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ABSTRACT 

Ad hoc networks are commonly known to implement IEEE 802.11 standard as their medium 

access control (MAC) protocol. It is well known that token passing MAC schemes 

outperform carrier-sense-multiple-access (CSMA) schemes, therefore , token passing MAC 

protocols have gained popularity in recent years. In recent years, the research extends the 

concept of token passing ' scheme to wireless settings since they have the potential of 

achieving higher channel utilization than CSMA type schemes. 

In this thesis, a hybrid Token-CDMA MAC protocol that is based on a token passing scheme 

with the incorporation of code division multiple access (CDMA) is introduced. Using a 

dynamic code distribution algorithm and a modified leaky-bucket policing system, the 

hybrid protocol is able to provide both Quality of Service (QoS) and high network resource 

utilization, while ensuring the stability of a network. This thesis begins with the introduction 

of a new MAC protocol based on a token-passing strategy. The input traffic model used in 

the simulation is a two-state Markov Modulated Poisson Process (MMPP). The data rate 

QoS is enforced by implementing a modified leaky bucket mechanism in the proposed MAC 

scheme. The simulation also takes into account channel link errors caused by the wireless 

link by implementing a multi-layered Gilbert-Elliot model. The performance ofthe proposed 

MAC scheme is examined by simulation, and compared to the performance of other MAC 

protocols published in the literature. Simulation results demonstrate that the proposed hybrid 

MAC scheme is effective in decreasing packet delay and significantly shortens the length of 

the queue. 

The thesis continues with the discussion of the analytical model for the hybrid Token­

CDMA protocol. The proposed MAC scheme is analytically modelled as a multiserver 

multiqueue (MSMQ) system with a gated service dis~ipline . The analytical model is 

categorized into three sections viz. the vacation model, the input model and the buffer model. 

The throughput and delay performance are then computed and shown to closely match the 

simulation results. Lastly, cross-layer optimization between the physical (PHY) and MAC 

layers for the hybrid token-CDMA scheme is discussed. The proposed joint PHY -MAC 

approach is based on the interaction between the two layers in order to enable the stations to 

dynamically adjust the transmission parameters resulting in reduced mutual interference and 

optimum system performance. 
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CHAPTER 1 

INTRODUCTION 

With the explosive growth in cellular users and the ever increasing need for greater 

bandwidth and services [ITl;, 2005], wireless ad hoc networks have been the centre of 

attention in wireless technology for several years . A wireless ad hoc network is a 

decentralized network of nodes, possibly mobile, sharing a wireless channel and 

asynchronously sending 'packets to each other. The most notable characteristics of an ad hoc 

network are a lack of infrastructure, distributed coordination among nodes, dynamic 

topology, and the use of a shared wireless channel. The potential for the deployment of ad 

hoc networks exists in many scenarios. For example, in situations where the construction of 

the infrastructure is not feasible or desirable, like disaster relief, sensor networks, etc. Ad hoc 

networks also have the potential of realizing a free, ubiquitous, omnipresent communication 

network for rural communities. 

With no pre-infrastructure existed to enable the exchange of information among users' 

devices, the devices cannot communicate directly with each other if they are too far apart. 

The packets are then forwarded via intermediate devices that relay the packets on a node-by­

node basis. As mentioned earlier, depending on the application or the scenario, nodes in a 

wireless ad hoc network may be mobile and free to organize themselves arbitrarily. This may 

result in intermittent connectivity and the network's topology may change rapidly and 

unpredictably. In these cases, routes to destination nodes may need to be computed 

dynamically and updated frequently. In addition, nodes may join or leave the network at 

anytime, with their availability constrained by the characteristics of the surrounding wireless 

medium. Figure 1.1 shows an example of a wireless ad hoc network. In this scenario, the ad 

hoc network consists of 6 nodes with 4 concurrent transmissions where Node 6 is 

transmi.tting data to node 5 and Node 1 is sending data to Node 5 via node 2 since Node 5 is 

out of range. Also Node 4 is transmitting data to Node 2 via node 3 and lastly Node 5 is 

sending data to node 3. Node 7 is the new user who wishes to join the network. 
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CHAPTER I 

Node 7 0 
(NEW) 

---

INTRODUCTION 

o Nodel 

~ 
Nod, 60 ,\\ il Nod" 

NodeS O~ 0 Node3 

NOd'40~ 
Figure 1.1: Ad hoc wireless network 

The most prevalent standard used for wireless networking is the IEEE 802.11 [IEEE, 1997] 

which was released by the Institute of Electrical and Electronics Engineers (IEEE) in 1997. 

Different versions have since been created to extend and improve the IEEE 802.11 standard 

in many aspects, which varies from the support of quality of service (QoS) features to higher 

data rates . The importance of the IEEE 802.11 comes from its capability of two operational 

modes: the infrastructure mode and the ad hoc mode. The infrastructure mode is similar to a 

cellular infrastructure-based network, where a node acts as the access point CAP) for other 

nodes. This is the most common operational mode used to build Wi-Fi hotspots. 

Nevertheless, it is the ad hoc mode of operation that has attracted the largest attention within 

the research community working in the field of wire Ie ss ad hoc networks . 

Wireless user 1 Wireless user 2 

~~I ! Layern 

Layer 3 Layer 3 

Link Layer Link Layer 

MAC Layer MAC Layer 
Layer 2 Layer 2 

Layer 1 Physical Layer Communication Physical Layer Layer 1 

I Path I 
Figure 1.2: Network layers for wireless networks 
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CHAPTER 1 INTRODUCTION 

The IEEE 802.11 standard is a platform that gives specifications for two of the fundamental 

layers in the protocol stack of any wireless ad hoc network: the physical (PHY) layer and the 

medium access control (MAC) layer. Figure 1.2 shows the locations of the PHY and the 

MAC layers on the protocol stack defined by the International Standard Organization's Open 

System Interconnect (ISO/OSI) model [Spragins, 1991]. A wireless network architecture is 

similar to that of a wired network as it normally consists of three or more layers. 

The lowest layer in the model is the physical layer. This layer defines the characteristics of 

transmitting and receiving packets through the medium that interconnects the nodes of the 

network. It generally defines a number of parameters and procedures such as the bandwidth 

and channels allocation, signal modulation schemes, transmit power levels, error 

' correcting/detecting codes, etc. The PHY layer is also responsible for mapping the 

information bits received from the upper network layers into a framing format suitable for 

transmission over the physical medium and also for the de-mapping operation of the 

information received over the medium. 

The second layer, the data link layer, consists of two sub-layers: the medium access control 

(MAC) layer and the link layer. The MAC layer is a major component of many 

communi'cation systems in which users transmit information over a common, shared channel. 

Therefore, the main task of the MAC layer is to enable nodes in the network to determine 

their right to access the available channel(s), while attempting to enforce a fair and efficient 

usage of the channel(s). The establishment of such access rights is far more difficult in a 

wireless ad hoc network than in a wired network, because the radio channels of an ad hoc 

network are broadcast in nature, and radio connectivity is such that the topology of an ad hoc 

network is not as clearly defined as that of poi~t-to-point wired networks. 

Wired channels are commonly known to be stationary and predictable. in contrast, radio 

channels are extremely random, and the connectivity between two nodes depends on many 

factors, such as the radio frequency used, power of the transmitters, terrain, antenna type, 

transmitter/receiver distance, multipath fading, etc. Furthermore, the quality of a radio link 

depends on the transmission activity of all other nodes in the entire system, whose 

aggregated signal powers can severely degrade the signal-to-noise ratio (SNR) at a palticular 

receiver and, consequently, decrease the probability of successful reception of anyon-going 

packet transmission. 
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1.1 Survey on MAC Protocols for Wireless Ad Hoc Network 

As discussed earlier, wireless ad hoc networks rely on a common transmission medium and 

the transmissions of the network must be coordinated by a MAC protocol. Two methods are 

commonly implemented to achieve this coordination. In the first method, the coordination 

can be provided by the medium itself, using carrier sensing to identify the channel's state 

(idle or active). The second method achieves the coordination by means of using control 

information carried by a control message travelling along the medium. 

The majority of MAC protocols used in ad-hoc networks implement a random access scheme 

as the method of sharing the common channel. A typical example is the carrier sense 

multiple access (CSMA) scheme. However, it is known from [Kleinrock, 1975] that with a 

CSMA based scheme, the performance is degraded by hidden and exposed terminal 

problems. In a wireless ad hoc network there is no guarantee that some terminals may not be 

hidden from the other terminals. A number of papers have proposed schemes to alleviate the 

problem using out-of-band or busy-tone signaling. This technique uses a very narrow 

frequency band (or channel) to carry a busy-tone signal, which warns the surrounding nodes 

not to transmit. The nodes in the network are required to listen to the busy-tone channel 

before they transmit any packet. A typical example of such model is the busy-tone'-multiple­

access (BTMA) protocol proposed by [Tobagi, 1975]. The BTMA ' protocol uses two 

channels: one channel is used for busy-tone signaling, and the other channel is used for data 

transmission. This eliminates the hidden nodes that surround the host node and the target 

node, but increases the number of exposed nodes. In 1988, Wu [Wu, 1988] introduced a 

method to alleviate the exposed node problem produced by the BTMA protocol. However, it 

still does not completely solve the hidden node problem but it does minimize the number of 

exposed nodes. 

Dual-BTMA (DBTMA) [Deng, 1998] is an improved version ofBTMA and was proposed to 

address the loss of channel utilization in the Request-To-Send/Clear-To-Send (RTS/CTS) 

based BTMA networks. In the DBTMA, the single COInmon channel is divided into two sub­

channels: a data channel and a control channel. Two busy tones are assigned on the control 

channel rather than one as in the BTMA. To alleviate the problem of hidden and exposed 

nodes, the WCD protocol [Gummalla, 2000] was introduced. This protocol is designed for a 

short radius network « 50m). It splits the frequency channel into a data-channel and a 

feedback channel. A node can only operate in one of two modes, the data reception mode 
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and the data transmission mode. The most recent work that uses out-of-band signaling is 

[Hou, 2001]. This method uses a single channel for the signaling and the channel is divided 

into fixed size frames that consists of two types of slots : an elimination slot (to resolve 

contention) and a data slot. 

Other derivatives of the CSMA type protocols have also been proposed, these systems rely 

on the method of control handshaking. Control handshakes are defined as short packets 

carrying messages to inform the nodes in the network about the packet transmissions. The 

handshake technique is similar to the busy tone technique, but carries more information. 

Three type.s of handshakes are commonly used by the collision avoidance protocols: request 

to send (RTS), clear to send (CTS), and acknowledgement (ACK). RTS is usually sent by a 

host node to a target node. The main purpose of the RTS is to inform the target node that the 

host node has data to transmit, and also to ensure the target node is available. If the 

transmission takes place when the target is not ready then collisions would occur. CTS is 

used by the target node to reply to the host node after receiving RTS, and ACK is used to 

inform the host node that its data has been successfully transmitted. 

One of the first protocols that implemented a handshake mechanisms is multi-access with 

collision avoidance (MACA) protocol proposed by [Karn, 1990]. It uses a three-way 

handshake mechanism to avoid collisions. When the host node wants to transmit data to the 

target node, it sends RTS packet to the target node. All nodes that surround the host defer 

their transmissions when they hear the RTS. If the target node receives RTS successfully, it 

responds by broadcasting CTS packet. CTS is used to warn the nodes surrounding the target 

node not to transmit. On ' receiving the CTS, the host node assumes that the channel is 

acquired and sends its data to: the target node. Distributed foundation wireless MAC 

(DFWMAC) [Crow, 1997] is a derivative of the MACA protocol and is the basic access 

protocol for distributed systems described by the IEEE 802.11 wireless LAN standard. The 

DFWMAC protocol consists offour handshakes, RTS-CTS-DATA-ACK. When the host 

node wishes to transmit data to the target node, it must detect the channel idle for a specified 

time interval before attempting an RTS transmission. 

Broadcast support multiple access (BSMA) protocol [Tang, 2000] is an extension of the 

IEEE 802.11 protocol. The objective of this protocol is to provide an efficient broadcasting 

ability by incorporating both the collision avoidance scheme and the four handshake controls 

of IEEE 802.11. It relies on negative acknowledgement (NACK) to deliver broadcasted 
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packets. Another derivative of the handshake mechanism is the floor-acquisition-multiple 

access (F AMA) [Fullmer, 1995], where a node must acquire the surrounding channel "floor" 

before transmitting its data. To acquire the floor, the host node first transmits RTS to its 

neighbors, and if the target node receives the RTS, the CTS message is sent back to the host 

node. The host node then begins sending its data packets. The CTS also serves to warn other 

nodes against transmitting to the target node. 

An improved version of F AMA is the Floor Acquisition Multiple Access with Non­

persistent Carrier Sensing (F AMA-NCS) [Fullmer, 1999]. It provides better collision 

avoidance by modifying the length of CTS. The receiver-based auto rate (REAR) [Vaidya, 

2000] protocol and its derivatives [Wu, 2000] [Tang, 2000] [Chlamtac, 2000] are based on a 

three-way collision avoidance handshake. In REAR, the RTS/CTS handshake is modified to 

allow the target node (receiver) to choose the data rate at which the packet will be 

transmitted. The R TS/CTS packets consist of two fields : data rate and data packet size. In the 

RTS dialogue, the rate field carries the data rate that the host node (sender) intends to use for 

the data packet, whereas the CTS dialogue carries the actual rate that will be used, selected 

by the receiver. 

Apart from the protocols mentioned above, another important arena of research regarding 

hybrid MAC protocol has emerged for ad hoc networks. Hy brid MAC protocols are designed 

for networks that are implemented using an ad hoc centralized topology. In an ad hoc 

centralized network, there is a centralized administrator (e.g. a mobile base station) in the 

network and so the communication is centralized. Typical examples of ad hoc centralized 

MAC protocols are [Haartsen, 2000] and [Lihui, 2000]. 

In this thesis, a new hybrid MAC protocol is introduced. The modeling framework 

introduced focuses on the combination of a guaranteed access mechanism (token) and the 

capability of supporting mUltiple simultaneous transmissions (CDMA). A key feature of the 

hybrid MAC scheme is that the system can dynamically assign the bandwidth resources . 

Unlike the current CDMA type protocol [CDMA IS-95,1990], the token is used to allocate 

CDMA codes to nodes that need service. To account for the effects of interference among all 

nodes, a wireless error channel Gilbert-Elliott [Gilbert, 1960], [Elliott, 1963] model is 

introduced with which the topology and network aspects are naturally incorporated into the 

hybrid MAC scheme. The system is then simulated and investigated under realistic wireless 

channel conditions within the ad hoc wireless network environment. 
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A modeling framework for the analytical study of the hybrid MAC protocol is then 

introduced. Analytically, the hybrid MAC scheme can be considered as a system that 

consists of multiple queues that are serviced by multiple servers. This configuration is 

commonly denoted as a multiserver multiqueue (MSMQ) system. The novelty of the system 

is that a CDMA code is considered as a server in the analytical scenario. An approximated 

mean value analysis for the proposed gated multiple-vacation queue that supports multiple 

traffic classes is presented. Using the approximated approach, the mean server inter-visit and 

inter-arrival time and also the queue vacation time are derived. Based on the multiple­

vacation queuing model, an approximated analysis is conducted using the probability 

generating function approach. 

Motivated by the recent advances in cross-layer optimization of system performance, this 

thesis lastly investigates the cross-layer concept and implements it on the hybrid MAC 

scheme. The model focuses on the interaction between the physical (PHY) and the MAC 

layer. For cross-layer optimization, a rate-adaptation algorithm based on variable spreading 

factors is proposed. This algorithm adaptively transmits data and dynamically assign 

transmission rates based on channel state information. 

1.2 Summary of Contributions 

The main contributions of this thesis are as follows : 

• 

• 

• 

The development of a new hybrid Token-CDMA medium access control (MAC) 

protocol for distributed wireless networks , built based on the concept of a token passing 

technique. Moreover, a quality of service guarantee is incorporated in the proposed 

conceptual MAC scheme. 

Modeling and performance evaluation of the hybrid MAC scheme that implements the 

multi-layered Gillbert-Elliot wireless channel · model under different traffic load 

conditions. 

Development of a modeling framework for the analytical study of the hybrid MAC 

protocol. The model is made up of three sub-models that consist of the input, buffer and 

vacation models. The input model describes the QoS incorporation, the buffer model 

discusses the operation of the packets in the model and the vacation model discusses the 

operation ofthe network and its impact on the queue. 
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• Modeling and performance evaluation of the analytical model under different traffic load 

conditions. In particular, the mean server inter-visit and inter-arrival time and also the 

queue vacation time are derived. Based on the multiple-vacation queuing model, an 

approximated analysis is conducted using the probability generating function approach. 

• A joint MAC-PHY solution for optimizing the system performance in the hybrid Token­

CDMA MAC system. The cross-layer interaction is designed in order to provide 

continuous monitoring of the performance achieved by the users and adjusting 

transmission parameters using different spreading factors. 

1.3 Publication List 

The list of publication based on this thesis is shown below: 

• I Liu, F. Takawira and H. Xu, "A Hybrid Token-CDMA MAC Protocol for Wireless 

Ad Hoc Networks", IEEE Transaction on mobile computing, vol.7, no.5, 2008. 

• I Liu, F. Takawira and H. Xu, "Performance Analysis of Hybrid Token-CDMA 

MAC Protocol", in Proc. IEEE PIMRC 2007, Athens, Greece, Sept, 2007. 

• I Liu, F. Takawira and H. Xu, "Approximate discrete time analysis of hybrid Token­

CDMA system", in Proc. IEEE Africon 2007, Namibia, Sept 2007. 

• I Liu, F. Takawira and H. Xu, "Optimization of hybrid token-CDMA MAC system 

using cross-layer information", in Proc. SATNAC 2007, Mauritius, Sept 2007. 

• I Liu, F. Takawira and H. Xu, "Cycle and vacation time analysis of multiple source 

queue and mUltiple server system with data rate QoS", in Proc. IEEE ICT 2005, 

Cape Town, South Africa, Sept 2006. 

• I Liu, F. Takawira and H. Xu, "Approximate discrete time analysis ofToken-CDMA 

system", in Proc. SATNAC 2005, Cape Town, South Africa, Sept 2005. 

• I Liu, F. Takawira and H. Xu, "Approximate analysis of mUltiple source queue 

system with input regulation", in Proc. SATNAC 2004, Drakensberg, South Africa, 

Sept 2004. 

1.4 Thesis Organisation 

The thesis is organized into five chapters. In this chapter, a brief introduction to the structure 

and concept of the wireless network is provided and a brief literature survey of the relevant 
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work that has been published on the subject of wireless MAC protocols is presented. The 

contributions from this research are stated in Section 1.2 with the remainder of this 

dissertation organized as follows: 

Chapter 2 introduces a new MAC protocol for distributed wireless networks . The proposed 

hybrid Token-CDMA MAC protocol is based on a token passing scheme, and incorporates 

data rate quality of service guarantee. A simulation model is then presented, along with the 

environment for the hybird MAC scheme. The simulation is custom designed, and 

implements an event-driven architecture using the C++ programming language. The 

performance of the scheme is then evaluated. 

In Chapter 3, an approximate delay analysis of the hybrid MAC scheme is presented . To 

conduct the delay analysis, the hybrid MAC scheme is treated as a multiple server network 

with multiple queues (MSMQ). Using the discrete time approach, the probability generating 

function for the moments of the packet delay at different buffers in the queue model are 

derived. To verify the analysis, the analytical result is compared with the simulation result. 

