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ABSTRACT

The concepts of z-, C-, and C*-embedding are “global” in the sense that they are
concerned with every zero-set/continuous (and bounded) real-valued function on a subspace.
Each of these embeddings can be “localised”: z-embedding of a subspace to z-embedding of a
particular continuous real-valued function on the subspace ; C-embedding to the extendibility of
a particular continuous real-valued function on the subspace ; and C*-embedding to the
extendibility of a particular bounded continuous real-valued function on tbe subspace. The aim
of this dissertation is to obtain characterisations of these global embeddings, and to localise

them to obtain characterisations of the corresponding local embeddings.

The tesults fall into two streams: the first uses classical concepts to characterise global
embeddings, and these are localised in classical terms; the second uses various types of filters to
characterise the global embeddings, and the localisations are cast in Llter-theoretic terms. In
both streams any characterisation of a localised version of a global embedding immediately
yields the original global characterisation, and furthermore increases our understanding of the

global characterisation.

Chapter 1 introduces most of the terminology that will be needed in subsequent

chapters, and sketches necessary background.

Chapter 2 is dedicated to completely regular filters , which are used in the
characterisations obtained in chapters 3 and 4 . Of particular importance are the maximal
completely regular filters, and their relationship to z-ultrafilters. It is shown that there is a one-
one correspondence between the maximal completely regular filters and the z-ultrafilters on a
space. A further correspondence, central to later theory, shows that to each maximal completely
regular filter ¥ on a subspace S of X there corresponds a unique maximal completely regular

filter ¥* on the parent space that is coarser than ¥ .
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Chapter 3 is concerned with characterising z-, C*-, and C- embedding, with particular
emphasis on filter characterisations. In the classical stream it is shown that SC X is 2-
embedded in X iff every f e C(S) can be uniformly approximated on S hy continuous real-
valued functions on cozero-supersets of 5 ; and that S is C- (C*-) embedded in X iff S is 2-
embedded in X aud the collection of (bounded) continuous real-valued functions on S that
extend over X i8 closed under the formation of (bounded) quotients. The Gillman and Jerison
characterisations of C*- and C- embedding are deduced from these. In the filter-theoretic
stream it is shown that S C X is z-embedded in X iff the trace on S of every z-ultrafilter on X
that meets S is a z-ultrafilter on S iff every completely regular filter on S is z-embedded in X
; that S is C"-embedded in X iff the trace on S of every maximal completely regular filter on
X that meets S is maximal completely regular on S ; and that S is C-embedded in X iff every

2-ultrafilter on S is the trace on S of some z-ultrafilter on X that meets S .

Chapter 4 studies localisations of the results of chapter 3. In the classical stream , the
localisation of the z-embedding result shows that if S C X and f € C(S) then f is z-embedded
in X iff f can be uniformly approximated on S by continuous real-valued functions on cozero-
supersets of X that contain S ; the localisation of the C°- (C-) embedding results are very
elegant localisations of the Gillman and Jerison characterisations, showing that f e C*(S)
(f €C(S)) extends over X iff disjoint Lebesgue-sets of f are completely separated in X (and S
is completely separated from every zero-set of X that is completely separated from f ). In the
filter-theoretic stream, the localisation of the z-embedding result of chapter 3 shows that
f € C(S) is z-embedded in X iff each member of a particular family of completely regular
filters on X, associated with f , is z-embedded in X ; localisation of the C*- and C- embedding
results has to date been only partially successful, and only a

necesgary filter-theoretic condition for the extendihility of a given f € C*(S) is derived.
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CHAPTER 1
Introduction

1.1 SYNOPSIS

We begin with an informal overview of ithe aims and content of the dissertation.

Concepts introduced here will be discussed in greater detail in subsequent sections.

Let us establish just enough notation and make just enough definitions in order to
hriefly describe the subject matter. Throughout this dissertation S will denote a subspace of a
topological space X , and we shall refer to X as the pareni space (of § ). The reals R will
always have their usual topology. By a zero-sef of a space X we shall mean a set of the form
f’l(O) where f is a continuous real-valued function on X . If f is a continuous real-valued
function on the subspace S , then by an eziension of f 10 X we mean a continuous real-valued
function ¢ on X whose resiriction to S, ¢| S, is just f . We shall denote by C(X) (resp.
C*(X)) the set of all continuous (resp. continuous and bounded) real-valued functions on a

space X .

We say that S is z-embedded in X if every zero-set of § is the intersection with § of a
zero-set of X . If every continuous (rcep. bounded continuous) real-valued function on § extends
over the parent space X , then we say that § is C-embedded (resp. C*-embedded) in X . These
three embeddings are globdal in the sense that they concern themselves with every zero-
set/continuous (and bounded) real-valued function on a subspace. It is easily seen that z-

embedding is necessary for both C- and C*- embedding.

One of the main aims of the dissertation is to obtain filter-theoretic characterisations of
z-, C-, and C"- embedding of a subspace. In the case of z—embedding this is achieved directly.
For C-, and C"- embedding it is achieved by first obtaining more standard characterisations of
extendibility and then characterising these conditions in filter-theoretic terms, This results in
the establishment of interesting relationships, in the presence of one of these embeddings,

between various types of filter on the subspace with those on the parent space,
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The other main objective is to obtain localisations of z-, C*-, and C- embedding,
dealing with a single continuous function! at a time. Whereas z-embedding is concerned with
every zero-set of the subspace (and the collection of all zero-sets is determined by the collection
of all continuous real-valued function on the subspace), the localised version of z-embedding is
concerned with a particular class of zero-sets associated with any given continuous reai-valued
function on the subspace. The localised version of z-embedding of S in X is termed the z-
embedding in X of a single given f € C(S) (defined later). What makes this a true localisation
is that the global embedding is recoverable from the proposed localisation: S is z-embedded in
X ff every f€C(S)is z-embedded in X . Hence by finding conditions for the z-embedding of
any given function on a subspace we may proceed to conditions under which all functions will be
z-embedded, i.e., conditions under which the subspace will be z-embedded. In this sense z-
embedding of functions is at a level one deeper than r-embedding of subspaces. The localised
version of C-embedding (resp. C*-embedding) is extendibility of a single given continuous
function (resp. bounded continuous function) on the subspace. Again the global condition is
recoverable from the local version: S is C-embedded (resp. C*-embedded ) in X iff every
continuous (resp. bounded continuous) function on the subspace extends over X . Of course

these are just the definitions of C-embedding and C*-embedding.

Localisations of classical results have been obtained by R.L.Blair ({Bl}]) . We shall seek
to localise the filter characterisations of the global embeddings in order to obtain filter
characterisations of z-embedding of a function and of extendibility of a single given (possibly
bounded) function. For instance, if some global condition holds iff all filters on the subspace
satisfy a condition 9 then we shall try to identify a class of filters on the subspace, associated
with a single given function, such that the localisation of the global condition holds [or the given

function #ff the class of filters identified satisfies P .

Note that an index of terminology is provided at the end of the dissertation.

LUnless otherwise stated, all functions on a space are real-valued
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1.2 DEFINITIONS AND NOTATION

We define all the general concepts that will be used in later chapters, and record those
properties that will be of use to us. This section is written so as to make the dissertation

practically self-contained.

(3a) General notation

The reals will be denoted by R , and will always have their usual topology. The set of
all integers will be denoted by Z , the set of positive integers by N and the set of non-negative
integers by w . The unit interval [0, 1] will always have the usual subspace topology.
Throughout we shall consider S to be a subspace of a topological space X , and we shall term X
the pareant space of S . Unless specifically indicated to the contrary, no space shall ever he

assumed to satisfy any separation axiom.

Unless otherwise stated, functions are considered to be rcal-valued. If f: X — R and
A C R then we write f1(A) for {x €eX: f(z) EA} — we don’t use f(A) . We define C(X) to
be the set of all continuous real-valued functions on a space X , and denote by C*(X) the
subcollection consisting of all bounded continuous real-valued functions on X . If f € C(X) then
we denote by f|S the restriction of f to §. The function on X with constant value c € R will

he written as c , irrespective of the space X . If f,g € C(X) then we define fag and fvg by

(f A 9)(z) = min{f(z), g(z)} and (f v g)(z) = max{f(z),g(z)} ; note that fag, fvgeC(X).

(b) Zero- and cozero- sets of a topological space

1.2.1 Definition : A zero-set of a space X is a set of the form f~}(0) where f ¢ C(X) .
We will write Z(f) for the zero-set of f , and B(X)={Z(f): f€C(X) }. A cozero-set of X is
the complement of a zero-set; we denote the cozero-set of f by coz f . Note that zero-sets are

closed, that cozero-sets are open, and that @ and X are both zero- and cozero- sets.



Page 1.4
Section 1.2

First let us note that C(X) and C"(X) determine the same zero-sets, i.e., that
{Z2(5): fec(X) }={2(y): feC™(X)} : if feC(X) then Z(f)=2Z((fv—1)Al) . As
such we may always assume that the function determining a given zero-set is bounded with
range {0,1] , so %(X):{f‘l(ﬂ) : feC(X)and0< f<1 } and the family of cozero-sets is

given by {f71(0,1]: feC(X)and 0K f<1}.

Next we note that if F C R is closed, then f~!(F) is a zero-set for f € C(X), as is easily
seen by considering the zero-set of the map z+— d(f(z),F) (the distance of f(z) from F).

Dually, if G C R is open then f~1(G) is cozero for f € C(X) .

The identity Z(f) = {z€X : | f(z) | <% } shows that every zero-set can be written
neN
as a countahle intersection of cozero-sets. Dually, every cozero-set can be written as a countable

union of zero-setis.

Suppose that f,g € C(X) . Then Z(f)U 2(g) = Z(fg) and Z(f)N 2(g) = 2(f? +¢?) ,
showing that ( &(X), N, U) is a lattice. This lattice has a least element @ and a greatest
element X , and we show that it is also closed under countable intersections: Suppose
f,€C(X) for each neN . Define g, = | f,| A27" and g = %:Ng" — since |g, | <2™" the

n

series converges uniformly by the Weierstrass M-test. Now Z(g)= () 2(g,.)= 2(f,) -
neN neEN

Dually the collection of cozero-sets is closed under finite iutersections and countable unions.

(¢) Completely separated seis

1.2.2 Definition : Subsets 4 and B of a space X are said to be completely separated in

X i thereis an f € C(X) with0< f <1, f(A)=0and f(B)=1.

In completely separating A and B it clearly suffices to find an [ € C(X) with f(4) <r
and f(B)> s for some numbers r and s with r <s . It also suffices to contain A and B

(vespectively) in completely separated sets. Complete separation of sets is also most
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conveniently expressed in terms of zero-sets of the space, this being particularly useful in our

work:

1.2.3 Theorem: (IGJI 1.15]): Tuwo seis are completely separaied in X iff they are

contained in digjoint zero-sets of X . a

(d) D-flters and P-filterbases

Recall that if (P, N, U) is a lattice of subsets of a set X , then a P-filter on X (or a
filter in the laitice P ) is a nonempty collection F of nonempty members of P such that i) il
P,P,e¥ then P \NPye¥F , and ii) il Pye%F and P, C Py €P then P,€F . A P-filterbase
on X is a nonempty collection B of members of P such that if C;,C5 € B then C, NC, 2 C, for
some Cy € B, and the P-filter generated by (based on) 9B is the collection of all elements of P
that are supersets of elements of B . If P is the power set of X then the P-filters on X are just
the filters on X ; if P is the lattice of zero-sets of a space X , then the P-filters are just the z-

filters.

It is clear that subset inclusion will partially order the set of all P-filters en a set X ,
Many of our conditions will involve the “coarser than” relation which allows us to compare

filters in different lattices (e.g., filters with z-filters) :

1.2.4 Definition : If F is a P,-filterbase and § is a P,-filterbase then we say that § is
finer than F (or that ¥ is coarser than §) , and write F <@, if every member of ¥ contains a
member of § . In the case that P, = P, we have F <G iff FC§. We say that F and § are
equivalent il F < and § < F . Note that < will not be used as a partial order of any set,

except when it is restricted to a particular class of filters (in which case < coincides with C) .

1.2.5 Definition : A set A is said to meet a P-filterbase B if AN B # O for each B e B.

P-filterbases F and § are said to meet il each member of & meets § .
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Regarding :-filters, we need to recall the following properties:

(i) every zfilter on X is contained in some z-ultrafilter on X ,

(ii) z-ultrafilters are prime ,

(iii) a prime z-filter on X is contained in a unique z-ultrafilter on X , and

(iv) if U is & z-ultrafilter on X and U € B(X) then U €U iff U meets U .

1.2.6 Definition: I F and § are filterbases on X which meet, then we write
sup {7, §} = {U CX:UD2FNG for some FeF,Ge@ }. This is a filter on X containing (finer
then) both F and § . If U and 'W are z-filters on X which meet then we write
sup%(x){‘u,W} — {Ze%(X) : Z2UNW forsome Ue U, WeW } , a zhlter on X

containing (finer than) both U and W .

(e) Definition of z-, C*-, and C- embedding

We introduce the three concepts that this dissertation is primarily concerned with. Note
that the definitions are given in classical terms, i.e., in terms of zero-sets, complete separation
etc. In later chapters we shall discover what consequences these embeddings have for various

types of filters on the spaces involved.

1.2.7 Definition: Let SC X . If f€C(S) then we say that f extends over X if there
exists 8 g€ C(X) with ¢|S=f . Note that we do not insist that an extension of a bounded
function be bounded, although it can be assumned bounded: if [f[<m and g€ C(X) with

g} S =7, then (gv —m)amis a bounded extension of f .

1.2.8 IDefim'tion : Let SCX . We say that S is C*-embedded in X if every bounded

continuous function on S extends continuously over X , i.e.,, C*(S)={¢|§: g€ C*(X) }
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The classical characterisation of C*-embedding is the Urysohn Extension Theorem., We
shall not use this in the passage to a filter characterisation of C*-embedding — indeed we shall

recover it from one of our characterisations and so provide an alternative proof.

1.2.9 Theorem (Urysohn Extension Theorem [GJ 1.17] ): S C X is C*-embedded in X

iff every pasr of completely separated seis in S is completely separated in X . ]

Note that we can restate this theorem as follows: S C X is C*-embedded in X iff

digjoint zero-setls of S are contained in disjoint zero-sets of X .

1.2.10 Definition : Let S C X . We say that S is C-embedded in X if every continuous

function on S extends continuous over X , i.e., C(S)={g|S: g€ C(X) }.

Note that C*-embedding is obviously necessary for C-embedding. The Gillman and

Jerison characterisation of C-embedding is as follows:

1.2.11 Theorem ([GJ 1.18]) : A C*-embedded subset S of X is C-embedded iff it is

completely separaled from every zero-sel of X disjoint from S . )

One of the best known applications of the Urysohn Extension Theotem is to couple it
with the Urysohn Lemma (that in a normal space disjoint closed sets are completely separated)
in order to prove the well known Tietze-Urysohn Theorem characterising C-embedding. This

too will be reproved using our characterisations.

1.2.12 Theorem (Tietze-Urysohn Extension Theorem): If S is a closed subsel of a

normal space X , then S is C-embedded in X .,

We shall arrive at [urther characterisations of C*™-, and C- embeddings via

characterisations ol a particular condition that is necessary for both of these embeddings, and
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discovering what supplementary conditions wiil yield C*- or C- embedding. The necessary

condition is that of z-embedding:

1.2.13 Definition : If S C X and A € 35(S) then we shall say that A eriends to a zero-
set of X if it is the case that A = ZN S for some Z € Z(X) . We shall apply this terminology to

cozero-sets too, in the obvious way.

1.2.14 Definition (R.L.Blair [Bl] ): A subspace S of a space X is said to be z-
embedded in X if every zero-set of S extends to a zero set of X — i.e., for each Z € 25(S) there is
a Z'eZ(X) with Z2’'NS =2 . Equivalently, S is z-embedded in X iff every cozero-set of S
extends to a cozero-set of X . Since the intersection with § of a zero set of X is always a zero

get of S, z-embedding of S in X means that B(S)={ZNS: Z €H(X)}.

It is easily seen that :-embedding of a subspace S of X is a necessary condition for both
C*- and C- embedding of § in X : if feC(S) and f=¢g|S with geC(X) then
Z(f)=2Z(g)NS . For this reason alone it is worth studying z-embedding and investigating
what conditions must hold in addition to z-embedding to ensure C*-, and C- embedding. The
concept has found applications in other areas, such as in the investigation of function algebras,

z-filters, lattices, and measures.

The following proposition will be very useful, and will often be used without reference.

1.2.15 Proposition (R.L.Blair and A.W.Hager [BH; 1.1]): Every cozero-set is z-

embedded.

Proof. Let geC(X) and feC*(cozg) , so that Z(f) is a typical element of %(coz g)

(recall that C(Y) and C*(Y) generate the same zero-sets). Define & on X by:

f(z)g(z) if z €co
"(’)z{ ()og )iIZEZ(zgs)"
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Let ze X . We claim that A is continuous at z . There are three cases to consider:
(i) If z €cozg then, since coz g is open, there is a neighbourhood U of z in X with U Ccozg .
Now AJU =(f|U)(g|U) , which is continuous on U . So h is continuous at z ; (ii) If
z€Z(g) - Fry(Z(g)) (where Fry denotes the frontier operator on X) , then there is a
neighbourhood of z on which ¢ , and hence k , is constant valued at 0 . Hence A is continuous at
z; (i) If z€ Z(g)NFrx(Z(g)) then, given € > 0, then if | f(y)| < M for all y€coz g, there
is a neighbourhood U of = such that g(U)g(—fi, —CM-) since g(z) =0 . But h(z) =0 and

h(u) C (—¢,€) , showing that A is continuous at z .

We have shown that A€ C(X) . It is clear that Z(h)Ncozg = Z(f) . 0

There are a number of instances in later chapters where functions are defined in a
manner very similar to k in the preceding proposition. Showing that these functions are
continuous is tedious, and we shall simply say “as in propasition 1.2.15 , the function is

continuous”,

We have established the necessary notation for our work, but before we can begin our
study of z-, C*-, and C- embedding we must introduce completely regular filters. This is the

content of the next chapter.,
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CHAPTER 2
Completely Regular Filters

2.1 INTRODUCTION

Our characterisations of the various embeddings and of extendibility will be mainly
given in terms of the relative behaviour of :z-filters and of complelely regular filters on the
subspace and on the parent space. The important properties of :-filters have been given in the
introductory chapter. In this chapter we introduce tbe concept of completely regular filters and
establish their most important properties in the context of extending continuous functions and

characterising the various embeddings.

