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Abstract

We study two classes of CR-submanifolds in Kéahlerian and cosymplectic
manifolds. More precisely, we compare the geometry of CR-submanifolds of
the above two underlying smooth manifolds. We derive expressions relat-
ing the sectional curvatures, the necessary and sufficient conditions for the
integrability of distributions. Further, we study totally umbilical, totally
geodesic and foliation geometry of the CR-submanifolds of both spaces and
found many interesting results. We prove that, under some condition, there
are classes CR submanifold in cosymplectic space forms which are in the
classes extrinsic spheres. Examples are given throughout the thesis.



KEYWORDS: Riemannian manifold, CR-submanifold, Kéhlerian man-
ifold, nearly K&ahlerian manifold, cosymplectic manifold, totally umbilical,
totally geodesic.



Acknowledgements

First and above all, I thank God, the almighty for providing me this oppor-
tunity and granting me the capability to proceed successfully.

I offer my sincere gratitude to my supervisor Prof. Fortuné Massamba,
for accepting me as a M.Sc student, your warm encouragement, thoughtful
guidance, constructive critisms, and correction of the thesis. I attribute the
quality of my masters degree to his encouragement and effort and without
him this thesis too would not have been completed or written. May God
bless you.

I express my warm thanks to my friend Ssekajja Samuel Buwaga for his
support and for brilliant comments that improved the thesis and made it
more understandable and readable.

Lastly, I would like to express my special appreciation to Prof. Kesh
Govinder for supporting this project financially, without his support this
work was not possible.

IT



List of Symbols

M - n-dimensional connected differentiable manifold
V - Linear connection on M

7 - Riemannian metric on M

[X,Y] - Lie bracket

TM - Tangent bundle to M

M - Submanifold of M

TM - Tangent bundle to M

TM+* - Normal bundle to M

g - Riemannian metric on M

Tr(h) - Trace of h

i - Mean curvature on M

D - Distribution on M

D+ - Complementary distribution to D
J - Almost complex structure on M

Q - 2-form of Hermitian manifold M
56 - Six-sphere

@ - Orthogonal direct sum

n - 1-form on M

M~"(c) - Complex space form

z - sectional curvature on M

I1T



Contents

1 Introduction

2 Preliminaries
2.1 Riemannian manifolds . . . .. ... ... ... ... ... ..
2.2 Submanifolds of a Riemannian manifold . . . ... ... ...
2.3 Distributions on a manifold . . . ... .. ... ...

2.4 Kahlerian manifolds . . . . . . . . . . ... ...

3 CR-submanifolds of almost Hermitian manifolds
3.1 CR-submanifolds and CR-structures . . . .. ... ... ...
3.2 Nearly Kéhlerian manifolds . . . . .. .. .. ... ... ...
3.2.1 Imtegrability . . . .. .. ... oo

3.2.2 Curvatures . . . . . . ...

4 CR-submanifolds of non-Hermitian manifold
4.1 Cosymplectic manifolds . . . . . . .. ... ... ...
4.2 Integrability of distributions . . . . . . . . ... ... ... ..
4.3 Invariant submanifolds . . . . . ... ...
4.4 Foliations . . . . . . ..o
4.5 Parallel ¢ structures . . . . .. ..o 0oL
4.6 Totally contact umbilical submanifolds . . . . . .. ... ...

4.7 Curvatures . . . . . . . ..,

vV

14
14
19
19
23



5 Conclusion and Perspectives

Bibliography

48

48



Chapter 1

Introduction

The study of CR-submanifolds of a Kéhlerian manifold was initiated by Be-
jancu [2] and later studied by many other authors, including among others,
[1], [3], [11] and [15]. In Bejancu’s definition (See [2] for details), the tangent
bundle of any CR-submanifold splits into a complex part, of constant dimen-
sion and a totally real part that is orthogonal to the first one. Precisely,
let M be an almost Hermitian manifold and let J be an almost complex
structure on M. A real submanifold M of M is called a CR-submanifold if
there exist a differentiable distribution D and its orthogonal complementary
distribution D+ in TM satisfying: JD, = D, and JD+ C TM:, for each
x € M, where TM+ is the normal space to M.

Later on, the definition was extended to other ambient spaces (See [10]
and [12] and references therein for details), which gave rise to a large body
of literature. The purpose of this dissertation is to further the study of CR-
submanifolds by comparing those of Hermitian manifolds to selected non-
Hermitian manifolds. We use Kéhlerian, nearly Kéhlerian and cosymplectic
manifolds as the ambient manifolds. The rest of the dissertation is organized
as follows; Chapter 2 mainly contains the basic concepts needed in other
parts of the dissertation. Precisely, we introduce Riemannian manifolds,
distributions on a manifold and lastly Kéhlerian manifolds. In Chapter 3,
we introduce CR-submanifolds of almost Hermitian manifolds. We start by
obtaining the CR-structures of M. We study the integrability of distribu-
tions in a nearly Kéhlerian manifold and the abtained results are compared
to the existing ones. We also compare the curvatures of M and M in a
nearly Kéhlerian manifold.In chapter 4 we study CR-submanifolds of non-
Hermitian manifold. We use cosymplectic manifold as our ambient manifold
and is compared to nearly Kéahlerian manifold. The following are examined



under CR-submanifolds of a cosymplectic manifold: CR-structures, integra-
bility of distributions, geodesics, invariant submanifolds, foliation, parallel
¢ structures, totally umbilical submanifolds. Also normal ¢ structures are
examined. Finally, Chapter 5 winds up the study by summarizing our major
findings.



Chapter 2

Preliminaries

2.1 Riemannian manifolds

Let M be a real n-dimensional connected differentiable manifold and V be a
linear connection on M. Let us denote by I'(Z), the set of smooth sections
of a vector bundle Z. Let p be a point on M, then, the torsion tensor 7" of a
linear connection V is a tensor field of type (1,2) defined by

T(X,Y)=VyY - VyX — [X,Y], (2.1)

for any X, Y € I'(TM), where [X,Y] = X(Y) — Y(X) is the Lie bracket of
X and Y.

The curvature tensor R of a linear connection V is a tensor field of type
(1,3) defined by

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ, (2.2)
for any X, Y, Z € I(TM).

Definition 2.1.1. Let M be a smooth m-dimensional manifold. A (0,2)-
type tensor field 7 is said to be a Riemannian metric on M if the following
conditions are satisfied

(i) g is symmetric, i.e., g(X,Y) =g(Y, X) for any X, Y € ['(TM).
(ii) g is positive definite, i.e, (X, X) > 0, for any X € I'(T'M).

(iii) g(X,X) = 0 if and only if X = 0 for any X € ['(T'M).



A smooth manifold (M, ¢g) endowed with a Riemannian metric g is called
Riemannian manifold.

Just as in Euclidean geometry, if p is a point in a Riemannian manifold
(M, g), we define the length or norm of any tangent vector X € I'(T'M) to
be

X115 = g(X, X).

Given a Riemannian manifold (M, g) and a chart (U, 2%)1<;<, consider the

functions g;; : U — R mapping p — ¢;;(p) := 9(%

0
P W|p)-

Note that, for each p € U, (9,;(p))1<ij<n IS an n X n matrix that is

e Symmetric: ¢;;(p) = ¢;i(p).

e Positive definite: g;;(p)(v’,v?) > 0, for any (v',---,v™) # 0. This

means that (g;;(p)) is an invertible matrix.

These functions g;; are called the local representations of the Riemannian
metric g with respect to the coordinate (U, z*).

Definition 2.1.2. The tensor field S of type (0,s) or (r,s) is said to be
parallel with respect to the linear connection V if, for any X € I'(T'M),

VxS =0,

Definition 2.1.3. A linear connection V on M is said to be a metric or the
Levi Cvita connection if g-compatible or g is parallel with respect to V, i.e.
Vg = 0. This is equivalent to, for any X, Y, Z € I'(T'M),

X(@G(Y,2)=9(VxY,Z)+9(Y,VxZ).

If the connection V is Levi-Civita, then 7' = 0, and therefore,
[X,Y] =VxY — VyX. (2.3)

In this case we have the following relation called Koszul’s formula

20(VxY, Z) = X(g(Y,2)) +Y(9(X, Z)) — Z(g(X,Y)) — g(X, [V, Z])
Let R be the curvature tensor fields of the smooth manifold M. The Rie-

mannian curvature is a tensor field of type (0,4) defined by

for any X, Y, U, V € T(TM). It satisfies the following properties
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(i) R(X,Y,U,V)+R(Y,X,U, V) =0.
(ii) R(X,Y,U,V)+ R(X,Y,V,U) = 0.
(iii) R(X,Y,U,V) = R(U,V,X,Y).

(iv) R(X,Y,U,V)+R(Y,U,X,V)+ R(U,X,Y,V) = 0.

Note that a manifold has zero curvature if and only if it is flat, that is,
locally isometric to Euclidean space. As an example on the geometric objects
(connection, curvature tensor) recalled above, we have the following.

Example 2.1.1. Let us consider the circle centered at the origin with radius
r > 0, that is, M = S'(r) = {(x,y) € R?*|z? + y* = r?} and parametrized by

xr=rcosp and y = rsinp.
Where 0 < ¢ < 2I1, by direct calculations, we have
dx = cos dr — rsinpdp and dy = sin @dr + r cos pdp.
In the new coordinates the Riemannian metric, G, is obtained as follows

G = (dz)* + (dy)”
= (cos @dr — rsin pdp)? + (sin @dr + 7 cos pdip)?
= (dr)* + r*(dy)?.

