G(u(α(1)))
∂F ([u])

∂u(α(1))

∣∣∣∣
F ([u])=0

= ΣM
k=2

A(n+ α(k))

A(n+ α(1))
G(u(α(k)))

∂F ([u])

∂u(α(k))

∣∣∣∣
F ([u])=0

= 0. (4.24)

The autonomy of F allows the nj to remain independent of u(α). Thus differentiating (4.24)

with respect to any of the nj makes F to vanish on the left hand side. Additionally, since A is

totally periodic on P , there exists at least one generator of symmetry X on Cn with which we

can operate without making the right hand side zero as well. Hence, (4.23) reduces to

ΣM−1
k=1 Aα(p);n(n)G(u(α(k)))

∂F ([u])

∂u(α(k))

∣∣∣∣
F ([u])=0

= 0. (4.25)

It has been established (see for example [9]) that µ(p) can be chosen so that

Apα(p)µ(p) 6= 0, ∀p < M − 1. (4.26)

The process of dividing and differentiating can continue until we have completely separated

variables and (4.25) reduces to

−
AM−2
α(M−1);µ(M−2)(n)

AM−2
α(M−2);µ(M−2)(n)

∣∣∣∣∣
F ([u])=0

=
G(u(α(M−2)))

∂F ([u])
∂u(α(M−2))

G(u(α(M−1)))
∂F ([u])

∂u(α(M−1))

∣∣∣∣∣∣
F ([u])=0

. (4.27)
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Therefore each side of (4.27) is equal to a constant, ΓM−1 say, commonly known as the separation

constant. The right hand side of equation (4.27) evaluates to

1

G(u(α(M−1)))

∂u(α(M−1))

∂u(α(M−2))

= ΓM−1
1

G(u(α(M−2)))
. (4.28)

Integrating (4.28) with respect to u(α(M−1)) results in∫ u(α(M−1)) dζ

G(ζ)
= ΓM−1

∫ u(α(M−2)) dζ

G(ζ)
+ Ωα(M−2)([u]), (4.29)

where Ωα(M−2)([u]) is the constant of integration and hence does not depend on u(α(M−2)).

Considering now that

ΣM−1
k=M−3A

M−3
α(k);µ(M−3)(n)G(u(α(k)))

∂F ([u])

∂u(α(k))

∣∣∣∣
F ([u])=0

= 0, (4.30)

we apply the separation of variables to equation (4.27) and substitute

ΓM−1G(u(α(M−1)))
∂F ([u])

∂u(α(M−1))

= G(u(α(M−2)))
∂F ([u])

∂u(α(M−2))

(4.31)

into (4.30). This yields

ΓM−2 =
ΓM−1A

M−3
α(M−2);µ(M−3)(n) + AM−3

α(M−1);µ(M−3)(n)

AM−3
α(M−3);µ(M−3)(n)

∣∣∣∣∣
F ([u])=0

=
G(u(α(M−3)))

∂F ([u])
∂u(α(M−3))

G(u(α(M−1)))
∂F

∂u(α(M−1))
([u])

∣∣∣∣∣∣
F ([u])=0

. (4.32)

We integrate the right hand side of (4.32) and obtain∫ u(α(M−1)) dζ

G(ζ)
= ΓM−2

∫ u(α(M−3)) dζ

G(ζ)
+ Ωα(M−3)([u]). (4.33)

The process of differentiating and separating continues and we get at the end of the chain of

separation the sequence∫ uα(M−1) dζ

G(ζ)
= ΓM−1

∫ uα(M−3) dζ

G(ζ)
+ Ωα(M−2)

...∫ uα(M−1) dζ

G(ζ)
= Γ1

∫ uα(1) dζ

G(ζ)
+ Ωα(0)([u]), (4.34)
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where the function Ωα(j), is taken as the constant of integration as it is independent of u(α(j))

for all j. If we define

wα(j) =

∫ uα(j) dζ

G(ζ)
, (4.35)

the above sequence yields

wM−1 − ΣM−2
k=0 Γk+1wα(k) − Γ0 |F=0= 0. (4.36)

