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Abstract 

This study intends to recover and expand the analyt ical work of Vadasz (1998) for linear 

and weak non-linear stability of a rotating porous media heated form below and subject to 

gravity and Conolis forces. It is shown that the viscosity has a destabilising effect at high 

rotation rate. It has been established that the critical wave number in a plane containing 

the streamlines is dependent on rotation. Finite amplitude calculations provide a set of 

differential equations for the amplitude and phase, corresponding to the stationary and 

over-stable convection, identifying the post-transient conditions that a Ouid is subject to, 

i.e. a pitchfork bifurcation for the stationary case, or a Hopf bifurcation in the case of 

over-stable convection. The previous model (Vadasz [1998]) was extended with an 

additional time scale in order to represent amplitude fluctuations and a short space scale 

to include horizontal modes of oscillations. When the complete solution for the stream 

function or temperature is analysed, where left and right travelling waves are considered, 

we obtain a set of differential equations for the amplitude and phase. The solutions are 

discussed in this context 



1. Introduction 

1.1 Motivation 

The study of flow in rotating porous media is motivated by its practical applications in 

geophysics and engineering. Flows in porous geological formations subject to earth 

rotation, the flow of magma in the earth mantle close to the earth crust (Fowler [2]) 

represent examples of geophysical applications. Among the applications of rotating flow 

in porous media to engineering disciplines, one can find the food process industry, 

chemical-processing industry, centrifugal filtration processes and rotating machinery. 

More specifically. packed bed mechanically agitated vessels are used in the food 

processing and chemical engineering industries in batch processes. The packed bed 

consists of solid panicles of fibres of material , which form the solid matrix while fluid 

flows through pores. As the solid matrix rotates, due to mechanical agitation, a rotating 

frame of reference is a necessity when investigating these flows. The role of the flow of 

fluid through these beds can vary from drying processes to extraction of soluble 

components from the solid particles. The molasses in centrifugal crystal separation 

processes in the sugar mill ing industry and the extraction of sodium alginate from kelp 

are just two examples of such processes. 

Modelling of flow and heal transfer in porous media is also applied for the design of heat 

pipes using porous wicks and includes effects of boiling in unsaturated porous medium. 

surface tension driven flow with heat transfer and condensation in unsaturated porous 

media. 
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With the emerging utilisation of the porous medium approach in non traditional fields, 

including some applications in which the solid matrix is subjected to rotation (like 

physiological processes in human body subject to rotating trajectories, cooling of 

electronic equipment in rotating radar. cooling of turbomachinery blades, or cooling of 

rotors of electric machines) a thorough understanding of the flow in rotating porolls 

medium becomes essential. Its results can be used in the more established industrial 

applications like food processes, chem ical engineering or centrifugal processes, as well as 

to the aforementioned non-traditional applications of the porous medium approach. 

Additional recent applications of the porous media approach are the flow of liquids in 

biological tissues like the human brain, the cardiovascular flow of blood in human heart 

or other physiological processes, pebble-bed nuclear reactors and cooling of turbine 

blades in the hot portion of the turbo-expander. 

Regarding the last application, such a cool ing process enables the expander inlet gas 

temperature to increase beyond the allowed metal temperature, bringing a significant 

contribution to the cost-effectiveness of the expander. The cooling process occurs by 

injecting air through channels in the internal part of the blade. As long as the geometry of 

the channels is not too complicated the traditional heat transfer approach can be applied 

to evaluate the cooling performance. However, for complicated channel geometry the 

porous medium approach will prove again the most effective way of simulating the 

phenomenon. 
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The macro-level porous media approach is gaining an increased level of interest in 

solving practical fluid fl ow problems, which are too difficult to solve by using a 

traditional micro-level approach. As such DirecI Chill (DC) casting models apply the 

Darcy law to predict the heat transfer, fluid flow and ultimately the thermal stresses in the 

solidified meta l. Another important application ofrOlating flows in porous media is in the 

design of a mUlti-pore distributor in a gas solid fluidi sed bed. A multi-pore distributor is a 

device, which is constructed from foraminous materials, wires compacts, filter cloth, 

compressed fibres, sintered metal or such like. 

2. Litera ture survey 

The main reason behind the apparent lack of interest of this type of flow is probably the 

fact that iSOlhennal flow in homogeneous porous media following Oarcy's law is 

irrotational (Bear [20]) hence the effect of rotation on this flow is not significant. 

However, for heterogeneous medium with spatial dependent permeability or for free 

convection in a non-isothermal homogeneous porous mediwn, the flow is not irrotational 

any more hence effects of rotation become significant. In some applications, these effects 

can be small, e.g. when the porous media Ekman number is high. Nevertheless, the effect 

of rotation is of interest as it may generate secondary flows in planes perpendicular to the 

main flow direction. Even when these secondary flows are weak, it is essential to 

understand the ir source, as they might be detectable in experiments. To support this 

claim, it is sufficient to look at the corresponding rotating flows in pure liquids (non-
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porous domains). There the Ekman number controls the Coriol is effect and secondary 

motion in planes perpendicular to the main flow direction. Experiments (Hart [21] . 

lohnston , Haleen and Lezius [22] and Lezius and lohnston [23]) showed that this 

secondary motion is detectable . even for very low or very high Ekman numbers although 

the details of this motion may vary considerably according to pertaining conditions. It is 

therefore expected to obtain secondary motion when a solid porous matrix is present in a 

similar geometric configuration, although its details carUlOl be a priori predicted based on 

physical intuition only. This creates a strong motivation to investigate the effect of 

rotation in isothermal heterogeneous porous media. For high angular velocity. or 

extremely high permeability, conditions pertaining to some engineering appl ications. the 

Ekman number can become of unit order of magnitude or lower and then the effect of 

rotation becomes even more significant. The same motivation applies for investigating 

the effect of rotation on free convection in porous media. 

Multi-pore distributor designs have been investigated in applications of rotating porous 

media (Whitehead [3]). Research results (Davidson and I-Iarrison [4]) showed that the 

porous distributor allowed a more even expansion of the bed than the other distributors 

and its design affected the behaviour of the bed over most of its height. An even 

distribution of the gas is necessary to avoid instability in the fluidised bed, which can 

break down proper fluidisation. A commonly used solution to avoid maldistribution of 

gas and bed instabil ity is cyclic interchange fluidisation (CIF) (Kvasha [5]), where the 

distributor is rotating at constant angular velocities which vary between 20 and 2500 rpm, 

depending on the size of the bed (the higher its diameter. the lower the angular velocity). 
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Some examples of applications of the cyclic interchange fluidisation are the highly 

exothermic synthesis of alkylchlorsilanes polymer filling the composites. treatment of 

finely dispersed solids. drying of paste-like polymers, permanganate of potash and iodine 

(Kvasa [5]). Therefore, evaluating the flow field through a porous rotating distributor 

becomes a design necessity. 

Plumb [6] presented a comprehensive review of the heat transfer in unsaturated porous 

media flow with particular appl ications to the heat pipe technology. Again, when the heat 

pipe is used for cooling devices, which are subject to rotation the corresponding 

centrifugal, and Coriolis effects become relevant as well. 

A Direct CiIl model was applied by Katgerman [7] to analyse the heat transfer 

phenomena during continuous casting of aluminium alloys. When centrifugal casting 

processes are considered, rotation effects become relevant to the problem. The porous 

medium approach is also used in processing of composi te materials. Giigeri [8] states that 

"most of the studies in resin transfer moulding (RTM) processes and structural reaction 

injection moulding (SRlM) treat the flow domain as an isotropic porous medium and 

perform a Darcy flow analysis utilising a continuum model". 

Additional appl ications of the porous medium approach are discussed by Nield and Bejan 

[9] and Bejan [10] in comprehensive reviews of the fundamentals of heat convection in 

porous media. Bejan [10] mentions among the applications of heat transfer in porous 

media the process of cooling of winding structures in high power density electric 

6 



machines. When this applies to a rotor of a an electric machine or generator (or motor) , 

rotation effects become relevant as well. Mohanty [11] presented a study of natural and 

mixed convection in rod arrays motivated by safety related thermal-hydraulic modelling 

of nuclear reactors with particular attention to the rod-bundle geometry. The author 

concluded that "bundle average experimental friction factor values in forced convection 

are better explained through a porous medium model" and "the porous medium 

parameters so derived also yield quantitative corroboration of the flow through vertical 

bundles induced solely by buoyancy". The porous media approach was also successfully 

applied to stimulate complex transport phenomena in mass and heat exchangers 

(Roberson and Jacobs [12]) and in the cooling of electronic equipment (Vadasz (13]). 

Chandrasekhar (1961) has shown a perfect agreement in the results of temperature 

dependence and stability in a porous layer subject to rotation and its corresponding 

problem in pure fluids. 

Nevertheless, no reported research was found on isothermal flow in rotating porous 

media. Lim ited research results are available for natural convection in rotating porous 

media, e.g. Rudraiah, Shivakumara and Friedrich [14], Prabhanani and Vadyanathan [15], 

Jou and Liaw [16, 17] and Palm and Tyvand [18]. Nield [19] whi le presenting a 

comprehensive review of the stabil ity of convective flows in porous media finds also that 

the effect of rotation on convection in a porous medium attracted limited interest and the 

lack of experimental results is particularly noticed. The problem of rotating porous layer 

subject to gravity and heated from below was originally investigated by Friedrich [25] 

and by Prabhamani and Vaidyanathan [15]. Both studies considered a non-Darcy model , 
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which is probably subject to the limitations as shown by Nield [24]. Friedrich [25] 

focused on the effect of Prandtl number on the convective flow resulting from a linear 

stability analysis as well as a non- linear numerical solution, while Prabhamani and 

Vaidyanathan [15] dealt with the influence of variable viscosity on the stability condition. 

He latter concluded that variable viscosity has a destabilising effect. Although the non­

Darcy model considered included the time derivative in the momentum equation the 

possibility of convection setting-in as an oscillato ry instability was not explicitly 

investigated in ref. [15]. It should be pointed out for a pure fluid (non-porous domain) 

convection sets in a oscillatory instability. JOll and Liaw [16], [17] investigated a similar 

problem of gravity driven thern1al convection in a rotating porous layer subject to 

transient heating from below. By using a non-Darcy model they established stabil ity 

conditions for the marginal state without considering the possibility of osci llatory 

convection. 

An important analogy was discovered by Palm and Tyvand [18] who showed by using a 

Darcy model that the onset of gravity driven convection in a rotating porous medium is 

equivalent to the case of an anisotropic porous medium. The critical Rayleigh number 

was developed in this study and matched theirs finding (equation 3.3 in the text). 

The methodology adopted in this thesis consists of a presentation of dimensionless 

equat ions governing the flow and transport phenomena in a rotating frame of reference. 
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3. Objectives 

This study is intended to compare results for convection in rotating porous media with the 

corresponding results in pure fluids (non-porous domain). The equations governing the 

flow and heat transfer in porous media can be obtained via an averaging procedure of the 

Navier-Stokes and energy equations over a representative eiementGlY volume. As a 

result, the fi ltration velocity applicable at the mac.roscopic level will be considered and a 

set of new parameters are introduced such as porosity, defined as the ratio of the pore 

volume to the volume of the porous matrix, and permeability, which is a property 

describing the ability of the porous matrix to allow fluid flow. 

The analysis will focus on the effect of the Coriol is force on the basic free convection and 

the travell ing waves associated to the expansion around overstable solutions. 

The study utilises the method and parameters used by V.d.sz [1] and developed further 

to encompass the introduction of a large space scale and analysis of travelling waves on 

the expansion around over-stable solutions. The structure of the study is as fo llows: Part 

1: Geometrical definiti on and Problem formulation. Part 2: Linear stability analys is for 

stationary and oscillatory cases, as in the case investigated by Vadasz (1998). Part 

3:Weak non-linear solution for stationary convection; linear stability results. Part 4: 

Weak non-linear solution for stationary convection. Part 5: Weak non-linear solution of 

oscillatory convection for standing waves case and travelling waves case. Part 6: 

Discussion and conclusions. 
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2. Problem formulation and governing equations 

2.1. Problem formulation 

The objective of this study is to investigate the Coriolis effect in the analytical solution to 

the convection flow problem through a porous media in a rotating square channel. 

Rotating flows in porous media can be dealt with by c1assirying them in three major 

categories. 

(a) Isolhermalflows in heterogeneous porous media subject to rotation. 

(b) COllvectivefioJVs ill nOli-isothermal homogeneous porous media subject to rotation. 

(c) Convectivejlows in non-isothermal heterogeneous porous media subject to rotation. 

Case (b) is to be analysed in this study. 

A non - isothermal flow allows, as a result of free convection, a non-vanishing vorticity 

field. Free convection is the phenomenon of fluid now driven by density variations in a 

fluid subject to body forces. The relative orientation of the density gradient with respect 

to the body force is an important factor for providing a sufficient condition for convection 

to occur. Some of these forces are constant, like gravity for example, others can vary 

linearly with the distance from the axis of rotation. 
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The relative orientation of the density gradient with respect to the body force is also an 

important factor for convection to occur. This is shown graphically in Figure I for a 

particular case of thermal convection, where F represents the body force and 

'V P = - Pr'VT is the direction of the density gradient. 

-1' iF -1'1 iF -1'1 IF • 

Unconditional Conditional No Conveclion 
Convection Convection 

Figure 1: The effect of the relative orientation of the temperature gradient with 

respect to the body force on the set-up of convection 

2.2. Governing equations 

Let us consider a long horizontal square channel filled with fluid saturated porous 

material rotating with Q angular velocity about an axis perpendicular to the horizontal 

walls, as shown in Figure 2. An axial horizontal flow parallel to the channel walls is 

imposed through an axial pressure gradient. The layer is heated from below, whi le the 

vertical distance between the top and bottom boundaries is H,. 

I I 



--
Q . l 

C'O'/d" T=O 

Y 

H. 
ffO'/ 

x =O T = I x 

Figur-e 2: A rotating porous layer saturated fluid, heated form below 

A negative temperature gradient along the vertical direction is expected due to the 

imposed thermal boundary conditions. At a distance '.« g./o. . from the axis of rotation 

the gravity buoyancy can be assumed to be dominant and the centrifugal buoyancy can be 

neglected , hence limiting the effect of rotation to the Conalis acceleration. Furthermore 

the centrifugal acceleration can be assumed as constant and absorbed in the reduced 

pressure term . Darcy law is extended onl y to include the lime derivative and Coriolis 

terms; Boussinesq approximation is applied to account for the effects of density 

variations. Subject to these conditions the followi ng dimensionless seL of dimensionless 

sel of gm:erning equations ror continuiLY. Darcy and energy. is obtained: 

COlltilluityequtllioll 

V · q =0 (2. 1) 
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Darcy equal ion (including Ihe rolalion effects) 

oq 1/2 A ~ 
- +Ta -c. x q + q =-Vp+Ra-T- c. a, · . 

Energy equation 

aT 2 
X- + q -VT=V T 

a,' 

(2_2) 

(2_3) 

Implicitly, in equations (I) - (3), the values of a./ H" Il.a./k. and 1>7; = (TH - T,; ) are 

used to scale the dimensional filtration velocity components (u. , v.w.). reduced pressure 

(P.) and temperature var iations (r. - re) respectively. The height of the layer H. was 

used to for scaling of the variables x., y. and z •. Accordingly. x = x.1 H. , y = y.l H. and 

z= z.1 H •. The time variable was scaled initially by using the value H: la. , hence 

I = t .a./ H: , and thereafter re-scaled for convenience in the fonn " = X·/ • where X is a 

dimensionless number that includes the Prandtl and Darcy numbers as well as the 

porosity of the considered porous domain, defined as 

if -Pr 
X = - ­

Da 
(2.4) 

In equat ion (4) Pr = v.1 a. and Da = k.l H: and represent the Prandtl and Darcy numbers. 

The combined dimensionless group allows the Prandtl number to affect the fl ow in 
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porous media. The interval Pr can take values expands from as little as 10-3 (for liquid 

metals) up to 103 for oi ls and the corresponding value of X, wi ll be multiplied by a factor 

of (PI Do which is usually a big number covering values from 102 up to 1023
. The values 

X, can take in traditional porous media applications are large, fact that provides 

justification for neglecting the time derivative in Darcy equation. For modern porous 

media applications, however, its value may become of unit order of magnitude or even 

smaller, in which case the time derivative should not be neglected. Tn the present case, we 

consider the time derivative term in the equation in order to investigate the overstable 

convection and will analyse the behaviour of the overstable solution in respect to X,. A 

linear approximation was assumed between den$ity and temperature in the form of 

p = I - fJT, where f3 =!J. (TH - 7;..). There are two dimensionless groups, which appear in 

equat ion (2), the porous media gravity related Rayleigh number, Ra and the porous media 

Taylor number, Ta, defined as (Appendix 1) 

(2.5.1) 
v.a. 

(2.5.2) 

As for the boundary conditions they have to comply with the fact that at the top and 

bottom of the considered porous media domain the solution must follow the 

impermeability conditions on the margins, i.e. q .en = o. The temperature boundary 
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conditions are T = 1 at z = 0 and T = 0 at z = I . The lateral boundaries can be taken at 

the convection ce ll wavelength where q . en = 0 and V'T· ell = 0 . 

The system of equations (2.1), (2 .2), and (2.3) fo nn a three·d imensional non· linear 

coupled system, which together with the corresponding boundary condi tions accepts a 

basic motionless solution. To determine a non-trivial solution to the system it is 

convenient to manipulate equation (2.2) by applying onto it the cllrl operator (V' x) in 

order to obtain an equation for vorticity. defined as w = V x q 

[
Oq 1/" ] [ ' ] V' x 8t + Ta e~ x q + q = V x -V'p + Ra· T· c~ (2.6) 

or (see Appelldix 2 for details) 

- +w-Ta - = Ra -e --e am q, oq [aT- aT- J 
a, ' az iJy' Ox' 

(2.7) 

It is to be noted that the vertical component of equation (2.7) is independent of 

temperature. By manipulating further the equation (2.7) and using the fact that q is 

solenoidal , it can be written as 

[a], q, oq [a'T ,&T , '"' ] - +1 V q +Ta -+Ra--e,+--cY-V'H Jez =0 
ai' ilz axilz iJyaz 

(2.8) 
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3. Linear stability analysis 

3.a. Basic now solutions. 

There is a set of basic steady·state solutions marked with the sub·script (.)b corresponding 

to the fo llowing conditions 

(a) there is no flow in any preferentiaJ diTection. 

(b) the pressure (P) is not a function of x or y, and 

(c) there is a two dimensional problem 

The set sati s fies the foll owing system of equations: 

V· q = O (3. 1 ) 

q = -Vp+ RaTe, (3.2) 

V' T = q . VT (3.3) 

Subject to 

(3.4) 

T = T(z) 
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and to the following boundary conditions 

T= I z =O 

(3.5) 

T = O z=1 

By solving the equations (2. 1), (2.2), and (2.3) we obtain the basic solution for 

temperature (Appendix 3; Section 1) 

(3.6a) 

(3.6b) 

P. = Ra J (I - z)dz + C, (3.6c) 

where C stands for an integration constant. 

3.b. Linear stability analysis 

Assuming small perturbations around basic solutions in the form of q = q b + q' , 

T = Tb + T' and OJ = tiJb + OJ' we investigate the growth and decay of infinitesimal 

disturbances around this solution. 

Linearising the equations (2.8), (2.3) and (2.7) it will result the following linear system 
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[X...!!.. - '\7 ' Jr -IV' = 0 
at' 

[a] aw' -+1 m: = Tav' ­at' - az 

(3.7) 

(3.8) 

(3.9) 

where (j)' and w' are small perturbations of the vertical component of vorticity and 

filtration ve locity. respectively (Appelldix 3,. Section 2) 

The system of the equations (2.7), (2.8) and (2.9) can be de-coupled to provide one 

equation for the temperature perturbation 

(3.IOa) 

or for the filtration velocity 

(3. 10b) 

We assume a solution in the form of 
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T' = O(z)-exp~(k. x+k,Y)+ of'] (3. 11 ) 

that will provide an ordinary differential equation for O(z) as shown below (Appendix 3; 

Sectioll 3) 

fa + O' [D; - k' - zol D; - k' )+ Ta[D; - k' - za]o; - Ra(a + I}k' Ja= 0 (3. 12) 

where k ' = k; + k; , and D;= d" / dz" (n = 2). 

Equation (2. 12) wi ll accept a solution of the form B(z} = A1"sin A."z + A2n COSA"Z, which 

for the boundary conditions of z = 0 ::::::) T' = 0 and z = I => T' = 0 , wi ll yield A2n = 0 

and 

B(z) = b" sin(nm) (3. 14) 

n = I minimises the Rayleigh number in equation 3.12, indicating that B(z) = b" sin(71Z) is 

the eigenfunction for marginal stability. 

