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Abstract

The behaviour and evolution of most physical phenomena is often best described using

mathematical models in the form of systems of ordinary and partial differential equations.

A typical example of such phenomena is the flow of a viscous impressible fluid which

is described by the Navier-Stokes equations, first derived in the nineteenth century using

physical approximations and the principles of mass and momentum conservation. The flow

of fluids, and the growth of flow instabilities has been the subject of many investigations be-

cause fluids have wide uses in engineering and science, including as carriers of heat, solutes

and aggregates. Conventional heat transfer fluids used in engineering applications include

air, water and oil. However, each of these fluids has an inherently low thermal conductiv-

ity that severely limit heat exchange efficiency. Suspension of nanosized solid particles in

traditional heat transfer fluids significantly increases the thermophysical properties of such

fluids leading to better heat transfer performance.

In this study we present theoretical models to investigate the flow of unsteady nanofluids,

heat and mass transport in porous media. Different flow configurations are assumed in-

cluding an inclined cylinder, a moving surface, a stretching cone and the flow of a polymer

nanocomposite modeled as an Oldroyd-B fluid. The nanoparticles assumed include cop-

per, silver and titanium dioxide with water as the base fluid. Most recent boundary-layer

nanofluid flow studies assume that the nanoparticle volume fraction can be actively con-

trolled at a bounding solid surface, similar to temperature controls. However, in practice,

such controls present significant challenges, and may, in practice, not be possible. In this

study the nanoparticle flux at the boundary surface is assumed to be zero.
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Unsteadiness in fluid flows leads to complex system of partial differential equations. These

transport equations are often highly nonlinear and cannot be solved to find exact solutions

that describe the evolution of the physical phenomena modeled. A large number of numer-

ical or semi-numerical techniques exist in the literature for finding solutions of nonlinear

systems of equations. Some of these methods may, however be subject to certain limitations

including slow convergence rates and a small radius of convergence. In recent years, inno-

vative linearization techniques used together with spectral methods have been suggested as

suitable tools for solving systems of ordinary and partial differential equations. The tech-

niques which include the spectral local linearization method, spectral relaxation method

and the spectral quasiliearization method are used in this study to solve the transport equa-

tions, and to determine how the flow characteristics are impacted by changes in certain

important physical and fluid parameters. The findings show that these methods give accu-

rate solutions and that the speed of convergence of solutions is comparable with methods

such as the Keller-box, Galerkin, and other finite difference or finite element methods.

The study gives new insights, and result on the influence of certain events, such as internal

heat generation, velocity slip, nanoparticle thermophoresis and random motion on the flow

structure, heat and mass transfer rates and the fluid properties in the case of a nanofluid.
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Chapter 1

Introduction

In this Chapter, the essential terminologies, concepts and ideas important for theoretical

studies on heat and mass transfer in nanofluid flows are defined. A brief historical ac-

count of boundary layer flows, porous media, the synthesis of nanofluids and their thermal

properties, and heat and mass transfer is provided along with a discussion of recent solution

techniques for nonlinear mathematical models. The objectives, the significance of the work

and structure of the thesis are given.

1.1 Historical Overview and the Concept of a Boundary

Layer

The scope of fluid mechanics is wide and has considerable applications in engineering and

science, for instance in medical studies including breathing and blood flow, water supply

systems, meteorology, oceanography and energy generation to name a few (Rouse and

Ince [1] and Rouse [2]). Fluid flow can be steady, unsteady, compressible, incompressible,

viscous or inviscid. Some of these characteristics reflect the properties of the liquid itself,

and others depend on how the fluid is moving.
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The Navier-Stokes equations adequately describe the flow of Newtonian fluids. The behav-

ior of any fluid flow problems can be explained mathematically by solving these equations

with appropriate boundary conditions. Unfortunately, there are only a few known analytic

solutions of the Navier-Stokes equations. As a consequence, researchers tend to depend on

experimental results, semi-empirical methods, and numerical techniques to solve fluid flow

problems (Cebeci and Cousteix [3]).

Fluid flows are generally characterized by the presence of a large number of dimensionless

parameters. The most significant dimensionless parameter is the Reynolds numbers, a ratio

of inertial to viscous forces. Mathematically, this is given as

Re =
ρUL

µ
, (1.1)

where ρ represents the fluid density, U is local flow velocity, L is characteristic dimension

of the body, and µ is the fluid viscosity. The size of the Reynolds number is an important

indicator of the state of the fluid flow, that is , whether the flow is laminar or turbulent. The

Reynolds number is an important parameter in the study of boundary layer flows.

The boundary layer concept was first introduced by Ludwig Prandtl in 1904 (see Prandtl

[4]). The concept provides an important link between ideal and real fluid flows. Prandtl

proved that, at high Reynolds numbers, the flow around a solid body can be divided into

two zones. The first zone, is a very thin layer in a region close to the wall called the bound-

ary layer, where the friction plays an essential part and the velocity satisfies the no-slip

condition. The second one, is the outer flow determined by the displacement of streamlines

around the body. Here, the viscosity is negligible and the pressure field fully developed

(Schlichting [5], Gersten et al. [6] and Kluwick [7]). There is a singnificant velocity gra-

dient from the boundaries to the flow. The velocity gradient leads to shear stresses at the

boundary that reduce the flow speed at the boundary. This region near the solid wall is

called a boundary layer (White [8]). Flow of real fluids is subject to fluid viscosity and

Newton’s law for viscosity states that the shear stress, τ, in a fluid is proportional to the
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velocity gradient across the fluid flow. This law can be written as,

τ = µ
du
dy
, (1.2)

where the constant of proportionality µ is the coefficient of viscosity (see Schlichting [9]).

Different types of boundary layers are defined in the literature, for instance, laminar and

turbulent boundary layers. Examples of specific boundary layers include the Stokes, Bla-

sius, Falkner-Skan, atmospheric, and geophysical boundary-layers, to name a few. The

laminar and turbulent boundary layers are the most studied in the literature (Kluwick [7]).

The boundary layer often begins as laminar with fluid particles moving in smooth layers.

Down stream, the boundary layer becomes unstable with fluid particles moving in random

paths. The nature of the flow, whether laminar or turbulent, is well described in terms of

the Reynolds number (Munson et al. [10]).

Ran et al. [11] studied the flow characteristics of a methane/moist-air laminar boundary

layer. The study sought to analyze the effects of air/carbon ratio, water/carbon ratio, air

mass flow and the wall friction on the characteristic of the boundary layer. The results

showed that the velocity increased from rest to the free stream velocity. The boundary

layer thickness in the case of both a micro-channel and micro-tube channel increased with

the increasing plate length. Suzki et al. [12] investigated the laminar boundary layer on a

flat plate using an immersed boundary-lattice Boltzmann method at a Reynolds number of

about one thousand. It was found that the immersed boundary-lattice Boltzmann method

gave good accuracy whether the flat plate was coincident with the lattice or not. Mager [13]

studied three-dimensional laminar boundary-layer flows along flat and curved surfaces. It

was found that the sharp curvature of the surface tended to cause flow separation. The

separation was as a result of the cross-flow.

Shateyi and Marewo [14] investigated an axisymmetric laminar boundary layer flow of a

viscous fluid and heat transfer along a stretching cylinder in a porous medium with vari-

able conductivity. The flow equations were solved using a successive relaxation method.
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They concluded that the flow properties were significantly affected by the permeability pa-

rameter. A numerical study of laminar boundary layer flow along a permeable flat plate

with thermal radiation was made by Mohamed et al. [15]. They investigated the effects

of Prandtl numbers, suction/injection and thermal radiation. It was found that the thermal

radiation and injection parameters increased the temperature, while the reverse was noted

with the suction parameter. Beratlis et al. [16] studied the flow along a flat plate with two

and eight rows of dimples in a staggered arrangement. It was shown that the shear layer

that forms as the flow separates over the first two rows of dimples becomes unstable.

Uddin et al. [17] investigated flow along a moving plate with a variable magnetic field and

radiation. Findings showed that the heat transfer rate increases with the Prandtl numbers,

velocity ratio and the magnetic field parameters. It was also found that the mass transfer

rate increased with the fluid velocity, the power law index and the Schmidt numbers, but

it reduced with the magnetic field effect. Avramenko et al. [18] studied heat and mass

transport in a turbulent boundary layer along a flat plate. It was noted that the flow veloc-

ity decreased with increasing nanoparticle concentration at the outer edge of the boundary

layer. Elsayed et al. [19] studied the effect of using helical coils on heat transfer char-

acteristics in turbulent flow. Findings showed that tube coiling increased the heat transfer

coefficient compared with a straight tube at the same Reynolds number. Wang and Zhang

[20] investigated turbulent flow subject to high-velocity oscillating amplitudes in a pipe.

The results showed that in a pulsating turbulent flow we can find a Womersley number at

which heat transfer is optimum where the Womersley number is a dimensionless parameter

in biofluid and the pulsatile flows. It is important in conserving dynamic similarity when

scaling an experiment.

The Earth’s surface is a boundary layer with the lowest two kilometers of the atmosphere

being the region most influenced by exchanges in momentum, heat, and water vapor. It

is the region most affected by the presence of surface forces. The common forces include

drag, evaporation and transpiration, and terrain-induced flow modification (Roland [21],
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Kaimal and Finnigan [22] and Oke [23]).

Dörenkämper et al. [24] studied the effect of the stably stratified atmospheric boundary

layer on power production and wake effects in offshore wind farms. Results showed that

the distance of the wind farm to the coast is an important factor for the power output of wind

turbines inside the farm. Pires et al. [25] studied three different passive devices separately

and in various combinations, to simulate the atmospheric boundary layer in a wind tunnel.

Findings showed that, if the length of the wind tunnel is being short and the pressure loss

is not so important; the best choice would be a thin screen. Wächter et al. [26] studied the

small-scale intermittent properties of atmospheric flows and their effect on the wind energy

conversion process. They concluded that atmospheric turbulence has a strong influence on

the wind energy conversion process.

1.2 Flow in Porous Media

Transport of energy and mass in porous media occur frequently with many practical appli-

cations in the physical sciences. Many surfaces, for example, soil, sandstone, limestone,

ceramics, foam, and rocks have natural pores, while other pores are made purposely, for

instance those in filtering and insulation materials, which may be manufactured to have

pores of a certain size. Biological tissues such as lungs, cell walls, blood vessels and kid-

neys; and food products such as bread are porous. Common porous media include paper,

clothing, rubber, grit, activated-carbon filters, limestone, metal foams and air filters, to

name a few (Bear and Bachmat [27]). In a porous medium, heat and mass transport pro-

cesses take various forms, for instance, heat exchangers, petroleum reservoir engineering,

metallurgy, chemical processing, catalytic reactors, industrial filtration, water purification,

soil drainage and irrigation, geothermal energy production and in cores of nuclear reactors

(Bear and Corapcioglu [28]).

A porous medium consists of a solid formation with interconnected gaps, which allows the
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fluid and small particles to pass through (Dullien [29], Nield and Bejan [30]). The porosity

λ, is the ratio of the volume of void space in a representative elementary volume (REV) to

the total volume of REV, expressed as,

λ =
Volume o f void space in REV

Total Volume o f REV
, (1.3)

where 1− λ is the volume fraction of the solid matrix (Bear and Bachmat [27]). Mea-

surements of porosity in materials are often reliant on techniques such as nuclear magnetic

resonance (NMR) which can be utilized to study porous materials, and diffusion in fine

porous material (Mitzithras et al. [31] and Valiullin et al. [32]).

Fluid flow in a porous medium is not easily modelled using the Navier-Stokes equations

owing to the complexity of the inner pore geometry. Where the boundary conditions are

unknown. Because of the irregularity of a porous medium, it can best be studied by meth-

ods of statistical mechanics. A random walk model was the first attempt in the study of

porous media by Scheidegger [33]. Models of porous media in the literature include the

Darcy model, the Darcy-Forchheimer model, Darcy-Brinkman model, Darcy-Brinkman-

Forchheimer model, power law model, Richards’ model, fracture or fissured flow, Darcy

Lapwood, Darcy-Lapwood-Brinkman, Darcy-Lapwood Forchheimer-Brinkman, Darcy-Forchheimer

radial and Rudraiah flow models (see for example Darcy [34], Forchheimer [35], Brinkman

[36] and Lauriat and Prasad [37]).

In the nineteenth century, Henry Darcy performed a pioneering experimental study of fluid

flow over homogeneous and isotropic porous media. Darcy’s experiments, culminated in

Darcy’s law, which may be stated as: “The rate of flow Q of water through a filter bed

is directly proportional to the area A of the sand and to the difference 4h in the height

between the fluid heads at the inlet and outlet of the bed, and inversely proportional to the

thickness L of the bed” (Darcy [34]). Mathematically, this law can be written as,

Q =
C A4h

L
, (1.4)

where C is a material property of the porous media. The constant C is expressed as K/µ,
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where µ is the fluid viscosity and K is the permeability of the porous medium (Holst and

Aziz [38]). Hence, the generalized Darcy law in terms of the total pressure is stated as

(Bear [39] and Nield and Bejan [40])

u f =−
K
µ

∇p, (1.5)

where u f is the Darcy velocity, and p is the pressure.

Darcy’s equation is simply an approximation of the balance of linear momentum which

however ignores the effect of inertia. Darcy’s law has been used to determine the magnitude

and direction of discharge through an aquifer; and to get the total flux in a multi-layer

system (Todd and Mays [41]).

A limitation of Darcy’s law is that it represents the resistance, the friction offered by the

solid particles to the fluid flow (Hsu and Cheng [42]). The Darcy flow model is restricted to

laminar flow in which the viscous forces dominate over the inertia forces. At low Reynolds

number the inertial forces can be ignored. However, these forces become important at high

Reynolds numbers when the relation between the pressure drop and the flow motion is no

longer linear (Neuman [43] and Bridgman [44]). The Darcy flow model is of order one less

than the Navier-Stokes equation; and for this reason it is difficult to use the no-slip boundary

condition, therefore, it is likely that a high velocity is possible at the surface (Nakshatrala

and Rajagopal [45]; Wang et al. [46]). As the flow rate increases, the inertial forces become

significant and the pressure drop becomes a nonlinear (Thauvin and Mohanty [47]). This

flow regime is better characterized as a non-Darcy flow rather than a turbulent flow (Belhaj

et al. [48]).

Historically, the classical Darcy, Fourier and Fick’s laws are coupled with magnitude aver-

aged conservation of mass and energy and other terms to derive mathematical models for

transport processes in porous media (Sullivan [49]). In 1901, Philippe Forchheimer noted

that, for gas flowing through coal beds, the link between the rate of flow and the potential

gradient is nonlinear at high velocity (Forchheimer [35]). Forchheimer modified Darcy’s
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flow model (1.5) by adding a new term to model the inertia effects in the pressure drop. The

modified law is called the Darcy-Forchheimer flow model, and is the earliest non-Darcian

flow model (Beji and Gobin [50] and Wu et al. [51]). Mathematically this can be written

as

∇p =− µ
K

V −β ρ υ V, (1.6)

where V is the velocity, ρ is the fluid density, υ is the absolute value of seepage velocity,

and CF/
√

K = β > 0 is Forchheimer’ coefficient or non-Darcy coefficient, and CF is the

inertial resistance coefficient. Aulisa et al. [52] analyzed flows in a porous media that were

not adequately described by Darcy’s law. They concluded that the results could be used for

the quantitative evaluation of some engineering parameters. Khan et al. [53] investigated

the effects of homogeneous-heterogeneous reactions in flow over a stretching sheet with

a nonlinear velocity and variable thickness using the Darcy-Forchheimer porous media

model. Their results showed among other things that the temperature increased when Biot

number was increased.

Muhammad et al. [54] investigated the flow of a nanofluid in porous media using the

Darcy-Forchheimer flow model. Findings demonstrated that the heat transfer rate reduces

with increasing porosity and Forchheimer parameters. Hayat et al. [55] studied the ef-

fects of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions on Darcy-

Forchheimer flow for two viscoelastic fluids. They concluded that the temperature and

thermal boundary layer thickness are smaller for a Cattaneo-Christov heat flux model in

comparison to the classical Fourier law of heat conduction. In addition the homogeneous-

heterogeneous reaction parameters enhanced the concentration level. Kishan and Mari-

pala [56] studied the effects of thermophoresis and viscous dissipation on a magneto-

hydrodynamic flow of heat and mass transfer along isothermal vertical flat plate in a porous

medium. They noticed a significant increase in the temperature with viscous dispersion and

the magnetic parameter.

Brinkman [57] modified Darcy’s law by adding further terms to Darcy’s flow model. The
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Brinkman flow model is the most appropriate for fast flowing fluids in porous media. The

model takes the form

∇p =− µ
K

V −µe f f ∇
2V, (1.7)

where µe f f is the effective fluid viscosity.

The generalized Darcy-Brinkman-Forchheimer flow model is based on the Darcy-Forchheimer

flow model. It was originally derived in the framework of thermal dispersion in a porous

medium using the method of volume averaging of the velocity and temperature devia-

tions in the pores (Hsu and Cheng [42]). The mathematical generalization of the Darcy-

Brinkman-Forchheimer flow model is (see Lauriat and Prasad [37]),

ρ(
∂

∂t
+V.∇)V =−∇p−µe f f ∇

2V − µ f

K
V −β|V |V, (1.8)

where the terms are as previously defined. In the last few decades, research using the

Brinkman-Forchheimer extended Darcy model have been carried out by Vafai [58]. Jha

and Kaurangini [59] studied steady flow in a channel filled with porous materials using the

nonlinear Brinkman-Forchheimer extended Darcy model. They concluded that the time-

dependent flow solutions approximately produced the same steady-state values. Marpu

[60] studied heat transfer in a vertical cylindrical porous annulus using the Forchheimer-

Brinkman extended Darcy flow model. It was found that Brinkman viscous terms led to a

higher reduction in the heat transfer rate compared to the Forchheimer inertial terms.

Kumar et al. [61] studied flow in a square cavity filled with a porous medium using

the Brinkman-Forchheimer-Darcy and the Brinkman-extended Darcy models. The results

showed that the Brinkman-extended Darcy model gives the best performance for the flow

and heat transfer rates compared to the Brinkman-Forchheimer-Darcy model. Chen et al.

[62] investigated the steady flow inside a cavity filled with a porous medium. They con-

cluded that due to higher porosity, there is high flow rate in the porous medium, thus,

the heat transfer is high. Juncu [63] investigated the flow through an impermeable sphere
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using the Brinkman-Forchheimer-Darcy or Brinkman Hazen-Dupuit-Darcy, model. Re-

sults showed that with a decrease in Darcy numbers, the surface vorticity increases for all

Reynolds numbers.

1.3 Heat and Mass Transfer Processes

Generally, heat transfer is the transit of thermal energy due to spatial temperature differ-

ences. The three essential processes in heat transfer are conduction, convection, and radia-

tion (Cengel and Ghajar [64]). The driving force for heat transfer is a temperature gradient.

If the surface temperature differs from the ambient fluid temperature, this leads to a tem-

perature gradient in the thermal boundary layer. This temperature gradient leads to a body

force in the form of buoyancy of the fluid. Aiding flow occurs when the surface temper-

ature is higher than the surrounding temperature. The induced pressure gradient is due to

buoyancy force whilst an opposing flow happens when the surface temperature is less than

the ambient temperature (Mahmood [65]).

Mass transfer happens when a high concentration of a chemical species moves toward a

lower concentration relative to other chemical species in the medium. The pressure differ-

ence is the main driving force for fluid flow, whilst for mass transport it is the concentra-

tion difference (Hines and Maddox [66]). The most common mass transfer processes are

through diffusion and convection. There is no mass transfer process similar to heat radia-

tion. Heat and mass transport are kinetic processes that can be studied either together or

separately. Mathematical equations are used to study diffusion and convection processes.

Heat transfer by a conduction process occurs when a thermal energy exchange happens

via direct interaction between molecules possessing temperature differences; that means

there exists of a temperature gradient in a fixed medium (Arpaci [67] and Ahsan [68]). In

fluids, the term “conduction” refers to heat transfer through a solid or a motionless fluid,

whereas for mass conduction, it is better to introduce Fick’s law of diffusion which states
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that the rate of diffusion of a chemical species at a point in a mixture is proportional to the

concentration gradient of that species at that position (Cengel [69]).

The convection mode of heat transfer in fluids is the mechanism of heat transfer when there

is a temperature difference between a surface and bulk fluid motion. In the same way,

mass convection refers to the mechanism of mass transfer between a surface and a moving

fluid that includes both mass conduction and bulk fluid motion (Cengel and Ghajar [70]).

Some examples of convective heat transfer applications are in cooling of microelectronics,

heat exchangers and cooling of car engines. Convection is divided into natural, forced and

mixed convection. Natural convection processes occur when heat is carried by the fluid

due to a buoyancy force, whereas in the forced convection process, heat transfer depends

on forced fluid movement (Welty et al. [71]). In addition, mixed convection occurs due

to the existence of both a buoyancy force and the forced flow of a fluid where the external

force might be a free stream or some movable or stretching surface. In heat and mass

transfer the term “convection” is used to indicate the totality of advective and diffusive

transfer. The radiation mode of heat transport refers to the thermal energy transit in the

form of electromagnetic waves (Modest [72]). In the case of no medium, there exists a

net heat transport by radiation between two surfaces at different temperatures. Thermal

radiation travels at the speed of light (Bear and Bachmat [73]). Heat and mass transfer are

simultaneously affected by the medium movement. Furthermore, heat and mass transfer

in most industrial and engineering applications involve the flow of fluids (Hewakandamby

[74]).

A large number of studies are available on an unsteady flow heat and mass transport pro-

cesses in porous media. Among these studies, Huang and Vafai [75] studied heat trans-

fer characteristics in a channel with multiple porous blocks. The importance of inertia,

Reynolds number and viscous effects were considered. Results showed that a significant

increase in heat transfer could be achieved through the emplacement of porous blocks. The

study of some models of fluid flow, heat and mass transfer in porous media have been made

11



by Su and Davidson [76], and Vafai[77].

A review of literature on heat and mass transport in porous media is given by Vadasz

[78]. This gives the theory and applications in emerging fields such as bioengineering,

microelectronics, and nanotechnology. Bennacer et al. [79] investigated double-diffusive,

natural convection in a perpendicular porous cylinder. The influence of thermal-diffusion

was considered in the analysis. The conservation equations were solved by adapting a fi-

nite volume approach. Findings showed that the cylindrical annulus allows a high thermal

gradient. Davarzani et al. [80] studied heat and mass transport in porous media and the

thermo-diffusion influence utilizing a volume averaging technique. They concluded that,

for low Péclet numbers, the effective thermo-diffusion in porous media is similar to that

in the free fluid and that it does not rely on the solid to fluid conductivity ratio. Makanda

et al. [81] studied natural convection in a downward pointing cone in a viscoelastic liquid

embedded in a permeable medium. The partial differential equations were solved using the

successive linearization method. Findings showed that the augmenting of the viscoelastic

fluid with tends to enhance the fluid temperature. The heat transport for a power law Jeffery

fluid with thermal radiation was studied by Hayat et al. [82]. They studied the effect of

thermal radiation, heat source, and the Deborah number. They noted that these parameters

have a significant effect on fluid flow and heat transfer.

An analysis of heat and mass transport along a stretching sheet with suction or injection

was undertaken by Gupta and Gupta [83]. They considered a moving surface with non-

zero transverse velocity. The exact solution was obtained to the flow equations. Results

showed that the temperature reduces due to increasing fluid injection. An investigation of

magnetohydrodynamic mixed convection, diffusion-thermo and thermal-diffusion effects

on heat and mass transport a power-law fluid along an inclined plate in a permeable medium

with variable thermal conductivity, thermal radiation, Ohmic dissipation and absorption or

blowing was done by Pal and Chatterjee [84]. Increasing the diffusion-thermo parameter

tended to enhance the fluid temperature, while the oppositewas true for viscous dissipation.
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Hayat and Qasim [85] investigated the energy and mass transport along a stretching sheet

with Joule heating and thermophoresis. The findings demonstrated that increasing Joule

heating and thermophoretic velocity enhances heat and mass transfer. Beg et al. [86] ana-

lyzed heat and mass transfer from a spherical body in a micropolar fluid with consideration

of Soret and Dufour influences. The study showed that heat transfer rates increased with

the Dufour number, while it reduces with an increase in the Soret number. In the same

context, the mass transfer rates reduced with increasing Dufour numbers, but for the Soret

number, the opposite was true. The results further showed that the flow moved faster with

less drag compared to micropolar and Newtonian fluids. Hina et al. [87] studied the effect

of a chemical reaction on an incompressible fluid flow in a channel with compliant walls.

The effects of viscous dissipation were considered under small Grashof number and a long

wavelength assumptions. A regular perturbation technique was used to solve the flow equa-

tions. They found that the parameters affect the velocity and temperature in a qualitatively

similar manner. Hina et al. [88] studied heat and mass transfer in the peristaltic transport

of a fluid in a curved channel with flexible walls. They noted that the axial velocity for

a Johnson-Segalman fluid is larger than that of a Newtonian fluid. Temperature and con-

centration distributions were found to be higher in curved channels compared to straight

channels. They concluded that the heat transfer coefficient is higher in a straight channel

in comparison to a curved channel.

Rahman et al. [89] analyzed the impact of the buoyancy ratio and Lewis number on heat

and mass transport over a triangular cavity with a zig-zag shaped bottom wall. The re-

sults revealed a distortion to the symmetric distribution of the temperature, and concen-

tration fields for higher values of the Lewis number. It was further noted that increasing

the buoyancy ratio and Rayleigh number leads to enhanced heat and mass transfer rates.

The impact of combined heat generation/absorption and transpiration on the heat and mass

transfer on a non-isothermal stretched surface was analyzed by Mabood et al. [90]. It

was found that the suction/injection parameter enhanced the heat and mass transfer. Heat

and mass transfer over a plate in porous media as well as chemical reaction effects were

13



discussed by Patil and Chamkha [91]. An implicit finite-difference scheme together with

a quasi-linearization technique was used to obtain the solutions of the coupled, nonlinear

partial differential equations. Results showed that polar fluids behave very differently from

Newtonian fluids, and that the effects of the chemical reaction parameter and the Schmidt

number are significant for the concentration distribution and the mass transfer rate.

The study by Narayana and Babu [92] focused on the effects of a chemical reaction and

a heat source on magnetohydrodynamic Jeffrey fluid flow along a stretching surface with

power-law temperature and concentration fields. They found that the influence of a mag-

netic field and thermal radiation is to increase the fluid temperature. The flow concentration

reduces with increasing chemical reaction rates. Mekheimer et al. [93] discussed the peri-

staltic magneto-hydrodynamic second-order fluid flow within a channel, a wave frame of

reference was supposed. Findings showed that the concentration distribution increased with

the Hartman number, while the Eckert number enhanced the fluid temperature. Yasmin et

al. [94] discussed the influence of Hall currents, viscous dissipation and Joule heating on

the flow of an incompressible and electrically conducting Williamson fluid in a symmet-

ric planar channel. An increase in the Biot number reduced the fluid temperature, while

increasing the concentration of the fluid.