2.2 DEFINITIONS

The concept of a completely regular filter was introduced by P.S.Aleksandrov ([Al]),
who used the term “completely regular system” to refer to a particular kind of filtersubbase.
The term used here, as well as the application to filters, is due to Bourbaki ([Bou ; chap IV, §1
Ex. 8] ). In [Al] completely regular systems are used to establish a characterisation of the Stone-
Cech compactification of a Tychonoff space. Completely regular filters have found a number of
uses in distinct, though related, fields. In the sequel we shall see their use in characterising the

various types of embedding.

2.2.1 Definition : A filterbase F on X ie said to be completely regular if for each F e ¥
there is an F' € F such that F' and X — F are completely separated in X . We also define the
trivial filter {X} on X to be completely regular. A completely regular filter on X is said to be

mazxtmal completely regular if there exists no strictly larger completely regular filter on X .

It is clear that a filter F is completely regular if, and only if, some filterbase for ¥ is

completely regular.
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2.2.2 Ezamples : (i) The coarsest completely regular filterbase on a space X is {X} .

(i) If f: X =R is continuous, with Z(f)#¥® and f >0 then the family
B = { o, rl: r>0 } is a completely regular filterbase on X . This sort of construction will
be used in a number of proofs.

(ili) Later in this chapter we shall see that there is a one-one correspondence between
the maximal completely regular filters and the z-ultrafiiters on a space.

(iv) If 7 18 a Tychonoff topology on X , and if for each Uer we define
U*=U U{"ZF : ¥ is a free maximal completely regular filter with U € ¥ } , then the [family
B = {U' :Uer }is a base for a topology on X* with respect to which X* is homeomorphic to
X , the Stone-Cech compactification of X . This is the characterisation of AX due to

P.S.Aleksandrov ({Al]) .

2.2.3 Remerk: Note that a completely regular filterbase on X is a filterbase in the
lattice of all subsets of X — there is no “lattice of completely regular sets” in which we are
working. Note also that the “coarser than” relation < coincides with subset inclusion C when
restricted to the family of all completely regular [ilters on a space, and hence partially orders

this family.

2.2.4 Definition : Il a subspace S of X meets a P-filterbase ¥ on X then the trace of F
on S, denoted F | S , is the family {FNS: FeF}. It is easily verified that the trace on S of a
completely regular filter(base) on X that meets S is 8 completely regular filter(base) on S , and
also that the trace on S of a z-filter on X that meets S is a z-filterhase on X (the trace can fail
to be a z-filter on S — closure under zero-supersets is not guaranteed; however, the trace will

be a filter il S is z-embedded in X ).
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2.2.5 Proposition : If F and § are complelely regular filterbases on X which meet, then

sup {%,Q) ts completely regular on X .

Proof. We need only show that the base B={FNG: FeF, G€( } for sup{F,q} is
completely regular on X . Let FeF,G€§ . There exist F'€F and G’ €§ together with
functions f,ge C*(X) with 0< f<1 ,0<g<1, f(f)=0, f(X—-F)=1, g(G')=0 and
¢(X—-G)=1 . Then we have fvgeC*X) with 0< fvg<1l, (fvg)(F'NnG')=10 and
FvaXX —(FNG))=(fvg(X—F)U(X—-G))=1. Thus FFNG'€B and X —(FNG) are

completely separated in X . u]

Thus if F and § are completely regular filterbases on X which meet, then sup{%,§} is a
completely regular filter on X finer than both F and § . Note that this means that distinct
maximal completely regniar filterbases on X cannot meet. Also, if a completely regular

filterbase § on X meets a maximal completely regular filter F on X then we must have §C ¥ .

2.3 PROPERTIES OF MAXIMAL COMPLETELY REGULAR FILTERS

It will be mezimael completely regular filters that are of most use in our
characterisations. It is the easy success of z-ultrafilters in characterising z-, and C- embedding
(see theorems 3.2.13 and 3.4.9 } and the correspondence that exists between z-ultrafilters and
maximal completely regular filters on a space (see later in this section) that point to the

potential use of maximal completely regular filters for characterising the various emheddings.

The theorems of this section contain the most important properties of maximal
completely regular filters in this context. Following R.L.Blair ([Bl,]) , we obtain several very
useful characterisations of maximality of completely regular filters and establish an all-
important correspondence between the maximal completely regular filters and the z-ultrafilters
on a space, as well as an equally important link between the maximal completely regular filters

on a subspace with those on the parent space.
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2.3.1 Theorem : Every complelely regular filter is conlained in some mazimal

compietely reguiar filler.

Proof. Suppose that F is a completely regular filter on X , and define
$= {"3' : §' is a completely regular filter on X with & C "I’} . Since ¥€¥ , ¥#0 . Partially
order ¥ by inclusion, and let € be a chain in ¥ . Then |JC is a filter on X , and we claim it is
completely regular : Let Ue | J€ , say U € ¥ €C . By complete regularity of ¥’ , there is a
V € ¥ C L€ which is completely separated from X —U . Hence |JC is completely regular, and
80 is an upper bound for € in ¥ . By Zorn’s lemma we conclude that ¥ has a maximal element,

say § . It is clear that § is a maximal completely regular filter containing ¥ . a

The [ollowing elementary lemma finds use in the next theorem as well as in later

localisations of global results.

2.3.2 Lemma : If a filter F on a compact space X has ezactly one cluster point, then &

converges (lo that poini).

Proof. Suppose ¥ clust:ers at ¢c€X and nowhere else. Let U be any open
neighbourhood of ¢ . For each 2 € X -U , ¥ fails to cluster at z so we may choose an open
neighbourhood U_ of z and an F_e ¥ such that U, NF_=0. Now {U}U{U,_ :zeX-U}is
an open cover of X , so by compactness there is a finite subset A of X —U such that
X-Uc UU_, . Now (z EJAUQ,) OIDAFZ=0 , by construction, and so we have

zeEA
(X—U)H:QAF‘ =9, i.e.,ngFng. SincezQAF,E?f it follows that U € ¥ . a

The following characterisations of maximal completely regular filters will be used often
in our work, especially (ii) . J.W.Green proved (i) = (iii) = (iv) = (v) = (i) in his 1973 paper
([Grg ; lemma 3] ), The equivalence of (i) and (ii) is stated without proof by R.L.Blair in his

1976 paper ([Bl, ; proposition 2.1 (a) ] ).
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2.3.3 Theorem: If F is a complelely regular filier on X , then the following are
equivalent:

(i) & is mazimal completely regular on X ,

(i) #2,2'€B(X) and if Z,2' meet F , then Z2NZ' #0,

(iii) there is only one z-ulirafilter on X finer than ¥ |

(iv) there is only one mazimal completely regular filler on X finer than F ,

(v) Jor every function p € C*(X) , p(F) converges in the usual topology on R .

Proof. (i) = (ii) : Suppose F is a maximal completely regular filter on X , and that
2,2'€ %5(X) meet F. Suppose ZNZ'=0. Then Z and 2 are completely separated in X , so
there s a eC(X) with 0<p<l , p(2)=0 and p(Z)=1 . Define
gzsup{‘f,{p_l[[),e) : eE(D,I)}} . Since Z meets F and Z C p1[0,¢) for all ec(0,1) , it
follows that § is a filter on X . Since {zp'l[[;,e) 1 e€ (0, 1)} is a completely regular filterbase, it
follows from proposition 2.2.5 that § is completely regular. Now § is strictly finer than F , for if
F =@ then o '[0,e) € F for e€[0,1) but v 1[0,e)N 2’ =0 and 2’ should meet F . We have

contradicted the maximality of ¥ , so we conclude that ZN 2’ £ 0.

(if) = (iii) : First we show that every completely regular filter on X is coarser than
some z-ultrafilter on X' . Let § be a completely regular filter on X . For each G € § choose a
zero set Z; contained in G as follows : there is a G’ € § (with G’ C G ) such that G’ and X —G
are completely separated in X . Hence G’ and X — G can be contained in two disjoint zero-sets
of X , showing that there is a zero-set of X contained in G — let Z; be such a zero set. Define
fB:{ZG: Geg} . Now every element of B i8 a superset of an element of § , so BC .
Furthermore every member of § contains a member of B , and 8o B is a filterbase for § . Of
course B is also a base for some z-filter on X , which will be contained in some (not necessarily
unique) z-ultrafilter 4 on X . FEach G € § contains the element Zg; of U , hence § is coarser

than 4l .,
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Now suppose that (ii) holds and let U and AU’ be z-ultrafilters on X that are finer than
F . I UFU then (by maximality) U and U’ are incomparable, so we may choose a
ZeU—-U ., Let Z’e¢U . Now Z meets F (since F <U and Z € U) and 2’ meets F (since
F<U and Z2'€ W), s0 by (ii) ZNZ'#08 . So Z meets every member of the z-uitrafilter U’ ,

and therefore 2 € W’ . This is a contradiction, so we must have U =U' .

(iif) = (iv) : By theorem 2.3.1 there is at least one maximal completely regular filter
on X finer than ¥ . Suppose ¥ is contained in two distinct maximal completely regular filters
on X , say § and §' . By maximality, § and §’ cannot meet —— otherwise sup{@,@'} is a
completely regular filter on X finer than both § and §' . From the argument of (ii) = (iii) ,
there exist z-ultrafilters U and U’ with LU , F <U . We claim that U # U’ , which
contradicts (iii) : Choose G € § and G' €§’ with GNG’ =0 and choose U € U and U’ € U’ with

G2UandG'DU' ;now U eU—WUsince UNU’ =0 . We conclude that § = ¢’ .

(iv) = (v) : Suppose (iv) holds and that pe C*(X) . Since ©(X)CR is bounded,
©(%F) has at least one cluster point in R ( (%) is a filter on the compact space p(X) ) -
Suppose a,b are cluster points of o(F) with a<b . For each e>0 , p~!(—o0,a+e¢) and
(b —e,00) meet F ' thue 4, =sup{ &, {p " H—oco,a+e): e>0}} and
g, =sup{ 7, {pl(b~e,00): e> 0} } are filters on X . Il we take ¢ ___Q_g_g then we have
¢ }(—co,a+e)€Q, and o b —e, oo) € §, showing that §; and §, are incomparable and do not

meet. The filterbases {p !(~co,a+e): e>0} and {p~'(b—e,00): e>0} are clearly

completely regular, so that by proposition 2.2.5 §, and §, are completely regular.

So ¢, and §, are distinct completely regular filters strictly finer than ¥ (neither can
equal ¥ for they are incomparable), Now §;, and §, are contained in maximal completely
regular filters on X , and these must be distinct since §; and §, do not meet. These maximal

completely regular filters are also finer than ¥ — contradicting (iv) .

Thus (%) has exactly one cluster point. It follows by the preceding lemma that (%)

converges.
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(v) = (i) : Suppose (v) holds and ¥ is not maximal completely regular. Then there is
a completely regular filter § strictly finer than ¥ . Choose G,€§—F . Thereisa G, €§and a
peC™(X) with 0< <1, p(G;)=0and p(X —Gy)=1. Let e€(0,1). Then ©'[0,e) and
¢ (e,1] meet F , since FNG,#0 and FN(X ~G,)# 0 for each FeF C . Now il e€(0,1)
and Fe¥ , F meets both ¢ 10,¢) and ¢~ (1 ~¢,1] , s0 p(F)N{0,e) #0# p(F)N(1—¢,1].

Hence (%) clusters at both 0 and 1, a contradiction. a

We note from (ii) = (iii) of the preceding proof that for any completely regular filter on
a space we can always choose a base for the filter consisting of zero-sets of the space. In
particular, this means that any element of a completely regular filter contains a zero-set element

of the filter.

Since every completely regular filter has a base consisting of zero-sets, every completely
regular filter contains a base for a z-filter. This suggests the possibility of a relationship
between the completely regular filters and the z-filters on a space. The following two theorems
show that there is a one-one correspondence between z-ultrafilters on a space and maximal
completely regular filters on that space. This correspondence plays a central role in later theory.
In view of this correspondence, and of the Gillman and Jerison construction of X for Tychonoff
X [GI 6.5] , the characterisation of SX mentioned in example 2.4 (iv) is not too surprising.
This correspondence is due to R.L.Blair. Theorems 2.3.4 and 2.3.5 are propositions 2.1 (b) and

2.1 (c) of [BL,] , in which the proofs are outlined.

2.3.4 Theorem: If F is a mazimal completely regular filter on X , then there is a

unique z-ultrafiller U on X finer than ¥ ; furthermore, if Z € ZL(X) then Z € U iff Z meeis F .

Proof. The existence and uniqueness of U is given by theorem 2.3.3 (iii} . Now let
Z2eZ(X). fZeUand FeTF then FOU for some UeWand ZNF D ZNU # 0, so Z meeis

F . On the other hand, suppose Z meets ¥ — we claim that Z must then bein U . Let UeU
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so that Z and U are zero-sets of X which meet ¥ so by theorem 2.3.3 (i) , ZNU # 0. Since Z
meets every member of U , it follows that Z € 4 . o
2.3.5 Theorem: If U is a z-ulirgfiller on X , then there is & unique mazmmal

complelely regutar filler on X coarser then U .

Proof. Let Al be a z-ultrafilter on X . Define

G‘Bz{f’.l[m"}’ feC(X), f20,r>0, ZC Z(f) for some Ze‘u}.

Certainly B # 0 and 0 ¢ B. Let f ,f, € C(X) with fy13f320, and suppose Z,,Z;€U
with Zy C Z(f,) and Z,C2(f,) . Let'r;,ry>0 . Then f,vf,eC(X), f,vf, 20,
Z2yNZ,eU with Z,NZ, CZ(f,vf,)=Z(f,)NZ(f,) and if we take r = min{r),75} > 0 then

(F v F) U071 C £ 10 r 1N 50, 75] and (fy v £3)7[0,r]€B . So B is a filterbase on X .

If feC(X) with f>0, ZeU with ZC Z(f) and »>0 then f7'[0,5]€B and is
completely separated from X — f~![0,r]=f"!(r,c0) . Hence B is a completely regular

filterbase on X .

Now B is contained in some maximal completely regular filter on X , say §. We claim
that § is coarser than U . Let 3t be the unique z-ultrafilter on X finer than § (see theorem
2.3.4) . We show that 3t = U , for which it suffices to check that if Z € Z(X) then Z meets §

iff ZeU (2 meets @ iff Z€3, by theorem 2.3.4 ). Let Z € Z(X).

Suppose Z meets § . If Z g U then, since U is a z-ultrafilter, Z does not meet U .
Hence there is U €U with ZNU =0 . Now U and Z are disjoint zero-sets, so there is an
feC(X) with 0<f<1 , fU)=0 and f{Z)=1 . Then f'[0,5]eBCG , but

f_lio,%] NZ =@ — a contradiction to Z meeting §. So Ze€U.

Now suppose Z€ U . Let G€§ , and suppose that ZNG =0 (so that Z does uot meet
). Let Z; be a zero-set with Z; CG and Z5€Q . Choose feC(X) with 0< f <1,
f(Z)=0 and f(Z25)=1 . Now, since ZeU , we have f"l[U,%]ec.B(_Iq , but we have

f0,1iNZg =01 Thus ZNG # 0, 50 Z meets § .
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Hence 36 = A , and we have shown the existence of a maximal completely regular filter

coarser than U . It remains to prove uniqueness:

Suppase §§;,§, are maximal completely regular filters coarser than U . If Z € Z(X)
then, from theorem 2.3.4, Z€U iff Z meets §;, , and ZeU iff Z meets §, . Since each
member of §, and of §, contains a zero-set element of that filter, it follows that §, meets ¢, .

By maximality of §, and §, , we must have §, =0, . a

The next theorem is also central to later theory on extendibility. It provides a link
between the maximal completely regular filters on a subspace (whose continuous real-valued
functions we wish to extend) and the maximal completely regular filters on the parent space
(over which the extension must be defined). The result was proved by J.W.Green, first under
the added assumption that the parent space is Tychonoff ([Gr; ; lemma]) , and then for

arbitrary spaces in [Gr, ; lemma 4]

2.3.6 Theorem : Let SC X . If T is a muzimal completely regular filier on S , then

there is a snigue marimal completely regular filler on X coarser than F .

Proof. Suppose that ¥ is a maximal completely regular filter on S. Define
f= {g : §is a completely regular filter on X coarser than ‘ZF} . $#0,since {X} €Y . Partially
order ¥ by subset inclusion, and let € be a chain in ¥ . Now [JC is a filter on X containing
every member of € ; and if U € | JC then I/ €§ for some § €C , so by complete regularity of §
there is a U’ €§C |JC with U’ and X — U completely separated. Hence (JC is completely
regular, and so |JC€Y . By Zorn’s lemma, ¥ has a maximal element, say § . Thus § is

maximal among filters on X that are both completely regular on X and coarser than ¥ .

We claim that § is maximal completely regular on X . Suppose the contrary ; then
there is a completely regular filter 36 on X strictly finer than § (i.e., § 3 ) . Now ¥ is not

coarser than ¥ , by maximality of §in ¥ .
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Clgim : if sup{36 |S,F} is a filter then it is a completely regular filter on S strictly
finer than & .

Proof, Suppose that sup{}|S,¥F} is a filter on § , i.e, that 36 meets S and }%|S
meets F . Now J6]S is completely regular on S , so sup{3 | S, ¥} is completely regular on § .
Of course F Csup{}6]S,F} , and if we choose an H €l such that ANSE T (K ECF so

¥ |SG¢¥F)then forany FeF, HNSNF esup{¥ | $,F} —F — thus F ¢ sup{}* | 5, F} .0 im

By meximality of F , sup {36 | S, ¥} cannot be a filter. Thus 3 | S cannot meet % {this
includes the possibility of 36 not meeting S ). Choose H, €3 and F, e ¥ with H;NSNF, =0
ie, H NF;=0since F£; CS . By complete regularity of 3 on X , there is an H € 36 with H
and X — H; completely separated in X ; and by complete regularity of F on S , there is an
FeT with F and S~ F, completely separated in S . Note that FN H =0 (since FC F, ,

HCH,),sothat FCX~H.

