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Abstract 
Low birth weight is a problem in Africa due to its contribution to high infant mortality. Most 

studies on low birth weight have neglected the use of Bayesian methods in analysis of medical 

data. This study aims to investigate the risk factors of low birth weight in Malawi. Malawi is a 

country in the sub-Saharan region which is characterized by infant and child mortality of 12%. 

Inferences made in this study are only based on Malawi demographic and health survey data 

for the three years 2000, 2004 and 2010. The year 2010 Malawi Demographic and Health 

Survey data is used to make classical and Bayesian analysis for the study. The years 2000 and 

2004 data are used to set up the prior information for Bayesian approach to the analysis. Data 

will be analysed using descriptive and inferential statistics. Hierarchy is taken into 

consideration since some of the risk factors are known to be hierarchical. The hierarchical 

multivariate linear regression analysis is done in a comparative procedure of Classical and 

Bayesian approach. The study shows that the age of the mother, birth order number of a 

child, region, work during pregnancy and HIV status of the mother are significant 

determinants of birth weight.  In the comparison of classical and Bayesian approach it was 

found that all the variables that were significant in the Bayesian approach were also 

significant in the classical approach and the opposite was not true. The use of the Bayesian 

prior in the analysis gave more realistic results on factors of weight at birth. 

 

 

Key Words: 

Underweight at birth, MCMC algorithm, Bayesian linear regression, Bayesian multilevel linear 
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Chapter 1: Introduction 
 

Low Birth Weight (LBW) has been defined by the World Health Organization (WHO) as weight 

less than 2.5kg, although between 2.5kg and 4.5kg are considered normal. Across the world, 

20 million low birth weights are recorded annually, and this equates to 15.5% of all births 

(WHO, 2004). Approximately every ten seconds, an infant from a developing country dies 

from a disease or infection that can be attributed to low birth weight (Judith & Laura, 2000). 

This study aimed to investigate risk factors of low birth weight in Malawi using the Malawi 

Demographic and Health Survey data for the years 2010, 2004 and 2000. The data for the year 

2004 and year 2000 is used to develop the prior information for the Bayesian approach. 

Birth weight is a dominant predictor of infant’s growth and survival. A child born with a low 

birth weight begins life immediately at a disadvantage and faces extremely poor survival 

rates. Death of a child is commonly a result of several risk factors (Black, Morris and Bryce, 

2003). The data on child’s birth weight is often under-reported because more than 40% of 

infants born in developing countries are not weighed at birth (WHO, 2004). According to 

UNICEF and WHO, half of low birth weight children are in the South Central Asia where more 

than a quarter of all children born weigh less than 2.5kg at birth. This represents 27% of all 

new births with LBW. Sub-Saharan Africa has the second highest incidence of low birth 

weight, which is 15%. Malawi is part of sub-Saharan Africa with the latest low birth weight 

incidence at 12%. Although birth weight is an important predictor of subsequent health 

outcomes in rural or developing countries, the role of the factors in this study is not 

understood completely as birth weight risk influence. Determining whether these factors are 

the risk influences for birth weight or not can help reduce the incidence of low birth weight 
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and maximize infant health in Malawi. Despite the importance of weight at birth, there are 

insufficient advanced statistical studies on the subject. Most existing studies of weight at birth 

use classical statistical methods and are usually limited to descriptive or bivariate analysis 

level (Ngwira, A., & Stanley, C. C., 2015).  

Bayesian methods are gaining momentum in statistical data analysis. Based on the 

importance of the subject in public health and the need for deep statistical analyses, this study 

was initiated to contribute to better understanding of the problems of low weight at birth by 

improving statistical analysis technique. More specifically, the comparison of Bayesian and 

Classical statistics is made on factors of weight at birth. The independent variables for this 

study include: which technique best analyse weight at birth, age of a mother, child’s birth 

order number, gender of a child, mother’s level of education, if the mother was working 

during pregnancy, antenatal visits for pregnancy and the HIV status of the mother. Since the 

advent of Markov Chain Monte Carlo (MCMC) and the improvement in speed memory of 

computers methods in the early 1990s, Bayesian methods have been extended to a large and 

growing number of applications. Aside from underlying philosophical differences of these two 

approaches, many readers will be comforted in finding that Bayesian and non-Bayesian 

analysis often agree to some extent. There are two instances where this is always true. Firstly, 

when the included prior information is uninformative (there are several ways of providing 

this), summary statements from Bayesian inferences will match most frequent point 

estimates (Bill, 1999). Secondly, when the data is very large, the form of the prior information 

used does not matter and there is an agreement again (Denis, 2005). Other circumstances 

exist in which Bayesian and non-Bayesian statistical inferences may lead to similar results. It 

is therefore important to investigate the factors associated with infant and child mortality in 

Malawi using a different approach of comparing two data analysis results. Furthermore, the 
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factors affecting low weight at birth of a child are known to be hierarchical, occurring at both 

individual-level and the regional-level with complex interactions. Most previous studies have 

focused only on individual-level factors of low birth weight and few studies have considered 

the hierarchical nature of the problem. This research will add to the existing literature on 

infant and child mortality in Malawi. 

This thesis is structured into four chapters: 

1. An Introduction to the Topic 

2. Methods 

3. Results 

4. Discussion and Conclusion. 
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Chapter 2: Literature Review 

2.1 Context of the Study 

The study mainly focuses on factors of weight at birth of a child in Malawi. This chapter 

discusses the determinants of child birth weight to be studied and also the population growth 

in Malawi. These discussed factors are general findings from previous authors to the topic. To 

incorporate the results to this study, a comparison of Bayesian and classical statistical models 

has been developed to find which factors best affects weight at birth of a child in Malawi.  

Table 1: 2012 Population in Malawi (Malawi Population Data Sheet, 2012) 
 

                          
 
Table 1 shows that there was a large proportion of people that are based in rural areas than 

in urban arears. Women had the largest population than men in all regions. 
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Figure 1 below shows that the population of Malawi is growing faster in the Southern districts 

than in the Northern regions. 

  

         
 
Figure 1: Population growth in Regions of Malawi (Malawi Population Data Sheet, 2012) 

 

2.2 Factors of Low Birth Weight 
Low birth weight can bring about significant general problems and impacts on a child’s 

growth. Previous studies on the topic show that there are several factors that are the cause 

of an infant being underweight at birth (Black, R. E., Morris, S. S., & Bryce, J., 2003). These risk 

factors include age of a mother, child’s birth order number, region of birth, gender of a child, 

mother’s educational level, if the mother of a child was working or not during pregnancy, 

antenatal visits during pregnancy and HIV status of a mother. Weight at birth of a child is an 

important indicator of the child’s health (Institute of Medicine, 1985). To understand these 

factors further, a review of previous studies is summarized for each the above-mentioned 

factors of underweight children. 
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The age of a mother at the time of delivery is an important aspect in this study and one of the 

factors that might have a negative effect on a child’s weight at birth. In making inferences 

about the effects of these factors on weight at birth of a child, the study focuses mainly on 

mothers with ages of between 15 and 49 years. It is common in Malawi to have children born 

out of wedlock. Overall, the median age for first birth for women in Malawi is 18.9 years. 

Seven percent of women who are between ages 25 and 49 years gave birth by the age of 15 

across age groups. The percentage of women who gave birth by exactly the age of 15 is 7% or 

higher among women aged 35-49, around 5% among women aged 20-34, and less than 2% 

among women aged 15-19. Previous studies have shown that mothers who are younger than 

15 years of age have the lowest weight at birth results (Reichman and Padilla, 1997).  

Approximately 11% of all births worldwide are to mothers who are aged 15-19 years old 

(Gibbs et al., 2012). These young mothers are associated with higher risk of having adverse 

birth outcomes than older mothers (Okosun et al., 2000). Gibbs et al. (2012) conducted a 

study which showed that there is a dose-response relationship between maternal age and 

low birth weight that decreased in magnitude as maternal age increased. On the other hand, 

mother’s level of education is one of the important significant effects that has both positive 

and negative results on the birth weight of a child. In Malawi, the proportion of people who 

have never attended school is higher for females than for males across all age groups, and the 

proportion with some primary education is about the same among men (65%) and women 

(64%). However, more males have attended or completed secondary education than women 

(17% compared to 11%), (Malawi DHS, 2010). 

According to Silvestrin et al. (2013), education is the strongest socio-economic predictor of 

health status when considered alone and the most important determinant of birth weight in 

a population. Previous studies have shown that mothers who are better educated are at an 
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advantage of not being the victims of risks associated with low birth weight of their children 

(Ngwira, A., & Stanley, C. C., 2015). The lower the education level, the greater the vulnerability 

of delivering a baby with a low birth weight or having an underweight child. There is a 33% 

protection effect against low birth weight for women that have higher education and a 9% 

higher probability of having a low birth weight child if the mother has not finished high school 

Silvestrin et al. (2013).  

The variables “age” and “education level” of a mother are independent variables that have a 

relationship for this study. Young mothers generally attain a lower education level than 

mothers in normal and older age groups. This is because the average age of high school 

women in Malawi is 18 years. Education plays an important role in pregnancy and ties directly 

to many other risk factors. The Malawi Demographic and Health Survey (2004) estimated 

16.3% of adult women and 10.1% of adult men had no formal education, while 12.2% of 

women and 18.8% of men had secondary education or higher. 

Malawi is divided into three administrative regions: The Northern, Central and Southern 

regions. Birth weight has been studied across the three regions. These regions differ in many 

regards on factors such as majority ethnic group, wealth and education status. Based on 

education level in Malawi, the median number of years of school completed is highest for 

women from the Northern Region at 6.8 years, followed by 4.7 years in the Southern Region, 

and 4.3 years in the Central Region (Malawi DHS, 2010). Based on mother’s age in Malawi, 

the proportion of teenagers who have started childbearing is highest in the Southern Region 

(29%) and the Northern Region (28%) when compared with the Central Region (22%) (Malawi 

DHS, 2010). Due to regional differences, the birth weight of a child is affected differently by 

each factor.  
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Human Immunodeficiency Virus (HIV) status of a mother is one of the factors that might have 

a significant effect on the birth weight of a child. This is because HIV can infect infants during 

pregnancy, during labour and delivery, and after delivery when the infant may become 

infected with HIV present in breast milk (Bettercare, 2016). An HIV/AIDS (UNAIDS) 2010 global 

report stated that there were 920,000 adults and children living with HIV in Malawi in 2009 

(UNAIDS, 2010). In 2015 Malawi’s HIV prevalence shows that 10.3% of the population was 

living with HIV. Malawi accounted for 4% of the total number of people living with HIV in sub-

Saharan Africa which then makes this variable an important one for the model. Major factors 

in the transmission of HIV in Malawi are poverty, low literacy levels, high rates of casual and 

transactional unprotected sex in the general population, (particularly among youth between 

the ages of 15 and 24 years), low levels of male and female condom use, cultural and religious 

factors, and stigma and discrimination (UNAIDS, 2010).  

Research has shown that mothers who stopped smoking during pregnancy had an increase in 

the weight of their babies at delivery, in comparison to mothers who smoked for the entirety 

of their pregnancy (Horta et al., 1997). The prevalence of smoking tobacco, particularly 

cigarettes, increases for pregnant Black mothers with age (Rich-Edwards et al., 2003). Income 

and socio-economic status is another factor. Poverty is usually the culprit and the physical 

demands on these mothers to earn wages can contribute to poor foetal growth (WHO, 2004). 

Mothers in deprived socio-economic conditions frequently have low birth weight babies 

(WHO, 2004). 
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Chapter 3: Methods 
3.1 Data 

In this study, the data utilised for the analysis is the year 2010 Malawi Demographic and 

Health Survey data (2010 MDHS). This survey is a large, nationally-representative sample 

survey conducted by the National Statistical Office (NSO) with Ministry of Health Community 

Sciences Unit (CHSU). The primary objectives of the 2010 Malawi Demographic and Health 

survey are to provide reliable and updated information. The methodology of the MDHS survey 

is based on a stratified sampling frame that was used to collect information on demographic 

issues relevant to Malawi. All the data for the years 2010, 2004 and 2000 was collected using 

the same methodology. Analysis for both classical and Bayesian approach focussed on the 

2010 data. The year 2004 and 2000 data is only utilized to build an informative prior for the 

Bayesian approach to the analysis. The sample for the 2010 MDHS was designed to provide 

population and health indicators at the national, regional, and district levels. The overall data 

collected using the sampling frame was stratified into 27 districts of Malawi. For each district, 

the sampling frame was further stratified under the categories “urban” and “rural” areas. The 

overall data collected from the MDHS focused on almost all factors affecting child’s weight at 

birth (less than average, average and higher than average) in Malawi. This study only focuses 

on children with birth weight of 2.5kg or less, provided that there were no missing 

observations in the observed explanatory variables. Predictors included in this study were 

identified from the literature review and also by their availability.  

The total number of households that were successfully interviewed were 24 825, yielding a 

response rate of 98% in the overall data. The number of eligible women was between 23 748 
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and 23 020 and these were successfully interviewed, yielding a response rate of 97%. Eligible 

men numbered 7783 and those that were successfully interviewed numbered 7175, yielding 

a response rate of 92%. The response variable is the child’s birth weight in grams. The final 

sample size consisted of 13 087 mothers who had answered all the questions for the variables 

used in the analysis. The age of the mother was restricted to between 15 and 49 years of age. 

Subjects with missing observations for any of the studied variables in Malawi data were 

excluded from the study. This procedure is applied to the year 2000, 2004 and 2010 data. 

MDHS data for the years 2000 and 2004 is used to set up the prior information needed for 

Bayesian technique implementation. The following programs were used to do the data 

analysis:    

• R-Studio used to fit: Classical Multiple Linear Regression and Classical Multilevel Linear 

Regression               

• WinBUGS used to fit: Bayesian Multiple Linear Regression and Bayesian Multilevel 

Linear Regression for both informative and non-informative priors. 

For the overall weight at birth data, percentages of missing observations in the data show 

that variables such as mother’s weight, mother’s height, and place of delivery should be 

removed from the model. This is due to high percentages of missing observations. The 

remaining independent variables are then used for this study, in both Classical and Bayesian 

linear regression. 
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3.2 Classical Modelling Approach  

Classical Linear Regression 

Classical linear regression is a statistical model used in predicting future values of the target 

(dependent) variable based on the behaviour of a set of explanatory factors (independent 

variables).  

3.2.1 Multiple Linear Regression 

Regression Analysis 

Linear regression model assumes that the relationship between the dependent variable 𝑍𝑍 and 

the r-vector of explanatory variables 𝑿𝑿 is linear. The model can be organized into vectors and 

matrices: 

𝒁𝒁 = 𝑿𝑿𝑿𝑿 + 𝝐𝝐           (3.21) 

Where 𝐙𝐙 = (𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛)′ is the vector of the dependent variable and 𝑿𝑿 = (𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑟𝑟)′ 

is a vector of regression coefficients associated with the vector 𝑿𝑿 of covariates: 

𝑿𝑿 = (𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑟𝑟)′ = �

1
1

𝑋𝑋11
𝑋𝑋21

⋯ 𝑋𝑋1𝑟𝑟
𝑋𝑋2𝑟𝑟

⋮ ⋱ ⋮
1 𝑋𝑋𝑛𝑛1 ⋯ 𝑋𝑋𝑛𝑛𝑟𝑟

� , 

For  𝑖𝑖 ∈ {1, . . . ,𝑛𝑛},  𝑘𝑘 ∈ {1, . . . , 𝑟𝑟}  

𝝐𝝐 = (𝜖𝜖1, 𝜖𝜖2, … , 𝜖𝜖𝑛𝑛)′   is the random error. 

The model assumptions are  

𝐸𝐸(𝝐𝝐) = 𝟎𝟎,        𝑉𝑉𝑉𝑉𝑟𝑟(𝜖𝜖𝑖𝑖) = 𝜎𝜎2,      𝐶𝐶𝐶𝐶𝐶𝐶(𝜖𝜖𝑖𝑖, 𝜖𝜖𝑖𝑖′  ) = 0     ∀𝑖𝑖 ≠ 𝑖𝑖′ 

A 𝑛𝑛 × 𝑛𝑛 variance-covariance matrix for the random errors and for 𝒁𝒁 is  

𝐶𝐶𝐶𝐶𝐶𝐶(𝝐𝝐) = 𝐸𝐸(𝝐𝝐𝝐𝝐′) = 𝜎𝜎2𝑰𝑰. 

𝐸𝐸(𝒁𝒁) = 𝑿𝑿𝑿𝑿,    𝐶𝐶𝐶𝐶𝐶𝐶 (𝒁𝒁) =  𝜎𝜎2𝑰𝑰 
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Since we have not made any assumptions about the distribution of 𝒁𝒁 or ϵ, Least Squares 

Estimation is then introduced, this is an approach used to estimate the vector 𝑿𝑿 which 

minimizes the sum of squares residuals: 

(𝒁𝒁 − 𝑿𝑿𝑿𝑿)′(𝒁𝒁 − 𝑿𝑿𝑿𝑿)                     (3.22) 

That is, we find 𝜕𝜕
𝜕𝜕𝑿𝑿

= 0 

𝜕𝜕
𝜕𝜕𝑿𝑿

(𝒁𝒁 − 𝑿𝑿𝑿𝑿)′(𝒁𝒁 − 𝑿𝑿𝑿𝑿) 

𝑿𝑿′𝑿𝑿�̂�𝛽 − 𝑿𝑿′𝒁𝒁 = 0 

�̂�𝛽 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝒁𝒁          (3.23) 

Thus the predicted values are �̂�𝑍 = 𝑋𝑋�̂�𝛽 on which we can find the residuals that are computed 

as:  

𝜖𝜖̂ = 𝒁𝒁 − 𝒁𝒁� = 𝒁𝒁 − 𝑿𝑿𝑿𝑿� = 𝒁𝒁 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝒁𝒁 = (𝑰𝑰 − 𝑯𝑯)𝒁𝒁 

𝑯𝑯 = 𝒁𝒁(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ Is called the ‘hat’ matrix. 

