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ABSTRACT 

Malaria is an infectious disease caused by one of the parasitic Plasmodium species (Plasmodium 

falciparum, P. vivax, P. knowlesi, P. malariae, P. ovale).  During the host response to malaria 

infection, periods of fever are experienced.  Fever has been reported to decrease parasite growth 

but could be pathogenic as it has been found to increase cytoadherence between parasites and 

endothelial cells.  During fever, host cells express a family of protective heat shock proteins that 

act as chaperones to prevent protein aggregation, and help renature denatured protein, and 

hence maintain cellular homeostasis.  One of the main heat shock proteins expressed is heat 

shock protein 70 (HSP70).  Increased expression of HSP70 has been reported to decrease cell 

cytotoxicity and apoptosis mediated by TNF-α and oxidative stress. 

During a malaria infection, monocytes act as the first line of defence and phagocytose infected 

red blood cells, free parasites and parasite products including the malaria pigment, haemozoin.  

Monocytes also express and secrete a wide range of cytokines, nitric oxide, reactive oxygen 

species and phospholipase A2 to combat the infection.  A dysregulated expression of cytokines 

could lead to severe and cerebral malaria.  As malaria treatment, antimalarial and anti-

inflammatory drugs are given to malaria-infected patients.  They seem to affect the expression of 

cytokines including TNF-α and prevent severe/cerebral malaria but the mechanism by which they 

act is still under debate.  It was of interest to study the effects of antimalarial, anti-inflammatory 

drugs and β-haematin on monocyte HSP70 protein expression during febrile conditions, to see 

whether they could affect monocyte responses through monocyte HSP70 protein expression. 

Human HSP70 was recombinantly expressed, affinity-purified and used to raise antibodies 

against rHSP70 in chickens.  Monoclonal antibodies against rHSP70 were made and expressed 

as single chain variable fragment (scFv), using phage display technology.  J774A.1 and U937 

monocytes were treated with nine antimalarial drugs, namely artemisinin, artemether, artesunate, 

chloroquine, quinine, quinacrine, quinidine, primaquine and pyrimethamine and with four anti-

inflammatory drugs, including danazol, probucol, ambroxol and curcumin at the therapeutic 

concentration of each drug, then heat shocked.  J774A.1 monocytes were fed with β-haematin 

and latex beads, under feverish conditions.  Recombinant antibodies against HSP70 were then 

used to detect HSP70 protein expression in monocyte lysates. 

It was found that chloroquine and artemether increased HSP70 protein expression in monocytes, 

with artemether being the most effective.  Artemisinin, quinine, quinidine, quinacrine and 

primaquine decreased monocyte HSP70 protein expression with quinine and quinacrine being 
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most effective.  Pyrimethamine had no effect on monocyte HSP70 protein expression, and 

artesunate seemed to increase HSP70 expression in J774A.1 cells, but not significantly.  Danazol 

decreased monocyte HSP70 expression, ambroxol and probucol decreased HSP70 expression 

in U937 cells, while ambroxol increased HSP70 expression in J774A.1 cells.  Curcumin 

decreased HSP70 expression in J774A.1 cells and increased HSP70 expression in U937 cells.  

Haemozoin laden monocytes have been reported to lead to a dysregulated production of 

cytokines, and to suppress the functions of monocytes.  Monocytes were incubated with β-

haematin, hemin and latex beads to study their effects on HSP70 protein expression during fever 

conditions and it was found that they all decreased monocyte HSP70 protein expression.  The 

decreased monocyte HSP70 protein expression could not be attributed to the presence of β-

haematin only, and it could have been the result of phagocytosis but this finding needs to be 

explored further to be confirmed. 

There seemed to be an inverse relationship with TNF-α expression and monocyte HSP70 

expression, and a correlation between neopterin secretion and monocyte HSP70 expression with 

the antimalarial drugs.  Antimalarial drugs which increased reactive oxygen species were found 

to increase monocyte HSP70 expression, suggesting a possible link between them.  With the anti-

inflammatory drugs, there seemed to be a correlation between TNF-α expression and monocyte 

HSP70 expression.  This study has therefore shown that antimalarial and anti-inflammatory drugs 

could potentially affect monocyte responses through monocyte HSP70 expression.  However, 

more investigations are required to understand how these drugs can be used in the treatment and 

management of malaria.  Drugs can be chosen depending on whether an upregulation or 

downregulation of monocyte HSP70 is more beneficial.  Future studies might measure the levels 

of cytokines expressed together with monocyte HSP70 expression to determine whether they are 

related. 

The results of this study may be extended to cancer studies.  Most cancer cell lines overexpress 

HSP70, which render them resistant to chemotherapy drugs and to apoptosis.  Drugs that inhibit 

HSP70 expression have been found to render the cancer cells susceptible to chemotherapy drugs 

and prevent the cancer cells from being malignant.  In this study, most of the antimalarial and 

anti-inflammatory drugs inhibited HSP70 protein expression at therapeutic concentrations.  Their 

use could be explored in cancer cells. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction to malaria 

Malaria is caused by Plasmodium parasites from the Apicomplexa phylum (Schofield and Grau, 

2005).  The parasite requires two hosts to complete its life cycle; a mosquito vector (female 

Anopheles) and a vertebrate host such as human or monkey, amongst others (Marti et al., 2004).  

There are five main species of Plasmodium which cause malaria infections in humans, namely, 

Plasmodium falciparum, P. malariae, P. ovale, P. knowlesi, and P. vivax (WHO, 2015b).  P. 

falciparum causes the most virulent form of the disease resulting in the highest mortality and 

morbidity.  Description of malaria symptoms has been reported as early as 2000 BC in many 

ancient manuscripts (Cox, 2010) and in Egyptian mummy remains (Nerlich et al., 2008).  It is 

thought that malaria might have played a role in the selection of the human genome, by selecting 

in favour of mild blood disorders such as thalassemia, glucose-6-phosphate dehydrogenase 

(GP6D) deficiency and haemoglobin C as these protect against severe malaria infection 

(Kwiatkowski, 2005). 

According to the 2016 World Health Organization (WHO) report, there were an estimated 212 

million cases of malaria (Figure 1.1), and 429000 deaths in 2016 (Figure 1.2) worldwide.  Even 

though the incidence of malaria has decreased in the last 15 years, 80% of malaria cases and 

90% of deaths still occur in Sub-Saharan Africa (Figures 1.1, 1.2) (WHO, 2016).  The incidence 

of malaria has decreased about 52% around the world, except for Africa where the decrease was 

only about 17% (WHO, 2015b).  Children under 5 years old are more susceptible to malaria and 

70% of malaria deaths occur in children.  Despite the decreased incidence of malaria, the risk of 

getting malaria remains very high and it was estimated some 3.2 million people were at risk of 

malaria infection (WHO, 2015b).  It is predicted that regions currently devoid of malaria, could be 

exposed to malaria soon due to environmental conditions changing (climate change), and suit 

mosquitoes breeding in those areas (Eckhoff, 2011).  
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Figure 1.1: Malaria cases (millions) by regions as estimated by WHO, 2016 

Malaria cases according to WHO region and to species are depicted.   

 

 

Figure 1.2: Malaria deaths (thousands) by regions as estimated by WHO, 2016 

Malaria deaths according to WHO region, and to species are depicted.   

 

1.2 Biology of malaria 

The infective stage of malaria occurs during mosquito feeds, whereby the female Anopheles 

mosquito deposits sporozoites in skin cells (Greenwood et al., 2008).  The mobile sporozoites 

move across dermal cells into the bloodstream and reach the liver where they infect hepatocytes 

(Amino et al., 2005).  Here, they multiply and develop into merozoites which after schizony, are 

released into the blood where they infect red blood cells, marking the beginning of the erythrocytic 
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stage of malaria (Silvie et al., 2008).  Once in the red blood cells, the parasites produce proteins 

which participate in the remodelling of the red blood cell (Cowman and Crabb, 2006).  The 

parasites replicate and develop through the ring, trophozoite and into schizont erythrocytic stages 

(Figure 1.3). The red blood cells eventually rupture releasing merozoites which can infect other 

red blood cells.  Some of the parasites also develop into gametocytes, the sexual stages of the 

parasite, allowing parasite transmission to a mosquito, hence completing the cycle (Figure 1.3) 

(Tilley and Hanssen, 2008, Cowman and Crabb, 2006).   

 

Figure 1.3: Life cycle of P. falciparum malaria 

The infected female Anopheles mosquito injects the sporozoites into the skin, where they reach the 
bloodstream, and travel to the liver.  The sporozoites infect hepatocytes, differentiate into merozoites which 
are released into the bloodstream to infect red blood cells.  They develop through ring, trophozoite and 
schizont erythrocytic stages.  Some of the parasites reproduce sexually to form gametocytes which are 
taken up by female Anopheles mosquitoes during feeds, completing the cycle (Cowman and Crabb, 2006). 

 

1.3 Malaria pathology 

1.3.1 Symptoms of malaria 
Clinical symptoms of malaria usually appear during the erythrocytic stage of the disease and one 

of the main symptoms is periods of fever.  Fevers and chills occur every 48 hours in P. falciparum 

and P. vivax and every 72 hours in P. malariae infected patients (Oakley et al., 2007, Garcia et 

al., 2001).  In non-immune individuals, symptoms can vary depending if one or multiple organs 

are affected.  Some of the complications arising from malaria may include cerebral malaria and 

severe malarial anaemia (Schofield and Grau, 2005).  Cerebral malaria is usually accompanied 
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by coma with convulsions (Malaguarnera and Musumeci, 2002).  Uncontrolled growth of parasites 

and dysregulation of cytokines may lead to severe malaria (Chua et al., 2013, Malaguarnera and 

Musumeci, 2002).  Severe malaria is attributed to an interplay of factors reducing oxygen supply 

to tissues (Malaguarnera and Musumeci, 2002).   

 

1.3.2  Cytoadherence 

When malaria parasites invade mammalian red blood cells, they remodel the red blood cell shape 

and contents (Silvie et al., 2008).  The parasite expresses proteins on the surface of red blood 

cells which protrude, causing characteristic knob-like structures (Cooke et al., 2000).  These make 

the red blood cells “sticky”, and cause them to adhere to other red blood cells (rosetting), or to 

endothelial cells of blood vessels (Newbold et al., 1999, Goldring et al., 1999).  This process is 

called cytoadherence and blocks blood flow to tissues (Serghides et al., 2003, Carvalho et al., 

2013).  The red blood cell count also decreases due to lysis of the infected red blood cells, leading 

to anaemia.  Together these effects result in reduced oxygen delivery to tissues (Malaguarnera 

and Musumeci, 2002).  Cytoadherence is considered to protect the parasites against clearance 

from the spleen (Weatherall et al., 2002, Heddini, 2002).  Rosetting may allow parasites evade 

immune cells by surrounding the infected red blood cells with non-infected red blood cells and 

hide behind the non-infected red blood cells (Beeson and Brown, 2002). 

The parasite adhesion molecule Plasmodium falciparum erythrocyte membrane protein 1 

(PfEMP1) is usually expressed on the red blood cell surface and has the ability to bind to some 

host receptors including cluster of differentiation 36 (CD36), intercellular adhesion molecule 1 

(ICAM-1), hyaluronic acid (HA) and chondroitin sulphate A (CSA), which allow them to sequester 

(cytoadhere) and disappear from peripheral circulation (Beeson and Brown, 2002, Serghides et 

al., 2003, Rudin et al., 1997, Kwiatkowski et al., 1993, Carvalho et al., 2013).  CD36 receptors are 

expressed in the lungs, kidney and liver, while ICAM-1 receptors are expressed in the brain, blood 

vessels, lungs, and kidney (Beeson and Brown, 2002, Serghides et al., 2003).  CSA and HA are 

expressed in the placenta, and are associated with sequestration of infected red blood cells in the 

placenta (Beeson and Brown, 2002). 

 

1.4 Monocyte/macrophage 

Monocytes/macrophages are immune cells that act as the primary defence against pathogens 

(Gordon and Mantovani, 2011, Hirako et al., 2016).  They show high diversity and plasticity as 

they are present in different tissues, with different morphologies to allow for their respective 

functions (Gordon and Mantovani, 2011).  A common myeloid progenitor for monocytes and 
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neutrophils originates in the bone marrow, and with specialisation, neutrophils and monocytes are 

differentiated.  They are released into the bloodstream, where they circulate for some days before 

entering tissues and augment the tissue macrophage population (Gordon and Taylor, 2005, Van 

Furth, 1982, Shi and Pamer, 2011).   

Monocytes/macrophages are usually spherical in shape, with an oval or kidney-like nucleus and 

a large cytoplasm containing a lot of granules (Figure 1.4) (Rees, 2010).  Their main functions 

include antigen presentation (Figure 1.6), phagocytosis and regulation of the immune response  

(Dale et al., 2008).  They take part in the remodelling and repair of damaged tissues (Gordon and 

Taylor, 2005, Hume, 2006).  Monocytes are non-homogeneous, forming two populations which 

differ with respect to the receptors they express, either CD14 or CD16 or both.  They differ in the 

types of cytokines and chemokines they secrete (Gordon and Taylor, 2005, Hume, 2006, Shi and 

Pamer, 2011).  

 
Figure 1.4: Monocyte/macrophage ultrastructure 

The ultrastructures for monocyte (A) and macrophage (B) are depicted. 
(Http://Www.Clker.Com/Cliparts/B/0/F/1/1206569457439600428Keikannui_Monocyte.Svg.Hi.Png)  

 

 

 

 

A (monocyte) 

lysosome 

phagosome 

nucleus 

B (macrophage) 
phagosome 

pseudopodia 

phagosome 
lysosomes phagolysosome 

http://www.clker.com/Cliparts/B/0/F/1/1206569457439600428Keikannui_Monocyte.Svg.Hi.Png
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1.4.1 Monocyte/macrophage in malaria 

Monocytes/macrophages respond to malaria using different mechanisms: 

• Cytokine responses (Chua et al., 2013) 

• The secretions of nitric oxide (NO), reactive oxygen species (ROS) (Chua et al., 2013), 

and phospholipase A2 (PLA2) (Vadas et al., 1993) 

• Phagocytosis of infected red blood cells, free parasites (Kumaratilake and Ferrante, 

2000), parasite products including glycosylphosphatidylinositol (GPI) and haemozoin 

(Malaguarnera and Musumeci, 2002). 

 
1.4.1.1 Cytokine responses 

When immune cells such as monocytes are exposed to foreign antigens including 

glycosylphosphatidylinositol (GPI), malaria pigment (haemozoin), infected red blood cells, 

parasitic proteins (Malaguarnera and Musumeci, 2002), immune-complexes containing parasite 

DNA (Hirako et al., 2015) and cell debris; the immune cells mount a cytokine response to help 

the body fight the parasitic infection (Malaguarnera and Musumeci, 2002, Bate et al., 1988, Clark 

et al., 1981).  The response appears to have two aspects to it, a pro-inflammatory and an anti-

inflammatory response (Jason et al., 2001). 

 

1.4.1.1.1 Pro-inflammatory cytokines 

Tumour necrosis factor-alpha (TNF-α), also known as cachectin, (Chu, 2013) is a pro-

inflammatory cytokine produced by monocytes/macrophages (Figure 1.6) (Bate et al., 1988, Chu, 

2013).  While having homeostatic functions in healthy cells, it can be pathogenic when expressed 

at high levels (Kalliolias and Ivashkiv, 2016).  The TNF-α promoter region has DNA binding sites 

for NF-ĸB (nuclear factor kappa-light-chain-enhancer of B activated cells) suggesting that 

transcription of TNF-α could activate the NF-ĸB pathway, which is responsible for the activation 

of the pro-inflammatory pathway (Chu, 2013).  TNF-α has been suggested to be a mediator for 

malarial fever, as serum levels correlate with malaria fever (Karunaweera et al., 1992).  TNF-α 

expression may inhibit parasite growth at low concentrations (Taverne et al., 1987), but high levels 

of TNF-α are associated with placental, severe and cerebral malaria (Odeh, 2001, Richards, 1997, 

Kwiatkowski et al., 1989, Rudin et al., 1997, Shaffer et al., 1991, Korner et al., 2010).  It was 

suggested that measuring TNF-α levels could indicate the severity of malaria (Kinra and Dutta, 

2013).  High levels of TNF-α increased ICAM-1 adhesion receptor expression in the brain leading 

to an increased sequestration of P. falciparum infected red blood cells, promoting development 

of cerebral malaria (Korner et al., 2010, Udomsangpetch et al., 2002).  It was reported that high 
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levels of TNF-α increase the attraction of monocytes, lymphocytes and neutrophils to sites of 

infection, and enhance their adhesion to endothelial cells, promoting sequestration of cells in the 

brain microvasculature (Gimenez et al., 2003, Korner et al., 2010).  TNF-α secretions were 

suggested to disrupt the blood-brain barrier which could lead to cerebral malaria (Korner et al., 

2010).  However, when an anti-TNF therapy was given to children with cerebral malaria,  it did 

not treat the children of cerebral malaria, but only inhibited fever in them (Kwiatkowski et al., 

1993).  This showed that TNF-α might contribute to cerebral malaria, but is not solely responsible 

for cerebral malaria (Kwiatkowski et al., 1993).  High levels of TNF-α have been associated with 

severe malaria anaemia (Boeuf et al., 2012, Pathak and Ghosh, 2016, Sarangi et al., 2012) as 

TNF-α enhances apoptosis in bone marrow derived cells, including red blood cells progenitors 

(Odeh, 2001).  TNF-α secretions are reported to enhance erythrophagocytosis and to suppress 

erythropoiesis (Odeh, 2001).  TNF-α levels differ among individuals based on their genetics, 

suggesting that other factors can be responsible for determining whether a person will develop 

uncomplicated or severe malaria (Richards, 1997, Nasr et al., 2014).  TNF-α induces the 

expression of pro-inflammatory cytokines including interleukin 1 (IL-1), interleukin 6 (IL-6) 

(Kalliolias and Ivashkiv, 2016) and interferon-gamma (IFN-Ɣ) (Richards, 1997). 

IL-1β is produced by monocytes/macrophages, natural killer cells, B cells and dendritic cells 

(Richards, 1997, Sims and Smith, 2010), and causes fibrosis, degrades tissue matrix and attracts 

inflammatory cells to sites of infection (Dinarello, 1991, Garlanda et al., 2013).  High serum levels 

of IL-1β were observed in malaria patients when compared to healthy controls (Mshana et al., 

1991, Al-Fadhli et al., 2014, Lyke et al., 2004).  IL-1β expression enhances inflammatory functions 

of neutrophils and macrophages (Mantovani et al., 2011).  Together with TNF-α, IL-1β expression 

may have an immunosuppressive reaction on haematopoiesis, which can be associated with 

severe malarial anaemia (Dinarello, 1991, Richards, 1997, Sarangi et al., 2012).  Both TNF-α and 

IL-1β induce fever in the host, stimulate the production of reactive oxygen intermediates (ROI), 

and increase ICAM-1 receptor expression, promoting cytoadherence in malaria (Richards, 1997, 

Sims and Smith, 2010, Garlanda et al., 2013).  IL-1β stimulates the production of pro-inflammatory 

cytokines, interleukin-2 (IL-2) and interleukin-6 (IL-6) (Riley et al., 1993, Hunter and Jones, 2015). 

Interleukin-6 (IL-6) is another potent pro-inflammatory cytokine secreted by 

monocytes/macrophages and helper T-cells (Figure 1.6) (Sortica et al., 2014, Riley and Stewart, 

2013).  IL-6 has been reported to induce B-cell maturation and to promote T-cell survival (Jang et 

al., 2006, Rincon, 2012).  IL-6 has been reported to be expressed at high levels during a stress 

event such as UV exposure and presence of pathogens (Rincon, 2012).  IL-6 suppresses the 
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production of IFN-Ɣ from T-cells (Rincon, 2012).  High levels of IL-6 have been associated with 

severe malaria (Richards, 1997, Lyke et al., 2004, Keswani et al., 2016, Kern et al., 1989).  

Together with TNF-α, high levels of serum IL-6 can be used as markers for complicated malaria 

(Kern et al., 1989).  Decreasing IL-6 production was found to decrease parasitaemia in a mouse 

model, but reducing IL-6 production did not decrease cerebral malaria symptoms in mice infected 

with P. berghei ANKA (Keswani et al., 2016). 

Interferon-gamma (IFN-Ɣ), also known as type II interferon (Gray and Goeddel, 1982) is produced 

by CD8+, CD4+ T-cells and natural killer cells (Figure 1.6) (King and Lamb, 2015, Riley and 

Stewart, 2013).  Interleukin-12 (IL-12) and interleukin-18 (IL-18) stimulate the production of IFN-

Ɣ by antigen presenting cells (Figure 1.6) (McCall and Sauerwein, 2010, Riley and Stewart, 2013).  

IFN-Ɣ activates monocytes/macrophages, stimulating TNF-α, IL-1, and IL-6 production 

(Malaguarnera and Musumeci, 2002, Richards, 1997).  IFN-Ɣ is important is controlling 

Plasmodium infection both in the liver and in erythrocytic stages (King and Lamb, 2015).  IFN-Ɣ 

stimulates the phagocytic activity of macrophages which help with the clearing of malaria 

parasites (King and Lamb, 2015). While low levels of IFN-Ɣ during early infection are associated 

with severe malaria, high levels of IFN-Ɣ during late infection are also associated with severe 

malaria (Hunt and Grau, 2003, Agudelo et al., 2012).  It has been reported that high IFN-Ɣ levels 

may lead to cerebral malaria, but this is not the sole factor leading to cerebral malaria (Hunt and 

Grau, 2003, Richards, 1997, Malaguarnera and Musumeci, 2002, King and Lamb, 2015, 

Bakmiwewa et al., 2016).  

1.4.1.1.2 Anti-inflammatory cytokines 

Anti-inflammatory cytokines such as interleukin-10 (IL-10) and interleukin-4 (IL-4) are associated 

with malarial infections (Lyke et al., 2004, Richards, 1997).  IL-10 is produced by monocytes, type 

2 helper T-cells (Th2), and B cells (Riley and Stewart, 2013) (Figure 1.6) and seems to suppress 

the production of TNF-α, IL-1 and IL-6 by monocytes (Niikura et al., 2011).  IL-10 inhibits cytokine 

production by type 1 T-helper cells (Th1) and CD8+ cells, and aids in the development and 

maturation of antibodies during malarial infection (Malaguarnera and Musumeci, 2002).  High 

levels of IL-10 decrease the major histocompatibility complex (MHC) class II receptors on 

macrophages, leading to fewer antigen presentations, which could inhibit parasite killing, and 

hence aggravate malaria (Niikura et al., 2011).  IL-10 inhibits the formation of reactive oxygen 

intermediates (ROI); T-cell priming and maturation and the production of IFN-Ɣ by T-cells 

(Malaguarnera and Musumeci, 2002, Couper et al., 2008, Foey et al., 1998, do Rosario and 

Langhorne, 2012).  Hence, it acts as a potent anti-inflammatory cytokine by regulating expression 
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of pro-inflammatory cytokines (Niikura et al., 2011).  High levels of IL-10 have been reported with 

severe malaria, suggesting that inhibition of pro-inflammatory cytokines may inhibit parasite 

clearance by immune cells (Lyke et al., 2004, Couper et al., 2008, Wenisch et al., 1995, do 

Rosario and Langhorne, 2012).  Hepcidin is reported to inhibit iron absorption in macrophages 

(Huang et al., 2014).  High levels of IL-10 induces hepcidin production by macrophages, during 

malaria, which may partly contribute to the development of severe malarial anaemia (Huang et 

al., 2014). 

Interleukin-4 (IL-4) is produced by Th2 cells and inhibits IFN-Ɣ production (Richards, 1997, 

Eisenhut, 2010).  The levels of IL-4 are higher during severe malaria, compared to uncomplicated 

malaria, which may be related to disease pathogenesis (Cabantous et al., 2009), as too much IL-

4 might inhibit phagocytosis of infected red blood cells by macrophages (Perkmann et al., 2005, 

Richards, 1997, Eisenhut, 2010).  However, another study reported that IL-4 levels were 

associated with parasitaemia level, rather than with the degree of malaria severity (Elhussein et 

al., 2015).  It was reported that IL-4 increases vascular cell-adhesion factor molecule 1 (VCAM-

1) expression on endothelial cells, together with TNF-α.  This might promote cerebral malaria by 

enhancing sequestration of infected red blood cells in the brain (Eisenhut, 2010). 

 

1.4.1.2 Neopterin secretion by monocytes 

Neopterin is secreted by IFN-stimulated macrophages (Facer, 1995), and is an important marker 

of immune activation and inflammation (Awandare et al., 2006, Wachter et al., 1989).  Neopterin 

is synthesized from guanosine triphosphate (GTP), whereby GTP cyclohydrolase-1 breaks down 

GTP to 7,8-dihydroneopterin 3’ tri-phosphate, which is then further metabolized to neopterin 

(Werner et al., 1990).  High levels of neopterin were reported to be present in patients’ sera 

infected with malaria (Ringwald et al., 1991, te Witt et al., 2010) and the neopterin levels correlated 

with degree of anaemia experienced during malaria (Biemba et al., 1998, Awandare et al., 2006).  

Cumming et al. (2011) measured the expression of the enzyme GTP cyclohydrolase-1, required 

to synthesize neopterin, during the phagocytosis of β-haematin by IFN-ɣ stimulated monocytes, 

and found an increase in GTP cyclohydrolase-1 mRNA expression, suggesting an increase in 

neopterin secretion.  The study, however found a decrease in GTP cyclohydrolase-1 mRNA 

expression when the monocytes phagocytosed P. falciparum infected red blood cells, suggesting 

a decrease in neopterin production. 
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1.4.1.3 Phospholipase A2 secretion by monocytes 

Phospholipase A2 (PLA2) is an enzyme that participates in the arachidonic pathway.  PLA2 acts 

by cleaving the ester bond at the sn-2 position of phospholipids and the products are used to 

synthesize leukotrienes and prostanoids (Yu et al., 1998, Murakami et al., 2011).  PLA2 is 

expressed and secreted by macrophages (Channon and Leslie, 1990).  High plasma levels of 

circulating PLA2 were found in sera of P. falciparum infected children (Vadas et al., 1993).  PLA2 

levels correlated with parasitaemia (Vadas et al., 1993).  Mice deficient of cytosolic PLA2 were 

infected with P. berghei and contrary to expectation, all mice died suggesting that secreted PLA2 

and not cytosolic PLA2 cause malaria severity (Ishikawa et al., 2004). 

 

1.4.1.4 Nitric oxide (NO) and reactive oxygen species (ROS) production 

TNF-α, IL-1, IL-2 and IFN-Ɣ stimulate nitric oxide (NO) secretion by a wide range of cells, including 

macrophages (Figure 1.6), endothelial cells, neutrophils and neurons (Newton and Krishna, 1998, 

Sobolewski et al., 2005, Stuehr and Marletta, 1987, Kim et al., 1999, James, 1995, Riley and 

Stewart, 2013).  NO is made from L-Arginine by the NO synthase enzyme and is reported to have 

anti-parasitic, anti-tumour activity (Wink et al., 2011, Cartwright et al., 1997, Rockett et al., 1992, 

Legorreta-Herrera et al., 2011, Riley and Stewart, 2013, James, 1995) and anti-inflammatory 

properties (Clark et al., 2003).  It was thought that high levels of NO were associated with severe 

malaria by leading to a dysfunction of neurons, contributing to cerebral malaria (Rockett et al., 

1992); but it was recently found that low bioavailability of NO led to cerebral malaria in mice 

(Gramaglia et al., 2006, Yeo et al., 2014, Barber et al., 2016).  The mechanisms which lead to 

low levels of NO are still being debated on.  It was found that there were fewer NO producing 

monocytes in children infected with P. falciparum, leading to lower levels of NO (Weinberg et al., 

2016).  It was also suggested that nitric oxide is removed from the blood circulation by free 

haemoglobin and by superoxide (Sobolewski et al., 2005). 

Monocytes secrete reactive oxygen species (ROS) during an immune response, and the ROS 

have been shown to kill parasites during malaria (Figure 1.6) (Brinkmann et al., 1984, Percário et 

al., 2012, Riley and Stewart, 2013).  IFN-Ɣ and TNF-α increase the production of superoxide 

anion radicals, which are converted to ROS by the nicotinamide adenine dinucleotide phosphate-

oxidase (NADPH) enzyme (Sanni et al., 1999, Percário et al., 2012).  ROS are important for the 

antimicrobial activity of phagocytes, but excessive amounts of ROS may cause tissue injury.  It 

was thought that ROS might contribute to cerebral malaria, but no relationship between ROS and 

cerebral malaria in murine models have been found (Sanni et al., 1999).   ROS can cause lipid 

peroxidation of  erythrocytes membranes leading to cell lysis (Percário et al., 2012).  Even non-
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infected erythrocytes which were in contact with activated monocytes that released ROS, 

underwent cell lysis, leading to anaemia (Mohan et al., 1995, Aguilar et al., 2014).  

 

1.4.1.5 Phagocytosis 

Monocytes phagocytose Plasmodium infected red blood cells, merozoites and parasite products 

including haemozoin during malaria (Kumaratilake and Ferrante, 2000, Chua et al., 2013).  It was 

reported that monocytes phagocytose infected red blood cells via CD36 receptors (Figure 1.5) 

(McGilvray et al., 2000, Ayi et al., 2005).  Antibodies against merozoite proteins and parasitic 

surface proteins on infected red blood cells, bind to monocyte and mediate phagocytosis of 

infected red blood cells (Figure 1.5) (Chua et al., 2013, Hill et al., 2012, Osier et al., 2014).  

Antibody-mediated phagocytosis has been associated with protection and immunity to malaria 

(Osier et al., 2014). 

 

Figure 1.5: Phagocytosis by monocytes in malaria 
Monocytes clear parasites by antibody-mediated phagocytosis of infected red blood cell and free 
merozoites.  They also phagocytose infected red blood cell via the CD36 receptor (Chua et al., 2013) 
(Http://Www.Clker.Com/Cliparts/B/0/F/1/1206569457439600428Keikannui_Monocyte.Svg.Hi.Png). 
 

 

1.4.1.6 Influence of haemozoin (malaria pigment) on the immune responses 

Mammalian red blood cells (erythrocytes) are highly specialized cells which do not have a 

nucleus.  They comprise primarily of haemoglobin for oxygen and carbon dioxide transport (Gilson 

et al., 2016).  While in the red blood cell, the trophozoite stage of the malaria parasite ingests and 

degrades host erythrocyte haemoglobin avidly, releasing free haem in the cell (Goldberg et al., 

1990, Tilley et al., 2011).  This can be harmful as free haem can cause oxidative damage to the 

parasites (Percário et al., 2012).  The parasite has therefore developed mechanisms to rapidly 

convert the degradation products of haemoglobin into a non-toxic crystalline form, called 

haemozoin or malaria pigment which is stored in its digestive vacuole (Ihekwereme et al., 2014, 

CD36
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Parroche et al., 2007, Tilley et al., 2011).  Haemozoin is a ferriprotoporphyrin IX crystal and is a 

dark brown insoluble pigment.  It was thought that haemoglobin degradation provides the 

parasites with essential amino acids (Goldberg et al., 1990, Ihekwereme et al., 2014, Parroche et 

al., 2007, Giribaldi et al., 2011), but other studies contradicting this hypothesis (Coronado et al., 

2014), have reinforced the notion that haemoglobin is degraded to create a proper functional 

environment for the parasites to develop (Boura et al., 2013). 

During schizont rupture, parasitic haemozoin is released into the blood circulation and is rapidly 

phagocytosed by monocytes (Skorokhod et al., 2014).  However, haemozoin is not completely 

digested leading to an accumulation of haemozoin in phagocytic cells and in various organs such 

as the spleen, liver and brain (Skorokhod et al., 2014, Malaguarnera and Musumeci, 2002).  

Haemozoin seems to modulate monocyte responses (Sun et al., 2016, Skorokhod et al., 2014).  

Incomplete breakdown of haemozoin leads to uncontrolled monocyte functions, such as inhibition 

of repeated phagocytosis, impaired antigen presentation, inhibition of the oxidative burst releasing 

ROS, dysregulation of chemotactic motility and impaired erythropoiesis (Giribaldi et al., 2010, 

Skorokhod et al., 2014, Schwarzer et al., 1992, Schwarzer and Arese, 1996, Malaguarnera and 

Musumeci, 2002). 

