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Abstract  
 

Child mortality rate is known to be the important indicator of social development, quality of life, 

welfare as well as the overall health of the society. In most countries, especially the developing 

countries; the death of a child is usually caused by transferable, preventable diseases and poor 

health. Progress in improving under-five mortality since 1990 has been made globally. There has 

been a decline globally in under-five mortality from 12.7 million in 1990 to approximately 6 

million in 2015. All regions except the developing countries in Sub-Saharan Africa, Central 

Asia, Southern Asia and Oceania had reduced the rate by 52% or more in 2013. Lesotho is a 

developing country with one of the highest rates of infant and child mortality. 

 

The study uncovers the factors influencing child mortality in Lesotho based on the Lesotho 

Demographic and Health Surveys for 2009 and 2014. The survey logistic regression, a model 

under the generalized linear model framework was used to find the factors related to under-five 

child mortality to account for the sampling designs complexity. The SLR model is not able to 

account for variability occurring from connection between subjects from the equal clusters and 

household. The generalized linear mixed model is then put into application. To ease the 

normality assumptions and the linearity assumption in the parametric models, the semi-

parametric generalized additive model, was lastly used for the data. Finding the determining 

factors that result in child mortality will benefit the way intervention programs are planned and 

the formulation for policy makers to lead in the decreasing of child mortality; and accomplish 

MDGs. This study intends to improve the existing knowledge on child mortality in Lesotho by 

studying the determining factors in detail. Based on the previous studies this paper will 

recommend intervention designs and policy formulation. Overall, the findings of this research 

showed that birth order number, weight of child at birth, age of child, breastfeeding, wealth 

index , education attainment, mother’s age, type of place of residence, number of children living 

were the key determining factors of the under-five mortality in Lesotho. The study displays that 

policy makers should strengthen the interventions for child health in order to decrease child 

under-five mortality. The results achieved can help with the policy formulation to control and 

reduce child mortality. The government should continually assess current programs to review 

and develop programs that are more applicable.  
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Chapter 1 

1 Introduction 
 Background 

 

It is crucial for evaluating the child well-being, health status as well as the social well-being of any 

country to assess child mortality rate. In many countries, the top indicator of the overall 

development and level of child health is the child mortality rate (Rutstein, 2000).  It can also be an 

indicator for coverage of economic development and social development as well as child survival 

interventions. This makes it important to determine factors that affect child mortality for more 

development in countries. 

 

Everyday approximately 15,000 children below the age of five die out of 375000 which is equal 

to 4% globally. Former research illustrates that six million over eleven million children who die 

every year can be saved by effective measures like giving micronutrient supplements, enhanced 

family care, vaccines, insecticide-treated bed nets, antibiotics and breastfeeding practices 

(Animaw et al., 2014). 

 

Since 1990, the world has seen considerable progress in decreasing the death of children. 

Nevertheless, in order to obtain additional progress, there should be more efforts to assist in the 

reduction of child mortality. The child mortality rate reduced by over 50 per cent from 1990 to 

2015 globally, with significant acceleration in reduction (You et al., 2015) 

 

Infant mortality has been declining worldwide, yet millions of infants die each year (Ahmad et al., 

2000). More than 90% of these infant dying occur in the developing countries of the world 

(Leowski, 1986). Amongst these deaths, sub-Saharan holds the highest rates while South-central 

Asia contains the highest number of neonatal deaths. Majority of the deaths that happen in these 

regions are usually preventable (Tan, 2014).  
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Countries in the Sub Saharan Africa have the highest infant mortality rates in the world, having 

infant mortality equal to 104 deaths per 1000 live births in 1990’s, whilst the rate was 71 deaths 

per 1000 live birth for the rest of less developed countries (Kalipeni, 2000). There has been a 

reduced child mortality rate in the Sub-Saharan African since the 1990’s and  most of these 

improvements were achieved by interventions that targeted the communicable diseases (Claeson 

& Waldman, 2000). Health transition beginning later compared to other parts of the world in the 

sub Saharan Africa(SSA) is one of the factors that explains why child mortality is high in SSA 

(Garenne & Gakusi, 2006). 

 

Findings on a study by (Omariba et al., 2008) signifies that socio economic factors and socio 

cultural factors highly influenced the high infant mortality in the sub Saharan Africa. Although a 

vast literature is of existence on child mortality, evidence on the rates stay elevated in the Sub-

Saharan African countries in spite of action strategies and intervention programs done remains 

insufficient. Since 2000, the taking on of the MDGs, which aimed to decrease the level of child 

mortality by two-thirds of their levels in 1990 by 2015, the rate of child mortality has reduced 

globally (Gaffey et al., 2015). One of the things that contributed more to the decrease in child 

mortality are awareness of the mother ,the interventions of disease-oriented programs, 

environmental factors, and socioeconomic factors of the household. These are known to be crucial 

factors towards reducing child mortality rate. The child mortality rate has dropped from 90 per live 

births to 43 deaths per 1,000 live births between the year 1990 and 2015. Regardless the growing 

population in the developing countries, the number of children dying has declined from 12.7 

million in 1990 to approximately 5.9 million in year 2015.  With this progression in the last two 

decades in child mortality, improvement was not sufficient to meet the MDGs (Organization et al., 

2015), “Millennium Development Goal #4 is to reduce child mortality rate by two-thirds”.  

 

The study aims to analyze under-five mortality in Lesotho using existing statistical methods, 

identify what affects it, and what can be done in future to decline the rate of under-five mortality. 

“Under-five mortality is defined as the probability of a child born in a specific year or period dying 

before reaching the age of five.” (Ahmad et al., 2000). This study identifies the relationship and 

the effects of some factors like the wealth index, the mother’s education, region, sex of the child, 

mother’s age, place of residence, as well as breastfeeding on child mortality in Lesotho for years 

https://www.mdgmonitor.org/mdg-4-reduce-child-mortality/
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2009 and 2014. It explains the rate of child mortality through logistic regression analysis as a 

function of different factors affecting child mortality. It will also look at generalized linear mixed 

models and generalized additive model analysis. 

Logistic regression analysis is put in use to find the significance of each factor on child mortality. 

This information can later be used to propose areas for policy makers to take into consideration in 

addressing child mortality to bring more levels of development. 

 

 Country Background: Lesotho 
 

Lesotho is a country found in the Southern portion of Africa. It is bounded by the Republic of 

South Africa(RSA), on which it must depend on for access to the outside world (Clarke & Casey, 

1995). This country is a small landlocked country with many mountains and borders on the 

provinces- Free State, KwaZulu-Natal, and Eastern Cape (Steinberg, 2005). 

The estimated population in 2019 of Lesotho is 2.2 million, ranking number 145 in the whole 

world. This in comparison to the 2004  population of 1.9 million and 2009 population of 2.0 million  

(Population, 2019). The country of Lesotho has 10 administrative regions with total area of 30355 

square kilometers. Since the independence in 1966, there has been population movement towards 

the urban capital city, Maseru, which is the largest city in Lesotho. Smaller urban populations 

dwell in the regions Maputsoe, Teyateyaneng, Mafeteng and Hlotse, However; about three-fourths 

of the population is rural areas (Matlosa, 1999). 

Figure 1.1 shows the different cities in Lesotho with Maseru highlighted as is the capital city of 

Lesotho.  
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Figure 1.1: Map of Lesotho 

https://www.worldatlas.com/webimage/countrys/africa/ls.htm 

Figure 1.2 shows the most populated cities in Lesotho, with Maseru as the capital having the 

highest population of 37.66% followed by Teyateyaneng in the Berea region being 12.95% of the 

population. 

 

Figure 1.2:Most populated cities in Lesotho 

https://www.worldatlas.com/articles/the-biggest-cities-in-lesotho.html 

https://www.worldatlas.com/webimage/countrys/africa/ls.htm
https://www.worldatlas.com/articles/the-biggest-cities-in-lesotho.html
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Lesotho is characterized as a lower-middle-income country. The urbanization rate of Lesotho per 

year is 3.5%. “Almost 40% of the whole population lives underneath the international poverty line 

which is $1.25 united states dollars per day”(Sumner, 2012). 

 

The country’s birth rate is 28.7 per 1000 people with a total fertility rate of 3.26 births per 

woman and 51.38% of the whole population is female. Lesotho’s population growth rate is 

around 1.31% annually. If this trend continues, according to the current population pyramid, the 

population of Lesotho in the year 2050 will rise to 3.0 million and in the year 2100 to 3,6 

million. The life expectancy in Lesotho is 52.5 years, which is low in the international 

comparison as it ranks number 190 in the world(Worldometers, 2019). The major driver of the 

huge reduction in life expectancy in Lesotho is  HIV and TB co-infection (Gellman, 2000). 

Swaziland holds the highest HIV prevalence in the whole world followed by Lesotho. TB is the 

most usual cause of death in people who are HIV-infected. 

 

In Lesotho, 320 thousand people were living with HIV in 2017, 60% children were on 

antiretroviral treatment and the HIV prevalence was 23.8% (Faturiyele et al., 2018).   This outbreak 

may be the cause of, lesser life expectancy, increased infant mortality rate and increased child 

mortality rate, increased death rate, changes in sex and age distribution in the population plus a 

declining population growth. 

 
Lesotho is a country in the sub-Saharan region which is characterized by high child and infant 

mortality. From the 1970s to 2017, the child mortality rate has reduced in Lesotho from 177 per 

1000 live births to 85 per 1 000 live births. In recent years both Infant and child mortality rate has 

been changing (Satti et al., 2012). Using the data chosen from the 2009 Lesotho Demographic and 

Health Survey, infant mortality in Lesotho was approximated to be 91 deaths per 1000 births and 

child mortality was 117 deaths per 1000 births (MOHSW, 2010). The child mortality rate was 85 

deaths per 1,000 live births in 2017 while the infant mortality rate was 59 deaths per 1,000 live 

births. This means that out of 12 children, one dies prior to turning five in Lesotho, and about two-

thirds of these deaths happen at the stage of infancy. The LDHS of 2009 showed a rise in the 

mortality rate of a child for years 2005 to 2009. In the years 2001 up till 2004, the child mortality 
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rate was 113 deaths per 1 000 live births, but from the year 2005 to 2009, the rate became bigger 

and was 117 deaths per 1 000 live births; This number reduced to 85 in year 2014.  The infant 

mortality dropped too from 91 deaths in 2009 to 59 deaths per 1,000 live births in year 2014. This 

rate was 74 per 1 000 live births in 2001 (LDHS, 2014).  

 

Lesotho’s objective was to decrease by two-thirds the child and infant mortality rate in the interest 

of the MDG goals, which would have produced a child mortality rate of 37 per 1000 live births 

and mortality rate for infants to 27 per live births (Ahmad et al., 2000). Lesotho achieved important 

progress in both the child and infant mortality but did not achieve this target. The only target which 

Lesotho had set in the year 2000 and substantially achieved was its target of 100% immunization 

against measles for one-year-olds. As of 2015, the country immunized 90% of its one-year-olds 

against measles. Lesotho failed to meet MDG 4: Reduce Child Mortality by two-thirds (Hilliard, 

2016). Lesotho is amongst the high child-mortality countries at the sub-Saharan Africa. In this 

study Logistic regression and survey logistic regression will be used to model factors affecting 

child mortality in Lesotho. 

 

 Health issues, Health Budget and Poverty Profile 
 

The country of Lesotho is facing certain major problems such as high unemployment, TB and 

HIV/AIDS prevalence rate combined with poverty and gender inequality. These are poor health 

indices in the country and they affect the infant, children and women in Lesotho(Hassan, 2002). 

With 57% people living under the national poverty line; Lesotho is one of the low human 

development countries. In 2014 the HIV prevalence estimated amongst adults ages 15–49 was 24.6 

percent. Lesotho’s HIV prevalence rate is four times more than the average in the Sub-Saharan 

Africa (Greg, 2017). 

 

There are 286 health facilities in Lesotho with 20 general district hospitals, 265 primary health 

care centers and a tertiary hospital in Maseru. Maseru has the highest government funding in the 

health sector more than five times Leribe; the second-place district. The proportion of doctors to 

population and nurse-midwives is beneath the WHO Regional Office for Lesotho; having ratio of 
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doctors to population as 0.9 per 10,000 and the ratio of nurse-midwives to population is 10.2 per 

10,000 (Unicef, 2017). 

 

 Lesotho health sector is funded by the Government, having a minor amount of funding by donors 

(Akin et al., 1987). The health sector was given the second highest allocation of national budget 

following education. Regardless, Lesotho’s investment in the health sector is lowest compared to 

neighboring countries. The budget allocations to the health sector have declined significantly in 

Lesotho while 90 per cent of the health budget is on recurrent expenditure. This shows possibly 

critical inefficiencies in using the resources like salaries and no funds to create new health centers 

in remote regions. The budget allocations to child health programs are very low as well and this 

amount is not enough to fulfill the key challenges of child and infant mortality (Unicef, 2017). 

 

 The importance of the study 
 

Lesotho is amongst one of the highest under-five mortalities in the SSA. “It is important to study 

under-five mortality because this is a component that’s strongly associated with the well-being of 

a population.”(Honwana & Melesse, 2017). The under-five mortality is therefore a useful indicator 

of health status and the standard of living in a population hence it is importance to analyze it. It 

also helps to evaluate the effectiveness of intervention of disease-oriented programs that can be 

introduced for greater impact, which is to decrease child mortality and any formulation of health 

strategies of the country. A study done by (Pritchard & Keen, 2016) found that there were positive 

significant correlations between higher child mortality and relative poverty measures in all regions 

considered.  In relation to poverty the study can help in making more potential decisions 

(Woldemicael, 1999). Analyzing the under-five mortality will help government educate poor 

families and what put measures in place for households experiencing poverty. “As part of the 

MDG, targets were set during in 2000, this was the target to decrease child mortality by two-thirds 

between 2000 and 2015 and it failed with slow progress.”(Fotso et al., 2007) 
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 Objectives 
 

This paper intends to evaluate the factors that affect child mortality. The research paper will look 

at the relationship between the individual, demographic factors and socio-economic status on child 

mortality. The key objective of the study is to identify factors that impact child mortality in Lesotho 

and how they influence the child survival. 

•  The study looks to define the causes of child mortality in Lesotho. 

• The study will model child mortality through logistic regression, as a function of different 

factors (Wealth index, Mother’s level of education, place of residence, sex of child etc.). 

Therefore, estimating the models using the data. 

• Determine how the personal characteristics of the mother and living conditions contribute 

to the child’s survival or death.  

 

The study focuses on the demographic, environmental, and socioeconomic factors that influence 

child mortality in Lesotho in the periods 2005-2009 and 2010-2014.  This will help to know which 

key sectors the government must give attention to, in order to achieve a decrease in child mortality.  

 

  Data and Methods 
1.6.1 Description of the Data 
 

The data used in this study is from the Lesotho Demographic and Health Survey 2009 and 2014. 

This data is the latest data that exists for the LDHS and the study looks at the latest data available. 

The objective of  2009 and 2014 LDHS was to provide up to date information on key indicators 

needed to keep track of progress in Lesotho. The DHS survey authorized access to all the data 

needed to do the analysis of this study. DHS program stands for Demographic and Health Survey 

program and was developed and supported by the American People through USAID. It is now the 

largest and longest enduring survey program of its kind (www.usaid.gov.). It is a survey that 

collects information on mortality among children and on health status, health indicator. Since 

1984, this program has conducted over 300 surveys in over 90 countries, in over a million 

interviews. 
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DHS program was established by US agency in 1984 and was implemented in 5-year phases. Years 

2015 to 2019 is another phase to be implemented. DHS surveys collect information on child health, 

fertility, survival, maternal health, contraceptive use, HIV/AIDS, child mortality etc. LDHS data 

was obtained on request on https://www.dhsprogram.com/ in this study. LDHS sample was 

selected using stratified, two-stage cluster design. The first stage clusters were selected and in the 

second stage households were selected from each cluster which yielded the total sample size for 

each year. The sample size for this data was 3138 for the 2014 dataset and 3999 for the 2009 

dataset. 

 

1.6.2  Methodology 
 

Exploratory data analysis will be done to summarize the main characteristics of the data. The 

statistical models used to explain the relationship between outcome and other variables are listed 

below: 

o Logistic Regression Models, 

o Survey Logistic Regression Models, 

o Generalized Linear Mixed Models and 

o Generalized Additive Models 

Statistical Analysis System (SAS) 9.4 are used to fit these statistical models. The results are then 

interpreted . 

 

 Outline of this study 
 

This study is structured into different chapters. This one gave some background about Lesotho, 

child mortality, objective of the study, and previous literature on under five child mortality by 

reviewing papers that have been completed in this area.  

A review of the previous research, professional literature  and theory is given in Chapter 2. 

Chapter 3 focuses on the exploratory data analysis which analyzes the data sets to summarize 

and visualize their main characteristics. Chapter 4,5 and 6 considers different methods to find 

https://www.dhsprogram.com/
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factors relating to child mortality, it first looks at the logistic regression under SRS. Then the 

SLR, a model under a generalized linear model framework was used to find the factors related to 

under-five child mortality to account for the sampling designs complexity. To ease the normality 

assumptions and the linearity assumption in the parametric models, the semi-parametric 

generalized additive model, was lastly used for the data.  Chapter 7 gives the conclusions and 

implications drawn from the results found. It also highlights the limitations to the study. 
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Chapter 2 
2 Literature Review 
 

“The rate of child mortality is defined as the number of deaths amongst children under five years 

old per 1000 live births” (Nannan et al., 2010). These rates can vary depending on the place of 

residence, mothers  education, and level of income as well as other factors (Mosley & Chen, 

1984). In the first week of birth the risk of a child death is higher hence safe effective early 

nutritional care is important in order to stop such deaths. Above 50 percent of the child deaths 

below the age of five is due to conditions that could be prevented with an access to affordable 

interventions (WHO & Bank, 2012). This chapter will review some studies that are related  to the 

current  study. 

 

Above 10 million children die every year and fifty percent of the deaths happen in just 6 of the 

countries (Black et al., 2003). Since the implementation of MDG goals, there’s been a reduction 

in the rate of children dying from 12.7 million to 6 million. Despite the growth in the population 

this has resulted in the global rate of child mortality to reduce from 90 to 43 deaths per 1 000 live 

births  (Liu et al., 2016). More than two fifths of the world deaths take place in SSA. About 7 

million children under five years died in 2011 globally with Sub-Saharan African region 

contributing most to child mortality (Liu et al., 2016). The annual child mortality rate of 

reduction for the sub-Saharan Africa was more than five times between the years 2005 and 2013 

relative to the between years 1990 and 1995. The progress of this was a result of vaccinations 

taking place  (McAllister et al., 2019). Despite the progress made in the sub Saharan Africa, it 

still contains the highest rates of child mortality having an under 5 mortality rate of 98 deaths per 

1000 live births which are high compared to developed regions (Khodaee et al., 2015). 

 

A study done by Ettarh and Kimani in 2012 investigated the determining factors of under 5 

mortality in urban and rural areas in Kenya. The Multivariate analysis was used to compare the 

key risk factors in urban and rural areas in Kenya. Kenya is a country in the sub-Saharan Africa 

regions as well and had some concerns in  achieving the MDG 4 target. This study used data 
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from the 2008-2009 Kenya DHS to determine under-five mortality in urban and rural parts. The 

research found deaths among under-five children to occur more often in rural areas for mothers 

age below 21 compared to mothers of the same age in urban areas. The under-five mortality is 

affected by insufficient breastfeeding, young mothers, poor household and place of residence. A 

few studies have shown important determinants of under-five mortality to be age of the mother 

and education of the mother in developing countries. The rate of mortality is higher among 

mothers that are less educated relative to higher educated mothers. The maternal education is 

important because it increases a mother’s knowledge. The wealth index of the household was a 

significant factor where households in the rural areas with less wealth were more likely to have 

child deaths below age five in comparison to rich households (Ettarh et al., 2012). This results to 

an effective understanding and using the available information and resources for the child 

survival. 

 

Gebretsadik and Gabreyohanne (2016) performed a study to find the determining factors of child 

mortality under 5 years in high mortality areas in Ethiopia using the data from Ethiopian DHS in 

the year 2011. This study was modelled by fitting a Cox proportional regression model to find 

the factors that affect under-five mortality in the regions between the years 2006 and 2011. 2097 

live births were recorded in the five regions of Ethiopia and 366 deaths before five years were 

reported. In the model fitted, factors that were found to be significant and associated with under 

5 mortality were the type of birth, preceding birth interval, the breastfeeding status, family size, 

the mother’s income and the source of water that they drink. The children who breastfed were 

25.5%, with p-value equals 0.045, less likely to have died before the age of five than those who 

were not breastfed. Children who were born following a birth interval of 2 to 3 years and over 3 

years were significantly unlikely to die before turning five compared to children who were born 

within two years. The low probability of child mortality is proportional to increased birth interval 

time. Therefore, mothers should be waiting for some time after a birth before they conceive a 

child again (Gebretsadik & Gabreyohannes, 2016). 

 

Motsima studied the risk factors connected to mortality below five years in Lesotho in 2009. A 

logistic regression was fitted to model the covariates. The study results found female children 
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under-five were significantly 38% unlikely to die in comparison to male children. Children with 

mothers that stayed in the region Quthing, Qacha’s Nek and Thaba Tseka were more likely to die 

than other regions. A study done suggested that the region, sex of child, breastfeeding and 

marital status were significant predictors of the under-five mortality  (Motsima, 2016). 

A study by Coovadia et al., (2007)  had the objective of reviewing the data that is available 

related to child mortality in Africa and its association with the HIV infections status of a mother 

and child. The research showed that survival of the child is influenced by the HIV epidemic. The 

study also revealed that child mortality is strongly connected to the maternal health status. The 

mortality rate of HIV-negative children of HIV-positive mothers was 166 per 1000 live births, 

but the mortality rate of HIV-negative children for the HIV-negative mother was 128 per 1000 

live births. Nevertheless, there is a need for studies on control strategies. This will give improved 

overall influence of the HIV epidemic on child mortality (Coovadia et al., 2007). 

 

A study done in 2013 to Model Covariates of Child and Infant Mortality in Malawi used 2010 

MDHS data. This study’s aim was to examine environmental, bio-demographic, and socio-

economic factors associated with child and infant mortality in Malawi. Two methods of analysis 

were applied to the date: The survival analysis and logistic regression method (Lemani, 2013). 

Study results display that the length of the prior birth interval plus the mother’s status of HIV 

were significantly related to both with child and infant mortality. Other significant covariates 

included the order of the birth, mothers’ age when child is birthed, the wealth index, the sex of 

the child and education of the parents (Lemani, 2013). 

 

Another study report done by Van Malderen and two other authors found that the birth order, 

region and birth interval contributed the most to under 5 mortality inequalities in majority of the 

countries. The aim was to examine and compare the determining factors of inequality in under-

five mortality. This study looked at 13 countries in Africa with different under-five mortality and 

determines the factors that contribute to countries having a higher mortality rate compared to the 

others (Van Malderen et al., 2013). 
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They used the multivariate linear regression and the Gini index to discover the contributing 

determinants of under-five mortality as well as wealth-connected inequality in under 5 mortality 

in thirteen African countries, including Lesotho. In three of the countries the authors found 

regional differences to be a significant factor to the inequality. Two other countries had the 

mother’s education as the determinant contributing majority to the overall inequality. Lesotho 

had unskilled birth attendance and mother’s age at birth as one of the important determinants of 

high under-five mortality. Overall, father's job, mother's education  and wealth of household 

caused more to the inequality, though the most important determining factors were different 

across countries. This type of study helps in prioritizing interventions aiming to improve the 

child equity and survival (Van Malderen et al., 2013). 

 

Another study by (Hobcraft et al., 1984) had found similar results when assessing socio 

economic factors in child mortality for 28 developing countries. Also using a multivariate 

approach, he also found that child mortality is most strongly associated with only three of the 

considered variables: husband's job, education  and mother's education. In Asian countries, the 

levels of mother's education are strongly related to mortality in children under five years. The 

child mortality for the few African countries was relatively strongly associated with education as 

well as husband's occupation (Hobcraft et al., 1984).  

 

A lot of other studies are available (Consultation, 2012; Sastry, 1997; Uddin & Hossain, 2008), 

that use the conceptual framework managing the selecting of the analysis variables, which is the 

proximate determinants model of child health, originally defined by (Mosley & Chen, 1984). 

Mosley and Chen argued that social science studies should pay attention to the effect of 

socioeconomic and cultural factors on child mortality.  Mosley and Chen portrayed an analytical 

framework of determining factors of child survival. In their framework, they classify between 

proximate and socio-economic determining factors of child mortality.   

 

The study identified five important groups of proximate determinants: 
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Figure 2.1: Groups of proximate determinants 

Source: Adapted from Mosley and Chen (1984). 

 

This study found that the father’s education level usually strongly relates to the income of 

household. They suggested that the father’s education may affect the preference on choice of 

goods. When a more educated father is married to a less educated mother, there is likely to be a 

more significant effect for child survival, a decrease in child mortality. Mosley and Chen stated 

that sex of child, birth interval, age of mother and birth order are significant factors affecting child 

mortality (Mosley & Chen, 1984) . 

 

The study conducted by (Kaundjua, 2013) using the Mosley framework also showed that birth 

interval, sex of household head, birth weight, toilet facility and mother’s education are 

significantly connected with the risk of dying prior to turning 5.  
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Chapter 3 
3 Exploratory Data Analysis 

 Introduction 
 
Exploratory data analysis is helpful to understand the data in detail before the modeling the data. 

This chapter will summarize main characteristics for the data and will give descriptive statistics 

such as frequency distributions displayed to describe some of the variables. 

 
 Study Variables 

3.2.1 Response Variable 
 
The dependent variable in this study is child survival status that is a binary variable presenting 

the status of a child being alive or child not alive. The response variable is equal to “zero” if the 

child is not alive at the time of the survey and “one” if the child is alive. 

  

3.2.2  Exploratory Variables 
 
This study takes into consideration 13 variables including the mothers age of the respondent 

which was chosen based on the literature. The covariates in the study are geographic, 

demographic and socio-economic influences. These will be region, age of child, mother’s work 

status, sex of child, number of children living, mother’s age, mother educational attainment, 

wealth index, marital status, weight of child when born, type of place of residence, birth order 

number and breast feeding. 

The lists of the explanatory or predictor variables in this study are indicated in Table 3.1. with 
the codes and descriptions of each variable.  

 

Table 3.1: Description of study variables. 

Code                      Variables               Description 
B4 Sex of child Male (1), Female (2) 

V012  Mother’s age 15 years - 49 years 

BORDA  Birth order number  First birth (1), 2-4 births (2), > 4 
births (3) 
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V404  Currently breastfeeding  No (0), Yes (1) 
V501AA  Marital status  Not Married (1), Married (2) 
M18A  Weight of the child at birth Large (1), Average (2), Small (3) 

B8  Age of child 0, 1, 2, 3, 4  
V102  Place of residence Urban (1), Rural (2) 

V101  Region 

Botha-bothe (1), Leribe (2), Berea 
(3), Maseru (4), Mafeteng (5), 

Mohale's hoek (6), Quthing (7), 
Qacha's-nek (8), Mokhotlong (9), 

Thaba Tseka (10) 
V190A  Wealth index Poor (1), Middle (2), Rich (3) 

V149A  Education attainment No Education (1), Up to Secondary 
Education (2), Higher Education (3) 

V714  Mothers currently working Unemployed (0), Employed (1) 

V218A Number of children living <2 children (1), 2-4 children (2), > 4 
children (3) 

 

 

  Preliminary Analysis 
 

The goal of this research is finding factors that are associated with under-five years mortality in 

Lesotho. In order to perform this analysis, certain characteristics need to be examined especially 

mother’s occupation, age, wealth index, birth order number and mother’s level of education etc. 

The mother’s age is continuous while the rest of the variables are categorical variables. We will 

first look at the analysis of the frequency tables which were obtained. 

 

Table 3.2. shows the results for the year 2009, with the sample consisting of n=3999 

respondents. The result shows that child sex was almost equally distributed with females 

accounted for 50.28% and males accounted for 49.71% of the sample thus the 1:1 sex ratio is 

closely exhibited in the sample.  We also see that more respondents were not breastfed and 

accounted for 53.80% (n=2151) of the sample, and that the sample had 21.10% (n=844) of the 

respondents that were not married. From the results we can also see that 14.33% (n=573), 

66.57% (n=2662) and 19.85% (n=794) of the weight of child at birth were small, average and 

large respectively. A child is considered small if weight is less than 2.5kg, average if weigh is 

between 2.5-4.0kg and large if greater than 4.0kg.(Agbozo et al., 2016) 
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A sample of 672 (16.80%) of the individuals were from urban area, which was three times lower 

than those in rural areas. More than half of the sample was poor when it comes to the wealth 

index, 51.8% (n=2071) was poor, 18.6% in the middle and 29.60% was rich. We can see that 

majority of the mothers were unemployed (64.30%) and most were educated up to secondary 

school (94.60%). The sample had almost 50% of the children being between second and fourth 

births with 48.30% and 37.40% are first-borns. More than half of the sample had 2-4 children 

living in the household, accounting for 51.60%(n=2063) out of the whole sample. 

Table 3.2: Summary of selected characteristics of children (LDHS 2009). 

Covariates Characteristics Frequency 
           Percent 
(%) 

Sex of the child Male 1988 49.71% 

 Female 2011 50.28% 

Age of child 0 years 1162 29.06% 

 1 years 840 21.00% 

 2 years 670 16.75% 

 3 years 657 16.43% 

 4 years 670 16.75% 

Mother's current age   
Mother's current 
age   3999 100.00% 

Weight of child at birth Large 794 19.85% 

 Average 2662 66.57% 

 Small 573 14.33% 

Currently breastfeeding No 2151 53.80% 

 Yes 1848 46.20% 

Marital Status Not Married 844 21.10% 

 Married 3155 78.89% 

Wealth Index Poor 2071 51.8% 

 Middle 745 18.6% 

 Rich 1183 29.6% 

Education Attainment No Education 90 2.30% 

 
Up to Secondary 
Education 3783 94.6% 

 Higher Education 126 3.20% 

Mothers currently working Unemployed 2571 64.30% 

 Employed 1428 35.70% 
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Type of place of residence Urban 672 16.80% 

 Rural 3327 83.20% 

Region Butha-Bothe 357 8.90% 

 Leribe 427 10.70% 

 Berea 358 9.00% 

 Maseru 498 12.50% 

 Mafeteng 357 8.90% 

 Mohale's Hoek 362 9.10% 

 Quthing 332 8.30% 

 Qacha's-Nek 317 7.90% 

 Mokhotlong 482 12.10% 

 Thaba-Tseka 509 12.70% 

Birth Order Number First Birth 1494 37.40% 

 2-4 Births 1932 48.30% 

 >4 Births 573 14.30% 

Number of children living <2 children 1398 35.00% 

 2-4 children 2063 51.60% 

 >4 children 538 13.50% 

Total  3999 100.00% 
 

The results in Table 3.3. show that the sample consisted of n=3138 respondents in the year 2014. 

The result shows that child sex was almost equally distributed with males accounted for 49.60% 

and females accounted for 50.40% of the sample thus the 1:1 sex ratio is closely exhibited in the 

sample.  We also see that more respondents were not breastfed and accounted for 57.70% 

(n=1812) of the sample, and that the sample had 21.54% (n=676) of the respondents that were 

not married. From the results we can see that 14.72% (n=462), 66.32% (n=2081) and 18.96% 

(n=595) of the weight of child at birth was small, average and large respectively. 

