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Abstract

The motivation for the study of nonlinear mixed-effects models is due to the grow-

ing interest in the estimation of parameters in HIV disease dynamical models using

real multivariate longitudinal data with varying degrees of informativeness. Spe-

cial analytical and approximation techniques are needed to deal with such data

because the repeated observations on any experimental unit are likely to be cor-

related over time while multiple outcomes within the unit will also be correlated.

Furthermore, observations may be irregularly made within and between individuals

making direct use of standard methods practically impossible.

In this thesis, we consider a nonlinear mixed-effects model for a multivariate re-

sponse variable that takes into account left-censored observations. Then we study

a case where data are unbalanced among subjects and also within a subject because

for some reason only a subset of the multiple outcomes of the response variable

are observed at any one occasion. Dropout models that take into consideration

the partially observed outcomes are proposed. We further derive a joint likelihood

function which takes into account the multivariate responses and the unbalanced-

ness in such data as a result of censoring and dropout. We then show how the

methodology can be used in the estimation of the parameters that characterise

HIV dynamical system in the presence of several covariates. We have also used

multiple imputation to compare covariate coefficients in the complete data and
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the partially observed data. Through a simulation study, we have also seen that

a small limit of quantification provides better parameter estimates in the sense

of standard errors and confidence limits of the parameters. Since there are usu-

ally no analytic solutions for such complex models, the stochastic approximation

Expectation-Maximisation (SAEM) is used as an approximation method. The

methodology is illustrated using a routine observational dataset from two HIV

clinics in Malawi.
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Chapter 1

Introduction

1.1 General introduction

Longitudinal data consist of measurements or observations taken repeatedly over

a period of time on a particular subject. This usually happens in studies where

the objective is to observe change in response of subjects under study and the rate

of change of the response for an individual subject relative to others on the same

treatment. Longitudinal studies can distinguish changes over time within subjects

(time effects) from differences among subjects in levels taken at baseline (popula-

tion or cohort effects) (see Diggle et al., 2002). Thus they allow direct study of

change in response with time and factors that influence that change (Fitzmaurice

et al., 2009, 2011). Subjects in the study act as their own control as response

values are compared over the period spanning the study. It could be of importance

to determine if these within-subject changes are influenced by a combination of se-

lected predictor variables. This is advantageous because, generally, within-subject

variability is less than the between-subject variation. This then results in more

reliable parameter estimates.
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These are some of the direct advantages of longitudinal studies over cross-sectional-

studies where measurements are taken only once. Cross-sectional data do not offer

the chance to analyse within individual change due to treatment and the rate of

growth of a particular subject relative to others under the same study conditions.

Another advantage of longitudinal or repeated measurement studies is that even

with a small sample size of individuals additional statistical power can be gained

because of pooling information from repeated measurements compared to a cross-

sectional study of equal sample size.

This, however, does not mean that longitudinal studies do not have disadvantages.

Data in longitudinal studies form natural clusters. The clusters have measures

observed or obtained from individual subjects at different occasions during the

study for their elements. These elements are usually positively correlated and this

correlation has to be accounted for in the analysis. This is even more challenging

if the data are to be fit to complex models because in some cases available software

may be rendered less helpful in the face of the combination of such models and

longitudinal data (Hedeker and Gibbons, 2006).

Since longitudinal data are collected by repeated measurement or observation of

the same subject over a period of time, there is a likelihood of subjects missing one

or more scheduled observation occasions. The missingness could be intermittent

or complete withdrawal (or dropout) from the study. This results in efficiency of

estimates of the population parameters being compromised (Laird, 1988). Dropout

can also lead to selection bias when the distribution of covariates and the response

variable depend on the subject’s continued presence in the study (see Newsom

et al., 2012, page 7). We discuss this point in more detail in Chapter 4.

Subjects may be required to report repeatedly to the study centre at appointed

dates or times. As a result a longitudinal study is usually more expensive and
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time consuming than the cross-sectional study (Twist, 2003). In general, however,

the advantages of a longitudinal study outweigh the disadvantages. This makes

longitudinal studies popular especially in epidemiological, clinical, psychometric

and other social investigations. In this thesis we use such type of data to estimate

parameters that characterise the HIV dynamical system.

1.2 Motivation of the study

Within host HIV dynamic models are important because they have led to a better

understanding of the disease process and progression (Duffin and Tullis, 2002; Wu,

2005). These dynamic models are based on systems of nonlinear ordinary differen-

tial equations where the compartments are defined using HIV disease biomarkers,

usually viral load measurements and CD4+ T cell counts (Perelson and Nelson,

1999; Nowak and May, 2000). Several process parameters, including treatment

efficacy and clearance rate of virus particles, are estimated using the biomarkers

by applying statistical models. Thus more reliable statistical methodologies are

required to provide estimates or approximations of the parameters of the dynamic

system which in turn would translate into an improved interpretation of the disease

progress and treatment intervention.

In the existing literature, system compartments are based on only two observed

markers. There is a need to adequately characterise these compartments using the

observed and those the missing markers in order to realise more meaningful and

less biased parameter estimates.

Moreover, an estimation technique needs to take into account the compartment

nature. This is an area that has received much attention recently (Perelson, 2002;

Huang et al., 2006; Huang and Lu, 2008; Guedj et al., 2011). However, the inclusion
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of a multiplicity of explanatory variables that may latently influence the system

parameters and partial dropout of the subjects have not been fully modelled in

processes related to estimation of parameters of these biological systems. These

are some of the main objectives of this thesis. We, however, acknowledge the

deficiencies we may have with our data to be able to fully address the estimation

problem effectively because they are observational in nature. A full description of

the data for the study is given in Chapter 2.

1.3 Multivariate longitudinal data

The important characteristic of longitudinal data analysis is that a response vari-

able consists of measurements or observations taken repeatedly from an individual

over a period of time that spans the study duration. The response variable may

be in the form of a single characteristic observed a number of times or multiple

characteristics observed at each time point on a particular subject (Ferrer et al.,

2005; Weiss, 2005; Verbeke and Molenberghs, 2009; Fitzmaurice et al., 2011). In

this thesis, we use the multivariate longitudinal data and we describe them a little

more in this section.

Analysis of multiple outcomes from the same experimental unit at a given time

has become an increasingly interesting and important concept especially in clinical,

psychometric and other social science studies. For instance, to measure the severity

of schizophrenic symptoms one comes up with a response variable that has several

symptom outcomes (Diggle et al., 2002, page 332). This results in a response

vector of high dimension and this clearly introduces the problem of having to

jointly model the different outcomes in order to make unbiased inference about

the disease.
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One of the pioneering works that has motivated studies in multivariate longitudinal

modelling is found in a discussion by Potthoff and Roy (1964). This discussion pro-

vided a generalised platform for handling estimation and inference procedures with

respect to the multivariate longitudinal data setting. Reinsel (1982) considered a

multivariate random effects covariance structure in the analysis of multivariate lon-

gitudinal data. He derived closed-form expressions for parameter estimates and for

testing hypotheses related to model parameters. In his follow-up discussion Reinsel

(1984) derived formulas for the prediction of response values and their mean square

errors. In both cases, response outcomes are balanced and completely observed.

Lundbye-Christensen (1991) proposed a model for multivariate longitudinal re-

sponses under the assumption that these outcomes are proportional to an unknown

underlying growth process. The article also discussed the aspects regarding cross-

sectional distribution of the growth process. The discussion assumed a complete

multivariate outcome setting.

In their discussion Mickey et al. (1994) outlined a procedure for the summarisa-

tion of multiple outcomes in terms of linear combination of such outcomes. They

observed that maximisation of the variance of the linear combination and that of

the fit of the model can be used as tools for determining model coefficients. The

study by Nummi and Möttönen (2000) discussed a multivariate regression model

for handling growth curve data. They derived closed-form expressions for model

parameters under the maximum likelihood and restricted maximum likelihood set-

ting. Furthermore, under a complete data assumption they proposed a procedure

for testing linear hypotheses.

Apiolaza and Garrick (2001) used longitudinal data analysis in a different con-

text to explain the relationships among several models represented by an additive

generic covariance matrix. According to Oort (2001) multivariate longitudinal data
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can be characterised by three elements: (i) response variable, (ii) subject under

study and (iii) occasion of observation. He he provided a criterion for measure-

ment invariance and used structural equation modelling techniques to estimate

parameters in autoregressive and latent curve models.

In modelling Alzheimer’s disease, Beckett et al. (2004) used a random-effects ap-

proach for the association between two characteristics of the cognitive domain.

Furthermore, they compared the joint results to those obtained by treating them

as separate growth curves analysed using ordinary least squares approaches. In

their submission, Jia and Weiss (2009) observed that a set of multivariate out-

comes may share common explanatory effects such that the response to changes

in these effects is similar among such common outcomes. They proceeded to de-

velop an algorithm for fitting the model using standard software for univariate

longitudinal data.

In general, both linear and nonlinear models for complete multivariate longitudinal

data have been widely discussed in the literature (Gueorguieva, 2001; Ferrer and

MacArdle, 2003; Harvey et al., 2003; Zhang, 2004; Dubin and Müller, 2005; Fieuws

and Verbeke, 2006; Blozis et al., 2007). In these discussions, estimation and ap-

proximation techniques have been illustrated either by way of examples or through

simulation studies. Requirements for model selection have also been discussed and

applied. There has been a general assumption that the data are completely ob-

served in these discussions. But in most longitudinal studies missing a scheduled

visit or indeed premature withdrawal from the study is not uncommon.
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1.4 Missing data in longitudinal studies

The design of longitudinal studies is such that complete information is to be col-

lected from a fixed number of subjects for a specified number of occasions. Since

such studies require that measurements be taken repeatedly on a particular sub-

ject, it is not uncommon for some subjects to miss some occasions or completely

drop out of the trials before the end of the prescribed study periods. This results

in incomplete data and this consequently renders standard analysis techniques in-

appropriate because the underlying causes of incompleteness need to be addressed

(Gad and Ahmed, 2006; Diggle and Kenward, 1994). The analysis procedures

need to account for these missing data so that estimates (or their approximations)

are meaningful (Rubin, 2004; Molenberghs and Kenwrad, 2007). There has been

considerable discussion on univariate longitudinal data with missingness in differ-

ent forms (Cnaan et al., 1997; Everitt, 1998; Qu and Song, 2002; Crouchley and

Ganjali, 2002; Hu and Sale, 2003; Wu and Wu, 2007).

In their analysis of multivariate longitudinal data with non-ignorable dropout, Roy

and Lin (2002) assumed that observed outcomes measure a latent variable with

error and modelled the relationship between this latent variable and covariates us-

ing a linear mixed model. Pan and Louis (2000) also applied a linear mixed-effects

model to multivariate longitudinal data with censored observations. A regression

calibration approach for finding a joint model for multiple longitudinal measure-

ments and discrete time-to-event data was proposed by Albert and Shih (2010).

They discussed an approach that gives accurate estimates of model parameters in

the presence of informative dropout.

A marginalized analysis technique for multivariate longitudinal binary data was

developed by Lee et al. (2009) and this procedure takes into account the dropout

7



process. Sy et al. (1997) presented a bivariate longitudinal data model that in-

corporates random effects, correlated random processes and measurement errors.

The model they developed accommodates unbalanced observations and missing

outcomes. More accounts on incomplete multivariate longitudinal data can be

found in Jorgensen et al. (1996); Shah et al. (1997); Schafer (1997); Thièbaut et al.

(2003); Pantazis et al. (2005) and Deslandes and Chevret (2010).

The missingness mechanisms for multivariate longitudinal data discussed in the

literature have assumed that if one characteristic of a response variable is missing,

then the others are also missing. In other words, the response variable is missing

as an entity for a particular occasion or a set of occasions. However, there are a

lot of multivariate outcomes problems in practice where the response variable is

partially observed for the occasions the measurements are taken. For instance, in

HIV disease modelling, the dynamic system depends on outcomes some of which

are not observed. Moreover, there are a lot of values of some markers which are

below detectable limits. However, these unobserved outcomes are usually related

to observed markers.

1.5 Research objectives

This thesis has been motivated by the need to estimate parameters of the HIV

dynamical systems which are based on nonlinear ordinary differential equations

of the components of CD4+ T cell counts and viral loads which are important

HIV disease markers. This is achieved by using different scenarios of multivari-

ate longitudinal data when there are several covariates and unobserved markers.

Specifically, the thesis has the following objectives:
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• to review nonlinear mixed-effects models for complete multivariate longitu-

dinal data as applied to estimation of HIV dynamical system while including

several covariates;

• to propose subject dropout and partial dropout models for multivariate lon-

gitudinal data in which data are unbalanced among subjects and also within

a subject because for some reason only a subset of the multiple outcomes of

the response variable are observed at any one occasion;

• to derive joint likelihood functions that take into account subject dropout,

partial dropout and left-censored data;

• to illustrate the methodology using the stochastic approximation Expecta-

tion -Maximisation (SAEM) algorithm as an approximation tool. We use

a routine observational dataset from a constrained resource setting in the

analyses;

• to compare estimates of parameters found using complete data through mul-

tiple imputation and those found using partially missing data;

• to conduct a sensitivity analysis of estimates of the HIV dynamical system

for different limits of quantification of the viral load measurements through

a simulation study based on data with partial dropout.

1.6 Outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives a description of the

data to be used in illustrations of methodologies in this thesis. In that chapter, we

state that the data are observational in nature where information and laboratory
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measurements were taken from HIV patients reporting to clinics under the Light-

house Trust in Malawi. These data are characterised by dropout and a lot of viral

load measurements that are below the limit of quantification which is 400 copies

per ml (for the current data). Some results from exploratory analysis of these data

are presented in this chapter.

In Chapter 3 we consider a nonlinear mixed-effects model for complete multivari-

ate longitudinal data. Tests have been conducted in this chapter regarding the

most appropriate set of covariates that can be included in the analysis involving

such type of data. We also introduce the stochastic approximation Expectation

Maximisation (SAEM) algorithm which is used throughout the thesis as an approx-

imation procedure because there are no closed-form expressions for the parameter

estimates of such models.

Chapter 4 models the dropout mechanism. Specifically we consider a case where

dropout requires that all the markers of the response variable are not available

after a subject drops out. We have used the approach of Diggle and Kenward

(1994) to derive a dropout model for a multivariate response variable and the like-

lihood function that is used to estimate parameters under this setting. We have

also considered a case where data are unbalanced among subjects and also within

a subject because for some reason only a subset of the multiple outcomes of the

response variable are observed at any one occasion. This is the topic that has been

covered in Chapter 5. We have modelled the partial dropout mechanism of the

markers of the response variable using the occasions of dropout. A joint likelihood

function that incorporates the left-censored response values due to equipment fail-

ure to measure some outcomes accurately and this partial dropout mechanism has

also been proposed in this chapter. Furthermore, we have shown using the pro-

posed joint likelihood function and the algorithm how one can find approximate
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estimates of the standard errors of the parameter estimates.

The sensitivity analysis of the estimates of the HIV dynamical system parameters

has been carried out in Chapter 6. Specifically we have looked at the role played

by the limits of quantification (LOQ) of the viral loads in determining the size of

bias of estimates of the system parameters. It has been observed that, in general,

the width of the confidence interval of the parameters is small when the LOQ is

also small. In this chapter, we also conducted multiple imputation with the aim

of comparing significance of covariate coefficients in the data with partial dropout

and those with complete observations for the same number of patients and also

the parameter estimates with their standard errors for the two scenarios.

A summary of the findings of the thesis are presented in Chapter 7. Limitations of

the current research are discussed in this chapter. We have made some suggestions

for future work. It could be possible to use functional data analysis in order to

pool the randomness in the observations from the various data sources such as

clinics in our case (Mart́ınez-Camblor and Corral, 2011). It has been pointed out

that in practice there are cases of viral rebound which are usually associated with

resistance to treatment regimen and it would be in order to include parameters that

characterise this phenomenon and elements of disease resistance in the dynamical

model considered in this thesis.
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Chapter 2

Data description and exploratory

analysis

In this chapter we describe the data that will be used in illustrating the method-

ologies which we review and develop in the subsequent chapters.

2.1 Data description

Depletion of the CD4+ T cells is the manifestation and the source of the central

immune system defect of HIV disease and the viral load has become an important

marker and is also now used in some cases as the primary marker for antiretrovi-

ral treatment policy. In Malawi for instance, an adult patient is eligible to start

treatment if their CD4+ T count is below 250 cells per mm3 (Ministry of Health,

2008). These markers are also used in evaluating subjects’ response to antiretro-

viral therapy (Huang and Lu, 2008). Thus viral load measurements and CD4+ T

cell counts are the two major markers in the study of the HIV disease.

HIV patients at the Lighthouse clinics (in Malawi) are routinely monitored to check
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how they are responding to treatment and those that need to start treatment have

their CD4+ T cell counts and viral loads checked to determine if the disease is

advanced enough to warrant entry into a treatment course. This means that the

collected data are longitudinal in nature as measurements for each patient are taken

repeatedly over a period of time. For this study there were two facilities from which

the data were collected: Lighthouse clinic (LHC) and Bwaila clinic (MPC). Both

of these clinics are under the Lighthouse Trust in Malawi which is within Kamuzu

Central Hospital. At the time of acquisition of these data, there were many subjects

whose information was mostly available. However, patients included in the analysis

were adults (18 years old or more) whose data were captured between 2008 and

2010 and were on a three-course treatment of Stavudine-Lamivudine-Nevirapine

or Zidovudine-Lamivudine-Nevirapine.

For most patients the clinical information including CD4+ T cell counts and viral

load measurements were collected at the time of treatment initiation. In the course

of treatment, however, not all patients have frequent measurements of viral loads

and this leaves CD4+ T cell count measurements to be obtained more frequently.

Viral load levels are usually not quantifiable below a certain value which is known

as the limit of quantification (LOQ). This value depends on the assay used in the

measurement process. At the time of acquisition of the current data the lowest

quantifiable value for viral loads was 400 copies per ml so that all readings less

than this value were quantified as 400 copies per ml. Furthermore, only subjects

with a minimum of three (including baseline) measurements of both the CD4+ T

cell count and viral load were included in the analyses in the chapters that follow.

This would ensure that we had adequate bivariate longitudinal data. Three data

scenarios were considered in this thesis depending on whether we have complete and

balanced observations or unbalanced among subjects or indeed partially observed
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data within and among the subjects.

The first case involved complete and balanced data with each patient having five

pairs of the markers observed on five different occasions. There were seventy-

eight subjects with such balanced data and these gave a total of 780 laboratory

measurements. This type of dataset is used in Chapter 3. About 40% of the

subjects had viral load values that were less that the threshold value and this is

illustrated by the cumulative distribution function (Fn) of the log10-viral loads in

Figure 2.1. The value 2.6021 on the x-axis of this graph corresponds to 400 copies

per ml which is the lower limit of quantification of the current data.
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Figure 2.1: The distribution function of the log10-viral load.

The second scenario consisted of unbalanced data due to different number of occa-

sions in which markers were observed for each patient. In this setting all subjects

with 3 − 7 bivariate measurements (including the baseline values) were included

in the analyses. The truncation was done to ensure that we had adequate marker
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readings from each patient for the analysis. This truncation is a common practice

in problems involving dropout mechanisms (Encrenaz et al., 2005). There were two

hundred and fourteen (214) patients with this information representing about 8%

of the target population which was all the HIV patients at the Lighthouse Clinics

who were on treatment at the time of collection of these data. The total number

of clinical measurements in this setting was 1856 for both CD4+ T cell counts and

viral load. Thirty eight (37.8%) percent of the viral load measurements were below

the threshold value. The percentages of patients with both CD4+ T cell count and

viral load measurements on each occasion are displayed in Table 2.1. From this

table, we note that only a small proportion of patients had more than five viral

load measurements.

Table 2.1: Percentage of patients with both markers by week

Week 0 14 28 42 56 70 84

Percentage observed 100 100 100 82.3 36.4 11.2 3.3

Most patients had CD4+ T cell count observed at all the visits but no viral load

readings recorded. That is, for a particular subject it was possible for the number

of the viral load measurements and that of the CD4+ T cell counts to be different.

This gave us the third scenario which we term the partially observed data because

the bivariate response variable was partially observed. As noted in the second case

above the subjects were not necessarily observed the same number of occasions.

For purposes of the analyses in this thesis, we required that at least three pairs of

the marker measurements be complete and that eight be the maximum number of

occasions. There were only seven patients that had CD4+ T cell counts recorded

up to the eighth occasion. A total of two hundred and fourteen (214) subjects were
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observed and 2024 marker observations were made, of which 1096 were CD4+ T cell

count measurements (representing 54% of the total number of marker observations)

and the rest were viral load measurements. Note also that the datasets in the first

two scenarios are subsets of this dataset. Thus all exploratory analytical properties

of the partially observed dataset are shared by the other two cases and, therefore,

data descriptions in the rest of the chapter will be based on data from the third

scenario.

2.1.1 Occasions for observation

The observation times (or occasions) were purely for purposes of assessing the

progress of treatment for individual patients and as such, their spacing was widely

varied. Furthermore, the CD4+ T cell counts and viral load measurements were

not observed at the same occasions. This means that the data were unbalanced in

terms of number of occasions at which the patients were observed and the intervals

between any two occasions for a particular patient. In cases like this, it helps in

the analyses to consider using the overall rate of marker observation for all the

patients under consideration (Romih et al., 2010). In the current analyses we took

the average observation interval between the markers in order to achieve this and

it was set at 14 weeks.

For the discussion of mixed-effects models for balanced multivariate longitudinal

data in Chapter 3, we assumed that the seventy-eight subjects were each observed

on five equally spaced occasions. In Chapters 4 and 5 where we discuss dropout

mechanisms, the minimum number of occasions before a withdrawal or drop-out

was taken to be three. Apart from proposing models for partially observed data,

the other objective was to highlight the contribution of covariates in the estimation
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of parameters of the virus dynamical system (Steiner et al., 2010; Rice et al., 1999).