It is convenient to re-scale the parameters k2
, Ra and X. in the form 

k' 
a= - ,; 

7r 
R - Ra 

- 2' 
7r 

r = Z; 
7r 

(3.14 .• ) 

Substituting these values in equation (3.12) yields the scaled parametric value for Raleigh 

number 

R= P +a +rO"l[<a + I)'(a + 1)+ Ta 1 
a(a + I) 

(3. 15) 
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3.1. Linear stability analysis . Stationary convection 

Analysing the solution (2. 14) of equation (2.13) it is to be noted that for stationary 

convection cr in real ; furthennore, if er = 0 the stabi li ty is marginal. The corresponding 

characteristic values of Rayleigh number associated to this case are obtained by letting 

er = 0 in the expression of the scaled equation 

r +a+ra]Ca +I)'Ca+ 1) + Ta 
R=~--~~a~(~a~+~I)~~--~ 

R;'''' = Cl + aY + Ta (I +a) 
a a 

. _0 

(3.10) 

(3.1.1 ) 

At this point the analysis of equation (3.1.1) reveals that the first term alone represents 

the characteristic Rayleigh number for convection in the absence of rotation, while the 

second term is the contribution of rotation. The graphical representation of Rayleigh 

number as function of a. is shown in Figure 3 for different values ofTaylor number. From 

the graphical representation it can be seen that the cri tical Rayleigh number associated 

with stationary convection is strongly influenced by rotation. 
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Figure 3: Dependence of Rayleigh number for stationary case with Taylor numbers 

By minimising the expression (3. t ) with respect to Cl, we obtain the critical value or 

Rayleigh and the critical wave number k!: ) / 7r 

aR:'" ="£"' [ (1 +0.)' +Ta (l +o.)]= o 
ao. ao. a a 

from which results the critical wave number 

(3.1.2) 

and critical value of Rayleigh 

Ra~;" = ~ + .JI + Ta 1 (3.1.3) 
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The dependence of the critical value of wave number on Taylor is illustrated in Figure 4 
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Figure 4: Variation of critical wave number as a function of Taylor number 

The dependence of the critical Rayleigh number on Taylor is shown in Figure 5 
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Figure 5: Variation of Rayleigh critical as a function of Taylor number 
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Palm and Tyvand, Friedrich (1984), Friedrich ( \983) and Vadasz (1997) have presented a 

similar result for critical values of the wave and Rayleigh numbers. To investigate the 

effect of viscosity on stability we have to analyse the limiting conditions when Ta -+ 00 

for tU. -+ O'J and v. -+ O. For large values of Ta number, equations (3.2) and (3.3) 

become 

(3.\04) 

Ra''')1 ~ Ta+ o(Ta~ ' ) 
u Ta 4 00 

(3.1.5) 

From the definition of Rayleigh number 

Ra = fJ.67;g.H.k. = R7T' ~ R = fJ.6~g.H.k. 
v.a. 1l v.a. 

(3.1.6) 

[
fJ.SF,g.H.k. ] 2 = J[ Ta 

v.a . " 
(3.1.7) 

According to 3.1.5 for large Ta we have 

(3.1.8) 
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Hence 

fJ T - v.a.n:' 4 'k' 1 o( 211k. v.a.n:') .6. ,, - 2 2 CO.. + 
ifJ v. g.H.k. g.H.k. g.H.k. 

(3.1.9) 

Using the expression for Per = P.6.'( we can write the critical temperature difference 

over the porous layer 

fJ = _1 4n:'k.a.w' . + j 2w.k. n:'v.a. ) --7 

a v. ifJ ' H.g. '1.. ifJv. g.H.k, 

1 4trk.a.co 2
• 

v, -/>' H,g, 
(3.1.10) 

Equation (3. 1. 10) shows that the critical temperature difference for rotating porous media 

is inversely proportional to viscosity and proportional to w:. As a result , very large 

values of Ta ,or high angular velocity, have a destabilising effect. 

Following to these results we shall investigate the complete solution. We shall consider 

the existence of a stream function If/ describing the pattern convection corresponding to 

longitudinal rolls. The variation alongy direction of variables wi ll vanish. As a result , the 

wave number ky = 0 and therefore k: = e . The solution for T' becomes in this case 

T' = O(Z)ek.HQI· . For stationary case we have to take (7= 0 otherwise the system will 

become unstable. It can be seen that a positive real part of a will increase the solution 

exponentially to infinity. A negative value it will bring the solution to zero. As a result, 

the expression of T' wi ll be 
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T' ~ Bcos(kx)sin(m) (3.1.11) 

Ln Appendix 2 the determination of w' , cv~. u' and v' is presented. However their values 

is as follows 

For w': 

(3.1.12) 

For vertical component ofvorticity m;: 

(i" ~ 7r(k' + 7r' )TaV' Bcos(kx)cos(JZZ) (3.1.13) 

For the horizontal components of filtration velocity 

tr(k' + tr' ) 
u' ~ k Bsin(kx )cos(m) (3 . 1.14) 

7rTa"(k' + tr' ) 
v' ~ k Bsin(kx )cos(m) (3 .1.15) 

From equations (3.10) and (3.1 1) the ration between horizontal and vertical components 

of filtration velocity, can be evaluated 
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v' _ = _Ta l/2 

11' 
(3.1.16) 

Let 4 .. and ks • a wavelength and its wave number of a roll containing stream lines 

represented in a plane as in Figure 7 

y 

y 

). a --

Figure 6: Oblique plane wavelength of a roll 

v' 
tani!= - 0=> 

11 ' 

( v' i 
i! = aretall! - ) 

\ u' 

From the previous two expressions and from Figure 7 
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(3. 1.17) 

(3.1.18) 



( (V" ) k$ = k cos arctan~~) = 
k k 

(3. 1.19) 

Knowing that the critical value of k is kc = nO + Ta)lJ 4
• yields that the wavelength in an 

oblique plane containing the streamlines is dependent of Taylor nwnber and implic itly of 

rotation and it is given by 

k
(S/) _ 7[ - , 
6,C' ../1 + Ta 

The stream function it is defined by its components as: 

Appe"dix 2) 

'1/' = Asin(la:)sin(JZZ) 

The relationship between A and B is A = -B; therefore 

(k2 + Ir' ) 
'1/' =- ksin(la:)sin(JlZ) 
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, 8'1/ 
u=-

8z 

(3. 1.20) 

and w' = _ 8'1/ 
8x 

(3.1.21) 

(3.1.22) 

(see 



3.2. Linear stability analysis. Oscillatory convection 

Over-stable convection implies the possibility of an oscillatory motion and 0" can be 

written as a complex number 0" = O"r + i O"t ' In the solution, the real part represents an 

exponential growth or decay and the imaginary part an oscillation. For u r ~ 0 we have 

an unstable situation where the solution can go to zero or infinity, depending if O"r is less 

or bigger than zero. For u r = 0 however, the solution will oscillate about an equilibrium 

position. For small amplitude oscillations. the solution will be quasi-stable; for high 

amplitudes, the solution will "jump" out of equilibrium. The case when O"r ~ 0 is called 

"marginal stabili ty". Substituting 0"= iO"lm in the expression 2. 11 and equation 2.12 and 

imposing that a j

2 ~ 0 in order to have over-stability result two equations, by calling that 

real and imaginary part to be equal to zero (Appendix 3.2; §J) The two equations wi ll 

provide an expression for the over-stable characteristic value of Rayleigh number and the 

corresponding oscillatory frequency u j 

(3 .2.1 ) 

, (I+a-r)Ta_ 1 
O"[m ~ (I+aXI+a+r) (3.2.2) 

lmposing the condition a i
2 > 0 it results an inequality 
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(I + a)' +Cr - TaXI + a) + yTa < 0 (3.2.3) 

from which we can obtain a further condition in order to allow positive values of a. In 

order to have over-stable convection 

f'1(~_a_---'Yc..)'---_"lCy,--~_-_6--,)':_'l'a_+_~_a' l < (I + a) (3.2.4) 

The quantity under the square root must also be positive 

y' - 6yTa + Ta' > 0 (3.2.5) 

resulting the domain of y for which we have over-stable convection r E [0,(3 - 2..[iTa)1 

The values of a corresponding to the boundaries of the domain are those of the 

characteristic value of Rayleigh number associated with stationary convection. Graphical 

representation of the characteristic curves, for various values of Ta and y are presented 
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The continuous line represents the upper limit of stationary convection. 
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It can be seen that as Taylor number increases, the branching-off points shift to the right . 

Furthermore, no limitations of the Prandtl number (y) appears as a necessary condition 

for over-stabi li ty to set at the convection threshold. 

The characteristic values of Ra associated with Ta = 6, 20. and 80 for higher values ofy 

are shown in the following graph. For high values of y the curves of over-stability 

branch-in the stationary zone. The reason lies behind the fact that y and Ta are both 

functions of porosity. but inversely proportional to each other. 
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Figure 11: Marginal stability for over-stable convection at Ta = 80 

The corresponding values of frequency variation is presented in the Figure 12 for the 

same parameters ofy and Ta 
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Figure 16: Detail of the frequency variation for Ta = 80 and larger values of y 

It is interesting to note the characteristic curves of Rayleigh numbers for a particular case 

when r = O. This corresponds to a limiting case for the over-stable curves. For such 

value ofy we have the equations 2.2. 1 and 2.2.2 in the fo llowing form 

t;"" = ~ (I + a' ) 
a 

(3.2.5) 

, Ta 
a = -- - 1 

[m 1+ a (3.2.6) 

It is obvious that the characteristic curves for y = 0 are independent of the Taylor 

number, and the irs position is fixed in the plane determined by ~O~) and a 1f2
, and 

represent a lower limit for all characteristic curves. 

By minimising the expression 2.2.5 with respect to a., results 

(3.2.7) 
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which in turn yields for the critical value of Rayleygh in the over-stable zone 

(3.2.8) 

The condition that expresses over-stability is derived from equation 2.2.2 by imposing 

(T~ > 0 • which leads to 

(I +a)' - (y - TaXI + a)+rTa < 0 (3.2.9) 

Equation 2.2.7 yields the condition for a positive range of 0. to have over-stable 

convection 

r E(O, (3 -2..{i'ya) 'iTa> I (3.2.10) 

The corresponding va lues of ex. consistent with over-stable convection is 

(Ta- r ) - ..{ra' - 6rTa+ r' (Ta- r )+..JTa' - 6rTa + r' 
~-----'-'-'-----'---::---'-----'-- - I < a < - - - - I 

2 2 
(3.2. 11 ) 

On these boundary values O":m = 0 and stationary convection occurs. This was illustrated 

in Figures 9, 10, II and 12. 

If a!;") = I ::::::) Ta ~ 2 in order to allow a real value for the frequency. The sufficiency of 

this condition is that Ra!;d :5: Ra;$f) • which implies that at r = 0 we have the fo llowing 

(3.2. 12) 

From which 

Ta ? 4(2 - ..{i) (3.2.13) 
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All the other characteristic curves for different values of y will be situated between the 

r = 0 curve and the characteristic stationary convection curves related to a certain Ta. To 

obtain the cri tical value of Rayleigh, wave numbers and corresponding frequency we 

have to minimise equation (2 .2. 1) with respect to Cl. yie lding the quadratic algebraic 

equation 

a' + 2{y + l)a' + y{y + I)a' - 2~ + I)' + y'Ta} - y'{y + I)Ta - (y + I)' = 0 (3.2.14) 

The solution of equation 2.2. 14 was obtained numerically. It has one positive and reaJ 

solution within over-stability bound that is associated to y and Ta. The other three roots 

are a pair of complex conjugate and one real, but negative. The over-stable critical wave 

number is presented in Figure 17 as a function of r for various values of Ta. 
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' 0 f-----~----~----_+--~~------/ ., 

. J"'" , .-' 
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y 

Figure 17: Variation of Cl associated with over-stable convection for various values 

of Taylor number 

37 



The end of each curve corresponds to a point where no more critical values are consistent 

with the condi tion a; > O. Furthermore each end-point of the curves corresponding to a 

. ,0', d· . h I· ,0', - 2 E . 22 I ·11 . maximum a CT.ma:.;, etermlOe a stralg t me a CT. maX = . quahon . . WI gIve us, upon 

substitution of the values of a~~~) the critical values of Rayleygh number for over-

stability. The dependency of Ra;~~) as a function of r with various Ta numbers taken as 

parameters, is shown in Figure 18. 
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Figure 18: Variation of Ra~v ) associated with over-stable convection for various 

values ofTaylor number 

It can be noted that the end-point curves corresponding to Ra;:.v~ are lined along a 

straight line Ra~:.v~ ax ~ 8) which is consistent with the condition a; > O. 
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By substi tuting the critical wave number obtained from 2.2.14 into 2.2.2 we obtain the 

critical value for frequency, for various Ta , presented in Figure 19, where we take the 

abscissa as log(y) and obtaining a similar graphical representation as in stationary case . 
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Figure 18: Variation of Ra::'~) associa ted with over-stable convection as a function of 

log r for various values ofTaylor number 

High values for frequency correspond to small values of r. As in the case analysed 

before, when r ~ O. the critical curves represent only a condition of necessity, For 

sufficiency to be fulfilled we have to have a further condition when ~;v) ~ R!;') , This is 

illustrated accurately in Figure 20. where (Ta, r ) plane is divided in two by a continuous 

line, corresponding to Ra~;~) = Ra!;), where the zone below the line is consistent with 
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over-stable convection and the zone above, for stationary convection where instability 

occurs. The doned line corresponding to CTi~(" = 0, represents a separation between a zone 

below. where over-stable convection is possible but cannot occur because Ra!;v) > Ra;~'). 

The limit where over-stable convection occur for the same values of critical Rayleigh 

numbers, define the CTP (Co-dimension-2 Point) . The dotted curve envelops the end-

points corresponding to the wave numbers fo r high values of r. approximated with a 

straight line Ta = 6r + 2 . 
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4. Weak non-linear analysis 

In this chapter we shall investigate the solutions of stream function and temperature in a 

porous layer subject to rotation where small non-linearity is considered. It is convenient 

to introduce the stream function as discussed in previous section, as u' = a",' I az and 

w' = -av/lax , to express them in the equations 2.3 and 2.7. By de-coupling the two 

equations and bearing in mind that we deal with a two-dimensional problem, therefore all 

the derivatives to y, we obtain 

(4 .0.1 ) 

[a]' 1 ?Y-I{I [ a ]BT - +1 V I{I+Ta--, +Ra - + 1 - ~ O al' Bz· al' il>: 
(4.0.2) 

Where the Laplacian in this case it is 

(4.0.3) 

The derivation of 4.0.1 and 4.0.2 is presented in Appendix A4.0. 
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4.1. Expansion around stationary solutions 

The objective of the weak. non-linear analysis is to provide quantitative and qualitative 

results of the amplitude of convection. The possibility of a co-dimension 2 bifurcation is 

anticipated at the intersection of the stationary and over-stable solutions (Brand, 

Hohenberg & Steinberg 1984; Cross & Kim 1988; Schopf & Zimmermann 1993). 

We know that the basic motionless solutions are 1/1'0 =Oand To = I -z and we can write 

the stream function and temperature expanded in a series of 

(4. 1.1 a) 

[T] = [7; ]+ &[T, ] + ; [7; ]+ &' [T,]+ ... (4.l.lb) 

where & is a perturbation defined as & = [1 - Racrl Ra ]V2. 

The Rayleigh number can also be written as 

R R R (211) [ 2 4 2n l 
Q= a<;,.+ Qc,. e +e + ... +e (4.1.2) 

In order to reach finite values for amplitude at the steady state we have to choose a slow 

lime scale T= ill' (by allowing minimal time variations only, preventing exponential 

growth) and a slow space scale X = ex. The new space scale was introduced by Newell 

& Whitehead (1969) and Segel (1969) in order to allow continuous horizontal band of 
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modes of oscillation. Upon these transformations we have to consider a re-scaling of 

variables in the form 

o 
Ox 

o 
ot' 

o a 
--> - +£-ax ax 

a ,a 
--> -+£-

01' aT 

From the expression 4.1.2 can be wrinen as 

(4.1.3) 

(4.3.4) 

(4.1.2b) 

Substituting the expansions 4.1.1 , 4.1.2. and the slow time and large space scales into 

equations 4.0.1 and 4.0.2 and identifying the terms of equal powers of E, produces a set of 

partial differential equations at each order. 

For the leading order we have a set of equations identical to those solved for the linear 

stability case 

(4.1.5a) 

(4.1.5b) 

For the second order we have the equations presented as 
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(4. 1.6,) 

v' r _ 8f//, = -2~ aT, + af//1 + af//1 aT, _ af//1 aT, 
'ax axax ax az ax 8x az 

(4.1.6b) 

The RHS of equations 4. 1.6 (a and b) consist of non-homogeneous terms including the 

solutions already determined at order E. The non-homogeneous tenns fore a particular 

solution in addition to the so lution of the homogeneous operator. 

The third order equations are presented in the form 

af//, aT, af//, aT, af//1 aT, af//1 aT, 
- + - + 

az ax 8x az 8z ax 8x az 

aT, a'T, 8f//1 81; 8f//1 aT, 
x aT - ~, + az ~ - ax az 

We shall analyse the equations for each order apart. 

(4.1.7a) 

(4.1.7b) 

For order E , the so lution is given by the eigenvaIues of the stationary convection 
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(4.1.8a) 

(4.1.8b) 

The relationships between the amplitudes A,(r,X) and B,(r,X), respectively A; (r ,X) 

and B;(T,X). are obtained by substituting the so lutions 3. 1. 8 (a and b) into equations 

3.1.5 (a and b). 

i../a 
B, = - ( ) A, 

Jl" l +a 
(4.1.9a) 

(4.1.9b) 

Solvability condition at order &3 will detennine the amplitudes Al and A; 

The order E l solutions result by de-coupling the equations 3 .1.6 (a and b). The non-linear 

part of the RHS will generate a particular temperature solution as follows 

[A, '''' A' -,"' 1.. ( ) '1'2 = .e + 2e 'pIn 1TZ (4. I.I Oa) 

T, = [s. (r,X)e '''' + B;(r ,X)e-"' ]sin(m) - ( a ) A,A,' sin(2m) 
2tr a + I 

(4. 1.1 Ob) 

45 



The particular solution for the stream function converges to zero. 

The relationship between A2 and A; at order 6
2 is identical as for the order 6. 

The order 6
3

, solutions consist ofk.nown solutions calculated from the previous orders, 

6 and 6
2

. The equations at order 6
3 are non-homogeneous versions of those at order 6. 

From here it can be drawn a solvabi li ty condition that will impose constraints on the 

amplitudes at order 6 enables their determination. The solvabi lity condition results from 

the process of de-coupling the equations and evaluating the RHS forcing terms, which is 

represented in the form of [~ (r,X)e'" + A:(r,X)e-''' }in(m). All the other terms that 

containing higher harmonics of z, will be forced to zero. This condition will lead to 

determinat ion of the solvabi li ty condition in the form of a partial differential equation, 

where the original time and space scales are reslUn:::li : 

aA (I ) a'A ,,'a' { I''' ' \ , 
1J at' - + a !)X' = - 2- ,'>0 - AA r 

where A, A" , ;~' and 1] are as follows 

A = t;4, 

A' -t;4' - , 
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(4.1. 11 ) 

(4.1.1 2a) 

(4.3.12b) 

(4.3.13) 



(I + a)(2 -a) + ay 
'7= y 

(4.1.14) 

It is noted the appearance of a diffusion term corresponding to the slow space scale. By 

imposing a symmetry condition at the ax is of rotation (x = 0), implies Al = -A;. This 

changes the solution in 

11/(1) = C,sin(kx)sin(J/Z) (4.1.15) 

where Cl = 2iA). In this case we do not have a phase angle and the result satisfies the 

equations and the boundary conditions without slow space scales. As a result, the 

diffusion term vanishes out from equation 3.1.11 , which subsequently transforms into an 

ordinary differential equation cfreal ampli tude C = ££1' 

(4.1.16) 

where ~$f = 4ci'. The equation 3.1.16 yields a solution at the steady state in the form 

o 
C= (4.1.17) 
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The solution 3. 1.17 shows that a pitchfork bifurcation occurs at the critical value of 

Rayleigh number for stationary convection (Figure 17). The relaxation time is positive as 

long as r > r;' (r;' is the transition value of r )· 

r:'= .J(t + Ta) 2 _\ 
.J(1 + Ta) 

(4. 1.18) 

Below this value the re laxation time becomes negative and the solution decays to C = o. 

The values of Taylor number consistent with a positive relaxation time are represented by 

the condition Ta t:=: 3. Determination of the amplitude coefficients provides a complete 

solution for the stationary convection at order c. The complete calculation of such 

solution is provided in Appelldix 4.1 . 
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4.2. Expansion around over-stable solutions 

We have identified in the previous section the solutions for both the stream function If/I 

the and temperature 7; satisfying their boundary conditions, in the form 

(4.2. 1) 

r. = 2(C,e'h + C; e-,h )cos(kx)sin(7lZ) (4.2.2) 

In the case of weak non-linear analysis of the over-stable convection, equations 3.0.1 and 

3.0.2 will apply with the only requirement that we have to refer to the corresponding 

critical values of the over-stable convection. The expansions 3.1. 1 a and b apply as well , 

but we have to introduce two slow time scales T = £ 2t" To = El' and allow a short time 

scale to be present into equations in order to describe amplitude fluctuations. A further 

re-scal ing of the short time scale is convenient in the form i = 0'0", where 0'0 = a ,er. By 

subst ituting these new scales into equations 3.0.1 and 3.0.2 we obtain, for the leading 

order, the following equations 

[ a J" ~ [a J.£Ii. 0',, -::+1 "V1f/,+Ta 2 + Rae; 0'0-:: +1 = 0 & & & & 
(4.2.3,) 

[ a 'J ~ xa" ---=- - '\1- I; + = 0 at & 
(4.3.3b) 
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The general solution for '1'1 has the form 

This case will be analysed in detail in Section 4. By imposing symmetry conditions at the 

axis of rotation one obtains upon substitution Al = -B; and Bl = -A;. This is a special 

case of standing waves while travelling waves are excluded. 

