
Modelling with Mathematica

by
Hugh Murrell

Submitted in partial fulfilment of
the requirements for the degree

of
Doctor of Philosophy

III

Computer Science
at

Natal University.

November
1994

Preface

The work de~cribed in this thesis was carried out in the Department of Computer Science,
Natal University, Durban, under the supervision of Professor Alan Sartori-Angus. The
work spanned the period 1990-1994 and has resulted in three single-author publications
in the Mathematica Journal and a number of multi-author publications in various other
journals. The models studied in this thesis are classical and well-known. The Mathematica
implementations and the resulting animations represent original work by the author and
have not been submitted in any form to any other university. Use made of the work of
others has been duly acknowledged in the text.

Acknowledgements

First and foremost, my thanks go to Professor Alan Sartori-Angus for supervising this
thesis and providing an environment in which I can earn a living and study. Thank you
Alan.

Thanks are due to Professor John Swart and Professor Fritz Schuddeboom for many use­
ful discussions concerning mathematical modeling. A special thanks to John for his close
collaboration on a number of publications.

Thanks are also due to Silvio Levy and Troels Petersen for editing my articles appearing
in The Mathematica Journal. They have been responsible for many improvements in style
and content.

I would like to thank my current colleagues and previous teachers. In particular my thanks
go to my previous supervisor, Abraham Ungar, for teaching me how to publish papers,
and to my colleague, Jane Meyerowitz, for proof reading this work. Others who have
influenced my career are Sunil Maharaj, Hilton Goldstein, Dave Carson, Nik Heideman,
Graham Shepherd, Michael Q'Rielly, Pat Terry, Mike Lawrie, Jenny and Brian Nevin,
Norman Skinner, Costa Zaverdenos and Peter Uys.

I thank my running partners, GeofJrey, Steven and Robert, for showing an interest in my
endeavours even on cold winter mornings; and I thank my sister Katherine for many hours
of baby-sitting.

I thank my mother, Barbara Hulley, for all her financial and emotional support throughout
my academic career.

Finally I thank my wife Sue and my children Daniel and Benjamin for all their encourage­
ment and support. A special thanks goes to my wife without whom I would still be driving
trains in Pietermaritzburg.

Dedication

I dedicate this work to the memory of my father, Bryan Hulley.

11

Abstract

In this thesis a number of mathematical models are investigated with the aid of the mod­
elling package Mathematica. Some of the models are of a mechanical nature and some of the
models are laboratories that have been constructed for the purpose of assisting researchers
in a particular field.

In the early sections of the thesis mechanical models are investigated. After the equations
of motion for the model have been presented, Mathematica is employed to generate solu­
tions which are then used to drive animations of the model. The frames of the animations
are graphical snapshots of the model in motion. Mathematica proves to be an ideal tool
for this type of modelling since it combines algebraic, numeric and graphics capabilities on
one platform.

In the later sections of this thesis, Mathematica laboratories are created for investigating
models in two different fields. The first laboratory is a collection of routines for performing
Phase-Plane analysis of planar autonomous systems of ordinary differential equations. A
model of a mathematical concept called a bifurcation is investigated and an animation of
this mathematical event is produced.

The second laboratory is intended to help researchers in the tomography field. A standard
filtered back-projection algorithm for reconstructing images from their projections is imple­
mented. In the final section of the thesis an indication of how the tomography laboratory
could be used is presented. Wavelet theory is used to construct a new filter that could be
used in filtered back-projection tomography.

111

Contents

1 Introduction
1.1 Programming with Mathematica.

1.1.1 Lists...
1.1.2 Numerics
1.1.3 Symbolics
1.1.4 Graphics.

1.2 The Brachistochrone Problem
1.2.1 Time of Passage for Sliding Beads.
1.2.2 Generating the Cycloid ...
1.2.3 Animating the Sliding Bead

1.3 Conclusion............ ..

2 Animation of a Mathematical Golf Swing
2.1 The Mathematical Model .
2.2 The Animation
2.3 Multiflash Photography.
2.4 Analysis of Forces .
2.5 Conclusion........

3 Animation of Rotating Rigid Bodies
3.1 The Equations of Motion ...
3.2 Calculating Angular Velocity.
3.3 Calculating Position
3.4 Implementation........
3.5 Throwing a Tennis Racquet
3.6 Moments of Inertia for a Tennis Racquet
3.7 Conclusion .

4 A Phase-Plane-Plot Laboratory
4.1 Generating a phase plot
4.2 Animating phase plots
4.3 Bifurcation analysis .
4.4 Conclusion .

5 A Tomography Laboratory
5.1 The Tomography Problem
5.2 A Projection through an Ellipse
5.3 A test Phantom and its Shadow
5.4 The Projection-'Slice Theorem
5.5 The Filtered-Back-Projection algorithm.
5.6 Discretizing the Ramp Filter.
5.7 Implementation
5.8 Conclusion...........

IV

1
1
3
3
4
5
5
6
6
8

11

12
12
16
18
19
22

23
23
24
26
28
33
34
36

37
37
45
47
53

54
54
55
56
58
59
61
62
64

6 Ramp Filters in a Wavelet setting
6.1 A new tool for Signal Processing .
6.2 The Scaling Function and its associated Wavelet . .
6.3 Calculating the coefficients of the Scaling Function
6.4 Viewing a Scaling Function
6.5 The Ramp Filter as a Convolution
6.6 A Filter for Differentiation
6.7 A Filter for a Hilbert Transform.
6.8 Coefficients for a Ramp Filter
6.9 Testing the Ramp Filter
6.10 Conclusion .

7 Conclusion

8 Appendix

9 References

v

65
65
65
66
67
68
69
72
74
76
77

78

79

81

Modelling with Mathematica

1 Introduction

1

It is a common cause of complaint that mathematical modelling is overlooked in many
traditional university mathematics courses. The process of problem formulation, model
building, theory application and communication of conclusions to others, especially non­
mathematicians, is generally neglected in the undergraduate mathematics curriculum.
These abilities should be central to the student's education if he is to survive in the market­
place.

The reason for this shortcoming in the traditional syllabus is that, more often than not,
extensive computational skills are required not only to solve the equations that arise out of
the modelling process but also in the presentation of the conclusions to an unsophisticated
public.

The author has experience of modelling in a 4th generation language environment, see for
example [Hughes and Murrell) 1987} and [Murren 1982]. The advent of the symbolic
system MuMath, simplified the algebraic problems encountered in differential transform
theory, see [Murrell and Ungar) 1982} and [Ungar and Murrell) 1985]. However, until the
appearence of Mathematica, no cheap system existed that combined algebraic, numeric and
graphics capabilities on a single modelling platform.

In this thesis Mathematica is investigated as a modelling tool. Problems of a mechanical na­
ture are posed, solved and animated. Most of the models tackled here have been published
by the author in The Mathematica Journal, see [Murre ll) 1992) 1993 and 1994]. Mathe­
matica is also an excellent consultation tool to have at hand when collaborating with other
researchers, for examples see [Swart and Murrell, 1991} and [Swart, 1994]. Mathematica
provides the same relief to a mathematical modeller wrestling with a fortran compiler, a
numerical library and a few home grown graphics routines as the advent of spreadsheets
provided to an accountant struggling with Cobol programming.

After a short introduction to the Mathematica package a classical 18th century problem
is investigated. The idea is to show-off Mathematica's analytical, numerical and graphics
capabilities. Only a small fraction of Mathematica's modelling functions will be used in
this introductory demonstration but the flavour of the rest of the thesis will be set.

1.1 Programming with Mathematica

Mathematica was created in 1988 by Stephan Wolfram and his associates in Wolfram
Research, Inc. Mathematica is a functional programming language with a sophisticated
front-end. A full description of the language is given in the Mathematica User's Man­
ual, [Wolfram, 1991]. Since its creation a plethora of books have appeared describing the
Mathematica package and its built-in programming language. For a good introduction the

Modelling with Mathematica

reader is referred to [Blachman} 1992} and [Gaylord et all 1993].

2

Expressions are the main type of data in Mathematica. Expressions are of the form
h [e1, e2, ...] where h is known as the head of the expression and the ei are the ele­
ments of the expression. The elements of an expression can be raw objects such as Integer}
Real} Rational} Complex} String or Symbol or they may be expressions themselves. The
head of an expression may also be an expression.

The front-end allows users to enter expressions which are then evaluated; expressions being
produced as output. Some side-effects such as graphics or sound may also be produced.
The front-end has an extensive set of abbreviations for commonly used expressions. The
reader is referred to the Mathematica manual for a full list of abbreviations. Abbreviations
are used in both the input and output phases of the front-end. For example on the input

In[l]:= Simplify[3 / b + a / b]

the following expression is generated:

Simplify [Plus [Times [3, Power[b, -1]], Times [a, Power[b, -1]]]]

After simplification this expression is evaluated as

Times [Plus [3, a], Power[b, -1]]

and the following text is produced as output.

3 + a
Out [1] =

b

The simplification occurs because Simplify has an extensive collection of transformation
rules associated with it that are used in the evaluation process. Mathematica performs the
same sequence of steps every time an input expression is evaluated.

a) If the expression is a raw object then it is left unchanged.

b) The head of the expression is evaluated.

c) Each element of the expression is evaluated in turn.

Modelling with Mathematica

d) Any transformation rules that have been defined for the expression are applied.

3

Transformation rules are either built-in or accumulated by the user entering expressions
of the form SetDelayed[h[eL,e2_, ... J, g[e1,e2, ... JJ. The infix abbreviation for
SetDelayed is := so to give Mathematica the ability to simplify Log [J expressions. For
example, one could enter the following transformation rule:

Log[Times[a_, b]] := Plus [Log [a] , Log[b]]

In the above example a_ stands for any expression while b stands for any sequence
of expressions. This method of adding rules to Mathematica's data-base will be used
throughout this thesis. Transformation rules of this nature are often called functions in
the Mathematica literature, hence the claim that Mathematica is a functional language.

1.1.1 Lists

Lists are an important concept in Mathematica's programming language. As with all
objects in Mathematica, lists are also expressions. The internal representation for a list is
List [e1, e2, J while the abbreviation for a list is {e1, e2, ... }. There are a number of
very useful built-in functions (or transformation rules) that operate on lists. The following
three are used throughout this thesis.

Map [h_, {a_, b_, c_, }] := {h[a] , h[b] , h[c], ... }

Apply[h_, {a_, b_, c_, }] := h[a, b, c, ...]

Inner[h_, {a1_, a2_, ... }, {bl_, b2_, ... }, g_J :=
h [g [a!, b 1], g [a2, b2], ...]

Map and Apply are useful for evaluating functions at data points while Inner as its name
suggests is a generalized inner product. There are many other list manipulating functions
and again the reader is referred to the Mathematica manual.

1.1.2 Numerics

There are four types of numbers represented in Mathematica. They are Integer, Rational,
Real and Complex. Integer and Rational arithmetic is exact whilst the precision for real
and complex arithmetic can be set at run time. Mathematica has a few built-in functions
that implement standard numerical algorithms. Two of these are used throughout this
thesis.

Modelling with Mathematica 4

NIntegrate [f, {x, a, b}] uses a standard adaptive quadrature algorithm to give
a numerical approximation to the integral J: f(x)dx.

NDSolve [eqns, {z1, z2, ... }, {x, xmin, xmax}] finds a numerical solution for
the functions z1, z2, ... appearing in the differential equations, eqns. These so­
lutions are returned in the form of an InterpolatingFunction which is an internal
representation of a function that interpolates the numerical solution to the set of
differential equations.

Equations are represented in Mathematica in the form Ihs -- rhs which is an abbreviation
of Equal [lhs, rhs].

Differentials are represented in the form Derivat i ve [i ,j , ...] [f [x, Y, ...]] which stands
for af.E.L

ax' ay]

Mathematica in its standard form is not overendowed with numerical algorithms, however
many numerical packages have been written by Mathematica users throughout the world
and the best of these have been stored in the Mathematica archives at mathsource@wri . corn.

1.1.3 Symbolics

Mathematica has a rich set of symbolic manipulation routines. Most of the arithmetic
operators and standard mathematical functions can work with symbolic expressions as well
as with numeric expressions. There are also many functions that are designed specifically
for symbolic manipulation purposes. Three of these used throughout this work are:

Simplify [expr] performs a sequence of algebraic transformations on expr and re­
turns the shortest form it finds. Simplify makes use of other basic symbolic manip­
ulation routines such as Expand, Together and Factor.

Solve [eqn, var] attempts to solve the equation eqn for the variable var.

D[f, x] gives a symbolic expression for ~~.

Integrate[f, {x, a, b}] gives a symbolic expression for J: f(x)dx

Mathematica also has a large selection of linear algebra functions that can operate on sym­
bolic and numeric expressions. Included are functions such as Dot, Transpose, LinearSolYe,
Det, Inverse, Eigensystem, and NullSpace. Again the reader is referred to the Mathe­
matica manual for details.

Modelling with Mathematica

1.1.4 Graphics

5

In Mathematica two dimensional graphics objects are created by generating expressions
of the form Graphics [primitives, optionsJ. The usual primitives such as Point[.. J,
Line [.. J and Text [.. J are available and the reader is referred to the Mathematica manual
for the full list. Two high-level routines are available for generating plots:

Plot[f, {x, xmln, xmax}] generates a plot of f(x).

ListPlot [{{xi, y1}, ... }] generates an xy plot of a list of data points.

Expressions of the form Graphics3D [primitives, opt ions] are used to represent three
dimensional graphics. Although the list of primitives and options is extensive not many
built-in routines are available for generating three dimensional graphics.

Mathematica provides a DOS utility called MSDOSPS . EXE for rendering PostScript graphics
on the computer screen. The PostScript is generated from 2D and 3D graphics objects by
means of the Mathematica function Show [..]. Hardcopies are also obtained through the
PostScript language.

Animation plays a large part in this thesis. Animation is accomplished by rendering the
required frames through Show [..], writing them to the hard disk and then viewing the
animation under DOS using another utility called ANIMATE. EXE.

Mathematica has found applications in many different fields and a number of books es­
pousing the use of Mathematica have appeared lately. The interested reader is referred to
[Crandall, 1991}, [Gray and Glynn, 1991}, [Shaw, 1994}, [Vardi, 1991}, [Varian, 1993} and
[Vvedensky, 1992]. In this introduction the symbolic, numeric and graphics capabilities of
Mathematica are demonstrated through the medium of a classical problem.

1.2 The Brachistochrone Problem

In 1696 John Bernoulli proposed the path of quickest passage problem. In a given field of
force, what is the quickest route for a particle to travel from one given point to another
given point? The Bernoulli brothers and Leibniz solved this problem in 1697 for a particle
moving under gravity and proved that the cycloid provides the path of quickest descent.
The problem gave rise to the so-called calculus of variations and it appears in almost every
introductory text concerning that topic, see for example [Goldstein, 1950].

In this demonstration Mathematica is employed to animate a bead sliding down a wire.
The animation will show that a bead sliding down a cycloid reaches its destination before
a bead sliding down a straight line.

Modelling with Mathematica

1.2.1 Time of Passage for Sliding Beads

6

The time of passage problem is as follows: A smooth wire in a vertical plane connects the
point (0, h) on the y-axis to the point (k, 0) on the x-axis. The shape of the wire in the
vertical xy-plane is described by a parametric curve (x(s),y(s)),s ;:::: O. The parametric
curve is chosen so that (x(O),y(O)) = (O,h) and (x(s),y(s)) = (k,O) for some s > O. The
bead starts from rest at time t = 0 and position (x (0), y (0)) and proceeds to slide down the
smooth wire. In order to animate the sliding bead Mathematica must be able to calculate
the position of the bead (x(St), Y(St)) at any given subsequent time t > O.

Following [Prescott) 1941}, the tie-up of position with time is obtained through energy
considerations. Conservation of energy gives:

1
2m1v(t)12 + mg(y(t) - h) = C (1)

where m is the mass of the particle, Iv(t)1 is its speed at time t, 9 is the acceleration due
to gravity, y(t) is the height of the particle at time t and C is an arbitrary constant. Now
since the particle starts from rest at height h we have v(O) = 0 and y(O) = h so that C = 0
and equation 1 may be rewritten as

dx dy
(dt)2 + (dt)2 = 2g(h - y(t)) (2)

changing the independent variable from time t to path parameter s and rearranging and
integrating results in

1
St

t=
o

(dX)2 + (dY)2
ds ds ds

2g(h-y(s)) (3)

Given any time t and any particular wire shape (x(s),y(s)) the integral in equation 3
must be evaluated and then equation 3 must be solved for St. The complexity of this task
depends on the wire shape. We show how Mathematica can deal with the algebra when
the wire shape is a straight line or a cycloid.