2.1.2 Covariates

There were several covariates collected along with the bivariate response variable.

The aim was to study and describe the influence of these covariates on parame-

ters of the statistical model as well as those of the HIV dynamical system which

we discuss later. The covariates include: (i) age of the patient at the time of

initiation of treatment (coded −1 = age between 18 − 25, 0 = between 26 − 33,

1 = between 34 − 40 and 2 = over 40); (ii) Sex of subject (coded 0 = Female,

1 = Male); (iii) Facility (clinic) from which subject i was getting medication and

general health care as part of treatment (0 = LHC, 1 = MPC); (iv) Supplementary

treatment (0 = No, 1 = Yes) and (v) compliance to treatment (0 = No, 1 = Yes).

The coding for age-groups was necessitated by the scale of measurement which was

higher for this group as compared to the other covariates and this rescaling helps in

stabilising model parameters estimates which results in improved interpretation of

the parameters (Roy and Lin, 2002). There are two facilities under the Lighthouse

Trust from which the data were collected as explained in Section 2.1: LHC and

MPC. The last two covariates depended on the patient’s adherence to consultation

(visiting) schedule and are described as follows. If the patient visited the clinic at

least a week before appointment date, we assumed there would have been a prob-

lem that needed clinical attention (supplementary treatment). A patient coming

for a visit to the clinic a week (or later) after appointment date had missed the

recommended treatment plan and as such it indicated lack of compliance to the

treatment schedule on the part of the patient. This description was arrived at after

consulting the experts who were mandated to capture the patients’ information for
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this study.

In this thesis, we assume that these covariates are time invariant. In general,

however, this may not be the case. For instance, compliance to treatment is

determined during follow-up visits.

2.2 Exploratory data analysis

2.2.1 Descriptive statistics of the dataset

Age at treatment commencement was used as a grouping variable and as such

several data features were considered. The frequency distribution of the patients

among the four age-groups is displayed in Table 2.2. Using the Chi-square test

for goodness-of-fit it can be argued that the number of patients in each age-group

is independent of the age-group (p = 0.0617). Figure 2.2 displays the box plot of

Table 2.2: Distribution of patients for the age-groups.

Age-group 18− 25 26− 33 34− 40 over 40

No. of patients 41 68 49 56

Percentage 19.1 31.8 22.9 26.2

the markers for the ages. We note that for the viral load the 18-25 age-group has

a bigger median than the other three groups (top panel) whereas for the CD4+

T counts the older patients (those over forty) show a slightly higher median cell

count compared to the other age-groups.

At this point we cannot give reasons for this but further analyses in later chapters

will possibly shed light into the phenomenon. However, one could say that since
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Figure 2.2: Box plot of the markers for the four age-groups.

high viral load levels imply high rate of virus production we could suggest that

in the age-group 18 − 25 viral production is higher than in the other three age-

groups. A small percentage of outliers is seen in the second and third age-groups.

This proportion (of outliers) is not large enough to suggest the existence of sub-

populations within these two age-groups.

Women seem to have lower viral loads than men in this group of subjects as dis-

played in Figure 2.3 and a Chi-square test of independence confirms this assertion

with a p-values of 0.04381. These results were also noted in a discussion by Goven-

der et al. (2014). It may not imply, however, that this difference has an effect on

the rate at which HIV disease progresses in women and men. A suggestion might

be advanced that women have lower viral loads due to the way their immune sys-

tem responds to viral infection or that in general the viral production in women

is lower than in male patients. Meier et al. (2009) claim that when women and

men with the same viral loads are compared, HIV disease progression is generally
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faster in women than men. That is, as seen in this figure one could conclude that

female HIV patients may develop AIDS at lower viral load levels than their male

counterparts with similar CD4+ T cell counts. As with all other covariates, there

were only a few outliers in the CD4+ T cell count plots for both male and female.
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Figure 2.3: Box plot comparing markers for the two sexes.

Tests for goodness-of-fit on the current data show that there were more patients

with the required information reporting to Bwaila clinic than Lighthouse clinic.

The data, however, do not seem to provide evidence that the choice of facility

depended on gender (with a p−value of 0.9747). Similarly, the data reveal that at

both facilities there were equal proportions of patients that sought supplementary

treatment. There is evidence (p−value of 0.0016), however, that the choice of

facility depended on the patient’s age at treatment commencement. For instance,

more of those in the 18−25 age-group preferred to use Lighthouse clinic (see Table

2.3) which represents a proportion of about 2.6 times that of the other clinic.
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Table 2.3: Distribution of patients by age-groups reporting to a facility.

Age-group

18− 25 26− 33 34− 40 > 40 Total

Facility
Bwaila 17 42 38 41 138 (64.5%)

Lighthouse 24 26 11 15 76 (35.5%)

The preliminary results also show evidence (p < 0.001) that compliance to treat-

ment schedule was associated with the facility to which the patient reported. For

example, only 5% of the patients reporting to Lighthouse clinic were non-compliant

compared to about 70% at Bwaila clinic. There is no immediate factor that can be

attributed to this difference because we did not look at the different characteristics

of these clinics since our ultimate objective was the estimation of parameters of the

HIV dynamical system. However, this may point to limited financial resources on

the part of the patients in order to regularly report to a treatment facility. That is,

one facility could be cheaper to access in terms of travel than the other. Another

factor for the dependence of compliance on facility could be the overwhelming

number of patients getting service from it so that non-compliance could be partly

due to administrative reasons by possibly postponing consultation dates (Hogan

et al., 2004). For some patients, it could only be the apparent good health they

enjoyed as they took ARVs and in others the absence of general impact on antic-

ipation of the future as ARVs may have substantial side effects on them. These,

though, cannot be attributed to any one facility.

A Chi-square test on Table 2.4 shows some degree of dependence between supple-

mentary treatment and compliance in these data with a p−value of 0.017. This is

understood because a subject not complying with the treatment is likely to suf-
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Table 2.4: Distribution of patients to compliance-

supplementary treatment.

Compliance

No Yes Total

Supp. treatment
No 38 63 101

Yes 62 51 113

fer from opportunistic infections which will require medical advice as a result of

such illnesses. This exploratory assessment has also revealed that age-group and

compliance to treatment are dependent (p-value of 0.0339). These analyses have

also shown that compliance to treatment is not influenced by the patient’s gender.

Moreover, the proportions of those complying to treatment are equal in two sexes

(at about 53% on average in each case).

2.2.2 Bivariate distribution of markers

The response of interest is a bivariate variable with CD4+ T cell count and viral

load measurements as characteristic variables. These markers are known to be

negatively correlated or are said to have an inverse relationship (Wu and Müller,

2011). More in formation about the relationship between the two markers can

also be found in a discussion by Feinberg (1996) where the dynamics of these

markers in the course of the HIV disease are highlighted. The overall correlation

coefficient between the log10-viral load measurements and the root-CD4+ T cell

counts for the current dataset is −0.482 which is not different from values found

in the literature. As an example, the value of the correlation coefficient between

the two markers for the data used by Mata-Maŕın et al. (2009) was −0.439.
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When we group the data into covariate classes, the values of correlation coeffi-

cients obtained show no remarkable difference from one cluster of the category to

the other. For instance when we look at the correlation coefficients for the two

sex, the values are not different to three places. Both had the same value of −0.48

which is equal to the overall computed correlation coefficient. A substantial dif-

ference, however, was noted in the correlations coefficients among the age-groups

especially for the groups 34 − 40 and > 40 with r = −0.3737 and r = −0.5265

respectively. This is possibly in line with what has been observed in Figure 2.2

where for the same median CD4+ T cell counts for the two groups we note a

considerable difference in the median viral load values.

We also checked for normality of the transformed variables: log10-viral load and

square-root of the CD4+ T cell count. The results are displayed in Figure 2.4 from

which we note that the root-CD4+ T cell counts represent a Gaussian variable

(right panel). The log10-transform of the viral load measurements shows a clear

departure from the normality assumption and this could, in part, be explained

by the large number of viral load values that were below limit of quantification

(400 copies per ml). This suggests that a different transformation for the viral

load levels would be more appropriate. However, in the analyses we will use the

log10-transform for the viral load measurements as is the practice in the literature

(Guedj et al., 2007a; Yu and Liang, 2013).

A bivariate linear mixed model for the markers of the form

Yi = Xiβi + ε, (2.1)

was considered where Yi is the bivariate response variable, β is the matrix of the

effects and Xi the matrix of the predictor variables. The results of the analysis

are displayed in Table 2.5. It can be seen from these results that the intercept,
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Figure 2.4: Checking for normality of the transformed markers.

coefficient for sex and that of time are significant for both markers. For the viral

load measurements we note that age-group is also significant while for CD4+ T

cell count we have facility to which the patients presented themselves as significant

for the model.

More detailed covariate tests for goodness-of-fit to the models will be presented in

the course of discussions in later chapters of this thesis.
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Table 2.5: Summary of mixed-effects model for the markers (model

(2.1)).

log10(viral load) root-CD4+ cell count

Value p-value Value p-value

Intercept 4.508 < 0.001 20.52 < 0.001

Supp. treatment −0.022 0.7471 1.310 0.0739

Compliance −0.015 0.8658 −1.093 0.2518

Facility −0.168 0.0729 3.569 < 0.001

Gender 0.243 < 0.001 −1.541 0.0339

Age −0.069 0.0349 0.605 0.0804

time −0.029 < 0.001 0.157 < 0.001
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Chapter 3

A model for multivariate longitudinal

data with complete outcomes with

application to HIV disease dynamics

Abstract

Multivariate longitudinal outcomes are increasingly becoming common in many re-

search studies especially in the biomedical and health research areas among others.

Special methods are required to analyze such data because repeated observations

on any experimental unit are likely to be correlated over time while multiple out-

comes within the unit will also be correlated. We consider nonlinear mixed-effects

models for complete multivariate longitudinal data. The motivation for the study

of nonlinear mixed-effects models arose due to the growing interest in the estima-

tion of parameters governing HIV disease dynamical models using real data. In

this discussion these parameters are estimated using the stochastic approximation

Expectation Maximisation (SAEM) algorithm in the presence of several covari-

ates. We use routine observational HIV data with multivariate outcomes as an
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application example.

3.1 Introduction

Typical longitudinal data from studies such as clinical trials or prospective ob-

servational studies consist of measurements or observations taken repeatedly over

time on a particular subject. The objective of such studies is to assess changes

and trends in response variables of study subjects over time. Longitudinal studies

also offer an opportunity to compare the rates of response change of individual

subjects on the same (or different) experimental treatment or under the same

(or different) conditions. Furthermore, longitudinal analyses describe how these

changes and trends in the response variable are related to explanatory variables

of interest. This is a direct advantage of longitudinal studies over cross-sectional

designs where measurements are taken only once. In the cross-sectional case a

dataset does not offer the opportunity to analyse within individual changes due to

treatment over time.

In longitudinal data the serial measurements on the same subject are bound to be

dependent. With such cases it is reasonable to assume that observations that are

closer together are likely to have higher correlations than those observations which

are farther apart (Jones, 2000). The overall correlation arises from between-subject

heterogeneity which is commonly included in the model in the form of random-

effects, within-subject serial correlation and errors in the response variable due to

measurement (Fitzmaurice et al., 2011).

In most clinical, epidemiological, psychometric and other social studies there is

usually a crucial need to collect information on several outcomes on each occasion

for a given subject. This gives rise to multivariate longitudinal data. Such data
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are correlated over time while multiple outcomes from the same subject on a given

occasion also tend to be correlated (Gueorguieva, 2001; Fieuws and Verbeke, 2006).

In multivariate longitudinal data, a subset or subsets of the jointly observed out-

comes may be similarly affected by the same model covariates. The resulting data,

therefore, require special models so that parameters of the model can be estimated

as efficiently as possible (Jia and Weiss, 2009). In this application, we assumed

that the two markers are independently influenced by the covariates so that any

correlation between the two is no caused by a third variable.

Multivariate longitudinal models have been widely discussed in the literature. In

his contribution, Reinsel (1982) considered models for complete and balanced mul-

tivariate longitudinal data under the multivariate random-effects covariance struc-

ture. Using maximum likelihood estimation, he derived closed-form expressions for

estimates of fixed-effects and covariance matrices for random-effects and for mea-

surement errors. Jia and Weiss (2009) proposed a clustered common explanatory

effects model for multivariate longitudinal data. The aim was to cluster outcomes

that respond similarly to changes in values of explanatory variables. They de-

veloped an algorithm for fitting the model using standard software for univariate

longitudinal data. The clusters of outcomes were selected by data using model

selection tools specifically designed for this purpose.

To analyse complete continuous non-normal or categorical multivariate longitu-

dinal data, Chaganty and Naik (2002) proposed a quasi-least squares approach.

They obtained a set of objective functions in terms of correlation parameters. Fur-

thermore, they described an algorithm for finding estimates of these parameters.

They used several correlation structures to illustrate the method of minimisation

described in their algorithm.

In modelling Alzheimer’s disease, Beckett et al. (2004) considered a random-effects
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approach for the association between the two characteristics of the response vari-

able. Furthermore, they compared these joint results with those obtained by treat-

ing the models of individual characteristics as separate growth curves analysed

using ordinary least squares approaches. Their study reveals that multivariate

models reduce the effect of measurement error on the inference of correlation co-

efficients between rates of change in the markers of the response variable.

Oort (2001) described multivariate longitudinal data as being characterised by re-

sponse variables, subjects under study and occasions of observation. He used struc-

tural equation modelling techniques to estimate parameters in the auto-regressive

and latent curve models because it has been argued therein that the three-mode

model is a special case of the linear latent variable model.

In this application we consider maximum likelihood parameter estimation strategy

for nonlinear mixed-effects models for complete multivariate longitudinal data. The

likelihood for nonlinear mixed effects models for balanced multivariate longitudinal

responses is usually not tractable so that no analytic expressions for estimates are

readily available and this becomes more complex with the increase in the number

of simultaneous outcome measurements for a given subject. We, therefore, use

the stochastic approximation Expectation-Maximisation (SAEM) algorithm as an

estimation tool for parameters of nonlinear mixed-effects models (Delyon et al.,

1999). The estimation method is applied to a routine observational dataset in the

context of HIV dynamics and in our analysis we have included several covariates.

The rest of the chapter is organised as follows. Section 3.2 contains the motiva-

tion of the discussion through the HIV dynamical system and the parameters that

characterise such a system. The nonlinear mixed-effects model for multivariate

longitudinal outcomes is described in Section 3.3. The log-likelihood of the pa-

rameters given the response and random-effects is also presented in this section.

29



A procedure for the estimation of the parameters is described in Section 3.4. An

analysis of a real bivariate observational dataset is given in Section 3.5. Section

3.6 concludes the chapter with a discussion.

3.2 The dynamical model for HIV

Biological models have considerably assisted in the study of disease dynamics and

subsequent issues related to antiviral policy and treatment (Perelson and Nelson,

1999; Nowak and May, 2000). This has been made possible by considering esti-

mates of the parameters that characterise such complex systems (Huang et al.,

2006).

The study reported in this thesis has been motivated by the HIV dynamical sys-

tem of nonlinear ordinary differential equations which models the pathogenesis of

the disease in order to assess the effectiveness of antiviral therapies (Wu, 2005).

This work aims at developing methodologies that could help in estimation of the

parameters that characterise this system. To infer on the underlying HIV dynam-

ics from the data on CD4+ T cell and viral load measurements we consider the

latent dynamic model discussed by Lavielle et al. (2011). The model considered

here distinguishes between the uninfected (TN), latently infected (TL) and acti-

vated infected (TA) CD4+ T cell counts and the infectious virus particles (VI) and

non-infectious ones, (VN). The TN cells are continuously produced in the body

(e.g. by the thymus) at a rate a and only a proportion π of infected CD4+ T

cells are activated cells. Latently infected cells become activated at a rate of d. It

is assumed that only activated CD4+ T cells produce virus particles. A descrip-

tion of the HIV dynamical system parameters is given in Table 3.1. This leads to

the following 5-dimensional system of nonlinear ordinary differential equations for
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Table 3.1: Parameters of the biological model for HIV.

Parameter Description

a (cells/mm3/day) Rate of CD4+ T cell production

cN (per day) Death rate of uninfected CD4+ T cells

cA (per day) Death rate of actively infected CD4+ T cells

p (per day) Number of virions produced by a CD4+ T cell

d Activation rate of TL cells

π Proportion of activated infected CD4+ T cells

τRTI Efficacy of reverse transcriptase inhibitor

τPI Efficacy of protease inhibitor

Fixed parameters

γ Infection rate of TN cells per virus particle (0.0021∗)

cL (per day) Death rate of latently infected CD4+ T cells (0.0092†)

cV (per day) Death rate of the virus particles (30‡)

∗ Lavielle et al. (2011); † Guedj et al. (2007b); ‡ Ribeiro et al. (2002)
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individuals assumed to be on treatment:

˙TN = a− (1− τRTI)γTNVI − cNTN

ṪL = (1− π)(1− τRTI)γTNVI − dTL − cLTL

ṪA = π(1− τRTI)γTNVI + dTL − cATA.

V̇I = (1− τPI)pTA − cV VI
˙VN = τPIpTA − cV VN

(3.1)

The parameters γ, cL and cV are the mass action terms between uninfected CD4+

T cells and the infectious virions, the death rate of unobservable latently infected

cells and the death rate of the virus particles respectively. We note that the com-

ponents TI , TL and TN constitute the observed CD4+ T cell counts and VI and VN

constitute the viral load measurements.

As observed in other discussions, the system in equation (3.1) does not have an

analytic solution (Xia and Moog, 2003; Huang et al., 2006; Wu et al., 2008). In

dealing with this complex dynamic system the quality and informativeness of the

data used to support the estimation of the system parameters is important. The

usual practice, however, is to fix some parameters at set values (either from lit-

erature or expert opinion, see Table 3.1) if they are not estimable directly from

the available information and estimate the rest of the parameters that can be

supported by the data at hand.

In most discussions regarding viral dynamics it is assumed that before initiation

of treatment the system is at equilibrium meaning that the viral load is in stable

state where the viral production and clearance are balanced (Ribeiro, 2007). This

means that all components of the HIV disease markers are all in stable state at

this point. For the system presented in equation (3.1) the equilibrium values of

the compartments are given by

TN(o) =
cNcV (d+ cL)

γp(d+ πcL)
,
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TL(o) =
cV VI(o)
p

,

TA(o) =
(1− π)γTN(o)VI(o)

d+ cL
,

VI(o) =
a− cNTN(o)

γTN(o)

,

VN(o) = 0,

where the constants have been described in Table 3.1. The actual measured or

observed viral load is the total of the virus particles: infectious and no-infectious

and the measured CD4+ T cell count is the total of uninfected, latently infected

and actively infected CD4+ T cells. This system will be used in illustrations of

the methodology developed in the subsequent chapters where we consider various

aspects of the data.

3.3 The nonlinear mixed-effects model for mul-

tivariate outcomes

Often in the biomedical and biological studies information is collected from each of

the individuals in the study with the objective of describing the response dynamics

within the individual that govern the relationship between such response variables

and the system covariates. These dynamics include pharmacokinetics, pharmaco-

dynamics and HIV disease process. The last process has been described in the

previous section. Making inference about parameters that govern such dynamics

from data is a common challenge because of the general behaviour of nonlinear

growth and decay curves including random-effects (or subject-specific effects) un-

derlying these data. Furthermore, the data used in such inferences may not be rich

enough to allow for the estimation of all parameters in a system. Such processes

are best analysed using nonlinear mixed-effects models or hierarchical nonlinear
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models (Davidian and Giltinan, 1995).

3.3.1 The model

Let k markers be jointly observed on each of the N individuals at ni = n occasions

spanning the longitudinal study. Let yhij denote the outcome of the hth marker

on the ith subject at occasion j, h = 1, 2, . . . , k, i = 1, 2, . . . , N , j = 1, 2, . . . , n.

Then Yhi is an n × 1 response vector for the hth marker for this subject so that

the response is an n× k matrix given by

Yi =



y1i1 y2i1 . . . yki1

y1i2 y2i2 . . . yki2
...

...
. . .

...

y1in y2in . . . ykin


. (3.2)

In this chapter we are estimating parameters of the disease process in equation

(3.1) using balanced data where each subject is assumed to be observed on n

occasions. This is in contrast to what we will consider in Chapters 4 and 5 where

subject i will be available for observation on ni (< n) occasions only.

This multiple-outcome response matrix can now be expressed in terms of the pa-

rameter vector and the explanatory variables so that it takes the form

Yi = gi(ψi,Xi) + εi,

where gi(.) is an n × k matrix of functions such that at least one column is non-

linear in the parameters ψi and the exploratory variables Xi (Cudeck, 1996). The

quantity εi is the corresponding n × k measurement error matrix related linearly

to the response matrix Yi.

The common practice when working with multivariate response matrix in (3.2)

is to form a new nk-dimensional vector yi through a process called vectorization
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(Reinsel, 1982; Shah et al., 1997; Marshall et al., 2006). This is a mathematical

operation where columns of a matrix are stacked to form a vector with length

corresponding to the size of the matrix so that

yi = vec(Yi) = (YT
1i,Y

T
2i, . . . ,Y

T
ki)

T ,

where T stands for transpose and each {Yhi : h = 1, 2, . . . , k} is an n-dimensional

vector. Then in the spirit of Lindstrom and Bates (1990) the new response vector

for the ith subject assumes a model of the form

yi = g(ψi,Xi) + ei, (3.3)

where

g(ψi,Xi) = {gh(ψi,Xi) : h = 1, 2, . . . , k} ,

of which at least one is a nonlinear function of the parameter vector ψi and the

model covariates Xi (also see Davidian and Giltinan, 1995). The quantity ei (=

vec(εi)) is the random error vector reflecting uncertainty in the response vector as a

result of measurement or observation. It is assumed that ei ∼ MVN(0,Σi) and that

the measurement errors of different individuals are such that that cov(ei, ei′) = 0

for i 6= i′.

