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ABSTRACT 

The accurate estimation of catchment rainfall is crucial, especially in hydrological modelling 

and flood hydrology which is used for the planning and design of hydrological infrastructures 

such as dams and bridges. Traditionally, catchment rainfall is estimated by making use of 

ground-based point rainfall measurements from rain gauges. The literature review conducted in 

this study supports that there is evidence of a decrease in the number of operational ground-

based rainfall stations in South Africa which presents a challenge when estimating catchment 

rainfall for use in hydrological modelling and design flood estimation. Thus, innovative ways 

are required to estimate catchment rainfall and to improve the estimation of catchment design 

rainfall.  

This study investigated the use of remote sensing as an alternative way to estimate catchment 

design rainfall. To do this, a pilot study was first used to develop and test the methodology 

using a quaternary catchment that was selected based on the raingauge density. This was 

followed by the application of a refined methodology in another quaternary catchment which 

was used to verify the results that were obtained in the pilot study.  

After a comprehensive review of the literature, the remote sensing product selected for this 

study was the CHIRPS rainfall product. The methodology adopted first validated the remotely 

sensed rainfall data using the observed rainfall data and the estimated remotely sensed rainfall 

values were bias corrected using the observed rainfall data. The statistics that were used for 

validating are MAE, MBE, RMSE and D. The method that was used for bias correction was 

empirical quantile mapping  Issues encountered, and as documented in the literature, include 

the unavailability of long periods of observed quality rainfall data and the limited and uneven 

spatial distribution of rainfall stations.  

Catchment rainfalls were estimated using observed rainfall, and this was assumed as the best 

estimate and was compared to the catchment rainfalls that were estimated using the bias-

corrected remotely sensed rainfalls. The performance of CHIRPS rainfall was varied among the 

approaches and the selected catchments. 

Nevertheless, the results from this study still show the potential of the use of remotely sensed 

rainfall to estimate catchment design rainfalls. At the daily timescale, satellite-derived and 

observed rainfall were poorly correlated and variable among locations. However, monthly and 

annual rainfall totals were in closer agreement with historical observations than the daily values. 
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Despite the varied performance , the result of the study shows that CHIRPS rainfall product can 

be used to estimate catchment rainfall for hydrological modelling and flood frequency analysis. 

By acknowledging that the performance of remote sensing products is robust, it is of importance 

to note that the performance of the results presented is strictly for the catchments and stations 

selected for this project as well as the methods selected to validate and correct the bias in 

remotely sensed rainfall. The recommendations from the study are that a similar study is 

conducted in another region where there is even distribution of stations and a long record of 

quality observed rainfall beyond the year 2000 and consideration of the methods to identify 

outliers before making any meaningful estimations such as catchment rainfall from rainfall data.  

 

Keywords: Catchment rainfall, Design rainfall, Hydrological modelling, Remote sensing 
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1. INTRODUCTION 

Rainfall data are needed for many purposes, e.g. for hydrological modelling and design rainfall 

estimation. Ciach (2003) describes rainfall as the main driving force and key input in many 

hydrological processes. Generally, long term and good quality rainfall records are 

recommended for use (Gericke, 2018). This is because the statistical analysis and the 

conclusions that are drawn from the analysis of rainfall data can only be as accurate as the data 

on which they are based (DWS, 2014). Frezghi and Smithers (2008) expressed that, for 

hydrological modelling, such as design flood modelling, long sequences of rainfall at a fine 

spatial and temporal resolution are necessary. 

According to Schulze et al. (2007), the most convenient method to monitor accurate and long 

record rainfall is through the use of raingauges. Pegram et al. (2016) noted that Remote Sensing 

(RS) means of estimating rainfall are limited both internationally and in South Africa. 

Generally, RS records are not as trusted as observed records from the rain gauges. Dembélé et 

al. (2016) recommended that remotely sensed rainfall data should be validated with gauged 

observations before making meaningful conclusions based on the RS data. However, Awange 

et al. (2016) argue that, even though raingauges provide trusted observed rainfall estimates at 

a point, satellite and radar provide cost-effective means of complementing rainfall field data. 

This blended approach to estimating rainfall, especially with the gradual decrease of operating 

gauge stations in South Africa, should be pursued. For example, Makapela et al. (2015) 

recommended that both remote sensing and gauged observed rainfall should be combined to 

produce effective up-to-date estimations.  

Many hydrological assessments are done at a catchment level. To estimate catchment rainfall, 

point rainfall has historically been used. This is owing to the unavailability until relatively 

recently, uncertainty and errors that have been associated with using remotely sensed rainfall 

estimates. This statement is supported by the use of satellite-driven simulations specifically in 

flood events. According to Sawunyama and Hughes (2008), spatially interpolated point rainfall 

data are currently widely used as input to hydrological modelling even though the accuracy in 

terms of both time and space remains a major concern. Therefore, spatial rainfall estimated 

using remote sensing is becoming a viable substitute and mainline product.  

There are different methods of estimating catchment rainfall from point rainfall observations. 

For example, the Department of Water and Sanitation uses the areal averaged method to convert 
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point design rainfalls to catchment design rainfalls (DWS, 2014), while the ACRU hydrological 

model makes provision for the use of adjustment factors to adjust daily point rainfalls to best 

represent catchment daily rainfall (Smithers and Schulze, 2004a). In both examples, areal 

rainfall is estimated using point rainfall data from raingauges. Therefore, it is important to 

investigate other approaches to estimate areal rainfalls that result in better estimates of spatial 

rainfall and take into consideration ungauged catchments and the currently declining raingauge 

network, both internationally and in South Africa.  

The primary aim of this study is to use remotely sensed rainfall to improve the estimation of 

catchment rainfall for use in hydrological modelling and assess different methods of estimating 

both catchment rainfall and catchment design rainfall. This is to (a)  address the challenge of 

few stations with long records of rainfall data and (b) address the gap that exists when deriving 

catchment design rainfalls for flood studies in less gauged catchments. The study aims were 

achieved by the following objectives:  

(a) Assessing the availability of remotely sensed rainfall data and selecting the best option for 

use in South Africa. 

(b) Evaluating the performance of the selected remotely sensed rainfall estimation product by 

comparing it against gauged data and, if necessary, bias correcting the remotely sensed 

rainfall data using approaches that are used internationally.  

(c) Estimating catchment rainfall using observed rainfall and adjusting remotely sensed rainfall 

to some approaches that traditionally use observed rainfall to estimate catchment rainfall 

for comparison. 

(d) Assessing the performance of catchment rainfalls and the impact of adjusted approaches in 

(c) on the performance of the design rainfall estimation. 

 

This study is structured as follows: Chapter 2 provides a detailed literature review. Chapter 3 

introduces the detailed methodology that was followed to carry out this study and this includes 

the selection of catchments, selection of stations, and selection of remote sensing product to use 

in the study. Chapter 4 contains the results of the pilot study. In Chapter 5, a refined 

methodology is applied in another catchment so that the results obtained in the pilot study can 

be confirmed.  Chapter 6 contains a discussion of the results from the study, draws conclusions, 

and give recommendations for future research. 
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2. LITERATURE REVIEW 

This chapter contains a detailed literature review of the study which includes to the observed 

rainfalls, remotely sensed rainfalls and the estimation of design catchment rainfalls. 

2.1 Rainfall Observation and Monitoring Network 

This chapter provides a review of gauged rainfall observations and raingauge network status in 

South Africa. This is followed by a review of the use of remotely sensed rainfall data. 

2.1.1 Daily raingauge observations 

Raingauges are the primary source of observed rainfall data which provides accurate estimates 

at the point of measurement (Kruger and Nxumalo, 2017). Although many scientists have high 

confidence in rainfall measurement using raingauges, considerable deficiencies in rainfall 

measurement using raingauges remain a problem (Ciach, 2003). Many of these problems are 

outlined by Smithers and Schulze (2004a)  to be a result of the physical characteristics and the 

location of the raingauge.  

Numerous studies have been conducted to investigate the accuracy of using raingauges to 

measure point rainfall (e.g. Allerup and Madsen, 1980; Wood et al., 2000; Ciach, 2003). 

According to Smithers and Schulze (2004a), since a raingauge is an obstacle to wind, it is 

unrealistic to assume that a raingauge reading represents the actual rainfall at the site because 

of turbulence around the gauge. For example, Tyson et al. (1976) found that at Cathedral Peak 

in the Kwazulu-Natal Drakensberg, a Nipher-type windshield increased catch deficiency by an 

average of 9.2%. Hence, assuming that the observed point rainfall from raingauges is 

representative of the true rainfall, the catch deficiencies caused by the aerodynamic interaction 

with a raingauge and the surrounding topography are ignored. In addition, errors associated 

with rainfall measurement using a raingauge are not limited to systemic errors, but also human 

errors from incorrectly reading the rainfall amounts. Therefore, it is accepted that raingauges 

provide fair rainfall measurements, however, there are considerable inaccuracies associated 

with it (Smithers and Schulze, 2004a). 

2.1.2 Raingauge network status in South Africa 

The availability of observed rainfall data and long records remains a challenge in South Africa 

(Kruger and Nxumalo, 2017; Suleman, 2020).  One of the factors contributing to this challenge 
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is the decline in the number of active rainfall stations (Schulze et al., 2007; Pitman, 2011; 

Pegram et al., 2016). This is evident in Figure 2.1, where the trend of active rain stations in 

South Africa indicates a significant decline that started in the 1990s. As a result of this 

continuous decline in active rainfall stations, obtaining long records of quality rainfall data has 

become more challenging (Nomquphu, 2020). This is an issue in hydrological modelling as 

most hydrological models were calibrated using point rainfall measurements from raingauges. 

As seen in Figure 2.2, the blue vertical lines only appear when a year has data and the white 

space means there were no data recorded at that time for available active stations (Pegram et 

al., 2016). This has resulted in the implementation of more innovative approaches to estimate 

rainfall information such as through Remote Sensing (RS), however, the accuracy related to 

remotely sensed rainfall remains a concern (Makapela et al., 2015). Therefore, a dense network 

of raingauges is required in order to obtain reliable estimates of the spatial distribution of 

rainfall as mentioned by Pegram et al. (2016).  

  

Figure 2.1: Active rainfall stations for water resource assessment (Pegram et al., 2016)  
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Figure 2.2: Data availability of rainfall from active raingauges by a year (Pegram et al., 2016)  

According to Hutchinson (1974), Mishra (2013), and Xu et al. (2013) a network of raingauges 

should be designed to allow the adequate representation of the spatial variability of rainfall 

within a catchment. This is important, especially when estimating catchment rainfall because a 

dense raingauge network is essential to obtain an accurate estimate of the areal rainfall 

(Nomquphu, 2020). Rodda (1972), cited by Abtew et al. (1995) summarised the problems of 

network design in the early 1970s as: (a) the number of raingauges required, (b) the location of 

these gauges, and (c) the length of operation. These problems still prevail 48 years later which 

emphasises the need to implement new ways to estimate rainfall information to complement 

raingauge measurements.  

 

2.2 Estimation of Catchment Design Rainfalls  

According to Pietersen et al. (2015), design rainfall is the rainfall information taken from 

observed rainfall data which constitutes a rainfall depth and duration associated with a given 

return period or annual exceedance probability. While many studies have focused on estimating 

design rainfall at a point (Smithers et al., 2002; Smithers and Schulze, 2003; Smithers and 

Schulze, 2004b; Xu and Tung, 2008; Yang et al., 2010; Haddad et al., 2011), it is also important 

to estimate design rainfall from spatial estimates such as by converting remotely sensed 
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measured rainfall to a catchment design value for use in the risk assessment and design of 

hydrological structures. This section contains a review of approaches that are considered when 

estimating catchment design rainfall. This includes the use of observed point rainfall estimates 

and details of the approaches followed. Thereafter, the use of RS data to estimate catchment 

design rainfall is detailed. 

2.2.1 Using observed point rainfall data 

Point rainfall estimates are the most fundamental hydrological element required for most 

rainfall-runoff modeling and the estimation of design rainfall (Arnaud et al., 2011). According 

to DWS (2014),  the accuracy of point measurement of rainfall in hydrological modelling is 

important because the statistical analysis and the conclusions that are drawn from them can only 

be as accurate as of the data on which they are based. There are different approaches to using 

point rainfall measurements to estimate catchment design rainfalls, it can be either by first 

adjusting the observed point rainfall and converting it to a catchment rainfall and then the 

catchment rainfall to estimate catchment design rainfalls or by converting the estimated 

catchment rainfall, derived from the observed point rainfall values, to point design rainfall 

values and then adjusting these to catchment design rainfalls by using an appropriate factor. 

2.2.1.1 Interpolation from point measurements 

To estimate spatial rainfall from point rainfall data, interpolation methods are used such as 

Inverse Distance Weighting (IDW), Kriging, and Thiessen Polygons (TP) amongst others 

(Faisal and Gaffar, 2012; Mendez and Calvo-Valverde, 2016). TP is the most widely used 

interpolation method as it accurately estimates average point rainfalls over a catchment 

(Taesombat and Sriwongsitanon, 2009). As explained by Stellman et al. (2001), Faisal and 

Gaffar (2012), and Keblouti et al. (2012). TP uses Thiessen weights estimated by the ratio of 

the area of a polygon containing a station to the total area of the catchment. To estimate the 

area of each polygon around each raingauge, connecting lines joining each pair of rainfall gauge 

stations are drawn. Then, lines acting as perpendicular bisectors to the connecting lines are 

drawn to produce polygons around each gauge. The area of each polygon is then determined 

and is called the control area. The ratio is then used as a weighting factor to be applied when 

estimating the average point rainfall. Equation 2.1 is used to estimate Thiessen weights. With 

the advancement in technology, TP, as well as IDW, can now be performed by making use of 

the Geographical Information System (GIS) which takes a lot of time when done manually for 

a number of gauge stations (Hu et al., 2019). 



 

 23 

            𝑊           =
Astation

Acatchment  
                                                                                                          (2.1)             

where  

            W            = Thiessen weights, 

            Astation        = area of polygon surrounding the station (km2), and 

            Acatchment  = total area of catchment (km2).             

2.2.1.2 Use of adjustment factors 

In the ACRU model (Schulze, 1995), point rainfall data are adjusted to estimate catchment 

rainfall by applying month-by-month adjustment factors to convert the point rainfall data to 

areal rainfall (Smithers, 1995; Clark, 2019). This is done using the driver station which is the 

station selected to drive the hydrological processes in the catchment. The application of month-

by-month adjustments is because there is variation in the weather generation mechanism for 

each season at a given location. There are two utilities designed to select the driver station. The 

first utility is the daily rainfall data extraction utility developed by Kunz (2004). This utility 

selects stations based on station names or geographical areas. Details of the selected stations 

are then used to select the driver station. The CalcPPTCor rainfall adjustment utility (Pike, 

2004) was developed to assist the user in selecting the most representative rainfall station for a 

particular catchment and automatically calculates rainfall adjustment factors required for each 

sub-catchment simulated using the ACRU model (Clark, 2019). This software uses information 

from the geographic and climatological characteristics of the selected stations in the study area 

to calculate month-by-month rainfall adjustment factors.  This is done mainly to account for the 

regional, seasonal, and daily diversity of rainfall (Dent et al., 1989; Lynch et al., 2004; Pegram 

et al., 2016). The usual procedure for use in southern Africa would be for the catchment to be 

overlaid on a map of Mean Annual Precipitation (MAP) derived from Lynch et al. (2004) from 

which a weighted catchment MAP is determined. 