The residual sums of squares (or error sums of squares) is 

𝜖𝜖̂′𝜖𝜖̂ = 𝒁𝒁′(𝑰𝑰 − 𝑯𝑯)′(𝑰𝑰 − 𝑯𝑯)𝒁𝒁 = 𝒁𝒁′(𝑰𝑰 − 𝑯𝑯)𝒁𝒁 

We can partition variability in 𝑧𝑧 into variability due to changes in predictors and variability 

due to random noise (effects other than the predictors). The sum of squares decomposition 

is: 

�(𝑧𝑧𝑗𝑗 − 𝑧𝑧̅)2 = �(�̂�𝑧 − 𝑧𝑧̅)2 + �𝜖𝜖̂2
𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

The coefficient of multiple determination is 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 −
𝑆𝑆𝑆𝑆𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆

 

𝑅𝑅2 Indicates the proportion of the variability in the observed responses that can be attributed 

to changes in the predictor variables.  
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Properties of Estimators and Residuals 

Under the general regression model described earlier in equation (3.21) we use equation 

(3.22) results for  �̂�𝛽 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝒁𝒁 to estimate residuals as: 

𝐸𝐸��̂�𝛽� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝐸𝐸(𝒁𝒁) = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑿𝑿𝑿𝑿 = 𝑿𝑿 

𝐶𝐶𝐶𝐶𝐶𝐶��̂�𝛽� = (𝑿𝑿′𝑿𝑿)−1𝑋𝑋′𝐶𝐶𝐶𝐶𝐶𝐶(𝒁𝒁)𝑿𝑿(𝑿𝑿′𝑿𝑿)−1 = 𝜎𝜎2(𝑿𝑿′𝑿𝑿)−1 

For residuals; 𝐸𝐸(𝜖𝜖̂) = 0,    𝐶𝐶𝐶𝐶𝐶𝐶(𝜖𝜖̂) = (𝑰𝑰 − 𝑯𝑯)𝜎𝜎2,    𝐸𝐸(𝜖𝜖̂′𝜖𝜖̂) = (𝑛𝑛 − 𝑟𝑟 − 1)𝜎𝜎2. 

An unbiased estimator of  𝜎𝜎2 is 

 𝑠𝑠2 =
𝜖𝜖̂′𝜖𝜖̂

𝑛𝑛 − (𝑟𝑟 + 1)
=
𝒁𝒁′(𝑰𝑰 − 𝑯𝑯)𝒁𝒁
𝑛𝑛 − 𝑟𝑟 − 1

=
𝑆𝑆𝑆𝑆𝐸𝐸

𝑛𝑛 − 𝑟𝑟 − 1
 

           (3.24) 

Now if we assume that the 𝑛𝑛 × 1 vector 𝜖𝜖~𝑁𝑁𝑛𝑛(𝟎𝟎,𝜎𝜎2𝑰𝑰), then it follows that 

𝑍𝑍~𝑁𝑁𝑛𝑛(𝑿𝑿𝑿𝑿,𝜎𝜎2𝑰𝑰) 

�̂�𝛽~𝑁𝑁𝑛𝑛(𝑿𝑿,𝜎𝜎2(𝑿𝑿′𝑿𝑿)−1) 

�̂�𝛽 is distributed independent of  𝜖𝜖 �and furthermore  

𝜖𝜖̂ = (𝑰𝑰 − 𝑯𝑯)𝒁𝒁~𝑁𝑁(𝟎𝟎, 𝜎𝜎2(𝑰𝑰 − 𝑯𝑯)) 

(𝑛𝑛 − 𝑟𝑟 − 1)𝑠𝑠2 = 𝜖𝜖�′𝜖𝜖�~𝜎𝜎2𝜒𝜒𝑛𝑛−𝑟𝑟−12  
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3.2.2 Hierarchical Multiple Linear Regression 

Hierarchical Linear Model 

This section considers multilevel linear models, that is, a class of models that combine the 

advantages of the mixed-model ANOVA with its flexible modelling of fixed and random 

effects, and regression. However, the term hierarchical linear model captures two defining 

features of the models.  

• Firstly, the data appropriate for such models are hierarchically structured, with first-

level units nested within second-level units, second-level units nested within third-

level units, and so on. 

• Secondly, the parameters of such models may be viewed as multilevel structures. The 

investigator may specify a level-one model, the parameters of which characterize 

linear relationship occurring between level-one units. These parameters are then 

viewed as varying across level-two units as a function of level-two characteristics. 

What distinguishes the multilevel model is that the random factors are nested and never 

crossed. However fixed factors can be crossed with random factors (or with each other) and 

random factors may be nested within fixed factors. The data can be unbalanced at any level. 

Both discrete and continuous predictors can be specified as having random effects, and these 

random effects are allowed to co-vary. A good example of a hierarchical structure is an 

educational system where students are “clustered” or grouped within classes. 

When an effect in the statistical model is considered as being random, we mean that we wish 

to draw conclusions about the population from which the observed units were drawn, rather 

than about these particular units themselves. The first decision concerning random effects in 

specifying a multilevel model is the choice of the levels of analysis. These levels can be, for 

example, individuals, classrooms, schools, organizations, and neighbourhoods. Formulated 
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generally, a level is a set of units, or equivalently a system of categories, or a classification 

factor in a statistical design. In statistical terminology, a level in a multilevel analysis is a design 

factor with random effects. In addition, the assumption is made that the random effects are 

uncorrelated with the explanatory variables. 

The Fixed Effects Model is a statistical model that represents the observed quantities in terms 

of explanatory variables that are treated as if the quantities were non-random. Fixed effect 

regression is important because data often falls into categories and when that happens, you 

will want to control for characteristics of those categories that might affect the dependent 

variable. To reflect this in the model, assume they are in groups indexed by j, and in there are 

𝑛𝑛𝑗𝑗  individuals in group j.  

Table 2: Factors at each hierarchical level that affect the students’ grade, for the classroom 

example. 

Hierarchical Level Example of Hierarchical  

Level  

Example Variables 

Level-1 Student Level Gender 
Intelligent Quotient (IQ) 
Socio-economic status 
Self-esteem rating 
Behavioural conduct rating 
Breakfast consumption 
 

Level-2 Classroom Level Class size 
Homework assignment load 
Teaching experience 
Teaching style 
 

Level-3 School Level Schools’ geographic location 
Annual budget 
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Hierarchical models 

Random variability only occurs as a “within subjects” effect, for level-2 independent variable 

the model is  

𝑍𝑍𝑖𝑖𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽𝑗𝑗∗𝑋𝑋𝑖𝑖𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑗𝑗                (3.25) 

For any individual, the model becomes: 

𝑍𝑍𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽𝑗𝑗∗𝑋𝑋𝑗𝑗 + 𝜀𝜀𝑗𝑗                (3.26) 

 𝑍𝑍𝑖𝑖𝑗𝑗 is the value of the dependent variable for an individual 𝑖𝑖 (level 1) and 𝑗𝑗 refers to 

level 2 component or region in this case. 

 𝛽𝛽0𝑗𝑗 = (𝛽𝛽0 + 𝜇𝜇0𝑗𝑗) is the intercept on the dependent variable in region 𝑗𝑗. 

 𝛽𝛽𝑗𝑗∗ = (𝛽𝛽1𝑗𝑗, … ,𝛽𝛽𝑟𝑟𝑗𝑗) is the slope for the relationship in region 𝑗𝑗 (Level 2) between 

individual level predictors and the dependent variable. 

 𝛽𝛽0 is the intercept of the regression line with the 𝑍𝑍-axis when 𝑋𝑋=0 

 𝜀𝜀𝑖𝑖𝑗𝑗 is the random errors of prediction.  

 

 𝑍𝑍𝑗𝑗 = �𝑍𝑍1𝑗𝑗 ,𝑍𝑍2𝑗𝑗 , … ,𝑍𝑍𝑛𝑛𝑗𝑗�
′
                  𝑋𝑋𝑗𝑗 =

⎝

⎛
 
𝑋𝑋1𝑗𝑗1
𝑋𝑋2𝑗𝑗1

⋯
𝑋𝑋1𝑗𝑗,𝑟𝑟
𝑋𝑋2𝑗𝑗,𝑟𝑟

⋮ ⋱ ⋮
    𝑋𝑋𝑛𝑛𝑗𝑗1 ⋯ 𝑋𝑋𝑛𝑛𝑗𝑗,𝑟𝑟

    

⎠

⎞ 

                                  𝑋𝑋𝑗𝑗 =

⎝

⎛
 
𝑋𝑋1𝑗𝑗1
𝑋𝑋2𝑗𝑗1

⋯
𝑋𝑋1𝑗𝑗,𝑟𝑟
𝑋𝑋2𝑗𝑗,𝑟𝑟

⋮ ⋱ ⋮
    𝑋𝑋𝑛𝑛𝑗𝑗1 ⋯ 𝑋𝑋𝑛𝑛𝑗𝑗,𝑟𝑟

    

⎠

⎞ 

 

For  𝑖𝑖 & 𝑗𝑗 ∈ {1, . . . ,𝑛𝑛},  𝑘𝑘 ∈ {1, . . . , 𝑟𝑟}           
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Level One and Level Two Models:  

For the Level One model, the intercept and the slopes becomes  

𝛽𝛽0𝑗𝑗 = 𝛾𝛾00 + γ01𝑊𝑊j + 𝑢𝑢0𝑗𝑗 

𝛽𝛽1𝑗𝑗 = 𝛾𝛾10 + 𝑢𝑢1𝑗𝑗 

Thus final Level Two model is 

𝑦𝑦𝑖𝑖𝑗𝑗 = 𝛾𝛾00 + 𝛾𝛾01𝑊𝑊𝑗𝑗 + 𝑢𝑢0𝑗𝑗 + 𝑋𝑋𝑗𝑗(𝛾𝛾10 + 𝑢𝑢1𝑗𝑗) + 𝜀𝜀𝑖𝑖𝑗𝑗  (3.27) 

 𝛾𝛾00 Refers to the overall intercept which is the grand mean of the scores on the 

dependent variables across all the groups when all the predictors are equal to zero. 

 𝑊𝑊𝑗𝑗 Refers to the predictor for the level 2 model. 

 𝛾𝛾01  Refers to the overall regression coefficient, or the slope between the level 2 

predictor and dependent variable. 

 𝑢𝑢0𝑗𝑗 Refers to random error component for the deviation of the intercept of a group 

from overall intercept. 

 𝛾𝛾10  Refers to the overall regression coefficient or the slope between level 1 predictor 

and dependent variable. 

 𝑢𝑢1𝑗𝑗  Refers to the error component for the slope, that is, the deviation of the group 

slopes from the overall slope. 

Types of Models: 

• Random intercepts model: this model has two parts, a fixed part (which is the 

intercept and the product of the coefficient of explanatory variable with explanatory 

variable) and it has the random part, intercepts are allowed to vary 

𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑢𝑢𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑗𝑗           (3.28) 
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This is obtained from combining the variance components model and the single level 

model, that is: 

Variance components model: 𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛽𝛽0 + 𝑢𝑢𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑗𝑗  

𝑢𝑢𝑗𝑗~𝑁𝑁(0,𝜎𝜎𝑢𝑢2), 𝜀𝜀𝑖𝑖𝑗𝑗~𝑁𝑁(0,𝜎𝜎𝜀𝜀2) 

Single level model- 𝑍𝑍𝑖𝑖𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗𝑋𝑋𝑖𝑖𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑗𝑗 

Table 3 Parts of Models 

Fixed part  (𝑿𝑿𝟎𝟎 + 𝑿𝑿𝟏𝟏𝑿𝑿𝒊𝒊𝒊𝒊) Random part (𝒖𝒖𝒊𝒊 + 𝜺𝜺𝒊𝒊𝒊𝒊) 

Parameters that we estimate are the 

coefficients  

𝛽𝛽0, 𝛽𝛽1,… 

Parameters that we estimate 

are the variances 

𝜎𝜎𝑢𝑢2and 𝜎𝜎𝜀𝜀2 

 

For this model the intercepts are allowed to vary, and therefore the scores on the 

dependent variable for each individual observation are predicted by the intercept 

varies across the group. It also provides the information about the intraclass 

correlation. 

• Random Intercepts Model: In this model the varying of intercepts is allowed, and 

therefore, the scores on the dependent variable for each individual observation are 

predicted by the intercept that varies across the groups. The assumption for such a 

model is that the slopes are fixed (the same across different contexts). This model also 

provides information about intraclass correlations, which are helpful in determining 

that the multilevel models are required in the first place. 
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• Random Slopes Model: A model in which the varying of slopes is allowed, and 

therefore, slopes are not the same across the groups. The assumption is based on the 

intercept that they are fixed (the same across different contexts) 

• Random Intercepts and Slopes Model: A model that includes both random intercept 

and random slopes is likely the most realistic type of model, although it is the most 

complex. In this model, both intercepts and slopes are allowed to vary across groups, 

meaning that they are different in different contexts. 

A good hierarchical model should meet the following assumptions: 

• Linearity: The relationship between variables is linear. 

• Normality: Assumes that the error terms at every level of the model are normally 

distributed. 

• Homoscedasticity:  Assumes that the variance around the regression line is similar for 

all the determinants of low birth weight. 

• Independence of Observations:  Assumes that the observations have no relationship 

between groups.  

Multilevel models assume that the Level 1 and Level 2 residuals are uncorrelated and that the 

errors (as measured by the residuals) at the highest level are uncorrelated. 
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3.3 Bayesian Modelling Approach 

3.3.1 Concept of Bayesian  

The Bayesian technique aims to determine the posterior distribution using the likelihood 

function and the prior probability derived from a statistical model for the observed data. 

Bayesian inference computes the posterior probability according to Bayes’ theorem:  

 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
                                                     (3.31) 

Where 𝑨𝑨 is any hypothesis that has a probability that may be affected by the data and 

𝑩𝑩 corresponds to the new data that was not used in developing the prior probability. 

Both Bayesian methods and Classical methods have advantages and disadvantages, and there 

are some similarities. At the point when the sample size is large, Bayesian inferences often 

gives the results for parametric models that are fundamentally the same as the outcomes 

created by the classical methods. Below are advantages and disadvantages of using Bayesian 

methods according to Berger (1985, Sections 4.1 and 4.12). 

 

Advantages of Bayesian Methods 

• Bayesian methods uses both sources of information, (the prior information about the 

process and the information about the process contained in the data). They provide a 

real and principled way of combing the data and the prior information within a solid 

decision theoretical framework. You can incorporate previous information about a 

parameter and form a prior distribution about the future analysis. The previous 

posterior distribution can be used as a prior when new observations become available 

and follow from Bayes’ theorem. 
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• It provides inferences that are conditional on the data and are exact, without reliance 

on asymptotic approximation. Both small and large sample inferences proceed in the 

same manner. In addition, parameters are estimated directly. 

• It obeys the Likelihood Principle. If two distinct sampling designs yield proportional 

likelihood functions for θ, then inferences of about θ should be the same for both 

designs. Classical Inferences do not obey the Likelihood Principle. 

• It provides interpretable answers for direct probability statements about the 

parameters, such as “the true parameter θ has a probability of 0.95 of falling in a 95% 

credible interval.”   

• Bayesian statistics has a single tool, Bayes’ theorem, which is used in all situations. 

This contrasts to frequentist procedures, which require many different tools. 

• The Bayesian Method provides a setting for a wide range of models, such as 

hierarchical models and missing data problems, MCMC, along with other numerical 

methods. 

• Elimination of nuisance parameters is conceptually straightforward, and is also easy 

due to advances in Bayesian computing. This convenience is a result of Bayesian 

analysis being a logically, simple and easy approach. Below are two examples where 

frequentist answers are not unique; 

Example 1: Confidence interval for the difference between two normal means    (𝛽𝛽 =

𝜇𝜇1 − 𝜇𝜇2), when variance are unknown. 

Example 2: Confidence interval for 𝛽𝛽 = 𝜇𝜇/𝜎𝜎 using a sample from a normal 

distribution. 
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Disadvantages of Bayesian Methods 

There are also disadvantages to using Bayesian methods: 

• The use of Bayesian methods does not tell you how to select the prior. There is no 

correct approach to pick a prior. Bayesian inferences require skills to translate 

subjective prior beliefs into a mathematically-formulated prior. If you do not proceed 

with caution, you can generate misleading results. 

• The priors can heavily influence the posterior distribution, which can practically make 

it difficult to convince subject matter experts who do not agree with the validity of the 

chosen prior. 

• Bayesian Methods often come with a high computational cost, especially in models 

with a large number of parameters. The posterior distribution of a parameter is exact, 

given the likelihood function and the priors, while simulation-based estimates of 

posterior quantities can vary due to the random number generator used in the 

procedures. 

The essential difference between Bayesian and Frequentist statistics is in how probability is 

used. Frequentist statistics use probability only to model certain processes broadly described 

as “sampling”. Bayesian statistics use probability more widely to model both sampling and 

other kinds of uncertainty. Bayesian approaches formulate the problem differently. Instead 

of saying that the parameter simply has one (known) true value, a Bayesian method says that 

the parameter’s value is fixed but has been chosen from some probability distribution known 

as the prior distribution.  
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3.3.2 Prior Distribution 

The prior distribution is the most important aspect of Bayesian inference and represents the 

information about an uncertain parameter 𝜃𝜃. The prior distribution is combined with the 

probability distribution of new data (likelihood function) to yield the posterior distribution.  

The key issues in setting up a prior distribution are: 

• What information is going into the prior distribution; 

• The properties of the resulting posterior distribution. 

With well-identified parameters and large sample sizes, reasonable choices of prior 

distributions will have a small effect on posterior inferences. The prior distribution becomes 

more important if the sample size is small or available data provides indirect information 

about the parameters of interest. Usually, the models can be hierarchical, so that clusters of 

parameters have shared prior distributions which themselves can be estimated from the data.  