The parameter vector ψi takes into account the fixed-effects and random-effects.

The procedure is to include this vector in model (3.3) through a model of the form

ψi = Aiβ + Bibi, (3.4)

where β is a p × 1 vector of the fixed-effects, bi is a q × 1 vector of random-

effects. The quantities Ai and Bi are known design matrices usually of the baseline

covariates and they link the fixed-effects and random-effects, respectively, to the

vector ψi.
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As in a discussion by Liu and Wu (2007), we assume that bi has a multivariate nor-

mal distribution with mean zero and a variance-covariance matrix G and that the

random-effects and the error terms for a particular subject are also not correlated

so that cov(ei,bi) = 0. From model (3.4) we note that

ψi ∼ MVN(Aiβ, BiGBT
i ),

because it is linear in bi. This assumption implies that one can find an expression

for a generalised least squares estimate of β which takes the form

β̂ =

(
N∑
i=1

AT
i V−1ψi

Ai

)−1 N∑
i=1

AT
i V−1ψi

ψi, (3.5)

where Vψi
= BiGBT

i and the quantity ψi is unobserved just like the random-

effects. This complicates the estimation process especially in situations where

some of the response values are missing due to dropout or presence of left-censored

data. In this chapter we are considering a case where data are balanced so that

no response values are missing.

The choice of the structure of the covariance matrix Σi matters in parameter

inference because it determines the actual number of unknown model parameters

to be estimated. One of the convenient choices is to use the covariance matrix

of the measurement error of the univariate response (Shah et al., 1997; Marshall

et al., 2006). For instance, if one considers the jth row of the error matrix εi(j)

and assumes a normal distribution with mean zero and k×k covariance matrix Σ,

then the overall error covariance matrix of has the form

cov(ei) = Σi = Σ⊗ In×n,

where ⊗ denotes the usual Kronecker product and I is the identity matrix. The

implication of this assumption is that the error terms for the markers of a particular

response variable from the same subject have a covariance matrix Σ and the rest

are assumed to be mutually independent.
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3.3.2 Parameter estimation in the nonlinear mixed-effects

model

The estimates of the parameters β and the covariance matrices G and Σi are ob-

tained using numerical approximation techniques because of the nature of the non-

linear model besides the fact that the random-effects are treated as missing data.

There are two classes of parameter estimation methods for nonlinear mixed-effects

models. The first and possibly the most popular class involves linearisation of the

regression model with respect to the random-effects so that parameter estimation

can be implemented in standard software (Lindstrom and Bates, 1990; Vonesh

and Carter, 1992; Davidian and Giltinan, 1995; Marshall et al., 2006). The main

disadvantage of these methods is that they give inconsistent parameter estimates

notably in studies with few occasions. The other class involves approximating the

likelihood function by integrating out the unobserved quantities by either using

the Gaussian quadrature like in Walker (1996) and Nummi and Möttönen (2000)

or stochastic methods (Kuhn and Lavielle, 2005; Samson et al., 2006). In this

application we use one of the latter methods called the stochastic approximation

version of the Expectation-Maximisation (SAEM) algorithm which we describe in

Section 3.4.

Let θ = (β,G,Σi) be the vector of the parameters characterising the two-stage

model (3.3) and (3.4) and assuming that the response variable is such yi|ψi ∼

N(µi(ψi,xij),Σi) where

µi(ψi,xij) = g(ψi,xij),

and

Σi = var(yi|ψi).
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Then the joint density of the response and random-effects is given by

f(yi,bi|θ) = f(yi|bi,Σi)p(bi|G).

We need the maximum likelihood estimate of θ and this is obtained by using the

likelihood of the observations which is given by

L(θ|y) =
n∏
i=1

∫
f(yi|bi,Σi)p(bi|G)dbi.

Since maximum likelihood estimation is known to underestimate the covariance

components, in this chapter we use the restricted maximum likelihood estimation

so that the complete sequence log-likelihood for estimation of the parameters takes

the form

l(θ|yi) = constant− n

2
log |G| − Na

2
log |Σi|

−1

2

∑
bTi G−1bi −

1

2

∑
(yi − µi)Σ−1i (yi − µi), (3.6)

where Na is the total of the k-tuples observed for all N subjects. To estimate

the parameters of the model we need to account for the random-effects which are

regarded as missing data. This is achieved by considering the conditional likelihood

of bi given yi and this is given by

p(bi|yi) =

∏n
i=1 f(yi,bi|θ)∫ ∏n
i=1 f(yi,bi|θ)dyi

. (3.7)

In the algorithm we describe in the next section the procedure is to maximise the

expectation of l(θ|y) with respect to the conditional density of the random-effects.
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3.4 Parameter estimation using the SAEM algo-

rithm

There are a number of approximation procedures that are applicable to the esti-

mation of parameters in cases where closed-form expressions are not attainable.

One of the most widely used techniques in statistical approximations is the EM

(Expectation-Maximisation) algorithm which was introduced by Dempster et al.

(1977). The EM algorithm is an efficient iterative procedure for computing the

maximum likelihood (ML) or restricted maximum likelihood (REML) estimates

in the presence of missing or hidden data. Each iteration of the EM algorithm

consists of two steps: the E-step, and the M-step. In the E-step, the missing data

are estimated given the observed data and current estimates of the model param-

eters. This is achieved by using the conditional expectation of sufficient statistics

for parameters (especially those of the covariance matrices G and Σ) given the

observed data and the current values of these parameters. In the rth iteration

of the M-step, parameters are found by equating them to expectations of their

sufficient statistics. The estimated data from the E-step are used in lieu of the

actual unobserved data. There are cases where this approximation technique can-

not be applied because the E-step may not give closed form expressions that may

be used in the M-step. Thus other methods of estimating the dynamical system

parameters have to be considered.

In this thesis we use the stochastic approximation version of the EM algorithm

(SAEM). This is a parameter estimation method which was proposed by Delyon

et al. (1999). It consists of replacing the E-step of the EM algorithm by two steps:

Step 1 simulation of the missing data using a priori density of the missing values
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given the observed values and initial parameter values and;

Step 2 updating the set of sufficient statistics of the unknown parameters like the

covariance matrices.

The second step is followed by the maximization step. It has an advantage of

converging to maximum likelihood estimates faster that the EM algorithm. In this

algorithm, simulated missing values are used in the evaluation of the quantity that

is eventually maximised to give parameter estimates and these simulated values

are gradually discarded. It can be implemented in R and MONOLIX. Codes of this

algorithm have also been proposed for other statistical software like SAS. In this

thesis, we have implemented this estimation method in R and MONOLIX.

Kuhn and Lavielle (2005) applied this algorithm in finding maximum likelihood

estimates for nonlinear mixed-effects models for univariate longitudinal data. In

their contribution Samson et al. (2006) extended the SAEM algorithm to accom-

modate left-censored data in a nonlinear mixed-effects model as an exact maximum

likelihood estimation method and illustrated this extension with a simulation study

in the HIV dynamics context. We extend the application of the SAEM algorithm

to multivariate longitudinal outcomes with several covariates where random-effects

and measurement errors are treated as unobserved. Then the SAEM algorithm is

implemented as follows.

Step 1 Let iterations be indexed by r = 0, 1, . . . ,∞ with r = 0 corresponding to

initial values assigned to θ, the vector containing components of the covari-

ance matrices Σi, G and β. Then θ(r) denotes the value of θ at the end of

the rth iteration. The complete data for finding the estimates consist of yi

and bi with log-likelihood given in (3.6).
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Step 2 Simulation Step : Let p(.|yi,θ(r)) be a conditional density of the un-

observed random-effects as given in (3.7). Then Simulate m(r) values of the

unobserved random-effects (b
(r+1)
i ) of size m(r) from this distribution.

Step 3 Stochastic Approximation : Define s(r) by

s(r) = E[l(θ)|bi,θ(r)]

=
∫
l(θ)p(bi|yi,θ(r))dbi.

Then the approximation step involves updating s(r) to s(r+1) according to the

relation

s(r+1) = s(r) + δr+1

(
S(y,b

(r+1)
i )− s(r)

)
, (3.8)

where δr+1 is a step-size scalar such that δr+1 → 0 as r →∞ and the quantity

S(y,b
(r+1)
i ) is given by

S(y,b(r+1)) =

∑m(r)
1 l(yi,b

(r)
i ,θ(r+1))

m(r)
.

This step reduces to updating sufficient statistics
∑N
i=1 eie

T
i and

∑N
i=1 bib

T
i

of the complete model. At iteration (r + 1), these quantities are updated as

follows

s1,(r+1) = s1,(r) + δr+1

(∑m(r)

1
(b

(r+1)
i (b

(r+1)
i )T )

m(r)
− s1,(r)

)
s2,(r+1) = s2,(r) + δr+1

(∑m(r)

1
(e

(r+1)
i (e

(r+1)
i )T )

m(r)
− s2,(r)

)
.

(3.9)

Step 4 M-Step: In this step we find the values of β̂, G(r+1) and Σ
(r+1)
i that

maximize the updated quantity in Equation (3.8). Elements of G(r+1) and

Σ
(r+1)
i are found by using their sufficient statistics. The iterative equation

for estimating the covariance of random-effects is given by

Ĝ(r+1) =

∑N
1

(
E[bib

T
i |yi,θ(r)]

)
N − pk

. (3.10)
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From our assumption of the covariance matrix Σi we can find particular

elements on the diagonal by using the relation

Σ̂(r+1) =

∑N
i E[eie

T
i |yi,θ(r)]

Nn− pk
,

so that Σ̂
(r+1)
i = Σ̂(r+1) ⊗ In×n. The updated value of β is then found by

using the relation from (3.5) and is given by

β̂(r+1) =
(∑

AT
i (V

(r+1)
ψi

)−1Ai

)−1∑
Ai(V

(r+1)
ψi

)−1ψ
(r+1)
i .

The values found at the M-step are then used in the S-step and this procedure

is repeated until a predetermined convergence criterion is satisfied.

Starting values can be obtained in a number of ways mostly dependent on the

choice of the model and the nature of the dataset. In some cases identity matrices

are used as starting covariance matrices at the first iteration of the algorithm. But

these may not be the most appropriate choice especially in terms of the number of

iterations needed to attain convergence (Shah et al., 1997). For other forms and

techniques for obtaining starting values see Laird et al. (1987) and Harville (1977).

In this thesis we have used identity covariance matrices since the SAEM algorithm

speeds up convergence to maximum likelihood estimates.

This algorithm does not provide standard errors of the parameter estimates at

the end of the iterations (Vermunt, 2004). Thus one would get these quantities

by finding the observed information matrix through the matrix of second-order

derivatives of the log-likelihood function with respect to θ. The evaluation of this

matrix is complex because it does not have a closed-form expression. Delyon et al.

(1999) proposed a stochastic approximation of the Fisher information matrix as

follows. Let lo(θ) and lc(θ) be the log-likelihood functions of the observed data

and complete data, respectively. Then using the modified approach in Samson
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et al. (2007) we have

∂lo(θ) = E[∂lc(θ)|yio,θ],

and the Hessian of L(θ) can be written as

∂2lo(θ) = E[∂2lc(θ)] + var(∂lc(θ)),

where the partial differentials are with respect to θ. Thus at the end of the rth

step of the algorithm one gets the following approximations

Λr+1 = Λr + δr+1

 1

m(r)

m(r)∑
1

∂lc(yio,w
(r)
i ;θ(r))−Λr

 ,
and

υr+1 = υr + δr+1

 1

m(r)

m(r)∑
1

(
∂2lc(yio,w

(r)
i ;θ(r))

+∂lc(yio,w
(r)
i ;θ(r))∂(lc(yio,w

(r)
i ;θ(r)))T

)
− υr

)
,

where

Λr+1 = E[∂lc(θ)|yio,θ],

and

υr+1 = E[(∂2lc(θ))] + var(∂lc(θ)).

Using these expressions we get the quantity

Hr+1 = υr+1 −Λr+1Λ
T
r+1. (3.11)

As the sequence {θr+1 : r ≥ 0} converges to maximiser of the complete-data log-

likelihood given in equation (3.6), the sequence {Hr+1 : r ≥ 0} given by equation

(3.11) converges to the Fisher information matrix and the inverse of this matrix

provides the estimated variance-covariance matrix for the parameter estimates.

It should be noted that the information matrix is also used for checking model

identifiability (Vermunt, 2004).
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3.5 Application

3.5.1 The Statistical model

The observable markers are resultants of the compartments of the HIV disease

dynamical model introduced in Section 3.2. Thus V = VI + VN and T = TN +

TL + TA are the total observed viral loads and the CD4+ T cell counts for the ith

subject at occasion j respectively. These repeated marker data are usually skewed

and as such the modelled components g1(.) and g2(.) are transforms of the observed

total viral load and CD4+ T cell count such that g1(V ) = log10(VI + VN) and

g2(T ) = (TN+TL+TA). In this thesis, however, we used an identity transformation

for g2 because the usual transformations of square-root or fourth-root for the CD4+

T cell count provided parameter estimates that are either very large or too small

compared to those in the literature. This justifies the choice of a constant error

term for the log10-viral load and the proportional error model for CD4+ T cell

count.

Thus if we let yi denote, as defined in model (3.3), the measurements for subject

i then the bivariate response variable can be written as yi = (y1i, y2i) where

y1i = g1(V (tij,ψi)) + eV i, j ≤ n and

y2i = g2(T (tij,ψi)) + g2(T (tij,ψi))eT i

, (3.12)

where n in the number of occasions at which each subject is observed and ei1 and

ei2 are measurement error vectors such that

ei1 ∼ N(0, σ1Ini1
) and ei2 ∼ N(0, σ2Ini2

).

The quantity ψi is the vector of parameters of the HIV dynamical system described
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in Table 3.1. It is included in model (3.12) through the relation

log10(ψ1) = β01 +
∑M
l=1 βl1Xi + bi1, ψ1 = (a, cN , cA, p, d)

logit(ψ2) = β02 +
∑M
l=1 βl2Xi + bi2, ψ2 = (τRTI , τPI , π)

, (3.13)

where the elements of ψh have been defined in Section 3.2 and M is the number

of model covariates. The elements of ψ1 have log-transforms because they have

to be positive and those of ψ2 are defined as inverse logistic transformations of

a normal random variable because as proportions they assume their values in the

interval (0, 1). The quantities bi1 and bi2 represent random-effects with a normal

distribution. It will be noted that models (3.12) and (3.13) define the hierarchical

nonlinear mixed-effects model that we described in equations (3.3) and (3.4) in

Section 3.3.

There is usually a sharp increase in CD4+ T cell count and rapid decline of the

viral load in the first few weeks after treatment initiation and flatten out thereafter

(Ma et al., 2008). Thièbaut et al. (2003) observed that this happens in or about

the first forty days of treatment commencement. Unlike in planned clinical studies,

like in Wu (2005) and Huang et al. (2006), our data do not give us enough ground

to consider a piecewise linear formulation because of lack of enough measurements

in the first few weeks after initiation of treatment as our data are observational in

nature. Moreover, we are mainly concerned with post-infection characteristics of

the HIV disease including treatment dynamics.

3.5.2 Data

HIV patients at the Lighthouse Trust Clinics (in Malawi) are routinely monitored

to check how they are responding to treatment. In this application, there were

many subjects whose information was mostly available at the time of collection.
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For most patients the clinical information including CD4+ cell counts and viral

load measurements were collected at the treatment initiation. However, not all

patients had frequent and exact measurements of viral loads. This is possibly

because quantifying viral load is usually influenced by the cost and availability of

resources (Romih et al., 2010). This suggests the reason for having more CD4+

cell count measurements for most patients compared to viral load measurements.

Thus in the current application only subjects with five measurements of both

the CD4+ cell count and viral load (including baseline values) were included.

This ensured that we had balanced bivariate longitudinal data in line with the

objective of the current application. There were 78 patients with this information

representing about 40% of those that had at least three measurements of both the

CD4+ T cell count and viral load. The total number of clinical measurements in

this representative sample was 780 for both CD4+ cell counts and viral load. The

threshold value for viral measurements for the assay used in the quantification was

400 copies per ml. About forty (39.5%) percent of the viral load measurements

were below the threshold. Potentially these are left-censored observations and a

model to address this problem can be proposed. In the current discussion we took

400 copies per ml as the true observation. This problem will be given due attention

in Chapters 4 and 5.

3.5.3 Implementation

We implemented the algorithm in MONOLIX and R. Both are free statistical soft-

ware. The former was developed by INRIA (Institut National de la Recherche en

Informatique et Automatique) and is obtainable from www.lixoft.com. It handles

a number of algorithms that are used in the estimation of parameters in nonlinear
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mixed-effects models including MCMC. In this application we used MONOLIX ver-

sion 4.1. The latter software was developed by Ross Ihaka and Robert Gentleman

and is currently maintained by the R Development Core Team.

3.5.4 Results

Tests were conducted on the data in order to identify covariates that are signifi-

cant to the bivariate response described in the previous section. We did this by

comparing models (in particular the model in equation 3.12) with and without

covariates. There were eleven sets of covariates to be tested and the results are

displayed in Table 3.2. The table only shows results for significant covariates based

on the likelihood ratio tests (LRT). From the significant covariate sets shown in

the table, we also considered the Akaike information criterion (AIC) as a criterion

for choice of the best set. The CT-A combination was selected on account of the

values of its AIC which is 6785.48 and this was the smallest among the covariate

sets that were tested.

Table 3.2: Choice of model covariates based on model (3.12): A = age-

group; C = compliance; F = facility; S = sex; T = treatment.

Covariate set FS-A CT-A CS-A CFT-A CST-A

p−value (LRT) 0.0456 0.0139 0.0002 0.0122 0.0279

AIC 6809.74 6785.48 6793.14 6815.20 6819.45

We estimated the parameters of model (3.13) using the HIV observational bivari-

ate longitudinal data described in Section 3.5.2. The effects of covariates on the

response variable are presented in Table 3.3 and these results are based on model
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(3.13) for the two parameters on treatment efficacy. Coefficients of the other pa-

rameters can be determined in similar manner. Based on the values of β, it can be

seen that of all the age-groups the > 40 group has a bigger absolute contribution

to both the treatment efficacy of the protease inhibitor τPI and that of the tran-

scriptase inhibitor (τRTI). But this could be significant probably for transcriptase

inhibitor only as seen from the size of standard error. In the HIV dynamic model

Table 3.3: Estimates of regression coefficients of the efficacy model (3.13).

Covariate βPI (s.e.) βRTI (s.e.)

26− 33 1.06 (0.983) −4.64 (5.251)

Age-group 34− 40 −4.16 (2.065) −0.693 (0.110)

over 40 −7.78 (9.1) 6.3 (3.472)

Compliance to treatment −2.07 (1.086) 0.912 (0.070)

Supplementary treatment 3.04 (3.56) 1.71 (1.411)

the death rate of the virus particles, cV , was fixed at 30 copies per day based on the

literature (Ribeiro et al., 2002). There were two other sets of parameters that did

not permit simultaneous estimation and as a result, two more parameters (cL and

γ) were fixed (see Table 3.1). With these fixed values, the other dynamic system

parameters were estimated and are presented in Table 3.4.

The results indicate that for the current data, CD4+ T cells were produced at

a rate of 11.4 cells/mm3 per week or 1.63 cells/mm3 per day which is within the

range of estimated values in the literature (Guedj et al. (2007a) estimated the value

as 1.67 cells/mm3 per day and Lavielle et al. (2011) got 2.62 cells/mm3 per day).

These minor differences could be as a result of differences in marker transforma-

tions, models used in the estimations and possibly differences in threshold values
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for the viral load. Another reason for these variations could result from differences

in HIV subtypes with same overall dynamics but differing disease progression rates.

Furthermore, datasets used in the estimation of the parameters are obtained under

different conditions and assumptions and the resulting estimates are bound to dis-

play such differences. For instance in our case, we had included several covariates

which was not the case in some discussions like the one by Lavielle et al. (2011).

Of particular interest were the values of the treatment efficacy τPI and τRTI (0.998

and 0.972 respectively) which compared well with those in Huang and Lu (2008).

Figure 3.1 demonstrates individual fits for log10-viral loads for four subjects.
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Figure 3.1: Individual fits of the log10-viral load.

We also computed parameter estimates for each age-group and very interesting

results were obtained. For efficacy of treatment, it was observed that the group

26 − 33 gave estimates that did not deviate significantly (with τPI = 0.99 and

τRTI = 0.796) from the global values as compared to the other two age-groups.
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The estimates for the older group (> 40) showed a wide departure in the value of

τPI compared to the overall value of 0.998 obtained in Table 3.4. This prompted

Table 3.4: Estimates of parameters of the HIV dynamical

model (and their std. errors).

Parameter Estimated value standard error

a 11.4 5.3

cN 4.08× 10−7 –

cA 0.272 0.08

p 159 169.801

d 3.02× 10−7 –

π 0.779 0.402

τRTI 0.998 0.17895

τPI 0.972 0.1145

us to take a closer look at the correlation coefficients between the markers and the

individual estimates of the efficacy for each of the three groups. The results of

the correlation analysis suggest that lower correlations between τRTI and CD4+

T cell count values imply lower efficacy for the protease inhibitors and a higher

efficacy for the transcriptase inhibitors. This could suggest that lower values of

τRTI result in higher values of the viral load and lower values of the CD4+ T cell

count. This is understood from clinical perspective where a poor performing drug

results in viral rebound. The markers themselves were negatively correlated, with

small variations among age-groups and in the present balanced data the value of

the overall correlation coefficient was −0.5204. This can also be looked from the

exploratory analysis point of view where it has been shown that the older age-

group had higher CD4+ T cell counts on average (see Figure 2.2). It should be
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pointed out that τPI did not provide results that could be directly interpreted and

as a result its correlation values with markers for the three age-groups have not

been included in Table 3.5.

Table 3.5: Correlation coefficients between efficacy and markers in

age-groups.