Monocytes incubated with either purified Plasmodium haemozoin or synthetic haemozoin 

expressed high levels of cytokine production, including TNF-α, IL-12, and chemokines such as 

macrophage inflammatory protein-1α (MIP-1 α) and MIP-1β (Jaramillo et al., 2009, Giribaldi et al., 

2010).  IFN-Ɣ activation of NO has also been reported to increase in the presence of haemozoin 

(Jaramillo et al., 2009, Olivier et al., 2014, Ranjan et al., 2016).  It was reported that macrophages 

treated with haemozoin only did not stimulate the production of NO, but pre-treated macrophages 

with haemozoin and stimulated by IFN-Ɣ, produced NO (Ranjan et al., 2016).  Other studies have 

however, reported a decrease in IL-2, IL-12 and IFN-Ɣ cytokines following 

monocytes/macrophages phagocytosis of haemozoin, but an increase in IL-10, TNF-α and IL-1β 

expressions, suggesting a role of haemozoin in immunosuppression (Deshpande and Shastry, 

2004, Scorza et al., 1999).  Mandala et al. (2016) reported a decrease in TNF-α and IL-6 

producing monocytes in children with cerebral malaria and severe malaria anaemia.  They 

attributed this immunosuppression to the presence of haemozoin (Mandala et al., 2016).  

Monocytes are less likely to undergo apoptosis when laden with haemozoin. This can increase 

the burden of unregulated immune responses, as dysfunctional monocytes may produce 

uncontrolled amounts of cytokines, leading to disease pathogenesis (Giribaldi et al., 2010, 

Skorokhod et al., 2014, Schwarzer et al., 1992). 
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The accumulation of haemozoin in the spleen may contribute to the development of anaemia, as 

it was found that spleen enlargement occurs during malaria, and that the red blood cell and white 

blood cell counts decrease when β-haematin (synthetic haemozoin) was given to healthy mice 

(Sun et al., 2016).  Recently, it was found that children with severe malaria anaemia had higher 

amounts of haemozoin laden monocytes when compared to children with cerebral malaria 

(Mandala et al., 2016).  Haemozoin laden monocytes/macrophages, have increased production 

of pro-inflammatory mediator macrophage migration inhibitory factor (MIF), which has been 

associated with malarial anaemia as it suppresses production of red blood cells (Awandare et al., 

2007). 

 

Figure 1.6: Immune responses to malaria infection 
Antigen presenting cells (APC) including dendritic cells and macrophages bind to parasitic protein exposed 
on the surface of infected red blood cells, ingest, process them and present antigenic peptides on their 
surface.  T-cells including TH1 bind to the antigenic peptides, and mount an immune response.  TH1 cells 
produce IFN-Ɣ, which activate macrophages.  The activated macrophages express IL-1, TNF-α and IL-6 
inducing fever.  Activated monocytes enhance phagocytosis of infected red blood cells.  IL-2 expressed by 
TH1 cells activates natural killer cells which also produce IFN-Ɣ.  The dendritic cells produce IL-12 and IL-
18 which activate natural killer cells.  IL-10 and TGF-β are produced by monocytes.  Nitric oxide and reactive 
oxygen species are produced by activated macrophages which help in killing malaria parasites.  T 
regulatory cells also secrete IL-10 to modulate the immune response.  Haemozoin-laden macrophages 
secrete pro-inflammatory cytokines.  B cells bind to Th1 cells and make antibodies against the parasites 
and infected red blood cells (Riley and Stewart, 2013). 
 
 
 

APC 

APC 
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1.5 Antimalarial drugs 

Antimalarial drugs are compounds that kill malaria parasites (Blanchard, 1947, Cunha‐Rodrigues 

et al., 2006).  There are different families of drugs namely 4-Aminoquinolines (chloroquine, 

amodiaquine, piperaquine); Amino-alcohols (quinine, quinidine, mefloquine, halofantrine, 

lumefantrine); Sulfonamides and sulfones (sulfadoxine, sulfalene, dapsone); Biguanides 

(proguanil, chloroproguanil); Diaminopyrimidine (pyrimethamine); 8-Aminoquinoline 

(primaquine); Sesquiterpene lactones (artemisinin, arte-ether, artemether, artesunate, 

dihydroartemisinin); naphthoquinone (atovaquone) and antibiotics (azythromycin, clindamycin, 

doxycycline, tetracycline) (WHO, 2010).  Understanding how antimalarial drugs influence 

monocyte HSP70 expression may give an insight on how they affect monocyte responses.  This 

study focused on nine antimalarial drugs and their effects on monocyte HSP70 expression, during 

fever conditions to see whether the antimalarial drugs can affect monocyte responses by 

influencing monocyte HSP70 expression.  The antimalarial drugs used were chloroquine, quinine, 

quinidine, quinacrine, pyrimethamine, primaquine, artemisinin, artemether and artesunate. 

 

 
Figure 1.7: Chemical structures of antimalarial drugs 
The chemical structures of each antimalarial drug used is shown.  (A) Chloroquine (Slater, 1993); (B) 
Quinine (Okombo et al., 2011); (C) Quinidine (Slater, 1993); (D) Quinacrine (Ehsanian et al., 2011); (E) 
Pyrimethamine (Aboge et al., 2008); (F) Primaquine (Miller et al., 2013); (G) Artemisinin (Tilley et al., 2016); 
(H) Artesunate (Tilley et al., 2016); (I) Artemether (Tilley et al., 2016). 
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1.5.1 Chloroquine 

Chloroquine (7-chloro-4(4-diethylamino-1-methylbutylamino) quinolone) (Figure 1.7) has been 

extensively used for the treatment of malaria (Slater, 1993) for decades but with the advent of 

chloroquine resistant strains of parasites, its use is now limited (Thomé et al., 2013).  Chloroquine 

is used together with primaquine to treat P. vivax malaria (Thomé et al., 2013).  As parasites 

invade red blood cells, they actively digest haemoglobin and convert it to haemozoin which is 

deposited in the digestive vacuole (Thomé et al., 2013).  Chloroquine is thought to interfere with 

the formation of haemozoin from haemoglobin digestion (Thomé et al., 2013, Schlitzer, 2008, 

Bray et al., 1999).  Chloroquine was reported to inhibit P. falciparum phospholipase A2 in infected 

red blood cells which could contribute to the antimalarial activity of the drug (Zidovetzki et al., 

1993).  Chloroquine inhibited P. falciparum pyridoxal kinase, suggesting that it could affect the 

parasite metabolism (Kimura et al., 2014). 

Parasites have developed resistance to chloroquine which has reduced its use in malaria (Thomé 

et al., 2013, Schlitzer, 2008, Slater, 1993).  In non-resistant parasite strains, it is speculated that 

chloroquine enters and gets accumulated in the parasite digestive vacuole (Thomé et al., 2013).  

The mechanism by which chloroquine gets accumulated is still debated on.  One hypothesis is 

that unprotonated chloroquine travels into the infected red blood cell, and into the parasite 

vacuole.  Once in the vacuole, chloroquine becomes protonated and cannot leave the parasite 

vacuole, hence becoming trapped (Krogstad and Schlesinger, 1986, Thomé et al., 2013).  In 

resistant parasite strains, the P. falciparum chloroquine resistance transporter (PfCRT), which is 

a trans-membrane protein located in the parasite’s digestive vacuole (Thomé et al., 2013, Fidock 

et al., 2000), is mutated (Chinappi et al., 2010).  One amino acid at position 73 on the trans-

membrane protein is mutated from lysine to threonine (Fidock et al., 2000, Thomé et al., 2013).   

It allows chloroquine to leave the digestive vacuole as fast as it enters, hence preventing 

accumulation of chloroquine (Thomé et al., 2013). 

Chloroquine has been used to treat rheumatoid arthritis and systemic lupus erythematosus due 

to its anti-inflammatory properties (Macfarlane and Manzel, 1998, Thomé et al., 2013).  

Chloroquine inhibits phospholipase A2 activation by causing acidification of lysosomes in platelets 

(Nujic et al., 2012, Nosál et al., 1995, Jančinová and Danihelová, 2000) and in macrophages 

(Bondeson and Sundler, 1998).  Chloroquine inhibits the expressions of TNF-α, IL-6 and IL-1β in 

monocytes (López Suárez et al., 2014, Jang et al., 2006, Bondeson and Sundler, 1998) and in 

splenocytes (Gumede et al., 2009).  Chloroquine inhibited IFN-Ɣ expression from concavanalin 

A-treated splenocytes (Gumede et al., 2009).  Infected mice with P. berghei were given 
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chloroquine, and an increase in reactive oxygen species expressed by the spleen cells was 

reported (Prada et al., 1996).  The drug was reported to inhibit nitric oxide expression in IFN-Ɣ 

stimulated macrophages (Hrabák et al., 1998, Park et al., 1999).  Chloroquine inhibited 

phagocytosis of infected red blood cells (Shalmiev et al., 1996), β-haematin and latex beads 

(Cumming, 2009) by monocytes.    

 

1.5.2 Quinine 

Quinine was isolated from the bark of the cinchona (quina-quina) tree, and has been used to treat 

malaria since 1600s (Okombo et al., 2011).  The drug is still used as the second line of treatment 

for malaria (Achan et al., 2011, Ménard et al., 2013).  Quinine (6-methoxy-(5-vinyl-2-quinuclidinyl)-

4-quinolinemethanol) (Slater, 1993), is a cinchona alkaloid and forms part of the amino-alcohol 

group of antimalarial drugs (Figure 1.7) (Achan et al., 2011, Hellgren et al., 1995).  Quinine is a 

monoprotic base (Silamut et al., 1991) and is reported to be very basic (Achan et al., 2011, 

Hellgren et al., 1995).  Quinine is thought to accumulate within the parasite digestive vacuole and 

interfere with haemozoin formation, causing the parasites to die from haem induced toxicity 

(Ménard et al., 2013, Schlitzer, 2008, Egan et al., 1994).  Quinine exerts its effects on the schizont 

erythrocytic stage of parasites.  Quinine inhibits gametocyte growth in P. vivax and P. malariae 

but not in P. falciparum (Achan et al., 2011).  The drug has been found to inhibit plasmodial 

phospholipase A2 in infected red blood cells (Zidovetzki et al., 1993).  Quinine disrupts rosettes 

between P. falciparum infected red blood cells and non-infected red blood cells (Goldring et al., 

1999) and it was found to decrease cytoadherence between infected red blood cells and 

monocytes (Goldring and Nemaorani, 1999).  Quinine was found to be more potent at inhibiting 

rosetting compared to cytoadherence (Udomsangpetch et al., 1996). 

Quinine resistance has been rarely found and has not progressed over the years (Ménard et al., 

2013).  Resistance has been associated with mutations in the P. falciparum multidrug resistance-

1 (pfmdr-1) (Zalis et al., 1998) and pfcrt genes (Ménard et al., 2013, Okombo et al., 2011).  Both 

pfmdr-1 and pfcrt genes encode for transporter proteins, suggesting that accumulation of quinine 

is not sustained in the parasite vacuole (Okombo et al., 2011).  Another mutation on P. falciparum 

Na+/H+ exchanger-1 gene (pfnhe-1) was identified to cause quinine resistance, but it was found 

present in only endemic areas (Ménard et al., 2013).  The Na+/H+ exchanger was reported to be 

involved in regulating the pH within the parasite’s digestive vacuole (Bennett et al., 2007).  An 

increased PfNHE activity was reported in quinine resistant strains, suggesting that the pH within 

the digestive vacuole is increased (Bennett et al., 2007, Ménard et al., 2013).  This could interfere 
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with the accumulation of quinine within the digestive vacuole (Ménard et al., 2013).  However, the 

mechanism for quinine resistance is still hypothetical and requires more research (Okombo et al., 

2011). 

Quinine was reported to inhibit TNF-α mRNA expression in alveolar macrophages at a 

concentration of 200 µM (Maruyama et al., 1994).  However, another study reported that quinine 

did not affect TNF-α production from macrophages isolated from human volunteers at 

concentration below 100 µM (Picot et al., 1993).  Quinine decreased nitric oxide production by 

LPS-activated macrophages (Lowry et al., 1998) and inhibited phagocytosis of infected red blood 

cells by monocytes (Kwiatkowski and Bate, 1995, Shalmiev et al., 1996).  Phagocytosis of β-

haematin by monocytes was enhanced in the presence of quinine, but phagocytosis of latex 

beads was inhibited by quinine (Cumming, 2009).  GTP cyclohydrolase-1 mRNA expression was 

inhibited by 1.63 fold by quinine in IFN-Ɣ stimulated U937 monocytes, implying that quinine 

inhibits neopterin secretion (Cumming et al., 2011). 

1.5.3 Quinidine 

Quinidine was also isolated from the bark of cinchona tree (Achan et al., 2011).  Quinidine is the 

d-enantiomer of quinine (White et al., 1981, Achan et al., 2011) and was found to be more active 

than quinine due to its stereochemistry (Slater, 1993).  Like quinine, quinidine is a cinchona 

alkaloid, which belongs to the amino alcohol group (Figure 1.7) (Achan et al., 2011).  It inhibits 

the formation of haemozoin and β-haematin (synthetic form of haemozoin) (Egan et al., 1999, 

Silva et al., 1997, Sullivan et al., 1998).  Quinidine was found to be more effective than quinine 

when treating uncomplicated malaria (Phillips et al., 1985, White et al., 1981), and has also been 

used for treating cardiac arrhythmias (Aviado and Salem, 1975). 

Quinidine inhibited the phagocytosis of latex beads (Das and Misra, 1994), apoptotic and necrotic 

cells by mouse macrophages (Ablin et al., 2005).  Quinidine stimulated the production of TNF-α 

in peripheral blood mononuclear cells (Matsumori et al., 1997).   

1.5.4 Quinacrine 

Quinacrine, also known as mepacrine and atabrine, is a heterocyclic three ring compound that is 

used for the treatment of malaria (Figure 1.7) (Chumanevich et al., 2016), giardiasis, tapeworm 

infection, lupus, and arthritis (Ehsanian et al., 2011).  Quinacrine damages DNA by disrupting the 

structure of the DNA.  Quinacrine stacks between DNA base pairs and causes them to intercalate 

(Ehsanian et al., 2011).   
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Quinacrine inhibited phospholipase A2 (PLA2) activity by binding to the membrane phospholipid, 

and intercalating into the membrane which disrupts PLA2 activity in rat liver (Löffler et al., 1985), 

endometrial cells (Ahmed et al., 1992, Ehsanian et al., 2011) and macrophages (Bondeson and 

Sundler, 1998).  Quinacrine inhibited IL-1β expression in mouse peritoneal macrophages 

(Bondeson and Sundler, 1998).  It was reported that quinacrine decreased inducible NO protein 

expression in murine macrophages (Chumanevich et al., 2016). 

 

1.5.5 Pyrimethamine 

Pyrimethamine forms part of the anti-folate category of antimalarial drugs (Figure 1.7) (Cowman 

and Lew, 1989).  It targets the parasite dihydrofolate reductase (DHFR) and dihydropteroate 

synthase (DHPS) enzymes, therefore impairing the parasite synthesis of dihydrofolate (Cui et al., 

2015).  However, parasites quickly developed resistance against pyrimethamine and the drug is 

now used in combination with sulfadoxine (Watkins et al., 1997, Schlitzer, 2008).  Mutations in 

the dhfr gene account for drug resistance, which decrease the uptake of pyrimethamine by the 

parasites (Cowman and Lew, 1989, Müller and Hyde, 2013).  Mutations in parasite transporters 

have also been linked to pyrimethamine resistance, such as in P. falciparum multi-drug resistance 

associated protein-1 (PfMRP1), P. falciparum multi-drug resistance-2 (PfMDR2).   

Pyrimethamine was reported to increase IFN-Ɣ and transforming growth beta (TGF-β) secretions 

in mice infected with P. yoelli (Ramos‐Avila et al., 2007).  Another study found that pyrimethamine 

increased NO secretion in the serum and spleen of infected mice with P. yoelli, hence suggesting 

that pyrimethamine causes oxidative stress which may aid in parasite clearance (Legorreta-

Herrera et al., 2010).  Pyrimethamine has been shown to disrupt rosettes between P. falciparum 

infected red blood cells and non-infected red blood cells (Goldring et al., 1999) and it was found 

that it enhanced phagocytosis of β-haematin by monocytes/macrophages (Cumming, 2009). 

 

1.5.6 Primaquine 

Primaquine is widely used to treat P. vivax infections as it prevents relapse of the disease resulting 

from liver dormant stages (Baird and Hoffman, 2004, Fernando et al., 2011).  Primaquine 

decreases the number of circulating gametocytes (Delves et al., 2012, Baird and Hoffman, 2004).  

The mechanism by which primaquine kills parasites is still poorly understood (Thomas et al., 

2016).  Some studies suggest it could bind to parasite DNA and alter it (López-Antuñano, 1999) 

while others have suggested that primaquine could affect parasite mitochondrial activity or cause 

oxidative stress (Lalève et al., 2016, Ganesan et al., 2012).  Lalève et al. (2016) suggested that 

primaquine could act on Fe-S containing clusters, and cause oxidative stress to the parasite.  



19 
 

Primaquine was found to inhibit pyridoxal kinase, important for the synthesis of vitamin B6, in both 

human HeLa cells and P. falciparum parasites (Kimura et al., 2014), suggesting that primaquine 

could exert its antimalarial activity by affecting parasite vitamin B6 synthesis.  While primaquine 

resistance has been reported, its mechanism still needs to be explored (Thomas et al., 2016). 

Primaquine was shown to disrupt rosettes between P. falciparum infected red blood cells and 

non-infected red blood cells (Goldring et al., 1999).  Primaquine increased IL-10 and TGF-β 

expressions, but decreased TNF-α, IFN-Ɣ and IL-17 expressions in mice which were given auto-

immune encephalomyelitis (Zanucoli et al., 2014).  Primaquine decreased GTP cyclohydrolase-1 

mRNA expression in IFN-Ɣ stimulated U937 monocytes by 1.29 fold, hence decreasing neopterin 

secretion (Cumming et al., 2011).  Primaquine inhibited PLA2 activity in vitro (Authi and Traynor, 

1979).  The drug enhanced phagocytosis of β-haematin in murine macrophages (J774A.1) and 

human monocytes (U937), but inhibited latex bead phagocytosis in those cells (Cumming, 2009). 

1.5.7 Artemisinin derivatives (Artemisinin, artesunate, artemether) 

Artemisinin is a natural product extracted from the Chinese herb Artemisia annua and has long 

been used for the treatment of malaria (Hou and Huang, 2016, Saeed et al., 2016, Balint, 2001).  

Artemisinin is a sesquiterpene trioxane lactone comprising of a peroxidase bridge (Figure 1.7) 

(Hou and Huang, 2016, Balint, 2001).  The peroxidase bridge was reported to be necessary for 

the anti-malarial activity of artemisinin (Balint, 2001).  Artemisinin and its derivatives including 

artesunate, arte-ether and artemether are used as the first line of treatment for malaria, as advised 

by WHO (Van Agtmael et al., 1999, WHO, 2015a).  Artemisinin derivatives are potent antimalarial 

drugs as they act rapidly and clear parasites from the blood within 48 hours (Van Agtmael et al., 

1999).  Artesunate, artemether and dihydroartemisinin (DHA) have better bioavailability and 

efficacy than artemisinin (Shakir et al., 2011, Hou and Huang, 2016).  Artemether and artesunate 

are also known as pro-drugs as they are both metabolized to dihydroartemisinin (DHA), the active 

compound (Shakir et al., 2011).  Although very effective, artemisinin derivatives have short half-

lives, typically 1 hour and are used in combination with other anti-malarial drugs to increase their 

bioavailability.  The mechanism by which artemisinin derivatives works is thought to involve the 

breakdown of the endoperoxide bond, catalysed by iron (Hou and Huang, 2016, Shakir et al., 

2011).  This produces carbon-centred radicals which react with parasite proteins and cause 

oxidative stress (Antoine et al., 2014, Crespo-Ortiz and Wei, 2011).  Artemisinin was also reported 

to inhibit endocytosis in P. falciparum, preventing the parasites from acquiring their nutrients from 

digesting the host cytoplasm (Hoppe et al., 2004).  Artemether decreased cytoadherence between 

infected red blood cells and monocytes very effectively (Goldring and Nemaorani, 1999).  
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Artemisinin derivatives act against all stages of malaria, but are most effective against the 

trophozoite erythrocytic stage (Shakir et al., 2011).  At the trophozoite stage, the parasite is 

actively degrading high amounts of haemoglobin in the erythrocyte, which releases iron that 

activates artemisinin derivatives (Shakir et al., 2011). 

While artemisinin derivatives are very effective, resistance against them has appeared (Tilley et 

al., 2016).  Artemisinin resistance is characterised by slow clearance of parasites (Ariey et al., 

2014, Ashley et al., 2014).  Mutations which were found within a kelch repeat of the C-terminal K-

13 propeller gene, present in PF3D7 parasite strain, were linked to artemisinin-based resistance 

parasites (Tilley et al., 2016, Ashley et al., 2014, Ariey et al., 2014).   

Artemisinin was reported to decrease TNF-α and IL-6 expressions in RAW264.7 murine 

macrophage-like cell line induced by CpG oligodeoxynucleotides (ODN), LPS and heat-killed E. 

coli (Wang et al., 2006).  The inhibition of TNF-α expression was attributed to the inhibition of the 

NF-ĸB pathway (Wang et al., 2006).  In splenocytes, artemisinin decreased IL-2, IFN-Ɣ and IL-6 

expressions (Gumede et al., 2009).  Artemisinin inhibited NO secretion in RAW246.7 murine 

macrophage like cells by inhibiting IFN-β expression in the cells (Park et al., 2012).  Konkimalla 

et al. (2008) reported a decrease in NO expression in monocytes in the presence of artemisinin, 

during malarial infection.  Artemisinin disrupted rosettes between P. falciparum infected and non-

infected red blood cells (Goldring et al., 1999) and decreased the expression of monocyte 

receptors by about 40% (Goldring and Nemaorani, 1999).  Cumming et al. (2011) found that 

artemisinin decreased GTP cyclohydrolase-1 mRNA expression from IFN-Ɣ stimulated U937 

cells.  Artemisinin enhanced β-haematin phagocytosis but decreased latex beads phagocytosis 

by murine and human derived monocytes (Cumming, 2009).  Wenisch et al. (1997) reported an 

inhibition of neutrophil phagocytosis, but an increase in reactive oxygen species expressed by 

neutrophils, in the presence of artemisinin. 

Artesunate decreased TNF-α and IL-6 expressions in mouse peritoneal macrophages, stimulated 

by heat-killed Escherichia coli (E. coli), LPS, CpG Oligodeoxynucleotide (CpG ODN) (Li et al., 

2008) and heat-killed Staphylococcus aureus (Li et al., 2010).  Artesunate also decreased TRL9 

and TLR4 mRNA expressions in a murine macrophage like cell line; RAW264.7 which suggested 

that artesunate inhibited the NF-ĸB pathway (Li et al., 2008).  Li et al. (2010) reported that 

artesunate inhibited TNF-α expression by inhibiting the toll-like receptor 2 (TLR 2) mRNA 

expression and nucleotide-binding oligomerization domain containing 2 (Nod2) expression, which 

led to a NF-ĸB inhibition.  Artesunate decreased NO mRNA expression in murine macrophages 

(Konkimalla et al., 2008).  Artesunate decreased neutrophil phagocytosis but increased the 
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secretion of reactive oxygen species in neutrophils (Wenisch et al., 1997).   Artesunate inhibited 

IL-10 and IFN-Ɣ expressions in splenocytes at high concentration (90µM), but no effect was 

observed at low concentration (3µM) (Gumede et al., 2009). However, another study using an 

artemisinin synthetic derivative SM934, reported an increase in IL-10 production in mouse 

macrophages (Hou et al., 2012). 

Artemether decreased IFN-Ɣ and IL-2 expressions from mice splenocytes, suggesting that 

artemether modulates T cell responses (Wang et al., 2007).  Artemether decreased nitric oxide 

expression in collagen induced arthritic mice (Cuzzocrea et al., 2005).  Mice infected with P. 

berghei, after treatment with artemether produced more reactive nitrogen intermediates and 

reactive oxygen intermediates when compared to untreated mice (Prada et al., 1996).  

Phagocytosis by neutrophils was inhibited by artemether (Wenisch et al., 1997).  There was an 

increased IL-4 production in splenocytes isolated from mice who had tumors, when treated with 

artemether (Farsam et al., 2011). 

 

1.6 Anti-inflammatory drugs 

During a malaria infection, reactive oxygen species, reactive nitrogen intermediates and pro-

inflammatory cytokines are expressed in large quantities to combat the infection (Percário et al., 

2012, Lourembam et al., 2013).  Anti-inflammatory drugs that decrease pro-inflammatory cytokine 

expression and decrease oxidative stress are thought to help reduce inflammation during malaria 

(Percário et al., 2012).  Four anti-inflammatory drugs were chosen in this study, namely danazol 

(Liu et al., 2000), ambroxol (Gillissen and Nowak, 1998), probucol (Fu et al., 2015) and curcumin 

(Reddy et al., 2005) as they decrease oxidative stress, inflammatory cytokines and have 

antimalarial properties (Goldring and Ramoshebi, 1999, Jain et al., 2013, Herbas et al., 2015).  

They could be used as an adjunct therapy to antimalarial drugs during malaria.   Their effects on 

monocyte HSP70, during fever conditions might give an insight on their effects on monocyte 

responses. 

1.6.1 Danazol 

Danazol is a heterocyclic weak androgen (Letchumanan and Thumboo, 2011) which can inhibit 

Luteinizing hormone (LH) and follicle stimulating hormone (FSH).  It has been used to mainly treat 

endometriosis (Surrey and Halme, 1992), benign breast lesion and angioneurotic edema 

(Letchumanan and Thumboo, 2011)  but its use in malaria treatment has been poorly 

documented.  Danazol was reported to decrease cytoadherence between monocytes and infected 
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red blood cells in vitro, suggesting that it could decrease monocyte receptors, and reduce 

sequestration during malaria (Goldring and Ramoshebi, 1999). 

Danazol inhibited TNF-α and IL-6 protein expressions in peritoneal macrophages, by potentially 

decreasing the calcium concentration in the macrophages (Liu et al., 2000).  Danazol inhibited IL-

1β and TNF-α protein expressions from streptococcal activated monocytes (Mori et al., 1990) and 

decreased estrogen receptor gene expression in monocytes (Fujimoto et al., 1995).  Danazol 

suppressed estrogen binding sites on monocytes by competing with estrogen in vitro (Wada et 

al., 1992).  The drug inhibited endometrial cell proliferation by peripheral monocytes, suggesting 

that danazol could affect monocyte growth factors (Braun et al., 1994).  Danazol was reported to 

affect peripheral blood monocyte phagocytosis minimally (Magri et al., 1997). 

 

1.6.2 Ambroxol 

Ambroxol has been widely used to treat chronic lung diseases due to its mucolytic and surfactant 

enhancing properties (Utsugi et al., 2002, Lee et al., 1999).  Ambroxol also has anti-oxidant and 

anti-inflammatory properties due to its ability to scavenge reactive oxygen species (Gillissen and 

Nowak, 1998) but its use in malaria has not been well explored.  Except for Goldring and 

Ramoshebi (1999) who reported a decrease in cytoadherence between monocytes and P. 

falciparum infected red blood cells, no other studies relating ambroxol to malaria were found. 

Ambroxol has a wide range of effects on monocyte responses (Beeh et al., 2008).  The drug 

inhibited platelet-derived growth factor (PDGF) mRNA expression in LPS-stimulated THP-1 

monocytes (Utsugi et al., 2002), inhibited NO, reactive oxygen species secretions and calcium 

concentration in LPS-activated alveolar macrophages (Lee et al., 1999).  Ambroxol was found to 

inhibit histamine production from Con-A stimulated monocytes (Gibbs et al., 1999).  Ambroxol 

inhibited IL-2, TNF-α and IFN-Ɣ production from broncho-alveolar macrophages and peripheral 

blood mononuclear cells (Pfeifer et al., 1997, Bianchi et al., 1990).  Ambroxol inhibited IL-12 

secretion in LPS-activated alveolar macrophages (Aihara et al., 2000) and inhibited IL-1β mRNA 

expression in LPS-activated monocytes (Bianchi et al., 1990, Beeh et al., 2008).  In another study, 

ambroxol was reported to decrease TNF-α, IL-6, hydrogen peroxide, and nitric oxide secretions 

from LPS-activated alveolar macrophages (Jang et al., 2003, Cho et al., 1999).  Ambroxol did not 

have any effect on the phagocytic ability of monocytes (Capsoni et al., 1984). 

1.6.3 Probucol 

Probucol is an anti-oxidant, and an anti-hyperlipidaemia drug that has been used to treat 

cardiovascular diseases (Kume et al., 2016, Fu et al., 2015).  It has been reported to decrease α-
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tocopherol transfer protein present in the liver responsible for modulating vitamin E concentration, 

in sera of hypercholesterolemic patients (Elinder et al., 1995, Levander et al., 1995).  α-tocopherol 

deficient mice were infected with P. berghei and it was found that the mice did not develop 

cerebral malaria (Herbas et al., 2010).  Probucol was also found to decrease parasitaemia in 

infected mice with P. yoelli and P. berghei (Herbas et al., 2015, Kume et al., 2016).  The infected 

mice were protected against malaria and survived the infection, as compared to non-treated mice 

(Herbas et al., 2015, Kume et al., 2016).  Another study reported that probucol decreased the 

effective dose of dihydroartemisinin (DHA) to clear parasites (Kume et al., 2016) and suggested 

that probucol could be used together with DHA to clear malaria parasites.  Probucol, by 

decreasing α-tocopherol,  decreased the level of vitamin E (Herbas et al., 2015).  Free radicals 

could not be scavenged, which might have caused DNA damage in the parasites (Kume et al., 

2016).  Probucol decreased cytoadherence between monocytes and P. falciparum infected red 

blood cells, which might also decrease cerebral malaria (Goldring and Ramoshebi, 1999). 

Probucol has anti-inflammatory properties (Guo et al., 2015).  In diabetes mellitus induced-rabbits, 

probucol decreased TGF-β, NF-ĸB and TNF-α expressions in the atrial tissue (Fu et al., 2015).  

Probucol decreased vascular cell adhesion molecule (V-CAM) receptor expression in human 

vascular endothelial cells (Zapolska-Downar et al., 2001).  The drug decreased hydrogen 

peroxide production from macrophages in pancreatic islet cells, decreasing oxidative stress 

(Fukuda et al., 1995).  IL-1β production was inhibited by probucol in differentiated macrophages 

(Akeson et al., 1991). 

 

1.6.4 Curcumin 

Curcumin (diferuloylmethane) also known as turmeric, haldi and ukon, has been used in Asian 

medicine for a long time (Sharma et al., 2005).  Curcumin, isolated from the roots of the Curcuma 

longa plant has anti-tumorigenic, anti-oxidant, anti-inflammatory, anti-microbial and anti-protozoal 

activity (Reddy et al., 2005, Zhang et al., 2016, Sharma et al., 2005).  Curcumin was found to 

decrease P. falciparum parasitaemia in both chloroquine-susceptible (Cui et al., 2007) and 

chloroquine-resistant strains (Reddy et al., 2005, Cui et al., 2007), by increasing the levels of 

reactive oxygen species in the parasites and inhibiting parasite histone acetylation transferase 

(HAT) (Cui et al., 2007).  HAT is responsible for post-translational modifications on histone, and 

hence responsible for gene expression.  Inhibiting parasite HAT could lead to a dysregulation of 

gene expression and impair parasite growth (Cui et al., 2007).  Curcumin was found to damage 

parasite tubulin which could partially account for the anti-malarial activity of curcumin (Chakrabarti 

et al., 2013).  Curcumin used in combination with primaquine increased survival of P. berghei 
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infected mice and decreased the effective amount of primaquine required to exert its antimalarial 

activity (Aditya et al., 2009).  Curcumin decreased malaria parasitaemia in mice, and resulted in 

100% survival of mice infected with P. berghei malaria when used in combination with arte-ether 

(Reddy et al., 2005, Nandakumar et al., 2006, Memvanga et al., 2013).  Curcumin was reported 

to prevent the breakdown of blood brain barrier and prevent sequestration of infected red blood 

cells in infected P. berghei mice (Dende et al., 2015).  The mice did not develop cerebral malaria, 

but they all died with anaemia since curcumin did not effectively inhibit parasite growth (Dende et 

al., 2015).  Curcumin inhibited brain endothelial cell apoptosis induced by infected red blood cells, 

PBMC and platelets, similar to artesunate (Kunwittaya et al., 2014). Curcumin is being favoured 

as an adjunct therapy in the treatment of malaria due to its immunomodulatory properties and its 

effects in preventing cerebral malaria (Jain et al., 2013, Mimche et al., 2012).   

