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Abstract 

Soil organic carbon (SOC) is a vital measure for ecosystem health and offers opportunities to 

understand carbon fluxes and associated implications. However, unprecedented anthropogenic 

disturbances have significantly altered SOC distribution across the globe, leading to 

considerable carbon losses. In addition, reliable SOC estimates, particularly over large spatial 

extents remain a major challenge due to among others limited sample points, quality of 

simulation data and suitable algorithms. Remote sensing (RS) approaches have emerged as a 

suitable alternative to field and laboratory SOC determination, especially at large spatial extent. 

Nevertheless, reliable determination of SOC distribution using RS data requires robust 

analytical approaches. Compared to linear and classical machine learning (ML) models, deep 

learning (DL) models offer a considerable improvement in data analysis due to their ability to 

extract more representative features and identify complex spatial patterns associated with big 

data. Hence, advancements in remote sensing, proliferation of big data, and deep learning 

architecture offer great potential for large-scale SOC mapping. However, there is paucity in 

literature on the application of DL-based remote sensing approaches for SOC prediction. To 

this end, this study is aimed at exploring DL-based approaches for the remote sensing of SOC 

stocks distribution across South Africa. The first objective sought to provide a synopsis of the 

use of traditional neural network (TNN) and DL-based remote sensing of SOC with emphasis 

on basic concepts, differences, similarities and limitations, while the second objective provided 

an in-depth review of the history, utility, challenges, and prospects of DL-based remote sensing 

approaches for mapping SOC. A quantitative evaluation between the use of TNN and DL 

frameworks was also conducted. Findings show that majority of published literature were 

conducted in the Northern Hemisphere while Africa have only four publications. Results also 

reveal that most studies adopted hyperspectral data, particularly spectrometers as compared to 

multispectral data. In comparison to DL (10%), TNN (90%) models were more commonly 

utilized in the literature; yet, DL models produced higher median accuracy (93%) than TNN 

(85%) models. The review concludes by highlighting future opportunities for retrieving SOC 

from remotely sensed data using DL frameworks. 

The third objective compared the accuracy of DL—deep neural network (DNN) model and a 

TNN—artificial neural network (ANN), as well as other popular classical ML models that 

include random forest (RF) and support vector machine (SVM), for national scale SOC 

mapping using Sentinel-3 data. With a root mean square error (RMSE) of 10.35 t/ha, the DNN 

model produced the best results, followed by RF (11.2 t/ha), ANN (11.6 t/ha), and SVM (13.6 
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t/ha). The DNN's analytical abilities, combined with its capacity to handle large amounts of 

data is a key advantage over other classical ML models. Having established the superiority of 

DL models over TNN and other classical models, the fourth objective focused on investigating 

SOC stocks distribution across South Africa’s major land uses, using Deep Neural Networks 

(DNN) and Sentinel-3 satellite data. Findings show that grasslands contributed the most to 

overall SOC stocks (31.36 %), while urban vegetation contributed the least (0.04%). Results 

also show that commercial (46.06 t/h) and natural (44.34 t/h) forests had better carbon 

sequestration capacity than other classes. These findings provide an important guideline for 

managing SOC stocks in South Africa, useful in climate change mitigation by promoting 

sustainable land-use practices.  

The fifth objective sought to determine the distribution of SOC within South Africa’s major 

biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep Neural 

Networks (CAE-DNN).  Findings show that the CAE-DNN model (built from 26 selected 

variables) had the best accuracy of the DNNs examined, with an RMSE of 7.91 t/h. Soil organic 

carbon stock was also shown to be related to biome coverage, with the grassland (32.38%) and 

savanna (31.28%) biomes contributing the most to the overall SOC pool in South Africa. 

forests (44.12 t/h) and the Indian ocean coastal belt (43.05 t/h) biomes, despite having smaller 

footprints, have the highest SOC sequestration capacity. To increase SOC storage, it is 

recommended that degraded biomes be restored; however, a balance must be maintained 

between carbon sequestration capability, biodiversity health, and adequate provision of 

ecosystem services. The sixth objective sought to project the present SOC stocks in South 

Africa into the future (i.e. 2050). Soil organic carbon variations generated by projected climate 

change and land cover were mapped and analysed using a digital soil mapping (DSM) 

technique combined with space-for-time substitution (SFTS) procedures over South Africa 

through 2050. The potential SOC stocks variations across South Africa's major land uses were 

also assessed from current (2021) to future (2050). The first part of the study uses a Deep 

Neural Network (DNN) to estimate current SOC content (2021), while the second phase uses 

an average of five WorldClim General Circulation Models to project SOC to the future (2050) 

under four Shared Socio-economic Pathways (SSPs). Results show a general decline in 

projected future SOC stocks by 2050, ranging from 4.97 to 5.38 Pg, compared to estimated 

current stocks of 5.64 Pg. The findings are critical for government and policymakers in 

assessing the efficacy of current management systems in South Africa. 
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Overall, this study provides a cost-effective framework for national scale mapping of SOC 

stocks, which is the largest terrestrial carbon pool using advanced DL-based remote sensing 

approach. These findings are valuable for designing appropriate management strategies to 

promote carbon uptake, soil quality, and measuring terrestrial ecosystem responses and 

feedbacks to climate change. This study is also the first DL-based remote sensing of SOC 

stocks distribution in South Africa. 

Keywords: Soil organic carbon; Remote sensing; Deep learning; Climate change; Sentinel 3; 

Land use; Land-use planning; Biomes, Climate; Topography; Management 
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Chapter One: 

General Introduction 

1.1. Introduction 

Carbon emissions from a range of sources remain a critical influence to the increasing global 

warming (Laurin et al., 2014). Rising levels of carbon dioxide (CO2) and other greenhouse 

gases in the atmosphere are mostly due to anthropogenic activities that include burning of fossil 

fuels, deforestation, and urbanization (Wolf et al., 2011). Houghton et al., (1996) for instance, 

predicted a CO2 emission increase from 7.4 Gigatons (Gt) carbon per year (GtC yr-1) (1Gt = 1 

Petagram (Pg) = 1015 g) in 1997 to approximately 26 GtC yr-1 by 2100; while the 

Intergovernmental Panel on Climate Change (IPPC, 2016) noted that long-term global 

warming has substantial, widespread, and irreversible repercussions for people and 

ecosystems. Generally, the dangers of global warming are disproportionately higher for the 

poor, particularly in resource-constrained areas like Africa (IPPC, 2016). According to World 

Health Organization (WHO, 2015), climate change is predicted to cause extreme weather 

events leading to among others drought and crop failures, floods and inundation, as well as 

prevalence of diseases and pests. WHO (2015), further notes that warmer climates facilitate 

infectious disease incidences, which will likely result in 250,000 fatalities annually between 

2030 and 2050. In addition, IPCC (2021), noted that climate change has exacerbated global 

economic disparity, and this trend is expected to continue, with the most severe consequences 

expected in Sub-Saharan Africa where most of the population is reliant on natural and 

agricultural resources. Consequently, urgent climate change mitigation and regulation 

strategies are necessary.  

Soil organic carbon (SOC) sequestration is one of the most appealing carbon assimilation 

approaches for mitigating climate change (Padarian et al., 2021). Small changes in SOC could 

hugely impact global carbon cycle because it is the biggest terrestrial carbon reservoir, 

accounting for 50 to 80 percent of total world carbon stock (Sahoo et al., 2019; Broderick et 

al., 2015; Dovey, 2014). The global SOC stock has been estimated to be over 1500 Pg carbon 

in the top 100 cm of soil, which is approximately double the amount of carbon in the 

atmosphere and three times the amount stored in terrestrial vegetation (Batjes, 1996; Smith, 

2004; Liu et al., 2011). SOC is also an important indicator of soil fertility and land degradation. 

According to the United Nations Convention to Combat Desertification (UNCCD, 2019), SOC 

stocks are one of three Land Degradation Neutrality (LDN) indicators that must be 

continuously monitored and reported on a regular basis. Furthermore, research has 
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demonstrated that SOC influences biological, chemical, and physical processes such as soil 

water capacity, soil structure, soil cation exchange capacity, and organic matter, making it one 

of the most important components of vegetation quality and health (Wang et al., 2018; Mondal 

et al., 2017; Shukla et al., 2006). As such, developing fast, reliable, and accurate procedures 

for regular quantification, monitoring, and assessment of SOC stocks at regional and global 

scale is becoming increasingly important (IPCC 2021). 

Soil organic carbon stocks and distribution is driven by multiple environmental factors (Levine 

et al., 2000; Liu et al., 2006; Yoo et al., 2006; Zhang et al., 2008; Afshar et al., 2010). As noted 

by Bhandari and Bam, (2013), the amount and distribution of SOC within any landscape is 

determined by multiple variables such as vegetation, temperature, rainfall, topography, land 

use and management practices. Furthermore, soil organic carbon is generally highest within 

the first few meters and decreases substantially with increase in depth (Afshar et al., 2010). As 

indicated by Jobbágy and Jackson (2000), the amount and variability of SOC within the first 

three-meter depth in the soil is based on the influence of vegetation rather than climate and 

topography. However, beyond the first three-meter depth, SOC has a stronger relationship with 

climate and topography rather than vegetation (Jobbágy and Jackson, 2000). Other studies have 

reported that regardless of the depth, SOC accumulation and distribution is region specific due 

to peculiar environmental conditions that dictate respective SOC presence (Yigini & Panagos 

2016; Sanderman et al., 2017; Minasny et al., 2017; Zhao et al., 2021). These arguments 

suggest that in-depth understanding of the various environmental variables affecting the 

formation, distribution and dynamics of SOC is still necessary. Such knowledge is also critical 

to developing suitable management strategies to improve carbon assimilation as well as 

assessing the responses and feedbacks of terrestrial ecosystems to climate change (Chaplot et 

al., 2010). However, obtaining reliable SOC estimates, especially over a vast area, remains a 

major challenge due to factors such as few sample points, simulation data quality, and the 

technique used. Hence, cutting-edge solutions that can link environmental variables to SOC 

processes over large spatial scales are required (Fissore et al., 2017; Fiener et al., 2015; Liu et 

al., 2011; Chaplot et al., 2010). 

Although field-based and laboratory traditional approaches for SOC determination are highly 

accurate, they are costly, tedious, destructive, time consuming, and often difficult to execute 

over large areas (Bhunia et al., 2017; Mzinyane et al., 2015). In contrast, remote sensing (RS) 

approaches offer relatively cost-effective means of quantifying soil properties including SOC. 

In recent years, RS has become a rich and valuable source of information as it plays a critical 
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role in landscape analysis (Li et al., 2018). According to Hamida et al., (2018), RS approaches 

are arguably the best strategies for cutting edge and in-depth understanding of the earth systems 

and other numerous purposes that include long-term climate studies, population evolution 

analysis, environmental behaviours, and intelligent counteraction of catastrophes. The value of 

RS can be attributed to among others recent sensor innovations characterized by finer spatial 

and spectral resolutions, multiplication of image datasets and advances in software/hardware 

capabilities (Odindi et al., 2016; Mutanga et al., 2015). The use of RS data in form of spectral 

vegetation indices and bands for instance, permits effective mapping of SOC with good and 

acceptable accuracies when integrated with geostatistical and machine learning (ML) models. 

This affords the opportunity to provide updated, consistent, and spatially explicit assessment 

of SOC and its dynamics, particularly in large and remote areas (Odindi et al., 2016). 

Additionally, other environmental factors such as topographic and climatic features can be 

easily derived from Digital Elevation Model (DEM) and WorldClim data respectively. 

Consequently, the application of remote sensing approaches in quantifying different soil 

properties is increasingly becoming popular (Gonzalez et al., 2010; Koch, 2010; Zhang et al., 

2014).  

Since it is proved that SOC has strong correlations with vegetation density, terrain and climatic 

variables, numerous geospatial models have been explored in relating field-measured SOC to 

RS derived variables (Wan et al., 2019; Zhang et al., 2019; Richardson et al., 2017; Bhunia et 

al., 2017; Kumar et al., 2016). Sensor’s spectral bands and vegetation indices (VIs), defined 

with various combinations of visible, near-infrared (NIR) and shortwave reflectance as well as 

climatic and terrain variables, are the most widely used for retrieving biophysical and 

biochemical parameters such as SOC (Zhang et al., 2019). Parametric models including 

multiple linear regression (MLR), ordinary kriging (OK), partial least square regression 

(PLSR) and principal component analysis (PCA) are commonly used to develop relationships 

between SOC and RS predictors. However, since the early 2000s, non-parametric models, 

particularly conventional ML algorithms such as support vector machine (SVM), random forest 

(RF) and stochastic gradient boosting (SGB) have become prevalent due to their ability to 

reveal non-linear patterns as well as address issues associated with data dimensionality in 

fitting models with a large number of predictors (Ma et al., 2019; Zhang et al., 2019). While 

these models have provided acceptable accuracies, they have also shown to be limited in their 

ability to extract more complex non-linear abstract elements required for improved predictive 

models (Wang et al., 2021; Wadoux et al., 2019). Besides, SOC within and between regions 
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exhibit large variability due to their complex blend of organic and inorganic components, hence 

classical ML models may be unable to accurately predict the behaviour of such a complex 

phenomenon, especially at large spatial scales (Ma et al., 2019; Padarian et al., 2019; Kumar 

et al., 2016).   

Since 2014, deep learning (DL)  models have attracted attention within the RS community due 

to their ability to automatically extract invariant and abstract features with better discrimination 

capabilities than geostatistical and traditional ML models (e.g. Singh and Kasana, 2019; Chen 

et al., 2019; Zhang et al., 2019; Wadoux et al., 2019). Deep learning are algorithms based on 

neural networks which comprise neurons, also known as units, with many layers that transform 

input data (e.g. remotely sensed data) to outputs such as categories while learning progressively 

higher-level features (Schmidhuber, 2015; Litjens et al., 2017). The layers between the input 

and output are often referred to as “hidden” layers. A neural network containing multiple 

hidden layers is typically considered as a “deep” neural network—hence, the term “deep 

learning” (Litjens et al., 2017). Deep learning can be categorized into two major groups 

namely; supervised and unsupervised (Romero et al., 2015; Li et al., 2018). Supervised 

learning entails learning with the aid of an algorithm from a well-labelled training dataset and 

consists of an input and output variable, while unsupervised learning involves modelling the 

underlying or hidden structure of data and only consist of an input variable (Wittek, 2014). 

 Although several studies have used DL approaches to analyse RS data (Xu et al., 2019; Zhang 

et al., 2019), there are two major areas yet to be fully explored: firstly, regression analysis: 

most DL applications have been primarily used for classification purposes such as LULC 

classification, object detection, and scene classification (Zhang et al., 2019). This assertion is 

further supported in the recent DL applications global review by Ma et al., (2019). They noted 

that, of the 171 journal article published (DL/RS data related) globally between 2008 and 2018, 

most studies focused on image classification while limited studies focused on the use of DL 

architectures for regression purposes even though the few studies conducted indicated a 

considerable level of success. For instance, Zhang et al., (2019), conducted a deep learning-

based regression analysis for quantifying above-ground biomass and obtained high accuracy 

of 94%. Secondly, the use of multispectral sensors, as most DL models are frequently used to 

analyse hyperspectral and very high-resolution images. Majority of the image data cited in 

more than 100 recent studies had a spatial resolution finer than 2 m (Ma et al., 2019). This 

suggests that remote-sensing data with very high spatial resolution benefits more from DL, 

probably because such data contains rich spatial feature information. Nonetheless, exploring 
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different DL architectures on multispectral data (e.g. Sentinel and Landsat series) could be 

beneficial to understanding earth systems and processes, as well as permit mapping at an 

affordable cost especially in resource constraint zones like Africa. Moreover, despite the 

demonstrated benefits of DL over other standard ML models, research on the implementation 

of DL-based RS techniques for SOC modelling is scarce, and most extant studies are localized 

with minimal global impact (Padarian et al., 2020). Taking advantage of the abundance of RS 

data and the analytical prowess of DL architectures could therefore provide significant 

potential for rapid, continuous, and reliable national scale SOC estimates. This could be useful 

in among others informing credible national climate policies and soil management and 

achieving national total annual and global carbon accounting objectives, as well as IPCC and 

Kyoto protocol objectives (IPCC 2016; Ndalowa 2014). Consequently, the findings of this 

study will establish a framework for mapping and monitoring the state of SOC stock 

distribution across different South African landscapes, as well as how the use of remote sensing 

especially multispectral data and DL can be integrated into SOC management practices. 

1.2. Aim and objectives 

This study aimed to explore DL-based approaches for large scale analysis of  remote sensing 

data to predict SOC stocks distribution across South Africa. The objectives of the study were; 

1. To provide an overview on the basic and deep learning models in remote sensing of 

soil organic carbon estimation 

2. To review the utility, challenges, and prospects of deep learning approaches in remote 

sensing of soil organic carbon 

3. To map soil organic carbon stocks distribution at a national scale using Sentinel-3 

data and a deep learning approach 

4. To determine soil organic carbon stocks distribution within South Africa’s major land 

uses, using a remote sensing and deep learning approach 

5. To investigate soil organic carbon distribution within South Africa’s major biomes 

using remote sensing-topo-climatic metrics and Concrete Autoencoder-Deep Neural 

Networks  

6. To evaluate and project soil organic carbon distribution under future climate and land 

cover changes in South Africa, using multi-source data and a deep learning approach 
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1.3. Research questions 

1. How accurately can remotely sense data be used to accurately predict large scale soil 

organic carbon stocks? 

2. Do deep learning algorithms perform better than other conventional machine learning 

techniques in the prediction of large scale soil organic carbon stocks?  

3. Which derived spectral vegetation indices and spectral bands best describe SOC stock 

variability?  

4. Which environmental (topo-climate) variables best explain soil organic carbon stocks 

variability in the study area? 

5. How does the selected variable influence the amount of soil organic carbon stocks 

variability? 

6. How accurately can future soil organic carbon distribution be projected using deep 

leaning-based remote sensing technique? 

 

1.4. Study site description 

This study was conducted in South Africa (Figure 1.1), covering an area of 1,221,037 square 

kilometres. South Africa is the largest country in Southern Africa and Africa's ninth largest 

country. It is located in a temperate climate zone delimited by the Indian and Atlantic Oceans 

with Namibia to the northwest, Mozambique and Swaziland to the northeast and east, and 

Botswana and Zimbabwe to the north and complete enclosure of Lesotho as bounding countries 

(Department of Environmental Affairs, 2017). The country comprises of nine provinces 

including Northern Cape, Western Cape, Eastern Cape, North West, Free State, KwaZulu-

Natal, Gauteng, Mpumalanga and Limpopo. With an average of 8-10 hours of sunshine per 

day, South Africa is one of the sunniest countries in Africa. The average daily temperature in 

summer and winter is about 20°C and 15°C (Scott and Lesch, 1997). Most of the country’s 

interior is relatively a flat plateau with an altitude between 1,000 and 2,100 meters (Mzinyane 

et al., 2015). Its average annual rainfall is about 464 mm, which is considered low compared 

to the 786 mm global average (Schulze  and Scuttle, 2020). The country’s semi-desert, arid and 

semi-arid conditions means its soil carbon content is lower, compared to countries with 

abundant vegetation cover (Schulze and Schutte, 2020). The country's major soils morphology 

is locally classified as lithic, cumulic and oxidic; while the major land uses are varied forms of 

agriculture that occupy about 79% (Venter et al., 2021).  
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Figure 1.1. The location of South Africa showing the boundaries of the nine provinces and the 

spatial distribution of soil samples 

1.5. Thesis structure 

Excluding the general introduction and the synthesis chapters (chapters 1 and 8 respectively), 

this thesis comprises six research papers that answer each of the research objectives outlined 

in section 1.2. The literature review and methodologies are entrenched within the mentioned 

papers. Out of the six research papers, four has been published in peer-reviewed journals while 

the remaining two are under reviews. Kindly note that each article is presented as a separate 

chapter within this thesis and is structured in the traditional peer-reviewed article format. Each 

chapter begins with an introduction and concludes with a link to the next chapter. As a result, 

there are some commonalities and theory repetition between chapters. This was unavoidable 

due to the parallel transition of doctrines that serve as the foundation of current scientific 

knowledge. In this regard, each chapter should be viewed as a self-contained, stand-alone piece 

of work, but this should not detract from the thesis's overall context. 
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Chapter Two: This chapter provides a summary on basic and deep learning models used in 

remote sensing of soil organic carbon quantification. It emphasizes the shift from simple or 

shallow neural networks (basic) with a single hidden layer to complicated designs with 

numerous hidden layers currently known as deep learning. Within the context of remote 

sensing of soil organic carbon, the chapter also outlines the differences, similarities, and 

limitations of basic networks versus deep learning. 

Chapter Three: This chapter provides a comprehensive review of the utility challenges, and 

prospects of deep learning-based remote sensing approaches for mapping soil organic carbon 

stocks. In this paper, the history and application of deep learning frameworks in the remote 

sensing field is discussed, starting with traditional neural networks and other conventional 

machine learning models. Graphical illustration and in-depth quantitative review with results 

of the usage of traditional and deep learning models are explained; as it relates to soil organic 

carbon mapping. Finally, limitations and recommendation together with the future of deep 

learning based remote sensing of soil organic carbon are examined. 

Chapter Four: This chapter focuses on the use of a deep neural network (DNN) to map the 

distribution of national soil organic carbon stocks using spectral data and vegetation indices 

obtained from the most recent sentinel series (Sentinel 3) data. The chapter demonstrates the 

superiority of deep learning models by comparing the results with other traditional neural 

network and conventional machine learning that include artificial neural network (ANN), 

random forest (RF) and support vector machine (SVM). Using the SHAP technique, this 

chapter also provides a solution to the interpretability constraint frequently associated with 

deep learning frameworks, when compared to other models like RF. This process establishes 

important DNN model’s explanatory variables including sensitive Sentinel 3 band regions and 

vegetation indices critical for mapping soil organic carbon in the study area.  

Chapter Five: This chapter investigates soil organic carbon stocks distribution across major 

South Africa land uses, using Deep Neural Networks (DNN) and Sentinel-3 satellite data. The 

chapter highlights how soil organic carbon is significantly influenced by anthropogenic land 

use change, with intensive and extensive disturbances resulting in considerable soil organic 

carbon loss. Seven major land uses including grassland, natural forest, cropland, commercial 

forest, barrenland, shrubland and urban vegetation are evaluated for soil organic carbon stocks 

distribution, as well as their sequestration rate which is vital for integrated national land-use 

planning and climate change mitigation.   



9 
 

Chapter Six: This chapter employs remotely sensed topo-climatic data and a hybrid deep 

learning approach known as Concrete Autoencoder-Deep Neural Networks to map soil organic 

carbon distribution across major South African biomes (CAE-DNN). The hybrid model's first 

phase (CAE) performed dimensionality reduction to eliminate redundant input variables and 

enhance accuracy, while the second phase (DNN) mapped soil organic carbon stocks using the 

variables chosen. The hybrid model's results were compared to Boruta (Boruta-DNN), a 

popular classical machine learning feature selection technique, and a standalone DNN model 

without a variable selection strategy. Also discussed in the chapter is the variability of soil 

organic carbon stocks and their sequestration rates among nine biomes including Savanna, 

Grassland, Nama karoo, fynbos, Succulent karoo, Albany thicket, Indian ocean coastal belt, 

Deserts and Forests. Finally, the chapter provides a guideline to facilitate sustainable SOC 

stock management within South Africa’s major biomes and indeed other parts of the world. 

Chapter Seven: This chapter is based on the evaluation of projected soil organic carbon stocks 

under future climate and land cover changes in South Africa using a deep learning approach. 

Here, Digital soil mapping (DSM) strategy together with space-for-time substitution (SFTS) 

processes are used to map and analyse SOC changes induced by projected climate and land 

cover changes over South Africa between 2021 and 2050. The chapter also evaluates the 

potential SOC changes between 2021 and 2050 over South Africa's key land uses that include 

grassland, natural forest, commercial forest, cropland, shrubland, barren land and built-up 

vegetation. The chapter's first phase uses a Deep neural network (DNN) to estimate current 

SOC content (2021), while the second phase uses an average of five WorldClim General 

Circulation Models to project SOC to the future (2050) under four Shared Socio-economic 

Pathways (SSPs): SSP126, SSP245, SSP370, and SSP585, which represent low, medium, 

medium to high, and high emission pathways, respectively. Finally, the chapter provides a 

framework for government and policymakers to evaluate the efficacy of current soil organic 

carbon management systems. 
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Chapter Two: 

Basic and deep learning models in remote sensing of soil organic carbon 

estimation: a brief review 

 

This chapter is based on; 

Odebiri, O., Odindi, J., & Mutanga, O. (2021). Basic and deep learning models in remote 

sensing of soil organic carbon estimation: A brief review. International Journal of Applied 

Earth Observation and Geoinformation, 102, 102389. 
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Abstract: 

Understanding soil organic carbon (SOC) is critical to, among others, atmospherics and 

terrestrial carbon balance and climate change mitigation. This has necessitated the development 

of novel analytical approaches to determine SOC. The use of neural network (NN) models for 

the analysis of landscape biophysical and biochemical properties based on remotely sensed 

data has become popular in the last decade. This has been facilitated by the proliferation of 

“big data” from earth observation systems as well as by advances in machine learning (ML). 

Specifically, the use of traditional neural networks (TNN) and transition to deep learning (DL) 

frameworks offers considerable improvement in the performance and accuracy of SOC 

retrieval from remotely sensed data. This chapter seeks to provide a summative assessment of 

the use of TNN and DL-based remote sensing strategies in SOC estimation, with focus on the 

progression, application, potential and limitations. The review concludes by providing major 

challenges impeding the wide adoption of DL frameworks in remote sensing applications of 

SOC, as well as examining potential directions for future research. 

 

Keywords: Deep Learning, Remote Sensing, Soil Organic Carbon, Traditional Neural 

Network 
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2.1. Introduction 

Soil Organic Carbon (SOC) is the largest terrestrial carbon reservoir (between 50-80 % of the 

total terrestrial carbon) and an important means of mitigating climate change (IPCC 2016). It 

determines a landscape’s carbon’s source/sink ability and influences soil’s physical, chemical, 

and biological properties (Odebiri et al., 2020a).  As such, SOC has attracted significant 

attention in agriculture, ecology, climate change and sustainable development studies (Wang 

et al., 2018).   

Recently, the adoption of remote sensing (RS) based multivariate models in SOC studies has 

increased significantly (Odebiri et al., 2020b). However, due to the diverse nature of RS data 

that include high dimensionality, spatio-temporal data volume, and multiple contiguous bands, 

RS data analysis faces numerous logistical and practical challenges. Additionally, the pre-

processing and analysis procedures are often profoundly reliant on the type of model adopted. 

This has necessitated continuous search for novel analytic strategies to improve the use and 

performance of RS data and analysis. Central to these advances is the transition from the 

traditional machine learning (ML) to deep learning (DL) techniques. Unlike physical models 

that mainly rely on prior knowledge of parameters, DL exploits feature representations learned 

exclusively from data (Zhu et al., 2017). The DL models can enhance learning procedures from 

complex non-linear relationships between properties, and have demonstrated superiority over 

geostatistical and other existing ML algorithms (Zhang et al., 2019). In existing literature, the 

term ‘DL’ and ‘ML’, have been mistakenly used interchangeably. Whereas this could be 

justifiable, as DL is a branch of the broader ML, in this review, models that are solely built 

from neural networks (NN) will be referred as DL and not ML. Also, traditional neural 

networks (TNN) that have been used in literature for SOC modelling, such as extreme learning 

machine (ELM), multilayer perceptron (MLP), backpropagation neural networks (BPNN), and 

radial basis function (RBF) will be included to fully understand the use of DL-based remote 

sensing techniques in SOC estimation.  

Recently, Yuan et al. (2020) conducted a broader review on DL applications in among others, 

crop yield, land covers and vegetation parameters. Generally, most of the existing reviews have 

focused on the development and application of DL models, computational requirements and 

the technicalities involved in DL architecture. However, the use of DL models for retrieving 

environmental parameters, such as SOC have been largely ignored. This is important 

considering the large body of existing literature that have utilized neural networks (both 

traditional and deep networks) in SOC modelling (Kuang et al., 2015). As such, DL-based 
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remote sensing of SOC deserves more attention to fully understand the complexity and 

dynamics of SOC.  

2.2. Overview of TNN and DL-based RS techniques for SOC retrieval 

Deep learning (DL) are models based on neural networks, otherwise called units with numerous 

“hidden” layers that transform input data to outputs, while progressively learning higher-level 

features (Schmidhuber, 2015). Traditional neural network (TNN) differ from DL as they 

contain shallow layers (i.e. one or two hidden layers) while a neural network containing 

multiple hidden layers is typically considered as a “deep” - hence, the term “deep learning” 

(Litjens et al., 2017).  

A number of studies have successfully incorporated the use of neural network RS-based models 

for the prediction of soil organic carbon/matter (SOC/M). Whereas the use of neural networks 

(specifically TNN) models have been largely successful, they are generally unpopular, partly 

due to high computational demands (Ma et al., 2019). This has prompted a shift to other 

computationally efficient geostatistical and machine learning models such as partial least 

square regression (PLSR), principal component analysis (PCA), support vector machine 

(SVM), and random forest (RF) (Mountrakis et al., 2011). Around 2014, there was a renewed 

interest in the utilization of NN structures within the remote sensing community (Ma et al., 

2019). This is attributed to the availability of richer databases and the emergence of novel 

technical developments and computational tools such as DeepLearningKit, Microsoft 

Cognitive Toolkit, Tensorflow and Keras (Zhang et al., 2016). Subsequently, TNN models 

characterized by shallow layers have been developed to encompass multiple hidden layers 

capable of inducing more representative data features (Litjens et al., 2017). Furthermore, the 

availability of rich repositories has enabled consolidation of various state-of-the-art deep 

learning frameworks that include Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), Autoencoders (AEs), Generative Adversarial Network (GAN) and Deep 

Belief Networks (DBN) (Zhu et al., 2017).  