Age-group 26− 33 34− 40 > 40

Efficacy
τRTI τRTI τRTI

0.796 0.995 1

Correlation
CD4+ T cell count 0.1523 0.0596 −0.3433

Log10-viral load −0.1478 0.0281 0.0645

We also looked at the relationship between the two covariates (compliance and

supplementary treatment) and τeff (= τPI or τRTI). The results indicate that for

τPI both supplementary treatment and compliance to treatment are significant

with p−values of < 0.001 and 0.0024 respectively. For τRTI , however, results

indicate that only supplementary treatment was significant with a p-value of <

0.001. These results are indicative of the importance of the two covariates to

disease treatment efficacy as described by the dynamic system presented here.

3.6 Discussion

In this chapter, we have considered nonlinear models for multivariate longitudinal

data as applied to estimation of parameters in a disease dynamic model for HIV.

We have studied the efficacy of treatment and other dynamic parameters in the

presence of a multiplicity of covariates. In particular, we have shown that fac-
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tors like age of a patient at initiation of treatment, compliance to treatment and

supplementary treatment have a significant bearing on an individual’s response

to treatment. We are mindful of the fact that inclusion of many covariates in

a complicated nonlinear model for the dynamic system could make computation

of parameters more demanding, but inclusion of those significant variables, as

demonstrated in this discussion, will make estimation and inference to be more

meaningful and practical.

The analyses and approximation procedures presented here can be generalised to

find applications in other disease modelling problems. For instance, in modelling

other chronic illnesses like cancer one may determine the efficacy of treatment and

the impact of treatment compliance on response to treatment regimen (among

other system parameters) by applying the procedures discussed in this review.

In the analyses, we assumed that all subjects had their markers measured at the

same time. That is, we have assumed a complete and balanced bivariate dataset,

where all measurements are taken at the same time for all the subjects which

amounts to a complete case analysis. This obviously leads to loss of information

from subjects who were partially observed. However, in most practical settings like

clinical, epidemiological, psychometric and other social studies it is not uncommon

to have unbalanced data where subjects are measured or observed at different time

points and with different numbers of occasions.

We have also observed that compliance to treatment is a significant covariate in the

bivariate data that we have looked at. As an indicator of treatment compliance,

absence at appointment (or scheduled) times could not adequately reflect actual

compliance profiles for individual subjects. Absence at time of appointment may

not imply that the patient was not complying to treatment. This means that the

data quality would affect accuracy of estimation for dynamic system parameters
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if the covariates are not properly defined and modelled (Huang and Lu, 2008).

It would be worthwhile to re-define this factor (treatment compliance) to include

such situations as (i) a patient is checked to be taking prescribed medication at

appointed times, (ii) recommended dose and diet is being taken by the patient, (iii)

prescribed schedules of patient physical exercises (or related health maintenance

or improvement activities) are being followed by the subject under study and

(iv) any treatment related advice from the doctor or medical practitioner is being

adhered to (Pullar et al., 1989). A proper documentation of getting supplementary

treatment would also be a great advantage so that it is more accurately modelled.

For some subjects, the viral load values were frequently below the threshold value

and this scenario is known for creating an artificial level-off effect in a dataset.

If these censored data are not modelled accordingly, they usually result in some

parameters being either underestimated or overestimated (Wu, 2005). We suspect

that it was such high proportions of threshold values that led to a few parameters

having estimates that departed considerably from those in the literature.

On the whole, however, these shortcomings did not outweigh our observations

and results that the parameters in the dynamic systems are better estimated or

approximated with reasonable practical reliability if system covariates are included

in the analyses. Our results compared very well with other published results. As

an example, the number of virus particles produced a CD4+ T cell, p, is within

values found in some discussions (104 in Guedj et al. (2007b) and 183 in Yu and

Liang (2013)).
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Chapter 4

Modelling multivariate longitudinal data

with dropout with application to HIV

disease dynamics

Abstract

The main challenge in biomedical and clinical studies which involve collection

of longitudinal data is the premature withdrawal of the subjects from the study

resulting in incomplete data. Standard statistical analysis approaches usually give

biased estimates of the model parameters if the mechanisms that led to dropout are

ignored. In this chapter we consider nonlinear mixed-effects models for multivariate

longitudinal data in the presence of subject dropout. We present techniques for

estimation of model parameters. These procedures are applied to estimation of

parameters in the HIV dynamical system using routine observational data from an

HIV clinic.
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4.1 Introduction

Many biomedical and epidemiological studies are designed to collect data that

consist of measurements or observations taken repeatedly over time on a particular

subject. In clinical trials, for instance, disease progression or effect of treatment

are regularly monitored by observing a disease marker over time. The objective of

such studies is to assess changes and trends in response variables of study subjects

over time.

However, occurrence of incomplete data is not uncommon in these study designs

because not all subjects are available for observation or measurement at scheduled

appointment times. The incomplete data can arise from intermittent missingness

as a result of logistical problems and ill-health or completely dropping out of the

study due to attrition or withdrawal because of drug toxicity in case of clinical trials

or indeed due to manifestation of little improvement in the presence of treatment

(Fitzmaurice, 2003; Liu and Wu, 2007; Ibrahim and Molenberghs, 2009). This

results in subject i having only ni ≤ n observations where n is the number of visits

intended for each subject in the original study design.

The problem of incomplete data due to intermittent missingness and dropout is also

common in observational studies involving a prospective follow-up of patients for

some health outcome. The challenge in model formulation for incomplete longitu-

dinal data is the need to take into consideration the latent causes of missing values

and the assessment of the resulting biases (Hogan et al., 2004; Gad and Ahmed,

2006; Molenberghs and Kenwrad, 2007). In practice, however, this missing data

mechanism is usually not fully specified and this poses statistical challenge.

The dropout mechanism may not be influenced by the values of the response

variable (observed or unobserved) on a study subject. For instance, a subject may
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drop out of the study because of the occurrence of an unforeseen event like a job

transfer to a new work place far from the study location. In this case, the data are

said to be missing completely at random (MCAR). When the probability of missing

mechanism depends on the observed measures only and not on the missing values,

the data are said to be missing at random (MAR). The other scenario is when the

probability of non-response is a function of the unobserved data (Little and Rubin,

1987; Rubin, 2004). In this case the data are said to be missing not at random

(MNAR). For instance, missing not at random (or non-ignorable missingness) can

occur when the subject’s outcome trend has a direct bearing on their tendency

for early withdrawal from the study (Fitzmaurice and Laird, 2000; Pantazis et al.,

2005). In some cases, the absence of a marker reading results from censoring due

to lower detection limits of the assays used in quantifying the markers like viral

load levels.

The nature of the missingness processes has implications on estimation of param-

eters in a longitudinal data model. It has been suggested in the literature that

likelihood-based estimation techniques can provide accurate inferences by ignoring

the missingness process when data are missing completely at random or missing

at random (Diggle and Kenward, 1994). However, when missingness mechanism is

not missing completely at random, caution must be exercised in building models

so that these missingness processes are reflected in the models to reduce estimation

biases. There are several procedures that have been discussed in the literature for

the estimation of parameters in the models of univariate longitudinal data with

missing values (Hu and Sale, 2003; Roy, 2003; Molenberghs et al., 2004; Wu and

Wu, 2007).

However, most clinical trials and epidemiological studies with a long time course

have designs involving measuring or observing several markers that characterise
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the response variable related to progression of the disease or indeed any biolog-

ical process of interest (Pantazis et al., 2005; Cai et al., 2010). Just like in the

univariate case, the occurrence of dropouts is a common challenge in the esti-

mation of parameters of the models for multivariate longitudinal data. In fact

this presents an additional complication because the multiple outcomes within the

response variable will most likely be correlated in addition to the problem of poten-

tially missing values in all the outcome variables. There are few discussions in the

literature on the analysis of multivariate longitudinal data with subject dropout.

Roy and Lin (2002) modelled the relationship between a latent variable (a variable

that is not directly observed) and covariates using a linear mixed model. They

assumed that the dropout process depends on the latent variable and applied the

selection model in order to account for non-ignorable missing data. They also used

a transition model (a model where previous outcomes are used as predictors) in

order to accommodate missing covariates in their analysis.

In this chapter we propose strategies for the estimation of parameters in disease dy-

namical systems using nonlinear mixed-effects models of multivariate longitudinal

data in the presence of dropout or monotone missingness (Wu, 2002). Parame-

ter estimation procedures are proposed for implementation using the stochastic

approximation EM (SAEM) algorithm (Delyon et al., 1999). In this chapter, we

specifically consider a case where dropout requires that all the markers of the re-

sponse variable are not available after a subject drops out. We also include several

covariates which we assume to be completely observed and time invariant. We

then estimate parameters characterising HIV disease dynamics in the presence of

subject dropout.

We give a brief statement on the motivation of the study in Section 4.2. A nonlinear

mixed-effects model for multivariate longitudinal data is presented in Section 4.3.
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In Section 4.4 a dropout model for multivariate longitudinal data is given and a

joint distribution of the dropout mechanism and multivariate longitudinal response

is proposed. A brief overview of the approximation procedure is also outlined in

this section. This methodology is illustrated in Section 4.5 using an observational

dataset and we close this chapter with a discussion and conclusion in Section 4.6.

4.2 Motivation of the discussion

The study reported in this chapter has been motivated by the latent HIV dynamic

system of nonlinear ordinary differential equations which models the pathogenesis

of the disease and this has been described in Section 3.2 of Chapter 3. It has the

form

Ḟ(T, Ṽ) = f(T, Ṽ|ψ), (4.1)

where T = (TN , TL, TA) is the set of the uninfected , latently infected and activated

infected CD4+ T cells and Ṽ = (VI , VN) are infectious virus particles and non-

infectious ones. The quantities Ḟ and f represent the left-hand and right-hand

members, respectively, of the HIV dynamic system in equation (3.1). The set ψ =

(a, cN , cA, cL, γ, p, π, τRTI , τPI) of constants characterises this dynamical system and

are described in Table 3.1. The interest is in finding suitable models which can be

used in the identification and estimation of parameters governing this dynamical

system while taking into account dropout processes . As can be seen from Figure

4.1, most subjects included in the analysis did not have all their markers observed

at scheduled consultation times. Most of them dropped out before the designated

observation period and this could be attributed to a number of reasons which may

include lack of favourable response to treatment, change of location or indeed loss

due to death (a full account of reasons for dropping out is given in the previous
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Figure 4.1: Time-plot for root-CD4+ T cell counts: illustrating

subject dropout.

section). As pointed out in the introduction one cannot fully discern all the reasons

for dropout a prior, hence the need for a modelling approach.

4.3 The nonlinear mixed-effects model for mul-

tivariate longitudinal data

Inference about parameters that govern biomedical and biological processes like

pharmacokinetics, pharmacodynamics and viral disease process from data is a

common challenge because of the general behaviour of nonlinear growth and de-

cay curves underlying these data. Such processes are best analysed using nonlin-

ear mixed-effects models or hierarchical nonlinear models (Davidian and Giltinan,

1995). The general nonlinear model has been described in Section 3.3 of the pre-

vious chapter.
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4.4 Modelling the dropout process

In many biomedical, epidemiological and biological studies and particularly those

studies involving disease history which span long periods of time the aim is to col-

lect repeated measurements of the outcomes that characterise the disease process.

The main challenge in such designs is the occurrence of missing data which results

from missing visits or prematurely withdrawing from the study. In this section we

propose a model for the dropout process for multivariate longitudinal data based

on the work of Diggle and Kenward (1994).

Subjects drop out of the study due to a multiplicity of reasons like death or toxicity

in the case of clinical trials (Liu and Wu, 2007). The assumption is that for a

particular subject all the markers are either available or are not available after

dropout. Let n be the number of occasions marked for observation (measurement)

and ni ≤ n be the number actually observed. Thus ni = n means a complete

scenario and ni < n corresponds to a dropout for the ith subject.

4.4.1 The dropout model

Let Ci = ni + 1 be the indicator of the occasion of dropout where Ci ≤ n and

Ci = n + 1 means a complete case. We assume that measurements have been

obtained at baseline on all subjects before they drop out of the study since a

unit without an observation does not have any contribution to the model analysis

and that the k response characteristics are measured at the same time. Suppose

Yi = (yi1,yi2, . . . ,yin)T is an n× k matrix of complete k-outcome measurements

of the ith subject and ti = (ti1, ti2, . . . , tin)T be defined as the corresponding vector

of measurement time points. Let the matrix of the observed multiple outcomes be

given by Yi,o = (yi1,yi2, . . . ,yini
)T and the corresponding missing data matrix be
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denoted by Yi,m =
(
yi(ni+1),yi(n1+2), . . . ,yin

)T
. Define j′ as an occasion such that

2 ≤ j′ < n. Then models for Yi and Yi,o that satisfy the condition

yij =


yij,o j = 1, 2, . . . , Ci − 1,

yij,m j ≥ Ci,

can be formulated where Ci has been defined above (Diggle and Kenward, 1994).

Recall that the yi has three sets of parameters associated with it as given in the

previous chapter: β which represents the fixed-effects, Σi the covariance matrix

of the measurement error and G the covariance matrix of the random-effects (see

Section 3.3). The inferences about model parameters are done based on the density

of complete data. Let f(y;θ) denote this vector-valued density function under the

distribution of model (3.3), where θ = (β,Σi,G). Let

Hij′ = (yi1,yi2, . . . ,yi(j′−1))

be the observed history of the response variable for subject i up to occasion j′ (or

up to time tj′−1) and yij′ be the unobserved k-dimensional response vector at time

tj′ . Then a model can be proposed so that the monotone missingness process is

such that the conditional probability of dropout depends on the observed outcomes

up to time point tci . Thus, for ci ≤ n we have that

Pr(Ci = ci|Hci) = pci(Hci ,yci ;λ), (4.2)

where λ is a vector of the unknown constants that characterise the dropout process

and pci is the value of the probability mass function at ci.

Let fj′(y|Hj′) be the conditional density function of the overall complete response

vector given history

Hj′ = (Y1,Y2, . . . ,Yj′−1) ,
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and also suppose fo(y|Hj′,o) is the conditional density of Yo given the correspond-

ing history Hj′,o. By definition of dropout of subject on occasion j′ we have that

Pr(Yj′ = Ym|Hj′ ,Yj′−1 = Ym) = 1,

where {Yj′ = Ym|Hj′ ,Yj′−1 = Ym} is the event that a subject is not observed on

occasion j′ given that it is not observed on occasion j′ − 1. And the conditional

probability of the missing sequence on occasion j′ given that it was not missing on

the previous occasion has the form

Pr(Yj′ = Ym|Hj′ ,Yj′−1 6= Ym) =
∫
pj′(Hj′ ,y;λ)fj′(y|Hj′ ;θ)dyo. (4.3)

The relation in model (4.3) suggests that in the formulation Yc and Yo are taken as

processes. By extension, we find an expression for the conditional density function

of the observed sequence, Yo, given the history of the response variable and dropout

model parameters and it is expressed as

fo(y|Hj′ ;θ, λ) = (1− pj′(Hj′ ,y;λ)) fj′(y|Hj′ ;θ).

Let wi be a set of unobserved data which includes the random-effects and the

unobserved response values. Then the joint distribution of the complete data

under this dropout setting is given by

f(y,bi) =
n∏

j′=2

(1− pj′(Hj′ ,yj′ ,λ))fj′(yo,wi|θ,λ), (4.4)

where θ has been defined above. Following the arguments in Hu and Sale (2003),

the model for the incomplete set of outcomes with dropout occurring at occasion

ci,

Y = (Y1,o,Y2,o, . . . ,Yci−1,o,Yci,m,Yci+1,m, . . . ,Yn,m)

is given by

f(yi) = f(y1)

ci−1∏
j′=2

fj′(yj′ |Hj′)

Pr(Yj′ = Ym|Hci)
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= fci−1((y1,y2, . . . ,yci−1)
T )

ci−1∏
j′=2

[1− pj′(Hj′ ,yj′)] (4.5)

×Pr(Yj′ = Ym|Hci),

with fci−1 denoting the density function of the observed data. We note that the

relation in model (4.5) includes subject-specific effects through fci−1(.). Therefore,

the conditional density of the missing sequences given the observed response values

is given by

p(w|yo) =

∏n
j′=2(1− pj′(Hj′ ,yj′ ,λ))fj′(yo,wi|θ,λ)∫ ∏n
j′=2(1− pj′(Hj′ ,yj′ ,λ))fj′(yo,wi|θ,λ)dw

. (4.6)

This function is used in the algorithm which we have described earlier in Chapter

3 as a priori density for the unobserved values. The difference in the setting

with that scenario is that in the present chapter w = (ym,bi) while in that case

w was equal to the vector of random-effects bi since the data were balanced.

These expressions provide a basis for the estimation of the response and dropout

model parameters. However, modelling dropouts of multivariate longitudinal data

poses challenges because of the increased number of parameters characterising

the dropout mechanism as a result of the possibility of correlations among the k

outcomes.

4.4.2 The likelihood function

The previous section gives us the tools for the formulation of the likelihood function

that takes into account the response profile and the dropout mechanism. In reality,

however, the dropout mechanism is not fully identified because the underlying

causes may not be known with certainty. This likelihood function will be used

in the estimation of model parameters. In particular we need expressions for

the components of the right hand of equation (4.5) that may constitute the joint
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likelihood of the multiple-outcome response variable and the dropout parameter

vector λ.

For the dropout probability given in equation (4.2) one considers a logistic linear

model of the form

logit(pj′(Hj′ ,y;λ)) = λ0 + λ1y +
j′∑
j=2

λjyj′+1−j, (4.7)

where H(.) and λ are the response history and dropout parameter vector respec-

tively as defined above. The parameter vector λ can also be chosen such that

it is a function of the covariates that may be time variant. This would result in

probability of dropout increasing with time. For ease of exposition and parame-

ter identification, we assume λ depends on covariates only through the response

variable. When λ1 6= 0 the dropout process is said to be informative because the

link function in equation (4.7) depends on the set of missing values in the form of

a single unobserved value.

Assume that the conditional density of response vector (see model (3.3)) given

random-effects is Gaussian with mean µi = g(ψi,Xi) and corresponding covariance

matrix Σi. Then letting f(yi) to be the joint probability density of the ci − 1

available measurements for subject i and using the normality assumption we have

the modified log-likelihood given by

log(f(yi)) = constant− 1

2
log |Σi| −

1

2
log |G| − 1

2
bTi G−1bi

−1

2

(
yi − g(ψi,Xi))

TΣ−1i (yi − g(ψi,Xi

)
), (4.8)

where ψi and G are as defined in Section 3.3 in the previous chapter. It will also

be noted that for computational purposes, it is easier to work with the conditional

density of the response variable given random-effects than to work with its marginal

density (Lee and Nelder, 2004). The latter case would have a covariance matrix of
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the form Vi = Ri + Σi where Ri = var[g(ψ,Xi)]. From model (4.7) we have

log(1− pj′(Hj′ ,yj′)) = − log(1 + exp(λ0 +
j′∑
j=1

λjyj′+1−j)). (4.9)

We can now use the relation in equation (4.5) to get the likelihood function for all

subjects in terms of the parameters (θ and λ). This function is given by

l(θ, λ) =
N∑
i=1

log f(yi) +
N∑
i=1

ci−1∑
j′=2

log(1− pj′(Hij′ ,yi′))

+
N∑
i

log Pr(Ci = ci|yi)

= l1(θ) + l2(λ) + l3(θ, λ). (4.10)

The terms l1(θ) and l2(λ) can be explicitly expressed using equations (4.8) and

(4.9) respectively. In similar manner expression for l3 can be derived and simpli-

fied from equations (4.2) and (4.3). This means that separate maximisation of

l1 and l2 + l3 can be carried out. Usually, there is no closed-form expression for

such integrals and thus one applies approximation procedures in the analyses. We

use the stochastic approximation EM (SAEM) algorithm for maximisation of the

overall log-likelihood.

4.4.3 Estimation using the SAEM algorithm

The aim of this subsection is to consider a procedure that can be used in finding

estimates of the parameters that characterise the nonlinear model for the multiple-

outcome response and the dropout process using the log-likelihood given in equa-

tion 4.10. In this approximation the idea is to use the expectation of l(θ,λ) with

respect to the conditional density given in equation 4.6.

In the present discussion we use the stochastic approximation expectation maximi-

sation algorithm (SAEM) which was proposed by Delyon et al. (1999). It consists
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of replacing the E-step of the EM (Expectation-Maximisation) algorithm by two

steps: simulation of the missing data using a priori density and updating the set of

sufficient statistics of components of Vi. This step is followed by the maximization

step.

We are going to use the same notation as in Section 3.4 of the previous chapter.

However, the expectation of the complete log-likelihood is now conditioned on

w = (bi,ym) instead of being conditioned on bi alone. It will be noted that the

conditional density of the missing sequence depends on ψi through the quantity

bi. Thus in this algorithm, we use the quantity

s(θ,λ) = E[l(θ,λ)|yo,λ′,θ′]

=
∫  N∑

i=1

log f(yi) +
N∑
i=1

ci−1∑
j′=2

log(1− pj′(Hij′ ,yi′)) (4.11)

+
N∑
i

log Pr(Ci = ci|yi)
]
p(w|yo)dw,

where λ′ and θ′ denote the current values of the parameters and p(w|yo) is given

by equation (4.6).

Index iterations by r = 0, 1, . . . ,∞ and let θ(r), λ(r) be estimates of the parameters

at the end of the rth iteration. The algorithm proceeds as follows:

Step 1 Initialise r = 0: θ(0), λ(0). Find estimates of θ = (Σ,G,β) and λ that

maximise the quantity in equation (4.10).

Step 2 Simulation: Draw sequence (w(r+1)) of size m(r) from a conditional den-

sity p(.|yo,θ(r)) of the unobserved quantity, wi = (bi,ym).

Step 3 Stochastic approximation: Update the expectation of quantity in equa-

tion (4.11) with respect to p(.|yi,o,θ(r),λr) using

s(r+1)(θ,λ) = s(r)(θ,λ) + δr+1

(
S(yo,w

(r+1);θ,λ)− s(r)(θ,λ)
)
,
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where δr+1 ∈ (0, 1) is a smoothing parameter and decreases as r → ∞.