Curcumin decreased IL-8, IL-1β and TNF-α secretions in LPS-stimulated alveolar macrophages 

(Literat et al., 2001).  Curcumin decreased IL-1, IL-6, IL-18, TNF-α, TGF-β mRNA expressions in 

subcutaneous tissue from mice who were exposed to radiation (Okunieff et al., 2006, Julie and 

Jurenka, 2009).  In the presence of high level of glucose, THP-1 monocytes expressed high levels 

of cytokines including IL-6 and TNF-α, which were inhibited by curcumin (Yun et al., 2011, Julie 

and Jurenka, 2009).  Curcumin inhibited human HAT p300 mRNA expression, which is a 

coactivator of NF-ĸB, and therefore, inhibited cytokine expression by inhibiting the NF-ĸB pathway 

(Yun et al., 2011).  Curcumin was reported to inhibit the NF-ĸB pathway by inhibiting 

phosphorylation of 1ĸBα (Kanitkar et al., 2008, Soetikno et al., 2011, Jobin et al., 1999, Reyes-

Gordillo et al., 2007).  Curcumin decreased NO mRNA expression from cytokine-stimulated 

pancreatic islet cells (Kanitkar et al., 2008).  Curcumin inhibited the pro-inflammatory cytokines 

IL-1, IL-8, TNF-α production in LPS-activated monocytes and alveolar macrophages (Abe et al., 

1999, Bisht et al., 2009) and inhibited IL-12 expression in thioglycolate-stimulated peritoneal 

mouse macrophages (Gao et al., 2004).  Inhibition of IL-12 led to the decrease of IFN-Ɣ and 

increase in IL-4 expressions in LPS-activated macrophages by curcumin (Reyes-Gordillo et al., 

2007).  Curcumin was reported to induce apoptosis in tumor cell lines including breast carcinoma 

cells, ovarian carcinoma cells but not in non-transformed cells including rat lymphocytes and rat 

skin fibroblasts (Varalakshmi et al., 2008).  The drug enhanced T-cell proliferation in mice which 

were challenged with ConA, and contrary to other studies, curcumin was reported to not affect 

NO expression from macrophages isolated from LPS-challenged mice (Varalakshmi et al., 2008). 

Bisht et al. (2009) reported an increase in phagocytosis in mouse macrophages, in the presence 

of curcumin.  Curcumin was reported to increase CD36 receptor expression on human monocytes 
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and increased ROS production in monocytes (Mimche et al., 2012).  Because of its wide range of 

actions, curcumin has been proposed to be a promiscuous agent, but there is not much data 

supporting this idea (Silver, 2011). 

A summary of the effects on the antimalarial and anti-inflammatory effects on the immune 

responses are described in table 1.1. 

 

1.7 Heat shock proteins 

Heat shock proteins (HSPs) are highly conserved proteins, present in abundance in a large variety 

of species, including prokaryotics and eukaryotics (Kregel, 2002, Kiang and Tsokos, 1998).  HSPs 

were first discovered in 1962 in Drosophila melanogaster, when they were accidentally heat 

shocked (Srivastava et al., 1998, Kiang and Tsokos, 1998, Lindquist, 1980).  HSPs are expressed 

when cells are exposed to stress, including heat shock, glucose deprivation, pH changes, 

presence of heavy metals, strong oxidants and UV irradiation to name a few (Figure 1.9).  HSPs 

are important in cell homeostasis as they are involved in the proper folding of newly translated 

proteins and assist with protein translocation across membranes (Nollen and Morimoto, 2002).  

HSPs protect cells against cytotoxicity arising from stress (Jäättelä and Wissing, 1993).  They do 

so by binding to proteins and helping them to regain/retain their proper conformation, and to 

prevent them from aggregating (Nollen and Morimoto, 2002).  They also take part in cell signalling 

pathways, and inhibit apoptosis (Nollen and Morimoto, 2002, Samali and Cotter, 1996, Gabai et 

al., 1997, Mosser et al., 1997). 

HSPs are distinguished by their molecular weights, and are distributed in different cellular 

compartments including the cytosol, nucleus, mitochondria and endoplasmic reticulum (Kregel, 

2002, Kiang and Tsokos, 1998, Murphy, 2013).  High molecular weight HSPs include HSP60, 

HSP70, HSP90 and HSP110 (Kiang and Tsokos, 1998) and low molecular weight HSPs include 

HSP10, HSP27 and HSP40 (Kim et al., 2006).  HSP40 acts as a co-chaperone to HSP70 and 

helps in regulating the functions of HSP70 by controlling its association with other polypeptides 

(Fan et al., 2003).  HSP60 is found within the mitochondrial matrix and is important for the proper 

folding of mitochondrial proteins (Bukau and Horwich, 1998).  HSP110 acts as a co-chaperone to 

HSP60 and regulates its function by regulating the ATPase and substrate-binding activity of 

HSP60 (Bukau and Horwich, 1998, Parcellier et al., 2003).  HSP90 is also a major heat shock 

protein present in abundance in cells (Parcellier et al., 2003, Nathan and Lindquist, 1995), and is 

involved in maintaining cell stability by preventing denaturing of proteins (Parcellier et al., 2003), 

as with HSP70.   However, HSP90 seems to be more selective towards its substrate polypeptide 
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(Picard, 2002, Young et al., 2001).  HSP110 acts as a chaperone by binding to denatured proteins 

and uses ATP to help them regain their proper conformation.  It also helps HSP70 to renature 

misfolded proteins (Mattoo et al., 2013).  HSP27 forms part of the small heat shock protein family 

and has been extensively studied (De et al., 2000).  HSP27 is expressed constitutively in cells 

and is overexpressed during stress conditions.  It has been associated with acquired 

thermotolerance (Landry et al., 1992).  In this study, more focus has been put on HSP70.     

 

1.7.1 Heat Shock Protein 70 (HSP70) Family 

HSP70 proteins are the most conserved of all HSPs (Kregel, 2002).  Thirteen proteins which are 

similar in sequences from the HSP70 family have been reported (Brocchieri et al., 2008, Boswell-

Casteel et al., 2015).  Grp78 and Bip form part of HSPA5; HSPA8 consists of HSC70 and HSP73; 

HSPA9 consists of mortalin and mtHSP70 (Kampinga et al., 2009, Brocchieri et al., 2008, 

Boswell-Casteel et al., 2015).  These proteins are constitutively expressed and have important 

roles in maintaining cell homeostasis (Kampinga et al., 2009).  HSPA5 proteins are found in the 

endoplasmic reticulum and are involved in the proper folding of secretory proteins (Boswell-

Casteel et al., 2015, Gidalevitz et al., 2013).  HSPA8 proteins are found both in the nucleus and 

in the cytosol.  They maintain cell homeostasis by regulating protein translocation and degrade 

proteins which could be harmful (Ziemienowicz et al., 1995, Boswell-Casteel et al., 2015).  HSPA9 

proteins are found mainly in the mitochondria and are responsible for protein translocation in the 

mitochondrial matrix (Kaul et al., 2007, Boswell-Casteel et al., 2015).  The stress inducible form 

of HSP70 is called HSPA1A (Smith et al., 2007) and is the main focus of this study.  HSPA1A is 

referred to as HSP70 in this study. 

HSP70 consists of a 44 kDa fragment, an 18 kDa protein binding domain and a 10 kDa fragment 

(Figure 1.8) (Kiang and Tsokos, 1998, Kumar et al., 2016).  The 44 kDa fragment, after X-ray 

crystallography, has been shown to comprise of four domains forming two lobes, with a deep cleft 

in between them (Kiang and Tsokos, 1998).  It contains the ATPase domain (Kregel, 2002).  The 

18 kDa protein binding domain/substrate binding domain consists of two four-stranded antiparallel 

β-sheets and a single α-helix, as modelled by nuclear magnetic resonance.  The 10 kDa fragment 

forms an α-helix which is followed by a glycine/proline rich segment, close to the conserved EEVD 

sequence (Kiang and Tsokos, 1998).  EEVD residues are important in mediating translation of 

HSP70 during heat shock and are important for substrate binding and refolding.  The EEVD 

domain interacts with the co-chaperone Hop (HSP70-HSP90 organising protein) during protein 

folding (Matambo et al., 2004, Brinker et al., 2002). 
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Constitutive HSP70 (HSC70) is about 73 kDa and is always expressed in cells (Kregel, 2002).  

Inducible HSP70 (HSPA1A) is about 72 kDa and is expressed when cells undergo stress.  The 

HSP70 gene is about 2440 bp in size with a 212 bp leader sequence and a 242 bp 3’ untranslated 

region (Kregel, 2002, Smith et al., 2007).  Induction of HSP70 during a stress event involves heat 

shock transcription factors (HSFs) binding to heat shock element (HSEs) in the DNA (Figure 1.9).  

After HSP70 is expressed in sufficient amounts, it binds to HSF preventing it from binding to HSE, 

therefore, acting as a negative regulator of HSP70 expression (Figure 1.9) (Kiang and Tsokos, 

1998, Abravaya et al., 1992).  Following a stressful condition, such as heat shock for a transient 

amount of time, inducible HSP70 expression (HSPA1A) increases tolerance in cells to the stress 

(Kregel, 2002).     

 

Figure 1.8: Schematic diagram of HSP70/HSC70 structure 

The 3-D structure of HSP70/HSC70 is shown in (A), where the differences between HSP70 and HSC70 
are shown, based on the amino acid sequence of 10 kDa domain.  (B) shows the domains of HSP70, 
containing the ATPase domain, and a peptide binding domain.  The 10 kDa C-terminal domain with the 
highly conserved EEVD sequence is shown (Kiang and Tsokos, 1998). 
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Figure 1.9: Induction of inducible HSP70 

Different stimuli activate the expression of HSP70, causing the inactive HSP/HSF complex to dissociate, 
allowing the HSF to bind to HSE in the nucleus and initiate HSP70 production.  HSP70 then binds to 
denatured protein and renatures them (Kregel, 2002). 

 

1.7.2 Intracellular HSP70 and monocyte/macrophage 

Intracellular HSP70 has been reported to be anti-inflammatory due to its inhibitory effects on pro-

inflammatory cytokines (Borges et al., 2012).  Monocytes/macrophages have the highest 

expression of inducible HSP70 when compared to other leukocytes including neutrophils (Oehler 

et al., 2001).  HSP70 inhibited NO secretion from IFN-Ɣ stimulated murine peritoneal 

macrophages (Kim et al., 1999).  It was reported that increased HSP70 expression decreased 

the level of mRNA expressions of TNF-α, IL-1β, IL-10 and IL-12 in LPS-activated human 

peripheral blood monocyte-derived macrophages (Ding et al., 2001).  Another study reported that 

HSP70 increased IL-10 protein expression in macrophage rich peritoneal exudate cells (Yang et 

al., 2013).  Increased production of heat shock factor-1 (HSF-1) in RAW264.7 macrophages 

increased the mRNA expression of IL-10, suggesting that increased HSP70 stimulates IL-10 

production (Zhang et al., 2012).  Post heat shock, increased HSP70 expression was found to 

inhibit IL-12 mRNA expression in both LPS-activated murine peritoneal macrophages and in LPS-

activated murine macrophage like cells (RAW264.7) (Li et al., 2001).  Li et al. (2001) suggested 

that HSP70 could inhibit these pro-inflammatory cytokines by inhibiting the NF-ĸB pathway since 

the latter is responsible for the expression of TNF-α, IL-1, IL-8 and IL-12.  NF-ĸB is activated when 

its inhibitor I-ĸB is degraded and it was suggested that HSP70 prevents degradation of the I-ĸB 

inhibitor (Li et al., 2001).  In vivo inhibition of TNF-α and IL-6 expressions by HSP70 were reported 
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in mice sera, who were challenged with high doses of TNF-α (Van Molle et al., 2002).  Increased 

expression of HSP70 was reported to inhibit PLA2 secretion in TNF-induced WEHI cells, 

supporting the notion that intracellular HSP70 is anti-inflammatory (Jäättelä and Wissing, 1993), 

however another study reported that HSP70 activated PLA2 in vitro (Mahalka et al., 2011).  

Monocyte responses to increased HSP70 expression in monocytes/macrophage are summarised 

in Figure 1.10.   

 

Figure 1.10: Summary of monocyte responses due to increased intracellular monocyte HSP70 
expression 

HSP70 inhibits expressions of pro-inflammatory cytokines including TNF-α, IL-1, IL-6, IL-12 and reduces 
oxidative stress by decreasing reactive oxygen species and nitric oxide expression.  The anti-inflammatory 
cytokine IL-10 expression is enhanced by HSP70.  The effect of HSP70 expression on neopterin secretion 
is unknown.          Represents an increased expression;        represents a decreased expression. 

 

1.7.3 Extracellular HSP70 and immune responses 

While HSP70 is considered an intracellular protein, it was also found to be secreted by monocytes 

(Asea et al., 2000).  Extracellular HSP70 was thought to act as a cytokine, affecting other cells 

and stimulating the production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β and 

NO secretion in monocytes (Asea et al., 2000, Panjwani et al., 2002).  Contradictory studies have, 

however reported that the cytokine functions of HSP70 could have been a result of the use of 

endotoxin contaminated HSP70 (Tsan and Gao, 2004).  There is still a debate on whether 

extracellular HSP70 is anti-inflammatory or pro-inflammatory. 

Endotoxin free HSP70 was expressed in insect cells, which was used to study whether 

extracellular HSP70 exerted pro-inflammatory effects (Zheng et al., 2010).  Mouse splenocytes 

were incubated with the endotoxin free HSP70, and it was found to increase the protein 
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expression of pro-inflammatory cytokines including TNF-α, IL-12 and IFN-ɣ.  It was also observed 

that the anti-inflammatory cytokine IL-4 protein expression increased with the addition of 

extracellular HSP70, but more focus was put on the pro-inflammatory cytokines (Zheng et al., 

2010).  U937 monocytes transfected with HSP70 cDNA, overexpressed HSP70 and secreted 

HSP70 in the cell medium (Lee et al., 2006).  Non-transfected U937 cells were incubated with  

the cell medium containing the extracellular HSP70, and it was found that they had an increased 

expression of matrix mettaloproteinase-9 (MMP), showing that extracellular HSP70 has pro-

inflammatory properties (Lee et al., 2006).  Campisi et al. (2003) found that when rat macrophages 

and splenocytes were incubated with extracellular HSP70, higher protein expressions of TNF-α, 

IL-6, IL-1β and NO were observed.  These studies suggest that extracellular HSP70 acts as a 

danger signal to other cells and activate the immune responses (Campisi et al., 2003). 

There is a continuous debate on whether extracellular HSP70 is pro-inflammatory or anti-

inflammatory.  Ferat-Osorio et al. (2014) found that extracellular HSP70 inhibited TNF-α and IL-6 

expression in TLR-activated monocytes, hence, acted as anti-inflammatory.  Endotoxin free 

HSP70 was used in the assay.  Luo et al. (2008) reported an increased level of the anti-

inflammatory cytokine IL-10 protein expression in fibroblast-like synoviocytes when incubated 

with extracellular HSP70.  Another study reported a decrease in pro-inflammatory cytokines 

including TNF-α and IFN-ɣ in bone marrow derived murine dendritic cells incubated with 

extracellular HSP70 (Borges et al., 2013).  

 

1.7.4 Heat shock and HSP70 expression during malaria 

Periods of fever (>37°C) are experienced during malaria and have been reported to kill parasites 

(Kwiatkowski, 1989, Long et al., 2001).  Fever is a defence mechanism induced by the body in 

response to infection and damage (Singh and Hasday, 2013).  Fever causes heat shock in both 

the malaria parasites and the host (Oakley et al., 2007, Polla, 1991).  In the human host, during 

a malaria infection, host HSP70 has been reported to be expressed on the cell surface of infected 

red blood cells (Banumathy et al., 2002).  Natural killer cells recognise the exposed HSP70 and 

secrete granulozyme B which is cytotoxic for the parasites (Bottger et al., 2012).  Febrile episodes 

which are associated with periods of fever have been reported to aid malaria parasites advance 

from ring to trophozoite erythrocytic stage  (Pavithra et al., 2004, Gravenor and Kwiatkowski, 

1998).  Febrile episodes stimulated the expression of Plasmodium falciparum HSP90 (PfHSP90), 

which was found to be important in allowing the parasites to progress in the infection cycle.  

Inhibition of PfHSP90 led to a decrease in the number of parasites transiting from the ring stage 

to trophozoite stage (Pavithra et al., 2004).  It was reported that fever increased the production of 
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genes responsible for causing cytoadherence and rosetting including Var genes (Oakley et al., 

2007) and PfEMP1 (Udomsangpetch et al., 2002) in Plasmodium parasites that were heat 

shocked (Oakley et al., 2007, Udomsangpetch et al., 2002).  Udomsangpetch et al. (2002) 

reported increased cytoadherence of infected red blood cells to purified CD36 and ICAM-1 

receptors with heat shock, when compared to red blood cells that were not heat shocked.  

Increased adherence of infected red blood cells to mouse fibroblasts transfected with CD36 or 

ICAM-1 was shown with heat shock, when compared to non-heat shock conditions 

(Udomsangpetch et al., 2002).  It was reported that infected red blood cells were less deformable 

than healthy red blood cells with heat shock (Marinkovic et al., 2009).  Fever was associated with 

increased phosphatidylserine expression on P. falciparum infected red blood cell membrane, 

which could be associated with increased cytoadherence during malaria (Pattanapanyasat et al., 

2010).  These findings suggested that fever could contribute to the pathogenesis to malaria.  The 

expression of P. falciparum HSP70 (PfHSP70) was enhanced in heat shocked P. falciparum 

parasites (Oakley et al., 2007) and was present in all stages of parasite development, suggesting 

that PfHSP70 could play a role in parasite survival during heat shock (Matambo et al., 2004).  

PfHSP70 maintains parasite homeostasis by preventing protein aggregation during heat shock, 

and to maintain parasite proteins in their native forms (Przyborski et al., 2015). 

 

1.7.5 Effects of antimalarial, anti-inflammatory drugs, and β-haematin on HSP70 

expression 

Quinacrine was reported to inhibit HSP70 protein expression in HeLa cells (Neznanov et al., 

2009).  The study showed that quinacrine inhibited heat shock factor (HSF) from initiating 

transcription of HSP70 (Neznanov et al., 2009, de Billy et al., 2009).  Danazol decreased HSP70 

expression in endometrial cells, as measured by immunostaining (Ota et al., 1997) and probucol 

decreased HSP70 protein expression in the left atrial tissue of alloxan-diabetic induced rabbits 

(Fu et al., 2015).  Curcumin induced expression of HSP70 in leukemia cells via the translocation 

of HSF to the nucleus, allowing it to bind HSE and induce transcription of HSP70 (Teiten et al., 

2009) and increased HSP70 expression in rat cortical cells (Xia et al., 2015).  Haemozoin, the 

natural form of β-haematin, increased HSP27 in monocytes but not HSP70 (Prato et al., 2010), 

while a recent study reported that haemozoin reduced the expression of HSP70 in human 

leukemia cells (Kempaiah et al., 2016).  The effects of the listed antimalarial and antimalarial 

drugs on monocyte HSP70, during malaria fever are unknown.  The effects they have on other 

cell lines’ HSP70 could be used as a reference to determine whether similar results are being 
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obtained in this study.  Table 1.1 shows a summary of the effects of the antimalarial and anti-

inflammatory effects on HSP70. 

Table 1.1: Summary table showing the effects of the antimalarial/anti-inflammatory drugs on 

immune responses and on HSP70. 

Antimalarial/anti-

inflammatory drugs 

Effects on immune responses Effects on HSP70 

Chloroquine        TNF-α, IL-6, IL-1β 

      ROS 

No info 

Quinine       TNF-α, NO  

Quinidine       TNF-α No info 

Quinacrine       TNF-α, IL-1β, NO  

Pyrimethamine       IFN-Ɣ, TGF-β, NO No info 

Primaquine      IL-10, TGF-β 

     TNF-α, IFN-Ɣ, IL-17 

No info 

Artemisinin       TNF-α, IL-6, IL-2, IFN-Ɣ, IL-6, NO 

     ROS 

No info 

Artesunate       TNF-α, IL-6, NO, IL-10, IFN-Ɣ No info 

Artemether      IFN-ɣ, IL-2, NO 

     ROS, IL-4 

No info 

Danazol       TNF-α, IL-6, IL-1β  

Ambroxol      NO, ROS, IL-2, TNF-α, IFN-ɣ, IL-12, IL-1β, IL-6, NO No info 

Probucol       TGF-β, TNF-α, hydrogen peroxide, IL-1β  

Curcumin       IL-8, IL-1β, TNF-α, IL-10, IL-6, IL-18, TGF-β, NO, IL-12 

     IL-4 

 

 

1.8 Aims of the study 

Antimalarial, anti-inflammatory drugs and β-haematin all have immunomodulatory functions in 

malaria, but their effects on monocyte inducible HSP70 (HSPA1A) expression, during fever have 

not been well documented.  It was hypothesized that monocyte HSP70 expression will give an 

overview of how the drugs and β-haematin might affect monocyte responses.  This study aims to 

recombinantly express HSP70 and to raise antibodies against human HSP70 so that they can be 

used to study the effects of antimalarial and anti-inflammatory drugs, at therapeutic 

concentrations, on monocyte HSP70 protein expression under fever-like conditions.  The effect 

of β-haematin (malaria pigment) on monocyte HSP70 expression will also studied to see if affects 

monocyte responses through HSP70 protein expression. 
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Intracellular HSPA1A, the inducible form of HSP70 was studied as it is expressed during stress 

conditions such as fever and its upregulation or downregulation could give an insight on how the 

drugs and β-haematin affect the monocytes. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Introduction 

This chapter describes the biochemical, immunochemical methods, molecular biology 

techniques, phage display and cell culture methods used in this study. 

 

2.2 Materials and reagents 

All reagents were from Sigma-Aldrich (Missouri, USA), unless specified otherwise.  They were of 

analytical grade.  Taq polymerase was obtained from Takara Bio Inc (Japan, Kusatsu).  

Restriction endonucleases were obtained from Thermo Scientific Fisher (Massachusetts, USA).  

Secondary antibodies were bought from Jackson ImmunoResearch Laboratories Inc 

(Pennsylvania, USA) 

 

2.3 Sub-cloning of human HSP70 

The plasmid pcDNA5/FRT/TO HIS HSPA1A was a gift from Harm Kampinga (Addgene plasmid 

# 19537) (Cambridge, Massachusetts) and pET-28a plasmid was obtained from Novagen 

(Damstadt, Germany).  The plasmids were isolated using ThermoScientific GeneJET plasmid 

mini-prep kit (www.thermofisher.com). They were digested with BamHI and NotI restriction 

endonucleases, gel purified using the ThermoScientific GeneJET gel extraction kit 

(www.thermofisher.com) and these were ligated using T4 ligase, following the manufacturer’s 

instructions (www.thermofisher.com).  Competent JM109 and BL21-(DE3) E. coli cells were 

transformed with the ligation mix, and successful transformations were screened using restriction 

digests using the same set of restriction endonucleases (Sambrook et al., 1989).  All digestions 

were viewed on 1% (w/v) agarose gels (Sambrook et al., 1989). 

 

2.4 Expression, purification of rHSP70 and assay for ATPase activity 

Recombinant expression of HSP70 from the pET-28a-HSP70 plasmid was carried out in BL21-

(DE3) E. coli cells.  The cultures were grown in Luria-bertani (LB) media [10 g/L Bactotryptone, 5 

g/L Yeast extract, 10 g/L NaCl, 2 g/L glucose, pH 7.2], terrific-broth (TEB) [1.2% (w/v) Bacto-

tryptone, 2.4% (w/v) yeast extract, 0.4% (v/v) glycerol, 1% (v/v) potassium-phosphate buffer, pH 

7.2], or 2xYT media [5 g/L NaCl, 16 g/L tryptone, 10 g/L yeast extract, pH 7.2], containing 50 

µg/ml kanamycin.  The cultures were grown at 37°C or 20°C and induced with 0.3 mM isopropyl 

thioglucopyranoside (IPTG), when they reached an OD600 0.4-0.6.  Terrific broth (TEB) was also 

used for auto-induction of rHSP70 as described by Studier (2005).  The cells were collected by 

http://www.thermofisher.com/
http://www.thermofisher.com/
http://www.thermofisher.com/
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centrifugation at 4000 xg for 10 min.  Cells were lysed either by freeze-thaw (4 cycles), lysozyme 

lysis (1 mg/ml, 1 h, 30°C) or sonication using a Virsonic 60 sonicator (8 W, 3x30 s) on ice.  The 

lysate was centrifuged at 12000 xg for 20 min at 4°C.  The his-tagged recombinant HSP70 was 

affinity-purified from soluble cell extract using a TALON® resin according to manufacturer’s 

instructions (www.clontech.com).  Care was taken to make sure that only pure HSP70 was 

isolated, by running SDS-PAGE gels and doing corresponding western blots.  Since the 

recombinant HSP70 was not used in cell assays, the level of endotoxin was not measured.  

Endotoxin level could be measured using the LAL assay to ensure its purity.  The malachite green 

assay was used to measure the ATPase activity of rHSP70.  The hydrolysis of ATP releases a 

free inorganic phosphate that forms a phospho-molybdate complex, which reacts with malachite 

green to give a colour change, that can be detected using the spectrophotometer at 650 nm 

(Rowlands et al., 2004).  The procedure was adapted from Rowlands et al. (2010).  Kinetic 

analysis was carried out using a non-linear regression fit of the data values to the Michaelis-

Menten equation.  

 

2.5 Gel-filtration chromatography 

The purity and oligomeric state of rHSP70 were analysed using gel-filtration chromatography on 

a Sephacryl S200 column (~309 ml volume).  The column was pre-equilibrated with two column 

volumes of the buffer [50 mM NaH2PO4 150 mM NaCl, pH 8.0].  5 mg of rHSP70 in 4 ml of buffer 

was applied to the column and 2 ml fractions were collected.  The flow-rate was 1 ml/min.  The 

column was calibrated using appropriate molecular weight markers (6 mg blue dextran (2000 

kDa), and 15 mg each of sheep IgG (150 kDa), bovine serum albumin (68 kDa), ovalbumin (45 

kDa), and myoglobin (18.8 kDa). 

 

2.6 Electrophoresis, western blotting and determination of protein concentration 

Proteins were resolved on reducing SDS-PAGE gels (7.5%, 10%, 12.5%) (Laemmli, 1970), and 

stained with Coomassie Brillant Blue R-250 (Sigma-Aldrich) staining solution.  After running SDS-

PAGE, the proteins were electrophoretically transferred overnight at constant 40 mA to a 

nitrocellulose membrane (Goldring, 2015a).  The membrane was blocked with 5% (w/v) non-fat 

milk in phosphate-buffered saline (PBS) [NaCl (8 g/L), KCl (0.2 g/L), NaH2PO4 (1.02 g/L), KH2PO4 

(0.2 g/L), pH 7.2], containing 0.05% (v/v) Tween-20.  The blots were probed with mouse anti-His 

tag IgG antibody, Merck BioSciences (Damstadt, Germany) (1:4000), and goat anti-mouse HRPO 

IgG as secondary antibody (1:1000).  The western blots were viewed using the VersaDoc™ gel 

http://www.clontech.com/
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documentation system, purchased from BioRad (California, USA).  Protein concentrations were 

measured using the Bradford assay, adapted from Bradford (1976) (Goldring, 2015b). 

 

2.7 Antibody production in chickens 

2.7.1 Chicken immunization and IgY isolation 

Standard protocols were followed to raise chicken polyclonal serum against rHSP70 (Goldring et 

al., 2005, Krause et al., 2015).  Briefly, 50 µg of rHSP70 was administered intramuscularly to two 

chickens.  The rHSP70 was mixed 1:1 in Freund’s adjuvant.  The first immunisation was done in 

Freund’s complete adjuvant, while incomplete Freund’s adjuvant was used for booster 

immunisations.  Ethical approval for this study was granted by the Animal Research Ethics 

Committee of the University of KwaZulu-Natal (004/15/Animal).  Eggs were collected daily and 

stored at 4°C, until used.  IgY isolation was done according to Goldring and Coetzer (2003), based 

on a modification of the method described by Polson et al. (1980). 

 

2.7.2 Direct ELISA 

For the IgY titre of eggs post immunisation, Nunc Maxisorp ELISA plates were coated with 1 µg/ml 

of rHSP70 in coating buffer [0.1 M NaHCO3) pH 9.6], overnight at 4°C.  Un-bound rHSP70 was 

removed by washing, and the wells were blocked with 0.5% (w/v) BSA-PBS for 1 h, then washed 

thrice with 0.01% (v/v) PBS-T.  25 µg/ml of IgY was added to each well, and incubated (2 h, 37°C), 

then washed as above.  Rabbit anti-chicken IgY HRPO antibodies were added to each well 

(1:10000), and allowed to bind (1 h, 37°C).  The plate was washed again, and the substrate 

[0.05% (w/v) ABTS; 0.0015% (v/v) H2O2; 0.15-M citrate phosphate buffer, pH 5.0] was added and 

left to develop in the dark for 30 min. The plates were read in a FLUOstar OPTIMA ELISA-plate 

reader (BMG, LabTECH, Ortenberg, Germany) at 405 nm.  Specific antibodies from the IgY pool 

were isolated and purified from AminoLink™ resin, as per the manufacturer’s instructions 

(www.thermofisher.com) (Krause et al., 2015).  The affinity-purified anti-rHSP70 antibodies were 

compared to a mouse monoclonal anti-HSP70 antibody, clone number C92F3A-5 (StressMarq 

Biosciences, Victoria, Canada). 

2.8 Selection of scFv against rHSP70 

2.8.1 Nkuku® library 

The Nkuku® library, derived from chicken bursa, was developed by Van Wyngaardt et al. (2004).  

The naïve library consisting of about 2x107 clones was merged with a sub-library consisting of 

amino acids that code for the third H chain complementarity region 3 (CDR3) so that the number 

of clones was increased to about 2x109.  Phagemids were used as the vector for display since 

http://www.thermofisher.com/
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they have high transformation efficiencies.  They are packaged within phage particles that require 

helper phages, M13K07 to provide the structural proteins (Hoogenboom et al., 1998). 

 

2.8.2 Selection of specific clones 

2.8.2.1 Panning 

Panning methodology was adapted from Van Wyngaardt et al. (2004), with some modifications.  

Briefly, four consecutive rounds of panning were carried out in immuno-tubes (Nunc Polysorp) 

coated with affinity-purified rHSP70 (100-12.5 µg/ml) in coating buffer, overnight at 4°C.  The 

immuno-tubes were blocked with either 2% (w/v) skimmed milk-PBS, or 3% (w/v) BSA-PBS or 

used alternatively in subsequent rounds of panning.  After blocking, the immuno-tubes were 

washed with 0.1% (v/v) PBS-T. 1012 phage particles were pre-incubated in the blocking buffer for 

30 min at room temperature (RT), then added to the tubes and incubated for 2 h at RT.  After 

incubation, the tubes were washed with PBS-T and PBS (20x each).  Logarithmic phase TG1 

Escherichia coli (E. coli) cells were either infected by on column-bound phages (on column 

infection) or by eluted phages (off column infection).  The infected cells were grown on TYE-

Ampicillin agar plates [15 g/L agar; 8 g/L NaCl; 10 g/L Tryptone; 5 g/L yeast extract; 100 µg/ml 

Ampicillin] overnight at 30°C, and phages were rescued by PEG precipitation as described by 

Van Wyngaardt et al. (2004). 

 

2.8.2.2 Polyclonal phage ELISA 

Phages were isolated from every round of panning, and used in polyclonal phage ELISA.  The 

ELISA protocol was adapted from Van Wyngaardt et al. (2004), with some modifications.  Briefly, 

the wells of an ELISA plate were coated with 1 µg/ml of rHSP70, in coating buffer, overnight at 

4°C.  The un-bound rHSP70 was discarded, and the plate was blocked with 1% (w/v) BSA-PBS 

(1 h, 37°C).  Washing steps consisted of three washes with 0.01% (v/v) PBS-T.  The plate was 

washed and incubated with (1:10) dilution of phages in PBS-T (2 h, 37°C).  After washing, the 

wells were incubated with mouse anti-M13 antibodies (1:4000) (1 h, 37°C).  The plate was 

washed, and incubated with goat anti-mouse HRPO IgG (1:1000) (1 h, 37°C).  The plate was 

washed and the ELISA was developed as mentioned in section 2.7.2.  