1.2.2 Generating the Cycloid

Following [Wells) 1967}, a cycloid is generated by rolling a disk of radius R on the underside
of a horizontal line of height h. The disk starts with its point of contact at (0, h) and a

Modelling with Mathematica 7

pen is attached to the disk at its point of contact. As the disk rolls without slipping
along the underside of the line y = h, the pen traces out a curve with cusps at the points
{(21r Rj, h)}jEZ. The parametric equations for such a cycloid are:

x(s)
y(s)

R(s - sins)
h - R(l- coss)

(4)

It is evident that the cycloid will pass through (0, h). In order for the cycloid to pass
through (k,O) the radius R must be chosen such that for some value of the parameter s

k
o

R(s - sin s)
h - R(l - coss)

(5)

Eliminating R from equations 5 results in an equation for the parameter s that has no
closed form solution:

s = sin s + ~ (1 - cos s) (6)

However, given any real values for hand k this equation can be solved for s using a
numerical fixed-point iteration. In particular, observe that if h = 2 and k = 1r then the
fixed point solution of equation 6 is s = 1r and substituting back into equation 5 results in
a radius of R = 1 for the cycloid generating disk. From here on, to avoid the numerical
complications of solving equation 6, it is assumed that the bead must travel from (0,2) to
(1r,0). Mathematica can now be employed to view the cycloid that the bead must slide on:

In[i]:= params = {h->2, k->Pi, R->i, g->i0};

In[2]:= cycloid = ParametricPlot[
Evaluate[{R(s - Sin[s]),h - R(i-Cos[s])} /. params],
{s,O,Pi}, DisplayFunction->Identity];

In[3]:= disk = ParametricPlot[
Evaluate[{k/2 + R Cos[theta],h/2 + R Sin[theta]} /. params],
{theta,O,2 Pi}, DisplayFunction->Identity];

In [4] := rollbar = ParametricPlot[Evaluate[{x,h} /. params],
{x,O,Pi}, DisplayFunction->Identity];

In[5]:= Show[cycloid, disk, rollbar, DisplayFunction->$DisplayFunction]

Modelling with Mathematica

2~----------:::::::_-_=::::::::----------

1.5

1

0.5

3

Figure 1: A rolling disk generates a cycloid.

8

Note that the DisplayFunction is switched off until all three parts of the diagram have
been generated. The diagram generated by these commands is presented in figure 1.

1.2.3 Animating the Sliding Bead

To view the bead sliding down the cycloid equation 3 must be solved for St. To accomplish
this task Mathematica is used to generate a rule that expresses St in terms of t given any
parametric curve passing through (0, h) and (k,O).

In[6]:= stRule[xs_,ys_,s_] := First [Solve [t -- Integrate[Sqrt[
(D[XS,S]A2 + D[ys,S]A2) / (2 g (h-ys»], {s,O,st}] , st]];

For the cycloid example stRule [...] can be used to generate a rule for calculating St for
any given t:

In[7]:= cycloidRule = stRule[R(s-Sin[s]), h-R(l-Cos[s]), s]

R
g Sqrt [-] t

g
Out[7]= {st -) -----------}

R

Modelling with Mathematica 9

The total time taken for the bead to slide from (0,2) to (7r, 0) is calculated by determining
what value of t causes St to evaluate to 7r.

In[8]:= totalCycloidTime = t I.
First[Solve[Pi == st I. cycloidRule, t]] t. params II N

Out[8]= 0.993459

All the information now exists for generating a list of positions for the bead that correspond
to evenly spaced time values. In the example that follows 11 positions for the bead on the
cycloid are generated. The positions start at (0,2) and end at (7r, 0) and are spaced evenly
in time.

In[9] := cycloidBeadPositions[n_] := Table[
{R(st-Sin[st]), h-R(1-Cos[st])} I. cycloidRule I. params,
{t,0,totalCycloidTime,totalCycloidTime/(n-1)}] II N

In[10]:= cycloidBeadPositions[11]

Out[10]= {{a, 2.}, {0.00514227, 1.95106}, {0.0405333, 1.80902},
{0.133461, 1.58779}, {0.305581, 1.30902}, {O.570796, 1.},
{O.933899, O.690983}, {1.3901, O.412215}, {1.92549, O.190983},
{2.51842, O.0489435}, {3.14159, o.}}

In generating the cycloidBeadPositions replacement rules have been used:

/. cycloidRule replaces every st in the parametric equations with the appropriate func­
tion of t and /. params replaces all parameters with their numeric values. The final / / N
converts all numerics to real numbers.

In figure 2 the bead positions are superimposed on the cycloid giving a flash photograph
of the sliding bead. The figure is generated using the command:

In[11]:= cycloidBeads = ListPlot[cycloidBeadPositions[11],
Prolog->AbsolutePointSize[9] ,
PlotRange->{{O, Pi}, {a, 2}}, DisplayFunction->Identity];

In[12]:= Sho~[cycloidBeads, cycloid, DisplayFunction->$DisplayFunction]

To show that the cycloid is faster than a straight line for getting a bead from (0,2) to
(7r, 0) a flash photograph may be generated for two beads competing with each other along
the different routes. The result is shown in figure 3.

Modelling with Mathematica

Figure 2: A flash photograph of a ~ead sliding down a cycloid.

In[13]:= straightLineRule = stRule[s, h(l-s/k), s];

2

g h k t

Out[13]= {st -> -----------}
2 2

2 (h + k)

In[14] := straightLineBeadPositions[n_] := Table[
{st, h(l-st/k)} I. straightLineRule I. params,
{t,O,totalCycloidTime,totalCycloidTime/(n-l)}] II N

In[15]:= straightLineBeads = ListPlot[straightLineBeadPositions[ll] ,
Prolog->AbsolutePointSize[9] ,
PlotRange -> {{O,Pi},{O,2}}, DisplayFunction->Identity];

In[16]:= straightLine = ParametricPlot[
Evaluate[{s, h(l-s/k)} I. params],
{s,O,Pi}, DisplayFunction->Identity];

In[17]:= ShoY[cycloidBeads, straightLineBeads, cycloid, straightLine,
DisplayFunction->$DisplayFunction]

10

To obtain a real time animation of the sliding beads a single frame is produced for every
pair of bead positions. In the following code many bead positions are generated, 51 in fact,

::..:.M::..:.o:....:d.::...:e-=ll:::in~g~w_it_h_M_a_t_h_e_m_a_t_ic_a----------- 11

2

1. 75

1.5

1.25

1

0.75

0.5

0.25

0
0.5 1 1.5 2 2.5

Figure 3: A flash photograph of two competing beads.

to give the illusion of continuous movement.

In[18]:= beadAnimationFrameList = Map[Show[cycloid, straightLine,
Graphics [AbsolutePointSize[9] , Point[#[[l]]], Point[#[[2]]]]]&,
Transpose[{cycloidBeadPositions[51],
straightLineBeadPositions[51]}]]

In[19]:= DisplayAnimation[IBEADS",beadAnimationFrameList]

DisplayAnimation is an internal Mathematica function that takes a list of graphics frames
and produces a DOS animation file as output. The animation may be viewed by exiting
Mathematica and using the DOS command: ANIMATE BEADS. The utility ANIMATE. EXE and
the animation file BEADS are stored in machine readable form on a stiffy disk attached to
this thesis. Complete instructions for viewing the animation are given in the appendix.

1.3 Conclusion

A short introduction to the modelling capabilities of Mathematica has been given and
the tone for the rest of the thesis has been set. In the next section animation and flash
photograph concepts are employed in the analysis of a mathematical golf swing.

Modelling with Mathematica 12
=--.:::...::--~:::....-_-----------------------

2 Animation of a Mathematical Golf Swing

In this section a mathematical model for the swing of a golf club is presented. The model
is implemented in Mathematica and the final result is an animation of the swing. The
animation will demonstrate that a golfer can execute a perfect swing without using power
from his wrists. This fact is not well documented in golfing literature, which is strange
since the use of the wrist muscles in the execution of a golf swing can cause all sorts of
problems.

2.1 The Mathematical Model

The double pendulum provides a simple model of the golf swing [Williams j 1961]. The
shaft of the club is an outer link of length a, while the arms of the golfer form the inner
link of length b.

z

a

b

B"--------y

Figure 4: The double pendulum.

The downswing is analyzed in two parts. In the first part of the downswing the wrists are
locked, 'I/; = '1/;0, while the arms are accelerated from rest with constant angular acceleration
jj = Q. In the second part of the downswing the arms rotate with constant angular velocity
iJ = w, while the wrists are allowed to open freely as if they were a perfect hinge.

The angle at which the first phase ends and the second phase starts will be denoted Bc.
This angle should be selected so that the arms and the club line up at impact with the
ball, i.e. 'I/; = ?r when () = 3

2
71".

To obtain the equations of motion, we will consider the golf club as a unit mass attached
to a light rigid rod of length a. Neglecting gravity, the only forces on the club are those
exerted by the hands. From the geometry of figure 4 the position of the clubhead for any
value of B and 'I/; is given by:

Modelling with Mathematica 13
----::......----------------------------

y
z

bcos 0 + a cos (0 + 'ljJ - 11")
bsin 0+ a sin(0 + 'ljJ - 11")

(7)

If Fy and Fz are the forces exerted by the hands on the club in the y and z directions then
Newton tells us that:

-bcosoiJ2 - bsinOe - acos(O + 'ljJ -11")(0 + ~)2

-asin(O + 'ljJ - 1I")(e +~)
-b sin 002 +bcos oe - asin(0 + 'ljJ - 11")(0 +~)2

+a cos (0 + 'ljJ - 11") (i) + ~)

(8)

It is useful to resolve these forces in directions parallel and vertical to the club. Let Fs

be the pull along the shaft away from the clubhead and let Fp be the push of the hands
perpendicular to the club in a direction of increasing O. Then (-FS1 Fp) is obtained from
(FY1 Fz) by a rotation of 0 + 'ljJ - 11":

-Fy cos(O + 'ljJ - 11") - Fz sin(O + 'ljJ - 11")
-Fy sin(O + 'ljJ - 11") +Fz cos(O + 'ljJ - 11")

Substituting equations 8 into equations 9 and simplifying yields:

-b02 cos 'ljJ + bi) sin 'ljJ + a(O + ~)2

-b02 sin 'ljJ - be cos 'ljJ + a(e +~)

Indeed the following Mathematica session confirms these results:

In[l]:= y[t]:= b Cos[Theta[t]] + a Cos[Theta[t] + Psi et] - Pi]

In[2]:= z[t]:= b Sin[Theta[t]] + a Sin[Theta[t] + Psi[t] - Pi]

In[3]:= Fs[t]:= - D[y[t], {t, 2}] Cos [Theta[t] + Psi[t] - Pi] -
D[z[t] , {t, 2}] Sin [Theta[t] + Psi[t] - Pi]

In [4] := Fp[t]:= - D[y[t], {t, 2}] Sin [Theta [t] + Psi [t] - Pi] +
D[z[t] , {t, 2}] Cos [Theta[t] + Psi [t] - Pi]

In[5]:= Simplify[Expand[Fs[t]]]

(9)

(10)

Modelling with Mathematica 14--_.:=:.-_-------------------------

2 2
Out[5]= a Psi'[t] + 2 a Psi'[t] Theta'[t] + a Theta'[t]

2
b Cos[Psi[t]] Theta'[t] + b Sin[Psi[t]] Theta"[t]

In[6] := Simplify[Expand[Fp[t]]]

2

Out[6]= -Cb Sin[Psi[t]] Theta'[t]) + a Psi"[t] + a Theta"[t] -

b Cos[Psi[t]] Theta"[t]

In the first phase of the downswing, {} increases from Ba to Bc with constant angular accel­
eration jj = a, and 'I/J remains fixed at 'I/J = 'l/Jo. So during this phase:

at
at

2 B2+ 0

- ba2t2 cos 'l/Jo +ba sin 'l/Jo +aa2t 2

- ba2t2 sin 'l/Jo - ba cos 'l/Jo +aa

(11)

The first phase ends when B = Bc, that is, at time tc = j(Bc - Bo)~. In the second phase

of the downswing, B increases from Bc to 3; with constant angular speed iJ = ate = w.
In this phase the wrists are considered to be smooth hinges and so cannot exert forces
perpendicular to the club shaft. Therefore Fp is zero and we have:

w

Bc +w(t - tc)
-bw2 cos'I/J + a(w + ~)2

~w2 sin 'I/J

(12)

Equations 11 fully describe the first phase of the downswing. A little more work is required

to find 'I/J and ~ as fu.nctions of t in the second phase. Recalling that ~ = ~ ~~ and using

the initial condition 'I/J = 0 when 'I/J = 'l/Jo, the last equation in 12 can be integrated to get:

2bw2

--(cos'I/Jo - cos'I/J)
a (13) .

Modelling with Mathematica 15
----=-----------------------------

This equation cannot be integrated further in terms of elementary functions so a numerical
procedure is used to calculate 'l/;(t) for t > te. Let tn+! = tn + tlt and expand 'l/;(tn+!) in a
Taylor polynomial, making use of equation 13 and the last equation in 12 to get:

'l/;(tn + tlt)
'l/;(tn) + tlt~(tn) + ~~(tn) +O(tlt3

)

'l/;(tn) + tltJ2b:
2

(cos 'l/;o - cos 'l/;(tn)) + ~t ~w2 sin 'l/;(tn)
+O(tlt3

)

(14)

A sequence of values of 'l/;(t) for t > te can now be generated.

The function SwingAngles computes a list of successive configurations B, 'l/;, given values
for the club length a, the arm length b, the initial angles Bo and 'l/;o, the parameter Be, the
initial angular acceleration et, and a timestep dt.

In[lJ:= SwingAngles[a_, b_, thetaO_, psiO_, thetac_, alpha_, dt_J:=
Module [{psi, tc, w, tf, kc, ddt, cosO = Cos[psiOJ},

tc = Sqrt[2(thetac - thetaO)/alphaJ;
w = alpha tc;
tf = (1.6 Pi - thetac)/w + tc;
kc = Floor[tc/dtJ;
ddt = (ke + 1) dt - te;
psi = N[psiO + ddt-2 b w-2 Sin[psiOJ/(2a)J;
{ Table[{alpha (k dt)-2 12 + thetaO, psiO} II N,

{k, 0, ke}J, {{thetae + w ddt, psi}} II N,
Table[{thetae + w (k dt - te) 11 N,

psi = N[psi + dt Sqrt[2 b w-2 (eosO - Cos[psiJ)/aJ +

dt-2 b w-2 Sin[psiJ/(2a) J},
{k, ke + 2, Floor[tf/dtJ + 1} J } II Flatten[#, lJ& J

The first phase consists of ke = Floor [te/dt] timesteps, during which psi is constant.
At the next timestep, psi is computed from equation 14 with tlt set to ((ke + l)dt ­
te). During the rest of the second phase, psi is computed iteratively with tlt set to dt.

In[8J:= angles = SwingAngles[0.85, 0.65, 100 Degree,
65 Degree, 140 Degree, 60, 0.02J

Out[8J= {{1.74533, 1.13446}, {1.75733, 1.13446},
{1.79333, 1.13446}, {1.85333, 1. 13446},
{1.93733, 1.13446}, {2.04533, 1.13446},
{2.17733, 1.13446}, {2.33333, 1.13446},

Modelling with Mathematica 16
--_.:=:....-_-------------------------

{2.51166, 1.13608}, {2. 69472 , 1.15635},
{2.87778, 1.20004}, {3.06084, 1.26758},
{3.2439, 1.35954}, {3.42695, 1.47653},
{3.61001, 1.61903}, {3.79307, 1.78717},
{3.97613, 1.98042}, {4.15919, 2.19728},
{4. 34225 , 2.43505}, {4.5253, 2.68963},
{4.70836, 2.95554}, {4.89142, 3.22629},
{5.07448, 3.49488}}

2.2 The Animation

To draw the frames of the animation, we separate the picture into moving and static compo­
nents. The function StaticParts generates graphics primitives for the static component,
which depends only on a and b:

In[9]:= StaticParts[a_, b_] :=
Module[{r = b/6, c = Sqrt[a(a + 2b)], head, eyes, legs},

head = Polygon[Table[
r {a, Sin[i Pi/20], 1 + Cos[i Pi/20]}, {i, 0, 40}]];

eyes = {PointSize[0.015] ,
Point [{O, -r/2, r}], Point [{O, r/2, r}]};

legs = {Thickness [0.02] , Line[
{{a, -b/3, -c}, {a, 0, -b}, {a, b/3, -c}}] };

{legs, head, eyes}]

The function MovingParts draws the elements of each frame that depend on the configu­
ration (), 'IjJ:

In[10] := MovingParts[a_, b_, {theta_, psi_}] :=
Module[{sn = b/(a + b), cs = Sqrt[a(a + 2b)]/(a + b),

project, hands, rightshoulder , leftshoulder,
clubhead, ball},

project [{y_, z_}] := {-z sn, y, z cs};
hands = project[b {Cos [theta] , Sin[theta]}];
rightshoulder = project[

(b/3) {Cos[theta/2 + Pi/4] , Sin[theta/2 + Pi/4]}];
leftshoulder = project[

(b/3) {Cos[theta/2 + 5Pi/4], Sin[theta/2 + 5Pi/4]}];
clubhead = project[

{b Cos[theta] + a Cos[theta + psi - Pi],
b Sin[theta] + a Sin[theta + psi - Pi] }];

ball = If [theta < N[3Pi/2],

Modelling with Mathematica 17
---~---------------------------

{PointSize[0.02], Point [project [{O, - a - b}]]}, {}];
{Line [{hands, rightshoulder, leftshoulder,

hands, clubhead}],
PointSize[0.025], Point [clubhead] , ball,
EdgeForm[Thickness[O.Ol]],
Polygon[{rightshoulder, {a, 0, -b}, leftshoulder}]}]

The swing takes place in a plane in 3-space that is inclined at an angle sin-1(bj(a+ b)) from
the vertical. An auxiliary function project, is used to transform the (y, z) coordinates of
a point in this plane into the coordinates of the point in 3-space.

