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Latin Symbols

o>

Pr

L >

Ra
Ra]
Ra“

Ra

cr

Nomenclature

Darcy number

Unit vector in x direction

Unit vector in y direction

Unit vector in z direction

Gravitational Acceleration (9.81 ms™)

Height of layer [m]

Length of layer [m]

Scaled length of layer

Permeability of the porous domain

Wave number

wave number containing streamlines

Reduced pressure (dimensionless)

Prandtl number

Dimensionless specific flow-rate vector
Rayleigh number

Characteristic Rayleigh number (stationary case)
Characteristic Rayleigh number (over-stable case)

Critical Rayleigh number



T Dimensionless temperature

T, Coldest wall temperature

Ty Hottest wall temperature

l Time [s]

Ta Taylor Number

u horizontal x component of the specific flow rate
v horizontal y component of the specific flow rate
w vertical component of the specific flow rate

x Horizontal length co-ordinate

3% Horizontal width co-ordinate

N

Vertical length co-ordinate

X Slow space scale

Greek Symbols

174 Scaled wave number

B. Thermal expansion coefficient
X ¢Pr/ Da

o) Porosity

7 27

£ Disturbance amplitude

A Wave length

V. Kinematic viscosity [m?/s]



o Fluid density [kg/m’]

Q w Angular velocity of the layer
W Stream function
£ Linear coefficient corresponding to stationary or over-

stable convection, in the context.

v’ Laplacian

o Oscillatory frequency [s™']

o Critical frequency for stationary or over-stable convection
T Slow time scale at order &

T, Slow time scale at order &

Superscripts

* Dimensional quantities

O Refers to scaled terms

ov Refers to over-stable conditions

c Refers to characteristic values
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Abstract

This study intends to recover and expand the analytical work of Vadasz (1998) for linear
and weak non-linear stability of a rotating porous media heated form below and subject io
gravity and Coriolis forces. It is shown that the viscosity has a destabilising effect at high
rotation rate. It has been established that the critical wave number in a plane containing
the streamlines is dependent on rotation. Finite amplitude calculations provide a set of
differennal equations for the amplitude and phase, comresponding to the stationary and
over-stable convection, identifying the post-transient conditions that a fluid is subject to,
i.e. a pitchfork bifurcation for the stationary case, or a Hopf bifurcation in the case of
over-stable convection. The previous model (Vadasz [1998]) was extended with an
additional time scale in order to represent amplitude fluctuations and a short space scale
to include horizontal modes of oscillations. When the complete solution for the stmeam
function or temperature is analysed, where left and right travelling waves are considered,
we obtain a set of differential equations for the amplitude and phase. The solutions are

discussed in this context



1. Introduction

1.1 Motivation

The study of flow in rotating porous media is motivated by its practical applications in
geophysics and engineering. Flows in porous geological formations subject to earth
rotation, the flow of magma in the earth mantle close to the earth crust (Fowler [2])
represent examples of geophysical applications. Among the applications of rotating flow
in porous media to engineering disciplines, one can find the food process industry,
chemical-processing industry, centrifugal filtration processes and rotating machinery.
More specifically, packed bed mechanically agitated vessels are used in the food
processing and chemical engineering industries in batch processes. The packed bed
consists of solid particles of fibres of material, which form the solid matrix while fluid
flows through pores. As the solid matrix rotates, due to mechanical agitation, a rotating
frame of reference is a necessity when investigating these flows. The role of the flow of
fluid through these beds can vary from drying processes to extraction of soluble
components from the solid particles. The molasses in centrifugal crystal separation
processes in the sugar milling industry and the extraction of sodium alginate from kelp

are just two examples of such processes.

Modelling of flow and heat transfer in porous media is also applied for the design of heat
pipes using porous wicks and includes effects of boiling in unsaturated porous medium,
surface tension driven flow with heat transfer and condensation in unsaturated porous

media.
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With the emerging utilisation of the porous medium approach in non traditional fields,
including some applications in which the solid matrix is subjected to rotation (like
physiological processes in human body subject to rotating trajectories, cooling of
electronic equipment in rotating radar, cooling of turbomachinery blades, or cooling of
rotors of electric machines) a thorough understanding of the flow in rotating porous
medium becomes essential. [ts results can be used in the more established industrial
applications like food processes, chemical engineering or centrifugal processes, as well as

to the atorementioned non-traditional applications of the porous medium approach.

Additional recent applications of the porous media approach are the flow of liquids in
biological tissues like the human brain, the cardiovascular flow of blood in human heart
or other physiological processes, pebble-bed nuclear reactors and cooling of turbine

blades in the hot portion of the turbo-expander.

Regarding the last application, such a cooling process enables the expander inlet gas
temperature to increase beyond the allowed metal temperature, bringing a significant
contribution to the cost-effectiveness of the expander. The cooling process occurs by
injecting air through channels in the internal part of the blade. As long as the geometry of
the channels is not too complicated the traditional heat transfer approach can be applied
to evaluate the cooling performance. However, for complicated channel geometry the
porous medium approach will prove again the most effective way of simulating the

phenomenon.



The macro-level porous media approach is gaining an increased level of interest in
solving practical fluid flow problems, which are too difficult to solve by using a
traditional micro-level approach. As such Direct Chill (DC) casting models apply the
Darcy law to predict the heat transfer, fluid flow and ultimately the thermal stresses in the
solidified metal. Another important application of rotating flows in porous media is in the
design of a multi-pore distributor in a gas solid fluidised bed. A multi-pore distributor is a
device, which is constructed from foraminous materials, wires compacts, filter cloth,

compressed fibres, sintered metal or such like.

2. Literature survey

The main reason behind the apparent lack of interest of this type of flow is probably the
fact that isothermal flow in homogeneous porous media following Darcy's law is
trrotational (Bear [20]) hence the effect of rotation on this flow is not significant.
However, for heterogeneous medium with spatial dependent permeability or for free
convection in a non-isothermal homogeneous porous medium, the flow is not irrotational
any more hence effects of rotation become significant. In some applications, these effects
can be small, e.g. when the porous media Ekman number is high. Nevertheless, the effect
of rotation is of interest as it may generate secondary flows in planes perpendicular to the
main flow direction. Even when these secondary flows are weak, it is essential to
understand their source, as they might be detectable in experiments, To support this

claim, 1t 1s sufficient 1o look at the corresponding rotating flows in pure liquds (non-



porous domains). There the Ekman number controls the Coriolis effect and secondary
motion in planes perpendicular to the main flow direction. Experiments (Hart [21],
Johnston , Haleen and Lezius [22] and Lezius and Johnston [23]) showed that this
secondary motion is detectable , even for very low or very high Ekman numbers although
the details of this motion may vary considerably according to pertaining conditions. 1t is
therefore expected to obtain secondary motion when a solid porous matrix is present in a
similar geometric configuration, although its details cannot be a priori predicted based on
physical intuition only. This creates a strong motivation to investigate the effect of
rotation in )sothermal heterogeneous porous media. For high angular velocity, or
extremely high permeability, conditions pertaining to some engineering applications, the
Ekman number can become of unit order of magnitude or lower and then the effect of
rotation becomes even more significant. The same motivation applies for investigating

the effect of rotation on free convection in porous media

Multi-pore distributor designs have been investigated in applications of rotating porous
media (Whitehead [3]). Research results (Davidson and Harrison [4]) showed that the
porous distributor allowed a more even expansion of the bed than the other distributors
and its design affected the behaviour of the bed over most of its height. An even
distribution of the gas is necessary to avoid instability in the fluidised bed, which can
break down proper fluidisation. A commonly used solution to avoid maldistribution of
gas and bed instability is cyclic interchange fluidisation (CIF) (Kvasha {5]), where the
distributor is rotating at constant angular velocities which vary between 20 and 2500 rpm,

depending on the size of the bed (the higher its diameter, the lower the angular vetocity).



Some examples of applications of the cyclic interchange fluidisation are the highly
exothermic synthesis of alkylchlorsilanes polymer filling the composites, treatment of
finely dispersed solids, drying of paste-like polymers, permanganate of potash and iodine
(Kvasa [35]). Therefore, evaluating the flow field through a porous rotating distributor

becomes a design necessity.

Plumb [6] presented a comprehensive review of the heat transfer in unsaturated porous
media flow with particular applications to the heat pipe technology. Again, when the heat
pipe 1s used for cooling devices, which are subject to rotation the corresponding

centrifugal, and Coriolis effects become relevant as well.

A Direct Cill model was applied by Katgerman {7] to analyse the heat transfer
phenomena during continuous casting of aluminium alloys. When centrifugal casting
processes are considered, rotation effects become relevant to the problem. The porous
medium approach is also used in processing of composite materials. Gugeri [8] states that
“most of the studies in resin transfer moulding (RTM) processes and structural reaction
injection moulding (SRIM) (reat the flow domain as an isotropic porous medium and

perform a Darcy flow analysis utilising a continuum model”.

Addivonal applications of the porous medium approach are discussed by Nield and Bejan
[9] and Bejan [10] in comprehensive reviews of the fundamentals of heat convection in
porous media. Bejan [10] mentions among the applications of heat transfer in porous

media the process of cooling of winding structures in high power density electric



machines. When this applies to a rotor of a an electric machine or generator (or motor),
rotation effects become relevant as well. Mohanty [11] presented a study of natural and
mixed convection in rod arrays motivated by safety related thermal-hydraulic modelling
of nuclear reactors with particular attention to the rod-bundle geometry. The author
concluded that “bundle average experimental friction factor values in forced convection
are better explained through a porous medium model” and “the porous medium
parameters so derived also yield quantitative corroboration of the flow through vertical
bundles induced solely by buoyancy”. The porous media approach was also successfully
applied to stunulate complex transport phenomena in mass and heat exchangers

(Roberson and Jacobs [12]) and in the cooling of electronic equipment (Vadasz [13]).

Chandrasekhar (1961) has shown a perfect agreement in the results of temperature
dependence and stability in a porous layer subject to rotation and its corresponding
problem in pure fluids.

Nevertheless, no reported research was found on isothermal flow in rotating porous
media. Limited research results are available for natural convection in rotating porous
media, e.g. Rudraiah, Shivakumara and Friedrich [14], Prabhanani and Vadyanathan [15],
Jou and Liaw [16. 17] and Palm and Tyvand [18]. Nield [19] while presenting a
comprehensive review of the stability of convective flows in porous media finds aiso that
the effect of rotation on convection in a porous medium attracted limited interest and the
lack of experimental results is particularly noticed. The problem of rotating porous layer
subject to gravity and heated from below was originally investigated by Friedrich [25]

and by Prabhamani and Vaidyanathan [15]. Both studies considered a non-Darcy model,



which is probably subject to the limitations as shown by Nield [24]. Friedrich [25]
focused on the effect of Prandtl number on the convective flow resulting from a linear
stability analysis as well as a non-linear numerical solution, while Prabhamani and
Vaidyanathan [15] dealt with the influence of variable viscosity on the stability condition.
He latter concluded that variable viscosity has a destabilising effect. Although the non-
Darcy model considered included the time derivative in the momentum equation the
possibility of convection setting-in as an oscillatory instability was not explicitly
investigated in ref. [15]. It should be pointed out for a pure fluid (non-porous domain)
convection sets in a oscillatory instability. Jou and Liaw [16], [17] investigated a similar
problem of gravity driven thermal convection in a rotating porous layer subject to
transient heating from below. By using a non-Darcy model they established stability
conditions for the marginal state without considering the possibility of oscitlatory

convection.

An important analogy was discovered by Palm and Tyvand [18] who showed by using a
Darcy model that the onset of gravity driven convection in a rotating porous medium is
equivalent to the case of an anisotropic porous medium. The critical Rayleigh number

was developed in this study and matched theirs finding (equation 3.3 in the text).

The methodology adopted in this thesis consists of a presentation of dimensionless

equations governing the flow and transport phenomena in a rotating frame of reference.



3. Objectives

This study is intended to compare results for convection in rotating porous media with the
corresponding results in pure fluids (non-porous domain). The equations goveming the
flow and heat transfer in porous media can be obtained via an averaging procedure of the
Navier-Stokes and energy equations over a representative elementary volume. As a
result, the filtration velocity applicable at the macroscopic leve) will be considered and a
set of new parameters are introduced such as porosity, defined as the ratio of the pore
volume to the volume of the porous matrix, and permeability, which is a property
describing the ability of the porous matrix to allow fluid flow.

The analysis will focus on the effect of the Coriolis force on the basic free convection and
the travelling waves associated to the expansion around overstable sotutions.

The study utilises the method and parameters used by Vadasz [1] and developed further
to encompass the introduction of a large space scale and analysis of travelling waves on
the expansion around over-stable solutions. The structure of the study is as follows: Part
1: Geometrical definition and Problem formulation. Part 2: Linear stability analysis for
stationary and oscillatory cases, as in the case investigated by Vadasz (1998). Part
3:Weak non-linear solution for stationary convection; linear stability results. Parr 4:
Weak non-linear solution for stationary convection. Part 5: Weak non-linear solution of
oscillatory convection for standing waves case and travelling waves case. Par( 6:

Discussion and conclusions.



2. Problem formulation and governing equations

2.1. Problem formulation

The objective of this study is to investigate the Coriolis effect in the analytical solution to
the convection flow problem through a porous media in a rotating square channel.

Rotating flows in porous media can be dealt with by classifying them in three major

categories.

(a) Isothermal flows in heterogeneous porous media subject to rotation.
(b) Convective flows in non-isothermal homogeneous porous media subject to rotation.

(¢) Convective flows in non-isothermal heterogeneous porous media subject (o rotation.

Case (b) 15 to be analysed in this study.

A non —isothermal flow allows, as a result of free convection, a non-vanishing vorticity
field. Free convection is the phenomenon of fluid flow driven by depsity variations in a
fluid subject to body forces. The relative orientation of the density gradient with respect
to the body force 1s an important factor for providing a sufficient condition for convection
to occur. Some of these forces are constant, like gravity for example, others can vary

linearly with the distance from the axis of rotation.
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The relative orientation of the density gradient with respect to the body force is also an
important factor for convection to occur. This is shown graphically in Figure 1 for a
particular case of thermal convection, where F represents the body force and

Vo=-8,VT is the direction of the density gradient.

VT RS F =l F ] F
Unconditional Conditional No Convection
Convection Convection

Figure 1: The effect of the relative orientation of the temperature gradient with

respect to the body force on the set-up of convection

2.2. Governing equations

Let us consider a long horizontal square channel filled with fluid saturated porous
material rotating with Q angular velocity about an axis perpendicular to the horizontal
walls, as shown in Figure 2. An axial horizontal flow parallel to the channel walls is
imposed through an axial pressure gradient. The layer is heated from below, while the

vertical distance between the top and bottom boundaries s H..

11



) Q:;: o
\‘
Core T=0
v
H,
x=0 T=1 X

Figure 2: A rotating porous layer saturated fluid. heated form below

A negative temperature gradient along the vertical direction 1s expected due to Lhe
imposed thermal boundary conditions. At a distance /, << ¢, /Q, from the axis of rotation
the gravity buoyancy can be assumed to be dominant and the centrifugal buovancy can be
neglected, hence limiting the effect of rotation to the Coriolis acceleration. Furthermore
the centrifugal acceleration can be assumed as conslant and absorbed in the reduced
pressure term. Darcy law 1s extended only to include the ime denvative and Coriolis
lerins; Boussinesqg approximation s applicd to account for the effects of density
varations. Subjecl to these conditions the following dimensionless sel of dimensionless

set of governing equations for continuity, Darcy and energy, 1s oblained:

Continuity equation

V.q=0 .1



Darcy equation (including the rotation effects)

3q
ot

if 2

+7d"* e xq+q=-Vp+Ra-T-e. (2.2)

Energy equation

,%H..vr: ViT (2.3)
ol

Implicitly, in equations (1) — (3), the values of a./H., wa. [k, and AT, =(T,, = T,.) are
used to scale the dimensional filtration velocity components (u‘,v,w,), reduced pressure
(p) and temperature variations (7: - TC) respectively. The height of the layer H, was
used to for scaling of the variables x., y. and z,. Accordingly, x =x_/H., y=y./H. and
z=2,/H.. The time variable was scaled initially by using the value H/ca., hence
{ =I,a'_/H.2 , and thereafter re-scaled for convenience in the form (' = -1, where ¢ is a

dimensionless number that includes the Prandtl and Darcy numbers as well as the

porosity of the considered porous domain, defined as

X= (2.4)

In equation (4) Pr=v,/a, and Da =k,/ H? and represent the Prandt] and Darcy numbers.

The combined dimensionless group ailows the Prandtl number to affect the flow in

13



porous media. The interval Pr can take values expands from as liftle as 107 (for liquid
metals) up to 10° for oils and the corresponding value of 3 will be multiplied by a factor
of ¢/ Do which is usually a big number covering values from 10 up to 10%. The values
¥ can take in traditional porous media applications are large, fact that provides
justification for neglecting the time derivative in Darcy equation. For modem porous
media applications, however, its value may become of unit order of magnitude or even
smaller, in which case the time derivative should not be neglected. In the present case, we
consider the time derivative term in the equation in order to investigate the overstable
convection and will analyse the behaviour of the overstable solution in respect 1o y. A
linear approximation was assumed between density and temperature in the form of
p=1-pT, where g = (T, — T.). There are two dimensionless groups, which appear in
equation (2), the porous media gravity related Rayleigh number, Ra and the porous media

Taylor number, Ta, defined as (dppendix 1)

Ra:l?.AT,—g;f.k. 2.5.1)
vl »
Ta :[i’f'] (2.5.2)

As for the boundary conditions they have to comply with the fact that at the top and
bottom of the considered porous media domain the solution must follow the

impermeability conditions on the margins, i.e. q-e, =0. The temperature boundary

14



conditions are 7 =1 at z=0 and 7 =0 at z=1. The lateral boundaries can be taken at

the convection cell wavelength where q -e, =0 and VT -e, = 0.

The system of equations (2.1), (2.2), and (2.3) form a three-dimensional non-linear

coupled system, which together with the corresponding boundary conditions accepts a

basic motionless solution. To deterrine a non-trivial solution to the system it 1s

convenient to manipulate equation (2.2) by applying onto it the curl operator (V x) in

order to obtain an equation for vorticity, defined as w =V x q

Vx[%+7'a'ﬂéz xq+q:\= Vx[—VP*‘Ra'T'éz]

or (see Appendix 2 for details)

—+w-Tu

ow "2B—q:Ra 673e aT.v
or oz

(2.6)

.7

It 15 to be noted that the vertical component of equation (2.7) is independent of

temperature. By manipulating further the equation (2.7) and using the fact that q is

solenoidal, it can be written as

2
[i + 1}v2q +Ta”2@ + Ra or e, + or e, —V,Te, |=0
or’ & Ox 0z oyoz 7

15
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3. Linear stability analysis

3.a. Basic flow solutions.

There is a set of basic steady-state solutions marked with the sub-script (.)p corresponding

to the following conditions
(a) there is no flow in any preferential direction,
(b) the pressure (p) is not a function of x or y. and

(c) there is a two dimensional problem

The set satisfies the following system of equations:

V.q=0 (3.1
q=-Vp+ RaTe, (3:2)
VT =q-VT (3.3)
Subject to
w_w_,
ox Oy

(3.4
T=T(z)

16



and to the following boundary conditions

3.5)

By solving the equations (2.1), (2.2), and (2.3) we obtain the basic solution for

temperature (Appendix 3; Section I)

Ty=1-z (3.6a)
q=w,=0 (3.6b)
p, = Ra J(l -2)dz+ C, (3.6¢)

where C stands for an integration constant.

3.b. Linear stability analysis

Assuming small perturbations around basic solutions in the form of q=q,+q’,
T=7T,+7T and w=w,+ w we investigate the growth and decay of infinitesimal
disturbances around this solution.

Linearising the equations (2.8), (2.3) and (2.7) it will result the following linear system

17



’ @yZ ‘L '\ZT) . , R
[_0_ + I]qu’ Ta?92 Ra[c Les e, - V;T'e,} =0 (3.7

5
[zg—v-]r' —w = (3-8)
[_a% +1]a)_{ _ T(l'”% (3.9)
Z

where @’ and w' are small perturbations of the vertical component of vorticity and
filtration velocity, respectively (dppendix 3; Section 2)
The system of the equations (2.7), (2.8) and (2.9) can be de-coupled to provide one

equation for the temperature perturbation

T 6 )]s 2 . Mo |
—+1 yv— —V° |V T — -V |—Ral — +1|V; ' = 3.10a
{[at'+ ] ['{a/' ] i a[xat, ] Ia” } ”[T 0 (.10a)

or for the filtration velocity

o 7. 8 .l 3 3 )
L]y 2 v [V Td =V = Ra| == +1 |V bw =0 3.10b
{[ar Hzar' } ”["‘az' ] a[a'+ } "}w G109

We assume a solution in the form of



T’=(-?(z)-exp[i(k,x+k_‘_y)+o1’] 3.11)

that will provide an ordinary differential equation for #(z) as shown below (4ppendix 3;

Section 3)

{a + 1) [D} k7 = 2o JD! - £ )+ TalD? - & - xo D} - Ra(a+ 1)K =0 (3.12)

where k* = &2 + k!, and D! =d"[dz" (n=2).

Equation (2.12) will accept a solution of the form &(z) = 4, sin A,z + 4,, cos A, z, which

for the boundary conditionsof z=0 = 7'=0and z=1 = 7'=0, will yield A3, =0
and

6(z) = b, sin(nnz) (3.14)

n =1 minimises the Rayleigh number in equation 3.12, indicating that 8(z) = b, sin(7z) is

the eigenfunction for marginal stability.

. : 2 .
It is convenient to re-scale the parameters ¥, Ra and ¥ in the form

k* Ra
a=—3, R=—; 7
V4 T

‘E‘Nl?*t

(3.14.2)

Substituting these values in equation (3.12) yields the scaled parametric value for Raleigh

number

[! +a+ya][(cr+ 1Y (e + 1)+ Ta-l
R =
alc+1)

(3.15)



3.1. Linear stability analysis. Stationary convection

Analysing the solution (2.14) of equation (2.13) it is to be noted that for stationary
convection ¢ in real; furthermore, if o =0 the stability is marginal. The corresponding

characteristic values of Rayleigh number associated to this case are obtained by letting

o = 0 in the expression of the scaled equation

_ [1 +a +70']|_(o' + l)z(a + l)+ Ta]

R = R™ 3.1.0
a(o+1) ‘ ( )

a=0
R““":M_FTQ_Q-F_G) G.1.1)

(24 a

At this point the analysis of equation (3.1.1) reveals that the first term alone represents
the characteristic Rayleigh number for convection in the absence of rotation, while the
second term is the contribution of rotation. The graphical representation of Rayleigh
number as function of o is shown in Figure 3 for different values of Taylor number. From
the graphical representation it can be seen that the critical Rayleigh number associated

with stationary convection is strongly influenced by rotation.

20



Ta=0 ~ — -Ta=6
Ia=2 ~---- Ta=10
|
-
— e — ~
| -~
s
= .~

Figure 3: Dependence of Rayleigh number for stationary case with Taylor oumbers

By minimising the expression (3.1) with respect to o, we obtain the critical value or

Rayleigh and the critical wave number 4% /7

(%) 2
" _ o [(+a) . (+a)]_,
oo oo o o

from which results the critical wave number

oK
ot == =1+ Ta

T

and critical value of Rayleigh

Ra" = [1 + 1+ TaT

21
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The dependence of the critical value of wave number on Taylor is illustrated in Figure 4

2.2

| | /!