By letting G = (g,;,), the Cartesian and polar forms of G are respectively

given below
Gye Ty 01

oo (T34 9).
Gor Ty 0 r

Using (2.4) we obtain

and

2G(Vo,0p,0r) = —0rg(dyp, dp) = —2ror,
from which §(V,0¢p,dr) = —rdr. Similarly, §(Va,0¢, d¢) = 0. Hence
Vo,0p = —ror.
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Using the same method as above, we derive
739987“ = Vo,0r =0 and Vg, 0r = rop.
Then, calculating the curvature tensor R using (2.2) we obtain

E(@T, 87”)87" = vaarar - vaaqﬁr - v[ar,ar] or =0.

E(@T, 8T)8g0 = varvaragp — varvaraw — v[anar] ag& =0.
R(Or,0p)0r = 737738087“ — vawv&ﬁr — v[am@]ar = —73¢8g0(r)
= r20r.
R(Or,0p)p = %ﬁ&pag@ - va¢V8T830 — V[anaw] dp = —V,0r(r)
= —r2or.

Similarly,

R(0p,0r)0r = —r?0r, R(Dp,0r)0p = r*dyp
R(0p,00)0p =0 and R(dp, dp)dp = 0.

2.2 Submanifolds of a Riemannian manifold

Let M be an n-dimensional Riemannian manifold and let M be a m-dimens
ional manifold of M. Then M becomes a Riemannian submanifold of M
with Riemannian metric induced by the Riemannian metric on M. Let TM*
denote the normal bundle to M and g both metrics on M and M. Also let V
and V denote the Levi-Civita connections on M and M respectively. Then,
the Gauss and wiengaten equations are respectively given by

VxY =VxY +h(X,Y), VX,Y € I(TM), (2.6)

VxV =—-AyX + V3V, VV e I(TMY), (2.7)
where VxY, Ay X € ['(TM), and h(X,Y), VxV € ['(TM*). Further, h is
a symmetric bilinear form called the second fundamental form of M and Ay
is a linear operator known as shape operator and satisfying

g(h(X,Y),V) = g(AvX,Y), VX, € D(TM). (2.8)
The covariant derivative of h is given by
(Vxh)(Y, Z) = Vx (WY, Z)) = M(VxY, Z) = h(Y,VxZ), (2.9)

forany X, Y, Z e I'(TM).



Lemma 2.2.1. Let R and R be the curvature tensors of M and M, respec-
tively. Then R and R are related by the following equation,

R(X,Y)Z = R(X,Y)Z — Apy, )X + Anx.2)Y
+ (Vxh) (Y, Z2) = (Vyh)(X, Z). (2.10)

By comparing the tangential and normal components of (2.10) we respec-
tively obtain the following equations.

{RIX,Y)Z} = R(X,Y)Z + Anx2)Y — Avn X (2.11)

and
{R(X,Y)Z}* = (Vxh)(Y,Z) — (Vyh)(X, 2), (2.12)

for any X, Y, Z e (T M).

Definition 2.2.1. Let {E, ..., E,,} be orthonormal basis in a tangent bun-
dle to M, then

Tr(h) =Y h(Ey, E),
i=1
is called the trace of h and is independent of the basis.

Lemma 2.2.2. [15] Let M be a smooth manifold and M be a submanifold
of M. Let R* be the curvature tensor of the normal bundle of M. Then, the
curvature tensors R and R* are related by the following equation called Ricci
equation

F(RX, YU, V) =G(RH(X, YU, V) +3([Av, Ay] X, Y), (2.13)
forany X, Y, U,V e'(TM).

Definition 2.2.2. Let M be a Riemannian manifold, then a submanifold
M of M is said to be totally umbilical if there exist a normal vector field p,
called mean curvature vector, such that

WMXY) =g(X,Y)p, (2.14)
for X, Y e I'(T'M). If 4 =0 then M is said to be minimal.

Definition 2.2.3. The submanifold M of h is said to be totally geodesic in
M if its second fundamental form A vanishes identically on M, i.e., h = 0.



2.3 Distributions on a manifold

An m-dimensional distribution on a manifold A is defined by the following
map
D:x— D, CT,M,

for any x € M. A vector field X on M belongs to D if X, € I'(D,) for each
x € M. The distribution is said to be integrable if for all vector fields X,
Y € T'(D) we have [X,Y] € I'(D).

Definition 2.3.1. Let M be a n-dimension smooth manifold. A submanifold
M of M is said to be an integral manifold of D if every point = € M,
D, coincides with the tangent space to M at x. If there exists no integral
manifold of D containing M, then M is called a leaf of D.

Definition 2.3.2. Let V be a linear connection on a smooth manifold M.
The distribution D is said to be parellel with respect to V if we have

VxY € F(D),

for any X €e '(TM) and Y € I'(D).

2.4 Kahlerian manifolds

Definition 2.4.1. Let M be a manifold, then M is called an almost complex
manifold if there is an almost complex structure J on M which is a tensor
of type (1, 1) such that, for every X € I'(T'M), we have

JX =-X.
Theorem 2.4.1. Every almost complex manifold M is of even dimension.

Definition 2.4.2. Let (M, J) be an almost complex manifold. Then the
Nijenhuis tensor of J is defined by

[ JI(X,Y) = [JX,JY] - [X,Y] - JJX,Y] — J[X, JY], (2.15)

for any X, Y € I'(TM).

Note that A becomes a complex manifold if the Nijenhuis tensor of J
vanishes identically on M.



A Hermitian metric on an almost complex manifold M is a Riemannian
metric g satisfying
9(JX,JY)=3(X,Y),

for any X, Y € T'(TM).

The triple (M, J,g) is called almost Hermitian manifold. The fundamen-
tal 2-form €2 of an almost Hermitian manifold M is defined by

(X, Y) = g(X, IY),
for any X, Y € T'(TM).

Definition 2.4.3. We say (M, J,g) is Kdhlerian manifold if we have dQ) = 0,
i.e., the almost complex structure J is parallel and nearly Kdahlerian manifold
if

(VxJ)X =0, (2.16)

for any X € I'(TM).

Replacing X with X +Y in (2.16) we obtain that M is a nearly Kéhlerian
manifold if and only if

(VxJ)Y + (VyJ)X =0, (2.17)
for any X, Y € T'(TM).

As an example of an almost Hermitian (or Kéhlerian) manifold we have
the following.

Example 2.4.1. Consider M = R*. Let z = (2!, 22, 2%, 2*) € R* and define

the metric on R* by
1ifi=j
Jig = s {Oifz’;«éj.

Let TR* = Span{0dz!, 922 023, 0x*} and the almost complex structure J is
defined by

Joxt = =022, JOz? = 0xt, Jox® = —0z* and Jox* = 0.

In the matrix form, we have

(a)

o O O
o O O
o= O O
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and we have

-1.0 0 0

, | o -1 0 o |

=10 o 10 |T7F
0 0 0 -1

It is easy to check that
g(Joz", Jox?) = g(0x", 0x7).

Hence g(JX,JY) = g(X,Y). Thus (R, J,g) is an almost Kihlerian mani-
fold. Using (2.4) we obtain

and hence V102! = 922, Also
G(Vn202?,01%) = G(Vp202?,01%) = §(Vae2 022, 02*) = 0,

G(Vp202?, 00t) = —1,

which give Vg,202%2 = —0z!'. Similarly,
Vos0x® = 0z and Vyuozt = —0z3.
Putting these pieces together, we obtain
(Vg J)0z? # 0.

This means that (R*, J,g) is not a Kdhlerian manifold.

Definition 2.4.4. A semi-Riemannian metric on a manifold M is a family
g non-degenerate symmetric bilinear forms

g,=T,M x T, — R, pell,

such that the function g(X,Y) : p = g(X(p),Y(p)) is smooth for all

smooth vector fields X,Y on M. Thus (g, M) is called semi-Riemannian
manifold.

Definition 2.4.5. [9] A space form is a complete connected semi-Riemannian
manifold of constant curvature.

11



It is known that if a 2n-dimensional Kihlerian manifold M is of constant
curvature, then, M is flat provided n > 1 (see [4] for more details). This
tells us that the notion of constant curvature for Kéhlerian manifolds is not
essential. Therefore, the notion of constant holomorphic sectional curvature
was introduced for Kéhlerian manifolds. For this purpose, we first state the
notion of holomorphic section as follows:

Consider a tangent vector U at a point p of a smooth Kéhler manifold
(M, J,g). Then, the pair (U, JU) generates a plane 7 (since JU is obviously
orthogonal to U, i.e., g(U, JU) = 0) element called a holomorphic section,
whose curvature K is given by

g(R(U, JU)JU,U)
(g(U,U))?

K is called the holomorphic sectional curvature with respect to U. Now, if
K is independent of the choice of U at a point, then K = ¢, a constant.

K =

A simply connected complete Kéhler manifold of constant sectional curva-
ture c is called a complex space-form, and is denoted by M(c). Now, if ¢ > 0,
c = 0orc < 0, then M(c) can be identified with the complex projective
space CP"(c), complex plane C™ or the open ball D™ in C". The curvature
tensor R of a simply connected complete Kihlerian space form M (c) is given

by

R(X,Y)Z = Z—i{g(y, X —G(X, 2)Y +§(Z, JY)IX —G(Z, JX)JY
+29(X, JY)JZ)}, (2.18)
for any X, Y, Z € I(TM).

Lemma 2.4.2. A simply connected complete 2n-dimensional Kdahlerian space
form M (c) is Finstein.

Proof. By contracting the equation 2.18, one obtains

n—+1

Ric(X,Y) = G(X,Y),

for any X, Y € I'(T M), where Ric is the Ricci tensor associated with g. [

Remark 2.4.1. It is clear that every Kéhlerian manifold is nearly Kéhlerian
but the converse is not true. The nearly Kihlerian six-sphere S° is an example
of a nearly Kéhlerian manifold that is not Kéhlerian.