It helps to accelerate convergence to maximum likelihood estimates (Meza

et al., 2007). The term S(yo,w
(r+1);θ,λ) is given by

S(yo,w
(r+1);θ,λ) =

∑m(r)
1 l(yo,w

(r);θr,λr)

m(r)
.

The quantity m(r) is usually picked such that its value is between 5 and 30

(Meza et al., 2007).

Step 4 M-Step: Find

(θ̂, λ̂) = arg max s(r+1)(θ,λ)

Step 5 Repeat steps 1-4 until

s(r+1)(θ,λ)− s(r)(θ,λ) < η,

for some η > 0.

The estimate for β, the vector of the fixed-effects, is obtainable from the likelihood

function in (4.8) such that at the (r + 1)th iteration

β̂(r+1) =

(
N∑
i=1

AT
i (V−1ψi

)(r+1)Ai

)−1 N∑
i=1

AT
i (V−1ψi

)(r+1)ψ
(r+1)
i ,

where Vψi
= var(ψi) (see equation 3.5 in previous chapter).

As advanced by Meza et al. (2007), under the modified maximum likelihood es-

timation the quantities G and Σi are estimated using their respective statistics,∑N
1 bib

T
i and

∑N
i eie

T
i , so that at the (r + 1)th iteration their estimates are given

by

Ĝ(r+1) =

∑N
1

(
E[b

(r+1)
i (br+1

i )T |yi,θ(r)]
)

N − pk
and

Σ̂
(r+1)
i =

∑N
i E[e

(r+1)
i (e

(r+1)
i )T |yi,θ(r)]

Nni − pk
,

67



respectively, where p is the length of the vector of fixed-effects in equation (3.4).

The estimates of the error terms ei are found by the predicted values of the response

variables so that ei = yi − ĝ(ψi,Xi) where ĝ(ψi,Xi) is given by

ĝ(ψi,Xi) = E(g(ψi,Xi)|yi,θ(r+1)),

when we use equation 3.3 in Chapter 3 (for example, see Meza et al., 2012). Start-

ing values can be obtained in a number of ways mostly dependent on the choice

of the model and the nature of the dataset (Dempster et al., 1977; Laird et al.,

1987). In this application, we used the identity matrices for as starting values for

covariance matrices as done in a discussion by Shah et al. (1997).

4.5 Application

The objective of the study was to estimate the parameters in the HIV dynamic

system of nonlinear ordinary differential equations described in Section 4.2. We

were also interested in analysing the influence of different explanatory variables on

the dynamic system parameters through the significance of their coefficients.

4.5.1 Data

We used routine observational data collected from two HIV/AIDS clinics under

the Lighthouse Trust of Kamuzu Central Hospital in Malawi. In this application

we included all subjects with three up to seven bivariate measurements (including

the baseline values). There were two hundred and fourteen (214) patients with

this information and between them they accounted for a total of 1856 clinical

measurements of the markers. This represents an average dropout proportion of

38%. The severity of dropout is presented in Table 4.1 where the numbers of
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subjects still present on each occasion are recorded (also see Figure 4.1 in Section

4.2).

Table 4.1: Number of subjects by week

Week 0 14 28 42 56 70 84

No. patients 214 214 214 177 78 24 7

Percentage 100 100 100 82.7 36.4 11.2 3.3

The limit of quantification (LOQ) for the viral loads for this set of data was 400

copies per ml. About 39% of viral load measurements were below this threshold

value. The scenario is illustrated in the distribution function of the log10-viral

loads shown in Figure 4.2 where the height of the vertical line at 2.6021 (log10(400))

corresponds to the cumulative probability (of 0.39) for the threshold values.
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Figure 4.2: Distribution function of log10-viral load showing pro-

portion of values below LOQ.
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There were five covariates collected along with the disease markers and tests were

carried out in order to chose the most appropriate set of covariates to be included

in the analysis. Five such covariate sets were tested for their significance in the

response model (3.13) of Chapter 3 (see also the next subsection) and parameter

model (4.12). These were TCFS-A, TFS-A, TCS-A, FCS-A and TFC-A, where T

= supplementary treatment, C = compliance to treatment, F = facility to which

the patient reported, S = gender of the patient and A = age-group. This differs

from the covariate sets in Chapter 3 because in the current chapter we have sets

of up to four covariates included in the model as guided by the outcomes of the

tests. The only significant combinations were TFS-A and TCS-A with p-values of

< 0.001 and 0.0018 respectively. From exploratory cross-tabulation analysis of the

covariates, it was noted that there was high dependence between compliance to

treatment and facility to which the patients presented themselves with a p-value

of p < 0.001 and a correlation coefficient of −0.6221. The exploratory results

also revealed significant evidence (with a p-value 0.0016) of association between

the facility of choice and age at treatment initiation. On the basis of this inter-

dependence, therefore, we decided to include age-group, supplementary treatment,

compliance to treatment and gender as explanatory variables in the analyses that

follow.

4.5.2 Models for response variable and system parameters

The occasion spacing was about fourteen weeks on average and this implies that

most of the first viral load measurements and CD4+ T cell counts were obtained

several weeks after treatment initiation. Thus using the current data, it would

not be possible to estimate the entire set of model parameters in the absence of

such values (Putter et al., 2002; Guedj et al., 2011). In this analysis, therefore,
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three parameters were fixed in order to facilitate identification and estimation of

the other parameters (see Table 3.1 in Chapter 3).

The modelling for the system parameters proceeds as in model (3.13) of the previ-

ous chapter. The difference is that in this setting we have introduced four explana-

tory variables (of age-group, supplementary treatment, compliance to treatment

and gender). Thus the effect of the covariates on the set of parameters could be

assessed through the model given in the following equation

log10(ψ1) = β01 +
M∑
l=1

βl1Xi + bi1, ψ1 = (a, cN , cA, p, d)

logit(ψ2) = β02 +
M∑
l=1

βl2Xi + b2i, ψ2 = (τRTI , τPI , π)

where Xi represents the covariates and M is the number of covariates. Other

quantities remain as defined earlier (see model (3.13)).

The observed marker values are totals of the components of the dynamic system

introduced in Section 3.2 of the previous chapter. That is, the observed CD4+ T

cell count is the total T = TA + TN + TL and the observed viral load is the total

viral load V = VI + VN . Thus Yih = g(ψi,Xi) + eih, h = 1, 2 where

g(ψi,Xi) = (log10(V (ti,ψi)), T (ti,ψi))
T , (4.12)

the term eih = (ei1, T (ti,ψi)ei2) is the measurement error with mean-zero normal

distribution and the quantity ψi is described in model (3.13).

4.5.3 Results

We estimated the parameters of the biological system presented in Section 3.2 (see

model (3.13)). Because the current data could not adequately support estimability

of all the parameters of this complex dynamic system three of these parameters

were fixed at values from the literature as shown in the following Table 4.2.
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Table 4.2: Fixed system parameters.

Par. Description Value Source of publication

γ Infection rate of TN cells 0.0021 per virion Lavielle et al. (2011)

cL Death rate of TL cells 0.0092 per day Guedj et al. (2007b)

cV Death rate of virions 30 per day Ribeiro et al. (2002)

The estimation procedure was applied to an observational bivariate longitudinal

dataset which was characterised by high proportions of dropouts and viral load

values that were below the lower limit value of 400 copies per ml. The subject

dropouts compounded by these viral load values presented challenges in estima-

tion of covariate coefficients because standard errors of some of the coefficients

could not be directly produced when the SAEM algorithm was applied. This was

also the reason why some parameters of the HIV dynamical system were fixed

(see Table 4.2). The other reason could be the misspecification of the parame-

ter link functions. To circumvent this estimation problem for the coefficients, we

used individual parameter estimates so that the effects of the covariates on the

model parameters could be estimated with their standard errors. These results

are presented in Table 4.3. The reference age-group for this analysis was 18− 25.

From the results in this table (top part) it can be observed that compared to other

age-groups, 34− 40 class had significant contribution to the coefficients of almost

all parameters. Older age (over forty years) also tended to have insignificant in-

fluence on τRTI (with a p-value of 0.9818) relative to the other age-groups each

of which had p-value smaller that 0.001. There was no immediate explanation for

this result.

It can also be observed from this table that the covariates, supplementary treat-
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Table 4.3: Estimates of the covariate coefficients (p-values).

Variable a cN d τRTI τPI

Inter. 1.116 −4.566 −0.577 0.737 0.172

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (0.001)

26− 33 −0.084 −0.294 0.027 −1.026 0.439

(0.07) (< 0.001) (0.74) (< 0.001) (< 0.001)

Age-group 34− 40 −0.123 −0.482 −0.167 −0.430 0.788

(0.015) (< 0.001) (0.06) (< 0.001) (< 0.001)

over 40 −0.021 0.276 0.249 −0.001 1.003

(0.67) (< 0.001) (0.004) (0.9818) (< 0.001)

Supplementary 0.113 0.035 0.107 0.158 −0.681

(0.001) (0.023) (0.064) (< 0.001) (< 0.001)

Compliance −0.137 0.923 −0.176 −0.174 0.414

(< 0.001) (< 0.001) (0.003) (< 0.001) (< 0.001)

Sex of patient −0.037 0.076 −0.108 0.254 −0.888

(0.24) (< 0.001) (0.056) (< 0.001) (< 0.001)
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ment, compliance and gender, were significant for τRTI and τPI . Of particular note

is compliance to treatment which had significant coefficients for all the parameters.

Thus it could be argued that compliance to treatment reflects that HIV therapy

is effective and also reduces the risk of developing drug resistance (van der Eijk

et al., 2005).

We also computed system parameters and their 95% confidence limits based on

the age-groups with 18-25 as the reference group. These results reveal an improve-

ment in the standard errors of the parameter estimates and their corresponding

confidence limits compared to the complete case analysis we had in the previous

chapter. This has probably come about as a result of the inclusion of a number of

explanatory variables and accounting for missing data and this has improved the

analysis as compared to results in the discussions where a complete-case-analysis

was assumed. Table 4.4 summarises the results for four selected parameters as

grouped by age at treatment initiation. We noted, however, that there were wider

Table 4.4: System parameter estimates (95% confidence limits).

Age a d τRTI τPI

26− 33
11.49 0.27 0.55 0.4

(8.59, 14.39) (0.20, 0.34) (0.42, 0.67) (0.31, 0.48)

34− 40
11.62 0.26 0.59 0.73

(7.93, 15.31) (0.16, 0.35) (0.43, 0.75) (0.55, 0.92)

Over 40
14.25 0.69 0.69 0.87

(10.25, 18.25) (0.47, 0.91) (0.52, 0.87) (0.67, 1)

confidence intervals for the true parameter values for patients that start medica-

tion at older age like in the over 40 group. This could be attributed to a stronger
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negative correlation coefficient (of −0.4784) between the biomarkers for this age-

group compared to the other groups. The other cause for the wide intervals could

be the relatively high rate of dropout in this age-group (at 40%) as the size of bias

is known to increase with the proportion of dropout (Lipsitz et al., 2009).

For each age-group we also considered inter-subject variability which measures

the extent to which random-effects for individual patients influence their system

parameter estimates. As displayed in Table 4.5, we noted that for the rate of

CD4+ T cell production, the average variability was consistently small. That

Table 4.5: Inter-individual variability for the five parameters (s.e.).

Age-group a d τRTI τPI

18− 25 0.76 (0.13) 1.22 (0.46) 1.53 (0.41) 1.48 (0.65)

26− 33 0.69 (0.15) 0.98 (0.29) 1.97 (0.83) 2.37 (1.50)

34− 40 0.71 (0.13) 1.41 (0.34) 1.37 (0.55) 1.63 (0.79)

Over 40 0.77 (0.15) 1.51 (0.32) 0.40 (0.58) 0.49 (0.37)

aside however, under a Gaussian assumption all these values were significant (p-

value < 0.001). For τPI it was also observed that there was weak inter-individual

variability for the 26 − 33 and over 40 age-groups while the other two (18 − 25

and 34 − 40) had p-values of 0.0114 and 0.0195 respectively. The results could,

however, point to the nature of the data used in this analysis. Furthermore, as has

been pointed out earlier, this could also result from mis-specified link functions for

some of the system parameters.
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4.6 Discussion

There will usually be situations in which nonignorable nonresponse is an important

issue so that modelling the missing-data mechanism cannot be overlooked. Thus

in this chapter we studied and illustrated the estimation procedure for parame-

ters of the disease dynamic systems while taking into consideration the dropout

mechanism using models for multivariate longitudinal data. Specifically, we have

used the joint likelihood of the observed multiple outcome response variable, the

random-effects, measurement error and the dropout mechanism in finding esti-

mates of parameters of the HIV dynamical system described in equation 4.1

We also showed that the use of explanatory variables cannot be ignored in esti-

mating the parameters and interpretation of the results. In the application of the

methodology, we used observational datasets from two HIV clinics where along

with the biomarkers (viral load measurements and CD4+ T cell counts), several

explanatory values were also obtained. Inclusion of covariates in the estimation of

parameters provides an insight into the characteristics of these parameters. For

instance, we observed that gender of the patient influences the rate at which the

actively infected CD4+ T cells die with a coefficient that is significant (< 0.001).

This influence in the estimation is not unexpected because both the multiple re-

sponse variable and the dropout mechanism are functions of these covariates as

described in Section 4.4.

In the analysis, it was assumed that all subjects had their markers measured at

the same time and dropout has been defined as all the response components not

being observed once the subject withdraws from the study. However, in most lon-

gitudinal studies that involve collection of response variables that are characterised

by multiple outcomes, it is common to have the response variable for a particular
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subject to be partially observed so that only a subset of the k markers dropout

on anyone occasion in the course of the study. This means that the remaining

subset needs to be included in the models so that the information possessed by the

elements thereof can contribute to the analysis. Moreover, there are other more

challenging forms of missing data that are encountered in biomedical and other

health related areas of research like informative intermittent missingness. Thus

further studies are needed so that the estimation biases that arise as a result of

missingness in these cases can be determined and remedial models be proposed.

This is the topic of Chapter 5.

Moreover, some of the covariates needed to be redefined so that more practical

elements are included in their definition. For instance, reporting to a clinic for

supplementary treatment can be defined in such a way that more explicit infor-

mation should describe the nature and severity of the illness that led to demand

for supplementary treatment. Similarly, it would be useful to describe compliance

to treatment as checking the patient if they are taking prescribed medication at

appointed times and following any treatment related advice from the doctor or

medical practitioner.

In conclusion, however, the methods and estimation procedures described here

would also assist in finding effect-estimates of other grouping covariates such as

treatment regimen and food supplementation on the parameters of the viral dy-

namical system. Moreover, the parameter estimates are within the range of those

found in the literature. The estimate of the death rate of uninfected CD4+ T

cells, for instance, agrees with those in other discussions (CN = 0.00013 (ours) and

CN = 0.00033, 0.0085 in Guedj et al. (2011); Lavielle et al. (2011) respectively).
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Chapter 5

A nonlinear mixed-effects model for

multivariate longitudinal data with

partially observed outcomes with

application to HIV disease dynamics

Abstract

The several bio-markers may be measured in studying the response variable of in-

terest in order to monitor and model disease progression. For instance, in studying

HIV infection two markers (viral load levels and CD4 T cell counts) are used to

monitor progression of the disease. In this chapter we consider a case where data

are unbalanced among subjects and a situation where, for some reason, only a

subset of the multiple outcomes of the response variable are observed at any one

occasion for a particular subject. We propose a nonlinear mixed-effects model for

the multivariate response variable data and derive a joint likelihood function that

takes into account the partial dropout of the outcomes of the response variable.
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We further show how the methodology can be used in the estimation of the pa-

rameters that characterise HIV disease dynamics. An approximation technique for

estimating the parameters is also given and illustrated using routine observational

HIV data.

5.1 Introduction

Longitudinal studies are frequently conducted to generate data for clinical trials

in order to understand and model disease progression and the effect of treatment.

In most of these studies several outcomes are measured or observed at each time

point in order to study a response variable which cannot be measured directly. It is

assumed that the biomarkers have a strong correlation with the unmeasured out-

come. For instance, in the study of cardiac function (response), several outcomes

are jointly measured or observed on each of the occasions spanning the study pe-

riod so that a more complete picture of the response variable is presented (Lipsitz

et al., 2009). Moreover, to have a better evaluation and interpretation regarding

the process of interest the markers are jointly modelled instead of being analysed

independently. However, multivariate longitudinal data have some complexities

that pose challenges to the analysis process and these include correlation within

a particular marker and also correlation among markers of the same subject and

unbalancedness resulting from variation in measurement schedules for the subjects

and missing scheduled visits.

In their study, Lipsitz et al. (2009) considered a response variable with four dichoto-

mous markers and these were either measured or not measured on each occasion so

that the whole set of outcomes was either observed at any time point or completely

missing. They proposed a joint estimation of the marginal models for the binary
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markers using a single modified generalised estimating equation where they also

specified the pairwise association parameters among the different markers in a bid

to get estimates of the main model.

Shah et al. (1997) considered a setting where the markers were observed on each

occasion with a possibility of differences in the number of observations for the N

subjects in the study. They used the expectation-maximisation (EM) algorithm of

a linear mixed-effects model in order to estimate regression parameters under the

multivariate response setting (Laird and Ware, 1982). Using a bivariate response

variable they also considered the case where only one of the markers is observed

on any one observation time.

A non-linear random-effects model for the analysis of multivariate longitudinal

data with missing data was studied by Marshall et al. (2006). In their discussion

they extended the non-linear random-effects model for a single response to the

multiple responses situation with intermittent missing data. In finding estimates

of the parameters, they used the first-order linearisation process of Lindstrom

and Bates (1990) and then introduced a matrix of complete-case observations by

deleting rows corresponding to missing data (Shah et al., 1997). Marshall et al.

(2006) used the EM algorithm to estimate the parameters of the model. In this

chapter we consider a nonlinear mixed-effects model for multivariate longitudinal

data with dropouts such that the data are unbalanced among subjects and also

within a subject because only a subset of the multiple outcomes of the response

variable may be observed at any one occasion. We have modelled the partial

dropout mechanism of the markers of the response variable through their occasions

of dropout. We have estimated the parameters that characterise such a mechanism.

A joint likelihood function that incorporates the left-censored response values due

to equipment failure to measure some outcomes accurately and this partial dropout
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mechanism has also been proposed. We further show how the methodology can

be used in the estimation of the parameters that characterise HIV disease dynam-

ics in the presence of a multiplicity of covariates. The stochastic approximation

expectation-maximisation (SAEM) algorithm for the estimation of parameters in

nonlinear models is also described and illustrated using routine observational data

from two HIV clinics in Malawi.

The rest of the chapter is organised as follows. In the next section we describe

the disease dynamical model whose parameters we would like to estimate using ob-

served biomarkers. The nonlinear mixed-effects model for multivariate longitudinal

data is presented in Section 5.3 in which we also describe some of the general pa-

rameter estimation procedures. Our proposed methodology for handling partially

observed multiple outcomes longitudinal data is given in Section 5.4. A joint likeli-

hood function that incorporate both the dropout mechanism and the left-censored

data is also derived in Section 5.5. Since maximum likelihood estimation can be

computationally intensive especially with a large number of markers at each of the

several occasions we use the SAEM algorithm in estimating system parameters

which we describe in Section 5.6. The methodology is illustrated in Section 5.7

where we use routine observational HIV data to find estimates of parameters that

characterise the disease dynamical model within the host. Section 5.8 is devoted

to some discussions and conclusions.

5.2 The biological HIV disease model

This chapter aims at developing a methodology that could help in estimation of the

parameters that characterise the latent HIV disease dynamical system of nonlinear

ordinary differential equations in the presence of treatment. This 5-dimensional
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system models the pathogenesis of the disease in order to assess the effectiveness

of treatment and general disease progression (Wu, 2005). The dynamical system

under consideration has been fully described in Section 3.2 of Chapter 3.

Ideally complex disease dynamical systems like this one require a rich and infor-

mative dataset about the process and properly specified statistical models when

estimating the parameters. As we will see later in this chapter, the data used for

illustration is characterised by unbalancedness both among and within the sub-

jects.

5.3 The nonlinear model for multivariate longi-

tudinal data

Let the multiple-outcome response matrix for subject i be denoted by

Yi = (yi1,yi2, . . . ,yik)

where each component yih (h = 1, 2, . . . , k) is an ni-dimensional vector and k is the

number of columns representing the markers which have been jointly observed or

measured on each subject at the ni occasions. Under this setting, we are implying

that at the (ni + 1)st occasion, the subject is not available for observation. We

assume a model for the ith subject to take the form

yi = g(ψi,Xi) + ei, i = 1, 2, . . . , N, (5.1)

where yi = vec(Yi) and

g(ψi,Xi) = {gh(ψi,Xi) : h = 1, 2, . . . , k}

of which at least one is non-linear in ψi and the model covariates Xi. The quantity

ei denotes the measurement error and ψi is usually called the parameter vector
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possibly because it is a function of the fixed and random-effects. The nonlinear

model and the parameter vector, π, are given in Section 3.3 of Chapter 3. The dif-

ference arises when we consider the conditional density of the unobserved sequence

because in this chapter this sequence has more than one element.

5.4 The partial dropout model

This chapter aims at developing a methodology that can be used in estimation

of the parameters that characterise the biological model presented in Chapter

3. Ideally complex disease dynamical systems like this one require a rich and

informative dataset about the process and properly specified statistical models

when estimating the parameters. As we will see later in this chapter, the data

used for illustration is characterised by unbalancedness both among and within

the subjects. Thus in this chapter, we propose models for this partial dropout

process.

Consider a complete multivariate response variable Yi. Since we allow data to be

partially observed for each occasion we can partition Yi into three components:

where the response variable is completely observed on all markers, Yi,o; partly

observed Yi,p where some markers are not observed and total dropout where the

subject drops out, Yi,m. Thus the response matrix can be expressed as Yi =

(Yi,o,Yi,p,Yi,m).