:‘.J K
N

v 5 10 5 20
Ta

Figure 4: Variation of critical wave number as a function of Taylor pumber

The dependence of the critical Rayleigh number on Taylor is shown in Figure 5

35 :

T2

Ravr /
15

e

0 5 10 5 20
Ta

Figure 5: Variation of Rayleigh critical as a function of Taylor number
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Palm and Tyvand, Friedrich (1984), Friedrich (1983) and Vadasz (1997) have presented a
similar result for critical values of the wave and Rayleigh numbers. To investigate the
effect of viscosity on stability we have to analyse the limiting conditions when 7g > @

for w.—> o and v, > 0. For large values of 7¢ number, equations (3.2) and (3.3)

become
o R 1 (3.1.4)
Ra)’| = Ta+O(Td") (3.1.5)

From the definition of Rayleigh number

T k 5
Ra= BAT8ME oo LALsHE (.16
V.o T,
AT g H .k, 5
[ﬁ#} = °Ta (3.1.7)
v.a,
According to 3.1.5 for large Ta we have
2
AT g Hk 20k, 20k,
r=PALs =( @ ] +0( @ J (3.1.8)
Tva. Pv. ov.

23



Hence

v,a,ﬂ'z 2,2 | ( 2ﬂk. V.a_ﬂ'zJ
=== 4w’k +0

3.1.9
g.H k. g Hk ( )

Using the expression for B, = f,AT, we can write the critical temperature difference

over the porous layer

srkaw. {20k nﬁv.a.j 1 4r'ka.on (3.1.10)

P Hg. ! gv. g Hk. v, ¢'Hg

Equation (3.1.10) shows that the critical temperature difference for rotating porous media
1s inversely proportional to viscosity and proportional to . As a result, very large
values of Ta , or high angular velocity, have a destabilising effect.

Following to these results we shall investigate the complete solution. We shall consider
the existence of a stream functiony describing the pattern convection corresponding to
longitudinal rolls. The variation along y direction of variables will vanish. As a result, the

wave number & =0 and therefore k] = k’. The solution for 7’ becomes in this case

T’ =6(z)e™*® . For stationary case we have to take o =0 otherwise the system will
become unstable. [t can be seen that a positive real part of o will increase the solution

exponentially to infinity. A negative value it wil] bring the solution to zero. As a result,

the expression of 7" will be

24



T’ = Bceos(kx)sin(7z) (3.1.11)

In Appendix 2 the determination of w’, w., u' and v’ is presented. However their values

1s as follows
For w':
w' = (k2 + FZ)BCOSUQ‘ Ysin(7z) (3.1.12)
For vertical component of vorticity @’ :
o = 7z(k* + * Ya"* Beos(fox ) cos(z) (3.1.13)
For the horizontal components of filtration velocity

k* +
u' = p Bsin(kx )cos(rz) (3.1.14)
Vv = ﬁTauz(f i ﬂZ)BSin(/CC)COS(ﬂZ) (3.1.15)

From equations (3.10) and (3.11) the ration between horizontal and vertical components

of filtration velocity, can be evaluated



= -Ta" (3.1.16)

Let A, and k., a wavelength and its wave number of a roll containing streamlines

represented In a plane as in Figure 7

>
lo

P

Figure 6: Oblique plane wavelength of a roll

v’ [ v

tanf=— = 67=arctank—,) (3.1.17)
% u
1
COS A = ————or (3.1.18)
z(V’
] 4 tan k_
u’

From the previous two expressions and from Figure 7
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k, = kcos[arcmn( :_}

k
]= — - (3.1.19)
1+ —
J ku')

Knowing that the critical value of & is k. = z(l + Ta)'", yields that the waveleogth in an

oblique plane containing the streamlines is dependent of Taylor number and implicitly of

rotation and it is given by

7z
ar ) = - 3 l 20
S.cr 1m ( )
L : oy , oy
The stream function it is defined by its components as: ' = p and w'=-—— (se¢
z ox
Appendix 2)
w' = Asin(kx)sin{(z) (3.1.21)
The relationship between 4 and B is 4 = -B; therefore
K+ _
W' o= p sin(kx)sin{(zz) (3.1.22)



3.2. Linear stability analysis. Oscillatory convection

Over-stable convection implies the possibility of an oscillatory motion and o can be
written as a complex number o= o, +i0,. In the solution, the real part represents an
exponential growth or decay and the imaginary part an oscillation. For o, # 0 we have
an unstable situation where the solution can go to zero or infinity, depending if o is less
or bigger than zero. For o, = 0 however, the solution will oscillate about an equilibrium
position. For small amplitude oscillations, the solution will be quasi-stable; for high
amplitudes, the solution will “jump” out of equilibrium. The case when o, # 0 is called
“marginal stability”. Substituting o = io,, in the expression 2.11 and equation 2.12 and
imposing that o’ > 0 in order to have over-stability result two equations, by calling that
real and 1maginary part to be equal to zero (Appendix 3.2; §1) The two equations will
provide an expression for the over-stable characterisric value of Rayleigh nwmber and the

corresponding oscillatory frequency o,

R _2 1+ o)1+« +y)+LTa (3.2.1)
o (1+a+y)

) (+a-y)Ta
Olm = -
O+ aXl+a+y)

1 (3.2.2)

Imposing the condition o',2 > (0 it results an inequality
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G +a) +(y - TaX1+a)+yTa <0 (3.2.3)

from which we can obtain a further condition in order to allow positive values of o 1n

order to have over-stable convection

|(Ta -7)- -J}/2 - 6740+ Ta2|
2

<(+a) (3.2.4)

The quantity under the square root must also be posilive

¥ —6yTa+Ta" >0 (3.2.5)

resulting the domain of y for which we have over-stable convection 7 € [0,(3 - 2\/5.7'0)].

The values of o corresponding to the boundaries of the domain are those of the
characteristic value of Rayleigh number associated with stattonary convection. Graphical

representation of the characteristic curves, for various values of Ta and vy are presented
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Figure 7: Marginal stability for over-stable convection at 7a =3
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Figure 8: Marginal stability for over-stable convection at Ta = 6
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Figure 9: Marginal stability for over-stable convection at 7z = 20

The continuous line represents the upper limit of stationary convection.
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Figure 10: Variation of Rayleigh number for various values of Taylor pumber



[t can be seen that as Taylor number increases, the branching-off points shift to the right.
Furthermore, no limitations of the Prandtl number (y) appears as a necessary condition
for over-stability to set at the convection threshold.

The characteristic values of Ra associated with 7a =6, 20, and 80 for higher values of y
are shown in the following graph. For high values of y the curves of over-stability
branch-in the stationary zone. The reason lies behind the fact that vy and 7a are both

functions of porosity, but inversely proportional to each other.

Ta =80

160

140

120

(ov) 100
Ra_

80 -

60

40

20

12

Figure 11: Marginal stability for over-stable convection at Ta = 80

The corresponding values of frequency variation is presented in the Figure 12 for the

same parameters of y and 7a
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Figure 13: Variation of frequency for Ta = 20
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Figure 14: Variation of frequency for 7a = 80
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Figure 15: Variation of frequency for 7a = 80 and larger values of y
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Figure 16: Detail of the frequency variation for 7z = 80 and larger values of y

[t is interesting to note the characteristic curves of Rayleigh numbers for a particular case
when y = 0. This corresponds to a limiting case for the over-stable curves. For such

value of y we have the equations 2.2.1 and 2.2.2 in the following form

2 2
R ==(i+a’) (3.2.5)
(74
2 Ta
Om 1+ o ( 6)

It is obvious that the characteristic curves for y =0 are independent of the Taylor

12

number, and theirs position is fixed in the plane determined by R and «", and

represent a lower limit for all characteristic curves.

By minimising the expression 2.2.5 with respect to o, results

=) (3.2.7)
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which 1n turn yields for the critical value of Rayleygh in the over-stable zone
RI™ =8 (3.2.8)

The condition that expresses over-stability 1s derived from equation 2.2.2 by imposing

2

o,,, >0, which leads to
(+a) -(y - TaX)+ a)+¥Ta <0 (3.2.9)

Equation 2.2.7 yields the condition for a positive range of o to have over-stable

convection
y e(o, (3-245)ra) VTu> | (3.2.10)

The corresponding values of o consistent with over-stable convection is

('[‘a—y)—\/Ta2 -6yTu+y’ R (Ta—y)+,jTal—6y7'a+ v? ~
2 2

[ 321D

On these boundary values o, = 0 and stationary convection occurs. This was illustrated
in Figures 9, 10, 11 and 12.

If @’ =1 = Ta 22 in order to allow a real value for the frequency. The sufficiency of

this condition is that Ra'""’ < Ra™” , which implies that at ¥ = 0 we have the following

8< [ +vTa+1] (3.2.12)
From which
Ta24(2-2) (3.2.13)
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All the other characteristic curves for different values of y will be situated between the
v = 0 curve and the characteristic stationary convection curves related to a certain 7a. To
obtain the critical value of Rayleigh, wave numbers and corresponding frequency we

have to minimise equation (2.2.1) with respect to «, yielding the guadratic algebraic

equation
o'+ 20y + 1) + 7y + e —2Ey 1Y+ Ta- G+ Da—( +1) =0 (3.2.14)

The solution of equation 2.2.14 was obtained numerically. 1t has one positive and real
solution within over-stability bound that is associated to ¥ and 7a. The other three roots
are a pair of complex conjugate and one real. but negative. The over-stable critical wave

number is presented in Figure /7 as a function of y for various values of 7a.
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Figure 17: Variation of o associated with over-stable convection for various values

of Taylor number

37



The end of each curve corresponds to a point where no more critical values are consistent

with the condition O'f > 0. Furthermore each end-point of the curves corresponding to a

)

¢r.max >

maximum « determine a straight line &)

¢F, max

=2 . Equation 2.2.1 will give us, upon
substitution of the values of &%) the critical values of Rayleygh number for over-

stability. The dependency of Rac(‘,’”) as a function of ¥ with various 7a numbers taken as

parameters, is shown in Figure /8.
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Figure 18: Variation of Re®"’ associated with over-stable convection for various

values of Taylor number

It can be noted that the end-point curves corresponding to Rac(‘:_"n)m are lined along a

straight line Ra'™") =8, which is consistent with the condition & > 0.
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By substituting the critical wave number obtained from 2.2.14 into 2.2.2 we obtain the
critical value for frequency, for various 7a, presented in Figure 19, where we take the

abscissa as log(y ) and obtaining a similar graphical representation as in stationary case.
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Figure 18: Variation of Ra"" associated with over-stable convection as a function of

logy for various values of Taylor number

High values for frequency correspond to small values of y. As in the case analysed
before, when y — 0, the critical curves represent only a condition of necessity. For
sufficiency to be fulfilled we have to have a further condition when R < RY. This is
lustrated accurately in Figure 20, where (Ta‘ ) plane is divided in two by a continuous

line, corresponding to Ra®’ = Ra"”, where the zone below the line is consistent with

cr



over-stable convection and the zone above, for stationary convection where instability

occurs. The dotted line corresponding to o, =0, represents a separation between a zone

below. where over-stable convection is possible but cannot occur because Ra”” > Ra".

The limit where over-stable convection occur for the same values of cntical Rayleigh
numbers, define the CTP (Co-dimension-2 Point). The dotted curve envelops the end-
points corresponding to the wave numbers for high values of y, approximated with a

straight line Ta =6y +2 .
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Figure 20: The stability map of the division of the plane in two zones corresponding

to stationary and over-stable convection
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4. Weak non-linear analysis

In this chapter we shall investigate the solutions of stream function and temperature in a
porous layer subject to rotation where small non-linearity is considered. It is convenient
to introduce the stream function as discussed in previous section, as u' = dy'/8z and
w' = —dy’'[dx, to express them in the equations 2.3 and 2.7. By de-coupling the two

equations and bearing in mind that we deal with a two-dimensional problem, therefore all

the derivatives to y, we obtain

[ a"i,_vz}nﬂg_ﬁﬂﬂ:o (4.0.1)

3 1., 'y [a }GT
—+1|V T Ral— +1|—=90 4.0.2
[a/' } Ve T e T e (4.0-2)

Where the Laplacian in this case it 18

(4.0.3)

The derivation of 4.0.] and 4.0.2 is presented in Appendix A4.0.
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4.1. Expansion around stationary solutions

The objective of the weak non-linear analysis is 1o provide quantitative and qualitative
results of the amplitude of convection. The possibility of a co-dimension 2 bifurcation is
anticipated at the intersection of the stationary and over-stable solutions (Brand,

Hohenberg & Steinberg 1984; Cross & Kim 1988; Schopf & Zimmermann 1993).

We know that the basic motionless solutions are y, =0and 7,=1-z and we can write

the stream function and temperature expanded in a series of

[w]=[ws |+ dw ]+ & [w. ]+ & [ws ]+ . (4.1.12)

[7]1=[7 ]+ e[T ]+ €1 ]+ [T ]+ - (4.1.1b)

where ¢1s a perturbation defined as £ = [l ~ Ra,/ Ra]w.

The Rayleigh number can also be written as

Ra= Ra, + RaS"[e + &' + ..+ & ] (4.1.2)

In order to reach finite values for amplitude at the steady state we have to choose a slow
time scale t= €1 (by allowing minimal time variations only, preventing exponential

growth) and a slow space scale X = gx. The new space scale was introduced by Newell

& Whitehead (1969) and Segel (1969) in order to allow continuous horizontal band of
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modes of oscillation. Upon these transformations we have to consider a re-scaling of
variables in the form

9 ,8,..9 (4.1.3)
ox Ox X

0 0 2 O
- +
ar or’ or

From the expression 4.]1.2 can be written as
Ra= Ra,(l+¢&") (4.1.2b)
Substituting the expansions 4.1.1, 4.1.2, and the slow time and large space scales into

equations 4.0.1 and 4.0.2 and identifying the terms of equal powers of €, produces a set of

partial differential equations at each order.

For the leading order we have a set of equations tdentical to those solved for the linear

stability case
) 5 oT;
Vi, + TaZ bl + Ra, 22 =0 (4.1.52)
oz X
2 dy <
Vi -Hlog (4.1.5b)
ax

For the second order we have the equations presented as



- or, o dy
Vi, +Talte w1 pg L2 = 224 4.1.6a
Vit laT TR oX ox (4.1.62)
vaz_aWZ :_Zi% +.6_ZL +a_wLa_TL_%£ (4.1.6b)
ox oX ox X Oz Ox Ox Oz

The RHS of equations 4.1.6 (a and b) consist of non-homogeneous terms including the
solutions already determined at order £. The non-homogeneous terms fore a particular
solution in addition to the solution of the homogeneous operator.

The third order equations are presented in the form

Pw

5 o o7
Vi + TaZ 2 4 Ra, 2 2 007y - pa, 200
oz* Ox or ot Ox
(4.1.7a)
2 =ty
Py, 00y, O
G oX &k T oX
V27; —%z_zio_’rz,'.%_i_
Ox oX Ox oX
a'/’z OT; _ al//Z 8_7—I|+ aWI 67; _ aWI 67; + (4]7b)
0z oOx ox Oz oz ©ox ox Oz

o 2T, oy 3T, oy a1,

Xar T ar " ar ax ax oz

We shall analyse the equations for each order apart.

For order £, the solution is given by the eigenvalues of the stationary convection
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Y, = [A, (7, )" + 4, (@, X)e™™ }sin(ﬂz) (4.1.8a)

T, = [B(z.X)" +B(z.X)e™ kin() (4.1.8b)

The relationships between the amplitudes A,(zr.X) and B (z,.X), respectively 4, (r,X)

and B (z,X), are obtained by substituting the solutions 3.1.8 (a and b) into equations

3.1.5 (aand b).

___Wa
B'__E(H-a)A' (4.1.9a)
B = Wa A (4.1.9b)

21+ a)

Solvability condition at order &' will determine the amplitudes 4, and 4,

The order &7 solutions result by de-coupling the equations 3.1.6 (a and b). The non-linear

part of the RHS will generate a particular temperature solution as follows

W, = [A?e”‘1 + A ™ ]sin(ﬂz) (4.1.10a)

7y = [Bi (e, 006 + B (7, )™ ]sin(fzz)—WaJrl)A,A,'sin(Qﬁz) (4.1.10b)
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The particular solution for the stream function converges to zero.

The relationship between A4,and A; at order £” is identical as for the order &.

3 : : . :
The order ¢, solutions consist of known solutions calculated from the previous orders,

2 . 3 .
¢ and ¢°. The equations at order & are non-homogeneous versions of those at order ¢.

From here it can be drawn a solvability condition that will impose constraints on the

amplitudes at order £ enables their determination. The solvability condition results from

the process of de-coupling the equations and evaluating the RHS forcing terms, which is

represented in the form of [A, (2. X)e™ + A (r, X)e™ }m(ﬂ:) All the other terms that

containing higher harmonics of z, will be forced to zero. This condition will lead to

determination of the solvability condition in the form of a partial differential equation,

where the original time and space scales are restored:

oA FA 7’ .
775‘(1""1)&2: 3 (‘fn_AA)A

where A, A", &' and 7 are as follows
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(4.1.11)

(4.1.12a)

(4.3.12b)

(4.3.13)



_ (+a)2-a)+ay
Y

(4.1.14)

It is noted the appearance of a diffusion term corresponding to the slow space scale. By
imposing a symmetry condition at the axis of rotation (x =0), implies A4, = -4, . This

changes the solution in

v = C sin(kx)sin(7z) (4.1.15)

where C, = 2i4,. In this case we do not have a phase angle and the result satisfies the
equations and the boundary conditions without slow space scales. As a result, the
diffusion term vanishes out from equation 3.1.11, which subsequently transforms into an

ordinary differential equation of real amptitude C = &C,.

,7___(5' e (4.1.16)

where &% = 4&". The equation 3.1.16 yields a solution at the steady state in the form

0 YV R<R!
C= (4.1.17)
+ & V R2R)
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The solution 3.1.17 shows that a pitchfork bifurcation occurs at the critical value of
Rayleigh number for stationary convection (Figure 17). The relaxation time 15 positive as

long as y > 7" (y," is the transition value of y).

7;"‘=J(1+Ta)—ﬁ—l (4.1.18)

Below this value the relaxation time becomes negative and the solution decaysto C=0.
The values of Taylor number consistent with a positive relaxation time are represented by
the condition 7a¢ =3. Determination of the amplitude coefficients provides a complete
solution for the stationary convection at order £. The complete calculation of such

solution is provided in Appendix 4.1.

Figure 17: Graphical representation of the solution of the y, amplitude in £-C

plane
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4.2. Expansion around over-stable solutions

We have identified in the previous section the solutions for both the stream function ,

the and temperature 7 satisfying their boundary conditions, in the form

w, =2i(A4e" - A'e " ¥in(hor)sin z (4.2.1)

T, = 2(Ce™ + Cj e™™ Yeos(lo)sin(z) (4.2.2)

In the case of weak non-linear analysis of the over-stable convection, equations 3.0.1 and
3.0.2 will apply with the only requirement that we have to refer to the corresponding
critical values of the over-stable convection. The expansions 3.1.1 a and b apply as well,
but we have to introduce two slow time scales 7= £'r', 7, = &’ and allow 2 short time
scale to be present into equations in order to descnbe amplitude fluctuations. A further
re-scaling of the short time scale is convenient in the form / = o', where o, = . By

substituting these new scales into equations 3.0.1 and 3.0.2 we obtain, for the leading

order, the following equations

2 2
T
omt| Py e o, 2] (4.2.32)
z X
0 2 oy
[»Gn 3 :] Vo (4.3.3b)
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The general solution for y, has the form

= [A@’(h“-) + B,e'(k\'—;) +Ae” ) 4 B,"e"i(k‘_;)}in(nz)

_ [Cle,(:uﬂ') +D,e'('u';) —I-C,‘e"(m[)-I-D,‘e—'(h';)]sin(m)

This case will be analysed in detail in Section 4. By imposing symmetry conditions at the
axis of rotation one obtains upon substitution A4 = -5, and B, = —-4,. This is a special
case of standing waves while travelling waves are excluded.

At first order a relationship between coefficients is recovered.

-\/;[}/O'o +i(o +1)]

C =- - (4.2.42)
! 71'[(a+1)2 +yol |
A - + 1
c'= _Yalro, ~ila+D] . (4.2.4b)
7T[(CZ+ 1Y +y%c ]
The equations at order 0(52) are as follows
o T 8? 5 |ar.
|:0'"— + 1} Vi, + Ta =22 4 Rac,[o,,—~ +1}—2 =
ot oz or ox
(4.2.52)

-21{002. +1]V2w, —Rac,iﬂ
o ot Ox

0
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Zaoj_vz 7-2+5V/2 __, 9% oyl oy o (4.2.5b)
Ox or 0z Ox Ox oz

o

The solution to the equations 3.2.5 a and b represent a superposition of the homogeneous
part and particular solutions due to the non-homogeneous terms. The homogeneous

solution has the same form as in the case of order ()

v, =2i(Ae™ + 43¢ Jsin(kx)sin 7z (4.2.6a)
T, = 2(C,e™ + Cie™ ™ )eos (ke )sin (2z) (4.2.6b)

The relationships that exist between the coefficients preserve.
By evaluating the right hand side of equations 4.2.5 a and b, it is clear that a particular

solution will emerge in the form of

w5 =1 sin(f pin(fex)sin(z) (4.2.72)

T} = I cos(1 )sin(for )sin(7zz) (4.2.7b)

Which are secular terms 1o the solution. In this case we have a condition of resonance,

unless we set 84,/97, =0 in order to avoid it, The particular solutions for the stream

function and temperature are

Wl =0 (4.2.8a)

7= (b, +ae +aie™ pin(2w) (4.2.8b)
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where the coefficients a,. a, and b, are as follows

a(a+ 1) a

b, = Cal(a+ 1)y 470 ] .
af2(a+)-yial —iyo,(@+3)] , 4.2.9%
”[(a.;_]) +(yo-)14+7o‘) (4.2.9b)
cz[2(a+l) y'os +iyo, (‘7“'3)]( -)2 (4.2.9¢)

r[(a+l) +(yo, )14 +y'o

The de-coupled equation at 0(,93) for  i1s shown below
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The right hand side of equation 3.2.10 consists of terms cvaluated from the order O(¢)

and 0(52) written under a general term @((,1/2, 7,). To avoid resonance due to secular

terms appearing in the equation, we have to set all the forcing terms coefficients to zero.

In order to determine the amplitudes at order O(g) we shall consider only the terms

containing w, and T;. They are terms of form e sin(/o)sin(zz) and e sin(kx)sin(7zz).

The others are the non-resonant harmonics or various convection terms associated to the

homogeneous operator. This operation yields a differential equation for the unknown

complex amplitude at order O(¢) in the form



(4.2.11)

5 A 2 y )
O o S A e, L MA MM A =0
5 Y ox? EP

where M, are coefficients analysed in detail in the Appendix 4.2 and A= &4, and

A =ed’ . By seting 8°4/8r] and 8°A/aX* equal to zero we obtain an ordinary
1

differential equation

2ozl -zt (42.12)
where Z, = M,/ M, and Z, = M,M,| M,
The following notations were used
Zez 4iz = T ok, (J,,P° + Q°)+l_7z'2aysR”(aaQ° - P*) (42.13)
q q
where
P =20,p(p+y)s+ays R, (p-7) (4.2.19)
Q" =2p(p-y0. - apR..(p~7) (4.2.15)
(4.2.16)

g=0[p(p+ 1) + @k (p- ] + *Rs(p- r02)-ak.(p- )]
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p=c+1 (4.2.17)

s=(a+ 1V +7y o (4.2.18)

(4.2.19)

ov 2 R _
=g _[R”” 1] (4.2.20)

It is useful to express the equation 3.2.11 as two equations, one for amplitude r =|A4|, one

for phase ©

A=re’ A=re" AAd" = (4.2.21)

Jﬂ=[§‘"'~Jr2}' (4.2.22)
' dr 2 -

dg ov 2

— = hE = (4.2.23)

Where

J == PR (4.2.24)

2R IR
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(4.2.25)

The sign of the coefficient of the non-linear term indicates the direction of the
bifurcation, i.e. forward (supercritical) or inverse (subcritical). If J, >0 the bifurcation is

forward. If J, <0, the bifurcation is inverse.