At first order a relationship between coefficients is recovered. 

(4.2.4a) 

. .Ja[r,," - i(a + 1)] • 
C, = - r,( )' " r' 7Z'r a+ 1 ~ +y 0"0 

(4.2.4b) 

The equations at order 0(&2) are as follows 

u ---=- + l " . ", +Ta:::......!f!..l+Ra u - + 1 - ' = [ a J" a' [a J aT 
Oat "'2 OZ 2 er °ai 8x 

(4.2.5a) 

a[ a J' a 81; - 2 - ,,-+1 V ,,, -Ra - -a 0 ::;,- Tl er a a 
~ u ~ X 
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[ 
8 ~'JT 8'1/, _ 8T, 8'1/1 aT, 8'1/1 8T, Xa - - v 1 2 + - -X - + 

o aY Ox oro oz ox ox oz (4.2.5b) 

The solution to the equations 3.2.5 a and b represent a superposition of the homogeneous 

part and particular solutions due to the non-homogeneous terms. The homogeneous 

solution has the same form as in the case of order 0(&) 

(4.2.6a) 

T, ~ 2(C,e''' + C;e-''' )cos(kx )sin(nz) (4.2.6b) 

The relationships that exist between the coefficients preserve. 

By evaluating the right hand side of equations 4.2.5 a and b, it is clear that a particular 

solution will emerge in the form of 

'I/~ ~I sin~-);il1(kx)sin(1IZ) (4.2.7a) 

Ti ~ I cos(i)sin(kx )sin(nz) (4.2.7b) 

Which are secular terms in the solution. In this case we have a condition of resonance, 

unless we set GAl / OTo = 0 in order to avoid it. The particular solutions for the stream 

function and temperature are 

P - 0 '1/, - (4.2.8a) 

(4.2.8b) 
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where the coefficients a lO a; and bz are as follows 

a _ a[2(a+ I) - r'a~ - i ra, (a + 3)] 1 

,- !l" ~a + I)' + (ra, )' 14+ r'a; ) A, 

. _ a[2(a+ I ) -r'a~ + ira, (a + 3)]( ' )' 
a, - r, ' 1: A, 

!l"~a+l)' +(ra, ) j.4+r'a; ) 

The de-coupled equation at 0(&3) for If/ is shown below 
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(4.2.9,) 

(4.2.9b) 

(4.2.9c) 



ra, )[r i! )' if i! r i! ) a a (if a r a )) 'J -, z~- \7 ) , ~ + ') - + 4- , -,, + ') --- + - , +2-, -" + ') \7 ",,-\. or \.Ol axl or. \ot ax oX or" ar" ,a/ 

( a i! a)[ a (a ), (a )' a a 1 Z - -2-- 2- , -,0 +,) \7 +2 ""7 +') -- '1/ -aT" ox8X or" \.01 at axax I 

( a if X a )', {( a)a' (a) if ] 
Z- - - , , -,0 + ') \7 '1/, + R , -,0 + ') - , '1/ , +, -: + ') -'-"" + or oX· \ a/ 'at ax \or oX 

(4.2.10) 

(i! a , i! i! , a, a a) ~ 
Ra 1-- \7 + - -\7 +-\7 + '--) T. +6 '" 

u,Qx a. ox ai Ox A, Ox aT I .,. 2' 
r, )-

The right hand side of equation 3.2. 10 consists of terms evaluated from the order 0(£) 

and 0(£2) written under a general term e(~2' T2)' T o avoid resonance due to secular 

terms appearing in the equation, we have to set all the forcing terms coefficients to zero. 

In order to determine the amplitudes at order 0(&) we shall consider only the terms 

containing ,/" and T,. They are teons of foon e'i sin(/a:)sin(nz) and e-'i sin(/a:)sin(m). 

The others are the nOIl-resonant harmonics or various convection terms associated to the 

homogeneous operator. This operation yields a differential equation for the unknown 

complex amplitude at order 0(&) in the form 
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(4.2.1 1) 

where My are coefficients analysed in detail in the Appendix 4.2 and A = &41 and 

A" = EA1·. By setting a2A/ aT; and a2A/ ax2 equal to zero we obtain an ordinary 

differential equation 

8A = 2 [( " _ 2 AA" 1, al I 2 ~ 

where 2, = M,/ M, and Z, = M, M, / M, 

The following notations were used 

where 

QO = 2p(P - ra;)s - apR,,(P - r) 

(4.2. 12) 

(4.2. 13) 

(4.2. 14) 

(4.2. 15) 

(4.2. 16) 
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(4.2.17) 

( )' " s= a+l +Y (Ta (4.2.18) 

(4.2. 19) 

(4.2.20) 

It is useful to express the equation 3.2.1 1 as two equations, one for ampli tude r = IAI. one 

for phase 8 

A 
,Q 

= re 

J, dr = [(" - J,r' } 
dt 

dlJ =J~o' -Jr ' 
df 3 4 

Where 

A 
- ,Q 

= re 

_ _ Zill BLZ",2 RL-_Z"Il~Z ,,,,, J , -
ZI R 

AA • , =r (4.2.21) 

(4.2.22) 

(4.2.23) 

(4.2.24) 
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(4.2.25) 

The sign of the coefficient of the non-linear term indicates the direction of the 

bifurcation. i.e. forward (supercritical) or inverse (subcritical). If J2 > 0 the bifurcation is 

forward. If J2 < 0 , the bifurcation is inverse. 

10 r-----r-----r----,-----,-----,-----, 

5 subcritical 
bifurcation 

,lE iT, 
supererWeal 
bifurcation 

r 0 f-----------------.... .. ........ ... ..... .. . 

·5 
Jt;: 

-- forward 
....• Inverse 

·10 
.. 0 -40 ·20 0 20 40 

R 
60 

Figure 18: Graphical representation of the bifurcation as a function of the signature 

of the coefficient of the nOD-linear term in the amplitude equation 

The change of sign of the non-linear term implies the transition from equilibrium to non-

equilibrium and the specific point where this occurs is called non-equilibrium or IrE-

critical point. By representing the coefficient J2 as a function of y , and implicitly as a 

function of ac, we obtain a series of representations for various values of Taylor number, 

as a parameter. 
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Figure 19: Variation of the coefficient)2 as function of y for Ta =20 
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Figure 20: Variation of the coefficient J2 as function of y for Ta = 40 
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Figure 21 : Variation of the coefficient J2 as function of y for Ta = 60 

" 
I J, I 

5 

-5 

-w 
o 5 

Ta-80 

" y 

\ 

" 

~ 

" 

Figure 22: Variation of the coefficient J2 as function of y for Ta = 80 
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Figure 23: Variation of the coefficient J2 as function ofy for Ta = 1 00 

The behaviour of the coefficient J2 is in general similar for all values of Ta before the 

rri-critical point (TCP). For each value of Taylor number there is a maximum allowed 

value for y, which is associated with the over-stability of the convection process. For 

values of y < Y,c the bifurcation is forward, while for y > y,c the bifurcation is inverse. 

The point of singularity that makes J2 to diverge is always situated at y > Yma.~ . A 

diagram representing the variation of yl(. as a function of Taylor number is presented in 

Figure 24. 
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Figu re 24: Variation of r lc with Ta 

It can be noted that the variation of Y,e follows the approximate path of a straight line 

y", = oTa + b . where a = 6.456 and b = -7.23. The values of Yle corresponding to 

various Ta are shown on the graph above. 

Each curve corresponding to the non-linear term coefficient contains another zero and a 

s ingularity, as illustrated in Figure 19 for Ta = 20 , but this is located in all the cases 

beyond the over-stable zone. As Ta increases the next singularity and change of sign 

shifts out of the graph range. 
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Figure 25: Variation of ) 2 for va r ious Taylor numbers 

It can be seen from the graph above that for small values of r the behaviour of the n OI1-

linear term coefficient is the same. In general the location of YIC is di fferent form Y m U 

and dependent of Ta, as shown in Figure 26. 
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Figure 26: C urves representing the maximum and tri-critical va lues fo r r 
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It can be noted the point corresponding to the Taylor number Ta(lc) from which 

r max > r,c ' The meaning of this transition is that for values of y below Ta(lc) we have a 

forward bifurcation and for values of y above Ta(lt) we have an inverse bifurcation over 

entire over-stable zone. 

As seen from 3.2.22, J ] is the relaxation time. If the relaxation time is positive, the 

forward bifurcation is stable. Otherwise, the inverse bifurcation becomes stable (See 

Figure 18). Figure 27 shows the relaxation time J ] as a function of y for different values 

of Taylor numbers. 

From the figure it is evident that the re laxation time seems to be independent of Ta and 

linearly dependent of r. Also we can notice that it is posit ive over all the range of 

parameters considered. 

__ T ... 20 
- .T.", .. O 
___ T.s60 
___ · _T. " 80 
..... T. =100 
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V 

1/ 
1/ • o , • • 

1/ 
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1/ 

• 
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" 

Figure 27: Variation of the relaxation time coefficient J ] as a function of r for 

various Taylor numbers 
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For a steady state situation, the expression 3.2.22 can be written as 

~, .. - , 
J2~ - r (4.2.25) 

which represent the post transient state ror supercritical values or R, where J; = 1/ J" and 

yielding a solution in the form 

o 
r= (4.2.26) 

Therefore the solution for the amplitude can be expressed as 

A = rexp[i9) = rcxp[i/)t] = ±JI';'" J; cxP(i9t] + c.c. (4.2.27) 

where c.c. stands cor the complex conjugate part. 

The non-li nea r corection for frequency can be obtained from equation 4.2.23 in which we 

substituted the solution for ,2 

(4.2.28) 

Again we have, according to 4.2.26 a Hopf bifurcation occurri ng at critical values of 

Rayleigh number consistent with over-stable convection 
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Figure 28: Post-transient amplitude as a function of r and Ta as a parameter 

It can be noted that the solutions diverge as they approach the tri-critical point which are 

4.23 , 7,14,10.25, 13.42 and 16.63. 

Similarly, the post transient solutions for the non-linear frequency sol utions are analysed 

by ploting them in tenus of the log(e/ ~~ ) from 4.2.28 

(4.2.29) 

From the Figure 29 we can sce that (a) the frequency corrections diverge as they 

approach the tri-critical value of y and (b) the frequency correction is inversely 

proportional with Ta. 
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Figure 29: Post transient frequency correction as function of r and Ta as 

parameter 

As in the linear stability case, by setting r:: 0, as per 3.2.6 from Stationary cOllveclioll; 

over-stable case, the corresponding value for a is 0:;: :;;: 1. As a result, 

lim--I = 6a _ 3 
r~o J, 4(a+ 1) 4 

. 1 1 
!Jm -- --~oo 
1'-40 J1 r 

The amplitude and frequency correction 

1A1->2l~' 
11->0 

In conclusion. for small values of y (y:: 0) the over-stable solution will oscillate with a 

post lIansient amplitude of IAI = 2d../3 at a frequeney of er;' = (Ta/2 -1)"' . 
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5. Expansion around over-stable solutions. Travelling waves 

Equations 3.0.1 and 3.0.2 can be considered for this case, with the same scaling for time 

and space. The leading order equations are as in the previous section, is 

[ a]' , ifJ!J. [a ]81; uo---=- +1 'V 'P1+Ta 2 +Racr ao~+l - =0 & & & fu 

[ a,] a '1/, 
%ao~ -'V 7;+ -- = 0 at fu 

and the general solutions can be expressed as 

_ r. ,(".i) B ,("-i) A' -' ("Hi) B' -'("-i ) }. ( ) 
'P1- t '1e +le +le +le mm 

T. r;... ,(" .i ) D '("-i ) C' -, (".i ) n' -' lP -i )}. ( ) 
I= L le + le + l e +"'-']e In1lZ 

where the amplitudes A, = A,(T. , T,X), 

C, = C, (T., T,X), C; =C;(T. ,T,X), 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

B, = B,(T.,T,X), 

D, = D,(T., T,X) and 

D; = D( (To, T,X) describe modulations of the wave on the slow time (To = Et', T = £I t ') 

and space scales (X = EX) for a Hopf bifurcation. These solutions represent travelling 

waves. Unlike in the previous case we do nOl neglect the slow space scaJe, therefore the 

resulting equation is expected 10 contain a diffusion term. As in the previous case we can 
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detennine a relationship between coefficients at order one that will prove useful in a later 

calculation In this case we have four relationships as following 

ra[rO", + i(a + I)] 
Cl = - (j 2 2 2]A, 

" L(a+l) +r 0", 

(5.5) 

(5.6) 

rar- rO", + i(a + I)] 
D, = - r. ' " ] 8, " L(a + 1) + r 0", 

(5.7) 

ll- ra [-rO",- i(a+ I)] . 
, - rr )' " ] 8, ll' L\a + 1 + r CJ" 

(5.8) 

The de-coupled equation for the stream function, at order o(E2) is expressed by 

a (a ,I( a I, a a (a ,I( a I' 
-2- \.x- - V )\.- + 1) '1 'I' - 2--\.x- - V )\.- + 1) '1' -aTu at at I ax x at al I 

(5 .9) 

( a a a)( a I', ( a a a) if x - - 2-- \.- + 1) '1'1' - X- - 2-- Ta - If + aT., ax ax at I aT., ax ax az2 I 
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The above expresSIOn can be analyse as two entities, a first one expressmg a linear 

relationship between slow time and space scale which would play a role in establishing 

the diffusion term and a second one expressing a non-linear dependency of the 

ampl itudes. The solution to the equation above wi ll be a superposition of a homogeneous 

part consistent with the homogeneous part of the equation and a particular part consistent 

with the right hand side. Because the homogeneous part of the equation is similar with 

that at 0(£) , the solution at the current order will be: 

r - r,., , ('Hi) D ,e.-i ) C; -,('Hi ) D' -,(a-i )} . ( ) r p 
2 - L 2e + 2e + e + 2e In 7lZ + 2 

where 'If; and T[ are the particular solutions. 

(S .IO) 

(S. I I) 

The relationships between coefficients will be similar to those at 0(£) . The particular 

solution for the stream function 'If; = O. The particular solution which is identical to the 

homogeneous solution must be forced to be zero in order to avoid resonance. That will 

provide a relationship between the coefficients of the derivatives to the s low scales 

introduced. 

(S. 12) 
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The particular solution of the temperature can be expressed as 

"., r.b ,,;. ~'i } . (2 ) y;, , = t 2 + ale +ole III 1lZ (5. 12) 

where 

(5. 13) 

__ a 2(a + 1) - y'u; - iyuq(a + 3) B. 
a, - fo( )' " 1' " ) A, , 

7! ra + 1 -+yo-oJ,.4 +yo-" 
(5.14) 

(5. 15) 

The complete solution can be written as 

(5. 16) 

(5. 17) 

The de-coupled equation for the stream function at order 0(&3) is as follows 
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(5. 18) 

[
(a l a aa] (a la 

0(\"" T, )+0(\"" T, ) - Ra" 1- + 1) - +-- J, - Ra", - + I) - J, \ at ax a,. ax \at ax 

Only the terms containing '1/] and ~ on the right hand side, or combinations of both are 

relevant for this study. Consequently equation (5. 18) can be written as 

{
( a '1 [( a 1" a' ] ( a la'} 1%- -'<1) 1- + 1) '<1 +Ta- , - Ra", - + I) - , \", = \ at \at az \ at ax-

(5.19) 

[
(a la aa] (a la 0(,,, T) - Ra 1- + 1) - +- - J - Ra I - + I) - J 

'1"1' I ", \ot oX aT., ox 2 "" at ox 1 

In order to avoid resonance we have to set aJt the coefficients of the forcing terms to zero. 

The terms that carry convection modes other than the natural modes are not relevant and 

will not be considered. This yields for the exp~(/a + i)] and expE(kx - i)] parts of the 

so lutio n a set of two non-linear equations 

(5.20) 

(5.2 1 ) 
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where the coefficients hi)' are determined in the Appendix 5. 

to +3a)(2 - yo-o) +y (a + Ta + 1)- R,, ]+i2o-(a + 1)(1 +a+2y)} 

h" = Jr ' [(Sa + !)(o-~ - 1)- Ta + R" - i(20-0 (Sa + 1) - 0"0R,,)] 

h" = Jr ' Ha + l)Q - o-n+ yTa - R" + i2ro-o(a + I)] 

_ aR,,(1 + io-o){Y(a + I)Q - o-n+ yTa - R" - i2ro-o(a + I)] 
hI' - f 

tr(a + I)Q - o-D+ yTa - R,, ) + (2yo-o(a + I))'] 

_ a [8(a + I) + o-iY ' (a - I)] . ayo-o(a+3) 

h1 6 - 2[(a + 1)2 + 0"~ r 2 10"~r 2 + 4) - 1 [{a + li + 0"~7 2 IO"~ r2 + 4) 
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(5.22) 

(5.23) 

(5.24) 

(5 .25) 

(5.26) 

(5.27) 



{(! + 3a)(2- yao) +y(a+ Ta + 1) - Ra ]-12a(a + 1)(1 +a+ 2y )} 

(5.28) 

h" ~ 1l' ~5a + I)(a~ - 1) - Ta+ 1/", + i(2ao(5a + I) - aoR,J ] (5.29) 

(5.30) 

(5.3 1 ) 

h _ .!. a(a + I) - h 
25 - 2 [Ca + 1)2 + (T~r2 ] - IS 

(5.32) 

_ a [8(a + 1)+ a gy' (a - 1)1. ara o(a + 3) 
h" - r.( )' ,, )" ,' ) +, 11 )' 2' )" " ) 2ra+1 +O"oY j...O"oY + 4 ~a+ 1 + O"oY 1-o-oY + 4 

(5.33) 

In equations 5.20 and 5.2 1, C;O~ = 8
2 = ( ~~ -1) and we used the original time and space 

Ra 

scale, r= 8
2
/, To =& 1, X=et , i=Tol' and recall ing that A =&41 , 8= 881, A" =&4;, 

S· = EB; . 

An interesting case is when we set the first brackets of the equations to zero. In this case 

we have 

aA h [ "". - -1 , - - "., -'1sAA -hI6 BB .r ~ 0 at (5.34) 
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aB - h,.[(" -h" BB' -h"AA']n =0 at (5.35) 

By presenting the equations 5.22 and 23 in terms of a complex amplitude we obtain a set 

of four equations, two for the absolute value of amplitude rA = IAI , r. = 1nl and two for the 

corresponding phases BA and BB' 

The new set of equations are listed below 

where 

h ~ h I' 'h' 
I = "4 + 1 \4 

h' _ all" r (a+I)Q+o;; )+rTa-R", 
" - r ( r. ' ) " [Y a + I)~ -0". +yTa- R~ + 4W. (I + a) 
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B' = r.exp(-iB.) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5 .41 ) 



(5.42) 

1 a(a + I) 
hIS = -2 r.( )' " ] ra + 1 +aoY 

(5.43) 

The expressions for hi: can be found in the Appendix 5. At steady state we derive the 

following set of equations, able to express a relationship between amplitudes rA and rH' 

(5 .44) 

In this case the Reduced amplitude equation can be written as 

clr, [ , ' ] ~= ". f' +"·r ·r dt " "'o~ ' '3 A A (5.45) 

where 

h,=-.!. al\,y(a +I)Q +u! ) +yTa- R. x[ a(a+l) + a ~(a + I) +u;Y' (a- l)l l+ 
2 jY(a + IXI - 0-; )+ yTa - R" + [2p. (a + 1)1 [(a + I)' + y''''; ] [(a + I)' + y'u' 14 +"';1' ) 

The Reduced Phase EquaTion in the case when I~ = r; can be written as 

dB i - 2 
- =h, '~o~ + h3 'rA 
df 

where 
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(5.47) 



_ aR.,(r(a+I)Q+o-;) -rTa+ R,.r ] x aro-, (a+3) 

~(a + 1)(1 - 0-;)+ rTa - 11., ] + [2ro-. (a + 1)1 ga + I)' + r'o-: J 4 +o-;r') 

(5.48) 

Returning to the full set of equations, we can write them as 

(5.49) 

[h ,eJ'rB ,or, h'o'r.]_[ ,&8,_ 11,' 08, h,&8B ] - [N' N 2 21. -0 
11 2 +h13 + 12 2 h ll 1 J + 12 2 rA I~ .... + 2rA +N]rR ] B-

01 01 ox Et 01 OX 

(5.50) 

(5.51) 

(5.52) 

These are the final set of equations and it can be noted that there is a strong coupling 

between them. 
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6. Conclusions 

The present study can be divided into two main streams. In one stream we have recovered 

and expanded the analytical work of Vadasz (1998) for weak non-linear analysis for a 

porous media layer subject to Coriolis forces. Our results proved to be in concordance 

with the previous outcomes. Further more we have enhanced the previous model by 

considering a long space scale X = EX and an additional slow time scale To = E1' in order 

to obtain a complete equation for the amplitude and frequency of osci llation for the 

convection in porous media. 