2.2.1. Basic learning structures 

As aforementioned, several NN structures have been developed to effectively address different 

types of RS data challenges. Examples of TNN models that have been utilized for SOC/M 

retrieval include BPNN, RBF, MLP, and ELM (Fidencio et al., 2002; Daniel et al., 2003). On 

the other hand, only two (e.g. Tsakiridis et al., 2020 and Singh & Kasana, 2019) of the 
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mainstream deep learning (DL) models (i.e. CNN and RNN) have been utilized for SOC/M 

mapping. Hence, it is necessary to briefly discuss the nature of these frameworks. 

The Backpropagation neural network (BPNN), a classical NNs, is characterized by a single 

hidden layer between the input and output layer and can also contain several nodes or neurons 

at each layer. It is categorized into forward and backward propagation models, and works by 

building and initializing the network structure, repeatedly feeding the training data and making 

predictions with the trained network (Mutanga & Skidmore 2004). BPNN is one of the most 

popular TNN models that have been used for RS-SOC mapping (Zhao et al., 2020). For 

example, Jaber et al., (2011) demonstrated the potential of BPNN for SOC estimation using 

Hyperion data (400-2500 nm) over a wetland. Recently, Chen et al., (2018), proposed a 

backpropagation neural deep learning (BPN-DL) and compared the results with the traditional 

BPNN, PLSR, and PCA models. However, Yuan et al., (2020) notes that use of BPNN 

frameworks suffer from sensitivity to network weights and slow convergence toward a state of 

minimum error.  

The multilayer perceptron (MLP) framework is a universal approximator class of feed-forward 

artificial neural network (ANN) (Falahatkar et al., 2016). It was introduced to improve the 

performance of BPNN structures and a commonly used NN in remote sensing applications 

(Gupta et al., 2016). MLP typically contains input, output, and an intermediate hidden layers. 

Generally, the input and output layer (X, Y) receive the signal (i.e. data), to make a prediction, 

while the hidden layer proceeds to store the model parameters (i.e. weight and bias) 

(Gruszczyński, 2019). MLP is quite flexible as it permits for definition of the number of hidden 

layers and the neurons within them. A dropout rate function can also be implemented to reduce 

overfitting and improve accuracy (Xu et al., 2019). Kuang et al. (2015) constructed an MLP 

model for SOC retrieval within the visible and near-infrared (305–2200 nm) sections of the 

electromagnetic spectrum while Chen et al., (2019) extended the basic MLP framework to 

incorporate four hidden layers for SOC prediction. However, the use of MLP framework is 

constrained by difficulty during training. 

The radial basis function (RBF) is a feed-forward NN with outstanding approximation function 

capabilities, hence popular in among others pattern recognition and function approximation 

(Broomhead and Lowe 1988). It typically uses the Gaussian kernel function made of three 

layers; an input layer with neurons that feed the feature variable into the network, a hidden 

layer of RBF neurons, and an output layer (Fidencio et al., 2002). In SOC/M prediction, Li et 
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al. (2013a) proposed a soil organic matter (SOM) RBF model using a dataset derived from 

Advanced Very High-Resolution Radiometer (AVHRR) within the 580-1000 nm, while Li et 

al. (2013b) augmented the RBF framework to incorporate Ordinary Kriging (OK) for SOC 

retrieval using a spectrometer (350-2500 nm) and a MODIS dataset (400-2300 nm). Compared 

to BPNN and MLP architectures, the optimal parametrization in RBF is guaranteed due to less 

complex structure and training procedure (Gautam et al., 2011).   However, use of RBF is 

impeded by lack of proper rules to determine the number of hidden nodes (Yu et al., 2011) and 

need for higher memory, caused by different NN training system (Samek and Dostal, 2009).    

Extreme learning machine (ELM) was proposed for a single hidden layer feed-forward neural 

network to tackle the issue of slow convergence by other TNN frameworks (Huang et al., 

2004). The ELM has a similar structure to other TNN, but with a quicker learning rate (Song 

et al., 2017). Moreover, ELM has the ability to randomly select the parameters of hidden 

vectors and can therefore logically calculate the output weights. Hence, the training process 

and iterations are extremely fast and efficient (Pang and Yang, 2016). The ELM NN has been 

utilized for different soil property retrieval tasks that include soil temperature, soil moisture, 

heavy metals, and SOC/M (Lin et al., 2014; Song et al. 2017; Yang et al. 2019). Despite the 

fact that ELM trains faster than other TNN models, it is limited by slow evaluation and 

validation of the trained model (Sirsat et al., 2018). 

2.2.2. Deep learning structures 

Although the TNN models have been successful for SOC/M retrieval, they are less robust due 

to their generally shallow structures (Yuan et al., 2020). Furthermore, most of the models are 

commonly slow to converge during training, and very sensitive to weights, which may affect 

their convergence (Liu et al., 2018). Consequently, deeper and flexible frameworks, such as 

RNN and CNN have been developed to address these challenges.    

Convolutional Neural Networks (CNN), like other DL algorithms, consists several layers. 

Within the input and output layers are three major hierarchical structures namely; 

convolutional, pooling, and fully connected layers (Veres et al., 2015). The convolutional layer 

is usually placed at the start of the network (i.e. input image) and several local filters can be 

applied to perform the convolution operation (Veres et al., 2015). The pooling layer, through 

functions such as max/average-pooling can help reduce high data dimensionality (Wadoux et 

al., 2019). A simple example of a CNN model output for a given input image (X), can be 

presented as: 
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X’ = p(ø(W *X+b)), 

Where W = matrix of weights 

b = vectors of neuron bias 

* = convolutional operator over dimensions’ width(w) and height(h) of X  

 p(.) = pooling function that selects the maximum value of a given input image X, and 

ø = activation function usually a rectified linear unit (RELU)  

The final convolutional layer returns an X image which can be converted into a vector (i.e. 

flatten operation), and subsequently given as an input to a fully connected layer which outputs 

the final result (Wadoux, 2019). 

CNN was initially designed to process data in multi-array forms, making it well suited for 

multi-band RS images (Ma et al., 2019). In soil spectroscopy, it was pioneered by Veres et al. 

(2015) who constructed a 2D-CNN model for different soil properties using the Land Use/Land 

Cover Area Frame Survey (LUCAS) dataset. Later, Padarian et al., (2019) transformed the 

spectral data from the LUCAS database (400-2500 nm) to a 2-D spectrogram to formulate a 

2D-CNN model to multi-task and predict SOC and other soil properties simultaneously. 

Generally, CNN frameworks are more efficient than other neural networks and can 

automatically detect important features in a data without human intervention (Dotto et al., 

2018). As such, CNN is regarded as the most powerful and popular mainstream DL model in 

RS applications (Yuan et al., 2020). However, its efficacy is limited by among others, 

computational cost and the need for a large training dataset (Somarathna et al., 2017).    

Recurrent Neural Networks (RNN) is a widely used robust supervised learning model primarily 

used for sequential problems (Rodriguez et al., 1999). Unlike standard feed-forward TNN, 

RNN contains a loop structure that allows exhibition of dynamic temporal behaviour for 

sequential data processing (Ma et al., 2019). Generally, RNN comprises of three major parts 

with several hidden layers. The nodes in the input sequence are progressively added into the 

RNN to derive the corresponding output sequence (Yuan et al., 2020). Moreover, given the 

inbuilt RNN memory, it can easily recall critical information beneficial for a reliable future 

output prediction (Singh & Kasana, 2019). As such, RNN often performs well with sequential 

input tasks such as time-series applications. For instance, a sequential input data such as a 

hyperspectral image of one pixel can be represented as H = < i1, i2, i3>; while the hidden layer 

of the RNN can be expressed with the following equation;   
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ℎ𝑡 =  {
0,                     𝑖𝑓 𝑥 ≥ 1  

𝜔(ℎ𝑡−1, 𝑖𝑡),    𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒  
  

where ht  = the current hidden state,  

ht-1 = previous hidden state, 

it  = current input 

ω = activation function which can be hyperbolic tangent or sigmoid function. The final output 

layer (H) of the RNN can then be a sequence or a single output (Singh & Kasana, 2019).  

RNN models are commonly limited by inability to learn and store information for long, due to 

the deep feed-forward networks they generate. To resolve this problem, specialized memory 

units, i.e.  long short-term memory networks (LSTM) and gated recurrent unit (GRU) have 

been developed to augment the networks (Ma et al., 2019). Although RNN, and by extension 

LSTM and GRU have been adopted in RS, only Singh & Kasana (2019) has adopted it in SOC 

retrieval. Other mainstream DL frameworks such as Deep Belief Networks (DBN), 

Autoencoders (AEs), and Generative Adversarial Network (GAN) have been used for different 

RS applications.  

2.3. Limitations and future of deep learning in mapping soil carbon 

Although DL models have generally been successful in RS based applications, including SOC 

mapping, a number of challenges still hinder its effective usage, these include; (1) the large 

number of samples requirement that are often difficult to acquire (e.g collection of soil samples 

or laboratory derivation of their carbon content equivalent is tedious and labour intensive), (2) 

computational time, (3) interpretability, (4) end-user technical knowhow, (5) requirement for 

large storage capacity, (6) constrain of RS dataset acquisition by cloud cover, (7) limited 

ground data, resulting to missing satellite data, and (8) tendency for model over-fitting. In 

addition, there has been a lack of result-accuracy consistency which could be due to differences 

in calibration datasets or variation in study sites; as SOC is dynamic in nature and varies from 

one area to another (Somarathna et al., 2017; Dotto et al., 2018; Odebiri et al., 2020a). 

Despite the limitations and challenges highlighted above, it is important to note that the future 

of DL-based remote sensing technique for SOC modelling is promising. For instance, the use 

of multispectral sensors with DL models for SOC modelling is an area that is yet to be fully 

explored. A review of literature shows that majority of the existing DL-based remote sensing 

studies for SOC analysis mostly used hyperspectral sensors as opposed to multispectral and 

radar. Several authors have argued that the low spatial-spectral resolution in commonly used 
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RS imagery is the major impediment to the adoption of multispectral sensors (Ma et al., 2020). 

Nevertheless, the launch of the new generation multispectral sensors such as Worldview-2 and 

3(31 cm), Rapid-eye, Sentinel-2 and 3, with improved spatial-spectral resolution and 

strategically positioned bands sensitive to soil could be beneficial to DL SOC retrieval task. 

Furthermore, future DL SOC studies can adopt image fusion to improve accuracy (Liu et al., 

2018). Fusion techniques combines two or more different datasets to obtain a single higher 

spatial-spectral resolution image and hence improve accuracy. For instance, fusing a low 

resolution multispectral image with a high resolution panchromatic image known as pan-

sharpening; or the fusion of hyperspectral-multispectral, hyperspectral-radar, and 

multispectral-radar (Huang et al., 2015). Additionally, the use of Unmanned Aerial Vehicles 

(UAVs) remains largely unexplored in SOC mapping. UAV platforms are relatively cheaper 

and flexible to use as they permit the end-user an opportunity to manually select the optimum 

weather conditions for image acquisition (Guo et al., 2020; Angelopoulou et al., 2019). 

Moreover, other mainstream DL models such as Autoencoders (AEs) and Deep Belief 

Networks (DBN) that have proven effective in other retrieval task are yet to be fully tested for 

SOC mapping. They could be beneficial to SOC mapping, particularly in assessing the 

performance of existing DL models like the CNN and RNN. The issue of limited sample size 

could also be addressed by the transfer learning technique proposed by Goodfellow et al., 

(2016). Transfer learning generally works by adjusting the parameters of a DL model 

previously trained on a large dataset with smaller samples for optimal performance in a new 

task (see Yuan et al., 2020 for further details on transfer learning) 

2.4. Conclusion 

This study provides a brief review on the use of NN and transition to DL for SOC analysis 

using remotely sensed data. Specifically, the study highlights the characteristics of major TNN 

and DL models, their use in SOC analysis as well as their strengths and limitations.  Whereas 

this review is by no means exhaustive, it notes the major limitations of the TNN as among 

others; difficulty during training, need for higher memory and slow evaluation of the trained 

model.  On the other hand, DL is limited by among others the need for large training samples, 

computational cost, technical knowhow, input and output data volume and overfitting. It is 

anticipated that the emergence of both commercial and freely available remotely sensed “big 

data” will lead to wider adoption of novel approaches like DL in SOC analysis. Finally, a 

comprehensive review is also required to unpack the history and development of DL based-

remote sensing of SOC.   
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2.5. Summary  

The essential principles, differences, similarities, and limits of TNN and DL-based remote 

sensing of SOC were discussed in this chapter. It stresses the transition from simple or shallow 

neural networks with a single hidden layer to complex architectures with multiple hidden layers 

referred to as deep learning. Lastly, the study provided a summative assessment of the 

predominate drawbacks and prospects surrounding the use of TNN's and DL within the remote 

sensing of SOC. Given the anticipated wider adoption of DL frameworks within SOC analyses, 

the next chapter actively set out to provide an in-depth quantitative review that contextualizes 

the use of deep learning-based remote sensing approaches within the field of soil organic 

carbon mapping. The study systematically tracks the theoretical and geographical evolution 

as well as the challenges and opportunities associated with the topic.  
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Chapter Three: 

Deep learning approaches in Remote Sensing of Soil Organic Carbon; a 

review of utility, challenges, and prospects 

 

This chapter is based on; 

Odebiri, O., Mutanga, O., Odindi, J., Naicker, R., Masemola, C., & Sibanda, M. (2021). Deep 

learning approaches in remote sensing of soil organic carbon: a review of utility, challenges, 

and prospects. Environmental monitoring and assessment, 193(12), 1-18. 
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Abstract: 

The use of neural networks (NN) models for remote sensing (RS) retrieval of landscape 

biophysical and biochemical properties has become popular in the last decade. Recently, the 

emergence of “big data” that can be generated from remotely sensed data and innovative 

machine learning (ML) approaches have provided a platform for novel analytical approaches. 

Specifically, the advent of deep learning (DL) frameworks developed from traditional neural 

networks (TNN) offer unprecedented opportunities to improve the accuracy of SOC retrievals 

from remotely sensed imagery. This review highlights the use of TNN models and their 

evolution into DL architectures in remote sensing of SOC estimation. The review also 

highlights the application of DL, with a specific focus on its development and adoption in 

remote sensing of SOC mapping. Findings from literatures show that majority of published 

articles are concentrated in the Northern Hemisphere, i.e., China (38), Iran (11) and USA (9), 

while Africa as a continent had only 4 publications. Results also reveal that most studies 

adopted hyperspectral data particularly spectrometers compared to multispectral data. The 

TNN (90%) models were mostly used in literature compared to DL (10%); however, DL 

models produced better median accuracy (~93 %) compared to the TNN (~85%). The review 

concludes by highlighting future opportunities for the use of DL frameworks for the retrieval 

of SOC from remotely sensed data. 

Keywords: Deep Learning, Remote Sensing, Hyperspectral, Multispectral, Radar, Soil 

Organic Carbon, Climate Change  
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3.1. Introduction 

Challenges associated with carbon emission and climate change have become pervasive 

globally (Yuan et al., 2020; Padarian et al., 2020). Consequently, to mitigate the adverse effects 

of the changing climate, monitoring and understanding carbon assimilation pools is paramount 

(Odindi et al., 2015; Mutanga et al., 2015). Soil organic carbon (SOC) accounts for the largest 

proportion of terrestrial carbon (i.e. between 50-80 %); hence a critical pathway for climate 

mitigation (Zhao et al., 2020; IPCC 2016). Soil organic carbon is a dynamic entity, which plays 

fundamental roles that include facilitating the wellbeing of a functional soil and providing a 

major carbon source/sink within the global carbon cycle (Lamichhane et al., 2019). 

Furthermore, SOC influences a soil’s biophysical and chemical properties, strengthens its 

structural characteristics and improves its water and nutrient holding capacity (Angelopoulou 

et al., 2019).  As such, SOC studies have attracted great interest in the fields of, among others, 

soil science, precision agriculture, natural and commercial forestry, land degradation, climate 

change and sustainable development (Sahoo et al., 2019; Wang et al., 2018; Aryal et al., 2017).   

In recent decades, SOC studies using remote sensing (RS) approaches based on multi-variate 

models have increased significantly (Madileng et al., 2020; Odebiri et al., 2020b; Hamida et 

al., 2018). This is attributed to myriad advantages offered by RS over traditional approaches. 

According to Mngadi et al. (2019) and Khanal et al. (2018), RS methods are cheaper, faster, 

non-destructive, and cover a wide spatial range, making them useful at both a micro and macro 

spatial scales. According to Xiao et al., (2019), the value of RS datasets can be attributed to 

the ability of platforms and sensors to fully capture different landscape data, useful in 

investigating the range, trend, and conversion of SOC dynamics at all levels. However, due to 

the varied nature of remotely sensed data, that include data dimensionality, spatio-temporal 

and spectral information, and numerous proximate bands, RS analysis is confronted with a 

range of analytical challenges. Consequently, the remote-sensing community is continuously 

committed to advancing innovative analytical approaches to optimize the use and output of RS 

data (Li et al., 2018; Masemola and Cho 2019). 

Central to these advances is the emergence of deep learning (DL) techniques that have proven 

to be novel analytical tools in many fields. Specifically, the application of DL algorithms for 

environmental remote sensing has rapidly increased over the last 10 years (Padarian et al, 

2019a). Unlike other physical models that majorly depend on preceding knowledge of 

parameters, DL approaches capitalize on the representations of features solely derived from the 

data (Zhu et al., 2017). These approaches are capable of enhancing learning procedures, 
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particularly from complex non-linear correlations between different environmental properties 

and have demonstrated their superiority over geostatistical and other traditional machine 

learning (ML) approaches (Zhang et al., 2019; Minh et al., 2018). Whereas the term ‘DL’ and 

‘ML’ have commonly been used interchangeably in literature, this review was restricted to 

neural networks (NN) DL approaches that have been adopted for SOC modelling e.g., the 

extreme learning machine (ELM), multilayer perceptron (MLP), backpropagation neural 

networks (BPNN), and radial basis function (RBF). 

In recent years, several reviews on DL-based remote sensing techniques have emerged. For 

example, Ma et al., (2019), Liu et al., (2018), Li et al., (2018), Zhu et al., (2017), and Zhang 

et al., (2016) performed extensive reviews on the application of DL for image classification, 

3D modeling, data fusion, image segmentation/registration and image preprocessing. Other 

reviews have focused on specific thematic areas. For instance, Shen et al. (2018a) and Di Noia 

and Hasekamp (2018) conducted reviews on hydrology and atmospheric aerosol analysis, 

respectively. In a recent study, Yuan et al. (2020) performed an in-depth review on the use of 

DL in environmental remote sensing. Their review covered among others, radiation, 

temperature, ocean colour, evapotranspiration, snow cover, rainfall, particulate matter, aerosol, 

land cover analysis and vegetation biophysical parameters. To date, existing reviews on DL 

have commonly dwelt on their development, usage, computational demands, and architecture. 

However, the use of DL models to retrieve environmental parameters like SOC remains un-

reviewed. Furthermore, SOC is a unique, complex, and dynamic environmental parameter due 

to its presence in various particulate, labile, humic, recalcitrant, and microbial forms in the soil 

(Odebiri et al., 2020a). Hence, it is necessary to review DL-based remote sensing of SOC to 

fully determine how its merits can be harnessed to better understand its complexity and 

dynamics. In this regard, this study sought to conduct a comprehensive review on the 

applications of DL-based RS strategies for SOC retrieval. Specifically, the review dwells on 

the progression of traditional neural networks (TNN) to state-of-the-art DL architectures and 

its use for remote sensing mapping of SOC. The review also highlights on the major sources 

of RS data, their technical attributes (i.e., spatial, temporal, and spectral resolution) and their 

use in the retrieval of SOC. It concludes by providing insights on how DL can be effectively 

adopted for SOC remote sensing.  

Deep learning (DL) models are based on hierarchical progressive higher level “hidden” layers 

of neural networks that convert input data to outputs (Schmidhuber, 2015). The major 

difference between traditional neural network (TNN) and DL is that TNN contains one or two 
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hidden layers, commonly referred to as “shallow layers” while multiple layers are considered 

a “deep” neural network—hence, deep learning” (Litjens et al., 2017).  

Several studies have adopted a range of neural network models to predict soil organic 

carbon/matter (SOC/M) using remotely sensed data. Literature has predominately focused on 

traditional neural networks, with very few contemporary studies utilizing deep learning 

techniques. One of the earliest studies was conducted in Brazil, by Fidencio et al., (2002) who 

developed a Radial basis function (RBF) NN model from NIR-reflectance spectrometer (1000-

2500 nm) data to estimate SOC with relatively high accuracy (R2 = 0.91, RMSE = 0.25%). 

Thereafter, Daniel et al., (2003) constructed an artificial neural network (ANN) model for SOM 

prediction in Thailand using VIS-NIR spectrometer (400–1100 nm) with an R2 = 0.86 accuracy. 

Whereas the adoption of neural network (particularly TNN) models was been largely 

efficacious, there was paucity in literature on their use, mainly attributed to high computational 

demands and lack of adequate data (Ma et al., 2019). Hence, the RS community shifted to other 

geo-statistical and machine learning approaches that include the partial least square regression 

- PLSR, principal component analysis - PCA, support vector machine - SVM, and random 

forest - RF that require less computational power and generally produce acceptable accuracies 

(Mountrakis et al., 2011; Hamida et al., 2018). However, about five years ago, a renewed focus 

on the adoption of NN structures in remote sensing applications emerged (Ma et al., 2019). 

This was attributed to technical developments that include a proliferation of richer databases 

and ground-breaking computational tools like the DeepLearningKit, Microsoft Cognitive 

Toolkit, Tensorflow and Keras (Zhang et al., 2016; Ciresan et al., 2012). Hence, TNN models 

with shallow layers were established to incorporate numerous hidden layers that could induce 

more representative data features (Litjens et al., 2017). Also, the growing number of rich 

repositories have enabled an assemblage of numerous novel deep learning frameworks that 

include Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), 

Autoencoders (AEs), Generative Adversarial Network (GAN) and Deep Belief Networks 

(DBN) (Hinton, 2012; Goodfellow et al., 2014; Chen et al., 2014; Zhu et al., 2017; Minh et 

al., 2018; Hao et al., 2018).  

Numerous NN structures have been established to handle a range of remotely sensed data 

challenges. Some of the typical examples of traditional neural network (TNN) models that have 

been utilized to specifically determine SOC/M are BPNN, RBF, MLP, and ELM. On the other 

hand, only CNN and RNN, considered as mainstream DL models, have been adopted for 

SOC/M mapping. The section below highlights on their use and basic structures. 
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The BPNN is among the most widely adopted TNN models in RS-SOC mapping (Zhao et al., 

2020). Mouazen et al., (2010) for instance compared the performance of BPNN, PLSR and 

PCA algorithms for SOC estimation using a mobile spectrophotometer (350-2500 nm). They 

found that the BPNN model (R2 = 0.84) outperformed the PLSR (R2 = 0.80) and PCA (R2 = 

0.78) models. Jaber et al., (2011) used BPNN to map SOC based on Hyperion data  at 400-

2500 nm on a wetland and obtained an R2 = 0.79, RMSE = 3.3 t ha−1 accuracy. In a recent 

investigation, Chen et al., (2018), using a spectrometer (1000-2500 nm), developed the 

backpropagation neural deep learning (BPN-DL) by tuning and selecting 22 hidden layers and 

their corresponding neurons. The approach significantly improved the results; as the BPNN-

DL model (R2 = 0.95) performed better than the BPNN, PLSR and PCA models with R2 = 0.88, 

0.87, 0.85, respectively. However, the BPNN framework has been criticized  for sensitivity to 

network weights and time consuming convergence to a state of minimal error rate (Yuan et al., 

2020).   

The radial basis function (RBF), a feed forward NN, has remarkable approximation function 

capabilities, hence popular in a range of applications (Broomhead and Lowe 1988). As shown 

in Fig 1, it uses a three layered (i.e., input, hidden and output) Gaussian kernel function 

(Fidencio et al., 2002). The RBF has been adopted in many retrieval tasks, including SOC/M 

prediction. For instance, Li et al. (2013a) suggested a SOM - RBF model from Advanced Very 

High-Resolution Radiometer (AVHRR) within the visible (580) and the near-infrared (1000 

nm) range. The RBF model produced the smallest prediction errors when compared to MLR 

and regression kriging (RK) with an RMSE of 21.80, 28.04 and 28.05 g.kg−1, respectively. 

Furthermore, Li et al. (2013b) and Li et al. (2016) incorporated Ordinary Kriging (OK) into 

the RBF framework to retrieve SOC from spectrometer and MODIS data at 350-2500 nm and 

400-2300 nm, respectively. Compared to BPNN and MLP architectures, the optimal 

parametrization in RBF is guaranteed because its training procedure and structure are less 

complex (Gautam et al., 2011). Nevertheless, RBF is limited by inadequate rules to effectively 

determine hidden nodes and higher computational demands (Yu et al., 2011; Samek and 

Dostal, 2009).   

The multilayer perceptron (MLP) framework is a feed-forward artificial neural network (ANN) 

known as universal approximators developed to improve BPNN performance and a commonly 

adopted NN in remote sensing (Falahatkar et al., 2016; Gupta et al., 2016). MLP is 

characterized by at least three layers i.e., input, output, and a hidden intermediate layer (Figure 

3.1c). MLP has been used in many aspects of RS research, including SOC retrieval. For 
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example, Leone et al. (2013) developed an MLP model to predict SOC (R2 = 0.89) in Italy 

using a spectrometer (350–2500 nm). In another study, Kuang et al. (2015) developed an MLP 

model to retrieve SOC using a spectrometer within 305–2200 nm. The accuracy of the MLP 

model (R2 = 0.90) was superior to the PLSR model (R2 = 0.81). Similarly, Chen et al., (2019) 

improved the rudimentary MLP-DL framework to include four hidden layers, producing a 

better result than the PLSR model for SOC prediction with an R2 = 0.92 and 0.80 respectively. 

However, the efficacy of MLP is impeded by strained training. 

The extreme learning machine (ELM) was developed to deal with slow convergence that 

characterize existing TNN frameworks (Huang et al., 2004). The ELM is similar to TNN 

(Figure 3.1d), but with faster learning rate (Song et al., 2017). The ELM NN has been adopted 

in among others soil temperature and moisture, metallic composition, and SOC/M (Deng et al., 

2015; Ding et al., 2015; Lin et al., 2014). Song et al. (2017) for instance, evaluated the 

performance of ELM in comparison to other geostatistical models (RK, OK) using Landsat 8 

OLI data (433-2300 nm). The ELM model produced the least error rate (RMSE = 1.402 g.kg−1) 

in comparison to RK (RMSE = 1.974 g.kg−1) and OK (RMSE = 2.071 g.kg−1). Hong et al., 

(2018) calibrated an ELM model for SOM prediction using a spectrometer (350–2500 nm). 

Superior predictability was observed in the use of ELM model (R2 = 0.83) relative to support 

vector machine (SVM) model (R2 = 0.82). Similarly, Yang et al. (2019) utilized an ELM model 

for SOM retrieval within a paddy soil in the middle-lower Yangtze Plain of China. The ELM 

model (R2 = 0.89) outperformed other models such as SVM (R2 = 0.86), Cubist (R2 = 0.78), 

and PLSR (R2 = 0.76). Although ELM has better training efficiency than existing TNN models, 

it suffers from slowed appraisal and authentication of the trained model. In most applications, 

evaluation speed is more important than the training speed (Sirsat et al., 2018). 

Whereas the above mentioned TNN models have been successfully adopted for determining 

SOC/M under varied landscapes, they are less robust in their fitting ability, attributable to their 

generally shallow structures (Yuan et al., 2020). Moreover, they are commonly characterized 

by slower convergence during a training process, and high sensitivity to weights that influence 

convergence (Huang et al., 2004). This has led to the development of deeper and more flexible 

frameworks, specifically the RNN and CNN. 

CNN, similar to other DL algorithms, commonly contains several layers (Goodfellow et al., 

2016). The CNNs are typically characterized by convolutional, pooling, and fully connected 

hierarchical layers within the  input and output layers (Figure 3.1e) (LeCun et al., 2015). CNN 
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has been adopted for soil spectroscopy using a Land Use/Land Cover Area Frame Survey 

(LUCAS) dataset by Veres et al. (2015) with an RMSE = 0.3841 g.kg−1 accuracy. Also, 

Padarian et al., (2019c) achieved a R2 = 0.94 accuracy from the LUCAS dataset; their 2D-CNN 

could multi-task by predicting different soil properties, including SOC simultaneously. 

Similarly, Tsakiridis et al., (2020) utilized the LUCAS database (400-2500 nm) to develop a 

novel framework, which used a localized multiple-channel 1-D CNN to successively estimate 

different soil properties (SOC) with an R2 = 0.86 accuracy. Generally, the CNN frameworks 

are superior to other NN, with an ability to automatically determine vital features in a dataset 

(Dotto et al., 2018), hence most popular DL model in RS (Yuan et al., 2020). Nevertheless, its 

shortcomings include higher computational cost and requirement for large training data 

(Somarathna et al., 2017).   