 

2.8.2.3 Monoclonal ELISA, colony PCR, nested PCR 

Monoclonal phage and monoclonal soluble ELISAs were then done using individual colonies from 

selected rounds as described by Van Wyngaardt et al. (2004), with some modifications. Phage 

ELISA was done as above.  Expression of soluble phages was done with either 3 mM IPTG or 
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auto-induction in TEB (Ukkonen et al., 2013).  For monoclonal soluble ELISA, the ELISA plate 

was blocked with 0.5% (w/v) BSA-PBS and it was washed with PBS only.  The bound soluble 

phages were probed with chicken anti-c-myc IgY antibodies (1 µg/ml), and rabbit-anti-chicken IgY 

HRPO IgG was used as the secondary antibody (1:10000). 

Colony PCR (http://www.csun.edu/~mls42367/Protocols/Colony%20PCR.pdf)  and nested PCR 

were done on selected high affinity clones as described elsewhere (Sambrook et al., 1989).  The 

forward primer was: OP52 5’-CCC TCA TAG TTA GCG TAA CG-3’ and the reverse primer for 

colony PCR was M13 5’-CAGGAAACAGCTATGAC-3’ and the nested reverse primer was 5’- TCA 

GGT GGA GGT GGC TCT GG-3’ (Van Wyngaardt et al., 2004).  AluI digests were carried out on 

the selected scFv clones, according to the manufacturer’s manual (www.thermofisher) to obtain 

a DNA fingerprint of each scFv clone. 

Selected clones were tested on a dot blot and western blot formats.  The clones were sent for 

sequencing at the Central Analytical Facilities at Stellenbosch University. 

 

2.9 Cell culture 

The J774A.1 cell line (ECACC, UK), a mouse monocyte/macrophage cell line and U937 cell line 

(ECACC, UK), a human monocyte cell line were cultured at 37°C in a humidified atmosphere with 

5% CO2 in their respective media; DMEM and RPMI-1640, supplemented with 1x antibiotic-

antimycotic solution, and 10% Fetal bovine serum (FBS) (Biowest) (Nuaille, France).  The cell 

lines were cultured according to ECACC recommendations. 

 

2.9.1 Antimalarial, anti-inflammatory drug treatment 

The cells were incubated for 18 h with either 400 ng/ml chloroquine, 200 ng/ml artemisinin, 153 

ng/ml primaquine, 234 ng/ml pyrimethamine, 10 µg/ml quinine (Cumming et al., 2011), 200 ng/ml 

artesunate (Khanh et al., 1999), 200 ng/ml artemether (Teja‐Isavadharm et al., 1996), 5 µg/ml 

quinidine (White et al., 1981), 10 µg/ml quinacrine (Neznanov et al., 2009), 70 µg/ml probucol, 44 

µg/ml ambroxol (Goldring and Ramoshebi, 1999), 1 µg/ml danazol (Hill et al., 1987), 10 µM 

curcumin (Reddy et al., 2005).  After incubation, the cells were heat shocked (40°C, 2 h), then 

allowed to rest (37°C, 2 h) (Wang et al., 2003) to mimic febrile episodes experienced during 

malaria.  The cells were collected and lysed and subjected to 10% SDS-PAGE reducing gels 

(Laemmli, 1970).  Protein quantification was done using Bradford assay and equal amounts of 

monocyte lysates were loaded on two gels; one for western blot and the other one served as a 

reference gel (Welinder and Ekblad, 2011).  The western blots were probed with anti-rHSP70 IgY 

http://www.csun.edu/~mls42367/Protocols/Colony%20PCR.pdf
http://www.thermofisher/
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as the primary antibody (1 µg/ml), and rabbit anti-chicken IgY HRPO IgG (1:10000) as the 

secondary antibody.  The western blot was viewed by enhanced chemiluminescence (ECL) [(40 

mg/ml luminol in 1 % (v/v) DMSO), (0.1 M p-iodophenol in 1 ml DMSO), 0.1 M Tris-HCl pH 8.5 

buffer] (Bradd and Dunn, 1993).  The level of expression of monocyte HSP70 was quantified using 

ImageJ (Rasband, 1997-2016) (www.imageJ.net).  The level of monocyte HSP70 expressed was 

normalized to one single protein band of 42 kDa on the SDS-PAGE gel (Welinder and Ekblad, 

2011).  The 42 kDa band is thought to correspond to beta actin, which is normally used as a 

loading control in experiments (Greer et al., 2010).  Controls consisted of concentrations of 

solvents used to solubilize the antimalarial drugs. 

 

2.9.2 β-haematin, latex beads, hemin treatment 

The cells were incubated with 25 µg/ml of β-haematin or 25 µg/ml of hemin or 0.1% (w/v) latex 

beads for 2 h at 37°C (Cumming, 2009).  The cells were then heat shocked (2 h, 40°C), and 

allowed to rest for 2 h at 37°C.  The cells were lysed and monocyte HSP70 protein expression 

was measured as described above. 

 

2.10 Statistical analysis 

All experiments were repeated at least three times, and loaded in duplicate on SDS-PAGE gels.  

The statistical significance between two groups by the unpaired t-test was analysed.  P<0.05 was 

considered significant. A single protein on the SDS-PAGE was used as the loading control.  Total 

protein was also used as the loading control to compare the results we got, and minimal 

differences were observed (Data attached to Appendix I).  Wilcoxon rank sum test, also known 

as the Mann-Whitney U test was also carried out to verify the results obtained by the unpaired t-

test to see whether skewed data affected the results obtained (Data attached to Appendix II).  

  

 

 

 

 

 

http://www.imagej.net/
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CHAPTER 3: CLONING, RECOMBINANT EXPRESSION AND PURIFICATION OF 

RECOMBINANT HUMAN HEAT SHOCK PROTEIN 70 (rHSP70) 

3.1 Introduction 

3.1.1 Heat Shock Protein 70 (HSP70) 

Human heat shock protein 70 (HSP70) is a highly conserved protein that serves as a 

housekeeping protein.  It binds to misfolded proteins and refolds them into their native 

conformations so that they are active (Mayer and Bukau, 2005).  Human HSP70 is encoded by 

an intron-less gene, found within the major histocompatibility (MHC) class III, on the locus 

NM_005345 (https://www.ncbi.nlm.nih.gov/nuccore/NM_005345) on the 6p21.3 chromosome 

(Daugaard et al., 2007).  The gene is 2.4 kb in length and is expressed as a  641 amino acid 

protein, with a molecular weight of 70.052 kDa (Kiang and Tsokos, 1998).  The protein has two 

main domains, a 25 kDa C-terminal substrate binding domain (SBD) and a 44 kDa N-terminal 

nucleotide binding domain (NBD) which has low intrinsic ATPase activity (Chang et al., 2008).  

The protein uses energy from ATP hydrolysis for binding and releasing substrates and its activity 

is vital for its chaperone function (Liu and Hendrickson, 2007).  While HSP70 is mostly monomeric, 

it has been found that in the absence of ATP and/or other nucleotides, HSP70 can form reversible 

oligomers both in vitro and in vivo (Aprile et al., 2013, Kim et al., 1992). 

 

3.1.2 Recombinant expression of human HSP70 

Recombinant expression is widely used in biotechnology whereby a recombinant protein is 

expressed from an engineered plasmid (Overton, 2014).  Currently, there are different hosts for 

recombinant protein expression; mammalian, yeast, and bacterial, where, Escherichia coli (E. 

coli) is often favoured.  The E. coli expression system has several advantages including being 

cheap to obtain, host cells are easy to transform, require inexpensive media, and grow quickly to 

a high cell density (Rosano and Ceccarelli, 2014, Choi et al., 2006). 

Human HSP70 was sub-cloned from a mammalian expression plasmid pcDNA/FRT/TO/HIS 

HSPA1A to a bacterial expression plasmid pET-28a since the laboratory did not have the reagents 

and expertise for a mammalian expression system.  The pET-28a plasmid contains a strong T7 

promoter and a lacUV5 promoter which is inducible by isopropyl β-D-1-thiogalactopyranoside 

(IPTG).  It has a hexa-histidine (His6) tag at the N-terminus which allows for easy purification of 

the expressed protein and the lac repressor which prevents leaky expression.  The JM109 and 

BL21-(DE3) E. coli host cells were used.  JM109 cells were used for propagation of the 
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recombinant plasmid as JM109 cells are recA- and lack the E. coli K restriction system which 

prevents the DNA from recombining with host DNA.  JM109 cells also have an endonuclease A- 

mutation which enables production of high purity plasmids in large quantities (Casali, 2003).  The 

BL21-(DE3) E. coli strain was used for recombinant expression of HSP70, since it has a T7 

polymerase gene, and is protease deficient, which avoids bacterial protease degradation of the 

recombinant protein (Shiloach et al., 1996).  Upon addition of IPTG, the T7 polymerase binds to 

the T7 promoter and initiates protein expression.  This allows for controlled recombinant protein 

expression (Studier, 2005).  Expression conditions including different media, temperature and 

lysis methods were optimised for greatest yields of soluble recombinant human HSP70 (rHSP70). 

 

3.1.3 Affinity-purification of rHSP70 

The rHSP70 was isolated and affinity-purified to remove any contaminating E. coli proteins.  This 

was an important source of protein, both for immunizations and preparing affinity resins to purify 

the anti-rHSP70 antibodies.  Immobilized metal-ion affinity chromatography (IMAC) is widely used 

for the purification of His-tagged recombinant proteins as it is efficient and user-friendly.  It usually 

consists of a metal ion (Nickel, Zinc, Cobalt or Copper) coupled to a resin where the His-Tag of a 

recombinant protein binds to the resin and is therefore separated from untagged proteins 

(Bornhorst and Falke, 2000).  In this study, a TALON® resin which contains bound cobalt ions 

(Co2+) was used.  Imidazole has a similar side chain to histidine, hence it also binds to the IMAC 

resin.  This simplifies elution of the bound recombinant protein off the resin as imidazole competes 

with the histidine tag to bind to the resin.  Other E. coli proteins that have affinity for the Co2+ resin 

might also bind to the resin.  To remove these, low concentrations of imidazole are used to wash 

off E. coli contaminants from the resin (Westra et al., 2001).  For elution of the bound recombinant 

protein, a higher concentration of imidazole can be used.   

Recombinant HSP70 was cloned, expressed and affinity-purified using a TALON® resin in this 

study.  The rHSP70 was analysed using gel filtration to see whether it formed oligomers, and the 

ATPase activity of rHSP70 was measured.  Gel filtration and ATPase analysis were done to 

ensure that the native protein was expressed and isolated, as native proteins were found to elicit 

a higher immune response than the denatured form of the protein (Koch et al., 1996). 
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3.2 Results 

3.2.1 Sub-cloning of human HSP70 from pcDNA5/FRT/TO/HIS HSPA1A to pET-28a 

plasmid 

The pcDNA5/FRT/TO/HIS HSPA1A plasmid contained the human HSP70 (HSPA1A) gene insert, 

having a 5’ BamHI, and a 3’ NotI cloning sites.  The full plasmid, including the 1955 bp HSP70 

insert, was 7041 bp in length.  After BamHI and NotI digestion of the plasmid, the HSP70 insert 

was isolated (Figure 3.1 A) with a size of 1936 bp.  To obtain an empty host vector with sticky 

ends, a pET-28a plasmid containing a Plasmodium yoelli lactate dehydrogenase (PyLDH) insert 

was digested with BamHI and NotI to excise the PyLDH insert.  Two bands were obtained at 6000 

bp and 950 bp, showing the empty pET-28a and PyLDH insert respectively (Figure 3.1 B).  The 

HSP70 insert and the empty pET-28a vector were gel purified, and ligated using T4 ligase.  The 

ligated product was used to transform JM109 and BL21-(DE3) E. coli cells.  Restriction digests 

using BamHI and NotI on selected plasmid clones were performed to confirm successful ligation 

and transformation.  All colonies harboured the recombinant plasmid in JM109 and BL21-(DE3) 

E. coli cells, as shown by the presence of the 1936 bp band, corresponding to the HSP70 insert 

(Figure 3.2). 

  

Figure 3.1: Digestion of plasmids with BamHI and NotI  

The pcDNA5/FRT/TO HIS HSPA1A (A) and pET-28a PyLDH (B) plasmids were digested with BamHI and 
NotI for 16 h at 37°C.  The products were resolved on 1% (w/v) agarose gel and viewed under UV light.  
Lane 1, undigested plasmid; Lane 2 & 3, BamHI and NotI linearized plasmids; Lane 4, plasmid digested 
with BamHI and NotI. 
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 Figure 3.2: Digestion of ligated pET-28a-HSP70 plasmids with BamHI and NotI  

The plasmids ligated with HSP70 insert and isolated from JM109 E. coli cells (A) Lane 1; plasmid linearized 
with BamHI; Lane 2, plasmid digested with BamHI and NotI.  Plasmids isolated from BL21-(DE3) cells are 
shown in (B).  Lanes 1-4; plasmids digested with BamHI and NotI.  The products were resolved on 1% (w/v) 
agarose gel and viewed under UV light.                

  

3.2.2 Expression of recombinant HSP70 

Expression of  recombinant human HSP70 (rHSP70) was optimised by expressing transformed 

BL21-(DE3) in LB, TEB and 2xYT media.  Expression was induced by either the addition of 0.3 

mM IPTG or induced by auto-induction in TEB.  Expression was optimised under different 

temperatures, and induced at different OD600 (0.4/0.6).  The lysis conditions were optimised to 

obtain the best yield of rHSP70.  The calculated size of rHSP70 is ~73kDa, obtained from the 

sequence data from Addgene (Hageman and Kampinga, 2009), using the program Expasy 

(http://web.expasy.org/translate/) (Artimo et al., 2012).  The calculated size (73 kDa) and the 

reported size of HSP70 in the literature (70 kDa) are different since the recombinantly expressed 

HSP70 in this study, had additional amino acids such as the HIS tag and additional plasmid 

derived sequence amino acids. 

 

3.2.2.1 Colony selection for recombinant expression of rHSP70 

Ten single colonies from a LB-Kanamycin (50 µg/ml) plate were randomly picked and cultured in 

LB media, to investigate whether all colonies expressed rHSP70 equally.  Expression was 

induced with 0.3 mM IPTG for 4 h at 37°C and bacterial lysates were resolved on 7.5% reducing 

SDS-PAGE (Figure 3.3).  A non-induced culture served as the negative control.  Different colonies 

grew and expressed rHSP70 at different levels.  Eight colonies expressed rHSP70 at high levels, 

while two colonies expressed very little rHSP70.  Glycerol stocks of the colonies in lanes 3, 6-10 

expressing high amounts of rHSP70 were prepared and stored.  
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Figure 3.3: Expression of rHSP70 from ten colonies, induced with IPTG 
Expression of  rHSP70 from ten different colonies in LB was compared to a non-induced control.  
Expression was induced with 0.3 mM IPTG for 4 h at 37°C.  The bacterial lysates were resolved on a 7.5% 
reducing SDS-PAGE gel.  MW: Molecular weight marker; Lane 1, non-induced culture; Lanes 2-11, ten 
individual induced cultures. 

 

3.2.2.2 Recombinant expression of rHSP70 in different media: TEB, 2xYT and LB media 

The effect of IPTG induction on bacterial cultures grown in TEB showed minimal difference 

between expression of rHSP70 in non-induced and induced cultures (Figure 3.4).  The effect of 

auto-induction was studied on rHSP70 expression in TEB.  With auto-induction, there was more 

rHSP70 expression compared to the LB non-induced control (Figure 3.5).  Two temperatures of 

20°C or 37°C were compared (Figure 3.6) and it was found that there was little difference in the 

amount of rHSP70 expressed, therefore, 37°C was chosen for auto-induction. When bacterial 

cultures grown in 2xYT and LB media were induced, they over-expressed rHSP70 compared to 

the non-induced culture (Figure 3.7).  Bacterial cultures are usually induced when an OD600 of 0.4 

to 0.6 was reached.  This is when the bacterial cultures are growing at the exponential phase.  

The effect of inducing cultures at either OD600 0.4 or 0.6 was compared.  With LB, much higher 

rHSP70 expression was obtained when induced at OD600 0.6 than at 0.4 (Figure 3.8 A).   With 

TEB, there was higher rHSP70 expression when induced at OD600 0.6 but the expression was not 

as prominent as in LB media (Figure 3.8 A).  Plotting the growth curve for bacteria in LB media, 

showed that at OD600 0.4, the bacteria are at an early exponential phase whereas at OD600 0.6, 

the bacteria are at the late exponential phase (Figure 3.8 B).  This suggests that there may have 

been more bacteria expressing rHSP70 at OD600 0.6 than at OD600 0.4.  Hence, all inductions were 

done at an OD600 0.6. 
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Recombinant HSP70 was expressed in LB and TEB, for purification purposes.  2xYT seemed to 

express rHSP70 but was not used, since, it required more reagents, making it more expensive to 

use, for large scale expression. 

 
Figure 3.4: Expression of rHSP70 induced with IPTG in TEB 

The rHSP70 was expressed in TEB and induced with 0.3 mM IPTG for 4 h at 37°C.  The bacterial lysates 
were resolved on 10% reducing SDS-PAGE gel.  MW: Molecular weight marker; Lanes 1-2, non-induced 
culture loaded in duplicate; Lanes 3-8, triplicate induced cultures, loaded in duplicate.  

 
Figure 3.5: Expression of rHSP70 induced by auto-induction in TEB 

The rHSP70 was expressed by auto-induction in TEB overnight for 16 h at 37°C.  The lysates were resolved 
on 7.5% reducing SDS-PAGE gel.  MW: Molecular weight marker; Lanes 1-2, LB non-induced culture; 
Lanes 3-8, triplicate induced cultures loaded in duplicate. 
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Figure 3.6: Expression of rHSP70 by auto-induction in TEB, at 20°C and 37°C. 

The rHSP70 was expressed in auto-inducing in TEB at 20°C and 37°C for 16 h.  The bacterial lysates were 
resolved on 7.5% reducing SDS-PAGE gel.  MW: Molecular weight marker; Lane 1, untransformed BL21-
(DE3) E. coli control, Lanes 2-3, 20°C auto-induced culture loaded in duplicate; Lanes 4-5, 37°C auto-
induced culture loaded in duplicate.  

 

  
Figure 3.7: Expression of rHSP70 induced with IPTG in 2xYT and LB media 

The rHSP70 was expressed in 2xYT media (A) and LB media (B) by inducing three cultures with 0.3 mM 
IPTG for 4 h at 37°C.  The bacterial lysates were resolved on a 10% reducing SDS-PGE gel.  MW: Molecular 
weight marker; Lanes 1-2, non-induced culture loaded in duplicate; Lanes 3-8, triplicate induced cultures 
loaded in duplicate. 
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Figure 3.8: Expression of rHSP70 in LB media induced at OD600 0.4 or 0.6 

The rHSP70 was expressed in either LB media or TEB and induced at OD600 0.4 or 0.6 with 0.3 mM IPTG 
for 4 h at 37°C.  The bacterial lysates were resolved on 7.5% reducing SDS-PAGE gel (A).  MW: Molecular 
weight marker; Lane 1; non-induced LB culture; Lane 2, induced LB culture at OD600 0.4; Lane 3, non-
induced TEB culture; Lane 4, induced TEB culture at OD600 0.4; Lane 5, non-induced LB culture; Lane 6, 
induced LB culture at OD600 0.6; Lane 7, non-induced TEB culture; Lane 8, induced TEB culture at OD600 
0.6.  The growth curve of E. coli harbouring the recombinant plasmid is shown in (B).  Fresh LB media was 
inoculated with 5% (v/v) of an overnight culture and the OD600 was recorded every 30 min for 3 h to monitor 
the growth of the bacteria harbouring the recombinant plasmid. 

 

3.2.2.3 Cell lysis 

After recombinant expression, the cells are lysed to release the recombinant protein.  There are 

different lysis methods including mechanical, enzymatic, freeze-thaw and chemical disruption of 

cells (Brown and Audet, 2008).  Each method may affect the quality and yield of the final protein.  

In this study, sonication, freeze-thaw and lysozyme lysis methods were compared.  Sound waves 

are used in sonication, whereby localised cavitations disrupt cells (Brown and Audet, 2008).  

Repeated freeze-thawing disrupts the cells based on the formation and melting of ice in the cells 

(Cao et al., 2003).  Lysozyme breaks down the cell wall of E. coli cells and releases the 

cytoplasmic contents, containing the recombinant protein (Repaske, 1958, Voss, 1964).  

Sonication gave the best yield of protein when compared to freeze thaw and lysozyme lysis 

(Figure 3.9). 
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Figure 3.9:  Effects of lysis on the yield of rHSP70 

Bacterial cultures harbouring the recombinant rHSP70 plasmid were induced with 0.3 mM IPTG and 
harvested after 4 h.  Different methods were used to lyse the cells.  The bacterial lysates were resolved on 
7.5% reducing SDS-PAGE gel.  MW: Molecular weight marker; Lanes 1-2, Sonicated supernatants; Lanes 

3-4, freeze-thawed supernatants; Lanes 5-6, lysozyme lysis. 

 

3.2.3 Purification of rHSP70 

An imidazole gradient was used to determine the optimal imidazole concentration to elute rHSP70 

from a TALON® affinity column.  Most of the rHSP70 eluted between 140 to 155 mM imidazole 

(Figure 3.10) for cultures expressed in LB media.  For TEB, most of the rHSP70 eluted between 

50 to 90 mM imidazole (Figure 3.11).  250 mM imidazole was used for large scale purification to 

ensure that all protein was eluted off the column.  For large scale expression and purification, 

cultures were grown in LB media since high yields of rHSP70 was obtained (Figure 3.12).  

Recombinant expression in TEB also gave high yield of rHSP70, but other E. coli host proteins 

were also overexpressed, which could make purification of rHSP70 more difficult.  

Figure 3.12 shows the 7.5% reducing SDS-PAGE gel (A), and the corresponding western blot (B) 

for the purification of a 250 mL culture of rHSP70.  While a prominent band of rHSP70 is seen on 

the gel, other bands of lower molecular weight are also present.  The anti-His tag antibody 

detected these small bands, suggesting that these bands are not contaminating E. coli proteins, 

but arise from the eluted protein itself.  The proteins could be degraded or truncated proteins.   

Since a large amount of the rHSP70 was not bound to the matrix, the bands eluted in the unbound 

fraction were recycled through the column twice to allow maximum recovery of rHSP70 from a 

single culture.  It was found that for each cycle of purification, 3.6 mg of protein was recovered 

(Table 3.1).  The final yield of rHSP70 was 6 mg from an initial 250 ml culture.  

To confirm the purity of the rHSP70, gel filtration using Sephacryl S200 was done (Figure 3.13).  

The fractions containing the peaks were run on a 12.5% reducing SDS-PAGE gel.  There was a 

prominent peak co-eluting with blue dextran which could be due to the oligomerisation of the 
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protein.  There was also a small peak corresponding to 70 kDa.  The protein fractions were run 

on 12.5% reducing SDS-PAGE gel, and the large protein co-eluting with blue dextran, was 

resolved as a 70 kDa protein on the SDS-PAGE,  

 
 
Figure 3.10:  Gradient elution of rHSP70 grown in LB media affinity-purified using TALON® resin 
The rHSP70 was eluted from a TALON® resin, using an imidazole gradient from 0-250 mM (A).  The eluents 
were resolved on a 7.5% reducing SDS-PAGE gel shown in (B).  MW: Molecular weight marker; Lane 1; 
crude lysate; Lane 2, filtered lysate; Lane 3, unbound fraction; Lanes 4-5, washes; Lanes 6-11, eluent 
fractions at (102 mM,115 mM, 128 mM, 140 mM, 153 mM and 166 mM) imidazole, pertaining to eluent 
fractions 8-13 respectively. 

 
Figure 3.11: Gradient elution of rHSP70 grown in TEB, affinity-purified using TALON® resin 
The rHSP70 was eluted from a TALON® resin, using an imidazole gradient from 0-250 mM (A).  The eluents 
were resolved on a 7.5% reducing SDS-PAGE gel shown in (B).  MW: Molecular weight marker; Lane 1, 
crude lysate; Lanes 2-8, eluent fractions at (13 mM, 26 mM, 38 mM, 51 mM, 64 mM, 77 mM and 90 mM) 
imidazole corresponding to eluent fractions 2-7. 
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Figure 3.12: Large scale purification of rHSP70, expressed by IPTG induction in LB media 

The rHSP70 was expressed in LB media and affinity-purified using 250 mM imidazole on a TALON® resin.  
The fractions were resolved on 7.5% reducing SDS-PAGE gel (A).  The corresponding western blot (B) 
was probed with anti-his tag antibody as the primary antibody (1:5000) and goat-anti mouse HRPO as the 
secondary antibody (1:1000).  MW: Molecular weight marker; Lane 1, crude lysate; Lane 2, unbound 
fraction; Lanes 3-6, washes with 10 mM imidazole; Lane 7-12, eluent fractions.  (C) shows the elution profile 
of rHSP70 from the affinity-matrix. 

 

Table 3.1: Purification table of rHSP70 from one round of purification. 

Step 
Total protein 
(mg) 

Total activity 
(units) 

Specific activity 
(units/mg) 

Yield 
(%) Fold 

Crude lysate 11 1.6 0.15 100 1 

Affinity purified 
protein 3.6 1.3 0.37 81 2.5 

 

 

Figure 3.13: Sephacryl S200 gel filtration of rHSP70 

The protein elution profile (blue line) for rHSP70 is shown in (A) where the calibration profile is shown on 
the primary y-axis (orange line).  The fractions containing the peaks were concentrated and resolved on 
reducing 12.5% reducing SDS-PAGE gel (B).  MW: Molecular weight marker; Lanes 1-8, fractions 18-25; 
Lane 9, fraction 27; Lane 10, pure rHSP70. 
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3.2.4 ATPase activity of rHSP70 

The malachite green assay was used to measure the ATPase activity of rHSP70.  The ATPase 

activity of rHSP70 increased with time (Figure 3.14 A).  For further analyses, triplicate readings 

of the assay were taken at 3 h end-point.  When the concentration of rHSP70 was increased from 

0 to 0.6 mg/ml, the ATPase activity also increased (Figure 3.14 B).  With increasing ATP 

concentrations ranging from 200 to 1000 µM, the ATPase activity of rHSP70 increased (Figure 

3.14 C).  The Hanes Woolf plot for rHSP70 enzyme activity of rHSP70 was plotted (Figure 3.15).  

Values of Km and Vmax were 523 µM and 0.29 µM/min respectively.  It was found that pH affected 

the ATPase activity of rHSP70.  Acidic and basic buffers increased the ATPase activity of rHSP70, 

when compared to physiological pH at 7.4 (Figure 3.16).  ‘Goods buffers’ were used to ensure 

that the ionic strength remained constant.   

 
Figure 3.14:  rHSP70 ATPase activity 
The ATPase activity of affinity-purified rHSP70 was measured using the malachite green assay.  The 
ATPase activity was measured using 0.3 mg/ml of rHSP70 for 180 min in (A); the ATPase activity with 
increasing rHSP70 concentrations was measured in (B); the ATPase activity was measured with increasing 
ATP concentrations (200 to 1000 µM) at a fixed rHSP70 concentration of 0.3 mg/ml in (C). 

 
Figure 3.15: Kinetics of rHSP70 activity 

The ATPase activity of rHSP70 was investigated using the malachite green assay.  The Hanes’ woolf plot 
is shown.      
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Figure 3.16: ATPase activity of rHSP70 at pH 5.0, 7.4 and 8.0. 

ATPase activity of rHSP70 was measured in acidic (pH 5.0), neutral (pH 7.4) and alkaline pH (pH 8.0) using 
‘Good buffers’ done in triplicate. 

 

3.3 Discussion 

3.3.1 Cloning and expression of rHSP70 

The plasmid pcDNA5/FRT/TO/HIS HSPA1A was designed for the expression of a recombinant 

protein in a mammalian expression system.  The latter requires expensive cell lines and media 

for recombinant protein expression.  A mammalian expression system has the advantage of 

expressing proteins with post-translational modifications and the expressed proteins are free of 

bacterial endotoxins (Khan, 2013).  However, it is cheaper to grow bacterial cultures where high 

yields of rHSP70 can be obtained relatively quickly (Khan, 2013).  The pcDNA5/FRT/TO/HIS 

HSPA1A plasmid had the appropriate restriction endonucleases sites for sub-cloning HSP70 into 

a pET-28a plasmid.  All restriction endonuclease digests were visualised on 1% (w/v) agarose 

gels containing ethidium bromide using UV light (Sigmon and Larcom, 1996).  The agarose gels 

were exposed to UV light for minimal periods, to avoid DNA damage and mutations from exposure 

to the UV light (Yılmaz et al., 2012).  Ethidium bromide is a known mutagen, and safer reagents 

are now available to view DNA.  Crystal violet is a safe alternative to ethidium bromide but has a 

lower sensitivity (Rand, 1996).  Other alternatives include SYBR Green and SYBR Safe which 

are more sensitive and less toxic than ethidium bromide, but are more expensive (Yılmaz et al., 

2012). 

 

Human HSP70 has been cloned and expressed in an E. coli expression system (Macejak et al., 

1990, Jindal et al., 1995).  Most of the expressed protein was found in inclusion bodies and 

required solubilisation (Macejak et al., 1990, Jindal et al., 1995).  In this study, most of the 

recombinant protein expressed was soluble and the yield was 6 mg per 250 mL of E. coli culture, 

while only 1 to 3 µg of recombinant HSP70 was obtained per litre of E. coli culture by Macejak et 
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al. (1990).  Recombinant expression of HSP70 has been done in a baculovirus expression system 

where high yields and endotoxin-free HSP70 was obtained (Zheng et al., 2010).  The insect cells 

and media are, however expensive.  The system is time consuming as it takes around 96 h to 

obtain the recombinant protein, while it takes around 24 h to obtain the recombinant protein in an 

E. coli expression system (Zheng et al., 2010).   

 

The conditions for optimal expression of rHSP70 were investigated.  Terrific broth, 2xYT and LB 

media were compared for the recombinant expression of rHSP70.  Terrific broth is an enriched 

media and has glycerol as an extra nutrient source for the bacteria.  This allows the bacteria to 

grow fast and to higher cell density than LB media (Letterer and Schagat, 2007).  During growth, 

when the bacterial culture has used up the available glucose, it switches to using lactose and 

glycerol to make allolactose.  The latter then acts as the recombinant expression inducer 

(Blommel et al., 2007).  The 2xYT media is a modification of LB media which contains double the 

concentration of yeast extract.  Bacterial cultures grown in 2xYT reach higher cell density in 

comparison to those grown in LB media (Rosano and Ceccarelli, 2014).  LB is a rich media and 

has the advantage of being easily prepared, and bacteria at log phase grow at a fairly constant 

rate. This increases the reproducibility of the experiments (Sezonov et al., 2007, Rosano and 

Ceccarelli, 2014).  Expression induced at an OD600 0.6 at 37°C, gave the best yields of rHSP70. 

Sonication was chosen as the method of lysis since most of the protein was liberated from the 

cytosol of E. coli cells.  However, with freeze thaw and lysozyme lysis, the recombinant protein 

was released most compared to host E. coli proteins.  This could aid purification of the 

recombinant protein.  With TEB, the yield of rHSP70 was better than other media used, but all 

proteins were overexpressed, including host proteins.  With LB media, IPTG was required to 

induce the recombinant expression.  The advantage of this method is that only rHSP70 was 

overexpressed in comparison to host proteins.  The disadvantage of using IPTG as an inducer, 

is leaky expression.  When expressed in large amounts, the recombinant protein can be toxic to 

the host cell (Studier, 2005).  However, toxicity was not observed for IPTG induced cultures in LB 

media in this study.  At high cell density, LB media can turn acidic as there is no pH buffering 

agent, compared to TEB as the latter contains a phosphate buffer (Studier, 2005).   

 

3.3.2 Purification of rHSP70 

The rHSP70 was affinity-purified using an IMAC TALON® resin, similar to other studies (Rowlands 

et al., 2010).  The ATP/ADP affinity columns or a mixture of ATP affinity column and freeze-thaw 

have also been used to isolate and purify recombinant HSP70 (Jindal et al., 1995, Ménoret, 2004, 
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Peng et al., 1997, Macejak et al., 1990).  With ATP/ADP agarose column chromatography, DnaK, 

the bacterial HSP70 homologue, is usually co-eluted with recombinant HSP70 since they are 

closely related and it also has ATPase activity (Ménoret, 2004).  Using a fusion protein such as a 

His6 tag, eliminates the risk of getting DnaK contaminant as DnaK will not bind to the column.  