In Chapter 4, a new concept in which the MAC layer incorporates the physical layer' s 

characteristics is introduced. A literature survey is conducted on cross-layer approach, 

especially interaction between medium access control and physical (MAC-PHY) layers for 

CDMA type of protocols. The cross-layer interaction that optimizes the delay performance 

of the hybrid MAC scheme is then considered. By exchanging information between the two 

layers and with the rate-adaptation algorithm, the modified hybrid scheme is able to optimize 

the system performance. 

Chapter 5 concludes this thesis with a summary of the research findings, including important 

concepts and techniques behind this research effort. Finally, the chapter presents 

recommendations for future research. 

1-9 



CHAPTER 2 

HYBRID TOKEN-CDMA MEDIUM ACCESS CONTROL 

PROTOCOL 

2.1 Introduction 

An ad hoc network is constructed by mobile hosts and can be rapidly deployed without any 

established infrastructure or central administration. However, due to its self-organizing 

characteristic, it is very challenging to design an efficient and effective medium access 

control protocol for ad hoc networks. The majority of the ad hoc wireless networks 

implement a network based on a modified CSMAlCD scheme [Spragins, 1994]. It is known 

from [Tobagi, 1975] that with the CSMA based scheme, the performance is degraded by the 

hidden terminal problem. In a wireless ad hoc network there is no guarantee that some 

terminal~ may not be hidden from the other terminals. To alleviate or solve the problem, 

many protocols based on the RTS/CTS handshakes have been proposed, [Bharghavan, 

1994], [Fullmer, 1999], [Karn, 1994], [Un, 1997], [Talucci, 1997] and [Deng, 1998]. 

However, due to the nature of the RTS/CTS characteristics, those proposed MAC schemes 

still incur high packet collisions under heavy traffic load [Deng, 1998]. 

Both [Spragins, 1994] and [Ergen, 2003] demonstrated that token-passing MAC schemes 

(e.g. IEEE 802.5 [IEEE, 1989], FDDI [ANSI, 1987] and: PROFIBUS [DIN, 1991]) 

outperform CSMA schemes and have proven to be the most reliable MAC schemes in the 

industry. It is illustrated in papers [Donatiello, 2003], [Malpani, 2005] and 

[Rajagopalan,1989] that the virtual-ring topology has many advantages when implementing 

it in the ad hoc networks . Some of the advantages are robustness against single node failure 

and support for flexible topologies, in which nodes can be partially connected and are not 

connected to the access point. Research has shifted to focus onto token passing schemes in 

wireless settings, since these have the potential of achieving higher channel utilization than 

CSMA type schemes [Ergen, 2003] and are also capable of including quality-of-service 

guarantees [Tobagi, 1975]. In general, the issues of QoS have only been concentrated on the 
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network layer and routing techniques [Nichols, 1998], but with an unreliable wireless 

medium, the QoS issues must also be addressed at the data link layer as discussed in [Ergen, 

2004). There exist a plethora of papers that propose token based MAC schemes with QoS 

incorporation for ad hoc networks [Ergen, 2004], [Donatiello, 2003], [Takahashi, 2001], 

[Davies, 2001], and [Taheri, 2002). 

Among these protocols the general MAC operation is identical. A single token is generated 

for each network, the stations receive service by capturing the token, and the stations are 

serviced in a fixed and predetermined cyclic order. QoS guarantees have been incorporated 

into these schemes by providing delay bounded services. The work in [Erg en, 2004], 

[Donatiello, 2003], [Takahashi, 2001], [Davies, 2001], and [Taheri, 2002] proposed a 

wireless token ring network that has only one traffic type and supports no multiple 

transmissions. [Donatiello, 2002] proposed a token passing scheme that supports multiple 

simultaneous transmissions, however, the scheme is designed solely for low mobility nodes 

in small confined spaces (static environments). Since each station is assigned with only one 

code, this leads to a decrease in efficiency as the network capacity is not fully utilized. 

A protocol that tends to exploit the advantages of both cuntention-free and contention-based 

protocols was proposed by [Chao, 2003] . This protocol (LA protocol) [Chao, 2003] switches 

between contention-based and contention-free schemes depending on the traffic loading 

conditions. However, the protocol does not support multiple transmissions and 

accommodates only one traffic type. The most significant drawback of these proposed token 

passing MAC schemes is that they do not discuss the wireless aspect of ad hoc networks. 

It is known that a wireless link is much more error prone than cable-based links. Link layer 

retransmission triggered by corrupted data decreases the bandwidth efficiency which results 

in inferior performance. There are several physical considerations that cause errors in 

wireless links : multipath fading, path loss, co- and adjacent channel interference, man-made 

interference, dynamic topol~gy, station mobility, partial connectivity and channel noise 

[Willig, 2001], [Blackard, 1993). Wireless channel interference in the wireless token passing 

MAC network was discussed by [Willig, 2001). It was discovered that the token passing 

MAC is vulnerable to channel errors. The protocol stability is severely hindered by the loss 

of a token due to interference and consequently reduces the utilization of the network 

bandwidth. 
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A hybrid token-CDMA multiple access control scheme, designed to handle heterogeneous 

classes of traffic in all traffic load types is proposed. Our scheme is based on the token 

passing concept but unlike conventional token passing MAC schemes, the proposed scheme 

incorporates the code division multiple access (CDMA) mechanism. There exist numerous 

papers [Qu, 2006] [Butala, 2005] and [Lal, 1999], that proposed implementing the CDMA 

system in Ad hoc networks. However, the majority of them still used the RTS/CTS 

handshake approach, while none proposed the hybrid token-CDMA methodology. The 

novelty of the proposed MAC scheme is that it combines the advantages of guaranteed­

access characteristics of the token passing mechanisms and the supportability of multiple 

packet transmissions within the network with the incorporation of QoS guarantees for 

different classes of traffic. 

The intriguing part of the proposed scheme is that the issue of scarce bandwidth is addressed 

where the token is used as the CDMA code distributor and the channels are shared amongst 

the nodes in the network. By integrating the CDMA mechanism into the MAC scheme, the 

CDMA codes are now effectively distributed amongst the nodes using the token. It is known 

that for a CDMA system, every user is equipped with a specific code so the maximum 

number of users that may join in a network is dependent on the number of codes available. 

With the newly proposed MAC, with the same number of codes used, the network can now 

support more nodes (users) since the CDMA codes are now dynamically assigned to the 

nodes. This in turn increases the utilization of the network which leads to greater system 

performance. 

It is known that policing/shaping and monitoring of traffic flows is an important component 

of traffic management since the main cause of congestion in a network is a bursty and an 

unpredictable traffic. If traffic on a particular flow or connection could be made to transmit 

at a uniform and predictable rate, congestion would be less common. Traffic shaping 

configures the outgoing traffic to the agreed upon traffic profile for the flow. Control of the 

data rate is required to guard against flows that do not adhere to the contracted flow 

specifications. However, all the previously proposed wireless token MAC schemes do not 

provide this QoS guarantee. Most of the policing/shaping mechanisms used today are based 

on a leaky bucket mechanism. In our proposed hybrid MAC protocol, the data rate and 

fairness QoS guarantees have been enforced by the proposed MAC scheme by implementing 

a modified leaky-bucket traffic policing mechanism and gated service discipline at each 

node. 
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The performance of the proposed MAC scheme is evaluated in a wireless environment using 

simulation. A key part of the simulation is the channel link error model. Wireless channel 

errors are usually bursty and dependent, rather than independently distributed. To capture 

such behavior in the wireless channel, a , multi-layered two-state Markov Chain model, 

commonly known as the Gilbert-Elliott model [Elliott, 1963], [Gilbert, 1960] is used to 

model channel link error. The novelty of this work lies in proposing and model ing a hybrid 

token-CDMA MAC scheme with data rate QoS guarantee and with consideration of wireless 

channel interference. 

This chapter is organized as follows. Section 2.2 describes the proposed MAC protocol in 

detail. The fmite state machine of the proposed MAC scheme is described in Section 2.3 . 

The simulation model and results are presented in Section 2.4 and 2.5 respectively. 

Conclusions are drawn in Section 2.6 . 

2.2 Hybrid Token-CDMA Protocol Description 

This section gives a detailed description of the proposed MAC pmtocol, including its 

structure, characteristics and properties. The proposed protocol is inspired and derived from . 

IEEE 802.4 [IEEE, 1989] Token Ring structures that guarantees bounded delay and 

guaranteed access of the bandwidth. 

2.2.1 Network Topology and Model 

The network is ad hoc and distributed. It consists of N stations with M CDMA codes 

(Sj ", SM) (M <N ) and r different traffic classes. Each station is assigned to a specific traffic 

class as illustrated in Fig. 2.1. In this figure Qi denotes the queue model of station i (as 

illustrated in Fig. 2.1). r;lrans is the token transmission time between two stations and A.' is 
'PI 

the packet arrival rate for station i of class r. Each station is assumed to have the ability t9 

communicate with its adjacent stations over a single-hop. It is assumed that the network has 

a partially connected topology. 

2-4 



r-------------~----------~-----------=======~==~======~, 

CHAPTER 2 

Queue 
Model 

Queue 
Model 

Queue 
Model 

~ 

<> 
Token 

HYBRID TOKEN-CDMA MAC 

•••••• 
Queue 
Model 

Figure 2.1: Network model for the hybrid Token-COMA MAC protocol 

The network implements a virtual ring topology with the OSI reference model as its 

backbone structure. Each station in the network is equipped with a queuing system that 

consists of a buffer. The token is used to distribute M CDMA codes in the network. Each 

station is provided with a common .code channel that is used specifically for token 

transmissions. Each station is also assumed to be equipped with MUD (multi-user detection) 

capabilities [Verdu, 1998], In order to be able to receive multiple transmissions 

simultaneously. It is assumed that each station in the network has pre-defined knowledge of 

all the M CDMA code words used for the network. 

The stations in the network maintain an updated STATION_LIST (as shown in Table 2.1) of 

their immediate neighbors in order to . know where the token should be passed to next. 

Several timers are provided in each station for implementing various functions of the MAC 

scheme. Detailed applications of these timer mechanisms are discussed in later sections of 

this Chapter. 
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Table 2.1 

The Station-List 

HYBRID TOKEN-CDMA MAC 

Token Transmission Order Station Address 

1 101100 

2 100000 

3 011100 

4 001100 

5 010100 

For the CDMA code allocation mechanism, unlike [Hu, 1993] which uses a distributed 

algorithm to assign a code to each node, the hybrid MAC scheme uses the token to perform 

the task. The structure of the token consists of a hop-leader address, a ~ource address, a 

destination address, the number of codes available (NOC), and other network parameters as 

shown in Table 2.2. 

Table 2.2 

Token structure 

NA-List C-List 

The following fields are used in the thesis and their sizes can be easily adjusted depending 

on the scale of the network. The capacity of the address field is kept to a reasonable size of 

ten bits, giving a maximum of 210 stations in a single network. 

• PM: Preamble is the PHY header used to perform synchronization with destination 

station using pilot, synchronization and paging channels in CDMA transmission. To 

conform with the 802.11 standard, the proposed protocol uses the same standardized 

PHY header with 128 bits. 

• Hop Leader ID: the address of the station that created the token and initialized the 

network. 

• Source ID: the address of the station that passed the token (predecessor's address) . 

• Destination ID: the address of the station that holds the token (successor's address). 

• NOC (Number of codes available): this parameter is used to limit the number of 

simultaneous transmissions in the network. A detailed explanation of this parameter 

is given in Section 2.2.3. 

• NA-List (Node Active list): this field displays the active status of the stations in the 

network. If a station is active, the bit allocation for that station is set to I. 
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• C-List (Channel list): this parameter is used by the packet collision avoidance (PCA) 

algorithm to monitor the status of the receiver channels in a station, a detailed 

discussion of the PCA algorithm is presented in Section 2.2.5. 

• DB (Duplicate Bit): this parameter is used by the token protection scheme to inform 

the receiver station that the generated token is for a retransmission. 

• EOT (End Of Token): this parameter is used to indicate that the token has been 

received by the receiver station. 

2.2.2 Assumptions of Hybrid Token-CDMA Scheme 

In the proposed hybrid MAC scheme, there are some assumptions: 

• The stations ar.e deployed randomly, and all of them are traveling at the constant 

slow speed that simulates a normal office environment (i.e. 0.1 km per hour). 

• The proposed scheme is suitable for non-real-time traffic applications where they 

can tolerate temporarily lost of coverage. 

• The routing of data in the network is single-hop routing in which the packet can 

reach its destination station either directly or via routing through the stations within 

the network. 

• The network area is simulated to be within a lOx 10 meter space. 

• The Hybrid MAC scheme employs a Packet Collision A voidance (PCA) algorIthm 

to assist with the data packet transmission and a token protection scheme is also 

implemented during the token transmission process. 

• Bi-directional communication links are considered for all communication links, this 

assumption is practical in the wireless network such as IEEE 802.11 . The stations 

will be able to receive token transmission while transmitting data packets. 

• All stations are assumed to be trustworthy and cooperative, no information security­

related consideration such as malicious packet dropping is discussed. 

2.2.3 Quality of Service Guarantee 

Quality of Service (QoS) can generally be defined as a mechanism for networks to satisfy the 

varied quality and grade of service required by an application, while at the same time 

maximizing bandwidth utilization. In a wireless communication system, there are numerous 

methods to formulate the QoS objectives quantitatively. Amongst the papers that proposed 

Token based scheme for ad hoc networks, the majority of the papers provides QoS by means 
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of timing guarantees [Donatiello, 2003], [Takahashi,2001], and [Taheri, 2002). In our 

proposed MAC protocol, based on leaky-bucket traffic policing mechanism, a data rate QoS 

guarantee is enforced to support real time multimedia applications. 

Figure 2.2 shows the queue model that is incorporated into each station. In order to provide 

this service, a modified leaky-bucket [Sidi, 1993] permit generation system is implemented. 

The queue inside the station i is equipped with a permit buffer for storing the generated 

permits. The permit generation rate of station i (a~ ) that is assigned to traffic class r is 

proportional to a designated data rate (A.;.i ), 

(2.1 ) 

Superscript i denotes the queue number (station number) and P r is the proportionality 

constant, which is the same for all the stations in traffic class r. The main purpose of the QoS 

parameter P r is to provide fairness in the network by ensuring that all stations recei ve 

sufficient access to the network. This fairness mechanism is achieved by constraining the 

station-transmit capacity, limiting the maximum number of packets that can be transmitted 

and varying the QoS parameter P r' If th~ token has been captured and there is a code 

available for transmission by station i, then the packet buffer is emptied such that the number 

of packets removed is equal to the number of permits in the permit buffer. In other words, 

the scheme is gated, the maximum number of packets that may passed through the gate is 

dependent on the quantity of permits in the permit buffer. 
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Figure 2.2: Station model with data rate QoS guarantee 
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2.2.4 Channel Access Control 

Once the token is generated in the network, it continuously circulates, following a 

predetermined order. As the token constantly circulates within the network, it uses the 

parameter Noe (0 ~ NOe ~ M) to control the amount of traffic flow in the network. If a 

station has data packets in buffer OJ, it has to wait for the arrival of the token. When the 

station is visited by a token, it forwards the token to the successor station, the next available 

address in the STATION_LIST. The token will not be captured if the station is still busy 

servicing data packets from the previous token cycle. A token cycle (Tc) is the time for the 

k .. 11 h . . th tw k T ",\:,N rlrans h r 1rans ' th t'me +"0 a to en to VlSlt ate statlOns m e ne or, c = L.Ii~ 1 j , were j IS ell' r 

token to travel from station i tojts successor station i+ 1. 

If the station is not transmitting when the token arrives, it may capture the token if there are 

packets and permits available. In order to satisfy QoS guarantee, only up to Yj amount of 

packets will receive service (gated service scheme). If there are no permits available when 

the token arrives, the station will forward the token to its su(;cessor station. If the token is 

successfully captured, the station decrements the NOe value by one, indicating that it has 

occupied a code channel. Using that specified code channel, the network allows a station in 

the ring to send its packets. The gated service discipline has been applied on the waiting 

packets in the queue buffers. As illustrated in Figure 2.2, once the code is captured, the 

packets are then served according to the FIFO (first-in-first-out) policy. 

The station forwards the token to its successor in the pre-defined order before it begins with 

its data transmission. This assumption permits the token to be relayed to the next station 

before the actual data transmission starts. The policy of not withholding a token while 

transmitting data packets has the advantage of decreasing the token rotation time. This 

consequently leads to an improvement in the utilization of network bandwidth. The 

assumption is that each station in the network is assigned a unique receiver-based code, and 

has the knowledge of the code sequences (transmitter and receiver) of every other station in 

the network using the code assignment table. 

To transmit data packets, the sender station first checks the code assignment table to search 

for the available code of its intended receiver station. The code assignment table is 

downloaded from the token's Channel-List (C-List) when it visits the station. The C-List 

specifies the available code channels for each station. The data packets are then sent using 
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the received code. The receiving station, with its MUD ability, constantly monitors its code 

channels to detect any incoming data traffic destined for it. For the transmission and 

reception of data packets, the sender station inserts the destination station ' s address into the 

data packet before transmission. To avoid multiple simultaneous transmissions to the same 

receiver station, a packet collision avoidance (PCA ) algorithm is implemented which is 

discussed in the next section. Once a code is released, the token increments its NOC value by 

one. 

2.2.5 Packet Collision Avoidance Algorithm (PCA) 

During the initialization stage or before joining the network, each station is equipped with 

the knowledge of all the M CDMA code words used for the network. With the MUD, the 

station is assumed to be able to receive M transmissions simultaneously. However, when 

there are multiple channels available for data transmission, there exists the possibility that 

multiple stations use an identical CDMA code to send data packets that are destined to the 

same destined receiving station. This effect creates packet collisions. Previously proposed 

CDMA MAC schemes either do not take this issue into consideration [Joa-Ng, 1999] or 

make the assumpti0n that the receiver station is libly to have a sufficient offset in the code 

phase and is able to reject one of them and receive the other successfully [Sousa, 1988]. 

In the proposed MAC scheme, a packet collision avoidance algorithm is implemented to 

avoid packet collision over the receiver station' s code channel. The station uses the Channel­

List function (C-List) in the token (as shown in Table 2.2) to initiate the PCA algorithm. The 

C-List is structured to depict the status of the code channels that are being used in the 

receiving station. The C-List structure is shown in Figure 2.3. When the token visits the 

station and the QoS guarantee has been satisfied, the station then looks up the C-List in the 

token to determine whether the intended receiver station has a code channel to receive data 

transmission. If there is a code channel available, the sender station changes the status of the 

bit to 1 and uses that code channel to transmit data packets. On the receiving station side, it 

will change the status bit back to 0 once the transmission from the sender station is 

completed when the token revisits it. 
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Using this method, packet collisions can be avoided since each station can only transmit data 

if there is an appropriate code available in the C-List. If all the codes are in use, the sender 

will have to wait for other stations to finish their transmissions before it may start sending its 

packets. 