 

The criteria in the input file to the CalcPPTCor software allow the user to have options in 

choosing the best station for the site. CalcPPTCor also requires the user to supply average 

altitude, MAP, and median monthly rainfall information for each catchment. The ArcView Grid 

Extractor utility can be used for this purpose. The geographic coordinates of each station are 

used by CalcPPTCor to identify the position of the specified rainfall station in the gridded 
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rainfall and altitude surfaces for South Africa (Lynch et al., 2004). The program then 

automatically extracts the relevant altitude, MAP, and the 12 median monthly rainfall totals for 

each station from the gridded information. The gridded median monthly rainfall surfaces were 

developed by Lynch (2004). The ratios between the catchment median monthly rainfall and 

each station’s median monthly rainfall are then calculated using Equation 2.2 for each sub-

catchment to adjust the daily or monthly total of rainfall to best represent the catchment rainfall 

(Smithers and Schulze, 2004a). The driver station can also be selected manually by using the 

same criteria as the criteria provided by the mentioned tools. 

 

              pptcor =
CatchmentMMR

StationMMR
                                                                                             (2.2) 

where  

              pptcor = precipitation correction factor, and 

              MMR = Median Monthly Rainfall. 

2.2.1.3 Areal reduction factors 

Areal Reduction Factors (ARFs) have historically been used to estimate the areal average 

design rainfall over a catchment.  Observed rainfall monitored at a point does not represent the 

catchment’s rainfall given the temporal and spatial non-uniformity of rainfall (Alexander, 1990; 

Van der Spuy and Rademeyer, 2016). Hence it is necessary to convert point design rainfall into 

catchment design rainfall which generally requires a reduction in the point rainfall intensity 

which is related to the catchment area  (km2) and storm duration (h) (Pietersen et al., 2015; Van 

der Spuy and Rademeyer, 2016). ARFs are dependent on catchment location, characteristics, 

and the method of estimating the ARFs. Some studies have used storm-centered and other 

geographic-centered approaches. Relevant ARF studies conducted in South Africa are: (i) Van 

Wyk (1965), (ii) Wiederhold (1969), (iii) Alexander (1980) and (iv) Alexander (1990; 2001). 

The mathematical expressions used in each method and a detailed review is provided by 

Pietersen et al. (2015) and their use and figures from which the mathematical expressions are 

derived are detailed in the SANRAL Drainage Manual (SANRAL, 2013). However, most 

studies use Equation 2.3 because it is an update from the previous equations and uses one 

variable (Gericke and Du Plessis, 2011; Pietersen et al., 2015).  

              ARF = [-6944.3ln(A) + 115 731.9]0.4                                                                       (2.3) 

where   

              ARF = areal reduction factor, and 
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              A      = catchment area (km2). 

 

2.2.2 Using remote sensing 

The use of RS to estimate the spatial distribution of rainfall has for some time been proposed 

as a solution to overcome the challenge of declining rainfall stations in South Africa (Awange 

et al., 2016; Kruger and Nxumalo, 2017). Although the accuracy of RS rainfall has been 

questioned, for example, by Awange et al. (2016), it has become the most valuable tool to 

estimate rainfall at different spatial and temporal scales (Keblouti et al., 2012). Often RS 

products are used to gather information about rainfall, evaporation, soil moisture, and runoff. 

When used to estimate rainfall information, it provides a cost-effective means of 

complementing field observed data as it can cover a large area and provide rainfall information 

in ungauged catchments (Chen et al., 2019).  

Various RS products have been developed and investigated to assess the accuracy of remotely 

sensed rainfall, for example, Rainfall Estimation version2 (RFE2) and Tropical Rainfall 

Measuring Mission product (TRMM) by Mashingia et al. (2014), Global Precipitation 

Climatology Project (GPCP), Precipitation Estimation from Remote Sensing Information Using 

Artificial Neural Network (PERSIANN) and Climate Prediction Center Morphing Technique 

(CMORPH) by Pombo et al. (2015), and Famine Early Warning Systems (FEWS) by Artan et 

al. (2007). Thorne et al. (2001) compared Tropical Application of Meteorology Using Satellite 

(TAMSAT) and Climate Prediction Center (CPC), Hessels (2015) compared and validated 

TRMM 3B42, and Du Plessis and Kibii (2021) compared daily and monthly rainfall data 

derived from Climate Hazards Group IR Precipitation Station (CHIRPS) with observed rainfall 

data from 46 stations evenly distributed across South Africa. The results showed that satellite 

products can represent the temporal and spatial variability of rainfall within a region. However, 

there is high variation in the accuracy of the remotely sensed products, with variation from 

product to product and between locations (Maswanganye, 2018). Another finding is that 

products that are combined with raingauge data or bias corrected with observed rainfall are 

more accurate, however, the accuracy depends on the topography and density of the raingauge 

network. In many cases, the accuracy was mainly affected by factors related to elevation, 

relative relief, longitude, and latitude. Therefore, bias correction is recommended before the 

application of remotely sensed rainfall data (Habib et al., 2014a; Maswanganye, 2018). 
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Liu et al. (2015) reported the erratic performance of RS products. Three widely used satellite 

products i.e. TRMM, CMORPH, and PERSIANN, were evaluated over a subtropical catchment 

at different time scales. On a daily scale, CMORPH had the best performance. On a monthly 

and annual scale, TRMM had the best performance with PERSIANN having the worst 

performance at all time scales considered. The study concluded that TRMM was a more reliable 

product and has good potential for hydrological applications. Global Precipitation 

Measurements (GMP), which is the updated version of TRMM, is the recommended product 

for future usage.  

Recent development reveals that remotely sensed rainfall can also be used in hydrological 

models. This is evident in a study that was conducted by Suleman (2017) and Suleman et al. 

(2020) to investigate the use of satellite-derived rainfall in the ACRU hydrological model to 

simulate streamflow. The satellite rainfall products chosen for investigation included TRMM 

3B42, FEWS ARC2, FEWS RFE2, TAMSAT-3, and GPM. Generally, the results of the 

analyses indicated that the TRMM 3B42 overestimated rainfall volumes whereas the other 

products underestimated rainfall volumes. 

Lakew et al. (2020) investigated the hydrological performance of several global RS products 

in a data-scarce region for daily simulation.  TRMM Multi-Satellite Precipitation Analysis 

(TMPA), ERA-Interim (ERAI), Global Precipitation Climatology Centre (GPCC), and Multi-

Source Weighted Ensemble Precipitation (MSWEP) were used for this purpose. The results 

indicate that the MSWEP performed better than the rest of the products. Based on the results, 

the study recommended the use of MSWEP with bias correction to use in the Blue Nile 

catchment. A similar study was done by Shayeghi et al. (2020) using the Asian Precipitation 

Highly Resolved Observational Data Integration Towards Evaluation of Water Resources 

(APHRODITE), ERA-Interim, TMPA, and PERSIANN data to compare against gauged 

datasets for use in the Variable Infiltration Capacity (VIC) model. APHRODITE and ERA-

Interim gave better rainfall estimates at a daily time scale than other products. Further, the 

hydrological assessment indicated that PERSIANN is the best rainfall dataset for capturing the 

streamflow and peak flows for the studied area.  

One of the limitations in many of the studies is that results from one region do not necessarily 

give the confidence for use in another region which has differences in catchment meteorological 

and physical characteristics. Kruger and Nxumalo (2017) express the thought that remotely 

sensed rainfall records are not as trusted as observed records from raingauges, therefore, it is 
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advisable to incorporate both or use in-situ measurement to validate RS measurements to 

produce effective up-to-date predictive and analytical output. Table 3.1 contains a summary 

review of some of the most used and most reviewed RS products to estimate rainfall 

information. 
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Table 2.1: Summary of RS products reviewed 

RS 

Product 

Data 

Availability 

 

[Years of 

Record] 

Data 

accessibility 

 

[Bias 

Correction] 

Spatial 

Resolution 

 

[Spatial 

Coverage] 

Temporal 

Resolution 

 

[Product 

Updates] 

Gauged/Satellite/ 

Radar/Model 

Based 

Product 

Producer 

Accuracy and 

Performance (Key 

Findings) 

Source of 

Information 

TRMM 
1997-2015 

 

 

[18] 

Free 

 

 

[Not required] 

0,2⁰×0,25⁰, 

0,5⁰×0,5 ⁰ 

 

 

[50⁰N and 50⁰S]  

Hours to 

monthly 

 

 

[Stopped] 

Gauged/Satellite NASA 

Accurate at the 

tropics. Fair 

measurements at 

mid-latitudes. 

(Huffman et al., 

2010; Liu et al., 

2012; Hessels, 2015; 

Makapela et al., 

2015; Pombo et al., 

2015; 

NCAR/UCAR, 

2019) 

GMP 

2000-Present 

 

 

[20] 

Free 

 

 

[Not required] 

0,1⁰×0,1⁰ 

 

 

[60⁰N and 60⁰S] 

Sub-daily, Daily, 

Monthly 

 

 

[30 Minutes] 

Gauged /Satellite NASA/JAXA 

Poor performance in 

sparse raingauges 

but acceptable 

measurements 

(Adler et al., 2003; 

Liu et al., 2012; 

Blumenfeld, 2015; 

NCAR/UCAR, 

2019) 

GPCP 1996-2020 

 

 

 

[36] 

Free 

 

 

 

[Corrected] 

1⁰×1⁰, 2,5⁰×2,5⁰ 

 

 

 

[Global] 

Daily, Monthly 

 

 

 

[Regularly] 

Gauged/Satellite NASA/GSFC  

Underestimate 

rainfall at low 

precipitation rates. 

(Grody, 1991; 

Wilheit et al., 1991; 

Kummerow and 

Giglio, 1995; Adler 

et al., 2003; Hessels, 

2015; Makapela et 

al., 2015; 

NCAR/UCAR, 

2019) 
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RS 

Product 

Data 

Availability 

 

[Years of 

Record] 

Data 

accessibility 

 

[Bias 

Correction] 

Spatial 

Resolution 

 

[Spatial 

Coverage] 

Temporal 

Resolution 

 

[Product 

Updates] 

Gauged/Satellite/ 

Radar/Model 

Based 

Product 

Producer 

Accuracy and 

Performance (Key 

Findings) 

Source of 

Information 

TAMSAT 
1983-Present 

 

 

 

[37] 

Free 

 

 

 

[Required] 

0,0375⁰×0,0375⁰ 

 

 

 

[Africa] 

10Days-Decadal  

 

 

 

[February 2019] 

Gauged/Satellite NOAA 

Underestimate/ 

overestimate rainfall 

in coastal and 

mountainous 

regions. 

(Grimes et al., 1999; 

Thorne et al., 2001; 

Maidment et al., 

2014; Awange et al., 

2016; Dembélé et 

al., 2016; Maidment 

et al., 2017; Dinku et 

al., 2018) 

CMORPH 
1998-Present 

 

 

 

 

[22] 

Free 

 

 

 

 

[Required] 

0,25⁰×0,25⁰, 

0,1⁰×0,1⁰ 

 

 

 

[60⁰N and 60⁰S/ 

8km×8km] 

Sub-daily, Daily 

 

 

 

 

[February 2019] 

Satellite NOAA/CPC 

Inconsistent results 

for different areas. 

Inaccurate in coastal 

and orographic 

areas. 

(Joyce et al., 2004; 

Joyce et al., 2010; 

Hessels, 2015; 

Makapela et al., 

2015; Pombo et al., 

2015; Awange et al., 

2016; Xie et al., 

2017; 

NCAR/UCAR, 

2019) 

FEWS 

NET 

2001-Present 

 

 

[19] 

Free 

 

 

[Not required] 

0,1⁰×0,1⁰ 

 

[20⁰W and 55⁰E,  

40⁰N and 40⁰S] 

Hourly 

 

 

[Daily] 

Gauged/Satellite 
FEWS/USGS/ 

NOAA 

Inaccurate results in 

dry summer areas 

over East and West 

Africa. 

(Novella and Thiaw, 

2013; Makapela et 

al., 2015; Awange et 

al., 2016; 

Maswanganye, 

2018) ENREF 49 
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RS 

Product 

Data 

Availability 

 

[Years of 

Record] 

Data 

accessibility 

 

[Bias 

Correction] 

Spatial 

Resolution 

 

[Spatial 

Coverage] 

Temporal 

Resolution 

 

[Product 

Updates] 

Gauged/Satellite/ 

Radar/Model 

Based 

Product 

Producer 

Accuracy and 

Performance (Key 

Findings) 

Source of 

Information 

CRU TS 1901-2019 

 

[118] 

Request 

 

[Required] 

0,5⁰×0,5⁰ 

 

[90⁰N and 90⁰S] 

Monthly 

 

[Timely interval] 

Gauged/Model NERC/NCAS 

Inconsistent 

performance and 

accuracy. 

(Mitchell and Jones, 

2005; Harris et al., 

2014; 

NCAR/UCAR, 

2019) 

ERA-

Interim 

1979-2019 

 

 

 

 

[40] 

Free 

 

 

 

 

[Not required] 

0,75⁰×0,75⁰ 

 

 

 

 

[90⁰N and 90⁰S] 

6 Hourly, Daily, 

Monthly 

 

 

 

 

[Stopped] 

Gauged/Satellite/ 

Model 
ECMWF 

Performs more 

reasonably at the 

escarpments than on 

the coast. Provide 

accurate results. 

(Thépaut et al., 

1996; Dee et al., 

2011; Hersbach and 

Dee, 2016; 

Hoffmann et al., 

2019; 

NCAR/UCAR, 

2019) 

ERA5 

 

1950-Present 

 

 

[70] 

 

Free 

 

 

[Required] 

 

0.3⁰×0.3⁰ 

 

 

[Globally] 

 

Hourly, Monthly 

 

 

[Daily] 

Model ECMWF 

Accurate 

measurements but 

uncertain at the coast 

of the continent. 

(Hersbach and Dee, 

2016; Chen et al., 

2019; Hoffmann et 

al., 2019; 

NCAR/UCAR, 

2019) 

CHIRPS 
1981-Present 

 

 

 

[41] 

Free 

 

 

 

[Not required] 

0,05⁰×0,05⁰ 

 

 

 

[50⁰N and 50⁰S] 

Daily, Monthly 

Averages 

 

 

 

[May 2020] 

Gauged/Satellite UCSB 

Fair performance 

with high accuracy 

for a large amount of 

precipitation than in 

arid and semi-arid 

areas. Performs 

better on a monthly 

scale. 

(Funk et al., 2012; 

Funk et al., 2014; 

Hessels, 2015; Funk 

et al., 2017; Dinku et 

al., 2018; Du Plessis 

and Kibii, 2021; 

Funk et al., 2007) 
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RS 

Product 

Data 

Availability 

 

[Years of 

Record] 

Data 

accessibility 

 

[Bias 

Correction] 

Spatial 

Resolution 

 

[Spatial 

Coverage] 

Temporal 

Resolution 

 

[Product 

Updates] 

Gauged/Satellite/ 

Radar/Model 

Based 

Product 

Producer 

Accuracy and 

Performance (Key 

Findings) 

Source of 

Information 

GPCC 
1901-Present 

 

 

[119] 

Request 

 

 

[Corrected] 

0,5⁰×0,5⁰, 

2,5⁰×2,5⁰ 

 

 

[Global] 

Sub-daily, Daily, 

Monthly 

 

 

[Monthly] 

Gauged NOAA 

Accurate 

measurements 

depend on the 

density of the station 

network. 

