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SYNOPSIS 

The longit udina l fluct uations a t a point in the core 

of air flowing t hrough a 15 cm. d i ameter pipe at a mean 

cent erline velocit y of 13 . 4 and 29 . 5 m/sec. were measured 

with a hot-wire anemomet er . This signal, after analog to 

digital conversion, was stored in the form of digital samples 

on an ICT computer drum s t orage device. This method of data 

recording includes the effect of all eddy frequencies from DC 

upwards and the presence of large, slow eddies in the 

longitudinal direction became apparent in the subsequent 

autocorrelations . 

The longitudinal dispersion of a tracer material 

injected on the axis of the pipe was measured over short 

distances with pulses of approx. 20 msecs. duration of radio­

active Krypton-8S, detected at two downstream stations by 

small surface-barrier radiation detectors. By varying the 

separation of these two stations, an asymptotic mixing 

coefficient was established which was very much greater than 

the corresponding transverse mixing coefficient measured by 

other workers. 

The method proposed by Philip(4) for the prediction of 

the Lagrangian time autocorrelation from the Eulerian velocity 

measurements was examined with the correlation data of Baldwin 

and the data obtained in this investigation. The method 

applied to the unfiltered correlation data in the present 

measurements in a non-isotropic field to predict a longitudinal 

turbulent Peclet no. was found to predict a value in the region 

measured experimentally. When the present velocity data was 

filtered to remove the low-frequency components and give a 

turbulence intensity equal to that measured in a radial 

direction in previous dispersion measurements, the mixing 

coefficient predicted with Philip's method was found to agree 

very well with the transverse mixing coefficient reported in 

these investigations. A value is also suggested for the 

longitudinal Peclet number in the absence of the low-

frequency fluctuations. 
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CHAPTE'Rl. 

1.1 Introduction. 

The study of the dispersion of a passive scalar 

in near-isotropic turbulence fields has been of interest 

for some considerable time . Taylor, in 1921 (1), developed 

his theory of diffusion by continuous movements and 

obtained an expression for the rate of dispersion of a 

marking property such as heat or a tracer material 

introduced into the isotropic turbulence field. This 

expression is most usually written in the form: 

__ ~(1.1) 

where R(T) is the Lagrangian autocorrelation function on 

the velocity obtained by following one particular fluid 

particle on its meandering path while it is subjected to 

the random velocity fluctuations in the turbulence field, 

repeating this for many particle releases,and then taking 

the mean of the velocity covariance u. (O)u . (T) over all 
1 1 

realizations to give 

U(O)U( T ) (1. 2) 

u~ 

The direct measurement of this function poses 

many practical difficulties if it is, in fact, even possible. 

A more fruitful approach, lacking an exact 

theoretical treatment, is to examine experimentally the 

time dependence of the variance X2 (t) which is physically 

more susceptible to measurement . Many workers have 
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adop_ed this approach and hav e measured the radial 

dispersion of a t racer material injected cont i nuously 

from a near-point sourc e, or t he dispersion of heat from 

a line source normal to ,t he direction of mean flow in a 

pipe . These measurement s have es t ablished a Peclet number 

based on the radial mixing coefficient ranging between 

approximately 600 and 1200, with t he majority around 850 . 

I t is usually assumed that the turbulence f i eld 

in the core of a medium flowing at high velocity in a pipe 

is nearly isotropic and homogeneous in the longitudinal 

direction . I t has , however , been found that the statistical 

properties of t he turbulence in the radial and longit udina l 

directions under these conditions show some discrepancies 0 

Laufer (2 ), for instance, found that the measured spectra 

of t he velocity fluctuations a t a fixed point showed a low 

frequency deficiency in the radial direction compared with 

t he longitudina l fluctuation spectrum or t he radial 

I 
fluctuation spectrum calculated using isotropic relations, 

e v en at very high Reynolds numbers of 500 000 : Baldwin (17 ) 

measured a turbulence intensity about 20% higher in t he 

longitudinal d irection than the radial direction. 

An investigation of the assumption of the approach 

to isotropy in t he core of pipe flow would thus appear t o 

be of v alue , part i cularly as the contribution of turbulent 

mixing to t he longitudinal dispersion in flow through a 

p i pe has u sual l y been regarded as negligibly small compared 

with the effect of the velocity profile, mainly on the 

basis of t he radial dispers ion measurements described . 
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1. 2 Scope of this Investigat'ion . ' 

The aims of this invest igation may be stated as: 

a) To measure the longitudinal velocity fluctuations at 

a fixed point on the centerline of a p i pe through which 

air is flowing at a high velocity, and to record these 

fluctuations wit hout los'S' of any' frequency component 

present in the signal up ' to the maximum frequency expected 

to be significant at the level of turbulence considered. 

This has been estimated to be of the order of 5000 Hz. for 

the velocities in the region considered ( 49 ). 

b) To measure the longitudinal dispersion of a tracer 

material, introduced into the pipe on the centerline, over 

a distance short enough that the ' velocity profile in the 

pipe does not affect the longitudinal mixing, and to 

establish a value for the' longitudinal turbulent mixing 

coefficient and hence a true longitudinal Peclet number, 

which may be compared with' that measured by previous 

workers in the radial direction. 

c) To examine the relationship postulated by Philip (4) 

to predict the form of ' the Lagrangian velocity auto­

correlation from Eulerian measurements in an isotropic, 

homogeneous turbulence 'field and to compare the value 

predicted for the longitudinal mixing coefficient by this 

model with the value experimentally measured. 

1.3 Review of Previous Work. 

The large volume of theoretical and experimental 

work in the field of turbulence precludes an exhaustive 

general survey: only those publications of particular 
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relevance to the' present" investigat~on will be discussed 

here. The definition of turbulence terms such as isotropy, 

homogeneity, integral scales e tc. are included in the 

Appendix. 

The two flow regions which have been thought to 

most closely approach isotropy' have been the region behind 

grids arranged normal to ' the direction of flow, and the 

core of high velocity flow through a pipe, The former 

region is complicated by' the ' decay of the turbulence with 

increasing distance from the ' gri~ and the preference in the 

measurement of Lagrangian parameters has been for the central 

core of the flow in a pipe . 

Much work has been done in determining the rate 

of dispersion of tracer materials in a direction transverse 

to the direbtibn of mean' flow - essentially a Lagrangian 

measurement. Hot-wire anemometer ' data has also been 

established for a single-point measurement and the two-point 

measurement where the two probes are separated in space. 

There appears, however, to have been little progress in 

establishing a general relationship between the two types 

of measurement: the practical approach of Mickelsen (16) 

and Baldwin (17) prov~des a method for estimation of the 

transverse Lagrangian parameters from the longitudinal 

Eulerian measurements . Philip's theoretical relationship 

between the Eulerian and Lagrangian measurements, if 

confirmed, would provide a very useful general method for 

the estimation of Lagrangian parameters. 
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1. 3.1 Previous Disper'sioh' Meas·urements. 

Taylor's work in the theory of turbulence (1, 5) 

has formed the basis for much of the subsequent work. As 

will be shown in the following chapter, his expression for 

the variance, equation' (1.1), may for large times be 

written as X2 (t) = 2Et where E is a mixing coefficient 

analogous to the molecular' diffusivity D in the Einstein 

expression describing the Brown'ian motion, S2 = 2Dt, 

where S is the particle displacement. This simplification 

is most convenient in practical descriptions of turbulent 

dispersion and considerable effort has been devoted to the 

determination of the parameter E. The two methods generally 

used have, as far as is known, both considered dispersion 

in a direction normal to that of the mean flow: the first 

method has been to release a marking substance continuously 

from a point source on the axis of the channel and determine 

the steady-state radial dispersion y2 as a function of the 

distance from the point of release which, besides giving the 

approximate form of y2 for short times, has also for large 

times yielded a value for E. The second method, basically 

identical and used in the flow of air, has been to study 

the dispersion of heat behind a heated wire stretched across 

the channel normal to the direction of flow: this method 

is not suitable for dispersion meas~rements at large time 

due to the rapid d'issipation' of' the heated air. Both these 

methods have been confined to what has been believed to be 

the isotropic turbulence field in the core of the channel. 

Towle and Sherwood (6), in 1939, injected carbon 

dioxide and hydrogen continuously on the centerline of a 
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duct through whi ch air was f low"ing " and sampled at various 

distances from the source wit h a series of 21 sampling tubes 

arranged on a diameter : t hey found a Peclet number at large 

separation from t he source of 750 for the case of a velocity 

of 11.77 m/sec . in a 1 5 . 2 4 cm . diameter duct, and an average 

value for high Reynolds number o~ NPe = 850 . (Peclet no. 

UL/E is to be considered cal cula"ted based on the centerline 

velocity and the pipe diame t er ). Their measurements under 

these conditions extended" t o a distance of 216 cm. from the 

injector with noapparerit increase "in the dispersion due to 

the velocity profile in the pipe . They also noted no 

measurable difference in the rate of dispersion of the two 

gases. 

Kalinske and Pien (7) studied the transverse 

dispersion of droplets of immi scible liquid injected into 

water flowing in an open channel and obtained values for 

y 2 (t) from a series of" phot ographs, but the method was 

abandoned as too laborious in favor of a continuous 

injection of a mixture of hydrochloric acid and alcohol 

with sampling on a cross-stream traverse downstream. From 

the measured curve of the" d~splacement variance as a 

function of distance" downstream , the second derivative was 

calculated to give R( T) whi ch was shown to agree quite well 

with the form R (T) = e-T/ T where T= a constant. The 

variance versus distance curve showed appreciable variation 

d 2 y 2 

dX 2 
and the errors in calculating are probably large. 

Townsend (8 ) deve l oped a method for the almost 

instantaneous production of heat spots in air in a 

turbulence field in a square channel behind a grid, but the 
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method could only be used' for ' short distances from the 

source and low Reynolds numbers due to the rapid dissipation 

of the small quantities of heat . 

Uberoi and Corrsin (10) examined the transvers~ 

dispersion behind a line source of heat in air in a square 

channel behind a grid. Fol'lowing Taylor (5), they assumed 

that the molecular and ttirbulent diffusion were statistically 

independent processes and the displacement variances due to 

the two effects were additive. Townsend (11) made similar 

measurements behind a line source' of heat and presented 

data on the displacement' variance as a function of distance, 

concluding that • .•• • . "the behavior of the single-particle 

Lagrangian correlation function for appreciable time 

intervals cannot be obtained with any accuracy from measure-

ments of the heat-wake . " He was able to show that the high 

values of the turbulent intensity (V2)~/U obtained by 

Uberoi and Corrsin from the heat wake were probably due to 

oscillation of the wire stretched across the pipe. He 

examined in some detail the relationship between the 

dispersion of a fluid particle and the dispersion as 

measured behind a line source', and showed that the mechanisms 

of molecular and turbu'lent dispersion were not statistically 

independent, obtaining an expression which showed the 

interaction for small times increases the dispersion over 

that obtained if the effect on the displacement variance 

were additive: 

8 2 = y2 + 2D(t-t ) + ~ Dw 2 (t-t
o

) 3 to 0(t-t)3 
o 45 0 
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where w is the vorticity of the turbulence. 

Although the treatment was for small times only, 

Townsend and Batchelor and Townsend (13) suggested that 

even for larger times, the accelerated diffusion would have 

an effect which was appreciable. Mickelsen (14) examined 

this region in Townsend's actual apparatus by injecting 

carbon dioxide and helium- into air in a manner similar to 

Towle , ~nd Sherwood, and he' found that, within the 

experiment~l error, the simple correction for molecular 

diffusion 

y 2 = S2 - 2Dt 

was sufficient to bring both sets of data into agreement. 

It should be noted, however, that his injection velocity 

for the carbon dioxide experiments was a factor of 4 or 5 

times the stream velocity in order to obtain measurable 

quantities of tracer. ' 

On the basis of' these results, Saffman (12) 

re-examined the problem' of accelerated diffusion and 

showed that there was a fallacious assumption in 'Townsend's 

derivation in that the instantaneous centroid of the marking 

substance actually lags behind the fluid particle originally 

coincident with it, and even' though' the interaction 

increases the disp~rBion' relative' to the centroid, the net 

effect is to reduce the dispersion relative to the origin: 

S2 = y2 + 2D(t-t ) - !Dw2 (t-t ) 3 to O(t-t)3 
090 0 

It should be emphasized that both analyses were 

for small time only. Saffman postUlates a relationship 

for large time which shows t hat for high Reynolds number 
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the effect of the interaction" term becomes greater than the 

molecular diffusion term, but this has not been experiment-

ally verified. The data of Flint, Kada and Hanratty (25) 

supports the idea that for practical purposes in the region 

considered " in tracer experiments' and for tracer materials 

wi th Schmidt ' nUmbers' no 'smaiier than considered in these 

cases, the mechanisms of' turbulent' and molecular diffusion 

are statistically independent. 

Flint, Kada and Hanratty (25) studied the lateral 

dispersion of carbon dioxide and hydrogen in air, and 

potassium chloride in water, in a 3-in. diameter pipe. 

It was found that the displacement variance for the two 

gases in air could be brought into approximate agreement 

by the correction y2 = 52 - 2Dt' . By , assuming three 

different forms for the Lagrangian correlation coefficient 

R(T) = exp(-T/TL) 

R(T) = exp (-!. T 2 IT 2) 
4 L. 

and R(T) = I - ~ TL for 0 ~ T ~ 2TL 

R(T) = 0 for 

they showed that all forms closely predicted the short 

time behavior of the measured diplacement variance. 

Fitting these forms to the experimental data resulted in 

values for the intensity (v2
, ) ~ IU which were all higher 

than previously found with hot-wire anemometers, which 

they attributed to injector interference of the flow field. 

Their results also showed that· the linear dependence of 

y2 with distance downstream extended to a distance of 
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8 pipe diameters from the source before the velocity profile 

in the pipe appeared to have an effect on the results; these 

being obtained in the range 9700 ~ NRe ~ 87 000. From 

the asymptotic slope, values for the turbulent diffusivity 

E were calculated, and presented on a plot of reciprocal 

Peclet number asa function- of Reynolds number. This 

showed that above a NR~ of- approximately 50 OOO~ the 

Peclet number was a constant at a value of about 1200. 

Malenge and Gosse (27) examined the lateral 

dispersion of potassium permanganate solution in water 

flow in a 10.2 cm . diameter Pyrex glass pipe in the range 

10 000 ~ NRe ~ 100 000. Their work differed from that of 

Towle and Sherwood, and Flint et aI, in that the injector 

consisted of four 0.96 mm. diameter tubes arranged in the 

form of a cross, all directed towards the axis, the 

position of each tube and the injection pressure being 

varied to give a near-point- source with a relatively small 

disturbance of the flow by the injector. The dispersion 

coefficient E obtained was found by a method which was, in 

effect, y2 = 2EX/U , neglecting the correction term for 

small time, and was hence slighly low. The Peclet number 

for the higher Reynolds number was about 780. These values 

were later corrected by Groenhof (28) to obtain values of 

Npe = 630. 

Becker, Rosensweig and Gwozdz (18) used the 

light-scattering properties of an oil-fog injected 

continuously on the axis' of an 8-in. diameter pipe to 

measure radial dispersion at very high Reynolds numbers 

from 480 000 to 684 000 in air. The optical probe directed 



11 

a beam of light across the channel and measured, at 

right-angles to the beam, the light scattered by the fog, 

the only disturbance of t he flow thus coming from the 

small 2.8 mm. diameter injector . From the data for small 
- !.: 

time, a value of the radial intensity ( v 2 ) 2/U of 

0.0284 was obtained which agreed very well with the 

published values of Baldwin and Walsh (20). The value of 

the Peclet number they obtained from the data at large 

times as Np = 852. e 

Boothroyd (34) used hydrogen as tracer material 

in studying the radial dispersion in air in 2-in. and 

3-in . diameter pipes in the range 35 000 ~ NRe ~ 80 000, 

and obtained a radial intensity from the displacement 

curve at short t ime of 0.041 at NRe = 80 000, but the 

results were scattered. The Peclet number was found to be 

approximately 760 at NRe = 80 000. 

Groenhof (28) measured the radial dispersion of 

sodium chloride solution in water in a 2-in. diameter pipe 

with an injection and detection apparatus similar to 

Malenge and Gosse, in the range 25 800 ~ NRe ~ 74 900. 

No correction for molecular diffusion was necessary and 

the average Peclet number based on the centerline velocity 

was about 620 at NRe = 74 900. The results were presented 

as a reduced eddy diffusivit y of mass 

ED 
a =-

D U*d 

where U* is the friction velocity calculated from the 

Blasius equation for the wall shear 

!.: 
U* = (Tw/p ) 2 , and this function aD 

stress where 

retained an essentially 
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constant value over t he range of Reynolds numbers studied. 

Analogous to aD' a reduced eddy kinematic viscosity and 

reduced eddy t hermal diffusivit y 

a = M 
and 

respectively, were defined and values were obtained from 

the data of previous workers (6,20,27,2, etc.). This 

showed that in the central portion of steady turbulent 

flow in a pipe or channel aM' a H, and aD were independent 

of NRe for NRe > 20 000. 

Defining eddy Prandtl and Schmidt numbers as 

= and = 

these parameters are assumed equal to 1 as a consequence of 

the assumption of complete analogy of eddy momentum 

transfer and heat or mass transfer. The independence of 

aM' aDt and a H with Reynolds number is evidence for this 

analogy. Groenhof showed that based on experimental data, 

-2 values in water and air flows of aM = 3.2·10 , and values 

in air flows for a H and aD of the same value, indicated 

that PrT and SCT were equal to 1 in the central region of 

gas flow in a pipe when the Prandtl and Schmidt numbers, 

Npr and Nsc ' were close to 1. Based on the values of aD 

found in water flow in a pipe by Malenge and Gosse, and 

Groenhof of 3.9.10- 2 and 4 . 0.10- 2 respectively, the value 

of SCT under these conditions is found to be 0.8 . 

Assuming that the eddy diffusivities measured 

in water in these cases were not affected by molecular 

diffusion (NSc of tracers approx. 750), Groenhof postulates 
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true eddy diffusivity of the fluid, E, and that 

fact equal to 
EM 
E 

the that these measured values of En are in 

would have t he same value in liquid or gas flow. The 

apparent complet e analogy of moment um and heat or mass 

transfer with the combined effect of eddy and molecular 

diffusion would then be due to t he fact t hat the NSc and 

Npr numbers are in general about 1 in a gas . 