The function DrawFrame combines the static and moving elements in one frame of the
animation sequence and displays them with appropriate graphics options:

In[ii]:= DrawFrame[a_, b_, {theta_, psi_}] :=
Show [Graphics3D [

{StaticParts[a, b], MovingParts[a, b, {theta, psi}]},
AspectRatio -) Automatic,
ViewPoint -) {a + b, 0, a},
Boxed -) False,
PlotRange -) Ca + b){{-i, i}, {-i, i}, {-i, i}}]]

For example, in the swing that was calculated earlier, the change from the first phase to
the second phase of the downswing occurs at the 9th frame. The following commands
generate figure 5 which shows the position of the golfer at the end of the first phase:

In[12]:= angles[[9]]

Out[12]= {2.51166, 1.13608}

In[13]:= DrawFrame[0.85, 0.65, 'l.]

To produce the complete animation, we simply Map the function DrawFrame onto the list
generated by SwingAngles:

In[14] := AnimateGolfer[a_, b_, thetaO_, psiO_, thetac_, alpha_, dt_]:=
Map[DrawFrame[a, b, #]&,

SwingAngles[a, b, thetaO, psiO, thetac, alpha, dt]]

The Mathematica function DisplayAnimation can be used to write the PostScript code
for the frames to a file for animation purposes. For example the command:

:..:M:.:o:..::d=e:::ll:.:..:in~g~w..:..it:::h=-M::..:..::.a:...:..th:::.e=m.:....-at.:.-i_ca 18

•
Figure 5: The position at the end of the first phase

In [15J := DisplayAnimation ["GOLFER" , AnimateGolt"er[0 .85, 0.65,
100 Degree, 65 Degree, 140 Degree, 60, 0.02JJ

produces a DOS animation file which can be viewed via the utility ANIMATE. EXE. The
animation file SWING is stored in machine readable form on a stiffy disk attached to this
thesis. Complete instructions for viewing the animation are given in the appendix.

2.3 Multiflash Photography

The parameters for the swing were obtained by taking measurements from a sequence of
flash photographs of Bobby Jones's swing published in [Williams; 1969j. The function
FlashPhoto combines the animation frames into a single image. Comparison of figure 6
with a published flashphoto of your favorite professional shows that an acceptable down­
swing is produced.

In[16J:= FlashPhoto[a_, b_, thetaO_, psiO_, thetac_, alpha_, dt_J:=
Shoy[Graphics3D[{StaticParts[a, bJ,

:.:-M.:::..:o.:....::d::..::e:::ll:::in::sg~w-.:..:...::...it:..:::h~M::....=...:.a~th=-e-=--m_at_i_ca 19

Figure 6: A Multiflash photo of the perfect golf swing

Map [MovingParts [a, b, #]&,
SvingAngles[a, b, thetaO, psiO, thetac, alpha, dt]]},

AspectRatio -) Automatic, VievPoint -) {a + b, 0, a},
Boxed -) False,
PlotRange -) Ca + b){{-1, 1}, {-1, 1}, {-1, 1}}]]

In[17] := FlashPhoto[0.85, 0.65, 100 Degree,65 Degree, 140 Degree, 60, 0.02]

2.4 Analysis of Forces

Golfing enthusiasts often refer to the hitting-area of the downswing. The radial tension in
the arms is not felt by the golfer while the force tangential to the path of the hands has to be
manufactured. Thus a picture of the so-called hitting-area is a polar plot of the component
of the forces tangential to the path of the hands. In the first stage of the downswing Fp
balances the couple caused by the locking of the wrists. Thus in the first stage only Fs

contributes to hitting and FT = Fs sin 'l/J. In the second stage the wrists are free and both
components contribute, FT = Fs sin 'l/J - Fp cos 'l/J. To show the hitting area Fs and Fp are
taken from equations 11 and 12 and FT is then used to patch the function SwingAngles

Modelling with Mathematica 20--_..=::...-_-------------------------

and construct a function TangentialForces which computes a list of successive tangential
force magnitudes for each e in the downswing.

In[18J := TangentialForces[a_, b_, thetaO_, psiO_, thetac_, alpha_, dt_J:=
Module[{psi, tc, w, tf, kc, ddt,

cosO = Cos [psiOJ, sinO = Sin[psiO]},
tc = Sqrt[2(thetac - thetaO)/alphaJ;
w = alpha tc;
tf = (1.6 Pi - thetac)/w + tc;
kc = Floor[tc/dtJ;
ddt = (kc + 1) dt - tc;
psi = N[psiO + ddt-2 b w-2 Sin[psiOJ/(2a)J;
Map[Drop[#,{2}J& ,

{ Table[{alpha (k dt)-2 12 + thetaO, psiO,
(-b alpha-2 (k dt)-2 cosO + b alpha sinO + a alpha-2 (k dt)-2) sinO } II N,

{k, 0, kc}J, {{thetac + w ddt, psi,
(-b w-2 Cos[psiJ + a(w + Sqrt[2 b w-2 (cosO - Cos[psiJ)/aJ)-2) Sin[psiJ

}} II N,
Table[{thetac + w (k dt - tc) II N,

psi = N[psi + dt Sqrt[2 b w-2 (cosO - Cos[psiJ)/aJ +
dt-2 b w-2 Sin[psiJ/(2a) J,

(-b w-2 Cos[psi] + a(w + Sqrt[2 b w-2 (cosO - Cos[psiJ)/a])-2) Sin[psiJ
} II N,

{k, kc + 2, Floor[tf/dtJ + 1} J } II Flatten[#, lJ& J J

Note that each 'lj; in the downswing is used to calculate the tangential force and then they
are discarded.

In[19]:= forces = TangentialForces[0.85, 0.65, 100 Degree,
65 Degree, 140 Degree, 60, 0.02J

Out[20J= {{1.74533, 39.00000}, {1.75733, 39. 59204} ,
{1.79333, 41.36814}, {1.85333, 44.32832},
{1.93733, 48.47258}, {2.04533, 53.80090},
{2.17733, 60.31330}, {2.33333, 68.00976},
{2.51166, 50.03669}, {2.69i72, 69.86024},
{2.87778, 94.41542}, {3.06084, 124.53256},
{3.24390, 160.60072}, {3.42695, 201.90445},
{3.61001, 245.68231}, {3.79307, 286.08505},
{3.97613, 313.59129}, {4.15919, 315.87832},
{4.34225, 281.15672}, {4.52530, 203.83304},
{4.70836, 90.00741}, {4.89142, -41.43580},
{5. 07448 , -164.68057}}

Modelling with Mathematica 21
--_.::::...-_-----------------------~

2000

-2000 1000 2000

-2000

Figure 7: The hitting area of the downswing.

To display the hitting area, we choose a reference radius, R corresponding to FT = O. and
plot the polar coordinates (e, R +FT) together with an arc of radiusR. A point outside the
arc represents an accelerating (positive) force, while a point inside the arc is a retarding
force.

In[21J:= PolarForcePlot[forces_ListJ:=
Module[{ref = 5 Max[Transpose[forcesJ[[2JJJ},

ListPlot[{ Map[{(ref+#[[2JJ) Cos[#[[lJJ J ,
(ref+#[[2JJ) Sine #[[lJJ J}&, forcesJ,

Map[{ref Cos[#[[lJJ 1 , ref Sine #[[lJJ J }&,
Reverse[forcesJ J } II Flatten[#, lJ&,

PlotRange -> 2 ref { {-1,1},{-1,1} },
AspectRatio -> Automatic, PlotJoined -> True J J

In[22J := PolarForcePlot[forcesJ

Modelling with Mathematica 22
----=----------------------------

Figure 7 shows the hitting area of the downswing where the fat portion of the polar plot
indicates that hitting is taking place. Note that at contact with the ball all forces are radial
and no hitting occurs.

2.5 Conclusion

It has been demonstrated that an acceptable golf swing can be executed without using
power from the wrists. Once the wrists start to unlock, all the force exerted by the hands
is in the direction of the club shaft. Most of the hitting in the golf swing should be carried
out after the hands have passed the horizontal position. In the next section Mathematica
is employed in the analysis of a more demanding three dimensional mechanical problem.

Modelling with Mathematica 23--_:::....-_-------------------------

3 Animation of Rotating Rigid Bodies

In this section Mathematica is used to animate the motion of a rigid body under no external
forces. As an example, a box model of a rotating tennis racquet is presented.

In the study of the motion of a rigid body under no forces most text books, for example
[Gray and Gray! 1911}, will show that the tip of the angular velocity vector moves on a
fixed plane that is normal to the constant angular momentum vector. As it moves it traces
out a curve called the herpolhode of the motion. This concept can be hard to visualize but
in this section Mathematica is used to provide a solution and animation of the relevant
equations of motion.

The rigid bodies discussed here will be simple boxes or combinations of boxes but the
interested reader should be able to adapt the Mathematica code and animate the motion
of many other rigid bodies. As a practical example the motion of a tennis racquet rotating
under no forces is investigated. A nice example to demonstrate since while rotating through
271" radians about an axis in the same plane as the head but perpendicular to the shaft, the
racquet flips through 71" radians about the shaft axis.

An outline of the classical derivation and solution of the equations of motion for the problem
is given first and then a Mathematica implementation provides the animation of the strange
behaviour of the tennis racquet.

3.1 The Equations of Motion

The fundamental ideas in the derivation of the equations of motion of a rigid body mov­
ing under no forces are two: the principal axes theorem and the conservation of angular
momentum and kinetic energy. These concepts can be found in any reputable mechanics
textbook, [Synge and Griffith! 1959}. In what follows, boldface characters denote vectors
and a dot above a letter indicates differentiation with respect to time.

The principal axes theorem states that for any rigid body it is possible to choose an
orthogonal coordinate system, fixed with respect to the body, and such that the center of
mass is at the origin and the angular momentum vector, h, is given by:

(15)

where x, y and z are unit vectors along the coordinate axes; A, Band C are constants
called the moments of inertia in the three coordinate directions; and Wl, W2 and W3 are the
components of the angular velocity vector W with respect to this coordinate system. The
coordinate axes in this coordinate system are called the principal axes of the rigid body.

Modelling with Mathematica 24
----=-----------------------------

The angular velocity vector w is defined by the matrix equation:

(
~) (w X x) (0 -W3 W2) (X)Y W X Y W3 0 -Wl Y
i W x Z -W2 Wl 0 Z

(16)

The matrix in equation 16, obtained by simply expanding the cross products, is called the
infinitesimal rotation matrix associated with w.

If a body has enough symmetries (for example, if it is symmetric with respect to reflections
in two perpendicular planes) the principal axes are very easy to determine since they are
preserved by the symmetries. Only symmetric bodies are considered here but the derivation
applies to any rigid body.

Since there are no external forces the center of mass is fixed in space and the angular
momentumh and the kinetic energy T = HAwi+Bw~+CwD are constant. Now w·h = 2T,
so the tip of the angular velocity vector w moves on a fixed plane normal to h and this
so-called invariable plane lies at a distance of II~I from the center of mass. The path
traced out by the tip of the angular momentum vector in the invariable plane is called the
herpolhode.

3.2 Calculating Angular Velocity

The principal axes xyz, being attached to the body, rotate in space. In order to describe
the body's movement the position of the principal axes and the angular velocity vector must
be expressed as a function of time in terms of a fixed coordinate system XYZ. Assume
that the angular velocity w = WIX +W2Y +W3Z is known at time t = 0; this corresponds
to giving the rigid body a certain initial angular velocity and then letting it go. To find
out what happens to the body after t = 0, [Synge and Griffith, 1959, 14-108-14.121} is
followed.

First differentiate equation 15 with respect to time t, remembering that h is constant,
while the other variables depend on t, then substitute the values of X, y and i given by
equation 16 to get Euler's equations:

0, (17)

Modelling with Mathematica 25
---=----------------------------

Now assume, by permuting the principal axes if necessary, that A 2: B 2: C. Solving the
equations h = AWIX +BW2Y +CW3Z and T = HAwi +Bw~ +Cw~) for Wl and W3 in terms
of W2 and substituting the results into the second Euler equation gives:

·2 _ (A-C)2 (h2-2CT _ B(B-C) 2) (2AT-h2 _ B(A-B) 2)
W2 - B2 A(A-C) A(A-C) W2 C(A-C) C(A-C) W2 , (18)

where h = Ilhll. This equation can be reduced to a standard elliptic differential equation
by a change of variables. First set

(3=
2AT - h2 k = /B-C 2AT-h2 _ l(h2

- 2CT)(A - B)

B(A - B)' YA-B h2-2CT' P - V ABC '
(19)

and then perform the change of variables e= ~ and T = pt in equation 18, obtaining

(~~)' = (l-t')(l-k't') (20)

The solution to this equation is Jacobi 's elliptic function e= snk (T). All three components
of angular velocity can now be expressed in terms of Jacobi elliptic functions

where

a= h
2

- 2CT _. /2AT-h2
A(A - C)' 'I - -Y C(A-C)

(21)

(22)

and tc is a constant of integration given by

Modelling with Mathematica 26--_..:::...---------------------------

(23)

Note that, is chosen to be negative since substitution into Euler's equations yields 0'.(3, <
O. Also note that the use of elliptic functions requires k < 1, which amounts to h2 > 2BT.
If this condition does not hold, then the reduction from equation 18 to equation 20 must
be performed again after swapping the terms in the big parentheses in equation 18. This
will result in a different set of expressions for O'.,(3",p and k.

3.3 Calculating Position

Explicit formulas for the angular velocity vector as a function of time have been presented
but formulas for the principal axes xyz as a function of time must still be found. This
problem is approached by finding as a function of time the spacial rotation that maps
the stationary axes XYZ onto the principal axes xyz. This spacial rotation is three
dimensional and is conveniently parametrized by the Euler angles cjJ, Band 'ljJ, as follows:
Start from the fixed frame XYZ and rotate it through an angle cjJ around the Z-axis. Next
rotate through Baround the rotated Y-axis and finally rotate through 'ljJ around the rotated
Z-axis. The result is set equal to xyz and this equation defines cjJ, Band 'ljJ. The compound
transformation is given by a series of matrix multiplications

where

(~) = pz(,p)py(O)pz(f) (~)

(

COS cjJ sin cjJ 0)
pz (cjJ) = - sin cjJ cos cjJ 0
. 0 0 1

(24)

(25)

is the matrix that describes the first rotation through cjJ around the Z-axis and so on.
Setting R'lj;(}q, = pz('ljJ)py(B)pz(cjJ) one could write down this matrix explicitly but it turns
out to be cumbersome and unenlightening. The Euler angles are related to the angular
velocity via the angular momentum which is constant and therefore has known components,
hI, h2 and h3 in the frame XYZ.

Modelling with Mathematica 27
...:....=...:_~::'..-_-----------------------

(hI h, h3) (~) = h

Comparing the first and last quantities

(AUh Bw, CW3) (:)

(Awl Bw, CW3) E4,. (0 (26)

(27)

or transposing and taking into account that the transpose and the inverse of a rotation
matrix are the same

(28)

Although this is a system of three equations in three unknowns (the Euler angles), it is
underdetermined: if R?j;8rj; is a solution, so is R,p(}rj;R', where R' is a rotation fixing the vector
(hI, h2 , h3). Thus the most we can get from equation 28 is two of the Euler angles. This is
particularly simple if hI = h2 = 0, that is, if the frame XYZ is chosen so that h lies along
the Z-axis. In this case equation 28 reduces to

where h = IIhll = h3 and this results in

-h sine cos 'ljJ
h sin esin 'ljJ

hcose
(29)

To find cP, note that

(30)

~M.::o:.:d::..::e=ll=in~g::-:..:w..:.it::.:h~M:::..::a::.:t::.:he..:..:m:::::..:..:a...:...ti....::..ca.:.- 28

(31)

The first equality follows by differentiating equation 24 and the second from equation 16.
Combining the two equalities results in:

(32)

which can be expanded (preferably in Mathematica, not by hand!) to give

. .
sin'IjJ () - sin () cos 'IjJ 4;,
cos'IjJ iJ + sin () sin 'IjJ ~,

cos ()ify + 'IjJ.
(33)

From the first two equations,

. Wz sin 'IjJ - Wl cos 'IjJ
ify= . () ,

sm

and 1J can be obtained by numerical integration.

3.4 Implementation

(34)

Animation of the motion of a rigid body under no forces is accomplished by implementing
the equations above in Mathematica. Given some graphics representation of the body
at rest, together with its principal moments of inertia (A, B and C) and initial angular
velocity, the Euler angles are computed for evenly spaced values of time t. The graphics
representation is then rotated from its rest position to the appropriate position at time
t, to generate an animation frame. To highlight some of the classical theorems in the
rigid body literature, objects of interest such as hand W can be attached to the graphical
representation of the rigid body.