The tri-critical value of gamma for various values of Taylor number appears to follow a 

straight-line. 

The complete equation consists of two distinct terms grouped as a non-linear part 

A-Zl(('~ -Z2AA·)A that we are fami liar with. and a second part where we introduced 

the above mentioned scales a'A/a'-z,a'A/ax' .2" Z, and Z, are constants to be 

found in the text [p.52-53]. Interestingly, the way the scales came out into the final 

equation indicates the wave characteristics of the convection. It also indicates the 

existence of a group velocity term associated to the normal modes of oscillation. The 

finite amplitude results indicate that a pitchfork bi furcation occurs for the stationary case 

and a Hopf bifurcation for over-stable convection at critical values of Rayleigh numbers. 
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The results also suggest the possibility of controlling a more general case the 

codimensional-2 point. However, this analysis requires further work. 

We further analysed the case where travelling waves are considered and determined a set 

of eight coupled equations for amplitude and phase. If we impose the conditions for the 

stream function that A; = ±BI and Al = ± B; , and for temperature C: = ±D) and 

Cl = ± D; , we obtain the equations for the standing waves case. 

By neglecting the time and space slow scales, for a steady state case we obtained the 

following relationship for the amplitudes r: = r;, reducing the equation to a set of 

equations for amplitude and phase that can be de-coupled. 
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Appelldix 1: Th e 1I0ll-dimellsiollal analysis of the governing equations corresponding 

to floUJ ami heat transfer ill rotatillg porous media 

The quantities marked (.). represent dimensional quantities; items marked (.k represent 

the characteristic values: items marked with no subscript index represent a-dimensional 

quantities and those marked (.)0 represent their reference values. 

The continuity, Darcy and energy equations are 

v.ci. = 0 (A 1. 1) 

,k. [ ' ] q. = - - V.P. + p.g.e, 
11. 

(A 1.2) 

(A 1.3) 

Additional expressions for density, length, gradient and temperature are 

P. = Po [l - {J.(T. - 7; )]= PoP (AI.4) 

I. = I) (A 1.5) 

(A 1.6) 

(A 1.7) 

By conveniently choosing all the quantities we obtain for continuity equation 
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V.q. =~Vq=O =:> V q = O , 
(A.8) 

It is to be noted that the continuity equation is considered as time independent. 

For the equation (A 1.2) we consider taking 

p = I - fJ.llT;T = 1- CT (A 1.9) 

where C stands for a constant. 

(AI.IO) 

k. [I ~( I) pCT ' ] k. !!.p, ~ k. g.pC T, 
- - - v P. + PofYiJ.z C' - g.cz = - - vp +--- e, 

1-1. le: 1'. I" P. le 

Therefore 

q = (AI.II) 

From the equation (A 1.3) we have 

a. 2 2 1 - llT V T=q q- llTVT [2 C' C l C , , 
(A 1.12) 

Simplifying, we obtain 

(A 1.13) 

By imposing a.t:J.7;/ q)" = I we obtain the energy equation in the form 
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(A 1.14) 

From a.6.Tj q) c = 1 we can further express qc = a.6.T;,/ (, and also, by imposing 

k.6.p,) P. a. = 1 we can express 6.Pc = J..J.a.! k. which introduced into A 1. 11 we obtain 

the Darcy equation 

q = -'lp, + R,1<, (A I.I S) 

where 

Ra = P.g.k.IlTrP, = P.g.k.IlT;H. 
Ifj, )J. a.)J. 

(A 1.16) 

85 



Appelldix 2: Derivatioll of the equation 2.6 

Let the equations below be the continuity, Darcy and energy equations and Q) = V x q the 

vorticity. 

\7· q= O 

8q '/2' • - +Ta · e.x q + q =-\7p+Ra·T· c. 
81 ' . 

8T 2 
x - + q ·\7T =\7 T 

81' 

Where: 

. . . 
q =uc x +vcy +wcz 

8. B. B. 
\7= -e +-c + -c 

ax'q,'&' 

Hence 

(A2. I) 

(A2.2) 

(A2.3) 

(A2.4) 
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The operator 'Y will transfonn each term in the LHS of equation (4) 

(A2.5) 

The trip le product 'Y x [e~ x q], which is known as a "triple vectorial product", wi ll yield 

[
. 
e, • a. a. a. " " 

'\7 x [c, x q]= [- e, + - e, + -e, ]x [-ve, + uc, ]= a, ax ay az 
-v 

(A2.6) 

It its to be noted that the vertical component of the flow is assumed zero since we have no 

flow on that direction. 

Expanding the determinant from equation (6) we obtain 

[" ] "au "Dv "[au av] . au " av "[ awJ 'Yx e + q =-e - - e - +e - +- = -e - - e - + e 'Yq - -
~ x8z Y8z ~8x ay K8z Y8z ~ 8z 

As 'Yq = 0 it results that 

'1'~ 1/2 8q 'YxTa ~ e xq=-Ta -, az (A2.7) 

On the right hand side of the equation (4) we have 

'\7 x ('\7. p)= 0 

87 



as a rotor operator applied to a divergence, and 

v x Ra· rc, = RaV x re, = Ra[(VT) x c, + r (v x c,)]= 

[
ar. aT. rae . . ] {ar. aT. ) = Ra - e - - e + ---- · e = R -e - -e {)y'8x' az' {)y'ax' 

(A2.8) 

The resulting equation is 

(A2.9) 

To introduce the vorticity we have to apply the operator 'V once again to equation (A I.9) 

[am If28,, ] [{Br. ar.)] Vx - +w- Ta - ='Vx R - e, - - e at az ayax ' 

On the LHS the operator applied to each term will give 

(A2. IO) 

(A2. ll) 

12 aq V2 8q " 2 8 12 a 'V x Ta - = Ta 'V x - = Ta'f - 'iJ x q = Ta - m az az 8z az (A2. 12) 

On the RHS. the operator applied to each term will give 
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e, 

[
aT. aT. ] a v x Ra -e - -e = Ra -
Oy'il>r' ox 

aT 
Oy 

e, 
a 
ay 
aT 
ox 

, 
e. 

= R -- e + -- e -v le a {1fT, a'T , '"" ] 
8z axaz l ayaz Y H z 

o 

Adding the resulting terms from LHS and RHS we obtain 

[ a J' '/2 aq [a'T ,&T " ] - + 1 'V q +Ta - + Ra -- e,+--c . -'V HTc z =0 
at' Oz axOz ayaz' 
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Appelldix 3 

Section 1: Basic flow solutions 

The basic solution in a two dimensional problem assumes no flow, the temperature a 

function of z only and the pressure not a function of x and y. As a result, the equations 

(2.1) , (2.2) and (2.3) wi ll be written as follows 

k. [ • ] 0= - - 'V.p. + P.g.c, 
11. 

Equation (A3.2) will yield 

iJp • iJp • iJp • • 
- e +-e +-e = Ra·Te 
iJx' iJy Y iJz' , 

(A3.0.1) 

(A3.0.2) 

(A3.0.3) 

(A3.0A) 

as pressure is not a function of x or y and T is a function of z only, it results 

iJp 
- =Ra-T 
iJz 
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a'T 
- , ~O 
az 

(A3.0.6) 

From (A3.S) results that T = Az + E, where A and B are two constants to be determined 

according to the boundary conditions 

T~I z ~ O A ~ -I 

(A3.0.7) 

T ~O z ~ I B~ I 

The pressure can be obtained from (A3.4) yielding P. ~ Ra f (I - i)clz + C 

Section 2: Small perturbations around stationary solutions 

Let q = qb + sq' T = Tb + cT' Cl) = (V b + &0; ' the small perturbations around basic 

solutions. We know that q. ~ W b ~ 0 and Tb ~ 1 - z; therefore equation (A 1.7) can be 

wrinen 

a(w,+w') ( ) " a(q,+ q') [ ?(7;+T' )' a(T,,+T')' ] + mo + ol - Ta = Ra e. - Cy aI' az ay ik 
(A3.0.8) 

Opening the brackets and separating the terms in basic on the left-hand s ide and small 

perturbations on the right hand s ide. we obtain 
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(A3.0.9) 

aT' " 
I considered the value of q' along z-axis as w and the products - e J = 0 . Therefore 

ax, 

(A3.0. ! 0) 

In the energy equation we insert the small perturbation solution 

(A3.0.!! ) 

Developing the terms and separating the equation in two parts we obtain 

a a x- Tb + q , VT, - v' r" = - x- T' - q ,VT' - q 'VT, - q 'VT' + V' T' a,' a, (A3.0. !2) 

The LHS o f the equation is zero since it represents the energy equation in its basic fonn; 

also qb VT' = q'VT' = 0 , because qb is zero (basic no-flow situation) and the product 

between two perturbations will yie ld a second order perturbation that can he neglected. 

As ~ = 1 - z and q' along z-axis is w' the final fonn of the energy equation is 

( a ~'I T' ' I x- - V ) -w =0 \ at' (A3.0.!3) 
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From equation (A3.8) we can express w' as 

, (a ,I, 
w =, X- -'1)T 

\ at' 
(A3.0. 14) 

and from equation (A3.6), by multiplying to the left with the operator [~+ IJ-' we get 
a,' 

(A3.0. IS ) 

introduced together with (A3.9) in (1.8) yields 

[a]' ,. a'q' [a }{ a'. (f. , . J - + 1 V·q' + Ta--, + - + I --e. + --e) -VHe. T' = 0 
ai' az' al' axaz 0-aZ -

(A3.0. 16) 

Taking (f T' • a'r . 0 F' II h b . .. -- es = --c =: . ma y, t e temperature pertur allon equatIOn IS 
OXOZ iJyoz ' 

{[~ + IJ ' [X~ - '1'J'1' + 7:J x~ - '1'J- Ra[ .0 + I J'1~}T' = 0 
at' at' UL at' et' 

(A3.0. 17) 

Section 3: Amplitude differential equation of T' 

93 



The assumed solution (2.11) can be written as T' = e(z)·F(x ,y, t ). which introduced into 

equation (2. 10), opening the brackets and taking k; + k; = k yields an algebraic equation 

xo)k 2 + Xa J d + 2Xa.2 k1 + 2Xa2D2 + Xak 2 + XaD2 
- a 2(k4 _ 2e n2 + D4 ) _ 

-2o(k' - 2k' 6' + D')- (k' - 2k' 6' + D')+ Ta(xaD' + D'k' - D' )- Ra(O" + I)k' = 0 

(A3.0. IS) 

Simplifying 

~a + i)' [D; - k' - xo" ID; - k' )+ Ta[D; -k' - xO")D; - Ra(O" + I)k' )a = 0 

(A3.0.19) 

For e = b"sin(n7lZ ) as a solution for (2. 12) the equation above will yield 

R= P +a +rO"l [(0" + I)' (a + 1)+ Tal 
a (O" + I) 
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Appendix 3.1 : Determination ofw', 0) ~ u ' andv ' 

By substituting T' = Bcos(lcr)sin(1/Z) in equations (2.8), (2.9) and (2.7) along the 

respect ive directions we obtain 

[x~ - V' ]BCos(lcr)sin(1lZ)- w' = 0 at' (A3.1.l) 

There is no time dependency in the expression above and the value ofw' is 

w' = -v'r = -V' Bcos(lcr)sin(1/Z) = (k' + Jr' )Bcos(1cr )sin(m) (A3.1.2) 

(A3.1.4) 

For the vertical component ofvorticity, 

- + I C/}~ = Ta 1J
2 _ [a] aw' 

at' - az (A3.1.5) 

(A3. 1.6) 

(A3.1.7) 

To determine u' and v' we consider equation 3.7 taken by components, knowing that 

. '" (a' & &) ~ " " "] &u' &-,1 &w' (1) V q'= - +-+- ·zle +v'e'+w'e' =--+-- +-­at 2 ay2 8z2 ~ y : 8x2 0,2 8z2 

(ii) .E. ru' = ~[V xiI' ] az az 
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(iii) (A3.1. 11) 

(iv) 
an a(\ 
~ ~ 0 and (v) ~ ~ 0 
0/ at 

we can write the following equations 

2 1/2 flv' EfT' 
'\l u' - Ta - - = -Ra--i)z' axi)z (A3.1.12) 

2 " 2 cru' 1/ 2 &w' 
V v' + Ta" --2 = Ta - -az axaz 

(A3.1.13) 

Since w' and T' have the same representation in sine and cosine. we can write 

u' = Ccos(kx)sin(7/Z) 

a'T' 
- = -nkBsin(kx)cos(m) axaz 

a2w' 
- = - nk(k' + "')'Isin(kx)cos(m) axaz 

\7'v' = - (k' + "',' 

The de-coupling of equations A2.2.12 and A2.2. 13 
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(A3.1.14) 

(A3.1.1 S) 



[
- (k' + Jr' ) 

T 1/2 2 
- 1 a 7r 

( " )' , fj. = k + J[ + Ta;r 

RmzkB Ta"' tr' I ( , 'X' ) "'c = -Ta"'JrkB -(k' + tr' ) = kJrB,k + Jr Jr Ta - Ra 

-,k + 7r trkRaB 1/2 2 2 2 ( , ') J 
"' D = ./ , 1 '11 {, ' , = Ta JrkB(Jr Ra + (k + Jr )) 

- Ta J[ -Ta kJr\k +7r 

c _ ktr(k' + tr' XTaJr ' - Ra) B 
- (e + 7Z"2 ) + Ta;r4 

ktrTa'I' (k' + tr' l e + tr' )' + Ra tr' 1 
D= ( " ) ' B k + 7r + TaJr 

We remind here that the critical value of RayJeigh Rac at (j= 0 is 

Results the value for C 

97 

(A3 . 1.1 6) 

(A3.1.17) 

(A3. 1.18) 

(A3.1.19) 

(A3 .L20) 

(A3.L2 I) 

(A3 .L22) 



For D, a s imilar calculation will reveal 

CA3.1.23) 

Finally, we can write the expressions for 

Jr(k' + Jr' ) 
u' = - Bsin(kx)cos(JlZ) 

k 
CA3.1.24) 

1ffa"'(k' + " ' ) 
v' = Bsin(kx )cos(m) 

k 
CA3. 1.25) 
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Appendix 3.2: Determillation of ~QV) and a ,2 1§1] 

The equation 2.12 is listed below 

{et + I)'[D; - k' - 1'olD; - k' )+ Ta [D; - k' - 1'0"]0; - Ra(O" + I)k'}a ~ 0 (A.n.! ) 

. e() ' (krHk y)+-u,· . 
By substituting a = ia

i 
In the solutIOn T' = z · e Y and knowmg that 

D:2T' = _ J[
2T' and D: T ' = 7[4T' 

(A.3.2.2) 

k' 
Recalling that a = - , , 

1[ 
R = R~ and r = ~ we can write the expanded equation 

1[ 1[ 

(A3.2.3) 

Which can be further separated in two parts, real and imaginary, both equals to zero 

(A3.2.4) 

,ra 2 + Ta71 2 + Tan?a -Raa = 0 

(A3.2.S) 
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From equation A2.2.4 we can express 

Ra = Q - 0;')::' (1 + a)' - 20;'1r'r(1 + a)+ Ta(1 + ayr' 
a 

which introduced into A2.2.5 yields 

(A3.2.6) 

(1 +a)r - (1 + a)' ya; +2(1 + a)' + Tar-(1 + a)' +(1+ a)' a~ +2y (1 +a)a~ - Ta(l + a)= 0 
(A3.2.7) 

it can be noted that the power of 0", is constant and equal to 2 all along the expression, 

hence 

a'= (1+a- y)Ta 
, (1 +aXI +a+r) 

(A3.2.8) 

The above expression is introduced next into the equation A2.2.6 by replacing all a i
2 ,s. 

i{-) = Rar) =1.[(1 - (I + a- r )Ta + 1)0 + a)' -2( (i + a -y)Ta )(1 +a)r + Ta(1 + a)] 
" a (i +aXI +a+y) O+aXI +a+y) 

(A3.2.9) 

Resulting 

R;") =~[(!+aXI +a+r)+ ( y'Ta )] 
a I +a+y 

(A3.2.10) 

§2. By minimising the above expression with respect to et we have 

='---- = - - (i +a){! +a+y)+ r =0 dR'··) d {2 [ ' Ta ]} 
da da a (! +a+y) 

(A3.2. 11 ) 

lOO 

·r~3~1 1 1 



dR;"') =2~{ (1 +a)(I+a+ r) } +2r'Ta~ { I }= 
da da a da a(! +a+r) 

(A3.2. 12) 

y2 Ta y2Ta 
(1+a)(I+ a+r)+ 2+2a+r- -"-~-
____ ~;----=-I .:-+:::ac.:+:...Lr + 2 I + a + r = 0 

a' a 

y2Ta a y2 Ta 
- (1 +a)(1 +a+ r ) - + (2+2a + r )a - ( )' = 0 

I +a+r I +a+r 
(A3.2.13) 

By simplifying the expression A2 .2.13 we obtain 

a 4 +2Cr + l)a' + r Cr + I)a' -2Kr + I)' + r'Ta } - r'Cr + I)Ta - Cr + I)' =0 

(A3.2.1 4) 
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Appendix 4.0: Weak lIoll-linear allalysis 

Let us consider the continuity equation in the fonn V'. q = O. Since all derivatives with 

respect to y are zero, we can write 

au' aw' 
- +-=0 
ox OZ 

From the energy equation we have 

[X.!!... - 'V'JT' + q''VT' = 0 
01' 

Knowing that u' = olf/' / OZ and w' = -olf/' / ox 

, ~ ' , ,)(OT"OT'" q''VT' = u'e x + v'e ... + w'e. '1 - e, +- eo) = 
o \ ox OZ 0 

, oT , oT' olf/ oT' 0 If/ 07' 
u - +w -= - - ---

Ox OZ oz ox ik OZ 

(A4.0.1) 

(A4.0.2) 

(A4.0.3) 

All the mixed vector scalar products are c,· c, = 0Y' where ostands for Kroneker function 

i:F.j 

(A4.0A) 

i=j 

To determine the equation 3.0.2 we have to consider the fo llowing 
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~ 
.y e, 

, , a a a 
cd = V x q' = - = ax ay az 

u' v' w' 

The components above can be written 

iN 
w' =--

x az 

ilv' 
cd= ­, ax 

Re-writing the equation 1.7 by components 

[~ + l]tlJ; - Ta~' a'~ = 0 
a,' az 

[a], " av' aT' - + 1 (J) - Ta - = -Ra-a,' y 8z iJx 

[~ + l]tlJ' + Ta l
/2 &'1' = 0 a,' , az8x 

(A4.0.S) 

(A4.0.6) 

(A4.0.6) 

(A4.0.?) 

(A4.0.8) 

(A4 .0.9) 

(A4.0.10) 

Takjng equation A3.0.9 we proceed by multiplying the first equation with Ta l/
2 and the 

second with[CVa, + I] 
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[
a J( av' ,) , a''11 - + I I- - )- TaV - =0 at' \ az az' 

(A4.0.1l) 

[ a J' v' av' ar - + 1 V '11 - Ta - + Ra- = 0 at' az ax [~+IJ ot' 

'''[ a r av'') &'11 -Ta - +1 - - )-Ta - =O al' az az' 
(A4.0.12) 

[ a J" v' av' "'[ a J( av',) aT' - + 1 V'II-Ta --Ta - +1 1-- ) + Ra- =0 at' oz at' \ az Ilx 

Subtracting the first from the second equation in A3.0. 12 we obtain 

[ a J" &'11 [ aJar - + 1 V '11 + Ta-- + Ra - + 1 - = 0 at' az' at' ax (A4.0.13) 
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Appelldix 4.1: Expallsioll around statiollary solutions 

The equations 4.0.1 and 4.0.2 are shown below 

[ a J" &'1/ [a JaT - + I V '1/ + Ta-- + Ra - + I - ~ 0 ai' az' ai' &: 

In order to obtain a solution we need to re-scale the variable as follows 

X~EX 

a a a 
- ~- +e--­ax &: ax 

r= i t' 

a a ,a 
- ~- +e -at' at' aT 

(A4. I.I ) 

(A4.1.2) 

(A4.1.3) 

(A4.1.4) 

(A4. I.S) 

(A4.1.6) 

Because of the stationary character of the problem the expression A4.1.5 will be written 

a ,a 
- ~e -at' aT 

Ra ~ Ra(1 + e') 

(A4.1.7) 

(A4.1.8) 

We shall proceed to expand the expression A4.1.1 by splining it into more convenient 

components 
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Part 1: 
( a , I 
1 x - - '<1- ) T 
\ at ' 

(a 21 (~a 'I (~ ' 7: -' 7:) 1 x - - '<1 ) T ~ 1 xo' - - '<1 ) " + eT, + e , + o' , ~ \ at' \ a, 

( ,a a' a' ) ( " ) xe - - - , - - 2 To +e~ +& T2 +& r; = aT ax az 

( , a (a a I' a' 1( " ) 
lxe - -I - +e- ) - - ) T, + eT, +e T, +e T, = aT \ax ax az 

[ , a a' a a ,a' a ]( " ) ex- - - - 2e---e -- - - T. +eT.+e 7: +e 7: ~ ar iJx2 ox oX axl 8z 0 I 2 3 

a a' a' a' a' a a e' X- T.- - 7: -e-7: -'; - 7: -e' - T - 2.-' ---7: aT 1 8x2 0 8x2 I (k 2 2 ax2 3 ox oX I 

(A4. L9) 

We neglect all the temlS that are zero i.e. all the derivatives of To with respect to any 

variable except z, and all the terms that contain powers of E higher than 3. We can write 

the partial result as: 

(a ,I ( ' ) ,(' a a I 
1 x - - '<1 )T~ e\-'<1 T, + e 1 -'<1 T, -2--- 7;) + \ aI' \ ax ax 

(A4. Ll O) 

,(, a a a a') e -'<17 -2---7 + x - T.- - 7: 
3 ox oX 2 aT I ax2 I 
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Part 2: 
a'l/ iJI' 

az ax 

a'l/ iJI' a ( " ~ a a l ( " ) -- ~ - 'I/o + &'1/, + & '1/, +" '1/, - + &-) To + 6T, + & 12 +6 T, ~ az ax az &: ax 

, a'l/, ar, l a'l/, aT, , a'l/, ar, l a'l/, m; 
8 +E +8 +& az ax az ax az ax ilz ax 

Part 3: a'l/ iJI' 

ax az 

(A4. 1.11 ) 

a'l/ iJI' (a a l( " ~ ( 2 ' ) -- ~, - +&-) '1'0 + 8'1'1 +&'1/2+ 8 '!/J~ To +EI;+E 7; +& ~ = ax az , ax ax az 

(A4.1.1 2) 

By adding A4. 1.9, A4. 1.1O and A4. 1.11 and separating according to the power of Ewe 

obtain for order 0(,,) 
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'Y' T. _ 8 f/1, ~ 0 , m 

For order 0(&2) 

8f/1, 87] _ 8f/1, 87] 
8zm 8x8z 

For order 0(&3) 

Which is the equation 4.I.Sb 

Which is the equation 4.1.6b 

Wbich is the equation 4.1. 7b 

We shall proceed to expand the expression A4.1.2 by splitting it into more manageable 

components and neglecting all the higher than 3 powers of E and all the derivatives that 

equal to zero. 