This is a linear, constant coefficient P∆E resulting from the nonlinear one originally considered.�

Example 4.3.4 For the nonlinear P∆E [9, 54](
u20

√
1 + u2

11 + u11

√
1 + u2

20

)(√
(1 + u2

01)(1 + u2
00) + u00u01

)
−
(
u01

√
1 + u2

00 + u00

√
1 + u2

00 + u00

√
1 + u2

01

)(√
(1 + u2

20)(1 + u2
11)u11u20

)
= 0 (4.37)

where uij indicates the simultaneous shifts i times in the first independent variable and j times

in the second. In this case, the set P is given by

P = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)} (4.38)

and it can be shown that equation (4.37) admits the evolutionary factoraizable symmetry

X(x, y, u) = (1 + 2x3y sin(πy) + 2x sin(πx) + 2y)
√

1 + u2
∂

∂u
. (4.39)

Note that the factor

A(x) = 1 + 2x3y sin(πy) + 2x sin(πx) + 2y (4.40)

is minimally P−periodic. By Theorem 4.3.3, the transformation

w(u) =

∫ u dζ

G(ζ)
= arcsinh(u) (4.41)

can be used to linearize the P∆E (4.37) to the linear P∆E

w20 + w11 − w01 − w00 = 0. (4.42)

�
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4.4 Conservation laws of partial difference equations

A technique for obtaining conservation laws of P∆E was investigated by Hydon [26]. The

method has an important feature in that it does not use symmetries and is not based on

Noether’s approach. As such, the system under analysis does not have to admit a Lagrangian

or Hamiltonian. It is important to note that the equation need not be integrable as the con-

servation of conserved quantities must be maintained after discretization of a DE [26].

Consider a P∆E of the form

E(u00, u10, u01, u11) = 0, (4.43)

where u00 is the dependent variable denoting umn and uij is the denotes the forward shifts i

times in the m direction and j times in the n direction. That is uij = umn = SimS
j
nu00. In this

work, we will rewrite (4.43) as

u11 = z(u00, u10, u01), (4.44)

or

u10 = Ω(u00, u01, u11). (4.45)

A conservation law of equation (4.43) is an expression of the form

(Sm − id)T 1 + (Sn − id)T 2 = 0 (4.46)

that is satisfied by all solutions of (4.43). T 1 and T 2 are the components of the conservation

law T and id is the identity mapping [46].

Conservation laws that depend only on u00, u01 and u10 are known as 3-point conservation laws.

In this case we have

T 1 = T 1(m,n, u00, u01), T 2 = T 2(m,n, u00, u10). (4.47)

Substituting (4.47) into (4.46) yields

T 1(m+1, n, u10, u11)−T 1(m,n, u00, u01)+T 2(m,n+1, u01, u11)−T 2(m,n, u00, u10) = 0 (4.48)

and replacing u11 by z yields

T 1(m+ 1, n, u10, z)− T 1(m,n, u00, u01) + T 2(m,n+ 1, u01, z)− T 2(m,n, u00, u10) = 0. (4.49)
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In order to eliminate terms dependent on z, we apply the differential operators

D1 =
∂

∂u01

− zu01

zu00

∂

∂u00

, D2 =
∂

∂u10

− zu10

zu00

∂

∂u00

, (4.50)

which commute, to (4.49), where zuij = ∂z
∂uij

. Note that z is invariant under the operators D1

and D1. We then have

D1D2(T 1(m,n, u00, u01) + T 2(m,n, u00, u10)) = 0. (4.51)

To make progress, we first eliminate one of the components, T 2 for example, and obtain a

condition for T 1 only. This expression is obtainable via differentiation of (4.51) several times

with respect to specific variables. This PDE in T 1 is then separated with respect to the powers

of u11 and a system of determining equations is obtained. We get additional information on T 1

by substituting (4.45) into (4.48). This gives

T 1(m+ 1, n,Ω, u11)− T 1(m,n, u00, u01) + T 2(m,n+ 1, u01, u11)− T 2(m,n, u00,Ω) = 0. (4.52)