Code 1 Code M ' 

~----Gi 0111 0 ~----0----------1 011 I 0 ~----[?J 
, 

~~------'V~------~------~'V~------/. ~~---v~--_/ 

Nadel Nadel NodeN 

Figure 2.3: C-List (Channel-List) structure 
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2.3 Dynamic Topology and Finite State Machine 

VB~c = 0, VB~er = 0, 

if code(i) = 1 NOC+ = 1 

If (Ii pac> 0 && code(i) = J) 

Ifi<N i+=1NA_List +=1 , 
lfj<M ) +=1, i<j, 

while k<M S_List +=J , k+ =J 
Vi idle(i), Vj E token 

NOC +=J, Wait/or next token arrival 

If (Ii pac >0 Ii per >0 && NOC>O) 
NOC -=1 
transmit(i), 

Figure 2.4: Finite state machine 

The finite state machine (FSM) for the hybrid MAC scheme is presented in Figure 2.4. The 

states for the FSM are: IS (Initialization State), JS (Join State), SS (Sense State), TS (Token 

transmit State), PS (Packet transmit State) and LS (Lost State). The issue of mobility within 

the network has been addressed. As the hybrid MAC scheme is operated in the dynamic 

mobile wireless environments, the topology of the network changes frequently. 

As the topology changes, a station may drop out or join the network due to its mobility. The 

FSM has incorporated both states of JS and LS to handle . the process of joining and leaving 

the network. The sense state (SS) is for detecting the token transmission, where in this case 

the station checks the token code channel for reception. Once the token is captured and QoS 

is satisfied then the station sends the token to its successor station by going to the token 
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transmit state CTS) before it starts to service the packets (PS). The start of the protocol is 

created by the initialization state CIS). 

2.3.1 Station Entering Routine 

This section elaborates the process of the JS . To manage the insertion of the requesting 

stations without compromising the QoS mechanisms provided to the stations that are already 

part of the ring, an insertion algorithm is presented. As the token starts circulating in the 

network from one station to another, a token protection scheme is created for monitoring the 

token's activity. 

A detailed description of the token protecti'on scheme is discussed in the section 2.3 .3. This 

section concentrates on the enrollment of new stations. If a new station wishes to join the 

network, it has t~ wait for UPDATE_NETWORK token cycles. The value of 

UPDATE_NETWORK is a predefined value stored in each station once the network is 

initialized. Each station in the network is equipped with a Token _ Visit_Counter CTVC) to 

record the number of cycles that the token has . visited it. Once the value ·of 

UPDATEjlETWORK is reached, the stati0n that is currently visited by the token activates 

the insertion algorithm. 

The flow chart of the insertion algorithm is displayed in Appendix B. The visited station first 

sets its TVC to zero and then checks its STATION_LIST to find the available empty slots. If 

there are empty slots, the station then broadcasts a NODE_WELCOME message using the 

Token code channel and activates the REQUEST_TIMER for the contending stations to 

respond. If no slots are available (network is performing at full capacity) or the 

REQUEST_TIMER has expired and no response is received, without compromising the QoS 

guarantees, the station will then simply relay the token to the next successor station . 

For the stations that intend to join the network, they constantly monitor the Token code 

channel for detecting the NODE_WELCOME message. To avoid packet collision by sending 

responses in the Token code channel to the sender station at the same time, the contending 

stations use timer mechanism. As soon as the message is received, the contending stations 

start a CONTEND_TIMER where the value of the timer is proportional to its address and it 

has an upper bound of REQUEST_TIMER. The station whose timer expires first earns the 

permission to join the network by transmitting its address to the sender station. All other 
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contending stations which detect the activity in the token code channel before the timer 

expires will then have to abandon the contention and await for the next broadcast. The 

sender station receives the new station's address and inserts it to the STATION_LIST. The 

updated STATION_LIST is then broadcasted to all the stations in the network before the 

sender forwards the token to its successor station. 

2.3.2 Station Lost Routine 

The method for encountering the lost station is discussed in this section. There are two 

possible states that a station can renege, a) leave on demand, or, b) sudden death. Both 

scenarios have been taken into consideration. The flow charts for both scenarios are 

displayed in Appendix C and D respectively. 

Leave on Demand 

If station) intends to leave the network, it first waits for the arrival of the token. It then 

changes the address of the sender to )-1 instead of itself. Its successor station)+ 1 knows the 

station),s intention of leaving the network by discovering that the address of the sender in 

the token is no longer) but )-1. The station)+ 1 will then remove the address of station) in 

the STATION_LIST and leaves the list space empty. It will also change the status bit of 

station) to 0 in S-List in the token. For station)-I, since it will always detect and decode the 

token sent from station) from Token protection scheme, it will also detect the changes in 

sender address and thereby make the same adjustments like station)+ 1. The remaining 

stations in the network discover the absence of the station) by finding out that the status bit 

of station) has been changed thereby removing stationj's address from their list. 

Sudden Death 

If station) leaves the network unintentionally, its predecessor station )-1 will discover its 

absence when relaying the token to the station). With the lost token, station)-I will perform 

token recovery mechanism as discussed in the following section where the issue of drop out 

station will be addressed. 
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2.3.3 Token Protection Scheme 

Due to the mobile characteristics of ad hoc networks, the token, has the possibility of being 

lost during transmission. The token protection scheme is formulated to resolve these 

scenarios and the flow chart for the scheme is shown in Appendix E. To illustrate the 

function of the token protection scheme, Figure 2.1 is used. As in this network, station 1 (S,) 

transmits the token to successor station 2 (S2) , and before relaying the token, station 1 first 

detects if there are any packet transmission activities on station 2 and then forwards the 

token to station 2. If there are no transmission activities, station 1 then executes ROUTE_l 

algorithm. However, if station 2 is busy with packet transmission then ROUTE_2 algorithm 

is executed. 

For the ROUTE_l algorithm, station 1 first monitors the token code channel to determine 

whether station 2 has forwarded the token to station 3 or not. The monitoring is achieved by 

decoding the token code channel for transmission activity. After a predefined 

TOKEN_TIMEOUT period, if station 1 has not detected any token transmission activity, it 

will assume either one of two scenarios has occurred. In the first scenario, station 2 actually 

did receive the token but station 1 failed to detect the transmission due to interference. In the 

second scenario, the token is simply lost during the transmission process. To resolve the 

problem, Station 1 now proceeds to detect the data channel that is used by station 2 and if 

there is an ongoing packet transmission then station 1 can safely assume that the token has 

been successfully forwarded and abandon the monitoring process. If no packet transmission 

is detected, station 1 will now assume the token is lost. The token is then regenerated and 

retransmitted by station 1, but this time the DUPLICATE_BIT (DB) in the token will be set 

to one. 

If after RE_TRlAL attempts are made to retransmit the token to station 2, and station 1 still 

detects no token transmission nor packet transmission, station 1 will assume that station 2 

has dropped out. Station 1 will then update the STATION_LIST both in the token and the 

station. The token is then regenerated and transmitted to station 3 instead of sending it to 

station 2 again. This action is performed in order to avoid the generation of the looping effect. 

The looping effect is defined as the situation where the predecessor station repeatedly 

forwards the token to the successor station, which has already departed from the network. 

On the token receiver side, if station 2 receives the token with DB set to one and it had 

already received the token within the target token cycle time CITe), the station will then 
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simply ignore and delete the bogus token. Station 1 will know the original token has been 

successfully forwarded to other stations by sensing activity in the token code channel. 

However if the token is received within ITc with DB set to one, station 2 acknowledges the , 

fact that the token has been retransmitted therefore station 2 will relay the token to station 3 

with DB set to zero. 

ROUTE _ 2 algorithm uses the same approach as ROUTE _1 algorithm with the difference 

.that it will not detect the data channel from the successor station as the data transmission 

may be from a previous token cycle, not the one that is granted by this token cycle. The 

proposed token protection scheme is more efficient than using the acknowledgment packet 

method. By sending an ACK packet to notify the successful token reception, more errors may 

be created, as ACK packets may be lost due to the wireless nature of the medium. 

2.3.4 Network Initialization 

The proposed hybrid token-CDMA protocol is considered to be self-stabilizing to 

topological changes in the network. Based on the algorithms mentioned previously, the 

topological changes can be contained where only the nodes in the vicinity of the change are 

affected. Therefore nodes inside the network may not have to assume a global time reference 

in which they do not need to be time-synchronized except in the initialization period . 

During the initialization phase, the network is setup to support multimedia applications and 

provisions are also made to support multi-hop (multiple ring) capabilities with hops 

overlapping each other. A hop distinguishes itself by selecting a hop leader and labeling the 

token with the hop-leader address in its header. There are several other pre-determined 

properties during the initialization phase and they are given below: 

• Each token in a network has its dedicated code channel for transmission and every 

single station in the network knows token's code sequence. 

• Each station in the network has the ability to detect the token code channel unless it 

leaves the network. 

• Hop-leader station is assigned using INITIATE_TIMER mechanism, each station is 

equipped with an INITIATE_TIMER and the upper bound of the timer is directly 

proportional to its address. Therefore the station with the smallest address has the 

largest opportunity to become the hop-leader. 

2-16 



CHAPTER 2 HYBRID TOKEN-CDMA MAC 

When a station switches on, it has no knowledge of the status of the network, so it does not 

know if the network is still forming or is already established. It is therefore imperative for a 

newly switched on station to go through network initialization procedure. The procedure is 

shown in Appendix F and described below: 

Once a station switches on, it monitors the token code channel for activities for the duration 

of SENSE_TOKEN seconds. The value of the SENSE_TOKEN has an upper bound of 

3· 'I;lrans . If the station detects channel activity, it will decode the token message and activate 

the suitable response algorithm according to the type of the token message. If no activity is 

detected during the period, the station will assume the network is not yet established and 

claim itself as the Hop-leader for the new network. During the initialization phase, the hop­

leader generates the token and broadcasts the ENROLL message with its address as the . 

header in the message using the token code channel. All the stations which can detect the 

ENROLL message know ifthey are in the network and have knowledge who the Hop-leader 

is. This is done by making the assumption that each station has a unique station address built 

in it (e.g. IP address). 

As soon as the ENROLL message is detected, the · station in the network starts the 

ENROLL _TIMER with the value ENROLL _ TIMER = f3 . S ADDRESS ' where f3 is a constant 

parameter (0::; f3 ::; 1). When the ENROLL_TIMER expires, the station transmits its address 

to the hop-leader using the token code channel. For the hop-leader, as soon as it broadcasts 

the ENROLL message, it waits for ENROLL_DEADLINE seconds. The upper bound of this 

deadline is set to ENROLL _ DEADLINE = 2 · f3 . SMAX ADDRESS . After receiving all the 

stations' addresses, the hop-leader organizes these addresses in the STATION_LIST and 

again broadcasts the list to all stations using token code channel. An example of the 

STATION_LIST is shown in Table 2.1. By receiving the STATION_LIST, the station now has 

the knowledge of its predecessor and successor stations. The hop-leader now activates the 

network by generating the token and forwards it to the successor station according to 

STATION LIST. 
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2.3.5 Provision for Multiple-Ring 

The hybrid scheme may easily be modified to adapt to a multiple-ring structure. In this case, 

a station can belong to more than one ring therefore it can transmit or receive to all the 

networks that it is connected to. However, a station can not be the hop-leader for more than 

one ring. Based on the Hop Leader' s ID property, each network will create its unique token; 

therefore preventing different networks generating identical tokens. With the scheme's 

CDMA properties, the spatial-reuse can also be incorporated to fully utilize the available 

bandwidth. As discussed in [Ergen, 2004], there are several extensions that can be used to 

support multiple-ring network. One typical example is the Star-Ring topology. The Star-Ring 

configuration merges the centralized star topology and the distributed ring topology. In this 

case, stations are served as access networks utilizing non-mobile relaying nodes to provide 

wireless backbone services for nomadic users to access the wired Internet. A typical 

application for such a configuration would be a wireless mesh network [Bruno, 2005]. 

2.4 Simulation Model 

In this section, we present the simulation model for the proposed MAC protocol. A detailed 

simulation model using the C++ builder software package is built. The model is based on an 

event driven packet level simulator for monitoring and recording results. The built model 

consists of the link layer, and the token-CDMA MAC protocol at the MAC layer. It is 

assumed that all the properties of the timers are incorporated in the stations and all the delay 

properties (e.g token forward, transmission times) are also considered within the simulation 

model. The pseudocode for the simulation model is presented in Figure 2.5. The sub-section 

of the pseUdocode. for the MAC algorithm is presented in Appendix A. 

The simulation model consists of five sub-models, namely: Traffic, QoS guarantee, wireless 

channel error, and station/token lost models. Traffic model is responsible for generating 

traffic flows within the network once the network is initialized. As discussed in section II , 

QoS guarantee model is in charge of the service level agreement for each station within the 

network. 

2-18 



CHAPTER 2 

I. Initialze 
I N~twork Topology G +-{n. m} 
2 n = nodes in the network 
3 m = CDMA codes used in the network 

HYBRiD TOKEN-CDMA MAC 

4 for ( '" i . node, E G) A',p,.; = mean data rate of node, of class r 

5 for ( V i. node, E G) a; = P, . A,~J ; P, ~ I 

II. Main Processing 
I INP UT: SimTimeLimit, Simtime = 0 
2 if(SimTime~SimTimeLimit) 
3 switch(event, = GetNextEvent()) 
4 { V i,evenl,,1 S i S 6 } event, = TokenEvent(). 

5 event] = PackGenEventO. event, = PermitGenEventO 
6 event, = PackTXEventO. eventj = ChanneIErrorEvent() 
7 event, = MMPPEvent() 
8 gap = SetEventVal / 2. dFlag = O. index = 0 
9 do 
10 do 
II dFlag = 1. for (index < SetEventVal- gap)) 
12 if (Event_Table[index) > EventJable[index + gap)) 
13 temp = EventJable[index] 
14 . Event_ Table[index) = Event_ Table[index+ gap] 
15 Event_Table[index + gap] = temp 
16 dFlag=O 
17 while (dFlag 1= 1) 
18 gap=gap/2 
19 while (gap >= I) 
20 SimTime = Event_Table[O] 

GetNextEventO 
21 for ( V i, node, E G) 
22 if (SimTime = = Qlnfo[i] .x) . 
23 if (x = = TokenTime) val =1. if (x = = GenPacTime) val =2 
24 if(x = = PermitGenTime) .val =3, if(x = = PackTXTime)val =4 
25 if (x == ChannelErrTime)val =5. if(x = = MMPPTime)val =6 
26 return val 

Figure 2.5: Main Pseudocode for the MAC algorithm 

The wireless channel error model is used to simulate the multiple access interference (MAL) 

that the packet and token would encounter in the wireless environrrient. USIng the finite state 

machine, the station/token lost model is implemented to realistically mod~1 the dynamic ad 

hoc wireless environment. A detailed explanation of the sub models is presented in the 

following sections. 

2.4.1 MMPP Traffic Model 

Most wireless MAC protocols assume that traffic inter-arrival times are independent renewal 

processes. In many cases, these processes are assumed to be independent, identically 

distributed (i.i.d) memoryless distributions (e.g Poisson). However, in real world situation, 

the processes may not be memory less [Leland, 1994]. Input traffic processes in wireless 

networks have significant inherent correlation structure, which leads to burstiness in the 

arrival process [Luo, 2005]. 
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Figure 2.6: 2-state MMPP model for node i 

The structure of these traffic processes does enable approximation by Markov-modulated 

Poisson processes (MMPP) and its variations [Beffes, 1986],[Kim, 2000],[Che, 1998]. For 

the proposed hybrid MAC scheme, it is assumed that the arrival traffic process is typically 

described by an MMPP as shown in Figure 2.6. In the MMPP model, packet arrival is a 

Poisson process whose rate is a deterministic function of the state of a discrete-time Markov 

chain (DTMC). This doubly stochastic process is commonly used to model typical network 

traffic. 

(2.2) 

The superposition of ON-OFF sources is approximated by means of a 2-state MMPP for 

each traffic class. Four parameters are required to represent the 2-state MMPP source of each 

traffic class, where If/~ (If/~) is defined as the mean transition rate out of the Low load 

(High load) state, and .A.-; .L is the mean arrival rate of the Poisson process in the Low load 

state and .A.-:.H corresponds to bursts of the high arrival load state for node i of traffic class r. 

The effective combined Poisson arrival rate for node i is then given by (2.2) and we assume 

that traffic arrives as packets offixed length of t;: bits. 
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2.4.2 Wireless Link Error Model 

It is known that the CDMA codes can induce multiple access interference, resulting in 

secondary collisions at a receiver (collisions between two or more transmissions that use 

different CDMA codes). In the literature, this problem is known as the near-far problem 

[pickholtz, 1984]. In the hybrid MAC scheme, the transmission powers are assumed to be 

dynamically adjusted and the codes are orthogonal such that the MAl at any receiver is not 

strong enough to cause a secondary collision. 

To model the wireless characteristics of the CDMA channel within the network, a multi­

layered Gilbert-Elliot channel error model [Elliott, 1963], [Gilbert, 1960] is implemented in 

the simulation. The Gilbert-Elliot error model is a two-state Markov Chain consisting of the 

Good state and the Bad state. The two-state Markov model captures the correlated errors that 

are typical for wireless links. This two-state model has been found to be a useful and 

accurate model for link-layer analysis [Bhagwat, 1997], [Wang, 1995]. In the good state, 

packet transmissions received have a high success probability. However, some of the packets 

may still fail to transmit with a probability that depends upon the interference level. 

The bad state of the Markov Chain corresponds to a deep fade (or shadowing) in which all 

packet transmissions are unsuccessful [Blackard, 1993]. Using an approach similar to 

[Krishnam, 2004], we model the M+ 1 CDMA code channels in the network as M+ 1 

independent Markov Chains in our simulation. M is the total number of codes used for data 

transmission within the network and the extra code (+ I) is the token channel. The issue of 

dependencies between the links when modeling the link errors in the good state is al so 

addressed in the following section. These dependencies illustrate the interference between 

the ongoing packet transmissions in the network. 

2.4.2.1 Model Parameters 

In order to simulate the wireless condition, we firstly define the period of the channel 

condition. A period consists of duration of time in which channel i is in the good (r' ) and 
good 

the bad state (T~ad)' To derive the length of each state in a period, we denote P~B as the 

probability that a transition takes link i from the good state to the bad state, under the 

condition that link i is currently in the good state. Likewise, p~G is denoted as link i' s 
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transition probability from the bad state to the good state. The steady-state probability that 

link i is in the good ( P;Ood ) or bad state ( P:ad ) , are derived from [Krishnam, 2004] to be, 

i P6B 
Pbad = pi pi 

GB + BG 

(2.3) 

. p~G 
P~ood = i i 

PGB + PBG 

From (2.3), the mean length of the good and bad states 'in a period can be clearly derived to 

be ~~O<Xi = I I P~B and ~~ad = 1/ p~G . For a flat-fading channel, [Krishnam, 2004] noted that the 

Markov Chain parameters may be derived in terms of the Rayleigh-fading envelope of the 

local root mean square level by defining 

(2.4) 

where W j is the fade margin at the radio front end of the wireless channel with the typical 

values between 5dB and 20dB . Using (2.4), these values give typical P:
Ood 

values between 

0.9 and 0.999 and P:ad values between 0.001 and 0.1. The average sojourn time in the bad 

state is derived from [Bhagwat, 1997] to be, 

(j) 2 
-i e I -1 
Tbad = - --

2m», +. Ili 

(2.5) 

where 1; denotes the maximum Doppler frequency given by it = Vi I A. Vi is the speed of 

station i and A is the carrier wavelength. The IEEE 802.11 system carrier wavelength of 

A=0.159m is chosen for the simulation, i.e. the 802.11 system has a carrier frequency of 

2.4GHz. By setting the speed of the station, we can derive the state durations . 
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2.4.2.2 Packet-Lost Probability in Good/Bad State 

Once the length of the period is derived, the next step is to set up the packet loss probabi I ity 

for each state. The packet-drop probability ( PEP:OO ) in the bad state for a wireless link is set 

to one. That is, if link i is in the bad state, all packets sent by code channel i are dropped on 

the wireless link with a probability of one. For the packet-drop probability in the good state, 

it is assumed to be a function of the interference level. In our case, the interference level is 

dependent on the total number of codes used in the network at that point in time with 

. inclusion of additive white Gaussian noise (A WGN). 