Part I "1 ' f/I 
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Part 2 [.i'.- + 1J' x Part 1 at' 

[2 ,a 1J{ (a'V', a'V'I) ,(a'V', a'V') 2 a aV'l ) e - + e - - +-- +e -- +-- + -- + ar ax' az' ax' az' ax ax 

e3(a'V' ) + a'V'3 +2~ aV', + a' V' I)} 
ax' az' ax ax ax 

[a]', (' ) ,(, a ~ 'I - + 1 'V V' =e'VV'I +e l'VV',+2 - )+ ai' \ oX ox 

Part 3: 
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8' 'If iJ ~ 2' ) Ta--2 = Ta- 2 \ '1/0 + ellfl +e '1'2+&'1/3 = 
QZ oz 

(A4. 1.1 5) 

Part 4 [8 J8T Ra - + 1 -
iJI' 8x 

[ 
8 J 8T (, 2~ 2 a V a a I( 2' ) Ra - + 1 - = Raa \1 + li li - + 1)1 - + li - ) To + liT, + li T, + li T, = 
iJI' ax aT \ax ax 

( aT, I ,[ ( 81i ~I] '[R ( 81; ~ aT, a aT, l ] 
Bi Rac, - ) + li Ra,,1 + ) + li aal + +- +---) \ ax \ ox oX \ ax a¥ ax aT ax 

Summing all the parts according to each power o f e we obtain 

For order 0(6) 

(A4.1.1 6) 

2 iJ 'If aT. v '" + Ta::..Ll + Ra = = 0 
T I & 2 er OX Which is the equation 4 .1.5a 

Which is the equation 4. 1.6a 

2 EY/f/ l aT1 a 2 a 811 
V 'If + Ta- + Ra - = -2 - V '" - Ra - -

3 & 2 er OX ar Y'1 aT ox 

Which is the equation 4.1. 7a 

110 



To establish the correlation between amplitudes AI and El we need to consider the pair of 

equations 4.1.5 a and b into which we replace the eigenfunction corresponding to the 

amplitudes with the undetermined solution for the respective order. We remind that 

Like before we shall proceed analysing the equat ions by parts 

, fJ '1' , 07; V ." +Ta-- +Ra - =0 
't'I &2 er OX 

a (I) 
V' T'-I) _--'L- = 0 

ax 

Part I 

n' n' fA oh A' -.h)s. () ~k' 'X Ih . -"")s' ( ) v '1'1 = v \: le + I e m JlZ = -~ . +" .1\ e + AI e In JlZ 

Part 2 

fJ fJ (A ,h A' -'h)s. () ' (A 'h /' -,h \.' ( ) 
a 2'1'1 = - lI,e +Ie Ifl:rz= -,,· le +Jle .rIn7lZ 
z az 

Part 3 

Part 4 

I11 

(A4. 1.1 7) 

(A4. 1.18) 

(A4. 1.18) 



8 T. 8 IB ", BO -'Ia )s' () k IB ," BO -,e. )s' ( ) - '~ -~ le + le iU1lZ = i ~ Ie - le ln7lZ 
8x 8x 

(A4.1.19) 

By summing the Parts corresponding to each expression, separating according to the 

exponential argument and recalling that a = k2
/ 7r

2 we obtain the following system of 

equations 

. 1 r-
(a + I)A, + TaA, + IRa" - .. aB, ~ 0 

" 
(A4.1.20) 

(a + I)A; + TaA,o - iRa" J.../aB: ~ 0 (A4.1.21) 

" 
. 1 r-(a + I)B, + 1- .. aA, ~ 0 (A4.1.22) 

" 

(A4 .1.23) 

From the last two equations we can draw the relationships between coefficients of the 

solutions 

i./a 
B, ~ - ( )A, 

J'l"a+ i 
BO - - i./a AO 
, - ,,(a + I) , (A4.1.24) 

To determine the solutions at order 0(8'2) we first consider the set of equations 4. 1.6 a 

and b. The de-coupling process for temperature is shown below 
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, 0''1/, oT, S ( T. ) 
\1 1f/2 + Ta fJ

z
2 + Racr ox = Rf{, 1 '1'1 > I 

,0'1/, () V T, - ~ RHS, '1/, . I; ox 

and for stream function 

, 0'1/ , () 
V T, - ox ~ RHS, '1/" I; 

Where 

o 0'1/ 07: RHS (." T.)~ _2_ ::..!:.J. - Ra= 
1 Y'I> 1 oX ox ox 

a 
ox 

( V' + Ta 0',) oz 

V' 

o 
- Racr -ox 

(A4.I.2S) 

(A4.1.26) 

(A4. 1.27) 

(A4.1.28) 

The de-coupled functions are shown below, first the stream-function equation and second 

the temperature equation. 

(A4.1.28) 
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(A4.1.29) 

Since the left hand side of the homogeneous equations are similar to those at the first 

order the solutions will have to look similar up to a particular function as shown below 

\fI, = (A,e'" + A;e-''' )sin(7ZZ)+ /,(RHS) 

T, = (B/' + B;e-''' )sin(7ZZ) + J, (RHS) 

(A4.1.30) 

(A4.I.3 \ ) 

We shall proceed as before, calculating parts of the expressions starting with stream­

function equation A4.1.27 

v V + Ta - ." +Ra - ." =V -2-~-Ra - -,[, B] & '{ a a\fl, aT,} 
oX T 2 c~ Bx2 't'2 oX ox er oX 

(A4. 1.32) 

Ra ~{-2~ aT, + a\fl, + a\fl. aT, _ a\fl, aT,} 
" ax ax ax ax az ax ax a. 

Part \ 

2 a a 2,(aA, ,a aAj -"') . ( ) 
&- dX" '1'1 = 1, oX e - oX e sm JCZ (A4.1.33) 

Part 2 
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a ( i.,fa 'h i.,fa '-'h) ' ( ) Rau - - ( )A,e + ( )A,e Si n nz = 
M ffl+a Hl+a 

(A4. 1.34) 

( )' a ( i../a 'h i../a A' -,h) . ( ) I +a - - ( )A,e + ( ) ,e SIO 71Z = oX ;rr l +a 7f l +a 

. k (I {aA, 'h aA,' -''') -/ - + a e - e 
1(' ax ax 

Pari 3 = V' (Pari I + Pari 2) 

,( a aI", ~I (. ( )x I !J,i ,b !l:r -'b) . ( ) 'V \-2 ox ax - Rac, ax) =ik\2 - 1 + a I +a\ ax e - aXe Sin 7rZ (A4.l.35) 

Part 4 

2~ ay; =2 a ( aA, e'" + aA; )Sin(71Z) 
ax ax (a+ I) ax ax (A4.1.36) 

Part 5 

(A4 .1.37) 

1ra (A e 'h + A· e-II", 'j sin(2m) 
2(a + l) , , 

Part 6 
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~3. a r.(A ,la A' -,la '\.. ( )1.£.r.CI> ,la B' -'Ia )s' ( )] ~ -~ If' + l e ,.plO Jtz: Jrl ... ~ LJte + l e ill 1IZ ' = ax az a. az 
(A4.1.38) 

ParI 7 = ParI 5 - Par' 6 

(M. 1.39) 

a'l', (aA, "" aA; _,la ) . ( ) - = It + It SID;CZ ax ax ax (M. l.4()) 

Pari 
a 

8 ~ Ra -[- Part 
c. a. 4 + ParI 8 + ParI 7 J 

Ra ~{_2~87j + a"" + a"" a1j _ a"" a1j } ~ 
co a. ax a. ax az ax ax Cl! 

(A4.1.41) 

ikr(a + 1)' - 2(" + 1)" { aA, . 'Ia _ A; . -'Ia) Sin(",,) r ~ ax ax 

Finally. by "llding A4.1 .34 10 A4. 1.41 we oblain Ih" non-homogeneous part of stTeam 

equation 

.t;(RHS) ~ i*[2(a + 1) - (a + 1)' - (a + 1)' + 2(a + l)a f ~; , la - ~; . - ''") sin(nz)= 0 

(A4.1.42) 
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That means that the solution of stream function at order 0(&2) will be similar to that at 

0(&). We shall proceed with the calculation of J, (RHS) differently from /, (RHS). The 

equation fo r temperature is explicitly shown below. 

v + Ta - V T + Ra - T = - - 2 - --' - Ra + [ , aJ' a' a[ aa'll =87:J 
ax ' c'ax" ax ax ax c, ax 

(A4. 1.43) 

- - 2-..:::.L.l - Ra ~ + V + Ta- x a [ a a'll aTJ [ , a J 
ax ax ax c, ax ax 

[-2~ aT, + a '11 , + a '11 , aT, _ a'll , aT,J = 

ax ax ax az & ox OZ 

a [ . (~ '''' !!:!i. _'''') . () '( )' i../a (~ '" BA; -'''') . ( ] - - 21k e - e S107CZ + 7r~ a+ 1 ( ) e' - - e S10 nz) + ox oX oX IT a + I oX oX 

i../a )'k' ( )] I S10 7rZ -
IT(a + l) 

i../a I ] ;r(a + l)jikcos(m) = 
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[_2(ik) ,(aA, e'" + aA; e-''') sin(nz)+ "' (I +a)' i..la (ik{ ~e'" + aA; e-''') Sin(IlZ)]+ ax ax ,,(a + I) , ax ax 

- +a - 1-2-- e + --'-e sm 17Z + [
if , if Jt( a )(=aA ," aA: -,h) . ( ) 
ox2 al a + I ax oX 

[2k' - (t + a),,'a - k' - ,,' a ' + 2~(k' + "'a,)l( aA, e'''' + oAj e-'''') sin(m) -
a+ 1 'j ax oX 

4 1 2..1ak ' A A' . (2 ) - 7r a I 1 sm 7lZ 
a+ I 

Finally, 

( ) 
1 1 k..la .. (2 ) J, RHS = -S" a -- A, A, SIn IlZ 

a+1 
(A4.1.44) 

The temperature equation can be written now 

[ , a] ' 0' , a' ..Ia .. ( ) '\l + Ta - V T2 + Racr - 2 r; = 81l' k AIAI 5111 2JZZ oX ox a+1 
(A4.1.4S) 

Let Tt = Ysin(2nz) be a solution that satisfies equation A3.1.36, where Y is a polynomial 

expression of constants. The second term of the equation will yield zero, since the 
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assumed solution it is not a function of x. Some algebraic work to the equation will 

transform it 

J6y,,'a ' sin(21lZ)= _8,,' / ' )a'A,A;sin(2",,) 
tra+l 

Y = - t ) A,A; sin(21lZ) 
2" a + J 

The solution for temperature at order o(c2
) is 

For the o(c3
) solutions we can write the equation 4.1.7 

(A4.1.46) 

(A4. J .47) 

(A4.1.48) 

(A4.1.49) 

(A4.1.50) 

tn order to determine '1'3 and T3 we have to de-couple the equations above. For '1/3 we 

have 
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, & '1/, aT, ( T. ) 
'V 1f/3+ Ta 2 + Racr - = RHS1 Ij/ l' 1 

OZ ox 

, 0'1/,_ ( ) 'iI r; - - RH8, '1/" T, ox 

'iI' 

o 
-Ra­

Ox 

By adding the two express ions we gel the de-coupled equation for If! 3 

{ ,( , a' ) a' }' 0 V 'V + Ta- 2 + Rac - 2 '1/3 = 'V RHS1 - Racr - RH8, 
oz 'ax ox 

RHS = -2~ 'iI' _ Ra ~ aT, _ 0' '1/, _ 2...£. 0'1/, _ Ra !!!i 
, or '1/, " or ox oX' oX ax " oX 

RH8, = -2"'£' aT, + 0'1/, + 0'1/, aT, _ 0'1/, aT, + 
oX ox oX OZ Ox ox oz 

O'l/, !!!i_ 0'1/, aT, + x or, _ &T, + 0'1/, aT, _ 0'1/ , aT, 
oz ox ox OZ or oX' OZ oX oX oz 

(A4.1.5 1) 

(A4.1.52) 

(A3.1.53) 

(A4. 1.54) 

We shall work the expression 4. 1.53 by parts, in the end compiling them into a final 

expression that w ill yield the solvabi lity condition for the amplitude. 

Part I 

'iI ' 'k ' 'X ,.., . ~'''')s. ( ) '1/1 = -~ + tr- Al e + AI e m 1!Z 
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Part 2 

0 , (, ' '\~ w iJA; -w) . ( ) 2- 'V '1'1 = - 2,k + 7!- e + - e Sin 7rZ or or or 
(A4. 1.56) 

Part 3 

o m; ' ( ~OAI 'h oAj _,h) . ( ) Ra,,, ----'- = 7r a a + I e + e Sin 1lZ or OX or OT 
(A4.1.57) 

Part 4 

(A4.1.58) 

Part 5 

(A4. 1.59) 

Part 6 

2 0 Olf/, 2·{OA, 'h oAi -''') . ( ) - =1 e- e Slnm 
~ ox oX oX 

(A4.1.60) 

Part 7 
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0T, i./a (OA, ,h OA, -'h) . ( ) X- = -X e - e sm 1lZ 
OT n(a+l) OT OT 

(A4.1.61) 

Part 8 

Ra,, !!!.z. ~ rr'(a + l)'~[(ll,e'h + B;e-"" )sin(m)- t ) A,A: Sin(2m)] ~ 
ax ax 21l a + 1 

(A4.1.62) 

- (a + l)[J!!:i. i h _ aA; e-'''') sin(",) + ~(aA, A,' + aAj A,)Sin(2"')] 
"\. ax oX 2 oX ax 

Part 9 

0'1', OT, _ arr (" 'h A' -'hXA ,la A' -'h )s' (2 ) - ( ) ""le + 1 e -,e + 2e In JCZ 
oz Ox 2a+ l -

(A4.1.63) 

Part 10 

a [(8, 'h n' -"<)s' () a , . (2 )] - e + '-'le In 7rZ - ( )AIAl SIn 7lZ = 
Ox 2rra+l 

(A4 .1.64) 

Part 11 
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Part 12 

a,a, 87; a ~/A ,'" AO -"" )s ' ( )] "-"-'- - = - \: le + 1 e In 7!Z x ax az ax 

a1f (A e'a _ AOe-d" XA,e"" - ,oe-,a)sin(21lZ) -
2( a + I) I I • '~ 

ika (A,e'''' - A; eO,,,, }I,A; cos(2"" )sin(m) 
a+ I 

(A4.1.65) 

(A4.66) 

This expression needs a little attention. We have a term cos(2nx)sin(m). which can be 

expressed with the help ofthe following trigonometric fannulas 

sinacosp =~[sin(a + p)+ sin(a- P)] 
2 

sin("" )cos(2"") = ~ [sin(3",,) - sin(m)] 
2 

ika (A ,,, _ A' "" \, AO . (3 ) + ika (A '" _ AO ""\, AO . ( ) 
(

le le r'] I sm JlZ ( le le )" 1 I sm 1!'Z 
2 a + I) 2 a + I) 
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Part 13 

2 0 oT, 2a (OA, ,k.< oA; -,h) . ( ) 
--~-- e + e sm 7rZ 
ax ox a +1 oX oX 

Part 14 

0'1/, (0A, ,h oA; -'k') . ( ) ~ = -----"- e + e sin 7rZ 
ax oX oX 

Part 15 

0' 1j i./a (if A, 'h if A; -,h) . ( ) =- e - e sm llZ 
oX' ,,(a + I) oX' oX' 

Part 16 

0'1/, 01j i./a ( ,k.< • _'Ia ~OA, ,h oA; -"") . (2 ) ~- ( ) A,e +A,e - e - - e Sin 71Z 
oz oX 2a+1 oX oX 

Part 17 

0'1/, 01j i./a (.!l:!. ;h oA; -;h) (A ;h A· -"o \.. (2 ) 
oX oz ~ 2(a + 1) oX e + ax e ,e - ,e "In 71Z 

(A4.1.70) 

(A4. 1.71 ) 

(A4. 1.72) 

(A4.1.73) 

(A4.1.74) 

The right hand side of equation A4. 1.53 can be expanded in terms of all the parts 

expressed so far, less all the terms that carry higher harmonics of the solution, which 

would be relevant for an order 0(&4 ) analysis. 
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'\1' RHS, - Ra" ~ RHS, ; '\1 ' RHS, - Jr' (a + I)' ~ RHS, ; ox ax 

O' A , 0A, OAJ 
(k' + " , ) oX" + 2ik(k' + "';a; - ik(a + I)(k' + ,.' ) cJ e'''' + 

(k ' + ,,' )0' Ai _ 2ik(k' + 7r, ) oA; + ik(a + IXk' + Jr, ) oA; ]e-'''' 
oX oX OX 

(A4.1. 75) 

[ 
' r I)' k..fa oA, ' ( I)' ak' A' A' ' r I)' 2ika oA, 

J[ ,a + Z -tr a+ - 1[ ,a+ --~ + 
,,(a + 1) or 2(a + I) " a+ l oX 

ik,.' (a + I)' ~ _,.' (a + I)' k..fa 0' A, } ''" _ ax ,,(a + I) oX' 

[
,.' (a+ I)' X k..fa oA, -,.' (a + I)' ak' A,' A;+ ,.' (a+I)'2ika~_ 

,,(a + 1) or 2(a+l) a+ 1 oX 

·k ' ( I)'~ ' ( I)' k..fa o' A'}~"'}. ( ) I tr a+ -7r a+ ( ) ~ Sin 7fZ ax "a+ 1 oX 

Separating A4. 1.76 according to the power of the exponent, and equating to zero the 

resulting tenns in order to obtain the solvability condition at 0(&3), we have for e,u: 
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(A4,1.76) 

' ( )' a aA, ' ( )' k' a "'( ),2ika~ ,,- ,a + 1 x ( ) -It a+1 ( )AA +lt~ a+1 -
a+! aT 2a+l a+! ax 

ik7r'(a+ l )'aA, +;r'(a + l), a a'A, ~O 
il¥ (a + I) il¥' 

Similarly for e -IU 

(k ' + It' )~;;' - 2ik(k' + "' )~; + ik(a + IXk' + "')~; -
(A4,1. 77) 

a aA' k'a, 2ika ~ 
7r'(a+ l),x( )""'- -7r' (a + i)' ( )A(A,· ) +It'(a+I)' - + 

a+ 1 aT 2 a+1 a+l aY 

ik7r'(a+I),aA; +7r'(a+l)' a a'Ai ~O 
ax (a+ I) ax 

The two expressions A4.1.77 and 78 are identical up to the coefficients of Al and A;. We 

expect that the partial algebraic sum of those coefficients to be zero. 