(Shepard, 1968; 

Rudolf and 

Schneider, 2005; 

Darand and Zand, 

2016; Pegram et al., 

2016; 

NCAR/UCAR, 

2019) 

PERSIAN 
1983-2020 

 

 

[20] 

Free 

 

 

 

[Required] 

0,25⁰×0,25⁰ 

 

 

 

[60⁰N and 60⁰S] 

Sub-daily, Daily 

 

 

 

[Quarterly] 

Satellite/Radar UC-Irvine  

Reasonable results in 

plateau basins with 

high climate 

variability. More 

accurate on a 

monthly scale. 

(Hong et al., 2004; 

Hessels, 2015; 

Pombo et al., 2015; 

Awange et al., 2016; 

Maggioni et al., 

2016; 

NCAR/UCAR, 

2019) 
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2.2.3 Design rainfall estimation 

Probability distributions are fitted to extreme rainfall events and used to estimate the design 

values for specific return periods (Smithers and Schulze, 2003). They use mathematical 

equations which are also referred to as probability functions to derive design values (Van der 

Spuy et al., 2016). The probability distribution models that are usually used in the South Africa 

to estimate design rainfall are but are not limited to, the Log-normal (LN), Pearson Type III 

(P3), Log-Pearson Type III (LP3), Generalized Extreme Value (GEV), Generalized Pareto, 

Generalized Logistic and Gumbel distributions (EV1) (Gericke, 2018) 

The GEV Probability distribution is widely used internationally. For example, the GEV is 

recommended as the best probability distribution internationally in the United Kingdom (Flood 

Studies Report, 1975) Cited by Hosking et al. (1985) and in South Africa (Smithers, 1996),  

(Smithers, 2000), and (Smithers and Schulze, 2003). The advantage for using GEV probability 

distribution was that it combines three sub-types of distributions into one based on the value of 

the skewness coefficient and it is a flexible distribution. Additionally, the distribution model 

that is the best fit for a respective rainfall duration is to be applied to any rainfall duration.  

2.3 Verification and Bias Correction of Remotely Sensed Data 

Even though remotely sensed rainfall data are useful for spatial estimates of rainfall, it is also 

evident that satellite rainfall estimations are contaminated with significant systemic and random 

errors (Yeh et al., 2020). Research by Bhatti et al. (2016) indicates that satellite-based rainfall 

estimates are not always reliable. In such instances, RS products may require validation and 

bias correction before they can be useful for further hydrological applications and to gain 

confidence in the computed remotely sensed rainfall-based estimations.  

Many studies conducted to assess bias correction conclude that bias correction improves 

simulations. For example, a study of the effect of bias correction on satellite rainfall estimation 

by Habib et al. (2014a) indicated that applying space and time-fixed bias correction schemes 

may result in reduced rainfall bias in CMORPH by up to 50%. Mei et al. (2016) pointed out 

that some mismatches between the satellite-based rainfall estimations and observed rainfall data 

from raingauges are due to the absence or not enough raingauges in a catchment for a fair 

comparison. In support of this, Bhatti et al. (2016) added that time series of raingauge data are 

not reliable and may influence hydrological assessments and modelling studies. These studies 

have provided more insight into the assessment of the accuracy of spatial rainfall estimates.  
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Considering data scarcity in poorly gauged regions, it is important to assess whether remotely 

sensed estimates are suitable to act as a substitute or to supplement data sources to estimate 

rainfall. Moulin et al. (2009) conducted a study to investigate where the uncertainties in mean 

areal precipitation stem from. One hypothesis was that it may be due to model performance and 

another hypothesis was that it may be due to the use of unrepresentative gauges stations. For 

the methodology, model performance, as well as mean areal precipitation estimated from 

raingauges, were assessed. The results indicate that some errors stem from the spatial estimates 

from raingauges. Based on the above-referenced studies it can be concluded that not all 

uncertainties in spatial estimates of rainfall are from the use of the remote sensing data and 

therefore gauge distribution within and around a catchment needs to be assessed as well.  

Before bias correction can be performed, traditionally, remotely sensed estimates need to be 

verified against ground-based estimates. Validation and verification are done to assess the 

accuracy of remotely sensed rainfall estimates. If the verification suggests any doubt in the 

accuracy of the remotely sensed estimates, then the remotely sensed estimates should be 

adjusted to reduce the bias.  

There are several statistics to verify remotely sensed rainfall and bias correction methods that 

are applicable to reduce the error of remotely sensed rainfall data in comparison with the gauged 

based rainfall estimates (Shrestha et al., 2011; Fang et al., 2014; Habib et al., 2014b; Bhatti et 

al., 2016; Mei et al., 2016). Some of the bias correction techniques estimate the ratio between 

gauge and satellite estimates and multiply the ratio by the satellite estimates to arrive at the 

biased corrected rainfall estimate.  Habib et al. (2014a) used a multiplicative bias factor, also 

termed the multiplicative shift technique, to correct the daily CMORPH estimates. Moulin et 

al. (2009) estimated and corrected uncertainties of mean areal precipitation by using a model 

that estimates error in simulated rainfall, and Yeh et al. (2020) calculated correlation 

coefficients between the gauged rainfall observation at the Taiwan Central Weather Bureau 

(CWB) and the Global Satellite Mapping of Precipitation (GSMaP) accumulated rainfall data 

using elevation models. After the elevation levels were determined, the rainfall data that was 

estimated by the GSMaP was compared with the actual rainfall data that was collected using 

the CWB stations. Accordingly, the systemic errors in the four types of elevation categorization 

were identified, and a regression equation was determined by fitting the curve in the GSMaP–

CWB scatter plot to correct the GSMaP systemic errors. Essentially, the recommendations of 

the techniques that are used to verify and correct remotely sensed rainfall data from different 
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studies vary with RS products and study objectives. For example, Soriano et al. (2018) 

recommend using the quantile mapping polynomial bias correction method for precipitation. 

These sentiments were shared by many other studies (Ghimire et al., 2019; Ayugi et al., 2020; 

Katiraie-Boroujerdy et al., 2020; Enayati et al., 2021). However, Chen et al. (2013) argue that 

results from bias correction performance are location dependent and that careful validation 

should always be performed, especially on studies in new regions. 

2.4 Chapter Summary 

Challenges associated with the decline of the gauged network of rainfall stations in South Africa 

and their implications on spatial rainfall estimations have been well documented in the 

literature. Many hydrological calculations require an estimation of catchment rainfall and 

traditionally point rainfall from raingauges is used. This highlights the need to invest in research 

into solutions to overcome the challenges associated with obtaining long records of quality 

rainfall data. The use of poor quality and inadequate rainfall data in hydrology may result in 

both social and economic consequences in resource planning and for the building of 

hydrological infrastructures such as dams and bridges.  

Based on the literature reviewed, it is widely acknowledged that the accuracy of predictions 

from a hydrological model depends heavily on the quality and accuracy of the input rainfall 

data. Currently, the traditional way to estimate catchment rainfall for use in hydrological 

modelling utilises observed rainfall data from raingauges. Point rainfall estimated from 

raingauges is converted to spatially represent catchment rainfall. Point rainfall data are also 

used as input into many hydrological models to verify and calibrate satellite-based estimation 

of rainfall. However, the inaccuracy associated with deriving estimates of catchment rainfall 

from point rainfall at appropriate space and time scales has long been noted by several 

researchers as a major problem (Frezghi and Smithers, 2008; Haydon and Deletic, 2009; 

Arnaud et al., 2011). Generally, the higher the number and density of raingauges within a 

catchment result in increased accuracy of the estimation of spatial catchment rainfall. Therefore, 

catchment rainfall estimated from a very sparse raingauge network is prone to bias. 

South Africa and many other countries are experiencing a rapid decline in operational raingauge 

stations (Pegram et al., 2016). This is an increasing challenge that raises questions related to 

the accuracy of catchment rainfall and catchment design rainfall. Accurate estimation of 

catchment rainfall requires that the estimations are derived from a dense gauge station network. 
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In addition, the decline of operating rain gauges in the past decades has become an issue even 

in hydrological modelling as most hydrological models require the input of point rainfall 

measurements from raingauges. This has resulted in a paradigm shift from using interpolation 

techniques to spatially represent point rainfall measurements for use in hydrological modelling 

to the use of remotely sensed rainfall data in hydrological modelling.  

Even though RS has not been widely applied in South Africa, some studies (Sawunyama and 

Hughes, 2008; Maswanganye, 2018; Clark, 2019) have been conducted to gain confidence in 

the use of remotely sensed rainfall estimates to improve the spatial representation of rainfall 

estimates for use in hydrological modelling. Remotely sensed rainfall data are becoming more 

readily available and will eventually replace ground-based measurements and be used to 

recalibrate hydrological models that were calibrated using point gauged rainfall data unless the 

declining network of raingauge stations is reversed. However, in the interim, RS measurements 

offer a way to complement ground-based measurements. Even so, RS data still require 

validation and, if there is bias in the estimations, bias correction is recommended before making 

meaningful estimations using RS data. 

Concerning the issue of scale, rainfall data from raingauges are a better representation of the 

temporal scale while remotely sensed rainfall data provides a better representation of spatial 

variation of rainfall (Frezghi and Smithers, 2008). Therefore, it is necessary to assess the use of 

both in an attempt to represent both the temporal and spatial scales of rainfall data. For example, 

in the ACRU hydrological model, point rainfall from raingauges provides a good representation 

of temporal scale at daily time step and the values are adjusted to estimate catchment rainfall. 

In addition, the use of remotely sensed rainfall data could therefore potentially improve, replace, 

or be used alternatively to improve the spatial representation of rainfall that could be used to 

estimate catchment design rainfall. The result will be improved estimation of catchment design 

rainfall and enable estimation in ungauged catchments in South Africa. 

When estimating catchment design rainfalls, different approaches are available to use such as 

estimating design rainfall at a point and using ARFs to convert the point design rainfall to 

catchment design rainfall. Other approaches adjust the point rainfall to represent the catchment 

rainfall and use the estimated catchment rainfall to estimate catchment design rainfalls such as 

by using the adjustment factors as done in the ACRU hydrological model. However, 

interpolation of multiple points observed rainfalls has traditionally been used to estimate 

catchment rainfalls which are later converted to catchment design rainfalls. The discussions 
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around the estimation of catchment design rainfalls require that regardless of the source of 

rainfall, rainfall data should be reviewed and checked for accuracy before using it and that 

considerable care should be taken to make sure that the rainfall data are sensible. 
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3. STUDY METHODOLOGY 

This chapter provides details of the methodology followed to carry out this study. The general 

methodology followed is summarised in Figure 3.1 and the acronyms used to refer to the 

methods are included in bold text in brackets. Initially, a study pilot was conducted, and these 

results are documented in Chapter 4. A refined methodology was implemented in another 

catchment with some adjustments to the criteria used to select the catchment and rainfall 

stations based on the results that were obtained from the pilot study. The results for the 

additional catchment are presented and discussed in Chapter 5. 

 

Figure 3.1: Summary of the study methodology 
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3.1 Catchments Selection  

The catchments were selected from the South African quaternary catchments which can be 

accessed from the Department of Water and Sanitation (DWS) site (available from 

https://www.dws.gov.za/iwqs/wms/data/000key2data.asp). The selection for the pilot study 

was based on: (i) stations with the available selected full record length inside and around the 

catchment (1981-2010), and (ii) the density and spatial distribution of stations that have the 

selected record length. The selected record length was based on the availability of station data. 

With the above criteria, Quaternary Catchment S60A (Area = 328.34 km2) which is located in 

the Eastern Cape Province was selected for the pilot study, and the location is presented in 

Figure 3.2 

After studying the results obtained from the pilot study catchment, the selection criteria were 

adjusted to select another catchment for further analysis. For the second catchment, the 

following additional criteria was added: (iii) catchments in different climatic regions. 

Catchment S60A is in a semi-arid area of Western Cape province. The second catchment 

selected is situated in Kwazulu-Natal province in the Mngeni Catchment in Quaternary 

Catchment U20F (Area = 458.99 km2). This area is in humid region of Kwazulu-Natal province. 

The location of Catchment U20F is shown in Figure 3.3.  
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Figure 3.2: Catchment S60A 
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Figure 3.3: Catchment U20F
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3.2 Rainfall Station Selection 

Initially, both catchments had a more stations distribution. The daily observed data was 

available from the Lynch et al. (2004) database (1981 to 1999/2000) and additional data was 

requested from the South Africa Weather Services (SAWS) for the period from 2000 to 2010. 

The period of data was selected to be 1981-2010 for the station selection at Catchment S60A 

because both observed, and RS rainfall data were available for this period. However, after a 

careful review of the additional data available from SAWS, it was noticed that there were 

challenges with the station-based data beyond the year 2000 due to missing data, the 

unavailability of nearby stations to infill the missing data, and that many of the stations available 

from the Lynch database were not monitored by SAWS after 2000.  Considering the project 

aims and objectives, the observed data ideally should not be missing and infilled to enable 

accurate comparisons. Therefore, the record period was adjusted to 1981-2000 so that long 

periods of infilled missing rainfall data could be avoided. After reviewing the actual rainfall 

dataset, it was noted that some stations had rainfall data up to the year 1999 while other stations 

had rainfall data up to the year 2000 in the Lynch database, therefore, even with the adjusted 

period length, SAWS data was used to supplement the Lynch data up to the year 2000. Rainfall 

stations were selected from both inside and surrounding catchment areas based on: 

(i) rainfall stations with record length covering 1981 to 2000,  

(ii) little or no missing data in the selected period length,  

(iii) high station data reliability,  

(iv) inclusion of stations outside the catchment boundary (within 3.5 km) for the 

construction of TP so that the TP completely overlays the catchment boundaries, and  

(v) stations that contribute to the total Thiessen weight of the catchment which was 

determined by using the TP (some stations were useful to completely overlay the TP 

over the catchment, but they had no contribution to the total catchment weights).  

The selection of catchment and stations was done simultaneously by considering both the 

criteria for selecting a catchment and those for selecting stations. The same procedure was 

followed when selecting stations in the U20F Catchment. Details of the stations selected are 

summarised in Table 3.1 for Catchment S60A and Table 3.2 for Catchment U20F. It is 

important to note that the summarised statistics contained in the tables (except for the Thiessen 

weights) were obtained from the Lynch database and they apply for the available record length 
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of each station on the Lynch rainfall database and not the selected record length used in this 

study. The bold station in each table is the selected driver station of the catchment. 

Table 3.1: Catchment S60A, selected raingauges, and selected driver station in bold text 

Catchment S60A (Area = 328.34 km2) 
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0101719A8 0.0 85.4 14.6 0.05 726 1102 

0079632 6 0.1 8.3 91.7 0.02 935 1102 

0079754 2 0.0 6.5 39.5 0.27 681 799 

0079730 0 0.1 29.5 70.4 0.22 903 829 

0079490 X 0.0 11.7 88.3 0.16 990 947 

0079396 2 0.0 19.9 80.1 0.04 809 905 

0079485 1 0.1 26.2 73.7 0.24 920 952 

Table 3.2: Catchment U20F, selected raingauges, and selected driver station in bold text 

Catchment S60A (Area = 458.99 km2) 
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0270260A 1.1 77.2 21.7 0.06 736 981 

0270205A 1.9 78.9 19.2 0.09 772 912 

0270086A 43.3 50.7 6 0.05 934 903 

0270023A 1.4 77.2 21.4 0.11 954 723 

0270021W 16.3 43.7 40 0.29 808 767 

0270164S 1.8 71 27.2 0.08 851 1084 

0269647W 70.4 0 29.6 0.14 1259 1288 

0269712W 23.2 57.3 19.4 0.14 1101 767 

0269744S 22.6 31 46.6 0.01 907 789 

0269775W 23.2 57 19.8 0.03 749 697 
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3.3 Remote Sensing Product Selection 

The application of the methodology was continued by selecting a suitable rainfall RS product.  