Modelling with Mathematica 29
----=-----------------------------

The function FreeFall animates an object rotating in space under no external forces. An
object with graphics representation shape and moments of inertia {mx,my ,mz} is rotated
in space with initial angular velocities {wx,wy,wz}. The animation goes from time start
to time end in n steps

In[1]:= FreeFall[shape_, {mx_,my_,mz_}, {wx_, wy_, wz_},
{start_, end_ , n_}] :=

Block[{i, gr, del, time,(* temporary variables *)
eps, (* a small real number *)
tc, (* constant of integration *)
W1, W2, W3, (* angular velocities as functions of time *)
w1, w2, w3, (* initial angular velocities *)
Theta, Phi, Psi, (* Euler angles as functions of time *)
theta, phi, psi, (* temporary Euler angles *)
h, T, (* constants of the motion *)
a, b, c, (* moments of inertia *)
ta, t1, (* time interval of animation *)
herpolhode, (* a list of angular velocity co-ords *)

afile, tfile (* temporary files *)},

(* switch off the display routine to save time *)

savedisplayfunction = $DisplayFunction;
$DisplayFunction = #&;

(* open the frame file directory file *)

afile=OpenTemporary[];

(* initialize the herpolhode to an empty list *)
herpolhode = {};

(* make sure everything coming in is numeric *)
a=N[mx]; b=N[my]; c=N[mz];

w1=N[wx]; w2=N[wy]; w3=N[wz];
to=N[start]; t1=N[end];

(* check for assumption on magnitudes of moments of inertia *)
If[a>b && b>=c,NuII,Block[{},

Print["a = ",a," b = ",b,". c = ",c];
Print["Please permute the xyz frame until a>b>=c"];
Return[Null]]] ;

(* constants of the motion, angular momentum and kinetic energy *)
h=(a-2 w1-2 + b-2 w2-2 + c-2 w3-2)-(1/2);
T=(a w1-2 + b w2-2 + c w3-2)/2;
Print["Angular Momentum = ",h];
Print ["Kinetic Energy = 11, T] ;

Modelling with Mathematica 30
-_------:=--------------------------

(* calculate alpha, beta, gamma, k * depending on sign h-2 -2bT *)

If[h-2 > 2 b T ,
Block[{}, Print[IICase h-2 > 2 b T"];

alpha = ((h-2 - 2 c T) / (a-2 - a c))-(1/2);
beta = ((2 a T - h-2) / (b a - b-2))-(1/2);

gamma = ((2 a T - h-2) / (c a - c-2))-(1/2);
p = ((h-2 - 2 c T) (a - b) / (a b c))-(1/2);
k = (((b - c)(2 a T - h-2))/

((a - b) (h-2 - 2 c T)))-(1/2);],
Block[{}, Print[IICase h-2 < 2 b TII];

alpha = ((h-2 - 2 c T) / (a-2 - a c))-(1/2);
beta = ((h-2 - 2 c T) / (b-2 - b c))-(1/2);

gamma = ((2 a T - h-2) / (c a - c-2))-(1/2);
p = ((2 a T - h-2) (b - c) / (a b c))-(1/2);
k =/ (((a - b)(h-2 - 2 c T))/

((b - c) (2 a T - h-2)))-(1/2);]

(* calculate constant of integration *)

tc = - N[Re[InverseJacobiSN[w2/beta,k] / p]];
Print[lI constant of integration = ",tC];

(* define angular velocities as functions of time *)

Print [IISetting up angular velocity functions ll
];

eps=O.000000001;
If [Abs[k] > eps ,

Block[{} ,
Print [Ilk greater than eps, using Elliptic functions ll];

(* W1[t_] := N[Re[alpha JacobiDN[p(t-tc) ,N[k].JJ]; *)

W1[t_] := N[alpha Sqrt[1 - (k-2) (JacobiSN[p(t-tc),N[k]])-2]];
W2[t_] := N[Re[beta JacobiSN[p(t-tc),N[k]]]];
W3[t_] := N[Re[gamma JacobiCN[p(t-tc),N[k]]]];],

Block[{} ,
Print[lIk less than eps, using Trigonometric functions ll];

W1[t_] := N[Re[alpha]];
W2[t_] := N[Re[beta Sin[p(t-tc)]]];
W3 [t_] := N[Re [gamma Cos [p (t-tc)] JJ;]];

Print ["Setting up solutions for Euler angles ll
];

Theta[t_]:= N[ArcCos[c W3[t] / h]];
PsHt_]:= N[Re[ArcTan[- (b W2[t]) / (a W1[t])]]];
Phi[t_,st_] := Re[Nlntegrate[(W2[s] Sin[Psi[s]] -

W1[s] Cos[PsHs]]) / Sin[Theta[s]] , {s,N[st] ,N[t]} JJ;

del = N[(t1-tO)/n];

Modelling with Mathematica 31
---=----------------------------

time = N[tO];
theta = Theta[tO];
phi = Phi[tO,tc] + N[Pi];
psi = Psi[tO] + N[Pi];

Print["generating animation frames"];
For[i = 1 , i <= n+l , i++ ,

Block[{} ,
(* tack on the angular momentum and velocity vectors *)
av = (O.99)*{Wl[time],W2[time],W3[time]};
am = (2T / h-2)*{a Wl[time] , b W2[time] , c W3[time]};
gr = Graphics3DJoin[shape, Graphics3D[

{ Line[{ {O,O,O} , am }] ,
Line[{ {O,O,O} , av}] }]];

(* rotate the structure using Euler's angles *)
Print["time = ",time," theta = ",theta,

" phi = ",phi," psi = ",psi];
gr = RotateShape[gr,RotationMatrix3D[theta, phi, psi]];
(* update the herpolhode with the

tip of the angular velocity vector*)
herpolhode = Append[herpolhode,Last[Last[Last[Last[gr]]]]];
(* tack on the herpolhode and the

invariable plane to the rotated structure *)
gr = Graphics3DJoin [gr , Graphics3D [

{ Line [herpolhode] ,Polygon[(2T/h)*
{{1,1,1},{1,-1,1},{-1,-1,1},{-1,1,1}}] }]];

(* render the frame and save the result in a temporary file *)
gr = Show [gr , RenderAll -) False,

PlotRange -) (2T/h)*{ {-1,1},{-1,1},{-1,1} } ,
Boxed -) False ,

ViewPoint -) {4,3,-2}];
tfile = OpenTemporary[];
Display[tfile,gr];
(* update the frame index file *)
WriteString [afile, tfile, "\n"] ;
Close [tfile] ;
(* if there are more frames, calculate new Euler angles *)
If[i <= n , Block[{},

time = time + del;
theta = Theta[time];
phi = phi + Phi[time,time-del];
psi = Psi[time] + N[Pi];

]];] J;
(* close the frame directory and reinstate the display routine *)
Close [afile] ;
$DisplayFunction = savedisplayfunction;

]

Modelling with Mathematica 32
---=---------------------------

The implementation of FreeFall is straightforward, and only a few comments are made
here.

The code starts by making sure that all arguments are numeric, and that A > B ~ C (the
case A = B = C being trivial, since the angular velocity remains constant). The code then
computes the constants Q, (3, " p and k of the previous section, using different formulas
for the cases h2 > 2bT and h2 < 2bT, as explained above.

The constant of integration te is computed using the function InverseJacobiSN. Sometimes
this function returns a complex number with a very small imaginary part, rather than the
desired real number; so the built-in function Re is applied to the result. This trick is used
elsewhere in the code. In addition, if k is very close to zero, it is preferable to approximate
elliptic functions by trigonometric functions.

When computing <p the integration is only computed from the last frame, rather than from
t e for each frame; hence the argument st.

To perform the rotation of the model through the previously calculated Euler angles, the
following functions are employed.

In[2J:= RotationMatrix3D[theta_,phi_,psi_J := N[Transpose[
{ { - Sin[phiJ Sin[psiJ + Cos[thetaJ Cos[phiJ Cos[psiJ ,

Cos[phiJ Sin[psiJ + Cos[thetaJ Sin[phiJ Cos[psiJ ,
- Sin[thetaJ Cos[psiJ },

{ - Sin[phi] Cos[psiJ - Cos[thetaJ Cos [phi] Sin[psiJ
Cos[phiJ Cos[psiJ - Cos[thetaJ Sin[phiJ Sin[psiJ ,
Sin[thetaJ Sin[psiJ },

{ Sin[theta] Cos[phiJ ,
Sin[thetaJ Sin[phiJ ,
Cos[thetaJ } } JJ

In[3J:= RotateShape[shape_, rotmat_ J := Block[{}, Return[shape t.
{poly:Polygon[_J :> Map[(rotmat #)&, poly, {2}],

line:Line[_] :> Map[(rotmat #)&, line, {2}],
point:Point[_J :> Map[(rotmat #)&, point,{l}J } JJ

RotationMatrix3D[theta,phi,psi] returns the orthogonal matrix required for perform­
ing an Euler rotation through Euler angles theta, phi and psi.

RotateShape [shape ,rotmat] multiplies all vectors in in the graphics object shape by the
rotation matrix rotmat.

Modelling with Mathematica 33
----=----------------------------

3.5 Throwing a Tennis Racquet

If a tennis racquet is thrown into the air with angular velocity in the plane of the racquet
but perpendicular to its shaft, the racquet seems to flip through half a revolution about
its shaft as it rotates through one revolution about its initial angular velocity axis. This
action is illustrated in a sequence of frames that can be viewed on a computer screen by
installing the appropriate file from the disk accompanying this thesis. In addition, with a
little practice it is easy to demonstrate the flipping action in real life. The action of the
tennis racquet has been studied by several researchers, see (Nevin and Jackson) 1911} and
(Ashbough et all 1991j.

To model this motion with the program described in the previous section, a simple box
model for the tennis racquet is created. If Box [a, b , c] represents a box centered at the
origin of a rectangular coordinate system xyz, with dimensions -a < x < a, -b < Y < b
and -c < z < c:

In[4]:= Box[a_,b_,c_] := Graphics3D[
{ Polygon[{ {a,b,c},{-a,b,c},{-a,-b,c},{a,-b,c} }],

Polygon[{ {-a,b,c},{-a,b,-c},{-a,-b,-c},{-a,-b,c} }],
Polygon[{ {a,b,-c},{-a,b,-c},{-a,-b,-c},{a,-b,-c} }],
Polygon[{ {a,b,c},{a,b,-c},{a,-b,-c},{a,-b,c} }],
Polygon[{ {a,b,c},{-a,b,c},{-a,b,-c},{a,b,-c} }],
Polygon[{ {a,-b,c},{-a,-b,c},{-a,-b,-c},{a,-b,-c} }] }]

then by shifting boxes around a Racquet [a, b , c] that combines a stick of length c with a
square, flat box of side a and thickness b can be created:

In[5]:= TranslateShape[shape_, vec_List] := Block[{tvec = N[vec]},
shape /. { poly:Polygon[_] :> Map[(tvec + #)&, poly, {2}],

line:Line[_] :> Map[(tvec + #)&, line, {2}],
point:Point[_] :> Map[(tvec + #)&, point,{1}] }

] /; Length[vec] == 3

In[6] := Graphics3DJoin[gr1_,gr2_]
Graphics3D[Join[First[gr1], First[gr2]]]

In[7]:= Racquet [a_,b_,c_] := Graphics3DJoin[
TranslateShape[Box[b,a,a],{O,O,-a}] ,
TranslateShape[Box[b,b,c],{O,O,c}]]

As an example the following command will produce the rotated tennis racquet shown in
figure 8.

:..:M:.:o:...:d:.:e:.:ll=in~g~w~i-=-:th:::......::.M..::.a..:..:-t..:..:-h_e_m_a_t_ic_a 34

Figure 8: A rotated tennis racquet.

In[8]:= Show[RotateShape[Racquet[1,O.1,1.5],RotationMatrix3D[Pi/6,Pi/6,Pi/6]]]

3.6 Moments of Inertia for a Tennis Racquet

Finding the principal moments of inertia of the racquet is more complicated. To simplify
matters, assume the masses of the two boxes making up the racquet are such that the center
of mass of the racquet occurs at the join of the shaft to the head. In this case, one can
use the parallel axis theorem [Synge and Griffith, 1959, 7.110} to show that if the function
BoxMoment s [m, a, b, c] returns the three principal moments of inertia of a box of mass m
and dimensions 2a by 2b by 2c, then the function RacquetMoments [m,a, b,c] will return
the three principal moments of inertia of an object of mass mand shape Racquet [a, b, c].

Modelling with Mathematica 35-----'==------------------------------

In[10]:= RacquetMoments[m_,a_,b_,c_] := Block[
{LeftMass, RightMass, LeftMoment, RightMoment},

LeftMass = m c / Ca + b);
RightMass = m a / Ca+b);
LeftMoment = BoxMoments[LeftMass,b,a,a];
RightMoment = BoxMoments[RightMass,b,b,c];
Return[{ LeftMoment[[l]] + LeftMass a-2 +

RightMoment[[l]] + RightMass c-2 ,
LeftMoment[[2]] + LeftMass a-2 +
RightMoment[[2]] + RightMass c-2 ,
LeftMoment[[3]] + RightMoment[[3]] }]]

Now all the pieces are in place to generate an animation of a tennis racquet rotating in
space under no external forces. The animation on the accompanying disk was generated
with the command

rn[ii]:= FreeFall[Racquet[1,O.1,1.5], RacquetMoments[1,1,O.1,1.5],
{O,3,O.1}, {O,4.8,24}]

Note that FreeFall produces animation frames and writes them to animation files as they
are generated without using the Mathematica command DisplayAn'imation. The reason
for this is that the author's Mathematica system does not have enough memory for holding
the entire Mathematica system and 25 racquet frames in memory all at one time.

The Multifiash concept does not work well with true three dimensional motion. The frames
interfere with one another and the result can be unintelligable. However, by chosing a few
frames from the animation sequence one can generate an impression of the racquet's flipping
motion. In figure 9 five frames from the animation are superimposed on one another.

:..:.M:.:o::....:d::..:e::::ll=in~g~w:...:i..:.:th=-=-M-=-a.::..t:..:h:...:e..::.:m=-a:......t_ic_a 36

Figure 9: Five frames from the animation sequence.

3.7 Conclusion

A complex mechanics problem has been modelled with the aid of Mathematica. The result
is a realistic animation of the process being modelled. The realisim of the animation assures
the modeler that the model is a good one. In the next section Mathematica is employed to
set up a laboratory for performing phase plane analysis of systems of ordinary differential
equations.

Modelling with Mathematica 37
---~-------------------------

4 A Phase-Plane-Plot Laboratory

This section presents a routine for animating phase-plane plots that vary as a parameter
in the governing differential equations varies.

Initially, a procedure for producing a phase-plane plot from a set of planar autonomous
differential equations, is investigated. Following that a parameter is allowed to vary in the
set of equations and the variation in the phase plots is animated as the parameter changes.

After presenting the animation routine some specific bifurcation problems will be discussed.
A standard text-book system is animated first and then a more exotic phase-plane bifur­
cation that occurs in a population dynamics model is tackled. Mathematica is used to find
the bifurcation point.

4.1 Generating a phase plot

First a recipe is given for producing a phase plot of a planar, autonomous system of ordinary
differential equations:

x

y

f(x,y)

g(x,y) (35)

The dependent variables are x and y and the independent variable is assumed to be time
and will be denoted by the letter t.

The recipe has been known for some time, [Kaplan) 1958} and in this exposition [Sacks)
1991} is followed. First equations 35 and a bounding box for the phase variables x and y
must be supplied. A list of stationary points of the system is then determined by solving
the equations

f(xs,Ys)
g(xs,ys)

o
o (36)

for (xs' Ys). Stationary points are fixed points of the system in that any solution that starts
at one of these points at time t = 0 stays at that point for all time. However solutions
that start near a stationary point can behave in a variety of different ways depending on
the classification of the stationary point. This classification is determined by linearising

Modelling with Mathematica 38-_-----.:::...-_-----------------------

the system in the neighbourhood of the stationary point. Expanding the right hand side
of equations 35 in a Taylor series about the stationary point (x s,Ys), results in:

x

y (37)

Dropping the higher order terms, making use of equations 36 and using a shorthand nota­
tion for the partial derivatives, the linearised system in vector notation is:

(38)

The matrix appearing in equation 38 is the Jacobian of the system and it is evaluated at
the stationary point, (x s, Ys). A particular solution to equations 38 is given by expressions
of the form:

x(t)
y(t) (39)

On substituting back into equation 38 and performing a little algebra the following situation
is obtained:

[Ix - A ~] [a] eAt = [Ix IY] [X s]
gx gy A f3 gx gy Ys

Now since the right hand side is independent of t, the only way that this identity can hold
for all t is if

[Ix - A ~] [a] = [0]
gx gy A f3 0

showing that [/J] and A must be an eigenvector, eigenvalue pair for the Jacobian. For

the planar system under discussion there are, in general, two possible eigenvalues with two

Modelling with Mathematica 39
--~~------------------------

corresponding independent eigenvectors and a general solution to the linearised system is
a linear combination of these particular solutions:

x(t)

y(t)
Cl 0:1 e

A1t + C20:2
eA2t

Cl (31 e
Al

t +C2(32 eA2t (40)

This general solution to the linearised problem can be classified according to the signs of
the real and imaginary parts of the eigenvalues,).1 and).2. Broadly speaking, if the real
parts of the eigenvalues are negative then the stationary point is an attraetor of any solution
trajectory, (x(t), y(t)), that passes close to the stationary point. If the real parts of the
eigenvalues are positive then the stationary point is a repellor. The classification procedure
is well documented and usually forms part of any under-graduate syllabus; further details
can be found in [Kaplan) 1958} and [Sacks) 1991j. For animation purposes stationary
points are classified into five major cases and one minor case:

Classification Real parts Imaginary parts

attracting node negative zero
attracting spiral negative non-zero
repelling node positive zero
repelling spiral positive non-zero
saddle opposite sign zero

center zero

The borderline center with zero real part is not really required since we will only be con­
cerned with animating a situation where one major case changes to another major case
passing momentarily through the borderline case. Mathematica is perfectly suited for the
classification problem. If Solve is used to generate a list of stationary points then the
Jacobian can be evaluated at the stationary points and the classification itself becomes a
series of If statements.