By complete regularity of J6 on X , there is an H’€J¥ and a p € C(X) with 0 < p <1,

@o(H")=1and p(X — H) =0 . Define § =sup{@, {¢'[0,e): D<e< 1}}.

Clatm : ¢ is a completely regular filter on X .

Proof. 1t is clear that {¢™'[0,e): 0 <e <1} is a completely regular filterbase on X .
So we need only show that § meets {w'l[O, e): 0<e< 1} . Let Ge§, then since § < F we
have GO F' for some F'€eF . Then GODF'NF , and 8 #FNFCX~H . Now
(X —H)=0 , so p(FFNF)=0 and we have shown that ¢ }(0)NG #® . Therefore

e 10,e)NG #Bfoc 0 <e<1. a

claira
Clatm : @' is strictly finer than § , and §' is coarser than F .
Proof. Certainly §C§ . Suppose that §=0¢ . Then ™ '[0,e) e C ¥ for each

0<e<l1l, But H' €% and H’ﬁqp_l[ﬂ,e)=0for each 0 <e <1. Therefore §C§ .



Page 2.11
Section 2.3

Let G'c§ . Then G'DGNy~10,¢) for some Ge§ , ec(0,1) . Now » 1{0,e)D
o HO)DX—HIFeF,s0 ¢ [he)NSe€F. Since§<F,G D F for some F' €F . Now we
have G' 2 G N [0,e) 2 F' N 0,e) = (F NS) N be) = F (e [0,e)nS)eF . Thus

9. O

claim
Thus §' is a completely regular filter on X coarser than ¥ and strictly finer than § .

This contradicts the maximality of § in ¥ . Therefore § is maximal compietely regular.

1t remains to show that § is unique: Suppose U is also a maximal completely regular
filter on X with U< F. f UeU and GeQthenU D F, , G2 F, for some F{,F,€F. Now

UNG2F; NF;#0. So U meets §, and it follows by maximality that U =§ . O

2.3.7 Notaiion: If ¥ is a maximal completely regular filter on S C X then we shall

denote by F* the unique maximal completely regular filter on X coarser than F .

2.3.8 Remark: It is easily verified that the results of this section continue to hold with

“maximal completely regular filterbase” substituted for “maximal completely regular filter”.

We have developed all the infrastructure necessary for our characterisations of z-, C*-,
and C- embedding as well as the localisations of these embeddings. Chapter 3 will deal with

charsacterisations of the global embeddings, and chapter 4 with their localisations.
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CHAPTER 3

Filter characterisations of z-, C*-, and C- embedding

3.1 INTRODUCTIOR

In this chapter we establish characterisations of z-embedding, C*-embedding, and C-
embedding of a subspace in terms of z-ultrafilters and maximal completely regular filters.
Typically we shall be concerned with correspondences between maximal completely regular
filters on the parent space and maximal completely regular filters on the subspace; or between z-
ultrafilters on the parent space and z-ultrafilters on the subspace. We shall see that natural,
and desirable, correspondences exist when the subspace is z-, C*-, or C- embedded in the parent
space, and that these correspondences are also sufficient conditions for the respective

embeddings.

The properties of z-, C*., and C- embedding are global in the sense that they are
concerned with the simultaneous extendibility of every zero-set, continuous function, or bounded
continuous function of a subspace. Iu the next chapter we will investigate localisations of the
characterisations in the present chapter, i.e.,, investigate conditions, arising from
characterisations of the present chapter, under which a particular class of zero-sets (the
Lebesgue-sets) associated with a continuous function will extend, and conditions under which a

particular (possibly bounded) continuous function will extend.

Theorem 3.2.13 characterises z-embedding of a subspace in terms of the relationship
between z-ultrafilters, maximal completely regular filters and real z-ultrafilters on the parent
space with those on the subspace. The proofs of the seven equivalences listed in this theorem
depend only on well known properties of z2-ultrafilters and on the properties of maximal
completely regular filters developed in chapter 2 . 1In particular, no non-filter-theoretic
characterisation of z-emhedding of a subspace is used in the proofs. Besides being a

characterisation of z-embedding of a subspace and zelating filters on the parent space to those on
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the subspace, this theorem is also important in that it is used in establishing filter-theoretic

characterisations of C*-, and C- emhedding (z-embedding is necessary for these embeddings).

Theorem 3.4.3 characterises C*-embedding of a subspace in terms of the behaviour of
maximal completely regular filters on the parent space with respect to those on the subspace.
The essential part of the proofl of this theorem uses a non-filter-theoretic characterisation of C*-
embedding : that S C X is C*embedded in X iff S is 2z-embedded in X and a certain
condition (3) holds. This characterisation is transformed into a filter-theoretic one hy the use of
the earlier filter-theoretic characterisation of :z-embedding and through finding a filter-theoretic
characterisation of (8) . In addition to being a characterisation of C*-embedding and
establishing a relationship between maximal completely regular filters on the parent space with
those on the subspace, this result is also used in establishing a filter characterisation of C-

embedding.

Theorem 3.4.9 uses z-ultrafilters and maximal completely regular filters to characterise
C-embedding of a subspace. The proof of this result is in much the same spirit as that of the
characterisation of C*-embedding. It uses a non-filter-theoretic characterisation of C-emhedding
(that S C X is C-embedded in X iff S is z-embedded in X and a condition (¥) holds) in the
essential part of the proof. As before the [ilter-theoretic result is formulated by using the earlier
characterisations of z-embedding and hy finding a filter characterisation of (7). The proof also

makes use of the filter-theozetic characterisation of C*-embedding.

The major part of the present chapter is derived from four papers, [Gr,], [Gry], [BH,)
and [Bl;] . In [Gr,] filter characterisations of C™-, and C- embedding are obtained for
TychonofT spaces, with intricate proofs. In [Gr,] the essential part of a lemma in [Gr,) is proved
without the Tychonoff requirement, as is the characterisation of C™-embedding. Since the other
results of [Gr,] require the Tychonoff axiom only in that they rely on these two results, they
then carry across to arbitrary spaces. In [BH,) non-filter-theoretic characterisations of z-, C*-,

and C- embeddings (for arbitrary spaces) are obtained, and these are used in [Bl,] to derive
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filter characterisations of the three types of embedding wbich include, and improve upon, those
of [Gr;] and [Gry) . The theorem statements are, for the most part, those of [BH,] and [Bl,] —
there being very little roorn for improvement of the wording in these papers. Our notation too

has been adopted from these two papers.

3.2 CHARACTERISATIONS OF »-EMBEDDING

We begin our study of z-embedding by characterising it in terms of the uniform
approximation of continuous functions on the subspace by continuous functions on cozero-
supersets from the parent space (theorem 3.2.4) . This leads very quickly to a characterisation
of both C*- and C- embedding (3.3.3) , from which we shall see that theorem 3.2.4 has depth

comparable to that of the Urysohn Extension Theorem.

3.2.1 Definilion : A partilion of ynily on a space X is a collection & of continuous non-
negative real-valued functions on X such that, at each z € X , ¢(z) # 0 for only finitely many
p€®,and Y p(z)=1. & is said to be locally-finite if each z € X has a neighbourhood on

PED
which all but finitely many ¢ € ® vanish .

3.2.2 Definition : A [amily {Aa}ael of subsets of a space X is locally finite if every
point of X has a neighhourhood which meets only finitely many of the A_’s . The family is said

to be star-finite if every member meets only finitely many other members.

The following lemma is due to R.L.Blair and A.W.Hager [BH; 2.1] . It is used only in
proving the above-mentioned characterisation of z-embedding. The first step of the proof
(constructing a countahle locally-finite refinement of a cover of a space hy cozero-sets) follows

R.Engelking in [Eng, p 221 ; alternatively, Eng, p 394] .
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3.2.3 Lemma : If {C"}w . is a countable cover of X by cozero-sets, then there i5 a
n=

countable locally-finite partition of unity {g,,} on X , with cozg, C C,, for each n .

Proof. Let C,, = f71(0,1] where f, €C(X) and f,: X —[0,1]. Define f = & .11,.
”

By the Weierstrass M-test, the series for f is uniformly convergent, and so feC(X) . Also

0<f< 2 27"=1,andsince [JC,, = X weseethat f>0;800< f<1.
n n

Define V= f~'(%,1] and Fy = f"'[{,1]. The collections {V,]}

00
k=1 1

cover X . Notethat V, ,—F, ;= I—I(E%T ’Fl——i' is cozero. Define Fy=9.

We claim that the collection U ={C, N(Vy - Fr_q):1<n<kand £=23,..}
forms a countable locally-finite cozero-set refinement of {C_}: It is clear that each member of
U is cozero, and that if U is a cover of X then it will certainly refine {C,} . Let z€ X , and
denote by K the smallest integer such that r€ Fp . Suppose that z ¢ EJKC" , l.e., that

n<
fi(z)=fo(z) =...=fk(z) =0 . Then we have f(z) < 1—(%+%+...+#)= 2% < % —
contradicting the definition of K . Hence there iz an n < K with z€ C,, . By minimality of K

we have z¢ Fp _, , so that :ECnn(FK—FK_l)QCnﬂ(VK+l—FK_1) . Thus Al

covers X .

It remains to show that U is locally-finite: Define Cen= C.N(Vey1—Fp_,),and
note that for every n <k we have C, , CV, , CFy . Im2k+2then F, D Fp ,
so if i<m then Cp NC =0 since C, ,=C;N(V, 4 1~F,_ )CX-F,_,
CX—Fy 4. Thus Cy , meets only finitely many other members of A , showing that U is
star-finite. Now a star-finite open cover of a topological space is locally-finite, so we conclude

that QU is locally-[finite.

oo

Rename the members of the countable family 4l , so that we may write U = {Cj'}, -1

For each j €N choose an n(j) such that C’; C C"(J-) , possible since AL is a refinement of {C, } .
For each n€N , set D, = U{C’J : a(5) =n }. Notice that D, C C,, for eack n , and that each

D, is a countable union of cozero-sets so is cozero. If z € X then by local-finiteness of U there
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is some neighbourhood N of z which meets only finitely many members of U ; since D, meets
N iff some C'; € U with n(j) = n meets V , it follows that {D,} is locally-finite. Also {D,}is
acover of X , for if z€ X then there is some j such that z € C; C D"(J') 5

For each n €N choose an k, € C(X) with A, > 0 and cozh, = D, . By local finiteness
3 h(z) is a finite sum for each z € X ; and since {D,} covers X it follows that 3" h;>0 .
Define g, = hn/ 3 h; . If ze X then there is a neighbourhood of z on which all but finitely
many of the & vanish ; on this neighbourhood 3k, is a finite linear combination of continuous
functions, making > h; and hence g, continuous on X . By construction we have
cozg, =cozh, =D, ,CC, . Clearly g, >0 and each z € X has a neighbonrhood on which all

k
but finitely many g, vanish; and if z€ X , then 3} g¢.(z) =(ZZ'}‘)(z) =1. Thus {g,} s
]

a locally-finite partition of unity on X with coz g, C C,, for each n . g

3.24 Theorem (R.L.Blair and A.W.Hager [BH, 2.2] }): Let SCX . Thea § is
z-embedded in X iff each (bounded} f€ C(S) can be approzimated uniformly on S by continuous

Junctions on cozero-sets of X which contain S .

Proof. <: Suppose each fe€(C(S) can be approximated uniformly on § by
continuous functions on cozero-sets of X which contain § . Let Z(f) € B(S) with f eC*(S) .
For each n€N we can choose a cozero-set S, of X and an [, €C(S,) with S, 25 and
| fo(8)—f(s) | <k for each s€S . For each neN, define 2, ={z€S, : |f () |<%}—
then Z!, is a zero-set of S (being the preimage under a continuous map on S, of the closed
subset [ —%,4] of R ). By proposition 1.2.15 we know that each S,, is z-embedded in X , hence

for each neN there is a Z €B(X) with Z NS =2, . We shall show that
Nz, )ns=2(f).

Let z€ Z(f) ; then z€ S , so for each n€N we have | f, (z)| = | f (z)~ f(2z) | <i.

SozeZ! =Z2,NS,CZ, foreachneN. Thusze([1Z,)NS .
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Now let ze((1Z,)NS. Thenze([1Z,)NS, foreachneN,s0z€Z, NS, = Z, for
each neN . Thus [f,(z)| <3 for all neN ; and |f(2)| < | fa(2) | + ) f(2)— Fo(2)]

_<_%+%=%f0r each neN. So f(z)=0,ie,z€2(f).

= : Now suppose that S is z-embedded in X . Let feC{(S) and ¢ >0 . For each
integer n€Z , define A, ={s€S:n-1<l f(s)<n+1} and choose a cozero-set C, of X

such that C,NS =4, .

Define P = LJC" , so that {C_,} is a countable cover of P by cozero-sets of P and
lemma 3.2.3 applies (the intersection with P of a cozero-set of X is a cozero-set of P ) . Note
that P is cozero. Let {g"}nEZ be a countable locally-finite partition of unity on P with
cozg, CC, for each n€Z . Let g= Y eng, — if pe P then g,(p) =0 for all but finitely
many n€Z , so this is a finite sum. For each p € P there is a neighbourhood of p on which all
but finitely many of the g vanish, and so on this neighbourhood ¢ is a finite linear combination
of continuous functions ; so ¢ is continuous on P . We will show that | f(s)—g(s) | < ¢ for

every s€S .

Let s€S . Then s belongs to at most two (consecutively indexed) C,, , hence at most
two (consecutively indexed) g.’s are nonzero at 5 . Let k be the largest integer with k <1. f(s).
Then g3(s)+ g5 41(s)=1 , and g(s)=ckyg(a)+e(k+1)g; ,(s) and thus we have
9(s)=ck-1+egy () » 80 ek<g(s)<ek+e . Also we have chosen & so that

k<l f(s)<k+1,s0wehaveck< f(s) <ek+e. Thus |g(s)— f(s) | <e¢.
Now g is a continuous function on the cozero-set P2 S of X with |[g—f |<econ §. O

The theorem was first proved for dense subspaces by A.W.Hager in [Ha, 3.6) . We shall
see that this theorem leads to a version of the Urysohn Extension Theorem (3.3.8), and that it
can 8lso be used to prove the Tietze-Urysohn Extension Theorem (something for which the
Urysohn Extension Theorem is usually employed). It is theorem 3.3.8 that indicates the

direction in which we ought to look for filter characterisations of C*-, and C- embedding,
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emphasising the importance of the above characterisation of z-embedding. The technique of

proof of theorem 3.2.4 will be adapted in order to prove theorem 3.3.5 .

The following lemma provides a sufficient condition for extendibility of a given f € C(S5)
over X DS . It is often the case in the conditions we will investigate that a sequence of
approximating functions to the function we wish to extend will arise in a natural manner. It is

in this way that the lemma will prove useful in later proofs.

3.2.5 Lemma (R.L.Blair and A.W.Hager (BH, 2.3] ): Let SCX . If f €C(X) for

eackn, feC(S), and if f,, — [ sniformiy on S , then f extends continuvously over X .

Proof. Extract a subsequence of {f,} in order to arrange it that for each n ,
| fa(8)—Fn_1(8) [ < 27" for all s€S5 . Define g, =((f,— f,_1)A2 ")v—2"" . Then each
g, is continuous on X and by the M-test we see that 3 g, converges uniformly on X , say

Eng:gEC(X)-

Let s€S , then (g;iS)s)=g:8)=Ff;(8)—f,_,(8) since on S we have
1fo=Fu_11<2™ . So (é;lg,.|s)(s)=((fn—f0)|s)(s) . Now on § we have :

20 n R
9+ 1 =n}-:xg"+f°=n]i—»m°° ;gxg"”": im (f,—fo)+fo=F .- Thus g+ fp is the

n—oo
desired extension of f . a
Note that we may restate this lemma as follows: If SC X , g, €C(S) for eack n ,
f€C(S), and if g, — f uniformly , then if each of the g,,’s extends continuously over X so too

does f .

The lemma and theorem 3.2.4 yield the following result concerning partial extendibility

of a giver function on a z-embedded subspace.
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3.2.6 Corollary (R.L.Blair and A.W.Hager [BH, 2.4] ): If S is z-embedded in X then
for eack fe C(S) there are cozero-seis R, R,, ... of X , each containing S , suck thal f

eztends continuously over (R, .

Proof. By theorem 3.2.4 , for each n €N we may choose a cozero-set R, of X and a
9n€C(R,) with | f(8)—g,(s)) | <% for each s€ S . Since SC NR, , {g;| NR,} S C(NR,)
and g, — f uniformly on § , it follows from the lemma that f extends continuously over

N&g - s

The converse of this corollary is not true ([BH, 2.5 (a)] ) : It suifices to find a subset §
of X which is a countable intersection of cozero-sets of X , yet is not z-embedded in X . Let X
be the Moore plane I' , and let S be the z-axis (see, for instance, [GJ 3K.1] ) . Then S is a zero-
set of X and hence a countable intersection of cozero-sets. Since S is discrete, F(S) = P(S) (the
power set of S ) , and so |%5(S)| =2°. But |HX)| < |C(X)| =¢ . Thus S is not z-

embedded.

We now turn our attention to filter characterisations of z-embedding. These establish
interesting relationships, in the presence of z-embedding, between z-filters on the parent space
with those on the subspace. DBefore we can state the theorem, we need to make a number of

definitions.

3.2.7 Definition: Let S be a topological space and f € C(§) . For each a € R we define
the lower Lebesgue-set of f at a , denoted L,(f) , and the upper Lebdesgue-set of f at a , denoted
LY(f),by L(f)={s€S: f(s5)<a} and L%f)={s€S: f(s)>a }

Note that both L (f) and L°(f) ate zero-sets of S . In this section we shall use
Lebesgue-sets in order to define z-embedding of functions, and of [ilters, on a subspace —

concepts that will be needed in our characterisations of z-embedding. In the next chapter,
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Lebesgue-sets will be used in necessary and sufficient conditions for z-embedding of, and
extendibility of, a single given function on a subspace. Lebesgue-seta were first used by

H.Lebesgue to characterise various classes of functions ( [Le] ) .

3.2.8 Definition (R.L.Blair [BL p 286] ): Let SC X and feC(S). We say that f s

z-embedded in X if every Lebesgue-set of f extends to a zero-set of X .