A number of criteria were developed to select suitable RS products to use in the study. These 

are presented in Table 3.3. In Table 3.4, each RS product reviewed in Section 2.2.2 is compared 

against the criteria. The preferred requirement for each criterion is indicated in brackets and 

“Yes” indicates that the product meets the required criteria while blank indicates that it does 

not. Based on a careful review of the RS products, consideration of the criteria, and the 

comparison of the criteria against the RS products reviewed, the CHIRPS product was selected 

as the best product. The CHIRPS RS rainfall product is available in daily temporal resolution 

and has a record length of 41 years starting from 1981 to present, it is a widely used RS product 

with free and unlimited access to the dataset. It is a bias-corrected product with good reviews 

reported in the literature (references for CHIRPS rainfall data are available in Table 2.1) in 

terms of performance and reliability.  

There is, however, uncertainty with the daily time period used in the development of the 

CHIRPS dataset, i.e. 08:00 – 08:00 or 00:00 - 00:00. The uncertainty was because the stations 

that were used to develop the CHIRPS rainfall dataset were from different regions that use 

different local time 24-h periods in their daily rainfall data. This is supported by the response 

from one of the developers Pete (2021), who responded that “a number of different sources 

were used and none of which record their start and end times for a day, and because of this 

reason, the exact estimate of the day's precipitation is the best guess”. CHIRPS daily rainfall 

was available in Tag Image File Format (TIFF) and was obtained from the CHIRPS website 

(https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_daily/tifs/p25/ ) and extracted using the 

Google Earth Engine (GEE). 
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Table 3.3: Criteria used to select the RS product. 

Criterion Explanation 

Temporal 

resolution 

A product suitable to estimate daily values was targeted for the estimation of 

catchment rainfall on a daily scale. Design rainfalls were estimated at a 1-day 

duration for up to 20 year return periods.  

Record length Gericke (2018b) stated that longer records of rainfall increase the reliability of 

design rainfall, and generally, record lengths that are less than 10 years are not 

acceptable for design rainfall estimation. Therefore, to increase the reliability of 

design rainfall estimation, a product with rainfall record lengths of up to 20 years 

was selected. 

Spatial 

resolution 

The study areas selected are quaternary catchments that have catchment areas 

>500km2, therefore a product with a fine spatial resolution was targeted for more 

accurate results.  

Spatial 

coverage 

Since the study is based in South Africa, RS product that has good spatial 

coverage of South Africa was considered to increase the reliability of results. 

Data 

availability 

and reliability 

Readily available data with free access and free use was the ideal selection for 

this study. Further, data from the frequently updated product were prioritised. 

Bias 

correction  

Bias correction of remotely sensed data is recommended before they can be used 

for hydrological applications. This study targeted a product that has been bias 

corrected. However, the performance of the selected RS product will be 

evaluated and, if necessary, bias corrected for the selected local catchments. 

Performance 

and accuracy 

An RS product that has reported high performance and accuracy in areas with 

characteristics similar to the selected study areas was prioritised. This was done 

with the acknowledgment that RS products can perform differently even on 

catchments with similar characteristics. 
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Table 3.4:  Criterion used to select the RS product against the RS products reviewed. 

Criteria TRMM GMP GPCP TAMSAT CMORPH 
FEWS 

NET 

CRU 

TS 

ERA-

Interim 
ERA5 CHIRPS GPCC PERSIANN 

Temporal Resolution             

 (daily) 
Yes Yes Yes Yes Yes Yes  Yes Yes Yes Yes Yes 

Record length up to the 

year 2000  

(>10 Years) 

   Yes   Yes Yes Yes Yes Yes Yes 

Spatial resolution (Fine) :  

Fine ≤ 0.25°  

Medium 0.26° – 0.5°  

Coarse > 0.5° 

Yes Yes   Yes Yes    Yes  Yes 

Spatial Coverage 

(South Africa) 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Data Availability  

(Free access) 
Yes Yes Yes Yes Yes Yes  Yes Yes Yes  Yes 

Data reliability  

(Frequently updated) 
 Yes Yes Yes Yes Yes Yes  Yes Yes Yes Yes 

Bias Correction  

(Not required) 
Yes Yes Yes   Yes  Yes  Yes Yes  

Daily Time Step 

(08:00 – 08:00) 
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3.4 Extraction and Processing of Remote Sensing Rainfall Data 

The extraction and processing of the CHIRPS raster pixels were firstly done using ArcMap 

software, then using a coded script in python software, and finally using the GEE software and 

a coded script. The details of the process followed using the software are detailed below.  

3.4.1 Using ArcMap  

The CHIRPS rainfall dataset was initially processed using ArcMap in ArcGIS. Considering that 

each raster image (band) represented one day of rainfall, and the amount of data that needed to 

be processed (1981 to 2000), it was not feasible to continue to use ArcMap to process the 

CHIRPS rainfall data for the selected period length. ArcMap based processing is valuable and 

recommended for processing short record lengths such as a day, week, a month, and up to one 

year. It can also be used when processing RS data for monthly and annual scales because it 

requires a considerable amount of time, faster network connectivity, and a very large computer 

Random Access Memory (RAM) space. Thus, ArcMap was used in this study to develop the 

concepts to be included when processing the rainfall dataset using the coded scripts. The steps 

followed for the processing are presented below: 

(a) In ArcMap, catchment shapefiles and CHIRPS TIFF files were added using the Add 

feature (in this study, TIFF files were added one month per run). 

(b) The catchment area was clipped from TIFF files and all selected stations using the 

Clip Analysis Tool that is found in the ArcToolbox to work with a smaller volume of 

data and for faster processing. 

(c) Each band from 0.025⁰ (CHIRPS resolution) was resampled to 0.00025⁰ to generate 

a finer resolution so that each raster pixel is more representative of a point rainfall. 

This was done using the Resample Data Management tool which is found in the 

ArcToolbox. 

(d) Each of the resampled bands was converted to raster points using the Raster to Points 

Conversation Tool which is found in ArcToolbox. 

(e) Using the Identify tab, the value of the raster points closest to all the selected rainfall 

stations were extracted using the Grind Values (also called pixel values) for each 

raster TIFF file. 
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3.4.2 Using Python 

Python Spyder Version 3.8 (Raybaut, 2009) was used to process the CHIRPS rainfall dataset. 

Two scripts were developed. The first script was used to simultaneously extract data from 

multiple stations by using the Geopandas as the main library and adjustments were made for 

different stations' shapefiles. The Python libraries and packages that were used included the 

following: 

(i) Geopandas - combines the capabilities of the data analysis library Pandas with other 

packages for managing spatial data  

(ii) Pandas - an open source Python package that is most widely used for data science or 

data analysis and machine learning tasks,  

(iii) OS - used to read contents, change, and identify the current directory,  

(iv)  Rasterio (a module for raster processing that you can use for reading and writing several 

different raster formats in Python),  

(v)  Scipy. sparse -provides tools for creating sparse matrices using multiple data structures, 

as well as tools for converting a dense matrix to a sparse matrix, and 

(vi)  Numpy - works together with pandas to provide support for multi-dimensional arrays  

The detailed use of the libraries used is described in Wasser et al. (2019). The full script that 

was used in this study is found in Appendix A. Another separate script was created to extract 

data from a single station where there are missing values because the first script could not read 

some of the raster images, and adjustments were made for each station. The second script is in 

Appendix B. 

3.4.3 Using Google Earth Engine to extract point pixel values 

The importance of resampling remotely sensed raster data is detailed by Baboo and Devi 

(2010). The CHIRPS raster dataset has a spatial resolution of 0.25⁰ which is coarse compared 

to the catchment areas and the distribution of stations and it was noted that frequently more 

than one rainfall station is contained within a single raster pixel. To avoid such instances, 

resampling and interpolation were adopted using another script in GEE. Similarly, to the use of 

Python, a coded script was developed for use in GEE to resample and interpolate the raster 

pixels so that each value extracted from a raster pixel has a smaller footprint over the raingauge 

site. The observed rainfall stations selected for the study were added as shapefiles to GEE and 

used as a guide to extract the pixel rainfall values corresponding to each of the selected stations. 
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The resampling performed was from 0.25⁰ spatial resolution (27750 m) to 0.0045⁰ spatial 

resolution (approximately 500 m). The resampling to a resolution of 500 m was to ensure that 

the resampled raster pixels are finer and still represent good coverage within the catchment to 

maintain the good spatial estimates from the RS product. The sensitivity of the resolution of the 

resampling was assessed and it was observed that there was no significant difference in the 

values extracted using both 0.0025⁰ and 0.0045⁰ resolutions. The interpolation technique that 

was applied is bilinear. Bilinear interpolation is an extension used for interpolating functions of 

two variables on a rectilinear two-dimensional (2D) grid by using linear interpolation, first in 

one direction, and then again in a 90⁰ direction. The outcome was resampled and interpolated 

raster pixels values which had a resolution of 0.0045⁰. The GEE code used in the study is 

documented in Appendix C. 

3.4.4 Using Google Earth Engine to extract mean catchment rainfall 

After the extraction of point raster values, RS was used to estimate the mean rainfall directly 

from the selected catchment. This was carried out using code in GEE. For this purpose, 

catchment shapefiles were added to GEE. The code was used to specify the RS rainfall product, 

catchment shapefiles, product band, variable to be downloaded, units of the variable, the time 

step of the variable, and to extract the mean areal rainfall for Catchments S60A and U20F. The 

code extracts and averages rainfall within the catchment boundaries. This method of estimating 

mean catchment rainfall is better than using the scripts because there are fewer individual 

calculations to be done. The details of the code are specified in Appendix D. 

3.5 Performance of RS Data  

Validation between the observed station and RS data was done on a pixel to station basis. Each 

pixel value was validated using the corresponding station rainfall. The statistics that were used 

for validating remotely sensed pixel values are the Mean Bias Error (MBE), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Index of Agreement (D), and Relative Bias 

Percentage Bias (%BIAS). The statistics were estimated using the Agricultural and 

Meteorological software which was developed by Jinghao et al. (2009). The agricultural and 

meteorological software is software that is used to automatically calculate statistics for two sets 

of a dataset. The equations that were used to estimate the values of the selected statistics are 

presented below: 
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(i) Mean Bias Error (MBE) is primarily used to estimate the average bias in the model and 

captures the average bias in the prediction. A positive bias or error in a variable (such 

as speed) means that the data from the datasets are overestimated and vice versa.  

     MBE =
1

n
 ∑(P𝑖 − 𝑂𝑖)                                                                                                               (3.1)   

n

i=1

 

where       

           Pi     = RS rainfall for day = i (mm), 

           Oi    = observed rainfall for day = i (mm), and 

            n     = number of observations. 

(ii) Root Mean Square Error (RMSE) is used to measure of the sum of difference between 

values predicted by a model and the observed values. These individual differences are 

also called residuals, and the RMSE serves to aggregate them into a single measure of 

predictive power.  

              RMSE =  √
∑ (O𝑖−P𝑖)²n

i=1

n
                                                                                                      (3.2)     

(iii) Mean Absolute Error  (MAE) is simply, as the name suggests, the mean of the absolute 

errors. For continuous variables, MAE represents the expected average error. The MAE 

and the RMSE can range from 0 to ∞ and are indifferent to the direction of errors. 

              MAE =  
1

n
 ∑(∣ O𝑖 − 𝑃𝑖 ∣)                                                                                              (3.3) 

n

i=1

 

(iv)  Index of Agreement (D) is a standardized measure of the degree of model prediction 

error which varies between 0 and 1. D = 1 indicates a perfect match, and D = 0 indicates 

no agreement at all.  

           D = 1 −
∑ (𝑂𝑖 − P𝑖)²n

i=1

∑ ( ∣ O𝑖 −  Ō ∣∣ +∣∣ O𝑖 − Ō ∣ )²n
i=1

    0 ≤ D ≤ 1                                                 (3. 4)  

  where   
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            O = average observation values. 

(v)  Relative Bias in Percentage (%BIAS) - The relative bias provides a measure of the 

magnitude of the bias in percentage. Sometime the bias is expressed in relative terms 

(relative bias) making it possible to evaluate the size of the bias with respect to the true 

unknown parameter to estimate. This value is multiplied by 100 if one need relative bias 

in percentage. 

              %BIAS =  
∑ (P𝑖−O𝑖)n

i=1

∑ O𝑖
n
i=1

 × 100                                                                                              (3.5)                                                                                                                

3.6 Bias Correction 

After verification of RS pixel rainfall using station rainfall, bias correction was performed. The 

technique that was used for bias correction was the Empirical Quantile Mapping (EQM) 

method. Details of the EQM method to correct bias in rainfall are included in Ghimire et al. 

(2019). EQM works by adjusting daily precipitation in a form of multiplicative factor using an 

observed and simulated rainfall as shown in Equation 3.7. The estimated correction factor is 

multiplied by the corresponding RS rainfall for each day. An example of calculations is shown 

in Table E.1 in Appendix E. In the Table E.1, dayObs and daySim (RS) are the day number in 

the original time series. To estimate the percentiles, Equation 3.6 was used.  

           Percentile =
Rank

n+1
 100                                                                                                            (3.6) 

where    

         Rank           = rank of a numeric value when compared to a list of other numeric values 

and     

         n                  = total number in series 

 

           Correction factor =  
Observed rainfall (mm)

RS rainfall (mm)
                                                                  (3.7) 

where    

         Observed rainfall   = rainfall from the stations (mm) and 
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          RS rainfall            = rainfall from CHIRPS product (mm) 

3.7 Estimation of Daily Catchment Rainfall 

This section documents the methodology followed to estimate the catchment rainfalls. To 

achieve this, catchment rainfall was estimated using both the observed station rainfall and 

remotely sensed CHIRPS rainfall data. 

3.7.1 Using observed rainfall: Weighted stations 

In the Weighted Stations approach, the observed rainfall data from the selected rainfall stations 

were used. Using the spatial distribution of the selected stations, Thiessen polygons were 

constructed, and the areal weights of each station were estimated. Example of Thiessen 

polygons that were constructed for Catchment S60A in ArcMap is presented in Figure 3.4. 

 

Figure 3.4:  Example of Thiessen polygons constructed ArcMap 

To estimate the areal weights, Equation 2.2 as detailed in Section 2.2.1.1 was used. The 

calculated areal weights for each station are used to calculate the contribution from each station 

to catchment rainfall for each time step. Using Equation 3.8, the weighted point observed 
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rainfalls were summed together to estimate the average catchment rainfall. An example of the 

portion of calculations is shown in the spreadsheet found in Appendix E Table E.2. 

          P𝑎𝑣𝑒 = ∑ P𝑖 × W𝑖                                                                                                              (3.8)

𝑛

𝑖=1

 

where   

           Pave = weighted observed catchment rainfall (mm),  

           n      = number of observations, 

           Pi        = point observed rainfall for day = i (mm), and  

           Wi    = Thiessen weight for day = i.                                                                                                              

3.7.2 Using remotely sensed rainfall 

The RS pixel rainfall values that were extracted using code as described in Section 3.4.3 and 

bias corrected as described in Section 3.6 were used to estimate catchment rainfalls. 

3.7.2.1 Weighted pixels  

Similar to area weighting the observed station rainfall data to estimate catchment rainfall, the 

bias corrected RS pixel values corresponding to the station location were used to estimate the 

average catchment rainfall using the same areal weights that were estimated using Equation 2.2. 