There would appear, however, to be an inconsistency 

in this argument if one considers the results of Becker, 

Rosensweig and Gwozdz (18) who used an oil fog with very 

high Schmidt number to obtain a value of an = 3.2.10- 2 

in air. 

1.3.2 Previous Eulerian or Anemometer Measurements. 

Laufer (2) conducted hot-wire anemometer 

measurements in a 10-in . diameter pipe at Reynolds numbers 

of 50 000 and 500 000 in an apparatus carefully designed 

to establish stable flow conditions. The frequency analysis 

of this data showed a marked low frequency deficiency in the 

radial direction spectrum measured when compared with that 

calculated from the longitudinal spectrum using isotropic 

relations. Laufer concluded that closer examination of the 

turbulent energy equations, and particularly of the pressure 

terms,for turbulent flow with considerable experimental work 

would be necessary to examine the reasons for this 

deficiency. 

Martin and Johanson (26) obtained single-point 

hot-film anemometer data in water flow in a 6-in. diameter 

pipe in the range 19 000 ~ NRe ~ 160 000 by photographing 
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samoles of the fluctuations on an oscilloscope screen and 
~ 

reading directly the values of t he instantaneous velocity 

from the phot ographs . This met hod overcame the insensitivity 

of most convent ional e l ectronic instrumentation to the low 

frequency fluc t uations encount ered a t NRe less than 200 000, 

if it is accepted that the average of the autocorrelations 

performed on the discontinuous samples was a close 

approximation to the true correlation coefficient. 

Difficulty was experienced with anemometer drift and the 

individual data was scatt ered . Eulerian integral length 

scales were present ed as a function of NRe ' and the single 

result on the spectral energy of Sandborn at NRe = 25 000 

was used to calculate a value for t his parameter: the value 

was in approximately the same range, if slightly low. 

Patterson and Zakin (29) measured hot-film 

anemometer data in organic solvents in I-in. and 2-in. 

diameter pipes in t he range 8 000 ~ NRe ~ 200 000. 

Corrections were made for non-linear frequency response of 

the electronic and recording apparatus in the range 10 Hz. 

to 10 000 Hz. and no difficulty was found with anemometer 

drift in the non-conducting fluids. The longitudinal 

intensity u 2 )~/U obt ained was higher than that 

obtained in air by Laufer (2) and Sandborn (30) and 

considerably higher than the values obtained by Martin and 

Johanson: the average at NRe = 100 000 of 0.035 was in 

the range measured by Baldwin in air (17). The 

diameter of the pipe was also found to influence the 

result with lower intensities in the smaller pipe. 

Turbulent energy spectra were presented which were checked 
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with the spectra measured directly without recording, which 

showed good agreement except for attenuation below 15 Hz. 

Integral length scales were calculated from the spectra 

using the relationship U = 0 . 8U~ for the convection 

velocity, and it was shown that the signal attenuation 

below 15 Hz. caused a deficiency in the integral length 

scale of 10 to 20% . 

Frenkiel and Klebanoff (31) have developed a 

method for the digital recording of turbulence data which 

they used for the study of higher-order correlations in the 

turbulence field behind a grid in a large 1.37 m. wind-

tunnel, and obtained correlation curves on 160 020 data 

points recorded at a time interval of approximately 80 ~secs. 

over 12.5 secs. The signal from the hot-wire anemometer 

was recorded in analog form on a tape together with a 

12 800 Hz. timing signal; the tape was then replayed at a 

lower speed, allowing digitising of the signal. The 

autocorrelation performed on this signal was found to 

approach more closely the monotonic asymptote to the zero 

axis expected for this function. Despite the long (12.Ssec) 

recording time for each sample, some scatter was found in 

the amplitude of this function which led the authors to 

speculate on a possible non-stationarity of the turbulence 

field: 

II .....•• the very precision of the analysis of 

digital techniques brings out what appears to be a 

IImeteorologyll of the wind-tunnel flow which cannot easily 

be observed with the conventional hot-wire anemometer.1I 

The space correlation coefficient obtained with 

the transformation X = ut corresponded very well with the 
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experimental values measured by Favre et al (32) and 

stewart (33 ) also in grid-generat ed turbulence. , 

1 . 3.3 Previous Work Relat i ng Eulerian and Lagrangian 

Measurements . 

Micke l sen (16) described a met hod of correlating 

hot-wire anemomet er measurements of the fluctuating 

velocity with radial dispersion data of helium in air. 

Considering the double integral on the Eulerian correlation 

function R(~) where ~ = separation distance, 

~ ~I 

EDr = f J R (~") d~" d~' 
o 0 

it is seen that EDr and the displacement variance y2 (T) 

both have the units of (distance) 2 . Comparing the value 

of EDr at a distance of ~i with an equal value of y2 at 

time Ti it is possible to obtain a relationship between 

~ and T: if ~ = B( v 2 )~'T , a value of B = 0.7 provided 

a satisfactory correlation of t he data. 

Baldwin (17,20 ) , in an extensive study, examined 

the dispersion of heat behind a line source in an a-in. 

diameter pipe with various diameters of the source, 

extrapolating to zero diameter to obtain heat wake 

measurements. Single-point hot-wire anemometer data was 

obtained and, based on his previous work on heat transfer 

from fine wires, Baldwin showed t hat a more accurate 

estimation of the exponent at high velocities in King's 

equation describing heat transfer from a cylinder: 

NNU '= A + BINRe 

leads to a wire voltage dependence on the velocity of 
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UO• 1 8 rather than t he dependence UO. 2 5 used by previous 

workers. The assumption of a linearized response of the 

wire fluctuating vol t age to the velocity fluctuations 

i . e . ( ~)~ = K
l

( U2)~ where Kl = a const. was, 

however, retained. Baldwin's method of data handling was 

to find a value for K as a function of distance ~ in the 

expression: 

I K~ JK~' 
f(K~" ) d(K~" ) d(K~') 

o 0 

which makes this expression equal to the measured 

displacement variance ~y 2 from the heat wake measurements. 

This was done by dividing the curve of ~y2(T) into a 

convenient number of intervals between the time T = 0 

and the time where a linear time dependence is established, 

assuming that this time may be accurately determined. 

The correlation curve R(~ ) was divided into the same 

number of intervals between ~ = 0 and the first zero of 

R(~). Numerical integration then established K as a function 

of ~ and hence the Lagrangian correlation coefficient is 

given by R(T) = f(K~) . 

This procedure gave Lagrangian correlation 

functions which should be quite reliable, limited by the 

accuracy of the measured ~y 2 ( T ) , and also established a 

simple relationship between t he hot-wire anemometer 

measuremen t s and the turbulent dispersion data. The 

average value of the Peclet number calculated (18) for 

these results was 910 . 

The results showed t hat the similarity of shape 

of the Eulerian and Lagrangian curves is probably true 
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over a large portion of the curves, but is not true near 

the origin. Baldwin also found that the lateral Lagrangian 

intensities inferred from the diffusion results, as well 

as the lateral intensities from the anemometer measurements, 

were consistently less than the longitudinal anemometer 

intensities. 

The relationship suggested by Burgers was also 

examined, viz. that to the same approximation as the 

Lagrangian derivative of the transverse velocity is given 

by: 

dv = dt 
av 
~ 

+ u 

the two-point time correlation 

= 

av 
ax 

for two particles band c, the average being taken over 

many pairs of such particles, approximates the Lagrangian 

correlation coefficient R(T) in isotropic, homogeneous, 

stationary turbulence, where ~ = Ut, U being the mean 

flow velocity. Baldwin measured these two-point correlation 

coefficients in the longitudinal direction with two 

hot-wire anemometers and found that the peak of the 

correlation curve occurred consistently later than the value 

predicted by T = ~/U : the Lagrangian correlation 

coefficient R(T) inferred from the lateral heat diffusion 

was found to resemble the general Eulerian correlation 

function evaluated at Ru(~,T)~=Ut' the deviation being 

relatively large for increasing time. The lag in time 
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of the correlation peak was found to be represented by 

S = 0.93U£L. Bass found a similar discrepancy, ~ = 0.985U£L 

in the work of Favre in grid-generated turbulence where 

no effect would be expected from excursions into slower­

moving adjacent regions. Baldwin and Mickelsen (19) 

subsequently used this data for the approximation to R(L) 

to estimate the predicted behavior of the displacement 

variance y2 with time for the two cases of S =UC·L 

where Uc = 0.93 U£ and Uc = U£. It was found that for 

large times, the predicted slope of the plot of y2 as a 

function of time, and hence the mixing coefficient E, was 

larger than the measured transverse value by a factor of 

1.5 at U£ = 73 ft/sec. to a factor of 3.6 at U~ = 160 ft/sec. 

for the first case, and corresponding factors of 1.03 

and 2.3 in the second. Corrsin (21), examining the 

relationship at high Reynolds numbers between the Lagrangian 

integral time scale TL and the general Eulerian integral 

time and space scales measured at a point moving with the 

mean fluid velocity, presented an heuristic proof that the 

Eulerian and Lagrangian integral time scales were 

approximately equal and that the Eulerian integral length 

scale was given approximately by the expression 

L = (U2)~.T 
L 

Kraichnan (22) confirmed this expectation for high 

Reynolds numbers but postulated a different result for 

small NRe . Saffman (23), following a conjectural 

relationship for large times proposed by Corrsin (24) for 

the Lagrangian and Eulerian space-time correlations, and 
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making certain assumpt ions of the form of the spectrum 

function based on the Eulerian space-time correlation 
-- ~ 

coefficient, obtained the relat ionship L = 2.5( u 2 
) 2'TL 

The assumptions were basic t o the development, however, and 

Saffman stresses the qualitative nature of the result. 

Philip (4) has recently presented a non-rigorous 

derivation of the Lagrangian correlation function in terms 

of the Eulerian correlation function. The model assumes 

a Gaussian displacement probability density function (pdf) 0 

for particles marked at the origin, and also a general 

form for the Eulerian correlation coefficient in cylindrical 

coordinates R(x,r,t). The assumption that the pdf 

applying to those particles which arrive at the point 

(x,r,t) from the point (0,0,0), may be replaced by the 

general Gaussian form for 0, leads to an expression for 

the Lagrangian correlation function in terms of the general 

Eulerian correlation coefficient. As it is proposed to 

examine this model with the results of the present 

investigation, it will be considered in more detail in the 

following chapter. 

1.3.4 Atmospheric Turbulence 

Besides the results determined in the laboratory, 

much work has been performed on turbulent dispersion in 

the atmosphere. Matters are complicated in this case by 

the fact that the spectrum of " eddy sizes in the atmosphere 

extends up to the large scales causing the general 

disturbances. A second complication is that the turbulence 

is usually neither stationary nor homogeneous. Tracer 
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experiments have been performed, however, and analyzed in 

terms of Taylor's analysis . Hay and Pasquill (35) studied 

the crosswind spread of lycopodium spores 100 m. from the 

continuously emitting source and measured the wind velocity 

and direction fluctuations a t t he source . By assuming 

similar shapes for the Eulerian and Lagrangian correlation 

functions, they established a rough empirical 

transformation between the time axes in the two cases of 

tL = 4tE ' but the values varied from 1.1 to 8.5 in 

different experiments. This large scatter is typical of 

the difficulties experienced in the study of a stochastic 

system in which one has little or no control over the 

parameters. 

A good review of the study of atmospheric 

turbulence is provided by Pasquill (36). 
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CHAPTER 2. 

THEORETICAL TREATMENT. 

2.1 Treatment of Dispersion Data. 

The results obtained by previous workers reviewed 

in Section 1.3 indicate that the technique of measuring 

dispersion in a turbulence field in the central core of 

air flowing through a pipe has been well established in 

the radial direction. The methods used to infer a 

Lagrangian autocorrelation coefficient from an Eulerian 

measurement, have however been based on Eulerian 

' measurements made in the direction of mean flow, although 

practically every investigator has found that this region 

is not an isotropic field. It would thus be much more 

satisfactory if one could obtain Lagrangian data determined 

by the same velocity fluctua t ion components which determine 

the Eulerian data. The closest approach to this measurement 

would appear to be the mixed space-time correlation function 

determined in a preliminary measurement by Baldwin (17) 

from which an approximate Lagrangian correlation function 

may be inferred. This data was, however, obtained by 

recording the fluctuating signal from the hot-wire anemometer 

signal on a tape-recorder with a frequency response ± IdB 

in the range 30 to 15 000 Hz. and with a correlator ± 3dB 

in the range 30 to 4 000 Hz. Eulerian data measured in this 

range would possibly partially exclude the effect of the 

slow, low-frequency eddies which are dominant in the 

production of dispersion . 

The technique for the measurement of dispersion 

in a longitudinal direction would obviously differ from that 
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in the radial dispersion measurement, as it becomes 

necessary to use a discontinuous marking of the fluid 

particles in the form of pulses of tracer material. This 

introduces the complication that the dispersion produced 

by a turbulence field on these pulses released from a 

near-point source is dependent on the linear dimensions 

of the individual clouds. The effect may be visualized 

by considering the dispersion of puffs of smoke released 

from a chimney into the atmosphere: if the dimensions of 

the clouds are much smaller than the energy-containing 

dispersing eddies in the atmospheric turbulence field, 

the individual clouds will be transported as a whole in a 

certain direction and the dispersion within the cloud is 

effected by the smaller eddies of a size comparable with 

that of the cloud. There then exists a spatial distribution 

of concentration about the center of gravity for an 

individual pulse which in general does not correspond with 

the mean distribution about the mean position of the center 

of gravity, the mean being taken over many individual 

realizations. Although the importance of this effect was 

realized a long time ago and discussed in papers by 

Richardson (9) and Brier (3), and a formal treatment was 

developed by Batchelor (37,38), the difficulty in the 

determination of the necessary statistical parameters has 

made further material progress difficult and it appears 

that the survey article by Batchelor and Townsend in 1956 

(13) still represents basically the present position. 

The treatment developed by Taylor (1) is based 

on the movement of a single particle and the Lagrangian 
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correlation function on this particle at various times in 

its flight. In the averaging over many particles, we 

effectively release one particle at a time and follow it 

on its path, plotting the displacement X from the origin 

(or some point fixed in the direction of displacement), 

repeat this for many particles, and take the average over 

all realizations. This establishes a mean concentration at 

any point at time t which will be equivalent to the function 

P(x,y,z,t), which is the probability that a single particle 

released from the origin will be at the point (x,y,z) at 

time t. The virtually instantaneous release of a small 

cloud of particles from the origin will result in a spatial 

distribution at time t which is generally not the same as 

P(x,y,z,t). If the results of Taylor's theoretical 

treatment are to be applicable, it must be ensured that the 

individual clouds produce as uniform a distribution as 

possible i.e. approximate P(x,y,z,t) for each realization. 

For a time-distributed release of a cloud, this means that 

the impulse response extracted from the measurements of the 

distribution at two points should show little variation. 

This may be done by increasing the dimensions of the cloud 

released until it is of a size comparable with the largest 

eddy present in the turbulence field. The constraint on this 

action is the decreasing accuracy with which the dispersion 

within a cloud may be measured between two fixed points as 

the initial linear dimensions of the cloud increase. In the 

present case, where it is proposed to measure the 

longitudinal dispersion, the length of the pulse in this 

direction must thus be a compromise. For these reasons, 
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it might be expected that the impulse responses extracted 

from the pulse measurements would show some variation: a 

better approximation to the time average temporal variation 

at a fixed point may be obtained by averaging the individual 

contributions for each time over a large number of 

realizations . From this average impulse response, a value 

for the mixing coefficient E compatible with Taylor's 

treatment may be extracted. 

2.2 Validity of the Axial Mixing Model. 

Batchelor and Townsend (13) have shown that the 

dispersion of a series of marked particles of fluid 

released from Xo at time to into a homogeneous turbulence 

field where the velocity fluctuations u(t) are a stationary, 

random function of time, would for large values of time 

be expected to be Gaussian distributed in the space variables. 

Previous experimental work (17,18,8) has, in fact, 

established that the distribution transverse to the mean 

flow may be described within the limits of experimental 

error by a Gaussian distribution function for practically 

all times in the (wide) velocity ranges studied by these 

workers in the wind-tunnel or central core of air flowing 

in a pipe. This useful result that X(t) has an asymptotically 

normal distribution for all times, implies that the 

probability density function 8 (x l ,tlxo ,t) of the displacement 

X(t) = x -x 1 0 
of a cloud of particles released instantaneously 

from a point source is normally distributed in the transverse 

direction 
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1 •••• (2.1) 

where X(t) is a one-dimensional scalar. Thus e obeys 

the classical diffusion equation 

2 30 
IT E ' a 0 = W .............. (2.2) 

where in general E' will be a function of time 

l.. dX 2 (t) 
E' (t) = '2 dt 

where X2(t) is given by equation (1.1) 

f: f T 1 X2 (t) = 2u 2 R( T )dTdT l 
0 

........ (1.1) 

= 2u 2 It R( T)dT.t - ft 2u 2 TR(T)dT 
0 0 

and for large time when the second term becomes negligible 

when compared with the first 

(2.3) 

where E is now a constant for large values of t, and 

E = l.. dX
2 

( t) (t 1 ) ( 2 4) '2 d t' arge. . . • • . • • . . • . . . . • 

The generalization of these expressions to 

3-dimensions, assuming isotropy, results in a probability 

density function 

o (X, t) = 1 y: e xp ( - (X 2 
/ 4 E t ) ) 

(41TEt) 2 
(2. lb) 

where X(t) is now a vector displacement. 
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The mean concentration C(X,t) of a marking 

substance at any point is then equal to the probability 

of finding marked fluid a t t hat point (13) i.e. 