2'k(k' ' ) 'k( Xk' , "( )' 2a "( )' 1 +It - I a+1 +1T )+Ikff a+1 ( )-,klt- a+1 =0 
a+ I 

(A3,1.78) 
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The equation A3.3.77 can be written symbolically as 

(A4.1.79) 

Where P is the algebraic sum of the coefficients of aAI / a r 

(k' + 7r ' )'(a - 2) - k' x(a + I) (A4.1.80) 

Q is the algebraic sum of the coefficients of AI 

(A4.1.81) 

M is the algebraic sum of the coefficients of AI2A; 

(A4.1.82) 

N is the algebraic sum of the coefficients of a2 AI / ax2 

(A4. 1.83) 

It follows that the equation for AI 

(A4.1.84) 

By replacing the variables in their original time and space scale 
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(A4.1.90) 

Where 17 and C;~' are 

7]~ 
(a + 1)(2 - a) + ay 

r 

2(a + 1 )(~ -1) 
a Rcr 

(A4. 1.9 I) 

From the conditions that If/, ~ 0 and a If/.I at ~ 0 results that A, ~ - A; 

From trigonometry we have 

eh ~ cos(kx) + isin(kx) (A4.1.92) 

e-'h ~ cos(kx ) - isin(kx) (A4. 1.93) 

By subtracting the two expressions above 

If/, ~ (A,e''' - A,e-'h )sin(1IZ) ~ A,<;" h - e- 'h )sin(IlZ)~ 2iA, sin(kx)sin(llZ) (A3.1.94) 
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'If, ~ C, sin(kx)sin(nz) (A4. 1.95) 

Therefore the solvability condition when the space scale has been removed (the diffusion 

term), can be expressed as 

'ldC ~ ,ra' ';;." _c'\r 
dl 8~ o !,- (A4.1.96) 

(A4. 1.97) 

The equation above is Bernoulli type equation 

: + P(x)y~ Q{x )y" (A4.1.98) 

In this case 

n=;3 

In equation A4.1 .98 we call the variable v = yl-" . It yields the integrating factor equation 

(A4.1.99) 

The integrating constant is zero for '\j t 
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-, 1 C' 
V=Y =~~, = 

R > R " For a - Q cr 

For Ra < Rac, we have ~;' < 0 and equation A3.1 ,99 wi ll yield 

Implying that 

o V R <11" 

c= 

The condition 1] > 0 implies 

(a+I)(2-a)+ar>0 

Using for a, a:;' = ,11 + Ta it yields 

(A4.1.100) 

(A4.1.101) 

(A4.1.102) 

(A4.1.103) 

(A4. 1.1 04) 

tn this case-limit, y must be replaced with y,U representing a transitional value relating to 

the relaxation time. 
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r:'.JI + Ta =-(.JI + Ta + IX2 - .JI + Ta) (A4. 1.l05) 

SI .J 2 r = I + Ta - -I 
, .JI + Ta 

(A4. 1.1 06) 

By imposing the condition for r;1 of being real and positive, y,JI > 0 , we obtain an 

equation in Ta 

.JTa + 1 > 2 (A4. 1. I 07) 

From which 

Ta >3 (A4 .1.1 08) 
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Appendix 4.2: Expallsion. aroulld over-stabLe solutions 

The coupled equations at the leading order for stream function and temperature are 

(4.2.3,) ,nd (4.2.3b) 

(A4.2.1) 

( 1. ,,'J ' ~ -Xa • a, - 1, + ax -0 (A4.2.2) 

The corresponding solutions (4.2.1) and (4.2.2) are 

T, =2(C,e" +C;e-" )cos(kx)sin(m) 

Working by parts the two equations above we have the following segments that can be 

added up in the end. 

Part I 

[ a IJ' ~'(' I)(k' 'X " . -") . (k ) . ( ) 0 0 a, + '1'1 =.!.f Go - +1t A,e -~e Sill x SIn 1r:. + 

(A4.2.3) 

Part 2 
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(A4.2.4) 

Parl 3 

R a ?E.. 2·k '( )'(c " c: -" ) . (kx) . ( ) acral) ar at- = - I .(1;r 1 + a ~ - I e Sin sm 1IZ (A4.2.5) 

PartS 

Ra~ ;; = -2k1r'(1 + a)'( C,," + C;e-")sin(kx )sin(m) (A4.2.6) 

Part 6 

(A4.2.7) 

Parl7 

~ 2·k( 'f • -" ) "kx)· ( ) a =, f\ e -Ale co" Sin rr.. 
x 

(A4.2.8) 

Part 8 

(A4.2.9) 

Assembling the parts in terms of equations A4.2.1 and 2, we obtain 
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(A4.2.10) 

(A4.2.11) 

~·k)A, '/ A" -" ) 0 £1" e - le :;: 

We rurther separate the tenns according to the exponential power 

(k' + It' X G; - 2iG. - a )A, = k( G, - i) Ra" C, (A4.2. 12a) 

(k' + It' X G; + 2iG, - a )A, =k( G, + i)Ra" C, (A4.2.12b) 

[2iG,x + 2(k' + "')lC, +2ikA, =0 (A4.2.13) 

[-2iG,X + 2(k' + ,,' )lc; - 2ikA," = 0 (A4.2.13b) 

From equations A4.2.11 and 12 we can draw an expression for Racr • while the equations 

A4.2.13 and 14 will give us the relationships between coefficients ant order onc. 

Ja[1"' , + i(a +1)] 
C,=- [ , lA, 1C (a+ I) +y'G; 

and 
" Ja[1"', -i(a+I)] " 

C, =- 1C[(a+I)' +Y'G;(' 
(A4.2.14) 

In order to determine the solutions corresponding to each order we have to dc-couple the 

equations 4.0.1 and 4.0.2 
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-= + I 'ily + Ta ": + Rac, -= + I -:;- = 0 [a]' a' [a ]aT 
at az at oX 

To achieve that we make the following helping assumption 

7=1'0+1'=(1-:)+1' 

at aT at aT 'iI'7 = 'iI'T aX ax at at 

We recall that 

a a a --->-+£­
dX ax ax 

A = A(-r. ,T,X) 

a a a ,a 
, - --> , - +£ -:;- +£ -:;­
of of a'to a'f 

at aT 
-=-1+­
Cl;: aZ 

(A4.2. 1Sa) 

(A4.2.1Sb) 

(A4.2.16a) 

(A4.2.16b) 

(A4.2.16c) 

After wc replaced the new variables, equations A4.2.1S a and b will then appear in the 

[oml 

-+1 'iI'''+Ta-1+ Ra -+1 -=0 [a]' a' [a ]aT 
at 'I' at' rr a, ax 

[x~- 'iI'JT+ a'l' = a'l' or _ a 'I' aT 
al ax ax at az ax 
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(A4.2.J7) 

(A4.2. 18) 



alJl aT alJl aT 
Le! ----- = J (IJI T). We have ax az az ax . 

il 
ax 

Ra [~+ IJ1-" or ox 

This vectorial equation can be solved using Cramcr's method. 

~= 

-+1 'i;P+Ta-il J' a' 
at az' 

a 
ox 

a , x- - 'il a, 
= 

{[ a J' n' . o'}{ a '} a [ a ] a --::+1 v +7a- X- -'il --Ra --::+1-a, a:' a, ax " al ax 

~ = • 
J 

~T-t!. - T 

a)' a' ill + 1 'il' + 7(1 a:' 

a 
ax 

o {( a )' n' 7' a'} = - +1 v + a- J al a:' 
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(A4.2.19) 

(A4.2.20) 

(A4.2.22) 

(A4.2.23) 



The analysis for J wi ll give us a non-linear string of terms that will be responsible for the 

shape of the solution at order 0(£1) that in turn \\ ill affect lhe solution at order 0(£3) 

II will be seen that the weight of non-li nearity at order 0(£) is inexistent. 

d'l' T d'l' T 
J - -- - -- ­- -

dX d: d: dX 

d { , J U d d){ l ' ' 1' ~r } a:: £11'1 +e 'Ill +e lJf3f\.ax +e X e 1+ e 1 +e,,( 3 = 

Where 

The de-coupled equation for lI' wi ll be 

{[ a 'I( a )" ,a'] a' ( a )} { a ) a x - +V- - + 1 V +1a - , -Ra- , - + 1 Ij/ =R - +I - J at al az- ax' al al ox 

The de-coupled equation for T will be 
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(A4.2. 24) 

(A4.2.25) 

(A4.2.26) 

(A4.2.27) 

(A4.2.28) 



The homogeneous parts of both equations are identical, showing that the associated 

homogeneous solutions wi ll have similar forms. However, the particular solutions will 

differ according to each order. 

Analysis of equation A4.2.27 

By replacing the slow scales for time and space, we have 

j[ [a a , a) 0' a a ,a' I( a a ,a )" a' ] X -+e-+e - - v -2e---e - -+e-+e - +1 V +Ta- -at at".. aT ax ax axl at at". aT a::2 

(A4.2.29) 

This algebraic equation is very tedious to solve; however we shall proceed to solve it by 

parts. 

Pari 1 

(A4.2.30) 

( a,) (d a a) '( a a') x- - V +£ x- - 2--- +£ x---
C!T aT, ax ax aT ax' 

Part 2 
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OVI 

+ • -' D.l+ d I-t- --z.--l + tIo I). 1+- -z.+':-- [+- 6--X . (oe (.elXxe,e "'e 1 . ( ( 'el"'e "'''' ( .ery <e 1 
,e " e cc e l ee ee l e I e 

+' -' 0.L+~ 1+ - ---1.: -t- ' 14 1+ - - t'f- -- \+ - --'1:- - 1' ~ 7< (.ell" 'e ) ~ ( 'el"'e "'''' ( 'e,X,,'e "'. ) ,e ,c,e e eeee,eeee 

[ >e '. e xe t(re ~>e ( le»e) ,xe ( ~) '.e ] .f;---Z+- -+ 1+- -z: l+- 1+- -z 3 ' ee ee ,e ee ,e ee ' 

[ ( ;.e ( le»e) xe xe ( le) '>e ·xe ( le)~ + ,f; - + 1+ - - Z +-- 1+ - - 1>+ -' - 1+- z.3 ,e e e e e e e ,e , e 

[ ( le) '>e xe xe ( le)] + . f; 1+- -z+-- 1+- Z 3 , e e ee , e 

·:e (le) + ~terJJ. + t6 t I+ e-

,ze (,xe xe'l' _ ) (>e '>e le) =-vl+ _ .3+ __ 3,,+ .. A 1+ - . 3+ - 3+ -,e .. £ ' e e , u . e ' e e , 



(A4.2.32) 

, [a' (a ) aa (a ) aa ] eRa - - +1 IJI +')- - - +1 I.jI +--~ + 
... 0.\) al 1 - oX ax d I ;)-f'. ox: 1 

The right hand side of the equation A4.2.27 

( ,fa a ,0 )( a ail' ' ) 
-Ra~ I +€\al+earQ +£ dT+ 1 ax+£ax}£i,+CJ) = 

, a (a 1 - c·Ra - -+1 J -
er ax a, l 

(A4.2.330 

We can write the expressions of the de~coupled stream function equations for the 

corresponding orders 

Order 0(1:) 

{( a ,) ~( a )" a' ] ~ a ) a' } x--V- -+1 V-+Ta- , -Ra -+1 - , '1', = 0 al al az- al a.<" (A4.2.31) 

Wc see that in the RHS expression of A4.2.27 there is no first order of E 

Order 0(1:') 
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(A4.2.32) 

( a a a X a )" (a a a). a' Z--2-- - + 1 V", - Z--2-- Ta-lY + a-r. ,hax at I en. axox dZ2 I 

R ?(~+l)~~ R ~l:... - R (~ l)l.[a ",,~_ a'i'!~) 
1\, - at ar X1Jll + a.,.. ch. or '1'1 a", at + ax Ox dZ dZ dX 

The order 0(£2) wou ld hold information about dependency of the still undetermined 

amplitudes and various variables 

Order 0(£ ' ) 

142 



( d '~( d )' d' d (d ) d d (if d (d )) 1 % _ _ V -+1 -+4- -+1 --+ -+2- - + 1 VZ If.-
i)l at ax I ih. iJl (Ix x ,)r! aT c t • 

(A4.2.33) 

, - -2-- -+1 VZljl - X- -l-- 2- - +1 +2 - +1 -- -( d d d X d)' (d d d X d (a f' (a )' a a} ar. chax at I ch. (Ix (IX (IT. () l cl /hax L 

x--2-- ]"(1-"',- x--- -+1 VIV' - x--- Ta-~ + ( a ad) d' (a d' X a)' (a a' 1 if 
rh. ih ax at· ,h axl at 1 ar ax l al.l , 

The homogeneous equation for T has the same fe nn as for lJI', only the RHS will differ for 

order O(e') and o(e'). We called the RHS as J 

(A4.2.34) 

By introducing the slow scales for time and space we get an expression for J in terms of 

powers of e. 
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,{( a )" a'} J = £ a, + I \I J, + Ta az' J, + 

(A4.2.35) 

The calculation process is identical to that for \jI and we shall resume to write only the 

results 

Order 0(£) 

{(X~-V')[(.£.+I) ' V' +1'a~]-Ra (~+l) il'_}T. =0 
01 a, oz'" 01 ax" 

(A4.2.36) 

Order 0(£') 

{( il )rl( a)' il' ] ( il ) il' 1 xill-V' ~ ill+ 1 V' +1'o ilz' -Ra,,\ill+ 1 ilx'fT,= 

(A4.2.3?) 

( il )'( a il il) , (il ail) il' - +1 x- -2--- V - X--2 --- 1'a- , + 
01 ar. ax ax are ax ax a,-

Ra 2 - +1 --+Ra -- T+ -+1 V· J +Ta - J (a) a a (I (I' } (il )" 0' 
" ill (Ix (IX " ar. ax' 'ill ' at' , 

Order 0(£' ) 
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J x1.-.')[2.1..(1.+I). '+2(---+I)' 1..l..}._ \ at dT. ch dt (l.r a.'\· 

( a ,)~( a )' if a (' )' a [if a ( , ))0'] x - - V - +1 - +4 - - +1 --+ - +2 - - +1 . 1jI -0' at a\,l aT. dl ClxX ,h! elr dt L 

x--2-- - + 1 VljI - x- -2-- 2- - + 1 + 2 - +1 -- -( a a a X a)' (a "1 a (' " (a )' a a} ar. i).tax at I ch. axax ar. ch ch <nax I 

The solutions allhis order are 

T. = 7:.' + T.P 
11 2. 

(A4.2.38) 

(A4.2.39) 

Because the homogeneo lls part at order two is Identical to that at o rder three, the 

homogeneous solutions will be 

(A4.2.40) 

r; =2(C;e" + c,e-")cos(kx)sin(7r:) 

By introducing the solutions into the secular homogeneous equation wc will obtain 

si milar expressions between amplitudes and also a set or relationships between Racr and 
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the amplitudes. The relationships between coefficients at o rder two will preserve as well 

and they can be presented as 

(M.2.41) 

Jatra. - ita + 1)] • 

[ ' lA, ,,(a+ It +r'a; 

T he analysis of the stream function at 0(£2) wi ll give us informa tion about the 

relationship es tablished between time and space slow scales related to the amplitudes, For 

that we havc to inves ti gate the RHS o f A4 ,2.32. The analysis of the non-linear terms 

follows by introducing the solutions fro m the previ ous order and performing somc 

algebraic manipulations. The result will indicate that the solution for stream function at 

this order is not inO uenced by non-lineari ty induced. However this is not true for 

temperature which will appear to be strongly influenced by perturbations introduced at 

previous order. 

(M.2.42) 
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The remaining part of RHS(ljf ]) of A4.2.32 will be regarded as a differential operator 

operating upon ljf]. The result must be forced to zero in order to obtai n the required 

rc1ationshi p 

a a a , a a, , a a', a a , 
40" ---- '\7 +2---'\7' -xa --'\7' -2Xa --'\7 -

. " ih ax ax ax • aa. a,' · a,aT. 
(A4.2.43) 

a , , if a a , a a a , a a , .. a a' x-v· +20'" --:;----v- +4<1o----V +2- -- V· - 1a%--, + aT. ar ax ax a, ax ax ax ax aT. a, 

aaa' aaa aa aa' 
2Ta -----; +2Rac~ ---- +2Racr---+ Ran---

dX ax a,' a, ax ax ax ax aT. ax' 

Applying the operator A4.2.43 to "e ii 
.. part of the solution and equating it to zero, we 

obtain a relationship between oAJd'fo and aAJaX 

(A4.2.44) 

Where 

P = 7r ' [2O'. (I + a)' + 4a .r(l + a) + i(3O' :r(l + a) - 2(1 + a)' - r(l + a) -110+ aRo~ l] 

(A4.2.4S) 

Q = 2~ya. -ya; +40'. (1 + a) -a.Ro~ +i(2ya: + 2a:(I+ a)-2(1 + a)- To +Rorrl] 

(A4.2.46) 
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We can see that there is a correspondence between the wave number and a. on one hand 

and the ratio between slow space scale and slow time scale. 

ax 
/(a)tan(kx) =-:;-

OT. 
(A4.2.48) 

We can call the expression above the equivalent of a slow velocity scale. j(a) is a 

funct ion not only of a, bill also of Ra~ and Ta , implicitly will be dependent of the 

rotation of the layer. 

For the e-" pan we obtain a similar expression 

-~ -~ P sin(/a)=Q eos(/a) 
dT. dX 

(A4.2.47) 

Where 

P = n'[20". (1 + a)' + 4<r .r(i + a) - i(3<r : r(1 + a) -2(1 + a)' - r(1 + a) -)"Ta + aRa~ l] 
(A4.2.48) 

Q = 2k[rO". -rcr! +40". (1 + a) -0" Jia~ - i(2rO"; +20";(1 + a) -2(1+ a) - Ta+ Ra,, )] 

(A4.2.49) 

A s for the T equation , the linear terms are the same as in IJf equation and they can be 

forced to zero, remaining to analyse the non-linear part of T. which differs from the 

stream function equation 

(A4.2.50) 

We found that )2 is a function of 1 and z only 
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RHS; a ' - - +2a ---+(J+Ta)- J ( a' a' a a' a' ) 
o atl al 0 at az2 az2 

1. 
(A4.2.S J) 

(A4.2.S2) 

(i + Ta'f5ik1i'( A, c,e" + A,C; - A;C, - A,'C;e->1) sin(2n;:) 

In the cnd we can write 

RHS = [b; +o;e1 i
'- + a;*e-2U' ]sin(2n:z) (A4.2.S3) 

Where 

(A4.2.54) 

We ascertain that the particular solution of 7; must be of the form 

(A4.2.S5) 

We proceed to analyse the strucLUre of bz 
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(A4.2.56) 

By introducing T.zP,L = bz sin(2m) into A3.2.37 

(A4.2.57) 

Knowing that bz is a constant we obtain the follo\\ iog equation 

~,(~, a') . () " a(a+ I) • 
-v v +Ta-:;:-:; b,;sln 2nz = 16k rr [ ",]A,A, 

a: n: (a+ l ) +Y"o 
(A4.2.58) 

The expression for bl is 

(A4.2.59) 

Introducing Tt 2 
=0. sin(2nz) in equation A3.2.37 
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(A4.2.60) 

11 yields the following expression 

[(640": +32yO"; -100')- i(64O", -32ra! +SyO",a')]1i'a, = 

(A4.2.61) 

re: I [32O", +i(32O";-Sa'}jk1r'[ra , +i(l+a)] , 
- .. a - 4 

" [(I+a )'+y'O":] ., 

From which wc can delcnnine 

a 2(a+ I)-Y'O"; -ira.(a+3)( )' a = - A, 
, ,,[(a+ I)' + y'O": ](4+y'O":) 

(A4.2.62) 

Similarly we work out the expression for a; by introducing I t) = a;e-'!·j sin(21t::) in the 

equation for 7;. It yields 

(A4.2.63) 

The full equation 11'3 at O(e) is presented below, where wc retained from the right hand 

side of the equation onl y re lcvanllemls linked to 1jI1 
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,SI 

s].l1ld ,(q OAoqn 

,~.\"exe ( 'e) ( 'e)"e Xx.,.e "e >)-- -- [+ - z+ 6. [+- - z --z--< ee, e : e e ee e 



Part 2 

( aa' X a )' x- - - a - +1 'I/' = aT ax' 0 a, 

, a a' ,-,' a a, a ,-,' ,Cl' Cl' ,-,' va -- Y +2T X--v +x - Y -a --v -
'" 0 ClT ilt' • m a, ClT • ClI' ClX' 

(A4.2.66) 

Part 3 

(A4.2.67) 

Pan 4 

(A4.2.68) 

a' a Cl' 
/la -+/la --

C~ ax 2 c' ar ax2 

As for the non- linear part, we have to split the tenns in pans as well. 
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Parts 5, 6, 7 and 8 will deal with the non-linear tenns containing mixed proouclS of 

stream function and temperature. 

PariS 

. [Cl a a a a] 21k1cRacr (jo---+ - +-- X at ax ax aT. ax (A4.2.69) 

{A,C,e"; + A,C; - A;C, - A,'C;eli}sin(21rz) = 0 

The resuh yields zero because the argument of the differential operator contains nO .. T or I 

terms 

Pari 6 

(A4.2.70) 

m ay,' au, a1;' au, aT' am ar.p 
+.!:....L.L _ _ ~~ _~~ 

ax az ax a: az ax az ax 

We shall consider only the relevant tenns in which appear Y'. and T". They are those 

where the particular solution for temperature appears explicitly. 
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0"', aT.' 0"', 01;' 0 [ ,( • . -.), (,.) '( )]l1(,. ,. .~.). (? )] ----;--. "' - 21I\e-~e SIll ... rSIll ~ ~ l '"'l+a.e +a.e SIIl_It;:-ox a. 0, ox ox a. (A4.2. 71) 

We see that the second term where temperature appears is not a function of x, therefore it 

will vanish and the result is shown 

0"', aT,' 0"', ol~' 'k ( • • -')(b ". -") ",._) , () (2 ) -;- < ---;:--;-,,"""= 41'tr A,e -Ate ~+/V +(V co"..;... SLnn;; cos rr:::: 
oX a.. {I.. (1.X 

(A4.2.72) 

The term conlaining sin(3n:z ) can be neglec ted at this stage since it does not contain the 

basic solutio n. By performing the multiplication between brackets we obtain a SUing of 

terms that can be further neglected because they are different that the resonant ones. 