The reason for using selected pixels within the catchment and not all the pixels was because of 

the need to use observed rainfall data to bias correct the remotely sensed rainfall data before 

they could be used to derive meaningful estimations. The pixels were selected based on the 

location of the corresponding raingauges.  The equation for estimating the averaged catchment 

rainfall from the pixel values was adjusted from Equation 3.8 and is presented in Equation 3.9. 

This method was used with observed data in the DWS (2014) report. 

            P𝑎𝑣𝑒_𝑥 = ∑ P𝑥  × W𝑥                                                                                                         (3.9)

𝑛

𝑥=1

 

where    

         Pave_x  = averaged RS rainfall (mm),  
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         n           = number of observations, 

         Px         = point pixel rainfall for day = x (mm), and  

         Wx       = Thiessen weight for day = x.                                                                                     

3.7.2.2 Driver pixel (pptcor) 

Based on the criteria in  

Table 3.1 and Table 3.2, driver stations were selected for each catchment. In the Driver Pixel 

(pptcor) approach, the data from the RS pixel located at the driver station is adjusted to represent 

the catchment rainfall. Traditionally, this approach is used with the observed data in the ACRU 

model. Hence in this study, the Driver pixel(pptcor) approach adopted the steps that are used 

when estimating catchment rainfall in the ACRU hydrological model using the driver station. 

To do this, the monthly median bias corrected pixel rainfall values were calculated using a pivot 

table in Excel. The monthly median catchment rainfall was estimated using the zonal statistics 

calculated in ArcMap from the gridded median monthly rainfall surfaces that were developed 

by Lynch et al. (2004). The rainfall adjustment factors were then calculated using Equation 

3.10 which was adjusted from Equation 2.1 for the estimation of pixel rainfall adjustment 

factors. The calculated adjustment factors were multiplied by the daily pixel values for the 

corresponding month to derive the average catchment rainfall values. The results of the 

estimation of median rainfalls are presented in Appendix E Table E.3 for Catchment S60A and 

Table E.4 for Catchment U20F.  

          pptcor                   =
CatchmentMMR

PixelMMR
                                                                               (3.10) 

where   

          pptcor                  = Precipitation Correction factors/ Rainfall adjustment factors,      

          CatchmentMMR = Catchment Median Monthly Rainfall, and 

          PixelMMR          = Median Monthly Rainfall.  

3.7.2.3 Corrected GEE 

The RS data was used to spatially estimate catchment rainfall directly for the catchment by 

running code in GEE as described in Section 3.4.4. The catchment rainfall estimated using GEE 

was bias corrected to remove any bias in the RS pixel data. This section details a method to 

correct the RS catchment rainfall that was obtained from using the GEE software of any bias.  
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The assumption made was that the average bias in the estimated RS catchment rainfall is equal 

to the area weighted bias at the pixels at the raingauges which contribute to the catchment 

rainfall. However, bias could only be computed at pixels corresponding to stations, and 

therefore the catchment bias correction was based on those selected pixels. The bias correction 

factors obtained from using the quantile mapping method for each pixel corresponding to the 

selected station were used to correct the mean catchment rainfall estimated using the GEE 

software. The method adopted was through the use of Thiessen weights that were estimated for 

each station. The Thiessen weights of the selected stations are the same as those of the 

corresponding pixels. For this purpose, Pixel Weights (PW) that were previously estimated 

using the Thiessen polygons were used to multiply the calculated pixel-to-station bias 

correction factor (PC) for the bias correction factor that was estimated in each pixel. Equation 

3.11 was used for this purpose and the sum of the multiplied values is the weighted catchment 

bias. The weighted catchment bias results were multiplied by the GEE catchment rainfall values 

to obtain the bias corrected GEE-based catchment rainfall as shown in Equation 3.12. 

          C𝑤    = ∑ PW𝑖  × PC𝑖
n
i=1                                                                                                      (3.11)  

where   

           Cw    = daily weighted catchment bias correction factors, 

           PWi  = assigned pixel Thiessen weight determined using corresponding station for day   

= i,  

           PCi   = pixel correction factor for day = i, and  

           n       = number of values. 

         Corrected GEE = Cw × GEE                                                                                                     (3.12) 

where  

         Corrected GEE = bias corrected catchment rainfall estimated using GEE, 

         Cw                    = Daily weighted catchment bias correction factors, and 

         GEE                  = Catchment rainfall estimated using Google Earth Engine. 
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3.8 Estimation of Catchment 1-Day Design Rainfall 

Catchment design rainfalls were estimated using the catchment rainfalls that were estimated 

using the methodologies that are detailed in Sections 3.6 and 3.7. The approaches that were 

used to estimate catchment rainfalls are: (i) areal weighting of multiple rainfall stations 

(Weighted stations), (ii) Areal weighting of multiple pixel rainfalls (Weighted pixels), (iii) the 

driver pixel using an adjustment factor (pptcor), and (iv) using RS through Google Earth Engine 

(Corrected GEE).  

Another method that was used to estimate catchment design rainfalls was through the use of 

ARFs [Driver pixel(ARFs)].  In this approach, the bias corrected driver pixel values were used 

to estimate design rainfall at a point. To convert the point design rainfall to catchment design 

rainfall, ARFs were used. In practice, ARFs is used with the driver station to estimate catchment 

design rainfalls by either multiplying point catchment rainfall with ARFs and use the estimated 

catchment rainfall to estimate catchment design rainfall or by multiplying ARFs with the 

estimated point design rainfall. In this study, the same approach was adopted using the driver 

pixel to estimate catchment design rainfall by multiplying point catchment rainfall from a single 

pixel by ARFs. 

 The driver pixel used is the same as used in Section 3.7.2.2. The equation that was used for the 

estimation of ARFs is Equation 2.6. This equation uses one variable to estimate ARFs which is 

the catchment area. To convert the ARFs to a percentage value, Equation 3.13 is used.  

           %𝐴𝑅𝐹 =  
ARF

100  
                                                                                                                       3.13         

where  

          %ARF = areal reduction factors in percentage and 

           ARF   = areal reduction factors. 

To estimate catchment design rainfalls using the estimated catchment rainfall estimated by the 

various methods, code in R-Software was used to fit the Generalised Extreme Value distribution 

(GEV) to the Annual Maximum Series (AMS) of the catchment rainfall data using L-moments 

(Smithers et al., 2018). This code is presented in Appendix F. Given the limited length of record 

20 years used in the analysis, the catchment design rainfall values were only estimated up to a 

return period of 20 years.  
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4. APPLICATION TO CATCHMENT S60A: PILOT STUDY  

This chapter contains the results and discussion of the study methodology in a pilot study and 

includes the validation and bias correction, sensitivity analysis, and the estimation of design 

rainfalls. The summary of comparisons of catchment rainfall done are: 

(i) Areal weighted pixel rainfall (Weighted pixels) against the areal weighted observed 

daily rainfall method (Weighted stations). 

(ii) Driver pixel using rainfall adjustment factors [Driver pixel(pptcor)] against the areal 

weighted observed daily rainfall method (Weighted stations), 

(iii) Estimated catchment rainfall using RS through Google Earth Engine (Corrected 

GEE) against areal weighted observed daily rainfall (Weighted stations), and 

(iv) Driver pixel using ARFs [Driver pixel(ARFs)] against the areal weighted of 

observed daily rainfall method (Weighted stations) for the estimation of catchment 

design rainfall. 

In the assessments, the Weighted stations approach is assumed to be the best estimate of daily 

catchment rainfalls and catchment 1-day design rainfalls. 

4.1 Assessment of the performance and bias correction 

Different statistics were used to investigate the performance of the point-to-pixel bias correction 

technique applied. These statistics were derived from verifying remotely sensed data using 

observed rainfall from raingauges and the statistics results are summarised in Table G.1, Table 

G.2, and Table G 3 in Appendix G. The performance of the bias correction was assessed on 

different temporal scales namely daily, monthly, and annually and are presented in Figure 4.1, 

Figure 4.2, and Figure 4.3 respectively. In Table 4.1 Both the tables and figures, MBE, RMSE, 

MAE, D, and %BIAS were used as verification statistics, and RAW is the original RS CHIRPS 

data and CORRECTED is the RS CHIRPS data after it was bias corrected. 

At a daily time scale, more than 50% of the bias in remotely sensed rainfall was reduced even 

though there was still bias in the dataset. The presence of bias after bias correction is supported 

by a low value of D that was ranging from 0.31 for station 0079754 2 to 0.43 for station 0079730 

0. At a monthly time scale, up to 80%  bias was removed in all stations, and D values  improved 
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from a minimum of 0.87  to a maximum of 0.93. The estimated error in values and bias that 

was high on a daily time scale was also reduced. At the annual scale, the error was reduced, and 

the bias was improved, however, D between the observed and the remotely sensed rainfall 

values was compromised. Generally, the bias correction method performed better on a monthly 

time scale.
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Based on the statistics presented in Figure 4.1- Figure 4.3, MBE difference values for each 

station were calculated and is presented in Table 4.1. Accordingly, the scatter plots in Figure 

4.4 were developed which present the comparison of the raw rainfall data and the bias corrected 

rainfall against the observed rainfall at the station with the best and worst performance. The 

performance was assessed based on how much bias was reduced after the application of bias 

correction factors to the pixel values. In Figure 4.4, the legend at the bottom of the graphs 

represents all the graphs. For reference, R2 determines how well the RS data fits the observation 

data and the slope indicates the general performance. Each graph has the calculated statistics 

displayed. 

Considering both the graphs and the statistics, Station 0079730 0 has been identified as the best 

performing station and Station 0101719A8 as the worst performing station based on the amount 

of bias that was reduced in at all time scales. The assessment between different scales also 

shows that quantile mapping for the bias correction of CHIRPS rainfall performs well at a 

monthly scale. This is because all stations had their bias reduced by a large amount at this time 

scale. Overall, as seen in Figure 4.4 , there is not much difference between the R2 and slope 

value between the best and poor performing stations before and after bias correction even 

though the R2 values are decreasing very slightly from RAW to CORRECTED for the best 

performing station and increasing for the poor performing station. Overall, the quantile 

mapping method for correcting bias in remotely sensed rainfall data performed well for all 

stations.  

Table 4.1: MBE difference between RAW and CORRECTED rainfalls for each station 

Stations Differences in MBE 

Scale Daily Monthly Annually 

0079396 2 0.37 11.24 134.86 

0079485 1 -0.19 -5.69 -68.25 

0079490 X -0.15 -4.74 -56.89 

0079632 6 -0.31 -9.56 -114.69 

0079730 0 -0.04 -1.11 -13.27 

0079754 2 0.16 4.95 53.30 

0101719A8 0.54 16.27 195.25 
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4.2 Sensitivity to Period Length 

This analysis aims to assess if bias correction based on empirical quantile mapping is affected 

if a different period of record was used and to assess if the period length used in this study had 

any impact on the results of bias correction. The original period length for Catchment S60A 

was from 1981 to 2000. Sensitivity to the period length was assessed using the remotely sensed 

rainfall values and corresponding observed rainfall values from Station 0079396. One station 

was used for this assessment because the results for all stations would be the same. For this 

analysis, the period length was incremented into increasing period lengths (1981-1985, 1981-

1990, 1981-1995, and 1981-2000). The assessment was done by comparing the bias corrected 

pixel values from using different period lengths against the raw pixel rainfall values of the same 

period. For example, for the period length of 1981-1985, the observed rainfall data was used to 

correct the pixel values for the year 1981 to 1985, and the corrected pixel values of the same 

period (1981-1985) were then compared to the raw pixel values of the same period (1981-1985). 

The results for all the comparisons are presented in Figure 4.5 for daily values. In the graph, 

the Corrected_ Pixel _rfl is the corrected remotely sensed rainfall and the years in brackets 

indicate the period length that was used to estimate correction factors. To make the graph easy 

to read, the equations and the R2 values for the trendlines are placed at the top of the graph as 

1981-1985, 1981-1990, 1981-1995, and 1981-2000 respectively. As observed in Figure 4.5, the 

correlation and the slope of each assessment show dynamic results. From the period length of 

1981-1985 to the period length of 1981-1990, there was an increase in the R2 correlation from 

0.94 to 0.95 and a decrease in the slope value from 1.04 to 0.98, and a decrease in both slope 

value and R2 value thereafter for all the other period lengths.  

There is a good correlation at the low values and some variation in the higher values for the 

years 1981-1985. This could be due to some of the extreme rainfall values that could not be 

properly bias corrected which could be attributed to the effectiveness of the empirical quantile 

mapping method for the extreme rainfall values in short period length. Nonetheless, the 

differences in the correlation within all the regression plots is less than 1% and may be regarded 

as minimal. These results indicate that the bias correction method based on empirical quantile 

mapping is not significantly affected by a change in the period length of the dataset. However, 

these results could be influenced by the period length used as well as the RS product used in 

this project and therefore these results only apply to the study catchments, study period, stations 

rainfall values and the corresponding CHIRPS pixel rainfall values used.  
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(i) the areal weighting of multiple rainfall stations (Weighted stations), 

(ii) the areal weighting of multiple pixels (Weighted pixels),  

(iii) driver pixel using rainfall adjustment factors [Driver pixel (pptcor)], and  

(iv)  RS through the Google Earth Engine (Corrected GEE),  

All these methods estimate catchment rainfall differently as detailed in Section 3.7. The results 

from all the approaches were compared against the catchment rainfall derived from the areal 

weighting of multiple stations (Weighted stations) which is assumed to be the best estimate of 

actual catchment rainfall. 

Figure 4.8 presents a comparison of accumulated daily catchment rainfalls and indicates that 

all the methods generally underestimate accumulated daily catchment rainfall with increasing 

time period. Considering the presented approaches that are being compared, it is clear that 

Weighted pixels have estimates that are much closer to the Weighted station accumulated daily 

rainfall followed by the Driver pixel(pptcor) approach. This could be the result of a similar 

approach to estimate catchment rainfall used in both the Weighted pixel approach and the 

Weighted station approach and the point rainfalls were obtained from the same geographical 

areas.  

Further, the Driver pixel(pptcor) approach performs well because it is based on the selection of 

a pixel that best represents the catchment and therefore has a high contribution to the Weighted 

pixel derived catchment rainfall. The Corrected GEE approach is seen to underestimate the 

accumulated daily rainfalls more than other approaches. This may be due to the differences in 

the estimated rainfall depth because there was no clear indication of improvement of the rainfall 

depth and its accuracy needs to be improved.  

The results in Figure 4.8 are supported by the frequency distribution shown in Figure 4.9 which 

present the non-exceedance frequency of daily catchment values in percentiles. All daily 

rainfall values up to the 75th non-exceedance percentile for is zero. Between the 75th and 87th 

non-exceedance percentiles, there is an underestimation of daily catchment values by all 

approaches, however, Weighted pixels approach has percentile values that are much closer to 

the Weighted station approach. Corrected GEE and Driver pixel(pptcor) had the worst 

performance especially in lower percentiles. This is seen in the summary of MAE statistics in 

Table 4.2, where the Weighted pixel had a low MAE value and Corrected GEE and Driver 

pixel(pptcor) had the values of MAE 8.57 and 8.56, respectively.  





 

 68 

 

Figure 4.9: Frequency distribution for daily catchment rainfalls
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Further assessment of catchment monthly rainfall was done using the frequency distribution 

shown in Figure 4.11. In the figure, less than 5% of estimated values did not exceed 10 mm 

catchment rainfall. All the approaches have a larger maximum (100th percentile) monthly 

catchment rainfall value compared to the Weighted station's approach except for the Driver 

pixel(pptcor). In terms of distribution performance, the Weighted pixel approach shows a 

similar distribution to the Weighted station approach while the distributions of the Corrected 

GEE and the Driver pixel(pptcor) approaches are less similar. This is supported by the values 

of MAE of the percentile values shown in Table 4.3, which present the estimated average error 

between the estimated catchment rainfalls in percentiles Overall, all approaches show a good 

potential to estimate monthly values of catchment rainfall. 