With regards to the type of residence, there were 25.05% (n=786) individuals from urban area, 

which was three times lower than those in rural areas. Almost half of the sample was poor when 

it comes to the wealth index, 46.56% (n=1461) was poor, 20.27% in the middle and 33.17% was 

rich.  
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The data also shows that majority of the mothers were unemployed (70.01), and most were 

educated up to secondary school (92.26%). The sample had 49.43% of the children being 

between second and fourth births and 39.01 as first born. 53.60% of the sample had 2-4 children 

living in the household, accounting for n=1682 out of the whole sample, with 1160 of the sample 

have less than two children in household. 

 

Table 3.3: Summary of selected characteristics of children (LDHS 2014). 

Covariates Characteristics Frequency            Percent (%) 

Sex of the child Male 1555 49.60% 

 Female 1583 50.40% 

Current age of child 0 years 875 27.88% 

 1 years 680 21.67% 

 2 years 582 18.55% 

 3 years 492 15.68% 

 4 years 509 16.22% 

Mother's current age   Mother's current age   3138 100.00% 

Weight of child at birth Large 595 18.96% 

 Average 2081 66.32% 

 Small 462 14.72% 

Currently breastfeeding No 1812 57.70% 

 Yes 1326 42.30% 

Marital Status Not Married 676 21.54% 

 Married 2462 78.46% 

Wealth Index Poor 1461 46.56% 

 Middle 636 20.27% 

 Rich 1041 33.17% 

Education Attainment No Education 36 1.15% 

 
Up to Secondary 
Education 2895 92.26% 

 Higher Education 207 6.60% 

Mothers currently working Unemployed 2197 70.01% 

 Employed 941 29.99% 

Type of place of residence Urban 786 25.05% 
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 Rural 2352 74.95% 

Region Botha-Bothe 298 9.50% 

 Leribe 351 11.19% 

 Berea 323 10.29% 

 Maseru 391 12.46% 

 Mafeteng 272 8.67% 

 Mohale's Hoek 307 9.78% 

 Quthing 296 9.43% 

 Qacha's-Nek 236 7.52% 

 Mokhotlong 336 10.71% 

 Thaba Tseka 328 10.45% 

Birth Order Number First Birth 1224 39.01% 

 2-4 Births 1551 49.43% 

 >4 Births 363 11.57% 

Number of children living <2 children 1160 37.00% 

 2-4 children 1682 53.60% 

 >4 children 296 9.40% 

Total  3138 100.00% 
 

 

From Table 3.2. and Figure 3.1 we can see that out of all the regions in 2009, the majority of the 

sample  was  from Thaba-Tseka with 12.70% (n=509) followed by Maseru 12.50% (n=498), 

Mokhotlong 12.10% (n=482) and Leribe 10.70% (n=427).   For 2014, Table 3.3. and Figure 3.1   

show that the  majority of the sample was  from Maseru (12.46% ,n=391) followed by Leribe 

(11.19% , n=351), Mokhotlong (10.71% , n=336) and Thaba Tseka (10.45% , n=328). Figure 3.2 

shows the percentage of children alive compared to child deaths for the years 2009 and 2014. In 

a sample of 3999 in 2009, n= 393 children died accounting for 9.83% of the sample; while in 

2014, n=223 (7.11%) children died out of sample 3138. Figure 3.3 shows wealth index of the 

mother for the years 2009 and 2014. It shows that majority of the mothers are poor in Lesotho 

(52% and 47%). An assessment for poverty revealed that poverty has decreased over time in 

Lesotho for the past 15 years, but it remains widespread with almost half of the population 

surviving with poverty and 75% of the population is poor (Bank, 2019). 
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Figure 3.1: Sample distribution of children for each region in Lesotho for the two periods. 

 

Figure 3.2: Percentage of child survivals for 2009 and 2014 in Lesotho 
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  Summary 
 

The exploratory data analysis is important in helping us get a preliminary view of the trends and 

patterns of the data before using model-based approaches.  The results are easier to interpret 

because the EDA analysis results can be seen analytically and visually. Assessing variables by 

using descriptive measures such as central tendency as well as graphical methods helps to 

summarize the sample and give an overview of the whole data.  

 

By using the frequency tables with the summarized data , we can see that overall, for both 2009 

and 2014 samples, it has been observed that most of the respondent’s children were under the 

age of one and that respondents who were married were above 78%( Table 3.3). There were 

slightly more females than males. Most of the people that responded lived in rural parts also 

46.56% of the samples were poor. The number of children in a household is mostly 2-4 children 

in each household with weight of child being average for most children in the samples.  Children 

birth order number between 2 and 4 had the majority proportion of the samples. 

 

An attempt to present the description of the data was made in this chapter. The next chapter 

applies some statistical methods to study the relationship between independent and response 

variables 

 

Figure 3.3: Wealth Index of Mother in Lesotho (2009 and 2014). 



24 
 

Chapter 4 

4  Generalized Linear Models 

 Introduction 
 

The response variable in this study is survival status of a child which is a dichotomous variable 

showing the status: of a child alive or not. This binary outcome variable  follows  a Bernoulli 

distribution which is a member of the exponential family (Tutz, 2011). 

 

The generalized linear model widens the general linear model in such a way that the model 

permits for the response variable to take on a distribution that is unlike the normal distribution 

(Hardin et al., 2007). The generalized linear model includes statistical models like: logistic 

regression model, loglinear models for count data and categorical data analysis, complementary 

log-log models for interval-censored data, as well as numerous other statistical models through 

its very general model formulation (Fahrmeir & Tutz, 2013). In comparison to these statistical 

models, the logistic regression is the most common technique used in health science (Tetrault et 

al., 2008). The methods utilized in a logistic regression follows similar principles used in linear 

regression (Dobson & Barnett, 2008).   To be able to make valid statistical inference all variables 

which possibly affects the child death will be assumed to have fixed effects.  Subsequently, we 

fit the Generalized Linear Model to the data. Below we look at the theory of the GLM. 

 

 The Generalized Linear Model 
 

The General Linear Model (GLM) is mathematically the same as the multiple regression analysis 

but stresses its suitability for both qualitative and quantitative variables. The multiple regression 

analysis encompasses all linear models including linear regression model for a continuous 

response variable and continuous predictor or continuous response or categorical predictor 

(Cohen, 1968). The model has a dependent variable that is normally distributed with mean, 𝜇𝜇𝑖𝑖, a 

which is a function of βT
iX and constant variance 2σ  where 𝑥𝑥𝑖𝑖 has known covariates and 𝛽𝛽 

comprises of the coefficients that will be estimated.  
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The generalized linear model makes use of the linear functional relationship to explain how a 

response variable depends on measured explanatory variables. This response variable, 𝑦𝑦𝑖𝑖, is 

presumed to come from an exponential family of distribution with mean 𝜇𝜇𝑖𝑖, which is  a function 

of 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 (McCullagh & Nelder, 1989). The GLM generalizes linear models by allowing  the error 

to take a distribution except a normal distribution. The general linear model is given by: 

𝒀𝒀 = 𝑿𝑿𝛽𝛽 + 𝜖𝜖                                                             (4.1) 

where, 𝒀𝒀 is the response variable, 𝑿𝑿 refers to  the design matrix of covariates, 𝛽𝛽 stands for  the 

vector of regression coefficients and 𝜖𝜖 stands for error vector.  

 

The GLM assumes that the errors should be independent but not necessarily normally 

distributed.  This permits the distribution to be some distribution from exponential family 

(Dobson & Barnett, 2008). “It permits  the linear model to be connected to the response variable 

through a link function, letting the size of the variance of each measurement to be a function of 

its predicted value” (Hutcheson & Sofroniou, 1999). We do not necessarily  model the mean 

directly , but we model some function of the mean 𝑔𝑔(𝜇𝜇); This can be specified as  

 

𝑔𝑔(𝜇𝜇) = 𝜂𝜂 = 𝑿𝑿 𝛽𝛽                                                          (4.2) 

 

In the above, 𝜂𝜂 = 𝑿𝑿𝛽𝛽 is the linear predictor part of the model and g(.) is the link function (Müller 

& Stadtmüller, 2005). Let us first look at exponential family of distributions. 
 

4.2.1 Exponential Family of Distributions 
 

This family of distributions consists of a lot of distributions which are applicable and valuable 

for modeling that is practical for instance: Negative Binomial or Poisson for count response 

variable; Bernoulli , Binomial, Geometric for studying discrete responses; Normal, Beta, 

Gamma, Inverse Gaussian, as well as exponential for studying continuous responses (Hardin et 

al., 2007). 
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One can confirm that a distribution is from the exponential family of distribution if the 

probability distribution function (pdf) can be expressed as below. 

𝑓𝑓(𝑦𝑦𝑖𝑖|𝜃𝜃𝑖𝑖 ,𝜙𝜙) = 𝑒𝑒𝑥𝑥𝑥𝑥 �𝑦𝑦𝑖𝑖𝜃𝜃𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖)
𝑎𝑎(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦𝑖𝑖 ,𝜙𝜙)�                                (4.3) 

 

where, 𝑎𝑎(𝜙𝜙) and 𝑏𝑏(𝜃𝜃𝑖𝑖) are known functions with 𝜙𝜙 being the scale parameter and 𝜃𝜃𝑖𝑖 the 

canonical parameter. 𝑐𝑐(𝑦𝑦𝑖𝑖 ,𝜙𝜙) is some function of 𝑦𝑦𝑖𝑖 and 𝜙𝜙.  

 

4.2.2 Components of the GLMs 
 

There are three components of  generalized linear model. The random component that 

characterizes the response variable and its probability distribution.  The systematic component 

denotes the explanatory variables (X1, X2, ... Xk) in the model, more precisely their linear 

combination in creating the linear predictor; for example, β0 + β1x1 + β2x2 +…. Βkxk as we will see 

in a logistic regression in this analysis.  The link function indicates the link between systematic 

and random components. It shows how the mean response connects to the linear predictor of 

explanatory variables (Bonnefoix et al., 1996; McCullagh, 2019). 

 

There are several of advantages of the GLMs in comparison to the OLS regression but there also 

exists limitations.  In the GLM, transformation of the response variable is not necessary to have a 

normal distribution, the models are fitted via MLE and so ideal properties of the estimators.  

The decision  of the link is different from the decision of random component and hence there is  

more flexibility in modeling; inference tools and model checking e.g., Residuals, Deviance 

Confidence intervals, Wald and Likelihood ratio tests, Overdispersion apply. The limitations are 

linear function; it can only have a linear predictor in the systematic component and the responses 

has to be independent (Lee & Nelder, 2006; Levy, 2012). 

 

4.2.3 Maximum Likelihood Estimation (MLE) 
 

Maximum likelihood estimation is a technique that finds values for the models’ parameters. The 

parameter values maximize the likelihood that the process described by the model produced the 
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data that was seen. A technique such as Fisher’s scoring or Newton-Raphson must be utilized to 

find MLEs for the GLMs. The technique of Maximum Likelihood is advised to be more strong 

and yields estimators with great statistical properties in comparison to other methods such as the 

technique of LSE (Hardin et al., 2007; Myung, 2003). Because of advanced computer software 

and statistical theory, this technique of estimation is known to be the most known technique in 

applied statistics (Wu, 2005).  

 

 Model Selection and Diagnostics 

4.3.1 Model Selection 
 

Selecting the Model  is a critical portion of all statistical analysis and is generally the principal to 

the pursuing science. The selection of the model includes the selecting the best model out of a 

few competing models. The criteria of selection for the model that are usually used for GLMs 

are; Bayesian information criterion (BIC) and Akaike information criterion (AIC) (Gayawan & 

Ipinyomi, 2009). If the maximum likelihood is used to approximate the parameters and the 

models are non-nested, then the Bayes information criterion  or the Akaike information criterion 

may be used to compare the models (Vrieze, 2012).  The model selection criteria examines the  

minimum AIC and BIC values and the best model is selected based on this (Wang & Liu, 2006). 

However, the likelihood ratio test is used when the models are nested. 

 

4.3.1.1 Akaike’s Information Criterion (AIC) 

 

The Akaike information criterion is a method based on in-sample fit to approximate the 

likelihood of a model to forecast the values in the future. The AIC criterion tries to measure how 

good the model has estimated the data. The Akaike’s Information Criterion is a practical statistic 

to compare the comparative fit of various models (Li & Nyholt, 2001). 

The statistic suggested by Akaike (1974) is: 

AIC = −2ln(L)+ 2k 
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the number of parameters is given by k, and the maximum log-likelihood is denoted by ln(L). 

The AIC technique penalizes the loglikelihood for the number of parameters approximated 

(Akaike, 1974). A model with a minimum AIC in comparison to all the other models is a good 

model (Arnold, 2010). 

 

4.3.1.2 Bayesian information criterion 

 

The Bayesian information criterion is an alternative method for model selection that calculates 

the trade-off relating to the model fit and how complex the model is. The BIC is also known as 

the Schwarz Criterion (SC). This is an alternate method to the AIC for comparison of nested 

models and was suggested by Schwarz in 1978 (Müller et al., 2013). 

The BIC statistic (Stone, 1979)  is given by 

SC = −2ln(L) + 2 ln (N)k.                                                                       (4.4) 

 

N is the sample size; L is the likelihood; and k are the number of parameters to be estimated. The 

choices can be reduced before comparing the models. This is done by choosing variables that are 

incorporated in the model.  

 

The selection of variables that are incorporated in the model is completed by three procedures 

specifically, stepwise, backward and forward selection. The forward selection initiates with a 

null model and includes one explanatory variable individually against a certain level of 

significance α, up till every significant variable is incorporated in the model. The backward 

selection begins with the model that contains all covariates and drops one insignificant at a time. 

This is done till every non-significant variable is removed in the model.  The stepwise selection 

performs like the forward selection procedure. The benefit of stepwise selection is that variables 

existing in the model are given thought to for the omission in the model whenever a new 

covariate is added in the model (Heinze et al., 2018). 
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4.3.1.3 Measure of fit 

 

An important stage in statistical analysis is to evaluate the goodness-of-fit of the model. The 

deviance and Pearson chi-square tests provide large sample tests of the model fit (Hosmer et al., 

1997). However, the deviance has an advantage over Pearson’s chi-square statistic because for 

nested models it is additive (Nelder & Baker, 1972). 

 

4.3.2 Model Checking 

4.3.2.1 Deviance 

 

The deviance is  used to evaluate the fit in the GLMs and also be used in comparing nested 

models. It looks at measuring the inconsistency between the actual values from the dataset and 

predicted values from the fitted model. To put differently; it is the disparity of fit between the 

maximum log-likelihood of the log-likelihood of the model fitted and the saturated model 

(Spiegelhalter et al., 2002). 

 

Let ℓ(𝜇̂𝜇,𝜙𝜙, 𝑦𝑦) denote the log-likelihood of the model that is reduced at the MLE , 

ℓ(𝑦𝑦,𝜙𝜙, 𝑦𝑦) stand for the log-likelihood estimate of the saturated model. Deviance can be defined 

as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2[ℓ(𝑦𝑦,𝜙𝜙,𝑦𝑦) − ℓ(𝜇̂𝜇,𝜙𝜙,𝑦𝑦)]                                                            (4.5) 

The MLEs is given by 𝜇̂𝜇, and 𝜙𝜙=  1 ; the scaled deviance is given by the below equation when 

𝜙𝜙≠ 1: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2[ℓ(𝑦𝑦,𝜙𝜙,𝑦𝑦)−ℓ(𝜇𝜇� ,𝜙𝜙,𝑦𝑦)]
𝜙𝜙

                                                                 (4.6) 

when the  𝜙𝜙 is not known, we can approximate it by: 

𝜙𝜙� =
𝐷𝐷

𝑛𝑛 − 𝑝𝑝
 

the number of variables is  𝑝𝑝 and the number of observations is given by n. 

 

4.3.2.2 Pearson’s Chi-square 

 

The alternative to deviance for testing and comparing models is the generalized Pearson 
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chi-square statistic. The score statistic for testing the fitted model against the saturated model is 

called the Pearson goodness of fit statistic defined as (Smyth, 2003): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 = 𝜒𝜒2 = ∑ (𝑦𝑦𝑖𝑖−𝜇𝜇𝚤𝚤�)2

𝑉𝑉(𝜇𝜇𝚤𝚤�)
𝑛𝑛
𝑖𝑖=1                                                               (4.7) 

 𝑉𝑉(𝜇𝜇𝚤𝚤� ) is the estimated variance function which is equivalent to µ𝑖𝑖(𝑛𝑛𝑖𝑖 − µ𝑖𝑖)/𝑛𝑛𝑖𝑖 and µ𝑖𝑖 = 𝑛𝑛𝑝𝑝𝑖𝑖 . 

This statistic asymptotically follows 𝜒𝜒2 distribution with n-p-1 degrees of freedom. The bigger 

the value of the 𝜒𝜒2statistic, the worse the model fit (Cochran, 1952). 

 

4.3.2.3 Link Function 
 

The selection of link function is essential. If the link function is unsuitable, then the estimated 

results will be erroneous and can result to incorrect conclusions. To test how appropriate the link 

function is, we can refit the model using the linear predictor acquired from the initial model as 

well as the square of the linear predictor as explanatory variables (Faraway, 2016; Moeti, 

2007).The linear predictor will be significant if the link function is suitable and the squared 

linear predictor term will be insignificant. The initial model may be alternatively estimated with 

an additional composed variable, in this case, for an appropriate model the extra variable is 

statistically insignificant (Venables & Ripley, 1999). If the constructed variables are significant, 

then the link function is unsuitable or crucial factors are excluded in the model (Bolker et al., 

2009).  

 

 Background to Logistic regression  
 

The logistic function was established as a model of population growth and was given the name 

logistic by Pierre Francois Verhulst in the 1830s. It was re-established afresh in 1920 by Pearl 

and Reed in a research of the population growth of the United States (Reed, 1929). The logistic 

regression model was established in 1958 by David Cox who was a statistician. To estimate the 

probability of a binary response variable based on a single or more independent variables the 

binary logistic regression can be used. This permits us to say that the existence of risk factors 

increases the probability of the outcome by a certain percentage (Cox, 1958; Cramer, 2003).  
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The Logistic regression is the suitable analysis when the dependent variable is binary. It is 

adapted to explain the data and the connection between a single dependent dichotomous variable 

and a single or more than one independent variables (Bewick et al., 2005; Tranmer & Elliot, 

2008). In this we research we focus on the logistic regression model with more than one 

predictor variable known as multiple logistic regressions. We shall limit ourselves to the use of 

binary logistic regression, where our response variable is strictly dichotomous depicting whether 

a child is alive or not. 

 

 
4.4.1 Logistic Regression Model 
 
To model binary data; a member of the GLMs called the logistic regression model is used. This 

model describes the probability of a specific event, that is a value between 0 and 1 (Melesse et 

al., 2016). Assume we have a dichotomous outcome variable Y; 𝑌𝑌 = 1 if the event occurs and 

𝑌𝑌 =  0 if the event does not occur. We have a set of p independent variables denoted by the 

vector 𝒙𝒙 =  (𝑥𝑥1;  𝑥𝑥2;  … ;  𝑥𝑥𝑝𝑝).  

 

It is assumed that 𝑌𝑌 has a Bernoulli distribution represented as: 

𝑌𝑌 =  1; when the event occurs (𝜋𝜋𝑖𝑖) 

𝑌𝑌 =  0; when the event does not occur (1 − 𝜋𝜋𝑖𝑖) 

Thus, 𝑌𝑌𝑖𝑖 follows a Bernoulli distribution with 𝑃𝑃(𝑌𝑌𝑖𝑖 =  1)  = 𝜋𝜋𝑖𝑖   and 𝑃𝑃(𝑌𝑌𝑖𝑖 =  0)  =  1 − 𝜋𝜋𝑖𝑖 

Therefore, 

𝐸𝐸(𝑌𝑌𝑖𝑖 ) = 𝜋𝜋𝑖𝑖                                                                   (4.8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖 ) = 𝜋𝜋𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)                                                  (4.9) 

For 𝑘𝑘 explanatory variables and 𝑖𝑖 = 1, . . .  ,𝑛𝑛 individuals, 

 

With regards to the odds ratio, the logit model is: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) = log � 𝜋𝜋𝑖𝑖
1−𝜋𝜋𝑖𝑖

� =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 +  … + 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝 .                                  (4.10) 

 

The formula that refers to the probability of the outcome is: 
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𝜋𝜋𝑖𝑖 =  𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖)  = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0+𝛽𝛽1𝑥𝑥1𝑖𝑖+ … +𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝�
1+𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0+𝛽𝛽1𝑥𝑥1𝑖𝑖+ … +𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝�

                                  (4.11) 

 

This is the probability of the event happening, and the probability of the event not happening is 

given by 1 − 𝜋𝜋𝑖𝑖. This the logistic regression model which is a member of the GLM with a logit 

link. The odds ratio is described as the ratio of the odds event taking place in one group to it 

happening in another (Cleves et al., 2008). The value of the logit model when the values of 

predictor variables are equal to zero is the intercept (𝛽𝛽0). This means there are no predictor 

variables.  

The regression coefficient tells us how much the dependent variable is expected to increase the 

probability of the model if the coefficient is positive or decrease it if the coefficient is 

negative(Williams, 2016). The probability of the model is strongly influenced by the variable if 

the coefficient is large, while a very small coefficient indicates that variable has small impact on 

the probability of the model. A confidence interval for each variable shows the uncertainty in the 

estimate (Liao, 1994). 

 

A model containing nominal(categorical) variables has a more complex interpretation of the 

coefficients. Dummy predictor variables are created for every term that involves a nominal 

variable to predict the effect. The logistic regression uses reference dummy coding to code the 

predictors for a nominal variable (Long & Freese, 2006). The first category is the baseline and 

the other coefficients can be interpreted as an increase or decrease in the log-odds ratio over the 

baseline category (Long & Freese, 2006; Mitchell, 2012).  

 

The objective of logistic regression is obtaining the probability of a certain event knowing the 

independent variables. Using Logistic regression, we model the LDHS 2014 data to find 

variables that best fit the data associated to child mortality.  

 

4.4.2 Assumptions of Logistic Regression 
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1) ASSUMPTION OF APPROPRIATE OUTCOME STRUCTURE  

The binary logistic regression needs the response variable to be binary whilst the ordinal logistic 

regression needs the response variable to be ordinal.  

2) ASSUMPTION OF OBSERVATION INDEPENDENCE  

For the Logistic regression, the observations need to be independent of each other. So, the 

observations shouldn’t derive from measurements that are repeated. 

3) ASSUMPTION OF THE ABSENCE OF MULTICOLLINEARITY 

The model should have little to no multicollinearity between the independent variables. The 

independent variables shouldn’t be too highly correlated with one another. 

4) ASSUMPTION OF LINEARITY OF INDEPENDENT VARIABLES AND LOG ODDS 

The linearity of independent variables and log odds is assumed in logistic regression. The 

analysis needs the independent variables to be linearly linked to the log odds.  

5) ASSUMPTION OF A LARGE SAMPLE SIZE 

The model requires a large sample size.  

Regression analysis suggests the significant relationships between dependent variable and 

independent variable. It also shows how strong the effect of multiple independent variables is on 

a dependent variable (Lani, 2010; Morrow-Howell & Proctor, 1993; Starkweather & Moske, 

2011). 

 

4.4.3 Limitations to the Logistic Regression 
 

The Logistic Regression is not the strongest model out there and can easily be outperformed by 

more complex models. Logistic regression is not useful unless you have identified all the crucial 

predictor variables (Bursac et al., 2008). In logistic regression, zero assumptions are stated about 

the distributions of the independent variables, but independent variables shouldn’t be highly 

correlated to each other since it may lead to issues with estimation (Horton & Fitzmaurice, 

2004).  
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Logistic regression works well for predicting nominal outcomes like a child status. It can also 

predict multinomial outcomes, like rejection or wait listing in a university (Peng et al., 2002). 

We cannot use the Logistic regression to find how high an influenza patient's fever will increase 

or decrease, because the scale of measurement is continuous (Hosmer Jr et al., 2013). Therefore, 

using the logistic regression modelling to find continuous outcomes will not give the best results. 

 

The logarithm of the odds of the dichotomous outcome in the model is calculated as a linear 

combination of the (Lalonde et al., 2013). The limitation one that when there is non-linear 

relationship between covariates and log odds we could obtain invalid results (Peterson & Harrell 

Jr, 1990). The other limitation is that the ordinary logistic regression does not account for how 

complex the survey design is, which can lead to statistical inference that is invalid (Horton & 

Fitzmaurice, 2004). 

 

“The Hosmer-Lemeshow goodness of fit test is based on dividing the sample in accordance with 

their predicted probabilities” (Guffey, 2013). The Hosmer-Lemeshow test has a lower power to 

identify an incorrect specification if the sample is small (Allison, 2014; Hosmer et al., 1997). 

 

4.4.4 Parameter Estimation  

Maximum Likelihood Estimation of Logistic Regression Models 

 

The parameters (𝛽𝛽𝑖𝑖) are unknown in the model are estimated applying the maximum likelihood 

estimation procedure.  The statistical assumption of independence of observations applies. In this 

study, a variety of respondents in the Lesotho DHS data are presumed to be independent of each 

other. The parameter value whose probability of the data takes its biggest value is the maximum 

likelihood estimate (Albert & Anderson, 1984; Fienberg & Rinaldo, 2007).  
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“The maximum likelihood equation is attained from the probability distribution of the predictor 

variable” (Miranda & Rabe-Hesketh, 2006). Since each  𝑦𝑦𝑖𝑖 represents a binomial count in the 

𝑖𝑖𝑖𝑖ℎ population, the probability distribution of a binomial response variable  𝑌𝑌𝑖𝑖~𝐵𝐵(𝑛𝑛𝑖𝑖 ,𝜋𝜋𝑖𝑖) is given 

by: 

 

𝑃𝑃(𝑌𝑌𝑖𝑖 =  𝑦𝑦𝑖𝑖) = � 𝑛𝑛𝑖𝑖!
𝑦𝑦𝑖𝑖!(𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖)!

� 𝜋𝜋𝑖𝑖𝑦𝑦𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖                                          (4.12)  

for 𝑦𝑦𝑖𝑖 = (0,1,2, . . . ,𝑛𝑛𝑖𝑖)  where 𝜋𝜋𝑖𝑖𝑦𝑦𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖 is the probability of obtaining 𝑦𝑦𝑖𝑖 successes and 

𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖 failures with a combinatorial coefficient �𝑛𝑛𝑖𝑖 𝑦𝑦𝑖𝑖
� which is the number of ways of obtaining 

𝑦𝑦𝑖𝑖 successes in ni trials. The mean and the variance of Yi are given by: 

𝐸𝐸(𝑌𝑌𝑖𝑖) =  𝑛𝑛𝑖𝑖𝜋𝜋𝑖𝑖                                                                                             (4.13) 

 

𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝑛𝑛𝑖𝑖𝜋𝜋𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)                                                                                (4.14) 

If �𝑛𝑛𝑖𝑖 𝑦𝑦𝑖𝑖
�  is a constant, then we have the likelihood function being of importance and is written as: 

𝐿𝐿(𝜋𝜋𝑖𝑖) = ∏ 𝜋𝜋𝑖𝑖𝑦𝑦𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1                                                                    (4.15) 

 

considering the natural log, we get the log likelihood as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙∏ 𝜋𝜋𝑖𝑖𝑦𝑦𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1                                                                   (4.16) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) = ∑ �𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + 𝑛𝑛𝑖𝑖−𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜋𝜋𝑖𝑖)�𝑁𝑁
𝑖𝑖=1                                              (4.17) 

 

There is one parameter connected to each of the K columns of predictor variable in X, plus one β 

(0), for the intercept. β  is the parameter vector,  a column vector of length K + 1. The objective 

of the logistic regression is finding the K +1 not known parameters. In solving the parameter 

estimates, make the first derivative of log-likelihood with regards to each 𝛽𝛽 is 0, the MLEs for 𝛽𝛽 

is attained by making each of the K+1 equation established equals 0 and working out for each 

𝛽𝛽(𝑘𝑘). 
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If a solution exists, each solution stipulates a critical point that’s a maximum or minimum. If the 

matrix of second derivatives is negative definite then the critical point will be the maximum,  

which means that every element on the diagonal of the matrix is below zero. The matrix forms 

variance-covariance matrix of the parameter estimates. When we differentiate each of the K + 1 

equation again in terms of each 𝛽𝛽  we get the variance covariance matrix (Czepiel, 2002; 

Dorfman & Alf Jr, 1969). The parameters can therefore be estimated by finding score equations 

and using an iterative method such as the Fisher scoring algorithm or Newton-Raphson method 

to solve for their values (Pourahmadi, 2000). 

 

Iterative methods that are mostly used include the Newton-Raphson and Fisher scoring 

technique. Other iterative methods do exist like IRLS and IWLS. The Newton-Raphson method 

makes use of the standard least squares technique to repeatedly compute the maximum 

likelihood estimates (Yirga, 2018) and the Fisher scoring technique is equal to  the IRLS (Wedel 

& DeSarbo, 1995).  

 

The PROC LOGISTIC is the most common SAS procedure to fit the logistic regression. It gives 

Maximum Likelihood Estimation of the logistic regression model, that employs by default the  

Fisher’s scoring technique (Allison, 2012). 

 

4.4.5  Newton-Raphson Method 
 

The logistic regression aims to estimate P+1 variables 𝛽𝛽 that are unknown in this equation: 

𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜋𝜋𝑖𝑖
1−𝜋𝜋𝑖𝑖

� =  ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖
p
j=0 .                                                                                      (4.18) 

By obtaining the set of variables for which the probability of the observed data is greatest; this 

aim can be achieved with Maximum Likelihood Estimation. The maximum likelihood estimates 

for 𝛽𝛽 may be obtained by equating P + 1 equations individually in the loglikelihood to zero and 

solving for 𝛽𝛽(j). Setting the equations in equation (4.18) to zero results in a system of P + 1 non-

linear equations each with P + 1 variables that are not known. The solution to the system is a 

vector with elements, 𝛽𝛽𝑗𝑗. After confirming that the matrix of second derivatives is negative 
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definite, and the solution is the global maximum and not a local maximum, then this vector 

comprises of the parameter estimates for which the observed data will have the greatest 

probability of occurring. The solution for solving a system of nonlinear equations cannot be 

derived algebraically. An iterative process is used to numerically estimate the solution.  

 

The most popular technique for working out the systems of nonlinear equations is the Newton-

Raphson method. “This method starts with a guess for the solution; it then uses the first two 

terms of the Taylor polynomial estimated at the initial guess to get another estimate that is closer 

to the solution” (Czepiel, 2002; Jennrich & Robinson, 1969). This process continues until it 

converges to a solution. 