10 1 ) 1 1 1
e
1
5 suberiical | supercritical |
bifurcation bifurcation
Voo i it 4
_5 L
1%
R
— forward
----- inverse
10 1 ) 1 ] 1
-60 -40 -20 0 20 40 60

Figure 18: Graphical representation of the bifurcation as a function of the signature
of the coefficient of the non-linear term in the amplitude equation

The change of sign of the non-linear term implies the transition from equilibrium to non-

equilibrium and the specific point where this occurs is called non-equilibrium or tri-

critical point. By representing the coefficient J, as a function of ¥ . and implicitly as a

function of «,, we obtain a series of representations for various values of Taylor number,

as a parameter.
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Figure 19: Variation of the coefficient J, as function of y for 7a =20
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Figure 20: Variation of the coefficient J, as function of y for 7a = 40
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Figure 21: Variation of the coefficient J, as function of y for 72 =60
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Figure 22: Variation of the coefficient J, as function of y for 7o = 80

58



Ta=100
10
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Figure 23: Variation of the coefficient J, as function of ¥ for 7a =100

The behaviour of the coefficient J, is in general similar for all values of 7a before the
tri-critical point (TCP). For each value of Taylor number there is a maximun allowed
value for y, which is associated with the over-stability of the convection process. For
values of y <y, the bifurcation is forward, while for y >y, the bifurcation is inverse.
The point of singularity that makes J, to diverge is always situated at y >y, . . A
diagram representing the variation of y,. as a function of Taylor number is presented in

Figure 24,
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Figure 24: Variation of y,. with 7Ta

[t can be noted that the variation of y, follows the approximate path of a straight line
7.=aTa+b, where a=6456 and b=-7.23. The values of y, comesponding to

various Ja are shown on the graph above.

Each curve corresponding to the non-linear term coefficient contains another zero and a
singularity, as illustrated in Figure 19 for 7a =20, but this is located in all the cases
beyond the over-stable zone. As 7a increases the next singularity and change of sign

shifts out of the graph range.
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Figure 25: Variation of J, for various Taylor numbers
It can be seen from the graph above that for small values of ¥ the behaviour of the non-

linear term coefficient is the same. In general the location of y,. is different form y__,
and dependent of 7a, as shown in Figure 26.

L

14

1L |

o '/Ta(tc)

80 100
Ta

Figure 26: Curves representing the maximum and tri-critical values for y
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It can be noted the point corresponding to the Taylor number Ta' from which

7. >7.. The meaning of this transition is that for values of v below 72"’ we have a

forward bifurcation and for values of y above Ta") we have an inverse bifurcation over
entire over-stable zone.

As seen from 3.2.22, J, is the relaxation time. If the relaxation time is positive, the
forward bifurcation is stable. Otherwise, the inverse bifurcation becomes stable (See
Figure 18). Figure 27 shows the relaxation time .J, as a function of y for different values
of Taylor numbers.

From the figure it is evident that the relaxation time seems to be independent of 7a and
linearly dependent of y. Also we can notice that it is positive over all the range of

parameters considered.

8000

|
Ta= 20
— -Ta= 40
7000 — — -Ta= 60
----- Ta = 80
----- Ta =100
6000 |l
5000 ‘ —
JI 2000 )
|
| |
00 bt}
| |
2000 —
1000 —_ ’_ e —— e ——————— |
|
]
[} | ! {
0 2 4 6 10 12 14 16

Figure 27: Variation of the relaxation time coefficient J, as a function of y for

various Taylor numbers
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For a steady staie situation, the expression 3.2.22 can be wrillen as

which represcnt the post transient stale for supercritical values of R, where J; =1/J, and

yielding a solution in the form

0 VR < R

;= (4.2.26)
+JEo s vRz R

Therefore the solution [or the amplitude can be expressed as

A=rexplif]= rcxp[iéz] = i‘}'g"” J, exp[iél] +c.c. (4.2.27)

where c¢.c. stands cor the complex conjugate part.

The non-linear corection for frequency can be obtained from equation <4.2.23 in which we

substituted the solution for r?

(4.2.28)

Again we have, according 10 4.2.26 a Hopfl bilurcation occurring at critical values of

Ravleigh number consistent with over-stable convection
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Figure 28: Post-transient amplitude as a function of ¥ and 7« as a parameter

It can be noted that the solutions diverge as they approach the tri-critical poinl which are
4.23, 7,14, 10.25, 13.42 and 16.63.
Similarly, the post transient solutions for the non-linear {rcquency solutions are analysed

by ploting them in terms of the log(é/é”) from 4.2.28

|og[§_ﬁ =log(J, = J,J;) (4.2.29)
/

From the Figure 29 we can see that (a) the frequency corrections diverge as they

approach the tri-critical value of y and (b) the frequency correction is inversely

proportional with 7a.
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I . r J ‘
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Figure 29: Post transient frequency correction as function of v and 7a as

parameter

As in the hinear stability casc, by setting ¥ = 0. as per 3.2.6 from Siationury convection;
over-stable case, the corresponding value for wis o =1. As a result,

-] oo 3
fim—=———=—
r~oJ, 4a+1) 4

1
Iim—~—— o0
?_‘n‘]l Y

The amplitude and frequency correction

4] —» ZJE
3

6—0

In conctusion, (or small values of ¥ (y =0) the over-stable solution will oscillate with a

post transient amplitude of |A] = 2e/+/3 at a frequency of o’ =(Tal2 - 1)"2.
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5. Expansion around over-stable solutions. Travelling waves

Equations 3.0.1 and 3.0.2 can be considered for this case, with the same scaling for time

and space. The leading order equations are as in the previous section, is

[ana—aiﬂyvzw,ﬁuraa;’:‘ +Ra‘,[o-‘,§+ljl%=0 (5.1)
{;{Ja%—vl}ﬂ+é&\%’=0 (5.2)
and the general solutions can be expressed as

W, = [A' ¢ ¢ L B,e'(l:‘_;) + A;e“l(m") + B,'e-'cm_i)}in(ﬂz) (5.3)
T = [c, ey Dy oo e )]sin(nz) (5.4)

where  the amplitudes 4, = A (r,,z.X), 4 =4 (r,,7.X), B =B8(s,7,X),
B =B(z,,7,X), C=0C(,0X), C =C{(z,,7,X), D=D(,7X) and
D; = D;(z,,7,.X) describe modulations of the wave on the slow time (z, =&’ 7= &7’)
and space scales (X = &x) for a Hopf bifurcation. These solutions represent travelling

waves. Unlike in the previous case we do not neglect the stow space scale, therefore the

resulting equation is expected to contain a diffusion term. As in the previous case we can
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determine a relationship between coefficients at order one that will prove useful in a later

calculation In this case we have four relationships as following

\/Z[}/O'o +i(a+1)]

. T @1y 41 A e
- ;E Lyjl)- ’S, :)} p (5.6)
et
D - _Ja[-o, -l(a+1)1 B (5.8)

@1y 450
The de-coupled equation for the stream function, at order 0(52) is expressed by

[(,2_oN(2, Vor, 7,8 A
[V‘E_VMSEJ“) T“ar ~&a k H)a V2=

3( 8 )a ) 28( 8 o Y
22— = -V +1\ Vi, — - V2 -
or, X~V N\ TV T 3 X TV G T ¥
(5.9)
B ya Vo, [ 3 ) a] &
~—-2— — 41 Vi - —2—= —
{xar Ox BXJ\EI-’- ) Zb‘z'a 26x6 ’ Tac‘iz2 Vi
Ra"2{0 )22 +Rac,—Aily/,—Ra,(ﬁ—.]\\1i oy o 9y, 2h
& JoxXx 3r, ox “Nar " Jox| ox 6z oz ox
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The above expression can be analyse as two entities, a first one expressing a linear
relationship between slow time and space scale which would play a role in establishing
the diffusion term and a second one expressing a non-linear dependency of the
amplitudes. The solution to the equation above will be a superposition of a homogeneous
part consistent with the homogeneous part of the equation and a particular part consistent
with the right hand side. Because the homogeneous part of the equation is similar with

that at O(¢), the solution at the current order will be:

v, = |:Azel(kx+?) N Bze'(h ), Az.e_.-(m;) + B!.e_.(:a_;)}in(ﬁz_)_F w? (5.10)

T, = [cze’(“*” + D'y ot D;e"'<""")];in(m) + 77 (5.11)

where /7 and 7. are the particular solutions.
The relationships between coefficients will be similar to those at O(g). The particular
solution for the stream function ] = 0. The particular solution which is identical to the

homogeneous solution must be forced to be zero in order to avoid resonance. That will

provide a relationship between the coefficients of the derivatives to the slow scales

mtroduced.

o4 _ f[ﬂJ (5.12)
oX or '

n
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The particular solution of the temperature can be expressed as
1" = [b, + 4™ +aje™ fin(22) (5.12)
where

.__aAe+)-ylo, +iyo,(a+3)

“ET [(a+l)2 +}/Zaj:K4 +y'oy)

A B, (5.13)

_a2a+)- 702 iy, (@+3)

a, = : _ A B (5.14)
Yoox [(a+1)’+72c7;:[4+}/20,2, o
| ola+1) . .
b, =—— A A"+ BB 5.15
2 2 72'[(1+a)2+y20'f [ 174 1 I] ( )

The complete solution can be written as

v, =u? (5.16)

T,=T"+Tf (517

The de-coupled equation for the stream function at order 0(53) 1s as follows

69



{(lﬁ—vz)[(—aﬂ)zvz+Tai]—Ra (0,2 }w =

Y Lar o7 “\or~ Jax?
(5.18)
(6 Yo o 2] (8 o
O T+ Ol 1)- Ra"’[KarH) ox Vorax 2 T RG T et

Only the terms containing w, and 7, on the right hand side, or combinations of both are

relevant for this study. Consequently equation (5.18) can be written as

(5.19)

0 o 0 0 0
@(l,l/,, TI)— RdL |:(— + I) & +?gilt/ Ra (—E’E l)a J3

In order 10 avoid resonance we have to set all the coefficients of the forcing terms to zero.

The terms that carry convection modes other than the natural modes are not relevant and
will not be considered. This yields for the exp[i(/oc+f)] and exp[i(/oc—?)] parts of the

solution a set of two non-linear equations

& A 0% A % . ) 1.1
[hl,—aﬁ thy 3 } h;{g—hu[é" ~hsAd" ~h BB Ja( = 0 (5.20)
&B . 8’B 3B o : i .
[hz,? + hng]mﬁ{a — [ = hsBB' ~ by A4 ]B} =0 (5.21)
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where the coefficients 4, are determined in the Appendix 5.

by =27%y(1+ a)l +io,)+ 271’2/([20'0(61 +y+1)- i(}/(l —0‘3)+2(a +1)-R, )]x

{(l +3a)2-yo)+y(a+Ta+1)- Rc,]+ 20 (e + 1) +a+2y)}
{400 +40,a+20,y— O R, - oﬁy)— i[2(1 +a)(l - 0'3)— 20,y +Ta— Rc,]}

(5.22)

hy = 7 |(Se+1)(o3 = 1)-Ta+ R, —iQ20, (S +1)- o, R, )| (5.23)

hy = 7'y (@ + )@~ 03 )+ yTa= R, +i2y0,(a +1)] (5.24)

= aR (1 +ioy Yy(a+ D -o3)+ }"];a— R, - i2yoy (e + 1] (525)
Ky(a w100 - o2 )+ iTa-R,) +(ron(a+ 1))2]

Fis :51 [ ff)?iij;ﬁ] 6-20)

B = —2 Bla+D+o5r’(@-D] ayo, (e +3) (5.27)

¢ 2[(a+ 1)* +a§72:ta§y2 + 4)_1 [(a +1) + 0027210372 +4)
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hy =27t y(l+a)(1 - icy)—- 27r2k[2cra(a +y+1)+ i(y(l - o5 )+ 2(a+1)- Rc,)]x

{(1+ 30)(2- yo, )+ y(a+Ta+1)- Rc,-|— Ro(@+D)(1+a+ 27)}
{400 +40,a+20,y — Gy R, — 0oy )+ i[2(1 +a)(-o5)-20, +Ta- Rcr]}

(5.28)
hy =7 [Sa+1)(o; =1)-Ta+ R, +i2c,(Sa+1) = o,R,,) ] (5.29)
hyy = 2" [7(a +1X1 ~a§)+ yTa- R —i2yo,(a+ 1)] (5.30)
- R, (1 - iao){}/(a + l)(l- 0'02)+ yla— R, + 1'2)/60(a2 + 1)] 5.31)
[(7(0: +D(1 - o§)+ yTa— Rc,)2 + 2yo,(a+1)) ]

1 aler)
Py =3 [(a+ 1)2+002y2]— hs (5.32)
o@D +oii@-D] ayoya+3) (5.33)

. 2[(a 4-])2 + 0'37210'(2,72 +4)+Z [(a+ 1)2 +oiy’ [oir? + 4)

R
ROI'

cr

In equations 5.20 and 5.21, & = ¢’ =( - 1] and we used the original time and space

scale, 7= 521, T,=¢61, X=¢1, t.=rnt’ and recalling that 4= g4,, B=¢B,, A" =£A,',
B = B .

An Interesting case is when we set the first brackets of the equations to zero. In this case

we have

4 " X )
™ = m,[&" = hoad - BB |4=0 (5.34)
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B . . : .
E;—hﬂk°—hnBB—J%AA]B=O (5.35)

By presenting the equations 5.22 and 23 in terms of a complex amplitude we obtain a set
of four equations, two for the absolute value of amplitude », =|A|. r, =|B| and two for the

corresponding phasesd, and 4,.

A =rexp(id,) A" =r, exp(-i QA) B=r1,exp(if,) B =r,exp(-i6,)
(5.36)

The new set of equations are listed below

r r 2 A
= (hf éﬂ\' - h?.’A _S\’if A

(5.37)
(hl Sov — S .: - r’;)ﬂ
(d6
7[4' = M.é |5hm — Sy
; (5.38)
do .
Eﬁ = h,é,, Py
where
h =nH, +ih, (5.39)
ar |y (a + D)1+ o2 )+ Aa-
- R,y (@ + 1)1+ o2) R, ] ’ 5,40
[/(a + l)(l o, )+yTa RC,T +4y5 (l+ @)
, ao R, |y (a+ Y1+ o) yTa+ R,
(. e X+ o0) | (5.41)

[y(a + 11— o)+ yTa - Rch + 4yt (1 +a)



hy = hhy (5.42)

1 a(a+])
2 [(a-l— 1y +oly’

(5.43)

The expressions for /1, can be found in the Appendix 5. At steady state we derive the

following set of equations, able to express a relationship between amplitudes r, and r,.

W =Ty (5.44)

In this case the Reduced amplitude equation can be written as

d” =[w-&.+n-r2)r, (5.45)

where

L ok, [ple+ 1) +00)+Ta- R, ] ety | aRlarDroii@-D] |,
2[)’(“"'1X1 o3 )+ 7Ta - Rrj Ry, @+ D] [(C!+|)2+)’30'f,] [(a+l) +y 0':[4+0"/)

”[y(a+|)(l+o")—}/fa+R -l ayo, (a+3)
[y(a +1)(1- o5 )+ yTa= R, ] +2re, @+ 0T [(a+l) +7'c 14 +0i7%)
(5.46)
The Reduced Phase Equation in the case when r; = r; can be written as
do ~
= Gty (5.47)
where
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_1 aR, [y(a + ])(l + o‘j)~ yTa+ R.,] y ala+1) . a[8(a +N+olyi(a- l)]
1T 5 [}/(0-' +1)( —o-j)+yTa— Rﬂ‘j +[2yo, (e + l)]:z Ea 1Y +y%0? | [(ar +1) + ylo? 14 +or:},z)

) o, [rla+)(+on)-1TatRy] ayo, (e +3)
ble+0)(-02)+ yra- R,,] sproa+n] [@+)) +r0) Ja+ols?)

(5.48)

Returning to the full set of equations, we can write them as

, &r . O , O . 0°0 ., 86 , 08 ,
[hlxazi+hl3?:+h\zgzi:|_|:hu 6!2A = Fyy afA + 1, axzﬁ]r,: _[Ni'fo»"‘ Nyr, "'Ns"zf:h =0

(5.49)

, O . br . O, , 6°8 , 06 , 0’6
|:h —L 4 h —£ 4k, B]—[h,, E_ 1, 8ln + Ay, axzﬂ},t_[Ném-"‘Nzrj"'Nz’bz}B: 0

(5.50)

1 / ‘ i 2 ' 52 r ) ~ ~ ~
[hllir/_l +17n3%+h| 0 r;} _[hn 2 - hy, 89[/, + A 32(9,,]’;1 _[N|§ov + NZ"Az + Ns"az ]',z =0

(5.51)

These are the final set of equations and it can be noted that there is a strong coupling

between them.
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6. Conclusions

The present study can be divided into two main streams. In one stream we have recovered
and expanded the analytical work of Vadasz (1998) for weak non-linear analysis for a
porous media layer subject to Coriolis forces. Our results proved to be in concordance
with the previous outcomes. Further more we have enhanced the previous model by
considering a long space scale X = &x and an additional slow time scale 7, = &’ in order
to obtain a complete equation for the amplitude and frequency of oscillation for the

convection in porous media.

The tri-critical value of gamma for various values of Taylor number appears to follow a

straight-line.

The complete equation consists of two distinct terms grouped as a non-linear part
A- Z, (5“ —ZZAA')A that we are familiar with, and a second part where we introduced

the above mentioned scales 3°4/a’ — ZjalA/ax2 .Z,, Z, and Z; are constants to be
found in the rext [p.52-53]. Interestingly, the way the scales came out into the final
equation indicates the wave characteristics of the convection. It also indicates the
existence of a group velocity term associated to the normal modes of oscillation. The
finite amplitude results indicate that a pitchfork bifurcation occurs for the stationary case

and a Hopf bifurcation for over-stable convection at critical values of Rayleigh numbers.
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The results also suggest the possibility of controlling a more general case the

codimensional-2 point. However, this analysis requires further work.

We further analysed the case where travelling waves are considered and determined a set
of eight coupled equations for amplitude and phase. If we impose the conditions for the
stream function that A =+B and A, =%B, and for temperature C =D, and

C, =t D, we obtain the equations for the standing waves case.

By neglecting the time and space slow scales, for a steady state case we obtained the
2

following relationship for the amplitudes rj =r,, reducing the equation to a set of

equations for amplitude and phase that can be de-coupled.
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Appendix 1: The non-dimensional analysis of the governing equations corresponding

to flow and heat transfer in rotating porous media

The quantities marked (.)- represent dimensional quantties; items marked (.)¢ represent
the characteristic values: items marked with no subscript index represent a-dimensional

quantities and those marked (.)o represent their reference values.

The continuity, Darcy and energy equations are

v4.=0 (Al.1)
. k. .

q.= —Z[V.p. +pg.e.] (A12)
a VT =q.V.T (A1.3)

Additional expressions for density, length, gradient and temperature are

p.=po[1 - BT = T,)]= pop (A1.4)

I, =1} (A1.5)
1 o |

V.,=——=—V

A (A1.6)

T -T

T =— 2 1.7
AT, (ALT7)

By conveniently choosing all the quantities we obtain for continuity equation
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Vg = ;‘Vq 0 = Vq=0 (A.8)

c

It is to be noted that the continuity equation is considered as time independent.

For the equation (A1.2) we consider taking
p=1-[FATT=1-CT (A1.9)

where C stands for a consiant.

k|1 k|1 . R
q.-q=——L Vp. +popge] » [Z—Vp.+pg.e= -pCTg.e,}=

7,
(A1.10)
_k k. A k C, .
|: V(p. + popg.2l,)- pCTg.e } —;—ELV‘D +-—'g‘LTe:
A He L peo L
Therefore
k k C, -
q = Bl g, | K8PC (AL.11)
geH.L, M,
From the equation (A1.3) we have
a, 22 ! -
T ATV'T = .7 ATVT (A1.12)
Simplifying, we obtain
a. 3
= AT.V'T = qVT (A1.13)

ciy

By imposing «, AT /q... =1 we obtain the energy equation in the form
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qVT =V°T (A1.14)

From a.AT/g.l.=1 we can further express ¢.=«,AT/l, and also, by imposing
k.Ap.lu.a. =1 we can express Ap. = p.a.f/k. which introduced into Al.11 we obtain

the Darcy equation
q=-Yp, + RTe, (A1.15)
where

_PgkATp  p.gkATH,
lq.h. a,u.

Ra

(A1.16)
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Appendix 2: Derivation of the equation 2.6

Let the equations below be the continuity, Darcy and energy equations and @ =V x q the

vorticity.

V.g=0 (A2.1)
oq y2 = .

a’+Ta e.xq+q=-Vp+Ra T -e. (A2.2)
x%m-v:r: VT (A2.3)
Where:

q = ue, +ve, +we,

Hence

a I A ~
Vx[?(’l+Ta”'ezxq+q}=Vx[—Vp+ Ra~T-ez] (A2.4)
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The operator V will transform each term in the LHS of equation (4)

v, 04 _2

or ot "
Vx[7d"%, xq]= Ta" (o x[¢, x T}

The triple product V x [éz x q], which is known as a “triple vectorial product™, will yield

€

x é_\' Aez
Vx[e, xq]= [a_i e, +£éy +a—a_éz}x[—véx+uéy]= 6, 8, 9, (A2.6)
u O

-V

It its to be noted that the vertical component of the flow is assumed zero since we have no
flow on that direction.

Expanding the determinant trom equation (6) we obtain

~ ou ov du ov -~ Bu . Ov . ow
Vx[ez+q]=—e ——e,—+e|—+—|=-¢ v —e,—+elVq-—
oz oz ox Oy Y8z Yo 0z

As Vg = 0it resulis that

Vx TaVe, xq=—Ta"2%q- (A2.7)
z

On the right hand side of the equation (4) we have

Vx(V-p)=0
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as a rotor operator applied to a divergence, and

Vx Ra-Te,= RaV x Te, = Ra[(VT)x e, +T(Vx éz)]=

8T . ol . . .06 « a{a . aTA] (A2.3)
—e ——e,+T7T—e,|=Rg—e ——e,

oy Ox Oy ox

The resulting equation 1s

a_a)+w_7.au28_q= R

e, (A2.9)
ot oz 3y Ox

To introduce the vorticity we have to apply the operator V once again to equation (A1.9)

Vx[%—+a)—Ta'“§£}=Vx R gét—ﬂév]
ot oz ey °  Ox -

On the LHS the operator applied to each term will give

dw B d 3 ) 3 1o
x—,=a[vx w]=5[vxvxq]=5[v(vcl)-v q]z-a[v a] (A2.10)
Vxao=-Vq (A2.11)
V728 J ity 24 Talniqu= 7‘aVZaﬁa) (A2.12)
z z 'z Z

On the RHS, the operator applied to each term will give
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4 a2 2
Vxrd Lo, | _pl & 8 2| gg BT, 8T, Gip | (A2.13)
5% ox ox Oy oz Xz oyoz ‘
o ar
L&y oOx i

Adding the resulting terms from LHS and RHS we obtain

at’ oxoz * ooz °

2 2
[3+1]V2q+Ta"2%§+Ra[a Té,+ o7, —V,zﬂ@,}=0 (A2.14)
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Appendix 3

Section 1: Basic flow solutions
The basic solution in a two dimensional problem assumes no flow, the temperature a
function of z only and the pressure not a function of x and y. As a result, the equations

(2.1), (2.2) and (2.3) will be written as follows

V.-q.=0 (A3.0.1)
k .