RNN is a popular supervised learning model mainly used for sequential problems (Rodriguez 

et al., 1999). It is comprised of numerous hidden layers within three major parts (Figure 3.1f) 

and has demonstrated it superiority in performing tasks that involve sequential inputs including 

time-series applications. However, because of deep feed-forward networks, it is limited by 

short learning and information storage periods. Hence, long short-term memory networks 

(LSTM) and gated recurrent unit (GRU) have been established to support the networks (Ma et 

al., 2019). A detailed description of LSTM and GRU can be found in Hochreiter and 

Schmidhuber, (1997) and Cho et al. (2014). Whereas RNN, including LSTM and GRU have 

been used in RS applications, literature shows that that it has only been applied by Singh & 

Kasana (2019) in SOC retrieval. Singh & Kasana (2019) developed an RNN-LSTM model to 

predict different soil properties including SOC in Europe using hyperspectral data generated 

from a LUCAS dataset (400-2500 nm) and obtained a better result (R2 = 0.94) compared to 

other linear and conventional ML models. Although conventional DL frameworks like Deep 

Belief Networks (DBN), Autoencoders (AEs), and Generative Adversarial Network (GAN) 

have been adopted in RS, no known study had been conducted for SOC/M retrieval at the time 

of this review. 
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Figure. 3.1. Basic structures of TNN and DL architectures for SOC/M retrieval; (a) BPNN, (b) 

RBF, (c) MLP, (d) ELM, (e) CNN, and (f) RNN 

3.2. Methodology  

In this study, we examined the applications of Deep learning-based remote sensing approaches 

for SOC retrieval in published literature from the year 2002 to 2020. A literature search was 

conducted using the two mainstream scientific libraries (i.e., Scopus and Web of Science). We 

then developed some criteria to identify published papers that primarily focused on DL remote 

sensing techniques for SOC retrieval. These criteria included; (a) the literature must have 

keywords such as “Deep Learning”, “Neural Network”, “Remote Sensing”, “Soil Organic 

Carbon” or “Soil Organic Matter” as their essential or auxiliary subject; (b) the title, abstract 

and keywords of the prospective literature must contain in whole, the predefined keywords as 

highlighted in the first criterion and (c) the literature must be written in English language and 
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published in a scientific peer-reviewed journal (de Araujo Barbosa et al., 2015). On this 

premise, we utilized the following query keywords; “Deep learning” OR “Neural networks” 

AND "Remote sensing" AND [“Soil organic carbon” OR “soil organic matter”]. Figure 3.2 

presents an illustration of the literature search and the selection process. The initial search 

resulted in 1731 published papers. Subsequently, book chapters, grey literature, extended 

abstracts, and technical notes were excluded and duplicates via the endnote database removed 

(Naicker et al., 2019). Considering that Scopus and Web of Science may be unable to retrieve 

a significant number of related articles, particularly the year 2020 papers, we performed a 

manual Google scan for the latest published articles and searched other recently published 

reviews for related works (Xiao et al., 2019; Lamichhane et al., 2019; Angelopoulou et al., 

2019). At the end of the search process, 95 papers were retrieved for further analysis. To 

understand the current trend and status of the use of DL models in the retrieval of SOC within 

the RS field, the 95 papers were sorted and arranged into graphical representations. This 

included (1) the global distribution of the published articles; (2) the number of peer-reviewed 

papers published annually; (3) the usage frequency of different NN models and (4) the category 

(i.e. hyperspectral, multispectral and radar) and platforms (i.e. laboratory spectroscopy, in situ 

spectroscopy, space-borne, airborne and unmanned aerial systems-UAS) of RS data used.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Schematic of literature and selection procedure (modified from Naicker et al., 2019; 

de Araujo Barbosa et al., 2015) 
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3.3. Results  

3.3.1. Number and spatial distribution of publications 

Results showed that there has been a steady increase in the direct usage of NN-RS-based 

techniques for SOC estimation. Figure 3.3 shows the distribution of published articles globally 

from 2002 to 2020. The majority of published articles are concentrated in the Northern 

Hemisphere, i.e., China (38), Iran (11) and USA (9). Only four articles have been published in 

the whole of the Africa continent; largely attributed to the high computational resource 

requirements for NN processing and the limited resources in acquiring RS data (Yuan et al 

2020). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Global distribution of the selected published articles on the use of Deep Learning 

approaches in Soil Organic Carbon mapping 

 

Figure 3.4 presents the number and the trend of publication from 2002 to 2020. Generally, the 

number of publications has been gradually on the rise. From the year 2002 to 2012 (10 years), 

there were nine publications using NN models. A significant change in the number of NN 

model usage was noted in 2013, as eight publications using different NN frameworks were 

published. The year 2019 showed the highest number (24) of publications while the year (2020) 

has 10 articles. 
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Figure 3.4. Number of published articles from 2002 to 2020 (the dotted line shows a positive 

trend) 

3.3.2. Neural Networks and remotely sensed data used  

To understand the progression of deep learning (DL) techniques in the analysis of RS data in 

relation to SOC prediction, the neural networks (NN) models were divided into traditional 

neural network (TNN) and DL models. Figure 3.5 shows the use of TNN and DL in mapping 

SOC using different forms of remotely sensed data. It also shows the sensors, platforms, and 

the average resolution of remotely sensed data that were used in the selected articles. The TNN 

models were mostly used across all RS data categories (i.e., Hyperspectral, Multispectral and 

Radar). A total of 54 hyperspectral studies were conducted with 45 for TNN and 9 for DL. 

TNN also dominated the multispectral and radar studies with 33 and 32, respectively, while 

two studies were conducted using DL for both multispectral and radar (Figure 3.5a). The 

predominant use of TNN in comparison to DL structures can be attributed to lack of interest 

DL frameworks until 2014; which was the beginning of the application of DL architectures in 

the RS field (Ma et al 2019). Another conceivable explanation could be that numerous 

scientists were yet to acquaint themselves with the technical know-how and computational 

skills required to calibrate DL frameworks. The first ever DL-based RS technique for SOC 

mapping was conducted in 2015 by Veres et al. (2015) using the CNN framework. This created 

the foundation on which other DL related SOC studies have been conducted. In terms of the 

types of sensors used, Figure 3.5b shows that a large proportion of published work comprised 

of spectrometers — laboratory/in situ — (46 studies), followed by the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation model (DEM) (34 studies) and the Landsat 
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Figure 3.6 shows the different types of TNN and DL used in the selected articles for review. 

Four TNN models in order of usage were MLP (42), BPNN (34), RBF (10) and ELM (6), while 

the CNN (9) and RNN (1) were the only DL models used for SOC estimation. Refer to section 

3.1. for detailed description of the models.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The usage of traditional neural networks (TNN) and deep learning (DL) models.  

3.3.3. Overall accuracy assessment using the TNN and DL models 

Accuracy assessment is an integral part of any modelling technique, as it informs the degree to 

which a model is reliable in a regression or classification task. Figure 3.7a depicts the overall 

performance of TNN and DL models within the examined literature. In addition, it shows the 

accuracy variance across the different RS data types used (i.e., hyperspectral, multispectral and 

radar). Overall, the DL models with ~93 % median regression accuracy performed better than 

the TNN models with ~85% median accuracy. The superiority of DL models to TNN models 

in SOC estimation has been demonstrated by several studies (Yuan et al., 2020). For instance, 

Xu et al., (2019a), developed a DenseNet and LeNet CNN models for SOC and compared their 

performance to that of a classical BPNN structure. Using the coefficient of determination (R2) 

as a comparison measure, the results indicated that the two CNNs (R2 = 0.907, R2 = 0.902) 

outperformed the BPNN model (R2 = 0.835). In another study, Taghizadeh-Mehrjardi et al. 

(2020) modified the traditional MPL model (R2 = 0.75) to incorporate more hidden layers and 

derived better results for SOC retrieval (R2 = 0.83). Furthermore, Figure 3.7b shows the 

accuracy distribution across different RS data types. Regardless of the methods used (i.e., TNN 

or DL), hyperspectral studies had the highest median regression accuracy (~87 %), followed 
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by multispectral (~80 %), and radar (~76 %). The variance in accuracies can be attributed to 

the spatial-spectral resolution differences among the RS data types.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. (a) Overall accuracies for TNN and DL models; (b) overall accuracies across RS 

data types (hyperspectral, multispectral, radar) 

3.4. General discussion  

In this section, we discuss the existing DL-based RS data categories (i.e., Hyperspectral, 

Multispectral and Radar) and platforms used for SOC estimation in reference to publications 

over time. We also review the limitations encountered and offer recommendations and future 

opportunities. 

3.4.1. Hyperspectral RS and DL for SOC estimation  

Hyperspectral data are generally characterized by numerous spectral bands ranging from 350 

nm to 2500 nm (VNIR-SWIR region). They span across different RS platforms from 

Laboratory-in situ spectroscopy to space-borne, airborne, and recently the use of UAS 

(Angelopoulou et al., 2019). From the literature examined, hyperspectral data are the most used 

RS data type for SOC prediction (Figure 3.5a). This is due to their high spatial-spectral 

resolution as most of the reviewed hyperspectral studies had an average of 2m spatial 

resolution. Moreover, DL models have been demonstrated to maximally extract additional 

associated information from hyperspectral data, which is valuable for different image analysis 

tasks (Ma et al., 2019). Several studies (e.g., Margenot et al., 2020; Yang et al., 2019; 

Wijewardane et al., 2018) have been conducted using DL-based hyperspectral data for SOC 
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retrieval. These studies began with laboratory and in situ spectroscopy using spectrometers 

(Fidencio et al., 2002; Daniel et al., 2003). For instance, Janik et al., (2009) conducted an in 

situ SOC spectra measurement using an ATR-FTIR Spectrometer in the mid-infrared region 

(2500-2500 nm) and the resultant BPNN model obtained good (R2 = 0.93) results. Rossel & 

Behrens (2010) explored the potential of laboratory spectroscopy (ASD FieldSpec3 

spectrometer) to predict SOC in the visible and near-infrared region (350-2500 nm) of the 

electromagnetic spectrum and the results could explain about 89% of SOC distribution.   

The use of space-borne and airborne hyperspectral data has also increased in recent years. They 

provide the advantage of mapping SOC over larger and inaccessible areas (Odebiri et al., 

2020). A number of studies have demonstrated the potential of space-borne and airborne 

hyperspectral sensors using DL models. For example, Jebar et al. (2011) predicted SOC using 

a Hyperion data and a BPNN model with good accuracy (R2 = 0.789). Dai et al. (2014) and Li 

et al. (2016), using MODIS data, successfully developed a RBF framework for the prediction 

of SOC with a correlation coefficient (R2) of 0.75 and 0.84, respectively. On the other hand, 

Zizala et al. (2017) used an airborne Spectrographic imager and MLP NN to predict SOC and 

obtained good (R2 = 0.88) accuracy. Similarly, with the aid of an airborne AISA Eagle sensor 

and MLP NN, Zhang et al. (2019) estimated SOC stocks in a wetland and obtained an R2 = 

0.90 accuracy. However, to date, there are no known studies that have utilized hyperspectral 

UAS platform and DL algorithms for SOC/M prediction. The use of UAS system and DL could 

be beneficial for SOC estimation due to their high spatial resolution and the possibility for 

scheduled flight plan in accordance with optimal weather conditions. 

Overall, the use of DL-hyperspectral data on different platforms for SOC prediction is 

dependent on the magnitude and cost of study (Meng et al., 2020). The use of DL algorithms 

has proven to perform well with hyperspectral data (Figure 3.5a). DL also produces better 

accuracy than TNN models and reduces data dimensionality associated with Hyperspectral 

sensors better than TNN, allowing researchers to investigate SOC in greater detail. However, 

further research is required to obtain a full understanding of the capabilities and potential of 

DL. Moreover, hyperspectral data are still expensive, particularly over large areas, and difficult 

to obtain in many regions, especially Africa (Mutanga et al., 2015). Also, laboratory 

spectroscopy still requires crushing and sieving of soil samples before spectral measurement, 

which is often tedious and time consuming (Sibanda et al., 2015). Nonetheless, hyperspectral 

data and DL models have been successful in mapping SOC. Additionally, the potential of 
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forthcoming hyperspectral sensors such as PRISMA, HyspIRI and EnMAP with better spatial-

spectral and temporal attributes could further benefit the use of DL models in mapping SOC.   

3.4.2. Multispectral RS and DL for SOC estimation  

Earth observation multispectral space-borne data started with Landsat sensors in 1972 with the 

launch of Landsat 1. Commonly, multispectral sensors acquire data from high temporal and 

moderate spatial resolutions using a small number of broad spectral bands across the 

electromagnetic spectrum (VNIR-SWIR) (Naicker et al., 2019). Multispectral data offer the 

opportunity for mapping different soil properties at a larger spatial extent than hyperspectral 

data. In addition, most multispectral data are less expensive while some are freely available, 

making them ideal for resource constrained zones like Africa (Mngadi et al., 2020; Ogbodo et 

al., 2019). Ayoubi et al. (2011), Liu et al. (2013), Were et al. (2015) and Mirzaee et al. (2016) 

led some of the first NN-based SOC estimation studies using spectral band combinations from 

multispectral data. They generated different vegetation indices from Landsat TM/7 ETM (450-

2351 nm) used as predictor variables for SOC and obtained acceptable (R2 = 0.50—0.70) 

results. Notwithstanding, majority of the existing studies have noted that low spatial-spectral 

resolution, together with large swath widths are some of the challenges hindering reliable 

prediction of different soil properties using DL (Liu et al., 2013).   

The emergence of new generation multispectral space-borne sensors, with improved spatial 

and spectral resolution has provided the opportunity for better soil properties retrieval using 

DL approaches (Zhang et al., (2019). Although yet to be fully explored, a number of studies 

have highlighted the effectiveness of new generation multispectral space-borne in SOC/M 

retrieval. For example, Zhang et al. (2019), conducted a comparative study between a high 

resolution 63-band AISA hyperspectral data (400-980 nm) and two space-borne multispectral 

sensors including an 8-band WorldView-2 (400-1040 nm) and a 4-band QuickBird (450-900 

nm). They resampled the hyperspectral data to match the specific-spectral attributes of the two 

space-borne sensors and developed a SOC model using a MLP model. Results obtained 

indicated not much variance in accuracy (R2 = 0.90, 0.90, and 0.86 respectively), thus, 

demonstrating the potential of new generation multispectral space-borne sensors in soil 

properties mapping. A few airborne and UAS platforms have also been utilized in SOC 

modelling. For instance, Khanal et al. (2018) utilized an airborne multispectral Leica ADS80 

digital camera (420-900 nm) together with a 3-layered classical BPNN model to predict SOC 

and obtained a good (R2 = 0.64) accuracy. Guo et al. (2020) acquired images through an UAS 
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using MicaSense RedEdgeTM 3 camera (475-840 nm). The calibrated model (BPNN) 

produced (R2 = 0.80) accuracy.  

Regardless of the successes documented above, low resolution, large swath widths, cloud 

cover, need for geometric and atmospheric corrections as well as low signal-to-noise ratio are 

some of the challenges facing multispectral data usage (Mirzaee et al., 2016). Furthermore, 

more DL-based multispectral data investigations are required. This is because majority of the 

multispectral application reviewed in this study utilized the traditional neural network (TNN). 

Additionally, many new generation multispectral sensors are yet to be adequately utilized. For 

instance, freely available sensors like Sentinel 2 (443-2190 nm) and the recently launched 

Sentinel 3 (400-1020 nm) with improved spatial-spectral resolution and strategically positioned 

bands including red-edge are yet to be tested.  

3.4.3. Radar RS and DL for SOC estimation 

Radar data is valuable in generating different topographic variables that are associated with the 

formation and distribution of SOC stocks (Arogoundade et al., 2019). RADAR functions by 

transmitting a microwave signal towards an object and detects the back-scattered radiation 

(Minasny et al., 2016). Due to radar’s long wavelength, it can penetrate canopy cover and thin 

cloud, as well as generate data in all weather conditions. Furthermore, Radar is highly sensitive 

to soil conditions, including surface roughness and soil moisture, which benefits SOC 

estimation (Odebiri et al., 2020b). 

From the results (Figure 5a), it is evident that Radar is the least adopted RS data type for SOC 

retrieval tasks using the DL approach. The majority of the radar data (SRTM DEMs) within 

the reviewed literature were used to complement other RS data types (hyperspectral and 

multispectral) by generating auxiliary environmental variables such as slope, aspect and 

elevation in order to improve accuracy (e.g. Wadoux et al., 2019a; Hateffard et al., 2019; Wu 

et al., 2019; Falahatkar et al., 2016). However, few DL-based remote sensing studies have 

utilized radar data in isolation for SOC prediction. For instance, Bodaghabadi et al. (2015) 

predicted SOC in Iran by deriving 15 different environmental variables from a radar derived 

DEM (10m) and calibrated a MLP model to obtain a good result (R2 = 0.88). Similarly, 

Minasny et al. (2016) proposed a cost-effective SOC mapping using the SRTM DEM with a 

spatial resolution of 30.7 m to generate different terrain covariates. An excellent agreement (R2 

= 0.87) between the observed and predicted SOC was recorded using different multivariate 

models, including DL (BPNN).  
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RS data, such as Light Detection and Ranging (LIDAR) and the freely available Synthetic 

Aperture Radar (SAR) Sentinel-1, are yet to be utilized for DL-based SOC retrieval. Compared 

to SRTM DEMs, LIDAR offers improved high-spatial resolution data, which are particularly 

suitable for DL models (Laurin et al., 2014). Nevertheless, the high cost of procuring LIDAR, 

ground data prerequisite for calibration combined with the impracticability in some remote 

territories are some of the barriers hindering its wide application (Odebiri et al., 2020b). 

Sentinel-1 on the other hand can serve as an alternative to LIDAR in DL RS-based SOC 

mapping owing to its free availability and its relatively high resolution.   

3.4.4. Limitations in DL-based remote sensing techniques for SOC estimation 

Although DL models have proven successful in many remote sensing applications including 

SOC modelling, there are several challenges that hinder their effective use. After a systematic 

review, we noted that large sample size requirement, computational processing time, 

interpretability, end-user technical knowhow, large storage capacity requirement and tendency 

for over-fitting are some of the factors limiting the use of DL architectures. Moreover, there is 

inconsistency in the results/accuracies where these techniques have been employed. For 

instance, whereas Ayoubi et al. (2011) achieved a good result (R2 = 0.84) using Landsat 7 ETM 

(450-2351 nm) and a MLP model in Iran, Mirzaee et al. (2016) produced a lesser accuracy (R2 

= 0.63) using the same data and model in the same country (Iran). This could be due to variation 

in the selection of calibration data, as well as SOC variation in the study areas as SOC is a 

dynamic phenomenon that may vary from region to region (Odebiri et al., 2020a). As such, 

there is currently no universally accepted calibration method for SOC retrieval (Lamichhane et 

al., 2019).   

Subsequently, many authors (Tsakiridis et.al 2020; Wadoux, 2019b; Dotto et al., 2018; 

Somarathna et al., 2017) have argued that the use of DL architectures requires a large sample 

size (>100) to produce acceptable accuracies. Hence, the bigger the sample size, the better the 

model accuracy. Jordan and Mitchell (2015) also argued that the size of the dataset used for 

training a DL model is essential, given the large numbers of parameters to fit. Although there 

is no clear standing rule as to the ideal sample size for training DL models, many studies have 

established a significant connection between the data sample size and accuracies obtained. For 

instance, Odebiri et al. (2020a) compared the accuracy of ANN and five other models using a 

small dataset (81 soil samples). Results showed that the ANN (R2 = 0.768) was outperformed 

by other machine learning models such as Random Forest (R2 = 0.84), Stochastic Gradient 

Boosting (R2 = 0.802 and Support Vector Machine (R2 = 0.79), due to their ability to handle 
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small sample size data. Similarly, Padarian et al. (2019b) demonstrated the importance of 

sample size to DL, by training a CNN model on two different sample sizes (20,000 and 390 

soil samples). Although the CNN model with the higher sample size produced better results 

than Cubist and PLSR (R2 = 0.88, 0.79 and 0.35 respectively), it yielded the same result as 

Cubist (R2 = 0.79, 0.79) when used on a smaller sample size (390 samples). Conversely, in a 

study conducted by Chi et al., (2018), BPNN model outperformed other models such as 

multiple-factor regression (MFR), partial least square regression (PLSR) and single-factor 

regression (SFR). The BPNN model produced the lowest RMSE (2.78 g/kg, 3.67 g/kg, 3.85 

g/kg, and 3.88 g/kg respectively), despite using a relatively small samples size (91 soil 

samples). As a result, it is worth noting that the use of big sample size may not necessarily be 

the only factor that influences the result. Other factors such as the proficiency of use on the 

part of the end-users, especially in the tuning of hyper-parameters could also be critical to the 

success of DL models. 

Considering the significance of model interpretability, which alludes to how one can easily 

comprehend the procedure a model uses to arrive at a result, the DL models are quite complex 

and less transparent (Were et al., 2015). Unlike simpler methods, for example linear models, 

with well-defined interpretability, DL models are difficult to interpret due to their inability to 

reveal the functional relationships between spectral information and soil properties (Padarian 

et al., 2020). This could hamper proper understanding of the underlying predictors in the model 

development (Rossel and Behrens, 2010). Furthermore, computational time and cost is another 

shortcoming associated with the usage of DL frameworks (Wadoux, 2019b). Wijewardane et 

al. (2016) argued that the best practical model for any retrieval or classification task will be the 

one that produces a relatively high accuracy and requires less computational cost and time. In 

this regard, Xu et al. (2020) examined the computational time it took for several multivariate 

models to predict SOC and found that the average time for the neural networks (NN) model 

was much higher compared to other simpler methods.   

3.4.5. Recommendation and future opportunities  

DL models require a large sample size due to their profound and complex nature. However, 

most studies are often limited by restricted field samples (Somarathna et al., 2017). 

Furthermore, the number of samples in RS datasets are often constrained by cloud cover and 

inadequate ground data, resulting in missing satellite data (Yuan et al., 2020). This challenge 

could be resolved by applying the Transfer Learning technique suggested by Goodfellow et al., 
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(2016). Transfer learning for environmental RS can be region-based or data-based (Masemola 

et al., 2020). This approach works by adjusting DL model parameters of a formally trained 

large dataset with smaller samples for optimum implementation on the new task (see Yuan et 

al., 2020 for an extended explanation on transfer learning). In addition, the application of DL 

mainstream models is yet to be fully tested in SOC mapping. From the results of this review, 

it is evident that only CNN and RNN have been used. Models such as Autoencoders (AEs) and 

Deep Belief Networks (DBN) are yet to be tested, despite proving efficient in other retrieval 

tasks. For instance, Shen et al. (2018b) successfully predicted large scale ground surface 

particulate matter from a MODIS data using DBN and obtained an R2 = 0.87 accuracy.  Shao 

et al. (2017), with the aid of AE model, predicted forest above-ground biomass using a synergy 

of LIDAR, Sentinel-1, and Landsat 8 OLI (433-2300 nm) data and obtained an R2 = 0.81 

accuracy. As such, future studies can consider the use of these models in SOC modelling. 

A closer look at the literature reviewed in this study showed that a large proportion of the 

studies utilized hyperspectral than multispectral and radar data (Figure 3.5a). Majority of the 

literature has cited lower spectral resolution as the main reason hindering the use of 

multispectral sensors (Ma et al., 2020; Naicker et al., 2019). The recent launch of commercial 

multispectral sensors like the Worldview-3 (31 cm) and Sentinel-2 and 3, characterized by 

better spectral resolution and strategically positioned bands could be beneficial to DL models 

in SOC retrieval. Worldview-3 is a high spatial resolution multispectral sensor (1.24m), with 

less than a day temporal resolution (Naicker et al., 2019). It possesses a panchromatic and 

short-wave infrared resolution of 31-cm and 3.7m respectively, hence can be useful in a wide 

range of DL-based RS applications, including SOC mapping (Kruse et al., 2015). For instance, 

Hively et al. (2018) mapped crop residue and tillage intensity over a farmland in Eastern Shore 

of Chesapeake Bay, USA, based on Worldview-3 image data and obtained an R2 = 0.94 

accuracy. However, the high cost of obtaining these images has hindered their frequency of 

use, especially in resource constrained regions (Wang et al., 2016).  Conversely, Sentinel-2 

and 3 are freely available and cover virtually all potential areas of interest with relatively high 

spatial-spectral resolution (Mngadi et al., 2019). Consequently, more DL-based multispectral 

investigations need to be conducted as these sensors could offer a cost-effective option to DL-

based RS methods for SOC mapping.   

Future studies can incorporate the fusion of different RS data types to improve accuracy. Image 

fusion in RS applications is usually aimed at obtaining a single image that simultaneously 

possess a high spectral-spatial resolution (Huang et al., 2015). The resultant image from a 
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fusion technique can be derived from similar, or different RS data types, for example, 

combining a lower and higher spatial resolution multispectral and panchromatic images, 

respectively i.e. pan-sharpening and combining hyperspectral/multispectral, 

hyperspectral/radar or multispectral-radar (Huang et al., 2015). Although a number of fusion 

based RS application have been conducted for different soil properties mapping (e.g., Gao et 

al., 2017; Lin et al., 2020), these studies have been conducted using other traditional ML and 

linear algorithms. From our review, out of the 95 studies investigated, only one study (Xu et 

al., 2019b) attempted the fusion technique for SOC mapping using a MLP model by combining 

two hyperspectral images (i.e., attenuated total reflectance Fourier-transform mid-infrared 

spectroscopy (FTIR-ATR) (2500–25000 nm) and laser-induced breakdown spectroscopy 

(LIBS) (200-1000 nm). The result (R2 = 0.83) of the fusion data was better than the FTIR-ATR 

(R2 = 0.48) and LIBS (R2 = 0.58) individually. Attributable to the possibility of generating high 

spatial-spectral resolution images, we believe subsequent studies using the fusion technique 

could help in closing the gap of the cost required to acquire high-resolution images favourable 

to DL models. Additionally, the use of UAS platforms for SOC mapping remains unexplored. 

The UAS platforms are cheaper and offer an opportunity for use at optimal data acquisition 

conditions (Guo et al., 2020; Angelopoulou et al., 2019, Odebiri et al., 2021).  

3.5. Conclusion 

A systematic survey on the application of TNN and the mainstream DL-based RS techniques 

for SOC quantification is presented in this study. The number of publications over time and the 

different types of RS data and platforms used were summarized. Investigations revealed that 

literature using remote sensing and deep learning techniques in estimating soil organic carbon 

has largely increased in recent years. However, further research, specifically targeting the 

effectiveness of different sensors and platforms in estimating SOC is required. In addition, this 

study provides insight into ways of improving the use of DL architectures. The use of transfer 

learning, which could address the issue of small sample size, use of improved multispectral 

sensors (Sentinel-1, 2 and 3, LIDAR, Wordview-3) and versatile platforms (such as UAS), 

together with the fusion of different RS data types are some of the research avenues future 

studies should explore.  

3.6. Summary  

This chapter provided a thorough examination of the use of TNN and other major DL-based 

RS approaches for SOC quantification. Investigations found that the majority of prior DL-RS 
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studies were classification-based, with little focus on regression tasks. Furthermore, most 

existing SOC retrieval analyses were conducted outside of Africa. These studies were mostly 

done using hyperspectral data and TNN frameworks, implying that more research into the 

effectiveness of DL on different sensors and platforms in estimating SOC is required, especially 

in Africa. Future SOC studies should consider the use of DL in conjunction with multispectral 

sensors (e.g. Sentinel and Landsat series) whose unique attributes present greater 

opportunities for large scale mapping. Consequently, the next chapter will investigate the use 

and performance of DL-based algorithms in comparison to other TNN and conventional ML 

models, for large scale SOC stocks mapping. In addition, the study will evaluate the use of 

Sentinel- 3 data within regional SOC mapping, which is yet to be explored. This will help to 

assess how DL frameworks perform against other ML models for SOC mapping, whilst 

ascertaining the viability of using DL and modern multispectral sensors for large scale 

mapping. 
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Chapter Four: 

Deep learning-based national scale soil organic carbon mapping with 

Sentinel-3 data 

 

This chapter is based on; 

Odebiri, O., Mutanga, O., & Odindi, J. (2022). Deep learning-based national scale soil organic 

carbon mapping with Sentinel-3 data. Geoderma, 411, 115695. 
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Abstract:       

Mapping of soil organic carbon (SOC) at the regional level is critical for a holistic climate 

change policy and mitigation of its adverse effects. However, reliable SOC estimates 

particularly over a large space remains a major challenge due to among others limited sample 

points, quality of simulation data and the algorithm adopted. Remote sensing (RS) strategies 

have emerged as a suitable alternative to field and laboratory SOC determination, especially at 

large spatial extent. The use of Sentinel-3 sensor, the latest of the Sentinel series is minimal 

and has not been fully developed, despite its impressive attributes that include high spectral-

temporal resolution and large coverage. Compared to linear and classical ML models, deep 

learning (DL) models offer a considerable improvement in data analysis due to their ability to 

extract more representative features and identify complex spatial patterns associated with big 

data. Yet, there is paucity in literature on the application of DL-based remote sensing strategies 

for SOC prediction. Consequently, this study adopted a deep neural network (DNN) to predict 

SOC at a national scale, using Sentinel-3 image, and compared the results with random forest 

(RF), support vector machine (SVM) and artificial neural network (ANN) models.  The models 

were trained based on 10-fold cross-validation with 1936 soil samples and 31 predictors. The 

DNN model generated the best result with a root mean square error (RMSE) of 10.35 t/ha (26% 

of the mean), followed by RF (RMSE = 11.2 t/ha), ANN (RMSE = 11.6 t/ha) and SVM (RMSE 

= 13.6 t/ha). The analytical prowess of the DNN, together with its ability to handle big data by 

learning patterns through a series of hidden layers (6) to draw conclusions, gives it an edge 

over other classical ML models. The study concluded that the DNN model with Sentinel-3 data 

is promising and provides an effective framework for continuous national level SOC 

modelling.  

 

Keywords Deep neural network, Remote sensing, Soil organic carbon, Sentinel-3 

 

 

 

 

 

 



45 
 

4.1. Introduction 

Increasing carbon emissions and their effects on different ecosystems have attracted global 

attention (Wang et al., 2021). Member countries of the Intergovernmental Panel on Climate 

Change (IPCC) are tasked with continuous quantification and monitoring of carbon emissions. 

Consequently, carbon pools, including soil organic carbon (SOC), are increasingly attracting 

research interest as a means to assimilate emitted carbon and mitigate associated adverse 

impacts (Odebiri et al., 2020b). As the largest terrestrial carbon reservoir, SOC account for 

about 50% to 80% of the global carbon storage and approximately 2 and 3 times more than the 

carbon content of the atmosphere and biosphere, respectively (Li et al., 2021; Sahoo et al., 

2019). As such, a small change in SOC reserves can significantly affect the global carbon cycle 

and soil's physical, chemical, and biological properties (Lamichhane et al., 2019). Furthermore, 

SOC provides valuable information on soil fertility, anion/cation exchange capacity, soil 

accumulation, soil degradation, water holding capacity and changes in the availability of 

nutrients that promote vegetation growth (Wang et al., 2018). However, reliable SOC stock 

mapping remains a big challenge, generally due to; (1) the limited number of available data 

points, especially at a landscape scale, (2) the type of auxiliary information used in SOC 

simulation, and (3) the potency and accuracy of interpolation techniques or algorithm adopted 

(Phachomphon et al., 2010; Angelopoulou et al., 2019).  