An analysis of heat and mass transport along an inclined plate in a permeable medium

with thermophoresis was done by Postelnicu [95]. The influence of the thermophoresis

parameter was analyzed for both cold and hot wall cases. The study presented numerical

results of the deposition velocity at the wall due to thermophoresis in the context of porous

media. The physical impact of thermophoresis and internal heat generation or absorption

on hydromagnetic flow along an isothermal inclined plate was discussed by Noor et al. [96].

The model equations were solved numerically using the shooting method. Results showed

that with suction, the velocity and temperature distributions are smaller than with injection,

while for the concentration distribution the opposite is true. Also, with the influence of a

heat source, fluid properties are reduced less compared to the case of flow with a heat sink.
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The flow of a three-dimensional viscoelastic fluid along a stretching surface and the influ-

ence of diffusion-thermo and thermal-diffusion was discussed by Hayat et al. [97]. They

found that the thermal-diffusion and diffusion-thermo had the opposite effect on heat and

mass transfer rates. Bell et al. [98] used the Darcy model in the study of flow in a permeable

spherical body. Their aim was to study the impact of the extra viscous term on the steady-

state mass transfer from a sphere at low Peclet numbers. Their results showed that a larger

Brinkman viscous boundary layer reduces convection. A solution for Darcy flow with a

Robin boundary condition was also obtained. Pal and Mondal [99] focused on viscous dis-

sipation, thermal-thermo diffusion, thermal radiation, and a non uniform heat source-sink

together with chemical reaction on mixed convection flow, heat and mass transport over

a semi-infinite nonlinear stretching sheet in porous media. They concluded that the fluid

temperature increases with decreasing thermal-diffusion while the opposite was noted for

the fluid concentration.

Ramesh [100] investigated the flow of a magnetohydrodynamic couple stress fluid, includ-

ing heat and mass transfer over an inclined asymmetric channel in a permeable medium.

The study was subject to the long wavelength and small Reynolds number approximations.

It was found that the temperature and heat transfer coefficient are enhanced by increasing

the Darcy number and the angle of inclination of the magnetic field. Prasad et al. [101] pre-

sented a mathematical model for the transport of an optically-dense, electrically-conducting

fluid over a permeable isothermal sphere. Findings show that increasing the porosity ac-

celerates the flow, and minimizes the fluid temperature and concentration. Increasing the

Forchheimer inertial drag reduced the fluid flow, but enhanced the fluid temperature and

concentration. Both the boundary layer velocity and temperature were reduced by increas-

ing thermal radiation.

Prasad et al. [102] analyzed the heat and mass transfer in fluid flow along a vertical porous

plate as well as the influences of a magnetic field, Soret and Dufour parameters. The find-

ings were that increasing the Dufour number reduced the flow concentration but increased
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the flow temperature, while the reverse is true for the Soret number. The influence of the

Forchheimer parameter is to strongly decelerate the fluid flow and to increase the temper-

ature and concentration. The effects of thermal radiation and non-uniform magnetic field

were studied by Rashidi et al. [103]. The results were obtained using the homotopy analysis

method to solve the conservation equations. Results showed that the impact of the magnetic

field is to diminish the flow velocity and increase both the fluid temperature and concen-

tration. Thermal radiation enhances the heat transfer coefficient. Magneto-hydrodynamic

laminar flow over a moving vertical surface in a porous medium was investigated by Java-

herdeh et al. [104]. The results were found using a fully implicit finite difference method.

They found that the transverse magnetic field produces a resistive force which opposes the

flow. This contributes to diminishing heat and mass transfer rates.

Raju et al. [105] analyzed magnetohydrodynamic Casson fluid flow over a porous surface

with the thermal radiation, viscous dissipation, a heat source and chemical reaction effects.

They found dual solutions and compared the results of the Casson fluid with a Newtonian

fluid. It was found that the heat transfer rate increases with the strength of the heat source.

In addition, it was found that the Casson fluid achieved better heat transfer performance

compared with the Newtonian fluid. An analytical study of non-Darcy mixed convection

due to a vertical isothermal permeable surface in a homogeneous porous medium saturated

with Ostwald de-Waele type non-Newtonian fluid was carried out by Ibrahim et al. [106].

Their aim was to study the effect of surface injection or suction on heat and mass transfer.

It was found that fluid flows with suction have smaller heat transfer rates. Increasing the

viscosity index reduced the heat transfer rate for flows with suction or injection.

A study of the impact of a chemical reaction and viscous dissipation on flow along an

isothermal porous vertical surface was done by Mahdy and Chamkha [107]. It was found

that increasing both the chemical reaction rate and viscous dissipation reduces the heat

transfer rate while fostering mass transfer. The investigation of non-Darcian flow on a

sphere in a porous medium with a chemical reaction has been done by Rashad et al. [108].
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They found that both heat and mass transfer rates are minimized by an increase in either

the permeability parameter or the inertial parameter for aiding flow conditions. In addition,

with an increase in the chemical reaction, the heat transfer rate diminished, while the mass

transfer rate was enhanced.

The study of transport processes in a porous medium with thermal-diffusion, diffusion-

thermo, chemical reaction and thermal radiation influence around a truncated cone was

made by Rashad and Chamkha [109]. They found that the heat and mass transfer coef-

ficient increases with the Darcy number and thermal radiation. They also showed that

with a chemical reaction, the heat transfer rate diminished while the mass transfer rate in-

creased. Eldabe et al. [110] studied the impact of a magnetic field on the peristaltic move-

ment of a non-Newtonian fluid together with heat and mass transfer through a channel in

a porous medium. The problem was for a modified Casson non-Newtonian constitutive

model. Results showed that the impact of some physical parameters such as the magnetic

field, permeability, wave number, and Casson parameter on heat and mass transfer cannot

be ignored.

Bhukta et al. [111] investigated the influence of thermal radiation and viscous dissipation

on a viscoelastic fluid flow along a shrinking sheet in a porous medium. Findings showed

that the magnetic field, as has been shown by others before, reduces the velocity and con-

centration of the flow. The existence of porous matrix reduces the temperature of the fluid.

They demonstrated that the rate of heat transfer is very sensitive to the existence of porous

matrix and the magnetic parameter. An investigation of magneto-hydrodynamic incom-

pressible fluid flow and heat and mass transfer along a vertical stretching sheet was done

by Kandasamy and Muhaimin [112]. They predicted that the effect of a high temperature-

dependent fluid viscosity parameter is to enhance both the fluid flow and the heat transfer

rate. Thermophoresis particle deposition has a significant influence on the fluid flow, heat

and mass transfer rates. Sheikholeslami et al. [113] analyzed micropolar fluid flow with

heat and mass transfer along a channel. Findings showed that suction and injection and the
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Péclet number have a direct impact on heat and mass transfer rates.

The study of suction or injection and heat generation/absorption on non-Newtonian power-

law fluid flow in a porous medium was done by Chamkha and Al-Humoud [114]. Their aim

was to determine the effects of the buoyancy ratio, power-law fluid index, mixed convec-

tion parameter, suction or injection parameter, heat generation or absorption parameter, and

the Lewis number on the heat and mass characteristics. They found that as the buoyancy

ratio was increased, both the heat and mass transfer rates were enhanced for the full range

of the free and mixed convection regimes whilst they remained constant for the forced-

convection regime. They further showed that the heat and mass transfer rates are reduced

as the power-law fluid index was increased. Chamkha et al. [115] investigated the impact

of thermal radiation and chemical reaction on natural convection over a vertical cylinder

in porous media. It was found that there are additional implications on the heat and mass

transfer characteristics due to the variation of fluid viscosity, thermal radiation and a chem-

ical reaction.

Rashidi et al. [116] analyzed the effect of a chemical reaction on laminar flow along a hori-

zontal surface. Findings showed that with increasing order of a chemical reaction, the fluid

velocity, temperature and concentration are enhanced. Viscous dissipation and the Joule

heating influence on the heat and mass transfer in a second grade magneto-hydrodynamic

stagnation point flow along a permeable stretching cylinder was studied by Hayat et al.

[117]. They found that increasing the curvature parameter both the flow velocity and

the temperature were enhanced far from the cylinder. Chamkha and Aly [118] studied

the impact of Soret-Dufour and a chemical reaction on stagnation-point polar flow over

a stretching surface in a porous medium taking into consideration both, namely, assisting

and opposing flows. It was observed that for assisting flow conditions, the heat transfer rate

diminished with a high chemical reaction rate, but was enhanced in the case of opposing

flow conditions.
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Jumah et al. [119] investigated heat and mass transfer using the Darcy-Forchheimer model

for flow in a saturated porous medium. Results demonstrated that the heat and mass trans-

fer rates reduced with increasing porous media inertial resistance. Mallikarjuna et al. [120]

studied mixed convection along rotating vertical cone. They concluded that with a large

porosity and magnetic field, the rates of heat and mass transfer are increased. Over and

above, the mass transfer rate rose with increasing chemical reaction rates. Thermal and

mass diffusion along a vertical porous plate has been investigated by Makinde and Ogulu

[121]. Findings showed that the rate of mass transfer rose with increasing chemical reac-

tion parameter. Jashim et al. [122] studied Darcian magneto-convective slip flow over a

non-isothermal continuously movable permeable radiating surface with viscous dissipation,

Joule heating, and chemical reaction effects. They concluded that the flow concentration

rose whilst the rate of mass transfer diminished with high mass diffusivity. The heat transfer

reduced with high thermal radiation-conduction, magnetic field and viscous dissipation.

Williams and Rhyne [123] investigated unsteady flows of impulsively started wedge type

flows using a new set of scaled coordinates. It was found that it is possible to calculate

the initial phases of wedge type flows impulsively set into motion for an arbitrarily large

adverse pressure gradient. An incompressible electrically conducting fluid flow past an im-

pulsive stretching sheet was studied by Takhar et al. [124]. Results illustrated that the sur-

face shear stresses and the surface heat transfer rate rose with stretching and the magnetic

field effects, They noted a smooth transition from the short-time solution to the long-time

solution. Xu and Liao [125] analyzed the unsteady magneto-hydrodynamic non-Newtonian

fluid flow due to an impulsively stretching surface. They showed that, the magnetic field

leads to an increase in the wall friction which is more pronounced for non-Newtonian flu-

ids with larger power-law index. Liao [126] and Kechil and Hashim [127] studied the

unsteady fluid flow through an impulsively stretching surface. They found accurate ana-

lytic solutions of unsteady boundary-layer flow, which they claimed were uniformly valid

for all time. Viscous flow along an impulsively stretching surface was further studied by
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Ali et al. [128]. They showed a smooth transition from the short-time solution to the long-

time solution. The flow through a stretching or shrinking sheet was investigated by Khan et

al. [129] and Lok and Pop [130]. They showed that the stretching or shrinking parameters

have a significant influence on the flow and that such effects cannot be ignored.

Viscoelastic fluid flow over an impulsively started vertical surface with variable surface

temperature and mass concentration was done by Kumar et al. [131]. The results showed

that the viscoelasticity enhances the fluid flow but has a no impact on the fluid temperature

and concentration. The effect of heat absorption or generation on unsteady electrically

conducting fluid flow over a vertical infinite surface was studied by Turkyilmazoglu and

Pop [132]. It was found that the heat and mass transfer rates become independent of time

in the long run. Das et al. [133] studied thermal radiation and chemical reaction impact

on unsteady Casson fluid flow through a vertical surface. They noted that the flow rate and

the temperature fall with high values of Casson parameter whilst the concentration reduced

with increasing chemical reaction rates.

Hall currents and magnetic field influences on an electrically conducting unsteady fluid

flow past a stretching surface was investigated by Shateyi and Motsa [134]. The numerical

solution was obtained by using the successive linearization method together with Cheby-

shev pseudo-spectral collocation method. It was found that the skin-friction coefficient, the

heat and mass transfer rates are enhanced by high Hartmann numbers, Prandtl numbers the

unsteadiness parameter, or Schmidt numbers. The Hall parameter caused the temperature

and concentration levels to diminish. Chamkha et al. [135] investigated the impact of radi-

ation and a chemical reaction on unsteady micropolar fluid flow over a infinite vertical flat

plate. They showed that with an increase in the micropolar fluid vortex viscosity parame-

ter, the heat and mass transfer rates reduced, while the opposite is true for the wall couple

stress. Furthermore, with an increase in the mixed convection parameter the wall couple

stress, heat and mass transfer rates rose. Chamkha and El-Kabeir [136] studied thermal

and mass diffusion for an impulsively stretched vertical surface with a chemical reaction,
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and Soret and Dufour influences. Findings showed that the heat transfer rates increased as

either the mixed convection parameter, suction/injection parameter, or the wall temperature

and concentration exponent increased, and decreased as either the Hartmann number or the

chemical reaction parameter increased. With high Dufour or low Soret numbers, both the

skin-friction coefficient and the heat transfer rates were reduced while the mass transfer

rate was enhanced.

The influence of viscous dissipation on an incompressible electrically conducting microp-

olar fluid with heat and mass transfer has been investigated by Mohanty et al. [137]. They

concluded that high viscous dissipation produces heat due to drag between the fluid parti-

cles, which causes an increase in the fluid temperature. They also found that the thermal

buoyancy has no significant effect on both couple stress and mass transfer coefficient. An-

imasaun [138] studied the impact of thermophoresis, chemical reaction and radiative heat

transfer on unsteady micropolar fluid flow due to a vertical porous surface with temperature

dependent dynamic viscosity and constant vortex viscosity. They showed that the flow with

high suction lead to an increase in both the fluid temperature and concentration levels. in

addition, both heat and mass transfer rates fell with the increase in the thermophoretic pa-

rameter. The modified Boussinesq approximation gave better results for flow along vertical

surface and melting heat transfer surface.

Chamkha et al. [139] studied unsteady fluid flow with heat and mass transfer over a perme-

able stretching surface subject to a chemical reaction influences. They showed that the heat

transfer rate is enhanced by large Prandtl numbers, suction/injection, or the unsteadiness

effects, and reduced as either the chemical reaction or the Schmidt number increased. Fur-

thermore, the mass transfer rate increased as a result of increasing unsteadiness, chemical

reaction, suction/injection, or the Schmidt number. Heat transfer reduced for high Prandtl

numbers. Mansour et al. [140] focused their work on unsteady heat and mass transport

within a porous square enclosure. It was found that the sinusoidal variations in temperature
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and concentration removed the singularities which appeared in the case of fixed tempera-

ture and concentration levels. A low Darcy number reduce both the heat and mass transfer

rates. In addition, an increase in the amplitude wavelength ratio tended to raise both heat

and mass transfer rates. The flow of an unsteady Newtonian fluid flow due to an expo-

nentially accelerated infinite vertical permeable surface was investigated by Rajesh and

Chamkha [141]. They concluded that the heat transfer rate rose due to increase in the suc-

tion and time parameters while it reduced with an increase in the viscous dissipation both air

and water. Benazir et al. [142] studied unsteady magneto-hydrodynamic Casson fluid flow

transfer through a permeable surface with double dispersion, non-uniform heat source/sink

and a higher order chemical reaction. Results showed that the temperature dependent heat

source/sink plays a great role in controlling the heat transfer. Heat and mass transfer from

an inclined surface subject to viscous dissipation, joule heating and thermophoresis has

been studied by Alam and Rahman [143]. It was found that flow with viscous dissipa-

tion reduces the heat transfer rate for both suction and injection cases. Moreover, suction

presented a stronger impact on wall thermophoretic deposition velocity than injection.

Free convection from an optically thin radiating fluid flow along an impulsively moving

infinite permeable vertical plate subject to rotation and a chemical reaction was studied

by Seth et al. [144]. It was noted that the heat transfer rate rises with thermal radiation

and falls with thermal diffusion. Furthermore, chemical reaction leads to an enhanced

mass transfer rate, whilst mass diffusion has the reverse effect. The diffusion-thermo and

thermal-diffusion influence on heat and mass transfer along a rotating vertical cone was

investigated by Chamkha and Rashad [145]. It was found that the local tangential and

azimuthal skin-friction coefficients, heat and mass transfer rates were enhanced by an in-

crease in the angular velocity of the cone. Furthermore, it was noted that high Dufour

numbers tend to minimize both the heat and mass transfer rates.

Olanrewaju et al. [146] studied an electrically conducting power law flow with heat and

mass transfer from a heated porous plate subject to Soret and Dufour effects. They showed
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that flow with high suction and a magnetic field effect accelerates the flow of both pseu-

doplastic and dilatant fluids. The high Dufour number for pseudoplastic fluid raises the

temperature levels across the wall plate. Ali et al. [147] analyzed an electrically con-

ducting incompressible viscous fluid flow with the combined influence of radiation and

chemical reaction along an inclined porous plate. They concluded that the heat and mass

transfer rates rise with the time. Sagar et al. [148] analyzed the magneto-hydrodynamic

flow of a chemically reacting and radiation absorbing Kuvshinski fluid along a semi-infinite

vertical surface. It was found that the temperature levels rose with increasing radiation and

radiation absorption. The thermal-thermo diffusion influence on an unsteady flow along

a vertical porous surface moving through a binary mixture with nth-order Arrhenius type

irreversible chemical reaction was studied by Makinde and Olanrewaju [149]. Results re-

veal that reverse flow is triggered with increasing buoyancy forces, injection, destructive

chemical reaction, radiation absorption, and thermo-diffusion effect, while it reduces with

the diffusion-thermal. Furthermore, the fluid temperature levels became high, while the

species concentration lessened with high Soret number but reduced with the Dufour num-

ber. The suggestion is that for fluids with medium molecular weight that include hydrogen-

air mixtures, the impact of Dufour and Soret terms cannot be ignored.

1.4 Nanofluids As Heat Transfer Fluids

Fluid heating and cooling is important in many industrial and commercial processes, for

instance, in manufacturing, transportation, and electronics. The need for high or low heat

flow processes has created considerable demand for new technologies to enhance heat

transfer. Since the middle of the 20th century, micro and nano-technologies have grown

tremendously. There is significant interest in enhancing the efficiency of heat transfer pro-

cesses. Fluids developed by suspending nanoparticles in traditional heat transfer fluids are

called nanofluids. (Choi et al. [150]; Das [151]; Das et al. [152]; Eastman et al. [153];

and Keblinski et al. [154]). Choi [155] defined nanofluids as fluids with solid particles
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of sizes between 1 and 100 nanometre in diameter. Nanofluids typically utilize metal or

metal oxide nanoparticles. The most common conventional fluids used as base fluids for

nanofluids are de-ionized water and ethanol.

The most commonly used materials for nanoparticles are chemically stable metals such as

Aluminium, Copper, Silver, Gold and Iron; non-metals such as graphite and carbon nan-

otubes; ceramics such as Aluminium Oxides, Copper II Oxide, Titania, Silica Oxide, Zinc

Oxide or Zirconia and Sodium Oxide; metal carbides such as Silicon carbide, Titanium

carbide and Boron carbide; nitrides such sa Aluminium nitride, Silicon nitride, Titanium

nitride and boron nitride; and borides such as Titanium boride (Thomas [156]).

Nanofluids have enhanced thermo-physical properties like high thermal conductivity, ther-

mal diffusivity, viscosity, density and convective heat transfer coefficients in contrast to

base fluids (Choi [157]; Tyler et al. [158]; Das et al. [152]; and Liu et al. [159]). Ex-

perimental studies showed that the improvement in thermal conductivity is in the range

between 15-40 % and heat transfer coefficient enhancements is up to 40% (Yu et al. [160]).

Unsteady nanofluids flow, heat and mass transfer processes in porous media have received

significant interest in the last few decades with many theoretical and experimental studies.

Abbasi et al. [161] explored the influence of thermal radiation, Brownian motion and ther-

mophoresis on hydromagnetic Jeffrey fluid flow over a stretching surface with flux condi-

tions. It was found that with increasing thermophoresis and Brownian motion, the thermal

conductivity enhances which gives a higher temperature. Awad et al. [162] investigated the

thermophoresis, Brownian motion and cross-diffusion impacts on magneto-nanofluid flow

due to a stretching sheet. The flow equations were solved numerically using the successive

linearization method. Results showed that the heat transfer rate rose in the absence of the

Brownian motion and the thermophoresis.

Pal and Mandal [163] studied the influence of three types of nanoparticles, copper, alumina,

and titanium dioxide in stagnation-point flow due to a permeable stretching or shrinking
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surface. They concluded that a minimization of the heat transfer rate occurs with high

viscous dissipation, but increases with an increase in the Schmidt number. On the other

hand, the mass transfer rate rose significantly with an increase in the Schmidt number

and the chemical reaction. It reduced for higher values of the nanoparticle volume frac-

tion. Furthermore, a copper-water nanofluid showed a higher skin friction and mass trans-

fer rate, and less heat transfer rate when compared with an alumina-water and titanium

dioxide-water nanofluids. Yohannes and Shankar [164] studied the impact of a magnetic

field, viscous dissipation, chemical reaction and Soret on nanofluid flow along a permeable

stretching surface. The study showed that the heat transfer rate reduces with increasing

nanoparticle volume fraction, magnetic field, and viscous dissipation. The copper-water

nanofluid provided a higher heat transfer rate than the silver-water nanofluid. Also, the

mass transfer rate increased with increasing nanoparticle volume fraction, chemical reac-

tion, and thermal-diffusion effects. The silver-water nanofluid gave a higher mass transfer

rate than a copper-water nanofluid.

Moshizi [165] investigated the influence of a uniform magnetic field on heat and mass

transfer inside a porous microchannel. Findings demonstrated that with the nanoparticles

the heat transfer rate was enhanced in the microchannel. In addition, the heat transfer rate

rose with the Hartmann number and slip parameters. Haile and Shankar [166] consid-

ered the effect of two nanoparticles, copper and alumina on heat and mass transfer on a

fluid-saturated porous medium with thermal radiation, viscous dissipation and a chemical

reaction. It was noted that with large nanoparticle volume fraction the temperature was

raised for both copper-water and alumina-water. Both of viscous dissipation and thermal

radiation enhanced the fluid temperature. In addition, the concentration increased with the

Soret number, while the chemical reaction minimized it. The influence of Brownian motion

and thermophoresis on nanofluid flow due to a porous moving plate has been studied by

Qasim et al. [167]. They concluded that with both Brownian motion and thermophoresis

the temperature was elvated, while the fluid concentration rose with the Brownian motion

and reduced due to the thermophoresis effect.

25



Agarwal and Bhadauria [168] investigated the thermal instability in a horizontal layer of

a Newtonian nanofluid with Brownian motion, thermophoresis and rotation. It was found

that the heat and mass transfer rates are enhanced by Rayleigh and Lewis numbers. Also,

the modified diffusivity ratio enhanced mass transfer rate. Reddy et al. [169] studied

nanofluid flow with heat and mass transfer through a semi-infinite moving vertical surface.

Findings showed that the spherical shaped nanoparticles have better heat transfer perfor-

mance compared with cylindrically shaped nanoparticles. Iqbal et al. [170] investigated

viscous dissipation on an unsteady electrically conducting nanofluid flow between two or-

thogonally moving porous coaxial disks. They used a water-based nanofluid with titanium

dioxide nanoparticles.

As stated earlier, there are numerous experimental and theoretical studies in the literature

regarding the thermal conductivity of nanofluids; heat and mass transfer in porous and

nonporous media; and fewer studies on mass transfer using nanofluid models. Numerical

schemes like spectral linearization methods are not widely used to solve the equations of

fluid flow models. This study investigates some mathematical models of unsteady nanofluid

flow on heat and mass transfer; using the spectral methods.

This study is concerned with the numerical solution of the unsteady flow along an inclined

cylinder in a porous medium saturated with nanofluids. Influences of a chemical reaction,

viscous and Ohmic dissipation subject to applied transverse magnetic and electric fields on

heat and mass transfer are investigated. Two different types of nanoparticles, copper, and

silver were considered, with water as the base fluid. The model equations are solved using

the spectral local linearization method.

The effects of viscous dissipation, internal heat generation and chemical reaction on un-

steady flow through a vertically stretching cone have been investigated. Two nanoparticles,

namely, the copper and titanium oxide were included with water considered as the base

fluid. The numerical results are obtained using the spectral local linearization method.
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A numerical solution to the equations of unsteady flow of a polymer nanocomposite rep-

resented by an Oldroyd-B nanofluid along a stretching sheet is investigated. The nanopar-

ticle flux at the boundary surface is assumed to vanish. The spectral relaxation and quasi-

linearisation methods were used to obtain the numerical results for flow equations.

Unsteady nanofluid flow, of stagnation point subject to magneto-hydrodynamic along a per-

meable stretching surface, was studied. The effects of Brownian motion, thermophoresis,

partial slip boundary condition and internal heat source or sink were considered in the flow

model. The flow equations were solved using the numerical spectral relaxation method.

Lastly, the impact of Brownian motion, thermophoresis, chemical reaction and thermal

radiation on unsteady nanofluid flow along a moving surface in a porous medium is studied.

The nanofluid particle fraction on the boundary was considered to be passively rather than

actively controlled, and the nanoparticle flux at the boundary surface was assumed to be

zero. The flow equations were solved numerically using the spectral relaxation method.

1.5 Solution Techniques for Fluid Flow Problems

In the last few decades, computational fluid mechanics has become an important sub-

domain of the field of fluid mechanics. Fluid flow problems are modeled using compli-

cated equation systems. For these problems, it is not always possible to apply analytical

methods directly or traditional perturbation techniques with slow or no convergence to find

correct solution. Over the years, a number of computational methods have been developed

to solve linear and nonlinear equations. These methods are needed to solve nonlinear sys-

tems, which are analytically difficult to solve. Several of these methods have been used in

the literature and are quite efficient in terms of providing approximate solutions. However,

many of these methods are not very efficient for high order systems of nonlinear ordinary

and partial differential equations that arise in the study of fluid flow problems, for example,

partial differential equations formulated using the transformation suggested by Williams
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and Rhyne [123]. Examples of common numerical methods used include different ver-

sions of finite difference methods, finite volume and finite element methods.

A lot of literature exists on the use of various finite difference schemes to solve boundary

layer flow problems described by nonlinear ordinary and partial differential equations (see

Bhattacharyya [171], Patil et al. [172], Roy [173], Saikrishnan and Roy [174]; and Pon-

naiah [175]). Many researchers have suggested that finite difference methods are suitable

to solve partial differential equations because they are fast and easy to code (Strikwerda

[176]). Finite element methods can be very accurate and suitable for complex geometries

(Johnson [177]). Some authors like Argyris [178], Turner [179] and Hrennikov [180] pre-

sented some research on the development of finite element methods. Spectral methods

use all available function values to generate the required approximations, which is an ad-

vantage compared to other methods (Jovanovic and Süli [181]). Spectral methods are the

preferred techniques for solving nonlinear ordinary and partial differential equations be-

cause of their high accuracy in resolving problems with smooth functions (see Canuto et

al. [182], Fornberg [183] and Trefethen [184]). These methods are considered to be more

accurate compared to numerical methods such as the finite difference and finite elements

methods.