C(X,t) = J_:C(Xo,to ) 8(xl ,tlxo ,to ) dXo . .. .• (2.5) 

When C(X ,t ) = 6 (XI-X ) , i.e. with a unit 
000 

concentration Dirac impulse of marking substance at Xo at 

time to' this becomes, from equation (2.1b) 

C(X,t) = 8(x,tlto ) 

= 1 exp(-x2 / 4Et) 
(4nEt) 3/2 

or, if X(t) is measured from a fixed point in a fluid 

flowing with mean velocity U in the x-direction, where 

C(x,y,z,t) = 

If now the source is arbitrarily time-distributed, 

Q(t) [gm/sec], and the concentration is measured at two 

fixed points downstream xl and x 2 ' these are given by the 

convolution integral 

with a similar expression for C(x2 ,y,z,t), or expressed 

as a Laplace transform, 

and 

C(xl,y,z,s) = Hl(S)Q(s) 

C(x2 ,y,z,t) = H2 (S)Q(s) 

...•.•• (2.9a) 

••••••• (2.9b) 

Hence, in the s-domain, the second distribution 
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is given in terms of the first by 

C(x2 ,y,z,s) = 
H

2
(S) 

C(xl,y,z,s) 
Hl(s) 

=H3 (s)C(xl,y,z,s) ... (2.10) 

The Laplace transform Hl(S) is given by 

= 

.......... (2.11) 

and this is given by, (39), 

1 
31 ·exp 

4'JTE l2 

uXl [( U
2 J ~ [xi +y2 +z 2]~] l E 1 ~ ---·exp - s+-- • 

2E 4E E 2+ 2+ 2 
Xl Y z 

•.•. (2.12) 

with a similar expression for H2 (S). Hence- H3 (S) is 

obtained by dividing two expressions of the form of equation 

(2.12), and reverse-transforming (39), then with y=z=O for 

measurement on the axis of the pipe, one obtains finally 

the impulse response between the stations 1 and 2: 

...... (2.13) 

and it is obvious that this is the same impulse response 

obtained from the axial mixing model often used to describe 

flow patterns in chemical reactor systems (43). 

The factor x l /x2 would be difficult to determine, 

as it is based on the ~istance from a virtual origin, but 

as the sensitivity of the two detectors at stations 1 and 2 
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will generally be different and the pulse curves will be 

normalized, this factor may be included in the normalization. 

The impulse response, equation (2.13) then reduces to the 

same form as the expression for molecular diffusion in 

one-dimension from an area source (50) 

In fact,the above derivation of H3 (t) could have 

been restricted to the one-dimensional case if it were 

assumed that as far as the two detectors were concerned, 

the source was space-distributed normal to the direction 

of mean flow, Q(t) (gm/cm2 sec) . The normalizing of the 

two pulses implies this assumption. 

With a suitable regression technique it is then 

possible to obtain values of V and E from the convolution 

integral 

The regression is actually performed on three 

parameters: V, E and a parameter normalizing the two pulses. 

This parameter occurs as a pre-exponential factor in the 

impulse response. As the two pulses were normalized 

before the regression, this factor was always very close 

to 1. 

Law and Bailey (41) have presented a non-linear 

regression technique with a least-squares criterion which 

ensures convergence for any starting value of the 

parameters. King and Woodburn (42) have written computer 
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programs based on this technique for the axial mixing 

model for use on the IBM 1130 computer which were adapted 

for use in the present invest igation. The convergence of 

the parameters was found, however, to be slow if the 

starting values were far from the correct values. Starting 

values of U and E were thus estimated by the method of 

moments described by Sater and Levenspiel (43,44) which 

were then used in the regression program. 

It is appropriate to stress here that the 

derivation of the impulse response in equation (2.13) 

relies on the fact that the coefficients in the differential 

equation describing the dispersion of the tracer material 

between the two measurement stations are constants. The 

case where these parameters are time-varying is considerably 

more complicated as Laplace-transform techniques are in 

general not applicable (40). Equation (2.13) will therefore 

not describe the dispersion produced by the turbulence 

field on a cloud of particles released instantaneously from 

a point source at the first measurement station as one might 

expect from the definition of an impulse response. It 

should rather be regarded as a mathematically convenient 

expression describing the dispersion of tracer material 

between the two stations where the dimensions of the tracer 

cloud at the first station are such that the average rate 

of increase of displacement of the elements of the cloud 

about its center of gravity is already linear with time. 

i.e. equation (2.3) is applicable. By varying the distance 

between the two measurement stations, the compliance with 

this condition may be examined. 
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2.3 Hot-Wire Anemometer Treatment. 

2 . 3.1 Digital Sampling. 

The proposed met hod, described in detail in the 

following chapter, of digitally sampl ing the fluctuating 

voltage signal from the hot -wire anemometer before recording 

the signal, provides more freedom in the subsequent 

processing of the data: one is not dependent on the 

commercially-available linearizers or correlators which 

almost inevitably produce some at t enuation of the signal. 

Provided that no signal component is lost in the hot-wire 

anemometer instrument i t self , or t he sampling technique, 

one obtains a set of II raw data ll which is a permanent record 

of the voltage fluctuations. The method of digital sampling 

is known, however, to produce lIaliasingli of higher 

frequencies in the signal i f the sample interval is not 

carefully chosen (45). As the sampling interval in the 

present investigation had a lower limit of 100 ~secs., 

this question becomes of some r elevance. 

2.3.2 Evaluation of the Fl uctuating Velocity. 

Baldwin (17 ) has shown that the King equation (48) 

which leads to a relat ionshi p between the air velocity U and 

the current I flowing t hrough the hot-wire in a constant­

temperature anemometer circuit 

............ (2.14) 

where Uo and Io are calibration constants, does not 

accurately describe the heat transfer from fine wires in a 

high velocity airstream . This relationship is usually 

used to describe the steady-st ate mean values of U and I, 
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and a linear relationship is assumed between the 

instantaneous fluctuating velocity and current (or voltage 

across a standard resist or in series with the probe) (49). 

In the present investigat ion, calibration of the signal 

could be performed with a Pitot t ube for each mean velocity 

and the digitally sampled data could conveniently be 

converted to velocities on the computer in the cours~ of 

the direct calculation of the autocorrelation functions. 

It was thus not necessary to assume a linear relationship 

between the instantaneous values of U and I. A direct 

comparison between the mean value of I measured for each 

case of a mean velocity determined with a Pitot tube and 

the value of U calculated with equation (2.14) based on the 

value at U = 13.4 m/sec. is shown in Table 1. In the 

present case, with a fairly small range in velocity 

fluctuation,equation (2.14) is apparently quite capable 

of correlating the data, and over the small range in velocity 

fluctuation even a linear relationship would not have 

resulted in a great error. 

From Baldwin's curves for the present case of a 

O.OOOIS-in. diameter wire in a mean flow of 13.4 m/sec., 

corresponding to a Knudsen number of about 0.016 and a Mach 

number of 0.04, the error in using equation (2.14) is not 

very great. This function was thus used to convert the 

recorded voltage fluctuations to velocities on the computer. 
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TABLE 1. 

Hot-wire anem. voltage 

(I) : 0.305 0.468 0.478 0.490 0.508 0.525 

Pitot tube (rom H2O) : 0 5 .10 8.0 10.82 17.72 25.80 

U from Pitot tube 

(m/sec) : 0 9.47 11.52 13.40 17.15 20.75 

U = Uo (I2/Io 2 -1) 2 : 0 9.87 11.46 13.40 16.98 20.70 

2.3.3 The Effect of Aliasing of High Frequencies (45,46) 

The sampling theorem of random noise theory 

states that if F(f) is a function restricted to the band 

of frequencies between -B and +B where 

then 

p(t) = 
00 

r 
n=-oo 

n sinn (2Bt-n) 
P(2B) n(2Bt-n) •...• (2.15) 

which shows how the function p(t) is reconstructed from 

1 its samples taken /2B secs. apart. The derivation of this 

result implies that p(t) contains no frequencies at 

absolute values ~ B Hz. If now q(t) is another function 

which does contain frequencies> B Hz., where q(t) is the 

input to a low-pass filter cutting off at ± B Hz. and the 

output from the filter is p(t) , by sampling p(t) at points 

1 
/2Bsecs. apart, we have 

00 

p(t) = L q(~B) sinn (2Bt-n) 
n=-oo n(2Bt-n) 

•..... (2.16) 

since 
00 

m L n sinn (m-n) p(t=--) = q() 
2B n=-oo 2B n(m-n) 
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Thus the output wave pet) can be determined by 

n 
input samples of q(t) at t = 2B i however, the input wave 

q(t) cannot be reproduced in this way. 

The autocorrelation which is obtained on the 

band-limited signal pet) may be writt en 

R ( '[ ) = p ( t ) p (t +'[ ) 
pp 

00 

n m sinTI (2Bt-n) sinTI (2Bt-2B'l"-m) 
q(2B ) q(2B) TI(2Bt-n)TI(2Bt-2B'[-m) = L 

n=-oo m=-oo 

00 k sinTI (k+2B'[) . 
= L Rqq (2B) TI(k+2B'[ ) where k = n-m 

k=-oo 

Also, for '[= 0, 

R (0) = pp 
= R (0) qq 

••...• (2.17) 

.... (2.17b) 

There is no way of separating the contributions 

k of Rqq (2B) to the measured autocorrelation R ('[ ) and pp 

hence once the signal has been sampled with an interval 

1 /2B secs., the true autocorrelation Rqq( '[ ) cannot be 

regenerated. One is then forced to adopt an aesthetically 

less satisfactory approach of sampling the signal with 

various sample intervals and examining the results for 

deviations. As aliasing is expected to produce a distortion 

of the higher frequency components of the signal, it is 

more convenient to examine t he frequency spectrum of the 

signal obtained from the autocorrelation using the 

relationship developed by Taylor (47) 

....•• (2.18) 
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If the power spectrum function F(n) is 

approximately constant for the curves obtained with various 

sample times up to a frequency of about 5 000 Hz., it is 

very probable t hat there is very little power in fluctuations 

of a higher frequency . 

It may be noted, f r om equation (2.17b), that 

possible aliasing has no effect on the zero lag value 

of an autocorrelation function. 

2.3.4 Lagrangian Autocorrelation Function Postulated 

by Philip. 

One of the comparatively recent proposals for 

the evaluation of a Lagrangian autocorrelation function 

in terms of the Eulerian measurements is the non-rigorous 

derivation suggested by Philip (4) for the case of 

homogeneous, isotropic, stationary turbulence. The 

essentials of Philip's treatment are as follows. 

The case of zero mean flow is first considered 

with velocity component u parallel to the direction x, 

with r the radial coordinate. The Eulerian correlation 

function is defined as 

Ii> ( t) u(O,O,O)u(x,r,t) '" x,r, = 

00 

with the Eulerian integral length scale L = J . ~ (x,O,O)dx 
o 

with an analogous expression for the integral time 

scale T. The assumption that the probability density 

distribution function 8(x,r,t ) of a particle released 

at (0,0,0) is Gaussian in the space variables is 

8(x,r,t) = 2 7T r 
•... (2.19) 
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where x2 (t) is given by the Taylor expression, equation 

(1.1). 

By defining a sub-ensemble Eulerian correlation 

function ~' (x,r,t), which applies only to t hose particles 

arriving at (x,r,t) which were the same particles at (0,0,0), 

a relationship for the Lagrangian autocorrelation function 

R(t) is obtained by integrating over all possible positions 

of the particle after its release, with weighting by the 

probability density 8(x,r,t). 

R(t) = Joo foo 8 (x,r,t ) ~'(x,r,t)drdx 
-00 0 

••• • •• (2.20) 

The assumption that ~'(x, r , t) may be replaced by ~ (x, r , t) 

is not rigorously justified but has some plausibility . . 

R(t) = Joo I
oo 

8(x,r,t) ~ (x,r,t) drdx 
-00 0 

••.•. (2.21) 

A convenient form examined by Philip 

~ ( ) = exp [- n[x
2
+3.l38r

2 
+ \J\ x,r,t 4 

L2 ::11 •... (2.22) 

satisfies quite well most of the conditions imposed on an 

Eulerian correlation function (4). Combining equations 

( 1 . 1) , (2. 19) , (2. 21) and (2. 22) give s 

R*(t*)= 

[1+3013sn oc 'f:*J: 'R*(T)dTdT1 ] [l+noc'J:*J: ' R*(T)dTdT ,]' 

where t* = ;, oc = (U2)~~ 

R(t) in terms of t* . 

......... (2.23) 
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No theoretical estimat e of ~ is available, 

although the work of Corrsin (21 ) , and Kraichnan (22) and 

Saffman (23) has shown that it should be of the order of 1 

for high levels of turbulence. I t might also be expected 

that ~ is approximately 1 to satisfy a possible 

transformation between the space and time axes of the 

Eulerian correlation function. 

With the assumption that ~ = 1, equation (2.23) 

may be solved on the computer by iteration for R*(t*). 

To obtain R(t), an estimate of T is needed from the 

single-point Eulerian correlation function measured in the 

present investigation with a mean flow U in the x-direction. 

Defining a new variable Xu by the transformation 

x = Xu - Ut, the apparent Eulerian correlation function 

and the apparent Eulerian integral time scale 

fX> ~ (-ut,O,t)dt 
o 

Using the form of <R in equation (2.22), Philip finally 

obtained 

( 2J-~ = 1+ iz- ....... (2.24) 

and so the Lagrangian autocorrelation function R(t) is 

obtained from equations (2.23) and (2.24). 

By assuming that the Lagrangian and Eulerian mean 

squares of the x-componen t of t he velocity fluctuations are 

equal (21), the mixing coefficient predicted by this method 

may be obtained from 
E = u 2 Joo R(t)dt • 

o 
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CHAPTER 3 . 

EXPERIMENTAL DESIGN . 

3.1 General Description . 

The investigation was conducted in a rigid, opaque, 

seamless PVC pipe 9.2 meters long, 154 rom I.D. and 160 rom 

O. D., which was supported from t he s t eel girders in the 

roof and the brick walls of the building to prevent 

possible vibrations being transmitted to it . A general 

view of the apparatus is shown in Plat es 1 and 2, with a 

schematic representation in Fig. 1. The inlet end of the 

pipe was fitted with a cont raction nozzle of spun 

aluminium whose surface was left in the rough, unpolished 

state and t his was enclosed in a box closed at the end, 

with an inlet on each side panel covered with a fibrous 

filter mat erial . This arrangement reduced t he effect of 

draughts and encouraged the r apid attainment of steady­

state conditions in t he flow . The other end of the pipe 

was connected through a large volume vessel 

(1.22 X 1. 71X 2.09 m. ) to a 100cm. diameter centrifugal 

type fan driven by a 15 kW mot or . The purpose of the large 

vessel was to minimize possible surging in the system. 

Throttles were locat ed as shown in Fig. 1 before the surge 

tank and fan with a pressure drop across the first 

IIMaltese-cross ll type thro t tle of about 10 rom. Hg, and 

across the second of about 75 rom Hg for t he case of 

U£ = 13.4 m/ sec . The t es t section compri sed the last 

12 diameters of t he pipe before the flexible right-angled 

bend into t he anti-surge vessel. 

Direct velocity measurements in the pipe were made 
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PLATE 1. 

General View of the Apparatus. 
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PLATE 2. 

The Test-section 
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with a small 2.5 mm diameter Pitot static tube and a 

Casella water micromanometer which allowed readings to 

within 0.05 mm H20 and t his was used to set the flowrates 

in the pipe. Velocity profiles in the pipe were obtained 

from vertical traverses with the Pitot tube at two stations 

7.7 m and 9.0 m. from the entrance of the pipe, and the 

results are shown in Fig.2. the maintained shape of the 

velocity profile shows that the flow may be considered 

fully-developed in the central portion of the pipe over 

this region, for the two values of the mean centerline 

velocity studied here. A small degree of asymmetry is 

noticeable in Fig. 2 but this could equally well have been 

due to a slight mis-positioning of the Pitot tube as a 

horizontal traverse showed the same asymmetry. 

3.2 The Hot-Wire Anemometer. 

The material used in the construction of the 

hot-wire probe was 0.00015-inch (approx 4~) diameter 

tungsten wire. The wire was copper-plated on each side of 

the sensitive region of about I mm. length using the 

apparatus shown in Plate 3, with a pure copper anode, the 

wire forming the cathode, in a practically saturated 

solution of copper sulphate with 10% by volume concentrated 

sulphuric acid (48). The plated region of the wire had a 

diameter 3 to 4 times the diameter of the wire, the length 

to diameter ratio of the sensitive region being about 250. 

The wire was then soldered to the tips of two fine sewing 

needles mounted about 2 mm. apart in a ceramic insulator 

in the end of an L-shaped, rigid, stainless steel tube as 

shown in Plate 4 and Fig. 3 . Slight tension was applied 
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PLATE 3.: The Wire-plating Apparatus. 

",II I\"'I\II"\"""\"\'\'\\\\\'\~' , 

PLATE 4.: The Hot-wire Probe. 
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to the wire by bending the one probe support very slightly 

inwards before soldering . The probe was mounted 8.4 m., 

or 55 pipe diame t ers, from t he inlet end of the pipe. 

The Flow Corporation constant-temperature 

anemometer instrument used had a flat frequency response 

from DC to 100 000 Hz . The hot-wire probe forms one arm 

of a Wheatstone bridge circuit and a feedback amplifier 

varies the voltage applied t o t he bridge to maintain 

balance. The signal from this instrument was a fluctuating 

voltage measured across a standard resistor in series with 

the hot-wire probe: this signal was proportional to the 

fluctuating current r flowing through the probe. This 

fluctuating voltage was used to IIgate ll a 9.5 MHz. sinewave 

signal which fed through a shaping circuit to a bank of 

8 binary counters, which at the smallest sample time was 

sampled every 100 ~secs. and the digital value from 0 to 255 

was recorded on a computer drum recorder adapted from an 

rCT Model 1202 digital computer. A schematic representation 

of the sampling procedure is shown in Fig. 4. The 

instantaneous voltage at any instant determines the slope 

of the ramp function AB which controls the ligate" to the 

9.5 MHz. signal. The length of time over which the signal 

was actually sampled thus varied from 12.5 ~secs. to 40 ~secs. 

With the additional time for the transfer of this signal to 

the drum recorder, this technique allowed the sampling of 

the fluctua t ing velooity in the pipe every (2 n +l + 1)·20 ~secs. 

i.e. every 100,180 ,340 •••• ~secs., and the recording of this 

digital value, with appropriate amplification, in the range 

o to 255. The maximum number of tracks available on the 
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computer drum was 30, each of whi ch had a capacity of 1024 

words, giving t otal t ime s amp l es of t he turbulent velocity 

fluc t uations depending on t he time i nterval chosen. After 

recording, the digi t a l values on t he drum were punched 

ont o computer cards in a pseudo-binar y form of one value 

per column which could be r ead int o t he IBM 1130 computer 

for direct evaluat ion of t he relevant statistical parameters . 