The data to be used in WinBUGS software for both multiple linear and multilevel models are 

modeled using the same predictors as classical statistics to allow comparison. WinBUGS is a 

useful computational tool that fits complicated Bayesian models using MCMC methods. Two 

situations of Bayesian models were considered: 

i. Bayesian Non-Informative Prior: Normal distribution with large variance is taken as 

the distribution of interest to ensure that the prior does not affect the posterior that 

much. 

ii. Bayesian Informative Prior: In this study, a normal distribution is considered as prior 

and the parameters are determined by computations made on surveys of years 2000 

and 2004. 
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3.3.2.1 Developing a Prior Distribution for the Low Birth Weight Model 

The parameters of the informative prior for the low birth weight model are obtained as 

follows; 

• The parameter (beta coefficient) of the prior is obtained by taking the average of the 

variables mentioned in section 2.2 for the years 2000 and 2004 and the variance 

component of the prior is obtained using the pooled variance of the years 2000 and 

2004. 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 =
(𝑛𝑛1 − 1)𝑠𝑠12 + (𝑛𝑛2 − 1)𝑠𝑠22

𝑛𝑛1 + 𝑛𝑛2 − 2
   ,      𝛽𝛽𝑎𝑎𝑎𝑎𝑝𝑝𝑟𝑟𝑎𝑎𝑎𝑎𝑝𝑝 =

𝛽𝛽2000 + 𝛽𝛽2004
2

 

                  (3.32) 

Where   

          𝑠𝑠12 =
𝑆𝑆𝐸𝐸(2000)

√𝑛𝑛1
     ,                                 𝑠𝑠22 =

𝑆𝑆𝐸𝐸(2004)
√𝑛𝑛2

 

                  (3.33) 

• When the coefficient is significant for only one of the years 2000 or 2004: we 

considered the coefficient and variance for the year where it was significant. 

• Finally, it is important to mention that the rules put in place to obtain the coefficient 

and variance of the informative prior were not blindly applied. We used our own 

thinking (judgment) to assess the priors. In the situation where the prior was following 

a Gamma distribution, the following formula was used to transform the mean and 

variance to the parameters of the Gamma distribution: 

𝛼𝛼 = �̅�𝑥
𝑠𝑠2

    and   𝛽𝛽 = 𝑠𝑠2

𝑥𝑥�  

                         (3.34) 

Where    �̅�𝑥 = �̅�𝑥2000+ �̅�𝑥2004
2

    and       𝑠𝑠2 = 𝑆𝑆2 2000+ 𝑆𝑆22004
2

 



34 
 

Rejection Region  

WinBUGS provide the credible interval and not a p value. The credible interval is the interval 

containing 95% of the posterior samples generated by the MCMC algorithm.  

WinBUGS software uses Gibbs sampler algorithm as MCMC technique. To be more precise, 

the numbers (posterior sample simulated) generated by MCMC are ordered in an ascending 

way. The lower bound of CI is the value above the first 2.5% simulated numbers while the 

upper bound is the value below the last 2.5% simulated numbers. 

3.3.3 The Likelihood Function  

A Likelihood Function is a function of parameters of a classical statistic model given data. In 

statistical inferences, the likelihood is an important factor in methods of estimating a 

parameter from a set of statistics. The Likelihood Function is used once data is available to 

describe a function of a parameter for a given outcome. The likelihood of a parameter value 𝜃𝜃, 

given outcomes 𝑥𝑥, is equal to the probability assumed for those observed outcomes given 

those parameter values, i.e.  

                 ℒ(𝜃𝜃| 𝑥𝑥) = 𝑃𝑃( 𝑥𝑥|𝜃𝜃).                                                         (3.36) 

The Likelihood Function for discrete and continuous distribution is defined differently as: 

 

ℒ(𝜃𝜃| 𝑥𝑥) = �
𝑃𝑃𝜃𝜃(𝑋𝑋 = 𝑥𝑥)                 discrete

 
        𝑓𝑓𝜃𝜃(𝑥𝑥)                         continuous

 

                    (3.37) 

Where 𝑥𝑥 is the outcome of the random variable 𝑋𝑋 and 𝑓𝑓 is a density function of a random 

variable 𝑋𝑋 following a continuous probability distribution that depends on a parameter 𝜃𝜃. 
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For example, if the data set for n observations, that is, 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is independent and 

identically distributed Poisson (𝜆𝜆) then a gamma(𝛼𝛼,𝛽𝛽) prior on 𝜆𝜆 is a conjugate prior. 

Then the likelihood is given by: 

ℒ(𝜆𝜆| 𝐱𝐱) = 𝑃𝑃𝜆𝜆(𝑋𝑋 = 𝑥𝑥) = �
𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖!

𝑛𝑛

𝑖𝑖=1

=
𝑒𝑒−𝑛𝑛𝜆𝜆𝜆𝜆∑𝑥𝑥𝑖𝑖
∏ (𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖!)

  

           (3.38) 

3.3.4 The Posterior Distribution  

The posterior probability is the probability of the parameters 𝜽𝜽 given the evidence 𝑿𝑿: 𝑝𝑝(𝜽𝜽|𝑿𝑿). 

It contrasts with the likelihood, which is the probability of the evidence given the 

parameters: 𝑝𝑝(𝑿𝑿|𝜽𝜽). For example, if we have a prior belief that the probability function 

is 𝑝𝑝(𝜃𝜃) and observations  𝑥𝑥 with the likelihood 𝑝𝑝(𝑥𝑥|𝜃𝜃), then the posterior probability is 

defined as:  

𝑝𝑝(𝜃𝜃|𝑥𝑥) =
𝑝𝑝(𝑥𝑥|𝜃𝜃)𝑝𝑝(𝜃𝜃)

𝑝𝑝(𝑥𝑥)
 

           (3.39) 

Thus Posterior probability ∝ Likelihood x Prior probability 

Suppose that we have an unknown parameter 𝜇𝜇 for which the prior belief can be express in 

terms of the normal distribution, so that  𝜇𝜇~𝑁𝑁(𝜇𝜇0,𝜎𝜎02) 

Where 𝜇𝜇0 and 𝜎𝜎02 are known. The prior distribution is given by; 

𝑓𝑓(𝜇𝜇) =
1

�2𝜋𝜋𝜎𝜎02
𝑒𝑒
−(𝜇𝜇−𝜇𝜇0)2

2𝜎𝜎02  

(3.41) 

The likelihood function of observation 𝑥𝑥 given 𝜇𝜇 is given by; 

𝑓𝑓(𝑥𝑥|𝜇𝜇) =
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒
−(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2  

(3.42) 
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And hence using equation (3.41) and equation (3.42) the posterior distribution of 𝜇𝜇 given 

that we have an observation 𝑥𝑥 is; 

𝑓𝑓(𝜇𝜇|𝑥𝑥) =
𝑓𝑓(𝜇𝜇)𝑓𝑓(𝑥𝑥|𝜇𝜇)

∫ 𝑓𝑓(𝜇𝜇)𝑓𝑓(𝑥𝑥|𝜇𝜇)𝑑𝑑𝜇𝜇∞
−∞

=
𝑓𝑓(𝜇𝜇)𝑓𝑓(𝑥𝑥|𝜇𝜇)

𝑓𝑓(𝑥𝑥)
∝ 𝑓𝑓(𝜇𝜇)𝑓𝑓(𝑥𝑥|𝜇𝜇) 

              

                  ∝
1

�2𝜋𝜋𝜎𝜎02
𝑒𝑒𝑥𝑥𝑝𝑝 �

−(𝜇𝜇 − 𝜇𝜇0)2

2𝜎𝜎02
�

 

∗
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒𝑥𝑥𝑝𝑝 �

−(𝑥𝑥 − 𝜇𝜇)2

2𝜎𝜎2
�

 

 

 

                 ∝
1

2𝜋𝜋�𝜎𝜎2𝜎𝜎02
𝑒𝑒𝑥𝑥𝑝𝑝 �

−𝜇𝜇2 + 2𝜇𝜇𝜇𝜇0 − 𝜇𝜇02

2𝜎𝜎02
−
𝑥𝑥2 − 2𝜇𝜇𝑥𝑥 + 𝜇𝜇2

2𝜎𝜎2
� 

 

                 ∝ const ∗ exp �
−𝜇𝜇2𝜎𝜎2 + 2𝜇𝜇𝜇𝜇0𝜎𝜎2 − 𝜇𝜇02𝜎𝜎2 − 𝜎𝜎02𝑥𝑥2 + 2𝜇𝜇𝜎𝜎02𝑥𝑥 − 𝜇𝜇2𝜎𝜎02

2𝜎𝜎02𝜎𝜎2
�  

 

                 ∝ exp �
−𝜇𝜇2(𝜎𝜎2 + 𝜎𝜎02) + 2𝜇𝜇(𝜇𝜇0𝜎𝜎2 + 𝜎𝜎02𝑥𝑥) − (𝜎𝜎02𝑥𝑥2 + 𝜇𝜇02𝜎𝜎2)

2𝜎𝜎02𝜎𝜎2
� 

 

          ∝ exp

⎩
⎪
⎨

⎪
⎧−𝜇𝜇2 + 2𝜇𝜇 𝜇𝜇0𝜎𝜎

2 + 𝜎𝜎02𝑥𝑥
𝜎𝜎2 + 𝜎𝜎02

− �𝜎𝜎0
2𝑥𝑥  + 𝜇𝜇0 𝜎𝜎2
𝜎𝜎2 + 𝜎𝜎02

�
2

2𝜎𝜎02𝜎𝜎2
𝜎𝜎2 + 𝜎𝜎02 ⎭

⎪
⎬

⎪
⎫

∗ 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝜎𝜎02𝑥𝑥2 + 𝜇𝜇02𝜎𝜎2

2𝜎𝜎02𝜎𝜎2
� 

 

                  ∝ exp

⎩
⎪
⎨

⎪
⎧−(𝜇𝜇 − 𝜇𝜇0𝜎𝜎2 + 𝜎𝜎02𝑥𝑥

𝜎𝜎2 + 𝜎𝜎02
)2

2 𝜎𝜎02𝜎𝜎2
𝜎𝜎2 + 𝜎𝜎02 ⎭

⎪
⎬

⎪
⎫

 

 

 

Letting  

σ12 =
σ02σ2

σ2 + σ02
=

1
σ−2 + σ0−2

 

𝜇𝜇1 =
𝜇𝜇0𝜎𝜎2 + 𝜎𝜎02𝑥𝑥
𝜎𝜎2 + 𝜎𝜎02

=
𝜇𝜇0𝜎𝜎−2 + 𝜎𝜎 

−2𝑥𝑥
𝜎𝜎−2 + 𝜎𝜎0−2

= σ12(𝜇𝜇0𝜎𝜎0−2 + 𝑥𝑥𝜎𝜎 
−2) 
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So that  

σ1−2 = 𝜎𝜎 
−2 + 𝜎𝜎0−2 

𝜇𝜇1σ1−2 = 𝜇𝜇0𝜎𝜎0−2 + 𝑥𝑥𝜎𝜎 
−2 

And hence 

𝑓𝑓(𝜇𝜇|𝑥𝑥) ∝ exp �
−(𝜇𝜇 − 𝜇𝜇1)2

2σ12
� 

From which it follows that  

𝑓𝑓(𝜇𝜇|𝑥𝑥) =
1

�2𝜋𝜋𝜎𝜎12
exp �

−(𝜇𝜇 − 𝜇𝜇1)2

2σ12
� 

(3.43) 

Then the posterior density is 

⇒  𝜇𝜇|𝑥𝑥~𝑁𝑁(𝜇𝜇1,σ12) 

This is the posterior distribution of a Normal distribution with a sample size of 𝑛𝑛 = 1.  

 

Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) is a technique for simulating draws that are slightly 

dependent and are approximately from a posterior distribution. The draws simulated are 

used to calculate the quantities of interest for the posterior distribution. The successive 

random selections form a Markov Chain, the stationary distribution of which is the target 

distribution. 

 

In Bayesian Statistics there are generally two MCMC algorithms that are used, namely, the 

Gibbs Sampler and the Metropolis-Hasting Algorithm. 

1. Gibbs Sampler 
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Suppose we have a joint distribution 𝑝𝑝(𝜃𝜃1, … ,𝜃𝜃𝑘𝑘) that we want to sample from (for example, 

a posterior distribution). Gibbs Sampler can then be used to sample from the joint distribution 

if we knew the full conditional distributions for each parameter, which is the distribution of 

parameter conditional on the known information and all other parameters: p(𝜃𝜃𝑗𝑗|𝜃𝜃−𝑗𝑗,𝑦𝑦).Let’s 

suppose that we are interested in sampling from the posterior p(𝜽𝜽|𝒚𝒚), where 𝜽𝜽 is a vector of 

three parameters, 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3.  

The steps to a Gibbs Sampler are: 

1. Pick a vector of starting values 𝜃𝜃(0). 

2. Start with any  𝜃𝜃 (order does not matter). Draw a value 𝜃𝜃1
(1) from full conditional 

p(𝜃𝜃1|𝜃𝜃2
(0),𝜃𝜃3

(0),𝒚𝒚). 

3. Draw a value 𝜃𝜃2
(1) from the full conditional p(𝜃𝜃2|𝜃𝜃1

(1),𝜃𝜃3
(0),𝒚𝒚). Note that the updated 

value 𝜃𝜃1
(1)is used.  

4. Draw the value 𝜃𝜃3
(1) from the conditional p(𝜃𝜃3|𝜃𝜃1

(1),𝜃𝜃2
(1),𝒚𝒚). Using both updated 

values. 

5. Draw 𝜃𝜃(2) using 𝜃𝜃(1) and continually using the most updated values. 

6. Repeat until we get M draws, with each draw being a vector 𝜽𝜽(𝑡𝑡). 

7. Optional burn-in and/or thinning. 

Gibbs Sampler has the following strengths:  

• It is an easy algorithm to think about. 

• It exploits the factorization properties of the joint probability distribution. 

• No difficult choices need to be made to tune the algorithm. 
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However, sampling from full conditional distributions is considered difficult and sometimes 

impossible, which is the weakness of the Gibbs Sampler. 

2. Metropolis-Hastings Algorithm 

Metropolis-Hastings Algorithm is a Markov Chain Monte Carlo (MCMC) method for obtaining 

a sequence of random samples from a probability distribution for which direct sampling is 

difficult. This algorithm aims to construct Markov Chain 𝑌𝑌(𝑡𝑡) with stationary distribution 𝑓𝑓(𝑦𝑦). 

At some time 𝑡𝑡, it generates next value 𝑌𝑌(𝑡𝑡+1) in the following two steps: 

• Proposal step: Sample 𝑌𝑌 from the proposal distribution, 

𝑍𝑍~𝑞𝑞(𝑧𝑧|𝑌𝑌(𝑡𝑡)).  

• Acceptance step: With probability  

𝛼𝛼�𝑌𝑌(𝑡𝑡),𝑍𝑍� = 𝑚𝑚𝑖𝑖𝑛𝑛 �1,
𝑓𝑓(𝑍𝑍)
𝑓𝑓(𝑌𝑌(𝑡𝑡))

𝑞𝑞(𝑌𝑌(𝑡𝑡)|𝑍𝑍)
𝑞𝑞(𝑍𝑍|𝑌𝑌(𝑡𝑡))

� 

Set 𝑌𝑌(𝑡𝑡+1) = 𝑍𝑍 (acceptance) and otherwise set 𝑌𝑌(𝑡𝑡+1) = 𝑌𝑌(𝑡𝑡) (rejection). 

Suppose we want to sample from the posterior distribution 

𝛾𝛾(𝜃𝜃|𝑌𝑌) = 𝑓𝑓�𝑌𝑌│𝜃𝜃�𝛾𝛾(𝜃𝜃)
𝑓𝑓(𝑌𝑌)

             with       𝑓𝑓(𝑌𝑌) = ∫𝑓𝑓(𝑌𝑌|𝜃𝜃) 𝛾𝛾(𝜃𝜃) 𝑑𝑑𝜃𝜃. 

then  

𝛾𝛾(𝜃𝜃′|𝑌𝑌)
𝛾𝛾(𝜃𝜃|𝑌𝑌)

=
𝑓𝑓(𝑌𝑌|𝜃𝜃′)𝛾𝛾(𝜃𝜃′)
𝑓𝑓(𝑌𝑌|𝜃𝜃)𝛾𝛾(𝜃𝜃)

 

i.e. the normalizing constant is not required to run the algorithm. Usually the proposal 

distribution 𝑞𝑞 is chosen in such a way that it is easy to sample from it. If the proposal 

distribution is symmetrical then 𝑞𝑞(𝑧𝑧|𝑦𝑦) = 𝑞𝑞(𝑦𝑦|𝑧𝑧) then the Metropolis Algorithm becomes:  

𝛼𝛼�𝑌𝑌(𝑡𝑡),𝑍𝑍� = 𝑚𝑚𝑖𝑖𝑛𝑛 �1,
𝑓𝑓(𝑍𝑍)
𝑓𝑓(𝑌𝑌(𝑡𝑡))

� 
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Where the proposal state 𝑍𝑍 with higher probability are always accepted. In the process, 

change to state with lower probability possible with α. Sometimes Random-Walk Metropolis 

has a special case where 𝑞𝑞(𝑧𝑧|𝑦𝑦) = 𝑞𝑞(|𝑧𝑧 − 𝑦𝑦|). 

3.3.5 Hierarchical Multiple Linear Regression 

Hierarchical (accurate term is multilevel) data structures are regularly encountered in the 

social and behavioural sciences meaning that the data collected often represents different 

levels of aggregation for the subjects of study.  