Various spectral methods in combination with linearization techniques are used in this

study. In the following sections we describe the spectral local linearization (SLLM), spec-

tral relaxation (SRM) and spectral quasi-linearization (SQLM) methods because of their

perceived higher rates of convergence, accuracy and ease of application to complicated

nonlinear ordinary and partial differential equations. These methods were introduced and

are more fully described in Motsa [185–187] and Motsa et al. [188].

The primary objective of using these linearization techniques coupled with the spectral

methods is because they have not been used extensively in the literature and their true worth

in finding solutions of fluid flow problems remains to be assessed. The methods (SLLM,
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SRM, and SQLM) have been shown in a limited number of case studies to be applicable to

linear and nonlinear ordinary and partial differential equations. It has also been suggested

that they are easy to use and to code in Matlab. In this study, we test these claims and the

accuracy of the methods by solving various nonlinear systems that model the conservation

principles in the flow of fluids.

1.5.1 The Spectral Local Linearization Method

The spectral local linearization method is a modification of the quasi-linearization method

originally proposed by Bellman and Kalaba [189] to solve functional equations. The spec-

tral local linearization method (SLLM) was introduced by Motsa [185] to solve nonlinear

differential equations. The spectral linearization method linearizes and decouples systems

of equations using a combination of a univariate linearization technique and spectral collo-

cation discretization. The key feature of the algorithm is that it breaks down a large coupled

system of equations into a sequence of easier to solve smaller subsystems of equations. The

method is accurate and gives excellent convergence, higher stability, and is very efficient

when compared with other methods of solving large systems of boundary value problems

(see Motsa [185]).

Motsa [186] used the method to find solutions to systems of equations for unsteady flow

over an impulsively stretching surface. The method was also used to obtain solutions for

natural convection in a boundary layer flow problem (Motsa et al. [190]). Sithole et al.

[191] studied unsteady Maxwell nanofluid flow along a shrinking surface with convective

and slip boundary conditions. The aim was to determine the effect of Brownian motion

and thermophoresis. The flow equations were solved efficiently using the spectral local lin-

earization method. They concluded that increasing particle Brownian motion leads to a re-

duction in the concentration profiles but concentration profiles increase with thermophore-

sis parameter.
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Das et al. [133] investigated the effect of homogeneous-heterogeneous reactions on the

steady flow of heat transfer and chemically reacting for copper-water nanofluid. The spec-

tral local linearization method used to solve the flow equations. They showed that the heat

transfer rate increases with an increase in nanoparticle volume fraction, mixed convection,

thermal radiation, temperature ratio and stretching rate.

Shateyi and Marewo [192] investigated the hydromagnetic Casson fluid flow with heat and

mass transfer along a stretching surface subject to thermal radiation, viscous dissipation,

and a chemical reaction. The numerical solution was obtained using the spectral local lin-

earization method. Results showed that the flow, temperature, and concentration fields are

significantly influenced by the Casson parameter, magnetic parameter, velocity ratio param-

eter, Eckert number and chemical reaction. Shateyi and Marewo [193] studied the unsteady

flow of heat and mass transfer with the influence of thermal radiation and chemical reac-

tion. The flow equations were solved using the spectral local linearization method and the

successive relaxation method. The showed that the temperature reduced by increasing val-

ues of the Prandtl number and the thermal radiation parameter. The flow velocity reduced

with increasing values of chemical reaction, Schmidt number, and magnetic parameter.

1.5.2 The Spectral Relaxation Method

The main innovation in the spectral relaxation method is the decoupling of differential

equations in a manner similar to the Gauss-Seidel method for algebraic equations. The

Chebyshev pseudospectral collocation method is then used to integrate the decoupled sys-

tem (see Canuto et al. [182], Fornberg [183] and Trefethen [184]). The spectral relaxation

method for ordinary differential equations is fully described by Motsa [187]. The method

was first used to obtain solutions for steady von Kármán flow subject to resistive heating

and viscous dissipation by Motsa and Makukula [194]. The spectral relaxation method has

further been used to solve the equations for chaotic and hyperchaotic systems (see Motsa

et al. [195], and Motsa et al. [196]).
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The spectral relaxation method had been extended to solve a system of nonlinear partial

differential equations (Motsa et al. [188]). The findings showed that the method is effective

and may work better than some popular schemes such as the Keller-box method in terms

of accuracy and speed of convergence.

Oyelakin et al. [197] studied unsteady Casson nanofluid flow along stretching sheet. The

aim was to investigate the influence of Dufour-Soret, thermal radiation and heat generation

on heat and mass transfer. The flow equations were solved using the spectral relaxation

method. The results illustrated that the fluid flow, temperature, and concentration pro-

files are significantly influenced by the fluid unsteadiness parameter, the Casson parameter,

magnetic parameter and the velocity slip parameter. Kameswaran et al.[198] investigated

unsteady nanofluid flow on heat transfer due to stretching sheet according to the influence

of thermal dispersion and radiation. The numerical solution was obtained using the spectral

relaxation method. The findings showed that the convergence rate of the spectral relaxation

method significantly improves when the method is used in conjunction with the successive

over-relaxation method.

Shateyi et al. [199] investigated the magnetohydrodynamic flow and heat transfer of a

Maxwell fluid. The flow model equations were solved using the spectral relaxation method.

It was found that entropy generation increased with the Reynolds number, the magnetic pa-

rameter and the dimensionless group parameter while it decreased with increasing values

of Prandtl numbers. Motsa et al. [200] used the spectral relaxation method and spectral

quasi-linearisation method to solve the highly nonlinear equations that describe the un-

steady heat transfer in a nanofluid over a permeable stretching or shrinking surface. They

concluded that the spectral quasi-linearisation method converges faster than the spectral

relaxation method, while the spectral relaxation method is more accurate than the spectral

quasi-linearisation method.

Rao and Rao [201] studied the steady flow of heat and mass transfer with the effect of
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thermal dispersion. The solution was obtained using the spectral relaxation method. Re-

sults showed that the temperature and concentration profiles increase with an increase in

Weissenberg number and power law index. Makanda and Sibanda [202] considered the

impact of radiation, partial slip, cross-diffusion and viscous dissipation on Casson fluid

flow in a non-Darcy porous medium. The spectral relaxation method was used to solve the

flow equations. It is shown that increasing the Casson parameter decrease the fluid flow.

Increasing the velocity slip parameter lead to enhance the flow while increasing the ther-

mal and concentration slip parameters lead to reduce temperature and concentration levels

respectively.

Rao and Rao [203] studied the steady flow of heat and mass transfer of power-law fluid with

the impact of thermal dispersion. The nonlinear equations were solved using spectral re-

laxation method. It is shown that the heat and mass transfer rate increase for shear-thinning

fluids compared to Newtonian fluid and shear thickening fluids. Shateyi [193] investigated

magnetohydrodynamic flow and heat transfer of a Maxwell fluid using a spectral relaxation

method. It was found that velocities depend strongly on the magnetic and the viscoelastic

parameters while the temperature varied significantly with the Prandtl number, the mag-

netic parameter, the Eckert number and the heat source parameter. RamReddy [204] stud-

ied steady flow on heat and mass transfer along an exponentially stretching surface with

Soret-Dufour effects. The spectral relaxation method was used to obtain the numerical

solutions. It was found that the rates of heat and mass transfer were lower in the MHD

Newtonian fluid compared to the Newtonian fluid without magnetic field.

1.5.3 The Spectral Quasi-linearization Method

The spectral quasi-linearization method has been used to solve a number of fluid mechan-

ics problems (see Motsa et al. [205], Motsa and Shateyi [206]; and Awad et al [207]).

In using the SQLM, the nonlinear equations are linearized using a generalization of the

Newton-Raphson quasi-linearization method (QLM), developed by Bellman and Kalaba
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[189], and integrated using the Chebyshev spectral collocation method. The advantage of

using this method as suggested in the literature is that the SQLM gives good convergence

and accuracy.

In the literature, numerous spectral quasi-linearization techniques have been used to solve

systems of nonlinear ordinary and partial differential equations that arise in fluid flow mod-

els. RamReddy and Pradeepa [208] investigated the flow of a micropolar fluid along a

permeable vertical plate in a porous medium. The spectral quasi-linearization method was

used to solve the model equations. It was observed that the wall couple stress decreases,

but the skin friction, heat and mass transfer rates increase with an increase in the Darcy pa-

rameters in both cases of flow with suction and injection. RamReddy and Pradeepa [209]

presented a study of micropolar fluid flow along a vertical plate in a porous medium. The

transformed flow equations were solved numerically using the spectral quasi-linearization

method. It was shown that in both aiding and opposing flow cases, the skin friction coef-

ficient, heat transfer rate, velocity, and concentration are decreased, whilst the wall couple

stress and temperature increased with the Darcy parameter.

Oyelakin et al. [210] investigated the effects of thermal radiation, heat and mass trans-

fer on the unsteady magnetohydrodynamic flow of Casson nanofluid. The flow equations

were solved using the spectral quasi-linearisation method. It was noted that increasing the

flow unsteadiness reduces the fluid momentum, thermal and nanoparticle volume fraction

profiles.

1.6 The Objectives of The Study

The main aim of this study is use recent linearization and spectral techniques to solve non-

linear mathematical models that describe fluid flows and heat and mass transfer problems.

Through the solution of systems of differential equations of varying complexity we test the

accuracy, the convergence rates and robustness of these techniques. The flows are assumed
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to take place in different flow configurations and with different boundary conditions. The

objectives are to solve and analyze the unsteady fluid flows, and to determine how cer-

tain fluid and physical parameters affect heat and mass transfer in nanofluid flow through

saturated porous media.

1.7 Thesis Layout

This study consists of seven chapters, Chapters 2 - 6 consist of published papers that form

the main body of the study while Chapters 1 and 7 form the introduction and conclusion,

respectively.

In Chapter 2, we study and obtain numerical solutions for unsteady nanofluid flow along an

inclined cylinder permeated by an electromagnetic field. The objective is to investigate the

influence of Ohmic and viscous dissipation, a chemical reaction and thermo-diffusion on

heat and mass transfer coefficients. Two different types of nanoparticles, namely, copper

and silver are used with water as the base fluid. Theoretical studies suggest that nanopar-

ticles enhance the thermal conductivity and the heat transfer coefficient compared to the

base fluid. The system of model equations are solved numerically using the spectral local

linearization method.

In Chapter 3, we present a modified version of the model studied in Chapter 2 by analyz-

ing the impulsive flow on heat and mass transfer along a vertically stretching cone using

nanofluid. The effects of viscous dissipation, internal heat generation, and the chemical

reaction have been taken into consideration. The fluid contains two types of nanoparticles,

namely, copper and titanium dioxide with water used as the base fluid. The spectral local

linearization method was used to get the numerical solution to the flow model equations.

In Chapter 4, we find a numerical solution to the unsteady incompressible non-Newtonian

nanofluid represented by an Oldroyd-B nanofluid over a stretching surface. This study
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assumes that the nanoparticle volume fraction flux at the boundary surface vanishes (see

Kuznetsov and Nield [211]). The motivation is to investigate the effects of the Deborah

number, Brownian motion and thermophoresis parameters on the flow. The spectral relax-

ation and quasi-linearization methods are used to obtain solutions to the transport equations

and to show the significance of the physical and fluid parameters.

In Chapter 5, we extend the study by Nandy and Mahapatra [212] by using the revised

nanofluid model in Chapter 4. We present the study of magnetohydrodynamic stagnation

point flow of a nanofluid along a permeable stretching flat surface. The aim of the study is to

determine the effects of important physical parameters, such as, buoyancy forces, Brownian

motion, thermophoresis, internal heat source/sink and the partial slip boundary condition on

heat and mass transfer. The conservation equations are solved using the spectral relaxation

method.

In Chapter 6, we extend the ideas in Chapter 5 by considering a binary nanofluid, such as

salty water (Kuznetsov and Nield [213]). We consider the unsteady nanofluid flow over

a permeable moving surface in a magnetic field. We present the impact of inertia, ther-

mal radiation, Brownian motion, thermophoresis, thermo-diffusion, diffusion-thermo and

chemical reaction on the flow problems. The equations that describe the flow are solved

numerically using the spectral relaxation method.

In Chapter 7, we present the major results and conclusions to this study we give recom-

mendations for further studies.
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Chapter 2

Thermo-diffusion effects on unsteady mixed

convection in a magneto-nanofluid flow along

an inclined cylinder with a heat source,

ohmic and viscous dissipation

In this Chapter, we investigate unsteady fluid flow containing two types of nanoparticles

namely, copper and silver nanoparticles. These increase the thermal conductivity of the

fluid. The nanoparticle volume fraction flux is assumed to be not actively controlled at the

boundary surface. This flow is along an inclined cylinder, with an electromagnetic field and

a chemical reaction. The objectives are to investigate the significance of Ohmic and viscous

dissipation, and thermo-diffusion effects on the flow. The change in fluid properties with

the physical properties of the skin friction, heat and mass transfer coefficient is discussed.

A unique feature of the study is the use of the spectral local linearization method to obtain

solutions to the flow equations.
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We present a numerical solution of the unsteady nanofluid boundary-layer flow on an inclined cylin-
der. We investigate heat and mass transfer in the presence of a chemical reaction, viscous and
Ohmic dissipation due to applied transverse magnetic and electric fields. In this study two dif-
ferent nanoparticles; namely copper and silver are considered with water as the base fluid. The
model equations are solved using the spectral local linearization method. Results for the skin fric-
tion coefficient, the wall temperature and mass gradients as well as the velocity, temperature and
concentration profiles have been obtained for various physical parameters values. The results have
been benchmarked with previously published results.

Keywords: Ohmic Heating, Viscous Dissipation, Electromagnetic Flow, Thermo-Diffusion,
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1. INTRODUCTION
The steady and unsteady boundary layer flow, and heat
and mass transfer over a stretching or shrinking cylin-
der has several applications in engineering processes that
involve both metal and polymer sheets. Important relevant
engineering applications can be found in polymer process-
ing, melt-spinning, hot rolling, paper production, wire and
glass-fiber production, etc. In these processes, the quality
of the final product depends on the rate of cooling and
the rate of stretching or shrinking.1 The flow due to a
shrinking plane was first studied by Miklavčič and Wang.14

Researchers who have studied flow owing to a stretch-
ing cylinder include, among others, Wang,2 Ishak et al.3

Wang and Ng,4 Wang,5 Ishak et al.,6 and Fang et al.7 The
problem of the unsteady sticky influx as a consequence
of an expanding, stretching cylinder provided an exact
similarity solution to the Navier-Stokes equations. Fang
et al.8 obtained numerical solutions of unsteady flow over
a stretching cylinder. The numerical solutions for a steady
state stagnation point flow of an inviscid and incompress-
ible fluid along a shrinking cylinder were presented by
Lok and Pop.9 Zaimia et al.10 investigated the behaviour of
the unsteady viscous flow over a shrinking cylinder with
suction.
Choi27 proposed the concept of a “nanofluid” by sus-

pending solid nanoparticles in a base fluid in order

∗Author to whom correspondence should be addressed.

to address challenges in thermal engineering. Currently
nanofluids are made by dispersing nanometer-sized solid
particles, rods or tubes in traditional heat transfer fluids
such as water or oil. Investigations in the past decade have
shown that nanofluids exhibit significantly enhanced ther-
mophysical properties compared to base fluids. The full
impact of nanofluid technology is still to be fully realized
but is nonetheless expected to be significant in the coming
years, Sudhan et al.37

Abu-Nada and Chamkha23 studied mixed convection
flow in an inclined square enclosure filled with an
alumina-water nanofluid. Oztop and Abu-Nada24 stud-
ied natural convection in a rectangular enclosure filled
with a nanofluid containing copper, alumina, and titanium
nanoparticles. They concluded that the highest value of
heat transfer is obtained using copper nanoparticles.
The study of magnetic field effects has important appli-

cations in physics, chemistry and engineering. Many types
of industrial equipment, such as magnetohydrodynamic
(MHD) generators, pumps and bearings are affected by the
interaction between the electrically conducting fluid and a
magnetic field. Many studies in the literature have been
made in relation to these applications. One of the basic
and important problems in this area is the hydro-magnetic
behaviour of boundary layers along fixed or moving sur-
faces. MHD boundary layers are found in various techni-
cal systems employing liquid metals and plasma flow with
transverse magnetic fields.29
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This study is focused on MHD nanofluid flow and heat
transfer due to a stretching cylinder. A similar study has
been made by Ashorynejad et al.29 who found, inter alia,
that the heat transfer coefficient increased with increases in
the Reynolds number or the nanoparticle volume fraction.
They also found that choosing copper nanoparticles for
small values of the magnetic parameter, and alumina for
large values of the magnetic parameter led to the highest
system cooling performance.

The aim of this work is to investigate the two-
dimensional unsteady incompressible viscous boundary
layer flow with two types of nanoparticles; namely cop-
per and silver nanoparticles with water as the base fluid.
The flow is along an inclined cylinder with an applied
transverse magnetic field and a chemical reaction. The
nonlinear momentum, heat and mass transfer equations
are solved numerically using a spectral local linearization
method SLLM (see Motsa).36

2. MATHEMATICAL FORMULATIONS
Consider the two-dimensional laminar unsteady boundary
layer flow of an viscous incompressible, electrically con-
ducting nanofluid over an inclined cylinder of radius a
embedded in a porous medium as shown in Figure 1. The
flow region is exposed to a transverse magnetic field

−→
B =

�0�B0�0� and a uniform electric field
−→
E = �0�0�−E0�. It

has been suggested in the literature that application of such
electric and magnetic fields stabilizes the boundary layer
flow.22 The electric and magnetic fields satisfy Maxwell’s
equations � ·−→B = 0 and �×−→

E = 0. If the magnetic field
is weak, the electric and magnetic fields obey Ohm’s law−→
J = ��

−→
E +−→q ×−→

B �, where
−→
J is the Joule current, �

the magnetic permeability and −→q is the fluid velocity. It
is assumed that the cylinder surface has temperature Tw
and concentration Cw which depend on x. The uniform

Fig. 1. Geometry and the coordinate system.

ambient fluid temperature and concentration are T� and
C�, respectively, where Tw > T� for the heated cylinder.
The cylinder velocity is u = uw�x/�� where uw and � are
the surface velocity and the characteristic length of the
cylinder surface, respectively. Under these assumptions,
the boundary layer equations governing the flow can be
written as (see Refs. [11, 12, and 13]);
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+ DS
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(
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)
−k0�C−C�� (4)

subject to the boundary conditions

u=U� v=0� T =Tw� C=Cw at r=a� t≥0

u→0� T →T�� C→C�� as r→�� t≥0
(5)

The corresponding initial conditions are

u=v=0� T =T�� C=C� at t<0 for all x and r

where t is the time, u and v are the velocity components
in the x and r directions respectively, T is the fluid tem-
perature, C is the fluid concentration, g is the gravitational
acceleration, � is the inclination angle, Dm is the diffusiv-
ity of the concentration, DS is the Soret diffusivity and k0
is the chemical reaction parameter. The effective dynamic
viscosity is 
nf ; the kinematic viscosity is �nf ; the thermal
diffusivity is �nf ; the heat capacity is �	Cp�nf ; the density
of fluid is 	nf ; the thermal expansion coefficient is �	
�nf
and the thermal conductivity is knf of the nanofluid. (see
Ref. [24]). The other parameters are


nf =

f

�1−��2�5 � �nf =

nf

	nf
� �nf =

knf

�	Cp�nf

�	Cp�nf = �1−���	Cp�f +��	Cp�s
	nf = �1−��	f +�	s

�	
�nf = �1−���	
�f +��	
�s
knf

kf
= �ks+2kf �−2��kf −ks�

�ks+2kf �+��kf −ks�

(6)
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where � is the nanoparticle volume fraction, 
f is the
dynamic viscosity of the base fluid, Cp the heat capacity of
base fluid, 	f and 	s are the densities of the base fluid and
nanoparticles volume fractions, respectively. 
f is the base
fluid thermal expansion coefficient, kf and ks are the base
fluid and nanoparticles thermal conductivity respectively. It
is convenient to introduce the stream function � defined as

u= 1
r

��

�r
� v =−1

r

��

�x
(7)

Following,25 similarity transformations may be chosen as

� =
[
uw
�f ��

]1/2(
r2−a2
2a

)
� f �����= �

ax

[
�

�f uw�

]1/2

� = 1− e−�� � = uw
�
t� T −T� = �Tw−T��������

C−C� = �Cw−C��������� Tw = T�+T0
(
x

�

)m

Cw = C�+C0

(
x

�

)m
(8)

where �f is the kinematic viscosity of the base fluid, T0
and C0 are characteristic of temperature and concentration,
respectively. Substituting the transformations of Eq. (8)
into Eqs. (1)–(4) along with the boundary conditions (5),
we get

1
�1

��1+2�K
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along with the boundary conditions

f ���0�= 0� f ′���0�= 1� ����0�= 1�

� = 1� � ∈ �0�1�
f ′�����→ 0� ������→ 0� (12)

������→ 0� � ∈ �0�1�

where

�1 = �1−��2�5
[
1−�+�

(
	s
	f

)]

�2 = 1−�+�
(
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)
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�	Cp�f

�5 = �1−��2�5
[
1−�+��	Cp�s
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]
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The primes denote differentiation with respect to �. The
important parameters of primary interest are the trans-
verse curvature K (when K approaches zero, the results
for the flat plate can be recovered), the magnetic field
Mn, the local electric E1, mixed convection � (with � > 0
corresponding to a heated inclined cylinder; assisting
flow, � < 0 corresponding to a cooled inclined cylinder;
opposing flow and �= 0 corresponding to forced convec-
tion flow) �Tw = T��, local Grashof number Grx, local
Reynolds number Rex , Prandtl number Pr , Eckret number
Ec, Schmidt number Sc, chemical reaction � and Soret
number Sr , given respectively, by

K =
[
�f �

a2uw

]1/2

� Mn= �B2
0�

	f uw
� E1 =

E0�

B0uwx

� = Grx
Re2x

� Grx =
g
f �Tw−T��x3

�2f
� Rex =

uwx
2

�f �

Pr = 
f �Cp�f

kf
� Ec = �uwx�

2

�Cp�f �Tw−T���2
� Sc = �f

Dm

� = k0�

uw
� Sr = DS�Tw−T��

Dm�Cw−C��
(14)

We note that when K = � = E1 = 0 and � = 1, the
momentum boundary layer equation is partially decoupled
from the energy and species equations. Integrating Eq. (9)
with respect to � over the interval �0��� subject to bound-
ary conditions (2) gives the exact solution

f �1���= 1− exp�−���
�

(15)

where � is a parameter associated with the nanoparticle
volume fraction, the magnetic field parameter, the fluid
density and the nanoparticle density. This satisfies the
equation

�=
√
�1

(
1+Mn

�2

)
(16)

When �= 0, Eq. (16) reduces to �=√
1+Mn, the result

reported by Vajravelu et al.35 for clear fluids. The phys-
ical quantities of engineering interest in heat and mass
transport problems are the skin friction coefficient Cf , the
local Nusselt number Nux and the local Sherwood number
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Shx. These parameters respectively characterize the sur-
face drag, wall heat and mass transfer rates, which are
defined as

Cf =
2�w
	f u

2�
�Nux =

xqw
kf �Tw−T��

� Shx =
xqm

Dm�Cw−C��
(17)

where �w is the shear stress at the surface of the cylinder,
qw and qm are the heat and mass flux from the surface of
the cylinder respectively, which are given by

�w =−
nf
(
�u

�r

)
r=a
� qw =−knf

(
�T

�r

)
r=a

qm =−Dm

(
�C

�r

)
r=a

(18)

Using (6) into (17) and (20), we gain

�1−��2�5√Rex�Cf =−2f ′′���0�

kf

knf

√
�

Rex
Nux =−�′���0�

√
�

Rex
Shx =−�′���0�

(19)

3. METHOD OF SOLUTION
The spectral local linearization method was used to solve
the system of non-similar Eqs. (9)–(11). In the method, the
Eqs. (9)–(11) are linearized using a Gauss Seidel approach.
In the frame work of SLLM, we obtain the following iter-
ative scheme

f ′
r+1 = ur+1 (20)

�1+2�K
√
��u′′r+1+a1� ru′r+1

+a2� rur+1+a3� r = a4� r
�ur+1

��
(21)

knf

kf

1
Pr
�1+2�K

√
���′′r+1+b1�r�′r+1

+b2�r�r+1+b3�r = b4�r
��r+1

��
(22)

�1+2�K
√
���′′

r+1+ c1�r�′
r+1

+c2�r�r+1+ c3�r = c4�r
��r+1

��
(23)

The boundary conditions for the above iteration scheme
are

fr+1���0�= 0� ur+1���0�= 1�

�r+1���0�= 1� �r+1���0�= 1 (24)

ur+1�����→ 0� �r+1�����→ 0�

�r+1�����→ 0

where

a1� r = 2K
√
�+�1

[
1
2
�1−���+�fr

]

a2� r =−�1�

[
Mn
�2

+2ur

]

a3� r = �1�

[
MnE1

�2

+u2r +
�3

�2

��r cos���
]

a4� r = �1��1−��

(25)

b1� r =
knf

kf

1
Pr
�2K

√
��+�4

[
1
2
�1−���+�fr+1

]

b2� r =−m�4�ur+1

b3� r = �MnEc�ur+1−E1�
2+ �4

�5

�1+2�K
√
��Ecu′2r

b4� r = �4��1−��
(26)

c1� r = 2K
√
�+Sc

[
1
2
�1−���+�fr+1

]

c2� r =−Sc��mur+1+��
c3� r = Sr��1+2�K

√
���′r+1�

′

c4� r = Sc��1−��

(27)

In the above equations, indices r and r + 1 denote the
previous and current iteration levels, respectively. Start-
ing from an initial approximation denoted by f0, u0, �0,
and �0, Eqs. (9)–(11) are solved iteratively for fr+1�����,
ur+1�����, �r+1�����, and �r+1����� �r = 0�1�2� � � ��.
The Eqs. (9)–(11) are discretized using the Chebyshev
spectral collocation method in the � direction while the
discretization in � direction is done using the implicit finite
difference method. We thus obtain

A1f
n+1
r+1 = unr (28)

A2u
n+1
r+1 = B2ur+1n +K2 (29)

A3�
n+1
r+1 = B3�

n
r+1+K3 (30)

A4�
n+1
r+1 = B4�

n
r+1+K4 (31)

where

A1 = D (32)

A2 =
[
1
2
���1+2�K

√
���dD

2+ �an+�1/2�1� r �dD

+�an+�1/2�2� r �d�−
a
n+�1/2�
4� r

��
I
]

B2 =
[
−1

2

(
��1+2�K

√
���dD

2+ �an+�1/2�1� r �dD

+�an+�1/2�2� r �d

)
− a

n+�1/2�
4� r

��
I
]
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K2 =−an+�1/2�3� r (33)

A3 =
[
1
2

(
knf

kf

1
Pr
��1+2�K

√
���dD

2+ �bn+�1/2�1�r �dD

+�bn+�1/2�2�r �d

)
− b

n+�1/2�
4� r

��
I
]

B3 =
[
−1
2

(
knf

kf

1
Pr
��1+2�K

√
���dD

2+ �bn+�1/2�1� r �dD

+�bn+�1/2�2� r �d

)
− b

n+�1/2�
4� r

��
I
]

K3 =−bn+�1/2�3� r (34)

A4 =
[
1
2
���1+2�K

√
���dD

2+ �cn+�1/2�1� r �dD

+�cn+�1/2�2� r �d�−
c
n+�1/2�
3� r

��
I
]

B4 =
[
−1
2
���1+2�K

√
���dD

2+ �cn+�1/2�1� r �dD

+�cn+�1/2�2�r �d�−
c
n+�1/2�
3� r

��
I
]

K4 =−cn+�1/2�3� r (35)

where I is an �N +1�× �N +1� identity matrix, and ��·��d
are diagonal matrices of order �N +1�× �N +1�.
In applying the SLLM the computational domain of

extent L= 30 is chosen in the �-direction. Through numer-
ical experimentation, this value is found to give accurate
results for all the selected physical parameters used in the
generation of results. Increasing the value of � did not
change the results to a significant extent. The number of
collocation points used in the spectral method discretiza-
tion was Nx = 100 in all cases. We note that the SLLM
algorithm is based on the computation of the value of some
quantity, say F n+1

r+1 , at each time step. This is achieved
by iterating using the local linearization method using a
known value at the previous time step n as initial approx-
imation. The calculations are carried until some desired
tolerance level, �, is attained. In this study, the tolerance
level was set to be �= 10−6. The tolerance level is defined
as the maximum values of the infinity norm of the differ-
ence between the values of the calculated quantities, that is

max�	f n+1
r+1 − f n+1

r 	��	�n+1
r+1 −�n+1

r 	��
	�n+1

r+1 −�n+1
r 	�� < �

To ensure the accuracy of the results, a sufficiently small
step size �� was used. The step size was chosen to be
small enough such that further reduction did not change
the results for the flow properties of interest.