The hybrid scheme implements a binary phase shift keying (BPSK) modulation scheme. Let 

. } = 0, ... ,M+ 1 denote the total number of currently interfering CDMA codes in the network. 

As discussed earlier, M is the number of codes used for data transmission and the extra 

channel is the token channel that is used solely for token transmission . The widely used 

Holtzman approximation [Holtzman, 1992] is then used to calculate the bit-error rate 8ER(J) 

with BPSK modulation resulting from an interference level of} codes 

where 

and 

BER(j)=7: Q j-I + No [[ )
-0.5 ] 

. 3 .3G spreading 2Eb 

1 +-Q 
6 

I +-Q 
6 

02 =( '-I)[G2 . ~ ( _ )(_1 J-2 )] 
] spreadmg 360 + G spreading 1 20 + 36 

1 <Xl 2 
Q(x)= r,::- f e- t 12dt , x ? 0 

,,27f . 
x 
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Gspreading is the spreading gain. Based on (2.6) to (2.8), the Holtzman approximation 

calculates the BER caused by the multiple-access interference for a system with equal 

received signal powers and randomly interfering signature sequences. Based on the BER, and 

with incorporation of an error correction scheme which implemented (31, 16) BCH code, the 

packet-lost probability for the good state (PEPiood) can be calculated based on the bit error 

probability derived from (2.6), 

31 31 . 31 . 

( )

G 

PEP/"d = 1- 1-E( i )rBER(J))' (I-BER(J)) -, (2.9) 

where c is the length of the blocks. By following this approach, the interference effect of the 

ongoing packet transmissions in the network can be realistically simulated. 

2.5 Performance of Hybrid Token-CDMA Scheme 

In this section, we evaluate the performance of the hybrid MAC scheme. The effectiveness 

of the Hybrid CDMA-Token, wireless token ring protocol (WTRP) [Ergen, 2004] and the 

standard CDMA scheme are compared for various performance metrics. The metrics we use 

for the evaluation are throughput and queuing delay of the packets. In particular, the packet 

delay and throughput were evaluated as a function of the number of nodes in the system, 

number of codes available for the network, node data rate and the system loading per code. 

The locid condition of the network displayed in the results is defined as, 

Nl r 2(N/ r) N 

L }.i~,i + L Ai~,i + ... + L A~,i 
Normalized load = i=O i=N/ r+l i=N(N-l)/ r+l (2.10) 

MfJ 

where ~ is a CDMA code's transmission capacity in packet/so Note that for WTRP protocol , 

a single Gilbert-Elliot A WGN channel error model is used since it only uses a single channel 

for transmission. The CDMA scheme implements the same wireless error model as the 

hybrid scheme as they both used CDMA codes. The model setting of the 
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TABLE 2.3 
SYSTEM PARAMETERS 

Symbol Parameter 

Number of nodes (N) 30 

Number of codes (M) 18 
N umber of classes (r) 3 

Traffic load for class 1 (;"1) ,(,1 = 1.5,<,' 

Traffic load for class 3 ().,,) ).,' =2).,' 

QoS parameter ( PI ) 1.10 

G", ... ., 32 

PHY header size 128 bits 

Mean packet size ( ~: ) 796 bits 

Mean frame size 1023 bits 

FEC redundant bits 99 bits 

FEC correctable bits 3bits 

CDMA channel bit rate (1/Tc ) 1.28 Mcps 

Modulation BPSK 

Token walk time (T,'~) 50 us 

Permit pool capacity (r,) 20 

Packet buffer capacity (0.;) 20000 

-i 3.2 ms 
Bad state duration ( Thad ) 

Bad state P EP;ad 1.0 

Good state PEP~ODd Holtzman's 
approximation 

WTRP Channel bit rate 1.28 Mbps 

Signaito Noise Rato (SNR) 8dB 

WTRP's Gilbert model is similar to the hybrid scheme's error model where four variables 

must be taken into consideration. The same channel error and error correction conditions of 

P~ood' P;Od and PEP/ad have been used for the WTRP scheme. The BER of WTRP can be 

derived to be BER(j) = Q( ~2SNR) , while PEP/ODd is derived using (2.9). For the 

performance comparison, the same' parameters are used for all simulations. Parameters used 

in the simulation are summarized in Table 2.3. 

In Figure 2.7, both the mean packet delay and code utilization graph are shown comparing 

the performance of the hybrid scheme using different sets of codes, and provides an 

indication of the optimum code usage in the network for the hybrid scheme. In Figure 2.7(a), 

the mean packet delay(a) is plotted against the normalized load, which is defined as the ratio 

of the traffic generated for the entire network and the capacity of the network as shown in 

(2.10). 
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Figure 2.7 shows the hybrid scheme with three different sets of codes assigned to the 

network. It is shown from the figure that the delay performance of the hybrid scheme is 

dependent on the number of codes used in the network. With fewer codes available, the 

scheme achieved low throughput and long packet delay. However, with large number of 

codes, it creates a high packet error probability due to severe mUltiple access interference. 

This effect is especially evident under heavy traffic load. 

This effect consequently leads to traffic congestion and significantly increases both the 

packet delay and the length of the queue. Figure 2.7(b) investigates the dependence of 

throughput on the number of codes. As noted with the delay in Figure 2.7(a), there exists an 

optimal number of codes that maximizes the throughput for given load conditions. This 

optimal number is a function of the network load. Under load condition 0.9, it can be seen 

that the throughput increases with increase of codes used in the network. However, it is also 

observed from the figure that under heavy load conditions (0.95 and 0.98), the throughput 

starts to decrease when large numbers of codes are used; this result corroborates the 

discussion earlier where the deterioration is due to multi-code interference. It is shown from 

the figure that the scheme performs optimally when mid-range of codes with the optimal 

value is being used in the load function. 

Figure 2.8 displays the packet error probability and throughput for all MAC schemes . This 

metric reflects the overall system performance of each traffic class in the three MAC 

schemes. It is clearly shown from Figure 2.8 (a) that the packet error probability increases 

with an increase in load for both the hybrid and CDMA MAC schemes. The WTRP exhibits 

relatively consistent error probability due to its single channel configuration. It is also shown 

that the packet error probability for the CDMA scheme achieves the worst performance due 

to severe interference. Based on the same token-access control mechanism, the hybrid and 

WTRP schemes achieve an identical throughput as displayed in Figure 2.8 (b). However, the 

CDMA scheme suffers rapid deterioration in throughput starting from medium loading 

condition due to its high packet error probability as shown in Figure 2.8 (a). 

We also analyze the impact of different load conditions on the packet delay and buffer length 

of all three MAC algorithms . The packet delay is defined as the time period from the time 

when a packet arrives at the front of buffer QI of a node to the time it is successfully 

transmitted to the intended receiving station. The packet transmission time is not included , 
i.e., the packet delay is the time delay determined by the efficiency of each MAC algorithm. 
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Figures 2.9 and 2.10 show the mean packet delay and buffer length for all MAC algorithms 

respectively. From the figures, it is clear that the hybrid algorithm outperformed the other 

two schemes for all traffic class nodes. When packets are lost due to interference, it is 

observed that the CDMA scheme suffered the worst delay performance and this corresponds 

to the discussion earlier. It should also be noted that the WTRP system experiences longer 

packet delay than the hybrid scheme. This is predicted as for most of the token-based 

protocols with single transmission medium available, long access delay is unavoidable in 

order to have guaranteed access. For the hybrid scheme, with its capability of dynamic 

channel allocation, the token can adjust itself to fit any asymmetric traffic loading condition 

to achieve low access delay as shown in Figure 2.9. 

During the light load conditions, it is observed that all schemes have similar performance. 

When the traffic is light, system capacity is not fully utilized therefore it is relatively difficult 

to distinguish the performance of the MAC schemes. The number of codes used during the 

light load condition is significantly lower than during the medium and heavy load conditions. 

This effect reduces the MAl thereby decreasing the packet error probability which leads to 

smaller packet delay and buffer length. 

The plots in Figure 2.10 show that the lengths of the buffers of other two schemes are longer 

than the hybrid scheme. This was predicted since as the packet waiting time increases, more 

packets would have to queue inside the buffer before receiving service. This is especially 

evident when the system is under a heavy traffic state, during which the length of the buffer 

increases drastically. The interclass effects in the network can also be seen in Figure 2.10, 

which becomes more pronounced for all MAC schemes iIi the case where the load condition 

is high. The mean queue length of class 3 is greater than that of class 2. 
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Figure 2.7: Mean packet (a) delay vs normal ized load and (b) code utilization vs 

normalized load of class 3 node for hybrid MAC scheme under the condition that the link 

is in the good state with probability 0.9 with fi xed QoS parameters that accommodate the 

maximum normalized load of 0.8 
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Figure 2.8: Packet error probability (a) vs normalized load and throughput (b) vs 

normalized load of all MAC schemes under the condition that the link is in the good state 

with probability 0.9 with fixed QoS parameters that accommodate the maximum 

normalized load of 0.8 
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2.6 Summary 

In this chapter, a de-centralized, QoS-aware medium access control for ad hoc wireless 

networks was presented. The approach is hybrid: a token scheme ensures the guaranteed 

access for all node in the network and CDMA is implemented to support simultaneous 

multiple data transmissions. The important features of our approach are that it exploits the 

availability of multiple transmissions, and it also takes the error-prone wireless channel 

condition into consideration. 

Based on this approach, a novel hybrid Token-CDMA MAC protocol is proposed, where a 

token is used to distribute the CDMA codes and its rotation time is independent of the 

loading condition of the network. By making use of the token dynamics, the proposed 

scheme is able to efficiently distribute th.e available bandwidth to all the nodes in the 

network. Under the same loading condition, it provides the capability of supporting a larger 

number of nodes than the current CDMA system without affecting the system performance. 

By incorporating wireless channel error models into the simulation programs, various 

performance measures of the hybrid MAC are compared with the single-token 

WTRP and CDMA MAC protocols under the same simulation conditions. 

Simulation results demonstrate that the hybrid scheme outperforms other two 

schemes in system performance. Although both the WTRP and hybrid schemes 

implement token passing strategy to distribute the bandwidth, the hybrid scheme 

achieves higher throughput, lower packet delay for all the traffic classes in the 

network and leads to relatively small buffer length for all nodes. The hybrid scheme 

can be easily implemented in a distributed fashion and, due to its token based design, 

it could effortlessly incorporate other QoS guarantees to provide better support of 

heterogeneous services in both the mobile ad hoc network and traditional wireless 

network. 
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CHAPTER 3 

APPROXIMATE ANALYSIS OF THE HYBRID TOKEN-CDMA 

MAC SYSTEM 

3.1 Introduction 

There exists a number of papers that proposed MAC schemes using the token mechanism for 

Ad hoc networks. However, these contributions only considered the single token case in the 

network and performed minor or no statistical analysis for the system. A new hybrid Token­

CDMA MAC protocol is proposed in Chapter 2 arid its performance was compared with that 

of the single-token WTRP and standard CDMA MAC schemes. 

The hybrid MAC scheme can be modelled as a multiple server system. From the literature, it 

is known from [Borst, 1997] that multiple server systems are extraordinarily hard to analyze, 

and no exact results are derived for models with independent servers, apart from some mean­

value results for global performance measures such as cycle times, e.g., [Qing, 1989], 

[Hamacher, 1989], [Kamal, 1994], [Borst, 1997] and [Shieh, 2000]. Most of the proposed 

analyses use exhaustive, gated or I-limited service policy to serve the packets, and none of 

these papers incorporate any QoS guarantees into the analysis. 

As mentioned earlier, the hybrid MAC scheme can be considered as a system that consists of 

multiple queues which are serviced by multiple servers, where this configuration is 

commonly denoted as a multi server multiqueue (MSMQ) system. The novelty of the system 

is that a CDMA code is considered as a server in the analytical scenario. There exist three 

packet transmission schemes for MSMQ systems [Marsan, 1992]. For the proposed system, 

the scheme is adopted where a queue may only be serviced by a single server during the 

packet transmission. All other servers in the network arriving at the queue during 

transmission must be passed onto the next queue in the network. 

The storage capacity at each queue is assumed to be infinite and the queuing discipline is 

FIFO at each queue. The service discipline is gated at all queues. The polling order is given 

by servers visiting queues in a fixed index order. With the compact notation introduced in 

[Mars an, 1992] for MSMQ systems, the system studied in this case can be denoted as a 
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G!MJG/oo queue model. The literature on the MSMQ networks that implements the I-limited 

service discipline are [Hamacher, 1989], [Kamal, 1994], and [Cai, 2000]. In [Mars an, 1992] 

and [Chen, 1988] approximate analytical results for the average server cycle and vacation 

times, as well as approximate closed-form expressions for the average packet waiting time 

under I-limited, gated and exhaustive service disciplines are given . 

Queuing systems with server vacations [Takagi, 1991], [Doshi, 1986] have proven to be a 

useful abstraction of systems where several classes of customers share a common resource 

such as in polling [Takagi, 1987] systems. However, there exist only few papers that discuss 

the same packet transmission protocol for the gated type service discipline and vacation 

system. In this chapter, an approximate mean value analysis for the proposed gated multiple­

vacation queue that supports mUltiple traffic classes is presented. Using the approximate 

approach, the mean server inter-visit and inter-arrival time and also the queue vacation time 

are derived. Based on the multiple-vacation queuing model, an approximate analysis is 

conducted using the probability generating function approach. The novelty of this work lies 

in viewing and modeling the hybrid MAC scheme as a queuing system with server vacation. 

The remainder of this chapter is organized as follows. Section 3.2 describes the analytical 

model of the hybrid MAC scheme in detail. Based on the MSMQ approach, the approximate 

mean value analysis for the server vacation time is presented in Section 3.3. Section 3.4 

presents an approximate discrete time analysis for the packet departure process and the 

moments of the packet delay for all traffic class queues. Results from simulation and analysis 

are compared in Section 3.5 ~d conclusions are drawn in Section 3.6. 

3.2 System Model and Assumptio,ns 

In this section the description of the proposed MSMQ model for Hybrid MAC scheme, 

together with the assumptions made for the model are presented. 

3.2.1 Analytical Model Description 

The system model consists of M codes/servers and N queues as shown in Figure 2.1. The 

queue model in the system is displayed in Figure 3.1. It consists of three sub-models which 

are an input, a buffer and a vacation model. The input sub-model is responsible for handling 

the QoS guarantee for the incoming packets, and the buffer sub-model is used to manage the 

packets stored in the buffers of the queue model. The vacation sub-model is implemented to 
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monitor token activity. Detailed discussions of each sub-model will be presented in later 

sections. It is assumed that each server represents a code channel, each queue resembles a 

station and the system is operated in steady state. Each queue, i, is assumed to have an 

infinite capacity, into which packets arrive according to a Poisson process . The Poisson 

process is implemented instead of the MMPP process used in Chapter 2 as it makes the 

analysis tractable. With heterogeneous network configuration, the queues are categorized 

into r different traffic classes. Queues in each class have identical mean data packet arrival 

rates with notation 1 r . • 
''ip ,1 

r - - - - - - - - _. - - :-

Packet 

a l 

r 

.------------------------~ 

TPermit 
: Pool 
I 

~'Yi 

I 
I 

: I 
I 
I 
I 
I 
I , 
I 

Departing I 

: III1 ~ jTii b----.~ 
: ~----~ ~----~ 
I Packet Buffer i 
I (QI) Packet Buffer Packet I 
: (Q2) Buffer : 
I (Q~ I I _____________________________________ J 

Figure 3.1: Queue model with data rate QoS guarantee 

To provide data rate QoS, a modified leaky-bucket input regulation system is implemented. 

Each queue i has a permit pool for storing the generated permits. The permit generation rate 

of node i of class r (a~) is proportional to the data rate as indicated from (2 .1). The packet 

length is assumed to be geometrically distributed with the mean of s bits/packet. Since the 

code channel rate is assumed to be constant in the analysis, the service time of a packet is 

then also geometrically distributed with a mean of j.1-1 slots in which the mean service rate is 

_S_ (bits/slot). 
j.1-1 

Packets that arrive in buffer QI have to gain the permission through a leaky-bucket policing 

mechanism, where it must obtain a permit from a permit pool. Once a packet obtains a 
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permit, it then passes through to buffer Q2 where it will be stored until a token with available 

code arrives at the queue. 

When the token visits. a queue and there is a code available, the gated-service discipline is 

employed where all the packets in Q2 will be moved to Q3 and the server will empty the 

packet buffer Q3 as illustrated in Figure 3.1. A detailed description of the transferring of 

packets between queues is discussed in Section 3.3 . After servicing the packets , the queue 

returns the code to the token and enters the vacation period. 

It is assumed that the token moves independently from one queue to another according to a 

predefined and fixed .schedule. The walk time of the token from queue i to the subsequent 

queue i+ 1, is assumed to have a mean of h, slots . The entire network is considered to be 

operated under steady-state. The vacation ends when the token with available codes visits the 

queue again. The approximate mean value analysis of the server vacation period for the 

proposed MAC scheme is presented in Section 3.3. 

The analytical model is assumed to be symmetrical. In this case we assume that all servers 

are identical and carry the same load. 

3.2.2 Assumptions 

Throughout the chapter the following assumptions will be made: 

• The queue denoted in the analytical model is represented by the three packet buffers 

(Q], Q2 and Q3) .where Ql and Q2 are used for QoS purpose. CDMA code in the 

model is represented by the server to constitute a MSMQ network and the packets 

in Q3 are be served by the server. 

• The packet arrival rate for each queue is d .d Poisson rvs with parameter A' . > 0 'p.t , 

where there will be r traffic classes in the network. 

• The permit generation rate of node i of class r (a;) is proportional to the packet 

arrival rate. 

• 

• 

Length of a packet is assumed to be geometrically distributed with the mean of s 

bits/packet. 

The service time of a packet is geometrically distributed with a mean of /4-1 slots in 

which the mean service rate is ---s- (bits/slot). 
Jl 
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• For the analytical model, it is asswned that the permit pool i has the capacity of Yi 

permits and for the packet buffers; it is assumed that each buffer QI. Q2 and Q3 has 

infmite capacity. 

• For the token walk time, it is assumed that the token moves independently within 

the network, its walk time from queue i to the subsequent queue i+ J is assumed to 

have a mean of h, slots. 

• The proposed analytical model is assumed for small network due to computational 

complexity and it is operated under steady state. 

3.3 Mean Value Analysis of the Queue Vacation Time 

The queue's vacation time is defined as the time between the release of the CDMA code at 

the queue and the next capture of a usable CDMA code at the same queue. A usable code is 

defined as the code that can be used by the queue when it arrives at the queue, while a code 

is defined as not-usable if it arrives when there are no packets in the outgoing queue (Q3) or 

the queue is busy servicing packets. This is illustrated in Figure 3.2. 

time 

service vacation 

Polling of code B 
to queue i of class j 

-i.j 

C cod<.p 

® Pollin!! of code B to Queue i 

D Code arrival (not usable) 

Next Polling of 
code B to queue 
i of c1assj 

o Pollin!! of other code to Queue i 

~ Arrival of code B to Queue i (not usable) 

Figure 3.2: Sequence of events at a node 
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The notations displayed in Figure 3.2 are defined below: 

• C ~~~, .• : It is the time elapsing between two consecutive arrivals of any code at the 

same queue i of class j where the code is not usable. 