In[l]:= cpType[jac_] := Module[{el, e2},
{el, e2} = Eigenvalues[jac] II N;
If [Re [el] == 0 && Re [e2] == 0, " center",

StringJoin[

If [Re [el] < 0 && Re [e2] < 0," stable"," unstable"],
li[Im[el] != 0 && Im[e2] != 0, " spiral'l,

li[Re[e!] Re[e2] > 0, " node", 11 saddle"]]]]]

Modelling with Mathematica 40
=--::....::._----...::~-----------------------

In[2J:= ClassifyCP[rhs_, vars_J := Module[{jac = Outer[D, rhs, varsJ},
Map[Print[vars /. #, cpType[jac /. #JJ&,

Solve[rhs == {o, O}, varsJ J; J

To use ClassifyCP the functions appearing on the right hand side of equation 35 are
supplied in a list as the parameter rhs while the dependent variables are supplied in a list
as the variable vars. For example to classify the system {i: = y; y = -x - x 2 - y} just
enter the command:

In[3J:= ClassifyCP[{y, - x - x~2 - y}, {x, y}J

Out[3J= {-1, O} unstable saddle
{O, O} stable spiral

To obtain a phase plot a set of trajectories is calculated for each stationary point. The
stationary points and the trajectories are then plotted clipped to the bounding box of the
xy phase-plane. Mathematica's numerical integration routine, NDSolYe, is used to calculate
trajectories. Given a system of differential equations, an initial point in the phase-plane
and a time-span over which to integrate, the Mathematica code for generating a trajectory
is as follows:

In[4J:= trajectory[{xdot_, ydot_}, {x_, y_}" {{xo_, yO_}, tm_} J :=
Module[{sol, nSteps = 200, t, tmin, tmax} ,

sol = First[NDSolve[
{x'[tJ -- (xdot /. {x -) x[tJ, y -) y[tJ}),
y'[tJ == (ydot /. {x -) x[tJ, y -) y[tJ}),
x[OJ == xO,
y[OJ == yO}, {x, y}, {t, tm}JJ;

{tmin, tmax} = sol[[1,2,1JJ;
Line[Map [({x[#J, y[#J} /. sol)&,

Range [tmin, tmax - 0.001, (tmax - tmin)/nStepsJJJJ

The system of differential equations together with the initial condition and the time span
is passed to the Mathematica routine, NDSolYe, which returns interpolating functions for
the x and y components of the trajectory. The interpolating functions are evaluated at a
number of points to produce a graphical representation of the trajectory.

The set of trajectories chosen for sketching depends on the classification of the stationary­
point.

For a node four trajectories are sketched that start at t = 0 at points on an oval that
surrounds the stationary point. The x and y extents of this oval are defined by a vector,

Modelling with Mathematica 41
--_.:=-_------------------------

E, which is chosen to be some small fraction of the size of the bounding box. The four
starting points on the E oval are selected using the eigenvectors of the Jacobian matrix. The
coordinates of the trajectory are calculated by using the starting points as initial conditions
for equations 35 and numerically integrating from time t = 0 to some time t = tmax. If
the node is a repelling node then the trajectory is calculated by letting time run positively,
tmax > 0, while if the node is an attracting node then to see where the trajectory emanated
from time must run negatively, tmax < O.

For a spiral only two trajectories are sketched. The trajectories both start at the same
point on the E oval and time is allowed to run in both directions.

For a saddle a total of twelve trajectories need to be generated. The first four start at
points on the E oval pointed to by the eigenvectors of the J acobian matrix and time runs
positive or negative according to whether the corresponding eigenvalues are positive or
negative. The other eight trajectories start at four new points on the E oval which are
generated by taking all possible arithmetic combinations of the two eigenvectors. Eight
trajectories are generated by letting time run in both positive and negative directions from
these four starting points.

If the stationary-point is the borderline center then four trajectories are chosen at increasing
distances along the E vector.

In order to implement these ideas in Mathematica use is made of the following function
which scales a vector so that it points to a position on the E oval:

vec I Sqrt[Apply[Plus, (vec/eps)-2]]

Now given a Jacobian matrix and a small vector E the required pattern of trajectory starting
points is returned by the function initialPoints. Note that these initial points are simply
offsets from the stationary point in question.

In[6]:= initialPoints[jac_, eps_] :=
Module [{esys , lam1, lam2, v1, v2, t1, t2},

esys = Eigensystem[jac] II N;
{lam1, lam2} = First[esys];
li[Re[lam1] == ° && Re[lam2] == 0,

{ { eps, 1}, { 2 eps, 1}, { 4 eps, 1}, { 8 eps, 1} },
({v1, v2} = Map [scale [Re[#], eps]&, Last[esys]];

{t1, t2} = Map[Sign[Re[#]]&, {lam1, lam2}];
li[lm[lam1] != ° && lm[lam2] 1- 0,

{{v1, 10 t1}, {v1, -t2}},
li[Re[lam1] Re[lam2] > 0,

{{v1, t1}, {-v1, t1}, {v2, t1}, {-v2, t1}},
{ {v1, t1}, {-v1, t1}, {v2, t2}, {-v2, t2},

Modelling with Mathematica 42
--_....::::..-_--------------------------

{scale[vi + v2, eps], ti},
{scale[vi + v2, eps], t2},
{scale[vi - v2, eps], ti},
{scale[vi - v2, eps], t2},
{scale[- vi + v2, eps], ti},
{scale[- vi + v2, eps], t2},
{scale[- vi - v2, eps], ti},
{scale[- vi - v2, eps], t2} }]])]]

To produce a sketch of the phase-plane near the stationary point init ialPoints is used
to classify the stationary point and chose a set of initial points which must then be passed
to the integrating routine. This set of trajectories is called a cluster and can be generated
by mapping traj ectory onto initialPoints as follows:

In[7]:= clusterPlot[{xdot_, ydot_}, {x_, xmin_, xmax_},
{y_, ymin_, ymax_}, jac_, tmax_, eps_, {xc_, yc_}]

{ RGBColor[(xc - xmin)/(xmax - xmin), 0.5,
(yc - ymin)/(ymax - ymin)],
Map[trajectory[{xdot, ydot}, {x, y},

{{xc, yc} + First[#], tmax Last[#]}]&,
initialPoints[jac /. {x -) xc, y -) yc}, eps]] }

Finally a full phase-plane sketch consists of a number of cluster sketches so the function
clusterPlot must be mapped to all the stationary points in the bounding box. Before
the final phase plot is displayed some Dashing is introduced so as to indicate the direction
in which the trajectories are progressing.

In[8]:= PhasePlot[{xdot_, ydot_}, {x_, xmin_, xmax_},
{y_, ymin_, ymax_}, tmax_, options] .-

Module[{jac, eps, cp},
jac = Outer[D, {xdot, ydot}, {x, y}];
eps = {xmax - xmin, ymax - ymin} / 30.;
cp = Select[{x, y} /' Solve[{xdot == 0, ydot == O}, {x,y}],

Inner [Greater, #, {xmin, ymin}, And] &&
Inner[Less, #, {xmax, ymax}, And] &];

Show[Graphics[
{Dashing[{0.005,0.Oi,0.Oi0,0.Oi,0.Oi5,0.Oi,0.020,0.Oi}],

Map[clusterPlot[{xdot, ydot}, {x, xmin, xmax},
{y, ymin, ymax}, jac, tmax, eps, #]&, cp]},

PlotRange -) {{xmin, xmax}, {ymin, ymax}},
Axes -) True, Frame -) True, options]]]

Modelling with Mathematica 43
----=------------------------------'--

As an first example, PhasePlot IS used to sketch a phase-plane solution to Lienard's
equations, [Sacks} 1991].

x = y,
• 2Y = -x - x - y (41)

This system has a stable spiral at (0,0) and a saddle point at (-1,0). These features which
are shown in figure 10 are easily generated using the command:

In[9]:= PhasePlot[{y,-x-x-2-y}, {x,-2,2}, {y,-2,2}, 6,
PlotLabel -) "Lienard's system", FrameLabel -) {"x","y"}]}

1.5

1

0.5

-0.5

-1

-1. 5

•
\
\
\
•,
\
\

•
.......... ",'

.............. _--""

x

Figure 10: Lienard's system

Modelling with Mathematica 44
---=-----------------------------

Although not guaranteed, PhasePlot will often bring to light any limit cycles inherent in
the system. Consider a standard van der Pol system, [Kaplan) 1958}:

x = y, . 1(2)y=-l-x y-x
2

(42)

This system has an unstable spiral at the origin which is surrounded by a stable limit cycle
as shown in figure 11. The Mathematica command for producing this phase-plot is:

In[10]:= phasePlot[{y, 0.5 (1 - x-2) y - x}, {x,-3,3}, {y,-3,3}, 20,
PlotLabel -) fl van der Pol' s system", FrameLabel -) {"x", fly"}]

van der Pal's system

2

1

>,0l--------IT----+-----r-~-+---_+----+_l_---___l

-1

-2

x

Figure 11: Van der Pol's system

Modelling with Mathematica 45
---~-------------------------

4.2 Animating phase plots

In this section a single parameter, k, is introduced into the governing differential equations.

x

y

f(x,y,k)
g(x,y,k) (43)

As the parameter varies over a fixed real interval the nature of the phase plot can vary.
The stationary points may move in the phase plane and the classification of the stationary
points may change. Mathematica can be used to animate this change by using phasePlot
to generate each frame of the animation as the parameter varies:

In[11]:= PhasePlotAnimation[eqns_, xrange_, yrange_, t_,
{k_, kmin_, kmax_}, noFrames_, options]

Map[PhasePlot[eqns /. k -) #, xrange, yrange, t,
PlotLabel -) StringJoin[

ToString[k], 11 = 11, ToString[N[#,3]]], options]&,

Range [kmin, kmax, (kmax - kmin)/(noFrames - 1)]]

phasePlotAnimation returns a list of Graphics objects. The actual animation is viewed
by passing this list to the standard Mathematica routine, DisplayAnimation.

As an example a parameter is introduced into van der Pol's equations:

x = y, (44)

and the frames shown in figure 12 can be produced by varying the parameter, k, over the
interval (0.1,9.0).

In[12]:= PhasePlotAnimation[{ y, k(l - x~2)y - x}, {x,y},
{{-5,5}, {-15,15}}, 50, k, {0.1,9.0}, 28,
Ticks -) None, FrameTicks -) None,
PlotRegion -) {{0,0.3},{O,0.3}}]

When the frames are used in an animation sequence a deformation of the limit cycle with
increasing k is observed. The frames show a change of classification for the stationary
point at (0,0) as the parameter passes through the value k = 2. The classification changes
from a repelling spiral to a repelling node. This is called a bifurcation of the system. This
bifurcation is not very interesting as the limit cycle exists before and after the bifurcation.
In the next section a more interesting bifurcation will be animated.

Modelling with Mathematica 46

k = 0.1 k • 0.43 k 0.759 k 1.09

--- .:::::.:::---1"'--

k 1.42 k = 1 75 k 2.08 k 2.41

k 2.74 k • 3.07 k = 3.4 k = 3.73

~:::::::v..:.::-.;..

k 4.71 k 5.04k = 4.39

/.~,.--.. '.

~V'--,,'

k = 5.7 k 6.03 k 6.36

k 4.06

k 5.37

/.~.........,
~v""-

Figure 12: Animation frames for Van der Pol's system

Modelling with Mathematica 47
---='---------------------------

4.3 Bifurcation analysis

A more interesting bifurcation occurs when the classification changes from attracting spiral
to repelling spiral and visa-versa. In these cases a limit cycle can appear or disappear as
the parameter passes through the bifurcation point. This phenomenon is called Hopf
bifurcation, see [Marsden and McCracken! 1976} for a full description.

In a recent paper, [Swart! 1994}, the well known autonomous planar model of [Caughley!
1976} was used to study limit cycle behaviour in an elephant-tree ecology of the Tuli Block
game park in northern Botswana. The governing equations are

x

y

cy
x(a - bx -)

x+m
hx

y(-k+ -)
y+n

(45)

where x is the density of the trees, y is the density of the elephants, a is the natural rate
of increase of the trees, b is the degree to which addition of a further unit of tree density
depresses the rate of increase of trees, c is the rate of elimination of trees per elephant, m
is a threshold density of trees, k is the rate of decrease of elephants in the absence of trees,
h is the rate at which elephant decrease is ameliorated at a given ratio of trees to elephants
and n is the threshold density of elephants.

Based on observed data from the Tuli Block and other parks in Southern Africa estimates
for all the parameters, apart from k, were derived in [Swart! 1994}, and [Swart and Duffy!
1981]. These parameter estimates are:

In [13J := params = { a -) 0.04,
b -) 0.000004,
c -) 240,
h -) 0.000002,
m -) 1000,
n -) 0.1 }

The system governed by equations 45, with parameters indicated above, can exhibit a limit
cycle behavior. For example adding k -) 0.01 to the list of parameters and issuing the
Mathematica commands:

~M~o::d~e~ll~in~g~w~it~h::.-M.:...:..::.::a::..::.t::.he=m==at.::..::i..::..ca=- 48

In[14]:= xdot = x(a - b x - c y / (x + m)); ydot = y(- k + h x / (y + n));

In[15]:= phasePlot[{xdot,ydot} /. params /. k -> 0.01,
{x,-500,12000}, {y,-0.05,1.0}, 500,
PlotLabel -> IICompeting Species ll

,

FrameLabel -> {IITrees ll
, 11Elephants ll

}]

results in the phase-plot shown in figure 13.

0.8

0.6

0.2

....... ----
o 2000 4000 6000

Trees

8000 10000 12000

Figure 13: An elephant/tree competing species system (k=O.01)

In [Swart) 1994} it is shown that the remaining parameter, k has a Hopf bifurcation point,
ko, one side of which, k > ko, the elephant-tree system tends to a positive stable equilibrium
point and the otherside of which, k < ko, the elephant-tree system approaches a stable limit
cycle.

Large limit cycles are undesirable in game parks. The reason for this is that when the
system follows a large limit cycle there will be a period in which the trees have been
devastated by the elephants and the elephants are in the process of dying out. This
devastation can cause tourism to drop dramatically.

The problem is solved by controlled culling by the game park managers. The question is
how much culling is required? In this section Mathematica is used to find the bifurcation

Modelling with Mathematica 49
~-~=---------------------------

point ko and an animation of the phase plots on both sides of ko is produced. This will
allow game park managers to select a desirable value of k that will suit their tourism
requirements.

The first task is to find the stationary point of interest in equations 14:

In[16]:= xdot = x(a - b x - c y / (x + m));

In[1?]:= ydot = ye - k + h x / (y + n));

In[18]:= sPs = Solver {Numerator[Together[xdot]] -- a ,
Numerator[Together[ydot]] -- a}, {x,y}];

This results in 6 possible stationary points, the fifth one of which is in the positive quadrant.

In[19]:= sP = sPs[[5]]

Out[19]= { x -) (a/b - (c h)/(b k) - m +

(c~2 h~2 - 2 a c h k + a~2 k~2 + 2 b c h k m +

2 a b k~2 m + b-2 k~2 m~2 + 4 b c k~2 n)~(1/2)/(b k))/2,
y -) (-«c h~2)/(b k~2)) + (a h)/(b k) - (h m)/k - 2 n +

(h (c~2 h~2 - 2 a c h k + a~2 k~2 + 2 b c h k m +
2 a b k~2 m + b~2 k~2 m~2 + 4 b c k-2 n)-(1/2))/(b k-2))/2 }

The bifurcation point occurs when the eigenvalues of the Jacobian are purely imaginary.
It is easy to show that the real part of the eigenvalues is given by half the trace of the
Jacobian. So first the Jacobian is calculated in the usual manner:

In[2a]:= jac = { {D[xdot,x], D[xdot,y]}, {D[ydot,x], D[ydot,y]}}

Out[2a]= {{a - b x - (c y)/(m + x) + x (-b + (c y)/(m + x)-2),
-(Cc x)/(m + x))},

(Ch y)/(n + y),
-k - (h x y)/(n + y)-2 + (h x)/(n + y)}}

Then the value of k that makes the trace of the Jacobian zero must be calculated. So the
numerator of the trace of the Jacobian is calculated and this results in a large expression
in k.