4. RESULTS AND DISCUSSION
The unsteady governing Eqs. (1)–(4) with boundary
conditions Eq. (5) were simplified using the similar-
ity transformations (8). The numerical solutions of the
reduced nonlinear differential Eqs. (9)–(11) were obtained
using the spectral local linearization method (SLLM), see
Motsa36 for a detailed description of this method.

The questions answered in this study relate to the sig-
nificance of the various physical parameters on the heat
and mass transfer properties and the behaviour of the fluid.
Results were obtained for various physical parameters such
as the nanoparticle volume fraction, the transverse curva-
ture, magnetic field, the local electric, the Eckret number,
the chemical reaction and the Soret number. The default
parameter values (unless otherwise stated differently) are
as follows; � = 0�1, K = 0�1, Mn = 0�1, E1 = 0�1, � =
0�1, � =  /4, m = 2, Ec = 0�4, Sc = 1, � = 0�1 and
Sr = 0�2.30–34

The results are presented in Figures 2–14 and
Tables II–VI. Two types of nanoparticles, namely copper
(Cu) and silver (Ag) with water as the base fluid are con-
sidered. The thermophysical properties of the base fluid
and the nanoparticles are listed in Table I (see Oztop and
Abu-Nada).24

To determine the accuracy of our numerical method, a
comparison of the skin friction coefficient −f ′′�0�1� with
previous work by Vajravelu et al.35 for different values of
K and Mn is given in Table II when � = 1, �= 0, �= 0,
E1 = 0 and � = 0. Table III shows a comparison of the
skin friction coefficient −f ′′�1�0� for various nanoparticle
volume fraction values � and the magnetic field parameter
Mn when K =E1 = �= 0 and �= 0, and � = 1. Compar-
ison of the wall temperature gradient −�′�1�0� for various
values of Pr when K =Mn = E1 = �=�= Ec = �= 0
and m = 1 is given in Table IV. The comparison of the
current results is found, in all instances, to be in a good
agreement with existing literature values.
Table V shows the skin fraction coefficient −f ′′���0�

for both Cu-water and Ag-water nanofluids for various val-
ues of K, Mn and � when E1 = 0�1, � = 0�1, � =  /4,
Pr = 7�0, m = 2, Ec = 0�4, Sc = 1, � = 0�1 and Sr =
0�2. The skin friction coefficient increases with � for any
value of �. Again, the skin friction coefficient increases
with increasing K, Mn only for � = 0�5 and 1.0 due to
a Lorentz drag force which enhances the values of skin
friction coefficient.
Table VI displays the computed skin fraction coefficient

for both Cu-water and Ag-water nanofluids for various
values of E1 and � when K = 0�1, Mn = 0�1, � =  /4,
Pr = 7�0, m= 2, Ec = 0�4, Sc = 1, � = 0�1, Sr = 0�2 and
�= 0�1. We note that there is no change in the value of the
skin friction for any value of E1 and � when � = 0�0. How-
ever, the skin friction coefficient decreases with increasing
E1 and �.
The evolution of the horizontal velocity (f ′), tempera-

ture (�) and concentration (�) profiles is shown in Figure 2
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Fig. 2. Effects of the dimensionless time � on (a) horizontal velocity, (b) temperature and (c) concentration profiles.
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Fig. 3. Effects of the transverse curvature parameter K on (a) transverse velocity profiles, (b) horizontal velocity profiles and (c) skin friction
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Fig. 6. Effects of the magnetic field parameter Mn on (a) temperature profiles, (b) wall heat transfer coefficient and (c) wall mass transfer coefficient.
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Fig. 8. Effects of the local electric parameter E1 on (a) temperature and (b) concentration profiles.

for Cu-water and Ag-water nanofluids for different values
of �. The velocity and concentration profiles first decrease
with increases in � near the inclined cylinder surface
up to a certain value of �. Beyond this point, the
opposite trend is observed far from the inclined cylinder
surface where the momentum and concentration boundary-
layer thicknesses decrease. The nanofluid temperature pro-
files decrease with increasing �. The conductivity of the
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Fig. 9. Effects of the mixed convection parameter � on (a) transverse velocity profiles, (b) horizontal velocity profiles and (c) skin friction coefficient.

nanofluid in the case of a Ag nanoparticles is higher than
the case of Cu nanoparticles.
The effects of the transverse curvature parameter

K on the transverse velocity (f ), streamwise velocity
(f ′), temperature (�) and concentration (�) profiles and
skin friction coefficient (−f ′′���0�), wall heat transfer
coefficient −�′���0� and wall mass transfer coefficient
−�′���0� are shown in Figures 3 and 4. Physically K = 0
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means the inclined cylinder’s outer surface behaves like
a stretching flat surface. The viscosity effect reduces due
to the fact that the contact area of the surface with the
fluid tends to the tangential position as K → 1. From
Figure 3(b), it can be observed that the effect of the
transverse curvature parameter on the horizontal velocity
is very limited within approximately the range �0�0�75�.
This streamwise velocity approaches zero asymptotically
in the region �0�75���. In this case, the streamwise veloc-
ity is the free stream velocity within �0�75���, and in
this region the velocity increases with the increasing value
of K.

Increasing the transverse curvature parameter increases
the nanofluid velocity, temperature and concentration pro-
files and skin friction coefficient and wall mass transfer
coefficient at the inclined cylinder surface. This is due
to the increasing momentum, thermal and concentration
boundary layer thicknesses. We may conclude that the
curvature parameter enhances the nanofluid temperature
which means we gain higher thermal conductivity due to
high concentration of the nanoparticles. The wall temper-
ature gradient decreases with increases in the curvature
parameter. Furthermore, it is clear that the velocity com-
ponents and the wall temperature gradient are higher in the
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Fig. 10. Effects of the mixed convection parameter � on (a) temperature profiles, (b) wall heat transfer coefficient, (c) concentration profiles and (d)
wall mass transfer coefficient.

case of Cu-water nanofluids than for Ag-water nanoflu-
ids. However, the opposite trends are observed for the
nanofluid thermal conductivity, concentration profile, skin
friction coefficient and wall mass transfer coefficient.
Physically, negative values of f ′′ imply that the sur-

face exerts a higher drag force on the nanofluid in the
case of Ag-water nanofluid as compared to the Cu-water
nanofluid, this findings is similar to Hamad.38

Figures 5 and 6 illustrate the influence of the mag-
netic field parameter (Mn) on the horizontal velocity f ′

and temperature (�) profiles and skin friction coefficient
(−f ′′���0�), wall heat transfer coefficient (−�′���0�) and
wall mass transfer coefficient (−�′���0�) on Cu-water and
Ag-water nanofluids. We have noticed from these figures
that the Ag-water nanofluid present higher conductivity
for the temperature, skin friction coefficient and the wall
mass gradient than Cu-water nanofluid. But the reverse is
true for the horizontal velocity and wall temperature gra-
dient. So, we get the higher shear stress in case of Ag-
water than Cu-water nanofluids with increasing values of
the magnetic field (Mn) parameter. The horizontal velocity
profile decrease up to a certain distance from the bound-
ary layer and after that opposite trend is observed. Again,
the momentum boundary layer decrease at the beginning
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Fig. 11. Effects of the Eckret number Ec on (a) temperature profiles, (b) wall heat transfer coefficient, (c) concentration profiles and (d) wall mass
transfer coefficient.
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Fig. 12. Effects of (a) the chemical reaction parameter � on concentration profiles, (b) the chemical reaction parameter � on wall mass transfer
coefficient, (c) the Soret number Sr on concentration profiles, and (d) the Soret number Sr on wall mass transfer coefficient.
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Fig. 13. Effects of the nanoparticle volume fraction � on (a) transverse velocity profiles, (b) horizontal velocity profiles and (c) skin friction coefficient.
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Fig. 14. Effects of the nanoparticle volume fraction � on (a) temperature profiles, (b) wall heat transfer coefficient, (c) concentration profiles and (d)
wall mass transfer coefficient.
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Table I. Thermophysical properties of the base fluid and the
nanoparticles24 .

Physical properties

Cp (J/kg K) 	 (Kg/m3) k (W/m K) 
×105 (K−1)

Pure water (H2O) 4179 997.1 0.613 21
Copper (Cu) 385 8933 401 1.67
Silver (Ag) 235 10500 429 1.89

and then it increase with increase in the magnetic field
parameter. More than that, the increasing value of the mag-
netic field parameter enhance the temperature profile, skin
friction coefficient and the wall mass gradient increase
while it reduces the wall temperature gradient. That means
the effect of the increasing values of the magnetic field
leads to accelerating the thermal boundary thickness. This
behavior is true even for all values of the magnetic param-
eter which in turn causes the enhancement of the temper-
ature field.
Figures 7 and 8 show the transverse velocity (f ), the

horizontal velocity (f ′), temperature (�), concentration (�)
profiles and skin friction coefficient (−f ′′���0�) for vari-
ous values of local electric parameter E1. An analysis of
the results reveals that the impact of Ag nanoparticles is
stronger than Cu nanoparticles for the thermal conduc-
tivity, concentration and skin friction coefficient but the

Table II. Comparison of −f ′′�1�0� for various values of K and Mn
when E1 = �=�= �= 0 and Pr = 6�2.

K Mn Vajravelu et al.35 Present results

0.00 0.0 1.000001 1.000241
0.5 1.224745 1.224747
1.0 1.414214 1.414213
1.5 1.581139 1.581139
2.0 1.732051 1.732051

0.25 0.0 1.091826 1.092879
0.5 1.328505 1.328570
1.0 1.523163 1.523179
1.5 – 1.693041
2.0 – 1.845871

0.50 0.0 1.182410 1.184654
0.5 1.427151 1.427488
1.0 1.626496 1.626577
1.5 – 1.799346
2.0 – 1.954208

0.75 0.0 1.271145 1.274994
0.5 1.521975 1.522824
1.0 1.725576 1.725815
1.5 – 1.901384
2.0 – 2.058310

1.00 0.0 1.358198 1.363888
0.5 1.613858 1.615435
1.0 1.821302 1.821816
1.5 – 2.000026
2.0 – 2.158992

Table III. Comparison of −f ′′�1�0� for various values of Mn and �
when K = E1 = �=�= 0 and Pr = 6�2.

Hamad38 Present results

Mn � Cu-water Ag-water Cu-water Ag-water

0.0 0.05 1.10892 1.13966 1.109188 1.139935
0.10 1.17475 1.22507 1.175030 1.225364
0.15 1.20886 1.27215 1.209154 1.272460
0.20 1.21804 1.28979 1.218338 1.290099

0.5 0.05 1.29210 1.31858 1.292113 1.318593
0.10 1.32825 1.37296 1.328276 1.372991
0.15 1.33955 1.39694 1.339598 1.396992
0.20 1.33036 1.39634 1.330417 1.396419

1.0 0.05 1.45236 1.47597 1.452360 1.475964
0.10 1.46576 1.50640 1.465764 1.506396
0.15 1.45858 1.51145 1.458585 1.511459
0.20 1.43390 1.49532 1.433908 1.495337

2.0 0.05 1.72887 1.74875 1.728873 1.748748
0.10 1.70789 1.74289 1.707892 1.742888
0.15 1.67140 1.71773 1.671398 1.717730
0.20 1.62126 1.67583 1.621264 1.675834

reverse is true for the velocities. In fact the Ag-water
nanofluid gives a higher shear stress than a Cu-water
nanofluid. The effect of the local electric parameter E1 on
velocities is to increase its effect throughout the boundary
layer. Also, increasing the local electric parameter is to
increase the velocity and temperature profiles. On the other
hand, nanoparticle concentration and the skin friction coef-
ficient decreases with increasing E1. This is because the
Lorentz force increases due to the electric field which acts
as an accelerating force in reducing frictional resistance.
The results are presented in Figures 2–14 and

Tables II–VI. Two types of nanoparticles, namely copper
(Cu) and silver (Ag) with water as the base fluid are con-
sidered. The thermophysical properties of the base fluid
and the nanoparticles are listed in Table I (see Oztop and
Abu-Nada).24

The impact of various � on the transverse velocity (f ),
horizontal velocity (f ′), temperature (�) and concentra-
tion (�) profiles and skin friction coefficient (−f ′′���0�),
wall heat transfer coefficient (−�′���0�) and wall mass
transfer coefficient (−�′���0�) are presented in Figures 9
and 10. It is clear that increasing the buoyancy force
parameter increases the temperature profiles and the wall
temperature gradient whereas it reduces the concentration
profiles, skin friction coefficient and wall mass transfer

Table IV. Comparison of −�′�1�0� for various values of Pr when
Mn = E1 = �=�= Ec = �= 0 and m= 1.

39 40 41 35 Present values

K Pr −�′�1�0� −�′�1�0� −�′�1�0� −�′�1�0� −�′�1�0�
0 1 1.0000 0.9961 1.0000 1.00002 1.00024

10 3.7207 3.7006 3.7207 3.72078 3.72057
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Table V. Computed values of skin fraction coefficient −f ′′���0� for both cases of nanoparticles Cu-water and Ag-water with various values of K,
Mn and � when E1 = 0�1�� = 0�1�� =  /4�Pr = 7�0�m = 2�Ec = 0�4�Sc = 1�� = 0�1 and Sr = 0�2.

� = 0�0 � = 0�5 � = 1�0

K Mn � Cu Ag Cu Ag Cu Ag

0.1 0.1 0.00 0.564190 0.564190 0.832073 0.832073 1.056906 1.056906
0.05 0.625641 0.642984 0.914590 0.938293 1.158847 1.188455
0.10 0.662779 0.691171 0.964444 1.003377 1.220578 1.269348
0.20 0.687208 0.727685 0.996243 1.051916 1.259533 1.329421

0.1 0.0 0.1 0.662779 0.691171 0.951325 0.990797 1.200246 1.250094
0.1 0.662779 0.691171 0.964444 1.003377 1.220578 1.269348
1.5 0.662779 0.691171 1.140240 1.172568 1.530073 1.567786
3.0 0.662779 0.691171 1.313344 1.340295 1.813264 1.844855

0.0 0.1 0.1 0.662779 0.691171 0.933130 0.972047 1.182630 1.231515
0.1 0.662779 0.691171 0.964444 1.003377 1.220578 1.269348
0.5 0.662779 0.691171 1.082979 1.122192 1.367693 1.416254
1.0 0.662779 0.691171 1.220348 1.260148 1.543161 1.591563

coefficient. In the case of a Ag-water nanofluid, the tem-
perature and concentration profiles, skin friction coefficient
and wall mass gradient are higher than for a Cu-water
nanofluid. It is interesting to note that the buoyancy oppos-
ing force reduces the magnitude of the velocity consider-
ably within the boundary layer for an inclined cylinder sur-
face for opposing buoyancy flow. Increasing the buoyancy
parameter increases the thermal boundary layer. Also, it
is observed that the magnitude of the temperature profiles
increase considerably within the thermal boundary layer.

The effect of Ec on the temperature profiles, concen-
tration profiles, wall temperature and mass gradient are
shown in Figure 11 for both Cu-water and Ag-water
nanofluids. The effect of the viscous dissipation parameter
is to generate more heat in the boundary layer region and
to reduce the wall heat transfer coefficient. Hence, the ther-
mal boundary layer thickness increases as the viscous dis-
sipation parameter increases. The results demonstrate that
an increase in the viscous dissipation parameter reduces
the concentration profile near the inclined cylinder surface
and then increases far from the surface.

Table VI. Computed values of skin fraction coefficient −f ′′���0� for
both cases of nanoparticles Cu-water and Ag-water with various values
of E1 and � when K = 0�1, Mn= 0�1�� =  /4�Pr = 7�0�m = 2�Ec =
0�4�Sc = 1�� = 0�1�Sr = 0�2 and �= 0�1.

� = 0�0 � = 0�5 � = 1�0

E1 � Cu Ag Cu Ag Cu Ag

0.0 0�1 0.662779 0.691171 0.968269 1.007049 1.233064 1.281562
0.1 0.662779 0.691171 0.964444 1.003377 1.220578 1.269348
1.5 0.662779 0.691171 0.910450 0.951514 1.077625 1.128901
3.0 0.662779 0.691171 0.851710 0.895010 0.949903 1.003648

0.1-0�5 0.662779 0.691171 1.012532 1.053215 1.292718 1.344492
0�0 0.662779 0.691171 0.972429 1.011652 1.232492 1.281748
0�5 0.662779 0.691171 0.932618 0.970405 1.173334 1.220210
1�0 0.662779 0.691171 0.893087 0.929461 1.115152 1.159764

The variation of the concentration profiles and wall mass
gradient with the chemical reaction � and the Soret num-
ber Sr are shown in Figure 12 for both Cu-water and
Ag-water nanofluids. It is seen that the Cu-water nanofluid
generally has lower values than the Ag-water nanofluid
except when Sr = 0. Also, we observe in this figure that
the concentration profiles increase with increasing values
Soret number and decreases with increasing in the values
of the chemical reaction parameters. The increasing values
of Sr increase the temperature gradient. It is seen that the
wall mass gradient is an increasing function of time except
when Sr = 0�4.
Figures 13 and 14 demonstrate the effect of the nanopar-

ticle volume fraction (�) on the transverse velocity (f ) and
the horizontal velocity (f ′), temperature (�) and concentra-
tion (�) profiles and skin friction coefficient (−f ′′���0�),
wall heat transfer coefficient (−�′���0�) and wall mass
transfer coefficient (−�′���0�), in the case of a Cu-
water and Ag-water nanofluids. It is seen that the increas-
ing value of nanoparticle volume fraction decrease the
nanofluid flow and wall temperature gradients while it
increase the temperature, concentration, skin friction coef-
ficient and wall mass gradient. Increasing the volume frac-
tion of nanoparticles increases the momentum and thermal
conductivity of the nanofluid due to the enhancement of
the momentum and thermal boundary layer. We also notice
that the velocity and wall temperature gradient in the case
of a Ag-water nanofluid are relatively less than that of
a Cu-water nanofluid. In the same context, we also per-
ceive that the temperature and concentration distribution
as well as the skin friction coefficient and wall mass trans-
fer coefficient in a Ag-water nanofluid are higher than that
of Cu-water nanofluid since the conductivity of silver is
more than that of copper. In addition to that the concentra-
tion boundary layer thickness increases for both types of
nanofluids with an enhancement in the nanoparticle vol-
ume fraction.
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5. CONCLUSIONS
The unsteady flow due to the inclined cylinder immersed
in a magneto-nanofluid in the presence of chemical
reaction, viscous and ohmic dissipations in terms of heat
and mass transfer characteristics are investigated. The gov-
erning non-dimensional equations are solved numerically
using a spectral local linearization method. The results
are illustrated graphically and discussed for two types of
nanoparticles; namely, copper and silver nanoparticles. We
note that the combine effects of the buoyancy force, vis-
cous and Ohmic dissipations is to enhance the nanofluid
temperature within the boundary layer. The nanofluid con-
centration reduces while the wall mass gradient increased
with increases in the chemical reaction parameter, buoy-
ancy force, viscous and Ohmic dissipations. The opposite
trend is observed for the thermodiffusion parameter. The
buoyancy force and Ohmic dissipations enhance the trans-
port phenomena within the boundary layer region.
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Chapter 3

Impulsive nanofluid flow along a vertical

stretching cone

In this chapter, we modified the study in Chapter 2 by considering the unsteady nanofluid

flow and heat and mass transfer along a vertically stretching cone subject to impulsive

motion. The flow involves two kinds of nanoparticles, namely copper and titanium dioxide.

The aim is to study the effects of physical parameters such as the stretching or shrinking

parameter, nanoparticle volume fraction, the magnetic field, chemical reaction and viscous

dissipation. The flow equations are solved using the spectral local linearization method.
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1. INTRODUCTION 

  Common fluids such as water, ethylene glycol and oil 
have low heat transfer characteristic owing to their poor 
thermal conductivities. It is now understood that the thermo-
physical properties of these fluids can be significantly 
enhanced by suspending nano-sized metallic particles such as 
Aluminum, titanium, Gold, Copper, Iron or their oxides, 
resulting in what is commonly called a nanofluid, see Choi 
and Eastman [1]. 

During the last several years many authors have studied the 
boundary layer flow of nanofluid fluids through different 
geometries and with different conditions. Examples include 
Kameswaran et al. [2] who studied hydromagnetic nanofluid 
flow due to a stretching or shrinking sheet and Kameswaran 
et al. [3] who found solutions for the equations for the 
stagnation-point flow of a nanofluid over a stretching surface. 
The steady nanofluid boundary layer flow along a vertical 
cone in a porous medium was investigated by Fauzi et al. [4]. 
Boutra et al. [5] studied free convection enhancement within 
a nanofluid’ filled enclosure with square heaters and 
Ambethkar and Kumar [6] examined solutions of 2-D 
unsteady incompressible flow with heat transfer in a driven 
square cavity sing streamfunction-vorticity formulation. 
Cheng [7] discussed natural convection in boundary layer 
flow over a truncated cone embedded in a porous medium. 
Chamkha et al. [8] considered the problem of steady, laminar, 
mixed convection boundary-layer flow over a vertical cone 
embedded in a porous medium with thermal radiation while 
Nadeem and Saleem [9] investigated unsteady nanofluid flow 

in a rotating cone subject to an applied magnetic field. In this 
study we investigate the flow of a nanofluid along a vertical 
stretching cone. Early studies of boundary layer over a cone-
shaped surface include those of Heiring and Grosh [10] who 
studied natural convection along a non-isothermal cone. Tien 
and Tsuji [11] gave a theoretical analysis of the forced 
convection flow due to a rotating cone. Koh and Price [12] 
investigated heat transfer past a rotating cone. Convection in 
gas flow over an isothermal vertical cone was studied by 
Takhar et al. [13]. Turkyilmazoglu [14] presented analytical a 
solution of the equations for steady laminar flow of a 
Newtonian fluid over a rotating cone. Lately, several 
researchers such as Sivaraj and Kumar [15], Srinivasa et al. 
[16] and Roy et al. [17] have presented studies focussing on 
the flow and heat transfer to or from cone shaped bodies 
under different assumed conditions. Boundary layer studies of 
stretching surfaces have a rich history starting with the work 
of Crane [18]. More recent studies include Mahapatra et al. 
[19], Salem and abd El-Aziz [20] and Noor et al. [21]. The 
interest in boundary layer stretching sheet flow problems has 
partly been driven by industrial processes where such flows 
occur or may apply. Often cited examples include extrusion 
processes, the manufacture of plastic products, polymers and 
rubber sheets, wire and fibre coating, glass and optical fibre 
production, hot rolling production, metal spinning, food 
processing and many others. 

Notwithstanding the number of studies on both stretching 
and cone-shaped bodies so far, we study here nanofluid along 
a vertical stretching or shrinking cone with dissipative heat 
loss and heat generation. The base fluid is water containing a 
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stable suspension of Cu and TiO2 nanoparticles. The 
axisymmetric flow problem is transformed to a two- 
dimensional problem and the equations are solved 
numerically using a spectral local linearization method 
(SLLM). We give an analysis of the impact of changes in 
flow parameters on the skin friction, heat transfer and the 
fluid properties. To validate the results, we give a comparison 
with the earlier work of Kameswaran et al. [3], Wang [22], 
Jafar et al. [23]. 

2. MATHEMATICAL FORMULATION 

 

Figure 1. Geometry and the coordinate system 

 
We consider a two-dimensional unsteady boundary layer 

flow of an incompressible viscous nanofluid along a vertical 
stretching or shrinking cone embedded in a porous medium. 
The coordinate system and the physical model are shown in 
Fig. 1. The cone stretches or shrinks with velocity U0 = u0xm/3 
where m is an exponent. Mangler’s transformation is used 
(see Schlichting, [24]) to reduce the axisymmetric system to a 
two-dimensional problem. Then equations can be written as, 
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The boudary conditions are given by 

 
u = U0 = u0xm/3, v = 0, T = Tw, C = Cw, at y = 0 and t >0, 
u →U∞ = u∞xm/3, T→ T∞, C→ C∞, as y→∞ and t > 0.        (5) 
 

subject to the initial conditions 
 

u = v = 0, T = T∞, C = C∞ for t < 0. 
 