Suppose marker h is not observable after occasion nih, where 2 ≤ nih ≤ ni, so that

for the ni-dimensional ‘complete vector’, Yih, the subvector Yih,m of the missing

part for this marker has length (ni−nih) where ni is the occasion at which the last

marker(s) for subject i is (are) observed. We wish to model occasion nih at which

marker h ceases to be observed. It is assumed that after this occasion a total of
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ki ≤ k markers are no longer observable. It will be noted from this setting that

nih = ni, for all h means the case where after the dropout occasion all the markers

are no longer observed or measured. This case has been modelled in Chapter 4.

Let Hih = (yi1,yi2, . . . ,ynih−1) be the observed history for marker for the ith

subject up to occasion nih. We may regard the dropout occasion for this marker,

Nih, as a categorical random variable taking n possible values. In this application

we propose to use the approach of Chen et al. (2013) who modelled a categorical

response variable in a different setting. Then the dropout occasion can be modelled

using a multivariate logistic regression model of the form

f(Nih|ki,λ,Hih) = Pr(Nih = nih|ki,λ,Hih)

=


∏ki
h=1

exp (λ0nih
+λT

1nih
xi+λ

T
2 Hih)

1+
∑n

j=2
exp (λ0j+λT

1jxi+λT
2jHih)

for 2 ≤ nih < n+ 1,∏ki
h=1

1
1+
∑n

j=2
exp (λ0j+λT

1jxi+λT
2 Hih)

for nih = n+ 1
(5.2)

where j indexes the occasion and xih is the vector of covariates for the hth marker

which is assumed to be time-invariant and is usually common to all markers. The

quantity λ is a set of parameters that characterise the model. It is important to

assume that each of the k markers has been observed at least once so that they

contribute information to the analysis. Furthermore, the covariates are assumed to

be completely observed so that the modelling does not have to account for missing

covariates as well.

We now consider the distribution of the occasion when the subject completely

withdraws from the study. This is equivalent to having the last marker(s) being

observed. Given Nih = nih, consider a random variable Ni that describes the

occasion at which the remaining si = k − ki markers are observed or measured.

This is the occasion at which the subject completely leaves the study and it is such

that nih ≤ ni ≤ n. This is like in the previous formulation, one would consider a
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multivariate logistic regression model for ni of the form

f(Ni|Nih, ζ,Hih) = Pr(Ni = ni|Nih = nih, ζ,Hih) (5.3)

=



∏si
h=1

exp (ζ0+ζT1 xi+ζ
T
2 Hni−1)

1+
∑n

j=nih+1
exp(ζ0+ζ1xi+ζT2 Hih,ni−1)

for nih < ni < n+ 1

∏si
h=1

1
1+
∑n

j=dih+1
exp(ζ0+ζ1xi+ζT2 Hnih,j−1)

for nih < ni = n+ 1,

1 for nih = ni = n+ 1

where ζ are the regression parameters of the model. The multivariate response

variable comprises of the observed values, the partially observed markers and com-

pletely missing values as described at the beginning of this section.

Apart from the complications of partial dropout and serial correlations, the re-

sponse variable may also be characterised by values that are below the limit of

quantification resulting from the limitations of the detection of the assays used in

quantifying the markers. This means that the values of some of the markers on

that occasion are not known with certainty. For instance, in studies involving HIV

disease modelling and monitoring viral load measurements have threshold values

below which some readings may not be quantified.

Suppose q is the vector of lower limits of detection of the marker values Yic and let

Yi(k−c) be the set of markers whose measurements are do not have limits of quan-

tification. In our setting we consider a distribution for the multivariate response

variable that will accommodate the two types of markers. Using the approach

of Guedj et al. (2007a), the multiple response variable is either observed or some

components are less than their detection limits. If we let κ = I{Yic>q} be indicator

of event {Yic > q} then the density for the response variable for the ith subject is

given by

f(yi|bi,β,Σi,G) = constant

×
{
|Σic|−1/2 exp[−1

2
(yic − µic)TΣ−1ic (yic − µic)]

}κ
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×
{

Φ
(
(q− µic)TΣ−1ic (q− µic)

)}1−κ
(5.4)

×|Σi(k−c)|−1/2 exp
(
−1

2
(yi(k−c) − µi(k−c))TΣ−1i(k−c)(yi(k−c) − µi(k−c))

)
,

where µic and µi(k−c) are subvectors of µi = g(ψi,Xi|ni, nih) and in similar man-

ner the quantities Σic and Σi(k−c) represent submatrices of the covariance matrix

Σi = Σ(ψi) of the response variable given the vector ψi. The quantity Φ denotes

the distribution function of the multivariate normal random variable. The term{
Φ
(
(q− µic)TΣ−1ic (q− µic)

)}1−κ
accounts for the marker values that are below

the limit of quantification. In this formulation we have assumed that between them

the vectors yic and yi(k−c) account for the observed and missing values described at

the beginning of this section. Thus the function given in equation (5.4) represents

the likelihood of the response variable given the random-effects.

5.5 The likelihood function

Parameters of the nonlinear mixed-effects models can be estimated by using the

maximum likelihood estimation procedure or its variant, the restricted maximum

likelihood approach. The best such estimates are those that maximise the likeli-

hood function of the observed data. In our application we require a function that

incorporates the missing values of the response variable, the random-effects and

the dropout occasions described in the models above. Let the complete sequence

in this case be denoted by Dall = (yi,bi, ni, nih) with yi = (yio,yip,yim) and

θ = (β,G,Σ,λ, ζ) as the set of all parameters in the models described above.

Then we have the complete-data likelihood function for the sequence Dall which

has the form

L(θ|Dall) =
N∏
i=1

{
k∏

h=1

[f(nih|λi, ki,Hnih
)f(ni|nhi, ζ)
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× f(yi|nih,bi,βi,Σ)] f(bi|G)} , (5.5)

where all the quantities have been defined and described above. To estimate

the model parameters one would require the use of the likelihood function of

the parameters given the observed sequence of measurements. This function

is obtainable from equation (5.5) by integrating out the unobserved quantities,

wi = (yi,p,yi,m,bi), and is given by

L(θ|Do) =
∫
wi

L(θ|Dall)dwi.

The elements of θ would then be found by maximising this function or equivalently

by maximising

lo(θ) = log
(∫

wi

L(θ|Dall)dwi

)
.

But this is not possible under the circumstances because of the unknown quantity

wi and also because the nonlinear models may not have well-defined probability

densities for the unobserved values. This suggests a need for a numerical approxi-

mation procedure to estimate the unknown model parameters. In this application,

we use the SAEM algorithm which is described in the next section. The aim is to

find elements of θ that maximise the complete-data likelihood function presented

in equation (5.5).

Let us denote logL(θ|Dall) by lc(θ). Then the approach under this algorithm

is to replace L(θ|Dall) with the expectation of lc(θ) with respect to the density

of unobserved data at the current value of the parameter set. This quantity is

expressed as

s(θ|θ0) = E[lc(θ)|yio, nih, ni,θ0]

=
∫
wi

{
N∑
i=1

k∑
h=1

[log f(nih|λi,Hnih
)]

+ log f(ni|nhi, ζ,Hni
) + log f(yi|bi,β,Σ) (5.6)

+ log f(bi|G)]} p(wi|yio,θ0)dwi,
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where θ0 is the current value of the parameter set at which the expectation is

evaluated and p(wi|yio,θ0) is the conditional density of wi given the observed

data and is written as

p(wi|yio) =
L(θ|Dall)∫

wi
L(θ|Dall)dwi

, (5.7)

from model (5.5). This approximation approach is largely more efficient than the

conventional EM algorithm in handling nonlinear models with missing data be-

cause it uses all of the simulated quantities through the iterations. This algorithm

also converges to a maximum of the likelihood function of the observed sequence

under a wide-range of assumptions and conditions in fewer iterations than the

standard EM algorithm (Delyon et al., 1999; Meza et al., 2007).

5.6 Estimation using the SAEM Algorithm

The complete data for estimation of parameters of the hierarchical model given

by (5.1) and (3.4) are yi, nih, ni and bi. Since the quantities yi,m,yi,p and bi

are unobserved we use the SAEM algorithm which we described in Chapter 3.

The current setting, however, has additional elements constituting the unobserved

sequence wi. Since we also wish to describe a procedure for the estimation of

standard errors of the parameter estimates, we are going to present the algorithm

again with appropriate modifications. It has the following steps:

Step 1: Let the iterations be indexed by r = 0, 1, . . . ,∞ so that θ(0) is the initial

set of values assigned to θ. Thus θ(r) denotes the values at the end of the

rth iteration.

Step 2: Draw sequence (w
(r+1)
i ) of size m(r) from the conditional density

p(.|yio, ni,θ(r))
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given by equation (5.7), where now wi = (yi,m,yi,p,bi).

Step 3 Update s(θ) using

s(θ(r+1)) = s(θ(r)) + δr+1

(
S(yio,w

(r+1)
i ;θ(r))− s(θ(r))

)
,

where s(θ) is given by equation (5.6) and δr+1(> 0) is a fixed smoothing

parameter that helps to accelerate convergence and is such that δr+1 → 0 as

the number of iterations increases. The term S(yi,w
(r+1)
i ;θ(r)) is given by

S(yi,w
(r+1)
i ;θ(r)) =

∑m(r)
1 lc(yio,w

(r)
i ;θ(r))

m(r)
.

Step 4: Find θ̂(r+1) that maximises s(θ(r+1)). When one uses REML to esti-

mate the covariance matrices G and Σi, the sufficient statistics
∑N

1 bib
T
i

and
∑N
i=1 eie

T
i respectively are used, so that

G(r+1) =

∑N
1 (E[bib

T
i |yio,θ(r)])

N − pk
,

and

Σ
(r+1)
i =

∑N
1 E[eie

T
i |yio,θ(r)]

Nni − pk
,

where N , p and k denote the number of subjects, length of vector β and the

number of markers jointly observed per subject respectively. Then we can

find the updated value of β as follows (from 3.5)

β̂(r+1) =

(
N∑
i=1

AT
i W

(r+1)
i Ai

)−1 N∑
i=1

AT
i W

(r+1)
i ψ

(r+1)
i ,

where, for purposes of notation, we have set Wi = (BiGBT
i )−1.

This procedure is repeated until

s(θ(r+1))− s(θ(r)) < η,

for some convergence criterion η > 0.
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This algorithm does not provide standard errors of the parameter estimates at the

end of the iterations. These quantities are found by using the observed information

matrix through the matrix of second-order derivatives of the log-likelihood function

with respect to θ. The evaluation of this matrix is complex because it does not have

a closed-form expression. Delyon et al. (1999) proposed a stochastic approximation

of the Fisher information matrix as follows. This has bee described in Section 3.4,

Chapter 3.

5.7 Illustration with bivariate HIV data

5.7.1 Data description and implementation

In this illustration we have included all subjects with a minimum of three bivariate

measurements of CD4+ T cell count and viral load and the maximum number of

eight occasions. The need for complete first three occasions was necessitated by the

type of data which were collected through routine observation of patients and this

choice would provide an averaging effect for the baseline measurements as there

would be enough information on the markers. Furthermore, the first measurements

were taken several weeks after commencement of treatment.

Two hundred and fourteen subjects had this information and between them they

shared a total of 2024 clinical measurements of the markers. These measurements

suggest an average missing rate of 41%. In the current chapter, however, we allowed

the unbalancedness to occur both among subjects and also among the markers

within subjects. That is, the number of markers was allowed to be different for

each occasion and between patients. The number of viral load measurements was

in general less than that of the CD4+ T cell count. Table 5.1 represents the number
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of measurements for each occasion and marker and it can be observed that there

is a remarkable imbalance in the number of markers after the third occasion (28

weeks). About 39% of viral load measures were below the limit of quantification of

Table 5.1: Number of markers by occasion.

Week 0 14 28 42 56 70 84 98

CD4+ T cell count 214 214 214 183 141 70 37 23

Viral load 214 214 214 177 78 24 7 0

400 copies per ml. Thus in general, our dataset was characterised by high rate of

unbalancedness within the subject as well as among subjects and a large proportion

of left censored values. The average inter-visit interval was 14 weeks.

5.7.2 Results

We estimated the parameters of the HIV disease dynamical system of nonlinear or-

dinary differential equations presented in Section 3.2 (equation (3.1)). For reasons

described in the previous subsection the data used in this analysis could not sup-

port estimability of all the parameters associated with the latent disease process.

This resulted to having three of the parameters being set as fixed. These were (i)

infection rate of TN cells per virus particle (γ = 0.0021, from Lavielle et al. (2011)),

(ii) death rate of latently infected CD4+ T cells per day (cL = 0.0092, from Guedj

et al. (2007b)) and (iii) death rate of the virus particles per day (cV = 30, from

Ribeiro et al. (2002)).

We first needed to justify the inclusion of the covariates in the analysis. Goodness-

of-fit tests were conducted on the data in MONOLIX in order to choose the significant
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Table 5.2: Test for model covariates: A = age-group; C = compli-

ance; F = facility; S = sex; T = treatment.

Covariate set CFS-A TFS-A TCS-A TCF-A

p−value (LRT) 0.2423 0.041 < 0.001 < 0.001

AIC 18551.6 18569.9 18587.86 18535.25

covariate set for inclusion in the current analysis. The tests were done in such a

manner that a model with a set of three or four covariates was compared with the

one without covariates. There were ten such covariate combinations and the results

displayed in Table 5.2 only include sets that were significant and also included four

covariates. We note from these results that TCF-A has the smallest AIC (Akaike

information criterion) at 18535.25. Thus in our analysis we included supplemen-

tary, compliance, facility and age-group as covariates. It is noted that with our

modelling approach despite the unbalanced nature of the dataset due to missing

values we were able to get standard errors for most of the covariate coefficients

directly from the output. This appealing result could be attributed to the use of

all available information on the patients even when only one marker was observed

for a given occasion. We used individual parameter estimates to obtain standard

errors of those coefficients where such values could not be obtained directly. These

results are presented in Table 5.3.

Intercepts were significant as can be seen from the second and third columns of this

table. For instance, for the death rate of the actively infected cell, (cA), we have a

negative intercept. We may suggest that in interpreting this, the value of cA for a

noncomplying subject who visits Lighthouse clinic and does not get supplementary

treatment is about 0.1863. Similar interpretations can be said about the other
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intercepts. Except for the insignificant coefficients of the activation rate of the

Table 5.3: Estimates of the covariate coefficients (and their p-

values).

Intercept Supplementary Compliance Facility

a
2.28 0.598 0.293 0.36

(< 0.001) (< 0.001) (0.022) (0.0069)

cN
−5.02 1.21 0.525 −0.107

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

d
−3.06 0.348 1.18 −0.837

(< 0.001) (0.46) (0.046) (0.14)

cA
−1.68 0.44 1.13 1.15

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

p
3.36 0.87 0.716 −1.45

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

π
−3.97 −1.3 0.749 3.58

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

τPI
4.49 −2.38 −9.48 −10.1

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

τRTI
−1.78 3.67 0.189 5.63

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

latently infected cells (d), the results indicate that the covariates have a high

influence on the dynamics of the disease and this provides a basis for the inclusion

of these covariates when estimating parameters of the HIV disease dynamics. This

becomes even more crucial when data are highly unbalanced like ours because

such covariates provide additional information needed for the analysis. Thus it
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would be contended that, for example, compliance to treatment guarantees that

HIV therapy is effective and also reduces the risk of developing drug resistance

and that the facility that offers user-friendly services contributes to the patients

general response to medication (van der Eijk et al., 2005). It can also be concluded

on the basis of these results that the covariates do not have direct bearing on d

largely because, according to Marini et al. (2008), latency of the infected CD4+ T

cells is known to persist even during HIV treatment.

For these data we also noted that there was a strong negative correlation between

the τRTI and τPI with a value of −0.574. We could not immediately have backing

from the literature but this could be apparently linked to the association between

the HIV disease markers.

Based on the age-groups with 18 − 25 as the reference group we also computed

the estimates of the eight parameters and their central 95% confidence intervals

as shown in Table 5.4. The objective was to check the degree of influence of

age at commencement of treatment on the various coefficients associated with the

explanatory variables.

For some parameters, it was also observed that the value of the estimate was

associated with age at commencement of treatment. For instance from Table 5.4

it can be noted that values of a, cN and p vary over age-groups as can be seen from

non-overlapping pattern in confidence intervals between any two groups or among

all the groups. These results were also supported by ANOVA tests which showed

there was significant difference in parameter values between the age-groups (we

used individual estimates of these parameters).

On average there were wider confidence intervals for the true parameter values for

the 34 − 40 age-group in this analysis. This could be attributed to the relatively
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Table 5.4: Parameter estimates for the within age-groups (and their confi-

dence limits).

Age-group

Parameter 26− 33 34− 40 > 40

a 16.03 21.19 49.12

(13.9, 18.16) (17.84, 24.54) (40.15, 58.1)

cN 0.0048 0.0107 0.0341

(0.0041, 0.0055) (0.0091, 0.012) (0.0284, 0.0399)

d 0.0604 0.0614 0.6975

(0.0417, 0.0792) (0.0345, 0.0884) (0.4627, 0.9123)

cA 0.4479 0.8287 3.093

(0.3768, 0.519) (0.6881, 0.9692) (2.534, 3.6508)

p 56.66 101.11 167.71

(49.41, 63.9) (88.38, 113.84) (142.64, 192.77)

π 0.2278 0.2818 0.2177

(0.1813, 0.2743) (0.2244, 0.3388) (0.1741, 0.2613)

τPI 0.5118 0.7895 0.3106

(0.4368, 0.5867) (0.6868, 0.8922) (0.2405, 0.3806)

τRTI 0.44 0.1452 0.5294

(0.3490.5368) (0.1061, 0.1842) (0.4326, 0.6262)
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high rate of dropout seen in this age-group for both markers (with 42% for the

CD4+ T cell count and 48% for the viral load) as the size of bias is usually known

to increase with the proportion of dropout (Lipsitz et al., 2009).

For the results of the five parameters that were estimated for both the dropout

model (see Table 4.4) and partial dropout model (Table 5.4 above) we noted several

interesting results. Firstly, in both cases we included four covariates of which three

were common and these are (i) age-group, (ii) supplementary treatment and (iii)

compliance to treatment. The only difference was that the dropout model had sex

of a patient as the fourth covariate while in the partial dropout case had facility.

However, from results of exploratory data analyses in Chapter 2 indicate that the

patient’s sex does not determine the choice of the facility to which they presented

themselves. Thus we are in a better position to assume that the differences in the

estimates could be entirely due to the difference in the number of marker values

in the two scenarios with 1856 values in the dropout case (Chapter 4) and 2024

values in the current chapter.

Secondly, the results show that in the model with partial dropout (PDO), the

estimates from the age-groups have wider ranges than the estimates in the case of

ordinary dropout (DO) model. The scenario is illustrated in a box plot in Figure

5.1. This has also been confirmed by tests on differences between the means in the

three age-groups for the partial dropout scenario which showed there was significant

difference (p < 0.001) as discussed above. The large ranges in the partial dropout

case can be attributed to the increased variability in the estimates because of the

unbalancedness in marker readings within and among the subjects under study,

especially across age-groups. For instance in the present case, there were 2014

laboratory measurements of which only 46% were viral load readings and the rest

were CD4+ T cell counts. On the other hand, there was an equal number of the
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Figure 5.1: Box plot for individual estimates of a under PDO and DO.

markers in the dropout models considered in Chapter 4. The other contributing

factor for the differences could be the dependence of these covariates (gender and

facility) on the other covariates (see tests in Section 2.2, Chapter 2). Thirdly, the

confidence intervals for the parameters estimated from the dropout model were

general much wider than in the partial dropout case. This was true in 80% of the

comparisons and the remaining values were all connected to cN , the death rate of

the uninfected CD4+ T cells. As already pointed out, this is not surprising because

for the same number of covariates, the model developed in this chapter accounts

for all the laboratory measurements by accommodating them through the partial

dropout mechanism.

In earlier studies, there were varied reasons for studying the HIV disease dynamical

system of the nonlinear ordinal differential equations. For instance, in Lavielle

et al. (2011) one of the objectives of the discussions was to compare the models

under different treatment regimen. Thus without prior discussions related to our
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findings, we can only argue that our models present a mechanism for improved

inference of the parameters of the HIV disease biological system.

We also computed the inter-subject variability (the results have not been reported)

which measures the extent to which random-effects influence the system parame-

ters. Under the normal distribution assumption all the estimates were significantly

different from zero (p < 0.001).

Parameters characterising the dropout occasions in the models (5.2) and (5.3) were

also estimated. Like in the response model (5.1), we included the three covariates

(facility, supplementary treatment and compliance to treatment). The results for

both scenarios are reported in Table 5.5. The results of the former model indicate

that the dropout process could not be ignored in the estimation of the system

parameters. It was, however, revealed that the history of the CD4+ T cell did not

contribute significantly as did the log10-viral load history. This could result from

the fact that the viral load is the marker that was not mostly observed in later

occasions for most patients.

We also noted that the dropout process (in model (5.2)) was highly influenced by

the covariates, particularly compliance to treatment and facility to which patients

presented themselves. These results are in agreement with what was observed in

the exploratory cross-tab analyses of the current data where it was noted that for

one facility there was high proportion of dropout and small at the other facility.