It is clear that if S is z-embedded in X , then every member of C(S) will be 2-
embedded in X . Conversely, if all of C(S) is z-embedded in X and Z € %(S) , say Z = Z(f)
with feC(S) , then Z=Ly(f)NL%f)=(2,N8)N(Z,N8)=(Z,NZ,)NS for some
Z,,Z,€2(X) — hence S is z-embedded in X . Since C(S) and C*( S)determine the same zero-
sets, we have that S is z-embedded in X iff all of C(S) is z-embedded in X iff all of C*(S) is

2-embedded in X .

Suppase S C X and fe C(S) extends over X , say f=g|S with ge C(X) . Clearly
the upper and lower Lebesgue-sets of f at any a€R are just the intersection with S of the
corresponding Lebesgue-sets of g . Hence f is z-embedded in X , so we see that z-embedding of
a function is necessary for extendibility. It is easily checked that if f is z-embedded in X then
so too are | f|, —=f, c+f, ¢f, fve and fae (ceR); in particular, if feC(S) is 2-

embedded in X, then so too is (rv f) A8 for r < s in R (see next definition).

3.2.9 Definition (R.L.Blair [Bl, p 286] ): Let SC X and ¥ be a filter on S . We
shall say that & is z-embedded in X if it is the case that for every F € ¥ there exists an F’ € &
such that F’ and S — F can be completely separated in S by some continuous function on S that
is z-embedded in X (in view of the remark at the end of the last paragraph, it does not matter
exactly how this function completely separates F’ and S~ F ) . It is clear that ¥ will then be

completely regular on S .
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3.2.10 Definition ( [GJ 4.12] ): Let f: X — Y be continuous, and let F be a z-filter
on X . We define the sharp mapping f# by f¥(F)={ZeB(Y): f~'(2)eF }, a zfilter on
Y . It is easily seen that if ¥ is a prime z-filter then f#(ﬂ:) is also prime; but if ¥ is a 2-
ultrafilter then f#(F) need not necessarily be a z-ultrafilter. See [GJ 4.12] . Note that if ¥ is a
z-filter on SCX and if ¢:5— X is the inclusion map of § into X , then
e*(F) ={Z€SB(X): ZNSeT ) — we call this the z-filter on X determined by F . If F is a -
ultrafilter on S then, since (p#(':f) is a prime z-filter on X , <p#(‘ff) is contained in a umnique z-

ultrafilter on X — we call this the z-ultrafilter on X determined by F .

3.2.11 Definstion : A z-ultrafilter is said to be a real z-ultrafiller if it has the countable
intersection property (i.e., every countable intersection of members of L is nonempty) . See [GJ

5.15] .

We shall need the [following elementary proposition in our filter-theoretic

characterisations of z-embedding.

3.2.12 Proposition (R.L.Blair [Bl, 2.2] ) : A z-filter ¥ on X is a real z-ultrafilter on X

iff T is prime and closed under countable inlersections.

Proof. =: Assume ¥ is a real z-ultrafilter on X . Of course, F is prime. Suppose
that {Z,} CF with ((Z,,£F . Since a real z-ultrafilter has the countable intersection property,
NZ,#9. Now azero-set of X is in F exactly when it meets F . Hence there is a Z € F such

that (1 Z,)N Z = § — but this contradicts the countable intersection property enjoyed by ¥ .

< :; Now assume that ¥ is a prime z-filter on X closed under countable intersections.
Let Z € %(X) , say Z = 2(f) with f € C(X) . Suppose that Z meets ¥ — we must show that
Ze% .ForneN,set Z,={zeX: |f(z)| <})and Z',.:{:ceX: [f(z)] >%}. Now Z
meets no Z;, , so that Z] ¢ F for each n €N . But for each n€N we have X =2 UZ_ €¥F ,s0

by primeness we conclude that Z, €% . Since ¥ is closed under countable intersections,
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Z=(12,€F . Hence T is a z-ultrafilter. Closure under countable intersections certainly

implies the countable intersection property, and so we conclude that ¥ is a real z-ultrafilter. 0O

We have developed the necessary terminology and notation to proceed with the filter-
theoretic characterisation of z-embedding. Other than the preceding elementary proposition,
this t.hec;rem makes no use of earlier results in this chapter. The equivalence of (a) — (f) was
first proved in [Bly] . In [Gr; Theorem 3] the implication (a) = (c) is proved for Tychonoff
spaces, but under the stronger assumption of C*-embedding (and with considerably more effort).
The statement and proof of the theorem presented here is essentially that of R.L.Blair

({Bl, 3.1]) , though he omitted (b) in favour of (b)’ . The addition of (g) is due to R.L.Blair.

We bhave noted that if SC X then 3(S) D {an: Z€%(X)}, and that equality
holds if S is z-embedded in X . Thus z-embedding of S in X means that the lattice &(S) of
zero-sets of S is entirely determined by those zero-sets of X that meet S , and this leads us to
enquire if this implies any relationship between z-filters on S ((ilters in the lattice %(S) ) and z-
filters on X . It is clear that we will probahly have to limit our attention to those z-filters on X

that meet S .

Suppose that ¥ is a z-filter on X that meets S , with S z-embedded in X . It is clear
that ¥ | § is then a z-filter on S, and we ask: what properties enjoyed by & will continue to be

enjoyed by ¥|S ?

Suppose ¥ is a z-ultrafilter on X that meets S, and suppose that Z € %(S) meets F| S .
By z-embedding, there is a 2Z’eB(X) with 2'NS=2 . Now @#ZNFNS
=Z'NSNFNSCZ'NF for all FeF , hence Z’ meets F and so since ¥F is a z-ultrafilter we

conclude that Z’e ¥ . Now Z=2'NS€¥F|S , showing that F | S is a z-ultrafilter on S .

Suppose ¥ is a real z-ultrafilter on X that meets S , then (by the above) ¥|S is a z-

ultrafilter on S (and therefore prime) ; and if Z,,2,,...€¥| S then there exist Z},25,...€ F
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with 2, NS=2, and so NZ,=(N2,)NSe€F|S since F is closed under countable

intersections. Se by proposition 3.2.12 F|S is a real z-ultrafilter on S .

Thus z-embedding of S in X ensures that the trace on S of every (real) z-ultrafilter on
X that meets S will be a (real) z-ultrafilter on S . The theorem will show that these conditions

are sufficient too.

Let F be a z-filter on S C X , and consider the z-filter <p#(‘.F) on X determined by ¥
(where p: S — X is the inclusion map) . It is clear that :p#(‘EF) meets S , and it is natural to
enquire as to tbe relation between ¢*(¥F)|S and F . It is clear that we will always bave
e*(F)| S CF, and it is easy to see ( (a) = (b) below) that the reverse inequality will hold if S
is z-embedded in X . Conversely, the theorem shows that if this reverse inequality holds for all
z-filters on S then S is z-embedded in X . Hence S is z-embedded in X iff distinct z-filters on

S determine distinct z-filters on X .

3.2.13 Theorem (R.L.Blair [Bl; 3.1] ): If SC X then the following are equivalent:

(8) S is z-embedded in X,

(b) ifQ is any z-filter on S, and if p:5 — X s the inclusion map of S into X , then
ACe*(@1S (in fact §=9*(9)|5 ),

(h)' if Q is any z-ultrafilter on S, and if p:S — X is the inclusior map of S into X ,
then §C v*(G) | S (in fact Q=9%()|5 ),

(¢) i F is any z-ultrafilter on X which meets S, then F | S is a z-ullrafilter on S,

(d) if F is any z-ultrafilter on X which meels S, then F | S is a prime z-filler on S,

() i F is any real z-ultrafilier on X which meels S, then F|S is a real z-ulirafilier
on S,

(f) i A, and A, are completely separated subsels of S, then there erist zero-sels
Z2,,Z,€%(X) such that A,/ C Z,, AyCZ,,and Z,N2Z2;NS =0,

(g) every (mazimal) complelely regular filier on S 18 z-embedded in X .
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Proof. (a)=>(b): Let § be a z-filter on S and let G€§ . By z-embedding there is
some Z € B(X) such that G=2NS . Now go#(g)|5={Z’ﬂS: Z’e%(X)and 2'NSeQ },

so it is clear that G € «:#(g) | S . It is always true that v#(Q) |SCq.
(b) = (b)' : this is trivial.

(b)) = (c) : Let ¥ be a z-ultrafilter on X which meets S . Then, clearly, ¥|S is a
base for a z-filter on S , and hence ¥|S CQ for some z-ultrafilter § on S . Certainly
F C p*(Q) = {Ze€B(X): ZNSeQq}, and so (since ©#(Q) is a z-filter on X ) by maximality of
F we have F = p#*(§) . Now by (b)’ we have gg¢#(g)|s=€r|5 , and we already have

F|SCG. SoF|S=G, a z-ultrafilter on S .
(c) = (d) : Any z-ultrafilter i8 prime, so this is immediate.

(d) = (e} : Let ¥ be a real z-ultrafilter on X whicb meets S . Then ¥ is closed under
countable intersection, and hence so too is ¥|S . By (d) , ¥|S is a prime z-filter. By

proposition 3.2.12 , F| S is a real z-ultrafilter on S .

() =>(f) : Let A, and A, be completely separated subsets of 5. We may assume that
Ay #0#A, . Since A, and A, are completely separated in S , we may choose zero-sets
24,25€%(S) such that A4, €2 , A,C€2Z; and 21N2,=0 . Choose z€4, , aund let
R= {Z €BH(X):z€e2 } . Then ¥ is a z-filter on X and has the countable intersection property;
and if V,,Y, € B(X) with Y, UY,€F thenz€Y,UY,80z€Y, orz€Y, ,s00neof V,,Y, is
in § — showing that ¥ is prime. By proposition 3.2.12 , ¥ is a real z-ultrafilter. Thus, by (e),
F}S is a real z-ultrafilter on S . Now since Z)] meets F|S (z€ A, C 2] and z€ [|(F|S) )
and ¥|S i8 a z-ultrafilter, we must have Z1€%¥|S . Thus Z2;=2,NS for some
Z,eFCEHX) . Similarly 25=2Z,NS fer some Z,€eX(X) , and we have

Z,NZ,Nn8=21nZ)=49.

(f) = (g) : It clearly suffices to show that every f e C(S) is z-embedded in X . Let

1
feC(S)andaeR . If n €N then the Lebesgue-sets L,(f) and L? ¥3(£) are disjoint zero-sets of
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S , so are completely separated in S . By () , there is 2 Z,, € B(X) with L,(f)C Z,, and

ZnﬂLa"'?l"(f) =@. Then (\Z,€Z(X) and L,(f)=(1Z2,NS . Similarly for L°(f) .

(g) = (a): Let feC(S). Set Ay =Z(f) and for each neN , set
1
Ao={z€S: |f@)] 25} =L {(HUP)
We may assume that f # 0 and that Z(f) # @, so that Ay # @ and after some stage all the A ’s

will be nonempty, say forn > N .

For n =0 and for n > N , define
?Bn={g_l[0,r]:r>0 , 9€C(S) , g>0 , g is zembedded in X , AnQZ(g)}.
Forn=0andforn> N, A #0sothat 8¢B_ . Also,forn=0and for n> N, B #PQasis

shown by considering the function g=0on S .

We will show that each B, , for n =0 and for n > N , is a completely regular filterbase
onS .Letn=0o0rn>N andlet r;,r, >0 , g;,9, be non-negative functions in C(S) that are
z-embedded in X with A C Z(g,) and A, C Z(g,) . Let r =min{r{,ry} >0 . Certainly
n1v9,20 , and we also have Z(gyvgy)=2(9)NZ(g) 2 A, . Now
(91 v 92)7[0,r] € ¢77[0, 7] ﬂj;l[o, ry} , 50 it remains to show that g, vg, is z-embedded in X .
Let aeR , There exist Z,,2},7,,2Z5 € B(X) such that L (¢,)=2,nS , L%g;)=2{NnS ,
L(g2)=2Z,NnS and L% g)=2Z7NnS . Now we have L (g,vgy)=L,(g;)NL,(g;)
=(Z;NZ)NS and L%g,vgy) = L% g;)ULYgy) =(Z21U2Z5)NS . Hence g,vgy is z
embedded in X . We have shown that 9B is a filterbase on S ; it is obvious that this filterbase is

completely regular.

Suppose that B, meets some B, with n> N . Then sup{By,B,} is a completely
regular filter on S containing both By and B, . Let F be a maximal completely regular filter
on S containing sup {B4,B,} , and hence s0 too By and B, . By (g) , F is 2-embedded in X .
We claim that A; meets F : Suppose the contrary, say F € F is such that FNA; =10, ie,
such that 4o €S — F . By z-embedding of ¥ in X , there is an F’' € ¥ aud a non-negative z-

embedded in X geC(S) such that g(F")=1 and ¢g(S—F)=0 . But then, since
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AgCS—-FCZ(g), 5_1[0,%](:“.30 CF . Now y_l[O,%]ﬂF' = 0 — a contradiction. So Ay must
meet F . Similarly, A, meets ¥ . But now Ay and A, are zero-sets of S that meet the
maximal completely regular filter ¥ , so their intersection ought to be nonempty — but

AgN A, =0 . We conclude that, for n > N, B, does not meet B, .

Thus for each n> N there is a :-embedded g, € C(S) with Z(f) = A, C Z(yg,,) such

that Z(g,)N A4, =0 (A, is contained in each member of B,, ) . By z-embedding of g, in X ,

there is a Z,, € B(X) such that Z(g,) = Z,NS (simply note that Z(g,) = Ly(g9,) N L%g,) ) -

Now [ Z,e%(X) and Z(f)=() Z,NS —that Z(f)C () Z, NS is clear and the reverse
n>N n>N A3 N

inclusion follows from the fact that Z(g,,)N A, =0forrn> N . O

The equivalence of (a), (c), and (e) highlights the filter-theoretic importance of z-
embedding of a subspace. This is particularly pertinent in the study of Tychonoff spaces, where
z-ultrafilters and real z-ultrafilters can be used to characterise a large number of properties.
Thus, if the parent space X has a property <P that can be characterised in terms of z-ultrafilters
on X then (c) will help in determining whether a particular z-embedded subspace has property

P . An obviously interesting case is that where the parent space is 45 and the subspace is S .

The essential part of the proof of 3.2.13 is the implication (g) = (a). The proof of this
implication will be greatly simplified in the next chapter, where we shall establish new filter-
theoretic characterisations for the z-embedding of a single given function on a subspace (i.e., a
localisation of the results of theorem 3.2.13 ) , recalling that S is z-embedded in X ¢ff all of
C(S) is z-embedded in X . This new proof will shew more clearly why (a) and (g) should be

expected to be equivalent.

Theorem 3.2.13 will be used in the remaining two major theorems of this chapter,
characterising C*-, and C- embedding of a subspace in filter-theoretic terms. In the presence of
z-embedding of § in X we have found that every z-ultrafilter on X that meets S yields a z-

ultrafilter on S . Asking when all z-ultrafilters on S will arise in this way leads us to a
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characterisation of C-embedding. Considering maximal completely regular filters, instead of z-
ultrafilters, in the questions we asked regarding z-embedding leads to a characterisation of C*-

embedding.

The Urysohn Extension Theorem may be phrased: S C X is C"-embedded in X iff
whenever A, and A, are completely separated subsets of S, there ezist zero-seis Z,,Z,€ B(X)
such that Ay CZ, , AyCZ, and Z,NZ,=0 , i.e., compleiely separated subsets of S are
completely separated in X . Note how condition (f) in theorem 3.2.13 is a weakening of this,
and that we could rephrase (f) as (f)': the complete separation of completely separated subsets
of S can be effected by lwo disjoint zero-sels of S (containing the subsets) both of which ertend

to zero-seils of X .

If a z-filter U on X meets S C X , then U|S is a »-filterbase on § . It is clear that if
S is z-embedded in X then AL |S will be a z-filter on S . The lollowing proposition shows that
the converse is true if X is Tychonoff. The result was pointed out by the referee of the paper

(BL] .

3.2.14 Proposition ( [Bly 3.2 (d) (i) ] ): Let SCX. If X is a Tychonoff space, and if
the trace on S of every z-filter on X which meets S is a z-filter on S (ie., not just a z-

filterbase} , then S is z-embedded in X .

Proof. 'We show that if there is a function f € C(X) which is non-constant on S then S
is z-embedded in X (of course we need not worry about the case | S| =1 ). Suppose tbat [ is
such a function, and pick z,,z,€S with f(z,) # f(z,) — if X is Tychonolf then we could
choose f to be a function wbich completely separates {z;} and {z,} . Let
F,={Z2€B(X): z,€Z } and Fy={Z e B(X): z,€ Z} — these are clearly z-filters on X .
Choose Z,€F, and Z,€%, such that Z,1Z,=0 (eg, 2Z,=f"(N{f(z))) and
Zz=f—l(Nr _f(::z))) with r=1|/f(z;)— f(z;){ , and where N (a)=(a~r,a+r) ) . By

hypothesis, ¥,|S and ¥,|S are zfilters on S . Let A€Z(S) . For i=1,2 we have
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(AUZ)INS2Z;NnS and so (AUZ)NS €T, |§ . Thus (AUZ)NS =2Z;NS for some
ZieT,CB(X) . Now (Z1NZ)NS=(Z{NS)N(Z4NnS)=(AUZ)NSN(AUZ,)NS =

SN(AU(Z,NZ,))=SNA=A. Hence S is 2-embedded in X . g

This result need nat hold if X is not Tychonoff ([B], 3.2 (d) (ii)] ) : Let X be a regular
T,-space on which every real-valued continuous function is constant (see [He] ). Choose a,b € X
with @ # b , and define S = {a,5} . Then obviously the trace on S of any z-filter on X that

meets S is a z-filter on S, but S is not z-embedded in X for the only zero-set of X is X itsell.

3.3 CHARACTERISATIONS OF C*-, AND C- EMBEDDING

In this section we develop nen-filter-theoretic characterisations of C*-, and C-
embedding. These will be used in obtaining filter-theoretic characterisations in the next section.
We start by proviug a characterisation (theorem 3.3.3 ) that is almost immediate from theorem
3.2.4 . We then isolate three conditions ( (a), (4#) and (v) ) in order to study theorem 3.3.3
more closely, and we show that this theorem contains the Gillman and Jerison characterisations
of both C*- and C- embedding. We also show how the results can be coupled with Urysohn’s
Lemma in order to prove the Tietze-Urysohn Extension Theorem, and argue that theorem 3.2.4

has depth comparable to that of the Urysohn Extension Theorem.