The equipment is shown schematically in Fig . 5 . 

The DC amplifier used to subtract the voltage 

offset from zero and amplify the voltage fluc t uat ions from 

the hot-wire anemometer, was designed and built in the 

Electronics Department of t he University of Natal:its 

measured frequency response curve is shown in Fig. 6. 

The corresponden ce bet ween the digital values 

on the computer cards and t he fluctuating voltage from the 

hot-wire anemometer was est ablished directly with a 

square-wave calibration s i gnal of known peak-to-peak voltage 

fed directly to t he amplifier . A t ypical calibration curve 

is shown in Fig. 7 which shows a linear relationship between 

voltage and count recorded. 

The mean flow on t he axis of the pipe was 

determined with the Pitot tube and this was used as a 

calibration with t he voltage read from the DC meter on the 

hot-wire anemomet er inst rument. The assumption that the 

met er reading was c l ose t o t he vol t age corresponding to the 

cal ibration velocit y was no t significant as the instantaneous 

velocit y ca l culat ed was de t ermined as a ra t io of two terms 

such as equat ion (2 . 14 ) 

U = Uo ( 
r2 
I 2 

o 

. ... . .... .. . (2.14) 
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and Do cancels . The calibrat ion voltage I read from the 

long time-constant meter corresponds to the voltage at the 

center of gravity of t he non-Gaussian distribution of the 

number of occurrences with voltage as shown in Fig. 8, and 

this could be easily calcul ated on the computer. The small 

correcti on term t o the voltage I estimated from Fig. 8 as 

about 0.0005 Vol t s may be used in an expression such as 

equation (2.14 ) t o show that with the typical values of 

I = 0.48 V, I = 0 . 30 V, t he error in ignoring the small 
o 

correction voltage in calculating the instantaneous velocity 

is at most of the order of 0.03% . This was also shown by the 

fact that t he const ant mean velocity subt racted from the 

calculated velocities before the evaluation of the 

autocorrelation function differed from the ca~ibration 

velocity by at most 0.05%. 

As a check for drift and accuracy of the system 

after the hot-wire bridge circuit, a 500 Hz. sinewave signal 

was applied to t he amplifier and recorded at 180 ~secs. 

sample int erval. An autocorrelation on this data produced 

a steady cosine wave . To check on anemometer drift and wire 

cont amination during the run, the steady offset voltage at 

zero velocity was measured before and after each recording, 

and any case showing a difference of greater than 0.01 V 

(in approx . 0 . 30 V) was discarded. 
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3.3 The Dispersion Measurements. 

3.3.1 The Tracer Material . 

The types of tracer used in studying turbulent 

dispersion have varied from heat, carbon dioxide or helium 

to oil fog or glass beads (1 7 ,18,14,51) . Most of the 

detection apparatus was slow-responding and bulky, both of 

which are undesired properties in the present case. 

Radioactive gas tracers possess attractive properties but 

have not been suitable for the usual continuous emission 

from the source used in studying the radial dispersion. 

The present investigation, with the injection of pulses 

of tracer material, is much more suitable for the application 

of this type of tracer. Krypton-85, a gas which in 99.4% 

of the disintegrations emits a-particles with a spectrum 

of energy up to 0 . 7 Mev and some y-rays, is particularly 

suitable as a tracer material: besides being chemically 

inert and hence not absorbed by the human body in possible 

leakages during handling or after exhaust to the atmosphere, 

it has a half-life of 9.4 years, making it easily transport­

able with a high specific activity. i.e. it is not necessary 

to inject a large volume of tracer because most of it has 

already decayed, leaving only a small fraction still active. 

The main disadvantage of Krypton-85 as a tracer 

is common to all radioisotopes: the random nature of the 

decay produces a fluctuating countrate which, at low 

concentrations, may obscure the shape of the pulse. It has 

been shown (52) that the instantaneously observed countrate 

N' is given in terms of the true countrate N by 
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N I = N ± KiN 

where K is a constant . A high countrate will thus decrease 

the fluctuating component relative to t he signal, but this 

is limited by the amount of radioisotope allowed to be 

discharged into the atmosphere. 

3.3.2 The Injection Apparatus. 

It was found that t he most suitable injection 

apparatus was a Beckman gas chromatograph sample valve. 

Tests with a system of solenoid valves with a time overlap 

in their operation, and with a rotating drum with a 

longitudinal slot in the circumference, showed that the 

gas sample valve provided the most reproducible pulse 

shape with a short duration which satisfied the criterion 

on the presence of enough high frequency components to 

excite the system over the whole spectrum as discussed 

previously (44,56). 

The Krypton-a5 was transferred from the I-curie, 

20 cc ampoule to the apparatus shown in Plate 5 from where 

it could be loaded into the sample valve. The internal 

passages of this valve were reduced to give a 1 mm. dia. 

channel for the gas and the valve was mounted immediately 

adjacent to the pipe. The Krypton was drawn into the 

approx . 0.2 cc. sample tube and pressurized through the 

Krypton storage vessel to the same pressure as the purging 

stream of metered air flowing through the second channel 

in the valve and giving isokinetic injection on the axis 

of the pipe in the direction of mean flow. The injection 

pressure required, about 10 to 15 mm. Hg, was not high 
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enough to introduce serious errors in the metering of the 

air, but a small correction was applied for the change in 

density. Experiments were also performed with the injection 

velocity 20% higher and 20% lower than the calculated value 

with no detectable change in the results. 

The L-shaped injection tube, inserted into the 

airstream at a point 47 diameters from the entrance, was 

thin-walled 2.5 rom O.D., 2 rom I.D. stainless steel 

hypodermic tubing. This "cylinder" disturbs the local 

flow patterns and the distance downstream at which the 

effect is negligible was estimated by the method used by 

Becker et al (18) to be approximately 15 cm. for the 

present investigation. 

3.3.3 The Detection Apparatus. 

The radiation detector most suitable for the 

measurement of comparatively weak S-particle emitters 

where it is desired to obtain a near-point measurement, 

is the surface-barrier semiconductor radiation detector. 

The principle of operation of this type of detector is 

basically the same as the ionization chamber: an electric 

field is established across a low-conductivity medium and 

a radioactive decay product entering the medium produces 

a wake of charged particles from its collisions with the 

medium. These charged particles, attracted to the 

boundaries by the applied potential, produce a pulse of 

current which may be amplified. The medium usually used 

is high-purity n-type silicon with a thin conducting gold 

film evaporated onto the front face and a film of aluminium 
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covered with silver on t he rear face . This establishes 

the p-n junction necessary for the operation of the counter 

which has been previously described . (44,53). 

These detectors have the advantage of being 

sensitive mainly to ~- and a-particles, being practically 

completely insensitive t o normal background cosmic 

y-radiation which is often a problem in the use of 

scintillation or Geiger-Muller radiation detectors. 

Additional advantages of the surface-barrier detector are 

the small amount of shielding of the detector necessary to 

produce highly-directional properties,due to the short range 

of the a-particles in any fairly dense medium, - and the 

high counting efficiency of up to 80% for a-particles. 

The very short time of about 25 millisecs. for the pulses 

of Krypton injected to pass the detector station, required 

a high maximum possible countrate for the detectors: the 

surface-barrier counter attains values of 10 6 counts/sec., 

the recovery after a pulse being more rapid than a G.M. 

tube which has a certain dead-time after a pulse during 

which any radiation penetrating the tube is not detected, 

although this is usually treated by introducing an 

artificial paralysis time longer than the dead-time and 

applying a correction to the count-rate. 

The disadvantages of this type of detector are 

the high sensitivity to temperature variation which makes 

calibration difficult, and the small signal which requires 

very sensitive preamplifiers and amplifiers with a fast 

risetime . The sensitivity to light was not of importance 

in this investigation as the pipe was practically opaque. 
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The method of construction of the type of detector 

used in this investigation has been previously reported (44) 

and the procedure will only be summarized here. 

The discs of high-purity n-type silicon 6 mm. 

and 15 mm. diameter and about 1 mm. thick, were polished 

on a sheet of glass with wat er and very fine aluminium 

oxide powder to remove visible imperfections. The discs 

were then etched in a nitric acid/hydrofluoric acid/acetic 

acid etch solution to produce a mirror finish, following 

which the rear contact of aluminium and then silver was 

evaporated onto the disc under very low pressure of about 

5.10- 5 mm. Hg, the silver preventing oxidation of the 

aluminium. After allowing a few days for the natural 

oxidation to form the p-type silicon on the front face, 

the disc was cemented on its brass shield and the front 

contact of gold was evaporated on under high vacuum. The 

rear contact was made by cementing a small brass bolt to 

the silver contact with silver conducting-paste and 

covering the rear of the detector with Araldite, an epoxy­

resin type cement. A thin film of Mylol was cemented over 

the sensitive face to prevent "pockets" of tracer forming 

in this area. 

The downstream detector was of larger diameter 

than the upstream detector to compensate for the increasing 

dilution of the tracer with distance from the source. The 

sensitive areas of the two detectors were 4 mm. and 11 mm. 

diameter respectively, and the overall diameters were 8 mm. 

and 22 mm. resp. The error introduced by the space effect 

of the larger detector would be small considering the 
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linear dimensions of the pulse of tracer. 

The small detector was mounted as shown in 

Fig. 9 and Plate 6 on the end of a 3 rnrn. O. D. hypodermic 

tube while the larger detector was mounted on an aerofoil 

section, and these were fastened to the wall of the pipe 

so that the faces of the detectors were on the axis of 

the pipe with the mean flow parallel to the face. The 

detector was connected to the RIDL charge-sensitive 

preamplifier by a low-capacitance coaxial cable kept as 

short as possible to prevent loss of the small signal by 

capacitance in the cable. The main amplification was 

performed on an RIDL amplifier which had a noise-level 

control for raising the threshold voltage to enable the 

exclusion of the thermal noise produced in the detector: 

this had to be regularly checked during each experiment, 

as a small variation in the temperature would cause the 

noise-level to change. This effect was, however, clearly 

visible as a rise in the background count which was adjusted 

to be less than 0.2 counts/sec. before each recording. 

3.3.4 The Pulse-recording Apparatus. 

A photographic technique was used to obtain the 

exact time-distribution of the amplified pulses from the 

surface-barrier detectors. A schematic diagram of the 

recording system is shown in Fig. 10, and is also shown 

in Plate 7. The signals from each detector channel were 

fed with opposite polarity to the two input channels of 

a single-beam oscilloscope where, after algebraic addition, 

the resultant signal caused vertical displacement on the 
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PLATE 7 

The Pulse-recording Apparatus. 
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screen, the first station detector causing upwards deflection 

and the second station deflecting downwards. A 5 kHz. 

sawtooth signal was applied to the horizontal deflection 

plates of the oscilloscope as a carrier wave. The oscillo­

scope screen was photographed with a 16 mm. high-speed 

streak camera which was triggered by a micro-switch operated 

by the gas sample injection valve. 

On development of the film, the exact distribution 

of the pulses in time could be determined by visually 

counting on a film editor the number of pulses per time 

interval determined by the carrier-wave frequency. From 

these values, the shape of the tracer pulse at each station 

could be reconstructed. 

An example of the pulses on the film is shown 

in Plate 8. 

This method, although extremely laborious, 

provided a reliable and permanent digital record of the 

pulse behavior. 
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PLATE 8: Surface-barrier Detector Pulses Recorded 

on Film. 
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CHAPTER 4 . 

RESULTS . 

4 . 1 Hot-wire Anemomet er Results . 

4 . 1 . 1 The Ve l ocit y Fluct uat ion Di s t ribution . 

The dis t ribut i on o f the longitudi nal velocity 

fluctuations about t he mean velocit y were calculated 

directly on the computer with the program EVELD , incl uded 

in t he Appendix , after conv ers i on of t he pseudo-binary data 

to velocities . Examples o f t he r esult s of t his calculation 

are shown in Figs . 11 and 1 2 for the mean velocities of 

13 . 4 m/sec . and 29 . 5 m/ sec . resp ., together wit h the 

Gaussian dis t r i but ion having t he same s t andard deviation. 

The skewness and flatness fac t ors, 
- (- 31: 
u 3 / u 21 2 and 

U ~ / (U2)2 resp., are summari zed in Tab l e 4 . 1 and may be 

compared wit h t he values of 0 and 3 . 0 resp . for the 

Gaussian distribut i on . 

RUN NO . 

16040 

20401 

20402 

22401 

22402 

5080 

24401 

24402 

27801 

27802 

27803 

MEAN VEL . 

(m/ sec ) 

13 . 4 

13 . 4 

13 . 4 

13 . 4 

13. 4 

13 . 4 

29 . 5 

29 . 5 

29 . 5 

29 .5 

29 . 5 

TABLE 4 .1 

SAMPLE TIME 

(j..l secs ) 

180 

100 

340 

1 80 

100 

180 

100 

1 80 

100 

100 

100 

SKEWNESS FLATNESS 

-0 . 586 3.566 

-0 . 408 3.458 

-0 . 447 3.172 

-0.523 3.089 

-0 . 457 3 . 263 

-0 . 452 3.348 

-0 . 419 3.172 

-0 . 437 3 . 193 

-0.487 3.432 

-0 . 314 2 . 954 

-0 . 490 3.250 
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It is obvious that t here is a sustained deviation 

from the Gauss i an dist r ibut ion with small positive 

deviations from t he mean bei ng more likely t han small 

negative deviations . The nearly-constant value of the 

skewness at about -0 . 45 is surprising, but it will be 

shown in Section 4 . 4 . 5 t ha t t her e does not appear to be 

a systematic err or in t he data treatment which could 

cause this, other t han that discussed in Section 3 . 2, and 

it must be considered a real effect . Baldwin (17) has 

published data on skewness factors which show an increasing 

deviation from zero a t lower velocities. 

As Batchelor has pointed out (15), a flatness 

factor greater than 3 . 0 indicates a curve with a higher 

peak and wider skirts than the Gaussian curve with the 

same standard deviation i . e . very smal l and very large 

values of the random variable are more likely t han for the 

Gaussian case. Baldwin (17) has also observed that a 

flatness fact or greater t han 3 . 0 may indicate bursts of 

high amplitude turbulence . 

4 .1. 2 The Velocity Autocorrelation Function. 

The autocorrelation function on the fluctuating 

longitudinal velocity at a fixed point was evaluated on 

about 30 000 data point s on t he computer directly as 

u(O)u (t) 

U
2 

The results are shown in Figs. 13 to 16 . It is 

immediately appar ent that there are low frequency 
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components present which cause t he gradual approach t o zero 

measured in all cases, together wi t h a h i gh value for the 

turbulence intensity . As t her e appears to be a fairly 

sharp distinction between t he high and low frequency 

components, it was initially suspect ed t hat t he low 

frequency fluctuations were not a logical part of the 

general turbulence field in t he pipe and could conceivably 

be int roduced by peculiarities of t he apparatus. 

Considerable effort was t hus devot ed to t he tracing of t he 

possible cause of these components . 

It is seen from a comparison of the auto­

correlations a t the two mean velocities considered that the 

slow fluctuations are not of a cons t ant frequency . The ­

correct reproduction of a cosine wave in t he autocorrelation 

from the recording of a sinewave signal also indicates that 

no "noise" was being recorded superimposed on the signal . 

The hot -wire probe was rigidly constructed and it did not 

appear possible for vibrations to be set up in the probe 

itself. Particular care had also been taken in mounting 

the pipe t o insulate it from any source of mechanical 

vibration . 

The apparatus did not originally incorporate 

an anti-surge vessel between t he pipe and the fan, the pipe 

being coupled directly to a single-shroud centrifugal fan 

wi t h a flexible coupling, the t hrottle being placed before 

the fan: when t he presence of low frequency fluctuations 

became apparent, t he large volume vessel was installed 

with a higher capacity double-shroud centrifugal fan 

allowing greater t hrottling to smoot h any possible surging 
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introduced by the fan e The time const an t of this vessel 

based on the volumetric t h roughput and t he volume of the 

vessel was about 22 secs o and 10 secs e resp . for t he t wo 

velocities s t udied, and should t hus be adequate in 

removing velocity fluctuations wit h a frequency higher than 

that corresponding to t hese values . Thi s ins t allation 

produced a sl i ght lowering of ca . 5% of t he mean variance 

of the velocity fluct uations but had little measurable 

effect on the low frequency components in the velocity 

autocorrelation func t ion . The opening of the filter box 

on the inlet end of the pipe also produced no measurable 

effect on this function . 

It was t hus decided that the low frequency 

components of t he velocity fluctuations in the longitudinal 

direction were an ineradicable part of the turbulence 

field in the central core of t he pipe . It is possible that 

such low frequency component s have been present to a 

greater or lesser degree i n previous workers' apparatus, 

but have not been measured due to the low sensitivity of 

conventional recording t echniques to frequencies below 

about 20 Hz . The importance of the frequencies below about 

15 Hz . on the Eulerian int egral scales has been shown by 

Patterson and Zakin (29 ) in liquids in l-in . and 2-in. 

diameter pipes . It might be speculated that the slow 

longitudinal eddies are a function of the pipe geometry, 

becoming more noticeable in smaller pipes. It would have 

been interesting t o study t he velocity fluctuations in a 

20 cm . or 25 cm . diamet er p i pe, but the limited capacity 

of the availabl e fan d i d not j ustify the construction of 
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larger apparatus . 

The fluctuation i n the aut ocorrelation functions 

obtained under ostensibly identical conditions, indicates 

that the total time of recording of the signal, which 

varied from approximately 3 secs . to 10 secs. depending 

on the sample-time interval, was inadequat e to define the 

low frequency component s unequivocally; a larger capacity 

digital recording system was however not available . As 

noted in Section 1 . 3, Frenkiel and Klebanoff (31) found 

that in their work behind grids, also with a digital 

sampling technique, a recording time of 12.5 secs. was not 

sufficient to establish a constant aut ocorrelation function. 

4.2 The Tracer Dispersion Results. 

The dispersion of the radioactive tracer material 

was measured between two s t a tions with varying distance 

between them, to obtain values of the mixing coefficient 

and mean velocity as a function of the separation distance . 