 

Table 4.3: Total monthly catchment rainfalls MAE summary statistics for all approaches 

compared to the weighted station approach 

 Statistic CR Corrected  GEE CR Weighted Pixel CR Driver Pixel(pptcor) 

MAE 17.7 15.4 18.2 
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Figure 4.11: Frequency distribution curve for the monthly catchment values.
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4.4 Estimation of Catchment 1-Day Design Rainfall 

The performance of 1-day design rainfalls estimated from the three approaches to estimate 

catchment rainfall, detailed in Section 3.7 and the Driver pixel approach using ARFs detailed 

in Section 3.8, was assessed.  Given the limited length (20 years) of rainfall data used in this 

study, this analysis was limited to the 20 year return period event. The results are presented in 

Figure 4.12 which shows the design values for each return period. Based on the graph, the 

approaches performed better from the Weighted pixels followed by Corrected GEE with a 

similar performance. The Driver pixel(pptcor) approach overestimated design values for most 

return periods while the Corrected GEE is both underestimates and overestimates design 

rainfall values at different return periods. All approaches performed well for the 2-year return 

period except for the Driver pixel(pptcor) approach which overestimated the design values 

slightly higher than other approaches. Further analysis of the design values reveals a varying 

performance of all approaches against the Weighted station approach. RS (Driver pixel (ARFs) 

and Weighted pixels) show potential to perform better in high return periods. However, the 

MAE estimations in Table 4.4 show that the Weighted pixel approach has the lowest estimated 

error while the Driver pixel(pptcor) has the highest estimated error. Therefore, even though all 

approaches performed reasonably well, the Weighted pixel approach performed the best. 

Table 4.4: Catchment design rainfalls MAE statistics for all approaches compared to the 

Weighted station approach 

 Statistic 
Corrected_ GEE Weighted_pixels 

Driver_pixel 

(pptcor) 

Driver pixel 

(ARF’s) 

MAE 5.6 5.4 12.3 8.7 
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5. APPLICATION TO CATCHMENT U20F 

Using the results from the pilot study, further assessments were performed in Catchment U20F. 

The results from Catchment S60A showed the Weighted pixels approach as the best approach 

to estimate design rainfalls against the Weighted station approach, therefore, this chapter further 

investigates the performance at Catchment U20F. The difference between Catchment S60A and 

U20F is the climatic region, the catchment sizes, and how the distribution of stations in the 

catchment.  

5.1 Assessment of the performance and bias correction 

Validation was performed using the statistics MBE, RMSE, MAE, D, and %BIAS which is 

obtained by multiplying MBE by 100. Figure 5.1, Figure 5.2, and Figure 5.3 present the results 

of the statistics that were used to assess the performance of the bias correction for the daily, 

monthly, and annual scales, respectively. The values of the statistics are presented in Appendix 

H. As per the graphs, the bias correction performed significantly well.  

On a daily scale, the bias is reduced in 8 out of 10 stations with bias reduced up to 0. The D 

between datasets ranged from 0.38 to 0.62 for the raw rainfall dataset and from 0.37 to 0.71 for 

the bias corrected rainfall values with Station 0269775 having the lowest values of the D values 

and Station 0270086 A having the highest D values. RMSE values are each increasing in 

corrected rainfall values while MAE values are decreasing in all stations.  

At monthly and annual scales, the trends in performance are the same as at a daily scale. The 

bias was removed entirely at Stations 02270021 and 0269775. Based on results for all stations, 

the D value has increased up to 0.938 for raw data and 0.961 for the corrected values on a 

monthly scale. At an annual scale, D increased up to 0.91 for raw rainfall values and 0.94 for 

the corrected values. Station 0269775 has the lowest values of D but has the bias reduced to a 

value of 0 at all time scales while Station 0270086 has the highest values of D and an increased 

value of %BIAS present at all time scales. 
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The Performance of pixel-to-station bias correction for Catchment U20F was further assessed 

using regression graphs. The graphs are presented in Figure 5.4. Even though some stations had 

%Bias reduced to 0, the criteria to select the best and poorly performing stations was the same 

as used in Catchment S60A which was to assess the amount of bias reduced after applying bias 

correction. The results of the differences in MBE between RAW and CORRECTED are 

presented in Table 5.1. Based on the statistics, Station 0270086 A was identified as the best 

performing and station 0269744 S as the worst performing. However, the regression statistics 

shows interesting results with decreasing slopes and R2 values for both poor and best 

performing stations. Nonetheless, these results agree with results for Catchment S60A in the 

sense that bias correction between RAW and CORRECTED remotely sensed using empirical 

quantile mapping performs better in longer high temporal scales. 

Table 5.1: MBE difference between RAW and CORRECTED rainfalls for each station 

Stations Difference in MBE 

Scale Daily Monthly Annually 

0270260A 0.31 9.53 111.96 

0270205A 0.12 8.92 104.84 

0270086A 0.04 1.21 14.23 

0270023A 0.02 0.75 -37.12 

0270021W -0.09 -2.64 -31.06 

02701645S 0.19 5.72 67.20 

0269647W -0.53 -15.99 -187.86 

0269712W -0.361 -10.988 -129.109 

0269744S -0.869 -26.427 -310.519 

0269775S 0.666 20.278 238.267 
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Further assessment is presented in Figure 5.6 using the frequency distribution curve. As shown 

in Figure 5.6, the Weighted pixel approach has a distribution closer to the Weighted station 

approach except for the maximum value (100th percentile) which is much lower. This could 

have been due to values that were observed in Station 0270021W on 22/10/1996 and in Station 

0269647W on 05/03/1995 which were higher compared to all the other stations on the same 

day and could be outliers. Generally, both Station 0270021W and Station 0269647W were 

occasionally estimating higher daily values compared to the other stations, and the values were 

not corresponding well with the estimated pixel values. This is supported by the MAE statistics 

in Table 5.2, where the Driver pxel(pptcor) has the highest value of MAE. The driver pixel 

selected was a pixel corresponding to Station 0270021W.  Corrected GEE is poorly estimating 

the daily catchment values and has lower estimations of catchment rainfalls except in the 100th 

percentile. In higher non-exceedance percentiles, the driver pixel(pptcor) is overestimating 

catchment values. Overall, Weighted pixel approach showed the best performance with the 

MAE value of 2.86, followed by the Corrected GEE approach with the MAE value of 4.36. 

Table 5.2: Daily catchment rainfalls MAE summary statistics for all approaches compared to 

the Weighted station approach 

 Statistic CR Corrected  GEE CR Weighted Pixel CR Driver Pixel(pptcor) 

MAE 4.36 2.86 13.33 
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Figure 5.6: Frequency distribution for daily catchment rainfalls
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Based on results of regression statistics on monthly catchment rainfalls, both Weighted pixels 

and Corrected GEE were performing reasonably well. Therefore, further assessment was done 

using the frequency distribution. In Figure 5.8, the frequency distribution shows the non-

exceedance percentile values for all the approaches. As per Figure 5.8, all the approaches follow 

a similar frequency distribution compared to the Weighted station approach. In this Catchment, 

the Driver pixel(pptcor) had a better performance compared to the Corrected GEE approach, 

unlike in Catchment S60A. This could be because the driver pixel used in this catchment had a 

higher contribution to the total estimated catchment rainfall. The Weighted pixel approach still 

has the best performance compared to all the other approaches followed by the Driver 

pixel(pptcor) approach. This is supported by the statistics in Table 5.3 which presents monthly 

catchment rainfalls MAE for all approaches against the Weighted station approach. The 

Weighted pixels approach has the lowest MAE value of 0.9 followed by the Driver 

pixel(pptcor) with a value of 2. Overall, the Weighted pixel approach is performing well while 

the Driver pixel(pptcor) and Corrected GEE is changing and inconclusive. 

Table 5.3: Total monthly catchment rainfalls MAE statistics for all approaches compared to 

the weighted station approach 

  

CR_Corrected 

GEE CR Weighted Pixel(corrected) CR Driver Pixel(pptcor) 

MAE 4.6 0.9 2.0 
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Figure 5.8: Frequency distribution curve for the monthly catchment values
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5.2.3 Sensitivity to the spatial density and influence of Thiessen weights 

This section assesses the sensitivity of estimation of catchment rainfall to the spatial density of 

raingauges. This assessment was done using Catchment U20F only because the stations in 

Catchment U20F were poorly distributed. The assessment was done to investigate how 

catchment rainfall estimation changes with different station spatial densities. Initially, 

catchment rainfall was estimated using the Weighted stations/pixels approach for all 10 stations, 

the second estimations were then done using 3 stations from the same catchment.  

Figure 5.6 presents the distribution of the number of stations in Catchment U20F and the 

Thiessen polygons for 10 stations distribution and 3 stations distribution. The three stations 

were selected because they had extended record period lengths. However, for a fair comparison, 

the same record length was used for the assessment. For both the 10 and 3 station distribution 

scenarios, catchment rainfalls were estimated using areal averaged weights. In the 10 stations 

scenario, the weights that were estimated are presented in Error! Reference source not found.. T

he Thiessen weights for the 3 stations scenario are 0.68, 0.17, and 0.15 for Stations 0270021 

W, 0269712 W, and 0269647AW, respectively. The smaller Thiessen polygons were not 

included in the assessment because they had very small Thiessen weights ( < 0,001). 

10 stations distribution 3 stations distribution 

  

Figure 5.9: Catchment U20F showing the station's distribution and the Thiessen polygons. 
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5.2.3.2 Assessment using regression statistics 

Further assessment of the impact of spatial density on estimation of catchment rainfall was done 

using the regression graphs presented in Figure 5.11. The graphs show results for the daily, 

monthly, and annual scales. As seen in the Figure 5.11, there is a good correlation between the 

catchment rainfalls estimated using 10 and 3 stations/pixels for all time scales.  For the 

catchment rainfalls that were estimated using the weighted pixels approach, the correlation 

between the estimated values using 3 and 10 pixels is almost perfect with the values of R2 being 

0.99 and the slope value of very close to 1 for all time scales. The catchment rainfall estimated 

using the weighted stations had a slightly lower value of R2 of 0.89 on a daily scale. This may 

be attributed to the extreme value of rainfall that was observed and seems to be an outlier. 

Overall, estimating catchment rainfall using 10 stations/pixels and using 3 stations/pixels 

showed no significant differences. This may be due to the 3 selected stations/pixels having high 

weight compared to the other 7 stations and therefore had more influence on the estimation of 

total catchment rainfall. In addition, the 10 stations that were initially used were not evenly 

distributed across the catchment and thus leaving some stations making a larger contribution to 

catchment rainfall compared to the others.  
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5.3 Estimation of Catchment 1-Day Design Rainfall 

The catchment design rainfall results estimated for Catchment S60A suggested better 

performance to estimate catchment design rainfall through the Weighted pixel rainfall approach 

even though the other approaches (Driver pixel(pptcor) and Corrected GEE) still performed 

well, and the assumption was that the results will be the similar in Catchment U20F. Catchment 

S60A has 6 stations while Catchment U20F has 10 stations for catchment sizes of 328.34 km2 

and 458.99 km2, respectively. Thus, there the main differences in Catchments S60A and U20F 

are the different climatic regions and the distribution of stations across the catchment, which 

has an impact on Thiessen weights. 

The results are presented in Figure 5.12 which shows the design values for each return period. 

Based on the graph, the approaches performed better compared to the Weighted stations 

approach from the Weighted pixels, Corrected GEE, Driver pixel(ARFs), and Driver 

pixel(pptcor) approach. The Driver pixel (pptcor) and the Driver pixel(ARFs) approaches 

overestimated the design values for most return periods while the Corrected GEE is slightly 

underestimating design values for all return periods except for the 10 year return period. The 

results show varied performance of all approaches against the Weighted station approach.  

However, the MAE estimations in Table 5.4 show that Corrected GEE has the lowest estimated 

error followed by the Weighted pixel approach while the Driver pixel(pptcor) has the highest 

estimated error. Therefore, even though all approaches performed reasonably well, the 

Weighted pixel approach performed better. The switch between the Corrected GEE and the 

Weighted pixel approach in terms of which has the best estimate is influenced by the 

observation of an extreme observed design value of 240 mm at 20 year return period which 

resulted from an outlier that was observed in the observed rainfall dataset in March 2000. The 

MAE between Weighted stations and the Weighted pixel approach without the outlier value is 

5.648. Therefore, without an outlier, the results prove that the Weighted pixel approach is the 

best estimate of catchment design rainfall. 

Table 5.4: Catchment design rainfalls MAE statistics for all approaches compared to the 

weighted station approach 

 Statistic Corrected GEE Weighted Pixel 

Driver_Pixel 

(pptcor) 

Driver pixel 

(ARF’s) 

MAE 7.7 12.4 56.6 46.7 
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6. DISCUSSIONS, CONCLUSIONS, AND RECOMMENDATIONS 

The main aims and objectives of this study were to  use remotely sensed rainfall to improve the 

estimation of catchment rainfall for use in hydrological modelling and assess different methods 

of estimating both catchment rainfall and catchment design rainfall. This was done by using 

four different approaches based on the selecetd CHIRPS rainfall data and one approach based 

on the observed data. CHIRPS product was selected because it met the criteria that was set for 

this study. The four approaches were assessed against the observed rainfall data. This was done 

firstly using a pilot study in Catchment S60A and after, Catchment U20F was selected to verify 

the results that were obtined in the pilot study. The main results obtained in this project are bias 

correction, the estimation of catchment rainfalls, and the estimations of the catchment design 

rainfalls.  

In the case of the bias correction results, the EQM approach was used in both catchments in this 

study. The results from both the catchments show a varied performance of bias correction. In 

terms of temporal scale, the performance of the bias correction method improved from daily 

scale to annual scale. The most improvement was observed in monthly scales where the 

statistics showed a large improvement compared to the daily scale statistics. In Catchment 

S60A, more than 50% of the selected pixels corresponding to stations had their monthly values 

highly reduced of bias. The results also showed a lack of improved bias in the RS values at two 

of the stations in Catchment U20F. However, good performance in terms of of bias correction 

was obtaiend at two stations in Catchment U20F where the bias was reduced to zero.  

Bias correction was assessed in terms of sensitivity of the period length selected. The results 

indicated that the performance of the bias correction using the EQM technique is not 

significantly affected by the change in period length. The use of areal weighted bias (based on 

the location of pixels) for the bias correction of catchment rainfall that was estimated using 

GEE showed good performance, however, the validation of the method was only done in 

Catchment S60A.Moreover, this method has not been used elsewhere and could be an area for 

future research. Generally, the results of bias correction resulted in improved performance in 

terms of reducing bias in the estimated RS pixel rainfall values. However, it is recommended 

that other methods of bias correction be investigated as bias correction performance depends 

on the accuracy and effectiveness of the method that was used to estimate raw RS data. 

Moreover, the CHIRPS RS product is an already bias corrected product and provides bias 

corrected raw data. However, the CHIRPS RS product bias correction was done on a large scale 
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and and the results from this indicate that local bias correction is still necerssary. Based on the 

results it is concerning that even after local bias correction was applied there was still some bias 

present in the data. Therefore, it is recommended that the method that is used in bias correcting 

the RAW CHIRPS data is re-evaluated and updated and that other methods may be used for 

local bias correction. 