3.3.1 Definition : If § C X we define C(X) |§ ={f|S: f eC(X)}— the collection of
continuous real-valued functions on S that extend over X . H he C(S) then we say that his a
quotient from C(X)|S if h =§ for some f,ge C(X)|S with Z(g) =@ . If it is the case that
each (bounded) quotient from C(X)]S is again in C(X)|S , we say that C(X)[ S is closed

under (bosunded) quotients.

This definition is due to A.W.Hager ([Hay]) who spoke of closure under (bounded)

tnversson.
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3.3.2 Proposition (R.L.Blair and A.W.Hager [BH, 3.1] ): Let SCX and let
heC(S). Then k is a quotient from C(X)|S iff h extends continvously over some cozero-set

of X which contains S .

Proof. =: Let h:‘f—l with fi=¢,(S and f,=9,|5 for g,,9, € C(X) with
2
= _9ylcozg, _ S
Z(fg)—-m- Thencozgggs,u-meC(cozgz)anduls_};_h.

&: Choose feC*(X) so that coz f 2 S and h extends continuously over coz f , say

g€C(cos f) with g[S =h . Define 91=T£g_2’ on cozf and g; =0 on Z(f) . Define
9

92 =7 f 7 on coz f and g, =0 on Z(f) . As in the proof of proposition 1.2.15 , we have
+9
91,9, €C(X) . Now h=(g |S)/(gg]S) , 80 h is a quotient from C(X)|S . a

We have noted that z-embedding is necessary for both C*- and C- embedding of a
subspace. The following theorem isolates what it is that must be added to z-embedding in order

to produce C*- or C- embedding.

We shall use theorem 3.2.4 , lemma 3.2.5 and proposition 3.3.2 . Suppose that S is z-
embedded in X and that f € C(S) . We shall construct a sequence of continuous functions on S
which converges uniformly to f , with each member of the sequence extending continuously over
X . By lemma 3.2.5 this implies that f extends over X . Theorem 3.2.4 provides functions on
cozero-supersets of S that approximate f arbitrarily closely on S . Since these functions are
defined on cozero-sets of X , we may apply proposition 3.3.2 to conclude that they are quotients
from C(X)|S , and so (under the added assumption that C(X)}S is closed under quotients)

extend them to continuous functions on X that approximate f arbitrarily closely on S .

3.3.3 Theorem: Let SCX. Then S is C*-embedded (resp. C-embedded) in X iff S

is z-embedded in X and C(X)| S is closed under bounded quotienis (resp. quotients)

Proof. = : is obvious.
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<=: Let S be z-embedded in X and let f€C(S) . Let neN. By theorem 3.2.4 we
may choose a cozero-set P, of X containing S and a g, € C(P,,) such that | f(s)—g,(s) | <&
for each s€ S . By proposition 3.3.2 g, | S is a quotient from C(X)|S, and g,, | S is bounded if
f 18 . Assuming C(X)|S is closed under bounded quotients or quotients, according as f is
bounded or not, g, { S extends to f, € C(X) . Now f, — f uniformly on § , and so by lemma

3.2.5 we conclude that f extends over X . o

This theorem is due to A.W.Hager, in [Ha,] , and S.Mréwka, in {Mr,] . Both proofs
rely on the Urysohn Extension Theorem or on its usual technique of proof. We shall show that
we can recover the Urysohn Extension Theorem as well as the Gillman and Jerison

characterisation of C-embedding ([GJ 1.18]) from theorem 3.3.3 .

Consider the following three conditions on a subspace S of X (R.L.Blair and A.W.Hager
[BH, p 45] ) :

(e) disjoint zero-sets of S are completely separated in X ,

(B) if Z{,ZyeZ(X) with Z;,NZ,NS =0 , then Z,NS and Z,NS are completely
separated in X ,-

(7) S is completely separated from every disjoint zero-set of X .

The Gillman and Jerison version of the Urysohn Extension Theorem asserts that (a) is
equivalent to C"-embedding of S in X {[GJ 1.17]) . They also show that C-embedding of S in
X i8 equivalent to C*-embedding (i.e., (a) ) together with (y) ([GJ 1.18]) . We will reprove

these equivalences in what follows. Tt is clear that («) implies (8) , and we prove:
3.3.4 Proposition (R.L.Blair and A.W.Hager [BII, 3.3] ) : (7) = (8)

Proof. Let f,f,€C(X) with Z(f))NnZ(f;)NS =0 . By (y) we may choose an
FeC(X) with £(S) =0 and f(Z(f,)NZ(f;))=1. Define g=f + f1+f3€C(X). Now f is
nonzero when both f, and f, are zero , so Z(g)=® . Now ff/gEC(X) and

(f1/9X2(f)NS) =0 and (f1/g)(2(f3)NS)=1. o
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Condition () is sometimes referred to as well-embedding of S in X , the terminology

being due to W.Moran in [Mo 6.1] .

Together with theorem 3.3.3 , the next two theorems will yield the Gillman and Jerison

characterisations of C*-, and C- embedding.

3.3.5 Theorem (R.L.Blair and A.W.Hager [BB, 3.4A] ): Let SCX . Then the
Sollowing are eguivalent:

(@) (B) holds ,

(ii) if f € C*(S) extends cver a z-embedded set, then f extends over X |

(i) C(X)|S is closed under bounded guotients .

Proof. (i) = (ii): Let feC"(S) extend over z-embedded PC X with P2 S | say
h € C*(P) with h|S = f (as always, we may assume that an extension of a bounded function is

bounded).

Choose meN with |f| <m—1,andlet keN. Foreach neZ with {n| <mk+1,
define Ay, ={weP: kh(p)<n} and B, ={peP: kh(p)2n}. The A, and B are zero-
sets of P (they are Lebesgue-sets of &) , so by z-embedding of P in X there exist A, B, € Z(X)
with A NP =4, and B, NP = B, . Now, for each integer n with |n|<mk+1, we have
(A 1N B _)N(A, _oUBL5)=0,80 (4,,1NB, )N (4, 3UB, )NS5 =0s0 by
(8) there is a wu,€eC(X) with 0<u <1 , w4, ((4,.,UB,,,)N8)=0 and

Up((Ap 41N B,_)NS)=1.

Define u = 2. u,. IfseS then s€ A, NP, _; for some integer n with
In}< mk+1

|n|<mk+1 , so u(s)>1 for each s5€S . Hence cozuDS . Define g, on cozu by

u, |coz u

gn_m,andletg= 3 9, - Now define fr =(uAl)goncozuand fr =0 on

Ini<mk+1
Z(u) . Thus f, =g on §. As in proposition 1.2.15 we can easily check that f, is continuous

on X .
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For s€S , le¢ j be the largest integer with jj<kf(s) . Then
it2 j+2
nzg_lgn(a)z-ﬁfgnzl?“]un(a) =l since only u;_,, u;, 4; 1 and u; 5 can be nonzero at
i$3 =1 42
s . Also g(s) = X Fa(e)= L Zonls), so 1T—Sg(a)5~’k— , and we already
|n[$mk+1 n=j—-l

have %S f(s) <i{-l by choice of j . Hence | f(s)— g(s) | S-i— . Thus, since f; =gon §,

fx — f uniformly on S . Now, by lemma 3.2.5 , f extenda over X .
(ii) = (iii) : This follows from proposition 3.3.2 .

(i) = (1) : Let fy,fo € C(X) with 2(f,)NZ(f,)NS =0 . Define g, =ff|s and

9= _f: | S . Then 9_1%}?1; is a bounded quotient from C(X) |S , so by (iii) there is an h € C(X)
-9 -
such that h| S = 7o Now h(2(f;)NS)=0and h(Z(f))NS)=1. O

3.3.6 Theorem (R.L.Blair and A.W.Hager [BH, 3.4B] ): Zet SCX . Then the

following are equivalent:
(i) (7) holds
(ii) if f € C(S) eztends over a z-embedded set, then f eziends over X ,

(ili) C(X)|S is closed under quotients .

Proof. (i) = (ii) : Suppose f e C(S) extends over z-embedded P D S , say h € C(P)
with 4| S = f . Let p:R = (—1,1) be a8 homeomorphism. Now pohe C*(P), so by (i) = (ii)
of the preceding theorem (and since (y) = (8) — proposition 3.3.4 ) there is an extension
ge€C(X) of poh (see note below) . By (y) we may choose a ueC(X) with 0<u<1,
u(S) =1 and u({zeX ilg(z)| > 1}) =0 . Now we have {u(z)g(z)| <1 for all z€ X, so that
@ Vo (ug) is properly defined. Since (ug)|S =(poh)|S , (¢~ lo(ug))|S=h|S=f — s
¢! o (ug) extends f .

Note: It is possible to show that ¢ o h extends over X without appealing to theorem

3.3.5 ; we use theorem 3.2.4 instead. By theorem 3.2.4 , for each n €N there is a cozero-set P,

of X containing P and a g, € C(P,) such that |(poh)(z)—g¢,(2) | <4 for each z€ P . Since
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poh is bounded, we may assume that g_ is bounded. By (7) , there is an h_ € C(X) with
h(S)=1and h (X ~P )=0 . Define f, on X by f.=g,h, on cozh, and f, =0 on
Z(h,). Then, as in proposition 1.2.15 , f, €C(X) . Since f,=g, on § , we see that

[ — ®@oh unilormly on §. By lemma 3.2.5, p o h extends over X .

(ii) = (4i) : This is immediate from proposition 3.3.2 and since cozero-sets are

r-embedded .

(i) > (1) : Let feC(X) with Z(f)NS =@ . Then 1/(f|{S) is a quotient from
C(X)|S , so by (iii) there is an he C(X) such that h|S=1/(f|S) . Now (Af)(S)=1 and

(hfX2(£))=9. o

3.3.7 Proposition (R.L.Blair and A.W.Hager [BH, 3.5] ): For SCX , (a) is

equivalent 1o the conjunction of (3) and z-embedding .

Proof. =»: We have already noted that (a) implies (3) . Let f € C(S) , and for each

R€N define A, ={seS: |f(s)| 24 }. By (a) , A, and Z(f) are completely separated in X ,

so there is a Z eB(X) with Z(f)CZ, and Z,NA, =0 . Now N1Z,N{JA, =0, and
n n

A, =cozf. Hence (12, NS =2(f), and s0 S is z-embedded in X .
n n

< Let 21,25 e3(S) with 225 =0 . By z-embedding there exist Z,,Z, € Z(X)
such that Z,NS =2} and Z}NS=2; . Now Z,NZ,NS=0 , so by (F) we have

Z,N8 =2 and Z,NS = Z,’ are completely separated in X . O

3.3.8 Theorem (R.L.Blair and A.W.Hager [BII, 3.6]): LetSCX.
A. The following are equivalent:

(i) S is z-embedded in X and () helds ,

(i) S is C*-embedded in X ,

(1ii) () holds .



Page 3.23
Section 3.3

B. The following are eguivagleni:
(i) S is z-embedded and () holds ,

(ii) S 18 C-embedded in X .

Proof. A (i) = (i) : this is clear from theorem 3.3.5 (i) = (i) ,

(ii) = (iii) : is obvious ,

(iii) = (i) : follows from proposition 3.3.7 .

B (i) = (i) : this s clear from theorem 3.3.6 (i) = (ii) ,

(i) = (i) : Let feC(X) with Z(f)NS=0 . Define g(s):-f(lg—) for s€S , so that
9€C(S) . Let he C(X) with h|S=g. Now fheC(X), (fA)S)=1and (fR)(Z())=0. _

In the next section we will find filter characterisations of () and (y) and couple these
with the earlier filter characterisations of z-embedding in order to transform theorem 3.3.8 into

a characterisation of both C*- and C- embedding in filter-theoretic terms.

Note that, in the last theorem, A (ii) ¢ (iii) is just the Gillman and Jerison version of
the Urysohn Extension Theorem which now has an alternative proof. In addition we have a new

characterisation of both C*-embedding and C-embedding.

In view of theorems 3.3.5 and 3.3.6 , we may restate theorem 3.3.3 as follows: Let
SCX . Then S is C*-embedded (resp. C-embedded) in X iff S is z-embedded in X and (B)
(resp. (v) ) holds. This is just theorem 3.3.8 , showing that theorem 3.3.3 contains a version of
the Urysohn Extension Theorem. Now theorem 3.2.4 is used in the proof of theorem 3.3.3 and
we have seen that it can be used in the proof of theorem 3.3.6 (see () above ) , showing
theorem 3.2.4’s role in leading to a version of the Urysohu Extension Theorem. Note also that
theorem 3.3.3 (as restated above) and proposition 3.3.7 yield the following: S C X is C-
embedded in X ff both (@) and (y) hold. This is just the Gillman and Jerison result [GJ
1.18] . Since theorem 3.3.3 is an almost immediate consequence of theorem 3.2.4 , this is further

testimony to the depth of theorem 3.2.4 .
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3.3.9 Remark: One of the important applications of the Urysohn Extension Theorem
is to couple it with the Urysohn Lemma (that a space is normal iff disjoint closed sets of the
space are completely separated in the space) to prove the Tietze-Urysohn Extension Theorem.
We show that theorem 3.2.4 also succeeds in this application ([BH; 3.7 (d)]) : Let X be
normal, and let F be closed in X . Then

(i) F is z-embedded in X: Let Z€3(F) . Any gzero-set may be written as a

countable intersection of cozero-sets, so we may choose a family {Z C &(F) such that

"}nEN -

F—-Z=\) Z,_,. By the Urysohn Lemma, Z is completely separated from each of the Z, (Z
neEN :
and Z,, are disjoint closed sets in F , and hence so too in X ) so we may choose Z} € B(X)

with 2/, D Z and Z;,NZ,,=@. Now () Z,€BH(X)and ) Z,NF=2Z.
neN neN

(ii) (y) holds: If Z €%(X) with ZNF =@ , then Z and F are disjoint closed sets in

X , and so are completely separated in X .

(iii) F is C-embedded : This follows from (i) , (ii) and theorem 3.3.8 B . We have

seen how theorem 3.2.4 can be used in the proof of theorem 3.3.6 (which yields 3.3.8 B ).

3.4 FILTER-THEORETIC CHARACTERISATIONS OF C*-, AND C- EMBEDDING

The characterisations in section 3.3 of C*-, and C- embeddings in terms of z-embedding,
(B), and () will be used to estahlish filter-theoretic characterisations of these embeddings. They
will also be our starting point in the next chapter for localisations of the global results, We

start by characterising () and () in filter-theoretic terms.

Considering the proof A (i) = (ii) below makes the characterisation 3.4.1 A (ii) of (A)
seem quite plausible. The equivalence of (a) and (e) in theorem 3.4.3 (charecterising C*-

embedding) together with the relatively easy deduction of (e} from (a) in tbeorem 3.4.9
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(characterising C-embedding) and the knowledge that C*-embedding and () yield C-embedding
makes the initial consideration of the condition 3.4.1 B (ii) as a characterisation of (y) more

plausible.

3.4.1 Theorem (R.L.Blair [Bl; 4.2} ): LetSCX .

A. The following are equivalent:
(i) (B) holds ,
(ii) If F i any mazimal completely reguiar filler on X , and if F|S meets

Z,,Z,eB(X) , then Z,NZ,NS#D.

B. The following ere equivalent:

Q) (y) holds

(ii) If F is ¢ mazimal completely regular filter on S, and if U is the unigue -
ultrafilter on X finer than the wnigue mazimal compleiely regular filier on X coarser
than F , then U meels S,

(iii) If § is any 2-filter on X which meels S, then there ezisls o z-ullrafilter U on

X which meets §| S .

Proof. A. (i) = (i) : Suppose that (ii) fails. Then there is a maximal completely
regular filter ¥ on X meeting S and there are zero-sets Z,,Z, € Z(X) such that F|S meets
both Z, and Z, , but Z,NZ,NS=0. Let 2{,2,€%(X) with Z,NSCZ,, Z,Nn85C2Z,.
Now ¥ meets both Z,NS and Z,NS , so F meets both Z and. Z, . It follows from theorem
2.3.3 (ii) that Z; N 25 # 0. Thus we are unable to completely sepazate Z; NS and Z,N S in X

— i.e., (B) fails.

ii)y=(i}: LetZ,,Z,e%(X) with Z;,NZ,NS=0. Fori=1,2 let
(i) = (i) 12 1N2Z;

B, ={f0,7]: r>0, fFECX), f20,2Z,nSC2Z(f)} -
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Claim : B, and B, are completely regular filterbases on X

Proof. We may assume that Z,NS #@ for i =1,2 , and this means that Q¢ B, .
Choose g; € C(X) with Z; = Z(g,) , then (¢; v0)™1[0,1] € B; so that B, #§ . Suppase r,s>0 ;
fhe C(X) ; f,h>0 . Z:NSCZ(f)NnZ(h) . Now C(X)3fvh>0 and
Z,NSCZ(fvh)y=2Z(f)NZ(h) and so f7Y[0,r}NA~1[0,5] D (fvh)~}0,rr5]€B; . We have
shown that B, is a filterbase. Now let r >0, f€ C(X) with f20 and Z;NS C Z(f) eo that

Fo,r) e B; . Then f"l[[],%] €, and is completely separated from X — f1[0,r] . a
claim

Suppose that B, meets B, , s0 that there is a maximal completely regular filter ¥ on X

finer than botb B, and B, . Note that F meets S .

Claim : ¥ meets both Z; NS and Z,NS .

Proof. Suppose that ¥ does not meet Z;NS . Then there is an F € F such that
FNZ,NnS=0 . By complete regularity of ¥ there is.an feC(X) and an F'€F with
0<f<1, f(F)=1 and f(X-F)=0 . Now we have Z(f)2X-F22Z,NnS , and so
F7U03leB, CF . But fTY0,JNF' =8 , a contradiction. So F meets Z,NS , and

similarly ¥ meets Z,N S .
Ijclaim

It follows that F|S meets both Z; and Z, , so by (i) it is the case that
Z,NZ,NS#90 . This is a contradiction, and we conclude that B, and B, cannot meet.
Consequently we may choose, for i = 1,2 , a Z)€ B, such that Z1NZ5=0. Now Z| and Z
are pre-images of closed sets under a continuous real-valued function and so are zero-sets of X .
We have, for i=1,2 , 2,NSC Z;s0 that Z;,NS and Z,NS are contained in digjoint zero-

sets of X and are therefore complelely separated in X .