To eliminate terms depending on Ω we use the differential operators

D3 =
∂

∂u01

− Ωu01

Ωu00

∂

∂u00

, D4 =
∂

∂u11

− Ωu11

Ωu00

∂

∂u00

. (4.53)

Equation (4.52) becomes

D3D4(−T 1(m,n, u00, u01) + T 2(m,n+ 1, u01, u11)) = 0. (4.54)

The process follows exactly as the one we just described, and yields another expression for

T 1(m,n, u00, u01) which is typically different from the one resulting from the substitution of

(4.44) above. We are then able to determine T 1. Notice that if we eliminated T 1 instead of

T 2 in (4.51), we would have obtained a differential equation in T 2 (by differentiating several

times, this round, with respect to u01). The obtained expression would then be separated with

respect to the powers of u11 and would have yielded an overdetermined system of PDEs in T 2.

However, it is possible to obtain T 2 directly from (4.46) after we have T 1 using

T 2 = − (Sn − id)−1 (Sm − id)T 1. (4.55)

We illustrate the details in an example.
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Example 4.4.1 The dKdV equation (4.14) for β − α = −1 can be written in either of the

forms

u11 = z, z =
1

u01 − u10

+ u00 (4.56)

or

u10 = Ω, Ω =
1

u11 − u00

+ u01. (4.57)

As we seek 3-point conservation laws, we restrict ourselves to the T i’s defined via (4.47) and

proceed as in equations (4.48) to (4.49). To get rid of T 1(m+1, n, u10, z), we apply the operator

D1 to (4.49) to obtain

T 1
u01

(m,n, u00, u01)+T 2
u01

(m,n+1, u01, z)−
1

(u01 − u10)2

(
T 1
u00

(m,n, u00, u01)− T 2
u00

(m,n, u00, u10)
)

= 0.

(4.58)

We now eliminate the term T 2(m,n+ 1, u01, z) by applying D2 to (4.58). We obtain

T 1
u2
00

+ T 2
u2
00
− (u10 − u01)2(T 1

u00u01
− T 2

u00u10
)− 2(u10 − u01)(T 1

u00
+ T 2

u00
) = 0, (4.59)

which is the equivalent of (4.51). Differentiating (4.59) three times with respect to u01 yields

T 1
u2
00u

3
01
− (u10 − u01)2T 1

u00u4
01

+ 4(u10 − u01)T 1
u00u3

01
= 0, (4.60)

which is a functional equation that can be separated into an overdetermined system. To do so,

we notice that T 1 is independent of u10. Hence one could separate (4.60) with respect to the

powers of u10 to obtain the system

u2
10 : T 1

u00u4
01

= 0

u10 : 2u01T
1
u00u4

01
+ 4T 1

u00u3
01

= 0

1 : T 1
u2
00u

3
01
− u2

01T
1
u00u4

01
− 4u01T

1
u00u3

01
= 0.

(4.61)

To obtain further information on T 1, we now substitute (4.57) into (4.48). We obtain

T 1(m+ 1, n,Ω, u11)− T 1(m,n, u00, u01) + T 2(m,n+ 1, u01, u11)− T 2(m,n, u00,Ω) = 0. (4.62)

Differentiating with respect to u00 and u11 keeping Ω fixed gives

T 1
u2
01
− T̃ 2

u2
01
− (u11 − u00)2(T 1

u00u01
+ T̃ 2

u01u11
)− 2(u11 − u00)(T 1

u00
− T̃ 2

u01
) = 0, (4.63)
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with T̃ 2 = T 2(m,n + 1, u00, u11). To eliminate T̃ 2 and its derivatives, we differentiate (4.63)

three times with respect to u01 to obtain

T 1
u3
00u

2
01
− (u11 − u00)2T 1

u4
00u01

+ 4(u11 − u00)T 1
u3
00u01

= 0. (4.64)

Equation (4.64) separates with respect to the powers of u11 into

u2
11 : T 1

u4
00u01

= 0

u11 : 2u00T
1
u4
00u01

+ 4T 1
u3
00u01

= 0

1 : T 1
u3
00u

2
01
− u2

00T
1
u4
00u01
− 4u00T

1
u3
00u01

= 0.