The starting point is the basic form of multilevel models; these models take the standard 

restriction that the estimated coefficients are constant across the individual cases by 

specifying the levels of additional effects. They start with a standard linear model specification 

indexed by subjects and a first level of grouping. The form for a model with a single 

explanatory variable is: 

𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛽𝛽𝑗𝑗0 + 𝛽𝛽𝑗𝑗1𝑋𝑋𝑖𝑖𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗       (3.44) 

Now add a second level to the model that explicitly nests effects within groups and index 

these groups 𝑗𝑗 = 1 to 𝐽𝐽: 

𝛽𝛽𝑗𝑗0 = 𝛾𝛾00 + 𝛾𝛾10𝑍𝑍𝑗𝑗0 + 𝑢𝑢𝑗𝑗0 

𝛽𝛽𝑗𝑗1 = 𝛾𝛾01 + 𝛾𝛾11𝑍𝑍𝑗𝑗1 + 𝑢𝑢𝑗𝑗1, 

Where all individual level variation is assigned to groups producing department level 

residuals: 𝑢𝑢𝑗𝑗1and  𝑢𝑢𝑗𝑗0. These  𝑍𝑍𝑗𝑗1 are context level variables in that their effect is assumed to 

be measured at the group level rather than at the individual level. Finally, after substitution 

the level-2 model becomes: 

𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛾𝛾00 + 𝛾𝛾01𝑋𝑋𝑖𝑖𝑗𝑗 + 𝛾𝛾10𝑍𝑍𝑗𝑗0 + 𝛾𝛾11𝑋𝑋𝑖𝑖𝑗𝑗𝑍𝑍𝑗𝑗1 + 𝑢𝑢𝑗𝑗1𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑢𝑢𝑗𝑗0 + 𝜖𝜖𝑖𝑖𝑗𝑗 (3.45) 
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For the data matrices, 𝑋𝑋𝑖𝑖𝑗𝑗 for individual 𝑖𝑖 in cluster 𝑗𝑗, and 𝑍𝑍𝑗𝑗 for the cluster  𝑗𝑗, there are four 

canonical models that are listed in table 4 below. 

Table 4 Canonical Models 

Pooled 𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛼𝛼 + 𝑿𝑿′𝑖𝑖𝑗𝑗𝑿𝑿 + 𝒁𝒁′𝑗𝑗𝛾𝛾 + 𝑒𝑒𝑖𝑖𝑗𝑗 

Fixed Effect  𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝑿𝑿′𝑖𝑖𝑗𝑗𝑿𝑿 + 𝑒𝑒𝑖𝑖𝑗𝑗 

Random Effect  𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝒁𝒁′𝑗𝑗𝛾𝛾 + 𝑒𝑒𝑖𝑖𝑗𝑗 

Random Intercepts and Random Slope 𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝑿𝑿′𝑖𝑖𝑗𝑗𝑿𝑿 + 𝒁𝒁′𝑗𝑗𝛾𝛾 + 𝑒𝑒𝑖𝑖𝑗𝑗 

 

3.3.6 Basic Structure of the Bayesian Hierarchical Model 

As usual, the central interest is to generate the posterior distribution from the product of the 

likelihood and the prior: 

𝜋𝜋(𝜃𝜃|𝐗𝐗) 𝛼𝛼 𝐿𝐿(𝜃𝜃|𝐗𝐗) ∗ 𝑝𝑝(𝜃𝜃)     (3.46) 

Now suppose that the parameter 𝜃𝜃 is conditional on another unknown parameter λ, which 

has its own distribution, the posterior becomes: 

𝜋𝜋(𝜃𝜃|𝐗𝐗) 𝛼𝛼 𝐿𝐿(𝜃𝜃|𝐗𝐗) ∗ 𝑝𝑝(𝜃𝜃|𝜆𝜆)𝑝𝑝(𝜆𝜆)           (3.47) 

If the form 𝑝𝑝(𝜃𝜃|𝜆𝜆) and 𝑝𝑝(𝜆𝜆) are cooperative then this system can be quite straightforward. 

This extension complicates the derivation of the posterior above to the point where the 

MCMC tools are required to get marginal distribution of 𝜃𝜃. Here 𝑃𝑃(𝜃𝜃) is the prior distribution, 

𝑝𝑝(𝜃𝜃|𝜆𝜆) in turn is now conditional on another parameter that has its own prior, 𝑝𝑝(𝜆𝜆) called a 

hyperprior, which can also have hyper parameters if desired.  

Inference for either parameter of interest can be obtained through looking at the respective 

marginal densities: 
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𝜋𝜋(𝜃𝜃|𝐗𝐗) = �𝜋𝜋(𝜃𝜃, 𝜆𝜆|𝐗𝐗)
 

𝜆𝜆
𝑑𝑑𝜆𝜆 

𝜋𝜋(𝜆𝜆|𝐗𝐗) = �𝜋𝜋(𝜃𝜃, 𝜆𝜆|𝐗𝐗)
 

𝜃𝜃
𝑑𝑑𝜃𝜃, 

Where the other parameter has been integrated out of the joint distribution. If we continue 

this procedure of adding hyper priors, beginning with making 𝜆𝜆 conditional on another 

parameter, 𝑝𝑝(𝜆𝜆|𝜓𝜓), and adding new hyper prior distribution, 𝑝𝑝(𝜓𝜓), to the calculation of 

posterior distribution then this results to: 

𝜋𝜋(𝜃𝜃, 𝜆𝜆,𝜓𝜓|𝐗𝐗) 𝛼𝛼 𝐿𝐿(𝜃𝜃|𝐗𝐗) ∗ 𝑝𝑝(𝜃𝜃|𝜆𝜆)𝑝𝑝(𝜆𝜆|𝜓𝜓) 𝑝𝑝(𝜓𝜓) 

Now 𝜓𝜓 are the highest-level parameters and therefore the only hyper prior that is 

unconditional. As a simple example, consider data that are normally distributed with known 

variance and unknown mean, 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖 , 𝜎𝜎2), 𝑖𝑖 = 1,2, …𝑛𝑛, for an unknown constant 𝜇𝜇 we 

assume random 𝜇𝜇𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 that are drawn independently from a common, also normal, 

distribution: 𝒩𝒩�𝑚𝑚𝜇𝜇, 𝑠𝑠𝜇𝜇2�. The model can be summarized as: 
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⋮
𝜇𝜇𝑛𝑛

�~ 𝒩𝒩�𝑚𝑚𝜇𝜇, 𝑠𝑠𝜇𝜇2� 

The 𝑋𝑋𝑖𝑖 values are assumed to be generated by underlining means in normal specification, 

these means are of common distribution with fixed hyper parameters 𝑚𝑚𝜇𝜇and 𝑠𝑠𝜇𝜇2. This is the 

similar idea as Non-Bayesian Multilevel Models above, except that the second stage is given 

in the form of a common prior distribution for the unknown 𝜇𝜇𝑖𝑖. 
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Chapter 4: Results 
 
In the following, we illustrate all models described in previous chapters by applying them to 

the data set from Malawi. Before fitting of the models, this chapter outlines the descriptive 

summaries of Malawi data. At the end of this chapter, all the fitted models are compared 

highlighting that the Bayesian approach gives better results than classical approach.   

4.1 Multiple Linear Regression 

4.1.1. Descriptive Summaries 

Distribution of child weights by year 

Table 5 below shows the total number of children in each birth weight group for the years 

2000, 2004 and 2010. This study focuses only on children with birth weight that is less than 

2.5kg. 

Table 5: Distribution of child weights by year 

 

Child’s weight at birth (kg) 2010 2004 2000 

<2.5 2315 909 909 
2.5-4.5 18440 10333 10333 
>4.5 7906 6135 6654 

 
 

Means and Standard deviations of child weights by underweight factors and year 

The first results of this study presented in the descriptive Table 6 below show the average 

weight at birth (in grams), standard deviation and number of observations in each category 

for all underweight factors in this study. This result concerns only underweight (less than 

2.5kg) children. There seems to be no big mean differences in child’s birth weight for mother’s 
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age in all of three years. In year 2010, the youngest mothers (aged 15-19 years) had children 

with average birth weight of 2.19kg and oldest mothers (aged 40-49 years) had children with 

an average birth weight of 2.20kg. Results in Table 6 also show that the average weight at 

birth is affected by the gender of a child, that is, female children have a slightly higher average 

birth weight than male children in all three years. There is a proportional average relationship 

between average birth weight and education level of a mother. Results in Table 6 show that 

mothers who have secondary or tertiary education have children with a higher average birth 

weight than mothers with no education at all. Few mothers were HIV positive compared to 

mothers who were HIV negative in all three years. The average weight at birth of a child with 

a mother who is HIV positive is less than that of a child with a mother who is HIV negative in 

all three years.  

In this study, more mothers were working during pregnancy than mothers who were not 

working. In the year 2010, the average birth weight of a child with a working mother was 

smaller than that of a child whose mother was not working. The variable of whether the 

mother was working or not had little impact on the results. 

There seem to be a larger spread or variability in the values of the young mothers (aged 15-

19) than older mothers (aged 40-49). For all the factors in the study, there were no big spread 

differences in total average variability for the year 2010 when compared to the years (2000 

and 2004). The overall averages for all the variables are almost the same for all three years - 

approximately 2.1kg. Since the comparison is between Classical Linear Regression and 

Bayesian Linear Regression, further and sufficient analysis will be made using the inferential 

statistics. In other words, by Multiple Linear Regression, Multilevel Linear Regression, 

Bayesian Multiple Linear Regression and Bayesian Multilevel Linear Regression.  
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Table 6: Means and Standard deviations of child weights by underweight factors and year 

 2010 2004 2000 

Mother's 
age Mean   Standard      

deviation 
Nobs Mean  Standard 

deviation 
Nobs Mean  Standard 

deviation 
Nobs 

15-19 2185.29 340.64 204 2134.84 401.81 64 2243.36 302.62 122 

20-24 2170.57 381.30 666 2196.72 361.69 332 2266.37 327.88 409 

25-29 2173.74 368.06 613 2170.30 349.78 234 2254.22 363.61 271 

30-34 2198.22 336.51 393 2168.49 387.89 138 2271.30 276.81 161 
35-39 2167.03 371.12 273 2125.57 365.70 88 2256.80 345.71 103 

40-49 2202.19 333.10 166 2235.66 331.74 53 2340.74 255.32 81 
Child's 
gender                   

Male 2174.91 357.58 1068 2166.58 389.82 432 2254.85 329.16 530 
Female 2175.78 370.14 1247 2185.79 340.08 477 2275.83 320.90 617 

Region                   

Northern  2197.49 374.94 478 2209.23 325.22 163 2233.54 358.72 195 

Central 2160.34 350.26 837 2121.48 354.44 254 2270.59 307.81 407 

Southern 2177.40 370.44 1000 2194.35 379.22 492 2274.48 324.23 545 
Mother’s 
education 
level 

      
    

  
    

  

no 
education 2152.31 367.97 325 2167.50 354.59 206 2289.36 323.01 264 

Primary 2164.15 373.18 1615 2174.24 357.30 558 2250.43 331.21 756 
Secondary+ 2243.73 311.81 375 2198.97 405.28 145 2311.36 281.98 127 
Mother’s working 
status                  

Not working 2190.19 356.55 581 2149.89 397.16 378 2250.13 347.62 415 
Previous 
year 2138.99 427.06 421 2197.37 256.26 38 2305.66 214.31 53 

Working 2180.50 344.91 1313 2195.59 344.13 493 2272.84 317.24 679 
Mother’s 
HIV status          
Positive 2124.43 384.99 397 2132.67 375.25 138 2113.21 325.59 132 
Negative 2185.65 358.81 1903 2111.33 358.24 771 2311.22 314.25 945 
Total 
average  2177.00 362.07  2170.35 359.77  2265.59 314.10  
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4.2 Multiple Linear and Hierarchical (Multilevel) Regression  

4.2.1 Multiple Linear regression 

In this section the classical linear model in equation 3.21 is fitted for the years 2010, 2004 and 

2000 to obtain the estimates, standard error and p-values for all the variables in the study. 

These results are interpreted based on the output and will later be used in comparison of 

classical and the Bayesian approaches. 

Multiple Linear Regression Output for the year 2010 

Table 7: Year 2010 linear regression output for the low birth weight model in Malawi 
     

Covariates      Estimate Std.Error              tvalue 
   

Pr(>|t|) 

(Intercept) 2133.61 51.485 41.442 < 2e-16 *** 
Mother’s age (Ref:15-19)     
20-24 50.25 29.882 1.681 0.0928 
25-29 81.57 33.627 2.426 0.0153 * 
30-34 120.60 40.218 2.999 0.0028 ** 
35-39 111.08 49.482 2.245 0.0249 * 
40-49 108.59 58.475 1.857 0.0635 
Child’s birth order number -16.55 6.705 2.468 0.0137 * 
Region (Ref: Northern)     
Central -47.99 27.32 -1.757 0.0792 
Southern -13.74 27.656 -0.497 0.6193 
Child’s gender (Ref: Male)     
Female -2.94 17.045 -0.172 0.8631 
Education level (Ref: No education)     
Primary -2.50 25.314 -0.099 0.9212 
Secondary + 46.85 32.346 1.448 0.1477 
Mother’s working status (Ref: Not working)     
Worked (past year) -51.48 26.056 -1.976 0.0484 * 
Working -13.98 20.342 -0.687 0.4922 
Antenatal visits  5.45 2.978 1.831 0.0672 
Mother’s HIV Status (Ref: positive)     
Negative  81.89 21.688 3.776 0.00016 *** 

Signif. codes :  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
Residual standard error: 344000 on 1574 degrees of freedom 
Multiple R-squared:  0.03164, Adjusted R-squared:  0.02242  
F-statistic: 3.429 on 15 and 1574 DF, p-value: 8.833e-06 

 

The age of the mother, the child’s birth order number, the mother’s working status and the 

mother’s HIV Status are significant factors determining the birth weight of a child in year 2010. 
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The model explains approximately 2.24% of variation in child’s weight at birth if we consider 

all the data variables in the model. Since the p-value is small, the hypothesis that all the model 

coefficients are zero is rejected at 5% level of significance (p-value = 8.833𝑒𝑒−6) 

The residual standard error for the model is 344 000 on 1 574 degrees of freedom. This gives 

an idea of how far observed child’s weight at birth (Y values) are from the predicted or fitted 

child’s weight at birth (𝑌𝑌�  values), that is, residual or error  𝑒𝑒 = 𝑌𝑌 − 𝑌𝑌 � . The intercept of 

2133.605 is the estimated mean Y (dependent variable) value when all the X’s (independent 

variables) are zero. Mothers aged between 25 and 39 years have children who have better 

weight at birth compared to mothers between the ages 15 and 19 years. This is based on the 

significant variables in the above output. When adjusting or controlling all other variables in 

the model, -16.55 is the rate of change in birth order number for a unit change in child’s 

weight at birth. This means that birth weight increases with a low birth order number of a 

child i.e. mothers with few children are in lesser danger of having underweight babies 

compared to mothers with more children. For categorical variables, an appropriate reference 

category is selected to compare all the other categories to that reference category. The 

average difference in child’s weight at birth between HIV positive and HIV negative mothers 

group is 81.89. This means that the weight at birth of a child from a mother who is not HIV 

infected is higher than that of an HIV positive mothers. The average difference in child’s 

weight at birth between mothers who were working during their pregnancy and those who 

were not working is -51.476. Using the Pearson method, the correlation between gender of a 

child and mother’s age is 0.0394 and this is significant. 

 

There is a positive correlation of 0.0394 between the gender of a child and mother’s age. The 

collinearity between these independent variables directly interpret the slope as the effect of 
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each variable on child’s weight at birth while controlling the other variable. This low 

correlation between the gender of a child and the age of the mother suggests that these two 

effects are not bounded together.  

Table 7: Year 2010 Multiple Linear Regression Confidence Intervals 

Covariates 2.50% 97.50% 
(Intercept) 2032.62 2234.59 
Mother’s age (Ref:15-19) 
Age 20-24 -8.37 108.86 
Age 25-29 15.61 147.52 
Age 30-34 41.71 199.49 
Age 35-39 14.02 208.14 
Age 40-49 -6.11 223.29 
Child’s birth order number -29.70 -3.40 
Region (Ref: Northern) 
Central  -101.58 5.60 
Southern -67.99 40.50 
Child’s gender (Ref: Male) 
Female -36.37 30.49 
Education level (Ref: No education) 
Primary education -52.16 47.15 
Secondary+ -16.60 110.29 
Mother’s working status (Ref: Not working) 
Worked (past year) -102.58 -0.37 
Working -53.87 25.92 
Antenatal visits -0.39 11.29 

Mother’s HIV status (Ref: Positive) 
Negative 39.35 124.43 

 

A confidence interval is a range of values within which it is believed that a certain parameter 

(often the mean) will fall with a certain degree of confidence. The percentage of the 

confidence is denoted by (1 – α)100% where α is 0.05. A confidence interval can be used to 

test hypothesis for the model, if the confidence interval contains the value of the unknown 

parameter as hypothesized under 𝐻𝐻0 , then 𝐻𝐻0 would not be rejected in a two-sided 

hypothesis test with corresponding α. If the confidence interval does not contain the value of 

the unknown parameter as hypothesized under 𝐻𝐻0 , then 𝐻𝐻0 would be rejected in a two-sided 

hypothesis test with the corresponding α. The result of the above determination is: 
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• If the hypothesized value does not fall in the confidence interval, then there is a very 

small chance that the value can be a true value for the unknown variable, so 𝐻𝐻0 will 

be rejected. 

• If the hypothesized values falls in the confidence interval, then there is a very good 

chance that the value can be a true value for the unknown variable, so 𝐻𝐻0 is definitely 

possible and will not be rejected. 

In a 95% confidence interval, the true slope for mother’s age (20-24 years) is between -8.36 

and 108.86 i.e. (-8.36, 108.86) and is insignificant at 0.05 level. Based on the hypothesized 

value, most of the confidence intervals include zero for the model fitted, therefore the null 

hypothesis is not rejected at 0.05 level of significance. The variables mother’s age, birth order 

number, mother’s HIV status and mother’s employment status are significant, as the 

confidence interval does not include zero. This result conforms to the multiple linear 

regression output above. Therefore, it can be concluded that the use of confidence interval 

gives similar results to that of linear regression. 
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Multiple Linear Regression Output for the year 2004 

When the same model as the above is fitted for the year 2004 data we get the following 

parameter estimates. 