 

4.4.6 Parameter Estimation 
 

The technique of maximum likelihood is the theoretical foundation for parameter estimating in 

GLMs, where the mean response is connected to the linear predictors by the link function, with 

g(µ) = Xβ (Collett, 2002). The likelihood function is: 

𝐿𝐿(𝑦𝑦;𝜃𝜃) = ∏ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑦𝑦𝑖𝑖𝜃𝜃𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦𝑖𝑖 ,𝜙𝜙)�𝑛𝑛
𝑖𝑖=1                                      (4.19) 

= 𝑒𝑒𝑒𝑒𝑒𝑒 �∑ �  𝑦𝑦𝑖𝑖𝜃𝜃𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦𝑖𝑖 ,𝜙𝜙)�𝑛𝑛
𝑖𝑖=1  �                                            (4.20) 

  The log-likelihood is written as 

ℓ(𝑦𝑦;𝜃𝜃) = log(𝑦𝑦;𝜃𝜃) = ∑ �  𝑦𝑦𝑖𝑖𝜃𝜃𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖)
𝑎𝑎(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦𝑖𝑖 ,𝜙𝜙)�𝑛𝑛
𝑖𝑖=1                         (4.21) 

Because 𝑦𝑦𝑖𝑖 , 𝑖𝑖 =  1, . . . ,𝑛𝑛, are independent, the joint log-likelihood function is  

ℓ(𝛽𝛽,𝑦𝑦) = ∑ ℓ𝑖𝑖𝑛𝑛
𝑖𝑖=1 .                                                                            (4.22) 

with 

ℓ𝑖𝑖 =  𝑦𝑦𝑖𝑖𝜃𝜃𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖)
𝑎𝑎(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦𝑖𝑖 ,𝜙𝜙).                                                              (4.23) 
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The parameter estimates are estimated by differentiating the log-likelihood function with regards 

to βj, equating derivatives to 0, and after solving the system of equations at the same time for βj. 

That is 

𝜕𝜕ℓ
𝜕𝜕𝛽𝛽𝑗𝑗

= ∑ 𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑖𝑖=1  .                                                                        (4.24) 

𝑗𝑗 = 0, 1, 2, … ,𝑝𝑝 

Here p+1 is the number of parameters.   

Use the chain rule of differentiation, 𝜕𝜕ℓ
𝜕𝜕𝛽𝛽𝑗𝑗

  is computed as 

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖

𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕𝜇𝜇𝑖𝑖

𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜂𝜂𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

.                                                                    (4.25) 

From equation 4.25., the first factor becomes 

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖

= 𝑦𝑦𝑖𝑖−𝑏𝑏′(𝜃𝜃𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜙𝜙)

= 𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖
𝑎𝑎𝑖𝑖(𝜙𝜙)

.                                                                (4.26) 

Because 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑦𝑦𝑖𝑖) = 𝑏𝑏′(𝜃𝜃𝑖𝑖) 

 and  𝑉𝑉(𝑦𝑦𝑖𝑖)  =  𝑎𝑎𝑖𝑖(𝜙𝜙)𝑉𝑉(𝜇𝜇𝑖𝑖) . 

Factor number two is 

𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕𝜇𝜇𝑖𝑖

= 1
𝑏𝑏′′(𝜃𝜃𝑖𝑖)

= 𝑎𝑎𝑖𝑖(𝜙𝜙)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖)

.                                                                (4.27) 

The third factor is dependent on the link function. The linear predictor is  

𝜂𝜂𝑖𝑖 = 𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1+. . . +𝛽𝛽𝑖𝑖𝑖𝑖.                                          (4.28) 

and 

𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜂𝜂𝑖𝑖

= 𝑏𝑏′′(𝜃𝜃𝑖𝑖).                                                                               (4.29) 

And the last factor 

𝜕𝜕𝜂𝜂𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝑥𝑥𝑖𝑖𝑖𝑖 .                                                                                       (4.30) 

Where,  𝑥𝑥𝑖𝑖𝑖𝑖 is the 𝑗𝑗𝑗𝑗ℎ element of covariates vector 𝑥𝑥𝑖𝑖 for the 𝑖𝑖𝑖𝑖ℎ observation. 
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Substituting all the factors  

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖

𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕𝜇𝜇𝑖𝑖

𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜂𝜂𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

.                                                                       (4.31) 

We get 

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖
𝑎𝑎𝑖𝑖(𝜙𝜙)

 𝑎𝑎𝑖𝑖(𝜙𝜙)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖)

 𝑏𝑏′′(𝜃𝜃𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖 .                                              (4.32) 

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖)

 𝑏𝑏′′(𝜃𝜃𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖 .                                                          (4.33) 

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖
𝑎𝑎𝑖𝑖(𝜙𝜙)

 𝑥𝑥𝑖𝑖𝑖𝑖 .                                                                        (4.34)                                                                 

Therefore, the systems of equations to be solved for 𝛽𝛽𝑗𝑗’s is given by 

𝜕𝜕ℓ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

= ∑ 𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖
𝑎𝑎𝑖𝑖(𝜙𝜙)  𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 0                                                                  (4.35) 

The equations are solved repeatedly. A starting solution of the equations given by 𝛽̂𝛽(0) is 

approximated and then revised up to the convergence of iterative algorithm to the solution 𝛽̂𝛽, 

named the maximum likelihood estimate of β. Many statistical packages have iterative 

algorithms for solving , such as GenStat, STATA, SAS etc. (Jennrich & Sampson, 1976). The 

system of equations can be worked out repeatedly by making use of the Fisher’s scoring or 

Newton-Raphson algorithms for MLE (McCullagh & Nelder, 1989).  These two techniques are 

the most widely utilized algorithms for MLE. 

 

The Fisher’s scoring technique is equal to the iterative reweighted least-squares (IWLS) (Green, 

1984; Jorgensen, 2006). The Newton-Raphson method solves MLEs repeatedly by the standard 

least-squares methods (McCullagh & Nelder, 1989; Wedderburn, 1974). Both these methods 

result in parameter estimates that are alike. However, the estimated covariance matrix parameters 

may somewhat differ. “This is because the Fisher Scoring is based on the expected information 

matrix and New-Raphson is based on the observed information matrix” (SAS, 2019). 
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 Logistic Model Selection and Checking 
4.5.1 Model Selection 

4.5.1.1 Wald Test 

 

The test for the significance of each variable can be carried out once the model is fitted. The 

Wald test is the frequently used technique when a hypothesis test on a single parameter, 𝛽𝛽j, is to 

be executed. The Wald Chi-square test statistic is : 

 

z0 = 𝛽𝛽�j
se�𝛽𝛽�j�

                                                                                         (4.36) 

 
“This test statistic follows an approximate standard normal distribution. The standard error of 𝛽̂𝛽j 

is the square root of the diagonal element of cov(𝛽̂𝛽)” (MacKinnon, 2015). Numerous software 

packages take this Wald test statistic value and square it and does a comparison to a chi-square 

distribution with one degree of freedom (Archer et al., 2007; Bewick et al., 2005). Consequently, 

for bigger values of the test statistic, we reject the null hypothesis H0: 𝛽𝛽j =0 against the 

alternative that 𝐻𝐻𝑎𝑎 ∶  𝛽𝛽j ≠ 0 and conclude that the variable that corresponds is significant to the 

model (Berndt & Savin, 1977). In other words, If the Wald Chi-square statistic is above the table 

value of chi-square, H0 is not accepted, that suggests that the parameter is significantly different 

from zero. 

 

 

4.5.1.2 ODDS RATIO 

 

The ratio of the probability that a certain event of interest happens to the probability that it does 

not is called the odds. The odds can be explained in favor of an event of interest or against the 

event. The number of failures to the number of successes is the odds against an event of interest. 

In this study, we focus on odds in favor of the event of interest, which is “the ratio of the 

probability of the event happening to the probability of the event not happening” (Bland & 

Altman, 2000).  
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The odds ratio measures the relationship between the dependent and the independent variables. 

“For a continuous variable in logistic regression the odds ratio denotes how the odds vary with a 

one unit increase in that continuous variable with everything else held constant” (Wilber & Fu, 

2010). When a categorical predictor has more than one category, the odds ratio is interpreted as 

the change in the odds of an event for each category in comparison to the odds of an event for the 

reference category. The interpretation of the odds ratio is with reference to this category at all 

times.  Suppose 𝑥𝑥, is a categorical independent variable coded 0 and 1. The odds ratio is given 

as: 

 

OR =
Odds1
Odds2

=

π(1)
1 − π(1)
π(0)

1 − π(0)

 

 

An odds ratio equivalent to one implies no association between the exposure and outcome, odds 

ratio bigger than 1 implies that the exposure is associated with greater odds of the outcome and 

odds ratio smaller than 1 means the exposure is associated with lesser odds of the outcome (Glas 

et al., 2003).  

 

The odds ratio of  one means that the event will happen, and zero suggesting the event won’t 

happen. If we look at a dichotomous response variable which represents the event, the OR is 

explained as the ratio of odds for those with X=1 to X=0. The log of then odds ratio is given by 

 

log�𝑂𝑂𝑂𝑂� � =  𝑙𝑙𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂(𝑥𝑥 = 1, 𝑥𝑥 = 0)) = 𝛽𝛽1�                                                                        (4.37) 

 

Therefore: 

 

OR=exp�𝛽𝛽1��                                                                                                                        (4.38) 

 

The odds ratio shows how the odds of the event varies as X changes from zero to one. If there is 

a continuous variable called X then as X enlarges by one unit, then the odds of risk factor 

increase by exp�𝛽𝛽1��. 
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4.5.1.3 Confidence Interval for the Odds Ratio 
 

The confidence intervals (CI) gives a better view of the sampling variability for the estimates 

(Cadeddu et al., 2012). The confidence interval for the intercept and the slope are based on Wald 

tests (Altman et al., 2013). The 100 �1 − 𝛼𝛼
2
�% CI for the intercept is defined by 

 

𝛽𝛽0 ± Z1−𝛼𝛼2
se(𝛽𝛽0)                                                                                                (4.39) 

 

The 100 �1 − 𝛼𝛼
2
�% CI for the slope is given by 

𝛽𝛽j ± Z1−𝛼𝛼2
se�𝛽𝛽j�                                                                                                   (4.40) 

These confidence intervals are on the logit scale and must be modified by exponentiation to get  

the corresponding 100 �1 − 𝛼𝛼
2
�%. The CI for OR linked with 𝛽𝛽j where 𝑗𝑗 =  1, 2, 3, . . . ,𝑝𝑝. is given 

by 

 

exp(𝛽𝛽1 ± Z1−𝛼𝛼2
se(𝛽𝛽1)).                                                                                (4.41) 

 

4.5.2 Model Checking 
 

The goodness of fit for a logistic regression model as defined by Hosmer-Lemeshow (1989) 

assesses the effectiveness of the model in describing the outcome variable (Archer & Lemeshow, 

2006). 

 

The fitted model's residual variation is expected to be small, displaying no systematic tendency 

and follows the model's variability(Hosmer et al., 1997). It can be measured using the Hosmer - 

Lemeshow tests, Pearson chi-square statistic and deviance statistic. “The Hosmer-Lemeshow 

goodness-of-fit (GOF) statistic 𝜒𝜒𝐻𝐻𝐻𝐻2 is found by computing the Pearson Chi-square statistic from 
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the g × 2 table of observed and estimated expected frequencies”(Hosmer et al., 1997). Where g is 

the number of groups. The Hosmer-Lemeshow statistics is given by 

 

𝜒𝜒𝐻𝐻𝐻𝐻2 = ∑ �𝑂𝑂𝑘𝑘−𝑛𝑛′𝑘𝑘𝜋𝜋�𝑘𝑘�
2

𝑛𝑛′𝑘𝑘𝜋𝜋�𝑘𝑘(1−𝜋𝜋�𝑘𝑘)
𝑔𝑔
𝑘𝑘=1 .                                                                           (4.42) 

𝑛𝑛′𝑘𝑘 is the total number frequency of subjects in the 𝑘𝑘𝑡𝑡ℎ  group and the total frequency of event 

outcome in the 𝑘𝑘𝑡𝑡ℎ  group is given by 𝑂𝑂𝑘𝑘 while 𝜋𝜋�𝑘𝑘 is the average estimated probability of a 

certain event outcome in the 𝑘𝑘𝑡𝑡ℎ group.  If the correct model is the logistic regression model, 

then the chi-square distribution may be used to estimate 𝜒𝜒𝐻𝐻𝐻𝐻2 with 𝑔𝑔 − 2 df (n=2 is the default in 

SAS model statement for the lack of fit option). The null hypothesis being tested is H0: good fit 

model against the alternative Ha: model is not a good fit. The large value of Hosmer-Lemeshow 

statistic (p-value < 0.05) suggests a lack of fit of the model (Bewick et al., 2005; Fagerland & 

Hosmer, 2012).  

 

4.5.2.1 Validating predicted probabilities 

 

Understanding how much the predicted probabilities agree with the outcomes is imperative. We 

want to have a dependable model that will maximize the chance as well as the sensitivity of 

recognizing the individuals who require some intervention (Aldrich et al., 1984). The proportion 

of individuals that are not classified correctly as having outcome failure should have a reduction. 

A cut-off value that minimizes the misclassification probabilities of the individuals must be 

identified.  Below is an example of how the classification is completed. 

 

Table 4.1: Classification table 

                                                            Correct classification 

 

    y =1                 y=0 Total 

Predicted  

Classification 

                     
y�=1 

    a                     b 

 

    a+b 
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y�=0 

 

     c                     d 

 

    c+d 

    a+c                  b+d         n 

 

The probability of classifying individual with outcome failure incorrectly is known as False 

positive rate or 1− specificity which is calculated as 

𝐹𝐹𝑝𝑝𝑝𝑝 = 𝑏𝑏
𝑏𝑏+𝑑𝑑

.                                                                                                (4.43) 

The probability of classifying individual with the outcome success incorrectly is known as False 

negative rate estimated as 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑐𝑐
𝑎𝑎+𝑐𝑐

.                                                                                                   (4.44) 

 

𝑦𝑦�𝑖𝑖 is the predicted response of the 𝑖𝑖𝑡𝑡ℎ individual and 𝑦𝑦𝑖𝑖 is the response of the 𝑖𝑖𝑡𝑡ℎ individual. The 

probability of classifying an individual with the outcome of  child death  correctly is sensitivity  

given by 

𝑆𝑆𝑠𝑠 = 𝑎𝑎
𝑎𝑎+𝑐𝑐

.                                                                                               (4.45) 

The probability of classifying an individual with the outcome of child survival correctly is called 

Specificity  and given by  

𝑆𝑆𝑝𝑝 = 𝑑𝑑
𝑏𝑏+𝑑𝑑

.                                                                                                 (4.46) 

 
 
The Receiver Operating Characteristic curve may be utilized to present how accurate the 

prediction of the model is, graphically(Zou et al., 2007). “The Receiver Operating Characteristic 

curve is produced by plotting the sensitivity against the false positive rate at certain threshold 

settings. The Receiver Operating Characteristic curve compares two operating characteristics  

FPR and TPR as the criterion changes” (Metz, 2006).  

 

The Receiver Operating Characteristic provides the measure of model ability to categorize 

between subjects that have experienced the outcome as opposed to the ones who didn’t. This 

gives a plot of sensitivity versus 1-specificity (FPR) as displayed in Figure 4.1. A curve in the 45 

degrees line, meaning area under the curve is 0.5,  demonstrates that classification is at random 

https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/False_positive_rate
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(Fawcett, 2006). The bigger the deviation of the curve is from the 45 degrees line to the left, the 

better is the model’s accuracy to predict. This implies that the models prediction accuracy could 

be calculated by the total area under the Receiver Operating Characteristic curve (AUC) (Pearce 

& Ferrier, 2000). 

 

A better diagnostic accuracy of the test is shown a bigger area under the curve. Suppose logistic 

models were fitted, and the first model produced D with AUC of 0.5, the second model produced 

C with AUC of 0.7 also the third model produced B with AUC of 0.9. C < B in Figure 4.1. 

suggests that the model B has the better predicting accuracy compared to the model C.  We can 

classify the third model as the better model because it has a great diagnostic correctness and 

therefore has stronger accuracy. An AUC equal to 0.5 is bad as the test won’t distinguish 

between falsely classified as positive outcomes and ones correctly classified positive outcomes. 

 

 

Figure 4.1: Sensitivity against False positive rate. 
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698108/ 

 

Taylor and Krawchuk (2005) stated that the predicting accuracy of 0.6 to 0.7 suggests moderate 

prediction; and between 0.7 to 0.8 denoted acceptable prediction; and a range between 0.8 and  

0.9 denotes excellent prediction. Range of 0.5-0.6 suggests bad prediction and anything <5 

makes the test not useful (Taylor & Krawchuk, 2005). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698108/
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 Fitting the Logistic Regression Model 
4.6.1 Fitting a LR model with a dichotomous response 
 

The next part looks at the logistic regression, with a dichotomous outcome of child mortality 

status of children below age 5 in Lesotho. The Akaike information criterion for the reduced 

model containing only intercepts is bigger than the full model with the intercept and covariates; 

this means that the model fitted describes the data better (Table 4.2. and  Table 4.3.). 

 
Table 4.2: Logistic regression model fit statistics for binary response for LDHS 2009 data. 

Model Fit Statistics 

Criterion Intercept Only Intercept and 
Covariates 

AIC 2571.559 1355.002 
SC 2577.853 1568.991 

-2 Log L 2569.559 1287.002 
 
 
Table 4.3: Logistic regression model fit statistics for binary response for LDHS 2014 data. 

Statistics for Model Fit 
Criterion Intercept Only Intercept and Covariates 

AIC 1611.01 788.288 
SC 1617.11 994.033 

-2 Log L 1609.063 720.288 
 
 

Table 4.4. below shows the model evaluation for LR model for the LDHS 2009 data. The 

Likelihood Ratio Statistic tests the total significance of the LR model. The  likelihood ratio 

statistic has a p< 0.0001and is 1282.5573. The score test is 1881.3265 with P-value < 0.0001, 

and the Wald test value is 637.0295 with a P-value < 0.0001 which supports the results found 

with the likelihood ratio test. 

 
 
Table 4.4: Model evaluation for the LR Model LDHS 2009 data. 

Model evaluation parameters Chi Square DF Pr > ChiSq 
Overall significance 
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Likelihood Ratio 1282.5573 33 <.0001 
Score 1881.3265 33 <.0001 
Wald 637.0295 33 <.0001 
 Goodness of fit test    
Hosmer-Lemeshow Goodness-of-Fit 9.1035 8 0.3336 
Association of Predicted Probabilities and Observed Responses 
Percent Concordant 92.8 Somers' D 0.856 
Percent Discordant 7.2 Gamma 0.856 
Percent Tied 0.00 Tau-a 0.152 
Pairs 1417158 c 0.928 

 
 

In Table 4.4, the complete fitted logistic model is significant as the p-value is less than 0.05. 

There is significant contribution of predictor variables in the prediction of the probability of child 

mortality for children under five. The H-L test for of this model is 9.1035 with a p-value equals 

to 0.3336, which indicates that the model is a good fit to the data since the p-value is above 5%. 

The model validation is also an important aspect to be checked. The extent to which the 

probabilities that are predicted correspond with the actual probabilities was shown by utilizing a 

classification table with a limit of  0.5 (Melesse et al., 2016).  

 

To evaluate the predicted and observed probability values, the measures of association were 

used. The Goodman Krushkal Gamma statistic had a value of 0.856, the c-statistic had 0.928 and 

the Somer’s D statistic had a value of 0.856. The values of the statistics were close to one, where 

0 means no association and 1 means perfect association, which supports that there was a strong 

association between the predicted and observed probabilities. 

 

The predictive accuracy of the model was evaluated through the ROC and the goodness-of-fit 

was tested with the Hosmer-Lemeshow test. Table 4.5. below shows the evaluation of the model 

for LR model for the LDHS 2014 data. The Likelihood Ratio test tests the altogether significance 

of the LR model. The likelihood ratio statistic is equals 888.775 with P-value less than 0.0001. 

The score test has a value of 1507.48 with a p< 0.0001 and the value of the Wald test is  393.191 

with a P-value less than 0.0001 supports the results found with the likelihood ratio test. 
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Table 4.5: Model evaluation for the LR Model LDHS 2014 data. 

Model evaluation parameters Chi-
Square DF PR > ChiSq 

Overall significance 
Likelihood Ratio 888.775 33 <.0001 

Score 1507.48 33 <.0001 
Wald 393.191 33 <.0001 

Goodness of fit test    
Hosmer-Lemeshow Goodness-of-
Fit 7.1164 7 0.4169 

Association of Predicted Probabilities and Observed Responses 
Percent Concordant 94.6 Somers' D 0.892 
Percent Discordant 5.4 Gamma 0.892 

Percent Tied 0 Tau-a 0.118 
Pairs 650045 C 0.946 

 
The overall logistic model fitted is significant as the p-value< 0.05. This indicates there’s a 
significant contribution of independent variables in prediction of the probability of under-five 
child mortality. The H-L test of this model is 7.1164 with p-value equal to 0.4169, which proves 
that the model is a good fit to the data since the p-value is above 5%. The value of Goodman 
Krushkal Gamma statistic was 0.892, the c-statistic had a value of 0.946 and the Somer’s D 
statistic had a value of 0.892. The values of these statistics were close to one, where 0 means no 
association and 1 means perfect association, which supports that there was a strong association 
between the observed and predicted probabilities. 
 

Table 4.6. displays the Type 3 Analysis for the effects for the LDHS 2009 data. This table gives 
the hypothesis tests for each variable in the LR model with a certain degree of freedom test for 
the general effect of the categorical variables.  

 

Table 4.6: Type 3 Analysis of Effects for the Logistic Regression for LDHS 2009 data. 

Main Effect DF     Wald Chi-Square Pr > ChiSq 
Current age of child 4 217.8648 <.0001 
Mother’s age 1 39.5 <.0001 
Sex of child  1 3.0236 0.0821 
Weight of the child at birth  2 4.1828 0.1235 
Currently breastfeeding  1 0.0032 0.9547 
Marital status  1 0.0666 0.7963 
Wealth index  2 10.3145 0.0058 
Education attainment  2 6.1451 0.0463 
Mothers currently working  1 2.2678 0.1321 
Type of place of residence 1 7.8409 0.0051 
Region 9 8.393 0.4951 
Birth order number  2 8.5894 0.0136 
Number of children living  2 51.2765 <.0001 
Significant interaction effect 
Age of child and Currently breastfeeding  4 27.5594 <.0001 
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The Wald chi-square test statistics and the p-values are displayed in table 4.6 above. The 
outcome shows that the overall effect of the categorical variables: wealth index, education 
attainment, type of place of residence, current age of child, birth order number and number of 
children living have significant effects on the under 5 child mortality. These results also indicate 
that the continuous variables: mother’s age has significant effect statistically on the response 
variable with a p<0.001.  

 

This also shows that categorical variables: currently breastfeeding, marital status, sex of child, 
mother’s currently working status, weight of the child at birth  and region do not have significant 
effect on the probability of child death using on the 2009 LDHS data used. The two-way 
interaction term of age of child and currently breastfeeding was found significant. 

  

Table 4.7:Type 3 Analysis of Effects for the Logistic Regression for LDHS 2014 data. 

Main Effect DF Wald Chi-Square Pr > ChiSq 
Current age of child 4 92.5269 <.0001 
Mother’s age 1 11.2613 0.0008 
Sex of child  1 0.7893 0.3743 
Weight of the child at birth  2 6.866 0.0323 
Currently breastfeeding  1 0.001 0.975 
Marital status  1 2.0755 0.1497 
Wealth index  2 2.9234 0.2318 
Education attainment  2 6.9019 0.0317 
Mothers currently working  1 0.4608 0.4972 
Type of place of residence 1 4.6312 0.0314 
Region 9 7.0953 0.6272 
Birth order number  2 13.6976 0.0011 
Number of children living  2 46.6576 <.0001 
Significant interaction effect 
Age of child and Currently breastfeeding  4 45.2315 <.0001 

 

The Wald chi-square test statistics and the p-values are displayed in the table 4.7 above. The 
outcome shows the overall effect of the categorical variables: education attainment, place of 
residence, weight of child, birth order number, current age of child and number of children living 
were found have significant effects on the under 5 child mortality. These results also indicate that 
the continuous variables: mother’s age has significant effect on the response variable having a p-
value  less than 0.0008. This also shows that categorical variables: sex of child, currently 
breastfeeding, marital status, wealth index, mother’s currently working, and region do not have 
significant effect on the probability of child death using the 2014 LDHS data. The two-way 
interaction term of age of child and currently breastfeeding was found significant.  
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4.6.2 Multiple Logistic Regression Model 
 

In the paper, the probability of child mortality is modeled as a function of explanatory variables 
that are described  in previous chapter. SAS PROC LOGISTIC is used to fit the model; The 
multiple logistic models were then fitted with all variables. 

Table 4.8: Logistic regression model coefficients, standard errors, odds ratios, confidence 
intervals and significant two-way interaction effects for LDH 2009 data. 

 
Main Effects        Estimate                                 SE   p-value                      OR 95% CI  
             Lower     Upper 
Intercept -6.8255 0.8059      <.0001 0.001   
Current age of child (ref. 0)       
1 year -1.7908 0.3637      <.0001 0.167 0.0818 0.340 
2 years -2.0566 0.7311 0.0049 0.128 0.0305 0.536 
3 years -2.4809 1.019 0.0149 0.084 0.0114 0.617 
4 years -13.9359 282.4 0.9606 0.000   
Mother’s age 0.1039 0.0165      <.0001 1.109 1.074 1.146 
Sex of child (ref. Male)       
Female -0.2652 0.1525 0.0821 0.767 0.569 1.034 
Weight of the child at birth (ref. Large)       
Average -0.0595 0.2056 0.7723 0.942 0.630 1.410 
Small 0.3332 0.2457 0.1751 1.395 0.862 2.259 
Currently breastfeeding (ref. Yes)       
No 3.254 0.1975       <.0001 25.894 17.58 38.13 
Marital status (ref. Not Married)       
Married 0.0477 0.1848 0.7963 1.049 0.730 1.507 
Wealth index (ref. Rich)       
Middle 0.0274 0.2595 0.916 1.028 0.618 1.709 
Poor 0.6176 0.2348 0.0085 1.854 1.170 2.938 
Education attainment (ref.Higher Education)       
No Education 1.4505 0.6975 0.0376 4.265 1.087 16.737 
Up to Secondary Education 1.2312 0.5052 0.0148 3.425 1.273 9.220 
Mothers currently working (ref. Employed)       
Unemployed -0.2481 0.1648 0.1321 0.780 0.565 1.078 
Type of place of residence (ref.Urban)       
Rural 0.7545 0.2694 0.0051 2.127 1.254 3.606 
Region (ref. Thaba-Tseka)       
Berea 0.2107 0.3636 0.5623 1.235 0.605 2.518 
Butha-Bothe 0.4197 0.3632 0.2478 1.522 0.747 3.101 
Leribe 0.3937 0.3282 0.2303 1.482 0.779 2.821 
Mafeteng 0.8426 0.337 0.0124 2.322 1.200 4.496 
Maseru 0.296 0.3442 0.3897 1.344 0.685 2.640 
Mohale's Hoek 0.4083 0.3345 0.2223 1.504 0.781 2.898 
Mokhotlong 0.1429 0.3277 0.6629 1.154 0.607 2.193 
Qacha's-Nek 0.2235 0.3708 0.5467 1.250 0.605 2.586 
Quthing 0.5136 0.3481 0.1401 1.671 0.845 3.306 
Birth order number (ref. first birth)       
2-4 births 0.7851 0.2684 0.0034 2.193 1.296 3.710 
>4 births 0.774 0.493 0.1165 2.168 0.825 5.699 
Number of children living (ref. <2 children)       
2-4 children -1.9223 0.2691       <.0001 0.146 0.086 0.248 
>4 children -2.2057 0.5056       <.0001 0.110 0.041 0.297 
Significant Interactions Effects             
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Interpretation of the Coefficient of the Model and the Odds Ratio (2009 DATA) 

Table 4.8. illustrates the parameter estimates, confidence intervals, odds ratios, standard errors 

and p-values. The variables that are significant had p-values that are less than 0.05.  

The effect of a mother with no education was observed as positively associated with child 

mortality with a p-value equals 0.0376. The odds ratio that corresponds was 4.265 and the 95 

percent CI(1.087 ; 16.737). The odds of dying for a child that comes from mother that has no 

education were 4.265 times the odds of dying for a child that comes from mother with higher 

education level. The effect of education of a mother with up to secondary education was also 

observed as positively associated with child mortality with a p-value equals 0.0145. The odds 

ratio that corresponds was 3.425 and the 95 percent CI(1.273 ; 9.220). The odds of dying for a 

child from mother with up to secondary education were 3.425 times the odds of dying for a child 

from mother with higher education level. The mother’s age was positively associated with child 

mortality with an estimate of 0.1039 and p-value less than 0.0001. The effect of not 

breastfeeding was also positively associated with child mortality with a p-value equals 0.0001 

and the odds ratio that corresponds was 25.894 and the 95% CI (17.58 ; 38.13). The odds ratio 

being 1.109 and the 95% CI (0.569 ; 1.034) for mother’s age indicates that the odds of dying in 

under five children rises by 10.9% for a single unit increase in the mother’s age. The odds of  

dying for a child who was not breastfeed were 25.894 times the odds of dying for a child from a 

mother who breastfed. 

The effect of the age of child 1 year was observed as negatively associated with child mortality 

with a p-value equals 0.0001. The odds ratio that corresponds is 0.167 and the  95 percent 

confidence interval (0.0818 ; 0.340). The odds of dying for a child who is 1 years old were 0.167 

times the odds of dying for a child who was 0 years old. The effect of the age of child 2 year was 

observed as negatively associated with child mortality with a p-value equals 0.0049. The odds 

ratio that corresponds was 0.128 and the 95 percent confidence interval (0.0305 ; 0.536). The 

odds of dying for a child who is 2 years old were 0.128 times the odds of dying for a child who 

was 0 years old. The effect of the age of child 3 years was observed to be negatively associated 

 Current age of child (ref. 0 years) and currently 
breastfeeding (ref. yes)       
1 year’s vs Not Breastfeeding -1.4091 0.4335 0.0012 0.244 0.1045 0.572 
2 years vs Not Breastfeeding -2.983 0.8107 0.0002 0.051 0.0103 0.248 
3 years vs Not Breastfeeding -3.0337 1.1067 0.0061 0.048 0.0055 0.421 
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with child mortality with a p-value equals 0.0149. The odds ratio that corresponds was 0.084 and 

the 95 percent confidence interval (0.0114 ; 0.617). The odds of dying for a child who is 3 years 

old were 0.084 times the odds of dying for a child that was 0 years old.  

 

The effect of being poor was observed as positively associated with child mortality with a p-

value equals 0.0085. The odds ratio that corresponds was 1.854 and the 95 percent confidence 

interval: 1.170 ; 2.938. The odds of dying for a child who comes from a poor household were 

1.854 times the odds of dying for a child who comes from a rich household. The effect of rural 

area was observed as positively associated with child mortality with a p-value equals 0.0051. The 

odds ratio that corresponds was 2.127 and the 95% CI: 1.254 ; 3.606. The effect of childbirth 

order number two to four (2-4) was established to be negatively associated with child mortality 

with a p-value equals 0.0034. The odds ratio that corresponds was 2.193 and the 95 percent 

confidence interval: 1.296 ; 3.710.  The odds of dying for a child with birth order between two 

and four were 2.193 times the odds of dying for a child with birth order number is less than two.  