12



Proposition 2.4.3. Let M be a nearly Kdhlerian manifold. Then the Ni-
jenhuis tensor of J is given by

[J,J](X,Y) =4J(VyJ)X, (2.19)
for any X, Y € T(TM).

Proof. Using the fact that V is a torsion free connection on M and (2.15)
we derive

(L J)(X,Y) =V xJY =V JX —VxY +VyX
— J[VxY = VyJX]| - JVxJY — Vv X]
= (Vx )Y +J(V,xY) = (Vi )X — J(V,yX)
+ J(VxJY) = J(Vx)Y) = J(VyJX)+ J(VyJ))Y
— J(VyxY) + J(VyJX) = J(VxJY)+ J(VyX)
= (Vyx )Y — (V)X — J(Vx )Y + J(VyJ)X). (2.20)

Using the fact that (VyJ)X = J((VxJ)Y) and substituting into (2.20) we
derive

[LJNX,Y) =2(VyX + J(VxJX) - VxY — J(VxJY))
=2{J(VyJX — J(Vy X)) = J(VxJY — J(VxY))}
= 2J((Vy )X = (VxJ)Y) = 4J((Vy])X),

for any X, Y € I'(TM). O

13



Chapter 3

CR-submanifolds of almost
Hermitian manifolds

This Chapter focuses on CR-~submanifolds of Hermitian manifold. We in-
troduce the idea of CR-submanifold M of M and also study CR-structures.
Finaly we consider a nearly Kéhlerian as an example of Hermitian manifold
and we study its geometrical properties.

3.1 CR-submanifolds and CR-structures

Definition 3.1.1. [15] Let (M, .J,g) be a 2n-dimensional almost Hermitian
manifold. Let M be a m-dimensional submanifold of M. Then M is called
a complex holomorphic submanifold if T, M is invariant by J, i.e., we have

J(T,M) = T,M

for each x € M, also M is called a anti-invariant submanifold of M if we
have
J(T,M) C T,M*

for each z € M.

Definition 3.1.2. [15/ Let M be a submanifold of M. Then M is called a
CR-submanifold of M if there exists a distribution. D : x +— D, C T, M on
M satisfying

(i) J(D.) = D, for each z € M.

14



(ii) J(Dt) c T,M* for each z € M.

Then, the tangent bundles of M and M are respectively decomposed as
TM =TM & TM* and TM = D & D+,

where @ is a orthogonal direct sum. For vector fields X € T'(TM), V €
[(TM+*) we have

JX =X + wX, (3.1)
and

JV =BV +CV, (3.2)

where ¢ X and wX are tangential and normal components of JX respectively
and BV and CV are tangential and normal components of JV respectively.

Theorem 3.1.1. The submanifold M of M is a CR-submanifold if and only
if

rank(¢) = constant and wo ¢ = 0.

Proof. Suppose M is a CR-submanifold of an almost Hermitian manifold M.
Denote P and @ the projections morphisms of TM to D and D+ respectively.
For any X € I'(T' M)

X =PX +QX,

which on applying J leads to
JX =JPX +JQX = ¢ X +wX,

where ¢ X = JPX and wX = JQX, which are the tangential and normal
components of JX. Then, it follows that rank(¢) = 2p and thus, every
almost Hermitian manifold is even dimensional and from (3.1) we can see by
inspection that wo ¢ = 0.

Conversely, suppose that rank(¢) = constant and w o ¢ = 0. Let the
distribution D be defined by D, = Im.¢, for each x € M and let X =
oY € T'(D), then

JX = JoY = ¢*Y + (wo ¢)Y = ¢*Y € I'(Im.¢) C I'(D),

so D is an invariant distribution. Let denote by D+ the complementary or-
thogonal distribution to D in T'M. Then, D is an anti-invariant distribution.
Since for any X € I'(D+) and Y = U + W where U € T'(D) and W € I'(D4)
we obtain

Thus M is a CR-submanifold of M. O

15



Lemma 3.1.2. Let M be a manifold and M be a submanifold of M.

f-structure on T'M s given by
¢’ +¢=0.
Proof. Using (3.1) and (3.2), for any X € I'(T'M) we obtain
X = J(JX) = J(¢X + wX) = ¢*X + BuX + CwX.

So
—X =¢’X + BwX and CwX =0.

Therefore
¢*=—I — Bw and Cow = 0.

Using the fact that ¢ X = JPX and JP = PJ we obtain that
¢*X = ¢(¢X) = JP(JPX) = P?J*’X = —PX,
Applying ¢ we get
¢ = §(¢*) = ~6P = —JP* = —JP = —,

from which our assertion follows.

The

]

Definition 3.1.3. [15]/ Suppose that M is a CR-submanifold of an almost

Hermitian manifold M, then

(i) J(D)=D
(i) J(DY) c TM*

JD+ C TM+* implies that there exist §, a complementary distribution to

J(D%) such that
TM* =JD"®4.

It is easy to see that ¢ is invariant with respect to J, i.e., Jd = 4.

Lemma 3.1.3. Let M be a manifold and M be a submanifold of M.

f-sructure on TM* is given by

CP+C=0.

16
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Proof. Let P and @ be projections morphism of TM* to J(D+) and § re-
spectively, for any V € T'(T'M™*) we have

V=PV +QV,
where PV and QQV are tangential and normal part of JV.
JV =JPV +JQV = BV +CV.

So
~V =J*V = J(BV +CV) =wBV + BCV + C*V.

Therefore
—[—wB=C?=—-]—wB and BoC =0.

Using the fact that C'V = JQV we derive
C?V =C(CV) =CJQV = (JQ)*V = Q*J*V = =QV,

which implies that
C*V +V +wBV = 0.

Applying C' we obtain
C*+C=0.

O

Definition 3.1.4. Let M be a CR-submanifold of an almost Hermitian man-
ifold M. Then the Nijenhuis tensor field of ¢ is given by

[0, ¢](X,Y) = [6X,0Y] + ¢*[X, Y] = ¢([X, 0V ]) — 6([0X,Y]).  (3.3)

Proposition 3.1.4. Let M be a CR-submanifold of an almost Hermitian
manifold M, Then

[T Y) = [0, 0](X,Y) = QX Y] —w([oX, Y] + [X, 0Y]).  (34)

Proof. Using (2.15) and (3.1) we derive

(L J)(X,Y) = —[X,Y]+[0X, oY ]|=0([¢X, Y]+[X, oY ])—w([¢X, Y]+[X, ¢Y]).
Applying (3.3) in (3.5) we obtain )
[LJI(X,Y) = =X, Y] + [, 0)(X,Y) — ¢*[X, Y] — w([¢X, Y] + [X, 9Y]),

which reduces o
[(LJI(X,Y) =[9,9](X,Y) = [X, Y] + P[X,Y] —w([¢X,Y] + [X, ¢Y])
[0, 0](X,Y) = Q[X, Y] —w([¢X, Y] + [X, ¢Y])

for any X, Y € I'(D). O

17



Theorem 3.1.5. Let M be a CR-submanifold of an almost Hermitian man-
ifold M. Then the distribution D is integrable if and only if

[‘]7 J](X7 Y)T = [¢7 Qb](X, Y)
forany X, Y € I'(D).

Proof. Suppose that D is integrable, then Q[X,Y] = 0 and w([¢X,Y] +
[X, ¢Y]) = 0 which reduses (3.4) to

[‘]7 J] (X7 Y)T = [¢v ¢](X7 Y)
Conversely, suppose
[‘]’ J](X7 Y)T = [¢7 ¢](X’ Y)'

Then the tangential component of (3.4) becomes

Q[X7 Y] =0,
which implies that
[X,Y] = P[X,Y].
Therefore [X,Y] € I'(D). Thus D is integrable. O

Theorem 3.1.6. Let M be a CR submanifold of an almost Hermaitian man-
ifold M. Then the distribution D is integrable if and only if

() [J,J)(X,Y)t=0.
(i) Q[o,¢](X,Y) =0 for any X, Y € (D).

Proof. Suppose that D is integrable, then [¢X,Y] and [X, ¢Y] € T'(D) for
any X, Y € I'(D) and ¢X € I'(D). So

Q([eX, Y]+ [X,¢Y]) =0 and w([¢pX,Y]+ [X,¢Y]) =0.
Then the tangential component of (3.4) reduces to
[JTJ(X V)T = =Q[X,Y] - w([¢X, Y] + [X, ¢Y]) = 0,

which proves (i). It follows from (3.3) that [¢, ¢](X, Y) € I'(D) which implies
that

Qle, ol(X,Y) =0,
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which proves (ii).
Conversely, suppose that (i) and (ii) holds.

w([oX, Y]+ [X, 0Y]) = 0,

if and only if
QUJX, Y]+ [X,JY]) =0.

Let Y = JY, then
Q(JX,JY] - [X,Y]) = 0.

Hence

Q. J)(X,Y)") = 0.
On the other hand by (3.3) we have

Q([J7 J](X7 Y)T) - Q[¢, ¢](X7 Y) - Q[X> Y],
which implies that
QIX, Y] = 0.

Hence [X,Y] € I'(D). So D is integrable.

3.2 Nearly Kahlerian manifolds

3.2.1 Integrability

Let M be a CR-submanifold of a nearly Kéhlerian manifold M. Then by

using (2.6), (2.7), (2.15) and (2.17) we derive

JX, Y]+ [X,JY] = J[J,J|(X,Y) + JIX,Y] - JJJX, JY].