The His6 tag has high affinity with metal ions, and it is small enough to not affect the solubility and 

shape of the protein.  It also does not interfere with any enzyme activity the protein might have 

(Bornhorst and Falke, 2000). Other affinity tags such as Poly-Arginine tag, c-myc tag and Strep 

tag are short peptides that are usually non-immunogenic, and rarely have to be cleaved off (Terpe, 

2003).  Large fusion peptides such as glutathione S-transferase-tag (GST) and maltose-binding 

protein (MBP) are also widely used.  The GST tag is reported to stabilise the recombinant protein 

and makes it less prone to protease degradation, while MBP is reported to increase the solubility 

of a recombinant protein (Terpe, 2003).  The fusion partner however, may alter the three-

dimensional structure of the native protein and alter its activity (Terpe, 2003). 

 

For elution of rHSP70 off the column, 250 mM of imidazole in the elution buffer was used.  Other 

elution methods include a change in pH (Bornhorst and Falke, 2000), EDTA (Hengen, 1995), or 

a salt gradient (Fouchaq et al., 1999).  The EDTA can, however, chelate and leach the metal ions 

off the resin and reduce efficiency of the column (Westra et al., 2001).   

 

3.3.3 ATPase activity of rHSP70 

The ATPase activity of rHSP70 was measured using the malachite green assay.  The assay has 

been used for the measurement of the ATPase activity of HSP90 and HSP70 (Rowlands et al., 

2004, Miyata et al., 2010).  The assay requires all buffers and equipment to be phosphate free, 

otherwise it becomes insensitive and gives a high background signal (Bartolini et al., 2013).  

Sodium citrate buffer was added after adding the malachite green reagent to minimize ATP 

hydrolysis caused by the presence of the acidic medium (Rowlands et al., 2004).  The preparation 

of the reagent takes 2 h (Bartolini et al., 2013).  It nevertheless is still a good option when 

compared to the other methods. 

 

Other methods used include the use of radioactive ATP and measuring the radioactivity when 

phosphate is released (Geladopoulos et al., 1991, Raynes and Guerriero, 1998), ion exchange 

chromatography to measure the production of ADP (Bartolini et al., 2013), the use of anti-ADP 

antibodies in a kit format (Rowlands et al., 2010) and fluorescence method, whereby the excitation 
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and emission was measured using a plate reader (Miyata et al., 2010).  These methods require 

expensive reagents, equipment and are time consuming.   

Table 3.2: Comparison of HSP70 enzyme kinetics in different species 

 NA- Not available 

 

It has been observed that the ATPase activity of HSP70 reported varies across different species, 

even if it is a fairly conserved protein (Table 3.2).  The differences in the ATPase activity can be 

due to the techniques used to measure the ATPase activity. The turnover measured by Chang et 

al. (2008) was closely related to the turnover rate obtained for rHSP70, and this might be because 

the malachite green assay was used in both cases to measure the ATPase activity.  The Km value 

obtained for rHSP70 in this study was much higher than reported in the literature (Table 3.2), but 

closer to what Dores-Silva et al. (2015) found.  They used a commercial kit to measure the 

ATPase activity.  The exact Km and Vmax values have not been established as different papers 

have published different results (Table 3.2).  The difficulty in obtaining a fixed value is due to the 

nature of the HSP70 protein.  It has a low ATPase activity, and can in some cases form oligomers 

(Aprile et al., 2013).  The oligomers can increase the ATPase activity and hence give different Km 

values (Araujo et al., 2014). 

 

The effect of pH on the ATPase activity of rHSP70 was studied, and it was found that in acidic 

conditions, the ATPase activity was higher than when in neutral or basic conditions.  A similar 

result was obtained by McCarty and Walker (1991) which investigated the ATPase activity of 

DnaK in acidic and basic medium.  In our study, the ATPase activity of rHSP70 was higher at pH 

Study HSP70 Species Km Specific 
activity 

Turnover (min-1) 

Palleros et al. (1993) 00DnaK E. coli NA NA 0.42 (before HPLC) 

0.087 (after HPLC) 

Chang et al. (2008) DnaK E. coli NA NA 0.12 

Chamberlain and 
Burgoyne (1997) 

HSC70 Human NA 1.08 
nM/min/mg 

NA 

HSP70 Human NA 0.5 nM/min/mg 

Dores-Silva et al. 
(2015) 

HSPA1A Human 270 µM 0.62 
pmol/min/µg 

NA 

Lopez-Buesa et al. 
(1998) 

Ssa 
(HSP70) 

Yeast 0.11 µM NA NA 

Matambo et al. (2004) PfHSP70-1 Plasmodium 
falciparum 

616.5 
µM 

NA 1.03 

This study rHSP70 Human 532 µM 0.9µM/min/mg 0.16 
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8.0 and pH 5.0 than at pH 7.4, which is around physiological pH.  This could be explained by the 

function of HSP70, which should become more active during stress conditions.  Because acidic 

and basic conditions cause stress, the ATPase activity of HSP70 increases to maximise binding 

to substrates and renaturing them to their proper conformation (Kregel, 2002). 

 

Gel filtration was used to identify the formation of oligomers of rHSP70 and to see if the protein 

was pure.  The presence of rHSP70 in the void volume, indicated that rHSP70 aggregated and 

formed high molecular weight oligomers.  There have been reports that HSP70 forms oligomers 

both in the presence and absence of ATP (Sarbeng et al., 2015).  The percentage of oligomers 

formed increases with the concentration of protein present (Kim et al., 1992).  Oligomerisation of 

HSP70 has been reported to help its chaperone function (Kim et al., 1992, Sarbeng et al., 2015).  

In this study, a high concentration of rHSP70 was used, in a buffer devoid of ATP, which might 

have promoted the oligomerisation of rHSP70.   

 

3.4 Conclusion 

 
Human HSP70 was sub-cloned from a mammalian plasmid to a pET-28a plasmid, and used to 

transform BL21-(DE3) and JM109 E. coli cells.  Recombinant expression of rHSP70 was 

optimised in LB media at 37°C, and sonication was used as the mode of lysis.  Purification of 

rHSP70 was achieved using IMAC, and enzyme kinetics were done on the ATPase activity of the 

recombinant rHSP70. 
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CHAPTER 4: ANTIBODY PRODUCTION AGAINST rHSP70 

4.1 Introduction 

Antibodies play an essential part in the biotechnology sector.  They are used in ELISAs, western 

blots, diagnostic tests and as therapeutic agents (Chadd and Chamow, 2001, Hau and 

Hendriksen, 2005, Shen et al., 2012).  Mammals are usually chosen as the experimental animal 

because they make the same type of antibodies as humans including IgG, IgM, and IgE but 

problems arise when antibodies against conserved mammalian proteins are needed (Lipman et 

al., 2005).  Chicken are evolutionarily distant to mammals, hence are likely to elicit a strong 

immune response against conserved mammalian proteins such as the human heat shock protein 

70 (HSP70) (Krief et al., 2002, Gassmann et al., 1990).  Sequence alignment analysis of rHSP70 

(Hageman and Kampinga, 2009) with chicken HSP70 (NCBI reference sequence: 

NP001006686.1) revealed 85.76% identity between the two orthologues (Figure 4.1).  In this 

study, polyclonal antibodies against rHSP70 were raised in chicken using affinity-purified 

recombinant HSP70 (rHSP70).  

Monoclonal antibodies are important when specificity for an antigen is required (Lipman et al., 

2005).  Hybridoma technology has been widely used to make monoclonal antibodies, whereby a 

single B cell is used to produce hybridoma clones which are identical and recognise a single 

epitope.  It takes a long time to obtain pure monoclonal antibodies and is technically challenging 

(Leenaars et al., 1999, Griffiths and Duncan, 1998).  Recombinant antibody technology is 

becoming widely used to make monoclonal antibodies, as an alternative to hybridoma technology 

(Griffiths and Duncan, 1998).  It is based on the synthesis of large naïve antibody gene libraries 

combined with phage display, usually cloned in phage or phagemid vectors (Hoogenboom et al., 

1998, Ohara et al., 2006, Konthur and Walter, 2002).  Immunisation is not required and antibodies 

can be made in vitro (Konthur and Walter, 2002).  The advantage of this technology is that any 

animal can be chosen to make the antibody gene library, including human, mice, goat, donkey 

and chicken (Hoogenboom et al., 1998). 

To construct an antibody library from mice or human DNA, a number of primers are required which 

makes it laborious (Davies et al., 1995).  It is easier to make chicken antibody libraries as a single 

set of primers allows amplification of the naïve antibody repertoire (Andris-Widhopf et al., 2000, 

Van Wyngaardt et al., 2004).  Van Wyngaardt et al. (2004) designed a chicken library, known as 

the Nkuku® library, which included a synthetic sub-library of complementarity determining region 

(CDR3) to increase the number of clones contained within the library.  Antibodies were expressed 
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as single chain variable fragment (scFv) whereby the heavy and light variable chains are fused 

by a peptide linker (Griffiths and Duncan, 1998). 

 

Figure 4.1: Clustal alignment of human HSP70 and chicken HSP70 

Clustal Omega program from EMBL-EBL(www.ebi.ac.uk/Tools/msa/clustalo/) (Larkin et al., 2007) was used 
to analyse and compare human HSP70 sequence with chicken HSP70 sequence (NCBI reference 
sequence NP_001006686.1) (https://www.ncbi.nlm.nih.gov/protein/55742654). “*” shows conserved 
residues, “:” shows non-conserved residues, “.” Shows similar residues, “-“ shows absent residues. 
(https://www.ncbi.nlm.nih.gov/) Accessed 10th October 2016. 

 

Human        -MAKAAAIGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERLIGDAAKNQV 

Chicken      MSGKGPAIGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERLIGDAAKNQV 

               .*. ****************************************************** 

 

Human        ALNPQNTVFDAKRLIGRKFGDPVVQSDMKHWPFQVINDGDKPKVQVSYKGETKAFYPEEI 

Chicken      AMNPTNTIFDAKRLIGRKYDDPTVQSDMKHWPFRVVNEGGKPKVQVEYKGEMKTFFPEEI 

             *:** **:**********:.**.**********:*:*:*.******.**** *:*:**** 

 

Human        SSMVLTKMKEIAEAYLGYPVTNAVITVPAYFNDSQRQATKDAGVIAGLNVLRIINEPTAA 

Chicken      SSMVLTKMKEIAEAYLGKKVQNAVITVPAYFNDSQRQATKDAGTITGLNVMRIINEPTAA 

             *****************  * **********************.*:****:********* 

 

Human        AIAYGLDRTG--KGERNVLIFDLGGGTFDVSILTIDDGIFEVKATAGDTHLGGEDFDNRL 

Chicken      AIAYGLDKKGTRAGEKNVLIFDLGGGTFDVSILTIEDGIFEVKSTAGDTHLGGEDFDNRM 

             *******:.*   **:*******************:*******:***************: 

 

Human        VNHFVEEFKRKHKKDISQNKRAVRRLRTACERAKRTLSSSTQASLEIDSLFEGIDFYTSI 

Chicken      VNHFVEEFKRKHKRDIAGNKRAVRRLRTACERAKRTLSSSTQASIEIDSLFEGIDFYTSI 

             *************:**: **************************:*************** 

 

Human        TRARFEELCSDLFRSTLEPVEKALRDAKLDKAQIHDLVLVGGSTRIPKVQKLLQDFFNGR 

Chicken      TRARFEELNADLFRGTLEPVEKALRDAKLDKGQIQEIVLVGGSTRIPKIQKLLQDFFNGK 

             ******** :****.****************.**:::***********:**********: 

 

Human        DLNKSINPDEAVAYGAAVQAAILMGDKSENVQDLLLLDVAPLSLGLETAGGVMTALIKRN 

Chicken      ELNKSINPDEAVAYGAAVQAAILMGDKSENVQDLLLLDVTPLSLGIETAGGVMTALIKRN 

             :**************************************:*****:************** 

 

Human        STIPTKQTQIFTTYSDNQPGVLIQVYEGERAMTKDNNLLGRFELSGIPPAPRGVPQIEVT 

Chicken      TTIPTKQTQTFTTYSDNQSSVLVQVYEGERAMTKDNNLLGKFDLTGIPPAPRGVPQIEVT 

             :******** ******** .**:*****************:*:*:*************** 

 

Human        FDIDANGILNVTATDKSTGKANKITITNDKGRLSKEEIERMVQEAEKYKAEDEVQRERVS 

Chicken      FDIDANGILNVSAVDKSTGKENKITITNDKGRLSKDDIDRMVQEAEKYKAEDEANRDRVG 

             ***********:*.****** **************::*:**************.:*:**. 

 

Human        AKNALESYAFNMKSAVEDEGLKGKISEADKKKVLDKCQEVISWLDANTLAEKDEFEHKRK 

Chicken      AKNSLESYTYNMKQTVEDEKLKGKISDQDKQKVLDKCQEVISWLDRNQMAEKEEYEHKQK 

             ***:****::***.:**** ******: **:************** * :***:*:***:* 

 

Human        ELEQVCNPIISGLYQGAGGPGPGGFGAQGPKGGSGSGPTIEEVD 

Chicken      ELEKLCNPIVTKLYQGAGGAGAGGSG----------GPTIEEVD 

             ***::****:: ******* * ** *          ******** 

 

http://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ncbi.nlm.nih.gov/protein/55742654
https://www.ncbi.nlm.nih.gov/
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In this study, both polyclonal and monoclonal antibodies against rHSP70 were made.  Polyclonal 

antibodies were made by immunising chickens with affinity-purified rHSP70, and monoclonal 

antibodies were made by screening a phage library for scFv clones against rHSP70.  The bio-

panning process was optimised to obtain high affinity scFv clones against rHSP70 from the 

Nkuku® library.  The scFv clones were characterised using colony, nested PCR, AluI digests, dot 

blots, western blots and sequencing. 

 

4.2 RESULTS 

4.2.1 Polyclonal antibody production in chickens 

The chickens were immunised with affinity-purified rHSP70 and eggs were collected each week 

over a period of 12 weeks.  IgY isolated from single eggs corresponding to each week was used 

in an ELISA against rHSP70 to show the antibody titre developed by each chicken to rHSP70.  It 

was found that Chicken 1 (KMF1) had a better response against rHSP70, than chicken 2 (KMF2) 

as seen with the high absorbance values with chicken 1 (Figure 4.2 A).  Chicken 1 however, 

stopped laying eggs from week 7.  Antibody production against rHSP70 antibodies in both 

chickens peaked from week two onwards (Figure 4.2 A).   

IgY antibodies were isolated from the egg yolk using a modified methodology developed by 

Polson et al. (1980) (Goldring and Coetzer, 2003).  Specific antibodies against rHSP70 were 

isolated from the IgY pools and affinity-purified using an AminoLink™ resin coupled with affinity-

purified rHSP70 (Figure 4.2 B).  The affinity-purified anti-rHSP70 antibodies were shown to be 

specific for rHSP70 (Figure 4.3).  A BL21-(DE3) recombinant Plasmodium yoelli lactate 

dehydrogenase (rPfLDH) Escherichia coli (E. coli) lysate were used as the negative controls and 

the anti-rHSP70 antibodies did not detect any E. coli proteins (Figure 4.3).  The affinity-purified 

anti-rHSP70 antibodies were comparable to a commercial anti-HSP70 antibody (StressMarq) 

(Figure 4.4) as both detected the rHSP70 as a 73 kDa band on the western blots.  Additional 

protein bands were detected by the affinity-purified anti-rHSP70 antibodies and the anti-HIS tag 

antibody confirming that the bands originated from the rHSP70 protein (Figure 4.4).  IgY 

polyclonal rHSP70 antibodies detected degradation products of the recombinant protein.  These 

were not detected by the more specific commercial monoclonal antibody as it recognises only 

one epitope on the protein.  The anti-rHSP70 antibodies were specific for inducible HSP70 as 

they detected HSP70 in heat-shocked monocytes only (Figure 4.5).  This also meant that the 

polyclonal antibodies did not detect HSC70, which is the constitutive form of HSP70, as no bands 

were detected at 37°C (Figure 4.5).  The polyclonal antibodies are unique as they have been 

made in chickens, and detect only inducible HSP70. 
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Figure 4.2: ELISA of anti-rHSP70 antibodies from crude IgY and elution profile of affinity-purified 
anti-rHSP70 antibodies 

Eggs were collected weekly for twelve weeks and IgY was isolated from single eggs corresponding to the 
last day of each week.  The ELISA (A) was probed with 25 µg/ml of IgY as the primary antibody.  Rabbit 
anti-chicken HRPO (1:10000) was used as the secondary antibody.  An AminoLink™ resin was coupled 
with rHSP70 to bind anti-rHSP70 antibodies.  The elution profile from the affinity matrix is shown in (B). 

 

Figure 4.3: Specificity of affinity-purified anti-rHSP70 antibodies 

A 12.5% reducing SDS-PAGE containing BL21-(DE3) E. coli lysates and pure rHSP70 were run (A).  The 
corresponding western blot was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit anti-
chicken HRPO (1:10000) was used as the secondary antibody (B). MW: Molecular weight marker; Lane 1; 
non-induced rHSP70 lysate; Lane 2, induced rHSP70 lysate; Lane 3, induced rPfLDH lysate; Lane 4, 
affinity-purified rHSP70. 
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Figure 4.4:  Comparison of affinity-purified anti-rHSP70, anti-His tag and commercial anti-HSP70 
antibodies 

Affinity-purified rHSP70 was run on 12.5% reducing SDS-PAGE gel (A). The corresponding western blots 
(B) were probed with either mouse monoclonal anti-His tag antibody (1:5000); chicken affinity-purified anti-
rHSP70 antibody (1 µg/ml) or commercial mouse monoclonal anti-HSP70 antibody (1:1000).  Where mouse 
monoclonal antibodies were used, goat anti-mouse HRPO secondary antibody was used at 1:1000.  For 
the chicken antibodies, rabbit anti-chicken HRPO secondary antibody was used at 1:10000.  MW: Molecular 
weight marker; Lane 1, affinity-purified rHSP70. 

 

 
Figure 4.5:  Detection of monocyte HSP70 with affinity-purified anti-rHSP70 antibodies 

Normal and heat shocked J774A.1 cell lysates were run on a 10% reducing SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml, and 
rabbit anti-chicken HRPO as the secondary antibody at 1:10000.  The western blot was visualised using 
enhanced chemiluminescence (ECL).  MW: Molecular weight marker; Lanes 1-4, non-heat shocked 
monocyte lysates; Lanes 5-8, heat shocked lysates; Lane 9, affinity-purified rHSP70.  

 

4.2.2 Selection of single chain variable fragment (scFv) clones against rHSP70 

The optimisation and characterisation steps of panning are shown below in Figure 4.6.  The 

different infection modes and different blocking agents were compared.  Polyclonal phage ELISAs 

were performed to see which round of panning produced more specific clones to HSP70.  
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Monoclonal phage ELISAs were then carried out on colonies picked from that round of panning.  

Clones that seemed specific for HSP70 were analysed by colony PCR to verify whether they were 

of complete length.  Full length clones were then chosen for monoclonal soluble ELISA to find 

which clones secreted scFv against HSP70.  The clones were then further characterised by 

nested PCR, dot blots and western blots. 

 

 

Figure 4.6: Flow-chart of scFv isolation 

The steps leading to the isolation of specific scFv clones against rHSP70 are shown in the flow-chart. 
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4.2.2.1 Polyclonal phage ELISAs 

4.2.2.1.1 Column/Eluted phages 

After each round of panning, rescued pools of phages were used in an ELISA to determine if there 

was enrichment of scFvs specific for rHSP70 with each round of panning (Figure 4.6).  On column 

infection of TG1 E. coli cells with phages (column phages) and infection of TG1 E. coli cells with 

eluted phages were compared (Figure 4.7).  Higher affinity scFv clones to rHSP70 were obtained 

with eluted phages than with column phages, as observed with the higher absorbance values with 

eluted phages compared to column phages (Figure 4.7).  The enrichment of scFvs was weak for 

both column and eluted phages with every round of panning.  From the polyclonal ELISA, it was 

found that scFv clones against rHSP70 clones were enriched using both eluted and column 

phages.   

 

4.2.2.1.2 Blocking agent 

The impact of blocking agents (Figure 4.6) on enrichment of scFvs against rHSP70 was 

investigated with skimmed milk powder, BSA, and the use of alternate blocking agents (BSA in 

first round of panning, milk in second round of panning, BSA in third round of panning, milk in the 

fourth round of panning) during bio-panning (Figures 4.8, 4.9).  There were more phages binding 

to rHSP70 than to milk or to BSA (Figure 4.8).  However, with increasing rounds of panning, 

phages binding to BSA also increased (Figure 4.8).  When alternate blocking agents were used, 

it was found that there were more phages that bound to BSA than rHSP70 when eluted phages 

were used (Figure 4.9 A).  For column phages, there was no enrichment of scFvs against rHSP70, 

when alternate blocking agents were used (Figure 4.9 B).  The use of alternate blocking agents 

did not seem favourable in our study.  Colonies were not picked from those rounds of panning for 

monoclonal ELISAs.  Milk powder seemed to be a better blocking agent compared to BSA since 

the phages binding to milk did not increase with each round of panning. 
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Figure 4.7 Polyclonal phage ELISA of scFv against rHSP70 comparing column phages with eluted 
phages  

Rescued column phages (A) and eluted phages (B) from each round of panning were used in the polyclonal 
phage ELISA, and the anti-M13 antibody was used as the primary antibody at 1:4000.  Goat anti-mouse 
HRPO was used as the secondary antibody at 1:1000.  The absorbance at 405 nm was measured.  Un-
panned phages and milk powder were used as negative controls. 

 

 

Figure 4.8: Polyclonal phage ELISA of scFv against rHSP70 comparing milk powder and BSA as 
blocking agents 

Rescued eluted phages from each round of panning were used in the polyclonal phage ELISA, blocked by 
milk powder (A) and BSA (B).  Anti-M13 antibody was used as the primary antibody at 1:4000 and goat 
anti-mouse HRPO was used as the secondary antibody at 1:1000.  The absorbance at 405 nm was 
measured.  Un-panned phages, BSA (A) and milk powder (B) were used as controls. 
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Figure 4.9: Polyclonal phage ELISA of scFv against rHSP70, using alternate blocking agents. 

Rescued eluted phages (A) and column phages (B) from each round of panning were used in the polyclonal 
ELISA, and the anti-M13 antibody was used as the primary antibody at 1:4000.  Goat anti-mouse HRPO 
was used as the secondary antibody at 1:1000.  The absorbance at 405 nm was measured.  Milk powder, 
BSA and un-panned phages were used as controls. 

 

4.2.2.2 Monoclonal phage ELISAs 

Based on the polyclonal phage ELISAs, single colonies were picked from third and fourth rounds 

of panning for eluted phages, blocked by milk powder; third and fourth round of panning for eluted 

phages, blocked by BSA; third and fourth round of panning for column phages, blocked by milk 

powder (Figures 4.10-4.15).  A blocking control was included, depending on whether milk powder 

or BSA was used.  For colonies that were picked from rounds of panning blocked with milk, an 

additional control was done.  BSA was coated to wells of an ELISA plate to investigate whether 

the selected scFv clones bound to BSA (data not shown) since BSA was used as the blocking 

agent in ELISAs.  The absorbance values were very low, and showed that non-specific interaction 

with BSA was low (data not shown).  Rescued phages from individual colonies that had high 

affinity for rHSP70 and low affinity for BSA/milk were selected for colony PCR (Figure 4.6).  Colony 

PCR was done to confirm if the phage was of complete size (1000 bp), confirming that it had the 

complementarity determining regions (CDR) of the heavy and light chains, and the linker region.  

When BSA was used as the blocking agent, all of the scFv clones had higher affinity to rHSP70 

than to BSA.  The scFvs were then tested against affinity-purified rPfLDH and BL21-(DE3) E. coli 

lysate to select for more specific scFvs against rHSP70 (data not shown). 

 

Colony PCR was then done on clones that had high affinity for rHSP70, and low affinity for their 

respective blocking controls.  A colony PCR product of about 1000 bp confirmed the presence of 

a full length scFv clone coding sequence, referred to as a positive clone.  Incomplete clones were 

usually represented by DNA bands of about 500 bp and 300 bp which represented the VH chain 
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and the VL chain respectively (Chiliza, 2008).  Table 4.1 shows the results for colony PCR.  In 

total, there were twenty-five positive clones (Table 4.1).  Monoclonal soluble scFv ELISAs (Figure 

4.6) were then performed to determine which clones expressed soluble scFvs that detected 

rHSP70.  

 

Figure 4.10: Monoclonal phage ELISA and colony PCR from the third round of panning, using 
column phages, when milk powder was used as blocking agent 

Forty-eight colonies were picked from the third round of panning and monoclonal phage ELISA was done 
(A).  Anti-M13 antibody was used as the primary antibody at 1:4000, and goat-anti mouse HRPO was used 
as the secondary antibody at 1:1000.  Milk powder was used as the control.  Ten high affinity clones from 
the monoclonal phage ELISA were then used for colony PCR (B).  The forward primer used was OP52 and 
reverse primer used was M13.  The products were resolved on a 1% (w/v) agarose gel.   The lane number 
corresponds to the colony number. 

 

For the third round of panning, when column phages were rescued from individual colonies, most 

rescued phages had higher affinity for the rHSP70 antigen than for the blocking agent (milk 

powder) (Figure 4.10 A).  Clones that had the highest affinity for rHSP70 (1-4, 9-12, 17, 19, 20, 

25, 27, 34, 35, 36 ,45) were chosen for colony PCR (Figure 4.10 B).  Only clones 2, 4, 11 and 27 

were of the expected size (1000 bp).  Clones 9, 10, and 17 were incomplete clones.  The 

remaining clones did not amplify; hence, the lanes were empty.   
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Figure 4.11:  Monoclonal phage ELISA from the fourth round of panning against rHSP70, using 
column phages, when milk powder was used as blocking agent 

Forty-eight colonies were picked from fourth round of panning round and monoclonal phage ELISA was 
done.  Anti-M13 antibody was used as the primary antibody at 1:4000, and goat-anti mouse HRPO was 
used as the secondary antibody at 1:1000.  Milk powder was used as the blocking control.   

 

For the fourth round of panning, when column phages were used, all scFv clones had higher 

affinity for the blocking control (milk powder) than the rHSP70 antigen (Figure 4.11).  This showed 

that there were no scFv clones against rHSP70.  Colony PCR was not done for this round. 

 
Figure 4.12: Monoclonal phage ELISA and colony PCR of scFv clones from third round of panning, 
using eluted phages, when milk powder was used as blocking agent 
Thirty-two colonies were selected from third round of panning and monoclonal phage ELISA was done (A).  
Anti-M13 antibody was used as the primary antibody at 1:4000, and goat-anti mouse HRPO was used as 
the secondary antibody at 1:1000.  Milk powder was used as the control.  Sixteen high affinity clones from 
the monoclonal phage ELISA were then used for colony PCR (B).  The forward and reverse primers used 
were OP52 and M13 respectively.  The products were resolved on a 1% (w/v) agarose gel. The lane number 
corresponds to the colony number. 

For the third round of panning, when eluted phages were rescued from individual colonies, most 

scFv clones had higher affinity for the rHSP70 antigen than for the blocking agent (milk powder) 

(Figure 4.12A).  Clones (9-12, 17-22, 25-30) which had the highest affinity to rHSP70 were chosen 

for colony PCR (Figure 4.12B).  Clones 11, 12, 18-22, 25-30 were full-length scFv clones.  Clones 

17 and 29 were of incomplete clones since they had a lower size than the expected 1000 bp.  It 

was interesting to note that clone 28 was of a larger size than 1000 bp.  This could have been a 

result of duplication.  Only full-length clones were further analysed.    
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Figure 4.13: Monoclonal phage ELISA and colony PCR of scFv clones from fourth round of panning, 
using eluted phages, and milk powder as blocking agent 

Forty-eight colonies were picked from fourth round of panning and used in monoclonal phage ELISA (A).  
Anti-M13 antibody was used as the primary antibody at 1:4000, and goat-anti mouse HRPO was used as 
the secondary antibody at 1:1000.  Absorbance was read at 405 nm.  Nine clones from the monoclonal 
phage ELISA were then used for colony PCR (B).  The forward and reverse primers used were OP52 and 
M13 respectively.  The products were resolved on a 1% (w/v) agarose gel. The lane number corresponds 
to the colony number. 

 

For the fourth round of panning, when eluted phages were rescued from individual colonies, most 

phages had higher affinity for rHSP70 antigen than for the blocking agent (milk powder) (Figure 

4.13).  Clones (3, 5, 12-14, 22, 37, 38, 45) which had the highest affinity to rHSP70 were chosen 

for colony PCR.  Clones 3, 5, 13, 14, 22, 37, and 45 were of full-length clones (1000 bp).  Clones 

12 and 38 were of incomplete clones since they had a lower size than the expected 1000 bp. 

 

Figure 4.14: Monoclonal phage ELISA and colony PCR of scFv clones from third round of panning, 
using eluted phages, and BSA as blocking agent 

Forty-eight colonies were picked from third round of panning, and used in monoclonal phage ELISA (A).   
Anti-M13 antibody was used as the primary antibody at 1:4000, and goat-anti mouse HRPO was used as 
the secondary antibody at 1:1000.  Seven clones that had high affinity for rHSP70 were used for colony 
PCR (B).  The forward and reverse primers used were OP52 and M13 respectively.  The products were 
resolved on a 1% (w/v) agarose gel. The lane number corresponds to the colony number. 
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For the third round of panning, when eluted phages were rescued from individual colonies, most 

phages had higher affinity for rHSP70 antigen than for the blocking agent (BSA) (Figure 4.14).  

Clones (1-6, 11) that had highest affinity to rHSP70 were chosen for colony PCR.  Only clones 2 

and 3 were full-length clones (1000 bp).  Clones 6 and 11 were of incomplete clones since they 

had a lower size than the expected 1000 bp.      

 
Figure 4.15: Monoclonal phage ELISA and colony PCR of scFv clones from fourth round of panning, 
using eluted phages, when BSA was used as blocking agent 

Forty-eight colonies were picked from fourth round of panning, and used in monoclonal phage ELISA (A).  
Anti-M13 antibody was used as the primary antibody at 1:4000, and goat-anti mouse HRPO was used as 
the secondary antibody at 1:1000.  Seven clones that had high affinity for rHSP70 were used for colony 
PCR.  The forward primer used was OP52 and reverse primer used was M13.  The products were resolved 
on a 1% (w/v) agarose gel (B).  The lane number corresponds to the colony number. 

 

For the fourth round of panning, when eluted phages were rescued from individual colonies, most 

phages had higher affinity for rHSP70 antigen than for the blocking agent (BSA) (Figure 4.15).  

Clones (3-7, 11, 12) which had high affinity for rHSP70 were chosen for colony PCR.  Only clone 

5 was a full-length clone (1000 bp).  The rest were incomplete clones. 

A summary of the results for colony PCR of all selected clones are shown in table 4.1. 

Table 4.1: Summary of colony PCR results of selected clones 

 

4.2.2.3 Monoclonal soluble scFv ELISA 

All twenty-five positive clones were tested to see if they express soluble scFv clones.  Expression 

of soluble scFv was compared between auto-induction in TEB (Figure 4.16) and IPTG induction 
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in 2xYT media (Figure 4.17).  Affinity-purified rPfLDH was used as the negative control.  BL21-

(DE3) E. coli lysate was also included to see if there were any soluble scFv clones that bound to 

E. coli proteins.  Auto-induction in TEB gave better expression of soluble scFvs than IPTG induced 

expression.  Table 4.2 shows the results for the expression of soluble scFv against rHSP70 in 

TEB.  scFv clones from the third round of panning, using eluted phages, when milk was used as 

blocking agent seemed to have higher affinity to rHSP70 when compared to other scFv clones.  

The ten high affinity clones from this round of panning were chosen for further characterisation. 

Figure 4.16:  Monoclonal soluble scFv ELISAs induced by auto-induction in TEB 
The results for the eleven positive clones from the third round of panning, using eluted phages when milk 
was used as the blocking agent is shown in (A).  The results for the seven positive clones from fourth round 
of panning, using eluted phages when milk powder is used as the blocking agent is shown in (B).  (C) shows 
the results for the three positive clones, using eluted phages when BSA was used in third and fourth rounds 
of panning.  (D) shows the results for the three positive clones, using column phages, when milk was used 
as the blocking agent. Affinity-purified rPfLDH, un-transformed BL21-(DE3) E. coli lysate and either milk 
powder or BSA were used as the controls.  Anti-c-myc antibodies were used as the primary antibody at 1 
µg/ml, and rabbit anti-chicken HRPO was used at 1:10000 as the secondary antibodies. 