B. (i) = (i) : Assume (7) , and let ¥ be a maximal completely regular filter on S .
Let ¥* be the unique maximal completely regular filter on X coarser than ¥ , and let 4l be the
unique z-ultrafilter on X finer than ¥* . Suppose that (ii) fails so that there exists a Z € A with

ZNS=0. Now, hy (y) , there is an f € C(X) with f(Z) =0, f(S)=1and f>0. Define
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B={fY0,r): r>0}. Obviously B is a completely regular filterbase on X , and B C U
since B(X)3 f7Y0,r] D f7H(0)2Z €U for r >0 . Since both B and F* are coarser than U it
follows that b and ¥* meet, and so by maximality of F* we must have ® C F¥* . But we then

have f—l[[],%] € %" and so 710, %] NS # O since ¥* meets S, contradicting f(S)=1.

(ii) = (iii) : Let § be a z-filter on X which meeis S . Then §| S is a z-filterbaseon § ,
80 §|S C U for some z-ultrafilter U’ on S . Let F be the unique maximal completely regular
filter on S such that F < A1’ and let F* be as usual. Now let U be the unique z-ultrafilter on X
finer than ¥* . Now § meets F* |, since ¥* < U’ and §<§|S <U’'. By proposition 2.3.4 we
know that if Z € Z(X) then it is the case that Z € U iff Z meets F* . Since § consists of zero-

sets of X that meet ¥* , we have §C Al . By (ii) 9 meets S , and it follows that U meets

g|1s.

(iii) = (i) : Suppose that (i) fails. Then there is a zero-set Z of X with ZNS =@ but

such that Z and S are not completely separated. Define
B={f0,rl:r>0, feC(X), f20,2CZ(f)} .

Tbis is obviously a base for a z-filter on X , say §. Now B must meet S , for otherwise we
could completely separate S and Z . Therefore § meets S and so, if (iii) holds , there is a z-
ultrafilter U on X which meets §|S . Since ZNS =@ we have Z ¢ , and so thereisa 2’ €U
such that Z2NZ' =0 . Let f e C(X) completely separate the disjoint zero-sets Z and Z’, say
f>0 with f(2')=1 and f(Z)=0. But now f71[0,3]NS€q|S,s0 f7N0,31nSNZ" £80,

since §| S meets U . This is a contradiction. Thus (iii) must fail. a

We come now to the filter characterisation of C*-embedding. The theorem has much
the same flavour as theorem 3.2.13 (characterising z-embedding). We know that any completely
regular filter F on X D S that meets S gives rise to a completely regular filter ¥])S on S , and
we ask: when is the trace of a maximal completely regular filter on X that meets S a maximal

completely regular filter on S 7 1t ia easily seen (3.4.3 (a) = (b) ) that C'*-embedding is enough
P y reg g g
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to ensure this. In chapter 2 we showed that every maximal completely regular filter ¥ on §
yields a maximal completely regular filter ¥* on X , with ¥* <%F . In the presence of C*-
embedding of § in X , ¥*{ S is maximal completely regular on S , and it is natural to enquire
as to the relation between ¥ and ¥~ S . It will always be true that ¥*| S <F — will C"™-
embedding ensure that ¥ < ¥*|S ? This consideration leads from (b) to condition (e) in
theorem 3.4.3 , and (e) together with the characterisation of C*-embedding of section 3.3 and

the characterisation of () in this section easily imply (a) .

The statement and proof presented here are those of R.L.Blair ({Bl, 5.1]) . The
equivalence of (a), (b) and (c) i8 due to J.W.Gtreen. He proved (a) & (b) and (a) & (c} for
Tychonoff spaces in [Gr; theorems 1 and 2] . In [Gr; theorem 2] he stzengthened (a) ¢ (b) to
apply to arbitrary spaces. In [Gr;] a characterisation of the Stone-Céch compactification due to
P.S.Aleksandrov (see 2.2.2 (iv)) is used to establish the characterisations of C*- and C-
embedding. In [Gr,] the notion of generalised boundary (due to A.D.Myskis [My] ) is used to
generalise to arbitrary spaces those results in [Gr;] whose proof relied on the Tychonolf

requirermnent.

3.4.2 Lemma (R.L. Blair [Bl, 2.2] ): Let SCX . If ¥ is a maezimal completely

regular filter on S , and if F is coarser than the trace on § of some completely regular filter Q

on X which meets S, then ¥ i3 z-embedded in X ,

Proof. Let F* be the unique maximal completely regular filter on X with F* < F .
We claim that § meets ¥* : Let G€§ and F* €F*, Now F* 3 F for some F € ¥ , and since
F<G|S we have F2G'NS for some G'€§ . Now GN(G’'NS)# @ since § meets S, and

since G'NS C F C F* we conclude that GNF* #£§ .

Since § meets F* we must have, by maximality of * , C F* . Let Fe¥ . Then,
since F<g|S, F2GNS for some G € § and, by completely regularity of § , there isa G' €

such that G’ and X — G are completely separated in X . Now since G'€ §C F* and F* < ¥,
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we have G’ D F' for some F'€ ¥ . Choose an f€(C(X) which completely separates G' and
X —G . Then f|S completely separates ' CG'NS and S—F C(X -G)N S, and since f|S

extends over X , f|S is z-embedded in X . n}

3.4.3 Theorem (R.L.Blair [Bl,; 5.1] ): If S C X then the following are equivalent:

(8) Sis C*-embedded in X ,

(b) i F is @ mazimal completely regular filter on X which meets S , then F{S is a
mazimal completely regular filter o S ,

(c) every mazimal completely regular filter on S is the trace on S of some mezimal
complelely regular filter on X ,

(d) every mazimal completely regular filter on S is coarser than the trace on S of some
(mazimal) completely reqular filler on X that meels S,

(e) i F is a maximal completely regular filter on 5, and if F* is the unique mazimal

completely regular filler on X coarser than F , then F < F*| S .

Proof. (a) = (b): Assume (a) and let ¥ be a maximal completely regular filter on X
that meets § . That F| S is a completely regular filter on § is clear. In order to show that
¥ | S is a maximal completely regular filter we will show that any two zero-sets of S that meet
¥ | S mnst meet each other. Let A, A, € 3(S) such that both A, and A, meet F|S . Suppose
that AyN Ay =0 . Then A; and A, are disjoint zero-sets of S so by C*-embedding (i.e., (a) )
A; and A, are completely separated in X . Hence there exist 2,,2, € 5(X) with 4, CZ, ,
A, CZ,and Z,NZ,;=0. But T meets both Z, and Z, , so by maximality of ¥ we should

have Z,NZ, # 8! We conclude that F | S is a maximal completely regnlar filter.

(b) = (c) : Let § be 8 maximal completely regular filter on S . Let §* be the unique
maximal completely regular filter on X coarser than §. Then §*| S <G, and by (b) G*|Sisa

maximal completely regular filterbase on S. By maximality we have § =G |S .

(¢) = (d) : this is trivial.
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(d) = (¢) : Let ¥ be a maximal completely regular filter on S , and let ¥~ be the
unique maximal completely regular filter on X coarser than ¥ . By (d) there is a completely
regular filter § on X such that § meets S and F < G|S . We have F* < F<§}{S , hence §
meets ¥~ . By maximality of ¥* we must have §C F* . Thus §J|SCF"|S , so we have

F<F|S.

(e) = (a) : By theorem 3.3.8 we need only show that S is z-embedded in X and that

(B) holds.

If ¥ is a maximal completely regular filter on S then by (e) ¥ is coarser than the trace
on S of some {maximal) completely regular filter on X . By lemma 3.4.2 , ¥ is 2-embedded in

X . Now by theorem 3.2.13 it follows that S is zemhedded in X .

Let § be a maximal completely regular filter on X , and suppose §|S meets
2,,2,€%(X). Then § meets S so §|S CF for some maximal completely regular filter F on S
(915 is a completely regular filter on S ) . Let ¥* be the unique maximal completely regular
filter on X coarser than ¥ . By (e) we have F < F*|S . Since §|SC F and F~ < F , F~ meets
§ . By maximality of ¥* and § we must have ¥* =G . Hence we have ¥*| S meeting Z, and
2, . Now since F < F*| S it follows that F meets Z, NS and Z,N S, and so by maximality of

F we have Z,NZ,NS=(Z,NS)N{(Z,NS)# 0. Now by theorem 3.4.1 A, (5) holds. g

Recall that theorem 3.2.13 showed that § C X is z-embedded in X ¢ff distinct z-filters
on S determine distinct z-filters on X . We show now that S is C"-embedded in X iff distinct

z-ultrafilters on S determine distinct z-ultrafilters on X .

3.4.4 Definition (J.W.Green [Gr, p 104] ): Let SC X . We say that filterbases B
and B’ on S are completely separaled in X if some member of B is completely separated in X

from some member of B’ .
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The equivalence of (a) and (b) in the following corollary is due to J.W.Green ({Gry

theorem 7]) . The equivalence of (a), (¢} and (d) is given ie {Bl, 5.2] .

3.4.5 Corollary: If §C X then the following are equivalent:

(a) S is C*™-embedded in X ,

(b) distinct mazimal completely regular filters on S are complelely separated in X ,
(c) distinct z-ulirafillers on S determine distinct 2-ulirafilters on X,

{d) distinct z-ulirafilters on S are completely separated in X .

Proof. (a) = (b): Let §,;,G, be distinct maximal completely regular filters on S . Let

G;,Q; be the unique maximal completely regular filters on X with gI <6, G; <G, .

We claim that §; # O; . Suppose not; then @ | S = G; | S and by C*-embedding (3.4.3
(b) ) 6;1S and G, | S are maximal completely regular filters on S such that (3.4.3 (e) )

G, < QI [§,0; < g; | S . By maximality of 0, and G, we must have §; = §, , a contradiction.

So g; # g,:. and so by maximality g: and Q; cannot meet. Choose GIGQ; and G, Eg;'
such that G;NG, =0 . By complete regularity of g{ , G| contains a G} € Q; such that Gj is
completely separated from X —G; D G4 € Q; . Thus Q: and Q; are completely separated in X .

Since g; <G, and g; <g,it follows that @, and §, are completely separated in X .

(b) = (a) : We verify theorem 3.4.3 (b) . Let ¥ be any maximal completely regular
filker on X which meets S . That ¥|S is a completely regular filter is clear and to prove
maximality we verify theorem 2.2.2 (iii) — that there is only one maximal completely regular
filter on S finer than F| S . Suppose that §; and §, are maximal completely regular filters on S
finer than ¥|S , and suppose further that G; #G, . Ther by (b) G, and §, are completely
separated in X , and so there exist G, €§; , G, €§, with G, and G, completely separated in
X . Choose Z,,Z,€%(X) with 2, 2G,, Z,2G,and Z;NZ,=0. But Z, and Z, meet F
(they meet G; , Q, respectively and hence ¥ since ¥ |S is coarser than both §, and §, ) , so by

maximality of ¥ we must have Z;NZ,# 0! Thus §, =4, .
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(a8) = (c) : Let »:S — X be the inclusion map of S into X . Let §, , G, be distinct z-
ultrafilters on S . Now for i = 1,2 o#(;) = {ZeB(X): ZNS€G; }is a prime z-filter on X
(see 3.2.10 ) so there exist unique z-uitrafilters U;,U, on X with U, 2 go#(gl) and U, D go#(gz)

(U, and U, are the z-ultrafilters on X determined by §; and §; respectively).

By maximality of §; and of §, they cannot meet, so there exist G, €§; , G, €g, with
G,NG,=0. Now G, and G, are disjoint zero-sets of S so by (a) (which holds since by (a) , S
is C*-embedded in X ) there exist Z,,Z,€%(X) with Z, DG, , Z2,2G, and Z,NZ;=0.
Now for i=1,2 %(5)3Z;NS2G;NS=G; , so Z;NSe@; and thus Z;ep*(Q,) . If
U, = 9L, then, since ¥(G;) CU; , we have Z;,Z, €U, with Z,NZ,=0! Hence U, and U,

are distinct.

(c) = (d): Let §,,d, be distinct z-ultrafilters on S . Let 9:S — X be inclusion, and
let U, be the unique z-ultrafilters on X with p#(3;) CU; . By (c) U, # U, and it follows
tbat »#(§,) cannot meet (p#(gz) (f they meet then aup%(x){go#(gl),fp#(gz)} would be
contained in a zultrafilter U on X strictly finer than both p#(g,) and p#(g;) — but now the
prime z-filter #(§;) is contained in distinct z-ultrafilters U and U; ! ) . Thus there are
Z;e p#(g,-) with Z, N Z, =0 . Since Z, and Z, are disjoint zero-sets of X, they are completely

separated. Hence the elements Z, NS €@, and Z, N S € §, are completely separated in X .

(d) = (a) : We verify theorem 3.4.3 (b) . Let ¥ be a maximal completely regular filter
on X which meets S . To show ¥ |S is a maximal completely regular filter on S we show that
there is only one z-ultrafilter on S finer than ¥|S . Suppose that §,,3; are z-ultrafilters on S
both finer than F|S . If §, # G, then by (d) there exist Z,,Z, € %(X) with Z,NZ, =0 and
with Z,NS€§; . But Z,,Z, meet ¥, so by maximality of ¥ we should have Z,NZ, #0.

Thus §;, =G, . a
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3.4.6 Corollary (J.W.Green [Gr, p 104] ) : A zero-set § of X is C-embedded in X iff

any two distinct z-ultrafilters on S are completely separated in X .
Proof. = : Thisis clear from corollary 3.4.5 (d) .

<: By corollary 3.4.5 (d) , S i8 C*-embedded in X . Since S is a zero-set of X it is
completely separated from every disjoint zero-set — i.e., (7) holds . Thus S is C-embedded in

X. a

The following corollary is proved in [Gr, p 577] for Tychonoff spaces. The proof does
not use the Tychonoff requirement explicitly — it is used in the proofs of results upon which the
corollary relies. In [Gry] these results are proved for arbitrary spaces, and the remark is made

that results like the following will then hold for arbitrary spaces.

3.4.7 Corollary : If S is a discrete subspace of a space X, then § is C*-embedded in X
iff the irace on S of every mazimal completely reqular filter on X that meels S is an ultrafilter

onS.

Proof. =>: Suppose S is C*-embedded in X and that ¥ is & maximal completely
regular filter on X which meets S . By theorem 3.4.3 (b) ¥ | S ie a maximal completely regular
filter on § . But, since S is discrete, all filters on § are completely regular. So F|S is a

maximal filter on § — an ultrafilter on § .

< : We verify theorem 3.4.3 (b) . If ¥ is a maximal completely regular filter on X
which meets S, then by the hypothesis ¥ | S is an ultrafilter on S . By discreteness of S, | S

is completely regular on S . Hence ¥ |5 is a maximal completely regular filterhase.

We come now to the filter characterisation of C-embedding. We know that § is »-
embedded in X D S {ff the trace on S of every z-ultrafilter on X that meets S is a z-ultrafilter

on S . The theorem shows that all z-ultrafilters on S will arise in this way exactly when S is C-
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embedded in X . The statement and proof presented here are those of R.L.Blair [Bl; 5.3] . The
equivalence of (a) and (b) is due to J.W.Green ([Gr; theorem 4 for Tychonoff spaces; Gr,

theorem 5 for arbitrary spaces] ) .

Asking when all z-ultrafilters on S C X will arise as traces on S of z-ultrafilters on X
that meet S is natural, given our characterisation 3.2.13 of z-embedding. That C-embedding of
S in X guarantees this is easily shown (3.4.9 (a) = (b) ) , and we show that the converse is true

(R.L.Blair [Bl; 5.4] ) : Consider the following condition on the embedding S C X :
(y)) each z-ultrafilter on S is finer than some z-ultrafilter on X ,
introduced by J.W.Green ([Gr, corollary p 103)) and formalised by R.L.Blair in [Bl,] .

3.4.8 Proposition (R.L.Blair (Bl 4.4] } : For any embedding S C X , (v) holds if (7'}
holds .

Proof. Suppose that S C X and that (y') holds. We shall show that 3.4.1 B (iii)
holds. Let § be & z-filter on X that meets S . Then §|S is a z-filterbase on S and so is
contained in some z-ultrafilter F on S . By (7') there is a z-ultrafilter U on X coarser than ¥ .

Clearly U meets §|S . o

The converse to this proposition is false ([Bl, 4.5 (a)]) : The z-axis § of the Moore
plane I’ is a zero-set in I" , and so (7) holds trivially. In [Gr, lemma 8] it is shown that (v’)

fails.

Suppose that every z-ultrafilter on S is the trace on S of some z-ultrafilter on X that
meets S . Then the condition (7') on S is satisfied, and so (7) holds by the preceding
proposition. To conclude that S is C-embedded in X , it remains to verify z-embedding of S in
X , for which we verify 3.2.13 (b)’. Let § be a z-ultrafilter and let ¢: § — X be the inclusion
map. By hypothesis, there is a z-ultrafilter U on X meeting S such that U| S =§ . Then

UL p#(G), and s0 §=U| S C p*(9) |5 .
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Knowing this equivalence and knowing the correspondence between z-ultrafilters on a
space and maximal completely regular filters on the space of chapter 2 makes it not too difficult

a task to recast the equivalence. This is the content of the following theorem.

3.4.9 Theorem (R.L.Blair [Bl, 53] ): IfSC X then the following are equivalent:

(a) S isC-embedded in X ,

{b) every z-ulirafilter on S is the trace on S of some z-vlirafiller on X,

(c) every z-ulirafilter on S is coarser than the trace on S of some z-ultrafilter on X
which meels S

(d) every mazimal completely regular filler on S 15 coarser than the trace on S of
some z-ulirafiller on X ,

(¢) if TF is a maximal completely regular filter on § , if ™ is the unique mazimal
completely regular filter on X coarser than F and if U is the unique z-ulirafilier on X finer

than F* , then F < F*| S and U meeis S .