Advances in remote sensing (RS) has heralded a new era of big data where earth observation 

satellites are being lunched at a record pace, leading to the availability of a large amount of 

diverse datasets (Madileng et al., 2020; Kumar & Mutanga 2018; Odindi et al., 2016).  This 

has opened up a suitable alternative to field and laboratory SOC determination strategies 

(Mngadi et al., 2020; Hamida et al., 2018; Yang et al., 2016). Furthermore, Guo et al., (2020), 

notes that when the relationship between traditional soil forming factors and soil properties is 

weak or negligible, relevant RS data can provide rich supplementary information for a reliable 

digital soil mapping (DSM). While the aforementioned benefits of RS data to SOC modelling 

is exciting, its diverse nature, together with very large and ever-growing volumes calls for fast 

and transferrable analytical techniques for large-scale geospatial information mining in order 

to maximize its potential (Gupta et al., 2018). Several geostatistical and classical ML models 

have been investigated to link field-measured SOC to RS metrics (Padarian et al., 2020; Wang 

et al., 2021). For example, Phachomphon et al., (2010) used various geostatistical techniques 

to estimate SOC in Laos, using ordinary co-kriging (OCK) producing an R2 = 0.42 accuracy. 

Similarly, Zhang et al., (2021), used Sentinel-2 and MODIS derived variables to examine the 
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performance of random forest (RF), support vector machine (SVM), and artificial neural 

network (ANN) in predicting SOC in the northern Songnen plain of China. The RF had the 

lowest RMSE (0.68 %) and the highest R2 of all the groups (0.67). While these models have 

provided acceptable accuracies, they have also shown to be limited in their ability to extract 

more complicated non-linear abstract elements required for improved predictive models (Wang 

et al., 2021; Wadoux et al., 2019). Besides, SOC within and between regions exhibit large 

variability due to their complex blend of organic and inorganic components, hence classical 

ML models may be unable to accurately predict the behaviour of such a complex phenomenon, 

especially at large spatial scales (Ma et al., 2019; Padarian et al., 2019; Kumar et al., 2016).   

Recently, deep learning (DL) models have gained interest in the RS field because they are well 

suited in handling big data and its associated heterogeneity (Zhang et al., 2019). DL is a 

representation-learning technique containing many layers (input, hidden and output) in which 

information is derived from the lower to higher layers through nonlinear modules (Zhu et al., 

2019). DL has proven to be a remarkable improvement to classical ML models, and an 

exceptionally powerful tool in many fields (Odebiri et al., 2021). In contrast to classical ML 

models, DL models are capable of automatically extracting invariant and abstract features from 

RS data to improve accuracy. According to Minh et al., (2018), DL architectures can help 

enhance learning procedures, particularly when relationships between different environmental 

properties are complex and non-linear. In addition, the inherent multiple hyper-parameters 

embedded in DL models provides users the opportunity to fine-tune learning procedures in 

order to improve accuracy (Odebiri et al., 2021). While these DL advantages exist, research on 

the application of DL-based RS strategies to SOC prediction is lacking and most existing 

studies are localized with little global impact as DL has only been recently introduced (Odebiri 

et al., 2021; Padarian et al., 2020). To this end, leveraging on the abundance of RS data and 

the analytical prowess of DL architectures could offer great potential for rapid, continuous and 

reliable national scale estimates of SOC, thus informing national climate policies and soil 

management.  

In most cases, deep learning (DL) models for SOC mapping is adopted through hyperspectral 

images (Odebiri et al., 2021). For instance, a review of literature by Ma et al., (2019) showed 

that more than 85% of the existing DL-based SOC mapping is performed using hyperspectral 

data with an average spatial resolution of 2m. However, hyperspectral data remain expensive, 

especially for applications with wide coverage, and are hard to obtain in many regions, 

including Africa (Mutanga et al., 2015). Sensors such as the Sentinel series, which are freely 
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available, are excellent alternatives that have yet to be fully explored with DL models. Sentinel 

sensors have relatively high spatial and spectral resolutions as well as strategically placed bands 

sensitive to SOC (Odebiri et al. 2020a). Although a range of DL studies have been conducted 

with multispectral data such as Sentinel-2 (Taghizadeh-Mehrjardi et al., 2020) and Landsat 8 

(Wu et al., 2019), there is little to no exploration of the latest Sentinel-3 data which is critical 

for national and regional scale mapping (Zhou et al., 2021). 

The Sentinel-3 Ocean and Land Colour Instrument (OLCI) from the European Space Agency 

(ESA) is the latest in the Sentinel series. It comprises four multifunctional satellites (i.e. 3A, 

3B, 3C, and 3D). Among them, Sentinel 3A and 3B were launched on February 16, 2016 and 

April 25, 2018, respectively. Unlike Sentinel-2, which has 13 spectral bands ranging from 

443nm to 2190nm wavelengths and a 5-day revisit cycle, Sentinel-3 has better spectral 

resolution, with 21 spectral bands (400-1020nm) and a shorter revisit time of less than 2 days 

(Li and Roy, 2017; Kokhanovsky et al., 2019). Compared with Sentinel-2 (290 kilometres), 

Sentinel-3 has a wider swath width (1270 kilometres), allowing for capture of a large spatial 

extent at an overpass. However, the former has a better spatial resolution (10 m) than the latter 

(300 m) and has been successfully used as a single data source for many SOC mapping tasks 

(Vaudour et al., 2019). Despite the spectral and temporal advantages of Sentinel-3, it is still 

new and has not be widely used to simulate soil properties, including SOC. Therefore, this 

study explored a DL approach for SOC modelling across South Africa using Sentinel-3 data. 

A comparison was also made between the results of the DL method and those of other ML 

models (RF, ANN, and SVM) commonly used in digital soil mapping. 

4.2. Methods and Materials 

4.2.1. Soil data  

Soil data was obtained from two sources; 1736 points from the International Soil Reference 

and Information Centre (ISRIC) and the remaining (200) from the Agricultural, Earth and 

Environmental Sciences Department (SAEES), University of KwaZulu-Natal, South Africa. 

ISRIC is an independent scientific foundation whose mission is to provide high-quality 

information on different soil properties (including SOC) at a global scale through cooperation 

with different countries. The current ISRIC soil database was last updated in 2020 

(https://www.isric.org/) and contains more than 150,000 sample points across 173 countries 

collected at different times (Batjes et al., 2020). Since the SOC carbon content determination 

methods may vary from country to country (Venter et al., 2021; Hengl et al., 2017), the ISRIC 

implemented a standardized procedure to make the input soil profile data uniform and available 
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(Pudełko & Chodak., 2020; Dong et al., 2018; Novoa et al., 2018;). Essentially, the DNN is an 

effective and reliable approximate model that provides information about the complex 

relationships between the target and explanatory variables (Wang et al., 2020). Between the 

input, the hidden and the output layers are many neurons, such that neurons in one layer are 

linked to the neurons in the next layer until the final predicted (output) neuron. DNN generally 

uses the multilayer perceptron (MLP) architecture but differs through its many incorporated 

hidden layers and hyper-parameters (see Table 4.3) that gives it an edge over other classical 

ML models (Taghizadeh-Mehrjardi et al., 2020). However, care must be taken when training 

the model to avoid overfitting (Liu et al., 2018). In such cases, a dropout regularization 

technique can be applied to each of the hidden layers, whose neurons are subsequently averaged 

for prediction (Taghizadeh-Mehrjardi et al., 2020). A simple mathematical representation of 

DNN for a given input layer (vector X) with a L hidden layer and an output layer (vector Y) 

can be represented as follows (Wang et al., 2020); 

Z1 = 𝜎1(W1X + b1), Z2 = 𝜎2(W2𝑧1 + b2)                                                                                                                                         

ZL = 𝜎L(wL𝑧𝐿−1 + bL),   Y =  Wl+1ZL + bL, 𝜃 = [Wi, bi]i=1
L+1                            (1) 

Where Wi and bi are weights and biases of the ith layer respectively. L + 1 indicate the output 

layer (i.e. Y = N (X; Ɵ)) and σi is the activation function which can either be sigmoid, softmax, 

rectified linear unit (ReLU), hyperbolic tangent (Tanh) among others.  

The loss function L of the output and input variable can be examined using the mean squared 

error (MSE) represented as; 

MSEDATA = L(θ) =
1

N
∑ |NN(Xi;  θ) − Yi|

2N
i=1                                                       (2) 

Where N is the sum total of the labelled data, and L is the loss function which can be minimized 

using an optimization algorithm (Wang et al., 2020). Figure 4.1 shows the schematic 

representation of the DNN architecture. A total of 31 input variables generated from Sentinel-

3 OLCI were used to build the model in this study. The complete dataset was partitioned into 

ten equal parts and used for training and testing in a sequential order. To ensure that each data 

point was utilized as validation at least once, the DNN was calibrated ten times. After repeated 

adjustments using a random search optimization with 10-fold cross-validation, 500 epochs, six 

hidden layers, the “adam” optimizer and the ReLU activation function were used for the best 

output. 
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Figure 4.1. A graphical illustration of the deep neural network(DNN) framework 

4.2.3.2. Random forest (RF) 

Random forest is a popular and widely adopted machine leaning algorithms for regression and 

classification task (Sibanda et al., 2021). It is a non- parametric tree-based ensemble algorithm 

that is capable of handling both small and big data (Rasaei and Bogaert, 2019). During training, 

RF uses an average of the large decision trees combined with a unique bootstrap sampling to 

obtain predicted results (Odebiri et al., 2020a). RF model also contains an important function 

(Gini impurity) within its structure that helps the user to determine how each predictor variable 

contributes to the overall success of the model. (Breiman, 2001). The hyper-parameters 

including ntree, mtry and the node-size of the RF can be optimised to produce better predictive 

results (Table 4.3). In addition, bootstrapping reduces the effect of overfitting in RF and allows 

accurate estimation of errors from the out-of-bag (OOB) samples (Were et al., 2015). The OOB 

mean squared error (MSEOOB) is expressed as the summation of the predictions of all trees as 

follows (Zhou et al., 2020); 

 MSEOOB =  
1

n
∑ (zi − ẑi

OOB)2n
i=1                                                                               (3)        

Where n is the number of observations and Ẑi
OOB is the OOB prediction for observation zi. The 

RF model in this study was calibrated by splitting the data into 10 equal parts used for training 

and testing sequentially with a defined set of hyper-parameter as shown in Table 4.3.  
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4.2.3.3. Support vector machine (SVM) 

Like RF, the SVM is also widely used for regression and classification tasks in remote sensing 

applications (Forkuor et al., 2017). SVM is a non-parametric model that works by constructing 

a set of hyperplanes in an infinite dimensional space (hyperspace) with the help of a kernel 

function (Were et al., 2015). The use and choice of the kernel function including sigmoid, 

polynomial, radial basis function (RBF), and linear, are critical to overall SVM performance 

(Jeong et al., 2017). Given a set of predictor variables (x) to simulate the target variable (y), 

the basic principle of SVM can be simply expressed as follows (Guo et al., 2020); 

min
w,b

1

2
 ||w||2, 

s. t. yi(wTxi + b)  ≥ 1, i = 1,2,3, … … . m.                                                               (4) 

Where xi and yi are the predictors and the target variable respectively; w and b are the vector 

of the hyperplane and bias. 

The RBF kernel function was selected for this study because it is commonly used in soil 

mapping and performs better than other kernels. (Zhou et al., 2020; Guo et al., 2020; Keskin 

et al., 2019). We also defined and optimized two other important RBF parameters (i.e. penalty 

— cost, sigma — kernel width) using the random search technique within the Python 3.8 API. 

K(xi, xj) = exp (– σ||xi + xj||
2)                                                                                        (5) 

Where K represents the kernel function defined by the user (RBF), x indicates the input vector, 

and σ is the sigma (Jeong et al., 2017). The data partitioning for the SVM analysis was similar 

to the RF model as specified above. 

4.2.3.4. Artificial neural network (ANN) 

ANN is a classical neural network mainly used for classification and regression analysis (Wang 

et al., 2021). Its unique and vigorous data-modelling ability helps it to detect patterns and draw 

result, thus can be applied to simulating complex soil properties such as SOC (Xu et al., 2020). 

The ANN consist of input, hidden and output layer (Wei et al., 2021; Falahatkar et al., 2016). 

The input layer (xi) receives the signal (i.e. data), following which, the hidden layer performs 

a weighted linear combination of multiple independent variables and stores the model 

parameters such as weight and bias (Gruszczyński, 2019). Before making the final prediction 

(output layer yi), a non-linear activation function is applied to limit the influence of outliers 

(Chen et al., 2019). The ReLU activation function was used with a single hidden layer in this 
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study (Kuang et al., 2015). The ANN in this study was made by setting the learning rate, the 

number of nodes at the hidden layer and epochs to 0.001–0.05, 2–10, and 10-100 respectively 

as shown in Table 4.3.  

4.2.4. Model evaluation metrics 

The fitting and generalization of the models built in this study were evaluated using three 

metrics namely: root mean squared error (RMSE), coefficient of determination (R2) and Lin’s 

concordance correlation coefficient (LCCC). These metrics are expressed as; 

RMSE =  √∑   (XO,i – XP,i  )
2n

i=1

n
                                                                                          (6)                                                                              

R2 = 1 – [
∑    (n

i=1  XO –p)2

∑   (n
i=1 XO – O′)2]                                                                                          (7)                                                                                

LCCC =  
2 r σoσp

σp  
2 +  σp

2    +  [O′ –P′]2                                                                                         (8) 

Where n signify number of observations, XO and XP are the measured and predicted SOC value. 

O’ and P’ represents averages of the measured and predicted SOC, while σo and σp are the 

respective variance of the measured and predicted value. Furthermore, to avoid sampling bias, 

a 10-fold cross-validation was performed by dividing the data into 10 equal sets and passed 

sequentially into both calibration and validation datasets, so that each set was used at least 

once. Generally, a best-fitted model is defined by a higher R2 and LCCC, along with a lower 

RMSE. 

Furthermore, the importance of predictor variables was evaluated to assess their contribution 

to the overall performance of each model. Whereas the RF model has a function (Gini impurity) 

in its structure to measure the importance of variables, other algorithms do not. Specifically, 

deep learning (DL) models often fail to achieve interpretability because they cannot quantify 

the importance of variables for regression or classification tasks, which is why they are called 

a black box (Padarian et al., 2019). To this end, several techniques have recently been proposed 

to help users interpret DL predictions (Pentos, 2016). One of the methods is the SHApely 

Additive exPlanations (SHAP) used in this study. The working principle of SHAP is to assign 

a specific average value to each variable to show the magnitude of their impact on the model 

output. SHAP possesses special function for every type of ML model, including 

"DeepExplainer" for DL and ANN, "TreeExplainer" for any tree-based model (RF), and 

"KernelExplainer" for other types of models (SVM). The advantages of SHAP over other 
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strategies include, but are not limited to global and local interpretability (for more details on 

SHAP, see Padarian et al., 2020, and Lundberg and Lee, 2017). A comparison between the 

SHAP value and the RF Gini impurity yielded the same result, therefore, it was used as a 

unified method for feature importance measure in this study. 

4.2.5. Uncertainty quantification 

In addition to evaluating the performance of a model, it is a good practice to quantify its 

uncertainty (Abdar et al., 2021). In decision-oriented research, characterizing uncertainty and 

evaluating the robustness of research conclusions are crucial to achieving the quality and 

credibility of the analysis (Hamel and Bryant, 2017 ). Uncertainty quantification provides the 

upper and lower bounds for the estimated output variables (Abdar et al., 2021). In this study, 

the upper and the lower bounds for the SOC maps generated by each model were determined 

using the common ±1.64 standard deviation (SD) with a corresponding significance level of 

90% confidence interval (C1) (Minasny et al., 2016). This was done using a 10-fold cross-

validation under the assumption that the four models follow a normal distribution for every 

raster cell (Emadi et al., 2020). Subsequently, the 5th and 95th percentiles together with the 

predicted mean value of each pixel was retrieved. Finally, a spatial distribution map for the 

calculated mean, lower (5%) and higher (95%) confidence interval was generated for the four 

models. 

4.3. Results 

4.3.1. Summary statistics 

Statistical analysis was conducted to describe the target SOC data (1936 samples) for the 

predictions. The data range between 5.3 t/ha and 149 t/ha, with average and standard deviations 

of 39.8 t/ha and 17.3 t/ha, respectively. The coefficient of variation (43%) is calculated as the 

ratio between standard deviation and mean, indicating relatively high variation within the SOC 

data. The data also showed strong skewness (1.9) and kurtosis (5.2), which nullified the normal 

distribution rule (Hair et al., 2016). In order to improve the normal distribution, we applied a 

natural logarithm transformation to the SOC data, resulting in skewness and kurtosis of 0.41 

and 0.68, respectively. The converted SOC data was inversely transformed to restore the data 

to its original scale after prediction analysis. 

4.3.2. Evaluation and performances of models 

The average results for the four models (i.e. DNN, RF, ANN, and SVM) using 10-fold cross-

validation are presented in Table 4.4. Among the four trained models, the DNN model showed 
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the strongest robustness in predicting SOC variability, indicating a value of 10. 35 t/ha (26% 

of the mean) for RMSE, 67.3 for R2, and 84.3 for LCCC. Other model’s performance in order 

of ranking were RF with an RMSE score of 11.2 t/ha (28% of the mean), 64.7 for R2 and 80.5 

for LCCC; the ANN with scores of 11.6 t/ha (29% of the mean), 63.4 and 79.6, for RMSE, R2 

and LCCC respectively; and the SVM was the least robust, denoting an RMSE score of 13.6 

t/ha (34% of the mean), 58 for R2 and 77.5 for LCCC, respectively. Figure 4.2 shows the 

correlation between the observed and the estimated SOC for the constructed models.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Predicted against observed soil organic carbon (SOC) using four models: (A) DNN 

= deep neural network, (B) RF = random forest, (C) ANN = artificial neural network, (D) SVM 

= support vector machine 
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Figure 4.3. Importance ranking of variables used for the simulation of soil organic carbon 

across South Africa. DNN: deep neural network, RF: random forest, ANN: artificial neural 

network, SVM: support vector machine 

4.3.4.  Spatial estimation of SOC and uncertainty quantification 

Figure 4.4 and Table 4.5 show the spatial distribution and uncertainty quantification of 

predicted SOC for South Africa at the upper limit (95%), the mean and the lower limit (5%), 

calculated at 90% CI. The maps generated by each model (Figure 4.4) show a significant level 

of agreement from the upper limit to the lower limit. The concentration of SOC is higher at 

densely vegetated areas compared to areas with sparse or no vegetation. For instance, the north-

eastern and south-eastern part with darker colours are dominated by dense natural woodlands 

and plantations. This is not surprising, because the most important variables (B8, NDVI, B11, 

EVI and RVI) to the overall performance of the models are all sensitive to vegetation. 

Additionally, Table 4.5 shows the percentage of observation that falls within the defined CI 

(i.e. 5 and 95%) for the four models, thus depicting their uncertainty. In theory, 90% of the 

observations should fall within the specified range (Minansny et al., 2016). The DNN model 

produced the most reliable uncertainty, with 88% of the observations within the defined CI, 

followed by RF and ANN with similar uncertainty at about ~79%. The SVM also produced a 

relative uncertainty to the other models at ~69%. While the models depict a good measure of 
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uncertainty, they may not represent the actual situation on ground, because the quantification 

of uncertainty in this study is based on the parameters of the models and not on the spatial 

uncertainty of the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 The spatial distribution of soil organic carbon (SOC) for deep neural network 

(DNN), random forest (RF), artificial neural network (ANN) and support vector machine 

(SVM) at lower limit (5%), mean, and upper limit (95%) using Sentinel 3 OLCI data 
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respectively. It is important to note that the soil sample points used in both studies were three 

to four times higher than this study, yet the DNN model still produced a better accuracy. The 

edge of the DNN model over other models is based on its ability to learn and extract more 

representative features from the SOC data through its many hidden layers and neurons. Each 

neuron in the network represents an aspect of the data, and together they provide a complete 

representation of the data. The hidden layers (in our case 6) are weighted to indicate the strength 

of their relation to output (i.e. SOC), and as the model develops during training, the weights are 

adjusted to improve accuracy. In addition, the DNN can accurately approximate the 

complicated non-linear relationship between SOC and covariates, thus capturing the potential 

association between them (Yuan et al., 2020). Considering the spatial uncertainty of the target 

SOC data due to multiple-scales of variation as well as the different sampling sources and time 

of collection, the DNN model (6 hidden layers) was more precise than other methods, 

indicating its robustness in complex data modelling.  

This study also evaluated the importance of predictors used to explain the variability of 

SOC. The SHAP value technique with a special ability to reveal the importance of 

predictors to any machine or deep learning model was adopted (see Section 2.4). The top 

five variables in the DNN model were Band 8 (B8 = 665nm), NDVI, Band 11 (B11 = 

708.25nm), EVI, and RVI.  Interestingly, these variables were also significant in other 

models occupying the first six positions in rankings (Figure 4.3). The most important 

variable (B8) of the DNN model falls within the visible red spectrum (625-700nm). Many 

studies have demonstrated the sensitivity of the red band to SOC (Gholizadeh et al., 2018; 

Mondal et al., 2017). For instance, Odebiri et al., (2020) recently highlighted the 

importance of the red band of Landsat-8 data to estimate SOC content within the same 

study area (South Africa). According to their study, the red band region was highly 

responsive to vegetation attributes such as chlorophyll content, which provides important 

information on the physiological state of vegetation related to SOC. In addition, NDVI, 

EVI, and RVI also improve vegetation detection and sensitivity in high biomass regions, 

indicating density and distribution of vegetation, which in turn inform SOC variability 

(Kumar et al., 2016; Matsushita et al., 2007). The B11 covers the strategic regions of the 

vegetation-sensitive electromagnetic spectrum (red-edge). According to Mngadi et al., 

(2019), the red-edge region provides information on a wide range of vegetation attributes, 

including biomass, canopy structure and chlorophyll content. Previous studies (e.g. Zhang 

et al., 2019; Aryal et al., 2017; Nabiollahi et al., 2019; Forkuor et al., 2017) have reported 
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that SOC concentration is highly dependent on vegetation intensity and residues. The same 

applies to our SOC model (Figure 4.4), as the vegetation density and SOC concentration 

were positively correlated, supporting the hypothesis that vegetation may be utilized as a 

surrogate for SOC estimation since both respond to the same physical and environmental 

triggers (Bhunia et al., 2017). 

Overall, from the output maps, SOC is more prevalent in the north and south-east of the 

country, while the desert, arid and semi-arid west has lower concentration. This is because 

areas of higher SOC concentration are dominated by dense natural and exotic plantations 

characterized by high canopy coverage and height ranging from 10-75% and 2.5-6 meters, 

respectively (SANLC, 2020). Densely vegetated areas are capable of promoting accelerated 

soil metabolism through continuous litterfall and dead matter, resulting in additional SOC 

accumulation (Muchena, 2017). Furthermore, the densely vegetated areas of the country 

receive higher rainfall (> 600 mm) than the desert and arid west (< 300 mm). Rainfall 

influences soil moisture, hydrological processes (including surface runoff and groundwater 

infiltration), vegetation density, and decomposition, which supports SOC sequestration (Zhou 

et al., 2008; O'Brien et al., 2010; Chen et al., 2015). As an example, the northern cape province 

of the country (Figure 1.1— study area map in chapter 1), which has the lowest concentration 

of SOC (Figure 4.4), is characterized by low erratic long-term annual rainfall with less than 

175 mm (Paterson 2014).  Likewise, the soils of this area are largely dominated by very shallow 

sandy soils with a low water retention capacity and wind-blown sands (dunes), leading to a low 

soil organic carbon accumulation. 

The Sentinel-3 data performed well in a nationwide SOC modelling. Sentinel-3 acquires data 

within the visible (VIS) to near infrared (NIR) wavelength region of the electromagnetic 

spectrum (400 to 1020 nm). These VIS-NIR wavelength region provides critical reflectance 

information on SOC and considered the most sensitive region to determine SOC content (Lin 

et al., 2020; Bilgili et al., 2010). Whereas its spatial resolution is low (300m), the short revisit 

period and large coverage provide comprehensive information for SOC estimation at country 

level (Li et al., 2021). A few studies have examined the capability of Sentinel-3 data to estimate 

SOC. For instance, Lin et al., (2020) compared the performance of Sentinel-3 and 2 to predict 

SOC content in China and achieved different accuracies of R2 = 55 and 59, respectively. The 

study concluded that the multiple spectral bands (21) of Sentinel-3 can complement its low 

spatial resolution, resulting in improved SOC prediction. In addition, according to the 

importance ranking of the SHAP value approach used in this study, the following Sentinel-3 
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bands were important for SOC prediction; B8(665nm) B11(708.25nm), B17(865nm), 

B19(900nm), B9(673.75), B12(753.75nm), B13(761.25nm), B18(885nm), B6(560nm), and 

B7(620nm), respectively. We recommend that these band regions be noted for future studies.  

4.5. Conclusion 

In this study, a national SOC estimation was conducted using a deep learning (DNN) approach 

and Sentinel-3 OLCI data. The DNN model performed better than RF, ANN and SVM, 

indicating its ability to extract more abstract features from data, thus, increasing accuracy. We 

also adopted the SHAP technique that aided in unveiling the lack of interpretability associated 

with deep learning models. Band 8, NDVI, Band 11, EVI and RVI were the most important 

variables in the DNN model for determining SOC variability in the study area. However, care 

must be taken when building the DNN model to avoid overfitting; a phenomenon common to 

deep learning frameworks due to many hyper-parameters. In addition, this study established 

the capability of Sentinel-3 data to predict SOC at a regional/country scale. This is important 

to evaluate its competitiveness in reference to other commonly used sensors like Landsat and 

MODIS, thus affording end-users an opportunity to choose the appropriate image suitable at 

different mapping scales. This study is the first developed DL-based SOC mapping in South 

Africa and provides a valuable framework for improved national carbon accounting. However, 

cost and sample size must be put into perspective because DL models require a lot of high 

computing power as well as big data.  

4.6. Summary  

This chapter presented a novel cost-effective framework for DL-based national scale SOC 

stock distribution mapping in South Africa, using Sentinel-3 data and a DNN architecture with 

six hidden layers. The DNN model outperformed other popular models such as RF, SVM and 

ANN, as well as prior existing South African SOC models. Using the SHAP approach, this 

chapter also addressed the absence of interpretability constraints that are usually associated 

with DL frameworks. This allowed the most essential explanatory factors in the DNN model, 

such as sensitive Sentinel-3 spectral segments and vegetation indices, to be revealed — which 

are critical for mapping SOC. Having established the superiority of DL models over other TNN 

and classical ML models, as well as the feasibility of using multispectral sensors for national 

SOC modelling, it is critical that future research now begin to focus on real-world SOC stock 

distribution and the influence of different environments on SOC accumulation and 

sequestration. To that purpose, the next chapter will use Deep Neural Networks (DNN) and 
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Sentinel-3 satellite data to explore SOC stock distribution across South Africa’s main land 

uses. This chapter will examine the impact of anthropogenic land use change on SOC. Such 

knowledge will aid in the improvement of climate change mitigation activities, policies, and 

management practices, as well as provide the government and policymakers with a focus for 

planned interventions. 
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Chapter Five: 

Modelling soil organic carbon stock distribution across different land-uses 

in South Africa: A remote sensing and deep learning approach 

 

This chapter is based on; 

Odebiri, O., Mutanga, O., Odindi, J., & Naicker, R. (2022). Modelling soil organic carbon 

stock distribution across different land-uses in South Africa: A remote sensing and deep 

learning approach. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 351-362. 
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Abstract: 

Soil organic carbon (SOC) is a critical measure for ecosystem health and offers opportunities 

to understand carbon fluxes and associated implications. However, SOC can be significantly 

influenced by anthropogenic land use change, with intensive and extensive disturbances 

resulting in considerable SOC loss. Consequently, understanding the spatial distribution of 

SOC across different land uses, particularly at national level characterized by different biomes, 

is vital for integrated land-use planning and climate change mitigation. Remote sensing and 

deep learning (DL) offer a reliable largescale mapping of SOC by leveraging on their big data 

provision and powerful analytical prowess, respectively. This study modelled SOC stocks 

across South Africa’s major land uses using Deep Neural Networks (DNN) and Sentinel-3 

satellite data. Based on 1936 soil samples and 31 spectral predictors, results show a relatively 

high accuracy with an R2 and RMSE value of 0.685 and 10.15 t/h (26% of the mean), 

respectively. From the seven land uses evaluated, grasslands (31.36%) contributed the most to 

the overall SOC stocks while urban vegetation (0.04%) contributed the least. Moreover, 

although SOC stock was found to be relatively proportional to land coverage, commercial 

(46.06 t/h) and natural (44.34 t/h) forests showed a higher carbon sequestration capacity. These 

findings provide an important guideline to managing SOC stocks in South Africa, useful in 

climate change mitigation through sustainable land-use practices. Whereas landscape 

restoration, and other relevant interventions are encouraged to improve SOC storage, care must 

be taken within land-use decision making to maintain an appropriate balance between carbon 

sequestration, biodiversity, and general ecosystem functions. 

 

Keywords: Soil organic carbon, Land use, Land-use planning, Remote sensing, Deep learning, 

Sentinel-3 
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5.1. Introduction 

Soil organic carbon (SOC) is the main component of soil carbon storage and plays a key role 

in maintaining ecosystem services, including food production, water supply, soil fertility and 

climate change mitigation (Jiao et al., 2020). In terrestrial ecosystems, SOC is considered the 

largest carbon pool, containing three and four times as much carbon that is stored in the 

atmosphere and biotic pools, respectively (Kenye et al., 2019; Odebiri et al., 2020b). Globally, 

more than 1,500 Petagrams (Pg) of carbon is stored in the soil as organic carbon (Ghimire et 

al., 2018). However, small changes in this reserve, caused by the effects of anthropogenic land 

use change, may significantly alter the global carbon cycle (Sainepo et al., 2018). This may not 

only deteriorate soil quality, but also emit greenhouse gases (GHG) into the atmosphere, 

thereby accelerating climate change (Lamichhane et al., 2019; Swanepoel et al., 2016). 

Generally, changes in land use account for 12-20% of human-induced carbon emissions and 

are expected to remain one of the largest source of greenhouse gases (Amanuel et al., 2018). 