0= —:‘ [V.p.+p.ge.] (A3.0.2)

VT =0 (A3.0.3)

Equation (A3.2) will yield

op . Opa
—pe‘+0—pe+
ox * oy’

P; - Ra-Te, (A3.0.4)

Z

as pressure 1s not a function of x or y and 7 is a function of z only, it results

5, =ka T (A3.0.5)
A
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=0 (A3.0.6)

From (A3.5) results that 7 = Az + B, where A and B are two constants to be determined

according to the boundary conditions

= (A3.0.7)

The pressure can be obtained from (A3.4) yielding p, = Ra j(l —z)dz+ C

Section 2: Small perturbations around stationary solutions

Let g=q,+¢eq" T =T,+&l' w=w,+ew' the small perturbations around basic
solutions. We know that g, =@, =0 and 7, =1-z; therefore equation (A1.7) can be

writien

o’ Oz oy ) ax

A2+ @) (s )= 7a 2t d)_p [AL+T), AT+ T )gy} (A3.0.8)

Opening the brackets and separating the terms tn basic on the left-hand side and small

perturbations on the right hand side, we obtain
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a"j’b v, - Ta" 2% _ g sy —ﬂéy]=o=[§+1]w'—7a‘“%”- (A3.0.9)

putey ad

I considered the value of q' along z-axis as w and the products éj = (. Therefore

X,

[§+ 1]0;' Rkl (A3.0.10)

In the energy equation we insert the small perturbation solution

oL, +T
r= 4 @, WV T = V(T4 T) (A3.0.11)
Developing the terms and separating the equation in two parts we obtain

G, ) 3 )
25 A VG -V, = -y T =g, VT ~q'VT, - q'VT + VT’ (A3.0.12)

The LHS of the equation is zero since it represents the energy equation in its basic form,;
also q,VT' =q'VT' =0, because q, is zero (basic no-flow situation) and the product

between two perturbations will yield a second order perturbation that can be neglected.

As T, =1 —z and q' along z-axis is w’ the final form of the energy equation is
(D e ,
X5~V T -w'=0 (A3.0.13)
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From equation (A3.8) we can express w' as

, (8 ..,
w _kzal’—v )T (A3.0.14)

-1
and from equation (A3.6), by multiplying to the left with the operator [5 + 1] we get

=1 Ay
P [Ai + 1] 7a" 24 (A3.0.15)
o 0z

introduced together with (A3.9) in (1.8) yields

e 71... 54 [ o 8 . B .

—+| V¢ +Ta—% +|—+1|R ——e -Vl I'=0 A3.0.16

L?z’ ¥ } 4+ L‘)/' * } ‘{axaz &t et T Ve ( )
T. 97T . , .

Taking 7 = e, =0. Finally, the temperature perturbation equation is

e =
oxoz * oyozr

6 ’ 3 2 3 3 2 (7‘ 2
— +1 — -V IV +T — -V’ |~ Ra| — A\ "= 0.1
{[61’ * } [zar' } * a[zat' ] a[ar'ﬂ] ”}T 0 (A3.0.17)

Section 3: Amplitude differential equation of 7’
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The assumead solution (2.1 1) can be written as 7’ = &(z)- F(x,y,1), which introduced into

equation (2.10), opening the brackets and taking k_f + k? = k yields an algebraic equation

20k + 40’ D' 42407k +220° D" + yok’ + yoD’ - o’ (k' = 2K' D’ + D*)-
20(k* =2k*D* + D*)= (k* =2k D’ + D*)+ Ta(yoD* + D*k* = D')= Ra(o+ 1)k* =0

(A3.0.18)

Simplifying

{(a N I)Z[Df ko ZO'ID_-Z 3 k2)+ Ta[D__z e );O‘]D:Z - Ra(0'+l)k2}g= 0

(A3.0.19)

For 8 = b, sin(nz) as a solution for (2.12) the equation above will yield

) [l +a+yo] [(a+l)2(a+ 1)+ Ta-l

R
a(c+1)

(A3.0.20)
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Appendix 3.1: Determination of W',  Ju ‘andv ’

By substituting 7" = Bcos(kx)sin(/z) in equations (2.8), (2.9) and (2.7) along the

respective directions we obtain
5, 2 , ,
[ly-v ]Bcos(kx)sm(ﬂz)—w =0 (A3.1.1)
There is no time dependency in the expression above and the value of w ' is
w' = —V*T" = —~V*Beos(kx)sin(mz) = (k' + 7 )Beos(hx )sin(7z) (A3.1.2)

w'=(k* + 2 Y (A3.1.4)

For the vertical component of vorticity,

[iﬂ]ﬁ. =T 2= (A3.1.5)
ot ) 0z

) , .
@, =Ta" Py W= Ta'/“g (lc2 +7z:2)Bcos(kx)sm(7zz) (A3.1.6)
@, = 7(k® +7° Ya" B cos(kx)cos(z) (A3.1.7)

To determine #" and v’ we consider equation 3.7 taken by components, knowing that

. . aZ A2 a2 . N . aZ ' 2 /
(1) \72q':£&r2 +aoy2 + 2]~[u’e +v'e;,+w’e’:]= . +(?:‘; +i‘:} (A3.1.9)

ox~ oy 74

.9 B -
(i) o' =—[Vxq] (A3.1.10)
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0z oz oy 0Oz 0z Ox .Ox Oy
(111) (A3.1.11)
*v [8211’ 8214”)A v .
=T a2 2 e, + €
Oz 4 Ox0z Ox0z

’ 27y

Vi - Ta” azvv = —Raa 4 (A3.1.12)
oz ox

Vi T2 28 1 O (A3.1.13)
0z" Ox0z

Since w' and 7' have the same representation in sine and cosine, we can write

u' = C cos(kx)sin(z) v = Dcos(fx)sin(7z)
A B sin(kx) cos(nz)
Oox0z
y (A3.1.14)
O = —k(k’ + 7 B sin(ec)cos(7z)
[ Ox0z

Viu' = —(k2 +7rz)1’
(A3.1.15)

(Vivr = —(k2 + 7 P!

The de-coupling of equations A2.2.12 and A2.2.13
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—(k2+;r2) Ta"’n’ [C]_ RankB
[ Tl _(kzﬂzz)» D)= | —1al e+ 1Y (A3.1.16)

A:(/’c2+7z2)2 + Tar?

RamkB Ta‘“r’
A=\ _ratian (i + = knB(k* + 7* 7' Ta — Ra) (A3.1.17)
(k + ) kRaB

Ta'“ﬂ” Tallzk]Z'(kQ . ﬂ_zy‘ = Ta‘lzﬂ'kB(ﬂ'z Ra + (kl -+ ,7'2 )) (A3 11 8)

k7z(k2 + 7Z"XTG7Z' - Ra)

= A3.1.19
(k + 7 )-l- Tarn* (A3 )
knTd (i + frz)[(k2 +72) + Ra7z‘-|
D= (A3.1.20)
(k + 7 )+ Tar’
We remind here that the critical value of Rayleigh Ra, at =0 is
k* + k* + i
( ) ( 3 ) , and therefore
K k
[Ta;r“ + (/c2 + ”2)2"|
[Taz® - Ra,]= - _ (A3.1.21)
P
Results the value for C
z(k* + 7
e 2T, (A3.1.22)

k
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For D, a similar calculation will reveal

he ala"? (1: + yrz)B

Finally, we can write the expressions for

71'!,’(2 +77)
u' = p Bsin(kx)cos(rz)

_ 7L'Ta'“(k2 + 752)
- k

vl

Bsin(kx )cos(rz)
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Appendix 3.2: Determination of R and &’ |§1]

The equation 2.12 is listed below
{o + 1[0 k% 2o XDI - )+ Ta[ D2 - k™ - 4o ]0] - Ra(c+ 1) J9=0  (A3.2.1)

e,' (kpv+4,y)eor

By substituting o =io, in the solution T'=6(z)- and knowing that

D!T'=-2°T" and D!T' =2'T"

(o, + 1)2[D_f 2D +k' - Dl e, +Xio,.k2]+ TaI:D:4 - DM - XDfio,]— Ralio,+1 ¥ =0
(A3.2.2)

. K R ) :
Recalling that o =—, R= £a and y = % we can write the expanded equation
T T Vs

.
Z

~mal —2rcla-nwolat -2n'cly - 2n'clya vt + 2 o+
2 2 2 2 .2 3 .2 3 L2 ~
ma +lan” +Tar"a — Raa—-in"oy —in o, ya+2in o, + (A3.2.3)

diro,a+2inocn’ +inyo, +in yao, +iTan’yo, — iRaao, =0
Which can be further separated in two parts, real and imaginary, both equals to zero

-rol -2rtcta - oial -2ntcly - 2ntclya+at + 200 a +
(A32.4)
7o +Tan’ + Tara —Raa =0

—iroly —intolya + 2int g, +4into,a +2inga’ +
(A3.2.5)
in’yo, +in’yao, +iTaxr’yo, - iRuao, = 0
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From equation A2.2.4 we can express

(- Y (1+a) -20:7%y (1 + &)+ Ta(l+ a)r’
Ra =
o

(A3.2.6)

which introduced into A2.2.5 yields

(+ay-0+a)yo’ +2(0+a) +Tay-(1+a) +(+a) o’ +2y(1 +a)o’ - To(1+ @) =0
(A3.2.7)

it can be noted that the power of o, is constant and equal to 2 all along the expression,
hence

y  (Q+a-y)Ta

% = (1+a)(l+a+7)_

1 (A3.2.8)

The above expression is introduced next into the equation A2.2.6 by replacing all &7 ’s.

RﬁM:Raﬁ;"‘:é{[,_ilm-?ﬂﬂ +,}(|+a)2_p_[ (Lt a=y)Ta ](]+a)y+Ta(]+a)}

7 (+a)+a+y) (+a)(1+a+y)
(A3.2.9)
Resulting
2 *Ta
(o) 7
=—|(ltaell+ta+y)+ ———= A3.2.10
e a[( X 7) (1+a+7)} ( )
§2. By minimising the above expression with respect to o we have
ﬂ—ii(l+a)(l+a+ )+_7’iT_a_ -0 (A32.11)
da dal|a ! Q+a+y)|| B
LR\TT
100 A el

e N 4 ; 4 ;
= 7 ] ‘ 7 ) 4 [ &
| 0 R S R | i ot



(ov) 7
drR” _ . d {(l+a)(1+a+/)l+2};ni{_1_}=

dae da a ] da |a(+a+y))
(A3.2.12)

ZT ‘ZT
(]+a)(l+a+y)+A 2+20+y — o8
3 l+a+y 5 +a-,-/_0

a’ a

2 2

y‘Ta ay“Ta
-+l +a+y)-—+2+2a + ———— =0 A3.2.13
(1 +a)( ¥) l+a+7( ¥ e ratry ( 3)

By simplifying the expression A2.2.13 we obtain

o' +2(y + )’ + y(r w0’ =2y +1) + 7 Ta =7 + DTa - (7 +1) =0

(A3.2.14)
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Appendix 4.0: Weak non-linear analysis

Let us consider the continuity equation in the form V.q = 0. Since all derivatives with

respect to y are zero, we can write

1] "\] 1
LA (A4.0.1)
Ox Oz

From the energy equation we have
[xﬁ-vz]r +q'VT =0 (A4.0.2)
[

Knowing that &' = y'/ 8z and w' = -3y’ /dx

qQ'VT = (u'él_ +v'e, + w'é:)-(a—,\T— e, + 3aT é:) =
ox Z

(A4.0.3)
8T  8T' oy oT' Qdy aT"

W— +w

ox dz Oz Ox & Oz

All the mixed vector scalar products are e, 'E/ = &,, where &'stands for Kroneker function

S, = (A4.0.4)

To determine the equation 3.0.2 we have to consider the following
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éx Ay é:
é)':VXEllz a 2 E =
Ox 0oy oz
zll v’ wl
ow' o' é{+[ai_a_w o+ ov o e = (A4.0.5)
8y 0Oz 0z ox |- o&x oy |-

w.e . +we, +tole.
The components above can be written

o, =_% (A4.0.6)

ou ow B3y o oy _ 2w c’;‘zgz/_v2

@ = ——i - = + = A4.0.6

T o oz oz ax\ ax/) ot o ( )

w =2 (A4.0.7)

(9.4

Re-writing the equation 1.7 by components

e, : -r%ﬂ]w;—z*a”z ‘31‘2” =0 (A4.0.8)
’ ct oz

e : 2 +1 | - Ta“ﬂ = —Rai (A4.0.9)
Y or 17 dz Bx

s | 2w a2 g (A4.0.10)
- R/ Oz0x

Taking equation A3.0.9 we proceed by multiplying the first equation with 7a* and the
second with[&/dr +1]
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[ v\ . oy
o ) T 70 o™
(A4.0.11)
B 7 A ) ~rry I T
— +1|Vy - Ta" %+Raoﬁ =0 \:ﬁ+lJ
Lot A 0z ox ot
—Taw[?— ll—i\—Taa-!{ =0
ot' z 0z
1 (A4.0.12)
~ 2 ’ / 4
[i + ]] Vi -~ Tavza—v ~ Ta" [i + 1](— 8_v) + Raa—T =0
Lo oz or' Oz ax
Subtracting the first from the second equation in A3.0.12 we obtain
[-;\a—ﬂ} VY + Ta"Y +Ra[§+1]—‘£= (A4.0.13)
or' = L ¢t ox
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Appendix 4.1: Expansion around stationary solutions

The equations 4.0.1 and 4.0.2 are shown below

[zi_vz]Jr%a_T_a_‘//Q:O (A4.1.1)
or’ 0z ox Ox Oz

o 1, By 9 oT

— +1| Vy + T —+Ral—+1|—=0 A4.1.2
[az' ] P “[az' }ax (Ad.12)

In order to obtain a solution we need to re-scale the variable as follows

X =& (A4.1.3)
8 0 3

o_9.,.9 (Ad.1.4)
ox & X

r=£'r (A4.1.5)
> a8 ,0

— =t A4.1.6
ar o % ar ( )

Because of the stationary character of the problem the expression A4.1.5 will be written

2 _8Z (A4.1.7)
a ar o
Ra= Ra(l + &) (A4.1.8)

We shall proceed to expand the expression A4.1.1 by splitung it into more convenient

components
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Part |: l\ZET_v)T
(z%—vo)r=(k’£z£ (T + &0 +6°T bJT_-;)=
e T+ el + €T, + 6T =

(A4.1.9)

\
Lxe S\ i) " azJ(T +el, + T, + £'T,) =

» 6 & 68 ,90 8 2r 3
[“‘" o Ta Camax fan -g}(z +el+ 6’ +2'T)=

0 A 8* , 0° B> 0
51—7‘—0 7'0—5——,7",—6'—27"2—5J ,7"3—2522—7“,
or ox’ Ox~ Cx Ox* Ox oX

0 O 52 & 3’ 3°
28 ——T. —e—T —-*—T. -&—T,
xS hitgahimegpheaat

We neglect all the terms that are zero i.e. all the derivatives of 7, with respect to any

variable except z, and all the terms that contain powers of ¢ higher than 3. We can write

the partial result as:

o g 2.
z——V}T—g(VT)+ kvrz—zag '

(A4.1.10)
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oy or

Part 2: ——
0z Ox
or
aauzjg———(u/0+5¢//, +EW, e W3i'—+éh)(78 + el +&°T, +6 T)—

25%%4_('5 dy, 675+533W15T + & oy, o1,
Ox 0z Ox oz 0X & Ox

oy or 22 afl/yﬂ_l_gz(a‘//lﬂ_l_a% a7, _f_a‘//zﬂ\

YE_ (Ad.1.11)
Bz Bx oz ox  \az aX & ox & ox/
Part 3 ow or
Ox &z
oy orT ( B 3N 2 0 3
—— = — +&— + + W, + . L+l +eT +6T )=
x 9z \av eap)Verenirew, ”’)E( h+ &' +e'T)
—152 | 52_39(/, o1 +538—V/1—T3‘-—£2 o, +& 6u/2£_53aw3 —& o, _ 536%
Ox B¢ Oz ox 0Oz ox Cx Dz Ox )4 oX

dwal _ [ dw\, (0w, 8T 3w, dw,) (8w 8% 2w, 8L By, dy)

awor U ) i e o e 2 o & ox ox/

(A4.1.12)

By adding A4.1.9, A4.1.10 and A4.1.11 and separating according to the power of ¢ we

obtain for order O(¢)
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For order 0(82)

S VAN X Y-
T Ox oX 6x oX

By, oT, oy, on;
Oz Ox Ox OBz

For order 0(83)

VEK"%=—21%+%+
' Ox oX Ox aX

oy, 0T, oy, _a_T_|_+ oy, 01, Oy, 37, +

0z Ox Ox 0Oz Oz Ox Ox 0Oz

oo, ow T, _ow of,
8r 3 oz 38X AX oz

X

Which is the equation 4.1.5b

Which is the equation 4.1.6b

Which is the equation 4.1.7b

We shall proceed to expand the expression A4.1.2 by splitting it into more manageable

components and neglecting all the higher than 3 powers of ¢ and al) the derivatives that

equal to zero.

Part | Vy
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Vi = & +25ﬁi+52i+3_2) Wo+5W1+52W’+53W3):
Ox? ox 86X ox* oz’ )

h) Y] 2
E(&ei.+62g.J+5z(&%z+a_V2fz+zi%)+ (A4.1.13)
ox Oz Ox 0z oX ox

+ iy ol B

2 2
[az_w Ty 50 0w 0 w.]
ox Oz oX ox oxX

Part 2 [i-rl} x Part |
or'

2 2
53[&_%”23+5_4{3 220w 52%}
Ox 0z o0X ox oxX

0 ? > 2 2l 2 3 Ay,
— 41| Vi = g(V \Y 2———1
[81'+] v=e(Vyn )+ e Vip, + ox ox )7

(A4.1.14)

8 oy 3 8y
5{V2 42 40—y ¢ 'j
EARPT APV S CrTZ

oty

8z"

Part 3: Ta
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Part 4 Ra[i, + 1}?—2"
Ox

Ra[§+l]£= Rac,(l +£2(£ —+1)(2+5 0 )

Ox

(A4.1.15)

)(To + el + &7, + &'Ty)=

(. 8T\ (81, 8T, ( o7,
A Ra. 7oy te {R crk—+—X)] 5[1*%\ o

(A4.1.16)

Summing all the parts according to each power of & we obtain

For order O(¢)

Vi, +Taa-w‘ ~1-Rac,ﬂ"l =0
&’ Ox
2
Vi, +Ta Yy pg S o 5 00U _ 5,00
Oz Ox 0X Ox Ox
2
v 1,//3+Taa ¥ -1-Rac,£=—2i Viw, - Ra ig
oz? Ox ot 8t dx
3w, _ 2_8_ oy, _ Ra o1,
ax® oX & G ¢
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Which is the equation 4.1.6a

Which 1s the equation 4.1.7a



To establish the correlation between amplitudes 4, and B, we need to consider the pair of

equations 4.1.5 a and b into which we replace the eigenfunction corresponding to the

amplitudes with the undetermined solution for the respective order. We remind that
w'" = [A‘ (2, X)e™ + 4, (z, X)e™ }sin(ﬂz) and 7" = [B, (r,X)e™ + B'(z, X)e"“]sin(fzz).

Like before we shall proceed analysing the equations by parts

& oT,
Vi, + Ta W,' +Ra,— =0
- &x
VETU)_Mz 0
Part 1

Vi, = V(4™ + ge " pin(rz) = — (67 + 7' 4™ + 47 F pin(zz)  (A4.1.17)

Part 2

32 62 T LI 2 thx * —the\ -

Pl =?(A,e +dje " Ysin(mz)= -7 (4™ + A e Fin (n2) (A4.1.18)
Part 3

VT, = V}(Be™ + Bje™ pin (mz) =—(k + 7 ¥B,e™ + Bje™ )sin(z) (A4.1.18)

Part 4
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i T = a_a (BI 4 Bl'e—lk.\‘ )Sln(m) = ik(Bl & — B;e_m )sm(ﬂz) (A4.1.19)
X

~

ox

By summing the Parts corresponding to each expression, separating according to the

exponential argument and recalling that o= k*[ 7% we obtain the following system of

equations

(o + )4, + Tad, + z‘Racr;l;Jz;B, =0 (A4.1.20)
(o + A, + Tad, - iRac,%Jc_zB,‘ =0 (A4.1.21)
(@ +1)B, + i%J&A, =0 (A4.1.22)
(o +1)B - ilﬂ\/EA,' =0 (A4.1.23)

From the last two equations we can draw the relationships between coefficients of the

solutions

a_ go_ o . (A4.1.24)

B =-——>2%_ -
Y (e +) R e

To determine the solutions at order 0(52) we first consider the set of equations 4.1.6 a

and b. The de-coupling process for temperature is shown below
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) , 3
Vy, +Taa Y2 4 Ra ,£=RHS,(V/,,T,) —
: Bz? “ Ox Ox
J (A4.1.25)
6 ~2
VT, -%= RHS, (v, 7)) [vz +7a 02]
and for stream function
"y
Vi, +Ta peal Ra,—% = RHS,(v,.T,) o2
< (A4.].26)
0
VT, -2 - RES (), T, _Ra, 2
a.\' SZ (!//I I) acr ax
Where
6 Oy oT
RHS (w,,T )= -2— — Ra—L Ad.1.27
(1 T)= -2—0— — Ra—1 ( )

09T oy oy 0T oy, 9T,

RH. T)=-2
% (W” ') oX Ox oX 0z Ox Oox Oz

(A4.1.28)

The de-coupled functions are shown below, first the stream-function equation and second

the temperature equation.

3 & o
v2|:v2 + Tag}’/z + Racr gx—i WZ = V2RHS] (z//l » TI)_ Rar.'r a RHS2 (!//I ’ 7—;)

(A4.1.28)
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2 O |2 d* 0 3}
[V“ + Taa]V“T2 + RaC,ET2 = RAS, (z,(/,,7',)+[\72 + Taa]RHSZ ((,1/,,7",)

(A4.1.29)

Since the left hand side of the homogeneous equations are similar to those at the first

order the solutions wiil have to lock similar up 10 a particular function as shown below

v, = (4™ + A;e™ Jsin(=) + f(RHS) (A4.1.30)

T, = (B,e™ + Bye™ )sin(m) + £, (RHS) (A4.1.31)

We shall proceed as before, calculating parts of the expressions starting with stream-

function equation A4.1.27

V2|:V2 + Tni]y/2 + Ra,, 5_2 W, = Vz{_zi% - Ra ﬂ}_
x

Ox 0X Ox )¢
(A4.132)
o, 2] 2220, 20 o001 put)
ox oX ax ¢X 0z Oox Ox &
Part 1
5 84, w OAT ).
25 Fad =2i a—X'eL —8—‘§e A']SU')(HZ) (A4.1.33)

Part 2
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RGC,Z;TLX Rac,% Be™ + Be ”“’)sin(ﬂz)z

a (__IJE Aelkx_'_ IJE

R —
“rax al+a) 71+ a)

A{e"k’] sin(7z)=

)za( i\/;A"‘“i—a—

1+ +
( ax\ i +a)™ T a4 )

A,'e_”“j sin(z) =

—l—(l—i-a)[aA' e _ OA] e—ifu]
aX 1706

Part3=V*(Part 1 + Part 2)

( iOW 5 {814‘ " aA‘» y .
\MZanL Ra, aX) 1k(2 (I +a)X +a 6‘(6 EXe b']sm(nz)

Part 4
T )
ii = 2 (aA' L oA, Js'm(fzz)
X ax (a+)\ax X

V124

2(z+1) (4e™ + 47e™" ) sin2rz)

Part 6
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z % %[(A e+ 4le m)sm(”")]_ [(Eem +Be A"‘)sm(;u)]_

(A4.1.34)

(A4.1.35)

(A4.1.36)

(A4.1.37)



2T Ll i Yint [ e i)

ox Or

(a " ])(A,e"‘Y - °e""“) sin(2 =)

Part 7= Part 5 — Part 6

ow, 01, Ow, 01, 2=mu
—_— - = A 4 sin(2z
oz x dx oz (a+1) (2)

8§”| _[8A| tex 5'41. —»kx] o
ax \ax® tox¢)sintm

%
Part 8= Rucrg[— Purt 4 + Purt 8 + Part 7)

Ru i{_z_a-ﬂl_,_ oy, + Oy, of, _ O, QL}Z
o oX ac  oX oz Ox Ox &

rl:[(zz Y - 2Aa+ l)a:(% e 'o—‘-,e”"’)shl (7=)

(A4.1.38)

(A4.1.39)

(A4.1.40)

(Ad.1.41)

Finally. by adding A4.1.34 (0 Ad.1.4] we obtain the non-homogendous part of stream

equation

J’|(RH9)—1k[2(a+1) (a+1¥ —(a+1Y +’J(a+1)a:[
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-—t e_””‘] sin(2z)= 0

(A4.1.42)



That means that the solution of siream function at order 0(32) will be similar to that at

(X¢). We shall proceed with the calculation of £, (RHS) differently from f,(RHS). The

equation for temperature is explicitly shown below.