(4.65)

We solve this system together with (4.61) to obtain

T 1 = c1u00u01 + c2u
2
00u01 + c3u00u

2
01 + c4u

2
00u

2
01 + f1 + f2, (4.66)

with the arbitrary functions

ci = ci(m,n) (4.67)

and

f1 = f1(m,n, u01), f2 = f2(m,n, u00). (4.68)

We now focus on determining T 2. Substituting (4.66) into (4.59) and differentiating twice with

respect to u01 yields

c1 + c2u00 + 2c3u10 + c4(2 + 4c4u00u10) + T 2
u00u10

= 0. (4.69)

Solving this equation gives

T 2 = −(c1 + 2c4)u00u10 − c2u
2
00u10 − c3u00u

2
10 − c4u

2
00u

2
10 + g1 + g2, (4.70)

where g1 = g1(m,n, u10), g2 = g2(m,n, u00). It remains to determine the functions ci, fj and

gj. They can be found completely by going up the hierarchy, a step at a time, to determine

more constraints. Without loss of generality, the trivial conservation law

T 1
0 = (Sn − id)f2

T 2
0 = −(Sm − id)f2 (4.71)
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can be added to T 1 and T 2 respectively to remove the term f2(m,n, u00) [26]. The same thing

can be done to remove the term g2(m,n, u00).

This implies that

T 2 = −(c1 + 2c4)u00u10 − c2u
2
00u10 − c3u00u

2
10 − c4u

2
00u

2
10 + g1, (4.72)

and

T 1 = c1u00u01 + c2u
2
00u01 + c3u00u

2
01 + c4u

2
00u

2
01 + f1. (4.73)

Substituting (4.72) and (4.73) into (4.58) gives

c1(m+ 1, n)u10u11 + c2(m+ 1, n)u2
10u11 + c3(m+ 1, n)u10u

2
11 + c4(m+ 1, n)u2

10u
2
11

+ f1(m+ 1, n, u11)− c1(m,n)u00u01 − c2(m,n)u2
00u01 − c3(m,n)u00u

2
01

− c4(m,n)u2
00u

2
01 − f1(m,n, u01)− (c1(m,n+ 1) + 2c4(m,n+ 1))u01u11

− c2(m,n+ 1)u2
01u11 − c3(m,n+ 1)u01u

2
11 − c4(m,n+ 1)u2

01u
2
11 + g1(m,n+ 1, u11)

+ (c1(m,n) + 2c4(m,n))u00u10 + c2(m,n)u2
00u10 + c3(m,n)u00u

2
10 + c4(m,n)u2

00u
2
10 − g1(m,n, u10) = 0.

(4.74)

Differentiating (4.74) 3 times with respect to u11 and solving the resulting equation, we obtain

f1(m+ 1, n, u11) = −g1(m,n+ 1, u11) + f3(m,n)u11 + f4(m,n). (4.75)

We substitute the expression of f1 into T1 and back into (4.74), taking (4.56) into account, then

we solve this equation by separation of variables and obtain

c1(m,n+ 1) + c1(m,n) = 2c4(m,n+ 1)

c1(m+ 1, n) + c1(m,n) = 2c4(m,n)

c4(m+ 1, n) + c4(m,n) = 0

c4(m,n+ 1) + c4(m,n) = 0

c2(m+ 1, n)− c2(m,n+ 1) = 0

c2(m,n) = −1

3
c3(m,n+ 1)− 2

3
c3(m+ 1, n)

c3(m,n+ 1)− c3(m+ 1, n) = 0

c3(m,n+ 1)− c3(m,n− 1) = 0, (4.76)
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with solution

c3(m,n) = (−1)m−1(C3(−1)(m+n) + (−1)(n−m)/2D3), (4.77)

c4(m,n) = (−1)m+nC4. (4.78)

Note that we also have

c2(m,n) = −c3(m,n− 1). (4.79)

Hence we have

c1(m,n) = 2(−1)m+1 (−1− (−1)n)C4 + (−1)n+mC1

c2(m,n) = (−1)m(C2(−1)(n+m−1) + (−1)(n−m−1)/2D3)

g1(m,n, u10) = (−1)(m+n)G1 +G2

f3(m,n) = (−1)m+nF3

f4(m,n) = (−1)m+nF4. (4.80)