 

Figure 4.17:  Monoclonal soluble scFv ELISAs induced by IPTG 

The results for the eleven positive clones from the third round of panning, using eluted phages when milk 
was used as the blocking agent is shown in (A).  The results for the seven positive clones from fourth round 
of panning, using eluted phages when milk is used as the blocking agent is shown in (B).  (C) shows the 
results for the three positive clones, using eluted phages when BSA was used in the third and fourth rounds 
of panning.  (D) shows the results for the three positive clones, using column phages, when milk was used 
as the blocking agent. Affinity-purified rPfLDH, un-transformed BL21-(DE3) E. coli and either milk powder 
or BSA were used as the controls.  Anti-c-myc antibodies were used as the primary antibody at 1 µg/ml, 
and rabbit anti-chicken HRPO was used at 1:10000 as the secondary antibodies. 
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Table 4.2: Summary of monoclonal soluble ELISA auto-induced in TEB 

 

High affinity: A405 >0.2 

 

4.2.2.4 Characterization of selected scFv clones 

Nested PCR was done on all eleven soluble scFv clones from the third round of panning, using 

eluted phages, and milk powder as the blocking agent, to confirm whether the scFv clones 

contained the linker region (Figure 4.18 A).  The nested PCR reaction amplified a PCR product 

of 500 bp, which confirmed the presence of the linker region in all the selected clones.  Other 

bands were also present, because the nested PCR was done on impure colony PCR products. 

DNA repeats of AGTC are present in abundance in the genome and are called the Alu DNA repeat 

sequence (Abdurashitov et al., 2008).  AluI restriction enzyme cuts DNA sequence at Alu sites, 

creating a unique profile for different DNA sequences (Abdurashitov et al., 2008).  AluI digests 

were done on the colony PCR products of the selected clones to determine if they were different 

clones (Figure 4.18 B).  After AluI digests of the colony PCR products, it was found that there 

were six unique clones (12, 18, 22, 25, 27, 29), since they gave unique restriction digest profiles 

(Figure 4.18 B). 

 

Figure 4.18: Nested PCR and AluI digests of positive clones 

Nested PCR was carried out on the eleven positive clones from the third round of panning, using eluted 
phages, when milk was used as the blocking agent (A).  Specifically designed forward nested primers and 
M13 reverse primers were used to detect the presence of the linker peptide.  The colony PCR products 
were also digested with AluI restriction enzyme for 16 h at 37°C, to identify unique clones (B).  All products 
were run on 3% (w/v) agarose gel, and viewed under UV light.  The lane number corresponds to the colony 
number. 
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Nine clones which had high affinity to rHSP70 were chosen to determine if they detected rHSP70 

on a dot blot format and they all did (Figure 4.19).  Five clones (clones 12, 18, 19, 22 and 27), 

which detected rHSP70 on the dot blot and had high affinity to rHSP70 were chosen to detect 

rHSP70 on a western blot, but were unsuccessful (data not shown).  No protein bands were 

detected on the western blot. 

 

Figure 4.19: Dot blots using different scFv clones 

Nine clones were used to detect rHSP70 dotted on a nitrocellulose membrane.  The nitrocellulose 
membrane was probed with soluble scFv supernatants from each clone, followed by anti-c-myc antibody at 
1 µg/ml.  Rabbit anti-chicken HRPO was used as the secondary antibody (1:15000).  rPfLDH lysate was 
used as the negative control.   A control blot was included, which was probed with affinity-purified anti-
rHSP70 antibody at 1 µg/ml and rabbit-anti chicken HRPO was used as the secondary antibody at 1:15000.  
Clones 12, 18-22, 25-27 from third round of panning using eluted phages, when milk powder was used as 
the blocking agent, were used. 

 

From the AluI digest profile (Figure 4.18 B), clones 12 and 19 seemed similar, hence they were 

sent for sequencing to confirm whether they were identical clones or different clones.  Clones 18, 

22, and 27 were also sent for sequencing because they looked different clones on the AluI digest 

profiles (Figure 4.18 B).  They were also shown to have high affinity to rHSP70 in ELISA and in 

the dot blot.  Those five clones were sent for sequencing (Figure 4.20). 

 

Table 4.3: AluI digest sites for individual clones 

Clone AluI sites Sizes (bp) 

12 6 188, 247, 346 
 

18 7 376, 232, 342 
 

19 8 188, 247, 345 
 

22 7 595, 149, 191 
 

27 6 602, 347 
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Figure 4.20: Anti-rHSP70 scFv phage amino acid sequences aligned with the chicken germline 
immunoglobulin sequence, and with an anti-PMT scFv clone. 

The protein sequences for five scFv clones (clones 12, 18, 19, 22, 27) against rHSP70 were aligned with 
the chicken germline and with anti-PMT scFv clone.  The linker sequence is shown as (G4S3)3 and the 
different regions are labelled as VH for sequences coding for the heavy chain, and VL for sequences coding 
for the light chain. VHFR- VH framework region (constant/conserved regions); VLFR- VL framework region 
(constant/conserved regions).  Complementarity determining regions (CDR) are represented by open 
boxes.  Sequences pertaining to the vector (phagemid) are underlined.  “.” represent identical residues to 
the germline sequence, letters represent an amino acid substitution, “-” represent gaps in the alignment. 

 

              10        20        30        40        50        60            

           ....|....|....|....|....|....|....|....|....|....|....|....| 

Germline   --------------------------------------------VDLMAAVTLDESGGGL  

Clone 12   ----------MITQACMQILFKETVIMKIPIAYGSRWIVITRGPAGPVX...........  

Clone 18   --------MTMITPSLHAILFQGDSHNEIPIAYGSRWIVITRGPAGPDG...........  

CLONE 19   ------------------------------------------------------------  

Clone 22   --------MTMITPSCMQILFQGDSHNEIPIAYGSRWIVITRGPAGPDGG..........  

Clone 27   --------------------------MKYLLPTAAAGLLLLAAQPA..............  

PMT 1H1    NSGNRYDHEXAKGXLACKFYFKETVIMKYLLPTAAAGLLLLAAQPA.............. 

  

 

  

  

                    70        80        90       100       110       120         

           ....|....|....|....|....|....|....|....|....|....|....|....| 

Germline   QTPGGALSLVCKASGFTFSGYAMMWVRQAPGKGLEFVAGLSGSGRSTGYGSAVKGRATIS  

Clone 12   ...................SFH.G...............IDDG..Y.Y..P.........  

Clone 18   .....G...I.........S.S.G...........Y..QINSG.G-.Y..T.........  

CLONE 19   ----------------------.G...............IDDG..Y.Y..P.........  

Clone 22   ...R...............S.D.HR..........Y..VI.S..SY.N..A.........  

Clone 27   ...................DHG.F...........Y...I.ND.SY.D............  

PMT 1H1    .....G.............S.S.G..-........W...IDDD.SF.H..A.........  
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           ....|....|....|....|....|....|....|....|....|....|....|....| 

Germline   RDNGQSTVRLQLNNLRAEDTATYYCAKDIYG-SGSPSVYSIDAWGHGTEVIVSSASPTSP  

Clone 12   ....................G......TPQIVAQCKRWNP-.............GGGG.G  

Clone 18   ....................G......-----EKVT.YQD..............GGGG.G  

CLONE 19   ....................G......TPQIVAQCKRWNP..............GGGG.G  

Clone 22   ..D.................G......-----VND.---P..............GGGG.G  

Clone 27   ....................G......N-----YNKNKRN..............GGGG.G  

PMT 1H1    ....................G....VS---------DNSL..............GGGG.G  

   

     

 

                    190       200       210       220       230       240      

           ....|....|....|....|....|....|....|....|....|....|....|....| 

Germline   PRLYPLSSLVQAALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTVI  

Clone 12   G---GG.GGGGS.....S.......G..E......----.GS........S.......L.  

Clone 18   G---GG.GGGGS.....S.....L.G.....R...----.GS.N..F...S.........  

CLONE 19   G---GG.GGGGS.....S.......G..E......----.GS........S.......L.  

Clone 22   G---GG.GGGGS.....S................D----RNH.-......S.........  

Clone 27   G---GG.GGGGS.....S.....L.G..E......----Y.G-...F...S....L..L.  

PMT 1H1    G---GG.GGGGS.....S.....L..........S----SGNH.................  
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           ....|....|....|....|....|....|....|....|....|....|....|....| 

Germline   YDYTNRPSTIPSRFSGSLSGSTATLTITGVQVEDEAVYYCANFDSST---YAGIFGAGTT  

Clone 12   .YNNK...D........K....N.......RA........GSR...Y----V........  

Clone 18   .YNNQ...N........K....S........A........GSI.T.NV--.T........  

CLONE 19   .YNNK...D........K....N.......RA........GSR...Y----V........  

Clone 22   .RNNK...D........K.............A......F.GSA..TG----T.V......  

Clone 27   .NSN....D........K..............D.......GSA...---Y-I........  

PMT 1H1    .YNDK...D.......FT.............A......FSGGR...GGGYGS........  
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Germline   LTVL----------------------  

Clone 12   ....GQPNAAAEQKLISEEDLNGAA-  

Clone 18   ....GQPNAAAEQKLISEEDLNGAA-  

CLONE 19   ....GQPNAAAEQKLISEEDLNGAA-  

Clone 22   ....GQPNAAAEQKLISEEDLNGAA-  

Clone 27   ....GQPNAAAEQKLISEEDLNGAA 

PMT 1H1    ....GQPNAAAEQKLISEEDLNGAA                        
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From the AluI digests, clones 12 and 19 looked similar and we used the sequencing data to 

confirm the results of the AluI digests (Table 4.3).  The CDR2 and CDR3 in the heavy chains for 

clones 12 and 19 were identical, confirming that they are the same phage clone (Figure 4.20).  

The rest of the clones differed in the heavy chain CDR sequences, suggesting that they are 

different clones which might bind to different epitopes of rHSP70.  From the sequences obtained, 

the potential AluI sites were determined, and the approximate sizes of the DNA digests were 

estimated and correlated with the restriction digests (Table 4.3).  The DNA digest sizes correlated 

with the sequencing data.   

 

4.2.2.5 Comparing eluted phages and column phages 

Table 4.4 shows the difference between column phages and eluted phages with each round of 

panning.  With increasing rounds of panning, on column phages tend to produce incomplete scFvs 

(Figure 4.21).   

Table 4.4: Comparison of elution and on column methods 

 
 

Figure 4.21: Evaluation of the elution methods using colony PCR 
Clones that gave high readings in monoclonal ELISAs were selected from each round of panning and 
colony PCR was done on those clones.  The OP52 and M13 were used as the forward and reverse primers 
respectively.  The products were resolved on 1% (m/v) agarose gel and viewed under UV light.  (A) shows 
the colony PCR for first round of panning.  Lanes 1-4, clones when column phages were used; Lanes 5,7 
empty lanes; Lanes 6, 8-12, six clones when eluted phages were used.  (B) shows the colony PCR for 
panning round two.  Lanes 1-5, 5 clones when column phages were used; Lanes 6-7, empty lanes; Lanes 
8-12, 5 clones when eluted phages were used.  (C) shows the colony PCR for panning round three.  Lanes 
1-5, 5 clones when column phages were used; Lanes 6-7, empty lanes; Lanes 8-12, 5 clones when eluted 
phages were used.  (D) shows the colony PCR for panning round four.  Lanes 1-5, 5 clones when column 
phages were used; Lanes 6-7, empty lanes; Lanes 8-12, clones when eluted phages were used. 
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round 
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1 6 5 83 1 4 3 75 

2 5 5 100 2 5 3 60 

3 5 3 60 3 5 2 40 

4 5 4 80 4 5 0 0 
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4.3 Discussion 

4.3.1 Polyclonal antibodies against rHSP70 in chickens 
Antibodies were raised against affinity-purified rHSP70 in chickens in this study.  Other animals 

such as horses and donkeys were not used for antibody production, as they require larger spaces 

and are difficult to maintain (Polson et al., 1980).  Eggs are collected for antibody isolation when 

using chickens, while other animals need to be bled to obtain the antibodies.  The yield of specific 

antibodies obtained from IgY is greater than IgG (Tini et al., 2002).  IgY is stable at room 

temperature and at 4°C for long periods of time, while IgG degrades more rapidly (Michael et al., 

2010).  Antibodies have been made against β-ketoalcohol, PfLDH, PfGAPDH, primaquine, 

pyrimethamine, dapsone, tetracycline, doxycycline and bovine HSP70 in chickens, and they were 

comparable to the antibodies made in mice (Krief et al., 2002, Goldring et al., 2005, Krause et al., 

2015, Gutierrez and Guerriero, 1991). 

In this study, Freund’s adjuvant was used for immunisation.  There are other adjuvants available 

such as Aluminium based adjuvants.  Aluminium based adjuvants have been found to elicit a 

weak immune response and usually induce inflammation (Petrovsky and Aguilar, 2004).  

Aluminium salts can also accumulate and cause neurotoxicity.  Saponin-derived adjuvant such 

as Quil-A has also been widely used in animal immunisation, as it is considered to be too harsh 

on humans.  Quil-A elicits a high immune response but also causes harm to the animal.  Other 

adjuvants include LPS, cytokines, pheroid and adjuvant emulsions (Petrovsky and Aguilar, 2004, 

Krause et al., 2015).  Freund’s complete adjuvant is a mixture of inactivated Mycobacteria and 

mineral oil.  Krause et al, (2015) found that Freund’s adjuvant elicited a higher immune response 

in chickens than pheroids.  The choice of adjuvants has to be a compromise between eliciting a 

high immune response and the safety of the animal. 

A modified version of Polson et al. (1980) for IgY isolation was used in this study (Goldring et al., 

2005).  Sequential PEG precipitation was used to isolate IgY from the lipidic and other protein 

fractions.  Other methods for IgY isolation comprise the use of dextran sulphate, alginate, caprylic 

acid, chloroform and ammonium sulphate (Michael et al., 2010).  Other studies have used 

repeated freeze-thawing, pH changes and salting out with either sodium chloride, or ammonium 

sulphate to isolate and purify IgY (Hodek et al., 2013, Tong et al., 2014).  Sequential use of PEG 

precipitation is more efficient, and the yield obtained using this technique is greater than other 

techniques, such as ammonium sulphate precipitation and dextran sulphate (Goldring and 

Coetzer, 2003). 
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4.3.2 Selection of scFv clones against rHSP70 

Monoclonal antibodies are highly specific as they recognise one single epitope.  They have been 

used to study conformational changes, interactions between proteins, phosphorylation 

activation/inactivation states, and in the identification of specific proteins (Lipman et al., 2005).  

Antibody phage display is becoming more popular than hybridoma technology for monoclonal 

antibody production, as antibody repertoires are becoming more easily available, and repertoires 

are being made in different animals, such as mouse, humans and chicken (Winter et al., 1994, 

Van Wyngaardt et al., 2004). 

Immuno-tubes were coated with rHSP70 overnight, and for the first round of panning, the Nkuku® 

library was used to select for phages with high affinity to rHSP70.  Unbound phages were washed 

off, and the bound phages were either eluted using tri-ethylamine to infect TG1 E. coli cells, or 

the infection was done on column.  The rescued phage pool was used for the next round, for a 

total of four rounds of panning, increasing the stringency with each round of panning.  This allowed 

for enrichment of specific phages against rHSP70 (Hoogenboom et al., 1998).  Rescued phage 

pool after each round of panning was used in polyclonal phage ELISA, to determine at which 

round of panning were the most specific single chain variable fragment (scFv) clones expressed.  

Monoclonal phage ELISA and monoclonal soluble ELISA were done on single colonies picked 

from different rounds of panning. 

 

4.3.2.1 On column infection/ Off column infection (eluted phages) 

In this study, bio-panning was optimised.  Tri-ethylamine, an alkaline agent, was used to release 

the bound phages from the immuno-tubes for elution (Smith and Petrenko, 1997).  When on 

column infection was compared to off column (eluted phages), using milk powder as the blocking 

agent, it was found that most of the high affinity clones were incomplete scFv clones, since colony 

PCR showed clones of lower sizes than the expected 1000 bp.  To further explore how these two 

methods differ, colony PCR was done after each round of panning.  As the selection process 

became more stringent, full length scFv clones were lost, and incomplete scFv clones were 

selected for.  Most studies on producing antibodies using phage library have used eluted phages 

to infect E. coli cells (Marks et al., 1991, Van Wyngaardt et al., 2004, Nukarinen, 2016, Hawkins 

et al., 1992).  Smith and Petrenko (1997) reported the use of on column phages, but suggested 

that the yield of phages obtained was lower compared to eluted phages.  They also reported that 

this method of infection was used for peptides displayed on pVIII, and not much information has 

been obtained when this method has been used for peptides/antibodies displayed on pIII.  A study 

screening for peptides, using a phage display system, infected E. coli cells by using on column 
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phages (Noppe et al., 2009).  They, however did not test the effectiveness of the phages, and did 

not verify if the phages were of full length.  Another study which used on column infection for 

antibody screening found that the diversity of clones decreased with increasing rounds of panning 

(Lou et al., 2001).  Our study suggests that if on column infection is to be used with the Nkuku® 

library, rounds of panning should be limited so as to select for full length scFv clones. 

While tri-ethylamine has been widely used for phage elution, other non-specific elution buffers 

such as 6 M urea, glycine, sodium chloride, and HCl have been used to elute phages off columns 

(Van Wyngaardt and Du Plessis, 1998, Watters et al., 1997, Kuba and Furukawa, 2009).  Those 

buffers denature the phages, hence causing them to detach from the immune-tube (Smith and 

Petrenko, 1997). 

 

4.3.2.2 Blocking agents 

Two different blocking agents (milk powder and BSA) were compared based on the yield and 

quality of clones obtained against rHSP70.  Milk powder was a better blocking agent than BSA in 

these experiments, as fewer phages bound to milk, when compared to BSA.  It was also found 

that when BSA was used as the blocking agent in this study, incomplete scFv clones were being 

selected for.  Non-fat milk has been widely used as a blocking agent in various applications such 

as western blots, southern blots, and ELISAs (Shen et al., 2012).  Many studies have used milk 

powder as the blocking agent during bio-panning and obtained good yields and full length scFv 

clones for their selected antigens (Van Wyngaardt and Du Plessis, 1998, Davies et al., 1995, 

Marks et al., 1991).  BSA is a large protein, that is stable and does not affect many reactions, 

therefore used as a blocking agent (Shen et al., 2012).  Studies using BSA as a blocking agent 

and which obtained functional scFvs include Hawkins et al. (1992), Merz et al. (1995) and Watters 

et al. (1997). 

A study was conducted to compare milk powder and BSA as blocking agents, for selecting high 

affinity phages, on a phage-based magnetoelastic biosensor (Shen et al., 2012).  They used 

different concentrations of milk and BSA, and found that at high concentrations of BSA (5 mg/ml), 

there were more phages binding to BSA than to the antigen.  But when the concentration was 

reduced to 1 mg/ml, there were fewer phages binding to BSA than to antigen.  For milk powder, 

at a low concentration (0.1 mg/ml), there were more phages binding to antigen than to milk.  They 

suggest that the use of blocking agent should be optimised (Shen et al., 2012).  The use of BSA 

might have favoured the selection and enrichment of incomplete scFvs, since most of the phages 
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were incomplete in length in this study.  It is also possible that because the concentration of BSA 

used in this study was high, [3% (w/v)], there were more phages binding to BSA than the antigen. 

Alternate blocking agents (BSA in the first round of panning, milk powder in the second round of 

panning, BSA in the third round of panning, milk powder in the fourth round of panning) were used 

in successive rounds of panning to eliminate any phages binding to the blocking, and to enrich 

for phages binding to rHSP70 only.  That proved to be unsuccessful since phages binding to 

rHSP70 were not enriched.  This parallels the findings of  the study conducted by Saggy et al. 

(2012) which found the use of alternate blocking agent to be a failure, and attributed this to the 

de-enrichment of phages.  Other blocking agents that have been commonly used include casein 

and gelatine (Shen et al., 2012, Bradbury and Marks, 2004, Saggy et al., 2012). 

 

4.3.2.3 Expression of soluble scFv 

Expression of soluble scFv using auto-induction and IPTG induction were compared.  Auto-

induction in TEB was better at expressing soluble scFv compared to IPTG induction in 2xYT 

media.  This simplifies expression of soluble scFvs and makes it more cost effective.  This study 

reflects the data obtained by another study which found that auto-induction expressed high levels 

of antibodies compared to IPTG induction (Nadkarni et al., 2007, Ukkonen et al., 2013).  Lactose 

induction was also compared and was found to be less efficient than IPTG since the bacteria did 

not grow to high cell densities (Nadkarni et al., 2007). 

 

4.3.2.4 Characterisation of clones   

Selected scFv clones detected rHSP70 in ELISA and dot blot formats, but not in a western blot.  

This might be because the phages recognise conformational epitopes (Smith and Petrenko, 1997, 

Liu and Marks, 2000).  In western blot, proteins are heat denatured and transferred to 

nitrocellulose membrane for detection.  This might have denatured conformational epitopes and 

hence, the scFvs could not detect the antigen (Liu and Marks, 2000).  Another study was 

successful in making scFv clones against recombinant human HSP70, and successfully used 

them to detect the protein on a western blot (Baek et al., 2004).  They however, could not detect 

HSP70 from U937 cell lysates, and suggested that the clones selected for, did not bind to the 

native form of HSP70 since HSP70 might form different conformations in a mammalian cell, when 

compared with an E. coli cell (Baek et al., 2004). 
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4.4 Conclusion 

Polyclonal antibodies were made against rHSP70 in chickens, and used to detect native HSP70 

from both human and mouse monocytes throughout this study.  A Nkuku® phage library was used 

to screen for scFvs against rHSP70.  The panning process was optimised and it was found that 

eluted phages work best, and that milk was the best blocking agent.  Expression of soluble scFvs 

was found to give the best yields of soluble scFvs.  Selected clones detected rHSP70 in a dot-

blot format but did not detect the recombinant protein or native HSP70 in a western blot, as the 

rHSP70 was denatured, hence lost its conformational epitopes.  This study showed that 

monoclonal antibodies can be made in vitro, and in a relatively short period of time.  Immunisation 

of animals was not required.  The specific scFv phages against rHSP70 could be used in ELISA 

formats as they could detect native forms of HSP70.  They could also be used in immuno-

precipitation and immuno-florescence assays. 
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CHAPTER 5: EFFECTS OF ANTIMALARIAL, ANTI-INFLAMMATORY DRUGS AND 

β-HAEMATIN ON MONOCYTE HSP70 PROTEIN EXPRESSION 

5.1 Introduction 

5.1.1 Malaria, fever and HSP70 

Malaria is caused by parasites of the Plasmodium genus and most malaria morbidity and mortality 

is caused by P. falciparum infections (Urban and Roberts, 2002).  One of the main features of 

malaria is periodical fever (Pavithra et al., 2004).  Schizont rupture is usually accompanied by 

fever (Garcia et al., 2001) and a rise in tumour necrosis factor-α (TNF-α) serum levels (Polla, 

1991, Clark and Cowden, 2003).  During fever, both the host and the parasites experience heat 

shock conditions (Polla, 1991).  While fever has been reported to inhibit parasite growth 

(Kwiatkowski, 1989), it has mostly been associated to increase the disease burden (Carvalho et 

al., 2013, Oakley et al., 2007).  Fever increases cytoadherence and rosetting of infected red blood 

cells (Oakley et al., 2007) and fever can synchronise parasite growth in vitro (Pavithra et al., 

2004). 

Heat shock protein 70 (HSP70) is a highly conserved protein which is expressed by cells, when 

exposed to stress including heat shock (Robert, 2003, Borges et al., 2012).  HSP70 has been 

reported to be anti-inflammatory (Borges et al., 2012) and anti-apoptotic (Jäättelä, 1999).  HSP70 

protects cells against TNF-α, nitric oxide and oxidative stress mediated cytotoxicity (Jäättelä and 

Wissing, 1993).  During stress, HSP70 is expressed at higher levels in monocytes when 

compared to other leucocytes (Bachelet et al., 1998).   

Monocytes act as the first line of defence against parasites (Gordon and Mantovani, 2011).  They 

phagocytose infected red blood cells, free parasites, parasite products and haemozoin during 

malaria (Malaguarnera and Musumeci, 2002), mounting a response by releasing pro-

inflammatory cytokines such as TNF-α, IL-6 and anti-inflammatory cytokines such as IL-10 

(Gordon and Taylor, 2005, Schofield and Grau, 2005).  Monocytes secrete neopterin (Facer, 

1995) and phospholipase A2 (PLA2) (Vadas et al., 1993) during malaria.  It was however, reported 

that monocyte functions during malaria are compromised when they phagocytose haemozoin 

(Schwarzer et al., 1992).  The haemozoin laden monocytes produce uncontrolled amounts of 

cytokines, lose their ability to undergo repeated phagocytosis and have suppressed NADPH 

oxidative activity (Giribaldi et al., 2010, Schwarzer et al., 1992, Schwarzer and Arese, 1996). 
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5.1.2 Characterisation of cell lines 

Two cell lines were used in this study, namely J774A.1 and U937 cells.  The J774A.1 cells are 

derived from a histiocytic lymphoma from a female BALB/c/ NIH mouse (Ralph et al., 1975).  They 

are adherent and phagocytic cells (Ralph et al., 1975).  The U937 cell line is a pro-monocytic cell 

line, isolated from a histiocytic lymphoma from a 37-year-old male (Sundström and Nilsson, 1976).  

The cells are non-adherent, and lack IgG receptors (Chanput et al., 2015, Sundström and Nilsson, 

1976) and are non-phagocytic (Ralph et al., 1976).  The body consists of both monocytes and 

macrophages, which is why two different cell lines representing both populations were used.  A 

mouse cell line was used to see what would happen in vivo when mice would be used to test the 

effects of the antimalarial, anti-inflammatory drugs on monocyte HSP70.  In vivo studies were not 

done in this study, but the in vitro results could be used as a reference for when animal studies 

are done.  Histochemical techniques were used to characterise two different 

monocyte/macrophage cell lines, J774A.1 and U937.  Giemsa and methyl green stains were used 

for morphological studies.   Peroxidase and alkaline phosphatase activity of monocytes were used 

to assess cell viability and to show that the cells were healthy and active.   

 

5.1.3 Antimalarial drugs 

Antimalarial drugs have been primarily used to treat malaria (Wolf et al., 2000, Blanchard, 1947), 

but they can influence the host immune response as well (Thomé et al., 2013, Wolf et al., 2000). 

Understanding how antimalarial drugs influence monocyte HSP70 expression may give an insight 

on how they affect monocyte responses.  Nine antimalarial drugs namely artemisinin, artesunate, 

artemether, chloroquine, pyrimethamine, primaquine, quinine, quinidine and quinacrine were 

used at therapeutic concentration of each drug in this study.  Artemisinin and its derivatives, 

artesunate and artemether have been reported to be anti-inflammatory, as they inhibit expression 

of pro-inflammatory cytokines from monocytes (Hou and Huang, 2016).  Artemisinin and 

artesunate decreased TNF-α and IL-6 expressions from mouse peritoneal macrophages (Wang 

et al., 2006, Li et al., 2008), while artemether inhibited IL-2 and IFN-Ɣ productions by mice 

splenocytes (Wang et al., 2007).  Chloroquine inhibited TNF-α and IL-6 expressions from 

monocytes (López Suárez et al., 2014, Jang et al., 2006), and it has been used for the treatment 

of rheumatoid arthritis and lupus due to its anti-inflammatory properties (Thomé et al., 2013).  

Pyrimethamine has been found to increase nitric oxide secretion in infected mice sera (Legorreta-

Herrera et al., 2010).  Primaquine decreased TNF-α and IFN-Ɣ secretions in mice sera which 

were given autoimmune encephalomyelitis (Zanucoli et al., 2014).  Quinine decreased TNF-α and 

nitric oxide expressions in macrophages (Maruyama et al., 1994, Lowry et al., 1998).  Quinidine 
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increased TNF-α expression in peripheral blood mononuclear cells (Matsumori et al., 1997).  

Quinacrine decreased TNF-α, IL-β and nitric oxide expressions from macrophages (Bondeson 

and Sundler, 1998, Jani et al., 2010, Chumanevich et al., 2016).  Quinine, primaquine and 

artemisinin decreased the neopterin secretion from IFN-stimulated macrophages, by inhibiting the 

GTP cyclohydrolase-1 enzyme, which is required to convert break down GTP to intermediates 

required for neopterin synthesis (Cumming et al., 2011).  Artemisinin and quinine were reported 

to be most effective in reducing rosette formation between trophozoite infected red blood cells 

and non-infected red blood cells (Goldring et al., 1999).  Another study reported that quinine and 

pyrimethamine were more effective in reducing cytoadherence between monocytes and infected 

red blood cells (Goldring and Nemaorani, 1999). 

   

5.1.4 Anti-inflammatory drugs 

Four anti-inflammatory drugs, ambroxol, danazol, probucol and curcumin were used in this study.  

They have antimalarial properties, which suggest that they can be used as adjunct therapy with 

antimalarial drugs in the treatment of malaria.  Ambroxol, danazol and probucol were reported to 

inhibit cytoadherence between infected red blood cells and monocytes (Goldring and Ramoshebi, 

1999).  Probucol was also found to decrease α-tocopherol in the blood, therefore increasing 

oxidative stress, which has been attributed to the killing of parasites (Herbas et al., 2015).  

Probucol also decreased the effective concentration of dihydroartemisinin (DHA) for use in 

malaria (Kume et al., 2016).  Curcumin was reported to prevent the breakdown of the blood-brain 

barrier, and to prevent brain endothelial cell apoptosis during a malaria infection, hence 

preventing cerebral malaria (Kunwittaya et al., 2014, Dende et al., 2015).  It was thought that the 

anti-inflammatory drugs could affect monocyte responses, and monocyte HSP70 expression was 

measured to determine whether they have an effect on monocytes.  

Ambroxol was reported to decrease TNF-α, IL-6, IL-1β, NO expressions in macrophages (Beeh 

et al., 2008), while probucol decreased IL-1β and hydrogen peroxide production in monocytes 

(Akeson et al., 1991, Fukuda et al., 1995).  Danazol decreased IL6, IL-1β and TNF-α expressions 

in macrophages (Mori et al., 1990, Liu et al., 2000).  Curcumin decreased TNF-α, IL-6, IL-1β 

expressions in monocytes (Literat et al., 2001, Julie and Jurenka, 2009).  Curcumin increased 

reactive oxygen species secretion by monocytes (Mimche et al., 2012).  Ambroxol, probucol and 

danazol decreased cytoadherence between infected red blood cells and monocytes, suggesting 

that monocyte receptors were downregulated in the presence of those anti-inflammatory drugs 

(Goldring and Ramoshebi, 1999).  Danazol has been reported to decrease estrogen receptors on 
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monocytes (Fujimoto et al., 1995), while curcumin increased CD36 receptors on monocytes 

(Mimche et al., 2012). 

The effects of antimalarial and anti-inflammatory drugs on monocyte HSP70 protein expression 

were not reported elsewhere. 

5.1.5 Influence of haemozoin on monocyte responses 

Monocytes avidly phagocytose malaria haemozoin, but their functions have been reported to be 

affected by the incomplete digestion of haemozoin (Skorokhod et al., 2014).  Monocytes laden 

with haemozoin produce dysregulated amounts of cytokines, have inhibited phagocytosis, cannot 

process antigen for antigen presentation, and have produce low levels of reactive oxygen 

intermediates, due to inhibition of the NADPH enzyme (Giribaldi et al., 2010, Schwarzer et al., 

1992, Schwarzer and Arese, 1996).  Monocytes with haemozoin have been reported to express 

high levels of TNF-α, IL-12, NO (Jaramillo et al., 2009, Ranjan et al., 2016). 

 

5.2 Results 

5.2.1 Characterisation of the two monocyte cell lines 

Giemsa stains the cell nuclei bright blue, and the cytoplasms light blue (Figure 5.1 A, B), and cell 

nuclei stained bright green and the cytoplasm stained light green with methyl green (Figure 5.1 

C, D).  Granules were observed as they stained more brightly than the cytoplasm.  The kidney 

shaped nucleus could be seen for both J774A.1 and U937, from the Giemsa and methyl stains 

(Figure 5.1 A, B).  The Giemsa and methyl stains confirmed that the cells had monocyte 

morphology.  Cells with peroxidase activity stained brown (Figure 5.1 E, F) and those with alkaline 

phosphatase activity stained blue (Figure 5.1 G, H).  U937 cells stained pale blue compared to 

J774A.1 cells, which might suggest that they had lower alkaline phosphatase activity than 

J774A.1 cells (Figure 5.1).  Both J774A.1 and U937 cells had peroxidase and alkaline phosphate 

activity (Figure 5.1).  Trypan blue assay was also used to see if the cells were viable (data not 

shown).  These show that the cells expressed peroxidase and alkaline phosphatase activity and 

were active, therefore were healthy.   