Table 9: Year 2004 Multiple linear regression output 

Covariates   Estimate  Std. Error t value Pr(>|t|) 

(Intercept) 
Mother’s age (Ref:15-19) 

2157.9 
 

79.446 
 

27.162 
 

< 2e-16 *** 
 

Age 20-24 112.185 54.883 2.044 0.04140 * 
Age 25-29 122.568 60.28 2.033 0.04248 * 
Age 30-34 154.453 69.422 2.225 0.02648 * 
Age 35-39 135.04 81.88 1.649 0.09964 
Age 40-49 296.983 93.493 3.177 0.00157 ** 
Child’s birth order number 
Region (Ref: Northern) 

-31.044 
 

10.125 
 

-3.066 
 

0.00227 ** 
 

Central region 17.78 42.698 0.416 0.67727 
Southern region 37.093 39.474 0.94 0.34778 
Child’s gender (Ref: Male) 
Female 18.527 28.506 0.65 0.51601 
Education level (Ref: No education)     
Primary education -31.234 37.864 -0.825 0.40977 
Secondary+ 25.206 51.568 0.489 0.62518 
Mother’s working status (Ref: Not 
working)     
Worked (past year) -15.61 80.955 -0.193 0.84716 
Working 69.209 29.564 2.341 0.01958 * 
Antenatal visits -4.934 3.072 -1.606 0.10879 
Mother’s HIV Status (Ref: positive)     
Negative -13.682 28.496 -0.48 0.63133 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 335800 on 573 degrees of freedom 
Multiple R-squared:  0.04675, Adjusted R-squared:  0.02179  
F-statistic: 1.873 on 15 and 573 DF,  p-value: 0.02324 
 
The age of the mother, the child’s birth order number and mother’s working status are 

significant independent variables for the model using the year 2004 data. The model explains 

the approximately 2.18% of variation in child’s weight at birth if we consider all the data 

variables in the model using 2004 data. Since the p-value is small, the hypothesis that all the 

model coefficients are zero is rejected at 5% level of significance (p-value = 0.02179). For the 

final inferences in the multiple linear regression analysis, the results are not approximately 
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the same for the 2010 and 2004 data sets, even though the model is the same. The 

conclusions made are valid at 5% level of significance for the data used in the study. 

 

Multiple Linear Regression Output for the year 2000 

When the same model as the above is fitted for the year 2000 data we get the following 

parameter estimates. 

Table 10: Year 2000 Multiple linear regression 

 
Covariates Estimate    Std.Error  t value Pr(>|t|)     
(Intercept) 2150.518 66.535 32.322 <2e-16 *** 
Mother’s age (Ref:15-19)     
Age 20-24 30.254 39.398 0.768 0.443 
Age 25-29 16.75 46.858 0.357 0.721 
Age 30-34 63.129 57.213 1.103 0.27 
Age 35-39 51.737 70.812 0.731 0.465 
Age 40-49 134.347 87.299 1.539 0.124 
Child’s birth order number -8.87 9.071 -0.978 0.328 
Region (Ref: Northern)     
Central region 62.479 38.911 1.606 0.109 
Southern region 59.326 38.534 1.54 0.124 
Child’s gender (Ref: Male)     
Female 30.274 23.563 1.285 0.199 
Education level (Ref: No education)     
Primary education -15.721 29.169 -0.539 0.59 
Secondary + 16.539 45.798 0.361 0.718 
Mother’s working status (Ref: Not 
working)     
Worked (past year) 74.714 61.93 1.206 0.228 
Working 25.091 25.778 0.973 0.331 
Antenatal visits 3.565 6.648 0.536 0.592 
HIV Status (Ref: positive)     
Negative 27.138 23.754 1.142 0.254 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 324700 on 740 degrees of freedom 
Multiple R-squared:  0.01708, Adjusted R-squared:  -0.002849  
F-statistic: 0.857 on 15 and 740 DF,  p-value: 0.6134 
 

The model output has no significant variables for the year 2000 data, which is not the good 

regression results compared to other years (2010 and 2004).  
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4.2.2 Hierarchical (Multilevel) Regression 

Below is the multilevel linear regression output executed using the linear and nonlinear mixed 

effects model (nlme) in R package. Multilevel models are appropriate for a particular kind of 

data structure where units are nested within groups and where we want to model the group 

structure of the data. For the weight at birth model, the mixed model has region treated as 

random effects of the model and all other variables are fixed. The birth weight regression 

results below are analysed using the MDHS data for the years 2000, 2004, and 2010.  

Multilevel Regression Output for the year 2010 

Linear mixed-effects model fit using the restricted (or residual) maximum likelihood (REML) 

 
Table 81: Year 2010 Multilevel Regression Output 
 

Covariate Estimate                                                                                      Std. Error   DF           t-value p-value 
(Intercept) 2147.51 50.06 1574   42.89 0.0000 
Mother’s age (Ref=15-19)      
20-24 -1.42 31.71 1574  -0.044 0.9643 
25-29 56.06 35.54 1574   1.577 0.1149 
30-34 94.97 42.61 1574   2.228 0.0260 
35-39 105.89 51.99 1574   2.036 0.0418 
40-49 104.74 60.34 1574   1.735 0.0828 
Child’s birth order number -20.81 6.972 1574   -2.98 0.0029 
Child’s gender (Ref: Male)      
Female 6.68 17.99 1574   0.371 0.7105 
Education level (Ref: No education)      
Primary education -3.52 27.61 1574  -0.127 0.8986 
Secondary + 45.58 35.31 1574   1.290 0.1970 
Mother’s working status (Ref: Not 
working)      
Worked (past year) -55.74 27.42 1574  -2.032 0.0422 
Working -19.46 21.66 1574  -0.898 0.3692 
Antenatal visits 6.19 3.319 1574   1.864 0.0624 
Mother’s HIV status (Ref: HIV positive)      
Negative 71.58 23.33 1574   3.067 0.0022 

 

The description of the random effects shows the measure of variance at the different levels 

in the design expressed as a standard deviation of 23.607. This shows that there was a 

variation between regions and between the residuals in the model. The variables age of a 
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mother, child’s birth order number, mother’s working status and mother’s HIV status are 

significant variables for the model using 2010 data. Both the standard error and parameter 

estimates of the multilevel linear regression model seem to differ from the Multiple Linear 

Regression model output for the 2010 data. The estimates of fixed effects are in the model 

output; this means that the average differences across observations are controlled. The 

average weight at birth of a child when all other variables are zero is 2147.51. The weight at 

birth of a child increases with a decrease in birth order number of a child. The average 

difference in child’s weight at birth between HIV positive and HIV negative mothers is 71.58. 

This means that the weight at birth of a child with a mother who is not HIV-infected is better 

than that of a child with an HIV positive mother. 

 

Table 12: Correlations for the Year 2010 Multilevel Linear Regression 
 

 
 

Standardized Within-Group Residuals: 

 Min         Q1         Med         Q3         Max  

-5.6156719   -0.4895505 0.2142568   0.7658392 1.3737537  

Number of Observations: 1590 

Number of regions: 3  

Key of the variables listed in table 12 is attached in the Appendix.  

Intr fctr2 fct3 fct4 fctr5 fctr6 bord fc(4)2 fctr(d)1 fctr(d)2 fctr(w)1 fctr(w)2 m14

fctr(agegrp)2 -0.415

fctr(agegrp)3 -0.328 0.689

fctr(agegrp)4 -0.242 0.611 0.718

fctr(agegrp)5 -0.187 0.534 0.673 0.725

fctr(agegrp)6 -0.176 0.479 0.630 0.696 0.721

bord -0.228 -0.164 -0.423 -0.580 -0.678 -0.692

fctr(b4)2 -0.164 0.004 -0.024 -0.043 -0.012 -0.012 0.006

fctr(educgrp)1 -0.533 0.027 0.027 0.046 0.066 0.101 0.111 0.012

fctr(educgrp)2 -0.463 -0.050 -0.123 -0.112 -0.072 -0.042 0.277 0.011 0.700

fctr(work)1 -0.242 0.027 0.049 -0.002 0.016 -0.004 0.012 -0.069 -0.002 0.041

fctr(work)2 -0.278 -0.005 -0.042 -0.089 -0.062 -0.079 0.039 -0.037 -0.038 0.038 0.539

m14 -0.218 0.002 -0.037 -0.014 -0.010 -0.019 0.011 -0.011 -0.016 0.003 -0.020 0.014

fctr(status)2 -0.369 -0.012 0.054 0.076 0.050 0.093 -0.053 -0.018 -0.032 -0.053 0.012 0.033   -0.027
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The results above show the number of observations to be 1590 in three separate groups. 

Correlation among the fixed effects variable is used to access multicollinearity. The results 

show that the predictors are not related, (with the expected exception of the categories of 

class). Therefore, multicollinearity is not a concern.  

Multilevel Regression Output for the year 2004 

Linear mixed-effects model fit using the restricted (or residual) maximum likelihood (REML) 

Table 13: Year 2004 Multilevel linear regression output 
 
Covariates               Value Std.Error DF t-value p-value 
(Intercept) 2156.60 70.64 573 30.525  0.0000 
Mother’s age (Ref=15-19)     
20-24 99.09 54.07 573 1.832 0.0674 
25-29 107.13 60.24 573 1.778 0.0759 
30-34 123.01 70.49 573 1.744 0.0815 
35-39 74.70 82.57 573 0.904 0.3660 
40-49 224.98 96.61 573 2.328 0.0202 
Child’s birth order number  -20.23 10.75 573 -1.881 0.0605 
Child’s gender (Ref: Male)      
Female 25.12 29.30 573 0.857 0.3915 
Mother’s education level (Ref: No education)    
Primary education -44.35 38.34 573 -1.156 0.2479 
Secondary+ 32.79 52.34 573 0.626 0.5312 
Mother’s working status (Ref: Not working)    
Worked (past year) 13.39 82.46 573 0.162 0.8710 
Working 55.41 30.09 573 1.841 0.0661 
Antenatal visits -5.35 2.54 573 -2.102 0.0360 
Mothers’ HIV status (Ref: Positive)      
Negative 6.61 29.42 573 0.224 0.8223 

 

Mother’s age and antenatal visits are the significant variables for this model output. 2 156.60 

is the average weight at birth of a child when all other variables are zero. The average weight 

at birth of a child with mothers who is aged 40-49 years is 224.98 higher than that of a child 

with a mother aged 15-24 years. The model output for the year 2004 has 589 number of 
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observations and three groups, which is a lower number of observations compared to year 

2010. The random effects estimates for the three regions are mentioned in table13 below. 

Table 13: Random effects estimate 
 

 Region   Intercept 
 Northern -0.0750 

 Central -7.7185 

 Southern     7.7936 

 

Multilevel Regression Output for the year 2000 

Linear mixed-effects model fit using the restricted (or residual) maximum likelihood (REML) 

Table 14: Year 2000 Multilevel regression output 

 

Covariates Value Std.Error DF t-value p-value 
(Intercept) 2200.184 54.289 740 40.527 0.0000 
Mother’s age  (Ref=15-19)      
20-24 25.355 38.620 740 0.656 0.5117 
25-29 -5.065 45.890 740 -0.110 0.9121 
30-34 38.405 56.891 740 0.675 0.4999 
35-39 32.233 71.033 740 0.454 0.6501 
40-49 129.155 87.263 740 1.480 0.1393 
Child’s birth order number -6.100 9.2797 740 -0.657 0.5111 
Child's gender (Ref: Male)      
Female 42.178 23.659 740 1.783 0.0750 
Mother’s education level (Ref: No education)     
Primary -9.840 29.910 740 -0.329 0.7423 
Secondary+ 41.209 45.027 740 0.915 0.3604 
Mother’s working status (Ref: Not working)     
Worked (past year) 64.648 61.535 740 1.050 0.2938 
Working 29.058 25.499 740 1.139 0.2548 
Antenatal visit 2.129 6.7152 740 0.317 0.7513 
Mother’s HIV status (Ref: Positive)      
Negative 27.698 23.871 740 1.160 0.2463 

 

For a good model, the residuals should be normally distributed around a mean zero. The 

histogram of residuals plot below shows that residuals are almost negatively skewed for the 

weight at birth model. 
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Figure 2: Histogram of Residuals 
 

 
 
The histogram of residuals seem to be negatively skewed. 
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4.3 Bayesian Multiple Linear Regression Output 

One of the most important Bayesian aspects for analysis is to check whether the Markov 

Chains have indeed reached a stable equilibrium distribution, i.e., have converged. The time 

series plots, kernel density plots, and autocorrelation plots and Gelman-Rubin statistic set for 

each simulated parameter are generated as follows for the convergence diagnostics. For each 

Markov Chain in these models, we have a sample of more than 200 000 random draws from 

the joint posterior distribution of all the parameters in the model.  

4.3.1 Non-informative Bayesian Linear Regression 
 

This section covers the Bayesian linear regression with non-informative Bayesian prior for the 

years 2010, 2004 and year 2000. To choose these priors, a Normal distribution with large 

variance was used. These results will then be compared with classical results.  

 
 Table 9: Year 2010 Non-Informative Bayesian Linear Regression Output  

Node  Mean      Sd MC 
error 

2.5% Median 97.5% start Sample 

Alpha 2131.0 52.33 0.4139 2028.0 2131.0 2233.0 1000 59730 

Mother’s age (Ref=15-19) 

20-24 9.386 31.19 0.1577 -51.61 9.499 70.29 1000 59730 

25-29 64.01 34.69 0.1903 -3.827 63.97 131.9 1000 59730 

30-34 100.2 41.57 0.2223 18.27 100.2 181.7 1000 59730 

35-39 107.1 50.51 0.2786 7.619 107.1 205.6 1000 59730 

40-49 107.0 58.45 0.3178 -8.32 107.0 221.8 1000 59730 

Child’s birth order no. -18.38 6.84 0.0381 -31.88 -18.39 -4.896 1000 59730 

Region (Ref=Southern) 

Central region -47.55 25.1 0.1154 -96.98 -47.5 1.467 1000 59730 

Northern region  -33.04 24.56 0.1166 -81.16 -32.96 14.99 1000 59730 

Child’s gender (Ref=Male) 

Female 9.538 18.0 0.07674 -25.63 9.539 45.01 1000 59730 

Education (Ref=No education) 

Primary education 60.09 35.24 0.188 -8.944 60.02 129.0 1000 59730 

Secondary+                    8.793 27.62 0.1558 -45.55 8.794 63.03 1000 59730 

Employment status (Ref=No work) 
Worked (past year) -48.78 27.19 0.1205 -102.1 -48.76 4.684 1000 59730 

Work (currently) -12.04 21.6 0.09175 -54.35 -12.06 30.18 1000 59730 

Antenatal visits  6.93 3.332 0.01357 0.3974 6.928 13.5 1000 59730 

Mother’s HIV Status (Ref=Positive) 

Negative 80.53 23.41 0.1112 34.74 80.44 126.4 1000 59730 

tau.e 7.89E-6 2.8E-7 1.13E-9 7.35E-6 7.89E-6 8.45E-6 1000 59730 
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The node statistics give the formal parameter estimates. The non-informative Bayesian linear 

regression model above shows the mean for estimates, standard error and confidence 

intervals, which are used to make regression inferences about the estimates since the output 

has no p-values. A burn of 1000 followed by a further 59 730 updates gave the parameter 

estimates in Table 14. The variables mother’s age, antenatal visits for pregnancy and HIV 

status of a mother are significant variables for the year 2010 non-informative Bayesian linear 

regression model.  

 

Autocorrelation Function 

The autocorrelation function refers to a pattern of serial correlation in the chain, where 

sequential draws of a parameter, say beta [5] (the mothers age group between 40 and 49 

years old), from the conditional distribution are correlated. If the parameters in a model are 

highly correlated, this causes autocorrelation.  

 

Figure 3: Year 2010 non-informative Bayesian autocorrelation function  
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For this model, the chains are hardly autocorrelated at all. This is good, as our sample contains 

more information about the parameters than when successive draws are correlated. 

 
 
 
 
 
 
 
Figure 4: Year 2010 non-informative Bayesian Kernel density 
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The assumption that the density function of a posterior distribution is normally distributed 

is met for all the variables of the non-informative Bayesian model.  

 

Figure 5: Year 2010 non-informative Bayesian dynamic trace 
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The trace provides a moving time series plot of the posterior draws for each selected 

parameter in the model. This model gives a smoothly moving dynamic trace of the Markov 

Chains. 
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Figure 6: Year 2010 Non-Informative Bayesian Time Series 
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Visual inspection of the time series plot produced suggest that the Markov chains have 
converged. 
 
  



66 
 

Table 10: Year 2004 Non-Informative Bayesian Linear Regression Output 
 

node  mean  sd  MC 
error 2.5% median 97.5% start Sample 

alpha 2034.0 77.29 0.56 1883.0 2034.0 2185.0 1000 65700 

Mothers’ age (Ref=15-19)        

20-24 128.7 51.38 0.264 28.74 129.0 229.5 1000 65700 

25-29 129.1 56.64 0.2879 17.81 128.9 239.5 1000 65700 

30-34 138.7 65.99 0.3086 9.444 138.3 269.6 1000 65700 

35-39 88.01 77.32 0.3559 -64.26 88.28 239.9 1000 65700 

40-49 219.3 90.14 0.4223 43.19 219.5 397.8 1000 65700 

Childs’ birth order no. -11.91 10.4 0.0512 -32.28 -11.93 8.604 1000 65700 

Region (Ref: Southern)         

Central  -1.267 44.9 0.2038 -89.18 -1.273 87.2 1000 65700 
Northern  53.64 40.07 0.1909 -24.97 53.76 133.1 1000 65700 
Child's gender (Ref: Male)         

Female 35.43 29.29 0.1112 -22.21 35.46 92.81 1000 65700 
Education level (Ref: No education)        

Primary 78.51 52.15 0.2608 -22.84 78.56 181.3 1000 65700 
Secondary+ -8.222 38.16 0.1876 -83.1 -8.231 66.55 1000 65700 
Woking status ( Not working)        

Worked (past year) 20.02 79.84 0.299 -136.2 20.22 177.3 1000 65700 
Working 62.7 29.98 0.1141 3.627 62.75 121.3 1000 65700 

Antenatal visits -5.043 2.556 0.0097 -10.07 -5.042 -0.0448 1000 65700 

Mother's HIV status (Ref: HIV positive)       

HIV negative 12.32 29.55 0.1163 -45.12 12.22 70.33 1000 65700 

tau.e 8.089E-
6 

4.784E-
7 

1.95E-
9 

7.179E-
6 

8.078E-
6 

9.053E-
6 1000 65700 

 

The variables age of a mother, mother’s working status and antenatal visits are significant 

parameters for this model when using the 95% confidence interval. The autocorrelation 

function, density function and time series for this parameter are shown below.  