] & 5
[\72+Tai V*T, + Ra,, T, ——a— —2i%—RaC,£]+
Ox | ) ox? Ox o0X Ox oxX

(A4.1.43)

|:V2+Tai—[_2ia_TI+ Oy, 2w 9T, 2w @]
ox _ X ox o0X Oz ox Ox Oz

ﬁ-[—Qi%— Ra"gl]+ [Vz + Tai]x
ox 0X Ox 15).4 Ox

[_Q_a_ﬂ_;_a'/’l Lov 9T oy, o7 | _
oX 8x B8X 0z & ox Oz

a a 3 : —ikx . b 2 V N : il .
T|: 21k( 4, e™ oA, "Jsm(;zz)%— 7 (a+ 1) — & (aA' e —%e 'L‘J sin(mz) |+
G

x ax ¢ T ax e+ )\ax® ~ ax |
:;{22 +a? ;; : _2 ie———— ﬂ‘(’;/: l)[ ?;\; e™ + E:\'/ ) sin(2z) + [(Z; e™ + %—e“”“} s'm(m): +
:% + az%i m(Ae™ - A'e "“)' cos(nz)( /ksm(m) -

:aa; +a’ %;}:H(A,e”" + Al'e“i"')zsin (712)[— ;z(ifl)] ik COS(ﬂZ)i =
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_2([.}():(6_?;6,_&,_'__0%6 )sm(ﬂz)+7r(]+ a) EJ_ G )l\(;j, e Exl-e i ]sin(m)}+

] 5 M )
i2+af2 02 {(1—2L){%e“"+—'e “]sm(m)+
| ox bz a+1\ax ¢ T ax

( - A'e "“)Zsm(2ﬂ—) }=

(ae™ + A,'e"'“)z sin(2m) - 7

a
TAa ) 2a +1)

¢+’ ][% e =L o4, ‘""] sin(7z) -

[2/(2 —(+a)yr’a-k -7'a’+2
oX oX

o +1

—4r 2ak a’A A sin(2722)
o+
Finally,
S(RHS) = 87 k‘/_ — 4 A sin(2z) (A4.1.44)

The temperature equation can be written now

] i : !
[V' + Ta—;a—JV T, + Ra,, 8 — 7T, =8 aah L1 a’a A A, sin(2z) (A4.1.45)
ox a+l

Let 7)7 = V'sin(2/z) be a solution that satisfies equation A3.1.36, where Y is a polynomial

expression of constants. The second term of the equation will yield zero, since the

118



assumed solution it is not a function of x. Some algebraic work to the equation will

transform 1t

16Y7' e’ sin(2m) = 87" ———a’ 4,4, sin(2 12) (A4.1.46)
(e +1)
o . .
Y =——————— 4 A sin(2 A4.1.47
(e 1) A sinC) ( )

The solution for temperature at order O(£”) is

: - - . Q
T, = (Bze”“r + B,e ’“)Sln(m)—m

A4 A, sin(2 ) (A4.1.48)

For the 0(53) solutions we can write the equation 4.1.7

) & T,
Vi, + TaZtr & Rac,L = RHS,(w,.T;) (A4.1.49)
d
VT -2 _ RES, (7)) (A4.1.50)

Ox

In order to determine y, and T, we have to de-couple the equations above. For y, we

have
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[ By aT,
2 3

Vi, + Ta—54 + Ra, = RHS,(v,.T)) o

. (A4.1.51)
5 oy 3

VT, - aB—RH&( v, 7)) - Ra—

By adding the two expressions we get the de-coupled equation for y/,

5 —s B? b? 0
\Y/ > . — (v, = V'RHS, - Ra, —RHS2 (A4.1.52)
oz o
O _» o 8T J'y 3 Oy oT.
RHS =2—V'w,—-Rg ——-—F_2——2_Rg —2 A3.1.53
o T M e e T A TaX & o Bx ( )
pits, - 2220 0vy 0w, 3T, 2w, T,
6X Ox ox 0z Ox ox Oz
(A4.1.54)
6;//;373_5W.572+15T1_0“’T.+5W.£ oy, o7,
9z dx Ox Oz Bt OBX* 6z X BX Bz

We shall work the expression 4.1.53 by parts, in the end compiling them into a final

expression that will yield the solvability condition for the amplitude.

Part 1

Vi, = -k + 7 4, + 4’ Jsin(nz) (A4.1.55)
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Part 2

, , (o4 A
26—8TV‘1//| = —2(k' + l%;- e + a—ll_e_’“'j sin(7z)
Part 3

0 oT 3 OA, |, AT e .
Ra“;% = r'ala + l)[a—f'e . +%e b‘] sin(7z)
Part 4

Ra, % = kK (a+D(4e™ + 4 e Jsin(z=)
X

Part 5

oy, [azA, w  OA Q]
o ¢ T i)

Part 6
a aV/ . aA'! Ikx aA. —n'.'.t) -
2 2% _, k(——" 94 .
ax ax  ax® Tax sin(z)
Part 7

(A4.1.56)

(A4.1.57)

(A4.1.58)

(A4.1.39)

(A4.1.60)



ar, _ iNe [ o BA k] :
— = -— 7 A4d.]1.61
rrie ﬂ(a+1) or © ar © sin() ( )

Part 8
el N A e B _a .. _
Ra,—2 = (a+1) ‘:(Bze + Bie )sm(;rf) (o: py AA; sm(2nz):|_
(A4.1.62)
—(a+ l)[lk[%lj{ e é;j; e"k’) sin(7z) + % [% A +%\’L A,]sin(27zz)}
Part 9
51// 3T the S lox o —ikxy - ~
622 ™ 2(a+ l)(Al Ale™ " NAe™ + Ay pin(2 7z) (A4.1.63)
Part 10
5:// (9T2 0 thx LI~ Y
a_zloT = g [(Ale + 4e )sm(nz)]x
0 ; . ey a .
g|:(Bzeu + Be h)sm(izz)—m/llfil Sln(2m)i|= (A4.1.64)

2(a +]) (A e™ +Ae '}“XA e rAe '“)5111(272)

Part 11
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8I,U, 07: _ ar ( Thoe
}

— - thye lk_t_ J;e—rl:( -n 2}'2 A4.1.6S)
& oz 2@+ TN — e sin(272) ( |

Part 12

>

oy, 0
Ox

0

6_ax [(A,e““ + A,'e“”“)sin(zzz)]x

NI

[(Bze‘“ +Be "“)Sm(ﬂZ)— A A sin(2 712)}

( +)
(A4.66)

an 112% o —akx o LNt .
Nt 1)(/1,6“ — A e XA e™ - e~ )sin(27z) -

ka
a+1

(A,e”“r — A,‘e""")A,A,‘ cos(2z)sin(7z)

This expression needs a little attention. We have a term cos(2mx)sin(7z), which can be

expressed with the help of the following trigonometric formulas

sinacosf = % [sin(e + B)+sin(a - A)] (A4.1.67)
sin(7z)cos(27z) = % [sin(37z) - sin(z) ] (A4.1.68)
9w, o1, ( 'e""‘XAze’h - Aje™ )sin(Z nz)-

ox oz 2(a+l)
(A4.1.69)

ika o . . ika g om i o
Aa+ I)( Aje & )A,Al sm(37zz)+m(AlU - Ae )AuAy sin(zz)



,09% _ 2a (aA2 o 043 e_m)sin(m) (A4.1.70)
axX ox  a+l\oX oxX
Part 14

6%”2 (%elh _‘_% e—i)’qui_n(ﬂ) (A4 1 71)
oxX oX

Part 15
9? ‘ & O BrA” .
7; - I‘JZ ( A)] eﬂu _ O ’l e H{_\j Sin(ﬂZ) (A4172)
oX (e + D\ 68X~ ox°
Part 16
o ‘ . i - M I
oy, o7, = — o (A,e"“ + Ae e i%e"“ —-%-e ”“Jsm(?m) (A4.1.73)
oz oX 2(a+1) oX oX
Part 17
aW. 571 1'\/; [51‘11 ikx 8/1,‘ —m-) ike . i\
Sk o it R St S el § —L A — A 2 A4.1.74
X 5 = aaelaxt Taxd ST AT pinCm) ( )

The right hand side of equation A4.1.53 can be expanded in terms of al) the parts
expressed so far, less all the terms that carry higher harmonics of the solution, which

would be relevant for an order O(gd) analysis.
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2 2 § 3 a
V°RHS, - Ra,, 2 RHS, =V*RHS, - 7 (e +1) —RHS, =
ox ox

{[—2(/(2 + 7[2)2%,/1_4_ e+ 1Yk + 7t (Zﬁ K (a+ K +a’ )4, +

(k* +n? )—g;; + 2ik(k” + nz)%‘l? — ik(ar + 1)k + nl)%}e"“ +

[—2(k2 + fi% + (e + 1)K +7z2)aai;‘ +i (o + D)(F +at )y +
I4

2 2 A‘ 2 A; . b A-‘ e

(& +n ZZX; - 2ik(k* + 2° ‘Z- +:k(a+])(k'+n2)%;]e‘ (A4.1.75)
) S Y Y S 2 2iker OA,

7 (a+ 1) — _r(a+1) 44 - {a+! — 4

[ ( )zﬂ(a+l)6r ( )2(a+l) t ( )a+laX

. 2 2%__ ) 2 k'JE ié‘ e
ik (a +1) o m(a+1) _/T(a+l)6X2}

kJa 04 , ak’ 2ika BA,
2 )y y————Lt _ 7 1) A+ m(a+ Iy ——2% -
[T(CH- )'Y;r(a+l)ar (a+)2(a+l) EREAC )a+lb‘X

ikn (e +1) % —(a+1) ”}(c;/f l)%}_dﬂ}sin(ﬂ)

Separating A4.1.76 according to the power of the exponent, and equating to zero the

resulting terms in order to obtain the solvability condition at 0(6'3), we have for e”:
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o4,

" bl 2aA bl 2
e =2k + Y 22 + Pal(a+ )Wk + 7P
(*)e (* ) > (e +1)(! -

+/c2(oz+l)(k2 +n'z)A, +

FA . o4, oA,
(k2 +7r2)y+ 21k(k1 + ﬂz)ﬁ — ik(a + l)(k2 + 77?%-—

(A4.1.76)
oA ko 2ike 04,
P+ 1Y g0 a1 e A + 2 :
CARE e A G e A AR iriera
- 24, 1 a 04
k(e + 1Y =2+ (a+ ) ——=—3 =0
ikn (a+ 1) o a+l) (@t D) ax
Similarly for e
(o) = =2(k* + )%+ﬂza(a+l)(kz+ﬂ2 a'4“+kz(cz-l-[)(lc2+7z2)A,‘+
or ot
v] = . a
(k2 +7[2)Z—;" —21'/6(/(2 + 7 (Zj; +ik(a + Isz + 772)% -
(A4.1.77)
2 045 a N 2ika 04,
2o+ 1y g A4 o+ 1) =
(a+)x(a+l) dr & ) (')+ﬂ(a+)a+laX+

o (a+ 1Y 2 4, S a1y ﬁ%:o

The two expressions A4.1.77 and 78 are identical up to the coefficients of 4, and 4,. We

expect that the partial algebraic sum of those coefficients to be zero.

2ik(k? + ) ik +1X K + 7°) + ik’ (o + 1) L ik’ (a+1) =0 (A3.1.78)

(o +1)
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The equation A3.3.77 can be written symbolically as

A ) - & A
Px&+Q><A|+M><A|‘A| +N><-O——2-'-=O
T oX

Where P is the algebraic sum of the coefficients of 84,/dr
(k* +;r2)2(a—2) ) (a+1)

Q is the algebraic sum of the coefficients of 4,

ar (a+ 1)(1(2 + 7z2)

M is the algebraic sum of the coefficients of A4,

—crzﬁz(}c2 + 71-2)
2

N is the algebraic sum of the coefficients of 8°4,/8X?
(1+ oz)(k2 + 7r2)
It follows that the equation for 4

D2 A
ox’

(e +1)(a-2)- ay]gi‘ +[a;r2 —# A,A[}A, +(a+1)

By replacing the variables in their original time and space scale
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(A4.1.79)
(A4.1.80)
(A4.1.81)
(A4.1.82)
(A4.1.83)
(A4.1.84)






62A__713
= =

0A o’ .
= i A4.1.90
7 Y (+1) > ( o, — AA )A ( )

Where 7 and &, are

;= (e + D2 -a)+ ay
I

gg’:z(‘“l)[i—lj (A4.1.91)
a R

cr

From the conditions that y, =0 and d,/&r =0 results that 4, = - A4,

From trigonometry we have

e" = cos(ex) + isin(kx) (A4.1.92)

e = cos(kx) — i sin(ix) (A4.1.93)

By subtracting the two expressions above

sin(loc) = <

v, =(4e"™ - Ae™ Isin(nz) = A, (" — ™" )sin(nz) = 2i4, sin(x)sin(zz) (A3.1.94)
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w, = C,sin(kx)sin(z) (A4.1.95)

Therefore the solvability condition when the space scale has been removed (the diffusion

term), can be expressed as

dC 77,'2(1 >
= —(50 -C (A4.1.96)
dC 71'2a rat
— "Co=— A4.1.97
n— C 3 C ( )

The equation above is Bernoulli type equation

% + P(x)y = O(x)y" (A4.1.98)
In this case

2a2
n=73 P(x)= . O(x) =

In equation A4.1.98 we call the variable v = '™ It yields the integrating factor equation

? 1
Q- 3)[ L 7

ve $ =(l —B)J—

2 2
ot (|-3)_[—"'8“ &

dr + const (A4.1.99)

The integrating constant is zero for V/
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C =+ & (A4.1.100)

For Ra < Ra, we have &' <0 and equation A3.1.99 will yield

C*=-¢& (A4.1.101)
[mplying that

0 V R<R,
C= (A4.1.102)

The condition 7> 0 implies
(a+D)R2-a)+ay>0 (A4.1.103)
Using for a, o =1+ Ta it yields

W1+ Ta+ 12 -1+ Ta)+ y1 +Ta >0 (A4.1.104)

[n this case-limit, y must be replaced withy," representing a transitional value relating to

the relaxation time.
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yiT+Ta =T+ Ta +1 )2 -1+ Ta) (A4.1.105)

, 2
7 =-J'+Ta—m—1 (A4.1.106)

By imposing the condition for » of being real and positive, y;' >0, we obtain an

equation in 7a

JTa+1>2 (A4.1.107)

From which

Ta>3 (A4.1.108)



Appendix 4.2: Expansion around over-siable solutions

The coupled equations at the leading order for stream {unction and temperature aic

(4.2.3a) and (4.2.3b)

{G"a_ai + 1] Vi, +Ta aa?:‘ +Ra"’[6“§f - lil% =0 (A4.2.1)
[};G,,i. - VZ}I +% =0 (A42.2)
ot ox

The corresponding solutions (4.2.1) and (4.2.2) are

1 * —F

W, = Qi(A,e' —Ae )sin(la‘)sinﬂ'z

T, =2(Cla'i +Ce” )COS(k.\')sin(nz)

Working by parls the two eguations above we have the [ollowing segments thal can be

added up 1n the end.

Part |

[Guﬁa% " l]-‘/ﬁ =2i{ol —1)(k* +7* XAJ”- —Ae )sin(k.r)sin(nz) +

(A4.2.3)
40 (K +7tz)(A}c‘; - ,{e"”_)sin(kx)sin(ﬂ:)

Part 2



o'y,

Ta - 24(1 —cx)(l(2 +7L’2)(A]¢»"T - A (f”')sin(.(:r)sin(ﬂ:)

Part 3

Ra, ¢ iL = 2iko gt (1 + a)z(Ce'i — e )sin(lcr)sin(ﬂz)
cr oal ax I |

Part 5

R(/KA,%L =2k (1+ a)z(C,e L¥C e"i)sin(k,\')sin(zrz)
X

1 ; . I .
,;0%,-'— =2ixo, (C(f' -Cle” )COS(kX)Sln(ﬂ.’C)

Part 7

ov, _ 2ik(Ae" — Aje™ Joos kx)sin(r)
ax

Part 8

Vi =2k + ﬂz)(C,e’i +Ce ";)cos(/c\')sin(nz)

Assembling the parts in terms of equations A4.2.1 and 2, we oblain
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(A4.2.4)

(A4.2.5)

(A4.2.06)

(A4.2.7)

(A4.2.8)

(A4.2.9)



2i(c? - 1)k +n ) (Ae" — Al ) +40,(kF + 7 )AeT + Al )+

20 - o)k’ + 7 Ae” — Ale™) = 2iko,wt (1 +a) (Ce' —Cle )- (A4.2.10)

2ot (1 + o) ((,‘10"; +Cle™ ) =0

2i Go;{(C,e“ - C,'e"’.)+ 21 (I +7 2XCi "+ Cl'e’"_} +

(A42.11)
2k Ae" —Ale™)=0

We further separate the terms according o the exponential power

(£*+n*) ol -2ic, — o)A, =k(o, —i)Ra,C, (A4.2.12a)
(> + ™Y 02+ 2ic, — a)A, =k(o, +i)Ra,C, (A4.2.12b)
[2i0, %+ 21 +1*)|C, +2ikA, =0 (A4.2.13)
[2ic,x +2(k*+ 2*)|C - 2ika’ = 0 (A4.2.13b)

From cquations A+.2.11 and 12 we can draw an expression for Ra, ., while the equations

A4.2. (3 and 14 will give us the relationships between coelficients ant order one.

Valys +ila +1)]

n[(a+ 1) +'y:of]

. and (= _Jofr, — G + ] Al (A4.2.14)
71:[(0:+ )" +y 'c,rf]

In order 1o determine the solutions corresponding to each order we have to de-couple Lhe

equations 4.0.1 and 4.0.2
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or

<

9, 1]“\7’1,/ + Ta a"f + Ra,_,,[i + 1]8—7 = (A4.2.152)
ol 0z ox

0 s .. owol oyorl
SV S35, T A42.15b
{Za7 ][+ 0z ox Ox Oz 0 ( >b)

To achiey e that we make the following helping assumption

T=T,+T=(1-2)+T

AT 2T ol oT s o oT oT

—_—_— = — —— I e— V =V' = — —_— \—13]6
3 ox oo r=vr x - e t 2
We recall that

0 o ) 0 o 0 , d

=, = - 5 — 2 = A4.2.16b
> T axTfax o far Tt e ( )
A= A1, 1,X) B=0Bz, 1.X) (A4.2.16¢)

Afrer we replaced the new variables. equations A4.2.15 a and b will then appear 1n the

form

o T, oty d oT

— \% yee — = 2.
[87 + 1] W+ Ta 3° + R”“"[ar +l] oy 0 (A4.2.17)

[ 9 vz},nﬂ_a_wﬂ_a_wﬂ (A4.2.18)

Zai_ x  dx dz Az dx
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dy a1 _ay ar _
dx oz d7 ox

) o° o |0
2 VA o e 14
[8/ } DTar R’”[af ]Jax ' O]

- (A4.2.19)
9 Lo (T JJ
a.-r al J

Let = J(y,T). We have

This vectorial equation can be solved using Cramer’s method.

i+l]h\_’2 +TH§; Raﬂ_,[i-t—l}i

or ? or Jdx
A = =
i g_v2
ox ol
(A4.2.20)
o * | o 4 0 0 0
v? A o W S g K
”az } NP }1}"8: } ox e [dr " }a\
Ay =A
O R (i—k I)i
A, = M R({g-}-l}ij (Ad.2.22
v d o ot ox T /
! N e —
'{8/
AT=A,
2
(a ] vty 70l 0
_E)/ a” P} a“
A= :{P—+I)V +nr—} (A4.2.23)
) or az
—_ J
ox
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The analysis for J will give us a noo-linear string of wrims that will be responsible for the
shapc of the solution at order U(E:) that in (urn wall affect the solution at order U(sj )

[t will be seen that the weight ol non-linearity at order O{e) is inexistent.

vl av T

C Ox dz 9z ox
- 8 a , 2. 4,
[a+e— ley, + ey, +e'y,} 7{81“1 +e L+ -

(A4.2.24)
aa ley, +e%y, +€ w}£—+e ]{e]"+s L+eT)=
e, +&J,
Where
oy, o7, dw, a1, ;

J =Lt _ TPl Ad.2.2°f
T & oc or (44225

; 9w, 0T, 9w, 3T, dw, 01 Jdv, o1, oy, 91 _dy, o1, (A4.2.26)

27 ax o: 0z ox ax 97 Iz dx 90X odr 97 oX

The de-coupled cquation for y will be

ra, Md Y 2] (a3 ) 2 )9
V' +Ta— |- Ra—s| —+1 Yy =Rq) — +1|—J (A4.2.27
El_z ai / a dz” J aa.x' 3 ( ot /" Wi ”( al ]/d.x' )
The de-coupled equation for 7 will be
M a .T(a Yo . 3 o . [ra Yoo .. ;,:} 2
LA o i 0 R W L | [ ? Tl (A4.2.28)
J_Ia: Jha’ﬂ)v Ta=— | R’a\ [)I+1J}! [[.Hr”JV f T _():‘IJ
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The homogeneous parls of both equations are identical, showing that the associated

homogeneous solutions will have similar lorms. However, the particular solutions will

differ according to cach order.

Analvsis of equalion A4.2.27

By replacing the slow scales for ime and space, we have

(2. .2 .2 3 d (}"(a N
Nyl —+e—+e— |-V —-2e———-¢"— || — 46—+ —+1 | V¢
I‘L‘:[m R T ar] ax X a\"J Cr AT 7”&).:3J-
| (A4.2.20)
Ra,(l1+€ )| —+ 2 NpCRA ~I\|'{j:—e 2 \i I‘(ew.+5"w, +EY,)=
'- Lar “ar, ot fax ax ) |v T T TEIT T

~Ra, () +£:)(i +ei+£2-§- 4]](—‘1 + Ei‘\‘(s’.k +£',)
kal T, ar dx 2 /AN 5

Thi~ algebraic equation is very tedious 1o solve; however we shall proceed (o solve it by
parts.