According to Sanderman et al., (2017), over the last 12,000 years, the conversion of natural 

land to cultivation has resulted in approximate loss of 116 Pg and 22 Pg of carbon from 

grasslands and savanna ecosystems, respectively. Hence, changes in SOC due to changes in 

land use have received global attention as a key issue for climate change mitigation, agricultural 

management, ecosystem restoration and environmental conservation (Jiao et al., 2020; Ou et 

al., 2017). 

In South Africa, majority of the terrestrial carbon pool is comprised of SOC stocks, with an 

estimated average sink of 6,396 gC/m2 and a net primary production of 186 gC/m2 (Department 

of Environmental Affairs, 2017). Nevertheless, to cope with agricultural and housing need for 

the county’s rapidly growing population, natural vegetation has been transformed into 

agricultural and residential land uses, leading to significant SOC losses (Schulze and Scuttle, 

2020). For instance, close to 20% of South Africa’s natural land cover has been altered by 

cultivation, land degradation and urbanization (Venter et al., 2017). Griscom et al., (2017), 

also noted that since 10 000 BC, about 2 Pg of South Africa’s carbon has been lost through 

agricultural activities, while Du Preez et al., (2011) found that perpetual cultivation, especially 

topsoil disturbances, may reduce soil carbon stocks by approximately 45%. Similarly, 

Swanepoel et al., (2016), highlighted that agriculture has significantly reduced SOC reserves 

in Southern Africa by 25-53%.  

Recent studies have investigated the impact of land use on SOC stocks in South Africa. Schulze 

and Scuttle, (2020) for instance examined the spatial distribution of SOC under natural 
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vegetation and agricultural land use. They concluded that about 50% of the SOC sink in natural 

vegetation have been lost to intensive cultivation. In another study, Venter et al., (2021) 

modelled the variability of the topsoil SOC within South Africa’s natural vegetation (biomes) 

and concluded that although the natural vegetation sequesters about 5.6 Pg of organic carbon, 

a significant amount of the sink is lost to land use change overtime. Despite these studies 

highlighting the importance of land use on SOC reserves, a deeper understanding of influential 

land uses and their competing spatial dynamics (e.g. forest plantations and urban vegetation) 

is required to fully understand the effect of land use change on SOC variability. More 

importantly, most existing SOC studies are localized with little national, regional and global 

impact; thus, knowledge on SOC variability due to land use change at the national scale is 

important for advancing appropriate management strategies (Chaplot et al., 2010). Such 

knowledge is also critical to achieve among others the total annual national and global carbon 

accounting objectives, national climate policies, soil management strategies, integrated land 

use planning and Intergovernmental Panel on Climate Change (IPCC) and Kyoto protocol 

objectives (IPCC 2016; Zhou et al., 2021; Odebiri et al., 2020a).  

The Intergovernmental Panel on Climate Change Good Practice Guidance (IPCC-GPG) on 

land use change recommends remote sensing (RS) as a highly robust, cost-effective and reliable 

strategy for mapping different carbon pools, thus, contributing to the long-term climate change 

regulatory policies (Gara et al., 2016). Whereas conventional field and laboratory methods of 

SOC determination can provide quality data and information for localised areas, they are 

impractical at a landscape level. In this regard, RS methods offer the opportunity to provide 

updated, consistent, and spatially explicit assessments of SOC and its dynamics, especially for 

large spatial extents with limited access (Mngadi et al., 2019; Xu et al., 2019). This can be 

credited to recent sensor advancements offering higher spatial and spectral resolutions as well 

as the multiplication of image datasets (Odindi et al., 2016; Mutanga et al., 2015). However, 

the performance of RS data as a tool for earth observation depends on many pre-processing 

procedures. Moreover, because of the heterogeneous nature of RS data (such as high 

dimensionality), model performance is often dependent on the adopted algorithm (Odebiri et 

al., 2021). As such, the RS community is constantly searching for innovative analytic 

techniques to ameliorate the utility and performance of RS data (Masemola and Cho 2019). 

At the core of these advancements is the emergence of deep learning (DL) algorithms, which 

has proven to be an exceptionally powerful tool in many fields (Yuan et al., 2020). DL is part 

of the broader machine learning (ML) segment based on neural network frameworks (Ma et 
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al., 2019). It comprises of neurons, also known as units with many layers that transform input 

data (e.g. remotely sensed data) to outputs (e.g. estimated SOC), while steadily learning higher-

level features (Schmidhuber, 2015; Litjens et al., 2017). Unlike other geostatistical and 

conventional ML algorithms, DL frameworks can exploit feature representations exclusively 

learned from data (Odebiri et al., 2021). In addition, DL methods have the capability of 

improving learning processes, especially with regards to the complex interrelationships 

between different environmental attributes (Odebiri et al., 2021; Ma et al., 2019). Despite these 

advantages, DL algorithms have rarely been adopted in SOC retrieval tasks (Singh and Kasana, 

2019). Hence, exploring DL applications for remote sensing of SOC could be beneficial to 

developing more reliable predictive models for frequent carbon assimilation/emission studies. 

To this end, we predict the spatial distribution of SOC across South Africa’s major land uses 

that include natural forests, commercial forests, urban vegetation, shrub land, grasslands, 

croplands and barren lands using the recently launched Sentinel-3 satellite imagery and Deep 

Neural Networks. 

5.2. Methodology 

5.2.1. Soil data 

The soil data used in this study was sourced from both the International Soil Reference 

Information Centre (ISRIC) and the Department of Agricultural Earth and Environmental 

Sciences (SAEES) at the University of KwaZulu-Natal in South Africa. ISRIC is an 

independent science foundation whose mission is to provide worldwide high-quality 

information on various soil properties (including SOC) through cooperation with global 

nations. The existing ISRIC soil database, last updated in 2020 (https://www.isric.org/), 

contains more than 150,000 sample points from 173 countries (Batjes et al., 2020). Most of 

these sample points differ in space and time of acquisition. In addition, methods for 

determining SOC content, including field and laboratory spectroscopy, vary between countries 

(Venter et al., 2021; Hengl et al., 2017). As a result, ISRIC developed a standardized and 

harmonized procedures for uniform soil profile data input, which are publicly available 

(https://www.isric.org/explore/wosis/accessing-wosis-derived-datasets). The SOC stock for 

each point was determined using the following formula by Pearson et al., (2007).    

𝑆𝑂𝐶 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑡/ℎ) = 𝑆𝑂𝐶 𝑐𝑜𝑛𝑐𝑒𝑚𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ         (1) 

A total of 1936 sample points were used as target variable at a 30 cm depth. 
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 Z1 = 𝜎1(W1X + b1), Z2 = 𝜎2(W2𝑧1 + b2)                                                                                                                                         

ZL = 𝜎L(wL𝑧𝐿−1 + bL),   Y =  Wl+1ZL + bL, 𝜃 = [Wi, bi]i=1
L+1                            (2) 

The weight and bias of the ith layer are represented by Wi and bi, respectively. L + 1 indicate 

the output layer (i.e. Y = N (X; Ɵ)) and σi
 is the activation function of the ith layer which can 

either be sigmoid, rectified linear unit (ReLU) or hyperbolic tangent (Tanh).  

By using the mean square error (MSE), we can examine the loss function L of the input and 

output variables as expressed below; 

MSEDATA = L(θ) =
1

N
∑ |NN(Xi;  θ) − Yi|

2N
i=1                                                       (3) 

In this case, N denotes the number of the labelled data. The loss function L can be minimized 

through an optimization algorithm called Stochastic gradient descent (Wang et al., 2020). 

Figure 5.1 illustrates the DNN architecture. A total of 31 input variables, including 21 spectral 

bands and 10 vegetation indices from Sentinel-3 OLCI, were used for the final SOC model. 

The dataset (n = 1936) was divided into training (n = 1084), validation (n = 271), and testing 

(n = 581) data using a 50%, 20% and 30% split. To avoid overfitting, the model during training, 

a regularization technique using the dropout function was applied to each of the layers, which 

were then averaged for prediction. Consequently, following repeated adjustments carried out 

by the random search technique adopted for hyper-parameter optimization, six hidden layers, 

the "Adam" optimizer and the ReLU activation function were selected for optimal results. 

 

 

 

 

 

 

Figure 5.1. A graphical illustration of the deep neural network (DNN) framework used in the 

study 
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5.2.4. Model evaluation and uncertainty 

This study evaluated the fit and generalization of the SOC DNN model through three different 

metrics. These included the root mean square error (RMSE), the coefficient of determination 

(R2) and Lin's concordance correlation coefficient (LCCC). These evaluation metrics are 

expressed as follows: 

    RMSE =  √∑   (XO,i – XP,i  )
2n

i=1

n
                                                                                          (4)                                                                              

R2 = 1 – [
∑    (n

i=1  XO –p)2

∑   (n
i=1 XO – O′)2]                                                                                          

(5) 

                                                                                 

LCCC =  
2 r σoσp

σp  
2 +  σp

2    +  [O′ –P′]2                                                                                         

(6) 
 

where, n connotes the number of observations, XO and XP are the measured and predicted SOC 

value, respectively. O’ and P’ reflect the averages of the measured and predicted SOC, and σo 

and σp reflect the variances of observed and predicted values. Furthermore, a tenfold cross-

validation approach was applied to ensure that the model did not over-fit the data (Mutanga et 

al., 2012). The SOC data was subsequently divided into a set of 10, with calibration and 

validation data successively added until each variable had been utilized.  In general, the most 

suitable model has a higher R2 and LCCC value and a lower RMSE value. Moreover, the 

importance of each predictor to the overall performance of the DNN model was assessed. 

Although deep learning (DL) models often cannot automatically achieve interpretability, 

several approaches (such as the SHapely Additive exPlanations method) have been recently 

proposed to help users interpret DL models (Pentoś 2016). Hence, in this study, the SHapely 

Additive exPlanations (SHAP) technique was used to evaluate predictor variable importance. 

SHAP works by assigning a specific mean value to each predictor variable, which then 

indicates the magnitude of their effect on the model output. SHAP has special features such as 

DeepExplainer (for DL-based methods), TreeExplainer (for tree-based methods), and 

KernelExplainer (for other model types) that correspond to all types of ML models. 

Furthermore, SHAP offers both global and local interpretability (see Lundberg and Lee, 2016 

for a more detailed explanation of SHAP).   
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Along with evaluating a model's performance, it is also important to quantify its uncertainty 

(Abdar et al., 2021). According to Hamel and Bryant, (2017), a study that is decision-oriented 

must identify and evaluate the uncertainty and robustness of the study conclusions to make the 

analysis credible. Thus, to quantify the level of uncertainty within this study, the upper and 

lower bounds were provided for the SOC model (Abdar et al., 2021). This was determined by 

utilizing the ±1.64 standard deviation (SD) with a 90% confidence interval (C1) and a 10-fold 

cross-validation (Emadi et al., 2020; Minasny et al., 2016). The 5th and 95th percentiles were 

then retrieved along with the predicted mean value of each pixel. As a final step, a spatial 

distribution map was generated for the calculated mean, lower (5%) and higher (95%) 

confidence intervals.  

5.2.5. Land use class determination 

Following the SOC model's generation, the spatial variability of SOC across seven different 

land use classes within South Africa were examined. These classes include natural forest, 

commercial forest, grassland, cropland, urban vegetation, shrub land and barren land. These 

land uses were specifically chosen due to their dynamic influence over SOC stocks. The land 

cover types and their spatial distribution were derived from the South Africa National Land-

Cover Map (SANLC, 2020). The map, with an 80% accuracy, was developed using 20m 

Sentinel-2 satellite imagery over a multi-temporal time period. Full details of the land use 

determination procedure and the data used is freely available through the E-GIS website 

(https://egis.environment.gov.za/gis_data_downloads). The seven land use classes used in this 

study were individually extracted from the SANLC image using the ArcGIS pro 2.7 API. 

Thereafter, the extent of each land use within South Africa was extracted from the DNN SOC 

map. The amount of SOC and area occupied by each land use class was derived through the 

calculate geometry tool within the ArcGIS environment. In addition, descriptive statistics 

(minimum, maximum, mean and the total SOC stocks) for each class was attained. Figure 5.2 

and Table 5.2 illustrate the spatial distribution of the different land use classes as well as their 

respective descriptions. 
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important to emphasize that although the DNN model depicts a good measure of uncertainty, 

it may not reflect the actual situation on the ground, since the quantification of uncertainty here 

relies on hyper-parameters of the model rather than the spatial uncertainty of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Spatial estimation of soil organic carbon at (A) lower limit (5%), (B) mean, (C) 

upper limit (95%) derived using Sentinel 3 OLCI data and deep neural networks (DNN) 
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5.4. Discussion 

Soil organic carbon (SOC) is a key indicator of soil and vegetation health and crop efficiency 

(Wang et al., 2021). Its large reserves in terrestrial ecosystems provide important opportunities 

to mitigate climate change and regulate carbon flux (Odebiri et al., 2020b). However, SOC is 

highly influenced by vegetation through organic and inorganic inputs, hence land use change 

is one of the most important determinants of its accumulation (Kenye et al., 2019). Whereas, a 

land use type and change that exerts the least soil disturbance may contribute to increased SOC 

accumulation, intensive disturbance results in SOC loss and lower uptake (Ghimire et al., 

2018). Consequently, understanding and modelling the spatial distribution of SOC across 

different land use types is critical to advancing appropriate management practices to improve 

soil quality and carbon sequestration potential in mitigating climate change and associated 

impacts. 

5.4.1. Spatial distribution of SOC across different land use types 

Results in this study show that grasslands have the highest concentration of SOC stocks 

(31.36%). This is in agreement with Venter et al.'s (2021) findings that South Africa’s 

grassland biomes have higher stocks of SOC (36%) than other landscapes. The high 

grasslands SOC reserves are due to their large areal extent (28.13%). Furthermore, South 

Africa's grasslands are mostly located within the central, northern, and eastern parts of the 

country (Figure 5.5), characterized by higher precipitation (>500 mm). Rainfall influences 

soil moisture, hydrological processes (such as surface runoff and ground water infiltration), 

vegetation density, and decomposition, which contribute to SOC sequestration (Zhou et al., 

2008; O'Brien et al., 2010; Chen et al., 2015). Globally, grasslands store between 12 and 

18 percent of all terrestrial carbon stocks (Conant et al., 2001, Ontl, 2017). Unlike other 

ecosystems, grasslands store most of their sequestered carbon underground within the 

rooting zone, making them more resilient to natural environmental disturbances such as 

wildfires (Ward et al., 2016). In addition, certain grassland ecosystems (such as the 

KwaZulu-Natal Sandstone Sourveld) contain forbs and Geoxylic suffrutices that retain 

greater quantities of carbon within their woody biomass, thus contributing to the overall 

carbon stocks (Gomes et al., 2021; Zaloumis and Bond, 2016; Ampleman et al., 2014) 

(Table 5.2). There is, however, some agricultural disturbance to South Africa's grasslands 

since they are endemic to arable nutrient-rich land, which makes them ideal for crop 

cultivation (Little et al., 2015; Palmer and Ainslie, 2005). Consequently, 60 % of South 

Africa’s grasslands have been irretrievably transformed, with only 2 % under official 
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conservation (Little et al., 2015). Given these competing land uses, adequate spatial 

planning and management frameworks directly supported by scientific data is required to 

secure SOC stocks within South African grasslands. An example of such effort is the 

Durban Research Action Partnership (D`RAP), which is a national science scheme that 

combines the eThekwini Municipality’s environmental management department with 

researchers from the University of KwaZulu-Natal to scientifically inform and supplement 

applied environmental monitoring and management protocols (Palmer and Ainslie, 2005; 

Cockburn et al., 2016). D`RAP supported scientific research has enabled critically 

endangered grassland patches and other ecosystems to be included within the Durban 

Metropolitan Open Space System (DMOSS) framework, which is an instrument used to 

ensure that biodiversity concerns are integrated into national development planning 

(Roberts et al., 2012). Moreover, studies such as Rouget et al., (2016), have recommended 

that critically endangered grassland patches be included within the South Africa climate 

change strategy. 

A comparison of the minimum, average, and maximum SOC stock values (Table 5.4) reveals 

how storage rates vary across each land use type. For instance, although barren and shrub land 

cover a large area, they have the lowest minimum, average, and maximum values compared to 

other land uses. These low SOC values are related to relative aridity and low vegetation cover 

(which reduces carbon sequestration capacity), as most of the barren and shrub land is 

distributed within the semi-arid, arid and deserted regions of South Africa (Venter et al., 2021). 

It is important to note that shrubland accounts for a significant percentage (20.97%) of the total 

SOC reserves due to the large area covered, second to the grassland biome. Barren land also 

had a considerable total SOC (8.45%) and maximum value (58.95 t/h), which was unexpected. 

This may be related in part to the large area coverage (11.15%) or the misclassification of the 

SANLC (2020) data used in this study since the classification accuracy is not 100%. Forest 

ecosystem including natural and commercial forests had the highest mean (46.06 t/h), and 

maximum (145.17 t/h) SOC values, indicating their ability to sequester more carbon than other 

land uses, despite their limited spatial extent (Table 5.4). Forested areas are characterized by 

tall indigenous and exotic trees with longer rooting residency, canopy coverage and height 

ranging from 10-75% and 2.5-6 meters, respectively (SANLC, 2020). This favours the rate of 

SOC sequestration due to accelerated soil metabolism from continuous litter fall and dead 

matter (Muchena, 2017). Additionally, commercial plantations are often extensively managed 

to balance economic (e.g. wood supply) and environmental needs (Odebiri et al., 2020b). 
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Natural forests on the other hand, sustain biodiversity and provide essential ecosystem services 

(Department of Environmental Affairs, 2017). However, the need for housing and agricultural 

land has driven deforestation across vast swaths of land, leading to SOC stocks loss (Leblois 

et al., 2017). While this calls for indigenous reforestation projects which are vital to sustaining 

ecosystem services and climate change mitigation (Abiodun et al., 2012), care must also be 

taken to balance trade-offs between carbon sequestration, biodiversity and the overall 

ecosystem function (Bond et al., 2019; Venter et al., 2021).  

Cropland accounts for 15% of total SOC stocks, with a mean value of 33.46 t/h, which indicates 

a relatively high sequestration rate. Croplands comprise of predominantly permanent and 

temporary crops, including pineapples, sugarcane, and vines (SANLC, 2020). The crops 

remain in-field for multiple growing and harvesting seasons, and are generally located in areas 

of higher rainfall (e.g. northeast and southeast zones), which facilitates the accumulation of 

SOC. In areas with less rainfall, such as those in the western part of the country, agricultural 

crops may benefit from irrigation and fertilizer application, thereby increasing the potential for 

the sequestration of SOC. Literature shows that addition of soil nutrients contributes to SOC 

sequestration in croplands by increasing biomass production and the carbon-nitrogen ratio (C: 

N) (Tiefenbacher et al., 2021 Hijbeek et al., 2019; Han et al., 2016). In addition, cropland areas 

also include fallow fields which were previously cultivated and are now overgrown with trees, 

bushes, grasses and shrubs, thereby increasing the SOC pool and the rate of sequestration 

(Yeasmin et al, 2020, Sharma et al., 2019). Howbeit, it is vital to note that continuous 

cultivation has been noted to significantly reduce South Africa’s SOC reserves (Venter et al., 

2021; Schulze and Scuttle, 2020; Swanepoel et al., 2016). Besides, the prevalence of 

subsistence farming especially in rural areas, where agro-forestry, crop rotation and fallow 

systems are rarely practiced, continues to contribute significantly to SOC loss (Rusere et al., 

2019; Khapayi et al., 2016). Although cultivation is inevitable to provide food security for the 

increasing population, it is necessary to balance productivity with overall ecosystem functions; 

including climate change mitigation. Comprehensive educational-training programmes that 

promotes sustainable farming system must also vigorously engage rural areas to foster a holistic 

land use management and monitoring scheme. 

The urban vegetation class as specified by SANLC (2020), comprises of trees, grasses, bushes, 

and shrubs. Despite being the smallest land use class, the urban vegetation shows a relatively 

high rate of SOC sequestration (mean = 33.72 t/h). This suggests that urban vegetation could 

be critical to offsetting urban carbon footprints and thus reduce the urban heat island effect in 
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cities. Ideally, urban green and open spaces should form a major component within integrated 

urban planning (Beecham et al., 2019). Examples of this can be found within the tree-planting 

initiative in Pretoria (Tshwane) — where 55 000 tons of carbon are sequestered each year 

(Grebner et al., 2012), and the Durban Research Action Partnership (DRAP) Community 

reforestation project in eThekwini, which has an average carbon sequestration rate of 2110.7 

tCO2e.yr-1 for the next 20 years (CSIR 2006; Ethekwini municipality and Wildland’s 

conservation trust, 2014).  

In general, although interventions to restore degraded ecological areas are to be commended 

and encouraged, we caution against efforts to transform other naturally existing land uses into 

forests as motivated by the global carbon market (Venter et al., 2021; Moyo et al., 2021; Bond 

et al., 2019; Mills and Cowing 2014). Altering the natural state of vital ecosystems, such as 

grasslands, will be ecologically devastating to biodiversity and may be counterproductive. 

Moreover, SOC stocks previously sequestered within forests are vulnerable to loss from forest 

fires. Therefore, in the wake of intensified land-use conflicts, the demands of a growing 

population, and the existential threat of climate change, evidence-based research in partnership 

with sound land-use planning is required to provide an appropriate balance between existing 

land uses. In addition, innovations in modern satellite sensor technology and expedited research 

into the development and use of artificial intelligence may provide the tools required for the 

better understanding of spatial SOC dynamics.   

5.4.2. Performance of the SOC DNN model 

This study developed a spatial SOC variability map based on Sentinel-3 satellite data and deep 

learning approach (DNN). It is the first national SOC model developed using deep learning 

framework in South Africa (R2 = 0.685). Considering the spatial uncertainty of the reference 

data (i.e. multiple-scales of variation, various sampling sources and different collection times), 

our DNN model still produced a fairly good result — indicating its ability to model complex 

data. The model also serves as an improvement to the national scale models previously 

developed by Venter et al. (2021) (R2 = 0.659) and Schultze & Schutte (2020) (R2 = 0.203) 

using random forest algorithm and field-level SOC median calculation strategy, respectively. 

The performance of DNN model can be attributed to its ability to learn and extract more 

representative features from the SOC data through its many hidden layers and neurons (Ma et 

al., 2019). DNN can accurately approximate the complicated non-linear relationship between 

SOC and covariates, thus capturing the potential association between them (Yuan et al., 2020). 

In addition to the robust DNN framework performance, the Sentinel-3 data used in this study 
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was also a good fit for nationwide SOC mapping. This study adopted the use of only spectral 

information as opposed to the general combination of ancillary data (i.e. topography and 

climate). This is because we were interested in the performance and influence of RS imagery, 

specifically Sentinel-3, which has been underexplored despite its impressive spectral attributes 

and suitability for largescale mappings; and to the best of our knowledge, has never been used 

as a standalone input data for SOC mapping like other sensors (Bhunia et al., 2017; Guo et al., 

2020; Wang et al., 2021). This is motivated by the fact that remotely sensed metrics e.g. 

vegetation indices can be reliably used to determine vegetation cover, which in turn determines 

the amount of soil carbon. Generally, vegetation density and distribution is hugely influenced 

by topographic and climatic characteristics, hence in absence of these datasets, vegetation 

cover can be used as a topo-climatic surrogate.  In addition, Sentinel-3 acquires data in the 

visible (VIS) to near infrared (NIR) wavelength region of the electromagnetic spectrum (400 

to 1020 nm), which is deemed the most sensitive for detecting SOC (Lin et al., 2020; Bilgili et 

al., 2010). The Sentinel-3 image contains spectral bands for bare soil monitoring, and covers a 

large area, which is important for national and global scale mapping (Li et al., 2021). It would 

however be interesting to see how well our deep learning model performs with images of higher 

spatial resolution like Sentinel-2 and Landsat 8. 

As part of a variable importance measure, the most significant variables from the Sentinel-3 

derived metrics that explain the distribution of SOC in the study area were evaluated using the 

SHAP technique (see section 2.4). Band 8 (B8 = 665nm), NDVI, Band 11 (B11 = 708.25nm), 

EVI and RVI were identified as the most influential variables. Band 8 and 11, which represent 

the red and red-edge region of the electromagnetic spectrum, are extremely sensitive to 

vegetative attributes like biomass and chlorophyll content (Mngadi et al., 2019; Forkuor et al., 

2017). Subsequently, these bands proved important in SOC mapping due to the correlation 

between vegetation and SOC concentration (Taghizadeh-Mehrjardi et al., 2020; Zhang et al., 

2019; Nabiollahi et al., 2018). Similarly, NDVI, EVI and RVI enhance plant signals and 

sensitivity in high biomass areas, supporting the hypothesis that SOC responds to the same 

physical and environmental factors as biomass (Bhunia et al., 2017; Kumar et al., 2016; 

Matsushita et al., 2007).  
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5.5. Conclusion  

Using remote sensing and deep learning, this study examined the spatial distribution of SOC 

across important land use types in South Africa. The results show the estimated SOC stocks 

within each land use and their potential sequestration rates in relation to area coverage. This is 

critical to inform national policies, rehabilitation, restoration and intervention efforts in 

attempts to mitigate climate change and improve soil quality. Despite the spatial uncertainty of 

the data used in this study, our SOC model based on sentinel-3 data and DNN performed well 

compared to other national SOC models in South Africa. This calls for standardized soil 

inventory schemes funded by the government and research agencies where quality data unique 

to different land use types are collected and made available to improve modelling efforts. 

Future investigations can consider evaluating SOC stocks distribution and the impact of 

anthropogenic land use change across distinctive South Africa biomes and bioregions as an 

alternative to inform management and climate mitigation policies. Further studies can also 

benefit from the addition of other important SOC environmental drivers including topography 

and climate to improve accuracy and better understand SOC variability in the area. The DNN 

model can also be improved in future studies. For instance, this study did not consider a variable 

selection strategy to reduce possible multicollinearity between predictors which could 

potentially reduce accuracy.  

5.6. Summary  

This chapter mapped SOC stocks across South Africa's major land uses using DNN and 

Sentinel-3 satellite data to examine the impact of different landscapes on SOC stock 

distribution. Among the different land uses evaluated, grasslands were found to contribute the 

most to overall SOC stocks, while urban vegetation contributed the least. Although SOC stock 

was discovered to be relatively proportional to overall land coverage, commercial and natural 

forests demonstrated a greater carbon sequestration capacity. These findings provide an 

important guideline for managing SOC stocks in South Africa and will assist in climate change 

mitigation. However, to adequately comprehend the overall variability of SOC within South 

Africa, the impact of environmental variables (such as topography and climate) on SOC needs 

to be understood. Consequently, given South Africa’s distinct climatic envelopes and unique 

biodiversity, the next chapter sought to evaluate the impact of topo-climatic variables and 

anthropogenic land use change across South Africa’s major bio regions as an alternative way 

to spearhead SOC policies and management. The outcomes of this investigation will provide a 
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model to contextualize the influence of large bioclimatic zones on regional SOC stock 

management.  
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Chapter Six: 

Mapping soil organic carbon distribution across South Africa’s major 

biomes using remote sensing-topo-climatic metrics and Concrete 

Autoencoder-Deep neural networks 

 

This chapter is based on; 

Odebiri, O., Mutanga, O., Odindi, J., & Naicker, R. (2022). Mapping soil organic carbon 

distribution across South Africa’s major biomes using remote sensing-topo-climatic metrics 

and Concrete Autoencoder-Deep neural networks. Science of the Total Environment, Under 

Review, Manuscript ID: STOTEN-D-22-10001 
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Abstract: 

The management of soil organic carbon (SOC) stocks remains at the forefront of greenhouse 

gas mitigation. However, unprecedented anthropogenic disturbances emanating from 

continued land-use change have significantly altered SOC distribution across global biomes 

leading to considerable carbon losses. Consequently, understanding the spatial distribution of 

SOC across different biomes, particularly at larger scales, is critical for climate change policy 

formulation and planning. Advancements in remote sensing, availability of big data, and deep 

learning architecture offer great potential in large-scale SOC mapping. In this regard, this study 

mapped SOC distribution across South Africa’s major biomes using remotely sensed-topo-

climatic data and Concrete Autoencoder-Deep Neural Networks (CAE-DNN). From the 

different deep neural frameworks tested, the CAE-DNN model (developed from 26 selected 

covariates) achieved the best accuracy with an RMSE value of 7.91 t/ha (about 20% of the 

mean). Results further showed that SOC stock correlated with general biome coverage, as the 

Grassland and Savanna biomes contributed the most (32.38% and 31.28%) to the overall SOC 

pool in South Africa. However, despite their smaller footprint, Forests (44.12 t/h) and the 

Indian Ocean Coastal Belt (43.05 t/h) biomes demonstrated the highest SOC sequestration 

capacity. The restoration of degraded biomes is advocated for, in order to boost SOC storage; 

but a balance between carbon sequestration capacity, biodiversity health, and the adequate 

provision of ecosystem services must be maintained. To this end, these findings provide a 

guideline to facilitate sustainable SOC stock management within South Africa’s major biomes 

and indeed other regions of the world. 

 

Keywords: Soil organic carbon; Biomes; Remote sensing; Climate; Topography; Deep 

learning 
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6.1. Introduction 

A surge in extreme climatic events have forced global attention towards the need to fast-track 

climate change mitigation strategies (Roberts, 2021, Arletti et al., 2021). Research has shown 

that the sequestration of carbon by biomass or soil could afford the international community 

time to address this problem (IPCC 2016, Baldock et al., 2012). Soil organic carbon (SOC) 

offers the biggest terrestrial carbon pool and determines both the quantity and quality of soil 

ecosystem services at varying scales (Jiao et al., 2020; Odebiri et al., 2020b). Consequently, 

SOC stock management is of particular importance to global policymaking (IPCC, 2021). 

However, contextualizing the role of SOC amongst climate change mitigation frameworks 

requires a profound understanding of large-scale SOC pools and their interaction with both 

environmental and anthropogenic factors (Keskin et al., 2019). 

Biomes are large naturally occurring ecological zones made up of similar types of flora and 

fauna that can influence the global carbon cycle and whose distribution is dictated by distinct 

climatic envelopes (Schimel et al., 2015). According to a 2009 assessment report by the United 

Nations Environment Programme (UNEP), over 2000 gigatonnes (Gt) of carbon are stored in 

the world's biomes, with the majority of this carbon accumulated in the soil (Trumper, 2009). 