 
Figure 7: Year 2004 Non-Informative Bayesian Dynamic Trace 
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The chains are hardly correlated for the year 2004 data. 
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Figure 8: Year 2004 Non-Informative Bayesian Kernel Density 
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The assumption that the density function of a posterior distribution is normally distributed 

is met for all the variables of the Non-Informative Bayesian Model.  

 

Figure 9: Year 2004 Non-Informative Bayesian Time Series Plot 
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Table 11: Year 2000 Non-Informative Bayesian Linear Regression Output 
 

node  mean  sd 
 MC 
error 

2.5% median 97.5% start sample 

alpha 2071.0 63.05 0.4506 1948.0 2072.0 2195.0 1000 63000 

Mothers’ age (Ref=15-19)        

20-24 39.69 37.68 0.1771 -34.14 39.75 113.5 1000 63000 

25-29 4.2 44.11 0.2043 -82.1 4.292 90.23 1000 63000 

30-34 40.06 54.24 0.253 -66.03 40.08 145.4 1000 63000 

35-39 30.02 67.8 0.3319 -102.9 30.14 162.0 1000 63000 

40-49 118.6 82.34 0.4004 -42.97 118.8 279.4 1000 63000 

Childs’ birth order number -2.831 8.917 0.04651 -20.23 -2.829 14.64 1000 63000 

Region (Ref: Southern)         

Central  81.1 35.88 0.1741 11.1 81.24 151.4 1000 63000 

Northern  64.18 34.41 0.1703 -3.049 64.1 131.6 1000 63000 

Child's gender (Ref: Male)         

Female 51.65 23.62 0.09579 5.44 51.64 97.86 1000 63000 

Education level (Ref: No education)        

Primary 65.82 44.45 0.1872 -21.56 66.13 152.5 1000 63000 

Secondary+ 13.56 29.97 0.1352 -45.39 13.59 72.3 1000 63000 

Woking status (Not working)        

Worked (past year) 80.38 60.85 0.227 -39.6 80.31 199.4 1000 63000 

Working 38.38 25.39 0.1017 -11.5 38.41 88.11 1000 63000 

Antenatal visits 6.802 6.787 0.03189 -6.514 6.792 20.12 1000 63000 

Mother's HIV status (Ref: HIV positive)        

Negative 29.36 23.89 0.08945 -17.36 29.39 76.0 1000 63000 

tau.e 9.625E-6 5.023E-7 2.076E-9 8.668E-6 9.616E-6 1.063E-5 1000 63000 

 
The region and gender of a child are significant at 95% confidence interval - therefore these 

predictors have an influence in child’s weight at birth for the year 2000.The respective 

dynamic trace, autocorrelation, density function and time series are:  
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Figure 10: Year 2000 Non-Informative Bayesian Time Series Plot 
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Figure 11: Year 2000 Non-Informative Bayesian Autocorrelation Function 
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The year 2000 data shows that chains are hardly correlated.  
 
Figure 12: Year 2000 Non-Informative Bayesian Kernel Density 
 

alpha chains 1:3 sample: 63000

 1600.0  1800.0 2.00E+3  2200.0

    0.0
  0.002
  0.004
  0.006
  0.008

beta[1] chains 1:3 sample: 63000

 -200.0  -100.0     0.0   100.0

    0.0
  0.005
   0.01
  0.015

beta[2] chains 1:3 sample: 63000

 -200.0  -100.0     0.0   100.0

    0.0
 0.0025
  0.005
 0.0075
   0.01

beta[3] chains 1:3 sample: 63000

 -400.0  -200.0     0.0   200.0

    0.0
  0.002
  0.004
  0.006
  0.008



76 
 

beta[4] chains 1:3 sample: 63000

 -400.0  -200.0     0.0   200.0

    0.0
  0.002
  0.004
  0.006

beta[5] chains 1:3 sample: 63000

 -400.0     0.0   200.0

    0.0
  0.002
  0.004
  0.006

beta[6] chains 1:3 sample: 63000

  -40.0   -20.0     0.0    20.0

    0.0
   0.02
   0.04
   0.06

beta[7] chains 1:3 sample: 63000

 -100.0     0.0   100.0   200.0

    0.0
  0.005
   0.01
  0.015

beta[8] chains 1:3 sample: 63000

 -100.0     0.0   100.0   200.0

    0.0
  0.005
   0.01
  0.015

beta[9] chains 1:3 sample: 63000

 -100.0     0.0   100.0

    0.0
  0.005
   0.01
  0.015
   0.02

beta[10] chains 1:3 sample: 63000

 -200.0     0.0   200.0

    0.0
 0.0025
  0.005
 0.0075
   0.01

beta[11] chains 1:3 sample: 63000

 -200.0  -100.0     0.0   100.0

    0.0
  0.005
   0.01
  0.015

beta[12] chains 1:3 sample: 63000

 -200.0     0.0   200.0

    0.0
  0.002
  0.004
  0.006
  0.008

beta[13] chains 1:3 sample: 63000

 -100.0     0.0   100.0

    0.0
  0.005
   0.01
  0.015
   0.02

beta[14] chains 1:3 sample: 63000

  -40.0   -20.0     0.0    20.0

    0.0
   0.02
   0.04
   0.06

beta[15] chains 1:3 sample: 63000

 -100.0     0.0   100.0

    0.0
  0.005
   0.01
  0.015
   0.02

tau.e chains 1:3 sample: 63000

6.00E-6 8.00E-6 1.00E-5 1.20E-5

    0.0
2.50E+5
5.00E+5
7.50E+5
1.00E+6

 
 
 



77 
 

Figure 13: Year 2000 Non-Informative Bayesian Dynamic Trace 
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4.3.2 Bayesian Linear Regression with Informative Priors 

There are three different type of priors considered for Bayesian Linear Regression Models 

with informative priors, namely mixed Bayesian priors, pure Bayesian priors and pure 

hierarchical Bayesian priors. 

1. Mixed Bayesian Priors- These are priors that are calculated using the classical linear 

regression model output to compute the beta coefficient and variance components to 

be used as priors of the Gamma distribution function and WinBUGS software. 

The classical linear regression output is used to calculate the beta coefficients and 

variance components for mother’s ages between 30 and 34 years old. Using equations 

3.32 and 3.33 we get; 

• 𝑠𝑠20002 = 𝑆𝑆𝑆𝑆(2000)
�𝑛𝑛2000

  = 57.21
√161

 = 4.51 

 

• 𝑠𝑠20042 = 𝑆𝑆𝑆𝑆(2004)
�𝑛𝑛2004

  = 69.42
√138

 = 5.91 
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• 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 = (𝑛𝑛2000−1)𝑠𝑠20002 +(𝑛𝑛2004−1)𝑠𝑠20042

𝑛𝑛2000+𝑛𝑛2004−2
  

                          = (138−1)(5.91 )+(161−1)( 4.51)
138+161−2

  

                          =5.16 
 

• 𝛽𝛽𝑎𝑎𝑎𝑎𝑝𝑝𝑟𝑟𝑎𝑎𝑎𝑎𝑝𝑝 = 𝛽𝛽2000+𝛽𝛽2004
2

 

                 = 154.45+63.132
2

  

                 = 108.79 

 
Gamma distribution priors are calculated using equation 3.34. 

•  𝛼𝛼 = �̅�𝑥
𝑠𝑠2

                                                                    𝛽𝛽 =  𝑠𝑠
2

�̅�𝑥
 

    = 
�2157.9+2150.52

2 �

�2.64+1.96
2 �

                         = 
�2.64+1.96

2 �

�2157.9+2150.52
2 �

 

                           = 936.61                                                       = 0.0011 
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Table 12: Summary for Mixed Bayesian Priors for years 2000 and 2004.  

 

 
Table 17 shows the mixed Bayesian priors calculated using the classical linear regression 

output in table 9 and table 10. The data for the years 2000 and 2004 was used to calculate 

the variance components and 𝛽𝛽- coefficients displayed in table 17 and will be used as mixed 

Bayesian priors to construct a posterior distribution for the year 2010. 
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Table 13:  Node statistics for Bayesian linear regression with mixed Bayesian priors. 
 

node  mean  sd  MC error 2.5% median 97.5% Start sample 

alpha 2071.0 10.19 0.02569 2051.0 2071.0 2091.0 1000 600003 

Mother’s age (Ref=15-19)        

20-24 71.13 0.6424 8.468E-4 69.87 71.13 72.39 1000 600003 

25-29 69.72 0.5465 7.19E-4 68.65 69.72 70.79 1000 600003 

30-34 108.8 0.4407 5.706E-4 107.9 108.8 109.7 1000 600003 

35-39 93.4 0.3583 4.606E-4 92.7 93.4 94.1 1000 600003 

40-49 215.7 0.3025 3.86E-4 215.1 215.7 216.2 1000 600003 

Child’s birth order no. -21.44 1.5 0.003029 -24.38 -21.44 -18.5 1000 600003 

Region (Ref=Southern)         

Central region 40.02 0.6706 8.677E-4 38.71 40.02 41.34 1000 600003 

Northern region  48.12 0.7638 0.00101 46.62 48.12 49.61 1000 600003 

Child’s gender (Ref=Male)         

Female 24.3 0.9497 0.001237 22.43 24.3 26.16 1000 600003 

Education level (Ref=No education)        

Primary education -23.17 0.8792 0.001168 -24.9 -23.18 -21.45 1000 600003 

Secondary+                    20.81 0.4894 6.359E-4 19.84 20.81 21.76 1000 600003 

Employment status (Ref: Not working)        

Worked (past year) 29.53 0.3096 3.782E-4 28.93 29.53 30.14 1000 600003 

Work (currently) 46.95 0.9367 0.001217 45.11 46.95 48.79 1000 600003 

Antenatal visits  1.689 0.003621 0.1305 3.446 6.751 1000 600003 

Mother's HIV Status (Ref=Positive)        

Negative 7.084 1.057 0.001424 5.014 7.084 9.16 1000 600003 

tau.e 1.654E-5 3.977E-7 4.966E-10 1.577E-5 1.654E-5 1.733E-5 1000 600003 

 
From the node statistics in Table 18, the Bayesian linear regression with informative mixed 

Bayesian priors shows that the variables, age of mother, child’s birth order number, region, 

gender of a child, educational level, employment status, antenatal visits and mother’s HIV 

status are the significant parameters in the model. The second mother’s age group with ages 

between 25 and 39 years has children who have greater weight at birth compared to mothers 

between the ages 15 and 19 years based on the significant variables in the above output. The 

average difference in child’s weight at birth between the HIV positive and the HIV negative 

mothers group is 7.084. This means that the weight at birth of a child with a mother who is 

not HIV infected is higher when compared to that that of a child with an HIV positive mother. 
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Figure 14 Density Function for Informative Bayesian Linear Regression with Mixed 
Bayesian Priors. 
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The assumption that the density function of a posterior distribution is normally distributed 

is met for all the variables of the informative Bayesian model.  
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Figure 15: Dynamic Trace for Informative Bayesian Linear Regression with Mixed Bayesian 

Priors 
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This model gives a smoothly-moving dynamic trace of the Markov Chains. 
 
Figure 16: Autocorrelation Function for Informative Bayesian Linear Regression with 

Mixed Bayesian Priors 
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Figure 17: Time Series for Informative Bayesian Linear Regression with Mixed Bayesian 

Priors 
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2. Pure Bayesian Prior: These are priors calculated using the non-informative Bayesian 
linear regression output to compute priors of the beta coefficient and variance 
components. The calculated Bayesian priors are then used as priors of the Gamma 
distribution function in WinBUGS program. 

 

Table 14: Summary for Pure Bayesian Priors 
 

 

 

Table 19 shows the Pure Bayesian priors that were calculated using the non-informative 

Bayesian linear regression output in table 15 and table 16. The data for the years 2000 

and 2004 was used to calculate the variance components and 𝛽𝛽- coefficients displayed in 

table 19 and will be used as the pure Bayesian priors to construct a posterior distribution for 

the year 2010. 
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Table 15: Node Statistics for Informative Bayesian Multiple Linear Regression with Pure 

Bayesian Priors  

node  mean  sd  MC 
error 2.5% median 97.5% start sample 

alpha 2011.0 9.911 0.02399 1991.0 2011.0 2030.0 1000 627003 

Mother’s age (Ref=15-19)        

20-24 84.08 0.6604 8.382E-4 82.79 84.08 85.37 1000 627003 
25-29 66.7 0.5627 7.206E-4 65.6 66.7 67.8 1000 627003 
30-34 89.39 0.4523 5.568E-4 88.5 89.39 90.27 1000 627003 
35-39 59.04 0.3673 4.682E-4 58.32 59.04 59.76 1000 627003 
40-49 168.9 0.3099 3.839E-4 168.9 168.9 169.5 1000 627003 
Child’s birth order no. -11.25 1.76 0.003843 -14.7 -11.25 -7.79 1000 627003 
Region (Ref=Southern)         

Central region 39.83 0.6768 8.578E-4 38.5 39.83 41.16 1000 627003 
Northern region  58.78 0.7822 0.001015 57.24 58.78 60.31 1000 627003 

Child’s gender (Ref=Male)        

Female 43.33 0.9411 0.001212 41.48 43.33 45.17 1000 627003 
Education status (Ref=No 
education) 

       

Primary education 45.85 0.7992 0.001049 44.28 45.85 47.41 1000 627003 
Secondary+                    28.89 0.5325 6.731E-4 27.84 28.89 29.93 1000 627003 

Employment status (Ref=No work)       

Worked (past year) 50.16 0.3803 4.652E-4 49.42 50.16 50.91 1000 627003 
Work (currently) 50.43 0.7535 9.522E-4 48.96 50.43 51.91 1000 627003 
Antenatal visits  1.164 0.001992 0.157 2.44 4.722 1000 627003 
Mother’s HIV Status (Ref=Positive)       

Negative -5.456 2.331 0.003302 -10.02 -5.458 -0.881 1000 627003 

tau.e 1.63E-5 3.946E-
7 4.7E-10 1.561E-

5 1.63E-5 1.76E-
5 1000 627003 

 
The variables age of a mother, child’s birth order number, region, gender of a child, education 

status, mother’s employment status, antenatal visits during pregnancy and HIV status of a 

mother are significant for the Bayesian linear regression with informative pure priors. 
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Figure 18: Density Function for Informative Bayesian Linear Regression with Pure Bayesian 

Priors. 
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   48.0    49.0    50.0    51.0

    0.0
    0.5
    1.0
    1.5

 

beta[13] chains 1:3 sample: 627003

   46.0    48.0    50.0    52.0

    0.0
    0.2
    0.4
    0.6

 
beta[14] chains 1:3 sample: 627003

   -5.0     0.0     5.0

    0.0
    0.1
    0.2
    0.3
    0.4

 

beta[15] chains 1:3 sample: 627003

  -20.0   -10.0     0.0

    0.0
   0.05
    0.1
   0.15
    0.2

 
 

tau.e chains 1:3 sample: 627003

1.40E-5 1.60E-5 1.80E-5

    0.0

5.00E+5

1.00E+6

 
Figure 19: Autocorrelation Function for Informative Bayesian Linear Regression with Pure 

Bayesian Priors. 
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Figure 20: Dynamic Trace for Informative Bayesian Linear Regression with Pure Bayesian 

Priors 

alpha chains 3:1

iteration
209950209900209850

 1960.0
 1980.0
2.00E+3
 2020.0
 2040.0
 2060.0

beta[1] chains 3:1

iteration
209950209900209850

   80.0
   82.0
   84.0
   86.0
   88.0

 
beta[2] chains 3:1

iteration
209950209900209850

   64.0
   66.0
   68.0
   70.0

 

beta[3] chains 3:1

iteration
209950209900209850

   87.0
   88.0
   89.0
   90.0
   91.0
   92.0

 
beta[4] chains 3:1

iteration
209950209900209850

   57.0
   58.0
   59.0
   60.0
   61.0

 

beta[5] chains 3:1

iteration
209950209900209850

  167.0
  168.0
  169.0
  170.0
  171.0

  
beta[7] chains 3:1

iteration
209950209900209850

   36.0
   38.0
   40.0
   42.0
   44.0

 

beta[8] chains 3:1

iteration
209950209900209850

   54.0
   56.0
   58.0
   60.0
   62.0
   64.0

 
beta[9] chains 3:1

iteration
209950209900209850

   40.0
   42.0
   44.0
   46.0
   48.0

 

beta[10] chains 3:1

iteration
209950209900209850

   42.0
   44.0
   46.0
   48.0
   50.0

 
beta[11] chains 3:1

iteration
209950209900209850

   27.0
   28.0
   29.0
   30.0
   31.0

 

beta[12] chains 3:1

iteration
209950209900209850

   49.0
   50.0
   51.0
   52.0

 



94 
 

beta[13] chains 3:1

iteration
209950209900209850

   46.0
   48.0
   50.0
   52.0
   54.0

 

beta[14] chains 3:1

iteration
209950209900209850

   -2.5
    0.0
    2.5
    5.0
    7.5

 
beta[15] chains 3:1

iteration
209950209900209850

  -15.0
  -10.0
   -5.0
    0.0
    5.0

 

tau.e chains 3:1

iteration
209950209900209850

1.50E-5
1.60E-5
1.70E-5
1.80E-5

 
 
Figure 21: Time Series Plot for Informative Bayesian Linear Regression with Pure Bayesian 

Priors 

 
alpha chains 1:3

iteration
1000 100000 200000

 1950.0
 1975.0
2.00E+3
 2025.0
 2050.0
 2075.0

 
beta[1] chains 1:3

iteration
1000 100000 200000

   80.0

   82.0

   84.0

   86.0

   88.0

 
beta[3] chains 1:3

iteration
1000 100000 200000

   86.0

   88.0

   90.0

   92.0



95 
 

beta[2] chains 1:3

iteration
1000 100000 200000

   64.0

   66.0

   68.0

   70.0

 
beta[4] chains 1:3

iteration
1000 100000 200000

   57.0

   58.0

   59.0

   60.0

   61.0

 
beta[5] chains 1:3

iteration
1000 100000 200000

  167.0

  168.0

  169.0

  170.0

  171.0

  
beta[7] chains 1:3

iteration
1000 100000 200000

   36.0

   38.0

   40.0

   42.0

   44.0

 
beta[8] chains 1:3

iteration
1000 100000 200000

   54.0
   56.0
   58.0
   60.0
   62.0
   64.0

 
beta[9] chains 1:3

iteration
1000 100000 200000

   37.5
   40.0
   42.5
   45.0
   47.5
   50.0

  



96 
 

beta[11] chains 1:3

iteration
1000 100000 200000

   26.0

   28.0

   30.0

   32.0

 
beta[12] chains 1:3

iteration
1000 100000 200000

   48.0

   49.0

   50.0

   51.0

   52.0

 
beta[13] chains 1:3

iteration
1000 100000 200000

   46.0

   48.0

   50.0

   52.0

   54.0

 
beta[14] chains 1:3

iteration
1000 100000 200000

   -5.0

    0.0

    5.0

   10.0

 
beta[15] chains 1:3

iteration
1000 100000 200000

  -20.0

  -10.0

    0.0

   10.0

  
 
          

tau.e chains 1:3

iteration
1000 100000 200000

1.40E-5
1.50E-5
1.60E-5
1.70E-5
1.80E-5
1.90E-5

 

 
 
 



97 
 

3. Pure Hierarchical Bayesian Priors: These are priors that are calculated using the 
informative Bayesian hierarchical linear regression output to compute the beta 
coefficient and variance components. The calculated Bayesian priors are then used as 
priors of the Gamma distribution function in WinBUGS program. 