Part |

SETUE TN U TR N
\or o1, ot oX dx oX*
(A4.2.30)
> 33 0) o 8 & ]
2 _y 229 LA
(%az )*"{Xaro °axax}+£( 97 ax

Parr 2
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(CETYV)

(1gTcyv)

ovl

¥ LD
A e (1o [a-g7)

o 2€ ey vexe | Cip t ; :e]“tc Xew (e 1
+ 5 Zonre A ol T I R L) s N, L -t
' '[ o "“‘;{”e,]l_ ee’ ¢ j [*‘[.” e e’ e :L”e.]ZI[‘A eZ]

26 eyYxe e\ . f e\ie_ xeae (e Yxexe_ e
+ W Zope 4 1+ = [———Z]+'n‘i A= |—g+ == [1+= | ==r-—x
[ e -{[ e ] £ e l-J{l eJeTee e flee e )

R (Gt - (R O 1

s -2

wul P eYYxexe, e, f Je\3e  xese( i\Y
+ n’-[ © ”_ﬂ*:ﬂi[‘l"“(:-)][ e e’ o Z]+ n‘![:gLHeJ o L.+-{-_‘—F:[[+—e-]g,l;_.;\——l]‘J:3

e "1 xef %1p
{ _e_e“x_eg{i+([+£]

e ), Xe(, o)
B el e e“]” ze(”e]e"]‘-a

20 (e ) xexe( oie)ie &€ (|, )
{;A( :e+[_”e]e°]+e e[_”e)e t+ o :HQ };3

Joa(io2) e 22 (L ),
’ e)e e e . e

220 ( fe)
+ Df 4+ |+ —
fe LA; e

2P - XE X - ’
- (25 B ) (1422 0 2050 )
e ee A e oe e



Ra (&} +l)(~?—+f-’i+62i LIJ{{%— -riear—.)\_% +E’—£;—:}Ew, +EY, T EY,)=

61(1;_7—9_—:(2 +1 Jt,rr, +
ax”\at (A-£.2.32)
. [ (a aa[a ] d 3
i —_—| =+l |, 22— 1 — |+
¢ R“"__;).\‘-ka: " ’]W_"' o0X ox N w‘+?_) r, Ox’ V’.j\
EJI..R;{E_.I\ if. 4 '}ii“i_qu ii _F_}:[i_,.l\ ;}: {L}”l\ll.f
|cl\ \ ot J ST Ay ax\or ¥ Tm‘ ax T F i )‘i” ax? \ ot x
,223, 2% ]
ot X ox Wp r)r&\"w
The right hand side of the equation A4.2.27
. 0 3 .0 o o), -
—Ra_[1+€& | —+e—+eg" —+1 [——e o+ el =
a,(1+€ [ aT, ot J a\’J(E s
(A4.2.330

~€*Ra ﬁ[—(’- +1J‘r: =

(a Y, 23, (a. 3,
=1 '._""’:‘___';ﬂ""L._"'l _— ‘_l
\ar  JadX or.dx ~ \aor Ja.r "]

[Lr

=

=
f—y

We can wrile the expressions of the de-coupled streum function equations for the
corresponding orders

Order O¢)

5 Mo V. 5 d > |
—-v~][_— 1] V' +Ta— |- R _[— 1]—& =0 (A4.2.31)
{[XE)/ { ri!+ * “as_-] er 8.'+ o Il’u’

¥

We see that in the RHS expiession of A4.2.27 there is no lirst order of €

Order Oe”)
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50 (.9 Y2 vy _»,29(.9 _ :]-"i. ]: _ A4D 30
o [“ ¥ ]{a;“JV vi— 25, [‘a; i iR (A4.2.32)

d 33Yd Ve 3 3 3),. &
PO LA AR | [ v | m—— — Tt N
[‘ “FaL N Hj ¥i ['{E)rn axax)”“a:’”“

PRTE 3 ¥ (3 Yo[dw, 3T dw,or]
Ra, (2 41 )22y, + Ra, =<y~ Ra| < x]—-[u_—itf-t-%-%)
% \az”]a.r x i+ R s aa Vi R\t s ez ox

The order O(Ez) would hold information about dependency of the still undetermined

amplitudes and various variubles

Order 0(63)
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3 < Mrs Yuu D 2 N\& |
——V*|[| = \%G — - Ra,| —+} |— .=
t[la; ][[a;“) ”“a:’J Ra 5+ )a.e]"’-

“ 3 N (P > [a 3 3]
J 2wl =+ VP2 =l | ==Y, -
[*"zn J ;n_,(:u”] o Ja,z ax [

o 3.V 9 ., (2 ]I-) 2 (& a(a N (A4.2.33)
= VE ]| = —_ 4| = ST AN 2 . — 2.
(za: ,][[BIH) axs aru[af" ox ,\'+[ar§ +2r'ir FJ:H Vs

' = - = P 3 - \|- - - i = § o e
[ZL—E,L)-E_- _L)+l] Vzu._—[_:(,—d-—f_’_i—a_ 12i i+IjV'+2(-d-—'~IJ *ii 1 —
or, 9xaX Aot T\ er,  dxadx ) ar\a \ ot oxdX [

1_211 '.,J""a_z __[ iﬂiri+|]zvzy -—[-i_i)"f‘ai/ -+
XDTD axox ) "as V1T *ar axt A L ot axt) e

pf B B Bty BT, (B P BB, P ]
N\t e A et S T @ T et e N e

2 o 0 0 [dw 3T oy, oT;
R NP [ Pl RTINS [t of ucil) I, o Bl Y
e [(a: )a_\' Tor x| ax oz oz a.\-}

Ra 21|21 2690 v, 20 20, 0% 09,3 235 3y, 3
o Jax| ox oz or dr dX dz o9z dx gz dX dz ox

The homogeneous equation for 7 has the same form as for y; only the RHS wil) differ lor

order Of¢*) and O(e*). We called the RHS as J

3 Y 9’
J = (—§+l] V? +1a 7 £, +€’),) (A4.2.34)

By introducing the siow scales for time and space we get an expression [or J in terms of

powers of €.
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(9, 0’
J =€ Vi, +T J,
€ {( > J +Ta }+
(\-32.3

A2nfond2n] 22, 22 (20l 0y }

Y]]
A

1\ or o1 dx X ? a ) o2

The calculation process 1s identical to that for y and we shall resume to write only the

results

Order Oe)

[r 0 _A[(a Vo. . & 2\
S 2|V arn - Ra | S A= A4.2.36
I["a/ J[[af’] E}:“] R""'(aﬁlja,\--}[’ | ( :

(A4.2.37)

(i+]]'[x_2)_ —2.i d ]V: —[;(i —Z—Q-—é-]Ta-a—:’ +

Ra‘__,f-.’,(i+l] d 9 + Ra. SO T,+(3+|J Vs +Ta 2,
dx X "at, ox’ | ! - B=

Order 0(63 )
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"2 (2 Ve . 9 2 & |
— -V _ % —g — —— =
l[ o ][[a;“) “’T"a:-} ke, [_r)z+le_r e

3 3.( 9. Ao fd . :iiﬁl‘. -
{3 Gr)+5 ) e

ol L ar, \a ol xoX |-
Z (A4.2.38)
[ 9 [1 V& L d(a a2 (& a(a ]
e N ) [ e e | s | s e f—+|J V-
'\‘a; J[ 2] ) dX* dr, Lt ]9.\' X i 277 T at\adl , A&
(3 2 0Y02 ‘}: , "2 FEER ) i N N 3 3l
(—-2—— | = +1| Py, | x—- 2L a2 2L, -
L‘ar, FETH R ARG [\'{Firl_ 235 9x ) R M VTR 7 £
2 2 9 F 9 F
L1=—-2= Tao—vy, === |Ta—vy_ +
( o1, c?\t’\}ad:‘ o ( a‘r ax? Ia! ¥ ['Z dt -)Y'] ab:‘ v.
d A2 ‘1 o & (a \ 3° d d 9 3
R (—v} g, +2 +|__, VRS [N o VRS, B AT T Tt )
ﬂ‘"[ ot J o ¥ l ar Javdx Fh',_, i Vi lF].f Jl X ¥ dr,dx o 1 dTodx v
3 2 - (A0 v z - 1
-1-2{—_i+1] 9 9 I‘+Qi[_i+lJV‘Jh-r-[_i+l] V‘J3+Th—_d—\-1,‘
o) dx X’ ar \dt Cohar azt e
The solutions at this order are
— h
W, =y, + vy
(A4.2.39)

Ti=T+17

Because the homogeneous part at order two 1s :dentical to that at order three, the

homogencous solutions will be
W = (Aw d Az'e"“")xin(k.r)sin(m)
(A4.2.40)

TZ” =2(Cze'i + C":c'""")cos(k.r)sm(ﬂ:)

By introducing the solutions into the secular homogeneous equation we will obtain

similar expressions between amplitudes and also a sct ol relalionships between Ra, and
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the amplitudes. The relationships between coefficients al order 1wo will preserve as well

and they can be presented as

Jolyo,+i(o +1)] A

€= _fr[(cm- 1)? +ylcyf,]

(A4.2.41)

P Jalyo, — o +1)] "

e 7 e

The analysis of the stream function at O(ez) will give us information about the

rclationship established belween lime and space slow scales related to the amplitudes. For
that we have 10 investigate the RHS of A4.2.32. The analysis of the non-linear terms
follows by introducing the solutions from the previous order and perlorming some
algebraic manipulations. The result will indicate that the ~oluton for stream function at
this order is nol influenced by non-lincarily induced. However this is not true (or

temperature which will appear 1o be strongly influenced by perturbations introduced at

previous order.

R‘.‘_,_ﬁfc,_f_)_%])?a_iﬂ_ﬂﬂﬁﬂlz
ax'\ "ol dx 9z 9z ox |
of o Y d ~ v O Al F . w ,
R:",_,.L o, —+1| L’.Zz'(AI(" —Ae )mn(‘J’L‘r)s‘ln(R‘:)jL 3[(..[&'" +Cle " Jeos(kx)sin(rz) -
/ 37 =\

ax\ “ar  Ndx

-

i 3 « gy . : -) i - . \\
_{—21'(/1#/' - Ae ).um(k_r)mn(_ﬂ‘:]i 2(Cle "+Cle )cns( &) sin(7z) ] =

r);

(Ad.2.42)

0 2] ; i g v .
.’\ch(cr:—; +1] 2ikn(ACE" +AC —ATC, - AC e )cos® (kx)sin(2mz) +
AN 'y .

Ziklt(:*s‘(fre:“ +ACT = AC, —ACle™ )sin:{k\')sin(br:)l =

Re, % fcr % ' ][.-x!cg«” + AG - AC, — ACe ™ Jsin27z) =0
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The remaining part of RHS(y,) of A4.2.32 will be reparded as a differential operator
operating upon . The result must be forced to zero in order o obtain the required

refanonship

3 o d 9 o 90 0 ou 0 o
RHS =2 v:-2 — V" +20 ——V +2—V' -
’ . “Xor, , or G‘Jaro o T o1, of ’ a1,
Qxc‘iiii_zl Uziii_ g iii.'.’) x a J V:+

N O e T %5 3 ax T 2% 5 oy ax

009 p,,23 e 2 3 L 2D (A4.2.43)
“Faox . axax . %% %0 ar X% or,
D on . 23D 23 9 a2 5
2 g4 V: sag, 220 g0 L gy, 2
Xor, ' "% oFarax . "% %avax T T oxax o ax
22 & 20 2 2 2 2 ¥
Tt — — —— + 2R, ————— + 2R~ + RO,
AKX o= o ax e orax T 03T o

Applying the operator A4.2.43 to “¢” " parl of the solution and equating it to zero, we

obtain a relationship between 9A,/dt, and dA,/oX

P—a/—“Lsin(kx) = Q%cos(k.x) (A4.2.44)
ot oxX

o

Where

P =n2[20'0(1 +a) +40,y(1+ o)+ i(3ofy(1+ a)-2(1+a) —y(l+ @) —yla+aRa,, )]

(A4.2.45)

0= Qk[yao —yo, +40,(l+ o) =0 Ra, +i(2y0, + 201+ @) -2(1+ a) - Ta +Ral_,,)]

(A4.2.46)
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We can see thal there is a correspondence between the wave number and o on one hand

and the ratio between slow space scale and slow time scale.
S(a)tan(ix )= 3 (A4.2.48)
T

We can call the expression above the equivalent of a slow velocity scale. f(a) is a
[unction not only of o, but also of Ra_ and Ta, implicitly will be dependent of the

rotation of the layer.

For the ¢ part we obtain a similar expression

P Gn(n) = o 24 : A4.2.47
Pa‘ra in(kx) QaXcos(kA) (A4.2.47)
Where

P =7r2[2cr,,(1 +a) +4do y(i+ o) - i(3cr:y(l+ a)-201+a) —y(l+ o) —yla+ aRaﬂ)]

(A4.2.48)

0= 2k[;-'0'0 ~yo’ +40,(1+a) -0 Ra, —i(2yc” +267(1 + &) -2(1+ &) - Ta+ Ra 7)]

(A4.2.49)

As [or the T equation, the hinear terms are the same as in | eqguation and they can be

forced 1o zero, remaining to analyse the non-linear part of 7, which differs from the

stream [unction equation

2

RHS =(G,,§+ 1] ViJ, +Ta ;_2 J, (A4.2.50)

We found that /,is a function of / and : only

<
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2 2 N2 2
RHS = (o‘%% +20‘D§ ;_2 +(1+ Ta)%)Jz (A4.2.51)

RHS =32ic7km*(A,Ce™ — A C e Jsin (2z) +

320 kn*(AC €™ + ACle™ Jsin(272) ~ (A4.2.52)
(1 + Ta)ik n3[A, Ce™ +AC — AC, —A'Cle '2’7)sin(27t:)

In the end we can wnte

RHS = b, +a/e™ +a,”e“2'r]sin(27'cz) (A4.2.53)
Where

by = —&ikn* (1+ Ta)(AC - A/C,)

a; =(32kc, 0 +i(32ka’n’ - 8kn* 1+ Ta))AC, (A4.2.54)
al" = (32ko,n” —i(32kan’ - 8km’(1+ Ta))}A'C/

We ascertain that the particular solution of 7, must be of the {orm

TP = 17+ T+ T = —b,sin(2n) +a,e sin(2rz) +a e sin(2mz)  (A4.2.55)

We proceed 10 analyse the structure of b,
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b, =—8ikm* (1+ Ta)(AC, - A'C)) =

—S[kﬂ:((l+dl—l) _JEIyat.,—i(aH)] o JE[}U,H(OzH)]A

TR A (PR
oo +1)
n[(a+l)2—'-'/3crfj

16k°? AA

By introducing 7, = b, sin(2mz) into A3.2.37

2 |

I[' 9 ]P 0 v +7ul |
| y——V? |;+1) V* +Ta—
1.'1‘)’ Lot ”d:‘_) "\ or )r).l."J

Knowing that b, is a constant we obtain the lollowing equation

4 -

Jl): sin(2mz) = 16k

ala+1) .

_v’-[v3+Taa — T AA
n[(a+ V) +y oi_j}

9z’

The expressioan for b, is

o{o+1) .

e+ 1) +v’0 ] A

b, =—

Introducing 7;7* =a, sin(27z ) in equation A3.2.37
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‘— Ra_(—+l = (b: sin(2m2) = 16K

) (Ad.2.56)

|-

2 oo +1)
7l +1) + 707

A A

(A4.2.57)

(A4.2.58)

(A4.2.59)



{(x% _v:]\[__g; + l]-vi n Td%}— R(’;-r(§+ ]) _;‘9;: }u:c’ﬂ"". sin(257)
' ) o (A4.2.60)

—81«71’3[0'__ +4i(o; - o )"JE[}U” +i{l+ o) AT sin(2rz)

'Jrr[(a-i- 1)* +*/303_]

It vields the {ollowing expression

[(640‘:', +32y0; ~ l60:7) - i(640, —3270, +8)fcr,,oz3)]7r4 a -
(A4.2.61)
| [320, + (320} -8a* ) km [y, + i(1 + 0]

~Ja— A

T [(1 + o) + yzcri] :

From which we can determmine

20+ 1)-vylo? —iyca(a+3)( )z
[+ 1)+ y'o|(a+ 7))

(A4.2.62)

o
a,=—
b4

= -3if

Similarly we work oul the expression (or a; by introducing 17° = aje ™" sin(2nz) in the

equauon for 7,. [t vields

— 2l
a _a 2(a + 1) : Y cio:—l}’O‘o(C: +23) (A. )2 (A4.2.63)
7 [fe+1)+ 70t (4+yi0l)

The full equation y, at O(¢) is presented below, where we retained {rom the right hand

side of the equation only relevant terms linked 10 v,
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Pat 2

2 a al a2 a a 2 a 2 2 aZ al 2
——V 27 v——V v—V" - — -V - A4.2.66
Xo-o BT a[‘z + TO/{&I_ a[ +'( aT o-o al.-. aX- ( j)
0 9% . o _,
20 — - %
oyt \ T ax
Par1 3
0 o’ 0* o o o ot
—_—— = |7 =yTa———-T -— A4.2.67
[Xaf E)X'] "azz A oz* AN ( )

2 ~2 2
l?a[(od§+1\}jg+ziﬁi+ 4 [o i+])+_a_a_}=
/ 7oy’ )

a az a: a a a a aQ

) R & iop, 9.3 8 9 \4.2.68

U0 ax * R g ¥ 2RO T o ox TR e (4268
2 2

R g D9




Paris 5, 6, 7 and 8 will deal with the non-linear terms containing mixed products of
stream {unction and temperature.

Par¢ 5

Ra O_ii+i+ 0 i[aw,m}*au/lﬂ]
| "ordx dx dt, dx | ox 9z dr ox

00 0 3] (A4.2.69)

’21'/(71:R(/L_,{0' —— T+ o X

orox ox JT, ox

[AGE"+ AC, = A C,— ACle* }sin(2mz) =0

The result yields cero because the argument ol the differential operator contains no x or /

lerms

Part 6

Ow, 0T, 0w, 9T, OW, D /sy OW O 1 iy
ox oz or Ox - o a:('l;- + 1 ) - ('rz + 1 )—

¥

(A4.2.70)

dy, 9L' oy, OL" 3y 0L dy, T’
ox 9oz ox 0z 0z ox 0z 0x

We shall consider only the relevant terms in which appear y, and 7;. They are Lhose

where Lhe parlicular solution (or temperature appears explicitiy.



oW, 07 Oy, 9L B [y, & o\ g d e, e A\
ﬁi——?g—zg[’y(f\e -Ae )St-n(L\)SIn(fC}]E[U}:+a1£.’ +a, ¢ Jxm{?)z)]— (A42.71)

ﬁ 2i{Ae® - Al * Jsin{kx)sin( }J%[{h rae’” +ae™ )sin(2m)|

We see that the <ccond term w here temperalure appears is not a function of x, therefore 1t

will vanish and the result is shown

dx oz Az adv

=4dikn{Ae" - A'e i")(:h2 +ae’+ae”" Jeod kx)sin(m)cos(2mz) =

dikr(Ae® - Aje )b, + qe” + e ]g'c'.\s(h'}é(.cin(,qm) —sin{7z))= (A4.2.72)

2ikm(Ae” —Ale " )(b, +aet +ale :"’)c.ns(k\')sin(BJE)~

2ikr(Ae” —Ale ") b, + qe™ +aje*)cos(kx)sin(m)

The term containing sin(37z) can be neglected at this stage since it docs not contain the

basic solution. By performing the multiplication between brackets we obtain a string of

terms that can be further neglected because they are different that the rcsonant ones.

These terms might become significant if we proceed analysing orders higher than O(Ej)

or relationships between amplitude functions at order higher that O(El).



Ra -Q—[a —E-)-+]J[aw‘ o Swely \:

T\ o Jdx 9z 97 ox

Ra ,_—( O’a_)E +1 }{—Zf'kfr[(/%!b: —-A'a)é —(Ab, - Aq e “]cns (kx Jsin(m)p =
Lo (A4.2.73)
—-2k*r(o, —i)(Ab, — Ala)e" sin(kx)sin(rT) -
26°7(o, +i)(Ab, — Aa )e " sinl kx)sin(7z)
Part 7
di 0 } Jy, 9T,  dy, IY

Ra. Zlo @ |Ie¥ioh oV, o4 | _

Yl T T {ax 2 a- ox
Ra,, TC)'[O'U*E)‘ +l} in -@ﬁe" - Qﬁ-e"? Ce'+ (','e""']sin (24x)sin( 272) - (A4.2.74)

“ac\ v )T lex " T ax : ‘ :

in [Ae” + A" J[%’»e - %E;-e"’ilsin(.?kt)siuﬁﬂz )}

This j5 a non-resonant term and will not be considered (or further calcujations.

Part 8

S

(A4.2.75)

It contains A, coefficients, therefore not to be calculated.



The compilation of all the paris of the right hand side of equation A4.2.64 will be
presented. We group the terms according to the power of the exponent e and 10 the
argument that contains the amplitude. The expansion corresponding to ¢ is the

complex conjugate of the first. For our analysis will be sufficient the ¢” part

M, %—;'-?sin('k.r)sin (mz)+ M, c)aT:::’}? cog{ kx)sin(nz) + A L%sin( kx)sin(7mz) +

(A4.2.76)
M_‘%sinl ky)sin(mz)+ MA, sin(kx)sin(7z) + .\1"(,4.}72 - A;cc.)sin(kr )sin(zz) =0
2 .