These terms mi ght become significant if we proceed analys ing orders higher than 0(£3) 

or relationships between amplitude func tions at order higher that 0(£2) . 
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(A4.~.73) 

- 2k ',,(U. -ill "I>, - A; ",)e' sin( h)sin(m)-

2k',,( u. + i)(A; b, - A,,,,"le ' sin(h)sin(m) 

Part 7 

Ra .£.(u.£. + 1){aV', a1j _ aV', a1j } = 
rr ar • at ax a, a, ax 

(A4.2.74) 

ilr[ 'le' + ,,"e-' { ~~' e" - ~. e-' }ill(2kX)Sill(2n:: )} 

This is a nOIl-resonant tcnn and will not be considered for further calculations. 

Part 8 

Ra .£.(" .£.+I){aV', a1j _ aV', eni} 
rr ar • at ax az at ax (A4.2.7S) 

It contains Az coefficients, therefore not to be calculated. 

156 



The compilation of all the parts of the ri ght hand side of equation A4.2.64 will be 

presented. We group the terms according to the power of the exponent e il and to the 

argument that contains the amplitude. T he ex pansion corresponding to e - if is the 

complex conj ugate of the first. For our analysis will be sufficient the e {j part 

M , a'~'sin(kx)sin ("')+ M , a'A, Cos(kx)sin(m)+M, a'~sin(kx)sin("')+ ar -ar ax ax-• • 
(A4.2.76) 

M, ~:' sin(kx)sin (Irz) + M,A, sin(kx)sin( m ) + M~ A,b, - A; a ,)sin(kx )sin(m ) ~ 0 

W here 

(A4.2.77) 

M, ~ [81r' a .,k(y + a + 1)+ 4iklr' (y (a; -I) - 2(a + 1)+ /{.)] (A4.2.78) 

(A4.2.79) 

M, =-41t ,[2aQp( p+ y) +a)'CT, (p - y) _ /P{P -yai)s - a/{p(p - y )] 
sy sy 

(A4.2.80) 

where 
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p=a+1 (a + i)' + y'c; = s (A4.2.SI) 

(M.2.S I) 

(A4.2.S I) 

Using A3.2.45 wc can replace 

(M.2.83) 

EquationA4.2.76 can be written as 

(M.2.84) 

Since wc have all along the terms the mixed product sin(la)sin (1tz) wc can neglec t it 

(M.2.SS) 

By setting to zero the diffusion part of the equation 

158 



(A4.2.86) 

we remain with an equation of unknown amplitude of the convection at order O(e) 

~ (. ) -M, a"t + Ms A, + M, A,b, - A, a, (A4.2.87) 

The quantity within the bracket can be analysed 

a(a+l ) , • a[2(a+ l )-y'"!- iy,,.(a+3)] , • 

[ , ]A,'I- [ '] A,A, 1r (a+l) +y',,! 1r (a+ l ) +y',,; (4+y',,;) 

(A4.2.88) 

Equation A4.2.87 can be written now 

(A4.2.89) 

We have to analyse A4.2.89. 
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M,M, a[6(a+l)+Y'a:a] . ayaJa+3) 
=[ , )( ')-'[ , )( ,)=J, =Z, R+Z" M, (a+ I) + y'a: 4+y a~ (a+ I) +y'a: 4+y a: 

(A4.2.90) 

Ms = tr
2aRcr (co -i sy 

M, [2a. p(p +yls+ aya.R~ (p - yl] -i[2p(p-ya: )s -apR~ (p- yl) 

(A4.2.91) 

Let 

(A4.2.92) 

Q =2p(p-ya: )s -apf\.(p -yl (A4.2.93) 

(A4.2.94) 

Then 

M, = n:'as}1\,( a. - i)(p +iQ) 
(A4.2.95) 

q 

(A4.2.96) 
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rr'asyR" [ (' I)(? "") all ] l" = P a 0 + .t...sp +a/,\-, - ers 
q 

(A4.2.97) 

_1 _ q 

z" - n: 'aS)1l,,(p(a: + 1)(2)1' +a)R") - aR,,s] 
(A4.2.98) 

Therefore equation A4.2.89 can be expressed as 

~ [ ,]-,)or -J, I-J,A,A, A, - O (A4.2.99) 

Multiplyi ng the equation above with £3 and replacing the originaJ scaJes, we have 

I ~ [ , ] " - J , I - J,A,A, A, = 0 
E uT 

lE' (A4.2. IOO) 

(A4.2. 10 1) 

By calling A = t:."\ and A· = EA; we gel a final form for the amplitude equation 

~> J ,[ ~ -J,AA']A (A4.2.102) 
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We need to separate the equation above into real and imaginary parts in order to extract 

the amplitude and the phase of the oscillatory motion. For that we have to write A = re l6 

and AO = re-i6
, where r stands for the real amplitude and e for the phase. By replacing 

these values into equation A4.2.95 

(A4.2. 103) 

(A4.2. 104) 

iJr . iJe [ 'J ih+"ih =1, 1;". -1, r r (A4.2.I05) 

[n order to process to process this equation we need to express 1, and J1 as complex 

(A4.2.106) 

(A4.2.I 07) 

By separating the real from imagi nary pan we obtain two distinct equations, onc for 

amplitude and one for the phase of the oscillatory motion 
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(A4.2. I08) 

I t is convenient to re· arrange the terms above 

(A4.2.109) 

Where 

(A4.2. 1 10) 

(A4.2. 111 ) 

- - T<'asyfl" a, [? (' l _D (' 'l] ~1I - - _psy ao + I -UJ' cr P +Y 
q 

(A4.2.112) 

a[6(a + I) + r'a~al 
(A4.2.113) 
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, -
"2/ -

ay(a+3) 
(A4.2.114) 
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Appendix 5: Determination of the amplitude equation for the travelling 

waves case 

5.1. Relationship between amplitude coefficients at order O(e) 

The stream runction and temperature solutions can be written in the form 

[ • '1""1 u _I"") A' ~I"") ,,' " 1"") ]. ( ) IJfI = <,e + '-'le + le + """le Sin lr.. 

7- - [c '1"''1 D ~"" ) C' '-1"' 1) 0 ' "1"'1)] . ( ) I - le + te + te + le slnm 

The equations at the leading order arc 

(AS. I) 

(AS.2) 

(AS.3) 

(AS.4) 

In o rder to determine the relationships between coefficients at the leading order, wc 

introduce the solutions A4. 1 and 2 into equations A4.3 and 4. 

Working by parts each term of the first equation 
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Parl 1 

(AS.S) 

Parl2 

(AS.6) 

Parl3 

(AS.7) 

Part 4 

(AS.8) 
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Part S 

(V' + :;, Ta }!" = -k'(Ae'(h") + ~eKh-' + A:e-'th
.') + lj"e- 'th -') )sin(1!1:)­

(AS.9) 

Pan 6 

R .E.~ T. - _ // k(C ~h.') - D 'th-, C" -'th.,) _ D" -'(h-')) . ( ) aaQdIOX 1- aGo le f! + le le Sin m: 

Part 7 

R ~T --·kR (C 't"") D ,h-,) _C" -,h+<)_ D" -'(h-I)). ( ) a ox I - I a le + je I e le sm 1tZ 

(AS. IO) 

(AS.II) 

We shall group all the terms according to their exponent argument. For e ~lx+l) in the first 

equation: 

[a;(k' +n')- 2ia.(k' +n') -(k' +n')-n'TajA, -kRa(a. -i)c, = 0 (AS. 12) 

'h I) For e '\ - tenn 
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For e -it b+f) tenn 

For e -i(lx-f) len11 

Working ror the second equation 

Part I 

Part 2 

.£.. -k[ A \u+' ) B 'Iu-'I , " -'Iu+,") B" -'h-ll] . ( -) 
a "'1-1 f + le - ' 'le - le SlnTr", 

x 

Pan 3 
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(AS. 13) 

(AS. 16) 

(AS. 17) 



M'r -(k' ')[C . (a+1 ) D '(a-i ) DO -;(a~') 11.° -.(a -i )] . ( ) -v 1- +;rr le + le + Le + le slnnz (AS. 18) 

Grouping the terms of the second equation according to the exponent argument 

(It+l ) For e term we have 

(AS. 19) 

For e ~b-i) term 

[(k' + "') -ixo-.]D, + ikB, = 0 (A5.20) 

-,(tI<:+i) 
For e term 

(AS.21) 

-I(t.--q 
For e ternl 

(AS.22) 
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From the second equation wc can draw the relationships between the coefficients. while 

from the first equation an expression for Ra can be recovered. 

Ja[}'O" 0 + K(:c+ I)] 

,,[(a+ I)' +y'a; ] A, 

Ja[-yao +i(a+ I)J 
q= -..,.r 222]B, 

"l(a+l) +yao 

• Ja[}'O"o- i(a+ I)] . 
C, = - [ , ]A, 

'" (a + I) +y'a; 

• Ja[ -}'O" 0 - ita + I)] • 
D,=- [ , ]B, 

" (a + I) + y'a ; 

5.2. Order 0(£ 2) analysis 

The de-coupled equation for 1jI2 can be written as: 
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(A5.23) 

(A5.24) 

(A5.25) 

(A5.26) 



a ( a M2)(a )M' a a( a 2)( a )' -2- X--v -+1 vy -2-- x--V -+1 "'-
d'C f'j d' at I dXX at dT L 

(AS.27) 

( a a a X a )" (a a a) . a2 
X--2--- -+1 V-", - X- -2--- 70 - ", + 

d'To dX{)X at I oro dxi1X dZ2 I 

(a) a a a if (a) a [a", ar a", ar] Ra" - + 1 --VI + Ra --1JI -Ra -+1 - ..:::...!:...l...:::....::.L_::::....Ll.:::.::.L. 
cr - or ox X 1 er d10 (Jr I er at ox dX dZ; dZ ox 

We shall proceed to analyse first the non-linear term . We expect that the innuence of this 

term at this order is zero, therefore its value for any l{Ior T must be zero. 

(c !(.b"+f) +D j(h-I) + C2 -i(lr+l) + D2 -i(b-t)) ( )_ le le ,e le cos;rr:: (AS.28) 

Simplifying. we obtain 
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ik1t[( ,\C; -A;C,)+ (A,D; -l1,C,)e'" + (B, C; - A; D,)e' '' + (B, 0.' - B; 0. )jsin(2nz) 

(AS.29) 

Since the expression above is not a function of x 

Ra~(". ~ + 11C1'1', Cl7; _ Cl '1', Cl1j ] = 0 
dx Clt Clx Cl: Cl: Clx 

(AS.30) 

The remaining right hand side of equation A4.27 can be expanded as onc differential 

operator acting upon '1'1' 11'1' in turn is a function of amplitudes which are dependent of 

the slow time and space scales 
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ddd, dd, ,ddd', ddd, 
40- ---- '\I +2--'\1 +20- ---'\I' +40- ----'\I + 

· ardXdl dXdX · ardXdl' · dXdXdl 

dd, ,d d' = d d n2 ' il' d d ry --'\I - xo- --v -ryxo- -- v +ryra---- -- ar dX • dT. df - . dT. dl - dZ' dX dX 

'r: a a' ryR a a a ry 11 a a 
x a ,_ ,., +- a~o-. '-a ,+ - a~-a -a + 

OL o G ... oX XvI ,f X 

11 a a' lr A 'i,.-i) n '(h-i ) A' " i"+' ) I'" ''1'''')] . ( ) aCT<YTo af!l"Le + '-'l e +,~e +:'>Ie Si nK!; 

(A5.3 1) 

The analysis of e i(b+l) argument for the RHS of equation A4.27 will resull in a split 

equation for At" 

dA, [-4ik3 + 4io-'k ,,' + 80- ",,' +4io-' k' + 20- vb + 4io-' Xk -ax 0 cl' (} o A" 0 

(A5.32) 

~; [2n4 - Racre + 2ia oTr4 +4iO'oXe +4i.<T"xnl + 2ia oe + 2e + 
• 
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The equation A4.32 can be written in short 

(A5.33) 

where 

P = 2k[(4a. +4G.u+ 2G. Y -G.EI" - ~y)-

(A5.34) 

(A5.35) 

The analysis of e o(b-l) argument for the RHS of equation A4.27 will result in a split 

equation for /3[. 

(A5.36) 

where 
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(A S.37) 

Q' = -n' [(2 -R" +2a +yfa - <1;Y -3<1; ya+ ay + y +4a)-

(AS.48) 

The corresponding expressions for A: and B~ will be the complex conjugates of 

expressions A4.33 and A4.36. 

The relationships A4.33 and a4.36 wi ll be used later to establish an expression for the 

amplitude equation at 0(£) from the analysis of order 0(£3) equations for stream 

function and temperature. 

We sha1l proceed now with the analysis of the non-linear term in T,. equation. We recall 

from Appendi x 3.2 ,ha' 

_ aY', aT, aY', aT, aY', aT, aY', aT, aY', aT, aY', aT, 
J- - + - + -, ax az az ax il< az az ax ax az az ax 

For order 0(£2) we have no 13 and the non-linear (cnn can be written as 
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a ~,. a 
( 
')' 0' -+1 V' J~ +7a - , J, al " az--

From A5.29 the expression above willlransform to 

( 
0 )" _ 0' -+1 v-J +Ta-J ~ or ~ a::? I 

-4i( 1 + Ta)krr'[ ("C; - ","C,) +(B.o; - ~ q )]sin(2,.:) + 

[ 1 6ka ,tt , + i(1 6k a;'" - 4(1 + Ta)krr' ) K" q" - B: C, )e'" sin(2m)-

[ 16ka,tt' - i( 16k a';,,' - 4(1 + Ta )krr')K B,C; - " " D,)e-" sine 2rr:) 

(AS.49) 

Since the linear pan of the right-hand side of the temperature equation is the same with 

that of stream function wc shall confine to the determination of the particular solution for 

temperature. which contain non-fcsonanllenns. From A5.49 we can write 

( 
0 

)
' o' 1 , . 

-:;-+1 'I' J. +7a-, J_ ~ 
ul - a,- -

(AS.50) 
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Let ra.:J
• TO:,I and T ov," represent the first, second and third particular over-stable p. . p.. p. 

solutions or temperature in the travelling waves case. The quantities b2 • 3. and a: arc 

given by 

(AS.5I) 

a, ~ [16ka.'" + i(16ka:1<' - 4(1 + Ta)k"')]( A,D; - 8: C,)e'" (AS.52) 

(AS,S3) 

The analysis of bz in correlation with A5.23-26 reveal s the following 

b, ~ -4i(1 + Ta)ktr'[( A,C; -A;C,) + (B,D; - B,"D,)] ~ 

-4 'k '( 7' {Ja[JU. -i(l+a)] • Ja[ra. +J(I+a)] • 
'1< 1+ (/ - [ , ]A,A,+ [ ]A,A;-

1< (I+a) +r'a; 1< (I+a)'+r'a; 

(AS,54) 

Satr'(a+ IXI+Ta)[. "] 
- [0 + a)' + r'a:] A, A, + 8,8, 
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Let 7~"':'" = bzsin(2nz) be the first solution that satisfies equation. Introduced into the 

temperature equation we obtain 

(AS.SS) 

saJr'(a+IXI+Ta)[ • BB.]' (0 _) - [ , ,] A"A; + 1 , SIn ~lk 
(I+a )-+ y-cr: 

There is no time dependence and all time-derivative will vanish. remaining only with the 

following expression 

"'['" . iJ'] . ( ) saJr'(a+1)(I+Ta)[. .j' ( ) -v v + Ta-::::z bzSIO 21ZZ = - [ "'] A,A, + B.B, 510 2m: 
oz (l+a) +)' 0"; 

(AS.56) 

sa1t'(a + 1)(1 + Ta) [ • . ] . 

[ 
"'] A.A. + B,B\ 51n(2Jr::::) 

(l+a) +)'0"0 

(AS.S7) 

(AS.S8) 

Similarly. based on A5.23-26. we compute 
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• Ja[yO", + i(1 + all • 
AIDI -a:C1 =2 [ " ' ] 8,1\ 

" (J+a) +y 0", 
(AS.S9) 

(A4.60) 

Let 1~u;.·1 = G (!2{j sin(2m) be the second particular solution, which introduced into the 

temperature equation it yields 

{( 0 _) [( 0)' 0' ] ( 0 ) 0' } . Xor-"1- ar+! "1' +T"a,' -Ra"\. or+ 1 ox' a,e'''sin(2nz ) = 

[ 16kO".1" + i(I6kO"; rr' - 4(1 + Ta )ktr: ' )h .Ja[)'O", + i(i ~ all n; 1\ sin(2n:: ) 
r rr[ (I+a)' +y-O"; ] 

All derivatives with respect to x w ill disappear 

[ 16kO" .1" + i(I6kO"; rr' - 4(1 + Ta )ktr:' )h .Ja[)'O"< i(1 + all n; A, sin(2m: ) 
r rr[ (I+a)"+r ' O"; ] 

The calculation of the left-hand side of equation A5.62 will result 
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" aa' Cl T)a'} ' ''-· C" ) "a --- + la - ae sm .ar::. ;;: - • al dZ' iJz' , 

[ 
h ..Ja[)" +iCI+a)] - . 

16ka n' + i(16k ao'n ' - 4( I + Ta)k"') J~ • n; A,ev, 5m(2n:) 
• n[(I+a)'+r'a~ ] 

(AS.63) 

from which results the value of a, 

_ a2Ca+I)-r'a~ -ira.Ca + 3) • 
a,-- [ " ']( ") A,B, n (a+l) +n'. 4+r a. 

(AS.64) 

In the same manner we calculate a; by replacing the ri ght-hand side of the temperature 

equation with a;e-2ii sin(2n::z) and assume the part'icular solution ~O;.I = a;e- 211 si n(2n:) 

{( a M')II( a )' M' 7. a' ] R (a ) (f } _' • -," . ( ) x Of - v L or + 1 v + a dZ2 - aCT at + I dX2 J. p ,3 = a le sm 2n: 

(AS.6S) 

Derivati ves that conta in x will vanish , and foll owing the same process will resull the 

following differential equation 
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[ 16ka .1t' - i(16ka;1t' - 4(1 + Ta)k"') Jz Ja[ ycr. ~ i(1 + a) 1 B,A; e-'" sin(21t:) 
1t[(1 +a) +r 'a! ] 

(AS.66) 

that will yield an algebraic equation in he form of 

{32a;yn:' + 64a;1t' - 16(1 + Ta)1t' - i(32a;yn:' - 64a .1t' -Sa. yn:'(1 + Ta)} x 

[ { 
Ja[JU -i(l+a)l] . 

16ka,;r'-i(16ka;1t'-4(I+Ta)k1t') -2 [ " "] B.A,'e-"sin(2n::) 
1t (I+a) +1' a. 

After simplifications the value for a; results 

' __ a 2(a+ l) -y'a: + iya, (a +3) , 
a, - 1t [(a+I)'+y'a:](4+y'a:) A,~ 

(AS.67) 

(AS.68) 

The particular solution for temperature at 0(£2) in the travelling waves case is 
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7'·"·' -[b + "' +' .Zi j ' (? ) p - 2 ale 01 e sin LJrZ 

with b1 • a1 and a; Slated in A4.58, A4.64 and A4.68 respectively. 

5.3. Order 0(£3) analysis 

(AS.70) 

In this section wc make use of the slow time-space scales according to the following 

notations for various variables as t = er /' • (J = e2
f', (ID = £I' , Go = cf.' and X = ex. The 

caJculation will involve the Sleam function amplitudes AI' A:, B, and B: . 

The de-coupled equation for IJI at 0(£3) is exhibited below laking into consideration in 

the right-hand side only the terms related to 1111 ' [orcing them to zero in order to obtain 

the relationship between amplitudes. 

{(x~ - '1 , )rl(~ + I)' V' + Ta a',]_ Ra,,(~+ I) a', }'lf3 = at ~ at az at dX 

-(x..i.. _2i. ..£..)[2..i..(~ +1)'1' +2(~ +1)' l...£..} -ilr. a" ax ar, at at dX dX ' 

( ad' X a )" ( a a' ). il ' x- - - - +1 '1' 'If - x---, Ta- , 'If + ilr ax' at ' ar ax' oz" 

(A S.71) 
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The partial expression for ./: has been calculalcd in A4.29. We shall procecd to calculate 

13: For that we split it into three groups 

Group I (AS.72) 

Group 2 (AS.73) 

Group 3 (AS.74) 

The first group poses the most interesting features because it consists of mixed non-linear 

terms analysed in the previous paragraph. The second group contains the stream function 

solution at order 0(£2) and therefore we can ignore it in o ut calculation, since we deal 

only with order 0(£). Group three contains non-resonant terms, which cannot be forced 

to zero, therefore will be neglected as irre levant. Consequently, only Group I dcscn'cs 

attention and wi ll be analysed later. 