 
Table 16: Summary for Pure Hierarchical Bayesian Priors 
 

 

 
 
Table 21 shows the summary of the Pure Hierarchical Bayesian priors calculated using 

the Informative Bayesian linear regression output in table 15. The data for the years 2000 

and 2004 was used to calculate the variance components and 𝛽𝛽- coefficients displayed in 

table 19 and will be used as pure Bayesian priors to construct a posterior distribution for the 

year 2010. 
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Table 17: Node Statistics for Bayesian Hierarchical Regression with Informative Priors (pure 

Bayesian priors) 
 

 node  mean  sd  MC 
error 2.5% median 97.5% start sample 

alpha 178.6 0.2584 9.539E-4 178.0 178.6 179.1 1000 60000 

Mother’s age (Ref=15-19)        

20-24 58.86 0.5877 0.002461 57.71 58.86 60.01 1000 60000 

25-29 43.54 0.489 0.001861 42.59 43.54 44.5 1000 60000 

30-34 70.73 0.4087 0.001605 69.93 70.72 71.52 1000 60000 

35-39 43.96 0.3346 0.001374 43.31 43.97 44.62 1000 60000 

40-49 155.3 0.2909 0.001219 154.7 155.3 155.8 1000 60000 

Child’s birth order no. -12.13 1.516 0.006579 -15.1 -12.13 -9.156 1000 60000 

Child’s gender (Ref=Male)        

Female 33.72 0.8594 0.003246 32.04 33.73 35.41 1000 60000 

Education status (Ref=No education)       

Primary education -20.51 0.7882 0.003197 -22.04 -20.5 -18.95 1000 60000 

Secondary+                    44.61 0.4478 0.001818 43.73 44.61 45.9 1000 60000 

Employment status (Ref=No work)       

Worked (past year) 42.06 0.3618 0.001469 41.35 42.06 42.77 1000 60000 

Work (currently) 42.78 0.7182 0.002987 41.36 42.78 44.19 1000 60000 

Antenatal visits  1.933 0.007768 -2.28 1.522 5.313 1000 60000 

Mother’s HIV Status (Ref=Positive)      

Negative 15.19 0.8654 0.003416 13.49 12.49 16.89 1000 60000 

beta.reg[1] 1953.0 22.0 0.08971 1910.0 1953.0 1995.0 1000 60000 

beta.reg[2] 1889.0 17.41 0.07306 1855.0 1889.0 1923.0 1000 60000 

beta.reg[3] 1908.0 16.08 0.06454 1876.0 1908.0 1939.0 1000 60000 

tau.e 7.751E-
6 

2.752E-
7 1.132E-9 7.222E-

6 
7.748E-
6 8.3E-6 1000 60000 

tau.reg 2.741E-
7 

2.234E-
7 8.8E-10 1.978E-

8 
2.168E-
7 

8.511E-
7 1000 60000 

 
All variables are significant under Bayesian hierarchical regression with informative priors 
which suggest that this is a good model.  
 
Figure 22: Autocorrelation Function for Pure Hierarchical Bayesian Priors 
 

alpha chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[1] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

 



99 
 

beta[1] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[2] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[3] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[4] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[5] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[6] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[7] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[8] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[9] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[10] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[11] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta[12] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0



100 
 

beta[13] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta.reg[1] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta.reg[2] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta.reg[3] chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

tau.e chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

tau.reg chains 1:3

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

 

 
Figure 23: Dynamic Trace for Pure Hierarchical Bayesian Priors 
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Figure 24: Kernel Density for Pure Hierarchical Bayesian Priors 
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Figure 25: Time Series for Pure Hierarchical Bayesian Priors 
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iteration
1000 50000 100000 150000 200000

   42.0

   43.0

   44.0

   45.0

   46.0

beta[5] chains 1:3

iteration
1000 50000 100000 150000 200000

  154.0

  155.0

  156.0

  157.0

beta[6] chains 1:3

iteration
1000 50000 100000 150000 200000

  -20.0

  -15.0

  -10.0

   -5.0
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beta[7] chains 1:3

iteration
1000 50000 100000 150000 200000

   30.0

   32.0

   34.0

   36.0

   38.0

beta[8] chains 1:3

iteration
1000 50000 100000 150000 200000

  -24.0

  -22.0

  -20.0

  -18.0

  -16.0

beta[9] chains 1:3

iteration
1000 50000 100000 150000 200000

   42.0
   43.0
   44.0
   45.0
   46.0
   47.0

beta[10] chains 1:3

iteration
1000 50000 100000 150000 200000

   40.0

   41.0

   42.0

   43.0

   44.0

beta[11] chains 1:3

iteration
1000 50000 100000 150000 200000

   38.0

   40.0

   42.0

   44.0

   46.0

beta[12] chains 1:3

iteration
1000 50000 100000 150000 200000

  -10.0
   -5.0
    0.0
    5.0
   10.0
   15.0
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beta[13] chains 1:3

iteration
1000 50000 100000 150000 200000

   10.0
   12.0
   14.0
   16.0
   18.0
   20.0

beta.reg[1] chains 1:3

iteration
1000 50000 100000 150000 200000

 1850.0

 1900.0

 1950.0

2.00E+3

 2050.0

beta.reg[2] chains 1:3

iteration
1000 50000 100000 150000 200000

 1800.0

 1850.0

 1900.0

 1950.0

2.00E+3

tau.reg chains 1:3

iteration
1000 50000 100000 150000 200000

    0.0

1.00E-6

2.00E-6

3.00E-6

 
beta.reg[3] chains 1:3

iteration
1000 50000 100000 150000 200000

 1800.0

 1850.0

 1900.0

 1950.0

2.00E+3
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4.4 Multiple Linear Regression Assumptions 

A good model should meet the assumptions mentioned and explained in page 28, that is, 

linearity, normality, homoscedasticity and independence of observations. This section fits 

these above-mentioned assumptions to the Malawi data to check whether the model. 

 

Linear Relationship 

This refers to estimation of the relationship between dependent and independent variables, 

i.e. if the relationship is linear in nature. If the relationship between weight at birth and the 

independent variables is not linear, the results of the regression analysis will under-estimate 

the true relationship. This result in an increased risk of Type II error for that independent 

variable, and in case of multiple regression, an increased risk of Type I error (over-estimation). 

One of the ways to detect non-linearity is the use of residual plots (Pedhazur (1997) and 

Cohen (1983)). Scatter plot of residuals below show the linear relationship between the 

dependent (weight at birth) and the independent variables (gender of a child and region): 
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Figure 26: Linear Relationship 

The linear relationship between weight at birth and gender is shown in Figure 26 for the years 

2010 and 2004. Most female children have smaller weight at birth than female children (1.0 

in the x-axis present male children). There are few children whose weight at birth is less than 

1kg when compared to those who are greater than 1kg. Most children weigh close to 2.5kg 

which is the maximum weight for this study.  

Data is based on the country of Malawi that is categorized into the following three regions, 

Northern, Central and the Southern region. The box-plot in figure 28 shows that we have more 

outliers in the Southern region, that is, the Southern region has more children who are 

underweight compared to other regions. According to the box-plot, the minimum child’s 

weight at birth is approximately 1.25kg for all regions if outliers are ignored.  

 

 

Homoscedasticity  

This refers to instances when the variation of observation around the regression line (the 

residual standard error) is constant. To check this, scatter plots for residuals are used. For a 

weight at birth model, the residual versus fitted plot is given in figure 27 below. 
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Year 2010 Year 2004 

           

 

Year 2000 

 

Figure 27: Test for Homoscedasticity 

Above is the residual versus fit plot for years 2010 and 2004 which is the most frequently 

created plot. It is a scatter plot of residuals on the y-axis and fitted values (estimated 

responses) on the x-axis. The plot is used to detect non-linearity, unequal error variances 

and outliers. The characteristics of well-behaved residuals versus fit plots and what they are 

suggesting about the appropriateness of the simple linear regression model are: 

• The residuals “bounce randomly” around the 0 line. This suggests that the assumption 

that the relationship is linear is meaningful. 
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• The residuals roughly form a “horizontal band” around the 0 line. This suggests that 

the variances of the error terms are the same. 

•  No single residual “stands out” from the basic pattern of residuals. This suggest that 

there are no outliers. 

Based on the above plot of residuals, the linear assumption is meaningful for our model, since 

the residuals bounce randomly around the 0 line. The variances are not the same based on 

the results above - there does not seem to be a horizontal line in the residuals. The residual 

plot versus fit above shows that there are potential outliers. To check this, the year 2010 

boxplot for quantitative data is used.  The child’s birth order variable seems to have 4 outliers 

from the plot below plot. 

 

 

 

Figure 28: Boxplot for Child’s Birth Order Number 

The Goldfeld-Quandt Test can test for heteroscedasticity. The parametric and nonparametric 

are also used to test the hypothesis that the residuals from a squares regression are 

homoscedastic. The parametric test uses F-statistics, whereas the nonparametric test uses 

number of picks in the ordered sequence of unsigned residuals. 
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Multivariate Normality  

This refers to some tests that check if a set of data is similar to the multivariate normal 

distribution. Non-normally distributed variables (highly skewed or kurtotic variables, or 

variables with substantial outliers) can distort relationships and significance tests. This results 

in analyses that are not exact. Several pieces of information are used to test this assumption; 

skewness, visual inspection of data plots, kurtosis etc.  

The most essential test that can be used is a Normal Quantile-Quantile (Q-Q plot). This is a 

graphical technique that determines if two data sets come from populations with a common 

distribution. A Q-Q plot is a plot of the quantiles of the first data set against the quantiles of 

the second data set. A 45-degrees reference line is also plotted. If the two sets come from a 

population with same distribution, the points should fall approximately along this reference 

line. The advantages of the Q-Q plot are: 

• Sample sizes do not have to be equal. 

• There are many other features of the distribution that can be tested simultaneously, 

i.e. shifts in scale, changes in symmetry, and the presence of outliers can be detected 

from this plot.  
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2010                   2004 

   
 

2000 

 
Figure 29: Normal Q-Q Plot 

The model fitted seem to be negatively skewed for all the years i.e. year 2010, 2004 and 2000. 

  

No/Little Multicollinearity  

Multicollinearity occurs when the independent variables are dependent upon one another. 

The independence assumption that the error term of the mean is uncorrelated is also 

important in this instance. This means that the standard mean error of the dependent variable 
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is independent from the independent variables. Criteria of checking multicollinearity includes; 

Correlation matrix, Tolerance, Variance Inflation Factor, Condition Index. 

Table 18 Variance Inflation Factor 

Variable GVIF DF 𝐆𝐆𝐆𝐆𝐈𝐈𝐆𝐆( 𝟏𝟏
𝟐𝟐∗𝐃𝐃𝐆𝐆) 

 

Mothers Age        3.599 5 1.132 
Birth order        3.566 1 1.840 
Region             1.055 2 1.011 
Gender 1.021 1 1.005 
Education level    1.332 2 1.071 
Antenatal visits 1.013 1 1.004 
Work 1.059 2 1.009 
HIV status 1.033 1 1.009 

 

Generalized Variance Inflation Factor (GVIF) measures how much the variance of the 

estimated regression coefficients are inflated compared to when the predictor variables are 

not linearly related. The following table has guidelines on how to interpret the VIF: 

Table 24: VIF Interpretation Table 

VIF Status of predictors 

VIF=1 Not correlated 

1<VIF<5 Moderately correlated 

VIF>5 to 10 Highly correlated 

  
Most of variables in the birth weight model are moderately correlated since the 1<VIF<5. The 

size of the standard error is determined by taking the square root of the variance inflation 

factor, compared with what it would be if that variable were uncorrelated with the other 

predictor variables in the model. For this model, the variance inflation factor for mother’s age 

is 3.467. (√3.467 = 1.861). This means that the standard error for the coefficient of mother’s 
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age is 1.861 times as large as it would be if the mother’s age variable was uncorrelated with 

the other predictor variables.  

 

Table 25: Test for autocorrelation 

Lag Autocorrelation D-W statistic p-value 

1 0.0826 1.8338 0.004 
    

Autocorrelation refers to correlation between members of a series of numbers arranged in ti

me.  

The hypothesis test for autocorrelation is: 

• The null hypothesis (𝐻𝐻0) is that there is no correlation among residuals, i.e. they are i

ndependent. 

• The alternative (𝐻𝐻0) is that the residuals are auto correlated. 

Based on the results from the about table, the null hypothesis is rejected since the p-value is 

zero for the model. 
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Outliers and Leverage 

An observation that is significantly different from all other ones can make a large difference 

in the results of regression analysis. Various factors might lead to outliers, such as misplaced 

decimal points, recording or transmission errors, exceptional phenomena such as 

earthquakes or strikes, or member of a different population slipping into the sample. Outliers 

play an important role in regression. There are two types of outliers: 

• Observation of outliers that results because of the response variable, these 

observations represent the model failure and they are called Outliers. 

• Outliers with respect to the predictors in the model are called leverage points. These 

points are either good (unusually large or small among X values but is not a regression 

outlier) or bad (points situated far from the regression around which most are 

centered) leverage points. 

Table 26: Outlier Test 
 

 rstudent Unadjusted p-value Bonferonni p 
896 -5.714959          1.2396e-08    1.8697e-05 
787 -5.658189          1.7202e-08    1.9823e-05 
1314 -5.391927          1.6836e-07    2.7787e-04 
409 -4.355373          1.3876e-06    1.1732e-03 
627 -4.309751          2.2033e-06    4.7856e-03 
426 -4.309751          2.2033e-06    4.7856e-03 
226 -4.236285          5.7873e-06    8.1376e-03 
1003 -4.125142          6.2211e-06    9.6567e-03 
45 -4.025755          2.4012e-05    3.7504e-02 
644 -4.843507          2.3606e-05    3.8498e-02 
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Figure 30: Leverage plot 

 
Figure 31: Spread Level Plot 

 

The Spread-and-Level Plot (S-L plot) is a guidance plot that assist in promoting equal spread 

and symmetry among groups of a factor variables through an appropriate transformation. It 
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creates plots for examining the possible dependence of spread on level, or an extension of 

these plots to the studentized residuals from linear models.  

 

Final Decision: 

The linearity and homoscedasticity assumption for our model is met since the residual plot 

has no pattern, the regression line (red line from the plot) is fairly flat and there seems to be 

a constant variation. This indicates that the expected residuals are normally distributed for 

the model. The VIF values for all the independent variables in the model are moderately 

correlated since the 1<VIF<5. This implies that there is little multicollinearity in the model. 

The hypothesis test for outliers is: 

H0: There are no outliers. 

H1: There is at least one outlier. 

At 5% level of significance the null hypothesis is rejected since all the unadjusted and 

Bonferroni p-values are less than 0.05. We then conclude that there is at least one outlier in 

the independent variables data. 
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Chapter 5: Discussion and 
Conclusion 
5.1: Discussion 

Findings of this study highlighted that the variables, age of a mother, birth order number of a 

child, mother’s employment status and HIV status of a mother are significant factors 

influencing low birth weight. Results obtained for a non-hierarchical multiple linear regression 

model are almost similar to those of a multiple multilevel linear regression model. However, 

the hierarchical model was necessary and provided better- quality results because findings 

revealed that there were significant differences in causes of low birth weight between 

geographical regions. This result was expected in the context of low birth weight in Malawi. 

The analyses were fitted using Bayesian multilevel models to check for better quality results. 

A Bayesian linear regression analysis with non-informative and informative priors were 

conducted.  

 

The non-informative Bayesian hierarchical results show that the variables, age of a mother, 

birth order number of a child and HIV status of a mother are significant factors influencing 

low birth weight of a child in this study. The non-informative Bayesian hierarchical model 

provided results that are almost similar to the classical model (multiple hierarchical results) 

approach except for mothers working status which is not significant under non-informative 

Bayesian hierarchical results. A non-informative Bayesian model is expected to lead to 

identical results with classical model. When prior information from previous surveys is 

included in the Bayesian multilevel model (Bayesian hierarchical model with informative 
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priors), the results indicates that the variables, age of a mother, birth order number of a child, 

gender of a child, mothers’ education level, working status of a mother and HIV status of a 

mother are significant factors influencing low birth weight of a child. Results from the same 

model also revealed that antenatal visit was not a significant determinant of low birth weight 

in Malawi.  