Where
M, =4n'y (o + 1) +4in'yo, (o + 1)] (A4.2.77)
M, = [87zzoak(y + o+ 1)+ dikr’ (y(oi ~1)=2(x +1)+ R, )] (A4.2.78)
My =[x (100 +2)(07 - 1) -Ta+ R,)-2ic,n* (100 +2~ R )] (A4.2.79)

r

R - " —_ 2 —ygt - —

v, = —ap?| 20u2(p+ V) +ayoy(p=y) | 2PP=703)s ~cRp(p—v)

| sy sY

(A4.2.80)

where

187



p=a+1 o+ +y*ci=s (A4.2.81)

M, =2n'aR, (o, - i) (A4.2.81)

M, =2n"oR (o, —i) (A4.2.81)

Using A3.2.45 we can replace

M, aar?)x cos(kx )sin(z) = M, j”:] cos(k.\')% sin(7z ) = M, Z’j aa;: sin(kv)sin(z)  (A4.2.83)

EquationA4.2.76 can be wrillen as

A, P & A . )
M, ?) 4 sin(kx)sin (zz) + _\-f:r—‘)%}‘-sin(kx)sin(ﬂz) + M A' sin(kx)sin (z) +
T, ¢ aty,

7 axe
(A4.2.84)

A \ . . . .
.:\44%-15in(k\')sin(7z:)+ MA sin(kn)sin(7z) + My Ak, — Al a,)sin(kr)sin(mz) = 0
T

Since we have all along the terms the mixed product sin(kx)sin(7rz) we can neglect it

2 P 2 2 ]
LA, M—dA’ M, 2 wainA + M(Ab, —Aja)=0 (A4.2.85)

Yot o ot ’ ox? oT

By setting to zero the dilfusion part of the equaton
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[M +M, — + M, =0 (A4.2.86)
Ja
we remain with an equation of unknown amplitude of the convection at order O{€)

-M, aa—A +M.A+ M(Ab, - A a,) (A4.2.87)
T

The quantity within the bracket can be analvsed

of ¢ +1) . ﬁa[z(a+l)—y’6j—iyao(a+3)]

ATA*
e +yo @ rriory

_ : [(a+ ). e er D-io,]
n[(aﬂ)‘ +yzaj] 4+7°0,

}/\2‘4; = _M7A12A1'

(A4.2.88)
Equation A4.2.87 can be written now

%+%(1 MMM7 AN ]-*-‘t. -0 (A4.2.89)
T M 3

We have to analyse A4.2.89.
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MM, __afsla+h+yioe] ayo, (o.+3)
M, [(a+ Y + y’c? ](4+7zai) [(a+ 1) +yzaj](4 +v'07)

=J, =5, +2y,

(A4.2.90)

M, n*oR,, (0, —i)sy

3

M, "~ {[36,,p(p +y)s+ oyo R, (p =) -i[2p( p—v02)s —opR, (p- 7)]}

(A4.2.91)
Let
P =20,p(p+7)s+ayo,R {(p-7) (A4.2.92)
Q =2p(p-7y9,)s —opR,(p-7) (14.2.93)

Py

g=olplp+7v)s+ow R (p- "/)]2 +p° [aRE,(p —y)=2(p-w )s] (A4.2.94)
Then

M, T’asyR,(o,— /)(P +iQ)

(A4.2.95)
M, q
M, rlasyR, (o P+ nosmR, (0,Q P
5 _ ,}d?r ( [ Q)+I ﬂ r( OQ ):Jl =Z|r 4 ":“ (A4296)
M, q q
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= T (o 1)(25p +aR,) - R 5 (44:2.97)
{
L 9 (A4.2.98)
L, mlasR, [ p(ol +1)(2sp +aR,,) - ok, 5]
2 .
o =~ ZECe (5 psy (02 + 1) ~aR, (57 +7°)]
Therefore cquation A4.2.89 can be expressed as
aAl A = A4.2.99)
E—Jr[l'*]:AlAl]A =0 (A4.2.99)

Multiplying the equation above with £ and replacing the oriuinal scales, we have

%% _Ju[l_JzAnA;}A) _— e} (A4.2.100)
" !
HAD_ [ = en e o) o a2 00

By cailing A = €A and A" = g4, we get a {inal form for the amplitude equation

5, = J[E, ~J,AA%]A (A4.2.102)
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We need 1o separate the equation above into real and imaginary parts in order to extract
the amplitude and the phase of the oscillatory motion. For that we have to write A = re'

and A" =re”"”, where r siands for the real amplitude and 6 for the phase. By replacing

these values into equation A4.2.95

%[re’e] =J[E, - gt ]t (A4.2.103)
%e'o +ir2—?€i9 =J, [éor — Jyr? Jre? (442109

In order to process to process this equation we need (o express J, and J, as complex

numbers J, =z, +ig, and J, = z,, + iz,,.

or +ira—6 = (2,0 +izy K,r — {20+ iz, N2an + iy, )P (A4.2.106)
o1 ol : g -
or 06

3

E * lrE =208+ f:ném-r - (ZIRZZR —4ly )T3 - (Z”Z;R + :m::!)r (A4.2.107)

By separating the real from imaginary part we obtain two distinct equations, one for

amplitude and one for the phase of the osciliatorv motion
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or s

N - . - - S
E =Sl T (“lR"ZR - < ‘fu)r

06 .
e Y (:1.-':‘1? Ty )r

or =

It is convenient to re-arrange the terms above

28 & 12
E zlr' o —azr
Where
1 Lriar TS
anu_ J, - Jy =5 Ta T LSy
1R I
2
) = Eiq”&[p(cj +1)(2p +01R, ) — R 1]
2
= —Lj‘)”atppsy(co’+ -oRr,(p® +y’)]
) of6(a +1)+y’oho]
Lr = :

(o +1)" +7° 03[ v’ +4)

| AR

{A4.2.108)

(A4.2.109)

(A4.2.110)

(A12.111)

(A4.2.112)

(A4.2.113)



ay(o+3)

(Ad.2.114)

[l@+ 1) +770|(y'ol+ 4)
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Appendix 5: Determination of the amplitude equation for the travelling

waves case

5.1. Relationship between amplitude coefficients at order O{z)

The stream function and temperature solulions can be wrntten in the form
ll/l =[Aé)llu..l.-r_‘ \ 3 B]eil".r—!i '}-,4;(’_”.1‘."‘ + BI-L,_H-.-—!J]Sin(ﬂ:) (\5 l)
7. :\:C ()J (ke ) 44 Dx(’”'u_!} i C'.l-(.)-.‘i.i-_: +I) 4 l)ln()—tLik - l] Sln(ﬂ::) (ASZ)

The equations at the leading order are

2 2., ..
[608—87 +J] Vi, +Taa—zz' "‘RG{UU‘%"‘ J% =0 (A5.3)
3 17 :
— VY T+ L —¢ Ad.4
[ Yo, 5 _| [+ » ) { )

In order Lo determine the relationships between coefficients at the leading order, we
introduce the solutions A4.] and 2 into equations A4.3 and 4.

Working by parls each term of the first equation
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Part 1

82 aZ

Ly 1) k= — i kr+ —i{ kx— .
3V O'Zkz(Ale'“ Dy B 4t 4 Ble ”)sm(ﬂz)
ol oOx

2
o, 1

(A5.5)
Parl 2
20, ST y, =o' (Ale"'”*” + B 4+ A:e':“'”” +Be” {""_”)sin(m’.)
[¢ &
(A5.6)
Parl 3
26, 22y, = aio (e - B - A 4 e i)
(A5.7)

ParlL 4

a a2 4 2 { kx4 i(kx—1) ¥ =i(kx+1 *= (i -1 -
20, —== Y, = 2i0,x (A,e' T_ B ~Ale + Be™ ')sm(ﬂz)

or or

{A5.8)
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Part 35

az o b ) ikx—1 o (b4t & i1 H
[vuan Ta |y, = k(4,6 + Be' ™™ 4 47e™ )+ Fe " Jsin(m) -

(A5.9)
(1 +Ta)n.2(Alé(k.\'+l) +3e|'(kx—{)+ Al"e-i(k.r-i-l) +B:e— i k= l))sin(m)

Part 6

a a i( kx4 kx— # —f( ks 2 =k —! -
Raooga—’ﬂ=-Raook(Cle’”“ D" 4 e — Dl T )sin( )
X

(A5.10)

Part 7

a Jox -+t il kx—1 v —i{kr+1 v —=i{kx~1 .
Raa—lf =—ikRa(C,e’<"""+D,e ) _ Cle™ ™ — ple* “)Sln(nf) (ASLD)
¥

<

We shall group alt the terms according to their exponent argument. For ¢ in the first

equation:
[a3(k +x7) = 2ic, (K + 7%= (k* + n*)—n’Ta|a, —kRa(o, —i)C, =0 (A5.12)

For ¢ term

167



[O’i(kz +1 )+ 2ic, (K +7°)- (K +71:2)*77:2T(1]B, +kRa(o,+i)D, =0  (A5.13)
Eor ¢ term
[Gi(kz +r?)+ 2o (K +m?)~ (K +7z1)—n:2Ta]A"~ kR o, + )C =0 (AS5.14)

;l.';_:

Fore " term

[62(K +1°) = 2ic (¥ +7*) = (k* +7°) - w*la R +kRa(o, - )D] =0 (AS5.15)
Working for the second equation
Part )

il kx+1)
\ ]

a ) . i hkx—1) v —1|ke+] s —fke=t .
zo‘o—[[, =iyo,| Ce —D,el '_Dle [ '+ D¢ sin(m) (A5.16)

Part 2

a i ke +T) o kx=7 - [ kx+7) v —i|lkx—17 .
—y, = ik[AI()' + BT - AT Bl J]sm(ﬂf:) (AS5.17)

Part3
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VT = (P +7z2)[C, ¢ 4 e 4 pre M 4 e ™ ’]sin(n:)

(AS.18)

Grouping the terms of the second equartion according to the exponent argument

(kx+1)
term we have

For o
(& + %) +ixo,|C, +ika =0
For ¢ term

[(&*+ ﬂz)—i;;cro]D, +ikB, =0
For ¢ """ term
[(k*+7*)=ixo,|C - ika; =0
For ¢ "“ 7 term

[(k*+ 7 )+ixo,|D; —ikB =0
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(A5.20)

(A5.22)



I-rom the second equation we can draw the relationships between the coefficients, while

from the first equation an expression for Ra can be recovered.

- _JE[}/0'0+ o +I)]

t n[(a+ 1)2+}’262]

A, (A5.23)

JE[—}'GO +i(c+1)] 3

=— — AS.24

' 71'[(0:4—1)2 +y‘03] : ( )

o fil e .
n[(a+ 1) +y‘oo]

D' = Ja[-y0, ~ila+ ) B (A5.26)

ml o+ 1) + vl

5.2. Order O(e") analysis

The de-coupled equation [or ., can be written as:
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(.23 o (2 .Y o2 o 2.0\
I(ZE—VJ[(E)Z-H]V +Taa:_] R[L +1]a#}w

(A5.27)

i_qia (QHYV: _(ﬁi_oii]ni "
3r. Taxax \a ') TV T P, Taxax ) o

) o 0 3 & ) ooy, 0T 3By ar}
0 ad o o — ] s i Wi Bl 48 il
Ra. [ “)ax Vit R, S e Y R""(ar+ ]ax[ d Ak 0 ox

We shall proceed to analyse [irst the non-linear term. We expect that the influence of this

term at this order is zero, therefore its value (or any y or T must be zero.

[W.ﬂ;_%ﬁt}
ox 9z 3z ox|

ikn( Ae;(r.vh{) + B1€r{5_1—r} _ /\l.()—li;'_i:-’.‘-!'l _ Blze—i(-_\—.'])sin(‘]rz) <
(Clpu.-;.-_n +D|€;[ kx—1) + C_-}:(J—.t::_w:,\ +D:é‘ i dx=1) }{.(l\(ﬂ: )_ (AS?S)

ikn(A,e‘“"'m +Blert2;a'—fi +A‘2€—::a.r--:1 +B‘2€—:(kx ‘”)sin(n:f.)x

("(,IIF_! +) +D‘€:IL"- 1) C e—! ed 1) Dl —1(kx—1) cos(mz
1 I

Simplifying, we obtain
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[%E_%ﬂ]
ox dc  0of ox

ikn[(AlC,' AC)+(AD] - BIGe™ +(BC —AD,)E" +(BD - B,'Q)]sin(zm)

(A5.29)
Since the expression above is not a function of x
a[ d ][aw oT vy ar]
Ra—| 6,— +1 l— L —L1=0 AS5.30)
o\ %3 T [ Bx o ac o ‘

The remaining right hand side of equation A4.27 can be expanded as onc differential
operator acling upon ,. ,, in turn 18 a function of amplitudes which are dependent of

the slow lime and space scales
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Vi, 03P . 33 NI IO N I

AT TS —=-57 2

woxor Sl iaxar S maKar  tmax of

90 9 29 9 o 5529 09 o 303,

o]

2 2 — =V’ 44
% X o ox OX Soxwaxar’ Y% axa

9090 g _ 209 & , 090 . iﬁ.ﬁ_a__
2o ax Y THO G g Y T2 5, Vi 2T

o o o o 0o o 0
Ta2- 2R 2Ra, 22
aha ot, 0 RO e o T e g ax T

& ;.
-f)

) i Fox=r ) o =i kx+T) e I [kx=f
}[A,e +B,e[ rae B

ua or sin(7m)

(A5.31)

The analvsis of """ argument for the RHS of equation A4.27 will result in a split

equation for A,.

[~4ik* + dicZkn* +80 frn* +4iGIK +26 , y +4ic? gk —

2|

2Ra,,o k—4iknt —20, xk ~ 2iTakn?® +2ikRa,, ]sin(7z) +

(A5.32)
94

4 2 . A e g o . 4 A
P [27" = Ra_ k* + 2io " +4io,xk* +dic, ym® +2i0 k" +2k" +

nt fTa + 4G K — 02 m* =30k + yk* + 4k i* | sin(7z)
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The equation A4.32 can be written in shon

oA oa
pOA _ 504 (AS5.33)
X C 0T,
where
P=24(40,+40,0+20,7 -0 R~ 5'7)-
(A5.34)
i(20- 26} - 26%x —20,7 +2+ Ta=R,)]
Q=7[(2~ R, +2a +Yla 0%y =36 0+ oy + y +4er)+
(A5.35)

i(20,+40,00 + 40,y +20,0° +40,0)]

-7

The analysis of ¢ areument for the RHS of equation A4.27 will resull in a splil

equation lor B,.

0B oB

s RS nd § AS5.36
PBX ¢ oT, ( )
where
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P= —2/([(400 +40,00+ 20,y -G R, —o3y )+

O

(AS5.37)

. Z 2 re
i(2at - 20, —20t0 —20,y +2+Ta - R”)]

@ =-m*[(2 =R, +20 +Yla - aly =30, yo + oy + ¥ +4a) —

(A5.48)
i(20,+40,07 + 40,y +206,0° +40,0)]

The corresponding expressions for 4, and B, will be the complex conjugates of

expressions A4.33 and A4.36.
The relationships A4.33 and a4.36 will be used later to establish an expression for the
amplitude equation at O{g) lrom the analysis of order 0(53) equations [or stream

function and lcmperature.

We shall proceed now with the analysis of the non-lincar term in T, equation. We recall

from Appendix 3.2 that

;. 29w 9L o, 0T
A @ Bz ax

_ 9y, 0L oy, 9L, Oy, 9 9y, 9T,  dv L ow IT

ox o: 0z ox ox 0z dz dx OX od: Jz oX

1

For order O(EZ) we have no J; and the non-linear term can be written us
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d Yo ?
—+ |V I, +Ta— J,
(al-'-] ~+ uaz_ 5

From A5.29 the expression above will transform to

(ﬁ-+lJ Ve +Tale . =
ol - az” -

“

-

ikﬂ:(% + 1]- V[(AC; - AC)+(AD - BC, )™ +(BC, - 4;D,)e"" +(B,D; - B, D)]sin(27) +

,'kﬂaaﬁ_-;[(ALc'; - A'C)+(AD; - B C)e* +(BC, - A'D,)™ +(BD - B;D,)]sin(zn:) =
4

—4i(1+ Ta)kn'| (AC] - A'C,) +(B,D; - B D,)sin(272) +

|16k0 7° +i(16koim™ — (1 + Ta)kn® WAD - BC)e™ sin(2m) -

[16ko o' —i(16ka’n* = 4(1 +Ta)kn* ) BC; - A D,)e™" sin( 2rz)

(A5.49)

Since the linear part of the right-hand side of the temperature equation is the same with
that of stream function we shall confine to the determination of the particular solution for

lemperature, which contain non-resonant terms. From A5.49 wc can wrile

(% + lj ViJ,+Ta 3 J, =

(AS5.50)
[b: +ag’’ +aje :E]sin(ZﬂZ)
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Let 7,7, 7,5" andZ,y" represent the firs1, second and third particular over-stable

solutions of temperature in the travelling waves case. The quantities b,, a, and a, arc

given by

b, = —4i(l+ Ta)km'[(AC, -A'C)+(RD; - B'D,)| (AS5.51)
a, = |16ko, 7 +i(16koum® - 41+ Ta)kn’ )|(A,D] - B/ C,)e™ (A5.52)
a) =[16ko,x* — (16kaim" —4(1 + Ta)kr®)|(B,C) - A D, )™ (A5.53)

The analysis of b, in correlation with A5.23-26 reveals the following

b, =—4i(l + Tajkm(AC, —AIC)+(BD - BD,)|=

Vo[, - i(1+ )] Aat s Volyo, +i(1+a)

i3 y —
~aikm (L +Ta) n[(1+a)2+710§] o n[(l+a)l+“/20’_:.]

AA -

(A5.54)
Jal-yo,-i(+a)] . .. Je[-yo, +i(l +a)]
2 BIBI + 1~

7r[(1 + o) + -yzof] n‘[(l + o)’ +y2crj]

_ 8o (a+ 1) 1+ Ta)
[(l+ o) + y’crj]

[A44 +BB]
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Let 7." = b,xin(27z) be the first solution thal satisties equation. Introduced into the

lemperature equation we obtain

R R S

8o’ (@ +1)1+ Ta)
[(I+a) + y'o; ]

(AS5.55)

[AA + BB ]sm(iﬂ )

There 1s no time dependence and all time-denvative will vanish, remaining only with the
following expression

2

8o (a+ 1)(1 +fa)
[(1+a) +yic’ ]

—V‘[V +Ta§ [AA + BB, ]sm( 77)

~

}h sin(Qmg) = -

(AS5.56)

- ,_aE)_2 3 PN Sar*(ce +1)(1 + Ta) "
[azv (1+1)&::\7] (2m) [(1+a)+yc] [AA +BB]s (2mz)

(AS5.57)

1 a(a+))
o2 [(1+oe) +y'c’

][AA + B,B; | (A5.58)

Similarly, based on A5.23-26, we compute
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JE[yo‘o +i(l+a)|

AD -BC =2 3 —= B (A5.59)
e 7r[(1+oz)‘+~/2cr;] A

BC - A'D ==2 Jo[yo, - il + a)]

_n[(1+a)z+“/203]14:a (hae0

Let 7.7 =ae™ sin(27z) be the second particular solution, which introduced into the

lemperature equation it yields

> Al Vo, 3 N | .
—-V- — V" Ta— |- = if ) —
{(za, ][[a,“] ”"af} R"f’[aﬁljaf}‘“’ sin(27)

(AS.61)
[16ko,7r'*+i(;6ko~;‘;n‘— 4(1 + ’ru)m-*)]g‘/a[*/d‘,f'(‘ ‘(a_)]g;/xsin(zn:)
(1 +a) +7707]
All derivatives with respect to x will disappear
. a a‘ a ): a“_ i a: { a \]a: o ]
e ] = S+ Ta— |- R} —+1 - ra e’ )=
{[za, a2 (a/“ o ”a.—:] Rl o [0 St iem)
(A5.62)

Jalyo, + il + o))

[16k0 17 +i(16koom = 40 + Ta)ior*) 2 a|(1+a) +770l)

Bl A sin(2nz)

The calculaton of the lelt-hand side of equation AS.62 will result
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N A T | Y T
P8 o5y L2 |+ Ta)—= —o* L -
O rgrgat 20 gyt ol + T3 570,575

3 2

29,557 U Ta)'ea?}"xvz”' sin(2r ) =

Jo[yo, +i(l+a)

[l +a) +yicl|

[1610:7‘,7'1:3 +i(l6ko - 41 + Ta)km’ )]2 B; Ae* sin(2m2)

(AS5.63)

from which results the vatue ot g,

a2(a+)-yicl —iyo,(@+3)
T [(a +1)+ yzcrf,](4+y"crf,)

AB; (AS.64)

In the same manner we calculate a; by replacing the right-hand side of the temperature

equation with aje™" sin(27z) and assume the particular solution 7% = aje”* sin(27z)

0 0 < RE D pe » o
T o ) L - S i s " 291
[L E)/ }l:(a’_l-l] v +Maz:} Ra[[a +l] ox’ }7 L =ae T sin(2m)

(A5.65)

Derivatives that contain ¢ will vanish, and following the same process will result the

following differential equation
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o' o 3* & o 9 .o
[ 2 B e WAVT D P Y _s*2 2 _
]_ ox als aﬁz +—o-a%a’2 a:z +GD%(1+ T(l)a/ 33.2 o-o a,l a:-l
20 2 i -(1+ 7a) o }n'e':"‘rsin@ﬂz):
° 3 32" > (¢

[16ko 1° - i(16kG2m® — 4(L + Ta)kz® ) o ‘/.5[7"" _ i — az)] BA e ™ sin(27z)
T Al +a) +viel]

(AS.66)

that will yield an algebraic equaton in he form of

{326y +640 /' — 16(1 + Tayx”* — (320, yr* — 640, -8,y (1+ Ta)} x

ale ™ sin(2mz) =

[16ko "~ i(16k o2 — 4(1 + Ta )kn:S)]{—’_’ ﬁ[’f )_ i(j +: a:)} }BI Ae™ sin(2m)
o) +yo,

(AS5.67)

After simplifications the value for «; results

5 N =v2gt 4
_a2a+D-ylo; +iyo,(@+3) o (A5.68)

B (PR RS R

The particular solulion for temperature at 0(82) in the travelling waves case is
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2

T =[b2 +ae™ +ale” ]sin(2n’z) (A5.70)

with b,, @, and a, stated in A4.58, A4.64 and A4.68 respectively.

5.3. Order 0(53) analysis

In this section we make vse of the slow time-space scales according to the following
notations (or various variablesas r =¢,1", 6= e, c,=¢&’, 0,=0 and X =gx. The
calculation will involve the steam function amplitudes A, A;, B, and B, .

The de-coupled equation for y at 0(53) is exhibited below taking into consideration in

the nght-hand side only the terms related to y, forcing them 1o zero in order 1o obtain

the relationship between amplitudes.
(0 N[fa Vo, . 2 3 N\
x— -V =+1| V' +T, -Ra | —+1 =

‘[(‘a/ ][[a/ ] "azﬁ} % (az )ax ]f"“
) J d B s o Y o d

— _ 7 jo QS — —_ _

(" o, arDX[ or, (a/“]V (ar“] .xax]"”

R R

A3t N T Vit 47 ox’ BJW'

Ra, (3 ,)iw +[a +1] ok 2222, ,900 |
o T T e VT VT v

5 Y0 3 2 2 )9
R"”[(a/“jax*af a }'-"R"“(a ]&rj

(AS5.71)
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The partial expresston for ./, has been calculated in A4.29. We shall proceed to calculate

J,: For that we split it into three groups

dy, 1, dw, J7,

Group | A5.72

P ax & 9z ox (A>72)

Group 2 v, 9% 9w, 9% (A5.73)
ox 9z 07 O«

Group 3 ow, 91, 9y, ol (A5.74)

oX o0z 0z oX

The first group poses the most interesting features because it consists of mixed non-linear

terms analysed in the previous paragraph. The second group contains the stream function
solution at order 0(52) and therefore we can ignore it in out calculation, since we deal
only with arder O{e). Group three conlains non-resonant terms, which cannot be forced
1o zero, therefore will be neglected as irrelevant. Consequently, only Group 1 deserves

attention and will be anuly~ed later.

L _w T dw, AT
T 9x  o: oz  ox

(AS5.75)

The operator assoclaled to .J, is calculated below



) o o0 0 |.
_R(Iurli[o'og-l- ijg +a_’[aa,r }(zkn:x

[( AC - AC)+(AD - BC ™ +(BC - A D)e* +(B,D; - B'D, )]sin(zn:)'] =0

(A5.76)

Calculation of -Raai[cog +1)J3 from equation A5.71 will follow
X !

a( _ o 9 0 0
—Ra oy [cro 5 + l}J3 = -0, Ra EWpS J3— Ra,, axj3 =

6. Ra 39 [ Ay, 01,75y, 0L ]_ P [aw] o1y dy, oL J

= = a_ —
oxor | dx oz J-  ox “ox\ ox oz 0z Ox
(AS.77)

First we have (o cvaluate A5.75

Ay, 013" dy, oLy

ox oz 0z  ox

R |-,'I'_\'+:-) N |I::_|:—.;J . V- J'{i;\'*.ﬂ . v —-I{k\'—l_') .
(ka,e T+ ikBe — kA e — kB¢ )sm(nt)x (A5.78)

27:( b,+ae™ +aje ) cos(27z)
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dw, AT Ay, T
ox 0z 0z ox

zikn(ikA, ¢ 1ikB e ™) —ikAe ) ke ) X (A5.79)

(b2 +a," +ﬂ|'e':*’;)sin(ﬂ‘:)cos(27z)
The product sin(rm Jcog 27z) can be transformed

sin(?:m)—%sin(?r:) (A3.80)

sin(7z ) co 271z) %[sm@m)-si“(”ﬂ]:% 2

A ‘ L \
However, we need Lo keep for further calculations only the [—: sm(n:)] term, as the

resonant term, the other being ncglected. Consequently the expression for J; changes to

;9w 9T dy, 9T
Poox oz dz o

ik ﬂ(ikAle”:"' T tikBe ) —ikAle™ ) —ikBre™ ) \(b, + a e + aje Jsin(z)

(AS5.81)

Expanding A5.81 we get



f ke+T) |{r'._!—x'-ﬁ

. i[kx +7 27 o ilkx—=t) _oir J i{kx+l) ayf
Jy = —1/{7:[/41 b,e + Aae e 4 Aale il Bb,e + Ba,e AT 4

k=1 —=2if . —if kx4 ) —ifkx=F) 2§ e = —ifkx+i) <24 —i[kx—F

Bae e — Abe —Aae e —Alae e =Bbe " —

—i(ke=1) 97 —t{kx+l) ] -
Bjae e — Bale™ T e ]Sm(ﬂ:)

(AS5.82)

-0, Raiij Ra, R o mRa, [Abe " +34a¢" 0 — Aaie ) -
ax or ox °

Bb,é ™" + Bae'™™" -3B,al¢ ikt _ A'b,e 4 A,‘a,e_”'“_!_: - 3,41‘ul°e_""'l"3'; )

| o 1 ; ~{{kx =37 v & —~i{kx43T i{ ke +7) i(kxc+3)
Bbe " y3Bae T —Blale™" 1’}sm( nz) — nk’Ra, [ﬂ&lbze F+) +AaeT 4

il ket 1)

+B;n|0 0 +BI(])(; =3 I+Ahlze i & ,:_.+ fi;alf—;l ._...+

i kr—1¢)

Aae™™" +Bbe

-r kx+37 )

A;a;c + B'b,e

Hu J]

+ 31(116—(7\'.!—31') +B;(L;€—:(i;?+3ij:|sin(m)

(AS.83)
We note that the terms that have a power threc al the exponent can be 1gnored since they

are non-resonant terms, and for further analysis we will foeus on the terms of exponent
argument e,\'p[i(k.\'~'-f)] and exp[i(k.x—f)]. The terms containing e.\'p[—i(k.r+7)] and
e,\'p[—i(kx— 7]] wil} generate complex conjugate expressions of the amplitudes A and B.