 

The effect of region (Mafeteng) was positively associated with child mortality with a p-value 

equals 0.0125. The odds ratio that corresponds was 2.322 with a  95 percent confidence interval: 

1.200 ; 4.496. The odds of dying for a child who is from Mafeteng were 2.322 times the odds of 

dying for a child who is from Thaba-Tseka. The effect of the number of living children that is 

between two and four (2-4) was negatively associated with child mortality with a p-value equals 

0.0001. The odds ratio that corresponds was 0.146 with a  95% confidence interval: 0.086 ; 0248. 

The odds of dying for a child from a mother with 2-4 children alive were 0.146 times the odds of 

dying for a child from a mother with less than two children alive. The effect of the number of 

living children that is above four was also negatively associated with child mortality with a p-

value equals0.0001. The odds ratio that corresponds was 0.110 with a  95 percent confidence 

interval: 0.041 ;0.297. The odds of dying for a child from a mother who has more than four 

children alive were 0.532 times the odds of dying for a child from a mother with less than two 

children alive.  
 

The significant two-way interaction effect was between the age of child and breastfeeding. The 

effect of age of child 1 year and not breastfeeding compared to a 0-year-old child that is 
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breastfed was negatively associated with the child mortality with a p-value equals 0.0012. The 

odds ratio that corresponds was 0.244. The odds of child death to the effect of child aged 1 years 

and a child that is not breastfed is 0.244 times larger than the odds of child death to the effect of 

child aged 0 and were breastfed. The effect of age of child 2 year and not breastfeeding 

compared to a 0-year-old child that is breastfed was negatively associated with the child 

mortality with a p-value equals0.0002. The odds ratio that corresponds was 0.051. The odds of 

child death to the effect of child aged 2 years and a child that is not breastfed is 0.051 times 

larger than the odds of child death to the effect of child aged 0 and were breastfed. The effect of 

age of child 3 year and not breastfeeding compared to a 0-year-old child that is breastfed was 

negatively associated with the child mortality with a p-value equals 0.0061. The odds ratio that 

corresponds was 0.048. The odds of child death to the effect of child aged 3 years and a child 

that is not breastfed is 0.048 times larger than the odds of child death to the effect of child aged 0 

and were breastfed. 

 

Table 4.9: Logistic regression model coefficients, standard errors, odds ratios, confidence 
intervals and significant two-way interaction effects for LDHS 2014 data. 

 
Main Effects Estimate Standard Error p-value Odds Ratio 95% Confidence Limits 
          Lower Upper 

Intercept -7.9509 1.0328    <.0001    
Current age of child (ref. 0)       
1 year -1.7704 0.6174 0.0041 0.1703 0.05077 0.5710 
2 years -0.1648 0.655 0.8013 0.8481 0.2349 3.062 
3 years -11.887 218.1 0.9565 6.879E-06 1.538E-191 3.076E+180 
4 years -12.3844 263.6 0.9625 4.183E-06 1.740E-230 1.005E+219 
Mother’s age 0.0763 0.0228 0.0008 1.079 1.032 1.129 
Sex of child (ref. Male)       
Female 0.185 0.2082 0.3743 1.203 0.800 1.809 
Weight of the child at birth (ref. Large)       
Average 0.2224 0.2847 0.4346 1.249 0.715 2.182 
Small 0.8002 0.3359 0.0172 2.226 1.152 4.300 
Currently breastfeeding (ref. Yes)       
No 4.0135 0.2815       <.0001 55.3402 31.8730 96.0857 
Marital status (ref. Not Married)       
Married 0.3729 0.2589 0.1497 1.452 0.874 2.412 
Wealth index (refresh)       
Middle 0.024 0.3081 0.9378 1.024 0.560 1.874 
Poor 0.4463 0.305 0.1434 1.563 0.859 2.841 
Education attainment (ref.Higher Education)       
No Education 1.5217 1.2334 0.2173 4.58 0.408 51.375 
Up to Secondary Education 1.3877 0.5287 0.0087 4.006 1.421 11.29 
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Mothers currently working (ref. Employed)       
Unemployed 0.1726 0.2542 0.4972 1.188 0.722 1.956 
Type of place of residence (ref. Urban)       
Rural 0.6367 0.2956 0.0314 1.889 1.058 3.372 
Region (ref. Thaba-Tseka)       
Berea 0.1679 0.5029 0.7385 1.183 0.441 3.169 
Butha-Bothe -0.1034 0.506 0.8381 0.902 0.334 2.431 
Leribe 0.7626 0.4815 0.1133 2.144 0.834 5.509 
Mafeteng 0.7008 0.5106 0.1699 2.015 0.741 5.482 
Maseru 0.1703 0.4862 0.7261 1.186 0.457 3.075 
Mohale's Hoek 0.322 0.4799 0.5022 1.38 0.539 3.535 
Mokhotlong 0.5305 0.484 0.2731 1.7 0.658 4.389 
Qacha's-Nek 0.3529 0.5594 0.5281 1.423 0.475 4.26 
Quthing 0.5872 0.4998 0.24 1.799 0.675 4.791 
Birth order number (ref. first birth)       
2-4 births 1.2497 0.3586 0.0005 3.489 1.728 7.046 
>4 births 1.9592 0.6384 0.0021 7.094 2.03 24.791 
Number of children living (ref. <2 children)       
2-4 children -2.4477 0.3647    <.0001 0.086 0.042 0.177 
>4 children -3.2406 0.6997    <.0001 0.039 0.01 0.154 

Significant Interactions Effects             
Current age of child (ref. 0 years) and currently 
breastfeeding (ref. yes)       
1 year’s vs Not Breastfeeding -1.7139 0.6847 0.0123 0.1802 0.0471 0.6894 
2 years vs Not Breastfeeding -5.2049 0.7963    <.0001 0.0055 0.0012 0.0261 

 

 

Interpretation of the Coefficient of the Model and the Odds Ratio (2014 DATA) 

Table 4.9. illustrates the parameter estimates, standard errors, odds ratios, p-values and 

confidence intervals for the 2014 data. The variables that are significant had p-values that were 

less than 0.05.  

The effect of education of mother with up to secondary education was also observed as 

positively associated with child mortality with a p-value equals 0.0087. The odds ratio that 

corresponds was 4.006 with 95 percent CI (1.421 ; 11.29). The odds of dying for a child from a 

mother with up to secondary education were 4.006 times the odds of dying for a child from a 

mother with higher education level. The effect of not breastfeeding was positively associated 

with child mortality with a p-value equals 0.0001. The odds ratio that corresponds was 55.3402 

with 95 percent confidence interval (31.873 ; 96.0857). The odds of dying for a child from a 

mother that does not breastfeed were 55.3402 times the odds of dying for a child from a mother 

that breastfeeds. The mother’s age was positively associated with child mortality (estimate of 

0.0763). The odds ratio of 1.079 with 95% confidence interval(1.032 ; 1.129) for mother’s age 
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indicates that the odds of dying in under five children rises by 7.9% for a single unit increase in 

the mother’s age. 

 

The effect of the age of child 1 year was observed as negatively associated with child mortality 

with a p-value equals 0.0041. The odds ratio that corresponds was 0.1703 with 95 percent 

confidence interval (0.05011 ; 0.57100).  The odds of dying for a child who is 1 years old were 

0.1703 times the odds of dying for a child that was 0 years old. The effect of a small weight child 

at birth was positively associated with the mortality with a p-value equals 0.0172. The odds ratio 

was 1.249 with 95 percent confidence interval(0.715 ; 2,182). The odds of dying for a child who 

is small in weight at birth is 1.249 times the odds of dying for a child that is large at birth. The 

effect of rural area was observed as positively associated with child mortality with a p-value 

equals 0.0314. The odds ratio that corresponds was 1.889 with 95 percent confidence 

interval(1.058 ; 3.372). The odds of dying for a child  that is from a rural area is 1.889 times the 

odds of dying for a child that is from an urban area. 

 

The effect of child-birth order number two to four (2-4) was observed as positively associated 

with child mortality with a p-value equals 0.0005. The odds ratio that corresponds was 3.489 

with 95 percent confidence interval(1.728 ; 7.046).  The odds of dying for a child whose birth 

order number between two and four (2-4) were 3.489 times the odds of dying for a child that has 

birth order number less than two. The effect of child-birth order number >4 was observed as 

positively associated with child mortality with a p-value equals 0.0021. The odds ratio that 

corresponds was 7.092 with 95 percent CI (2.03 ; 24.791).  The odds of dying for a child whose 

birth order number was >4 were 7.092 times the odds of dying for a child whose birth order 

number is less than two.  

 

The effect of the number of living children that is between two and four (2-4) was observed as 

negatively associated with child mortality with a p-value equals 0.0001. The odds ratio that 

corresponds was 0.086 with 95 percent confidence interval(0.042 ; 0.177). The odds of dying for 

a child from a mother with 2-4 children alive were 0.086 times the odds of dying for a child from 

a mother with less than two children alive. The effect of the number of living children that is 

above four was also negatively associated with child mortality with a p-value equals 0.0001. The 
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odds ratio that corresponds was 0.039 with 95 percent confidence interval(0.01 ;0.154). The odds 

of dying for a child from a mother with more than four children alive were 0.039 times the odds 

of dying for a child from a mother with less than two children alive.  

 

The significant two-way interaction effect was observed between age of child and breastfeeding. 

The effect of age of child 1 year and not breastfeeding compared to a 0-year-old child that is 

breastfed was negatively associated with the child mortality with a p-value equals 0.0123. The 

odds ratio that corresponds was 0.1802. The odds of child death  for a child aged 1 year and is 

not breastfed is 0.1802 times that of  a child aged 0 and is breastfed. The effect of age of child 2 

year and not breastfeeding compared to a 0-year-old child that is breastfed was negatively related 

to the child mortality with a p-value equals 0.0001. The odds ratio that corresponds was 0.0055. 

The odds of child death  for a child aged 2 years and that is not breastfed is 0.0055 times that of   

a child aged 0 and is breastfed.  

 

4.6.3 Prediction Accuracy of the Logit Model 
 
The prediction accuracy validates the logit model. Checking how much the predicted probability 

agrees with outcomes is crucial. Figure 4.2 illustrates the ROC curve of the fitted model using 

the 2009 LDHS data. The proportion of the probabilities predicted correctly is the area under the 

ROC curve and for this model  92.79% (c= 0.9279) of the probabilities are correctly predicted. 

This is a very good predictive accuracy in this model (Centor & Schwartz, 1985). 

 

For a good predictive model, the area under the curve must be maximum (almost 1). The area 

under the curve (AUC) is known as the concordance, c, in SAS. To obtain better predicting 

power c should be above 0.5 (Austin & Steyerberg, 2012; Pearce & Ferrier, 2000). 
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Figure 4.2: (ROC) Receiver Operating Characteristic curve for logit model. 

Figure 4.3. shows the ROC curve of the fitted model using the 2014 LDHS data. The area under 

the curve is the proportion of the probabilities correctly predicted and for this model 94.61% 

(c=0.9461) of the probabilities are predicted correctly. This is a good predictive accuracy in this 

model. 

 

 

Figure 4.3:  (ROC)Receiver Operating Characteristic curve for logit model. 
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4.6.4 Logistic Regression Diagnostic Plots 
 

The Standardized Pearson residuals, Deviance residuals, and influence measures that assist in 

understanding how observations behave in the model. The influence diagnostics which were 

generated by using influence option in procedure PROC LOGISTIC while fitting a logistic 

regression model to the data are shown in Figure 4.4. and 4.5. The value of the diagnostic is 

represented by the vertical axis on each plot, and the case number of the observation is 

represented by the horizontal axis. Observations that are further away from zero are influential 

observations and are poorly accounted for by the model 

 

 

Figure 4.4: Influence diagnostic from the logistic regression model (2009). 
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Figure 4.5: Influence diagnostic from the logistic regression model (2014) 

 Survey Logistic Regression Model 
 
Logistic regression is very beneficial in modelling data that has an outcome that is dichotomous 

however, it is not fitting for modelling data acquired by a complex survey which accounts for 

clustering, stratification, and weights. “Logistic regression models are applied to examine data 

from the complex sampling designs are called the survey logistic regression models in this 

study”  (Rabe‐Hesketh & Skrondal, 2006; Yirga, 2018). 

 

The theory in survey logistic regression models and ordinary LR models is equivalent. Data 

being collected using SRS to fit the model is the assumption made in OLR and complexity of the 

survey design is considered in the SLR (Ayele et al., 2012). If the level of complexity of the 

design is disregarded when modeling, then the standard errors could be overestimated  or 

underestimated which would result to narrower or wider confidence intervals. The results may 

not be significant but will seem to be statistically significant and this can result in us getting 

biased estimates (Hilbe, 2009). Simple random sampling designs make the assumption that the 

probability of inclusion in the sample is equivalent for all units in a population (Burger & Silima, 

2006). The importance in this is that survey logistic regression accounts for clustered correlated 

observations whereas simple logistic regression does not (Bieler et al., 2010). “The survey 

logistic regression model and the ordinary logistic regression model are identical when the data 
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is from simple random sample. The calculation of standard errors are affected by clustering and 

stratification whilst the sampling weight will influence the calculation of the point estimate” 

(Bennett et al., 1991).   
 

Survey logistic regression models the relationship between binary dependent variables and the 

set of explanatory variables by using the sampling design information (Roberts et al., 1987). 

Including the effects of sampling design in the analysis of the data leads to accurate estimation of 

the standard errors and variabilities (Skinner & Wakefield, 2017). The advantages of sample 

surveys are stated below:  

• They are cost effective, but the cost depends on the survey mode. 

• Capability of collecting data from many respondents 

• Faster and therefore time saving (developed in less time than other methods). 

• Production of quality and accurate population estimates and are feasible (Kish, 1965; 

Wyse, 2012). 

 

The one important advantage of stratification is that the parameters can be estimated for each 

stratum and the survey is easier to administer. The variance of the estimator of a population total 

is reduced by diving the population into strata (Ding et al., 1996; Lumley, 2004). 

 

The section that follows will explain the methods of parameter estimation for survey logistic. 

 

4.7.1 Estimation of Parameters 

 
The independent assumption does not hold in complex survey design, when clusters are being 

drawn, they could introduce correlation among observations. There needs to be appropriate 

estimation of the standard errors associated with the model coefficients. In short, the complexity 

of the sampling design must be considered in the analysis . The standard error constructed by the 

assumption of a simple random sample will most likely underestimate the real value 

 (Thomas & Heck, 2001; Winship & Radbill, 1994). 
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In the present situation the primary sample units (PSUs) were sampled in each stratum in the first 

stage. The household was sampled in the second stage. 𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝘩𝘩 = 1,2, . . . ,𝐻𝐻𝑘𝑘𝑘𝑘𝑘𝑘 ;  𝑖𝑖 =

1,2, . . . ,𝑛𝑛𝑘𝑘𝑘𝑘;  𝑗𝑗 = 1,2, . . . ,𝑚𝑚𝑘𝑘 ;  𝑘𝑘 = 1,2, . . . ,𝐾𝐾) is the response variable that is equal to one if the 

event occurred in ℎ𝑡𝑡ℎ individual within  𝑖𝑖𝑡𝑡ℎhousehold within 𝑗𝑗𝑡𝑡ℎ  primary sample unit nested 

within 𝑘𝑘𝑡𝑡ℎ stratum, and zero otherwise. The total number of observations is stated as: 

 

𝑛𝑛 = ∑ ∑ 𝑛𝑛𝑘𝑘𝑘𝑘
𝑚𝑚𝑘𝑘
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1                                                                            (4.46) 

 

The probability is given by 𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ = 𝑃𝑃(𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 1) if the event occurred in ℎ𝑡𝑡ℎ individual within  

𝑖𝑖𝑡𝑡ℎ household within 𝑗𝑗𝑡𝑡ℎ  primary sample unit nested within 𝑘𝑘𝑡𝑡ℎ stratum  and the probability is 

given by 1 −  𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ = 𝑃𝑃(𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 0) if the event did not occur in ℎ𝑡𝑡ℎ individual within  

𝑖𝑖𝑡𝑡ℎhousehold within 𝑗𝑗𝑡𝑡ℎ  primary sample unit nested within 𝑘𝑘𝑡𝑡ℎ stratum. Thus, the log-likelihood 

function in this case is given by 

 

  𝑙𝑙(𝜷𝜷;𝑦𝑦) = ∑  ∑  ∑  ∑ �𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘ℎ log � 𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ
1−𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ

� − log � 1
1−𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ

��𝐻𝐻𝑘𝑘𝑘𝑘𝑘𝑘
ℎ=1

𝑛𝑛𝑘𝑘𝑘𝑘
𝑖𝑖=1

𝑚𝑚𝑘𝑘
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1                                 (4.47) 

 

and the survey logistic regression model is written as: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ� = log � 𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ
1−𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ

� = 𝜲𝜲′𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝛽𝛽                                                            (4.48) 

 

with 𝘩𝘩 = 1,2, . . . ,𝐻𝐻𝑘𝑘𝑘𝑘𝑘𝑘 ;  𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑘𝑘𝑘𝑘;  𝑗𝑗 = 1,2, . . . ,𝑚𝑚𝑘𝑘 ;  𝑘𝑘 = 1,2, . . . ,𝐾𝐾 . Where 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘ℎ  is the 

vector corresponding to the characteristics of ℎ𝑡𝑡ℎ individual within  𝑖𝑖𝑡𝑡ℎhousehold within 𝑗𝑗𝑡𝑡ℎ  

primary sample unit nested within 𝑘𝑘𝑡𝑡ℎ stratum and 𝛽𝛽 is a vector of unknown parameters of the 

model.  

 

If all design variables are included in the model as independent variables, the inference about the 

effects of the factors in the fitted model will be reliable (Moineddin et al., 2007; Pfeffermann, 

1993). The Pseudo maximum likelihood technique named the weighted maximum likelihood 

which considers the sampling design and various sampling weights in estimating 𝛽𝛽 are used to 
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estimate the parameters 𝛽𝛽 of the logistic regression model . (Asparouhov & Muthen, 2006; 

Hosmer & Lemeshow, 2000). The pseudo maximum likelihood function is used to obtain the 

parameter estimates. “The pseudo maximum likelihood is computed as the product of individual 

contributions to the likelihood” (Geys1 et al., 1997). 

 

“The Pseudo maximum likelihood function for the contribution of one observation in complex 

sampling design” (Archer et al., 2007) is given by: 

 

𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘ℎ  �1 − 𝜋𝜋𝑖𝑖𝑖𝑖ℎ�
�1−𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘ℎ�                                                               (4.49) 

 

Therefore, the pseudo maximum likelihood function with weights is given by: 

𝐿𝐿(𝜷𝜷;𝑌𝑌) = ∏ ∏ ∏ ∏ 𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘ℎ  �1 − 𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ�
�1−𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘ℎ�𝐻𝐻𝑘𝑘𝑘𝑘𝑘𝑘

ℎ=1
𝑛𝑛𝑘𝑘𝑘𝑘
ℎ=1

𝑚𝑚𝑘𝑘
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1                     (4.50) 

The log-likelihood function is given by: 

𝑙𝑙(𝜷𝜷;𝑌𝑌) = ∑ ∑ ∑ ∑ �𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑦𝑦𝑘𝑘𝑗𝑗𝑖𝑖ℎ log � 𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ
1−𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ

� − log � 1
1−𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘ℎ

��𝐻𝐻𝑘𝑘𝑘𝑘𝑘𝑘
ℎ=1

𝑛𝑛𝑘𝑘𝑘𝑘
𝑖𝑖=1

𝑚𝑚𝑘𝑘
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1                    (4.51) 

 

The maximum likelihood estimates, 𝛽̂𝛽, is attained by making the score equation above equal 0 

and solve for 𝛽𝛽 using the iterative methods of Newton Raphson and Fisher scoring (Institute, 

2015). 

 

4.7.2 Survey Logistic Model Selection and Checking 
4.7.2.1 Model selection 
 
Logistic regression utilizes forward selection, backward elimination and stepwise selection 

procedures to select the variables that best fit the data set. In the survey logistic procedure in 

SAS PROC SURVEYLOGISTIC method for analyzing complex survey data, the variable 

selection procedures such as backward selection, forward selection, score and stepwise selection 

are not yet available. One must manually add or remove one variable in the model at a time by 

using the type 3 analysis of effects and observe the effect of the variables left. These analyses are 

often used when the effect of one predictor variable is influenced by the effect of another 
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predictor variable. One can remove variable that is not significant and refit the model without 

that variable. This manual approach can be done until all remaining variables in the model are 

significant. Thereafter, one may consider including interaction terms amongst the variables in the 

model. 

 

4.7.2.2 Model Fit Test 

 

The  goodness-of-fit of the model is tested using the AIC and the SC criteria. These measures 

may be used to compare two nested models when determining the better model that explains the 

data set. These criteria are used because SAS PROC SURVEYLOGISTIC does not give the 

Hosmer-Lemeshow statistics and plots (Lumley & Scott, 2014). The smaller the BIC and AIC of 

the full model in comparison to the corresponding BIC and AIC of the model that is reduced, 

then the better the full model. More information of the BIC and AIC criteria for model selection 

can be found in section 4.3 in this study. 

 

4.7.2.3 Predictive Accuracy of the Model 

 

The PROC SURVEYLOGISTIC is used to fit binary response models to data, and it generates 

statistics on the models’ ability to predict, like Sommer’s D, c, Kendall’s Tau-a and  Goodman-

Kruskal Gamma. All these statistics are between 0 and 1. The larger value corresponds to a 

strong association between observed and predicted values. These measures of association are as 

discussed before. 

 
4.7.3 Design Effects 
 

The clustering, stratification, and weighting of selected cases affects the sampling variance of a 

survey statistic. The accuracy of the variance estimate can be increased by the stratification but  

the precision can be decreased by weighting  and clustering (Lumley, 2004). 
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Stratified sampling is a technique that incorporates the splitting of a population into smaller sub-

groups known as strata (Yadav et al., 2019). A sample is  independently taken from each stratum. 

Stratified random sampling is when a SRS is taken in each stratum. (Levy & Lemeshow, 2013). 

 

Stratified sampling is used: 

• To decrease sampling error in comparison to the simple random sampling for greater 

precision 

• For its convenience in administration 

• When different sampling procedure are needed for different parts of population  

• When separate estimates are needed at strata level. 
 

There are two principal advantages when comparing simple random sampling and stratified 

sampling. It may need more administrative effort than a simple random sample and the analysis 

has more computationally complexity. A more informative discussion about sampling methods 

can be discovered in many literatures (Cochran, 1977, 2007; Hibberts et al., 2012). 

 

The precision of the parameter estimates is determined by the sample size and sampling design. 

“The problem in complex sample design is that sampling errors for survey estimates cannot be 

simply worked out using the formulae obtained in statistical books” (Kish & Frankel, 1974). 

Design effect, DEFF,  is the loss of effectiveness in the use of complex instead of simple random 

sampling.  The ratio of actual variance divided the variance expected with SRS defines the 

design effect (Levy & Lemeshow, 2013; Shackman, 2001). The design effect is a technique that 

is extensively used in survey sampling for planning a sample design in estimation and analysis 

(Rust & Rao, 1996; Särndal et al., 2003). The DEFF option can be used in the model statement. 

PROC SURVEYLOGISTIC calculates the design effect for the regression coefficients. The 

design effect is given by: 

 

DEFF = variance under the complex design
variance under simple random sampling

.                                       (4.52) 
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The design effect is used to find how much bigger the sample size or confidence interval should 

be. DEFF will usually range from one to three. However, it’s possible for the design effect to be 

much higher. 

 

One can also use DEFT given by the square root of DEFF. The DEFT, which is more preferred, 

may be used to decrease variability since DEFF is more variable than DEFT (Salganik, 2006). 

The DEFT illustrates by how much the sample confidence intervals (and SE) increase. DEFT 

equal to one denotes there’s no effect of sample design on the standard error. DEFT that is bigger 

than one implies that the sample design increases the estimates standard error. DEFT that is less 

than 1 implies sampling design does not increase the estimates standard error. 

 

 Results of the Survey Logistic Regression Model 
 

The analysis in this portion of the study applies the survey logistic regression model, that 

accounts for the complex survey design. Multiple logistic regression was fitted for the Lesotho 

DHS data using SAS. The model selected by the PROC LOGISTIC was fitted again using the 

PROC SURVEYLOGISTIC to see if estimates would differ when the complexity of the survey 

design is considered.  

 

4.8.1 Model Checking and Prediction Accuracy of the Model 
 

The PROC SURVEYLOGISTIC in SAS does not give the Hosmer-Lemeshow statistics and 

plots, so we use the AIC and SC to check if the model is a good fit. The AIC of the full model is 

smaller in comparison to the AIC of the model that is reduced; this means the model fitted is a 

good fit (Table 4.10. and Table 4.11.). 
 

Table 4.10: Statistics for Model fit for the survey logistic regression(LDHS 2009). 

Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 
AIC 2478.746 1296.561 
SC 2484.970 1508.203 
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-2 Log L 2476.746 1228.561 
 
 

Table 4.11: Statistics for Model fit for the survey logistic regression (LDHS 2014). 

Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 
AIC 1570.324 772.824 
SC 1576.367 978.283 

-2 Log L 1568.324 704.824 
 
 
The tables below (Table 4.12. & 4.13.) shows that the p-values that correspond to the likelihood 
ratio, Wald tests and score tests are less than 0.05 (p<.0001 ) for the 2009 and 2014 LDHS data.  
 
Table 4.12: Model evaluation for Survey logistic regression (LDHS 2009). 

Model Evaluation parameters F Value Num DF Den DF Pr > F 
Likelihood Ratio 41.22 27.439 10400 <.0001 

Score 25.38 33 347 <.0001 
Wald 397.51 33 347 <.0001 

Association of predicted probabilities and observed response 
Percent Concordant 92.3 Somers' D 0.850  
Percent Discordant 7.3 Gamma 0.854  

Percent Tied 0.4 Tau-a 0.151  
Pairs 1417158 c 0.925  

 
 
This means that the fitted models are significant. There is a significant contribution of 

independent variables in the prediction of the children under 5 years dying in both periods. There 

is a high (92.5% and 94.4%) association between the predicted probabilities and the observed 

responses. The concordant rate is 92.3% in 2009 and 94.2% in the 2014 period as shown in both 

tables; these values tell us how good the model was in separating 0’s and 1’s. The Gamma 

statistic has a value of 0.854 and 0.893 indicates a positive association between variables and the 

Somer’s D statistic is 0.850 in 2009 and 0.889 in 2014. 
 
Table 4.13: Model evaluation for Survey logistic regression (LDHS 2014). 

Model Evaluation parameters F Value Num DF Den DF Pr > F 
Likelihood Ratio 26.82 23.9923 10930 <.0001 

Score 186.68 33 345 <.0001 



67 
 

Wald 314.80 33 345 <.0001 

Association of Predicted Probabilities and Observed Responses 
Percent Concordant 94.2 Somers' D 0.889  
Percent Discordant 5.3 Gamma 0.893  

Percent Tied 0.5 Tau-a 0.117  
Pairs 650045 c 0.944  

 
 

Table 4.14. illustrates that the two-way interaction term has a significant interaction effect on the 

response variable with p-value<.0001 in the 2009 data. The P-values shown in the table indicate 

that the continuous variable mother’s current age was found to have a significant effect on the 

response. The overall effect of categorical variables: sex of the child, breastfeeding status, wealth 

index, current age of child, education attainment, type of resident and number of children alive 

have a significant effect on the probability of death of children. 
 
Table 4.14: Type 3 analysis of effects for the LR with complex survey design (2009). 

Main Effect F Value Num DF Den DF Pr > F 

Current age of child 167.20 4 376 <.0001 

Mother’s age 38.88 1 379 <.0001 

Sex of child  7.08 1 379 0.0081 

Weight of the child at birth  0.36 2 378 0.6953 

Currently breastfeeding  81.82 1 379 <.0001 

Marital status  0.08 1 379 0.783 

Wealth index  3.85 2 378 0.0221 

Education attainment  6.5 2 378 0.0017 

Mothers currently working  2.87 1 379 0.091 

Type of place of residence 9.02 1 379 0.0029 

Region 0.75 9 371 0.6665 

Number of children living  24.21 2 378 <.0001 

Birth order number  1.56 2 378 0.2125 

Significant interaction effect         

Age of child and Currently breastfeeding  26.75 4 376 <.0001 
 
 

Table 4.15. illustrates that the two-way interaction term has significant interaction effect on the 

response variable with a p<.0001 in the 2014 data. The P-values shown in the table shows that 

the continuous variable mother’s current age was found to be significant on the response. The 

overall effect of categorical variables: current age of child, breastfeeding status, education 
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attainment, number of children living, and birth order number were found to have a significant 

effect on the probability of death of children. 
 
Table 4.15: Type 3 analysis of effects for the LR with complex survey design (2014). 

Main Effect F Value Num DF Den DF Pr > F 

Current age of child 1112.59 4 374 <.0001 

Mother’s age 13.92 1 377 0.0002 

Sex of child  1.53 1 377 0.2174 

Weight of the child at birth  2.74 1 376 0.0660 

Currently breastfeeding  48.43 1 377 <.0001 

Marital status  2.65 1 377 0.1043 

Wealth index  0.93 2 376 0.3963 

Education attainment  4.03 2 376 0.0186 

Mothers currently working  0.24 2 377 0.6233 

Type of place of residence 1.13 1 377 0.2895 

Region 0.91 1 369 0.5159 

Number of children living  17.30 9 376 <.0001 

Birth order number  5.64 2 376 0.0037 

Significant interaction effect         

Age of child and Currently breastfeeding  58.01 4 374 <.0001 
 

 

4.8.2 Interpretation of the Coefficients of the Model and Odds ratio . 
 

Table 4.16: Survey logistic regression model estimation for main effects and significant 
interaction effects(2009). 
 