Furthermore, one would argue that a compliant patient would not need further

viral load monitoring as they would be deemed responding well to treatment regi-

men. Little influence on the model process was detected from the supplementary

treatment and the negative coefficient is not unexpected since a patient who seeks

extra clinical care would not be expected to dropout because they needed close

monitoring of the response variable through observation of the biomarkers.
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Table 5.5: Estimates for dropout coefficients

Model (5.2) Model (5.3)

Coefficient λ p-value ζ p-value

Intercept −0.876 < 0.001 −1.822 < 0.001

Supp. treatment −0.022 0.736 −0.222 0.035

Compliance 0.173 0.037 0.502 < 0.001

Facility 0.294 < 0.001 0.911 < 0.001

yvl,nih−1
∗ 0.112 0.001 0.083 0.118

ycd,nih−1
† 7.65× 10−5 0.122 − −

ycd,ni−1
‡ − − 2.21× 10−4 0.007

∗log10-viral load just before nih;
†CD4+ T cell count just before nih;

‡CD4+ T cell count just before ni

There was evidence of nonignorable dropout in the latter model as well (model

(5.3)). This dropout model was largely dominated by CD4+ T cell count which had

a coefficient that was significant with a p-value of 0.007 and the viral load history

was not significant. This was in order since very few values (of the log10-viral

load) were observed at the final observation occasion for this model. The results

also show that all the covariates generally influenced the dropout mechanism in

some way. This could be attributed to the fact that this was what could be termed

as terminal dropout where all the covariates contribute directly or indirectly to

the dropout mechanism. We noted, for instance, that the subject specific covariate

compliance to treatment seemed to increase the tendency for a subject to withdraw.
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5.8 Discussion

In this chapter, we proposed a joint likelihood function of the multivariate re-

sponse variable and the dropout occasions in order to facilitate the estimation of

the parameters of the latent HIV disease dynamical system of nonlinear ordinary

differential equations and those of the dropout mechanisms. We used the SAEM

algorithm as an estimation technique for estimating these parameters since no

analytic estimation formulas are obtainable for these systems.

This estimation technique was applied to routine observational data from HIV clin-

ics under the Lighthouse Trust at Kamuzu Central Hospital in Malawi. The data

were characterised by high proportions of missing observations due to dropout and

left-censored viral load measures. In this chapter, we allowed the unbalancedness

to occur both among subjects and also among the markers within subjects so that

the number of markers was allowed to be different for each occasion and for all

the patients. The number of viral load measures was in general less than that

of the CD4+ T cell count. Our proposed methodology included this unbalanced-

ness so that all the observed markers contributed to the estimation process. We

have compared the results of the illustration of this methodology with the case of

dropout mechanism discussed in Chapter 4. It has been established that under

that dropout case the confidence intervals of the system parameters are much wider

than in the current case. This could point to reduced uncertainty emanating from

use of more information in this (partial dropout) scenario.

Unlike in similar studies where only one or no covariate was considered, in this

analysis we included several such covariates. Results on coefficients of these co-

variates indicated that leaving them out when making inferences may result in bias

and general loss of valuable information because almost all of them were significant
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to the models in which they were used.

We also showed that the dropout occasions play a significant role in the analysis

because if included as done here estimation bias is substantially reduced. It has

been observed from the results in Table 5.5 that the partial dropout mechanism

represented in models (5.2) and (5.3) is dependent on biomarker history and the

covariates as manifested by the significant coefficients for the two quantities. The

analysis also revealed that the history of the CD4+ T cell count was not signif-

icant for model (5.2) and the log10-viral load measurement history was also not

significant for model (5.3) of the dropout mechanism.

In the analysis, it was assumed that all subjects had their markers measured at

the same time. However, in most longitudinal studies that involve collection of

multivariate data it is common to have the outcomes to be measured or observed

at different time points. In addition, some of the covariates required to be redefined

so that more appropriate features are taken care of. As an example, we could define

supplementary treatment in such a way that the nature and severity of the illness

that led to demand for supplementary treatment are described. Such definitions

would also help in better interpretation of some results.

In the next chapter, we study the use of multiple imputation of the missing marker

values on estimation of the parameters of the HIV disease dynamical model. The

current results, however, are comparable with those in the literature. For example,

the activation rate of latently infected CD4+ T cells d in Guedj et al. (2007b) is

0.042 while our analyses this chapter give an average value of 0.039 on the same

unit of measure.

101



Chapter 6

Multiple imputation and simulation of

multivariate longitudinal data with

application to HIV dynamical systems

Abstract

In studying the HIV disease pathogenesis it is important to look at characteristics

of estimates of the system parameters under incompleteness of the data due to

the limit of quantification which results from the methods used to make the mea-

surements. In this chapter we compare the level of variability of the parameter

estimates for different simulated partially observed data using different limits of

quantification. Secondly, to deal with the missing data problem, we assume the

data are at least missing at random so that we use multiple imputation in order

to have complete data from the partially observed data which is then used in es-

timating system parameters. We compare the complete case analysis results with

those obtained under the partial dropout scenario.
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6.1 Introduction

Mathematical models that describe within host HIV disease dynamics are impor-

tant in the study of characteristics of HIV infection and progression in the presence

of clinical interventions in the form of antiviral treatment. There are many such

models that have been proposed in the literature and the problem usually reduces

to estimation of parameters that characterise these mathematical models (Huang

et al., 2006; Guedj et al., 2011; Perelson and Nelson, 1999; Nowak and May, 2000).

To carry out these estimates, bivariate longitudinal data of viral dynamic biomark-

ers are usually modelled using nonlinear mixed-effects models(Guedj et al., 2007a).

Typical longitudinal data from studies such as clinical trials or prospective ob-

servational studies consist of measurements or observations taken repeatedly over

time on a particular subject. In such studies missing data occur as a result of

the subjects missing scheduled visits or some variables could not be measured or

observed at particular visits or simply because subjects drop out of the study. The

objective of such studies is to assess changes and trends in the response variables of

study subjects. In the presence of missing data, this objective may not be properly

achieved.

There are many procedures for handling incomplete datasets and usually these

depend on the assumptions placed on the response models and the mechanisms

governing the missing data. For instance, one needs to make assumptions about

whether the missing data are ignorable or nonignorable and bearing in mind that

participating subjects may offer data that is different in important ways from

those subjects that have missed some occasions or completely dropped out (Bran-

cato et al., 1997). Approaches can be categorised in line with how the missing

values will be treated: either by reweighting of observations or imputation of the
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missing values (Liu et al., 2000). The popular choice is the imputation of missing

data which involves filling in missing data with values obtained from some specified

model of the observed values (Singh, 2009). In most applications, multiple imputa-

tion is used because it has advantages of accommodating multiple levels of missing

data and also being easily implemented in most statistical software (Kmetic et al.,

2002; Schafer and Yucel, 2002). Another important advantage of multiple impu-

tation is that it accounts for uncertainty in the imputed values apart from offering

variability in the estimates of the parameters.

One of the objectives of the study was to check the sensitivity of parameters for

various levels of limits of quantification. This objective is addressed in this chapter,

where we carry out a simulation study with three limits of quantification of the

viral load levels and look at the effects on the estimates of the parameters that

govern HIV disease dynamics. Furthermore, we consider multiple imputation of

the missing data. In particular we look at a case where disease biomarkers are not

fully jointly observed (see Chapter 5, Section 5.4). This scenario introduces two

practical problems. The first problem is the missing values of the markers and the

second problem is the bivariate response variable with one marker having some

values that are below the limit of quantification. We compare the results with

those found directly by using partially observed data.

The rest of the chapter is organized as follows. Section 6.2 gives a motivation

and statistical models of the HIV disease dynamical system. A simulation study is

presented in Section 6.3 where we compare parameter estimates for various levels of

limits of quantification based on data with partial dropout. Results from analyses

based on imputed data and comparisons with results based on partially observed

data are discussed in Section 6.4. We conclude the chapter with a discussion in

Section 6.5.
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6.2 Motivation and Statistical models

There are many biological models that describe the interaction of HIV virus with

the immune system while the patient is on a treatment course (Perelson and Nelson,

1999; Nowak and May, 2000; Huang et al., 2006). The discussion of this chapter

considers the disease dynamical model that has been described in Section 3.1.

In particular, we would like to compare estimates of system parameters obtained

under partial dropout and those obtained when multiple imputation of the missing

markers is conducted. Furthermore, we would like to assess the sensitivity of

parameter estimates to changes in the limit of quantification. The statistical model

we consider is a bivariate response variable of the form

yi = (g1(V (tij,ψi)), g2(T (tij,ψi)))
T + (ei1, ei2)

T , (6.1)

which is also described in Chapter 3 (see equation (3.12)). The quantities V and

T are the measured viral loads and CD4+ cell counts respectively. It is usually

assumed that the parameters (ψi) of the system in model (6.1) are transformations

of a Gaussian random vector. Thus the transforms are modelled as in equation

(3.13) in Chapter 3.

In the procedures described in the next sections we use the SAEM algorithm which

has been described in Section 5.6 of Chapter 5. The implementation is done in

MONOLIX and R.
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6.3 Parameter estimates under different limits of

quantification

In this section, we considered the effect of limits of quantification (LOQ) of the

viral load measurements on the estimates of the HIV dynamical system param-

eters through a simulation study. Estimates and their confidence intervals were

compared at three levels of LOQ: 400, 200 and 50 copies per ml. The data with

LOQs 200 and 50 copies per ml were simulated based on the partially observed

data described in Section 5.4 of Chapter 5. Estimates of the system parameters

and their 95% confidence intervals are displayed in Table 6.1 for the different limits

of quantification. It will be noted from this table that, in general, the width of the

confidence interval is smallest in the data with a LOQ of 50 copies per ml. This

is to be expected because lower limits of quantification correspond to increased

accuracy of measurement which results in a smaller proportion of unobserved val-

ues (due to left-censored values). For instance, the three datasets with LOQs of

400, 200 and 50 copies per ml, had respective proportions of 39%, 25% and 20%

of values below their LOQ. It should also be noted that the level-off effect of the

data decreases with the size of LOQ.

Figure 6.1 presents plots of individual estimates for the death rate of the activated

infected CD4+ T cells (cA) and the efficacy of the reverse transcriptase inhibitors

(τTRI) using simulated data based on a limit of quantification of 50 copies per ml

and those found using the original data with an LOQ of 400 copies per ml. It can

be noted from the plots that the individual estimates of the parameters for the

simulated data have smaller inter-individual variations for both parameters. This

unevenness can be attributed to the reduced level-off effect in the case of simulated

data as a result of a smaller LOQ.
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Table 6.1: Parameter estimates for the different levels of LOQ (and their

confidence limits)

Limit of quantification

Parameter 400 copies per ml 200 copies per ml 50 copies per ml

a 28.39 31.23 30.71

(25.11, 31.68) (27.84, 34.62) (28.057, 33.36)

cN 0.0183 0.028 0.0228

(0.016, 0.021) (0.021, 0.0337) (0.019, 0.026)

d 0.227 0.231 0.131

(0.158, 0.297) (0.203, 0.258) (0.116, 0.146)

cA 1.29 0.745 0.637

(1.08, 1.502) (0.627, 0.863) (0.546, 0.728)

p 129.64 83.90 91.33

(116.24, 143.03) (74.5, 93.31) (80.64, 102.03)

π 0.207 0.172 0.206

(0.182, 0.233) (0.15, 0.194) (0.181, 0.231)

τPI 0.488 0.7895 0.653

(0.44, 0.536) (0.705, 0.753) (0.626, 0.679)

τRTI 0.49 0.645 0.726

(0.437, 0.543) (0.62, 0.67) (0.699, 0.753)
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Figure 6.1: Estimates at LOQ of 50 copies per ml and 400 copies per ml.
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The plots reveal that there seems to be sub-populations in the individual esti-

mates. These are evident in the panels of the second column where we see that for

the first segment covers the first 138 individuals and the other segment includes

the remaining 76 individuals. These numbers correspond to the two facilities from

which data were collected. These results could have come about because of the

differences in proportions of viral load levels that were below LOQ. For instance,

exploratory analyses show that for Lighthouse clinic, only 33% of viral load read-

ings were below LOQ while Bwaila had 42% such values. But this was not the

case with simulated data where the proportion of measurements below LOQ was

bigger for Lighthouse (25%) clinic than that of Bwaila clinic (17%). The reasons

for this phenomenon are not immediately obvious because one would expect that

the proportions could have been the same under simulation. The other interesting

result is that the individual estimates for the efficacy of reverse transcriptase in

original data indicate that the values were mostly on extreme ends, with almost no

values between 0.5 and 0.8. There was no immediate explanation for this outcome.

It was further observed that regression coefficients for the covariates in the dataset

with an LOQ of 400 copies per ml were significant. For instance, for cA, death

rate of the infected activated CD4+ cells, all the covariates and the intercept were

significant when a dataset with an LOQ of 400 copies per ml is used in the analysis.

It could, therefore, be argued that in the presence of a higher proportion of values

which are below the LOQ, covariates provide important information about subjects

that is relevant in the estimation of model parameters.

We also considered inter-subject variability for each dataset. This is a measure

of the extent to which subject-to-subject effects influence estimates of parameters

that characterise the within-host HIV disease dynamics. The results are displayed

in Table 6.2. The variability for all parameters in the two datasets with small
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Table 6.2: Inter-individual variability for four system parameters (s.e.) in the three

datasets

LOQ a d τRTI τPI

400 copies/ml 0.564 (0.044) 1.21 (0.24) 0.715 (0.31) 1.77 (0.68)

200 copies/ml 0.437 (0.023) 0.697 (0.034) 0.721 (0.037) 0.497 (0.03)

50 copies/ ml 0.45 (0.023) 0.731 (0.036) 0.892 (0.048) 0.564 (0.037)

LOQs (200 and 50 copies per ml) were significant which is expected because for

the same number of measurements there is little level-off effect in these sets that

comes with data truncation resulting from lower quantification levels.

6.4 Multiple imputation for partially observed

multivariate data

Missing data are inevitable in epidemiological and clinical studies and have the

potential to compromise the validity of results due to bias. The data used in the

current application were observational in nature and were characterised by high

proportions of dropout and left-censored values. This information was obtained

from two hundred and fourteen subjects and among them they shared 2024 lab-

oratory measurements of the markers. These data had an average dropout rate

of 41%. The response variable was such that it was unbalanced both among sub-

jects and also within subjects because on account of resource constraints only one

marker could be observed more often. The number of viral load measurements was

in general less than that of the CD4+ cell counts (see Table 5.1 in Chapter 5).
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6.4.1 A brief description of multiple imputation

We assumed the data were missing at random so that we could use multiple impu-

tation in order to fill in the missing values (Rubin, 2004). Under this missing data

method, the missing values of the response variable (or covariate as need be) are

predicted by using the observed values (Sterne et al., 2009). Each missing value

is replaced by a set of values that are generated using the observed values so that

several complete datasets are created depending on the need and computational

capacity. This process gives the name multiple imputation.

In order to create imputed values, a set of similar regression models are identified

which will allow one to create imputes based on other variables in the dataset.

These regression lines present different versions of what the actual equation for

the missing data will take. Production of several versions of the data allows one

to average over these sets so that better estimates are produced. The number of

imputed datasets to create is usually between 3 and 10 data sets. These regression

lines will need predictor variables to help preserve relationships in the data. The

observed data are used to generate the imputed values because they are assumed to

be correlated with these missing variables and the missingness mechanism (Stuart

et al., 2009).

Then estimation of the parameters is carried out using standard statistical analyses

on each imputed complete dataset, giving multiple estimates for each parameter.

These multiple estimates are then combined to provide a grand estimate. Multiple

imputation takes into consideration the natural variability in the missing data and

also incorporates the uncertainty caused by estimating missing data (Allison, 2000;

Lloyd et al., 2013).

Multiple imputation has several advantages which include taking care of multiple
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levels of missing data and accounting for uncertainty in the imputed values in ad-

dition to creating variability in the estimates of the parameters. This is done by

creating imputed values which are based on variables correlated with the missing

data and causes of missingness and by creating different versions of the missing

data. As a result, it is known to produce estimates that are unbiased and satis-

factory even with small sample sizes or with sets of data that have high rates of

missingness. Moreover, this missing data method is robust enough to departures

form normality assumptions. Additionally, the complete datasets from multiple

imputation can be analysed using most known methods and software packages.

Multiple imputation is a preferred solution to missing data problems because it

provides quality of results and it is easy to use. It can be performed on a variety of

missing data situations and has known to produce unbiased parameter estimates

which reflect the uncertainty associated with estimating missing data (Schafer,

1997; Lloyd et al., 2013).

6.4.2 Results from multiple imputation

In this setting, we used multiple imputation on partially observed data (described

in Chapter 5). This was implemented in R using the package mi, Version 0.09-18.03

(Gelman et al., 2013). We generated six complete datasets which were analysed

using complete-case methods discussed in Chapter 3. Part of code for multiple

imputation of data is given in Appendix A. Then each of the six datasets was used

in producing a set of estimates of the parameters that characterise HIV disease

dynamic systems (see model (3.1)). The estimation of the parameters was con-

ducted in MONOLIX. These parameter estimates and their standard errors were then

compared with those obtained by using data with partial dropout. We generated
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only six sets because the analysis of any given dataset takes a long time to run

in MONOLIX and also this number of imputed datasets is reasonable from practical

point of view (Stuart et al., 2009).

The average proportion of values below limit of quantification for the six complete

datasets was (38.9%) the same as the proportion of such values (38.8%) in the

original data (with partially observed values). Table 6.3 shows estimates and the

standard errors of the covariate coefficients for four parameters using imputed data

(MI) and those based on data with partial dropout (PDO). It can be seen from this

Table 6.3: Estimates of the covariate coefficients (and their p-values)

Param. Intercept Supp. Compl. Facility

a
P† 2.28 (< 0.001) 0.60 (< 0.001) 0.29 (0.022) 0.36 (0.007)

M‡ 2.2 (< 0.001) 0.10 (0.0012) 0.003 (0.936) 0.33 (< 0.001)

cN
P −5.02 (< 0.001) 1.21 (< 0.001) 0.525 (< 0.001) −0.11 (< 0.001)

M −5.25 (< 0.001) 0.72 (< 0.001) 0.14 (0.41) −0.38 (0.022)

τP
P 4.49 (< 0.001) −2.38 (< 0.001) −9.48 (< 0.001) −10.1 (< 0.001)

M 4.23 (< 0.001) −0.57 (< 0.001) −1.58 (< 0.001) −0.76 (< 0.001)

τT
P −1.78 (< 0.001) 3.67 (< 0.001) 0.189 (< 0.001) 5.63 (< 0.001)

M 1.06 (< 0.001) 0.19 (0.017) 0.11 (0.349) 0.84 (< 0.001)

†Partial dropout; ‡Multiple imputation; τP = τPI ; τT = τRTI

table that the covariate coefficients are smaller in the imputed scenario than in the

partial dropout case for most parameters. As an example, we note that compliance

to treatment is largely not a significant covariate in the analysis when imputed data

are used. This is not unexpected because when multiple imputation is carried

out, the resulting data (with 3424 clinical measures) seem to provide adequate
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information about the response variable which could result in some covariates

being non-significant. We could not immediately explain the difference in signs of

the intercepts for the parameter τRTI .

We also noted that the HIV dynamical system parameters were estimated with

smaller standard errors under multiple imputation as compared to the case with

partially observed values. These improved results have possibly come about as

Table 6.4: Overall parameter estimates using multiple imputation and partial

dropout

Multiple imputation Partial dropout

Parameter Value 95% Confidence limits Value 95% Confidence limits

a 12.64 (12.28, 13) 28.39 (25.11, 31.68)

CN 0.009 (0.008, 0.011) 0.018 (0.016, 0.021)

d 0.008 (0.007, 0.01) 0.227 (0.158, 0.297)

CA 0.587 (0.547, 0.626) 1.291 (1.08, 1.502)

p 80.85 (76.96, 84.74) 129.64 (116.24, 143.03)

π 0.69 (0.674, 0.707) 0.207 (0.182, 0.233)

τPI 0.982 (0.981, 0.984) 0.488 (0.44, 0.536)

τRTI 0.742 (0.706, 0.778) 0.49 (0.437, 0.543)

a result of having more marker measurements in the multiple imputation case

(3424) compared to 2024 in the partial dropout case. One would also compare

the estimates under multiple imputation with those found under complete case

analysis in Chapter 3. As expected, with more marker values and a bigger sample

size, the results under multiple imputation analysis are more accurate that in the

balanced data case.
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Apart from the wide confidence intervals observed in the partial dropout scenario,

it was also noted that the estimates assumed values that were mostly larger than

in the multiple imputation case. Exploration of the parameter estimates revealed

that there were some individuals that had extreme values. For instance, in the

multiple imputation analysis, the maximum value of the individual estimate of a

had a value of only 18.61 whereas in the partial dropout case the maximum value

was as large as 184.44 and with more than half of the estimates taking values

greater than 18.61.

The parameter estimates obtained using both multiply imputed and partially ob-

served datasets are, however, within the values found in the literature. As an

example consider the value of the activation rate of latently infected CD4+ T

cells: the value in other discussions is 0.443 (Lavielle et al., 2011) while the cur-

rent analyses give us 0.69 (multiply imputed data) and 0.207 (for partially observed

data). Thus the only difference in these estimates are purely as a result of the na-

ture of the data used in the estimation process, with the multiply imputed dataset

offering smaller standard errors.

The plots in Figure 6.2 illustrate individual estimates under the two cases. We note

that the values in the multiple imputation (MI) estimation suggests that there are

two strata in the values, with one sub-population having relatively bigger estimate

and the other one having smaller value (see the left panel). These results could

correspond to facilities to which patients reported. The right panel also suggests

the same trend but to a small degree. The other factor could be the differences

in the rates of dropout for the two markers at the two facilities. These values are

shown in Table 6.5 where it can be seen that the average dropout rate at Bwaila

clinic is much higher (44.4%) than at Lighthouse clinic (35%). This suggests that

there was a bigger proportion of the marker values to be imputed in the first facility
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Figure 6.2: Individual estimates of a for the 214 subjects; MI = multiple

imputation, PDO = partial dropout.

Table 6.5: Percentage of unobserved marker values

Facility

Lighthouse Bwaila

Marker
Viral load 42.9 47.4

CD4+ T cell count 27 40.9
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as compared to Lighthouse clinic.