The parameters are the effective dynamic viscosity μnf , the 

kinematic viscosity νnf , the thermal diffusivity αnf , the heat 

capacity (ρcp)nf , the density ρnf , the thermal expansion 
coefficient (ρβ)nf and the thermal conductivity knf of 
nanofluid, which are given by (see Oztop and Abu-Nada 
[25]), 
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We introduce the following transformations, 
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And the stream function ψ is chosen such that 
 

u = ∂ψ/∂y, v = - ∂ψ/∂x.                          (8) 
 
 Substituting the transformations (7) into Eqs. (1) - (4), the 

(1) is automatically satisfied and Eqs. (2)-(4) reduce to 
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   The boundary conditions in Eq. (5) are transformed to 

 
f = 0, f′= ε, θ = Φ = 1 at η = 0, 1≥ ξ ≥ 0, 
f′= 1, θ = Φ = 0 as η → ∞, 1 ≥ ξ ≥ 0,                    (12) 
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In the above equations, the prime denotes differentiation 
with respect to η. The parameters are defined as 
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where Rex is the local Reynolds number and Grx is the local 
Grashof number (see Gangadhar et al. [26], Mahdy [27]). It 
must be noted that λ > 0 corresponds to the case of buoyancy 
assisting the flow while λ < 0 corresponds to buoyancy 
opposing the flow and λ = 0 suggests pure forced convection. 
When ξ = 0 and ϕ = 0 (regular fluid), Eq. (9) reduces to the 
ordinary differential equation, 
 
f′′′+1/2 η f′′= 0,                                         (15) 
 
with boundary conditions (when ε = 0) are 
 
f(0, 0) = 0, f′(0, 0) = 0, f′(1, 0) = 1 

 
In studies of this nature, we also often interested in the skin 

friction coefficient Cfx , the Nusselt number Nux and the 
Sherwood number Shx. These defined as 
 
Cfx = 2τw/ρfU2

∞, Nux = xqw /kf (Tw - T∞),  
Shx = xqm/ Dm(Cw - C∞) .                                        (16) 

 
where τw is the shear stress at the cone surface, qw and qm are 
the heat and mass flux from the cone surface, respectively,  
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and substituting (6) into (16) and (17), we get  
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3. SOLUTION METHOD 

We use the spectral local linearization method (SLLM) to 
solve the system of equations (9)-(11). Eqs. (9) - (11) are 
linearized using the Gauss-Seidel approach (see Motsa [28]). 
The principle of the SLLM algorithm is to linearize and 
decouple the system of equations. Nonetheless, this method 
has only been used in a limited number of studies, hence its 

general validation in complex systems remains to be made. 
The detail derivation of SLLM algorithm is described in [28]. 

Here, the computational domain in the η-direction is 
chosen so that L = 30. This value was found to give accurate 

results for all selected physical parameters. Increasing η does 
not change the results to a significant extent. The number of 
collocation points used in the spectral method discretization 
is Nx = 100 in all cases. We note that the computation of 
some quantity, say Fn+1 

r+1, at each time step is achieved by 
iterating using the local linearization method using a known 
value at the previous time step n as the initial approximation. 
The calculations were carried out until the desired tolerance 
level ϵ = 10−6 was attained. The tolerance level is the 
maximum value of the infinity norm of the difference 
between the values of the calculated quantities, that is to 
ensure the accuracy of the results, a sufficiently small step 
size Δξ was used. The step size was chosen to be small 
enough such that further reduction did not change the results. 

 
 

4. RESULTS AND DISCUSSION  
 

The nanofluid velocity profiles f′ (η, ξ) for different values 
of the nanoparticle volume fraction ϕ and stretching or 
shrinking parameter ε are given in Fig. 2. Fig. 2(a) shows that 
the nanofluid velocity decreases when the nanoparticle 
volume fraction increases. Fig. 2(b) shows that the TiO2-
water nanofluid has marginally higher values increasing 
stretching parameter values ε > 0 while opposite trend is 
observed for a shrinking parameter ε < 0. The stretching or 
shrinking is due to the impulsive force that acts in x-direction 
(+ve or -ve). The findings in the case of Cu-water nanofluid 
are similar to the result obtained by Grosan and Pop [29]. 

The unsteady boundary layer flow of two water based 
nanofluids along a vertical stretching or shrinking cone was 
studied. The flow was subject to viscous dissipation, internal 
heat generation and a chemical reaction. The non-similar 
partial differential equations were solved using the spectral 
local linearization method. We have investigated the effects 
of the nanoparticle volume fraction (ϕ), magnetic field 
parameter (Mn), buoyancy parameter (λ), stretching or 
shrinking parameter (ε), heat generation parameter (δ), Eckert 
number (Ec), chemical reaction parameter (γ) on the 
nanofluid velocity, temperature and concentration profiles as 
well as the skin friction coefficient, heat and mass transfer 
coefficients. We have used the values m = 4, Pr = 6.7 and Sc 
= 1 unless otherwise stated. We have considered Copper (Cu) 
and Titanium oxide (TiO2) nanoparticles with water as the 
base fluid. We note that ϵ < 0 for a shrinking cone and ϵ > 0 
indicates that the cone is stretching. The thermophysical 
properties of the base fluid and the nanoparticles are listed in 
Table 1. To determine the accuracy of the numerical method, 
solutions for some special cases are presented in Tables 2 and 
3. The results are in excellent agreement with the work of 
Kameswaran et al. [3], Wang [22] and Jafar et al. [23]. 

 

Table 1. Thermophysical properties of the base fluid and the 
nanoparticles Oztop and Abu-Nada [25] 

 
Physical properties Cp 

(J/kgK) 
Ρ 

(Kg/m3) 
K 

(W/mK) 
β 

×105 

(K-1) 

Pure water (H2O) 4179 997.1 0.613 21 

Copper (Cu) 385 8933 401 1.67 

Titanium Oxide 
(TiO2) 

686.2 4250 8.9538 0.9 
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Table 2. Comparison of the skin friction coefficient f’’(0, 1) 
and heat transfer rate -θ′(0, 1), for various values of stretching 
or shrinking parameter ε when Mn = λ = δ = Ec = 0,m = 3, Pr 

= 1 and ϕ = 0. 

 
 Suali et al. [30] Present 

results 
SLL Method 

ϵ f’’(0, 1) -ө’(0, 1) f’’(0, 1) -ө’(0, 1) 

4    -7.086378   2.116738     -7.086378   2.116738 
3    -4.276545   1.870671     -4.276542    1.870671 
0.2   1.051130    0.913303     1.051130    0.913303 
0.1   1.146561    0.863452     1.146561    0.863452 
-0.2  1.373886    0.501448     1.373886    0.698748 
-0.5  1.495672    0.501448     1.495670    0.501447 

-1.15 1.082232   -0.2979953     1.082491    -0.297346 

 

Table 3. Comparison of the skin friction coefficient f’’(0, 1) 
for various values of stretching or shrinking parameter ε when 

Mn = λ = 0,m = 3 and ϕ = 0. 
 

 Wang 
[22] 

Jafar et al. 
[23] 

Kameswaran 
et al. [3] 

Present results 

ϵ f’’(0, 1) f’’(0, 1) f’’(0, 1) f’’(0, 1) 

0.0   1.232588   1.2326      1.232588      1.232588 
0.1   1.14656    1.1466      1.146561      1.146561 
0.2   1.05113    1.0511      1.051130      1.051130 
0.5   0.71330    0.7133      0.713295      0.713295 
1.0   0.00000    0.0000      0.000000      0.000000 

2.0  -1.88731    -1.8873      -1.887307     -1.887307 
5.0  -10.26475  -10.2648     -10.264749    -10.264751 

 

(a)  

(b)  

 

Figure 2. a) Effect of various nanoparticle volume fraction 
(ϕ). (b) Effect of stretching or shrinking parameter (ε) on 

velocity profiles 
 
 

Figs. 3 and 4 illustrate the effects of nanoparticle volume 
fraction (ϕ), stretching or shrinking parameter (ε), heat 
generation parameter (δ) and Eckert number (Ec) on the 
temperature profiles θ(ξ,η) for both Cu-water and TiO2-water 
nanofluids. The temperature profiles increase with increases 
in ϕ, δ and Ec. We note that an increase in the nanoparticle 
volume fraction increases the thermal conductivity of the 
nanofluid significantly, and that internal heat generation 
increases the temperature of the nanofluid. An increase in the 
Eckert number increases dissipation due to fluid viscosity or 
frictional heating. The surface gets cooler when the 
dissipation increases and as a result there is a transfer of heat 
from the surface to the nanofluid which causes the 
temperature to increase. On the other hand, the Cu-water 
nanofluid temperature decreases with increasing stretching 
parameter ε > 0 and increases with shrinking parameter ε < 0. 

  

(a)  

(b)  

 

Figure 3. (a) Effect of nanoparticle volume fraction (ϕ). (b) 
Effect of stretching or shrinking parameter (ε) on temperature 

profiles. 
 

(a)  
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(b)  

 

Figure 4. (a) Effect of heat generation parameter (δ). (b) 
Effect of Eckert number (Ec) on temperature profiles. 

 

Fig.5 shows that the concentration profiles increase with 
nanoparticle volume fraction but reduce with stretching. It is 
observed from Fig. 6 that the concentration profiles decrease 
with Mn, λ and γ for both nanofluids. It is observed in 
Fig.7(a) that the Cu-water nanofluid has higher skin friction 
coefficient values compared to the TiO2-water nanofluid for 
the increasing values of ξ. Fig.7(b) shows that the value of the 
skin friction coefficient of a Cu-water nanofluid are higher 
than for TiO2- water nanofluid when ϵ > 0 but the opposite 
trend is observed for ϵ < 0. These results show that the skin 
friction coefficient decreases with increasing nanoparticle 
volume friction and stretching or shrinking parameters. 

 

(a)  

(b)  

 

Figure 5. (a) Effect of nanoparticle volume fraction (ϕ). (b) 
Effect of stretching or shrinking parameter (ε) on 

concentration profiles 
 

(a)  

(b)  

(c)  

 

Figure 6. a) Effect of magnetic field parameter (Mn), (b) 
Effect of buoyancy parameter (λ), (c) Effect of chemical 

reaction parameter (γ) on concentration profiles. 
 

(a)  
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(b)  

 

Figure 7. (a) Effect of nanoparticle volume fraction (ϕ). (b) 
Effect of stretching or shrinking parameter (ε) on skin friction 

coefficients. 
 

Fig. 8(a) shows that the heat transfer rate for a Cu-water 
nanofluid is smaller compared to the TiO2-water nanofluid at 
the surface of the cone as the nanoparticle volume friction 
increases. We observe from Figs. 8 (a) and (b) that the heat 
transfer rate decreases with the increasing ϕ but the opposite 
trend is observed for ϵ. The Cu-water gives a smaller heat 
transfer rate in comparison to the TiO2-water nanofluid for 
increasing δ. Again, we note that δ, Ec reduce the heat 
transfer rate in both Figs. 9 (a) and (b).  

 

(a)  

(b)  
 

Figure 8. (a) Effect of nanoparticle volume fraction (ϕ). (b) 
Effect of stretching or shrinking parameter (ε) on heat transfer 

rate 

(a)  

(b)  
 

Figure 9. (a) Effect of heat generation parameter (δ). (b) 
Effect of Eckert number (Ec) on heat transfer rate. 

 

(a)  

(b)  

 

Figure 10. (a) Effect of nanoparticle volume fraction (ϕ). (b) 
Effect of stretching or shrinking parameter (ε) on mass 

transfer rate 
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The impact of increasing the nanoparticle volume fraction, 
stretching or shrinking parameters, magnetic field, buoyancy 
force parameter and chemical reaction parameters on the 
mass transfer rate at the cone surface is shown in Fig. 10. Fig. 
10 (a) shows that the Cu-water nanofluid takes higher values 
than the TiO2-water nanofluid for the increasing value of ϕ. 
The mass transfer rate reduces with increasing ϕ for both 
nano fluids but the opposite trend is observed in Fig. 10 (b).  

 

(a)  

(b)  

(c)  

 

Figure 11. (a) Effect of magnetic field parameter (Mn), (b) 

Effect of buoyancy parameter (λ), (c) Effect of chemical 

reaction parameter (γ) on mass transfer rate. 

 
Fig. 11 shows that the mass transfer rate increases with 

increasing Mn, λ and γ for both nanofluids. The effects of 
magnetic field parameter Mn and buoyancy force parameter λ 
on the velocity and the skin friction coefficient are shown in 
Figs. 12 and 13 respectively. We note that the Cu-water 
nanofluid assumes higher velocity and skin friction 
coefficient than the TiO2-water nanofluid for the increasing 
values of Mn, λ. 

 

(a)  

(b)  

 

Figure 12. a) Effect of magnetic field parameter (Mn), (b) 
Effect of buoyancy parameter (λ) on velocity profiles. 

(a)  

(b)  
 

Figure 13. (a) Effect of magnetic field parameter (Mn), (b) 
Effect of buoyancy parameter (λ) on skin friction coefficients. 
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The influence of the magnetic field and buoyancy force 
parameters on the nanofluid temperature and the local Nusselt 
number are captured in Figs. 14 and 15, respectively. It is 
noted from Fig. 15 that a Cu-water nanofluid has smaller 
values of the local Nusselt number than a TiO2-water 
nanofluid for the increasing value of Mn, λ. We further 
observe that the local Nusselt number decreases with 
increases in Mn and λ. 

 

(a)  

(b)  

 

Figure 14. (a) Effect of magnetic field parameter (Mn), (b) 
Effect of buoyancy parameter (λ) on temperature profiles 

 

(a)  

(b)  

 

Figure 15. (a) Effect of magnetic field parameter (Mn), (b) 
Effect of buoyancy parameter (λ) on heat transfer rate. 

 

Fig. 16 shows the effect of the Prandtl number on the 

temperature profiles. The temperature profiles and the 

thermal boundary layer thickness quickly decreases with 

increasing Prandtl numbers. The Prandtl number is a means 

to increase fluid viscosity resulting in a reduction in the flow 

velocity and temperature. Here, the thermal boundary layer 

thickness decreases with increasing Prandtl number, which is 

consistent with the findings of various researchers. Fig 17 

shows the streamlines for different value of ϵ when the other 

values are fixed. 

 
Figure 16. Effect of (Pr) on temperature profiles 

(a)  
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b)  

(c)  

 

Figure 17. Streamlines for (a) ϵ = - 1.2, (b) ϵ = 1.0, (c) ϵ = 
2.0 when the other parameters are fixed. 

 
 

5. CONCLUSIONS  

The unsteady boundary layer flow of a viscous, 
incompressible fluid along a vertical stretching or shrinking 
cone was investigated. The effects of viscous dissipation, 
internal heat generation and a chemically reactive species 
have been taken into account for Cu-water and TiO2-water 
nanofluids.  

It was found that the viscous dissipation has the effect of 
increasing the nanofluid temperature within the boundary 
layer region while the rate of heat transfer from the surface 
decreases with an increase in viscous dissipation. The internal 
heat generation has the tendency to increase the nanofluid 
temperature and reduce the rate of heat transfer at the surface 
of the cone. The nanoparticle concentration decreases while 
the wall mass transfer rate increases with the increase in the 
strength of a chemical reaction. 
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Chapter 4

The effect of thermophoresis on unsteady

Oldroyd-B nanofluid flow over stretching

surface

In this Chapter we investigate the unsteady flow of an Oldroyd-B nanofluid. Many investi-

gators have demonstrated that the Oldroyd-B fluid theory has applications in many fields,

including bio-rheology, geophysics, chemical and petroleum industries. The main objec-

tive of this study is to present a numerical investigation of unsteady flow over a stretching

surface subject to the influence of physical parameters, such as Deborah numbers, ther-

mophoresis and Brownian motion. We assume zero nanoparticle flux at the boundary sur-

face. The coupled nonlinear partial differential equations for the flow are solved using both

the spectral relaxation and quasi-linearization methods.
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Abstract
There are currently only a few theoretical studies on convective heat transfer in polymer

nanocomposites. In this paper, the unsteady incompressible flow of a polymer nanocompo-

site represented by an Oldroyd-B nanofluid along a stretching sheet is investigated. Recent

studies have assumed that the nanoparticle fraction can be actively controlled on the

boundary, similar to the temperature. However, in practice, such control presents significant

challenges and in this study the nanoparticle flux at the boundary surface is assumed to be

zero. We have used a relatively novel numerical scheme; the spectral relaxation method to

solve the momentum, heat and mass transport equations. The accuracy of the solutions

has been determined by benchmarking the results against the quasilinearisation method.

We have conducted a parametric study to determine the influence of the fluid parameters

on the heat and mass transfer coefficients.

Introduction
A wide variety of fluids, such as polymer solutions, plastics, pulps, emulsions, blood plasma,
chocolate, tomato sauce, mustard, mayonnaise, toothpaste, asphalt, some greases and sewage,
petroleum products, oils, etc., are non-Newtonian in character. Such fluids have a non-linear
shear stress-strain rate relationship. The equations that model the flow of these fluids are gen-
erally of a higher order than the Navier-Stokes equations. During the last several decades, the
study of flow of non-Newtonian fluids, has received considerable amount of research interest,
due to the relevance of non-Newtonian flows to a large number of engineering and manufac-
tural applications such as in the processing of synthetic fibers, food, polymers melts and phar-
maceutical products.

The unsteady boundary layer flow of non-Newtonian fluids due to stretching surface is an
important field of research in fluid mechanics. In many practical problems, the flow could be
unsteady due to a time dependent free stream velocity. There are several transport processes
with surface mass transfer where the buoyancy force arises from thermal diffusion caused by
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the temperature gradient. It is interesting as well as useful to investigate the combined effects of
thermal diffusion and surface mass transfer on a stretching surface where the free stream veloc-
ity varies arbitrarily with time. The stretched boundary layer flow with heat transfer has
numerous applications in engineering and industrial processes such as when polymer sheets
are extruded continuously from a dye, in the annealing and thinning of copper wires, paper
production and glass blowing, aerodynamic extrusion of plastic sheets and the cooling of infi-
nite metallic plates in cooling baths. Mixed convection or buoyancy driven flows over a surface
occur naturally in geothermal and petroleum recovery processes, solid matrix heat exchanges,
the cooling of nuclear reactors and other practical problems. Historically, the study of a bound-
ary layer flow along a stretching surface has its origins in the work of Sakiadis [1]. Tsou et al.
[2] presented a combined experimental and analytical study of the stretching flow, which, in
essence demonstrated that such a flow is physically possible. Crane [3] further extended the
Sakiadis study to a linearly stretching plate in a quiescent fluid and presented an exact analytic
solution. Subsequent work has looked at various aspects of the stretching sheet problem, but
most have been concerned with how the flow is affected by or responds to changes in various
fluid and surface parameters, see for instance, [4–9].

Conventional fluids such as water, ethylene glycol and oil have low heat transfer characteris-
tics owing to their low thermal conductivity. A recent technique to enhance the thermal con-
ductivity of these base fluids is to suspend nano-sized metallic particles such as aluminum,
titanium, gold, copper, iron or their oxides in the conventional base fluids resulting in what has
come to be name as a “nanofluid,” Choi [10]. Nanofluids have considerably improved thermo-
physical properties such as thermal conductivity, thermal diffusivity, viscosity and convective
heat transfer coefficient compared to base fluids. In the last few years the flow of nanofluid
through different geometries, and under various physical assumptions have been studied by
several authors such as [11–14].

The Oldroyd-B constitutive model describes a subclass of non-Newtonian fluids that ade-
quately describe the behaviour of some viscoelastic fluids such as dilute polymer solutions. The
Oldroyd-B fluid can describe stress-relaxation, creep and the normal stress differences but it
cannot describe either shear thinning or shear thickening, a phenomenon that is exhibited by
many polymer materials. Nonetheless, this model is perhaps one of the most successful models
for describing the response of some polymeric liquids [15]. Some investigations of Oldroyd-B
fluids have been done, by, among others, Hayat et al. [16] who presented a study of the three-
dimensional flow of an Oldroyd-B fluid due to a stretching surface with convective boundary
conditions. Siddiqui et al. [17] investigated the unsteady flow of an incompressible Oldroyd-B
fluid between two infinite parallel plates subject to slip between the plates and the fluid. Jamil
et al. [18] further studied the unsteady flow of an Oldroyd-B fluid and solved the model equa-
tions using finite Hankel transforms. Sohail et al. [19] investigated the two-dimensional steady
incompressible Oldroyd-B nanofluid flow past a stretching sheet. The thermophoresis and
radiation effects on Heat and mass transfer characteristics in three-dimensional flow of an Old-
royd-B fluid due to a bi-directional stretching surface were investigated by Shehzad et al. [20].
Related studies include, among others, [21–25]. Excellent survey papers on Oldroyd-B fluids
can be found in studies by Rajagopal and his colleagues [26–28].

There are currently only a few theoretical studies on the convective boundary layer flow and
heat transfer in an Oldroyd-B nanofluid over a stretching surface. Including nanoparticles in
dilute polymer solutions imparts improved thermophysical properties to the polymer materi-
als. This could, for example, include improved electrical, mechanical and optical properties,
Chao [29]. Recent exception is the study by Khan et al. [30]. These studies all assumed that the
nanoparticle volume fraction at the boundary is actively controlled. To the best of the authors’
knowledge, there are as yet no studies of convective heat transport in polymer nanocomposites
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such as an Oldroyd-B nanofluid flow in which the nanofluid particle fraction on the boundary
is not actively managed. The objective of this study is therefore to investigate thermophoresis
effects in unsteady Oldroyd-B nanofluid flow along a stretching surface. The problem is formu-
lated under the assumption that the nanoparticle volume fraction at the boundary is not
actively controlled, see Nield and Kuznetsov [31–34]. The highly non-linear momentum, heat
and mass transfer equations are solved numerically using the spectral relaxation and quasi-lin-
earization methods, see Motsa et al. [35, 36].

1 Mathematical Formulation
Consider the unsteady two-dimensional Oldroyd-B nanofluid flow over a stretching surface.
The sheet stretches along the plane y = 0 with the flow confined in the region y> 0. The nano-
particle flux at the boundary surface is assumed to be zero. The surface is stretched with a
velocity U = bx/(1−at) where a and b are positive constants. Both the nanofluid and the surface
are kept at a constant temperature Tw where Tw > T1 is for a heated surface and Tw < T1 cor-
responds to a cooled surface. The geometry of the problem is shown in Fig 1. Applying the
Oberbeck-Boussinesq and the boundary layer approximations to the basic equations of an
incompressible non-Newtonian fluid, we obtain

r �V ¼ 0; ð1Þ

r
dV
dt

¼ r � t; ð2Þ

Fig 1. Geometry and the coordinate system.

doi:10.1371/journal.pone.0135914.g001
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� �
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@t

þV � rC ¼ DBr2C þ DT
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r2T: ð4Þ

The Cauchy stress tensor τ and extra stress tensor S are defined as

t ¼ �pIþ S and Sþ d̂1ðtÞ
DS
Dt

¼ m Aþ d̂2ðtÞ
DA
Dt

� �
; ð5Þ

where

D
Dt

¼ @ð�Þ
@t

þ ðV � rÞð�Þ � ðrVÞð�Þ � ð�ÞðrVÞ�;

is the covariant differentiation, the � denotes the matrix transpose, d̂1ðtÞ and d̂2ðtÞ are the
relaxation and retardation times respectively. The velocity field is

V ¼ ðuðx; y; tÞ; vðx; y; tÞÞ;

where u and v are the velocity components along the x and y directions respectively. The first
Rivlin-Ericksen tensor A is defined as

A ¼ rVþ ðrVÞ�:

The governing equations take the form (see Nadeem et al. [19])
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þ u
@C
@x

þ v
@C
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¼ DB

@2C
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@2T
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; ð8Þ

subject to the boundary conditions

u ¼ U; v ¼ 0; T ¼ Tw; DB

@C
@y

þ DT

T1

@T
@y

¼ 0 on y ¼ 0; ð9Þ

u ! 0; T ! T1; C ¼ C1 as y ! 1; ð10Þ
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where ν is the kinematic viscosity, T and �̂ are the local fluid temperature and concentration

volume fraction, T1 and �̂1 are the fluid temperature and ambient concentration volume frac-
tion respectively, αm is the effective thermal diffusivity, DB is the Brownian diffusion coeffi-
cient, DT is thermophoresis diffusion coefficient, τ = (ρc)f /(ρc)P is the ratio between the
effective heat capacity of the nanoparticle material and heat capacity of the fluid.

We introduce the following similarity transformations

cðx; y; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bn

1� at

r
x f ðZÞ; Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

nð1� atÞ

s
y;

Tðx; y; tÞ ¼ T1 þ Tref

bx2

2n

� �
ð1� atÞ�3

2yðZÞ;

Cðx; y; tÞ ¼ C1 þ Cref

bx2

2n

� �
ð1� atÞ�3

2�ðZÞ;

where θ and ϕ are the dimensionless temperature and nanoparticle volume fraction respec-
tively and η is a similarity variable. The physical stream function ψ(x, y, t) automatically
ensures that mass conservation given in Eq (6). The velocity components are readily obtained
as

u ¼ @c
@y

¼ bx
ð1� atÞ f

0ðZÞ; v ¼ � @c
@x

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nb
ð1� atÞ

s
f ðZÞ; ð11Þ

where f0 is the dimensionless velocity. Eqs (7)–(8) can be presented as

f 000 þ ff 00 � f 02 � S f 0 þ 1

2
Z f 00

� �
þ b1ð2ff 0f 00 � f 2f 000Þ þ b2ðf 002 � ff 0000Þ

þ b2S 2f 000 þ 1

2
Zf 0000

� �
� b1S

2 2f 0 þ 7

4
Zf 00 þ 1

4
Z2f 000

� �

� b1S 2f 02 � 3ff 00 þ 3

2
Zf 0f 00 � 1

2
Zff 00 � Zff 000

� �
¼ 0;

ð12Þ

y00 þ Pr f y0 � 2f 0y� S
2
ð3yþ Zy0Þ

� �
þ Nb�

0y0 þ Nty
02 ¼ 0; ð13Þ

�00 þ Le f�0 � 2f 0�� S
2

3�þ Z�0ð Þ
� �

þ Nt

Nb

y00 ¼ 0; ð14Þ

with the boundary conditions

f 0 ¼ 1; f ¼ 0; y ¼ 1; Nb�
0 þ Nty

0 ¼ 0 at Z ¼ 0; ð15Þ

f 0 ! 0; y0 ! 0; � ! 0 as Z ! 1; ð16Þ

where S is the dimensionless measure of the unsteadiness, β1 and β2 are the Deborah numbers
in terms of relaxation and retardation times, respectively, the Prandtl number Pr, the Brownian
motion parameter Nb, the thermophoresis parameter Nt, the Lewis number Le. These
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parameters are defined as

S ¼ a
b
; b1 ¼ d1b; b2 ¼ d2b; Pr ¼ n

am
; Le ¼ n

DB

;

Nt ¼ tDTðTðw � T1Þ
T1am

; Nb ¼
tDBCref

bx2

2n

� �
am

ð1� atÞ�3
2:

The non-dimensional form of the Nusselt number and Sherwood number that describe the
heat and nanoparticle volume fraction transfer at the surface are

Nux=Re
1
2
x ¼ �y0ð0Þ and Shwx=Re

1
2
x ¼ ��0ð0Þ;

where Rex = Ux/ν is the local Reynolds number.