The Bayesian multilevel method is a preferred method because it is theoretically stronger and 

provides more realistic results. Several authors such as OJO et al. (2017) have shown that the 

inclusion of scientific prior knowledge in the Bayesian model leads to better results. All 

significant variables in the Bayesian model with informative priors were also significant in 

other models (classical and Bayesian non-informative) while the opposite was not true. The 

inclusion of the priors resulted in the significance of key determinants of low birth weight 

which would have been omitted otherwise. In addition to that, the Bayesian model showed 

that women who are working are more likely to have a child with better weight at birth than 

those who are not working. This result is different from the result of multilevel classical 

multiple linear model. It clearly illustrates that the Bayesian model provides more realistic 

and comprehensive results in line with the literature. In this study, Bayesian multilevel 

multiple linear regression with informative priors appeared as the preferred model to 

consider in the study of weight at birth. Findings of this study points out that mothers aged 

15 to 19, with primary education or no education at all, HIV positive, with male children and 

with high birth order numbers have high risk of low birth weight and deserve more attention. 

Bayesian informative models are in line with the literature review in terms of the 

determinants of underweight factors (Ngwira, A., & Stanley, C. C., 2015).  page 
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5.2 Conclusion and Recommendations 

From the analysis of the statistical methods considered in this study, it can be concluded that 

young mothers who are not educated are the main category to have low birth weight children. 

This is due to their ignorance of how to take care of themselves during pregnancy - a factor 

which works against child birth weight or size at birth. In addition to the above, birth order 

number and gender of a child can be a determinant of low birth weight. This study found that 

the educational level of mothers in Malawi has a relationship with low birth weight of a child. 

The Bayesian informative technique is then considered to provide better results than the 

classical technique. The availability of scientific evidence to back up choice of prior information 

strengthens the preference for Bayesian technique in this study. Bayesian results showed that 

Mother’s age, birth order number, mother’s level of education, antenatal visits and HIV status 

of a mother are most likely to influence birth weight.  

It is recommended that more attention is given to women aged 15-19 in terms of nutrition 

during pregnancy to avoid low birth weight. Maternal nutrition status in turn may have a 

direct effect on child birth weight. Improvement of adolescent nutrition and maternal 

malnutrition for improved pregnancy outcomes should be implemented in Malawi. It is also 

recommended to take different measures to monitor the weight at birth according to the 

gender of the baby, age and education of the mother. This can be achieved through having 

more antenatal visits during pregnancy where a doctor is consulted. It is highly recommended 

for mothers who are HIV positive to take an antiretroviral drug such as AZT during pregnancy, 

as this reduces the risk of HIV transmission from mother to child by 67%. Improvement of 

adolescent nutrition and maternal malnutrition for improved pregnancy outcomes should be 

implemented in Malawi. 
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APPENDIX A 
 
Keys for Determinants 
 
Agegrp – Mother’s age group 
Agegrp1 - (15 – 19) 
Agegrp2 - (20 – 24) 
Agegrp3 - (25 – 29) 
Agegrp4 - (30 – 34) 
Agegrp5 - (35 – 39) 
Agegrp6 - (40 – 49) 
 
bord - Child’s birth order number 
 
b4 - Child’s gender 
 
Educgrp - Mother’s education 
Educgrp 0 - No education 
Educgrp 1 - Primary education    
Educgrp 2 - Secondary + 
 
Work – Mother’s working status 
Work 0 - Not working 
Work 1 - Was working previous year 
Work 2 - Working 
 
M14 - Antenatal visits for the pregnancy 
 
Mother’s HIV status 
Status 1 - HIV positive 
Status 2 - HIV negative 
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Non-Informative Bayesian - Linear Regression codes 
 
Model 2010 
{ 

for (i in 1:Nobs) { 

m19[i] ~ dnorm(mu[i], tau.e) 

          mu[i] <- alpha + beta[1]*agegrp_2[i] + beta[2]*agegrp_3[i] + beta[3]*agegrp_4[i] + beta[4]*agegrp_5[i] + 

beta[5]*agegrp_6[i] + beta[6]*bord[i] + beta[7]*v024_2[i]+beta[8]*v024_3[i] + beta[9]*b4_2[i]+ beta[10]*educgrp_2[i] + 

beta[11]*educgrp_1[i] + beta[12]*work_1[i] + beta[13]*work_2[i] + beta[14]*m14[i] + beta[15]*status_2[i]  

      } 

  

tau.e ~ dgamma(0.01, 0.001)      # residual error variance 

alpha ~ dnorm (1,0.00001) # intercept 

beta[1] ~ dnorm (1,0.00001) # regression coefficients 

beta[2] ~ dnorm (1,0.00001) # regression coefficients 

beta[3] ~ dnorm (1,0.00001) # regression coefficients 

beta[4] ~ dnorm (1,0.00001) # regression coefficients 

beta[5] ~ dnorm (1,0.00001) # regression coefficients 

beta[6] ~ dnorm (1,0.00001) # regression coefficients 

beta[7] ~ dnorm (1,0.00001) # regression coefficients 

beta[8] ~ dnorm (1,0.00001) # regression coefficients 

beta[9] ~ dnorm (1,0.00001) # regression coefficients 

beta[10] ~ dnorm (1,0.00001) # regression coefficients 

beta[11] ~ dnorm (1,0.00001) # regression coefficients 

beta[12] ~ dnorm (1,0.00001) # regression coefficients 

beta[13] ~ dnorm (1,0.00001) # regression coefficients 

beta[14] ~ dnorm (1,0.00001) # regression coefficients 

beta[15] ~ dnorm (1,0.00001) # regression coefficients 

} 

list(tau.e=2,  alpha=1, beta=c(1,2,3,2,1,5,1,5,6,9,7,1,2,4,2)) 

list(tau.e=3,  alpha=0.1, beta=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) 

list(tau.e=0.2,  alpha=4, beta=c(0.1,0.2,0.3,0.2,0.1,0.4,0.8,0.1,0.7,0.3,0.4,0.7,0.2,0.3,0.4)) 

 

list(Nobs=1589) 

m19[] agegrp_2[] agegrp_3[] agegrp_4[] agegrp_5[] agegrp_6[]

 bord[] v024_2[] v024_3[] b4_2[] educgrp_2[] educgrp_1[] work_1[] work_2[] m14[]

 status_2[] 

2500 0 1 0 0 0 3 1 0 1 0 1 0

 1 4 1 

END 
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Informative Bayesian - Linear Regression codes 
 
Mixed Bayesian Priors 
 

Model 2010 

{ 

for (i in 1:Nobs) { 

m19[i] ~ dnorm(mu[i], tau.e) 

          mu[i] <- alpha + beta[1]*agegrp_2[i] + beta[2]*agegrp_3[i] + beta[3]*agegrp_4[i] + beta[4]*agegrp_5[i] + beta[5]*agegrp_6[i] 

+ beta[6]*bord[i] + beta[7]*v024_2[i]+beta[8]*v024_3[i] + beta[9]*b4_2[i]+ beta[10]*educgrp_2[i] + beta[11]*educgrp_1[i] + 

beta[12]*work_1[i] + beta[13]*work_2[i] + beta[14]*m14[i] + beta[15]*status_2[i]  

      } 

  

tau.e ~ dgamma(936.61,0.0011)      # residual error variance 

alpha ~ dnorm (0,0.00001) # intercept 

beta[1] ~ dnorm (71.22,2.42) # regression coefficients 

beta[2] ~ dnorm (69.66,3.34) # regression coefficients 

beta[3] ~ dnorm (108.79,5.15) # regression coefficients 

beta[4] ~ dnorm (93.39,7.78) # regression coefficients 

beta[5] ~ dnorm (215.67,10.94) # regression coefficients 

beta[6] ~ dnorm (-19.96,0.30) # regression coefficients 

beta[7] ~ dnorm (40.13,2.22) # regression coefficients 

beta[8] ~ dnorm (48.21,1.71) # regression coefficients 

beta[9] ~ dnorm (24.40,1.10) # regression coefficients 

beta[10] ~ dnorm (-23.48,1.29) # regression coefficients 

beta[11] ~ dnorm (20.88,4.18) # regression coefficients 

beta[12] ~ dnorm (29.55,10.43) # regression coefficients 

beta[13] ~ dnorm (47.15,1.13) # regression coefficients 

beta[14] ~ dnorm (-0.69,0.16) # regression coefficients 

beta[15] ~ dnorm (6.73,0.89) # regression coefficients 

 

} 

 

list(tau.e=2,  alpha=1, beta=c(1,2,3,2,1,5,1,5,6,9,7,1,2,4,2)) 

list(tau.e=3,  alpha=0.1, beta=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) 

list(tau.e=0.2,  alpha=4, beta=c(0.1,0.2,0.3,0.2,0.1,0.4,0.8,0.1,0.7,0.3,0.4,0.7,0.2,0.3,0.4)) 

 

list(Nobs=1589) 

 

m19[] agegrp_2[] agegrp_3[] agegrp_4[] agegrp_5[] agegrp_6[] bord[]

 v024_2[] v024_3[] b4_2[] educgrp_2[] educgrp_1[] work_1[] work_2[] m14[] status_2[] 

2500 0 1 0 0 0 3 1 0 1 0 1 0

 1 4 1 

END 
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Pure Bayesian Priors 
 
Model 2010 
{ 
for (i in 1:Nobs) { 

m19[i] ~ dnorm(mu[i], tau.e) 

          mu[i] <- alpha + beta[1]*agegrp_2[i] + beta[2]*agegrp_3[i] + beta[3]*agegrp_4[i] + beta[4]*agegrp_5[i] + beta[5]*agegrp_6[i] 

+ beta[6]*bord[i] + beta[7]*v024_2[i]+beta[8]*v024_3[i] + beta[9]*b4_2[i]+ beta[10]*educgrp_1[i] + beta[11]*educgrp_2[i] + 

beta[12]*work_1[i] + beta[13]*work_2[i] + beta[14]*m14[i] + beta[15]*status_2[i]  

      } 

  

tau.e ~ dgamma(930.54,0.00107)      # residual error variance 

alpha ~ dnorm (0,0.00001) # intercept 

beta[1] ~ dnorm (84.195,2.29) # regression coefficients 

beta[2] ~ dnorm (66.65,3.15) # regression coefficients 

beta[3] ~ dnorm (89.38,4.89) # regression coefficients 

beta[4] ~ dnorm (59.02,7.40) # regression coefficients 

beta[5] ~ dnorm (168.95,10.42) # regression coefficients 

beta[6] ~ dnorm (-7.37,0.18) # regression coefficients 

beta[7] ~ dnorm (39.92,2.18) # regression coefficients 

beta[8] ~ dnorm (58.91,1.63) # regression coefficients 

beta[9] ~ dnorm (43.54,1.12) # regression coefficients 

beta[10] ~ dnorm (46.04,1.56) # regression coefficients 

beta[11] ~ dnorm (28.8,3.53) # regression coefficients 

beta[12] ~ dnorm (50.2,6.91) # regression coefficients 

beta[13] ~ dnorm (50.54,1.75) # regression coefficients 

beta[14] ~ dnorm (0.88,0.55) # regression coefficients 

beta[15] ~ dnorm (-7.37,0.18) # regression coefficients 

 

} 

 

list(tau.e=2,  alpha=1, beta=c(1,2,3,2,1,5,1,5,6,9,7,1,2,4,2)) 

list(tau.e=3,  alpha=0.1, beta=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) 

list(tau.e=0.2,  alpha=4, beta=c(0.1,0.2,0.3,0.2,0.1,0.4,0.8,0.1,0.7,0.3,0.4,0.7,0.2,0.3,0.4)) 

 

list(Nobs=1589) 

m19[] agegrp_2[] agegrp_3[] agegrp_4[] agegrp_5[] agegrp_6[] bord[]

 v024_2[] v024_3[] b4_2[] educgrp_2[] educgrp_1[] work_1[] work_2[] m14[] status_2[] 

2500 0 1 0 0 0 3 1 0 1 0 1 0 

END 
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Non-Informative Bayesian - Multilevel Regression Models 
model 

{ 

for (i in 1:Nobs) { 

          m19[i] ~ dnorm(mu[i], tau.e) 

          mu[i] <- alpha + beta[1]*agegrp_2[i] + beta[2]*agegrp_3[i] + beta[3]*agegrp_4[i] + beta[4]*agegrp_5[i] + beta[5]*agegrp_6[i] 

+ beta[6]*bord[i] + beta[7]*b4_2[i]+ beta[8]*educgrp_1[i] + beta[9]*educgrp_2[i] + beta[10]*work_1[i] + beta[11]*work_2[i] + 

beta[12]*m14[i] + beta[13]*status_2[i] +beta.reg[v024[i]]  

                        } 

      # priors on regression coefficients and variances 

 tau.e ~ dgamma(0.001, 0.001)      # residual error variance 

 sigma2.e <- 1/tau.e 

 alpha ~ dnorm (0, 0.00001) # intercept 

 beta[1] ~ dnorm (0,0.00001) # regression coefficients 

 beta[2] ~ dnorm (0,0.00001) # regression coefficients 

 beta[3] ~ dnorm (0,0.00001) # regression coefficients 

 beta[4] ~ dnorm (0,0.00001) # regression coefficients 

 beta[5] ~ dnorm (0,0.00001) # regression coefficients 

 beta[6] ~ dnorm (0,0.00001) # regression coefficients 

 beta[7] ~ dnorm (0,0.00001) # regression coefficients 

 beta[8] ~ dnorm (0,0.00001) # regression coefficients 

 beta[9] ~ dnorm (0,0.00001) # regression coefficients 

 beta[10] ~ dnorm (0,0.00001) # regression coefficients 

 beta[11] ~ dnorm (0,0.00001) # regression coefficients 

 beta[12] ~ dnorm (0,0.00001) # regression coefficients 

 beta[13] ~ dnorm (0,0.00001) # regression coefficients 

 beta.reg[1] ~ dnorm (0,tau.reg) # regression coefficients 

 beta.reg[2] ~ dnorm (0,tau.reg) # regression coefficients 

 beta.reg[3] ~ dnorm (0,tau.reg) # regression coefficients 

 tau.reg ~ dgamma (0.001,0.001) # regression coefficients 

} 

 

Initial Values 

 

list(tau.e=2,  alpha=1, beta=c(1,2,3,2,1,5,1,5,6,9,7,1,3), beta.reg=c(4,6,6), tau.reg=1.0) 

 

list(tau.e=3,  alpha=0.1, beta=c(1,1,1,1,1,1,1,1,1,1,1,1,1), beta.reg=c(-0.9,-0.6,0.2), tau.reg=2) 

 

list(tau.e=0.2,  alpha=4, beta=c(0.1,0.2,0.3,0.2,0.1,0.4,0.8,0.1,0.7,0.3,0.4,0.7,0.2), beta.reg=c(4,6,3), tau.reg=3) 

 

list(Nobs=1589) 

m19[] agegrp_2[] agegrp_3[] agegrp_4[] agegrp_5[] agegrp_6[] bord[]

 v024[] b4_2[] educgrp_2[] educgrp_1[] work_2[] work_3[] m14[] status_2[] 

2500 0 1 0 0 0 3 2 1 0 1 1 0

 4 1 

END 
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Informative Bayesian - Multilevel Regression Models 
model 
{ 
for (i in 1:Nobs) { 
          m19[i] ~ dnorm(mu[i], tau.e) 
          mu[i] <- alpha + beta[1]*agegrp_2[i] + beta[2]*agegrp_3[i] + beta[3]*agegrp_4[i] + beta[4]*agegrp_5[i] + beta[5]*agegrp_6[i] 
+ beta[6]*bord[i] + beta[7]*b4_2[i]+ beta[8]*educgrp_1[i] + beta[9]*educgrp_2[i] + beta[10]*work_1[i] + beta[11]*work_2[i] + 
beta[12]*m14[i] + beta[13]*status_2[i] +beta.reg[v024[i]]  
                        } 
      # priors on regression coefficients and variances 
 tau.e ~ dgamma(12.081, 0.08278)      # residual error variance 
 sigma2.e <- 1/tau.e 
 alpha ~ dnorm (178.55, 14.88) # intercept 
 beta[1] ~ dnorm (58.905, 2.90) # regression coefficients 
 beta[2] ~ dnorm (43.52, 4.18) # regression coefficients 
 beta[3] ~ dnorm (70.72, 5.97) # regression coefficients 
 beta[4] ~ dnorm (43.96, 9.03) # regression coefficients 
 beta[5] ~ dnorm (155.26, 11.78) # regression coefficients 
 beta[6] ~ dnorm (-11.065, 0.37) # regression coefficients 
 beta[7] ~ dnorm (33.78, 1.38) # regression coefficients 
 beta[8] ~ dnorm (-20.64, 1.64) # regression coefficients 
 beta[9] ~ dnorm (44.66, 4.98) # regression coefficients 
 beta[10] ~ dnorm (42.08, 7.68) # regression coefficients 
 beta[11] ~ dnorm (42.78, 1.93) # regression coefficients 
 beta[12] ~ dnorm (-0.885, 0.18) # regression coefficients 
 beta[13] ~ dnorm (15.115, 1.34) # regression coefficients 
 beta.reg[1] ~ dnorm (0,tau.reg) # regression coefficients 
 beta.reg[2] ~ dnorm (0,tau.reg) # regression coefficients 
 beta.reg[3] ~ dnorm (0,tau.reg) # regression coefficients 
 tau.reg ~ dgamma (0.001,0.001) # regression coefficients 
} 
 
 
Initial Values 
 
list(tau.e=2,  alpha=1, beta=c(1,2,3,2,1,5,1,5,6,9,7,1,3), beta.reg=c(4,6,6), tau.reg=1.0) 
 
list(tau.e=3,  alpha=0.1, beta=c(1,1,1,1,1,1,1,1,1,1,1,1,1), beta.reg=c(-0.9,-0.6,0.2), tau.reg=2) 
 
list(tau.e=0.2,  alpha=4, beta=c(0.1,0.2,0.3,0.2,0.1,0.4,0.8,0.1,0.7,0.3,0.4,0.7,0.2), beta.reg=c(4,6,3), tau.reg=3) 
 
list(Nobs=1589) 
m19[] agegrp_2[] agegrp_3[] agegrp_4[] agegrp_5[] agegrp_6[] bord[]
 v024[] b4_2[] educgrp_2[] educgrp_1[] work_2[] work_3[] m14[] status_2[] 
2500 0 1 0 0 0 3 2 1 0 1 1 0 
 
END  
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