In[21]:= tr = Numerator [Together [(jac[[1,1]]+jac[[2,2]]) /. sP /. params]]

Modelling with Mathematica 50
-----'=-----------------------------

Out[21]= - 6.09322314049587 10--9 + 1.650247933884298 10--6 k ­
0.0001844892561983471 k A 2 + 0.00893355371900827 k-3 -
0.07860422405876961 k-4 - 5.568411386593205 k-5 + 24.42607897153352 k-6 +

0.00001269421487603306 (2.304 10--7 - 0.00003456 k + 0.00232 k-2)-(1/2) ­
0.002485950413223141 k (2.304 10--7 - 0.00003456 k + 0.00232 k-2)-(1/2) +

0.1696969696969698 k-2 (2.304 10--7 - 0.00003456 k + 0.00232 k-2)-(1/2) ­
2.475665748393024 k-3 (2.304 10--7 - 0.00003456 k + 0.00232 k-2)-(1/2) ­
112.0293847566575 k-4 (2.304 10--7 - 0.00003456 k + 0.00232 k-2)-(1/2) +

505.0505050505051 k-5 (2.304 10--7 - 0.00003456 k + 0.00232 k-2)-(1/2)

Now, with some luck, Mathematica will be able to find roots for this expression:

In[22]:= bfs = Solve[tr == O,k]

Out[22]= { {k -) -0.0843747900405854},
{k -) -0.05037192275632139},
{k -) -0.02000000000005608},
{k -) -0.00002917829285930187},
{k -) -0.00002749310579020291 - 0.00002949113462372171 I},
{k -) -0.00002749310579020291 + 0.00002949113462372171 I},
{k -) 0.00001840773511470339 - 0.0000420908681419152 I},
{k -) 0.00001840773511470339 + 0.0000420908681419152 I},
{k -) 0.0000473490342615325},
{k -) 0.01068432534785173},
{k -) 0.04782303038308367},
{k -) 0.2362393570659732} }

For physical reasons the bifurcation point must be real and positive. The last four are
candidates that fit these requirements. To select the required bifurcation point for k, the
stationary point is evaluated using each candidate. It turns out that only the 10th candidate
produces a suitable stationary point.

In[23]:= sP /. params /. bfs[[10]]

Out[23]= { x -) 3036.98191405709, Y -) 0.4684929680033993 }

In[24]:= kO = k /. bfs[[10]]

Out [24] = 0.01068432534785173

Finally the limit cycle animation is produced by letting k vary about ko by 10% in either
direction. The required parameters for PhasePlotAnimation are:

Modelling with Mathematica 51
--_....::....-_--------------------------

In[25]:= klnt = {k, 0.5 kO, 1.5 kO};

In[26]:= PhasePlotAnimation[{xdot,ydot} /. params,
{x,-500,12000}, {y,-0.05,1.0}}, 500, klnt, 28,
Ticks -> None, FrameTicks -> None,
PlotRegion -> {{0,0.3},{0,0.3}}]

The animation frames are shown in figure 14. It is evident from the animation frames
that the limit cycle is most prominent in frame k=O. 0104, while in frame k=O. 0108, the
limit cycle has vanished indicating that a Hopf bifurcation has taken place. The animations
produced in this section are stored on the stiffy disk attached to the thesis. The instructions
for viewing the animations are given in the appendix.

Modelling with Mathematica 52

k = 0.00648k .. 0.00609k .. 0.00569k = 0.0053

k .. 0.00805k .. 0.00766k = 0.00726k = 0.00687

k ~ 0.00844 k .. 0.00883 k .. 0.00923 k .. 0.00962

k = 0.01 k = 0.0104
'.

k ",,·0.0108

k .. 0.012 k .. 0.0124 k .. 0.0128

k .. 0.0132 k = 0.0135 k .. 0.0139 k .. 0.'0143

k .. 0.0147 k .. 0.0151 k .. 0.0155 k .. 0.0159

............__
/'·t~

l ~.. \'\.....::-' > \.
" 'lo.,/ 1'.\

,..-...-.-~...- ~\;.

Figure 14: Animation frames fOf the Elephant/Tree system

Modelling with Mathematica 53
---=-----------------------------

4.4 Conclusion

There have been many attempts at programs that produce phase-plane plots of one pa­
rameter planar systems. The author has had experience using a program called PHASER,
see [Kocak) 1986]. However, with PHASER, initial conditions for trajectories have to be
found by trial and error or hand calculation on the part of the experimentor. In other
words PHASER is just an integration machine with no built-in analytical skills.

The state of the art in intelligent analysis of planar systems is probably a program called
POINCARE described in [Sacks) 1991]. Sacks claims that POINCARE combines the­
oretical knowledge about differential equations with numeric, symbolic, geometric and
probabilistic reasoning.

In this section animation was introduced as a powerful visualization tool for one parameter
planar systems. Although the analysis performed does not compete with existing state of
the art programs, it has been demonstrated that Mathematica could provide a platform
on which to develop such a rival. In the next section Mathematica is used to build a
tomography laboratory.

Modelling with Mathematica 54--_::::...-_------------------------

5 A Tomography Laboratory

5.1 The Tomography Problem

The tomography problem is to reconstruct a two dimensional image f(x, y) from a set
of projections of the image at various angles in the interval [0,271-]. A projection po(t) is
a function of one variable generated by calculating line integrals of f(x, y) along parallel
lines. The geometry is given in figure 15.

t

t

---t---"-..;....;:...:'-:::1tf----~~-x

Figure 15: Projection Geometry.

Consideration of figure 15 yields the following mathematical descriptio~ of a projection:

po(t) =1: f(x(s, t), y(s, t))ds =1: f(t cos 0 - s sin 0, s cos 0 +t sin O)ds (46)

Assuming that the image, f(x,y), lies inside the unit circle a tomography algorithm takes

Modelling with Mathematica 55
--_.:::....---------------------------

a set of projection data, {P ..ilr-J 2j~~;I)) h,j=O..n-l, as input and produces a reconstructed
n-l

image, j (x, y), as output. As the resolution, n, increases j should approach f. If continuous
data is available the tomography algorithm should reconstruct f exactly.

A common method for testing tomography algorithms is to construct artificial images by
overlaying ellipses of different brightnesses. The reason for using ellipses is that, as will
be shown shortly, the projection through an ellipse can be calculated exactly. Thus a test
image with exact projection data can be constructed by a simple algorithm and expensive
scanning equipment is not required.

5.2 A Projection through an Ellipse

Given an ellipse with major axis of length 2A along the x axis and minor axis of length
2B along the y axis and center at the origin:

(47)

consider an image f (x, y), of brightness A, if (x, y) is inside the ellipse, and brightness 0,
if (x, y) is outside the ellipse. Consideration of figure 15 yields the following formula for a
projection through such a centred ellipse:

(48)

where SI and S2 are the s components of the intersections of the t'th projection with the
edges of the ellipse. Calculating the (x, y) coordinates of the points (t, SI) and (t, S2) and
substituting them into equation 47 for the ellipse and solving for SI - S2 yields:

(49)

where

(50)

Modelling with Mathematica 56
--_::::....-_------------------------

and thus the projection through an ellipse can be calculated exactly for any projection
angle (). Now consider an ellipse that is rotated about the origin through an angle a and
the translated to a point (Xl, YI) on the xy plane. A projection pi?(t) through such a
rotated and translated ellipse is given by

(51)

where 8 = Xl cos () +YI sin (). Using this result it is possible to construct a variety of images
by superimposing ellipses of various shades of grey and calculate exactly the projection
through such an image at any projection angle (). The reason for this is that the projection
operation is linear and to obtain a projection of superimposed ellipses one superimposes
projections.

5.3 A test Phantom and its Shadow

Shepp and Logan in [Shepp and Logan! 1914} were the first to use these ideas for testing
tomography algorithms. The data for their test image, or phantom as they called it, is
published in [Kak and Slaney! 1988} and is used in the Mathematica tomography laboratory
to generate a test image by superimposing ellipses. Each ellipse in the phantom is specified
by giving the center coordinates of the ellipse, the length of the semi-major axis, the length
of the semi-minor axis, the orientation of the ellipse and a grey-scale value for the brightness
of the ellipse.

In [1] := res=128;

In[2]:= ellipse[{c_,a_,b_,r_,g_}] := Module[{px, py},
px=N[{Cos[r Degree],Sin[r Degree]}];
py=N[{-Sin[r Degree],Cos[r Degree]}];
Table [

Ii[N[(((#-c).px)-2/a-2 + ((#-c).py)-2/b-2)]&[{x,y}] < 1,g,0],
{y,-1,1,2/(res-l)}, {x,-1,1,2/(res-l)}]]

In[3]:= SheppLoganData = { { {O,O}, 0.92,
{{0,-0.0184}, 0.874,
{ {0.22,0}, 0.31,
{ {-0.22,0}, 0.41,
{ {0,0.35}, 0.25,
{ {0,0.1}, 0.046,
{ {0,-0.1}, 0.046,
{ {-0.08,-0.605},0.046,
{ {0.06,-0.605}, 0.046,

0.69,
0.6624,
0.11 ,
0.16,
0.21,
0.046,
0.046,
0.023,
0.023,

90,
90,
72,

108,
90,
0,
0,
0,

90,

2 },
-0.9},
-O.n,
-o.n,
0.3},
0.3},
0.3},
0.3},
0.3},

Modelling with Mathematica 57
:.=..:...:..:....:..:~~------------------------

{ {0,-0.60S}, 0.023, 0.023, 0, 0.3}}

In [4] := SheppLoganImage = Apply[Plus,Map[ellipse, SheppLoganData]]

The function ellipse [{c, a, b, r ,g}] generates an image with pixel value g inside the
ellipse and pixel value 0 outside. The Shepp-Logan phantom is generated by mapping
ellipse onto the Shepp-Logan data and superimposing the resulting images. Mathematica
supplies a function for viewing images called ListDensityPlot which can be adapted to
view the Shepp-Logan phantom shown in figure 16.

In[S] := ShowImage[image_] := ListDensityPlot[image,Mesh->False]

In[6]:= ShowImage[SheppLoganImage]

Figure 16: Shepp-Logan phantom, generated by superimposing ellipses.

To obtain a projection through an ellipse centred at the origin with major axis in the x
direction, equation 49 must be implemented in Mathematica.

In[7]:= project[{a_,b_,g_},th_,t_] := Module[{asq},
asq = N[a~2 Cos[th]~2 + b~2 Sin[th]~2];

If[N[t~2] > asq,O.0,N[2 gab Sqrt[asq-t~2] / asq]]]

A shadow of a re-orientated translated ellipse can now be generated by implementing
equation 51 in Mathematica and projecting the ellipse at discrete angles {i re:-l h=O..res-l'

Each projection is sampled res times and the projections are stored as rows in the shadow
image. Since the projection operation is linear a projection of the Shepp-Logan phantom
is generated by superimposing shadows cast by each ellipse in the Shepp-Logan data set.

~M.:..o=--d=-e:..::ll::.:..in::.:..g~w_i_th_M_at_h_e_m_a_t_ic_a 58

In[8]:= ellipseShadow[{c_,a_,b_,r_,g_}] := Module[{shift},
shift = c[[1]] Cos[th] + c[[2]] Sin[th];
Table[project[{a,b,g},th - r Degree, t - shift] ,

{th,O,Pi,Pi/(res-1)},{t,-1,1,2/(res-1)}]]

In[9] := SheppLoganShadow = Apply[Plus,Map[ellipseShadow, SheppLoganData]]

In[10]:= ShowImage[SheppLoganShadow]

The resulting Shepp-Logan shadow image is shown in figure 17.

Figure 17: Shepp-Logan shadow, generated by superimposing ellipse shadows.

The task at hand is to reconstruct the Shepp-Logan phantom from the phantom's shadow.

5.4 The Projection-Slice Theorem

Most successful reconstruction algorithms are based on the fact that the Fourier transform
Pe(w), of a projection po(t) through an image f(x,y), is equal to the two dimensional
Fourier transform of the image F(u,v), evaluated along the polar line (wcosO,wsinO).

This fact is known as the Projection-Slice theorem, and can be found in any tomography
text, see for example [Kak and Slaney, 1988]. To verify the theorem start with the two
dimensional forward Fourier transform:

(52)

:.:M:.:o:..::d:.::e::.:ll::.:in~g::.......:..:w-=-it=h=--M::..:..::..:.a:..:.th=-e.::..::m=..::..:.at.::..::i...:..ca 59

and then express the Fourier transform of a projection in a similar manner. First the
Fourier transform of a projection is given by:

then using the definition of a projection from equation 46 one obtains:

Pe(w) = I:I: f(t cos () - s sin (), s cos () + t sin ())e-j21rwtdsdt.

(53)

(54)

Now make the substitution x = t cos () - s sin (), y = t sin () +s cos () which has unit Jacobian
to get

Pe(w) = I: I: f(x,y)e-j 21r(xwcos8+ywsine)dxdy.

Comparing equation 55 with equation 52 yields the projection-slice theorem:

Pe(w) = F(wcos(),wsin()).

(55)

(56)

The projection-slice theorem in this form is seldom used for reconstruction algorithms since
when discrete data is available F(u, v) can only be calculated on a polar grid, along the
slices, and a 2D interpolation onto a rectangular grid is required before the Fourier inversion
of F(u, v) can be attempted. Next, the well-known filtered-back-projection algorithm is
examined and it is this algorithm that is implemented in the Tomography Laboratory.

5.5 The Filtered-Back-Projection algorithm

The filtered-back-projection algorithm requires only ID interpolation and is the most com­
monly used reconstruction algorithm in commercial tomography machines. A good de­
scription of the algorithm can be found in {I<ak and Slaney! 1988} but for completeness the
derivation of the algorithm is repeated here since a firm grasp of the principles involved is
essential to the proper understanding of the tomography laboratory. This time start with
the two dimensional inverse Fourier transform:

~M~o~d:..:....e:..=.ll:..:....in.....:g=--w_it_h_M_a_t_h_em_a_ti_ca 60

f(x,y) = 1:1: F(u,v)ej21r(UX+VY)dudv (57)

then switch to polar co-ordinates by means of the transformation u = w cos (), v = w sin ()
which has Jacobian, w.

(58)

Now instead of integrating the half-ray around a circle the same result can be achieved by
integrating a full-ray around a semi-circle. A little manipulation of integration limits then
yields:

f(x, y) = r 100 II wllF(w cos (), w sin ())e j21rW(X cos O+y sin O)dwd()
la -00

(59)

Now use the projection-slice theorem, equation 56, to get the filtered-back-projection algo­
rithm:

f (x, y) = l 1r i: IIw 11 Po (w) ej21rw(x cos lJ+y sin B) dwd() (60)

To see that equation 60 is indeed a filtered-back-projection, implement it in two stages:

1 Filter the projections po(t) using the so-calledl ramp filter IIwll to generate filtered
projections P'B(t).

(61)

2 The filtered projections are then smeared back accross the image to build up f(x, y)
according to:

f(x,y) = l 1r

po(xcos()+ysin())d() (62)

The filter in stage 1 is usually done by means of standard Fourier filtering techniques while
the back-projection in stage 2 is implemented using a numerical integration technique. To
evaluate the integrand in stage 2 one dimensional interpolation is required. In the next
section Mathematica will be employed to perform the filtering operation in stage 1.

Modelling with Mathematica 61
----=---------------------------

5.6 Discretizing the Ramp Filter

Stage 1 of the filtered-back-projection algorithm is a continuous ramp filter. This filtering
process must be discretized in order to construct an implementable filtering algorithm.
The discretization of the ramp filter is attained via the Fourier sampling theorem. Assume
that the projections are band-limited with band-width W, (Po(w) = 0 whenever IIwll > W),
where W depends on the sampling size T. If T < 2~ then the sampling theorem reads:

() _ ~ (k)sin27rW(t - kT)
Po t - kf:::oo Po T 27l"W(t - kT) (63)

Using this representation for a projection the ramp filter in equation 61 can be rewritten
as:

Pe(t) = f: PO(kT)jW IIwll [joo Sin27l"W~t'-kT)e-j27rW'tdt'] ej27rwt dw (64)
k=-oo -w -00 27l"W(t -kT)

The inner integral in the above equation is just the Fourier transform of a sine function
which is well known and documented in most tables, see for example (Gradshteyn and
Ryzhik) 1980j. In our case the inner integral reduces to Te-j27rwkT and the filtered projec­
tions can now be expressed as:

00 W

Pe(t) = T k~OO PO(kT) Lw II w ll cos(27l"w(kT - t))dw (65)

since only the even part survives integration over the interval [-w, W]. Continuing with
the discretization process, it is desirable to generate sample points of the filtered projections
p(j(t). Thus we set t = nT in the previous equation to get:

00 W
Pe(nT) = T L PO(kT) j IIw ll cOS(27l"WT(k - n))dwk=-oo -w

00 W
= Tpo(nT)W2+2T L Po(kT)1 wCOS(27l"WT(k - n))dw

k=-oo,k,!-n 0

= ~ [~po(nT) - f: PO(kT)]
T 4 k=-oo,k,!-n,(k-n)odd 7r

2
(k - n)2

(66)

Modelling with Mathematica 62
-_--'::~-----------------------

From this result it is evident that apart from the constant ~, the filtered projection data,
{Pe(n)}~=-oo, can be obtained by convolving the projection data, {po(k)}~_oo,with the
impulse response, {h(n)}~=_oo' where h(n) is given by:

5.7 Implementation

h(n) = {

1
4
o
-1

n 21r2

zero(n),
even(n),
odd(n)

(67)

To perform the convolution required by equation 66 in Mathematica create a finite-length
filter centred at res/2.

In[ll]:= h[n_] := If [n==O, N[1/4], If [OddQ[n], -N[1/(n-2 Pi-2)], 0]]

In[12]:= RampFilter = Table[h[i-(res/2)],{i,1,res}]

A pictorial representation of the ramp filter can be obtained by using ListPlot to display
some central values of the filter. The result is shown in figure 18.

In[13]:= ShowFilter[v_] := ListPlot[Table[{i-(Length[v]/2),v[[i]]},
{i, Length[v]/2-10, Length[v]/2+10}],
PlotRange->All, PlotJoined->True];

In[14]:= ShowFilter[RampFilter]

The convolution of a projection vector with this ramp filter is performed with Mathemat­
ica's fast Fourier transform by zero-padding the projection vector and multiplying in the
frequency domain.