6.5 Discussion

There are a number of strategies for handling missing and left-censored data. In

this chapter we used multiple imputation based on a routine observational dataset

from two HIV clinics. Since the data were unbalanced both among subjects and

also among the markers within subjects, the multiple imputation was carried out

for both markers (CD4+ cell counts and the viral load). Using the imputed data

we estimated parameters of the HIV dynamical system and compared the results

with those obtained using the incomplete data. This was done in the presence of

several model covariates. The results, however, showed that estimates of covariate

coefficients were not significant in the presence of complete data through multiple

imputation compared to those obtained using data with partial dropout. Using

the imputed data we also estimated the parameters of the within-host disease

dynamics. It was observed that the standard errors of the estimates under imputed

data were on average smaller than in the case of incomplete data. To the best of

our knowledge, this is the first time multiple imputation has been applied in the

estimation of parameters of the HIV dynamical system.

We also considered the effect of the limit of quantification (LOQs) of the assays

when quantifying viral load on the estimates of the parameters. This was done by

simulating datasets with desired LOQs. As shown in this study, the width of the

confidence interval varies with the value of the detection limit. This means that a

smaller LOQ results in a smaller standard error due to reduced uncertainty in the

data. Like in the case of multiple imputation, the detection limit determines the

size of the proportion of observations that are truncated to this limit. Thus as also
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noted by Huang (2010) this LOQ influences the level-off which in turn provides the

data with variability. The simulation study also offered the opportunity to observe

that analyses involving data with smaller LOQ tend to depend less on covariates

as shown by the level of significance of the covariate coefficients. This could be

interpreted as the data being richer if its limit of quantification is smaller. In

general this means that in the presence of a large number of left-censored values,

covariates act as a source of additional information about the patients which is

important in the estimation of HIV dynamical system parameters.

The inter-patient variability for all parameters in the two datasets with smaller

limits of quantification (200 and 50 copies per ml) were significant (p < 0.001).

Since it seemed like all the datasets provided significant results, in general, an

observation using coefficients of variation shows a stark difference between the

estimates of the parameters in the data with a LOQ of 400 and the other two.

For example, the smallest coefficient of variation in the former set is 8% while the

largest among the values of the other two sets is 7%. This is to be expected because

for the same number of measurements there is little level-off effect in these sets that

comes with data truncation resulting from lower quantification levels. In order to

get accurate estimates of the system parameters there is a need for researchers

to consider assays that have a much smaller detection limit as suggested by the

results in this study.

In the analyses above, we assumed that dropout mechanism was missing at random

so that multiple imputed could be possible. This may not have been the case

because exploratory results indicate that the tendency to dropout depended on

facility to which patient presented themselves. There was a need to use more

datasets from multiple imputation instead of only six replications as done in our

case. This would ensure parameters were estimated from a wide variety of complete

118



datasets which in turn would provide a basis for finding more efficient parameter

estimates. Furthermore, the input in the simulation could have been enhanced by

considering different time points for subjects as compared to the uniform occasions

used in this analysis.

In summary this chapter concentrated on improving the richness of the bivariate

longitudinal data so that parameters of the HIV dynamics could be estimated

with greater accuracy. This has been done through multiple imputation of missing

marker values and simulation of different sets based on the routine observational

data using selected limits of quantification.
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Chapter 7

Conclusion

7.1 Summary and discussion

This thesis was motivated by the need to estimate parameters of the HIV dynam-

ical systems which could improve the knowledge of the disease progression and

treatment efficacy. These dynamics involve a system of nonlinear ordinary dif-

ferential equations in the two main disease biomarkers of CD4+ T cell count and

viral load. The objective of such studies is to estimate parameters that characterise

these disease dynamics. The most appropriate statistical models for carrying out

the inferences of these parameters are nonlinear mixed-effects models for multivari-

ate longitudinal data. These models are also used in various fields where growth

and decay are involved like in yield modelling (Hall and Clutter, 2004; Forni et al.,

2007).

In estimating the parameters we used two routine observational datasets from two

HIV clinics under the Lighthouse Trust at Kamuzu Central Hospital in Malawi.

The data were characterised by high proportions of missing observations due to

dropout and left-censored viral load measures as a result of the outcomes being
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below the limits of quantification. Overall it was observed that 41% of the outcomes

were missing as a result of dropout and 39% of the viral load measures were

below the limit of quantification. We considered three cases of the statistical

model and each one provided estimates of parameters of the HIV disease dynamical

system that were comparable with those found in the literature and in each case we

included several covariates which was not the case in most discussions (Bortz and

Nelson, 2006; Guedj et al., 2011). These three cases differ in the number of marker

measurements and the covariates included in the analysis and also the number of

occasions.

In the first approach, we considered a nonlinear mixed-effects model for complete

multivariate longitudinal data involving 78 subjects observed on five different oc-

casions including the baseline occasion. We included only three covariates in this

setting because the others proved to be non-significant upon carrying out tests.

Age-group (at commencement of treatment) was used as a grouping variable. The

other covariates were compliance to treatment and supplementary treatment.

In the second scenario, we included observations from 214 patients and we assumed

that all the subjects had a minimum of three and a maximum of seven bivariate

observations. This ensured that we had enough information for the estimation

process. There was a high percentage of patient dropout with only seven patients

observed on the final occasion. This prompted us to propose a joint likelihood

function of the multivariate response variable and the dropout occasions in order

to facilitate the estimation of the parameters of the HIV disease dynamical system.

Covariate tests provided the inclusion of one more covariate (sex of the patient)

on the first case. This could be attributed to the dropouts that occurred in this

case so that covariates acted as additional sources of information needed for the

analyses.
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The third scenario allowed the unbalancedness to occur among subjects such that

subjects were observed with different numbers of occasions and also among the

markers within subjects so that the number of markers was allowed to be different

for each occasion. The number of viral load measurements was in general less than

that of the CD4+ T cell counts largely because of resource constraints. Like in the

second case, we included four covariates of age-group, compliance to treatment,

supplementary treatment and facility to which patients presented themselves.

The differences among the three cases usually affect the degree of inter-individual

variability which in turn results in differences in the estimates and their standard

errors. However, the results can be of assistance in choosing the best models for

a given dataset, while taking into consideration important properties of the data

that have been described above. In so doing, the estimation of parameters of the

HIV disease dynamics is also improved because we get more efficient estimates.

In this thesis, we have shown that the use of explanatory variables cannot be

ignored, as done in similar studies, when making inferences about the system

parameters (Audoly et al., 2001; Guedj et al., 2007a). Inclusion of covariates in

the estimation of parameters provides an insight into the general properties of these

parameters especially when such variables are significant to the analyses and when

the data are unbalanced as a result of dropouts. For instance, we observed that

gender (in the second scenario described above) of the patient influences the rate

at which the actively infected CD4+ T cells die with a coefficient which is very

significant (p < 0.001). This was also reflected in the third case where coefficients

of the covariates for almost all the parameters were highly significant (see Table

5.3).

The nature of the data motivated us into proposing joint likelihood function of the

observed multiple outcome response variable with left-censored data, the random-
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effects, measurement error and the dropout mechanism in finding estimates in the

case where dropout has been defined as all the response components not being

observed once the subject withdraws from the study. However, it is common to

have the response variable for a particular study subject to be observed partially

so that only a subset of markers are not observable as described in case three above

where for the same individual, we had more CD4+ T cell count measurements than

the viral load measurements. In order to include all observations in the analyses,

we have also proposed a joint likelihood of the multivariate response variable, the

partial dropout and the subject-specific effects. This function has been used in the

estimation of the HIV dynamical system parameters.

Our major contributions are presented in Chapters 4 and 5. Among other things,

we showed that the dropout occasions, covariates and marker history play a sig-

nificant role if included in the analyses because the parameters are estimated with

smaller standard errors. We proceeded to find estimates of system parameters

through a simulation study of marker data for various levels of limits of quantifi-

cation (LOQ) of the viral loads. It has been observed that a smaller LOQ reduces

uncertainty that comes with left-censored data because a smaller proportion of

the values fall below LOQ. We also used multiple imputation to create six com-

plete datasets which were used to find estimates of the system parameters. The

estimates from these data had smaller confidence intervals than when partially

observed data were used in such analyses.

As mentioned before, there are various possibilities for estimation of model pa-

rameters based on maximum likelihood approaches. In the sequel, we have used

the stochastic approximation expectation maximisation (SAEM) algorithm for its

convergence properties. This algorithm is designed in such a way that informa-

tion from earlier steps is gradually dropped and more weight is placed on recent
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steps with more accurate information relevant to the approximation (Delyon et al.,

1999).

7.2 Limitations and future research

7.2.1 Limitations

In order to include practical aspects in the analyses, some of the covariates needed

to be redefined. For example, supplementary treatment could be defined in such

a way that the nature and severity of the illness that led to demand for supple-

mentary treatment can be explicitly assessed. A proper documentation of getting

supplementary treatment would also be a great advantage so that it is more ac-

curately modelled and interpreted. In a similar manner, absence at time of ap-

pointment may not imply that the patient was not complying to treatment. It

would be worthwhile to re-define this factor (treatment compliance) to include

such situations as ensuring that the patient takes prescribed medication at desig-

nated times, that recommended dose and diet is being taken by the patient and

prescribed schedules of patient physical exercises (or related health maintenance

or improvement activities) are being followed by the subject under study among

other elements (Pullar et al., 1989). These redefinitions would also ensure that the

data is of high quality and rich enough for the estimation and interpretation of

parameters of the complex HIV dynamical systems as the one considered in this

thesis.

Another challenge is that the data used in our illustrations was obtained for routine

check up and general patient monitoring. Moreover, there could also be some

challenges with equipment used in the measurements as could be seen from a high
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value of limit of quantification (LOQ) of the viral loads. Therefore, this type of

data, may not have been collected with a precision needed for the estimation of

parameters described in this study and in practice this cannot be avoided because

of the design of the equipment used for taking measurements. As observed by

Wu (2005), for instance, LOQ creates an artificial level-off effect in a dataset.

This was another reason for the need to include several covariates which were

deemed to provide additional information. In the illustrations we assumed that

the observations were scheduled at equally-spaced occasions for each subject (see

Rochon and Helms (1989) or Forcina (1992)). Most applications, however, allow

for differences in observation intervals and fortunately, most statistical procedures

accommodate such imbalances without overly compromising the consistence and

efficiency of model estimators.

On the whole, however, these shortcomings did not outweigh our observations and

results that the parameters in the dynamic systems are better estimated or ap-

proximated with reasonable practical reliability if system covariates are included

in the analyses especially when there is a high proportion of dropout or censored

data. Our results compared very well with other published results. For instance,

our estimated value of a is in the interval 1.64−7.02 copies per day for the various

scenarios looked at in this thesis against the literature values (of 2.61 (Lavielle

et al., 2011), 7.05 (Putter et al., 2002), 13.73 (Guedj et al., 2007b), 62 (Yu and

Liang, 2013) and 98.1 in a discussion by Huang et al. (2006)). These varied lit-

erature values could be a result of a number of factors which may include the

informativeness of the data used in the analyses, the assumptions placed on the

models and also the subtypes of the HIV disease.
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7.2.2 Future work

The analyses and approximation procedures presented here can be generalised to

find applications in other disease modelling problems. For instance, in modelling

other chronic illnesses like cancer one may determine the efficacy of treatment and

the impact of treatment compliance on response to treatment regimen (among

other system parameters) by applying the procedures discussed in this thesis. One

could also consider using functional data analysis so that samples of random func-

tions of the observations from the clinics are used in estimating the model pa-

rameters (Mart́ınez-Camblor and Corral, 2011). Furthermore, treatment could be

time-variant and this needs to be factored when developing statistical parameter

estimation models (Jones and Boadi-Boateng, 1991).

In our applications, it is to be expected that there is some degree of correlation in

the occasions at which the markers stop being observed, random-effects and the

measurement errors of the markers. There was a need to explicitly model the serial

correlation between these quantities as done in Muñoz et al. (1992) or Lipsitz et al.

(2009) especially when setting up partial dropout models. Without such correlation

process included, the models of the partial dropout process proposed in Chapter 5

of this thesis may not have provided efficient estimates as would be required.

To get the estimates of the parameters of the HIV disease dynamics, we made

several assumptions about the parameters, the models and also the data. However,

there is a need to be cautious when making such assumptions. For instance,

the CD4+ T cell count could have been transformed usually by taking fourth-

root or square-root in order to achieve a normality assumption. As a result of

this, in each of the three cases discussed in this thesis we have fitted data by

restricted maximum likelihood in order to minimize the unweighted least squares
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loss function. It is also well-known that there have been certain cases of viral

rebound which may be associated with resistance to treatment regimen (Fitzgerald

et al., 2002; de Leenheer and Smith, 2003; Rong et al., 2007; Witten and Perelson,

2004). There is a need, therefore, to include parameters that characterising rate

of viral rebound and elements of disease resistance in the estimation of parameters

that characterise the HIV dynamic models considered in this thesis.

There are practical situations where we observe change of treatment regimen in

the course of a study, especially in long-term studies (Chen et al., 2013). Inclusion

of a covariate to this effect could also be appropriate when estimating parameters

of the biological process.

When setting up statistical models, we employed hierarchical nonlinear mixed-

effects model in order to characterise the population and subject-specific variability

(Bortz and Nelson, 2006). One could consider Bayesian approaches in estimating

disease parameters using non-informative prior distributions and available data as

done in Huang et al. (2006); Huang and Lu (2008); Huang (2010). This would en-

sure that prior information about the system parameters in used in the estimation

process.
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Appendix A

This is an R code that was used in creating longitudinal data and also for carrying

out multiple imputation. It also includes elements used for making inferences in

Section 6.4 of Chapter 6.

VL<-read.csv("VL_long_partial.csv")

VL_par<-reshape(VL,direction="long",idvar="ID",varying=

+colnames(VL)[-(1:6)])

CD<-read.csv("CD_long_partial.csv")

LonCD_par<-reshape(CD,direction="long",idvar="ID",varying=

+colnames(CD)[-(1:6)])

CD_par=sqrt(LonCD_par[,8])

HIV_par=data.frame(VL_par,CD_par)

library(arm)

library(mi)

IM_HIV<-mi (HIV_par,n.imp=8, n.iter=500 , add.noise=TRUE)

imputed.HIV<-mi.completed(IM_HIV)

write.csv(imputed.HIV,"Imputes_6.csv")

ind_MI<-read.csv("indiv_MI.csv")

...........................................

means_MI<-colMeans(ind_MI[,c(2:9)])
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means_MI_1<-colMeans(ind_MI_1[,c(2:9)])

...........................................

mean_final<-1/6*(means_MI+means_MI_1+means_MI_2+means_MI_3+

+means_MI_4+means_MI_5)

sd_MI<-sapply(ind_MI[,c(2:9)],sd)

sd_MI_1<-sapply(ind_MI_1[,c(2:9)],sd)

...........................................

V_AVSD<-1/6*(sd_MI^2+sd_MI_1^2+sd_MI_2^2+sd_MI_3^2+sd_MI_4^2+sd_MI_5^2)

V_BIM<-(means_MI-mean_final)^2

V_BIM1<-(means_MI_1-mean_final)^2

...........................................

V_BIM_fin<-7/30*(V_BIM+V_BIM1+V_BIM2+V_BIM3+V_BIM4+V_BIM5)

sd_final<-sqrt(V_AVSD+V_BIM_fin)

...........................................

V_im=sd_final/sqrt(N)

imputed_par_error<-qnorm(0.975)*V_im

lower_imp_limit<-mean_final-imputed_par_error

upper_imp_limit<-mean_final+imputed_par_error

intervals<-data.frame(lower_imp_limit,upper_imp_limit)

...........................................
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Appendix B

Part of the partially observed data (for two subjects) used in the analyses of

Chapters 5 and 6 conducted in MONOLIX. The headers are patient’s ID, time in

weeks, marker measurements, whether censored or not, marker type (1 = Viral

load, 2 = CD4+ T cell count) and the rest are covariates.

Pat time Y Censor Marker Supp Compl Fac Sex Age

1 0 207 0 2 0 1 1 0 A

1 0 4.0208 0 1 0 1 1 0 A

1 14 410 0 2 0 1 1 0 A

1 14 2.6021 1 1 0 1 1 0 A

1 28 317 0 2 0 1 1 0 A

1 28 3.3034 0 1 0 1 1 0 A

1 42 . . 2 0 1 1 0 A

1 42 . . 1 0 1 1 0 A

1 56 . . 2 0 1 1 0 A

1 56 . . 1 0 1 1 0 A

1 70 . . 2 0 1 1 0 A

1 70 . . 1 0 1 1 0 A

1 84 . . 2 0 1 1 0 A
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1 84 . . 1 0 1 1 0 A

1 98 . . 2 0 1 1 0 A

1 98 . . 1 0 1 1 0 A

2 0 443 0 2 1 1 1 1 B

2 0 4.8902 0 1 1 1 1 1 B

2 14 600 0 2 1 1 1 1 B

2 14 3.1482 0 1 1 1 1 1 B

2 28 530 0 2 1 1 1 1 B

2 28 4.399 0 1 1 1 1 1 B

2 42 540 0 2 1 1 1 1 B

2 42 4.7296 0 1 1 1 1 1 B

2 56 730 0 2 1 1 1 1 B

2 56 2.6493 0 1 1 1 1 1 B

2 70 . . 2 1 1 1 1 B

2 70 . . 1 1 1 1 1 B

2 84 . . 2 1 1 1 1 B

2 84 . . 1 1 1 1 1 B

2 98 . . 2 1 1 1 1 B

2 98 . . 1 1 1 1 1 B

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
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Appendix C

This is part of the MONOLIX code that was used in the estimation of parameters

that characterise the HIV dynamical system.

<project mlxVersion="4.1.0.125" name="Luwanda_project.xmlx">

<covariateDefinitionList>

<covariateDefinition columnName="Supp" type="continuous"/>

<covariateDefinition columnName="Compl" type="continuous"/>

<covariateDefinition columnName="Fac" type="continuous"/>

<covariateDefinition columnName="Age" type="categorical">

...........................................

<groupList>

<group name="A" reference="true"/>

<group name="B"/><group name="C"/>

<group name="D"/>

</groupList></covariateDefinition>

</covariateDefinitionList>

<data columnDelimiter="\t" headers="Pat,time,Y,

Censo,Marker,COV,COV,COV,IGNORE,CAT"

<models><statisticalModels>

...........................................
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<parameterList>

<parameter name="a" transformation="L">

<intercept initialization="10"/>

<betaList>

<beta covariate="Supp" initialization="0"/>

<beta covariate="Compl" initialization="0"/>

<beta covariate="Fac" initialization="0"/>

<beta covariate="Age" initialization="0"/>

</betaList>

...........................................

<variability initialization="1"

<level="1" levelName="IIV"/>

</parameter>

<parameter name="gamma0" transformation="L">

<intercept initialization="0.015"/><variability

initialization="1" level="1" levelName="IIV"/>

</parameter><parameter name="p" transformation="G">

<intercept initialization="0.5"/>

...........................................

...........................................
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Appendix D

This is part of the R code that was used in carrying out covariates analyses used in

Chapter 2 and also for computation of confident limits of the system parameters.

attach(HIV_par)

print(xtabs(~SUPPLEMENTARY + COMPLIANCE, data = HIV_par))

#THE CODES BELOW GIVE MARGINAL TOTALS/PROPORTIONS

margin.table(tab_suppcom, 1)#SUMMED OVER COMPLIANCE

margin.table(tab_suppcom, 2)#SUMMED OVER SUPPLEMENTARY

prop.table(tab_suppcom,2)#GIVES COLUMN PERCENTAGES

tab_ga<-table(GENDER,AGE)

tab_ga

prop.table(tab_ga)

margin.table(prop.table(tab_ga),2)*100

chisq.test(tab_ga)

...........................................

tab_gf<-table(GENDER,FACILITY)

tab_gf

chisq.test(tab_gf)

margin.table(tab_gf,2)#SUM FOR FACILITY

...........................................
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##CONFIDENCE INTERVALS OF PARS IN AGE GROUPS FOR PAPER 3

partial_means<-read.csv("indiv_pars_partial.csv")

attach(partial_means)

library(lattice)

library(Matrix)

.................

#INTERVALS FOR A

partial_means_A1<-AGE_A*partial_means[,c(2:19)]

partial_means_A<-read.csv("partial_means_a2.csv")

means_parta<-colMeans(partial_means_A[,c(2:12)])

means_parta

sd_parta<-sapply(partial_means_A[,c(2:12)],sd)

V_a=sd_parta/sqrt(sum(AGE_A))

part_errora<-qnorm(0.975)*V_a/sqrt(sum(AGE_A))

lower_limita<-means_parta-part_errora

upper_limita<-means_parta+part_errora

intervalsa<-data.frame(lower_limita,upper_limita)

intervalsa

...........................................

## CREATED FOR TABLE 3 OF PAPER 3

FOR RESUBMISSION 02.02.14 (AFTERNOON) ##RESULTS FOR LME WERE

DEPARTING SIGNIFICANTLY FROM THOSE FOUND BYE #DIRECT EVALUATION G

##MONOLIX; HENCE CHOICE OF GLM fitted_d2<-glm(d~

SUPP+COMPL+FAC,family = gaussian(link=log), +data=partial_means)

summary(fitted_d2) fitted_p2<-glm(p~ SUPP+COMPL+FAC,family =

gaussian(link=log), +data=partial_means) summary(fitted_p2)
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...........................................

#CODE FOR COMPUTATION OF INTER-INDIVIDUAL VARIABILITY

#22/9/13 (EVENING) etas_sd<-read.csv("indiv_eta_par.csv")

attach(etas_sd) F_b<-AGE_B*etas_sd[,c(2:12)]

write.csv(F_b,"F_bB.csv") etas_sd_B<-read.csv("F_bB.csv")

etas_meanB<-colMeans(etas_sd_B) etas_meanB

sd_etaB<-sapply(etas_sd_B,sd) V_etas_B=sd_etaB/sqrt(sum(AGE_B))

V_etas_B ...........................................
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