Within South Africa’s unique biomes, SOC also constitutes the majority of the terrestrial 

carbon pool, with an estimated average sink of 6,396 gC/m2 (Department of Environmental 

Affairs, 2017). However, anthropogenic activity has significantly affected SOC pools across 

the globe, with biomes losing approximately 116 Gt of SOC over the last 12,000 years 

(Amanuel et al., 2018). Specifically, nearly 20% of South Africa's natural biomes have been 

transformed due to continuous land degradation, cultivation, and urbanization (Schulze and 

Scuttle, 2020; Venter et al., 2017). Du Preez et al., (2011) also noted that prolonged 

interference with South Africa’s biomes notably in the topsoil, reduces SOC stocks by around 

45% on average; while Griscom et al., (2017) suggests that about 2 Gt of South Africa’s SOC 

has been lost since 10,000 BCE.  

Whereas, recent studies (e.g. Schulze and Scuttle, 2020; Venter et al., 2021) have investigated 

the spatial distribution of SOC across South Africa; these studies were constrained to a 

comparison between two land-uses (natural vegetation and agricultural land use), and failed to 

explore the broader influences of biomes, their distinct carbon-feedbacks characteristics, and 

the possible impacts of land-use change upon South African SOC stock management. 

Importantly, the storage and persistence of SOC across different biomes are characterized by 

significant differences and are not only driven by intrinsic abiotic soil factors (such as 
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topography, mineralogy and texture), but are also influenced by climate, plant density, edaphic 

conditions, and interference history (Wang et al., 2021; Wieder et al., 2018; Rutherford et al., 

2006). Yet, it is still uncertain which of these factors predominate in distinct biomes and at 

different geographical scales (Georgiou et al., 2021). Therefore, continuous mapping and 

monitoring of the spatial variability of SOC across major biomes is vital to informing integrated 

policies and initiatives aimed at preserving existing stocks and reducing carbon emissions 

(Odebiri et al., 2020b; Trumper 2009).  

The adoption of geospatial techniques in digital soil mapping has attracted significant attention 

and has become a better alternative to the tedious traditional strategies of SOC determination 

(Odebiri et al., 2021; Guo et al., 2020; Odindi et al., 2016). This is facilitated by advancements 

in earth observation satellites (big data) in various volume, velocity, variety and veracity, which 

are capable of providing updated, consistent and spatially explicit assessment of SOC and its 

dynamics, particularly at a landscape scale (Xu et al., 2019; Hamida et al., 2018; Kumar & 

Mutanga 2018). Moreover, the performance of these image datasets to effectively model SOC 

distribution is largely dependent upon the prepossessing procedures and the algorithm used 

(Padarian et al., 2020; Wadoux et al., 2019). Recent research comparing SOC accumulation 

from models to long-term field measurements have also indicated that both the models and 

observations still have considerable uncertainties, thus, requiring benchmarking analytical 

strategies to increase accuracy (Georgiou et al., 2021; Wieder et al., 2018; Sulman et al., 2018). 

In addition, the ability of any analytical model to quantify the geographic variability of SOC 

levels across large swaths is contingent on its ability to contend with a high degree of 

dimensionality.  

Use of deep learning (DL) algorithms have recently emerged as innovative analytical strategies 

to improve SOC mapping (Ma et al., 2019). DL models are multi-layered representation-

learning algorithms that uses nonlinear functions to extract information from lower to higher 

layers (Zhu et al., 2019). In contrast to other geostatistical and conventional machine learning 

(ML) algorithms, DL frameworks can exploit feature representations exclusively learned from 

data which can significantly bolster mapping capabilities (Odebiri et al., 2021). Furthermore, 

the intricate nonlinear nature of SOC and its relationship with the environment, can often 

present with a high degree of variability, which may become too complex for conventional ML 

algorithms, particularly at vast spatial extent (Ma et al., 2019; Padarian et al., 2019; Kumar et 

al., 2016). Conversely, DL approaches can improve learning procedures by extracting relevant 

non-linear and complex attributes from data to improve results (Minh et al., 2018). The intrinsic 
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several hyper-parameters integrated within DL models also allows users to adjust training 

processes to produce more accurate results (Odebiri et al., 2022). To this end, this study 

adopted the use of remotely-sensed-topo-climate datasets and a deep learning technique to 

estimate the spatial distribution of SOC across South Africa's major biomes. 

6.2. Methodology 

6.2.1. Brief description of South African Biomes 

South Africa is home to a diverse array of biomes (Figure 6.1). According to Mucina and 

Rutherford (2006), South Africa is made up of nine distinct biomes including the Desert, 

Savanna, Forests, Fynbos, Succulent-Karoo, Nama-Karoo, Grassland, Albany Thicket and 

Indian Ocean Coastal Belt. A brief description of the biomes is given below. See Mucina and 

Rutherford (2006), for a detail description of South Africa’s biomes.   

6.2.1.1. Savanna 

The Savanna biome covers about 399 600 km2 of the country's surface and is categorized by 

an herbaceous layer dominated by grass species and a very open tree layer (Minasny et al., 

2017). Generally, savannas are found below altitudes of 1500 m, however, some parts have 

extended to 1800 m. Rainfall varies from 1350 mm at the higher altitudes to less than 200 mm. 

Savannas are mostly dominated by leptosols, with a high clay content and swelling properties 

(Venter 1990). Savannas can be considered species rich and are home to more than 34 large 

African herbivore species (Mucina and Rutherford 2006). 

6.2.1.2. Grasslands 

In South Africa, grasslands are limited to mainly flat to rolling topography between 300 - 400 

m, but patches can also be found along the escarpment at greater altitudes. South African 

grasslands can be divided into either sourveld or sweetveld based upon moisture availability 

(Ellery et al., 1955). Sourveld (moist grasslands) consist of leached and dystrophic soils and a 

high canopy coverage of sour grasses. Meanwhile, sweetveld (dry grasslands) are comprised 

of sweet grasses which grow upon eutrophic soils that are less leached (Ellery et al., 1955). 

Sourveld are generally located at highly altitudes with a higher water supply, whilst sweetveld 

are found at lower altitudes. Grasslands are characterized by a high species richness and a 

wealth of endemic species peculiar to Southern Africa (Mucina and Rutherford 2006).  
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6.2.1.3. Nama-Karoo 

Nama-Karoo covers almost 20 % of the country and extends from the western half of South 

Africa to it south-eastern border with Namibia. Nama-Karoo can be considered an arid-biome, 

with precipitation ranging from 70mm to 500mm. Rainfall generally occurs within the summer 

months, and temperatures range from -5° C in winter to 43° C in summer (Desmet & Cowling, 

1999). Soils are considered base-rich and are weakly structured and skeletal. The biome 

comprises of plains dominated by low shrubs, C3 and C4 grasses mixed with geophytes, 

succulents and forbs (Mucina and Rutherford 2006). The region generally houses a variety of 

birdlife, ostrich (Struthio camelus) and springbok (Antidorcas marsupialis) (Rutherford et al., 

2006).  

6.2.1.4. Fynbos 

The Fynbos biome is characterized by evergreen small-leaved shrubs of the same name, which 

are dependent upon fire and are entirely endemic to South Africa (Mucina and Rutherford 

2006). The biome, which forms part of the Cape Floristic Region and houses a large variety of 

endemic flora and fauna, occurs within relatively moist climates, across less than 7 percent of 

the country (Cox 2001). A large variation of soil types can be associated with the Fynbos 

region, such as heavy-textured soils, coastal plain soils, and silecrete and ferricrete rich soils 

amongst others (Mucina and Rutherford 2006).  

6.2.1.5. Succulent-Karoo  

The Succulent-Karoo Biome is the fourth largest biome in South Africa and covers 111 000 

km. This Semi-desert region is characterized by a mild climate, which is prone to winter 

rainfall, with mean annual precipitation ranging from 100mm to 200mm (Mucina and 

Rutherford 2006). Succulent-Karoo soils are generally fine-grained, poorly leached with a high 

pH. These soils allow for an extremely species rich habitat and forms a home to a high diversity 

of distinct dwarf leaf-succulent shrubs (Mucina and Rutherford 2006).   

6.2.1.6. Albany Thicket 

The Albany Thicket biome consists of various vegetation types, including: Spekboomveld, 

Noorsveld, Valley bushveld, and False Karroid Broken veld located along the semi-arid regions 

of the Eastern and Western Cape. The biome provides a high diversity of plant species, such 

as stem and leaf succulents, geophytes, grasses, and semi-deciduous woody shrubs (Mucina 

and Rutherford 2006). Annual precipitation ranges from 200 to 950mm. Although thicket soils 
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are not limited to any particular soil type, soils have been found to be high in carbon, calcium 

and potassium due to unique below-ground animal activity (Mucina and Rutherford 2006).     

6.2.1.7. Indian Ocean Coastal Belt 

The Indian Ocean Coastal Belt Biome occurs along an 800 km strip of South Africa’s Eastern 

coastline along altitudes of 0 to 600 m. An annual rainfall of between 820mm and 1270 mm 

mostly occurs during the summer months, with a mean annual temperature of 22° C. The biome 

is open to dense savanna vegetation, intermixed with vast areas of forest and sourveld grassland 

(Mucina and Rutherford 2006). 

6.2.1.8. Desert 

South African Deserts are hyper-arid regions which are home to a high diversity of organisms 

which are adapted to arid environments. The eastern parts are dominated by a variety of drought 

tolerant grasses and wood-shrubs, while the western parts contain leaf-succulent chamaephytes 

(Mucina and Rutherford 2006). Temperatures may reach 47.8° C, while mean annual rainfall 

remains below 70mm. The alluvial soils are slow forming and may be subject to erosion 

processes (Mucina and Rutherford 2006).   

6.2.1.9. Forests  

The Forest biome is predominately scattered along the Eastern and Southern regions and covers 

a mere 7% of the country’s landmass (Mucina and Rutherford 2006). Indigenous forests are 

defined as multi-layer vegetative stands which are comprised of evergreen trees with a crown 

cover larger than 75%, and a stand height ranging from 3 to 30m that are endemic to South 

Africa. They persist in regions with a mean annual rainfall greater than 725 mm. Soils derived 

from the sandstone, shale and dolomite geology, vary in depth, and nutrient status (Mucina and 

Rutherford 2006).     
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Figure 6.1. South Africa's location and the spatial distribution of soil samples spread across 

major biomes 

6.2.2. Soil profile data 

Majority of the soil profile data used for this research was acquired from the International Soil 

Reference and Information Centre (ISRIC), while the rest of the soil profiles were acquired 

from previous soil research projects conducted at the University of KwaZulu-Natal's School of 

Agricultural, Earth and Environmental Sciences (SAEES). ISRIC is a non-profit scientific 

organization that collaborates with various countries, including South Africa, to produce high-

quality data on various soil physical and chemical properties on a global scale. The latest 

release of ISRIC soil records (https://www.isric.org/) was last updated in 2020 and comprises 

over 150,000 observations from 173 nations (Batjes et al., 2020). We acknowledge that the 

bulk of these sample points differ in terms of collection location and time, and the 

methodologies for determining SOC carbon concentration for the samples vary per nation 
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(Hengl et al., 2017). However, ISRIC (Batjes et al., 2020; Batjes et al., 2017) has developed a 

comprehensive approach to ensure uniformity and accessibility of input soil profile data 

(https://www.isric.org/explore/wosis/accessing-wosis-derived-datasets). Consequently, point 

observations encompassing South Africa, with their corresponding SOC content, as well as the 

bulk density, was retrieved from ISRIC records together with the accessible SAEES data. 

Pearson et al., (2007) formula was used to determine SOC stocks at each point as indicated 

below; 

𝑆𝑂𝐶 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑡/ℎ) = 𝑆𝑂𝐶 𝑐𝑜𝑛𝑐𝑒𝑚𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ         (1) 

6.2.3. Acquisition of image data 

6.2.3.1. Sentinel 3 

The European Space Agency's (ESA) recently launched Sentinel-3 Ocean and Land Colour 

Instrument (OLCI) image data was utilized in this study. Sentinel-3 consists of 21 spectral 

bands between 400 and 1020 nanometres (Vaudour et al., 2019). Its 300-meter spatial 

resolution, 1270-kilometer geographical coverage, and less than 2-day return interval enables 

reliable, rapid, and continuous mapping at landscape scales (Li and Roy, 2017). Although 

Sentinel-3 possesses spectral bands critical for soil and vegetation monitoring, its capabilities 

are still relatively underexplored within the field of digital soil mapping (Li et al., 2021; 

Kokhanovsky et al., 2019). Four image tiles with less than 10% cloud coverage were 

downloaded between March and April 2021 from ESA (https://scihub.copernicus.eu/). 

Utilizing the Sentinel Application Platform (SNAP v. 6.0), the downloaded images were 

geometrically, radiometrically and atmospherically corrected. Subsequently, the pre-processed 

tiles were mosaicked into a single tile, and clipped to the South African border. Vegetation 

indices have been shown to be beneficial in explaining SOC fluctuation and distribution in 

several studies (Wang et al., 2021; Odebiri et al., 2020a; Guo et al., 2020). As a result, eleven 

relevant vegetation indices were created using various Sentinel-3 spectral band combinations 

(Table 6.1).  

6.2.3.2. Topo-climate metrics 

Previous research has highlighted topographic and climatic factors as important determinants 

of SOC dispersion (Li et al., 2018; Fissore et al., 2017; Wang et al., 2012). Spatial topography 

metrics are divided into three classes, according to Li et al., (2018); these include local, non-

local, and mixed topographical metrics. Local metrics including slope, elevation, and 

curvatures evaluates surface geometry at a specific location, whereas non-local metrics 
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Concrete Autoencoder-Deep neural network (CAE-DNN) for SOC retrieval. Firstly, the 

framework utilized Concrete Autoencoders (CAE) for variable selection and the removal of 

redundant variables. Thereafter, a Deep neural network model was applied for the SOC 

prediction process.  

The concept of CAE (Figure 6.2) was initially proposed by Abid et al., (2019). CAE is an end-

to-end distinguishable unsupervised approach for global variable selection that efficiently finds 

a subset of the most relevant features while simultaneously learning a neural network. CAE is 

a dimensionality reduction adaptation of the standard autoencoder that consists of two basic 

components: the encoder and the decoder. However, instead of employing fully connected 

layers for the encoder, a concrete selector layer with a user-defined number of nodes is 

introduced which chooses stochastic linear combinations of input features during training and 

converges to a discrete set of features by the conclusion of training (Abid et al., 2019). The 

concrete selector layer is made up of concrete arbitrary variables and is controlled by 

a temperature parameter (Jang et al., 2016). The temperature of the concrete selector layer is 

gradually reduced during the training phase, encouraging the learning of a user-specified 

number of discrete features (Maddison et al., 2016). Its architecture consists of a single 

encoding layer and random decoding layers. The CAE has proven to be a powerful 

dimensionality reduction framework and generally performs better in optimal variable 

selection when compared to other conventional variable selection strategies (a detailed 

description of CAE can be found in Abid et al., 2019).   

To analyse the efficacy of the CAE variable selection strategy, we introduced the Boruta feature 

selection algorithm as a comparison. Boruta, which is based on the random forest (RF) concept, 

creates shadow features for given datasets, trains an RF classifier on the datasets, and assigns 

an essential measure score to each variable, indicating the ones to be selected and the ones to 

be discarded (See Kursa and Rudnicki, 2010 for a detailed  Boruta description).  

In recent years, deep neural networks (DNN) have piqued the interest of the remote sensing 

community (Odebiri et al., 2021). The DNN is a useful and dependable approximate model for 

determining linear and complex interrelations involving the target and other covariates (Odebiri 

et al., 2022; Wang et al., 2020). It comprises of three major layers including the input, hidden, 

and output, with many neurons within them. Until the final predicted (output) neuron, neurons 

in one layer are connected to neurons in the following layer. The DNN is generally based on 

the multilayer perceptron (MLP) architecture, but differs from the standard MLP models in that 
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it incorporates several hidden layers and hyper-parameters (Taghizadeh-Mehrjardi et al., 

2020). Nevertheless, extra caution should be exercised when calibrating the DNN architectures 

to elude overfitting (Liu et al., 2018). In such scenarios, a dropout regularization technique can 

be performed on each of the hidden layers' nodes, which are then aggregated for estimation. 

For a given input layer (vector X) with a L hidden layer and an output layer (vector Y), the 

following is a basic mathematical representation of DNN framework: (Wang et al., 2020); 

Z1 = 𝜎1(W1X + b1), Z2 = 𝜎2(W2𝑧1 + b2)                                                                                                                                         

ZL = 𝜎L(wL𝑧𝐿−1 + bL),  Y =  Wl+1ZL + bL, 𝜃 = [Wi, bi]i=1
L+1                         (2) 

Where Wi and bi are the ith layer's weights and biases, accordingly. L + 1 denotes the output 

layer (i.e. Y = N (X; Ɵ)) and σi denotes the ith layer's activation function. 

The mean squared error (MSE) can be used to examine the loss function L of the output and 

input variables, which is represented as follows; 

MSEDATA = L(θ) =
1

N
∑ |NN(Xi;  θ) − Yi|

2N
i=1                                                   (3) 

Where N represents the total number of labelled data. An optimization algorithm can be used 

to minimize the loss function L.  

Figure 6.2 and Table 6.2 depict the CAE-DNN architecture schematic, and the defined range 

and selected sets of hyper-parameters tested for best output, respectively. Following the CAE 

feature selection procedure, the SOC model was built using a total of 26 selected input 

variables. For training and testing, the full data was divided into ten equal sections and used in 

that sequence. The DNN was calibrated ten times, ensuring that every data point was used as 

validation. We employed the Bayesian Optimization approach with 10-fold cross-validation 

for hyper-parameter adjustment. To get the best results, 500 epochs, 6 hidden layers, the 

"adam" optimizer, and the LeakyReLU activation function were utilized. The CAE-DNN 

results were compared to the Boruta-DNN and a DNN model without variable selection. All 

the analysis was conducted within the python 3.8 API, except for the Boruta variable selection 

method that was conducted in R studio (Version 4.0.2) 
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RMSE =  √∑   (XO,i – XP,i  )
2n

i=1

n
                                                                             (4) 

R2 = 1 – [
∑    (n

i=1  XO –p)2

∑   (n
i=1 XO – O′)2]                                                                             (5)                                                                                    

                                                                                 

LCCC =  
2 r σoσp

σp  
2 +  σp

2    +  [O′ –P′]2                                                                               (6)      

                                                                    

In this case n denotes the count of samples and XO and XP denote the actual and estimated SOC 

values, respectively. The means of the actual and estimated SOC are symbolized by O' and P', 

respectively, while the variation of the actual and estimated value is expressed by σo and σp. 

To eliminate sampling bias, the data is divided into ten uniform sets and successively 

transmitted into both the train and test datasets, ensuring that every set was equally utilized. In 

general, the most fitting model has a greater R2 and LCCC as well as a smaller RMSE. In 

addition, the relevance of covariates was assessed in order to establish their importance to the 

model's accuracy. Generally, DL approaches frequently struggle to attain interpretability 

because they are incapable of automatically quantifying the impact of covariates during or after 

every task, which is why they are referred to as "black boxes" (Padarian et al., 2019). Various 

ways have recently been developed to aid users in interpreting DL simulations (Pentos, 2016). 

One of these solutions is the SHApely Additive exPlanations (SHAP) strategy, which was 

implemented in this study. The primary idea behind SHAP is to allocate a unique mean value 

to variables in order to show the degree to which each variable contributed to the 

model's performance. The higher the average SHAP value for a particular variable the higher 

its influence on the models outcome. SHAP has a package for any type of ML algorithm, 

including a "DeepExplainer" function for DL models, and has several advantages over other 

techniques, including global and local interpretability. 

6.2.6. Uncertainty quantification 

Describing uncertainty and measuring the strength of research findings are critical in decision-

oriented studies (Hamel and Bryant, 2017). Consequently, utilizing the typical ±1.64 standard 

deviation (SD) with a 90% confidence interval (C1) significance level, the upper and lower 

limits for the SOC maps produced by the CAE-DNN framework were developed in this work 

(Odebiri et al., 2022). We used a 10-fold cross-validation under the premise that the model 
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follows a normal distribution for each raster pixel (Emadi et al., 2020). Thereafter, the 

estimated mean value of each pixel, as well as the 5th and 95th percentiles, were then retrieved. 

Finally, a distribution map for the computed mean, lower (5%) and higher (95%) confidence 

levels were created. 

6.3. Results 

6.3.1. Synopsis statistics 

From the 1936 total soil samples used, SOC values ranged from 5.3 t/ha to 149 t/ha, with a 

mean and standard deviation of 39.8 t/ha and 17.3 t/ha, accordingly. A relatively high SOC 

variance of 43 percent was noted. The data diverged from the normal distribution curve, 

resulting in high skewness (1.9) and kurtosis (5.2) (Hair et al., 2016). To address this, a natural 

logarithm transformation technique was used to enhance the data distribution, hence new 

values for skewness (0.41) and kurtosis (0.68) were obtained. After predictive analysis, the 

rescaled data was retransformed back to its initial scale. 

6.3.2. Feature selection 

The development of predictive models often requires the computation of the smallest possible 

number of the most influential variables (Odebiri et al., 2020a). Consequently, a variable 

selection technique is often necessary to improve accuracy. Through an adjustment of the 

concrete selector layer of the CAE model, a significant reduction in dimensionality of the 

covariates was achieved (Figure 6.3), with the system identifying 26 out of 52 features for 

prediction. The selected features were Rainfall, NDVI, Band 8, EVI, Band 11, Elevation, Slope, 

Temperature, Band 7, TWI, SAVI, Band 12, Band 13, Band 9, DVI, Band17, General 

curvature, GNDVI, RVI, Band 10, Band 19, Band 18, Profile curvature, Band 6, Catchment 

area and Band 2.  

Meanwhile, the Boruta selection approach (Figure 6.4) identified 28 important features, 

rejected 21 features, and flagged 3 features as tentative (where the algorithm is uncertain on 

the importance of the variable). The 28 selected variables by the Boruta also included all the 

variables selected by the CAE model together with Band 16 and Valley depth. The tentative 

features (n = 3) including Band 4, Aspect and Direct Insolation, were added to the important 

features after applying the “TentativeRoughFix” function within the R programming API, 

resulting in total of 31 predictive features used for the development of the Boruta-DNN model. 

Thereafter, the selected variables identified by CAE and Boruta were then used to build 

separate models and their results were compared to a DNN model that included all 52 variables. 
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Figure 6.3. Scree plot of Concrete Autoencoder (CAE) showing mean squared error for 

different feature sizes. The red dot signifies the feature selected (n = 26)  

 

 

 

 

 

 

 

 

 

Figure 6.4. Variable selection (n = 31) by the Boruta algorithm; green bars are the selected; red 

bars are the rejected and yellow bars are the tentative features. Note that half of the selected 

and rejected features are not listed on the figure’s x-axis due to space 

6.3.3. Evaluation and performances of models 

Table 6.3 shows the means and standard deviations estimates of the three models: CAE-DNN, 

Boruta-DNN, and a DNN model without a variable selection strategy. Figure 6.5 (ABC) also 

illustrates the relationship involving the actual and predicted SOC for each of the developed 

models (CAE-DNN, Boruta-DNN, and a DNN model without a variable selection strategy). 

The CAE-DNN model with the smallest number of features (n = 26) generated the best results, 
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with RMSE, R2, and LCCC scores of 7.9 t/h (19.88% of the mean), 69.94, and 85.35, 

respectively. Next is the Boruta-DNN model (n = 31), with an RMSE of 9.48 (23.83 % of the 

mean), R2 of 68.14, and LCCC of 81.17. The DNN model with no variable selection (n = 52) 

had the poorest results (RMSE=10.71—26.92 % of the mean, R2 = 66.7, and LCCC = 79.66). 

This suggests that having too many redundant variables in a model can considerably impact 

accuracy. The variable importance (Figure 6.5D) of the best performing model (CAE-DNN, 

RMSE = 7.9 t/h) was then used to examine the variables that best explain the distribution of 

SOC stocks across South African biomes.  

Interestingly, all of the data categories used, including remotely sensed data derivatives, 

topography, and climate, had a considerable impact on the model output. The SHAP graph 

revealed that Rainfall, NDVI, Band 8, Elevation, Temperature, EVI, Band 11, Slope, RVI, and 

TWI were the top ten explanatory variables for SOC variability in the area.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Predicted versus observed soil organic carbon (SOC) based on three models and 

variable importance measure: (A) Concrete Autoencoder-Deep neural network (CAE-DNN); 

(B) Boruta-Deep neural network (Boruta-DNN); (C) Deep neural network (DNN) without 

feature selection; (D) rank of covariates using SHAP method 
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6.4. Discussion 

6.4.1. Assessing the distribution of soil organic carbon stocks within South Africa biomes 

Understanding the spatial distribution of SOC across different biomes is vital for large-scale 

carbon management and planning (De Deyn et al., 2008). The distribution of SOC stocks, 

however, are often dependent on an ecosystem type and its exposure to specific topographic 

and climatic variables (Lal, 2009). In light of this, we mapped the spatial distribution of SOC 

across South Africa’s major biomes using a combination of remotely-sensed-topo-climatic 

datasets and Concrete Autoencoder-Deep Neural Networks (RMSE = 7.91 t/h). The resultant 

model showed that almost two thirds of South Africa’s SOC stock is currently stored beneath 

the Grassland (32.38 %) and Savanna (31.28 %,) biomes (Figure 6.7). This corresponds with 

the findings of Venter et al., (2021), who found that the vast expanses of the Savanna (404, 

757 km2) and Grassland (269, 920 km2) biomes contributed significantly towards their overall 

SOC accumulation. 

South African grasslands are home to a variety of diverse grasses, herbaceous graminoids and 

forbs (Egoh et al., 2011). This enables a high basal cover that facilitates the decomposition of 

organic litter, which in turn leads to increased soil organic matter and greater SOC production 

(Mills and Fey, 2003). The highest concentrations of SOC were predominant in the sub-

escarpment grasslands along the eastern seaboard (Figure 6.7). Here, long-lived sourveld 

grasses with deep underground storage organs aide in the accumulation of SOC. Sourveld 

grasses, such as the KwaZulu-Natal Sandstone Sourveld, may directly contribute towards 

carbon stocks through elevated levels of woody biomass. Although these grasslands are prone 

to fire, the majority of its carbon is stored underground (i.e., roots and soil), making them more 

resilient to climate change, particularly during wildfire outbreaks (Ward et al., 2016). 

Moreover, climatic conditions and topography have been found to influence SOC stock 

distribution (Odebiri et al., 2020b; Hoffmann et al., 2014). As such, the higher-altitude and 

wetter conditions of the sub-escarpment facilitates greater plant litter accumulation and 

increased SOC. Furthermore, the Northern KwaZulu-Natal Shrubland and Zululand Misbelt 

Grasslands, with finer clay soils, are also located within the sub-escarpment (Mucina and 

Rutherford 2006). Studies by Schwanghart and Jarmer (2011) and Singh et al., (2011), have 

demonstrated a strong correlation amongst SOC and clay content. Soils with higher 

concentrations of clay have been observed to be more nutrient dense, thus affecting 

aboveground biomass production. The tight bondage between clay particles also protect SOC 

from microbial decomposition (Yao et al., 2010). Consequently, the large pool of SOC located 
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beneath South African grasslands can be attributed to a combination of favourable climate, 

topography and soil characteristics along the eastern coastal interior. Nevertheless, South 

African grasslands are prone to degradation, with only 2 % formally protected, which has 

significantly impacted SOC storage (Little et al., 2015). For instance, Peri (2011) reported that 

heavy grazing can reduce carbon stock in grasslands by as much as 80 Mg C ha-1. Thus, to 

safeguard SOC stocks within grasslands, adequate spatial planning and management 

frameworks supported by robust scientific data are necessary. The Durban Metropolitan Open 

Space System (DMOSS) framework is an example of a successful spatial instrument that has 

been used to ensure biodiversity needs are integrated into developmental planning (Roberts et 

al., 2012). This tool is regularly updated through a joint partnership with the University of 

KwaZulu-Natal, which provides scientific research to inform and supplement environmental 

monitoring and management protocols within the municipality (Boon et al., 2016). 

Apart from Grasslands, tropical Savanna ecosystems account for more than 30% of South 

Africa’s total SOC inventories (Table 6.4). The distinct open tree layer and herbaceous grassy 

substrate of savannas provide favourable conditions for SOC sequestration, as high quality 

litterfall and dead matter enable the faster metabolism of the resultant soil organic matter (De 

Deyn et al., 2008). Meanwhile, the deep rooting zone of savanna vegetation protects against 

carbon losses through the topsoil and capable of sequestrating up to 110 t C/ha of SOC (Jackson 

et al., 2000; Ciais et al., 2011). In addition, the high clay content and swelling properties of the 

latosols within savannas promote SOC retention by providing physical and chemical 

mechanisms that shield SOC from microbial decomposition (Mujinya et al., 2013; Shelukindo 

et al., 2014). As with grasslands, the favourable topographic and climatic conditions along the 

eastern coastal interior enables higher concentrations of SOC stocks. Savannas, however, are 

threatened by land-use disturbance, with an estimated 1% lost to intensive grazing and 

cultivation per year (Gonzalez-Roglich et al., 2015). Therefore, with the amount of carbon lost 

through degradation rapidly approaching tropical deforestation levels, appropriate carbon 

management strategies that incorporate grazing-land and fire management protocols are 

paramount. An example of this is the Kenyan Agricultural Carbon Project (Atela 2012). The 

project encourages sustainable and climate-friendly farming techniques that support soil carbon 

sequestration; and within three years of its inception, the project has increased agricultural 

productivity by 15%, whilst facilitating a reduction of 24,788 metric tons of carbon dioxide. 

Although the volume of land occupied by different biomes has been shown to influence SOC 
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stock inventories, the relative sequestration capacity of these biomes varies greatly according 

to ecosystem dynamics (Laganiere et al., 2013).  