The first detector was situated 15 cm. from the injection 

point in the majority of runs: tests with greater separation 

from the injection point showed no significantly different 

results. The pulses recorded on the film were visually 

counted and summed over 5 unit time intervals of 0.0002 secs. 

to give the number of counts per millisecond as a function 

of time. This resulted in a series of digital values 

randomly distributed about t he smooth concentration curve. 

This smooth curve was estimat ed by filtering the data with 

the quadratic dynamic programming filter which has been 

used previously for smoothing radioactive decay "noise" (54) . 
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The filter strength was adjusted until a good fit appeared 

to be obtained on the digital values. A statistical 

criterion on the quality of fit would have been meaningless 

as a filter strength of zero causes the filtered curve to 

pass through every data po int . These filtered curves were 

then used in the regression program: an estimate was first 

obtained by the method of moments of the two parameters 

U and E to be used as starting values in the regression, 

but this was a matter of convenience only and ensured 

fast convergence . Any reasonable starting values could 

have been chosen and would have resulted in convergence: 

the method of moments will thus not be discussed here. 

Examples of the inlet and outlet pulses at the 

two velocities together with the regressed fit obtained 

are shown in Figs. 17 to 24 . The greater dilution of the 

Krypton at the higher velocity resulted in curves which 

were not as well-defined as those obtained at the lower 

velocity . The majority of the dispersion measurements 

were thus made at the lower velocity although a series 

of measurements was made at the higher mean velocity for 

large separation of the two detection stations to obtain 

an estimate of the asymptotic value of the mixing coefficient. 

A more concentrated sample of Krypton than that available 

in these experiments would probably allow more accurate 

measurements at higher velocities. 

The values of U and E obtained from the regression 

are presented in Tables 4.2.1 and 4 . 2 . 2, together with the 

Peclet number calculated on these values. It is seen that 

there is a wide spread in the values of the mixing 
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TABLE 4 . 2.1 

REGRESSED VALUES OF U AND E FROM DISPERSION DATA . 

Probe SeEaration(m) Run No . U (m/sec) E(m 2 Lsec) Pee let No. 

0.457 11693 13.95 0.0126 169 

11694 13.30 0 . 0148 137 

11593 13.62 0.0113 184 

11494 12.90 0.0096 205 

11493 13.00 0.0151 131 

11692 (X) 12 . 65 0 . 0062 311 

11594(X) 13 . 47 0.00186 1105 

11492(X) 12.50 0.00195 978 

0.610 19303 13.93 0.0191 Ill. 2 

19302 13.03 0.0155 128 

19301 13.02 0.0122 163 

25302 13.17 0.00465 432 

25304 12.42 0.0201 94 . 1 

25307 14.10 0.00957 225 

18303 (X) 11.54 0 . 00438 402 

25301 (X) 13,23 0.0935 21. 6 

0.762 27503 14.10 0.0183 117.4 

22502 13.62 0.0142 146 

3604 13.03 0.0289 68.7 

3605 13.28 0.0265 76.5 

3606 12.97 0.0223 88.7 

3607 13.37 0.0149 136.8 

3608 13.78 0.0250 84.0 

3609 13.03 0.0209 95.2 

3611 13.89 0.0102 207 

3601(X) 13.30 0.00781 260 

3602 (X) 13.32 · 0.00837 242 

3603(X) 13.77 0.00697 301 

3610 (X) 12.57 0.00772 248 
28501 (X) 12.32 0.0307 61. 2 
28503 (X) 13.00 0.0391 50.7 
27502 (X) 12.63 0.0306 62.9 

22501(X) 13 . 58 0.0013 1593 

18504 (X) 13.88 0 . 00158 1340 



88 

TABLE 4 . 2 . 1 (contd . ) 

Probe Separation(m) Run No. U (m/sec) E(m2 /sec) Peclet No . 

0 0913 11792 12 . 80 0 . 0132 147 . 8 

11793 13 . 12 0 . 0221 90.5 

11794 13 . 04 0 . 0214 92 . 9 

11796 12.96 0 . 0108 183 

11797 13 . 28 0 . 0140 154 . 2 

11798 13.60 0.0139 149.2 

11799 13.10 0.0254 78.6 

11791(X) 13.04 0.00344 578 

11790(X) 13.62 0.00715 290 

11795(X) 13 . 18 0.0427 47 . 0 

1. 37 11301 13.63 0.0284 73.2 

10301 14.20 0 . 0192 112.7 

5301 14 . 03 0.0255 84.0 

5302 13 . 92 0.0149 142 . 4 

10303 (X) 13.52 0.0408 50.5 

10306 (X) 13.78 0 . 0730 28.8 

9304 (X) 12 . 82 0.00279 700 

1. 675 29602 13.23 0 . 0183 110.2 

29603 13.43 0 . 0132 155 . 0 

29604 13.28 0.0160 126.5 

29608 13.02 0.0198 100 . 0 

29609 12.97 0.0234 84 . 5 
29610 13.32 0.0280 72.5 

29611 12.85 0.0172 114 . 0 
29601 (X) 13.52 0.00446 452 
29605(X) 13.37 0.00688 296 
29606 (X) 13.40 0.00223 917 
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TABLE 4 02 . 2. 

REGRESSED VALUES OF U AND E FROM DISPERSION DATA . 

Probe Separation = 1 . 675 m. 

Run No . U(m/sec ) E(m 2 / sec) Pec1et No. 

10702 28 . 6 0 . 0811 53.8 

10703 29.2 0 .1813 24 . 3 

10704 28 . 6 0 . 0302 144.3 

10705 30 . 1 0 . 0670 68.5 

10706 30.0 0 . 0762 60.0 

10707 29.8 0 .1022 44.5 

10709 30.1 0.0672 68.3 

10712 29.0 0.0250 177.0 

10701 (X) 28.7 0 . 0154 284.0 

10713(X) 30.1 0.1817 25.2 

TABLE 4.2.3 

U AND E FROM REGRESSION ON IMPULSE RESPONSE. 

Probe Separation(m) U(m/sec) E(m2 /sec) Pec1et No . 

0.457 13.35 0.0154 132 

0.610 13.30 0.0187 108 

0.762 13.42 . 0.0220 83.0 

0.913 13.13 0.0186 108 
1. 370 13.96 0.0228 93.4 
1. 675 13.18 0.0216 93.0 

1. 675 29.30 0.0787 56.7 

-. 
'':- .. . t-'" 
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coefficient obtained . There is little doubt t hat this is 

due to the random nature of t he slow fluctuations found in 

the hot-wire anemomet er measurement s whi ch make it 

pract ically impossible to obtain r eproducible dispersion 

measurements in a longitudi nal directi on from pulse 

measurement s over distances shor t enough not to be much 

affected by the velocity profile in t he pipe . It was, 

however, decided to t ry t o obtain a measure of the mean 

effect of the dispersion produced by these large eddies 

by averaging the impulse responses of those results which 

had apparently been affected by these eddies . Figs. 25 

and 26 show examples of the impulse responses on which 

these calculations were performed . Cases such as curve 1 

in Fig . 25 were excluded from consideration, as were all 

those cases in Tables 4 . 2 . 1 and 4 . 2 . 2 where the run number 

is followed by a cross, usually due to a value of U or E 

significantly deviating from t he average behavior. It 

would be desirable to have a large number of samples so 

that the large deviations would, on average, contribute 

little to the mean, but as the number of samples was limited, 

the above treatment was applied . This method of data 

handling may be compared with t he method of determining 

the rate of dispersion of a tracer material by the single­

release method in which one particle is released at a time, 

the position being plotted a t subsequent time intervals 

and an average displacement about the mean being obtained 

over many individual part icle releases . 

A least squares regression was performed on the 

average impulse response for each value of the probe 
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separation to obt ain values o f U and E i n fitting t he 

axial mixing impulse r esponse function to t his curve 0 The 

results o f t his procedure are shown in Figs . 2 7 to 30 and 

Table 4 . 2 . 3 . The quality of the mean impulse response 

obtained is perhaps surprising, cons i dering the fairly 

wide scatter of t he indivi dual data and t he relat ively 

small number of sampl es . It appears t hat t he mean mixing 

coefficient obtained from this procedure and p lotted in 

Fig . 30 has reached an asymptotic value for t he large 

probe separations. A small correction is s t ill necessary 

for the non time-linear behavior of t he displacement 

variance curve: using t he mean mixing coefficients and 

velocities obtained for eac h value of t he probe separation 

~X, the displacement variance was calculat ed from the 

expression ~X 2 = 2E · ~t where ~t = ~X/U . Provided that 

the time taken for the pulse t o pass t he measurement . 

stations is small compared with t he time of flight, and it 

is kept . in mind t hat the mixing coefficient obtained is an 

average value describing t he mixing bet ween the t wo probes, 

these paramet e rs describe t he dispersion quite well and may 

be plotted as shown in Fi g o 31 . The s traight line fitted 

to t his data with a l eas t squares crit erion gives a slope 

of E = 0.0251 m2 / sec . and a Peclet no . of 81 . 4 for the 

mean velocit y of 1 3.4 m/sec o The average impulse response 

a t a mean velocit y of 29 . 5 m/sec. for large probe 

separation gav e a Pec l e t no. of 56 .7 which, when corrected 

as above, woul d yield a value of about 50 . 
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4 . 3 Use of t he Velocity Dist ribution to Predict Dispers ion: 

Philip 's Theory . 

The Lagrangian aut ocorrelat ion function proposed 

by Philip was calcula t ed by an i t erative procedur e wit h the 

program EITERo Alt hough t he t urbulence field in the 

present case was known to be far from t he ideal case for 

which this model was derived, the met h od was applied t o 

the longitudina l Eulerian autocorrelation function to 

predict a Lagrangian autocorrelation function and hence a 

t urbulent axial mixi ng coefficient E, which was used to 

evaluate a Peclet no . Ud /E . The values are summarized 

in Table 4 . 3 t ogether with t he experimental Peclet number 

from the dispersion measur ement s . 

Run No . 

20402 

20401 

22401 

16040 

22402 

5080 

24401 

24402 

27801 

27802 

27803 

TABLE 4 . 3 

Unfiltered Hot -wire Anemomet er Data . 

Veloci t y Intensit y Peclet No. NPe 

(m/sec ) 

13 . 4 0 . 0386 65.7 

13.4 0 . 0381 50.4 

13 . 4 0 . 0413 25 . 5 

13 . 4 0.03 75 85 . 0 

13 . 4 0.038 7 44 . 0 

13 . 4 0 . 0362 53 .7 

29 . 5 0 . 0339 56 . 1 

29 .5 0 . 03 36 83 . 2 

29 . 5 0 . 0302 126.5 

29 . 5 0 . 0364 60 . 9 

29 . 5 0 .0338 102.5 

Experimental NPe 

I 
81. 4 

1 
r 

N 50 

1 
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4.4 Filtering of Fluctuating Velocity Data. 

The presence of t he slow velocity fluctuations, 

which do not appear t o be a consistent part of the spectrum 

of eddies one might expect in pipe flow, results in an 

autocorrelation function which has an initial sharp fall 

followed by a slow approach to zero . It might be expected, 

and various workers have assumed, that the Lagrangian and 

Eulerian autocorrelation functions would not be of a 

radically different shape . This has been shown (16,17) 

to be roughly true for dispersion in a radial direction . 

It would thus be of interest to remove the low frequency 

fluctuations from the recorded hot-wire anemometer 

longitudinal velocity dat a to obtain an Eulerian auto­

correlation without the influence of the disturbing slow 

fluctuations . The criterion t o be applied in this 

procedure will be discussed in t he following sections . 

4.4 . 1 The Quadratic Dynamic Programming Filter QDPF. 

The possibili t y of filtering the fluctuating 

longitudinal velocity data to remove the low frequency 

components is an attractive advantage offered by the 

method of digital recording . The filtering may be 

performed on t he original set of data with various filter 

strengths to meet the required criterion and give 

statistical dat a which may be compared with that determined 

by previous workers wit h analog recording techniques. The 

data, with appropriat e fil t ering, may also be used to 

approximate the radial fluc t uations which, being confined 

by the pipe walls, will not contain the same low frequency 
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components 0 

The t wo t ypes of digit al fil t e r examined were 

both low-pass filters which were used with high filter 

strengths to establish a moving baseline which was then 

subtracted from the instantaneous value of t he velocit y . 

The first was t he running or shi f ting mean filter: t he 

second t he quadratic dynamic programming filter QDPF (54,55). 

The latter fil t er produces a smoot h set of data Si from a 

noisy set R. by minimizing t he function 
1 

F = Y [(R. - S. )2 + E(S . 2 - 2S . 1 + S .)2] . 1 1 1 1- 1- 1 
1= 

where M is the number of points . The second term 

represents the effect of the second derivative of the 

curve which is controlled by the filter s t rength E. The 

minimization is performed with dynamic programming (55) . 

The band pass of this filter is unknown and a method of 

trial and error was adopted to determine the filter strength 

necessary to achieve the desired result . 

A comparison is shown in Fig . 32 qf the auto-

correlation functions determined on the same set of raw 

data after filtering with the two types of filter to give 

the same value for the turbulence intensity of 0 . 0314. 

As the quadratic dynamic programming filter provided a 

direct . control on t he second derivative of the curve, it 

was felt that t his resulted in a better-defined control 

on the frequencies passed by the filter. This filter was 

thus considered to be preferable t o the running mean 

filter, a lthough practical l y t here appears to be little 

difference in their effect . 
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Fig . 33 shows t he base curv e obtained by fil t ering . 
the same dat a wit h t he dynamic programming fil t er wit h a 

filter s t rengt h o f 50 000 and it i s obvious that quite 

s t rong fil t ering is t aki ng p l a c e o F i g . 34 represent s t he 

effect on t he aut ocorrel a tion function of filter i ng the 

fluc t uating v elocity data with QDPF with various fil t er 

s t rengths . The shape of the unfilt ered curve in this 

figure may be no t ed as it shqws clearly the initial 

qui t e smooth decrease whi ch i s followed by the slower 

approach to zero . 

4 . 4 . 2 Dispersion in a Radial Direct ion . 

The Peclet number for the tur bulent dispersion 

of a tracer material in a radial direct ion under conditions 

comparable with those of t he present invest i gat ion, has 

been measured by many worker s as discussed in Chapter 1. 

The turbulent intensit y (V 2 ) ~/U in the radial direction 

has been established from t hese measurements (17,18) as 

being approximately 0 . 0284 . The comparison of a predicted 

Peclet number with t he experimentally observed values 

in the radial direction was t hus an attractive possibility. 

The hot-wire anemomet er dat a r ecorded was thus filtered 

to remove t he low f r equency components unt il a turbulence 

intensit y of about 0.0284 was obt ained . These Eulerian 

autocorr elat ion functions were t hen used wi t h Philip's 

method t o predict r adi a l Peclet numbers which are presented 

i n Table 4 . 4 . 2 t oget her with values showing the sensitivity 

of t he Peclet number t o t he fi lter i ng operation . 
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TABLE 404 . 2 

Run No . Velocity Int ensity Npe Previous radial Npe 

(m/ sec ) (author ) 

20402 1 3 04 0.0285 940 750 (Towle & Sherwood) 

22401 13 . 4 0 . 0286 822 910 (Baldwin ) 

16040 13.4 0 . 0282 928 1200 (Flint et a1) 

22402 13 . 4 0 . 0285 915 630 (Ma1enge & Gosse) 

20401 13 . 4 0 . 0283 928 852 (Becker et a1) 

5080 13.4 0 . 0284 905 760 (Boothroyd) 

24401 29 . 5 0 . 0285 470 620 (Groenhof) 

24402 29 . 5 0 . 0284 609 

27801 29.5 0.0281 738 

27802 29 . 5 0 . 0284 61 7 

27803 29.5 0 . 028 3 630 

Sensitivity: 

27803 29 . 5 0 . 02 76 69 7 

27803 29 .5 0 . 0286 595 

27803 29 . 5 0 . 0283 630 

20401 13 . 4 0 . 0311 665 

20401 13 . 4 0 . 028 7 886 

20401 13 . 4 0 . 027 7 1015 

20401 13 . 4 0 . 0283 928 

It may be noted t hat the previously reported 

radial Peclet numbers, although quite scattered, appeared 

to show no significant dependence on the mean velocity or 

Reynolds number at which they were measured. 

From the tab l e it is apparent that Philip's 

method predict s lower Peclet numbers at the higher velocity, 

although all t he values lie in t he range previously reported. 

T~e agreement among t he values at t he lower velocity is 

remarkable considering the method used to obtain the 

Eulerian data . The Lagr angian autocorre1ations predicted 
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for each of the velocit ies are shown in Fig . 35. 

4 04 . 3 Dispersion Predi cted with Baldwin's Data. 

The dat a obt ained at a mean centerline velocity 

of 29 . 5 m/sec. corresponds t o a Reynolds no. of 285 000 

and should thus be directly comparable with the data 

obtained by Baldwin at 72 06 ft/sec . mean centerline velocity 

in an 8-in . diameter pipe (17) 0 Fig . 36 shows the auto­

correlation curve obtained by Baldwin with a conventional 

analog recording technique on a correlator which had a 

frequency response flat wi t hin ±3 dB from 30 to 4 000 Hz., 

compared with the autocorrelation curve obtained on the 

present data fil t ered to give the same intensity of 

turbulence as that measured by Baldwin . This comparison 

is perhaps not strictly justifiable as Baldwin's axial 

intensity data was measured with a root mean square meter 

having a flat response ±3 dB from 5 to 500 000 Hz., and 

would have included the effect of lower frequencies,if 

present,than were recorded or correlated. The difference 

between the two curves is, however, not very large although 

there is a marked difference in the amplitude at small time 

lag . The Eulerian integral scales are, however, 

approximately equal. 

Philip's method of prediction of the Lagrangian 

autocorrelation func t ion was thus applied to Baldwin's 

longitudinal Eulerian data obt ained at four mean velocities, 

the autocorrelation data being read directly from the 

reported curves . The resulting Peclet numbers as a function 

of mean velocity are present ed in Table 4.4 . 3 . 
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TABLE 4 . 4 . 3 

Philip's Theory wit h Baldwin's Data. 

Mean Velocity (ft/sec o) Peclet No . 