Now,

[JX,JY] =V ;xJY =V yJX

= (Vix )Y +J(VxY) = (V)X — J(VyX)
= —Vy 2 X + J(VyJX) + (VxJ?Y) — J(VxJY)

+ J(VyxY — Vv X)
=VyX - VxY + J(VyJX) = J(VxJY)
+ J(VxY — Vv X).
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Applying J to (3.7) we derive
JJX,JY]) = —J[X,Y] =Y, JX] - V,xY + [X, JY]

+ VX +VyX —V,xY
= —JX, Y]+ [JX, Y]+ [X,JY] +2V vy X

—2V,xY
= JIX,) Y]+ [JX, Y]+ [X,JY] + 2V v X
+2h(X,JY) =2V ;xY —2h(JX,Y). (3.8)

Substituting (3.8) into equation (3.6) we obtain

X, Y]+ [X,JY] = %J([J, JIX. YY) + (X, Y]) 4 VyxV — Voy X
4 R(IX,Y) = h(X, JY). (3.9)

Taking into account that V is a torsion-free connection then from (3.9) we
obtain

WX, JY) — h(JX,Y) = %J([J, J(X, V) + J(X, Y]) + Vy X
- VxJY (3.10)
for any X, Y € I'(D).

Theorem 3.2.1. Let M be a CR-submanifold of a nearly Kdhlerian man-
ifold M. Then the distribution D is integrable if and only if the following
conditions are satisfied

(i) h(X,JY)=h(JX,Y).
(i) [JJ|(X,Y) € T(D) for any X, Y € I'(D).

Proof. Suppose that D is integrable. Then JX = ¢X and JY = ¢Y. Com-
paring tangential and normal components of (3.9) we have

[JX,Y]+[X,JY] = JX,Y]+ V,xY — Vv X
and h(JX,Y)—h(X,JY) = %J([J, JI(X,Y). (3.11)

Since

[, J)(X,Y) = [, (X, V)" + [, (X, V)", (3.12)
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taking the tangential component of (3.4) and using Theorem 3.1.5 we obtain
[JINXY) = [LJI)(XY)" = [0, ¢)(X.Y).
Applying J we have
S JNXY) = Jg, ¢l(X, Y).
Since D is integrable and by Theorem 3.1.6 we have
[0, 0](X,Y) =0,

which implies that
J[JJ|(X,Y) =0,

and substituting into (3.11), we obtain
MJX,Y)—h(X,JY) =0,

SO

hJX,Y) =h(X,JY) and [J,J](X,Y) € I(D).

Conversely, suppose that equation (i) and (ii) holds, then for any X, Y €
['(D) we must show that [X,Y] € I'(D). From (3.10) we have

1
JIX,Y] = VxJY = VyJX = 2 JIX.Y).

Let Z € ['(D4), then there exist V € I'(TM*) such that Z = JV.
1
= —9(VxJY. V) +g(Vy JX, V) + S9(J[J, JI(X,Y), V) = 0.

Therefore [X,Y] € I'(D). Hence D is integrable as required. O

From Theorem 3.2.1 we deduce the following Theorem and a Corollary.

Theorem 3.2.2. Let M be a CR-submanifold of a nearly Kdhlerian manifold
M. Then the distribution D is integrable if and only if

(i) (VxJ)Y € (D).
(i) n(X,JY)=h(JX,Y) for any X, Y € I'(D).
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Proof. Suppose that D is integrable then [J, J|(X,Y) = [¢, ¢](X,Y) € I'(D).
By Proposition 2.4.3 [J, J](X,Y) = 4J(VxJ)Y, which implies that VY €
['(D). Part (ii) follows from Theorem 3.2.1. The converse follow from The-
orem 3.2.1. [

Corollary 3.2.3. Let M be a CR-submanifold of a nearly Kdhlerian manifold
M. If the distribution D s integrable, then

(i) [J,J)(X,U0)" e (DY) for any X € T'(D) and U € T(D4).
(ii) h(X,JY) = h(JX,Y).

Proof. Suppose that D is integrable. Let X € I'(D) and U € I'(D*), then
by (2.6), (2.7) and Proposition 2.4.3 we derive

(Vu)X = —(VxJ)U = —-VxJU + J(VxU)
= Ay X — VxJU + JVxU + Jh(X,U).

Applying J we obtain

J(Vu )X = JA;uX — JVxJU —VxU — h(X,U)
= Ay X + wA;yX — BV%JU — CV%JU
— VxU — h(X,U). (3.13)

Taking the normal and tangential component of (3.13) we obtain

[J,J(X,Y)" = ¢A;uX — BVxJU — VxU
and [J,J)(X,Y)" = —CV%JU — h(X,U) + wA;pX.

Hence, [J, J|(X,Y)" € T'(D?}). Finally, (ii) follows from Theorem 3.2.1. [

Theorem 3.2.4. Let M be a CR-submanifold of a nearly Kdhlerian manifold
M. Suppose the following conditions are satisfied

g(h(X,Y),JZ) =0, (3.14)
forany X, Y e U(TM), Y € (D), Z € (D) and
g([J,J)(X,Y), W) =0 (3.15)

for any X, Y € T(D) and W € T'(D*). Then M is a CR-product of M.
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Proof. Using (3.14) and (2.6) we derive

0=gh(X,Y),JZ)=g(VxY,JZ)—g(VxY,JZ) = g(VxY,JZ)
=—g(JVxY, Z). (3.16)

Since M is a nearly Kéhlerian manifold, then
JVxY =VxJY +VyJX — JVy X. (3.17)
Substituting (3.17) into (3.16) and using (2.6) and (2.7) we derive

—g(VyX,JZ) - g(VxJY,Z) — g(VyJX, Z)
—g(VXJY, Z),

for any Y € I'(D) and X, Z € I'(D*). Thus we have VxJY € I'(D). On
the other hand by using (2.19), (2.6), (3.14) and (3.15) we derive

0=g(dJ(VyJ)X, W)

=g(VxJY, JW) — g(VxY, W)
= g(VxJY +h(X,JY),JW)
—g(VxY +h(X,Y),W)
g(VxJY, JW).

Hence, VxJY € I'(D) and thus D is parallel. Our assertion follows from
Theorem 3.2.1. O

3.2.2 Curvatures

In this section we compare the curvature tensors of M and M.

Using (2.11), and , for any X, Y, Z, W € T'(T M), we have

g([R<X7 Y>Z]T7 W) = g(R(X, Y)27 W) + g(Ah(X,Z)K W)
- Q(Ah(Y,Z)X> W)7

then
R(X,Y,Z,W) = R(X.,Y, Z,W) + g(h(Y,W), h(Y, Z))
—g(h(X, W),h(}/, Z)) (318)
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Suppose D is integrable then by Theorem 3.2.1 we have
hX,JY)=h(JX,Y),
forany X, Y € I'(D). Taking X = JX in this equation, one has h(JX, JY) =
—h(X,Y).
Thus equation (3.18) becomes

R(X,JX,JY,)Y)=R(X,JX,JY,Y) + g(h(JX,Y), h(X,JY))
—g(h(X,Y),h(JX,JY))
= R(X,JX,JY,Y) + ||h(JX,V)|* + ||M(X,Y)||*. (3.19)

If we assume that M is totally geodesic, then (3.19) reduces to

R(X,JX,JY,Y)=R(X,JX,JY,Y).

Let H(X) = R(X,JX,JX,X) and H(X) = R(X,JX, JX, X) be the holo-
morphic sectional curvatures of M and M, respectively. We therefore observe
the following.

Theorem 3.2.5. Let M be a CR-submanifold of a Kihlrian space form M c)
with an integrable distribuion D. Then, the holomorphic sectional curvatures
H and H of M and M, respectively, satisfy

H(X) > H(X), VX el(D), [IX]l,=1,

and the equality holds if M is D-totally geodesic.
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Chapter 4

CR-submanifolds of
non-Hermitian manifold

In this Chapter we study CR-~submanifolds of non-Hermitian manifolds. We
shall consider a cosymplectic manifold M and study Geometric properties.
We compare the results of a cosymplectic manifold M to a nearly Kéhlerian
manifold in Chapter 3.

4.1 Cosymplectic manifolds

Let M be an almost contact smooth manifold and let (¢,&,n,9) be its al-
most contact metric structure. Thus M is a odd dimensional differentiable
manifold and ¢ is a (1, 1) tensor field, ¢ is a space-like vector field, called the
structure vector field and 7 is a 1-form on M, such that

_2 _ J—
¢ X =—-X+nX)§ nX)=7(X,§), o) =0,
no¢=0, n(§) =1 and g(¢X,¢Y) =g(X,Y) —n(X)n(Y),
for any vector fields X, Y € I'(T'M). Then, M is called cosymplectic manifold
if
(Vx@)Y =0, VX,Y eD(TM). (4.1)
Replacing Y with £ in (4.1) we have

Vxé=0, forall;, X € (TM). (4.2)
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Definition 4.1.1. Let M be a Riemannian submanifold tangent to the struc-
ture vector field ¢ isometrically immersed in a cosymplectic manifold M, then
M is called contact CR-submanifold if there exist a differential distribution
D:x— D, C T,M such that

(i) ¢D, C D,, for each z in M.

(ii) ¢D*+ C T,M*, for each x in M.

Note that oD+ C T, M- L implies that there exist a complimentary or-
thogonal distribution u to @D+ in TM* such that TM* = ¢ D+ @ p.

Consider the following decomposition of T'M,
TM =Da D" o {¢},

where {£} is a line bundle spanned by ¢&.