This process leads us to the conserved vectors

T1 = 2(−1)m+1 (−1− (−1)n)C4 + (−1)n+mC1u00u01 + (−1)m+nC4u
2
00u

2
01

+(−1)m(C2(−1)(n+m−1) + (−1)(n−m−1)/2D3)u2
00u01

+(−1)m(C3(−1)(n+m) + (−1)(n−m)/2D3)u00u
2
01

+(−1)m+nF4 + (−1)m+nF3u01 + (−1)(m+n)G1u01 +G2

T2 = −2(−1)m+1 (−1− (−1)n)C4u00u10 − (−1)n+mC1u00u10 − (−1)m+nC4u
2
00u

2
10

−(−1)m(C2(−1)(n+m−1) + (−1)(n−m−1)/2D3)u2
00u10

−(−1)m−1(C3(−1)(n+m) + (−1)(n−m)/2D3)u00u
2
10. (4.81)

With specific choices of the constants Ci, D3, Fi and Gi, one may write the components of the

conserved quantities. We may therefore have the following: For C1 = C4 = D3 = F4 = G1 =

G2 = 0, C2 = −F3 = −C3 = 1, we have

T 1 = u00u
2
01 − u2

00u01 + u00 − u01,

T 2 = u2
00u10 − u00u

2
10. (4.82)
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For C1 = F4 = G1 = G2 = 0, C2 = C3 = F3 = 1,

T 1 = (−1)m+n+1
(
u00u

2
01 + u2

00u01 − u00 − u01

)
,

T 2 = (−1)m+n
(
u2

00u10 + u00u
2
10

)
. (4.83)

For C1 = −2C3 = −4F4 = −2, C2 = C4 = F3 = G1 = G2 = 0,

T 1 = (−1)m+n+1

(
u00u

2
01 − 2u00u01 +

1

2

)
,

T 2 = (−1)m+n
(
u00u

2
10 − 2u10u00

)
. (4.84)

For C1 = −2F4 = 1, C2 = C3 = C4 = F3 = G1 = G2 = 0,

T 1 = (−1)m+n+1

(
u00u01 −

1

2

)
,

T 2 = (−1)m+n (u00u10) . (4.85)

These correspond to the ones given in [51]. �

The method illustrated above is called the three-point conservation law method because the

functions T i are restricted to depend on m,n, u00, u01 and u10 only. Relaxing this condition to

allow T 1 to depend on variables m,n, u−11, u−10, u00, u0−1 and T 2 on m,n, u−10, u00, u0−1, u1−1

gives rise to five-point conservation laws [51]. The method uses the same technique, but involves

more lengthy calculations. However, it has been shown [51] that the five-point conservation laws

approach yields three additional conservation laws. One can find even more conservation laws

by considering seven-point or nine-point conservation laws. However, the calculations become

too complex. Gardner method allows us to systematically construct additional conservation

laws using the symmetries of the equation. It has also been proved that the symmetry method

yields infinitely many conservation laws for the dKdV equation. This method seams to be more

interesting than the direct method. However, since we are interested in the understanding of

finding conservation laws of difference equations, we prefer to build on the basic and simple

method first and the more involving ones will constitute our future work.

As a final comment, we observe that Hydon [25] discussed multisymplectic conservation laws.

This approach was applied to complex valued differential equations and differential-difference

equations.
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Chapter 5

Conclusion

5.1 Summary

We introduced the topic of differential equations in Chapter 1. Some examples of models de-

scribed in terms of DEs were briefly discussed. Thereafter, we motivated our interest in discrete

systems by giving some applications of ∆Es. A short background history of Lie symmetries

was also provided in this Chapter.

In Chapter 2, we introduced the concept of Lie symmetry analysis of DEs by defining some key

concepts. Thereafter, we gave the general algorithm for finding symmetries of DEs (ordinary

and partial). Additionally, the uses of symmetries of DEs were discussed: Reduction of order

was illustrated via an example. We also calculated first integrals and discussed the concept of

transformation of equations and illustrated the processes by use of examples. For PDEs, we

were able to find group-invariant solutions and introduced the concept of optimal systems. We

reviewed the work on conservation laws, and an explanatory example was given to illustrate

one of the methods. Other methods were also listed.