In this study, catchment rainfall was estimated using four approaches: Weighted stations, 

Weighted pixels, Driver pixel(pptcor), and the Corrected GEE approach. The assumption made 

was that the areal weighting of stations is the best estimate of actual catchment rainfall, and the 

performance of the other methods was compared against this approach. Based on the results 

obtained from Catchment S60A, further assessments were performed in Catchment U20F. 

The performance of methods used to estimate catchment rainfalls were assessed for different 

time scales, using accumulated rainfalls, regression graphs, and frequency distributions. On a 

daily scale, the scatter plots were poor and unreadable owing to the poor phasing of observed 

and RS daily rainfall, and therefore assessments were done using accumulated daily rainfalls 

and frequency distribution. Based on the results, all approaches performed reasonably well 

against the Weighted station approach, However, Weighted pixels approach performed the best.  

The results from the daily assessments were consistent with the monthly scale regression graphs 

and frequency distribution curves with the Weighted pixels having the best performance. This 

result is attributed to the method and weightings used in Weighted pixel approach being the 

same as for the Weighted station's approach, and the pixel values have been bias corrected 

against the station values. In addition, this could also mean that RS data was able to capture 

close values of point pixel rainfalls and that the bias correction method used was effective.  

The results were the same for both catchments. The differences in Catchment S60A and 

Catchment U20F were the climatic regions, station density, and how the stations are distributed 

across the catchment which has an impact on the estimation of Thiessen weights.  

A sensitivity analysis was done in Catchment U20F on the station's spatial density to estimate 

catchment rainfall using both Weighted stations and Weighted pixels approach. The estimations 

of catchment rainfall using three stations were compared with the estimation of catchment 

rainfall using the original selected stations (10). For this assessment, it was expected that there 

would be differences based on the assumption that more dense station distributions would 

estimate catchment rainfall more accurately. However, the results showed no considerable 
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differences between the catchment rainfalls that were estimated using three stations and 10 

stations using the weighted stations and weighted pixels approaches. This could be because the 

10 stations were not evenly distributed, and the 3 selected stations used had a higher weighted 

contributions to the total catchment rainfall when using the 10 stations. Overall, the results 

indicate the ability of local bias corrected RS CHIRPS data to provide accurate estimates of 

catchment rainfall because the results between catchment rainfall estimated using 3 and 10 

stations by the weighted station's approach are similar to the results obtained using the weighted 

station's approach. In addition, RS is able to capture catchment rainfalls better at longer time 

scales.  

The catchment 1-day design rainfalls were estimated up to a return period of 20 years. This was 

because of the limited record length used in the analysis due to the unavailability of quality 

rainfall beyond the year 2000. The estimated 1-day design catchment rainfall results were 

compared for the same approaches that were used to estimate catchment rainfalls for Catchment 

S60A and Catchment U20F, with the addition of the Driver pixel(ARFs).  

In Catchment S60A, the Weighted pixels approach performed better than all other approaches 

and this was shown by the low value of MAE compared to the Weighted station's approach. In 

Catchment U20F, the Weighted pixel approach had the lowest MAE value. Corrected GEE 

approach also had a good performance with low value of MAE value compared to the Weighted 

station's approach. However, there was an unusually large value in the observed rainfall for 

Catchment U20F which was identified as an outlier and is believed to have influenced the 

smaller values of Weighted pixels approach and Corrected GEE approach because, with the 

removal of that observed value, the Weighted pixels approach was the best estimate of 

catchment 1-day design rainfall in Catchment U20F. While in practice the Corrected GEE will 

be more likely to be used to spatially estimate catchment rainfalls, it is important to 

acknowledge the traditional methods that make the use of RS point rainfalls to essentially 

estimate catchment rainfalls and catchment design rainfalls. Catchment rainfall from a single 

station by multiplied ARFs is commonly used in practice as the traditional method to estimate 

catchment design rainfall from a point, however, this approach (using point pixel value) only 

performed well in Catchment S60A compared to Catchment U20F. 

Although the Weighted stations was assumed to be the best estimate of catchment rainfall in 

this study, there are limitations to this approach, and it will work best when there is a good 

spatial density of gauges.   
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This project aimed to use remotely sensed rainfall to improve the estimation of catchment 

rainfall for use in hydrological modelling and assess different methods of estimating both 

catchment rainfall and catchment design rainfall. This was undertaken to essentially address the 

challenge of a decreasing monitoring network with fewer stations with long records of rainfall 

data and the impacts of these when deriving catchment design rainfalls for flood studies in 

ungauged catchments. The bias corrected CHIRPS RS product was used to estimate remotely 

sensed catchment rainfall and, even though the performance of the RS products are location 

dependant, CHIRPS performed well for the selected study catchments. Approaches that use 

point observed rainfalls to estimate catchment rainfalls and catchment design rainfalls were 

successfully adjusted to use point pixel rainfalls and provided reasonable results. This study’s 

aims and objectives have therefore been successfully met. 

A limitation of this study was the record length available for the observed rainfall data at 

selected stations. This was due to the unavailability of rainfalls and the quality of observed 

rainfall data beyond the year 2000. Another limitation is the selection of catchments for use in 

the study which had an adequate number of stations with an even distribution of rainfall stations. 

These factors emphasize the need to use RS data in estimating rainfall. In addition, it was a 

challenge to obtain both RS and station data for the same daily time period (08:00 to 08:00 or 

00:00 – 00:00) which could have had an impact on the results.  

Overall, the results from using the bias corrected CHIRPS RS based data show good potential 

to estimate catchment rainfalls and 1-day catchment design rainfalls even though results from 

Catchment S60A and U20F varied. For example, accumulated plots and frequency distribution 

curves were good in Catchment S60A and poorer in Catchment U20F. This could be a result of 

the distribution of stations around the catchment. Both catchments had less dense stations, 

however, Catchment S60A had a good distribution of stations around the catchment. This had 

an impact on methods that involved the use of Thiessen weights as Thiessen weights are 

location dependant. To have more conclusive results on the daily catchment rainfalls 

comparison, it is recommended to assess the rain days in the observed and RS data and identify 

outliers. In Catchment U20F, sensitivity to spatial density and influence on Thiessen weights 

was done using 3 stations. For more conclusive results, it is recommended that future studies 

explore selection of different combination of stations to validate the results more and to analysis 

using the assigned bias correction rank values. It is of importance to note that the performance 

of the results presented are strictly for the catchments and stations selected for this project as 
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well as the methods selected to correct the bias. Therefore, it is recommended that a similar 

study is conducted in other regions where there is an even distribution of stations and a long 

record of quality observed rainfall (e.g. outside of South Africa) to increase the confidence in 

the estimation of design rainfalls. 
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8.  APPENDIX A: PYTHON CODE TO EXTRACT CHIRPS RAINFALL 

DATA FROM MULTIPLE STATIONS 

import geopandas as gpd 

import os 

import rasterio 

import scipy.sparse as sparse 

import pandas as pd 

import numpy as np 

 

 

# Create an empty pandas DataFrame called 'table' 

table = pd.DataFrame(index = np.arange(0,1)) 

 

# Read the points shapefile using geopandas 

stations = gpd.read_file('D:/CHIRPS RSDATA/CHIRPS 

TS/Shapefiles/S81A_Stations.shp') 

stations['Lon'] = stations['geometry'].x 

stations['Lat'] = stations['geometry'].y 

 

 

Matrix = pd.DataFrame() 

 

# Iterate through the rasters and save the data as individual arrays to a 

Matrix 

for files in os.listdir(r'D:\CHIRPS RSDATA\CHIRPS TS'): 

    print(files) 

    if files[-4:] =='.tif': 

        dataset = rasterio.open(r'D:\CHIRPS RSDATA\CHIRPS TS'+'\\'+files) 

        data_array = dataset.read(1) 

        data_array_sparse = sparse.coo_matrix(data_array, shape = 

(320,300)) 

        data = files[ :-4] 

        Matrix[data] = data_array_sparse.toarray().tolist() 

        print('processing is done for the raster: '+ files[ :-4]) 

         

# Iterate throgh the stations and get the corresponding row and column for 

the related x,y coordinates        

for index, row in stations.iterrows(): 

    station_name = str(row['ClimNo']) 

    Lon = float(row['Lon']) 

    Lat = float(row['Lat']) 

    x,y = (Lon, Lat) 

    row, col = dataset.index(x,y) 

    print('processing:'+ station_name) 

         

    # pick the rainfall value from each stored raster array and record it 

into the previously created 'table' 

    for records_date in Matrix.columns.tolist(): 

        a = Matrix[records_date] 

        rf_value = a.loc[int(row)][int(col)] 

        table[records_date] = rf_value 

        transpose_mat = table.T 

        transpose_mat.rename(columns = {0: 'Rainfall(mm)'}Ghimire et al., 
2019Maraun (2013), inplace = True) 
 

transpose_mat.to_csv(r'D:\CHIRPS RSDATA\CHIRPS 

TS\Rainfalls'+'\\'+station_name+'.csv') 
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9. APPENDIX B: PYTHON SCRIPT TO EXTRACT CHIRPS 

RAINFALL DATA FROM A SINGLE STATION 

import rasterio 

import numpy as np 

import os 

import pandas as pd 

 

table = pd.DataFrame(0, index = np.arange(1,14611), columns = ['Date', 

'Rainfall(mm)']) 

i = 0 

 

for files in os.listdir(r'D:\CHIRPS RSDATA\CHIRPS(2006-2010)'): 

    if files [-4:] == '.tif': 

        i = i + 1 

        dataset = rasterio.open(r'D:\CHIRPS RSDATA\CHIRPS(2006-

2010)'+'\\'+files) 

        x,y = (30.5297 , -29.3519) 

        row, col = dataset.index(x,y) 

        data_array = dataset.read(1) 

         

        # copy the date to the 'Date' column in table during each 

iteration 

        table['Date'].loc[i] = files[:-4] 

     

        #Fill in the rainfall value 

        table['Rainfall(mm)'].loc[i] = data_array[int(row), int(col)] 

     

        #Export the table file into a .csv 

        table.to_csv(r'D:\CHIRPS RSDATA\CHIRPS(2006-2010)\Time 

Series\Rainfall.csv') 
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10. APPENDIX C: CODE TO EXTRACT RESAMPLED CHIRPS DAILY 

RAINFALL IN GOOGLE EARTH ENGINE 

Var chirps: ImageCollection "CHIRPS Daily... 
type: ImageCollection 
id: UCSB-CHG/CHIRPS/DAILY 
version: 1637190448908736 
bands: [] 
properties: Object (25 properties) 

date_range: [347155200000,1632960000000] 
description: <p>Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) 
is a 30+ year quasi-global rainfall dataset. CHIRPS incorporates 
0.05° resolution satellite imagery with in-situ station data 
to create gridded rainfall time series for trend analysis and 
seasonal 
drought monitoring.</p><p><b>Resolution</b><br>5566 meters 
</p><p><b>Cadence</b><br> 
  1 day 
</p><p><b>Bands</b><table class="eecat"><tr><th 
scope="col">Name</th><th 
scope="col">Description</th></tr><tr><td>precipitation</td><td><p>
Precipitation</p></td></tr></table><p><b>Terms of 
Use</b><br><p>This datasets are in the public domain. To the 
extent possible under law, 
<a href="https://chc.ucsb.edu/people/pete-peterson">Pete 
Peterson</a> 
has waived all copyright and related or neighboring rights to 
Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS).</p><p><b>Suggested citation(s)</b><ul><li><p>Funk, 
Chris, Pete Peterson, Martin Landsfeld, Diego Pedreros, James 
Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura 
Harrison, Andrew Hoell &amp; Joel Michaelsen. &quot;The climate 
hazards infrared precipitation with stations—a new environmental 
record for monitoring extremes&quot;. Scientific Data 2, 150066. 
<a 
href="https://doi.org/10.1038/sdata.2015.66">doi:10.1038/sdata.201
5.66</a> 2015.</p></li></ul><style> 
  table.eecat { 
  border: 1px solid black; 
  border-collapse: collapse; 
  font-size: 13px; 
  } 
  table.eecat td, tr, th { 
  text-align: left; vertical-align: top; 
  border: 1px solid gray; padding: 3px; 
  } 
  td.nobreak { white-space: nowrap; } 
</style> 
keywords: List (6 elements) 
period: 1 
period_mapping: [347155200000,1632960000000] 
product_tags: List (4 elements) 
provider: UCSB/CHG 
provider_url: https://chc.ucsb.edu/data/chirps 
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sample: https://mw1.google.com/ges/dd/images/CHIRPS_sample.png 
source_tags: ["ucsb","chg"] 
system:is_global: 1 
system:visualization_0_bands: precipitation 
system:visualization_0_max: 17.0 
system:visualization_0_min: 1.0 
system:visualization_0_name: Precipitation 
system:visualization_0_palette: 001137,0aab1e,e7eb05,ff4a2d,e90000 
tags: List (6 elements) 
thumb: https://mw1.google.com/ges/dd/images/CHIRPS_thumb.png 
title: CHIRPS Daily: Climate Hazards Group InfraRed Precipitation 
With Station Data (Version 2.0 Final) 
type_name: ImageCollection 
visualization_0_bands: precipitation 
visualization_0_max: 17.0 
visualization_0_min: 1.0 
visualization_0_name: Precipitation 
visualization_0_palette: 001137,0aab1e,e7eb05,ff4a2d,e90000 

 
Var table : Table users/RS_DATA/S60A_Stations 

type: FeatureCollection 
id: users/RS_DATA/S60A_Stations 
version: 1636107686776604 
columns: Object (10 properties) 

ClimNo: String 
Concat: String 
Current_Or: String 
Lat: Float 
Lon: Float 
Province: String 
Record_Cou: Float 
StasName: String 
Year: Float 
system:index: String 

properties: Object (1 property) 
system:asset_size: 12359 
__ 

Map.centerObject(station, 4) 
 
var dontsa = station.filter(ee.Filter.eq('StasName', 'DONTSA PLANTATION')) 
 
 
print(station) 
var CHIRPS= chirps; 
//The CHIRPS data is from 1981-01-01 to 2016-02-27 
var precipAllYear = CHIRPS.filterDate('1981-01-01', '1981-03-31'); //change 
the date here 
 
var TS5 = ui.Chart.image.series(precipAllYear, dontsa, ee.Reducer.mean(),500, 
'system:time_start').setOptions({ 
          title: 'Precipitation Full Time Series', 
          vAxis: {title: 'mm/pentad'}, 
}); 
print(TS5);// 
var chart = ui.Chart.image.series( 
  precipAllYear.select(['precipitation']), station, ee.Reducer.mean(), 500) 
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    .setSeriesNames(['daily-Prec']) 
    .setOptions({ 
      title: 'daily-Prec', 
      lineWidth: 1, 
      pointSize: 3, 
}); 
 
 
 
Map.addLayer(station); 
 
Map.centerObject(station, 4) 
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11. APPENDIX D: A CODE TO ETRACT CHIRPS CATCHMENT 

RAINFALL FROM THE GOOGLE EARTH ENGINE 

///1. Add region of interest 

var ROI = S81A 

Map.addLayer(ROI, {}, 'ROI') 

Map.centerObject(ROI, 10) 

 

//2. Define time of interest 

// Ensure that the first image that is collected possesses data to 

calculate NDVI otherwise the script will not work as required 

var startdate = '2000-01-01'  

var enddate = '2021-01-01'  

 

var years = ee.List.sequence(ee.Date(startdate).get('year'), 

ee.Date(enddate).get('year')); 

 

// --------------------------------------------------------------------

------------------------ 

// CHIRPS Daily Rainfall Data 

// --------------------------------------------------------------------

------------------------ 

/// Import image collections, filter by date and ROI, apply cloud mask 

and clip to ROI 

 

/// ERA5 Daily aggregates - Latest climate reanalysis produced by ECMWF 

/ Copernicus Climate Change Service 

var Rainfall = ee.ImageCollection('CHIRPS/DAILY') 

  .filterBounds(ROI) 

    .filterDate(startdate, enddate) 

      .map(function(image){return image.clip(ROI)}) 

        .select("total_precipitation") 

 

///Create a function to assign a time for every feature 

var pointsmean = function(image) { 

  var means = image.reduceRegions({ 

    collection: ROI, // used to be ROI.select(['Id']) 

    reducer: ee.Reducer.mean(), 

  }) 

   

/// assign time for every feature 

  means = means.map(function(f) { return f.set({date: 

image.date().format("YYYY-MM-dd")}) }) 

   

  return means.copyProperties(image) 

}; 

 

// Sort data in chronological order and select the date and mean 

variables 

var finalRainfall = Rainfall.map(pointsmean).flatten() 

    .sort('date', true) 

    .select(['date', 'mean']) 

print(finalRainfall.limit(100), 'Rainfall') 

 

// Export the mean rainfall for each polygon as a .csv file 

Export.table.toDrive({ 
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collection: finalRainfall, 

  description: 'CHIRPS_Rainfall'+startdate+'TO'+enddate, 

  folder: 'Genus_Exchange_GEE_Data', 

fileFormat: 'CSV' 

}); 
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Table E.3: Results of the catchment median rainfalls, station median rainfalls, and the 

adjustment factors for the selected driver station in Catchment S60A. 