Let P and @ be projection morphisms of TM to D and D+ respectively,
for any X € I'(T'M) we obtain

X =PX+QX +n(X)¢ (4.3)

Then applying ¢ to (4.3) we obtain
X = X +wX, (4.4)
where ¢X = ¢PX and wX = ¢QX. Computing ¢*> we obtain
$*X = §(6X) = ppPX = pPGPX = P’3'X = P(—X + n(X)€) = —PX.
Applying ¢ we obtain
OPX = ¢p*X = —pPX = —pP?’X = —¢pPX = —p X.

Therefore, we have the following.

Lemma 4.1.1. Let M be a cosymplectic manifold and M be a submanifold
of M. Then ¢ is an f-structure in T M, i.e.,

¢’ +¢=0.
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Let P and @ be projections morphisms of TM* to ¢ D+ and pu, for any
Ve r(TM*Y)
V=PV +QV,

where PV is a tangential component and @V is a normal component of
TM+, then applying ¢ we have

oV = ¢PV + ¢QV = BV + OV,
where BV = ¢PV and CV = ¢QV. Computing C? we obtain
C°V = CCV = Q(6QV) = 6°QV = Q(=V +n(V)§) = —QV.
Applying C' we derive
C*V = C0C?V = ¢Q(—QV) = —pQV = —-CV.
Therefore, we have the following.

Lemma 4.1.2. Let M be a cosymplectic manifold and let M be a submanifold
of M. Then C is an f-structure in TM*, i.e.,

CP+C=0.

The f-structures on TM and T M+ for both cosymplectic and Kéhlerian
manifold are similar.

Lemma 4.1.3. Let M be a cosymplectic manifold then
C*+wB=—1I and ¢B + BC = 0. (4.5)
Proof. Let V € T(TM*), then
—2

dV =0V =¢(BV +CV)=¢(BV)+wBV)+ B(CV)+CCV).

So
—V = ¢BV 4+ wBV + BCOV + C*V. (4.6)

Comparing tangential and normal components of (4.6) we obtain
—V =C?*V +wBV and ¢BV + BCV =0,

from which our assertion follows. O
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Let X be a unit vector which is orthogonal to £&. We say that X and ¢.X
span a ¢-sections. If the sectional curvature c of all ¢-sections is independent
of X, we say M is of pointwise constant ¢-sectional curvature. If a cosym-
plectic manifold M is of pointwise constant ¢-sectional curvature ¢, then the
curvature tensor has the following form (see |7, 14])

R(X,Y)Z = E{Q(K 2)X = g(X, 2)Y +n(X)n(2)Y —n(Y)n(Z2)X
+0(Y)g(X, Z)§ = n(X)g(Y, 2)§ + (oY, Z) X
— (06X, 2)9Y — 29(¢X,Y)9Z}. (4.7)
As an example of a cosymplectic manifold, we have the following.

Example 4.1.1. Let M be the three dimensional manifold defined by, M =
{(x,y,2) € R® 2z = 22 + y*}. Consider vector fields

e1 = 0z, ey =2ydzr + 2x0y + 0z and ez = 2z0x — 2ydy,
which are linearly independent. Let g be a Riemannian metric define by
gler, e3) = g(e1, e2) = glea, e3) = 0.
gler,e1) = glea, e2) = g(es, e3) = 1.

Let 7 be the 1-form defined by 7(Z) = g(Z,e,) for any Z € M. Let ¢ be the
(1,1)-tensor field define by

5(62) = €3, 5(63) = —ep and 5(61) = 0.
Then using the linearity of ¢ and g we have
_2 o~ J— _
n(er) =0, ¢ Z=-Z®n(Z)ey and g(¢Z, W) =g(Z,W) = n(Z)n(W)

for any Z,W € M. So e; = &, (6,€,71,7,) defines an almost contact metric
structure on M. Let V be the Levi-Civita connection on M with respect to
the metric g. Then [e1,e;] = 0 for i = 1,2,3 and

[ea, €3] = [2y0x + 220y + 0z, 2z0x — 2ydy| = 8(ydz — xdy).
Also
G([ea, es),e1) =0, G(les, es], ea) = 16(y* — ) and g([eq, €3], e3) = 32xy.
Using (2.4) to compute V we obatain
€1 = Ve €2 = Ve €3 =Veer = Ve =0,
167yeq + 24(x* — y?)es, Ve,ez = —24(z? — y*)eq + 162yes,
€2 = 8(2% — y?)eg — 48xyes, Ve,ez = 8(2? — y?)es + 48wye,.
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From the above connections we obtain
(Vezﬁ_b)ez = vezﬁ_b(ez) - ﬁ_b(veth)
= —24(2® — y*)ey + 16wyes — 16zyes + 24(x? — y?)ey = 0,

(v62$)€3 = v625(63> - a(veze?))
= —16zyey — 24(z* — y*)es + 16zyes + 24(2? — y?)es = 0,
(Ves)ez = Ve c_b( 2) = 9(Vee2)
= 8(2® — y?)es + 48xyes — 8(z? — y*)es — 48xyey = 0,

(vegq_b) vegq_b(eii) ¢(ve3€3)
= —8(2? — y?)ey + 48xyes + 8(z? — y?)ey — 48zyes = 0,

(veﬁ_b)el = (6615)62 = (vela)e{% = (vega)el = (vega)el = 07

from which it follows that M is a cosymplectic manifold.

4.2 Integrability of distributions

Theorem 4.2.1. Let M be a cosymplectic manifold. The distribuion D®{¢}
is integrable if and only if

WX, 9Y) = h(¢X,Y),
forall X, Y e (D @ {&}).

Proof. Suppose that D @ {{} is integrable, then 06X = ¢X and ¢Y = @Y,
which implies that ¢[X,Y] = ¢[X, Y] i.e. w[X,Y] = 0. Using (2.6) we derive

X, Y] =06 VxY — ¢ VyX

=Vx9Y — VyoX
= VxoY — VyoX
= VxoY + (X, 9Y) — VyoX — h(Y, ¢ X). (4.8)

Comparing the tangential and normal components of (4.8) we have

PIX,Y] = VoY — VyoX and h(X,¢Y) = h(¢X,Y).
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Conversely, suppose that h(X,¢Y) = h(¢X,Y) for all X, Y € I'(D & {£}).
Then using (2.6) we derive
X Y] =0 VxY -0 VyX

= VxoY — VyoX

= VoY — VyoX + h(X,6Y) — h(6X,Y)

= Vx¢Y — VyoX,
which implies that ¢[X,Y] € ['(TM). So w[X,Y] = 0, which implies that

QIX,Y]=0.

Thus [X,Y] € T'(D @ {£}) from which our assertion follows. O

The result in Theorem 4.2.1 is similar to the one found in [15, Theorem
3.2| in the case where the ambient manifolds are Sasakian.

Lemma 4.2.2. Let M be a contact CR-submanifold of cosymplectic manifold

M with the structure vector field & tangent to M. Then, for any X,Y €
['(TM)

(Vx®)Y = Auy X + Bh(X,Y), (4.9)

and (Vxw)Y = —h(X, oY) + Ch(X,Y). (4.10)

Proof. Let X,Y € I'(TM). Using (2.6) and (2.7) we derive

(Vx0)Y = Vx¢Y — ¢p(VxY)
= VxoY — h(X,¢Y) — ¢VxY
= VxoY — VxwY —h(X,0Y) — ¢ VxY +wVxY
= Vx@Y — VxwY — h(X,0Y) — ¢ VxY + oh(X,Y) + wVxY
= Ay X — ViwY — h(X, ¢Y) + oh(X,Y) + wVxY
= Ay X — (Vxw)Y — h(X,¢Y) + oh(X,Y),

which implies that

(Vx@)Y + (Vxw)Y = Ay X — h(X, ¢Y) + Bh(X,Y)
+ Ch(X,Y). (4.11)

Our assertions follows from (4.11). O
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Equations (4.9) and (4.10) were also found by Uddin and Ozel in [13]
when they were working on totally umbilical submanifolds in a cosymplectic
manifold.

Lemma 4.2.3. Let M be a contact CR-submanifold of cosymplectic manifold
M with the structure vector field € tangent to M. Then, for anyV € T(TM™*)

(VxB)V = Acv X — Ay X, (4.12)
and (VxC)V = —wAy X + h(X,BV). (4.13)

Proof. Let V € T'(TM*), then
Ay X = —pAy X —wAy X. (4.14)
Also
—pAvX = ¢ VxV — ¢VxV
= VxoV — oV V
= VxBV — Acy X + V5OV — BVxV — CVxV
= VxBV 4+ h(X,BV) — Aoy X + (VxO)V — BV%V
= (VxB)V 4+ BVyV + h(X,BV) — Acv X + (VxC)V
— BV V. (4.15)

By equating (4.14) and (4.15) we obtain
—¢AyX —wAy X = (VxB)V + h(X,BV) — Acv X + (Vx)V.  (4.16)
The assertion follows from (4.16). O

Lemma 4.2.4. Let M be a contact CR-submanifold of cosymplectic manifold
M with the structure vector field & tangent to M.

AuxY = Ay X. (4.17)

Proof. Let X Y € T'(D*+), Z € T(TM) and using (4.9) and (2.8) we obtain

AuxZ + Bh(Z,X),Y)

Z, AuxY) +g(¢h(Z, X),Y)
Z,AuxY) = g(MZ,X),¢Y)
Z, AuxY) — §(h(Z, X),wY)
AuxY — Ay X, 2).

I
Q@ o 9 9
A~~~ —~
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Since ¢ is non-degenerate, then
AwXY - AwYX = 07
from which the assertion follows. O
The equation (4.17) coincides with the relation (4.1) in [15] in the case
where the ambient manifold is Kéhlerian manifold.