72 06 484 

106 397 

135 326 

160 258 

It is seen t hat t he predict ed value shows a 

steady decrease with increasing mean velocity. On the 

basis of the results in Table 4.4.2 it would appear that 

this result is to be expect ed and that Philip's method 

of predict ion is more accurate at low velocities. The 

results present ed in t he following section might, suggest, 

however , that t he p ossibl e presence of ,low frequencies 

which were sharply att enuat ed in Baldwin's processing 

technique could a ccount for a decrease in Peclet number 

with increasing v elocity when low frequency components 

are less likely t o be present. This is, however, thought 

t o be less likely alt hough a combination of the two effects 

should not be excluded . 

4.4 . 4 Predicted Axial Dispersion on Filtered Data. 

The second criterion on the filtering technique 

applied to the hot-wire anemometer data was to filter the 

velocity fluctuations until t he initial smooth fall of the 

autocorrelation curve became t angential to the axis as 

shown in Fig . 37 . This was a fai rly well-defined point 

on the time axis, as may also be seen from curves 1 and 2 

in Fig . 34 . I t might be expect ed that this would then 
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represent t he behavior of t he autocorrelation function in 

t he absence of t he d istur b ing low frequency fluct uations . 

The Peclet numbers calcu l ated by Philip's method 

on t his dat a a re shown in Table 4 . 4 04 t oget her with t he 

turbulence intensities obt ained . 

TABLE 4 . 4 04 

Filtered Hot-wire Anemometer Data . 

Run No . Velocity (m/sec . ) Int ensit y Predicted Npe 

22401 13 . 4 0 . 0346 353 

22402 13 . 4 0 . 0337 384 

20401 13.4 0 . 0341 369 

20402 13. 4 0 . 0349 329 

16040 13 . 4 0 . 0346 349 

5080 13.4 0 . 0332 385 

24401 29 . 5 0.0298 343 

24402 29 . 5 0 . 0310 334 

27801 29 . 5 0 . 0286 387 

27802 29.5 0 . 0316 336 

27803 29.5 0.0314 375 

It is seen that t here is a very good correspondence 

between the Peclet numbers a t bot h velocities. A comparison 

of t he individual Pec l e t numbers in Table 4.2 . 1 with these 

predicted Peclet numbers shows t hat t here are quite a few 

values which lie around the predicted average value of IV 350, 

although i t is not poss i ble t o obtain conclusive proof from 

the dispersion data t hat t h i s would be the value obtained 

i n t he absence of t he l ow frequency fluctuations, if it 

were ever possible to eliminate them in a higher capacity 

apparatus. Some support for t his value is found in the 
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work of Laufer in a t wo -dimensional channel (57) where 

Eulerian t wo-poin t space correlations were measured . Laufer 

found that the Eulerian longit udinal i n t egral scale 

calculat ed on this data was about 3 t o 4 times t hat in the 

lateral direction, compared with t he value of 2 times for 

the isotropic t urbulence case (4 ) . Hinze (49) has also 

inferred this approximate relation from Laufer's 

measurements on the kinetic energy and d issipat ion in 

pipe flow to postulate the presence of large elongated 

eddies in the core of pipe flow (Hinze,p . 535) . 

4 . 4.5 Filtered Velocity Fluctuation Distribution. 

The distribution of the velocity fluctuations 

about the mean were recalcul a t ed after filtering the slow 

fluctuations and t he curves are shown in Figs . 38 and 39, 

together wi t h t he Gaussian curves having the same standard 

deviation determined after filtering . The approach of the 

higher wave-number component s t o a Gaussian distribution 

is seen to be quite good, although the flatness factors 

were still consistently great er than 3 . 0 . 

4 . 5 The One-Dimensional Energy Spectrum . 

The function El (n) is defined in the Appendix. 

The relationship between the autocorrelation function 

~ (t) and E1 (n ) shown first by Taylor (47): 

El(n) = 4u 2 f: ~(t)cos ( 2nnt) dt 

was used to calculate the "normalized" spectrum function 

El (n )/ {u 2
). I t was found t hat direct numerical evaluation 
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on about 25 point s making up t he autocorrelation curve 

produced hi ghl y erratic r esults depending on t he sample 

int erval chosen . I t was decided to approximate t he 

autocorrel ation curve by a series of l inear t ime-dependent 

segment s bet ween t he d i gital values; t he determination 

of t he equations of t hese s traight -line segment s was 

easily performed on t he comput er , allowing an analytic 

evaluation o f t he integral over each segment for any 

particular frequency . The comput er program FRQAU is 

included in the Appendix . 

Fi g . 40 represents t he spectrum function evaluated 

on the autocorrelation functions determined from the 

unf i ltered data for the two mean velocities measured . 

At higher f r equencies i nstabilities develop which mask the 

behavior of these curves i n t his r egion . The low frequency 

end of the spectrum is more s table and confirms the idea 

of low frequency fluctuations being superimposed on the 

spectrum: this is particularly noticeable at the lower 

velocity o 

Fig o 41 shows t he effect of doubling the sample 

interval on t he autocorrelation curve which, besides 

smoothing the curve a t low frequencies as expected, causes 

instabilit ies to develop at lower frequencies . 

Fi g . 42 shows t he effect on the energy spectrum 

function of fil t ering the hot-wire anemometer data so that 

the autocorrelation curve just became tangential to the 

axis . The removal of t he l ow frequency components is 

obvious . 

Fig . 43 shows t he effect on t he spectrum 
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function of t he sample i n t erval i n real t ime during the 

recording of t he hot -wire s i gnal . As t he region of 

int erest is a t t he h i gh frequency end of the spect rum, 

the low frequency component s wer e f i l t ered from t he 

velocit y dat a befor e t he aut ocorrelation was performed, ' 

and t he spect rum cur ves in Fig . 43 wer e calculated on 

these values . The small difference i n these cur ves shows 

t hat there is appar ently l i ttle aliasing of high 

frequencies by t he dig i ta l sampling t echnique . This was 

also , perhaps more directly , obvious from the autocorrelation 

curves on wh i ch Fig . 43 was based . Al so shown in Fig . 43 

is the line of slope _5 / 3 which corresponds to the 

dependance of the spect rum function on t he frequency n 

according to Kol mogor ov ' s spect rum law in the inertial 

subrange 

El (n ) = const. · n- 0/3 

The agreement -with this law is seen to be quite 

good. 
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CHAPTER 5. 

CONCLUSIONS . 

The conclusions which may be drawn from the 

hot-wire anemometer and t racer dispersion measurements made 

in this investigation in the central core of air flowing 

through a pipe may be summarized: 

1 ) The measurement s made a t t wo mean velocities with 

the hot-wire anemometer with a digital recording technique 

showed that the longit udinal fluctuating velocity spectrum 

extends to much lower frequencies than have previously 

been measured wi t h conventional analog recording techniques. 

An examinat ion of the energy spectrum function and the 

autocorrelation curves obtained on the velocity fluctuations 

indicate that there are low frequency components 

superimposed on t he turbulence field. The distribution of 

the velocity fluctuations about the mean are shown to 

deviate from the Gaussian dis t ribut ion which is normally 

assumed for this case, although it is considered probable 

that the short time of the t o t al recording had a deleterious 

effect on this measurement. 

2) The digital filtering of the velocity fluctuation 

data to remove fluctuations below any desired frequency 

has been shown to be feasible with the quadratic dynamic 

programming fi lter . It has also been shown that the 

instantaneous velocity fluctuations in the inertial subrange 

agree well wi t h t he Kolmogorov spectrum law. 

3) Measur ements made of the longit udinal dispersion 

of radioactive Kr ypt on-8S gas gave Peclet numbers very much 
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smaller than t hose previous l y report ed f o r dispersion in a 

radial direc tion . These l ow Pecl e t numbers are however 

not surprising in t he presence o f t he large, slow eddies 

known t o be pri mari l y r espons i b l e fo r causing scalar 

dispersion. The majorit y o f t he dispers ion measurements 

were confined t o t he lower mean velocity as less dilution 

of t he tracer resul t ed in well-defined pulse shapes. The 

values of t he mi xing coeff i c i ent obt ained with a regression 

on pairs of pulses, alt hough indi vidually fairly scattered, 

appeared to approach an asympt o t ic va l ue for increasing 

separation of the two de t e cto r s t a t ions . The averaging 

t echnique used t o obt ain an average mixing coefficient for 

each separation resulted in a Peclet number to which a 

short-t ime correct ion was applied . The Peclet number thus 

obt ained repr esent s t he average dispersion produced in a 

longit udinal direct ion . 

4) The me t ho d sugges t ed by Philip (4) for the 

est imation of t he Lagrangian autocorrelation function from 

t he Eulerian measurement, when applied t o t he unfiltered 

hot-wire anemometer dat a, gav e a Peclet number slightly 

lower t han t ha t measured i n t he d i spersion measurements, 

al t hough t he agreement i s p r obabl y sat isfactory for a 

working estimat ion . 

The met hod appl i ed t o t he ho t -wire data filtered 

t o give a t urbulence i n t en s ity equal t o t ha t found by 

p r evious worker s i n r adial scal ar dispersion measurements, 

predict ed a Pecl e t number v ery close t o t hat measured, the 

val ue at h i gher ve loci t y be i ng slightly lower. This 

t endency was also found when Peclet numbers were predicted 
\ 
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from Baldwin's (17) longitudinal velocity autocorrelation 

curves . The met hod was also applied to t he present hot-wire 

data filtered to remove the disturbing low frequency 

fluctuations. It was found that t here were individual 

Peclet numbers obtained in t he tracer dispersion measurements 

which were distributed around t he value of NPe = 350 found 

by this method, although full justification is not possible. 

5) It may be postulated that t he slow, longitudinal 

fluc t uations quantitatively examined here, have also been 

present in previous investigations to a greater or lesser 

extent and may partially account for the discrepancies in 

radial dispersion measurement s discussed by Groenhof (28). 
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APPENDIX I 

Possible Sources of Error. 

There are a number of possible sources of 

error in the experimental measurements which deserve 

consideration: 

1) The hot-wire anemometer readings were not 

corrected for the finite length of the sensitive element, 

which affects the spatial resolution obtained (48,49). 

This error affects only the high frequency components 

and at the comparatively low Mach numbers studied, it 

is not expected that the wire length of approx. lmm. 

would introduce much error. At the lower velocity 

of 1 3 . 4 m/sec. and assuming a maximum frequency of 

5000 Hz., this corresponds to an eddy size of 3 mm. 

The main interest in the present investigation was, 

further, the correct representation of the large eddies 

which produce scalar dispersion. 

2) It has been found that vibration of the prongs 

of the hot-wire anemometer can introduce spurious 

signals at high velocities above 70 to 100 m/sec. (48,49). 

At the velocities examined this should not be the case. 

Three separate probes were constructed with prong lengths 

projecting from about 8 to 12 mm. from the ceramic 

insulator: no marked difference was observed in the slow 

fluctuations recorded. The probes were also securely 

fastened to the wall of the pipe with a packing gland 

and a bracing clamp about 10 cm. from the wall of the 

pipe so that vibration of the whole probe was not possible. 
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3) It has been assumed, in the conversion of the 

fluctuating hot-wire anemometer voltage to velocities, 

that the instantaneous heat transfer from the wire 

may be described by the same expression as that describing 

steady-state heat transfer. It is not known whether 

this assumption is justified, although Hinze(49,p12l) 

discusses some evidence for it. 

4) The correction for molecular diffusion to the 

mixing coefficient obtained in the tracer measurements 

was found to be negligible if it may be assumed that the 

interaction term discussed in Section 1.3 is small. The 

molecular diffusivity of Krypton-aS in air is approx. 

1.2.10-5 m2 /sec. and so no correction was applied. 

5) The interference in the turbulent dispersion 

of the tracer material caused by the first detector 

is not directly estimable. Indirect evidence is provided 

by the relatively smooth behavior of the curve in 

Fig. 31 that the effect is small. One might expect, if 

this factor were significant, that larger separation 

between the detectors would result in a lower mean mixing 

coefficient as the turbulent dispersion became relatively 

more important. A series of measurements was also made 

with the small detector at the upstream station replaced 

by a larger detector mounted on an aerofoil section 

identical with the downstream detector, with a probe 

separation of 0.762 m. The results obtained lay in the 

same range as those in Table 4.2.1. It is thus assumed 

that, although this effect is probably measurable, it is 

small compared with the turbulent dispersion. 
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APPENDIX 2. 

DEFINITION OF TURBULENCE TERMS. 

The book by Hinze (49) provides a good back­

ground discussion of the subject of turbulent flow, 

together with the measurement techniques available at 

that time (1959) . 

Homogeneous Turbulence: implies that the statistical 

evaluation of the structure of the turbulence field is 

not affected by a linear space transformation. Turbulence 

may be homogeneous in one coordinate direction only, 

as in the longitudinal direction in pipe flow. 

' Isotropic Turbulence: implies that the statistical 

parameters of the turbulence are independent of the 

angular positioning of the coordinate axes at any point. 

Considering the central core of flow through a pipe, the 

origin of the axes is taken as moving with the mean 

velocity U with instantaneous fluctuations u about the 

mean in the longitudinal direction, and v and w in the 

orthogonal transverse directions. Isotropy then implies 

equality of the statistical behavior of u , v and w, 

including u 2 = v 2 = w2 and uv = ' VW = uw 

mean is taken in time. 

where the 

Stationary Turbulence: implies time stationarity 

and indicates that the statistical parameters evaluated 

in a time interval are independent of the time origin. 

Intensity of Turbulence: This is usually defined 

as the root mean square of the fluctuating velocity 

component in any direction. As used in this investigation 
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it is defined as the ratio of the rms. velocity 

fluctuation in any direction to the mean centerline 

velocity U in the pipe. e.g. u 2 /U. 

Eulerian Correlation Coefficient ~: This function is 

defined in a general form (in Cartesian coordinates) by: 

~(x,y,z,t) = u(O,O,O,O)u(x,y,z,t) 

the mean being taken in time. The measurements made in 

this investigation correspond to the Eulerian single-

point time autocorrelation which follows from the above 

expression with x=y=z=O. 

Lagrangian Correlation Coefficient RL : This function 

is obtained by following one particular fluid particle p 

on its meandering path in the turbulence field, recording 

its velocity as a function of time and evaluating the 

function below, where the mean is taken over many 

individual particle releases: 

= 

Integral Scale of Turbulence: This is the area 

under the Eulerian or Lagrangian correlation curve. 

It may be defined as an integral length scale L or an 

integral time scale T, which for the Eulerian case 

implies use of the correlation functions ~(x,O,O,O) 

and ~(O,O,O,t) resp. The Lagrangian integral scales 

are given by uTL and TL resp., where u is the Lagrangian 

rms. velocity fluctuation. 
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Turbulent Spectrum Function El(n): This is 

evaluated on t he single-point fluctuating velocity 

measurements made in the time-stationary turbulence field. 

El(n)dn is then the contribution to the mean square 

velocity fluctuation u 2 by the frequencies between 

nand (n+dn), and satisfies the relationship: 
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APPENDIX 3. 

PRINCIPAL SYMBOLS. 

c - Scalar concentration 

d - Pipe diameter 

D - Molecular diffusivity 

E - Turbulent mixing coefficient 

El - One-dimensional spectrum function 

H - Laplace transform of impulse response: 
units as defined. 

I - Voltage from hot-wire anemometer 

In - Intensity of turbulence 

L - Integral length scale 

n - Frequency 

(kg/m 3 
) 

(m) 

(m2 /sec) 

(m 2 /sec) 

(m 2 /sec) 

(V) 

(-) 

(m) 

(Hz. ) 

NNU - Nusselt no. for heat transfer from hot-wire (-) 

Npe - Peclet no. Ud/E 

NRe - Reynolds no. Udp/~ 

(-) 

(- ) 

P - Probability function (-) 

R - Correlation coefficient (-) 

r - Radial displacement coordinate (m) 

s - Particle displacement from mean position (m) 

t - Time (secs) 

T - Integral time scale (sees) 

u* - Friction velocity in Blasius equation (m/sec) 

U - Mean longitudinal velocity (on centerline 
unless otherwise stated) (m/sec) 

u 

v 

w 

X 

- Instantaneous longitudinal velocity 
deviation from the mean 

- Instantaneous vertical velocity 

- Instantaneous horizontal transverse 
velocity 

- Longitudinal displacement of tracer 
about mean 

(m/sec) 

(m/sec) 

(m/sec) 

(m) 
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x 

y 

z 

<5 

8 

~ 

p 

T 

'T: w 

w 
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- Vertical displacement of tracer about mean (m) 

(m) 

(m) 

(m) 

- Longitudinal displacement 

- Vertical displacement 

- Horizontal transverse displacement 

- Dirac delta function 

- Probability density function 

- Distance variable (m) 

- Density (kg/m 3 ) 

- Time variable (secs) 

Wall shear stress in Blasius equation (kg/m 2 sec) 

- Vorticity of turbulence (sec - 1 ) 
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APPENDIX 4. 

COMPUTER PROGRAMS. 

These were written in Fortran IV for the 

IBM 1130 computer . 

1. The Fluctuating Velocity Distribution. 

The linking between the main programs XBCDT, 

EXVDT and EVELD, with the subroutines EVCON, QDPF and 

BREAD, is shown below. The program VPLTF was a plotting 

routine for a graphical output and will not be included 

here. 

XBCDT -call link~ EXVDT -call link~1 EVELDI-call link 

BREAD EVCON ~IVPLTFI 

QDPF 

The binary-reading subroutine BREAD read the 

pseudo-binary data from the cards and this was stored on 

disk by XBCDT. A link to EXVDT was followed by conversion 

of the raw data to velociti es with EVCON and subsequent 

filtering, if required, by the quadratic dynamic 

programming filter QDPF. A link was then performed to 

EVELD for the evaluation of the velocity distribution. 

Input Data EXVDT: 

EFILT - filter strength for QDPF if filtering is 

required. 

Input Data EVCON: 

Argument list: N,LF1,LF2,LPT1,LPT2,VCAL,V,L 

VCAL - calibration velocity 

CCAL - DC voltage at calibration velocity 

COGAL. - DC voltage at zero velocity 
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AMP - voltage amplification factor 

VSUB - mean velocity (=calibration velocity) 

TOT - facility for reading in mean of binary counts. 

If TOT is read as 0.0, the value of TOT is 

determined in the program. 