Month Station Median Catchment Median Catchment/station 

Jan 123 89.46087 0.727324146 

Feb 108 97.626087 0.90394525 

Mar 106 97.652174 0.921246925 

Apr 55 47.313043 0.860237145 

May 9 24.008696 2.667632889 

Jun 15 13.252174 0.883478267 

Jul 8 10.504348 1.3130435 

Aug 18 19.2 1.066666667 

Sep 50 36.547826 0.73095652 

Oct 88 70.052174 0.796047432 

Nov 122 79.582609 0.652316467 

Dec 93 80.982609 0.870780742 

 

Table E.4: Results of the catchment median rainfalls, station median rainfalls, and the 

adjustment factors for the selected driver pixel in catchment U20F. 

Month Station Median Catchment Median Catchment/station 

Jan 122.011 145.876712 1.195602954 

Feb 90.6065 140.19863 1.547335235 

Mar 100.5435 114.239726 1.136221894 

Apr 38.919 53.486301 1.374297926 

May 15.76 17.458904 1.107798477 

Jun 12.115 6.308219 0.520694924 

Jul 9.6515 8.486301 0.879272756 

Aug 20.705 20.910959 1.009947307 

Sep 29.476 44.760274 1.51853284 

Oct 88.486 89.541096 1.011923875 

Nov 112.163 118.993151 1.060894867 

Dec 126.882 140.19863 1.10495287 
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13. APPENDIX F: CODE TO ESTIMATE CATCHMENT DESIGN 

RAINFALLS IN THE R-STUDIO 

 
## load catchment data ## 

data <- read.table("Daily_Peaks.csv", header=T, sep = ",",col.names = c("Date", 

"Obs_Qpeak"), as.is = TRUE) 

## Data in date format ## 

data$Date <- as.POSIXct(data$Date, "%Y/%m/%d", tz = "UTC") 

## Data in date time format ## 

#data$Date <- as.POSIXct(data$Date, "%Y/%m/%d %H:%M", tz = "UTC") 

### AMS Extraction Per Hydro Year and GEV Fitting #### 

Start <- min(data$Date) 

End <- max(data$Date) 

Start.year <- format(Start,"%Y") 

Start.year <- as.numeric(Start.year)+1 

End.year <- format(End,"%Y") 

End.year <- as.numeric(End.year) 

 

Length <- (End.year-Start.year)+2 

require(lubridate) 

## DATA MUST START IN JANUARY - OTHERWISE CHANGE THIS TO MAKE THE START MONTH 

OCTOBER 

month(Start) <- month(Start) + 9 

## Use vector of November 1st dates to cut data into hydro-years 
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breaks <- seq(as.POSIXct(Start, tz = "UTC"), length=Length, by="year") 

data$hydroYear <- cut(data$Date, breaks, labels=Start.year:End.year) 

require(data.table) 

Data <- as.data.table(data) 

AMS <- Data[Data[, .I[Obs_Qpeak == max(Obs_Qpeak)], by=hydroYear]$V1] 

## Certain AMS values can be removed if desired to match other record lengths 

## 

AMS <- AMS[!duplicated(AMS$hydroYear), ] 

AMS <- AMS[-c(1),] 

AMS <- AMS[order(Obs_Qpeak, decreasing = T)] 

L2 <- (length(AMS$hydroYear)) 

AMS <- cbind(AMS, "Rank" = c(1:L2)) 

AMS <- cbind(AMS, "RP" = (L2+1)/(AMS$Rank)) 

library(extRemes) 

 

# Fit GEV Dist to AMS # 

fit_AMS <- fevd(AMS$Obs_Qpeak, AMS, method = "Lmoments", units="mm") 

GEV_out_and_ciAMS <- (ci(fit_AMS, return.period=c(2,5,10,20, 50, 100,200))) 

GEV_out_and_ci_AMS <- as.data.frame(GEV_out_and_ciAMS[1:7,1:3]) 

GEV_out_and_ci_AMS <- cbind(GEV_out_and_ci_AMS, "RP" = c(2,5,10,20, 50, 100, 

200)) 

library(ggplot2) 

ggplot() + 
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  geom_line(data = GEV_out_and_ci_AMS, aes(x = GEV_out_and_ci_AMS$RP, y = 

GEV_out_and_ci_AMS$Estimate, colour = "GEV Obs")) + 

  #geom_line(data = GEV_out_and_ci_AMS, aes(x = GEV_out_and_ci_AMS$RP, y = 

GEV_out_and_ci_AMS$`2.5%`), linetype = "dashed", color = "red") + 

  #geom_line(data = GEV_out_and_ci_AMS, aes(x = GEV_out_and_ci_AMS$RP, y = 

GEV_out_and_ci_AMS$`97.5%`), linetype = "dashed", color = "red") + 

  geom_point(data = AMS, aes(x = RP, y = AMS$Obs_Qpeak, colour = "GEV Obs"), 

size = 1) + 

  scale_colour_manual("",  

                      breaks = c("GEV Obs"), 

                      values = c("red")) + 

  ylab("Rainfall (mm)") + 

  xlab("Return Period (Years)") + 

  scale_x_log10(expand = c(0, 0), breaks = c(2,5,10,20,50,100,200), limits = 

c(1,200))+ 

  #coord_cartesian(ylim=c(0,40)) - use to avoid warnings if limiting y-axis 

range 

  #scale_y_continuous(limits = c(0,15)) + 

  theme_bw() + 

  theme(axis.text = element_text(size=12), axis.title = element_text(size = 12, 

face = "bold"))+ 

  theme(legend.position = "bottom") 
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14. APPENDIX G: RESULTS OF BIAS CORRECTION STATISTICS IN 

CATCHMENT S60A 

Table G.1: Bias correction statistics at a daily scale 

Station Rainfall MBE RMSE MAE D % BIAS 

0079396 2 
RAW 0.31 8.15 3.17 0.37 31 

CORRECTED -0.06 7.57 2.85 0.42 -6 

0079485 1 
RAW -0.26 10.21 3.1 0.3 -26 

CORRECTED -0.072 11.041 4.12 0.32 -7.2 

0079490 X 
RAW -0.49 9.05 3.78 0.33 -49 

CORRECTED -0.34 9.29 3.89 0.35 -34 

0079632 6 
RAW -0.5 10 3.94 0.34 -50 

CORRECTED -0.19 10.84 4.19 0.34 -19 

0079730 0 
RAW -0.4 8.41 3.56 0.41 -40 

CORRECTED -0.36 8.21 3.56 0.43 -36 

0079754 2 
RAW 0.146 9.92 3.67 0.28 14.6 

CORRECTED -0.017 10.11 3.57 0.311 -1.7 

0101719A8 
RAW 0.34 7.89 3.25 0.35 34 

CORRECTED -0.2 6.87 2.8 0.36 -20 

 

Table G.2: Bias correction statistics at a monthly scale 

Station Rainfall MBE RMSE MAE D % BIAS 

0079396 2 
RAW 9.459 28.506 20.96 0.92 945.9 

CORRECTED -1.78 26.23 18.41 0.923 -178 

0079485 1 
RAW -7.885 36.348 24.365 0.915 -788.5 

CORRECTED -2.197 33.483 22.987 0.937 -219.7 

0079490 X 
RAW -15.044 40.414 26.758 0.892 -1504.4 

CORRECTED -10.304 38.97 25.976 0.902 -1030.4 

0079632 6 
RAW -15.213 42.614 28.561 0.9 -1521.3 

CORRECTED -5.655 38.83 26.559 0.926 -565.5 

0079730 0 
RAW -12.085 31.248 21.425 0.928 -1208.5 

CORRECTED -10.979 32.504 22.273 0.919 -1097.9 

0079754 2 
RAW 4.442 44.176 26.759 0.87 444.2 

CORRECTED -0.503 43.892 25.977 0.873 -50.3 

0101719A8 
RAW 10.19 32.438 21.913 0.907 1019 

CORRECTED -6.081 27.229 18.73 0.913 -608.1 
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Table G 3: Bias correction statistics at an annual scale 

Station Rainfall MBE RMSE MAE D % BIAS 

0079396 2 
RAW 113.513 144.154 122.726 0.744 11351.3 

CORRECTED -21.35 88.699 73.51 0.886 -2135 

0079485 1 
RAW -94.617 140.194 111.701 0.8 -9461.7 

CORRECTED -26.365 103.307 80.975 0.902 -2636.5 

0079490 X 
RAW -180.532 224.263 180.532 0.605 -18053.2 

CORRECTED -123.645 186.056 132.125 0.699 -12364.5 

0079632 6 
RAW -182.551 238.13 206.117 0.679 -18255.1 

CORRECTED -67.86 154.827 126.01 0.863 -6786 

0079730 0 
RAW -145.019 174.849 152.708 0.74 -14501.9 

CORRECTED -131.75 166.338 142.18 0.763 -13175 

0079754 2 
RAW 59.336 66.297 63.962 0.962 5933.6 

CORRECTED 6.035 159.49 107.975 0.789 603.5 

0101719A8 
RAW 122.275 161.472 137.733 0.697 12227.5 

CORRECTED -72.97 116.728 91.18 0.784 -7297 
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15. APPENDIX H: RESULTS OF BIAS CORRECTION STATISTICS IN 

CATCHMENT U20F 

 

Table H.1: Bias correction statistics at a daily scale 

 Stations  Rainfall MBE RMSE MAE D % BIAS 

0270260A 
  

RAW 0.197 7.486 3.042 0.531 19.7 

CORRECTED -0.116 7.846 2.864 0.502 -11.6 

0270205A 
  

RAW 0.205 7.033 2.678 0.62 20.5 

CORRECTED 0.088 7.494 2.514 0.614 8.8 

0270086A 
  

RAW -0.097 6.888 2.768 0.613 -9.7 

CORRECTED -0.136 6.69 2.714 0.717 -13.6 

0270023A 
  

RAW -0.04 7.109 2.767 0.618 -4 

CORRECTED -0.064 7.523 2.752 0.657 -6.4 

0270021W 
  

RAW -0.087 8.774 3.309 0.466 -8.7 

CORRECTED 0 9.84 3.386 0.518 0 

02701645S 
  

RAW 0.121 7.678 2.96 0.62 12.1 

CORRECTED -0.067 8.361 2.91 0.607 -6.7 

0269647W 
  

RAW -0.715 9.514 3.996 0.444 -71.5 

CORRECTED -0.19 10.858 4.387 0.447 -19 

0269712W 
  

RAW -0.419 8.425 3.283 0.538 -41.9 

CORRECTED -0.058 8.958 3.489 0.631 -5.8 

0269744S 
  

RAW -1.076 8.32 3.423 0.591 -107.6 

CORRECTED -0.207 9.133 3.858 0.652 -20.7 

0269775S 
  

RAW 0.666 7.467 3.015 0.384 66.6 

CORRECTED 0 7.452 2.579 0.371 0 

 

Table H.2: Bias correction statistics for the monthly scale 

 Stations  Rainfall MBE RMSE MAE D % BIAS 

0270260A 
  

RAW 5.991 29.043 18.619 0.938 599.1 

CORRECTED -3.538 27.788 17.044 0.941 -353.8 

0270205A 
  

RAW 6.243 30.988 19.894 0.929 624.3 

CORRECTED -2.68 30.006 17.554 0.934 -268 

0270086A 
  

RAW -2.939 31.073 17.774 0.931 -293.9 

CORRECTED -4.151 23.681 15.472 0.96 -415.1 

0270023A 
  

RAW -1.205 32.233 20.497 0.928 -120.5 

CORRECTED -1.954 32.21 19.973 0.936 -195.4 

0270021W 
  

RAW -2.643 34.18 23.119 0.921 -264.3 

CORRECTED 0 38.122 25.467 0.924 0 

02701645S 
  

RAW 3.685 34.009 20.147 0.93 368.5 

CORRECTED -2.034 38.993 22.76 0.912 -203.4 

0269647W 
  

RAW -21.757 62.776 38.797 0.829 -2175.7 

CORRECTED -5.769 60.44 37.764 0.867 -576.9 
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0269712W 
  

RAW -12.746 44.848 25.607 0.89 -1274.6 

CORRECTED -1.758 38.708 22.73 0.935 -175.8 

0269744S 
  

RAW -32.742 51.911 35.209 0.873 -3274.2 

CORRECTED -6.315 32.654 22.028 0.961 -631.5 

0269775S 
  

RAW 20.278 42.435 28.453 0.838 2027.8 

CORRECTED 0 39.341 25.761 0.834 0 

 

Table H 3: Bias correction statistics for the annual scale 

 Stations  Rainfall MBE RMSE MAE D % BIAS 

0270260A 
  

RAW 70.389 107.945 92.665 0.911 7038.9 

CORRECTED -41.57 86.39 66.93 0.939 -4157 

0270205A 
  

RAW 73.351 101.753 80.957 0.913 7335.1 

CORRECTED -31.485 78.819 65.325 0.947 -3148.5 

0270086A 
  

RAW -34.536 130.561 110.241 0.888 -3453.6 

CORRECTED -48.77 125.874 96.71 0.913 -4877 

0270023A 
  

RAW -14.16 132.06 102.156 0.878 -1416 

CORRECTED 22.96 124.549 94.57 0.909 -2296 

0270021W 
  

RAW -31.06 113.942 99.11 0.904 -3106 

CORRECTED 0 127.025 105.86 0.911 0 

02701645S 
  

RAW 43.299 143.96 110.218 0.886 4329.9 

CORRECTED -23.905 132.505 89.345 0.91 -2390.5 

0269647W 
  

RAW -255.649 399.331 301.432 0.525 -25564.9 

CORRECTED -67.79 322.066 251.32 0.676 -6779 

0269712W 
  

RAW -149.769 247.819 208.951 0.74 -14976.9 

CORRECTED -20.66 194.477 122.31 0.862 -2066 

0269744S 
  

RAW -384.719 405.671 384.719 0.465 -38471.9 

CORRECTED -74.2 144.664  128.29 0.913 -7420 

0269775S 
  

RAW 238.267 306.489 250.111 0.487 23826.7 

CORRECTED 0 202.636 172.97 0.637 0 

 

 

 

 

 

 

 