• ~: The vacation time, it is the time it takes for the token with available code to 

• 

• 

return to the same queue. 

ci,j • This is defined as the time elapsing between two consecutive arrivals of any 
-~. 

code at the same queue i of class j where the code is usable. 

c~,.P : The time elapsing between two consecutive arrivals of code B at the same 

queue i of class j where code B is not usable. 

· c~ : This is the time elapsing between two consecutive arrivals of code B at the 

same queue i of class j where code Bis usable. 

The time elapsing between two consecutive arrivals of code B at the same queue i of class j 

is denoted as Ci,J , and it consists of two parts: the total amount oftime that the code spent 
cod',p 

walking in the system which is denoted as the token cycle (Tc), and the total amount of time 

it spent on serving the queues during the cycle. It is indicated from [Marstm, 1992] that the 

latter part, when in steady-state, must be equal to a fraction of 11M of the average total 

amount of work arriving during a cycle. And Ci,J can be derived as, 
cod',p 

cY -7;; =~(NA/f-l-l.Ci,j ) 
code,p M code,p (3.0) 

However, this condition can not suitably be used for the proposed analytical modeJ , as in the 

hybrid-Token CDMA model the token is constantly circulating in the network. Once the 

queue fmishes with its packet service, the code has to wait for the token to arrive at the 

queue and append with it to next queue. The time for the token to return to the queue i is 

denoted as £5 and the number of queues that capture the particular code during a cycle as l 

(O~I~(N-l)). 
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With some modifications, Ci,J is derived to be, 
code,p 

ci,J -([~ Trans 1 + [.5) = _1 [(t ~ )./ f1- l j'Ci
,J 1 

code,p L...., M . . code,p 
1=1 J= II=1 

(3.1 ) 

where T 'rans is the token walk time between queue i and i+ 1 and the mean value for 0 is 
I 

approximated to be, 

N 
~ _ 1 "" 'T trans 
U- -~l i 

N i=l 

and the mean value of I can be approximated to be, 

r 

l=(qj-l)p; + IqjP; 
j=2 

(3 .2) 

(3.3) 

where qj is the number of queues that belong to class j , and p! is the probabi I ity that queue i 

of class j captured the code. Its derivation will be discussed later. Equation (3.1) can then be 

simplified to, 

(3.4) 

The mean value for the same code polling cycle time (Ci,J ) can be derived as, 
cade 

ci,J = K . (ci,J ) 
code cod e,p 

(3 .5) 

where K is a random variable representing the total number of queue-code arrival-cycles 

contained within a queue-code polling cycle. K is dependent on both the queue and the code 

3-7 



CHAPTER 3 APPROXIMATE ANALYSIS OF HYBRID MAC SYSTEM 

pi "" pr{Qi,j } 
I Busy and Emply 

=1-(pr{Qi ,j }+pr{Qi,j }) 
BIl'Y Emply 

N 
g~ .. }j 

I M -1 11 -I 
-~/l-il-l 

(3.13 ) 

In this case gN denotes the number of combinations that n packets can be arranged in N , a 

queues where it may be derived using permutation technique, and ~j,j is defined as the mean 

number of packets that are in the system. ~j ,j is approximated by summing the average 

amount of work that arrived at all the queues, 

_ N ..1./1-1- 1 

ni,j "" L M -1 j -I 
1 =ll- ~· A.i 1-1 

3.4 Approximate Analysis of the Queue Model 

(3.14 ) 

In this section the input, buffer and the vacation sub-models are presented and incorporated 

into the system model. An approximated discrete time analysis is conducted for the hybrid 

MAC scheme. 

3.4.1 Discrete Time Analysis for the Input Model 

The input sub-model within the queue model is used to regulate the packet arrivals using 

data rate QoS guarantee. To monitor the flow of traffic in discrete time, an approximate 

analysis of the packet departure process of the input model is presented in this section . In this 

case, the probability generating function of the packet departing process from the proposed 

data rate QoS scheme is derived. In discrete time scenario, time is slotted where the length of 

each slot is the permit generation slots with the slot length r; and a new permit is generated 

at each slot boundary as depicted in Figure 3.3 . 
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. . ( )-1 
The length of the slot is proportional to the mean arrival rate where T~ = Yi A¢,i . The 

QoS parameter Yi is used to control the length of the permit slot. The main purpose of the 

parameter Yi is to provide fairness in the network by ensuring that all nodes receive 

sufficient access to the network. 

nCin+J 
Time 

Figure 3.3: State diagram of the discrete time system for the packet departure from 

buffer Ql to Q2 

This is achieved by constraining the node-transmit capacity, limiting the maximum number 

of packets that can be transmitted and by varying the parameter Yi . Detailed explanations of 

how to achieve this Q6S is discussed in the next paragraph. 

The generated permit joins the permit pool if thepool has less than Yi permits, otherwise, the 

permit is discarded. In order to satisfy the proposed data rate QoS guarantee, packets arrive 

into an infinite buffer CQl in Figure 3.1) according to a Poisson process with mean arrival 

rate Ai~,i' Using modified leaky bucket traffic regulation system [Butto, 1991], if the 

arriving packet finds the permit pool nonempty' it then departs to buffer Q2 and one permit is 

removed from permit pool. An arriving packet that finds the permit pool empty joins the 

queue. When the queue is not empty and a permit is generated, one packet departs the queue 

immediately (in FIFO order) and the permit is removed from the pool. It can be observed 

that the packet departure process from this modified Leaky-Bucket scheme constitutes the 

input process to the network that is intended to be regulated. 

To derive the probability generating function (PGF) for the packet departing process, it is 

imperative that the steady-state joint probability distribution of the queue length and the 

permit pool occupancy (PB" ) at the slot boundary must first be derived. Based on [Gautam, 

2002], the probability distribution of the queue length of buffer QI in steady state can be 

found at embedded permit generation point where the input queue buffer QI can be modeled 
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as a MIDI! queue [Sidi, 1993]. For the MIDI! queue, its queue length distribution in steady 

state can be derived as, 

P ( )=P { = }=(l- . )~[(_l)a-kiPi[ (kP;rk + (kp;r-
k
-
I11 

qm a r qm a p, t; (a-k)! (a-k - l)! 

where p. = A.,PJ and with initial conditions, , T; 
Pqm (O)=(l-p;) 

Pqm (l)=(l-p;)(eP; -1) 

(3 .15) 

(3 .16) 

The number of packets that arrive in buffer Q2 in the nth slot is dependent on the number of 

packets that depart from buffer QI during the nth slot. However, there can be more than one 

departure in the nth slot since. at the beginning of the nth slot, there may be residual permits 

from the previous slots, therefore the number of packets that can depart from buffer QI 

during the nth slot is denoted as Bn, where 0 ~ Bn ~ 1 + Yi • The notation Yi is the permit pool 

capacity for queue i. In the one packet departure case, in order to have one packet depart in 

the nth slot, there must be at least one packet in the buffer Q I, i.e. Pr ( q n ~ 1) . 

Using the iterative process and with memory less characteristic of the M/D/ l queue, the 

steady state probability distribution of the departing packet at slot boundary can be derived 

as, 

PBJO) = Pr(qn = 0) = (1- Pi) 

PBn (1) = Pr(qn ~ l)nPr(RP = 0) = Pr(qn ~ l)nPr(qn_l ~ 1) 

=[fPr{qn =i})n[fPr {qn_1 =i})=Pi'Pi = (Pi)2 
,=1 ,=1 

(3.17) 

where' Pr(RP = 0) denotes the probability of having no residual permit (RP) in the buffer. 

Therefore, for one packet onwards, 
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co 1 

PBn (2) = Pre qn ;:: 2)n Pr (RP = 1) = Pre qn ;:: 2)· PRP (1) = L Pr{ qn = i} .(Pr( qn = 0)) 
i=2 

=(1- taPr{qn =i})(I-Pii 

PBn (3)=Pr(qn ;::3)nPr(RP =2)=(1- ~pr{qn =i}}I-Pi)2 

(3.18) 

[ 
ri ) r ' PBJri+I)= 1-~pr {qn =i} (I-Pi) I 

PBn (ri + 2) = 0 

PBn (ri + 3) = 0 

In order to have more than one departure within the nth slot, there must be residual permits 

from previous slot and the maximum number of departures is dependent on the permit pool 

size Li• In this case, there can only be two departures in the nth slot when there is one 

residual permit from previous (n-l)th slot. Therefore the probability of having two 

departures (PBn (2)) is equal to the probability of having two packets in queue buffer and 

with one residual permit from previous slot( PRP (1)), which is given in (3.18). 

The term PRP (b) is defined as the probability of having b residual permits and it is 

determined by the queue capacity from the previous slot. There will be a residual permit 

available only if the queue length from the previous slot is zero. Therefore the probability 

can be derived as, 

Prob (Residual Pennit = b) 
= Pr(RP =b) 

= PRP(b) 

= P (Q = 0 at previous slot) n P (Q = 0 at previous 2 slots) ... n P (Q = 0 at previous b slots) (3.19) 

= Pqn-
I 
(0)pqn_

2 
(O)",Pqn_

b 
(0) 

= (pq (0) t 

(3.17) and (3.18) can be simplified to 
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Pan (0) = (1- Pi) 

Pan (I) = (Pi)2 

Pan (2)=(1- taPr{qn = i})(1- pj 

Pan (3)=(1- ~pr{qn =i})(t-Pi/ 

PB" (r;+I)+- t,p,{q" =i}}I-P,l" 

Pa (ri+ 2)=0 
n 

PaJri +3) =0 

To summarize, the distribution function for the departing packets can be computed as, 

,j=O 

,j = 1 

. ,2~j ~ l+r; 

o ,j>r;+1 

(3.20) 

(3.21 ) 

The probability generating function of the packet departing process B( z) can now be derived 

using standard z-transforrn method, 

<Xl 

B(z)= I Pr{Bn = j}.zj 
j=O 

(3.22) 

3.4.2 Discrete Time Analysis for the Buffer Model 

In this section, the buffer Q3 and its analysis are presented. The number of packets arriving in 

consecutive slots and the service time (in slots) of these packets are a series of independent 

identically distributed random variables with Poisson and geometric probability mass 

functions PAn and PSn and with corresponding probability generating functions A (z) and 

S(z), respectively. 
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For transferring of packets between all queue buffers, it is shown from the last section that 

packets depart buffer QI and arrive at buffer Q2 according to its QoS constraint. Once the 

packets arrive at buffer Q2, they wait in the buffer and only move in batch to buffer Q3 only 

when the gate opens. The gate is only opened at the end of the last slot of the vacation period. 

Once the gate is opened the packets in buffer Q2 then move to buffer Q3 and are then served 

according to the first- in-first-out (FIFO) principle before departing the system. A vacation 

starts when buffer Q3 is emptied. However, if the server finds buffer Q3 empty upon 

returning from vacation, it will immediately start another vacation until buffer Q3 has packets 

when the server returns from the vacation (multiple vacation policy as discussed in section 

3.3). The mean value of the vacation length is derived from Section 3.3 with its probability 

mass function defined as Pv and the corresponding probability generating function defined 
n 

asv(z). 

3.4.2.1 Queue Length at Buffer Q2 and Q3 

This section presents the derivation process and equations of the length of the queue for the 

packet buffer Q2 and Q3 at the start of the time slot within the queue cycle. For the analytical 

model under consideration, a queue cycle is defined to consist of a busy period that follows 

with a vacation period. When the busy period starts, the queue content in buffer 03 is 

emptied by serving all the packets, all the packets that arrived during the busy period is 

stored in buffer Q2 as the gate is closed in busy period. Once the server has served the last 

packet in the buffer Q3, it moves to the next queue in the system. In this case the server takes 

on the vacation after it finished serving the packets in buffer 0 3. At the end of the vacation 

period, the gate is opened and all the packets stored in buffer 0 2 are now conveyed to buffer 

Q3 in the FIFO order. 

To derive th« queue length of the packet buffers, same approach is used from [Fiems, 2004] 

in which it first derived the number of packets in Q3 at the beginning of the cycle. Let C'+ I be 

the slot following the l'h cycle and let Xi be the number of packets in the buffer 0 3 at the 

beginning of the slot i. [Fiems, 2004] indicated that the number of packets in the buffer 0 3 at 

C'+I can then be defined as , 

XCI gj 

XCf+1 = I IE! +W,+1 
i=1 j = 1 

(3 .23 ) 
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where gj is defined as the number of time slots needed t6 service packet i during the lth 

cycle, B/ is defined as the number of departures from buffer Ql to Q2 during the jth service 

slot of the packet and J1i!+1 is defined as the number of departures from buffer QI to Q2 

during the vacation period in the (l+ 1 )th cycle. xc, (z) is defined as the probabi I ity generati ng 

function of the number of packets in the queue at the end of the lth cycle. With some 

derivations, its pgf can be shown as, 

X CI+1 (z) 

=E zj;lj;l =E B(z)E gj zff'J+l 
L L Bij+WI+l [ CI 1 l 

XCI gj ] X 

=E[S(B(z)(CI Zff'J+I] 

= E[ S(B(z)(C/ /Yf+l {XCI > o} ]+E[ S(B(Z)(cI zWI+l {XCI =o}] 

= Wo (Z)E[ s( B( Z)(CI {XCI> o} ]+WO (z)E[{Xcl = o}] 

= Wo (z) E[ S(B( z) (CI (l-{Xci = 6}) J+ Wo (z )E[{Xcl = o} ] 

= XCI (s( B(z ))) ·Wo (z)+XCj (S(bo))·(Wo(Z )-Wo (z)) 

(3 .24) 

where Wo (z) is defined as the probability generating function of the number of departures 

from buffer Ql to Q2 during the vacation period of a random cycle under the condition that 

there exists no packets in buffer Q2 at the end of the slot preceding the vacation period. 

Wo (z) is defined as the probability generating function of the number of departures from 

buffer Ql to Q2 during the vacation period of a random cycle under the condition that there is 

at least one packet in buffer Q2 at the end of the slot preceding the v~cation period. It can be 

easily derived that Wo (z) = V (B (z)) since under the condition that if there is at least one 

packet in buffer Q2 before the vacation starts, the server will then only take one vacation. 

However, the server will take multiple vacations until there is packet in the buffer Q2 when it 

comes back from the vacation. Modifying the analysis from [Fiems, 2004] ' and by 

conditioning on the number of necessary vacations, 

(3.25) 
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To find the probability generating function of the queue length at the end of the cycle, 

X (z) = lim X (z) is defined as its pgf for the queue length at the end of the cycle in c l-too c, 

equilibrium. It is proven from [Sumita, 1989] that this condition is valid under the 

assumption, 

(3 .26) 

where 0; is the load of the queue model i and from the equilibrium assumption, (3.24) can . 

now be derived as, 

Xc (z) = Xc ( S ( B (z))). Wo (z) + J. (Wo (z) - Wo (z) ) (3.27) 

where J == Xc (s (bo)) is the probability that the buffer Q2 is empty before the start of the 

vacation period. It is now clearly shown that various moments of Xc(z) can be derived and 

that the value of J can be determined numerically using recursive techniques. In this case, the 

series Zi == S (B (Zi_1 )), Zo = 0, i > 0 is considered. Under the condition that 0; < 1, it can be 

determined that the series converges to one. Now, let q. = Jj , with the substitution 
1+1 j Xc(z;) 

of Z = zi in (3.27), then 

(3.28) 

The value of J can then be determined recursively by starting from ql = 1 and J == lim q. 
1-+a:J I ' 

Once the queue length at the end of the cycle is found, the joint probability generating 

function of the queue length at other epochs in buffer Q2 and Q3 can now be derived. For the 

queue length at the end of packet service, X d (ZI' Z2) is defined as the joint probability 

generating function of the queue length at the buffer Q3 and Q2 at the start of the slot right 

after a service of a packet from buffer Q3, its pgf can then be derived as, 
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(3.29) 

Where X d,1 and X d,2 are defined as the queue lengths for buffers Q3 and Q2 at a random 

service epoch respectively and Xc is previously defined as the total queue length for buffers 

Q3 and Q2 at the end of the random cycle. 

3.4.2.2 Packet Delay at Q2 and Q3 

In the discrete time analysis for the proposed analytical model, the packet delay is denoted as 

the number oftime slots between the end ofthe slot the tagged packet arrives in at buffer QI 

and the end of the slot where that tagged packet leaves buffer Q3' For the modified leaky­

bucket QoS scheme, the exact delay expression for packets in QI has been derived by [Sidi , 

1993] therefore this thesis concentrates on the delay expressions on Q2 and Q3. The service 

time of the packet is taken into consideration in determining the delay from buffer Q3 as the 

packet only departs from the queue once it is being served. 

To derive the discrete-time expression for the packet delay, it is first assumed that the 

number of packets that depart from buffer Q2 in a slot are grouped to form a batch-customer 

which forms a system with Bernoulli "batch-customer" arrivals [Fiems, 2004]. The 

probability generating function for the departures B' (z) and their service times s' (z) are 

given by, 
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B· (z ) = bo + (1 - bo ) z, 

s. (z)= B(S(z))-bO , 

1- bo 

(3 .30) 

where bo = B(O). Illustrated in [Fiems, 2004], packet delay at Q2 and Q3 is related to the 

batch-customer processes shown above. Firstly, one denotes the probability generating 

function of buffers Q3 and Q2 queue lengths at departure epochs for this system as 

X; (z\, Z2)' in which the latter is given by equation (3.29). Then, consider a random batch-

customer and let D· (z\ , Z2) denote the joint probability generating function of its delay in 

buffers Q3 and Q2. When the gate is opened, the packets that arrive in buffer Q2 are moved as 

a batch to Q3 along with the tagged packet. And after the gate is closed, all the packets that 

arrive during the departure of the tagged packet in buffer Q3 are. queued in buffer Q2. [t is 

then shown by [Fiems, 2004] that the probability generating functions of batch-packet delay 

and queue contents at batch-packet departure epochs can be related as, 

(3.31 ) 

To relate the delay of the packet to the delay of its batch, the delay in the buffer Q2 of a 

packet equals the delay of its batch as they enter and leave buffer Q2 at the same time slot. 

The waiting time of a packet is denoted as the number of slots between the end of its arrival 

slot and the beginning of the slot where this packet starts its service. Therefore the waiting 

time in buffer Q3 of a packet is then the sum of the waiting time of its batch, with 

combination of the service times of all packets that arrived during the same slot prior to the 

tagged packet. Based on [Fiems, 2004] and with modifications to our model , the packet 

delay in the Q2 and Q3 can be derived as, 

(3.32) 

Where S (z) is the probability generating functions for the departures into Q2, B( z) has been 

derived from (3.22), and since the service times of the consecutive customers are a series of 

geometrically distributed random variables , its probability generating function is , 

(3.33 ) 
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where jJ.-1 denotes the mean service time of a packet. The vacation time is assumed to be a 

geometric distributed random variable with its mean derived in Section 3.3 and its 

probability generating function v(z), 

v (Z) = ( Pnb ) 
1-(1- Pnb)Z 

(3.34) 

Various moments of the packet delay for both buffer Q2 and Q3 queue buffers can now be 

derived using derivatives techniques for (3.32). 