N - total no. of velocity samples read by BREAD. 

LFl - voltage fluctuation file 

LF2 - velocity fluctuation file 

LPTl - file pointer for LFl 

LPT2 - file pointer for LF2. 

Input Data QDPF: 

Argument list: S,R,M,EFILT,Fl,THETA 

S - vector of reals through which smoothed sequence 

is returned 

R - vector of reals supplying raw data to subroutine 

M - number of elements to be filtered 

EFILT - vector of reals supplying filter strength to 

subroutine. 

Fl - final value of the function F 

THETA - not used 

The first and second values of the smoothed 

data must be provided in the calling program. 

This program is a Library Program in the 

Dept. of Chern. Eng., University of Natal. 

Input Data EVELD: 

NC - no. of points on which histogram is determined. 

VAR - variance of velocity fluctuations (from 

autocorrelation program) 

NPAR - dummy variable not used 

NAME - run no. 
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BREAD is a University of Natal Computer Centre Library 

Program. 

2. The Autocorrelation Programs. 

The linking of these programs is shown below: 

XBCDT -call 1ink~ EXVDT -call 1ink~ CQDTN -call link 

BREAD EVCON CQDRM ~ CQHED 

QDPF CQCOR CQRGE 

CQGPH 

The programs up to CQDTN are the same as for the 

velocity distribution calculation. CQDTN calls subroutine 

CQDRM which subtracts either the running mean or a 

constant mean from the data: control then passes to 

subroutine CQCOR which calculates the correlation. 

CQHED is the control program for a plotting sequence 

which uses subroutines CQRGE and CQGPH. These six 

programs CQDTN, CQDRM, CQCOR, CQHED, CQRGE, CQGPH are 

Library Programs in the Dept. of Chern. Eng., Univ. of 

Natal. 

3. The Non-linear Regression on Pulse-test Data. 

The linking of these programs is shown below: 

RGDTF -call 1ink~ DECNF -call 1ink~ PLTF 

QDPF LBREG 

CQCRT 

SMSQF 

CQRGE 

CQGPH 

The main program RGDTF reads the pulse-test 

data from cards and filters the data to give a smooth 

curve. A link is performed to DECNF which calls the 

subroutine LBREG which performs a Law and Bailey 
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regression with a Newton-Raphson search on the data. 

CQCRT is a matrix-inversion subroutine, soLving N linear 

simultaneous equations using the compact elimination 

scheme due to Crout (Tewarson R. P., "The Crout Reduction 

for Sparse Matrices" - Computer J., 'Vol. 12,No.2,May 1969, 

p.1S8). The subroutine SMSQF evaluates the sum of squares 

and the coefficient matrix for LBREG. PLTF is again a 

plotting routine with CQRGE and CQGPH. 

Input Data for RGDTF: 

B(I) - vector of initial estimates for U, E and the 

normalizing factor, for LBREG 

TOL(I) - vector of tolerances on the 3 parameters. 

MAX maximum no. of iterations allowed in LBREG. 

Z(l) - tolerance to prevent the division of the 

matrix by a very small element (less than the 

value of Z(l» of the principal diagonal of the 

auxiliary matrix in CQCRT 

NFAC - filter strength for filter program QDPF. 

XS1 and XS2 - first and second values in filtered 

sequence for first pulse. 

YSI and YS2 - first and second values in filtered 

sequence for second pulse. 

NAME - run no. 

DEDTX - dead-time from arbitrary source to start of 

first pulse. 

DEDTY - dead-time from the same arbitrary source to 

the start of the second pulse. 

DISTX,DISTY - position of the two detectors from 

arbitrary source. 

DELT,DTY - sample time interval on the first and 

second pulses resp. 
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MX, MY no . of points comprising first and second 

pul ses resp . 

WIN, DELW - dummy variables not used. 

X(I) - sequence of first pulse data. 

Y(I) - sequence of second pulse data. 

Input Data for DECNF: 

The following parameters are defined internally 

in DECNF to specify the function of LBREG: 

NEWT = 0 for Law and Bailey regression. 

BETA = 0.25 A convergence parameter in the Law and 

Bailey regression 

IOPT = -1 specifies Law and Bailey regression 

M = 3 No. of parameters 

lOUT = 3 Unit no. of output device (printer) 

Input Data for LBREG: 

Argument list: BETA, B, TOL, CQCRT , SMSQF , IOPT, NEWT, 

lOUT, MAX 

The parameters in the argument list are defined 

above in the calling program. 

Input Data for CQCRT: 

Argument list: C, X, N, Z 

C - coefficient matrix (equations to be solved) 

X - vector of reals (solution to equations) 

N - no. of equations to be solved 

Z - vector tolerance for CQCRT read by RGDTF. 
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Input Data for SMSQF: 

Argument list: LAB, MATRX, C, SA, B 

LAB - label set by LBREG =1 , the computed values of 

the parameters give a satisfactory fit 

=0 for other cases. 

MATRX - label set by LBREG =1 when both the coefficient 

matrix and the sum of squares are to be computed. 

=0 when only the sum of 

squares is to be computed. 

C - coefficient matrix 

SA - sum of squares 

B -vector of the parameters of t he model 

The programs LBREG and CQCRT are Library 

Programs in the Dept. of Chern. Eng., Univ. of Natal. 

The program SMSQF was adapted from a program written 

by Woodburn of this department. 

4) Philip's Prediction of the Lagrangian Autocorrelation 

Function. 

This iterative procedure was performed with the 

program EITER. 

Input Data for EITER: 

NPB - no. of points calculated in the table of 

displacement variance as a function of time. 

N no. of points in Eulerian autocorrelation curve. 

DELT time interval in Eulerian autocorrelation curve. 

DT normalized time interval (~t*) in double integral. 

DTT normalized time interval (~t*) in double integral. 

NP - maximum no . of steps allowed in the iteration. 

LPLOT - control on print-out of results. Lagrangian 

correlation function printed if LPLOT~l, 

otherwise only graphical output. 
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S(I) - vector comprising the Eulerian autocorrelation 

function . 

The plotting routine to which EITER links is similar 

to those previously discussed. 

5. Regression on Mean Impulse Response . 

The linking of these programs is shown below: 

ED1RG 

LBREG 

CQCRT 

ESMSQ 

-call link~ PLIMR 

CQRGE 

CQGPH 

This calculation is similar to the regression 

discussed previously, but is performed directly on the 

impulse response and not on an inlet and outlet pulse. 

The evaluation of the mean impulse response is performed 

in EIMRG. 

Input Data for EIMRG: 

The parameters B(I), TOL(I), MAX and Z(l) are as 

defined previously for the non-linear regression in RGDTF. 

NAME - run number 

POSX - position of first detector from arbitrary source. 

POSY - position of second detector from the same source. 

DTX - time interval in evaluation of impulse response. 

NREG - no. of sets of regressed data from pulse tests 

used to establish the mean impulse response. 

NDROP - coefficient of DTX giving time at which 

evaluation of impulse response starts. 

NPB - coefficient of DTX giving time at which 

evaluation of impulse response ends. 

D(I) - vector of parameters from regression on pulse 

tests. 
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The programs LBREG and CQCRT are the same as used 

previously, and t he subrout ine ESMSQ is equivalent to 

t he subroutine SMSQF, the a r gument lists be i ng identical. 

The program PLIMR is again a graph-plotting routine. 

6. The One-Dimensional Energy Spect rum Eva1uation:FRQAU. 

The evaluation of t his function was performed with 

the program FRQAU, using the Eulerian autocorrelation data. 

This program evaluated in a stepwise procedure, for 

each frequency, the followi ng expression: 

A(m) = Areat t 
1+ 2 J

' t 2 
= R(t ) cos(nt)dt 

t1 

J
t 2 

~ t {S (m) t + X(m)}cos(nt)dt 
1 

after this had been evaluated analytically. S(m) and X(m) 

represent the slope and interc ept resp . of the m-th segment. 

Input Data for FRQAU: 

NAME - run no. of autocorrelation 

N - no. of samples comprising autocorrelation function. 

DELT - time interval of samples comprising autocorrelation 

function 

NDEC no. of decades over which the evaluation is to be 

performed 

EFILT - filter strength used in filtering original 

velocity data before autocorrelation. 

R(I) - vector comprising t he Eulerian autocorrelation 

function. 

A link was performed to the graph-plotting routine 

FRQPL which used the library subroutines CQRGE and CQGPH. 
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XBCDT. 

EXTENDED PRECISION 

INTEGER L( 81) 
COMMON N 
DEFINE FILE 1(1600,3,U,KUP),3(400,240,U,LUP),4(4000,8,u,K3) 

PROGRAM: 

K3=1 
NTAG=O 
NQ=12-8 

.. 

ICALL BREAD(L) 1 
I 

"IABS(L(1)-NQ)-100 n 
r 

<NTAG "- IL(1)=(NQ+L(2»/21 
T 

J:=1,71 

--< lABS (L(J
1
+l) -L(J» -100 ~ 

1 
"- J+2-72') L(J+l)=L(J)1 I 1 

IL(J+1)=(L(J)+L(J+2»/21 

NTAG=l 

NQ=L(72) 
WRITE (4' K3) L(I),I=1,72 

~L(81)>-
I 

N=(K3-10)*8+L(81) 
WRITE N 

I 
ICALL LINK (EXVDT)1 
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EXVDT. 

EXTENDED PRECISION 
DIMENSION R(B5),S(B5),L(B5 ) ,E(B5) 
COMMON N,NAME,EFILT 
DEFINE FILE 1(1600,3,U,-KUP),3(400,240,U,LUP),4(4000,B,U,K3) 

,5(4000,2~,U,MUP) 

PROGRAM: 

ILF1=41 
LF2=5 

I 
CALL EVCON I 

N,LF1,LF2,K3,MUP,VCAL,R,L 
I 

I READ EFILTI 
I 

r<EFfLT "-

OFF I ON CALL DATSW 3L 

1 LUP=l 
MUP=l 

M=Bo 
KK=(N-1) / Bo+1 

JJ=l,KK 
1 

--< JJ-KK~ 
I 

IM=N-(JJ-1)*BO 
I 

READ(5'MUP) R(I) .I=l,M I 
I=l,M 

I -- R(I)=R(I)-VCAL 

WRITE(3'LUP) R(I),I=l,MI 

IGO TO 126 

LUP=l 
MUP=l 
JK=(N-l)/Bo+l 

M=80 
JJ=l,JK I 

I 
r-<JJ-,KK ~ 

I 
I M=N-JJ*eO I 

I 
A B C 
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A B C 
I I 

READ( 5' MUP) R(I),I =l,M M=Bo 
WRITE(3'LUP ) R(I ) ,I=l,M MT=B2 

I MUP=l 

GO TO 126 I IJ=l,MT-

f IE (IJ ) =EFILT t 

I M=N (N-M~ 

IREAD(5'MUP) R(I) ,I=l,MI 
I 

S(l)=VCAL 
S(2)=VCAL 

MP=M 

I l CALL QDPFj 
S,R,MP,E,F1~THETA 

o FF CALL DATSW 13' ON 'WRITE R(I) .I=l.Ml 

I 
RM1 - R(79) 
RM2=R(BO) 
SM1=S(79) 
SM2=S(BO) 

OFF ~ ON 'CALL DATSW 14' IWRITE S(I).I=l~MI 
I I 

1=1 M I 

I ' 
, 

Is I)=R(I -S 1)1 

1 
LUP =l 

WRITE(3'LUP) S(I),I=l,M 
R(l)=RMI 
R(2)=RM2 
S (1)=SM1 
S(2)=SM2 

KK=(N-1)/Bo 
M=Bo 

JJ=l,KK I 
I 

r-< JJ-KK ) , IM=N-JJ*BOl I I MT=M+2 

I 
READ(5'MUP) R(I),I=3,MT 

MP=MT 

I 
I CALL QDPF 
S,R,MP~E.F1,THETA I 

I 
D E 
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D E 

OFF ICALL DATSW 13 ON fWRITE R(I)I=3~MTI 
j I 
RM3=R(81) 
RM4=R(82) 
SM3=S(81) 
SM4 =s(82) 

OFF I ON ICALL DATSW 14L 'WRITE S ( I) • I = 3 ~ MT I I I 

I=3,MT 

~ IS(I) =R(I)-S(I)I 
I 

WRITE(3'LUP) S(I),I=3,MT 
R(1)=RM3 
R(2) =RM4 
S(1)=SM3 
S(2)=SM4 

26 

WRITE 'END OF CONVERSION'I 

I 
I CALL LINK(EVELD)J 
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SUBROUTINE EVCON. 

DIMENSION V(l),L(l) 

PROG AM R : 
_READ VCAL,CCAL,COCAL,AMP,VSUB,TOT 
CAL=VCAL/«CCAL/COCAL)**2-1.0)**2 
LPT1=1 
LPT2=1 
KK=(N-1)/80+1 

I 
<: TOT) 

JJ=l,KK 

J LTOT=O I 
M=80 

r 
r---< J J -KK "- I M=N- (JJ-1)*80 I 

I 
IREAD(LFl ' LPT1) L(I),l=l,MI 

l:;:l,M 
I 

I LTOT= LTOT+L(l)1 

STOT=LTOT 
STOT=STOT/N 

TOT=TOT+STOT 

I LPTl=l 1 
M=80 

JJ=l,KK I 
I 

./ JJ-KK 1M N-7(JJ-l)*8ol 
I I 

IREAD(LF1'LPT1) L(r),r=l,M-1 
I=l,M I 

~ 
V(I)=«L(~)-TOT)/AMP)+VSUB 
V(I)=CAL*«V(I)/COCAL)**2-1.0)**2 

I 
1 

WRITE(LF2 I LPT2) V(l) ,l=l,M I 
I 
I 

I RETURN I 
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SUBROUTINE QDPF. 

DIMENSION R(1),S(1),E(1),WS1(300),WS2(300 ) 

PROGRAM: 

JJ=M-2 
ALPH2=O.O 
BETA=O.O 
GAMMA=O.O 
DELTA=O.O 
EPSIL=O.O 
THETA=O.O 
Fl=O.O 

J=l,JJ------I 

K=M-J+1 
S(K)=1.O/(1.O+E(K)+ALPH2) 
WS1(K)=2.0*E(K)-BETA 
WS2(K)=R(K)-DELTA 
BETA=-1.*E(K)*(BETA+2.+2.*ALPH2)*S(K) 
ALPHA=4.*E(K)+GAMMA-WS1(K)*WS1(K)*S(K) 
GAMMA=E(K)*(1.O+ALPH2)*S(K) 
DELTA=EPSIL-WS1(K)*WS2(K)*S(K) 
EPSIL=E(K)*WS2(K)*S(K) 
ALPH2=ALPHA 

L= 3 ,M-------l 

S(L)=(WS2(L)+WS1(L)*S(L-l)-E(L)*S(L-2))*S(L) 
F1 =Fl+(R(L)-S(L))**2+E(L)*(S(L)-2.*S(L-l) 

+S(L-2))**2 

RETURN I 
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EVELD. 

DIMENSION J(150),V(150),Y(150) 
COMMON NC,NAME,EFILT 
DEFINE FILE 1(1600,3,U,KUP),3(400,240,U,LUP),4(6,300,U,LPT) 

PROGRAM: 

IREAD NC,VAR,NPAR,NAMEl 
1=1,150 

I 

I IJ(I) =ol 
-1 

LUP;;:l 
M=SO 
GROSS=O.O 
PETIT=O . O 
KK;;:(NC-1)/SO+1 

JJ=l,KK 
1 

r-< JJ-KK; M=NC-(JJ-1)*Sol 
1 I 

IREAD(3'LUP) V(I),I;;:l,MI 
r-I =l,M I 

I 
r<,.V( I) -GROSS / 

I 
GROSS=V(I)I 

T 

r<VC1I) 

I r< V(I~-PETIT 
I 

1 PETIT;;:V(I) 

FACT=100./(GROSS-PETIT) 
WRITE GROSS,PETIT 
LUP=l 
M=SO 

J J=l,KK I 
I 

r-< JJ-KK "- 'M=NC-(JJ 1) * Sol 

I 
lREAD( 3' LUP) V(I),I;;:l,MI 

I=l,M I 
1 

Y(I)=(V(I)-PETIT)*FACT 
MEM=Y(I) 
J(MEM+1);;:J(MEM+1)+1 

A 
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A 

WRITE J(I),I=I,101 
DELN= (GROSS-PETIT) 1100. 
ZX=O oO 
ZY=O.O 
ZZ=O . O 

1= 1,101 I 
I 

US=CPETIT+DELN*CI-l))**2 
UC=(PETIT+DELN*(I-l))**3 

. UF= (PETIT+DELN* (I-I)) * * 4 
ZX=J(I)*US+zx 
ZY=J(I)*UC+ZY 
ZZ=J(I)*UF+ZZ 

J 
I 

ZX=ZX/NC 
WRITE ZX 
ZY=ZY/NC 
ZZ=ZZ/NC 
ZM=ZX* * 1. 5 
ZN=ZX**2 
SKEW=ZY IZM 
FLAT=ZZ/ZN 
WRITE SKEW,FLAT 

1=1 ,101 
I 

I V(I+5)=J(I)/(DELN*NC)1 
I 
I 

I LPT=11 
1,5 I 

V(I)=O.O 1 
VCI+l06)=0.0 

1= 

I 
I 

WRITE V(I),I=I,110 
WRITE(4'1) V(I)~I=I~110 

1=1 ,110 I 

I V(I)=PETIT+(I-6)*DELN I 
I 
I 

WRITE(4'3) V(I),I=I,110 
1=1 ,110 

V(I)=-V(I)*V(I)/(2.*VAR) 
DNUM=V( I) 
DNUM=EXP(DNUM) 
V(I)=DNUM/(SQRT(2.*3.142*VAR)) 

I 
I 

WRITE V(I),I=I,110 
WRITE(4'5) V(I),I=I,110 

I 
ICALL LINK (VPLTF)I 
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RGDTF. 