Lemma 4.2.5. Let M be a contact CR-submanifold of cosymplectic manifold
M with the structure vector field & tangent to M. Then the distribution D+
15 always integrable.

Proof. Let X, Y € T'(D* @ {£}), then it suffices to show that ¢[X,Y] = 0.
Using (4.9) we obtain
X, Y] = ¢VxY —oVy X = (Vy¢)X — (Vx¢)Y
= —AyX —Bh(X,Y)+ AuxY + Bh(Y,X) =0,
which implies that [X,Y] € T'(D+ @ {¢}). Thus D+ is integrable. O
Definition 4.2.1. A submanifold M is said to be totally geodesic if
h(X,Y) =0,
for X,Y e I'(T'M).
Definition 4.2.2. A submanifold M is said to be mixed totally geodesic if
h(X,Y)=0, for X € (D) and Y € T'(D™).

Proposition 4.2.6. A necessary and sufficient condition for integral sub-
manifold M=+ of D+ to be mized totally geodesic in M is that

h(X,Y) € C(TM™h),
for all X € T(D)* and Y € T(D).

Proof. Let X, Z € I'(D+), Y € T(D), then
9(Vx9)Z,Y) = g(Vx9Z — ¢VxZ,Y) = 0.
By the use of (4.9) we obtain
9(AuzX + BhX,2),Y) = (Vx¢)Z = 0,

if and only if

g(AzX,Y)=g(h(X,Y),wZ) =0.
Consider TM* = ¢D* @v where v is the complimentary and invariant distri-
bution to D+ and wZ € T'(¢D+). Since h € T(TM*) and g(h(X,Y),wZ) =
0, then h(X,Y) € I'(v) which proves our assertion O
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4.3 Invariant submanifolds

Definition 4.3.1. A submanifold M of a cosymplectic manifold M is invari-
ant if B B
pX = ¢X and ¢V =BV

for any X € I'(TM) and V € T'(TM*), that is wX = 0 and CV = 0.
Let M be a contact CR-submanifold of cosymplectic manifold M with

the structure vector field £ tangent to M. If M is invariant, then by putting
Y = ¢ in (4.9), one has

Bh(X, &) = —¢VxE, VX € T(TM).

This means that Bh(-,€) € T'(D1). By the first relation in (4.5), we have,
wBh(X,&) = —h(X,§). Therefore,

hX,6) =0, VX € I(TM). (4.18)

Proposition 4.3.1. Let M be a contact CR-submanifold of a cosymplectic
manifold M with the structure vector field & tangent to M. If M 1s invariant,
then it is cosymplectic.

Proof. Let M be a cosymplectic and suppose M is an invariant submanifold

of M, then X = ¢X and ¢V = BV for all X € I'(TM) and V € T(TM™).
Oh(X)Y) = ¢ VxY —¢VxY
= VxoY — ¢pVxY
=VxoY +h(X,9Y) — ¢VxY
Therefore, we have

Since M is invariant, wX = 0, CV = 0, and by the use of (4.9) and (4.10)
we have

h(X,¢Y) =0, and (Vx¢)Y = Bh(X,Y).

Let Y = ¢Y, then h(X, ¢*Y) = h(X, g_bQY) = 0. That is h(X, =Y +7n(Y)§) =
0 This is equivalent to

WX, Y) = n(Y)h(X, ).
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By (4.18), h(X,&) = 0, and we have h(X,Y) = 0. Therefore (4.19) become
from which our assertion follows. O

Lemma 4.3.2. Let M be a contact CR-submanifold of a cosymplectic man-
ifold M with the structure vector field & tangent to M. If M is invariant,
then,

(i) M 1is totally geodesic.
(i1) The distribution D @ {&} is integrable.

Proof. The proof follows straightforward from Proposition 4.3.1. O]

4.4 Foliations

Definition 4.4.1. [15/ A CR submanifold is said to be mixed foliate if it is
mixed totally geodesic and h(¢pX,Y) = h(X, ¢Y) for all X, Y € I'(D).

Lemma 4.4.1. let M be mized foliate CR submanifold of a cosymplectic
manifold M. Then
Avo+ oAy =0, (4.20)

for any vector field V € T(TM?).
Proof. Let X, Y € T(TM), then
9(6X,QY) =g(pPX,QY) = —g(PX,¢QY) = —g(PX,wY) = 0,
which implies that ¢X € I'(D). Also
WX, ¢Y) = h(PX + QX +n(X)E, ¢Y) = h(PX, $Y).

Since h(X, ¢Y) = h(¢pX,Y) for all X, Y € I'(T'M) and for all V € T(TM*),
then
g(h(X,0Y), V) =g(h(¢X,Y), V),

which leads to
g(PAV X + Ayo X, Y) = 0.

Therefore
gbAV + AV¢ = 07
which completes the proof. O
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Equation (4.20) was also derived in [15] but the authors were dealing with
an almost cosymplectic manifold with a Kéhlerian integral submanifold.

Theorem 4.4.2. If M is a mixed foliate non-trivial CR submanifold, i.e.,
neither an invariant submanifold nor anti-invariant submanifold of a cosym-
plectic space form, then ¢ > 0.

Proof. Let X, Y € T'(D) and Z € T'(D)*. Using (2.9) we obtain

(Vxh)(Y, Z) = Vx (MY, Z)) = h(VxY, Z) = h(Y,Vx Z)
(Vyh)(X,Z) = Vi (h(X,Z)) = h(VyZ,X) — h(X,VyZ).

Taking the difference of these two equations we obtain

(Vxh)(Y,Z) — (Vyh)(X, Z) = Vx (MY, Z)) = Vy(h(X, Z))
— (X, Y], Z) + h(X,VyZ)
— h(Y,VxZ). (4.21)

Using the fact M is a mixed foliate submanifold, (4.21) reduces to
(Vxh)(Y,Z) — (Vyh)(X,Z) = WX, VyZ) - hY,VxZ). (4.22)
Let V € I'(T M%) such that Z = ¢V = BV then
VyZ =VyoV = ¢(VyV) = ¢(—AyY +ViV) = —pAyY + BV V. (4.23)
Substituting (4.23) into (4.22) we obtain

(Vxh)(Y, Z) — (Vyh)(X, Z) = —h(X, dAvY) + h(Y, d Ay X)
= h(oY, Ay X) + h(X, AvoY).  (4.24)

By letting X = ¢Y and substituting into (4.24) we obtain

(Voyh)(Y, Z) = (Vyh)(¢Y, Z) = h(Y, Av oY) + h(¢Y, Ay ¢Y')
— 21(gY, AveY).
Comparing the normal components of (2.10) and (4.7), we obtain
(Vxh)(Y,Z) = (Vyh)(X, Z)
= 1 @3, 2)wX —F(3X, Z)wY - 25(6X, Y )wZ),
which is equivalent, by letting X = @Y, to

2h(6Y, AvdY) = ~Z5(8Y, Y )wdV.
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Taking the inner product of (4.4) with V', we obtain

— S V)GV, V) = 25(h(6Y, AveY), V) = 25(Av6Y, AveY)
— 2] Avev |
So c
—§§(Y> YV)g(=V.V) =2g(AveY, AveY),
which reduces to
STV V)GV, V) = 25(AveY, AveY) > 0.

Since g(Y,Y’) > 0 and g(V, V) > 0 then § > 0, which implies that ¢ > 0. O

This means that, if M is a mixed foliate non-trivial CR submanifold,
i.e., neither an invariant submanifold nor anti-invariant submanifold of a
cosymplectic space form, M can be identified with a sphere, whereas the
Proposition 4.5 in [15] tells us that M is an open ball in C4mM,

Corollary 4.4.3. Let M be a mized foliate CR submanifold of a complex
space form M~™(c). If ¢ < 0 then M 1is a invariant submanifold or anti-
invariant submanifold of a cosymplectic space form M (c).

Proof. From Proposition 4.4.2 we have

c

§§(Y, Y)g(V.V) = 2g(AveY, Av¢Y) > 0.
If ¢ < 0, then

g, Y)g(V,V) <0,

which implies that
gy, Y)g(V.V) =0.
Which implies that
G(Y,Y) =0 or g(V,V) =0,

therefore Y = 0 or V= 0 which implies that TM = {0} or TM+ = {0}.
Hence ¢X = wX or ¢X = ¢X for all X, Y € [(TM) and V € T'(TM™).
Thus M is an invariant or an anti-invariant submanifold of M~"(c). O
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4.5 Parallel ¢ structures

Definition 4.5.1. Let M be an n-dimensional CR submanifold of a complex
m-dimensional cosymplectic manifold M. If Vx¢ = 0 for any X € ['(T'M),
then the f-structure ¢ is said to be parallel.

Definition 4.5.2. Let M be a submanifold of a cosymplectic manifold M
and let _

D=TM® ¢(TM).
If D defines a differentiable distribution of 7'M then M is said to be a generic
submanifold of M.

Proposition 4.5.1. Let M be an n-dimensional generic submanifold of a
complex m-dimensional cosymplectic manifold M. If thef-structure ¢ on M
is parellel, then M is locally a Riemannian direct product M+ x M, where
M is a totally geodesic invariant submanifold of M of a complex dimnsional
n —m and M* is an anti-invariant submanifold of M of a real dimensional
2m —n.

Proof. Let X, Y € I'(T'M) and using the fact that M is a generic submanifold
of M we obtain
oh(X,Y) = Bh(X,Y) + Ch(X,Y) = Bh(X,Y).
By the use of (4.9) and the fact that the f-structure ¢ is parallel we obtain
Bh(X,Y) = —Auy X.