3.4.3 Suinmary of Analyze for Hybrid MAC Scheme 

This section summarizes the approximated analysis conducted for the analytical model 

proposed for the hybrid MAC scheme. As stated in the beginning ofthe chapter, the model is 

assumed to be a MSMQ model with three packet buffers (QI, Q2 and Q3), the queue and 

packets behaviors are investigated as follows, 

. a. QI packet departure process that incorporates modified leaky-bucket QoS 

criteria, 

b. gated-service scheme for packets in Q2 to Q3 

c. Q3 packet service scheme with incorporation of queue vacations 

d. vacation time for the proposed MSMQ model, where the vacation is linked 

to the interval between two consecutive token arrivals with available codes. 

The approximated analysis begins with the mean value and distribution analysis of the 

proposed MSMQ vacation model. Based on the approach by [M ars an, 1992], the hybrid 

MAC scheme is modeled as a MSMQ model analytically and the period between the 

consecutive code capture interval is modeled as its vacation time. With this configuration 

and under the assumption that the system is under steady-state, the expression of the vacation 

time (3.12) and its approximated distribution are derived. The analysis continues with the 

discussion on the queue model behavior when the packets pass though the modified leaky 

bucket QoS mechanism from packet buffer QI to Q2. The sub-section concludes by defining 

the probability generating function for the packet departing process (3.22) where it is needed 

for the discrete time analysis for last sub-section. 
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The last part of the analysis uses (3.22) as the packet arrival process for Q2 in which the 

packets are now linked to MSMQ model with gated service discipline. As discussed earlier, 

the packets in Q2 will only move to Q3 if the gate is open and the interval between two 

consecutive gate-open is dependent on the service time of the packets in Q3 and the queue 

vacation time. Using [Fiems, 2004] and with packet departing (3.22), gated service (3.29) 

and queue vacation distributions derived (3.34), the analysis concluded with the discussion 

on the packet latency experienced in Q2 and Q3 (3.32). 

3.5 Numerical Results 

In this section the numerical results of MSMQ model for the hybrid _MAC scheme are 

compared with simulation results. Results demonstrate the effect of the traffic loading 

condition, on the performance of the queue model. The simulation program is written in C++ 

Builder programming package a:nd the analysis is computed using Matlab software language. 

Simulation and analysis are conducted using the parameters shown in Table 3.1. 

TABLE 3.1 
SYSTEM PARAMETERS 

Symbol Parameter 

Number of nodes (N) 
Number of codes (M) 
Number of classes (r) 

Traffic load for class 1 ( A,') 

Traffic load for class 3 (),l) 

QoS parameter ( Pi ) 

Mean service time C,-' ) 
Mean Token walk time 

(T('ans ) 

Permit pool capacity (r,) 

9 
6 
3 

),' = 1.5),' 

),' = 2),' 

1.I 

1.25 slot/packet 

0.01 slot 

20 

3.5.1 Mean Values and Distribution for Vacation Model 

Figure 3.4 and 3.5 display the results from simulation and analysis of the probabilities that 

the queue is busy and it is empty when the token visits the queue under different loading 

conditions. It can be clearly seen from Figure 3.4 that the probability of the busy-queue 

increases with the increase in system loading. This is due to the fact that when the system 

load increases, the traffic class load also increases. It is also clear that the heaviest traffic 

class (Class 3) queue has the highest probability amongst all three classes and the lightest 

traffic class (Class 2) queue has the lowest probability. 
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This is as predicted since Class 3 and Class 2 queues accommodate the highest and lowest 

traffic load settings respectively. Figure 3.5 displays the probability that the queue is empty 

upon the arrival of the token. It can be observed that when the system load is low, the 

probability of the empty-queue is high for all three traffic class queues. This is as predicted 

as under light load state, the amount of packets generated per unit time is scarce. The 

probability decreases with the increase of the loading condition of the system. 

Figure 3.6 displays the results of the mean time for consecutive arrivals of the specific code 

Sj at the specific queue in different classes (e i
,) ). It is observed from (3.4) that the value 

code,p 

of Ci
,) remains identical irrespective of the traffic classes. The assumption is validated 

code,p 

from the results displayed in Figure 3.6. Both the simulation and analysis results of the mean 

time of the consecutive polling of the same code at the specific queue for different traffic 

classes (Ci
,) ) are shown in Figure 3.7. It shows that Ci,) is high under light system load 
code code 

conditions. This is expected as under light traffic conditions, the time is spent on waiting for 

a packet to arrive before the code can poll the queue. 

This effect is pronounced in the Class 2 traffic-class queue as it is the lowest traffic load 

class, yet it has the highest Ci
,) 

code 
time. As the system load increases, the Ci

,) 
code 

time 

decreases until the system is in the heavy traffic state. In this case, the queue has to wait for 

the code to be available before it may get serviced, Ci
,) once again increases under heavy 

code 

load condition. It can be seen that under the heavy load condition, the class 3 traffic-class 

queue has the highest Ci
,) time. This is because as the token with the same code arrives at 

code 

the queue, the probability that the code is usable by the Class 3 queue is lower than for the 

Class 1 queue since the probability that the queue is busy when the token arrives for Class 3 

queue is higher than that of the Class 1 queue. . 

The mean queue vacation time (~), results for various system load conditions are displayed 

in Figure 3.8. When the system is under a light traffic condition and the token with the codes 

arrives at the queue, it will see an empty queue. It is therefore forced to take on multiple 

vacations until there is a packet available in the queue in order for the code to be captured. 

Multiple vacations consequently lead to the increase in the code vacation time as shown in 
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Figure 3.8. Such condition is alleviated with the increase in system load. The vacation time 

decreases until the system is in the heavy traffic state. Under heavy loading condition, as 

discussed earlier, the queue has to wait for the code to be available before it may get polled, 

therefore the vacation time for all traffic classes then increases due to lack of available 

servers. 

Figure 3.9 presents the analysis and simulation results of the vacation time distribution. It is 

clearly illustrated from the figures that the distribution time for the vacation fits tightly to the 

approximated geometric distribution for all traffic classes. 

3.5.2 Mean Packet Delay at Buffer Q2 and Q3 

For numerical examples, results from the simulation and discrete time analysis presented in . 

Section 3.4.2 are presented to demonstrate the effects of the traffic loading conditions, on the 

performance of the packet delay at both packet buffers Q2 and Q3 of difference class queues . 

Figure 3.10 displays the results of the mean packet delay experienced by buffer Q2 for all 

traffic class queues. From the figures, Class 3 queue buffer has the highest delay amongst all 

the class queue buffers and Class 2 buffer has the lowest delay. ThiS is expected as for the 

system under consideration, Class 3 queue has the highest data rate therefore more packets 

are stored in the queue comparing to other classes subsequently leads to the increase in 

packet delay. 

Figure 3.10 also shows that the analysis result of the delay for all classes under heavy system 

load conditions compare favorably to the simulation results. However, the effect of the 

independence assumption on the vacation time distribution starts to dominate,this leads to 

deviation between analysis and simulation. For the mean packet delay in queue buffer: QJ of 

different class queues, the simulation and analysis results for various system load conditions 

are displayed in Figure 3.11. Clearly, when the system is under a light to medium traffic 

condition, the probability that a packet arrives during the cycle is low, therefore leading to 

low packet delay for all classes. 
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Figure 3.4: Simulation and analysis results for the probability that the queue is busy for 

all traffic class queues under various loading condition 

100 rr-----.-----,-----, ____ -. ____ -, ____ -. ____ -. ____ -.--, 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Traffic Load 

Figure 3.5: Simulation and analysis results for the probability that the queue is empty for 

all traffic class queues under various loading condition 
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Figure 3.6: Mean time between two consecutive arrivals ofthe code S (c i
.J ) for all three 
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traffic classes under different load condition 
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Figure 3,7: Mean t ime between two consecutive polls of code S( c::~ ) for all three types of 

traffic classes under different load conditions 
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Figure 3.8: Mean vacation time ev, ) for all three types of traffic classes under different 

load conditions 
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Figure 3.9 (a): Simulation and analysis results for vacation time distribution of class 1 

queue 
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Figure 3.9 (b): Simulation and analysis results for the vacation time distribution of class 2 

queue 
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Figure 3.9 (C): Simulation and analysis results for the vacation time distribution of class 3 

queue 
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Figure 3.10 (a): Mean packet delay suffered in buffer Q2 for class 1 queue in the network 

under different load conditions 
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Figure 3.10 (b): Mean packet delay suffered in buffer Q2 for class 2 queue in the network 

under different load conditions 
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Figure 3.10 (c): Mean packet delay suffered in buffer Q2 for class 3 queue in the network 

under different load conditions 
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Figure 3.11 (a): Mean packet delay suffered in buffer Q3 for class 1 queue in the network 

under different load conditions 
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Figure 3.11 (c): Mean packet delay suffered in buffer Q3 for class 3 queue in the network 

under different load conditions 
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3.6 Summary 

In this chapter, an analytical model for the MAC scheme proposed in Chapter 2 was 

presented. Since the code-sharing behavior in the proposed CDMA MAC scheme resembles 

the token-sharing behaviour in the multiple server scheme, the proposed analytical model is 

therefore built based on a multiple sever multiple queue system. An approximate analysis of 

a MSMQ system that incorporated a data rate QoS guarantee was then presented. 

The analysis started with the derivation of the approximate closed-form expressions for the 

mean server vacation time in the MSMQ system operating according to gated service 

discipline and~ code utilizations policies. Based on [Marsan, 1992], the server vacation time 

is defmed as the time between the release of the CDMA code at the queue and the next 

arrival of the usable CDMA code at the same queue. The analysis continued by finding the 

relationship between vacation time and CDMA code interarrival time. The vacation model . 

analysis concluded by deriving the relationship between the load conditions of the network 

and the server vacation time. 

The analysis continued further with the approximate discrete time analysis of the packet 

departure from buffer Q2 and for the moments of packet delay for all traffic class queue 

buffers. The same approach that is used by [Fiems, 2004] was used and the moments of 

packet delay for buffer Q2 and Q3 were derived. The main contributions of Chapter 3 are the 

presentation of the analytical model of the hybrid MAC scheme and the derivations of the 

mean vacation time and moments of delay of the proposed analytical model. The analysis 

was validated with the simulation. It was observed that the analytical results closely agreed 

with the simulation results. However, discrepancies can be seen under high load conditions 

caused by the simplifying assumptions made. 
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CHAPTER 4 

HYBRID TOKEN-CDMA SYSTEM WITH CROSS-LAYER 

APPROACH 

4.1 Introduction 

A new research direction has recently been proposed where the cross-layer approach is used 

to improve the performance of wireless systems. It is suggested in [Goldsmith, 2002] that a 

cross-layer approach that supports multiple protocol layer adaptivity and optimization can 

attain significant performance gains. The design of the cross-layer protocol normally refers 

to the system design achieved by exploiting the dependence among protocol layers to obtain 

performance gains. Such design is therefore unlike layering, where the protocols at the 

different layers are designed independently. 

Figure 4.1 illustrates the OSI-layered model and a subset of the possible cross-layer 

interactions that can be considered when performing a cross-layer design [Goldsmith, 2002]. 

To demonstrate, Figure 4.2 displays the different control flows needed to provide a cross­

layer interaction between the physical and upper layers of two remote nodes. When two 

nodes communicate, the receiving one measures the physical state, which is generally a 

vector of real values. An entity named Agent Manager estimates, measures and selects the 

appropriate values to be sent to the upper layers of the transmitting node. These layers will 

accordingly adapt to the actual channel conditions, performing the cross-layer interaction . . 

APPLICATION 

PRESENTATION 

SESSION 

TRANSPORT 

NETWORK 

DATA LINKIMAC 

PHYSICAL 

Figure 4.1: Different cross-layer design possibilities 
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The amount of literature on this issue is still relatively scarce and mostly at the physical layer 

[Sacchi, 2006], [Dimie, 2004], [Liu, 2004], [Wang, 2003], [Yeh, 2003], [Schaar, 2003] , 

[Shakkottai, 2003], [Carneiro, 2004], [Toumpis, 2003] and [Alonso, 2003]. The authors in 

[Raising, 2004] present a survey of several cross-layer design proposals from the literature 

based on the layers that are coupled. It has been shown in this literature and references 

therein that from the perspective of the network, cross-layer design approach can benefit not 

only the nodes involved; but the whole network in many different aspects. Although 

originating from the physical layer cooperation, all the benefits cannot be fully realized until 

proper mechanisms have been incorporated at higher protocol layers (e.g., MAC, network) 

and the necessary information is made available from the lower layer (e.g., PHY). 

Primitives D D 
I MAC I ,·· .. ··· .... ·t MAC I 
l...-_-,.... ___ -': (. 

Primitives 1\ ~;;~:;: ::: ••• : ::.'.t-.:.: .. ___ A 
V ~ ~ ~'::g" K/ 

~ ___ P_HY ____ ~I~r-____ ~~~ __ P_H __ Y __ ~1 
Node i as transmitter Node j as receiver 

Figllre 4.2: Cross-layer interaction through an agent manager 

Further literature survey was conducted for CDMA system optimization using cross-layer 

approaches as the proposed hybrid MAC system has the characteristic of CDMA scheme. In 

recent years, there exist papers that propose cross-layer approaches to achieve system 

optimization in CDMA systems. Examples are [Alonso, 2004], [Yu, 2005], [Friderikos, 

2004], [Price, 2004], [Hossain, 2004] and [Yao, 2004]. Yu proposed a cross-layer QoS 

guarantee by combining physical layer signal-to-interference ratio and network layer 

blocking probability to achieve optimum system performance. A set of PHY-MAC 

mechanisms is proposed by Alonso that is based on rate adaptation provided by the MAC 

and the channel state from the PHY to improve bandwidth allocation efficiency . Price 
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proposed the cross-layer interaction between MAC and transport layer, and optimised the 

system using dynamic rate adjustment. The data link and PHY level influence on the TCP 

behaviour was modeled and analysed by Hossain and the dependency between the 2 layers 

was proven. It is shown from the survey that abundant interpretations of "cross-layer" and 

resources belonging to these layers produce numerous cross-layer studies. 

However, based on the survey conducted and to the best of author's knowledge, design of 

optimal CDMA-Token MAC schemes that consider cross-layer issues with adaptive rate 

technique has not been addressed in the literature. For example, [Ghavami, 2007] considers 

the cross-layer design that uses the relationship between the transmission mode at the 

physical layer and queue length behaviour at the data link layer but no MAC mechanism is 

involved. [Liu, 2004], and [Liu, 2005] consider the same approach where the cross-layer 

design only tackles the interaction of queuing at the data-link layer with adaptive rate at the 

PHY layer. [Lin, 2007] presents a cross-layer design where it exploits the time-varying 

property of the wireless link by leveraging on the MAC-PHY cross layer interaction. 

Adaptive channel coding and modulation (AMC) is used to adjust the data throughput by 

changing the amount of error protection incorporated at PHY layer. However, the goal of the 

cross-layer approach in [Liu, 2004] focuses mainly on reducing the energy efficiency and 

fairness on the PHY layer, which is different from the MAC scheme considered here. 

[Alonso, 2004] proposes a cross-layer design in which that MAC algorithm estimates the 

traffic load and distributes rate adaptation through spreading factor selection using both the 

traffic information provided by MAC and channel state estimate from the PHY layer. 

However it is only for a CDMA MAC scheme where no hybrid token MAC interaction is 

considered. Moreover, from the literature survey conducted, it is discovered that majority of 

the conventional PHY-MAC cross layer design focuses on maximizing throughput (network 

utilization), the critical factor of packet latency is generally not considered in the cross-layer 

interaction. 

This chapter presents a joint MAC-PHY solution for optimizing the system performance in 

the hybrid Token-CDMA MAC system. The proposed scheme is designed in order to 

provide continuous monitoring of the performance achieved by the users and adjusting 

transmission parameters using different spreading factors. Consequently, an optimization 

solution is formalized using one objective function, i.e. packet delay. As a result, unlike 

existing PHY -MAC cross layer designs which concentrate on optimizing the throughput 
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performance, a generic, cross-layer optimization framework is developed to determine the 

optimal spreading factor to be used under various traffic load conditions. The chapter is 

organized as follows: Section 4.2 presents the cross-layer design, paradigms, control 

information issues and it also outlines a classification of cross-layer mechanisms. Section 4.3 

is devoted to the modeling of cross-layer framework between physical and MAC layers for 

the hybrid T6ken-CDMA scheme. Section 4.4 presents the numerical results of the cross­

layer system and finally concluding remarks are given in Section 4.5. 

4.2 Cross-Layer Concept 

It is known from [Wang, 2003] that additional information from relating layers is needed 

when undertaking cross-layer designs. One example is the additional signalling needed to 

extract relevant parameters from one layer that could be useful for other layers. As discussed 

in Section 4.1, different cross-layer architectures can be envisaged. [Alonso, 2003] divide s 

the possible structures into two main categories. In the first category, the relating layer is 

modified according to the cross-layer interaction with the other layer. This means that certain 

parameters of the protocol stack at each layer are modified taking into account some 

information about the state of the other layers. The second category implements an external 

entity where it is used to manage the cross-layer interactions and also defines the 

corresponding interfaces and primitives with each layer. 

4.2.1 Definition of control information for cross-layering 

It is considered by [Alonso, 2003] that at least four classifications can be formed for cross­

layer information: 

• Channel state information (CSI) 

• QoS related parameters 

• Resources made available in the corresponding node 

• Traffic pattern offered by each layer to the other layers 

CSI includes estimation for channel impulse response, either in time or frequency domain, 

location information, mobile speed, signal strength, interference level and modelling, ·etc. 

Parameters that related to QoS guarantee include packet delay, throughput, bit error rate 

(BER), frame error rate (FER) measurements for each one of the layers involved in the 

cross-layer interaction. Resources that are available from the other nodes can be categorized 

as multi-user reception capabilities, number arid type of antennas, battery depletion levels, 

4-4 



CHAPTER 4 CROSS-LAYER HYBRID 
TOKEN-CDMA SYSTEM 

etc. The traffic pattern from each layer may include data traffic information, data rate, data 

burstiness, data fragmentation, packet sizes, information about the buffer sizes, etc. 

As discussed earlier, a cross-layer approach to ad hoc network design can significantly 

increase the design complexity. The 7-layer OSI model are useful in allowing researchers to 

focus and optimize a s ingle protocol layer design without the complexity and expertise 

associated of other layers. The goal of cross-layering should be keeping some form of 

separation, while allowing layers to actively interact; this is a good compromise for enabling 

interaction between layers without eliminating the layering principle. In this structure, each 

layer is characterized by some key parameters and they are passed to the adjacent layers to 

assist them determining the operation modes that will best suite the current channel and 

network conditions. Based on such design framework, each layer is now aware of the other 

layers, and interacts with them to fmd its optimal operational point. 

The main design difficulty in the cross-layer approach for ad hoc network is in the 

characterization of the essential information that should be exchanged between layers. For 

example, the link layer might be characterized by parameters representing the link layer state 

information such as bit error rate (BER) or supported data rate. Similarly, the network and 

MAC layers might exchange the requested traffic rates and supportable link capacities. More 

detailed discussion on the cross~layer approach is presented in the following sections. 

4.2.2 Classification of cross-layer interactions 

As mentioned in Section 4.1, there exists a wide-range of possible cross-layer interactions. 

The cross-layer techniques can be divided into following categories: 

Cross-layer inside a single node 

The cross-layer design is confined inside a single node where different layers of the protocol 

stack communicate with each other depending on the information they exchange. 