In Chapter 3, we introduced the application of Lie symmetry analysis to D∆Es and defined

some key concepts. Thereafter, we showed that the method for finding symmetries of D∆Es is

similar to that of DEs. As an example, we constructed the solutions of the Toda system using

its symmetries. For O∆Es, we realized that the method for finding symmetries of DEs could not
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just be simply extrapolated to the purely discrete case. In this case, we only consider continuous

transformations of the dependent variable. The uses of symmetries of O∆Es were discussed.

We introduced first integrals of O∆Es and we were able to reduce the order of an O∆E. We

also linearized O∆Es using a special type of symmetries − the factorizable symmetries.

In Chapter 4, we applied symmetry analysis to P∆Es. We outlined the method and verified the

results for the dKdV equation. The uses of symmetries of P∆Es were discussed and we linearized

a highly nonlinear P∆E using its factorizable symmetry. We also studied the conservation laws

of P∆Es and illustrated the direct method via a special case of the discrete KdV equation.

5.2 Observations

A comparative study shows that just like in the case of differential equations, in difference

equations we can transform solutions into solutions or reduce difficult problems to simple ones.

However, we have seen that the point symmetry methods used in differential equations need to

be modified in difference equations. Given the fact that the independent variable is now discrete,

we are no longer able to apply the continuous differential operator to it in the symmetry vector

field (This excludes differential-difference as some independent variables are continuous [26].).

For differential equations, either the equations are already known and group theory is used to

solve them, or the symmetries of the problem at hand are known and are used to build the

theoretical model - the symmetries precede the equations. This is also applicable for difference

equations, but we note some challenges: The physical process described may be discrete and the

lattices involved may be real physical objects. In linear theories such as quantum mechanics, or

quantum field theory on a lattice, generalized point symmetries are most appropriate. This is

also true for nonlinear problems on given fixed lattices [24]. They may mainly be used for the

same motive as in the continuous case - to identify integrable systems on lattices. This method

can also be used to generate more interesting solutions from known trivial ones. One of the

interesting features of point symmetries of differential equations is that dilations particularly

appear as generalized symmetries of difference equations [16].

For nonlinear difference equations in physics, we have in mind the situation when the processes
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are actually continuous and are described in terms of differential equations. The problem is

then discretized so that it can be solved (see for example [17]). Since we then have to choose

the lattice, we can do so to preserve symmetry. Difference equations and lattices form parts

of the difference scheme and the lattice is just part of the solution of the scheme. Therefore

we can restrict to point transformations, but this will act the same time on the lattice and the

solutions.

5.3 Open problems

The concept of symmetry adopted lattices [15, 16, 39] and the use of Lie point symmetry for

linearization condition for difference equations (see for example [9, 54]) still need attention.

Numerical methods for differential equations have also been left out so far - making use of their

symmetry properties or the treatment of asymptotic symmetries for difference equations.

The use of Umbral calculus constitutes interest for further studies in the field of symmetries of

difference equations. Furthermore, in calculating the symmetries of difference equations (during

the process of linearization) in Chapter 3, we faced the difficulty of not being able to recognize

the pattern easily for the Laurent series approximations. The development of some computer

algebra (see for example Sym [13, 14], Lie [22], etc) would help bypass the complexity issue in

the calculation of symmetries and reduction of order. They may help create new packages for

discrete systems.

Moreover, while the classification of admitted symmetries has received exhaustive attention in

DEs, this aspect has not received much attention so far in the discrete case. For example, it

is unclear what is the symmetry group of linear second order O∆Es. Indeed, it is unknown

whether all linear second order O∆Es belong to the same equivalent class. The same issues

apply for P∆Es.