 

Main Effects 
Estimate SE P-value OR CI  

          lower upper 
Intercept -7.4997 0.8683 <.0001 2.383    
Current age of child (ref. 0)       
1 year -1.798 0.3856 <.0001 0.16563 0.07779 0.35267 
2 years -1.7655 0.7993 0.0278 0.171101 0.03572 0.81965 
3 years -2.8769 1.0551 0.0067 0.056309 0.00712 0.44535 
4 years -13.822 0.249 <.0001 9.94E-07 0.00000 0.00000 
Mother’s age 0.1166 0.0187 <.0001 1.12367 1.08323 1.16562 
Sex of child (ref. Male)       
Female -0.5237 0.1969 0.0081 0.592325 0.40268 0.87129 
Weight of the child at birth (ref. Large)      
Average 0.0535 0.2372 0.8215 1.054957 0.66271 1.67936 
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Small 0.2233 0.2929 0.4462 1.250196 0.70414 2.21973 
Currently breastfeeding (ref. Yes)      
No -3.2276 0.1963 <.0001 0.039653 0.02699 0.05826 
Marital status (ref. Not Married)      
Married -0.0525 0.1904 0.783 0.948854 0.65332 1.37807 
Wealth index (ref. Rich)       
Middle -0.2383 0.2659 0.3706 0.787966 0.46792 1.32692 
Poor 0.4223 0.2584 0.1031 1.525466 0.91928 2.53138 
Education attainment (ref.Higher Education)     
No Education 1.8553 0.7255 0.0109 6.393616 1.54237 26.50358 
Up to Secondary Education 1.8502 0.5132 0.0004 6.361092 2.32641 17.39307 
Mothers currently working (ref. unemployed)     
Employed 0.2884 0.1702 0.091 1.334291 0.95581 1.86263 
Type of place of residence (ref. Urban)      
Rural 1.122 0.3737 0.0029 3.07099 1.47631 6.38820 
Region (ref. Thaba Tseka)       
Berea 0.1334 0.324 0.6808 1.142707 0.60554 2.15640 
Butha-Bothe 0.3585 0.3425 0.2959 1.431181 0.73140 2.80051 
Leribe 0.4511 0.347 0.1944 1.570038 0.79531 3.09944 
Mafeteng 0.6986 0.3235 0.0314 2.010935 1.06667 3.79111 
Maseru 0.3644 0.4187 0.3847 1.43965 0.63365 3.27086 
Mohale's Hoek 0.3588 0.3337 0.2829 1.43161 0.74434 2.75344 
Mokhotlong 0.2458 0.3276 0.4535 1.278644 0.67281 2.43001 
Qacha's-Nek 0.2413 0.3543 0.4963 1.272903 0.63564 2.54907 
Quthing 0.5531 0.4035 0.1712 1.738634 0.78839 3.83420 
Number of children living (ref. <2 children)     
2-4 children -2.1722 0.312 <.0001 0.113927 0.06181 0.20999 
>4 children -2.3386 0.561 <.0001 0.096463 0.03212 0.28966 
Birth order number (ref. first birth)      
2-4 births 0.6146 0.348 0.0782 1.848917 0.93475 3.65713 
>4 births 0.6532 0.5701 0.2526 1.92168 0.62864 5.87435 
Significant Interactions Effects      
 Current age of child (ref. 0 years) and currently breastfeeding (ref. Yes)   
1 year’s vs No 
Breastfeeding -1.5596 0.4395 0.0004 0.21022 0.08883 0.49749 
2 years vs No Breastfeeding -3.0271 0.8762 0.0006 0.048456 0.00870 0.26989 
3 years vs No Breastfeeding -3.0263 1.1614 0.0095 0.048495 0.00498 0.47239 
4 years vs Breastfeeding 6.9118 0.8145     <.0001 0.000254 3.44181 5.33474 

 
 
 
Table 4.16. shows the estimated coefficients, standard errors, and p-value for the logistic 

regression model. The output from SAS PROC SURVEYLOGISTIC for the LDHS data 2009 is 

given in the table; it displays that the effect of not breastfeeding and the child aged 1,2 and 3 was 

negatively associated with child mortality with a p-value <0.05. The odds ratios that correspond 

were 0.2102, 0.0485 and 0.0485. This means that the odds of child dying for a child aged 1 year 
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and  that is not breastfed is 0.2102 times that  of  a child who  is  aged 0 that was breastfed. This 

implies that the odds of child mortality  for a child aged 2 and3 years and a child that is not 

breastfed is 0.0485 times that  of a child aged 0 that was breastfed. The effect of  four  years old 

child and not breastfeeding compared to a 0-year-old child that is breastfed was positively 

associated with the child mortality (p<0.0001). This implies that the odds of child mortality of  

for child aged 4 years and that is not breastfed is 0.000254 times  that of  the odds death  for  a 

child aged 0 that was breastfed. The results from Table 4.16. also show that the probability of  

child mortality has significant association with mother’s current age, current age of child, 

breastfeeding, education attainment, type of residence , Mafeteng region and number of children 

living when we looked at the logistic regression model with complex sampling design. 

 

The odds ratio of 1.12367 for mother’s age shows that for a one-unit increase in mother’s age, 

the odds of death in under five children increases by 12.37%. The mother’s age was positively 

associated with child mortality. The effect of breastfeeding was established as negatively 

associated with the child mortality with a p-value<0.0001. The odds ratio that corresponds was 

0.0397. The odds of dying for a child from a mother who is not breastfeeding were 0.0397 times 

the odds of dying for a child from a mother who does breastfeed. The effect of no education and 

up to secondary education was observed as positively associated with the child mortality 

(p=0.0109 and p=0.0004). The corresponding odds ratio was 6.39 and 6.36. The odds of dying 

for a child from a mother who has no education were 6.39 times the odds of dying for a child 

from a mother who has higher education whilst the odds of dying for a child from a mother who 

has up to secondary education were 6.36 times the odds of dying for a child from a mother who 

has higher education. 

 

The effect of a child from rural area was positively associated with the child mortality 

(p=0.0029). The corresponding odds ratio was 3.08. The odds of dying for a child from a rural 

area were 3.08 times the odds of dying for a child from an urban area. The effect of a child from 

Mafeteng region was observed as positively associated with the child mortality (p=0.0314). The 

corresponding odds ratio was 2.01. The odds of dying for a child from Mafeteng region were 

2.01 times the odds of dying for a child from Thaba Tseka region. The effect of the mother with 

number of children alive which is between two and four was negatively associated with child 
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mortality with a p-value  equals 0.0001. The odds ratio that corresponds was 0.114. The odds of 

dying for a child from a mother with 2-4 children alive were 0.114 times the odds of dying for a 

child from a mother with less than two children alive. The effect of the mother with number of 

children alive which is more than four was negatively associated with child mortality with a p-

value equal 0.0001. The corresponding odds ratio was 0.096. The odds of dying for a child from 

a mother with more than four children alive were 0.096 times the odds of dying for a child from 

a mother with less than two children alive.  

 
 
Table 4.17: Survey logistic regression model estimation for main effects and significant 
interaction effects(2014). 
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Main Effects Estimate SE P-value OR CI 
          lower upper 
Intercept -8.23 0.9991 <.0001 0.0003   
Current age of child (ref. 0)       
1 year -1.651 0.6575 0.0125 0.1919 0.05288 0.69607 
2 years 0.142 0.8744 0.871 1.1526 0.20767 6.39697 
3 years -11.3961 0.3361 <.0001 0 0.00001 0.00002 
4 years -11.8585 0.3498 <.0001 0 0.00000 0.00001 
Mother’s age 0.0838 0.0225 0.0002 1.0874 1.04050 1.13644 
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Sex of child (ref. Male)       
Female 0.3065 0.2481 0.2174 1.3587 0.83546 2.20952 
Weight of the child at birth (ref. Large)      
Average 0.0617 0.3556 0.8622 1.0636 0.52979 2.13545 
Small 0.6498 0.3955 0.1012 1.9152 0.88216 4.15777 
Currently breastfeeding (ref. Yes)      
No 4.0252 0.3382    <.0001 55.9915 28.85629 108.64351 
Marital status (ref. Not Married)      
Married 0.3992 0.2451 0.1043 1.4906 0.92201 2.40993 
Wealth index (ref. Rich)       
Middle 0.0519 0.3198 0.8712 1.0533 0.56276 1.97133 
Poor 0.3773 0.3408 0.269 1.4583 0.74776 2.84416 
Education attainment (ref.Higher Education)     
No Education 2.0555 1.0172 0.044 7.8107 1.06374 57.35225 
Up to Secondary Education 1.6252 0.5826 0.0055 5.0794 1.62142 15.91236 
Mothers currently working (ref. employed)     
Unemployed 0.1305 0.2654 0.6233 1.1394 0.67727 1.91685 
Type of place of residence (ref. Urban)      
Rural 0.3885 0.3663 0.2895 1.4748 0.71932 3.02360 
Region (ref. Thaba-Tseka)       
Berea 0.2394 0.5073 0.6373 1.2705 0.47005 3.43394 
Butha-Bothe -0.1427 0.4836 0.7681 0.867 0.33603 2.23705 
Leribe 0.822 0.4834 0.0899 2.275 0.88209 5.86771 
Mafeteng 0.6337 0.4741 0.1822 1.8846 0.74413 4.77281 
Maseru 0.0852 0.4633 0.8542 1.0889 0.43917 2.70004 
Mohale's Hoek 0.2805 0.4009 0.4845 1.3238 0.60335 2.90451 
Mokhotlong 0.4107 0.4316 0.342 1.5079 0.64711 3.51358 
Qacha's-Nek 0.3921 0.4773 0.412 1.4801 0.58077 3.77201 
Quthing 0.7713 0.4392 0.0799 2.1626 0.91436 5.11477 
Number of children living (ref. <2 children)     
2-4 children -2.6614 0.4786 <.0001 0.0699 0.02734 0.17847 
>4 children -3.7136 0.6894 <.0001 0.0244 0.00632 0.09420 
Birth order number (ref. first birth)      
2-4 births 1.5878 0.5517 0.0042 4.893 1.65942 14.42744 
>4 births 2.3406 0.6935 0.0008 10.3875 2.66803 40.44164 
Significant Interactions Effects      
 Current age of child (ref. 0 years) and currently breastfeeding (ref. Yes)   
1-year vs No Breastfeeding -1.7114 0.7633 0.0255 0.1806 0.04046 0.80627 
2 years vs No Breastfeeding -5.591 1.052 <.0001 0.0037 0.00047 0.02933 
3 years vs No Breastfeeding 4.9659 1.1275 <.0001 3.4376 15.73677 7.40561 
4 years vs No Breastfeeding -5.7933 0.4689 <.0001 0.003 0.00122 0.00764 

 
 
 
Table 4.17. shows the output from SAS PROC SURVEYLOGISTIC for the LDHS data 2014; it 

illustrates that the effect of not breastfeeding and the child aged 1,2 and 4 was negatively 

associated with child mortality (p <0.05). The odds ratios that correspond were 0.1806, 0.0037 
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and 0.0030. This implies that the odds of child death for a  child aged 1 years that is not breastfed 

is 0.1806 times that of  the odds of  a child aged 0 that was breastfed. This also means that the 

odds of child mortality to the effect of child aged 2 and 4 years and a child that is not breastfed is 

0.0037 and 0.0030 times larger than the odds of child death to the effect of child aged 0 that was 

breastfed. The effect of age of child 3 years and not breastfeeding compared to a 0-year-old child 

that is breastfed was positively associated with the child mortality (p<0.0001). This implies that 

the odds of child mortality  for a child aged 4 years that is not breastfed is 143.44 times  that  the 

odds of  for  a child aged 0 that was breastfed. 

 

The results from Table 4.17. also show that the probability of child mortality is significantly 

associated with mother’s current age, current age of child(1 year,3 years and 4 years), 

breastfeeding, education attainment, birth order number and number of children living when we 

look at the survey logistic regression model. The odds ratio of 1.087 for mother’s age means that 

for a single unit increase in mother’s age, the odds of dying in children under five increases by 

8.74%. The mother’s age was observed as positively associated with child mortality. The effect 

of breastfeeding was observed as positively associated with the child mortality (p<0.0001). The 

corresponding odds ratio was 55.99. The odds of dying for a child from a mother who is not 

breastfeeding were 55.99 times the odds of dying for a child from a mother who does breastfeed.  

 

The effect of no education and up to secondary education was positively associated with the 

child mortality (p=0.044 and p=0.0055). The corresponding odds ratios were 7.81 and 5.079. The 

odds of dying for a child from a mother who has no education were 7.81 times the odds of dying 

for a child from a mother who has higher education whilst the odds of dying for a child from a 

mother with up to secondary education were 5.079 times the odds of dying for a child from a 

mother with higher education. The effect of the number of children alive which is between 2 and 

four was observed to be negatively associated with child mortality with a p-value equals 0.0001. 

The odds ratio that corresponds was 0.0699. The odds of dying for a child from a mother with 2-

4 children alive were 0.0699 times the odds of dying for a child from a mother with less than two 

children alive. The effect of  the number of children alive which is more than four was observed 

as negatively associated with child mortality (p =0.0001). The corresponding odds ratio was 
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0.0244. The odds of dying for a child from a mother with more than four children alive were 

0.0244 times the odds of dying for a child from a mother with less than two children alive.  

 

The effect of a child with birth order number is between 2 and four was observed to be positively 

associated with child mortality with a p-value equals 0.0042. The corresponding odds ratio was 

4.8930. The odds of dying of a child whose birth order number is between 2-4  were 4.8930 

times the odds of dying for a child with birth order number is less than two. The effect of a child 

with birth order number is greater than four was observed to be positively associated with child 

mortality (p =0.0008). The corresponding odds ratio was 10.39. The odds of death of a child with 

birth order number is greater than 4  were 10.39 times the odds of death for a child with birth 

order number is less than two. 

 

 

4.8.3 Comparing the Logistic and Survey Logistic Regression 

 

The tables below compare the standard errors obtained from PROC SURVEYLOGISTIC 

procedure and PROC LOGISTIC procedure based on DEFF and DEFT. Since the sample was 

not from the SRS, the parameter estimates for both models are not the same but closer to each 

other. Tables (4.18. & 4.19.) shows the results for each significant effect in the research. The 

logistic regression assumes that the observations are independent, but for complex design this 

assumption is breached and so a better model may be fitted using PROC SURVEYLOGISTIC 

since the complexity of the design is accounted for. 

 Table 4.18.  shows, the results for the 2009 data set. The effect of mother’s age has the DEFF 

equals 1.2844 and DEFT equals 1.1333. This indicates that the confidence interval and standard 

error are 1.1333 times as larger as they would be for SRS. 

 
Table 4.18: Design effects estimated for response variable (2009). 

Significant Effects Estimates(CSD) SE var(CSD) P-value SE var(SRS) DEFF DEFT 
Intercept -7.4997 0.8683 0.7539 <.0001 0.8059 0.6495 1.1609 1.0774 
Current age of child (ref. 0)         
1 year -1.798 0.3856 0.1487 <.0001 0.3637 0.1323 1.1241 1.0602 
2 years -1.7655 0.7993 0.6389 0.0278 0.7311 0.5345 1.1953 1.0933 
3 years -2.8769 1.0551 1.1132 0.0067 1.019 1.0384 1.0721 1.0354 
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Mother’s age 0.1166 0.0187 0.0003 <.0001 0.0165 0.0003 1.2844 1.1333 
Sex of child (ref. Male)         
Female -0.5237 0.1969 0.0388 0.0081 0.1525 0.0233 1.6671 1.2911 
Currently breastfeeding (ref. No)           
Yes -3.2276 0.1963 0.0385 <.0001 0.1975 0.0390 0.9879 0.9939 
Education attainment (ref.Higher Education)         
No Education 1.8553 0.7255 0.5264 0.0109 0.6975 0.4865 1.0819 1.0401 
Up to Secondary Education 1.8502 0.5132 0.2634 0.0004 0.5052 0.2552 1.0319 1.0158 
Mothers currently working (ref. unemployed)         
Employed 0.2884 0.1702 0.0290 0.091 0.1648 0.0272 1.0666 1.0328 
Type of place of residence (ref. Urban)         
Rural 1.122 0.3737 0.1397 0.0029 0.2694 0.0726 1.9242 1.3872 
Region (ref. Thaba-Tseka)         
Mafeteng 0.6986 0.3235 0.1047 0.0314 0.337 0.1136 0.9215 0.9599 
Number of children living (ref. <2 children)         
2-4 children -2.1722 0.312 0.0973 <.0001 0.2691 0.0724 1.3443 1.1594 
>4 children -2.3386 0.561 0.3147 <.0001 0.5056 0.2556 1.2312 1.1096 
Significant Interactions Effects         
 Current age of child (ref. 0 years) and currently breastfeeding (ref. Yes)       
1 year’s vs No Breastfeeding -1.5596 0.4395 0.1932 0.0004 0.4335 0.1879 1.0279 1.0138 
2 years vs No Breastfeeding -3.0271 0.8762 0.7677 0.0006 0.8107 0.6572 1.1681 1.0808 
3 years vs No Breastfeeding -3.0263 1.1614 1.3488 0.0095 1.1067 1.2248 1.1013 1.0494 

 
 
The effect of breastfeeding has the DEFF equals 0.9879 and DEFT equals 0.9939. The 
confidence interval and standard error are 0.9939 times smaller as they would be for SRS. The 
effect of living in Mafeteng has the DEFF equals 0.9215 and DEFT equals 0.9599. This indicates 
that the confidence interval and standard error are 0.9599 times that of the standard error for 
SRS.  
 
The effect of  the number of children alive that is more than four is negatively associated with 

child mortality and  has the DEFF =1.2312 and DEFT =1.1096. The confidence interval and 

standard error must be 1.1096 times as large as they would be for SRS. The effects for the 

number of children alive which is between two and four is also negatively associated with the 

child mortality and has the DEFF=1.3443 and DEFT=1.1594. The confidence interval and 

standard error must be 1.1594 times as large as they would be for SRS.  

 

The effect of no education is positively associated with child mortality  and has the DEFF 

=1.0819 and DEFT =1.0401. The confidence interval and standard error must be 1.0401 times as 

large as they would be for SRS. The effects of up to secondary education is also positively 

associated with the child mortality and has the DEFF =1.0319 and DEFT=1.0158. The 

confidence interval and standard error must be 1.0158 times as large as they would be for SRS. 

The effect of age of child for 1 year old has the DEFF=1.1241 and DEFT=1.0602. The 
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confidence interval and standard error interval must be 1.0602 times as large as they would be 

for SRS. The effect of age of child for 2 years old has the DEFF=1.1953 and DEFT=1.0933. The 

confidence interval and standard error must be 1.0933 times as large as they would be for SRS. 

The effect of age of child for 3 years old has the DEFF equals1.0721 and DEFT equals 1.0354. 

The confidence interval and standard error must be 1.0354 times as large as they would be for 

SRS. The effect of being employed has the DEFF equals 1.0666 and DEFT equals 1.0328. The 

confidence interval and standard error are 1.0328 times as large as they would be for SRS. 

 

The effect of living in a rural area has the DEFF equals 1.9242 and DEFT equals 1.3872. The 

confidence interval and standard error are 1.3872 times as large as they would be for SRS . The 

interaction effect of age of child for 1 year old and  the child is breastfed  has the DEFF=1.0279 

and DEFT=1.0138. The confidence interval and standard error must be 1.0138 times as large as 

they would be for SRS. The interaction effect of age of child (for 2 years old ) and  the child is 

breastfed  has the DEFF=1.1681 and DEFT=1.0808. The confidence interval and standard error 

must be 1.0808 times as large as they would be for SRS.  

 

The effect of age of child for 3 years old depends on whether the child is breastfed with 

DEFF=1.1013 and DEFT=1.0494. The confidence interval and standard error must be 1.0494 

times as large as they would be for SRS ( see Table 4.18). 

 

In Table 4.19 , the results shown are for the 2014 data set. The effect of mother’s age has the 

DEFF equals 0.9739 and DEFT equals 0.9868. The confidence interval and standard error are 

0.9868 times as smaller as they would be for SRS. 

 
 

Table 4.19:Design effects estimated for response variable (2014). 

Significant Effects Estimate(CSD) SE var(CSD) P-
value SE var(SRS) DEFF DEFT 

Intercept -8.23 0.9991 0.9982 <.0001 1.0328 1.0667 0.9358 0.9674 

Current age of child (ref. 0)          

1 year -1.651 0.6575 0.4323 0.0125 0.6174 0.3812 1.1341 1.0649 

Mother’s age 0.0838 0.0225 0.0005 0.0002 0.0228 0.0005 0.9739 0.9868 

Currently breastfeeding (ref. Yes)          
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No 4.0252 0.3382 0.1144    
<.0001 0.2815 0.0792 1.4434 1.2014 

Education attainment (ref. 
Higher Education)           

No Education 2.0555 1.0172 1.0347 0.044 1.2334 1.5213 0.6802 0.8247 

Up to Secondary Education 1.6252 0.5826 0.3394 0.0055 0.5287 0.2795 1.2143 1.1019 

Number of children living 
(ref. <2 children)       

    

2-4 children -2.6614 0.4786 0.2291 <.0001 0.3647 0.133 1.7222 1.3123 

>4 children -3.7136 0.6894 0.4753 <.0001 0.6997 0.4896 0.9708 0.9853 
Birth order number (ref. first 
birth)           

2-4 births 1.5878 0.5517 0.3044 0.0042 0.3586 0.1286 2.3669 1.5385 

>4 births 2.3406 0.6935 0.4809 0.0008 0.6384 0.4076 1.1801 1.0863 

Significant Interactions Effects        
 Current age of child (ref. 0 years) and currently 
breastfeeding (ref. Yes)       
1-year vs No Breastfeeding -1.7114 0.7633 0.5826 0.0255 0.6847 0.4688 1.2428 1.1148 

2 years vs No Breastfeeding -5.591 1.052 1.1067 <.0001 0.7963 0.6341 1.7453 1.3211 
 

 
The effect of breastfeeding has the DEFF equals 1.4434 and DEFT equals 1.2014. The 

confidence interval and standard error are 1.2014 times as large as they would be for SRS. The 

effect of no education is positively associated with child mortality has the DEFF=0.6802 and 

DEFT=0.8247. The confidence interval and standard error must be 0.8247 times as small as they 

would be for SRS. The effects of up to secondary education is also positively associated with the 

child mortality and has the DEFF=1.2143 and DEFT=1.1019. The confidence interval and 

standard error must be 1.1019 times as large as they would be for SRS. 

 

The effect the number of children alive that is greater than four is negatively associated with 

child mortality has the DEFF=0.9708 and DEFT=0.9853. The confidence interval and standard 

error must be 0.9853 times as small as they would be for SRS. The effects for the number of 

children alive which is between two and four is also negatively associated with the child 

mortality and has the DEFF=1.7222 and DEFT=1.3123. The confidence interval and standard 

error must be 1.3123 times as large as they would be for SRS. The effect of age of child for a 1-

year-old has the DEFF=1.1341 and DEFT=1.0649. The confidence interval and standard error 

must be 1.0649 times as large as they would be for SRS.  
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The effect of childbirth order number above four which is positively associated with the child 

mortality has the DEFF=1.1801 and DEFT=1.0863. The confidence interval and standard error 

are 1.0863 times large as they would be for SRS. The effect of childbirth order number between 

2 and 4 is positively associated with the child mortality and has the DEFF=2.3669 and 

DEFT=1.5385. The confidence interval and standard error are 1.5385 times large as they would 

be for SRS. The effect of age of child for 1 year old depends on whether the child is breastfed 

with DEFF=1.2428 and DEFT=1.1148. The confidence interval and standard error must be 

1.1148 times as large as they would be for SRS. The effect of age of child for 2 years old 

depends on whether the child is breastfed with DEFF equals1.7453 and DEFT equals 1.3211. 

The confidence interval and standard error must be 1.3211 times as large as they would be for 

SRS.  

 

From the results above, we notice that most of the design effects values are higher than one. This 

means that there was a variance under-estimation when the logistic regression was used, that 

presumes data was sampled using SRS. This confirms that the under the survey logistic, the CI 

and standard errors are larger. Hence, using the model like survey logistic regression is good 

since it considers the features of survey design. 

 

 Shortcomings of the SURVEYLOGISTIC Procedure 
 

The SLR accounts for how complex the survey designs are, but it may have limitations due to 

unobtainability of Hosmer-Lemeshow goodness of fit test in the SURVEYLOGISTIC procedure. 

The variable selection procedures are not available thus one is required to select variable 

manually which can consume time when many variables are involved, and possible errors may 

result while picking variables. The SURVEYLOGISTIC procedure does not have the ‘output’ 

option statement which enables more analysis of data, like testing  the link function’s 

appropriateness, detecting outliers and influence. The model is forced to be chosen by using of 

the AIC and the SC criteria, both of which present a penalty to the -2log-likelihood of having a 

lot of parameters. 
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The results obtained through Survey Logistic Regression modelling tends to be unbiased, since it 

considers the complex design of the sample in the analysis. However, variability due to 

correlation amongst the elements selected from the same cluster also needs to be considered. The 

next chapter introduces the Generalized linear mixed model (GLMM), an expansion of the GLM 

that fits outcomes with distributions that are not normal and includes the random effects 

additionally to the fixed effects to be analyzed. 
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Chapter 5 
5 Generalized Linear Mixed Models 

  Introduction 
 

Chapter 4 made use of survey logistic regression modelling under generalized linear models to 

investigate the factors associated with under five child mortality. This chapter provides us with 

an alternative method for modelling under five child mortality, given that our data was collected 

from a survey that incorporated stratification and cluster sampling, that could lead to variability 

and correlation amongst subjects from households within the same cluster. 

 

“Generalized linear mixed models also abbreviated as GLMMs are an extension of generalized 

linear models to allow response variables from different distributions” (McCulloch & Neuhaus, 

2005), such as binary response in this study. This extension allows inclusion of both fixed and 

random effects as well as generalized linear models (Bruin, 2006; Møller & Waagepetersen, 

2007).  The generalized linear mixed model focuses more on the inverse link function rather than 

the link function to model the relationship between the conditional mean and linear predictor and 

also includes nonlinear mixed models (Kachman, 2000). 

 

The GLMM is an important model in solving the over-dispersion problems and makes inference 

of the population heterogeneity. This chapter will focus on using the GLMM to investigate the 

risk factors related to death of children below the age 5. We will discuss the structure of the 

GLMM, provide various methods of estimation for both the random effects and fixed effects 

parameters and thereafter, apply the model to our data. 

 

  Generalized Linear Mixed Model 
 
The classification of GLMMs includes various important types of statistical models. This 

contains: 

• The linear models have an identity link function, no random effects and normal distribution  

• The generalized linear models have no random effects  
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• The linear mixed models have a normal distribution, random effects and identity link function 

(Schabenberger, 2005) 

 

GLMMs are given by the general form: 

 

𝐘𝐘 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙 + 𝛜𝛜                                                                     (5.1) 

                        𝐮𝐮 ~ N(0, D)                                                                         (5.2) 

                           𝛜𝛜 ~ N(0, R)                                                                         (5.3) 

 

where: 

𝑁𝑁 × 1 response vector of responses is given by Y 

𝑁𝑁 × 𝑝𝑝 design matrix of fixed effect parameter given by X. 

𝛽𝛽 is 𝑝𝑝 × 1 vector of fixed effects that are not known. 

𝑁𝑁 × 𝑞𝑞 design matrix for random effects given by Z. 

U is 𝑞𝑞 × 1 vector of unknown random effects. 

𝜖𝜖 is 𝑁𝑁 × 1 vector of error terms for responses. 

D is 𝑞𝑞 × 𝑞𝑞 variance covariance component of random effects. 

R is 𝑁𝑁 × 𝑁𝑁 matrix for the residuals. 

 

We define random effects as variance and covariance of the observation and fixed effects as the 

expected value of the observation (Wolfinger, 1993). It may be assumed that the observations on 

the same unit are correlated. The Linear mixed models address the problem of covariation 

between measures on the same unit (Littell et al., 2000). U and 𝜖𝜖 are assumed independent and 

the covariance structure for the response vector is obtained from: 
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                                    𝑽𝑽(𝒀𝒀) = 𝒁𝒁𝒁𝒁𝒁𝒁′  +  𝑹𝑹                                                                                       (5.4) 

Equation (5.4) gives the structure of V(Y) as a function of G and R. Where 𝒁𝒁𝒁𝒁𝒁𝒁′ signifies the 

between-patient section of the covariance structure, and R denotes the within-patient portion 

(Littell et al., 2000). 

 

The random effects are usually not estimated but predicted and the variance components are 

estimated. The diagonal elements of matrix G is the variance component for each random effect 

while off-diagonal elements are covariances that exist between different dimensions (Meyer, 

1989). If there is K random effects in the model, then G will have K × K elements that is the 

variance components for K random effects. 

 

 Model Formulation 
 

Given the random effects parameter 𝑢𝑢𝑖𝑖, the response variable, 𝑦𝑦𝑖𝑖𝑖𝑖 are presumed to be 

independent and have a distribution like the exponential family (Gueorguieva, 2001). The 

random effect parameter 𝑢𝑢𝑖𝑖 is drawn independently and has a distribution of f(𝑢𝑢𝑖𝑖, D). 

                        𝑓𝑓𝑦𝑦𝑖𝑖𝑖𝑖/𝑢𝑢𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖|𝑢𝑢𝑖𝑖� = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑦𝑦𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖𝑖𝑖)
𝑎𝑎(𝜙𝜙)

+ 𝑐𝑐�𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜙𝜙��                         (5.5) 

 

the scale parameter is 𝜙𝜙. 

 

The conditional mean 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑦𝑦𝑖𝑖𝑖𝑖|𝑢𝑢𝑖𝑖� is modeled with both random and fixed effects as: 

 

                          𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝑋𝑋′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑍𝑍′𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖                                                    (5.6) 

 

The link function is g(.), 𝑢𝑢𝑖𝑖 is a vector of random effects and the linear predictor is given by 𝜂𝜂(.). 
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 Parameter Estimation 
 

The maximum likelihood method is the preferred estimation method for the GLMMs. 

“Nevertheless, due to the nonlinearity of the model and the existence of random effects, finding 

the likelihood of the model needs a challenging integration with respect to the random effects’ 

distribution” (Lee et al., 2018; McCulloch, 1997). 

 

In a GLMM model, the likelihood is defined by:  

 

𝐿𝐿(𝛽𝛽,𝐺𝐺,𝜙𝜙) = �𝑓𝑓𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖/𝛽𝛽,𝐺𝐺,𝜙𝜙�
𝑁𝑁

𝑖𝑖=1

 

 

                     = ∏ ∫𝑓𝑓𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖/𝛽𝛽,𝐺𝐺,𝜙𝜙� .𝑓𝑓(𝑈𝑈𝑖𝑖 ,𝐺𝐺)𝑑𝑑𝑁𝑁
𝑖𝑖=1 𝑢𝑢𝑖𝑖                           (5.7) 

                                                                               

 where, 𝑓𝑓𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖/𝛽𝛽,𝐺𝐺,𝜙𝜙� = ∫   ∏ 𝑓𝑓𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖/𝛽𝛽,𝐺𝐺,𝜙𝜙�𝑛𝑛𝑖𝑖
𝑗𝑗=1 . 𝑓𝑓(𝑈𝑈𝑖𝑖 ,𝐺𝐺)𝑑𝑑𝑢𝑢𝑖𝑖  (McCulloch & Neuhaus, 2005). 

 

In the GLMMs, to get the MLE of the parameters, we must maximize the log-likelihood function 

with respect to 𝑢𝑢𝑖𝑖 and β. To get the maximum likelihood estimates, we must integrate over the 𝑢𝑢𝑖𝑖 

random effects. However, in general, the integral has no closed form, resulting in an intractable 

maximum likelihood estimation problem (Liu, 2015). The numerical integration of the likelihood 

for the GLMM is intractable and results in inconsistent estimates and is computationally 

infeasible for high dimensions of the random effects (Nadeem, 2013).  

 

Many other approximation methods have been suggested to deal with this integration problem to 

obtain the maximum likelihood estimate. These approximate maximum likelihood methods are 

best categorized as estimating equation techniques, and they include penalized quasi-likelihood, 

marginal quasi-likelihood, Gaussian quadrature, Laplace approximation (McCulloch, 1997) and 

various similar techniques (Sun & Ronnegard, 2011). Methods based on different approaches are 

discussed in the following sections. 
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5.4.1  Penalized Quasi-Likelihood 
 
Difficulties in computing the maximum likelihood in GLMMs has resulted in simpler 

approximations to the likelihood function.  The penalized quasi-likelihood is one of those 

approximations (PQL) (Breslow, 2004). The PQL method functions are fine when the data are 

approximately normally distributed but can be biased for data that highly deviates from a normal 

distribution. The method is more flexible than the full maximum likelihood procedure as only the 

first two moments of the conditional density need to be specified in terms of the GLMM model 

parameters(Breslow & Clayton, 1993). 

 

The PQL method approximates the integral of the quasi-likelihood by decomposing data into the 

mean and the error terms using the Taylor series expansion of the mean (Wolfinger & Lin, 

1997). Consider the following: 

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 

 

                                                        = ℎ �𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖� + 𝜖𝜖𝑖𝑖𝑖𝑖                                                (5.8) 

 

where, h�𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖� =g−1�𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖� is the inverse of the link function. The error 

terms follow an appropriate distribution with mean zero and variance equal to  Var�Y𝑖𝑖𝑖𝑖� =

𝜙𝜙 v�𝜇𝜇𝑖𝑖𝑖𝑖 �. To get an approximation of the mean, and then the parameters, the Taylor series 

expansion of Equation (5.8) is implemented. Assuming the natural link function, v�𝜇𝜇𝑖𝑖𝑖𝑖 � =

h′�𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖� where h′ is the derivative with respect to 𝜇𝜇𝑖𝑖𝑖𝑖 . When the Taylor expansion is 

carried out with respect to estimates 𝛽̂𝛽  and 𝑢𝑢𝚤𝚤� , the method is known to as Penalized Quasi-

Likelihood (Goldstein & Rasbash, 1996). Then this yields the following result. 