5.2.2 Statistical analysis 

Three different (triplicate) cultures of J774A.1 and U937 cells were incubated with each drug at 

their therapeutic concentrations.  Samples from each of the three treated cultures were loaded in 

duplicate on a reducing SDS-PAGE gel.  Monocyte HSP70 protein expression was analysed from 

the SDS-PAGE gel and its corresponding western blot.  The experiments were repeated at 

different times and the effects obtained were identical.  This ensured that the effects obtained 

were repeatable.  Monocytes untreated and monocytes treated with DMSO were heat shocked 
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for 2 h at 40°C, and allowed to rest for 2 h at 37°C.  The monocyte lysates were analysed on  a 

SDS-PAGE gel there was no difference in the expression level of monocyte HSP70 (data not 

shown).  Monocyte HSP70 protein expression was quantified using densitometry where monocyte 

HSP70 expression was compared to either the total protein in each lane or a single protein band 

from the same lane from the reference SDS-PAGE gel (Welinder and Ekblad, 2011).  A prominent 

protein band at about 42 kDa which was present in all lanes from monocyte cell lysates in the 

SDS-PAGE gel, was used as the protein band for loading and expression control.  As referred in 

chapter two, the 42 kDa band is thought to be beta-actin.  The use of a single protein band for 

normalising data was preferred in this study since it was thought that the increase in HSP70 

expression induced by the experiments may alter the total protein in a particular lane.  HSP70 

protein expression when, both total protein (data attached to Appendix) or a single protein band 

were used as loading control, was compared and minimal differences were found.  Results 

obtained when a single protein band was used as the loading control are reported. 
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 Figure 5.1:  Staining of J774A.1 and U937 cells 
The J774A.1 (A) and U937 (B) cells were stained with Giemsa; J774A.1 (C) and U937 (D) cells were stained 
with methyl green; peroxidase activity of J774A.1 (E) and U937 (F) cells were visualised with DAB stain; 
alkaline phosphase activity of J774A.1 (G) and U937 (H) cells were visualised using BCIP/NBT stain.  The 
cells were viewed under a phase contrast microscope at 400X magnification. 
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5.2.3 Effects of antimalarial drugs on monocyte HSP70 protein expression  

The effects of artemisinin, artesunate, artemether, chloroquine, quinine, quinidine, quinacrine, 

pyrimethamine and primaquine on monocyte HSP70 protein expression were investigated.  A 

summary of the data is presented in a table and a figure, at the end of the section  (Table 5.1, 

Figure 5.21).  None of the antimalarial drugs had an effect on the inducible HSP70 protein 

expression at 37°C in monocytes.  A representative gel and western blot for artemisinin are shown 

in Figure 5.2.  The western blots of all the anti-malarial drugs were blank, as with artemisinin.  

This served as a negative control.  Because the interplay of fever and presence of antimalarial 

drugs on monocyte HSP70 protein expression were investigated, monocytes pre-treated with 

each drug at therapeutic concentration for 18 h, were heat shocked for 2 h at 40°C, and allowed 

to rest for 2 h at 37°C (Aunpad et al., 2009), so as to mimic febrile episodes experienced during 

malaria.   

Artemisinin had an apparent decrease in J774A.1 HSP70 protein expression, which was not 

significant (p=0.54) and a significant decrease in HSP70 expression in U937 cells (p=0.0014) 

(Figures 5.3, 5.4).  With Artesunate, both J774A.1 (p=0.10) and U937 (p=0.36) cells showed no 

significant change in the HSP70 protein expression, though an apparent increase was observed 

in J774A.1 cells (Figures 5.5, 5.6).  When treated with artemether, there was a significant increase 

in HSP70 protein expression in J774A.1 (p=0.0068) but not in U937 (p=0.22) cells (Figures 5.7, 

5.8).  There was a significant increase (p=0.016) in HSP70 expression when J774A.1 cells were 

treated with chloroquine (Figure 5.9) and an apparent increase in HSP70 in U937 cells (p=0.17) 

(Figure 5.10).  No significant change in the HSP70 protein expression was observed when 

J774A.1 (p=0.32) and U937 (p=0.54) cells were treated with pyrimethamine (Figures 5.11, 5.12).   

There was a significant decrease in HSP70 expression in both J774A.1 (p=0.0034) and U937 

cells (p=0.014) with primaquine (Figures 5.13, 5.14).  It can be seen that quinine decreased 

HSP70 protein expression in both J774A.1 (0.00002) and U937 (0.00003) cells (Figures 5.15, 

5.16).  When the concentration of quinine was increased to 15 µg/ml, it was found that the HSP70 

protein expression decreased even more (Figure 5.17).  With Quinidine, a decrease in both cells 

(p=0.024) and (p=0.054) (Figures 5.18, 5.19).  With Quinacrine, both J774A.1 (p=0.0000019) and 

U937 (p=0.0000072) cells showed a significant decrease in HSP70 protein expression (Figures 

5.20, 5.21).  There was barely any HSP70 protein expressed with quinacrine. 
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Figure 5.2: HSP70 protein expression in J774A.1 cells incubated with artemisinin 

The cells were treated with 400 ng/ml of artemisinin for 18 h at 37°C, and then lysed.  The cell lysates were 
run on a reducing 10% SDS-PAGE gel (A).  The corresponding western blot (B) was probed with affinity 
purified anti-rHSP70 antibody at 1 µg/ml.  Rabbit anti-chicken HRPO was used as the secondary antibody 
at (1:10000).  The western blot was viewed using ECL.  MW: Molecular weight marker; Lane 1, DMSO 
control; Lanes 2-4, triplicate cultures treated with Artemisinin. 

 

Figure 5.3: HSP70 expression in J774A.1 cells incubated with artemisinin and heat shocked 

The cells were treated with 400 ng/ml of artemisinin for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibody at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
Artemisinin, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

 
Figure 5.4: HSP70 expression in U937 cells incubated with artemisinin and heat shocked 

The cells were treated with 400 ng/ml artemisinin for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cells lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with and affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  
Rabbit anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed 
using ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated 
with artemisinin, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the 
western blot, using ImageJ.  Values are means + SE; * p<0.05, (p=0.0014). 
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Figure 5.5: HSP70 expression in J774A.1 cells incubated with artesunate and heat shocked 

The cells were treated with 200 ng/ml artesunate for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibody at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
artesunate, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

 

Figure 5.6: HSP70 expression in U937 cells incubated with artesunate and heat shocked 

The cells were treated with 200 ng/ml artesunate for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
artesunate, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

 
Figure 5.7: HSP70 expression in J774A.1 cells incubated with artemether and heat shocked 
The cells were treated with 200 ng/ml of artemether for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibody at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
artemether, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.0068). 
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Figure 5.8: HSP70 expression in U937 cells incubated with artemether and heat shocked 
The cells were treated with 200 ng/ml of artemether for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
artemether, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

     
Figure 5.9: HSP70 expression in J774A.1 cells incubated with chloroquine and heat shocked 

The cells were treated with 200 ng/ml of chloroquine for 18 h at 37°C, then heat shocked for 2 h at 40°C, 

and allowed to rest for 2 h at 37°C.  The cells were lysed and run on a reducing 10% SDS-PAGE gel (A).  

The western corresponding blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  

Rabbit anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed 

using ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated 

with chloroquine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the 

western blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.0016). 

Figure 5.10: HSP70 expression in U937 cells incubated with chloroquine and heat shocked 
The cells were treated with 200 ng/ml of chloroquine for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibody at 1 µg/ml as the 
primary antibody.  Rabbit anti-chicken HRPO was used as the secondary antibody at (1:10000).  The 
western blot was viewed using ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, 
triplicate cultures treated with chloroquine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the 
densitometry analysis of the western blot, using ImageJ.  Values are means + SE; ns:(non-significant); 
p>0.05. 
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Figure 5.11: HSP70 expression in J774A.1 cells incubated with pyrimethamine and heat shocked 
The cells were treated with 153 ng/ml of pyrimethamine for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The blot was viewed using ECL.  
MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
pyrimethamine, loaded in duplicate; Lane 9, pure rHSP70. (C) shows the densitometry analysis of the 
western blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

 

Figure 5.12: HSP70 expression in U937 cells incubated with pyrimethamine and heat shocked 

The cells were treated with 153 ng/ml of pyrimethamine for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
pyrimethamine, loaded in duplicate; Lane 9, pure rHSP70. (C) shows the densitometry analysis of the 
western blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

 

Figure 5.13: HSP70 expression in J774A.1 cells incubated with primaquine and heat shocked 

The cells were treated with 234 ng/ml of primaquine for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
primaquine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.0034). 
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Figure 5.14: HSP70 expression in U937 cells incubated with primaquine and heat shocked 

The cells were treated with 234 ng/ml of primaquine for 18 h at 37°C, then heat shocked for 2 h at 40°C, 
and allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
primaquine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.014). 

 

Figure 5.15: HSP70 expression in J774A.1 cells incubated with quinine and heat shocked. 

The cells were treated with 10 µg/ml of quinine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cells were lysed and run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
quinine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.000017). 

 

Figure 5.16: HSP70 expression in U937 cells incubated with quinine and heat shocked. 

The cells were treated with 10 µg/ml of quinine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
quinine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.000032). 
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Figure 5.17: HSP70 expression in U937 cells incubated with quinine (15µg/ml) and heat shocked. 

The cells were treated with 15 µg/ml of quinine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cells were lysed and run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
quinine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.000032).  

 

Figure 5.18: HSP70 expression in J774A.1 cells incubated with quinidine and heat shocked 

The cells were treated with 5 µg/ml of quinidine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
quinidine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.024). 

 

Figure 5.19: HSP70 expression in U937 cells incubated with quinidine and heat shocked. 
The cells were treated with 5 µg/ml of quinidine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cells were lysed and run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
quinidine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.05). 
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Figure 5.20: HSP70 expression in J774A.1 cells incubated with quinacrine and heat shocked 
The cells were treated with 10 µg/ml of quinacrine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1µg/ml as the primary 
antibody.  Rabbit anti-chicken HRPO was used as the secondary antibody at 1:10000.  The blot was viewed 
using ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated 
with quinacrine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the 
western blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.0000019). 

 

Figure 5.21: HSP70 expression in U937 cells incubated with quinacrine and heat shocked 
The cells were treated with 10 µg/ml of quinacrine for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
quinacrine, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.0000078). 
 
Table 5.1: Summary of the findings of the effect of antimalarial drugs on monocyte HSP70 
expression 

Antimalarial drugs Concentration 
(µg/ml) 

J774A.1 P value U937 P value 

Artemisinin 0.4 NS 0.54  0.0014 

Artesunate 0.2 NS 0.10 NS 0.36 

Artemether 0.2  0.0068 NS 0.22 

Chloroquine 0.2  0.0016 NS 0.17 

Pyrimethamine 0.234 NS 0.32 NS 0.54 

Primaquine 0.153  0.003  0.014 

Quinacrine 10  0.0000019  0.0000078 

Quinidine 5  0.024  0.05 

Quinine 10, 15  0.000017  0.000032 

NS: Not significant, p>0.05;        : increase;        : decrease   
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Figure 5.22: Summary of antimalarial drugs’ effects on monocyte HSP70 protein expression, after 
heat shock 

The effects of different antimalarial drugs on J774A.1 monocytes (A) and U937 monocytes (B) on monocyte 
HSP70 protein expression are shown.   Densitometry analysis was done using ImageJ.  Values are means 

+ SE; * p<0.05 versus control; ns: non-significant, p>0.05 versus control. 

 

Three antimalarial drugs chloroquine, artemether and artesunate increased HSP70 protein 

expression in monocytes, with chloroquine and artemether being most effective at increasing 

monocyte HSP70 protein expression.  Five antimalarial drugs, quinacrine, quinine, primaquine, 

artemisinin and quinidine decreased HSP70 protein expression in monocytes, with quinacrine, 

quinine and primaquine being the most effective, and artemisinin and quinidine being the least 

effective. 

 

5.2.4 Effects of anti-inflammatory drugs on monocyte HSP70 protein expression 

Ambroxol, probucol, danazol and curcumin did not induce HSP70 protein expression in J774A.1 

and U937 cells at physiological temperature, 37°C.  A representative gel and its corresponding 

western blot for ambroxol at 37°C is shown (Figure 5.23).  The western blots for the remaining 

anti-inflammatory drugs are all blank (data not shown).  The interplay of fever and anti-

inflammatory drugs on HSP70 protein expression was investigated.  The monocytes were pre-

treated with each anti-inflammatory drug at therapeutic concentration, and heat shocked for 2 h 

at 40°C, and allowed to rest for 2 h at 37°C.  A summary of the findings is represented later (Table 

5.2, Figure 5.32). 

Ambroxol increased HSP70 protein expression in J774A.1 cells (p=0.017) (Figure 5.24) and 

decreased HSP70 protein expression in U937 cells (p=0.00053) (Figure 5.25).  When J774A.1 

cells were treated with probucol, there was an apparent increase in HSP70 expression (p=0.19) 

          

A  B  

     

ns 

ns 

ns 

* * * * 

* 

* 



95 
 

(Figure 5.26) and a decreased (p=0.000037) HSP70 protein expression in U937 cells (Figure 

5.27).  Danazol decreased HSP70 protein expression in both J774A.1 (p=0.0045) and U937 

(p=0.0000019) cells (Figures 5.28, 5.29).  Curcumin decreased the HSP70 protein expression in 

J774A.1 cells (p=0.00038) (Figure 5.30) and increased HSP70 expression in U937 monocytes, 

(p=0.011) (Figure 5.31).   

 
Figure 5.23: HSP70 expression in J774A.1 cells incubated with ambroxol at 37°C 
The cells were treated with 44 µg/ml of ambroxol for 18 h at 37°C and the cell lysates were run on a reducing 
10% SDS-PAGE gel (A).  The corresponding western blot (B) was probed with affinity-purified anti-rHSP70 
antibodies at 1 µg/ml.  Rabbit anti-chicken HRPO was used as the secondary antibody at (1:10000).  The 
western blot was viewed using ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, 
triplicate cultures treated with ambroxol, loaded in duplicate; Lane 9, pure rHSP70.  

 

Figure 5.24:  HSP70 expression in J774A.1 cells incubated with ambroxol and heat shocked 
The cells were treated with 44 µg/ml of ambroxol for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
ambroxol, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.017). 

 
Figure 5.25:  HSP70 expression in U937 cells incubated with ambroxol and heat shocked 
The cells were treated with 44 µg/ml of ambroxol for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, DMSO control; Lanes 3-8, triplicate cultures treated with 
ambroxol, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.00053). 

 

A       B 

 

           

MW      1       2      3       4       5       6       7      8     9  MW     1      2      3      4      5       6       7      8     9  

180 
116 

90 
58 
48 

 
36 

 
26 

     
 

 

A       B 

 

               

C 

 

MW    1      2      3      4      5      6      7      8     9  MW     1     2      3      4      5      6      7     8     9  

180 
116 

90 
 

58 
48 

 
36 
26 

     
 

* 

 

A       B 

 

               

C 

 

MW    1      2      3      4      5      6      7      8     9  MW     1     2      3      4      5      6      7     8     9  

180 
116 

90 
 

58 
48 

 
36 
26 

     
 

* 

A B C

 

A      B 

MW   1      2     3     4     5     6     7     8     9                 MW   1       2        3        4       5       6       7      8         9 

                 

 

 

C 

 

116 

66 

45 

35 

25 

* 

 

A      B 

MW   1      2     3     4     5     6     7     8     9                 MW   1       2        3        4       5       6       7      8         9 

                 

 

 

C 

 

116 

66 

45 

35 

25 

* 

A B C



96 
 

 

Figure 5.26:  HSP70 expression in J774A.1 cells incubated with probucol and heat shocked 
The cells were treated with 70 µg/ml of probucol for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, Ethanol control; Lanes 3-8, triplicate cultures treated with 
probucol, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; ns:(non-significant); p>0.05. 

 

Figure 5.27:  HSP70 protein expression in U937 cells incubated with probucol and heat shocked 
The cells were treated with 70 µg/ml of probucol for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, Ethanol control; Lanes 3-8, triplicate cultures treated with 
probucol, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.000037). 

 
Figure 5.28: HSP70 expression in J774A.1 cells incubated with danazol and heat shocked 
The cells were treated with 1 µg/ml of danazol for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, Ethanol control; Lanes 3-8, triplicate cultures treated with 
danazol, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05;(p=0.044). 
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Figure 5.29: HSP70 protein expression in U937 cells incubated with danazol and heat shocked 
The cells were treated with 1 µg/ml of danazol for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, Ethanol control; Lanes 3-8, triplicate cultures treated with 
danazol, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.0000019). 

 

Figure 5.30: HSP70 expression in J774A.1 cells incubated with curcumin and heat shocked 
The cells were treated with 10 µM of curcumin for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker, Lanes 1-2, Ethanol control; Lanes 3-8, triplicate cultures treated with 
curcumin, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.00038). 

 
Figure 5.31: HSP70 expression in U937 cells incubated with curcumin and heat shocked 

The cells were treated with 10 µM of curcumin for 18 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a reducing 10% SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, Ethanol control; Lanes 3-8, triplicate cultures treated with 
curcumin, loaded in duplicate; Lane 9, pure rHSP70.  (C) shows the densitometry analysis of the western 
blot, using ImageJ.  Values are means + SE; * p<0.05; (p=0.011). 
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Table 5.2: Summary of the findings of the effect of anti-inflammatory drugs on monocyte HSP70 
expression 

Anti-inflammatory 
drugs 

Concentration J774A.1 P value U937 P value 

Ambroxol 44 µg/ml  0.017  0.00053 

Probucol 70 µg/ml NS 0.19  0.000037 

Danazol 1 µg/ml  0.044  0.0000019 

Curcumin 3.7 mg/ml  0.00038  0.011 

NS: Non-significant, p>0.05;         : increase;        : decrease 

 

Figure 5.32: Summary of anti-inflammatory drugs on monocyte HSP70 protein expression, after heat 
shock 

The effects of different anti-inflammatory drugs on J774A.1 (A) and U937 cells (B) on monocyte HSP70 
protein expression are shown.   Densitometry analysis was done using ImageJ.  Values are means + SE; * 
p<0.05; ns: non-significant, p>0.05. 

 

Ambroxol and probucol decreased HSP70 protein expression in U937 cells.  Danazol decreased 

HSP70 protein expression in both cell lines.  Ambroxol and probucol seemed to increase HSP70 

protein expression in J774A.1 cells, which could be because J774A.1 they are more differentiated 

than U937 cells, with ambroxol being more effective.  Curcumin decreased HSP70 protein 

expression in J774A.1 cells, but increased HSP70 protein expression in U937 monocytes. 

 

5.2.5 Effects of β-haematin, latex beads and hemin on monocyte HSP70 protein expression 

J774A.1 cells incubated with β-haematin did not affect HSP70 protein expression at 37°C (Figure 

5.33).  Monocytes were incubated with β-haematin for 2 h, then heat shocked for 2 h to mimic 

fever and allowed to rest for 2 h at 37°C.  U937 cells, which are non-phagocytic (Ralph et al., 

1975), were also incubated with β-haematin, to serve as a negative control.  U937 cells would not 

phagocytose β-haematin, hence, it was hypothesized that β-haematin will not cause any effects 

in HSP70 protein expression in U937 cells.  A summary of the findings is presented in a table at 

the end of this section (Table 5.3). 
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β-haematin decreased HSP70 protein expression (p=0.0002) in J774A.1 cells (Figure 5.34).  It 

was interesting to note that U937 monocytes which do not phagocytose β-haematin had a higher 

expression (p=0.03) of HSP70 protein expression, in the presence of β-haematin (Figure 5.34).   

To confirm whether the reduced HSP70 protein expression was due to β-haematin, J774A.1 cells 

were incubated with latex beads and hemin as controls (Figure 5.35).  It was found that protein 

expression of monocyte HSP70 was decreased in the presence of latex beads (p=0.0001), hemin 

(p=0.02) and β-haematin (p=0.001), compared to non-treated cultures. 

 
Figure 5.33: HSP70 protein expression in cells incubated with β-haematin 
The cells were treated with 25 µg/ml of β-haematin for 2 h at 37°.  The cell lysates were run on a 10% 
reducing SDS-PAGE gel (A).  The corresponding western blot (B) was probed with affinity-purified anti-
rHSP70 antibodies at 1 µg/ml.  Rabbit anti-chicken HRPO was used as the secondary antibody at 
(1:10000).  The western blot was viewed using ECL.  MW: Molecular weight marker; Lanes 1-2, One culture 
of non-treated J774A.1 cells loaded in duplicate; Lanes 3-8, three cultures J774A.1 cells fed with β-
haematin, loaded in duplicate, Lane 9, pure rHSP70. 

 

Figure 5.34: HSP70 expression in monocytes incubated with β-haematin and heat shocked 
The cells were treated with 25 µg/ml of β-haematin for 2 h at 37°C, then heat shocked for 2 h at 40°C, and 
allowed to rest for 2 h at 37°C.  The cell lysates were run on a 10% reducing SDS-PAGE gel (A).  The 
corresponding western blot (B) was probed with affinity-purified anti-rHSP70 antibodies at 1 µg/ml.  Rabbit 
anti-chicken HRPO was used as the secondary antibody at (1:10000).  The western blot was viewed using 
ECL.  MW: Molecular weight marker; Lanes 1-2, one culture of non-treated J774A.1 cells loaded in 
duplicate; Lanes 3-4, one culture of U937 cells fed with β-haematin, loaded in duplicate; Lanes 5-8, two 
cultures J774A.1 cells fed with β-haematin, loaded in duplicate. *, p<0.05. 
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Figure 5.35: HSP70 expression in J774A.1 cells incubated with latex beads, hemin and β-haematin, 
and heat shocked. 
The cells were treated with 0.1% (w/v) latex beads, 25 µg/ml of hemin or 25 µg/ml of β-haematin for 2 h at 
37°C, then heat shocked for 2 h at 40°C, and allowed to rest for 2 h at 37°C.  The cell lysates were run on 
a reducing 10% SDS-PAGE gel (A).  The corresponding western blot (B) was probed with affinity-purified 
anti-rHSP70 antibodies at 1 µg/ml.  Rabbit anti-chicken HRPO was used as the secondary antibody at 
(1:10000).  The western blot was viewed using ECL.  MW: Molecular weight marker; Lanes 1-2, NT- Non-
treated cells; Lanes 3-6, two cultures treated with latex beads, loaded in duplicate; Lanes 7-10, two cultures 
treated with hemin, loaded in duplicate; lanes 11-14, two cultures treated with β-haematin, loaded in 
duplicate; (C) shows the densitometry analysis of the western blot, using ImageJ.  Values are means + SE; 
* p<0.05; ns: non-significant, p>0.05. 
 
Table 5.3: Summary of the findings of the effect of β-haematin, latex beads and hemin on monocyte 
HSP70 expression, after heat shock 

 Concentration J774A.1  P value U937 P value 

β-haematin 25 µg/ml  0.001  0.03 

Latex beads 0.1% (w/v)  0.0001 NA - 

Hemin 25 µg/ml  0.02 NA - 

NS: Non-significant, p>0.05; ;        : increase;        : decrease 

β-haematin, latex beads and hemin all decreased HSP70 protein expression in J774A.1 cells, 

with latex beads being most effective, and hemin being the least effective. 

 

5.3 Discussion 

5.3.1 Characterisation of cell lines 

Monocytes are essential immune cells defending the host against pathogens (Serbina et al., 2008, 

Mac-Daniel and Menard, 2015).  They circulate in the blood and respond very quickly to an 

infected area by actively recruiting more monocytes to the area, and secreting pro-inflammatory 

cytokines (Mac-Daniel and Menard, 2015).  The J774A.1 and U937 monocytic cell lines were 

used in this study as a model for monocyte responses in the presence of antimalarial, anti-

inflammatory drugs and β-haematin.  J774A.1 and U937 cells were characterized morphologically 

using the Giemsa and methyl green stains.  They had characteristic kidney-shaped nuclei and 

were mostly round in shape (Ralph et al., 1975, Sundström and Nilsson, 1976, Cumming, 2009).  

Peroxidase and alkaline phosphatase activity were both detected in the monocytes as reported 

in other studies (Warnock et al., 1987, Ogawa et al., 1978, Reale et al., 1995, Deimann, 1984, 
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Cumming, 2009).  The U937 cells had lower alkaline phosphatase activity here than J774A.1 

cells.  Harris and Ralph (1985) have reported that U937 cells have weak alkaline phosphatase 

activity.  Cumming (2009) did not observe peroxidase activity in fully differentiated U937 cells, but 

observed peroxidase activity in non-differentiated U937 cells, similar to this study. 

J774A.1 cells are derived from differentiated lymphomas, and the cells have macrophage-like 

characteristics (Ralph et al., 1976).  They have been reported to exhibit high levels of 

phagocytosis, pinocytosis, antibody-dependent phagocytosis, and to secrete lysozyme (Ralph et 

al., 1976).  U937 cells are reported to bear similar characteristics to monoblast cells (Harris and 

Ralph, 1985) and secrete lysozymes.  They express fewer receptors on their surface including 

Fc, C3 and chemotactic receptors compared to fully differentiated monocytes.  They also express 

lower quantities of hydrogen peroxide and oxygen radicals (Harris and Ralph, 1985). 

Using two different cell lines with different states of differentiation might give an idea on how anti-

malarial and anti-inflammatory drugs affect monocytes at different stages of differentiation in the 

human host. 

 

5.3.2 Antimalarial drugs and HSP70 expression 

The effects of nine antimalarial drugs (artemisinin, artesunate, artemether, chloroquine, quinine, 

quinidine, pyrimethamine, primaquine and quinacrine) on monocyte HSP70 protein expression 

were investigated.  It was found that artemisinin, quinine, quinacrine, quinidine, primaquine and 

quinacrine decreased HSP70 protein expression, while artemether, chloroquine and artesunate 

increased HSP70 protein expression in monocytes. 

A search of the literature did not show any studies investigating the effects of antimalarial drugs 

on monocyte HSP70 expression.  Dihydroartemisinin (DHA), the main metabolite of artemisinin 

was reported to decrease HSP70 expression in prostate cancer cells (Xu et al., 2016).  Only 

artemisinin decreased HSP70 expression in monocytes, while artemether and artesunate 

increased HSP70 expression in monocytes.  Artemisinin is reported to be metabolized to inactive 

metabolites including deoxyartemisinin and dihydroxydeoxyartemisinin, while artemether is 

metabolized to active metabolites which retain their activity (Figure 5.36) (Balint, 2001).  

Artesunate is metabolized to only dihydroartemisinin (Balint, 2001).  Artemisinin derivatives have 

been reported to be metabolized by cytochromes P450 (CYPs) in the liver (De Vries and Dien, 

1996, Gómez-Icazbalceta et al., 2013) (Figure 5.36).  Drug metabolism in the monocytes is not 

well explored, but it was reported that monocytes express CYPs at low concentration and could 
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metabolize drugs (Gómez-Icazbalceta et al., 2013). The different pathways by which artemisinin 

derivatives are metabolized might explain the difference in HSP70 protein expression between 

artemisinin, artesunate and artemether.   

 

Figure 5.36: Artemisinin metabolism in the liver 

Artesunate, artemether and arteether share metabolic pathways in the liver, while artemisinin has a different 
metabolic pathway which results in the production of four inactive metabolites (Whirl-Carrillo et al., 2012). 

 

Neznanov et al. (2009) found that quinacrine inhibited HSP70 protein expression in HeLa cells by 

affecting the heat shock response pathway, by inhibiting HSF1 from activating HSP70 

transcription.  In this study, quinacrine inhibited HSP70 expression in monocytes most effectively.  

Quinine was found to increase HSP70 protein expression in HSV-1 infected HaCat (keratinocyte) 

cells (Baroni et al., 2007).  The difference in HSP70 expression could be because monocytes and 

keratinocytes are different cells and might respond differently to quinine.  Quinidine inhibited 

HSP70 protein expression to a lower extent than quinine.  It is possible that the different structures 

of quinine and quinidine might be responsible for the different levels of HSP70 expression 

observed in monocytes.  Quinidine is the d-stereoisomer of quinine (Achan et al., 2011).  

However, this is speculative and needs more work to confirm this suggestion.  
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5.3.2.1 Antimalarial drugs, monocyte HSP70 and monocyte responses 

 

Figure 5.37: Effects of antimalarial drugs on monocyte responses 

The effects of artemisinin (A), artesunate (B), artemether (C), chloroquine (D), primaquine (E), quinine (F), 
quinidine (G), pyrimethamine (H), quinacrine (I) on cytokine expressions, oxidative stress, neopterin, 
phospholipase A2 secretions (PLA2) and phagocytosis obtained from literature, are shown.  The effects of 
these antimalarial drugs on monocyte HSP70 are shown. 
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5.3.2.1.1 Antimalarial drugs, monocyte HSP70 and TNF-α expression 

Artesunate (Li et al., 2008) and chloroquine (López Suárez et al., 2014) which increased 

monocyte HSP70 expression in this study, were reported to decrease TNF-α expression in 

monocytes.  Quinidine which was reported to increase TNF-α expression in PBMCs (Matsumori 

et al., 1997), was found here to decrease monocyte HSP70 expression.  There seems to be an 

inverse pattern between TNF-α expression and HSP70 expression in monocytes.  There were 

however, some exceptions.  Artemisinin has been reported to decrease TNF-α expression in 

monocytes (Wang et al., 2006) and it decreased monocyte HSP70 expression in this study.  A 

similar finding was seen with quinine but, quinine was reported to decrease TNF-α expression at 

very high concentrations, about 100 µM (Maruyama et al., 1994).  Since, increased HSP70 

expression was reported to decrease TNF-α secretion in monocytes (Kim et al., 1999), it was 

thought that the antimalarial drugs could modulate monocyte responses by influencing the 

expression of HSP70.  However, more studies need to be done to confirm the link between 

antimalarial drugs, TNF-α and monocyte HSP70 expressions. 

 

5.3.2.1.2 Antimalarial drugs, monocyte HSP70 and reactive oxygen species secretion 

Artemether, artesunate and chloroquine were found to increase HSP70 expression in monocytes, 

with artemether and chloroquine being most effective.  It is noteworthy to report that artemether 

(Prada et al., 1996) and chloroquine (Prada et al., 1996, Dey and Bishayi, 2015) have been 

reported to increase secretion of reactive oxygen species (ROS) by monocytes.  It could be 

suggested that the increase in ROS secretion leads to oxidative stress which leads to an increase 

in HSP70 protein expression.  Artesunate and artemisinin were reported to increase expression 

of reactive oxygen species in neutrophils (Wenisch et al., 1997).  From the literature, the effects 

of artemisinin and artesunate on monocyte reactive oxygen species levels have not been found.  

From these results and the literature, there seems to be a relationship between ROS secretion 

and monocyte HSP70 expression which would be interesting to look at in the future.  

 

5.3.2.1.3 Antimalarial drugs, monocyte HSP70 and phagocytosis 

Artesunate, artemether (Wenisch et al., 1997) and chloroquine (Cumming, 2009), which 

increased monocyte HSP70 expression, were reported to inhibit phagocytosis.  Artemisinin, 

quinine and primaquine were reported to increase monocyte phagocytosis (Cumming, 2009), and 

in this study, they were found to decrease HSP70 expression.  From this pattern, it is suggested 

that an increased expression of monocyte HSP70 might be associated with a decrease in 
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phagocytosis.  One exception was found here with quinidine which decreased HSP70 protein 

expression in monocytes, and was reported to inhibit phagocytosis (Ablin et al., 2005). 

 

5.3.2.1.4 Antimalarial drugs, monocyte HSP70 and neopterin secretion 

Primaquine, quinine and artemisinin which decreased monocyte HSP70 protein expression have 

been reported to decrease neopterin secretion, by inhibiting the GTP cyclohydrolase-1 enzyme 

in monocytes (Cumming et al., 2011).  From the literature, a relationship between neopterin 

secretion and HSP70 expression was not found.  Both HSP70 and neopterin levels are markers 

for inflammation (Awandare et al., 2006, Njemini et al., 2011) and it is thought that a reduction in 

inflammation by the antimalarial drugs, could result in a decrease in both neopterin and in HSP70 

expression.   