Despite their relative size, the Forest (44.12 t/h), the Indian Ocean Coastal Belt (43.05 t/h), and 

the Albany Thicket (38.76 t/h) biomes had the highest average SOC sequestration rates (Table 

6.4). The Forest biome is generally comprised of multi-layer evergreen stands with high canopy 

coverage and a longer rooting residency — which can increase SOC sequestration through 

continuous litter fall (Muchena 2017). In forests, plant-carbon assimilation rates are high 

throughout the year due to an efficient use of soil nutrients and solar radiation that encourages 

continuous growth (De Deyn et al., 2008). This high-rate of plant-carbon assimilation results 

in an elevated SOC sequestration capacity — with the majority of carbon stored within 

aboveground structures as opposed to the soil (Kesselmeier et al., 2002). Additionally, an 

annual precipitation of more than 725 mm during the summer elevates the rate of carbon 

cycling and plant growth (Mucina and Rutherford, 2006). Although forests experience 

relatively low levels of wild-fires due to high humidity, a large percentage of soil organic matter 

and SOC are lost through deforestation and intentional burning (Low and Rebelo, 1998). For 

instance, according to the Global Forest Watch, about 30.3 Kha of South Africa’s natural forest 

has been lost since 2010. This is the equivalent of approximately 11.3 Mt in additional carbon 

emissions (https://www.globalforestwatch.org/). Furthermore, an abundance of invasive lianas 

(Annonacea) plants, which create intricate webs along the understory of forest canopies, has 

the potential to limit carbon stocks by up to 50 % (Bousfield et al., 2020). Nevertheless, this is 

overshadowed by the need for housing and agricultural land which has caused significant 

deforestation and incalculable levels of SOC loss (Ekblad and Bastviken, 2019). To improve 

Forest SOC sequestration capacity and safeguard ecosystem services, well-managed 

indigenous reforestation projects are necessary. Literature (Lal, 2009, Olsson and Ardö, 2002, 

Don et al., 2011; Venter et al., 2021) has shown that the conversion of cultivated land to 

secondary forests or plantations may increase SOC stocks and facilitate climate change 

regulation. An example can be seen with the Buffelsdraai reforestation programme in Durban 

South Africa, where previously cultivated land has been reforested with indigenous species to 

facilitate carbon sequestration and boost overall ecosystem health (Mngadi et al., 2022). 

Further evidence of the success of ecosystem-based mitigation activities can be found within 

programmes such as REDD+ (Dickson and Kapos, 2012).  

Like Forests, the Indian Ocean Coastal Belt (43.05 t/h) and the Albany Thicket (38.76 t/h) 

biomes had high average SOC sequestration rates (Table 6.4). The Indian Ocean Coastal Belt 
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consists of open to dense savanna vegetation, intermixed with vast areas of forest and sourveld 

grassland (Mucina and Rutherford, 2006). Its location along the coastal interior (with high 

mean annual rainfall and temperatures) allows for an accumulation of soil moisture. Elevated 

soil moisture concentrations foster anaerobic conditions, which accelerates SOC accumulation 

(Shelukindo et al., 2014). The Albany Thicket biome is dominated by Spekboom (Portulacaria 

afra), a drought tolerant plant that binds soil together to minimize soil erosion (Mills et al., 

2015). It’s rapid growth rate and high litter production encourages fast carbon sequestration 

potential of approximately 168 t C ha-1 from the top 50 cm of soil (Mills and Fey, 2004). 

However, intensive goat farming has led to significant thicket degradation, with between 40 to 

71 t C ha-1 lost from the top 10 cm of soil (Mills and Fey, 2004). 

Although both climatic and topographic variables are fundamental to SOC stock variability 

amongst biomes, the greatest threat to SOC accumulation and storage is land-use disturbance 

(Ramesh et al., 2019; Were et al., 2015). Degradation of natural biomes through urbanization 

and agricultural practices have significantly depleted SOC stocks (Schulze and Scuttle, 2020). 

It is estimated that approximately 200 Gt of carbon is released into the atmosphere as a direct 

result of land-use change and ecosystem conversion (Diversity, 2009). Lal (2008) notes that 

the transformation of ecosystems to agricultural land drastically depletes SOC, with 

agricultural soils retaining less than 50% of the SOC of undisrupted soils. In South Africa, Du 

Toit et al., (1994) and Du Toit and Du Preez (1995), established that decreases in SOC from 

cultivated soil were highest in regions that were warm and dry, such as within the desert biome. 

Here, soil temperatures would impact the microbial mineralization of carbon. Likewise, Mills 

and Fey (2004), noted that vegetation removal drastically reduced SOC across most biomes, 

with SOC declining from 28 t ha-1 to 15 t ha-1 within renosterveld vegetation, from 7 t ha-1 to 

5 t ha-1 in the Karoo, and from 54 t ha-1 to 27 t ha-1 in grasslands. With most of South African 

biomes already significantly altered by land-use change (Du Preez et al., 2011, Ellis et al., 

2010), efforts should be tailored towards maintaining existing biomes and restoring degraded 

areas. Consequently, preventing ecosystem conversion and combating land degradation are 

practices that can shield current carbon stock inventories (Goldstein et al., 2020). Besides, the 

restoration of certain degraded biomes has the potential to drastically bolster existing SOC 

stocks and improve SOC sequestration rates (Lal 2015). For instance, the use of Spekboom 

plant to restore degraded Thicket regions has the potential to sequester an additional 40 t C ha-

1 (Mills and Fey, 2004). Similarly, invasive plant management has been gaining traction as an 

unconventional management technique for carbon sequestration (Peh et al., 2015, Turpie et al., 
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2008). Although some studies have suggested that invasive species could potentially increase 

carbon storage, they can also drastically alter ecosystems and ecosystem function (Liao et al., 

2008). An investigation by Koteen et al., (2011) on invasive grasses within Californian 

grasslands has shown that invasive annual plants that replace drought-tolerant perennial grasses 

may reduce SOC storage by up to 40 t C ha-1. Thus, further investigation on the long-term 

effects of invasion alien species on SOC is necessary within tropical biomes. 

Nonetheless, the ability of specific biomes to increase carbon sequestration pools within soils 

is dependent upon an amalgamation of climate, topography and land-use disturbance (Lal, 

2008). Thus, as populations grow and land-use conflicts intensify, evidence-based research in 

conjunction with comprehensive land-use planning frameworks are needed to provide an 

appropriate balance between carbon sequestration, agriculture, urbanization and biodiversity. 

At a project level, biodiversity assessment schemes in conjunction with decision support tools 

(such as UNEP, CBD, and LifeWeb carbon calculator) can be used to promote best practices 

(Bagstad et al., 2013), however at a national level, these cannot replace the need for large-scale 

data on high-carbon density biomes.  

6.4.2. Performance of the SOC CAE-DNN model 

This study used a hybrid DL framework (Concrete Autoencoder-Deep neural network (CAE-

DNN)) for variable selection and regression to create a spatial SOC variability map based on 

remote sensing-topo-climate data. The results were compared to those of alternate approaches 

that included the Boruta-DNN and a standard DNN with no variable selection method applied. 

The CAE-DNN (RMSE = 7.91 t/h) and Boruta-DNN (RMSE = 9.48 t/h) models outperformed 

the standard DNN (RMSE = 10.71 t/h). This demonstrates the importance of dimension 

reduction within model performance. More importantly, the CAE-DNN with the least selected 

variables (n = 26) performed better than the Boruta-DNN (n = 31) method. This further 

illustrated that DL variable selection methods generally outperform conventional variable 

selection strategies as supported by existing literature (Abid et al., 2019; Ramjee et al., 2019). 

The CAE employs concrete random variables and the re-parametrization method to allow 

gradients to flow through a layer that stochastically picks discrete input. This stochasticity 

enables it to swiftly explore and converge on a subset of input characteristics of a certain size 

that minimizes a specific loss (Abid et al., 2019). The CAE is likewise straightforward to use, 

requiring only a minor modification of a typical autoencoder with a similar runtime — 

depending on hardware capacity (Abid et al., 2019). The performance of the hybrid CAE-DNN 

framework is further evidenced by the results obtained by the study (R2 = 69.9). This is a 
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notable improvement to the national scale SOC models previously developed by Odebiri et al., 

(2022) (R2 = 67.3), Venter et al. (2021) (R2 = 65.9) and Schultze & Schutte (2020) (R2 = 20.3) 

using ordinary DNN models, random forest algorithm and field-level SOC median calculation 

strategy, respectively.  

Subsequently, the SHAP technique (see section 6.2.5) was included within the overall hybrid 

DL framework to assess variable importance and evaluate the most relevant explanatory 

factors that determine SOC distribution within the region. Rainfall, NDVI, Band 8 (Red - 665 

nm), Elevation, Temperature, EVI, Band 11 (red-edge - 708.75 nm), Slope, RVI, and TWI 

were among the top 10 variables identified. Rainfall and TWI are both indicators of water 

availability and soil moisture within different biomes. Rainfall impacts soil moisture, 

hydrological processes, vegetation density and decomposition, all of which help to sequester 

SOC (Chen et al., 2015). TWI affects the variability of soil moisture along slopes, hence 

locations with a greater TWI (soil moisture) have a higher SOC density than those with a lower 

TWI (Odebiri et al., 2020b; Li et al., 2018). SOC was similarly influenced by temperature, as 

warmer areas accelerate SOC mineralization compared to areas with lower temperature (Wang 

et al., 2013). Additionally, greater temperatures indicate higher atmospheric water vapour, 

which increases the likelihood of rainfall (Cong and Brady 2012). The NDVI, EVI, RVI as 

well as Band 8 (Red - 665 nm) and Band 11 (red-edge - 708.75 nm) are all the derivatives of 

Sentinel-3 data used in this study, which are considered sensitive to vegetation properties 

including biomass and chlorophyll content (Odebiri et al., 2021a; Zhang et al., 2019). 

Literature has established that SOC responds to similar physical and environmental signals as 

vegetation, thus can be used as a surrogate or proxy to predict its distribution (Nabiollahi et al., 

2019; Kumar et al., 2016). Both Elevation and Slope relate to the altitude and steepness of the 

ground. We found that places with steep slopes have less occurrences of SOC than locations 

with relatively gentle slopes, and that areas with greater altitude (> 1500m) have lower SOC 

concentrations compared to low lying areas (< 1000m) (Li et al., 2018; Weiss et al., 2017). 

Low-lying regions enhance plant growth through favourable soil conditions including the 

transportation of nutrient-rich topsoil from higher to lower lands. Furthermore, most low-lying 

regions have greater soil moisture content, nutrients, and deeper than higher areas characterized 

by harsh environmental conditions that inhibit vegetation growth due to a lack of soil micro-

organisms (Hijmans and Graham 2006). The impact of elevation and slope on microclimate 

could possibly be a factor in SOC concentration, since altitude critically affects temperature 
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levels, wind flows, and soil moisture, all of which affect vegetation distribution and by 

extension SOC stocks (Odebiri et al., 2020b). 

To maintain a balance between carbon sequestration capacity, biodiversity, and the provision 

of ecosystem services, accurate national-scale SOC assessments are required periodically. 

Consequently, this study has demonstrated the ability of the Concrete Autoencoder-Deep 

Neural Networks framework and remotely-sensed-topo-climatic datasets in providing cost-

effective and reliable SOC models for recurrent carbon assessments. Lastly, as strides within 

modern satellite sensor technology and deep learning architecture are made, robust semi-

autonomous tools for understanding the spatial dynamics of SOC are constantly evolving. 

6.5. Conclusion 

In this study, different remotely sensed topo-climate variables were used to undertake a 

national scale SOC modelling across different South African biomes. For variable selection 

and regression, a combination of DL frameworks — Concrete Autoencoder-Deep neural 

network (CAE-DNN) performed better than Boruta-DNN and a standard DNN without variable 

selection. The estimated SOC stocks within each biome, as well as their potential sequestration 

rates in proportion to area coverage were established. This is crucial information for national 

policy formulation, rehabilitation, restoration, and intervention initiatives aimed at mitigating 

climate change by increasing SOC assimilation. We also implemented the SHAP value 

approach to resolve DL models' interpretability problems, with Rainfall, NDVI, Band 8, 

Elevation, Temperature, EVI, Band 11, Slope, RVI, and TWI among the top 10 most important 

variables. Taking into account the spatial uncertainty of the data utilized in this study, including 

multiple-scales of variation, diverse sampling sources, and different collecting times, our 

model performed quite well. This necessitates that efforts by government and research-funded 

bodies be geared towards standardized soil inventory systems in which high-quality data 

specific to diverse biomes are collected and made available for use in SOC modelling. 

However, when adopting DL frameworks for simulation, cost and sample size should be 

considered. This is because DL applications demands high computing capacity and big data to 

perform optimally, specifically for landscape scale mapping. Future research could benefit 

from examining the ability of greater spatial resolution sensors, as well as the fusion or pan 

sharpening of many sensors (e.g. Sentinel 1 and 2), to increase accuracy when utilized with 

deep learning (DL) models. Finally, SOC future projection studies could also be conducted to 

help effectively evaluate the efficacy of current management systems and policies. 
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6.6. Summary  

This chapter examined the capabilities of two DL frameworks (Concrete Autoencoder-Deep 

neural network (CAE-DNN) for variable selection and regression) in conjunction with 

remotely sensed topo-climate variables to model SOC across South Africa’s unique biomes. 

The CAE-DNN model combined with climatic and terrain metrics was found to significantly 

outperform both the Boruta-DNN and the standard DNN model without variable selection. 

SOC stock was shown to correlate to overall biome coverage, with the Grassland and Savanna 

biomes contributing the most to South Africa's overall SOC pool. Nonetheless, despite their 

lower footprint, the Forests and the Indian Ocean Coastal Belt biomes demonstrated the 

highest SOC sequestration capacity. These findings outline the importance of large bio-

climatic zones in regional SOC storage and highlights the need to direct managerial efforts 

towards promoting SOC sequestration across different biomes to extenuate the effects of 

climate change. However, the dynamic nature of climate change and land-use transformation 

presents a unique threat to current SOC stocks and management techniques. Consequently, to 

effectively safeguard regional SOC stocks, policymakers require large-scale projections that 

accurately model both current and future SOC pools. In this regard, the next chapter 

investigates the development of large-scale projections for both existing and future SOC pools 

in South Africa. This will assist policymakers in assessing the long-term viability of South 

Africa’s existing SOC management techniques and land-use planning frameworks.  
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Chapter Seven: 

Evaluation of projected soil organic carbon stocks under future climate 

and land cover changes in South Africa using a deep learning approach 

 

This chapter is based on; 

Odebiri, O., Mutanga, O., Odindi, J., & Naicker, R. (2022). Evaluation of projected soil 

organic carbon stocks under future climate and land cover changes in South Africa using a deep 

learning approach. Journal of Environmental Management, Under Review, Manuscript ID: 

JEMA-S-22-05916 
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Abstract: 

Environmental degradation and carbon emissions have become a major global concern. This 

has forced policymakers to consider strategic and long-term contingencies to increase carbon 

sequestration capacity and mitigate the effects of climate change. Soil organic carbon (SOC) 

provides a reliable long-lasting mechanism to ameliorate climate change and regulate carbon 

fluxes. However, unanticipated rates of climate change coupled with the dynamic nature of 

land-use transformation threatens current mitigation approaches and can jeopardise carbon 

stock assimilation. To effectively manage and protect SOC stocks, large-scale projections that 

accurately model both current and future SOC pools are necessary. Hence, this study modelled 

the effects of simulated climate and land-cover change on SOC inventories across South Africa 

up to the year 2050. A digital soil mapping strategy in concert with a deep neural network 

(DNN) was used to model current SOC stocks distribution. Subsequently, WorldClim general 

circulation models and a space-for-time substitution (SFTS) method were used to derive future 

SOC stocks under four shared socio-economic emission pathways. Depending on emission 

rates, results showed a reduction in SOC inventories, with overall SOC stocks declining from 

5.64 Pg to between 4.97 and 5.38 Pg by 2050. Meanwhile, forests, which account for 

approximately 1.2 Pg of total SOC in South Africa, were found to have lost more than 1% of 

their total coverage by 2050. These findings provide a glimpse into the state of South Africa’s 

current and future SOC stock inventories and the influence of climate and land-use change. 

These findings are valuable to among others policymakers, land use managers and climate 

change experts in assessing the long-term feasibility of South Africa’s existing SOC 

management protocols and land-use planning agenda. However, to adequately protect future 

SOC stocks, current land-use planning frameworks need to be re-adjusted to prioritize pressing 

environmental concerns.  

 

Keywords: Soil organic carbon; Climate; Land cover; Topography; Deep learning; 

Management 
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7.1. Introduction 

Higher rates of carbon emissions and rampant environmental degradation have left many 

regions vulnerable to severe climatic disasters (Dietz, 2020; Naidoo & Fisher, 2020). Over the 

past 50 years for instance, climatic disasters have resulted in over 2 million deaths and USD 

3.64 trillion in damage (WMO, 2021), with a further 4 % of global annual GDP projected to 

be lost within the next 30 years (Newell et al., 2021). As exposure to floods, wildfires, and 

other extreme weather-related events becomes more prevalent worldwide (Arletti et al., 2021), 

governments and policymakers are forced to fast-track reliable, long-lasting strategies to 

mitigate the effects of climate change and minimize both human and financial losses. In this 

regard, soil organic carbon (SOC) sequestration has emerged as one of the most important 

carbon capture and storage processes for mitigating climate change, with approximately 1500 

Petagrams (Pg) of carbon stored in the top 1-meter of soil globally (Padarian et al., 2021, Li et 

al., 2021). SOC constitutes more than 61% of total soil carbon and plays an essential role in 

regulating global carbon fluxes (Zhao et al., 2021; Odebiri et al., 2022a). Nevertheless, due to 

its central role within the global carbon exchange, slight changes in SOC stocks can have a 

significant impact on climate and ecosystem stability (Balesdent et al., 2018; Wu et al., 2018). 

As a result of this dynamic interchange between the terrestrial carbon cycle and climate change, 

there is a need to constantly evaluate SOC inventories and management practices (Ren et al., 

2020; Odebiri et al., 2021b). However, adequately incorporating SOC as a long-term climate 

change mitigation strategy requires a comprehensive large-scale understanding of both present 

and future SOC stocks, as well as the influence of environmental and anthropogenic factors 

(Keskin et al., 2019).  

The storage and sequestration potential of SOC is often dependent on topographic, climatic, 

and land-use factors, which control the overall viability and variability of SOC stocks (Zhao et 

al., 2021; Yigini & Panagos 2016). Literature has revealed that topo-climatic factors (i.e. 

rainfall, temperature, slope, elevation, and relief) can significantly affect organic compound 

accumulation and decomposition — thereby regulating soil microbial activity and SOC 

dispersal (Schindlbacher et al., 2012; Reyna-Bowen et al., 2020; Guan et al., 2018; Conant et 

al., 2011; Li et al., 2018; Fissore et al., 2017; Wang et al., 2012). On the other hand, land-use 

change factors (in the form of urbanization, intensive agriculture, and increased environmental 

degradation) has a more profound influence over SOC and atmospheric carbon emissions 

(Lamichhane et al., 2019; Swanepoel et al., 2016; Sainepo et al., 2018; Odebiri et al., 2021b; 

IPCC et al., 2021). For instance, Amanuel et al., (2018), noted that changes in land use accounts 
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for between 12 and 20 percent of human-induced carbon emissions while Sanderman et al., 

(2017) noted that during the last decamillennium, over 30 Pg of carbon has been lost to 

intensive agronomic practises. Although, SOC variability, as a direct result of land-use and 

climate change, has been acknowledged as a key issue in climate change mitigation and 

environmental sustainability (Jiao et al., 2020; Ou et al., 2017), the complex and interconnected 

nature of these threats on soil and carbon security requires a deeper temporal contextualisation 

at a regional scale (Keskin et al., 2019). 

South Africa, ranked as the 13th largest greenhouse gas contributor worldwide (Jäättelä et al., 

2017), has been subjected to considerable SOC loss due to land cover transformation (Venter 

et al., 2017). For example, Griscom et al., (2017) noted that around 2 Pg of South Africa's 

carbon has been lost to land-use change since 10,000 BCE, while Du Preez et al., (2011) reports 

that South Africa’s soil carbon reserves have diminished by 45 percent due to continuous 

agriculture. Recent investigations by Schulze and Scuttle, (2020) and Venter et al., (2021) have 

further outlined the detrimental impact of land use transformation on SOC stocks in South 

Africa. Schulze and Scuttle, (2020) for instance established that almost half of all SOC stored 

within natural vegetation have been lost to intensive agriculture. Although these studies have 

provided insight into the variability of SOC stocks across South Africa, the rapidly evolving 

nature of climatic and land-use change within South Africa has prompted researchers to now 

contemplate the influence of future climate and land-use change scenarios on current SOC 

stock inventories. Such knowledge is needed to adjust existing policies and SOC management 

practices to cope with accelerated climate and land use change transitions within South Africa 

(Wiesmeier et al., 2016). Yet, to the best of our knowledge, no known study has attempted to 

examine the influence of potential future climate and land use changes scenarios on SOC 

variability across South Africa. However, making accurate predictions in highly dynamic and 

complex environments, such as soils, can be challenging over large geographical extents 

(Padarian et al., 2020; Odebiri et al., 2020a), particularly as soil datasets are frequently out of 

date, have limited coverage, and are mostly fragmented (Zhao et al., 2021).  

In recent years, digital soil mapping (DSM) has emerged as a science connecting proximal soil 

observations with quantitative methodologies, such as the use of novel earth observation 

satellites with high spatial and spectral coverage (i.e. big data) in conjunction with various 

geostatistical and machine learning (ML) models (Georgiou et al., 2021; Guo et al., 2020; Xu 

et al., 2019). As a result, DSM has gained traction as a credible means of obtaining soil data at 

various levels of detail (Wieder et al., 2018; Muchena 2017: Kumar et al., 2016). This has 
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facilitated the simulation of SOC across multiple temporal scales using data-driven empirical 

models (DDEMs) (Wang et al., 2021; Wang et al., 2019). Specifically, Space-For-Time 

Substitution (SFTS), which forms the basis of DDEMs within temporal modelling dynamics, 

provides comprehensive covariate substitution capabilities (Li et al., 2021; Huang et al., 2019; 

Gray & Bishop 2016). This has allowed for future SOC models to be predicted through a 

mathematical substitution of present covariates with future covariates that have been derived 

from DDEMs incorporating SOC measurements and spatially variable environmental factors 

(Wang et al., 2021; Wang et al., 2019). However, the ability of these DDEMs to effectively 

represent SOC distribution successfully is predicated upon dataset preparation techniques and 

the algorithm used (Odebiri et al., 2022a; Wadoux et al., 2019). Furthermore, to minimize 

uncertainties between long-term field measurements and SOC stock models, Sulman et al., 

(2018) and Wieder et al., (2018), have recommended the development and implementation of 

benchmarking models to improve model accuracy. 

Deep learning (DL) models, which utilize non-linear representational-learning functions to 

extract information from lower to higher layers, has been lauded as robust analytical tools for 

improving SOC mapping (Odebiri et al., 2021a; Ma et al., 2019; Zhu et al., 2019). DL 

frameworks, unlike other geostatistical and traditional machine learning (ML) algorithms, can 

use feature representations learnt solely from input data to considerably improve mapping 

capabilities (Odebiri et al., 2021b). Additionally, the complicated nonlinear structure of SOC 

and its relationship with the environment can often present a high degree of variability, which 

can overwhelm traditional machine learning methods, especially at large spatial scales (Ma et 

al., 2019; Padarian et al., 2019; Kumar et al., 2016). In contrast, DL models can improve 

learning procedures by identifying relevant invariant and abstract qualities from datasets (Minh 

et al., 2018). The inclusion of numerous hyper-parameters in DL models also allow users to 

fine-tune learning techniques to improve accuracy (Odebiri et al., 2021a). To this end, this 

study used multi-source data and a DL algorithm to project SOC stock distribution under future 

climatic and land-use change scenarios to the year 2050. Thereafter, we evaluated and 

compared the variability of current (2021) and future (2050) SOC stocks across key land uses 

in South Africa. 

7.2. Methods and Materials 

7.2.1. Soil data 

The International Soil Reference Information Centre (ISRIC) and the Department of 

Agricultural Earth and Environmental Sciences (SAEES) at the University of KwaZulu-Natal 
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in South Africa provided the soil data for this study. ISRIC is a non-profit science organization 

whose purpose is to deliver high-quality information on diverse soil properties (including SOC) 

through international collaboration (Batjes et al., 2020). The present ISRIC soil database 

(https://www.isric.org/), which was last updated in 2020, has over 150,000 sample points from 

173 countries (Batjes et al., 2020). The soil profile from the majority of these sites may differ 

in terms of location and acquisition time. To circumvent this and other potential discrepancies 

in SOC concentration determination methodologies, a standardized framework, publicly 

available at https://www.isric.org/explore/wosis/accessing-wosis-derived-datasets, was 

developed by ISRIC to enable consistent soil profile data entry (Venter et al., 2021; Hengl et 

al., 2017). From the ISRIC and SAEES databases, a total of 1936 soil sample points (collected 

at a 30 cm depth) were collated and input as target variables. Thereafter, following methods 

used by Pearson et al., (2007), the SOC stock at each point was calculated through the 

following formula:  

𝑆𝑂𝐶 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑡/ℎ) = 𝑆𝑂𝐶 𝑐𝑜𝑛𝑐𝑒𝑚𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ         (1) 

7.2.2. Simulation data acquisition 

7.2.2.1. Sentinel 3 

The study initially developed a current SOC estimation model (2021) to understand the 

variability of SOC across South Africa. This then provided a basis to form the future SOC 

projection model (2050), whilst simultaneously allowing the study to evaluate the potential 

influence of topo-climatic and land-use change factors on South Africa’s SOC stocks over the 

next few decades. In accordance with this, data from the European Space Agency’s (ESA) 

Sentinel-3 Ocean and Land Colour Instrument (OLCI), with under 10% cloud coverage, was 

obtained between March and April 2021 from the ESA portal (i.e. 

https://scihub.copernicus.eu/). Sentinel-3, which provides 21 unique spectral bands (400 nm to 

1020 nm), a 300 m spatial resolution, and a 2 days’ revisit time enables continuous, reliable, 

and fast regional SOC mapping (Vaudour et al., 2019; Li and Roy, 2017). The Sentinel-3 

imagery was geometrically, radiometrically, and atmospherically corrected using the Sentinel 

Application Platform (SNAP v. 6.0). The pre-processed images were mosaicked and clipped 

to the South African border. Studies by Wang et al., 2021, Odebiri et al., 2020a, and Guo et 

al., 2020, have demonstrated the value of vegetation indices in explaining SOC fluctuation and 

dispersion. Consequently, using information derived from Odebiri et al., 2022a, the most 

influential Sentinel-3 spectral bands (i.e. 6, 7, 8, 11, 13, 17, 18, and 19) and vegetation indices 

((including the Normalised Difference Vegetation Index (NDVI), the Enhanced Vegetation 
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Index (EVI), the Soil Adjusted Vegetation Index (SAVI), the Difference Vegetation Index 

(DVI) and the Ratio Vegetation Index (RVI)) were identified (n = 13) and used to construct the 

current SOC estimation model (2021).  

7.2.2.2. Topo-climate metrics and climate scenarios 

Topographic and climatic factors, which can widely vary, have been documented as important 

determinants of SOC variability (Li et al., 2018; Fissore et al., 2017; Wang et al., 2012). 

However, temporally,  studies by Liu et al., (2021), Huang et al., (2019), Gray & Bishop 

(2016), and Yigini & Panagos (2016) have shown topographical variables to remain relatively 

stable over time. Hence, using information obtained from previous investigations by Odebiri 

et al., (2020b), the study identified eight influential terrain metrics that characterise the study 

area (i.e. Slope, Elevation, Aspect, Topographic Wetness Index (TWI), General curvature, 

Catchment Area, Profile curvature and Direct insolation). These variables were derived from 

a Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) using 

the SAGA GIS (2.3.2) and ArcGIS Pro 2.8 software and incorporated into both the current 

(2021) and future (2050) SOC models. 

Both current and future climate representative data (mean annual rainfall and temperature) for 

South Africa were obtained from the one square kilometre (1km2) 30 arc-seconds spatial 

resolution of the WorldClim database (http://www.worlclim.org/). For future SOC projections, 

the model was run using an average of five WorldClim General Circulation Models (GCM) 

(i.e. CNRM-CM61-1, CanESM5, GFDL-ESM4, ACCESS-ESM1-5, and INM-CM5-0) under 

four Shared Socio-economic Pathways (SSPs): 126 (low emission pathway), 245 (low-to-

moderate emission pathway), 370 (moderate-to-high emission pathway) and 585 (high 

emission pathway) (Liu et al., 2021; Caddeo et al., 2019; Gray & Bishop 2016).  

7.2.2.3. Projected land cover  

Changes in land cover has been documented by several studies to considerably influence SOC 

sequestration and storage capacity (Lamichhane et al., 2019; Swanepoel et al., 2016; Amanuel 

et al., 2018). Subsequently, this study used a projection procedure outlined by Kamaraj and 

Rangarajan, (2022) to develop South African land use maps for the years 2021 and 2050. The 

projection process involved first obtaining past and present (i.e., 2014, 2018 and 2021) land 

cover maps from the South Africa National Land-Cover Map’s (SANLC) online portal 

(https://egis.environment.gov.za/gis_data_downloads). These maps (with an average accuracy 

of >80%) were developed from robust satellite imagery over a multi-temporal time period. 
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testing purposes. The DNN was calibrated ten times to ensure that each data point was used for 

validation at least once. The "adam" optimizer, the ReLU activation function, 500 epochs, and 

six hidden layers were utilized for the best output after employing a random search hyper-

parameter optimization with 10-fold cross-validation. For the development of the future SOC 

prediction model (2050), the projected WorldClim climatic scenarios, topography and the 

projected land cover map (2050) were substituted for the variables used within the previous 

DNN model. The DNN model is schematically represented within the base model phase 

workflow in Figure 7.2. See Odebiri et al., (2022a), for more detailed explanation of the DNN 

model, including a mathematical representation and the hyper-parameter tuning method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Soil organic carbon prediction and projection workflow 

7.2.4. Model evaluation and uncertainty 

The root mean square error (RMSE) and coefficient of determination (R2) were used in this 

study to assess the fit and generalization of the DNN models. These evaluation metrics are 

expressed by the equations below: 

    RMSE =  √∑   (XO,i – XP,i  )
2n

i=1

n
                                                                                          (2)                                                                              
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R2 = 1 – [
∑    (n

i=1  XO –p)2

∑   (n
i=1 XO – O′)2]                                                                                          (3)                                                                                     

 

Where n = number of observations, XO and XP = measured and anticipated SOC 

values respectively. The averages of the measured and estimated SOC are represented by O’ 

and P, while the variances of observed and predicted values are represented by σo and σp. 