Cross-layer between nodes 

In this case, mobile nodes in the network can exchange cross-layer information through a 

control channel, and thereby adapting their layers using measurements done in the remote 

node. 

Two-layer interaction 

It is the basic cross-layer approach involving only two layers that communicate with each 

other in order to optimise the transmission efficiency. 

Multi-layer interaction 
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It is the interaction between more than two layers where each layer can adapt taking into 

account the information received from all the other layers. 

From the classification mentioned above, the most prevalent research topic is the two-layer 

interaction approach. In this setup, the higher-layer protocol requires information from the 

lower layer at runtime, such action leads to the information exchange between the two layers. 

Examples of this back-and-forth information flow can be seen in the literature quoted above 

and it is likely to be in the form of channel-adaptation modulation or link adaptation schemes. 

The concept is to adapt the parameters of the transinission (e.g., power, modulation, code 

rate) in response to the channel condition. The vertical calibration of adjacent layers' 

parameters is popular amongst researchers since the performance result from the upper layer 

is a function of the parameters at all the layers below it. Therefore, it is assumed that joint 

tuning can help to achieve. better performance than individual settings of parameters. 

One of the most relevant areas in cross-layer optimisation is the interaction between physical 

(PHY) and medium access control (MAC) layers in wireless networks. This is due to the fact 

that the PHY layer is the most time variant entity in a wireless communications system and 

due to the proximity of the two layers in the OSI model stack and the inherent variability of 

the channel state. The MAC layer in wireless network is implemented to enable nodes to 

access the available channel(s) while attempting to enforce a fair and efficient usage of the 

channel(s). To accomplish this task, the MAC protocol makes use of input or feedback 

information that other layers of the protocol stack may forward to it directly or indirectly. 

Typically, however, the MAC layer is mostly interested in the information it receives from 

the underlying physical (PHY) layer regarding the state(s) of the channel(s) andlor the 

occurrence of any events that are key to its operation (e.g. , the successful transmission of a 

frame over the channel). Based on the feedback information, the MAC protocol dynamically 

adjusts its behavior in order to better allocate the channel(s) among those competing nodes 

within the network. 

The PHY layer, on the other hand, has the main job of receiving the bits of information from 

the MAC layer and, at the MAC's discretion, transmits the bits across the underlying 

communication channel(s) as fast and reliably as possible, according to appropriate 

(de )coding and (de )modulation schemes. The likelihood with which a transmission is 

successful will depend on how well the signaling defends against channel impairments and 

interference from any source. In wireless networks, in particular, the signal transmissions 
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from any node can potentially interfere with signal receptions at another node in the network. 

Hence, the quality of a radio link depends on the transmission activity in the entire system. 

As a result, each node's transmission activity can affect the PHY -layer performance at every 

node in the network, which, in turn, can affect their MAC dynamics. Clearly, the dynamics 

of the MAC layer is tightly connected to the dynamics of the PHY layer, and the cross-layer 

interactions at each node will depend, fundamentally, on the activity of every node in the 

network. 

With this idea in mind, this chapter describes a jointly optimal design of the medium access 

and physical layer protocols for the hybri.d Token-CDMA network. Using the cross-layer 

interaction, the PHY layer provides channel state information to be fed to the MAC layer and 

based on the information, the MAC scheme accurately estimates the traffic load and 

modifies the transmission rate by changing the spreading factor of each transmission. 

Therefore, the distributed rate adaptation [Adachi, 1997], [Adachi, 1998] through spreading 

factor selection uses both the traffic information provided by the MAC algorithm and the 

channel estimate from the PHY layer, which constitutes the cross-layer concept. A detailed 

description of the interaction between the two layers is presented in the following section. 

4.3 Cross-Layer Modelling Framework for Hybrid Token-CDMA MAC System 

The optimization framework is formalized based on end-to-end communication performance 

metric, the packet latency. The proposed approach is based on the interaction between the 

PHY and MAC layers inside a single node system and the information on both layers is used 

to enhance the MAC mechanism. The objective of the cross-layer dialogue is to enable the 

nodes to dynamically adjust the spreading factors for reducing interference thereby 

optimizing the system performance. In the proposed system, the code resources are 

controlled by means of two degrees offreedom, the frame error probability (FER)) from the 

PHY layer to MAC layer and the spreading factor (N) from the MAC layer to PHY layer to 

be allocated to the particular node. Based on these two variables, an optimization solution is 

formalized using an objective function in which the cross-layer interaction is used in order to 

improve and reach an optimal system performance. 
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4.3.1 PHY-MAC Cross-layer framework 
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Using a similar system model as discussed in Chapter 2, the considered scenario is a wireless 

network where the token is created and circulated inside the network distributing the CDMA 

codes. The network is capable of simultaneously processing a maximum number of M 

transmissions, i.e., the maximum number of active simultaneous users supported by the 

network is M . Each active user's data is BPSK modulated and is transmitted to the receiver 

node asynchronously. Following the cross-layer philosophy, assume that the MAC protocol 

is aware of the channel state of the links between nodes. Among the functions of the MAC 

layer, the main objective of optimizing the packet delay is achieved where the MAC layer 

monitors the information forwarded from the PHY layer and its own layer and changes its 

transmission rate by selecting the appropriate spreading factors accordingly thereby reducing 

the mutual interference. Recent works in cross-layer design of PHY -MAC layers in CDMA 

networks demonstrated the possibility of designing more flexible collision recovery 

strategies [Dimie, 2004] by employing signal processing methodologies to discriminate 

multiple colliding frames on the medium. The effect leads to reduction in collision intervals 

and number of retransmissions. In this chapter, the concept is applied with the aim of 

enabling dynamic adaptation of the transmission parameters in order to improve data 

transmission performance. 

PHY Layer Properties 

A. CDMA System 

BPSK modulation is used in the system as in Chapter 2. With the implementation of 

dynamic spreading factor adjustment, the current system can be denoted as a multi-rate 

CDMA system that supports n different rates or subsystems. The transmitted signal of user k, 

in subsystem i, is then of the form [Ottosson, 1995] 

rik (t) = .j2p;aik (t)bik (t)cos(av + rPik) (4.1) 

where P; is the power of each user in the subsystem, aik (t) is the modulation signal with a 

rectangular pulse shape of duration Tj , and bik (t) is the spreading code waveform, 

consisting of Ni periodically repeated chips in a binary polar fonnat with rectangular pulse 

shape of duration ~ (duration per chip). Therefore Tj = NiTc. The modulator phase rPik are 

modelled as independent random variables, uniformly distributed over [0, 2n) . 
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In mobile radio environments, the channel link performance is known to be dependent on the 

received desired signal strength which in turn depends on the propagation loss and 

shadowing. In this chapter, the shadowing effect (i.e., slow fading) is assumed to be a log­

normal distributed random variable [Stuber, 200 I]. Based on [Gudmundson, 1991] and 

[Stark, 2002], the shadowing spatial correlati(;m is assumed to be exponential and dependent 

on the distance between any two separafe positions and the variation is modelled as a 

Gaussian-Markov stochastic process. 

The channel interference is approximated as Gaussian and the bit error rate performance of 

user i without a RAKE receiver and antenna diversity is known to be 

BER(ri) = Q( ~2ri ) (4.2) 

where ri is the signal to interference ratio strength and it can be derived as [Stark, 2002] 

(4.3) 

where, Eb/ No represents the signal-to-noise ratio (SNR), K is the number of codes that are 

currently being used in the system and Ni is the spreading gain used by user i, Ri is the 

user i's bit rate, and Xi is a log-normal random variable representing shadowing effect of 

user i and can be defined as 

ni(s) 

X· =.P ·10 10 I I 
(4.4) 

where ~ is the power of user i and Q j (s) is the received co-channel interference power at 

location s. With the spatial correlation property of shadowing effect modelled as a Gaussian­

Markov process, the spatial distance between sand s+ 1 can be represented [Gudmundson, 

1991] as 

(4.5) 
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where u is the spatial correlation coefficient and the received co-channel interference 

power Q
i 
(s) is a Gaussian random variable with mean of a i and variance 0"2 . The term 

V; [s] is a Gaussian random variable with mean a i and variance 

(4 .6) 

The frame error rate is determined using the same equation in Chapter 2 as, 

(4.7) 

where £ is the length of the (31,16) BCH code. 

MAC Layer Properties 

The model of a MAC layer is described in Chapter 2 and a specific property is augmented 

into the layer. The property is to implement the rate-adaptation algorithm based on variable 

spreading factor principles. More explicitly, the users ' MAC layer increases its transmission 

rate if the number of active interfering users decreases (decreases in FER). It decreases its 

transmission rate in response to an increased number of active interfering users. The 

information on number of active interfering users is forwarded' to the user by the token in the 

network. Detailed description of the cross-layer interaction is presented in the Section 4.3.2. 

4.3.2 Objective function 

The optimization metric is defined as the packet delay as shown in (4.8) where it is 

dependent on the variable spreading factor, Ni, used by node i to transmit jth packet where 

the setting of Ni will effect FER;J, the frame error rate of node i's jth packet. The objective 

function (4.8) is to minimize the end-to-end packet delay (Dmin) of the transmitted packets by 

monitoring and adjusting these two variables depending on the traffic load. The PHY-MAC 

cross-layer interaction is achieved in order to improve and reach an optimal system 

performance. The derivation of the term in the objective function is presented in the 

following sections. 

Dmin = arg (min (D FER . N )) 
N. I ,J ' I 

I 

(4.8) 
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As the objective function (4.8) indicates the end-to-end packet delay is the key indicator in 

determining the optimum system performance. Therefore, this chapter focuses on delay 

optimization for the wireless system. From the discussion in Chapter 3, (3.32) 

(D (z z ) "" x· (Z2 - bo ZI - bo ) ) illustrates that the packet delay is dependent on the length of 
I ' 2 d 1- bo ' 1-bo . 

the queue where itself is dependent on the arrivals of the packets during gated queue-service 

time and the vacation time (3.23) ( x = ~ f, Bi ~ ~ ). It is shown in the results that the 
. CI+I ~~, 1+1 

;=1 j =1 

packet delay increases with the increase in queue-length therefore the two are co-related and 

co-dependent. 

From the queue length interpretations derived in Chapter 3, the length of the queue depends 

on the packet arrivals during the service time (L L B( ) and the code vacation time (W) . 

The packet arrivals, service time of the packets and the code vacation time are all related to 

each other and the queue length can be minimized by minimizing the service time of the 

queued packets and the-code vacation time. For the CDMA system, the packet service time 

(J.l; = a i •j (N;Tc) ) is determined by the spreading factor (N;) , and for the system with no rate-

adaptation, this value is fixed. In this case, in order to minimize the service time, the traffic 

load (Ai ,in) has to be low (with low packet arrivals) in which the work load (P
i
•
j 

= A.
i
,,,,, . f..I ; 1 

) 

is dependent only on the traffic load. 

For the minimization of the vacation time with fixed Ni, however, it is shown in Chapter 3 

that it is minimized when the average traffic load is used. [t is derived from Chapter 3 that 
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v ~ k. c;,j = k." rtrans + ,. 5/1- L I A/ J.1-
1 

,and under light traffic load with one 
I code L.. I M 

Ni setting, it would result L L>~/ J1. -1 «M as the work load is small. Therefore the 

vacation time can be simplified to V; ~ k . L T;trans + t· 'J . But value k will be high as the 

total number of code arrivals is high. This explains the high vacation time during the light 

load condition. Under high traffic load with one Ni, work load is high where 

L L A/J.1-1 ~ M, therefore (1- I I A/ f../-l / M) « 1, in which results long vacation time; 

With no control over the service time, the system mentioned above can not be optimized as 

the queue length and delay can not be minimized. However, if the rate-adaptation algorithm 

is used for dynamic spreading factor selection, both service times of the queued packets and 

the code vacation time can be minimized. In this case the work load is now dependent on 

both the traffic load and the service time of the packet where work load can be low even if 

traffic load is high under the circumstances that low N; is selected for transmission. However, 

by selecting the low spreading factor, it can have detrimental effect on the total packet rate as 

it is related to retransmission rate A;"o, = A;, in + (A;,101 . FER;.J ) , it is known from literature 

and shown in Chapter 3 that low N; can cause high error rate (FER) which leads to increase 

in erroneous packets and increased the queue length. This effect can therefore lead to 

increase in total service time of the packets in the queue even though the service time is low 

with the low N; selection. 

Therefore, the best approach in minimizing the service time and vacation time is to optimize 

the selection of Ni from the MAC layer by monitoring its effect on the FER in the physical 

layer. This is best achieved by optimizing the work load p " as it is already shown above 
},I 

that work load is closely related to both the service time and the vacation time. The objective 

function (4.8) can therefore be modified to 

; arg (. ( )) P . = mm 
mm N;,N; E {integer} PFERi,J,Ni (4.9) 

If M nodes are transmitting packets in the network (M codes are active) where 

P~in = N N ar{~ }(min(PFER(N N. N ))). From (4.7), it is derived that FER is 
;, ; E mteger I I ' '+[. .. " I+M 

the function of BER (4.2) and BER is the function spreading factor N;. Therefore (4.9) is a 
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function of N;. If the network has M active codes, then there will be M equations with M 

unknown variables (N;), therefore to solve for (4.9), 

(4 .10) 

In the real system however, each node can not determine all the N; values, so a single node 

only determines its optimal N;. To do so it would use whatever advertised N; value from 

other active nodes. From the single node perspective, a dynamic work load adjustment 

mechanism is implemented using the rate-adaptation algorithm where the rate is modified 

according to the spreading factor chosen for the packet transmission. The detailed 

explanation of the approach is presented below. 

In the initialization stage, each node that enters the network transmits data using a pre­

defined set of transmission parameters that enables the highest bit-rate on the channel. In 

parallel, it listens to the token channel for token reception. For data transmission, it is 

assumed that a data packet is a frame. At MAC layer, it is assumed that there are n spreading 

factors having integer values (Ni E {integer}, Ni,l < Ni,2 < ... < Ni,n)' 

For the transmission of the frame, the spreading factor N; is selected from the set 

{Ni,l' Ni,2'" .Ni,n}, based on the information forwarded from the MAC layer. The frame 

error rate is recorded from the previous transmission and forwarded from the PHY layer to 

the MAC layer (cross-layer information) as shown in Figure 4.3. At the MAC layer, a rate­

adaptation algorithm is implemented where it will choose the suitable spreading factor for 

the transmission of the next frame. 
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The algorithm is responsible for selecting the suitable spreading factor based on the cross­

layer information forwarded from the PHY and MAC layers itself. For each packet 

transmission, the frame error rate is feedback to the MAC layer from the PHY layer. If the 

FER is high, then the algorithm will choose a higher spreading factor to counter the 

interference. However, it is known that high spreading gain can result an increase in packet 

delay. Therefore in order to efficiently maintain an equilibrium between a low FER and low 

packet delay, the MAC layer, in this case, monitors the load condition (p ) of the node. 

It is discussed previously that the work load is dependent on both the arrival rate and the 

service time, under this condition, the total packet arrival rate of node i is defined as Ai,tat' 

where it includes retransmitted packets to node i. It is assumed that the packet buffer in node 

i has infinite capacity and the packet will not be dropped if it fails to arrive at the destination 

node. f1.i is defined as the service time of packet}, Ai,in is defined as the packet arrival rate 

to node i (offered load) and FERij is the approximated frame error rate of node i's}th packet. 

From the basic input/output model for the queue i shown in Figure 4.4, one can easily 

assume that the total packet arrival rate is the summation of the offered load and the re­

transmitted load. Therefore the total packet arrival rate can be derived as, 

Ai tat = Ai in + (Ai tat ' FERi j')' , , , , 

Ai_,in_ .... ~r QUeUei ~ 

~,tat . FERi,j 

Figure 4.4: Input and output model for Queue i 

(4.11) 

Now, for the service time of the packet, it is assumed that the node i's packet} has length of 

aij and it is also assumed that the code chip duration is set to Te. Therefore the bit rate shown 

in (4.3) for user i (Ri) can be derived as Ri=1/(NiTc). The service time can now be derived as , 

/I. =a· .(NT) rl I ,j I C (4 .12) 
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The work load as stated in previously, for the node i with packet} (Pi ,) ) can now be derived 

as 

( 
Aiin J .. = X . . = ' ·a· ·N·T 

PI,) I,tot Ji l 1- FER- . I ,} I C 
I,} 

(4.13) 

With the derivation of the work load and as discussed previously for the objective function 

(4.9), the system can be optimized with the minimization of the work load where both the 

FER and the spreading factor are taken into consideration. 

Using this approach, equation (4.13) shows ~that the FER can be defined to be the measured 

quantity and the spreading factor N; is the variable that needs to be optimized. It is 

commonly known that the packet delay is related to the loading condition, therefore if the 

low loading condition is achieved; the packet delay will also be minimized. In this case, low 

loading condition is attained by choosing an optimum spreading factor from the set of 

predefined spreading factors and it is selected based on the FER feedback from the PHY 

layer. The objective function (4.10) can now derive to be 

(4.14) 

Using the algorithm (4.14), the system performance is monitored using the frame error rate 

and packet delay. In this way, if few nodes are active in the network, they can exploit the 

available resources by decreasing their spreading factors; while as the number of nodes or 

traffic intensity grows, those nodes which suffer most from interference can self-adjust to 

different transmission parameters in order to provide a higher level of robustness. The 

proposed rate adaptation scheme is aimed at providing continuous monitoring of the 
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performance achieved by the users and selecting better transmission parameters to those who 

are suffering severe signal degradation due to interference. 

TABLE 4.1 
SYSTEM PARAMETERS 

Symbol Parameter 

Number of nodes (N) 30 

N umber of codes (M) 15,25 

G.,...~.r set 
8,16,32,64,128 

'Mean packet size (a'J) 256 bits 

Error correction scheme BCH(16,31) 

FEC correctable bits 3bits 

CDMA chipping rate (liTe ) 3.84 Mcps 

Modulation BPSK 

Fading channel Log-nomal 

Token walk time (1',-) 100 us 

Packet buffer capacity (n,) 20000 

-; 3.2 ms 
Bad state duration ( 'fbod ) 

Bad state P EPtod 1.0 

Signal to Noise Rato (SNR) 5 dB 

Spatial correlation coefficient 0.82 
( u) 

Variance of Vi r. v.( cr2 ) 
7.5dB 

4.4 Simulation Results 

The proposed approach is validated through extensive simulations. The effectiveness of the 

cross-layer approach scheme and the original hybrid MAC scheme are compared for various 

performance metrics. The metrics used for the evaluation are throughput and queuing delay 

of the packets. In particular, the packet delay and throughput were evaluated as a function of 

the number of nodes in the system, number of codes available for the network, node bit rate 

and the system loading. The simulation parameters are tabulated in Table 4.1. 

In Figure 4.5 (a) and (b), the code utilization graphs comparing the performance of the cross­

layer hybrid scheme with normal hybrid schemes using different sets of codes are shown. 

Two different spreading factor settings are used, namely low spreading gain setting of 16 

(displayed SG16 in the figures) and high spreading gain setting of64 (displayed SG64 in the 

figures). 
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As discussed in Chapter 2, these plots provide an indication of the optimum code usage in 

the network. The code utilization is plotted against the offered load, which is defined to be 

the traffic created for the entire network as 

N/r 2(N/ r) 

Offered load = L Ai~ + L Ai~ + 
i=O i=N/ r+l 

N 

+ L A¢ 
i=N(N-l) / r+l 

(4.14) 

In each figure, the cross-layer hybrid scheme's performance is compared with standard 

hybrid scheme that implemented fixed spreading factors. It is shown from the figures that the 

cross-layer hybrid scheme performed well under both code settings. With fewer codes 

available (Figure 4.5(a)) in the system, low spreading Jactor clearly has the advantages 

during the light load condition as the mUltiple access interference (MAl) is small and the 

frame transmission time is shorter comparing to high spreading factor. 