In[15] := Ramp = N[Sqrt[2 res] Fourier[
RotateRight[Join[RampFilter, Table[O,{res}]], -(res/2-1)]]];

In[16]:= FastRampFilter[v_,ramp_] := (res/2) Take[Chop[InverseFourier[
Fourier[Join[v, Table[O,{res}]]] * ramp]], res];

The first stage of the reconstruction process is the attained by filtering all the projections
in the shadow image:

~M~o~d:::..::e::::.:ll:.::.::in::::!:g::.......:..:.w.:..:it=h:....:M:...:...:...::a:..::..th:.:.e::.:m=.::::.at=i...:...ca:...:....- 63

0.25

0.2

0.15

o.

o.

- .1

Figure 18: The ramp filter.

In[17]:= SheppLoganFilteredShadow = Map[FastRampFilter,SheppLoganShadow]

In[18] := Showlmage[SheppLoganFilteredShadow]

The result of the first stage is shown in figure 19.

Figure 19: Shepp-Logan filtered shadow, generated via the ramp filter.

The second stage of the reconstruction is performed according to equation 62 by summing
contributions from each filtered projection to build up the grey-scale value of the (x, y)
pixel in question. One dimensional interpolation is required to calculate an approximation
to Pe at the point x cos e+ ysin e.

:..:M=-o::....:d::..:e:..::::ll=in::::'g'::.-.:.w....:..i...:..:th M_a_t_h_e_m_a_t_ic_a 64

In[19] := InterpolatedFilteredShadow =
Map [Interpolation, SheppLoganFilteredShadow]

In[20]:= backProject[fs_,x_,y_] := If[N[x~2+y~2] > 1, 0,
N[Pi/res] Sum[fs[[i]] [N[l + (1 + x Cos[(i-l) Pi/(res-l)] +

y Sin[(i-l) Pi/(res-l)]) ((res-l)/2)]], {i,l,res}]]

The final reconstructed image is produced by reconstructing every pixel in the original
Image:

In[21] := SheppLoganReconstruction = Table[
backProject[InterpolatedFilteredShadow,N[x] ,N[y]],

{y,-1,1,2/(res-l)},{x,-1,1,2/(res-l)}]

In [22] := Showlmage[SheppLoganReconstruction]

The resulting reconstruction is shown in figure 20.

Figure 20: Shepp-Logan reconstruction, generated by back projecting filtered shadows.

5.8 Conclusion

This completes the construction of the tomography laboratory. In the next section wavelet
theory is introduced and a new ramp filter for tomography reconstruction is developed.

Modelling with Mathematica 65
----=-----------------------------

6 Ramp Filters in a Wavelet setting

6.1 A new tool for Signal Processing

During the last ten years there has been an explosion of papers dealing with wavelet theory.
The topic originated with ideas from engineering concerning subband coding and quadrature
mirror filters and really got going with the discovery by Ingrid Daubechies, [Daubechies,
1988}, of an orthogonal basis for L 2 (R) whose elements, called wavelets, have finite support.
A complete description of wavelet theory can be found in Ingrid Daubechies's book, Ten
Lectures on Wavelets, [Daubechies, 1992].

Wavelets have found application in many areas of signal processing. Whenever there is
solution to a signal processing problem that involves Fourier methods, there should be a
role for wavelets to play. In this section a new ramp filter is constructed using ideas from
wavelet theory. The technique follows the method of Beylkin, Coifman and Rokhlin for
representing operators in bases of compactly supported wavelets, see [Beylkin, 1992]. For
a complete functional analysis treatment of how the subject grew out of the Calderon~

Zygmund program to its present-day state, read the book [Meyer, 1992]. The new ramp
filter will be tested for tomography purposes using the Mathematica tomography laboratory
of the previous section.

6.2 The Scaling Function and its associated Wavelet

To construct a wavelet basis for L 2 (R) start by looking for a scaling function <p which is a
solution to the scaling equation:

£-1

c/J(x) = V2L hk c/J(2x - k)
k=O

(68)

In [Daubechies, 1988} it is shown that if the coefficients hk in equation 68 are chosen to
satisfy certain conditions then the translates, {c/J(2i x - k)}~-oo form an orthogonal set
of spanning functions and a Riesz basis for a space Vi such that Vi C Vi+! and such that
U~-oo Vi is dense in L 2 (r). The result only holds if L is even and the conditions that the
coefficients must satisfy are:

L-l L
L hk hk+2s = 8(s) , s = 0, 1 ... -2 - 1
k=o

Modelling with Mathematica 66
--_:=..---------------------------

L-1

I: kS (-l)khL _ k = 0
k=O

L
, s = 0,1"""2 - 1 (69)

The first set of conditions in equations 69 ensure that cP is orthogonal to its translates while
the second set of conditions ensure that the wavelet function 'IjJ defined by:

L-1

'IjJ(x) = V2I:(-1/hL - k cP(2x - k)
k=O

(70)

has translates {'IjJ(2 j x - k)}~-oo spanning a space W j which is the orthogonal complement
of Vj in Vj+l' Equations 69 form a non-linear system from which to determine the L
coefficients hk .

6.3 Calculating the coefficients of the Scaling Function

For L = 4 and L = 6 the scaling function coefficients can be computed quite easily using
Mathematica. For L = 4 the required implementation of equations 69 is as follows:

In[1] := n = 2;

In[2] := L = 2 n;

In[3]:= H = Table[Unique[h],{L}];

In[4]:= G = Reverse[H] Table[(-1)-i,{i,O,L-1}];

In[5] := rotateRightAndZeroFill[vec_,k_] :=
RotateRight[vec,k] Join[Table[O,{k}] , Table[1,{Length[vec]-k}]];

In[6]:= CondPhi = Table[
H . rotateRightAndZeroFill[H,2k] -- If[k==O,1,O] , {k,O,n-1}];

In[7] := CondPsi = Join[
{ Apply[Plus,G] == °} ,
Table[G . Table[i-k,{i,O,L-1}] == ° , {k,1,n-1}]];

In[8]:= h4 = N[H /. Solve [Join[CondPhi, CondPsi], H] [[1]]]

Out[8]= {0.48296, 0.83651, 0.22414, -0.12940}

Modelling with Mathematica 67
-----=-----------------------------

These coefficients compare favourably with those published in [DaubechiesJ 1992]. Unfortu­
nately this method cannot be used to compute scaling coefficients when L > 8. Mathemat­
ica Js non-linear solver cannot cope with the resulting system of equations in a reasonable
time span. Daubechies resorted to numerical techniques to obtain scaling coefficients for
large L. We will require coefficients for L = 12 to derive a wavelet based ramp filter and
for this purpose the coefficients for L = 12 have been lifted from [Daubechies J 1992].

In[9]:= h12 = { 0.1115407433501095,
0.4946238903984533,
0.7511339080210959,
0.3152503517091982,

-0.2262646939654400,
-0.1297668675672625,
0.0975016055873225,
0.0275228655303053,

-0.0315820393174862,
0.0005538422011614,
0.0047772575109455,

-0.0010773010853085 }

6.4 Viewing a Scaling Function

What does a scaling function look like? Does a scaling function with compact support
exist? The first step in the computation of a scaling function is to assume that its support
lies within the interval [0, L] and that 4>(0) = 4>(L) = O. and then determine its value
at the rest of the integers in the [0, L] interval by examining the scaling equation 68 at
these integers. The result of all this is that to obtain 4> at the integers one must solve an
eigenvalue system of the form:

hI ha 0 0 0 0 0 4>(1) 4>(1)
h3 h2 hI ha 0 0 0 4>(2) 4>(2)

(71)
0 0 0 hL - I hL - 2 hL - 3 hL - 4 4>(L - 3) 4>(L - 3)
0 0 0 0 0 hL - I hL - 2 4>(L - 2) 4>(L - 2)

Mathematica has a built in function Eigensystem [..] that delivers the required eigenvec-
tor quite simply:

In[10]:= mat[h_] := Module[

{rov=Join[Reverse[h Sqrt[2]],Table[0,{Length[h]-2}]]},

::M::o::..::d::..::e:::ll::.:in~g~w-=-it:.:h=--M:.:..:..::a:..:.th::.e.:..:m:.:..:.:.at.:..:i..:..ca.:..:..- 68

Figure 21: Scaling functions for h4 and h12.

Table[Take[RotateRight[row,2i],-(Length[h]-2)] ,
{i,1,Length[h]-2}]];

In[11]:= Phi[x_ /; lntegerQ[x], h_] = If[x <= 0 I I x >= Length[h]-1, 0,
Module[{intval=Eigensystem[mat[h]] [[2,1]]},

intval[[x]] Sign[intval[[1]]]]];

The scaling equation 68 is again used to compute <p at dyadic points. The recursion
terminates when a value of <p at at an integer is required. Note that due to the recursive
nature of the scaling equation intermediate results are saved using Mathematica '8 dynamic
programming technique f [x_] := f [x] =

In[12]:= Phi[x_, h_] := Phi[x,h] = If[x <= 0 I I x>= Length[h]-1, 0 ,
N[Sqrt[2] h . Table[Phi[2x-k,h],{k,O,Length[h]-1}]]];

In[13]:= ShowPhi[h_] := ListPlot[
Table [Phi [x ,h], {x,O,Length[h]-1,(Length[h]-1)/2-6}],
PlotJoined->True, PlotRange->All];

The scaling functions corresponding to the scaling coefficients h4 and h12 can now be
viewed using the command ShowPhi [..]. The results are shown in figure 21. It can be
observed that the h12 scaling function is smoother than the h4 scaling function. This is a
general trend. Scaling functions gain t a degree of differentiability for every extra 2 scaling
coefficients, see [Stmng, 1989j.

6.5 The Ramp Filter as a Convolution

The goal in this section is to construct a tomographic mmp filter for a scaling function.
The idea is that since any projection data can be approximated by a linear combination

Modelling with Mathematica 69
-_----.:~------------------------

of shifted scaling functions any good ramp filter for a scaling function will also be a good
ramp filter for projection data.

To construct a ramp filter for a scaling function it is expedient to use the fact that a ramp
filter is equivalent to the Hilbert transform of the first derivative. This representation for
the ramp filter can be found in [Kak and Slaney, 1988} or in [Herman et al, 1987j. Using
the notation of the previous section the argument is as follows:

If pg(t) is a ramp filtered version of pg(t) then

Pe(t) 1: IlwIlPg(w)ej21rwtdw

] 00 [j21rWPg(w)][- jsign(w)]ej21rwtdw
-00 21r

(72)

It is easy to see that the first term in the integrand of the above expression is the Fourier
transform of p~(t). The second term in the integrand is the Fourier Transform of 2;2t' see
[Kaplan, 1962, pp.282} for details. Thus using the convolution theorem the above result
may be written as:

pg(t) _1_ *p~(t)
21r2t

1]00 p~(u)- --du
21r 2 -00 t - u

(73)

which confirms that apart from a multiplicative constant, the ramp filter is the Hilbert
transform of the derivative. In [Beylkin, 1992} filters for performing differentiation and
Hilbert transforms on scaling functions are constructed. Here the construction is repeated
using Mathematica and' the filters are combined according to equation 73 to form a new
ramp filter for tomography.

6.6 A Filter for Differentiation

The goal here is to approximate the operator d~' in the space VG spanned by the scaling
function translates <jJ(x - k). Given any function f(x), its approximate derivative in VG is
given by PO[d:[Po[f(x)]]] where Po is the projection onto VG. Now assuming

Po[f(x)] = L fk<jJ(x - k)
keZ

(74)

~M~o~d~e~ll~in~g~w-=-it::.::h=--M=-=a::..::.th=e.::..:m==at..:..::i-=-ca=- 70

we have

dd [Po[f(x))) = L fkep'(X ~ k)
x keZ

and thus

where

SI =]00 L fkep'(X - k)ep(x - l)dx.
-00 keZ

Substituting the last equation into the last but one results in:

where

rl = 1: ep(x -l)ep'(x)dx

(75)

(76)

(77)

(78)

(79)

This shows that the coefficients of the derivative of a function are obtained by convolving
the coefficients of the function with the sequence {rt} leZ given in equation 79. We will
call this sequence a differential filter. Since a scaling function ep is fully determined by
its scaling coefficients hk it is possible to obtain expressions for rl in terms of hk . These
expreSSlOns are:

-r-l (80)

Modelling with Mathematica 71
---=----------------------------

where an are autocorrelation coefficients given by:

L-1-n

an = 2 L: hihi+n ,
i=O

n = 1,2, ... , L - 1. (81)

Beylkin was the first to publish this result. The derivation of the first expression in 80 is
not difficult, just start with equation 79 and make use of the scaling equation. The second
and third expressions in 80 require quite lengthy Fourier arguments. Beylkin also shows
that 'T'/ = 0 whenever Illll > L - 2. The reader is referred to [Beylkin) 1992} for details.
Equation 81 is easy to implement in Mathematica. Equations 80 require more finesse.
Using a suggestion of Beylkin, start with 'T'1 = -0.5 and 'T' -1 = 0.5 so that the second and
third parts of equations 80 are satisfied and then iterate using the first part of equations
80 to generate an improved differential filter.

In[14]:= AutoCoef[h_] := Table[2 Sum[h[[i+1]] h[[i+1+n]],
{i,O,Length[h]-1-n}], {n,1,Length[h]-1}]

In[15]:= DiffCoef[h_,res_] := Module[{a=AutoCoef[h],
r=Table[0,{Length[h]-2}],nr,Zeros},
nr=r; nr[[1]]=-0.5;
rf[i_]:= If[i<O,-rf[-i] ,If[(i==O) I I (i>Length[h]-2), 0, r[[i]]]];
While[Chop[nr]!=Chop[r],

(r=nr;
nr=Table[2(rf[2i] +

0.5 Sum[a[[2k-1]] (rf[2i-2k+1]+rf[2i+2k-1]),
{k,1,Length[h]/2}]), {i,1,Length[r]}])];

Zeros=Table[0,{res/2-Length[nr]}] ;
Join[Drop[Zeros,1],-Reverse[nr],{O},nr,Zeros]]

This code is used to generate a diffe'T'ential filte'T' of length 128, associated with h12. The
coefficient 'T'o is situated at position 64 in the filter. The numeric values for 'T'0 .. 'T'12 are
tabulated and compare favourably with those published in [Beylkin) 1992) Table 1j.

In[16]:= Take[DiffCoef[h12,128], {64,76}]

Out[16]= { 0, -0.85013666155593, 0.2585529441414689,
-0.07244058999766052, 0.01454551104199389,
-0.001588561543475704, 4.296891570985078*10~-6,

0.00001202657519572415, 4.206912045116679*10~-7,

-2.899666805706292*10~-9, 6.9686511520195*10~-13, 0, O}

~M.::o:.:d:.::e:::ll::.:in~g~w~it:.:h=--M:.:..::..::a:..:.th=e.:..:m=.=..:.a..:..::ti...:..ca.:..:....- 72

-5 5

Figure 22: A differential filter from the scaling function h12.

A pictorial representation of the differential filter can be obtained by using ListPlot to
display some values of the filter around ro. The result is shown in figure 22.

In[17]:= ShowFilter[v_] := ListPlot[Table[{i-(Length[v]/2),v[[i]]},
{i, Length[v]/2-10, Length[v]/2+10}],
PlotRange->All, PlotJoined->True];

In[18]:= ShowFilter[DiffCoef[h12,128]]

To generate the new ramp filter we must first use the same techniques to produce a Hilbert
transform filter.

6.7 A Filter for a Hilbert Transform

To obtain a Hilbert transform filter the arguments from the previous section must be
repeated with the differential operator d: replaced by the Hilbert transform operator H.
The action of the operator H on any function f is defined by:

(H[j])(x) = ~1: !~s~ ds. (82)

Modelling with Mathematica 73
--_::::...-_------------------------

Repetition of the previous section's arguments results in the following defining relations
for the coefficients of a Hilbert transform filter:

1 L/2

r21 +- L a2k-1(r21-2k+I + r21+2k-d
2 k=l

1 1
- trl +O(lL)

-r-I (83)

Note that the factor 2 has disappeared from the first expression and that the second
expression now becomes an asymptotic approximation. The ak are the same autocorrelation
coefficients used in the differential filter. Again, a derivation for these expressions can be
found in [Beylkin) 1992]. To compute the Hilbert transform filter coefficients start by using
the second expression in 83 as an approximation and then iterate using the first and third
expressions to compute improved filter coefficients.

In[19] := HilbertCoef[h_,res_] := Module[{a=AutoCoef[h],
r=Table[N[-l/(Pi i)] ,{i,l,Length[h]}] , nr, Asymp} ,
nr=r; nr[[1]]=-0.5;
rf[i_]:=If[i<O,-rf[-i],

If[(i==O) ,0,
If [i>Length[r] , N[-l/(Pi i)], r[[i]]]]];

While [Chop [nr] !=Chop[r],
(r=nr;

nr=Table[(rf[2i] +
0.5 Sum[a[[2k-l]](rf[2i-2k+l]+rf[2i+2k-l]),

{k,1,Length[h]/2}]), {i,l,Length[r]}])];
Asymp=Table[N[-l/(i Pi)],{i,Length[nr]+1,res/2}];
Join[Drop[-Reverse[Asymp],1], -Reverse [nr], {O}, nr, Asymp]]

Note that only the first few Hilbert transform filter coeficients are allowed to change value
during the iteration. For large 11111 the second expression in 83 is used to estimate coeficients.
The code is used to generate a Hilbert transform filter of length 128, associated with h12.
The coefficient ro is situated at position 64 in the filter. The numeric values for rO oor12 are
tabulated and compare favourably with those published in [Beylkin) 1992) Table 4]. The
central part of the filter is shown in figure 23.