From A5.83 we select

—k*nRa (1 +ic ) Ab, + Ba, | (or expliflr+7)] (A5.84)
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~k*nRa, (1 —ic f 4a, + Bb,] for  explifkr =7 (A5.85)
We now proceed to calculate by parts the linear part of A4.71

- ,Zfi—2i a]f’)i(ﬁﬂ)v +2 (a +l) 0 a -
o7, L o1 dr c)xE)X

[X 9 _ & iﬂ]'vzw, _[X 9 _¢& ]la%_—q/ . (A5.86)
T [N

Ru Hﬂﬂ)a’ N JB: p 0093 20
Aot eV e T oV T o arax Y Tarae

Part ]

> 2 aY. 2 (a ] : [a ) 22
B PP .- L L vl
["ar a\ax}[ or a7V T Y avax

> 2 P I S 52 2 3
2 Iyl o0yt 8 9 9.0 4,52 9 90
oo o RO ar arax X% %1 oz, ax 3X
2 2 2
IR I I TS Y W DS O
o7, ax 9X %3 dr, v ox © 3z, axax At

8 ¥
“rax’ X’ ox’ X’

(AS5.87)
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Part 2

] .}: 7 ¢ " B : bl
L L .(—+l] V‘w‘=—x0;a—ara_ 2xc J

: I e A v
37 X hor 2 FrE
(A5.88)
3 s 3 2 >
il w2 L v? 2 - 2 - 2
e W A AT T
Part 3
d ¥ > 3 3 3 P
1,2 L e L i L A5.89
[‘ar ax-) e T T 2 T 5 o (AS.89)
Par 4
R (TR oA PPRAS Fra S e W SR P Tl g i
IR a 2 9 2 B PE 3
Ra — R 2Rq. ——— Ra ————+ R -+ Ra_———
Oolter g e T M g T ANy A T N g T e gy T e g g
(A5.90)

By compiling all the calculated parts we reach (or an expression of the npght-hand side of

. - . i kx+T) -
the equalion A>.71, associated (o e as {ollows




RHS = 2im*yo, (k* +7 )L’E’ +27 %y (k* + 7 )882_1? +2i T W oj% +

Am ko, aa:og}( —Qinaa;gX +ako, (k* +ﬂ2)881'23)( —4ik(k* +7%) 8(91203;( +
ak*c’ g;A —8ik’o, ?)—;A— —ak? % e rf)%‘ +2inyo, (k* + 7:2)% +
(ke +7r°')y%+cr§(k2 + nz)g;Az‘ ~2ig, (k* +7r’)2:4‘ ~ (k2 +m )aa‘?z‘ +
n*ﬂagj- *Ta g:)? —iRa k’c A —k*Ra_A, +“IkRaﬂa—i-%— +io, Ra"%}ﬁ-
Ra,, aaz ;‘; —kZRnc,% -nk*Ra, (1+ic )[Ab, + Ba, |

(AS5.91)

Bv compiling all the calculated parts we reach for an expression of the right-hand side ol

the equation AS.71, associated to e “~1) as follows
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RHS = -2in*yo, [k‘+n]a§ wy(k? +7z)a;f'+'>n K aargx_

An o °aazgx 2R ZBx ~dko, (K +”2]ai§3(’4”"(k2 +”2)aa;§';<+
ak* j‘?b}ﬂusm?q% —Mzgx -nlyol(k* +n’*)——mf’yo (k*+ 7 )‘2}‘3 +
B oYy D o2k 1) i (i Vo — (it )2

7 2

.0 oB, . - . 8 B 5
? o8 _ Ta—=L +iRa_k*c B, —k*Ra_B, + 2ikRa_——= —ic_Ra 14
'y](? a_c ys 8X2 ! (’cr aBl cr ) ! cr a -)X cr aX

ra, S8 iRy aa -k Ra,(1-ic, | Aa' + Bb,]
T

cr aA
(A5.92)
We analyse the expressions A5.91 and A5.92 by forcing RHS =0
9*A ot A 0’4, 0A,
M—+ M, ———+M +M,— -MA + M|Ab, +B 0 AS5.93
Mgt Mg ax b g M - MsA M @l=0 (As%9)

9°B AL 'az—BL 0B = AS5.94
M'af,J’MzaraxJ’Ma +\/1a — M(B, + M Aa + Bb,)=0  (A5.94)

where

M =2y (L +a)i+ic)] (A5.95)
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M =2yr(i+ o)l - io ] (A5.96)
M, = 2/{7!2[2}’60 +20,(1+a)+ilyol—y-20+a)+ R)] (A5.97)
M, =2k [2y0, +20,(1+ o) - i(yol -7 = 2(1+ &)+ R, )| (A5.98)
M, =7n'[400] —da+o,(1+0)-(1+ o) — Ta+R, — i(8c 00+ 206 (1+0) - 6,R,)]

(A5.99)

M, =n"[400] - 4o +o (L +a)-(1+ &) = Ta+ R, + i8c 0+ 20 ,(1+0) - o R,)]

(A5.100)
M, =m'[y(+a)-yo (I +a)+yTa - R +2iy0,(1 +a)] (AS.101)
M, = [y(1+ &) - yoi(1+0) + YTa— R - 2ivo,(1+0)] (AS5.102)
M;=on'R,(1+ic,) (A5.103)
M;=ar'R,(1-ic,) (A45104)
M, =—oanR 7 (1+ic ) (AS.105)
M, =-omR,n (1-ic,) (AS. 106)
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In the equanons A5.93 and 94 we can replace the mixed derivanve term with the

argument M, and M, by using A5.33 and A5.36, as (ollows

024, 0A, 0A, J° A
=M, Lt =M= =y, A5.107
*dr,9X  C9r,0X T Port. ¢ at) ( :

2
WI al:}l _MIaBI aBI

-

*o1,9X | ot dX

31’3 e (A5.108)

where

M, = n*[zoa(a +y+ 1)+ :(y(o‘ﬁ + 1)+ Re=2(a +7+ 1))] %

{[(1 +3a)(2-v0,)+ y(a+1+Ta) - R.]+2ic,(a+ 1)1 +a +2“/)}
{(400 +40,00 210, =0 ,R ~a37) = i[2(1+ a1 -0})- 20,y +Ta —R,.,}}

(A5.109)

M= _”4[20-0(0’ +y+1) _i(Y (02 + 1)+ Re =2(a+7 + l))] %

{[(1+3a)(2—yca)+ y(a+1+Ta)-R]-2ic,(o+ 1\l +a +2y)}
{(40‘0 +40,00 +2y0, -0 R —0y)+ i[’_’(l +a)i-oi)-20,7+Ta~ Rﬂ]}

(AS5.110)
We have to evaluate at this stage the products /‘\//(,[Alb2 + Ra,] and 1Wé[A.af+Blb2]

respectively.
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M Ab, + Ba,|= —amR_n'(1+ic,)[Ab, + Ba, | =

U ! ofa +1)
—omR " (1+ic, J_‘E n[(a )+ “IUZ]

(Al“\; + BIBIO)Al -

o[Ao+1)-yiol —ivo, (0 +3))

BB, A |=
n[(a+l)2+yq?](4+yloi) i '}

1 oo+ 1)

omR i\ +ic
A0 G ey

AALA +

R (1 +ic,)| —— Ot L) Lo2ler)-vio, —iro,(a+3)] BB A
7 ‘ Qn[(a + 1)+ yoj] n[(a +1) +4/cj](4 +y*c)) ‘
(AS. 111)
M[Aa; +Bb,|=—omR, 1 (1-ic, | Aa, +Bb,]=
G s 1 ol + 1) .
- I-ic ) -— A" +BB B -
thcrﬂ ( lo—n){ 2ﬂ[(a+l)2 +'}’GZ'] (AI 1 + 1=,
_a[:(a+ )= y’c} + iyo,(o +3)| KA |-
n[(o:+ ) +yoif(a4+yie?) T
o (1—ic ) 2@*D  _ppp.
“ 72 n[(a+ 1)1+yoj] H
ok 7 (1-ic) oo+ 1) +a[2(a+ 1)-7’ 0. + iyo, (o +3)] ABA
7’ ° ?JT[(O: +1)* + yo? ] n[(a +1)?+yot|4+yial) |
(A5.112)
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For simplification we call

M, (o +1) Z (A5.113)
‘ 2n[(a+1)'+yoo]
M, =—— il fl) ; (AS.114)
' Qﬁl(a +1)° +yc;]
[tis interesting 1o note that M, = M, |
oo +1 al2(a+ V) —y*ol—iyo,(x+3 )
M,, = ( : ) — - [2 — (Z - ) (AS.115)
er[(a +1)" + */00] n[(a +1) +yoo](4+y or)
v oo +1) a[2(e+1) -y 6 + iyo, (o +3)] AS.116)
! = 3 2 "
M zn[(a +1)° + yoj] n[(a +1)' + 705 4+7°0})
Also it 1s convenient to call
M, + My, =1, (A5.117)
M+ M, =L/ (AS.118)

where M,, M, M., and M, are defined by the relations AS5.95 and 96 and A5.109 and

110 respectivelv. As a result, the expressions lor the amplitude of the oscillatory

convection in the travelling waves case, s given by the following formulae
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lq_.ile +M, aa; +M g—’: MA, + MM, AA"+M,,BE A =0 (AS5.119)

’ﬁaA M g\»A M, aaA (A, + MM, BB, + M;,AA]B =0 (A5.120)
T >

«

Rearranging the terms we obtain

34 . FA a4 M M,
Ly, = e M T (- =4 M, AA+ M, BB ]|A =0 (A5.121
b ot T oxr T ‘ot MJ{ M, (M5, 4,40 + M, ]} '} ( )
>B B o wm[ M |
L—=+ M —+ M 1 -——2|\ M, BB, + M, B =0 (A5.122)
o okt T | ar Mi[ \45[ uh [’fw]] | (

/

Further, we restore the original time and space scale, T=¢"1. 7,=¢€1, X =€1.1=1,1
and by multiplying the expressions with £° and recalling that 4 = EA, B=¢cB, A" =¢A,,

B’ = &B;, we obrain

A DA oA M., M . Al
+ M, + M= — —=2 ——E&\M, AAT+ M., BB ||A} =0 AS.123
Loz +Mon "{81 Mle Ms[ AT M ]] | ( :

3B 3B oB M . ™M ]
OB OB M) o M, BB +M,,AA"|[By=0  (AS5.124
L 5 +M; o +M4{a’ Y7 [e v [/ + ]J } ( )

>
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It is required to further simplify the expressions above to a simpler form, by calling the

following parameters

L =h, L =1, (A5.125)
M, =h, M. =h, (AS.126)
M, =/, M =, (A5.127)
M, M
—3 = —= = A5.128
M_‘ 14 A/[; 24 ( )
W M ! 4
a2 - M, (AS.129)
M, M,
M M. MM,
Mz _p PP o, (A5.130)
M, M. )

The equations A5.123 and 124 can be writlen as

d*A 0 A 0A . .
=+, — h.y— — =l - NAp = .
l:;.” 5 + Dy Y :|+ )13{ 5 /11_,[50 IsAA — I, BB ]\} 0 (AS.131)
'8 . 3B, . (o8B . A .
hyy =+l — (thay— =N, m—]_BB‘—/(,AA By =0 AS5.132
{'“ Rl AN il o AA] } ( )
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where the coelficients for equation AS5.131 are histed below

by =2y (14 0)(1 + i)+ 2k 20, (o + 7 +1) = (¥ (1= o) +2(a+ )= R, )] x

{[(1 +30)(2-yo,) +y(a+Ta +1)= R, |+ 2o (a + D)1 + a + 27)}
{(40’0 +40,0 +26,Y = 6, R, —o57)~i[2() + a)(1 —03) - 20,y + Ta - Rc,]}

(A5.133)
by =7[(S0+1)(0h = 1) = Ta+ R, = i(26, (S + 1)~ 6,R,, )] (A5.134)
h, :7:4[}/(& +1)(1- 0. )+ Yla= R, +i2yc,(a+ l)] (A5.135)
} aR. (1 +i0‘,1y(a +1(1 —0g)+YIa= R, —i2yo,(c + l)j (45.136)
hy = ; 2 2 ‘

) [(y(a+ D(1—- o7 )+7ra - Rc,)z +(2y0,(c+ 1)) ]
p, =i olatl) (AS5.137)
2[(01 +1)’ +o5y7]
a8+ N+o 7 (e =1
I, = [ ( )+ 6,7 ( )] . oo, (e +3) (A5.138)

(a+1)* +0%7*|(ol7" +4) - [+ 0 + 037 |(o3r" +4)

The coefficients for the equation AS.132 are presented
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by, =21 y(L+ c)(L - ic, ) — mzk[’loo(a +y+ 1D+ i(y (1-o7)+2(a+1) —Rc,)] X

{[(1+ 30)(2 - yo,) +y(a+Ta +1) - R] -Ro(e+)(1+a+ 2*/)}
{(40'0 +40,0 +20,7— O, R, — ogy)+i[2(l +a)(l —04)= 20,y +Tu - R]}

(AS5.139)
Ny = ﬂz[(Sa +1)(o2 =1) = Ta+ R, + i20,(Sor+ 1) —o'UR_,)] (A5.140)
hy =1 [y(cc+1(1 - 67)+ ¥Ta - R_— iy, (0:+1)] (AS5.141)
L R (1 -io, Yy (o +1)(1- )+ Yla= R, +i2y0,(c +1)] P
2t T 2 AD. 142
[(y(a+l)(l —o5)+la— RD,) +(2yo, (o + 1))1}
PP ) (A5.143)
2[(a+!) + 06,7 }
8 1 vio -1
I a[ (+)+os7 (o )] _ ayo,(o+3) (AS.144)

e :2[((1 +1)° + o';yz](crgﬂ/2 +4) i [(oz+ l)2+o,,;/2](a,2;/2 +4)

It should be noted that the nwo equations A5.131 and 132 for amplitude of ihe oscillatory
convection in the travelling waves case are not complex conjugates to eachother. The
difference consists in the coefficients associated 1o 3*(e)/dr*, respectively, #,, and h,,,

which 1t 1s characteristic to a wave velocity group.
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Equations A5.131 and 132 have indeed their complex conjugate counter-parts in the
amplitude equations for A; and B, corresponding to the exponential argument in the
original solution exp|~i(kx +7)] and exp|—i(kx - 1)]. equations which were not explicitly
developed here. However, they too, will withstand the same relationship that ¢xists

between A5.131 and 132, By setling

ZA 24t
%/_2 :Ei_ﬁso for A4.131 (A5.145)
ax
-B 2 .
7=aaBl =0 forAS.132 (A5.146)
X

We caninvestigate the (ollowing systern of unknown amplitudes

A

5 ~ Iy [E7 = g AAT - b BB |A =0 (A5.147)
0B , . .
=, — Iy [E” — 1, sBB' — 1, AA'|B =0 (AS.148)

[t 15 convenient to express the coefficients of the two equations above as real and

imaginary parts.

Iy = iy +ilny (A5.149)

Iy, =, =il (AS5.150)

199



N aRC,[y(a + l)(1+aj)+yra—kc_,]

Ly = 2 .
! [y(or+l)(l —cj)+~/fa—R,__] +aycl(l+o)
N 00 R, [y (e + 1)1+ 0} )= Ta+ R, |

I3 = —

14

e = My il

Ty =Ry — il

a[8(a +)+ 0577 (=)
’_’[(a+l +oly ch +4

/L,'{_ =

oyo (o +3)
[(a+l)2+c Koy +4)

.' —
/"16 -

Let the following quantities be

Al = r, 6, - Phasec angle of A
Iz} =7y 8 - Phase ungle of B
d 1] l'I'I' . ([9.‘

—|re ‘]— +i,—=

dr di dar

[7(a+1)(1 —o*j]+~/fn - Rn]2+ 4yc®(1 +o)

A=re™
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(AS.151)

(A5.152)

(AS.153)

(AS5.154)

(A5.155)

(AS.158)

(AS5.159)



i rﬁ()rﬁu ] - ﬂ& +ir, d_QE_ (AS5.160)
ar dr ar

In this instance equations AS5.147 and 148 can be written as

dr, . dO, C o A e o,

71;&- +ir, TI\ = (Iz.H ""/’14)[‘5 - hu;f_: _ (lzw + 1/11(.“]3}_] ]r,.\ (AS5.161)
ar, ag AL o o . )

i ring = = (i & = (g =it r? = hyers |y (A5.162)

Expanding the right band side of the equations above we shall separate them into real and
ymaginary parts
(/L,’_, + ih,'_l)[g: ot = (h{6 + i/z,‘d)r;]r__‘ =

(7 = i =ity =R V2 Y+ (BE™ = i = (it + e )2 ),

16" 14

(AS5.163)

Let s, =il A/, —hh, and s, =i W+ D0/ 0, equation A4.16) can be wrilten now

dr . p 2
_;;L = (/leéa\- - h’]Shl-Jrj - sl)b. )r\ (AS lM)
[4
bedv, i . .
dl“1 =&, — s .1"3 — 5,0 (A3.163)

‘3(}]



Similarly, we work out the real and imaginary parts for cquation A4.162

(hlr-l - ’}’;4)[5 - (hlré - I'/I;,\))f - hlsr.-:z}ra =

(111"_ = g = (I, = Ingdn )i ));.__,: —i(h.j &= byt~ (/‘L,’G}I:_, + Ing /i) )"a

(A5.166)
With the same notations [or s, and s, we have the equation A5.162 in the [orm

dar

_df- = (,’1’460‘- - 5)'1-? - /’15,’-(4"132)"5 (AS.167)
de s
(1/’3 =N, =St — Ik (A5.168)

Finally, we have a system of four equations, two for absolute amplitudes of A and B and

two for their corresponding phases

dar

% it
(A5.169)
d)‘_: r ¥ 2 X
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-——m"" =mE,. —h.h r 2)‘;'9
(AS.170)
aed, 2
7!!' =h,8,. = sy =l
In the system AS.169 we can further simplily the appearance by letting
=1y Iy, =h;
(AS.171)
Iy =1y Iyhy = B,
Hence, we can write the systems AS5.169 and 170
dar, 2
?F _(h'l Gm _/’2r - | :".i )!:'\
(AS.172)
dry, ,
d’ (h1 éa» _'qlrz\z - h’erz)rB
e 5 )
JT =&, — Iy, =50y
(AS5.173)
deé
\ a1 —B =&, —5,rs —hsiyyr

For a steady state situation the system AS5.172 becomes
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e 2. LT
Jh:r_‘. + 8,5 =hE,,

Lw?+%ﬁ=ﬂﬁép

which for rf #0 and r] # 0we can solve it with Cramer’s raethod

hoos | _[’t.'é‘-"
s hil\rg ) \WE,

To determine r] and 7’ we calculate A

n s
A= : "= h’ / ’_ 5
5 h;l (7: + S|)( I s,)
2 ,Llréo\' \) r r
s mé.. léj =Gl =)
/M N
AR = Hé =n'E, (I —5,)
s e 2
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(AS.174)

(A5.175)

(AS5.176)

(AS.177)

(A5.178)

(AS5.179)



The Reduced Amplitude Equation in the case when r? =r. can be written as

2=l g, il (A5.180)
where
h',:—l aRI,[y(a+1)(l+cr§tJ+)’!'a.— R] . ala+l) o8+ +oiyi(e-1) —a.-

2[y(a+l)(l—oﬁ)+~/]‘a~l{,]:+[2)o(a+l)]: [(a“"l):‘-“If:U"‘J | [(’a +1)° +Y:0¢](4+0§Y:)

aR, [v(a+)(1+07) ~la+ R, ] . ctyo, (o +3)
. [;-’c’o: +1)(1-0; )+ 7Ta - !{,]2 +[2yo{ e +1)f [(a+ 1) + ‘1’:0:1'“'55‘/:)

(A5.181)
R o 2 Ta
E, . =|— -1 R =— (1+a)(1+a+y)+—7—(
R o +a+y)
) l + - y
o= (1+ 00—y )Ta - R, =ﬂl and o resulls from
Q+o) 1+ o+ ) n’
o +2(y+ Da’ +y(y+ 1)’ —2[(y+ 1) +y2’[‘a]a —y (7 +)Ta—-(y+1) =0
The Reduced Phase Equation in the case when r? = r} can be written as
d9 Y e 3 3
o =l &, + 1 (A5.182)
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where

1 aRa[y(aH)(H arf)—)/l‘a+ R] § aloc+1) . a[&a+l}+oﬁy:(a—l)] —L
.?,[y(a_‘_ i)(}_ _o—%) .+.1/]'a_ RN]-.;_[Z)/O'((Z .;—[)]: [(a+ ]): 4-')’20'2] [(a +|): +}’:(T:](—|-+(F,.,:?:)J

h, =

) aR_[fa+1)(1+07)-fla+ R, | ) ey (o +3)
(@ +1)(1-02)+ wra-R, [ +[2ro(a+ 1] [@+ 1)+ 7’0" [4+0iy)

(AS.183)

£.4. The full solvability condition

By considening that r, , =r, ,(x,1) and 8, ,= 6, ,(x,7) we have in A4.13 | (irst and then

in A4.132

A B w e Fr 5 0%,

T =5l = e S et = (A5.184)
2'A _ o 16, 0, 07, 0,976,

e L L v (AS185)
38 & . . 9%,

£ _rei—£ (AS.186)

38> Ly e 9%,

_ [r eaﬁﬁ] _ E)!f.f”
ax®  ox*l? '

ax’ & ox?

(A5.187)

As a result, both equations can be split into a amplitude and phase equauons.

Amplitude equation for r,
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[hl‘r)a_r + y + ;. d‘r‘] —(hl’l az;ef -h 96, + a~9«'\_—‘r’\ —
- e .

12 a’ 12 a'\'_: 13 a’ 2 ar_ |
(A518R)
[Nlém +Nyri+ N}r,i]l;‘ =0
Phase equauon for r,
[ 9, dr d’r %6 26 26
= =2 e, = | = I L =, 2~
(A5.189)
NE +N r.__:+1\7r,-]r =0
Amplitude equation lor r,
or, or, ,, o'r, 90 36, 2'0
N —F+h, =2+, —L ||, - +h,—E |,
[” o Foar ¢ a.r] [ Yt P ar Yo |
(A5.190)
—[Nl E, N+ Nirj ]’]; =0
Phasc equation [or
dr, ;o . 0°r , 0°6 . 08 a6
[/)H——-al1 + 1/, BB + 1, ax{l] |:lJl E)F:R s ¢ 3 . +/, axf]r\
(A5.191)



where all /i coefficients arc expressed in terms of their real and imaginary parts.

Furthermore

N, = = Iy 0, (A5.192)
N, =R e — iy by (A5.193)
Na= RGN, = hsh bl —hsh i, — hly e (A5.194)
N, = hhl, = Rh), (A5.195)
Ny = b5 Iy = hihi o (A5.196)
Ny= il it = Iy = I I =R i (A5.197)
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