So
Oh(X,Y) = —Auy X. (4.25)

Let Y = ¢Y, then (4.25) reduces to
Oh(X,9Y) = —Auey X = 0.

Hence
h(X,¢Y) = 0.

Similarly using (4.10) we obtain
(Vxw)Y = —h(X,8Y) + Ch(X,Y) = —h(X,¢Y) = 0.
Let Y € ['(D)*. Then
PVxY =Vx(9Y) — (Vxo)Y = 0.

Therefore the distribution D+ is parallel. Similarly D is also parallel. Con-
sequently, M " is a leaf of D and M= is a leaf of D*. Since h(X,¢Y) = 0
for any X,Y € ['(TM), M is totally geodesic in M. Hence M is locally a
Riemannian direct product M T x M*. ]
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4.6 Totally contact umbilical submanifolds

Definition 4.6.1. [15] A submanifold M of M is said to be totally contact
umbilical if

MX,Y) = {g(X,Y) =n(X)n(Y)}u —n(Y)h(E, X) —n(X)h(E,Y)

for X, Y € I'(T'M) and p is the mean curvature vector field of M. If u = 0,
then M is totally contact geodesic.

Theorem 4.6.1. Let M be a contact umbilical CR submanifold of a cosym-
plectic manifold M with § tangent to M. If dim D+ > 1, then M 1is totally
contact geodesic in M.

Proof. We first show that Bu = 0, where p is a mean curvature vector of M.
By Lemma (4.2.4) we have

AuxY = Ay X. (4.26)

for any X, Y € T'(DF). Let M be an almost contact umbilical non-trivial
CR submanifold of a cosymplectic manifold M. Suppose that dimD+ > 1.
Then from (4.26) we have

AwxBp = AupuX. (4.27)
Taking the inner product of (4.27) with X, we obtain
9(AuxBpu, X) = g(AupX, X). (4.28)
Computing the left hand side of (4.28) we obtain

(h(Bp, X),wX)

((9(Bu, X) = n(Bu)n(X))pu — h(&, Bu)n(X)

(& X)n(Bu),wX)

(B, X)g(p, wX) = n(Bp)n(X)g(p, wX)

(X)g(h(§, Bp),wX) —n(Bp)g(h(§, X),wX).  (4.29)

Recall that if M is totally geodesic then h(&, X)) = 0. So (4.29) reduces to

9(AuxBp, X) = g(Bp, X)g(p, wX). (4.30)
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Since n(X) = 0, for any X € I'(D+t). Computing the right hand side of
(4.28), we obtain

9(AupuX, X) = g(h(X, X),wBpu)
= g((g(X, X) = n(X (X)) — h(&, X)n(X)
h(&, X)n(X),wBpu)
= 9(X, X)g(p, wBp). (4.31)

By equating (4.30) and (4.31) we obtain
9(Bpu, X)g(p, wX) = g(X, X)g(p,wBp),
from which follows
9(9(Bp, X)p+ g(p, wBu) X, X) = 0.
From the above relation, we deduce that
9(p,wBp)X + g(Bu, X)pu = 0.

Since dim D+ > 1, we can choose X # 0 such that

g(Bu, X) =0.
Since B, X € D+ and g is a Riemannian along D+ then we have

9(Bu, X) =0,
which implies that By = 0. On the other hand using (4.12) we obtain

9(VxB)u,Y) = g(Ac, X — pA,X,Y)

(Ac, X, Y) + g(AX, ¢Y)
(h(X,Y),Cu) + g(h(X,8Y), 1)
(X,

(

Y)g(Cu, ) + 9(X, 0Y)g(p, 1)
X, 0Y)g(p, 1) (4.32)

Putting Y = ¢X in (4.32), we obtain

9(X, ¢*X)g(p, 1) = 0,

9
9
9
g

which implies that

9(X, X)g(p, 1) — g(wX,wX)g(p, ) = 0.

Since M is non-trivial, we can choose an X € I'(D) such that wX = 0. So
1 =0 and hence M is totally contact geodesic. O
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This result means in fact that a contact umbilical non-trivial CR sub-
manifold M of a cosymplectic manifold M is minimal. Theorem 4.6.1 is a
contact analogous of the one found in [15] for Kéhlerian manifolds.

Lemma 4.6.2. In general, there are no totally geodesic submanifold of a
cosymplectic manifold which are totally umbilical.

Proof. Let M be a totally umbilical submanifold of a cosymplectic manifold
M then for every X, Y € T'(TM)

h(Xv Y) = 9<X7 Y)/%

which implies that
1="h(& &) ==V,

and this does not vanish in general. O]

Remark 4.6.1. V¢£ = 0 if and only if the totally geodesic submanifold M
of a cosymplectic manifold M is totally geodesic. As an example to this, we
have the invariant totally geodesic submanifold.

Theorem 4.6.3. Let M be a contact umbilical CR submanifold of a cosym-
plectic space form M(c) with & tangent to M. Then, the mean curvature
vector i satisfies the following partial differential equations

Vxp =0,
for any X e I'(TM).
Proof. Equating the normal components of (2.10) and (4.7), we obtain
(Vxh)(Y, Z) = (Vyh)(X, Z2) = L{F(8Y, Z)wX —G(6X, Z)wY
—2G(oX, wY)wZ}. (4.33)

Since M is totally contact umbilical, Vx& = 0 and (Vxn)Y = 0, then we
have

(Vxh)(Y, Z) ={g(Y, Z) = n(Y)n(Z)}Vxp. (4.34)
Also since Vy¢& =0 and (Vyn)X = 0, we have

(Vyh)(X, Z2) = {9(X, Z) = n(X)n(2)}Vyp. (4.35)
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Substituting (4.35) and (4.34) into (4.33) we obtain

{9(X,2) =n(Y)n(Z)}V xp —{9(Y,Z) = n(X)n(Z)}Vyu
= 2{?(51/, Z\wX —G(6X, Z)wY — 256X, wY )wZ}. (4.36)

If we let Y = &, then (4.36) reduces to
—{9(X, Z) = n(X)n(2)}Ven =0,
which implies that
Vep = 0. (4.37)
It X\Y,Z#&eT(TM), then (4.36) reduces to
9(X, 2)Vxp = g(V. 2)Vyp = {0V, Z)wX — G(6X, Z)wY
—2G(6 X, wY)wZ}. (4.38)
If X,Z eT(D)and Y € T'(D"), then (4.38) reduces to
~9(X. 2)Vxp = J(GEX, 2)wY),

if and only if

9(X, Z)Vxp = -g(¢X, Z)wY,

>~ 0

if X =7, then
qu =0.

If X e (D) and Y, Z € T(D%), then (4.36) reduces to
9(Y, Z)Vyp =0,

which implies that Vypu = 0 which completes the proof. O

As a corollary to the Theorem 4.6.3, we have the following.

Corollary 4.6.4. Let M be a contact umbilical CR submanifold of a cosym-
plectic space form M (c) with & tangent to M. Then, M is an extrinsic sphere.

Proposition 4.6.5. Let M be a cosymplectic manifold and M be a subman-
ifold of M. If M s a totally contact geodesic CR-submanifold of M, then
the distributions D and D+ are parallel.
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Proof. Suppose that M is totally contact geodesic. Let X € T'(D) and
Z € T(TM). Then

(Vzw)X == VZwX - W(VZX> == —W(VZX).
Using (4.10) we obtain
W(VZX> = —(Vzw)X
— h(Z,6X) — Ch(Z, X)
= 1(Z)M(@X, ) +n(¢X)h(Z, )
— C(Z2)M(X, &) +n(X)h(Z,¢)). (4.39)
Let V € T(T'M%), then taking the inner product of (4.39) with V, we derive
(Z)g(h(¢X,€), V)
2)g(Ch(X, ), V) = n(X)g(Ch(Z,£),V)

(
(2)9(Aw&, ¢X) = 1(Z)g(Aqwé, X)
(X)g(Agw&, Z)

Y

gw(VzX), V) =n
-1

n
-1
0

if Ay & € T(D1). On the other hand for any Y € T'(D*), we obtain
(V29)Y =Vz0Y — ¢(VzY) = —o(VzY).
Using (4.9) we derive

o(VzY) = —=(Vz9)Y
= — Ay Z — Bh(Z,Y)
= —AwyZ = Bm(Z)W(Y, &) +n(Y)MZ,§)) = —Aw Z.  (4.40)

Let X € I'(T'M), then taking the inner product of (4.40) with X, we obtain

9(Auwv Z, X) —g(h(X, Z),wY)

—g(m(X)(Z,8) +n(Z)h(X,§),wY)
—n(X)g(Awy&, Z) —n(Z)g(Auy €, X)
=0,

if A,yX € I'(D). Therefore the distributions D+ and D are parallel. O
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4.7 Curvatures

Let Y = ¢X and Z = ¢Y, then using (4.7) we derive

R(X,$X)3Y = 76X 6Y)X —5(X,6Y)6X — n(X)g(3X. Y )¢
+ (3" X, 3Y)6X — 9(6X,8Y)9°X — 29(3X, $X)3'Y}
= H{F(BX,3Y)X — §(X,3Y)8X —n(X)g(6X, Y )¢
— (X, Y)BX + n(X)g(E, BY )X +G(X, 3Y)X
— p(X)g(BX, GY)E + 29(3X, X)Y — 2(Y)G($X, 3X)¢}
= T{29(6X, 3Y )X — 25(X, Y )X — 20(X)(6X, 6 )¢
+29(3X, 8X)Y — n(Y)g(dX, 6X)E}.