DIMENSION X(lOO),Y(lOO),E(lOO ) 
COMMON XL,DELT,MY,M2,ETD,MX,IOUT,NAME,S(lOO),Q(lOO),Z(5), 

TOL(5),DTY,DEDTY,DEDTX,DISTY,DISTX,MAX,B(5) 

PROGRAM: 

READ B(1),B(2),B(3),TOL(1),TOL(2),TOL(3),MAX,Z(1) 
READ NFAC,XSl,XS2,YSl,YS2 
READ NAME,DEDTX,DEDTY,DISTX,DISTY,DELT,DTY,MX,MY, 

WIN ,DELW 
READ X(I),I=l,MX 
READ Y(I) ,I=l,MY 

I 
M=MX 
S(l)=XSl 
S(2)=XS2 

J=l ,MX 

~ IE(J)=NFACI 
I 

CALL QDPF 
S,X,M,E,Fl,THETA 

I 
/ AREAX=O. 0 1 
NX=MX-l 

I=l,NX 

I IAREAX=AREAX+((S(I+l)+S(I))/2.0)*DELTl 
I 

l 
M=MY 
Q(l)=YSl 
Q(2)=YS2 

J =l ,MY 
1 

I E(J)=NFACI 
I 

CALL QDPF 1 
Q,Y,M,E,Fl,THETA 

I 
tAREAY=O.O/ 

NY=MY-l 
I=l,NY 

I IAREAY=AREAY+((Q(I+l)+Q(I))/2.)*DELTl 

IFAC=AREAX/AREAY I 
I=l,MY 

I 

I 'Q(I) =Q(I)*FAc l 
I 
1 

CALL LINK (DECNF)"' 



INTEGER RATIO 
EXTERNAL CQCRT 
EXTERNAL SMSQF 
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DECNF , 

COMMON XL,DELT,MY,M2,ETD,MX,IOUT,NAME,X(lOO),Y(100),Z(5), 
TOL(5),DTY,DEDTY,DEDTX,DISTY,DISTX,MAX,B(5) 

PROGRAM: 

IRATIO =DTY/DELT+O . OO11 

I 
<: RATIO-1 '- fMX=MX/RATIO 1 I I I WRITE DTY,DELT 1 I=l,MX 1 

tDATA NOT PROCESSEDt IKM=RATIO-ll 
I J=l,KM 

I 
ICALL EXIT 1 K=RATIO*(I-l)+l 

LBJ=J+K 
X(K)=X(K)+X(LBJ) 

1 
IX(I)=X(K)I 

DELT =DELT*RATIO 
I 

ET=DEDTY-DEDTX 
IOUT= 3 
NEWT =O 

BETA =O.25 
IOPT=-l 

M=3 
XL=DISTY-DISTX 

M2=ET/DTY 
ETD=ET-M2* DTY 

CALL LBREG 
BETA,B,TOL,M,CQCRT,SMSQF,IOPT,NEWT,Z,IOUT,MAX 

I 
ICALL LINK(PLTF) 
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SUBROUTINE SMSQF. 

DIMENSION B(10),C(10,11),Z(3),U(100),H(100) 
COMMON XL,DELT,MY,M2?ETD,MX,IOUT,NAME,R(100),S(100),E(5), 

TOL(5),DTY,DEDTY,DEDTX,DISTY,DISTX,MAX 

PROGRAM: 

ISA=O.O 
J=1,3 

K=l 4 
l' IC(J,K)=O.O 

I 
rSA=l.E 38 -L 

l ,B(2) >--
I RETURNl 

W=-2.*ALOG(6.E-05*SQRT(B(2) *3.142)/(DELT*B(3)*XL)) 
W=XL*B(1)+W*B(2)-SQRT(2 .*W*XL*B(1)*B(2)+W*W*B(2)*B(2)) 

IT=W/(B(1)*B(1)*DELT)+1.0 
p=0 . 282*XL*DELT *B(3 ) /SQRT(B(2)) 

JT=MY+M2+1 
I 

(JT-IT-99) JT=99+IT 
I MY=JT-M2-1 

3 I 
I=IT,JT 

I 
I =IT,JT 

W=I-1 
TAU=W*DELT+ETD 

W=0.25*«XL-B(1) *TAU)**2)/(B(2)*TAU) 
J=I-IT+1 
H(J) =P*EXP(-W)/(TAU**1.5) 

I 
~H(J)-1.OE-20 ~ 

& < J-10 '\-.-(JT=I t--I 

~ 
I =l,MY 

Z(l)=O . O 
Z(2)=0.0 

y=o.o 
I2=I+M2 
I1=I2-MX+1 

I r< IT-I1 " 'I1=ITl 

I 
A B 
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A B 
I 

r:512 ~JT "- 112=JT 
I 

I < 12-11/ 

11=11,12 
MM=11-1T+1 

J =1+M2-11+1 
W=11-l 
W=W*DELT+ETD 
P=H(MM) *R(J) 
Y=P+Y 
\ --< MAT RX -1 ) 

I 
Z(l) =W*P+Z(l) 
W(1)=(XL-B(1)*W)/B(2) 
Z(2) =(O . 25*W1*W1/W)*P+Z(2) 

~ 
W= S( 1) -Y 
U(1 )=Y 
SA =W*W+SA 

I 
<: MATRX-1 ) 

J 
Z(1)=(XL*Y-B(1) *Z(1))/(2.*B(2)) 
Z(2) =Z(2 )-Y/(2.*B(2)) 
Z(3)=Y / B(3) 

J=1,3 
K=J,3 

C(J, K)= Z(J)*Z(K)+C(J,K) 
C( K,J )= C(J,K) 

IC(J,4 ) =Z(J)*W+C(J,4)\ 

~ 
<: LAB-I) 

1=l,MY 

· IR (1)=U(1)\ 
I 

Q y 
I RETURN I 
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EITER . 

DIMENSION S(150),T(150),R(150),B(150),FAC(150) 
DEFINE FILE 4(20,300,U,KK) 

PROGRAM: 

I =3,J,2 

I 
I =2,J,2 

I 

rl NP=N 

A D 

READ NPB 
READ N,DELT,DT,DTT,NP,LPLOT 
READ S(I),I=l,N 
M=N/2 
M=M*2 
I r M- N '\.. I I N=N+1 I I S (N) =0.0 

BRACO=O.O 
BRACE =O.O 

J=N-1 
I 

I 

IBRACE=(2.0*S(I))+BRACEI 

IBRACO=(4.0*S(I))+BRACOj 

BRAC=BRACE+BRACO+S(l)+S(N) 
AREA=DELT/3.0*BRAC/S(1) 
WRITE AREA 

N=l 
T(l)=O.O 

SFAC=O.O 
B(l) =O.O 
H(l) =l. 0 

11=0 
N=N+1 

T(N)=(N-1)*DTT 
R(N)=R(N-1)-0.02 

1 
" R(N) >, 

I 

FAC(N) =« R(N)+R(N-1))/2.0)*DT*DTT 
TFAC=SFAC 
SFAC=SFAC+FAC(N) 
B(N)=B(N-l)+SFAC 
DNMA=1.0+3.138*3.142*B(N) 
DNMB=SQRT(1.0+3.142*B(N)) 
ENUM=EXP(-0 . 25*3.142*T(N)*T(N)) 
RHS=ENUM/(DNMA*DNMB) 
GHS=R(N) 
TOL=O.Ol*GHS 
DIFF =GHS-RHS 

I 
ABS(DIFF) TOL" 

R-------I 
I ,., 
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A B - D C 

I 
R(N) =RHS 
SFAC=TFAC 

11=11+1 
I 

,,11-100 >-- WRITE 
I 'ITERATION STUCK 

IN DO LOOP' 

./ N NP)- NP=NI 1 

fR(N)-0 . 005 GO TO 
66 

I~ITE(4'2) R(N ) , N= l,N~1 
WRITE(4'1) T(N ) .N=l.NP 

1=1,2 J 

I 
J=NP+I 
T(J ) =O.O 
R(J) =O. O 

I 
I 

rLPLOT-l -' lWRITE T(I),R(I),I=l,N~ I 
I 

VAR=S(l) . 
COREC=AREA*SQRT ( l . O+UMEAN*UMEAN/VAR) 

XINT=DT*COREC 
I=l,NP J 

1 
R(I )=R(I) *VAR 
B(I)=B (I) *COREC*COREC*2.0*VAR 
T(I)=T(I) *COREC 

J 
I 

WRITE(4'4) R(I),I=l,NP 
NB=NP 

AREAL=2. *SFAC*COREC*VAR/DTT 
AMIX=AREAL / 2 . 0 
WRITE AMIX 

JC=NP 
BKEEP=B (JC-l ) 

KK=5 
NCONT=150 

INP=NP 
I 
I 

B(JC)=BKEEP+XINT*AREAL 

I 
E F 
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E F 

I 
/ '\. '\. 150-JC / JC=JC+l 

BKEEP=B(JC-l) 

WRITE(4 t KK) B(N),N=I,NCONT 
BKEEP=B(JC) 

JC=1 

I INP=INP+l\ 
I r-< NPB- INP / 

NCONT=JC-l 
WRITE(4 t KK) B(N),N=I,NCONT 

I 
r-< LPL?T-l / \ J WRITE T ( I) ,R ( I) ,I = 1 ,NP I 

I WRITE ( 4 t 3) T (I) ,I = 1, NP I 
I 

I CALL LINK (DLOAD) I 
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EIMRG. 

EXTERNAL CQCRT 
EXTERNAL ESMSQ 
DIMENSION D(45) 
COMMON VARI(150 ) ,Y (150),Z(5) ,TOL(5),MAX,B(5) ,NDROP,DTX, 

POS,NRED,IYPTR,ITPTR,NAME,NREG 
DEFINE FILE 4(20,300,U,KK ) ,7(40,300,U,JK) 

PROGRAM: 

READ B(l) ,B(2) ,B(3) ,TOL(l) ,TOL(2) ,TOL(3), 
MAX,Z(l) 

READ NAME,POSX,POSY,DTX 
READ NREG ,NDROP ,NPB 
POS=POSY-POSX 
NPARM=3*NREG 
NRED=NPB-NDROP +] 

I=1,NPARM,3 I I rREAD D(I) iD(I+l) ,D(I+2)1 

1 
I WRITE(4'1) D(I),I=l,NPARM 

NPT=KK 

1=1,150 I 
I 

I r VARI (I) = 0 . 0 I 
I 
I 

I JK=l J 
J=1,NPARM,3 I 

I 
r IJ =01 

I=l,NRED 1 
1 

IJ=IJ+l 
Y(IJ)=D(J+2)*POS/(SQRT(4.*3.142*D(J+l)) 

*(DTX*(NDROP+I-2))**1.5) 
Y(IJ)=Y(IJ)*EXP(-«(POS-D(J)*DTX*(NDROP+I-2) 

)**2)/(4.*D(J+l)*DTX*(NDROP+I-2)))) 

I=l,NRED 

I ! VARI(I)=VARI(I)+Y(I)I 

I=l,NRED 

f !VARI(I)=VARI(I)/NREG I 
lWRITE(7'JK) VARI(I),I=l,NREDl 

OFF I ON i CALL DATSW 11 WRITE VARI(I), 
I=l,NRED 
I 

I 
A 
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A 

I 
IOUT=3 
NEWT=O 
BETA=O.25 
IOPT=-l 

M=3 

I 
CALL LBREG 

BETA,B,TOL,M,CQCRT,ESMSQ,IOPT,NEWT,Z,IOUT,MAX 

I 
IYPTR=JK 

WRITE(7'JK) Y(1) ,I=l,NRED 
RED J 

I I =l ,N 
ID(I)=DTX*(NDROP+I-2)*100.1 

I 
I 

ITPTR=JK 
WRITE(7'JK) D(I),I=l,NRED 

o FF I ON I CALL DATSW 1 WRITE Y(I) ,1=l,NREDI 

I I 
-.. I 

ICALL LINK (PLIMR ) I 



160 

SUBROUTINE ESMSQ. 

DIMENSION C(10,11),Z(3),B( 5) 
COMMON VARI(150),Y(150),E(5),TOL(5),MAX,S(5),NDROP,DTX, 

POS,NRED,IYPTR,ITPTR,NAME,NREG 

PROGRAM: 
WRITE B(l) ,B(2) ,B(3) 

SA=O.O 

J=1,3 
K=l 4 

( IC(J,K)=O.O 

lSA= 1.E 38 <B( 2) ~ 'IJ=ol 
I ifu; T1URN:J I I I=l,NRED 

r 
IJ=IJ+1 
W =POS-B(1)*DTX*(NDROP+I-2) 
Y(IJ)=B(3)*POS/(SQRT(4.*3.142*B(2))*(DTX*(NDROP+I-2) 

)**1.5 ) 
Y(IJ)=Y(IJ)*EXP(-« (POS-B(1)*DTX*(NDROP+I-2))**2) 

1(4.*B(2)*DTX*(NDROP+I-2)))) 

Z(l) =W/(2.*B(2))*Y(IJ) 
Z (2 ) =O.25*W*W*Y(IJ)/(B(2)*B(2)*DTX*(NDROP+I-2)) 

-Y(IJ)/(2.*B( 2)) 

Z (3) =Y(IJ)/B(3) 

DIF =VARI(IJ)-Y(IJ) 
SA=DIF*DIF+SA 

I 
/MATRX 1" 

J=1~3 

K=J,3 
C(J,K)=Z(J)*Z(K)+C(J,K) 
C(K,J)=C(J.K) 

IC(J,4)=Z(J)*DIF+C(J,4)1 

I RETURN 
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FRQAU . 

DIMENSION E(100),F(100),G(100),R(100),X(100),S(100) 
COMMON NAME,N,DELT,NDEC,EFILT,NPLOT,JA 
DEFINE FILE 1(150,20,U,LUP),2(51,111,U,LREC),3(10,200,U,MUP) 

PROGRAM: 
READ NAME,N,DELT,NDEC,EFILT 
NT=(N-1)/100+1 
INDEX=l 

MUP=l 
NSUB=100 

IJ=l,NT 1 ---< IJ-NT ) NSUB=N-(IJ-1)*100-j 

IRE AD R(I),I=l,NSUBI 
I 

I 
IRNORM=R( 1)1 /INDEX-l~ 

I 
I=l,NSUB I 

I 

I R(I)=R(I)/RNORMI 
I 

WRITE(3'MUP) R(I), I=l,NSUB\ 
INDEX=INDEX+1 

I 1 LUP=ll 
NPLOT=l 

NFRQR=l,NDEC----

NFREQ=1,10 
E(NPLOT)=(NFRQR-1)*NFREQ/10. 
G(NPLOT)=EXP(E(NPLOT)*2.303) 
OMEGA=2.*3.142*G(NPLOT) 
F(NFREQ)=O.O 

NSUB=100 
M=l 

INDEX=O 
RKEEP=O.O 

IJ=l,NT I 
I 

IIPONT=INDEX+ll 
R(l)=RKEEP 
I 

--<IJ-NT> 
I 

NSUB=N- IJ-1)*1001 

READ(3'MUP) R(I),I=IPONT,NSUB 
RKEEP=R(NSUB) 

CFAC=l. 0 
NSUC=NSUB-1 

D C B A 
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D C B A 

I=l,NSUC-
"~ \S(I)=(R(I+1)-R(I))/DELTJ 

I=l,NSUB I 
I 

I IX(I)=R(I)-(INDEX*99+I-1)*DELT*S(Ij 

M=l,NSUC J 
1 

FSUB=4. * (S (M) *M*DELT+X(M))* SIN (2. * 3 .142 *G (NPLOT) 
*M*DELT) 

FSUB=FSUB-4 . *(S(M)*(M-1)*DELT+X(~) * SIN(2.*3.142 
*G(NPLOT)*(M-1)*DELT) 

FSUB=FSUB+4.IOMEGA*S(M)*COS(2.*3.142*G(NPLOT)*M 
*DELT) 

FSUB=FSUB-4.IOMEGA*S(M)*COS(2.*3.142*G(NPLOT)*(M-1) 
*DELT) 

F(NFREQ)=F(NFREQ)+FSUB*CFACIOMEGA 

I INDEX= INDEX + 1J 

INPLOT=NPLOT+11 
J 

lWRITE(l'LUP) F(I)~I=l~lOJ 
J 

NPLOT=NPLOT-1 
READ(l'l ) F(I),I=l,NPLOT 

JA=LUP 
WRITE(l'LUP) E(I), I=l,NPLOT 

I=l,NPLOT 

I R(I)=ALOG(F(I)) I 
R(I)=R(I)/2.303+3.0 J 

WRITE(1'40) R(I),I=l,NPLOT 
WRITE G(I),F(I),E(I),R(I),I=l,NPLOT 
WRITE(l'l) F(I),I=l,NPLOT 

ICALL LINK(FRQPL) I 
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APPENDIX 5. 

INSTRUMENT SPECIFICATIONS. 

1.) Hot-wire Anemometer Measurements . 

(i) Flow Corporation Model 900, Constant-temperature 

hot-wire anemometer instrument. 

Bridge circuit Model 900-1 

Power Supply Model 900-2 fitted with Weston 

multirange voltmeter. 

(ii) Amplifier and zero offset unit constructed 

in Electronics Dept., University of Natal. 

(iii)Analog to digital convertor constructed 

in Electronics Dept., University of Natal. 

(iv) Computer drum storage device for digital recording 

adapted from an ICT Model 1202 computer by t h e 

Electronics Dept., Univ. of Natal. 

2.) The Tracer Dispersion Measurements. 

(i) Beckman gas chromatograph valve from a 

Model GC-2A unit. 

(ii) Surface-barrier detector electronic circuits: 

R.I.D.L. Model 40-14 Bias supply & noise meter . 

R.I.D.L. Model 30-21 Amplifier 

R.I.D.L. Model 31-18 Charge-sensitive p r e amp . 

(iii) Wavetek Model III signal generator for 

producing sawtooth wave. 

(iv) Tektronix Model 535A Oscilloscope with an 

algebraic summing facility on the two input 

channels. 

(v) Wollensak Fastax Model WF6, high-speed 16 mm . 

camera. 

Wollensak Goose Control Unit, Model WF-358 . 

Kodak Tri-X film, developed for 30 mins. a t 30° C 

in Kodak D-ll developer . 
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The velocity calibrations were performed with a 

Lambrecht Pitot tube (ca . 2.5 mm.O.D.,0.8 mm. dia. 

impaction area) and a Casella water micromanometer 

reading to within 0.05 mm. H20. 

All computer programs were written for the IBM 1130 

computer with approximately 4000 word available core 

storage. 
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