 

𝑌𝑌𝑖𝑖𝑖𝑖 ≈  ℎ �𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢�𝑖𝑖� 

                                                                 + h′ �𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢�𝑖𝑖� 𝑥𝑥′𝑖𝑖𝑖𝑖 �𝛽𝛽 − 𝛽̂𝛽� 

                                                                 + h′ �𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢�𝑖𝑖� 𝑧𝑧′𝑖𝑖𝑖𝑖 (𝑢𝑢𝑖𝑖 − 𝑢𝑢�) + 𝜖𝜖𝑖𝑖𝑖𝑖 
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                                            =𝜇𝜇𝚤𝚤𝚤𝚤 � + v�𝜇𝜇𝚤𝚤𝚤𝚤 �� 𝑥𝑥′𝑖𝑖𝑖𝑖 �𝛽𝛽 − 𝛽̂𝛽� +  v�𝜇𝜇𝚤𝚤𝚤𝚤 �� 𝑧𝑧′𝑖𝑖𝑖𝑖 (𝑢𝑢𝑖𝑖 − 𝑢𝑢�)+ 𝜖𝜖𝑖𝑖𝑖𝑖         (5.9) 

 

where 𝜇𝜇𝑖𝑖𝑖𝑖 is equal to its current predictor h �𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢�𝑖𝑖� for the conditional mean E�Y𝑖𝑖𝑖𝑖|𝑢𝑢𝑖𝑖�. 

 In vector form: 

 

                                                 𝒀𝒀𝒊𝒊 = 𝝁𝝁𝒊𝒊 �  + 𝑽𝑽𝒊𝒊�  𝑿𝑿𝒊𝒊�𝜷𝜷 − 𝜷𝜷��  +  𝑽𝑽𝒊𝒊�  𝒁𝒁𝒊𝒊(𝒖𝒖𝒊𝒊 − 𝒖𝒖�) + 𝝐𝝐𝒊𝒊𝒊𝒊                 (5.10) 

                                                      

where  𝑿𝑿𝒊𝒊 and  𝒁𝒁𝒊𝒊 are appropriate design matrices and  𝑽𝑽𝒊𝒊�  is the diagonal matrix with elements 

, v�𝜇𝜇𝚤𝚤𝚤𝚤 �� = h′�𝑥𝑥′𝑖𝑖𝑖𝑖𝛽̂𝛽 + 𝑧𝑧′𝑖𝑖𝑖𝑖𝑢𝑢𝚤𝚤� �. Re-ordering the above expression and multiplying by 𝑽𝑽�𝒊𝒊
−𝟏𝟏 gives 

 

 

𝒚𝒚𝒊𝒊∗ = 𝑽𝑽�𝒊𝒊
−𝟏𝟏�𝒚𝒚𝒊𝒊 − 𝝁𝝁𝒊𝒊 �� +  𝑿𝑿𝒊𝒊 𝜷𝜷� +  𝒁𝒁𝒊𝒊 𝒖𝒖�  

 

                                                                   ≈  𝑿𝑿𝒊𝒊 𝜷𝜷 +  𝒁𝒁𝒊𝒊 𝒖𝒖 + 𝝐𝝐𝒊𝒊∗                                                           (5.11) 

 

For 𝝐𝝐𝒊𝒊∗=  𝑽𝑽�𝒊𝒊
−𝟏𝟏𝝐𝝐𝒊𝒊 and has a mean of zero. This can be seen as an LMM for a pseudo response 𝒚𝒚𝒊𝒊∗  

with error term 𝝐𝝐𝒊𝒊∗. This will allow the use of algorithm for fitting generalized linear mixed 

models. 

 

The Algorithm 

 

The iteration algorithm for model fitting is as follows:  

 

Step 1: Set the values for 𝛽𝛽,G and 𝜙𝜙.  Calculate empirical Bayes estimator for 𝑢𝑢𝑖𝑖 and pseudo-

response 𝑦𝑦𝑖𝑖∗.  

Step 2: Based on pseudo-response 𝑦𝑦𝑖𝑖∗ fit the model and update 𝛽𝛽 ,G and 𝜙𝜙 accordingly.  

These steps above are replicated until we achieve convergence, and the estimates that result are 

called penalized quasi-likelihood (Handayani et al., 2017).  
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5.4.2  Marginal Quasi-Likelihood 
 

Marginal quasi-likelihood (MQL) is less challenging computationally in comparison to MLE and 

predominantly applies to longitudinal data (Rabe-Hesketh et al., 2002). This technique is like the 

PQL method although it’s regularly used when interest is on the marginal relationship between 

the covariables and the outcome of interest (Breslow & Clayton, 1993). It is based on a linear 

Taylor expansion of the mean around current estimate 𝛽̂𝛽 for fixed effects but around u𝚤𝚤�  = 0 for 

random effects (Masangwi et al., 2010). This gives an equivalent expansion as for PQL, but in 

this case the current predictor of   𝜇𝜇𝚤𝚤𝚤𝚤 �  will be in form ℎ �𝑥𝑥′𝑖𝑖𝑖𝑖𝛽𝛽�. 

The form of the pseudo-data is now: 

 

                                                  𝒚𝒚𝒊𝒊∗ = 𝑽𝑽�𝒊𝒊
−𝟏𝟏�𝒚𝒚𝒊𝒊 − 𝝁𝝁𝒊𝒊 �� +  𝑿𝑿𝒊𝒊 𝜷𝜷�                                                   (5.12) 

 

This satisfies the approximate LMM: 

 

                                                               ≈  𝑿𝑿𝒊𝒊 𝜷𝜷 +  𝒁𝒁𝒊𝒊 𝒖𝒖 + 𝝐𝝐𝒊𝒊∗                                                (5.13)                                 

The fitting of the model is done as in PQL, by repetition between fitting an approximate LMM 

and the calculation of the pseudo data for these pseudo data (Wolfinger & O'connell, 1993); 

However, the resulting estimates are known as marginal quasi-likelihood estimates. 

 

5.4.2.1 Discussion of Marginal Quasi-Likelihood and Penalized Quasi-Likelihood  

 

There isn’t a lot of difference between marginal quasi-likelihood and penalized quasi-likelihood. 

Both of these techniques in the linear predictor don’t include the random effects (u𝑖𝑖) and produce 

improved estimates with higher-order Taylor expansion (Breslow & Clayton, 1993). They have 

similar properties and are based on similar ideas. The MQL totally disregards the random effects 

variation in linearizing the mean and only gives good results if the variance of the random effects 

is very small. The MQL will give biased estimates when the number of measurements increases 

while PQL will give consistent values with increased measurements. PQL and  MQL gives 
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results that are very bad for binary outcomes with a few iterated measurements per cluster (Codd, 

2014; Molenberghs & Verbeke, 2006). 

 

5.4.3  Laplace Approximation 

 

Laplace approximation is the usual technique used when the exact likelihood function is hard to 

assess (Kuk, 1999). This method is based on an approximation of the integrand and is one of the 

options once the exact likelihood  function is challenging to calculate (Shun & McCullagh, 

1995). The integrands are approximated, and the objective is to find traceable integrals so that 

closed form expressions can be acquired. This makes it possible to numerically maximize  the  

approximated likelihood (Onar, 2014).  

Suppose we want to find the integral of the form:  

 

                                     𝐼𝐼 = ∫ 𝑒𝑒−𝑞𝑞(𝑥𝑥)𝑑𝑑𝑑𝑑                                                                  (5.14) 

 

 

here a known and unimodal function is given by 𝑞𝑞(𝑥𝑥), and a 𝑞𝑞 × 1 vector of variables is given by 

𝑥𝑥  and second-order Taylor expansion of 𝑞𝑞(𝑥𝑥) about 𝑏𝑏� is obtained by: 

 

                                    𝑞𝑞(𝑥𝑥) ≈ 𝑞𝑞(𝑥𝑥�) + 1
2

(𝑥𝑥 − 𝑥𝑥�)′𝑞𝑞′′(𝑥𝑥�)(𝑥𝑥 − 𝑥𝑥�)                            (5.15) 

 

where 𝑞𝑞′′(𝑥𝑥�) is the Hessian of 𝑞𝑞 calculated at (𝑥𝑥�) and the first-order term of the Taylor 

expansion vanishes since the expansion is done with respect to 𝑥𝑥� and 𝑞𝑞′′(𝑥𝑥�)=−𝑙𝑙′′(𝛽𝛽,𝐺𝐺,𝜙𝜙)ǀ𝑥𝑥−𝑥𝑥� is 

a Hessian of the log-likelihood assessed at 𝑥𝑥�. By using the approximation in the Laplace 

approximation, the quadratic term changes to: 

 

                                     𝐼𝐼 = (2𝜋𝜋)
𝑞𝑞
2 𝑞𝑞′′(𝑥𝑥�)ǀ−

1
2𝑒𝑒

𝑞𝑞(𝑥𝑥�)
                                                                   (5.16)                                            

 

and the marginal log-likelihood changes to: 
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𝑙𝑙(𝑥𝑥�,𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑙𝑙 ∫ 𝑒𝑒xp�𝑙𝑙(𝜃𝜃, 𝑥𝑥�,𝑦𝑦) − 1
2

(𝑥𝑥 − 𝑥𝑥�)′ 𝑞𝑞′′(𝑥𝑥�) (𝑥𝑥 − 𝑥𝑥�) 𝑑𝑑𝑑𝑑� 

           

             =𝑙𝑙(𝜃𝜃, 𝑥𝑥�,𝑦𝑦) − 1
2
𝑙𝑙𝑙𝑙𝑙𝑙 �𝑞𝑞′′(𝑥𝑥�)

2𝜋𝜋
�                                                                     (5.17) 

 

 

If we have many repeated measures per subject, this results in good approximation. 

The Laplace method is amongst the computational techniques used for estimation in GLMMs. It 

is the fastest when computing, but there hasn't been a clear analysis if it has enough accuracy.  

 

5.4.4 Gaussian Quadrature 
 

As explained above the Laplace approximation depends on a linearization technique of the 

integrand and another different approach to this is the approximation of the integral or numerical 

integration. The Gaussian quadrature is a numerical method of approximating a hard to solve 

integral of the marginal likelihood (Tuerlinckx et al., 2006). (Liu & Pierce, 1994) explains the 

Gaussian quadrature as follows: 

Given an integral of the form: 

 

                                    ∫ 𝘧𝘧(𝑥𝑥)𝛷𝛷(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞                                                                  (5.18) 

 

where 𝛷𝛷(𝑥𝑥) is the density of the multivariate normal distribution. The Gaussian quadrature 

approximation is: 

                            ∫ 𝘧𝘧(𝑥𝑥)𝑒𝑒𝑒𝑒𝑒𝑒(−𝑥𝑥2)𝑑𝑑𝑑𝑑∞
−∞                                                                 (5.19) 

which is approximately 

                                  ∑ 𝑤𝑤𝑖𝑖𝘧𝘧(𝑥𝑥𝑖𝑖)
𝑞𝑞
𝑖𝑖=1                                                                      (5.20) 

where q is the order of the approximation, the nodes 𝑥𝑥𝑖𝑖 are solutions to the qth order polynomial 

and 𝑤𝑤𝑖𝑖 are well chosen weights. (Molenberghs & Verbeke, 2005) says that the approximation 

will be more accurate if we have higher q.  
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 Generalized Linear Mixed Models (GLIMMIX) 

 

The models can be fitted using statistical software programs like SAS, GENSTAT, and many 

more. In the current research, we focus on SAS applications since this is the software that will be 

used for the analysis of our data. The Statistical Analysis Software procedure PROC GLIMMIX 

accommodates features of GLMMs. This procedure combines the two procedures namely PROC 

GENMOD and PROC MIXED (Vonesh, 2012).  

 

The GLIMMIX procedure considers the random effects and permits for population‐average  and 

subject‐specific inference (Bolker et al., 2009). The GENMOD procedure only allows marginal 

inference (Neal & Simons, 2007). “The response can have a non‐normal distribution, but the 

MIXED procedure assumes that the response is normally distributed” (Schabenberger, 2005). 

The SAS PROC GLIMMIX can fit the models to data with both fixed and random effects and 

the response is not necessarily normally distributed (Ying & Liu, 2006).  

 

The estimation of the parameter estimates using this procedure follows likelihood-based methods 

and the pseudo-likelihood procedure is the default (Schabenberger, 2005). The procedure allows 

the change of estimation method and specification of covariance structures (Wolfinger & 

O'connell, 1993). 

 

5.5.1 Application of Generalized Linear Mixed Model to the data 
 

To model the data, we use the PROC GLIMMIX procedure in SAS version 9.4. The response 

variable is the death of the child under-five and the set of covariates are current age of a child, 

number of children living, mother’s work status, sex of a child, mother’s age, weight of a child at 

birth,  region, wealth index, marital status, type of place of residence, educational attainment of 

mother, birth order number and breast feeding. 
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In the model statement, the DIST= option states the distribution of the response variable whilst 

the LINK= option specifies the link function of the PROC GLIMMIX procedure. The binary 

distribution option with logit link was used in this model. The METHOD= option syntax 

specifies the parameter and the covariance estimation techniques in the PROC GLIMMIX 

statement.  If the model does not converge, the marginal distribution is approximated by using 

the Gaussian Quadrature method and the Laplace methods. Both methods produced similar 

results, with minimal differences in the parameter estimates and standard errors. The random 

effect were the clusters.  

 

The type 3 tests of fixed effects for the model fitted using Laplace method in GLMs is given in 

Table 5.1. The F-statistic is used for the significance test for the fixed effects and the p-values 

that correspond show that most of the effects are important in the model that is fitted when tested 

at the 5% level of significance.  

 
 

Type III Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 
Current age of child 4 2718 24.54 <.0001 
Mother’s age 1 2718 11.02 0.0009 
Sex of child 1 2718 0.75 0.3875 
Weight of the child at birth 2 2718 3.34 0.0356 
Currently breastfeeding  1 2718 0 0.9868 
Marital status  1 2718 1.98 0.1591 
Wealth index 2 2718 1.47 0.2295 
 Education attainment 2 2718 3.4 0.0335 
Mothers currently working 1 2718 0.43 0.5105 
Type of place of residence 1 2718 4.64 0.0314 
Region 9 2718 0.8 0.6123 
Number of children living 2 2718 23.72 <.0001 
Birth order number  2 2718 7.11 0.0008 
Child age and currently 
breastfeeding 

4 2718 11.02 <.0001 

 
 

The effect of sex of child, marital status, mothers work status, weight of child at birth,  and 

region are insignificant as p-values are less than 0.05. The two-way interaction between age of 

child and currently breastfeeding was significant at five percent level of significance. Table 5.2 
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shows the type 3 tests of fixed effects for the fitted model using the Laplace method in GLMs for 

2014 DHS data. 

  

 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 
Current age of child 4 2718 24.54 <.0001 
Mother’s age 1 2718 11.02 0.0009 
Sex of child 1 2718 0.75 0.3875 
Weight of the child at birth 2 2718 3.34 0.0356 
Currently breastfeeding  1 2718 0 0.9868 
Marital status  1 2718 1.98 0.1591 
Wealth index 2 2718 1.47 0.2295 
 Education attainment 2 2718 3.4 0.0335 
Mothers currently working 1 2718 0.43 0.5105 
Type of place of residence 1 2718 4.64 0.0314 
Region 9 2718 0.8 0.6123 
Number of children living 2 2718 23.72 <.0001 
Birth order number  2 2718 7.11 0.0008 
Child age and currently 
breastfeeding 

4 2718 11.02 <.0001 

 
 

The F-statistic is used for the significance test for the fixed effects and the corresponding p-

values show that most of the effects are important in the model fitted when tested at the 5% level 

of significance. The effect of sex of child with a p-value equals 0.3875, currently breastfeeding 

with a p-value equals 0.9868, marital status with a p-value equals 0.1591, wealth index with a p-

value equals 0.2295, mothers work status with a p-value equals 0.5105 and region with a p-value 

equals 0.6123 are insignificant as the p-values are greater than 0.05. The two-way interaction 

between age of child and currently breastfeeding (p-value<.0001) was significant at 5%. Table 

5.3 show the odds ratios and the parameter estimates obtained using the  PROC GLIMMIX 

procedure. The results obtained were a bit different from those found using PROC LOGISTIC in 

GLMs. Current age of child and one interaction term are variables that were found to be 

significant in ordinary logistic are not significant in GLMMs. This could be because of including 

random effects in the model.  
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Current age of child was negatively associated with the under 5 child mortality. Mother’s age 

was observed to be significantly associated with child mortality with a p-value <.0001. The odds 

ratio that corresponds was 1.11 with 95 percent confidence interval (1.074-1.146). The sex of 

child was not associated with child mortality with a p-value equals 0.0832. The effect of weight 

of the child that is average and small was observed to be not significantly associated with child 

mortality (p-value=0.7713 and 0.1698). The covariate, currently breastfeeding, was positively 

associated with child mortality with a p-value=<.0001. The OR that corresponds was 3.294 with 

95% confidence interval (1.21-8.97). 

  
Table 5.1: Estimates and odds ratios (OR) with 95% confidence intervals for the fixed effects. 
(2009 DHS DATA ) 

Solutions for fixed effects for 2009 Data 
      95% CI 

Effect  Estimate SE t-val P>t OR Lower Upper 
Intercept -6.8415 0.8067 -8.48 <.0001    
Current age of child (ref. 0)        
1 year -1.7821 0.3632 -4.91 <.0001 0.083 0.054 0.127 

2 years -2.051 0.7312 -2.8 0.0051 0.029 0.013 0.064 

3 years -2.432 0.999 -2.43 0.015 0.019 0.006 0.055 

4 years -4.0007 1.9854 -2.02 0.044 0.004 <0.001 0.036 

Mother’s age 0.1042 0.01654 6.3 <.0001 1.11 1.074 1.146 

Sex of child (ref. Male)        
Female -0.2644 0.1526 -1.73 0.0832 0.768 0.569 1.035 

Weight of the child at birth (ref. Large)       
Average -0.05981 0.2058 -0.29 0.7713 0.942 0.629 1.41 

Small 0.3376 0.2459 1.37 0.1698 1.402 0.865 2.27 

Currently breastfeeding (ref. Yes)       
No 3.2616 0.1978 16.49 <.0001 3.294 1.21 8.97 

Marital status (ref. Not Married)       
Married 0.04747 0.185 0.26 0.7976 1.049 0.73 1.507 

Wealth index (refresh)        
Middle 0.02726 0.2597 0.1 0.9164 1.028 0.618 1.71 

Poor 0.6171 0.235 2.63 0.0087 1.854 1.169 2.939 

Education attainment (ref.Higher Education)       
No Education 1.4473 0.6982 2.07 0.0382 4.252 1.082 16.712 

Up to Secondary Education 1.2327 0.5057 2.44 0.0148 3.431 1.273 9.247 

Mothers currently working (ref. Employed)       
Unemployed -0.2447 0.1649 -1.48 0.1379 0.783 0.567 1.082 

Type of place of residence (ref.Urban)       
Rural 0.7553 0.2697 2.8 0.0051 2.128 1.254 3.611 
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Region (ref. Thaba-Tseka)        
Berea 0.2113 0.3638 0.58 0.5615 1.235 0.605 2.521 

Butha-Bothe 0.4182 0.3634 1.15 0.2499 1.519 0.745 3.098 

Leribe 0.3951 0.3284 1.2 0.229 1.485 0.78 2.826 

Mafeteng 0.8409 0.3373 2.49 0.0127 2.318 1.197 4.491 

Maseru 0.2963 0.3444 0.86 0.3897 1.345 0.685 2.642 

Mohale's Hoek 0.4075 0.3347 1.22 0.2234 1.503 0.78 2.897 

Mokhotlong 0.1416 0.3279 0.43 0.6659 1.152 0.606 2.191 

Qacha's-Nek 0.222 0.371 0.6 0.5497 1.249 0.603 2.584 

Quthing 0.5155 0.3483 1.48 0.1389 1.674 0.846 3.315 

Birth order number (ref. first birth)       
2-4 births 0.7858 0.2683 2.93 0.0034 2.194 1.297 3.713 

>4 births 0.7767 0.4929 1.58 0.1151 2.174 0.827 5.715 

Number of children living (ref. <2 children)       
2-4 children -1.9279 0.2692 -7.16 <.0001 0.145 0.086 0.247 

>4 children -2.2151 0.5054 -4.38 <.0001 0.109 0.041 0.294 

Significant Interactions Effects        
 Current age of child (ref. 0 years) and currently breastfeeding (ref. 
yes)     

1 years and Not Breastfeeding -1.4218 0.4332 -3.28 0.001 0.241279 0.10322 0.56399 

2 years and Not Breastfeeding -2.9931 0.8109 -3.69 0.0002 0.050132 0.01023 0.24568 

 
 
Marital status was not significantly associated with the probability of child mortality with a p-

value equals 0.7976. The odds ratio that corresponds was 1.049 with 95% confidence interval 

(0.73-1.507). The effect of wealth index middle was not significantly associated with the 

probability of child mortality with a p-value equals 0.9164. The odds ratio that corresponds was 

1.028 with 95% confidence interval (0.618-1.71). The effect of wealth index poor was observed 

to be positively associated with the probability of child mortality with a p-value equals 0.0087. 

The odds ratio that corresponds was 1.854 with 95% confidence interval (1.169- 2.939). The 

odds of dying for a child who’s from a poor family were 1.854 times the odds of dying for a 

child who’s from a rich family. The effect of no education was observed to be positively 

associated with child mortality with a p-value equals 0.0382. The odds ratio that corresponds was 

4.252 with 95% confidence interval (1.082-16.712). The odds of dying of a child from a mother 

who has no educations is 4.252 times the odds of dying of a child from a mother with higher 

education. The effect of up to secondary education was positively associated with the probability 

of child mortality with a p-value equals 0.0148. The odds ratio that corresponds was 3.431 with 

95% confidence interval (1.273-9.247). The odds of dying for a child who is from a mother with 
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up to secondary education were 3.431 times the odds of dying for a child who’s from a mother 

with higher education. The effect of type of residence that is rural  was observed to be positively 

associated with child mortality with a p-value equals 0.0051. The odds ratio that corresponds was 

2.128 with 95% confidence interval (1.254 -3.611). The odds of dying for a child who is from a 

rural area were 2.128 times the odds of dying for a child who was from the urban area. 

 

The mother’s employment status was found not significantly associated with the probability of  

child mortality. The effect of Region Mafeteng was the only region significantly associated with  

the probability of child mortality with a p-value equals 0. 0127. The odds ratio that corresponds 

was 2.318 with 95% confidence interval (1.197 -4.491). The odds of dying for a child who was 

from Mafeteng region were 2.318 times the odds of dying for a child who was from Thaba-Tseka 

region. The effect of childbirth order number that is between two and four was significantly 

associated with child mortality with a p-value equals 0.0034. The odds ratio that corresponds was 

2.194 with 95% confidence interval (1.297-3.713). The number of children living within two to 

four and the number of children living which is more than four was negatively associated with 

child mortality (p-value=<.0001). The odds ratios that correspond were 0.145 with 95% 

confidence interval (0.086 ; 0.247) and 0.109 with 95% confidence interval (0.041-0.294) 

respectively. The odds of dying for a child from a mother with two to four children living were 

0.145 times the odds of dying for a child from a mother with less than two children alive. The 

odds of dying for a child from a mother with more than four children alive were 0.109 times the 

odds of dying for a child from a mother with less than 2 children alive.  

 

 

The two-way interaction effects for not breastfeeding and child who is 1 year is negatively 

associated with the child mortality with a p-value equals 0.001. The odds ratio that corresponds 

was 0.2413 and 95% confidence interval (0.1032-0.564). The odds of dying for a child who was 

1 year and from a mother who does not breastfeed was 0.2413 times the odds of dying for a child 

who was 0 year and from a mother who breastfeeds. The two-way interaction effects for 

breastfeeding (“No”) by current age of child 2 year is negatively associated with the child 

mortality with a p-value equals 0.0002.  The odds ratio that corresponds was 0.050 with 95% 

confidence interval(0.0102-0.246). The odds of dying for a child from a mother who does not 
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breastfeed by age of child 2 year was 0.05 times the odds of dying for a child from a mother who 

breastfeeds by age of child 0 year. The two-way interaction effects for not breastfeeding a child 

at age 1 and 2 was not significant and the analysis only shows significant effects for two-way 

interaction. Table 5.4 show the same table results as 5.3 but for the 2014 DHS DATA. The 

results obtained were  

 
Table 5.2: Estimates and odds ratios (OR) with 95% confidence intervals for the fixed effects. (2014 DHS 
DATA) 

 Solutions for fixed effects for 2014 Data 
      95% CI 

Effect  Estimate SE t-val P>t OR Lower Upper 
Intercept -8.0788 1.0382 -7.78 <.0001    
Current age of child (ref. 0)        
1 year -1.816 0.6271 -2.9 0.0038 0.071 0.036 0.14 
2 years -0.2463 0.6735 -0.37 0.7146 0.061 0.027 0.136 
3 years -4.1867 4.641 -0.9 0.3671 0.004 <0.001 0.399 
4 years -10.6499 110.21 -0.1 0.923 <0.001 <0.001 . 
Mother’s age 0.07794 0 ∞ <.0001 1.081 .  
Sex of child (ref. Male)        
Female 0.1872 0.2083 0.9 0.3687 1.206 0.802 1.814 
Weight of the child at birth (ref. Large)        
Average 0.227 0.2848 0.8 0.4254 1.255 0.718 2.193 
Small 0.803 0.3361 2.39 0.0169 2.232 1.155 4.315 
Currently breastfeeding (ref. Yes)        
No 4.0073 0.2813 14.25 <.0001 1.03 <0.001 >999.999 
Marital status (ref. Not Married)        
Married 0.3855 0.2591 1.49 0.1369 1.47 0.885 2.444 
Wealth index (refresh)        
Middle 0.03088 0.308 0.1 0.9201 1.031 0.564 1.887 
Poor 0.4545 0.305 1.49 0.1363 1.575 0.866 2.865 
Education attainment (ref.Higher Education)       
No Education 1.5738 1.2359 1.27 0.203 4.825 0.428 54.44 
Up to Secondary Education 1.4226 0.5325 2.67 0.0076 4.148 1.46 11.784 
Mothers currently working (ref. Employed)       
Unemployed 0.1766 0.2544 0.69 0.4877 1.193 0.725 1.965 
Type of place of residence (ref.Urban)        
Rural 0.6333 0.2956 2.14 0.0322 1.884 1.055 3.364 
Region (ref. Thaba-Tseka)        
Berea 0.2141 0.5051 0.42 0.6716 1.239 0.46 3.335 
Butha-Bothe -0.0598 0.5085 -0.12 0.9064 0.942 0.348 2.553 
Leribe 0.8054 0.4842 1.66 0.0964 2.238 0.866 5.783 
Mafeteng 0.7434 0.513 1.45 0.1474 2.103 0.769 5.75 
Maseru 0.2113 0.4887 0.43 0.6655 1.235 0.474 3.22 
Mohale's Hoek 0.3694 0.4824 0.77 0.4438 1.447 0.562 3.726 
Mokhotlong 0.5744 0.4867 1.18 0.2381 1.776 0.684 4.612 
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Qacha's-Nek 0.4051 0.5611 0.72 0.4703 1.5 0.499 4.506 
Quthing 0.6311 0.5024 1.26 0.2091 1.88 0.702 5.034 
Birth order number (ref. first birth)        
2-4 births 1.2401 0.3583 3.46 0.0005 3.456 1.712 6.978 
>4 births 1.9601 0.6386 3.07 0.0022 7.1 2.03 24.837 
Number of children living (ref. <2 children)       
2-4 children -2.4474 0.3647 -6.71 <.0001 0.087 0.042 0.177 
>4 children -3.2703 0.7004 -4.67 <.0001 0.038 0.01 0.15 

Significant Interactions Effects 
Current age of child (ref. 0 years) and 
currently breastfeeding (ref. yes) 

       

1 years and Not Breastfeeding -1.6644 0.6933 -2.4 0.0164 0.189304 0.048642 0.736731 
2 years and Not Breastfeeding -5.1013 0.8093 -6.3 <.0001 0.006089 0.001246 0.029746 

 

 
the same as those obtained using PROC LOGISTIC in GLMs. The current age of child that is 1 

year was established as negatively associated with the child mortality. Mother’s age was 

significantly associated with child mortality with a p-value=<.0001.The odds ratio that 

corresponds was 1.081. Sex of child was insignificantly associated with child mortality with a p-

value equals 0.3687. The odds ratio that corresponds was 1.206 with 95% confidence interval: 

0.802-1.814. The effect of weight of the child that is average was not significantly associated 

with child mortality with a p-value equals 0.4254. The effect of weight of the child that is small 

was observed as positively associated with child mortality with a p-value equals 0.0169. The 

odds ratio that corresponds was 2.232 with 95% confidence interval (1.155 -4.315). Currently 

breastfeeding was positively associated with child mortality with a p-value=<.0001. The odds 

ratio that corresponds was 1.03. 

 

Marital status was not significantly associated with child mortality with a p-value equals 0.1369. 

The odds ratio that corresponds was 1.47 with 95% confidence interval (0.885-2.444). The effect 

of wealth index middle was found not significantly associated with child mortality with a p-value 

equals 0.9201. The odds ratio that corresponds was 1.031 with 95% confidence interval (0.564-

1.887). The effect of wealth index poor was found not significantly associated with child 

mortality with a p-value equals 0.1363. The odds ratio that corresponds was 1.575 with 95% 

confidence interval (0.866 -2.865). The effect of no education was found not significantly 

associated with child mortality with a p-value equals 0.203. The odds ratio that corresponds was 

4.825 with 95% confidence interval (0.428 -54.44). The effect of up to secondary education was 
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observed as positively associated with child mortality with a p-value equals 0.0076. The odds 

ratio that corresponds was 4.148 with 95% confidence interval (1.46-11.784). The effect of type 

of residence that is rural was positively associated with child mortality with a p-value equals 0. 

0322. The odds ratio that corresponds was 1.884 with 95% confidence interval (1.055 -3.364). 

 

The mother’s employment status was not significantly associated with child mortality. The effect 

of Region was not significantly associated with child mortality. The effect of childbirth order 

number that is between two and four was found to be significantly associated with child 

mortality with a p-value=<0.0001. The odds ratio that corresponds was 2.194 with 95% 

confidence interval (1.297-3.713). The effect of childbirth order number that is between two and 

four was observed as positively associated with child mortality with a p-value equals 0.0005. The 

odds ratio that corresponds was 3.456 with 95% confidence interval (1.712-6.978). The effect of 

childbirth order number that is more than four was observed as positively associated with child 

mortality with a p-value equal s 0.0022. The odds ratio that corresponds was 7.1 with 95% 

confidence interval (2.03 -24.837). 