This leads to
R(X,6X,0Y,Y) = g(R(X,$X)¢Y,Y)
= 2{29(5)(, PY)g(X,Y) —29(X, 0Y)g(¢X,Y)

—2(X)g(9X, 0Y )g(&,Y) + 29(¢X, 0 X)g(Y,Y)
—n(Y)g(¢X,0X)g(&,Y)}. (4.41)

Let Y = @Y then (4.41) reduces to
R(X,6X,8Y,Y) = 1{~29(6X,Y)g(X,6Y) +29(6X, 0¥ )g(X,Y)
+29(0X, 0X)g(4Y, 0Y)}. (4.42)
On the other hand,
R(X,0X,0Y.Y) = R(X, 90X, ¢Y,Y)+[h(6X,Y)|*+g(h(X,Y), h(c_bX7(<_bY)))-
4.43

If M is totally contact geodesic, the second fundamental form h reduces to

WX, Y) = —n(Y)h(£, X) = n(X)h(E,Y).

This means that h(¢X,Y) = —n(Y)h(£, ¢X) and h(¢X, ¢Y) = 0. Therefore
(4.43) becomes

R(X,0X,9Y,Y) = R(X,$X,9Y.Y) + [n(Y)||h(¢X, )||*. (4.44)
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If the distribution D @ {¢} is integrable, then, by (4.2.1), h(¢X, &) = 0 and
therefore - o
R(X,8X,8Y,Y) = R(X,6X,3Y,Y). (4.45)

Let H(X) = R(X,¢X,$X,X) and H(X) = R(X,¢X,$X, X) be the holo-
morphic sectional curvatures of M and M, respectively. We therefore have
the following.

Theorem 4.7.1. Let M be a totally contact geodesic CR-submanifold of
cosymplectic manifold M with the structure vector field & tangent to M.
Then, the holomorphic sectional curvatures H and H of M and M, respec-
tively, satisfy

H(X) = H(X), VX el(Da{}), [[X]l,=1,

and the equality holds if the distribution D & {&} is integrable.

We extend the three-dimensional manifold M in Example 4.1.1 to a five-
dimensional manifold.

Example 4.7.1. Let M = {(z,y,z,5,t) € R® 2> = 22 + y?} and consider
the vector fields

e1 = 0z, eg = 2y0x + 2x0y + 0z, e3 = 2x0x — 2ydy, e4 = Ot, and e5 = 0s.

Then, its easy to check that the above vectors are linearly independent at
each point of M. Let g be a Riemannian metric define by

g(ei,e;) =1, for i = j otherwise g(e;, e;) = 0.

Let 7 be the 1-form defined by n(Z) = g(Z, e,) for any Z € T'(T'M). Let ¢
be the (1, 1)-tensor field defined by

5(63) = —éa, 5(62) = €3, 5(64) = €5, 5(65) = —ey, and 5(61) = 0.
Then using the linearity of ¢ and § we have

for any Z,W € I'(TM). Thus for e; = ¢, (6,€,1,7,) defines an almost
contact metric structure on M. Let V be the Levi-Civita connection on M
with respect to the metric g. Then [ey,e;] = 0 for i =1,2,3,4,5. and
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By using (2.4) to compute V we obatain

Ve e1=Vees =V, e3=Vee1 = Ve,e1 = Ve €4 =

Ve, 65 = Veyes = Ve,€5 = V€4 = V€5 = Ve, €1 =

76462 = 76463 = 76464 = 76465 = 76561 = 76562 =0

Vese3 = Vees = Veses = 0. Vo 60 = 162yes + 24(2* — 3)es
Ve,e3 = —24(x% — y?)eg + 16ayes, Ve,en = 8(2? — y?)ey — 481yes.
Veses = 8(2 — y?)es + 48wye,.

From these connections we obtain

(Vesd)ea = Ve, d(ea) — 0(Veye2)

= —24(2* — y*)ey + 162yes — 162yes + 24(x* — y?)ey = 0,
(v@a)ei’) - v625(63) - a(veze3>

= —16ayes — 24(2* — y?)es + 162yes + 24(2* — y?)esz = 0,
(Vesd)ez = Ve,0(e2) — 6(Veses)

8(x% — y*)es + 48zyey — 8(x — y?)es — 48wyey = 0,

(vega)e?) = v635(63) - 5(v6363>

= —8(z% — y*)ey + 48zyes + 8(z* — o?

) 3 =0,
(Ve d)er = (Ve d)es = (Ve )es = (Ve,0)er = (Ve d)ea = (Ve d)es = 0,
(Vesd)es = (Ve 9)es = (Vegd)ea = (Vegdles = (Veyd)er = (Ve d)ez = 0,
(7&@63 = (7@5)64 = (6645)65 = (veﬁ) (vesa)@ = (vesa)ei’) =Y
(Ves9)ea = (Vesd)es = (Vesd)es = 0.

Thus, M satisfies (Vx¢)Y = 0 and Vx¢& = 0 for £ = e;. Hence M is a
cosymplectic manifold.

Consider a submanifold M of M defined by

M= {zy zstcM:z=yz>0}

The tangent space TM = Span{dx — Jy,0x + Jy,0z,0t}. Let vector
fields be

Zy =0z, Zy=0x — 0y Z3s = 0x + dy, and Z, = Ot.

Since e; = 2ydx + 2xdy + 0z, and ez = 2x0x — 2ydy from Example 4.1.1
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then

5 T Y T
= ——— €y — es — e
Yooy ) 2@ ) 2@ 1 )

) X )
dow=-—2>" _ _ ‘
M @+ @ ) T 2 )

So representing Z, and Z3 in terms of e; and using the fact that z = y, we
obtain

1 1 1
=0r—0y=—e3 and Z3=0r+ 0y = —ey — —e;.
2x 2x 2x
Thus,
1 1
[22,23] = @[63,62] = —ﬁes-

Computing V we obtain

V2,21 =Ny 2o =Ny 723 =VN23,7Z4 =N 2,72y =V 2,74 = 0.
7Z3Z1 - VZ3Z4 - 72421 - vZ‘lZQ - 72423 - VZ4Z4 - O

_ 1 — 1
V2,29 = —V6363 = 4—(8(952 — y2)63 + 48xyey) = 12e9,

1 1 ) 1,
V6362 p 2V e; = —@(—48x Jes — E(16x Jes = 8es.

1
—(1627)e3 = 4des.

V2,75 = 4

VZ3Z2 = @V@@g A

1
——(162%)ey = 4de,.

— 1 —
Vot = et =

Using (2.4) to compute V we obtain

NV Zi =VpZi =Ny 2y =V 2y =N 7%=V 7,74 = 0.
VZ4Z1 = VZQZ4 = VZ4Z4 = VZ4ZQ = VZ4Z3 =0.

1 1 1
Vg to = ———=Zy — Z Vg ds = —=Zy — —=Zs.
Vg, 2y = ! Z +— 3 Z Vg, 43 = _3 A ! VA
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Using V and V to compute h we obtain

h(Zl, Zl) - h(ZQ, Z4) - h(Zl, ZQ) — h<Z3, Zl) - h(Zl, Zg) — h(Zg, Z4) —
WZy, Zy) = h(Zy, Z1) = W(Zo, Z1) = W(Zy, Zo) = W(Z4, Z3) = h(Zs, Z4) =

1 3 3
h(ZQ, ZQ) = @63 (@ — 12)62 + @61,
3 1 1
h(Zg, Zg) = (8 + @)63 + 4—$462 — 4_56461'
1 1 1
h(Zs, Z) = (4 + @)63 Tt T At
3 1 1
h(Zg, Zg) = 4_;3463 + (4 + 4—x4)€2 — 4—‘1:461.

0.
0.

Hence, M is not totally geodesic. Also M is not invariant since for Zy, Z3 €

['(TM) we obtain
- 1

0, = —5les) = pes # ——0les) = 0173, %),

Thus ¢[Zs, Zs] # 6| Za, Zs)].
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Chapter 5

Conclusion and Perspectives

In conclusion, our study of Hermitian manifolds has revealed that the condi-
tion h(JX,Y) = h(X, JY) is crucial for the distributions to be integrable un-
der nearly Kaehlerian manifolds. In a cosymplectic manifold D+ is always in-
tegrable without any condition. In a non-Hermitian manifold using a cosym-
plectic manifold as our ambient manifold we saw that h(¢X,Y) = h(X, ¢Y)
was crucial for D @ {£} to be integrable. Theorems 3.2.5 and 4.7.1 give
partially the same result but different in general because they are based on
different hypotheses. If a submanifold of a cosymplectic manifold is invari-
ant then it is also a cosymplectic manifold and all invariant submanifolds are
totally geodesic and the the distribution D @ {£} is integrable on them. We
also obtain crucial result that a mixed foliated CR-submanifold of a cosym-
plectic manifold of a complex space form has a curvature that is greater or
equal to zero and if the curvature is less than zero then a CR-submanifold
of a cosypmlectic manifold of a complex form space is said to be invariant
or anti-invariant. We also saw that in a cosymplectic manifold M if a CR-
submanifold M of M is almost contact umbilical and the dimension of D+ is
greater than one, then M is totally contact geodesic in M and the minimal
submanifold of M. We also saw that in general there are no totally geodesic
submanifold of a cosymplectic manifold which are totally umbilical.

As perspectives, we would like to investigate the null subspaces which
are contact CR in nearly Kéhlerian and cosymplectic manifolds. The study
might need more information on the ambient spaces. The latter must be semi-
Riemannian manifolds. Although the semi-Riemannian concept generalizes
the Riemannian one, some topological obstructions may appear through-
out the study. Therefore, a particular attention must be paid to Semi-
Riemannian nearly Kéahlerian and cosymplectic manifolds before investigat-
ing its null subspaces.
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