2 Method of Solution
To solve Eqs (12)–(14) along with the boundary conditions Eqs (15)–(16), the spectral relaxa-
tion method (SRM) was used, see Motsa et al. [37–39]. This method is preferred since it has
been shown to be accurate and generally easier to use compared to other common numerical
methods such as finite differences.

We start by reducing the order of Eq (12) from fourth to third order. To this end, we set f0 =
g, so that Eq (12) becomes

f 0 ¼ g;

g 00 þ fg 0 � g2 � S g þ 1

2
Zg 0

� �
þ b1ð2fgg 0 � f 2g 00Þ

þ b2ðg 02 � fg 000Þ þ b2S 2g 00 þ 1

2
Zg 000

� �
� b1S

2 2g þ 7

4
Zg 0 þ 1

4
Z2g 00

� �

� b1S 2g2 � 3fg 0 þ 3

2
Zgg 0 � 1

2
Zfg 0 � Zfg 00

� �
¼ 0:

ð17Þ

The spectral relaxation algorithm decouples the system of governing Eqs (12)–(14). From
the decoupled equations an iteration scheme is developed by evaluating linear terms at the cur-
rent iteration level r + 1 and the nonlinear terms at the previous iteration level r. Applying the
SRM to Eqs (13)–(14) and (17)–(17) gives the following linear ordinary differential equations;

a1g
000
rþ1 þ a2g

00
rþ1 þ a3g

0
rþ1 þ a4grþ1 þ a5 ¼ 0; ð18Þ

f 0rþ1 ¼ grþ1; frþ1ð0Þ ¼ 0; ð19Þ

y00rþ1 þ b1y
0
rþ1 þ b2yrþ1 þ b3 ¼ 0; ð20Þ

�00
rþ1 þ c1�

0
rþ1 þ c2�rþ1 þ c3 ¼ 0; ð21Þ

grþ1ð0Þ ¼ 1; yrþ1ð0Þ ¼ 1; Nb�
0
rþ1ð0Þ þ Nty

0
rþ1ð0Þ ¼ 0; ð22Þ

grþ1ð1Þ ¼ 0; yrþ1ð1Þ ¼ 0; �rþ1ð1Þ ¼ 0; ð23Þ
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where ai, bi and ci (i = 1, 2, . . .) are given by

a1 ¼ b2

1

2
SZ� frþ1

� �
;

a2 ¼ 1� b1 f 2rþ1 þ
1

4
S2Z2 � SZfrþ1

� �
þ 2b2S;

a3 ¼ frþ1 �
1

2
SZþ b1 2frþ1gr �

7

4
S2Zþ 3Sfrþ1 �

3

2
SZgr þ

1

2
SZfrþ1

� �
þ2b2g

0
r;

a4 ¼ � 2gr þ S� b1 2frþ1g
0
r � s2 � 4Sgr �

3

2
SZg 0r

� �� �
;

a5 ¼ � g2r � b1 2frþ1grg
0
r � 2Sg2r �

3

2
SZgrg

0
r

� �
� b2g

0
r2

� �
;

b1 ¼ Pr frþ1 �
1

2
SZþ Nb�

0
r

� �
; b2 ¼ �Pr 2grþ1 þ

3

2
S

� �
;

b3 ¼ �Nty
02
r ; c1 ¼ Le frþ1 �

1

2
SZ

� �
;

c2 ¼ �Le 2grþ1 þ
3

2
S

� �
; c3 ¼

Nt

Nb

y00
r :

Starting from given initial approximations f0, g0, θ0 and ϕ0, Eqs (18)–(21) can be solved itera-
tively using any suitable numerical method. We opt to use the spectral collocation methods for
its accuracy. We find the unknown function at collocation points by requiring that Eqs (18)–
(21) be satisfied exactly at these points. A convenient set of collocation points is the Gauss-
Lobatto points defined by

oj ¼ cos
pj
N
; j ¼ 0; 1; . . . ;N: ð24Þ

For convenience, in numerical computations the semi-infinite domain is approximated by the
truncated domain [0, L]. Then using the linear transformation η = L(ω + 1)/2, we convert [0,
L] into the interval [−1, 1] in which the spectral method can be used, where L = η1 is a finite
number selected to be large enough to represent the behaviour of the flow properties when η is
very large. The derivatives are defined as

df
dZ

¼
XN
k¼0

Djkf ðokÞ ¼ Df ; j ¼ 0; 1; . . . ;N; ð25Þ

where N + 1 is the number of collocation points,D = 2D/L and f = [f(ω0), f(ω1), . . ., f(ωN)]
T is

the vector of unknown functions at the collocation points. Applying the Chebyshev spectral
collocation method to the system Eqs (18)–(21), we obtain the following matrix equations

A1;rgrþ1 ¼ R1;r; grþ1ðoNÞ ¼ 1; grþ1ðo0Þ ¼ 0; ð26Þ

Dfrþ1 ¼ grþ1; frþ1ðoNÞ ¼ 0; ð27Þ
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A2;ryrþ1 ¼ R2;r; yrþ1ðoNÞ ¼ 1; yrþ1ðo0Þ ¼ 0; ð28Þ

A3;r�rþ1 ¼ R3;r; Nb�rþ1ðoNÞ þ Ntyrþ1ðoNÞ; �rþ1ðo0Þ ¼ 0; ð29Þ

where

A1;r ¼ diag½a1�D3 þ diag½a2�D2 þ diag½a3�Dþ diag½a4�I;
R1;r ¼ �a5;

ð30Þ

A2;r ¼ D2 þ diag½b1�Dþ diag½b2�I; R2;r ¼ �b3; ð31Þ

A3;r ¼ D2 þ diag½c1�Dþ diag½c2�I; R3;r ¼ �c3: ð32Þ

Here I is an (N + 1) × (N + 1) diagonal matrix, diag[�] denotes a diagonal matrix. We choose
suitable initial guesses f0, g0, θ0 and ϕ0 which satisfy the boundary conditions of governing
equations as

f0 ¼ 1� e�Z; g0 ¼ e�Z; y0 ¼ e�Z; �0 ¼ �Nt

Nb

e�Z: ð33Þ

3 Results and Discussion
Eqs (12)–(14) along with the boundary conditions Eqs (15)–(16), were solved numerically
using both the spectral relaxation method (SRM) and the quasi-linearization method (QLM),
see Bellman and Kalaba [40]. Here the QLM has been used as a benchmarking tool to test the
accuracy, and hence the reliability of the SRM results.

The results showing the effects of various parameters on the skin-friction coefficient and the
heat transfer rate on the unsteady Oldroyd-B nanofluid are given in Tables 1–3.

Table 1 gives a comparison between the present results and the results obtained by Sharidan
[41] and Pal [42] for the skin friction. There is a good agreement between the two sets of results
with the SRM having converged at the fifth order up to six decimal places. The SRM results are
further validated by comparison with results generated using a quasilinearisation method. The
quasilinearisation method has also been used recently, albeit in a slightly different form, by
Ibrahim and Shanker [43]

Table 1. Comparison of results for the −f0 0(0) with β1 = 0 and β2 = 0.

present results

S Sharidan [41] Elbashbeshy [47] Pal [42] Ord 4 Ord 5 Ord 6

0.0 — 1.0000 — 1.000000 1.000000 1.000000

0.2 — — — 1.068015 1.068012 1.068012

0.4 — — — 1.134688 1.134686 1.134686

0.6 — — — 1.199113 1.199119 1.199119

0.8 1.261042 1.3345 1.261043 1.261039 1.261043 1.261043

1.2 1.377722 1.4535 1.377724 1.377722 1.377724 1.377724

1.4 — — — 1.432835 1.432836 1.432836

2.0 1.587362 1.6828 1.587366 1.587365 1.587366 1.587366

doi:10.1371/journal.pone.0135914.t001
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Table 2 shows a further comparison of the spectral relaxation and quasilinearisation results
for the skin friction coefficient while Table 3 shows the variation of the heat transfer rate for
different values of dimensionless unsteadiness parameter and Deborah numbers. The compari-
son of the two methods shows an excellent agreement between the numerical results obtained
by the spectral relaxation and the quasilinearisation methods. In addition, Table 2 shows that
the skin friction coefficient increases with increasing values of the unsteadiness parameter S
and the relaxation time in terms of the Deborah number β1 and decreases with increasing retar-
dation time or Deborah number β2. The heat transfer coefficient −θ0(0) is however shown to
decrease with β1 in Table 3. he increase in the skin friction coefficient with the flow unsteadi-
ness has also been observed in earlier studies, such as in Ibrahim and Shanker [43] and Mukho-
padhyay et al. [44]. It has been suggested in Mukhopadhyay et al. [44] that a decrease in the
skin friction coefficient may be important in coating processes where higher stretching speeds
may be achieved for smaller pulling forces. The study by Mukhopadhyay et al. [44] was on
unsteady flow in a Casson fluid and further showed that for Casson fluids, the temperature
decreased significantly with unsteadiness.

We observe further that heat transfer coefficient increases with increased unsteadiness and
β2. The negative values of the nanoparticle profile are due to the fact that the effect of

Table 2. Comparison of the skin friction coefficient −f0 0(0) for various values of dimensionless
unsteadiness S, the Deborah numbers β1 and β2, whenNt = 0.5,Nb = 0.5, Pr = 7 and Le = 10.

SRM QLM

S β1 β2 Ord 5 Ord 6 Ord 7 Ord 8

0.2 0.3 0.4 0.962067 0.962066 0.962066 0.962066

0.4 0.3 0.4 1.014081 1.014081 1.014081 1.014081

0.6 0.3 0.4 1.064909 1.064909 1.064909 1.064909

0.8 0.3 0.4 1.114378 1.114377 1.114377 1.114377

1.0 0.3 0.4 1.162441 1.162441 1.162441 1.162441

1.2 0.3 0.4 1.209120 1.209120 1.209120 1.209120

1.4 0.3 0.4 1.254465 1.254465 1.254465 1.254465

1.6 0.3 0.4 1.298547 1.298546 1.298546 1.298546

0.2 0.1 0.4 0.979541 0.979541 0.979541 0.979541

0.2 0.2 0.4 1.049256 1.049256 1.049256 1.049256

0.2 0.3 0.4 1.114378 1.114377 1.114377 1.114377

0.2 0.4 0.4 1.175721 1.175720 1.175720 1.175720

0.2 0.5 0.4 1.233884 1.233883 1.233883 1.233883

0.2 0.6 0.4 1.289322 1.289320 1.289320 1.289320

0.2 0.7 0.4 1.342389 1.342387 1.342387 1.342387

0.2 0.8 0.4 1.393369 1.393366 1.393366 1.393366

0.2 0.3 0.1 0.979541 0.979541 0.979541 0.979541

0.2 0.3 0.4 1.175721 1.175720 1.175720 1.175720

0.2 0.3 0.7 1.342389 1.342387 1.342387 1.342387

0.2 0.3 1.0 1.489952 1.489947 1.489947 1.489947

0.2 0.3 1.4 1.665997 1.665990 1.665990 1.665990

0.2 0.3 1.7 1.786444 1.786435 1.786435 1.786435

0.2 0.3 2.0 1.899127 1.899117 1.899117 1.899117

0.2 0.3 2.5 2.073154 2.073142 2.073142 2.073142

doi:10.1371/journal.pone.0135914.t002
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thermophoresis is such that an elevation above the ambient surface temperature leads to a
reduction in the relative value of the nanoparticle fraction at the surface (see Kuznetsov and
Nield [34]).

Figs 2 and 3 show the velocity profiles for different values of the unsteadiness parameter.
We observe that the velocity distribution and the momentum boundary layer thicknesses
reduce with an increase in the unsteadiness parameter. This finding is in line with the earlier
findings of Ibrahim and Shanker [43], and shows that even in the absence of an applied mag-
netic field, the velocity profiles decrease with the unsteadiness parameter. Figs 4 and 5 show
the dimensionless temperature and concentration volume fraction profiles respectively for
selected values of S. The steepness in both the temperature and concentration profiles decreases
reducing the thicknesses of both the thermal and concentration volume fraction boundary lay-
ers. These results also follow a similar trend as observed by Ibrahim and Shanker [43] and
Mukhopadhyay et al. [44]. Further, it may be pointed out that the concentration volume frac-
tion increases from negative to positive values until boundary layer separation occurs. The
magnitude of the volume fraction concentration increases up to a critical point and then
decreases to zero.

Figs 6 and 7 show the influence of the Deborah numbers β1 and β2 on the velocity profiles.
Higher Deborah numbers are indicative that the Oldroyd-B nanofluid is stretched. The nano-
fluid velocity f0(η) and the momentum boundary layer thickness decrease with increasing β1
which is not an unexpected result since it is well known that the viscoelastic fluid resists the
motion of the fluid.

Figs 8 and 9 show the effects of β1 on the temperature and concentration profiles, respec-
tively. As β1 increases, both the nanofluid temperature and the concentration volume fraction
increase enhancing both the thermal and the concentration boundary layer thicknesses.

Table 3. Comparison of heat transfer rate −θ0(0) for various values of dimensionless unsteadiness S,
the Deborah numbers β1 and β2, whenNt = 0.5,Nb = 0.5, Pr = 7 and Le = 10.

SRM QLM

S β1 β2 Ord 5 Ord 7 Ord 8

0.2 0.3 0.4 4.039516 4.039531 4.039531 4.039531

0.4 0.3 0.4 4.232584 4.232585 4.232585 4.232585

0.6 0.3 0.4 4.418677 4.418690 4.418690 4.418690

0.8 0.3 0.4 4.598443 4.598455 4.598455 4.598455

1.0 0.3 0.4 4.772377 4.772390 4.772390 4.772390

1.2 0.3 0.4 4.940927 4.940940 4.940940 4.940940

1.4 0.3 0.4 5.104494 5.104507 5.104507 5.104507

1.6 0.3 0.4 5.263439 5.263453 5.263453 5.263453

0.2 0.1 0.4 4.620580 4.620593 4.620593 4.620593

0.2 0.3 0.4 4.598443 4.598455 4.598455 4.598455

0.2 0.5 0.4 4.579026 4.579036 4.579036 4.579036

0.2 0.7 0.4 4.561566 4.561574 4.561574 4.561574

0.2 0.5 0.1 4.620580 4.620593 4.620593 4.620593

0.2 0.5 0.4 4.588452 4.588463 4.588463 4.588463

0.2 0.5 0.7 4.561566 4.561574 4.561574 4.561574

0.2 0.5 1.0 4.538087 4.538091 4.538091 4.538091

doi:10.1371/journal.pone.0135914.t003
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Fig 3. Effect of the unsteadiness parameter S on the velocity f0(η), when β1 = 0.3, β2 = 0.4 Le = 10,
Pr = 5,Nt = 0.5 andNb = 0.5.

doi:10.1371/journal.pone.0135914.g003

Fig 2. Effect of the unsteadiness parameter S on the velocity f0(η) when β1 = 0.3, β2 = 0.4 Le = 10,
Pr = 5,Nt = 0.5 andNb = 0.5.

doi:10.1371/journal.pone.0135914.g002
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Fig 4. Effect of the unsteadiness parameter S on θ(η) when β1 = 0.3, β2 = 0.4 Le = 10, Pr = 5,Nt = 0.5
andNb = 0.5.

doi:10.1371/journal.pone.0135914.g004

Fig 5. Effect of the unsteadiness parameter S on ϕ(η) for β1 = 0.3, β2 = 0.4 Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g005

PLOSONE | DOI:10.1371/journal.pone.0135914 August 27, 2015 12 / 23



Fig 6. Effect of β1 on velocity component f0(η) for S = 0.8, Le = 10, Pr = 5,Nt = 0.5 andNb = 0.5.

doi:10.1371/journal.pone.0135914.g006

Fig 7. Effect of β2 on velocity component f0(η) for S = 0.8, Le = 10, Pr = 5,Nt = 0.5 andNb = 0.5.

doi:10.1371/journal.pone.0135914.g007
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Fig 8. Effect of the unsteadiness parameter β1 on θ(η) for S = 0.8, β2 = 0.4 Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g008

Fig 9. Effect of the unsteadiness parameter β1 on ϕ(η) for S = 0.8, β2 = 0.4 Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g009
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Figs 10 and 11 show the variation of the temperature and concentration volume fraction
profiles for difference values of the retardation Deborah number β2. It can be seen that when β2
increases, both the temperature and concentration volume fraction distributions decrease thus
diminishing the thicknesses of both the thermal and volume fraction boundary layers.

Figs 12 and 13 show the effect of the thermophoresis parameter Nt on θ(η) and ϕ(η) for
fixed S, β1, β2, Le and Nb. The temperature gradients in the boundary layer induces a thermo-
phoretic force on the nanoparticles and that leads to a fast flow away from the stretching sur-
face. Hence more fluid is heated away from the surface, and consequently, as Nt increases, the
temperature within the boundary layer increases. The fast flow from the stretching sheet carries
with it nanoparticles leading to an increase in the mass volume fraction boundary layer thick-
ness. It can also be observed that with an increase in the thermophoretic force, the nanoparticle
fraction concentration profiles increase in the boundary layer before reducing to zero far from
the surface. Here boundary layer separation occurs early at the stretching surface.

Figs 14 and 15 show the influences of the random particle motion (represented by the
parameter Nb) and the Lewis number Le on the nanoparticle volume fraction profiles. The
nanoparticle Brownian motion at the molecular level plays a significant role in determining the
thermal behaviour of the nanoparticle-fluid suspensions, Jang and Choi [45]. It is obvious that
the nanoparticle volume fraction increases close to the stretching surface with increased
Brownian motion and Lewis numbers before the boundary layer separation point. However,
after the separation point the concentration volume fraction profiles decrease with an increase
in both Nb and Le.

Fig 10. Effect of the unsteadiness parameter β2 on θ(η) for β1 = 0.3, S = 0.8 Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g010
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Fig 12. Effect of the thermophoresis parameterNt on θ(η) for S = 0.2, β1 = 0.3, β2 = 0.4 Le = 10, Pr = 5
andNb = 0.5.

doi:10.1371/journal.pone.0135914.g012

Fig 11. Effect of the unsteadiness parameter β2 on ϕ(η) for β1 = 0.3, S = 0.8 Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g011
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Fig 14. Effect of the BrownianmotionNb on ϕ(η) for β1 = 0.3, β2 = 0.4 Pr = 7,Nt = 0.5.

doi:10.1371/journal.pone.0135914.g014

Fig 13. Effect of thermophoresisNt on ϕ(η) for S = 0.2, β1 = 0.3, β2 = 0.4 Le = 10, Pr = 5 andNb = 0.5.

doi:10.1371/journal.pone.0135914.g013
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Figs 16 and 17 show the effects of Deborah numbers β1 and β2 on skin friction and heat
transfer coefficients. The skin friction coefficient increases with increasing β1 leading to higher
surface shear stresses, while increases in the skin-friction coefficient takes place with increasing
β2. We observe that increasing β1 leads to a decrease in −θ0(0) whereas increasing β2 enhances
the rate of heat transfer.

The variation of heat transfer coefficients with the thermophoresis parameter Nt is shown
in Fig 18. It is clear that the thermal boundary layer thickness increases when the thermophor-
esis parameter Nt increases, and hence reducing the rate of heat transfer.

In order to apply the linear regression formula used by Kuznetsov and Nield [46], we used a
set of 125 values of S, Nb and Nt with each S, Nb, Nt restricted to the space [0, 0.5] with a maxi-
mum error of less than 1%. Table 4 shows the linear regression coefficients and error bounds
for the reduced Nusselt number. Here Cs, Cb, Ct, are the coefficients in the linear regression
estimate

Nuest=Ra
1=2
x ¼ NuPKB þ CsSþ CbNbþ CtNt;

and ε is the maximum relative error defined by ε = j(Nuest−Nu)/Nuj. In this study, the mini-
mum error occurs for small values of S, Nb and Nt.

4 Conclusions
In this paper we have studied the unsteady Oldroyd nanofluid flow over stretching surface. The
classical boundary condition in which both the nanoparticle volume fraction and the

Fig 15. Effect of the Lewis number Le on ϕ(η) for β1 = 0.3, β2 = 0.4 Pr = 7,Nt = 0.5.

doi:10.1371/journal.pone.0135914.g015
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Fig 16. Effect of the Deborah numbers β1 and β2 on f0 0(0) for S = 0.8, Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g016

Fig 17. Effect of the Deborah numbers β1 and β2 on −θ0(0) for S = 0.8, Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g017
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temperature are actively controlled has been substituted by the more realistic condition where
the nanoparticle volume fraction is not controlled an the boundary. The effects of the govern-
ing parameters such as the unsteadiness parameter, the Deborah numbers in terms of relaxa-
tion and retardation times, the Prandtl number, the Brownian motion parameter, the
thermophoresis parameter, the Lewis number on skin friction, heat transfer coefficients and
fluid flow characteristics have been studied. Here β1 represents the viscoelastic properties of
the fluid and resists the motion of the fluid. The effects of the Brownian motion on the rate of
heat transfer are negligible. The comparison between results obtained using the SRM and the
QLM for skin friction and heat transfer coefficients showed a good agreement, with the SRM
having converged at the sixth order up to six decimal places.

Fig 18. Effect of the thermophoresis numberNt on −θ0(0) for β1 = 0.3, Le = 10, Pr = 5,Nt = 0.5 and
Nb = 0.5.

doi:10.1371/journal.pone.0135914.g018

Table 4. Linear regression coefficients and error bounds for the reduced Nusselt number.

Cs Cb Ct Pr ε

-0.347 -0.111 -0.225 1 0.001

-0.360 -0.128 -0.239 2 0.001

-0.390 -0.141 -0.251 5 0.001

-0.400 -0.167 -0.270 10 0.001

-0.412 -0.197 -0.281 100 0.001

doi:10.1371/journal.pone.0135914.t004
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Chapter 5

Unsteady mixed convection flow through

a permeable stretching flat plate with par-

tial slip effects through MHD nanofluid

using the spectral relaxation method

In this Chapter, we extend the study by Nandy and Mahapatra [212] by using the revised

nanofluid model in Chapter 4. Here we study the unsteady magnetohydrodynamic stagna-

tion point nanofluid flow along a permeable stretching flat plate. There have been several

theoretical models developed to describe slip flow over a surface. However, to the best of

knowledge, no investigation has as yet been done to analyze the impact of unsteady slip

flow on heat and mass transfer in a nanofluid flow past a non-linear stretching permeable

surface. The purpose of this study is to investigate the combined effects of partial slip,

internal heat source/sink, thermophoresis and Brownian motion on fluid properties and the

impact on heat and mass transfer. The results may have engineering applications such as in

MHD micro pumps.
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Brownianmotionparameters are revisedon the traditional
model of nano�uid for which nano�uid particle volume
fraction is passively controlled on the boundary. Spec-
tral relaxation method is applied here to solve the non-
dimensional conservation equations. The results show the
illustration of the impact of skin friction coe�cient, dif-
ferent physical parameters, and the heat transfer rate. The
nano�uid motion is enhanced with increase in the value
of the internal heat sink or source. On the other hand, the
rate of heat transfer on the stretching sheet and the skin
friction coe�cient are reduced by an increase in internal
heat generation. This study further shows that the veloc-
ity slip increases with decrease in the rate of heat trans-
fer. The outcome results are benchmarked with previously
published results.
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1 Introduction
Cooling and heating of liquids are signi�cant in many en-
gineering applications and transportation industries. In
general, many common heat transfer �uids such as ethy-
lene glycol, oil and water are not e�cient heat trans-
fer �uids for their low thermal conductivities and poor
physical and chemical characteristics [1]. In contrast, �u-
ids with added nanometer sized metals such as titanium,
aluminum, gold, silver, copper and iron or their oxides
and composite materials have signi�cantly higher ther-
mal conductivities than these base �uids. The nanopar-
ticles are commonly made by a high-energy-pulsed pro-
cess from a conductive material. For these reasons, it
is prudent to combine base �uids with nanoparticles to
achieve both the characteristics of a base �uid and the
physical properties of the nanoparticles [2, 3]. Suspending
nanoparticles a�ects the base �uid’s homogeneity and the
randomness of molecular motion leading to higher con-
ductive rates and better convective heat transfer perfor-
mances compared to base �uids [4–7]. There are however
mechanisms, which include particle agglomeration, par-
ticle shape/surface area, nanoparticle size, temperature
and liquid layering on the nanoparticle liquid interface
that still need to be fully understood.

Nano�uids have large application in industries, like
micro-electro-mechanical or microprocessors electronic
systems as well as in the �eld of biotechnology [8]. Several
authors, for instance, [9, 10] conducted theoretical and ex-
perimental investigations to demonstrate that nano�uids
increased theheat transfer properties of base�uid. Thenu-
merical solution of the equations that describe the com-
bined e�ects of thermophoresis and Brownian motion on
the nano�uid �ow through a �at surface in a saturated
porous medium was examined by Nield and Kuznetsov
[11]. Kuznetsov and Nield [12] examined a problem on
natural convection boundary layer nano�uid �ow with
showing the e�ects of thermophoresis and Brownian mo-
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tion. Buongiorno [13] studied that particle di�usion and
thermophoresis play an important role in the �ow of a
nano�uid. The classical concept of a boundary layer cor-
responds to a thin region next to a solid surface where vis-
cous forces are important, Blasius [14]. Viscous forces play
an essential role in processes such as glass �ber drawing,
crystal growing and plastic extrusion. For the case of the
Blasius problem, Sakiadis [15] focused on the concept of a
boundary layer �ow induced by a moving plate in a quies-
cent ambient �uid. Further studies in this area were made
by Schlichting and Gersten [16], Bejan [17], White [18] and
Mukhopadhyay [19, 20].

The magnetohydrodynamic (MHD) boundary layer
�ow of a viscous incompressible �uid which is electrically
conducted has huge applications in industry and techno-
logical sectors, like cooling of nuclear reactors, the ex-
trusion of plastics, textile industry, puri�cation of crude
oil, polymer technology, geothermal energy extractions,
metallurgy, drug delivery and biological transportation
[21, 22]. The application of the magnetic �eld produces
a Lorentz force that increase the mixing processes as an
active micro mixing mechanism. The transport system of
conductive biological �uids in the micro systems will be
bene�tted from research [23]. The simultaneous occur-
rence of buoyancy and magnetic �eld forces on �uid �ow
were investigated by many researchers [24–28]. In these
investigations, many authors have used a no-slip bound-
ary condition. Recently, some researchers have investi-
gated boundary layer �ow assuming a slip condition at the
boundary [29–35].