 

The number of children living within two to four and the number of children living which is 

more than four was observed as negatively associated with child mortality with a p-

value=<.0001. The odds ratios that correspond were 0.087 with 95% CI (0.042 – 0.177) and 

0.038 with 95% confidence interval (0.01-0.15) respectively. The odds of dying for a child from 

a mother with two to four children living were 0.087 times the odds of dying for a child from a 

mother with less than two children alive. The odds of dying for a child from a mother with more 

than four children alive were 0.038 times the odds of dying for a child from a mother with less 

than 2 children alive. 

 

The two-way interaction effects for breastfeeding (“No”) by current age of child 1 year is 

negatively associated with the child mortality with a p-value equals 0.0164. The odds ratio that 

corresponds was 0.1893 with 95% confidence interval (0.0486-0.7367). The odds of dying for a 

child from a mother who does not breastfeed by age of child 1 year was 0.1893 times the odds of 

dying for a child from a mother who breastfeeds by age of child 0 year. The two-way interaction 

effects for breastfeeding (“No”) by current age of child 2 year is negatively associated with the 
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child mortality with a p-value= <. 0001.  The odds ratio that corresponds was 0.0061 with 95% 

confidence interval (0.00125  0.0297). The odds of dying for a child from a mother who does not 

breastfeed by age of child 2 year was 0.0061 times the odds of dying for a child from a mother 

who breastfeeds by age of child 0 year. Figure 5. and Figure 5.2 shows adjusted comparison of 

breastfeeding by current age of child interaction least-square means for multiplicity based on 

2009 and 2014 DHS DATA. The lines that represent the significant difference between the least-

square means of the level of breastfeeding by mother’s age interaction effects are the ones 

centered. The lines that cross the 45-degree line show that the child mortality is not significant 

between corresponding categories.  

 

 

Figure 5.1: Diffogram for breastfeeding by current age of child.(2009 DHS DATA). 

 

Figure 5.2: Diffogram for breastfeeding by current age of child.(2014 DHS DATA). 
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The average of breastfeeding by current age of child interaction effect (on logit scale) is -4.4103 
and -6.5711 as given by Figure 5.3 and Figure 5.4. 

 

Figure 5.3: Analysis of means for breastfeeding by current age of child interaction effects(2009). 

 
Figure 5.4: Analysis of means for breastfeeding by current age of child interaction effects(2014). 
 
From this figure the differences of means of levels with the vertical lines that crosses  95% 

decision limits mean that they are significant. The adjusted comparison of region least-squares 

means for multiplicity are shown in Figure 5.5 and Figure 5.6. All the regions are not significant. 

The average region effect (on logit scale) is -4.5922 and -6.6807, as given in Figure 5.7 and 

Figure 5.8.  
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Figure 5.5: Diffogram for Region effect(2009). 

 

Figure 5.6: Diffogram for Region effect(2014). 
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Figure 5.7: Analysis of means for Region effect(2009). 

 

Figure 5.8: Analysis of means for Region effect(2014). 

 

5.5.2 Summary of Generalized Linear Mixed Models 
 
The study shows that most of these factors are important in explaining the probability of under-

five child mortality. The factors that had an effect are current age of a child, number of children 

living, mother’s age, educational attainment of mother, wealth index, type of place of residence, 

birth order number and breastfeeding. Furthermore, the two-way interaction that is associated 

with the probability of  under-five mortality is breastfeeding by current age of child. The next 

chapter introduces the generalized additive models. 
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Chapter 6 
6 Semi Parametric Regression Approach 

  Introduction 
 

In the previous chapters, the relationship between child mortality and the predictor variables 

have been studied using parametric methods. In these approaches, the functional form of the 

model is assumed known prior to modelling and the interpretation of the parameters is easy. 

However, the parametric methods suffer from bias that is introduced during estimation.   

Therefore there is a need for nonparametric modelling that assumes an unknown functional form 

of the model, before modelling (Härdle et al., 2012). Nonparametric regression is a form of 

regression analysis in which none of the predictors take predetermined functional forms with the 

response but are constructed according to the information derived from the data (Eubank, 1999).  

 

The parametric models do not give a reasonable picture of what is occurring pragmatically 

although they are easy to understand and work with. On the other hand, non-parametric methods 

might represent the data very well but not suited analytically. Therefore, it is advisable to use 

semiparametric models that combine the nonparametric and parametric model. Semiparametric 

models permits you to have a model that is understandable and offers a fair representation of the 

complexity that is involved (Burman & Chaudhuri, 2012; Härdle et al., 2012). The combination 

of parametric and non-parametric methods is much more powerful than using only one of the 

two methods (Bush & MacEachern, 1996). 

 

The regression model that describes the relationship between the response variable and the 

covariates may be written as: 

𝑌𝑌𝑖𝑖 = 𝘧𝘧1(𝑥𝑥1,𝛽𝛽1) + 𝘧𝘧1(𝑥𝑥2,𝛽𝛽2) + 𝜖𝜖                             (6.1) 

 

parameters that need to be estimated are given by 𝛽𝛽1 and 𝛽𝛽2 while the random error term is 𝜖𝜖, 

and 𝘧𝘧1(. ) and 𝘧𝘧2(. ) are functions that explain the relationship. 

A semiparametric model can take many structures. One is a form of regression analysis where 

some of the forms taken by predictors is not predetermined and another takes known forms with 
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the response (Mahmoud, 2019). In the model above,  𝘧𝘧1 may be known and 𝘧𝘧2 is unknown. The 

model can be written as: 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝘧𝘧(𝑥𝑥2) + 𝜖𝜖                             (6.2) 

Single index model (SIM) is another way of modeling semiparametric regression and has a lot of 

applications and is widely studied (Yu & Ruppert, 2002). It takes the form: 

       Y=𝘧𝘧(𝑋𝑋𝑋𝑋) + 𝜖𝜖                                                     (6.3) 

𝘧𝘧 is an unknown function with X = (𝑥𝑥1, . . . , 𝑥𝑥𝑘𝑘) being a n × k matrix of regressors values, 𝜖𝜖 the 

error that satisfies 𝐸𝐸(𝜖𝜖 |X ) and β is a k × 1 vector of parameters.  

 

In comparison to parametric models the Single index model is more flexible. SIM assumes the 

link between the explanatory variables and the mean response is unknown and then estimates it 

non-parametrically (Ahn & Powell, 1993). 

 

This chapter makes practical use of this form of regression in the generalized additive effects 

model (GAM) in identifying the factors associated with the probability of child mortality in 

Lesotho.  

 

  Generalized Additive Models 
 

The generalized additive model (GAM) is an example of the semiparametric regression models. 

It is a generalization of the GLM for modelling non-gaussian data and an extension of the 

nonparametric additive model (Vickers, 2005). The GAM can be applied when dealing with 

standard continuous response regression, count data, dichotomous response, survival data and 

time series data (Guisan et al., 2002). GAMs are appropriate for exploring the data set and 

visualizing the relationship between the dependent and independent variables (Liu, 2008).  

 

The logistic regression models the effects of covariates 𝑥𝑥𝑗𝑗 in terms of the linear predictor of the 

form ∑𝑥𝑥𝑗𝑗𝛽𝛽𝑗𝑗 where the 𝛽𝛽𝑗𝑗 are the model parameters. The generalized additive models generalize 

the GLMs by replacing  ∑𝑥𝑥𝑗𝑗𝛽𝛽𝑗𝑗 with ∑𝘴𝘴𝑗𝑗�𝑥𝑥𝑗𝑗� where 𝘴𝘴𝑗𝑗 is unspecified (nonparametric) function. 

GAMs originally developed by (Hastie & Tibshirani, 1990) are semi-parametric extensions of 
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GLMs; they rely on the assumption that functions are additive and that added components are 

smooth. This function is estimated in a flexible manner using a cubic smoother (Hastie & 

Tibshirani, 1990). The robustness of GAMs is the ability to handle non-linear and non-

monotonic association between dependent and independent variables (Guisan et al., 2002). 

 

6.2.1  Additive Models 

 

The linear regression model assumes the expected value of  the response variable Y has a linear 

form the following type. 

𝐸𝐸(𝑌𝑌) = 𝘧𝘧�𝑋𝑋1, . . . . . ,𝑋𝑋𝘱𝘱� = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1+. . . +𝛽𝛽𝘱𝘱𝑋𝑋𝘱𝘱                 (6.4) 

 

Considering a sample of values for X and Y, estimates of 𝛽𝛽0,𝛽𝛽1, . . . ,𝛽𝛽𝑝𝑝 are found by the least 

square method. The additive model generalizes the linear model by modeling the expected value 

of Y as: 

𝐸𝐸(𝑌𝑌) = 𝘧𝘧�𝑋𝑋1, . . . . . ,𝑋𝑋𝘱𝘱� = 𝘴𝘴0 + 𝘴𝘴1(𝑋𝑋1)+. . . +𝘴𝘴𝘱𝘱�𝑋𝑋𝘱𝘱�                  (6.5) 

 

where 𝘴𝘴𝑖𝑖(𝑋𝑋), 𝑖𝑖 = 1,2, …, 𝘱𝘱 are smooth functions. The most used method for estimating the 

GAMs is the backfitting algorithm. It enables one to fit the additive model using any of the 

regression fitting mechanisms (Binder & Tutz, 2008). To obtain the best fit model for the data, 

one needs to find an approximate estimate of the smooth function (Silverman, 1985) .This is 

usually the main concern in additive regression and hence the estimate can be obtained through 

smoothing. We first look at the methodology before we consider the form of the logistic 

regression in the GAMs models setting. 

 

  Smoothing  
6.3.1  What is a Smoother? 
 

A  tool that gives a summary of the trend of a response measurement Y as a function of 

predictor measurements X1, X2; . . . ; Xp is called a smoother. It gives an estimate of the trend that 

is less variable than Y.  The most crucial attribute of smoother is its non-parametric nature. The 
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estimate produced by a smother is a smooth (Liu, 2008; Wood et al., 2016) and doesn’t assume 

an inflexible form for the dependence of Y on X1, X2; . . . ; Xp. 

 

6.3.2  Cubic Smoothing Splines 
 

First consider the simplest smooth function, where the model comprises of one smooth function 

of one covariate: 

𝑌𝑌𝑖𝑖=𝘚𝘚(𝑥𝑥𝑖𝑖)+𝜖𝜖𝑖𝑖                                                     (6.6) 

 

where 𝑌𝑌𝑖𝑖 is the response variable, 𝑥𝑥𝑖𝑖 is the covariate, 𝘚𝘚(. ) is the smooth function and 𝜖𝜖𝑖𝑖 are the 

error terms such that 𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2) (Rice & Rosenblatt, 1983). 

 

𝘚𝘚(𝑥𝑥𝑖𝑖) defines the regression function of y on 𝑥𝑥,  a nonparametric smooth function that must be 

estimated. To minimize the penalized sum of squares (PSS) is the optimization problem and is 

stated in this below: 

∑  �𝑦𝑦𝑖𝑖 − 𝘚𝘚(𝑥𝑥𝑖𝑖)�
2 + 𝜆𝜆 ∫ [𝘚𝘚′′(𝑥𝑥)]2𝑏𝑏

𝑎𝑎 𝑑𝑑𝑑𝑑                                 (6.7) 

 

the fixed constant is λ, and 𝑎𝑎 ≤ 𝑥𝑥1 ≤. . .≤ 𝑥𝑥𝑛𝑛 ≤ 𝑏𝑏. It is assumed (𝑎𝑎, 𝑏𝑏) includes all possible range 

(Rice & Rosenblatt, 1983; Silverman, 1984). 

 

The smoothing parameter is defined by λ and it controls the trade-off between the curve 

smoothness and proximity to the values of y.  This is usually estimated by restricted marginal 

likelihood which exploits the link between Bayesian estimation and spline smoothing or by 

GCV. Notice that when λ→ 0 (no smoothing), the solution is an interpolating function and  as 

λ→ ∞ (infinite smoothing), the estimate converges to a linear least square estimate (Friedman & 

Stuetzle, 1982; Pollock, 1993). 

 

Cubic smoothing splines in a simple setting is described below. Suppose that we have a 

scatterplot of points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) shown in Figure 6.1. 
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Figure 6.1 displays a scatterplot of an outcome that measures y by plotting it against an 

independent variables x. In Figure 6.2, the least square method was used to fit the straight line. In 

Figure 6.3, to describe the trend of y on x ,a cubic spline is added on. The cubic smoothing spline 

describes the trend of y as a function of x better compared to the LS method (Liu, 2008). 

 

 Choosing Smoothing Parameters λ 

 

It is crucial to select a smoothing parameter wisely in order to minimize cubic spline smoother 

under consideration. The key in this selection process is choosing how much smoothing to do. 

This is no different than when you specify different parametric forms for an explanatory 

variable, in that one is trying to specify the correct functional form.  If the smoothing parameter 

is much bigger, then the data will be over smoothed, but if it is too low then the data will be 

under smoothed (Hurvich et al., 1998). There are other useful approaches when the scale 

parameter is known than trying to minimize expected mean square error which results into 

estimation by Un-Biased Risk Estimation. Attempting to minimize the prediction error when the 

scale parameter is unknown leads to ordinary cross validation or generalized cross validation 

(Hall & Titterington, 1987). 

 
6.4.1  Average Mean Square and Predictive Square Error 
 

We must select the smoothing parameter, λ, in order to minimize the cubic spline smoother. For 

this, we don’t need to minimize the Mean Square Error at each covariate 𝑥𝑥𝑖𝑖, but instead we must 

put attention on a global measure such as Average Mean Square Error (AMSE) (Wood, 2000). 

The average mean square error is given by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆) = 1
𝑛𝑛
∑  �𝘚𝘚�𝜆𝜆(𝑥𝑥𝑖𝑖) − 𝘚𝘚(𝑥𝑥𝑖𝑖)�

2𝑛𝑛
𝑖𝑖=1                              (6.8) 

where 𝑌𝑌𝑖𝑖=𝘚𝘚(𝑥𝑥𝑖𝑖)+𝜖𝜖𝑖𝑖 and 𝘚𝘚�𝜆𝜆(𝑥𝑥𝑖𝑖) is an estimator of 𝘚𝘚(𝑥𝑥). The Average Predictive Square Error 

(PSE) differs from AMSE by only a constant function, σ. The APSE is given by: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆(𝜆𝜆) = 1
𝑛𝑛

 ∑ �𝑌𝑌∗𝑖𝑖 − 𝘚𝘚�𝜆𝜆(𝑥𝑥𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1                                       (6.9) 
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where 𝑌𝑌∗𝑖𝑖 is a new observation at 𝑥𝑥𝑖𝑖, that is 𝑌𝑌∗𝑖𝑖= 𝘚𝘚(𝑥𝑥𝑖𝑖)+𝜖𝜖∗𝑖𝑖 , 𝜖𝜖∗𝑖𝑖 is independent of 𝜖𝜖𝑖𝑖′𝑠𝑠, and 

𝐸𝐸(𝜖𝜖∗𝑖𝑖)=0 (Hoover et al., 1998; Liu, 2008). 

 

6.4.2 Cross Validation(CV) 

 

Cross-Validation is a statistical approach of partitioning a sample of data into two subsets. This 

method is inefficient unless the sample is large (Picard & Cook, 1984). The whole idea behind 

cross-validation is recycling data by exchanging the roles of training and test samples in cross 

validation. We are more interested in the (LOOCV)Leave-one-out Cross-Validation for 

simplification of the data set (Wang, 2012). This works by dropping the point (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) out one by 

one as the testing set and approximating the smooth at 𝑥𝑥𝑖𝑖 depending on the remaining 𝑛𝑛-1 points 

(Hastie & Tibshirani, 1987). The CV can be used in selecting λ by minimizing: 

𝐶𝐶𝐶𝐶(𝜆𝜆) = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖 − 𝘚𝘚�𝜆𝜆

−𝑖𝑖(𝑥𝑥𝑖𝑖)�
2

𝑛𝑛
𝑖𝑖=1                                                (6.10) 

where, 𝘚𝘚�𝜆𝜆
−𝑖𝑖(𝑥𝑥𝑖𝑖) illustrates the fit at 𝑥𝑥𝑖𝑖 which is calculated by leaving out the 𝑖𝑖𝑡𝑡ℎ data point. 

Minimizing 𝐶𝐶𝐶𝐶(𝜆𝜆) is equivalent to minimizing 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆(𝜆𝜆), we can use 𝐶𝐶𝐶𝐶(𝜆𝜆) for smoothing 

selection (Wood, 2006; Xiang & Wahba, 1996). 

 

6.4.3 Generalized Cross Validation(GCV) 

 

The Generalized Cross Validation is another method of selecting λ (Golub et al., 1979). This 

approach has been used widely in a lot of nonparametric regression approaches as a point of 

reference to select the smoothing parameters (Marcotte, 1995). The Generalized Cross 

Validation function approximates the expected prediction error. The model with the best 

prediction ability is deduced by the model selected by the GCV function (Efron, 2004). 
 

This method is complex to compute but previous literatures have discussed in detail the algebra 

for this approach (Alvarez Meza et al., 2012; Liu, 2008). The GCV is given by: 

𝐺𝐺𝐺𝐺𝐺𝐺(𝜆𝜆)=
1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝘚𝘚

�𝜆𝜆(𝑥𝑥𝑖𝑖)
1−𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛

�
2

𝑛𝑛
𝑖𝑖=1                                                            (6.11) 
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GCV is a weighted version of CV (Golub et al., 1979). 

 

6.4.4 Degrees of Freedom of a Smoother 
 

Using degrees of freedom is another way of expressing the smoothness that’s required of the 

function other than in terms of smoothing parameter. The degrees of freedom of a smoother 

df(smoother), other times referred to as the effective number of parameters, indicates the amount 

of smoothing (Buja et al., 1989; Wood et al., 2016). With a linear smoother given by 𝘚𝘚𝜆𝜆, the 

degrees of freedom df  is defined as df(smoother)=tr( 𝘚𝘚𝜆𝜆). The smoothing parameter is the crucial 

determining factor of the degrees of freedom. More smoothing means higher span or fewer 

df(smoother). The df(smoother) doesn’t have to be an integer. 

 

In SAS procedure, one can select the value of a smoothing parameter through stating the degrees 

of freedom of a smoother. This indicates the amount of smoothing. Fewer degrees of freedom of 

the smoother result when there is more the smoothing (Liu, 2008).  

 

The proc GAM applies thin-plate smoothing spline for bivariate smoothing components and 

applies the local regression methods and B-spline for univariate smoothing components. The 

GAM procedure automatically chooses the smoothing parameter by GCV as the model chosen 

by the GCV function is considered to have the best ability to do prediction. 

 

  Fitting the Generalized Additive Models 
 

The general method of fitting additive models will be outlined in this section. The two major 

pieces are the back-fitting and local scoring algorithms. The GAMs framework is based on back-

fitting with linear smoothers, there are limitations because of the difficulty that results in back-

fitting in the selection of a model and inference.  
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“The back-fitting algorithm cycles through the individual terms in the additive model and 

updates each using an appropriate smoother. This is done by smoothing partial residual that are 

suitably defined” (Buja et al., 1989). The local scoring algorithm is similar to the Iterative 

Reweighted Least Squares used to fit GLM or the Fisher-scoring algorithm. Each iteration gives 

a new working response and weights, which are handed to a weighted back-fitting algorithm, 

which yields a new additive predictor. There are many other ways to approach estimating the 

additive models. “The back-fitting algorithm is one that can generally fit an additive model with 

any regression-type fitting mechanisms” (Buja et al., 1989; Jain et al., 2017). 

 

6.5.1  Back-fitting Algorithm 

 

Define the partial residuals as 

𝑅𝑅𝑘𝑘 = 𝑌𝑌 − 𝘚𝘚0 − ∑ 𝘚𝘚𝑗𝑗�𝑥𝑥𝑗𝑗�𝑗𝑗≠𝑘𝑘                                                                                             (6.12) 

 

Then 𝐸𝐸(𝑅𝑅𝑘𝑘/𝑥𝑥𝑘𝑘) = 𝘚𝘚𝑘𝑘(𝑥𝑥𝑘𝑘). This observation gives us a way for estimating each smoothing 

function 𝘚𝘚𝑘𝑘(. ). With an observation (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) , a criterion like the penalized sum of squares can be 

stated for this problem, which is 

∑ �𝑦𝑦𝑘𝑘 − 𝘚𝘚0 − 𝘚𝘚𝑘𝑘(𝑥𝑥𝑘𝑘)�2𝘱𝘱
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘 ∫[𝘚𝘚𝑘𝑘′′(𝑡𝑡𝑘𝑘)]2 𝑑𝑑𝑑𝑑𝑘𝑘

𝘱𝘱
𝑘𝑘=1                           (6.13) 

 
The iterative procedure that results is called the back-fitting algorithm (Friedman & Stuetzle, 

1981). The formulae that follows is from (Hastie & Tibshirani, 1987; Hastie & Tibshirani, 1990). 

 

The unweighted form of the back-fitting algorithm is: 

1. Initialize:  

𝘚𝘚0 = 𝐸𝐸(𝑌𝑌).  

 𝘚𝘚11 =  𝘚𝘚21 = . . . . =  𝘚𝘚𝘱𝘱1 = 0;  m= 0 

2. Iterate: 

m = 𝑚𝑚 + 1 ;  

for 𝑗𝑗 = 1 to 𝘱𝘱.  
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 Find: 

𝑅𝑅𝑗𝑗 = 𝑌𝑌 − 𝘚𝘚0 − ∑ 𝘚𝘚𝑘𝑘𝑚𝑚(𝑥𝑥𝑘𝑘)𝑗𝑗−1
𝑘𝑘=1 − ∑ 𝘚𝘚𝑘𝑘𝑚𝑚−1(𝑥𝑥𝑘𝑘)𝘱𝘱

𝑘𝑘=𝑗𝑗+1  ;  

 

𝘚𝘚𝑗𝑗𝑚𝑚 = 𝐸𝐸�𝑅𝑅𝑗𝑗|𝑥𝑥𝑗𝑗� 

 

3. Calculate: 

RSS =  1
𝑛𝑛
�𝑦𝑦 − 𝘚𝘚0 − ∑ 𝘚𝘚𝑗𝑗𝑚𝑚�𝑥𝑥𝑗𝑗�

𝘱𝘱
𝑗𝑗=1 �

2
 

 

Until the convergence criterion is reached or fails to decrease. 𝘚𝘚𝑗𝑗𝑚𝑚(. ),  denotes the estimate 𝘚𝘚𝑗𝑗(. ) at 

the mth iteration. With many smoothers, RSS does not get any larger at any step. This means that the 

algorithm will always converge.(Hastie & Tibshirani, 1987; Hilbe, 1993; Xiang, 2001). 

 

6.5.2  The General Local Scoring Algorithm 
 

1. Initialise:  

𝘚𝘚𝑖𝑖 = 𝑔𝑔�𝐸𝐸(𝑦𝑦)� ; 𝘚𝘚10 = 𝘚𝘚20 = . . . =  𝘚𝘚𝘱𝘱0 = 0, 𝑚𝑚 = 0 

2. Iterate:  

m = 𝑚𝑚 + 1;     

Form the weights w, mean µ, predictor ƞ, and the adjusted dependent variable: 

𝑍𝑍𝑖𝑖 = ƞ𝑖𝑖 + (𝑦𝑦𝑖𝑖 − µ𝑖𝑖) �
𝑑𝑑ƞ𝑖𝑖
𝑑𝑑µ𝑖𝑖

� 

here,      ƞ𝑚𝑚−1 = 𝘚𝘚0 + ∑ 𝘚𝘚𝑗𝑗𝑚𝑚−1�𝑥𝑥𝑖𝑖𝑖𝑖�
𝘱𝘱
𝑗𝑗=1  

therefore ƞ𝑚𝑚−1 = 𝑔𝑔(µ𝑚𝑚−1) 

thus 

 µ𝑚𝑚−1 = 𝑔𝑔−1(ƞ𝑖𝑖) 

construct weights 
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𝑤𝑤𝑖𝑖 = �
𝑑𝑑ƞ𝑖𝑖

𝑚𝑚−1

𝑑𝑑µ𝑖𝑖
𝑚𝑚−1�

2

𝑉𝑉𝑖𝑖−1 

where  𝑉𝑉𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑌𝑌𝑖𝑖). Using the back-fitting algorithm with weights w, fit a weighted additive 

model to 𝑍𝑍𝑖𝑖 to get an estimated function 𝘚𝘚𝑗𝑗𝑚𝑚, additive predictor ƞ𝑚𝑚, and fitted value µ𝑖𝑖𝑚𝑚 = 𝘱𝘱𝑖𝑖. 

3. Until: Repeat until the deviance fails to decline or the convergence criterion is satisfied.  

The following condition is used in the GAM procedure as the convergence criterion for local 

scoring: 

∑ 𝑤𝑤𝑖𝑖 ∑  �𝘚𝘚𝑗𝑗𝑚𝑚−1�𝑥𝑥𝑖𝑖𝑖𝑖� − 𝘚𝘚𝑗𝑗𝑚𝑚�𝑥𝑥𝑖𝑖𝑖𝑖��
2𝘱𝘱

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖 ∑  �1 + 𝘚𝘚𝑗𝑗𝑚𝑚−1�𝑥𝑥𝑖𝑖𝑖𝑖��
2𝘱𝘱

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

≤∊𝑠𝑠 

where  ∊𝑠𝑠= 10−8 by default (Hastie & Tibshirani, 1987). 

Provided the initial estimations of ƞ(𝑥𝑥) , a first order Taylor series expansion with the fisher 

scoring method, will result in the estimate of: 

ƞ𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = ƞ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥) +  𝛿𝛿                                                         (6.14) 

 

𝛿𝛿 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 

=

𝑑𝑑𝑑𝑑
𝑑𝑑ƞ

𝐸𝐸 �−𝑑𝑑
2𝐿𝐿
𝑑𝑑ƞ2 /𝑥𝑥�

 

= 𝐸𝐸 �ƞ(𝑥𝑥) −
𝑑𝑑𝑑𝑑
𝑑𝑑ƞ

𝐸𝐸�−𝑑𝑑
2𝐿𝐿

𝑑𝑑ƞ2
/𝑥𝑥�

/𝑥𝑥�                                (6.15) 

Using the chain rule: 

𝑑𝑑𝑑𝑑
𝑑𝑑ƞ

=
𝑑𝑑𝑑𝑑
𝑑𝑑µ

 ∙
𝑑𝑑µ
𝑑𝑑ƞ

 

𝐿𝐿 = 𝑙𝑙𝑙𝑙� µ𝑖𝑖𝑦𝑦𝑖𝑖(1 − µ𝑖𝑖)1−𝑦𝑦𝑖𝑖
𝘱𝘱

𝑖𝑖=1
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𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇𝑖𝑖

= 𝜇𝜇𝑖𝑖 ∙
1
𝜇𝜇𝑖𝑖

+ (1 − 𝑦𝑦𝑖𝑖)
−1

1 − µ𝑖𝑖
 

= (1−𝜇𝜇𝑖𝑖)𝜇𝜇𝑖𝑖−𝜇𝜇𝑖𝑖(1−𝑦𝑦𝑖𝑖)
𝜇𝜇𝑖𝑖(1−𝜇𝜇𝑖𝑖)

= 𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖
(1−𝜇𝜇𝑖𝑖)𝜇𝜇𝑖𝑖

                                         (6.16) 

Since 𝑣𝑣𝑣𝑣𝑣𝑣(𝑌𝑌𝑖𝑖) = 𝐸𝐸�𝑌𝑌𝑖𝑖2� − �𝐸𝐸(𝑌𝑌𝑖𝑖)�
2 = 12𝜇𝜇𝑖𝑖 + 02(1 − 𝜇𝜇𝑖𝑖)(−𝜇𝜇𝑖𝑖) = 𝜇𝜇𝑖𝑖(1 − 𝜇𝜇𝑖𝑖) 

So,  
𝑑𝑑𝑑𝑑
𝑑𝑑ƞ

=
𝑑𝑑𝑑𝑑
𝑑𝑑µ

 ∙
𝑑𝑑µ
𝑑𝑑ƞ

 

𝑑𝑑𝑑𝑑
𝑑𝑑ƞ

= (𝑦𝑦 − µ) ∙ 𝑉𝑉−1 ∙
𝑑𝑑µ
𝑑𝑑ƞ

 

𝑑𝑑2𝐿𝐿
𝑑𝑑ƞ2

= (𝑦𝑦 − µ) ∙
𝑑𝑑
𝑑𝑑ƞ

∙ �𝑉𝑉−1
𝑑𝑑µ
𝑑𝑑ƞ�

− �
𝑑𝑑µ
𝑑𝑑ƞ�

2

𝑉𝑉−1 

And therefore, 

𝐸𝐸 �
𝑑𝑑2𝐿𝐿
𝑑𝑑ƞ2

/𝑥𝑥� = −�
𝑑𝑑µ
𝑑𝑑ƞ�

2

𝑉𝑉−1 

ƞ𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) =  𝐸𝐸 �ƞ(𝑥𝑥) + (𝑦𝑦 − µ) ∙ 𝑑𝑑ƞ
𝑑𝑑µ

/𝑥𝑥�                                         (6.17) 

Then replace the conditional estimations by smoothers 

ƞ𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 �ƞ(𝑥𝑥) + (𝑦𝑦 − µ) ∙ 𝑑𝑑ƞ
𝑑𝑑µ

/𝑥𝑥�                             (6.18) 

 

 

 Spline Bases and Penalties  
 

The penalized spline smoothing goes back to O’Sullivan in 1986, but it was (Eilers & Marx, 

1996) who first introduced the combination of difference penalties called P-splines and B-splines 

(Wand & Ormerod, 2008).  The term B-spline is abbreviated for basis spline and was created by 

Isaac Jacob Schoenberg (Al-Rawi et al., 2010). A B-spline of order n is a piecewise polynomial 

function of degree n-1 in a variable x. Knots is the place where the pieces meet. Spline functions 
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and their derivatives could be continuous, depending on the multiplicities of the knots (De Boor 

et al., 1978). B-splines can have the same subset of their knots, but two B-splines are equal when 

specified over the same knots as a B-spline is uniquely defined by its knots. 

 

“The B-spline of degree q contains q + 1 polynomial pieces of each of degree q;  the polynomial 

pieces come together at q inner knots. At the joining points , the derivatives up to order q − 1 are 

continuous. The B-spline is positive on a domain spanned by q + 2 knots; everywhere else is 

zero except at the boundaries where it overlaps with 2q polynomial pieces of its neighbors. For 

given x, q + 1 B-splines are non-zero” (Marx & Eilers, 1998). The concluding form of the curve 

generated by a B-spline of degree q is given by 

𝑆𝑆(𝑥𝑥) = ∑ 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖,𝑞𝑞(𝑥𝑥)𝑛𝑛
𝑖𝑖=1                                                                  (6.19) 

 

where, n, is the total number of B-spline basis being used. When the data is being interpolated, 

estimation of the curve is done with the least squares to obtain the optimum values of the control 

points. Using 𝑦𝑦𝑗𝑗 as the observed data, the objective function that is minimized is: 

 

𝑆𝑆 = ∑ �𝑦𝑦𝑗𝑗  − ∑ 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖,𝑞𝑞�𝑥𝑥𝑗𝑗�𝐼𝐼
𝑖𝑖=1 �2𝑛𝑛

𝑗𝑗=1                                                           (6.19) 

 

where 𝐵𝐵𝑖𝑖,𝑞𝑞�𝑥𝑥𝑗𝑗� is the value of the B-spline q at 𝑥𝑥𝑗𝑗,  ∑ 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖,𝑞𝑞�𝑥𝑥𝑗𝑗�𝐼𝐼
𝑖𝑖=1   is the sum of B-splines 

(Price, 2018). 