Proof. (a) = (b): Let ¥ be a z-ultrafilter on S. Let p: 5§ — X be the inclusion map
of S iuto X . Then there is a (unique) z-ultrafilter U on X with (,o#(":F) C A . Suppose there
were a 2 €U with ZNS =0 . By C-embedding S is completely separated from the disjoint
zero-set Z , hence there is a 2’ € B(X) with 2’2 S and 2'NZ =0 . But now 2'c o#(F) C U,
g0 #=2N2'€U! Thus U meels S , so U | S is a z-ultrafilter on S (theorem 3.2.13 (¢)). By

(b) of theorem 3.2.13 , F C p#(F) | S CU}S . Thus, by maximality of F,F =U|§ .
(b) = (c) : this is trivial.

()= (d): Let F be a maximal completely regular filter on S . Then there is a
(unique) z-ultrafilter § on S finer than ¥ . By (c) , § <U|S for some z-ultrafilter U on X

which meets S . Now F<|S .

(d) = (e): Let F, F" and U be as in (¢) . By (d) F <U'|S for some z-ultrafilter U’

on X which meets S . Since F* is coarser than F we have F* < U’'| S , hence U’ meets F* .
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We know that a zero-set of X will be in U exactly when it meets ¥* (theorem 2.3.4) , thus
U’ C U . Since both U and AL’ are z-ultrafilters, we have U = U’ . This means that U meets

S.

Suppose it is not the case that ¥ < ¥*| S . Then there is an F € ¥ with (ANS)—F #90
for every A€ ¥* . By complete regularity of ¥ we may choose an F’' € ¥ and an f € C(S) with
f>0, f(F)=1 and f(S—F)=0 . Define B={f""[0,r]:7>0} . Easily, B is a
completely regular filterhase on S which meets *| S . Let § be a maximal completely regular
filter on S containing both B and ¥*|S§ . By (d) there is & z-ultrafilter U" on X which meets
S and satisfies §<U”|S . So B<U”’|S and F*|S <U"|S . Hence U"” meets F* , so (as
above) U’ =U. Thus U’ |S>F (since F< F*| S <U”|S) . But we already have U" > B

,80 F'Nf70.3]# @, a contradiction. So F < F*|S5 .

(e) = (a): By thcorem 3.4.3 (e) = (a) , S is C"-embedded in X . By theorem 3.4.1 B

(ii) , (7} bolds . Now by theorem 3.3.8, S is C-embedded in X . 0

The condition (¥') introduced above can also be used in a characterisation of C-

embedding. First we find an alternative form for (v') :

3.4.10 Proposiiion (R.L.Blair [Bl,; 4.3] ): If S C X then the following are equivaleni:
(i) () holds,
(ii) #f F is any z-ultrafilter on S, then the z-filter on X determined by F is a 2z-

ultrafilter on X,

Proof. (i) = (i) : Let ¢: S — X be the inclusion map of S into X , and let F be a z-
ultrafilter on § . By (7') there is a z-ultrafilter U on X with U <F . Now AU C <p#("IF) , for if
U € then U D F for some F €% and s0o 3(S)3UNS 2 FNS = Fe%. Thus, by maximality

of U, p#(F) =, so ¢*(F) is a z-ultrafilter on X .
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(ii)) = (i) : Let ¥ be any z-ultrafilter on S . Let ¢:5 — X be inclusion. By (ii)

gp#(‘!) is a z-ultrafilter on X , and it is clear that gp#(‘:'f) <. a

3.4.11 Corollary (J.W.Green [Gry corollary p 103] ): Let SCX . Then S is C-
embedded in X iff S satisfies (7') and F|S is a z-ulirafilter on S for all z-ulirafilters F on X

that meel S (i.e., S is z-embedded in X ) .

Proof. = : By theorem 3.4.9 (a) = (b} , {7’) holds . The second part holds by

theorem 3.2.13 (a) = (c) .
< : Condition {7) holds by proposition 3.4.8 , and S is z-embedded in X . 1]

Thus § C X is C-embedded in X iff S is z-embedded in X and (7') holds iff S is z-

embedded in X and (7) holds , even though (7’) and (v) are not equivalent.

3.4.12 Theorem (J.W.Green [Gr, theorem 6] ; [Gry) for arbitrary spaces ) : Let S be a
zero-set of X . Then S is C-embedded in X iff the trace on S of every z-ulirafilter on X that

meels S is @ z-vitrafilter on S .
Proof. =»: This follows from theorem 3.2.13 (a) = (c) .

< : By theorem 3.2.13 (c) = (a) , S is z-embedded . Since § is a zero-set of X , (7)

holds. Hence S is C-embedded in X . g

Our filter-theoretic characterisation of z-, C*-, and C- embedding is complete. In the
next chapter we will present localisations of ihe characterisations of section 3.3 together with

some localisations of section 3.4 , all of which shed more light on the results of this chapter.
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CHAPTER 4

Localisation of global characterisations

4.1 INTRODUCTION

In this chapter we obtain localisations of some of the global results of the preceding
chapter, in the sense explained on page 1.2 . Thus we obtain characterisations of z-embedding
of a given function on a subspace, of extendibility of a given bounded function and of
extendibility of a given unbounded function. In localising the classical resuits (like the Urysohn
Extension Theorem) we follow R.L.Blair ([Bl;]) . We then present some apparently new filter
characterisations of z-embedding of a function (localising theorem 3.2.13) , and a partially

complete localisation of theorem 3.4.3 (characterising C*-embedding).

4.2 LOCALISATION OF CLASSICAL RESULTS

(a) Localisation of classical resulls on z-embedding of a subspace

One of the central results of chapter 3 is theorem 3.2.4 : § C X is z-embedded in X {ff
each (bounded) f € C(S) can be approzimated uniformiy on § by continuvous functions on cozero-
sets of X that contain § . This led to characterisations of both C*- and C- embedding, and
these were the starting point for filter characterisations of both embeddings. We begin our
localisations by obtaining a very pleasing localisation of theorem 3.2.4 . What makes this
localisation particularly elegant is that much of ite proof is extracted from that of theorem

3.2.4 , making the latter’s proof more transparent.

4.2.1 Theorem (R.L.Blair [Bl, 2.2] ): Let SC X and f€ C(S) . Then fis z-embedded
in X iff fcan be uniformly approzimated on S by coniinvous functions on cozero-gets of X that

contain S .

Proof. =>: Suppose that f eC(S) is z-embedded in X . Let ¢ >0 be given. For

each ne 2 define A, ={s€S: n—1<2f(s)<n+1}. Now A_ is the preimage of an open set



Page 4.2
Section 4.2

in R under a continuons map, so A, is a cozero-set of § . By z-embedding of f in X we may,
for each n€Z | choose a cozero-set ', of X such that C,NS=A4_ (simply note that
A,,=s-(L(n_l}E(f)ULf"“}f(f)) and that Ly, _1)(f) and L®TDE(s) both extend to
zero-sets of X ) . The proof now proceeds exactly as in the proof of theorem 3.2.4 (we have

simply obtained the C’s in a different manmer).

4: Let aeR. For neN choose a cozero-set P of X and an f € C(P,) with P, 2§
and | f (2)—f(z)| <kiforzeS .- (%) .

Define Z! ={zeP,: f(z)<a+L}. Now Z' is a zero-set of P, ,and P, is z-
embedded in X (being a cozero-set of X) . So for each n there is a Z,_ € B(X) with
Z NP =Z, . Now ane%(}i’) and we have (Ozn)ﬂ.‘j’:La(f) : it is clear that
La(f)g(gzn)ns ; and if :e(gzn)ns then z€ 2, NS5 C Z,NP, for all n s0, z€ ()2,
meaning f,(z) < a+4 for all n; by (%) we now have f(z)<a+Zforalln,so f(z) <a—ie.,

el (f).

Since L2(f) = L_,(—f) it follows that L%(f) also extends to a zero-set of X . a

Note how the global characterisation 3.2.4 of z-embedding is easily recovered from this

localisation, thus giving more insight into theorem 3.2.4 .

(b) Localisation of classical results on C*-embedding

Recall from chapter 3 the following condition on an embedding S C X :
(o) disjoint zero-sets of S are compleiely separated in X .
We showed that S is C*-embedded in X §ff (&) holds (the Urysohn Extension Theorem). We
shall localise condition (a) in order to obtain a necessary and sufficient condition for the
extendibility of a given bounded continucus function on & . The result is an aesthetically

pleasing localisation of the Urysohn Extension Theorem,
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Let f € C(S) and consider the following condition on f , introduced in [Bl, p66] :
(ag) ifa<dinR, then L,(f) and I%(f) are completely separated in X .

Note that whereas (a) demands that ali pairs of disjoint zero-sets of S be completely
separated in X , (a f) demands this of only some smaller colleciion of disjoint zero-set pairs that
is associated with f. It is in this sense that we view (ay) as a localisation of its glohal

counterpart. Furthermore, (a) can be recovered from its proposed localisation:

422 Proposition (R-L.Blait (Bl 3.1 ()] ): Let SCX . Then (o) holds iff (ay)

holds for every (bounded) f € C(S) .
Proof. = : thisis obvious.

< : Let Z,Z’ he disjoint zero-sets of S . Then Z and Z’ are completely separated in
S, so there is an feC(S) with 0< f <1, f(Z)=0and f(Z')=1. By (ag), Lo(f) 2 Z and

Ll(f) 2 Z’ are completely separated in X . O

The next theorem is our single function analogue of the Urysohn Extension Theorem. It
shows that (a;) is a successful localisation of (a) , and provides an alternative (and in some
ways more transparent) proof of the Urysohn Extension Theorem. The theorem is due to
S.Mrowka ([Mr, 4.11]) who deduces it from a powerful general approximation theorem ([Mr,
2.7]) . The proof presented here is that of R.L.Blair in [Bl, 3.2] , based on a proof of [Mr; 2.7)

communicated to Blair by H.E.White, Jr.

4.2.3 Theorem: Let SC X and f€C*(S). Then f has a continuous extension over X

iff (af) Aolds.
Proof. = : thisis clear.

< : Suppose (al) holds. Choose a positive integer m with | f| <m . For n€w,

define p(n)=m2"*t2_-1 . Now, for ne€w and for integers j with 0<j< p(n) ,
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A ={z€8: f(z)< -m+j27" 7"} and B,;={z€8: f(2)2 —m+(G+1)27" "1} are
disjoint lower and upper Lebesgue-sets of f , so by (a,) there is an f, ., €C™(X) with
0§fnj_<_l s f"j(Anj)z(l and fnj(Bu,')= 1 . Note that for a given n , —m+327""1 for
0 < j < p(n) ranges from —m to m—2"" 1 in steps of 2~" "1 ; and —m+ (j+1)27" ! for

0 < j < p(n) ranges from —m +27""! to m in steps of 27"~ 1,

T pn} a1 p(n) I
Define f, =-m+27" 'Eof"j . Note that 2 'Eof"j <2 (14 p(n))
J= 1=

=2"""Y(m2°*?)=2m, 50 that —m< f, <m . Note also that each f,_ is continuous on

X . We wili show that f_ — f unifermly on § .

Let n€w . We will show that |f,  ,—f,| <27" on S . Let z&S . Since
(f+"‘)-51

2m

m2ﬁ+z < f(zz)r:m < ;ztfz , i, —mA+ k2Tl f2) S—mA(R+1)27M T s (k).

0<

, we can chooee an integer k with 0<k<p(n) and

Now if j<k—1 then f,.(z)=1 since by (k) z€B.; ; and if j>k-+1 then
Sni (%) =0 since by (%) z€ A, 5o Substituting in the defining expression for f,, we find that
fu@)=-m+2 " Y k+f (z)) . Thus f(z),f (2} e[-m+k2" ", —m+(k+1)27""1]
— by (%) and since 0< f,,(z)<1 . So we have that |f(z)—f,(z)| <27 ! for new.
Now we have |f,. 1(@)—fu(@)| < |fnsr(®— @]+ |fu(@)—f(=)| <277 24271
<2™.

We have shown that f, — f uniformly on S . It follows by lemma 3.2.5 that f extends

continuously over X . O

Note that the Urysohn Extension Theorem follows immediately from 4.2.3 and 4.2.2 .
In that the proof of 4.2.3 makes it clear why (o #) succeeds in guarantceing the extendibility of
S, this new proof of the Urysohn Extension Theorem makes the success of (a) in characterising

C”-embedding more transparent.
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(c) Lecalisation of classical results on C-embedding

We know that the conjunction of () and the following condition on S C X characterises
C-embedding:

(v) S is completely separated from every disjoint zero-set of X .
We shall use {a;) and a localisation of (7) to obtain a necessary and sufTicient condition for the
extendihility of any given continuous function on a subspace. The result is an elegant

localisation of the Gillman and Jerison characterisation of C-embedding.

4.2.4 Definition (R.L.Blair [Bl, p66] ): Let SC X , feC(S) and AC X . We shall
say that A is completely separated from f il A and f~[a,b] are completely separated in X for

eacha<binR.

Let f € C(S) and consider the following condition on f , introduced in [Bl, p66] :
(v I) S is completely separated {rom every zero-set of X that is completely separated from f .
Note that (y;) demands that some particular class of zero-sets of X that are disjoint
from S be completely separated from S , whereas () demands this of ail zero-sets disjoint from

S . As before, (7) is recoverable [rom its global counterpart:

4.2.5 Theorem (R.L.Blair [Bl, 3.1 (b)] ) : Let SC X . Then (7) holds iff (v;) holds

for every f e C(S) .
Proof. = : this is obvious.

¢t Suppose (7;) holds for each feC(S) . Suppose g€ C(X) with Z(g)NS =80 .

Define f = |-+ Then f€C(S),and f 0 <a<bin R then |g] 2%on I Ya,b] s0 Z(g) and

g1S|”
S~ Y[a,b] are completely separated in X . By (14)» S and Z(g) are completely separated in X n

First let us note the following corollary to theorem 4.2.3 , which shows that (x j) admits

the extendibility of any truncation of f € C(S) , no matter how large the cut-off level.
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4.2.6 Definition: By a iruncation of fe€C(S) we mean a function of the form

(fra)v—a,where0 <a€R.

4.2.7 Corollary (R.L.Blair [Bl, 3.3] ) : Let SC X and f€C(S) . Then (ay) holds iff

every truncation of f has a continuous eztension over X .

Proof. =»: Suppose (ay) holds. Let 0 <c€R ; we verify ("’(f/\c)v-c) . Letac<i
in R. If a>c then Lb((fAc)v—c)=0 ; and if a < —c then L,((fae)v—<)=0. Now
suppose that —~c<a<b<c. Then L ((fac)v—c)=L,(f) and Lb((ff\c)v—c)zl,b(f) and

so are completely separated in X since by (a) L,(f)and Lb( f) are completely separated in X .

<: Leta<binR. Choose ¢ >max{|a|,|d]}. Then L ((fAe)v—c)=L,(f)and
LP((fae)v—e)= L%(f) so by (o(fneyv—) » Which holds since (fac)v—c €C%(S) extends

over X , L,(f) and Lb( f) are completely separated in X . 0

Of course, (o) is necessary for the extendibility of f € C(S) . The following theorem
shows that (ay) actually guarantees the partial extendibility of f (over some cozero-superset of

5), and that if (y J) also holds then this leads to the extendibility over X of f .

4.2.8 Theorem: Let SC X and fe€ C(S) . Then:

(a) if (a!) holds then f exiends continuously over some cozero-set PD S with X — P
completely separated from f, and

(b) if (7f) holds then if f = g|S for some g € C(T) where T 2 S is a cozero-set of X

with X —T completely separated from f, then f exiends continuvously over X .

Proof. (a) Suppose that (ay) holds. Let p:R = (-1,1) be an order-preserving
homeomorphism. Now for a€R , L (f) = Lw(u)(qpof) and L(f) = L"’(“)(goof) . Since (ay)
holds, we see that (a,,, ;) holds. Thus pof , being bounded and satisfyiug (a,, ;) , extends

over X —say ke C(X) with k|S =po f.



Page 4.7
Section 4.2

Define P = X—(L_l(k) U Ll(k)) . Then P is a cozero-set of X ,and P2 S . Leta<b
in R . Then L_;(k)UL'(k) and L#{®) (k)N L (k) are completely separated (by | k| ) in X .
Now X —P=1L_y(k)UL\(k) and LF)N Ly(f) = Lo f)N Loypof) =
Lk | )N Ly (k] ) C L k) N L5 (k) 5 50 that X — P and L(f)N Ly(f) = f7(a,]

aze also completely separated in X . Thus X — P is completely separated from f .

Now ¢~ 1o (k| P) is a continuous map on P (note that { k| P|< 1,580 that ¢~ 1a(k|P)
is properly defined) , and (¢ lo(k|P))[S=¢ lo(k|S) =¢ lo(pof)=f . Thus

¢ 1o (k] P) is a continuous extension of f over P .

{(b) Suppose T is a cozero-set of X with T'2 S and X —T completely separated [rom
f, and suppose f =g |§ with g€ C(T) . Suppose (y4) holds. Let p:R=(—1,1) be an order
preserving homeomorphism. As in (a) above , L(g) = L (,)(¢©g) and L%(g) = L“(“)(pog) .
Thus all the Lebesgue-sets of pog are just Lebesgue-sets of g , and by z-embedding of g in X
(which holds since T is z-embedded in X , being a cozero-set of X ) these extend to zero-sets of
X . So pogis z-embedded in X . By theorem 4.2.1 there is, for eacb n €N, a cozero-set P, of
X and a g, €C(P,) with P,2T and |(pog)(t)~g,(t)| <L forall teT . Since pog is

bounded we may assume that each g, is bounded.

By hypothesis we have X — T completely separated from f , so by (y f) we conclude
that X —T is completely separated from S ( X — T is a zero-set of X since T is cozero) .
Choose Z € BZ(X) witb SCZ and ZN(X~-T)=9 . Note that SCZCT . Now Z and
X—P_ CX~T are disjoint zero-sets of X , so we may choose an & € C(X) with h (Z) =1
and A (X—P )=0.