Stagnation point �ow, illustrating the �uid motion
near a stagnation region, exists near solid bodies in that
�uid �ow. Chiam [36] studied �uid �ow on a steady
stagnation-point through an elastic surfacewith equal free
stream and stretching velocities.

The mail focus of this study is to expand the work of
Nandy and Mahapatra [37] to unsteady �ow over a per-
meable stretching �at plate with an internal heat source
or sink. For the nanoparticles we have used the boundary
condition suggested recently by Kuznetsov and Nield [38]
where active control of the nanoparticle volume fraction at
the surface is not possible. Appropriate similarity transfor-
mations reduce the conservation equations to a set of non-
linear ordinary di�erential equations. These equations are
solved by using a spectral relaxationmethod, numerically
(see Motsa et al. [39]).

2 Problem formulations
Consider an unsteady, viscous, incompressible, laminar
nano�uid �ow past a stretching �at plate. The �ow is re-
stricted to the area y ≥ 0, y and x are the coordinate system
normal to the stretching �at plate and along the stretching
surface, respectively. The concentration and temperature
on the surface are ϕw and Tw, respectively, and away from
the surface the values are ϕ∞ and T∞, respectively. We as-
sume that at a time t ≥ 0, the plate stretching velocity is
uw = bx. The free stream velocity is u∞ = ax. Here, b is
constant with b > 0 corresponding to a stretching plate
and b < 0 to a shrinking plate. The �uid �ow is subjected
to a uniform magnetic �eld of strength B0 which is ap-
plied in a normal direction to the plane y = 0 and to the
heat source/sink. The �uid is electrically conducting with
constant properties, except for the density in the buoyancy
term in themomentum equation.With these assumptions,
the Oberbeck-Boussinesq and the boundary layer approxi-
mations, the unsteadymomentum, energy and concentra-
tion equations can be described as (see Nandy and Maha-
patra [37]);

∂u
∂x + ∂v∂y = 0, (1)

ρf
(
∂u
∂t + u

∂u
∂x + v ∂u∂y − u∞

du∞
dx

)
= µf

∂2u
∂y2

+σB20 (u∞ − u) + (1 − ϕ∞)ρf∞β(T − T∞)g
−(ρp − ρf∞)(ϕ − ϕ∞)g, (2)
∂T
∂t + u

∂T
∂x + v ∂T∂y = αf

∂2T
∂y2 + 1

(ρcp)f
q′′′

+τ
{
DB
∂ϕ
∂y

∂T
∂y + DTT∞

(
∂T
∂y

)2
}
, (3)

∂ϕ
∂t + u ∂ϕ∂x + v ∂ϕ∂y = DB

∂2ϕ
∂y2 +

(
DT
T∞

)
∂2T
∂y2 , (4)

where t, u and v represent the time, the �uid velocity com-
ponents along the x and y axis, respectively, νf is the �uid
kinematic viscosity, σ is the �uid electrical conductivity,
ρf∞ is the density far from the plate surface, g is the accel-
eration due to gravity, ρf is the �uid density, T is the �uid
temperature, β is the coe�cient of thermal expansion, ρp
is the density of the particles, (ρcp)f is �uid heat capacity,
ϕ is nanoparticle volume fraction, αf is thermal di�usiv-
ity, q′′′ is the rate of internal heat sink (< 0) or heat source
(> 0) coe�cient, The ratio of the e�ective heat capacity of
nanoparticle material with the heat capacity of the �uid is
τ,DT denotes the thermophoresis di�usion coe�cient and
DB is the Brownian di�usion coe�cient.
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Theboundary conditions are (seeKuznetsov andNield
[12], Nandy and Mahapatra [37] and Kuznetsov and Nield
[38])

v = Vw, u = uw + L ∂u∂y , at y = 0, t ≥ 0,

T = Tw, DB
∂ϕ
∂y + DTT∞

∂T
∂y = 0 at y = 0, t ≥ 0,

u → u∞, T → T∞, ϕ → ϕ∞ as y →∞, t ≥ 0,(5)

with the initial conditions

u → 0, T → T∞, ϕ → ϕ∞ at t < 0,

where L is a proportionality constant. Vw denotes the sur-
face mass �ux. Negative values of Vw imply �uid suction
and positive values of Vw imply injection. Also, Vw = 0
corresponds to an impermeable plate.

q′′′ is de�ned according as follows, (see [40–42])

q′′′ =
(
k uw
xνf

)
[A*(Tw − T∞)e−η + B*(T − T∞)], (6)

where B* and A* are temperature-dependent internal heat
source/sink and coe�cients of space-dependent, respec-
tively and η is a dimensionless variable de�ned in Eq. (7).
The �rst term in the Eq. (6) represents the dependence of
the internal heat sink or source on the space coordinates
while the second term represents its dependence on the
temperature. Now, for the case when the case A* < 0 and
B* < 0, indicates to internal heat sink while both A* > 0
and B* > 0, indicates to internal heat source.

We introduce non-dimensional variables given by

η =
√

b
νf ξ

y, ξ = 1 − e−τ̂ , ψ =
√
b νf ξ x f (η, ξ ),

θ(η, ξ ) = T − T∞
Tw − T∞

, τ̂ = bt,Φ(η, ξ ) = ϕ − ϕ∞ϕ∞
, (7)

where θ(η, ξ ) and Φ(η, ξ ) are the non-dimensional tem-
perature and concentration, respectively and the stream
function ψ is de�ned as

u = ∂ψ∂y and v = −∂ψ∂x .

Substituting (7) into Eqs. (1) - (4) gives

f ′′′ + 1
2(1 − ξ )ηf

′′ + ξ
[
� ′′ − f ′

2
+M

(
ε − f ′

)
+ ε2 + λ(θ − NrΦ)

]

= ξ (1 − ξ )∂f
′

∂ξ , (8)

θ′′ + Pr
[
1
2(1 − ξ )ηθ

′ + ξfθ′ + NbΦ′θ′ + Ntθ′2
]

+ξ
(
A*e−η + B*θ

)
= Prξ (1 − ξ )∂θ∂ξ , (9)

Φ′′ + Le
[
1
2(1 − ξ )ηΦ

′ + ξfΦ′
]
+ Nt
Nb
θ′′

= Le ξ (1 − ξ )∂Φ∂ξ , (10)

with boundary conditions

f (0, ξ ) = S, f ′(0, ξ ) = 1 + γf ′′(0, ξ ),

θ(0, ξ ) = 1,Φ′(0, ξ ) + Nt
Nb
θ′(0, ξ ) = 0,

f ′(∞, ξ ) → ε, θ(∞, ξ ) → 0,Φ(∞, ξ ) → 0, (11)

where the di�erentiation with respect to η is denoted as
prime, S is the dimensionless suction/blowing parameter,
γ is the dimensionless slip factor, and the stretching pa-
rameter is ε where

S = − Vw√
b νf ξ

, γ = L
√

b
νf ξ

and ε = ab .

In Eqs. (8)-(11) the parameters are the magnetic pa-
rameter M, the buoyancy parameter λ, Grx is the local
Grashof number, Pr is the Prandtl number, Rex is the local
Reynolds number, Nt is the thermophoresis parameter, Nr
is the buoyancy ratio parameter, Nb is the Brownian mo-
tion parameter, and Le is the Lewis number. These param-
eters are de�ned as:

M = σB
2
0

ρf b
, λ = Grx

Re2x
, Rex =

xuw
νf

, Nb =
τDBϕ∞
νf

,

Grx =
(1 − ϕ∞)ρf∞

ρf
gβ(Tw − T∞)x3

ν2f
,

Nr =
(ρp − ρf∞)
(1 − ϕ∞)ρf∞

ϕ∞
β(Tw − T∞)

, Pr =
νf
αf

,

Nt =
τDT(Tw − T∞)

T∞νf
, Le =

νf
DB

. (12)

We note that in the case of assisting �ow λ > 0, and for
opposing �ow λ < 0, λ = 0 corresponds to free convection.
The skin friction coe�cient Cf and the local Nusselt num-
ber Nux are de�ned as

Cf =
τw
ρf u2w

, Nux =
xqw

kf (Tw − T∞)
, (13)

where τw is the shear stress along the stretching surface,
qw is the wall heat �ux, respectively de�ned as

τw = −µf
(
∂u
∂y

)

y=0
, qw = −kf

(
∂T
∂y

)

y=0
. (14)

Hence using Eq.(14) we get

√
ξRex Cf = −f ′′(0, ξ ),

√
ξ
Rex

Nux = −θ′(0, ξ ). (15)
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With the revised boundary condition, the Sherwood
number which represents the dimensionless mass �ux is
identically zero (see Kuznetsov and Nield [12], Kuznetsov
and Nield [38]).

3 Method of solution
The spectral relaxation method (see [39]) was used to
solve the systemof non-similar equations (8)–(10)with the
boundary conditions (11). In the SRM framework, we ob-
tain the iterative scheme

f ′r+1 = ur+1, (16)

u′′r+1 + a1,ru′r+1 + a2,rur+1 + a3,r = a4,r
∂ur+1
∂ξ , (17)

θ′′r+1 + b1,rθ′r+1 + b2,rθr+1 + b3,r = b4,r
∂θr+1
∂ξ , (18)

Φ′′r+1 + c1,rΦ′r+1 + c2,r = c3,r
∂Φr+1
∂ξ , (19)

with boundary conditions

fr+1(0, ξ ) = S, ur+1(0, ξ ) = 1 + γf ′′(0, ξ ), θr+1(0, ξ ) = 1,

NbΦ′r+1(0, ξ ) + Ntθ′r+1(0, ξ ) = 0,
ur+1(∞, ξ ) → ε, θr+1(∞, ξ ) → 0, Φr+1(∞, ξ ) → 0, (20)

where

a1,r =
1
2(1 − ξ )η + ξfr , a2,r = −ξM,

a3,r = ξ
[
ε2 + Mε − u2r + λ(θr − NrΦr)

]
, a4,r = ξ (1 − ξ )

(21)

b1,r = Pr
[
1
2(1 − ξ )η + ξfr+1 + NbΦ

′
r

]
, b2,r = ξB*

b3,r = ξA*e−η + PrNtθ′2r , b4,r = Prξ (1 − ξ ) (22)

c1,r = Le
[
1
2(1 − ξ )η + ξfr+1

]
, c2,r =

Nt
Nb
θ′′r+1,

c3,r = Le ξ (1 − ξ ). (23)

In Equations (16)–(23) the indices r and r+1denote the
previous and current iteration levels, respectively. Start-
ing from initial approximations denoted by f0, u0, θ0, and
Φ0, equations (9)–(11) are solved iteratively for fr+1(η, ξ ),
ur+1(η, ξ ), θr+1(η, ξ ), andΦr+1(η, ξ ) (r = 0, 1, 2, ...). Equa-
tions (8)–(10) were discretized using the Chebyshev spec-
tral collocation method in the η direction while the dis-
cretization in the ξ direction uses the implicit �nite di�er-
ence method. This leads to a system of linear equations of
the form

A1fn+1r+1 = unr , (24)

A2un+1r+1 = B2unr+1 + K2, (25)
A3θn+1r+1 = B3θnr+1 + K3, (26)
A4Φn+1

r+1 = B4Φn
r+1 + K4, (27)

where

A1 = D, (28)

A2 =


1
2

(
D2 + [an+

1
2

1,r ]dD + an+
1
2

2,r I
)
−
an+

1
2

4,r
∆ξ I


 ,

B2 =


−12

(
D2 + [an+

1
2

1,r ]dD + an+
1
2

2,r I
)
−
an+

1
2

4,r
∆ξ I


 ,

K2 = −a
n+ 1

2
3,r , (29)

A3 =


1
2

(
D2 + [bn+

1
2

1,r ]dD + bn+
1
2

2,r I
)
−
bn+

1
2

4,r
∆ξ I


 ,

B3 =


−12

(
D2 + [bn+

1
2

1,r ]dD + bn+
1
2

2,r I
)
−
bn+

1
2

4,r
∆ξ I


 ,

K3 = −b
n+ 1

2
3,r , (30)

A4 =


1
2

(
D2 + [cn+

1
2

1,r ]dD
)
−
cn+

1
2

3,r
∆ξ I


 ,

B4 =


−12

(
D2 + [cn+

1
2

1,r ]dD
)
−
cn+

1
2

3,r
∆ξ I


 ,

K4 = −c
n+ 1

2
2,r . (31)

Here I is an (N + 1) × (N + 1) identity matrix, and [ . ]d are
diagonal matrices of order (N + 1) × (N + 1).

In applying theSRMacomputational domainof extent
L = 20 was chosen in the η-direction. Through numerical
experimentation, this value was found to give accurate re-
sults for all the selected physical parameters. Increasing
the value of η do not change the results to a signi�cant ex-
tent. The number of collocation points is used in the spec-
tralmethod discretization is Nx = 100 in all cases. The cal-
culations are carried until some desired, tolerance level ϵ
is attained. The tolerance level was de�ned to be themaxi-
mum in�nity norm of the di�erence between the values of
the calculated quantities, that is

max{
‖f n+1r+1 − f n+1r ‖∞, ‖θn+1r+1 − θn+1r ‖∞, ‖Φn+1r+1 − Φn+1r ‖∞

}

< ϵ.

To ensure the accuracy of the results, a su�ciently small
step size ∆ξ was used. The step sizewas chosen to be small
enough such that further reduction in step size did not
change the results of the �ow properties.
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4 Results and discussion
The transformed systemof coupled nonlinear ordinary dif-
ferential equations (8)-(10) includingboundary conditions
(11) are solved numerically using the spectral relaxation
method. The numerical results are presented here to show
the velocity, concentration and temperature pro�les, the
rate of heat transfer and the skin friction coe�cient for
di�erent physical parameter values. These results are pre-
sented both graphically and in tabular form. In the nu-
merical simulations thedefault parameter valuesusedare,
unless otherwise speci�ed; Pr = 6.8, ε = 0.5, λ = 0.5,
M = 0.1, Nr = 0.5, A* = 2.0, Nb = 0.5, B* = 1.0, Nt = 0.5,
S = 0.1, Le = 10, γ = 0.1 and ξ = 0.5.

To verify the accuracy of our numerical scheme, a
comparison of the computed skin friction coe�cient is
made with earlier results of Anwar et al. [43] in Table 1.
Here we observe an excellent agreement validating the ac-
curacy of the current numerical results. The residual error
in the numerical simulations against the number of itera-
tions for di�erent values of γ, ε, S andM is shown in Figure
1. These results again con�rm that the numerical method
used in this study converges.

Table 1: Comparison of the reduced skin friction coe�cient −f ′′(0, 1)
when λ = Nr = γ = 0

Anwar et al. [43] Present Results

M ε S −f ′′(0, 1) −f ′′(0, 1)

0.1 0.1 0.1 1.0568 1.056803

2.5 1.7660 1.765967

0.1 0.6 0.1 0.5921 0.592079

1.1 -0.1728 -0.172795

1.6 − -1.165587

2.5 1.1 -0.2328 -0.232839

0.1 0.1 -0.5 0.8050 0.804972

1.1 -0.5 − -0.141738

0.1 0.5 1.2638 1.263785

1.1 0.5 -0.1963 -0.196310

Figure 2(a) displays the variation of f ′ with respect to
η for several values of γ when ε < 1, ε = 1 and ε > 1.
Here we note that f ′ increases with γ when ε > 1 while the
opposite is true when ε < 1. An increase in the slip pa-
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Figure 1: Residual error for di�erent values of (a) dimensionless
slip,(b) stretching or shrinking, (c) suction or injection, (d) magnetic
�eld parameters on velocity pro�le
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Figure 2: (a) E�ects of dimensionless slip factor γ and stretching
parameter ε,(b) E�ects of buoyancy force λ and buoyancy force ratio
Nr parameters, on velocity pro�les

rameter has the e�ect of reducing the velocity at the wall.
The velocity decreases asymptotically to zero at the edge
of the boundary layer. The boundary layer thickness de-
creases as γ increases.Wenote thatwhen ε = 1, increasing
γ gives no further changes in the velocity pro�les because
at this stage the external stream velocity becomes equal to
the stretching velocity. This causes a frictionless Hiemenz
�ow [44].

Figure 2(b) explores the e�ect of λ and Nr on the ve-
locity pro�les. It is seen that the velocity increases as the
buoyancy force parameter increases. This is due to the fact
that the assisting �ow (λ > 0) induces a favorable pressure
gradient which enhances the �uid �ow in the boundary
layer and as a result the momentum boundary layer in-
creases whereas the reverse occurs for the opposing �ow
when λ < 0.
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Figure 3: E�ects of dimensionless suction/injection S and magnetic
M parameters on velocity pro�les

Figure 3 shows the e�ects of S and M on f ′ with re-
spect to η. Here we note that f ′(η, ξ ) decreases with in-
creasing values of S and M. This behaviour is due to the
fact that M increases the resistive forces on the �at plate
which in turn reduces the �uid velocity and hence themo-
tion of the �uid is slowed down. It is known that the wall
suction (S > 0) has the tendency to decrease the momen-
tum boundary layer thickness which is the cause of reduc-
tion in the velocity. But the the opposite behaviour can be
seen for �uid injection (S < 0).

The internal heat source or sink in the boundary layer
has an in�uence on the temperature �elds as illustrated in
Figure 4(a). It is clear that increasing A* and B* increases
the temperature distribution within the �uid and the ther-
mal boundary layer thickness increases. Figure 4(b) shows
the variation of the temperature pro�les for various val-
ues of the slip and stretching parameters. The temperature
pro�les increase with increasing γ when ε < 1 but the op-
posite trend is observed when ε > 1 as the thermal bound-
ary layer thickness decreases.

Figure 5(a) depicts the e�ect of λ and Nr on the tem-
perature pro�les. We note that with the increasing value
of buoyancy force parameter decreases the nano�uid tem-
perature. Moreover, positive λ values induce a favorable
pressure gradient that enhances the nano�uid temper-
ature in the boundary layer when Nr increases. Conse-
quently, the thermal boundary layer increases while the
opposite is observed for negative λ values. Figure 5(b)
demonstrates the in�uence of Le on the temperature dis-
tributionwithin theboundary layer in thepresenceofmag-
netic in�uence, buoyancy force, heat sink/source, ther-
mophoresis/Brownian motion. It is observed that the tem-
perature pro�les including the thickness of the tempera-
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Figure 4: (a) E�ects of space-dependant A* and temperature-
dependent B* parameters, (b) E�ects of dimensionless slip factor
γ and stretching parameter ε, on temperature pro�les

ture boundary layer increases with increases in the values
of Le.

Figure 6(a) suggests that, in so far as the boundary
layer temperature is concerned, thermophoresis plays the
same role as the �uid Brownian motion. Thus, the �uid
temperature increases with both Nt and Nb in the bound-
ary layer region. The physical reason for this behaviour
is that increased random motion of the nanoparticles in-
creases the �uid temperature which enhances the thick-
ness of the thermal boundary layer pro�les. Figure 6(b) de-
picts the response of the temperature pro�les to changing
suction andmagnetic �eld parameter values. Moreover, as
would be expected, we note that the �uid temperature de-
creases with increase in suction but is higher in the case of
injection.

The traditional model is revised such that the
nano�uid particle volume fraction on the boundary is
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Figure 5: (a) E�ects of buoyancy force λ and buoyancy force ratio Nr
parameters,(b) E�ects of Lewis number Le, on temperature pro�les

passively controlled. The e�ect of this change in bound-
ary conditions can be seen in Figures 7 to 9 for di�erent
parameters. The impact of heat sink/source parameters
B* and A* on the concentration pro�les is presented in
Figure 7(a). It can be seen that, away from the boundary,
the concentration pro�les increase with an increase in the
values of A* and B*. The e�ect of γ and ε on nanoparticle
concentration is shown in Figure 7(b). An increase in the
value of partial slip parameter value leads to an increase
in the nanoparticle concentration when ε < 1 while the
opposite trend is observed for ε > 1. In addition, the con-
centration increases and attains its highest value in the
vicinity of the stretching plate near η = 0.9 and then de-
creases to the zero. Figure 8(a) displays the e�ect of λ and
Nr on the nanoparticle concentration pro�le distributions.
The nanoparticle concentration decreases asymptotically
with increasing values of λ. Furthermore, in the case of
opposing �ow, the nanoparticle concentration decreases
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Figure 6: (a) E�ects of thermophoresis Nt and Brownian motion Nb
parameters, (b) E�ects of dimensionless suction/blowing S and
magnetic M parameters, on temperature pro�les

with increasing Nr. Figure 8(b) shows the nanoparticle
concentration pro�les for several values of Le. It is seen
that the nanoparticle volume fraction decreases with in-
creases in Le and thismanifested through the reduction in
the thickness of the concentration boundary layer. Addi-
tionally, the nanoparticle concentration pro�les decrease
asymptotically to zero at the edge of the boundary layer.

The nanoparticle concentration pro�les are presented
in Figure 9(a) for various values of the thermophoresis pa-
rameter. The results show that the nanoparticle concentra-
tion pro�les increase with increasing Nt away the bound-
ary layer region. It is interesting to note that the distinctive
peaks in the pro�les occur in regions adjacent to the sur-
face for higher values of thermophoresis parameter. This
means that the nanoparticle concentration pro�le takes
higher value near the plate. Figure 9(b) shows that the
nanoparticle concentration pro�les increase with increas-
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Figure 7: (a) E�ects of temperature-dependent B* and space-
dependent A* parameters, (b) E�ects of dimensionless slip γ and
stretching ε parameters, on concentration pro�les

ingM up to a certain value of η, beyondwhich the opposite
trend is observed. It is clear that as S increases the concen-
tration pro�les increase to the highest value in the vicin-
ity of the plate and then decreases to zero in the quiescent
�uid. As a result, the concentration boundary layer thick-
ness increases close to the plate surface and decreases far
from the surface with increasing S. Figure 9(c) shows that
the concentration pro�le for various values ofNb. It is seen
that the concentration pro�les decrease with increasing
Nb. The concentrationpro�les attain theirmaximumvalue
near the η = 1.0.

Figure 10(a) shows the variation of the skin friction co-
e�cient with ξ in response to changes in A* and B*. The
skin friction coe�cient decreases with increases in both
A* and B* when ξ increases. This suggests that A* and B*

can be useful parameters for reducing the drag coe�cient.
Variations of the skin friction coe�cient as a function of ξ
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Figure 8: (a) E�ects of buoyancy force λ and buoyancy force ratio
Nr parameters, (b) E�ects of Lewis number Le, on concentration
pro�les

for di�erent values of the slip γ and stretching ε parame-
ters are shown in Figure 10(b). We note that when ε < 1
the skin friction coe�cient increases with increasing ξ ,
and decreaseswith increasing γ. The highest surface shear
stress occurs with the no-slip velocity condition.

The variation of skin friction coe�cient with λ and Nr
is shown in Figure 11(a). We observe that the skin friction
coe�cient decreases with increasing λ. In the case of op-
posing �ow, the skin friction coe�cient increases with ξ
and decreases with an increase in Nr. Figure 11 (b) shows
that the skin friction coe�cient decreases with increasing
Lewis numbers but increases with increasing ξ .

Figure 12(a) shows the variation of the skin friction co-
e�cient with di�erent values of Nt and Nb. The skin fric-
tion coe�cient decreases as Nt and Nb increase but in-
creases with increasing ξ . Figure 12(b) shows the skin fric-
tion coe�cient with respect to ξ for di�erent values of M
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Figure 9: (a) E�ects of thermophoresis Nt parameter, (b) E�ects of
suction/injection S and magnetic M parameters, and (b) E�ects of
Brownian motion Nb parameters, on concentration pro�les
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Figure 10: (a) E�ects of space-dependent A* and temperature-
dependent B* parameters, (b) E�ects of dimensionless slip γ and
stretching ε parameters, on skin friction coe�cient

and S. The skin friction coe�cient increases with increas-
ing M and S. Figures 13 - 14 show the e�ect of Pr on tem-
perature and concentration pro�les with same values of
other parameters where dashed line indicates Nb = 0.1
and solid line for Nb = 0.5. The nature of those �gures are
similar to the Figures 4 (a) and 9 (b).

5 Conclusions
In this work, the unsteady stagnation boundary layer �ow
of amagnetohydrodynamic nano�uid over a stretching�at
plate with velocity slip was investigated. The equations
that model the boundary layer equations were solved nu-
merically using the spectral relaxation method. A para-
metric study was performed to explore the impact of var-
ious physical parameters on the �ow, and heat and mass
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Figure 11: (a) E�ects of buoyancy force λ and buoyancy force ratio
Nr parameters, (b) E�ects of Lewis number Le on skin friction coe�-
cient

transfer characteristics. The internal heat source or sink
is shown to enhance the nano�uid motion while reducing
the skin friction coe�cient and the rate of heat transfer at
the stretching surface.

In this study we have shown that increasing the Brow-
nian motion parameter and the Lewis number reduces
nanoparticle concentration pro�les near the boundary
layer region due to increasing mass transfer. The veloc-
ity, temperature and concentration pro�les and the heat
and mass transfer rate on the stretching plate are strongly
in�uenced by the slip parameter. Heat transfer rates de-
crease with increasing velocity slip parameter values.
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Chapter 6

An unsteady moving magneto-nanofluid

over a moving surface in presence of chem-

ical reaction

In this Chapter, we extend the work in Chapter 5 by considering a binary nanofluid (see

Kuznetsov and Nield [213]). Here we study the unsteady magneto-nanofluid flow over

a moving surface. The aim is to investigate the influence of thermophoresis, Brownian

motion, thermal radiation, chemical reaction and inertia on the flow model. The nanopar-

ticle flux is assumed to vanish at the boundary surface. The model equations are solved

numerically using the spectral relaxation method.
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Abstract

The double-diffusive convection of unsteady flow in porous medium appeased by a moving
nanofluid, in the presence of chemical reaction and thermal radiation effects over a moving
surface has been investigated. Two different types of concentration profiles i.e., solutal
concentration profile as well as nanoparticle concentration profile are chosen here. This study
includes the effects of Brownian motion and thermophoresis. The nanofluid particles fraction
on the boundary have been passively rather than actively controlled with the nanoparticle
flux at the boundary surface assumed to vanish. The governing equations are solved using
the spectral relaxation method. The numerical results are discussed and demonstrated
graphically and in tabular forms for the velocity, temperature, solutal concentration, and
nanoparticle concentration; as well as the skin friction coefficient, heat and mass transfer
rate. A comparative study between previously published and the present results for some
limiting cases shows an excellent agreement between the results.