(AS.7S) 

The operator associaled to J : is calculated below 
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[( a)a aa]. - Ra (J -+1 - +-- (Ikn; x 
c, 0 0, dX orC) ox 

[( A, L, - A; C,) +( A,D; - B,-C, le'" + (ElL, - A; D, )e'" + (B,D,' - EI'D, )]Sin(2n::») = 0 

Calculation or -ua.i. (a d_ + 1) 13 from equation AS.71 wi ll follow ax • al 

First we have lO evaluate A5.75 

( 'k' '(""1 'k n '(u-i) 'k" -,''''1 'kB' - '("-') ) . ( ) r . , e +t"-'le - ( " 'l e -{ le :smm x 
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2 'k ('kA, 'i"+f) 'k/> ,(b-'1 'kA,' -' ('Hf) 'k/>' -~"-f) ) I 1t I e +1 '-'le -I e -( ''-'le x (A5.79) 

The product sin(", )co.( 2",) can be transrormed 

sin(", ) cos( 21IZ) ;.!. [s in(3nz) - sin(1tZ) 1; .!. sin(3nz) - .!. sin(nz) 
2 2 2 

(A5.80) 

However, we need 10 keep for further calculations only the [-~ Si n(n:z)J tcnn, as the 

resonant term, the other being neglected. Consequently the expression for J3 changes to 

dU' dT~" d'" dT~" J _.::::..:u..:....:...e.L _ _ r_, .::..:..e.d... _ 
'- dXdZ dZ dX-

(A5.8 1) 

Expanding AS.81 we gel 
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(AS.82) 

R a a J R aJ _ ." R [A,b ,la . ;) + 3'1 ' Ia <'fj ,,' J(a-') -a a-- - a - - -IK-a 7r (I e a e - a e -" ax at J er aX 3 """ 1 1 ] 

(AS.83) 

Wc note that the terms that have a power three at the exponent can be ignored since they 

are non-resonant terms, and for further analysis wc wi ll focus on the terms of exponent 

argument exp[i(kx + n] and exp[i(kx - n]. The terms containing exp[ -i(kx + i)] and 

exp[ -i(kx - T)] will generate complex conjugate expressions of lhe amplitudes A and B. 

From A5.83 wc select 

-k'1rRa.,( 1 + ia.l[ A,b, + Bp, 1 for (AS.84) 
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for CXp[i(kx -i)] (AS.8S) 

Wc now proceed to calcu late by parts the linear part of A4.7! 

( aa' X a )" (a a' ) .. a' x- - - , -+1 V-'I' - x- - - , 10- , '1' + ar ax- al ' ar ilX- az-' (AS.86) 

[( a ) a' (a ) a' a a a a a' ] Ra -+1 -'I' + -+1 -'I' +2---- '1' + --- '1' 
eT d' dXZ 1 dl d"\'''' 1 at"o dX ax 1 aT ay I 

Part I 

-(x.1... -2 i. 1..)[2.1... (.£. + I)V' +2(2-. + 1)' .L2-.J= ar, ax ax ar, al al ax ax 

a' a, a', ,a' a a a a a a a 
-2X", - , - V -2X - V -2X";----- -4X" ,--- -- -ar; al aT; aI' aT, ax ax at aT, ax ax 

a a a a a a a, a a a, ,a' a' il' 
2X---- +4" -----V +4----V +4<> ---+ aT, ilx ilX ' at aT, ax ax ar, ax ax ' at' ar' ax' 

aa'a' a'a' &r -----+4---, at ax' ax' ax' ax' 

(AS.87) 
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Part 2 

( aa' X a )' M ' , a a' M ' a a M ' X---, -+1 y "", =-xa ---v " -2xa -- y"-aT ax" aT ' • aT ar • aT aT 
(A S.88) 

a", , a' a' "' a a' '11' er '11' X- y +a." ax' y +2a. -:;-:;-;- +:;-;-ih 0 1 ut oX· uX· 

Part 3 

(
a a') a' a a' a' a' 

- X,h-ax' Taaz'=-xTa a"Taz'+ Ta a,'ax' (AS.89) 

Part 4 

a a' a' a a a a a' a' a a' 
a oRacr ;--a ~ + Racr-;-;- + 2 Raa-;---a ax +aoRacr -;-~ + Racr -;:--i' + Raa-;:-~ 

01 .r u.C u T o r uf uX- uX aT ur 

(AS.90) 

By compil in g all Ihe ca lcu lated parts we reach ror an expression or the right-hand side or 

lhe equat ion AS.7 l . associated to e,(inl) as follows 
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,,4"'ra~_"'Tail'AI_iRa k'a A,-k'Ra A,+2ikRa il'A, +ia Ra ~+ ,. ott ax2 er 0 er cr at: ax 0 c~ ax! 
• 

(A5.9 1) 

By compiling all the calculated parts wc reach for an expression of the right-hand side of 

the equation AS.71 . associated to e ~h-t) as follows 
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, a'B, _?, a'B, _ (' ' ) a'B, _ . (" ') a'I3, 4/r l*c:r, _'" l*a a 4kc:r, k +/r a a 4,k K +/r a a + o-ci)X 1'0 X 'To X 'Co X 

4k'c:r' a'B, +8ik'c:r a'I3, - 4k' a' 13, -/r'~ '(k' +,r)~ -2i/r''Vc:r (k' + /r') aB, + 
, ax' , ax' ax' ,-, a~ , , a~ 

dB a'l3 a'B a '13 
/r'(k' +1r')Y- ' +c:r'(k'+ 1r')--' +2ic:r (k' +/r')-"-= -(k' +/r')"-=+ 

a~ ' ax' , ilx' ax' 

/r'Y'fa~_/r'7aa'I3, +iRa k'c:rj3 - k'Ro 13 +2ikRo a'13, -ic:r 1>0 ~+ d" axl er I er I cr dr ax .,. . er ax2 , 

(A5.92) 

We analyse !he expressions A5.91 and A5.92 by forcing IIHS = 0 

(AS.93) 

M,a'~ ,a'~ ,a'B, ,a~ MI3 ,[ • Ilbj-O , a 2. + M2, a "'\ +M3 a '2. +M~ a - S 1+ M6 Ala, + -'--"). 2 -
1'0 'CoaX X l' 

(A5.94) 

w here 

M, =2pr' (I+aX1 +ic:r ,] (AS.9S) 
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M; = 2y,,'(1 + a)[1 - ier. l (AS.96) 

M, = 2k"'[ 2yer. + 2er. (1 +a) + i(yer; - y - 2(1 + a) + R.,l] (AS.97) 

M, = -2kn' [2J'C'. + 2er. (1 + a) -i(J'C'; - y - 2(1 + a)+ R~ )] (AS.98) 

M, = "'[400; -4a + er; (1 +a) - (I + a) - Ta+ 1\, - i(8cr.a +2er . (1 + a) - er j?J] 

(AS.99) 

M, = "'[400; -4a + er; (I +a)- (I + a) - Ta+ 1\, + i(8cr.a+ 2er. (1 + a) - erfiJ] 

(AS. 100) 

M, = "'[ y( I + a) -J'C'~ (1 +a) + ;'Ta - 1\ + 2i J'C'. (1 +a)] (AS.I01) 

M~ =,,'[y(1 + a)- J'C'~( 1 +a) + yTa -Il, - 2iJ'C'. (l +a)] (AS. 102) 

Ms = a,,'l/.,( I + ierJ (AS. 103) 

M; = a,,' Rj 1- i erJ (A4S I 04) 

(AS. I OS) 

M; = -anll",,'(l- ier.) (AS. 106) 
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In the equations A5.93 and 94 we can replace the mixed derivative term with the 

argument M2 and M3 by using A5.33 and A5.36. as roIlows 

M d'A, -M dA, dA, -M Qd'A, -M d'A, 
, dT dX - 'dT dX - 'p dT' - PO dT' 

o 0 0 0 

where 

{[(l+ 3aX2-ya .)+ y(a+ I +Ta)-R, ]+2ia. (a+ IXI +a +2y)} 

M~ = -Ir'[ 2<>.(a + y + I)-i(y(a; + 1)+ lie -2(a +( +1))] x 

respecti\'ely. 
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(AS. ID7) 

(A5. ID8) 

(AS. 1 09) 

(AS. 110) 



a[2(a+I)-y'<>! -iy<>. (a+3)] • J-
[ 

, ']( ") B,B,A,-n: (a+l) +ycr; 4+y <>. 

_n ' ( . ) I a(a + I) • 
UIIJ\cr1f 1+ 1(10 - .....r 2 ]AIAIAI + 

2 '. l(a+ I) +y<>; 

, . [ a(a+ I) a[2(a+ I)-Y'<>:- iycr. (a+3)]] U' amtn 1 + I(J 0 + B\ '-'J A 
( ) 2n[(a+ I)'+ycr!] n[(a+I)'+y<>!](4+y'<>;) 

'( . {I aCa + I) ( . . ) -a1tRrr " 1- 1<>. -- J , '] A,A; + B,B, B,-
2"l(a+l) +y<>. 

/ ' '( . ) I a(a + I) '" an \ :T7r: I-la 0 - ....r 2 1 BIDI 8 1 + 
2 '.l (a + I) + y<>; 
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(A5. Ill ) 

(A5.112) 



For simplification we call 

a(a +1) 
(AS.1 13) 

, a(a +1) 
M,.,:- 2,q(a+l)' +ycr~ l (AS. I 14) 

It is interesting 10 note that Mu = M;., 

a(a + I) a[2(a + I) -y'cr; - iycr. (a + 3)] 

M" : 2n[(a + I)' + ycr~ ( n[(a + 1)' + ycr~X 4+ y ' cr;) 
(AS. I IS) 

a(a + I) a[2(a + I) -y'cr; + iycr. (a + 3)] 

M" : 2n[(a + I)' + ycr~ ( n[(a + I)' + ycr~X 4+ y' cr; ) 
(AS. I 16) 

Also it is convenient to call 

~ +MPQ = 1-1 (AS. 117) 

M'+M. :1' 
, PQ '" (AS. liS) 

where M, . M; . M PQ and M~ are defined by the relations AS.9S and 96 and AS. 109 and 

110 respectively. As a result , the expressions for the amplitude of the oscillatory 

convection in the travelling waves case, is given by the following fonnulae 

194 



<fA, '(PAl aA, [ , , ] _ 
L, ,IT' +M, ax' + M, a~ - M,A, + M, M",A,A, + M", B,B, A, - 0 

• 
(AS, I 19) 

"a'A, M,a'A, M~-M' M'[" BB' M' ' ]13-0 
...., ':\ 1 + J ':\ 2 + ":to s~ + 6 lV107.1 1 I + u.A,A, l-

0T" oX 01' 
(AS. 120) 

Rearranging the terms wc obtain 

a'A, iJ'A, {~_ M,( _!!:!..[ , ']] }_ L", +M" ,+M, , I M",A,A, +M",B,B, A, -0 
o'l'Q oX 01" M4 Ms 

(AS. 121 ) 

" a'B, +M,a'B, + M'{~!L At; [1- M; [M' "13' +M' • • ' ]]13 }=o (AS,122) ""d-r2 lax l 4 d-r M' M' 7.,'-1. 1 7.2"'''1 I . " 

Further, we restore the original time and space scale, T = elf . To = E. I , X = e I . i = T 01' 

and by multiplying the expressions with £3 and recalling that A = &'\. B =£~ . A- = EA:. 

B· = d3: ' wc obtai n 

a' A a' A {aA _!!:!..I ,!!!...[ , ' ]] }_ 
L, aI' +M, ax' +M, al M,L' - M, M",AA +M,,13B A -0 (AS. 123) 

(AS. 124) 
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Il is required to further simplify the expressions abovc to a simplcr form, by cal ling thc 

following parameters 

L, =h" 

M, = '"' 

MM 
6 7 . 1 =h 
M, " 

= 

M'-b . , - -" 

M' 
----oi = It 
M' " , 

M~M;I _/ 
M' -~.5 , 

M~M;l = It 
M' 26 

5 

The equations A5.123 and 124 can be writtcn as 
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(AS. 12S) 

(AS.!26) 

(AS. 127) 

(AS. 128) 

(AS. 129) 

(AS. 130) 

(AS. !3 ! ) 

(AS. 132) 



where the coefricients for equation A5.131 are listed below 

{(I + 3a)(2 - }'O"o) +y(a+ Ta + 1) - R,,] + /l0" (a + 1)(1 + a+ 2y )} 

(AS. 133) 

h" =n' [(sa + 1 )(0"~ -1)- Ta+ R~ - i(20"0 (sa + 1)-0"0R,,)] (AS. 134) 

h" = n '[y (a + 1)(1- 0";) + if a - ~, + i2YO"o(a + 1)] (A5. 135) 

al\,( 1 + i 0"01 y(a + 1)(1 -O"n +yra - R" - i2ycro(a + 1)] 

h,,= [ '1 (y(a + 1 )(1 - 0"; )+ifa - 1\,) + (2YO"o(a + 1))' 
(AS. 136) 

I 1 a(a+l) 
1" = 2: [(a + 1)' +O"~Y' ] (AS. 137) 

_ a(8(a+ l )+ 0"~Y' (a-l)1. a}'O"o(a+3) 
'1,. -,,[ , ]( )- '[ , ]( ~(a+l) +O"~Y' 0";Y' +4 (a+ l) + O";Y' 0"~y'+ 4) 

(AS. 138) 

The coerficients for the equation A5.132 are presented 
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It" = 2",41'(1 + a)(I - ;ao)- 2n'~2a.( a + 1' + 1)+ ;(1' (1- a~ )+2(a+ 1) -R~)l x 

{[( I + 3a)(2 - yao) +1'(a+ Ta + 1) - R." ) - l2a (a + 1)(1 + a + 21' )} 

(AS. 139) 

(AS. 140) 

(AS. I4 I) 

_ aR~(l -;a.ly(a + 1)(1 - 0";) + yFa - R.". + ;2yO",( a+ I )J 

It", - [(1'( a+ 1)(1- a!) + JlTa-J\, )' + (2J1O"o (a + I))'] 
(AS. 142) 

I a(a+l) 
illS =-[ , J =J~s 2 (a + I) + 0";1" 

(AS. 143) 

a[8(a+ I)+O"~y'(a - 1»). aJlO".(a+3) 

It" = 2[ (a + I)' + O";1" J( a;y' +4) +1 [(a + I)' +0";1" J( 0";1" + 4) 
(AS. 144) 

It should be noted that the two equations AS. 131 and 132 for amplitude of the oscillatory 

convection in the travelling waves case arc not complex conjugates to eachothe r. The 

difference consists in the coefficients associated to a2(e)/ a/ 2
• respectively, "11 and "lI' 

which it is characteristic la a wave velocity group. 
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Equations AS, 13 1 and 132 have indeed their complex conjugate counter-parts in the 

amplitude equations for A: and B: corresponding to the exponential argument in the 

original solution exp( -i(kx + 1)] and exp[-;(kx - I)]. equations which were not expl icitly 

developed here. However, they too, will withstand the same relationship that exists 

between AS.131 and 132. By seuing 

a'B ifB' 
-=- -0 
at' ax'-

for A4. 131 

for AS. 132 

We (.;an investigate the followi ng system of unknown ampl itudes 

aB [~~ , '] at -I"", - h" BB - it" AA B =0 

(AS. 14S) 

(AS. 146) 

(AS. 147) 

(AS. 148) 

It is convenient to exprcss the coefficie nts of the two equations above as real and 

imaginary parts. 

(AS. 149) 

(AS. ISO) 
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, = .R,,[y(a + L)(I + 0";) - yTa + I~,] 
it" = - [ ]" y(a+IXI -O";) +Yla-R~ + 4yO";(i + a) 

, _ a[8(a+I)+O"o'r'(a-I)] 

it,, - *a+I)'+0"~Y' 10";Y'+ 4) 

I ' _ ayO"O( a+3) 
1
16 

- - [(a + 1)2 +(j'~r 2 1 C;;r2 + 4) 

Let the following quantities be 

(J A - Phase angLe o f A 

(J 8 - Phase angle of B 

d [ 'B ] drd . de" -r e A ;;;; +tr 
d, A df ·-I (/1 

:wo 

(AS.ISI) 

(AS. IS2) 

(AS. IS3) 

(AS. l54) 

(AS. I SS) 

(AS. 156) 

(AS.IS7) 

B- -11,. = fa' (AS. 158) 

(AS.IS9) 



d [ i8] tlrs . de B - rEI! B ;;;; + ff 
d1 d1 · d1 

(AS. 160) 

In this instance equations AS. 147 and 148 can be Wrlllen as 

~ . de" (I' .'' If~~ I ' (I' ., ,) 'L +".... = t.4 + I ~41l." - "ts'" - ~ 6 + I ~6 '8 f .... 
d1 d1 

(AS. 16 1) 

<!!a. . de8 _(/ ' .,;)[p (I' ., ; )' I ' ] + "8 - t. -I tu ., - "6 - I '-.6 ' A - '-Is's Ts 
tit tl1 

(AS. 162) 

Expanding the right hand side of the equations above we shall separate them into real and 

imaginaly parts 

(AS. 163) 

(AS. 164) 

(AS.16S) 
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Similarly, we work out the real and imaginary parts for equation A4.162 

(AS. 166) 

With the same notations for SI and S2 we have the equation A5.162 in the form 

(A5.167) 

(A5.168) 

Finally, we have a system of four equations, two for absolute amplitudes of A and Band 

two for their corresponding phases 

(A5. 169) 
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(AS. 170) 

In the system AS. 169 we can further simplify the appearance by teuing 

(AS.17 1) 

Hence, we can write the systems AS. 169 and 170 

(AS. In) 

(AS. 173) 

For a steady slate situation the system AS. 172 becomes 
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{

,,;r1 + SI'; = h;e;.". 

slr~ + J~r~ =h;~ 

which for r; :J; 0 and r; '* Owe can solve it with Cramer's method 

To determine r; and r; we calculate .6. 

s, =I';I;.. (/~ -s,) 
I~ 

Concluding that 

, , 
TA. = ' B 
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(A5.174) 

(A5.17S) 

(A5. 176) 

(AS. 177) 

(A5.178) 

(A5.179) 



The Reduced Alllplilflde Equariol1 in the case when , .... 2 = , ; can be written as 

(AS. ISO) 

where 

_ I aR.,[r(a+I)(I +a;) +tTa-/l,.] [ a(a + l) a[8(a+1)+a; r '(a - I)] ] 
h, - -2 [r(a + 1)(1- a; )+1ra _ /l,. j' + [2)G(a + I)]' x [(a + I)' +r ' a' ( [(a + I)' + r'a' ~ 4 + ai r') + 

a/l,.[y(a+1)(I +a;)-tTa+ Ra] CI)U,(a+3) 
+ r x [ " 'r ") [r (a+I)( I- <1;j+tTa-/l,. + [2jO(<% + I)f (<%+1 ) + ra 4+a. r" 

«::= 2 [(I +a)(J +a + y) +-:-c-'Y_'T.:..:aC.-..] 
a (1+ a+ y) 

, (i+a-Y)Ta 
G = 

• (l +a)( I+a +y) 
Ra 

f\, = ;r:;: and a results from 

a ' + 2(y + I)a' +y(y + I)a' - z[(y + I)' +Y 'Ta]a - y'(y + I)Ta - (y + I)' =0 

T he Reduced Phase Equation in the case when , .... 2 = r; can be written as 

de , - 2 
- =1; ·{,,+h, ·r, 
dl . 
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(AS.181) 

(AS. 182) 



where 

- I aR.[r(a+IXI+a;)-11"+~] [a(a+1) <>[8;a+I) +a:r'(a- I)J ] 
h, ~ "2 [re a+ 1)(1 _ a:) +11" - R. r +[ 2ya(a + I)]' x [(a + I)' +r 'a'( [(a + I)' + fa']( 4+ ai r') + 

a~[ 1'( a+ 1)(1 + a: )- J'Ta+ R.rJ ara.( 0«3) 

- [r(a + 1)(1- a:)+ J'Ta - R. r +[2ya(a+ I)]' x [(a + I)' + r 'a' 14+ a~r ') 

(AS. 183) 

5.4. The full solvability condition 

By considering that 'A. 8 =, M8 (..r,l) and e MS = 9A. n(X,/) we have in A4.13l first and then 

in A4.132 

,)lA _~[ ", ]_ 16 ", ()2,(\ _ ,9", ()2B A 

a ' - a 2 'de - e a 2 '",e a' x x x x 

al
8 _~[ ",]_ f9, a2

'8 16, alBo 
a '-a,rBe -e a,-rA' a' 1 I· I 1 

(J2 B _ ~[ ", ]_ 16, al,o ;6/1 ()2BB 
a ' - a 2 'Be - e a 2 -, rF a' x x x x 

(AS. 184) 

(AS. 185) 

(AS. 186) 

(AS. 187) 

As a result, both equations can be split into a amplitude and phase equations. 

Amplitude equation ror 'A. 

206 



(A5 188) 

Phase equation for 'A 

(A5.189) 

A mplitude equation for '8 

(AS. 190) 

Phase equation for rB 

(A5.191) 
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where all hv coeffic ients arc expressed In terms of their real and Imaginary pans. 

Funhennorc 

(AS. 192) 

(AS. 193) 

(AS. 194) 

(AS. 19S) 

(AS. 196) 

(AS. 197) 
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