9, h, on cozh

0 on Z(h,)
proposition 1.2.15 , f, €C(X) (g, is bounded) . Also f () =g,(z) for each z€ ZC T , and

Note that cozh, C P, =domg, , and define fn :{ As in
thus have |(pog)(z)—f,(2) | <% for z€Z . So f, ~ (pog)|Z uniformly on Z , and by
lemma 3.2.5 we deduce that (pog)|Z extends continuously over X , say ke C(X) with

hZ=(pog)|Z.
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Define Q ={zeX: |h(z)|>1}. Then H(X)3QCX-Z,ie,QNZ=0andso Q
and S C Z are completely separated in X , So there is a ue C(X) with 0<u <1, u(S)=1
and u(Q)=0 . If z€X then |Ah(z)|>21=>2zeQ=>u(z)=0=u(z)h(z)=0 ; and
|h(z)| <1 = |u(z)h(z)| <1 since 0 <u(z})<1. Thus |u(z)h(z)| <1 for all ze X , and
so ¢ lo(uh) is properly defined. Now (wh)|S=(u|S)((pog)|S)=(u|S)paof)=ypof

sinceu|S=1and g|S=/f. Thus we have (¢ " L ouh)|S = [, so f extends over X . o

This theorem is due to R.L.Blair in [Bi, 3.6] , although the “proof™ of (b) presented
there is flawed (lemma 3.2.5 is applied incorrectly, making the second half of his proof entirely
invalid) . The proof of (b) presented here is based on Blair’s “proof”, though some new
constructs were found to be necessary in order to fill in the gaps left by his error. The stateinent
of (b) in [Bl,] is also not quite correct — it omits to require that T be cozero in X , even though

this is in fact necessary in his proof ; instead he requircs the weaker condition that g be z-

embedded in X .

4.2.9 Cerollery (R.L.Blair [BL, 3.7) ) : Let SC X and feC(S) . If (ay) holds then f

18 z-embedded in X .

Proof. By the preceding theorem, f can be uniformly approximated on S by
continuous functions on cozero-sets of X which contain S . By theorem 4.2.1 , f is z-embedded

in X . O

We come now to the localisation of the Gillman and Jerison characterisation of C-
embedding. Again, despite the complexity of its proof, this result (together with theorem 4.2.8 ,
of course) gives an intuitive feel as to why it succeeds and sheds new light on its global

counterpart.
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4.2.10 Theorem (R.L.Blair [BL, 3.8]}: Lel SCX and fe€C(S) . Then f extends

continuously over X iff beth (a;) and (y;) hold.

Proof. =>: Suppose f=g|S with ge C(X) . It is obvious that (a;) holds. Now
suppose that A € Z(X) is completely separated from f . For nel, Ln_z(g)UL""‘z(g) and

L"'l(g)nLn+1(y) are disjoint zero-sets of X so there is an h,€C(X) with h >0 ,

ho(Ln-2(0)UL™*7(g)) = 0 and h, (L* (@)1 Ly 44(9) =1

Now A is completely separated from each f~![a,b] . In particular A is completely
separated from f~ln—-1,n+1]= L"_l(f)ﬂLn,H(f) . Seo we may choose a k, € C(X) with

k >0, k,(A)=0and kn(L"‘l(f)nLnH(f)):l .

Define u, = h, k. Now the family {coz u :nel } is locally finite in X , since it is
the case that cozu, Ccozh, C X—(Ln_Q(g)UL”"’z(g)):{z €eX:n~-2<g(z)<n+2} (if
r€X and we choose meZ with m—2<g(z)<m+2 , then g"l(m—2,m+2) is an open
neighbourhood of z meeting only finitely many members of {cozu,:ne€Z} ). Hence

u= Y. u,€C(X), since every point of X has a neighbourhood on which v is continuous.
nel

If reS then if we choose m to be the largest integer with m < f(z) we have
ze L™ YAHNL, (f)CSI™YgNL,  (g) so that h_(z)=1 and k,(z) =1, and thus
u,(z) =1. Hence u(z) > 1 for every x€S . Since each k, , and hence each u, , is zero on 4

we have u(A) =0. Thus u completely separates S and .4 . So (v,) holds.

< : Suppose both (@) and (7) hold. By theorem 4.2.8 (a) there exists a cozero-set T
of X and a g€ C(T) with TDS, g|S = f and X — T completely separated from f . All the
conditions to theorem 4.2.8 (b) are satisfied, and we conclude that f extends continuously over

X. c

Again note that the global Gillman and Jerison characterisation of C-embedding follows

immediately from 4.2.10 , 4.2.2 and 4.2.5 .
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In chapter 3 we showed that C-embedding of S in X is equivalent to z-embedding of S
in X in addition to condition (v) holding. The obvious candidate for a localisation of this
would be that f € C(S) extends over X iff fis z-embedded in X and (7,) holds. But in [Bl,
3.12] it is shown that this is not the case, and Blair remarks that no condition on f has been
isolated whose conjunction with z-embedding of f will yield extendibility of f . However, he
shows that certain conditions on the subspace in addition to z2-embedding of f yield

extendibility:

4.2.11 Proposition: Let SCX and feC™(S) . If fis z-embedded in X and if (3)

holda, then f extends continuously over X .

Proof. let a<b in R , and choose Z,,Z,eB(X) with Z,NS=L(f) ,
Z,NS =L%f). Then Z,NZ,NS =0 s0, by () , L,(f) and L’(f) are completely separated

in X . Thus (a j) holds, and so by theorem 4.2.3 we conclude that f extends over X . a

4.2.12 Proposition: Lel SCX and f€C(S) . If f is z-embedded in X and if (y)

holds , then f eztends conlinuously over X .

Proof. 1f (7) holds then by 3.3.4 (§) will hold. By proposition 4.2.5 (7;) will also
hold. As in the preceding proposition, (af) holds. So by theorem 4.2.10 we conclude that f

extends continuously over X . a

4.3 LOCALISATIONS OF FILTER-THEORETIC RESULTS

Just as the preceding results of this chapter are localisations of the classical
characterisations of z-, C*- and C- emhedding , we wish to obtain localisations of the filter-
theoretic characterisations of these embeddings (i.e., of theorems 3.2.13, 3.4.3 and 3.4.9 ) . This
is achieved in full for z-embedding of a function, but only in part for extendibility of a single

given function,
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We begin by localising the non-filter-theoretic condition 3.2.13 (f) , characterising z-

embedding of a subspace. This is the key to a localisation of theorem 3.2.13 (a) <> (g) .

4.3.1 Theorem: Let SC X and f€C(S) . Then fis z-embedded in X iff for each

a < b there ezist zero-sels Z,,2,€ B(X) with L(f) S Z, , LY(f) C Zy and Z2,NZ,NS =0 .

Proof. = : Let a<bin R. By z-embedding of f , there exist Z,,Z,; € Z(X) with
Z,NS=L,(f) and Z,NS=L%f) . Now L(f)CZ,, LYf)C 2, and Z,NnZ,NS=

Lf)nLb(f)=0.

<: Let ¢eR . For each neN , there is a Z_ e€%(X) with L,(f)C Z, and

Z,N L) =0 Now (NZ,)N8 = Lo(f) - Similarly for LYJ) . a

Next we use the preceding theorem to localise condition 3.2.13 (g) ..

4.3.2 Definition: If SC X and f € C(S) then for each a €R for which L (f) # 0 we
define B(f)={ACS: AL, (f)forsomer>0} . It is plain to see that B,(f) is a
completely regular filter on & . Similarly, for each b€R with Lb( f)#0 we define

B(f)={ACS: ADLP~"(f) for some r >0 }, and B°(f) is a completely regular filter on S .

Ti ie surprising that just the filters B, (f) (or just the filters 2%(f) ) associated with an

f € C(S) can be used to characterise z-embedding of f . We start by using the filters B,(f) :

4.3.3 Theorem: Let SC X and fe€C(S) . Then f is r-embedded in X iff B (f) is

z-embedded in X for eachae R with L (f) #0 .

Proof. =: Let r>0 . Then L 4L (f)€B,(f) and is completely separated from
2
§—L,,(f) hy the z-embedded function f . We have shown that a base for B,(f) is z-

embedded, and it follows easily that B,(f) is z-embedded.

<: We apply theorem 4.3.1 . Let a<¥in R. We may assume that L (f) # 0 and
Mf)#0. Let m=2F2=a4828, Now L _(f)€B,(f) which is z-embedded, so there is an

A€B,(f)and a z-embedded g € C(S) with AC L_(f) ,9(A) <0 and g(S—L_(f))>1. So we
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have A C Ly(g) and S — L_,(f) C L'(g) , and by z-embedding of g there exist Z, 2’ € B(X) with
Ls)=2NnS and L' (9)=2'NS . Now L(f)CACZNSCZ and LNf)CS—L(f)

C2'NSC2Zand ZNZ'NS =Ly(g)NLY(g)=0. Thus f is z-embedded in X . 0

In view of the preceding theorem, we can offer an alternative proof of the equivalence of

3.2.13 (a) and 3.2.13 (g) :

4,34 Theorem: Let SCX . Then S is z-embedded in X iff every completely

regular filter on S is z-embedded in X .
Proof. = : thisis obvious.

<: Let feC(S). Whenever a€R with L,(f) # @ the filter B,(f) is (by hypothesis)
z-embedded in X , so by the preceding theorem f is z-embedded in X . So all of %(S) is z-

embedded in X , and therefore S is z-embedded in X . 0

Again we see the global result being recovered from its localisation, and this time

making the proof of the global result considerably more simple.

As already mentioned, we are able to use just the filters BO( f) to characterise z-

embedding of f :

4.3.5 Theorem : Let SC X and f€C(S) . Then fis z-embedded in X iff BE(f) is

r-embedded in X for each be R with L*(f)#0 .

Proof. Similar to that of theorem 4.3.3 . a

4.3.6 Remark: The HhRlters B,(f) and Bb(f) need not be maximal completely
regular: If c€R and a > ¢ then Ly(c) =S , so that B (c) = {S} . Maximality can still fail for
non-constant functions: Suppose feC(S) and ¢ <d; <c,<d,<a with L (f)#0 ,
F ey d;]# 0 and fY ey d))#0 . Then f~[e;,dy] and f~Y[e,,d,] are disjoint zero-sets of S

that meet B (f) , so that B (f) cannot be maximal.
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The following theorem is a localisation of 3.2.13 (a) < (b) . Whereas 3.2.13 (b)
demands a condition of @il z-filters on the subspace, the localisation demands this condition of

only a collection of z-filters associated with a given function,

4.3.7 Definition : Note that, when defined, the bases [L, .(f):r>0} and
{Lb=7(fy: r> 0} for B, (f) and ‘36(1') are z-filterbases on § . We denote by AU_(f) (resp.

‘ub(f) ) the z-filter on S generated by {Z, , (f}: r> 0} (resp. {Lb_"(f) rr> 0}) .

4.3.8 Theorem: Let p: S — X be the inclusion map. The following are equivalent:
(i) feC(S) is z-embedded in X ,
(i) for each AU (f) that is defined and for each UB(f) that is defined,

UL(f) CeF(U(f) )1 S and UP(F) C p#F(UP(f)) | S .

Proof. =+: Suppose that Ue€U,(f) . Then U DL, .(f) for some r>0 . Now
U,(f) 3L, ,(f) =2ZNS for some Z €Z(X) , by z-embedding of f . So Z € ¥ (U,(f)) , and
ZnS =1L, (e (U (N))|S . Since H(S)3U2L, Af) » VepH(UN)IS

Similarly we have UP(f) C o¥*(UL(f)) ]S .

&<: Let a€R . We may assume that L,(f)#9 . Then by hypethesis we have

U, (f) = tp#( A,(f))|S (the reverse inclusion is always true). On expanding this we have

U, (f)={ZNS: ZeB(X)and ZNS€U,(f) } . Then for each neN , U (f)3L +1(f)
aTw

=Z,NS8 for some Z,€B(X). Now L,(f)=(MNZ,)NS . Similarly for L*(f) . a

The next theorem is really a trivial restatement of theorem 4.2.3 , recasting (o) in

terms of our filters B (f) and Bb(f) . Note that this theorem is a localisation of 3.4.5 (h) .

4.3.9 Theorem: Let SC X and f€C*(S). The following are equivalent:
(1) f erlends continuwously over X |
(ii) for each a<b in R for which B (f) and DO(f) are defined, B,(f) and BE(f) are

completely separated in X .
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Proof. =: Let a<b in R with L(f)#0 and IYf)#0 . Choose r;,r, with
a<ry<ry<b. Now by (aj), Lrl(f)E“.Ba(f) and L"2(f) € B3(f) are completely separated in

X . Hence B,(f) and ‘fBb( f) are completely separated in X .

<: We verify (a;) . Leta<binR. Choose A €®B,(f)and BeB®f) with 4 and B
completely separated in X . Since 42 L, (f) and BD IS , L,(f) and Lb(f) are also

completely separated in X . a

From theorems 4.3.3 , 4.3.4 and 4.3.5 we deduce that S is z-embedded tn X ff ecvery
completely regular filler on S is z-embedded in X iff for eack f€C*(S) and each aeR for
which B(f) is defined, B (f) is z-embedded in X iff for each f € C*(S) and each bER for
which ‘.Bb(f) is defined, BY(f) is z-embedded in X . Also, from theorems 4.3.9 and 3.4.5
(a) & (h) we deduce that S is C*-embedded in X iff distinct mazimal completely regular filiers
on S are completely separated in X iff for each feC™(S) and for each a <b ta R for which
B,(f) and BO(F) are defined, B,(f) and BE(f) are completely separated in X . These suggest
that the filters B,(f) and BO(f) for f € C*(S) are able to fulfil much of the role of the collection
of all completely regular filters on S , at least in the contexts of z-, and C*- embedding. At this
prompting, the condition that every B ,(f) and every BB(f) be the trace on S of some maximal
completely regular filter on X seems a likely localisation of 3.4.3 (¢) . Investigation showed that
this is indeed a sufficient condition for the extendibility of a given f € C*(S) (this having a non-
trivial proof) , but that the condition is excessively strong (e.g., on a compact S it holds only for

constant f ! ) with the consequence that necessity faila.

Recall the following characterisation of maximality for completely regular filters (2.3.3
(v)) : A completely regular filter F on § is maximal completely regular iff (%) converges for
each p € C*(S) . Using this characterisation we may restate 3.4.3 (a) < (b) as follows: S C X is

C*-embedded in X iff ¥|S is a maximal completely regular filter on S for each maximal
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completely regular filter &F on X that meets S iff for each maximal completely regular filter ¥
on X that meets S, o(% | S) converges for every ¢ € C*(S) . With this in mind we consider the

following condition on f € C*(S) :

(t;) for each maximal completely regular filter ¥ on X that meets S , f(F|S)
converges in R .

(1) is thus a localisation of the condition 3.4.3 (b) .

From the preceding discussion we have:

4.3.10 Proposition: (f;) holds for every f € C*(S) iff S is C*-embedded. O

This leads us to wonder whether (};) is necessary and/or sufficient for the extendibility

of a single given bounded function. We are able to prove necessity:

4.3.11 Theorem: Let feC"(S) . Then (t;) is a necessary condition for the

eziendibility of f over X .

Proof. Let F be a maximal completely regular filter on X that meets S . Suppose

that f(F | S) does not converge.

Now since f is bounded , f(F|S) is a filter on the compact Hausdorff space f(S) .
Thus f(%F|S) has at least one cluster point, and since f(F|S) does not converge we conclude

from lemma 2.3.2 that f(¥ | S) has at least two distinct cluster points, say @ and 5 .

Choose disjoint closed neighbourhoods A and B of a and b respectively., Now 4 and B
meet f(¥ | S) since a and b are cluster points of f(¥|S) . If Fe% then f(FNS)e f(F|S),
and since A and B meet f(F|S) we have ANf(FNS)#£Q#£BNf(FNS). Thus we have
FYANFNS £0# fTY(B)NFNS ,and so fH(A)NF#0# f1(B)NF . We have shown

tbat f~1(4) and f1(B) meet F .

Suppose ¢ € C(X) with ¢|S=f . Consider ¢"'(A) and g~!(B) . These are disjoint

zero-sets of X with ¢~1(4) 2 f~'(4) and g~}(B) D f~}(B) , and since f~1(4) and f~1(B) meet
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% , we conclude that g~ '(4) and g~ '(B) meet ¥ . We have produced disjoint zero-sets of X

meeting the maximal completely regular filter ¥ on X — a contradiction. O

Note that in the last paragraph of the proof it does not suffice to extend f~1(A4) and
f7Y(B) to zero-sets of X (if A and B were suitably chosen, this would be possible by z
embedding of f ) . It seems that we do need something stronger than mere z-embedding of f
for (f!) to hold. The theorem shows that extendibility of f ie sufficiently strong, but is it too
strong? To answer this we must decide whether or not (1) is sufficient for the extendibility of

F€C(5). To date this remains undecided, though indicators like 4.3.10 are encouraging.

4.4 CONCLUSION

The aim of this dissertation has been achieved as far as we are currently able. There
are, to the author’s knowledge, no results in the litcrature concerning localisation of our global
filter-theoretic characterisation of z-, C™-, and C- embedding — even the filter characterisations

of z-embedding in this chapter do not appear anywhere.

Very little attempt has been made in this dissertation to study the various embeddings
and their localisations when the subspace involved has additional properties (e.g., is dense in the
parent space, is a zero-set of the parent space, satisfies separation axioms, etc. ) . Results in this
line do exist, but none have a filter-theoretic flavour to them. The fact that our
characterisations hold without having to demand conditions of the subspace, and that they are
elegant in spite of this, makes their appeal even greater, There are many instances (e.g., in
functional analysis) where the suhspace is known to have certain properties, and for this purpose
it would be rewarding to find conditions which, in the presence of these subspace properties, are

equivalent to the conditions of the various theorems of this dissertation.

The streamn of results of a classical nature is, by the evidence of chapter 4, very well

rounded. From each of the main classical characterisations of z-, C*-, and C- embedding we
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have seen a very pleasing localisation unfold, and these localisations have given increased insight
into the global characterisations. Furthermore, we now have classical conditions that allow us
to decide the z-embedding status, and extendibility status, of a single given function on a
subspace independent of the status of other continuous functions on the subspace. The
localisation in the filter-theoretic stream is only complete with tespect to z-embedding of a
function. The necessary condition (f).) appears to be a likely candidate for characterising
extendibility of a bounded function on a subspace; in time we hope to decide the validity of this
claim. As for extendibility of an unbounded [unction ... a few conditions arising from theorem
3.4.9 present themselves as potential characterisations, but no one has yet revealed itself as
either necessary or suflicient. Since it usually the case that characterisations of the bounded case
are used in the passage to a characterisation of the unbounded case, perhaps it is wise to settle

the former first.
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