 

5.3.2.2 Monocyte HSP70 and the anti-inflammatory responses of antimalarial drugs 

 

Figure 5.38: Effects of increased expression of monocyte HSP70 in monocyte responses 

The influence of increased expression of monocyte HSP70 on cytokine expressions and oxidative stress 
are shown.  The effects of monocyte HSP70 on neopterin and phospholipase A2 secretions are unknown.   

 

HSP70 is considered to have anti-inflammatory properties (Figure 5.38) (Borges et al., 2012) in 

cells as an increased expression of HSP70 has been reported to protect cells against TNF-α and 

nitric oxide cytotoxicity (Jäättelä and Wissing, 1993).  Increased HSP70 expression was reported 

to decrease expressions of TNF-α, IL-1β and IL-12 in activated human peripheral blood-derived 

monocytes (Ding et al., 2001).  HSP70 was also reported to inhibit the pro-inflammatory pathway 

NF-ĸB (Li et al., 2001).  Antimalarial drugs which have anti-inflammatory properties (Figure 5.36) 

include; artemisinin, artemisinin derivatives (Hou and Huang, 2016), chloroquine (Jang et al., 

2006), quinine (Maruyama et al., 1994, Lowry et al., 1998), quinacrine (Bondeson and Sundler, 
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1998, Chumanevich et al., 2016) and primaquine (Zanucoli et al., 2014).  Severe malaria and 

cerebral malaria are associated with the expression of high levels of cytokines (Awandare et al., 

2006, Hunt and Grau, 2003).  It is possible that the antimalarial drugs also act on suppressing 

inflammation during malaria, leading to improved recovery.  However, this needs to be further 

explored.  Artemether and chloroquine which increased monocyte HSP70 expression in this 

study, could potentially mediate their anti-inflammatory properties by increasing HSP70 

expression in cells. 

Artemisinin, quinine, quinacrine and primaquine, seem to have anti-inflammatory properties 

independent of HSP70 expression, as they decreased HSP70 expression in monocytes in this 

study.  It is noteworthy to mention that quinidine and pyrimethamine seem to be pro-inflammatory 

as quinidine was reported to increase TNF-α expression in PBMCs (Matsumori et al., 1997) and 

pyrimethamine was reported to increase nitric oxide secretion in mice (Ramos‐Avila et al., 2007).  

Pyrimethamine had no effect on HSP70 expression, even though it increased nitric oxide and 

IFN-ɣ expression in mice (Ramos‐Avila et al., 2007, Legorreta-Herrera et al., 2010).  Quinidine 

decreased HSP70 protein expression in monocytes, and this can suggest that quinidine can exert 

its pro-inflammatory properties by inhibiting HSP70 expression.  

 

5.3.3 Anti-inflammatory drugs and monocyte HSP70 expression 

Four anti-inflammatory drugs, ambroxol, danazol, probucol and curcumin were used in this study.  

Ambroxol, probucol and danazol decreased HSP70 protein expression in U937 cells, with danazol 

being most effective.  Danazol also decreased HSP70 expression in J774A.1 cells.  Ota et al. 

(1997) found that danazol inhibited HSP70 protein expression in endometrial cells.  Probucol was 

reported to decrease HSP70 expression in the left atrial tissue of rabbits (Fu et al., 2015).  From 

the literature, studies relating ambroxol to HSP70 expression were not found.  Ambroxol 

increased HSP70 expression in J774A.1 cells, while decreasing HSP70 expression in U937 cells.  

Curcumin decreased HSP70 expression in J774A.1 cells and increased HSP70 expression in 

U937 cells.  The difference in HSP70 expression between the two cell lines might be attributed to 

the level of differentiation of the cells.  J774A.1 cells are more differentiated than U937 cells 

(Ralph et al., 1975).  Curcumin was reported to increase HSP70 protein expression by increasing 

nuclear translocation of HSF-1 in myelogenous leukemia cells (Teiten et al., 2009) and in HeLa 

cells (Dunsmore et al., 2001).  HSP70 expression was also enhanced in rat cortical cells in the 

presence of curcumin (Xia et al., 2015).  In another study, rats were subjected to sepsis, and their 

serum levels of HSP70 expression were increased.  When treated with curcumin, their serum 

levels of HSP70 decreased (Silva et al., 2015) together with pro-inflammatory cytokines.  They 
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suggested that curcumin inhibited expression of extracellular HSP70 (Silva et al., 2015).  The 

effects of these anti-inflammatory drugs on monocyte HSP70 have not been reported elsewhere.  

 

5.3.3.1 Anti-inflammatory drugs, monocyte HSP70 and monocyte responses 

 
Figure 5.39: Effects of anti-inflammatory drugs on monocyte responses 

The effects of (A) Ambroxol on J774A.1 cells; (B) Ambroxol on U937 cells; (C) danazol on monocytes; (D) 
probucol on cells; (E), curcumin on J774A.1 cells; (F), curcumin on U937 cells. 

 

5.3.3.1.1 Anti-inflammatory drugs, monocyte HSP70 expression and TNF-α and IL-1 

expressions 

Ambroxol (Pfeifer et al., 1997, Bianchi et al., 1990), danazol (Liu et al., 2000, Mori et al., 1990), 

probucol (Guo et al., 2015, Akeson et al., 1991) and curcumin (Yun et al., 2011, Abe et al., 1999) 

decreased TNF-α and IL-1 expressions in monocytes/macrophages (Figure 5.39) and decreased 

HSP70 expression in monocytes in this study.  The decreased monocyte HSP70 expression could 

be associated with a decrease in these cytokines.  However, since ambroxol and curcumin were 

found to increase HSP70 expression in J774A.1 and U937 cells respectively, more work needs 

to be done to confirm the correlation between HSP70 expression and TNF-α and IL-1 

expressions. 
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5.3.3.1.2 Anti-inflammatory drugs, monocyte HSP70 expression and ROS secretion 

Ambroxol (Lee et al., 1999) and probucol (Fukuda et al., 1995) decreased ROS expression in 

monocytes while curcumin (Mimche et al., 2012) was reported to increase ROS expression in 

monocytes.  An inverse relationship between monocyte HSP70 and ROS expression could be 

deduced from the results, but because ambroxol and curcumin expressed HSP70 at different 

levels in the different monocytic cell lines, more work needs to be done to elucidate the 

relationship between monocyte HSP70 and ROS expression. 

The anti-inflammatory drugs ambroxol, probucol, curcumin and danazol seem to exert their anti-

inflammatory properties independent of the expression of HSP70, in monocytes. 

 

5.3.3.2 Effects of β-haematin (haemozoin) on monocyte HSP70 protein expression 

 

Figure 5.40: Effects of β-haematin on monocyte responses 

The effects of β-haematin on cytokine expressions, ROS, neopterin secretion and monocyte HSP70 protein 

expression are shown.   

In this study, it was found that β-haematin (synthetic haemozoin), latex beads and hemin 

decreased HSP70 protein expression in phagocytic J774A.1 cells.  Comparing non-phagocytic 

U937 to J774A.1 phagocytic cells, HSP70 expression was inhibited in J774A.1 cells, suggesting 

that either β-haematin or phagocytosis inhibited HSP70 protein expression.  J774A.1 cells were 

then incubated with hemin and latex beads, to determine whether the material phagocytosed 

decreased the HSP70 expression or whether the process of phagocytosis inhibited HSP70 

expression.  Phagocytosis of latex beads, hemin and β-haematin all inhibited HSP70 expression, 

with latex beads and β-haematin being more effective.  This suggests that either the process of 

phagocytosis or the presence of the three materials inhibited the expression of HSP70.  It was 

interesting to note that in the presence of β-haematin, there was an increased monocyte HSP70 

protein expression in U937 cells.  This defied the hypothesis that since U937 cells do not 

phagocytose β-haematin, the monocyte HSP70 protein expression will be unaffected.  This could 

suggest that β-haematin interacted with the cells in other ways, which resulted in the 

overexpression of monocyte HSP70. 
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β-haematin (haemozoin) was reported to increase pro-inflammatory cytokines (Figure 5.40) 

(Jaramillo et al., 2009).  A decrease in HSP70 expression could be associated with an increase 

in pro-inflammatory pathways, but more work needs to be done to determine whether 

phagocytosis of haemozoin decreases HSP70 and induced pro-inflammatory pathways, or 

whether the inhibition of HSP70 is not related to the activation of the pro-inflammatory pathways 

by haemozoin. 

β-haematin increased HSP27 expression in monocytes but seemed to have no effect on HSP70 

expression (Prato et al., 2010), until recently, when Kempaiah et al. (2016) found that haemozoin 

decreased HSP70 protein expression in peripheral blood mononuclear cells (PBMC), in the 

presence of glutamine.  The study did not consider the effect of phagoctosis in the assay.    There 

have been reports of extracellular HSP70 enhancing phagocytosis of latex beads by 

macrophages (Anand et al., 2010), and reports of increased HSP70 protein expression in U937 

macrophages, when they have phagocytosed erythrocytes (Clerget and Polla, 1990).  Hemin is 

reported to increase haem oxygenase activity in alveolar macrophages, and to enhance alveolar 

macrophage phagocytosis (Hualin et al., 2012).  An increase in haem oxygenase was reported to 

increase HSP70 in macrophages during phagocytosis (Mautes and Noble, 2000), which 

suggested that hemin could increase HSP70 expression in monocytes.  However, this was not 

observed in this study. 

 

 5.4 Conclusion 

This study investigated the effects of different antimalarial, anti-inflammatory drugs and β-hematin 

on monocyte HSP70 protein expression.  Chloroquine and artemether were found to increase 

HSP70 protein expression, while artemisinin, quinine, quinacrine, quinidine and primaquine were 

found to decrease HSP70 protein expression in monocytes.  Quinacrine and quinine were more 

effective at decreasing HSP70 protein expression.  β-hematin, latex beads and hemin all inhibited 

HSP70 expression in monocytes. 
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CHAPTER 6: GENERAL DISCUSSION 

6.1 Overview of study 

Malaria remains a serious threat to the world population, due to the emergence of resistant 

parasites to anti-malarial drugs (Greenwood et al., 2008).  Due to changing environmental 

conditions, more areas are becoming optimal for the growth of Anopheles mosquitoes and 

increasing transmission of malaria to non-endemic areas (Eckhoff, 2011).  Plasmodium 

falciparum causes the most morbidity and mortality due to malaria around the world (WHO, 

2015b).  Parasites infect red blood cells and remodel them to make the environment suitable for 

their growth (Cowman and Crabb, 2006).  Circulating monocytes are immune cells which act as 

the first line of defence during an infection (Gordon and Mantovani, 2011).  They phagocytose 

infected red blood cells, free parasites and parasite products including haemozoin (Chua et al., 

2013).  The monocytes mount a response and secrete a range of cytokines, reactive oxygen 

species, nitric oxide, neopterin and phospholipase A2 (Gordon and Mantovani, 2011, Chua et al., 

2013).  It is thought that monocytes play a central part in determining whether the disease will 

develop from uncomplicated malaria to severe or cerebral malaria (Chua et al., 2013).  This is 

because any imbalance in cytokine expression can aggravate the disease (Chua et al., 2013).  

Monocytes laden with haemozoin are reported to express dysregulated amount of cytokines, and 

do not undergo repeated phagocytosis (Giribaldi et al., 2010, Skorokhod et al., 2014, Schwarzer 

et al., 1992). 

Periodic episodes of fever are experienced during malaria (Silvie et al., 2008) which put stress on 

both the host and the parasites (Kwiatkowski, 1989, Pavithra et al., 2004, Polla, 1991).  While 

fever has been reported to inhibit parasite growth (Kwiatkowski, 1989), it has more often been 

associated with increased malaria pathogenesis (Oakley et al., 2007).  Fever has been reported 

to increase cytoadherence and rosetting in malaria (Udomsangpetch et al., 2002, Oakley et al., 

2007).  Human heat shock protein 70 (HSP70) is a stress protein expressed when cells 

experience any form of stress including pH changes, heat shock, presence of some chemicals or 

heavy metals (Kregel, 2002, Singh and Hasday, 2013).  HSP70 responds to stress by binding to 

denatured proteins and helping them to fold properly so that they regain their function, maintaining 

cell homeostasis.  HSP70 prevents the aggregation of proteins (Nollen and Morimoto, 2002).  

Apart from being a cytoprotective protein, HSP70 has been reported to be anti-inflammatory as it 

inhibits the production of pro-inflammatory cytokines including TNF-α, and stimulates the 

production of anti-inflammatory cytokines such as IL-10 (Jäättelä and Wissing, 1993, Teshima et 
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al., 1996, Kim et al., 1999).  There are more studies on parasite HSP70 than on host HSP70 

during malaria. 

Antimalarial drugs are given to patients to treat malaria by killing parasites (Blanchard, 1947)  

Antimalarial drugs decrease the parasitaemia by interfering with parasite metabolism, but the 

exact mechanisms by which they work are poorly understood (Blanchard, 1947, Cunha‐Rodrigues 

et al., 2006).  It is thought that chloroquine, quinidine and quinine inhibit the formation of 

haemozoin in infected red blood cells, leading to parasite death (Thomé et al., 2013, Achan et al., 

2011, Egan et al., 1999).  Quinacrine is thought to cause parasite DNA damage (Ehsanian et al., 

2011), and primaquine is thought to cause oxidative stress in the parasites (Lalève et al., 2016).  

Pyrimethamine affects the synthesis of dihydrofolate in parasites (Cui et al., 2015).  Artemisinin 

and its derivatives are thought to induce the formation of free radicals in the parasites, causing 

oxidative stress (Shakir et al., 2011).   Antimalarial drugs have also been reported to have anti-

inflammatory properties (Wolf et al., 2000) and to influence monocyte receptor expression 

(Goldring and Nemaorani, 1999).  Nine antimalarial drugs were used in this study, namely, 

artemisinin, artesunate, artemether, chloroquine, primaquine, quinine, quinidine, quinacrine and 

pyrimethamine at therapeutic concentrations.   

During malaria, reactive oxygen species are expressed to kill parasites, but can also cause 

oxidative stress to the host (Percário et al., 2012).  Expression of high levels of cytokines have 

been reported in malaria-infected patients, which could lead to severe and cerebral malaria (Lyke 

et al., 2004, Jason et al., 2001).  Four anti-inflammatory drugs namely ambroxol, danazol, 

probucol and curcumin were chosen because they were also found to have anti-malarial 

properties.  Ambroxol, danazol and probucol were previously reported to inhibit cytoadherence 

between monocytes and infected red blood cells (Goldring and Ramoshebi, 1999), and curcumin 

was proposed to be used as an adjunct therapy to malaria as it inhibits cerebral malaria (Reddy 

et al., 2005).  Together with decreasing oxidative stress during malaria (Percário et al., 2012), 

they could be used as adjunct drugs in malaria treatment together with anti-malarial drugs. 

High levels of HSP70 have been reported to show the level of inflammation in infections, hence, 

HSP70 is used as a marker for inflammation (Njemini et al., 2003).  In malaria, host HSP70  is 

expected to be high due to the presence of inflammation and fever (Polla, 1991).  Whether the 

antimalarial and anti-inflammatory drugs influence monocyte responses, monocyte HSP70 

expression was monitored during fever conditions.  The effects of the selected antimalarial and 

anti-inflammatory drugs on monocyte HSP70 expression have not been studied before. 
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6.2 Aims of the study 

The effects of the antimalarial, anti-inflammatory drugs and β-haematin on monocyte HSP70 

protein expression, during fever conditions were investigated in this study.  It was hypothesized 

that an understanding of the effects of these agents on monocyte HSP70 protein expression could 

give a broader understanding on how they affect monocyte responses, through the expression of 

monocyte HSP70 during malaria fever.  The study aimed to express recombinant human HSP70, 

affinity-purify it and to use it to raise antibodies against rHSP70.  The antibodies were then used 

to study the effects of antimalarial and anti-inflammatory drugs, at therapeutic concentrations, on 

monocyte HSP70 protein expression during fever.  The effects of β-haematin on monocyte HSP70 

was also studied, in the presence of heat shock (fever).  The monocyte HSP70 protein expression 

was then discussed in light to the known effects of the drugs and whether they could be inter-

related to each other.   

 

6.3 Cloning, expression and purification of recombinant HSP70 (rHSP70) 

Human HSP70 was sub-cloned from a pcDNA5/FRT/TO/HIS HSPA1A to a pET-28a plasmid, and 

the ligated plasmid was used to transform JM109 and BL21-(DE3) Escherichia coli (E. coli) cells.  

Recombinant HSP70 (rHSP70) was expressed in BL21-(DE3) cells and affinity-purified using a 

TALON® resin.  For future studies, the level of endotoxin in the recombinant protein could be 

measured using the LAL method to ensure that it is free of endotoxins.  The purified rHSP70 was 

found to form oligomers after gel filtration.  The ATPase activity of rHSP70 was studied at various 

concentrations of rHSP70 and ATP concentrations, using the malachite green assay.  For future 

studies, ATP could be added to the buffer containing rHSP70 and study whether oligomer 

formation is inhibited by the ATP levels. 

 

6.4 Antibody production   

Affinity-purified rHSP70 was used to immunise chickens to raise polyclonal antibodies against 

rHSP70.  The affinity-purified anti-rHSP70 antibodies were specific for human HSP70 and did not 

cross react with any E. coli proteins.  The affinity-purified anti-rHSP70 antibodies were 

comparable to a commercially available anti-HSP70 antibody.  The anti-rHSP70 antibodies 

detected inducible HSP70 from both human and mouse monocyte lysates, after heat shock. 

The affinity-purified rHSP70 protein was used to make monoclonal antibodies against HSP70 

using phage display technology.  From the optimisation steps of panning, it was found that: 

• Milk powder was a better blocking agent than BSA 
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• Phages obtained by tri-ethylamine elution selected for clones with high affinity to rHSP70 

when compared to column phages which selected for clones with low affinity to rHSP70 

and clones lacking complementarity determining region 

• Higher yields of monoclonal soluble scFv were obtained by auto-induction in TEB, 

compared to IPTG induction in 2xYT media. 

• With on column infection, incomplete scFv clones appeared to be selected with every 

round of panning. 

Clones which had high affinity to rHSP70 and were of full size were chosen to detect rHSP70 on 

a dot blot and western blot format.  The clones detected rHSP70 on a dot blot, but not on a 

western blot, possibly due to the clones recognising only conformational epitopes.  For future 

studies, denatured rHSP70 could be used in the rounds of panning so as to isolate clones against 

the denatured form of HSP70 which could then be used in western blots.  While only two blocking 

agents were compared in this study, other blocking agents such as PEG6000 and casein could 

be tested.  The specific scFv could be affinity purified using an AminoLink™ column bound to 

either rHSP70 or to a c-myc tag that would bind only the specific antibodies.  The affinity-purified 

scFv clones could then be used in a sandwich ELISA to detect HSP70 in monocyte lysates.   

 

6.5 Effects of antimalarial, anti-inflammatory and β-haematin on monocyte HSP70 

expression 

A human (U937) and a mouse (J774A.1) monocytic cell lines were cultured and characterised 

based on their morphology and their alkaline phosphatase and peroxidase activity.  The 

monocytes were incubated with nine antimalarial drugs namely chloroquine, quinine, quinidine, 

primaquine, artemisinin, artesunate, artemether, quinacrine, and pyrimethamine at therapeutic 

concentrations of each drug and heat shocked, to mimic fever.  In the absence of fever, the 

antimalarial drugs had no effect on monocyte HSP70 expression.  With heat shock, if was found 

that chloroquine and artemether increased HSP70 protein expression, with chloroquine being 

more effective.  Artemisinin, primaquine, quinine, quinidine and quinacrine decreased monocyte 

HSP70 protein expression with quinacrine and quinine being most effective.  Artemisinin and 

quinidine were the least effective at decreasing HSP70 protein expression in monocytes. 

Without heat shock, there was no change in monocyte HSP70 expression with the four anti-

inflammatory drugs, namely probucol, ambroxol, danazol and curcumin.  After heat shock to 

mimic fever, danazol, ambroxol and probucol were found to decrease HSP70 protein expression 

in U937 monocytes, with danazol being the most effective.  Danazol also decreased HSP70 
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expression in J774A.1 cells but ambroxol increased HSP70 protein expression in J774A.1 cells.  

Curcumin decreased HSP70 protein expression in J774A.1 cells but increased HSP70 protein 

expression in U937 cells.   

The difference in HSP70 protein expression between U937 and J774A.1 cells could be attributed 

to the level of differentiation of the cells.  J774A.1 cells are more differentiated that U937 pro-

monocytes (Ralph et al., 1976).  In another study, it was found that superoxide anion production 

was increased in U937 treated with zymosan, but was decreased in J774A.1 cells, attributing the 

difference between the two cell types to the lack of CR3 expression in the U937 cells (Wu et al., 

2010).  Overall, the effects of the antimalarial and anti-inflammatory drugs were similar with 

J774A.1 and U937 cells, suggesting that they may have the same effect in monocytes derived 

from human blood.  Other studies found similar monocyte responses between U937, J774A.1 cell 

lines and peripheral blood mononuclear cells (Facer, 1995, Paauw et al., 2009). 

Patterns in monocyte responses with monocyte HSP70 expression with the antimalarial drugs 

were observed.  It seemed like there was an inverse relationship between HSP70 expression and 

TNF-α expression by antimalarial drugs.  Artemether and chloroquine which increased HSP70 

expression were reported to decrease TNF-α expression (Li et al., 2008, López Suárez et al., 

2014).  Quinidine was reported to increase TNF-α expression (Matsumori et al., 1997), and in this 

study, it decreased HSP70 expression in monocytes.  Artemisinin and quinine, however showed 

a different pattern, as they have both been reported to decrease TNF-α, and they both decreased 

HSP70 expression in monocytes (Wang et al., 2006, Picot et al., 1993).  It was notable to find that 

three drugs, primaquine, artemisinin and quinine which decreased GTP cyclohydrolase-1 

expression in U937 monocytes, hence a decreased neopterin secretion (Cumming et al., 2011), 

decreased HSP70 protein expression in monocytes in this study.  It would be interesting to 

evaluate monocyte HSP70 protein expression and neopterin secretion to see if they are linked.  

The antimalarial drugs which increased monocyte HSP70 protein expression, were reported to 

increase the expression of reactive oxygen species (ROS) in cells, including artemether and 

chloroquine.  The increased ROS expression could have enhanced the expression of HSP70 

protein.  ROS expression should be measured together with monocyte HSP70 expression to be 

able to find a relationship between these two, if any.  A pattern with phagocytosis and monocyte 

HSP70 expression was found, whereby a decreased monocyte HSP70 expression was 

associated with increased phagocytosis.  Quinine, primaquine, artemisinin decreased HSP70 

expression in monocytes, and increased phagocytosis of β-haematin (Cumming, 2009).  

Chloroquine which increased monocyte HSP70 expression, was reported to inhibit β-haematin 
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phagocytosis (Cumming, 2009).   However, an exception was observed with quinidine.  Quinidine 

decreased HSP70 expression in monocytes and was reported to decrease phagocytosis in mouse 

macrophages (Ablin et al., 2005). 

The anti-inflammatory drugs, probucol and danazol inhibited HSP70 expression in monocytes.  

Ambroxol and curcumin gave different results with the different cell lines.  It was difficult to make 

any inferences between monocyte HSP70 expression and monocyte responses.  This might 

suggest that the anti-inflammatory drugs have a wide range of actions, and they exert their anti-

inflammatory properties independent of monocyte HSP70 expression. 

Monocyte HSP70 protein expression was reduced in the presence of β-haematin, latex beads 

and hemin.  This might suggest that either phagocytosis or all of the three materials caused a 

decrease in monocyte HSP70 expression.  Phagocytosis of non-infected red blood cells and 

infected red blood cells can be done in future studies, and monocyte HSP70 expression 

measured.  This might give an insight on whether phagocytosis decreases monocyte HSP70 

expression or the presence of these materials caused a decrease in HSP70 expression.   

In this study, only monocyte HSP70 protein expression was measured.  Measuring cytokine 

expressions, ROS expression, neopterin and phospholipase A2 secretions entail high costs, as 

expensive reagents and ELISA kits are needed.  For future studies, cytokine levels along with 

monocyte HSP70 protein expression could be measured to get a better overview of the 

relationship between monocyte HSP70 expression and cytokine expression, if any. As an 

alternative, mRNA expression of the cytokines could be measured using specific primers as has 

been done to measure neopterin secretion by measuring GTP cyclohydrolase-1 mRNA transcripts 

(Cumming et al., 2011).  However, mRNA expression does not show whether all transcripts are 

being translated, hence, might not reflect what is being expressed. 

Other monocytic cell lines, namely THP-1 cells and Mono Mac 6 could have been used in this 

study.  THP-1 is a monocytic cell line derived from a patient with acute monocytic leukaemia 

(Tsuchiya et al., 1980).  THP-1 cells are considered monoblasts as they need to be differentiated 

to develop macrophage characteristics (Ziegler‐Heitbroc et al., 1988).  THP-1 cells have 

monocyte characteristics but are thought to be less differentiated than U937 cells (Chanput et al., 

2015).  THP-1 cells are homogeneous but cannot be used at high passage numbers as they lose 

their cell activity (Chanput et al., 2015).  U937 cells, on the other hand, can be used at high 

passage number and keep their genetic integrity (Chanput et al., 2015).  Mono Mac 6 is a 

monocytic cell line developed by Ziegler‐Heitbroc et al. (1988) and the monocytes are reported to 
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have monocyte properties, and do not need to be artificially differentiated  (Ziegler‐Heitbroc et al., 

1988).  They have phagocytic properties, produce cytokines and express CD14 receptors upon 

activation (Neustock et al., 1993).  The disadvantages of using those cell lines are that they are 

derived from malignant sources, hence, do not represent a normal monocyte.  They need to be 

cultured in controlled environments which can influence the results obtained (Chanput et al., 

2015).  Ideally, monocytes isolated from peripheral blood can be used (Damsgaard et al., 2009, 

Cumming, 2009).  In this study, PBMCs were not used as it was important to keep the study fairly 

simple.  For future studies, PBMSc will be used to validate the results obtained from this study. 

Monocytes could also be isolated from a malaria-infected patient before and after antimalarial 

drug treatment.  Expression of monocyte HSP70 can be measured to see if malaria infection 

affects monocyte HSP70 expression in the host.  The isolated monocytes could then be treated 

with the different antimalarial, anti-inflammatory drugs and β-haematin to study how these agents 

affect monocyte HSP70 expression, with and without heat shock.  The cytokine profile could also 

be monitored with each drug to see if monocyte HSP70 expression is related to the immune-

modulatory functions of each drug.  HSP70 expression could be measured in monocyte laden 

haemozoin, isolated from blood obtained from a malaria-infected patient.  Monocyte HSP70 

protein expression could then be analysed after heat shocking the cells.   

 

6.6  Contribution of the study to current knowledge and its potential impact on the 

management and treatment of malaria 

There is little information available describing the effects of the drugs used in this study on 

monocyte HSP70 from the literature.  This study has helped in understanding more on the effects 

of the antimalarial, anti-inflammatory drugs and β-haematin on monocyte HSP70.  An 

upregulation of monocyte HSP70 expression would suggest that it will have an anti-inflammatory 

effect (Yenari et al., 2005) on the host, and the contrary will be observed with a downregulation 

of HSP70.  When a patient has severe malaria, potentially a drug which upregulates HSP70 might 

be chosen, but severe malaria is also accompanied with dysregulated monocytes due to the 

accumulation of haemozoin (Schwarzer et al., 1992).  An upregulation in monocyte HSP70 would 

render the cells resistant to apoptosis.  A downregulation in monocyte HSP70 might promote 

apoptosis and clear dysregulated monocytes from the circulation.  With the antimalarial effects on 

the parasites, and getting rid of dysregulated monocytes, the patient can recover more easily.  

However, further studies are required to test these assumptions and to determine how the drugs 

will be used in the management and treatment of malaria. 
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6.7 Contribution of the study on cancer 

While this study has been focused on malaria, the findings of this study could also be related to 

some cancers.  Some cancer cells have been reported to overexpress inducible HSP70, namely 

breast cancer, colon cancer, gastric cancer, melanoma, bladder cancer and tumorigenic cells 

including HeLa (Shu and Huang, 2008).  Overexpression of HSP70 has been associated with 

malignancy, resistance to anti-cancer drugs, resistance to chemotherapy and to radiation therapy 

(Shu and Huang, 2008).  Increased expression of HSP70 in cancer cells make them resistant to 

apoptosis, and to harsh environments such as oxygen deprived environment and to glucose 

deprivation (Shu and Huang, 2008).  It was reported that an antisense HSP70 construct which 

inhibited HSP70 protein expression, rendered cancer cells more vulnerable to apoptosis and more 

sensitive to drugs(Lee and Schöffl, 1996).  Drugs that inhibit HSP70 expression are being used 

in cancer therapy to make the cancer cells susceptible to apoptosis (Westerheide et al., 2006).  

Some of the drugs that inhibit HSP70 expression are triptolide and quercetin (Westerheide et al., 

2006, Hansen et al., 1997).  They inhibit HSP70 expression by inhibiting heat shock factor 1 

(HSF1) which is required to activate HSP70 transcription (Antonoff et al., 2009, Mujumdar et al., 

2010, Abravaya et al., 1992).  Quinacrine was reported to have anti-cancer properties, by 

inhibiting HSP70 expression in HeLa cells (Neznanov et al., 2009).  It was reported to have anti-

cancer properties in human gastric cancer cells (Wu et al., 2012), breast cancer cells (Preet et 

al., 2012) and acute myeloid leukemia (Eriksson et al., 2015).  In this study, quinine, primaquine, 

quinidine, artemisinin, danazol, probucol, and ambroxol were reported to decrease HSP70 

expression in monocytes.  Quinine and danazol were more effective in decreasing monocyte 

HSP70 expression.  The drugs were used at therapeutic concentrations, which suggest no toxicity 

to the cells at those concentrations (WHO, 2015a).  These drugs can be tested to see if they 

inhibit HSP70 in other cancer cell lines, and whether have potential in cancer treatment. 

 

 

 

 

 



118 
 

APPENDIX I: Densitometry results when total protein was used as the loading 

control 

Artemether 

         

p=0.0091      p=0.38 

Artemisinin 

         
p=0.43          p=0.12  
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p=0.17          p=0.41 
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Chloroquine 

        
p=0.0095             p=0.090 

 

Primaquine 

         
P=0.00074                 p=0.000032 

 

Pyrimethamine 

  
P=0.86       p=0.26 
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 P=0.000098     p=0.000017 
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Quinidine 

 

                  
P=0.0091      p=0.22 

 

 

 

 

Quinine 

        
p=0.0000024 p=0.00001 

 

Ambroxol 

 

         
P=0.010             p=0.018 

 

Probucol 

            
P=0.24          p=0.000063 

 

0

0.2

0.4

0.6

0.8

1

1.2

DMSO CONTROL J774A.1 Quinidine

R
el

at
iv

e 
d

en
si

ty

*

0

0.5

1

1.5

DMSO CONTROL U937 Quinidine

R
el

at
iv

e 
d

en
si

ty

0

0.5

1

1.5

DMSO J774A.1 Quinine

R
el

at
iv

e 
d

en
si

ty

*

0

0.5

1

1.5

DMSO U937 Quinine

R
el

at
iv

e 
d

en
si

ty

*

0

1

2

3

DMSO CONTROL J774A.1 Ambroxol

R
el

at
iv

e 
d

en
si

ty

*

0

0.5

1

1.5

2

DMSO CONTROL U937 Ambroxol

R
el

at
iv

e 
d

en
si

ty

*

0

0.5

1

1.5

2

ETHANOL CONTROL J774A.1 Probucol

R
el

at
iv

e 
d

en
si

ty

0

0.5

1

1.5

ETHANOL CONTROL U937

R
el

at
iv

e 
d

en
si

ty

*



121 
 

 

Danazol 

   
P=0.0003      p=0.000000009 
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APPENDIX II: Wilcoxon rank sum test (Mann Whitney U test) 

 

Antimalarial/anti-inflammatory drugs P value 

J774A.1 U937 

Artemether 0.023 0.23 

Artemisinin 0.091 0.023 

Artesunate 0.023 0.091 

Chloroquine 0.023 0.16 

Primaquine 0.023 0.023 

Pyrimethamine 0.25 0.37 

Quinacrine 0.023 0.023 

Quinidine 0.023 0.048 

Quinine 0.023 0.023 

Ambroxol 0.023 0.026 

Probucol 0.023 0.023 

Danazol 0.048 0.023 

Curcumin 0.023 0.023 
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