Keywords: Magneto-Nanofluid, Moving surface, Chemical reaction, Spectral relaxation method.

1 Introduction:

The study of laminar boundary layer flow, heat and mass transfer in Newtonian and nanofluid
flows over a moving surface, have received considerable research attention in the past a few
decades. Fluid flow on a moving surface has many engineering and industrial applications in
electro-chemistry and chemical engineering processes, including metallurgical processes, polymer
extrusion and the cooling of fused fluids that have being stretched into a cooling system. Other
applications can be found in glass blowing, crystal growing, and paper production. In the early
twentieth century, Blasius [1] pioneered the study of the steady state boundary layer flow with
a uniform free stream. Howarth [2] provided additional results to the Blasius problem. After
that so many work had been done in recent past years([3] -[12])

Liquids such as oil, water, ethylene glycol, toluene and toluene di-isocyanate have low ther-
mal conductivities. To enhance the thermal conductivity of such fluids, nano-scale metallic
particles, for instance, aluminum, titanium, gold, copper, iron or their oxides are added to these
fluids. Choi [13] coined the term nanofluid for such fluids with suspended nanoparticles. The
main role of nanoparticles is to enhance the fluid’s thermal conductivity and heat transfer co-
efficient. In the literature, many authors have studied problems related to a stretching surface
with nanofluid flow. Khan and Pop [14] were among the first researchers to work on nanofluid
flow due to a stretching sheet. A numerical study of boundary layer flow over a linear stretch-
ing sheet, combined with Brownian motion and thermophoresis influences was undertaken by
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Makinde and Aziz [15]. A theoretical study of the unsteady boundary layer flow of a nanofluid
over a permeable stretching/shrinking sheet was carried out by Bachok et al. [16]. Rohni et al.
[17] gave a numerical solution for the unsteady flow over a continuously shrinking surface with
wall mass suction in a nanofluid by using the nanofluid model proposed by Buongiorno [18].

The main objective of this work is to study double-diffusion effects on an unsteady, two-
dimensional laminar flow of a moving viscous nanofluid with a chemical reaction and thermal
radiation effects. The nanoparticle boundary condition assumes that the flush vanishes at the
wall. The model equations are solved numerically using the spectral relaxation method, [19].
Numerical results for the velocity and temperature, concentration and nanoparticles volume
fraction profiles are presented graphically and in tabular form for various physical parametric
conditions.

2 Mathematical Formulation

Consider the two-dimensional flow of an unsteady viscous incompressible Newtonian nanofluid,
over a surface moving with a velocity Uw, in the same or opposite direction to the free stream
velocity U∞ as shown in Figure 1. The coordinate systems are assumed to be the x-axis, which
extends parallel to the surface, while the y-axis extends normal to the surface. The surface
temperature and solute concentration are Tw = T∞ + T0x

κ and Cw = C∞ + C0x
κ, where T0

and C0 are positive real numbers and κ is the temperature and concentration power index.
The ambient temperature and concentration values are T∞ and C∞, respectively. It assumed
that the nanoparticle flux vanishes at the moving surface. The governing equations are the
continuity, momentum, energy, concentration and nanoparticle volume fraction, written as (see
Kuznetsov and Nield [20], Yih [21])

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ νf
∂2u

∂y2
−
[
νf
K
+
σB20
ρf

]
(u− U∞)− C∗ε2 u2, (2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

kf
(ρcp)f

∂2T

∂y2
− 1

(ρcp)f

∂qr
∂y

+
(ρcp)np
(ρcp)f

{
DB

∂φ

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2}
+DTC

∂2C

∂y2
, (3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DS

∂2C

∂y2
+DCT

∂2T

∂y2
−R(C − C∞), (4)

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= DB

∂2φ

∂y2
+
DT

T∞

∂2T

∂y2
, (5)

where t is the time, u and v are the fluids’ velocity components along x and y axis, respectively.
νf is the fluids’ kinematic viscosity, K is the permeability of porous medium, σ is an electrical
conductivity, B0 is an uniform magnetic field strength, ρf is the fluid’s density, C

∗ε2 is an
inertia parameter, T is the fluid’s temperature, kf is the is the fluids’ thermal conductivity,
(ρcp)f is the fluid’s heat capacity, αf is the thermal diffusivity or is the ratio of the fluids’
thermal conductivity to fluid’s heat capacity, (ρcp)np is the effective nanoparticle’s material
heat capacity, τ is the ratio of the effective nanoparticle’s material heat capacity to fluid’s heat
capacity, DB stand for the Brownian diffusion coefficient, DT stand for thermophoretic diffusion
coefficient, DTC is the Dufour-type diffusivity, C is the fluid’s solutal concentration, DS is the
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solutal diffusivity, DCT is the Soret-type diffusivity, R is the chemical reaction parameter and φ
is the nanoparticle volume fraction. The radiation heat flux qr under Rosseland approximation
[22] is stated as

qr = −
4σ∗

3K∗
∂T 4

∂y
(6)

where σ∗ is the Stephen-Boltzmann constant, K∗ is the Rosseland mean spectral absorption
coefficient. The temperature differences within the flow are assumed to be sufficiently small
such that T 4 may be expressed as a linear function of temperature T . The term T 4 is expanded
in a Taylor series about T∞ as

T 4 ∼= T 4∞ + 4T 3∞(T − T∞) + 6T 2∞(T − T∞)2 + ... (7)

Neglecting higher order terms in Eq. (7) above the first degree in (T − T∞), we get

T 4 ∼= 4T 3∞T − 3T 4∞. (8)

The initial conditions are

u = v = 0, T = T∞, C = C∞, φ = φ∞ ∀ x, y, t < 0, (9)

with boundary conditions

v = 0, u = Uw = ax, T = Tw, C = Cw, DB
∂φ

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0, t ≥ 0,

u→ U∞ = bx, T → T∞, C → C∞, φ→ φ∞ as y →∞, t ≥ 0. (10)

We introduce the following non-dimensional similarity variables

η =

√
U

αfxξ
, ξ = 1− exp(−t∗), t∗ =

U

x
t, ψ =

√
Uxαfξ f(ξ, η),

θ(ξ, η) =
T − T∞
Tw − T∞

, ϕ(ξ, η) =
C − C∞
Cw − C∞

,Φ(ξ, η) =
φ− φ∞
φw

, (11)

where U = Uw + U∞ = cx is a composite velocity; and a, b and c are positive real numbers.
The stream function ψ defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (12)

Equations (1) - (5) are reduced into the following forms

Prf ′′′ + ξ
[
ff ′′ − (1 + Λ)f ′2 + (Ω +M2)(λ− f ′) + λ2

]
+ (1− ξ)

[
1

2
ηf ′′ − ξ

∂f ′

∂ξ

]
= 0, (13)

(1 +Nr) θ′′ + ξ [fθ′ − κf ′θ] + (1− ξ)

[
1

2
ηθ′ − ξ

∂θ

∂ξ

]
+NbΦ

′θ′ +Ntθ
′2 +Ndϕ

′′ = 0, (14)

ϕ′′ + Le

[
ξ [fϕ′ − κf ′ϕ− γϕ] + (1− ξ)

[
1

2
ηϕ′ − ξ

∂ϕ

∂ξ

]]
+ Ld θ′′ = 0, (15)

Φ′′ + Ln

[
ξfΦ′ + (1− ξ)

[
1

2
ηΦ′ − ξ

∂Φ

∂ξ

]]
+
Nt

Nb
θ′′ = 0, (16)

The boundary conditions (10) become

f = 0, f ′ = 1− λ, θ = 1, ϕ = 1, NbΦ
′ +Ntθ

′ = 0 at η = 0, ξ ∈ [0, 1]
f ′ = λ, θ = 0, ϕ = 0, Φ = 0 as η →∞, ξ ∈ [0, 1], (17)
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where the primes denote differentiation with respect to η; and λ = b
c is the ratio of free stream velocity

to the composite reference velocity parameter. The Blasius problem can be recovered when λ = 1 (i.e.
for Uw = 0) while the Sakiadis flow problem is recovered when λ = 0 (i.e. U∞ = 0), [23]. The nanofluid
movement is more rapid than the surface motion when 1 > λ > 0.5 while the surface motion is quicker
than the nanofluid movement when 0 < λ < 0.5. The nanofluid and the surface are moving in the
opposite direction when λ > 1, [24].

The important parameters in Eqs. (13)-(16) are the Prandtl number Pr, the permeability parameter
Ω, the Hartmann numberM , the dimensionless porous media inertia parameter Λ, the thermal radiation
parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, modified Dufour parame-
ter Nd, Lewis number Le, chemical reaction parameter γ, Dufour-Lewis number Ld and nanofluid Lewis
number Ln defined as

Pr =
νf
αf

, Ω =
νf
c K

, M =

√
σB20
ρf c

, Λ = C∗ε2x, Nr =
16σ∗T 3∞
3kfK∗

,

Nb =
τDBφ∞

αf
, Nt =

τDT (Tw − T∞)
T∞αf

, Nd =
DTC(Cw − C∞)
αf (Tw − T∞)

,

Le =
αf
DS

, γ =
R

c
, Ld =

DCT (Tw − T∞)
DS(Cw − C∞)

, Ln =
αf
DB

. (18)

The skin friction coefficient Cf , the local Nusselt number Nux and the local Sherwood number Shx
of solutal concentration are defined as

Cf =
τw

1
2ρfU

2
, Nux =

xqw
kf (Tw − T∞)

, Shx =
xqm

DS (Cw − C∞)
, (19)

where τw, qw and qm are the wall shear stress, surface heat and mass fluxes, respectively. defined as

τw = μf

(
∂u

∂y

)

y=0

, qw = −
(
kf +

16σ∗T 3∞
3K∗

)(
∂T

∂y

)

y=0

, qm = −DS

(
∂C

∂y

)

y=0

. (20)

Using Eq.(20) and quantity (19), along with (11) we get

0.5

√
ξRex
Pr

Cf = f ′′(ξ, 0),

√
ξ

Pex
Nux = − (1 +Nr) θ′(ξ, 0),

√
ξ

Pex
Shx = −ϕ′(ξ, 0), (21)

where Rex =
cx2

ν is the Reynolds number, Pex =
cx2

α is the local Peclet number.
We cannot calculate the Sherwood number for nanoparticle concentration equation because the

nanoparticle flux at the boundary surface assumed to vanish due to the revised boundary condition.

3 Solution Technique

The spectral relaxation method [19] was used to solve the system of non-similar equations (13) - (16)
with boundary conditions (17). In the frame work of the spectral relaxation method, we obtain the
following iterative scheme

f ′r+1 = ur+1 (22)

Pr u′′r+1 + a1,ru
′
r+1 + a2,rur+1 + a3,r = a4,r

∂ur+1
∂ξ

(23)

(1 +Nr)θ′′r+1 + b1,rθ
′
r+1 + b2,rθr+1 + b3,r = b4,r

∂θr+1
∂ξ

(24)

ϕ′′r+1 + c1,rϕ
′
r+1 + c2,rϕr+1 + c3,r = c4,r

∂ϕr+1
∂ξ

(25)

Φ′′r+1 + d1,rΦ
′
r+1 + d2,r = d3,r

∂Φr+1

∂ξ
. (26)
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The boundary conditions for the above iteration scheme are

fr+1(ξ, 0) = 0, ur+1(ξ, 0) = 1− λ, θr+1(ξ, 0) = 1, ϕr+1(ξ, 0) = 1

NbΦ
′
r+1(ξ, 0) +Ntθ

′
r+1(ξ, 0) = 0

ur+1(ξ,∞) = λ, θr+1(ξ,∞) = 0, ϕr+1(ξ,∞) = 0, Φr+1(ξ,∞) = 0 (27)

where

a1,r =
1

2
(1− ξ)η + ξfr

a2,r = −ξ(Ω +M2)

a3,r = ξ
[
λ2 + (Ω +M2)λ− (1 + Λ)u2r

]

a4,r = ξ(1− ξ) (28)

b1,r =
1

2
(1− ξ)η + ξfr+1 +NbΦ

′
r

b2,r = −κ ξ ur+1

b3,r = Ntθ
′2
r +Ndϕ

′′
r

b4,r = ξ(1− ξ) (29)

c1,r = Le

[
1

2
(1− ξ)η + ξfr+1

]

c2,r = −Le ξ(κ ur+1 + γ)

c3,r = Ld θ′′r
c4,r = Le ξ(1− ξ) (30)

d1,r = Ln

[
1

2
(1− ξ)η + ξfr+1

]

d2,r =
Nt

Nb
θ′′r+1

d3,r = Ln ξ(1− ξ). (31)

The indices (r) and (r + 1) denote the previous and current iteration levels, respectively. Starting from
initial approximations denoted by f0, u0, θ0, ϕ0 and Φ0 the equations (13)-(16) are solved iteratively for
fr+1(ξ, η), ur+1(ξ, η), θr+1(ξ, η), ϕr+1(ξ, η) and Φr+1(ξ, η) (r = 0, 1, 2, ...). Here, f0 = 1 + λ(η − 1) −
(1− λ+ λη)e−η. The equations are discretized using the Chebyshev spectral collocation method in the
η direction while the discretization in the ξ direction is done using the implicit finite difference method.
To ensure accuracy of the results, a sufficiently small step size Δξ is used. The step size was chosen to
be small enough such that further reduction did not change the results for the flow properties of interest.
The total number of iteration to reach a good approximate result is 10 here.

4 Results and Discussions

Eqs. (13)-(16) subject to the boundary conditions (17) have been solved numerically using the spectral
relaxation method. The results given below demonstrate the influence of fluid and physical parameters on
the fluid properties. The velocity profiles, temperature profiles, solutal and nanoparticle concentration
profiles, skin friction coefficient and Sherwood number for solutal concentration profile are given in
Figures 1 - 13 for different parameters values. In the numerical calculations, the default parameter
values utilized are, unless otherwise specified; Pr = 10, Λ = 0.1, Ω = 1.0, M = 3.0, λ = 0.3 and 0.7,
Nr = 0.5, κ = 2.0, Nb = 0.5, Nt = 0.5, Nd = 0.2, Le = 2.0, γ = 0.1, Ld = 0.2, Ln = 10 and ξ = 0.5
[20, 21, 25].
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To validate the accuracy of the current results, and the solution procedure, we have compared the
skin friction coefficient with [21, 26, 27] using the same parameter values in Table 1. We note that a
good agreement is achieved with the results in the literature.

Figure 2 indicates that when the surface motion is quicker than nanofluid movement, the velocity
profiles and skin friction coefficient at the wall decrease with the increasing permeability parameter.
Again, when the surface motion is slower than the nanofluid movement within the boundary layer, the
velocity profiles and skin friction coefficient increase as Ω increases.

Figure 3 demonstrates that the fluid is accelerated faster than the surface with increasing value of
Hartmann number, the velocity profiles as well as the skin friction coefficient increase, but the tem-
perature, solutal concentration and nanoparticle concentration profiles decrease. Figure 4 is plotted to
demonstrate the influence of thermal radiation parameter on the temperature and nanoparticle concen-
tration profiles for different values of λ. It is noted that the temperature in the moving boundary layer
increases with increase in the value of the thermal radiation parameter. This is due to the fact that,
the divergence of the radiative heat flux ∂qr/∂y increases as the Rosseland mean spectral absorption
coefficient K∗ decreases which increases the rate of radiative heat transfer to the nanofluid which causes
the enhancement of the nanofluid temperature. In view of this fact, the effect of radiation becomes more
significant for large value of Nr and the radiation effect can be neglected when Nr = 0. Thereupon, the
thermal boundary layer thickness increases as thermal radiation parameter increases. The nanoparticle
concentration profile decreases upto a certain value of η and then turn to increases. This is due to
the revise nanofluid boundary condition. Furthermore, the temperature is higher when the nanofluid’s
motion is faster than surface’s motion, near to the surface.

Figure 5 demonstrates the effect of the Brownian motion parameter of the nanoparticles suspended
in the fluid on the nanoparticle concentration profiles. As the Brownian motion of the nanoparticles
increases the nanoparticle concentration profiles decrease. Thence, the boundary layer of the nanoparticle
volume fraction thickness decreases.

Figure 6 shows the influence of the regular Lewis number on solutal concentration, Sheerwod num-
ber of solutal concentration and nanoparticle concentration profiles for different values of λ. We note
that, increasing the Lewis number reduces the solutal concentration profiles gradually, this corresponds
to weaker molecular diffusivity and decrease the boundary layer thickness. On the other hand The
nanoparticle concentration profiles decrease upto a certain value of η and beyond that point, opposite
trend is observed. It is seen from this figure that the Sheerwood number for solutal concentration is
increases with increasing both in Le and λ.

Figure 7 illustrates the effects of chemical reaction parameter on solutal concentration profile. The
concentration profiles decrease with increasing values of the chemical reaction parameter, that is, the
concentration field decreases for a destructive chemical reaction.

Figure 8 shows the effects of the nanofluid Lewis number on the nanoparticle volume fraction profiles.
It can be seen that the nanoparticle concentration profile increases near the surface and decreases away
from the surface within the moving boundary layer. This phenomena is observed for the nanofluid model
with passive control of nanoparticles at the boundary.

Conclusion : This study was concerned with double-diffusion convection in the unsteady flow of a
moving magneto-nanofluid over a moving surface embedded in porous media with thermal radiation and
chemical reaction effects. The model nonlinear equations are solved numerically using the spectral relax-
ation method. Numerical results for the velocity, temperature, solutal and nanoparticles concentration
profiles have been presented graphically for various physical parametric conditions.

Furthermore, the nanofluid velocity decrease with an increase in the values of permeability parameter
and the Hartmann number. The temperature profiles are reduced by increasing Hartmann numbers. In
addition, the nanofluid temperature increased with an increase in thermal radiation parameter. The
solutal concentration decreased as the chemical reaction parameters increased.
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Table 1: Comparison of f ′′(1, 0) for various values of M when Pr = 1.0, Λ = Ω = 0 and λ = 1.0.

M Sparrow et al. [27] Ariel [26] Yih [21] Present Results

0.0 1.231 1.232588 1.232588 1.232530

0.5 1.418 - - 1.329396

0.6 - 1.369884 - 1.369879

1.0 1.584 1.585331 1.585331 1.585331

1.4 - 1.862848 - 1.862848

2.0 1.871 2.346663 2.346663 2.346663

4.0 2.345 - - 4.183576

5.0 - 5.147965 5.147964 5.147965

10.0 - 10.074741 10.074741 10.074742

Figure 1: Geometry and the coordinate system.

The 10th International Conference MSAST 2016, December 21 - 23, 2016, Kolkata, India

143



0 5 10 15 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

η

f
′
(ξ
,
η
)

Ω = 0, 5, 10

Ω = 0, 5, 10

λ = 0.3
λ = 0.7

(a)

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

ξ

f
′
′
(ξ
,
0)

Ω = 0, 5, 10

Ω = 0, 5, 10

λ = 0.3
λ = 0.7

(b)

Figure 2: Influence of permeability parameter Ω on (a) tangential velocity profiles and (b) skin
friction coefficient.
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Figure 3: Influence of Hartmann number M on (a) tangential velocity profiles, (b) skin friction
coefficient, (c) temperature profiles, (d) solutal concentration profiles, and (e) nanoparticle
volume fraction profiles.
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Figure 4: Influence of thermal radiation parameter Nr on (a) temperature and (b) nanoparticle
volume fraction profiles.
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Figure 6: Influence of regular Lewis number Le on (a) solutal concentration profiles, (b) Sher-
wood number and (c) nanoparticle volume fraction profiles.
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Figure 7: Influence of chemical reaction parameter γ on the solutal concentration profiles.
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Figure 8: Influence of nanofluid Lewis number Ln on the nanoparticle volume fraction profiles.
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Chapter 7

Conclusions

In this study, we have investigated mathematical models of unsteady nanofluid flow includ-

ing heat and mass transfer in porous media and for different flow geometries. The study

concerns the numerical solution of unsteady nanofluid flow models for different types of

nanoparticles; namely, copper, silver and titanium oxide with water as the base fluid. We

have studied the magneto-nanofluid flow due to a moving surface, the convective heat trans-

port in polymer nanocomposites such as an Oldroyd-B nanofluid flow and nanofluid flow

along a stretching cone subject to impulsive motion. The study sort, inter alia, to deter-

mine both qualitatively and quantitative how certain fluid and physical parameters impact

the flow structure, the fluid properties as well as the heat and mass transfer from or to the

fluid. The comparison between the copper-water, silver-water and titania-water nanofluids;

and pure water in terms of heat and mass transfer coefficients is given. The results show

that physical parameters such as the magnetic field, viscous dissipation, thermal radiation,

Brownian motion and thermophoresis parameters have a significant influence on the fluid

flow, and heat and mass coefficients.

Through these types of mathematical models that described the nanofluid flow, as the part

of the main results, it was found that the nanofluid flows gave higher thermal conductivity

than base fluid water. That is because the particle material is an important parameter that

affects the thermal conductivity and concentration distribution of nanofluids. In this study,

some of the nanoparticles such as copper, silver, and titanium oxide have been used to
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prepare the nanofluids. The comparison showed that the copper-water nanofluid is better

for heat transfer characteristics. The study showed that the thermal conductivity enhanced

by the Brownian diffusion and movement of nanoparticle suspended in water base fluid.

The magnetic field acts as the Lorentz force which it has the tendency to slow down the

flows and nanoparticles movement. It clearly that the magnetic field opposes the transport

of the nanofluid flows. So, the large resistances on the nanofluid particles lead to raising the

nanoparticles concentration, which causes the heat to be generated in the nanofluid flows.

It observed that the shear stress rose due to the irreversible processes such as viscous and

electrical resistance. As result, a significant generation of heat inflows cannot be neglected.

Also, The highest surface shear stress occurs with the no-slip velocity condition.

The mathematical models have been constructed in terms of systems of partial differen-

tial equations that describe transport processes in different flow geometries. The nonlinear

conservation equations were transformed by introducing suitable dimensionless variables;

and then solved using recent linearization and spectral techniques. In order to assess the

accuracy, reliability and convergence of the methods, the results for the flow, heat and mass

transfer coefficients have been compared with related work in the literature for certain lim-

iting cases. The results obtained using the spectral local linearization method, the spectral

relaxation method, and the spectral quasilinearization method showed that these methods

used less number of iterations to get the convergence rate. In this study, the computations

were done with 10−6 as the tolerance level. It was noted that increasing the number of it-

erations led to improved accuracy. The methods gave good accuracy with acceptable rates

of convergence. We conclude that those methods are suitable for solving complex systems

of differential equations and may be used in place of finite difference, finite elements and

finite volume based approaches.

In Chapter 2, we investigated the flow of an unsteady magneto-nanofluid flow along

an inclined cylinder with a chemical reaction, viscous and Ohmic dissipations. Some no-

table findings are that the buoyancy force, viscous and Ohmic dissipation all enhanced
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the nanofluid temperature within the boundary layer. The nanofluid concentration reduced

while the wall mass gradient increased with increases in the chemical reaction parameter,

buoyancy force, viscous and Ohmic dissipations. Increasing the thermo-diffusion param-

eter tended to increase the nanofluid concentration. The buoyancy force and the Ohmic

dissipation enhance the fluid velocity within the boundary layer region. The fluid velocity

is reduced by an increase in the electromagnetic field leading to an increase in the temper-

ature and concentration levels. An important observation is that copper nanoparticles give

better performance than silver nanoparticles in terms of heat and mass transfer.

In Chapter 3, we investigated an unsteady nanofluid flow along a vertical stretching

cone due to impulsive motion. The impact of viscous dissipation, internal heat generation

and chemical reaction are taken into account. The study considered two different types of

nanoparticles, namely, copper and titanium dioxide. The results showed that the viscous

dissipation increases the nanofluid temperature, while the heat transfer rate decreases with

viscous dissipation. The internal heat generation increases the nanofluid temperature, while

reducing the heat transfer rate at the cone surface.

In Chapter 4, we studied the flow of an unsteady Oldroyd-B nanofluid over a stretching

surface. The commonly used boundary conditions were substituted by the more realistic

condition where the nanoparticle volume fraction is not controlled at the boundary. It was

found that increasing the unsteadiness parameter tended to reduce the fluid motion, temper-

ature and concentration levels within the boundary layer. The Deborah number is a measure

of the viscoelastic properties of the nanofluid. Increasing the Deborah number leads to a

reduction in the fluid motion. The nanofluid temperature and concentration increase with

the relaxation time which is in terms of the Deborah number β1, while the reverse is valid

for the retardation time in terms of the Deborah number β2. Increasing the thermophoresis

parameter increases both the nanofluid temperature and the nanoparticle concentration.
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In Chapter 5, the influence of an interior heat source or sink on the stagnation bound-

ary layer flow of a magneto-hydrodynamic nanofluid over a stretching flat plate with an

unsteady free stream and velocity slip condition was investigated. It was found that the

internal heat source or sink enhances the nanofluid motion and the temperature while re-

ducing the skin friction coefficient and rate of heat transfer at the surface of the stretching

plate. The skin friction coefficient decreases, while the heat and mass transfer rates increase

with increasing fluid buoyancy. Increasing the Brownian motion parameter and the Lewis

number leads to a reduction in the nanoparticle volume fraction concentration. As a result,

the mass transfer rate increases, but the reverse is true for the nanofluid velocity and the

temperature. Increasing the thermophoresis increases the nanofluid velocity, temperature

and nanoparticle volume fraction concentration. The skin friction coefficient was reduced

by increasing the stretching parameter, while the heat and mass transfer rates increase. The

nanofluid flow velocity, temperature, concentration, surface shear stress, heat and mass

transfer rate on the stretching plate are strongly influenced by the slip parameter. Surface

shear stress and heat transfer rates decrease with an increase in the velocity slip parameter

while the mass transfer rate increases.

In Chapter 6, we investigated the flow of a magneto-nanofluid over a permeable moving

surface, with thermal radiation and a chemical reaction. In general, the nanofluid velocity

increases as the velocity ratio increases. Furthermore, the nanofluid velocity increases

with an increase in the Prandtl number when the plate motion is faster compared to the

velocity of the nanofluid. The velocity however decreased with the porous media inertia,

permeability and the Hartmann number. When the nanofluid movement is more rapid than

the surface, an increase in the Prandtl number and the porous media inertia increases the

nanofluid temperature.

In summary, in this study we applied recent linearization and spectral methods to solve

highly nonlinear coupled equations that describe the flow, heat and mass transfer in certain

nanofluids. The findings in this study have not been tested experimentally and in future,
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it would be useful to work towards an experimental validation of these results. There is a

need for more research on unsteady flow of non-Newtonian fluids including triple-diffusion

problems which have wide usage in industry. The solution of the highly couple nonlinear

flow equations still presents challenges and there is a need to continuously improve the

range of computational techniques for accurate solutions.
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