Thereafter, to ensure that the DNN model was free of sampling bias, a ten-fold cross-validation 

techniques was used. The data was separated into ten groups and assigned to calibration and 

validation data in a sequential order so that each variable was used at least once.  

The SHapely Additive exPlanations (SHAP) methodology was then used to assess the 

importance of each predictor variable to the DNN model's overall performance (Pentoś 2016). 

The SHAP technique operates by assigning a specific magnitude of importance to each 

predictor variable with the DNN output model using its "DeepExplainer," feature. The SHAP 

method was chosen due to its robust global and local interpretability as compared to other 

techniques (for more on SHAP, see Lundberg and Lee, 2017).  

To predict future (2050) SOC stock, the covariates of the present (2021) predictors within the 

DNN architecture was replaced with the projected covariates using the Space-For-Time 

Substitution (SFTS) assumption. As such, a total of eleven covariates including eight terrain 

metric, two climatic metrics and the projected land cover map for South Africa was used to 

simulate the SOC pattern for the year 2050 under four different Shared Socio-economic 

Pathways (SSPs). 

7.3. Results  

7.3.1. Model performance and current SOC stocks in South Africa 

A total of 24 different spectral, topo-climatic and land-use variables were input into a deep 

neural network algorithm to model current (2021) SOC stock inventories in South Africa. After 

10-fold cross-validation, the best SOC model produced an R2 value of 0.7102 and an RMSE of 

7.44 t/h (18.73 % of the mean) (Figure 7.3a). Thereafter, the SHAP procedure identified 10 

significantly important variables (with a SHAP value ≥ 2) for determining SOC variability 

(Figure 7.3b). These included: Rainfall, Normalised Difference Vegetation Index (NDVI), 

Band 8 (665 nm), Elevation, Land cover, Temperature, Enhanced Vegetation Index (EVI), 

Slope, Band 11 (708.25 nm) and the Topographic Wetness Index (TWI). Figure 7.4 shows the 

spatial distribution of current (2021) SOC stocks across South Africa. This model highlights 

that South Africa currently has approximately 5.64 Petagrams (Pg) of total SOC stocks within 
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its soils. SOC concentrations range from 0 to 147.24 t/h, with the majority of SOC densely 

situated along South Africa’s eastern coastline and adjacent interior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. (A) correlation between the predicted and observed soil organic carbon (SOC); (B) 

importance ranking of predictors used for the simulation of SOC across South Africa  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Map showing the current (2021) spatial distribution of SOC stocks across South 

Africa developed from the Deep Neural Network (DNN) model 
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projections (Caddeo et al., 2019; Gray and Bishop, 2016; Wiesmeier et al., 2016). For instance, 

both Caddeo et al., (2019) and Wiesmeier et al., (2016) predicted future SOC to decline within 

parts of Europe, with Wiesmeier et al., (2016) documenting substantial SOC losses of between 

11 and 16%. Meanwhile in the Southern Hemisphere, Gray and Bishop (2016) estimated that 

New South Wales in Australia will lose approximately 8.7 Mg ha-1 of SOC over the next 50 

years because of climate change. This disruption in SOC stocks could be attributed to various 

climatic and land-use transformations over time, as the accumulation and storage of SOC is 

often dependent on an environment’s exposure to specific topographic, climatic and land-use 

conditions (Lal, 2009). Coincidently, specific climatic extremes (such as elevated temperatures 

and lower rainfall) that are driven by global warming, may push ecosystems towards a lower 

SOC equilibrium (Padarian et al., 2021; Melillo et al., 2017; Crowther et al., 2016). 

Specifically, we postulate that the dry semi-arid conditions, which are accompanied by extreme 

temperatures and prolonged periods of drought (a characteristic of the Northern, Western and 

Eastern Cape provinces) may over time expand towards the eastern interior of the country, 

significantly altering sensitive ecosystems and reducing SOC (Figures 7.4 and 7.5). For 

example, South Africa’s eastern regions receive considerably more rainfall (> 600 mm) than 

the arid west (< 300 mm). With these disparities set to increase with global warming, lower 

rainfall will substantially affect soil moisture, vegetation density and litter decomposition in 

these areas, resulting in lower SOC sequestration (Odebiri et al., 2020b). Moreover, relatively 

shallow sandy soils with little water retention capacity and wind erosion (dunes), may further 

constrain SOC accumulation within South Africa’s western regions. This may be compounded 

by an increase in shrublands, which are more resilient to climate change but have lower SOC 

sequestration capacity (Figure 7.1).  

Nevertheless, the biggest contributor to SOC loss is land-use disturbance (Garcia-Pausas et al., 

2007; Ramesh et al., 2019; Were et al., 2015). Although 45 % of South Africa's SOC has 

already been lost to intensive agriculture (Du Preez et al., 2011), croplands are projected to 

expand by 5191.54 km2 over the next 30 years (Table 7.3). An increase in large-scale intensive 

agriculture will significantly deplete SOC stocks (Lal, 2004; Olsson & Ardö, 2002). Earlier 

studies by Du Toit et al., (1994), and Du Toit & Du Preez, (1995), highlighted the impact of 

agriculture on SOC stocks in South Africa, with warm dry regions, where soil temperatures 

would impact the microbial mineralization of carbon, becoming more susceptible to SOC loss. 

Consequently, as agricultural activities intensify and climate change results in regions 

becoming more arid, greater SOC loss is undoubtedly anticipated. Despite this, other studies 
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(i.e. Yigini and Panagos , 2016; Lugato et al. 2014; ÁLvaro‐Fuentes et al., 2011) have 

projected SOC stocks to increase as a result of enhanced Net Primary Productivity (NPP). 

These differences suggest that projected SOC stocks might be location-specific and may be 

influenced by the predominant environmental drivers of SOC and management systems within 

that region (Jost et al., 2021). Furthermore, the accuracy of these projections is dependent on 

the robustness of the data and modelling procedure used (Makridakis, 1993). Overall, the 

anticipated SOC stock losses could impact soil fertility and ecosystem resilience, further 

exacerbating climate change. Consequently, comprehensive land-use planning frameworks that 

are supported by soil monitoring programs with integrated early warning indicators are 

required to secure future SOC stocks and safeguard ecosystem longevity (Bagstad et al., 2013).    

7.4.2. Assessment of current and future SOC stocks across major South African land uses 

An evaluation of current and future SOC stock distribution across South Africa major land uses 

was conducted. Results showed that SOC stock concentrations corresponded to the amount of 

land occupied by each class between the different temporal periods. For instance, grasslands 

and shrubland, which currently represent 54,33 % of South Africa’s total land mass, accounted 

for more than 50% of the total SOC stock (5.64 Pg) in 2021. Meanwhile in 2050, despite overall 

SOC stocks decreasing to an average of 5.18 Pg across the different emission pathways, these 

regions are expected to expand their overall coverage to 55,68 % and account for approximately 

55% of future SOC stocks (2.845 Pg) (Table 7.4). Grasslands are comprised of diverse grasses, 

graminoids and forbs that facilitate SOC production through continuous organic litter 

decomposition (Du Preez & Snyman, 1993; Mills & Fey, 2003). In addition, the deep-rooted 

underground storage of these ecosystems may shield future SOC stocks from the effects of 

climate change (Ward et al., 2016). Conversely, shrublands, which predominately occupy 

South Africa’s arid regions, are comprised of mostly Spekboom (Portulacaria afra) which 

enhanced its SOC sequestration capabilities (Mills et al., 2015). These drought-resistant plants, 

with rapid growth rates and high litter outputs have the potential to sequester 168 t C ha-1 of 

SOC and cope with future climate variations (Mills and Fey, 2004). Similarly, croplands 

showed an increase in SOC stocks between 2021 and 2050 (Table 7.4). This increase in SOC 

could be tied to the increased use of fertilizer and irrigation to bolster productivity and facilitate 

food security (SANLC, 2020). In contrast, forested areas, vegetation in built-up areas and 

barren land showed a reduction in future SOC stocks (Table 7.4). This change could be the 

result of a reduction in overall coverage, as escalating urbanization and agricultural conversion 

may drive future land-use transformation (Figure 7.1, Table 7.3). For instance, according to an 
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assessment by Global Forest Watch (https://www.globalforestwatch.org/) on natural forest and 

tree cover, South Africa lost approximately 11 200 hectares of natural forest between 2002 

and 2020 to deforestation. Correspondingly, South Africa is set to lose an additional 14 810.09 

km2 of forest over the next few decades (Table 7.3), eliminating 0.265 Pg from the overall SOC 

pool.   

To assist policymakers in adjusting SOC management frameworks, the study also investigated 

the temporal fluctuation of carbon sequestration rates between the different land cover types in 

South Africa. Most land cover classes, however, demonstrated a reduction in carbon 

sequestration potential across the different emission pathways over time (Table 7.5). For 

example, the SOC sequestration rate of grasslands will decrease from 30.72 t/h in 2021, to 

between 26.05t/h and 29.62t/h by 2050 (Table 7.5). This reduction in SOC sequestration rates 

within grasslands is likely the result of grassland degradation induced by increased livestock 

grazing. According to Dlamini et al., (2014), SOC stocks in the highly grazed highlands of 

KwaZulu-Natal, South Africa, have declined by almost 90%. Unfortunately, a further 1.2 % to 

4.2 % of grassland SOC supplies are expected to be lost to overgrazing globally (Dlamini et 

al., 2014). Both natural and commercial forests, however, exhibited an increase in sequestration 

rates despite a reduction in overall coverage (Table 7.3 and 7.5). A longer rooting residency 

and the high canopy coverage of forests may have increased SOC sequestration capacity, which 

might have been facilitated through an accelerated soil metabolism from continuous litter fall 

and dead matter (Muchena, 2017). Additionally, climatic changes may have prompted an 

increase in net primary productivity within these ecosystems (Zhu et al., 2007). However, SOC 

accumulation can only be sustained for a specific period due to a natural carbon storage 

threshold (Padarian et al., 2021).  

To safeguard SOC stocks, governments and policymakers need to adjust existing management 

protocols and policies to maintain and rehabilitate degraded ecosystems (Douglass et al., 2011; 

Woomer, 1993). For instance, improved farming methods (such as crop rotation, agro-forestry, 

and fallow systems) as well as grassland regeneration through better management practices 

have been recommended as ways to increase sequestration rates (Ajani et al., 2013; Bangroo 

et al., 2013). Moreover, carbon accounting projects, such as the Kenyan Agricultural Carbon 

Project, may encourage sustainable and climate-friendly farming techniques that support soil 

carbon sequestration (Makambo & Kisaka, 2017). 
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7.4.3. Evaluation of Model performance  

The DNN model used in this study performed well in mapping current (2021) SOC stocks at a 

national level, with an overall accuracy of R2 = 0.7102 and an RMSE of 7.44 t/h. This is an 

improvement on the national SOC models previously produced by Venter et al., (2021) (R2 = 

0.659) and Schultze & Schutte (2020) (R2 = 0.203), which used the random forest algorithm 

and field-level SOC median calculation approaches. This difference is likely due to the DNN 

model's ability to learn and extract more representative characteristics from SOC data via its 

multiple hidden layers of neurons (Ma et al., 2019). DNN can also successfully simulate the 

dynamic interrelationship between SOC and other variables, capturing any potential 

relationships (Yuan et al., 2020). Lastly, the estimated total SOC stocks of 5.64 Pg produced 

by the DNN model is comparable to findings by Venter et al., (2021). Venter et al., (2021) 

calculated approximately 5.59 Pg of total SOC for South Africa. This difference of 0.05 Pg, 

may be caused by discrepancies in the total area mapped (about 1.18 to 1.2 million km2), quality 

of soil data used, as well as the algorithms adopted.  

The future SOC projections, however, displayed a reduction in accuracies (from R2 = 0.598 – 

0.643 and RMSE = 11.37 t/h – 13.56 t/h) across all four Shared Socio-economic Pathways 

(SSPs SSP126, SSP245 and SSP370) developed from the average of five different climatic 

models (i.e. CNRM-CM61-1, CanESM5, GFDL-ESM4, ACCESS-ESM1-5, and INM-CM5-

0). The absence of spectral data (Sentinel 3 metrics) for the modelling of future SOC stocks, 

however, could be one of the most evident reasons for the decline in accuracy. The importance 

of spectral data to SOC mapping has been noted in the literature, particularly in the VIS-NIR 

wavelength range of the electromagnetic spectrum, which gives essential reflectance 

information on SOC and is regarded the most sensitive region to determine SOC content 

(Odebiri et al., 2022a, Lin et al., 2020, Bilgili et al., 2010). This is also supported by our 

findings, which revealed that Sentinel-3 spectral metrics and their derived vegetation indices, 

such as Band 8 (665nm), NDVI, EVI, and Band 11 (708.25nm), were among the top 10 most 

important variables for current (2021) SOC stock distribution (Figure 7.3B). These spectral 

variables have been documented to be sensitive to vegetation properties, such as biomass and 

chlorophyll content (Odebiri et al., 2021a; Zhang et al., 2019). These variables are considered 

important in SOC mapping due to the direct correlation between vegetation and SOC 

concentration (Taghizadeh-Mehrjardi et al., 2020). Nevertheless, the accuracies obtained for 

future SOC models may be considered acceptable, especially given that to the best of our 
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knowledge, these projections provide the first ever glimpse into the future of South African 

SOC stocks, particularly at a national level.  

7.5. Conclusion 

To assist relevant stakeholders in coping with rapid environmental and anthropogenic change 

and to provide an updated perspective on South Africa’s SOC stock inventories, we input 

simulated climatic, and land-use conversion scenarios into a deep neural network to model 

spatial and temporal changes in SOC across South Africa’s key land-uses to the year 2050. 

Results demonstrated a reduction in overall SOC stocks over the next 28 years, with South 

Africa set to lose an average of 0.46 Pg of SOC to land-use and climate changes. In addition, 

South Africa is projected to lose an additional 14 810.09 km2 of forest cover over the next few 

decades, significantly impacting SOC sequestration rates. Moreover, the SHAP technique 

identified Rainfall, NDVI, Band 8 (665 nm), Elevation, Land cover, Temperature, EVI, Slope, 

Band 11 (708.25 nm) and TWI to be among the top ten most important explanatory variables 

for SOC stock distribution. The knowledge generated by this study is critical for informing 

national policies, rehabilitation, restoration, and intervention efforts aimed at mitigating 

climate change and improving soil quality. Nevertheless, DL frameworks are still constrained 

by the need for big data and high computing power. Consequently, although the DNN model 

performed relatively well for a large-scale mapping endeavour, more detailed soil inventory 

data across different land cover categories are needed at a regional scale to supplement soil and 

pedological datasets and alleviate potential overestimation issues. Future research could benefit 

from investigating the capability of higher spatial resolution sensors, as well as the addition of 

new datasets for SOC projections.  
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7.6. Summary  

The effects of simulated climate and land-cover change on SOC inventories across South Africa 

were modelled in this chapter until the year 2050. To model present SOC content, a digital soil 

mapping technique was employed in conjunction with a deep neural network (DNN). Following 

that, future SOC stocks were calculated using WorldClim global circulation models and a 

space-for-time substitution (SFTS) method for four common socio-economic emission paths. 

Depending on these emission rates, future SOC inventories are projected to decrease over the 

next few decades. Moreover, essential ecosystems which support overall SOC accumulation 

(such as forests) are projected to decrease in size by the year 2050, substantially impacting 

regional SOC sequestration capabilities. These findings offer insight into the existing and 

future state of South Africa's SOC stock inventories, as well as the impact of climate and land-

use change. The final chapter contextualizes all of the research findings while proposing 

recommendations for future research, having acknowledged the importance of the conclusions 

and deductions offered within this thesis. 
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Chapter Eight: 

The application of deep learning for remote sensing of soil organic carbon 

stocks distribution in South Africa: A Synthesis 

8.1. Introduction  

Soil organic carbon (SOC) is the world's largest terrestrial carbon store, and its response to land 

use and management makes it an attractive prospect for carbon sequestration (Padarian et al., 

2021; Wang et al., 2018; Minasny et al., 2017). Soil organic carbon as a proxy for soil organic 

matter content is also a major determinant of soil quality and soil fertility (Zhao et al., 2021; 

Batjes et al., 2020). Its sequestration can contribute substantially to climate change mitigation 

as current estimates suggests that soils to 1 m depth hold approximately 74% of the total 

terrestrial carbon stocks (Köchy et al., 2015; Batjes et al., 2017). Consequently, many global 

initiatives to mitigate climate change and land degradation  are increasingly relying on accurate 

and detailed SOC inventories at (sub) national levels (Sahoo et al., 2019; Mishra et al., 2019). 

In addition, SOC stocks is recognized as one of the three Land Degradation Neutrality (LDN) 

indicators used by the United Nations Convention to Combat Desertification (UNCCD), 

necessitating an agreement among UNCCD stakeholders to report on SOC stock trends at 

regular time intervals (UNCCD, 2019). Given these significances, and the realization that even 

marginal SOC stocks increase translates to globally relevant magnitude of carbon, quantifying 

the spatial heterogeneity of SOC stocks at national and global scales, as well as its 

environmental controllers is necessary (Mishra et al., 2019). Besides, sufficient understanding 

of national and global SOC estimates, trends, and distribution will be crucial for devising 

appropriate SOC management methods to improve carbon assimilation and meet the IPCC and 

Kyoto Protocol targets (IPCC 2016; Ndalowa 2014). 

Based on the recent advances in digital soil mapping (DSM), which involve the use of remote 

sensing and other ancillary data together with spatial explicit models, modelling and 

monitoring of SOC at regular intervals is now achievable and less tedious when compared to 

traditional methods of SOC determination (Heuvelink et al., 2021; Owusu et al., 2020; 

Padarian et al., 2019).  The multiplication of different image datasets characterized by low-

moderate-high temporal, spatial and spectral resolutions, presents an opportunity to map SOC 

at different spatial extents (Hamida et al., 2018; Odindi et al., 2016; Mutanga et al., 2015). In 

addition, the use of advanced modelling algorithms like deep learning (DL) with proven ability 

to extract invariant and abstract features from image datasets leading to better discrimination 
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capabilities, could permit a more reliable quantification of different environmental properties 

including SOC (Wadoux et al., 2019; Zhang et al., 2019; Litjens et al., 2017). DL models can 

accurately approximate the complicated non-linear relationship between SOC and 

environmental covariates, thus capturing the potential association between them (Yuan et al., 

2020). Therefore, this study explored deep learning-based strategies for a national scale 

analysis of  remote sensing data to predict SOC stocks distribution across South Africa, which 

then creates an effective framework for continuous national and global monitoring and 

management of soil organic carbon. 

8.2. Conclusions 

The essence of this study was to explore the utility and performance of deep learning (DL) 

approaches in concert with new generation remotely sensed data and environmental variables 

in estimating and mapping South Africa’s soil organic carbon (SOC) stocks. The results of this 

study have shown that the use of remotely sensed environmental variables, new generation 

multispectral sensors and image processing techniques, integrated with advance non-

parametric algorithms like DL, can accurately improve SOC estimations, particularly at a large 

spatial scale. Based on these findings, the following conclusions are drawn: 

a) Based on the literature, remote sensing (RS) is a great tool for large-scale SOC 

mapping, a previously difficult task using typical laboratory SOC determination 

methods. The value and performance of RS data are also highly dependent on the 

algorithm used. Deep learning (DL) strategies based on neural networks are superior to 

geostatistical and other traditional machine learning (ML) models in terms of 

implementation and utility. Although DL models have had some success with 

hyperspectral RS data, their usage for multispectral data analytics is still in its infancy 

and requires further refinement. Furthermore, its application for SOC mapping, a vital 

climate change mitigation measure, has seen little progress, particularly in Africa. 

b) The free and widely available Sentinel-3 Ocean and Land Colour Instrument (OLCI) 

multispectral sensor, with higher spectral resolution (21 bands between 400-1020nm), 

shorter revisit time (less than 2 days) large swath width (1270 km) and improved signal-

to-noise ratios, provides an invaluable primary data source for accurate country-scale 

SOC estimation, especially in data-scarce environments. Moreover, the DNN model 

outperformed other traditional machine learning (ML) models, with NDVI, Red band 



143 
 

8 (665 nm), Red-edge band 11 (708.25 nm), EVI, and RVI being the best explanatory 

factors for SOC stock distribution in South Africa. 

c) The distribution of SOC stocks across seven key South African land uses revealed that 

SOC accumulation is directly related to landscape size, with grassland landscapes 

having the highest SOC deposition and urban vegetation having the lowest. However, 

the mean SOC density of forest regions, both natural and commercial, revealed the 

highest sequestration rates. 

d) The hybrid DL model (Concrete Autoencoder-Deep Neural Network (CAE-DNN)) 

which combines the integration of spectral bands and vegetation indices with multiple 

environmental variables (i.e. climate, topography and land use) can be used to improve 

the prediction of SOC stocks across the major nine South African biomes. The CAE-

DNN optimal variable selection technique and regression provides a better SOC 

retrieval accuracy improvement compared to popular classical ML feature selection 

strategy. Results from analysis also indicated that the accumulation of SOC in different 

biome is directly proportionate to the size of the biome, with the exception of the 

grassland biome whose SOC accumulation is greater than the Savanna biome, despite 

the latter being larger in size. The forest and Indian ocean coastal belt biomes, despite 

their smaller footprint showed the highest sequestration rates, while the desert biome 

showed the least. 

e) Future SOC projections and potential change detections are viable through the 

combination of DL-based Digital soil mapping (DSM) strategy together with the 

principle of space-for-time substitution (SFTS), where current covariates are exchanged 

with projected future covariates (climate and land use) in the model to forecast SOC 

stocks. The general decline in the projected SOC stocks from the current accumulation 

together with the complexities associated with different land use classes evaluated as 

obtained from the result, is a testament to the inadequacy and efficiency of the current 

SOC management strategies and policies in South Africa.  

f) Overall, all the categories of environmental variables used in this study including 

spectral information, topo-climate and land use metrics were all important to SOC 

stocks simulation. The most important 20 covariates for mapping and modelling SOC 

stocks in South Africa were Rainfall, NDVI, Sentinel-3 Red band 8 (665 nm), Sentinel-

3 Red-edge band 11 (708.25 nm), Elevation, Land use, Temperature, TWI, EVI, RVI, 
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Slope, SAVI, DVI, Sentinel-3 NIR band 13 (761.25 nm), Sentinel-3 NIR band 17 (865 

nm), Sentinel-3 NIR band 18 (885 nm), Sentinel-3 NIR band 19 (900 nm), Sentinel-3 

Blue band 7 (620 nm), Sentinel-3 Blue band 6 (560 nm) and General Curvature. This 

study underscores the utility of DL-based remotely sensed data in providing invaluable 

data set for regional and global SOC stocks accounting.  

8.3. Challenges and limitations 

Although deep learning (DL) models have shown success in a variety of remote sensing 

applications, including SOC modelling, they face a number of challenges that limit their utility. 

Following a thorough review, we established that large sample size requirements, 

computational time, interpretability, end-user technical know-how, large storage capacity 

requirements, and the tendency to over-fit, are some of the factors limiting the use of DL 

architectures. Moreover, there is variation in the results/accuracy where these strategies have 

been utilized. This could be attributed to discrepancies in calibration data selection as well as 

SOC variation in the study areas, as SOC is a dynamic phenomenon that varies by region. As 

such, there is currently no widely acknowledged calibration procedure for SOC retrieval 

(Lamichhane et al., 2019).  

The quality of soil profile data used in this study was a major challenge due to the use of legacy 

soil inventory data which span across different times and seasons with different sampling 

sources, depth, and the method of SOC concentration determination. In addition, some 

predictor variables may not accurately represent current conditions. For example, bio-climatic 

factors (i.e. rainfall and temperature) used in this study represent the average values from the 

year 1970 to 2000. Also, these variables are interpolated datasets from the global weather 

stations and developing countries particularly in Africa, do not have reliable weather stations, 

thereby producing a generalized description of environmental variability. Similarly, spatial 

information from various sources (in our case, Sentinel-3 — 300 m, SRTM DEM — 90 m, 

WorldClim — 1km and Land use map — 20 m) do not have the same resolution. Resampling 

datasets into the same spatial resolution may lead to uncertainties. All these limitations and 

challenges will may reduce the quality of the simulation process by reducing overall accuracy. 

Notwithstanding the spatial uncertainty of the target SOC data as aforementioned, the DNN 

model used in this study provided a decent outcome, demonstrating its robustness in modelling 

complicated data, particularly at a national scale.  
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8.4. Recommendation and future prospects 

To the best of our knowledge, this is the first deep learning-based remote sensing modelling of 

soil organic carbon (SOC) stocks in South Africa. The study produced the best national SOC 

distribution maps with the highest accuracy when compared to other studies. It is also the first 

study to include potential future SOC maps (2050), revealing a general decline in SOC stocks 

from current levels which is critical for evaluating current SOC management practices and 

policies. The study findings also highlighted the role of SOC in the global carbon cycle, which 

could serve as a foundation for conservation strategies aimed at facilitating the effective and 

long-term use of soil in various settings. In addition, the findings of this study demonstrated 

that deep learning-based remote sensing methodologies provide a reliable and robust primary 

data source, as well as a powerful analytical algorithm for quantifying and mapping SOC 

stocks. Similarly, the results also provide critical information to the remote sensing community, 

ecologists, and environmentalists about the use of free and easily available sensors for effective 

SOC stock monitoring. This is particularly significant in data-poor regions, where the adoption 

of high-resolution aerial and hyperspectral sensors is still difficult due to the related costs. This 

study, therefore, suggests the following recommendations and future prospect: 

a) Because of its complexity, DL models necessitate a high sample size. However, most 

studies are constrained by small field (in situ) samples. Furthermore, cloud cover and 

insufficient ground data limit the amount of samples in remote sensing datasets, 

resulting in missing satellite data. The Transfer Learning technique proposed by 

Goodfellow et al., (2016) could be used to overcome this problem. This approach works 

by adjusting DL model parameters of a formally trained large dataset with smaller 

samples for optimum implementation on the new task. Additionally, while we 

recognize that DL models require a significant amount of computational power and 

large datasets to function properly, recent advances in computing power and storage, as 

well as innovations like cloud computing and analytical APIs like Google Earth Engine, 

may overcome these constraints. 

b) Although this study solely made use of Deep Neural Network (DNN) model for 

regression and Concreate Autoencoder (CAE) for feature selection, future studies can 

compare the trade-off between the DNN and other powerful DL architecture such as 

Convolutional Neural Network (CNN) and Deep Belief Networks (DBN) in terms of 

accuracy and time of training.  
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c) Although the Sentinel-3 data utilized in this study yielded relatively satisfactory results, 

future studies should compare and evaluate Sentinel 3's performance against other 

freely available multispectral sensors with higher spatial resolution, such as Sentinel-2, 

Landsat-8, and Landsat-9. As a result, end-users may be able to select the appropriate 

image datasets for different mapping scales. However, users should note that while 

employing DL, the higher the image spatial resolution and area coverage, the more 

computing power (such as GPUs) is required. 

d) Future research could include the use of Light Detection and Ranging (LIDAR) and the 

freely available Sentinel-1 Synthetic Aperture Radar (SAR), both which have yet to be 

fully explored for DL-based SOC retrieval. LIDAR provides higher-spatial resolution 

data than SRTM DEMs, which could be useful for DL models. Nonetheless, the high 

LIDAR cost, the need for ground data for calibration, and impracticability in some 

remote areas, particularly in Africa, are some of the challenges to its widespread use. 

Sentinel-1, on the other hand, can be used as a substitute for LIDAR in DL RS-based 

SOC mapping due to its low cost and relatively high resolution. Similarly, the 

application of DL-based unmanned aerial system (UAS) platforms for SOC mapping 

has yet to be investigated. The UAS platforms are cheaper and allow for excellent data 

collection settings. However, because it is difficult to employ UAS over a vast spatial 

extent, its usage may be limited by coverage. 

e) Subsequent studies can incorporate the fusion of different remotely sensed data types 

to improve accuracy. In remote sensing applications, image fusion is typically used to 

create a single image with higher spectral and spatial resolution. For example, 

combining Sentinel-2 and Sentinel-3 to improve accuracy by taking full advantage of 

their spatial and spectral resolutions respectively. Similarly, SAR imaging fused with 

any of the freely accessible multispectral sensors could improve SOC stock prediction 

results. SAR imagery is made up of two satellites that carry C-band synthetic aperture 

radar sensors and are very sensitive to several soil qualities, including SOC. SAR also 

offer continuous images without being influenced by clouds, a typical issue with 

multispectral sensors. 

f) This study's future SOC estimates (2050) were made using projected climate and land 

use, as well as topographical metrics, without using spectral information/vegetation 

indices like NDVI, which has been shown to be crucial for SOC mapping. Subsequent 
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studies can consider including relevant spectral derived vegetation indices like NDVI 

by leverage on their present and historical conditions to project to the desired future 

and thereafter used as part of the covariates to perform future potential SOC modelling, 

hence improving accuracy. 

g) Although the DNN model performed quite well in this study, despite the spatial 

uncertainty of the legacy soil data used, we recommend that the South Africa 

government and research agencies fund standardized soil inventory schemes where 

quality data unique to distinct land use types and biomes is gathered and made available 

for SOC modelling efforts. 

h) Finally, while we applaud and encourage efforts to rehabilitate degraded ecological 

areas, we caution against initiatives to convert other naturally existing land uses into 

forests in order to boost SOC sequestration in response to the global carbon market. 

Altering the natural status of other important ecosystems could be harmful to 

biodiversity and counterproductive. For instance, converting natural grassland regions 

to forest areas may not be ideal, because grasslands, unlike other landscapes, store most 

of their accumulated carbon in the soil, making them more tolerant to disasters like 

wildfires. 
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