However, the situation changes drastically when the traffic load increases in the network as 

shown in the Figure. The increase in the traffic has a significant effect on the frame error 

probability (illustrated in Figure 4.6), as the channels become more erroneous. This leads to 

the drastic increase in code usage as the nodes contend for the code to retransmit the packets. 

A cross-over of the two fixed spreading factor settings can be observed from Figure 4.5, this 

is expected as the FER increases with the increase in traffic load. And with the low SG 16 

setting, though the service time is quicker than SG64, it is more susceptible to channel noise. 

Therefore under light load the SG 16 has better code utilization but it changes when the 

traffic load increases as illustrated in Figure 4.6. 

The same tendency is observed with code setting of 25 (shown in Figure 4.5 (b», the 

increases in the traffic load creates high packet error probability due to severe multiple 

access interference (MAl) as displayed in Figure 4.6. This effect is especially evident under 

heavy traffic load, and it is known that low spreading factor always generates high packet 

error rate, therefore it reaches maximum code utilization before the other two scheme due to 

high retransmission rate caused by high packet error rate. Using the rate adaptation algorithm 

and cross-layer dialogue, the cross-layer hybrid scheme is able to maintain optimum code 

utilization under any code setting conditions. 

Figure 4.6 (a) and (b) display the frame error probability for all schemes. This metric reflects 

the overall system performance of the schemes. It is clearly shown in the figures that the 

frame error probability increases with an increase in load and the low spreading factor 
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scheme suffered the worst performance when either the code or the load increases. The high 

spreading factor and cross-layer schemes exhibit relatively consistent error probability due to 

their high spreading gain and dynamic spreading factor settings. It is also shown in Figure 

4.6 (b) that the frame error probability for cross-layer hybrid scheme is similar to the high 

spreading gain hybrid scheme. This is expected since the rate adaptation algorithm 

dynamically chooses different spreading factors for data transmission according to traffic 

load condition. The algorithm finds the equilibrium between the frame error rate and 

·spreading factor, lower spreading factor would be chosen if it is needed to minimize delay 

performance, and under the condition that packet error rate is still within tolerable range. 

This is illustrated in delay performance shown in Figure 4.8. 

Throughput performance of all the schemes is shown in Figure 4.7 (a) and (b). Throughput is 

determined by the number of packets that are successfully transmitted over the simulation 

time. It is clearly shown from Figure 4.7 (a) that the cross-layer scheme achieves better 

throughput performance than other two schemes. In this figure, when the code setting is 

small, small spreading factor hybrid suffered the worst performance as its code setting is 

. maximized earlier than other two schemes due to long transmission time as displayed in 

. Figure 4.S(a). However, as the load increases, the performance for the high spreading factor 

hybrid scheme quickly deteriorates with the significant increase in its frame error 

probability. The packets are therefore suffering from high retransmission rate, which 

consequently leads to stalemate of the throughput as shown in the figure. With the increase 

in the code setting, it is known from previous figures that the cross-layer hybrid scheme 

adopts the high spreading gain setting to achieve optimum performance. Therefore it can be 

observed from Figure 4.7 that the throughput performance of the high-N; scheme and cross­

layer scheme are similar as the offered load increases. 

The packet delay has been denoted in Chapter 2 as the time period from the time when a 

packet arrives at the front of buffer QI of a node to the time it is successfully transmitted to 

the intended receiving station. Figure 4.8 (a) and (b) display the mean packet delay for all 

schemes respectively. From Figure 4.8 (a), it is clearly indicated that the cross-layer hybrid 

scheme outperformed the other two schemes. Under the small code setting condition as 

shown in Figure 4.8 (a), it is observed that high spreading factor hybrid scheme suffered the 

worst delay performance during light-medium load condition. This corresponds to the 

discussion earlier and also the low spreading factor hybrid scheme experiences longer packet 

delay than the cross-layer hybrid scheme with the increase in load. 
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This is predicted as the rate adaptation algorithm is implemented to choose an optimum 

spreading factor for data transmission. To illustrate the effect of high FER on the long 

transmission time, Figure 4.10 displays the mean delay suffered for all three schemes with 

delay limit of 12s. It can be seem that as the load continues to rise, low spreading factor 

eventually underperforms the other two schemes due to its high packet error rate as 

discussed previously. The same tendency is observed in Figure 4.8 (b) but in this case the 

cross-layer algorithm adapts to high spreading gain setting during high load condition in 

order to achieve optimum performance as discussed earlier. 

The plots in Figure 4.9 (a) and (b) display the lengths of the buffer~ of all schemes under 

different traffic load conditions. It can be clearly seen that the mean buffer length results 

complement the mean packet delay as shown in Figure 4.8 as the buffer length shares the 

similar characteristics with the packet delay. 

As the packet waiting time increases, more packets would have to be queued inside the 

buffer before receiving service. This is especially evident when the system is under a heavy 

traffic state, during which the length of the buffer increases drastically. In this case, low 

spreading factor hybrid scheme performed well under low load condition and suffered large 

queue length due to high packet delay as soon as the traffic load increase. Similar mean 

buffer length can be observed during high load condition for cross-layer and high spreading 

gain hybrid scheme. The result correlates to the mean packet delay results shown in Figure 

4.8 (b). 
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Figure 4.5: Code utilization of standard hybrid protocol with different spreading gain 

settings and hybrid MAC protocol with cross-layer optimization with (a) 15 and (b) 25 

CDMA codes assigned in the system under different load conditions 
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Figure 4.6: Packet error probability of standard hybrid protocol with different spreading 

gain settings and hybrid MAC protocol with cross-layer optimization with (a) 15 and (b) 

25 COMA codes assigned in the system under different load conditions 
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Figure 4.8: Mean packet delay of standard hybrid protocol with different spreading gain 

settings and hybrid MAC protocol with cross- layer optimization with (a) 15 and (b) 25 

CDMA codes assigned in the system under different load conditions 
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Figure 4.9: Mean buffer length of standard hybrid protocol with different spreading gain 

settings and hybrid MAC protocol with cross-layer optimization with (a) 15 and (b) 25 

CDMA codes assigned in the system under different load conditions 
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4.5 Summary 

CROSS-LAYER HYBRiD 
TOKEN-CDMA SYSTEM 

Cross-layer techniques in which different layers of wireless communication systems 

interchange control information in order to optimize the use of the scarce bandwidth are 

proven to be a relatively unexplored research area where tremendous potential benefits can 

be achieved. In this chapter, a PHY-MAC cross-layer approach for hybrid token-COMA 

based wireless networks has been presented. 

To account for the effects of both cross-layer interactions and the interference among all 

nodes, a novel model was introduced with which topology and PHYIMAC-layer aspects are 

naturally incorporated into the nodes. The model is used to build a bridge between the 

physical and MAC layers and to balance the efficiency and fairness of resource allocation. In 

particular, the necessary and sufficient condition for finding an optimum · system 

performance for the hybrid scheme is investigated when rate-adaptation algorithm is used. 

The cross-layer interaction improves the spectrum efficiency, keeping the packet delay at the 

minimum possible value for different code and traffic load settings. 
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CONCLUSION 

In this final chapter, the work presented in this thesis is summarized and concluded. In 

addition several avenues for future research in the area of hybrid token-COMA MAC , 

scheme is discussed. 

5.1 Conclusions 

This thesis began by introducing the structure of the wireless network, followed by a brief 

review of the relevant existing literature on wireless MAC protocols. The section examined 

the protocols that are used in distributed ad hoc wireless networks. Ad hoc MAC protocols 

use an ad hoc topology, in which each device in the network has the same functionality and 

is free to manoeuvre in the network. Collision avoidance algorithms are comprehensively 

used in these types of networks. The focus of this thesis is on distributed wireless networks, 

and hence more time was spent investigating the various protocols that were proposed. Next, 

the protocols proposed, known as hybrid networks was examined. Normally, a network is 

denoted as an ad hoc network when it is formed without any central administration and it 

consists of mobile nodes that use a wireless interface to send packet data. However, in a 

hybrid network, there is a centralized administrator (e.g. a mobile BS) in the network. 

In Chapter 2, building upon a token passing strategy, a new concept of data transmission 

assignment was introduced. This concept allows the token to be constantly circulating in the 

distributed network, with transmission being granted by distributing CDMA codes to the 

mobile device, eliminating the problem of hidden and exposed terminals. Based on this 

concept, the token passing based code assignment protocol was developed. The hybrid 

. token-COMA protocol not only provides guaranteed access for each node in the network, it 

also has unrivalled advantage over the COMA type protocol where the codes are now 

dynamically assigned rather than fixedly allocated to the node. With hybrid MAC protocol's 

architecture, the network is able to support more nodes than the conventional COMA 

network where it has the user-constraint due to severe interference caused by users. With the 

increasing popularity of multimedia applications, quality of service is an important part of 

the MAC protocol design. Therefore, data rate quality of service guarantee was incorporated 
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into the proposed MAC scheme. Data rate QoS is implemented to ensure fairness and it is 

enforced using modified leaky bucket mechanism. Simulation model was then setup where it 

comprises of system, input traffic and wireless channel error models . The proposed hybrid 

protocol was then evaluated through event driven computer simulations. The results obtained 

give a clear indication that the hybrid protocol outperformed both the wireless token ring 

(WTRP) and CDMA MAC systems. 

Chapter 3 presented the analytical model and approximating methods for analyzing the 

hybrid MAC scheme. The scheme's analytical model is built based on the multi server multi 

queue (MSMQ) framework where the CDMA codes were assumed to be servers and nodes 

are queues. The queue model within the system consists of three sub-models; they are the 

input, buffer and vacation models . The analysis started with the derivation of the mean 

server vacation time for the vacation model of the system. The probability generating 

function for the packet departure process for the input model was then derived. Using the 

discrete time approach, the vacation model and input model were merged with buffer model 

and the moments of queue length and the packet delay were derived. Numerical results were 

presented where the analysis results were 'compared with the simulation results. It can be 

observed that the analysis results compares favorably to the simulation, although the analysis 

presented is approximate and the simplifying assumptions cause deviations from the 

simulation results at heavy loads. It may, however, give insight into a more accurate 

approximate analysis. 

Chapter 4 presents the cross-layer concept in which a joint physical and medium access 

control layer optimization was proposed for the hybrid token-CDMA scheme. This chapter 

began by providing a comprehensive overview of the cross-layer concept and structures . The 

approach used to establish the link between the PHY and MAC layer was then discussed. 

Using the cross-layer interaction, the PRY layer derives the optimum number of 

simultaneous communications to be handled and the MAC scheme estimates the traffic load 

and modifies the transmission rate by changing the spreading factor of each transmission. As 

a result, distributed rate adaptation through spreading factor selection uses both the traffic 

information provided by the MAC and the channel estimate from the PHY layer, which 

constitutes the cross-layer concept. The simulation model and parameters were then 

presented, and the model was simulated in an event driven program. The results have shown 

that the cross-layer interaction proves to improve the spectrum efficiency, keeping the packet 

delay at the minimum possible value for different traffic load. 
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5.2 Future Work 

During the course of this research, there were issues that had the potential to improve further 

the overall performance of the system, but have fallen outside the research scope. One of 

them is taking the effects of multi-ring configuration into consideration. It would be valuable 

to investigate the cross ring activity interaction and monitor the packet transmission activity, 

together with the system performance evaluation. Secondly, it is also assumed that near-far 

problem is mitigated using the MUD and perfect power control. However, the near-far 

problem is a commonly existing hindrance to the CDMA-based systems. It would be worth 

investigating the methods to thoroughly resolve near-far problem. Lastly, although the 

hybrid MAC scheme investigated the mobility of nodes in a wireless single-hop environment, 

it would be worth researching how the scheme would behave in the more complicated multi­

hop system. In addition, it is proven that cross-layer design improves the system 

performance. Given that the PHY and the MAC layers play such a fundamental role in the 

performance of any wireless networks and because all other layers in the protocol stack rely 

on the PHY!MAC performance. The focus on the modeling of PHY!MAC layer interactions 

deserves a study on its own, and it should be fully exploited in the design and optimization 

of wireless networks. Current interaction between the PHY and MAC layers can be extended 

to incorporate the upper layers. As future work, the modeling framework can be extended to 

incorporate the impact of network routing operations from upper layers (network layer) or 

the impact of transport layer protocols, such as transport control protocol (TCP) used in the 

internet and its variants designed for ad hoc networks. 

A protocol based on token passing code assignment has the potential of providing a flexible 

and intelligent accessing control to the wireless channel in distributed networks. Although 

the hybrid MAC protocol achieves greater performance than the current WTRP and CDMA 

MAC protocols, it could be further improved by incorporating several other factors that have 

been described earlier. This is left for further research. 
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PSEUDO CODES FOR HYBRID MAC 

PROTOCOL 

TokenEventO 
1 Qlnfo[i].xj,je {l,2,3}, NOP; = QInfo[i].x" 
2 ANOC; = QInfo[i].xb TXj = QInfo[i].x3 
3 if (TX; = = 0 && NOP; != 0) 
4 if (QInfo[i].HasCode = = 1) 
5 TInfo.AddNocO++, Tjlag = 1 
6 if (Tjlag = = 0 && ANOC; > 0) 
7 if (NOP; != 0) 
8 QInfo[i].SetPackTrans(NOP;) 
9 NOC- -, QInfo[i].CaptureCodeO 
10 MonitorTokenNextVisitO 
11 if (TX; = = 0 && NOP; != 0) 
12 if(Qlnfo[i].HasCode = = 1) 
13 NOC++ 
14 TInfo.AddN9CO++ 
15 MonitorTokenNextVisitO 
16if(TX;== 1) 
17 MonitorTokenNextVisitO 
18 ChannelErr = 
CEM--+ActivateModel(SimTime, ANOC;) 
19 if (ChannelErr = = 1) 
20 if (TInfo.GetFailTX(i) <i:ErrTrial) 
21 TInfo.SetFaiITX(i)++ 
22 TInfo.SetNextVisitTimeO, TrialFlag = 1 
23 if (TrialFlag == 0 && 
TInfo.GetFailTX(i» ErrTrial) 
24 TokenORNodeLostActionO 
25 TInfo.SetFailTX(i)++ 
26 TInfo.SetNextVisitTimeO, TrialFlag = 1 
27 if (ChannelErr = = 0) 
28 if (TInfo. GetFailTX(i) > 0) 
29 TInfo.ClearErrCounterO 
30 TInfo.NextQ(TInfo.FindNextQ) 

31 TInfo.SetNextVisitTimeO 
32 Event_Table[event_number] = 
TInfo. GetNextVisitTimeO 
33 event number++ 
PackGenEventO 
34 for (Ii i, node; E G) 
35 if(QInfo[i].GenPackTime = = SimTime) 
36 q= i 
37 if(QInfo[q].LoadPackO < BufferLimit) 
38 QInfo[q].PacketBufferO++ 
39 Qinfo[q].SetNextPackGenTimeO 
40 
Event_Table[event_number]=Qlnfo[q].GetPackC 
enTimeO 
41 event number++ 
PackTXEventO 
42jlagA = 0, PAC = 0, counter = 1 
43 for (Ii i, node;E G) 
44 if (QInfo[i].PackTXTime = = SimTime) 
45 q= i 

A-I 

46 QInfo[q].PackTXO - -
47 while (counter> 0) 
48 while (jlagA != 1) 
49 jlagA = 0 
50 if(Plnfo[PAC].TXO = = 2) 
51 PAC counter--
52 for (lij,PAC<i:j<i:PAC_counter) 
53 PInfoU] = PlnfoU+l] 
54 jlagA = 1 
55 flagA = 0, PAC = 0, counter - -
56 if (QInfo[q].LoadPackO > 0) 
57 
Event _ Table [event _number ]=QInfo[q ].NextPackT 
XTimeO 
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PerrnitGenEventO 
60 for ('I i, node; E G) 
61 if (QInJo[i].GenPermitTime = = SimTime) 
62 q=i 
63 if(QInJo[q].LoadPermitO < 
PermitPoolLimit) 
64 QInfo[q].PermitO-t+ 
65 QInJo[q].SetNextPermitGenTimeO 
66 
Event_Table[event_number]=QInJo[q].GetPmt 
GenTimeO 
67 event number++ 
ChannelErrorEventO 
68 TimeOFF = SimTime + TOff 

69 TimeON = SimTime + ( ) 1 ( ) 
( 1ff," IPGOOO )- Iff," 

70 CEM-+UpdateModelPeriod (TimeOFF + 
TimeON) 
71 Event_Table[event_number]= 
CEM-+GetModelPeriodO 
72 event number-t+ 
MMPPEventO 
73 TQueue = 0, Cflag = 0 
74 for ('I i, node;E G) 
75 if (Cjlag = = 0 && 

SimTime = = 

QInJo[i] .GetNextMMP PTransisionTime()) 
76 TQueue = i 
77 Cjlag= 1 
78 if (Cjlag = = 1) 
79 QInJo[TQueue ].SetNextMMP PTime(O, 
SimTime) 
80 Event_Table[event_number] = 

QInJo[TQueue].GetNextMMPPTransisionTime 
o 
81 event number-t+ 
TokenORNodeLostActionO 
82 FailNodeErrCount-t+, 
TInJo.SetFaiITX(Dqueue,O) 

PSEUDO 

83 FailQueue = TInJo.FindNextNodeO 
84 TInfo.RemoveNodeFromNodeList(FaiIQueue) 
85 for ( 'I i, i < eventno) 
86 if (QInJo[FailQueue ].PackTimeO = = 

Event]ab/e[i]) 
87 Event_Tab/e[i] = SimTimeExceedLimit, 
event number--
88 if (QInJo[FailQueue] .PermitTimeO = = 

Event_Table[i]) 
89 Event_Tab/e[i] = SimTimeExceedLimit, 
event number--
90 if (QInJo[FailQueue].TxmitO= = 1) 
91 for ( 'I i, i<eventno) 
92 if (QInJo[FailQueue].TransTimeO = = 

Event ]able[i]) 
93 EvenCTab/e[i] = SimTimeExceedLimit 
94 event number--
95 QInJo[FailQueue ].ClearCodeO 
96 
TInJoAddNOC((TInJo.GetNOCO+ I ),FailQueue) 
97 else 
98 if (Qlnfo[FailQueue ].HasCodeOrNotO= =\) 
99 Qlnfo[FailQueue] .C/earCodeO 
100 
TInfoA ddNOC(TInfo. GetNOCO+ I ,F ai/Queue) 
10 I Qlnfo[FailQueue ].cleanQueueO 
102 Ftempyacket_counter = packet_counter 
103 for ( 'I i, i<packet_counter) 
104 if (PInJo[i].JnWhichQueueO = = FailQueue) 
105 PInJo[i].SetPacketFlagO 
106 LostNodePacs++ 
107 while (LostNodePacs > 0) 
108 while (flagA 1= I) 
109 jlagA = 0 
110 if (PInJo[PAC] .TxmitedO = 2) 
III Ftemp yacket_counter--
112 for ('1j,j = PAC,j < 
packet_counter) 
113 PInJoU] = P InJoU+ \ ],jlagA = \ 
114 jlagA = 0, PAC = 0, LostNodePacs--
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