In[20]:= Take [HilbertCoef[h12,128], {64,76}]

Out[20]= {O, -0.5883036982236796, -0.07757641365985442,
-0.1287436950895584, -0.07506362754219426,

:.:M.:.:o::...:d.:.:e:..::.ll=in~g~w.:..::i..:..:th::.....::.M_a_t_h_e_m_a_t_ic_a 74

-5 5

Figure 23: A Hilbert transform filter from the scaling function h12.

-0.06416801797769806, -0.0530413661373353,
-0.04547064970868715, -0.03978864124836587,
-0.03536776075990964, -0.03183098767753492,
-0.02893726214706868, -0.02652582378143546}

In[21]:= ShowFilter[HilbertCoef[h12,128]]

6.8 Coefficients for a Ramp Filter

Equation 73 shows that a ramp filter is equivalent to a differential filter followed by a
Hilbert transform filter. Thus, since convolution is associative, ramp filter coefficients can
be constructed by convolving Hilbert transform filter coefficients with differential filter
coefficients. A combination of dot products, circular shifts and zero padding does the
trick:

In[22]:= Convolve[d_,h_,res_] := Module[{df,dh,Zeros},
Zeros = Table [0,{res/2}] ;
df = Join[Zeros,d,Zeros];
hf = Join[Zeros,h,Zeros];
Drop[Drop[RotateRight[

Table[RotateRight[df,n] . hf , {n,0,2 res-1}], res-1],
res/2], -res/2]];

Modelling with Mathematica 75
=--=-.:..~~~-----------------------

1

0.8

o.

o.

o 2

5

Figure 24: The new Ramp Filter associated with h12, obtained by convolving the Hilbert
transform filter with the differential filter.

In[23]:= NewRampFilter = Convolve[
DiffCoef[h12,128], HilbertCoef [h12, 128] , 128]

The new ramp filter turns out to be an even sequence. This is to be expected as both
the differential and the Hilbert filters are odd. .In keeping with the style so far, the values
rO .. r12 for the new ramp filter are tabulated here and a pictorial representation of the ramp
filter is given in figure 24. Note that ro is no longer zero.

In [24] := Take[NewRampFilter, {64,76}]

Out[24]= {0.976833011377977, -0.1109909447828639, -0.3644561708911,
0.1281887996668191, -0.0874681026701724, 0.00816052360937506,

-0.01376979736243151, -0.005579502282393995, -0.005109531721197386,
-0.003915663821722484, -0.003183687584440462, -0.002630709860396351,
-0.002210478434002659}

In[25] := ShowFilter[NewRampFilter]

It now remains to test the usefulness of the new ramp filter in tomography.

Modelling with Mathematica 76
----=-----------------------------

6.9 Testing the Ramp Filter

Finally the new ramp filter must be evaluated as a reconstruction tool. The tomography
laboratory of the previous section is harnessed and NewRampFilter is used in the place of
RampFilter. The result is a new filtered shadow and a new reconstructed Shepp-Logan
test image. These images are shown in figures 25 and 26 respectively.

Animation can be employed to compare the two different reconstructions. The original
Shepp-Logan test image, the standard reconstruction and the new reconstruction have been
combined into a 3-frame animation sequence and stored on the stiffy disk accompanying
this thesis. Instructions for viewing the animation can be found in the appendix.

Figure 25: The new Shepp-Logan filtered shadow.

Figure 26: The new Shepp-Logan reconstruction.

Modelling with Mathematica 77
----=-----------------------------

6.10 Conclusion

Mathematica has been employed to investigate the properties of scaling functions. These
functions are the so-called mother wavelets in the new and expanding field of wavelet
analysis. The properties of the scaling function have been used to construct a new ramp
filter for tomographic reconstruction. The new filter performs well since it has built-in
smoothing characteristics.

Modelling with Mathematica 78
---=---------------------------

7 Conclusion

This thesis has demonstrated that A1athematica provides an excellent modelling environ­
ment. Three problems of a mechanical nature have been tackled and two useful laboratories
have been created.

Although the problems tackled are not new problems, the Mathematica solutions are new
as the reference list indicates. The animations of a mathematical golf swing and the tennis
racquet flip are new, so to is the Mathematica implementation of the phase-plane package.
These sections of the thesis have already been published. The author believes that the
tomography laboratory will also attract interest from The Mathematica Journal. The
author has already published in the tomography field, see [Murrell, 1989} and [Murrell and
Carson, 1990}, and is of the opinion that development time for the ideas involved in these
publications would have been much shorter if Mathematica had been available then.

The potential for modelling with Mathematica is unlimited and the author has various
future projects in mind. The most inviting of these is to start investigating Mathematica's
sound capabilities with the goal of building a general purpose sound analysis laboratory.
The author intends to use such a laboratory to analyse bird-calls.

Astronomy provides a rich set of mechanical problems suitable for analysis and animation
via Mathematica. A general purpose astronomical package has already been developed
for Mathematica. The author intends to make use of this package to test the hypothesis,
[Hoyle, 1977}, that Stonehenge was designed with the intention of predicting both lunar
and solar eclipses.

The versatility of Mathematica has enabled the author to persuade a number of post­
graduate students to tackle modelling problems. Mathematica is thus an essential tool in
both research and teaching environments.

Modelling with Mathematica 79
--_::=:...-_------------------------

8 Appendix

On the accompaning disk there are two ZIP archives and two EXE utilities. The file ANI. ZIP
contains all the animations described in this thesis. After unzipping the following five
animation files should be present:

• BEADS, an animation file for beads sliding down wires.

• SWING, an animation file for the perfect mathematical golf swing.

• RACQUET, an animation file for a racquet rotating under no external forces.

• PHASE, an animation file for the elephant-tree bifurcation event.

• TOMO, the three frame animation file for comparing tomographic reconstructions.

The file SRC. ZIP contains all the Mathematica source code described in this thesis. After
unzipping this file a number of Mathematica source files will be present. There is one source
file for each section of the thesis.

The two utilities stored on the disk are:

• PKUNZIP. EXE, a program to decompress the. ZIP files.

• ANIMATE. EXE, a program to view the animations.

In order to view an animation, acquire a 386 or 486 machine with at least 8 meg of memory
and 10 meg of free disk space and then carry out the following instructions under DOS.

• Create an empty subdirectory on the hard drive and make it the current directory.

• Copy all the files from the stiffy disk to the hard drive subdirectory.

• Decompress the ANI. ZIP using the PKUNZIP . EXE utility.

• View the animation using the ANIMATE. EXE utility.

An example session could be as follows:

Modelling with Mathematica 80
--_::::...-_------------------------

MD MURRELL
CD MURRELL
COPY B:*.*
PKUNZIP ANI.ZIP
ANIMATE BEADS
ANIMATE SWING
ANIMATE RACQUET
ANIMATE PHASE
ANIMATE TOMO

Once an animation is running the user can control the animation by using the keyboard
as follows:

• 1..9 sets the animation speed, (1 = slow, 9 = fast).

• P pauses the animation.

• R reverses the animation direction.

• C reverses the direction at the end of a cycle.

• DownArrow steps forwards through the animation.

• UpArrow steps backwards through the animation.

• Q stops the animation.

If any files on the enclosed stiffy disk prove to be unreadable please contact the author at
e-mail murrellh@images.cs.und.ac.za and a replacement disk will be posted.

Modelling with Mathematica 81
=-=-.:--------.:~------------------------

9 References

Ashbough M.C., Chicone C. and Cushman R. 1991. The twisting tennis racket Jour­
nal of Dynamics and Differential Equations, 3, pp.67-86.

Beylkin G. 1992. On the representation of operators in bases of compactly supported
wavelets, SIAM J. Numer. AnaL, vol. 6, no. 6, pp. 1716-1740.

Blachman N. 1992. Mathematica: A Practical Approach, Prentice Hall.

Caughley G. 1976. The elephant problem, an alternative hypothesis, East African
Wildlife Journal, vol. 14, pp. 265-283.

Crandall RE. 1991. Mathematica for the Sciences, Addison Wesley.

Daubechies I. 1988. Orthonormal bases of compactly supported wavelets, Comm. Pure
and Appl. Math., vol. 41, pp. 909-996.

Daubechies I. 1992. Ten Lectures on Wavelets, SIAM publications, Philadelphia.

Gaylord R.J., Kamin S.N. and Wellin P.R 1993. Introduction to Programming with
Mathematica, Springer Verlag and Telos

Goldstein H. 1950. Classical Mechanics, Addison Wesley.

Gradshteyn I.S. and Ryzhik I.M. 1980 Table of Integrals, Series and Products, cor­
rected and enlarged edition, translated by Jeffrey A., Academic Press.

Gray A. and Gray J.G. 1911. Treatise on Dynamics, MacMillan and Co.

Gray T.W. and Glynn J. 1991. Exploring Mathematics with Mathematica, Addison
Wesley.

Herman G.T., Tuy H.K., Langenberg K.J. and Sabatier P.C. 1987, Basic Methods of
Tomography and Inverse Problems edited by Pike E.R, Malvern Physics Series.

Hoyle F. 1977. On Stonehenge, Heinemann Educational Books, London.

Hughes D. and Murrell H. 1987. Non-linear runoff routing, a comparison of solution
methods, Journal of Hydrology, 85, pp.339-347.

Kak A.C. and Slaney M. 1988. Principles of Computerized Tomographic Imaging,
IEEE Press.

Kaplan W.K. 1958. Ordinary Differential Equations, Addison Wesley.

Kaplan W.K. 1962. Operational Methods for Linear Systems, Addison Wesley.

Kocak H. 1986. Differential and Difference Equations through Computer Experi­
ments. Springer, New York.

Modelling with Mathematica 82--_:::..--------------------------

Marsden J.E. and McCracken M. 1976. The Hopf Bifurcation and its Applications,
Springer Verlag.

Meyer Y. 1992. Wavelets and operators, Cambridge studies in advanced mathematics,
Cambridge University Press.

MUlTell H. 1982. Conductivity Profiles for a Horizontally Uniform Earth, MSc thesis,
Rhodes University.

Murrell H. 1989. A case for computerized tomography in the undergraduate syllabus,
proceedings of the 15th South African symposium on numerical mathematics, pp.145­
158.

Murrell H. 1992. Animation of rotating rigid bodies, The Mathematica Journal, Vo!.
2, No. 1, pp.61-65.

Murrell H. 1993. A mathematical golf swing, The Mathematica Journal, Vol. 3, No.
4, pp.62-65.

Murrell H. 1994. Planar Phase Plots and Bifurcation Animations, The Mathematica
Journal, Vol 4, No. 3, pp.80-85

Murrell H. and Carson D. 1990. Image reconstruction via the Hartley transform,
South African Computer Journal, Vol. 1, No. 1, pp.36-42.

Murrell H. and Ungar A. 1982. From Cagniard's method for solving seismic pulse
problems to the method of the differential transform, Computers and mathematics
with applications, Vol. 8, No. 2, pp.103-ll8.

Nevin J. and Jackson P.J. 1977. An interesting property of the tennis racquet and
dynamically similar rigid bodies, Inst. of Maths. and Appls.

Prescott J. 1941. Mechanics of Particles and Rigid Bodies, Longmans Green and Co.

Sacks E.P. 1991. Automatic analysis of one-parameter planar ordinary differential
equations by intelligent numeric simulation. Artificial Intelligence, Vo!. 48, pp 27-56.

Shaw W.T. and Tigg J. 1994. Applied Mathematica, Addison Wesley.

Shepp L.A. and Logan B.F. 1974. The Fourier reconstruction of a head section, IEEE
Transactions on Nuclear Science, vo!. NS-21, pp. 21-43.

Swart J .H. 1994. Limit cycle behaviour in an elephant-tree ecology, submitted to,
S.A. Journal of Science.

Swart J.H. and Duffy K.J. 1987. The stability of a predator-prey model applied to the
destruction of trees by elephants. S.A. Journ. Se., vo!. 18, pp.156-158.

Modelling with Mathematica 83
-----=----------------------------

Swart J.H. and Murrell H. 1991. A model of age-dependent population dynamics
providing simple criteria for growth or extinction) Mathematical Biosciences, 103,
pp.1-15.

Strang G. 1989. Wavelets and Dilation Equations: A brief introduction, SIAM Re­
view, vol. 31, no. 4, pp. 614-627.

Synge J.L. and Griffith RA. 1959. Principles of Mechanics, third edition, New York,
McGraw Hill.

Ungar A. and Murrell H. 1985. The differential transform and its application to an
electrostatics image problem) Computers and mathematics with applications, Vol. 11,
No. 6, pp.565-572.

Vardi 1. 1991. Computational Recreations in Mathematica, Addison Wesley.

Varian H.R. 1993. Economic and Financial Modeling with Mathematica, Springer
Verlag and Telos.

Vvedensky D. 1992. Partial Differential Equations with Mathematica, Addison Wes­
ley.

Wells D.A. 1967. Lagrangian Dynamics, Schaum's Outline Series.

Williams D. 1967. The Dynamics of the Golf Swing. Quartarly Journal of Mechanics
and Applied Mathematics, Vol.XX, pp.247-264.

Williams D. 1969. The Science of the Golf Swing. Pelham Books.

Wolfram S. 1991. Mathematica) A System for doing Mathematics by Computer,
Addison Wesley.

	Murrell_Hugh_1994.front.p001
	Murrell_Hugh_1994.front.p002
	Murrell_Hugh_1994.front.p003
	Murrell_Hugh_1994.front.p004
	Murrell_Hugh_1994.front.p005
	Murrell_Hugh_1994.front.p006
	Murrell_Hugh_1994.p001
	Murrell_Hugh_1994.p002
	Murrell_Hugh_1994.p003
	Murrell_Hugh_1994.p004
	Murrell_Hugh_1994.p005
	Murrell_Hugh_1994.p006
	Murrell_Hugh_1994.p007
	Murrell_Hugh_1994.p008
	Murrell_Hugh_1994.p009
	Murrell_Hugh_1994.p010
	Murrell_Hugh_1994.p011
	Murrell_Hugh_1994.p012
	Murrell_Hugh_1994.p013
	Murrell_Hugh_1994.p014
	Murrell_Hugh_1994.p015
	Murrell_Hugh_1994.p016
	Murrell_Hugh_1994.p017
	Murrell_Hugh_1994.p018
	Murrell_Hugh_1994.p019
	Murrell_Hugh_1994.p020
	Murrell_Hugh_1994.p021
	Murrell_Hugh_1994.p022
	Murrell_Hugh_1994.p023
	Murrell_Hugh_1994.p024
	Murrell_Hugh_1994.p025
	Murrell_Hugh_1994.p026
	Murrell_Hugh_1994.p027
	Murrell_Hugh_1994.p028
	Murrell_Hugh_1994.p029
	Murrell_Hugh_1994.p030
	Murrell_Hugh_1994.p031
	Murrell_Hugh_1994.p032
	Murrell_Hugh_1994.p033
	Murrell_Hugh_1994.p034
	Murrell_Hugh_1994.p035
	Murrell_Hugh_1994.p036
	Murrell_Hugh_1994.p037
	Murrell_Hugh_1994.p038
	Murrell_Hugh_1994.p039
	Murrell_Hugh_1994.p040
	Murrell_Hugh_1994.p041
	Murrell_Hugh_1994.p042
	Murrell_Hugh_1994.p043
	Murrell_Hugh_1994.p044
	Murrell_Hugh_1994.p045
	Murrell_Hugh_1994.p046
	Murrell_Hugh_1994.p047
	Murrell_Hugh_1994.p048
	Murrell_Hugh_1994.p049
	Murrell_Hugh_1994.p050
	Murrell_Hugh_1994.p051
	Murrell_Hugh_1994.p052
	Murrell_Hugh_1994.p053
	Murrell_Hugh_1994.p054
	Murrell_Hugh_1994.p055
	Murrell_Hugh_1994.p056
	Murrell_Hugh_1994.p057
	Murrell_Hugh_1994.p058
	Murrell_Hugh_1994.p059
	Murrell_Hugh_1994.p060
	Murrell_Hugh_1994.p061
	Murrell_Hugh_1994.p062
	Murrell_Hugh_1994.p063
	Murrell_Hugh_1994.p064
	Murrell_Hugh_1994.p065
	Murrell_Hugh_1994.p066
	Murrell_Hugh_1994.p067
	Murrell_Hugh_1994.p068
	Murrell_Hugh_1994.p069
	Murrell_Hugh_1994.p070
	Murrell_Hugh_1994.p071
	Murrell_Hugh_1994.p072
	Murrell_Hugh_1994.p073
	Murrell_Hugh_1994.p074
	Murrell_Hugh_1994.p075
	Murrell_Hugh_1994.p076
	Murrell_Hugh_1994.p077
	Murrell_Hugh_1994.p078
	Murrell_Hugh_1994.p079
	Murrell_Hugh_1994.p080
	Murrell_Hugh_1994.p081
	Murrell_Hugh_1994.p082
	Murrell_Hugh_1994.p083