 

P-spline is abbreviation for penalized B-spline and refers to using the B-spline representation 

where the coefficients are established partly by the data that will be fitted, and partially by an 

additional penalty function that targets to force smoothness to prevent overfitting. P-splines have 

been established by (Eilers & Marx, 1996) building up on B-splines. “The B-spline basis 

functions are strictly local, so each basis function is only non-zero over the intervals between 

m+3 adjacent knots, where m+1 is the order of the basis” (Wood, 2017). A spline of order m + 1 

is written as 

 

https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Penalty_function
https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Overfitting
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𝑆𝑆(𝑥𝑥) = ∑ 𝛽𝛽𝑖𝑖
𝑚𝑚(𝑥𝑥)𝛽𝛽𝑖𝑖𝑘𝑘

𝑖𝑖=1                                                                           (6.20) 

where,  

𝛽𝛽𝑖𝑖
𝑚𝑚(𝑥𝑥) = 𝑥𝑥−𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖+𝑚𝑚+1−𝑥𝑥𝑖𝑖
𝛽𝛽𝑖𝑖
𝑚𝑚−1(𝑥𝑥) + 𝑥𝑥𝑖𝑖+𝑚𝑚+2−𝑥𝑥

𝑥𝑥𝑖𝑖+𝑚𝑚+2−𝑥𝑥𝑖𝑖+1
𝛽𝛽𝑖𝑖+1

𝑚𝑚−1(𝑥𝑥)                         (6.21) 

where, 𝑖𝑖=1, …, k   and 

𝛽𝛽𝑖𝑖
−1(𝑥𝑥) = �1    𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖+1

0         otherwise                                                                        (6.22) 

The penalty function is described as the squared difference between adjacent 𝛽𝛽𝑖𝑖  values. 

 

𝑃𝑃 = ∑ (𝛽𝛽𝑖𝑖+1 − 𝑏𝑏𝑖𝑖)2𝑘𝑘−1
𝑖𝑖=1                                                                                      (6.23) 

P-splines are simple to set up and enables a decent amount of flexibility by the ability to combine 

any order of penalty with any order of B-spline basis. There are others spline such as cubic 

regression spline , cyclic cubic regression spline, thin plate regression spline (Claeskens et al., 

2009; Eilers & Marx, 2010; Welham et al., 2007). 

 

  P-IRLS (Penalized Iteratively Re-Weighted Least Squares) 
 

The estimation of  generalized additive model involves the estimation of the smoothing 

parameters and obtaining the model coefficients of the maximum penalized likelihood function. 

The choice of the basis function and the smoothing parameter is central in GAM estimation 

(Marra & Wood, 2012). The smooth terms are now represented as a linear combination of the 

basis function, 𝑏𝑏𝑗𝑗𝑗𝑗, and the unknown regression parameters, 𝛽𝛽𝑗𝑗𝑗𝑗: 

 

𝑓𝑓𝑗𝑗�𝑥𝑥𝑗𝑗� = ∑ 𝛽𝛽𝑗𝑗𝑗𝑗𝑏𝑏𝑗𝑗𝑗𝑗�𝑥𝑥𝑗𝑗�
𝑞𝑞𝑞𝑞
𝑘𝑘=1                                                                            (6.24) 

 

where 𝑥𝑥𝑗𝑗  can be a vector and the 𝑏𝑏𝑗𝑗𝑗𝑗 are the coefficients of the smooth to be estimated. 

Substituting each smooth term 𝑓𝑓𝑗𝑗�𝑥𝑥𝑗𝑗� , by their bases  then the GAM can now be written as: 

 

𝑔𝑔�µ𝑗𝑗� = ƞ𝑗𝑗 = 𝑿𝑿𝒋𝒋𝜷𝜷                                                                     (6.25) 
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where 𝑿𝑿𝒋𝒋 = 𝑏𝑏𝑗𝑗𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗�. We can compose the likelihood 𝑙𝑙𝑝𝑝𝛽𝛽 to estimate the model. GAMs are 

approximated by penalized likelihood maximization because estimating by ordinary maximum 

likelihood can cause overfitting (Wood, 2006). The penalized likelihood function can be stated 

as: 

𝑙𝑙𝑝𝑝(𝛽𝛽) = 𝑙𝑙(𝛽𝛽) −
1
2
�𝜆𝜆𝑗𝑗  𝑙𝑙(𝛽𝛽) −

1
2
�𝜆𝜆𝑗𝑗 𝛽𝛽′𝑆𝑆𝑗𝑗 𝛽𝛽
𝑝𝑝

𝑗𝑗=1

𝑝𝑝

𝑗𝑗=1

 

=  𝑙𝑙(𝛽𝛽) − 1

2
  𝛽𝛽′𝑆𝑆 𝛽𝛽                                                                        (6.26) 

 

where  𝑆𝑆 = ∑ 𝜆𝜆𝑗𝑗𝑆𝑆𝑗𝑗
𝑝𝑝
𝑗𝑗=1  and 𝜆𝜆𝑗𝑗 are the smoothing parameters assumed to be known, controlling the 

tradeoff between goodness of fit of the model smoothness (Antoniadis et al., 2011). To maximize  

𝑙𝑙𝑝𝑝 we set derivatives with respect to 𝛽𝛽𝑗𝑗 to zero: 
𝜕𝜕𝑙𝑙𝑝𝑝
𝜕𝜕𝛽𝛽𝑗𝑗

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑗𝑗

− [𝑆𝑆𝑆𝑆]𝑗𝑗 = 1
𝜙𝜙
∑ 𝑦𝑦𝑖𝑖−µ𝑖𝑖

𝑉𝑉(µ𝑖𝑖)
𝜕𝜕µ𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑖𝑖=1 − [𝑆𝑆𝑆𝑆]𝑗𝑗 = 0                                (6.27) 

where, [. ]𝑗𝑗 denotes the 𝑗𝑗𝘵𝘵𝘵𝘵 row of a vector. These equations are the same as those that would be 

solved to maximize the penalized nonlinear least squares problem: 

𝑆𝑆𝑝𝑝 = ∑ (𝑦𝑦𝑖𝑖−µ𝑖𝑖)2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖)
 +𝑛𝑛

𝑖𝑖=1   𝛽𝛽′𝑆𝑆 𝛽𝛽                                                                    (6.28) 

 

where, µ𝑖𝑖  depends non-linearly on 𝛽𝛽 and assuming 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖) terms are known. To solve these 

equations, the iterative method is required. It can be shown that in the proximity of a certain 

coefficient vector estimate 𝛽̂𝛽[𝑘𝑘].  

𝑆𝑆𝑝𝑝 ≃ ��𝜔𝜔[𝑘𝑘]�𝑧𝑧[𝑘𝑘] − 𝑥𝑥𝑥𝑥��
2

+  𝛽𝛽′𝑆𝑆 𝛽𝛽                                                (6.29) 

 

Given a model's link function g, 𝑧𝑧[𝑘𝑘] is a vector of pseudo-data and 𝜔𝜔[𝑘𝑘] is a diagonal matrix, W 

has diagonal elements 𝜔𝜔𝑖𝑖
[𝑘𝑘] = 1

𝑉𝑉�µ𝑖𝑖[𝑘𝑘]�𝑔𝑔′�µ𝑖𝑖[𝑘𝑘]�
2 and the pseudo-data is defined as  

 

𝑧𝑧𝑖𝑖[𝑘𝑘] = 𝑔𝑔′�µ[𝑘𝑘]��𝑦𝑦𝑖𝑖 − µ𝑖𝑖[𝑘𝑘]� +   𝑋𝑋𝑖𝑖 𝛽̂𝛽[𝑘𝑘]                                                   (6.30) 
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where 𝑧𝑧𝑘𝑘is a vector of pseudo-data with elements 𝑧𝑧𝑖𝑖[𝑘𝑘] and g is the model link function. Taking 

the assumption that smoothing parameters are known, the maximum penalized likelihood 

estimates, 𝛽̂𝛽, can be estimated by repeating the two steps below to convergence: 

Step 1: Use current 𝛽𝛽𝑘𝑘, calculate the pseudo-data 𝑧𝑧[𝑘𝑘] and 𝜔𝜔𝑖𝑖
[𝑘𝑘]. 

Step 2: Minimize equation 6.29 with respect to 𝛽𝛽, to find 𝛽̂𝛽[𝑘𝑘+1]. Calculate the linear predictor 

ɳ[𝑘𝑘+1] = 𝑋𝑋𝛽𝛽[𝑘𝑘+1] and fitted values µ𝑖𝑖[𝑘𝑘+1] = 𝑔𝑔−1�ɳ𝑖𝑖[𝑘𝑘−1]�. After each iteration, we obtain new 

values of the coefficients µ and 𝛽𝛽; and update the weights 𝜔𝜔𝑖𝑖 and pseudo data 𝑧𝑧𝑖𝑖. This Iteration is 

repeated until convergence (Wood, 2006). 

 

  Generalized Additive Logistic Regression Model and Application 
 

The GAMs substitute the linear predictor with an additive predictor. GAMs doesn’t take into 

consideration the assumption of linearity and allows you to reveal relationships between the 

independent and dependent variable that might be overlooked (Brockett et al., 2014). The GAM 

logistic model is given by 

𝜋𝜋(𝑥𝑥) =
𝑒𝑒𝑒𝑒𝑒𝑒�𝑆𝑆0+∑ 𝑆𝑆𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖�

𝑝𝑝
𝑗𝑗=1 �

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑆𝑆0+∑ 𝑆𝑆𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑝𝑝
𝑗𝑗=1 �

                                                  (6.31) 

The GAM is used to fit the DHS dataset to determine the factors associated with child mortality 

in Lesotho. The previous chapters applied the parametric methods of logistic regression, survey 

logistic regression and the GLMM. GAMs combine both features of parametric and non-

parametric regression hence the term, semi-parametric regression (Liu, 2008). The semi-

parametric logistic model is written as 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋(𝑥𝑥)� = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑝𝑝
𝑗𝑗=1 + ∑ 𝑆𝑆𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖�

𝑞𝑞
𝑗𝑗=𝑝𝑝+1                        (6.32) 

 

  Fitting the GAM Model using the GAM PROC 
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“The generalized additive models fitted by the GAM procedure combine an assumption of 

additivity” (Stone, 1985) that allows a lot of nonparametric relationships to be considered at the 

same time and the distributional flexibility of GLMs (Nelder & Wedderburn, 1972). 

PROC GAM gives a lot of flexibility in modeling the predictor and response relationships. For 

predictors in regression models, the additive models assume nonparametric smoothing splines 

(Cai, 2008). “Generalized linear models make the assumption that dependent variable depends 

on additive predictors through a monotonic nonlinear link function specified by a distribution 

member in the exponential family” (Hardin et al., 2007). The combination of the two 

assumptions allows GAMs to be used in a lot of modeling scenarios (Dunteman & Ho, 2005). 

 

6.9.1  Fitting the Model 

 

The PROC GAM procedure was used to fit the model, with flexible spline terms for each of the 

predictors. Three degrees of freedom are chosen for our model as this is the default 

corresponding to a smoothing spline with the complexity of a cubic polynomial. Two of these 

degrees of freedom are for the nonlinear spline portion and one degree of freedom is taken up by 

the linear part of the fit.  

Table 6.1 illustrates the parameter estimates and the linear portion for parametric part of the 

model, t-values, standard errors and p-values. The second part of the table shows smoothing 

parameters, degrees of freedom, GCV value for each predictor and the number of unique 

observations. Currently breastfeeding is negatively associated with child mortality with a p-value 

equals 0.0041. The type of residence is also negatively associated with child mortality at 5% 

significant level with a p-value equals 0.0010. The predictor variables child-birth order and 

number of children living are observed significantly associated with child mortality since the 

corresponding p-value is below 0.05 (p-value=<.0001). The predictor mother’s age in linear 

portion is similarly significantly associated with child mortality with a p-value equals 0.0003.  
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Table 6.1: Analytical information about the fitted model(2009) 

Regression Model Analysis 

Parameter Estimates 

Parameter Parameter Estimate Standard Error t Value Pr > |t| 

Intercept -3.0200 0.3427 -8.81 <.0001 

Currently Breastfeeding -0.42250 0.14701 -2.87 0.0041 

Urban -0.6327 0.1929 -3.28 0.0010 

Linear(Birth order number) 0.13937 0.08695 16.03 <.0001 

Linear(Mother's age) 0.05360 0.01465 3.66 0.0003 

Linear(Number of children 

living) 
-1.80302 0.10123 -17.81 <.0001 

          

Smoothing Model Analysis 

Fit Summary for Smoothing Components 

Component Smoothing Parameter DF GCV Num Unique Obs 

Spline(Birth order number) 0.971370 3 3.095261 13 

Spline(Mother's age) 0.999214 3 1.356085 35 

Spline(Number of children 

living) 
0.992922 3 43.571982 13 

 
 

In the 2014 dataset; Currently breastfeeding is negatively associated with child mortality with a 

p-value<0.0001. The type of residence is also negatively associated with child mortality at 5% 

significant level (p-value=0.0377). The predictor variable child-birth order and number of 

children living was observed significantly associated with child mortality since the 

corresponding p-value is below 0.05. The predictor mother’s age in linear portion was not 

significant (p-value=0.3285). This could be the result of some part of significance being taken by 

non-linear part. 

 

Table 6.2: Analytical information about the fitted model(2014) 

Regression Model Analysis 
Parameter Estimates 

Parameter Parameter Estimate 
Standard 
Error t Value Pr > |t| 



121 
 

Intercept -2.53668 0.43272 -5.86 <.0001 
Currently Breastfeeding -0.95175 0.21268 -4.48 <.0001 
Urban  -0.42264 0.20334 -2.08 0.0377 
Linear(Birth order number) 1.45516 0.11146 13.06 <.0001 
Linear(Mother's age) 0.01796 0.01838 0.98 0.3285 
Linear(Number of children living) -1.75498 0.1258 -13.95 <.0001 

     
Smoothing Model Analysis 

Fit Summary for Smoothing Components 

Component 
Smoothing 
Parameter DF GCV Num Unique Obs 

Spline(Birth order number) 0.950529 3 2.347586 12 
Spline(Mother's age) 0.999213 3 4.114624 35 
Spline(Number of children living) 0.946329 3 7.302263 12 

 

 

The amount of smoothing is indicated by the degree of freedom. An increase in smoothing 

means less degree of freedom which means a higher span. In the smoothing model analysis, the 

smoothing parameter for all components was close to one in both datasets(table 6.1 and 6.2) and 

the degree of freedom that corresponds is 3. The Analysis of Deviance Table 6.3. gives a chi 

square-test from making a comparison of the deviance between the full model and the model 

without the nonparametric component of this variable for each smoothing effect in the model. 

This table is the critical part of the GAM results (Table 6.3 & Table  6.4). The analysis of 

deviance results shows that the nonparametric effect of Birth order number and number of 

children living is significant while the mother’s age is insignificant at the 5% level. 

 

Table 6.3: Analysis of Deviance 

Smoothing Model Analysis 

Analysis of Deviance 

Source DF Sum of Squares Chi-Square Pr > ChiSq 

Spline(Birth order number) 3 22.440591 22.4406 <.0001 

Spline(Mother's age) 3 4.102809 4.1028 0.2506 

Spline(Number of children living) 3 131.078792 131.0788 <.0001 

 

The analysis of deviance results for the 2014 dataset indicate that the nonparametric effect of 

birth order number and number of children living is significant with p-value below 0.05 and the 

nonparametric effect of mother’s age is not significant at the 5% level. 
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Table 6.4: Analysis of Deviance 

Smoothing Model Analysis 
Analysis of Deviance 

Source DF Sum of Squares Chi-Square Pr > ChiSq 
Spline(Birth order number) 3 26.14147 26.1415 <.0001 
Spline(Mother's age) 3 4.454243 4.4542 0.2164 
Spline(Number of children living) 3 113.3362 113.3362 <.0001 

 

The plots below (Figure 6.4 and Figure 6.5)  have the estimated smoothing spline function with 

the linear effect subtracted out. B5 is the response variable of child survival status. The plot 

includes a 95% confidence band for the whole curve. We visually examine where this band does 

not include zero to get indication of where significant nonlinearity takes place.  

 

 

Figure 6.4: Partial Prediction for Each Predictor (2009). 
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Figure 6.5: Partial Prediction for Each Predictor (2014). 
 

Figure 6.4  illustrates  the partial predictions that correspond to the number of children living and 

the birth order number have a quadratic pattern and mother’s age doesn’t have a quadratic 

pattern. This means the under-five child mortality was associated with a quadratic pattern for 

number of children living and birth order number. The 95% confidence limits for the mother’s 

age includes the zero axis, also in agreement that the term is insignificance. 

For the 2014 dataset; The plots display that the partial predictions that correspond to the number 

of children living, and the birth order number have a quadratic pattern while the  mother’s age 

doesn’t have a quadratic pattern. This means that child mortality was associated with a quadratic 

pattern for number of children living and the birth order number. The 95% confidence limits for 

the mother’s age includes the zero axis, also in agreement that the term is insignificance. There is 

no difference between the results for 2009 data and 2014 data.  
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Chapter 7  

7  Discussion 

  Conclusions and Recommendations 
 

This research was executed with the purpose to determine which factors are related to the child 

mortality in Lesotho. The under-five child survival status was researched applying statistical 

models (LR, SLR, GLMMs, and GAMs) using the 2009 and the 2014 Lesotho Demographic 

Health Surveys. The 2009/2014 LDHS was executed by the Ministry of Health and Social 

Welfare (MOHSW) having the assistance of the Bureau of Statistics (BOS). The 2009 and the 

2014 LDHS were designed to give estimates of demographic and health indicators for Lesotho, 

in the urban and rural parts, and for individual regions (Thaba Tseka, Maseru, Qacha’s Nek, 

Butha-Buthe, Quthing, Mokhotlong, Berea, Mohale’s Hoek, Leribe and Mafeteng). 

We have looked at the effect of specifically economic, social and demographic characteristics of 

mothers on the probability of under-five mortality in Lesotho. Results showed that several 

factors influence the  chance of under-five mortality. When it comes to decision making, this will 

be used as a guide to help policy makers in their efforts.  It will assist in improving the health of 

children and the prevention of children’s deaths as well as growth. This will speed up a better life 

being provided to the people and assessing MDG4 goals achievement progress. Therefore, policy 

makers should strengthen the interventions for child health in order to decrease dying children 

below age 5. Generalized linear models, Survey logistic regression models, generalized linear 

mixed models, and generalized additive models were used to identify the risk factors. 

 

In chapter 4, the logistic regression model was used, and it presumed survey data was acquired 

through SRS and then the survey logistic regression model which takes into consideration how 

complex the survey design was. The demographic and socio-economic factors were used as 

predictor variables. The two-way interaction effects were incorporated in the modeling 

procedure. The results agree with the hypothesis that demographic and socioeconomic factors are 

significant in affecting child mortality. With logistic regression, the factors age of child, birth 
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order number, wealth index , education attainment, mother’s age, weight of child, type of place 

of residence, number of children living and two-way interaction effect currently breastfeeding  

by age of child have been established to be significantly associated with child mortality under 5 

using data from both 2009 and 2014. In the application of the 2009 data set, wealth index was 

not significantly associated with under 5 mortality and in the 2014 data set, weight of child was 

not associated with under five mortality. In both data sets, sex of child, marital status, mothers 

work status and region were not significantly associated with the under 5 mortality in both data 

sets. The Hosmer and Lemeshow test was used for model checking and testing the goodness of 

fit of the logistic regression model. The test indicates that the logistic model is a good fit to the 

data. The Model checking and goodness of fit using Hosmer-Lemeshow test failed to reject the 

selected model.  

 

The model was refitted through the survey logistic regression model and generalized linear 

mixed models. Both models seem to be the good alternative since they account for the 

 

The SLR in chapter 4 and GLMMs in chapter 5 accounts for the complexity of the survey 

designs and findings in this research illustrates that the models are a good substitute. For the 

2009 data, the risk of a child dying who is over 1-year old is greater than that of a child who is 

below 1 year. The risk of dying for a child who’s not breastfed is larger than that of a child 

who’s breastfed. The risk of dying for a child who’s from a poor family is higher in comparison 

to that of a child who’s from a rich family. The risk of dying for a child whose mother has no 

education or up to secondary education is larger than that of a child whose mother has higher 

education. The risk of dying for a child who’s from a rural area is higher compared to that of a 

child who’s from an urban area. The risk of dying for a child with birth order number is 2-4 or 

>4 is higher in comparison to that of a child who’s first born. The risk of dying for a child whose 

household has 2-4 or >4 number of children living is larger than that of a child whose household 

has <2 number of children living. This could be because households with less children allows the 

mother to focus on the child and financially makes the household better. For the 2014 data, the 

results are similar. The risk of  dying for a child whose weight is small is higher in comparison to 

that of a child whose weight  is large. Design effects were used to compare parameter estimates 

from both models. Most of the DEFF values are over one meaning that standard errors for LR 
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model are smaller compared to standard errors for survey. This implies that there was a variance 

under-estimation when applying the logistic regression, that presumes that the data were sampled 

by means of SRS. 

 

In chapter 6, the semiparametric regression approach is applied; the under-five mortality for both 

data sets was observed to be significantly associated with the quadratic pattern of child-birth 

order number and number of children living. The under-five child mortality for both data sets is 

not associated with mother’s age as there is no quadratic effect at 5% significant level. In 

general, this research shows that age of child, birth order number, weight of child at birth, 

breastfeeding, wealth index , education attainment, mother’s age, type of place of residence, 

number of children living were found to be determining factors of the child mortality in Lesotho. 

 

The discovered factors may be used as guidance to policy makers on increasing the speed of 

providing an improved health service. Policy implications since Lesotho has devoted to the 

MDGs, the number 4 goal which is decreasing child mortality, the country should be persistent 

in its attempts to achieve this goal. The research paper has illustrated key policy implications that 

the government needs to give attention to. The findings in this paper suggests that the child 

health  status can improve in Lesotho. There needs to be more focus from the policy makers on 

the significant factors in order to develop more strategies that can improve child wellbeing by 

reducing child mortality in Lesotho. 

 

Mothers’ education has an impact on child mortality under-five and women empowerment and 

enablement through education should be encouraged. Children whose mothers have completed 

high school have a reduced chance of child mortality by nearly 55%. We cannot disregard the 

education of the mother as most studies have revealed that it has influence on child mortality 

(Caldwell & McDonald, 1982; Hobcraft, 1993; Kiross et al., 2019). The effect of mother’s 

education is important and that is because mothers with education are more likely to get pre-birth 

care and are informed about getting health care. Education has impact because women are more 

informed and hence less unexpected pregnancies (Pradhan, 2015). Breastfeeding should be 

encouraged to enhance the health of under five children and hence reduce the risk of child 
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mortality (Gilbert & Gichuhi, 2014). Breastfeeding throughout the first six months of the child 

being born and persistence of breastfeeding while adding other foods until the child is two are 

suggested (Arifeen et al., 2001; Shifa et al., 2018). Another way to improve child mortality is by 

controlling the number of children a mother gives birth to, because the number of children living 

is also a contributing factor. Enhancing the mothers’ economic status will improve the child’s 

basic needs and therefore can  result in  the decline of child mortality.  

 

The place of residence has significant influence on child mortality. The odds of a child death 

were lesser in the urban areas than in rural areas. This is expected as the level of development is 

higher for urban than rural areas. Intervention programs could help with rural areas having 

improve sources of drinking water. Advancing the work status of the mothers can help the 

mother’s economic status, therefore have improvement in the basic needs of their children. The 

government should continually observe and assess current programs to be able to review and 

develop new programs that are more applicable to the factors that influence child survival status.  
 

  Limitations  
 

The LDHS data depends on the mothers reporting about the survival and conditions of the 

children they have birthed and that impacts the death and the birth dates accuracy, especially 

when no paperwork was verified. Deaths that could have occurred after the survey was taken will 

not be considered. Deaths reported in this research may not be a portion of the true under five 

child mortality in Lesotho. Furthermore, the place of residence of certain respondents may be 

different over the period from the date that a child was born. More work can be done on this 

study, such as focusing on GAM to include random effects as well as account for the missing 

values. 

 

 

 



128 
 

Appendix A 
Codes Used to fit the models 
 

Variable used to fit the models: 

B8- Current age of child, V101- Region, V102- Type of place of residence, V190A- Wealth 

index, V404- Currently breastfeeding, V714- Mothers currently working, V149A- Education 

attainment, V501AA- Marital status, M18A- Weight of the child at birth, BORDA- Birth order 

number, V218A- Number of children living, B4- Sex of child and V012- Mother’s age. 

A.1 SAS code for 2009 LDHS: Logistic Regression 
 
PROC IMPORT OUT= WORK.LDHS2009  
DATAFILE= "C:\Users\211534620\Documents\2014 fin\LSKR61FL                       
          original.SAV" 
DBMS=SPSS REPLACE; 
 
RUN; 
 
Proc logistic Data=WORK.LDHS2009 plots=all; 
Class B8(ref="0") B4(ref="Male") V101(ref=" Thaba-Tseka") 
      V102(ref="Urban") V190A(ref="Rich") V404(ref="Yes")                              
      714(ref="Employed")V149A(ref=" Higher Education")  
      V501AA(ref="Not Married") M18A(ref="Large") BORDA(ref=" first    
      birth") V218A(ref="<2 children")/ param=glm; 
Model B5(event="No")=B8 V012 B4 M18A V404  V501AA V190A V149A V714   
      V102 V101 BORDA V218A B8*v404/lackfit; 
Run; 

 

A.2 SAS code for 2009 LDHS: Survey Logistic Regression 
 
Proc SurveyLogistic Data=WORK.LDHS2009; 
stratum V023; 
cluster V021; 
weight V005A; 
Class B8(ref="0") B4(ref="Male") V101(ref=" Thaba-Tseka")   
      V102(ref="Urban")V190A(ref="Rich") V404(ref="No")   
      V714(ref="Unemployed")V149A(ref=" No Education")  
      V501AA(ref="Not Married") M18A(ref="Large")BORDA(ref="first   
      birth")  V218A(ref="<2 children")/ param=glm; 
Model B5(event="No")=B8 V012 B4 M18A V404 V501AA V190A V149A V714 V102   
      V101 V218A BORDA B8*V404; 
Run; 
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A.3 SAS code for 2009 LDHS: Generalized Linear Mixed Model 
 
PROC IMPORT OUT= WORK.LDHS2009  
           DATAFILE= “/folders/myfolders/LSKR61FL original.SAV” 
            DBMS=SPSS REPLACE; 
RUN; 
 
Proc glimmix data=WORK.LDHS2009 method=laplace; 
Class V021 B8(ref="0") B4(ref="Male") V101(ref="Thaba-Tseka”)   
      V102(ref=”Urban”) V714(ref="Employed")V149A(ref="Higher 
Education") 
      V190A(ref= "Rich" )V404(ref= "Yes" )V501AA(ref= "Not Married" )  
      BORDA(ref= "first birth" )  V218A(ref="<2 children")      
      M18A(ref="Large"); 
Model B5(event="No")=B8 V012 B4 M18A V404 V501AA V190A V149A V714 V102    
      V101 V218A BORDA B8*V404/ link=logit DIST=binary oddsratio     
      solution; 
lsmeans B4 M18A V501AA V190A V149A V714 V102 V101 V218A BORDA B8*V404/ 
       plot=diffplot adjust=tukey alpha=0.05; 
lsmeans B4 M18A V501AA V190A V149A V714 V102 V101 V218A BORDA B8*V404/ 
       plot=anomplot adjust=nelson alpha=0.05; 
random intercept /subject=V021 TYPE=VC; 
Covtest zerog; 
run; 
 

A.4 SAS code for 2009 LDHS: Generalized Additive Model 
 
Ods graphics on; ods html;  
Proc gam data=LDHS2009 desc 
Plots=components(commonaxes clm);  
Class V404 V102; 
Model B5(event="No")= param(V404) param(v102) spline(BORD)    
      spline(V012) spline(V218)/ dist=binomial link=logit;  
run; Ods html close;  ods graphics off 

 

A.5 SAS code of 2014 LDHS: Logistic Regression 
 
Proc logistic data=WORK.LDHS2014 plots=all; 
Class B8(ref="0") B4(ref="Male") V101(ref=" Thaba Tseka")   
      V102(ref="Urban") V190A(ref="Rich") V404(ref="Yes")  
      V714(ref="Employed")V149A(ref=" Higher Education")    
      V501AA(ref="Not Married") M18A(ref="Large") BORDA(ref=" first   
      birth") V218A(ref="<2 children")/ param=glm; 
Model B5(event="No")=B8 V012 B4 M18A V404 V218A V501AA V190A V149A    
      V714 V102 V101  BORDA B8*v404/lackfit; 
Run; 
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A.6 SAS code of 2014 LDHS: Survey Logistic Regression 
 
Proc surveylogistic data=WORK.LDHS2014; 
stratum V023; 
cluster V021; 
weight V005A; 
Class B8(ref="0") B4(ref="Male") V101(ref=" Thaba Tseka")    
      V102(ref="Urban") V190A(ref="Rich") V404(ref="No")     
      V714(ref="Employed")V149A(ref=" Higher Education")     
      V501AA(ref="Not Married") M18A(ref="Large") BORDA(ref=" first   
      birth")  V218A(ref="<2 children")/ param=glm; 
Model B5(event="No")=B8 V012 B4 v404 M4A V501AA V190A V218A V149A V714   
      V102 V101  BORDA B8*V404; 
Run; 

A.7 SAS code of 2014 LDHS: Generalized Linear Mixed Model 
 

PROC IMPORT OUT= WORK.LDHS2014  
           DATAFILE= “/folders/myfolders/LSKR71FL.SAV” 
            DBMS=SPSS REPLACE; 
RUN; 
 
Proc glimmix data=WORK.LDHS2014 method=laplace; 
Class V021 B8(ref="0") B4(ref="Male") V101(ref="Thaba Tseka”)   
      V102(ref=”Urban”) V714(ref="Employed")V149A(ref="Higher Education") 
      V190A(ref= "Rich" )V404(ref= "Yes" )V501AA(ref= "Not Married" )  
      BORDA(ref= "first birth" )  V218A(ref="<2 children") M18A(ref="Large"); 
Model B5(event="No")=B8 V012 B4 M18A V404 V501AA V190A V149A V714 V102 V101 
      V218A BORDA B8*V404/ link=logit DIST=binary oddsratio solution; 
lsmeans B4 M18A V501AA V190A V149A V714 V102 V101 V218A BORDA B8*V404/ 
plot=diffplot adjust=tukey alpha=0.05; 
lsmeans B4 M18A V501AA V190A V149A V714 V102 V101 V218A BORDA B8*V404/ 
plot=anomplot adjust=nelson alpha=0.05; 
random intercept /subject=V021 TYPE=VC; 
Covtest zerog; 
run; 
 

A.8 SAS code of 2014 LDHS: Generalized Additive Model 
 
Ods graphics on; ods html;  
proc gam data=LDHS2014 desc 
Plots= components(commonaxes clm);  
Class V404 V102; 
Model B5(event="No")= param(V404) param(V102) spline(BORD)    
      spline(V012) Spline(V218)/ dist=binomial link=logit;  
run; ods html close;   

     Ods graphics off; 
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