Finally, we note that the work on conservation laws has focused on equations with only two

independent variables. Although Hydon [26] states in his conclusion that the method can be

used for n independent variables, no practical work has thus far been carried out to the best of
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our knowledge. The extension of this theory and its generalization may be of interest for further

research. Additionally, there are several methods for finding conservation laws of DEs which

could be modified to find those of ∆Es. Kara and Mahomed discovered a method for finding

conservation laws via symmetries and Lagrangian [35]. The quest for a discrete analogue of

these methods and the development of new ones intrinsic to ∆Es is the subject for future work.
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des Sciences de Paris, New York, 1893)

[38] Levi D and Winternitz P, Symmetries and conditional symmetries of differential-difference

equations, Journal of Mathematical Physics 34 3713-3731, 1993

[39] Levi D, Tremblay S and Winternitz P, Lie symmetries of multidimensional difference equa-

tions, Journal of Physics A: Mathematical and Geneneral 34 9507-9524, 2001

[40] Levi D, Negro J and Del Olmo M A, Discrete derivatives and symmetries of difference

equations, Journal of Physics A: Mathematical and General 34 306-316, 2001

[41] Levi D and Winternitz P, Continuous symmetries of difference equations, Journal of

Physics A: Mathematical and General 39 R1-R63, 2006

[42] Maeda S, The similarity method for difference equations, IMA Journal of Applied Mathe-

matics 38 129-134, 1987

[43] Mahomed F M and Leach P G L, Lie algebra associated with scalar second-order ordinary

differential equations, Journal of Mathematical Physics 30 2770-2777, 1989

[44] Mahomed F M, Complete invariant characterization of scalar linear (1+1) parabolic equa-

tions, Nonlinear Mathematical Physics 1 (15) 112-123, 2008

[45] Mickens R E, Difference equations: Theory and applications, (CRC Press, New York, 1990)

72



[46] Naz R, Mahomed F M and Mason D P, Comparison of different approaches to conser-

vation laws for some partial differential equations in fluid mechanics, Journal of Applied

Mathematics and Computation 25 212-230, 2008

[47] Nteumagne B F and Moitsheki R J, Optimal systems and group invariant solutions of a

model arising in financial mathematics, Journal of Mathematical Modelling and Analysis

14 495-502, 2009

[48] Olver P J, Applications of Lie groups to differential equations, Graduate texts in Mathe-

matics (Springer-Verlag, New York, 1986)

[49] Polyanin A D and Zaitsev V F, Handbook of exact solutions for ordinary differential equa-

tions, (CRC Press, Boca Raton, 2003)

[50] Quispel G R W and Sahadevan R, Lie symmetries and integration of difference equations,

Physics Letter A 184 64-70, 1993

[51] Rasin O G and Hydon P E, Conservation laws of discrete Korteweg-de-Vries equation,

SIGMA 26 3842-3859, 2005

[52] Rasin O G and Hydon P E, Symmetries of integrable difference equations on the quad-graph

Studies in Applied Mathematics 119: 253-269 MIT,Blackwell Publishing, 2007

[53] Rodgers C and Moodie T B, Wave phenomena: Modern theory and application, (North-

Holland, Amsterdam, 1984)

[54] Sahadevan R, Byrnes G B and Quispel G R W, Linearization of difference equations using

factorisable Lie symmetries, Proceedings of the Workshop on Symmetries and Integrability

of Difference Equations, Centre de Recherche Mathématiques, Esterel Montréal, Canada

RI AMS 337-343, 1994

[55] Sahadevan R and Quispel G R W, Lie symmetries and linearization of the QRT mapping,

Physics Letter A 234 775-784, 1997

[56] Sarlet W, Mahomed F M and Leach P G L, Symmetries of non-linear differential equations

and linearization, Journal of Physics A: Mathematical and General 20 277-292, 1987

73



[57] Valiquette F and Winternitz P, Discretization of partial differential equations preserving

their point symmetries, Journal of Physics A: Mathematical and General 38 9765-9783,

2005

[58] Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL, 2010

[59] Yaglom I M , Evolution of the idea of symmetry in the nineteenth century, translated by

Sergei Sossinsky (Basel, Boston, 1988)

[60] Zwillinger D, Handbook of differential equations, (Academic Press, Boston, 1997)

74


